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ABSTRACT 
 
Characterizing the origins of human cognition is among the most critical quests that scholars have 
undertaken since centuries. The work presented in this dissertation stems from the intuition that 
delineating the initial set of representational primitives engaged by our brain at the beginning of life 
can provide relevant pieces of understanding to this puzzle. Previous investigations of infant 
perception have relied on habituation and oddball paradigms, thereby tackling discriminative skills 
rather than encoding mechanisms in their essence. Here, we combined high-density 
electroencephalography and multivariate pattern-analysis techniques to characterize how 3-month-
old infants encode speech, numerical quantity and musical pitch. The capability of multivariate-
pattern analysis to grasp macropopulation codes enabled us to gain direct access into the 
informational content represented by infant brains within ecological settings. In each study, we 
provide novel insights to solve long-lasting debates. To start with, whereas many researchers have 
rejected the possibility of authentic phonetic processing during the first semester, we document how 
the infant brain decomposes the speech input along orthogonal minimal dimensions, corresponding 
indeed to the phonetic features described by linguists. Second, during the last couple of decades, 
there has been a heated debate regarding the roots of numerical competence: classical theories have 
been challenged by the idea that a generalized magnitude system, conveying all sensory streams into 
holistic estimates, might correspond to the only type of quantification available in infancy. 
Oppositely, we show that 3-month-old brains extrapolate approximate numbers separately from 
non-numerical correlated variables and in a completely automatic manner. Strikingly, we could 
demonstrate the existence of an extraction mechanism transcends sensory modality, presentation 
format and wakefulness state, revealing a genuinely abstract numerical code. Lastly, we describe how 
young infants process musical pitch along its two psychological dimensions: height and chroma. 
Whereas the latter parameter is often considered as a higher-order product of Western culture, we 
demonstrate how, instead, pitch chroma corresponds to a basic organizing principle of neural 
responsivity that is observable very early in development. Overall, we have disclosed primitive 
encoding systems that are particularly advantageous for at least three reasons: they alleviate the 
burden of input dimensionality by compressing it; they overcome sensory variability by capturing 
invariance; they depict aspects of the world that are highly relevant, and thus adaptive, for the human 
being. Given these strategic characteristics, their early onset and the representational flexibility they 
afford, we believe that neural codes for phonetic features, approximate number and pitch quality 
provide an ideal ground for knowledge acquisition and can thus serve as catalyzers for the 
development of human cognition.   
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Chapter 1. GENERAL INTRODUCTION 

Starting from the first second of life, our brain receives a flow of sensory inputs that is staggering 
in its complexity. With 30,000 auditory fibers and 106 optic fibers (Tenenbaum et al., 2000), our 
nervous system transmits inputs that are not just impressively high-dimensional but also ever-
changing. As a matter of fact, although we typically see an object and hear a word many times, we 
effectively never encounter the same image or the same sound twice. Nevertheless, adult human 
beings come to possess a rich understanding of the world, an essential prerequisite for the 
functioning and well-being of both individuals and communities. Such a refined knowledge is 
obtained, flexibly exploited and constantly updated by means of a heterogeneous and well-organized 
system of mental abilities − our cognitive functions. How does the infant brain deal with the chaotic, 
overly complex sensory input? How can humans achieve, in just a few years, the optimal level of 
functionality that characterizes adult cognition?  

Comprehending the genesis of our mind is among the most critical quests philosophers and scientists 
have undertaken since centuries. Where shall we start in this strive? An idea common to modern 
psychological theories is that cognition depends on specialized structures that take the form of 
representational items, corresponding to internally-processed bodies of information somewhat akin 
to theories (Gopnik & Meltzoff, 1998; Carey & Spelke, 1994; Fodor, 1983). In philosophy of mind, 
classical computational theories conceive cognition as a system of algorithmically specifiable 
operations defined over structured mental representations (Horst, 2003). Thus, irrespective of the 
epistemological approach embraced, it would seem that any theory of cognitive development must 
begin with delineating the initial stock of representational primitives1 available to humans at the 
beginning of their life.  

Our experiential world can be characterized at multiple representational levels. For instance, we are 
able to perceive a basket of peaches placed right in front of us because a precise pattern of light, at a 
given moment, hits our retina. According to a first level of description our basket of peaches is 
nothing else than a series of spatially distributed luminance values. In such a pattern, oriented 
contrasts define edges and curvatures, separating the fruit from the background. Next, the peaches 
can be said to occupy a certain area and have a certain weight. Now, we may change our own position 
or that of the basket, we may close the blinds and switch on a lamp; the descriptors referring to the 
volume and the weight of the peaches will remain valid despite prominent changes in brightness and 
contrasts. There are more-or-less a dozen of peaches in the basket. When next week these twelve 

                                                             

1 Although slightly out of the original context, this expression is borrowed from the book The Origins of Concepts 
by Susan Carey (2009). 
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pieces will be replaced by a fresh dozen, the basket will contain peaches occupying a different volume 
and weighting a different amount of grams, creating a different pattern of edges and curvatures and, 
still, there will be twelve peaches in front of us. Even when their number changes, as we would really 
love a fruit salad right now, we will remain able to recognize those in front of us as members of the 
category “peach”, irrespective of changes in brightness and contrast, in volume, in weight and in 
numerosity. This naïve, perhaps fuzzy, example demonstrates how, as adults, we can encode the 
external world by means of various descriptors. Crucially, each descriptor can be generalized (only) 
to a particular extent, thereby affording distinct levels of representational flexibility.  

The experimental work presented in this thesis stems from the intuition that delineating the initial 
descriptors used spontaneously and pre-attentively by the infant brain to encode the external world 
might provide meaningful insights upon the origins of our cognition.  

1.1. Theoretical and terminological premises 

A basic idea permeating the entire dissertation is the conception of the brain as an adaptive 
information-processing device: energy patterns coming from the environment and captured by our 
senses are processed precisely within the scope of extracting information that is useful for the 
organism. Within this perspective, understanding the preliminaries of human representations means 
identifying what information is processed early in life and, crucially, in what format.  

With the term representation we assume a relatively lightweight notion that is shared by most 
neuroscientific works. Specifically, a representation is any internal state of a complex system that 
serves as a vehicle for informational content and plays a functional role within the system based on 
the information that is carried (Bechtel, 1998). When mentioning neural codes we refer precisely to 
this description: a pattern of cortical activity, i.e. an internal state of the brain, that encodes 
information, i.e. represents informational content, for later usage (deCharms & Zador, 2000). 
Whereas the concept of representation entails both a content and its function, the experimental work 
presented in this dissertation is limited in this respect (Ritchie et al., 2019), as we probed the content 
and properties (e.g. temporal dynamics) of neural representations directly but allude to function 
inferentially. 
Note that we could bypass representational interpretations altogether and approach the brain as a 
dynamical system (Bechtel, 1998). Such a perspective focuses on physical mechanisms and, 
ultimately, would account for all aspects of brain activity. Nevertheless, the notions of 
information/representation can help us understand neuronal dynamics at a broader level2. 

                                                             

2 To better express how that is the case we could make an analogy with computers: they “can be understood as 
dynamical systems. However, interpreting the patterns of charges and currents as representations of data and 
instructions enables us to capture a computer’s behavior more concisely in a high-level algorithmic description 
that reveals the dynamics in terms of the implemented functions” (Kriegeskorte & Diedrichsen, 2019). 
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With the adjectives infant and initial we allude to the time period prior the 6th postnatal month; this 
choice is motivated by the fact that, as it will be explained in more detail throughout the dissertation, 
the second semester has been proposed to coincide with a turning point in human brain 
development, both structurally and functionally. 

1.2. Methods to investigate infant representational skills: the state of 
the art 

The assessment of mental processes during the very first moths of life is challenged by extreme 
limitations such as the impossibility to deliver verbal instructions or collect verbal reports, a very 
narrow motor repertoire, low cooperation and tolerance during experimental sessions. Nonetheless, 
developmental researchers have been able to provide substantial contributions to shed light into the 
origins of adult representations by studying this population.  

1.2.1. Behavioral measures and the habituation paradigm 

Major advances were first made possible by capitalizing on two simple behaviors, visual fixation and 
sucking, and the spontaneous tendency of all animals to decrease reactivity to repeated stimuli but 
re-engage their interest when the stimulus changes (Schöner & Thelen, 2006). The exploitation of 
these elements led to the emergence of the habituation/familiarization paradigms, which are 
currently the most common expedient used to study infant cognition. Within a classical habituation 
study, subjects are repetitively exposed to the same items (or class of items) until their looking time 
or sucking rate declines. Subsequently, they are tested with new exemplars where the characteristic 
under study is varied. A recovery of fixation or sucking rate is interpreted as evidence that the infant 
detected the difference between the habituating displays and the test stimuli, thereby proving to be 
capable of representing a given characteristic. This kind of paradigms has led to tremendous 
advancements in our knowledge of early representations. For instance, they have revealed that since 
their first days of life infants can discriminate speech tokens that differ along subtle, linguistic-
relevant dimensions such as voice onset time, manner and place of articulation. Just like adults, young 
infants seem to perceive syllables categorically along these dimensions and to normalize across the 
acoustic variations that derive from speaking rate and voice peculiarities (for an extensive review, 
see: Jusczyk, 2000). Whereas in the early 60s mainstream ophthalmology textbooks claimed that 
newborns were blind, habituation studies have shown that they already recognize an object based 
on its shape or its size across retinal changes (Slater & Morison, 1985; Slater et al., 1990) and they 
can distinguish visual arrays containing two versus three dots (Antell & Keating, 1983).  

Although being able to provide crucial insights as those just listed, the employment of behavioral 
dependent measures to infer hidden representational states poses important interpretational 
dilemmas. The latter arise from the fact that these studies entail a many-to-one mapping problem: 
numerous (alternative or complementary) factors contribute to a single dependent variable (Aslin, 
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2007). To start with, the possibility for the infant to dishabituate requires the subject to remember 
the characteristics of the repeating stimulus and eventually compare stored items with the new input. 
This means that discrimination and memory are always confounded within the results. Another 
interpretational limitation concerns the frequent occurrence of familiarity effects: within the test 
phase, young subjects might happen to show increased looking time or sucking rate for repeated 
instances instead of novel stimuli. Such a phenomenon is due to the fact that infant preference is 
naturally driven by both novelty and familiarity (Oakes, 2010). Given the prominent difficulties 
inherent to developmental studies, any significant effect is normally interpreted as evidence for 
discrimination (e.g. Cantrell & Smith, 2013). Specifically, dishabituation to novel conditions can be 
considered an attentional response (e.g. re-orienting; Sokolov, 1963), while familiarity effects are 
assumed to reflect recognition (Aslin, 2007). Beyond its ambiguity per se, such a practice has the 
serious downside of complicating the integration of results coming from different investigations. 
Crucially, bidirectional effects might cancel each other out (i.e. the two opposite preferences might 
counterbalance each other) such that null results can indicate a true impossibility to discriminate as 
well as a false negative. Memory-related factors and familiarity are perhaps the major, but certainly 
not the only sources of confounds. Just to mention a few others (that are not avoidable by means of a 
careful experimental design and rigorous data collection), arousal state, attentional disengagement, 
blank stares or cross-modal competition have all been reported to influence dishabituation 
performance (Colombo & Mitchell, 2009; Aslin, 2007). 

1.2.2. Neural measures and the oddball paradigm  

The advent of functional neuroimaging enabled to overcome some of these interpretational 
dilemmas, as it provided the tremendous practical advantage of not requiring an overt response. 
Moreover, it made possible to investigate early representations from a completely novel perspective: 
that of functional neural architectures. Among the techniques currently available, 
electroencephalography (EEG) is the best suited for developmental research3: it is the least invasive; 
it requires a simple recording system; and is less negatively impacted by movements. Most 
commonly, research on infant cognition focuses on the event-related-potentials (ERPs), consisting of 
changes in voltage that are time-locked to the experimental manipulation (e.g. stimulus-evoked). 
Scalp ERPs derive from the activation of groups of cerebral neurons4 that are both synchronized and 
spatially aligned such that to generate electrical fields recordable at the surface of the head. 
Intriguingly, whereas behavioral measures reflect the final product of many intermixed mental 

                                                             

3 Other promising techniques for functional brain imaging in infants include Magnetoencephalography (MEG; 
e.g. Kujala et al., 2004) and functional Near-Infrared Spectroscopy (fNIRs; e.g. Lloyd-Fox et al., 2010). Yet, to date, 
technical progresses are still needed in order to optimize their suitability for this delicate field. 
4 more precisely: the postsynaptic depolarization of cell dendrites (Luck, 2014)  
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operations (which, as we have seen, are very hard to disentangle), EEG offers the opportunity to 
observe brain processes at play in a time-resolved fashion.  

To target early representations, the vast majority of neuroscientific studies conducted so far has 
employed oddball paradigms (Näätänen et al., 1978). Within the latter, a repetitive stimulus (called 
standard) is occasionally exchanged with another item differing in a feature of interest or violating 
an expected pattern. By comparing the brain waves elicited by the repeated stimuli to those triggered 
by deviants it is possible to isolate mismatch responses (MMRs), which are regarded as reflecting the 
detection of a change. Whereas the logic behind behavioral habituation and oddball paradigms is 
essentially the same, mismatch responses can be elicited irrespective of where infants focus their 
attention and even when they are asleep (Cheour et al., 2000), a phenomenon that makes this method 
incredibly versatile. Charmingly, this methodology revealed that early representational skills are 
supported by an (already) intricate functional organization within the infant brain composed of 
specialized modules and parallel pathways. For instance, when two different dimensions are 
contrasted within the experimental paradigm, such as the talker’s voice and the linguistic value of 
spoken syllables, or the identity5 and the number of objects in visual displays, the mismatch 
responses of 3-month-olds are characterized by similar latencies but different topographies (Bristow 
et al., 2008; Izard et al., 2008). In this context, distinct topographical distributions of neural activity 
evidence the engagement of different sources, indicating that the dimensions under investigation are 
processed, in parallel, by separate neural networks (Dehaene-Lambertz & Spelke, 2015; Dehaene-
Lambertz & Gliga, 2004).  

Although powerful, the use of MMRs to investigate neural representations does not come without 
important drawbacks. First, these responses require the presence of short-term memory traces for 
the repetitive aspects of the stimuli, together with some form of (even if extremely rudimentary) 
comparison mechanism (Winkler, 2007). Thus, just as behavioral measures, this methodology fails 
at targeting pure encoding mechanisms. Considering that the capacity of short-term memory is 
extremely limited early in development (Ross-sheehy et al., 2003), this might be a crucial limitation: 
some aspects of the incoming stimuli might be processed and yet not storable.  
The second important limitation pertains to the fact that cross-individual variations in the amplitude 
and latencies of the ERPs are broad, considerably larger than what observed for adults (e.g. Cheour, 
Alho, et al., 1998; Naik et al., 2021). Such variability arises, in first place, from heterochronocity: 
although the sequence of developmental changes in the shape of the mismatch response may be fixed 
(to a certain extent), the exact rate of change varies from subject to subject (Courchesne, 1990). 
Another crucial source of variation are logistical constraints: has the reader ever tried to place an 
EEG cap exactly in the same position over the scalp of ~50 babies who are laughing, crying, about to 
cry, turning their head all over the place or trying to chew the sensors in the meanwhile? It is 

                                                             

5 defined by a combination of shape and color 
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practically impossible for one electrode to cover the same exact scalp position in all, or even a third, 
of the participants6. Inter-subject variability is worrisome because data analysis is performed across 
participants: when MMRs from different subjects are pooled together in order to test for significant 
effects, the peculiarities of each individual response are likely to cause signal loss, at the detriment 
of methodological sensitivity. Other than reducing our chance of uncovering brain function, inter-
subject variability prevents us to detect dysfunction: since normative values cannot be reliably 
estimated, MMRs are ill-suited when it comes to discern whether some representational skills are 
missing or aberrant (Picton & Taylor, 2007). Although not directly related to the scope of the present 
thesis, this impossibility is crucial, as the purpose of neuroscience research is not only to understand 
brain function but also to diagnose, prevent and cure its potential malfunctioning.  

1.3. Infant representational primitives are yet to be defined 

Despite suboptimal sensitivity, behavioral and neuroimaging studies have demonstrated the 
existence of quite impressive discriminative skills within the first semester of life. Yet, the initial 
units used by the human brain to encode the external world remain to be discovered: what 
information do infants use in order to discriminate among sounds or images?  

Several researchers and theoreticians propose major differences between early and mature 
representational units. Starting from the linguistic domain, many would argue that the ability of 
young infants to differentiate between spoken syllables relies on a refined acoustical analysis of 
speech rather than adult-like phonetic units (Kuhl, 2004; Vilain et al., 2019). Switching to 
mathematics, the possibility to discern between numerical arrays displayed by humans since their 
first hours of life might be based on the encoding of alternative magnitudes that inevitably correlate 
with number (Mix et al., 2002). Some have proposed quantitative processing to be “one-bit” during 
the first months (Walsh, 2003) such that babies might be able to differentiate areas, lengths, numbers 
or durations based on a unique and generalized code for “size” or “more/less” (Leibovich et al., 2017; 
Hamamouche & Cordes, 2019). Even in the domain of pitch perception, prior to the 4-5th month of 
life, electrophysiological observations seem to suggest that infants might distinguish musical tones 
by relying on plain, isolated frequency components rather than adult-like integrated percepts (He & 
Trainor, 2009).  
Permeating these proposals is the idea that initial encoding units may be somewhat more 
rudimentary relative to those employed by mature brains: depending on the particular domain at 
hand, it is often assumed or implied that early representational units are more closely related to the 
physical input, holistic rather than fine-grained, or fragmentary rather than integrated. Conceptions 
of this kind are reasonable and plausible, not only in light of inexperience but also on the basis of 

                                                             

6 This difficulty has not been encountered solely by the student who writes, as more formally documented by 
Kabdebon et al., (2014). 
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anatomo-structural considerations. Taking the auditory system as a reference, the maturation of 
primary auditory cortex and acoustic radiations is far from being complete at birth; conversely, it 
extends until the third year (Yakovlev & Lecours, 1967). Whereas in the adult brain 98% of the 
sensory input is transmitted through thalamocortical pathways that synapse in cortical layer IV, 
axonal maturation is restricted to cortical layer I during the first ~20 postnatal weeks (Eggermont & 
Moore, 2012). Further, the myelination of temporal regions starts only after the fifth month (Pujol et 
al., 2006). Since thalamocortical connections remain severely immature during the first semester, 
behavioral and evoked responses to sounds are likely to be mediated by quite peculiar sensory 
pathways early in life (Werner et al., 2012). For instance, they may comprise a role for the subplate, 
a transient structure that hosts thalamic afferents prior maturation of the cortical plate (Luhmann et 
al., 2018; Molnár et al., 2020; Wess et al., 2017). It is fascinating in this regard that, despite structural 
immaturity, the gross pattern of cortical regional activation triggered by music in neonates (Perani 
et al., 2010) and by spoken sentences in 3-mo-olds (Dehaene-Lambertz, 2002) is remarkably similar 
to that seen in older children and adults.  

Although being able to bring invaluable insights upon early discriminative abilities, neural 
architecture and functional specialization, current methods are poorly suited to delineate 
representational primitives in that they leave primary encoding processes underspecified. 
To express how that is the case, let us take as an example phonetic discrimination. Cheour and 
colleagues (1998) have investigated the mismatch responses elicited by the vowels /õ/ and /ö/ in 6-
mo and 1-y old infants who were exposed to many repetitions of the vowel /e/. Crucial for their 
paradigm the fact that /õ/ is acoustically more dissimilar form the standard /e/ relatively to /ö/ but, 
unlike the latter, does not have any phonemic value in Finnish (while it does within other languages, 
e.g. Estonian). The MMR observed in 6-mo-old Finnish infants was comparable across the two deviant 
conditions, whereas in 1-year-olds the vowel belonging to the Finnish repertoire elicited a greater 
mismatch (despite its lower acoustic deviancy). With this set of results, the authors have 
demonstrated the development of “language-specific memory traces” within the second semester of 
life (Cheour, Ceponiene, et al., 1998). In what format did the younger participants encode the 
experimental stimuli? A spectral code (based on e.g. formant frequencies) and a phonetic code (based 
on e.g. tongue height and/or backness7) can explain the observation of a mismatch response equally 
well. As a matter of fact, whereas some researchers have considered evidence of this sort as 
indicating domain-general spectrotemporal processing of speech, these results are equally consistent 
with the idea that the brain learns, via exposure, to bypass or down-weight irrelevant phonetic 
distinctions (i.e. those not belonging to the repertoire of the mother tongue) while keeping track of a 
(linguistic) repetition.  

                                                             

7 This terminology is borrowed from the classical nomenclature used in linguistics, without alluding to any 
particular theory. 
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More broadly speaking, by manipulating what characteristic of the stimulus elicits a mismatch 
response it is possible to infer whether a neural network detects a regularity in the dimension under 
study. As noted above, to achieve this task, the system needs to retain a certain feature of the stimulus. 
Although undoubtedly meaningful, the observations provided by this method (as well as by any 
experimental paradigm based on change-detection) do not speak to the representational units used 
by the system to encode the stimuli. For instance, in a real word scenario8, the network might 
compute a certain code in preparation of an immediately subsequent processing stage without 
keeping a record of it. Moreover, even when the nature of the experimental design is taken 
scrupulously into account, interpretational ambiguities remain often inevitable. For instance, as 
explained more extensively in Chapter 3, when manipulating what counts or not as a repetition, it is 
physically impossible to separate numerical information from correlated non-numerical features, 
preventing to discern what kind of quantitative dimension the system discriminates.  

1.4. Approaches to data analysis: univariate versus multivariate 

Overall, the developmental neuroimaging studies conducted so far to investigate early 
representational skills have relied on the so-called univariate analysis approach. Within the latter, 
measurements derived from each recording channel are treated as independent pieces of data, 
typically using statistical tests to determine whether experimental conditions triggered different 
deflections in the neural signal. The term univariate refers precisely to the fact that within this 
approach the analysis of one channel has no impact on that of any other. Often, neural recordings 
have been collected from just a handful of scalp sites; alternatively, neural signal has been pooled 
across neighboring locations in order to improve the signal-to-noise ratio and mitigate the problem 
of multiple comparisons.  

Yet, it is nowadays well established that individual pieces of information are carried not by single 
cells but rather by neuronal ensembles, a strategy known as population coding (Pouget et al., 2000). 
A population code is a complex set of activity patterns that cannot be satisfactorily grasped by a 
simple average or summation of the signal coming from neurons within a circumscribed ensemble 
(deCharms & Zador, 2000; Jacobs et al., 2009). In fact, a population code arises from the combination 
of diverse, complementary and synchronous factors such as the interplay between the coarse firing 
rate of localized groups of cells and the precisely-timed spike patterns of more distributed neurons 
that respond sparsely over time (Panzeri et al., 2015; Stanley, 2013). These observations suggest that, 
when the goal is to discover the information processed by the brain, considering each channel/voxel 
separately, as done in conventional analyses of developmental neuroimaging data, might be quite 
restrictive. That is to say, in addition to isolated activation (e.g. voltage) levels, analyzing the relative 

                                                             

8 The reader shall be reminded of the fact that mismatch responses are not recorded as such from the scalp, 
they are an artificial construct of the investigator 
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differences in activity between channels could potentially provide a more comprehensive picture of 
brain function. 
Crucially, seminal fMRI studies on adult visual perception have demonstrated that such a 
consideration holds even if the neuroimaging technique under employ allows assessing neural 
activity only at a macroscopic level. For instance, Haxby and colleagues (2001) have shown that 
despite overlapping activations within the ventral temporal lobe, the patterns of activity across this 
region are discriminative of object categories even when the most responsive voxels are ruled out 
from the analysis. At the time of the study, this was a groundbreaking finding as it highlighted that, 
other than modular organization and localized tuning, distributed combinatorial codes might play an 
important role in object recognition. Strikingly, a subsequent study on line orientation (Kamitani & 
Tong, 2005) showed that although selectivity for this parameter exists at a sub-voxel level (i.e. within 
narrow cortical columns at a scale of a few hundred micrometers) in early visual cortex, there are 
still small irregularities in the way the activity captured by each voxel reflects different orientations. 
When multiple voxels are jointly analyzed, discriminating perceived orientations becomes possible 
whereas such a task could be achieved only with the aid of invasive imaging techniques beforehand. 

The approach adopted in the latter studies is referred to as multivariate. Generally speaking, 
multivariate analysis is a set of methodologies that take into account the relationship between 
multiple variables (instead of treating them as independent) in order to unravel patterns in the data. 
Within the neuroimaging field, these analyses are designed to test whether two or more experimental 
conditions can be distinguished on the basis of multiple measurements of neural activity, recorded 
during each experimental instance. When that is the case, it can be concluded that information 
pertinent to the manipulation of interest exists in the neuroimaging data (Mur et al., 2009). Whereas 
ignored by the univariate approach, multivariate analyses take into account the relative contribution 
of each data point to discriminability as well as their covariance. Such a strategy makes these 
methodologies a powerful tool, sensitive not only to regional-average activation differences but also 
to changes in granular patterns.  

We propose that a switch from an univariate to a multivariate approach might be particularly fruitful 
within the quest of representational primitives for at least three reasons. 

a. Neural processes can be captured more exhaustively  
Mainly, the promise of this approach relies in its neuroscientific rationale. As explained 
above, the brain operates by means of distributed, spatially extended macropopulation codes. 
In order to characterize these codes to the fullest the patterns of neural activity that are 
sparse and/or fine-grained need to be taken into account as they are themselves, among 
others, the holders of the message. Whereas univariate methods override these dimensions 
altogether, the multivariate approach is ideally suited for this task (Haynes & Rees, 2006). 
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b. The (highly dubious) assumption of shared topographies is no longer needed 
Multivariate procedures are typically conducted within subject: to be pooled across 
participants is not the neural data itself but their projection onto psychological dimensions. 
On the technical side, such a strategy is clearly preferable and preferred in order to preserve 
the high-spatial-frequency patterns of response, which would be smoothed away otherwise. 
From an exquisitely neuroscientific perspective, such an expedient is appealing in that each 
brain is structurally and functionally unique and while we can assess or formulate hypotheses 
about which perceptual and cognitive dimensions are shared, the degree of inter-subject 
correspondency at the neural level remains unknown. Such a characteristic becomes even 
more advantageous in infant studies where idiosyncratic developmental trajectories 
translate to conspicuous inter-individual variability of structural and functional brain 
topographies. 

c. Noise level is drastically reduced 
By combining data from multiple sensors/voxels it is possible to cancel out the noise (Haufe 
et al., 2014), thereby maximizing the detectability of meaningful signal. Although purely 
technical, this feature is extremely appealing for the developmental neuroimaging field, 
where the signal-to-noise ratio in the data is usually very low. In particular, neural signals 
from young populations are more prominently contaminated by motion artifacts: infants 
tend to move often and abruptly and they cannot be provided with verbal instructions to 
refrain (Fujioka et al., 2011). In addition, physiological artifacts become more problematic, 
since the polygraphic measures monitored in adult studies, such as the electrocardiogram 
(ECG), the electromyogram (EMG) or electrooculogram (EOG), are too impractical to obtain. 
Concerning EEG, infant recordings are characterized by ample and irregular background 
activity that inevitably conceals the tiny evoked responses of interest (Bell & Wolfe, 2008).  

1.5. Zoom on multivariate pattern classification 

In the last decade or so, the use of machine learning algorithms to classify neural response 
patterns has become increasing popular in adult neuroimaging. This multivariate methodology is 
often referred to as “decoding”, alluding to the fact that its goal is not to model information 
processing per se, but rather to reveal the content of the code. 
A typical classification analysis begins with dividing the neural data into independent training and 
test sets. Machine learning algorithms consider each element in the dataset (e.g. each channel or 
voxel) as a separate dimension (or separate ‘feature’) in a high-dimensional space. When the 
recording system includes N voxels or channels, each stimulus presentation elicits a response vector 
that occupies a point in an N-dimensional neural activation space. Classifiers are fitted on the training 
set in order to find a decision boundary that can efficiently separate the response vectors associated 
with each experimental condition (Figure 1.1). The resulting model is evaluated by means of its 
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performance on the neural data that was left out from training: classifiers are used to “predict”9 the 
experimental conditions characterizing the trials in the test set. Their performance in this task can 
be conceived as an estimate of the information about the experimental variables contained in the 
neural data. Specifically, if classifier performance is higher than that expected by chance it is assumed 
that the patterns of brain activation contain information that distinguishes between the experimental 
conditions. Note that relatively to univariate analyses, the use of an independent test set provides a 
nice statistical advantage: the assumptions of the model are implicitly tested when we assess its 
predictions (Kriegeskorte, 2011). If assumptions are violated performance will suffer, implying a 
minimal risk of false positives. Notably, out-of-samples estimates still require second-order 
statistical procedures, normally performed at the group level, in order to establish their reliability.  
The reliability of the classification performance can depend on various factors such as the signal-to-
noise ratio in the neural data and, mostly, on the number of trials available for the analysis, since only 
an adequate number of samples will allow the robust calculation of an optimal decision boundary. 
The common strategy used in adult studies to ensure reliable estimates is k-fold cross-validation: the 
neural data available is split in k groups10 and the procedure of model training and out-of-sample 
prediction is repeated k times. At every run one fold is hold out from training such that within the 
entire loop each data sample is tested once and an overall measure of performance is obtained.  

                                                             

9 In neuroimaging “prediction” is used with a figurative connotation: this term denotes guessing the 
experimental condition (e.g. which stimulus was presented) from the neural activity pattern (Kriegeskorte & 
Bandettini, 2007). Of course, such an act of “prediction” (i.e. the analysis) occurs after the predicted events (i.e. 
the experimental session). 
10 Normally, k ranges from 3 to 10. Single trials are assigned to the groups on the basis of random partitioning 
or experimental (sub)conditions. 

Figure 1.1 Linear decision boundary within a 
simplified neural activation space.  
Red circles and blue squares illustrate the responses 
to two experimental conditions that cannot be 
separated from individual channels due to largely 
overlapping activity distributions. The responses are 
plotted in a two-dimensional space, corresponding to 
the activation captured by two channels at one time 
point. Crucially, by taking into account the 
combination of the responses from both channels it 
is possible to define a boundary (dashed line) that 
separates the two classes. Adapted from Haynes and 
Rees (2006). 
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In order to achieve correct classifications, information must be present within the neural data in a 
format that the decoder can exploit. Most often, researches within the adult neuroimaging field have 
chosen to use linear models, requiring the distribution of patterns to be linearly separable to some 
extent. In linear classification, each feature of the high-dimensional space receives one weight 
parameter and the product between weight and response vector is used to assign class membership 
to the response patterns at test. Although this process can miss the presence of information encoded 
in a more complex manner, linear models are preferable for two reasons. First, they overfit less easily 
than nonlinear algorithms yielding more stable estimates. Most importantly, they facilitate 
interpretation as they capture only information that can be read out in a single biologically plausible 
step by a downstream brain region (Kriegeskorte, 2011). Conversely, since all linear classifiers fit a 
hyperplane to achieve class separation, the particular algorithm used (e.g. support vector machines, 
multiple regression, Fisher discriminant) has marginal relevance for the neuroscientific 
interpretation of the outcome.  

1.5.1. And in babies, why not? 

Multivariate pattern-analyses hold important promises for the investigation of human brain 
processing. Throughout the previous paragraphs, we have seen how such potentialities would be 
particularly precious to uncover the content of infant representations. Nevertheless, the employment 
of multivariate decoding within the developmental field has been precluded by prominent (practical) 
constraints. First and foremost, whereas multivariate decoding imperatively requires large amount 
of data samples in order to obtain reliable estimates, the experimental protocols used in infants have 
typically quite short data collection times due to reduced tolerance for testing. Another important 
difficulty concerns intra-subject variability: variations across single trials belonging to the same 
condition are consistently more prominent in infants relatively to adults (Coch & Gullick, 2012; 
Picton & Taylor, 2007). This might be partly due to frequent changes in arousal or attentional states, 
determining fluctuations in background activity. When that is the case, as outlined above, 
multivariate analysis might be optimally suited to detect and rule out this source of noise11. Definitely 
more problematic is the presence of fluctuations within the neural networks that are processing the 
stimuli, which creates inconsistencies across the actual ERPs (Thomas & Crow, 1994). Such a 
troublesome phenomenon might be caused by synaptic inefficiency (perhaps related to early 
overproduction) and axonal a-synchronicities, due to irregular myelination. These factors translate 
to inconsistent strength or timing of the neural firing patterns underlying the evoked responses. 
Overall, insufficient amount of data combined with such peculiar inter-trial variability is likely to 
prevent classifiers to achieve stable decision boundaries.  

                                                             

11 Variability could also reflect a processing strategy of the brain (e.g. the event-related variability described by 
Naik et al., 2021). Interestingly, in this case, multivariate classifiers are designed to recognize its relevance in 
respect to the experimental variables and thus treat it as signal of interest. 
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Figure 1.2 Variation in the 
angle of neighboring 
dipoles generates 
separable signals at the 
scalp surface.  
(a) three dipoles 
approximately 2 mm apart but 
with very different angles 
result in easily 
distinguishable MEG (upper 
row) and EEG (lower row) 
topographies. (b) Such 
differences will tend to 
average out with increasing 
numbers of dipoles, resulting 
in very similar topographies. 
Crucially, multivariate pattern 
analysis can differentiate fine 
stimulus features by pooling 
the specific information 
contained in the subtle biases 
of each sensor. Adapted from   
(Stokes et al., 2015) 
 

1.6. The spatial richness of non-invasive electrophysiological measures 

Since multivariate methodologies capitalize on spatially-resolved details, the application of 
pattern-analysis was initially restricted to fMRI studies. This was justified by the classical dichotomy 
according to which non-invasive electrophysiological measures of brain activity (i.e. MEG and EEG) 
entail excellent temporal resolution at the expenses of spatial sharpness, whereas the contrary 
applies to hemodynamic measures. Such a conception stems from the fact that it is not possible to 
localize with certainty the anatomical sources of MEG/EEG signals. Yet, with an impressive set of 
experiments, Cichy and collaborators (2015) have shown that when the purpose is to track 
differential information rather than to localize activity differences, source ambiguity hardly matters. 
Namely, these authors demonstrated that MEG recordings support the decoding of fine visual 
elements processed at the level of cortical microstructures (Cichy et al., 2015) just as fMRI images 
(Kamitani & Tong, 2005), thereby revealing how the degree of spatial details embedded in MEG data 
had been largely underestimated.  
Where does such spatial richness come from? Over the surface of the scalp, magnetoencephalography 
measures the magnetic field of dipoles generated by the electrical activity of spatially aligned cells 
(Luck, 2014). The distribution of these fields depends on the location of the dipoles and, critically, on 
their angle. Due to cortical surface irregularity, even dipoles from neighboring groups of cells will 
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have different angles, translating to separable field patterns (Figure 1.2). Provided an adequate 
number and disposition of sensors, the same mechanism holds true for the electric potentials 
captured by electroencephalography. It is intriguing in this context that, whereas adult EEG is 
affected by the smearing exerted by the scalp and the skull, these barriers present a markedly lower 
impedance in infants, resulting in an extremely rich spatial texture (Grieve et al., 2004; Odabaee et 
al., 2013). The opportunity to exploit such a peculiarity adds to all the advantages listed so far in 
delineating multivariate pattern analysis as an extremely promising approach for the study of early 
encoding primitives.  

