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Abstract

In this thesis, we theoretically and numerically investigate the quantum boomerang effect – i.e.
the return of a wave packet launched with a nonzero velocity to its initial position – in ultra-cold
disordered atomic gases. We address three main problems.

We study the effect of the time-reversal symmetry breaking on the existence of the quantum
boomerang phenomenon. We show that time-reversal symmetry is not a necessary condition for
the presence of the quantum boomerang. Next, we investigate the impact of interactions on the
quantum boomerang effect, using the mean-field approximation. The interactions lead to partial
destruction of the boomerang effect. Within the framework of the Gross-Pitaevskii equation, we
identify a universal parameter that describes the observed destruction of the particle’s return to the
origin. Finally, we numerically study the effect of interactions using a quasi-exact approach. To this
end, we study weakly interacting bosons, the Tonks-Girardeau gas, and strongly interacting bosons,
which map to weakly interacting fermions. We find that weakly interacting bosons exhibit stronger
destruction of the boomerang effect than in the case of the mean-field approach, thus that quantum
fluctuations play a major role. Results for the Tonks-Girardeau gas show the existence of the full
quantum boomerang phenomenon. Moreover, the results for strongly interacting bosons, where the
boomerang is also only partial, provide evidence that the destruction of the quantum boomerang
effect does not depend on the details of the interactions between particles.
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Introduction

Anderson localization is one of the most famous phenomena in quantum disordered systems. The
destructive interference of the partial wave scattered by the disorder may lead to the inhibition of
transport at long time over long distances, a phenomenon known as Anderson or strong localization.
The phenomenon, predicted over 50 years ago [1], has waited a very long time for direct experimental
observation. It was only the development of cold atomic experimental techniques that allowed full
experimental confirmation of Anderson localization.

Despite the extensive experimental and theoretical works devoted to Anderson localization, it
continues to surprise. It was not until 2017 when a new phenomenon, resulting from Anderson
localization, was disordered: the quantum boomerang effect [2, 3]. The present thesis theoretically
investigates the quantum boomerang effect in various systems.

Consider the evolution of a classical particle that initially has a nonzero velocity in a disordered
system. After the initial ballistic motion, the particle will randomize its velocity due to scattering.
After traveling, on average, one mean free path, the particle will stop its movement. The quantum
evolution of a wave packet with nonzero initial velocity in the Anderson localized system is drastically
different. For a short time, the wave packet moves ballistically, similarly to the classical counterpart.
Then, on average, the wave packet makes a U-turn and slowly returns to its initial position. This
unexpected behavior was dubbed quantum boomerang effect.

The quantum boomerang effect requires Anderson localization. It was studied numerically in
one-, two-, and three-dimensional single-particle systems. In localized systems, the center of mass
always returns to the origin. In the diffusive regime, the effect is only partial. The quantum
boomerang effect can be used for pinpointing the Anderson transition [3]. Using time reversal
invariance, it is possible to show that the boomerang effect exists in Anderson localized systems. An
exact analytical solution of the problem is known in a one-dimensional system, where a diagrammatic
technique can be used, see chapter 2. Until the start of this Ph.D., there was little research on the
topic of the quantum boomerang effect.

The present thesis is expected to contribute to our understanding of the quantum boomerang
effect. We answer two important questions. Is time reversal invariance a necessary condition for the
quantum boomerang effect? What is the fate of the boomerang effect in the presence of interac-
tions? Although we present theoretical results, we are focused on problems realizable in cold atomic
experiments.

Thesis outline

The thesis is divided into several chapters. We begin chapter 1 with a brief introduction to
Anderson localization and disordered quantum systems. Then, we show the state of the art for

1



2 Contents

the quantum boomerang effect. The chapter also includes examples of cold atomic experiments on
Anderson localization and introduces the numerical methods used in this thesis.

Chapter 2 is concerned with the problem of time reversal symmetry breaking. We study a one-
dimensional system with an effective spin-orbit coupling, which breaks time reversal invariance. We
investigate the problem using an approach in which we directly test the influence of time reversal
invariance on the presence of the boomerang effect. We study the classical solution and show that
it is very similar to the classical approach in systems with time reversal invariance. Then, the
results of our simulations unambiguously confirm the existence of the quantum boomerang effect in
systems without time reversal invariance. Generalizing the Berezinskii diagrammatic technique [4],
we calculate the theoretical prediction for temporal evolution of the center of mass. Our prediction
agrees perfectly with the numerical simulations. The presence of the full quantum boomerang effect
without time reversal symmetry is one of the most important results of this thesis.

In chapter 3, we introduce interactions in the problem under the form of a nonlinearity. We
investigate the quantum boomerang effect in the framework of the one-dimensional Gross-Pitaevskii
equation. Our analysis is focused on the regime of weak interactions. We show that interactions
partially destroy the quantum boomerang effect. The average center of mass does not return to
the origin but saturates at some finite position. We investigate this effect numerically and find a
universal parameter that characterizes the destruction of the boomerang effect. Although we study
a one-dimensional system, the same conclusions should be valid in higher dimensions. Additionally,
we introduce the quantum boomerang effect for plane waves which goes beyond the original idea of
the previous studies.

Finally, in chapter 4, we numerically study the impact of interactions treated at the full many-
body level. For this purpose, we consider weakly interacting bosons, strongly interacting bosons
(which map to weakly interacting fermions), and the Tonks-Girardeau gas. We perform the sim-
ulations using a quasi-exact approach: the time-evolving block decimation algorithm [5, 6]. Even
though we study only one-dimensional systems, the simulations are demanding. The results for
weakly interacting bosons are qualitatively similar to the results in the mean-field approximation.
However, the destruction of the boomerang is more pronounced. Our analysis also shows that the
system’s state at long time is far from a Bose-Einstein condensate. This implies that the quan-
tum fluctuations (depletion of the condensate) play a major role in the destruction of the quantum
boomerang effect.

The simulations display the full boomerang effect in the Tonks-Girardeau gas, which is expected
because particles of the Tonks-Girardeau gas in a disordered potential are Anderson localized. In the
last part of chapter 4, we investigate strongly interacting bosons, which map to weakly interacting
fermions. In this scenario, we also observe the weakening of the boomerang effect. The analysis
demonstrates that this phenomenon may be grasped by the same tools as in the mean-field study.
It shows that the destruction of the boomerang effect by interactions is largely independent of
microscopic details.

The results presented in chapter 3 have been published in J. Janarek, D. Delande, N. Cherroret,
and J. Zakrzewski, "Quantum boomerang effect for interacting particles", Physical Review A 102,
013303, 2020. The findings of chapter 2 and chapter 4 are not yet published.



Chapter 1

An introduction to Anderson localization

The properties of quantum disordered systems have been studied for more than 50 years with
many great theoretical and experimental successes. Transport in disordered systems is one of the
greatly explored topics. Nevertheless, very recently, in 2017, a new dynamical phenomenon was
revealed – the quantum boomerang effect. The present thesis studies this effect in many different
scenarios, from non-interacting to many-body systems.

This chapter serves as a general introduction to the subject of disordered systems and Anderson
localization. In section 1.1, we give a basic intuition of the disordered systems and the main concept
of Anderson localization. Afterwards, in section 1.2, we present a short introduction to disordered
systems, where we define the most important theoretical tools. In section 1.3, we present the
quantum boomerang effect and discuss its most important features. Section 1.4 includes a few
examples of observations of Anderson localization in disordered cold atomic systems. The last part
of the chapter, section 1.5, describes the numerical tools and methods used in the thesis.

1.1 Disorder and Anderson localization

Disorder is ubiquitous in nature. Although this may sound vague, disorder is present in various
physical systems. To make disorder less abstract, we can associate it with some lack of regularity.
For example, in doped crystals, dopant atoms may be arranged randomly, or scatterers can be
positioned randomly in some medium (e.g. droplets of lipids and proteins in a glass of milk). This
randomness is realized differently each time, that is, there is no precise control over it. Thus, to
study disordered systems, we have to give up the idea of learning all details which depend on the
specific realization of this randomness.

In most cases, we are interested in some typical or average features of the problem. For example,
the maximal concentration of dopant may vary considerably between different realizations of disor-
der, but usually the average does not change from one realization to another. To describe disordered
systems, we focus on distributions, averages, or correlations of the interesting observables. The aim
is not to describe the system as accurately as possible, but rather to predict some behaviors which
may be observed in the whole ensemble of disorder realizations. Because this average or typical
feature does not depend on the specific details of a single disorder realization, it may be consid-
ered universal. Moreover, because of the omnipresence of disorder, the phenomena originating in
randomness exist in many different physical systems.

3



4 Chapter 1. An introduction to Anderson localization

This thesis is devoted to the topic of quantum disordered systems. The quantum mechanical
description of the world is based on the waves representing quantum particles. Disorder combined
with the wave nature of particles leads to many fascinating phenomena. A primary focus of our
interest is the quantum boomerang effect, occurring in systems with Anderson localization.

Anderson localization

One of the most important phenomena occurring in quantum disordered systems is Anderson
localization, which is the absence of diffusion for waves propagating in a disordered medium. It
was named after Philip Warren Anderson, who was the first to suggest this curious phenomenon in
1958 [1].

Consider a single particle problem, where the system is described by Hamiltonian H:

H =
p2

2m
+ V (x), (1.1)

where V (x) is a time-independent disordered potential. By "disordered potential", we understand
that V (x) is position-dependent and its values are a realization of some random process. We are
interested in the temporal evolution of particles in such a system.

From the classical perspective, a moving particle will scatter from the potential in different
directions. Between the scattering events, it will move ballistically. The evolution will be similar to
a random walk. Depending on the details of the potential and the particle’s energy, it will explore
the whole system or remain trapped in some finite region. On average, looking at long times and
large distances, the dynamics may be regarded as a diffusion. This conclusion is not always true: if
the particle’s energy is higher than the maximal height of the potential V (x) in a one-dimensional
system, it will continue its ballistic motion forever. Even so, here we want to study cases where the
particle does interact with the potential.

The quantum mechanical picture is very different. To make an analogy with the classical case, we
assume that the initial state is localized in space, for example, the initial wave function ψ(x, t = 0)

is a Gaussian wave packet. In the quantum description, the particle can be transmitted through a
barrier, even if its energy is lower than the barrier’s height. This is known as quantum tunneling.
Moreover, a similar thing applies to the reflection: the particle may be reflected from the barrier
even if it has higher energy than the barrier’s height. After many scattering events, this situation
naively looks diffusive as in the classical case.

