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Abstract
Numerical modeling of nearshore waves has been of high interest for the quantitative assessment
of ocean-borne hazards and the design of coastal infrastructure. An accurate calculation of waves
in the littoral environment requires numerical models to account for phase-dependent processes
that can pose challenges not only to the quality but also to the computational complexity of the
numerical solution.

This Ph.D. research presents the strategic development of a numerical model for a set of Boussinesq-
type equations with the objective of building a tool for practical applications and operational fore-
casting systems. The effort has led to a computer code where multiple fundamental features were
optimized for both computational efficiency and accuracy to achieve fast and reliable solutions of
nearshore waves. It is highlighted that the choice of the numerical framework for the underlying
Shallow Water Equations is of critical importance for the quality of the full Boussinesq-type
solution. Counter-intuitively, the numerical scheme combines shock-capturing capabilities for
breaking waves and run-up with low diffusion for the propagation of multi-directional periodic
waves. These properties are obtained with an explicit second-order finite-volume scheme over a
staggered grid and without the use of the method of characteristics or computationally expensive
Riemann solvers. Consequently, the streamlined algorithm caters to numerical efficiency and grid
nesting, which are crucial for fast turnaround times over large domains.

The model was verified and validated with standard benchmark tests for problems involving com-
monly encountered processes such as bore propagation, run-up, shoaling, refraction/diffraction,
and energy transfer to infra-gravity waves. A particular quality of the new model is its consis-
tent calculation of the challenging wave transformations in the surf zone dominated by breaking
waves. Here, the additional solution of turbulent kinetic energy produces time- and space-varying
dissipation to mimic physically realistic surf zone processes.

Finally, the performance of the model was tested with two energetic swell scenarios at the
Northshore of Hawai’i and validated with field data for its applicability in handling complex
wave transformations over a large irregular bathymetry with thousands of input waves. The
optimized numerical structure in combination with efficient parallelization methods on CPU
and GPU supports high-performance computing and offers the possibility to carry out intensive
computations on commodity hardware.

Keywords: Nearshore waves, phase-resolving models, Boussinesq approach, numerical meth-
ods, operational computations, high-performance computing, GPU computation, run-up
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1.1 General Context

The Sixth IPCC Report on Climate (Pörtner et al. [2022]) is warning that the world’s average
temperature will exceed the critical threshold of 1.5 degrees Celsius over the next few decades
unless drastic actions are taken. It is uncertain whether these measures will be implemented,
as to date no significant reduction in global anthropogenic greenhouse gas emissions has been
noticeable. The consequences of a continuation of global warming are widely understood and
fairly undisputed. With a focus on the coastal zone, it is foreseeable that sea level rise will build
up excessive pressure on natural and engineered beaches since the elevated water table will allow
for wave action to be carried closer to shore and, at the same time, impair beaches’ ability to
act as a dynamic buffer for the absorption of the waves’ energy.

In a broader context, it is clear that the landfall of extra-tropical and tropical storms from the
open ocean can result in massive onshore surges of seawater that flood low-lying coastal areas,
endangering life and property. Tsunamis can have a similar destructive nature; hence, early
warning systems and evacuation plans are in place and are constantly improved for these extreme
events. Less noticed by policymakers and the general public, large swell events and associated
wave-driven flooding occur much more frequently than catastrophic storm surges or tsunamis,
and when they coincide with spring tides, they become more than just "nuisance flooding". These
events are also much more difficult to quantify than extreme scenarios, and their impact will grow
more acute as the number and duration of such events are bound to increase (Emanuel [2005]). In
addition, the continuation of sea level rise due to global warming will soon push the water table
of regular high tides into the range of spring high tides and exacerbate the severity of the impact
that large swell waves have on the coastal zone. Therefore, it is necessary from a practical point
of view to plan ahead with protective measures in anticipation of the consequences linked with
sea level rise and nearshore waves. While the effects of large swells on coastal erosion, freshwater
aquifers, and coastal infrastructure are already significant (Storlazzi et al. [2015]), the effects of
large swell waves in combination with sea level rise are still poorly understood. Particularly for
complex seabeds, wave breaking and shoreline erosion do not necessarily occur in the area of
the largest wave activity. Especially infra-gravity (IG) oscillations, which are the driving factor
for locally large run-up and nearshore currents, are often generated by nonlinear wave-by-wave
processes and therefore require expensive numerical solutions of adequate governing equations
to be properly quantified.

While traditional wave forecasting methods provide average or integrated wave conditions near
the coast, future climate conditions will call for operational phase-resolving wave modeling to
provide a more complete picture of potentially hazardous conditions along entire stretches of
coastline. Therefore, new models must be developed that can provide reliable solutions over
large domains with potentially millions of grid cells and that can be computed with standard
hardware in a relatively short amount of time.

This Ph.D. research is tightly embedded into the E2S chair HPC-Waves, and it is a crucial
component of one of the two chair’s axes—namely, numerical model development with a focus on
practical applications. This research work is part of the chair’s effort to provide novel solutions to
today’s coastal problems, such as hazard mitigation associated with flooding, and to strengthen
collaborative initiatives in the future.
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1.2 Nearshore Wave Assessment

Based on the outline above, it is clear that coastal engineers, emergency managers, and scientists
have been gaining interest in quantitative assessment of swell waves and their behavior at the
coast. Today, nearshore wave forecasts and hindcasts are indispensable for the construction of
coastal structures, the development of ports, and flood risk assessment. To better understand
nearshore conditions, a large number of physical wave measurements and field observations were
used to calibrate and validate numerical (e.g., Booij et al. [1999]) and empirical models (e.g.,
Komar and Gaughan [1973]; Caldwell and Aucan [2007]). Though it is possible to obtain rough
approximations of wave run-up based on empirical formulae (e.g., Stockdon et al. [2006]), such
estimates are often of limited applicability in areas with complex shorelines and bathymetries,
such as those encountered along the Basque coast or in tropical areas with fringing reefs. In
the absence of applicable formulations, the transformation of swells in nearshore areas can be
analyzed by constructing a physical scaled model. Obviously, these models require a significant
investment of resources, and their applicability is quite restricted to certain wave and terrain
conditions. That is why, in recent years, laboratory experiments have primarily been used to
gain data for benchmarking and validation of mathematical and numerical models.

1.2.1 Mathematical Framework

Due to the substantial increase in computing power, numerical solutions for coastal wave prob-
lems are now reliable, cost-effective, and time-saving tools for engineering designs. The advantage
of numerical models lies in their simplicity, with which different layouts can be constructed and
tested compared to a physical model. Open ocean swell propagation can be fairly well described
with wave action balance equations as implemented in spectral wave models, since it is the over-
all wave energy that matters rather than the details of individual waves in a swell. In recent
years, a number of advanced wave spectral models have been developed, (e.g., WAM model
(WAMDI [1988]), Simulating WAves Nearshore (SWAN [2015]) and WAVEWATCH III (Tolman
et al. [2009]). These models, also known as the "third-generation spectral models", are able
to account for some key nearshore processes, such as refraction, shoaling, white capping, and
depth-induced breaking. Spectral models are based on the assumption that phase-dependent
quantities vary slowly over wavelength-scale distances (Rusu and Soares [2013]). The fact that
individual waves are not resolved allows for the use of coarse meshes and consequently fast com-
putations of wave propagation over large open seas. However, closer to shore, where complex
wave processes occur over relatively short distances, such as inside harbors, across the surf zone,
or over steep sloping beaches, these models are limited in producing an accurate description of
the complex and time-dependent wave field. Moreover, as the nearshore waves feel the bottom,
nonlinear phenomena gain weight, and especially in the surf zone, wave-by-wave action takes
over as the driving factor for secondary wave processes such as wave set-up and surf beat as
well as infra-gravity waves and recirculation. This has led to the development of phase-resolving
models to compute individual waves and their interactions, along with run-up and coastal in-
undation. Obviously, a phase-resolving computation calls for high grid resolutions of only a few
meters, and thus, it is computationally much more demanding than a phase-averaged solution by
a spectral model, where often mesh sizes of tens or even hundreds of meters are sufficient. Since
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a complete phase-resolving model requires the solution of highly nonlinear, time-dependent, dis-
persive wave transformation processes, the details necessary for the solutions on a wave-by-wave
basis can pose significant challenges to numerical solvers. And while recent advancements in
computing power have paved the way for a wide and mainstream usage of numerical models,
the computations of large-scale and three-dimensional wave problems are still not feasible in a
timely manner, especially in the context of an operational system—not even counting expensive
post-processing procedures. Therefore, efforts to lower the computation time are necessary and
have been sought by reducing the dimensions of the numerical problem. A simplification can be
achieved by integrating over the water column, thereby reducing the spatial dimensions from 3D
to 2D. Such models, in which the vertical structure is not directly solved but only parametrically
modeled, are known as two-dimensional in the horizontal plane models (i.e., 2DH models).

Models based on the depth-averaged hydrostatic Shallow Water Equations, have been particularly
popular for the phase-resolving computation of long waves, such as tsunamis and tidal waves.
Due to the simplified structure of the governing equations, this mathematical framework has
been extensively used in operational tsunami systems (e.g., MOST (Titov and Gonzalez [1997]),
TUNAMI (Imamura [1989]) and COMCOT (Wang [2009])) and has proven to be cost-effective,
especially when dealing with long-distance wave propagation. Nevertheless, the accurate pre-
diction of nearshore wave processes requires both nonlinearity and dispersive effects to be taken
into account. Consequently, the SWE equations with their hydrostatic assumptions are expected
to fail and become invalid for an application to nearshore swells. Boussinesq-type equations, al-
though based on long-wave assumptions, resolve waves in intermediate water depths and have
proven to be applicable to nearshore waves. This is because, unlike the SWE, they include some
effects of frequency dispersion in the governing equations. The original Boussinesq equations
(i.e., Peregrine [1967]) have been extended to accurately compute wave propagation in deeper
water (i.e., λ = 2h). Equations such as the ones derived by Madsen and Sørensen [1992]; Nwogu
[1993]; Wei and Kirby [1995]; Zou [1999, 2000] have become very powerful tools for nearshore
wave assessment and have paved the way for the rise of new and improved dispersive wave mod-
els (e.g., FUNWAVE-TVD (Shi et al. [2011]), BOSZ (Roeber and Cheung [2012]), COULWAVE
(Kim et al. [2009]), TUCWave (Kazolea and Delis [2013])). While these extended equations have
helped improve the dispersion properties required to compute waves in intermediate water, they
still have limited applicability to deeper water. Several researchers have made attempts to practi-
cally eliminate water depth limitations and treat highly dispersive and nonlinear waves. Inspired
by Nwogu [1993], Gobbi et al. [2000] presented a new form of high-order Boussinesq equations
based on a linear combination of the velocities at two arbitrary vertical levels. This led to a
dispersion relation that is valid up to λ = h. Madsen et al. [2002] extended the applicability of
Boussinesq-type equations up to λ = h/6 by including higher-order derivative operators (i.e., up
to fifth-order). Madsen et al. [2003] achieved similar dispersion properties along with an improved
velocity profile by using Padé approximants as an alternative to the Taylor series. This resulted
in a much higher order of accuracy without increasing the order of the derivatives. This highly
dispersive formulation was later extended to include rapidly varying bathymetry (i.e., Madsen
et al. [2006]). Along with the high-order Boussinesq-type equations, fully-dispersive formulations
have also been proposed, which achieve the exact dispersion characteristics with no limitation on
the water depth, i.e., h/λ <∞ (e.g., Tsutsui et al. [1998]; Schäffer [2005]; Karambas and Memos
[2009]; Klonaris et al. [2013]). Karambas and Memos [2009] derived a fully-dispersive model
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through an inverse Fourier transform that offers significant advantages due to the small number
of terms involved in the equations. Most recent improvements in Boussinesq-type equations aim
to improve the nonlinear-dispersion properties of the model by splitting the vertical domain into
a few layers (typically two to five). Lynett and Liu [2004] proposed a two-layer formulation with
separate velocity polynomials within the layers and additional interface conditions. Multi-layer
models such as Chazel et al. [2009]; Liu and Fang [2016]; Liu et al. [2018], provide a high-accuracy
representation of the vertical structure, while allowing for lower-order operators in each layer.
Other developments focused on improving the embedded nonlinear properties of the model as well
as its performance for highly nonlinear and steep waves. This was typically achieved by allowing
the nonlinear scaling parameter to be of order 1, thus retaining nonlinear dispersive terms in the
formulations (see e.g., Wei and Kirby [1995]; Madsen and Schäffer [1998]; Gobbi et al. [2000]).
While fully-nonlinear Boussinesq equations have become long-accepted tools in nearshore wave
modeling, some instabilities related to the fully-nonlinear and weakly-dispersive approximations
have been recently reported by Madsen and Fuhrman [2020]. Madsen and Fuhrman [2020] has
also shown that these potential trough instabilities are less pronounced when the accuracy of
the linear dispersion relation is improved and are completely resolved when the dispersion re-
lation is exact, such as in the case of High-Order Spectral (HOS) methods (e.g., Dommermuth
and Yue [1987]; Yates and Benoit [2015]; Raoult et al. [2016]; Zhang and Benoit [2021]). It is
pretty evident that a fully-dispersive and fully-nonlinear formulation provides a complete and
high-quality mathematical framework for nearshore wave computation; however, the inherent
numerical complexity of such models significantly restricts their use, especially in an operational
context.

As Boussinesq-type equations handle the effects of non-hydrostatic pressure variations, they solve
essentially for the same processes as the so-called "non-hydrostatic" models. The two approaches
differ from each other as the non-hydrostatic equations require the solution of an additional gov-
erning equation for the vertical pressure, which is used for the correction of the hydrostatic
pressure computed by the SWE. The Boussinesq approach includes the vertical variation in
pressure directly in the horizontal momentum equations through additional source terms. Since
extended Boussinesq-type equations such as Nwogu [1993] include enhanced dispersion proper-
ties, non-hydrostatic models (e.g., SWASH Zijlema et al. [2011]) require two or more layers to
provide dispersion properties equivalent to those of standard Boussinesq-type models.

Boussinesq-type equations have evolved into powerful tools for studying waves in the nearshore
environment and have found their way into reliable and operational wave modeling. However,
models based on these equations contain two main limitations: they do not per se hold for
wave breaking, and they are still considered to be computationally expensive, especially for large
computational domains (i.e., millions of grid cells). This means that as the waves approach the
shore, wave-breaking effects, and run-up computations have to be dealt with while maintaining
the stability and consistency of the high-order dispersive equations.

1.2.2 Numerical Methods

From a numerical standpoint, Boussinesq-type equations have been solved by using different
numerical techniques such as Finite Difference (FD), Finite Element (FE), and Finite Volume
(FV). Since these dispersive equations contain both hyperbolic and elliptic components, their
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solution should account for the “wave-like” properties of the equations along with an accurate
description of the non-hydrostatic elliptic terms. In the context of nearshore wave modeling,
important processes such as wave propagation, nonlinear wave interactions, bore formation, and
moving shorelines should all be adequately described within the numerical framework. This
requires the numerical scheme to fulfill some key requirements:

• Mass and momentum conservation,

• Low diffusive and dispersive numerical errors,

• Well-balanced computations,

• Shock-capturing,

• Stable wet-dry transitions.

The numerical solutions of Boussinesq-type have been subject to many trends. Earlier solutions
were based on traditional FD schemes solved on a staggered grid (Arakawa and Lamb [1981]).
This approach has been successfully employed in many first-generation Boussinesq models, such
as BOUSS-2D (Nwogu and Demirbilek [2001]), earlier versions of FUNWAVE (Wei and Kirby
[1995]), and COULWAVE (Lynett et al. [2002])). While FD offers a simple and lean approxima-
tion for high-order derivatives, earlier implementations were not suitable for the computation of
flow discontinuities, which are necessary for bore propagation and run-up. To overcome these
limitations, recent Boussinesq models are based on a hybrid approach, in which the hyperbolic
portion of the equations is computed with well-established FV schemes (e.g., Toro [1989]; Roe
[1986]; Kurganov et al. [2001]), while the dispersive terms are approximated using high-order
FD. It is important to note that the vast majority of existing Boussinesq models are now based
on hybrid FV-FD methods (Erduran et al. [2005]; Tonelli and Petti [2009]; Roeber et al. [2010];
Kazolea and Delis [2013]). This shift was motivated by the stability and shock-capturing capa-
bilities of FV computations. A similar change in trend was also reported for hydrostatic tsunami
models. High-order flux reconstructions in combination with TVD limiters were successfully used
to reduce the inherent diffusivity of shock-capturing methods (e.g., Jiang and Shu [1996]; Kim
and Kim [2005]; Choi et al. [2018]). The use of a Cartesian grid for these high-order approxi-
mations provides more robust and stable computations due to consistent discretization errors.
For this reason, the structured grid has been widely used for the implementation of operational
Boussinesq models. To obtain a high-resolution solution for strategic sites, the uniform Cartesian
grid has recently been combined with a nested grid approach for the solution of Nwogu’s equa-
tions (Choi et al. [2022]). This approach has proven to be cost-effective and does not alter the
solver’s main structure. A different technique is based on the unstructured FE method. It has
been successfully implemented for the solution of Boussinesq-type equations (e.g., Walkley and
Berzins [2002]; Panda et al. [2014]; Ricchiuto and Filippini [2014]). While this approach provides
more grid flexibility and is applicable to unstructured mesh, the accuracy of the solution itself
is similar to FD schemes.

1.3 Model-based Forecast

The rise of the global sea level has the potential to increase both the frequency and the mag-
nitude of coastal hazards. This future scenario has prompted a great deal of effort to build
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accurate and reliable forecasts of nearshore waves and flooding hazards. Wave forecasts are
available almost globally; however, they are based on spectral wave models with relatively coarse
resolutions and do not provide the necessary details and features for nearshore wave assessments.
A new generation of phase-resolving wave forecasts has been implemented recently, such as the
Wave Run-up Forecast for West Maui (PacIOOS [2022]) and the Imperial Beach Flood Forecast
System (Fiedler et al. [2020]). These operational systems combine spectral models for offshore
energy propagation with phase-resolving computations to model nearshore wave transformations.
While phase-resolving models are reliable tools for providing high-resolution metrics of surf zone
dynamics, coastal flooding, and overtopping, the high computational effort required by these
models can limit their use in an operational setting. One main limitation is the long compu-
tation required to solve a substantial 2D nearshore domain. For this reason, many operational
systems replace the 2D domain with 1D cross-shore transects. This obviously compromises the
validity of the numerical solution, especially in the case of complex topography where refraction
effects are a controlling factor. Another workaround to achieve timely results is based on using
a coarse grid (∆x > 10m) for the phase-resolving simulation combined with empirical formulae
to extract the run-up. While computer clusters with multiple processors can reduce the compu-
tation time of these phase-resolving simulations, the cost of the hardware as well as their high
energy consumption remain major issues.

Some of the main challenges for operational phase-resolving models are associated with

• Stability of the nonlinear and dispersive solution,

• Efficiency and robustness of numerical schemes,

• Reduced numerical errors (especially diffusive errors),

• Robust and reliable wave-breaking treatments,

• Localized and targeted mesh-refinement,

• Efficiency of the numerical algorithm with respect to implementation and parallelization.

It is obvious that the above items cannot be seen independently but rather present a complex
and compound ensemble. Addressing one particular item might impair the solution of another.
Nevertheless, a structured and dynamic approach with a focus on all problems can help find new
avenues in the numerical modeling of nearshore waves.

1.4 Objectives

This thesis describes the systematic development of a computer code for the solution of nearshore
waves with a focus on the improvement of accuracy and computational speed in comparison to
established models. A clear focus of this work lies in the development of a model for practical
applications. This implies that priority is given to solutions that are widely applicable rather
than specific solutions with limited use for real-world challenges.

Further, it is the objective that the novel computer code can be used on consumer-grade hardware
and still render fast and reliable solutions. This requires the development of a numerical code
that is not only well parallelizable but also, and this is most important, provides solutions in an
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efficient way so that accurate results can be obtained without excessively fine meshes or a large
cell count.

1.5 Outline

The thesis outlines the step-by-step development of a new Boussinesq-type model for nearshore
waves with a focus on computational efficiency. This research work is presented in the form of
seven chapters:

Chapter 2 describes the development of a new Shallow Water model with the objective
of being used as the foundation for the final dispersive model. We demonstrate the robustness
and accuracy of this new numerical framework for shock and run-up computation. We also
discuss the implementation and validation of the nested grid approach for the hydrostatic model.
The sensitivity and efficiency of this mesh-refinement technique are highlighted using standard
tsunami benchmark tests.

Chapter 3 outlines the 1D extension of the Shallow Water model into two dispersive models:
one based on the fully nonlinear SGN equations (i.e., Serre [1953]; Green and Naghdi [1976]) and
another on extended Boussinesq equations (Nwogu [1993]). The two equations are rewritten to
obtain an elliptic-hyperbolic decoupling, and their numerical solutions are verified using analyti-
cal tests. The numerical solutions of these equations are compared to standard benchmark tests
to illustrate the effects of the nonlinear and dispersion properties of the governing equations.

In Chapter 4, we discuss how the properties of the hyperbolic solver can impact the numer-
ical solution, particularly in the case of long-distance wave propagation. We focus on one impor-
tant and often overlooked issue: numerical diffusion. We propose an adequate numerical scheme
with only low numerical diffusivity and compare its performance to that of well-established nu-
merical schemes. For that, we implement the solution of Nwogu’s equation using the hybrid
FV/FD approach. Simple periodic wave propagation tests are then conducted to assess the
accuracy of each approach and its sensitivity to grid resolution.

Chapter 5 details the implementation of a turbulent kinetic energy (TKE)-based eddy
viscosity approach to account for wave breaking effects in the Present Boussinesq-type model.
We also examine the accuracy and grid-convergence of this method compared to other standard
wave breaking closures.

Chapter 6 describes the development of the 2D dispersive wave model along with some key
features such as internal wave generation, wave-absorbing boundaries, and eddy viscosity wave-
breaking closure. The Present model is based on the conservative solution of Nwogu’s equations
and incorporates several strategic techniques to improve the efficiency of the 2D computations.
The new model is then validated using a series of benchmark tests that include a wide range
of wave transformation processes such as refraction-diffraction, shoaling, wave-breaking, and
run-up.

Chapter 7 outlines the GPU-based implementation of the new model into the CUDA
C/C++ framework. While the explicit nature of the Present model caters to massive data paral-
lelism and thus enables GPU implementation, the inherent data-dependent elliptic solver along
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with the wavemaker source term must be specifically addressed to achieve improved performance
without alteration of the solution. The speed-up of the GPU parallelization is then compared to
a standard CPU parallelization on conventional hardware of comparable cost.

In Chapter 8 we evaluate the model’s applicability to a real-world case that involves en-
ergetic nearshore waves over complex reef-dominated bathymetry. The test case uses a large
computational domain and computationally intensive wave generation with over 40,000 waves,
which are ideal conditions for testing the accuracy and performance of this new implementa-
tion. We also compare the quality of the results from the Present model with the solutions of a
well-established model (BOSZ) and finally highlight some key differences.
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2.1 Introduction

The Shallow Water Equations (SWE) have gained massive popularity for modeling a wide range
of free surface problems, including open channel flows, tides, dam-break induced waves, and long
waves such as tsunamis. Since SWE represent the backbone of many depth-integrated wave
models such as Boussinesq-type models (e.g., Roeber and Cheung [2012]; Shi et al. [2011]), non-
hydrostatic models (e.g., Zijlema et al. [2011]) and sediment transport models (e.g., Audusse
et al. [2012]), significant effort has been made to improve the numerical solutions regarding
accuracy and computational efficiency. In this section, we present the rigorous development of
a robust and accurate numerical framework for the solutions of the SWE, with the underlying
objective of building the foundation for a depth-integrated dispersive wave model. The choice
for the staggered grid approach was motivated by the robustness and accuracy demonstrated in
many related papers (e.g. Zijlema et al. [2011], Yamazaki et al. [2011], and Stelling and Zijlema
[2003]). The discretization used for the model is adapted from Stelling and Duinmeijer [2003]
and extended in some aspects. This implementation has proven to satisfy key properties of a
hyperbolic solver: shock-capturing, well-balanced computations, and water depth non-negativity
preservation. Such properties are necessary for accurate computations of long-wave propagation
and run-up. The implementation is then combined with a nested grid approach to achieve
efficient local run-up computations. The performance of the numerical model is evaluated by
running a series of benchmark tests presenting a wide range of free surface flow problems, such
as flows with shocks, transcritical flows, flows over a frictional bed and with moving boundaries.

2.2 Efficient Numerical Computations of Long-Wave Run-Up
and Their Sensitivity to Grid Nesting

The implementation of the hydrostatic model is described and validated with analytical and
laboratory tests for the computation of long wave run-up. The efficiency of the new SWE
solver is enhanced with the implementation of the nested grid technique, which can achieve
high-resolution run-up computations at low computational cost. This work takes the form of a
published article (Mihami et al. [2022]), inserted here in its original form.
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Abstract
Computation of long-wave run-up has been of high interest in the fields of ocean sci-
ences and geophysics—particularly for tsunami and river floodmodeling. An accurate
calculation of run-up and inundation requires the numerical model to account for a
sequence of critical processes—each of themposing a different challenge to the numer-
ical solution. This study presents the strategic development of a numerical solution
technique for shallow water equations with a focus on accuracy and efficiency for
long-wave run-up. The present model is based on an explicit second-order finite-
volume scheme over a staggered grid that efficiently achieves fundamental properties.
The scheme is well-balanced and preserves shock fronts without the need for com-
putationally expensive solvers. The streamlined code serves as a foundation for the
implementation of nested grids. Computations of commonly used long-wave bench-
mark tests showcase that accurate predictions of local extreme run-up can often be
achieved with highly refined yet spatially focused nested grids. Strategic grid nesting
can lead to stable and accurate solutions of run-up at locations of interest and reduce
the computational load to a fraction of what is usually necessary for a comparable
solution over a single grid.

Keywords Shallow water equations · Explicit staggered grid · Grid nesting ·
Run-up · Long-waves · Numerical methods

1 Introduction

The estimation of run-up from long waves is crucial for the assessment and prediction
of hazardous flooding scenarios associated with tsunamis and storm surges. As wave
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run-up is the final stage a water wave undergoes when it reaches the shore, it depends
on multiple processes such as wave transformation, breaking, and interaction with
dry land. Consequently, a substantial and continuous effort has been made to better
understand and compute the run-up processes of long waves [1]. This includes studies
with respect to the derivation of analytical solutions for simplified geometries (e.g., [2–
5]), laboratory experiments (e.g., [6–8]), and development of new numerical methods
(e.g., [9, 10]). The latter provides approximate yet valid run-up solutions in more
general settings suitable for the reconstruction of past events, forecasting, and practical
engineering applications.

Numerical models for long waves, such as tides, storm surges, and tsunamis, have
traditionally been based on shallow-water equations (SWE). Despite their simplistic
hydrostatic assumptions, the SWE provide a valid basis for many long-wave prob-
lems and are often preferred over more complete equations thanks to their hyperbolic
nature in which shocks can form as part of the solution. These depth-averaged equa-
tions have proven to give a reasonable balance between the accuracy and numerical
cost [11] and serve by far as the most commonly used baseline for run-up calculations
(e.g., [12–14]). Various numerical techniques have been proposed for the discretization
of the SWE, ranging from conventional mesh-based methods such as finite difference
(FD), finite volume (FV), or finite element (FE) to unconventional mesh-free meth-
ods such as smooth particle hydrodynamics (SPH) [15]. The numerical solutions of
SWE have been subject to many trends. Earlier solutions were based on traditional
FD schemes solved on a staggered grid [16]. This approach has been successfully
employed in many first-generation tsunami models (e.g., TUNAMI [17], COMCOT
[18]). Several wetting–drying techniques have been proposed to achieve a reasonable
representation of the run-up heights. Shuto and Goto [19] used a staggered scheme
with a Lagrangian description for the moving boundaries. Another approach has been
based on the Neumann-type technique, which has been used to extrapolate the velocity
at thewet-dry fronts [20], while Liu et al. [21]modeled the run-up based onwater-level
changes through flooding and drying of the cells.

FDmethods offer a simplified solution for hyperbolic equations. However, they are
known to exhibit deficiencies when dealing with flow discontinuities [22, 23], which
particularly require local conservation of both mass and momentum. These conserva-
tion properties are necessary for the transport of breaking waves toward the shore and,
hence, are important for the accuracy of the run-up computation. FV methods, on the
other hand, solve the integral form of the SWE and directly benefit from conserva-
tion and shock-capturing capabilities. For this reason, FV methods such as Godunov
[24], and Roe [25] solvers, which were previously used in gas dynamics, have become
increasingly popular for the solution of long-wave problems. A new generation of
tsunami and flooding models has been developed [26–29] based on a finite-volume
interpretation of the equations, where the in-going and out-going fluxes over a con-
trol volume are computed with approximate Riemann solvers (e.g., [30–32]). These
solvers are designed to preserve the hyperbolicity of the governing equations to allow
for the formation of discontinuities in the numerical system. However, hyperbolicity
can be a source of problems for the solution of the SWE. One drawback of this prop-
erty is the well-balance between flux gradient, and source terms [33]. This means that
models based on the FV approach often require computationally expensive techniques
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to ensure the scheme is well-balanced—especially in the presence of dry cells [22,
34–38]. With respect to run-up and as a way to deal with the numerical problems
of the moving shoreline, many FV schemes employ an artificial bed-wetting algo-
rithm. These work through the definition of a minimum value of the water depth in
the dry cells adjacent to the wet cells for computation of the numerical flux [37, 39].
Another difficulty for these schemes lies in the conservation of the non-negativity
of the water depth—especially in the case of run-down [40]. Nevertheless, several
operational models such as FUNWAVE ([41], COULWAVE [42], and BOSZ ([43])
successfully utilize these schemes.

Another approach for solving the SWE is linked to the use of conservative stag-
gered schemes. These methods benefit from the efficiency and robustness of the FD
approximations while achieving conservative and shock-capturing properties. Such
schemes have been successfully applied to flows at high Froude numbers, including
hydraulic jumps and inundation of dry areas (e.g., [44–48]). These schemes are based
on specific FD approximations, which satisfy the Rankine–Hugoniot jump condition
at a discrete level [33], and achieve valid solutions for rapidly varying flows. The
concept from [45] has been widely used in many operational wave and run-up models
(e.g., SWASH [49], NEOWAVE [50] and Xbeach [51]). This scheme guarantees the
positivity of the water depth under the standard Courant–Friedrichs–Lewy (CFL) con-
dition and, therefore, is very efficient for the computation of large-scale inundation
problems.

The design of the numerical solutions of long-wave run-up requires taking the
multi-scale nature of the problem into account, i.e., large-scale long-wave propaga-
tion in combination with the small-scale run-up and inundation processes. High spatial
resolution is necessary for a detailed representation of the run-up process. However,
computing a high-resolution grid over the entire domain is often unnecessarily expen-
sive and can hinder the applicability of the model to real problems. With the objective
of achieving efficient long-wave run-up computations, it is, therefore, desirable to
utilize different grid sizes—each appropriate for the particular problems in the propa-
gation and the run-up stages. Different approaches have been used to obtain local mesh
refinement. For example, traditional nested grid methods have been implemented in
tsunami models [17, 18, 52]. These techniques are usually built into structured grids
where the refinement arises from the insertion of a sub-grid with higher resolution.
The exchange of information between the grids is achieved either with one-way or
two-way interactions. On the other hand, for unstructured grids, an adaptive mesh
refinement technique has been successfully implemented in a number of long-wave
models (e.g., [26, 53, 54]). The adaptive mesh refinement generates locally refined
cells adapted to the flow condition without the need to use fixed sub-grid [55]. The
refined region is, therefore, able to move with the area of interest, and unnecessary
refinement is avoided. The disadvantage of these methods lies mainly in the complex-
ity of the grid generation techniques, which require intensive data storage. In addition,
the time step constraint is bound to the smallest grid cell that can hinder the efficiency
of the implementation for explicit schemes [56].

This paper presents the rigorous development of a stable and accurate numeri-
cal framework for the computation of long-wave run-up. We address the details of
the numerical scheme and outline the strategy for grid nesting to achieve a fast and
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low-cost numerical tool for run-up computations. The model is based on a conser-
vative staggered scheme in which the shock-capturing capabilities are achieved by
satisfying the Rankine–Hugoniot at a discrete level. The scheme avoids the split-
ting of the free surface gradient into a pressure flux and topography term, resulting
in direct non-negativity preserving and well-balanced computations. The verification
process checks off the fundamental properties necessary for the computation of run-up:
shock-capturing capabilities, moving boundaries with bottom friction, and exchange
of information across nested grids. Two standard tsunami benchmark datasets are
then employed to demonstrate the sensitivity of long-wave run-up to the overall grid
resolution as well as to the extent of the nested grid and the refinement factor.

2 Methodology

2.1 Governing Equations

The present study considers the two-dimensional, depth-averaged Shallow Water
equations (SWE). These equations provide a powerful baseline for long-wave mod-
eling thanks to their wave-like hyperbolic structure. Moreover, the SWE serve as the
backbone for many numerical models that address nearshore wave propagation and
inundation. This is the case for dispersiveBoussinesq-type and non-hydrostaticmodels
in which the governing equations contain the SWE as a subset.

The SWE are derived from the Navier–stokes equations under the following
assumptions: (a) the pressure is hydrostatic, and (b) the vertical distribution of the
horizontal velocity is uniform (no variation). Under these assumptions, the equations
take the following differential form in Cartesian coordinates:
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We define t as the time variable, x and y are the space variables, h is the water depth,
u and v are the depth-averaged velocities in the x- and y-directions, respectively. η

refers to the free surface elevation: η (x, y, t) = h (x, y, t) − d (x, y), where d is the
positive bottom topography (Fig. 1). The constant g is the gravitational acceleration
and n is the Manning roughness coefficient [s m−1/3].

We write the SWE, Eqs. (1)–(3) in a conservative form to ensure the conservation
of mass and momentum across discontinuities. The conserved variables, in this case,
are the total water depth h and its product with the velocity components: hu and hv.
In this form of the equations, we avoid the splitting of the free surface gradient into
an artificial flux gradient and a source term that includes the effect of bed slope. The
free surface gradient is, therefore, computed independently of the numerical flux, and
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Fig. 1 Definition sketch for the free surface flow problem with key variables

no additional treatments are required to ensure that the scheme is well-balanced. The
preservation of shocks and discontinuities will consequently depend on the numerical
approximations of the scheme, which have to satisfy the Rankine–Hugoniot jump
condition at the discrete level [33].

We introduce the auxiliary variables p and q, which denote the mass fluxes:

p = hu q = hv (4)

We rewrite the SWE in the following form:
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It is worth mentioning that in the momentum equations Eqs. (6) and (7), the vari-
ables hu and hv in the local acceleration and the variables p and q in the convective
acceleration play different roles. The former is a storage quantity, while the latter is
a transport quantity. Consequently, these terms are approximated differently, and in
order to avoid confusion, we avoid using the same symbols.

