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“There are three kinds of lies: lies, damned lies, and statistics.”

The origin of this phrase is unclear, but Mark Twain attributed it to Benjamin Disraeli



Abstract

Doctor of Philosophy

by Davit Gogolashvili

In many real world problems, the training data and test data have different distribu-

tions. The most common settings for dataset shift often considered in the literature

are covariate shift and target shift. In this thesis, we investigate nonparametric models

applied to the dataset shift scenario.

We develop a novel framework to accelerate Gaussian process regression (GPR). In par-

ticular, we consider localization kernels at each data point to down-weigh the contribu-

tions from other data points that are far away, and we derive the GPR model stemming

from the application of such localization operation. Through a set of experiments, we

demonstrate the competitive performance of the proposed approach compared to full

GPR, other localized models, and deep Gaussian processes. Crucially, these perfor-

mances are obtained with considerable speedups compared to standard global GPR due

to the sparsification effect of the Gram matrix induced by the localization operation.

We propose a new method for estimating the minimizer x∗ and the minimum value f∗ of

a smooth and strongly convex regression function f from the observations contaminated

by random noise.
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Chapter 1

Learning Theory

1.1 The Classical Learning Problem

In the classical learning problems one considers the random vector (x, y) sampled from

the (unknown) Borel probability measure (distribution) ρ defined on Z = X × Y. The
ultimate goal is to understand how the response variable y ∈ Y depends on the value of

the observation vector x ∈ X. Obviously, the response y for every fixed x is generated

according to the conditional measure ρ(y|x), related to the initial measure ρ trough the

equality

ρ(x, y) = ρ(y|x)ρX(x)

where ρX is a marginal probability measure on X, defined by ρX(S) = ρ
(
π−1(S)

)
where

π : X ×Y → X is the projection. Asking for the estimation of the response distribution

for a given input point x is too much. In many learning situations understanding the

expected value of the conditional output is sufficient. To this order we define the function

fρ : X → Y by

fρ(x) =

∫
Y
ydρ(y|x).

The function fρ is called the regression function of ρ. For each x ∈ X, fρ(x) is the

average of the y coordinate of {x} × Y. Figure 1.1 visualizes the regression function

together with the densities associated with the conditional and marginal measures. The

regression function can be viewed as a minimizer of

E(f) := Eρ(f) :=
∫
Z
(f(x)− y)2dρ (1.1)

among all square integrable (w.r.t. ρ) functions f : X → Y.

1
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Y

X
x x′

fρ

dρ(y|x)
dρ(y|x′)

dρX

Figure 1.1: The regression function fρ is the average of the y coordinate of {x} × Y.

In the applications, the measure ρ (and hence also the regression function) is usually

unknown. Therefore, it is impossible to understand how the conditional expectation

behaves. But it is often possible to observe data according to the distribution ρ and to

estimate the regression function from these data.

To be more precise, denote by

z ∈ Zn, z = ((x1, y1) , . . . , (xn, yn))

collection of independent and identically distributed (i.i.d.) random variables from ρ,

called the training sample in Zn. Our problem then is given the data z, how to find a good

approximation fz(x) to fρ(x) at the new point x, coming from the same distribution as

the training data. The following property of the regression function

E (fρ) = inf
f∈L2(X,ρX)

E(f) (1.2)

suggests to consider the minimization of so called empirical risk functional

Ez(f) :=
1

n

n∑
i=1

(f (xi)− yi)2 .

The choice of the function class where the minimization of the empirical risk is per-

formed is of great importance. This class of functions H is called the hypothesis space

in learning theory. A typical choice for H is the space of polynomials, or more generally

the spaces produced by other (then monomials) basis functions like wavelets. The class
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of piecewise constant functions is another popular space. In this work, we focus primar-

ily on reproducing kernel Hilbert spaces (RKHS) that correspond to positive definite

functions.

1.2 Reproducing Kernel Hilbert Spaces

Definition 1.1. We say that the continuous function K : X×X → R is a Mercer kernel

if it symmetric and for any n ∈ N, (c1, . . . , cn) ⊂ R and (x1, . . . , xn) ⊂ X,

n∑
i=1

n∑
j=1

cicjK (xi, xj) ≥ 0.

Remark 1.2. Definition 2.1 can be equivalently stated thus: A symmetric function K is

positive definite if the matrix Kxx ∈ Rn×n with elements [Kxx]ij = K (xi, xj) is positive

semidefinite for any finite set x = (x1, . . . , xn) ∈ Xn of any size n ∈ N.

In the remainder, for simplicity, kernel always means positive definite kernel. For x =

{x1, . . . , x} ∈ Xn, the matrix Kxx is the kernel matrix or Gram matrix.

Example 1.1 (Polynomial kernels). Let X ⊂ Rd. For m ∈ N, the polynomial kernel

Km : X ×X → R is defined by

Km

(
x, x′

)
=
(
x⊤x′ + c

)m
, x, x′ ∈ X.

Example 1.2 (Gaussian RBF Kernels). Let X ⊂ Rd. For ℓ > 0, a Gaussian RBF

kernel Kℓ : X ×X → R is defined by

Kℓ

(
x, x′

)
= exp

(
−∥x− x

′∥2
2ℓ2

)
, x, x′ ∈ X.

Example 1.3 (Matérn kernels). Let X ⊂ Rd. For positive constants α and ℓ, the

Matérn kernel Kα,ℓ : X ×X → R is defined by

Kα,ℓ

(
x, x′

)
=

21−α

Γ(α)

(√
2α ∥x− x′∥

ℓ

)α
Bα

(√
2α ∥x− x′∥

ℓ

)
, x, x′ ∈ X,

where Γ is the gamma function, and Bα is the modified Bessel function of the second

kind of order α.

Remark 1.3. The scaling is chosen so that for α → ∞ we obtain the Gaussian RBF

kernels in Example 1.2. That is, for a Matérn kernel Kα,ℓ with ℓ > 0 being fixed, we
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have

lim
α→∞

Kα,ℓ

(
x, x′

)
= exp

(
−∥x− x

′∥2
2ℓ2

)
, x, x′ ∈ X.

Example 1.4 (Wiener kernel). Let X ⊂ Rd. The Wiener kernel K : X ×X → R is

defined by

K(x, x′) =
d∏
i=1

xi ∧ x′i, x, x′ ∈ X,

where xi and x
′
i are the ith coordinate of the vectors x and x′.

Given a kernel K we are going to associate with it a reproducing kernel Hilbert space.

A RKHS is a Hilbert space of real-valued functions on X with the property that, for

each x ∈ X, the evaluation functional Evx, which associates f with f(x), Evx f → f(x),

is a bounded, linear functional. The boundedness means that there exists nonegative

constant Cx such that

|Evx f | = |f(x)| ⩽ Cx∥f∥, for all f in the RKHS.

If H is a RKHS, then by the Ritz representation theorem, for every evaluation functional

Evx there exists a unique element Kx in H with the reproducing property

Evx f = ⟨Kx, f⟩H = f(x), ∀f ∈ H. (1.3)

It can be proved (see for example Cucker and Zhou (2007), Theorem 2.9) that to every

RKHS H there corresponds a unique Mercer kernel K(x, x′) of two variables in X, called

the reproducing kernel of H (hence the terminology RKHS), that has the reproducing

property (1.3). Converse is also true: given a kernel K on X × X we can construct a

unique RKHS of real-valued functions on X with K as its reproducing kernel.

RKHS and the Eigenvalues of the Integral Operator.A RKHS can be defined in

terms of the eigenvalues and eigenfunctions of the integral operator. Let X be a compact

space equipped with a strictly positive finite Borel measure ν and let K(x, x) < ∞.
Define the integral operator Lν : L2(X, ν)→ L2(X, ν) as

(Lνf)(x) =

∫
K(x′, x)f(x′)dν(x′), (1.4)

where L2(X, ν) is the space of square integrable functions with respect to ν.

Then there exists an orthonormal sequence of continuous eigenfunctions, ϕ1, ϕ2, . . . in

L2(X, ν) and eigenvalues µ1 ≥ µ2 ≥ . . . ≥ 0, with Lνϕi = µiϕi,∀i ∈ N and

K(x, x′) =
∞∑
i=1

µiϕi(x)ϕi(x
′), (1.5)



Chapter 1 Learning Theory 5

where the convergence is absolute and uniform. Moreover the sum
∑∞

i=1 µi is convergent

and
∞∑
i=1

µi =

∫
X
K(x, x)dν.

From the expansion (1.5) it follows that K(x, x′) corresponds to a dot product in ℓ2 :=,

since K(x, x′) = ⟨Φ(x),Φ(x′)⟩ℓ2 with

Φ : X → ℓ2

x 7→ (
√
µiϕi(x))k∈N .

The map Φ is well-defined and continuous. The space ℓ2 is called the feature space and

the function Φ feature map.

How let us describe the RKHS in terms of eigenfunctions and eigenvalues of Lν . It can

be shown (ref) that the functions {√µiϕi} forms an orthonormal basis (ONB) in H. If
the RKHS is infinite dimensional, Lν has infinitely many positive eigenvalues µi, i ≥ 1

and

H =

{
f =

∞∑
i=1

aiϕi :

{
ai√
µi

}∞

i=1

∈ ℓ2
}
, (1.6)

where the inner product between f =
∑
aiϕi and g =

∑
biϕi is given by

⟨f, g⟩H =
∞∑
i=1

aibi
µi

.

Remark 1.4. When dimH = N <∞, integral operator Lν has finite number of positive

eigenvalues and ℓ2 in (1.6) is replaced by RN .

RKHS as a Linear Combination of the Kernels. Another way to construct a

RKHS, closely related to the construction (1.6), is by taking a completion of the linear

space of all functions

x 7→
n∑
i=1

aiK (xi, x) , a1, . . . , an ∈ R, x1, . . . , xn ∈ X, n ∈ N

relative to the norm induced by the inner product〈
n∑
i=1

aiK (xi, ·) ,
m∑
j=1

bjK
(
x′j , ·

)〉
H

=

n∑
i=1

m∑
j=1

aibjK
(
xi, x

′
j

)
.
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f(x) =
∑
aie

−(x−xi)2 f(x) =
∑
aie

−|x−xi|

Figure 1.2: Smoothness of the function in RKHS induced by the smoothness of the
reproducing kernel. The left panel shows the function from the RKHS with Gaussian
RBF kernel. All members of this RKHS are infinitely differentiable. On the right panel

we plot one member from RKHS reproduced by the Laplace kernel.

This leads us to the following representation by the feature maps {K(xi, ·)}

H =

f =

∞∑
i=1

aiK (xi, ·) : {ai}∞i=1 ⊂ R, {xi}∞i=1 ⊂ X, ∥f∥2H =

∞∑
i,j=1

aiajK (xi, xj) <∞

 .

Form the construction above it is apparent that the function f in the RKHS inherit

the smoothness properties of the underling kernel K. More precisely, if the kernel K

is m-times continuously differentiable, then so are the functions in H. The smoothness

property of the RKHS norm can be seen in the following example on the RKHS of a

Matern kernel.

Example 1.5 (Matérn kernel RKHS). Let Kα,ℓ be the Matérn kernel on X ⊂ Rd

with sufficiently smooth boundary and let s := α + d/2 be an integer. Then the RKHS

of Kα,ℓ is norm-equivalent to the Sobolev space W s
2 (X) of order s defined by

W s
2 (X) :=

f ∈ L2(X, υ) : ∥f∥2W s
2 (X) :=

∑
|m|≤s

∥Dmf∥2υ <∞


where υ is a Lebesgue measure on Rd.

1.3 Kernel Least Squares and Regularization

After we have decided on a set H which we shall use in approximating fρ, we can define

the empirical risk minimizer by

fz = argmin
f∈H

Ez(f). (1.7)
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Clearly, the empirical risk minimizer can not perform better then the minimizer of the

true risk E(f) over a set H
fH := argmin

f∈H
E(f). (1.8)

The function fH is called the target function and is known to be the best approximator

of fρ from H :

∥fρ − fH∥ρX = distρX (fρ,H) := inf
f∈H
∥fρ − f∥ρX . (1.9)

The quantity above depends on the choice of H but is independent of sample z. Let us

note that if fρ ∈ H, then fH = fρ. Understanding how well H does in approximating

functions is critical to understanding the advantages and disadvantages of such a choice.

Giving precise quantitative estimates to (1.9) is the subject of approximation theory and

is outside the scope of the thesis. For the interested reader we refer to (DeVore et al.,

2004; DeVore, 1998).

In the previous section we introduce the RKHS and show that the RKHS norm ∥f∥H can

be interpreted as a measure of a complexity (smoothness) of a function f ∈ H. Think
of f with many oscillations having RKHS norm large. Suppose we want to perform the

empirical risk minimization over H based on the finite data z :

fz,H = argmin
f∈H

Ez(f).

As the space H is potentially big, the solution of the above problem is not unique. In

fact, it can be any function that interpolates the data z. Each of the interpolants would

have different performance properties 1 therefore, without further restriction the ERM

over H is not well-posed. Instead, we can restrict the set H over the functions where

the norm does not exceed the certain threshold level g and perform the ERM over the

smaller class of functions. This leads to the following constrained optimization problem

min
f∈H

1

n

n∑
i=1

(f (xi)− yi)2

s.t. ∥f∥2H ≤ g

Instead of restricting the set of functions over which one minimizes, one can rewrite the

above optimization problem in a more traditional Lagrangian form, where the constraint

on the norm enters as a penalty term added to the empirical risk functional. This leads

1Notice that the interpolation does not lead to an unreasonable estimate. It was shown by Belkin et al.
(2019) that the learning methods interpolating the training data can achieve optimal rates. Achievability
was shown for the Nadaraya-Watson smoother with a singular smoothing kernel.
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us to the regularized kernel least squares or kernel ridge regression

fz,λ := argmin
f∈H

{
1

n

n∑
i=1

(f (xi)− yi)2 + λ∥f∥2H

}
. (1.10)

Here λ is the so-called regularization parameter. The first term measures the closeness

to the data, while the second term penalizes ”roughness” in the function measured by

the RKHS norm, and λ establishes the trade-off between the two.

The optimization (1.10) in many practical problems is defined on an infinite-dimensional

function space. In the case of Matérn kernel RKHS corresponds to the Sobolev space of

functions. Remarkably, (1.10) has an expicit, finite-dimensional, unique solution given

in the following proposition.

Proposition 1.5. Let λ > 0. The solution to (1.10) can be expressed as

fz,λ(x) =

n∑
i=1

aiK (x, xi) , (1.11)

where

(a1, . . . , an)
⊤ := (Kxx + nλI)−1 y ∈ Rn.

Here y = (y1, . . . , yn)
⊤ ∈ Y n.

1.4 Effective Dimension

Kernel ridge regression (1.11) introduced in the previous section can be equivalently

written as

fz,λ(x) = Kxx (Kxx + nλI)−1 y,

where Kxx = (K (x, x1) , . . . ,K (x, xn)) . The vector w(x) := (Kxx + nλI)−1K⊤
xx gives

the weights applied to the output vector y. So the KRR is the weighted average of the

output vector, where the weights are defined by w(x). However, understanding the form

of the weight function is made complicated by the matrix inversion of Kxx + nλI and

the fact that Kxx depends on the specific locations of the n datapoints.

Spectral analysis of the kernel matrix Kxx helps to gain some intuition behind the

weighting procedure in KRR. To this order we define the n-dimensional vector of fitted

values at the training points f = (fz,λ(x1), . . . , fz,λ(xn))
⊤. Then

f = Kxx (Kxx + nλI)−1 y.
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The matrix Lx(λ) := Kxx (Kxx + nλI) , linearly acting on the output vector y, is called

the smoother matrix. Important property of smoother matrix is its independence from

y; Lx(λ) depends only on the input data x and λ.

We define the empirical effective dimension as

Nx(λ) = TrLx(λ),

the sum of diagonal entries of Lx(λ). For the special case when X = Rd, K(x, x′) =

⟨x, x′⟩Rd and λ = 0, the smoother matrix Lx is a projection operator and the trace gives

the dimension of the projection space and coincides with the number of parameters

involved in the estimation.

Using the eigen-decomposition of the Gramm matrix Kxx =
∑n

i=1 µiϕiϕ
⊤
i , where µi is

the ith eigenvalue (real and non-negative) and ϕi ∈ Rn is the corresponding eigenvector,

we can write

f =
n∑
i=1

µi
µi + nλ

ϕi⟨ϕi,y⟩ and Nx(λ) =
∑ µi

µi + nλ
.

Notice that the eigenvectors are not affected by the regularization parameter λ. There-

fore, the KRR computes the coordinates of y w.r.t. the basis {ϕi} formed by the

eigenvectors of the Gramm matrix. When µi/
(
µi + σ2n

)
is small the component in y

along the eigenvector ϕi is effectively eliminated.

1.5 KRR - Function Reconstruction Point of View

The learning problem can be formulated as a problem of a function reconstruction,

where the function values are available only on the finite set in its domain. Adopting

the terminology from the signal processing by sampling we call the process of converting

continuous function into a sequence of values. In signal processing reconstructing the

continuous-time signals from the samples (discrete-time signals) is of great importance.

The classical Whittaker-Shannon-Nyquist Sampling Theorem gives conditions on a func-

tion on R so that it can be perfectly reconstructed from its sampling values at integer

points:

Shannon’s Theorem. If a function f ∈ L2(R, υ) has its Fourier transform supported

on [−π, π], then
f(x) =

∑
t∈Z

f(t)ϕ(x− t), (1.12)

where ϕ(x) = sinπx
πx .
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One can immediately notice the analogy between (1.12) and the solution (1.11) of the

KRR. The function ϕ(x − t) in the Shannon theorem corresponds to the feature map

K(t, x) and the solutions in both cases are represented by respective linear combinations.

Now let us introduce the regularized least squares algorithm from the Shannon sampling

theory point of view. To this order we introduce the sampling operator Sx : H → Rn

associated with a set x = {x1, . . . , xn} ⊂ X as

(Sxf)i = f (xi) = ⟨f,Kxi⟩H .

Its adjoint operator S⊤
x : Rn → H is given by

S⊤
x (y) =

1

n

n∑
i=1

yiKxi .

The sampling problem we are interested in is: reconstruct the function fρ based on the

y ∈ Rn. Note that in the Shannon case the values of the function are known exactly,

while in the learning theory they are realizations from the distribution ρ(y|x).

Intuitively, the function f provides a good reconstruction to fρ if its values on the set x

are close to the actually observed ones, this is Sxf ≈ y. From this we can deduce that

for all g in H

⟨Sxf, Sxg⟩Rn ≈ ⟨y, Sxg⟩Rn =⇒ ⟨S⊤
x Sxf, g⟩H ≈ ⟨S⊤

x y, g⟩H.

As the approximate equality above holds for all g ∈ H we should expect that S⊤
x Sxf ≈

S⊤
x y or

f =
(
S⊤
x Sx + λI

)−1
S⊤
x y

where the regularization term λI is added to avoid the invertibility issues of S⊤
x Sx.

As the following reconstruction theorem suggests, the heuristic just described is closely

related to the minimization problem (1.10).

Theorem 1.6. If S⊤
x Sx + λI is invertible, then fz,λ exists, is unique and

fz,λ =
(
S⊤
x Sx + λI

)−1
S⊤
x y.

Proof. Note that the regularizes loss in (1.10) can be rewritten in terms of the operators

Sx and S⊤
x as follows

Ez(f) + λ∥f∥2H =
〈(
S⊤
x Sx + λI

)
f, f

〉
H
− 2

〈
S⊤
x y, f

〉
H
+ ∥y∥.
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Taking the functional derivative of this objective function with respect to f ∈ H, setting
it equal to 0 and arranging the resulting equation yields(

S⊤
x Sx + λI

)
f = S⊤

x y.

Solving the system of equations above w.r.t. f finishes the proof.

Remark 1.7. For λ↘ 0, fz,λ corresponds to the Moore–Penrose solution of the operator

equation Sxf = y.

Let us fix λ > 0 and let the number of points n increase to infinity. By the low of large

numbers the objective functional in (1.10) becomes

fλ := argmin
f∈H

{∫
X×Y

(f (x)− y)2 dρ(x, y) + λ∥f∥2H
}
. (1.13)

Note that H is not compact, therefore the existence of fλ is not immediate. Our next

result proves that fλ exists and is unique.

Proposition 1.8. For all λ > 0 the function

fλ = (T + λ)−1 LfH (1.14)

is the unique solution of (1.13).

Proof. Note that (1.13) is equivalent to

fλ = argmin
f∈H

{
∥f − fρ∥2ρX + λ∥f∥2H

}
= argmin

f∈H

{
∥f − fH∥2ρX + λ∥f∥2H

}
where the last equality comes from the equality ∥f − fρ∥2ρX = ∥f − fH∥2ρX +∥fρ − fH∥2ρX
and the fact that ∥fρ − fH∥2ρX is independent form f. Now, consider the functional

φ(f) = ∥f − fH∥2ρX + λ
∥∥∥T−1/2f

∥∥∥2
ρX
.

If a point fλ minimizes φ, then it must be a zero of the derivative Dφ. That is, fλ

satisfies
(
I + λT−1

)
fλ = fH, which implies fλ = (T + λI)−1 TfH.

The basic question one can ask is: for the fixed regularization parameter, how well fλ

approximates the target function fH.

Theorem 1.9. Define fλ by (1.14). If L−rfH ∈ L2(X, ρX) for some 0 < r ⩽ 1, then

∥fλ − fH∥ρ ⩽ λr
∥∥L−rfH

∥∥
ρ

(1.15)
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moreover

∥fλ∥H ≤
∥∥L−rfH

∥∥
ρ
, for r ∈ (0.5, 1]. (1.16)

Proof. By the identity A(A+ λI)−1 = I − λ(A+ λ)−1 valid for λ > 0 and any bounded

self-adjoint positive operator, we have

(
I − (T + λ)−1T

)
fH = λ(T + λ)−1fH = λr

(
λ1−r(T + λ)−(1−r)

) (
(T + λ)−rLr

)
L−rfH.

From the equality above by taking the norm we have

∥fλ − fH∥ρX ≤ λ
r
∥∥∥λ1−r(T + λ)−(1−r)

∥∥∥
op

∥∥(T + λ)−rLr
∥∥
op

∥∥L−rfH
∥∥
ρX
.

Note that
∥∥λ1−r(T + λ)−(1−r)∥∥

op
≤ 1 and ∥(T + λ)−rLr∥op ≤ 1.

Regarding the second estimate, if r > 1/2, since ∥T∥op ≤ 1, we obtain,

∥fλ∥H =
∥∥(T + λ)−1LfH

∥∥
H

=
∥∥∥(T + λ)−1LLr−

1
2L

1
2
−rfH

∥∥∥
H

≤ ∥L∥r−
1
2

op

∥∥L−rfH
∥∥
ρX
.

1.6 Generalization performance of KRR - Kernel indepen-

dent case

We apply the following Bernstein inequality (Caponnetto and De Vito, 2007, Proposition

2) for Hilbert space valued random variables to provide the upper rate on ∥fz,λ−fH∥ρX .

Proposition 1.10. Let (Z, ρ) be a probability space and let ξ be a random variable on

Z taking value in a real separable Hilbert space H. Assume that there are two positive

constants L and σ such that

E [∥ξ − E[ξ]∥mH ] ≤
1

2
m!σ2Lm−2, ∀m ≥ 2 (1.17)

then, for any δ ∈ (0, 1]∥∥∥∥∥ 1n
n∑
i=1

ξ (zi)− E[ξ]

∥∥∥∥∥
H

≤ 2L log(2/δ)

n
+

√
2σ2 log(2/δ)

n
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with probability at least 1− δ. In particular, (1.17) holds if

∥ξ∥H ≤
L

2
, E

[
∥ξ∥2H

]
≤ σ2.

The following is our first result on the learning properties of kernel ridge regression.

Theorem 1.11. Let L−rfρ ∈ L2(X, ρX), for r ∈ (0.5, 1] and assume that the output is

bounded, |y| ≤M. Furthermore, let n and λ satisfy the following condition

λ =

(
8 log(6/δ)√

n

) 2
2r+1

(1.18)

Then, with probability greater than 1− δ, it holds

∥fz,λ − fH∥ρX ≤ 3 (M +R)

(
8 log (6/δ)√

n

) 2r
2r+1

. (1.19)

Proof. We provide the proof here as it is quite instructive. Most of the proofs used in

this thesis will follow the same line of arguments. In order to establish upper bounds,

we split ∥fz,λ − fH∥ρX into two parts:

∥fz,λ − fH∥ρX ≤ ∥fz,λ − fλ∥ρX + ∥fλ − fH∥ρX , (1.20)

the estimation error ∥fz,λ − fλ∥ρX and the approximation error ∥fλ − fH∥ρX . A bound

on the approximation error has already been given in Theorem 1.9. To obtain an upper

bound on estimation error we use the following decomposition

fz,λ − fλ =(Tx + λ)−1 S⊤
x y − (T + λ)−1TfH

=(Tx + λ)−1
{(
S⊤
x y − TfH

)
+ (T − Tx) fλ

}
=(T + λ)−

1
2

{
I − (T + λ)−

1
2 (T − Tx) (T + λ)−

1
2

}−1
(T + λ)−

1
2{(

S⊤
x y − TfH

)
+ (T − Tx) fλ

}
.

(1.21)

where Tx := S⊤
x Sx and T := TρX . Assuming that

S1 :=
∥∥∥(T + λ)−

1
2 (T − Tx) (T + λ)−

1
2

∥∥∥
HS

< 1, (1.22)
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where ∥A∥2HS = Tr
(
A⊤A

)
, and using the Neumann series expansion we obtain

∥∥∥∥{I − (T + λ)−
1
2 (T − Tx) (T + λ)−

1
2

}−1
∥∥∥∥
op

=

∥∥∥∥∥
∞∑
n=0

[
(T + λ)−

1
2 (T − Tx) (T + λ)−

1
2

]n∥∥∥∥∥
op

≤
∞∑
n=0

∥∥∥(T + λ)−
1
2 (T − Tx,w) (T + λ)−

1
2

∥∥∥n
op

≤
∞∑
n=0

∥∥∥(T + λ)−
1
2 (T − Tx,w) (T + λ)−

1
2

∥∥∥n
HS

≤ 1

1− S1
.

From (1.21) by taking the L2(X, ρX) norm from both sides and using the isometry

property we get

∥fz,λ − fλ∥ρX =
∥∥∥T 1

2 (fz,λ − fλ)
∥∥∥
H
≤ S2 + S3

1− S1
, (1.23)

where
S2 :=

∥∥∥(T + λ)−
1
2

(
S⊤
x y − LfH

)∥∥∥
H
,

S3 :=
∥∥∥(T + λ)−

1
2 (T − Tx) fλ

∥∥∥
H
.

We have to find an upper bound for each of Si. To do so, notice that

Si =

∥∥∥∥∥ 1n
n∑
k=1

ξk − E[ξk]

∥∥∥∥∥
F

, i = 1, 2, 3,

with appropriate choice of the random variable ξ and the norm ∥ · ∥F . Indeed, in order

to let the equality above hold, we define the operator valued random variable ξ1 : X →
HS (H) , where HS (H) is the space of Hilbert-Schmidt operators on H, as follows

ξ1(x)[·] = (T + λ)−
1
2Kx ⟨Kx, ·⟩H (T + λ)−

1
2 .

Moreover, ξ2 : Z → H is defined by

ξ2(x, y) = (T + λ)−
1
2Kxy.

Finally, ξ3 : X → H is defined by

ξ3(x) = (T + λ)−
1
2Kxfλ(x).



Chapter 1 Learning Theory 15

Application of Proposition 1.10 to each of Si yields to the following bounds with prob-

ability at least 1− δ/3

Si ≤
2Li log(6/δ)

n
+ σi

√
2 log(6/δ)

n
(1.24)

where, as it can be straightforwardly verified, the constants Li and σi are given by the

expressions

L1 =
2

λ
, σ21 =

1

λ2
, (1.25)

L2 =
2M√
λ
, σ22 =

M2

λ
, (1.26)

L3 =
2∥fλ∥H√

λ
, σ23 =

∥fλ∥H
λ

. (1.27)

Let us verify (1.22). From (1.25) and Proposition 1.10, with probability greater than

1− δ/3, we have

S1 ≤ 2 log

(
6

δ

)(
2

nλ
+

1√
nλ

)
(1.28)

Choosing λ
√
n ≥ 8 log

(
6
δ

)
we get S1 ≤ 3/4 =⇒ 1/(1 − S1) ≤ 4. From this and

Proposition 1.10 applied to the terms S1 and S2 we can write,

∥fz,λ − fλ∥ρX ≤
S2 + S3
1− S1

≤ 8 log

(
6

δ

)
(M + ∥fλ∥H)

(
2

n
√
λ
+

1√
nλ

)
(1.29)

with probability at least 1− δ.

Combining the decomposition in (1.20) with the bounds (1.29), (1.15) and choosing λ

as in (2.21) we finally get

∥fz,λ − fH∥ρX ≤ 8 log

(
6

δ

)
(M +R)

(
2

n
√
λ
+

1√
nλ

)
+ λrR

≤ 8 log

(
6

δ

)
(M +R)λr

(
2

nλr+1/2
+

1√
nλr+1/2

)
≤ 3 (M +R)λr,

with probability at least 1− δ.
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1.7 Generalization performance of KRR - Kernel depen-

dent case

The generalization bound of the previous section is kernel independent, except the re-

quirement ∥L−rfH∥ρX <∞. However, most of the kernels used in practice usually have

some extra regularity properties. For instance a Matérn kernel 1.5 with α → ∞ is in-

finitely differentiable as well as the functions in the corresponding reproducing kernel

Hilbert space. For the regression function belonging to this space faster rates can be

obtained.

The smoothness of the kernel is better described by the decay rate of the eigenvalues

in the expansion (1.5). For 0 < s ≤ 1 we assume that the eigenvalue decay satisfies a

polynomial upper bound of order 1/s :

µi ∼ O
(
i−

1
s

)
, ∀i ∈ N. (1.30)

The above eigenvalue decay measures the smoothness (capacity) of the corresponding

reproducing space. The smaller the value of s, the smoother the reproduction space

is,while for s = 1 the condition (1.30) is satisfied for any bounded kernels. A classical

example is the Matérn kernel of smoothness β − d/2, in which case s = d/(2β) and

condition (1.30) is equivalent to assuming H to be a Sobolev space.