The actual time evolution of the quantum particle is more complicated. It is well known that,
when V (x) is zero, the wave packet will spread: for the Gaussian wave packet, its width increases
linearly in time. When the random potential is nonzero, the result is completely counter-intuitive.
The average density profile initially spreads but, after some time, dubbed localization time, its
dynamics freezes. The long-time average density has exponentially decaying tails:

|ψ(x, t)|2 ∝ e−|x|/ξloc , (1.2)

where ξloc is called localization length – a characteristic length scale usually depending on the state’s
initial energy and the average strength of the disorder.

This strange inhibition of transport, due to the exponential decay of the density, is called Ander-
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son localization (sometimes also strong localization). Even though it was discovered in the late fifties
of XXth century, it had to wait 50 years for a direct experimental observation, which we describe in
section 1.4. The localization depends on the features of the system, for example, all states in one-
and two-dimensional quantum systems (described by the Hamiltonian H, Eq. (1.1)) are localized.
In three-dimensional systems, not all states are localized, there exists a transition point between lo-
calized and delocalized phases (Anderson transition). Whether the state is localized or not depends
on its energy and the average disorder strength.

1.2 Introduction to disordered quantum systems

In this section, we introduce all important tools used throughout the thesis. For this purpose,
we closely follow [7] and [8] which may serve as much more detailed resources.

Most tools presented in this section are simple for non-interacting, linear systems, but may be
generalized for interacting and more complex cases. The presented theory is general by construction
and does not depend on the details of the system.

1.2.1 Green’s functions

Green’s function is an essential tool: it is defined as the impulse response of a differential operator.
Thus, from a physical point of view, it includes all the necessary information about the system to
calculate its time dynamics. Green’s functions are widely used in disordered systems allowing for
calculation of many important characteristic features. In the generic situation we are interested, the
system is described by Hamiltonian H:

H = H0 + V, (1.3)

where H0 is responsible for the evolution of the system without any disorder, while V represents the
disordered potential. For simplicity, we assume that V is a static or quenched disorder, i.e. it does
not evolve in time. Then, the Green’s function is defined by the equation:

(i~∂t −H)G(t, t′) = δ(t′ − t). (1.4)

Additionally, Eq. (1.4) is accompanied by boundary conditions. We define retarded and advanced
Green’s functions. The retarded Green’s function is responsible for the forward-time evolution,
the advanced Green’s function for the backward-time evolution. On the practical basis, Green’s
functions are commonly defined using the evolution operator U(t, t′):

GR(t, t′) = − i
~
θ(t− t′)U(t, t′),

GA(t, t′) =
i

~
θ(t′ − t)U(t, t′),

(1.5)

where θ(t) is Heaviside step function which ensures that the retarded Green’s function vanishes for
t − t′ < 0 and vice versa for advanced Green’s function. The evolution operator is defined in the
following way:

U(t, t′) = e−iH(t−t′)/~. (1.6)
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Because Green’s functions depend only on the time difference t′ − t, we use

GR(t) = − i
~
θ(t)e−iHt/~, GA(t) =

i

~
θ(−t)e−iHt/~. (1.7)

It is convenient to introduce the energy representation using Fourier transform and exploit Heaviside
step function representation in the frequency domain θ(ε) = i(ε− iη)−1, where η is an infinitesimal
positive element:

GR/A(t) =
1

2π~

∫ +∞

−∞
dε

e−iHt/~

ε−H ± iη . (1.8)

From this one can easily find:

GR/A(ε) =
1

ε−H ± iη =
1

ε−H ± i0+
. (1.9)

This operator is commonly called as a resolvent of H. The resolvent is extremely useful, e.g. if we
know the eigensystem of the HamiltonianH, {|φn〉 , εn}, the resolvent may be decomposed spectrally:

GR/A(ε) =
∑
n

|φn〉 〈φn|
ε− εn ± i0+

. (1.10)

This may be utilized in many ways, for example:

GR/A(x, x′, ε) = 〈x|GR/A(ε) |x′〉 =
∑
n

φn(x)φ∗n(x′)
ε− εn ± i0+

. (1.11)

The Hamiltonian H contains both the unperturbed part H0 and the disorder V (cf. Eq. (1.3)). To
express the full resolvent, we can use the Green’s function of the free system: GR/A0 (ε) = (ε−H0 ±
i0+)−1. A simple manipulation leads to

GR/A(ε) = G
R/A
0 (ε) +G

R/A
0 (ε)V GR/A(ε). (1.12)

Eq. (1.12) is called Lippmann-Schwinger equation [9]. The equation can be nested and iterated
which leads to an expression for G in terms of powers of V G0:

G(ε) = G0(ε) +G0(ε)V G0(ε) +G0(ε)V G0(ε)V G0(ε) + . . . = G0(ε)
[
1 +

∞∑
n=1

(V G0(ε))n
]
, (1.13)

where for clearer notation we drop the upper index R/A. This perturbative expansion in powers of
V is called the Born series. The series can be expressed in any basis. From now, we assume that
the Hamiltonian H0 from Eq. (1.3) is translationally invariant. This means that momentum space
is much more convenient to express relevant quantities, for example G0(ε) is diagonal in momentum
space, 〈k|G0(ε) |k′〉 = δk,k′G0(ε,k). Hence, we can easily express the full Green’s function G(ε) in
momentum space:

〈k|G(ε) |k′〉 = δk,k′G0(ε,k)+G0(ε,k)Vk′−kG0(ε,k′)+
∑
k′′

G0(ε,k)Vk−k′′G0(ε,k′′)Vk′′−k′G0(ε,k′)+. . .

(1.14)
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where Vk is the potential component in the momentum basis. In this form, however, the Born series
seems to get complicated and the simplicity of the initial equation seems to be lost. Here another
trick proves to be helpful: expression of Eq. (1.14) in terms of diagrams graphically representing free
propagation and scattering events:

〈k|G(ε) |k′〉 = δk,k′
k′

+
k′ k

+
k′ k′′ k

+ . . . (1.15)

In the above equation, the solid lines represent the free Green’s function G0(ε,k) and dotted lines
represent scattering events.

Using Eqs. (1.13)–(1.15), one can compute the full Green’s function for a given system in a
perturbative way. This already enables the calculation of many interesting features of the system.
The results, however, depend on the specific realization of disorder, thus observables calculated using
this Green’s function would change from one disorder realization to another. In the very end, we
want to calculate average values of interesting observables, which will depend only on global and
average characteristics of the disordered potential.

1.2.2 Dyson equation and self-energy

The disorder, which in our Hamiltonian comes in the form of a disordered potential V (xi) = Vi,
is a realization of some random process. We can fully characterize the disorder by its moments: Vi,
ViVj , ViVjVk, . . . where (. . .) denotes average over different realizations of the process 1. Moreover,
if we can assume that the random process is stationary and statistically homogeneous, then its
correlation functions depend only on the relative distance between the points [10]. We can always
set the average of the disorder to zero by shifting it by its average value, V → V − V .

Now, if we want to compute the average Green’s function G(ε) we can simply average the Born
series, Eq. (1.13):

G(ε) = G0 +G0(V G0V )G0 +G0(V G0V G0V )G0 + . . . (1.16)

where we used V = 0 and the fact that G0 = G0. This way we generate all possible correlation
functions of the disorder, which depend on its details. To proceed, we will turn to a very useful,
from a theoretical point of view, type of disorder: Gaussian disorder, where V (r) at each point has
a Gaussian distribution:

P (V ) =
1√

2πV 2
0

exp

(
V 2

2V 2
0

)
. (1.17)

This model is fully characterized by its first two moments, V = 0 and V (r1)V (r2) = V 2
0 P (r) with

r = r1 − r2. Analogously to a scalar Gaussian random variable, whose odd moments vanish and
even moments are expressed in terms of the second moment

X2n = CnX2, Cn =
(2n)!

2nn!
, (1.18)

in the case of Gaussian disorder all higher order correlation functions completely factorize into pair

1. Later we will call it an average over disorder realizations.
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correlations
V1 . . . V2n =

1

2nn!

∑
π

Vπ(1)Vπ(2) . . . Vπ(2n−1)Vπ(2n), (1.19)

where the sum is performed over all possible permutations. This is a manifestation of Wick’s
theorem [11], which is also called by statisticians Isserlis’ theorem. To demonstrate its application,
we present an example for 2n = 4:

= + + , (1.20)

where dotted lines between the points denote the average correlation functions of the disorder. This
diagrammatic notation will be used in the following of this chapter.

Gaussian potentials can be constructed with arbitrary spatial correlation functions P (r). One
very common choice is P (r) = δ(r). Such a model is called Gaussian uncorrelated disorder. The
model extremely simplifies all calculations due to the presence of Dirac’s delta function, which
facilitates the computation of all integrals. The other typical choice is a Gaussian correlation, e.g.
P (r) = exp(−r2/2σ2) with the σ parameter called correlation length.

Another common model comes from experiments – speckle disorder model, used for example
in [12]. Shining a far-detuned light on a mate glass plate, it is possible to generate a speckle pattern.
At some large distance, the electric field E(r) is the sum of a large number of complex amplitudes.
Those random fields originate from the randomly distributed grains of the mate plate. The resulting
field is a random complex Gaussian variable which is described by a pair correlation, e.g. for a
one-dimensional system, taking the characteristic form [13]:

P (r) =
sin2(r/σ)

(r/σ)2
. (1.21)

Now we can proceed and calculate the average Green’s function 2 G(ε). Using the diagrammatic
representation of the Green’s function we may write:

G(ε) = + + + + . . . (1.22)

Details of the calculation depend on the type of the disordered potential, but if we restrict ourselves
to Gaussian disorder, the infinite sum consists of all possible pair correlations. This greatly simplifies
the following steps. The diagrams occurring in Eq. (1.22) can be divided into two groups. The first
one, called reducible, consists of diagrams which can be divided into simpler diagrams without cutting
through any correlation line. For example, the third diagram in Eq. (1.22) can be split into two
diagrams which coincide with the second diagram from Eq. (1.22):

= × (1.23)

The second type of diagrams are called irreducible, for example the second (rainbow) and the fourth
(double rainbow) diagrams from Eq. (1.22). All reducible diagrams are products of irreducible

2. For simplicity, we work here only with the retarded Green’s function.
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diagrams. We call the sum of all possible irreducible diagrams self-energy Σ. Because we concentrate
on the inner parts of the diagrams, we factor out the initial and final G0(ε). Self-energy Σ(ε) is given
by:

Σ(ε) = + + + . . . (1.24)

The average Green’s function can be expressed as a sum of a geometric series:

G(ε) = G0(ε) +G0(ε)
∑
n

[Σ(ε)G0(ε)]n . (1.25)

This way, we are sure that the average Green’s function includes all possible products of irreducible
diagrams. In Eq. (1.24) we do not include incoming and outgoing free lines into diagrams, hence G0

is incorporated into the series. The geometric series in Eq. (1.25) may be summed yielding:

G(ε) =
1

1−G0(ε)Σ(ε)
G0(ε). (1.26)

Simple manipulation leads to the, so-called, Dyson equation:

G(ε) = G0(ε) +G0(ε)Σ(ε)G(ε). (1.27)

We can calculate the formal solution of this equation, which has the following form:

G(ε) =
1

ε−H0 − Σ(ε)
, (1.28)

where we use G0(ε) = [ε−H0± i0+]−1. If H0 is diagonal in the momentum representation, then the
free Green’s function and the average Green’s function are also diagonal 3. As a consequence, from
Eq. (1.28) the self-energy is diagonal as well. Then, the average Green’s function in the momentum
representation may be written as:

G(ε,k) = 〈k|G(ε) |k〉 =
1

ε− εk − Σ(ε,k)
. (1.29)

This leads us to an essential conclusion: disorder changes the free dispersion relation of the system
and the eigenstates. In general, the self-energy is a complex-valued function. Its real part is respon-
sible for energy shifts. Because of causality, the retarded Green’s function has to vanish for time
t < 0, hence it cannot have poles in the upper complex plane. Therefore, the imaginary part of the
self-energy is negative, Im(Σ(ε,k)) ≤ 0.

This way, we reduced the problem of calculating the average Green’s function to finding the
self-energy Σ. It, however, can be a formidable task: the self-energy contains an infinite number
of diagrams. The problem can be approached from a perturbative point of view. The simplest
estimation of the self-energy is called Born approximation, where we include only the first diagram
shown in Eq. (1.24):

Σ(ε,k) =

∫
dk′

(2π)d
V 2

0 P (k − k′)G0(ε,k′), (1.30)

where d is the dimension of the system, and P (k) is the disorder correlation function expressed in

3. Due to homogeneity of the random process – the disorder is statistically translational invariant.
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momentum space:

P (k) =

∫
dr e−ik·rP (r). (1.31)

Usually one is more interested in the imaginary part of the self-energy, which may be computed with
the help of the Sokhotski-Plemelj formula (cf. Appendix A) for integrals over the real axis:

Im Σ(ε,k) = −π
∫

dk′

(2π)d
V 2

0 P (k − k′)δ(ε− εk′). (1.32)

We see that the integral in the equation is nothing more but a representation of the Fermi golden
rule applied to the scattering of modes with momentum k on a disordered potential V . Within this
interpretation, we introduce an average lifetime of plane waves in the presence of disorder, denoted
τ :

~
τ

= −2 Im(Σ(ε,k)). (1.33)

This characteristic time scale is called scattering mean free time. In a one-dimensional system, where
the free retarded Green’s function reads:

G0(ε, x− x′) = − im
~2k

eik|x−x
′|, (1.34)

in the Born approximation for Gaussian uncorrelated disorder, V (x)V (x′) = γδ(x− x′), the imagi-
nary part of the self-energy is

Im Σ(ε) = −mγ
~2k

, (1.35)

where k is the momentum of the state with energy ε. In such a system (at the level of the Born
approximation), the scattering mean free time is

τ0 =
~3k

2mγ
. (1.36)

For the last important observation, we focus on the average Green’s function in position space.
Let us also assume that our disorder-free system has a quadratic dispersion relation, εk = ~2k2/2m.
The average Green’s function reads

G(ε, r − r′) =

∫
dk

(2π)d
eik·(r−r

′)

ε− εk − Σ(ε,k)
. (1.37)

The integral has a pole at k̃ =
√

2m/~2(ε− Re Σ− i Im Σ). We put ε̃ = ε− Re Σ, then

k̃ ≈ kε̃
(

1− i Im Σ

2ε̃

)
. (1.38)

The self-energy shifts the energy argument of the Green’s function and its imaginary part amounts
to an exponentially decaying factor:

G(ε, r − r′) = G0(ε̃, r − r′)e|r−r′|kε̃ Im Σ/2ε̃ = G0(ε̃, r − r′)e−|r−r′|/2`, (1.39)

where we introduce ` = −ε̃/(kε̃ Im Σ), a characteristic length scale called scattering mean free path.
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εk
ε

A
(ε
,k
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Σ′

Σ′′

free system

disordered system

Figure 1.1. Graphical representation of the spectral function A(ε,k) as a function of energy ε.
In a free system (blue curve) the spectral function is given by a Dirac delta function δ(ε − εk)
with εk = (~k)2/2m. In a weakly disordered system (orange curve), the spectral function is given
by Eq (1.42). The shift from the energy ε0 is Σ′ = Re Σ(εk,k)), whereas the full width at half
maximum is Σ′′ = | Im Σ(εk,k)|.

Using this length scale, we may define the weak disorder criterion: k` � 1. For weak disorder, the
self-energy may be safely approximated using the Born approximation, Eq. (1.30). The contributions
of the next terms in the self-energy are usually of higher order in (k`)−1. The scattering mean free
path is also connected with the localization length. In one-dimensional systems ξloc = 2` [14].
However, in higher dimensions the connection is more complicated.

The scattering mean free path ` is connected with the scattering mean free time τ via group
velocity v = ~−1~∇kε̃k, i.e. ` = vτ . For an one-dimensional system with Gaussian uncorrelated
disorder, the scattering mean free path, at the level of the Born approximation (cf. the scattering
mean free time τ0, Eq. (1.36)), is :

`0 = vτ0 =
~k
m
τ0 =

~4k2

2m2γ
. (1.40)

Another important length scale in disordered systems is the transport mean free path, `t. The
scattering mean free path ` measures the average distance between the scattering events (a measure
of phase coherence). The transport mean free path is the distance over which the memory of the
incident direction of motion is lost. Only the latter is relevant for the quantum boomerang effect
described in section 1.3. The scattering mean free path and transport mean free path are equal only
in the case of uncorrelated disorder. In correlated disorders, usually, the transport mean free path
is longer than the scattering mean free path. The effect is especially large for anisotropic scattering
potentials (see [7]).

1.2.3 Spectral function and density of states

To better understand the self-energy, we can study the spectral function A(ε,k). It represents
the probability of finding a state with momentum k at energy ε. In a disorder-free case, it is equal
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A0(ε,k) = δ(ε− εk). In disordered systems, we are interested in the average spectral function:

A(ε,k) = 〈k| δ(ε−H) |k〉 = − 1

π
〈k| Im 1

ε−H + i0+
|k〉 = − 1

π
ImG

R
(ε,k). (1.41)

The spectral function can be interpreted as a function of momentum k and energy ε. In the presence
of disorder, it is no longer represented by the Dirac delta, the spectral function is broadened and
shifted by disorder. In the weak disorder limit, the spectral function becomes a Lorentzian [15] (cf.
Eq. (1.41) and Eq. (1.29)):

A(ε,k) =
| Im Σ(ε,k)|

π

1

(ε− εk − Re Σ(ε,k))2 + (Im Σ(ε,k))2
. (1.42)

From Eq. (1.42) we can clearly see the effect of disorder on the spectral function. The spectral
function is shifted by the real part of the self-energy, which represents the disorder effect on the
dispersion relation, and broadened by the imaginary part of the self-energy. This broadening is
strictly connected with a finite lifetime of the states with momentum k. The effect of nonzero self-
energy Σ(ε,k) is illustrated in Fig. 1.1. From Eq. (1.42) we see that the spectral function may be
used to extract both the mean free time τ as well as the mean free path `.

Knowing the average Green’s function, we can compute numerous important quantities, like the
average density of states. To show its connection with the Green’s function, we begin with the
density of states per unit volume:

ν(ε) =
1

V

∑
n

δ(ε− εn), (1.43)

where V is the volume of the system. Then, the local density of states is given by:

ν(ε, r) =
1

V

∑
n

|φn(r)|2δ(ε− εn). (1.44)

Using once again the Sokhotski-Plemelj formula, we can write:

ν(ε, r) = − 1

V π
ImG

R
(r, r, ε) (1.45)

To finally compute the density of states (per unit volume), it is enough to integrate ν(ε, r) over
configuration space:

ν(ε) = − 1

V π
Im

∫
G
R

(ε, r, r)dr . (1.46)

The integral in Eq. (1.46) is nothing but the trace of the Green’s function:

ν(ε) = − 1

V π
Im TrG

R
(ε). (1.47)

The trace can also be computed in momentum space, yielding, with the help of Eq (1.41),

ν(ε) =

∫
dk

(2π)d
A(ε,k). (1.48)
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From Eq. (1.48), we infer that when disorder only slightly perturbs the spectral function, the density
of states may be approximated by the free density of states.

It is also worth mentioning, in the spirit of section 1.4, that spectral function was successfully
measured in a cold atomic experiment where a three-dimensional gas was subjected to a speckle
potential [16].

1.2.4 Scaling theory of localization

Figure 1.2. Approximations of β(g) versus ln(g) from [17] for d < 2, d = 2, and d = 3. The plot is
obtained as a smooth transition between the asymptotic behaviors Eq. (1.51) and Eq. (1.50). For
d = 1 and d < 2 the function is negative, while for d = 3 it changes sign at some critical value gc.
The solid-circled line shows the approximation β(g) = s ln(g/gc) near the critical point.

Although our studies are focused on one-dimensional systems, we will now briefly describe a
very powerful tool capturing the main features of localization in higher dimensional systems: the
scaling theory of localization. The primary aim of any scaling theory is to analyze how the chosen
parameter evolves with the changes of the system size. This idea was firstly used in quantum field
theory. The concept was introduced to disordered systems by Wegner [18], and the scaling theory
of localization was proposed by Abrahams, Anderson, Licciardello, and Ramakrishnan in 1979 [17].
The scaling theory studies systems on a macroscopic level, hence its predictions are only qualitative.
However, they may be quite general and universal.