2.2 Conservative Staggered Scheme

As detailed in the introduction, a variety of numerical schemes have previously been
developed for the solution of the SWE. The choice of the numerical scheme depends
mainly on the problem being addressed, which defines the requirements for the scheme
properties. For the computation of long-wave run-up, a conservative shock-capturing
scheme is crucial for the preservation of momentum and propagation of shocks at the
correct speed and height. Other important properties are the well-balanced approxi-
mations of the topography variations, along with the non-negativity of the water depth
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Fig. 2 Schematic of the 2D staggered grid

to ensure mass conservation across wet/dry transitions without parasitic waves. This
adds to the stability and robustness of the numerical model—particularly over irreg-
ular bathymetry. Consequently, a scheme that provides these features is suitable for
computing wave-breaking processes and, subsequently, wave run-up estimations.

In this study, the objective is to develop a lightweight yet accurate and stable solution
structure that keeps the computational expenses at a low level. For these reasons, we
utilize a conservative scheme on a staggered grid where the numerical fluxes are
computed with simple FD approximations instead of Riemann solvers. The SWE
variables, in this case, are approximated on a staggered C-grid: the total water depth
h and the bed topography d are defined at the cell center, and the depth-averaged
velocities (u, v) are stored at the cell interfaces (see Fig. 2).

For the discretization, we consider a 2D rectangular computational domain with
a uniform grid spacing of �x and �y in the x- and y-directions, respectively. The
variables stored at the cell center are expressed as xi, j , where i and j are the spatial
indices in the x- and y-directions. The variables stored at the cell interface are denoted
by xi± 1

2 , j or xi, j± 1
2
in the x- and y-directions, respectively. The time stepping is based

on discrete, non-uniform time intervals tn = n�t , where n is the time index and �t
is the adaptive time step. The value of each variable a at the time level tn is denoted
with an . The water depth h is evaluated at each time step level t = n�t , whereas,
the depth-averaged velocities u and v are evaluated halfway between the present and
the following time step t = (

n + 1
2

)
�t . This leads to the staggering of spatial and

temporal information and facilitates consistent second-order accuracy in space and
time.

The present scheme first requires the solution of the continuity equation, which
is subsequently used in the momentum equation. The discretization of the continuity
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equation, Eq. (5), is expressed as

hn+1
i, j − hni, j

�t
+

pn
i+ 1

2 , j
− pn

i− 1
2 , j

�x
+

qn
i, j+ 1

2
− qn

i, j− 1
2

�y
= 0 (8)

where

pn
i+ 1

2 , j
= ĥn

i+ 1
2 , j

u
n+ 1

2

i+ 1
2 , j

qn
i, j+ 1

2
= ĥn

i, j+ 1
2
v
n+ 1

2

i, j+ 1
2

(9)

ĥn
i± 1

2 , j
and ĥn

i, j± 1
2
are the water depths at the cell interfaces computed with an

upwind approximation:

ĥn
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(10)

The next step is the solution of the momentum equation, Eq. (6). First, we consider
the momentum equation without the friction term; the approximation of this term will
be detailed later. We employ the FD approximations recommended in Zijlema [33] to
achieve conservation of the momentum flux across discontinuities, as
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i+1, j − ηn+1

i, j

�x

(11)

Regarding the free surface gradient term, the use of the updated variable h̄n+1
i+ 1

2 , j
is

necessary for the scheme to guarantee the entropy inequality as demonstrated inDoyen
and Gunawan [47]. Further, it is necessary to approximate the convective acceleration
with an upwind scheme, where the mass fluxes p and q are the criteria for upwinding
and the velocities u and v are the upwinded quantities:
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u
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2
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(12)

It is important to note, that a reversed approachwhere the upwinded quantities are p
and q, leads to errors in the computation of themomentumfluxes across discontinuities
as demonstrated in Zijlema [33].
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Since themass fluxes p and q are continuous quantities, an averaged approximation
of these quantities can be applied in the computation of the convective acceleration
terms:

p̄ni, j = 1
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i− 1
2 , j

)
q̄n
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2 , j+ 1
2

= 1
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2
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)
(13)

The flow depth, originally defined at the cell centroid, is approximated at the cell
interface with arithmetic averaging to be used in the computation of the local acceler-
ation:
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)
(14)

Finally, themomentum equation, Eq. (7), in the y-direction is solved in an analogous
way as
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and
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The flow depth in this case is approximated as
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(18)
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2.2.1 Second-Order Numerical Accuracy

Staggering of the variables both in space and time and utilization of the Leapfrog
scheme lead to second-order accuracy for both the continuity and the momentum
equations, except for the advection terms, [45, 49]. The flux terms are responsible
for transporting the conserved quantities, and consequently, the construction of the
advection terms with upwind differencing is necessary for the robustness and stability
of the computed solution. However, first-order upwind methods are diffusive, and it
is, therefore, useful to target second-order accuracy for all terms in the equations. One
way to counter unnecessary numerical dissipation is based on extending the upwind
scheme to the second order in combination with a slope limiter.

The approximations in Eqs. (10), (12), (16), and (17) can be improved by including
two neighboring data points instead of only one, as is the case in the first-order upwind
approach. The second-order upwind discretization is shown for Eq. (10) and applied
to Eqs. (12), (16), and (17) in the same way:

ĥn
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(19)

r+
i+ 1

2 , j
and r−

i+ 1
2 , j

are, respectively, the left and right gradients of the flow depth:
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hni, j − hni−1, j
, r−
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2 , j

= hni+1, j − hni, j
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(20)

ψ(r) is the slope limiter function, which locally reduces the solution from second
to first order. The slope limiter is necessary to ensure the stability of the second-order
upwind scheme at locations with opposite slopes, zero gradients, or sharp transitions.
Here, a Generalized MinMod slope limiter is used:

φ (r , θ) = max

(
0,min

(
θr ,

1 + r

2
, θ

))
(21)

θ is a parameter that controls the diffusivity. The generalized MinMod limiter is
most dissipative for θ = 1 when it reduces to the traditional MinMod limiter, and it is
least diffusive for θ = 2.

A predictor–corrector method can be used to improve the temporal accuracy of
the advection terms to retain second-order accuracy in time. Here, we employ the
Total Variation Diminishing (TVD) Runge–Kutta method. This method enhances the
accuracy of the scheme in time while maintaining the strong stability property of
the first-order Euler integration [57]. It is worth mentioning that other time integration
methods canbe combinedwith the above-described spatial discretization. For example,
[49] used a MacCormack approach for the second-order integration in time.
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Wesplit the SWEequations into a convective acceleration termF and a free surface
gradient term G , which simplifies the description of the multi-step method:

∂U

∂t
+ F (U ) + G (U ) = 0 (22)

where
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The discretization described in Eqs. (8), (11), and (15) can be summarized in the
following expression:
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At each time step, the variables (h, hu, hv) are solved using a two-stage time
integration with an intermediate solution obtained by the predictor step. In the first
step, we solve the equations with only the advection terms on the right-hand side:

U∗
i j = Un

i j − �tF
(
Un
i j

)
(26)

This leads to a predictor solution of first-order accuracy for the complete continuity
equation and incomplete momentum equations due to the lack of source terms. In the
second step, the surface gradient terms are added to the momentum equations, and the
predicted variables are corrected to full second-order accuracy in time by

Un+1
i j = �t
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Un
i j +U∗

i j
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− �t

2
F

(
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i j

)
− �tG

(
Un+1
i j

)
(27)

It is important to emphasize that the predictor step of the time integration should
only involve the convective acceleration terms. The source terms attain second-order
accuracy by staggering the flow speed variables in time, and an application of Eq. (26)
to the source terms would lead to inaccurate results.

The last term on the right-hand side of Eq. (27) applies only to the momentum
equations and involves the corrected flow depth value hn+1. This completes the fully
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explicit time integration where no system of equations with data dependencies has to
be solved.

2.2.2 Flooding and Drying

Thewetting and drying process requires themodel’s performance for two fundamental
processes. The scheme has to be well-balanced and has to preserve the positivity of
the water depth across wet/dry boundaries.

The model is based on an explicit time integration. Although implicit methods lead
to unconditionally stable computations with no restriction on the time step, their solu-
tion is admittedly complex and requires the solution of systems of equations [58–60].
This solution structure can pose a bottleneck, especially in parallelized implementa-
tions due to data dependencies.

The explicit scheme is stable under the Courant–Friedrichs–Lewy (CFL) condition
given by

Cr = �t max
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Under this condition, the scheme preserves the non-negativity of the water depth
[33, 61]. This has the advantage that the run-up and inundation limits are inherent
solutions of the numerical scheme and are not subject to additional ad-hoc flooding
and drying treatments or require particular restructuring of the flux and source terms.

Since the flow depth can become arbitrarily small at the wet-dry transitions and,
therefore, can lead to excessively high-velocity values, it makes sense to limit the
minimum flow depth at the run-up front to a physically and numerically meaningful
level. For efficiency reasons, the velocity values can be set to zero when the local
water level falls below a threshold value hmin, and the calculation of the momentum
equations can be skipped:

u
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2
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The value of hmin should be chosen as small as possible to accurately resolve the
wet-dry front [37], but large enough to avoid physically questionable values in the
local flow speed, which can cause excessively small time steps as shown in Eq. (28). It
should be noted that the present scheme is not particularly sensitive to this threshold,
and values between 10−8 and 10−4 m lead to virtually identical results. For the sake
of quality verification and validation, we are using hmin = 10−8 m in the subsequent
examples.



F.-Z. Mihami et al.

2.2.3 Friction Term

The friction terms added to the momentum equations are discretized as
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and n, with units [s m−1/3], is the Manning roughness coefficient representing the

bottom property. Using the variables

(
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2
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2 , j

)
from the next time

step in the friction terms improves the accuracy and the robustness of the solution
[49].

Some of the following numerical tests, presented in Sect. 3, are computed with the

Darcy–Weisbach formulation, which requires replacement of the term gn2

h1/3
by f

8 . f is
the dimensionless Darcy–Weisbach coefficient.

2.3 Nested Grid Method

The accuracy and applicability of a numerical model for free surface flows can sub-
stantially benefit from an efficient mesh refinement technique. Here, we concentrate
on the nested grid method, which provides a reasonable trade-off between computa-
tional complexity and the gain in accuracy of the numerical solution for long-wave
run-up. A simplified approach for mesh refinement involves the insertion of a high-
resolution Child grid into a surrounding Parent grid of coarser resolution. The grids
are herein fixed in space and predefined before the computation is executed. The SWE
are solved independently in each grid. Consequently, the overall solution structure of
the governing equations remains untouched as the exchange between the grids only
requires interpolation of the key variables.

The staggered C-grid has been widely used in combination with embedded grid
models due to its simplicity and conservative properties [56, 62, 63]. In this study,
we build the nested grid approach on some of the techniques used and validated by
several previously developed tsunami models [17, 18]. Several features are expected
from a functioning grid nesting technique:
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Fig. 3 Schematic illustrating the two-way nesting process on a Arakawa C grid

Data exchange The exchange of information between the grids occurs along the
boundary of the inner grid. The Parent grid provides the boundary conditions to the
Child grid in a one-way interaction. The flux variables (i.e., hu and hv) from the coarse
grid are linearly interpolated in time and space and then dynamically imposed in each
time step as boundary conditions to the solution of theChild grid (see Fig. 3). For a two-
way interaction, the high-resolution free surface elevation from the Child grid is used
to update the information in the Parent grid via an averaging operator. The update of
the free surface only occurs inside the feedback interface in the Parent grid (see Fig. 3),
rather than in the domain occupied by the Child grid. Several authors have proposed
separating the feedback interface from the dynamic interface where the boundary
values are interpolated [64–66]. This separation helps to avoid inconsistencies between
the solutions and stability problems that often arise from forcing the solution of the
Parent grid with the updated values of the inner grid [56].

Time synchronization The use of an explicit time integration means that the model
needs to verify the CFL stability condition, and the ratio �t/�x must be kept smaller
than a given value on the whole grid hierarchy. Consequently, a temporal refinement
must be applied in addition to the spatial mesh refinement. The integration algorithm
for a time refinement of 3 is depicted inFig. 4. Themodel is first integrated on theParent
grid �p with a time step equal to �tp1, the model is then advanced multiple times on
the Child grid�c to reach the same physical time as the outer grid. To synchronize the
two solutions, the last time step in the inner grid is imposed: �tc3 = �tp1 − ∑

�tci .

• 1: Model integration on the Parent grid �p

• 2: Model integration on the Child grid �c

• 3: Time and space interpolation of the boundary values
• 4: Update of the Parent Grid in feedback domain
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Fig. 4 Schematic illustrating the two-way nesting process

3 Verification

A systematical analysis of a numerical solution for long-wave run-up requires bench-
marking. Since the model was developed from scratch and involves a combination of
adapted numerical features, it is required to first verify its performance for idealized
flow problems, for which analytical solutions have been derived. These tests examine
the model’s ability to handle important flow processes, such as flow discontinuities
and wet/dry transitions. These features are particularly critical for the quality of the
computed run-up and can often pose numerical challenges. The implementation of the
nested grid approach is then verified with a 2D moving boundaries problem.

3.1 Shock-Capturing Capabilities

Shock-capturing schemes refer to numerical methods that can directly solve wave
propagation with large gradients and rapid changes in the free surface and veloc-
ity regimes. Such nonlinear phenomena are present in many wave problems (e.g.,
wave breaking, dambreak wave propagation, and propagation of wet/dry fronts). Con-
sequently, a lot of effort is made to compute shock waves as part of the complete
solution [37]. A stable numerical solution for shock waves targets the generation and
propagation of an oscillation-free discontinuity without excessive smearing across the
shock front.

In the following, we examine the solution of the present model in handling disconti-
nuities and assess the accuracy and quality of the results. Since many shock-capturing
flow models are built around Riemann solvers, we compare the solution from the pre-
sented scheme, referred to as “Present Scheme”, with the solution obtained by a 1D
HLLC Riemann solver (“HLLC Scheme”). The HLLC scheme used for comparison
was coded based on the techniques given by Toro [37]. For consistency with the pre-
sented scheme, the first-order HLLC scheme is extended to second-order accuracy
through a MUSCL reconstruction [67] combined with a generalized MinMod limiter
and a predictor–corrector Runge–Kutta time integration.

The dambreak problem is a widely used test to demonstrate the shock-capturing
capabilities of numerical schemes. We consider a one-dimensional dambreak over a
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Fig. 5 Dambreak over wet bed: water height profiles from the Present and HLLC schemes at t = 0.1 s for
a cell size �x of 1 cm

wet bed of uniform depth. The domain is 1m long and the initial condition is

h (x, 0) =
{
1m if x ≤ 0.5m

0.2m otherwise
u (x, 0) = 0m/s

The analytical solution for this test was derived by Stoker [68] and consists of a
shock and a rarefaction wave moving in opposite directions from the center of the
domain. The solutions of the dambreak test for 100 grid cells (�x = 1 cm) and at t =
0.1 sec are shown in Fig. 5. For both schemes, we use a constant Courant number of
CN = 0.7 and a diffusion parameter in the generalized MinMod limiter θ = 1.5.

Both numerical schemes correctly capture the rarefaction and shock waves despite
small discrepancies in comparison to the analytical solution. This small mismatch can
be reduced significantly with a reduction in grid size. In general, the Present scheme
achieves slightly sharper solutions around the flow transitions compared to the HLLC
scheme. Consequently, the Present scheme contains smaller L1-norm errors than the
HLLC scheme, as listed in Table 1, albeit the fact that both solutions converge towards
the exact solution with mesh refinement. The presented model is able to compute
the propagation of shocks with the correct wave speed and height, proving its pow-
erful shock-capturing capability without the need for the computationally expensive
sampling of the solution as it is necessary for the HLLC scheme.

3.2 Moving Boundaries

An essential feature of shallow-water models used for flood and inundation mapping
is the ability to compute wet-dry transitions and track moving boundaries. The biggest
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Table 1 Dambreak over a wet bed: L1-norm error

Number of cells h hu
Present HLLC Present HLLC

100 3.69 × 10−3 5.20 × 10−3 6.37 × 10−3 1.24 × 10−2

200 1.85 × 10−3 2.56 × 10−3 3.17 × 10−3 6.22 × 10−3

400 7.90 × 10−4 1.29 × 10−3 1.90 × 10−3 3.22 × 10−3

800 4.44 × 10−4 6.36 × 10−4 7.76 × 10−4 1.52 × 10−3

challenges are associated with the definition of the numerical fluxes and source terms
in the presence of dry cells. A clean and stable representation of the moving boundary
is essential for the correct description of run-up and inundation limits independent of
the previous stages of wave propagation and breaking.

We investigate the performance of the present model in describing fast sheet flows
induced by a dambreak over a dry bed with and without frictional resistance. This test
is also used to verify the implementation of the friction term.

The test case involves a 2000m long horizontal channel of uniform depth with �x
= 5m grid spacing and the following initial condition:

h (x, 0) =
{
6m if x ≤ 1000m

0m otherwise
u (x, 0) = 0m

The test is computed with a minimum water depth of hmin = 10−8 m and a Courant
number of 0.7. Two cases are taken into account:

1. Dambreak without friction: The numerical results are compared with the Ritter
solution. The solution involves a wet-dry front propagating downstream and a
rarefaction wave moving upstream into the reservoir.

2. Dambreak with friction: In this case, the Darcy–Weisbach friction law with a
coefficient f = 8g/402 is utilized in the friction source term of the momentum
equations. The reference solution is based on the Dressler/Whitham/Chanson con-
ceptual model [69–71], which is based on the assumption that near the wavefront,
frictional resistance controls the fluid motion. The exact shape of the wavefront can
be found in [71]. In contrast to the process at the downstream wave, the frictional
resistance in the rarefaction regime is neglected, and the solution at the front can
be described by a modified Ritter’s solution as presented in Delestre et al. [72].

In both cases, good agreement between the reference and the numerical solutions
is obtained (Fig. 6). In the case of bottom friction, the model accurately captures
the deceleration of the wavefront, which verifies its capability of correctly handling
bottom roughness. As before, the results can be improved through mesh refinement
but not through further reduction of the predefined minimum water depth hmin.
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Fig. 6 Dambreak on dry bed: water height profiles after t = 40 s for grid spacing�x = 10m. The wave front
around 1250m corresponds to the solution with a friction coefficient of f = 8g/402

3.3 Nested Grid Implementation

In this section, we examine the accuracy of the nested grid implementation. This
step is important to scrutinize the model performance with respect to the informa-
tion exchange across different grid resolutions, especially in the presence of wet/dry
transitions. For applications related to long-wave run-up, the nested grid approach is
expected to deal with moving boundaries and fast flows over varying topography in
two-dimensional settings. A few analytical solutions of the SWE exist for problems
in the 2D horizontal plane. The oscillation in a parabolic basin is one of them, as it
addresses a two-dimensional run-up problem, which helps examine the validity of the
numerical structure in the combined xy-directions.

The water oscillation is induced inside a [0, L] × [0, L] parabolic basin given by

z (r) = −h0

(
1 − r2

a2

)
where r =

√(
x − L

2

)2

+
(
y − L

2

)2

The value of h0 represents the still-water depth at the basin center, and a is the
radius of the wetted perimeter. The exact solution for this test was derived by Thacker
[4]. For a smooth bed with no friction, the analytical solution for the water depth is
described as

h (r , t) = h0

( √
1 − A2

1 − A cos (ωt)
− 1 − r2

a2

(
1 − A2

(1 − A cos (ωt))2
− 1

))

− z (r)

where ω = √
8gh0/a is the frequency of the oscillation, and the coefficient A =(

a2 − r20
)
/
(
a2 + r20

)
with r0 the radius of the initial shoreline. For the setup of the
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Fig. 7 Time series of water height at center point of parabolic basin (x = L/2, y = L/2). Grid spacing
�x = �y = 2 cm. The numerical solution is of low diffusion without requiring excessively fine mesh sizes

dimensions of the parabola and the initial condition of the free surface,we use a = 1m,
r0 = 0.8m, h0 = 0.1m and L = 4m.

The analytical solution is used to verify the symmetry and accuracy of the nested
grid implementation. Here, we place a nested domain off-center, including the moving
waterline, with a refinement factor of 4. The use of an off-center nested grid is critical
to verifying the grid exchange for both the normal and cross fluxes. The Parent grid is
computed with a quadratic cell size of 2 cm by 2 cm. The inner Child grid is computed
with �x = �y = 0.5 cm.

The water height evolution at the center of the basin is shown in Fig. 7 after 40 s
corresponding to over 17 full cycles in the Parent grid. The present solution convinces
through the maintenance of amplitude and phase over multiple oscillation cycles the
quality of the second-order numerical scheme. These results confirm not only the
low numerical diffusion but also the smooth transition across the wet/dry boundary
inherent to the model without the need for excessively small grid sizes.

Figure 8 depicts the free surface transect across the basin center line at several
stages, t = T , t = T + T /4, and t = T + T /2, where T = 2π/ω denotes the
oscillation period. The run-up is well described, and no numerical artifact arises from
the exchange between the Parent and Child grid. In addition, Fig. 9 gives a visual
impression of the three-dimensional problem and showcases that the definition of the
run-up outline benefits from mesh refinement.

4 Effect of Grid Nesting onWave Run-Up

Previous verification efforts have ensured that the present model correctly handles the
fundamental features that are essential for the accurate computation of long-wave run-
up. The following tests examine the sensitivity of the computed results to grid nesting
for efficient computation of local run-up problems. For this purpose, we utilize two
standard experimental benchmark tests that have been widely used in the tsunami
community and that highlight the complexity of the local long-wave run-up. The two
tests present common long-wave features such as the increase in local wave run-up
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Fig. 8 Oscillation in a parabolic basin: cross-section of water height after one full oscillation. Each circle
represents the solution from the numerical model at each grid cell across the transect. The solution from
the nested grid is indicated with blue circles

Fig. 9 Free surface elevation of oscillation in parabolic basin with grid nesting after 4.5 cycles (9.9 s). The
refined Child grid is denoted by the dashed line and shows a more detailed run-up limit than the coarse
Parent grid

from the collision of two or more waves as well as extreme run-up over highly detailed
terrain. We will present an analysis of the sensitivity of the computed run-up to the
general mesh size and further investigate the sensitivity of the maximum run-up extent
to the size of the nested grid and the refinement factor.
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4.1 SolitaryWave Run-Up Around a Conical Island

The transformation of long waves around islands has attracted a lot of attention in
the past—especially among tsunami researchers. A common observation is that long
waves can refract and diffract around an island from both sides and collide in the back.
In some cases, the maximum run-up occurs counter-intuitively at the island’s lee side
due to a superposition effect when the refracted/diffracted waves from both sides run
into each other and double up. The problem of the conical island is exemplary since
the high run-up and inundation at the lee side cannot be approximated with empirical
formulae or computationally cheap 1D calculations. Instead, the problems require a
full 2D solution that naturally exhibits a substantial computational effort.

Briggs et al. [7] conducted a large-scale laboratory experiment to investigate solitary
wave transformation around a conical island. The basin is 25 m by 30mwith a circular
island in the shape of a truncated cone constructed of concrete with a diameter of 7.2
m at the bottom and 2.2 m at the top. The island is 0.625 m high and has a side slope
of 1:4. A 27.4-m-long directional wavemaker consisting of 61 paddles generated the
input solitary waves for three laboratory tests. Wave absorbers at the three remaining
sidewalls reduced reflection in the basin. Further details about the laboratory model
setup, the location of thewavegauges, and the numerical setup canbe found inNTHMP
[73].

The present study focuses on experiments with a water depth h = 0.32 m and
solitary wave heights of A/h = 0.1. Consistent with NTHMP benchmark problem 6
[73], our numerical test uses the measured wave heights of A/h = 0.096 from the
laboratory experiment instead of the target wave heights as they better represent the
recorded data and thus the incident wave conditions to the conical island. A reflective

Fig. 10 Grid size sensitivity of
maximum run-up outlines for
the test with A/h = 0.096 of
Briggs et al. [7]. Black dots
denote experimental data, solid
lines represent results from the
present model
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boundary condition is imposed at the lateral sides. The wave absorbers from the lab-
oratory layout are not considered since their absorbing performance is unknown. The
model is set up with a reference grid of �x = �y = 5 cm. A Manning roughness
coefficient of n = 0.012 s/m1/3 accounts for the smooth concrete finish according to
Chaudhry [74]. The Courant number is set to Cr = 0.5. The model setup is comparable
to earlier work and will be used as a reference as it is expected to return solutions
of similar and comparable quality to previously published studies. The results from
the free surface elevation observed at five wave gauges are omitted here as they are
comparable to previously published results.

Sensitivity to grid resolution In view of sensitivity to the grid size, Fig. 10 shows the
run-up limits for the reference scenariowith�x = �y = 5 cm, aswell as the solutions
of the model with coarser grid sizes of �x = �y = 10 cm and �x = �y = 20 cm,
respectively. The referencemesh size of 5 cm returns the closest agreement overallwith
the run-up data—particularly at the lee side of the island. Nevertheless, a numerical
domain with four times fewer cells, i.e., uniform 10 cm grid spacing, still provides a
decent estimate of the run-up, albeit with less precision at the lee side. It is not really
surprising that a grid size of �x = �y = 20 cm is too coarse to represent the details
of the run-up outline, and virtually no run-up is recorded in the lee of the island.

Careful examination of the temporal evolution of the wave field at �x = �y =
5 cm resolution shows that the colliding waves in the back of the island locally and
momentarily augment the water level, but then pass through each other and continue
the refraction/diffraction process. The locally high run-up in the back of the island
results to a great extent from the two waves that shoal and spill up on either flank
of the leeward side. It often goes unnoticed that the steepened refracted waves then
meet head-on over the leeward topography, i.e., the initially dry beach, from where
a substantial portion of maximum run-up and inundation originates. For a relatively
steep slope, this wrapping process requires rather fine resolution to properly account
for the flooding process, and insufficient grid cells over the beach can lead to an
under-representation of the run-up.

Sensitivity to grid nesting It is understood that any reduction in the total cell count
will reduce the computational load. A nested grid approach caters to lowering the
computational effort without compromising too much on the quality of the results. A
question of practical interest is whether the overall wave transformation around the
island could potentially be computed over a coarse grid, from which information is
fed into a nested inner grid of higher resolution that is placed only over a local area of
interest. Figure 10 demonstrates that a grid resolution of 5 cm is an adequate choice
for the resolution of the wave run-up along the beach of the conical island and that
coarser mesh sizes, in particular the 20 cm resolution, are insufficient to resolve most
of the run-up.

The solitary input wave has a length of several meters. As shown in the previous
benchmark tests, e.g. Sect. 3.3, the present model computes long waves with minimal
numerical diffusion and hence is expected to handle the general processes of the soli-
tary wave transformation around the island even over a rather coarse mesh. Inspection
of the full free surface evolution has shown that even a grid of 20 cm mesh size can
account for the overall wave processes in the vicinity of the conical island and that it
only fails in computing the detailed run-up.
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Fig. 11 Maximum run-up
outlines for the test with
A/h = 0.096 of Briggs et al. [7].
Each model run uses a Parent
grid with �x = �y = 20 cm
resolution and one Child grid of
�x = �y = 5 cm. The three
individual nested grid set-ups
(a), (b), and (c) and their
corresponding maximum run-up
limits are color-coded and
denoted by the dashed rectangle
and the solid lines within

Figure 11 shows the results from three nested grid approaches—all with an inner
grid of 5 cm resolution placed into an outer grid of 20 cm resolution. The individual
inner domains are color-coded and of 2m by 4m, 1.2m by4m and 0.8m by1.2m.The
additional computational load arising from the inner grid is associatedwith 3200, 1920,
or 384 cells, respectively. It can be seen that the run-up outline in the nested grid (a)
denoted by the cyan line in Fig. 11 is nearly identical to the outline of the uniform 5 cm
reference grid. This implies that the overall wave processes are sufficiently resolved
by the coarse outer grid up to the boundary of the nested grid (a), which subsequently
takes care of the detailed wave transformation and run-up processes at the back side
of the conical island. The domain size of the nested grid is then reduced behind the
island, as illustrated by the red dashed rectangle. The corresponding run-up limit (red
line) remains nearly identical to the run-up outline from the largest nested grid setup.
The run-up at the lee side, therefore, depends only minimally on the higher resolution
in the area behind the island where the wave collision process occurs. The nested
grid extends to a very small area just around the hotspot of run-up, as denoted by
the green dashed rectangle. Surprisingly, the run-up along the center lee side remains
qualitatively very similar to the run-up computed by the larger nested grids.

The effect of the nested grid approaches can be seen in Fig. 12 in more detail.
Row 1 shows the free surface evolution over the 5 cm uniform reference grid. The
corresponding alternate solutions, denoted by the black dashed rectangles, illustrate
the nested grid solutions. As the wave is moving around the island, the nested grid (a)
(second row) picks up its energy and resolves the wrap of the run-up tongue in detail,
though with slightly less steepness at the leading edge compared to the reference
solution. The maximum run-up after 9.2 s in the nested grid is nearly identical to
the uniform reference solution. The third row shows the free surface elevation from
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the red rectangle and the run-up limit from Fig. 11. The high-resolution inner grid
extends only marginally over the bathymetry behind the island and mostly covers
the topography. The detailed solution of the colliding waves behind the island is
less critical for the maximum run-up than a high-resolution computation of the two
refracted run-up tongues that meet each other over the dry slope. The last row shows
that a representative run-up limit is achievable even by only using an extremely small
inner grid of high resolution at the location where the refracted waves collide over the
beach.

The long-wave refraction and collision processes do not necessarily require high
grid resolution given that a low-diffusive coarse solution captures the main energy
flux. Counter-intuitively, the locally high run-up of long waves, as illustrated in this
example, is often driven by wave processes in the immediate vicinity of the shoreline
and over the beach. Accurate run-up results can potentially be obtained with locally
very small nested grids as long as they cover the entire run-up zone over the beach.
This is particularly true for locations with steep beach slopes.

As for the results from Figs. 10, 11 and 12, the computed wave field is symmetric
to machine precision with respect to the horizontal center line at 15 m in the y-
direction. This supports the quality of the numerical results as any instability arising
from the interface at the boundary of the nested gridswould have eliminated the perfect
symmetry.

4.2 Long-Wave Run-Up at Monai Valley

The second benchmark is testing the sensitivity of the present model to the mesh
size and refinement of the solution with a nested grid for the computation of non-
linear wave processes over an irregular terrain that favors extreme run-up. The 1993
Hokkaido Nansei-Oki tsunami is a well-studied event thanks to the laboratory experi-
ments conducted by Matsuyama and Tanaka [75] at the Central Research Institute for
Electric Power Industry (CRIEPI) in Japan. The down-scaled laboratory test examined
the extreme run-up of over 30 m at Monai Valley, located between two headlands and
sheltered by the small Muen Island. The area around Monai Valley was reconstructed
with a plywood model at 1:400 scale based on bathymetric and topographic data as
shown in Fig. 13.

A wave gauge near the wavemaker recorded the initial low amplitude N-wave used
in the present numerical model as boundary input with the free surface elevation
interpolated from the data according to the model time step. As in the previous test,
we first examine the sensitivity of the numerical solution to the grid size over a single
domain with uniform resolution. Again, the Courant number is kept constant at Cr =
0.5. A Manning coefficient of n = 0.012 sm−1/3 accounts for the surface roughness
of the plywood model [74].

Sensitivity to grid resolutionFigure 14 shows the comparison between the computed
and recorded data at the wave gauges placed in the numerical and experimental setup
betweenMuen Island andMonai Valley. The computed results are of similar quality as
the solutions from previous studies. The wave regime at the locations of the gauges is
still reasonably well resolved with a rather coarse mesh. Even with a 10 cm grid size,
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Fig. 12 Free surface elevation at lee side of conical island computed over the single reference grid of
�x = �y = 5 cm (first row) and with three separate grid nesting approaches each combining a coarse
outer grid of �x = �y = 20 cm mesh size with inner fine grids of �x = �y = 5 cm resolution (2nd,
3rd, 4th row). First column: refraction/diffraction of solitary wave around flank of conical island. Second
column: maximum run-up from superposition of refracted/diffracted waves. The extent of the nested grid
is outlined by the black dashed line in row 2 to 4

the general shape of the free surface time series is captured, and the overall energy of
the wave field behind Muen island is accounted for.

Figure 15A illustrates the sensitivity of the computed maximum run-up to different
uniform grid sizes of 1.25cm, 2.5cm, 5cm, and 10cm. The local run-up in Monai
Valley is more sensitive to the grid resolution than the nearshore wave field in front
of the beach. Since the terrain is steep and narrow, the computations with the present
model show that a rather fine grid of 1.25cm is necessary to obtain a proper outline
of the run-up envelope. NTHMP [73] confirms that most previous numerical studies
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Fig. 13 Outline of the
bathymetry from the 1:400
scaled model used by
Matsuyama and Tanaka [75].
The black dashed and dotted
lines denotes the boundaries of
two individual inner nested grids
(a) and (b)

Fig. 14 Free surface time series
at the gauges shown in the left
panel from computations over
the entire domain with different
uniform mesh sizes

utilized a mesh size of � x = � y < 1.5 cm to obtain a consistent definition of the
wave run-up in the narrow and steep valley. The fine grid of 1.25cm in the second
row of Fig. 16 resolves the details of wave refraction and collision in front of the
steep cliff, whereas a coarser option of 10cm resolves neither the flow details nor the
small-scale flow features over the topography and consequently leads to a significant
underestimation of the run-up in the Monai Valley.

Sensitivity to grid nestingSimilar to the previous benchmark test, the question arises
whether it is possible to utilize a coarse mesh for the overall flow field in combination
with a fine nested grid for the detailed run-up in an area of interest like Monai Valley.
Knowing that the run-up over terrainwith irregular and steep slopes requires small grid
sizes, we utilize a 1.25cm nested grid (a) inside a Parent grid as outlined in Fig. 13.
The inner nested grid starts offshore of Muen island, similar to what Yamazaki et al.
[52] have used. The Parent grid is of 5.5m by 3.4m size. It contains only 1870 cells
with a 10cm resolution. The two nested grid options (a) and (b) have dimensions
of 2.3m by 1.8m and 1.3m by 2.3m and consequently add 26,496 or 14,976 grid
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Fig. 15 Maximum run-up limits around Monai Valley. Left A Uniform grid with different resolutions.
Center B Nested grid (a) with 1.25 cm resolution and different Parent grid resolutions of 2.5 cm, 5 cm, and
10 cm leading to refinement factors of RF = 2, RF = 4, and RF = 8. Right C Nested grid (a) and (b) with
1.25 cm resolution and Parent grid resolution 10 cm

cells, respectively, to the computation. Hence, the two nested grid options reduce the
total cell count by 76% and 86% in comparison to a single grid of uniform 1.25cm
resolution with 119,680 cells.

The sensitivity of the results with respect to the refinement factor is analyzed by
increasing the Parent grid resolution by factors of 2, 4, and 8 with respect to the
nested grid. Consequently, the individual run-up limits of Fig. 15B refer to the results
from a 1.25cm nested grid in combination with different Parent grids of 2.5cm, 5cm,
and 10cm. The refinement factor hardly influences the run-up limit with a nested
grid domain that covers most of the nearshore area (dashed line of the domain (a)
in Fig. 13). Again, a basic requirement for the utilization of a coarse Parent grid is
a low diffusivity of the numerical scheme. It is understood that the interpolation in
the nesting process between the individual grids can lead to small discrepancies in
comparison to a uniform grid with high resolution. This can be seen in Fig. 15. The
grid nesting strategy should, therefore, always be seen as method to primarily reduce
the computational load by still retaining an acceptable quality of the solution.