1.7. A framework for the present thesis: representational spaces 
(Haxby et al., 2014) 

The goal of this thesis is to adapt some of the multivariate techniques previously employed on 
adult data in order to characterize the initial units used by the human brain to encode speech, 
numerical quantity and musical pitch. Starting from the current understating of both adult and infant 
perception, we created two main experimental paradigms where sets of relevant parameters were 
manipulated to create an informative multidimensional space. In the latter, each stimulus can be 
characterized by/conceived as a vector with different values along the distinct dimensions of 
interest. 

Given the “imaging advantage” offered by anatomical immaturity and inspired by the application of 
multivariate analyses on ECoG data (Mesgarani et al., 2014), we strived at capturing fine-grained 
activity patterns as accurately as possible. In this attempt, we recorded evoked neural responses by 
means of a prototype super-high-density EEG system featuring clusters of electrodes distanced only 
5mm one from the other (Figure 1.3). 

In parallel with the characterization of the stimuli proposed above, also the neural activity elicited by 
our paradigms can be described as a multidimensional space composed of response vectors where 
each value is a measure of local activity (i.e. a voltage captured by a given EEG sensor at a given time). 
At their core, our investigations consisted in testing for relationships between the stimulus space, as 
pictured by the independent variables of interest, and the neural space, as captured by our EEG 
system. 
Mainly, we employed pattern classification algorithms to test the presence of sectors in the neural 
multi-dimensional space in which all response vectors embed the same class of information. The 
possibility to reliably associate neural reposes to experimental conditions demonstrates the 
existence of a statistical dependency between the stimulus space and the neural space. Crucially, as 
outlined more in detail in the methodological sections of each chapter, such a demonstration was 
always insufficient to our goal. Striving to delineate the format of infant neural codes, we 
systematically resorted to cross-decoding: we trained algorithms on subparts of the stimulus space 
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and assessed their performance on alternative portions where a particular dimension was altered. 
To corroborate pattern-classifications we employed Representation Similarity Analysis (RSA), a 
multivariate technique that examines the structure within the neural space in terms of distances 
between response vectors. Specifically, this method tests whether the similarity between brain 
responses to different stimuli matches the similarity between the stimuli according to a specific 
model of representation. Since with RSA the variables manipulated within the experimental 
paradigm can be sampled more comprehensively, this approach entails the opportunity to forgo any 
predefined stimulus grouping (Kriegeskorte, 2011). Such a potentiality enabled us to probe the 
validity of the a-priori theoretical assumptions used to formulate our decoding problems. 

Figure 1.3 Prototype ultra-high density EEG net. Starting from the classical geodesic 128-locations 
partitioning (Tucker, 1993), twenty of the standard temporal positions are filled with hexagonal pods, each 
composed of 7 sensors with no sponge inserts. The resulting grids include 140 electrodes (70/side) 
displaced at a reciprocal distance of 5 mm. Sensors are made of carbon fibers embedded within a plastic 
(ABS) substrate and coated with silver-chloride.  
We are grateful to Don Tucker and Amy Rowland for their major contribution in design and manufacture. 
Pictures were taken and edited by Vanna Santoro. A written permission to use the identifiable images was 
obtained from the parents of the infant. 
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Chapter 2. ORTHOGONAL NEURAL CODES 

FOR SPEECH IN INFANTS 

 

ABSTRACT 

Creating invariant representations from an ever-changing speech signal is a major challenge for the 
human brain. Such an ability is particularly crucial for preverbal infants who must discover the 
phonological, lexical and syntactic regularities of an extremely inconsistent signal in order to acquire 
language. Within the visual domain, an efficient neural solution to overcome variability consists in 
factorizing the input into a reduced set of orthogonal components. Here, we asked whether a similar 
decomposition strategy is used in early speech perception. Using a 256-channel electro-
encephalographic (EEG) system, we recorded the neural responses of 3-month-old infants to 120 
natural consonant-vowel syllables with varying acoustic and phonetic profiles. Using multivariate 
pattern analyses, we show that syllables are factorized into distinct and orthogonal neural codes for 
consonants and vowels. Concerning consonants, we further demonstrate the existence of two stages 
of processing. A first phase is characterized by orthogonal and context-invariant neural codes for the 
dimensions of manner and place of articulation. Within the second stage, manner and place codes are 
integrated to recover the identity of the phoneme. We conclude that, despite the paucity of 
articulatory motor plans and speech production skills, pre-babbling infants are already equipped 
with a structured combinatorial code for speech analysis, which might account for the rapid pace of 
language acquisition during the first year. 
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2.1. INTRODUCTION 

A major, fundamental challenge for any brain is to build stable representations of a changing 
world. In particular regarding speech, the breadth of the human lexicon and its possibilities of 
morphemic composition are based on fine phonetic differences that undergo substantial acoustic 
restructuring depending on many contextual factors such as voice peculiarities, intonation and co-
articulation. Nonetheless, we effortlessly perceive “bog” and “dog” as steady and distinct words, no 
matter whether shouted by a little girl or whispered by an elderly man. The capacity to extract 
invariant neural representations from the extremely variable speech signal is essential for adults and 
even more crucial for infants, who must discover the organizing regularities of speech in order to 
acquire their native language. Yet, the neural underpinnings of such an ability remain underspecified.  

In the visual domain, recent findings, based on neuronal recordings during object (Behrens et al., 
2018) and face recognition (L. Chang & Tsao, 2017), suggest that in order to deal with the large 
amount of incoming pictures, the brain factorizes the input into independent and orthogonal low-
dimensional components, each coding for a different dimension of variation. For instance, faces may 
be decomposed into as little as 50 orthogonal dimensions, thus effecting a remarkable dimensional 
reduction (L. Chang & Tsao, 2017). The components are thought to be subsequently recombined to 
yield unified percepts. Can such an account be applied to speech? Apart from any neural 
consideration, linguists have defined phonemes as bundles of a small set of orthogonal phonetic 
features, each corresponding to a binary code that summarizes an articulatory dimension and its 
acoustic correlates (Halle, 2013). For instance, the phonemes “b” and “d” from the example above 
share all parameters (+consonantal and -vocalic, +obstruent and -sonorant, +voiced, etc.) except for 
the place of articulation (+labial/-alveolar vs. +alveolar/-labial). Given their linguistic characteristics 
(distinctive, minimal and combinable), these features might correspond to the basic decomposition 
axes harnessed by the brain to reduce the high dimensionality of the input, thereby overcoming 
speech variability. 
In the last years, high-resolution intracranial recordings on adults (Mesgarani et al., 2014) and fMRI 
adult data (Arsenault & Buchsbaum, 2015; Correia et al., 2015) have provided evidence in line with 
this hypothesis: a partial neural specialization for phonetic features was observed during passive 
listening of speech. Here, we ask whether such a decomposition strategy is already present in early 
infancy.   

The first essential step for language acquisition consists in the identification of the native sound 
structure. Delineating the type of speech representations infants start with is thus crucial to elucidate 
how they can discover the phonetic repertoire and phonological grammar of their native tongue. A 
plethora of classical studies has demonstrated that infants come to the world with the perceptual 
abilities necessary to distinguish a variety of phonetic contrasts (Bertoncini et al., 1987; Eimas et al., 
1971; Eimas & Miller, 1980a among others). Moreover, both behavioral and neuroimaging 
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researches have shown that, since birth, they spontaneously override the acoustic variability 
produced by changes in talker’s voice (Dehaene-Lambertz & Pena, 2001; Jusczyl et al., 1992), 
speaking rate (Eimas & Miller, 1980b; Miller & Eimas, 1983) and prosody (Fló et al., 2019). 
Interestingly, the type of perceptual constancy newborns exhibit corresponds precisely to that 
required to establish reliable links between speech sound differences and changes in meaning. 
Although remarkable, the early ability to detect minimal phonetic contrasts among syllables does not 
truly inform upon the nature of the underlying neural code: infants might either process utterances 
as integral wholes (e.g. in the form of broad spectro-temporal patterns organized around sonorous 
nuclei) or decompose them into smaller elements (e.g. phonemes or phonetic features).  
Behavioral investigations have shown that newborns and 2-month-olds fail at identifying a shared 
consonant in a group of syllables containing different vowels (Bertoncini et al., 1988; Jusczyk & 
Derrah, 1987). Further, neonates proved capable of categorizing utterances using the number of their 
syllabic constituents but not the number of phonemes (Bijeljac-Babic et al., 1993). Following these 
results, many authors have proposed the syllable as the primitive unit for speech processing. 
Computational modelling has corroborated the plausibility of this conclusion by showing that 
sonority-based syllable-like structures are indeed accessible, in conversational speech, by means of 
general auditory mechanisms (Räsänen et al., 2018). Currently, such kind of broad and holistic units 
is widely assumed to be the starting point for lexical learning when no linguistic knowledge is 
available. 
However, progress in neuroimaging has opened the way to new paradigms that, bypassing 
behavioral limitations, may uncover the existence of unexpectedly refined abilities early in 
development. Following the repetition of CV (consonant-vowel) syllables differing only in their 
vocalic component, EEG recordings revealed that 3-month-olds could recognize the shared 
consonant and detect when it changed (Mersad & Dehaene-Lambertz, 2016). They could even learn 
to associate each consonant to a visual shape, independently of the vocalic surroundings (Mersad et 
al., 2021). Such finding, easily explicable in terms of sub-syllabic processing, prompts to re-examine 
the format of early speech representations.  

To this aim, we combined high-resolution EEG recordings with time-resolved multivariate pattern 
analysis. Twenty-five 3-month-old infants were exposed to 120 natural consonant-vowel syllables, 
presented in pseudo-random order during about one hour. Syllables were chosen to independently 
vary the consonantal dimensions of manner (obstruent vs. sonorant) and place of articulation (labial 
vs. alveolar vs. velar). Each consonant was coupled with two vowels (/i/ and /o/) and produced by a 
male and a female speaker in five distinct utterances, to ensure acoustic and co-articulatory 
variability across tokens with the same phonetic profile (Figure 2.1A). The dimensions of manner 
and place of articulation were chosen due to the highly contrasted levels of consistency 
characterizing their acoustic correlates: whereas manners are reflected in prominent 
spectrotemporal prototypes (Stevens, 2000), the acoustic cues for place are more subtle (Shannon et 
al., 1995) and complex (Smits et al., 1996), hence fundamentally dependent on the context of 
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production (Fowler, 1994). Such acoustical divergence was especially evident in the auditory 
similarity structure of our stimuli set, as illustrated in section 2.5.1 and Figure 2.5.  
We used multivariate decoding analyses to investigate infant speech processing at three possible 
levels corresponding to holistic syllables, phonemes and phonetic features12. Linear classification 
algorithms are powerful tools in that they can combine multiple sources (here EEG channels) to find 
the optimal combination of brain signals reflecting the variables of interest (Hebart & Baker, 2018). 
Since any peculiarity in the data can be used to separate classes, showing that neural responses can 
be sorted according to certain labels, in itself, does not speak to the underlying encoding scheme. A 
key strategy in this regard consists in examining the pattern of generalization: how decoders trained 
in a particular context perform across variations that are expected to be non-pertinent for a given 
code (Kriegeskorte & Douglas, 2019). For instance, if infants extract speaker-invariant information, 
then decoders trained on the brain responses to syllables produced by the male voice are expected 
to generalize to the female voice (and vice-versa). This logic was central to the purpose of the present 
study. We reasoned that, if consonants and vowels were processed separately, then a decoder trained 
in the context of, say, vowel “o”, should generalize to the context of the other vowel “i”. Conversely, 
such generalization should not be possible if each syllable was encoded by its own idiosyncratic 
neural code. At the sub-syllabic level, we could ask if a decoder trained to separate “bo” vs “do” is able 
to 1) correctly classify “mi” vs “ni”, thus revealing the presence a neural code for the places “labial” 
vs “alveolar” that is orthogonal to vowels and manners; or 2) generalize only to “bi” vs “di”, thus 
indicating an idiosyncratic and integrated neural code for the consonants “b” vs “d”, without further 
decomposition into separable dimensions.  
Furthermore, using time-resolved EEG signals, it is possible to train a distinct decoder at each time 
point to probe the presence of distinct patterns of generalization over time (King & Dehaene, 2014). 
By tracing the time-course of generalizations and class confusability, we could ask whether and when 
particular pieces of information were re-coded across stages of processing. A factorized encoding 
model, similar to that observed for faces (L. Chang & Tsao, 2017), predicts an early projection of the 
signal into a small set of orthogonal dimensions, followed by their integration into broader chunks 
(consonants/vowels or even entire syllables). The opposite decomposition process, progressing 
from holistic syllables to phonemes or/and features, is also imaginable. 

Decoding speech from noisy infant event-related potentials (ERPs) is a difficult task. To enable it, we 
recorded a large data set consisting of ~3100 trials/participant. Furthermore, we collected ERPs with 
a high-density custom net featuring an unusual number of 256 channels (Figures 2.1B and Figure 1.3; 
see also Figure 2.1C for the grand average across all syllables). This novel intensive electrode 
coverage, combined with the thinness of infant skulls, should enhance the spatial resolution of our 

                                                             

12for the moment, the terms “syllable”, “phoneme” and “phonetic feature” are used as convenient stimuli descriptors, 
regardless of the acoustic/linguistic value they might hold for the brain. 
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recordings and facilitate the discrimination of ERPs arising from spatially close neuronal clusters 
(Stokes et al., 2015). 

2.2. MATERIAL & METHODS 

2.2.1. Participants 

25 full-term, normal-hearing infants (12 females, 13 males) coming from a French-speaking 
environment were tested between 12 and 14 weeks after birth (mean age= 12 weeks and 6 days). An 
additional 16 participants were excluded from analysis because of: excessive agitation during the 
experimental session (n=6), insufficient number of trials after artifact rejection (n=3, the artifact 
rejection procedure is described below), technical problems during data collection (n=3), aberrant 
global field power (GFP) in the average of all syllable-related potentials (i.e. peak GFP<4µV, n=4). The 
protocol was approved by the regional ethical committee for biomedical research (CPP Region Centre 
Ouest 1). Parents gave their written informed consent before starting the experiment. 

2.2.2. Stimuli 

Stimuli consisted of 120 speech sounds constructed upon 6 consonants: /b/, /d/, /g/, /m/, /n/, 
/ɲ/. These consonants were selected to cover two manner features, i.e. obstruent (/b/, /d/, /g/) and 
sonorant (/m/, /n/, /ɲ/), and three places of articulation, i.e. labial (/b/, /m/), alveolar (/d/, /n/), 
and palatal-velar (/g/, /ɲ/, referred to as “velar” for simplicity). Each consonant was associated with 

Figure 2.1 Experimental set-
up and average syllable-
related potential.  
(A) Stimuli sub-conditions and 
their phonetic characteristics 
(f=female, m=male voice). (B) 
256 channels super-high-
density net on a 3-month-old 
infant: tight grids of custom 
electrodes are arranged over 
the auditory linguistic areas of 
the superior temporal lobe. (C) 
Grand average ERP: all 
conditions are pulled together.  
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two vowels, /i/ and /o/, and produced by a male and female speaker to obtain 2 manner x 3 place x 
2 vowel x 2 voice factor design (i.e. 24 sub-conditions). To increase acoustic variability (and extend 
the external validity of our measurements), speakers were asked to repeat the same tokens several 
times changing their intonation. For every sub-condition we selected 5 utterances, distinct in low-
level acoustic characteristics such as pitch and duration. In the resulting set of syllables each manner 
of articulation condition contained 60 spectrotemporal profiles (3 consonants x 2 vowels x 2 voices 
x 5 utterances); similarly, each place of articulation was presented in 40 (2 consonants x 2 vowels x 
2 voices x 5 utterances) spectrotemporal versions. 

Stimuli construction  
Speech signals were recorded in a silent chamber using a dynamic microphone (Beyerdynamic DT 
290 broadcast headset) on a linear PCM recorder (DR-05, TASCAM) at a sampling rate of 44.1 kHz. 
Recordings were first cleared from background noise in Audacity 2.1.3 
(https://www.audacityteam.org) and further edited with PRAAT software (Boersma & Weenink, 
2017). Acoustic transients (clicks) were manually removed and stimuli length was adjusted to fall 
within the range of 350-425ms. Tokens were normalized for peak amplitude and average (i.e. root-
mean square) intensity, obtaining maximal audibility and loudness equalization. All stimuli were 
placed on the left channel and a click was positioned on the right channel at the exact time-point of 
syllable onset. The left channel was connected to the audio amplifier (mono input to the 
loudspeakers) while the right channel was connected to the EEG amplifiers through the DIN port to 
create a TTL signal. Brain voltage and clicks were recorded simultaneously with the same temporal 
resolution providing a precise mapping between EEG recording and stimulation.  

Articulation, and in particular the manner, is known to affect consonant duration, introducing the 
risk of possible confounds between this low-level cue and the phonetic feature. To validate our set of 
syllabic stimuli, we therefore assessed consonant lengths through a gating procedure (Grosjean, 
1996). Over multiple trials, each stimulus was listened in portions of progressively increasing 
duration (10ms steps), starting from the end of the syllable and proceeding backwards, toward its 
beginning. The duration of the longest portion for which no consonantal sound was perceived was 
subtracted from the total length of the stimulus. Consonant duration assessed in this way ranged 
between 80 and 210 ms (M±SD=154±25) and varied homogeneously across categories (i.e. /b/, /d/, 
/g/, /m/, /n/, /ɲ/; F(5,114)=1.42, p=0.222). Most importantly, consonant duration did not change as 
a function of manner nor place of articulation. In an ANOVA with these two factors, the effect of 
manner (F(1,114)<1), the effect of place (F(2,114)=1.28, p=0.280) and their interaction 
(F(2,114)=2.25, p=0.109) were not significant.  

2.2.3. Procedure  

Subjects were tested in a soundproof Faraday cage equipped with a computer screen and 
loudspeakers on the top. Infants were hold by a caregiver, their position was chosen to guarantee 
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personal comfort and at the same time enable good-quality data acquisition. Syllables were broadcast 
through the loudspeakers at 70 decibels, in a latin-square randomized order and with a randomly 
selected inter-stimulus interval (ISI) between 600 and 1000ms. To minimize body movements we 
presented engaging visual animations that were unsynchronized with the auditory stream. Sleep was 
highly encouraged at any time; on average our subjects slept for 65% of the experimental session. 
Breaks were taken whenever necessary. The experiment finished with the presentations of 3136 
tokens (corresponding to approximately 63 minutes of listening time) or as soon as infants became 
restless. 

2.2.4. EEG recording and data preprocessing 

The electroencephalogram (EEG) was continuously digitized at 500 Hz (Net Amps 300 EGI 
amplifier combined with NetStation 5.3 software) from 256 channels. We used a prototype HydroCel 
net (EGI; Eugene, OR, USA) referenced to the vertex. In this customized net the surface corresponding 
to twenty temporal locations in the classical geodesic layout (128 partitioning) is filled by 2 tight 
grids of sensors (70 on each side of the head) displaced at a reciprocal distance of 5 mm (Figure 1.3). 

Artifact detection and correction 
Data preprocessing was conducted through custom-made MATLAB scripts based on the EEGLAB 
toolbox 14.0 (Delorme & Makeig, 2004). While following the main preprocessing steps normally used 
in developmental studies, we introduced some modifications inspired by efforts carried to improve 
adult data quality (Jas et al., 2017; Mognon et al., 2011). Namely, we identified artifacts on the 
continuous recordings with the employment of adaptive rather than absolute/predefined thresholds. 
In this way, we could account for inter-individual variability and the heterogeneous influence that 
reference distance and vigilance state exert on the voltage. Moreover, we did not discard but 
corrected local and transient artifacts, exploiting the redundancy of information provided by our 
dense sensor-layout (Figures 1.3 and 2.1B) and high sampling rate. 

As a first step, EEG recordings were band-pass filtered ([0.5 - 40Hz]) and the mean voltage of each 
electrode was set to zero. Artifacts were detected before segmentation by a series of algorithms with 
adaptive thresholds. These algorithms rejected samples on the basis of: the voltage amplitude and its 
first derivative; the variance across a 500ms-long moving time window; the fast running average and 
the deviation between the fast and the slow running averages within a 500ms-long sliding time 
window. Thresholds were set independently for each subject and for each electrode upon the 
distribution of these measures along the whole recording (threshold = median +/- n*IQ, where IQ is 
the interquartile range of the distribution). Two additional algorithms identified whether the power 
within the 0-10Hz band was excessively low or within 20-40Hz excessively high relative to the total 
power; and whether the voltage amplitude displayed by each sensor at a given time point was 
disproportionate relative to that recorded by the other sensors at the same instant. For these last two 
algorithms, thresholds were computed upon the distribution across channels.  
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The output of the artifact detection procedure was a rejection matrix with the same size of the EEG 
recording. We used this matrix to mark time points with prominent artifacts (bad times) and channels 
that did not function properly (bad channels). We identified as bad times periods longer than 50ms 
with a percentage of rejected channels superior to 30% or beyond 2IQ from the 3rd quartile of the 
distribution of the percentage of rejected channels across time. Similarly, bad channels were the ones 
not working properly for more than 30% of time or with a percentage of bad samples that went 
beyond 2IQ from the 3rd quartile of the distribution of the percentage of rejected samples across 
channels. 

Periods defined as bad times were not corrected because there was not enough information available 
to reconstruct the signal.  For the rest, two kinds of correction were applied. When the rejected 
segments had a very short duration (50ms max, e.g. heart beats or jumps) we relied on the 
assumption that, during these periods, most of the variance came from noise. For each of them, 
principal components were estimated (PCA) and the first n components determining 90% of the 
variance were removed. Otherwise, we corrected bad channels and long rejected segments that did 
not contain bad times using spherical splines interpolation (Perrin et al., 1989). Spatial interpolation 
was carried out only if at least 50% of the neighboring channels were intact. Corrected segments 
were realigned with the rest of the data which were then high-pass filtered (0.5Hz) to eliminate 
possible drifts resulting from this operation.  
The artifact detection-correction procedure was applied iteratively, keeping previously identified 
bad samples aside for the subsequent artifact detection steps. 

Epoching  
EEG recordings (and the corresponding rejection matrix) were segmented into epochs starting 
200ms before and ending 1400ms after syllable onset. Trials were rejected if more than 15% of their 
samples contained artifacts. Epochs were also discarded based on their Euclidean distance from the 
average, i.e. when their mean or maximum distance from the average response was an outlier in the 
distribution (> 3rdquartile + 1.5*IQ). Following automated rejection, the remaining epochs were 
visually inspected and a few trials still presenting obvious aberrancies were manually eliminated.  

Since multivariate pattern analysis requires a conspicuous amount of trials, we included subjects 
with a minimum of 40 trials/sub-condition. In our final group of infants (N=25), the mean trial 
rejection rate was 28.7% (12.4 to 53.5%). On average, the number of artifact-free epochs available 
per subject in each sub-condition (e.g. “bi-female”) was 70, providing 840 trials for each manner of 
articulation condition and 560 trials for every place of articulation condition.  

Before submitting them to the main analyses, epochs were low-pass filtered at 20Hz, mathematically 
re-referenced to the mean of all channels and down-sampled (with a moving average of 2 time points) 
to 250Hz. All the main analyses (decoding) were carried at the single trial level. Nonetheless, epochs 
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were also averaged per either sub-condition or manner-/place-condition in order to examine evoked 
responses (ERPs, e.g. Figure 2.7C). 

2.2.5. Decoding 

Multivariate pattern analyses were conducted within subject, relying on the Scikit-Learn 
(Pedregosa et al., 2011) and MNE (Gramfort et al., 2013, 2014) Python packages. To decode in time 
epochs were divided into 60 consecutive windows of 20ms (from -200ms to 1000ms relative to 
stimulus onset), each corresponding to a matrix with the shape n channels x 5 samples (sampling rate 
= 250Hz, 5 samples=20ms). Each analysis was carried on a single window with the general aim of 
predicting a vector of categorical data (y) from a matrix of single-trial neural data (X) which included 
all EEG channels. To decode the manner of articulation trials were labelled as belonging to either the 
category of “obstruent” or to the category of “sonorant” depending on whether /b/, /d/, /g/ or /m/, 
/n/, /ɲ/ exemplars were presented. To decode the place of articulation y comprised three classes: 
“labial” (/b/, /m/), “alveolar” (/d/, /n/), and “velar” (/g/ and /ɲ/). For vowel decoding, trials were 
separated in two classes, “i” and “o”, based on the vocalic portion of the stimulus.  

All decoding analyses were performed within a stratified cross-validation procedure consisting of 
100 iterations. At each run, trials were shuffled and then split into a training and a test set containing 
90% and 10% of trials respectively. As compared to the most common folding approach, this cross-
validation outline enabled to maximize the number of iterations (and thus the reliability of the final 
performance) while maintaining a fixed and reasonable amount of test trials. Importantly, 
stratification ensured (a) that the same proportion of each class was preserved within each set (b) 
all sources of variability (e.g. voice gender) were evenly represented across sets (e.g. training and 
test sets contained syllables produced by the female vs male speaker in the same proportion).  

Given the high amplitude fluctuations typically seen in infant EEG background activity, we first aimed 
at improving our signal-to-noise ratio. Once defined the training and the test set for a given run, we 
applied a “micro-averaging” procedure, a strategy previously used on adults with the same purpose 
(Grootswagers et al., 2016). This consisted in averaging together randomly picked groups of 16 
epochs within each class. The number of trials to average being arbitrary, we tried with 4, 8, and 12 
and observed that by averaging 16 trials we could reach the best performance without compromising 
its reliability. Note that such assessment was conducted on the first decoding analysis we had 
planned (i.e. manner of articulation within a standard cross-validation schema) and the choice of 16 
was then adopted a priori for all the other decoding analyses. At the end of this operation, to ensure 
perfect balance among classes, we equalized the number of (micro-averaged) epochs across 
categories. In practice, this consisted in dropping 1 to 3 randomly picked trials from the most 
numerous class(es). 

Next, following the z-scoring each feature (i.e. channel and time point across trials), a L1-norm 
regularized Logistic Regression (Fan et al., 2008) was fitted to the training set in order to find the 
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hyperplane that could maximally predict y from X while minimizing a log loss function. L1 penalty 
was chosen to exclude less informative features from the solution (their weights being set to zero). 
Such regularization can be conceived in terms of dimensionality reduction, an optimization that 
enabled us to prevent overfitting (by reducing model complexity (Ng, 2004)) but still exploit the high 
density of our EEG data. The other model parameters were kept to their default values as provided 
by the Scikit-learn package. When decoding concerned more than two classes (e.g. place 
classification) we adopted a “one-vs-rest” approach: for each class (i.e. each place of articulation) one 
model was fitted against all the other classes. 

Once trained, the models were used to predict y from the test set and their performance was 
evaluated by comparing estimates to the ground truth. All algorithms produced as an outcome 
vectors of probabilistic estimates. These probabilities were scored by computing the area under the 
Receiver Operating Characteristic curve (AUC), which summarizes the ratio between true positives 
(e.g. trials correctly classified as “obstruent”) and false positives (e.g. trials classified as “obstruent” 
while a sonorant consonant was presented). The value of AUC ranges between 0 and 1, with 0.5 
corresponding to chance level. Once again, in multiclass decoding a “one-vs-rest” scheme was used: 
the AUC scores were computed for each class against all the others and then averaged. Lastly, for both 
binary and multiclass problems, evaluations were averaged over all cross-validation runs. 

As a proof of concept, the main decoding analyses were performed with two additional algorithms: 
L1-norm regularized linear Support Vector Machine (SVM; Fan et al., 2008) and Linear Discriminant 
Analysis (LDA). For the latter, a shrinkage estimator of the covariance matrix was used, taking into 
account the fact that the dimensionality of our data vectors exceeded the number of samples in each 
class (Ledoit & Wolf, 2003). Importantly, we restricted our alternatives to linear classifiers to make 
sure that the algorithms focused on explicit neural codes (Kriegeskorte, 2011). Beside slight 
variations in accuracy, alternative classifiers yielded very similar outcomes. 

Generalization across time 
Estimators trained at each time window t were systematically tested on (both the same and) every 
other possible time window t’, i.e. every 20ms from 200ms prior to 1000ms after syllable onset. Such 
procedure was performed within the cross-validation so that training set at t and test set at t’ came 
from different groups of trials. In the resulting “temporal generalization matrices” each row 
corresponds to the time lag at which the estimator was trained and columns correspond to the time 
windows at which it was tested (King & Dehaene, 2014). The shape of the performance within these 
matrices provides peculiar insights upon the dynamics of the underlying brain activity. If the same 
neural code was found at t and t’, the classifier trained at t would generalize at t’. If, on the contrary, 
information was passed to another stage of processing characterized by its own coding scheme, 
performance at t’ would be at chance (King & Dehaene, 2014). 
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Generalization across conditions  
We examined the consistency of information used by classifiers in different harmonic and co-
articulatory contexts by performing cross-condition decoding. To ask whether the same neural codes 
supported the classification of phonetic features and vowel identities across different harmonic 
contexts, we trained estimators on manner contrasts (/b/, /d/, /g/ vs /m/, /n/, /ɲ/); place contrasts 
(/b/, /m/ vs /d/, /n/ vs /g/, /ɲ/) and vowel contrasts (/i/ vs /o/) within one speaker condition (e.g. 
syllables pronounced by the female voice) and tested these same estimators on the other speaker 
condition (e.g. syllables spoken by the male voice). The procedure regarding co-articulations was 
analogous: we trained place and manner estimators on one vowel context and tested them on the 
other; we trained vowel estimators on single manners or places and assessed their performance on 
the alternative ones.  

To test the orthogonality of manner and place encoding we trained estimators on each featural 
condition separately. More specifically, to reveal place-independent phonetic processing classifiers 
were trained on the manner comparison (“obstruent” vs “sonorant”) at single place contexts (e.g. 
only labial sounds). These estimators were then tested both at the trained place (e.g. labials) and at 
the two unseen places (e.g. alveolar and velar consonants). In case manner neural codes were 
independent from the place of articulation, we expected classifier to perform comparably within the 
trained place and across unseen place contexts. Following the same rationale, we asked whether 
place codes are specific to manners of articulation by training classifiers to discriminate labials vs. 
alveolars vs. velars on one manner (e.g. only with obstruent sounds) and testing them within the 
same (e.g. obstruents) and at the alternative manner condition (e.g. sonorants). 

Moreover, we investigated the orthogonality of consonant and vowel codes with two complementary 
procedures. First, we trained algorithms to distinguish each consonant based on single vocalic 
contexts (e.g. separation of /b/ vs /d/ vs /g/ vs /m/ vs /n/ vs /ɲ/ when they were co-articulated 
with /i/) and tested them within the same and across the alternative co-articulatory context (e.g. 
classify consonant identity among “bo”, “do”, “go”, ”mo”, ”no”, “ɲo”; note that for this schema, as for 
place classification, we adopted a “one-vs-rest” approach and the percentage of correct classifications 
as evaluative metric). Analogously, we trained vowel classifiers on each consonantal option and 
assessed their performance within the trained consonant and across the five alternative ones. In case 
consonant and vowel were encoded separately, we expected to obtain comparable scores within and 
across conditions; oppositely, a degradation in performance across conditions would be indicative of 
interdependence between the two.  

For cross-condition decoding we modified the cross-validation scheme described above so that 
models fitted on each training set were directly applied at all trials belonging to the untrained 
condition (i.e. the test set “across”). In this way, we capitalized on the independence of train and test 
sets. Concerning the splitting of single-condition datasets (i.e. the dataset “within”), the number of 
test trials was calibrated to guarantee a minimum of 2 micro-averaged trials/class at test and at the 



Chapter 2 | Speech 

41 
 

same time maximize the amount of trials available for training. Note also that in order to ensure an 
adequate number of training/test samples, the micro-averaging for the last two cross-decoding 
schemas was reduced to groups of 8 epochs. Apart from these modifications, the decoding 
procedures resembled those described above. 

2.2.6. Neural syllable confusion and multiple regression analysis 

For this section we first built a twelve-class decoding problem by pulling together the female and 
male conditions and then training algorithms to separate each syllable from all the others (i.e. “bi” vs 
“bo” vs “di” vs “do” vs “gi” etc.). We adopted a “one-vs-rest” approach and used the same pre-
processing steps described for the main analyses. Within each cross-validation loop, we stored the 
error matrices displayed by these classifiers at test. After averaging across runs, we obtained a series 
of matrices where the entry at row i and column j corresponds to the percentage of samples belonging 
to class j and labeled as i by the classifier (Figure 2.4C-left and Figure 2.9A-bottom). The diagonal of 
these confusion matrices depicts class-wise accuracy, with theoretical chance being at 8.3% (Figure 
2.9A-top). Given that there is a variety of stimuli characteristics other than syllable identity which 
could lead to above-chance scores (up to 50%), diagonal entries alone are hardly interpretable. On 
the other hand, misclassification patterns (i.e. off-diagonal entries in the matrices) have the potential 
to reveal which dimensions of the stimuli the neural code honors or disregards. To uncover the neural 
representational geometry (Kriegeskorte & Kievit, 2013) captured by our algorithms and its 
evolution over time, we employed multiple linear regression. Specifically, we modeled each 
confusion matrix as a linear combination of five classification performances: those of the ideal 
manner, place, consonant, vowel and whole-syllable decoders (Figure 2.4C-middle and 2.9B-top). 
Concerning the matrix modelling manner discrimination, for example, the predicted entries for those 
pairs of syllables sharing the same manner correspond to 16.6%, whereas the predicted value for 
pairs of syllables not sharing the same manner is 0%. The five predictors were used to explain the 
(neural) syllable confusion observed at each time point, generating a vector of beta-weights for each 
of the five regressors. All matrices were z-transformed before estimating the coefficients. 
Significantly above-zero beta-weights assigned to a particular regressor indicate that, at a given time 
point, the classifier relies on the dimension reflected by that model over and beyond the remaining 
four variables.  

2.2.7. Statistical analysis  

To calculate statistics we performed second-level tests across subjects employing the MNE 
dedicated functions. Following the example in (King et al., 2016), we tested whether (a) time-
resolved classification scores were higher than chance; (b) time-resolved classification scores within 
the trained context were superior to those across context; (c) whether multiple regression beta-
weights were higher than zero; using one-sample cluster-based permutation t-tests (Maris & 
Oostenveld, 2007) which intrinsically account for multiple comparisons. The analyses considered 
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one-dimensional clusters in all cases apart from the generalization across time matrices (with shape 
training times x testing times) for which clusters were bi-dimensional. Univariate t-values were 
calculated for every score/beta-weight with the exclusion of those corresponding to the baseline 
period. All samples exceeding the 95th quantile were then grouped into clusters based on cardinal or 
diagonal adjacency. Cluster-level test statistics corresponded to the sum of t-values within each 
cluster. Their significance was computed by means of the Monte-Carlo method: they were compared 
to a null distribution of test statistics created by drawing 10000 random sign flips of the observed 
outcomes. A cluster was considered as significant when its p-value was below 0.05. 

2.3. RESULTS 

For all the analyses described below, we trained and tested series of linear estimators on brief 
(20ms) consecutive windows all along the time course of the ERPs. Our goal was to define the 
granularity of the infant coding scheme for speech: is it syllabic, phonetic or featural? 