Central concept to obtain tighter bounds is the effective dimension Nρ : (0,∞)→ [0,∞)

defined by

Nρ(λ) := Tr
(
(Tρ + λ)−1 Tρ

)
=
∑
i≥1

µi
µi + λ

.

Proposition 1.12. Let H be a separable RKHS on X and ρ is the probability measure

on X. Then the condition (1.30) is equivalent to the following upper bound of the effective

dimension

Nρ(λ) ≤ Cλ−s. (1.31)

Proof. The proof can be found in (Fischer and Steinwart, 2020, Lemma 11).

Theorem 1.13. Let K be a bounded measurable kernel on X with ∥K∥∞ = 1 and

separable RKHS H. Moreover, let ρ be a distribution on X × [−M,M ], where M > 0 is

some constant. Assume that the extended sequence of eigenvalues of the integral operator

L satisfies the assumption (1.30). Let L−rfH ∈ L2(X, ρX), for r ∈ (0.5, 1]. Furthermore,

let n and λ satisfy the following condition

λ =

(
8 log(6/δ)√

n

) 2
2r+s

(1.32)
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x0

fρ

x0

fρ

Figure 1.3: The definition of the regression function as a conditional average can not
be directly applied for the learning problems with a finite data (left panel). Nadaraya-
Watson regression takes a weighted average of the training output points with the

weights defined by the kernel function k (right panel).

Then, with probability greater than 1− δ, it holds

∥fz,λ − fH∥ρX ≤ 3 (M +R)

(
8 log (6/δ)√

n

) 2r
2r+s

. (1.33)

Proof. The proof follows the same line of arguments as for Theorem 1.11 except the

variance part σ2i in (1.25), (1.26),(1.27). Loosely speaking the term 1/λ in all of the σ2i

should be replaced by 1/λs, which is the upper bound on the effective dimension. It

results in a better concentration for each of Si.

1.8 Local Methods of Regression - Kernel Smoothing

In the previous sections we describe the kernel ridge regression and gave the function

reconstruction point of view. The algorithmic idea was inspired by the variational for-

mulation (1.2) of the regression function. In this section we describe a class of regression

function estimation techniques that achieve the flexibility in estimation the regression

function fρ over the domain X = Rd by estimation a different but simple models sep-

arately at each query point x0. Recall that the regression function is the conditional

expectation of the output for a given input point x0 :

fρ(x0) =

∫
Y
ydρ(y|x0). (1.34)
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h

h

h

(a) (b) (c)

Figure 1.4: Examples of local kernels: (a) Rectangular kernel k(x) = I(∥x∥ ≤ 1).
(b) Epanechnikov kernel k(x) = d+2

2Vd
(1 − ∥x∥2)I(∥x∥ ≤ 1). (c) Gaussian kernel k(x) =

1
2π e

−∥x∥2

.

This definition is our starting point to define a local kernel smoother. Note that the

definition (1.34) can not be applied directly as for a given target point x0 there could

be no corresponding responses (see the left panel of Figure 1.3). The idea is to relax the

definition of the conditional expectation, as illustrated in the right panel of Figure 1.3,

and compute the weighted average in the neighbourhood of the target point. Weights

are assigned to the data points according to the smoothing kernel 2 k, leading to so

called Nadaraya-Watson regression defined as follows

fNW
x,h (x0) =

n∑
i=1

yik
(
x0−xi
h

)∑n
j=1 k

(
x0−xj
h

) , (1.35)

where k : Rd → R is an integrable function satisfying
∫
k(x)dx = 1. Some classical

examples of smoothing kernels are illustrated in Figure 1.4.

Note that unlike KRR, where the regression function is reconstructed over the entire

domain X, local kernel smoother evaluates the regression function at a fixed target point

x0. Heuristic described in section 1.5 to reconstruct the function on RKHS H, based on

the operators Sx and S⊤
x , can also be adapted for the Nadaraya-Watson estimator. To

this order we define the corresponding operators as follows

Sx0f = (f(x0), . . . , f(x0))
⊤ ∈ Rn, and S⊤

x a =
1

n

n∑
i=1

aikh(x0 − xi)

where x0 = (x0, . . . , x0)
⊤ ∈ Rn and kh(x) := 1

hk(x/h). Then, Nadaraya-Watson es-

timator follows from the equality S⊤
x Sx0f = S⊤

x y derived in section 1.5. Indeed, we

2Should not be confused with the reproducing kernels. Smoothing kernels are not positive definite in
general.



Chapter 1 Learning Theory 19

have

STx Sx0f = f(x0)
1

n

n∑
i=1

kh(x0−xi) =
1

n

n∑
i=1

yikh(x0−xi) =⇒ f(x0) =

∑n
i=1 yikh (x0 − xi)∑n
i=1 kh (x0 − xi)

.

1.9 Local polynomial estimators

Nadaraya-Watson estimator (1.35) can be obtained by a local constant least squares

approximation of the outputs yi :

fNW
x,h (x0) = argmin

θ∈R

n∑
i=1

(yi − θ)2 kh (xi − x0) .

The kernel k assigns small weights to the points xi far away from x0, making the contri-

bution of these points in the least squares small. The constant θ is the parameter to be

fitted. Instead of locally fitting a constant to the data, we can locally fit a more general

function, which depends on several parameters. The most popular example is the local

polynomial kernel estimate.

Suppose that the regression function belongs to the Hölder class defined below.

Definition 1.14. The Hölder class Fβ(L) on Rd is defined as the set of ℓ = ⌊β⌋ times

differentiable functions f : Rd → R whose derivative Dsf(x) atisfying the the following

inequality ∣∣∣∣∣∣f(x)−
∑
|m|≤l

1

m!
Dmf(x)(x− x′)m

∣∣∣∣∣∣ ≤ L|x− x′|β, ∀x, x′ ∈ Rd,

where m = (m1, . . . ,md) is a d-dimensional multi-index and Dm is a differentiation

operator Dm = ∂|m|

∂x
m1
1 ...∂x

md
d

.

Functions from the Hölder class can be well approximated by the Taylor polynomial of

order l in the neighbourhood of the target point z as follows

f(x) ≈
∑
|m|≤l

1

m!
Dmf(z)(z − x)m = θ⊤(z)U

(
x− z
h

)
,

where x is sufficiently close to z and

U(u) =

(
um

(1)

m(1)
, . . . ,

um
(S)

m(S)

)⊤

, θ(z) =
(
h|m

(1)|Dm(1)
f(z), . . . , h|m

(S)|Dm(S)
f(z)

)⊤
,
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with S = card{m : |m| ≤ l}, where the numeration is such thatm(1) = (0, . . . , 0),m(2) =

(1, 0, . . . , 0), . . . ,m(d+1) = (0, . . . , 0, 1). After approximating the objective function by its

Taylor expansion, we define the local polynomial estimator of θ(z) (see e.g. (Tsybakov,

2009)) as follows

θ̂n(z) = argmin
θ∈RS

n∑
i=1

[
yi − θ⊤U

(
xi − z
h

)]2
kh (xi − z) .

Being the weighted least squares estimator, θ̂n(z) can be expressed analytically as

θ̂n(z) = Bn(z)
−1Dn(z) ,

where the matrix Bn(z) and the vector Dn(z) are defined as

Bn(z) =
1

nhd

n∑
i=1

U

(
xi − z
h

)
U⊤

(
xi − z
h

)
k

(
xi − z
h

)
,

Dn(z) =
1

nhd

n∑
i=1

yiU

(
xi − z
h

)
k

(
xi − z
h

)
.

The local polynomial estimator of fρ(z) is simply the first coordinate of the vector θ̂n(z)

fn(z) = U(0)θ̂n(z).

Furthermore, properly normalized coordinates of θ̂n(z) provide estimators of the deriva-

tives Dm(2)
f(z), . . . , Dm(S)

f(z). The gradient method described in chapter 5 is based

on this simple observation.

1.10 Bayesian Methods

Kernel ridge regression is closely related to the Gaussian process regression, where Gaus-

sian processes are random functions serving as priors on function spaces.

Definition 1.15. A Gaussian process is a set of random variables f(x) indexed by

the input set X such that for each finite subset {x1, . . . , xm} ⊂ X the random vector

(f(x1), . . . , f(xm))
⊤ is a multivariate normal.

The connection between KRR and GPR is a consequence of the duality between the

Hilbert space spanned by GP and its associated RKHS. Let us describe it in more

detail.
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The finite-dimensional distributions of a Gaussian process are determined by the mean

function and covariance kernel, defined by

m(x) = Ef(x), K(x, x′) = E[f(x)f(x′)]. (1.36)

When m(x) = 0 for all x ∈ X, we call the process f(x) zero-mean GP.

Let f(x), x ∈ X be a zero-mean GP with covariance kernel Ef(x)f(x′) = K(x, x′). Let

H be the completion of the linear space of all random variables

ξ =

n∑
i=1

aif(xi), a1, . . . , an ∈ R, x1, . . . , xn ∈ X, n ∈ N

relative to the norm induced by the inner product ⟨ξ1, ξ2⟩H = E(ξ1ξ2). If HK is RKHS

with reproducing kernel K then the map f(x) 7→ Kx from H to H is one to one and

preserves the scalar product:

⟨f(x), f(x′)⟩H = Ef(x)f(x′) = K(x, x′) = ⟨Kx,K
′
x⟩H.

So the spaces H and H are isometrically isomorphic.

Consider zero-mean GP f(x), x ∈ X with a covariance kernel K. Define another Gaus-

sian process y(x) = f(x)+ε, which is the corrupted version of the process f(x), corrupted

by Gaussian noise ε with variance σ2. Let us fix x ∈ X and compute E[f(x)|y(xi) =

y1, . . . , y(xn) = yn]. The joint distribution of f(x), y1, . . . , yn is zero-mean Gaussian with

covariance matrix given by
K(x, x) K (x, x1) , . . . , K (x, xn)

K (x, x1)
... Kxx + σ2I

K (x, xn)


where Kxx is a Gram matrix of x ∈ Xn. Using properties of the multivariate normal

distribution, as given, e.g., in (see e.g. Rasmussen and Williams 2006, Appendix A.2),

we have

E[f(x)|y(xi) = y1, . . . , y(xn) = yn] = Kxx

(
Kxx + σ2I

)−1
y

where Kxx = (K (x, x1) , . . . ,K (x, xn)) . This is exactly (1.11) with σ2 = λn.
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1.11 Notes

For almost a century, the theory of reproducing kernels has been applied in various fields

of pure mathematics. The theory of RKHSs was introduced by Aronszajn (1950). In the

statistical literature, the reproducing kernels were first introduced in the context of time

series analysis Parzen (1961, 1962b, 1963). The smoothing spline as an optimization

problem in an RKHS were introduced by Kimeldorf and Wahba (1971, 1970). The

latter article provides a closed form expression for the solution to the regulirized least

squares problem, where the regularization is a square norm or seminorm in an RKHS -

the representer theorem. In Kimeldorf and Wahba (1970) connection between Gaussian

processes and spline methods was established. Kanagawa et al. (2018) provides a more

recent overview of the connection between Bayesian and frequentist approaches.

The Nadaraya-Watson estimator is proposed by Nadaraya (1964) and Watson (1964).

An overview of the literature on this estimator as well as local polynomial estimators

can be found, for example, in the books Fan and Gijbels (2018); Györfi et al. (2002);

Hastie et al. (2009). For the minimax analysis we refer to the book Tsybakov (2009).

The generalization bounds of KRR presented in this chapter are based on operator

and spectral methods developed for kernel-based algorithms (Blanchard and Mücke,

2018; Caponnetto and De Vito, 2007; Smale and Zhou, 2005, 2007; Steinwart et al.,

2009; Zhang, 2002, 2005). The main differences between these methods and the more

traditional covering number techniques used in (Cucker and Smale, 2002a; DeVore et al.,

2004; Vapnik, 1998) consist in developing nonasymptotic upper rates estimates of integral

operators via concentration inequalities. However, in the early investigation (De Vito

et al., 2005a,b; Smale and Zhou, 2005, 2007) operator and spectral methods of analysis

of kernel-based algorithms failed to compare with similar results obtained using entropy

methods (DeVore et al., 2004). This gap was filled by (Caponnetto and De Vito, 2007)

utilizing the notion of effective dimension, which encodes the crucial properties of the

marginal distribution via integral operators.

The connection between learning and sampling theory was investigated in Smale and

Zhou (2004). The inverse problem point of view to the regulirized least-squares was

given in De Vito et al. (2005b). The main idea is to associate certain linear operator

equation to the kernel least squares problem. It turns out that the regulirized least

squares solution can be obtained as a Tikhonov solution of the linear operator equation.

Similar arguments can also be found in (Vapnik, 1998, Appendix to chapter 1).



Chapter 2

Covariate shift

2.1 Introduction

In the previous chapter we describe the classical learning scenario when the training

and testing distributions are the same. However, in many real-world applications of

supervised learning, training and testing distributions are different. The most common

setting in the literature is the one in which the conditional distributions of labels given

inputs are the same but the marginal distributions over the inputs differ across train-

ing and testing instances. This situation is referred to as covariate shift (Shimodaira,

2000), which is a special case of sample selection bias (Heckman, 1979). Covariate shift

naturally arises in many common learning scenarios. In active learning problems, the

training data points are sampled by the learner at will, while the test data points are

bounded to be sampled from the environment distribution (Cortes et al., 2008; MacKay,

1992; Pukelsheim, 2006). In domain adaptation the training data is drawn from a source

domain that differs from the target domain, to which the learner is required to transfer

its knowledge (Ben-David et al., 2007; Cortes and Mohri, 2014; Jiang and Zhai, 2007;

Mansour et al., 2009b; Zhang et al., 2012). Covariance shift also occurs in off-policy

reinforcement learning, when a learner is required to evaluate a policy using data gen-

erated by interacting with the environment using a different policy (Precup et al., 2000;

Thomas et al., 2015).

A common approach to address covariate shift is to consider so-called importance weighted

risk minimization. The idea is to correct the notion of risk in a way that matches the

risk associated with the target distribution. While making the risk estimate unbiased

seems natural, in some learning scenarios, it does not significantly improve over un-

weighted risk minimization, and it sometimes even negatively affects its performance

(Cortes et al., 2010).

23
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Cortes et al. (2010) provide an empirical and theoretical analysis of importance weight-

ing (IW). As pointed out in this work, the weighting function w(x) is unbounded, or

extremely large, in many practical cases and IW leads to poor performance. Large

values of w(x) are unfortunately unavoidable whenever regions of the input space with

high testing probability are not properly covered by the training measure. To measure

the degree of a singularity of the testing measure with respect to the training one, the

notion of transfer-exponent was introduced in Kpotufe and Martinet (2021). It was

shown that under severe covariate shifts, learning becomes hard (in a minimax sense)

irrespectively of the learning approach. With this result in mind, a natural question is

whether IW adaptation (whenever IW is well defined) maintains optimal learning rates

and simply affects the constants in the generalization bounds. It is not clear if the poor

performance of IW correction observed by Cortes et al. (2010) is related to the hardness

of the problem and not to the importance weighting approach itself.

Parametric models under covariate shift were studied in Shimodaira (2000) and it

was shown that IW adaptation is the asymptotically optimal strategy (the importance

weighted maximum likelihood estimator is consistent) when the target function does

not belong to the hypothesis class, i.e., the model is misspecified. Although consistency

is guaranteed by this modification, the weighted maximum likelihood estimator is no

longer asymptotically efficient. For well-specified models the situation is different. In

this case, the asymptotically optimal strategy is uniform weighting w(x) = 1. The case

of model misspecification was further investigated by Wen et al. (2014).

Less is known for high-capacity models. The robustness to covariate shift of over-

parameterized models was studied in Tripuraneni et al. (2021), in which kernel methods

with random feature approximation were considered. In the context of over-parameterized

deep neural networks optimized by stochastic gradient descent, it was empirically ob-

served by Byrd and Lipton (2019) that IW impacts only the early stage of training and its

impact diminishes after the model separates (in the classification settings) the training

data. Later, Xu et al. (2021) provided theoretical insights into this phenomenon. Mini-

max results under covariate shift in nonparametric classification were given by Kpotufe

and Martinet (2021). Nonparametric regression over the Hölder class was considered by

Pathak et al. (2022) where a refined version of the singularity measure was given. In

particular, the Nadaraya-Watson estimator was shown to be minimax optimal over the

introduced class of training and testing measure families.

In this chapter, we study the theoretical properties of IW adaptation for kernel ridge

regression (KRR) under covariate shift. Our technical tools are based on operator and

spectral methods developed for kernel-based algorithms (Blanchard and Mücke, 2018;
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Caponnetto and De Vito, 2007; Smale and Zhou, 2005, 2007; Steinwart et al., 2009;

Zhang, 2002, 2005).

Covariate shift is a phenomenon affecting the marginal distributions over the inputs,

therefore it is not surprising that the notion of effective dimension plays an important

role in our investigation. For kernel methods, although the feature space is very large,

only a few of the features with sufficiently large eigenvalues play a role in an actual

fit. The number of these eigenvectors gives the effective dimension and is controlled

through the regularization parameter. We show that in the case of bounded impor-

tance weights, importance weighted kernel ridge regression attains the optimal rate of

convergence (in the minimax sense) known for the learning problems without covariate

shift (Caponnetto and De Vito, 2007). We also show that the optimal regularization

parameter for importance weighted KRR (IW-KRR) under covariate shift is large and

scales according to the supremum norm of the importance weights. Relaxing the bound-

edness condition on the importance weights, the rates of convergence become capacity

independent, matching those found in Smale and Zhou (2005, 2007). Furthermore, by

extending the generalization bounds for IW-KRR to arbitrarily weighted KRR, we are

able to highlight several factors that should be considered in order to obtain successful

re-weighting procedures. As we will see, the approximation properties of the model class

H play a crucial role, providing insights into popular re-weighting functions.

In the independent work of Ma et al. (2022) similar problems are discussed. For the

bounded IW scenario minimax, optimal rates are provided. These are achieved by un-

weighted (uniformly weighted) KRR. Under weaker assumptions, namely boundedness

of the second moment of the importance weights, the sub-optimality of the unweighted

KRR was experimentally demonstrated. For this scenario, a clipped version of IW cor-

rection, with a carefully chosen truncation level and regularization parameter, was shown

to be optimal (up to a logarithmic factor). Let us elaborate more on the similarities and

differences of our work.

1. Our analysis emphasizes the importance of the boundedness condition of the im-

portance weights in the case of IW-KRR. In Theorem 2.5 we show that even a slight

relaxation of the boundedness condition leads to sub-optimal rates for IW-KRR.

In the case of bounded importance weights, the rates of convergence of IW-KRR

are the same as those found by Ma et al. (2022) for the uniformly weighted KRR.

2. We show that IW correction using the clipped weighting function achieves the

optimal rates (without logarithmic factor), whenever the truncation level and reg-

ularization parameter are properly tuned. Similarly to Ma et al. (2022), uniform

boundedness of eigenvalues is also required in our analysis. However, Theorem
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2.14 relaxes this assumption by imposing a stronger moment condition on the

importance weights.

3. Finally, our analysis differs from theirs. As discussed above, our technical tools are

based on operator and spectral methods. The main ingredient to derive fast con-

vergence rates consists in controlling the speed of eigenvalue decay in the variance

part of estimation error bound through the effective dimension. In local methods,

used in Ma et al. (2022), the estimates giving the optimal rates are based on a

local version of the Rademacher averages where these are computed on a subset

of functions with a small empirical error. The local averages applied to the kernel

classes can be accurately described in terms of the kernel eigenvalues. Therefore,

the spectral properties of kernels play a crucial role in both methods.

This chapter is structured as follows. In Section 2 we briefly recall the learning prob-

lem under covariate shift, we introduce some auxiliary notations and the importance

weighted algorithms. Section 3 introduces the assumptions and the main result on the

generalization of IW-KRR, followed by some remarks. In Section 4 we study the gen-

eralization properties of alternative reweighting algorithms, which allow us to provide

insights into practically relevant weighting schemes. In Section 5, we consider the impli-

cation of our results in the context of classification. The final section provides computer

simulations supporting our theoretical conclusions.

2.2 The Learning Problem under Covariate Shift

We consider the covariate shift setting of Shimodaira (2000), where ρtr(x, y) and ρte(x, y)

share the same conditional distribution of the output y given the input x, but they differ

in their marginal distributions on the input space X. More precisely, let ρ(y|x) be the

shared conditional distribution, and let ρtrX(x) and ρ
te
X(x) be the marginal distributions

of ρtr(x, y) and ρte(x, y) on X, respectively

ρtr(x, y) = ρ(y|x)ρtrX(x), ρte(x, y) = ρ(y|x)ρteX(x). (2.1)

Covariate shift refers to the setting in which ρtrX(x) and ρ
te
X(x) differ.

In the following we consider the regression problem; while in Section 2.5 we extend the

results to binary classification problems. The task is to estimate the regression function

fρ : X → Y defined from the conditional distribution ρ(y|x) as

fρ(x) :=

∫
Y
y dρ(y|x), x ∈ X. (2.2)
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For this problem, we assume that we are given n ∈ N i.i.d. samples from the training

distribution,

(x1, y1), . . . , (xn, yn)
i.i.d.∼ ρtr(x, y). (2.3)

To compact the notation we denote the training set by z := {z1, . . . , zn} ∈ Zn where

zi := (xi, yi).

The goal is to construct an estimator fz : X → Y of the regression function fρ based

on the training data z. In particular, we aim at making fz a good approximation of fρ

with respect to the testing input distribution ρte, not with respect to the training input

distribution ρtr.

More precisely, for any given function f : X → Y , we consider the following risk function

Eρte(f) =
∫
Z
(f(x)− y)2dρte(x, y) =

∫
X

∫
Y
(f(x)− y)2dρ(y|x)ρteX(x), (2.4)

and we wish to find an estimator fz such that the risk Eρte(fz) is small. It is well

known that the minimizer of (2.4) over the space of square integrable functions is the

regression function (2.2). However, the regression function (2.2) is unknown, and the

goal of learning theory is to construct the function fz from the finite-size sample set z.

In the absence of covariate shift, the conventional approach consists in replacing the risk

functional (2.4) with its finite sample approximation based on z (in this case sampled

from ρteX = ρtrX)

Ez(f) =
1

n

n∑
i=1

(f(xi)− yi)2 , (2.5)

and minimize (2.5) over some functional class H called the model class (Vapnik, 1998).

However, in the covariate shift scenario, the learning algorithm is bounded to approxi-

mate (2.4) based on a training set z sampled from ρtr. To overcome this limitation it is

either possible to modify the training set z to make it resemble to samples coming from

ρte, or to change the notion of risk (2.4). The latter approach leads to the definition of

importance weighted risk. Under the absolute continuity assumption dρte ≪ dρtr, we

define the importance weighting function

w(x) =
dρteX(x)

dρtrX(x)
, (2.6)

and the corresponding importance weighted risk

Eρte(f) =
∫
Z
w(x)(f(x)− y)2dρtr(x, y). (2.7)
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Based on z, we also define it empirical estimate

Ez(f) =
1

n

n∑
i=1

w(xi)(f(xi)− yi)2. (2.8)

In the following, we will study the properties of estimators that belong to the model

class H associated with a reproducing kernel Hilbert space. We also assume that K is

bounded, meaning that

sup
x∈X

K(x, x) ≤ κ. (2.9)

To avoid superfluous notations, we further assume κ ≤ 1. This condition can always be

achieved by properly scaling the kernel function.

2.2.1 Notations and Auxiliary Operators

Let ν be a measure under consideration (in the consequent it will be training, testing or

other). By L2(X, ν) we denote the Lebesgue spaces of square-integrable functions with

respect to measure ν, with the norm given by

∥f∥ν =

(∫
X
f2(x)dν(x))

) 1
2

.

For any function f for which the integral is finite, we set ∥f∥k,ν =
(∫
X f

k(x)dν(x))
)1/k

.

Our analysis relies upon operators related to the RKHS that we introduce below. Crucial

in our analysis are the covariance operator Tν : H → H,

(Tνf) (x) =

∫
K
(
x′, x

)
f(x′)dν(x′), (2.10)

and the integral operator Lν : L2(X, ν)→ H,

(Lνf) (x) =

∫
K
(
x′, x

)
f(x′)dν(x′). (2.11)

In both definitions the measure ν depends on the context. These operators have a similar

definition, however they differ in their domains. Under the boundedness assumption

(2.9), the covariance operator Tν can be proved to be a positive trace class operator for

any measure ν, namely,

∥Tν∥op ≤ Tr(Tν) =

∫
X
Tr(Tx)dν(x) ≤ 1, (2.12)
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where ∥ · ∥op denotes the operator norm from H to H and Tx = Kx⟨Kx, ·⟩H. Positive

trace class operators are known to have at most countably many non-zero eigenvalues, all

being non-negative. We denote by (µi (Tν))i≥1 the ordered sequence of eigenvalues (with

geometric multiplicities), possibly extended appending zeros in case of finitely many non-

zero eigenvalues. From (2.12) we can conclude that the resulting sequence (µi (Tν))i≥1

is summable, since
∑∞

i=1 µi (Tν) = Tr(Tν) ≤ 1. Moreover, the spectral theorem gives

Tν =
∑
i≥1

µi

〈
·, µ1/2i ei

〉
H
µ
1/2
i ei and Lν =

∑
i≥1

µi ⟨·, ei⟩ν ei,

where {µ1/2i ei}∞i=1 is an orthonormal basis (ONB) of KerT⊥
ν and {ei}∞i=1 is an ONB of

(kerLν)
⊥ .

Finally, we define the empirical covariance operator Tx : H → H such that Tx = S⊤
x Sx.

It can be shown that Tx = 1
n

∑n
i=1Kxi ⟨Kxi , ·⟩H and, similar to (2.12), we then have

∥Tx∥op ≤ Tr (Tx) =
1

n

n∑
i=1

Kxi ⟨Kxi , ·⟩H ≤ 1. (2.13)

2.2.2 Importance Weighted Risk Minimization Algorithm

We now introduce the importance weighted regularized least-squares algorithm (IW-

RLS). The IW-RLS solution associated with the kernel K is the minimizer of the follow-

ing weighted least-square optimization problem defined over the training set of samples

z = {(xi, yi)}ni=1 independently drawn according to ρtr

f IWz,λ := argmin
f∈H

{
1

n

n∑
i=1

w(xi) (f (xi)− yi)2 + λ∥f∥2H

}
(2.14)

where λ = λn is any positive function of the number of examples n known as a regular-

ization parameter.

In this section, we assume that the importance weighting function w = dρteX/dρ
tr
X is

known and are mainly concerned to study the effects of the weights on generalization

properties of IW-RLS. When the importance weights are not known, they can be esti-

mated from the training and testing input data. An analysis of the effect of an error in

the estimation of the reweighting function on the accuracy of the learning algorithm is

given in Cortes et al. (2008).
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We begin by describing the the data-free limit of (2.14). As we increase the number of

training examples, n→∞, the functional in the minimization problem (2.14) becomes

Eρte(f) + λ∥f∥2H.

By the standard decomposition of Eρ(f) we have

Eρte(f) = ∥f − fρ∥2ρteX + Eρte(fρ).

As the last term is independent from f , in the data-free limit we have that (2.14) becomes

fλ := argmin
f∈H

{
∥f − fρ∥2ρteX + λ∥f∥2H

}
. (2.15)

The following lemma describes the solution of the minimization problems (2.14) and

(2.15).

Lemma 2.1. For any λ > 0, the solutions fz,λ and fλ exist and are unique. Moreover,

f IWz,λ =
(
S⊤
xMwSx + λ

)−1
S⊤
xMwy (2.16)

where y = (y1, . . . , yn), w = (w(x1), . . . , w(xn)) with w(x) = dρtrX/dρ
te
X(x) and Mw being

the diagonal matrix with main diagonal entries w(xi), i = 1, . . . , n.

For the infinite data case, the the solution of the minimization problem (2.15) is

fλ = (T + λ)−1 LfH. (2.17)

where T = TρteX and L = LρteX .

Proof. The proof of (2.16) can be found in (Smale and Zhou, 2004, Theorem. 2). For

(2.17) see (Cucker and Smale, 2002b, Proposition. 7).

Remark 2.2. Assuming that the matrix Mw has full rank the solution (2.16) can be

equivalently written as

f IWz,λ =

n∑
i=1

αiK (·, xi) , α =
(
Kxx + nλM1/w

)−1
y, (2.18)

where Kxx is the covariance matrix whose entries are given by Kij = K(xi, xj) and Mw

is the diagonal matrix with main diagonal entries 1/w(xi), i = 1, . . . , n. Depending on

the observation weight we rescale the regularizer accordingly: the higher the weight of

an observation, the less we regularize.
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2.3 Convergence Results

Let fH be the projection of the regression function fρ onto the closure ofH in L2(X, ρteX) :

∥fρ − fH∥ρteX = dist(fρ,H) := inf
f∈H
∥fρ − f∥ρteX .

Clearly non of the learning procedures over H can achieve better performance than

fH. The goal of this section is to understand: (i) how well the weighted empirical risk

minimizer (ERM) fz,λ approximates fH, (ii) what is the role of the importance weights

in this approximation, (iii) how the decay of the regularization parameter λ affects the

convergence rates.

There are various ways to measure the approximation error of fρ with respect to fz,λ.

First of all, let us notice that measuring the approximation quality using L2(X, ρtrX)

norm does not lead to anything interesting as our goal is not to minimize the risk with

respect to ρtr. In this chapter, we shall measure the performance of the model with

respect to the L2(X, ρteX) norm.

2.3.1 Assumptions

We first introduce some basic assumptions and we then present the convergence results

for importance weighted algorithms.

Assumption 1. There exist r ≥ 1/2 and R > 0 such that ∥L−rfH∥ρteX ≤ R.