It is finally shown how the computed results are sensitive to the nested domain size.
This is analyzed through reduction of the area covered by the nested grid (see dotted
line (b) in Fig. 13). The resolutions of the Parent and Child grid are identical to the
setupwith nested grid (a). The two scenarios only differ in the domain size of the nested
grids. Figure 15C highlights that the run-up limit from the two scenarios varies only
at some locations. Though the flow details of the overtopping and refraction processes
around Muen island are resolved in detail with a fine grid as shown in rows two and
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Fig. 16 Free surface elevation in front of Monai Valley with single Parent grid of �x = �y = 10 cm (first
row) and �x = �y = 1.25 cm (second row) mesh size. Results from embedded nested Child grids a and
b of �x = �y = 1.25 cm in a Parent grid of �x = �y = 10 cm are shown in the second row and third
row. The extent of the respective Child grid is outlined by the black dashed lines. First column: drawdown
from leading depression of N-wave and approaching wave crest upstream of Muen island. Second column:
maximum run-up from superposition of refracted and reflected waves
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three of Fig. 16, they do not have a substantial influence on the run-up. It is sufficient
that the outer grid resolves the overall wave energy and the inner grid accounts for the
run-up process.

5 Conclusions and Perspectives

We have shown the performance of a newly developed model for long-wave run-up
with respect to standard analytical solutions and laboratory experiments. The model
was demonstrated to be shock-capturing, well-balanced, and water-depth positivity
preserving, which are crucial properties for the correct estimation of long-wave-driven
run-up. The model was proven to be stable and efficient in dealing with wet/dry
transitions without the need for computationally expensive treatment of the moving
boundary. The numerical scheme is based on a finite-volume staggered approxima-
tion with second-order accuracy in space and time. The accuracy in time arises from
a combination of the Runge–Kutta method for the convective acceleration and the
Leapfrog method for the surface gradient and friction terms. Similarly, the spatial
accuracy comes from a second-order upwinded advection along with a second-order
central difference scheme for the remaining terms.

Themodel performs consistently for shock-driven problems and compares to estab-
lished Riemann solver-based TVD methods. The wet-dry interface is stable and
well-defined without the need for additional treatment of the moving boundary. The
model contains a two-way grid nesting scheme that allows for local refinement of the
solution. The implementation has been verified and proven to be accurate and stable
for moving boundaries and was shown to be applicable to long-wave run-up problems.

The performance and sensitivity of long-wave run-up was then investigated in
dependence of the nested grid’s domain size and the level of its refinement. Two stan-
dard benchmark tests from the tsunami community were chosen for the investigation.
Though there are no universal rules for the size, position, and refinement factor of
nested grids, our results from the two benchmark tests reveal that computations of
high quality can be achieved with small nested grids placed strategically at a location
of interest such as in areas where locally high run-up occurs. The refinement factor
was found to have only small influence on the run-up limit, if the solution in the Parent
grid is representative of the wave envelope and the grid nesting method accounts for
the correct exchange of the total wave energy flux.

Further, it was demonstrated that it is possible to place a nested grid rather close to
the initial still-water level as long as the long-wave flow regime prevails across nested
grid’s offshore boundary. Long-wave run-up is often more subject to the resolution
of the local topography than it is influenced by the detailed wave processes over the
bathymetry. This is line with commonly used empirical run-up formulae for swell
waves where the maximum run-up envelope is controlled by the overall wave energy
and the slope.

The quality of the computed results encourages to expand the development of the
model with respect to frequency dispersion. This will allow for a further investigation
of how grid nesting can affect the run-up from swell waves. In the same context, the
model can be optimized through implementation of massive parallelization techniques
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commonly used to reduce the computation time associated with large flow problems.
It is evident that a low overall cell count reduces the model’s computation time and
that the insights gained from the present study can be used to efficiently decrease the
computational load for computations of long waves by retaining accuracy and quality
of the solutions.
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2.3 Malpasset Dambreak

As a final test, we examine the applicability of the model to solutions of energetic shallow water
flow problems over a large domain by validating the presented model results with measured field
data obtained after the Malpasset dambreak event. This test is complementary to the evaluation
of the numerical model’s efficiency and robustness over very complex terrain with friction. It
should be noted that the proposed model was not particularly developed with the intention of
computing river and dambreak flows. Instead, the test has been included to demonstrate the
consistency of the numerical solutions with other studies that were specifically devoted to river
flooding problems.

The Malpasset catastrophe is a rare example of a complete and instantaneous collapse of a vault
dam. The dam was built between 1952 and 1954 in the Reyran River in southern France near
the Italian border to support irrigation and drinking water supplies. On December 2, 1959,
after a period of heavy rainfall that quickly filled the reservoir, the dam suddenly collapsed and
released 50 million m3 of water into a narrow 12 km-long river valley (Hervouet [2003]). After
the dam failure, a field survey was conducted by the local police and returned measurements of
the maximum water elevation at 9 locations along the river valley. In addition, a physical model
was built to 1:400 scale by the Laboratoire National d’Hydraulique (LNH) to examine the arrival
time of the dambreak bore at the 9 locations in the valley. The availability of the data has made
the Malpasset case a very popular benchmark test for the validation of shallow water models
(e.g., Hervouet [2003], Valiani et al. [2002]). Due to the drastic changes in the terrain induced by
the dambreak flow, the topography data has been reconstructed by the Institut Géographique
National (IGN) based on a map from 1931, which was later digitized by EDF. The available
topography covers a 17 km x 9 km domain, where the bottom elevation ranges from 20m below
sea level to 100m above sea level. Based on this data, the numerical domain is defined with a grid
spacing of ∆x = ∆y = 20m. At its initial state, the still water level of the reservoir upstream
of the dam has an elevation of 100m. The area along the river valley downstream of the dam
is assumed to be dry. These conditions lead to a 55m high wall of water at the dam site. The
Courant number is set to Cr = 0.5 and the minimum water depth to hmin = 10−4 m. This helps
to deal with the sheet flow along the leading edge, where non-physical values of the velocities
can occur. These artifacts can cause excessive reductions in time steps and consequently longer
computation times than necessary.

The results from the physical model test suggest a range of Strickler friction coefficients between
30m1/3s−1 and 40m1/3s−1. The effect of the friction coefficient was analyzed by computing the
same test with different Strickler friction coefficients of K = 30m1/3s−1, K = 35m1/3s−1, and
K = 40m1/3s−1. The test cases are computed for 4000 s, and the results are shown in Figures
2.1 and 2.2.
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Figure 2.1: Propagation stages of the Malpasset dambreak after 200, 700, 1300, and 2300 sec.

Figure 2.2: Influence of Strickler friction coefficient on the wave front arrival time (left). Maximum water
elevation compared with field data and results from Hervouet’s model (right)
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Summary of findings:

• Figure 2.2 presents the arrival times at the 9 measurement points, labeled G6 to G14, for
the three different Strickler coefficients. As expected, the friction coefficient has an impact
on the flow speed and consequently leads to slightly different arrival times.

• For K = 30m1/3s−1 the combined results from the computed arrival times and maximum
flow elevations show the best overall agreement with the measurements.

• The quality of the results from the present model is comparable to other studies (e.g.,
Hervouet and Petitjean [1999]), which show a very similar evolution of the flow field and
trends in the differences between measured data and computed solutions. The same differ-
ences and sensitivity of the numerical solutions have been reported in other studies, e.g.,
Brodtkorb et al. [2012], Zhang and Wu [2011], and Sætra [2014].

2.4 Conclusions

This section outlines the strategic development of an efficient and robust numerical model for
the solution of the SWE. The choice of the staggered grid approach was motivated by its lean
structure as well as its robustness when dealing with wet-dry transitions. The numerical solution
was proven to be shock-capturing and compares well to long-established techniques such as
Riemann solvers for standard tests with flow discontinuities. A series of benchmark tests confirms
the accuracy and stability of the model for a variety of hydrostatic flow scenarios. Further,
the low diffusivity of the numerical scheme combined with the nested grid technique leads to
stable and accurate solutions of run-up at locations of interest in a fraction of the time usually
necessary for a comparable solution over a uniform grid. The level of numerical efficiency and
consistency of the computed results favor the usage of this approach as a base model and support
its extension in multiple directions, such as the inclusion of frequency dispersion terms in the
governing equations.
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3.1 Introduction

Phase-resolving nearshore wave models are mostly based on Boussinesq-type and non-hydrostatic
approximations, which are applicable to intermediate and shallow water regimes. The primary
objective of these mathematical formulations is to reduce the three-dimensional flow problem to
two dimensions while retaining some of the non-hydrostatic effects of the vertical flow structure.
The derivation of the simplified equations will therefore depend on assumptions involving two
main parameters:

• Nonlinearity: accounts for the deviation of the free surface with respect to the still water
level, ε = a

d .

• Dispersion: relates the wavelength to the mean water depth, µ = d
l .

Since Peregrine [1967] first proposed the classical Boussinesq equations by retaining the lowest-
order effects of nonlinearity and frequency dispersion (i.e., O(ε) = O(µ2)), considerable efforts
have been devoted to improving the range of applicability of the Boussinesq models with respect
to small amplitudes and long wave restrictions. Dingemans [1973] included higher-order disper-
sion and nonlinearity by retaining terms of order O(µ4) and O(εµ2), while others (e.g., Serre
[1953]; Wei and Kirby [1995]; Madsen and Schäffer [1998]) derived fully-nonlinear models that
include all nonlinear terms up to the retained order of dispersion. While introducing high-order
nonlinear and dispersive terms into the equations provides more consistent and accurate mathe-
matical models, the numerical solution of these additional terms is rather challenging and prone
to instabilities. A different approach to improving the equation properties, notably dispersion,
is by manipulating terms that are normally zero to the order of approximation and optimizing
these terms to achieve a better match with Airy wave theory regarding dispersion. Madsen
and Sørensen [1992] used differential operators on leading order terms to construct enhanced
terms that had no physical meaning but did not alter the validity of the equations. The choice
of several free parameters was made by considering linear dispersion and shoaling properties.
Nwogu [1993], on the other hand, derived a new set of improved Boussinesq-type equations by
considering the velocity at an arbitrary elevation zα as the reference velocity (see Appendix A).
Both approaches yield a dispersion relation that is Padé [2, 2] to the exact Airy theory and thus
improving the applicability of the equations to deeper water.

The choice of a mathematical framework for our new dispersive nearshore wave model is a
challenging one. While a fully-dispersive and fully-nonlinear model would be the obvious choice
from an accuracy and completeness point of view, the complex numerical solution required by
such a model would undermine its speed and robustness, and thus its applicability to operational
settings. Therefore, a balance between accuracy and computational cost has to be achieved in
order to efficiently solve wave processes from intermediate water to the swash zone. In the
context of coastal wave modeling, two sets of equations have been particularly attractive for
the computation of nearshore waves: the standard Nwogu’s equations due to their enhanced
dispersion and the Serre-Green-Naghdi equations thanks to their fully nonlinear properties. The
derivation of the two equations is detailed in Appendix A. While both equations retain terms to
O(µ2), the SGN equation simplifies the system by setting the reference velocity as the depth-
averaged velocity, yielding a fully nonlinear model. Nwogu’s equation, on the other hand, uses
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the velocity at zα as the reference velocity to improve the dispersion, and the system is simplified
by adopting the weakly nonlinear assumption. In this section, we solve the two sets of equations
(i.e., SGN and Nwogu) in 1D using the same numerical scheme and examine the effects of
dispersive and nonlinear properties on the quality of the solution.

3.2 SGN 1D Model

3.2.1 Governing Equations

The SGN equations are commonly used in the modeling of fully nonlinear, weakly dispersive
waves. We consider the following conservative form of SGN equations proposed by Khakimzyanov
et al. [2017]. The equations describe the incompressible fluid flow in a layer bounded from below
by the impermeable steady bottom y = −h (x) and the free surface y = η (x, t):

Ht +
[
Hu
]
x
= 0, (3.1)

[
Hu
]
t
+
[
Hu2

]
x
+ gHηx = ℘x − ϱhx. (3.2)

Figure 3.1: Definition sketch

We solve for the velocity variable u (x, t), which represents the depth-averaged velocity, similar to
the SWE. The variable ℘ (x, t) denotes the non-hydrostatic component of the depth-integrated
pressure and is expressed as:

℘ =
H3

3
R1 +

H2

2
R2, (3.3)

where:
R1 = uxt + uuxx − (ux)

2 , R2 = uthx + u [uhx]x . (3.4)

ϱ (x, t) is the non-hydrostatic contribution of the pressure trace at the bottom and can be written
as:
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ϱ =
H2

2
R1 +HR2. (3.5)

Since the equations above contain mixed derivatives up to the third order, they are more complex
to solve compared to the classical SWE. From a numerical standpoint, the high-order derivatives
pose challenges to the solution and can lead to instability problems. Khakimzyanov et al. [2017]
simplified the system by extracting a second-order sub-problem for the non-hydrostatic pressure
term. It is important to note that this form of the SGN equations is quite unique and was first
proposed by Khakimzyanov et al. [2017]. The derivation of this special form of SGN equations in
1D is described in Appendix B. The non-hydrostatic part of the pressure is computed by solving
the following linear elliptic equation with variable coefficients:

4

[
℘x

HY

]
x

− 6

[
2

H3
.
Y − 3

Y
+

[
hx
H2Y

]
x

]
℘ = F, (3.6)

where: Y = 4 + h2x. For non-moving topography, (i.e., ht = 0), F and R are expressed as:

F =

[
gηx +

Rhx
Y

]
x

− 6R

HY
+ 2u2x, (3.7)

R = −gηxhx + u2hxx. (3.8)

The non-hydrostatic pressure at the bottom ϱ (x, t) can be expressed through ℘ in the following
way:

ϱ (x, t) =
1

Y

[
6℘
H

+HR +℘xhx

]
. (3.9)

Since the hyperbolic and elliptic terms are split in this form of the SGN equations, each system
can be solved independently with the appropriate numerical operators.

3.2.2 Numerical Scheme

The solution of the SGN equations requires the solution of the elliptic system (i.e., Eq. (3.6)).
Here we present the numerical solution of the elliptic problem on two types of grids: Collocated
grid and Staggered grid.

Figure 3.2: Collocated and Staggered grid
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In order to discretize the elliptic problem, we integrate Eq. (3.6) over one cell
[
xi− 1

2
, xi+ 1

2

]
:

∫ x
i+1

2

x
i− 1

2

4

[ ℘x

HY

]
x

dx− 6

∫ x
i+1

2

x
i− 1

2

[
2

H3
.
Y − 3

Y
+

[
hx
H2Y

]
x

]
℘ dx =

∫ x
i+1

2

x
i− 1

2

Fdx. (3.10)

To simplify the notation we introduce the variable K = 4
HY and we discretize the elliptic problem

terms one by one:

∫ x
i+1

2

x
i− 1

2

4

[
℘

x

HY

]
x

dx =
[
K℘x

]
i+ 1

2
−
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i− 1

2
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i −℘
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2∆x

)
℘

i+1 −
(
Ki+1 + 2Ki +Ki−1
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℘
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where:
Ki =

4

Hi

(
4 +

(hi+1−hi−1)
2

4∆x2
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(3.11)

Similarly, the second term can be discretized as:

∫ x
i+1

2

x
i− 1

2

6
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2
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Y − 3

Y
+
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hx
H2Y
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where:

Yi = 4 +
(hi+1 − hi−1)

2

4∆x2
, (3.13)

and: [
hx
H2Y

]
i+ 1

2

=
∆x (hi+1 − hi)(

Hi+1+Hi

2

)2 (
4∆x2 + (hi+1 + hi)

2
) . (3.14)

The source term of the elliptic problem is computed with:

Fi =

∫ x
i+1

2

x
i− 1

2

Fdx =

[
gηx +

Rhx
Y

]
i+ 1

2

−
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gηx +

Rhx
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2

+ 2∆x [ux]
2
i −∆x

6Ri

HiYi
, (3.15)

where:
Ri+ 1

2
= −g [ηx]i+ 1

2
[hx]i+ 1

2
+ u2

i+ 1
2

[hxx]i+ 1
2
, (3.16)
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Ri = −g [ηx]i [hx]i + u2i [hxx]i . (3.17)

We use a central difference scheme to compute the space derivatives of h and η:

[ηx]i+ 1
2
=
ηi+1 − ηi

∆x
, [hx]i+ 1

2
=
hi+1 − hi

∆x
, [hxx]i+ 1

2
=
hi+2 − hi+1 − hi + hi−1

2∆x2
, (3.18)

[ηx]i =
ηi+1 − ηi−1

2∆x
, [hx]i =

hi+1 − hi−1

2∆x
, [hxx]i =

hi+1 − 2hi+1 + hi
∆x2

. (3.19)

In the case of a collocated grid, we get the following discretization of the velocity derivatives:

[ux]i =
ui+1 − ui−1

2∆x
, ui+ 1

2
=
ui+1 + ui

2
. (3.20)

For the staggered grid we will have:

[ux]i =
ui+ 1

2
− ui− 1

2

∆x
, ui =

ui+ 1
2
+ ui− 1

2

2
. (3.21)

In order to solve the elliptic problem for the values of ℘, we need to solve the following tri-
diagonal system: 

β1 γ1 0

α2
. . . . . .

. . . . . . γN−1

0 αN βN





℘1

℘2

...

℘N


=



F1

F2

...

FN


, (3.22)

where:

γi =
Ki+1 +Ki

2∆x
, (3.23)

βi = −Ki+1 + 2Ki +Ki−1

2∆x
− 6

 1

H3
i

Yi − 3

Yi
+

[
hx
H2Y

]
i+ 1

2

−
[
hx
H2Y

]
i− 1

2

 , (3.24)

αi =
Ki +Ki−1

2∆x
. (3.25)

The tridiagonal system is solved with the Thomas algorithm, and the non-hydrostatic pressure
at the bottom ϱ is then computed at the cell center in accordance with Eq. (3.9):

ϱi =
1

Yi

[
6℘i

Hi
+HiRi +

℘i+1 −℘i−1

2∆x

hi+1 − hi−1

2∆x

]
. (3.26)
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Finally, the non-hydrostatic corrections are added to the momentum equation as source terms:

[℘
x − ϱhx

]
i+ 1

2
=
℘

i+1 −℘
i

∆x
+
ϱi+1 + ϱi

2

hi+1 − hi
∆x

. (3.27)

3.2.3 Verification

Solitary wave solution

In the case of a flat bathymetry h (x, t) = d, the SGN equations admit an analytical solitary
wave solution, given by the following expressions:

η (x, t) = α sech2

(√
3αg

2dv
(x− x0 − vt)

)
, (3.28)

u (x, t) =
vη (x, t)

d+ η (x, t)
, (3.29)

where α is the wave amplitude, x0 is the initial wave position and v is the wave celerity defined
as:

v =
√
g (d+ α). (3.30)

The non-hydrostatic pressure under the solitary wave can be written as:

℘ (x, t) =
g

2

[
H (x, t)2 − d2

]
− dvu (x, t) . (3.31)

This analytical solution is used to validate the SGN numerical solver.

Numerical results

We take a sufficiently large domain [0, l] with l = 500m and a water depth d = 1m. The solitary
wave is initially located at x0 = 35m with an amplitude α = 0.4m. We compute the soliton
propagation for t = 100 s using a Courant number Cr = 0.8. The SGN solution approximates
the full Euler solution fairly well up to 2α ⩽ d (Duran et al. [2013]).

We first verify the elliptic solver by comparing the computed ℘ to the exact solution given in
Eq. (3.31). Both the collocated and staggered grid solutions converge to the analytical solution,
which verifies the elliptic solver for this test. The solutions with the staggered and collocated
grids are identical.

Figure 3.4 shows the computed free surface profile at t = 100 s for different grid resolutions. The
numerical solution converges to the exact solution with mesh refinement.
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Figure 3.3: Elliptic solver verification.

Figure 3.4: Solitary wave solution at t = 100 s for different grid resolutions ζ = d
∆x

In order to quantify the accuracy of the numerical solution, we measure the L∞-error discrete
error for different grid resolutions (ζ = d

∆x) :

∥∥εζ∥∥∞ =
∥∥ηζ − η0

∥∥
∞ , (3.32)

where ηζ stands for the numerical and η0 for the exact free surface profiles. The convergence
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rate K is computed as:

K = log2

{∥∥εζ∥∥∞∥∥ε2ζ∥∥∞
}
. (3.33)

The numerical results in Table 3.1 indicate the error and convergence rate for different grid
resolutions. The convergence rate is around 2 which validates the second-order accuracy of our
numerical solver.

Table 3.1: Solitary wave solution: error and convergence rate

∆x [m] ζ ∥εζ∥∞ K

0.5 2 0.4471 -

0.25 4 0.1177 1.93

0.125 8 0.0301 1.97

0.0625 16 0.0076 1.98

3.3 Nwogu 1D model

3.3.1 Governing Equations

The Boussinesq-type equations of Nwogu [1993] consist of a continuity and a momentum equation
in the form:

ηt +
[
(η + h)u

]
x
+

(z2α
2

− h2

6

)
huxx +

(
zα +

h

2

)
h (hu)xx


x

= 0, (3.34)

ut + uux + gηx +

[
z2α
2
uxx + zα (hu)xx

]
t

= 0. (3.35)

where zα is the reference depth, at which the velocity variable is evaluated (i.e., u = u|z=zα).
Nwogu [1993] defines this level as a fixed proportion of the local water depth with a position
near mid-depth: zα = σh = −0.531h.

We define the dispersion variables:

ψc =

[(
z2α
2

− h2

6

)
huxx +

(
zα +

h

2

)
h (hu)xx

]
x

, (3.36)

ψm =
z2α
2
uxx + zα (hu)xx . (3.37)
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We derive the conservative form of Nwogu’s equations. Since the bathymetry is stationary, the
continuity equation becomes:

Ht + [Hu]x + ψc = 0. (3.38)

To write the momentum equation in a conservative form, we multiply the equation by H. The
momentum acceleration terms, ut+uux, are expressed in the conservative form by replacing the
flow velocity u with Hu:

H
(
ut + uux

)
=
[
Hu
]
t
+
[
Hu2

]
x
− u
(
Ht + [Hu]x

)
=
[
Hu
]
t
+
[
Hu2

]
x
+ uψc. (3.39)

The dispersion term in the momentum equation can be written in the conservative form, as
follows:

H [ψm]t = [Hψm]t −Htψm. (3.40)

The momentum equation becomes:[
Hu+Hψm

]
t
+
[
Hu2

]
x
+ gHηx + uψc −Htψm = 0. (3.41)

The resulting set of governing Eqs. (3.38) and (3.41) contain the nonlinear shallow-water equa-
tions and second-order dispersion terms based on the flow velocity. The governing equations are
thus expressed in a conservative form:

Ut + Fx + S = 0, (3.42)

where:

U =

 H

Hu+Hψm

 , F =

 Hu

Hu2

 , S =

 ψc

gHηx + uψc −Htψm

 . (3.43)

3.3.2 Numerical Scheme

In this section, we describe the extension of the SWE model to the solution of Nwogu’s equations.
As previously mentioned, and similar to the SGN solution, the hyperbolic component of the
dispersive equation is computed with the SWE solver described in Chapter 2 while the dispersive
terms will be computed with central FD approximations. The layout of Nowgu’s variables on a
staggered grid is shown in Figure 3.5.
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Figure 3.5: Staggered layout for Nwogu’s variables

The continuity source term is computed as:

[
ψc

]
i
=z2α(i+ 1

2
)

2
− 1

6

hi+ 1
2

ui+ 3
2
− 2ui+ 1

2
+ ui− 1

2

∆x3
+

(
zα(i+ 1

2
) +

1

2

)
hi+ 1

2

(hu)i+ 3
2
− 2 (hu)i+ 1

2
+ (hu)i− 1

2

∆x3

−z2α(i− 1
2
)

2
− 1

6

hi− 1
2

ui+ 1
2
− 2ui− 1

2
+ ui− 3

2

∆x3
+

(
zα(i− 1

2
) +

1

2

)
hi− 1

2

(hu)i+ 1
2
− 2 (hu)i− 1

2
+ (hu)i− 3

2

∆x3
.

Similarly, the dispersion variable in the momentum equation ψm is approximated as:

[
ψm

]
i+ 1

2

=
z2
α(i+ 1

2
)

2

ui+ 3
2
− 2ui+ 1

2
+ ui− 1

2

∆x2
+ zα(i+ 1

2
)

(hu)i+ 3
2
− 2 (hu)i+ 1

2
+ (hu)i− 1

2

∆x2
. (3.44)

In this case, the conserved variables for the hyperbolic solver are H and P = Hu+Hψm. The
momentum conserved variable P is expressed in terms of the flow variables as:

Pi+ 1
2
= Hi+ 1

2
ui+ 1

2
+Hi+ 1

2
zα(i+ 1

2
)

[
ψm

]
i+ 1

2

. (3.45)

The central difference scheme only involves cells to the left and right of each grid cell and thus
forms a linear system of equations in the form:

β1 γ1 0

α2
. . . . . .

. . . . . . γN−1

0 αN βN





u1

u2

...

uN


=



P1

P2

...

PN


. (3.46)

To simplify the expressions, we use the index k to replace the index at the cells interface k = i+ 1
2

αk = Hkzαk

(
zαk
2∆x2

+
hk−1

∆x2

)
, (3.47)
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βk = Hkzαk

(
1

zαk
− zαk

∆x2
− 2hk

∆x2

)
, (3.48)

γk = Hkzαk

(
zαk
2∆x2

+
hk+1

∆x2

)
. (3.49)

The Thomas algorithm is used to solve the tridiagonal system, and the horizontal velocity at the
interface (i.e., ui+ 1

2
) is then computed.

3.3.3 Verification

Solitary wave solution

The solitary wave solution is one of the standard tests to verify the accuracy of Boussinesq-type
solvers. While propagating in a flat frictionless channel, a solitary wave is expected to maintain
its shape, speed, and amplitude due to the exact balance of dispersive and nonlinear terms. In the
case of Nwogu’s equations, Hamdi et al. [2005] have derived an exact solution to the dispersive
equations. However, the non-physical aspect of the solution (i.e., the total water depth is negative
for σ = −0.531) makes it impossible to compute with a conservative numerical implementation,
which relies on the assumption of the non-negativity of the total water depth. Wei and Kirby
[1995], on the other hand, derived an approximate analytical solitary wave solution to Nwogu’s
equations. For a flat topography (i.e., h = d = const), the 1D Nwogu’s equations are expressed
as:

ηt + dux + [ηu]x +

(
α+

1

3

)
d3uxxx = 0, (3.50)

ut + uux + gηx + αd2uxxt = 0. (3.51)

with α = σ2

2 + σ = −0.39. Wei and Kirby [1995] proposed an approximate ordinary differential
equation to Eq. (3.50)- (3.51) for the wave potential ϕ:

−ϕtt + ϕxx − ε (2ϕxϕxt + ϕtϕxx) + µ2

[(
α+

1

3

)
ϕxxxx − αϕxxtt

]
= O

(
ε2, εµ2

)
. (3.52)

Due to the truncated terms on the right-hand side, the analytical solution of Eq. (3.52) differs
slightly from the exact solitary wave solution of the original equations (i.e., Eqs. (3.50) and
(3.51)). Eq. (3.52) admits the following exact solutions for η and u:

u = A sech2
[
B (x− x0 − Ct)

]
, (3.53)

η = A1 sech
2
[
B (x− x0 − Ct)

]
+A2 sech

4
[
B (x− x0 − Ct)

]
. (3.54)

The corresponding dimensional expressions for A, B, A1 and A2 are:
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A =
C2 − gd

C
, (3.55)

B =


C2 − gd

4

[(
α+ 1

3

)
gd3 − αd2C2

]


1
2

, (3.56)

A1 =
C2 − gd

3

[(
α+ 1

3

)
gd− αC2

]d, (3.57)

A2 = −
(
C2 − gd

)2
2gdC2

[(
α+ 1

3

)
gd+ 2αC2

]
[(
α+ 1

3

)
gd− αC2

] d. (3.58)

The parameter C is computed by solving the following third-order polynomial equation:

2α

(
C2

gd

)3

−
(
3α+

1

3
+ 2αδ

)(
C2

gd

)2

+ 2δ

(
α+

1

3

)(
C2

gd

)
+

(
α+

1

3

)
= 0. (3.59)

Numerical results

We propagate the solitary wave described in Eq. (3.53), (3.54) in a d = 0.45m water depth for
t = 150 s and we compare the numerical results to the analytical solution proposed by Wei and
Kirby [1995]. The wave amplitude for this test is A/d = 0.1. The converged results with grid
size ζ = d

∆x = 16 are shown in Figure 3.6 .

The numerical results show good agreement between the computed and the analytical solutions.
The converged solitary solution has a slightly higher amplitude than the approximate analytical
solution, along with a small dispersive tail that is consistent with numerical findings from other
Nwogu’s models (e.g., Kazolea and Delis [2013]; Wei and Kirby [1995]).
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Figure 3.6: Solitary wave propagation
(
A/d = 0.1

)
at time t = 145s

3.4 Frequency Dispersion

The quality of the numerical computations depends on the accuracy of the governing equations
and the discretization techniques. Both exhibit numerical errors that can offset or reinforce each
other. It is important to understand the limitations of numerical models so that they are used
correctly and to their best potential for wave fore- and hindcasting. An inherent source of error
related to Boussinesq models results from the approximate nature of the governing equations.
Both the SGN and Nwogu equations are truncated to O(µ2) order, resulting in derivatives up to
the third order. While these approximations reduce the numerical complexity of the equations,
they can lead to high dispersive errors due to the limited representation of the flow’s vertical
structure. In this section, we derive the linear dispersion relation for both the Nwogu and SGN
equations and discuss the impact of dispersive errors on the accuracy of the results.

3.4.1 Linear Dispersion Relation

The linearized standard SGN equations (i.e., Eq.(3.1)-(3.4)) take the following form for a constant
water depth h:

ηt + hux = 0,

ut + gηx −
h3

3
uxxt = 0.

(3.60)

Similarly, the linearized Nwogu’s equations can be expressed as:
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ηt + hux +

(
α+

1

3

)
h3uxxx = 0,

ut + gηx + αh2uxxt = 0.

(3.61)

It is worth noting that when linearized, the SGN equations are equivalent to Nwogu’s equation
for α = −1

3 .

We consider a steady periodic wave solution of the following form:

η = η0 e
i(kx−ωt), u = u0 e

i(kx−ωt). (3.62)

where k is wave number and ω is the wave frequency. By substituting Eq. (3.62) into Eq. (3.61)
we get:  −iω ikh− i

(
α+ 1

3

)
(kh)3

igk −iω + iαω(kh)2

 .

 η

u

 =

 0

0

 . (3.63)

Non-zero solutions are obtained if:

ω2
[
1− α(kh)2

]
= k2

[
gh− gh

(
α+

1

3

)
(kh)2

]
. (3.64)

As a result, the dispersion relation is written as:

C =
ω

k
=

gh
1−

(
α+ 1

3

)
(kh)2

1− α (kh)2


1
2

. (3.65)

By taking α = −0.39 we find the dispersion relation proposed by Nwogu [1993]:

CNwogu =

gh
1−

(
α+ 1

3

)
(kh)2

1− α (kh)2


1
2

. (3.66)

For the SGN equations, we take α = −1
3 :

CSGN =

{
gh

1

1 + 1
3 (kh)

2

} 1
2

. (3.67)

The SGN equations share the same linear dispersion relation with other well-established equations
(e.g., Peregrine [1967]; Zheleznyak and Pelinovsky [1985]). The nonlinear properties of these
equations, meanwhile, can be different.

The linear dispersion relation of each equation is then compared to the fully dispersive Airy wave
theory:
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CAiry =

{
gh

tanh (kh)

kh

} 1
2

. (3.68)

Figure 3.7 shows the dispersion error in the form of the ratio between the phase celerity of Airy
wave theory and Boussinesq-type equations. The dispersive error for SGN equations increases
quite considerably for kh > 1, limiting their applicability for high-frequency waves. Nwogu’s
equations, on the other hand, match the Airy theory up to kh ≈ π, making the equations very
applicable to shallow and intermediate water. In addition, the error sign is also different between
the two equations. The SGN model has a negative error and tends to underpredict the wavelength
and celerity. Although small, the error in Nwogu’s formulation (α = −0.39) is negative around
kh ∈ [1, 2], but it quickly changes to a positive error for large values of kh.

Figure 3.7: Error in phase speed between Airy wave theory and linearized SGN equations

3.4.2 Numerical Tests

Periodic wave propagation in a flat channel

To better understand the effect of the dispersion properties of the governing equations on the
numerical model’s overall quality, we run a simple numerical test with the two sets of equations.
We generate and propagate linear monochromatic waves ( a

h = 0.01 ≪ 1) in a very long flat
channel using two models: the SGN model and the Nwogu model, and we compare the computed
results to the Airy theory.

The generation of the waves inside the computational domain is achieved through the internal
wavemaker approach described in Chapter 6.2.3. For each run, we input different monochromatic
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waves with varying kh values (i.e., kh = 0.5, 1, 2, and 3). The grid size is determined for each
test such that ζ = λ

dx = 20. The results are shown in Figure 3.8

Figure 3.8: Computation of monochromatic wave propagation in a long flat channel for different values of
kh. The lines denote the reference and computed free surface at t = 500 s. The blue line denotes the

solution with Nwogu’s equations, the red line represents SGN equations, and the black line is the reference
solution from Airy wave theory.

For kh = 0.5, the two equations can generate and propagate waves at the correct speed and
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wavelength, which is consistent with the small dispersion error for this range of kh. For kh = 1,
we notice a slight mismatch between the SGN model and the exact solution. This mismatch
becomes more apparent for higher values of kh, where the wavelength is significantly smaller
than in Airy wave theory. At kh = 3, the dispersion error of the SGN model is too big for the
wavemaker to handle, and the wavelength reaches a singularity.

The overall results with the Nwogu model show a good agreement with Airy wave theory up to
kh = 3. The model results are consistent with the dispersion relations shown in Figure 3.7. We
can notice a slightly smaller wavelength for kh ⩽ 2 and a longer wavelength for kh = 3.

Periodic wave propagation over a submerged bar

Beji and Battjes [1993] reported a series of experimental investigations on the propagation of
waves over a submerged bar. Figure 3.9 depicts a schematic of the 37.7m long and 0.75m tall
flume with a 0.30m tall trapezoidal bar 6m away from a piston-type wavemaker. The front slope
of the bar is 1:20, followed by a 2-meter crest and a 1:10 rear slope. At the end of the flume,
a gravel beach is installed, which functions as a wave absorber. Waves shoal when propagating
up the slope of the bar, forcing the development of bound higher-harmonics, which are then
released from the carrier frequency on the left side of the bar as the water depth becomes rapidly
deeper. Sand bars are quite common in coastal waters making this experiment an important test
case for nearshore models. Many Boussinesq-type or non-hydrostatic models do not fully resolve
the super-harmonics due to the low-order approximation of dispersion and nonlinearity in the
governing equations. We use the experimental data from case A, which involves a sinusoidal
wave with a 1 cm amplitude and 2.02 s period. The test was conducted in 0.4m water depth,
resulting in a kh ≈ 0.67 incident wave. For both models, we run the test with a ∆x = 0.02m

grid size, and a Courant number Cr = 0.5.