2.3.1. Successful classification is based on dynamic and discrete neural 
patterns  

We first assessed whether decoders trained on infant brain responses could classify the EEG 
recordings according to the phonetic characteristics of the speech stimuli. Figure 2.2A-B show that 
obstruents could be distinguished from sonorants starting from 80ms after syllable onset (pclust 
=0.0001; peak performance observed at 200ms: N=25, M=0.735±0.08, chance= 0.5), while places of 
articulation were reliably classified over two time windows: 220-480ms (pclust=0.0001; peak at 
260ms: M=0.545±0.039); and 540-720ms (pclust =0.0028; peak at 640ms: M=0.534±0.042). As for 
what concerns vowels, the two alternatives in our design (/i/ and /o/) differ in both height and 
backness, precluding the isolation of phonetic sub-classes. Nonetheless, Figure 2.2C shows that vowel 
identity was reliably discerned in between 260 and 600ms (pclust =0.0001; peak at 480ms: 
M=0.596±0.08, chance=0.5) and from 760ms onwards (pclust =0.0001; peak at 860ms: M=0.56±0.067, 
chance=0.5). 

To fully characterize the neural dynamics underlying such performances, the same classifiers were 
systematically tested on their ability to decode across time. When neural activation is maintained 
over time, a successful estimator, trained at a given time point, will continue to achieve above-chance 
scores over a broader time range (King & Dehaene, 2014). Figure 2.2D illustrates how classifiers 
generalized only over a limited amount of time lags, indication that the neural activity was 
progressing along a functional pathway. Concretely, the “cone” shape arising from the generalization 
matrices discloses the retrieval of evolving neural codes: the activity supporting classification was 
either transferring across cortical regions, transformed within the same region over time or both. 
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Presumably, the mild widening of the generalization performance observable in the second portion 
of the trial denotes a change in the representational format reached relatively late after syllable onset.  

To objectivize this interpretation we used classifier weights to reconstruct informative activity 
patterns (see section 2.5.2). Discriminative activity was diffuse over the scalp, resembling the 
auditory ERP topographies arising from multiple perisylvian sources that are typical of this age. 
Crucially, informative clusters were qualitatively different during the first and second time-windows 
of reliable classifiability (Figure 2.6), substantiating the occurrence of distinct encoding stages. 
Change was particularly appreciable in the individual topographies (Figure 2.6A-B) which are free of 
the blurring effect created by averaging across participants. We additionally observed that sensors 
supporting manner and place classification were somewhat separable (Figure 2.6); and found 
significant differences between brain activity patterns precisely distinctive for either labials, 
alveolars or velars (Figure 2.7, where a detailed overview of place-informative activations is also 

Figure 2.2 Classification performances of estimators trained on single time windows (20ms) along 
the ERP. Top: Estimators are tested at the trained time sample. Shaded areas correspond to the standard 
error (SEM) across subjects, dotted black lines mark theoretical chance level and filled circles indicate 
significant scores (cluster-corrected t-test).  (A) Performance of classifiers trained on manner distinctions: 
obstruents (/b/, /d/, /g/) vs. sonorants (/m/, /n/, / ɲ/). (B) Performance of classifiers trained on place 
distinctions: labials (/b/, /m/) vs. alveolars (/d/, /n/) vs. velars (/g/, /ɲ/). (C) Classification of vowel identities: 
/i/ vs /o/. (D) Temporal generalization matrices: each panel displays above-chance decoding scores of 
estimators trained on a single time window (y-axis) and tested at every possible time sample (x-axis) along 
the ERP. The diagonal thin lines demark classifiers trained and tested on the same time sample. Dashed 
contours indicate significant clusters (manner: pclust =0.0001; place: pclust =0.0001 and 0.0028, vowel: pclust 
=0.0097 and pclust =0.0108). 
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reported). These findings uncover that infant syllable perception is supported by spatially distinct, 
although distributed and partially overlapping, neural responses, as described for adults (E. F. Chang 
et al., 2010; Correia et al., 2015). 

2.3.2. An invariant code for sub-syllabic components 

Second, we examined the invariance of the neural code by training new sets of manner and place 
estimators on a single context (e.g. stimuli spoken by the female voice) and testing them on the 
alternative untrained condition (e.g. male voice). We considered the speaker context in a first 
analysis and the vowel in a second analysis. Since several adult and infant studies have shown that 
information about phonemes and about speaker identity is encoded separately at an early processing 
stage (Formisano et al., 2008; Bristow et al., 2008), we expected full generalization across voice 
genders. As explained in the introduction, successful generalization across vowels would be 
indicative of sub-syllabic processing. 

For manner, the timing of cross-context decoding was virtually identical to that seen in the overall 
analysis, and the accuracy only marginally reduced (Figure 2.3A, Table 2.1-2). Such generalization 
proves that the infant brain encodes manner features uniformly and irrespective of harmonic 
particularities, corroborating and extending previous behavioral evidence from older infants 
(Hillenbrand, James, 1983). Remarkably, clear generalization across voices and vowels was also 
obtained for place (Figure 2.3B). The time-course of classification, with two distinct decodable 
periods, and its accuracy were comparable to those achieved in the initial analysis (Figure 2.3B, Table 
2.1-2). Since the acoustic cues for place vary substantially with the context (Liberman et al., 1967; 
Dorman et al., 1977), these cross-condition performances clearly reveal that the infant brain is able 
to extract an invariant code beyond acoustic differences, even in the challenging case of place 
contrasts.  

Complementarily to these results, vowel estimators trained on single manner or place conditions 
fully generalized to the alternative contexts (Figure 2.3C and Table 2.1). Thus, the cross-decoding 
patterns observed so far demonstrate that syllables are not perceived holistically but are broken 
down into sub-components independently of the co-articulated vowel for consonants, and 
consonantal features for vowels. 
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Figure 2.3 Cross-condition decoding. 
(A) Left: generalization of manner estimators across voice conditions: classifiers trained on syllables 
produced by one speaker are tested on stimuli uttered by the other speaker. Right: generalization of manner 
estimators across vowel conditions: classifiers trained on consonants associated to one vowel are tested 
on syllables containing the alternative vowel. (B) Same as A, but for place estimators. (C) Left - vowel 
classification across manners: classifiers are trained on obstruents then tested on sonorants and vice 
versa. Right - vowel classification across places: vowel estimators are trained on one place condition (e.g. 
labials) and tested on the other two (e.g. alveolars and velars).  
Shaded areas correspond to the standard error (SEM) across subjects; dotted black lines mark theoretical 
chance level. Filled circles indicate scores significantly above-chance (exact p-values are reported in Table 
1). Performances from all possible training/test directions are averaged. 
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Classes 
based on:  

generalization 
across: 

time window 
(ms) 

p-clust 
peak performance 

latency (ms) score SD 

manner 
speakers 100-920 0.0001 200 0.673 0.079 

vowels 100-920 0.0001 200 0.678 0.086 

place 

speakers 
200-520 0.0001 260 0.548 0.035 

560-720 0.0014 640 0.522 0.047 

vowels 
240-480 0.0001 260 0.538 0.034 

540-680 0.006 640 0.522 0.042 

vowel 

speakers 
260-580 0.0001 460 0.561 0.078 

760-920 0.0002 800 0.554 0.052 

manners 
300-580 0.0001 460 0.57 0.08 

680-960 0.0001 820 0.552 0.067 

places 
280-600 0.0001 480 0.564 0.082 

760-960 0.0001 820 0.544 0.066 

Table 2.1: Cross-condition decoding Summary of the decoding performances shown in Figure 2.3. 

2.3.3. Syllables are first factorized into orthogonal codes corresponding to 
place and manner features, which are secondarily integrated 

Holistic, unrelated codes for each of the six consonants might suffice for classifiers to sort trials 
into arbitrary subsets (e.g. /b/,/d/,/g/ vs /m/,/n/,/ɲ/), as shown in the previous sections. Crucially, 
if infants encode consonants by factorizing them into separate orthogonal dimensions, akin to the 
phonetic features postulated by linguists, then successful generalization should be obtained for 
decoders trained on one featural dimension, regardless of the variation in the other phonetic 
domains. That is to say, estimators would retrieve the same manner code across labials, velars and 
alveolars and the same place code in obstruents as in sonorants. To evaluate this possibility, we 
trained decoders in one featural context (e.g. manner classifiers were trained only on labials) and 
tested them on left-out data either within the same context (labials) or across untrained phonetic 
contexts (e.g. alveolars or velars). According to the decomposition/factorized hypothesis the two 
tests should yield similar performances. 

This criterion revealed two distinct stages (Figure 2.4A): during an early time-window, both manner 
and place estimators achieved successful generalization, with a classification accuracy approaching 
that obtained within the trained condition. Initial processing was therefore based on orthogonal 
codes for the dimensions of manner and place. Beyond ~450ms however, classification performance 
was significantly lower across contexts as compared to within, suggesting a change in the format. 
Cross-condition decoding fell to chance level for place, while manner information was more resilient 
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but nevertheless altered by the variation in place context (Figure 2.4A). This finding suggests that a 
second phase of processing involved the grouping of multiple elementary dimensions into an 
integrated neural code, i.e. during this later time window, features were merged and no longer 
encoded as orthogonal, separately decodable dimensions. 

Figure 2.4 Orthogonal feature codes are merged into phoneme identities at a late stage of 
processing. (A) Time-resolved performance of estimators trained on a single phonetic feature (e.g. manner 
estimators trained on labials: /b/ vs. /m/). In light colors: classification within the trained condition (e.g.  test 
on labials); in darker colors: performance at novel phonetic contexts (e.g. test on alveolars: /d/ vs. /n/, and 
velars: /g/ vs. /ɲ/). Scores from all possible training conditions or train/test directions are averaged. Shaded 
areas correspond to the SEM across subjects. Filled circles indicate significant generalization across 
contexts (100-900ms: pclust=0.0001 for manner; 240-420ms: pclust=0.001 for place). Diamonds indicate 
higher performance within as compared to across conditions (exact time window of significance for manner: 
480-640ms; for place: 460-660ms). (B) Left: performance of estimators trained on discriminating all 
consonants (/b/ vs /d/ vs /g/ vs /m/ vs /n/ vs /ɲ/) coupled with one vowel (e.g. “-i“) and tested within the same 
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2.3.4. Consonant and vowels remain separated  

Were the consonant and the vowel ever merged in a syllabic unit? The results obtained so far contain 
a few interesting hints in this regard. As shown in Figures 2.2 and 3.2, vowel decodability follows a 
double-peak pattern very similar to that observed for consonantal dimensions, but peak scores are 
achieved markedly later and at times when consonantal place is hardly discriminable. Together with 
the invariance of vowel codes across consonantal features (Figure 2.3C), these observations suggest 
that infants encoded the two phonemes composing the syllable in a separate and well-ordered 
fashion.  
In a final step, we queried a possible interconnection between consonant and vowel processing. Using 
a logic similar to the one described above, we compared the performance of consonant and vowel 
estimators within and across vowel and consonant conditions. The presence of an integrated syllabic 
code would generate a drop in performance across context. As displayed in Figure 2.4B, such drop 
never occurred, suggesting that consonants and vowels were kept separated, at least until 1 second 
after syllable onset. 

All the decoding results described above were further validated by the sanity check analyses 
illustrated in Figure 2.8 (section 2.5), where we used randomized training sets and arbitrary cross-
condition tests. By showing the absence of haphazard decodability, the latter confirmed [a] the 
appropriateness of the stimuli set employed; [b] the reliability and interpretability of the multivariate 
techniques applied; [c] the non-arbitrariness of phonemes and phonetic features as relevant 
linguistic dimensions. 

 (light green) and across the other vocalic context (e.g. “-o”; dark green). Right: performance of vowel 
classifiers trained on a single consonant (e.g. /b/) and tested within the same consonant (yellow) and across 
the remaining five (orange). Filled circles mark significant generalization across contexts (consonant 
classifiers: 80-900ms, pclust=0.0001; vowel classifiers: 340-560ms, pclust=0.0001 and 760ms onwards, 
pclust=0.0002). 
(C) Left: example of a neural confusion matrix at time t (660ms) obtained with a 12-class (syllables) 
decoding problem (average across subjects). Numbers within each cell indicate the percentage of times a 
given syllable from the x-axis was classified with the label reported on the y-axis. Off-diagonal values 
diverging from 0 signal misidentification (chance=8.3%). Middle: theoretical confusion matrices depicting a 
perfect separation between (i.e. the ideal classification of) consonantal places, consonant identities and 
broad syllable identities (classes are ordered as in the left matrix). Darker colors correspond to the values 
25%, 50% and 100% respectively, light colors correspond to 0%. These matrices were entered as 
predictors of interest in a multiple regression analysis to explain neural syllable confusion at each time point. 
Right: the obtained beta-weights averaged across subjects and marked by filled circles when significantly 
above zero (cluster-based permutation t-test). Vertical lines correspond to SEM. To enhance clarity, the 
remaining predictors (i.e. manner and vowel discrimination) and the relative beta-weights are illustrated in 
section 2.5, Figure 2.9B.  
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2.3.5. Neural confusion matrices  

To gain additional evidence on the nature of the encoding across time, we trained algorithms on 
whole syllable identities (i.e. 12 labels: “bi” vs “bo” vs ”di” vs ”do” vs ”gi” vs “go” etc.) and explored 
their error patterns at test. With this decoding scheme, class separation might be based on either one 
or a mixture of the stimuli dimensions explored so far. It follows that, in this analysis, class-wise 
accuracy (Figure 2.9A-top) will be poorly informative per-se. Between-class confusion, on the other 
hand, can provide an exhaustive picture of the encoding modality at each time point. For instance, 
whereas the retrieval of neural codes for whole syllables would produce a purely diagonal confusion 
matrix, phoneme-identity neural codes would trigger conspicuous mislabeling among pairs of stimuli 
sharing the same consonant or vowel. Using multiple linear regression, we tested whether and when 
pairwise neural syllable confusion (Figure 2.4C-left and 2.9A-bottom) was explained by the isolation 
of either featural, consonant-identity and/or whole-syllable codes (Figure 2.4C-middle) once vowel 
distinctions were entered as a variable of non-interest (since our paradigm did not enable to 
disentangle vocalic features from vowel identity). We found that consonantal place of articulation 
drove neural confusability early in the trial (240-380ms: pclust=0.017). Crucially, consonant-identity 
predicted the patterns of neural separability only later, between 500 and 700ms (Figure 2.4C-right; 
pclust = 0.006). Lastly, the syllable regressor never reached significance (Figure 2.4C). Complementing 
the decoding outcomes in Figure 2.4A-B, these results show that following the encoding of orthogonal 
features, place and manner codes were integrated into comprehensive consonant bundles, while 
consonants and vowels remained separated. 

2.4. DISCUSSION 

The classification patterns observed in this study reveal two speech encoding formats in the 
infant brain. During a first stage of processing, each consonant was encoded by its coordinates along 
the manner and place dimensions, as evidenced from the fact that decoders trained on one dimension 
could generalize to different levels of the other dimension. In a second stage, the two features were 
combined into idiosyncratic bundles, still allowing phoneme classification but hindering full 
generalization of featural decoding across different consonants. This functional progression is 
consistent with the dynamic nature of the neural codes as revealed by the matrices in Figure 2.2D 
and the corresponding informative activity patterns in Figures 2.6-7. Although our experiment was 
mainly focused on consonants, similar processing stages for vowels are likely. Finally, we found no 
evidence for an encoding of the syllable in its entirety. 

According to several mainstream accounts, authentic adult-like phonetic perception requires the 
acquisition of refined motor skills that would enable a proficient mapping between articulatory 
movements and acoustic outcomes (Kuhl et al., 2008; Schwartz et al., 2012; Vilain et al., 2019; 
Westermann & Reck Miranda, 2004). Through vocal plays, aimed at imitating ambient language, 
infants would gradually familiarize with the sensory consequences of their own utterances. Once 
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they begin to master production, the acquired availability of internal motor models would enable 
them to process speech sounds in phonetic terms (Kuhl et al., 2008, 2014; Vilain et al., 2019). In this 
scenario, canonical babbling, which signals the beginning of a fairly controlled articulation around 6-
8 months of age (van der Stelt & Koopmans-van Beinum, 1986), represents an important milestone, 
while infants in the pre-babbling phase are thought to rely on refined but domain-general auditory 
mechanisms (Kuhl, 2004). It follows that, according to these widely accepted views, the primitive 
units for speech processing consist of spectrotemporally detailed but phonetically undefined acoustic 
chunks roughly corresponding to syllables. 
The decoding performances shown here suggest a different developmental scenario. First, the 
observed separation between consonants and vowels demonstrates that, even for pre-babbling 
infants, syllables are not holistic units. Without diminishing the importance of syllabic-level analysis 
(e.g. 42), our finding of neural codes for consonant identity complements adult data (Zhang et al., 
2016) in corroborating the reality of the phoneme as a relevant entity for the cortical encoding of 
speech (Kazanina et al., 2018).  
Second, our generalization approach, involving the comparison of decoding performances within- 
and across-phonetic domains, disclosed the existence of a preliminary phase where consonants are 
decomposed along distinct and orthogonal axes for the manner and place of articulation. Although 
we tested only two consonantal features, the characteristics of our experimental design allow strong 
insights upon the nature of such first encoding stage. To start with, we carefully selected the stimuli 
to avoid any trivial difference, for instance in consonant duration (see section 2.2.2, Stimuli 
construction). Importantly, we opted for the dimensions of place and manner because the consistency 
of their acoustic correlates across contexts is largely different. Further, the experimental stimuli were 
appositely chosen to push the variability of place cues at the maximum (e.g. /i/ vs /o/, situated at 
opposite corners of the vowel diagram, accentuated the spectro-acoustical inconsistency of place 
cues due to co-articulatory phenomena (Liberman et al., 1967). Such a-prioris were confirmed by our 
inspection of the auditory spectrograms (Figure 2.5) where the acoustic similarity between tokens 
was explained by manner, vowel and voice commonalities but not place. Yet, on EEG recordings, 
cross-classification performances for both features remained qualitatively similar and disclosed 
invariant neural codes that outreach context-dependent spectrotemporal details. These observations 
suggest that, within a first stage of processing, the infant brain is capable of reducing the intrinsic 
sensory richness of the speech input by factorizing it. In this fashion, a complex signal, varying along 
many axes, is compressed by projection onto a few, linguistically relevant, dimensions. 

Overall, the current study shows that the neural foundations of speech perception are strikingly 
similar in infants and adults (Mesgarani et al., 2014; E. F. Chang et al., 2010; Correia et al., 2015; Zhang 
et al., 2016; Khalighinejad et al., 2017), and compatible with the decomposition into distinctive 
features postulated by linguists (Halle, 2013). Other than providing evidence for phonetic encoding 
in pre-babblers, our results clarify some ambiguities from previous adult studies and extend our 
knowledge of human speech perception. In adults who passively listened to sentences, the EEG 
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revealed a temporal progression of phoneme-related potentials characterized by distinct 
topographies over a period ranging 50-400ms relative to phoneme onset (Khalighinejad et al., 2017). 
However, the experimental design did not allow to explore the functional significance of such 
evolving activity patterns. Cortical recordings in adults have uncovered that distinct electrodes 
encode different dimensions of the speech signal (Mesgarani et al., 2014), but they primarily 
observed the neural correlates of manner and voice-onset-time. Since the latter have clear acoustical 
signatures in the stimulus spectrum, such evidence might not suffice to conclude in favor of a 
genuinely featural code for speech. Meanwhile with fMRI, a multivariate decoding procedure 
equatable with that proposed here allowed to uncover feature-specific responses in various areas of 
the adult temporal lobe (Correia et al., 2015). Our findings are fully congruent with all these 
observations carried on subjects who master their native language, thus supporting a continuity in 
speech encoding from the learner to the expert. Furthermore, our results unify these previous 
insights into a coherent picture: we propose that the extraction of minimal orthogonal features 
(Correia et al., 2015), constitutes the first step of a perceptual process (Khalighinejad et al., 2017) 
leading to phoneme identity computation. Such a process creates a structured and highly 
generalizable space that is robust to surface variability across speakers and co-articulatory contexts.  

A factorized representational mechanism was previously discovered in the monkey face patch 
system (L. Chang & Tsao, 2017). As outlined for the visual domain, such a decomposition strategy 
applied to speech is more parsimonious, efficient and flexible than exemplar coding (e.g. R. Port, 
2007; R. F. Port, 2010). Given these characteristics, a factorized encoding system seems ideally suited 
to bootstrap learning: it enables infants to discover linguistic regularities based on the combinatorial 
possibilities of a reduced set of elements rather than a large diversity of syllables and spectro-
temporal patterns. 
In particular, a code based on invariant phonetic features might play a crucial role in lexicon 
acquisition. A first support for this claim comes from evidence demonstrating its effectiveness in real-
world scenarios: when minimal phonetic distinctions are embedded in acoustically prominent but 
irrelevant variations, infants become especially prone to catch phonetic regularities in order to learn 
words (Rost & McMurray, 2009). In this context, the vectorized system we propose discards the 
irrelevant variability to organize the input according to phonetic criteria; such perceptual re-
organization turns up those subtle phonetic differences that define word’s meaning. Importantly, in 
order to discover words, infants must cope not only with acoustical but also with phonological 
variation due to the segmental context: for example, in order to apprehend that “wet shoes” and 
“we[p] pants” share the same word “wet”, English infants should apply a rule stating that an alveolar 
stop consonant borrows the place of articulation from the subsequent stop (Darcy et al., 2009). 
Phonotactic rules of this sort pertain to phonetic features rather than holistic phonemes. Several 
behavioral studies reported that infants are sensitive to phonotactic cues already by the age of 9 
months: they prefer to listen to sequences that are phonotactically legal in their native language 
(Friederici & Wessels, 1993; Jusczyk et al., 1993) and use their phonotactic knowledge to find word 
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boundaries in continuous speech (Mattys & Jusczyk, 2001). At this age, coherently with our argument, 
phonotactic rules are easily learned if expressed at the level of phonetic features while they are not 
detected when they concern the identity of the phonemes (Saffran & Thiessen, 2003). Lastly, a 
featural encoding of speech is consistent with the documented ability of young infants to use phonetic 
details in word-referent mapping (Swingley & Aslin, 2002; Fennell & Waxman, 2010). 
Also the neural separation between consonants and vowels, which characterizes the second stage of 
processing, seems particularly valuable for learning. Consonants and vowels have been proposed to 
hold diverging roles in language: while the former carry lexical distinctions, the latter are especially 
apt to mark structural organization (Nespor et al., 2003). Their encoding as orthogonal/separate 
entities enables the maintenance of two parallel pathways of processing, optimizing in this way the 
accessibility of lexicon on one side and syntax on the other. Coherently with our findings, and just as 
adults (Toro et al., 2008), infants are known to exploit the “division of labor” between consonants 
and vowels already by the age of 12 months (Hochmann et al., 2011). The inclusion of different 
syllabic structures in future experimental paradigms will bring further insights, e.g. investigations 
with CCV/CVV tokens will enable to elucidate whether orthogonal encoding concerns single 
phonemes or rather consonantal/vocalic functional clusters. 

Phonetic features and phonemes might then correspond to essential and quickly available building 
blocks for human language acquisition. Still, the developmental origin of these codes, and in 
particular their dependence on motor representations, require further study to be understood. At 
~12 weeks, the age of our subjects, vocal production is very limited (Kuhl, 2004). Strikingly, even 
preterm neonates can detect a place of articulation change (“ba” vs “ga”) at 6 months of gestation, 
when articulatory movements are extremely poor. Before term, such discriminative ability is carried 
by a network of temporal and frontal brain areas similar to that recruited at later ages 
(Mahmoudzadeh et al., 2013, 2016). These observations suggest that the encoding system isolated 
here develops prior to, and independently of, motor skills. Nevertheless, orofacial stereotypies such 
as tongue protrusion/retraction occur already in the womb and protophones, the earliest precursors 
of oral language, start to be produced, in an exploratory fashion, immediately after birth (Oller et al., 
2019). These primitive behaviors could provide a primordial knowledge of the shape and 
configurability of the upper vocal tract (Choi et al., 2017) and, combined with sound exposure, they 
might foster an integrative/multi-modal representational space for speech before the onset of 
canonical babbling. Coherently with this conjecture, a recent study in 3-month-olds showed that 
altering the movements of the tip of the tongue modulates the perception of a labial-alveolar contrast, 
thereby revealing the presence of a refined auditory-motor mapping (Choi et al., 2021). Although 
multi-modal speech processing appears from an early age (Bristow et al., 2008), the perceptual stage 
at which different modalities are integrated, as well as their relative weights, remain to be 
determined. 
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As a final remark, we would like to warn the reader about two interpretative issues our methodology 
entails. Strictly speaking, our multivariate decoding approach revealed a statistical dependence 
between a psycholinguistically-defined representational space composed of phonetic vectors and the 
spatiotemporal activity patterns captured by the EEG sensors (Hebart & Baker, 2018; Kriegeskorte 
& Bandettini, 2007). When conceiving the brain as an information-processing system based on 
population coding (Panzeri et al., 2015), pattern-information analyses are likely to have considerable 
functional significance, especially in comparison to more classical activation-based approaches 
(Hebart & Baker, 2018; Kriegeskorte & Bandettini, 2007). Furthermore, our choice of linear (as 
opposed to non-linear) classifiers ensures the biological plausibility of our conclusions 
(Kriegeskorte, 2011). Nonetheless, demonstrating that neural activity patterns incorporate phonetic 
information does not necessarily imply that the infant brain actually uses such information for its 
operations. The literature provides two hints in this direction. First, a behavioral investigation 
relying on the head-turn preference procedure reported that 4-month-olds could successfully learn 
a phonotactic rule shaping vowel-consonant parings on the basis of featural classes (i.e. “nasal vowels 
are always followed by fricatives, and oral vowels by stop consonants”)(Seidl et al., 2009). Moreover, 
a recent ERP study found that when exposed to syllables varying in their vocalic constituents, 3-
month-old infants could learn to pair consonants and visual shapes and generalize this pairing to a 
new vocalic context, demonstrating that sub-syllabic representations are already operational at this 
age (Mersad et al., 2021). We point this line of study as a meaningful direction for future research. 
A second interpretative issue might arise from linear models being, by nature, strongly dependent 
on the experimenter’s a priori insights: by fitting only the phonetic variables included in our 
hypothesis, we might have missed the influence of unexpected variables possibly accounting for the 
successful classification of the former. In light of such caveat, the emergence of phonetic codes in a 
(relatively) unsupervised decoding analysis is particularly noteworthy (Figure 2.4C and 2.9). Namely, 
in absence of any predefined stimulus grouping, the representational structure revealed by the 
confusion patterns of syllable classifiers matched the predictions of the phonetic representational 
space hypothesized. 

To conclude, pending more definitive experimental evidence, we point out the possibility that an 
abstract, combinatorial code for speech might be available very early on and endow infants with the 
ability to discriminate phonemes from most languages (Jusczyk, 2000). We further highlight that an 
encoding system based on a finite set of minimal and orthogonal elements is ideally suited to 
bootstrap the acquisition of phonotactic, lexical and syntactic rules. The method presented here 
provides the foundation for future experiments that, spanning a range of languages and ages, will 
need to investigate how the observed codes develop and adapt to the inventory of native phonemes.  
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2.5. SUPPLEMENTARY MATERIALS 

2.5.1. Auditory spectrogram estimation and Representation Similarity 
Analysis 

This preliminary investigation was aimed at delineating the auditory representational geometry 
elicited by our stimuli set (Kriegeskorte, 2008; Kriegeskorte & Kievit, 2013). 
The time-frequency auditory representation of the speech sounds was estimated according to a 
model of the peripheral auditory system (Chi et al., 2005) as implemented in the NSL Matlab Toolbox 
(http://nsl.isr.umd.edu/downloads.html). This model comprises: a first step in which sound 
frequencies are spatially separated along the basilar membrane; a second stage that simulates the 
transduction of basilar membrane displacements into auditory nerve spikes; and a third phase of 
processing within the cochlear nucleus. The output of the model is an auditory spectrum of the signal 
as it enters the inferior colliculi. The three stages and their mathematical implementations are 
described in (Yang et al., 1992) and (Wang & Shamma, 1994). Auditory spectra were computed based 
on consecutive windows of 10ms for each stimulus, obtaining a total of 120 bidimensional (time x 
frequency) auditory representations. We then estimated pair-wise auditory dissimilarity following 
two different approaches.  
First, we calculated time-resolved auditory (dis)similarity. For this purpose, spectrograms were 
aligned upon the consonant offset times determined with the gating procedure described in the 
Materials and Methods (section 2.2.2). Consonant offset was preferred over syllable onset because 
acoustic cues for the place of articulation are generally proposed to reside within the formant 
transitions (i.e. at the time of the switch between consonant and vowel portions) (Liberman et al., 
1954). Since consonant duration varied across speech tokens, alignment based on syllable onset 
would have led to a jittering of such transition times across spectrograms and this jittering could 
have misleadingly attenuated relevant cues. The 5 auditory spectrograms corresponding to each sub-
condition (e.g. the 5 utterances of “go-female”) were then averaged together (Figure 2.5B). For each 
(10ms long) spectral frame, we z-scored amplitude values across frequencies and calculated the 
Euclidean distance between each pair of sub-conditions. Standardization was applied in order to 
maximize our power of detecting phonetic distinctions despite variation in fundamental frequencies 
(i.e. despite male and female voices being characterized by very distinct pitches). The choice of the 
Euclidean metric is justified by its potentiality to mimic infant discriminative behavior with higher 
fidelity relative to other distance measures (Sundara et al., 2018). The outcome of this first approach 
is a series of 35 auditory distance matrices (Figure 2.5B), describing all together how pairwise 
auditory (dis)similarity unfolds over time.  
It has been proposed that the acoustic correlates of the place of articulation, a feature of major 
interest in the current study, have an integrative and dynamic nature (Nossair & Zahorian, 1991). 
The employment of brief time slices could have then potentially precluded us from capturing 
meaningful cues derivable from the spectral shape as a whole. To account for this eventuality, our 

http://nsl.isr.umd.edu/downloads.html
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second approach relied on the Dynamic Time Warping (DTW) algorithm (Sakoe & Chiba, 1978; Park 
& Glass, 2008) as implemented in the Python module dtaidistance (Meert & Van Craenendonck, 
2018). This technique enabled us to find the best alignment between each pair of spectrograms by 
stretching and compressing them locally, along the time axis. Following z-scoring, we estimated the 
DTW distance between each pair of utterances and obtained a comprehensive auditory dissimilarity 
matrix by averaging the distance values corresponding to each pair of sub-conditions.  
To investigate the relationship between the auditory space and the phonetic/harmonic dimensions 
of our speech stimuli we tested the correlation of the auditory distance matrices with four theoretical 
matrices (Figure 2.5C). The latter consisted of categorical models in which two syllables are identical 
(dissimilarity = 0) if they share the same manner/place/vowel/voice, and different (dissimilarity=1) 
in case they do not. Concerning place of articulation distinctions, some investigations in phonetics 
seem to suggest that labials/velars and alveolars could be acoustically closer to each other relative 
to labial and velars (Cho & Ladefoged, 1999; Lisker & Abramson, 1964). Furthermore it has been 
proposed that the alveolar feature may be “underspecified” (i.e. coronal may correspond to the 
default place and therefore be somehow inactive/less contrastive) as compared to the labial or velar 
features (Cummings et al., 2017; Stemberger & Stoel-gammon, 1991; Tsuji et al., 2015). To account 
for these possibilities, we built an additional model where the distance between labials and alveolars 
and that between alveolars and velars was quantified as “0.5”. Results obtained with the two place 
models were completely overlapping. 
The match between auditory and theoretical dissimilarity matrices was quantified with a Mantel test 
for two-dimensional correlations (Mantel, 1967) employing Spearman’s rho as test statistic and 
performing 10000 permutations for each test. The Mantel procedure, unlike the classical correlation 
methods, enabled to account for the fact that distances here were not independent, i.e. every 
dissimilarity depended on two spectral patterns/qualitative values, each of which also codetermined 
the similarities of all its other pairings in the matrix. False discovery rate (FDR) correction was 
applied in case of multiple comparisons across spectral frames. 

Time-resolved outcomes are show in Figure 2.5D. Along an average sound duration of 400ms, the 
auditory pairwise dissimilarity of the stimuli is best described by manner of articulation distinctions 
up to 140ms (i.e. during the consonantal portion) and later by the vowel. Acoustic similarities are 
additionally shaped by voice gender throughout the entire syllable, while they do not have any 
straightforward relationship with the place of articulation (Figure 2.5D). The comprehensive 
auditory dissimilarity matrix is significantly correlated with manner (Mantel rs =0.228, p=0.0002); 
vowel (Mantel rs =0.297, p=0.0001) and speaker distinctions (Mantel rs =0.24, p=0.0001) but not 
place of articulation (Mantel rs =-0.029, p=0.75).  
These results are coherent with the fact that, despite 70 years of research, investigators could not 
find an acoustic description of the place of articulation that is valid for all contexts. Intriguingly 
enough, although able to form place-based categories, animals have been shown to process place 
contrasts in a context-dependent way (Sinnott & Gilmore, 2004).  Given all these elements, the ability 
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to detect stable place contrasts across different production circumstances might be considered as the 
ultimate challenge to address in order to understand human speech perception. 