Remark 2.3. The condition above can be equivalently stated as follows. There exists

r ≥ 1/2, R > 0 and g ∈ L2
(
X, ρteX

)
such that ∥g∥ρteX ≤ R and fH(x) = (Lrg) (x), where

Lr is defined by

Lr
(∑

aiei

)
=
∑

µriaiei.

Assuming the finiteness of ∥L−rfH∥ρteX is a common source condition in the inverse

problem literature (Caponnetto, 2006; De Vito et al., 2005a; Smale and Zhou, 2004, 2007)

and it characterizes the regularity of the target function fH. A bigger r corresponds to

higher regularity and it can lead to faster convergence rates. In particular, the case r = 0

is equivalent to making no assumption, while when r = 1/2, we are requiring fH ∈ H,
since ∥L1/2f∥H = ∥f∥ρteX . For r ≥ 1/2 the image of the integral operator Lr

(
L2(X, ρteX)

)
becomes a subset of H, which implies that the minimization of risk functional (2.4) over

H has at least one solution in H. This is referred to as the attainable case.
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Assumption 2. Let w = dρteX/dρ
tr
X . For some q ∈ [0, 1] there exist positive constants W

and σ depending on q such that for all integer m ≥ 2(∫
X
w(x)

m−1
q dρteX(x)

)q
≤ 1

2
m!Wm−2σ2. (2.19)

Remark 2.4. When q = 0 it corresponds to the case when w(x) is uniformly bounded

over X. In this case W = supx∈X w(x) and σ
2 =

∫
w(x)dρteX =

∫
w2(x)dρtrX .

Obviously, if the training measure does not properly cover the support of the testing

one, learning is impossible. It is not hard to check that the Assumption 2 is satisfied

when 2ρtrX{x : w(x) ≥ t} ≤ Wσ2 exp(− t1/q

W ), restricting the behavior of large values of

the Radon–Nikodym derivative.

The condition (2.19) can be written equivalently as a condition on the Rényi Divergence

(Cortes et al., 2010; Mansour et al., 2009a) as follows

H(m−1)/q(ρ
te
X∥ρtrX) ≤

1

m− 1

(
logm! + log

(
Wm−2σ2

2

))
where

Hα(ρ
te
X∥ρtrX) =

1

α
log

∫
X
w(x)αdρteX(x)

is the Rényi Divergence with parameter α. Notice that for each fixed q > 0, we are

imposing the growth condition on the Rényi Divergence w.r.t. the parameter m.

Assumption 3. For some s ∈ (0, 1] we assume that

Es := 1 ∨ sup
λ∈(0,1]

√
N (λ)λs <∞ (2.20)

where N (λ) = Tr
[
T (T + λ)−1

]
.

The constant Es characterizes the marginal testing distribution ρteX through N (λ), also

termed as degrees of freedom (Zhang, 2005) or effective dimension (Caponnetto and

De Vito, 2007). The boundedness of Es was implicitly assumed in (Caponnetto and

De Vito, 2007, Definition 1, (iii)) and it is satisfied, for instance, when the eigenvalues

of T , µi(T ), have an asymptotic order O
(
i−1/s

)
. In general, the eigenvalue assumption

is a tighter measure for the complexity of the RKHS than more classical covering or

entropy number assumptions (Steinwart et al., 2009). For the case s = 1, referred to as

the capacity independent setting, E1 is always bounded as N (λ)λs = N (λ)λ ≤ κ = 1.
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2.3.2 Rates of Convergence for IW-KRR

Now we are ready to state our main results for the importance weighted kernel ridge

regression.

Theorem 2.5. Let ρte and ρtr be the distributions on X × [−M,M ], where M > 0 is

some constant, satisfying Assumptions 1-3. Let q ∈ [0, 1] and s ∈ (0, 1]. Furthermore,

let n and λ satisfy the constraints λ ≤ ∥T∥op and

λ =

(
8E1−q

s (
√
W + σ) log

(
6
δ

)
√
n

) 2
2r+s+q(1−s)

(2.21)

for δ ∈ (0, 1) and r ≥ 0.5. Then, with probability greater than 1− δ, it holds

∥f IWz,λ − fH∥ρteX ≤ 3 (M +R)

(
8E1−q

s (
√
W + σ) log

(
6
δ

)
√
n

) 2r
2r+s+q(1−s)

. (2.22)

The above theorem provides a convergence result in high probability for the importance

weighted kernel ridge regression for the attainable case.

We first notice that the optimal choice of the regularization parameter (Caponnetto,

2006; Caponnetto and De Vito, 2007) depends on the characteristics of importance

weights. Compared to the standard learning scenario, the optimal regularizer should

be bigger under covariate shift and importance weighting correction is applied, and it

depends on W and σ.

Second, we notice that equation (2.21) together with the condition λ ≤ ∥T∥op can be

equivalently given as a condition on the number of observations as follows

√
n ≥ 8E1−q

s (
√
W + σ)∥T∥−r−

s+q(1−s)
2

op log

(
6

δ

)
.

Third, the slow tail decay of the importance weighting function does not go in favor of

importance weighting adaptation. To see this let us consider two extreme cases when

q = 0 and q = 1. When q = 0, w is bounded and ∥f IWz,λ − fH∥ρteX has an asymptotic

rate of convergence O
(
n−

r
2r+s

)
for s ∈ (0, 1], which is optimal in the minimax sense

of Caponnetto and De Vito (2007). The rate of convergence of importance weighted

KRR achieves the same order as those attained by the KRR without covariate shift. For

q = 1, the probability of observing large values of w decays exponentially, and the best

learning rate that can be achieved is O
(
n−

r
2r+1

)
, for all s ∈ (0, 1].



Chapter 2 Covariate shift 34

This last remark agrees with the earlier observation of Cortes et al. (2010) that im-

portance weighting correction can succeed when the weights are bounded and it gives

slower rates under weak assumption on the moment of the weight. As pointed out by

Kpotufe and Martinet (2021), the slow rates are not only the consequence of importance

weighting correction. In a minimax sense, such situations are hard irrespective of the

learning approach. Later we will see that the optimal rates can be achieved under a

much weaker assumption on the weights than the one put forward in Assumption 2.

A corollary of Theorem 2.5, encompassing all the values of q ∈ [0, 1], can be obtained

for the special case corresponding to s = 1.

Corollary 2.6. Let ρte and ρtr be as in Theorem 2.5. If λ satisfies the constraints

λ ≤ ∥T∥op and

λ =

(
8(
√
W + σ) log

(
6
δ

)
√
n

) 2
2r+1

for δ ∈ (0, 1) and r ≥ 0.5. Then, with probability greater than 1− δ, it holds

∥f IWz,λ − fH∥ρteX ≤ 3 (M +R)

(
8(
√
W + σ) log

(
6
δ

)
√
n

) 2r
2r+1

.

The above bound is kernel independent (except the quantity R) and it matches the one

given in Smale and Zhou (2007). The corollary states that using importance weighting

adaptation when choosing the right regularization parameter λ gives us the same rate

of convergence as those attained by the KRR in the absence of covariate shift.

Finite dimensional RKHS. We now turn to deriving some explicit consequences of

our main theorems for specific classes of reproducing kernel Hilbert spaces. Our first

corollary applies to problems for which the kernel has finite rank N , meaning that its

eigenvalues satisfy µj(T ) = 0 for all j > N . Examples of such finite rank kernels

include the linear kernel K (x, x′) = ⟨x, x′⟩Rd , and the kernel K(x, x′) = (1 + ⟨x, x′⟩Rd)
k

generating polynomials of degree k.

Corollary 2.7. Let ρte and ρtr be the distributions on X × [−M,M ], satisfying As-

sumption 2 with q = 1 and let N (λ) ≤ N. If λ satisfies the constraints λ ≤ ∥T∥op
and

λ =

(
8
√
N(
√
W + σ) log

(
6
δ

)
√
n

)2

, δ ∈ (0, 1),

then, with probability greater than 1− δ, it holds

∥f IWz,λ − fH∥ρteX ≤ 3 (M +R)
8
√
N(
√
W + σ) log

(
6
δ

)
√
n

.



Chapter 2 Covariate shift 35

The rate O
(√

N/n
)
is known to be optimal for the ridge regression without covariate

shift.

Smoothness spaces. The Assumption 3 holds for the covariance operator T with the

eigenvalues of the following order

µi(T ) ∼ O
(
i−

1
s

)
. (2.23)

IfX is a Euclidean ball in Rd, β > d/2 is some integer, and ρteX is the uniform distribution

on X, then the Sobolev space H :=W β(X) is an RKHS that satisfies (2.23) for s := d
2β .

For this particular choice of the eigenvalue decay we have the following

Corollary 2.8. Let ρte and ρtr be as in Theorem 2.5. If λ satisfies the constraints

λ ≤ ∥T∥op and

λ =

(
8(
√
W + σ) log

(
6
δ

)
√
n

) 4β
2β(2r+q)+d(1−q)

for δ ∈ (0, 1) and r ≥ 0.5. Then, with probability greater than 1− δ, it holds

∥f IWz,λ − fH∥ρteX ≤ 3 (M +R)

(
8(
√
W + σ) log

(
6
δ

)
√
n

) 4rβ
2β(2r+q)+d(1−q)

. (2.24)

For the special case when q = 0 and r = 1/2, we have the optimal rates for Sobolev

spaces O((W/n)−
β

2β+d ), under covariate shift with bounded importance weights (Ma

et al., 2022). Note that the rates reduce to the known optimal rates (Caponnetto and

De Vito, 2007) in the case of no covariate shift.

The Sobolev space is not the only example when the condition (2.23) is satisfied. Another

example is the RKHS with the Gaussian radial basis function (RBF) reproducing kernel

and the distribution ρteX satisfying the following condition

ρteX

(
Rd\r1B

)
≤ r−τ1 , r1 > 0,

where B is the unit ball in Rd. A bound of the form (2.23) can be established (Steinwart

and Christmann, 2008, Theorem 7.34).

2.4 Effect of Using Incorrect Weights

In the Section 2.3 we have analyzed the generalization properties of the importance

weighted KRR and concluded that importance weighting adaptation is an effective strat-

egy whenever the regularizer is properly tuned (Theorem 2.5). It is important to notice
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these results have been derived under the assumption that the importance weights w(x)

can be perfectly estimated, see (2.6). In the following we relax this assumption and we

study the performance of the weighted KRR in the case of a weighing function v(x) that

does not match the ratio between test and train marginal distributions.

In the case of “imperfect” weights v(x), the optimization problem (2.14) becomes

f ′z,λ := argmin
f∈H

{
1

n

n∑
i=1

v(xi) (f (xi)− yi)2 + λ∥f∥2H

}
(2.25)

where now v(x) =
dρ′X(x)

dρtrX(x)
for some measure ρ′X ≪ ρtrX . In the data free scenario, the

optimization problem (2.25) is equivalent to

f ′λ := argmin
f∈H

{
∥f − fρ∥2ρ′X + λ∥f∥2H

}
,

whose solution can be expressed as

f ′λ =
(
T ′ + λI

)−1
L′f ′H, (2.26)

where T ′ = Tρ′X , L
′ = Lρ′X and f ′H being the projection of the regression function fρ

onto the closure of H in L2(X, ρ′X).

In order to provide guarantees for the finite data scenario we need a set of assumptions

on v and ρ′X that are similar to Assumptions 2 and 3.

Assumption 4. For some q′ ∈ [0, 1] there exist positive constants V and γ depending on

q such that for all m ≥ 2

(∫
X
v(x)

m−1
q′ dρ′X(x)

)q′
≤ 1

2
m!V m−2γ2. (2.27)

Assumption 5. For some s′ ∈ (0, 1] we assume that

E′
s′ := 1 ∨ sup

λ∈(0,1]

√
N ′(λ)λs′ <∞ (2.28)

where N ′(λ) = Tr
[
T ′(T ′ + λ)−1

]
.

Equipped with the necessary assumptions, we are now ready to state the main result for

an arbitrarily weighted KRR.

Theorem 2.9. Let ρte and ρ′ be the distributions on X×[−M,M ], whereM > 0 is some

constant, satisfying Assumptions 1,4 and 5. Let q′ ∈ [0, 1] and s′ ∈ (0, 1]. Furthermore,
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let n and λ satisfy the constraints λ ≤ ∥T ′∥op and

λ =

(
8E′

s′(
√
V + γ) log

(
6
δ

)
√
n

) 2
2r+s′+q′(1−s′)

(2.29)

for δ ∈ (0, 1). Then, for r ≥ 0.5, with probability greater than 1− δ, it holds

∥f ′z,λ−fH∥ρteX ≤ 3
(M +R)

1− µ

(
8E′

s′(
√
V + γ) log

(
6
δ

)
√
n

) 2r
2r+s′+q′(1−s′)

+4∥f ′H−fH∥ρteX (2.30)

with µ = µmax

(
(T + λI)−1/2(T − T ′)(T + λI)−1/2

)
.

Remark 2.10. The scaling factor 1/(1 − µ) is well defined as µ < 1. For the special

case when ρ′X = ρteX , both µ and ∥f ′H − fH∥ρteX vanish, recovering the learning rates of

Theorem 2.5.

Theorem 2.9 highlights some important aspects associated to “imperfectly” re-weighting

the risk and its effects on the learning rates.

First we notice that a good choice of the weighting function heavily depends on the

approximation properties of H. Consider the misspecified scenario depicted in Figure

2.1a in which fρ /∈ H. For a correctly specified weighting function, the solution fz,λ

concentrates around its data free limit fλ, and the latter is a good approximation of

fH, the projection of regression function fρ on H under the measure induced by ρte. In

the case of “imperfect” weights, f ′z,λ concentrates around f ′λ that approximates f ′H, the

projection of fρ under the measure induced by ρ′. The latter minimizes the projection

error under the induced measure ρ′, not the testing one ρte. Therefore, whenever the

model class is misspecified and the weights are “imperfect”, the learner approximates a

“wrong” projection.

The situation is less dramatic when the model class is well-specified, fρ ∈ H, or when

fρ is well approximated by the elements of H (Figure 2.1b). Under a suitable choice

of the regularization parameter, both fλ and f ′λ are close to the regression function fρ.

Therefore, becomes preferable to choose weighting functions with a small variance and

not necessarily matching the ratio between train and test measures. This explains an

uniform weighting function, which has zero variance, is often the best choice for universal

kernels.

Another important quantity to be considered is the scaling factor 1/(1 − µ), which

measures the distortion between candidate and testing measures. However, choosing the

testing measure for ρ′X that give rise the smallest scaling constant does not necessarily

improve the generalization bound due to the large constant V .
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H

fρ

fH f
′
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fz,λ

fλ
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′
λ

f
′
z,λ

(a) Misspecified
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fρ

fz,λ

fλ f
′
λ

f
′
z,λ

(b) well-specified

Figure 2.1: Difference between misspecified and well-specified scenarios. (a) IW adap-
tation could significantly reduce the approximation error with a price of high variance.
(b) On the contrary, the performance of the model can be significantly improved by

using the weighting function with better control of large values.

Remarkably, the bound and the optimal regularization parameter depend on the geome-

try of candidate measure ρ′X . Indeed, in the well-specified scenario, the testing measure

plays a role only through the scaling factor, defined by µ.

Below we consider some weighting procedures which are commonly used in practice.

Uniform weights. The uniform weights scenario corresponds to the case where ρ′X =

ρtrX . This choice corresponds to the solution of the following optimization problem

ρtrX = argmin
ρ′:ρ′X≪ρtrX

∥∥∥∥dρ′XdρtrX

∥∥∥∥
∞
,

and it yields the smallest constant V in the generalization bound (2.30). In other words,

the uniform weights leads to the smallest generalization bound whenever the difference

between the projections of the regression function fρ on H w.r.t the training and testing

input measures is small. This is the case in the well-specified scenario, when fρ ∈ H,
or when the kernel K is universal, meaning that the corresponding Hilbert space H is

dense in L2(X, ρteX). In both of these cases fρ = fH = f ′H, and the term ∥f ′H − fH∥ρteX in

the bound (2.30) vanishes. The above discussion is formalized in the following corollary.

Corollary 2.11. Let us assume that the conditions of Theorem 2.9 are satisfied with

ρ′X = ρtrX . Furthermore, assume that either fρ ∈ H, or H is dense in L2(X, ρteX). Let n

and λ satisfy the constraints λ ≤ ∥T ′∥op and

λ =

(
8E′

s′ log
(
6
δ

)
√
n

) 2
2r+s′
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for δ ∈ (0, 1) and s′ > 0. Then, for r ≥ 0.5, with probability greater than 1− δ, it holds

∥f ′z,λ − fH∥ρteX ≤ 3
(M +R)

1− µ

(
8E′

s′ log
(
6
δ

)
√
n

) 2r
2r+s′

. (2.31)

The generalization bound (2.31) depends only on the geometry of the training input

measure. To achieve this bounds no assumption on the IW is needed. For the covari-

ate shift with bounded importance wights, Ma et al. (2022) showed that the rates for

unweighted KRR can be rewritten in terms of the testing measure geometry with the

rates similar to those attained by IW-KRR (2.24) with r = 1/2 and q = 0.

Clipping of importance weights. Another popular weighting function is the one

obtained after clipping the importance weights that exceed a maximum valueD. Namely,

wD(x) = min{w(x), D}. (2.32)

We denote the solution of the weighted KRR based on clipped importance weights by

fDz,λ and provide the following learning guarantee.

Theorem 2.12. Assume that
∫
w(x)dρteX(x) ≤ Σ and the eigenfunctions {ei}i≥1 of the

covariance operator T is uniformly bounded

sup
i≥1
∥ei∥∞ ≤ 1. (2.33)

Furthermore, let n and λ satisfy the constraints

λ =

(
16ΣEs log

(
6
δ

)
√
n

) 2
2r+s

and D = 2ΣN (λ), (2.34)

for δ ∈ (0, 1). Then, for r ≥ 0.5, with probability greater than 1− δ, it holds

∥fDz,λ − fH∥ρteX ≤ 2 (M +R)

(
16ΣEs log

(
6
δ

)
√
n

) 2r
2r+s

. (2.35)

Remark 2.13. To achieve the optimal rates (2.35) the model class does not need to

be well specified as the bias term is eliminated by the truncation of the weights to a

maximum value D.

The detailed proof can be found in Appendix 2.8.3. A key step in the proof consists in

showing that ∥T (TD+λ)−1∥ is uniformly bounded over λ, where TD =
∫
TxwD(x)dρ

tr
X(x).

Having establish that, the rest of the proof follows along the same lines of the one for

Theorem 2.5.
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Unfortunately, the condition (2.33) is not always satisfied and it is known that even

C∞-kernels on [0, 1], where [0, 1] is equipped with the Lebesgue measure, may not have

uniformly bounded orthonormal basis (Zhou, 2002, Example 1). In general, the uniform

boundedness property is hard to check. Even for the Gaussian RBF kernel on [−1, 1] it
is unknown whether the condition (2.33) holds. Uniformly bounded eigenfunctions have

been considered, e.g., by Mendelson and Neeman (2010) and Steinwart et al. (2009).

The condition (2.33) can be relaxed imposing a stronger moment condition on the weight-

ing function. Indeed, hard covariate shifts, where the hardness is encoded in the moment

condition, should be met by extra integrability condition for the eigenvalues ei. This is

more precisely stated in the following theorem.

Theorem 2.14. Assume that the following conditions hold

∥w∥k,ρteX ≤ Σ and sup
i≥1
∥e2i ∥l,ρteX ≤ 1,

where 1/k + 1/l = 1. Let n, λ and D satisfy the condition (2.34). Then

∥fDz,λ − fH∥ρteX ≤ 2 (M +R)

(
16EsΣ log

(
6
δ

)
√
n

) 2r
2r+s

,

with probability greater than 1− δ.

Kpotufe Importance Weights. Another weighting function, motivated by the work

of Kpotufe (2017), is

wD(x) =
ρteX(BD(x))

ρtrX(BD(x))
,

where BD(x) is the ball of radius D centered at the point x. Obviously, if ρteX ≪ ρtrX ,

wD(x) approaches the importance weights as D → 0; however, wD(x) can be defined

even for the measures when IW is not well defined (Kpotufe and Martinet, 2021). For

D = diam(X), we are in the case of the uniform weight wD(x) = 1.

2.5 Binary Classification

In the following we show that the above results above can be applied to binary clas-

sification algorithms, i.e., when Y = {−1, 1}. The problem of statistical learning in

classification consists of predicting the value y ∈ {−1, 1} for a given x ∈ X. As in the

regression setting here we also distinguish training and testing input distributions, while

the conditional distribution is the same and supported on {−1, 1}. We consider binary
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classifiers, namely functions f : X → {−1, 1} that assign a label to each point x ∈ X.

We denote the classification error of a classifier as follows

R(f) = ρ {(x, y) ∈ Z = X × {−1, 1} | f(x) ̸= y} .

It is well known that

min
f
R(f) = R(fρ)

where fρ(x) =
∫
R ydρ(y |x) = P (y = 1 |x)− P (y = −1 |x) is a regression function. The

classifier sgn(fρ(x)) is called the Bayes rule.

It can be shown (Bartlett et al., 2006; Bauer et al., 2007) that the excess misclassification

error R(f)−R(fρ) can be upper bounded as follows

R(f)−R(fρ) ≤ ∥f − fρ∥ρteX ,

meaning that the Theorem 2.5 can be directly applied to achieve finite sample guarantees

replacing f by fz,λ. Mammen and Tsybakov (1999) first showed that one can attain

fast rates under mild assumptions on the behavior of fρ(x) in a neighborhood of the

boundary {x : fρ(x) = 0}. Namely if the Tsybakov noise condition holds (Tsybakov,

2004) for l ≥ 0,

ρteX ({x ∈ X : fρ(x) ∈ [−∆,∆]}) ⩽ Bl∆
l, ∀∆ ∈ [0, 1], (2.36)

then

R (fz,λ)−R (fρ) ⩽ 4cα ∥fz − fρ∥
2

2−α

ρteX
,

with α = l/(l + 1) and cl = Bl + 1(Bauer et al. (2007),Yao et al. (2007)). A direct

application of Theorem 2.5 gives us

Corollary 2.15. Assume that the assumptions of Theorem 2.5 is satisfied together with

the margin condition (2.36) and let fρ ∈ H. If λ satisfies the constraints λ ≤ ∥T∥ and

λ =

(
8E1−q

s (
√
W + σ) log

(
6
δ

)
√
n

) 2
2r+s+q(1−s)

,

for δ ∈ (0, 1), q ∈ [0, 1] and r ≥ 0.5. Then with probability greater than 1− δ, it holds

R (fz,λ)−R (fρ) ≤ 12cα (M +R)

(
8E1−q

s (
√
W + σ) log

(
6
δ

)
√
n

) 4r
(2r+s+q(1−s))(2−α)

.
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Figure 2.2: Comparison between unweighted KRR and IW-KRR for different re-
gression functions. In the top left figure we consider a smooth regression from which
training and testing inputs are distributed as N (0, 0.5) and N (1.5, 0.3) respectively.
On the top right panel we report the performance of the IW-KRR and unweighted
KRR for different regularization parameter values. On the bottom row we repeat the

experiment using relatively non-smooth regression function.

2.6 Simulations

We consider a simple one-dimensional regression problem with a regression function

fρ(x) = e
− 1

x2k , k ∈ N, (2.37)

corrupted by homoscedastic Gaussian noise with mean µ = 0 and standard deviation

σ = 0.05. We assume that x ∼ N (0, 0.5) at training time and x ∼ N (1.5, 0.3) at testing

time.

In the first experiment we compare the performance of importance weighted and un-

weighted KRR for two different values of k. We choose a Gaussian RBF kernel with

length-scale parameter equal to one. On the top left panel of Figure 2.2 the regres-

sion function with k = 1 along with a randomly drawn set of points from training and

testing measures are reported. On the top right panel the performance of the weighted

and unweighted KRR for different values of the regularization parameter is presented.

As one can see, importance weighting adaptation with optimal regularization parameter

performs slightly worse than unweighted KRR with optimal λ. This can be explained

by the fact that the underling regression function is sufficiently smooth and can be well

approximated by the functions in RKHS with exponential kernel.
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Figure 2.3: Performance of IW-KRR and unweighted KRR using a polynomial kernel
with increasing degree. As the degree of the polynomial kernel increases, the role of

the importance weights diminishes.

On the other hand when k in (2.37) is large, the regression function essentially becomes

piece-wise constant. As it is well known, neither constants nor discontinuous functions

belong to the RKHS associated with the Gaussian RBF kernel, so the increased values

of k increases the level of misspecification. The regression function with k = 25 together

with the randomly drawn training and testing points is reported in the bottom-left

panel of Figure 2.2. Unlike the previous example, IW adaptation here can be beneficial

as shown in the bottom-right panel of the figure. Notice that in both these examples, the

optimal regularization parameter for unweighted KRR is smaller in comparison with the

optimal λ of IW-KRR. This is well justified by the optimal choice of the regularization

parameter in Theorem 2.9.

The relation between the approximation properties of the RKHS associated to a kernel

and the performace of weighted KRR can be showcase using a polynomial kernel with an

increasing kernel degree. In Figure 2.3 the performance of KRR with polynomial kernel

is given for the function (2.37) with k = 1. For the degree-one kernel, the advantage

of IW adaptation is apparent; the regression function can be well approximated by the

linear function under the testing distribution. For the degree-two polynomial, the space

of quadratic functions can approximate the true regression function in the supremum

norm in a suitable chosen domain, and therefore the model trained on the training data

with uniform weights gives a globally suitable model. With the degree of polynomial

kernel increasing, IW adaptation does not provide a clear benefit.
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2.7 Discussion

In this chapter, we studied the generalization properties of weighted KRR under covari-

ate shift. For the bounded importance weights, we proved the minimax optimality of

IW-KRR. We showed that slightly relaxing the boundedness condition leads to slower

rates for IW-KRR. We believe that questions related to optimality are of potential in-

terest, and we leave this to future investigations. By examining alternative re-weighting

procedures we highlighted several important factors to be considered for good gener-

alization properties. We demonstrated the importance of distinguishing well-specified

and misspecified scenarios under covariate shift. Under the extra regularity conditions

on the eigenfunctions, the optimality of clipped IW-KRR was shown for the family of

covariate shifts with integrable (w.r.t ρte) importance weights.

2.8 Proofs

2.8.1 Upper bound for IW-KRR

In order to establish upper bounds, we split ∥f IWz,λ − fH∥ρteX into two parts:

∥f IWz,λ − fH∥ρteX ≤ ∥f
IW
z,λ − fλ∥ρteX + ∥fλ − fH∥ρteX , (2.38)

the estimation error ∥fz,λ − fλ∥ρteX and the approximation error ∥fλ − fH∥ρteX . A bound

on the approximation error has already been given in Proposition 2.21.

Theorem 2.16. Assume λ ≤ ∥T∥ and

nλ1+q ≥ 16(W + σ2)N (λ)1−q log2
(
6

δ

)
(2.39)

for some δ ∈ (0, 1). Then, with probability greater than 1− δ, it holds

∥f IWz,λ − fλ∥ρteX ≤ 16 (M +R)

(
W

n
√
λ
+ σ

√
N (λ)1−q

nλq

)
log

(
6

δ

)
(2.40)

Proof. To bound the estimation error we first introduce more compact notations:

Tx,w = S⊤
xMwSx, gz,w = S⊤

xMwy and g = LfH.

The strategy to obtain an upper bound is fairly standard. We decompose analytically

the estimation error in different terms, that will be bounded, via Bernstein inequality.
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The decomposition relevant to us can be obtained by simple algebraic computations as

follows

f IWz,λ − fλ =(Tx,w + λ)−1 gz,w − (T + λ)−1g

=(Tx,w + λ)−1 {(gz,w − g) + (T − Tx,w) (T + λ)−1g
}

=(Tx,w + λ)−1 (T + λ)
1
2

{
(T + λ)−

1
2 (gz,w − g) + (T + λ)−

1
2 (T − Tx,w) (T + λ)−1g

}
=(T + λ)−

1
2

{
I − (T + λ)−

1
2 (T − Tx,w) (T + λ)−

1
2

}−1

{
(T + λ)−

1
2 (gz,w − g) + (T + λ)−

1
2 (T − Tx,w) fλ

}
.

(2.41)

Assuming that

S1 :=
∥∥∥(T + λ)−

1
2 (T − Tx,w) (T + λ)−

1
2

∥∥∥
HS

< 1, (2.42)

where ∥A∥2HS = Tr
(
A⊤A

)
, and using the Neumann series expansion we obtain

∥∥∥∥{I − (T + λ)−
1
2 (T − Tx,w) (T + λ)−

1
2

}−1
∥∥∥∥
op

=

∥∥∥∥∥
∞∑
n=0

[
(T + λ)−

1
2 (T − Tx,w) (T + λ)−

1
2

]n∥∥∥∥∥
op

≤
∞∑
n=0

∥∥∥(T + λ)−
1
2 (T − Tx,w) (T + λ)−

1
2

∥∥∥n
op

≤
∞∑
n=0

∥∥∥(T + λ)−
1
2 (T − Tx,w) (T + λ)−

1
2

∥∥∥n
HS

≤ 1

1− S1
.

From (2.41) by taking the L2(X, ρteX) norm from both sides and using the isometry

property we get

∥f IWz,λ − fλ∥ρteX =
∥∥∥T 1

2
(
f IWz,λ − fλ

)∥∥∥
H
≤ S2 + S3

1− S1
, (2.43)

where
S2 :=

∥∥∥(T + λ)−
1
2 (gz,w − g)

∥∥∥
H
,

S3 :=
∥∥∥(T + λ)−

1
2 (T − Tx,w) fλ

∥∥∥
H
.

We have to find an upper bound for each of Si. To do so, notice that

Si =

∥∥∥∥∥ 1n
n∑
k=1

ξk − E[ξk]

∥∥∥∥∥
F

, i = 1, 2, 3,

with appropriate choice of the random variable ξ and the norm ∥·∥F . Indeed, in order to

let the equality above hold, on the space (X, ρtrX) we define the operator valued random

variable ξ1 : X → HS (H) , where HS (H) is the space of Hilbert-Schmidt operators on
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H, as follows
ξ1(x)[·] = (T + λ)−

1
2w(x)Kx ⟨Kx, ·⟩H (T + λ)−

1
2 .