Figure 3.9: Definition sketch of wave transformation over a submerged bar. (a) Laboratory setup from Beji
and Battjes [1993]. (b) Numerical model setup. Circles denote gauge locations.
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Figure 3.10 shows a snapshot of the free surface computed with the two models. As the incident
wave propagates over the upward slope, the wave shoals and becomes steeper, resulting in the
generation of super-harmonics. These high-frequency waves are then released behind the bar as
the wave travels from shallow to deeper water. While the Nwogu’s model is able to compute
these processes, the SGN model becomes unsable when dealing with the generation of super-
harmonics. The recorded time series at different wave gauges showcase the difference between
the two solutions (Figure 3.11). Both the Nwogu and SGN models maintain good agreement
with experimental data at stations 4, 5, and 6 over the bar, proving the quality of numerical
solutions regarding wave propagation and shoaling. The solutions of the two models significantly
diverge behind the bar at stations 8–11, where super-harmonics are released. While Nwogu’s
model is able to capture the overall wavefield behind the bar with some minor discrepancies, the
SGN fails at computing the released short waves due to the poor dispersive properties of the
governing equations. This test case clearly demonstrates the impact of high-dispersive errors
on the accuracy and stability of the solution. This has been confirmed by the implementation
of a new model that solves SGN equations with enhanced dispersion, where the results show a
significant improvement (Appendix C).

Figure 3.10: Computation of wave transformation over a submerged bar. The blue line is the free surface at
74.5 s computed with Nwogu’s model. The red line is from SGN model
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Figure 3.11: Computation of wave transformation over a submerged bar. Black circles denote laboratory
data from Beji and Battjes [1993]. The blue lines are time series from Nwogu’s model (α = −0.39) and red

lines represent the results SGN model

3.5 Nonlinearity

Despite their improved dispersion properties, many extended Boussinesq equations such as
Nwogu’s are still based on weakly nonlinear assumptions in which the dispersion terms are
linearized. These assumptions help simplify the equations and their numerical solutions. In
some cases, however, the small amplitude assumption might limit the model’s applicability to
problems where the effects of nonlinearity are too significant. In this section, we examine the
effects of the weak nonlinear assumption on the numerical solution by modeling a highly nonlin-
ear wave process, which is wave shoaling. As waves approach the shore, wave height increases,
and wave height-to-water depth ratios become too large for the small amplitude assumption to
be valid.

3.5.1 Numerical Tests

Nonlinear shoaling of a solitary wave on a plane beach

We consider the test presented by Grilli et al. [1994] of a solitary wave shoaling over a plane slope.
The test consists of a solitary wave with amplitude a/h0 = 0.2 propagating in a h0 = 0.44m water
depth, and shoaling on a constant slope 1 : 35. The wave height prior to breaking approaches high
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values of ε ∈ [0.2, 2.2], and thus the benchmark is suitable for testing the nonlinear properties of
the model.

Figure 3.12: Nonlinear shoaling of a solitary wave: Numerical model setup

Figure 3.12 shows the computational domain of the test. The coordinates were set so that the
slope’s toe corresponds to x = 0. We compare the results from four numerical models, each
solving a different set of governing equations with an identical numerical scheme. The results
fully converge for a grid size of ∆x = 0.01m and a Courant Number Cr = 0.7. The solitary
waves are generated at the leftward boundary and propagated to the right. The input solitary
wave profile takes the following standard form:

η (x, t) = a sech2

√ 3a

4h30

(
x− x0 − t

√
g (a+ h0)

) ,

u (x, t) =
η (x, t)

h0 + η (x, t)

√
g (a+ h0).

For each run, we record the maximum elevation, and we compare the results with the laboratory
data from Grilli et al. [1994]. The improved SGN equations are a set of SGN equations with
improved dispersion (see Appendix C).

The results in Figure 3.13 show a distinct behavior of the different equations. While weakly
nonlinear models (i.e., Nwogu and Peregrine) tend to overestimate the shoaling wavefront, the
fully nonlinear models (i.e., SGN and improved SGN) have the opposite effect. This is consistent
with the already-established findings, where the nonlinearity effects tend to stretch the propa-
gating wave and reduce its amplitude (Dalrymple et al. [1984]). Since wave shoaling is a process
that requires the nonlinearity and dispersion effects to balance each other, it is expected that
equations with improved linear dispersion perform better than their low-dispersive counterparts.
As a result, improved nonlinear and dispersion properties of the equations are both important
for accurate wave shoaling computations. A fully-nonlinear potential flow model has been shown
to produce a remarkable match with the laboratory experiment, which is in line with the current
findings (see Grilli et al. [1994]). The pronounced oveshoaling of the weakly nonlinear Nwogu’s
solution has also been shown and discussed in detail in Wei and Kirby [1995].
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Figure 3.13: Nonlinear shoaling. Comparison between computed wave crest evolution and data from Grilli
et al. [1994]

3.6 Conclusions

Thanks to the common numerical framework implemented to solve different Boussinesq-type
equations, we can objectively compare the effects of the governing equation assumptions on
the accuracy of the solution. We choose to compare primarily two sets of equations: the SGN
equations, which are a fully nonlinear extension to the standard Boussinesq equations (Peregrine
[1967]), and Nowgu’s equations with their improved dispersion. With regard to dispersion, the
low dispersive properties in SGN equations affect not only the accuracy but also the stability of
the numerical solution, especially when dealing with short waves. The negative dispersion error
in the equations, which has the tendency to shorten the wave and thus increase the error, even
more, can lead to singularity in the solution. Moreover, the long-wave restriction (kh < 0.5)
is very limiting for our applications. Nonlinearity properties, on the other hand, have been
shown to be critical when dealing with steep waves, particularly during shoaling processes. The
weakly nonlinear models exhibit a visible flaw when dealing with this process, resulting in an
overshoaled wave and an overestimation of the wave height just before breaking. Similarly,
the weakly-dispersive, fully-nonlinear models are not able to correctly reproduce this process
due to the lack of dispersion and tend to underestimate the wave height. The tests presented
in this chapter are essential since they highlight the limitations imposed by the assumptions
in the governing equations. It is important to consider all these inherent shortcomings when
working with numerical approximations. Taking into account all these findings and the numerical
complexity of the 2D SGN solver (Appendix D), we build our new numerical model based on
the weakly nonlinear Nwogu’s equations, which offer good quality results with respect to the
numerical effort involved in the solution.
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4.1 Introduction

Over the recent decades and due to the increasing technological advancement in computing
power, many Boussinesq models have been developed to achieve a phase-resolving solution for
nearshore wave processes. As a result, many numerical techniques for solving Boussinesq equa-
tions have been examined and considerably improved (e.g., Kirby [2016]; Choi et al. [2018]; Shi
et al. [2012]). Efforts to develop stable and accurate numerical implementations for the Boussi-
nesq equations include FD, FV, and FE formulations. The first Boussinesq models were based
on higher-order FD (Wei and Kirby [1995]; Nwogu and Demirbilek [2001]) and FE schemes (e.g.,
Sørensen et al. [2004]). These strategies have been shown to be sensitive to spurious oscillations
and require numerical filters and artificial viscosity to stabilize the solution near the shoreline
and for breaking waves. Recently, a significant number of Boussinesq models have adopted a hy-
brid approach that combines FV and FD methods. The hyperbolic component of the equations
is solved using conservative Godunov-type methods paired with Riemann solvers (i.e., HLLC,
HLLC, Roe, Osher), while the high-order dispersive terms are computed using FD approxima-
tions. These hybrid solvers have shown reliable performance in modeling breaking waves and
coastal inundation thanks to their shock-capturing properties(e.g., Erduran et al. [2005]; Shiach
and Mingham [2009]; Tonelli and Petti [2009]; Roeber et al. [2010]; Roeber and Cheung [2012];
Kazolea and Delis [2013]; Roeber and Bricker [2015]).

The standard Godunov-type formulation has only first-order accuracy (Toro [2013]). To achieve
improved accuracy, high-order reconstruction techniques along with TVD slope limiters have
been proposed (e.g., Jiang and Shu [1996]; Kim and Kim [2005]; Choi et al. [2018]). In re-
cent years, the use of high-order techniques in the computation of dispersive wave propagation
has acquired immense popularity. Several Boussinesq models have employed high-order shock-
capturing methods to achieve low-dissipative solutions with fewer grid nodes. The fourth-order
MUSCL-TVD scheme proposed by Yamamoto and Daiguji [1993] has been used in many Boussi-
nesq implementations and remains a popular choice for approximating the dispersive conservative
equations (e.g., Erduran et al. [2005]; Tonelli and Petti [2009]; Shi et al. [2012]). Another tech-
nique, based on the WENO scheme (i.e., Jiang and Shu [1996]) has been used successfully to solve
the weakly nonlinear Nwogu’s equations (Zhou et al. [2016]). The Multi-dimensional Limiting
Process (MLP) proposed by Kim and Kim [2005] offers an alternative shock-capturing strategy
to control spurious oscillations in a two-dimensional setting. A fifth-order MLP reconstruction
has been effectively implemented by Roeber and Cheung [2012] in their 2D Boussinesq model.

In this section, we look at how the hyperbolic solver affects the quality of the Boussinesq models.
We focus on a fundamental yet often overlooked issue, which is numerical diffusion. Nowa-
days, properties such as low dissipation have become increasingly crucial in phase-resolving wave
computations. Due to the enhanced dispersion properties of the new Boussinesq equations, their
applicability has been extended to deeper water, allowing the models to account for far-field wave
propagation. As a result, the accumulative effects of numerical diffusion can have a significant
impact on the quality of the results.
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4.2 Hybrid FV/FD Solver

We contrast the numerical approach used in our model (Chapter 2) with other well-established
techniques adopted by several Boussinesq solvers. The hybrid approach, where shock-capturing
FV methods are used to compute numerical fluxes has become increasingly popular in recent
years. These schemes are based on the characteristic decomposition of the governing equations
and have proven stable in computing nearshore processes such as wave breaking and run-up.

We solve 1D Nwogu’s equations with two FV methods: HLLC Riemann solver and Central
Upwind scheme (i.e., Kurganov et al. [2001]). To attain high-order accuracy, we implement
a second, third, and fifth-order reconstruction based on the MLP method (i.e., Kim and Kim
[2005]).

4.2.1 Governing Equations

The 1D Nwogu’s equations can be written in the following conservative form:

Ut + Fx + S = 0, (4.1)

where:

U =

 H

Hu+Hψm

 , F =

 Hu

Hu2 + 1
2gH

2

 , S =

 ψc

−gHhx + uψc −Htψm

 ,
(4.2)

ψc =

[(
z2α
2

− h2

6

)
huxx +

(
zα +

h

2

)
h (hu)xx

]
x

, (4.3)

ψm =
z2α
2
uxx + zα (hu)xx . (4.4)

The method of characteristics requires the homogeneous part of the equation to be isolated.
Therefore, to preserve the hyperbolicity of the hydrostatic component, the pressure term gHηx
is split into an artificial flux gradient and a source term.

4.2.2 Godunov-type Scheme

The Finite Volume Method divides the computational domain into discrete volumes that store
the average values of each conserved variable. These values are then updated in time based on
the numerical flux coming in and out of the cell. It’s important to note that most FV schemes
are based on the collocation of the flow variables. The integrated form of the conserved equations
(Eq. (4.1)) is written as:

Un+1
i − Un

i

∆t
+

1

∆x

[
Fn
i+ 1

2

− Fn
i− 1

2

]
+ Sn

i = 0. (4.5)
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The numerical flux Fn
i+ 1

2

approximates the solution of the local Riemann problem that occurs at
each cell interface.

HLLC approximate Riemann solver

Harten et al. [1983] proposed an approximate solution to the Riemann problem, which was later
corrected by Fraccarollo and Toro [1995] to account for the influence of intermediate waves. The
HLLC numerical flux is computed as follows:

F hllc
i+ 1

2

=


FL if 0 ⩽ SL

F ∗
L if SL ⩽ 0 ⩽ S∗

F ∗
R if S∗ ⩽ 0 ⩽ SR

FR if SR ⩽ 0

, where

F ∗
L = FL + SL

(
U∗
L − UL

)
F ∗
R = FR + SR

(
U∗
R − UR

) . (4.6)

The state U∗
L and U∗

R are given by:

U∗
K = HK

(
SK − uK
SK − S∗

) 1

S∗

 , K = L,R. (4.7)

We compute the wave speeds SL, SR, and S∗ based on the formulations given in Toro [2001].

Central-upwind scheme

The numerical flux Fn
i+ 1

2

can also be computed with a Riemann-free solver such as central-upwind
scheme (i.e., Kurganov and Petrova [2007]):

F cu
i+ 1

2

=
aRFL − aLFR

aR − aL
+

aRaL
aR − aL

(UR − UL) , (4.8)

where:

aR = max
(
0, uR +

√
gHR, uL +

√
gHL

)
, (4.9)

aL = min
(
0, uR −

√
gHR, uL −

√
gHL

)
. (4.10)

This family of central schemes avoids the complex and time-consuming calculation of the Eigen
system and hence provides a much simpler alternative to upwind approaches.

Source terms

The dispersion terms in Nwogu’s equations are computed with central FD approximations. It’s
important to note that in the case of a non-flat bottom, the computation of the topography
variation term gHhx is not straightforward and requires the use of specialized techniques to
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achieve a well-balanced and positivity-preserving model (e.g., Audusse et al. [2015]; Chertock
et al. [2015]; Liang and Marche [2009]).

4.2.3 Flux Reconstruction

To compute the numerical flux, we need to approximate the state variables at the cell interface.
A first-order approximation can be achieved by taking the values from the left and right cells as
input into the local Riemann solver:

[
UL

]
i+ 1

2
= Ui,

[
UR

]
i+ 1

2
= Ui+1. (4.11)

For improved accuracy, several high-order schemes have been proposed. These methods employ
flux limiters to achieve oscillation-free computations:

Second-order reconstruction - MUSCL

The second-order reconstruction of the state variables at the cell interface can be calculated with:

[
UL

]
i+ 1

2
= Ui +

1

2
ϕ (rL) (Ui − Ui−1) , (4.12)

[
UR

]
i+ 1

2
= Ui+1 −

1

2
ϕ (rR) (Ui+2 − Ui+1) , (4.13)

where:

rL =
Ui+1 − Ui

Ui − Ui−1
, rR =

Ui+1 − Ui

Ui+2 − Ui+1
. (4.14)

ϕ is a TVD slope limiter. Here we use Van-Leer’s one-parameter MinMod limiter, which is
defined as follows:

ϕ (r, θ) = max

(
0,min

(
θr,

1 + r

2
, θ

))
. (4.15)

The slope limiter is most dissipative for θ = 1 and is least dissipative for θ = 2. We set θ = 2

for all the following numerical tests.

Third-order reconstruction

Kim and Kim [2005] proposed a TVD third-order interpolation for the flux computation:

[
UL

]
i+ 1

2
= Ui +

1

2
max

(
0,min

(
2, 2rL,i, βL

))
(Ui − Ui−1) , (4.16)

[
UR

]
i+ 1

2
= Ui+1 −

1

2
max

(
0,min

(
2, 2rR,i+1, βR

))
(Ui+2 − Ui+1) . (4.17)
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The values of βL and βR are calculated as follows:

βL =
1 + 2rL,i

3
, βR =

1 + 2rR,i+1

3
, (4.18)

where:
rL,i =

Ui+1 − Ui

Ui − Ui−1
, rR,i+1 =

Ui+1 − Ui

Ui+2 − Ui+1
. (4.19)

Fifth-order reconstruction

To achieve fifth-order accuracy, the state variables are reconstructed as:

[
UL

]
i+ 1

2
= Ui +

1

2
max

(
0,min

(
2, 2rL,i, βL

))
(Ui − Ui−1) , (4.20)

[
UR

]
i+ 1

2
= Ui+1 −

1

2
max

(
0,min

(
2, 2rR,i+1, βR

))
(Ui+2 − Ui+1) . (4.21)

The values of βL and βR are calculated as follows:

βL =
−2/rL,i−1 + 11 + 24rL,i − 3rL,irL,i+1

30
, βR =

−2/rR,i+2 + 11 + 24rR,i+1 − 3rR,irR,i+1

30
,

(4.22)

rL,i =
Ui+1 − Ui

Ui − Ui−1
, rR,i =

Ui − Ui−1

Ui+1 − Ui
. (4.23)

4.3 Numerical Results

When solving time- and space-dependent PDEs such as the Boussinesq-type equations, it’s im-
portant to account for the effects of numerical dissipation. The diffusion error stems from the
discretized form of the equations, which behaves differently than the original continuous equa-
tions. This discrepancy has a cumulative impact and can, in some cases, compromise the validity
of the numerical solution. While reducing the grid size does effectively minimize this problem, it
can significantly increase the computational cost and therefore affect the efficiency of the model.
A low diffusion scheme is thus essential to counter this issue.

In the context of Boussinesq-type models, the effects of numerical dissipation are more important
when dealing with periodic waves which involve recurring extrema (wave crest and through). We
compare the diffusion effects of different numerical schemes for long-distance wave propagation.

4.3.1 Monochromatic Wave Propagation

In a long flat channel, we generate and propagate a 4 s monochromatic wave. The water depth
is d = 1m, resulting in kh = 0.5.

First, we investigate the effects of the flux approximation on the quality of the solution. For
that, we compute the numerical solution of Nwogu’s equations with two hyperbolic solvers: the
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HLLC scheme and the Central Upwind scheme (i.e., Kurganov scheme). dispersion terms. Both
approaches use identical elliptic solvers along similar FD approximations for the dispersion terms.
For this test, we use a fifth-order reconstruction and we compute the wave propagation with a
grid size λ/∆x = 30, where λ is the wavelength.

Figure 4.1: Sine wave propagation of kh = 0.5: Comparison between HLLC and Kurganov schemes for a grid
size λ/∆x = 30 and fifth order-reconstruction

The numerical results from the two Godunov-type schemes are identical. Proving that for a
smooth wave and constant water depth, these two approaches collapse into the same solution.

In this second part, we examine the effect of the flux reconstruction on the accuracy of the results.
We run the same test as before with the HLLC scheme and compare the wave propagation with
different orders of reconstructions. The results are shown in Figure 4.2.

Figure 4.2: Sine wave propagation of kh = 0.5: Comparison between different orders of flux reconstructions
for a grid size λ/∆x = 30

The effect of numerical diffusion is more pronounced with lower-order reconstruction, where the
wave height drastically decreases and the wave completely vanishes after a few cycles. High-order
methods, such as the fifth-order reconstruction, help conserve the wave height and, therefore,
the wave energy. In practice, the use of Godunov-type models requires at least a fifth-order
reconstruction to conserve the wave energy after 25 cycles for a λ/∆x = 30 grid resolution.

The grid size is generally recognized to have a significant influence on numerical dissipation. In
this section, we compare the results from the Present model with the standard HLLC imple-
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mentation for different grid resolutions. Since the Present model is not based on the method
of characteristics for the solutions of the hyperbolic equations, the free surface gradient (i.e.,
hydrostatic pressure) is retained as one term (not split) and computed with a central difference
approximation. This is consistent with the approximation of the dispersion variables (i.e., non-
hydrostatic pressure). On the other hand, the Godunov-type solvers require the splitting of the
hydrostatic pressure into an artificial flux and a source term and therefore compute the pressure
flux with approximate Riemann solvers. It is important to note that the Present model uses a
second-order reconstruction to approximate the convective acceleration, while the HLLC scheme
employs a fifth-order reconstruction to compute the numerical flux.

On a very fine grid λ/∆x = 60, the two schemes converge to the same solution. The wave height,
in this case, is well computed for both models. With a coarser grid (λ/∆x = 15), we can notice
a significant discrepancy between the two solutions. The present model is able to maintain the
correct wave height even after 25 cycles, whereas, at this resolution, the HLLC scheme fails to
propagate the wave with the correct amplitude, and the dissipative effects are more important.

The sine wave propagation is an important test, since it showcases not only the effects of the
diffusive errors on the numerical solution but also the dispersive errors. The diffusion error has
a tendency to decrease the wave amplitude after each cycle, whereas the dispersion error alters
the wavelength. For this test, a wave with 4 s period results in kh = 0.5. Nwogu’s dispersion
error for this value of kh is extremely small, and thus we expect a near-perfect match with
Airy wave theory. As a result, any changes in the wavelength are mainly due to the numerical
discretization. As expected, with a very fine grid (i.e., λ/∆x = 60), the wave travels not only
with the correct wave amplitude but also with the correct wavelength. The current model can
maintain the correct wavelength with λ/∆x = 30 grid resolution, whereas the numerical errors
of the HLLC scheme have a tendency to stretch the wave and overestimate its length. The
dispersion errors of the HLLC scheme are more noticeable with the coarse grid (i.e., λ/∆x = 15)
where the generated wave becomes much longer than the exact solution. The Present scheme
also contains dispersive errors due to the second-order central difference approximation of the
pressure terms. However, these errors tend to rather shorten the wave and the magnitude of the
errors is still minor in comparison to the error induced by the HLLC scheme.



90 Chapter 4. Sensitivity of Periodic Wave Problems to Numerical Diffusion

Figure 4.3: Sine wave propagation of kh = 0.5: Comparison between Present model and HLLC scheme for
different grid sizes

4.3.2 Irregular Wave Propagation

In the previous section, we have tested the effect of numerical diffusion on the propagation
of monochromatic waves. In this following section, we investigate how the numerical diffusion
translates into a more practical case: a wave time series from a spectrum. We generate an
irregular wave field based on the JONSWAP empirical spectrum (Appendix E) with a significant
wave height of Hs = 1m and a peak period of Tp = 15.7 s and we examine three configurations:
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Table 4.1: Generation of JONSWAP wave spectrum: model configurations

Case 1 Case 2 Case 3

Water depth h 50m 25m 25m

Grid size ∆x 10m 10m 5m

Peak wavelength λp 300m 230m 230m

λp/∆x 30 23 46

High-frequency cut λmin 100m 50m 50m

λmin/∆x 10 5 10

In a 25 km long flat channel, we record the free-surface at three different locations: at 2 km,
10 km, and 20 km from the wavemaker. For each run, the Welch method is used to extract the
power spectral density from the time-series.

Figure 4.4: Case 1: Godunov-type model with
fifth-order flux reconstruction

Figure 4.5: Case 1: Present model with second-order
flux reconstruction

As shown in Figures 4.4 and 4.5, and for a 50m water depth (i.e., Case 1), the overall energy of
the wave field decays drastically with the HLLC Riemann solver. At a distance of 20 km from
the wavemaker, the loss of total wave energy is 47%. The high-frequency tail is disproportion-
ately impacted by the numerical dissipation, and the spectrum’s shape is strongly distorted. In
contrast, with the conservative staggered scheme, the energy and the spectral shape are well
preserved, which proves the low diffusivity of the Present approach.
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Figure 4.6: Case 2: Godunov-type model with
fifth-order flux reconstruction

Figure 4.7: Case 2: Present model with second-order
flux reconstruction

In shallower water, at a depth of 25m, the effect of the energy dissipation is more pronounced,
as the spectra now include shorter waves than in the example above. The high-frequency cut at
h = 25m is λmin = 50m, whereas in h = 50m water depth λmin = 100m. Since in this case the
short waves contain more energy than in the previous example, we can see that the energy loss
is more substantial. With an HLLC solver, 63% of the total wave energy is lost after 20 km of
propagation. In contrast, the staggered scheme experiences only minor diffusion and the overall
shape of the spectrum is still well preserved. (see Figures. 4.6, 4.7)

Figure 4.8: Case 3: Godunov-type model with
fifth-order flux reconstruction

Figure 4.9: Case 3: Present model with second-order
flux reconstruction

When the mesh is refined to ∆x = 5m, we can notice a significant improvement in the results
for the HLLC scheme, which proves that the energy dissipation observed is numerical and is due
to diffusion errors of the particular scheme. The results with the Present model are also slightly



4.4. Conclusions 93

improved but less noticeable than for the HLLC. In general, the HLLC scheme seems to be much
more sensitive to the grid size for problems with periodic wave propagation.

4.4 Conclusions

We have compared the standard FV-FD hybrid method based on an HLLC Riemann solution
to the conservative staggered scheme (i.e., Present model) in solving Nwogu’s equations. The
main difference between these two techniques is the computation of the hydrostatic flux, i.e.,
essentially the computation of the subset of SWE in the Boussinesq-type system. While the
hybrid method computes the flux using a Godunov-type scheme along with high-order recon-
struction, the Present model uses FD approximations that satisfy the Rankine-Hugoniot jump
condition to estimate the convective acceleration (see Chapter 2). Both techniques are shock-
capturing and provide stable and robust solutions for breaking waves, bores, and hydraulic
jumps. Although Godunov-type schemes are well-established for the computation of flow dis-
continuities and shocks, the performance of these methods has never been tested for periodic
waves—especially in the context of long-distance propagation. Compared to the conservative
staggered scheme, these characteristics-based methods are very sensitive to the grid size and
require a rather fine grid size (λ/∆x ≈ 60) to be able to correctly propagate the wave energy to
shore.

The use of low-dissipation solvers, such as the Present scheme, improves not only the accuracy of
the results but also the computational efficiency. The scheme is able to conserve wave energy over
a full spectrum of frequencies and captures essential wave processes with a rather coarse grid.
Moreover, the lean structure of the FD approximations significantly reduces the computation
time, making it an ideal choice for use in an operational model.

It should be noted that Godunov-type schemes based on Riemann solvers are not per se prone to
errors. The scheme is well-established, and it works for the purposes it was designed for—namely,
the computation of flow discontinuities. However, we have shown that it is not that suitable for
the computation of periodic waves where wave breaking only occurs very locally and momentarily
and where the wave field is mostly characterized by smooth solutions. The prevalence of HLLC
schemes in nearshore wave models can likely be explained by the fact that methods from long-
wave and river flooding models were ported over to the coastal engineering community where
the method’s applicability is simply more limited and where alternative schemes such as the one
in the Present model are of superior quality.

The low numerical diffusivity of the Present scheme opens the door to many applications of a
model in an operational framework. It is trivial that a low total number of cells reduces the
overall computational load, independent of parallelization efforts. Nevertheless, it is even more
important that the wave properties are maintained over the course of the computation so that
the results remain trustworthy.
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5.1 Introduction

Wave breaking is a highly complex 3D process and a common challenge for Boussinesq-type
models since the depth-integrated structure of the equations does not allow for the overturning
of the free surface. With only one cell per grid point, the closest one can get to overturning
is a vertical shock in the case of an ideally infinitely small grid cell. Discontinuous flow prob-
lems cater naturally to hyperbolic equations such as the Shallow Water Equations (SWE) (Toro
[2001]). Inconveniently, the SWE are based on hydrostatic pressure assumptions and therefore
have limited applicability for dispersive nearshore waves. A Boussinesq-type or non-hydrostatic
equation involves elliptic terms for the non-hydrostatic pressure correction and does not directly
allow for discontinuous profiles. As a result, the converged solution of the dispersive equation
along the breaking wave’s leading edge is a sharp spike on the verge of singularity. Since diffu-
sive processes are not per se part of the equations, this mathematically correct behavior is not
accurate from a physical perspective.

Multiple methods have been proposed to handle wave breaking in Boussinesq-type and non-
hydrostatic models and have proven to provide reasonable solutions for breaking waves and
subsequent second-order processes such as IG-wave generation (e.g., Yamazaki et al. [2011];
Roeber and Cheung [2012]; Shi et al. [2011]). In general, they utilize two opposing strategies:
(a) addressing the potentially arising singularity through diffusive terms and (b) eliminating the
singularity by locally and momentarily allowing for a hyperbolic solution through the deactivation
of the dispersion terms in the governing equations.

Option (b) has become a standard procedure in several operational models (e.g., Roeber [2010],
Roeber and Cheung [2012], Kazolea and Delis [2013]). However, the locally sudden change
between dispersive and non-dispersive solutions can pose problems and instabilities when the
grid size is small and a breaking wave is described over multiple grid cells. Stable solutions
therefore often rely on some degree of grid diffusion; hence, it is difficult to obtain converging
results with a refined mesh.

The eddy viscosity concept (a), on the other hand, is based on applying an additional diffusion
term to the cells across the wave-breaking zone. This is somewhat attractive since the governing
equations remain intact and no incompatibility arises from the local deactivation of dispersion
terms. The eddy viscosity term counter-balances the potentially arising instability along the
wavefront. Though the diffusive source term is relatively straightforward, the assessment of its
magnitude remains challenging. One standard approach involves expressing the eddy viscosity
term as a function of the time derivative of the free surface elevation (Kennedy et al. [2000]). A
more detailed wave-breaking closure stems from the Kolmogorov-Prandtl equation, which relates
the eddy viscosity to turbulent kinetic energy (TKE). This method requires the solution of an
additional transport equation to compute the temporal and spatial variation of the TKE quantity.

In this section, we detail the implementation of a TKE-based eddy viscosity approach to handle
wave breaking in the present Boussinesq-type model. The quality of grid convergence with this
method is then examined through laboratory data and compared to other standard approaches,
such as the hybrid method. It is further discussed under what condition the usage of this
approach is recommended and where standard established techniques are sufficient.
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5.2 Methodology

5.2.1 Identification of Wave Breaking Onset

In the past years, special workshops and seminars have addressed the definition and quantification
of the onset of wave breaking based on observations and numerical modeling (e.g., B’Waves
workshops). It has been notoriously challenging to formulate a unified approach, in particular
for depth-integrated models. Recent advances based on potential flow solutions have shown that
kinematic and dynamic criteria provide more consistent information on the definition of the
breaking onset than formerly used geometric criteria, which mostly use the free surface slope
as an indicator for wave breaking (e.g., Varing et al. [2021], Barthelemy et al. [2018]). Here we
present two common wave-breaking onset criteria:

Surface elevation to depth ratio

One of the fundamental criteria for defining the onset of wave breaking is the wave height to
water depth ratio. The value of 0.78 for A/h is a widely accepted threshold, though it was
originally based on the breaking of solitary waves (Russell [1845]). For periodic waves, this
criterion requires the computation of the total water height and thus the tracking of the crest
and trough positions, which can be a tedious effort in numerical models. A simplified version
of the wave height to water depth ratio is the relation of the free surface to water depth, which
essentially only takes the wave crest but not the trough into account. By calibrating the threshold
parameter, the hybrid approach, which involves switching back and forth between the hydrostatic
and non-hydrostatic equations, performed reasonably well under this criterion (Shi et al. [2012];
Tonelli and Petti [2009]). The numerical cell is flagged if

η

h
> Cb, with Cb = 0.78. (5.1)

Froude number

This criterion involves the Froude number values at the free surface, which can be determined
from the vertical variation of the flow velocity. The quadratic assumption of the velocity profile is
inherent to the governing equations and allows for calculation of the flow velocity at any position
in the water column. For Nwogu’s equations, the flow velocity is expressed as:

u|z = uα +

(
z2α
2

− z2

2

)
∇ (∇.uα) + (zα − z)∇

(
∇.(huα)

)
. (5.2)

Here, uα is the horizontal flow speed at the reference depth zα (around mid-depth), and h is the
local water depth.

In 1D setting, the equation obviously reduces to

u|z = uα +

(
z2α
2

− z2

2

)
(uα)xx + (zα − z) (huα)xx . (5.3)
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By replacing z = η into Eqs. (5.2) and (5.3), we obtain the horizontal flow velocity at the
free surface based on Nwogu’s equations. This approximation is reasonably valid as long as the
waves are not strongly nonlinear and dispersive. Other governing equations can lead to similar
approximations (see Appendix A).

The free surface Froude number can then be determined from

Fr|η =

√
(u|η)2 + (v|η)2√

gh
. (5.4)

We know that for Fr|η > 1 the flow becomes supercritical, i.e., the particle speed overtakes the
wave’s celerity, and wave breaking starts. Varing et al. [2021] and others have shown that for
Fr|η > 0.85, waves are inevitably approaching the stage of breaking; i.e. a point of no return is
passed and the wave will sooner or later break. However, it should be noted that celerity refers
to shallow-water celerity under hydrostatic conditions. In two spatial dimensions, the actual
celerity under moderately dispersive waves is difficult to find and usually requires a Lagrangian
post-processing method. While C =

√
gh is not exact, it is a very reasonable estimate.

5.2.2 Wave Breaking Closure

Deactivation of dispersion, hybrid

Depth-integrated models do not account for free surface overturning and thus cannot fully re-
produce wave-breaking processes. The use of conserved variables in the governing equations
along with shock-capturing schemes allows for the approximate description of breaking waves as
discontinuous flows. Even though the flow is flux-dominated, the dispersive governing equations
balance the high linearity with frequency dispersion. This leads to local anomalies that can result
in numerical instability depending on the order of the dispersion terms, the numerical scheme,
and most importantly, the grid size. The hybrid approach relies on the local and momentary de-
activation of the dispersion terms to allow the hyperbolic solver to describe the breaking wave as
a bore or hydraulic jump. The dispersion is therefore deactivated in all cells where the breaking
criteria hold (Section 5.2.1).

Eddy viscosity closure, TKE

At the wave scale, the main effect of wave breaking is a strong energy dissipation at the wave-
front. Zelt [1991] employed this property and proposed a wave-breaking closure by introducing
a dissipation term into the momentum equation:

Rb =



0

2
[
νtHux

]
x
+
[
νtH(uy + vx)

]
y

2
[
νtHvy

]
y
+
[
νtH(uy + vx)

]
x


. (5.5)

The computation of this source term requires the estimation of the eddy velocity coefficient νt,
which controls the strength of the dissipation. The magnitude of the dissipative term depends
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not only on the local variables (H, u, v) but also on the entire flow field, which is evolving over
time. It is therefore necessary to provide a physical basis for νt to better estimate the turbulent
effects. Kolmogorov [1941] and independently Prandtl et al. [1945] proposed an approximation
which relate the eddy viscosity νt to the turbulent kinetic energy k and the mixing length lt:

νt = Cν

√
kℓt. (5.6)

where, Cν is a constant coefficient which is set to 0.55 according to many authors (Zhang and
Wu [2011]; Kazolea and Ricchiuto [2018]; Pope [2000]). The mixing length lt is set to the local
water depth h. Pope [2000] proposed a transport equation for k to determine its spatial and
temporal variation. The eddy viscosity term (Eq. (5.6)) is then computed and applied to the
entire computational domain. In contrast to previous work, such as Kennedy et al. [2000], the
eddy viscosity can have non-zero values even when the wave-breaking criterion is not met locally.
It is possible that TKE remains in the system for some time or that it is advected outside the
surf zone. The term can be seen as referring to the whitewater region, which is intense and very
turbulent at the location of wave breaking but quickly settles down.

The governing equation for k is given by:

kt = −A − E +P+ D. (5.7)

where A, E, P, D denote advection, elimination/destruction, production, and diffusion of the
turbulent kinetic energy. These terms have been detailed in Nwogu [1996]; Kazolea and Ricchiuto
[2018] and involve mean flow quantities and several empirical coefficients.

The advection term A is defined as:
A = u.∇k. (5.8)

The TKE elimination/destruction terms is denoted as:

E = Cd
k3/2

ℓt
, (5.9)

where, following Nwogu [1996]; Zhang and Wu [2011]; Kazolea and Ricchiuto [2018], we set this
coefficient to: Cd = C3

v .