As a note, the reader may wonder the reason why we could not apply the same decoding strategies 
used on neural data in order to characterize the auditory space. Generally speaking, the lower the 
number of samples and the higher the ratio of features to sample size, the more a machine learning 
model will fit the noise in the data instead of a meaningful pattern (Jain & Chandrasekaran, 1982; 

Figure 2.5 Representational content of the speech stimuli (Figure 2.1) as they reach the central 
auditory pathways.  
(A) Auditory spectrograms were extracted from the speech sounds with a model of cochlear frequency 
analysis, then averaged by syllable type (top: one instance of “go” pronounced by the female voice; bottom: 
average spectrogram of all 5 utterances belonging to the sub-condition “go-female”). The blue-red scale 
reflects minimal-maximal energy, separately normalized in the consonant and vowel portions for mere 
illustrative purposes. (B) Example of dissimilarity matrix reporting the Euclidean distance between each 
pair of auditory spectrograms at spectral time=200ms. Each label (e.g. “bi”) indexes two sub-conditions: 
female and male. (C) Categorical dissimilarity models (conditions are ordered as in the matrix above): light 
colors indicate correspondence (distance=0) while darker colors signify lack of correspondence 
(distance=1). (D) Correlation between spectral and theoretical distance matrices as syllable unfolds (the 
dotted vertical line marks the switch between consonant and vowel). Thicker lines indicate significant time 
points (p<0.05) after FDR correction. Full methodology description, rationale and complementary results 
are reported in the supplementary text above. 
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Kanal & Chandrasekaran, 1971). In the case of our auditory spectrograms, algorithms would need to 
be trained/tested on a maximum of 120 samples with 4480 features each (as a benchmark: samples 
for each neural estimator in the main analyses were approximately 1600 and contained 1260 
features each). Evidently, such disproportionate dataset is ill-suited for the same kind of estimators 
used on the ERPs: instability and overfitting would completely undermine the reliability (and 
therefore interpretability) of the outcome. On the other hand, the same RSA approach used to 
characterize the auditory space would have been a largely suboptimal strategy if applied on neural 
data, for the following reason. The signal-to-noise ratio in infant EEG is considerably worse than that 
of spectrograms (which, as described above, are estimated through a software starting from .wav 
files recorded in optimal environmental conditions). When provided with an adequate number of 
samples, machine-learning methods can overcome noise-related limitations by combining 
information from different EEG sensors, leading to a gain in sensitivity that could not be achieved by 
averaging individual trials together (Hebart & Baker, 2018). Nevertheless, we did perform a 
similarity-based analysis on neural data that parallels, at the conceptual level, the present 
investigation on auditory spectrograms. Namely, we quantified the neural (dis)similarity between 
syllabic conditions as the degree of confusion yielded by classifiers trained using generic labels 
(Figure 4C and 2.9). Note that, in this case, decoding was conducted in a relatively unsupervised 
fashion, resulting in neural confusability patterns that are qualitatively comparable with the acoustic 
dissimilarities. Of particular interest is that, in sharp contrast to the results obtained for the auditory 
space, place of articulation was a significant factor driving the (dis)similarity of the neural responses. 
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2.5.2. Weights projection  

The weights assigned by classifiers to EEG sensors reflect the degree to which the information 
captured by a given sensor is used to maximize class separation. However, weights per se are very 
difficult to interpret. For example, higher weights do not necessarily correspond to high levels of 
class-specific information as they could be assigned to sensors that are employed to delineate and 
suppress noise (for a full explanation see: Haufe et al., 2014). To overcome this issue it is possible to 
project weights back onto an interpretable activation space by multiplying them with the covariance 
in the data (cov(X), where X is the N × M matrix of EEG data with N trials and M channels). In the 
resulting vector (that has length M channels) large amplitudes indicate high degrees of class-specific 
brain activity (Grootswagers et al., 2016; Haufe et al., 2014).  Since our goal was to reconstruct 
informative activity peculiar to each phonetic feature domain, we retrieved the coefficients of 
classifiers trained within each place condition to obtain “pure” manner-distinctive patterns and 
trained within each manner condition to obtain “pure” place-distinctive patterns. By doing so, we 
ensured that no information about place was available to manner estimators and no information 
about manner was available to place estimators. After multiplying coefficients and EEG covariance, 
the resulting activity estimations were averaged across places (to obtain informative activity for 
manner) or manners (to obtain informative activity for place). 
To identify sensors that were crucial specifically for manner or crucial specifically for place 
classification, we computed the 10th and 90th percentiles of the informative activity values observed 
throughout the trial. At each time point, channels whose informative activity amplitude fell below the 
10th or above the 90th percentiles in one phonetic domain but not the other were interpreted as 
particularly important to manner but not place classifiers or vice versa (Figure 2.6). 
Further, we compared labial- , alveolar- and velar-specific patterns of informative activity with 1-way 
repeated measures ANOVA (Figure 2.7B). As done for the main analyses, we addressed the multiple 
comparisons problem with a permutation procedure based on spatio-temporal clusters. Neighboring 
elements that passed a threshold corresponding to a p-value of 0.01 were grouped together and their 
significance was computed by comparing cluster-level statistics to a null distribution of f-value sums 
created by drawing 10000 random permutations of the observed data. A cluster was considered as 
significant when its p-value was below 0.05. Since informative activity patterns are meaningful only 
in case of successful decoding (Haufe et al., 2014), differences were evaluated only during the two 
time windows when place classification was reliably above chance. 
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Figure 2.6 (complement of Figure 2.2) Discriminative loci change as a function of time and phonetic 
feature dimension 
Classifiers weights are projected onto the EEG sensor activation space. Darker colors correspond to brain 
activity that was useful for classification. Marked in yellow are channels carrying crucial information to 
distinguish manner but not place (top rows) or to discriminate place but not manner (bottom rows). Time 
points are chosen to provide an overview of the two time-windows with reliable classification. Panels (A) 
and (B) show the informative activity patterns reconstructed for two representative subjects. In (C) 
informative 
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 informative activity patterns are averaged across infants with the purpose of providing a visualization of 
the general trend. Note however that the interpretability of this grand average is limited since decoding 
analyses were carried within subject and discriminative loci are very much idiosyncratic. Overall, these 
topographies show that, as time passes, sensors conveying valuable information are located more medially 
over frontal areas. Moreover, informative locations for manner and place of articulation do not always 
overlap. 
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Figure 2.7 (related to Figure 2.2) Overview of place contrasts: informative and evoked activity 
patterns.  
(A) In place decoding, three distinct models were fitted to separate each place of articulation from the other 
two (one-vs-rest approach). Their weights were projected back onto the activation space to reconstruct 
patterns of activity useful in characterizing either labials, alveolars or velars against the other places. Darker 
colors correspond to loci providing high degrees of class (i.e. place)-specific information. Patterns are 
averaged across subjects to provide an impression of the general trend; note however that weight 
idiosyncrasy undermines the interpretability of the grand average. (B) Results of one-way repeated 
measures ANOVA comparing discriminative activity for labials vs. alveolars vs. velars; channels containing 
significant differences are in green: early time-window: pclust =0.0005, late time-window: pclust =0.0196. (C) 
Reported on the left are differential informative activity patterns, on the right the same differences were 
computed on the evoked related potentials (ERPs). Given that amplitude ranges of informative and evoked 
brain activity were extremely similar (spanning from -8 to 7 µV in both cases), this figure displays two 
remarkable features: differential topographies are qualitatively overlapping while amplitude scales 
(colorbars) change substantially from the left to the right side of the panel.  
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phonetic 
feature 

time 
window 

(ms) 

decoding 
analysis 

comparison to overall classification 

mean score t(24) p 

manner 200 - 400  
overall 0.685±0.065   

across genders 0.643±0.057 2.278 0.032 
across vowels 0.649±0.0523 2.176 0.040 

place 

260-360 
overall 0.538±0.039   

across genders 0.548±0.031 -1.085 0.289 
across vowels 0.536±0.033 0.194 0.848 

580-680 
overall 0.526±0.039   

across genders 0.513±0.041 1.353 0.189 
across vowels 0.519±0.032 0.651 0.521 

Table 2.2. Formal comparison between main and cross-condition decoding of phonetic features 
Performance of estimators trained on exclusive conditions (“across”; Figure 3A-B) is compared to that of 
estimators trained on all conditions at once (“overall”; Figure 2A-B). AUC scores were averaged over 200ms 
(the first time point to be considered was set upon peak performance) and, once ascertained the normality of 
each distribution, contrasted with two-sided t-tests. 
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Figure 2.8 Sanity checks on classifier behavior and its interpretability.  

As in all main decoding analyses, set of classifiers are trained and tested every 20ms along the ERPs. (A) 
The 24 sub-conditions composing the stimuli set (Figure 2.1) were partitioned in two arbitrary classes 
balanced in terms of consonant identities, vowel identities, speakers and their combination alternatives (i.e. 
consonant/vowel, vowel/speaker and consonant/speaker idiosyncratic pairings; examples are reported on 
the top right). Decoders were trained and tested on all possible pair of classes constructible with such 
partitioning. Note that we ensured the same kind of balance across classes (with the obvious exception of 
that concerning the investigated dimension) in all decoding problems presented in the main text. 2-tailed 
cluster-based permutations t-tests were used to detect any deviation from chance: none was found for the 
average performance across arbitrary pairs (top-left) nor for any single arbitrary contrast (bottom). Other  
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than the employment of a well-controlled stimuli set on our behalf, the absence of above/below-chance 
decoding confirms the reality of phonemes as psychophysical perception objects for infants. (B) This panel 
is the counterpart of Figure 2.4A, displaying arbitrary generalizations instead of those based on phonetic 
theory. Estimators trained on manner contrasts within each place context (e.g. /b/ vs /m/; Figure 2.4A-left) 
were tested upon place contrasts (e.g. /d/ vs /g/ and /n/ vs /ɲ/; as opposed to testing their ability to classify 
obstruents vs sonorants at alternative place contexts). To mimic Figure 2.4A, the resulting performance is 
reported by averaging according to each possible arbitrary labelling option: alveolar →obstruent & velar 
→sonorant (left), velar →obstruent & labial →sonorant (middle), alveolar →obstruent & labial →sonorant 
(right). Note that the three remaining labelling possibilities (i.e. velar →obstruent & alveolar →sonorant, 
labial →obstruent & velar → sonorant, labial →obstruent & alveolar →sonorant) produce the same 
outcomes, only reversed relative to chance. Cluster-based permutation t-tests (with the same settings used 
for the main analyses) revealed no above-chance scores, validating the traditionally-defined phonetic 
domains of manner and place of articulation as meaningful decompositional axes for the brain. 
In both panels shaded areas correspond to the standard error (SEM) across subjects and dotted black lines 
mark theoretical chance level. The absence of filled circles indicates that no significant effect was found. 
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Figure 2.9 (complement of Figure 2.4).  
(A) Top: time-resolved class-wise accuracy of estimators  trained on syllable identities: “bi” vs “bo” vs ”di” 
vs ”do” vs ”gi” vs “go” vs “mi” vs “mo” vs ”ni” vs ”no” vs ” ɲi” vs “ɲo”.  The shaded area corresponds to the 
SEM across subject, dotted black lines mark theoretical chance level, filled circles indicate when 
performance is significantly above chance (starting from 120ms: pclust=0.0001) Bottom: confusion matrix 
yielded by the same classifiers at 200ms after stimulus onset. Numbers within each cell indicate the 
percentage of times a given syllable indicated along the x-axis was classified with the label reported on the 
y-axis. Off-diagonal values diverging from 0 signal misidentification (chance=8.3%). (B) Top: theoretical 
confusion matrices depicting a perfect separation between (i.e. the ideal classification of) manners of 
articulation and co-articulated vowel (classes are ordered as in A). Darker colors correspond to the values 
16.6%; light colors correspond to 0%. These matrices were entered as predictors in the multiple regression 
analysis together with those illustrated by Figure 2.4C. Bottom: the obtained beta-weights, averaged across 
subjects and marked by filled circles when significantly above zero (100-920ms: pclust=0.0001 for manner; 
260-920ms: pclust=0.0001 for the vowel). Vertical lines correspond to the SEM.  Consistently with Figure 
2.4A, this pattern of beta-weights shows that neural confusability was prominently driven by manner 
distinctions at first, but to a lesser extent later in the trial. 
 

  



Chapter 2 | Speech 

66 
 

2.6. References 

Arsenault, J. S., & Buchsbaum, B. R. (2015). Distributed Neural Representations of Phonological 
Features during Speech Perception. Journal of Neuroscience, 35(2), 634–642. 
https://doi.org/10.1523/JNEUROSCI.2454-14.2015 

Behrens, T. E. J., Muller, T. H., Whittington, J. C. R., Mark, S., Baram, A. B., Stachenfeld, K. L., & Kurth-
Nelson, Z. (2018). What Is a Cognitive Map? Organizing Knowledge for Flexible Behavior. 
Neuron, 100(2), 490–509. https://doi.org/10.1016/j.neuron.2018.10.002 

Bertoncini, J., Bijeljac‐Babic, R., Blumstein, S. E., & Mehler, J. (1987). Discrimination in neonates of 
very short CVs. The Journal of the Acoustical Society of America, 82(1), 31–37. 
https://doi.org/10.1121/1.395570 

Bertoncini, J., Bijeljac-Babic, R., Jusczyk, P. W., Kennedy, L. J., & Mehler, J. (1988). An investigation of 
young infants’ perceptual representations of speech sounds. Journal of Experimental 
Psychology: General, 117(1), 21–33. https://doi.org/10.1037/0096-3445.117.1.21 

Bijeljac-Babic, R., Bertoncini, J., & Mehler, J. (1993). How do 4-day-old infants categorize 
multisyllabic utterances? Developmental Psychology, 29(4), 711–721. 
https://doi.org/10.1037/0012-1649.29.4.711 

Boersma, P., & Weenink, D. (2017). Praat: Doing phonetics by computer (Version 6.0.25) [Computer 
software]. http://www.praat.org/ 

Bristow, D., Dehaene-Lambertz, G., Mattout, J., Soares, C., Gliga, T., Baillet, S., & Mangin, J.-F. (2008). 
Hearing Faces: How the Infant Brain Matches the Face It Sees with the Speech It Hears. 
Journal of Cognitive Neuroscience, 21(5), 905–921. 
https://doi.org/10.1162/jocn.2009.21076 

Chang, E. F., Rieger, J. W., Johnson, K., Berger, M. S., Barbaro, N. M., & Knight, R. T. (2010). Categorical 
speech representation in human superior temporal gyrus. Nature Neuroscience, 13(11), 
1428–1432. https://doi.org/10.1038/nn.2641 

Chang, L., & Tsao, D. Y. (2017). The Code for Facial Identity in the Primate Brain. Cell, 169(6), 1013-
1028.e14. https://doi.org/10.1016/j.cell.2017.05.011 

Chi, T., Ru, P., & Shamma, S. A. (2005). Multiresolution spectrotemporal analysis of complex sounds. 
The Journal of the Acoustical Society of America, 118(2), 887–906. 
https://doi.org/10.1121/1.1945807 

Cho, T., & Ladefoged, P. (1999). Variation and universals in VOT: Evidence from 18 languages. 
Journal of Phonetics, 27(2), 207–229. https://doi.org/10.1006/jpho.1999.0094 

Choi, D., Dehaene-Lambertz, G., Peña, M., & Werker, J. F. (2021). Neural indicators of articulator-
specific sensorimotor influences on infant speech perception. Proceedings of the National 
Academy of Sciences, 118(20). https://doi.org/10.1073/pnas.2025043118 



Chapter 2 | Speech 

67 
 

Choi, D., Kandhadai, P., Danielson, D. K., Bruderer, A. G., & Werker, J. F. (2017). Does early motor 
development contribute to speech perception? The Behavioral and Brain Sciences, 40, e388. 
https://doi.org/10.1017/S0140525X16001308 

Correia, J. M., Jansma, B. M. B., & Bonte, M. (2015). Decoding Articulatory Features from fMRI 
Responses in Dorsal Speech Regions. Journal of Neuroscience, 35(45), 15015–15025. 
https://doi.org/10.1523/JNEUROSCI.0977-15.2015 

Cummings, A., Madden, J., & Hefta, K. (2017). Converging evidence for [coronal] underspecification 
in English-speaking adults. Journal of Neurolinguistics, 44, 147–162. 
https://doi.org/10.1016/j.jneuroling.2017.05.003 

Darcy, I., Ramus, F., Christophe, A., Kinzler, K., & Dupoux, E. (2009). Phonological knowledge in 
compensation for native and non-native assimilation. In F. Kügler, C. Féry, & R. van de Vijver 
(Eds.), Variation and Gradience in Phonetics and Phonology (pp. 265–310). Mouton de 
Gruyter. 

Dehaene-Lambertz, G., & Pena, M. (2001). Electrophysiological evidence for automatic phonetic 
processing in neonates. Neuroreport, 12(14), 3155–3158. 
https://doi.org/10.1097/00001756-200110080-00034 

Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG 
dynamics including independent component analysis. Journal of Neuroscience Methods, 
134(1), 9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009 

Dorman, M. F., Studdert-Kennedy, M., & Raphael, L. J. (1977). Stop-consonant recognition: Release 
bursts and formant transitions as functionally equivalent, context-dependent cues. 
Perception & Psychophysics, 22(2), 109–122. https://doi.org/10.3758/BF03198744 

Eimas, P. D., & Miller, J. L. (1980a). Discrimination of information for manner of articulation. Infant 
Behavior and Development, 3, 367–375. https://doi.org/10.1016/S0163-6383(80)80044-0 

Eimas, P. D., & Miller, J. L. (1980b). Contextual effects in infant speech perception. Science, 
209(4461), 1140–1141. https://doi.org/10.1126/science.7403875 

Eimas, P. D., Siqueland, E. R., Jusczyk, P., & Vigorito, J. (1971). Speech Perception in Infants. Science, 
171(3968), 303–306. https://doi.org/10.1126/science.171.3968.303 

Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., & Lin, C.-J. (2008). LIBLINEAR: A Library for Large 
Linear Classification. Journal of Machine Learning Research, 9(Aug), 1871–1874. 

Fennell, C. T., & Waxman, S. R. (2010). What Paradox? Referential Cues Allow for Infant Use of 
Phonetic Detail in Word Learning. Child Development, 81(5), 1376–1383. 
https://doi.org/10.1111/j.1467-8624.2010.01479.x 



Chapter 2 | Speech 

68 
 

Fló, A., Brusini, P., Macagno, F., Nespor, M., Mehler, J., & Ferry, A. L. (2019). Newborns are sensitive 
to multiple cues for word segmentation in continuous speech. Developmental Science, 22(4), 
e12802. https://doi.org/10.1111/desc.12802 

Formisano, E., De Martino, F., Bonte, M., & Goebel, R. (2008). “Who” Is Saying “What”? Brain-Based 
Decoding of Human Voice and Speech. Science, 322(5903), 970–973. 
https://doi.org/10.1126/science.1164318 

Fowler, C. A. (1994). Invariants, specifiers, cues: An investigation of locus equations as information 
for place of articulation. Perception & Psychophysics, 55(6), 597–610. 
https://doi.org/10.3758/BF03211675 

Friederici, A. D., & Wessels, J. M. I. (1993). Phonotactic knowledge of word boundaries and its use in 
infant speech perception. Perception & Psychophysics, 54(3), 287–295. 
https://doi.org/10.3758/BF03205263 

Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D., Brodbeck, C., Goj, R., Jas, M., 
Brooks, T., Parkkonen, L., & Hämäläinen, M. (2013). MEG and EEG data analysis with MNE-
Python. Frontiers in Neuroscience, 7. https://doi.org/10.3389/fnins.2013.00267 

Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D., Brodbeck, C., Parkkonen, L., & 
Hämäläinen, M. S. (2014). MNE software for processing MEG and EEG data. NeuroImage, 86, 
446–460. https://doi.org/10.1016/j.neuroimage.2013.10.027 

Grootswagers, T., Wardle, S. G., & Carlson, T. A. (2016). Decoding Dynamic Brain Patterns from 
Evoked Responses: A Tutorial on Multivariate Pattern Analysis Applied to Time Series 
Neuroimaging Data. Journal of Cognitive Neuroscience, 29(4), 677–697. 
https://doi.org/10.1162/jocn_a_01068 

Grosjean, F. (1996). Gating. Language and Cognitive Processes, 11(6), 597–604. 
https://doi.org/10.1080/016909696386999 

Halle, M. (2013). From memory to speech and back: Papers on Phonetics and Phonology 1954-2002. 
Walter de Gruyter. 

Haufe, S., Meinecke, F., Görgen, K., Dähne, S., Haynes, J.-D., Blankertz, B., & Bießmann, F. (2014). On 
the interpretation of weight vectors of linear models in multivariate neuroimaging. 
NeuroImage, 87, 96–110. https://doi.org/10.1016/j.neuroimage.2013.10.067 

Hebart, M. N., & Baker, C. I. (2018). Deconstructing multivariate decoding for the study of brain 
function. NeuroImage, 180, 4–18. https://doi.org/10.1016/j.neuroimage.2017.08.005 

Hillenbrand, James. (1983). Perceptual Organization of Speech Sounds by Infants. Journal of Speech, 
Language, and Hearing Research, 26(2), 268–282. https://doi.org/10.1044/jshr.2602.268 



Chapter 2 | Speech 

69 
 

Hochmann, J.-R., Benavides‐Varela, S., Nespor, M., & Mehler, J. (2011). Consonants and vowels: 
Different roles in early language acquisition. Developmental Science, 14(6), 1445–1458. 
https://doi.org/10.1111/j.1467-7687.2011.01089.x 

Jain, A. K., & Chandrasekaran, B. (1982). 39 Dimensionality and sample size considerations in 
pattern recognition practice. In Handbook of Statistics (Vol. 2, pp. 835–855). Elsevier. 
https://doi.org/10.1016/S0169-7161(82)02042-2 

Jas, M., Engemann, D. A., Bekhti, Y., Raimondo, F., & Gramfort, A. (2017). Autoreject: Automated 
artifact rejection for MEG and EEG data. NeuroImage, 159, 417–429. 
https://doi.org/10.1016/j.neuroimage.2017.06.030 

Jusczyk, P. W. (2000). Early Research on Speech Perception. In The discovery of spoken language 
(pp. 43–71). MIT Press. 

Jusczyk, P. W., & Derrah, C. (1987). Representation of speech sounds by young infants. 
Developmental Psychology, 23(5), 648–654. https://doi.org/10.1037/0012-1649.23.5.648 

Jusczyk, P. W., Friederici, A. D., Wessels, J. M. I., Svenkerud, V. Y., & Jusczyk, A. M. (1993). Infants′ 
Sensitivity to the Sound Patterns of Native Language Words. Journal of Memory and 
Language, 32(3), 402–420. https://doi.org/10.1006/jmla.1993.1022 

Jusczyl, P. W., Pisoni, D. B., & Mullennix, J. (1992). Some consequences of stimulus variability on 
speech processing by 2-month-old infants. Cognition, 43(3), 253–291. 
https://doi.org/10.1016/0010-0277(92)90014-9 

Kanal, L., & Chandrasekaran, B. (1971). On dimensionality and sample size in statistical pattern 
classification. Pattern Recognition, 3(3), 225–234. https://doi.org/10.1016/0031-
3203(71)90013-6 

Kazanina, N., Bowers, J. S., & Idsardi, W. (2018). Phonemes: Lexical access and beyond. Psychonomic 
Bulletin & Review, 25(2), 560–585. https://doi.org/10.3758/s13423-017-1362-0 

Khalighinejad, B., Cruzatto da Silva, G., & Mesgarani, N. (2017). Dynamic Encoding of Acoustic 
Features in Neural Responses to Continuous Speech. The Journal of Neuroscience, 37(8), 
2176–2185. https://doi.org/10.1523/JNEUROSCI.2383-16.2017 

King, J.-R., & Dehaene, S. (2014). Characterizing the dynamics of mental representations: The 
temporal generalization method. Trends in Cognitive Sciences, 18(4), 203–210. 
https://doi.org/10.1016/j.tics.2014.01.002 

King, J.-R., Pescetelli, N., & Dehaene, S. (2016). Brain Mechanisms Underlying the Brief Maintenance 
of Seen and Unseen Sensory Information. Neuron, 92(5), 1122–1134. 
https://doi.org/10.1016/j.neuron.2016.10.051 



Chapter 2 | Speech 

70 
 

Kriegeskorte, N. (2008). Representational similarity analysis – connecting the branches of systems 
neuroscience. Frontiers in Systems Neuroscience. 
https://doi.org/10.3389/neuro.06.004.2008 

Kriegeskorte, N. (2011). Pattern-information analysis: From stimulus decoding to computational-
model testing. NeuroImage, 56(2), 411–421. 
https://doi.org/10.1016/j.neuroimage.2011.01.061 

Kriegeskorte, N., & Bandettini, P. (2007). Analyzing for information, not activation, to exploit high-
resolution fMRI. NeuroImage, 38(4), 649–662. 
https://doi.org/10.1016/j.neuroimage.2007.02.022 

Kriegeskorte, N., & Douglas, P. K. (2019). Interpreting encoding and decoding models. Current 
Opinion in Neurobiology, 55, 167–179. https://doi.org/10.1016/j.conb.2019.04.002 

Kriegeskorte, N., & Kievit, R. A. (2013). Representational geometry: Integrating cognition, 
computation, and the brain. Trends in Cognitive Sciences, 17(8), 401–412. 
https://doi.org/10.1016/j.tics.2013.06.007 

Kuhl, P. K. (2004). Early language acquisition: Cracking the speech code. Nature Reviews 
Neuroscience, 5(11), 831–843. https://doi.org/10.1038/nrn1533 

Kuhl, P. K., Conboy, B. T., Coffey-Corina, S., Padden, D., Rivera-Gaxiola, M., & Nelson, T. (2008). 
Phonetic learning as a pathway to language: New data and native language magnet theory 
expanded (NLM-e). Philosophical Transactions of the Royal Society B: Biological Sciences, 
363(1493), 979–1000. https://doi.org/10.1098/rstb.2007.2154 

Kuhl, P. K., Ramírez, R. R., Bosseler, A., Lin, J.-F. L., & Imada, T. (2014). Infants’ brain responses to 
speech suggest Analysis by Synthesis. Proceedings of the National Academy of Sciences, 
111(31), 11238–11245. https://doi.org/10.1073/pnas.1410963111 

Ledoit, O., & Wolf, M. (2003). Honey, I Shrunk the Sample Covariance Matrix (SSRN Scholarly Paper 
ID 433840). Social Science Research Network. https://papers.ssrn.com/abstract=433840 

Liberman, A. M., Cooper, F. S., Shankweiler, D. P., & Studdert-Kennedy, M. (1967). Perception of the 
speech code. Psychological Review, 74(6), 431–461. https://doi.org/10.1037/h0020279 

Liberman, A. M., Delattre, P. C., Cooper, F. S., & Gerstman, L. J. (1954). The role of consonant-vowel 
transitions in the perception of the stop and nasal consonants. Psychological Monographs: 
General and Applied, 68(8), 1–13. https://doi.org/10.1037/h0093673 

Lisker, L., & Abramson, A. S. (1964). A Cross-Language Study of Voicing in Initial Stops: Acoustical 
Measurements. WORD, 20(3), 384–422. 
https://doi.org/10.1080/00437956.1964.11659830 

Mahmoudzadeh, M., Dehaene-Lambertz, G., Fournier, M., Kongolo, G., Goudjil, S., Dubois, J., Grebe, R., 
& Wallois, F. (2013). Syllabic discrimination in premature human infants prior to complete 



Chapter 2 | Speech 

71 
 

formation of cortical layers. Proceedings of the National Academy of Sciences, 110(12), 4846–
4851. https://doi.org/10.1073/pnas.1212220110 

Mahmoudzadeh, M., Wallois, F., Kongolo, G., Goudjil, S., & Dehaene-Lambertz, G. (2016). Functional 
Maps at the Onset of Auditory Inputs in Very Early Preterm Human Neonates. Cerebral 
Cortex, bhw103. https://doi.org/10.1093/cercor/bhw103 

Mantel, N. (1967). The Detection of Disease Clustering and a Generalized Regression Approach. 
Cancer Research, 27(2 Part 1), 209–220. 

Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of EEG- and MEG-data. Journal 
of Neuroscience Methods, 164(1), 177–190. 
https://doi.org/10.1016/j.jneumeth.2007.03.024 

Mattys, S. L., & Jusczyk, P. W. (2001). Phonotactic cues for segmentation of fluent speech by infants. 
Cognition, 78(2), 91–121. https://doi.org/10.1016/S0010-0277(00)00109-8 

Meert, W., & Van Craenendonck, T. (2018). Time series distances: Dynamic Time Warping (DTW). 
Zenodo. https://doi.org/10.5281/zenodo.3276100 

Mersad, K., & Dehaene-Lambertz, G. (2016). Electrophysiological evidence of phonetic 
normalization across coarticulation in infants. Developmental Science, 19(5), 710–722. 
https://doi.org/10.1111/desc.12325 

Mersad, K., Kabdebon, C., & Dehaene-Lambertz, G. (2021). Explicit access to phonetic 
representations in 3-month-old infants. Cognition, 104613. 
https://doi.org/10.1016/j.cognition.2021.104613 

Mesgarani, N., Cheung, C., Johnson, K., & Chang, E. F. (2014). Phonetic feature encoding in human 
superior temporal gyrus. Science, 343(6174), 1006–1010. 

Miller, J. L., & Eimas, P. D. (1983). Studies on the categorization of speech by infants. Cognition, 
13(2), 135–165. https://doi.org/10.1016/0010-0277(83)90020-3 

Mognon, A., Jovicich, J., Bruzzone, L., & Buiatti, M. (2011). ADJUST: An automatic EEG artifact 
detector based on the joint use of spatial and temporal features. Psychophysiology, 48(2), 
229–240. https://doi.org/10.1111/j.1469-8986.2010.01061.x 

Nespor, M., Peña, M., & Mehler, J. (2003). On the Different Roles of Vowels and Consonants in 
Speech Processing and Language Acquisition. Lingue e Linguaggio, 2/2003. 
https://doi.org/10.1418/10879 

Ng, A. Y. (2004). Feature Selection, L1 vs. L2 Regularization, and Rotational Invariance. Proceedings 
of the Twenty-First International Conference on Machine Learning, 78. 
https://doi.org/10.1145/1015330.1015435 



Chapter 2 | Speech 

72 
 

Nossair, Z. B., & Zahorian, S. A. (1991). Dynamic spectral shape features as acoustic correlates for 
initial stop consonants. The Journal of the Acoustical Society of America, 89(6), 2978–2991. 
https://doi.org/10.1121/1.400735 

Oganian, Y., & Chang, E. F. (2019). A speech envelope landmark for syllable encoding in human 
superior temporal gyrus. Science Advances, 5(11), eaay6279. 
https://doi.org/10.1126/sciadv.aay6279 

Oller, D. K., Caskey, M., Yoo, H., Bene, E. R., Jhang, Y., Lee, C.-C., Bowman, D. D., Long, H. L., Buder, E. 
H., & Vohr, B. (2019). Preterm and full term infant vocalization and the origin of language. 
Scientific Reports, 9(1), 14734. https://doi.org/10.1038/s41598-019-51352-0 

Panzeri, S., Macke, J. H., Gross, J., & Kayser, C. (2015). Neural population coding: Combining insights 
from microscopic and mass signals. Trends in Cognitive Sciences, 19(3), 162–172. 
https://doi.org/10.1016/j.tics.2015.01.002 

Park, A. S., & Glass, J. R. (2008). Unsupervised Pattern Discovery in Speech. IEEE Transactions on 
Audio, Speech, and Language Processing, 16(1), 186–197. 
https://doi.org/10.1109/TASL.2007.909282 

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, 
P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & 
Duchesnay, É. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning 
Research, 12(Oct), 2825–2830. 

Perrin, F., Pernier, J., Bertrand, O., & Echallier, J. F. (1989). Spherical splines for scalp potential and 
current density mapping. Electroencephalography and Clinical Neurophysiology, 72(2), 184–
187. https://doi.org/10.1016/0013-4694(89)90180-6 

Port, R. (2007). How are words stored in memory? Beyond phones and phonemes. New Ideas in 
Psychology, 25(2), 143–170. https://doi.org/10.1016/j.newideapsych.2007.02.001 

Port, R. F. (2010). Rich memory and distributed phonology. Language Sciences, 32(1), 43–55. 
https://doi.org/10.1016/j.langsci.2009.06.001 

Räsänen, O., Doyle, G., & Frank, M. C. (2018). Pre-linguistic segmentation of speech into syllable-like 
units. Cognition, 171, 130–150. https://doi.org/10.1016/j.cognition.2017.11.003 

Rost, G. C., & McMurray, B. (2009). Speaker variability augments phonological processing in early 
word learning. Developmental Science, 12(2), 339–349. https://doi.org/10.1111/j.1467-
7687.2008.00786.x 

Saffran, J. R., & Thiessen, E. D. (2003). Pattern induction by infant language learners. Developmental 
Psychology, 39(3), 484–494. https://doi.org/10.1037/0012-1649.39.3.484 



Chapter 2 | Speech 

73 
 

Sakoe, H., & Chiba, S. (1978). Dynamic programming algorithm optimization for spoken word 
recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing, 26(1), 43–49. 
https://doi.org/10.1109/TASSP.1978.1163055 

Schwartz, J.-L., Basirat, A., Ménard, L., & Sato, M. (2012). The Perception-for-Action-Control Theory 
(PACT): A perceptuo-motor theory of speech perception. Journal of Neurolinguistics, 25(5), 
336–354. https://doi.org/10.1016/j.jneuroling.2009.12.004 

Seidl, A., Cristià, A., Bernard, A., & Onishi, K. H. (2009). Allophonic and Phonemic Contrasts in 
Infants’ Learning of Sound Patterns. Language Learning and Development, 5(3), 191–202. 
https://doi.org/10.1080/15475440902754326 

Shannon, R. V., Zeng, F.-G., Kamath, V., Wygonski, J., & Ekelid, M. (1995). Speech Recognition with 
Primarily Temporal Cues. Science, 270(5234), 303–304. 
https://doi.org/10.1126/science.270.5234.303 

Sinnott, J. M., & Gilmore, C. S. (2004). Perception of place-of-articulation information in natural 
speech by monkeys versus humans. Perception & Psychophysics, 66(8), 1341–1350. 
https://doi.org/10.3758/BF03195002 

Smits, R., Bosch, L. ten, & Collier, R. (1996). Evaluation of various sets of acoustic cues for the 
perception of prevocalic stop consonants. II. Modeling and evaluation. The Journal of the 
Acoustical Society of America, 100(6), 3865–3881. https://doi.org/10.1121/1.417242 

Stemberger, J. P., & Stoel-gammon, C. (1991). THE UNDERSPECIFICATION OF CORONALS: 
EVIDENCE FROM LANGUAGE ACQUISITION AND PERFORMANCE ERRORS. In C. Paradis & 
J.-F. Prunet (Eds.), The Special Status of Coronals: Internal and External Evidence (pp. 181–
199). Academic Press. https://doi.org/10.1016/B978-0-12-544966-3.50015-4 

Stevens, K. N. (2000). Acoustic Phonetics. MIT Press. 