The theory describes the scaling of the dimensionless conductance g of a disordered system,
with the system size Ld. The dimensionless conductance is defined in such a way that when the
transmission of the system is perfect, the conductance g → ∞, and when the system is perfectly
resisting, the conductance g = 0. The main object of interest is the scaling β-function. Based on a
scaling hypothesis that it is a function of only g, it is defined as:

β =
d ln(g(L))

d ln(L)
. (1.49)

Which is the Gell-Mann-Low function introduced by Callan and Symanzik in studies of the running
coupling constant in the renormalization of the quantum field theory [19]. The scaling theory of
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localization is a single parameter theory, because β depends solely on g. For very large and small g
it is possible to get the asymptotic behavior of β. For large values of g, starting from the microscopic
theory of transport [17]

β(g) ≈ d− 2− a

g
+O(g−2), (1.50)

where a denotes microscopic corrections. For small values of g, where localization takes place, g falls
off exponentially and the asymptotic behavior of β is

β(g) ≈ ln(g/ga), (1.51)

with a constant ga of order unity. Assuming that the function β(g) is smooth and regular, it is
possible to sketch it, what is shown in Fig. 1.2.

Based on Fig. 1.2, it is possible to draw several important conclusions about the disordered
systems. For d < 2 the function is always negative, meaning that g(L → ∞) = 0. The one-
dimensional systems are always localized. When d = 2, where β(g) is also negative but its value
may be very close to zero. It means that, when g � 1, the localization length may be exponentially
large, although the systems remain also localized.

For d > 2, the situation is more complicated. The β-function has a zero at some critical value gc,
β(gc) = 0. This point reveals a transition between localized and delocalized regimes. If, initially
g > gc, the flow of the renormalization will make the conductance even higher, i.e. g(L→∞) =∞,
hence we will end up in a metallic regime. On the contrary, if the initial g < gc, we will arrive finally
with the opposite situation, g(L→ 0) = 0, meaning an insulating phase. The critical value gc, shows
a metal-insulator phase transition. Near the critical point gc the β-function can be approximated
by

β ≈ s ln

(
g

gc

)
. (1.52)

Using this approximation, Abrahams et al. [17] showed that the critical exponent ν associated with
the metal-insulator transition,

ξloc ∼
1

(g − gc)ν
, (1.53)

is connected with the slope s, i.e. ν = 1/s.

This seemingly simple idea allows us to describe the dependence of localization phenomena on
the dimensionality of the system. It unambiguously shows that one- and two-dimensional systems
remain in the localized regime, albeit the localization length in the two-dimensional systems may
be very large. Moreover, in three-dimensional systems, it predicts the existence of the mobility edge
where metal-insulator transition occurs.

1.3 Quantum boomerang effect

In section 1.2 we have described the general features of Anderson localization. Now we turn to
a newly discovered phenomenon which can be observed during the time evolution of a disordered
quantum system. Below we present the state of the research regarding the quantum boomerang
effect at the beginning of this Ph.D. studies. The section closely follows [2].



1.3. Quantum boomerang effect 15

Let us consider the time evolution of a Gaussian wave packet with an initial nonzero velocity,

ψ(x, t = 0) =

(
1

πσ2

)1/4

e−x
2/2σ2+ik0x, (1.54)

where σ is the packet’s width, and its velocity is v0 = ~k0/m. For now, we assume only that
k0σ � 1, i.e. the wave packet is quasi-monochromatic. We refer to such a wave packet as a kicked
wave packet with velocity v0. The Hamiltonian governing its dynamics is

H =
p2

2m
+ V (x), (1.55)

where V (x) is a disordered potential. For simplicity, we assume that V (x) is a Gaussian uncorrelated
disorder, i.e. V (x) = 0, V (x)V (x′) = γδ(x− x′).

If the initial velocity is zero, we can easily predict the behavior of the Gaussian wave packet
in a localized one-dimensional system. For a short time, the wave packet spreads around its initial
position and then, after several scattering mean free times, becomes localized. The wave packet’s
density freezes – its dynamics completely ceases.

What will change for a nonzero initial velocity? The first guess is, that for a very short time,
the packet will move ballistically and, after a few scattering events, its velocity will randomize. It
means that, after an initial motion in the direction of the initial velocity, it will stop its movement,
traveling, on average, a transport mean free path. Then the localization will set on, stopping any
further evolution. It turns out that this prediction agrees with the classical picture.

1.3.1 Classical solution

We begin the classical approach with a study of the position of the center of mass 〈x(t)〉, as a
function of time t. We start by using the classical equation:

∂t〈x(t)〉 =
〈p(t)〉
m

, (1.56)

which conveniently expresses the time evolution of the center of mass in terms of the average mo-
mentum. Here, notation 〈 · 〉 denotes disorder averaging. To solve this equation, we assume that
disorder is weak and the scattering happens only between two momenta ±~k0 – the spectral func-
tion A(k, ε) is sharply peaked only around k = ±

√
2mε/~. Each momentum has its own population

n±(t). We use a normalization condition n−(t) + n+(t) = 1. Scattering between populations occurs
at a constant rate 1/2τ , τ being the transport mean free time. Population dynamics is described by
a system of coupled Boltzmann equations:

dn+

dt
=
n−
2τ
− n+

2τ
,

dn−
dt

=
n+

2τ
− n−

2τ
.

(1.57)
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Figure 1.3. Temporal evolution of the center of mass obtained in a numerical simulation of the
quantum wave packet (blue solid line with error bars), classical Botlzmann solution Eq. (1.59)
(orange dashed line). The plot shows also the quantum long-time limit Eq. (1.77) (green dashed
line) and the full quantum solution obtained using a Padé approximant of order n = 7, Eq. (1.80)
(red dashed line) which are defined later in the text. The classical solution is very different from the
numerical simulations of the quantum system where the center of mass returns to its initial position.
The quantum long-time limit and Padé approximated solution coincide very well with the numerical
data.

As an initial condition, we choose n+(0) = 1, i.e. the wave packet has a positive initial velocity. The
solution is straightforward and reads:

n+(t) =
1

2

(
1 + e−t/τ

)
, n−(t) =

1

2

(
1− e−t/τ

)
. (1.58)

It means that, after several scattering events, the populations equalize, n±(t � τ) = 1/2. As a
consequence, the average velocity is zero. Using Eq. (1.56) we calculate the center of mass position
〈x(t)〉:

〈x(t)〉 = `
(
1− e−t/τ

)
, (1.59)

where ` is the mean free path, ` = ~k0τ/m. The solution agrees with the naive analysis presented
above. After a short period of ballistic evolution, the center of mass stops its movement and remains
localized forever. The classical result, Eq. (1.59), is valid in any dimension and for any statisti-
cally homogeneous and isotropic disorder. Moreover, it does not require the presence of Anderson
localization in the system.

1.3.2 Quantum return to the origin

Numerical simulations reveal that the behaviour of a quantum system is very different. The
simulations are performed using the Chebyshev kernel method described in section 1.5.3. Here, we
present results obtained for a system of length 20000/k0 divided into 105 grid points with negligible
discretization effects. The disorder strength is chosen such that k0` = 20, so we can safely assume
that we are in the weak disorder limit. The initial width of the wave packet is σ = 10/k0. In
numerical simulations k0 = 1 is used. The results are averaged over 50000 disorder realizations.
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In order to calculate the center of mass time evolution, we propagate the wave function ψ(x, t)

and compute the center of mass in the following way:

〈x(t)〉 =

∫
x|ψ(x, t)|2dx , (1.60)

where (. . .) is the disorder average. The outcome of the simulations is presented in Fig. 1.3. The
quantum behavior is extremely different from the classical prediction. After the initial ballistic
motion, at around t = 3τ the center of mass is reflected and begins a slow return to its origin. This
phenomenon, called the quantum boomerang effect, was discovered and thoroughly studied in [3].

The quantum return to the origin can be simply proven using a time reversal invariance (TRI)
symmetry argument. At any time, the wave function density can be calculated using the eigenbasis
{εn, φn(x)}:

|ψ(x, t)|2 =
∑
n,m

〈φn|ψ0〉 〈ψ0|φm〉φn(x)φ∗m(x)e−i(εn−εm)t/~. (1.61)

In localized systems, only states localized within the localization length ξloc from the initial wave
function matter. Thus, the dynamics is restricted to a finite volume ξdloc. This fact is used to define
a typical mean level spacing, ∆ = 1/ρξdloc, where ρ is the density of states per unit volume, and
a characteristic time scale, the Heisenberg time τH = 2π~/∆. Beyond the Heisenberg time, the
superposition of the oscillatory terms average out, allowing for the diagonal approximation:

|ψ(x, t =∞)|2 ≈
∑
n

| 〈φn|ψ0〉 |2|φn(x)|2. (1.62)

In a time reversal invariant system, the eigenbasis can always be chosen real. Then, factors | 〈φn|ψ0〉 |2
do not depend on the initial sign of k0, i.e. | 〈φn|ψk0〉 |2 = | 〈φn|ψ−k0〉 |2. From this, we can infer that
the long-time wave function density is independent of the initial velocity. Thus, the average infinite-
time density has to coincide with a symmetric density profile both in configuration and momentum
spaces, and the average center of mass has to be zero, 〈x(t = ∞)〉 = 0. It means that the center
of mass has to return to the initial point due to Anderson localization. In systems which are not
Anderson localized, this analysis is not valid: when the localization length ξloc is infinite, also the
Heisenberg time τH is infinite. Consequently, the diagonal approximation cannot be used.

The infinite time density profile is known analytically. It is derived in [20] by Gogolin using the
diagrammatic technique developed by Berezinskii [4], see section 2.6 for a detailed description of
this technique. The density is given by:

|ψGogolin(x, t =∞)|2 =

∫ ∞
0

dη π2

32`

η(1 + η2)2 sinh(πη)e−(1+η2)|x|/8`

(1 + cosh(πη))2
, (1.63)

and is called Gogolin profile. The Gogolin profile may be interpreted as an average of exponentially
localized profiles ∼ e−|x|/ξ, where η dependence represents the distribution of localization lengths ξ.
The authors of [3] showed that the long-time average density of a wave packet with the initial nonzero
velocity coincides very well with the Gogolin profile.
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1.3.3 Symmetry of the initial state

In section 1.3.2, we have used only the time-reversal symmetry of the Hamiltonian. It turns out
that the symmetry of the initial state is also important for the existence of the quantum boomerang
effect. The analysis of the symmetries of the initial state is inspired by the preprint [21]. We assume
that the Hamiltonian of the system H = p2/2m + V (x) is time reversal invariant. We will use the
following symmetries:

P (parity) :


x→ −x
p→ −p
t→ t

T (time-reversal) :


x→ x

p→ −p
t→ −t

(1.64)

where P2 = 1 and T 2 = 1. Unlike the parity operator P, the time reversal operator T is anti-unitary,
i.e.