Moreover, ξ2 : Z → H is defined on the space (Z, ρtr) by

ξ2(x, y) = (T + λ)−
1
2w(x)Kxy.

Finally, ξ3 : X → H is defined on th space (X, ρtrX) by

ξ3(x) = (T + λ)−
1
2w(x)Kxfλ(x).

Application of Proposition 1.10 to each of Si yields to the following bounds with prob-

ability at least 1− δ/3

Si ≤
2Li log(6/δ)

n
+ σi

√
2 log(6/δ)

n
(2.44)

where, as it can be straightforwardly verified, the constants Li and σi are given by the

expressions

L1 =
2W

λ
, σ1 = 2σ

√
N (λ)

p

λ1+q
, (2.45)

L2 =
2MW√

λ
, σ2 = 2σM

√
N (λ)p

λq
, (2.46)

L3 =
2∥fλ∥HW√

λ
, σ3 = 2σ∥fλ∥H

√
N (λ)p

λq
, (2.47)

where p = 1− q. Let us demonstrate for S2. First, notice that

E∥ξ2 − Eξ2∥mH ≤ Eξ2Eξ′2∥ξ2 − ξ
′
2∥mH ≤ 2m−1Eξ2Eξ′2

(
∥ξ2∥mH + ∥ξ′2∥mH

)
≤ 2mE∥ξ2∥mH,
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where ξ′2 is an independent copy of ξ2. Second,

E∥ξ2∥mH = E⟨ξ2, ξ2⟩m/2H

=

∫
⟨(T + λ)−

1
2w(x)Kxy, (T + λ)−

1
2w(x)Kxy⟩m/2H dρtr(x, y)

≤Mm

∫
∥K⊤

x (T + λ)−1Kx∥m/2op wm−1(x)dρteX(x)

=Mm

∫
∥K⊤

x (T + λ)−1Kx∥m/2−pop ∥K⊤
x (T + λ)−1Kx∥pwm−1(x)dρteX(x)

≤Mm

(
1

λ

)m/2−p ∫
∥K⊤

x (T + λ)−1Kx∥popwm−1(x)dρteX(x)

Hölder inequality ≤Mm

(
1

λ

)m/2−p(∫
∥K⊤

x (T + λ)−1Kx∥opdρteX(x)
)p(∫

w(m−1)/q(x)dρteX(x)

)q
∥A∥op ≤ Tr(A) ≤Mm

(
1

λ

)m/2−p(∫
Tr((T + λ)−1Tx)dρ

te
X(x)

)p(∫
w(m−1)/q(x)dρteX(x)

)q
=Mm

(
1

λ

)m/2−p
N (λ)p

(∫
w(m−1)/q(x)dρteX(x)

)q
Assumption 2 ≤Mm

(√
1

λ

)m−2(√
1

λ

)2q

N (λ)pWm−2σ2

≤ 1

2
m!

(
MW

√
1

λ

)m−2(
M

√
1

λ

q√
N (λ)

p
σ

)2

.

Let us verify (2.42). From the assumption (2.39), with probability greater than 1− δ/3,
we have

S1 ≤ 4 log

(
6

δ

)(
W

nλ
+

√
σ2
N (λ)p

nλ1+q

)

≤ 4
WN (λ)p

nλ1+q
log2

(
6

δ

)
+

√
σ2
N (λ)p

nλ1+q
log2

(
6

δ

)
≤ 3

4
.

(2.48)

Now, if we combine the estimate (2.43) with the bounds given in (2.44), then we get

with probability at least 1− δ

∥f IWz,λ − fλ∥ρteX ≤ 16 log

(
6

δ

)
(M + ∥fλ∥H)

(
W

n
√
λ
+ σ

√
N (λ)p

nλq

)
.

The bound (2.63) finishes the proof.
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Proof of Theorem 2.5. Combining the decomposition in (2.38) with the bounds (2.40)

and (2.62) we get

∥f IWz,λ − fH∥ρteX ≤ 16 log

(
6

δ

)
(M +R)

(
W

n
√
λ
+ σ

√
N (λ)p

nλq

)
+ λrR

≤ 16 log

(
6

δ

)
(M +R)

(
W

n
√
λ
+

σEps√
nλsp+q

)
+ λrR.

By choosing λ as in (2.21) we finally get

∥f IWz,λ − fH∥ρteX ≤ 16 log

(
6

δ

)
(M +R)

(
W

n
√
λ
+

σEps√
nλsp+q

)
+ λrR

≤ 2 (M +R)λr

(
σ√

W + σ
+

Wλr+sp+q−0.5

8 log
(
6
δ

)
(
√
W + σ)2

)
≤ 3 (M +R)λr, for s ∈ (0, 1].

2.8.2 Upper bound for arbitrarily weighted KRR

For the proof we need the following proposition from (Rudi and Rosasco, 2017, Propo-

sition 8)

Proposition 2.17. Let H be a separable Hilbert space, let A,B two bounded self-adjoint

positive linear operators on H and λ > 0. Then∥∥∥(A+ λI)−1/2B1/2
∥∥∥
op
≤
∥∥∥(A+ λI)−1/2(B + λI)1/2

∥∥∥
op
≤ (1− µ)−1/2

with

µ = µmax

[
(B + λI)−1/2(B −A)(B + λI)−1/2

]
Proof of Theorem 2.9. We decompose the excess risk as follows

f ′z,λ − fH =
(
T ′
x + λ

)−1 {(
g′z − g′

)
+
(
T ′ − T ′

x

)
fλ
}

(2.49)

+
(
T ′
x + λ

)−1
T ′ (f ′H − fH) (2.50)

+
((
T ′
x + λ

)−1 (
T − T ′)+ I

)
(fλ − fH) (2.51)
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where T ′
x = S⊤

xMvSx, g
′
z = S⊤

xMvy and g′ = L′f ′H. Let us bound the L2(X, ρteX) norm

of each term in the decomposition. For (2.49) we have

∥∥∥(T ′
x + λ

)−1 {(
g′z − g′

)
+
(
T ′ − T ′

x

)
fλ
}∥∥∥

ρteX

≤ ∥T 1/2(T ′ + λ)−1/2∥op
S′
1 + S′

2

S′
3

(2.52)

where S′
i, i = 1, 2, 3, is defined similarly as Si in the proof of the Theorem 2.5 with

testing measure ρteX changed by ρ′X . Using Proposition 2.17 and repeating the arguments

used to bound S1+S2
S3

in Theorem 2.5, we get with probability 1− δ

∥∥∥(T ′
x + λ

)−1 {(
g′z − g′

)
+
(
T ′ − T ′

x

)
fλ
}∥∥∥

ρteX

≤ 16 log

(
6

δ

)
(M +R)√

1− µ

(
V

n
√
λ
+ γ

√
N ′(λ)1−q′

nλq′

)
,

where µ = µmax

(
(T + λI)−1/2(T − T ′)(T + λI)−1/2

)
.

To bound the (2.50), notice that

∥
(
T ′
x + λ

)−1
T ′∥op =∥

(
T ′
x + λ

)−1
(T ′ + λ)(T ′ + λ)−1T ′∥op

≤∥
(
T ′
x + λ

)−1
(T ′ + λ)∥op

=

∥∥∥∥(T ′ + λ)−
1
2

{
I − (T ′ + λ)−

1
2
(
T ′ − T ′

x

)
(T ′ + λ)−

1
2

}−1
(T ′ + λ)

1
2

∥∥∥∥
op

≤ 4

where the last inequality follows form the same argument as (2.48). So (T ′
x + λ)−1 T ′ (f ′H − fH) ≤

4∥ (f ′H − fH) ∥ρteX . Similarly, for the (2.51) we have

∥
(
T ′
x + λ

)−1 (
T − T ′)+ I∥op =∥

(
T ′
x + λ

)−1 (
T ′ + λ

) (
T ′ + λ

)−1 (
T − T ′)+ I∥op

≤∥
(
T ′
x + λ

)−1 (
T ′ + λ

)
∥op∥

(
T ′ + λ

)−1 (
T − T ′)+ I∥op

≤4∥
(
T ′ + λ

)−1 (
T + λ−

(
T ′ + λ

))
+ I∥op

≤4∥
(
T ′ + λ

)−1
(T + λ) ∥op

≤ 4

1− µ.

Combining all together we get

∥f ′z,λ − fH∥ρteX ≤ 16 log

(
6

δ

)
(M +R)√

1− µ

(
V

n
√
λ
+ γ

√
N ′(λ)1−q′

nλq′

)
+

4

1− µ∥fλ − fH∥ρteX + 4∥f ′H − fH∥ρteX

≤ 16 log

(
6

δ

)
(M +R)

1− µ

(
V

n
√
λ
+ γ

√
N ′(λ)1−q′

nλq′

)
+

4

1− µ∥fλ − fH∥ρteX + 4∥f ′H − fH∥ρteX .
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Using Proposition 2.21 and balancing the first and second terms of the right hand side

of the above equation completes the proof.

2.8.3 Upper bound for clipped IW-KRR

The following lemma bounds ∥T 1/2(TD + λ)−1/2∥op uniformly over λ.

Lemma 2.18. Let TD =
∫
TxwD(x)dρ

tr and D = 2ΣN (λ). Then∥∥∥T 1/2(TD + λ)−1/2
∥∥∥
op
≤ 2. (2.53)

Proof. Observe that

∥T 1/2(TD + λ)−1/2∥op ≤ ∥T (TD + λ)−1∥1/2op

=
∥∥∥T (T + λ)−1

{
I − (T − TD)(T + λ)−1

}−1
∥∥∥
op

≤ 1

1− ∥(T − TD)(T + λ)−1∥op

provided that ∥(T − TD)(T + λ)−1∥op < 1. Let us show that it is indeed the case when

D = 2N (λ). We have

∥(T − TD)(T + λ)−1∥op =

∥∥∥∥∫ Tx(T + λ)−1 (w(x)− wD(x)) dρtrX(x)
∥∥∥∥
op

≤
∫ ∥∥Tx(T + λ)−1

∥∥
op

(w(x)− wD(x)) dρtrX(x)

An intermediate step in the proof of Lemma 13 of Fischer and Steinwart (2020) shows

that ∥∥Tx(T + λ)−1
∥∥
op

=
∑
i≥1

µi
µi + λ

e2i (x),

where {µi, ei}i≥1 is the eigenvalue-eigenvector pair of the covariance operator T. Conse-

quently, we have

∥(T − TD)(T + λ)−1∥op ≤
∑
i≥1

µi
µi + λ

∫
e2i (x) (w(x)− wD(x)) dρtrX(x). (2.54)

For the integral we have∫
e2i (x) (w(x)− wD(x)) dρtrX(x) =

∫
w≥D

e2i (x) (w(x)−D) dρtrX(x) ≤
∫
w≥D

e2i (x)dρ
te
X(x).
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For the last integral by using the integrebility of IW, assumption (2.33) and Markov

inequality we have ∫
w≥D

e2i (x)dρ
te
X(x) ≤ ρteX(w ≥ D) ≤ Σ

D
,

therefore ∫
e2i (x) (w(x)− wD(x)) dρtrX(x) ≤

Σ

D
. (2.55)

Considering (2.55) in (2.54) we have

∥(T − TD)(T + λ)−1∥op ≤
1

D

∑
i≥1

µi
µi + λ

=
ΣN (λ)

D

Choosing D = 2ΣN (λ) finishes the proof.

For the proof we use the following decomposition of the error

∥∥fDz,λ − fH∥∥ρteX ≤ ∥∥fDz,λ − fDλ ∥∥ρteX +
∥∥fDλ − fH∥∥ρteX , (2.56)

where fDλ = (TD+λI)−1TfH. For the approximation part we have the following lemma.

Lemma 2.19. Let fH satisfies the Assumption 1 for some r > 0. Then, the following

estimate holds ∥∥fDλ − fH∥∥ρteX ≤ 2λr
∥∥L−rfH

∥∥
ρteX

if r ≤ 1. (2.57)

Furthermore, for r > 0.5

∥∥fDλ ∥∥H ≤ κ− 1
2
+r
∥∥L−rfH

∥∥
ρteX
≤
∥∥L−rfH

∥∥
ρteX
. (2.58)

Proof. By the identity A(A+ λI)−1 = I − λ(A+ λ)−1 valid for λ > 0 and any bounded

self-adjoint positive operator, we have

(
I − (TD + λ)−1TD

)
fH = λ(TD+λ)

−1fH = λr
(
λ1−r(TD + λ)−(1−r)

) (
(TD + λ)−rT r

)
T−rfH.

From the equality above by taking the norm we have

∥∥fDλ − fH∥∥ρteX ≤ λr ∥∥∥λ1−r(TD + λ)−(1−r)
∥∥∥
op

∥∥(TD + λ)−rT r
∥∥
op

∥∥T−rfH
∥∥
ρteX
.

Note that
∥∥λ1−r(TD + λ)−(1−r)∥∥

op
≤ 1 and ∥T−rfH∥ρteX ≤ R by Assumption 1. From

proposition 2.20 and Lemma 2.18 we have ∥(TD + λ)−rT r∥op ≤
∥∥(TD + λ)−1T

∥∥r
op
≤ 2.
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Regarding the second estimate, if r > 1/2, since ∥T∥ ≤ 1, we obtain,

∥∥fDλ ∥∥H =
∥∥(TD + λ)−1TDfH

∥∥
H

=
∥∥∥(TD + λ)−1TDT

r− 1
2T

1
2
−rfH

∥∥∥
H

≤ ∥T∥r−
1
2

op

∥∥T−rfH
∥∥
ρteX
≤
∥∥T−rfH

∥∥
ρteX
.

To bound the estimation error we use the decomposition similar to (2.41). It is not

difficult to show that ∥∥fDz,λ − fDλ ∥∥ρteX ≤ S0
1− S1

(S2 + S3), (2.59)

where
S0 :=

∥∥∥T 1/2(TD + λ)−1/2
∥∥∥ ,

S1 :=
∥∥∥(TD + λ)−

1
2 (TD − Tx,D) (TD + λ)−

1
2

∥∥∥
HS
,

S2 :=
∥∥∥(TD + λ)−

1
2 (gz,D − gD)

∥∥∥
H
,

S3 :=
∥∥∥(TD + λ)−

1
2 (TD − Tx,D) fDλ

∥∥∥
H
.

By Lemma 2.18, S0 ≤
∥∥T (TD + λ)−1

∥∥1/2 ≤ 2.

Application of Proposition 1.10 to each of Si, i = 1, 2, 3, yields to the following bounds

with probability at least 1− δ/3

Si ≤
2Li log(6/δ)

n
+ σi

√
2 log(6/δ)

n
(2.60)

where, as it can be straightforwardly verified, the constants Li and σi are given by the

expressions

L1 = 2
D

λ
, σ1 = 2

√
ΣN (λ)

λ
,

L2 = 2
MD√
λ
, σ2 = 2

√
ΣN (λ),

L3 = 2
∥fDλ ∥HD√

λ
, σ3 = 2∥fDλ ∥H

√
ΣN (λ).
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Now, by choosing nλ ≥ ΣN (λ) log2 6
δ , with probability greater than 1− δ/3, we have

S1 ≤ 2

(
2D

nλ
+

√
ΣN (λ)

nλ

)
log

6

δ

D = 2ΣN (λ) ≤ 4
ΣN (λ) log2 6

δ

λn
+

√
ΣN (λ) log2 6

δ

λn

≤ 1

4
+

1

2
=

3

4
.

Now, if we combine the estimate (2.59) with the bounds given in (2.60), then we get

with probability at least 1− δ

∥fDz,λ − fDλ ∥ρteX ≤ 16 log

(
6

δ

)
(M +R)

(
D

n
√
λ
+

√
ΣN (λ)

n

)
. (2.61)

Form the decomposition (2.56) with the bounds (2.61) and (2.57) we get

∥fDz,λ − fH∥ρteX ≤ 16 log

(
6

δ

)
(M +R)

(
D

n
√
λ
+

EsΣ√
nλs

)
+ λrR

≤ 16 log

(
6

δ

)
(M +R)λr

(
Dλr+s−1/2

nλ2r+s
+

ΣEs√
nλ2r+s

)
+ λrR

(2.34) ≤ (M +R)λr

(
λs+r−1/2

8 log(6/δ)Es
+ 1

)
+ λrR

≤ 2 (M +R)λr, for s ∈ (0, 1].

2.9 Auxiliary Results

Proposition 2.20. Let A,B be to self-adjoint, positive operators on a Hilbert space.

Then for any s ∈ [0, 1] :

∥AsBs∥op ≤ ∥AB∥sop.

Proposition 2.21. Let fH satisfies the Assumption 1 for some r > 0. Then, the

following estimate holds

∥fλ − fH∥ρteX ≤ λ
r
∥∥L−rfH

∥∥
ρteX

if r ≤ 1. (2.62)

Furthermore, for r > 0.5

∥fλ∥H ≤ κ−
1
2
+r
∥∥L−rfH

∥∥
ρteX
≤
∥∥L−rfH

∥∥
ρteX
. (2.63)



Chapter 3

Target Shift

3.1 Introduction

In this chapter, we consider the target shift (Lipton et al., 2018; Storkey, 2009; Zhang

et al., 2013) problem, where it is assumed that the conditional distribution of the input

x given the output y are identical in the source and target populations, but the marginal

distribution of y differs:

ρtr(x, y) = ρ(x|y)ρtrY (y), ρte(x, y) = ρ(x|y)ρteY (y). (3.1)

Unlike the covariate shift discussed in the previous chapter, the target shift aligns with

the anticausal setting in which the target y cause the input x (Schölkopf et al., 2012).

Target shift arises in infectious disease diagnostic problems, where the features are ob-

served symptoms and the target is the underlying disease state. In this setting, the

distribution of the symptoms given the disease remains unchanged but we expect larger

fraction of infected people during the pandemic.

In the literature of target shift correction the main emphases is in the estimation of the

IW (Azizzadenesheli et al., 2019; Garg et al., 2020; Lipton et al., 2018), while the effec-

tiveness of the importance-weighted risk minimizers remains under-explored. Having in

mind the difficulties associated with the IW correction for covariate shift, three relevant

questions need to be addressed for the target shift: What is the effect of importance

weighting correction applied to the target shift scenario, and how is it different from

the IW correction applied under covariate shift? What are the effects of large values

of the weighting function on the generalization properties of the IW correction? How

important is it to distinguish the misspecified and well-specified scenarios under target

shift to choose a more accurate weighting function? The aim of this chapter is to gain
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a better theoretical understanding of the nature of the bias associated with the target

shift scenario and the role of IW in the bias correction.

3.2 Importance weighting correction under the Target Shift

The crucial difference between covariate and target shift scenarios consists in the fact

that under target shift the training and testing regression functions are different. So

the learning problem under target shift is to estimate the testing regression function

fρte : X → Y defined from the testing conditional distribution ρte(y|x) as

fρte(x) :=

∫
Y
y dρte(y|x), x ∈ X. (3.2)

Importance weighted kernel ridge regression is defined similarly as in (2.14) but with

IW function defined on the output space:

f IWz,λ := argmin
f∈H

{
1

n

n∑
i=1

wY (yi) (f (xi)− yi)2 + λ∥f∥2H

}
, (3.3)

where wY : Y → R+ is defined by

wY (y) =
dρteY (y)

dρtrY (y)
,

assuming that ρteY ≪ ρtrY . Throughout the chapter we assume that the importance weight-

ing function is known and will be mainly concerned with the effects of weights on gen-

eralization properties of IW-KRR (3.3). When IW is not known, it can be efficiently

estimated from the training and testing data. Let us mention that unlike the covariate

shift, the weights wY (y) cannot be directly estimated because ρteY is unknown on the test

data.

The solution of the minimization problem (2.14) is unique for all λ > 0 and is given by

fz,λ =
(
STxMwY Sx + λI

)−1
STxMwY y (3.4)

where MwY is the diagonal matrix with main diagonal entries wY (yi), i = 1, . . . , n.

3.3 Learning Guarantees of IW-KRR under Target Shift

To provide the learning guarantees for IW-KRR under target shift, the condition similar

to the Assumption 2 is needed.
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Assumption 6. Let wY = dρteY /dρ
tr
Y . There exist positive constantsWY and σY such that

for all integer m ≥ 2 ∫
Y
wm−1
Y (y)dρteY (y) ≤

1

2
m!Wm−2

Y σ2Y . (3.5)

Before providing the generalization bound for (3.3) let us explain why IW correction is

a reasonable approach. First consider the random variable ξ := yKxwY (y) on (Z, ρtr)

with the values in the Hilbert space H. Then, by the low of large numbers, the term

STxMwY y in (3.4) converges to

1

n

n∑
i=i

ξ(zi) −→
∫
Z
ywY (y)Kxdρ

tr(y, x)

as the number of samples goes to infinity. But the integral is just the integral operator

acting on the testing regression function Lfρtr (this can be easily verified by the decom-

position of the measures and target shift assumption (3.1)). This shows that STxMwY y

is a good approximation of Lfρtr . Second with a function f ∈ H, look at the random

variable ξ := wY (y)f(x)Kx on
(
Z, ρtr

)
with values in H. Again we have

S⊤
xMwY Sx =

1

n

n∑
i=1

ξ (zi) −→ Tf

meaning that S⊤
xMwY Sx is a good approximation of the covariance operator T . Thus

f IWz,λ should approximate fλ = (T + λI)−1LfH well, and one would expect good error

analysis of f IWz,λ − fλ in the space H. This observation is made precise by the following

theorem.

Theorem 3.1. Let ρte and ρtr be the distributions on X × [−M,M ], where M > 0 is

some constant, satisfying Assumptions 1,3 and 6. Let, let n and λ satisfy the constraints

λ ≤ ∥T∥op and

λ =

(
8Es(

√
WY + σY ) log

(
6
δ

)
√
n

) 2
2r+s

(3.6)

for δ ∈ (0, 1), r ≥ 0.5 and s ∈ (0, 1]. Then, with probability greater than 1− δ, it holds

∥f IWz,λ − fH∥ρteX ≤ 3 (M +R)

(
8Es(

√
WY + σY ) log

(
6
δ

)
√
n

) 2r
2r+s

. (3.7)

A comparison with the convergence rate of uniformly weighted KRR in the absence

of target shift (theorem 1.13) leads to the conclusion that IW-KRR under target shift

is minimax optimal for a properly chosen regularisation parameter. For the IW-KRR

under covariate shift, the same rates are achieved only for the bounded IW, while a

weaker boundedness assumption on the weights results in slower rates. In particular, it
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means that the IW correction of target shift is less sensitive toward the large shift in

the output space, whenever the output assumed to be bounded.

3.4 Effect of Using Incorrect Weights

We extend the IW correction framework by considering more general weighted risk

minimization problem

f ′z,λ := argmin
f∈H

{
1

n

n∑
i=1

v(yi) (f (xi)− yi)2 + λ∥f∥2H

}
(3.8)

where now v(y) =
dρ′Y (y)

dρtrX(y)
for some measure ρ′Y ≪ ρtrY .

As we have already discussed in the previous chapter, the rationale behind the IW

correction in covariate shift is to eliminate the bias associated with the mismatch between

the projections of the regression function. In the target shift, the main focus of the risk

adjustment is to eliminate the difference between the regression function (2.2) and the

function ϕ(x)/ψ(x) induced by the candidate distribution ρ′, where

ϕ(x) =

∫
Y
y
vY (y)

wY (y)
dρte(y|x), ψ(x) =

∫
Y

v(y)

wY (y)
dρte(y|x).

To understand the meaning behind the function ϕ(x)/ψ(x) consider the following two

extremes: when v(y) ≡ 1 and when vY = wY . In the former case no correction to KRR

is applied and ϕ(x)/ψ(x) = fρtr(x) =
∫
ydρtr(y|x). In the latter case ϕ(x)/ψ(x) matches

with the testing regression function as ϕ(x) = fρte and ψ(x) = 1.

The theorem below provides the learning guarantees of W-KRR under the target shift.

Theorem 3.2. Let ρte and ρ′ be the distributions on X × [−M,M ], where M > 0 is

some constant, satisfying target shift condition and Assumptions 1,2,4. Furthermore, let

n and λ satisfy the constraints λ ≤ ∥T∥op and

λ =

(
8DEs(

√
VY + σY ) log

(
6
δ

)
√
n

) 2
2r+s

(3.9)

for δ ∈ (0, 1), s ∈ (0, 1] and D = max{1, 1/ inf ψ(x)} Then, for r ≥ 0.5, with probability

greater than 1− δ, it holds

∥fz,λ − fH∥ρteX ≤ 6D (M +R)

(
8DEs(

√
VY + σY ) log

(
6
δ

)
√
n

) 2r
2r+s

+ 4

∥∥∥∥ϕψ − fρte
∥∥∥∥
ρteX

.

(3.10)
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H
fρte

f IWz,n

fz,n

fρtr

Figure 3.1: Performance of the IW-KRR and the uniformly weighted KRR under
target shift: the uniformly weighted KRR approximates the training regression function

which could significantly differ from the testing one.

In the case of uniform weights (when ρ′ = ρtr) the bias term of the bound (3.10)

corresponds to the L2 distance between the training and testing regression functions

∥fρte − fρtr∥ρteX where

fρtr =

∫
ydρtr(y|x).

Note that unlike the covariate shift case, there is no straightforward way to eliminate

this bias even when the model is wellspecified (see Figure 3.1).

3.5 Simulations

We use simulations to justify the theoretical results of previous sections. The points we

made in Theorems can be summarized as follows:

1. We can safely forget about the covariate shift for high capacity models.

2. Under covariate shift, IW correction is beneficial for low capacity models.

3. Under target shift importance weighting correction is beneficial regardless of the

model capacity.

We consider a simple one-dimensional regression problem with the testing regression

function being fρte(x) = x3.

Experimental setup - Covariate Shift We assume that x ∼ N (0.8, 0.5) at train-

ing time and x ∼ N (0, 0.35) at testing time. Output y assumed to be corrupted by

homoscedastic Gaussian noise with mean µ = 0 and standard deviation σ = 0.3. The

regression function together with the training and test points generated in one random

replication is shown on the left panel of Figure 3.2(a). The training and test sets consist

of 200 data points each.
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(a) Regression under covariate shift
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(b) Regression under target shift

Figure 3.2: Performance of the least squares method for different shift scenarios. Left
panels show the data points together with the regression function and right panels give
the boxplot of the performances of different approaches for 200 random replications.
”Misspecified” refers to the polynomial fit with degree 2. (a) Regression under covariate

shift. (b) Regression under target shift

Experimental setup - Target Shift We assume that y ∼ N (0, 0.5) at training time

and y ∼ N (1.5, 0.3) at testing time. The input is generated by x = (y + ε)1/3, with

ε ∼ N (0, 0.3).

In the simulation we use the KRR with the polynomial kernel. For ”misspecified” the

degree of the kernel is two, while ”wellspecified” corresponds to the cubic degree kernel.

Left panel of Figure 3.2 shows the boxplot of the performances of all approaches, mea-

sured by the mean square error (MSE). Under covariate shift (a) the weighted models,

as well as the unweighted misspecified model, perform equally well. Under target shift

(b) deviation from the IW strategy leads to the larger test MSE regardless of the model

capacity.

We do not report numerical experiments on the real data here as exhaustive experimental
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results on KRR, leading to similar conclusions, can already be found in Gretton et al.

(2009); Zhang et al. (2013).

3.6 Proofs

Let us decompose the excess risk as follows

f ′z,λ − fH =(Tz + λ)−1 {(gz − Lϕ) + (LMψ − Tz) fλ}︸ ︷︷ ︸
I term

+(Tz + λ)−1 {L (ϕ− fρte)+ (T − LMψ) fλ
}︸ ︷︷ ︸

II term

+(fλ − fH).

(3.11)

where Tz = STxMvSx, gz = STxMvy and Mψf = fψ is a multiplication operator. Here

v = (vY (y1), . . . , vY (yn)).

I term Similarly to the first term of the previous proof we can show

∥I term∥ρteX ≤
1

1− µ

(
S′
2 + S′

3

1− S′
1

)
where

S′
2 :=

∥∥∥(T + λ)−
1
2 (gz − Lϕ)

∥∥∥
H
,

S′
3 :=

∥∥∥(T + λ)−
1
2 (LMψ − Tz) fλ

∥∥∥
H
,

S′
1 :=

∥∥∥(LMψ + λ)−
1
2 (LMψ − Tz) (LMψ + λ)−

1
2

∥∥∥
HS
,

and

µ = µmax

(
(T + λI)−1/2(T − LMψ)(T + λI)−1/2

)
.

One can easily show that µ ≤ 1− inf ψ, therefore

∥I term∥ρteX ≤ D
(
S′
2 + S′

3

1− S′
1

)
.

The following constants for S′
1, S

′
2, S

′
3 can be straightforwardly verified,

L′
1 = 2VY

1

λ
, σ′1 = 2

(√
1

λ

)√
N (λ)σY ,

L′
2 = 2MVY

√
1

λ
, σ′2 = 2MσY

√
N (λ),

L′
3 = 2∥fλ∥HVY

√
1

λ
, σ′3 = 2∥fλ∥HσY

√
N (λ),
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Now, choosing nλ ≥ (VY + σ2Y )N (λ)D2 with probability at least 1− δ/3, we get

S′
1 =

∥∥∥(LMψ + λ)−
1
2 (LMψ − Tx) (LMψ + λ)−

1
2

∥∥∥
HS

≤ D
∥∥∥(T + λ)−

1
2 (LMψ − Tz) (T + λ)−

1
2

∥∥∥
HS

≤ 4 log

(
6

δ

) VY
nλ(1− µ) + 2

√
σ2YN (λ)

nλ(1− µ)2


≤ 3

4
.

So, with probability at least 1− δ, we have

∥I term∥ρteX ≤ 16 log

(
6

δ

)
D (M +R)λr

(
VY λ

r+s−0.5

nλ2r+s
+ σY

Es√
nλ2r+s

)
. (3.12)

II term For the second term notice that

II term = (Tz + λ)−1 {L (ϕ− fρte)+ (T − LMψ) fλ
}

= (Tz + λ)−1 LMψ

{(
ϕ

ψ
− fρte

)
+

1− ψ
ψ

(fλ − fH)
}
.