Stokes, M. G., Wolff, M. J., & Spaak, E. (2015). Decoding Rich Spatial Information with High Temporal 
Resolution. Trends in Cognitive Sciences, 19(11), 636–638. 
https://doi.org/10.1016/j.tics.2015.08.016 

Sundara, M., Ngon, C., Skoruppa, K., Feldman, N. H., Onario, G. M., Morgan, J. L., & Peperkamp, S. 
(2018). Young infants’ discrimination of subtle phonetic contrasts. Cognition, 178, 57–66. 
https://doi.org/10.1016/j.cognition.2018.05.009 

Swingley, D., & Aslin, R. N. (2002). Lexical Neighborhoods and the Word-Form Representations of 
14-Month-Olds. Psychological Science, 13(5), 480–484. https://doi.org/10.1111/1467-
9280.00485 

Toro, J. M., Nespor, M., Mehler, J., & Bonatti, L. L. (2008). Finding Words and Rules in a Speech 
Stream: Functional Differences Between Vowels and Consonants. Psychological Science, 
19(2), 137–144. https://doi.org/10.1111/j.1467-9280.2008.02059.x 



Chapter 2 | Speech 

74 
 

Tsuji, S., Mazuka, R., Cristia, A., & Fikkert, P. (2015). Even at 4 months, a labial is a good enough 
coronal, but not vice versa. Cognition, 134, 252–256. 
https://doi.org/10.1016/j.cognition.2014.10.009 

van der Stelt, J. M., & Koopmans-van Beinum, F. J. (1986). The Onset of Babbling Related to Gross 
Motor Development. In B. Lindblom & R. Zetterström (Eds.), Precursors of Early Speech: 
Proceedings of an International Symposium held at The Wenner-Gren Center, Stockholm, 
September 19–22, 1984 (pp. 163–173). Palgrave Macmillan UK. 
https://doi.org/10.1007/978-1-349-08023-6_12 

Vilain, A., Dole, M., Lœvenbruck, H., Pascalis, O., & Schwartz, J.-L. (2019). The role of production 
abilities in the perception of consonant category in infants. Developmental Science, 22(6), 
e12830. https://doi.org/10.1111/desc.12830 

Wang, K., & Shamma, S. (1994). Self-normalization and noise-robustness in early auditory 
representations. IEEE Transactions on Speech and Audio Processing, 2(3), 421–435. 
https://doi.org/10.1109/89.294356 

Westermann, G., & Reck Miranda, E. (2004). A new model of sensorimotor coupling in the 
development of speech. Brain and Language, 89(2), 393–400. 
https://doi.org/10.1016/S0093-934X(03)00345-6 

Yang, X., Wang, K., & Shamma, S. A. (1992). Auditory representations of acoustic signals. IEEE 
Transactions on Information Theory, 38(2), 824–839. https://doi.org/10.1109/18.119739 

Zhang, Q., Hu, X., Luo, H., Li, J., Zhang, X., & Zhang, B. (2016). Deciphering phonemes from syllables in 
blood oxygenation level-dependent signals in human superior temporal gyrus. European 
Journal of Neuroscience, 43(6), 773–781. https://doi.org/10.1111/ejn.13164 



75 

Chapter 3. SPONTANEOUS ENCODING OF 

NUMBER BY THE INFANT BRAIN 

ABSTRACT 

The ability to handle discrete quantities permeates every aspect of every-day life. Recent 
neuroimaging investigations revealed that the adult brain regards approximate number as a primary 
attribute of the visual scene: numerosity is processed in complete automaticity by means of dedicated 
neural mechanisms. What is the ontogeny of these numerical intuitions? A large body of 
developmental studies demonstrated the availability of quantifications skills early in life, whose 
nature remains however unclear. Whereas classical views conceive the existence of an innate module 
specialized for numerical processing, various proposals point out how our numerical competence 
might be rooted in generalized and holistic estimates of size or intensity. To clarify this debate, we 
exposed 3-month-old infants to sets of either 4 or 12 items and recorded their neural responses with 
high-density electroencephalography (EEG). Our experiment entailed a strategic combination of 
carefully calibrated stimulus features and multivariate analytic techniques, enabling a reliable 
disentanglement of numerical and non-numerical effects. We observed that the infant brain encodes 
the (approximate) numerosity of auditory sequences in full automaticity (during sleep) and 
separately from concurrent quantities. Strikingly, estimators trained on the neural responses to 
sounds could successfully decode numerosity from the activity patterns elicited by visual arrays, 
uncovering a mechanism for the extraction of numerical information that transcends sensory 
modality, presentation format and arousal state. In a nutshell, our study provides neural evidence for 
a primitive and abstract number sense in humans.  
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3.1. INTRODUCTION 

We are surrounded by magnitudes of all sorts: lengths and areas, weights and volumes, 
luminance, loudness, frequencies and durations. Among all possible magnitudes, number is a 
distinctive dimension in that is used to quantify collections of discrete objects. As literate adults, we 
are used to think of numbers in association with high-level constructs such as symbols, formulas and 
bank accounts. Yet, not only educated adults but also illiterates and even primates appear to rely on 
numerical estimations in their everyday life, to take decisions and to navigate the world (Gordon, 
2004; Pica, 2004; Piantadosi & Cantlon, 2017). Considering the ubiquity of behaviors based on 
discrete quantity shall we ask: what is a number at its core?  

Irrespective of their cultural background, all human adults can effortlessly approximate the 
cardinality of a set (i.e. its numerosity) without counting. Psychophysical assessments have shown 
that such approximate numerical judgments are susceptible to adaptation: repetitive exposure to a 
large group of items decreases their apparent number, and, vice-versa, repetitive exposure to small 
sets increases apparent numerosity (Burr & Ross, 2008). It is intriguing to highlight, in this regard, 
that adaptation is a perceptual phenomenon typically observed for basic sensory properties such as 
color, contrast or speed. Importantly, adaptation to numerosity occurs irrespective of other 
concomitant quantitative parameters such as the size, frequency and density of the stimuli (Burr & 
Ross, 2008). 
In the last few years, neuroimaging studies have revealed that the visual system of adults extracts 
numerical information from the visual scene in a rapid, direct, and automatic fashion. That is, 
approximate numerosity is encoded at early stages along the cortical pathway (in extrastriate 
regions) and independently from concurrent quantitative dimensions. Further, such an extraction of 
purely numerical information is spontaneous and pre-attentive (Park et al., 2016; Fornaciai et al., 
2017; DeWind et al., 2019; Lucero et al., 2020; Georges et al., 2020; Van Rinsveld et al., 2020). Just to 
mention an illustrative example from the results just summarized, Lucero and colleagues (2020) 
have employed backward masking in order to disrupt reentrant feedback from fronto-parietal areas 
to visual cortex. Strikingly, they have found that approximate numerosity is computed over occipital 
regions even in the absence of conscious awareness. 
Taken together, behavioral and neural evidence highlight how the adult brain regards numerosity as 
a primary property of the visual scene, encoded irrespective of its relevance and by means of a 
dedicated process.  

What are the developmental origins of this mechanism? Classical accounts have proposed the 
existence of a built-in system that is specifically responsible for approximate, non-symbolic and non-
verbal numerical representations and fundamentally separate from other systems of magnitude 
processing. These accounts postulate an ontogenetic continuity, whereby infants would be able to 
approximate numbers, independently from the other quantitative variables, through the same 
system since birth (Dehaene, 1997; Feigenson et al., 2004; Spelke & Kinzler, 2007). Such a proposal 
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arises from the observation that what could be interpreted as adult-like signs of numerical 
processing appear very early in life. First, albeit far less precise, infant quantitative behavior mirrors 
that of adults in a characteristic aspect: it conforms to Weber’s law. Specifically, both the capability 
of 6-month-olds to detect a numerical difference (Xu & Spelke, 2000; Xu et al., 2005) and their degree 
of preference for numerical changes over homogeneity (Libertus & Brannon, 2010) depend on the 
ratio between the presented numbers rather than their absolute difference. A second resemblance 
between early and mature quantitative processing was suggested by a handful of pioneer studies in 
the developmental neuroimaging field. While regions of the parietal cortex along the intraparietal 
sulcus (IPS) are widely known to play a crucial role in adult numerical cognition (for a concise review: 
Cantlon et al., 2009), an EEG investigation on 3-month-olds (Izard et al., 2008) and two fNIRs studies 
on 6-month-olds have reported that numerical changes (relatively to shape changes) trigger specific 
activity over right parietal areas (Hyde et al., 2010; Edwards et al., 2016).  

Yet, although intriguing at first glance, a careful examination reveals how these parallels are poorly 
informative in the close. To start with, whereas a wealth of behavioral studies have reported that 
infant can readily distinguish between arrays of objects differing in their cardinality, a recent 
quantitative meta-analysis concludes that the evidential value of the data currently available does 
not support strong inferences (Smyth & Ansari, 2020). Most importantly, modern debates have 
emphasized the challenges inherent the exploration of numerical cognition, leading to a newly grown 
awareness on subtle confounds and possible misinterpretations that have been often overlooked. 
The latter arise from the fact that changes in number are necessarily accompanied by changes in a 
variety of other non-numerical parameters: to control for all of them at once is physically impossible 
(Leibovich & Henik, 2013). Despite the precautions taken by the investigators and the employment 
of clever and elegant ruses (e.g. the strategy developed by Xu & Spelke, 2000), a thorough qualitative 
review of the literature suggests that for most studies reporting numerical discrimination by infants 
it is always possible to identify non-numerical variables that were actually confounded with number 
(Mix et al., 2002; Rousselle et al., 2004; Cantrell & Smith, 2013). This leaves open the possibility that 
infants did not detect numerosity changes per se; instead, to compare groups of objects, they might 
have used one or a host of different magnitudes. The occurrence of such an eventuality is consistent 
with investigations reporting that numerical judgments of young children are highly susceptible to 
irrelevant perceptual features (Soltész et al., 2010): when comparing sets of objects the performance 
of 3-year-olds falls at chance precisely when non-numerical quantities are strictly controlled for 
(Rousselle et al., 2004). Further, it has been recently suggested that, when their discriminability is 
balanced, area is more salient than number during childhood while the reverse saliency pattern 
typical of adults might derive from formal education (Aulet & Lourenco, 2021a, 2021b). 
Considering that any stimulus carries information about both numerosity and other quantitative 
dimensions, the parallelisms found between preverbal infants and adults at the neural level may need 
to be taken from an alternative perspective. Other than playing a pivotal role in adult numerical 
cognition, several studies have demonstrated how the posterior parietal cortex is involved in the 
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processing of other non-numerical quantities such as spatial length (Borghesani et al., 2019) and 
object size (Harvey et al., 2015). The neural representations of the letter are spatially intermingled 
with number-specific ones; whereas sophisticated imaging techniques (high-field 7T fMRI), allowing 
a much finer resolution than that achieved in infants studies, seem necessary to disentangle one kind 
of quantitative code from the other. As for what concerns the encoding of non-symbolic and 
approximate numerical information, parietal regions might be recruited only within certain 
circumstances: when information needs to be integrated over space but not over time (Cavdaroglu & 
Knops, 2019), when an active comparison is required (Cavdaroglu et al., 2015) or when attentional 
re-orienting is triggered by the experimental manipulation (DeWind et al., 2019; Lucero et al., 2020). 
Given these observations, the posterior parietal cortex might not hold a primary role in respect of the 
core and approximate numerical intuitions described above. It follows that the sensitivity of parietal 
regions to quantitative changes found early in development is undoubtedly meaningful but does not 
inform us upon the origins of a neural mechanism specialized for numerosity. Speaking of, a recent 
study based on steady-state visual evoked potentials (SSVEP) and a careful orthogonalization of 
quantitative parameters reports that selective neural sensitivity for approximate number is absent 
in 3-year-old children while it increases as a function of age (Park, 2018). 

To recapitulate, the developmental studies conducted so far have uncovered the availability of 
quantitative mechanisms early in life, whose nature remains however unclear. In recent years, 
multiple theoretical accounts have proposed the existence of a generalized magnitude system that 
extends across various dimensions and that would correspond to the basic and unique quantitative 
system available at birth (Hamamouche & Cordes, 2019; Leibovich et al., 2017; Newcombe et al., 
2015; Walsh, 2003). According to such proposals, young infants would encode and represent 
different kinds of magnitude through a common, undifferentiated code corresponding to a general 
“size” or “amount”. Key to these views is the idea that purely numerical information is not readily 
trackable early on: we would acquire a specialized, dedicated sense for numerosity over the course 
of development. As a matter of fact, a general holistic code for quantity/magnitude would 
satisfactorily account for all the experimental observations mentioned so far and for additional 
findings. At 6 months the discriminability of numbers, durations and spatial extents is defined by the 
same Weber fractions13 (VanMarle & Wynn, 2006; Brannon et al., 2006; Feigenson, 2007). The latter 
decline at the same speed over the course of the first year (Brannon et al., 2007), implying that to be 
developing might be a unitary system. Moreover, it has been shown that infants tend to create 
spontaneous mappings between different quantitative dimensions (de Hevia & Spelke, 2010; 
Lourenco & Longo, 2010). For instance, 1 to 3 day-olds presented simultaneously with auditory 
numerical sequences and visual line lengths manifest magnitude-congruent expectations across 

                                                             

13 Note that in adults Weber’s law governs not only the discriminability of numerosities but also that of a wide 
variety of other dimensions (Cantlon et al., 2009). Therefore, the observation of size/distance effects 
corresponds to a vague piece of evidence in itself.  



Chapter 3 | Number 

79 
 

number, time (duration) and space, indicating, at the very least, an innate sensitivity to their common 
structure (de Hevia et al., 2014). Overlapping developmental trajectories and cross-dimensional 
transfer might be indicative of a generalized sense of magnitude available since birth. Still, they 
remain equally compatible with the possibility that different types of quantity are encoded in distinct, 
dedicated formats and compared or processed by means of common mechanisms only downstream.  

The present study  
Given the widespread idea that approximate numerical computations function as a “start-up tool” for 
the acquisition of mathematics (Piazza, 2010), and the consequences this idea has for educational 
and rehabilitative interventions (Butterworth, 2018), a deeper understanding of early human 
quantification appears crucial. In the current study, we investigated the existence and characteristics 
of a core neural system specifically dedicated to numerical processing. If the human brain regards 
numerosity as a primary perceptual descriptor since start, we expected very young infants to encode 
numerical information just as adults: automatically and pre-attentively, separately from concurrent 
non-numerical parameters.  
To address this possibility, we recorded high-resolution event-related potentials (ERPs) from 3-mo-
old infants while they were exposed to sequences of either 4 or 12 naturally rich orchestral string 
tones (24 different auditory sequences were played in a randomized order for a total of ~ 1900 trials 
/subject). Unlike any previous developmental paradigm in this domain, our auditory stimulation did 
not probe any change detection mechanism, did not involve any comparison process and did not 
require active attendance. On the contrary, participants were most often asleep, enabling the 
assessment of completely automatic neural processes. 
Relatively to the typical employment of visual displays, where the relationship among sensory cues 
is unavoidably non-linear (Mix et al., 2002; Lipton & Spelke, 2004), auditory arrays allowed a 
straightforward traceability of all the quantitative dimensions involved. In order to ensure the latter, 
the auditory space (Figure 3.1A) was constructed such that each pair of numerical conditions equal 
in duration (“12S” and “4M”; “12M” and “4L”) incorporated the same amount of sound/silence and 
each pair of sequences equal in rate (“4M” and “12M”; “4L” and “12L”) had also the same tone length 

Figure 3.1 Experimental paradigm. (A) auditory sequences (ITI=inter-tone-interval); their non-numerical 
quantitative characteristics are reported in Table 1. (B) Visual stimulation (ISI= inter-stimulus-interval) 
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and inter-tone-intervals (Table 3.1). Inspired by recent efforts on adults, the combination of this 
design with strategic/tactical multivariate analyses enabled to isolate the effects of numerosity from 
that of the other quantities. Lastly, when possible (either at the beginning or at the end of the 
experimental session), infants were presented with the same numerosities in a radically different 
format: visual images containing (simultaneous) sets of either 4 or 12 colorful objects (Figure 3.1B).  

 

                  Condition 

 Parameters 
4M 4L 12M 12S 12L 

tone duration (ms) 120 360 120 40 360 

inter-tone-interval (ms) 60 180 60 20 180 

total sequence duration 
(ms) 720 2160 2160 720 6480 

tone rate (Hz) 5.6 1.9 5.6 17 1.9 

total amount of sound (ms) 480 1440 1440 480 4320 

total amount of silence (ms) 240 720 720 240 2160 

Table 3.1: physical parameters characterizing each auditory condition. A given tone duration is always 
matched to a specific inter-tone-interval and their ratio is constant (2:1), leading to a one-to-one 
correspondence between tone duration and rate. As a consequence, when sequenced of 4 vs 12 sounds are 
matched for their total duration (e.g. 12M and 4L), they also embed the same amount of sound (e.g. 1440ms) 
and silence (e.g. 720ms). This design was crucial because it ensured the possibility to separate numerosity from 
any other possible quantitative parameter characterizing the stimulation. Any time our analysis controls for 
tone rate, tone duration and inter-tone-interval are also accounted for and any time our analysis accounts for 
sequence duration, the total amount of sound and the total amount of silence are also accounted for. This design 
does not enable to disentangle the effects of tone duration from that of inter-tone-interval and the effects of the 
overall sequence duration from those of the total amount of sound/silence: this kind of investigation was 
beyond the scope of the study.  

3.2. MATERIALS & METHODS 

3.2.1. Participants 

26 normal-hearing infants (15 females and 11 males) were tested between 12 and 14 weeks after 
birth (mean age= 13 weeks and 2 days). All infants were full-term, with the exception of a female and 
a male participants, born at a gestational age of 37 weeks at a healthy weight (2800gr for the female 



Chapter 3 | Number 

81 
 

and 3250gr for the male, i.e. above the 10th percentile14). None of the participants had pre- or post-
natal neurological issues or known genetic disorder. An additional 23 subjects were recruited but 
excluded from analysis because of: impossibility to collect enough data due to excessive fussiness 
during the experimental session (n=13), insufficient number of trials after artifact rejection (n=4, the 
artifact rejection procedure is described below), technical problems during data acquisition (n=6). 
The protocol was approved by the regional ethical committee for biomedical research (CPP Region 
Centre Ouest 1). Parents gave their written informed consent before starting the experiment. A 
certificate and a baby book were provided as thanks for the participation. 

3.2.2. Stimuli 

Orchestral string tones were synthesized with Ableton Live (software version 10; Berlin, 
Germany). They consisted of four notes (C3, G3, C4 and G4) played by either a viola or a cello and had 
three possible item durations (40, 120 and 360ms; referred to as “S”, “M” and “L” respectively) for a 
total of 24 different sounds. Each auditory sequence presented a single tone repeated either 4 or 12 
times at a constant rate. The duration of inter-tone intervals were half that of the single tone 
characterizing the sequence (i.e. 20ms for S sounds, 60ms for M sounds or 180ms for L sounds) 
resulting in three possible rates (1.9Hz, 5.6 Hz and 17Hz) and four possible total durations (240, 720, 
2160 and 6480ms; however the shortest total duration, i.e. “4S”, was excluded a-priori from the 
analysis). Crucially, the minimal proportional difference between numbers, tone rates or total 
sequence durations was always 1:3. Given that infant numerical and temporal discrimination depend 
on the same ratios (Brannon et al., 2007), this means that the three quantities were equally 
discriminable for our subjects. All sequences had the same sound-to-silence ratio (2:1) and equal 
loudness (75 dB). They were placed on the left audio channel, connected to the loudspeakers. Clicks 
were positioned on the right channel in correspondence to the onset of the initial and the offset of 
the final tone for each sequence; these clicks were used as a TTL signal to ensure a precise mapping 
between the EEG recording and the stimulation.  

The visual stimuli were the same used by Izard, Dehaene-Lambertz & Dehaene (2008). They 
consisted of a set of 400 images depicting either 4 or 12 colorful animal-like objects on a black 
background. To minimize any possible effect ascribable to non-numerical perceptual attributes, the 
position of the objects and the physical parameters of the image varied across stimuli following two 
different rules. Namely, in 200 images the extensive parameters of the display (total luminance and 
total occupied area) were kept constant across numerosities, whereas in the remaining 200 images 
the intensive parameters (object surface size, average area devoted to each object) were equated 

                                                             

14 as indicated by the World Health Organization https://www.who.int/tools/child-growth-standards 

https://www.who.int/tools/child-growth-standards/standards/weight-for-age
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between numerosities. For more details on the control for non-numerical factors see Izard, Dehaene-
Lambertz & Dehaene (2008). 

3.2.3. Procedure 

Infants were tested in a soundproof Faraday cage equipped with a computer screen and 
loudspeakers on the ceiling. They were held by a caregiver in a comfortable position and constantly 
monitored by the experimenter from two video cameras located underneath and above the screen. 
All stimuli were presented using the Python package PsychoPy (Peirce, 2007).    

Auditory sequences were broadcast through the loudspeakers with an inter-sequence-interval (ISI) 
fixed at 1 second. The order of the stimuli was randomized with two constrains: the same numerosity 
could not be presented more than 4 times in a row and the same auditory sequence (characterized 
by a given note, instrument, numerosity, rate and duration) could not be repeated more than twice 
in a row. The auditory stimulation was organized in blocks of 688 sound sequences where notes, 
instruments and numerosities were perfectly balanced. Each block was composed of 72 “4S”, 136 
“4M”/“4L”/“12M” and 104 “12S”/“12L” sequences. A misbalance in experimental conditions was 
motivated by analytical plans (e.g. 4S was included in the stimulation to provide perceptual harmony 
but excluded from the analysis a-priori) and practical constrains (e.g. the need to collect a large 
number of trials in a reasonably limited amount of experimental time). A minimum of 2 blocks 
(corresponding to ~71 minutes of listening) and a maximum of 3 blocks were presented to each 
participant. Breaks were taken whenever necessary and sleep strongly encouraged. On average, 
subjects were asleep for 72% of the auditory session.  

Participants were exposed to visual displays only when possible and appropriate on the basis of their 
psychophysiological state (e.g. awake and calm vs. sleepy or restless). Images were organized in mini-
blocks of 100 items, where numerosities and non-numerical parameter control strategies were 
perfectly balanced. Images were presented for 1200ms in a continuous stream and randomized 
order, interspersed with 100ms-long blanks. The onset of each image was recorded through a 
photodiode capturing the appearance of a white rectangle at the bottom corner of the computer 
screen (not visible for the subject). When the infant looked away, the stream of numerical displays 
was interrupted by a colorful attractor until attention was re-established. The visual stimulation 
finished after the presentation of all the 400 images available or as soon as the participant could no 
longer engage with the displays. Out of the 26 subjects included in the final analysis, 13 infants 
attended to visual images before the auditory stimulation, 1 infant partly before and partly after the 
auditory sequences and 6 participants were presented with images only in the conclusive portion of 
the experimental session.  
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3.2.4. EEG recording and data preprocessing 

The electroencephalogram (EEG) was continuously digitized at 500 Hz (Net Amps 300 EGI 
amplifier combined with NetStation 5.3 software) from 256 channels. We used a prototype HydroCel 
net (EGI; Eugene, OR, USA) referenced to the vertex featuring an intensive coverage of temporal areas 
(Figure 1.3). 

The first preprocessing steps consisted in applying a band-pass filter ([0.5 - 40Hz]) and setting the 
mean voltage of each electrode to zero. We then followed an artifact detection-correction procedure 
similar to that used in Chapter 2. Namely, we based artifact detection on adaptive (rather than 
absolute) thresholds in order to account for inter-individual variability and the heterogeneous 
influence that reference distance and vigilance state exert on the voltage. We used series of 
algorithms that rejected samples on the basis of: the voltage amplitude and its first derivative; the 
variance across a 500ms-long moving time window; the fast running average and the deviation 
between the fast and the slow running averages within a 500ms-long sliding time window. 
Thresholds were set independently for each subject and for each electrode upon the distribution of 
these measures along the whole recording (threshold = median +/- n*IQ, where IQ is the interquartile 
range of the distribution). Two additional algorithms identified whether the power within the 0-10Hz 
band was excessively low or within 20-40Hz excessively high relative to the total power; and whether 
the voltage amplitude displayed by each sensor at a given time point was disproportionate relative 
to that recorded by the other sensors at the same instant. For these last two algorithms, thresholds 
were computed upon the distribution across channels.  

We followed an iterative detection-correction procedure, where previously identified bad samples 
were kept aside for the subsequent artifact detection steps. At each run, the output of the artifact 
detection procedure consisted of a rejection matrix with the same size of the EEG data. We started by 
applying the detection algorithms (2 runs) to the continuous recording in order to identify very short 
signal disruptions (80ms max), corresponding to heart beats or jumps. We corrected these very short 
segments by estimating their principal components (PCA) and removing the first n components 
determining 90% of the variance. After using a high-pass filter (0.5Hz) to eliminate possible drifts 
created by such operation, we applied the detection algorithms twice more.  
At this point the EEG data (and the corresponding rejection matrix) were segmented into epochs 
from -400ms to +1200ms relative to the offset of the last tone composing the auditory sequences and 
from -200ms to +1300ms relative to the onset of the images. A third set of epochs was crafted around 
the onset of the auditory sequences and included a different time-window depending on the 
condition: from -200ms to + 1820ms relative to the onset of the first note for “4M” and “12S” trials; -
200 to +3260ms for “4L” and “12M” trials; -200ms to +3260ms and +2500ms to +6500ms for “12L” 
trials (i.e. the longest sequences were divided in two parts spanning from the onset of the first L tone 
until the end of the 6th inter-tone interval and from the onset of the onset of the 6th L tone until the 
12th inter-tone interval).  
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We used the (segmented) rejection matrices to mark time points with prominent artifacts (bad times) 
and channels that did not function properly (bad channels). Specifically, bad times were periods 
longer than 80ms with a percentage of rejected channels superior to 30% or beyond 2IQ from the 3rd 
quartile of the distribution of the percentage of rejected channels across time. Similarly, bad channels 
were the ones not working properly for more than 30% of time or with a percentage of bad samples 
that went beyond 2IQ from the 3rd quartile of the distribution of the percentage of rejected samples 
across channels. . We corrected bad channels and long rejected segments that did not contain bad 
times using spherical splines interpolation (Perrin et al., 1989). However, spatial interpolation was 
carried out only if at least 50% of the neighboring channels were intact. Periods defined as bad times 
were not corrected because there was not enough information available to reconstruct the signal.   

Trials were discarded if more than 15% of their samples contained artifacts or if more than 2.5% of 
their channels were marked as bad. Epochs were also discarded based on their Euclidean distance 
from the average, i.e. when their mean or maximum distance from the average response was an 
outlier in the distribution (> 3rdquartile + 1.5*IQ). Following automated rejection, the remaining 
epochs were visually inspected and a few channels or trials still presenting obvious aberrancies were 
dropped.  
Since our paradigm was mainly based on the auditory stimulation, our inclusion criterion concerned 
the latter: participants were included in the study with a minimum of 192 artifact-free epochs for 
each of the most frequent auditory conditions (“4M”, “4L”, “12M”). In our final group of infants 
(N=26), the mean rejection rate for auditory trials was 33.5% (12.4 to 48.4%); on average, the 
number of artifact-free epochs available per subject was 247 for “4M”/“4L”/“12M” and 189 for 
“12S”/”12L”. For visual trials to be included in the analysis, subjects were required to have at least 
64 artifact-free epochs. The mean rejection rate for visual epochs was 62% (25 to 77.4%) and only 
16 out the 20 subjects who attended the visual displays met the criterion. The average number of 
artifact-free visual epochs available for these 16 subjects was 109.  

Before submitting them to the main analyses, epochs were low-pass filtered at 20Hz and 
mathematically re-referenced to the mean of all channels. Time-resolved multivariate pattern 
analyses were conducted within subject, relying on the Python packages MNE (Gramfort et al., 2013, 
2014) and Scikit-Learn (Pedregosa et al., 2011).  

3.2.5. Decoding 

EEG data was first prepared by removing a linear trend from the entire segments, at the aim of 
reducing eventual slow drifts, and then dividing epochs into 110 consecutive windows of 10ms, from 
-40ms to 1060ms relative to the onset of the last tone composing the auditory sequence. All the 
procedures described in this section were carried at the level of single time-windows, each 
corresponding to a matrix with the shape n channels x 5 samples (sampling rate = 500Hz, 5 
samples=10ms). The general goal of the decoding analyses was to predict a vector of binary 
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categorical data (y, containing the classes “4” vs “12”) from a matrix of single-trial neural data (X) 
which included all EEG channels.  

For the main analysis we used three separate sets of estimators and followed the three 
complementary strategies illustrated by Figure 3.2A. In each training phase, one class included trials 
belonging to a single experimental condition, while the alternative numerical class was composed of 
two experimental conditions, one characterized by the same tone rate and the other characterized 
by the same total duration found in the homogeneous class. With this design, numerosity was the one 
and only reliable feature for estimators to learn how to separate classes, being a specific tone 
rate/sequence duration distinctive for a given class only in certain cases. Further, to make sure that 
duration-based or rate-based learning could not lead to successful performance, each set of 
classifiers was tested twice (Figure 3.2A). In a first test, sequence duration could not drive above 
chance scores since it was the same across test conditions and the specific rate indicative of the 
composite class during training could not lead to above-chance scores since it was either not at all 
present (A1, B1) or a peculiarity of the opposite numerosity (thus misleading, C1). Within a second 
test, tone rate could not drive above chance scores since it was the same across test conditions and 
the total duration indicative of the composite class during training could not lead to above-chance 
scores since it was either absent (A2, C2) or a feature of the opposite numerosity (thus misleading, 
B2).  

In order to avoid overfitting, we used a cross-validation procedure with 100 loops. Trials were 
shuffled at each run, then assigned to the respective training and test sets. Concerning schema A, the 
number of “4M” trials was first equated to that of “4L” (by randomly selecting and dropping n extra 
epochs for the most numerous condition), then 15% of “4M” trials and 15% of “4L” trials were kept 
aside for the test phase. The splitting was slightly different in schemas B and C in order to 
counterbalance the fact that “12S”/”12L” trials were less numerous relative to “12M” (see Procedure 
above). Namely, 80% and 20% of “12S”/”12L” trials were assigned to the training and test set 
respectively. The splitting of “12M” trials was then calibrated to obtain a balanced training set in 
terms of number of epochs per “12” condition (e.g. for schema B: n 12M trials in test set = total 
number of 12M trials available – n of “12L” trials in training set)15. This partitioning was performed 
in a stratified fashion such that all sources of irrelevant variability (i.e. musical notes and 
instruments) were distributed in equal proportions. When a specific condition was used only within 
training or exclusively at test, all the corresponding trials were assigned to one of the two sets 
according to the schema at hand. 

Once established the training and the test set for a given run, we applied a “micro-averaging” 
procedure, a strategy commonly employed on adults to improve signal-to-noise ratio (Grootswagers 

                                                             

15 To recapitulate, the splitting was always organized to ensure balanced composite classes (in terms of n 
epochs per condition) and still exploit all 4M/4L/12M trials available for a given subject. 
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et al., 2016). Within each experimental condition, this consisted in shuffling the epochs and then 
forming pseudo-trials by averaging together (randomly-defined) groups of 8. At the end of such 
operation, we balanced the test sets by equalizing the number of micro-averaged epochs across 
numerosity classes. In practice, we randomly selected the same amount of pseudo-trials available for 
the least numerous class from the most abundant.  

Next, following the z-scoring each feature (i.e. channel and time point across trials), a L2-norm 
regularized Logistic Regression was fitted to the training set (Fan et al., 2008) in order to find the 
hyperplane that could maximally predict y from X while minimizing a loss function. Since composite 
classes contained more trials than heterogeneous ones, a weighting procedure was applied in order 
to equalize the contribution of each class to the definition of the hyperplane. The other model 
parameters were kept to their default values as provided by the Scikit-learn package. 
After training, the models were used to predict y from the test set and their performance was 
evaluated by comparing estimates to the ground truth. All algorithms produced as an outcome 
vectors of probabilistic estimates. These probabilities were scored by computing the area under the 
Receiver Operating Characteristic curve (AUC), which summarizes the ratio between true and false 
positives. The value of AUC ranges between 0 and 1, with 0.5 corresponding to chance level. The 
scores obtained across loops and from either all or a group of train/test schemas were averaged 
within subject before submitting them to statistical analysis.  

Within the same cross-validation loop, estimators were tested both at the trained time sample and 
on all the other 109 windows. The outcome of this procedure is a temporal generalization matrix 
(King & Dehaene, 2014) where each row reports the classification scores of a single estimator trained 
at time t and tested all along the trial (each time lag t’ corresponds to one column). When a neural 
code is recursive or sustained, a successful estimator trained at a given time point (i.e. specific to a 
given pattern of brain activity) will achieve above-chance scores not only at the same time point but 
also at other time lags. Thus, the shape of the generalization performance within the temporal matrix 
can provide rich insights upon the dynamics of the neural activity patterns enabling classification. 

Generalization across sensory modalities  
In a second decoding analysis we investigated whether the infant brain processes the numerosity 
embedded in auditory and visual displays through a common neural code. We used the same pipeline 
as above (100 cross-validation loops, L2-regularized logistic regression with weighted class 
contribution etc.) but this time probed decoder’s ability to predict y from the neural responses to 
visual displays. Given the divergence of training and test data, this analysis entailed the opportunity 
to employ all auditory conditions at once, with the potential benefit of increasing predictive power. 
Yet, in order to prevent class separation from being based on non-numerical parameters, it remained 
crucial to keep our three training schemas (Figure 3.2A) separate. Following such considerations, in 
order to maximize both sensitivity and specificity, we exploited an inherent property of the learning 
process: iterations. That is, the optimal hyperplane is computed though successive, intermediate and 
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approximate minimizations of the cost function, while the model is updated incrementally after each 
pass over the dataset. Building on this principle, we used a single set of decoders (one estimator for 
each of the time lags that led to successful classification in the main analysis) and trained them in an 
online fashion, following the same strategy as before. Specifically, the initial pipeline was modified 
such that the training set (i.e. schema) changed (randomly) at each internal iteration, for a total of 
600 partial fits. The final weights of the model corresponded to the average value of the coefficients 
computed across all updates. Overall, this strategy enabled us to capitalize on the possibility to use a 
larger training set and still minimize the impact of non-numerical parameters on learning (adopting 
the same training logic of the main analysis). 

Visual data was prepared for tests in the same way as auditory data. Before micro-averaging, we 
made sure to equalize the amount of trials controlled for extensive parameters to that of trials 
controlled for intensive properties within each numerosity condition. When the number of remaining 
trials was too scarce to obtain a minimum of 5 pseudo-trials/visual numerosity (4 subjects), we used 
some of the single epochs more than once, with the constraint that two pseudo-trials could not share 
more than 2 single epochs (out of 8).  
As before, each classifiers trained on a given time-window t (in between 400 and 800ms after the 
onset of the last tones) was tested at every time-lag from 0 to 1000ms after the onset of the image (x-
axis in Fig. 4A). Obtaining such temporal generalization matrix was essential for this analysis since 
we had no a-priori hypothesis concerning the temporal delay of numerical estimation within the 
visual modality.  

Finally, to exclude the eventuality of non-numerical confounds on the observed performance, we 
created two supplementary test sets: one exclusively composed of trials with extensive parameter 
control (i.e. a group of trials in which object size and area devoted to each object co-varied with 
numerosity) and the other including only those trials controlled for intensive elements (i.e. trials in 
which total occupied area and luminance increased as a function of numerosity).  

3.2.6. Representation Similarity Analysis  

The aim of this analysis was to test whether numerical and non-numerical information could be 
dissociated from the activity patterns evoked by the auditory sequences. Crucially, unlike 
classification-based decoding, Representational Similarity Analysis (RSA) allows to assess the effect 
of multiple quantitative variables at once (Castaldi et al., 2019). The general outline of the analysis 
consisted in modelling a set of neural (i.e. empirical) dissimilarity matrices, one for each time point, 
as a linear combination of 3 theoretical matrices providing all together an exhaustive description of 
the quantitative information embedded in the auditory space.  

To compute neural dissimilarity, we started by down-sampling the EEG recordings (with a moving 
average of 4 time points) to 125Hz, then averaged together the epochs belonging to the same 
condition. Given that the potential of this kind of analysis is best expressed with rich experimental 
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designs (Kriegeskorte, 2008), we averaged trials where notes were played by different instruments 
separately. That is, for each main condition (Figure 3.1A) we obtained two evoked responses, 
corresponding to the sub-conditions “viola” and “cello”. Finally, we calculated the correlational 
distance (1-Pearson across channels) between each pair of sub-condition. To counterbalance the fact 
that “12S/12L” trials where less numerous (see Procedure), we repeated this computation 100 times. 
At each loop, the evoked responses were calculated by averaging an equal amount of trials per sub-
condition (for each of sub-condition, we randomly selected the same amount of trials corresponding 
to that available for the least abundant). In this way, we made sure that each condition had the same 
signal-to-noise ratio and still exploited all the data available for a given subject, thereby optimizing 
the stability of the estimates. The final neural dissimilarities corresponded to the mean distances 
obtained across the 100 loops. 
The theoretical dissimilarity matrices defined the distance, on a logarithmic scale, between each pair 
of sub-conditions along the quantitative dimensions defining the auditory sequences: number, tone 
rate and total sequence duration. The three matrices were entered as predictors in a linear multiple 
regression in order to explain the neural distances observed at each time point. All the dissimilarity 
matrices were z-scored before estimating the regression coefficients. As a result, for each subject, we 
obtained a set of beta weights reflecting the portion of the variance that each of the predictor matrices 
uniquely explained in the evoked activity patterns over time. 