T : φ(x)→ φ∗(x).

The Hamiltonian H is time-reversal symmetric, however

PHP−1 =
p2

2m
+ V (−x) = H̃ 6= H, (1.65)

thus it is not symmetric under the parity transformation. We use the eigenbasis {εn, φn(x)}, which
due to the time-reversal invariance of H may be chosen real, T |φi〉 = |φi〉. The infinite-time value
of the center of mass position may be computed using the diagonal approximation, similarly to
Eq. (1.62):

〈xH(t =∞)〉 =
∑
i

〈φi|x |φi〉 | 〈φi|ψ0〉 |2 =
∑
i

〈φi|x |φi〉 | 〈φi|PT PT |ψ0〉 |2. (1.66)

Due to time-reversal invariance of H:

PT |φi〉 = P |φi〉 = |φ̃i〉 , (1.67)

where |φ̃i〉 is an eigenstate of the Hamiltonian H̃. Because PHP−1 = H̃ we can also write:

〈φi|x|φi〉 = −〈φ̃i|x|φ̃i〉 . (1.68)

Thus, if we use Eq. (1.68) in Eq. (1.66), we get:

〈xH(t =∞)〉 = −
∑
i

〈φ̃i|x |φ̃i〉 | 〈φ̃i|PT |ψ0〉 |2. (1.69)

If PT |ψ0〉 = |ψ0〉 then
〈xH(t =∞)〉 = −〈xH̃(t =∞)〉. (1.70)

For a single disorder realization, 〈x(t =∞)〉 is generically nonzero, making the quantum boomerang
effect an average phenomenon. Because H and H̃ cover the same disorder space, after disorder
averaging

〈x(t =∞)〉 = −〈x(t =∞)〉 = 0, (1.71)
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Figure 1.4. Different examples of scattering paths contributing to the center of mass 〈x〉. (a) A
typical path going from the initial point to x contributing to 〈x〉− (defined in the text below). (b)
Time reversed and translated by −x version of path (a). This path gives opposite contribution to
path a), hence 〈x〉− vanishes. (c) Example of path contributing to 〈x〉+. (d) Time reversed and
translated by −x path (c). Such path starts with negative velocity, which is initially unpopulated,
so that 〈x〉+ 6= 0.

which means the presence of the full boomerang effect. Thus, we conclude that PT |ψ0〉 = |ψ0〉 is a
sufficient condition for the full boomerang effect.

In the configuration space 〈x| PT |ψ0〉 = ψ∗0(−x). For example, plane waves or Gaussian wave
packets (kicked and non-kicked) have PT -symmetry. However, for a chirped wave packet:

ψ0(x) ∼ N eik0xe−x2/2σ2
eiαx

2

ψ∗0(−x) ∼ N eik0xe−x2/2σ2
e−iαx

2
.

(1.72)

and, as a consequence, for such a state, we should not observe the full quantum boomerang effect,
which is confirmed by numerical simulations.

1.3.4 Long-time behavior of the quantum boomerang effect

We here give another argument based on TRI indicating that, in localized systems, the center
of mass should always return to its origin. Using Ehrenfest theorem, it is possible to connect the
center of mass 〈x〉 with the mean squared displacement 〈x2〉:

∂t〈x2〉 =
1

2i~m
〈[x2, p2]〉 =

〈xp+ px〉
m

. (1.73)
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Similarly to the classical solution, we split the whole average spatial density into two separate
components with positive and negative velocities:

|ψ(x, t)|2 = n+(x, t) + n−(x, t). (1.74)

This simplification may be justified more rigorously using the average Wigner’s functions W (x, p, t).
In the weak disorder approximation the average Wigner’s function may be split into two parts
corresponding to the velocity components: W (x, p, t) ≈ n+(x, t)δ(p−~k0)+n−(x, t)δ(p+~k0) With
this approximation, Eq (1.73) becomes

∂t〈x2(t)〉 = 2v0〈x(t)〉+ − 2v0〈x(t)〉−, (1.75)

where 〈x〉± are the center of mass positions of the respective wave function components, the total
center of mass is 〈x〉 = 〈x〉+ + 〈x〉−, and v0 = ~k0/m. Now, by using the time reversal invariance,
we can demonstrate that, if the initial velocity is positive, then, at any time, 〈x(t)〉− = 0. For this
purpose, we use the diagrams shown in Fig. 1.4, which represent examples of multiple scattering
paths for different initial and final scenarios. For clarity, the paths are unfolded to top, the unfolding
does not have any physical meaning. Diagram (a) shows a path contributing to 〈x〉−: the path starts
with the positive velocity and reaches the final point x with the negative velocity. By using the time
reversal and translating the path by −x we can obtain exactly the path shown in panel (b). This
path also belongs to 〈x〉−, however with precisely opposite contribution −x. The studied system is
time reversal and statistically translation invariant, hence we have shown that each path belonging
to 〈x〉− has an opposite counterpart with another realization of disorder with the same weight, so
that 〈x〉− is zero. Analogous analysis can be performed for a path shown in (c) which belongs to
〈x〉+. Time reversal and translation by −x result in the path (d). However, path (d) starts with
the negative velocity, which is not populated initially. Paths contributing to 〈x〉+, similar to (c),
are not cancelled out due to time reversal and translational invariance, and 〈x〉+ 6= 0. We can now
write that:

∂t〈x2(t)〉 = 2v0〈x(t)〉. (1.76)

From this it is clear that in localized systems, where the diffusion is fully suppressed, the infinite
time value of the center of mass position has to be zero. What is more, the result can also be used to
infer the long-time limit of 〈x(t)〉. The mean squared displacement long-time behavior was analyzed
previously in [22]. Together with the corrections explained in [3], the long-time limit for the center
of mass position is given by

〈x(t)〉 = 64`
ln(t/4τ)τ2

t2
+O

(
t−2
)
. (1.77)

1.3.5 General solution of the quantum boomerang effect

In subsections 1.3.2-1.3.4 we have shown that the wave packet with nonzero initial velocity has
to return to its origin due to Anderson localization. Equation (1.77) gives the prediction for the
long-time behavior. The problem can be studied also for short times. This result can be then
extended for intermediate time using a Padé approximant. The technical aspects will be presented
in thorough detail in chapter 2.
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In order to compute the time evolution of the center of mass 〈x(t)〉, we start by expressing it
through the initial state and the Green’s functions:

〈x(t)〉 =

∫
dx dx′ dx′′ xGR(x, x′, t)GA(x′′, x,−t)ψ0(x′)ψ∗0(x′′). (1.78)

The most difficult ingredient of this integral is the average product of the Green’s functions. In one-
dimensional systems, this object can be computed with the help of a diagrammatic approach, the
aforementioned Berezinskii technique (see [4]). This theoretical tool is thoroughly described in the
next chapter of the thesis, so here we do not explain the details of it. In the Berezinskii technique,
all possible scattering paths are systematically included into the calculations. In principle, this
approach gives results beyond the Born approximation. The final result consists of an algebraic
equation allowing for calculation of 〈x(t)〉 as a power series in t. For practical purposes, this series
is cut at finite order giving the following result in time domain:

〈x(t)〉 = `

[
t

τ
− t2

2τ
+

t3

6τ3
− 3t4

64τ4
+

7t5

576τ5

]
+O(t6). (1.79)

The time series has a finite radius of convergence, estimated at t = 4τ . To infer the intermediate
time behavior, the time series can be written as:

〈x(t)〉 = `
ln(1 + t/4τ)τ2

t2
lim
n→∞

Rn(t), (1.80)

where Rn(t) is a diagonal Padé approximant of n-th order, see [23]. The time series Eq. (1.79) agrees
with the classical Boltzmann solution, Eq. (1.59) up to third order in time. Quantum corrections
are visible starting from fourth order. In [2] the calculation of 〈x(t)〉 involved the use the Ehrenfest
theorem and simplifications of the Berezinskii approach based on TRI. However, it can be shown
that the same results may be obtained without this two ingredients.

The comparison of numerical simulations of the quantum particle with the long-time solution
and the Padé approximated solution as well as the classical prediction are presented in Fig. 1.3. The
agreement of the long-time limit is very good starting from t = 30τ , and the Padé approximated
solution with the approximant order n = 7 agrees perfectly with the numerical simulation of the
quantum particle for any time.

The full solution works well not only for Gaussian uncorrelated disorder and initially narrow
wave packets. Different disorder types, as long as homogeneous and isotropic, can be described with
the same curve if proper time and length scales are used, e.g. the transport mean free time and
transport mean free path in the case of correlated potentials. This means that the function 〈x(t/τ)〉/`
is a universal quantum boomerang curve. For initially broad wave packets, the behavior does not
change. In the presented analysis, we only assumed that the wave packet is quasi-monochromatic,
i.e. k0σ � 1. There is no condition between σ and `. Broad wave packets in configuration space are
in fact better approximations of the monochromatic waves. We will return to this as to plane wave
boomerang effect described in section 3.4. It turns out that the opposite situation, when the wave
packet is very narrow, may be more cumbersome. In such a case, the initial wave packet consists of
many momentum components. Then, each component is characterized by its own transport mean
free time and path, which may complicate the resulting 〈x(t)〉 curve. However, this should not
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change the return to the origin.

1.4 Experimental observations of Anderson localization with cold
atoms

After initial theoretical works, which included many predictions, the experimental observations
of Anderson localization were desired. Consequences of disorder in experimental systems were firstly
explored by Mott in 1968 [24]. After publication of this seminal work, many experimentalists started
their investigations. Experimental setups were mainly based on the electronic systems, like quasi
one-dimensional wires and thin films, where anomalies in conductance or magneto-resistance were
measured (see review [25]). For electrons, however, there are numerous phenomena that make the
observation of localization difficult. Electrons interact with each other repulsively, this makes them
difficult to control and masks single particle behaviour. They also are affected by lattice vibrations –
a kind of disorder which is not static, hence may break Anderson localization. Lastly, the electronic
wave function is difficult to observe, so the localization effects can be accessed only indirectly.
These facts significantly increase the difficulty of both the experimental and theoretical tasks in
the analysis of localization effects. Thus, the main focus turned to the observation of the disorder
effects in classical waves. The first results were published in 1985 for the coherent backscattering
phenomenon, a weak localization effect, which may be thought of as a precursor to the strong
localization [26, 27].