The argument used to bound the second term of the previous section allows us to

conclude that ∥ (Tz + λ)−1 LMψ∥op ≤ 4, therefore

∥II term∥ρteX ≤ 4

∥∥∥∥ϕψ − fρte
∥∥∥∥
ρteX

+ 5D∥fλ − fH∥ρteX . (3.13)

Considering (3.12) and (3.13) in the decomposition (3.11) and using the proposition 2.21

we have with probability at least 1− δ

∥fz,λ − fH∥ρteX ≤ 16 log

(
6

δ

)
D (M +R)λr

(
VY λ

r+s−0.5

nλ2r+s
+ σY

Es√
nλ2r+s

)
+ 6DλrR

(3.14)

+ 4

∥∥∥∥ϕψ − fρte
∥∥∥∥
ρteX

. (3.15)

By choosing λ as in (3.9) we have

∥fz,λ − fH∥ρteX ≤ 6D(M +R)λr + 4

∥∥∥∥ϕψ − fρte
∥∥∥∥
ρteX

Substituting the expression (3.9) for λ in the inequality above, concludes the proof.



Chapter 4

Locally Smoothed Gaussian

Process Regression

4.1 Introduction

In supervised learning tasks applied to a data set composed of observed input data

and labels, the goal of function estimation is to establish a mapping between these two

groups of observed quantities. Function estimation can be approached in various ways,

and we can broadly divide algorithms in two categories, as global and local. Examples of

global algorithms are Neural Networks (Neal, 1996) and kernel machines (Shawe-Taylor

and Cristianini, 2004), which impose a functional form yielding a global representation

of the function. The functional form is parameterized by a set of parameters which are

optimized or inferred based on all the available data. The estimated model can later be

used to query the function at any input points of interest. In local algorithms such as

K-Nearest Neighbors (KNN), instead, the target point is fixed and the corresponding

value of the function is estimated based on the closest data available.

Obviously, any global algorithm can be made local by training it only for the few training

points located in the vicinity of the target test point. While it may seem that the idea

of localizing global algorithms is not a very profound one, empirical evidence shows

that localization could improve the performance of the best global models (Bottou and

Vapnik, 1992). The idea of localization was therefore applied to global models such

as SVMs (Blanzieri and Melgani, 2006, 2008). In addition to performance gains, by

operating on smaller sets of data points, these local approaches enjoy computational

advantages, which are particularly attractive for kernel machines for which scalability

with the number of data points is generally an issue (Cheng et al., 2007; Segata and

Blanzieri, 2010; Segata et al., 2012).
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In this chapter, we develop novel ideas to implement a localization of Gaussian processes

(GPs) in order to obtain performance gains, as well as computational ones. GPs are great

candidates to benefit from computational speedups given that a näıve implementation

requires expensive algebraic computations with the covariance matrix; denoting by n

the number of input data, such operations cost O(n3) operations and require storing

O(n2) elements, hindering the applicability of GPs to data sets beyond a few thousand

data points Quinonero-Candela and Rasmussen (2005). Another issue with GPs is how

to choose a suitable kernel for the problem at hand so as to avoid problems of model

misspecification. Both of these issues have been addressed in various ways, by proposing

scalable approximations based on inducing points Hensman et al. (2013) and random

features Cutajar et al. (2017a); Rahimi and Recht (2008), and by composing GPs to

obtain a rich and flexible class of equivalent kernels Wilson et al. (2016).

In this chapter we explore an alternative way to address scalability and kernel design

issues by localizing GPs. In particular, we show how the localization operation leads to

a particular form for the localized GP, and what is the effect on the kernel of this model.

Furthermore, the localization makes it apparent how to implement the model with con-

siderable gains compared to other approaches to approximate GPs. We demonstrate

such performance gains on regression tasks on standard UCI benchmarks Asuncion and

Newman (2007).

4.1.1 Related work

Local learning algorithms were introduced by Bottou and Vapnik (1992), with the main

objective of estimating the optimal decision function for each single testing point. Exam-

ples of local learning algorithms include the well-known K-Nearest Neighbor regression

(Altman, 1992) and local polynomial regression (Fan and Gijbels, 2018). These meth-

ods provide simple means for solving regression problems for the cases where training

data are nonstationary or their size is prohibitively large for building a global model.

However, neither of these methods provides ways to quantify uncertainty in predictions,

which is a highly desirable feature in cost-sensitive applications.

Gaussian Process Regression (GPR) (Rasmussen and Williams, 2006) is a popular non-

parametric regression method based on Bayesian principles which provides uncertainty

estimates for its predictions. Similarly to other kernel methods (e.g., SVMs and KRR),

GPR is a global method, meaning that it takes into account the whole dataset at predic-

tion time. Thus, GPR inherits the computational complexity of global kernel methods,

which is prohibitive for large datasets. Among the large class of scalable approximations

for GPR, successful ones are based on Random Fourier Features (Rahimi and Recht,
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2008) and on sparsification of the Gram matrix induced by the kernel (Rasmussen and

Williams, 2006).

Random feature approximation of the kernel proposed in Rahimi and Recht (2008) is

based on Bochner theorem and allows representing the kernel function as a dot product

of (possibly infinite) feature maps applied to the input data. In practice, infinite feature

maps are replaced by a finite Monte Carlo approximation. The disadvantage of this

approach is that it is necessary to construct a specific random feature mapping for each

type of kernel. While random feature approximations are known for popular kernels

such as RBF (Rahimi and Recht, 2008) and polynomial (Pennington et al., 2015), there

is no straightforward application of this method to approximate arbitrary kernels.

The Gram matrix sparsification approach is based on the idea of introducing so-called

inducing points in order to approximate the full Gram matrix. One of the most popular

methods in this family is the Nyström approximation (Rasmussen and Williams, 2006).

The main drawback of this approach is that a low number of inducing points might lead

to a poor approximation of the original model, which affects predictive performance.

An important advancement within this family of approaches which provides a scalable

variational formulation was proposed by Titsias (2009).

While providing good performance and scalability for large datasets, these approaches

still require some design choices for the kernel. For stationary kernels, they assume that

the same kernel is suitable for all the regions of input space and if data are nonstationary,

this may harm the predictive performance. The literature has a wide range of proposals

to address kernel design by incorporating ideas from deep learning Cutajar et al. (2017b);

Wilson et al. (2016).

Recently, partitioning strategies have also gained some attention. The main idea is to

divide the input space in regions where local estimators are defined Carratino et al.

(2021); Meister and Steinwart (2016); Mücke (2019); Tandon et al. (2016). In partition-

based methods, the main challenge is to define an effective partitioning of the space.

There are several approaches that use the idea of local learning for training GP models.

The method proposed by Meier et al. (2014b) and extended by Meier et al. (2014a)

mostly focuses on Bayesian parametric linear regression. The methods in these papers

build an ensemble of local models centered at several fixed points, where each training

point is weighted accordingly to the distance from the center of the model. Predictions

are computed as a weighted sum of the local models. The authors claim that their

approach extends to GPR, but in this case each local model considers the full training

set. This means that these methods use localization to address nonstationarity, but

poorly scale to large datasets. The method proposed by Snelson and Ghahramani (2007)
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proposes to build local GP models that use only subsets of the training data, but it lacks

a mechanism that assigns importance weight for the training points for each local model

according to the distance from the center of the model. That is why the model can make

overconfident predictions for the points that lay far away from the centers of the local

models. In (Gramacy and Apley, 2015) in order to obtain fast approximate prediction

at a target point, the Authors propose a forward step-wise variable selection procedure

to find the optimal sub-design.

This chapter is organized as follows: Section 4.2 introduces GPs and the idea of local-

ization, along with a discussion on the connection between our localized GPs and local

kernel ridge regression. The experimental campaign in Section 4.3 reports results on a

variety of benchmarks for regression.

4.2 Gaussian Processes, Kernel Ridge Regression, and Lo-

calization

4.2.1 Gaussian Process Regression

A zero-mean Gaussian process (GP) {f(x) : x ∈ X ⊂ Rd} is a set of random variables

f(x) indexed by the input set X such that for each finite subset x = {x1, . . . , xm} ⊂ X
the random vector (f(x1), . . . , f(xm)) is a zero-mean multivariate normal. The finite-

dimensional distribution of such a process is determined by the covariance function

K : X ×X → R, defined by

K(x, x′) = E[f(x)f(x′)]. (4.1)

The fact that f(x) is Gaussian process with covariance kernel K is commonly denoted

by

f(x) ∼ GP(0,K(x, x′)).

Given a data set D comprising a set of input-label pairs D = {(xi, yi)}i=1,...,n, GPs can

be used as a prior over functions to model the relationship between inputs and labels.

The likelihood function for GPs applied to regression tasks can be derived from assuming

that

yi = f(xi) + εi, εi ∼ N (0, σ2). (4.2)
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The GP prior, together with the Gaussian assumption on the relationship between f(x)

and yi induces a multivariate normal distribution over y = (y1, . . . , yn)
⊤ as

y ∼ N (0,Kxx + σ2I), (4.3)

where (Kxx)ij = K(xi, xj).

In GP regression it is possible to compute the predictive distribution of the function

values at any arbitrary input points x ∈ X given D by means of well-known formulas

for conditional distributions of Gaussian random vectors. Given the data set D, it is

straightforward to show (Rasmussen and Williams, 2006) that the posterior over the

function is also a GP

f |y, X ∼ GP(m(x),K(x, x′))

with mean

m(x) = Kxx

(
Kxx + σ2I

)−1
y, x ∈ X, (4.4)

and covariance function

K
(
x, x′

)
= K

(
x, x′

)
−Kxx

(
Kxx + σ2I

)−1
Kxx′ , x, x′ ∈ X, (4.5)

where Kxx = K⊤
xx = (K (x1, x) , . . . ,K (xn, x))

⊤ .

The problem with the expressions above is that they require solving a linear system

involving a matrix of size n×n. Direct methods to solve these operations require O
(
n3
)

operations and storing O
(
n2
)
. Iterative solvers, instead, can reduce these complexities

by relying exclusively on matrix-vector products, which require O
(
n2
)
operation per

iteration and do not need to store the Gram matrix (Cutajar et al., 2016; Filippone and

Engler, 2015). However, a quadratic time complexity may still prohibitive for large-scale

problems.

There is a rich literature on approaches that recover tractability by introducing approx-

imations. One popular line of work introduces m so-called inducing-points as a means

to approximate the whole GP prior Quinonero-Candela and Rasmussen (2005). This

treatment of GPs was later extended within a scalable variational framework (Krauth

et al., 2017; Titsias, 2009), making the complexity cubic in the number of inducing

points m. Another approach, proposes ways to linearize GPs by obtaining an explicit

set of features so as to obtain a close approximation to the original kernel-based model.

Within this framework, a popular approach is based on random features (Rahimi and

Recht, 2008). Denoting by Φ the n×D matrix obtained by applying a set of D random

basis functions to the inputs in x1 . . . , xn, these approximations are so that ΦΦ⊤ approx-

imates in an unbiased way the original kernel matrix Kxx, that is E[ΦΦ⊤] = Kxx. For
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the Gaussian kernel, for example, a Fourier analysis shows that the basis functions that

satisfy this property are trigonometric functions with random frequencies (Rahimi and

Recht, 2008). This approach has been applied to GPs in Lázaro-Gredilla et al. (2010)

and later made scalable by operating on mini-batches in Cutajar et al. (2017a).

4.2.2 Locally Smoothed Gaussian Process Regression

GP regression as formulated above is an example of a global learner ; for a fixed training

data D it builds a posterior distribution over functions that can be used to calculate the

predictive distribution for any test inputs. To construct a predictive distribution for any

input point it is necessary to use all the information available from the data D, resulting
in the need to do algebraic operations with the matrix

(
Kxx + σ2I

)
. However, if we focus

on the prediction problem locally, at a given target input x0, most of the information

carried by the (potentially large) covariance matrix might be neglected with little loss of

information. The main idea behind localized GPs is to down-weight the contribution of

the data points far from x0, so that the structure of the covariance matrix is more adapted

to the prediction task at a given point. To make this general idea work, we need to tackle

two challenges. First, we need to specify what it means to be far or close to a given

point; second, the change of the structure of the covariance matrix must give us a valid

covariance matrix, i.e., the resulting covariance matrix should be symmetric and positive

definite. Note that a simple truncation of the covariance function to obtain a compact-

support covariance function may generally destroy positive definiteness Kaufman et al.

(2008).

We accomplish localization of GPs in a straightforward manner as follows. We localize

the target and the prior in the model (4.2) by multiplying them by the square root of

the weighting function

kh(x, x0) :=
1

hd
k

(∥x− x0∥
h

)
,

where k : X ⊂ Rd → R is a non-negative, integrable function satisfying
∫
K(x)dx = 1

and ∥ · ∥ is Euclidean norm on Rd. Considering the square root of the weighting function

will be convenient later when we discuss the link between local GPs and local Kernel

Ridge Regression. Some classical examples of the weighting functions are given in Fig. 1.

Because of the linearity of the weighting operation, the resulting model is another zero-

mean Gaussian process f̃(x) with covariance function given by

K̃(x, x′;x0) = k
1
2
h (x, x0)K(x, x′)k

1
2
h (x

′, x0). (4.6)
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Figure 4.1: (a) Samples from a global GP prior with exponential kernel. (b) Samples
from a GP prior with exponential kernel localized by rectangular smoother centered at
x0 = 0. (c) Samples from a GP prior with exponential kernel localized by Epanechnikov
smoother centered at x0 = 0. (d) Samples from a GP prior with exponential kernel

localized by Gaussian smoother centered at x0 = 0.

In this formulation, we have localized the relationship between noisy targets and function

realizations as

ỹi = f̃(xi) + εi, εi ∼ N (0, σ2), (4.7)

with ỹi =
√
kh(xi, x0)yi, and the prior is given by a zero-mean GP with the localized

covariance kernel (4.6). The model (4.7) can be alternatively written as a model with

heteroscedastic noise

yi = f(xi) +
1√

kh(xi, x0)
εi, εi ∼ N (0, σ2).

Making the noise parameter location-dependent can significantly improve the perfor-

mance for problems where the assumption of a homoscedastic noise is not satisfied.

Theorem 4.1. Let I = {i : ∥xi − x0∥ ≤ h}, xI = {xi : i ∈ I} and yI = {yi}i∈I ∈ R|I|.

Assume that (4.7) holds for the fixed target point x0. Then f(x0) | yI is a Gaussian

random variable with mean and variance given by

m̃(x0) = Kx0xI

(
KxIxI + σ2W−1

x0

)−1
yI (4.8)

K̃ (x0, x0) = K (x0, x0)−Kx0xI

(
KxIxI + σ2W−1

x0

)−1
KxIx0 (4.9)

where Wx0 is the diagonal matrix with main diagonal entries kh(xi, x0), xi ∈ xI .
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Proof: Let x0 be any fixed target point. Then the observations yI ∈ R|I| and GP-

function value at target point f0 = f (x0) ∈ R are jointly Gaussian such that[
y

f0

]
∼ N

([
0I

0

]
,

(
KxIxI + σ2W−1

x0 KxIx0

Kx0xI K(x0, x0)

))
.

Then the proposition follows from the basic formula for conditional distributions of

Gaussian random vectors (see, e.g., Rasmussen and Williams (2006), Appendix A.2).

Algorithm 4.2.1

Requires: Data Z, target point x0, localization parameter h, local kernel k,

global kernel K and noise variance σ2.

Outputs: Posterior mean m̃(x0) and variance K̃(x0, x0).
1. Define the set of active observations I := {i : ∥xi − x0∥ ≤ h}
2. Define the active input-output pair xI := {xi : i ∈ I} and yI := {yi : i ∈ I}
3. Calculate the Grammian KxIxI and diagonal matrix Wx0 := diag({kh(xi, x0) :
i ∈ I})
4. Calculate the Cholesky decomposition L := Cholesky

(
KxIxI + σ2W−1

x0

)
5. Calculate posterior mean m̃(x0) := Kx0xI (L

−1)⊤L−1y

6. Calculate posterior variance K̃(x0, x0) = K(x0, x0)−Kx0,xI (L
−1)⊤L−1KxI ,x0

Compared to global GPs, in the local formulation, in order to compute the posterior

mean and variance, we need to invert
(
KxIxI + σ2W−1

x0

)
. This might give a key advan-

tage when dealing with large data sets, as the localization by compactly supported kernel

(local) could significantly sparsify the Gram matrix corresponding to Kxx. Denoting by

s0 the number of inputs for which the localizing weights are nonzero for a test point x0,

the complexity of performing such an inversion is O(s30). Another interesting observa-

tion is that the kernel function K̃ (x, x′) is potentially more flexible than the original

kernel function; this is due to the multiplication by the localizing weighting function,

which may introduce some interesting nonstationarity even for kernel functions which

are stationary, depending on the choice of the weighting function.

The calculation of the predictive distribution in with Locally Smoothed Gaussian Pro-

cess Regression (LSGPR) is described in Algorithm 4.2.2 The parameter selection in

probabilistic models given by GPs is based on the marginal log-likelihood maximization,

which, in our local formulation, can be defined as follows

log p(yI |xI) = −
1

2
y⊤
I

(
KxIxI + σ2W−1

x0

)−1
yI −

1

2
log
∣∣KxIxI + σ2W−1

x0

∣∣− n

2
log(2π)
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Unfortunately, gradient-based optimization cannot be used to find the optimal localiza-

tion parameter h, as the marginal log-likelihood is not continuously differentiable w.r.t.

this parameter when compactly supported local kernels are used. The simplest way to

resolve this problem is by using grid search for the localization parameter h, while kernel

parameters can be optimized by gradient-based methods for any given h.

4.2.3 Local Kernel Ridge Regression

For every Gaussian process f(x) with covariance function K(x, x′) there is a unique

corresponding Hilbert space H. This is commonly referred to as a reproducing kernel

Hilbert space (RKHS) and constructed as a completion of the linear space of all functions

x 7→
k∑
i=1

αiK (ai, x) , α1, . . . , αk ∈ R, a1, . . . , ak ∈ X, k ∈ N

relative to the norm induced by the inner product〈
k∑
i=1

αiK (si, ·) ,
l∑

j=1

βjK (tj , ·)
〉

H

=
k∑
i=1

l∑
j=1

αiβjK (si, tj) .

It is well know that the posterior mean of Gaussian process regression can be alterna-

tively derived by minimizing the regularized empirical risk over the RKHS (Kimeldorf

and Wahba, 1970); see, e.g., Kanagawa et al. (2018) for a recent review. For local

GPs, this corresponds to a weighted least square minimization over the RKHS with the

weights given by kh(x, x0), that is

m̃(x) = argmin
f∈H

n∑
i=1

(yi − f(xi))2 kh (xi, x0) +
σ2

n
∥f∥2H. (4.10)

Note that in the local formulation, for a given point x0 one has to estimate both the

parameters of the reproducing kernel and the width of the local kernel h. Here are two

examples of well-known classical local methods which are the solution of the empirical

risk minimization problem (4.10).

K-nearest neighbors. This model corresponds to the noise-free case (σ = 0) with

a positive constant reproducing kernel and a rectangular local kernel whose width is

adjusted to contain exactly k data points. The solution of the minimization problem

(4.10) is the mean of the outputs corresponding to the k closest to x0 input points.
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Figure 4.2: Illustration of the predictive distribution of GP (left) and LSGP (right)
applied to data sampled from the Doppler function for 400 training points (top), 200

training points (middle) and 100 training points.

Local polynomial regression. If we use the polynomial kernel K(x, x′) = (1 + xx′)k

for the space H, and use any smooth local kernel (i.e. exponential), then in the noise-

free case the solution of the minimization problem (4.10) is so called local polynomial

regression Tsybakov (2009). In this special case, when the degree of the polynomial is

0, we have Nadaraya-Watson regression, which is the minimizer of the local squared loss

over the constant function.
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Table 4.1: UCI datasets used for evaluation.

Dataset Training instances Dimensionality

Yacht 308 6
Boston 506 13
Concrete 1030 8
Kin8nm 8192 8
Powerplant 9568 4
Protein 45730 9

4.3 Experiments

4.3.1 Toy dataset

In order to illustrate the behavior of the proposed Locally Smoothed Gaussian Process

(LSGP), we start from a toy dataset generated from the Doppler function (Fig. 4.2).

y(x) =
√
x(1− x) sin

(
2.1π

x+ 0.05

)
+ ε, 0 ≤ x ≤ 1, ε ∼ N (0, 0.1) (4.11)

For this experiment, we used the RBF kernel and the Epanechnikov localizing kernel

k(x) =
3

4
(1− |x|2)I(|x| ≤ 1). (4.12)

We tuned the lengthscale parameter of the RBF kernel by optimizing the marginal

log-likelihood of the model. We used the L-BFGS algorithm for gradient optimization

Pytlak (2008). We chose the value of the parameter h of the localizing kernel that gave

the best Mean Squared Error (MSE) on a validation set. The LSGP model used on

average 7 training points to make a prediction. We compared the predictions of LSGP

with the predictions of standard GP regression.

As we can see from Fig. (4.2), the Gaussian Process with RBF kernel is unable to make

reasonable predictions in the region where the target function contains high frequency

components. While some nonstationary covariance functions might be appropriate for

this example, the combination of a standard stationary covariance function with the

localization approach offers substantial modeling improvements.

4.3.2 UCI datasets

We evaluated the performance of the LSGP method on several problems from the UCI

datasets collection and compared it against standard GPR, Deep GPs approximated with

random features (Cutajar et al., 2017a), and k-nearest neighbors (KNN) regression. In

particular, we aim to compare the predictive performance offered by the localization



Chapter 4 Locally Smoothed Gaussian Process Regression 73

Table 4.2: Comparison in terms of test set MSE between LSGPR a standard GPR.

Dataset LSGPR Hilbert LSGPR Epan. GP DeepGP KNN

Yacht 0.63±0.12 2.02±0.58 1.09±0.05 0.93±0.13 57.80±16.65
Boston 14.78±0.88 15.30±1.28 17.94±0.71 7.92±0.14 23.30±2.58
Concrete 34.79±1.07 40.43±3.16 37.81±0.61 130.94±3.93 94.23±7.89
Kin8nm 0.01±0.000 0.01±0.00 0.01±0.000 0.06±0.00 0.01±0.00
Powerplant 14.65±0.34 14.40±0.67 16.85±0.69 14.57±0.15 15.35±0.49
Protein 36.85±2.15 12.50±0.26 17.03±0.57 16.94 ±0.16 19.89±4.26

against the baseline of exact GPR, and to verify that any performance gains are not just

due to localization, meaning that we expect to outperform KNN. Because our model is

more flexible than standard GPR, we also added to the comparison Deep GP models

based on random features expansion. The size and dimensionality of these problems is

outlined in Table 4.1. Since the Euclidean norm used in the local kernels depends on

the units in each coordinate, all the datasets except the Protein were scaled within the

[0, 1] range. We used a standardization procedure for the Protein dataset because the

baseline model worked much better with this type of preprocessing. For the Deep GP

model we used the hyperparameters and the data preprocessing described in the original

paper.

The LSGPR method requires creating a new local model with its own set of hyperparam-

eters for each input point where the prediction has to be made. During the optimization,

the kernel parameters of each model were constrained to be equal among all local mod-

els. Considering the hyperparameter h, we found that it is hard to find values of h which

perform well across all regions of the input space. Thus, for each input point of interest,

we chose values of h that ensured that the localizer considers at least m neighboring

training points. In this experiment, we used 3-fold cross-validation to choose the noise

variance σ2, the lengthscale of the GP kernel and the parameter m of the localizing

kernel. We report the results on the held-out test set.

In this experiment, we also used the Hilbert localizing kernel (Belkin et al., 2019; Devroye

et al., 1998; Shepard, 1968)

k(x) = ∥x∥−1I(∥x∥ ≤ 1), (4.13)

which showed good performance for most of the datasets. In Table 4.2 locally smoothed

Gaussian Process Regression based on Hilbert kernel is referred to as LSGPR Hilbert,

while the same model based on Epanechnikov kernel is referred as LSGPR Epanechnikov.

GP regression, Deep GP regression and KNN regression are referred to as GP, DeepGP

and KNN, respectively.
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The results indicate that LSGP offers competitive performance with respect to GPR and

Deep GP baselines. The results also clearly show that LSGP offers superior performance

to KNN, suggesting that the localization alone is not enough to obtain good performance,

and that this works well in combination with the GP model. To make a comparison with

the baselines, we used the one-sided Wilcoxon test Wilcoxon (1945). For each method,

we measured its performance on 10 data splits, and we used exactly the same splits for

testing performance of each method, so we had matched samples of the MSEs. Then

we used the test to compare methods in pairs, where the alternative hypothesis was

that the MSE of any given method is smaller than the MSE of a competitors. We used

confidence level α = 0.05. In Table 4.2 the results that are statistically better than the

competitors are marked in bold.

4.4 Conclusions

In this chapter we developed a novel framework to localize Gaussian processes. We

focused in particular on Gaussian Process Regression, and we derived the GP model after

applying the localization operation through the down-weighting of contributions from

input points which are far away from a given test point. The form of the localized GP

maintains positive definiteness of the covariance, and it allows for considerable speedups

compared to standard global GPR due to the sparsification effect of the Gram matrix.

The proposed method requires cross-validation to tune the scale parameter of localizing

kernel, while others GP-based techniques use a less expensive marginal log-likelihood

(MLL) gradient optimization to tune these types of parameters. We found MLL gradient

optimization problematic because of the discontinuity of local kernel with respect to the

scale parameter, which in turn makes MLL function discontinuous with respect to this

parameter. It would be interesting to investigate ways to extend the idea of localization

for GPR to other tasks, such as classification.



Chapter 5

Optimization of a Regression

Function in a passive design

5.1 Introduction

Estimating the minimum value and the minimizer of an unknown function from obser-

vation of its noisy values on a finite set of points is a key problem in many applications.

Let D = {x1, . . . , xn} ⊂ Rd be a design set and let Θ be a compact and convex subset of

Rd. Assume that we observe noisy values of an unknown regression function f : Rd → R
at points of the design set:

yi = f(xi) + ξi, i = 1, . . . , n, (5.1)

where ξi’s are independent zero mean errors with E[ξ2i ] ≤ σ2. Our goal is to esti-

mate the minimum value of the regression function f∗ = minx∈Θ f(x) and its location

x∗ = argminx∈Θ f(x) when x∗ is unique. As accuracy measures of an estimator x̂n of

x∗ we consider the expected optimization error E(f(x̂n) − f∗) and the quadratic risk

E ∥x̂n − x∗∥2, where ∥ · ∥ denotes the Euclidean norm. The accuracy of an estimator Tn

of f∗ will be measured by the risk E(Tn − f∗)2. We will assume that f belongs to the

class of β-Hölder smooth and strongly convex functions with β ≥ 2.

The existing literature considers two different assumptions on the choice of the design.

Under the passive design setting, the points xi are sampled independently from some

probability distribution. Under the active (or sequential) design setting, for each i

the statistician can plan the experiment by selecting the point xi depending on the

previous queries and the corresponding responses x1, y1, . . . , xi−1, yi−1. The accuracy of

75
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estimation under the active design is at least as good as under the passive design but it

can be strictly better, which is the case for the problems considered here.

Active design, estimation of x∗. Active (or sequential) scheme has a long history

starting at least from the seminal work of Kiefer and Wolfowitz (1952) where an analog

of the Robins-Monro algorithm was introduced to estimate the minimizer x∗ of a uni-

variate function f. The idea of the Kiefer-Wolfowitz (KW) method is to approximate

the derivative of f using first order differences of yi’s and plug this estimator in the

gradient algorithm. Kiefer and Wolfowitz (1952) proved convergence in probability of

the KW algorithm under some regularity conditions on the regression function. A mul-

tivariate extension of the KW algorithm was proposed by Blum (1954). Convergence

rates of the KW algorithm for d = 1 were investigated in Dupač (1957) proving an up-

per bound on the quadratic risk of the order n−2/3 for β = 3. By using suitably chosen

linear combinations of first order differences to approximate the gradient, Fabian (1967)

proved the existence of a method that attains, for odd integers β ≥ 3, the quadratic

risk of the order n−(β−1)/β for functions f with bounded βth partial derivatives. The

method of Fabian (1967) uses (β − 1)/2 evaluations yi at every step of the algorithm

in order to approximate the gradient. Chen (1988) and Polyak and Tsybakov (1990)

have established minimax lower bounds for the estimation risk on the class of β−Hölder
smooth and strongly convex functions f , for all β ≥ 2. For the quadratic risk, these

bounds are of the order n−(β−1)/β. Polyak and Tsybakov (1990) proposed a new class of

methods using smoothing kernels and randomization to approximate the gradient. This

constitutes an alternative to the earlier used deterministic schemes derived from finite

differences. Polyak and Tsybakov (1990) proved that such randomized methods attain

the minimax optimal rate n−(β−1)/β on the above classes for all β ≥ 2 and not only for

odd integers β ≥ 3. An additional advantage over Fabian’s algorithm is the computa-

tional simplicity of these methods. In particular, they require at each step only one or

two evaluations of the function. For subsequent developments on similar methods, we

refer to Akhavan et al. (2020, 2021); Bach and Perchet (2016); Dippon (2003), where

one can find further references.

Active design, estimation of f∗. The problem of estimating f∗ under the active

scheme was first considered by Mokkadem and Pelletier (2007) who suggested a recur-

sive estimator and proved its asymptotic normality with
√
n scaling. Belitser et al. (2012)

defined an estimator of f∗ via a multi-stage procedure whose complexity increases expo-

nentially with the dimension d, and showed that this estimator achieves (asymptotically,

for n greater than an exponent of d) the Op(1/
√
n) rate when f is β-Hölder and strongly

convex with β > 2. Akhavan et al. (2020) improved upon this result by constructing a

simple computationally feasible estimator f̂n such that E|f̂n−f∗| = O(1/
√
n) for β ≥ 2.

It can be easily shown that the rate 1/
√
n cannot be further improved when estimating
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f∗. Indeed, using the oracle that puts all the queries at the unknown true minimizer x∗

one cannot achieve better rate under the Gaussian noise.