Concerning the RSA performed at sequence offset (Figure 3.3A), “12L” trials were excluded from the 
analysis in order to balance out the design. Thanks to such expedient, all three predictors remained 
adequately decorrelated (number-rate: 0.26, number-duration: -0.17, rate-duration: 0.26) and their 
variance inflation factors (VIF) satisfactorily low (1.143, 1.19, 1.143 for number, tone rate and total 
sequence duration respectively). Note that reducing multicollinearity at the minimum is important, 
given that strong correlations between predictors/high VIFs can compromise the reliability of the 
outcome coefficients.  
For the RSAs performed within sequence (Figure 3.3B and 3.6), the analysis was restricted to “12” 
trials and no exclusion was needed in order to obtain balanced distance matrices. Starting from the 
epochs crafted around sequence onset (see Data preprocessing), we obtained two sets of evoked 
activity patterns, corresponding to two cardinalities, by cropping the signal from the onset of the Nth 
note and up to 800ms thereafter. For the main analysis we chose to contrast “3” and “7” in order to 
parallel the RSA at sequence offset in the best way possible, thereby obtaining a set of beta weights 
that could be interpreted in relation to the former. For this contrast, total sequence duration (in this 
case: the time elapsed from sequence onset up to the specific cardinality) was equal between “7S” 
and “3M” (i.e. 360ms) and between “7M” and “3L” (i.e. 1080ms), mirroring the correspondence in 
total duration of “12S”/“4M” and “12M”/“4L” (Figure 3.1A). As in the previous case, this 
characteristic contributed to keeping multicollinearity at the minimum (VIFs were 1.059, 1.565, 
1.555 for number, rate and duration respectively). Further, selecting the cardinalities “3” and “7” 
enabled to (a) minimize onset-related low-level effects, (b) focus on a portion of the signal that was 
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sufficiently far from sequence offset not to overlap with the main RSA analysis (c) test a numerical 
ratio greater than 1:2, taking into account behavioral observations reporting that a 1:2 ratio is not 
sufficiently large for newborns to discriminate numerical displays (Izard et al., 2009). 

3.3. Statistical analysis 

To calculate statistics we performed second-level tests across subjects employing the MNE 
dedicated functions. Following a standard approach in adult studies (e.g. King et al., 2016), we used 
one-sample cluster-based permutation t-tests (Maris & Oostenveld, 2007) which intrinsically 
account for multiple comparisons. We tested whether (a) time-resolved classification scores were 
higher than chance and (b) whether multiple regression beta-weights differed from zero. The 
analyses considered two-dimensional clusters for decoding scores (i.e. they were always performed 
on the entire temporal generalization matrix) and one-dimensional clusters in the case of regression 
coefficients. Univariate t-values were calculated for every score/beta-weight with the exclusion of 
those corresponding to the baseline period. All samples exceeding the 95th quantile were then 
grouped into clusters based on temporal adjacency. Cluster-level test statistics corresponded to the 
sum of t-values within each cluster. Their significance was computed by means of the Monte-Carlo 
method: they were compared to a null distribution of test statistics created by drawing 10000 
random sign flips of the observed outcomes. A cluster was considered as significant when its p-value 
was below 0.05. 

3.4. RESULTS  

In our main analysis, we asked whether (and when) linear classification algorithms could decode 
“4” vs “12” from infant fine-scale evoked activity patterns, irrespective of the particular tone rate and 
total duration characterizing the sequences that were played. With this aim, we used a strategic 
combination of training and test sets to ensure that successful performance could not be ascribable 
to non-numerical effects (Figure 3.2A). Specifically, within three distinct sessions, the algorithms 
were trained to separate one experimental condition from a composite class that included sequences 
matched in either rate (50% of cases) or duration. At test, the non-numerical quantities distinctive 
for one particular numerical class during training were prevented from leading to above-chance 
scores since they characterized either both numerosities (A1, A2, B1, C2), the opposite number 
(relatively to the training set: B2, C1), or none of the test trials. The three decoding schemas 
illustrated in Figure 3.2A were applied on brief (10ms) consecutive windows starting from the onset 
of the last tone composing the sequences and for 1 (silent) second thereafter. Figure 3.2B shows that 
all estimators trained in between 440 and 750ms achieved above-chance scores, with the best 
classification performance observed at 610ms after the onset of the last tones (N=26; 
M=0.557±0.044, chance=0.5). When systematically tested at the other time points along the trial 
(King & Dehaene, 2014), these estimators yielded similar cross-temporal classification dynamics: 
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their scores raised above chance level always around 400ms, peaked at ~600ms and fell at chance 
after 750ms (Figure 3.2C). Such square-shaped generalization reveals that the neural activity pattern 
underlying decodability consisted of an essentially stationary code. Further, Figure 3.2D shows that 
these classification dynamics were qualitatively similar across tests (see also Figure 3.5).  

Figure 3.2 Classification of “4” vs “12” from infant neural responses when information on rate and 
duration is utterly ruled out.  (A) Tactical combination of training and test sets. (B) Decoding performance 
of classifiers trained and tested on 10ms-windows all along the trial: the outcomes of all tests (panel A-
right) are averaged. Time 0 corresponds to the onset of the last tone composing the auditory sequences. 
Shaded areas indicate the standard error (SEM) across subjects (N=26) and dotted black lines mark 
theoretical chance level. (C) Generalization of the same classifiers across time. Left: the diagonal thin line 
demarks the scores illustrated in B. Dashed contours delimit statistical significance, calculated by means 
of a cluster-based permutation t-test against theoretical chance (p=0.0001). The panel on the right offers 
an alternative visualization of the same generalization scores that highlights how a representative sample 
of estimators trained in between 440ms and 800ms display overlapping performance dynamics throughout  
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To validate our decoding approach, we trained a new set of estimators to separate pairs of conditions 
distinguished in tone rate but matched for sequence duration (“4L” vs “12M”) or differing in total 
duration but matched for rate (“4M” vs “12M”). We then assessed their performance when the 
numerical distinctions characterizing the training sets were inverted (“12L” vs “4M” and “12S” vs 
“4L” respectively), thereby isolating classification scores attributable to rate and duration 
exclusively. We found no overlap between rate decoding and number classifiability as observed on 
duration-matched test sets (Figure 3.5A) and no overlap between duration decoding and the 
performance yielded by number classifiers on rate-matched test sets (Figure 3.5B). These 
observations confirmed that the successful classification attained in the main analysis (Figure 3.2) is 
not driven by the fact that, on average, sequences of 4 tones are characterized by a slower rate or a 
shorter total duration. 

So far, we have demonstrated that “4” and “12” trials can be reliably discerned from infant neural 
responses, once the effects related to specific non-numerical parameters are canceled out. Still, 
correct classifications might be driven by a generalized magnitude/intensity code, where numerical 
and non-numerical information are integral (Walsh, 2003). Given this eventuality, we used a 
Representation Similarity Analysis (RSA; Kriegeskorte, 2008) to ask whether (and when) the various 
quantitative dimensions characterizing the stimuli can be effectively disentangled. At every time 
point from sequence offset onwards (i.e. over the same window used for decoding), we assessed the 
correlational distance between the average responses evoked by each pair of auditory conditions. 
We then used multiple linear regression to model the resulting neural (dis)similarity matrices as a 
linear combination of three theoretical matrices depicting the (dis)similarity of the sequences along 
their defining quantitative dimensions: number, rate, duration (Figure 3.3A-top). With this approach, 
we obtained three series of beta weights reflecting the portion of the neural variance that each 
quantitative dimension explained independently from the other two. Figure 3.3A shows how rate, 
duration and number were clearly separable: significantly above-zero beta weights imply that, at a 
certain point within the trial, one quantity modulated neural activity over and beyond the remaining 
two. Crucially, number exerted the strongest degree of contribution over a relatively late time-
window (Figure 3.3A-bottom), with a peak in beta weights observed at 600ms (N=26, 525-805ms: 
pclust=0.0001). Being fully congruent with the time-course of the classification performance (Figure 
3.2B-D), this finding conclusively elucidates that the infant brain estimates numerosity separately 
from the other magnitudes and in a completely automatic fashion.  

the trial. (D) Performance dynamics remain similar across tests, even in the most challenging 
circumstances. Panels on the left depict the averaged outcome of “standard” tests (demarked by arrows in 
A) performed on pairs of duration-/rate-matched conditions where the non-numerical parameters distinctive 
of a single class during training were either spread over both classes or removed. Panels on the right report 
the averaged performance observed for the most critical tests (demarked by diamonds in A), where non-
numerical parameters distinctive of a single class during training were assigned only to the alternative class 
or removed. 
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Further, number coefficients resulted significantly above zero over an earlier window (N=26, 105-
280ms: pclust=0.0001), indicating the existence of a preliminary numerical process not captured by 
the decoding analysis. Being very close to the final tone of the sequence, this early modulation might 
reflect a (still) ongoing quantification process corresponding to an accumulator mechanism (Meck & 
Church, 1983). The latter might consist of a numerosity-sensitive rather than number-selective phase 
(Verguts & Fias, 2004): at this stage numerical information might be heavily intermingled with the 
other parameters and thus “discarded” by the strict training-test strategy presented above. To test 
this interpretation, we investigated the representational similarity structure embedded in the neural 
signal while the tones composing the sequences were still playing. We reasoned that since an 
accumulator would update online, the corresponding neural effect should be discernible throughout 
the stimulation. Conversely, numerosity estimation might occur only after the sequence of tones has 

Figure 3.3 RSA uncovers separate encoding of quantitative dimensions and online update. Top: 
schematic illustration of theoretical matrices depicting the logarithmic distance between pairs of sub-
conditions along their defining quantitative dimensions. Darker shades correspond to greater 
distance/dissimilarity. These three matrices were entered together in a multiple linear regression to explain 
the corresponding neural distances at each time point. Bottom: standardized beta weights are averaged 
across subjects (N=26; vertical lines indicate the SEM) and marked by filled circles when significantly above 
zero (at sequence offset − rate: 295-465ms and from 855ms onwards, pclust= 0.002; duration: -40-295 and 
550-865ms, pclust=0.0001; while sounds are playing − rate: 0-105ms and from 425ms onwards, pclust< 0.01; 
duration: 0-160 and 345-550ms, pclust=0.0001). Beta coefficients for number reveal the presence of two 
distinct effects: an early modulation is observable from both graphs whereas a later effect, resembling that 
illustrated in Figure 3.2B, is retrieved only after sounds are finished. This double-peaked pattern could 
reflect an accumulator mechanism that updates online, which is followed by a final numerical estimation. 
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terminated. Restricting the focus on “12” trials, we computed the correlational distances between the 
average neural signal recorded from the onset of the third and seventh notes (Figure 3.3B-top), then 
applied the same multiple regression in order to assess/disentangle the modulation of rate, duration 
(in this case: time elapsed from sequence onset) and number. The choice of “3” vs “7” enabled to 
minimize multicollinearity between predictors and the risk of low-level confounds (due to e.g. onset 
and offset proximity) while keeping a reasonable distance between the to-be-compared numerosities 
(ratio>1:2); thereby providing a set of beta weights that could be conceptually put in relation to the 
previous. Corroborating our interpretation, beta coefficients for number were significantly positive 
in between 160 and 335ms (Figure 3.3B-bottom; pclust=0.0007). A similar modulatory effect exerted 
by the number regressor was observed for “4” vs “9” but not “3” vs “5” (Figure 3.6), revealing that 
this result is not attributable to the intervention of an object-tracking system (for 3 but not 7; 
Feigenson et al., 2004; Hyde & Spelke, 2011) and that the accumulator mechanism is imprecise (i.e. 
a ratio <1:2 is insufficient to discern a numerosity effect). 

3.4.1. Testing the abstractness of the infant neural code for numerosity  

Our set of results is coherent in demonstrating that the infant brain treated numerosity as a basic 
property of the auditory sequences, not reducible to other non-numerical variables. This finding is 
somehow counterintuitive: after all, number encapsulates a discretization process, just as rate, and a 
cumulative aspect, just as duration. Speaking of, tone rate and sequence duration did shape neural 
activity patterns significantly (Figure 3.3). What is the benefit of a primary neural mechanism 
specifically dedicated to the accumulation of discretized sensory evidence? The answer might rely in 
the unique representational flexibility numerosity affords: unlike the other quantitative parameters, 
number can be abstracted away from sensory modalities, time and space (Cantlon, 2018). Thus, as a 
natural continuation of our study, we asked whether the infant brain employs the same numerosity 
code irrespective of sensory modality, presentation format, and vigilance/attentional state. To this 
aim, we selected the algorithms that proved successful in isolating a number-specific neural pattern 
(Figure 3.2B-C) and optimized their learning by training them iteratively on all possible auditory 
schemas (Figure 3.2A, see Methods, section 3.2.5). We then assessed their performance on trials when 
infants attended to visual displays of “4” and “12” (in the form of simultaneous sets of colorful objects 
Figure 3.1B). Strikingly, estimators trained in between 440 and 610ms from the last tone composing 
the auditory sequences performed reliably above chance not only within the auditory modality 
(Figure 3.2B-C) but also on visual trials (Figure 3.4, N=16: pclust=0.005), with the best performance 
achieved at 370ms after image onset (e.g. for the classifier trained at 500ms: mean 
AUC=0.588±0.076). Analogously to what observed on auditory trials, successful classifiers yielded 
similar performance dynamics, with above-chance scores obtained from ~300 to 580ms relatively to 
image onset (Figure 3.4B). Such an outcome was not dependent on the type of control used over non-
numerical visual attributes, since the scores achieved on trials with fixed extensive parameters 
(N=16; training 490-510ms, test 360-380ms: mean AUC=0.565±0.092) resulted comparable to those 
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obtained when intensive parameters were equated across numerosities (mean AUC=0.605±0.148; 
t=-0.853, p=0.41). 

  

3.5. DISCUSSION 

In the current investigation we exposed preverbal infants to an auditory space composed of 
sequences of natural sounds embedding a balanced calibration of numerical and non-numerical 
quantitative parameters. The stimulus space was designed in combination with a strategic 
multivariate analysis plan which allowed to isolate purely numerical processes from any modulatory 
effect ascribable to the other quantitative characteristics of the stimuli (single tone duration and 
inter-tone intervals, rate, sequence duration and total amount of sound/silence). Our pattern of 
results reveals that the infant brain encodes the numerical information embedded in the auditory 
sequences separately from all the other dimensions and in full automaticity, i.e. during sleep and 
within a randomized presentation order.  
The fact that the preverbal brain regards discrete quantity as a primary attribute of sound sequences 
suggests that numerosity is a fundamental, key dimension to represent the external environment. Its 
importance might derive from the fact that numerical computations allow to merge the disparate 

Figure 3.4 Cross-condition 
decoding reveals an abstract 
code for number in the 
preverbal infant brain.  
(A) Performance of classifiers 
trained on selected time-windows 
of auditory trials (y-axis) and 
tested all along the visual ERPs 
(x-axis). Dashed contours delimit 
statistical significance (cluster-
based permutation t-test). (B) 
Alternative visualization of the 
same generalization scores 
displayed in A, which illustrates 
how successful estimators 
yielded overlapping performance 
dynamics not only on auditory 
(Figure 3.2C-right) but also on 
visual trials. 
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vocabularies of distinct sensory modalities and spatiotemporal axes into a single, informative and 
flexible descriptor. Coherently with this conception, our investigation revealed that at ~12 weeks of 
age our brain engages a neural mechanism for numerosity processing that transcends wakefulness 
state, sense organs and temporal/spatial distribution. This result, impressive and yet barely 
surprising, recalls two seminal reports pertaining to newborns. Namely, after a brief familiarization 
phase, 0 to 4 day-olds prefer to look at visual arrays that are matched for number of items with the 
auditory sequence they hear, provided that the numerical ratio between test displays is at least 1:3 
(Izard et al., 2009; Coubart et al., 2014). A tendency of this sort could reflect an instinctive mapping 
between two arbitrary quantitative dimensions, such as rate and density, similar to those observed 
in both neonates (de Hevia et al., 2014) and older infants (Lourenco & Longo, 2010; de Hevia & 
Spelke, 2010). If that was the case, detection of a correspondence between auditory temporally-
distributed information and visual ensembles might arise from a generalized magnitude 
representation (Newcombe et al., 2015). Conversely, the neural evidence provided by the current 
study corroborates the alternative interpretation according to which newborns can detect a 
supramodal genuinely numerical correspondence; that is: they “perceive abstract numbers” (Izard 
et al., 2009). Intriguingly, the observations brought by these behavioral experiments indicate that, 
although the subjects tested in the present study were 3 months old, the abstract neural code isolated 
by our analyses is likely to be operational since birth. This possibility is further supported by recent 
results obtained with hierarchical deep neural networks (DNNs). In the complete absence of learning, 
tuning to numerosity emerges spontaneously (Zorzi & Testolin, 2018) and enables the networks to 
succeed in number discrimination tasks even in the presence of incongruent non-numerical 
quantitative parameters (Kim et al., 2021). This computational phenomenon suggests that the neural 
code for numerosity isolated here might arise from the interplay between the intrinsic structure of 
our nervous system and the properties of the external environment. Not only, inspecting the internal 
dynamics of the aforementioned neural networks disclosed the existence of number-sensitive and 
number-selective response profiles (Zorzi & Testolin, 2018), whereby tuning to numerosity emerges 
from monotonic increases and decreases of neuronal activity in the earlier layers of the network (Kim 
et al., 2021). It is captivating to notice how such “summation coding” is consistent with the 
accumulator mechanism captured by our RSA analysis (Figure 3.3).  

To our knowledge, an abstract neural code for non-symbolic, non-verbal numerosity as that isolated 
by our classifiers (i.e. a code that transcends format, modality and arousal state) has never been 
observed in humans before. Two separate fMRI studies on adults have reported overlapping neural 
activations in response to visually and auditorily presented sequential numerical displays (Piazza et 
al., 2006) and to sequentially and simultaneously presented visual numerical displays (Dormal et al., 
2010). However, subsequent fMRI investigations failed to replicate these findings, suggesting a role 
for active comparison processes in the previous results (Cavdaroglu et al., 2015; Cavdaroglu & Knops, 
2019). Further, the retrieval of a supramodal neural code in infants might appear at odds with the 
observation that visual numerosity is processed directly, at the level of early cortical areas in adults 
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(Park et al., 2016; Fornaciai et al., 2017; DeWind et al., 2019; Lucero et al., 2020). As far as current 
neuroimaging evidence allows to infer, it might possible that initially generalized numerical 
approximations become modality and format specific as we grow older and more experienced. The 
plausibility of this hypothesis is supported by the fact that development is characterized by an initial 
period of hyper-connectivity between sensory brain regions which is subsequently skimmed through 
phases of retraction and reweighting in the connections (Fransson et al., 2011; Wagner & Dobkins, 
2011). Yet, despite the intuitive tendency to conceive low-level cortical mechanisms as putatively 
sensory-specific, the existence of cross-modal processing at early cortical stages has been 
documented not only in infants (Werchan et al., 2018) but also (and mainly) within adulthood 
(Murray et al., 2016). For instance, multisensory convergence has been observed with adult fMRI: 
auditory stimulation alone can trigger robust responses in primary visual cortices and simple 
checkerboards activate primary auditory areas (Martuzzi et al., 2007). Using EEG on adults, 
contralateral ERPs over the occipital scalp (with sources located in extrastriate regions) have been 
retrieved within purely auditory experimental stimulation when sounds were not relevant to the task 
(McDonald et al., 2013). Concerning adult structural connectivity, there are fiber tracts forming a 
direct pathway between the Heschl’s gyrus and the occipital pole as well as anterior portions of the 
calcarine sulcus (Beer et al., 2011). Beyond the consideration that supramodal processes can occur 
at all cortical stages throughout life (Ghazanfar & Schroeder, 2006; Foxe & Schroeder, 2005), the most 
meaningful insights to the aim of the current discussion derive from psychophysics. As mentioned in 
the introduction of this chapter, numerosity estimates in adults are susceptible to adaptation (Burr 
& Ross, 2008). Impressively, adaptation to numerosity generalizes across formats and sensory 
modalities: from sequential streams to spatial arrays (and vice versa), from auditory sequences to 
visual displays (always in a bidirectional fashion). Crucially, cross-format and cross-modal 
adaptation effects are nearly as large as those observed within-format and within-modality, revealing 
that to be adapting is an abstract quantity system (Arrighi et al., 2014). Further, adaptation remains 
spatially specific in all cases, suggesting that to be involved is a relatively basic encoding mechanism 
rather than a higher-level cognitive construct (Burr et al., 2018). Overall, this pattern of behavioral 
findings provides a glimpse of a discrete quantitative system in adults that parallels in all ways that 
isolated here, within a developmental neuroimaging setting. Thus, our observations are ultimately 
coherent with and further extend the evidence from adults, showing the existence, early in life, of a 
spontaneous, specialized and modality-independent neural mechanism that encodes numerosity in 
the form of a basic sensory descriptor; that is to say: the existence of a primitive and abstract number 
sense.   
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3.6. SUPPLEMENTARY MATERIALS 

Figure 3.5 Sanity-check analyses (complement of Figure 3.2) (A) Within the training sets employed in 
our main decoding analysis, class “4” was necessarily characterized by auditory sequences that are on 
average slower relatively to those corresponding to class “12”. With this qualitative assessment, we asked 
whether above-chance performance on conditions matched for duration (i.e. when duration-related effects 
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are completely uninformative, see Figure 3.2A for an intuitive illustration) might reflect the retrieval of a 
“slower than/faster than” type of computation. In other words, we asked whether successful classification 
of numerosity could actually derive from rate distinctions. In the two panels, rate-based classification 
performance is superimposed over the average scores obtained within the main decoding analysis precisely 
when classifiers were tested on pairs of conditions that differed for both rate and numerosity. We found no 
overlap between the two performances, indicating that the main classification scores were not contaminated 
by the retrieval of rate-related effects. (B) Within our main training sets, class “4” was necessarily 
characterized by auditory sequences that are on average shorter relatively to those corresponding to class 
“12”. This qualitative assessment mirrors that presented in A. Namely, we tested whether successful 
performance on conditions matched for rate (i.e. when rate-related effects are completely uninformative) 
could reflect the fact that the infant brain encoded the stimuli in terms of “shorter than/longer than”. As 
before, the superimposition of classification scores reflecting pure duration-related effects on the 
performance obtained in those main tests that included between-class duration discrepancies clearly 
testifies how the scores observed in the latter were not contaminated by duration-related processing.  
 

Figure 3.6 RSA within sequence indicates that online numerical accumulation is imprecise. Multiple 
regression analyses mirroring that illustrated in Figure 3.3B in all aspects except for the numerical contrast 
under investigation. Standardized beta weights are averaged across subjects (N=26; vertical lines indicate 
the SEM) and marked by filled circles when significantly above zero (3vs5 − rate: 0-90ms pclust=0.0001 
and from 545ms onwards pclust= 0.01; duration: 0-185 and 335-560ms, pclust=0.0001 | 3vs6 − number: 190-
320ms pclust=0.0054; rate: 0-105ms and from 455ms onwards, pclust< 0.01; duration: 0-185 and 335-575ms, 
pclust=0.0001 | 4vs8 − rate: 0-90ms pclust=0.0001 and from 230ms onwards pclust= 0.0035; duration: 0-145 
pclust=0.0005 | 4vs9 − number: 110-270ms pclust=0.007; rate: 0-90ms and from 256ms onwards, pclust< 0.01; 
duration: 0-160 pclust=0.0001). 
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Figure 3.7 Grand average ERPs to auditory sequences 
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Chapter 4. THE NEURAL REALITY OF 

PITCH CHROMA IN EARLY INFANCY 

ABSTRACT 

At the physical level the experience of pitch has a single determinant: the repetition rate of a 
waveform in the acoustic signal. Yet, psychologists have described pitch as composed of two 
perceptual dimensions, height and chroma. According to opponents of an ongoing controversy, 
chroma might correspond to either a basic perceptual property dependent on biological constraints 
or a higher-order cognitive construct crafted by culture. Here we used high-density 
Electroencephalography (EEG) and multivariate-pattern analyses to characterize pitch processing in 
humans at 3 months of age. We found that, when exposed to repetitive sequences of orchestral tones, 
infants encode both pitch height and pitch chroma in a completely automatic fashion and with neatly 
divergent dynamics. Our classifiers were able to isolate height-specific information from the neural 
signal right after the onset of the auditory sequences; beyond ~600ms the performance of height 
decoders fell at chance and never recovered. On the other hand, neural patterns specific for chroma 
could be retrieved later in the trial, over multiple time windows throughout the unfolding of the 
auditory sequence and after sequence offset. Overall, this study demonstrates that not only pitch 
height but also pitch chroma constitute a basic organizing principle of neural responsivity very early 
in development. We speculate that separate encoding mechanisms reflect distinct functional roles 
carried by the two dimensions.  
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4.1. INTRODUCTION 

Pitch is one of the fundamental aspects of sound as it carries information upon source identity, 
prosody and melody. To convey meaning, both speech and music rely on pitch patterns and pitch 
relations (e.g. Curtis & Bharucha, 2010). Developmentally, learning to link the latter to different 
messages is likely to be one of the first steps for infants to make sense of sounds (Fernald, 1989).  
The experience of pitch is related to the frequency of vibrations, in the air, hitting the eardrum. 
Sensitivity to frequency is extremely precocious. For instance, at 36-39 weeks of gestation, fetuses 
repetitively exposed to a given piano tone, react with a heart rate deceleration when the constituent 
frequencies of the tone are changed (Lecanuet et al., 2000). At ~35 weeks of gestation, occasional 
changes in the frequency components of synthetic sounds elicit mismatch neural responses traceable 
with MEG (Draganova et al., 2005). These observations indicate that pitch-related information can 
be differentiated already in utero and further suggest an early cortical involvement in this ability. 

Natural sounds eliciting a pitch sensation are usually complex, in that the present energy at a 
fundamental frequency (F0) and at various harmonics, integer multiples of the latter. Such 
components are processed separately by the auditory system, within frequency-specific channels. 
Being unitary, our sensation of pitch is not given by the stimulus itself but is the result of an 
integrative mechanism implemented relatively late in the processing hierarchy, in regions adjacent 
to the (adult) primary auditory cortex (Bendor & Wang, 2005). A classical phenomenon that enables 
to isolate pitch extraction from frequency processing is that of the missing fundamental: the pitch of 
a complex remains the same in our perception, whether or not the fundamental frequency is actually 
present within the stimulus. Building on this phenomenon, He & Trainor (2009) have shown that 
authentic pitch perception might appear only around the 4th month of age: in their EEG study, 3-
month olds could not detect changes in the pitch of sounds lacking the fundamental, suggesting that 
early reactions to sounds are based merely on frequency. Although inconsistent with some 
behavioral observations (Lau & Werner, 2012), these conclusions are compatible with the 
documented immaturity of the auditory cortex in the very first months of life (Werner et al., 2012). 
Yet, it remains highly underspecified how complex sounds are processed by an immature brain: 
young infants might encode F0, the centroid frequency or their spectral shapes, as all these three 
factors have been shown to exert separable effects on adult neural responses (Crottaz-Herbette & 
Ragot, 2000; Cansino et al., 2003; Warren et al., 2005).  

At the physical level, pitch has a single determinant: the repetition rate of a sound wave. Nevertheless, 
for nearly two centuries, psychologists and theoreticians have been depicting pitch as a bi-
dimensional attribute. First, there is height: a monotonic dimension that goes from low to high as the 
fundamental frequency increases. The second component, chroma, is a cyclical qualitative dimension 
that repeats each time the fundamental frequency doubles (for example: the fundamental 
frequencies of 220 and 440Hz both corresponds to the A note in Western music notation). Overall, 
the perceptual organization of pitch can be modeled as a helix formed by a linear component, height, 
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and a sinusoidal component, chroma (Shepard, 1982). Such characterization takes into account the 
so-called “octave equivalence” phenomenon (Figure 4.1): two tones whose fundamental frequencies 
stand at a 1:2 ratio (i.e. forming an octave interval) are experienced as very similar one another and 
treated as equivalent by nearly all musical scales aver evolved (Burns, 1999; Apel, 2003).  

A few neuroimaging studies, carried on human adults, suggest that the cortical representation of 
pitch is consistent with the helix model. To start with, the first fMRI investigation on this topic 
(Warren et al., 2003) has shown that the two dimensions engage the secondary auditory cortex in a 
differential manner. That is, when orthogonal, changes in pitch height trigger specific activations 
posterior to Heschl’s gyrus (planum temporale) whereas changes in chroma are reflected by specific 
activity in more anterior regions (planum polare). With EEG, Briley and collaborators (2013) 
observed that responses to complex tonal sounds adapt in a non-monotonic fashion: in their 
assessment, neural adaptation was stronger when the adapter and the probe were separated by 
octave intervals rather than half-octaves. Since the amount of adaptation triggered by an adapter on 
the probe depends on the overlap between/selectivity of their neural representations, such an effect 
stands in perfect accordance with the predictions of the helix model.  
Yet, more recent evidence calls into question the observations just described. In the EEG investigation 
conducted by Regev and colleagues (2019) occasional changes of pitch height elicited a mismatch 
response, whereas changes in pitch chroma did not, despite the latter being promptly detected within 
a separate behavioral task. According to the authors, this pattern of results indicates that chroma, 
unlike height, requires high order cognitive functions, such as attention, working memory and 
learning, in order to be processed. Considering that both the adaptation paradigm employed by Briley 
et al. (2013) and the MMN protocol adopted by Regev et al. (2019) are supposed to tackle a pre-
attentive and automatic encoding of the stimuli, the conclusions from the latter study are at odds 
with the previous. Conversely, they are compatible with the proposition of several scholars 
sustaining that octave equivalence is the result of cognitive and cultural factors, rather than a basic 
perceptual property linked to physiological constraints. In conformity with this idea, both 4- to 9-
year-old children and members of the Tsimane tribe (an Amazonia population that lives in isolation 
from the Western culture) appear insensitive to octave equivalence, indicating that chroma might 
correspond to a acquired “concept” rather than a fundamental percept (Sergeant, 1983; Jacoby et al., 
2019). 

Figure 4.1 Pitch helix. The distance between each 2 points 
reflects the perceptual similarity between the corresponding 
notes (Western notation): two sounds separated by an octave 
(blue line) are closer than two sounds separated by only half-
octave (red line) because they share the same chroma. 
Adapted from Briley et al., 2013. 
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Studying sound perception early in infancy has the potential to bring precious clues about this issue. 
Within the developmental neuroimaging field, a wealth of experiments has investigated mismatch 
responses to pitch changes starting from the very first days of life (see He et al., 2007 for detailed 
review). However, the dimensions of height and chroma have never been separated before: in all 
cases, they were confounded one with the other since the paradigms included stimuli that differed 
for both.   
The purpose of this study is to gain further insights upon the role chroma holds for the human brain, 
while providing an in-depth characterization of early pitch processing. To address our objectives, we 
applied multivariate analysis techniques to the neural responses collected from twenty-six 3-month-
olds subjects while exposed to sequences of naturally-rich orchestral tones. From the original 
experiment, designed to query numerosity processing (Figure 3.1A), we selected four types of trials: 
tones with either a medium (120ms; “M”) or a long (360ms; “L”) duration, repeated in sequences of 
either 4 or 12. Sounds corresponded to the notes C3, G3, C4 and G4 and they were played by two 
string instruments, a cello and a viola. The inclusion of two different timbres within the paradigm 
was crucial for our goals. In case each note was produced by the same instrument throughout the 
experiment, there would have been a one-to-one correspondence between fundamental frequencies 
and spectral profiles, preventing the possibility to disentangle which features the infant brain favors 
or disregards when encoding the stimuli. Further, when two tones coming from the same source have 
the same chroma, the harmonics and the fundamental frequency of the higher note are all contained 
in the spectrum of the lower sound. At the neural level, these sounds might be represented similarly 
simply due to their shared frequency components. Crucially, different instruments playing the same 
note give rise to tones with the same fundamental frequency but distinct spectral content. More 
precisely for our experiment, resonator chambers of different size implied a shift of the energy 
distribution up to higher frequencies when the viola was playing. Thus, by varying the timbre, we 
created the opportunity to isolate the fundamental frequency from other spectral characteristics and 
to query authentic chroma processing by ruling out possible effects arising from mere harmonic 
overlap.  

4.2. MATERIALS & METHODS 

4.2.1. Stimuli 

The sounds composing the auditory sequences consisted of two musical notes, C and G, sampled 
from two octaves, the 3rd and the 4th, and played by two string instruments, a viola and a cello, 
resulting in a total of 8 sub-conditions (2 chromas x 2 octaves x 2 timbres).  
The four notes composing the auditory space (C3, G3, C4, G4) were appositely chosen to form perfect 
intervals (perfect fifth, perfect fourth, octave and perfect twelfth), in light of the perceptual advantage 
shown for the latter in 6 and 9 mo-old infants (Schellenberg & Trehub, 1996) and taking into account 
that sensitivity to consonance appears extremely early in life (Trainor et al., 2002). Importantly, the 
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fact that any possible pair of stimuli formed a perfect interval prevented us from mistaking 
consonance-related effects for chroma-related ones. 

Stimuli were synthesized with Ableton Live 10 (Berlin, Germany), relying on a database of orchestral 
sounds recorded from musicians of the Boston Ballet and Boston Symphony Orchestras in optimal 
environmental conditions. Previous studies have shown that the employment of artificial sounds 
within the experimental paradigm strongly undermines the ecological validity of the results 
(Hoeschele et al., 2015; Bitterman et al., 2008). Given that our goal was to capture how the infant 
brain encodes pitch in real-life scenarios, using naturally-rich stimuli was thus essential. At the same 
time, the use of a digital audio workstation (DAW) enabled to control for low-level acoustical 
variations that could have potentially compromised the interpretability of our results. For example, 
all tones were characterized by similar waveforms composed of an attack, stationary portion and 
decay period with matched shapes and lengths. This characteristic of the auditory space, granted by 
the use of the DAW, prevented irrelevant features of the envelope from creating spurious differences 
between sub-conditions.  
Tones were synthesized in pizzicato with a velocity of 112, corresponding to the dynamic fortissimo. 
Once crafted in Ableton, they were edited with the aid of PRAAT (Boersma & Weenink, 2017) and 
Audacity (https://www.audacityteam.org). Their precise durations were set to either 360 or 120ms 
(to obtain a total of 16 unique stimuli: 8 sub-conditions x 2 durations) and their intensity (i.e. root-
mean-squared) was scaled at 75dB. Sound offsets were ramped down with a 5ms linear slope to avoid 
abrupt clicks. The average autocorrelation value of the final stimuli, corresponding to a measure of 
their pitch strength, was 0.98±0.01. Their spectral characteristics are reported in Table 4.1.  