The TKE diffusion term is small and given by

D = ∇. (vt∇k) . (5.10)

The last term P denotes the production of turbulent kinetic energy. Since TKE production only
occurs in cells with wave breaking, the formulation is multiplied by a coefficient B which works
as a flag and takes on either 0 or 1. B is set to 1 when the breaking criterion holds. Similar to
Nwogu [1996], we express the production term as:

P = B
ℓ2t√
Cd

[
(uz|η)2 + (vz|η)2

]3/2
, (5.11)

where uz|η and vz|η are the vertical gradients of the horizontal velocities at the free surface.
These variables can be approximated using the irrotationality condition (wx = uz, wy = vz),
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which yields:
uz|η = −η

[
uxx + vxy

]
−
[
(hu)xx + (hv)xy

]
,

vz|η = −η
[
uxy + vyy

]
−
[
(hu)xy + (hv)yy

]
.

(5.12)

Once the wave breaking criterion is flagged, the vertical gradients of the horizontal velocities in
Eq. (5.11) are the primary contributors to the magnitude of P. Energetic breaking, such as that
seen in plunging breakers, increases the vertical gradient of horizontal velocities under the wave
crest, resulting in an increase in uz and vz.

Do-nothing approach, rely on numerical diffusion

It is important to highlight that, without any wave-breaking treatment, the solution of the
Boussinesq-type equations can approach a singularity. This is essentially dependent on the
grid resolution. It was correctly stated by Kazolea and Ricchiuto [2018] that most previously
published solutions in the context of wave breaking computed with dispersive depth-integrated
equations were subject to at least some degree of numerical diffusion. The stability of the Boussi-
nesq solution thus relies on the numerical discretization in clipping or diffusing the dispersion
terms locally. In the absence of the latter, the do-nothing approach can be risky, particularly
when dealing with fine grids and low-diffusion numerical schemes.

5.3 Numerical Tests

5.3.1 Laboratory Experiment

To understand the effects of the wave-breaking treatment on the composition of the wave field,
we perform several numerical tests using the lab data collected during the DynaRev physical
experiment that was carried out in the GWK flume in Hanover. A series of experimental tests
were conducted in a 309m long, 7m deep, and 5m wide flume equipped with a combined piston-
flap type wavemaker to generate different wave conditions. A more detailed description of the
laboratory experiments is provided in Blenkinsopp et al. [2019].

In this study, we focus on three experimental tests, each with different wave conditions and
topography profiles. All the generated waves follow the distribution of the JONSWAP spectrum
with varying significant wave height Hs and peak period Tp (see Table 5.1).

Table 5.1: Wave and topography inputs for each case configuration

Cases Hs [m] Tp [s] Slope Iribarren WL [m]

Case 1 0.6 12 1/15 0.74 4.9

Case 2 0.8 6 1/15 0.56 4.5

Case 3 1.2 8 1/15 0.41 4.9

Outside the surf zone, the free surface time variation was measured by four gauges located at
x = 50m, x = 160m, x = 170m, and x = 180m, respectively. The water elevation in the entire



100 Chapter 5. Wave Breaking in Boussinesq-type Models

surf and swash zones was measured at a high resolution using an array of three SICK LMS511
2D LiDAR scanners placed on the experimental roof. With a resolution of 10 cm, the scanners
provide measurements of the free surface elevation throughout a continuous section of the surf
zone, starting from the cross-shore position x = 215m up to the upper part of the beach at
x = 280m. For a more detailed comparison between the model results and measurements in the
surf zone, we extracted six evenly spaced virtual gauges from the LiDAR data (gauges 4–9). The
distance between two adjacent gauges is 5m (Figure 5.1).

Figure 5.1: Bathymetry layouts with wave gauge positions for the three cases

5.3.2 Model Settings

We set up the Present model so that the upstream boundary lines up with the first gauge (i.e.,
G0) in the physical experiment. The recorded free surface is then used as an input for the
offshore wave boundary condition, allowing the model to be forced with the exact incident wave
phases. The incident wave velocity at the offshore boundary is computed using the shallow water
approximation, which is based on Airy wave theory and relates the wave speed to the local water
depth:

u = η

√
g

h
. (5.13)

u denotes the depth-integrated horizontal velocity. A study of the time series signal shows that
the incident wave contains mostly low frequencies (kh < 0.25π), which justifies the long wave
assumption in this case. We run the three cases with a constant Manning friction coefficient of
n = 0.02 s/m−1/3 to account for the medium-grain sand roughness. We compute each test case
with different wave-breaking methods (i.e., TKE closure, hybrid approach, and no wave-breaking
treatment) and grid sizes. The free surface time series is then recorded at each gauge for 20min
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with 25Hz frequency sampling. A one-minute spin-up time is considered to allow for the wave
field to be fully saturated.

In the eddy viscosity approach, the TKE production term is triggered depending on the Froude
number criterion (Fr|η > 1). A different criterion was chosen for the hybrid approach, where the
local switching on and off of the dispersion terms is based on the water elevation to depth ratio
(a/h > 0.78). Under this criterion, the hybrid method appears to perform better and produce
more stable solutions (see Shi et al. [2011]; Tonelli and Petti [2009]).

5.3.3 Numerical Results

The time series is recorded at nine gauges for the three cases. Figure 5.2 shows a comparison
between the computed significant wave height with different wave-breaking treatments and grid
sizes. With a coarse grid (i.e., ∆x = 100 cm), the type of breaker seems to have little effect
on the results and the overall wave energy. This shows that at a certain grid resolution, the
numerical solution is able to mimic the turbulent dissipation effects by clipping the free surface
at the over-shoaled wavefront. Even though the solution without a wave-breaking treatment
matches the lab data quite well at this resolution, the accuracy of the result depends on the
grid size and diverges quickly as the mesh gets finer, especially for more energetic waves (e.g.,
Case 3). When no breaking treatment is used, the Boussinesq solution tends to overestimate
the wave height and can become unstable (e.g., Case 3, ∆x = 10 cm). The model solution with
local deactivation of dispersion exhibits similar tendencies, where the energy in the surf zone is
over-predicted and computational instabilities arise when the mesh is refined. The instabilities
are triggered by the mismatch between the hydrostatic and dispersive solutions, which becomes
more pronounced with fine grid resolution. It is well understood that the added dissipation from
the eddy viscosity terms counterbalances the dispersion variables, which tend to overshoot at the
wavefront. The use of TKE as a parameter to estimate the magnitude of turbulent dissipation
provides a more physical approach to dealing with wave-breaking effects in Boussinesq models.
The convergence property of this approach is highlighted by the quality of the numerical results
(blue marker), which illustrates its applicability to different wave conditions and grid sizes.

To gain more insight into the effects of the wave-breaking closure on the wave composition, we
plot the free surface time series and spectrum at gauge 7 during case 2 computation (Figure 5.3).
Other gauges and test cases show similar trends. The computed results with the TKE-based eddy
viscosity treatment compare well to the laboratory data in terms of wave height and phase for
various grid sizes. In the absence of a wave-breaking closure, the model overestimates the water
elevation at the wavefront, especially with fine grids. This overshoot is offset by the additional
dissipation introduced by the eddy viscosity term. Regarding the spectral composition, the eddy
viscosity closure retains consistent results across various grid resolutions. This is not true for
the other methods, where the solution diverges with mesh refinement. Along with the instability
problems, the solution with the hybrid and no-breaking closures leads to an energy shift in the
spectrum, notably the generation of false IG signals.

It should also be noted that the TKE dissipation affects smaller wave components that are not
directly triggering the TKE production term. The presence of TKE in the system mimics the
turbulent white water, which has dissipative properties without actually corresponding to an
actively breaking wavefront. This can be seen in Figure 5.3 for frequencies higher than 0.2Hz.
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Figure 5.2: Comparison between the observed (o) and computed (x) significant wave heights at nine wave
gauges for different wave and topography conditions. The blue, green, and red markers denote the solutions

with the TKE closure, the hybrid approach, and no wave-breaking treatment, respectively.
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Figure 5.3: Comparisons between the observed (black lines) and computed (colored lines) spectra and time
series for different grid sizes and wave-breaking treatments at Gauge 7 for Case 2. The blue, green, and red

lines illustrate the solutions with the TKE closure, the hybrid approach, and no wave-breaking treatment,
respectively.

5.4 Conclusions

The performance of the TKE formulation for the wave-breaking closure has been examined with
various numerical tests, including different wave and topographic conditions. The approach itself
is a more complete closure since it mimics the physical dissipation that arises from the turbulence
and mixing of the breaking wavefront. The results show good grid convergence, which supports
its applicability to various problems with various grid resolutions.
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Since the magnitude of the eddy viscosity is determined by the underlying TKE field, the dissi-
pation effects are active in every cell where TKE is present. Even though the production of the
TKE only occurs when the breaking criterion is met, the remaining terms in Eq. (5.7) distribute
the quantity of TKE across an area of the surf zone. This particular feature is different from the
conventional wave-breaking methods, where the treatments (deactivation of dispersion or eddy
viscosity (Kennedy et al. [2000])) are only applied to the local wavefront but not beyond. This
is more in line with the effects of the turbulent white water, which dissipates the wave energy
over a large area of the surf zone and not just locally.

As demonstrated in the previous section (Chapter 4) the current model is built around a numer-
ical scheme of low numerical diffusion. This is advantageous when investigating wave-breaking
methods due to minimal numerical dissipation effects. Although the present analyses might vary
with different numerical schemes, the observed trends should be representative of other models
built around similar governing equations. A more diffusive numerical scheme could eventually
provide more stable solutions with a refined mesh size, but would eventually also face stability
issues and benefit from a TKE closure approach.
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6.1 Introduction

In this section, we describe the numerical solution of the 2D Boussinesq-type equation from
Nwogu [1993]. The implementation is based on an approach where the state variables are stag-
gered in space and time. The model combines the efficiency of the staggered FD approximation
with the conservation properties of the scheme that ensure accurate and stable near-shore wave
computations (e.g., wave breaking and run-up). Nwogu’s equations are solved in their conserva-
tive form, and the hydrostatic part of the equations is computed with the SW solver described in
Chapter 2. The implementation of essential model features such as wave generation, wave break-
ing, and wave absorption are also detailed. Several benchmark tests are then used to validate
the new dispersive model.

6.2 Numerical Solution

6.2.1 Governing Equations

The long-established dispersive Boussinesq-type equations by Nwogu [1993] contain a continuity
equation and two momentum equations. They express the motion of the free surface and its two
orthogonal velocity components in the 2D horizontal plane while retaining a pseudo-3D structure
through the incorporation of additional terms that account for non-hydrostatic pressure effects.
The equations are derived under the assumptions of small amplitude and long period waves and
are expressed as:

ηt +∇
[
(h+ η)U

]
+∇ ·


(
z2α
2

− h2

6

)
h∇ (∇ · U)+

(
zα +

h

2

)
h∇
[
∇ · (hU)

]}
= 0, (6.1)

Ut + (U.∇)U + g∇η +

{
z2α
2
∇(∇ · U) + zα∇

[
∇ · (hU)

]}
t

= 0. (6.2)

h denotes the still water depth, which is assumed to be stationary (i.e., ht = 0). η is the
free-surface elevation, and U is the horizontal flow velocity at zα. The reference depth zα is
the vertical position within the still water column, h, at which the velocities are evaluated (see
Figure 6.1). It is just below mid-depth and varies linearly with the bathymetry.
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Figure 6.1: Definition sketch: State variables of Nwogu’s equations

Conserved variable formulation:

Most Boussinesq-type and non-hydrostatic equations are derived from the Euler equations of
motion and consequently lead to a formulation of the momentum equations in non-conserved
form. The equations derived by Nwogu [1993] fall into this category. With directional derivatives,
the equations are written as:

Ht + [Hu]x + [Hv]y + ψc = 0, (6.3)

ut + uux + vuy + gηx + [ψu]t = 0, (6.4)

vt + uvx + vvy + gηy + [ψv]t = 0, (6.5)

where H = η + h is the total water depth. The dispersion terms are expressed as:

ψc =

(z2α
2

− h2

6

)
h
(
uxx + vxy

)
+

(
zα +

h

2

)
h
(
(hu)xx + (hv)xy

)
x

+

(z2α
2

− h2

6

)
h
(
uxy + vyy

)
+

(
zα +

h

2

)
h
(
(hu)xy + (hv)yy

)
y

,

(6.6)

ψu =
z2α
2

[
uxx + vxy

]
+ zα

[
(hu)xx + (hv)xy

]
, (6.7)

ψv =
z2α
2

[
uxy + vyy

]
+ zα

[
(hu)xy + (hv)yy

]
. (6.8)

The conservative form of the momentum equations can be derived by multiplying the Eqs. (6.4)
and (6.5) by H:

[
Hu
]
t
+
[
Hu2

]
x
+
[
Huv

]
y
− u

(
Ht +

[
Hu
]
x
+
[
Hv
]
y

)
+ gHηx +H

[
ϕu

]
t
= 0, (6.9)
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[
Hv
]
t
+
[
Huv

]
x
+
[
Hv2

]
y
− v

(
Ht +

[
Hu
]
x
+
[
Hv
]
y

)
+ gHηy +H

[
ψv

]
t
= 0. (6.10)

By using the continuity equation (i.e., Eq. (6.1)), we simplify the momentum equations into:[
Hu
]
t
+
[
Hu2

]
x
+
[
Huv

]
y
+ uϕc + gHηx +H

[
ψu

]
t
= 0,[

Hv
]
t
+
[
Huv

]
x
+
[
Hv2

]
y
+ vψc + gHηy +H

[
ψv

]
t
= 0.

(6.11)

It should be noted that the hydrostatic SWE in conserved form is a complete subset of the
Boussinesq-type equation. Since the dispersion terms in the momentum equations involve tem-
poral derivatives, the conserved variables in this case will vary from the standard SW conserved
variables: H, Hu and Hv.

We divide the momentum dispersion variables into cross- and normal-derivative terms:

ψu = ψn
u + ψc

u, where

ψn
u = z2α

2 uxx + zα (hu)xx

ψc
u = z2α

2 vxy + zα (hv)xy
, (6.12)

ψv = ψn
v + ψc

v, where

ψn
v = z2α

2 vyy + zα (hv)yy

ψc
v = z2α

2 uxy + zα (hu)xy
. (6.13)

We rewrite the dispersion terms using Eqs. (6.12)-(6.13) and the product rule:

H
[
ψu

]
t
= H

[
ψn
u

]
t
+H

[
ψc
u

]
t
=
[
Hψn

u

]
t
−Htψ

n
u +H

[
ψc
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]
t
, (6.14)

H
[
ψv

]
t
= H

[
ψn
v

]
t
+H

[
ψc
v

]
t
=
[
Hψn

v

]
t
−Htψ

n
v +H

[
ψc
v

]
t
. (6.15)

The dispersion terms
[
Hψn

u

]
t

and
[
Hψn

v

]
t

can be grouped with the local acceleration into evo-
lution variables P and Q as:

P = Hu+Hψn
u , Q = Hv +Hψn

v . (6.16)

The 2D Nwogu’s equations can be cast in a conservative vector form as:

Ut + F (U)x +G (U)y + S (U) = 0, (6.17)

where

U =


H

P

Q

 , F (U) =


Hu

Hu2

Huv

 , G (U) =


Hv

Huv

Hv2

 , (6.18)
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S (U) =


ψc

gHηx + uψc −Htψ
n
u +H

[
ψc
u

]
t

gHηy + vψc −Htψ
n
v +H

[
ψc
v

]
t

 .

6.2.2 Numerical Scheme

Eq. (6.18) forms a hyperbolic equation with the dispersion serving as a source term. In accor-
dance with the previous chapters, we solve the conserved Nwogu’s equation using a staggered
grid. The staggering of the conserved variables is shown in Figure 6.2. Each equation is solved
on a different control volume shifted from the others.

Figure 6.2: Definition sketch: Nwogu’s equations state variables

The discretization of the hydrostatic portion of the equations is described in detail in Chapter 2.
The SW solver uses second-order time integration along with conservative FD approximations to
achieve robust and shock-capturing solutions. The dispersion terms are computed with central
difference approximations.

The discretization and the solution of the hyperbolic operator are described in detail in Chapter
2. Here we focus on the numerical implementation of the dispersion terms in the model.

In the continuity equation, the source term can be approximated as follows:
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[
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]
ij
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)
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)
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)
+
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h
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(
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)
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2

.

(6.19)

The second-order derivatives in Eq. (6.19) are discretized using second-order FD approximations:

[
uxx

]
i+ 1

2
,j
=
ui+ 3

2
,j − 2ui+ 1

2
,j + ui− 1

2
,j

∆x2
,

[
vxy

]
i+ 1

2
,j
=

(
vi+1,j+ 1

2
− vi+1,j− 1

2

)
−
(
vi,j+ 1

2
− vi,j− 1

2

)
∆x×∆y

,

[
vyy

]
i,j+ 1

2

=
vi,j+ 3

2
− 2vi,j+ 1

2
+ vi,j− 1

2

∆y2
,

[
uxy

]
i,j+ 1

2

=

(
ui+ 1

2
,j+1 − ui− 1

2
,j+1

)
−
(
ui+ 1

2
,j − ui− 1

2
,j

)
∆x×∆y

.

To compute the hu and hv derivatives, the water depth h is approximated at the cell interface
with average operators:

hi+ 1
2
,j =

hi,j + hi+1,j

2
, hi,j+ 1

2
=
hi,j + hi,j+1

2
.

Similarly, the dispersion terms in the momentum equations are computed at the cell interface
with:

[
ψu

]
i+ 1

2
,j
=
z2
α(i+ 1

2
,j)

2

(
[uxx]i+ 1

2
,j +

[
vxy
]
i+ 1

2
,j

)
+ zα(i+ 1

2
,j)

([
(hu)xx

]
i+ 1

2
,j
+
[
(hv)xy

]
i+ 1

2
,j

)
,

[
ψv

]
i,j+ 1

2

=
z2
α(i,j+ 1

2)

2

([
uxy
]
i,j+ 1

2
+
[
vyy
]
i,j+ 1

2

)
+ zα(i,j+ 1

2)

([
(hu)xy

]
i,j+ 1

2
+
[
(hv)yy

]
i,j+ 1

2

)
.

It should be noted that the source terms for each momentum equation must be estimated at
the corresponding cell interface. All source terms in the x-momentum equation are computed at
xi+ 1

2
,j , while the source terms in the y-momentum equation are computed at xi,j+ 1

2
.

Since the continuity equation is solved first, the temporal derivative Ht in the momentum equa-
tions can be computed explicitly using the previous and updated values of H:
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[
Ht

]n+ 1
2

i+ 1
2
,j
=

[
Hi+ 1

2
,j

]n+1
−
[
Hi+ 1

2
,j

]n
∆t

, Hi+ 1
2
,j =

Hi,j +Hi+1,j

2
. (6.20)

[
Ht

]n+ 1
2

i,j+ 1
2

=

[
Hi,j+ 1

2

]n+1
−
[
Hi,j+ 1

2

]n
∆t

, Hi,j+ 1
2
=
Hi,j +Hi,j+1

2
. (6.21)

Solution of System of Equations

The explicit time-stepping scheme integrates the hyperbolic equations to compute the evolution
variables H, P , and Q. Since the source terms depend on the primitive variables η, u, and
v, these variables have to be retrieved at each time step. The quantities P and Q are evolved
in time and depend on variations of u and v, respectively. The discretization of the evolution
variables can be achieved with a second-order accurate central differential scheme:

[
P
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2
,j
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2
,j
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2
uxx + zα (hu)xx
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2
,j
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2
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2
,j)
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2
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2
,j
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.

[
Q
]
i,j+ 1

2

= Hi,j+ 1
2

[
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z2α
2
vyy + zα (hv)yy

]
i,j+ 1

2

,

[
Q
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2
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2

(
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2
+
z2
α(i,j+ 1
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2

[
vi,j+ 3

2
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2
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2
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+ zα(i,j+ 1
2)

[
(hv)i,j+ 3

2
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2
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2

∆y2

])
.

The computation of the velocity components u and v requires the solution of implicit equations.
Since the cross-derivative terms are approximated as source terms in the momentum equations
(i.e., ψc

u and ψc
v ), the x- and y- systems are decoupled and u and v are computed independently

with tri-diagonal solvers:
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P

, (6.22)
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where:
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Ry
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= zα(i,j+ 1
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[
zα(i,j+ 1
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2∆y2
+
hi,j+ 3

2

∆y2

]
. (6.29)

The dispersion processes are modulated by the reference depth parameters z2α
∆x2 and z2α

∆y2
as well

as the bottom curvature computed from the h2

∆x2 and h2

∆y2
terms.

In the case of a dry cell, the source values in vectors P and Q are set to zero. A cell is considered
dry if the total water height H in the cell is less or equal than the minimum water depth Hmin:

Pi+ 1
2
,j =

Pi+ 1
2
,j/Hi+ 1

2
,j if Hi+ 1

2
,j > Hmin

0 if Hi+ 1
2
,j ⩽ Hmin

, Qi,j+ 1
2
=

Qi,j+ 1
2
/Hi,j+ 1

2
if Hi,j+ 1

2
> Hmin

0 if Hi,j+ 1
2
⩽ Hmin

.

(6.30)

The systems of equations are solved both in the predictor and corrector steps. The tri-diagonal
matrices A and B are diagonally dominant and can be solved with a direct tri-diagonal solver
such as the Thomas Algorithm. The algorithm is described in two stages. The first stage is a
forward sweep of the matrix to eliminate the lower diagonal L. The upper diagonal, R is then
updated to a new value R′ :

R
′
k =


Rk

Ck
, k = 1,

Rk

Ck − LkR
′
k−1

, k = 2, 3, . . . , N − 1.

(6.31)

The left-hand side is then recomputed with a forward sweep:

P
′
k =


Pk

Ck
, k = 1,

Pk − LkP
′
k−1

Ck − LkR
′
k−1

, k = 2, 3, . . . , N − 1.

(6.32)

Finally, using a back substitution, we compute the solution for U:

U
′
k =

P
′
k, k = N,

P
′
k −R

′
k U

′
k+1, k = N − 1, N − 2, . . . , 1.

(6.33)

Cross-terms

Similar to the approach adopted in Shi et al. [2012] and Roeber and Cheung [2012], and in
order to simplify the system of equations that arise from the time-derivative dispersion terms,
all cross-derivatives are moved to the right-hand side of the governing equation and are treated
as source terms Eq. (6.18). The cross-terms ψc

u and ψc
v are saved at each time step, and the

time-derivation is then computed with a backward difference approximation:
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∆tn
. (6.34)

6.2.3 Wave Generation

Wave generation is an essential component of operational nearshore wave models. In a compu-
tational domain, waves can be generated from the boundaries by applying a boundary condition
that introduces the wave profile into the numerical solution. Using linear wave theory, Nwogu
[1993] derived the following relation between the free surface of the incident wave at the boundary
ηI and the horizontal velocity uα,I :

uα,I =
ω

kh
[
1− (α+ 1

3)(kh)
2
]ηI , (6.35)

where ω is the angular frequency and k is the wave number of the incident wave.

In practice, wave generation from the boundaries still poses some serious stability problems,
especially for long simulations (Wei and Kirby [1995]). In addition, this approach prevents
reflected waves from being absorbed at the input boundary, which can affect the wave generation
process. To overcome these problems, Wei et al. [1999] proposed a method to generate waves
inside the computational domain by introducing a source term into the continuity equation. This
approach is analogous to adding and subtracting mass. To ensure a smooth transition of the
wave input, the source term is applied over a range of grid points in the form of a Gaussian
curve.

The wavemaker source term consists of a product of two functions g (x) and s (x), where g(x) is
a Gaussian shape function and s(t) is a time-dependent input signal:

ψwm (x, y, t) = g (x) s (y, t) . (6.36)

The Gaussian shape function is defined by:

g (x) = exp
[
−β(x− xs)

2
]
. (6.37)

xs is the wavemaker position and β is a parameter that determines the width of the source
function. As β increases, the width of the wavemaker becomes narrower. To prevent instabilities
that might arise from a too narrow source function, the optimized value of β is expressed as:

β ≈ 80

δ2L2
p

, (6.38)

where δ is set to 0.5 and Lp is the peak wavelength.

Multiple waves of different amplitudes, frequencies, and directions are simultaneously produced
through the superposition of the individual signals:
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s (y, t) =

Mω∑
i=1

Mθ∑
j=1

Dij sin
[
y
(
ki sinθj

)
− ωi t+ ϕij

]
, (6.39)

where ϕij is a random phase and Mω and Mθ denote the numbers of frequencies and directions
the wave spectrum is composed of. Dij is the magnitude of the source function. Wei et al. [1999]
derived the following expression for Dij :

Di,j =
2aij cos(θj)(ω2

i − (α+ 1
3)gk

4
i h

3)

ωikiBij [1− α(kih)2]
, (6.40)

where aij is the desired wave amplitude and Bij is an integral given by:

Bij =

∫ ∞

−∞
e(−βx2)e (−ilijx) dx =

√
π

β
exp

(
−l2ij
4β

)
, (6.41)

lij = kicos(θj). (6.42)

The generated waves propagate away from the center of the source in both directions, symmet-
rically. The source is usually placed close to the offshore boundary, with a sponge layer next to
it. The sponge layer absorbs the offshore propagating components. It’s important to note that
the source function is not a direct alteration of the free surface, and reflected waves can travel
across the wavemaker. This helps to mimic open sea conditions where reflections from the shore
can freely propagate offshore until they are absorbed by the sponge layer.

Frequency binning

An irregular sea state can be accounted for in Boussinesq models through the generation of a full
wave spectrum divided into multiple individual waves with different frequencies and directions.
The number of waves in the frequency distribution determines the behavior and properties of
the resulting time series. It should be kept in mind that it is ultimately the frequency binning
that dictates the time series and, most importantly, the recycling of it. With discrete frequency
binning, the width of the smallest bin ∆f is related to the recycling of the resulting time series.
This can be best visualized with a bichromatic wave. The wave with the lower frequency will
overtake the one with the higher frequency after 1/(fmax − fmin). In the case of a wave spectrum,
the recycling process occurs in a similar fashion. For a contestant binning ∆f the recycling occurs
after:

Trecycling =
1

∆f
. (6.43)

The following test illustrates the consequences that inadequate frequency binning can have on the
wave field generated by the wavemaker. In a 1D long flat channel, we generate and propagate a
Pierson-Moskowitz spectrum with a peak period Tp = 15 s and a significant wave heightHs = 1m

(see Appendix E). By taking a constant frequency binning ∆f = 0.005Hz, we decompose the
spectrum into 19 distinct monochromatic waves. Figure 6.3 shows the resulting time series after
1 hour of computation.
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Figure 6.3: The creation of an artificial wave group as a result of coarse frequency binning.

Figure 6.3 illustrates the creation of an artificial wave grouping introduced to the solution through
the recycling of the time series from the input spectrum. The waveform is repeated every
T = 200 s = 1/∆f , which is a typical period of infra-gravity waves, though, it is of a purely
artificial nature in this example.

For accurate wave computation, all waves composing the spectrum should ideally interact with
each other once over the course of the run. To compute all wave interactions while avoiding a
time series recycling, the frequency binning is set to:

∆f =
1

Tcomputation time
. (6.44)

Frequency limits

• Low-frequency limit: Since the longest wave in a swell spectrum is no longer than 30 s,
it is generally representative to take fmin = 1/30. We can also define fmin based on the
peak frequency, such as fmin = 0.5fp

• High-frequency limit: This limit depends on the dispersive properties of the equations.
Since the dispersion error is more significant for high frequencies (see Chapter 3), it makes
sense to remove spectrum frequencies that are not compatible with the equations. In the
case of Nwogu, the governing equations can handle dispersive waves up to kh = π.

After removing the high and low frequencies, it is necessary to correct the spectrum in order to
preserve the correct Hs. This can be done by multiplying the energy spectrum density by the
following coefficient:

Scor (f) = Ccor × S (f) , where Ccor =
Hs2

8
∫ fmax

fmin
S (f) df

. (6.45)
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6.2.4 Absorbing Boundaries

By generating waves inside the computational domain with the internal wave-maker, we are
often required to absorb waves when they reach the offshore boundaries. This can be done
by implementing the sponge layer technique to absorb short dispersive waves coupled with a
Sommerfeld radiation condition for long hydrostatic waves.

Sponge layer

The method for absorbing shortwaves is based on the sponge layer technique introduced by Larsen
and Dancy [1983]. In this approach, the state variables ϕ (i.e, η, u, v) are directly attenuated at
each time step to reach a reference solution :

ϕk = ϕref +
(
ϕk − ϕref

)
/Cs, (6.46)

where Cs is the damping coefficient function defined by:

Cs = αγk−1
s

s , k = 1, 2, 3, ..., n. (6.47)

αs and γs are two free parameters. For complete absorption of the short waves, Chen et al. [1999]
suggested taking αs = 2 and γs = 0.88− 0.92. k represents the grid cell index, and n is the total
number of grid cells inside the sponge layer. Chen et al. [1999] recommended using n = 50−100.
Typically, the width of the sponge layer is one to two times the peak wavelength.

In addition to the L-D type sponge layer, a friction type sponge layer is applied for an efficient
and noise-free absorption as suggested by Shi et al. [2011]. The source term for the friction-type
sponge can be described as :

Fspl = −Csponge

√
u2 + v2

u
v

h. (6.48)

In Eq. (6.48), the water depth h is introduced to make the source term depth-independent in the
flux-type momentum equations. At the boundary, the coefficient Csponge is smoothly ramped in
space. Csponge can be expressed as follows for a sponge layer on the left end of the domain:

Csponge = Cmax

(
1− tanh

10 (k − 1)

Iwidth − 1

)
. (6.49)

k and Iwidth represent the grid number and the sponge layer width in points, respectively. In this
case, the friction-type sponge is applied to a width of two to three times the peak wavelength.
Cmax is the maximum value of Csponge which is taken equal to 1.

Radiation condition

The Sommerfeld radiation condition is then utilized to allow long waves or currents to leave the
computational domain. The condition can be expressed by:
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ηt + cηx = 0, (6.50)

where C is the outgoing wave celerity. For long waves C =
√
gH. The combination of Eq. (6.50)

with the mass equation on a flat bottom yields the following boundary condition:

η = u

√
H

g
. (6.51)

6.2.5 Wave Breaking

Wave-breaking effects, which naturally occur in the surf zone, can be computed with a TKE-based
eddy viscosity closure. This approach has proven to be very efficient and has good convergence
properties compared to the hybrid approach, where the dispersion terms are locally and momen-
tarily deactivated to allow for a cell-wise hyperbolic solution (Chapter 5). In this section, we
detail the implementation of the eddy viscosity approach on a 2D staggered grid. A time- and
space-dependent source term is introduced to the momentum equations:
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where νt represents the eddy viscosity that depends on the turbulent kinetic energy k (see Chapter
5). The eddy viscosity term is computed at the cell center νt(i,j) and the momentum source terms
are approximated at the cell-interface :
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Here, νt(i+ 1
2
,j+ 1

2
) and Hi+ 1

2
,j+ 1

2
are obtained from the surrounding points by simple linear inter-

polation. It should be noted that the use of a staggered grid results in a more compact FD stencil
and improved accuracy, as shown in Fornberg [1998]. The leading error ratio for a second-order
central difference is four times lower in a staggered grid than in a collocated grid.

6.3 Implementation Strategies for Computational Efficiency

The model is built around a lean numerical scheme thanks to the efficient hyperbolic solver,
which does not require the numerically expensive Riemann approximations. Yuan et al. [2020]
showed that for their FUNWAVE model, the computation of the flux with the Riemann solver
takes around 42.9% of the total model computation time on the CPU. Therefore, a simplified
flux computation will substantially improve the efficiency of a Boussinesq model. Moreover, the
present model does not require high-order reconstruction to deal with the inherent numerical
dissipation related to TVD Riemann solutions; and a simple second-order flux reconstruction
combined with two-step time integration is sufficient for our applications.

The model is written in C/C++ and the CPU-based parallelization was achieved through the
use of OpenMP directives. The model’s overall flowchart can be described by the following
pseudo-code:
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Algorithm 1:

1. Set initial conditions. Load wave and topography input from the steering file.

2. Allocate memory. Define and initialize all class objects.

3. Pre-processing. Compute wavemaker and dispersion source variables.

4. Enter time loop:

for time step = 0, 1, 2, 3, ... do
- Compute ∆t

- Compute wave input (either at boundary or internally –> spectral wavemaker)

for Order = 1 : 2 do
- Compute spatial derivatives for dispersion terms
- Compute SWE fluxes for the continuity equation
- Solve the continuity equation
- Compute SWE fluxes for the momentum equations
- Map out cells where the wave-breaking criterion holds
- Solve the turbulent kinetic equation
- Compute the eddy viscosity source term
- Compute the friction source term
- Solve the momentum equations
- Solve the tri-diagonal systems to extract u and v from P and Q
- Apply boundary conditions

end

- Save output files
- Update variables
- Proceed to next time step

end

5. Free memory and exit program.

In terms of computation time, the most expensive portion of the code involves the opera-
tions within the time loop. Therefore, for efficiency reasons, we avoid all heap memory allo-
cation/deallocation inside this loop. All necessary memory allocations are performed at the
start of the run, outside the time loop, and then the same memory is reused for the remaining
computation. We also avoid copying large arrays; the update of the flow variables at the end of
each time step is achieved by swapping their pointers instead of copying the content of the new
variables into the old ones.
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6.3.1 Floating-point Division

The numerical discretization of the equations involves multiple divisions by the grid size ∆x

and ∆y as shown in Chapter 6.2.2. While most modern CPUs can perform floating-point mul-
tiplication in 1–3 clock cycles, the division requires inherent iterative subtractions that cannot
be performed concurrently and thus take longer (15–25 clock cycles) (Fog et al. [2011]). This
added latency is not so critical when it comes to small computations. However, in our case, and
given how often these simple operations are repeated, this can be substantial. A straightforward
workaround for this issue is to precompute 1/∆x and 1/∆y and then multiply all the discretiza-
tion terms by these values. This eliminates many redundant divisions inside the model. We have
performed some simple numerical tests where we compared the model computation time before
and after reducing the number of division operations. The tests show that the particular code
runs around 13% faster by using this very simple trick.

6.3.2 Tri-diagonal Solver

Assuming a constant still water depth or bathymetry (ht = 0), the coefficients of the tri-diagonal
matrices A and B do not vary over time and therefore can be precomputed in advance outside
the time loop. Moreover, the initial forward sweep (Eq. (6.31)) can also be precomputed reducing
the TDMA computations by one-third.

6.3.3 Wavemaker

The internal wave generation requires the computation of the following source term for each grid
point along the trajectory of the wavemaker in the y-direction:

s (y, t) =

Mω∑
i=1

Mθ∑
j=1

Dij sin
[
y
(
ki sinθj

)
− ωi t+ ϕij

]
. (6.53)

Mω and Mθ are the numbers of frequencies and directions in the input spectrum. If we consider
My the number of grid points in the y-direction, the computation of this source term has a
O
(
Mω ×Mθ ×My

)
time complexity. For a spectrum with fine frequency and directional binning

(i.e., thousands of waves), the computation of this single term can be a significant bottleneck,
especially since it is time-dependent and thus has to be computed inside the time loop at each
time step.