Passive design, estimation of x∗. The problem of estimating the minimizer x∗ under

the i.i.d. passive design was probably first studied in Härdle and Nixdorf (1987), where

some consistency and asymptotic normality results were discussed. Tsybakov (1990b)

proposed to estimate x∗ by a recursive procedure using local polynomial approximations

of the gradient. Considering the class of strongly convex and β-Hölder (β ≥ 2) regression

functions f , Tsybakov (1990b) proves that the minimax optimal rate of estimating x∗

on the above class of functions is n−(β−1)/(2β+d), and shows that the proposed estimator

attains this optimal rate. However, in order to define this estimator, one needs to know

of the marginal density of the design points that may be inaccessible in practice.

There was also some work on estimating x∗ in different passive design settings. Several

papers are analyzing estimation of x∗ in a passive scheme, where xi’s are given non-

random points in [0, 1] (Müller (1985, 1989)) or in [0, 1]d (Facer and Müller (2003)).

Another line of work (Härdle and Nixdorf (1987); Nazin et al. (1989, 1992)) considers

the problem of estimating the zero of a nonparametric regression function under i.i.d.

design, also called passive stochastic approximation when recursive algorithms are used.

Nazin et al. (1989, 1992) establish minimax optimal rates for this problem and propose

passive stochastic approximation algorithms attaining these rates. Application to trans-

fer learning is recently developed in Krishnamurthy and Yin (2022), where one can find

further references on passive stochastic approximation.

Passive design, estimation of f∗. To the best of our knowledge, the problem of

estimating f∗ under i.i.d. passive design was not studied. However, there was some

work on a related and technically slightly easier problem of estimating the maximum of

a function observed under the Gaussian white noise model in dimension d = 1 (Ibragimov

and Khas’minskii (1982); Lepski (1993)). Extrapolating these results to the regression

model and general d suggests that the optimal rate of convergence for estimating f∗ on

the class of β-Hölder regression functions f is of the order (n/ log n)−β/(2β+d), cf. the

conjecture stated in Belitser et al. (2021)1. We are not aware of any results on estimation

of f∗ on the class of β-Hölder and strongly convex regression functions f , which is the

main object of study in the current work.

Finally, we review some results on a related problem of estimating the mode of a prob-

ability density function. There exists an extensive literature on this problem. In the

univariate case, Parzen (1962a) proposed the maximizer of kernel density estimator

1The upper bound with the rate (n/ logn)−β/(2β+d) is straightforward (cf. Belitser et al. (2021)).
The lower bound, though not explicitly reported in the literature, can be routinely obtained using the
same ideas as in Ibragimov and Khas’minskii (1982).
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(KDE) as an estimator for the mode. Direct estimate of the mode based on order statis-

tics was proposed by Grenander (1965), where the consistency of the proposed method

was shown. Other estimators of the mode in the univariate case were considered by

(Chernoff, 1964; Dalenius, 1965; Venter, 1967). The minimax rate of mode estimation

on the class of β-Hölder densities that are strongly concave near the maximum was

shown to be n−(β−1)/(2β+d) in Tsybakov (1990a), where the optimal recursive algorithm

was introduced. It generalizes an earlier result of Khas’minskii (1979) who considered

the special case d = 1, β = 2 and derived the minimax lower bound of the order n−1/5

matching the upper rate provided by Parzen (1962a). Klemelä (2005) proposed to use

the maximizer of KDE with the smoothing parameter chosen by the Lepski method

(Lepskii, 1991), and showed that this estimator achieves optimal adaptive rate of con-

vergence. Dasgupta and Kpotufe (2014) proposed minimax optimal estimators of the

mode based on k-nearest neighbor density estimators, emphasizing the implementation

ease of the method. Computational complexity of mode estimation was investigated by

Arias-Castro et al. (2022) showing the impossibility of a minimax optimal algorithm

with sublinear computational complexity. It was shown that the maximum of a his-

togram, with a proper choice of bandwidth, achieves the minimax rate while running

in linear time. Bayesian approach to the mode estimation was developed by Yoo and

Ghosal (2019).

Contributions. In this chapter, we consider the model described at the beginning of

this section under the passive observation scheme. We assume that f belongs to the

class of β-Hölder and strongly convex regression functions. The contributions of the

present work can be summarized as follows.

• We construct a recursive estimator of the minimizer x∗ adaptive to the unknown

marginal density of xi’s and achieving the minimax optimal rate n−(β−1)/(2β+d) up

to a logarithmic factor.

• We show that the minimax optimal rate for the problem of estimating the minimum

value f∗ of function f on the above class of functions is of the order n−β/(2β+d),

and we propose an algorithm achieving this optimal rate. Thus, the additional

strong convexity assumption only allows for a logarithmic improvement in the rate

compared to the optimal rate (n/ log n)−β/(2β+d) on the class of β-Hölder functions

without strong convexity (see the discussion above).

Given our results, we have the following table summarizing the minimax optimal rates

for estimation under the active and passive design.
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rate of quadratic risk, estimation of x∗ rate of estimating f∗

passive scheme n
− 2(β−1)

2β+d n
− β

2β+d

active scheme n
−β−1

β n−
1
2

Table 5.1: Comparisons between the rates of convergence for passive and active
schemes

5.2 Definitions and assumptions

One of the main purposes of this work is to investigate the performance of the proposed

algorithms over a family of functions that enjoy a higher order smoothness assumption.

In the following definition, we characterize such a class of functions.

We first introduce the class of β-Hölder functions that will be used throughout the paper.

For β, L > 0, by Fβ(L) we denote the class of ℓ = ⌊β⌋ times differentiable functions

f : Rd → R satisfying the the following inequality∣∣∣∣∣∣f(x)−
∑
|m|≤l

1

m!
Dmf(x)(x− x′)m

∣∣∣∣∣∣ ≤ L∥x− x′∥β, ∀x, x′ ∈ Rd.

Our estimators will be based on kernels satisfying the following assumption.

Assumption 7. The kernel k : Rd → R has a compact support Supp(k) contained in the

unit Euclidean ball, and satisfies the following conditions

k(u) ≥ 0,

∫
k(u) du = 1, sup

u∈Rd

k(u) <∞ .

Furthermore, for special requirements of our analysis, we assume that k is a Lk-Lipschitz

function, i.e. for any x, y ∈ Rd, we have

|k(x)− k(y)| ≤ Lk ∥x− y∥ .

Assumption 8. It holds for all i, i′ ∈ [n], that: (i) ξi and xi′ are independent; (ii)

E[ξi] = 0; (iii) E[ξ2i ] ≤ σ2, where σ2 ≥ 0.

Assumption 9. We consider the model (5.1) with f : Rd → R satisfying the following

assumptions

(i) The function f attains its minimum at x∗ ∈ Θ.

(ii) The function f belongs to Hölder functional class Fβ(L) with β ≥ 2.
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(iii) There exists α > 0 such that the function f is α-strongly convex on Θ i.e. for any

x, y ∈ Θ, it satisfies

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ α

2
∥x− y∥2 .

(iv) The function f is uniformly bounded on the set Θ′ = {x+ y : x ∈ Θ and ∥y∥ ≤
1} such that supx∈Θ′ f(x) ≤M .

By Fβ,α(L) we denote the class of regression functions f satisfying Assumption 9.

Next, we introduce our assumptions on the design distribution.

Assumption 10. The design distribution ρX is absolutely continuous with respect to the

Lebesgue measure with a density p(x) such that

0 < pmin ≤ p(x) ≤ pmax <∞, ∀x ∈ Θ′.

Throughout this chapter, we call A > 0 a numerical constant, if A can only depend on d,

Θ, β, L, M , pmax, pmin, K, and σ, where the dependence on d is at most of a polynomial

order with the degree of polynomial only depending on β. We note that dependence

on the strong convexity parameter α is not included in the numerical constant since we

specify it explicitly in our upper bounds.

5.3 Estimating the location of the minimum

The form of gradient gj,λ in Algorithm 5.3 explained by the local polynomial method.

Algorithm 5.3.1

Requires Kernel k, and parameters hj =
(
log(j)
j

) 1
2β+d

and λj =
(
log(j)
j

) β
2β+d

,

for j ∈ [n].

Initialization Choose z1 ∈ Θ, and assign ηj =
1
αj , for j ∈ [n].

For j ∈ [n]

1. Let gj,λ(zj) = h−1
j

(
AB−1

j,λ(zj)Dj(zj)
)
,

2. Update zj+1 = ProjΘ (zj − ηjgj,λ(zj)) .

where x is sufficiently close to z and

U(u) =

(
um

(1)

m(1)
, . . . ,

um
(S)

m(S)

)⊤

, θ(z) =
(
h|m

(1)|Dm(1)
f(z), . . . , h|m

(S)|Dm(S)
f(z)

)⊤
.
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The exposition in section 1.9 suggests that an estimator for ∇f(z) is

gj(z) =
1

h

(
D1U(0)⊤

)
θ̂n(z) =

1

h
Aθ̂n(z) , (5.2)

where we introduced A =
(
D1U(0)⊤

)
, i.e.

Ai,m =

1, if m = i+ 1

0, otherwise

for i ∈ [d], and m ∈ [S]. Our ”statistical” version of the projected gradient descent

algorithm 5.3 is based on estimate (5.2) with two important modifications. First, to

avoid invertibility issues of the matrix Bn(z) we add the regularization constant λ > 0

to the diagonal entries. Second, at round j of Algorithm 5.3, we consider the matrix

Bj,λ = Bj + λI and the vector Dj , computed based on the first j observations (ordered

in an arbitrary way). This leads us to the regularized estimator of the gradient

gj,λ(z) =
1

h
Aθ̂j,λ(z) :=

1

h
A(Bj(z) + λI)−1Dj(z) . (5.3)

The following lemma provides finite sample guarantees for the bias of the regularized

gradient estimate (5.3).

Lemma 5.1. For j ∈ [n], let gj,λ be defined by (5.3). Under Assumptions 8, 9, 10 and

if the bandwidth and regularizer are chosen to be

h = hj = j
− 1

2β+d , λ = λj = j
− β

2β+d ,

the following upper bound holds for any x ∈ Θ

E ∥gj,λ(x)−∇f(x)∥ ≤ Aj
− β−1

2β+d , (5.4)

where A > 0 is a numerical constant.

Unregularized version of the lemma above is well know in the literature (see for instance

Stone (1982)). The rate j−(β−1)/(2β+d) know to be optimal in the minimax sense and

holds without strong convexity assumption. Note that the bound (5.4) is non-asymptotic

and holds for the stochastic design.

Theorem 5.2. Assume that f satisfies Assumptions 8–10. Then, for zn that is generated

by Algorithm 5.3, we have

E ∥zn − x∗∥2 ≤ Amin

1,

(
log(n)

n

) 2(β−1)
2β+d

α−2

 , (5.5)
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where A > 0 is a numerical constants.

Proof. We use the definition of Algorithm 5.3 and strong convexity of f to obtain an up-

per bound for E[∥zj+1−x∗∥|zj ], which depends on the bias term ∥E[gj(zj)|zj ]−∇f(zj)∥
and on the stochastic error term E

[
∥gj(zj)∥2 |zj

]
. Lemmas 6 and 7 bounds the bias

and stochastic error terms uniformly (this is why the bound includes an additional log

factor) over Θ leading to the bound claimed in the theorem.

We consider the logarithmic factor appearing in (5.5) as a price to pay for the fact that

our algorithm is adaptive to the marginal density of xi’s. Indeed, Tsybakov (1990b)

considered estimators that can depend on the marginal density of xi’s and achieve the

optimal rate n−(β−1)/(2β+d), while Algorithm 5.3 is free of such dependence. Note also

that our algorithm can be realized in online mode with the data that arrive progressively.

We conjecture that the extra logarithmic factor can be eliminated if we estimate x∗ by

the minimizer of the local polynomial estimator of f . However, such a method needs

the whole sample and cannot be realized in online mode. It remains an open question

whether there exists an algorithm combining all the three advantages, that is, online

realization, adaptivity to the marginal density and convergence with the sharp optimal

rate n−(β−1)/(2β+d).

The rate in the above theorem leads us to the conclusion that the estimation of the

minimizer of the strongly convex and smooth function is as hard as the estimation of

the gradient at a fixed point. Notice that the course of dimensionality can not be resolved

in the optimization problems for the passive design which distinguishes it from the active

design optimization where the optimal rate n−(β−1)/(2β) is independent of the ambient

dimension d (see Akhavan et al. (2020); Novitskii and Gasnikov (2021)). Note also that

the slow rate is inherited from the gradient estimation part (5.3) and is not related to

the projected gradient descent itself.

5.4 Estimating a minimum value of the regression function

In this section, we apply the above results to estimation of the minimum value f∗ =

minx∈Θ f(x) for functions f in the class Fβ,α(L). Observe that f(x∗) is not an estimator

since it depends on the unknown f , so Theorem 5.2 does not provide a result about esti-

mation of f∗. The estimation of f∗ proceeds by estimating the minimizer and the value

of the function separately on the equally and randomly divided data. Function estima-

tion step can be done by any optimal algorithm. Here we adopt the framework of the
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local regression already used to estimate the gradient in the Algorithm 5.3. Regularized

local polynomial estimator of the function f at point z is defined as

fn(z) = U⊤(0)θ̂n,λ(z). (5.6)

Minimum value estimation by local polynomial estimator is outlined in Algorithm 5.4.

Algorithm 5.4.1

Requires: Algorithm 5.3, kernel k : [−1, 1]d → R, parameters hn = n
− 1

2β+d

and λn = n
− β

2β+d .

1. Randomly split the data D in two equal parts D1 and D2

2. On the subsample D1 construct the minimizer zn by the Algorithm 5.3:

zn ←− Algorithm 5.3(D1)

3. On the second subsample D2, construct an estimator fn(zn) = U⊤(0)θ̂n,λ(zn)

at the point zn

Local polynomial estimator is known to be optimal (Stone, 1982), however, to the best

of our knowledge, all the rates considered in the literature are asymptotic and hold only

for sufficiently big n. Below we provide an upper rate for (5.6) which is non-asymptotic.

Theorem 5.3. Under Assumptions 8, 9, and 10, for any x ∈ Θ, we have

E
[
(fn(x)− f(x))2

]
≤
(
B2bias + Bvar

)
n
− 2β

2β+d .

Note that this theorem may be of independent interest since, to the best of our knowl-

edge, the non-asymptotic rates of convergence of a regularized local polynomial estimator

have not been studied in the literature.

The following theorem gives the rate of convergence for the estimator Tn = fn(zn).

Theorem 5.4. Assume that f satisfies Assumptions 8, 9, and 10. Then, we have

E |Tn − f (x∗)| ≤

C1(log(n)/n)
2

4+d if β = 2

C2n
− β

2β+d if β > 2
(5.7)

where C1, C2 > 0 are numerical constants.

Proof. Using the fact that, for any fixed x the estimator fn(x) is measurable with respect

to the second half of the sample and zn is measurable with respect to its first half we
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get

E [|Tn − f(x∗)|] ≤ E
(
E
[
|fn(zn)− f(zn)|

∣∣zn])+E [|f(zn)− f(x∗)|]

≤ E

[(
E
[
(fn(zn)− f(zn))2

∣∣zn]) 1
2

]
+ L

′
E
[
∥zn − x∗∥2

]
≤
(
E (fn(x)− f(x))2

) 1
2
+ L

′
E
[
∥zn − x∗∥2

]
.

By Theorems 5.2 and 5.3 we deduce

E [|Tn − f(x∗)|] ≤ max
(
1, α−1

)C3n
− β

2β+d + C4

(
log(n)

n

) 2(β−1)
2β+d


≤

C1(log(n)/n)
2

4+d if β = 2

C2n
− β

2β+d if β > 2
,

where C1, C2, C3, C4 > 0 are numerical constants.

Theorem 5.4 shows that estimation of f∗ for smooth and strongly convex functions

under passive design is realized with the same rate as function estimation. The lower

bound (5.10) below shows that the slow rate in (5.7) cannot be improved in a minimax

sense and it corresponds to the rate of a smooth function estimation at a fixed point.

We show below that the rate (n/ log n)−β/(2β+d) is optimal for β-smooth regression

functions without strong convexity assumption. It corresponds to the rates of function

estimation in supremum norm. The strong convexity assumption allows us to reduce

the global function reconstruction problem to a simpler, point estimation, leading to

the rates without extra logarithmic factor. Note that the rate n−β/(2β+d) cannot be

improved even when x∗ is known as the function estimation at the point of minimum is

still required.

Note that, for β > 2, the convergence rate of Algorithm 5.3 used at the first stage

to estimate the minimizer is more than needed to achieve the rate (5.7). The optimal

estimate of f∗ can be obtained by estimating the minimizer at a slower rate, namely,

n−β/(2β+d) for the optimization risk. Therefore, it is not necessary to have zn as an

estimator at the first step - it can be replaced by some suboptimal estimators. This could

be beneficial considering the fact that suboptimal algorithms may be computationally

less costly.

In an active design setting, much faster rate can be obtained, see Table 5.1. Specifically,

f∗ can be estimated with the parametric rate Cn−1/2 where C > 0 is a constant, which

is independent of the dimension d and smoothness β for any β > 2 and all n large enough
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(Akhavan et al., 2020). Clearly, the rate n−1/2 cannot be improved even by using the

ideal but non-realizable oracle that makes all queries at point x∗.

5.5 Lower bound

The following theorem provides lower bounds for the minimax risks of arbitrary estima-

tors on the class Fβ,α(L). Let w(·) be a monotone non-decreasing function on [0,∞)

such that w(0) = 0 and w ̸≡ 0.

Theorem 5.5. Let x1, . . . , xn be i.i.d. random vectors with a bounded Lebesgue density

on Rd. Assume that the random variables ξi are i.i.d. having a density pξ(·) with respect

to the Lebesgue measure on R such that

∃I∗ > 0, v0 > 0 :

∫ (√
pξ(u)−

√
pξ(u+ v)

)2

du ≤ I∗v2 , (5.8)

for |v| ≤ v0. Then, for any β, α, L > 0 we have

inf
xn

sup
f∈Fβ,α(L)

Efw(n
β−1
2β+d ∥xn − x∗∥) ≥ c1, (5.9)

and

inf
fn

sup
f∈Fβ,α(L)

Efw(n
β

2β+d |fn − f∗|) ≥ c′1, (5.10)

where infxn and inffn denote the infimum over all estimators of the minimizer and over

all estimators of the minimum value of f , respectively, and c1 > 0, c′1 > 0 are constants

that depend only on β, α, L,Θ, I∗, v0, and w(·).

Condition (5.8) is rather general. It is satisfied, for example, for the Gaussian distri-

bution and also for a large class of regular densities, cf. Ibragimov and Has’minskii

(1981). The lower bound (5.9) was proved in Tsybakov (1990b) under a more restrictive

condition on the density pξ.

The proof of Theorem 5.5 is given in Section 5.8. It is based on a reduction to the

problem of testing two hypotheses.

Considering the bounds (5.10), (5.9) with w(u) = u2 and w(u) = u, respectively, and

combining them with Theorems 5.2 and 5.4 we obtain that the estimator Tn is minimax

optimal for f∗, and zn is minimax optimal up to a logarithmic factor for x∗ on the class

of functions Fβ,α(L).

In the next theorem, we provide a minimax lower bound on estimation of f∗ over the

class of β-Hölder functions Fβ(L) when there is no strong convexity assumption.
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Theorem 5.6. Let x1, . . . , xn be i.i.d. random vectors with a bounded Lebesgue density

on Rd, and let ξi be i.i.d. Gaussian random variables with zero mean and variance σ2.

Assume that Θ contains an open subset of Rd. Then, for any β > 0, L > 0, we have

inf
fn

sup
f∈Fβ(L)

Efw

((
n

log n

) β
2β+d

|fn − f∗|
)
≥ c3, (5.11)

where inffn denotes the infimum over all estimators of the minimum value of f and

c3 > 0 is a constant that depends only on β, α, L,Θ, σ2, and w(·).

Theorem 5.6 implies that
(

n
logn

)− β
2β+d

is the minimax rate of estimating the mini-

mum value f∗ on the class Fβ(L). Indeed, the matching upper bound with the rate(
n

logn

)− β
2β+d

is obtained in a trivial way if we estimate f∗ by the minimum of any rate

optimal (in supremum norm) nonparametric estimator of f , for example, by the local

polynomial estimator as in Stone (1982).

Thus, if we drop the assumption of strong convexity, the minimax rate deteriorates only

by a logarithmic factor. It suggests that strong convexity is not a crucial advantage in

estimation of the minimum value of a function under the passive design.

5.6 Discussion

In this chapter, we have considered the problem of estimating the minimizer and the

minimum value of the regression function from the i.i.d data with a special focus on

highly smooth and strongly convex regression functions. We provide upper bounds for

the proposed algorithms. We show that the rates of estimation of the minimizer is the

same as the rate for estimating the gradient of the regression function. To estimate the

minimum value we have used two-stage procedure where in the first step we estimate

the location of the minimum followed by the estimation of the function value at the

estimated in the first step point. We obtain optimal nonparametric rates of convergence

for our two-stage procedure.

An interesting open question is to make our algorithms adaptive to the unknown smooth-

ness β, that is, to develop a data-driven choice of the smoothing parameter h and of the

regularization parameter λ. When considering adaptation to the unknown smoothness

of function f , the optimal rates for estimation of f∗ will be presumably slower than the

minimax rates by a logarithmic factor.
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5.7 Proofs

In this section, we provide the proofs of our two sets of upper bounds on estimator of

the minimizer and minimum value. Section 5.7.1 is devoted to the proof of Theorem 5.2

on upper bounds of the Algorithm 5.3, whereas Section 5.7.2 is devoted to the proofs of

Theorem 5.3. In section 5.8 we provide the proof of the lower bound (theorem 5.5).

5.7.1 Proof of theorem 5.2

For the proof of theorem 5.2 we need some preliminary lemmas.

Lemma 5.7. For j ∈ [n], let gj,λ be defined by (5.3). Under Assumptions 8, 9, 10 and

if the bandwidth and regularizer are chosen to be

h = hj =

(
log(j)

j

) 1
2β+d

and λ = λj =

(
log(j)

j

) β
2β+d

,

the following upper bound holds for any x ∈ Θ

E ∥gj,λ(x)−∇f(x)∥ ≤ A

(
1

j

) β−1
2β+d

, (5.12)

where A > 0 is a numerical constant.

Proof. We introduce the shorthand notations. For any j ∈ [n], and i ∈ [j], let

Mi,j(x) = U

(
xi − x
hj

)
U⊤

(
xi − x
hj

)
k

(
xi − x
hj

)
and Ri,j(x) = U

(
xi − x
hj

)
k

(
xi − x
hj

)
.

(5.13)

Also, denote Cj(x) = 1
jhdj

∑j
i=1Ri,j(x)f(xi), Dj = 1

khdj

∑j
i=1Ri,j(x)yi, and note that

E [Cj(x)] = E [Dj(x)].

First, for the sake of simplicity, denote B = E[Bj(x)]. By letting ϕj = gj(x) −
h−1
j

(
AB−1Bj(x)cj(f, x)

)
, we can write

E [ϕj ] = E [gj(x)]− h−1
j Acj(f, x) = E [gj(x)]−∇f(x) ,

where cj(f, x) =
(
h
|m(1)|
j Dm(1)

f(x), . . . , h
|m(S)|
j Dm(S)

f(x)
)⊤

. Also, note that by As-

sumption 8, E[gj(x)] = E
[
h−1
j

(
AB−1

j,λ(x)Cj(x)
)]

. To conclude the proof, we need to
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provide an upper bound for the term ∥E [ϕj ]∥. Let

ψ1,j = h−1
j

(
AB−1Cj(x)

)
,

ψ2,j = h−1
j

(
A(B + λjI)

−1Cj(x)
)
.

Then we have

∥E[ϕj ]∥ =
∥∥∥E [(ψ1,j − h−1

j

(
AB−1Bj(x)cj(f, x)

))
+ (ψ2,j − ψ1,j) + (gj(x)− ψ2,j)

]∥∥∥
≤
∥∥∥E[ψ1,j − h−1

j

(
AB−1Bj(x)cj(f, x)

)
]
∥∥∥︸ ︷︷ ︸

term I

+ ∥E[ψ2,j − ψ1,j ]∥︸ ︷︷ ︸
term II

+ ∥E[gj(x)− ψ2,j ]∥︸ ︷︷ ︸
term III

.

We provide adequately tight upper bounds, for each term in the above, separately. For

term I, we can write

term I = h−1
j

∥∥∥∥∥AB−1E

[
1

jhdj

j∑
i=1

Ri,j(x)

(
f(xi)− U⊤

(
xi − x
hj

)
cj(f, x)

)]∥∥∥∥∥
≤ h−1

j

∥∥AB−1
∥∥
op

∥∥∥∥∥E
[

1

khdj

j∑
i=1

Ri,j(x)

(
f(xi)− U⊤

(
xi − x
hj

)
cj(f, x)

)]∥∥∥∥∥ .

Since ∥A∥op ≤ 1, by Lemma 5.14(iii), we deduce that
∥∥AB−1

∥∥
op
≤ µ−1

min. Then we can

write

term I ≤ h−1
j µ−1

min

(
1

jhdj

j∑
i=1

E

[∥∥∥∥Ri,j(x)(f(xi)− U⊤
(
xi − x
hj

)
cj(f, x)

)∥∥∥∥]
)

.

Since by Assumption 9 f ∈ Fβ(L), for any i ∈ [j], we have

|f(xi)− U⊤
(
xi − x
hj

)
cj(f, x)| ≤ L ∥x− xi∥β ,

and we can write

term I ≤ Lh−1
j µ−1

min

(
1

jhdj

j∑
i=1

E
[
∥Ri,j(x)∥ ∥x− xi∥β

])

= Lh−d−1
j µ−1

min

∫
Rd

∥x− u∥β
∥∥∥∥U (u− xhj

)
k

(
u− x
hj

)∥∥∥∥ p(u) du
= Lhβ−1

j µ−1
min

∫
Rd

∥w∥β ∥U(w)k(w)∥ p(x+ hjw)dw ≤ A1h
β−1
j ,
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where we introduced A1 = Lµ−1
minpmaxκβ, and κβ =

∫
Rd ∥u∥β ∥U(u)k(u)∥ du. For term

II, we deduce that

term II = h−1
j

∥∥∥A((B + λjI)
−1 −B−1

)
E [Cj(x)]

∥∥∥
≤Mh−1

j λj ∥A∥op
∥∥B−1

∥∥
op

∥∥∥(B + λjI)
−1
∥∥∥
op

E [∥Cj(x)∥] .

By Assumption 9(iii), we have supx∈Θ′ f(x) ≤M . Also, E [∥Cj(x)∥] ≤ E [supx∈Θ ∥Cj(x)∥],
where by Lemma 5.14(ii) we get E [supx∈Θ ∥Cj(x)∥] ≤Mpmaxν1,1. Moreover, by Lemma

5.14(iii), we can write
∥∥B−1

∥∥
op

∥∥∥(B + λjI)
−1
∥∥∥
op
≤ µ−2

min. Therefore, we deduce that

term II ≤ A2h
−1
j λj ,

with A2 =Mpmaxν1,1µ
−2
min. Finally, we need to bound term III

term III ≤ h−1
j

∥∥∥∥E[A(B−1
j,λ(x)− (E[Bj,λ(x)])

−1
)
(Cj(x)−E [Cj(x)])

]∥∥∥∥
+ h−1

j

∥∥∥∥E[A(B−1
j,λ(x)− (E[Bj,λ(x)])

−1
)
E [Cj(x)] f(xj)

]∥∥∥∥
≤ h−1

j E

[∥∥∥B−1
j,λ(x)− (E[Bj,λ(x)])

−1
∥∥∥
op
∥Cj(x)−E [Cj(x)]∥

]
+ h−1

j E

[∥∥∥B−1
j,λ(x)− (E[Bj,λ(x)])

−1
∥∥∥
op

]
E

[
sup
x∈Θ
∥Cj(x)∥

]
.

For the first term in the r.h.s., we use Lemma 5.19, and we get

term III ≤ A3j
−1h−d−1

j + h−1
j E

[∥∥∥Bj,λ(x)−1 − (E[Bj,λ(x)])
−1
∥∥∥
op

]
E

[
sup
x∈Θ
∥Cj(x)∥

]
,

where A3 > 0 is the numerical constant that appears in Lemma 5.19. For the second

term on the r.h.s., by invoking Lemma 5.14(i), can be bounded by the following term

A4h
−1
j E

[
∥Bj,λ(x)∥−1

op ∥Bj,λ(x)− (E[Bj,λ(x)])∥op
]
≤

A4h
−1
j

(
E
[
∥Bj,λ(x)∥−2

op

]
E
[
∥Bj,λ(x)− (E[Bj,λ(x)])∥2op

]) 1
2
,

where for the last display we used Cauchy-Schwarz inequality and we introduced A4 =

Mpmaxν1,1µ
−1
min. Now by using Jensen’s inequality and Lemma 5.16, we get

term III ≤ A3j
−1h−d−1

j + A4j
− 1

2h
− d

2
−1

j ≤ A5j
− 1

2h
− d

2
−1

j ,
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where A5 = 3A3 + A4. By combining all of these, we have

∥E[gj(x)]−∇f(x)∥ ≤ A6

(
hβ−1
j + h−1

j λj + h
−1− d

2
j j−

1
2

)
, (5.14)

where we introduce A6 = max (A1, A2, A5). Finally, by substituting hj =
(
log(j)
j

) 1
2β+d

,

and λj =
(
log(j)
j

) β
2β+d

, we deduce

∥E[gj(x)]−∇f(x)∥ ≤ Abias

(
log(j)

j

) β−1
2β+d

,

where Abias = 3A6.

The following lemma provides the bound of the variance uniformly over Θ.

Lemma 5.8. Let gj be defined by Algorithm 5.3, and assume that Assumptions 8, 9,

and 10 hold. Then, we have

E

[
sup
x∈Θ
∥gj(x)−E [gj(x)]∥2

]
≤ Avar

(
log(j)

j

) 2(β−1)
2β+d

,

where Avar > 0 is a numerical constant.