Participants, procedure and EEG data preprocessing are described in sections 3.2.1 and 3.2.3-4 

4.2.2. Epochs 

EEG data analysis concerned three types of epochs, segmented at different moments in 
respect to the auditory stimulation. The first analyses were conducted on “onset epochs” spanning 
from the onset of the first tone composing the sequences until 1080ms. This portion of the trials 
included either: four medium tones (120ms-long sounds + 60ms inter-tone-interval) and a 360ms 
silent gap; six medium tones; or two long tones (360ms-long sounds + 180ms inter-tone-interval). 
To investigate the effect of repetitive stimulation on pitch processing, we used a balanced group of 
epochs spanning from the onset of the sequence up to 2s and including either eleven medium tones 
(50% of cases) or four long tones. Lastly, we used “offset epochs” which (in the main version of the 
analysis) covered the onset of the last tone composing the sequence until 1100ms thereafter.  
Before submitting them to the main analyses, all epochs were low-pass filtered at 20Hz and 
mathematically re-referenced to the mean of all channels. 
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note instrument F0 (Hz) CG (Hz) SD (Hz) 

C3 
cello 130.8 374.7 106.0 
viola 130.8 347.4 191.1 

G3 
cello 196.0 379.2 117.2 
viola 195.9 421.0 216.9 

C4 
cello 261.7 296.6 166.9 
viola 261.7 389.4 232.4 

G4 
cello 392.0 405.4 107.9 
viola 392.0 554.4 296.9 

Table 4.1: spectral parameters defining the experimental sub-conditions.  
Each value corresponds to the average of the measurements calculated with Praat (www.praat.org) from 2 
stimuli: medium and long notes. The fundamental frequency (F0) is computed through a popular 
autocorrelation method (Boersma, 1993) that takes the strongest periodic component of several time windows 
across the stimulus and averages them to yield a single value. The center of gravity (CG) is the spectral centroid, 
calculated by weighting the mean frequency value of the spectrum by the distribution of signal amplitudes 
across the spectrum. Higher values coincide with brighter sounds. The standard deviation (SD) is (the square 
root of) the second central moment of the spectrum and is a measure of spread, i.e. how the spectrum is 
distributed around its centroid.  
The two orchestral strings included in our paradigm are very similar in construction but differ for their size. 
When playing the same note, these instruments produce sounds characterized by a spectral envelope with the 
same shape but different scales: a smaller resonator results in higher formant frequencies and wider 
bandwidths i.e. the energy distribution moves upward along the frequency axis and is more dilated (Dinther & 
Patterson, 2006). Such a phenomenon is clearly discernible from the CG values within the 4th octave and from 
the estimations of spectral spread (i.e. SD is systematically lower for tones played by the cello, indicating that 
their spectrum is more tightly concentrated around the centroid).  

4.2.3. Decoding 

Multivariate pattern analyses were conducted within subject, relying on the Scikit-Learn 
(Pedregosa et al., 2011) and MNE (Gramfort et al., 2013, 2014) Python packages. To decode in time 
epochs were always divided into consecutive windows of 10ms, each corresponding to a matrix with 
the shape n channels x 5 samples (sampling rate = 500Hz, 5 samples=10ms). Each analysis was 
carried on a single window with the general aim of predicting a vector of categorical data (y) from a 
matrix of single-trial neural data (X) which included all EEG channels. To decode pitch height we used 
multi-class problems with four labels, corresponding to the identities of the notes forming the 
auditory space: “C3” vs “G3” vs “C4” vs “G4”, whereas chroma decoding entailed binary problems 
contrasting the classes “C” and “G”. 

To avoid overfitting, all analyses were performed within a stratified cross-validation procedure 
composed of 100 loops. At each run, trials were first shuffled and then assigned to training and test 
sets. For height classification, the size of the two sets was calibrated to guarantee a minimum of two 
tests on each note and, at the same time, maximize the amount of data provided for learning. The 

http://www.praat.org/
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partitioning was always performed in a stratified fashion such that all sources of both relevant and 
irrelevant variability (e.g. notes but also single tone duration) were distributed in equal proportions. 
In cross-instrument decoding we used two test sets: to probe classifiers on the trained timbre (test 
within) we used the set of trials derived from the splitting procedure just mentioned. Within the same 
cross-validation loop, we assessed their ability to generalize on new spectral patterns (test across) 
by using all trials available for the untrained condition (for example, when the training set contained 
trials belonging to the cello sub-conditions, the test set across corresponded to all trials in which the 
viola was playing). 
Chroma classification required two separate cross-validation rounds, differing in the composition of 
the sets employed. In the first round and within each loop, the training set included 90% of trials 
when either “C3” or “G4” were played; in this case, the test set corresponded to all trials belonging to 
the “C4” and “G3” conditions. Vice versa for the second round of cross-validation, 90% of the trials 
available for “C4” and “G3” were assigned to training and all the trials belonging to the alternative 
pair of notes were assigned to the test set. Again, cross-instrument decoding involved two test sets. 
For instance, when the training set was formed only by the sub-conditions “C3-cello” and “G4-cello”, 
the test set within included “C4-cello” and “G3-cello” whereas the test set across was formed by “C4-
viola” and “G3-viola”. 

Once the precise composition of training and test was established, we applied a “micro-averaging” 
procedure aimed at improving the signal-to-noise ratio in the data. At its core, this step consisted in 
forming pseudo-trials by averaging together groups of 8 epochs. Within this operation, to ensure an 
appropriate number of samples for learning, single epochs were used more than once. To maintain 
ad adequate and truthful level of variability in the data, essential to guarantee meaningful learning 
and fair tests, we made sure to minimize (a) the total number of times a given single epoch was used; 
and (b) the number of single epochs shared between any pair of the final pseudo-trials. Concerning 
training sets, groups to-be-averaged were defined with the aid of (constrained) permutations such 
that at least 18 pseudo-trials/note condition or 25 pseudo-trials/chroma condition were obtainable. 
In most cases, a single epoch was used 2 to 3 times and two pseudo-trials shared 2 to 3 single epochs 
at the maximum. Concerning the micro-averaging of the test sets, single epochs were used more than 
once only for height classification, with the exclusion of the test sets across instruments (in which, 
thanks to the independence between training and test data, many single trials were available). For 
height test sets, we formed 4 pseudo-trials per class where each pair shared 50% of single epochs at 
the maximum. Finally, when all sub-conditions were included in training (Figure 4.2), the amount of 
data available enabled us to use two micro-averaging alternatives: pseudo-trials composed of either 
8 or 16 epochs. Whereas the improved signal-to-noise ratio of the latter version led to higher scores 
in absolute terms, these two alternatives yielded overlapping outcomes at the qualitative level. 

Next, following the z-scoring each feature (i.e. channel and time point across trials), a L2-norm 
regularized Logistic Regression was fitted to the training set (Fan et al., 2008) in order to find the 
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hyperplane that could maximally predict y from X while minimizing a loss function. Since sometimes 
classes were slightly imbalanced in terms of number of pseudo-trials, a weighting procedure was 
always applied in order to equalize the contribution of each class to the definition of the hyperplane. 
The other model parameters were kept to their default values as provided by the Scikit-learn 
package. 
After training, the models were used to predict y from the test set and the resulting (probabilistic) 
estimates were evaluated through comparison with the ground truth. More precisely, the 
probabilities estimated by both height and chroma classifiers were scored by computing the area 
under the Receiver Operating Characteristic curve (AUC), which summarizes the ratio between true 
and false positives. The value of AUC ranges between 0 and 1, with 0.5 corresponding to chance level. 
The scoring of height probabilities entailed a “one-vs-rest” scheme: AUC scores were computed for 
each class against the other three and then averaged. Additionally, striving for a more exhaustive 
evaluation, note estimates were further inspected by computing the corresponding error patterns. 
The latter were stored in confusion matrices where each entry (i,j) indicates the percentage of 
(pseudo-)trials belonging to class i and predicted as being part of j.  
Lastly, the scores and confusion matrices obtained from all cross-validation runs were averaged 
within subject before any further step (e.g. group-level statistics).  

For the main decoding analyses (i.e. when training incorporated all sub-conditions indistinctively, 
Figure 4.2 and 4.6) and within the same cross-validation procedure just described, classifiers trained 
on a given time lag t were tested not only at t but also at every other time lag t’ composing the trial 
(King & Dehaene, 2014). The outcome of this procedure is a temporal generalization matrix where 
training times are ordered along the horizontal axis and rows display the performances obtained all 
along the trial. The inspection of this matrix enables to assess the similarity of the coding patterns as 
a function of time. The ability of a classifier to perform above-chance at multiple time points is 
indicative of the maintenance or re-occurrence of an informative neural activity pattern.  

4.2.4. Multiple regression analysis on neural confusability  

The first step for this complementary analysis consisted in training series of estimators on an 8-
class problem where each spectral profile composing the auditory space was kept separate from the 
others (i.e. “C3-cello” vs “C3-viola” vs “G3-cello” vs “G3-viola” and so forth). We adopted a “one-vs-
rest” approach and the same techniques described above. Within each cross-validation loop, we 
stored the error matrix displayed by the estimators at test, reporting the percentage of times each 
sub-condition was either correctly classified or mistaken for any of the other classes (Figure 4.4A).  
Meanwhile, we built four theoretical matrices depicting stimuli’s pairwise difference along four 
dimensions: fundamental frequency, center of gravity, spectral standard deviation and chroma. The 
first three parameters, assessed with the aid of Praat software (www.praat.org), are reported in 
Table 4.1. The center of gravity (also referred to as “centroid frequency” throughout the text) consists 
in the mean spectral frequency weighted by the distribution of signal amplitudes across the entire 
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spectrum and corresponds to an approximation of the overall frequency content of the stimulus. The 
standard deviation indicates how far the frequencies in the spectrum deviate from the center of 
gravity; we used this parameter as a measure of overall spectral shape. The distance, on a logarithmic 
scale, between each pair of stimuli along these three dimensions was then used to create the 
corresponding theoretical models. Logarithmic distances were preferred to plain differences to take 
into account that the discriminability of continuous quantitative parameters is known to follow 
Weber’s law. The fourth theoretical matrix consisted of a categorical model in which two stimuli were 
entered as identical (distance=0) when they shared the same chroma and completely different 
(distance=1) in case they did not.  
The core of the analysis consisted in fitting a multiple linear regression to ask whether the four 
theoretical matrices could explain the error patterns shown by the classifiers at each time point. All 
matrices were z-transformed before estimating the coefficients. Importantly, thanks to the inclusion 
of two musical instruments in the experimental stimulation, predictors were satisfactorily 
decorrelated one from the other (correlation between: F0 and spectral centroid = 0.28; F0 and 
spectral SD= 0.2; F0 and chroma=0.29; spectral centroid and SD = 0.35; spectral centroid and chroma 
= 0.29; spectral SD and chroma= 0.07) and the variance inflation factor for each of them was 
adequately low (1.17, 1.28, 1.16 and 1.15 from F0, spectral centroid, SD and chroma respectively). 
Given such prerequisites, the beta-weights obtained with this multiple regression reflect the specific 
and unique influence exerted by each variable on the patterns of neural confusion over and beyond 
the contribution of the remaining three. Thanks to this feature, we had the opportunity to (a) query 
whether the fundamental frequency of the sound is encoded separately from the other spectral 
components (b) test the authenticity of chroma encoding i.e. its separability from mere frequency-
related processing.  
As a note, two stimuli that are represented similarly at the neural level will give rise to a high 
percentage of misclassifications whereas a great degree of similarity along any of the predictor 
variables will be reflected by a low distance value. Thus, if any of our theoretical matrices captured a 
dimension that is actually encoded at the neural level we expected to find an effect with a negative 
sign (i.e. beta-weights that are significantly lower than zero).  

4.2.5. Statistical analysis 

Statistical analyses consisted of second-level tests across subjects and were implemented with 
MNE dedicated functions. Specifically, we used one-sample cluster-based permutation t-tests (Maris 
& Oostenveld, 2007), which intrinsically account for multiple comparisons, to determine whether (a) 
time-resolved classification scores were higher than chance; (b) decoding performances within the 
trained instrument were superior to those achieved across new spectra; and (c) multiple regression 
beta-weights were lower than zero. The analyses considered bidimensional clusters for the 
classification procedures producing temporal generalization matrices (shape: training times x testing 
times) and one-dimensional clusters otherwise. Univariate t-values were calculated for every 
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score/beta-weight with the exclusion of those corresponding to the baseline period. All samples that 
passed a threshold corresponding to a p-value of 0.05 were then grouped into clusters based on 
temporal adjacency. Cluster-level test statistics corresponded to the sum of t-values within each 
cluster. Their significance was computed by means of the Monte-Carlo method: they were compared 
to a null distribution of test statistics created by drawing 10000 random sign flips of the observed 
outcomes. A cluster was considered as significant when its p-value was below 0.05. 

4.3. RESULTS 

All the analyses presented below involved the employment of series of linear classifiers trained 
on brief (10ms), consecutive time-windows all along the event-related potentials (ERPs). 

4.3.1. Decoding notes at sequence onset 

The first procedure in our investigation consisted in asking whether (and when) infant neural 
responses could be classified according to the notes subjects were exposed to, each corresponding to 
a specific pitch height condition (C3=130.8Hz vs G3=196Hz vs C4=261.6Hz vs G4=392Hz). We 
observed that the identity of the note could be reliably discerned from the neural signal in between 
130 and 680ms (Figure 4.2A-left), with the highest score obtained at 210ms relatively to the onset of 
the first tone (N=26; AUC=0.554±0.048, chance=0.5). A visual examination of the confusion matrices 
derived from these same classifiers (Figure 4.2A-center) suggests that, around the time of peak 
performance, each of the four notes could be satisfactorily distinguished from the other three and no 
systematic error occurred (“diagonal” shape). Still, we noticed a moderate increase in accuracy as a 
function of height with the best score observed for G4, the highest pitch condition. This phenomenon 
could be read as consistent with a more systematic assessment performed on adults with MEG 
(Krumbholz et al., 2003), showing how height modulates the amplitude of pitch-onset responses (i.e. 
higher frequencies elicit responses with greater amplitude). 
To deepen our characterization of the temporal dynamics underlying decodability, classifiers were 
tested not only at the trained time window (Figure 4.2A-left) but also at every other time point along 
the trial. Since each classifier is specific to a given pattern of neural activity, assessing its performance 
across time enables to unravel the latency, duration and potential re-occurrence of the neural codes 
underlying successful classification (King & Dehaene, 2014). The matrix in Figure 4.2A (right) shows 
that successful height decoders could achieve above-chance performance at multiple time lags, giving 
rise to a diffuse generalization pattern with a mixed profile. First, a diagonal shape indicates the 
unfolding of an encoding process rather than a sustained time-invariant code. Further, we observed 
that early training led to above-chance performance up to ~680ms after sequence onset while 
classifiers trained later in the trial were able to generalize backward in time (i.e. from 120ms 
onwards). The resulting semi-squared shape indicates the presence of a metastable or repeating 
neural code, which supported note classification over multiple windows. The temporal dynamic just 
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described might derive from either the maintenance of note-related information, the re-activation of 
the same information by consecutive tones or, most likely, by a mixture of the latter two phenomena. 
Interestingly, when measured with MEG/EEG, the response elicited by pitch-producing sounds in 
adults is formed by both a transient spiky complex and a sustained component that remains steady 
for a prolonged period (Gutschalk et al., 2004). Similar neural dynamics in infants would account well 
for the decodability patterns observed: the peak in note classification scores reached at the very 
beginning of the trial (Figure 4.2A-left) as well as the diagonal pattern that arises for the matrix 
(Figure 4.2A-right) are consistent with the presence of a transient and composite phase. The 
sustained portion of the response (observed in adults), together with the re-activation of some of the 
initial components on the behalf of successive sounds is likely to give rise to the protracted periods 
of temporal generalization.  

Figure 4.2 Average classification performances of estimators trained on single 10ms-windows from 
sequence onset. (left) Decoders are tested at the trained time sample. The shaded areas correspond to 
the SE (SEM) across subjects (N=26), the dotted black lines mark theoretical chance level. (center) 
Confusion matrices. The numbers within each cell indicate the percentage of times a given note from the 
y-axis was classified with the label reported on the x-axis. Off-diagonal values diverging from 0 signal 
misidentification (chance = 25%). Proportions below and at chance level are in white, every color step 
corresponds to .05%. Five time points, centered around peak AUC scores are averaged. (right) Temporal 
generalization matrices: above-chance AUC scores observed when performance is assessed at each 
consecutive time-point along the ERP. The diagonal thin lines demark classifiers trained and tested on the 
same time sample. The dashed contours indicate significant clusters (cluster-based permutation t-tests, the 
p-value is reported on the right). 
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Next, we asked whether trials could be reliably classified according to chroma distinctions (C vs G), 
irrespective of the particular frequency of the tones (i.e. independently from their height). This goal 
required a strategic training-test schema: separate sets of decoders were trained on trials when 
either C3 vs G4 or C4 vs G3 where presented and tested on the left-out pair of conditions. Such an 
expedient ensured that a height-based rule could not lead to above chance classification, since class 
“C” relatively to class “G” was characterized by a higher frequency during training and a lower 
frequency at test (or vice-versa). This decoding strategy yielded above-chance scores in between 630 
and 990ms after sequence onset (Figure 4.2B-left), with a peak in performance observed at 830ms 
(AUC=0.564±0.092). The errors produced by note classifiers around this time were fully consistent 
with such an outcome: notes sharing the same chroma were systematically mistaken one for the 
other, giving rise to a “checkerboard” pattern of confusion (Figure 4.2B-center). When tested across 
time, classifiers successful in distinguishing C from G trials revealed a neatly distinct dynamic 
relatively to that observed for note identity: they generalized over a compact and quite restricted 
window (250ms-long on average), indicating the underlying presence of a unitary and transient 
neural code (Figure 4.2B-right). 

4.3.2. Delineating the nature of the neural codes 

The decoding performances collected so far demonstrate that infant brain responses contain 
explicit information related to both note identity and chroma. Yet, the nature of such information 
remains undetermined. In note classification, decodability might reflect the encoding of the 
fundamental frequencies as well as that of other spectral elements characterizing each note. For 
instance, independent codes for each of the eight spectral centroids included in the auditory space 
(Table 4.1) might suffice for classifiers to sort trials in four arbitrary groups. Crucially, as explained 
in the introduction, successful chroma decoding might simply derive from the physical similarity 
between pairs of tones along the frequency dimension.  
To solve these ambiguities, we relied on cross-instrument classification. Namely, we tested the 
capability of estimators trained on a single timbre, i.e. a specific set of spectra, to transfer their 
learning at the alternative instrument, i.e. on a new set of spectra. Since according to a previous EEG 
investigation neonates can recognize musical notes across variations in resonator size (Háden et al., 
2009), we expected to obtain successful cross-condition decoding for at least one set of estimators. 
In this analysis the number of trials available for training was markedly lower (half) relatively to 
before, such that a direct comparison with the previous outcomes might have been misleading. Thus, 
we used the scores achieved within context (i.e. on left-out trials belonging to the trained condition) 
as a benchmark to evaluate the performance observed across the new spectra.  

When trained exclusively on either the cello or the viola condition, classifiers could successfully 
estimate the notes played by the alternative instrument in between 130 and 500ms. Figure 4.3A (left) 
shows how the generalization performance observed during this time window overlapped almost 
perfectly with the scores obtainable within the trained context. Also the confusion matrices, yielded 
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by these same classifiers around the peaks, were similar within and across context (Figure 4.3A-
right): in both cases they revealed a diagonal error pattern, indicating that generalization occurred 
for all the notes, and a slightly more accurate performance within the fourth octave. Since the only 
feature shared by the two alternative training sets was the fundamental frequency characterizing 
each class, these results indicate that, during the first portion of the trial, the infant brain encoded 
the fundamental frequency of the sounds irrespective of their harmonics. Although our analysis did 
not highlight significant differences at any point along the trial, tests within the trained context 
relatively to those across context (and consistently with the main performance displayed in Figure 
4.2A) produced significant scores for a protected period ranging from 500 to 680ms after sequence 
onset. Thus, it possible that after estimating the fundamental frequency the infant brain proceeded 
with the evaluation of other spectral features.  

Figure 4.3 Cross-instrument decoding. (left) Time-resolved performance of estimators trained on a 
single musical instrument (e.g. note classifiers trained on cello). In light colors: classification within the 
trained condition (e.g. test on cello); in darker colors: performance at novel spectral configurations (e.g. 
test on viola). The scores from all possible training conditions or train/test directions are averaged. The 
shaded areas correspond to the SEM across subjects. Filled circles indicate above-chance scores (note 
classification within instrument: pclust<0.004 and across: pclust=0.0001; chroma classification within 
instrument: pclust=0.0168 and across pclust=0.0006) (right) Confusion matrices yielded by note classifiers 
at familiar and novel spectral contexts. As before, the numbers within each cell indicate the percentage 
of times a given note from the y-axis was (mis)classified with the label on the x-axis. Proportions below 
and at chance level are in white, each color step corresponds to .033%. Every matrix illustrates an 
average over 50ms (five time-points, i.e. five estimators) selected in between peak AUC scores. 
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Remarkably, classifiers trained on chroma distinctions at a single spectral context could generalize 
to the new timbre from 770 to 920ms after sequence onset (Figure 4.3B-left). The scores obtained 
across instruments were comparable to those achieved within the trained condition. Resembling the 
checkerboard pattern retrieved before and in full congruency with such a decoding outcome, note 
classifiers tested both within and across instruments during this late period showed a systematic 
mislabeling of C3/C4 and G3/G4 (Figure 4.3B-right). Overall, these results provide strong evidence 
for a genuine encoding of chroma on the behalf of the infant brain.  

The examination of pairwise neural confusability validates cross-decoding outcomes 
To provide additional evidence in support of our conclusions, we trained classifiers on eight separate 
classes, each corresponding to a spectral sub-condition (e.g. “C3-cello”), and used their errors as a 
proxy of pairwise similarity between neural responses. The misclassification patterns arising from 
this relatively un-supervised decoding scheme (Figure 4.4A-left) reveal which type of information is 
available for estimators to separate sub-conditions, thereby providing the possibility to discern 
which characteristics of the stimuli are encoded by the infant brain at a given moment. With a 
multiple linear regression, we tested whether (and when) neural confusion patterns could be 
explained by stimuli’s differences along four dimensions: fundamental frequency, spectral centroid, 
spectral shape and chroma (Figure 4.4A-right). Given that all predictors were entered together in the 
regression, significant beta-weights assigned to a particular descriptor indicate that, at a given time 
point, the classifier relied on that particular dimension over and beyond the remaining three.  

Figure 4.4 Multiple linear regression on neural confusability. (A) Right - example of confusion matrix 
produced by classifiers trained (at 220ms) on the eight classes specified by the axis labels (“c”=cello, 
“v”=viola). Numbers within each cell indicate the percentage of times a given spectral profile (i.e. sub-
condition) was (mis)classified as indicated by x-axis (chance = 12.5%). Higher percentages suggest greater 
neural similarity. Left  - predictor matrices: the first three (F0=fundamental frequency; CG=center of gravity 
aka spectral centroid; SD= standard deviation aka spectral shape) depict the distance on a logarithmic 
scale for the corresponding spectral dimension (Table 1); darker shades indicate greater dissimilarity. The 
fourth (chroma) is a categorical matrix where 1 stands for “different” (i.e. maximal dissimilarity) and 0 
indicates correspondence. The ordering of the labels is equal to that on the left. The four matrices were 
entered together in the regression to explain neural note confusion at each time point. (B) The obtained 
beta 
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Complementary to the decoding outcomes reported above, Figure 4.4B shows that differences in 
fundamental frequency predicted the pattern of neural separability during the first portion of the 
trial (130-320ms). Whereas the weights attributed to the centroid of the spectrum never reached 
significance, its shape drove neural confusability in between 700 and 900ms, indicating that, at least 
within this window, some spectral characteristic other than the F0 was processed. Crucially, at about 
the same time (740-880ms) chroma distinctions exerted a significant effect beyond that of merely 
spectral parameters. This latter outcome is noteworthy since it shows how a methodology that is 
parallel to cross-condition decoding provides the same evidence: a genuine encoding of chroma, not 
explicable in terms of physical (harmonic) overlap.  

4.3.3. The time course of height and chroma processing 

So far, we have demonstrated that, when exposed to auditory sequences, the infant brain 
processes the two psychophysical dimensions characterizing their pitch in a separate fashion: height 
decodability, reflecting the encoding of tone fundamental frequency, starts promptly right after the 
beginning of the stimuli whereas chroma is computed markedly later within the trial.  

At this point, we queried how height and chroma processing unfolds when tones keep being 
repetitively played. As a matter of fact, the classification time courses observed within the previous 
analyses could have been molded by the presence of a conspicuous amount of sequences composed 
of four medium tones (“4M” condition): within these trials sound offset occurred at 660ms, a time-
stamp roughly corresponding to the decay of height decodability and to the onset of successful 
chroma classification (Figure 4.2-left). To probe such an eventuality, we trained estimators 
exclusively on portions of the neural signal recorded while sounds kept being played. Importantly, to 
guarantee interpretability, this training set was balanced in terms of tone-durations/rate of 
presentation (i.e. training was conducted on an even number of “M” and “L” trials).  

Figure 4.5A shows that height classifiers obtained significant scores over a single time-window (180-
500ms): their performance declined at 600ms and remained at chance thereafter, despite the sounds 
were still ongoing. This result is compatible with a recent adult study reporting that when stimuli 
(iterated rippled noise segments, IRNs) with the same fundamental frequency are repeated, the 
auditory fields evoked by the sounds following the first are markedly reduced in amplitude 
(Andermann et al., 2021). In general, the adaptation effect observed here might have been 
exacerbated by the fact that sequence structure (e.g. the identity of the tones after the first) was fully 
predictable (Todorovic et al., 2011).  

beta weights averaged across subjects and marked by filled circles when significantly below zero (cluster-
based permutation t-tests; F0: pclust=0.0058, SD: pclust=0.004, chroma: pclust=0.0115). The vertical lines 
correspond to the SEM. A moving average with a window of two points was applied to enhance the clarity 
of the illustration. 
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Conversely, chroma classifiers obtained above-chance scores not only during a first time-window 
(660-870ms), which corresponded to that observed in the initial analysis, but also within a second 
time window spanning from 1500 to 1690ms relatively to the onset of the first tone (Figure 4.5C). 
Thus, the infant brain kept tracking the quality of the sounds despite its predictability.  

In the final portion of our investigation, we asked whether any pitch-specific process occurred when 
sounds vanished. With this aim, we applied height and chroma estimators to the neural signal 
recorded (during a silent period) at sequence offset. Figures 5B and 5D show the classification scores 
obtained when time 0 was set at the onset of the last note. As observed within sequence, the 
retrievability of height and chroma information diverged neatly. Concerning the former, the 
performance of note classifiers remained at chance throughout the entire (silent) period (Figure 
4.5B). Such a null result deviates from the recent observations by Andermann and colleagues (2021), 
who report the presence of F0-related information in the MEG signal recorded at the offset of IRN 
segments. On the other end, the absence of height decodability at the end of the auditory sequences 
conforms the idea that, at least in adults, offset responses to pitch-evoking stimuli might be unrelated 

Figure 4.5 Time-course of pitch height and pitch chroma processing. (left - A and C) Classification 
performances observed throughout 2 seconds of continuous stimulation: the right extremity of the time axis 
coincides with the offset of either the 11th medium tone or the 4th long tone. Note that absolute scores are 
neatly reduced relatively to Figure 4.2 due to a markedly lower number of trials available for the analysis. 
(right - B and D) Classification performance during the silent period following the auditory sequence; zero 
corresponds to the onset of the last tone. In all graphs, shaded areas correspond to the SEM and dotted 
black lines mark theoretical chance level. 
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to height itself but rather concern the cessation of the sound, the interruption of regularity or some 
other characteristic (Krishnan et al., 2014; Gutschalk et al., 2004). 

Despite the impossibility to distinguish the precise identity of the notes, “C” and “G” trials could be 
reliably discerned at various time points during the silent window following the sequence and 
especially in between 510 and 790ms (Figure 4.5D). Resembling our previous finding (Figure 4.3B), 
decoders trained on single spectral conditions performed comparably within the same context and 
across the alternative instrument (Figure 4.6A), indicating that successful classification did not 
derive from shared harmonic components (i.e. genuine chroma decoding). At offset, the inspection of 
the performance across time revealed a much broader generalizability relative to what observed 
earlier in the trial (Figure 4.6B): for instance, classifiers trained in between 300 and 800ms could 
successfully transfer their learning across 45 time windows (corresponding to 450ms) on average. 
The diffuse and semi-squared pattern arising from the generalization matrix might suggest that the 
neural code for chroma was still unitary, as in the previous case, but maintained for longer in the 
absence of ongoing notes. 

Given these results, we questioned whether either chroma decodability itself or its particular shape 
depended upon the number of tones contained in the auditory sequence. Since “4” and “12” trials 
were equally frequent within the experimental session, every 4th tone was followed by silence only 
in 50% of cases while every 12th tone corresponded to sequence offset in 100% of cases. Thus, it 
might be possible that chroma decodability was linked to some sort of expectation of a 5th tone which 
never occurred. We reasoned that if that was the case, chroma-related information should be 
discernible only at the end of sequences composed of 4 tones, but not following 12 tones. Figure 4.6C 
shows the decoding performances observed when the analysis concerned only one numerosity 
condition at a time. Chroma-specific information was retrievable from the neural signal recorded at 
the offset of both types of sequences and in both cases successful classifiers could generalize to a 
broad range of time points. Yet, the latency of chroma decodability was different between the two 
conditions, with a shorter latency observed for trials in which 12 sounds were presented. The full 
interpretability of the latter observation is compromised by the fact that the two sets of trials did not 
differ only for numerosity but also for average sequence duration. Nevertheless, this assessment 
enabled us to ascertain that chroma-specific information was retrievable during silent periods 
irrespective of whether additional tones could be expected or not.16  

Lastly, since the approaches found in the literature are heterogeneous in this regard, we performed 
the same decoding analysis in two alternative versions: trials were aligned upon either the actual 
offset of the last tone or the offset of the sequence (i.e. tone offset time + a silent gap corresponding 
to inter-tone-interval characterizing the trial). The outcomes obtained with these two alternative 

                                                             

16 The performance of height classifiers remained at chance for both numerosity conditions.  
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trial alignments were equivalent to what described so far: classifiers succeeded at discerning chroma 
but not height. 

 

4.4. DISCUSSION 

In the present study, we applied multivariate time-resolved decoding to high-resolution EEG 
recordings in order to characterize how the human brain encodes pitch early in life. Although related 
to a single physical factor (i.e. the repetition rate of the waveform), pitch has been described as 
composed of two perceptual dimensions, height and chroma, presupposing a counterpart for both 
components at the neural level. Meanwhile, an ongoing debate pertains to the idea that chroma, 
unlike height, might correspond to a higher-order and culturally determined construct which 
requires learning, attention and working memory in order to be represented. Our results 

Figure 4.6 In-depth characterization of chroma decodability at sound offset 
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demonstrate that, when exposed to musical tones organized in tight and repetitive auditory streams, 
3-mo-old infants encode both pitch height and pitch chroma in a completely automatic fashion. 
Strikingly, the classification performances we observed indicate that the two dimensions are 
processed with neatly divergent dynamics. Pitch height, as isolated by decoders trained on note 
identity, was computed soon after the onset of the stimuli, whereas the encoding of chroma began 
much later in the trial, at times when the decodability of the former declined. Further, only the neural 
processing of chroma persisted throughout the auditory stimulation (while tones were still being 
played) and after sound offset.  

Drawing a parallelism with adult electrophysiology, our results relate to the findings reported by 
Briley and colleagues (2013) in various aspects. These authors were able to isolate the existence of a 
cortical mechanism specialized for chroma by showing that pitch-evoked activity adapts more to 
sounds at octave distance than to sounds at narrower musical intervals (Briley et al., 2013). In a way, 
such a demonstration mirrors the ability of our decoders to reliably classify “C” vs “G” despite the 
inconsistency of between-class height differences from training to test (i.e. the rule “high vs low 
frequency” would have led to scores below chance). In adults, the chroma effect was observed with 
unresolved IRN stimuli, which are characterized by a uniform distribution of frequency components, 
excluding the possibility for mere harmonic overlap to be at its origin. Equivalently, the ability of our 
decoders to generalize across new spectral profiles ensures a genuine code for chroma rather than 
physical similarity to be the basis of the decodability observed.  
On the other hand, the retrieval of spontaneous and pre-attentive chroma processing17, stands at 
odds with the results of Regev and coworkers (2019), who report the absence of mismatch cortical 
responses to chroma deviants in adults. We argue that such null finding might be related to the 
precise paradigm employed by these authors. Namely, whereas complex natural tones engage the 
cortex in meaningful and behaviorally relevant computations (Hoeschele et al., 2015), Regev and 
colleagues based their conclusions on pure tones, which have been repetitively pointed out as a class 
of stimuli lacking ecological relevance (Oxenham, 2018). For example, it is worth considering that 
pure tones have been proven inefficient in driving non-primary auditory neurons (Rauschecker et 
al., 1995; Wessinger et al., 2001). Alternatively, the paradigm in question may have actually triggered 
a chroma effect and simply lacked enough power: in the two experiments included in the study 
(Regev et al., 2019) changes in chroma did elicit a slow trend of differential activity that, however, 
did not reach statistical significance. Being discernible relatively late in the trial, the latency of such 
a trend in adults fits well with the temporal dynamics found here for infant chroma processing. 

The divergence between the classification patterns observed for height and chroma is likely to 
originate from distinct substrate mechanisms serving different functional roles. 

                                                             

17 the reader should keep in mind that infants slept for most of the experimental session 
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Auditory neurons are characterized by a preferred frequency to which they respond most strongly. 
Neurons with similar frequency preference cluster together, forming tonotopic maps that are found 
at various relays along the auditory hierarchy (Saenz & Langers, 2014), including primary and non-
primary cortical regions (Formisano et al., 2003; Langers & van Dijk, 2012; Moerel et al., 2012). Such 
topographic organization is likely to constitute the basis for accurate (absolute) frequency 
estimations. In adults, the experience of sound height is modulated by both its fundamental 
frequency, corresponding to the strongest acoustical correlate of pitch height, and the center of 
gravity of the spectrum (or centroid frequency), which regulates the perceived brightness (Oxenham, 
2013). To disentangle these two factors, each F0 included in our paradigm was coupled with two 
alternative spectral centroids, resulting in brighter notes for the viola condition. While estimators 
could have been driven by both parameters, our analyses (Figure 4.3A and Figure 4.4) testify that 
successful note classification relied on a neural code for the fundamental frequency. The functional 
role of such a code is reflected by the importance of the fundamental frequency in representing 
source identity and in segregating distinct sources into separate perceptual streams. For instance, F0 
has been proven an effective cue when it comes to identify speakers (Van Dommelen, 1990; Baumann 
& Belin, 2008) and discern the boundaries of contiguous auditory events (Bregman, 1994). 
Coherently with our results, these capabilities seem to be available (to a certain extent) very early in 
development: since their first days of life, infants recognize their mother’s voice (Spence & Freeman, 
1996), discriminate unfamiliar speakers (Floccia et al., 2000) and make use of pitch cues to segregate 
simultaneously active sound sources (Winkler et al., 2003). 