Using the angle summation trigonometric identity, we can rewrite the formula in Eq. (6.53) as:

s (y, t) =
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[
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]
, (6.54)

where:
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]
, Bi(y) =
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Dij sin
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]
. (6.55)

Ai(y) and Bi(y) can be precomputed in the pre-processing step, and thus the time complexity
for the wavemaker source term goes from O

(
Mω ×Mθ ×My

)
to O

(
Mω ×My

)
.
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6.4 Numerical Tests

This work introduces a new Boussinseq wave model with the potential of being used in an
operational system for coastal hazard assessment and prediction. The model is expected to
be fast while also being reliable in modeling critical nearshore wave processes such as wave
refraction-diffraction, wave breaking, wave run-up, and secondary processes such as infra-gravity
waves and re-circulation. A series of benchmark tests is used to assess the accuracy of the model
in both 1D and 2D settings. It is worth noting that the hydrostatic portion of the model has
already been validated in Chapter 2. In this section, we focus more on the dispersive processes
and wave transformations in both intermediate and shallow water.

6.4.1 Gaussian Drop Test

The Gaussian drop is a very simple test to verify the implementation of the numerical model.
Since we are using a regular Cartesian grid, the numerical solution is expected to be symmetric.
This means that for the solution of the 2D governing equations, all operations performed in
the x-direction must be identical to their y-directional counterparts. To verify this property, we
compute the free-surface evolution of a Gaussian drop over a 10m×10m domain with 5 cm×5 cm

cell size and reflective boundaries. In 1m water depth, the initial free surface is described by:

η0 (x, y) = a0 exp

[
−
(
x2 + y2

)]
, a0 = 0.3. (6.56)

The Gaussian drop, initially at rest, collapses as gravity restores the water form. As a result,
oscillations spread equally in all directions from the center of the basin (see Figure 6.4). The
oscillations are due to the dispersive effects of the equations. In a hydrostatic model, a bore-type
wave is generated and propagated radially instead (Delis and Katsaounis [2005]).

To assess the symmetry of the model, we compare the free-surface evolution along the two
diagonal transects of the domain. We choose the diagonals so we can verify both the normal and
cross terms implementation. The results are shown in Figure 6.5. The transects are identical to
machine precision, which proves the symmetry of the implementation. This verification is quite
valuable for spotting coding errors, which can go unnoticed even after several benchmark tests.
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Figure 6.4: Gaussian drop test: Free-surface evolution at different time intervals.
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Figure 6.5: Gaussian drop test: Comparison of free-surface evolution along two diagonal transects: Transect
y = x (red line) and Transect y = −x (blue line) to verify the symmetry of the model implementation.

6.4.2 Evolution of an Undular Bore

Undular bores, also termed dispersive shock waves, are a generic type of wave generated by an
initial discontinuity in the free surface. This phenomenon has been explored by many researchers
and serves as a standard illustration of the competing effects of dispersion and nonlinearity.
In order to validate the non-hydrostatic properties of our Boussinesq model, we compare the
numerical solution to the experimental measurements given in Barranco and Liu [2021]. The
experiment is conducted in a 36m wave flume with a dam-break gate, creating a reservoir with
a water height of h1 = 0.157m. On the other side of the gate, the still-water level is fixed at
h0 = 0.1m. When the gate is lifted up, an undulating bore front travels over a 11.1m long flat
bed and then over a 1/10 slope. In this test, we focus on the constant-depth propagation, and we
compare the numerical results to the time series data obtained from the two wave gauges, CG3
and CG4, which are located 8.85m from the gate and at the beach toe, respectively. The initial
setup for the numerical model is similar to the laboratory configuration, where we consider an
initial discontinuity in the free surface.

The time series at the two gauges is shown in Figure 6.6. The time series is lined up with the
leading wave crest measured at CG3. The same time shift is used to plot the time series at
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the gauge CG4. The bore velocity between CG3 and CG4 is almost a perfect match with the
traveling bore front in the laboratory, proving the model’s accuracy at capturing the correct
speed of the undular bore. In addition, the computed bore height and period compare well with
the laboratory data, especially for the leading undulations. The grid size has no effect on the
frequency of the bore. However, it has some effect on the wave height, which increases for finer
grids.

Since the resulting undular bore is quite nonlinear (a/h = 0.5), this test showcases the applica-
bility of the weakly nonlinear model to cases where nonlinearity is important.

Figure 6.6: Evolution of an Undular Bore: Free surface elevation at gauges. Colored lines denote the
numerical results with different grid sizes. The dashed line represents the laboratory data.

6.4.3 Solitary Wave Runup on a Plane Beach

Solitary wave runup on a plane slope is one of the most widely investigated problems in long-
wave modeling. In particular, Hall et al. [1953] and Synolakis [1987] have provided important
data for the validation of wave-breaking and runup models. Figure 6.7 shows a schematic of
the experiment with A denoting the initial solitary wave height, R the runup, and β the beach
slope. We first focus on case C from Synolakis [1987] with A/h = 0.3 and β = 19.85, which
involves wave breaking on the beach slope. With this standard test, we assess the model’s
ability to describe shoreline motions and the wave shape before and after breaking. In a 25m

long computational domain with a ∆x = 0.025m grid size, we compute the benchmark test.
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A Courant number of Cr = 0.5 is used to ensure the stability of the time integration, and a
Manning coefficient of n = 0.01 s/m1/3 defines the surface roughness of the smooth glass beach
in the laboratory experiment. The initial solitary wave is located at x/h = −20 from the beach
toe allowing the initial wave profile to adjust to the governing equations before reaching the
slope. The wave-breaking process is approximated using the eddy viscosity approach, and the
free-surface Froude number is chosen as a criterion to detect the onset of breaking (see Chapter
5).

Figure 6.8 compares the measured free-surface profiles to the computed results. In contrast to the
Shallow Water solution, which lacks dispersion terms, the Present model reproduces the shoaling
process up to t

√
g/h = 20 at the onset of a plunging breaker, as observed in the laboratory

experiment. The breaking wave profile is well represented with the eddy viscosity approach,
where the added diffusion mimics quite well the dissipative effects of breaking. The dispersive
model is stable for the run-up and run-down, with the dispersion terms retained throughout
the whole domain. The resulting surge reaches the maximum elevation of R/h = 0.55 around
t
√
g/h = 40. The model deviates somewhat from the laboratory data around t

√
g/h = 55,

when a hydraulic jump develops from the drawdown. Since the computed results agree with
the measured data toward the end, the local discrepancies might be attributed to a mix of
instrumentation and model errors. The drawdown process introduces air entrainment in the
water column and splashes at the surface, which is challenging to measure by any instrument.

Figure 6.9 plots the measured and computed run-up as a function of the initial solitary wave
height A/h for beach slopes of 1:19.85, 1:15, and 1:5.67. The data shows good agreement over
a wide range of breaking and non-breaking events characterized by a bi-linear distribution with
a distinct transition. For the 1:19.85 and 1:15 slopes, the data to the right of the transition
represents plunging breakers, whereas the relatively steep slope of 1:5.67 produces surging waves
without flow discontinuities or breaking. The model is able to simulate the runup for incident
wave heights of up to A/h = 0.7 , which is beyond the model’s range of nonlinear properties.

Figure 6.7: Definition sketch of solitary wave runup on a plane beach.
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Figure 6.8: Surface profiles of solitary wave transformation on a 1:19.85 plane beach with A/h = 0.3. Solid
lines and circles denote computed and measured data.
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Figure 6.9: Solitary wave runup on a plane beach. (a) 1:19.85 (Synolakis [1987]). (b) 1:15 (Li and Raichlen
[2002]). (c) 1:5.67 (Hall et al. [1953]). Solid lines and circles denote computed and measured data.

6.4.4 HIreef - Solitary Wave over 2D Reef

The HIreef test case describes the solitary wave transformation over an idealized fringing reef.
Despite the fact that the laboratory experiment focuses on shock-related hydraulic processes
such as wave breaking and bore formation, the collected data are very useful in examining other
important processes such as shoaling, wave reflection, and swashing dynamics. The test was
conducted by Roeber et al. [2010] at the Hinsdale Wave Research Laboratory at Oregon State
University. The flume used in the experiment has an effective length of 83.7m, with a 1:12
slope starting at 25.9m from the wavemaker. With a water level of 2.5m, the lagoon has a
shallow depth of 0.136m, while the reef crest remains exposed by 0.065m. More details about
the experimental procedure can be found in Roeber et al. [2010] and Roeber [2010].

We compute the benchmark test in a 1D computational domain with a fixed grid size ∆x = 0.05m
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and a Courant number Cr = 0.5. A Manning coefficient of n = 0.013 s/m1/3 describes the
smooth, finished concrete and plywood surfaces of the flume. A 0.75m solitary wave is generated
from the left boundary, which results in a dimensionless wave height of A/h = 0.3.

After the generation, the solitary wave shoals over the relatively gentle slope. The free surface
profile becomes nearly vertical, and the wave begins to break. Observations during the laboratory
experiment indicate subsequent overturning of the free surface and the development of a plunging
breaker impinging on the reef crest with a large air cavity and subsequent splash-up. The model
is able to correctly account for the plunging breaker effects with the eddy viscosity approach.
The values of the computed TKE increase drastically at the breaking wavefront, resulting in
a local diffusion that mimics the physical turbulent dissipation. The broken wave begins to
travel down the back slope of the reef crest, generating a supercritical flow and displacing the
initially still water in the lagoon. The flow generates a hydraulic jump on the back reef and
a propagating bore downstream. The TKE is generated and advected to follow the hydraulic
jumps. This leads to a propagating discontinuity instead of a dispersive undulation, which is the
correct non-breaking Boussinesq solution to this flow problem. The end wall of the flume reflects
the bore back to the lagoon. The wave then overtops the reef crest as sheet flow, generating a
hydraulic jump on the fore reef. As the wave propagates back from shallow to deep water, it
produces a series of dispersive waves as shown in Figure 6.10.

Figure 6.11 compares the time series from the computed and recorded surface elevation. The
wave gauge right next to the wall at x = 80m shows the superposition of the approaching and
reflected bores propagating in opposite directions. The time series at x = 65.2m shows the
approaching bore and the reflected bore from the end wall, as well as its reflection from the reef
crest. The steep wave fronts recorded in the gauges reveal the propagation of the breaking wave
in the flux-dominated flow. As the hydraulic jump rushes down the fore reef into deeper water,
the flow transitions into a dispersion regime where the initial bore transforms into a train of
short waves. The resulting undulations intensify as higher harmonics are released from the wave
packet. At the same time, a long period reflected wave propagates in the onshore direction and
superposes with the released higher harmonics. Wave gauges located near the toe of the slope
record highly dispersive waves of kh > 15 .

For this test, the numerical model is able to accurately reproduce important wave processes:

• Wave breaking and bore formation.

• Transitions between dispersion and flux-dominated flows

• Transitions between sub and supercritical flows.

• Mass and momentum conservation for high Froude numbers.

• Mass and momentum conservation at moving waterlines.

• Wave shoaling and reflection.

The eddy viscosity approach implemented in the model allows for an accurate and stable de-
scription of the surging and plunging waves over the reef with a relatively fine grid ∆x = 5 cm.
The additional diffusion term, which is dependent on the TKE quantity, effectively eliminates
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potential instabilities and excessive increases in the wave height, which arise from the depth-
inegrated dispersive solution. The dissipation effects have only a short-term and local impact on
the numerical results. This means that the dispersion properties of the equations are not altered,
and subsequent wave transformation processes, such as the release of high-order harmonics, are
well accounted for.

Figure 6.10: HIreef Benchmark test. Snapshots of free surface profiles for the propagation of solitary wave
with A/h = 0.3 over 1:12 slope and exposed reef crest. Blue lines and red lines denote the water free surface
and the TKE. The TKE vertical axis is zoomed in to highlight the shape of the TKE solution. During the

computation, the TKE quantity reaches a maximum value of 33m2 s−2
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Figure 6.11: HIreef Benchmark test. Time series of the free surface at different wave gauges for the
propagation of solitary wave with A/h = 0.3 over 1:12 slope and exposed reef crest. Solid lines and circles

denote computed and measured data.

6.4.5 Breaking Solitary Wave over 3D Reef with a Cone

Swigler [2010] conducted a series of experimental tests to study the wave transformation over
a three-dimensional reef. These experiments provide reliable test cases for the validation of
dispersive wave models, especially when dealing with complex nearshore wave dynamics in three-
dimensional settings: shoaling, wave breaking, overtopping, and run-up. Figure 6.12 shows the
test case configuration produced by the laser scan and the instrumental layout for the gauges.
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The model is set up with a grid size of ∆x = ∆y = 0.05m, a Courant number of Cr = 0.5, and a
Manning friction coefficient n = 0.014m/s1/3. The incident solitary wave has a height of 0.39m,
giving rise to strongly nonlinear conditions with A/h = 0.5. The solitary wave breaks at the apex
of the reef flat, and the resulting surge completely overtops the cone. The refracted waves from
the two sides of the cone and the diffracted waves converge in the back. During this process, The
TKE in the x- and y-directions is produced and advected along the breaking wavefront. This
leads to stable and accurate computations with the dispersive solution. The diffracted wave on
the lee-side of the cone propagates up the slope, reinforcing the refracted waves from the reef
edge. The flow partially reflected by the back wall of the basin recedes on the beach slope over
small imperfections in the concrete surface. The drawdown then generates a bore, which collides
with the reflection from the wavemaker over the reef. Small vortices are generated in the vicinity
of the reef edge and are transported around the conical island. Figures. 6.15, 6.16, and 6.17
show the flow pattern of the free surface elevation over the entire domain at t = 8 s, t = 17 s,
and t = 35 s for further illustration.

Figure 6.13 compares the computed and recorded surface elevations over 90 s. The model re-
produces the measured surface elevations in front of the cone and behind the cone where the
wave collapse happens. As shown in Figure 6.14, the model matches the cross- and longshore-
components of the velocity reasonably well. It should be noted that the velocities in the physical
model were measured near the free surface whereas the numerical model computes the velocity
close to mid-depth.

The overall agreement between the computed and recorded data demonstrate the validity of the
new model in handling multiple hydraulic processes, transitions from hydrostatic to dispersion-
dominated flows as well as a variety of wave-breaking scenarios in the two-dimensional horizontal
plane with a moving boundary.

Figure 6.12: Breaking solitary wave over 3D reef. Layout with locations for resistance-type wire wave gauges
and ADVs (positions 2, 3, and 10 only)
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Figure 6.13: Breaking solitary wave over 3D reef. Free surface elevation at the gauges. The blue line denotes
the computed result and the black circles represent the laboratory data.
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Figure 6.14: Breaking solitary wave over 3D reef. Horizontal flow velocities at the gauges. The blue line
denotes the computed result, the black circles represent the laboratory data.

Figure 6.15: Breaking solitary wave over 3D reef. Free surface after 8 s. Overtopping of the cone with strong
vortex formation at lee side. Wave breaking front is described as flow discontinuity.
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Figure 6.16: Breaking solitary wave over 3D reef. Free surface after 17 s. Run-up on an initially dry concrete
bed. The flow adjusts to the small roughness elements over the dry bed resulting from imperfections in the

concrete pouring.

Figure 6.17: Breaking solitary wave over 3D reef. Free surface after 35 s. Sloshing continues in the basin
with small vortices advected around the cone. Some water is dripping down the slope.
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6.4.6 Wave Refraction-Diffraction over an Elliptic Shoal

Berkhoff et al. [1982] conducted a laboratory experiment to study the refraction and diffraction
effects of a monochromatic wave over complex bathymetry. This experiment remains a standard
test for assessing the accuracy and performance of numerical models for computing wave shoaling,
refraction, diffraction, and dispersive effects (kh ≃ 1.9). The experiment setup and the transects
for collecting wave data are shown in Figure 6.19. A monochromatic wave with a period T = 1 s

and an amplitude a = 2.32 cm is generated by the wavemaker at xs = 17m. The wave then
propagates over an elliptic shoal resting on a plane beach with a constant slope of 1:50. The
topographic contours on the slope are oriented at an angle of 20°. The detailed formula of the
bathymetry can be found in Berkhoff et al. [1982]. The benchmark test is solved in a 36m by
20m computational domain with a square grid cell of ∆x = ∆y = 5 cm. Two sponge layers of a
2.5m width are placed behind the source region and at the far end of the domain to absorb the
reflected waves reaching the boundaries. We run the simulation for 50 s with a Courant number
Cr = 0.5. The free surface at the end of the run is shown in Figure 6.18. The 3D display clearly
showcases the diffraction pattern, as well as the wave focusing by refraction.

Figure 6.20 shows the comparison of wave height along all eight transects between the experi-
mental data and the model results. The wave heights from the model are obtained by averaging
the wave height of the last 10 waves (i.e., from t = 40 s to t = 50 s). A zero up-crossing method
has been used to isolate the individual waves during the computation. The agreement of our
numerical results with the experimental data is very satisfactory and compares very well to pub-
lished results from other Boussinesq-type models (e.g., Wei et al. [1999]; Tonelli and Petti [2009];
Wei and Kirby [1995]). The underestimation of the wave height in section (5) has been reported
in other wave models (e.g., Ricchiuto and Filippini [2014]; Tonelli and Petti [2009]; Karambas
and Memos [2009]). This test demonstrates the ability of the present model to correctly account
for the combined refraction-diffraction effects, resulting in a correct wave height distribution.

Figure 6.18: Wave refraction-diffraction over an elliptic shoal. Three-dimensional view of the free surface
and the topography elevation at t = 50 s
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Figure 6.19: Wave refraction-diffraction over an elliptic shoal. Berkhoff et al. [1982] experimental layout and
position of the transects of the collected data.

Figure 6.20: Wave refraction-diffraction over an elliptic shoal. Wave height comparison between the model
and the experimental data along different transects (1)-(8). The blue line denotes the computed result, and

the black circles represent the laboratory data.
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6.5 Conclusions

This chapter details the implementation of the Present 2D model along with some key strategies
used to reduce the computational cost and thus improve the performance of the computations.
The new model combines the efficiency of the staggered grid approach with the enhanced disper-
sion properties of Nwogu’s equations. Internal wave generation and wave-absorbing boundaries
are implemented using standard and well-established techniques. A TKE-based eddy viscosity
approach is used to account for the wave-breaking effects, which has proven to achieve accurate
and consistent solutions across different grid resolutions. The accuracy of the Present model is
evaluated using a series of standard benchmark tests describing a wide range of wave transfor-
mations such as wave-breaking, run-up, refraction-diffraction, and wave-shoaling. The overall
agreement between the computed results and laboratory data demonstrates the capability of the
model to compute important wave processes and validates this new numerical framework for the
solution of Nwogu’s equations.
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7.1 Introduction

GPUs have traditionally accelerated memory-intensive computer graphics tasks, including image
rendering and graphic processing. Due to their multiple cores and high memory bandwidth,
GPUs have become indispensable for tackling these embarrassingly parallel workloads. While
GPU parallel computing began as a real-time, high-definition 3D graphics tool, it also proved
effective for scientific computing applications. As a result, the technology has rapidly progressed
over the past decade, supporting a wide range of general-purpose computing applications and
providing a cheaper alternative to high-performance CPU clusters (Owens et al. [2007]). GPU
parallelization has proved especially attractive in water wave modeling, where it has effectively
been employed to boost the performance of numerous operational Tsunamis and long waves
models (see Hagen et al. [2007]; Janßen et al. [2012]; de la Asunción et al. [2013]; Lacasta et al.
[2014]; Sætra et al. [2015]). Several GPU implementations of Shallow Water solvers have shown
significant speed gain over a traditional CPU parallelization (Lacasta et al. [2014]; Arce Acuña
and Aoki [2018]). This performance increase is due in part to the hyperbolic nature of the
SWE solution, which lacks data dependency and therefore maps extremely well on the GPU’s
highly-parallel structure.

In the case of Boussinesq type-wave models, the GPU implementations of these models have
not been reported until recently. Tavakkol and Lynett [2017] presented "Celeris", a GPU-based
program for interactive simulation and visualization of nearshore waves. Using a hybrid FV-
FD method, the model solves the extended Boussinesq equations and is able to achieve real-time
computation and visualization. Kim et al. [2018] has successfully accelerated their fully nonlinear
Boussinesq model using CUDA Fortran. The new GPU implementation achieved up to a 20-fold
performance increase compared to the serial CPU version. Recently, Yuan et al. [2020] presented
the multiple-GPU acceleration of FUNWAVE-TVD using MPI coupled with CUDA Fortran.
Efficiency analysis reveals that, compared to the CPU version operating on a 36-core HPC node,
single-GPU and double-GPU runs had speedup ratios of 4-7 and over 10, respectively.

This section describes the CUDA C/C++ GPU implementation of the current Boussinesq model.
We also go through the optimization strategies that were used to attain improved performance.

7.2 GPU Programming Strategies

Several GPU-based models have shown superior performance versus their CPU-based counter-
parts. The success of GPU computing stems from its high performance; when comparing the-
oretical peak bandwidth and gigaflops performance, GPUs presently outperform CPUs by a
factor of seven (Brodtkorb et al. [2012]). This performance gap is the result of architectural
differences between the two processors. In terms of hardware design, a CPU comprises a few
cores with a significant amount of cache memory, optimized to perform sequential tasks at a very
high frequency. On the other hand, a GPU is made up of thousands of smaller cores that can
manage numerous threads simultaneously, making them ideal for repetitive and highly parallel
computing operations. Because CPUs’ most critical performance factors have traditionally been
their steadily increasing frequency, these processors have been the most affected by the "Power
Wall" (Brodtkorb et al. [2013]). While CPUs have reached their serial performance ceiling quite
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quickly, GPUs have grown exponentially in performance due to massive parallelism. In the case
of phase-resolving wave models, where a significant portion of the model exhibits embarrass-
ingly parallel workloads, GPU parallelization has emerged as a cost-effective means of enhancing
computational performance without compromising accuracy.

7.2.1 Heterogeneous Computing

GPU programming tools and libraries have evolved substantially in recent years to harness
the processing power of GPUs. Several programming languages were introduced to acceler-
ate algorithms outside the field of graphics and image rendering. The most prominent ones
are: NVIDIA’s CUDA, OpenCL, and Microsoft’s Direct-compute (Sætra et al. [2015]). CUDA
C/C++ was chosen as the interface in this study for the graphic implementation of the numerical
framework outlined in previous sections. The choice of CUDA was prompted by its maturity as
well as the availability of a diverse set of libraries and tools for enhanced GPU utilization.

The CUDA programming language is a heterogeneous model, in which both the CPU (host)
and GPU (device) are optimized through a combination of serial (CPU) and parallel (GPU)
executions. The parallel computation is expressed through kernel functions, which execute the
same operation simultaneously on thousands of threads, each targeting a different set of data.
Each thread is assigned a thread ID, which it uses to determine which piece of data to process.
Threads are organized into blocks and grids. Threads within the same block can synchronize
and collaborate by accessing fast shared memory (see Figure 7.1).

Figure 7.1: CUDA heterogeneous computing Guide [2013]

CUDA offers a variety of built-in variables and structures to define the number of blocks in a
grid and the number of threads in a block. This translates to hardware in the sense that a block
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runs on a single multiprocessor (SM), and a single multiprocessor can run several blocks in a
time-sliced manner. As a general rule, to maximize GPU occupancy, it is required to match
the Block/Grid sizes with the data and the hardware computing capability. Since kernels issue
instructions in warps (32 threads), the number of threads should always be a multiple of 32. The
number of blocks is then chosen accordingly so that for each launch, the GPU threads are fully
occupied without exceeding the maximum number of active threads per SM.

7.2.2 Memory Hierarchy

In order to minimize memory latency, GPU programming must manage a variety of memory
types. In this section, we will briefly discuss three of the most common memory types used in
GPU programming:

• Registers: In computer science, registers are the fastest memory and the closest to the
processors. For a variable to be stored as a register, it has to be locally declared inside a
kernel. Despite the high amount of registers per SM, a trade-off exists between the number
of active threads and register usage. In a SM with thousands of active threads, registers
are a limited resource for each thread and can slow down the computation (Yuan et al.
[2020]).

• Shared memory: Each SM has a defined amount of fast-retrieving shared memory that
is shared by all threads inside the same block. Threads within the same block can thus
access data in shared memory that has been loaded from global memory by other threads.
This functionality, together with thread synchronization, is critical for high-performance
thread-interdependent algorithms such as parallel reduction.

• Global memory: The global memory is the name given to the main GPU memory. This
memory has the life time of the application and is accessible from all the threads. Even
though GPU cards have substantially higher memory bandwidth than CPUs, they can still
have memory latency issues. As a general rule, maximum memory performance should be
pursued by memory coalescing, which entails a warp accessing each consecutive 128-byte
(32 single precision) in a single transaction.

7.2.3 Data Transfer

Successful and efficient GPU implementation requires careful consideration of data transfer be-
tween the CPU and the GPU. The CUDA programming model assumes that both the host and
the device have their own distinct global memories. As these memories are separated, data has
to be occasionally transferred between the host and the device to make it accessible to both
the CPU functions and the GPU kernels. Since data transfers between the CPU and the GPU
pass through the PCI Express bus both ways, these transfers are costly in terms of performance
and will often be a bottleneck. This latency can be kept to a minimum by using streams and
asynchronous memory transfers, as well as keeping the data on the GPU as much as possible.
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7.3 GPU Implementation

The explicit solution of Nwogu’s equations requires stencil computations, which are embarrass-
ingly parallel and thus ideal for massive parallelization. Apart from the solution of the tri-
diagonal systems required by the dispersive equations, the numerical algorithm has no data
dependency. As a result, parallelization at the grid-cell level is possible, with each GPU thread
computing for one cell.

To minimize memory transfer, the computation of the numerical solution is executed solely on
the GPU, the memory transfer is therefore limited to input data (copy initial conditions from
host to device) and to output results (copy results from device to host). The GPU workload is
divided into a set of sequential CUDA kernels to synchronize GPU threads after each operation.
The general steps for the GPU implementation are illustrated in the flowchart of Figure 7.2. The
numerical solution is achieved through the following sequential operations:

1. The program starts on the CPU by loading the initial and boundary conditions. In addition,
several variables for bottom friction, wave breaking, and wavemaker input are defined. To
avoid overloading the GPU’s global memory, some preprocessing work is performed on the
CPU, and only the most relevant data is then transferred to the GPU for computation.

2. On the GPU, the adaptive time step is computed for the solution of Nwogu’s equations. A
kernel determines the maximum wave speed in the domain using an optimized reduction
algorithm (Harris et al. [2007]). The time step is then computed using the CFL condition.

3. The dispersive terms are computed first using the updated values of the velocities and the
still water depth. These high-derivative terms are then efficiently stored to be used as
source terms in the continuity and momentum equations, as well as the solution of TKE.

4. The continuity equation is solved by computing the SW flux terms and then adding the
dispersive and wavemaker terms to the equation. It’s important to note that since the
output of the continuity equations is used in the momentum equations (staggering in time),
the threads must wait for the continuity equations to be solved for the whole domain before
computing the momentum terms.

5. The TKE equation is then solved and added to the momentum equations as a source
term, along with dispersion and friction terms. Since the scheme does not require large
stencils (2-point stencils to achieve second-order accuracy), threads can access the necessary
information directly from the global memory. It should be noted that in the case of larger
stencils, it can be beneficial to copy data to the shared memory for faster access.

6. As previously stated, resolving Nwogu’s equations requires solving numerous tri-diagonal
systems at each time step. For enhanced speed and accuracy, these systems of equations
are solved using the Thomas algorithm, similar to the CPU version.

7. Since kernels are launched from the CPU, the variable ∆t is passed to the CPU after
each time step to track the overall computational progress. The transfer of one floating
variable takes almost no time and doesn’t affect the computation time. The CPU will stop
launching kernels and exit the program once the computed time t reaches tend.
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8. Heavy data transfer between CPU and GPU can be avoided by processing the results
directly on the GPU.

Figure 7.2: GPU Implementation Flow Chart

7.3.1 Timestep Reduction Algorithm

The computation of the adaptive time step requires finding the maximum wave speed in the
entire domain at each time loop. In the case of large domains, this operation requires the
implementation of an efficient GPU-based reduction algorithm. Reduction techniques are quite
standard in parallel computing, although they might pose some challenges when dealing with
GPU processing. The main difficulty is achieving a device-level reduction where all threads are
utilized. Since global synchronization is not achievable across blocks in current GPU hardware,
the problem has to be decomposed into two kernels. The first kernel generates and stores partial
reduction in each block, and the second kernel reduces the partial results into one single maximum
value (see Figure 7.3).
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Figure 7.3: GPU Global Reduction Harris et al. [2007]

The first kernel computes the maximum value across grids using grid-stride loops, then each
launched block copies one portion of the array into shared memory and then reduces it to one
value, which is then written back to global memory as maximum[blockIdx.x]:

__global__ void find_maximum_wavespeed(flux& NF, float *maximum, unsigned int n)
{

unsigned int index = threadIdx.x + blockIdx.x*blockDim.x;
unsigned int stride = gridDim.x*blockDim.x;
unsigned int offset = 0;

// Allocate shared memory in each block
__shared__ float cache[numThread_CFL];

// Find the maximum stride
float temp = -1.0;
while (index + offset < n) {

temp = fmaxf(temp, NF.WS[index + offset]);
offset += stride;

}
cache[threadIdx.x] = temp;
__syncthreads();

// Reduction algorithm to find the maximum value in each block
unsigned int i = blockDim.x / 2;
while (i != 0) {

if (threadIdx.x < i) {
cache[threadIdx.x] =

fmaxf(cache[threadIdx.x], cache[threadIdx.x + i]);
}

__syncthreads();
i /= 2;

}
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maximum[blockIdx.x] = cache[0];
}

Similarly, in the second kernel, one block will be used to reduce the array maximum to one
maximum value, which will be then used to compute ∆t.

7.3.2 Tri-diagonal Solver

The most challenging aspect of the GPU-parallelization of Boussinesq models is the solution
of the data-dependent tri-diagonal system. The standard algorithm to solve such problems
is the Thomas algorithm. This approach, which involves forward elimination and backward
substitution, is commonly used in several Boussinesq-type models. However, due to the method’s
serial nature, various parallel algorithms that map better to the GPU environment have been
adopted (e.g., Cyclic Reduction, Parallel Cyclic Reduction, Recursive Doubling, see Zhang et al.
[2010]).

In the case of a 2D problem with a mesh grid of (m× n), we expect to solve n diagonal systems
of size m for the x-momentum equation, along with m diagonal systems of size n for the y-
momentum equation. All of these systems are independent of one another and can be solved
concurrently. For a straightforward GPU implementation, we may assign each tri-diagonal system
to one separate thread and solve the system sequentially with a Thomas algorithm. In this
case, only n +m threads will be utilized with each kernel launch. Another approach is to use
the optimized tri-diagonal solvers provided by NVIDIA’s cuSPARSE library. Solvers such as
cusparseSgtsvStridedBatch are able to compute the solutions of multiple tri-diagonal linear
systems at once. This routine employs a combination of Cyclic Reduction (CR) and Parallel
Cyclic Reduction (PCR) algorithms. To achieve improved performance, the solver does not
perform any pivoting. This, however, may come at the expense of accuracy and stability.

On an Nvidia Quadro RTX 3000 card, we run a simple benchmark test to assess the performance
of each approach. For different domain sizes n×n, we solve the 2×n tri-diagonal systems using
both the Thomas algorithm and the cusparseSgtsvStridedBatch solver. TThomas and Tgtsv are
the time required to solve the systems with each approach. The values are averaged over 10,000
runs.

It’s worth noting that, owing to the optimization described in Chapter 6.3.2, the forward sweep
of the Thomas method is cut in half. Therefore, we only need to compute two of the three loops
required by this algorithm. As shown in table 7.1, the Thomas implementation outperforms
the cusparseSgtsvStridedBatch for large domains. Even with an intrinsically serial structure
and low GPU occupancy, the algorithm’s simplicity and prior optimization help achieve good
performance compared to the more complex reduction solvers.
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Table 7.1: Performance of Thomas Algorithm and cusparseSgtsvStridedBatch in Solving Nwogu’s
tri-diagonal Systems

Grid Resolution

512× 512 1024× 1024 2048× 2048 4096× 4096

ThomasAlgorithm 3.96× 10−4 s 1.38× 10−3 s 4.18× 10−3 s 1.62× 10−2 s

cusparseSgtsv 6.47× 10−4 s 1.40× 10−3 s 2.99× 10−3 s 4.67× 10−3 s

Tgtsv/TThomas 0.61 0.98 1.39 3.46

7.3.3 Wavemaker Source Term

The implementation of the wavemaker source term involves computing the following sum for
each grid point along the y-axis:

s (y, t) =

Mω∑
i=1

[
Ai(y)cos(ωit)− Bi(y)sin(ωit)

]
. (7.1)

A two-level parallelization is employed to maximize GPU-thread utilization: a block-level paral-
lelization to loop over the y-direction grid points and a thread-level parallelization to compute
the sum over the wave spectrum frequencies using a reduction algorithm.

__global__ void ComputeSyt(WaveMaker& WM, float t, unsigned int M)
{

unsigned int j = blockIdx.x;

float sum = 0;
for (unsigned int f = threadIdx.x; f < WM.Nf; f += blockDim.x)
{

float ramp = tanh(t*WM.Omg[f]/(2*d_PI));
sum = sum

+ ramp*WM.Ak(f,j)*cos(WM.Omg[f]*t)
- ramp*WM.Bk(f,j)*sin(WM.Omg[f]*t);

}

// Resduction algorithm
__shared__ float cache[numThread_WM];

cache[threadIdx.x] = sum;
__syncthreads();

for (int size = numThread_WM/2; size>0; size/=2) {
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if (threadIdx.x<size)
cache[threadIdx.x] += cache[threadIdx.x+size];

__syncthreads();
}

if (threadIdx.x == 0)
WM.Syt[blockIdx.x] = cache[0];

}

7.4 Parallelization Performance

With the development of high-performance computing, the solution of complex water flow prob-
lems over large computational domains has become accessible through advanced parallel comput-
ing. Parallelization has become a crucial component for the development of operational numerical
models for forecasting purposes. Historically, most of the phase-resolving wave models are based
on CPU multi-core executions. However, as GPU computing gains popularity, numerical mod-
els are increasingly relying on the high speed of GPU cards to boost their performance. The
difference in performance and scalability between CPUs and GPUs stems from their different
hardware architectures. CPUs are composed of a small number of cores with very high frequency
in order to execute a few tasks very quickly. In contrast, modern GPUs are composed of hun-
dreds of cores that can handle thousands of threads simultaneously, however, at a lower clock
rate. In the following, we will compare the computation speedup of the Present model from two
fundamentally different types of parallelization techniques:

• A standard CPU parallelization with OpenMP.

• A GPU parallelization with CUDA.

The two model versions: a multi-core CPU parallelization with OpenMP directives and a GPU-
based massive thread parallelization. To evaluate the performance of the two parallelizations,
the new numerical model is executed: (1) in mono-threaded CPU sequential mode, (2) in CPU
parallel mode with OpenMP, and (3) in GPU parallel mode with CUDA C/C++. The three
techniques solve the same algorithm and execute identical operations. It has been confirmed that
the results from the three implementations are identical to machine precision. The speedup of
both parallelizations is evaluated as the ratio: Tserial/Tparallel, where Tserial and Tparallel are the
computation time needed for the execution of the serial and parallel codes, respectively.