Proof. Let Gj(x) = 1
jhdj

∑j
i=1Ri,j(x)ξi, and recall that Cj(x) = 1

jhdj

∑j
i=1Ri,j(x)f(xi).

Then, we have

E

[
sup
x∈Θ
∥gj(x)−E [gj(x)]∥2

]
≤ 2E

[
sup
x∈Θ

∥∥∥h−1
j AB−1

j,λ(x)Gj(x)
∥∥∥2]︸ ︷︷ ︸

term I

+ 2E

[
sup
x∈Θ

∥∥∥h−1
j AB−1

j,λ(x)Cj(x)−E
[
h−1
j AB−1

j,λ(x)Cj(x)
]∥∥∥2]︸ ︷︷ ︸

term II

.

For term I, we have

term I ≤ 4h−2
j E

[
sup
x∈Θ

∥∥∥A(B−1
j,λ(x)− (E[Bj,λ(x)])

−1
)
Gj(x)

∥∥∥2]︸ ︷︷ ︸
term III

+ 4h−2
j

∥∥(E[Bj,λ(x)])
−1
∥∥2
op

E

[
sup
x∈Θ
∥Gj(x)∥2

]
︸ ︷︷ ︸

term IV

.
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For term III, by using the property of Assumption 8, we can write

term III ≤ 4σ2µ−2
minλ

−2
j h−2

j E

[
sup
x∈Θ
∥Bj,λ(x)−E[Bj,λ(x)]∥2op

(
j−2h−2d

j

j∑
i=1

∥Ri,j(x)∥2
)]

.

Now, by invoking Cauchy-Schwarz inequality we get

term III ≤ 4σ2µ−2
minλ

−2
j h−2

j

E

[
sup
x∈Θ
∥Bj,λ(x)−E[Bj,λ(x)]∥4op

]
E

sup
x∈Θ

(
j−2h−2d

j

j∑
i=1

∥Ri,j(x)∥2
)2


1
2

By utilizing Lemma 5.15, we get

term III ≤ 4σ2µ−2
minλ

−2
j j−1h−d−2

j log(j)

E

sup
x∈Θ

(
j−2h−2d

j

j∑
i=1

∥Ri,j(x)∥2
)2


1
2

≤ 4σ2µ−2
minλ

−2
j j−1h−d−2

j log(j)

(
j−4h−4d

j

( j∑
i=1

E[sup
x∈Θ
∥Ri,j(x)∥4]

+

j∑
i,m=1

E[sup
x∈Θ
∥Ri,j(x)∥2]E[sup

x∈Θ
∥Rm,j(x)∥2]

)) 1
2

≤ 4σ2µ−2
minλ

−2
j j−1h−d−2

j log(j)
(
j−3h−3d

j pmaxν1,4 + j−2h−2d
j p2maxν

2
1,2

) 1
2
,

where the last inequality is a result of Lemma 5.14(i). Now, by using the inequalities

1 ≤ jhdj and j ≥ λ−2
j h−dj log(j), we can write

term III ≤ A1j
−1h−d−2

j ,

where we introduce A1 = 4σ2µ−2
min(pmaxν1,4 + p2maxν

2
1,2)

1
2 . For term IV, we have

term IV ≤ 4σ2µ−2
minj

−1h−2d−2
j E

[
sup
x∈Θ
∥R1,j∥2

]
≤ A2j

−1h−d−2
j ,

where the last inequality is obtained by Lemma 5.14 (i), with A2 = 4σ2µ−2
minpmaxν1,2.

Therefore, we deduce that

term I ≤ A3j
−1h−d−2

j ,
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with A3 = A1 + A2. We proceed the proof by providing an adequate tight upper bound

for term II.

term II ≤ 4h−2
j E

[
sup
x∈Θ

∥∥∥B−1
j,λ(x)− (E[Bj,λ(x)])

−1
∥∥∥2
op
∥Cj(x)∥2

]
︸ ︷︷ ︸

term V

+ 4h−2
j

∥∥(E[Bj,λ(x)])
−1
∥∥2
op

E

[
sup
x∈Θ
∥Cj(x)−E[Cj(x)]∥2

]
︸ ︷︷ ︸

term VI

.

Similar to term III, for term V we have

term V ≤ 4M2µ−2
minλ

−2
j j−1h−d−2

j log(j)
(
j−3h−3d

j pmaxν1,4 + j−2h−2d
j p2maxν

2
1,2

) 1
2 ≤ A4j

−1h−d−2
j ,

where A4 = 4M2µ−2
min(pmaxν1,4+ p2maxν

2
1,2)

1
2 . Finlay, for term VI, by Lemma 5.18 we can

write

term VI ≤ A5j
−1h−d−2

j log(j) ,

where A5 > 0 is a numerical constant. Thus, we deduce that

term II ≤ A6j
−1h−d−2

j log(j) ,

with A6 = A4 + A5. We conclude the proof, by letting Avar = A3 + A6, and substituting

the parameters hj =
(
log(j)
j

) 1
2β+d

, and λj =
(
log(j)
j

) β
2β+d

.

Lemma 5.9. Let gj be defined by Algorithm 5.3, and assume that Assumptions 8, 9,

and 10 hold. Then, we have

E

[
sup
x∈Θ
∥gj(x)−∇f(x)]∥2

]
≤ Aerror

(
log(j)

j

) 2(β−1)
2β+d

,

where Aerror > 0 is a numerical constant.

Proof. We can write

E

[
sup
x∈Θ
∥gj(x)−∇f(x)]∥2

]
≤ E

[
sup
x∈Θ
∥gj(x)−E [gj(x)]∥2

]
+ sup
x∈Θ
∥E [gj(x)]−∇f(x)∥2 .

We conclude the proof by using Lemmas 5.7 and 5.8, and letting Aerror = A2bias+Avar.
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Lemma 5.10. Let gk be defined by Algorithm 5.3, and assume that Assumptions 8, 9,

and 10 hold. Then, we have

E

[
sup
x∈Θ
∥gj(x)∥2

]
≤ Asmj

2+d
2β+d log(j)

2(β−1)
2β+d ,

where Asm > 0 is a numerical constant.

Proof. Let Gj(x) = 1
jhdj

∑j
i=1Ri,j(x)ξi, and recall that Cj(x) = 1

jhdj

∑j
i=1Ri,j(x)f(xi).

By the definition of gj , we can write

E[sup
x∈Θ
∥gj(x)∥2] ≤ h−2

j E

[
sup
x∈Θ
∥Bj,λ(x)∥−2

op ∥Dj(x)∥2
]

≤ 2h−2
j E

[
sup
x∈Θ
∥Bj,λ(x)∥−2

op ∥Cj(x)∥
2

]
︸ ︷︷ ︸

term I

+2h−2
j E

[
sup
x∈Θ
∥Bj,λ(x)∥−2

op ∥Gj(x)∥
2

]
︸ ︷︷ ︸

term II

,

where the last inequality is obtained by (u+ v)2 ≤ 2u2 +2v2, for any u, v ≥ 0. Now, for

term I, we can write

term I ≤ 4h−2
j

(
E

[
sup
x∈Θ
∥Bj,λ(x)∥−2

op sup
x∈Θ
∥Cj(x)−E [Cj(x)]∥2

])
︸ ︷︷ ︸

term III

+ 4h−2
j

(
E

[
sup
x∈Θ
∥Bj,λ(x)∥−2

op

]
E

[
sup
x∈Θ
∥Cj(x)∥2

])
︸ ︷︷ ︸

term IV

,

To provide the upper bound for term III, by using Cauchy-Schwarz inequality we have

term III ≤ 4h−2
j

(
E

[
sup
x∈Θ
∥Bj,λ(x)∥−4

op

]
E

[
sup
x∈Θ
∥Cj(x)−E [Cj(x)]∥4

]) 1
2

≤ A1j
−1h−d−2

j log(j) ,

where we utilized Lemmas 5.16 and 5.18, with A1 > 0 as a numerical constant. For term

IV, by invoking Lemmas 5.14(i) and 5.16, we deduce that

term IV ≤ A2h
−d−2
j ,

where A2 > 0 is a numerical constant. Finally, it is enough to provide an upper bound

for term II.

term II = 2h−2
j E

[
sup
x∈Θ
∥Bj,λ(x)∥−2

op ∥Gj(x)∥
2

]
≤ 2σ2λ−2

j h−2−2d
j j−1E

[
sup
x
∥R1,j(x)∥2

]
,
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where the last inequality is a result of Assumption 8. Thanks to Lemma 5.14(i), and

the fact that j ≥ λ−2
j h−dj log(j), we can write

term II ≤ 2σ2h−2
j log(j) . (5.15)

Now it is straightforward to see that summation of the terms are dominated by Asmh
−d−2
j log(j),

where Asm = A1+A2+2σ2. By substituting hj =
(
log(j)
j

) 1
2β+d

, we conclude the proof.

Now we are ready to proof theorem 5.2.

Proof. By the definition of the algorithm and contracting property of the Euclidean

projection, for any j ∈ [n], we have

∥zj+1 − x∗∥2 ≤ ∥zj − x∗∥2 −
2

αj
(zj − x∗)⊤E [gj(zj)|zj ]︸ ︷︷ ︸

term I

+
1

α2j2
E
[
∥gj(zj)∥2 |zj

]
.

By adding and subtracting ∇f(zn), for term I we get

E[δj+1|zj ] ≤ δj −
2

αj
⟨zj − x∗,∇f(zj)⟩+

2

αj
∥zj − x∗∥ ∥E[gj(zj)|zj ]−∇f(zj)∥

+
1

α2j2
E
[
∥gj(zj)∥2 |zj

]
,

(5.16)

where we introduced δj = ∥zj − x∗∥2. Since f is an α-strongly function, we have

αδj ≤ ⟨zj − x∗,∇f(zj)⟩ . (5.17)

Combining (5.16) and (5.17), yields

E[δj+1|zj ] ≤
(
1− 2

j

)
δj +

2

αj
∥zj − x∗∥ ∥E[gj(zj)|zj ]−∇f(zj)∥︸ ︷︷ ︸

term II

+
1

α2j2
E
[
∥gj(zj)∥2 |zj

]
.

Note that for any a, b ∈ R and γ > 0, we have 2a · b ≤ γa2 + b2

γ . For term II in (5.18),

we can write

∥zj − x∗∥ ∥E[gj(zj)|zj ]−∇f(zj)∥ ≤
α

2
δj +

1

2α
∥E[gj(zj)|zj ]−∇f(zj)∥2 .
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Plugging-in the above upper bound for term II, and taking total expectation, yields

δ̃j+1 ≤
(
1− 1

j

)
δ̃j +

1

α2j
E
[
∥E[gj(zj)|zj ]−∇f(zj)∥2

]
+

1

α2j2
E
[
∥gj(zj)∥2

]
≤
(
1− 1

j

)
δ̃j +

1

α2j
E

[
sup
x∈Θ
∥gj(x)−∇f(x)∥2

]
+

1

α2j2
E

[
sup
x∈Θ
∥gj(x)∥2

]
, (5.18)

where δ̃j = E[δj ]. By invoking Lemmas 5.9 and 5.10, we deduce

δ̃j+1 ≤
(
1− 1

j

)
δ̃j + A1j

−1− 2(β−1)
2β+1 log(j)

2(β−1)
2β+d α−2 , (5.19)

where A1 = Aerror + Asm, is a numerical constant. At the end, by utilizing (Akhavan

et al., 2020, Lemma D.1.), we conclude the proof

E ∥zn − x∗∥2 ≤
(
2diam(Θ)

n
+ A2n

− 2(β−1)
2β+d α−2

)
log(n)

2(β−1)
2β+d ,

where A2 =
2β+2
d+2 A1, and diam(Θ) = supx,y∈Θ ∥x− y∥2 .

5.7.2 Proof of the Theorem 5.3

Lemma 5.11. Under Assumption 8, 9, and 10, for any x ∈ Θ we have

|E [fn(x)]− f(x)| ≤ Bbiasn
− β

2β+d ,

where Bbias > 0 is a numerical constant.

Proof. Let B = E[Bn(x)], and ϕn = fn(x) −AB−1Bncn(f, x). It is straightforward to

see that

E [ϕn] = E [fn(x)]−Acn(f, x) = E [fn(x)]− f(x) .

Therefore we need to provide an upper bound, for the term |E [ϕn] |. Let

ψ1,n = AB−1Cn(x) ,

ψ2,n = A (B + λnI)
−1Cn(x) ,

where Cn(x) =
1
nhdn

∑n
k=1Rk(x)f(xk). Now, we can write

|E[ϕn| ≤ |E[ψ1,n − h−1
n

(
AB−1Bn(x)cn(f, x)

)
]|︸ ︷︷ ︸

term I

+ |E[ψ2,n − ψ1,n|︸ ︷︷ ︸
term II

+ |E[fn(x)− ψ2,n]|︸ ︷︷ ︸
term III

.
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By following similar steps as in the proof of Lemma 5.7, we get

term I ≤ B1h
β
n , term II ≤ B2λn and term III ≤ B3h

− d
2

n n−
1
2 ,

where B1, B2, B3 > 0, are numerical constants. Therefore, we deduce that

|E[ϕn]| ≤ B4

(
hβn + λn + h

− d
2

n n−
1
2

)
,

with B4 = max (B1, B2, B3). We concluding the proof, by substituting hn = n
− 1

2β+d , and

λn = n
− β

2β+d .

Lemma 5.12. Let Assumptions 8, 9, and 10 hold. Then, for any x ∈ Θ we have

E [(fn(x)−E [fn(x)])]
2 ≤ Bvarn

− 2β
2β+d ,

where Bvar > 0 is a numerical constant.

Proof. Similar to the proof of Lemma 5.10, let Gn(x) =
1
nhdn

∑n
k=1Rk(x)ξk, and Cn(x) =

1
nhdn

∑n
k=1Rk(x)f(xk). Then, we have

E[(fn(x)−E [fn(x)])
2] ≤ 2E

[∥∥∥B−1
n,λ(x)Gn(x)

∥∥∥2]︸ ︷︷ ︸
term I

+2E

[∥∥∥B−1
n,λ(x)Cn(x)−E

[
B−1
n,λ(x)Cn(x)

]∥∥∥2]︸ ︷︷ ︸
term II

.

For term I, we can write

term I ≤ 4E

[∥∥∥(B−1
n,λ(x)− (E[Bn,λ])

−1
)
Gn(x)

∥∥∥2]︸ ︷︷ ︸
term III

+4 ∥E[Bn,λ(x)]∥−2E
[
∥Gn(x)∥2

]
︸ ︷︷ ︸

term IV

.

By Assumption 8, for term III we get

term III ≤ 4σ2µ−2
minλ

−2
n E

[
∥Bn,λ(x)−E[Bn,λ(x)]∥2op

(
n−2h−2d

n

n∑
k=1

∥Rk(x)∥2
)]

.

Now, by using Cauchy-Schwarz inequality, we can write

term III ≤ 4σ2µ−2
minλ

−2
n

E
[
∥Bn,λ(x)−E[Bn,λ(x)]∥4op

]
E

(n−2h−2d
n

n∑
k=1

∥Rk(x)∥2
)2
 1

2

.
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Utilizing Lemma 5.14, implies

term III ≤ 4σ2µ−2
minλ

−2
n n−1h−dn

E

(n−2h−2d
n

n∑
k=1

∥Rk(x)∥2
)2
 1

2

≤ 4σ2µ−2
minλ

−2
n n−1h−dn

(
n−4h−4d

n

( n∑
k=1

E[∥Rk(x)∥4] +
n∑

j,k=1

E[∥Rj(x)∥2]E[∥Rk(x)∥2]
)) 1

2

.

By invoking Lemma 5.14(i), and the fact that 1 ≤ nhn, we deduce that

term III ≤ 4σ2µ−2
minλ

−2
n n−2h−2d

n

(
pmaxν1,4 + (pmaxν1,2)

2

) 1
2

.

Now, by using the inequality n ≥ λ−2
n h−dn , we get

term III ≤ B1n
−1h−dn ,

where B1 = 4σ2µ−2
min(pmaxν1,4 + (pmaxν1,2)

2)
1
2 . For term IV, we can write

term IV ≤ 4σ2µ−2
minn

−1h−2d
n E

[
∥Rn(x)∥2

]
≤ B2n

−1h−dn ,

where the last inequality is a result of Lemma 5.14(i), with B2 = 4σ2µ−2
minpmaxν1,2. as a

numerical constant. For term II, we have

term II ≤ 4E

[∥∥∥B−1
n,λ(x)− (E[Bn,λ(x)])

−1
∥∥∥2
op
∥Cn(x)∥2

]
︸ ︷︷ ︸

term V

+ 4
∥∥(E[Bn,λ(x)])

−1
∥∥2
op

E
[
∥Cn(x)−E[Cn(x)]∥2

]
︸ ︷︷ ︸

term VI

.

term V ≤ 4M2µ−2
minλ

−2
n k−1h−dn

(
n−3h−3d

n pmaxν1,4 + n−2h−2d
n p2maxν

2
1,2

) 1
2 ≤ B3n

−1h−dn ,

where B3 = 4n2µ−2
min(pmaxν1,2 + (pmaxν1,2)

2)
1
2 . For term VI, by using Lemma 5.17, we

have

term VI ≤ B4n
−1h−dn ,

with B4 > 0 as a numerical constant. Finally, by combing all of these, we get

E
[
(fn(x)−E [fn(x)])

2
]
≤ Bvarn

−1h−dn ,
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where we introduced Bvar = B1 + B2 + B3 + B4. We conclud the proof by substituting

hn = n
− 1

2β+d .

Proof. We deduce that

E
[
(fn(x)− f(x))2

]
= (E [fn(x)]− f(x))2 +E

[
(fn(x)−E [fn(x)])

2
]
.

We conclude the proof by utilizing Lemmas 5.11 and 5.12.

5.8 Proof of Theorem 5.5

We first prove (5.10). We apply the scheme of proving lower bounds for estimation of

functionals described in Section 2.7.4 in Tsybakov (2009). Moreover, we use its basic

form when the problem is reduced to testing two simple hypotheses (that is, the mixture

measure µ from Section 2.7.4 in Tsybakov (2009) is the Dirac measure). The functional

we are estimating is F (f) = f∗ = minx∈Θ f(x), where Θ is a sufficiently large Euclidean

ball centered at 0. We choose the two hypotheses as the probability measures P⊗n
1 and

P⊗n
2 , where Pj stands for the distribution of a pair (xi, yi) satisfying (5.1) with f = fj ,

j = 1, 2. For r > 0, δ > 0, we set

f1(x) = α(1 + δ)∥x∥2/2, f2(x) = f1(x) + rhβnΦ

(
x− x(n)
hn

)
,

where hn = n−1/(2β+d), x(n) = (hn/8, 0, . . . , 0) ∈ Rd and Φ(x) =
∏d
i=1Ψ(xi) with

Ψ(t) =

∫ t

−∞
(η(y + 1/2)− η(y)) dy,

where η(·) is an infinitely many times differentiable function on R1 such that

η(x) ≥ 0, η(x) =

0, x /∈ [0, 1/2]

1, x ∈ [1/8, 3/8]
.

It is shown in Tsybakov (1990b) that if r is small enough the functions f1 and f2 are

α-strongly convex and belong to Fβ(L). Thus, fj ∈ Fβ,α(L), j = 1, 2. It is also not hard

to check (cf. Tsybakov (1990b)) that for the function η1(y) = η(y+1/2)− η(y) we have

η1

(
−rΨ

d−1(0)hβ−2
n

α(1 + δ)
− 1

8

)
= 1
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when r < α(1+δ)/4. Using this remark we get that the minimizers x∗j = argminx∈Θ fj(x)

have the form

x∗1 = (0, 0, . . . , 0) and x∗2 =

(
−rΨ

d−1(0)hβ−1
n

α(1 + δ)
, 0, . . . , 0

)
.

The values of the functional F on f1 and f2 are F (f1) = 0 and

F (f2) = f2(x
∗
2)

=
r2Ψ2(d−1)(0)

2α(1 + δ)
h2(β−1)
n + rΨd−1(0)Ψ

(
−rΨ

d−1(0)hβ−2
n

α(1 + δ)
− 1

8

)
hβn

≥ r2Ψ2(d−1)(0)

2α(1 + δ)
h2(β−1)
n + rΨd−1(0)Ψ(−1/4)hβn (for r small enough)

≥ rΨd−1(0)Ψ(−1/4)hβn.

Here, Ψ(0) =
∫∞
−∞ η(y) dy > 0 and Ψ(−1/4) =

∫ 1/4
−∞ η(y) dy > 0.

Note that assumption (i) of Theorem 2.14 in Tsybakov (2009) is satisfied with β0 = β1 =

0, c = 0 and s = rΨd−1(0)Ψ(−1/4)hβn/2. Therefore, by Theorem 2.15 (ii) in Tsybakov

(2009), (5.10) will be proved if we show that

H2
(
P⊗n
1 , P⊗n

2

)
≤ a < 2, (5.20)

where H2 (P,Q) denotes the Hellinger distance between the probability measures P and

Q. Using assumption (5.8) we obtain

H2
(
P⊗n
1 , P⊗n

2

)
= 2

(
1−

(
1− H2(P1, P2)

2

)n)
≤ nH2(P1, P2) (as (1− x)n ≥ 1− xn, x ∈ [0, 1])

= n

∫ (√
pξ(y)−

√
pξ (y + (f1(x)− f2(x)))

)2

p(x) dx dy

≤ nI∗
∫

(f1(x)− f2(x))2 p(x) dx

= nI∗r
2h2β+dn

∫
Φ2(u)p

(
x(n) + uhn

)
du

≤ pmaxI∗r
2

∫
Φ2(u) du, for r ≤ v0,

where pmax is the maximal value of the density p(·) of xi. Choosing r ≤
√
a/
(
pmaxI∗

∫
Φ2(u) du

)
,

with a < 2 we obtain (5.20). This completes the proof of (5.10).

In order to prove (5.9), it suffices to use the same construction of two hypotheses as

above, apply the Hellinger version of Theorem 2.2 from Tsybakov (2009), and to notice
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that ∥x∗1 − x∗2∥ ≥ cn−(β−1)/(2β+d), where c > 0 is a constant.

5.9 Proof of Theorem 5.6

We apply again the scheme of proving lower bounds for estimation of functionals from

Section 2.7.4 in Tsybakov (2009). However, we use a different construction of the hy-

potheses. Without loss of generality, assume that n ≥ 2, that Θ contains the cube [0, 1]d.

Define hn = (n/ log(n))−1/(2β+d), N = (1/hn)
d, and assume without loss of generality

that N is an integer. For r > 0, we set

fj(x) = −rhβnΦ
(
x− t(j)

hn

)
, j = 1, . . . , N,

where Φ(x) =
∏d
i=1Ψ(xi), where Ψ(·) is an infinitely many times differentiable function

on R taking positive values on its support [−1/2, 1/2], and we denote by t(1), . . . , t(N)

the N points of the equispaced grid on [0, 1]d with step hn over each coordinate, such

that the supports of all fj ’s are included in [0, 1]d and are disjoint. It is not hard to

check that for r small enough all the functions fj , j = 1, . . . , N , belong to Fβ(L).

We consider the product probability measures P⊗n
0 and P⊗n

1 , . . . P⊗n
N , where P0 stands

for the distribution of a pair (xi, yi) satisfying (5.1) with f ≡ 0, and Pj stands for the

distribution of (xi, yi) satisfying (5.1) with f = fj . Consider the mixture probability

measure Pµ = 1
N

∑N
j=1 P

⊗n
j , where µ denotes the uniform distribution on {1, . . . , N}.

Note that, for each j = 1, . . . , N , we have F (fj) = −rhβnΦmax, where F (f) = f∗ =

minx∈Θ f(x), and Φmax > 0 denotes the maximal value of function Φ(·). Let

χ2(P ′, P ) =

∫
( dP ′/ dP )2 dP − 1

denote the chi-square divergence between two mutually absolutely continuous probabil-

ity measures P ′ and P . We will use the following lemma, which is a special case of

Theorem 2.15 in Tsybakov (2009).

Lemma 5.13. Assume that there exist v > 0, b > 0 such that F (fj) = −2v for j =

1, . . . , N and χ2(Pµ, P⊗n
0 ) ≤ b, Then

inf
f̂n

sup
j=0,1,...,N

P⊗n
j

(
|f̂n − F (fj)| ≥ v

)
≥ 1

4
exp(−b),

where inf f̂n denotes the infimum over all estimators.
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In our case, the first condition of this lemma is satisfied with v = rhβnΦmax/2. We

now check that the second condition χ2(Pµ, P⊗n
0 ) ≤ b holds with some constant b > 0

independent of n. Using a standard representation of the chi-square divergence of a

Gaussian mixture from the pure Gaussian noise measure (see, for example, Lemma 8 in

Carpentier et al. (2019)) we obtain

χ2(Pµ, P⊗n
0 ) =

1

N2

N∑
j,j′=1

E exp

(∑n
i=1 fj(xi)fj′(xi)

σ2

)
− 1

=
1

N2

N∑
j,j′=1

E exp

(∑n
i=1 fj(xi)fj′(xi)

σ2

)
− 1

=
1

N2

N∑
j=1

E exp

(∑n
i=1 f

2
j (xi)

σ2

)
+
N(N − 1)

N2
− 1

≤ 1

N2

N∑
j=1

E exp

(∑n
i=1 f

2
j (xi)

σ2

)

=
1

N2

N∑
j=1

[
E exp

(
f2j (x1)

σ2

)]n
,

where the equality in the third line is due to the fact that if j ̸= j′ then fj and fj′ have

disjoint supports and thus fj(xi)fj′(xi) = 0. Note that maxx∈Rd f2j (x) ≤ r2Φ2
max, for all

j = 1, . . . , N . Choose r such that r ≤ σ/Φmax. Then
f2j (x1)

σ2 ≤ 1, and using the elemen-

tary inequality exp(u) ≤ 1+2u, u ∈ [0, 1], we obtain that exp

(
f2j (x1)

σ2

)
≤ 1+

2f2j (x1)

σ2 for all

j = 1, . . . , N . Substituting this bound in the last display and noticing that E(f2j (x1)) =∫
f2j (x)p(x)dx ≤ pmaxr

2h2β+dn

∫
Φ2(x) dx = c∗

logn
n , where c∗ = pmaxr

2
∫
Φ2(x) dx, we

obtain:

χ2(Pµ, P⊗n
0 ) ≤ 1

N

[
1 +

2E(f2j (x1))

σ2

]n
≤ 1

N

[
1 +

2c∗ log n

σ2n

]n
≤ 1

N
exp

(
2c∗ log n

σ2

)
=
nc0

N
,

where c0 = 2c∗/σ
2 = 2pmaxr

2
∫
Φ2(x) dx/σ2. Since N = (n/ log n)

d
2β+d we finally get

χ2(Pµ, P⊗n
0 ) ≤ nc0−

d
2β+d (log n)

d
2β+d .

By choosing r small enough to have c0 ≤ d
2(2β+d) we obtain that χ2(Pµ, P⊗n

0 ) ≤
(
logn√
n

) d
2β+d ≤(

log 2√
2

) d
2β+d

:= b. Thus, the second condition of Lemma 5.13 holds if r is chosen as a

small enough constant. Notice that, in Lemma 5.13, the rate v is of the desired or-

der (n/ log n)
− β

2β+d . The result of the theorem now follows from Lemma 5.13 and the

standard argument to obtain the lower bounds, see Section 2.7.4 in Tsybakov (2009).
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5.10 Proof of lemmas

Recall that Θ′ = {x+ y : x ∈ Θ and y ∈ Supp(k)}.

Lemma 5.14. For any q ≥ 1, let

ν1,q =

∫
Rd

∥U(u)k(u)∥q du , ν2,q =

∫
Rd

∥∥∥U (u)U⊤ (u) k (u)
∥∥∥q
op

du ,

and pmax = maxy∈Θ′ p(y). Then, under Assumption 10, for any x ∈ Θ, j ∈ [n], and

i ∈ [j], we have

(i) h−dj E [supx∈Θ ∥Ri,j(x)∥q] ≤ pmaxν1,q .

(ii) h−dj E
[
supx∈Θ ∥Mi,j(x)∥qop

]
≤ pmaxν2,q .

(iii) There exists µmin > 0, such that infx∈Θ µmin (E [Bj(x)]) ≥ µmin.

Proof. We have

h−dj E

[∥∥∥∥sup
x∈Θ

Ri,j(x)

∥∥∥∥q] = h−dj

∫
Rd

sup
x∈Θ

∥∥∥∥∥U
(
y − x
hdj

)
k

(
y − x
hdj

)∥∥∥∥∥
q

p(y) dy

=

∫
Rd

∥U(u)k(u)∥q sup
x∈Θ

p(x+ hju) du ≤ pmaxν1,q .

For (ii) we can write

h−dj E

[
sup
x∈Θ
∥Mi,j(x)∥qop

]
= h−dj

∫
Rd

sup
x∈Θ

∥∥∥∥∥U
(
y − x
hdj

)
U⊤

(
y − x
hdj

)
k

(
y − x
hdj

)∥∥∥∥∥
q

op

p(y) dy

=

∫
Rd

∥∥∥U (u)U⊤ (u) k (u)
∥∥∥q
op

sup
x∈Θ

p(x+ hju) du ≤ pmaxν2,q .

Similarly for (iii), we get

E [Bj(x)] = h−dj E

[
U

(
x1 − x
hdj

)
U⊤

(
x1 − x
hdj

)
k

(
x1 − x
hdj

)]

=

∫
Rd

U (u)U⊤ (u) k (u) p(x+ hju) du .

By denotingH =
∫
Rd U (u)U⊤ (u) k (u), we deduce that infx∈Θ µmin (E [Bj(x)]) ≥ pminµmin (H).

By (Tsybakov, 1986, Lemma 1), we have µmin (H) > 0. We conclude the proof by letting

µmin = pminµmin (H).
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Lemma 5.15. Let j ∈ [n], with j ≥ 3 and hj =
(
log(j)
j

) 1
2β+d

, and assume that Assump-

tion 10 holds. Then, for any x ∈ Θ, we have

E

[
sup
x∈Θ
∥Bj,λ(x)−E [Bj,λ(x)]∥4op

]
≤ A1h

−2d
j j−2 log(j)2 . (5.21)

Furthermore, for j ≥ λ−2
j h−dj log(j), we have E

[
supx∈Θ ∥Bj,λ(x)∥−4

op

]
≤ A2µ

−4
min , where

A1, A2 > 0 are numerical constants.