The end of XXth century was marked by a breakthrough: experimental realization of Bose-
Einstein condensates [28, 29]. Dilute ultra cold matter, representing many independent quantum
particles quickly started to be a standard experimental platform for quantum mechanics. Interaction
effects may be diminished via precise control on their strength. Cold atoms allow for easy visual-
ization, thanks to absorption or fluorescence imaging and time of flight techniques. Using different
kinds of light, it is easy to control the dimensionality of the system and the type of disordered
potential. The disorder may be created using masks [30] or speckle patterns [12], and even only
using incommensurate laser wavelengths [31].

Advances in the field of cold atoms enabled many experimental studies of disorder and localization
effects both in non-interacting and many-body quantum systems. In the following subsections, we
briefly discuss some of the most important results.

1.4.1 Direct observation of Anderson localization of matter waves in a controlled
disorder

The experiment conducted by the group of Alain Aspect and Vincent Josse in Orsay [32] has a
very special feature: the possibility of the direct observation of the exponential decay of the density
profile. The main idea of the experiment is presented in Fig. 1.5. Atoms are initially prepared in
a one-dimensional tube, due to the far off-resonance confining laser beam (pink tube in Fig. 1.5).
They are also trapped in a harmonic potential at the center of the system (grey harmonic potential
in Fig. 1.5a). If there is no disorder, after switching off the trap, atoms can freely expand in the
tube. At any time, it is possible to image the atoms’ density using fluorescence.

The disorder is created using a speckle pattern, represented as a purple-blue field in Fig. 1.5.
In the presence of disorder, after switching off the trap, the atoms start to expand. The expansion
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Figure 1.5. Sketch of the experiment presented in [32]. Due to the confining laser (pink) the atoms
can move freely only in the z direction. (a) Initially the atoms are prepared in a harmonic trap
(grey potential). The disordered potential is created by a speckle pattern (purple-blue). (b) When
the trap is switched off, atoms initially expand but, after some time, they reach a stationary state,
where the size of the atomic density does not evolve in time. Figure extracted from [32].

slows down and, at a long time, the atomic density freezes. This saturation of the density width is
consistent with the theory of Anderson localization. The total duration of the experiment is much
longer than the time needed to observe the onset of localization. Observation of the stationary,
exponentially localized wave function is a direct proof of Anderson localization (Fig. 1.5b). Thanks
to the long exponential wings of the density, experimentalists could extract also the localization
length.

1.4.2 Experimental observation of the Anderson metal-insulator transition with
atomic matter waves

Although observations of Anderson localization were also done in three-dimensional systems [34–
36] 4 the most interesting phenomenon in 3D is the metal-insulator transition. It was observed for the
first time in a kicked rotor system using cold Caesium atoms in 2008 [33] (in solid state experiments
the transition was studied earlier, e.g. [38, 39]). The experimental realization of the kicked rotor is
a system where atoms are periodically kicked by a laser pulse (first realization in cold atoms [40]).
The theoretical model of the kicked rotor exhibits dynamical localization – the Anderson localization
counterpart in momentum space. Although the atoms are periodically kicked, the wave function is
exponentially localized. Addition of more incommensurate frequencies to the kicked rotor allows to
study localization in more than one dimension. In such a system, the role of time is taken over by
the total number of applied kicks.

The atoms are initially prepared in a Gaussian state where their momentum density is much
narrower than the expected localization length. In the localized regime, after several initial kicks,
the density is effectively frozen, with an exponential decay. On the other side of the transition, in the

4. We have to note that the results of [34] on the position of the metal-insulator transition are highly questionable,
cf. [37].
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Figure 1.6. Experimental results presented in [33]. To study the mean square of momentum the
population of zero-momentum Π0(t) was measured. The quantity Π−2

0 (t) is proportional to 〈p2(t)〉.
In the localized regime it saturates (blue points), in the delocalized regime it grows linearly (red
points). Near the metal-insulator transition it displays a anomalous diffusion (purple points). Figure
from [33].

diffusive regime, during the application of kicks, the density broadens preserving its Gaussian shape.
Experimentalists could study the behaviour of the mean squared momentum, 〈p2(t)〉 by varying the
kick strength. In the localized regime, the quantity saturates, whereas in the delocalized regime it
growths linearly in time. Around the transition, it exhibits an anomalous diffusion 〈p2〉 ∝ t2/3, see
Fig. 1.6. The transition between localized and diffusive regimes occurs at a critical kick strength,
which value was precisely measured using finite-size scaling [41].

Since this experiment, the metal-insulator transition was also reported in a typical cold atomic
experiments in [35, 36].

1.4.3 Observation of the quantum boomerang effect

Very recently, the first experimental observation of the quantum boomerang effect has been
reported in [21]. Although the original idea presented in section 1.3 describes a return to the origin
in configuration space, it is also possible to observe a similar behavior in momentum space using
the kicked rotor setup. The experiment is based on a Bose-Einstein condensate of Lithium atoms
without interactions. The atomic ensemble is prepared in a state centered at a nonzero position x0,
which, from the perspective of dynamical localization, is analogous to the nonzero initial momentum
in the case of configuration space. The system is periodically kicked and the average momentum of
the wave packet is measured. The number of kicks applied to the wave packet plays the role of time.

The main result is the observation of the return of the average momentum 〈p〉 to the origin, as
shown in Fig. 1.7. As predicted by the theory, initially the average momentum increases (mimicking
the ballistic motion of the wave packet). Then, after several kicks it is "reflected" and starts a slow
return to the initial value.



1.5. Numerical methods 25

Figure 1.7. Experimental observation of the quantum boomerang effect [21]. In a kicked rotor
system, the boomerang effect takes place in momentum space. Time evolution is expressed through
the number of kicks n. The results clearly show that, after initial increase of 〈p〉, it returns to the
initial value. Figure from [21].

1.5 Numerical methods

In this section, we briefly describe the numerical tools which have been used to obtain our results.
They consist of home-made scripts using free, open source software and libraries. In principle, this
approach guarantees the reproducibility of all presented results for anyone interested. This follows
today’s very popular idea that scientific methods should be open source, similarly to ideas coming
from computer science.

We present also a short introduction to the two main numerical methods used in simulations:
Chebyshev kernel method and exact diagonalization. Both of them allow for the calculation of
the time evolution of quantum systems. Additionally, exact diagonalization gives access to energy
spectra which also allows to analyze the localization features of the system.

1.5.1 Numerical tools and libraries

The majority of the tools used during the thesis were written in the Python language [42].
Its versatility and simplicity allows for fast prototyping and creating a clear, concise, and easy to
understand code. The contemporary standard set of Python libraries allows for creating efficient
scripts, which perform all necessary operations including reading of standardized input files, creation
of the desired directory structure through shell utility tools, and even control of threading and
multiprocessing. In our scripts, we use the whole SciPy ecosystem including NumPy [43], SciPy
libraries [44], SymPy [45], Matplotlib [46] and IPython [47].

NumPy is a library introducing powerful arrays, which are ready for vectorization, broadcasting,
and parallel operations. Alongside the arrays, the library includes an abundant choice of mathe-
matical tools and functions created specially for NumPy types. The included methods allow for fast
and reliable saving and reading data, using text files or memory efficient binary formats. One of the
most important parts of the library is its integration with fast precompiled BLAS [48] and LAPACK
routines [49], e.g. for linear algebra. All calculations can be easily parallelized – NumPy natively
uses multithreading based on the OpenMP library [50].

The second most commonly used library is SciPy. The library includes ODE solvers, optimization



26 Chapter 1. An introduction to Anderson localization

tools, interpolation algorithms, and numerical integrators. The library is also equipped with a rich
collection of special functions for statistics. SciPy library, which is fully compatible with the NumPy
array class, has its own selection of sparse matrix algebra types and functions.

SymPy is a Python library for symbolic calculations. It may be regarded as a full-featured
computer algebra system, similar to Wolfram’s Mathematica. Despite being free, it has a similar
application range to fully paid alternatives. Additionally, it supports arbitrary precision numerical
integration or ODE solvers based on many well established methods.

For graphical representation of data and theoretical results, we use Matplotlib, taking full advan-
tage of the advanced graphical and typographical options available. The library allows for production
of high quality 2D figures in a variety of hardcopy formats. It allows to use different fonts, includ-
ing LATEX mathematical fonts, which we believe helps in keeping all document’s parts consistent.
Last, but not least, is the development environment which helps enormously in the rapid design and
prototyping of the scripts. For this purpose we use IPython together with Jupyter Notebooks [51].

Despite NumPy and SciPy being very well optimized for numerical calculations, sometimes we
also used precompiled codes writen in C, C++, and Fortran languages. For small but fast routines
written in external languages, Python is equipped with tools from libraries such as Cython [52],
CFFI (C Foreign Function Interface) [53] or ctypes (python standard library, see [42]). Using these
libraries, one can simply put the heaviest numerical work in highly optimized C routines.

1.5.2 The choice of numerical basis

All numerical simulations are performed using discretized systems. Because disorder is diagonal
in configuration space, the discretization is applied to Hamiltonians in the configuration space rep-
resentation: x→ xi = i∆x, where ∆x is the discretization constant. This approach is known as the
finite element method. Assuming a one-dimensional Hamiltonian in the general form:

H =
p2

2m
+ V (x) = − ~2

2m

d2

dx2
+ V (x), (1.81)

we replace the differential operator by the three-point stencil:

d2

dx2
φ(x)→ d2

dx2
φ(xi) =

φ(xi+1)− 2φ(xi) + φ(xi−1)

∆x2
. (1.82)

For short-hand notation φ(xi) = φi and V (xi) = Vi. The Hamiltonian H is represented as the
following tridiagonal matrix:

H =


H11 H12

H21 H22 H23

H32
. . . . . .
. . . . . .

 , (1.83)

where Hii = ~2/(m∆x2) + Vi, and Hi,i+1 = Hi+1,i = −~2/(2m∆x2). We may use open boundary
conditions (OBC) or periodic boundary conditions (PBC). When PBC are used, there are two
additional nonzero matrix elements, H1n = Hn1 = −~2/(2m∆x2). The same idea is used when
the Hamiltonian H describes a spinfull particle (for example, the Hamiltonian used in chapter 2 is
mapped to a pentadiagonal matrix). In such a form, the Hamiltonian H is represented by a sparse
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matrix. It means, for example, low computational cost of the matrix-vector multiplications, like
H |ψ〉.