Beyond their preferred frequency, ~60% of the auditory neural populations within the human cortex 
respond to multiple additional frequency bands, resulting in a complex multi-peaked spectral tuning 
(Moerel et al., 2013). Of particular interest for our study, fMRI assessments on adults have revealed 
the existence (among others) of spatially distributed neuronal clusters that are specifically tuned to 
frequencies situated exactly one octave apart (Moerel et al., 2013, 2015). We interpret the ability of 
our classifiers to discern C from G trials as indicating that such a refined tuning to multiple octaves is 
in place already by the age of ~12 weeks. At the behavioral level, neuronal clusters with this 
characteristic are very likely to contribute to the perception of octave equivalence found not only in 
adults (Hoeschele et al., 2012) but also in 3 month-olds (Demany & Armand, 1984).  
It has been proposed that neurons with a complex spectral tuning might serve to signal the presence 
of combinations of frequencies that are ecologically important (Kadia & Wang, 2003; Sadagopan & 
Wang, 2009). In this regard, what could be the functional role of chroma? We envision two (non-
mutually exclusive) possibilities that could justify the presence of a dedicated neural mechanism so 
early in life. First, octave equivalence might play an important role in learning how to produce speech. 
Articulatory skills are acquired through vocal plays aimed at imitating ambient language: through 
trials and errors, infants progressively adjust their utterances to match those heard from their 
surroundings (Kuhl et al., 2008). Problematically, the voices that needs to be mimicked in this process 
are those of older humans, whose frequency range is too low for the young learner to replicate. In 
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this context, chroma comes into help: when reproducing the fundamental frequency is not feasible, 
transposing the sounds by one or more octaves results in the closest possible approximation 
(Hoeschele, 2017). Consistently with this proposition, it has been observed that when young children 
are asked to imitate non-words presented below their vocal range, they spontaneously reproduce 
the stimuli one octave above the target (Peter et al., 2008, 2009). 
More broadly, while height indicates the source of the sound, chroma can be conceived as the holder 
of its message (Warren et al., 2003). That is, other than important cues to identify and localize 
emitters, pitch carries several other types of crucial information (for a review: Braun & Johnson, 
2011). To start with, pitch movements define intonation, enabling us to discern questions from 
statements or to focus on certain portions of the sentence. Moreover, they convey attitudes and 
emotions, holding an inestimable communicative value in both music and speech. When it comes to 
track these types of information absolute frequency values are often unreliable due to spurious and 
prominent contextual variability. Chromatic features, on the other hand, are far more robust. For 
instance, if the cello and the viola used in our paradigm were performing a melody together within a 
real concert, they would certainly not use the same notes; instead, they would play notes with the 
same chroma. Correspondingly, the warning «do not touch the stove! » does not have the same 
fundamental frequencies when yelled by either mom or dad since, on average, (human) male and 
female voices stand one octave apart (Titze, 2000). Yet, precisely due the latter fact, mom and dad 
will produce sounds that have the same quality, thereby carrying overlapping meaning and 
emotional content18 These scenarios emphasize how tracking chroma patterns might be an adaptive 
strategy, as it enables to form coherent information streams that become analyzable independently 
from their specific source19. Computationally, one way of implementing this strategy might 
correspond to auditory filters: according to psychoacoustic evidence, cuing a given frequency results 
in enhanced sensitivity to both the primed frequency and those placed one and two octaves above or 
below the cue (Borra et al., 2013). 
As a conclusive consideration, we point out that the distinct roles proposed for height and chroma 
are coherent with the temporal progression of their decodability, as observed here. Namely, given 
the properties of our experimental stimulation (i.e. repetitive sounds from single emitters), it seems 
reasonable and efficient for the brain to isolate the source at first and follow (only) the message 
thereafter and for a protracted period.  

                                                             

18 The statistical analysis of human natural speech reveals that the frequency ratios defining the structure of 
the chromatic scale (which is universal in tonal music) correspond to the empirical concentrations of power in 
linguistic sounds (Schwartz et al., 2003). Thus, the two example just described appear intimately 
interconnected; an observation that highlights the relevance of our findings. 

19 According to a recent study, this may be precisely what adults do. Namely, when height and chroma cues are 
incongruent, subjects have the spontaneous tendency to rely systematically on chroma when asked to judge 
the direction of pitch shifts (Lin et al., 2018). 
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To summarize, previous electrophysiological investigations had revealed that “proto-pitch” features 
are represented since birth (Háden et al., 2009) and further suggested that a refined “adult-like” 
processing of pitch starts to appear only by the age of 4 months (He & Trainor, 2009). Regardless of 
such immaturity, our study shows how younger infants encode pitch along two separate dimensions: 
height and chroma. Since exposure to tonal stimuli (e.g. speech and music) begins in utero, our results 
do not allow strong claims in favor of biologically-determined mechanisms. Still, they demonstrate 
that pitch chroma is not a high-order construct but rather a basic organizing principle of neural 
responsivity observable very early in development.  
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Chapter 5. GENERAL DISCUSSION & 

PERSPECTIVES 

5.1. A common line between long-lasting debates 

With the experimental work described throughout the present thesis, we sought to reveal the 
encoding processes engaged by the infant brain within three perceptual domains: speech, numerical 
quantity and pitch. Our choice was motivated by both the centrality of these domains in human every-
day life, and the aspiration to solve long-lasting debates which exist in regard to each one of them.  
Whereas some investigators point out that phonetic processing might be available since start 
(Dehaene-Lambertz, 2017), others dismiss such an eventuality favoring the early employment of 
domain-general acoustic principles for speech analysis (Kuhl et al., 2008). Even throughout the 
literature on adults, there is no agreement upon the nature of the basic units serving speech 
perception as we are used to experience it (Frauenfelder & Floccia, 1998; Kazanina et al., 2018). 
While classical theories propose the existence of a built-in module that senses numerosity 
independently from other quantities (Dehaene, 2011), others argue that human quantification is 
rooted in a generalized magnitude system that treats various sensory streams indiscriminately to 
compute holistic representations (Leibovich et al., 2017). And finally, it remains unclear whether 
pitch chroma describes a biologically-determined perceptual property or rather a high-order 
construct of Western culture (Jacoby et al., 2019).  

Although concerning different domains, these three debates are connected by a common thread. 
Namely, all scholars conceive the existence of “low-level” features that are presumably 
straightforward to process, at any age. Variables such as the envelope characteristics of a speech 
sound, the brightness of a visual array, the loudness of a tone or its fundamental frequency are 
generally labelled as “low-level”. Meanwhile other variables are disregarded from being features of 
this kind even when they appear to be minimal components of adult perception. This is the case, 
among others, of phonetic units, approximate numerosity and pitch chroma which are (often tacitly) 
assumed to be algorithmic (Marr, 1982) percepts. 
Such a conception arises by the simple observation that phonemes, numerosities and octaves are not 
physical entities, retrievable from the input in a “pre-packaged” way. That is to say, whereas to 
represent low-level features a direct mapping of a sensory variable seems sufficient, representing 
phonetic units, numerosity and pitch chroma might require a sequence of more complex operations. 
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Because inexperienced and physically immature, the infant brain in the first weeks after birth 
appears unequipped to perform the (presumably) necessary chain of transformations.  
To start with, phonetic perception has been proposed to rely on articulatory knowledge (e.g. motor 
models), deriving from the development of production skills, that might be systematically confronted 
with the incoming speech signal (Kuhl et al., 2014). Switching to the topic of pitch quality, the 
perception of octave equivalence could result from acculturation (Frances & Dowling, 2014): 
Western grown-ups might have learned, consciously or unconsciously, a musical grammar where 
tones standing octaves apart are used interchangeably. Within these propositions, phonetic features 
and pitch chroma are “algorithmic” in that they implicate a chain of complex processes: acquisition, 
storage and comparison. It is natural to assume that very young brains would rather rely on more 
barren percepts (e.g. sound envelope, formant frequencies), which will be enriched thanks to 
exposure and maturation as they grow older20. Also numerosity might be conceived as an inferential 
construct, although with a slightly different connotation. As for the other elements, numbers do not 
exist in the external world in the way we, as educated adults, think of them. The estimation, even 
approximate, of numerosity (i.e. discrete quantity) might require the integration of multiple 
continuous dimensions that are not numerical per se (Gebuis et al., 2016). If that was the case, a 
refined process would be involved, whereby various sensory cues are weighted on the basis of their 
relevance and interrelation. Once again, a complex procedure seems required, making numerosity 
“algorithmic” and thus not viable for an immature and inexperienced brain. Speaking of, according to 
several scholars, infant quantitative behavior might reflect simple reactions to intensity or might rely 
on a rough summation of all sensory cues that can ultimately enable relational and generalized 
“more/less” judgments but nothing more precise (e.g. Mix et al., 2002, 2016; Leibovich et al., 2017). 
Only experience will lead the child to understand the relations between the various quantitative 
dimensions characterizing the physical world, enabling their differentiation and, ultimately, the 
formation of adult-like numerical concepts.  

Yet, what appears algorithmic to the mind of highly educated adults (e.g. scientists and theoreticians 
who aim at understanding mental functions21) might not be for our perceptual systems. To explicate 
how this is the case let us take as an example time-to-contact. Similarly to phonetic perception and 

                                                             

20 This family of ideas finds its roots in classical constructivist conceptions. For instance, according to Helmholtz 
the world we perceive comes about an act of imagination, associating current sensations to the ones from 
memory. He conceived perception as a process of unconscious inference (from sensory data), with a crucial 
prerequisite: abstract perceptual rules need to be acquired, inductively, from experience. 

21 Curious and pertinent to the present discussion the observation that not only naïve American adults, Indian 
adults and 6/7-year-olds but also psychologists and neuroscientists assume core neonatal skills to require 
years and learning to emerge. Among others, “thinking that an array of 10 items is more numerous than an 
array of 5” is generally considered as an acquired ability appearing in between 2 and 4 years of age (Wang & 
Feigenson, 2019). History of science teaches how folk beliefs can be hard to individuate or dismantle, such that 
they can permeate scientific theorizing of professionals even when they are clearly wrong. 
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numerical approximations, encoding time-to-contact is essential in every-day life, e.g. a crucial piece 
of information when an object is looming or when the observer approaches a surface/object that 
must be reached or avoided. Yet, getting to know when an object will contact the observer appears 
computationally complex, requiring a chain of calculations. To start with, the system needs to 
estimate the distance of the object; to do so, the real size of the object must be retrieved from memory 
and compared to the current size of the object projected onto the retina. Such an operation must be 
repeated after a known time interval, in order to estimate velocity. Finally, if velocity is constant, 
time-to-contact can be derived from the integration of distance and velocity. According to such 
implementation account, this percept is algorithmic in that it requires experience and memory, 
timekeeping and operations on intermediate representational codes (for e.g. visual angles and 
distances). Instead, the visual system seems to rely on the ratio between the optical position of the 
object’s boundary and its rate of expansion (Lee, 1976; Lee & Reddish, 1981). The latter corresponds 
to a mathematical constant that specifies time-to-contact in a single step, without the need of 
computational chains involving retrieval from memory or intermediate representations of size or 
distance (Lee, 1974). The take-home message of this example is that our brain might be wired to 
capture “higher-order” (e.g. relational) variables directly, by means of detector mechanisms that 
implicate a single representation: their output. At least concerning approximate numerical 
estimations, the most recent neuroimaging investigations carried on adults provide evidence 
precisely in this direction: the adult visual cortex processes numerosity as a primary feature, without 
relying on intermediate representations of other magnitudes (e.g. Van Rinsveld et al., 2020, 2021). 
Crucially, since mechanisms of this sort do not require experience or higher-order computations that 
only a mature neural architecture might afford, there is not obvious reason to assume their 
unavailability early in life.  

The existence of higher-order feature detectors might biologically grounded in (the principles 
underlying) population coding. As mentioned in the introduction, thanks to the advancement of 
multi-electrode arrays and optical/voltage imaging techniques, the last two decades of research have 
demonstrated that in many brain regions the essential unit of computation are neural populations 
(Saxena & Cunningham, 2019). The representational power of a neuronal ensemble is maximized by 
the possibility to combine various selectivity profiles, of e.g. single neurons, within a sophisticated 
and yet unitary code. Thus, within the research projects presented in this thesis, the capability of 
multivariate decoders to capture the content of macro-population codes have been particularly 
precious.  

5.2. Our results in a nutshell 

By exposing 3-month-olds human subjects to carefully calibrated multidimensional spaces 
composed of natural stimuli, by recording their neural responses with high-density EEG and by 
analyzing the collected data with pattern-analysis techniques, we have been able to provide novel 
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insights to solve all of the three debates discussed in the previous section. Concerning the first, we 
have uncovered how the brain, already in its early infancy, breaks down the speech input into 
orthogonal axes akin to the phonetic features described by linguists. Such a neural strategy creates a 
structured and compositional space robust to surface variability across voice peculiarities and co-
articulatory contexts, not affordable by a plain domain-general spectrotemporal analysis of the input 
(Chapter 2). Shedding light upon the second debate, we have demonstrated that young infants encode 
numerical quantity spontaneously and clearly beyond the other concurrent quantitative 
characteristics of the input. Charmingly, whereas its abstractness was only inferable from adult 
psychophysics before, we could document the existence of a code for approximate numerosity that 
transcends sensory modality, presentation format (temporal/spatial) and arousal state (Chapter 3). 
Finally, we assessed that the infant brain characterizes pitch along its two psychological dimensions, 
height and chroma, and that within a predictable stimulus context (repeating tones) only the second 
keeps being tracked throughout time. Such observations clarify how pitch chroma corresponds to a 
basic organizing principle of neural responsivity rather than a product of culture (Chapter 4).  

Altogether, what our results demonstrate is extraordinary simple: among the fundamental units used 
by young infants to encode and organize the sensory input there are not only “low-level” parameters, 
such as rate, duration and fundamental frequency but also “higher-order” dimensions. That is to say, 
phonetic features, approximate numerosity and pitch chroma hold the role of 
representational primitives for the human brain. Here the term primitive depicts the fact that 
these units are extracted automatically, i.e. without attentional engagement, and obligatorily, i.e. 
without any contingent necessity (e.g. externally induced needs such as a behavioral reaction). The 
term primitive further alludes to the early onset of such extraction mechanisms, observed here at 
~12 weeks of age.  

5.3. A common line between our results 

Despite pertaining to distinct facets of our environment, these three primitives are very similar in 
respect to three intimately interconnected key aspects.  

a. Phonetic features, numerosity and chroma all imply dimensionality reduction. Any brain faces 
the fundamental challenge of processing high-dimensional stimuli with a set of biological 
resources that is unavoidably limited by metabolic cost (Lennie, 2003) and anatomical 
bottlenecks (just to have an idea: the input of 100 million photoreceptors must be passed to 1 
million optic nerve fibers). One way to address this challenge22 is to describe a particular stimulus 
space by means of a restrained set of variables, thereby compressing its dimensionality. Crucially, 

                                                             

22 The reader may notice that structural limitations might be even more challenging early in development due 
to structural immaturity (de Graaf-Peters & Hadders-Algra, 2006) 
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all the representational primitives under discussion enable low-dimensional embedding of high-
dimensional sensory data. Specifically, a phonetic code can describe an intricate spectrotemporal 
pattern with a handful of parameters. Numerosity summarizes multiple streams of continuous 
information into a single value. Chroma captures the common quality of many fundamental 
frequencies (our hearing apparatus spans 10 octaves!).  

b. As mentioned in the incipit of this thesis, complexity does not reside solely in dimensionality but 
also, and even to a greater extent, in the extreme variability of the outside world. The neural codes 
isolated by our experiments appear particularly useful in this regard, as they capture invariance. 
By definition, phonetic features and phonemes remain always the same, irrespective of the 
ongoing acoustic context (speaker’s voice, intonation, co-articulation). The same approximate 
numerosity can take innumerous material forms depending on the sensory modality at hand and 
the particular physical variables proper of each modality (e.g. the size and the spatial disposition 
of visual items or the duration and rate of auditory events). Lastly, complex tones will change 
considerably in their spectral composition depending on their emitter, yet they may share the 
same quality. Precisely due to such phenomenon, it is possible to identify similar prosodies across 
speakers and the same melodies when played by distinct instruments.  

c. The phonetic, numerical and chromatic codes are similar in a third aspect: they clutch 
information that is highly relevant for our species. Phonetic features correspond to the smallest 
units carrying linguistic meaning (Stevens, 2002). An approximate sense of numerosity is likely 
to be the cradle of arithmetic competence (Butterworth, 2018; Odic & Starr, 2018), the latter 
permeating innumerous aspects of our life since childhood. And chromatic patterns covey 
intonation (e.g. distinguish questions from exclamations and regulate conversational interaction) 
and emotions thereby holding an inestimable communicative value. Overall, these discrete codes 
enable to reach representational abstractions that are maximally adaptive for the human being. 

In summary, our results demonstrate how, despite what could be intuitively foreseen by scholars, 
early encoding mechanisms go beyond a plain mapping of physical properties. Rather, the infant 
brain spontaneously redescribes incoming information into strategic formats that, by reducing 
dimensionality and overcoming variability, provide structure. This process allows characterizing 
relevant facets of the external world by means of encoding primitives that afford extreme 
representational flexibility and are therefore advantageous for further processing. For example, the 
breath of the human lexicon relies precisely on the combinatorial possibilities of phonetic features 
(aka a small set of units); gathered into phonemes, and words thereafter. Switching to quantities, 
non-numerical descriptors are confined to only a subset of sensory modalities; in contrast, 
numerosity can afford representations pertaining to any sensory modality. Moreover, unlike e.g. rate 
(temporal) or e.g. density (spatial), a numerical sum can pool information distributed over both time 
and space.  
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5.4. An ideal ground for learning 

One of the fundamental goals of cognitive science is to explain how humans acquire knowledge. 
When trying to delineate a framework of infant learning, one of the major challenges encountered 
consists in elucidating how young brains confront “combinatorial explosions” (Malsburg, 1995). 
Namely, an efficient mechanism of knowledge acquisition must be able to deal with the fact that the 
amount of potentially relevant information increases exponentially with the number of features in 
the data. The latter accumulates rapidly as the sensory environment faces continuous evolution. 
Despite this burdensome computational problem infants are formidable learners. How is that 
possible? 
One explanation could reside in the existence of a set of implicit constraints determining the 
acquisition of minimally sufficient rather than complete representations of the input (Aslin & Fiser, 
2005). For example, it has been pointed out that developmental factors might be at play: limited 
working memory and sensory immaturity can effectively reduce the number of elements that needs 
to be taken into account while attempting to discern rules and regularities (e.g. Newport, 1990; 
Elman, 1993) . We believe that the peculiar encoding strategies isolated by our experiments can be 
conceived, in a way, as being part of these constraints, functioning as catalyzers for learning. As a 
matter of fact, the representational processes uncovered by our studies allow to minimize the 
complexity of the world by creating discrete and circumscribed spaces composed of ecologically 
relevant variables that can be further manipulated and combined with ease.  
In support of our proposition, the experimental data collected so far testifies how young infants can 
indeed use the encoding primitives under discussion to learn structure. As a reference let us take 
distributional learning (DL), a form of statistical learning that entails the acquisition of knowledge 
based on the distributional structure of the encountered input. In DL experiments, subjects are 
exposed to stimuli that vary in equal steps along a particular dimension, thereby forming a 
continuum. The stimuli are presented with frequencies that constitute either a bimodal or a unimodal 
distribution, in which the tokens near the endpoints or around the middle of the continuum 
(respectively) are most frequent. Maye et al. (2002) used this paradigm with 6- and 8-mo olds, 
exposing them to eight tokens forming a continuum from “da” to “ta” which varied in equal steps 
along the dimension of voice-onset-time (VOT). They observed that only those infants who listened 
to the bimodal distribution could reliably discriminate its endpoints in a subsequent test phase. 
Crucially, in a follow-up experiment, Maye, Weiss and Aslin (2008) showed that after exposure to a 
bimodal distribution from “da” to “ta” (characterized by the place of articulation “alveolar”) infants 
could successfully discriminate the VOT contrast under study not only when tested on the same class 
of stimuli but also within an alternative phonetic context (“ka” vs “ga”, defined by the place of 
articulation “velar”). These observations demonstrate that learning pertained to the phonetic-feature 
level, which is possible only when the incoming speech input is encoded phonetically. Importantly, 
computational modelling reveals that what subjects acquire from frequency distributions are not the 
phonetic distinctions themselves (e.g. VOT). Rather, they learn to group together isolated regions of 
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pre-existing dimensions into unified categories (McMurray et al., 2009). This implicates that phonetic 
encoding is a prerequisite for and not the end product of the acquisition process. Distributional 
learning is thought to be one of the key mechanisms enabling infants do discover the phonetic 
repertoire of their native tongue (Werker et al., 2012).  
Similarly to what observed for the sensitivity to phonetic contrasts (Werker & Tees, 1984), the initial 
ability of infants to distinguish a broad variety of lexical tones is reshaped by ambient language over 
the course of the first year (e.g. nonnative tone discriminability tends to decline; Mattock et al., 2008). 
Intriguingly, the same DL process operating at the phonetic level might enable tone-language 
learners to individuate those specific pitch variations defining the native repertoire of lexical tones. 
A first hint in this direction has been brought by Liu and Kager (2014), who used the paradigm 
described above on 11/12-mo-olds. They showed that exposition to a bimodal continuum could re-
instantiate the discriminability of a tonal contrast no longer detectable after the age of 7-8 months. 
Notably, for this learning process to succeed in realistic settings, lexical tones must be processed in 
terms of F0 quality rather than F0 absolute value since only the former code is robust to changes in 
timbre (i.e. speakers). Finally, Libertus and colleagues (2018) have recently reported that 6-mo-olds 
familiarized with a wide range of dot arrays whose numerosity was centered around either a single 
mean or two peaks spontaneously extracted the distributional structure of the input received.  

While the studies reviewed in this section demonstrate how infants are capable of employing 
phonetic and numerical codes to acquire new knowledge, our projects show that these codes are 
engaged in a completely automatic fashion at a much younger age and when there is no structure to 
learn (i.e. when naturally rich stimuli are presented in a randomized order). The two lines of research 
complement each other: whereas we have revealed the neural reality of these codes, several 
behavioral studies have demonstrated how these codes can be used as a basis to learn important 
properties of the environment within the first year of life.   

5.5. Innate? 

Although babies were once thought to be blank slates, infinitely malleable, the last decades of 
research has brought dozen of findings illustrating how such belief does not hold realistic. Given 
these demonstrations, many have invoked the concept of innateness referring, among others, to a 
language instinct (e.g. Pinker, 1994) and a sense for number (e.g. Dehaene, 2011). Are the neural 
encoding mechanisms isolated by our experiments innate?  
Any friendly reviewer would certainly notice that whereas “innate” is often meant as “present at 
birth” we did not test newborns. At this point, we may argue that our evidence is corroborated by the 
spontaneous tendency of neonates to match visual displays and auditory sequences containing an 
equal number of items (Izard et al., 2009; Coubart et al., 2014), indicating that the abstract code for 
discrete quantity isolated through our paradigm is likely to be available and operative since start.  
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Still, presence at birth is neither necessary23 nor sufficient when the term “innate” is interpreted as 
“not learned”. Embracing such a perspective, the friendly reviewer would highlight that learning 
starts before birth, speaking with full knowledge of the facts (James, 2010). Now, it would be 
meaningful to assert that phonetic discrimination has been documented in neonates born at a 
gestational age of 30 weeks. In these preterms, the detection of a phonetic change is supported by a 
network of brain areas distinct from the regions carrying speaker-related processing and resemblant 
the functional pathways recruited later on (Mahmoudzadeh et al., 2013). Such observations 
corroborate our findings on pre-babblers in depicting genuine phonetic encoding as a genetically 
determined neural equipment.  
Actually, the friendly reviewer is quite precise, the cochlea is anatomically functional at 20 weeks of 
gestation (Graven & Browne, 2008) and the maturation of the brain stem auditory pathway is quite 
advanced at this stage of fetal life, featuring fully-grown (although non-myelinated) axons and 
stainable dendritic arbors (Eggermont & Moore, 2012). There might be a self-organizing mechanism 
that from the 20th week of pregnancy shapes the neural circuitry in course of formation according to 
the characteristics of the external auditory environment (Bharucha & Mencl, 1996). Since for a 
human mom the latter is largely composed of harmonic sounds, i.e. speech and music, this mechanism 
could account for the acquisition of octave categories, thereby explaining the ubiquity of octave 
equivalence across cultures. Those who assumed that language and music were creations of the 
human kind, presenting a harmonic structure due to the perceptual predispositions of our own 
species, now might wonder who created language and music for us. 
Since the innateness concept is irretrievably confused (for enlightening commentary on this topic see 
Griffiths, 2002 and Samuels, 2004), other scientific domains have come to eschew it altogether. Yet, 
in cognitive science whether a trait is innate is still regarded as a significant question. Instead of 
entering vicious cycles as the one just outlined, we should perhaps consider the reason why this is 
the case. The importance attributed to innateness by cognitive scientists concerns the theoretical 
commitments of the discipline itself. Under pain of regress, any cognitive theory must presuppose 
the availability of a set of structures and resources. Once posited, the latter can be invoked by the 
theory to elaborate the emergence of new ones (Samuels 2004). Cognitive development is necessarily 
grounded in the disposal of abilities for detecting and analyzing inputs and for drawing inferences. 
In extreme empiricist theories, the initial state of such abilities is held to consist of sensory 
transducers and one or more domain-general learning mechanisms. Yet, this type of 
characterizations provide no convincing account of either the rapidity of early learning or the lack of 
massive interference between the various conceptual domains over which development operates 
(Spelke & Kinzler, 2009). As discussed in the previous paragraphs, neural codes for phonetic units, 
numerosity and pitch chroma afford to represent meaningful aspects of the world in a discrete and 

                                                             

23As a matter of fact, a given capacity can emerge over the course of development due to maturation rather than 
experience.  
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abstract format. Given such key characteristics, these encoding mechanisms can provide a more 
satisfactory account for the rapid pace and flexibility of early development relatively not only to 
radical constructionists views but also to previous proposal pertaining to holistic syllables or broad 
spectrotemporal patterns, continuous magnitudes or aspecific intensity estimations and 
disorganized tonal frequency components.  
To our knowledge, there is currently no cognitive process that can adequately explain their 
appearance, such that phonetic features, numerosity and pitch chroma may be considered primitives 
also in the psychological sense (Samuels, 2002)24. That is, the explanation for their acquisition25 may 
be found at some other level, be it molecular or neurobiological. Still, the latter is just a “bonus” 
consideration. Most importantly, even if the appearance of these encoding mechanisms was 
explicable by means of some neurocognitive phenomenon, we propose that their early onset and full 
automaticity/obligatoriness are striking enough for them to be regarded as foundational building-
blocks of human cognition, without the need to invoke innateness. In fact, their delineation provides 
a new piece of understanding to the puzzle of the origins of knowledge in general (as summarized 
above) and novel inspiration to foster future research programs.  

5.6. Future directions 

Beyond providing deeper insights upon the origins of human cognition, the present thesis sets a 
promising methodological ground for new projects in the field of developmental neuroscience.  

The methodological value and innovation of our paradigms resides in the combination of two key 
elements: multidimensional stimuli spaces and strategical multivariate cross-condition 
decoding. 
Since relevant features have been manipulated singularly, in most of the previous investigations on 
infant representational skills each neural response could be analyzed in respect of a single variable 
of interest. These paradigms enabled to reveal whether the infant brain is capable of detecting the 
regularity of a certain characteristic and whether changes pertaining to distinct dimensions are 
associated to mismatch responses over distinct brain areas. This type of paradigm would have been 
incompatible with our goal of capturing the encoding mechanisms engaged in ecological settings. To 
fulfill our purpose, we constructed multidimensional spaces where the natural co-occurrence or 
interrelation between various features could be maintained. Since in this experimental setting each 

                                                             

24 According to Samuels, “a concept, belief, learning mechanism or module is a psychological primitive when 
there is no correct scientific psychological theory that explains its acquisition”. 

25 Here we refer to « acquisition » in its baseline sense: a structure S is acquired by an object O if and only if O 
fails to possess S at all times prior to time t, but possess S at t. When the idea of acquisition is considered in this 
minimal sense, all cognitive structures must be labelled as acquired.  
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sub-condition is definable along more than one dimension, the mere possibility to classify stimulus 
identity from neural responses provides limited understanding of the underlying encoding scheme. 
Instead, through our analyses, we have shown how cross-condition decoding can be used as a 
powerful technique to uncover the nature of the neural codes, provided that the experimental 
stimulation itself is carefully designed in accordance to this goal. Within our first project, the pattern 
of generalization enabled us to discern whether phonetic dimensions are encoded orthogonally or 
rather conjointly, thereby revealing the availability of a structured, compositional code for speech 
(Chapter 2). Within our second project we have shown how cross-decoding enables to overcome 
physical obstacles: capitalizing on a strategic combination of trainings and tests allowed us to 
overcome the impossibility of presenting different numbers of items without non-numerical 
covariations. Finally, while through cross-condition analyses fMRI adult studies could isolate multi-
modal object representations (Man et al., 2015) and consistent neural activity between imagery and 
perception (Cichy et al., 2012), we individuated an abstract code for numerosity that generalizes 
across sensory modalities and formats (from temporal to spatial displays).  

To recapitulate, the use of high-density EEG and multivariate cross-classification combined to rich, 
carefully calibrated stimulus spaces can provide crucial insights upon the encoding strategies of the 
brain. Currently in our lab, we are employing this methodological framework in order to broaden our 
characterization of early speech processing. In our follow-up experiment, we present a new set of 
syllables (Figure 5.1), once again in a randomized (Latin squared) order, to neonates while their 
neural responses are recorded with a 128-channel EEG system. The goal of this study is to extend the 
findings described in Chapter 2 along multiple lines. First, we will try to replicate the possibility to 
decode consonantal phonetic features (VOT and place of articulation; Figure 5.1 top left) in a younger 
population and from neural data with a reduced spatial resolution (128 EEG channels instead of 256). 
Second, we will investigate the encoding of vocalic phonetic features (height and backness; Figure 
5.1 top right), the occurrence of which could be only inferred in our previous study. Crucially, we will 
use cross-condition analyses to ask whether featural and/or phoneme encoding are independent 
from the position of consonants and vowels within the syllable (Figure 5.1; bottom). 



Chapter 5 | Discussion 

145 
 

 

More broadly, we believe that our methodological approach will be ideally suited to delineate 
representational primitives in other perceptual domains. For instance, according to Spelke, the 
origins of human knowledge reside in a small set of foundational cognitive systems, each centered on 
a few key principles that serve to individuate the entities in its domain and draw inferences about 
them (Spelke & Kinzler, 2007). Drawing a connection with the way we interpret our own empirical 
observations, the systems proposed under the core knowledge view may function as catalyzers for 
human cognitive development because they are based on principles that are veridical and adaptive 
at the scale at which humans perceive and behave. Within this framework, our ability of identifying 
token objects or objects of particular kinds might originate from a core system of geometrical 
intuitions pertaining to small-scale visual configurations (Spelke, 2011). In this regard, a recently 
collected body of data (Izard et al., 2021) shows that, in absence particular instructions, preschoolers 
and adults from both the U.S. or the Amazon analyze 2D visual forms based on Euclidean metric 
properties, i.e. in terms of shape (defined by angles and length proportions) and global size, 
disregarding changes in position, orientation and reflection. Considering evidence of this sort, it has 
been highlighted that shape and size might constitute representational pillars for universal 

Figure 5.1 Current experimental paradigm to investigate speech processing in neonates.  
To ensure natural variability, syllables are spoken by four alternative female voices from different 
nationalities for a total of 128 distinct tokens. Alv.=alveolar, “voicing” refers to voice-onset-time 
(VOT; yes=voiced, no=voiceless). 
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geometrical intuitions (Izard et al., 2021). The methodological approach developed by the present 
thesis would enable to investigate the existence of such representational pillars early in infancy. To 
start with, whereas behavioral evidence indicates that not only infants but even children have limited 
ability to perceive shape-defining angles (Dillon et al., 2020; Izard et al., 2011, 2014), it would be 
possible to ascertain whether such findings reflect a true computational limit or rather a lack of 
methodological sensitivity (as it was the case for e.g. the apparent lack of sub-syllabic speech 
encoding on the behalf of pre-babblers). Mainly, the employment of a multidimensional visual space 
combined with cross-condition decoding would be ideally suited to ask whether young infants 
process shape- and/or size-related information irrespective of position, orientation and reflection 
(i.e. according to Euclidean principles). Further, it would be possible to elucidate the elementary units 
of encoding: global size might be computed holistically, e.g. in terms of implied area, or rather 
compositionally, through minimal codes for line lengths and distance between extremities. Overall, 
the methodology we propose would enable to query the existence and characteristics of 
representational primitives akin to abstract geometrical elements.  

Investigation within new domains might implicate a more extensive use of visual stimulation and 
thus an additional challenge: infants will need to be tested awake (obviously) and they will need to 
direct their sight toward the stimulation screen, which requires a quite high degree of collaboration. 
Crucial aid in this setting could be brought by the employment of the rapid serial visual presentation 
(RSVP) paradigm, where stimuli are flashed in very fast sequences (typically 10/s in adult studies). 
With such a rapid presentation, picture recognition remains possible for adults and selective neural 
responses are preserved in the macaque temporal cortex (Keysers et al., 2001), although subjective 
visibility is degraded and often stimuli remain unperceived at the conscious level (Lawrence, 1971). 
This strategy is very promising for the study of representational primitives within the visual modality 
because enables to collect a big amount of trials in a short period26. Moreover, it grants the 
investigation of automatic processing, as it allows no time for higher-order attentional phenomena 
to occur. Our research group, including the writer, have started to work on this strategy to investigate 
the perception of visual categories (faces, bodies, objects and houses) with MEG in 14-week-olds. 
Unfortunately, the project has been interrupted by the COVID-19 pandemic when pilot sessions were 
starting to yield encouraging outcomes.  

Finally yet importantly, the paradigms proposed here might open new opportunities for the clinical 
field. As mentioned in Chapter 1, prominent inter-subject variability makes ERP components 
unreliable when it comes to determine whether an individual is developing abnormally (Picton & 
Taylor, 2007). Because they are carried within subject, multivariate pattern analyses offer an 
alternative option: the possibility to collect normative data concerning psychological, rather than 

                                                             

26 The “collaboration” of a young infant will not last more than ~10 minutes while multivariate estimators 
require a high number of samples to reach stable decision boundaries. 
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physiological, variables in order to detect dysfunction. Concretely, once a given encoding primitive 
(including its level of abstraction and temporal dynamics) has been delineated, it is possible to 
investigate potential alterations related to developmental disorders. For instance, the 
implementation of our paradigms27 within longitudinal studies on subjects at risk of dyslexia, 
dyscalculia or amusia might bring useful insights and, ultimately, to the definition of effective criteria 
for early diagnosis. 

  

                                                             

27 An additional advantage of our paradigms is the possibility to detect phonetic and neural codes during sleep, 
i.e. with minimal collaboration required on the behalf of the subject. However, this benefit is restricted to 
paradigms relying on auditory stimuli.  
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