The serial and parallelized programs are executed on the following hardware systems:



7.4. Parallelization Performance 149

Table 7.2: Hardware specifications

Specifications
System 1

CPU GPU

Processor Intel Core i9-9880H NVIDIA Quadro RTX 3000

Number of Cores 8 3840

Base Frequency [MHz] 2300 600

Memory bandwidth [GB/s] 41.8 288.0

Figure 7.4: Ratios of CPU and GPU computational speedup times for different domain sizes (total number of
cells) with System 1 hardware

It is important to note that the two CPU and GPU cards rate comparably regarding performance
and price in their respective categories.

After multiple tests with different wave problems, it was confirmed that the speedup times
of the parallel implementation depend mainly on the total number of grid cells used in the
computation along with the hardware specifications. We consider the dispersive Gaussian drop
simulation described in Chapter 6.4.1 as a benchmark test to evaluate the computation time for
each implementation. Figure 7.4 illustrates the performance of CPU- and GPU-based runs with
different grid sizes. It is not surprising that the model runs faster in parallel than in serial mode.
It is also evident that even for relatively small matrices, a parallelization algorithm leads to much
faster completion of the numerical solution. In the case of OpenMP parallelization on a CPU,
the speedup quickly reaches a plateau with the number of cells. With GPU parallelization on an
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NVIDIA graphics card, the speedup increases with the number of cells, showing high efficiency,
especially for large computational domains. This is due to the high number of threads that
can run concurrently. For the hardware used in this analysis, the computation on the graphics
card is approximately an order of magnitude faster than a comparable CPU parallelization for
a problem with over 4 million grid cells. Overall, the speedup gained from the CUDA C/C++
implementation is of significant magnitude and far superior to standard CPU parallelizations on
conventional hardware of comparable cost.

7.5 Conclusions

This section outlines the GPU-based implementation of the new Boussinesq-type model using
the CUDA C/C++ framework. Thanks to the explicit nature of the numerical scheme, which
caters to massive data parallelism, the model’s GPU implementation achieves higher performance
compared to conventional multi-core CPU parallelization. The GPU’s computing speed increases
with the number of grid cells, confirming its high performance when dealing with large-scale
domains and massive computational workloads. The high performance of the GPU solution is
an essential step towards reducing the computation time of large-scale flow problems and caters
to the intended use of this code for operational forecasting procedures.
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8.1 Introduction

This final chapter showcases the potential of the Present model to be used in an operational
setting where it is necessary to obtain accurate solutions over large computational domains
in a reasonable amount of time. Two typical scenarios were chosen, for which field data are
available for validation. For both applications, computational accuracy is important, however,
in an operational setting where multiple scenarios have to be evaluated in a given time, the
computational speed is a critical factor.

The test cases involve a range of wave transformation processes that are characteristic for ener-
getic nearshore waves over a complex reef-dominated bathymetry, which is generally challenging
for depth-integrated models. The objective is to obtain stable and accurate results of a computed
time of several hours for a domain with over 2 million cells. The accuracy is validated with field
data available over a transect across the reef for one test case and inside a small boat harbor
basin for the other scenario.

In addition to validation with field data, the output from the Present model is compared with
the results computed by BOSZ, which was previously proven to be able to handle the two
swell scenarios successfully. Both models are set up in the most consistent way possible, i.e.,
with identical boundary conditions such as the bathymetry grid, wave spectra, phase angles, and
bottom friction. The differences between the models are then solely due to the internal numerical
solution structures.

It is important to notice that comparisons with field data do not necessarily prove a model’s
accuracy, which is generally checked with laboratory benchmark tests under controlled conditions
or even with analytical solutions. It is obvious that the exact wave field observed by a particular
field data set cannot be reproduced, since not all boundary conditions are known in detail.
Limitations range from underlying tidal fluctuations, which are not accounted for in most models,
and changes in the wave conditions over the course of the observation period, to uncertainties in
the local bathymetry. It is challenging to quantify the amount of expected discrepancy between
field data and computed model output. Nevertheless, comparisons between field data and model
output are still useful to show how closely a model is able to replicate the major wave processes
or how sensitive the results are to the model setup. This information can be used as an indicator
of whether a model is generally applicable to a certain problem or whether it can be used for
other wave scenarios of similar nature.

8.2 Study Site and Field data

8.2.1 Swell Events

The study site is a stretch of coastline along the Northshore of Oahu. The Northshore of Oahu is
frequently hit by energetic open ocean swells that transform and break over a fringing reef. Strong
currents and run-up paired with substantial IG wave generation are the consequences. Since
irregular bathymetry is a unique aspect that cannot be fully addressed in laboratory experiments,
data from field observations can serve as validation of a model’s capability to handle challenging
wave conditions over large domains in a stable and efficient way.
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Azouri [2016] has shown that energetic swell forcing events trigger a response at all IG frequencies;
i.e forcing a model with such energetic input allows for analyses of the underlying physics, as
nonlinear interactions push the model towards large amplitude responses. Over the reef, the wave
transformation can lead to strong responses at IG frequencies, whereas in an enclosed basin, such
as a harbor, specific structures with particular frequencies corresponding to the normal modes
of the basin are expected.

The US Army Corps of Engineers PILOT project collected wave measurements across fringing
reefs on a number of Pacific and Caribbean islands. In addition, Azouri [2016] conducted an
intensive field campaign in Haleiwa Harbor for the investigation of IG-waves. Both data sets are
quality-controlled and have been previously used for model-data comparison. Details of the two
selected swell scenarios are shown in Table 8.1. Swell 1 is used for validation of the Present model
with the data at Mokuleia, and swell 2 serves as a baseline for the comparison inside Haleiwa
Harbor. For both scenarios, output data are saved at 1Hz and converted to power spectral
density to be compared with the field data.

Table 8.1: Wave conditions and tide levels for the two test scenarios

Swell Time spectrum Time Tide Hs [m] Tp [sec] Dp [◦] Mean Tide [m]

1 2008/01/13, 22:40 20:00:24:00 6.15 18.2 310 -0.13

2 2014/01/23, 06:55 04:30:08:30 7.41 15.4 315 0.04

8.2.2 Bathymetry and Model Settings

The bathymetry files used in this study are based on a merging of three different datasets: (i)
50m resolution multibeam data for the offshore region; (ii) 5m resolution Lidar data for the
coastal region (from USACE’s 2013 survey), and; (iii) 3m resolution echo-sounder dataset for
Haleiwa Harbor. The bathymetry is shown in Figure 8.1 with the computational domain outlined
by the solid rectangle. The inner dashed rectangle denotes the extent of the sponge layer for
wave absorption, which is generally not used for the interpretation of the results.

The domain is 12.2 km (alongshore) x 10.2 km (cross-shore) large and stretching from Mokuleia
to Laniakea, with a grid resolution of 7m x 7m (see Figure 8.1). This particular grid resolution
is a compromise between sufficiently high resolution to achieve converging results - especially
in narrow parts of Haleiwa Harbor that are on the order of tens of meters, and the need for
a reasonable turnaround time of the computations given that the domain results in over 2.5
million cells. An additional test was conducted with a much coarser resolution of 21m x 21m

to examine the sensitivity of the quality of the results to numerical diffusion and the associated
speed up of the computation for only 1/9th of the total initial cell count. The bottom friction
in all grids is set to constant 0.035 sm−1/3 to account for the roughness of reef-type bathymetry
(see Bretschneider et al. [1986]).
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Table 8.2: Summary of all model runs.

Run Time [hr] Domain [km x km] Grid Res [m] Cell count Hs [m] Tp [sec] Dp [deg]

1 4 12.2 x 10.2 7 2,539,592 6.15 18.2 310

2 4 12.2 x 10.2 7 2,539,592 7.41 15.4 315

3 4 12.2 x 10.2 21 282,177 6.15 18.2 310

4 4 12.2 x 10.2 21 282,177 7.41 15.4 315
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Figure 8.1: Computational domain covering the inner portion of the Northshore of Oahu as denoted by the
solid rectangle. The inner dashed rectangle denotes the extent of the sponge layer for wave absorption. The
offshore boundary is pointing towards 315◦ (-45◦ rotation from true North). The gauges at Mokuleia are
denoted by 8a, 8b, and 8c. Haleiwa Harbor is shown in Figure 8.2 in detail. Map adapted from West Maui
Coastal Resilience Group report Phase I.
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Figure 8.2: Close-up view of Haleiwa Harbor (small rectangle in Figure 8.1. Only gauges 2, 3, and 4 are
selected for model-data comparison. Map adapted from West Maui Coastal Resilience Group report Phase I.

8.2.3 Input Spectrum

The wave spectra for the two swell come from CDIP and were measured by the Waimea buoy
in 200m water depth. The original spectrum from swell 2 is shown in Figure 8.3. The spectrum
shows two pronounced peaks with the larger of the two centered at 315◦. This is the peak
direction. Another noticeable feature of the CDIP spectra is its bilinear frequency binning of
0.005Hz up to 0.095Hz and of 0.01Hz above 0.11Hz. There is one transitional frequency of
0.1013Hz in between the two linear ranges covering 64 frequencies in total (0.025 - 0.58Hz).
It is important to notice that usage of the original spectrum for the wavemaker would ultimately
lead to a recycling of the input time series at 1/min(∆f) = 1/0.005Hz = 200 s similar to what
is shown in Chapter 6.2.3. The frequency binning has to be decreased to avoid artificial wave
groupings over the 4-hour computation so that 1/min(∆f) ≥ 4*3600 sec. The smallest ∆f in the
frequency distribution should therefore be 0.000 069 4Hz - instead of the original 0.005Hz in the
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CDIP spectrum. This requires 1104 uniformly-spaced frequencies over the range from 0.025Hz

to 0.1Hz.

The upper-frequency limit is due to the limited dispersion properties of the governing equations
as detailed in Chapter 6.2.3. Therefore the high-frequency tail of the CDIP spectrum has to be
truncated. We select a cut-off threshold of λmin = 2h, which means that the shortest input wave
is twice as long as the offshore water depth. This returns a wavelength of 160m or a kh-value
of π, which relates to the highest input wave frequency of 0.1Hz. Consequently, the bathymetry
is limited to 80m depth. Since the spectra from the CDIP buoy contain the vast majority
of their energy in wave frequencies lower than 0.1Hz, the truncation has little impact on the
composition of the resulting time series from the superposition of all waves in the spectrum. Hs

or the total energy is maintained, since the energy from the truncated tail is re-distributed over
the remaining spectrum. It should be noted that the truncation only affects the input waves,
but not the evolution of the wave field itself over the course of the computation; i.e. it is well
possible that shorter waves than 0.1Hz develop locally during the computation.

It is clear that a wave spectrum in 80m water depth would likely be different from a spectrum
obtained from a buoy in 200m water depth. The shoaling process leads initially to a flattening
of the wave shape before it causes the typical steepening before breaking. A linear wave of 18 s
peak period experiences the maximum effect of the negative shoaling process in about 80m water
depth; i.e. it can be assumed that the peak of the gravity swell band is overestimated in the
CDIP spectrum when used as input at only 80 m maximum depth offshore.

Figure 8.3: Original CDIP spectrum from swell 2.
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8.3 Numerical Results

The two wave scenarios were computed for two different grid resolutions (∆x = ∆y = 7m and
∆x = ∆y = 21m) as shown in Table 8.2. Each instance was executed on a CPU and a GPU
hardware configuration provided by the Coastal Resilience Group at the University of Hawaii:

• Intel Xeon Gold 6346 with 32 CPUs of 3.10GHz (divided into 2 sockets of 16 CPUs each)

• NVIDIA Tesla T4 TU104 with 2560 CUDA Cores of 1.25GHz

This allows for an analysis of the Present model’s performance with respect to CPU and GPU
parallelizations and also validates the consistency and replicability of the computed results.

8.3.1 Accuracy of the Computed Results

Figure 8.4 shows the power spectral density plots from the computed data in comparison with
the observations at the Mokuleia array for swell 1. The solution from the Present model agrees
reasonably well with the observed data over all frequency bands. The most offshore located gauge
(8a in Figure 8.1) in about 12m water depth shows the peak of wave energy at the peak period
around 18 s. The two smaller peaks (super-harmonics) at higher frequencies are the result of
the shoaling process of the incoming swell. As the waves move towards the shore, they undergo
energetic breaking. The second gauge in about 6m depth is located near the breaking point and
indicates a decrease of the PSD in the gravity band and an increase in the IG band. The transfer
of wave energy from gravity to IG bands is a typical process in the surf zone and the main driver
of second-order phenomena such as surf beat and recirculation. Closer to shore in around 2m

depth, most of the gravity wave energy has vanished as the result of dissipation through breaking
and bottom friction and transfer to the IG band. The energy level in the IG bands is over an
order of magnitude higher than the energy in the gravity band. This is exactly the opposite at
the gauge in 12m depth. As expected, the Present model compares well to the solutions from
BOSZ. Most visibly, the Present model shows less diffusion of short waves nearshore compared
to BOSZ. Since the input swell spectrum is slightly larger than what is expected at 80m depth,
it is not surprising that the Present model predicts the remaining energy after breaking at a
higher level than the observations.

The wave processes shown for swell 2 in Figure 8.5 are significantly different from swell 1. The
overall PSD distribution at the three gauges inside Haleiwa harbor is relatively similar with
pronounced IG energy levels over 5 min period. Though some gravity swells energy is visible
inside the harbor, most of the wave energy is associated with IG waves controlled by the harbor’s
geometry and depth as well as the fringing reef outside the harbor.

The Present model correctly accounts for the general trend in wave energy distribution. As for
swell 1, the results compare well to the solutions from BOSZ. Again, it should be noted that the
differences between the two numerical models are solely due to the differences in the numerical
solution as the governing equations, input waves, and boundary conditions are identical.
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Figure 8.4: PSD of free surface elevation at Mokuleia array with a grid size of ∆x = ∆y = 7m. Results
from the Present model and from BOSZ for comparison.
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Figure 8.5: PSD of free surface elevation at Haleiwa Harbor with a grid size of ∆x = ∆y = 7m. Results
from the Present model and from BOSZ for comparison.
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8.3.2 Grid Sensitivity

The two swell scenarios were computed over the same domain with two significantly different
resolutions. The results from Figures 8.4 and 8.5 are based on a grid resolution of ∆x = ∆y =

7m. This resolution is fine enough to resolve most waves in the system to sufficient detail and
to account for the variations in the bathymetry. It is trivial that a coarser resolution can lead to
less accurate results but on the flip side allows for fast computation due to the overall lower cell
count and the accompanying increase in time stepping.

Here, we demonstrate the sensitivity of the numerical solutions to the grid resolution by using
a uniform mesh size of ∆x = ∆y = 21m, which is a grid size that an experienced user would
probably not select. The objective is rather to analyze, which parts of the spectrum change the
most due to the grid resolution and whether it is worth considering coarse resolution results for
the sake of their low computational expenses. Figures 8.6 and 8.7 show the results at the same
gauge locations as 8.4 and 8.5 for swell 1 and 2. Most noticeably, the short wave band around
the super-harmonics suffers from the lower grid resolution. This is expected since the wavelength
of the first super-harmonic at 12m depth is already shorter than 100m, which cannot be fully
resolved with a 21m grid size. The same applies to the short wave band at the two inner gauges
inner the surf zone and to the results of swell 2 in Figure 8.5.

Nevertheless, the overall trends in PSD distribution are fairly similar to what was obtained with
7m grid resolution. Especially the PSD of most IG waves is well comparable to the results from
the higher resolution. Overall, the solutions from the Present model are much less sensitive to
coarse meshes compared to the well-established BOSZ model. Especially inside Haleiwa harbor,
which is resolved by under 100 grid cells, the coarse resolution results are still valid for a first
estimate of the IG wave processes. Given the higher diffusivity of the BOSZ model, a higher
grid resolution is required to obtain equivalently meaningful results. This underlines that the
low diffusive numerical scheme plays a major role in the applicability of phase-resolving wave
models.
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Figure 8.6: PSD of free surface elevation at Mokuleia array with a grid size of ∆x = ∆y = 21m. Results
from the Present model and from BOSZ for comparison.
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Figure 8.7: PSD of free surface elevation at Haleiwa Harbor with a grid size of ∆x = ∆y = 21m. Results
from the Present model and from BOSZ for comparison.
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8.3.3 Model Performance

Finally, we evaluate the Present model’s computational performance compared to the well-
established BOSZ model. We computed the same wave scenario (i.e., Run 1) with the two models
using identical CPU hardware (i.e., Intel Xeon 6346 3.1GHz). Table 8.3 shows the execution
times necessary for the runs using different numbers of threads. The Present model takes 8 hours
to compute the 4-hour scenario with a relatively low thread count (i.e., 6 cores and 12 threads),
which is the number found in most standard commodity hardware. BOSZ on the other hand
takes 32 hrs for the same run. The difference in execution time between the two models is due
to the lean structure of the hyperbolic solver as well as the low-order flux reconstruction (BOSZ
uses a fifth-order reconstruction, whereas the Present model uses a second-order). Moreover, the
optimized model implementation, as described in Chapter 6.3, adds more to the efficiency. With
24 threads, the computation time is almost real-time and about 7 times faster than the same
computation in BOSZ. This proves that the CPU-parallelization speed-up scales well with the
increase of computational resources in contrast to BOSZ, where the speed-up quickly reaches a
plateau. On a full socket with 32 threads, the Present model accomplishes the 4-hour run in
only 2 hours and 20 min, which is almost twice as fast as real-time. The use of the Present
model on different sockets will require the implementation of a multi-card parallelization such as
Message Passing Interface (MPI). However, the fact that it is possible to perform such extensive
computations with 2.5 million cells and the generation of 40 thousand input waves on a single
socket demonstrates the cost-effectiveness of the Present model.

Table 8.3: Present model performance compared to BOSZ on CPU hardware.

Model Computed time Hardware Grid Res [m] Cell count Threads Execution time

BOSZ 4 hrs CPU 7 2,539,592 12 32 hrs

Present 4 hrs CPU 7 2,539,592 12 8 hrs

BOSZ 4 hrs CPU 7 2,539,592 24 27 hrs

Present 4 hrs CPU 7 2,539,592 24 4 hrs 25 min

BOSZ 4 hrs CPU 7 2,539,592 32 -

Present 4 hrs CPU 7 2,539,592 32 2 hrs 16 min

Finally, we compare the execution times and costs of the two model implementations: CPU
and GPU. It has been shown in Chapter 7.4, that the GPU implementation outperforms the
computation on CPUs for comparable hardware in terms of computation time and price. This
is mainly due to the GPU architecture, which caters to massive parallelism. The same trend
is observed for this final real-case test, where the GPU computation is faster than the CPU
computation on hardware which is four times cheaper. It is important to note that while the
GPU instances require a CPU host to launch the kernels, there is no processing contribution from
the CPU, and any low-end CPU can do this job without affecting the overall performance. That
is the reason why in the section we compare mainly the cost and performance of the computing
units of each implementation. Considering the energy consumption required to perform the
model’s processing operations, the GPU instance uses one-fourth of the total energy consumed
by the CPU for the same model run. Here, we compare the energy dissipated by only the
processing hardware. The energy used by the cooling system, which is difficult to quantify, is
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not taken into account.

Table 8.4: Performance and cost: CPU vs. GPU

Model Computed time Hardware Threads Price Execution time Energy Used

Present 4 hrs CPU 32 $9000 2 hrs 16 min 0.478 kWh

Present 4 hrs GPU - $2300 1 hrs 48 min 0.126 kWh

8.4 Conclusions

The Present model was shown to be applicable to realistic wave scenarios as one would encounter
in an operational setting. Especially for coarse grid sizes, the computed results are of superior
quality than established solutions from BOSZ. This is mostly due to the implementation of
the low-diffusion scheme, which is novel to Boussinesq-type models. The Present model is well
parallelized and accomplishes stable solutions over a large irregular terrain for several hours in
well under real-time without the need for excessive computation power.

This test clearly shows that the model is applicable in an operational setting both in terms of
stability and accuracy and also with respect to its computational efficiency. The CUDA paral-
lelization also helps to reduce the energy consumption to about 25% of the energy consumption
of a CPU architecture necessary to accomplish a comparable turnaround time.
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In the following, we summarize the main findings of this dissertation outlined in the previous
chapters. In addition, we highlight the outstanding features of the newly developed Boussi-
nesq model in comparison to existing wave models and specify applications, limitations, and
perspectives of this work.

9.1 Main Results

This effort introduces a new phase-resolving model for operational computations of nearshore
waves. The choice of the implemented features in this model has been motivated by compar-
ative studies with the objective to find the right balance between the solution’s accuracy and
its associated numerical cost. The driving factor behind the rigorous development of this new
numerical framework from scratch was the improvement of numerical efficiency without neces-
sarily compromising the quality of the solution. The solver for Shallow Water Equations builds
the backbone of most dispersive depth-integrated models of phase-resolving nature. Here, the
choice of a conservative staggered scheme was shown to be a fundamental component of critical
importance. The lean and efficient structure of the scheme, along with its robustness in the
context of flow discontinuities and wet-dry transitions, have proven to be crucial properties for
achieving stable and fast computations of nearshore waves. Moreover, the reduced diffusivity of
the scheme compared to traditional FV methods based on characteristic decomposition leads not
only to improved accuracy but also to improved efficiency since the model is able to compute im-
portant wave processes at a lower grid count. Consequently, this numerical foundation is catering
to the model’s extension with local mesh refinement as well as frequency dispersion. The quality
of low diffusivity is critical for problems dealing with periodic waves that are solved with dis-
persive governing equations such as the ones by Nwogu and SGN. This property mainly ensures
that the Present model is able to conserve the wave energy for propagation over long distances
without the need for excessively fine grid spacing. The low diffusivity further supports the use of
the nested grid method, which was proven to be very efficient in computing high-resolution local
run-up at a low numerical cost. The overall wave transformation can be accurately and efficiently
accounted for over a coarse grid, while the local wave run-up limit, which is mainly controlled
by the details of the topography, can be described with a highly localized mesh refinement.

While the model’s accuracy and efficiency greatly depend on the underlying numerical scheme,
the choice of the mathematical framework can also impact its applicability, especially in the
case of Boussinesq-type models. Many mathematical concepts contain strong assumptions that
affect two main properties: nonlinearity and dispersion. In this thesis, a comparative study has
been carried out to examine the impact of these assumptions on the final results. On one hand,
the strong dispersion errors in SGN equations not only lead to inaccurate results but also to
instabilities due to the negative trend of the error. On the other hand, the weak nonlinearity
of equations like the one by Nwogu affects the accuracy of the shoaling process leading to an
overestimation of the crest and trough amplitudes. Opposite tendencies were observed with
fully nonlinear Boussinesq equations, where undershoaling originates from insufficient frequency
dispersion. From an efficiency point of view and considering the complexity of the fully nonlinear
equations, the weakly nonlinear Nwogu equations were selected as the base equation of the model.

The applicability and robustness of the Present model to real cases require an efficient and reliable
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wave-breaking closure. Since the depth-integrated nature of the equations does not allow for the
overturning of the free surface, the wave-breaking process is not fully computed as part of the
main solution, but instead approximated through flow discontinuities. The formation of shocks
is posing a conflict for non-hyperbolic systems and the consequence can be instabilities at the
wavefront. This problem becomes mainly apparent with fine meshes where the wave front is
described by multiple cells. It is therefore necessary to counter-measure a potential source of
instabilities to ensure the applicability of the Present model over a wide range of grid sizes. Here,
a TKE-based eddy viscosity method was implemented to account for the dissipative effects of
wave breaking. The approach generally provides solutions of superior quality and shows better
grid convergence for various topographies and wave conditions compared to standard methods
such as the commonly applied local deactivation of dispersion.

This thesis also highlights the major impacts of simple yet efficient optimization techniques to
support the computational speed of the model. Since this type of model is intended to be used
for long computations over several hours and over large computational domains with millions
of cells, each operation inside the main time loop impacts the overall performance, and thus
multiple small optimization techniques lead to a substantial boost in performance. Moreover,
the explicit nature of the solver and the massive stencil computations cater to data parallelism.
The GPU hardware, in particular, provides an ideal environment to deal with such data-intensive
computations. The GPU implementation of the model was proven to be not only cost-effective
but also more efficient for large computations than standard CPU implementations.

The new model has been rigorously validated using a variety of standard benchmark tests. These
tests involve a wide range of wave transformation processes, such as wave-breaking, run-up,
refraction-diffraction, and shoaling. The overall agreement between the computed results and
laboratory data demonstrates the capability of the model to accurately compute the fundamental
nearshore wave processes. The model results have also been compared to field data collected on
the Northshore of Oahu, Hawai’i. This test demonstrates the Present model’s applicability to
real-world cases involving energetic waves over complex terrain.

The main objective of this research effort was the development of a new phase-resolving model
for operational nearshore wave assessment. Since it was shown that the Present model computes
large domains much faster than existing models with no compromise on accuracy and applica-
bility, it is reasonable to state that the goals were reached. The uniqueness of this development
stems from a combination of pragmatic choices with optimized implementations. Since the model
development started from scratch, it was possible to address several shortcomings of numerical
approaches commonly used in models for nearshore waves. It also became evident that some
of these techniques such as the use of characteristic decomposition methods for the underlying
SWE should be reconsidered in the context of Boussinesq modeling.
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9.2 Perspectives

9.2.1 Implementation into a Forecast System

The model was designed to be used in an operational framework, particularly for wave run-up
forecasts. The implementation of many features in the model has been motivated by collaborative
work with groups specialized in this type of forecast. While this work has helped overcome one
of the main commonly encountered limitations - computational speed - the implementation of
the Present model in an operational setting still requires additional validation tests, namely for
run-up, with field data. Moreover, since these forecasts require input from tide and spectral wave
models for adequate boundary conditions, an efficient and automated coupling of these models
needs to be implemented.

9.2.2 Mesh Refinement in Boussinesq Models

The implementation of the nested grid technique into the hydrostatic solver was proven to be
an efficient tool for high-resolution run-up computations. The same approach can be extended
and applied to the final dispersive model with only minor changes to the main structure. While
the feedback step in the two-way nesting is identical to the Shallow Water model, the input of
the boundary conditions for the inner grid must be modified to include the information from the
dispersive terms. A Dirichlet-type boundary condition must be imposed for the elliptic problem
to enable wave dispersion across grid interfaces. The implementation of this technique will have
to be later verified by analytical tests such as solitary wave propagation and further tested in
the context of practical problems. It is expected that particular wave problems require specific
refinement factors that can vary from those used for the nesting of the Shallow Water solver.
Nevertheless, grid nesting will open another door for further reduction in computational times
by maintaining locally high accuracy and quality of the results.

9.2.3 Wave Breaking Closure

It was demonstrated that the TKE-based eddy viscosity approach offers a more stable and
reliable wave-breaking closure compared to standard methods. However, this method still has
limitations, especially in terms of the mixing length approximation. In the Present model, the
mixing length is taken to be equal to the local water depth, which is consistent with previously
published models. It is quite likely that a more complete solution, such as the k − ε turbulence
closure, can lead to even better results, since the mixing length is directly computed by an
additional equation instead of taken as a local constant value.

9.2.4 Fully Dispersive Model

There is no doubt that a higher level of frequency dispersion can help to further extend the
Present model’s applicability. Most obviously, the model can be applied to deeper water offshore,
if the limiting ratio of λ to h was smaller. A better approximation of frequency dispersion can
further help to improve the accuracy of the wave field subject to shoaling and refraction, since
nonlinearity is always balanced by dispersion. Karambas and Memos [2009] has presented a
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promising technique for high-order linear dispersion that could be implemented in modular form
into the Present model.

9.2.5 Further Extensions and Improvements

The computed wave field from the Present model can be used as the driver for other processes
such as sediment and pollutant transport. This can be achieved by solving an additional transport
equation in the model (Watanabe et al. [2020]). The base model can also be extended to include
other wave generation mechanisms (e.g., tsunami Okada [1985], ship waves David et al. [2017]).
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In this appendix, we detail the derivation of the two dispersive Boussinesq equations that are
discussed in the thesis: SGN and Nwogu’s equations. We follow the derivation approach given
by Khakimzyanov et al. [2020]. We first derive a base model, where we maintain a general
framework. We then build the two equations from this unified model by including additional
assumptions specific to each set of equations.

A.1 Base Model Derivation

We consider the flow of an ideal incompressible fluid in a three-dimensional space. We assume
that the fluid is homogeneous (i.e., the density is constant ρ = 1) and the acceleration due to
gravity g is constant everywhere. To describe the equations, we consider a Cartesian coordinate
system (Oxyz). The horizontal plane Oxy coincides with the still water level z = 0. The water’s
free-surface elevation η (x, y, t) propagates over a variable bottom h (x, y, t).

The flow is considered to be completely determined if we solve the velocity field U (x, y, z, t) =(
u (x, y, z, t) , v (x, y, z, t) , w (x, y, z, t)

)
with pressure field p (x, y, z, t) and the free-surface η (x, y, t)

alone, which satisfy the system of Euler equations :

∇.u + wz = 0, (A.1)

ut + (u.∇)u + wuz +∇p = 0, (A.2)

wt + u.∇w + wwz + pz = −g, (A.3)

where u = (u, v) is the horizontal velocity and ∇ = (∂x, ∂y) denotes the horizontal gradient
operator.

Along with the conservation of mass and momentum, the fluid has to satisfy dynamic and
kinematic boundary conditions at the free-surface:

ηt + u.∇η = w, z = η (x, y, t) . (A.4)

p = 0, z = η (x, y, t) . (A.5)

And the impermeability condition (i.e., the fluid particles cannot penetrate the solid boundary)
at the seabed:

ht + u.∇h+ w = 0, z = −h (x, y, t) . (A.6)

Dimensionless variables

We consider the following length scales: the characteristic water depth d, wavelength l, and wave
amplitude a. The dimensionless independent variables can be introduced as follows:

x∗ =
x

l
, y∗ =

y

l
, z∗ =

z

d
, t∗ =

√
gd

l
t.

The dependent variables are scaled as:

u∗ =
u√
gd
, v∗ =

v√
gd
, w∗ =

l

d
√
gd
w,

h∗ =
h

d
, η∗ =

η

a
, p∗ =

p

gd
.
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The scaled Euler equations are expressed as:

∇.u + wz = 0, (A.7)

ut + (u.∇)u + wuz +∇p = 0, (A.8)

µ2 (wt + u.∇w + wwz) + pz = −1. (A.9)

For simplicity we remove the asterisk symbol ∗. Similarly, the boundary condition at the free
surface and bottom becomes:

ε (ηt + u.∇η) = w, z = εη (x, y, t) , (A.10)

p = 0, z = εη (x, y, t) , (A.11)

ht + u.∇h+ w = 0, z = −h (x, y, t) . (A.12)

The parameters ε = a
d and µ = d

l are measures of nonlinearity and frequency dispersion, respec-
tively.

Long wave approximation

Under the long wave assumption, we introduce the total water depth variable H (x, y, t) =

εη (x, y, t) + h (x, y, t) and the velocity variable ū (x, y, t), which is supposed to be a close ap-
proximation of the horizontal velocity of Euler equations u (x, y, z, t). The reference velocity ū
can be taken as the depth-averaged velocity:

ū (x, y, t) =
1

H (x, y, t)

∫ εη

−h
u (x, y, z, t) dz. (A.13)

Another popular choice for the velocity variable consists in taking the the horizontal velocity at
certain surface z = Z (x, y, t):

ū (x, y, t) = u
(
x, y,Z (x, y, t) , t

)
. (A.14)

Under the long wave approximations, we assume that the reference velocity ū approximates the
exact velocity u to the order O

(
µ2
)
:

u (x, y, z, t) = ū (x, y, t) + µ2ũ (x, y, z, t) . (A.15)

Continuity equation

We integrate the continuity equation (Eq. (A.7)) over the total water depth:∫ εη

−h
∇.u dz +

∫ εη

−h
wz dz = 0,

∇.

[∫ εη

−h
u dz

]
− u|z=εη∇. [εη]− u|z=−h∇. [h] + w|z=εη − w|z=−h = 0.

By using the boundary conditions Eqs. (A.10) and (A.12) and replacing u with its expression
(Eq. (A.15)), we get:
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∇. (Hū) + µ2∇.

[∫ εη

−h
ũ dz

]
+ εηt + ht = 0.

The depth-integrated continuity equations becomes:

Ht +∇. (Hū) = −µ2∇. (HU) , (A.16)

where:

U =
1

H

∫ εη

−h
ũ dz. (A.17)

Pressure field

We express the vertical velocity variable w (x, y, z, t) by integrating the continuity equation over
the vertical coordinate and applying the bottom boundary condition (Eq. (A.12)):∫ z

−h
∇.u dz +

∫ z

−h
wz dz = 0,

∇.

[∫ z

−h
u dz

]
− u|z=−h∇. [h] + w (x, y, z, t)− w|z=−h = 0,

∇.
[
(z + h) ū

]
+ µ2∇.

[∫ z

−h
ũ dz

]
+ w (x, y, z, t) + ht = 0.

We can therefore write the vertical velocity as:

w (x, y, z, t) = −ht − ū∇h− (z + h)∇.ū +O
(
µ2
)
. (A.18)

For the sake of simplicity, we introduce the material derivative D such as:

D [.] = [.] + ū.∇ [.] , D2 [.] = D
[
D[.]

]
(A.19)

Eq. (A.18) becomes:

w (x, y, z, t) = −Dh− (z + h)∇.ū +O
(
µ2
)
. (A.20)

To express the pressure field p (x, y, z, t), we integrate the vertical momentum equation (Eq.
(A.9)) over the vertical coordinate from an arbitrary elevation z to the free surface:

µ2
∫ εη

z
[Dw + wwz] dz − p (x, y, z, t) = −εη + z,

p (x, y, z, t) = µ2
∫ εη

z
[Dw + wwz] dz − z + εη. (A.21)
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We rewrite the term Dw + wwz using the expression given in Eq. (A.20):

Dw = D

[
−Dh− (z + h)∇.ū +O

(
µ2
)]

= −D2h− Dh∇.ū − (z + h)D∇.ū +O
(
µ2
)
,

wwz =

(
−Dh− (z + h)∇.ū +O

(
µ2
))(

−∇.ū +O
(
µ2
))

= Dh∇.ū + (z + h) (∇.ū)2 +O
(
µ2
)
,

Dw + wwz = − (z + h)
(
D∇.ū − (∇.ū)2

)
− D2h+O

(
µ2
)

(A.22)

= − (z + h)R1 − R2 +O
(
µ2
)
.

We define the two variables R1 and R2 such as:

R1 = D∇.ū − (∇.ū)2 , (A.23)

R1 = D2h. (A.24)

By substituting the last term into Eq.(A.21) and integrating over the vertical direction, we derive
the following expression for the pressure field:

p (x, y, z, t) = µ2
∫ εη

z

[
− (z + h)R1 − R2 +O

(
µ2
)]

dz − z + εη,

p (x, y, z, t) = H − (z + h)− µ2

(H2

2
− (z + h)2

2

)
R1 +

(
H − (z + h)

)
R2

+O
(
µ4
)
.