Because the disordered potential V is also discretized, its average correlation function is slightly
modified. In the case of Gaussian uncorrelated disorder, which is used throughout the thesis, the
δ-correlation function is replaced with a Kronecker delta δi,j :

ViVj =
γ

∆x
δi,j . (1.84)

The discretization rescales the disorder strength γ.

The discretization also changes the dispersion relation because the (discretized) Hamiltonian H
describes a particle in a one-dimensional lattice. When we write down the equation for eigenfunctions
in the disorder-free case:

Hφi = Eφi = − ~2

2m∆x2
(φi−1 − 2φi + φi+1) , (1.85)

because the lattice is periodic (with period ∆x), by using the Bloch theorem, we get:

E =
~2

m∆x2
(1− cos(k∆x)) . (1.86)

This changes the group velocity

v =
1

~
dE

dk
=

~
m∆x

sin(k∆x). (1.87)

The effect on the group velocity has to be taken into account, especially when one is interested in
the calculation of, for example, 〈p(t)〉. When the discretization constant is large, the value of p(t)
should be substituted with ~ sin(p(t)∆x/~)/∆x.

Equation (1.87) gives us an estimation of the discretization effects: we may neglect them as long
as the velocity v (of the discrete system) does not differ from the true velocity (of the continuous
system). In practice, this means k∆x � 1. The same condition may be obtained from a different
perspective. The discretization has to be such that it allows to observe plane waves with momentum
~k, hence k∆x� 1. The same applies in the case of correlated disorders, the discretization constant
∆x has to be much smaller than the correlation length. In general, ∆x has to be the shortest length
scale in the system.

1.5.3 Numerical methods

In numerical studies of the dynamics of quantum systems, we are interested in the solution of
the time dependent Schrödinger equation. Assuming the initial state |ψ0〉 we want to find the state
after time t:

|ψ(t)〉 = U(t) |ψ0〉 , (1.88)

where U(t) is the evolution operator, U(t) = e−iHt/~. For efficient use of computational resources,
one needs to employ numerical methods which efficiently represent the evolution operator.
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Chebyshev kernel method

Our first choice is to use the Chebyshev kernel method where the evolution operator is expressed
in terms of Chebyshev polynomials of the Hamiltonian of order n, Tn(x) = cos(n arccos(x)). Their
orthogonality relation is [54]:

∫ 1

−1
dx

Tn(x)Tm(x)√
1− x2

=

π
2 δm,n for m 6= 0, n 6= 0,

π for m = n = 0
(1.89)

Moreover, Chebyshev polynomials can be generated iteratively

Tn+1(x) = 2xTn(x)− Tn−1(x), (1.90)

with T0(x) = 1, T1(x) = x. From our perspective, the most important feature of Chebyshev
polynomials is that they span an orthogonal basis, such that piecewise smooth and continuous
functions defined in the [−1, 1] interval can be expressed using a series of Chebyshev polynomials:

f(x) =
∞∑
n=0

anTn(x), (1.91)

where an coefficients can be easily calculated using the inner product. The series in Eq. (1.91)
converges to the function f(x) uniformly, see [55]. To express the evolution operator as a series of
Chebyshev polynomials of the Hamiltonian, we have to normalize the Hamiltonian H, so that its
spectrum lays in the interval [−1, 1]. Using a = (Emax − Emin)/2 and b = (Emax + Emin)/2, where
Emin and Emax are the minimal and the maximal eigenvalues 5 of the Hamiltonian H, we introduce
the normalized Hamiltonian Hnorm = (H − b)/a. The evolution operator may then be expressed as
a series [56–59]:

U(δt) ≈ e−ibδt
(
J0(aδt) + 2

N∑
n=1

(−i)nJn(aδt)Tn(Hnorm)
)
, (1.92)

where Jn(x) are the Bessel functions of the order n. In the practical implementation, we cannot
sum an infinite number of terms. We introduce a cutoff of the series at order N . Value of N is
estimated using δt and a see, for example [55, 60]. We keep only first N Bessel functions for which
|Jn(aδt)| > ε, with ε� 1. Usually N ∼ aδt.

The next step is to apply Tn(Hnorm) to the initial state |ψ0〉. This can be done iteratively using
Eq. (1.90):

Tn+1(Hnorm) |ψ0〉 = 2HnormTn(Hnorm) |ψ0〉 − Tn−1(Hnorm) |ψ0〉 , (1.93)

with T0(Hnorm) |ψ0〉 = |ψ0〉 and T1(Hnorm) |ψ0〉 = Hnorm |ψ0〉. This way we reduce the prob-
lem of calculation of Tn+1(Hnorm) |ψ0〉 to simple applications of the operator Hnorm on the vector
Tn(Hnorm) |ψ0〉. When the total number of terms N is very large, it may be impractical to keep all
vectors Tn(Hnorm) |ψ0〉 in the memory. Then, one can exploit the Clenshaw trick [61] to calculate
the series in Eq. (1.92).

5. Note that in discretized, finite systems used in numerical simulations, the spectra of Hamiltonians are always
bounded.
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Exact diagonalization

Exact diagonalization is probably the most common tool used to investigate the quantum systems
in discretized spaces. It allows to study both the statistical and dynamical characteristics of the
system. Full diagonalization gives all eigenvalues and eigenvectors of the Hamiltonian H which we
denote as {εn, |φn〉}. The main obstacle is the size of the Hilbert space. Usually, with this technique,
it is only possible to study small systems (or with a small number of particles).

In contrast to iterative methods of time evolution, the time evolution of an initial state can be
easily computed for an arbitrary time t:

|ψ(t)〉 =
∑
n

cn e
−iεnt/~ |φn〉 , (1.94)

where cn = 〈φn|ψ0〉. Knowing the eigenbasis extremely simplifies the calculation of the time evolu-
tion operator. Moreover, using the eigenbasis, we can directly calculate the infinite-time values of
the observables in localized systems. Suppose we want to calculate the average infinite-time value
of an operator Ô:

Ô(t) =
∑
i,j

c∗i cje
−i(εj−εi)t/~ 〈φi| Ô |φj〉 . (1.95)

When the eigenstates are localized, there exists a characteristic time called Heisenberg time τH
beyond which off diagonal oscillatory terms in Eq. (1.95) vanish (diagonal approximation), and
upon averaging over disorder realizations:

Ô t�τH−−−→
∑
n

|ci|2 〈φn| Ô |φn〉. (1.96)

Thus, exact diagonalization allows us to calculate the infinite-time averages of interesting operators.
Studies of quantum systems using exact diagonalization give access to the spectrum structure.

This can be used for the analysis of mean spacings or other statistical spectral quantities. A high
number of energy levels eases the statistical analysis: the results converge quite fast to average
values.

Exact diagonalization usually needs two preparatory steps: construction of the basis states
(computational basis) and the calculation of the Hamiltonian matrix. Both processes allow to take
advantage of system symmetries which may decrease the effective size of the Hilbert space. For spin
systems, the most common technique [62] is to represent states as binary numbers (1 representing
spin up, 0 representing spin down). Then, the elements of Hamiltonian matrix are calculated using
binary XOR operation. An example of both steps of the implementation in the case of Bose-Hubbard
model is presented in [63].

The main weaknesses of exact diagonalization are its memory consumption and the CPU-time
for the diagonalization. The size of Hilbert space grows quickly with system size, and even quicker
in many-body quantum systems with particle number. A rough estimate for the Hilbert space size
in a Heisenberg model is 2N/

√
N for a N spins in a chain, in the zero-spin sector. Putting N = 18

we obtain a practical limit for calculations using full exact diagonalization. Hamiltonian matrix for
such a number of particles uses around 40GB of RAM. Full diagonalization using LAPACK routines
uses of order O(D3) floating point operations, where D is the Hilbert space size. This means, in
practice, only systems with D ∼ 50000 are fully diagonalizable.





Chapter 2

Quantum boomerang effect in systems
without time reversal invariance

In chapter 1, we have introduced and described the quantum boomerang effect. Its existence has
been shown using arguments based on time reversal invariance (TRI) symmetry of the system. The
two main approaches proving the boomerang effect: the first based on the diagonal approximation
(section 1.3.2), the second showing the long-time behavior (section 1.3.4), without TRI are no longer
valid. In the present chapter, we study the boomerang effect in a system which breaks TRI to answer
whether this symmetry is necessary for the presence of the phenomenon.

We begin with section 2.1, where we describe a system with spin-orbit coupling and explicitly
show that time reversal symmetry is broken. In section 2.2, we study the classical dynamics and
compare the classical solution with quantum numerical data in section 2.3. In section 2.4, we
express the center of mass using the Green’s functions, which are calculated in section 2.5. Finally,
in section 2.6, we present the main theoretical result of the chapter: calculation of the center of mass
temporal evolution in a system without time reversal invariance, using the Berezinskii diagrammatic
technique. This section includes also a comparison of the theoretical solution with the numerical
simulations. In section 2.7, we show that, even though TRI in the system is broken, the final density
of the wave function is given by the famous Gogolin profile, similarly to the original boomerang
study. The chapter is concluded in section 2.8.

2.1 Our model

In the present chapter, we study the existence of the quantum boomerang effect in systems
without time reversal symmetry. In the introduction presented in section 1.3, TRI is used as an
assumption in the proofs of the return to the origin. It means that TRI is a sufficient condition for
the quantum boomerang effect. However, the necessity of TRI is not established. This is a question
we answer in this chapter.

For this purpose, we study a single-particle disordered system with spin-orbit coupling, which is
the minimum ingredient which breaks TRI and all anti-unitary symmetries. The spin-orbit coupling
is ubiquitous in quantum mechanical systems. The interaction between the particle’s spin and its
motion is crucial in many currently studied phenomena like spin Hall effect [64, 65] observed in [66,
67]; or topological insulators, see [68–73]. In our study, we analyze an experimentally attainable
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Figure 2.1. Spectrum of Hamiltonian (2.1) calculated for δ = Ω = 5ER/~. The energies are calcu-
lated from Eq. (2.3). Depending on the choice of parameters there are up to 4 possible eigenstates at
a given energy with different velocities. Green dashed line represents an example of 2-state scenario,
red dashed line represents an example of 4-state scenario.

cold atom one-dimensional system with an effective spin-orbit coupling.