Proof. In order to prove (5.21), first we show that ∥Bj,λ(x)−E [Bj,λ(x)]∥op is upper

bounded by a Lipschitz function. Let Qi,j(x) = h−dj Mi,j(x)− h−dj E [Bj,λ(x)] .

1. There exists a Lipschitz upper bound: First note that

∥Bj,λ(x)−E [Bj,λ(x)]∥op ≤
S∑
s=1

∣∣∣∣∣j−1h−dj

j∑
i=1

(Qi,j(x)−E [Qi,j(x)])s

∣∣∣∣∣ ,
where (Qi,j(x)−E [Qi,j(x)])s is the (s, s)-entry of the matrix Qi,j(x)−E [Qi,j(x)]. Recall

that the kernel function k is Lk-Lipschitz. Furthermore, for s ∈ [S] let G(s) : Rd → R,
such that

G(s)(u) =
(
U (u)U⊤ (u)

)
s
,

it is straightforward to check that G(s) is a continuously differentiable function. Denote

Ω as a convex and compact subset of Rd, such that Supp(k) ⊆ Ω, and let L
(s)
G =

maxu∈Ω
∥∥∇G(s)(u)

∥∥, and LG = maxs∈[S] Ls. Now, it is clear to see that for any s ∈ [S],

G(s) is a LG-Lipschitz function on Supp(k). Moreover, for any s ∈ [S], and x, y ∈ Θ, we

can write ∣∣∣∣j−1h−dj

j∑
i=1

(
(Qi,j(x)−E[Qi,j(x)])s − (Qi,j(y)−E [Qi,j(y)])s

)∣∣∣∣
≤ j−1h−dj

j∑
i=1

|(Qi,j(x))s − (Qi,j(y))s|︸ ︷︷ ︸
term I

+ j−1h−dj

j∑
i=1

E [|(Qi,j(x))s − (Qi,j(y))s|]︸ ︷︷ ︸
term II

.
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For term I if h−1
j (xi − x), h−1

j (xi − y) ∈ Supp(k), we have

term I =

j∑
i=1

∣∣∣∣G(s)

(
xi − x
hj

)
k

(
xi − x
hj

)
−G(s)

(
xi − y
hj

)
k

(
xi − y
hj

)∣∣∣∣
=

j∑
i=1

∣∣∣∣ (G(s)

(
xi − x
hj

)
−G(s)

(
xi − y
hj

))
k

(
xi − x
hj

)
+

(
k

(
xi − x
hj

)
− k

(
xi − y
hj

))
G(s)

(
xi − y
hj

) ∣∣∣∣
≤ jh−1

j A3 ∥x− y∥ ,

where A3 = maxu∈Supp(k) LGk(u) + maxs∈[S],i∈[j],u∈Supp(k) LkG
s(u). The scenarios when

either one or both of the points h−1
j (xi − x), h−1

j (xi − y) do not belong to Supp(k), can

be treated similarly. For term II, with the exact same steps, we can write

term II ≤ jh−1
j A3 ∥x− y∥ .

By combining all of these, we deduce that

S∑
s=1

∣∣∣∣∣j−1h−dj

j∑
i=1

(
(Qi,j(x)−E [Qi,j(x)])s − (Qi,j(y) +E [Qi,j(y)])s

)∣∣∣∣∣ ≤ ALiph
−d−1
j ∥x− y∥ ,

where we introduced ALip = 2SA3.

Provide an upper bound for the probability For any t ≥ 0, we can write

P

[
sup
x∈Θ
∥Bj,λ(x)−E [Bj,λ(x)]∥op ≥ t

]
≤ P

[
S∑
s=1

sup
x∈Θ

∣∣∣∣∣j−1h−dj

j∑
i=1

F
(s)
i (x)

∣∣∣∣∣ ≥ t
]

≤
S∑
s=1

P

[
sup
x∈Θ

∣∣∣∣∣j−1h−dj

j∑
i=1

F
(s)
i (x)

∣∣∣∣∣ ≥ t

S

]
︸ ︷︷ ︸

term III

,

(5.22)

where we defined F
(s)
i (x) = (Qi,j(x)−E [Qi,j(x)])s. From now on, we focus on providing

an upper bound for term III. For ϵ > 0, consider an ϵ-net of Θ, namely N , with cardi-

nality N (Θ, ϵ). Therefore, for any x ∈ Θ, there exists y ∈ N , such that ∥x− y∥ < ϵ,

and we can write

term III ≤
S∑
s=1

N (Θ, ϵ) sup
x∈N

P

[∣∣∣∣∣j−1h−dj

j∑
i=1

F
(s)
i (x)

∣∣∣∣∣ ≥ t

S
− ALiph

−d−1
j ϵ

]

≤
S∑
s=1

(
diam(Θ)

ϵ
+ 1

)d
sup
x∈N

P

[∣∣∣∣∣j−1h−dj

j∑
i=1

F
(s)
i (x)

∣∣∣∣∣ ≥ t

S
− ALiph

−d−1
j ϵ

]
.
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where diam(Θ) = maxx,y∈Θ ∥x− y∥, and we used the fact thatN (Θ, ϵ) ≤
(
diam(Θ)

ϵ + 1
)d

.

By assigning ϵ = t
2ALipS

hd+1
j , we get

term III ≤
S∑
s=1

(
2ALipSdiam(Θ)

t
· h−d−1

j + 1

)d
sup
x∈N

P

[∣∣∣∣∣j−1h−dj

j∑
i=1

F
(s)
i (x)

∣∣∣∣∣ ≥ t

2S

]
.

By invoking Bernstein inequality, we deduce that

term III ≤
S∑
s=1

(
2ALipSdiam(Θ)

t
· h−d−1

j + 1

)d
P

[
−1

2
·min

(
jt2

S2υ2
,
jt

SK ′

)]
, (5.23)

where we introduced

υ2 = sup
x∈N ,s∈[S]

E

[∣∣∣h−dj F
(s)
1 (x)

∣∣∣2] , and K ′ = sup
x∈N ,s∈[S],i∈[j]

h−dj
∣∣(Qi,j(x)−E [Qi,j(x)])s

∣∣ .
We proceed the proof by providing upper bounds for the terms υ and K ′. For υ, we can

write

υ2 = sup
x∈N ,s∈[S]

h−2d
j E

[∣∣(Q1,j(x)−E [Q1,j(x)])s
∣∣2]

≤ sup
x∈N ,s∈[S]

h−2d
j E

[∣∣(Q1,j(x))s
∣∣2]

≤ sup
x∈N ,s∈[S]

h−dj

∫ ∣∣∣(U (u)U⊤ (u) k (u)
)
s

∣∣∣2 p(x+ hju) ≤ h−dj A4 ,

where A4 = pmax sups∈[S]
∫ ∣∣(U (u)U⊤ (u) k (u)

)
s

∣∣2 du. Similarly, for K ′, we have

K ′ ≤ sup
x∈N ,s∈[S],i∈[j]

h−dj
(∣∣(Qi,j(x))s∣∣+E

[∣∣(Qi,j(x))s∣∣)] ≤ h−dj A5 ,

where we introduced A5 = 2 supu∈Supp(k),s∈[S] κmax

∣∣(U (u)U⊤ (u)
)
s

∣∣. By substituting

these bounds in (5.23), we get

term III ≤
S∑
s=1

(
A7

t
h−d−1
j + 1

)d
exp

(
−A6 ·min

(
jt2hdj , jth

d
j

))
= S exp

(
−A6 ·min

(
jt2hdj , jth

d
j

)
+ d log

(
A7

t
h−d−1
j + 1

))
, (5.24)

where A6 = min
(

1
2S2A2

, 1
2SA3

)
, and A7 = 2ALipSdiam(Θ). Finlay, by replacing (5.24) in

(5.22), we get

P

[
sup
x∈Θ
∥Bj,λ(x)−E [Bj,λ(x)]∥op ≥ t

]
≤ S exp

(
−A6 ·min

(
jt2hdj , jth

d
j

)
+ d log

(
A7

t
h−d−1
j + 1

))
.
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The upper bound: For any a ≥ 0, we can write

E

[
sup
x∈Θ
∥Bj,λ(x)−E [Bj,λ(x)]∥4op

]
=

∫ ∞

t=0
4t3P

[
sup
x∈Θ
∥Bj,λ(x)−E [Bj,λ(x)]∥op ≥ t

]
dt

≤ a4 + S

∫ ∞

t=a
4t3 exp

− A6 ·min
(
jt2hdj , jth

d
j

)
︸ ︷︷ ︸

term IV

+ d log

(
A8

t
h−d−1
j + 1

)
︸ ︷︷ ︸

V

 dt ,

where A8 = max(A7, 1, A
−2
6 ). Now we wish to assign a large enough to ensure that term

IV dominates term V. Let a = 2d·max(1, d+3
4β+2d)

2β+d
β max

(
3

√
A8
A6
,
√

A8
A6

)√
log(j)h

− d
2

j j−
1
2 .

So we have two possibilities. First assume that a < 1, then we have

term IV = A6ja
2hdj ≥ 4d2max

(
1,

(
d+ 3

4β + 2d

)2
)
· A

1
3
6 A

2
3
8 log(j) .

Since A8 ≥ 1, we have

term V ≤ d log
(
2A8
a
h−d−1
j

)
≤ d log

A
1
3
6 A

2
3
8

d

(
j

log(j)

) d+3
4β+2d


≤ dmax

(
d+ 3

4β + 2d
, 1

)
log

A
1
3
6 A

2
3
8

d
j

 ,

where the last inequality is obtained from the fact that log(j) ≥ 1. Therefore, we can

deduce that

2 · term V ≤ term IV .

Now, assume that a ≥ 1, then we have

term IV = A6jah
d
j ≥ 2dmax

(
1,

d+ 3

4β + 2d

)
· 2β + d

β
· A

2
3
6 A

1
3
8

√
log(j)h

d
2
j j

1
2

≥ 2dmax

(
1,

d+ 3

4β + 2d

)
· 2β + d

β
· A

2
3
6 A

1
3
8 j

β
2β+d ,
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and

term V ≤ d log

A
2
3
6 A

1
3
8

2d

(
j

log(j)

) d+3
4β+2d

+ 1


≤ dmax

(
1,

d+ 3

4β + d

)
log

A
2
3
6 A

1
3
8

2d
j + 1


≤ dmax

(
1,

d+ 3

4β + d

)
· 2β + d

β
· log

((
A

2
3
6 A

1
3
8

) β
2β+d

j
β

2β+d + 1

)

≤ dmax

(
1,

d+ 3

4β + d

)
· 2β + d

β
· A

2
3
6 A

1
3
8 j

β
2β+d ,

where the last holds, since A
2
3
6 A

1
3
8 ≥ 1, and β

2β+d ≤ 1. Also, we used the inequality

log(x+ 1) ≤ x, for all x > 0. Then we have

2 · term V ≤ term IV .

Therefore, we deduce that

E

[
sup
x∈Θ
∥Bj,λ(x)−E [Bj,λ(x)]∥4op

]
≤ A9j

−2h−2d
j log(j)2

+ S

∫ ∞

t=0
4t3 exp

(
−A10min

(
jt2hdj , jth

d
j

))
dt︸ ︷︷ ︸

term VI

,

where A9 =
(
2d ·max(1, d+3

4β+2d)
2β+d
β max

(
3

√
A8
A6
,
√

A8
A6

))4
and A10 =

A6
2 . To conclude the

proof it is enough to provide an upper bound for term VI. In order to calculate the

integral appeared in term VI, we proceed with he similar steps as in the proof of Lemma

5.16 and we obtain

term VI ≤ A11j
−2h−2d

j ,

where A11 > 0 only depends on A10 and S. We conclude the first part of the proof by

letting A1 = A9 + A11. For the second part of the proof, similar to the proof of Lemma

5.16, we can write

E

[
sup
x∈Θ

∥∥Bj,λ(x)−1
∥∥4
op

]
≤ 4E

[
sup
x∈Θ

∥∥∥Bj,λ(x)−1 − (E [Bj,λ(x)])
−1
∥∥∥4
op

]
+ 4 sup

x∈Θ

∥∥∥(E [Bj,λ(x)])
−1
∥∥∥4
op

≤ 4µ−4
minλ

−4E

[
sup
x∈Θ
∥Bj,λ(x)−E [Bj,λ(x)]∥4op

]
+ 4λ−4

min .
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By the first part of the proof we haveE
[
supx∈Θ ∥Bj,λ(x)−E [Bj,λ(x)]∥4op

]
≤ A1j

−2h−2
j log(j)2,

which gives

E

[
sup
x∈Θ

∥∥Bj,λ(x)−1
∥∥4
op

]
≤ 4A1µ

−4
minj

−2h−2d
j log(j)2λ−4

j + 4λ−4
min .

Since j ≥ λ2h−dj log(j), we deduce that

E

[
sup
x∈Θ

∥∥Bj,λ(x)−1
∥∥4
op

]
≤ 4(A1 + 1)λ−4

min .

We finish the proof by assigning A2 = 4(A1 + 1).

Lemma 5.16. Let j ∈ [n], with 1 ≤ jhdj , and assume that Assumption 10 holds. Then,

for any x ∈ Θ, we have

E ∥Bj,λ(x)−E [Bj,λ(x)]∥4op ≤ A1h
−2d
j j−2 .

Furthermore, for j ≥ λ−2
j h−dj , we have E ∥Bj,λ(x)∥−4

op ≤ A2µ
−4
min , where A1, A2 > 0 are

numerical constants.

Proof. Let Qi,j(x) = h−dj Mi,j(x)− h−dj E [Bj,λ(x)] . We introduce

K ′ = sup
x∈Θ

max
1≤i≤n

∥Qi,j(x)∥op , and υ2 = sup
x∈Θ

∥∥∥∥∥
n∑
i=1

EQ⊤
i,j(x)Qi,j(x)

∥∥∥∥∥
op

. (5.25)

Note that for any i ∈ [j] and x ∈ Rd, Qi,j(x) ∈ RS×S . Then by (Vershynin, 2019,

Theorem 5.4.1), for any t ≥ 0, we have

P

∥∥∥∥∥
j∑
i=1

Qi,j(x)

∥∥∥∥∥
op

≥ t

 ≤ 2S exp

(
−cmin

(
t2

υ2
,
t

K ′

))
,

where c > 0 is a numerical constant.

E

∥∥∥∥∥
j∑
i=1

Qi,j(x)

∥∥∥∥∥
4

op

=

∫ ∞

0
4t3P

∥∥∥∥∥
j∑
i=1

Qi,j(x)

∥∥∥∥∥
op

≥ t

 dt

= 4S

∫ υ2

K′

0
t3 exp

(
−c t

2

υ2

)
dt︸ ︷︷ ︸

term I

+4S

∫ ∞

υ2

K′

t3 exp

(
−c t

K ′

)
dt︸ ︷︷ ︸

term II

.
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We provide upper bounds for the terms I and II, separately.

term I = 2S
υ2

c

(
−t2 exp

(
−c t

2

υ2

)) ∣∣∣∣ υ
2

K′

t=0

+ 4S
υ2

c

∫ υ2

K′

0
t exp

(
−c t

2

υ2

)
dt

≤ 4S
υ2

c

∫ υ2

K′

0
t exp

(
−c t

2

υ2

)
dt

= 2S
υ4

c2

∫ υ2

K′

0

2ct

υ2
exp

(
−c t

2

υ2

)
dt

= −2Sυ
4

c2
exp(−c t

2

υ2
)

∣∣∣∣ υ
2

K′

t=0

≤ 2s
υ4

c2
.

Similarly, for term II we can write

term II = −4SK
′

c
t3 exp

(
−c t

K ′

) ∣∣∣∣∞
υ2

K′

+ 12S
K ′

c

∫ ∞

υ2

K′

t2 exp

(
−c t

K ′

)
dt

= 4S
υ6

cK ′2 exp

(
−c υ

2

K ′2

)
+ 12S

K ′

c

∫ ∞

υ2

K′

t2 exp

(
−c t

K ′

)
dt

≤ 4S
υ4

c2
+ 12S

K ′

c

∫ ∞

υ2

K′

t2 exp

(
−c t

K ′

)
dt

≤ 4S
υ4

c2
− 12S

K ′2

c2
t2 exp

(
−c t

K ′

) ∣∣∣∣∞
υ2

K′

+ 24S
K ′2

c2

∫ ∞

υ2

K′

t exp(−c t
K ′ ) dt

≤ 4S
υ4

c2
+ 12S

υ4

c2
exp

(
−c υ

2

K ′2

)
+ 24S

K ′2

c2

∫ ∞

υ2

K′

t exp(−c t
K ′ ) dt

= 4S
υ4

c2
+ 12S

υ2K ′2

c3
− 24S

K ′3

c3
t exp

(
−c t

K ′

) ∣∣∣∣∞
υ2

K′

+ 24S
K ′3

c3

∫ ∞

υ2

K′

exp

(
−c t

K ′

)
dt

≤ 4S
υ4

c2
+ 12s

υ2K ′2

c3
+ 24S

K ′4

c4
+ 24s

K ′3

c3

∫ ∞

υ2

K′

exp

(
−c t

K ′

)
dt

≤ 4S
υ4

c2
+ 12S

υ2K ′2

c3
+ 24S

K ′4

c4
− 24S

K ′4

c4
exp

(
−c t

K ′

) ∣∣∣∣∞
υ2

K′

≤ 4S
υ4

c2
+ 12S

υ2K ′2

c3
+ 24S

K ′4

c4
+ 24S

K ′6

c5υ2
.

By combining the provided bounds for the terms I and II, we deduce that

E

∥∥∥∥∥
j∑
i=1

Qi,j(x)

∥∥∥∥∥
4

op

≤ 6S
υ4

c2
+ 12S

υ2K ′2

c3
+ 24S

K ′4

c4
+ 24S

K ′6

c5υ2
. (5.26)
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To conclude the first part of the proof, it is enough to upper bound the terms K ′ and

σ, which are defined in (5.25). For K ′, we can write

K ′ ≤ sup
x∈Θ

max
i∈[j]

2h−dj

∥∥∥∥∥U
(
xi − x
hj

)
U

(
xi − x
hj

)⊤
k

(
xi − x
hj

)∥∥∥∥∥
op

≤ A4h
−d
n ,

where A4 = maxu∈Supp(k)

∥∥∥U (u)U (u)⊤ k (u)
∥∥∥
op
. For υ2, by Lemma 5.14(ii), we have

υ2 = sup
x∈Θ

j∑
i=1

∥∥∥EQ⊤
i,j(x)Qi,j(x)

∥∥∥
op
≤ jh−2d

j sup
x∈Θ

E

∥∥∥∥∥U
(
x1 − x
hj

)
U

(
x1 − x
hj

)⊤
k

(
x1 − x
hj

)∥∥∥∥∥
2

op

≤ pmaxν2,2jh
−d
j .

By substituting the above bounds in (5.26), we get

E

∥∥∥∥∥
j∑
i=1

Qi,j(x)

∥∥∥∥∥
4

op

≤ A4

[
j2h−2d

j + jh−3d
n + h−4d

j

]
,

where A4 > 0 is a numerical constant. Since 1
j

∑j
i=1Qi,j(x) = Bj,λ(x)− E [Bj,λ(x)], we

deduce that

E ∥Bj,λ(x)−E [Bj,λ(x)]∥4op ≤ A3

[
j−2h−2d

j + j−3h−3d
j + j−4h−4d

j

]
.

Since 1 ≤ jhdj , we get

E ∥Bj,λ(x)−E [Bj,λ(x)]∥4op ≤ A1h
−2d
j j−2 ,

with A1 = 3A3. For the second part the proof, we can write

E
∥∥Bj,λ(x)−1

∥∥4
op
≤ 4E

∥∥Bj,λ(x)−1 − (E[Bj,λ(x)])
−1
∥∥4
op

+
4

µ4min

≤ 4A1
λ4µ4min

h−4d
j j−2 +

4

µ4min

.

So for any j ≥ λ−2
j h−dj , we have

E
∥∥Bj,λ(x)−2

∥∥
op
≤ A2

µ4min

,

where we introduced A2 = 4A1 + 4.
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Lemma 5.17. Let j ∈ [n], with 1 ≤ jhdj , and assume that Assumptions 9(iv) and 10

hold. Then, for any x ∈ Θ, we have

E
[
∥Cj(x)−E [Cj(x)]∥4

]
≤ Ah−2d

j j−2 .

Proof. The proof can be deduced by similar steps as the proof of Lemma 5.16.

Lemma 5.18. Let j ∈ [n], with 1 ≤ jhdj , and assume that Assumptions 9(iv) and 10

hold. Then, for any x ∈ Θ, we have

E

[
sup
x∈Θ
∥Cj(x)−E [Cj(x)]∥4

]
≤ Ah−2d

j j−2 log(j)2 .

Proof. The proof can be deduced by similar steps as the proof of Lemma 5.15.

Lemma 5.19. Let Assumption 10 holds. If 1 ≤ jhdj , and j ≥ λ−2
j h−dj , then for any

x ∈ Θ, we have

E

[
sup
x∈Θ

∥∥∥Bj,λ(x)−1 − (E[Bj,λ(x)])
−1
∥∥∥
op

sup
x∈Θ
∥Cj(x)−E [Cj(x)]∥

]
≤ Aj−1h−dj ,

where A > 0 is a numerical constant.

Proof. By using Cauchy-Schwarz inequality, it is enough to provide an upper bound for

the following terms:

E

[
sup
x∈Θ

∥∥∥Bj,λ(x)−1 − (E[Bj,λ(x)])
−1
∥∥∥2
op

]
︸ ︷︷ ︸

term I

E

[
sup
x∈Θ
∥Cj(zn)−E [Cj(x)]∥2

]
︸ ︷︷ ︸

term II


1
2

.

For term I, we utilize Cauchy-Schwarz inequality, once more, and we get

term I ≤ µ−2
min

(
E

[
sup
x∈Θ
∥Bj,λ(x)∥−4

op

]
E

[
sup
x∈Θ
∥Bj,λ(x)−E [Bj,λ(x)]∥4op

]) 1
2

≤ A1j
−1h−dj log(j) ,

where the last inequality is obtained by Lemma 5.15, , and A1 > 0 is a numerical

constant. For term II, Lemma 5.18, yields

term II ≤
(
E
[
∥Cj(x)−E [Cj(x)]∥2

])
≤ A2j

−1h−dj log(j) ,

where we introduced A2 > 0 as the numerical constant that appears in Lemma 5.18. By

combining all of these, we conclude the proof.



Chapter 6

Conclusions and Future Work

Chapter 2 provided a thorough analyses of the generalization properties of weighted

kernel ridge regression under the covariate shift assumption. Our main objectives were

to:

(i) Investigate the properties of IW correction applied to high capacity models.

(ii) Analyze the relative merits of high-capacity models over low-capacity models under

covariate shifts.

(iii) Derive alternative re-weighting procedures allowing optimally tackling hard shift

scenarios.

We gave a fairly satisfactory explanation for each of the above-mentioned points.

For the moderate covariate shift scenarios (when IW is bounded by W ) we show that

the kernel least squares corrected by the importance weights is optimal and matches the

learning rates of KRR without covariate shift. Moreover, the lower bound on the mini-

max risk over the Sobolev class of regression functions in Ma et al. (2022) suggests that

the appearance of the constantW = ∥w∥∞ in our upper rate of IW-KRR is also optimal

(at least asymptotically). The generalization result from Ma et al. (2022) shows that

the same optimal rates can be achieved by unweighted KRR whenever the regression

function belongs to the RKHS i.e. the model is wellspecified. In this case, we can safely

forget about the covariate shift and construct the KRR with a suitably chosen kernel. In

practice, however, full KRR is rarely an option due to scalability issues. The main contri-

butions that enabled scalability are based on the Nyström approximation (Williams and

Seeger, 2000) and the random feature approximation (Rahimi and Recht, 2008). Both

approximations are essentially low-rank approximations of the nonparametric kernel-

based model. Under covariate shift we have two competing issues. We would like to fit
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exact (full-rank) kernel ridge regression in order to avoid IW correction. On the other

hand, for the low-rank approximations, used to speed up the matrix inversion, we need

IW correction to avoid the bias related to the mismatch between the projections of the

regression function under training and testing measures. Giving the precise trade-off

between the model capacity and the deviation from the importance weighting strategy

is a prominent future direction.

For the more severe covariate shifts (when IW is integrable, but not bounded) we show

the minimax optimality of KRR corrected by the clipped importance weights. To the

best of my knowledge, the question of optimality of unclipped IW is open. The main

technical difficulty to achieve the generalization bounds is that unclipped IW requires

considering unbounded random variables where the exponential tail inequalities (like

Bernstein or Hoeffding inequalities) are no longer applicable. This problem was observed

earlier in Cortes et al. (2010) where the learning bound was obtained for finite VC classes.

In this work, however, the optimality of obtained rates was not discussed.

Beyond KRR, it would be interesting to study other methods of regression function

estimation.

Chapter 3 addressed the learning problem under the target shift. In a way, the situation

here is simpler than for the covariate shift. The main takeaway message was that the

IW correction is the only reasonable approach to handle the distributional shift in the

output space. Deviation from the IW correction strategy leads to the irreducible bias

term related to the mismatch between training and testing regression functions.

Chapter 4 developed a novel framework to localize Gaussian processes. The method

was inspired by the local methods of regression where we fit a different but simple mod-

els separately at each query point x0. This is done by applying a localisation operation

used to down-weight contributions from input points that are far from the given test

point x0. This localization is achived via a kernel kh, which assigns a weights to the

training points based on its distance from x0. A parameter h dictates the width of the

neighbourhood. The form of the introduced localized GP maintains positive definite-

ness of the covariance, and it allows for considerable speedups compared to standard

global GPR due to the sparsification effect of the Gram matrix. Let us mention some

advantages and disadvantages of this approach.

• Sparse Gram matrix. Compared to global GPs, in the local formulation, in

order to compute the posterior mean and variance, we need to invert s0 by s0

Gram matrix, where s0 is the cardinality of active training set. For each target

point x0 the complexity of performing matrix inversion is O(s0).
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• Spatial Adaptivity. Besides scalability issues, Gaussian process regression as

well as other fixed spatial scale methods (e.g.fixed-bandwidth local kernel methods,

linear spline smoothers) known to have pure performance on the datasets where

the smoothness of the underling regression function varies over the input space.

We have shown that the local GPs are able to infer the underlying latent functions

and improve regression performance when the datasets are non-stationary; this is

achieved by choosing the localization parameter in a location dependent way.

• Difficulty of using gradient based methods. The proposed method requires

cross-validation to tune the scale parameter h of localizing kernel, while other

GP-based techniques use a less expensive marginal log-likelihood gradient opti-

mization to tune these types of parameters. We found MLL gradient optimization

problematic because of the non-smoothness of local kernel with respect to the scale

parameter, which in turn makes MLL function non-differentiable with respect to

this parameter.

Chapter 5 introduced two novel algorithms to estimate the location and size of the

strongly convex and smooth regression function. These algorithms are constructed for

the passive design framework, i.e. for the case when the points xi are random and

independent. The main point of the work is to show that estimating the location and

size of the optimum are as difficult as estimating the gradient and function value at a

fixed point. More precisely, we provide tight upper and lower bounds for the performance

of proposed estimators.

An important future work is to make our algorithms adaptive to the unknown smooth-

ness β. In other words, designing theoretically sound and data driven procedures to

determine the optimal smoothing parameter h and regularization parameter λ. Such

adaptive estimates can be obtained using the so-called Lepski method. When consid-

ering adaptation to the unknown smoothness of the function, the optimal rates for the

estimation are slower than the minimax rates by a logarithmic factor.
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J. Klemelä. Adaptive estimation of the mode of a multivariate density. Journal of

Nonparametric Statistics, 17(1):83–105, 2005.

S. Kpotufe. Lipschitz density-ratios, structured data, and data-driven tuning. In Arti-

ficial Intelligence and Statistics, pages 1320–1328. PMLR, 2017.

S. Kpotufe and G. Martinet. Marginal singularity and the benefits of labels in covariate-

shift. The Annals of Statistics, 49(6):3299–3323, 2021.

K. Krauth, E. V. Bonilla, K. Cutajar, and M. Filippone. AutoGP: Exploring the ca-

pabilities and limitations of Gaussian process models. In Thirty-Third Conference on

Uncertainty in Artificial Intelligence, UAI 2017, August 11-15, 2017, Sydney, Aus-

tralia, 2017.

V. Krishnamurthy and G. Yin. Multikernel passive stochastic gradient algorithms and

transfer learning. IEEE Trans. Automat. Control, 67:1792–1805, 2022.

M. Lázaro-Gredilla, J. Quinonero-Candela, C. E. Rasmussen, and A. R. Figueiras-Vidal.

Sparse Spectrum Gaussian Process Regression. Journal of Machine Learning Research,

11:1865–1881, 2010.

O. V. Lepski. Estimation of the maximum of a nonparametric signal up to a constant.

Theory Probab. Appl., 38:152–158, 1993.

O. Lepskii. On a problem of adaptive estimation in gaussian white noise. Theory of

Probability & Its Applications, 35(3):454–466, 1991.

Z. Lipton, Y.-X. Wang, and A. Smola. Detecting and correcting for label shift with

black box predictors. In International conference on machine learning, pages 3122–

3130. PMLR, 2018.

C. Ma, R. Pathak, and M. J. Wainwright. Optimally tackling covariate shift in rkhs-

based nonparametric regression. arXiv preprint arXiv:2205.02986, 2022.



Bibliography 121

D. J. MacKay. Information-based objective functions for active data selection. Neural

computation, 4(4):590–604, 1992.

E. Mammen and A. B. Tsybakov. Smooth discrimination analysis. The Annals of

Statistics, 27(6):1808–1829, 1999.

Y. Mansour, M. Mohri, and A. Rostamizadeh. Multiple source adaptation and the rényi
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