(A.25)

We define the non-hydrostatic pressure field P as:

P (x, y, z, t) = µ2

(H2

2
− (z + h)2

2

)
R1 +

(
H − (z + h)

)
R2

+O
(
µ4
)
. (A.26)

Horizontal velocity field

In order to obtain the evolution of the approximate horizontal velocity ū (x, y, t) we integrated
over the total water depth the horizontal momentum equation Eq. (A.8):∫ εη

−h

[
ut + (u.∇)u + wuz

]
dz +

∫ εη

−h
∇p dz = 0,∫ εη

−h

[
ut + (u.∇)u

]
dz +

∫ εη

−h
wuz dz +∇

∫ εη

−h
p dz − p|z=−h∇h = 0.
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The pressure variable p (x, y, z, t) can be removed from the last equation using the approximation
in Eq. (A.25):

∇
∫ εη

−h
p dz = H∇H − µ2

[
∇
(
1

3
H3R1

)
+∇

(
1

2
H2R2

)]
+O

(
µ4
)
,

p|z=−h∇h = H∇h− µ2
[
1

2
H2R1 +HR2

]
∇h+O

(
µ4
)
.

Therefore

∇
∫ εη

−h
p dz − p|z=−h∇h (A.27)

= H∇ (εη)− µ2

[
∇
(
1

3
H3R1 +

1

2
H2R2

)
−H

(
1

2
HR1 + R2

)
∇h

]
+O

(
µ4
)
.

Then, by using Eq. (A.20) for the vertical velocity w and Eq. (A.14) for the horizontal velocity
u, we can write∫ εη

−h
wuz dz =

∫ εη

−h

(
−Dh− (z + h)∇.ū +O

(
µ2
))[

ū + µ2ũ
]
z
dz

= −µ2
∫ εη

−h

(
Dh+ (z + h)∇.ū

)
ũz dz +O

(
µ4
)

= −µ2
(
ũ|z=εη − ũ|z=−h

)
Dh− µ2∇.ū

∫ εη

−h

[
(z + h) ũ

]
z
dz + µ2∇.ū

∫ εη

−h
ũ dz +O

(
µ4
)

= −µ2
(
ũ|z=εη − ũ|z=−h

)
Dh− µ2(∇.ū)Hũ|z=εη + µ2(∇.ū)HU +O

(
µ4
)
.

Finally, the integral term can be written as:∫ εη

−h
wuz dz = µ2

[
(Dh) ũ|z=−h − (Dh+H∇.ū) ũ|z=εη +HU∇.ū

]
+O

(
µ4
)
. (A.28)

We then detail the local and convective acceleration terms:

ut + (u.∇)u =
[
ū + µ2ũ

]
t
+
(
(ū + µ2ũ).∇

)(
ū + µ2ũ

)
= ūt + µ2ũt + (ū.∇)ū + µ2(ū.∇)ũ + µ2(ũ.∇)ū +O

(
µ4
)

= Dū + µ2Dũ + µ2(ũ.∇)ū +O
(
µ4
)
.

Integrating the last expression along the total water depth yields to:∫ εη

−h
ut + (u.∇)u dz = HDū + µ2

∫ εη

−h
Dũ dz + µ2

∫ εη

−h
(ũ.∇)ū dz +O

(
µ4
)

(A.29)

= HDū + µ2
[
D (HU)− D (εη) ũ|z=εη − Dh.ũ|z=−h

]
+ µ2H (U.∇) ū +O

(
µ4
)
.
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Adding the two expressions in Eqs. (A.28) and (A.29) yields to:∫ εη

−h
ut + (u.∇)u + wuz dz = HDū + µ2

[
D (HU) +H (U.∇) ū +HU∇.ū

]
(A.30)

− µ2
[
DH +H∇.ū

]
︸ ︷︷ ︸

(∗)

ũ|z=εη +O
(
µ4
)
.

Using the mass conservation equation (Eq. (A.16)), we can rewrite the term (∗) as:

DH +H∇.ū = Ht + ū.∇(H) +H∇.ū = Ht +∇ (Hū) = −µ2∇. (HU) = O
(
µ2
)
.

Therefore:

µ2
[
DH +H∇.ū

]
ũ|z=εη = O

(
µ4
)
.

By adding Eqs. (A.27) and (A.30) , we derive the depth-integrated form of the horizontal
momentum equation:

HDū +H∇ (εη) = µ2

[
∇
(
1

3
H3R1 +

1

2
H2R2

)
−H

(
1

2
HR1 + R2

)
∇h

]
(A.31)

− µ2
[
D (HU) +H (U.∇) ū +HU∇.ū

]
+O

(
µ4
)
.

We divide the last expression by H and neglect terms of O
(
µ4
)

ūt + (ū.∇)ū + ε∇η =
µ2

H

[
∇
(
1

3
H3R1 +

1

2
H2R2

)
−H

(
1

2
HR1 + R2

)
∇h

]
(A.32)

− µ2

H

[
D (HU) +H (U.∇) ū +HU∇.ū

]
.

Using the non-hydrostatic pressure field formulation in Eq. (A.26), we introduce two new vari-
ables: the depth-integrated non-hydrostatic pressure ℘ and non-hydrostatic pressure trace ϱ at
the bottom:

℘ (x, y, t) =

∫ εη

−h
P (x, y, z, t) dz = µ2

(1
3
H3R1 +

1

2
H2R2

)
, (A.33)

ϱ (x, y, t) = P (x, y,−h, t) = µ2
(1
2
H2R1 +HR2

)
. (A.34)

Finally, we substitute the two pressure terms into the momentum equation:

ūt + (ū.∇)ū + ε∇η =
∇℘− ϱ∇h

H
− µ2

H

[
D (HU) +H (U.∇) ū +HU∇.ū

]
.
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Summary

We have derived a base model by depth-integrating the Euler equations under the long wave
assumption (Eq. (A.14)):

Ht +∇. (Hū) = −µ2∇. (HU) , (A.35)

ūt + (ū.∇)ū + ε∇η =
∇℘− ϱ∇h

H
− µ2

H

[
D (HU) +H (U.∇) ū +HU∇.ū

]
. (A.36)

It is worth noting that by setting µ = 0 in Eqs. (A.35) and (A.36), we can directly obtain the
well-known Shallow Water Equations. In order to close the last system of equations, we have to
express the variable U in terms of the other dynamic variables η and ū. Since the derivation
procedure of the base model has been kept quite general, this model can be used to derive many
well-established equations (see Khakimzyanov et al. [2020]). In this chapter, we focus on the
derivation of SGN and Nwogu equations.

A.2 Serre–Green–Naghdi Equations

The celebrated SGN equations can be obtained by adopting the simplest closure possible:

U ≡ 0, (A.37)

This closure is based on the assumption that the horizontal velocity variable ū is chosen as the
depth-averaged velocity:

1

H

∫ εη

−h
u dz = ū + U → U = 0

By substituting the proposed closure into Eqs. (A.35) and (A.36), we obtain the SGN equations:

Ht +∇. (Hū) = 0, (A.38)

ūt + (ū.∇)ū + ε∇η =
∇℘− ϱ∇h

H
. (A.39)

A.3 Nwogu Equations

Another approach to specifying the variable U and thus closing the system of equations is based
on employing the partial irrotationality condition. Namely, we assume that only two horizontal
components of vorticity vanish:

vz − wy = 0, wx − uz = 0. (A.40)

We can write this condition in a vector form with non-dimensional variables:

uz = µ2∇w. (A.41)
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We integrate the last formula over the vertical coordinate:∫ z

−h
uz dz = µ2

∫ z

−h
∇w dz.

We substitute u and w with the expressions given in Eqs. (A.14) and (A.20):

µ2
∫ z

−h
ũz dz = µ2

∫ z

−h
∇
[
− Dh− (z + h)∇.ū

]
dz +O

(
µ4
)
,

ũ (x, y, z, t)− ũ|z=−h = − (z + h)∇ (Dh)−
∫ z

−h
∇h∇.ū dz −

∫ z

−h
(z + h)∇(∇.ū) dz +O

(
µ2
)
,

ũ (x, y, z, t) = ũ|z=−h − (z + h)
[
∇ (Dh) +∇h∇.ū

]
− (z + h)2

2
∇ (∇.ū) +O

(
µ2
)
. (A.42)

Consequently, the horizontal velocity can be written as:

u (x, y, z, t) = ū + µ2
[
(z + h)A +

1

2
(z + h)2 B + C

]
+O

(
µ4
)
, (A.43)

where:

A (x, y, t) = −∇ (Dh)−∇h∇.ū,
B (x, y, t) = −∇ (∇.ū) ,
C (x, y, t) = ũ|z=−h.

We define the reference velocity ū as the trace of the horizontal velocity u at a certain elevation:
zα:

ū (x, y, t) ≡ u (x, y, zα, t) . (A.44)

Consequently, we have:

C (x, y, t) = − (zα + h)A − 1

2
(zα + h)2 B. (A.45)

Thus, coefficient C can be removed from Eq. (A.43) to give the following representation:

u (x, y, z, t) = ū + µ2

[
(z − zα)A +

1

2

[
(z + h)2 − (zα + h)2

]
B

]
+O

(
µ4
)
. (A.46)

The variable U can therefore be expressed as:

U (H, ū) =
1

H

∫ εη

−h

[
(z − zα)A +

1

2

[
(z + h)2 − (zα + h)2

]
B
]
dz +O

(
µ2
)
,

U (H, ū) =
[H
2

− (zα + h)
]
A +

[1
6
H2 − 1

2
(zα + h)2

]
B +O

(
µ2
)
. (A.47)

By substituting the expression of U into the base model (Eqs. (A.35) and (A.36)), we obtain the
fully nonlinear Nwogu’s equations. A time-varying reference elevation zα is chosen to optimize
the dispersive and nonlinear behavior of the equations as suggested by Kennedy et al. [2001]:

zα = βh+ (1 + β) εη, (A.48)

where β = −0.531 (Nwogu [1993]).
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A.3.1 Weakly-nonlinear equations

It is important to note that the small amplitude assumption was never used. Therefore, the base
model and the derived Nwogu and SGN equations are fully nonlinear. In the present section, we
derive the standard Nwogu’s equations (weakly nonlinear) from the fully nonlinear model (Eqs.
(A.35) and (A.36)). In this case, we assume that the non-linearity and the dispersion parameters
have approximately the same order of magnitude:

ε = O
(
µ2
)
. (A.49)

Under the small amplitude condition, the variable U becomes:

U (h, ū) = −
[h
2
+ zα

]
A +

[h2
6

+
(zα + h)2

2

]
B +O

(
µ2
)
. (A.50)

We consider the case of non-varying water depth: ht = 0 and we express the variable A under
this assumption:

A (x, y, t) = −∇ (Dh)−∇h∇.ū
= −∇ (ū.∇h)−∇h∇.ū
= −∇

(
∇. (hū)

)
+∇ (h∇.ū)−∇h∇.ū

= −∇
(
∇. (hū)

)
+ h∇ (∇.ū) .

Thus, we can write U as:

U (h, ū) =

[
h

2
+ zα

]
∇
(
∇. (hū)

)
−

[
h2

6
+

(zα + h)2

2
− h

(
h

2
+ zα

)]
∇ (∇.ū) +O

(
µ2
)
,

(A.51)

U (h, ū) =

[
h

2
+ zα

]
∇
(
∇. (hū)

)
+

[
z2α
2

− h2

6

]
∇ (∇.ū) +O

(
µ2
)
. (A.52)

Substituting the last expression into the continuity equation Eq.(A.35) and taking into account
the weakly nonlinear assumption yields:

Ht +∇. (Hū) +∇.
{[
zα +

h

2

]
h∇
(
∇. (hū)

)
+
[z2α
2

− h2

6

]
h∇ (∇.ū)

}
= 0, with zα = βh.

(A.53)

By neglecting all the nonlinear dispersive terms in the momentum equations, the Nwogu mo-
mentum equation can be written as:

ūt + (ū.∇)ū + ε∇η =
µ2

H

∇(h3
3

R1 +
h2

2
R2

)
− h

(
h

2
R1 + R2

)
∇h− (hU)t


︸ ︷︷ ︸

(∗∗)

, (A.54)
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where:

R1 = ∇.(ūt), R2 = ūt.∇h. (A.55)

By substituting the expression of U into the term (∗∗), we get:

(∗∗)
µ2

=
h

2
∇
(
∇.(hūt)

)
− h2

6
∇ (∇.ūt)−

(
zα +

h

2

)
∇
(
∇.(hūt)

)
−

(
z2α
2

− h2

6

)
∇ (∇.ūt)

= −
[
zα∇

(
∇.(hū)

)
+
z2α
2
∇ (∇.ū)

]
t
.

Thus, we derive the momentum equation proposed by Nwogu [1993]:

ūt + (ū.∇)ū + g∇η +

{
z2α
2
∇(∇ · ū) + zα∇

[
∇ · (hū)

]}
t

= 0. (A.56)
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In this appendix, we derive the elliptic equation Eq. (3.6). and the relations Eq. (3.9) from the
standard form of the SGN equations.

The 1-dimensional SGN momentum equation is written in a non-conservative form as:

ut + uux + gηx =
℘x − ϱhx

H
, (B.1)

where:

℘ =
H3

3
R1 +

H2

2
R2, (B.2)

ϱ =
H2

2
R1 +HR2. (B.3)

The terms R1 and R2 are expressed as it follows:

R1 = uxt + uuxx − (ux)
2 , (B.4)

R2 = uthx + u [uhx]x . (B.5)

Using the definitions in Eqs. (B.2) and (B.3), we express ϱ in terms of ℘ and R2:

ϱ =
3

2H
℘+

H

4
R2. (B.6)

By taking the momentum equation into account (Eq. (B.1)), we rewrite the expression of R2:

R2 = uthx + u [uhx]x (B.7)

= hx (ut + uux) + u2hxx

= hx

(
−gηx +

℘
x − ϱhx
H

)
+ u2hxx

=
(
−gηxhx + u2hxx

)
+℘

x
hx
H

− ϱ
h2x
H

= R +℘
x
hx
H

− ϱ
h2x
H
.

We then replace this new expression of R2 (Eq. (B.7)) into Eq. (B.6):

ϱ =
3

2H
℘+

H

4

(
R +℘

x
hx
H

− ϱ
h2x
H

)
(B.8)

=
3

2H
℘+

H

4
R +

hx
4
℘

x −
h2x
4
ϱ.

We finally derive the expression that relates the depth-averaged non-hydrostatic pressure ℘ to
the non-hydrostatic pressure at the bottom ϱ:

ϱ

(
1 + h2x

4

)
=

3

2H
℘+

H

4
R +

hx
4
℘

x. (B.9)
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Therefore:

ϱ =
1

Y

[
6℘
H

+HR +℘
xhx

]
. (B.10)

The derivation of the elliptic equations Eq. (3.9) is somehow similar. From Eqs. (B.2) and (B.3)
we derive another expression relating the two non-hydrostatic pressures ℘ and ϱ:

℘ =
H

2
ϱ+

H3

12
R1. (B.11)

By using the momentum equation (Eq. (B.1)), we derive another expression for the variable R1:

R1 = uxt + uuxx − (ux)
2 (B.12)

= [ut + uux]x − 2 (ux)
2

=

[
−gηx +

℘
x − ϱhx
H

]
x

− 2 (ux)
2 .

We then rewrite Eq. (B.11) as follows:

[
−gηx +

℘
x − ϱhx
H

]
x

− 2 (ux)
2 +

6

H2
ϱ− 12

H3
℘ = 0. (B.13)

By substituting the expression of ϱ (Eq. (B.10)) into the last equation, we get:

−gηxx +

[
℘

x

H

]
x

−

 hx
HY

(
6℘
H

+HR +℘
xhx

)
x

− 2 (ux)
2 +

6

H2Y

(
6℘
H

+HR +℘
xhx

)
(B.14)

− 12

H3
℘ = 0.

We assemble all the terms with ℘ with second-order derivatives (terms in blue):

[
℘

x

H

]
x

−

[
h2x
HY

℘
x

]
x

=

[(
Y − h2x

)℘
x

HY

]
x

= 4

[
℘

x

HY

]
x

. (B.15)

Similarly, we put together all the terms that contain ℘ with first-order derivatives (terms in
blue):

−
[
6hx
H2Y

℘
]
x

+
6hx
H2Y

℘
x = −

[
6hx
H2Y

]
x

℘. (B.16)
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Finally, we rewrite the terms that contain the variable ℘ with no space derivatives (terms in
green):

36

H3Y
℘− 12

H3
℘−

[
6hx
H2Y

]
x

℘ = −6

(
2 (Y − 3)

H3Y
+

[
hx
H2Y

]
x

)
℘. (B.17)

We then add all the terms left in Eq. (B.14) together (source terms):

−gηxx −
[
hxR

Y

]
x

− 2 (ux)
2 +

6R

HY
=

[
gηx +

Rhx
Y

]
x

− 6R

HY
+ 2u2x = −F. (B.18)

Adding all the terms in Eqs. (B.15), (B.17), and (B.18) yields the final elliptic equation:

4

[ ℘x

HY

]
x

− 6

[
2

H3
.
Y − 3

Y
+

[
hx
H2Y

]
x

]
℘ = F. (B.19)
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C.1 Improved SGN Equations

Several extensions of the classical SGN equations have been proposed to improve the dispersion
properties of the equations and therefore extend their range of applicability. This can be done
by introducing high-order terms into the equations (Madsen et al. [1991]). Another approach is
based on introducing a free parameter into the model, which is subsequently selected to improve
the desired properties (e.g., Antunes Do Carmo [2013]; Clamond et al. [2017]; Dias and Milewski
[2010]). Similar to the latter approach, we improve the dispersive properties of the SGN model
by including a free parameter in the elliptic equation. The modified equations can be obtained
by replacing the elliptic equations (i.e., Eq. (3.6)) by:

4 (1 + δ)

[ ℘x

HY

]
x

− 6

[
2

H3
.
Y − 3

Y
+

[
hx
H2Y

]
x

]
℘ = F, (C.1)

where δ is a free parameter at our disposal. It should be noted that the original SGN equations
can be retrieved by taking δ = 0. The modified SGN system is a regular perturbation of the
original one. We thus expect the solution of the modified SGN equations to satisfy the following
condition:

Hδ −H = O(δ), uδ − u = O(δ), ℘δ −℘ = O(δ).

The linearized modified SGN equations on a flat bottom become:

ηx + bux = 0, (C.2)

ut + gηx =
℘x

b
, (C.3)

℘xx −
3

b3
= gbηxx, (C.4)

where b is the constant water depth. We take the plane wave solutions of the form:

η = η0e
i(kx−ωt), u = u0e

i(kx−ωt), ℘ = ℘0e
i(kx−ωt), (C.5)

where k is wave number and ω is the wave frequency. We substitute these solutions into the
linearized equations Eq. (C.4) we get:

A (−iω, ik)

 η

u

℘

 =

 0

0

0

 , (C.6)

where

A(−iω, ik) =

 −iω ibk 0

igk −iω −ikb
ghk2 0 −(1 + δ)k2 − 3

b2

 . (C.7)

Non-zero solutions are obtained if det
[
A(−iω, ik)

]
= 0, which yields the dispersion relation:
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−b
3gk4δ − b2k2δω2 − b2k2ω2 + 3bgk2 − 3ω2

b2
= 0. (C.8)

The phase celerity of the modified SGN is thus:

CSGN,δ(kb) =
ω

k
=
√
gb

√
(kb)2δ + 3

(1 + δ)(kb)2 + 3
. (C.9)

It is important to highlight that we can retrieve the exact dispersion properties of Nwogu’s
equations by taking δ = − (3α+ 1)

C.2 Optimized Equations

We optimize the free parameter δ to match the phase celerity of Airy theory. CAiry is given by:

CAiry(kb) =
√
gb

√
tanh(kb)

kb
. (C.10)

We set x = kb and, for a given xmax, we consider the following function:

J (δ) =

(
1

xmax

∫ xmax

0

(
CSGN,δ(x)− CAiry(x)

)2
dx

)1/2

. (C.11)

We use a uniform subdivision of the interval [0, xmax] with N points and the previous function
is then minimized:

J(δ) =

√√√√ 1

N

N∑
j=1

(
CSGN,δ(xj)− CAiry(xj)

)2
. (C.12)

The Nelder-Mead algorithm is then used with a = 0 as an initial guess to minimize J . Figure
1 shows the variation of the optimal free parameter δmin and the corresponding J values with
respect to xmax used in the optimization.
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Figure C.1: Variation of δmin and J(δmin) for differnt xmax.

For small kb values, the optimal dispersion property of the modified SGN equations is achieved
by taking δ = 0.2

C.2.1 Optimized phase celerity for a single kb

The optimization results from the previous subsection are very useful for problems involving
several spatial frequencies. In the case where only one frequency kb = x0 is fixed, we can derive
an optimal δ0 such as:

CSGN,δ0(x0) = CAiry(x0). (C.13)

The previous equation can be analytically solved and leads to the following exact solution:

δ0 =
x20 exp(2x0)− 3x0 exp(2x0)− x20 + 3 exp(2x0)− 3x0 − 3

((x0 exp(2x0)− exp(2x0) + x0 + 1)x20
. (C.14)



200 Appendix C. Modified SGN Equations with Improved Dispersion

It is worth noting that, as x0 → 0, we obtain:

δ0 =
1

5
+O(x0). (C.15)

We again recover that δmin = 1/5 is the optimal value for small enough kb.

C.2.2 Group celerity

We investigate the group velocity of the modified SGN system. The group celerity is defined as:

Cg = ∂kω = ∂k(kC) = k∂kC + C. (C.16)

For the Airy wave theory, the group velocity is defined as:

Cg,Airy(kb) =

√
gb

2

sinh(kb) cosh(kb) + kb

cosh(kb)3/2
√
kb sinh(kb)

. (C.17)

The group velocity of the modified SGN equations can be expressed as:

Cg,SGN,δ =
√
gb

(kb)4δ2 + (kb)4δ + 6(kb)2δ + 9

((kb)2δ + (kb)2 + 3)3/2
√
(kb)2δ + 3

. (C.18)

Similar to the approach previously used to optimize the phase celerity, we derive the value δmin,
which leads to the optimal improvement of the group velocity for values of x = kb between
[0, xmax].

Figure. C.2 shows the variation of the group velocity with respect to kb for different optimization
intervals [0, xmax]
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Figure C.2: Cg,SGN,δmin
/Cg,Airy for several values of xmax. Up Left: xmax = π, Up Right: xmax = 2π,
Bottom Left: xmax = 4π, Bottom Right: xmax = 8π.

C.3 Preliminary Numerical Results

C.3.1 Sine wave on flat bottom

To better illustrate the effects of the improved dispersion in the modified SGN equations, we
generate and propagate a linear monochromatic wave (ab = 0.01 ≪ 1) in a long flat channel.
The results from the modified model are then compared to the fully dispersive Airy theory.
The generation of the waves inside the computational domain is achieved through the internal
wavemaker approach proposed by Wei et al. [1999]. For each run, the models are executed with
a different values of kb = 3, 5, and 10. Based on Eq. (C.14) , we choose delta which matches
Airy wave theory for each value of kb.

The grid size is determined for each test such that ζ = λ
∆x = 20. The results are shown in Figure.

C.3

The model is stable for high kb values and accurately reproduces a particular monochromatic
wave with its appropriate δ value.



202 Appendix C. Modified SGN Equations with Improved Dispersion

Figure C.3: The black line describes the analytical solution from Airy wave theory and the blue line
represents the modified SGN solution

C.3.2 Periodic wave propagation over a submerged bar

We repeat the benchmark test described in Chapter 1. We compute the numerical solution with
both the standard and modified SGN equations. This test highlights the improved numerical
results with the modified SGN equations due to the enhanced linear dispersion. See Figure. C.4.
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Figure C.4: Computation of wave transformation over a submerged bar. Black circles denote laboratory data
from Beji and Battjes [1993]. The red lines are time series from the original SGN solution and blue lines

represents the results of the improved SGN solution (δNwogu = 0.17)
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D.1 Governing Equations

We consider the following system of 2D SGN equations, which describes the incompressible ho-
mogeneous fluid flow in a layer bounded from below by the impermeable bottom y = −h (x, y, t)
and above by the free surface y = η (x, y, t):

ηt +∇.
[
(η + h)U

]
= 0, (D.1)

Ut + (U.∇)U + h∇η =
∇℘− ϱ∇h

H
, (D.2)

∇.

[
∇℘
H

−
(
∇℘.∇h

)
∇h

HY

]
− 6

[
2

H3
.
Y − 3

Y
+∇.

(
∇h
H2Y

)]
℘ = F. (D.3)

We rewrite the elliptic equation with directional derivatives:

[
℘

x

H
−
(℘

xhx +℘
yhy
)
hx

HY

]
x

+

[
℘

y

H
−
(℘

xhx +℘
yhy
)
hy

HY

]
y

(D.4)

−6

[
2

H3
.
Y − 3

Y
+

[
hx
H2Y

]
x

+

[
hy
H2Y

]
y

]
℘ = F, (D.5)

where: Y = 4 + |∇h|2 = 4 + h2x + h2y

F and R are defined for non-moving topography as:

F = ∇.
[
g∇η + R∇h

Y

]
− 6R

HY
+ 2 (∇.U)2 − 2

∣∣∣∣∣ux uy
vx vy

∣∣∣∣∣ (D.6)

=

[
gηx +

Rhx
Y

]
x

+

[
gηy +

Rhy
Y

]
y

− 6R

HY
+ 2

(
ux + vy

)2 − 2
(
uxvy + uyvx

)
,

R = −g∇η.∇h+
[
(U.∇)∇h

]
.U (D.7)

= −g
(
ηxhx + ηyhy

)
+ u2hxx + 2uvhxy + v2hyy. (D.8)

Finally, The non-hydrostatic pressure at the bottom ϱ (x, y, t) can be expressed through℘ (x, y, t)

in the following way:

ϱ (x, y, t) =
1

Y

[
6℘
H

+HR +∇℘.∇h

]
(D.9)

=
1

Y

[
6℘
H

+HR +℘
xhx +℘

yhy

]
.
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Figure D.1: Definition sketch.

D.2 Elliptic Equation Discretization

The advantage of this form of SGN equations is that the SWE is a subset of the problem and
can be independently solved with efficient Shallow Water solvers.

Here we present the numerical solution of the elliptic solver on a staggered grid. To simply the
discretization, we introduce the variables A, B and C and we write the elliptic problem as:

Ax + By − C = F, (D.10)

where:

A =
℘x

H
−
(℘xhx +℘yhy

)
hx

HY
=
Y − h2x
HY

℘x −
hxhy
HY

℘y, (D.11)

B =
℘y

H
−
(℘xhx +℘yhy

)
hy

HY
=
Y − h2y
HY

℘y −
hxhy
HY

℘x, (D.12)

C = 6

[
2

H3
.
Y − 3

Y
+

[
hx
H2Y

]
x

+

[
hy
H2Y

]
y

.

]
℘ (D.13)

We integrate Eq. (D.10) over one grid cell vi =
[
xi− 1

2
,j , xi+ 1

2
,j

]
×
[
yi,j− 1

2
, yi,j+ 1

2

]
:∫∫

vi

Ax dx dy +

∫∫
vi

By dx dy −
∫∫

vi

C dx dy =

∫∫
vi

Fdx dy, (D.14)

To simplify the notation we introduce the variables

α =
Y − h2x
HY

, β =
Y − h2y
HY

, γ = −hxhy
HY

. (D.15)
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We discretize the elliptic problem term by term:

∫∫
vi

Ax dx dy = ∆x∆y

[α℘x

]
i+ 1

2
,j
−
[
α℘x

]
i− 1

2
,j

∆x
+

[
γ℘y

]
i+1,j

−
[
γ℘y

]
i−1,j

2∆x

 (D.16)

=
∆y
(
αi+1,j + αi,j

)
2∆x

℘
i+1,j −

∆y
(
αi+1,j + 2αi,j + αi−1,j

)
2∆x

℘
i,j +

∆y
(
αi,j + αi−1,j

)
2∆x

℘
i−1,j

+
γi+1,j

4
℘

i+1,j+1 −
γi+1,j

4
℘

i+1,j−1 −
γi−1,j

4
℘

i−1,j+1 +
γi−1,j

4
℘

i−1,j−1.

∫∫
vi

By dx dy = ∆x∆y

[β℘y

]
i,j+ 1

2
−
[
β℘y

]
i,j− 1

2

∆y
+

[
γ℘x

]
i,j+1

−
[
γ℘x

]
i,j−1

2∆y

 (D.17)

=
∆x
(
βi,j+1 + βi,j

)
2∆y

℘
i,j+1 −

∆x
(
βi,j+1 + 2βi,j + βi,j−1

)
2∆y

℘
i,j +

∆x
(
βi,j + βi,j−1

)
2∆y

℘
i,j−1

+
γi,j+1

4
℘

i+1,j+1 −
γi,j+1

4
℘

i−1,j+1 −
γi,j−1

4
℘

i+1,j−1 +
γi,j−1

4
℘

i−1,j−1.

∫∫
vi

C dx dy =

{
12∆x∆y

H3
i,j

.
Yi,j − 3

Yi,j
+3∆y

([
hx
H2Y

]
i+1,j

−
[
hx
H2Y

]
i−1,j

)
(D.18)

+3∆x

([
hy
H2Y

]
i,j+1

−
[
hy
H2Y

]
i,j−1

)}
℘

i,j .

We define the variable K such as:

∫∫
vi

C dx dy = Ki,j
℘

i,j . (D.19)

Let’s consider N and M the numbers of grids in the x- and y- directions, respectively.

The discretization of the elliptic problem Eq. (D.3) can be expressed with a 9-point stencil in
the inner cells of the domain ( i.e., i = 1, ..., N − 2 and j = 1, ...,M − 2):

aij℘i+1,j+1 + bij℘i+1,j + cij℘i+1,j−1 + dij℘i,j+1 + eij℘i,j + fij℘i,j−1 (D.20)

+ gij℘i−1,j+1 + hij℘i−1,j + kij℘i−1,j−1 = Fi,j ,

where:
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aij =
γi+1,j + γi,j+1

4
, (D.21)

bij =
∆y
(
αi+1,j + αi,j

)
2∆x

, (D.22)

cij = −γi+1,j + γi,j−1

4
, (D.23)

dij =
∆x
(
βi,j+1 + βi,j

)
2∆y

, (D.24)

eij = −
∆y
(
αi+1,j + 2αi,j + αi−1,j

)
2∆x

−
∆x
(
βi,j+1 + 2βi,j + βi,j−1

)
2∆y

− Ki,j , (D.25)

fij =
∆x
(
βi,j + βi,j−1

)
2∆y

, (D.26)

gij = −γi−1,j + γi,j+1

4
, (D.27)

hij =
∆y
(
αi,j + αi−1,j

)
2∆x

, (D.28)

kij =
γi−1,j + γi,j−1

4
. (D.29)

Figure D.2: Stencil dependency in the elliptic solver

System (D.20) may be written in matrix form as follows:

Ax = b, (D.30)

The unknown vector x contains all depth-averaged non-hydrostatic pressures in the numerical
cells ℘i,j .
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D.3 Reflective Boundary condition

We extend the 1D boundary conditions described in Khakimzyanov et al. [2017] to 2D. We
consider a Cartesian computational domain D = [0, Lx] ×

[
0, Ly

]
. The following mixed-type

boundary conditions can be applied to the elliptic problem:

[
℘

x − ϱhx
H

− gηx

]x=Lx

x=0

= 0, (D.31)

[
℘

y − ϱhy
H

− gηy

]y=Ly

y=0

= 0. (D.32)

These boundary conditions are obtained from the momentum equations by setting both the
velocity and the velocity gradient to zero at the boundaries. By replacing the value of ϱ (Eq.
(D.9)) into the boundary conditions, we get:

[
℘

x

H
−
(℘

xhx +℘
yhy
)
hx

HY
− 6

hx
H2Y

℘
]x=Lx

x=0

=

[
gηx +

Rhx
Y

]x=Lx

x=0

, (D.33)

[
℘

y

H
−
(℘

xhx +℘
yhy
)
hy

HY
− 6

hy
H2Y

℘
]y=Ly

y=0

=

[
gηy +

Rhy
Y

]y=Ly

y=0

. (D.34)
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E.1 Pierson-Moskowitz Spectrum

Various empirically-derived spectra are used to represent ocean waves. One of the simple ap-
proaches is the one proposed by Pierson Jr and Moskowitz [1964]. They assumed that for a
steady wind field over a long time and a large area, the waves would come into equilibrium with
the wind. Under this assumption, they derived the wave spectrum for the fully-developed sea as:

SPM (ω) =
αg2

ω5
exp

(
−β
(
ω0

ω

)4
)
, (E.1)

where α = 0.0081 is the Phillips constant. β = 0.74 , ω0 = g/U19.5, and U19.5 is the wind speed
at a height of 19.5m above the sea surface. For practical reasons, it has also become common
to relate the variables to the peak frequency fp instead of the wind speed:

SPM (f) = αg2(2π)−4f−5 exp

(
−5

4

(
fp
f

)4
)
. (E.2)

We can also express the significant wave height Hs in terms of peak frequency fp:

Hs =
0.162g

(2πfp)2
. (E.3)

This leads to the following two-parameter Pierson-Moskowitz spectrum (i.e., Bretschneider spec-
trum):

SB (f) =
5

16

f4p
f5
H2

s exp

(
−5

4

(
fp
f

)4
)
. (E.4)

E.2 JONSWAP Spectrum

Hasselmann et al. [1973], after analyzing data collected during the Joint North Sea Wave Obser-
vation Project (JONSWAP), found that the wave spectrum is never fully developed. It continues
to develop through non-linear, wave-wave interactions over very long times and distances. Hence,
an extra and somewhat artificial factor was added to the Pierson-Moskowitz spectrum in order
to improve the fit of their measurements. The JONSWAP spectrum is thus a Pierson-Moskowitz
spectrum multiplied by an extra peak enhancement factor γr :

SJ (f) = SPM (f) γr, (E.5)

SJ (f) = αg2(2π)−4f−5 exp

(
−5

4

(
fp
f

)4
)
γr, (E.6)

where
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r = exp

−1

2

(
f − fp
σfp

)2
 . (E.7)

Wave data collected during the JONSWAP experiment was used to determine the values for the
constants in the above equations:

γ = 3.3, σ =

0.07, f ⩽ fp.

0.09, f > fp.
(E.8)

E.3 TMA Spectrum

The JONSWAP spectrum was originally designed for developing seas in deep water. However,
the generation of waves in shallow areas is affected by the limited water depth. Hughes [1984]
proposed the following modified JONSWAP spectrum in shallow water (i.e., TMA spectrum). It
is based on the fact that low-frequency, or long-period, waves in shallow water have a restricted
wave height. Therefore, the spectrum is multiplied by a function for limited depth:

STMA (f) = SJ (f) Φ (2πf, h) , (E.9)

STMA (f) = αg2(2π)−4f−5Φ (2πf, h) exp

(
−5

4

(
fp
f

)4
)
γr, (E.10)

where:

Φ (2πf, h) =


0.5
(
2πf

√
h/g

)2
, 2πf

√
h/g < 1.

1− 0.5
(
2− 2πf

√
h/g

)2
, 1 ⩽ 2πf

√
h/g < 2.

1, 2πf
√
h/g ⩾ 2.

(E.11)

E.4 Illustration

We plot the three empirical spectra for the following wave parameters: Tp = 20 s and h = 20m:
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Figure E.1: Empirical spectra comparison
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