Seemingly, for the spin-orbit interaction to occur, the particles must have appropriate intrinsic
properties, like internal degrees of freedom. Such parameters are rarely controllable. However, in the
ultra-cold matter experiments, there is a way to create an effective spin-orbit coupling. This may
be achieved using a laser field, see [74]. The induced spin-orbit coupling may be of Dresselhaus [75]
or Rashba [76] types. The first cold atom realizations of the spin-orbit coupling for Bose-Einstein
condensates were presented in [77, 78] with the help of a momentum sensitive coupling created
by Raman beams. The experiment presented in [77] realized the spin-orbit coupling with equal
Dresselhaus and Rashba contributions resulting in the following one-dimensional Hamiltonian:

H0 =
~2k2

2m
+ γ~kσz +

~δ
2
σz +

~Ω

2
σx, (2.1)

where γ is the strength of the spin-orbit (SO) coupling, Ω is the Rabi frequency and δ the detuning.
For the characteristic momentum and energy in the model, we choose ~kR = mγ and ER = mγ2/2.
In the specific implementations of Hamiltonian (2.1) in the experimental setups of [77–79], this
choice coincides with the recoil momentum and energy of the Raman photon, hence we use the
subscript R. Matrices σi denote the standard Pauli matrices. The Hilbert space is spanned by
2-component spinors

ψ(x) =

(
ψ↑(x)

ψ↓(x)

)
, (2.2)

where ψ↑(x) and ψ↓(x) are complex valued functions. The spin-orbit coupling in the system described
by Hamiltonian (2.1) breaks TRI. This reduces the applicability of the arguments for the quantum
return to the origin presented in section 1.3.2.

In the absence of disorder, the Hamiltonian may be diagonalized yielding two energy bands
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denoted by ± with energies E± and group velocities v±:

E± =
(~k)2

2m
± ~

2

√
(2γk + δ)2 + Ω2

v± =
1

~
dE±
dk

=
~k
m
± γ(2γk + δ)√

(2γk + δ)2 + Ω2

(2.3)

Example of the band structure calculated for δ = Ω = 5ER/~ is presented in Fig. 2.1. From the
structure of E± it is clear that depending on the parameter values, at a given energy, there may be
up to four eigenstates with different velocities, see Fig. 2.1. Each eigenstate has its own spin state.
The spin states with the same energy are not orthogonal to each other.

In our study, the Hamitlonian also includes a disordered potential, H = H0 + V (x), which we
chose as a Gaussian uncorrelated disorder:

V (x) = 0, V (x)V (x′) = V 2
0 δ(x− x′). (2.4)

The disorder is the same for both spin components. In this case, the disorder strength is denoted
by V 2

0 in order to avoid a confusion with the SO coupling strength parameter γ.
The numerical simulations include both full exact diagonalization, which allows for the study

of energy levels, and the Chebyshev kernel method for calculating the time evolution of a chosen
initial state. The methods are briefly described in section 1.5, the extension to include the spin
degree of freedom being straightforward. In both methods, we have simulated a system of finite size
represented on a lattice with a small lattice constant, so that the discretization effects are negligible.
The detailed parameters used in the numerical simulations are given in the following sections.

Time reversal symmetry breaking

The main aim of the study is to analyze the quantum boomerang effect in a system without
time reversal symmetry. Hamiltonian (2.1) and the disordered Hamiltonian H = H0 + V (x) may
break TRI. If γ = 0, then ~δσz/2 + ~Ωσx/2 is a constant, and we are back to a spinless particle. If
Ω = 0, then σz is a good quantum number, and after a translation in k we are also back to a spinless
particle. Hence, in the following, we assume that both γ and Ω are nonzero, i.e. there is finite spin-
orbit coupling and coupling between the spin-up and spin-down states. The random potential V (x)

has no specific symmetry. It is not invariant under the parity transformation x → −x. In general,
the statistical distribution of V (x) does not influence the symmetry properties of the system.

The disordered potential V (x) breaks all possible spatial symmetries. This means also that any
combinations of spin rotations with spatial symmetries are broken. Thus, the symmetries present
in the system may be purely local. Additionally, because the Hamiltonian includes more than one
spin component, i.e. σx and σz, there is no cylindrical symmetry – rotation around some axis – in
the system. The only possible symmetries of the system may be connected with the time reversal
operator.

For spinless particles, the standard time reversal operator T is the complex conjugation in con-
figuration space, T = K, Tψ(x) = ψ∗(x). In spin-1/2 systems, the standard time reversal symmetry
operator has to be anti-unitary and generally takes the form of T = UK, there U is a suitable
unitary operator, see [80]. Another important requirement for such an operator is that any wave
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function should be obtained within a phase factor when T is applied twice:

T 2 = ±1. (2.5)

The positive sign holds, in general, for spinless particles, whereas the negative sign for spin-1/2
quanta. The conventional time reversal operator for spin-1/2 particles results from requiring that

TxT−1 = x,

TσxT
−1 = −σx,

TσyT
−1 = −σy,

TσzT
−1 = −σz,

TpT−1 = −p,
TV (x)T−1 = V (x).

(2.6)

The operator reads:
T = eiπσy/2K = iσyK, (2.7)

such that

T

(
ψ↑(x)

ψ↓(x)

)
=

(
ψ∗↓(x)

−ψ∗↑(x)

)
(2.8)

The operator defined by Eq. (2.7) has the following effect when applied to the Hamiltonian H:

THT−1 =
p2

2m
+ γpσz −

~δ
2
σz −

~Ω

2
σx + V (x), (2.9)

where p = ~k is used for short-hand notation. This equation shows that THT−1 6= H which implies
that the Hamiltonian H is not invariant under time reversal symmetry. However, this is not the
end of the story. It is known that some systems are not invariant under the conventional time
reversal T , but they are invariant under other anti-unitary unconventional time reversal operators.
An important example of such a situation is the hydrogen atom in a constant magnetic field along
z-axis, with included spin-orbit coupling, see [81, 82]. The Hamiltonian describing this system is not
invariant under the symmetry represented by T . However, it shows invariance under the following
anti-unitary symmetry:

T ′ = eiπJx/~ T, (2.10)

where J = L+S is the total angular momentum. If the system has any anti-unitary symmetry, the
TRI-based derivation of the quantum boomerang effect is likely to be extended to such a system.
In other words, we must be sure that our system breaks all anti-unitary symmetries.

In our analysis for the unconventional or generalized time reversal operator, we will use the
product of the rotation by −π of the spin around the z-axis and the standard time reversal operator
T :

T = eiπσz/2T = iσzT = iσxK. (2.11)
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The action of T on the standard operators is the following:

T xT −1 = x,

T σxT −1 = σx,

T σyT −1 = σy,

T σzT −1 = −σz,
T pT −1 = −p,

T V (x)T −1 = V (x),

(2.12)

so that

T HT −1 =
p2

2m
+ γpσz −

~δ
2
σz +

~Ω

2
σx + V (x). (2.13)

This time, in comparison with Eq. (2.9), the only change in the Hamiltonian is present in the σz
term, thus, for δ = 0, the Hamiltonian is invariant under this anti-unitary symmetry.

If δ 6= 0, there is the question whether there exists a symmetry transformation different from
T obeyed by the Hamiltonian. Possible linear unitary operations should reverse σz (due to ~δσz/2
term) as well as reverse the momentum p (due to γpσz term). This could be achieved by the parity
transformation, x→ −x. However, this symmetry is broken by the disordered potential V (x). As a
consequence, any generalized time reversal symmetry is broken for δ 6= 0 and the Hamiltonian has
to belong to the unitary symmetry class (see appendix 2.A).

After settling the question whether the studied system explicitly breaks TRI for δ 6= 0, we also
note that the generalized time reversal operator has an interesting feature, namely T 2 = +1, which
is atypical for spin-1/2 particles. Let ψ be an eigenstate to energy E for a Hamiltonian which is time
reversal invariant, [H,T ] = 0. When the time reversal operator squares to minus unity, T 2 = −1, it
can be shown that if ψ is an eigenstate, then Tψ is also an eigenstate with the same energy and the
states are orthogonal:

〈ψ|Tψ〉 = 〈Tψ|T 2ψ〉∗ = −〈Tψ|ψ〉∗ = −〈ψ|Tψ〉 = 0. (2.14)

It means that all energy levels are doubly degenerate. The effect is called Kramers’ degeneracy,
see [83]. In our case, T 2 = +1 and we do not expect any sign of degeneracy – this is fully supported
by our numerical results (for δ = 0). Moreover, the fact that [H, T ] = 0 for δ = 0 with T squaring
to unity, means that the Hamiltonian (for δ = 0) may be constructed as a real symmetric matrix,
see [80].

In appendix 2.A, we present an analysis of the symmetry properties of the Hamiltonian using
statistical characteristics of the energy spectrum. This analysis fully confirms that, for nonzero γ,
δ, and Ω, all generalized TRI are broken.

2.2 Classical solution to the boomerang problem (Boltzmann)

In the absence of disorder, k is a good quantum number and at a given value of k, we have two
orthogonal spin states with different energies, cf. Fig. 2.1. Now, we study the disordered system
and assume that disorder is weak. The effect of disorder is that the states with the same energy
are coupled. The larger number of possible eigenstates at a chosen energy complicates the picture –
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Figure 2.2. Graphical representation of the two-state scenario shown using the dispersion E(k) of
the lower band, Eq. (2.3). At a chosen energy there are two states: one with positive velocity v+

and one with negative velocity v−. Disorder couples the states, the rates of transitions between the
populations are 1/τ±, Eq. (2.15).

there are many possible scattering channels with different rates, which translate to more mean free
times and paths.

2.2.1 Two-state scenario

When there are only two states at a chosen energy, the situation reassembles the TRI boomerang
problem. With two possible states, one of them has negative velocity and the other one has positive
velocity. We will denote the states by ± based on these velocities. The only complication is that
there are in total four scattering events: +→ +, +→ −, − → −, and − → + (arrows indicate the
scattering process). The scatterings may be divided into forward/backward scatterings (e.g. +→ +

is a forward scattering, +→ − is a backward scattering) or left/right scatterings (e.g. +→ + is a
right scattering, +→ − is a left scattering). In the analysis of the center of mass dynamics, we use
only two of them, corresponding to the scatterings where the direction of motion is changed. Let
the |↑〉± denote the spin states corresponding to a given velocity. We denote the scattering times
between the states by τ+ = τ+→− and τ− = τ−→+. The times are computed from the Fermi’s golden
rule, similarly to Eq. (1.32) in section 1.2. In the system, we have two contributions to the density
of states: 1/(~πv+) for the + states, and 1/(~πv−) for the − states, where v± denote the absolute
value of velocity. Taking this into account, we have:

1

τ+
=

2V 2
0 |+〈↑ | ↑〉−|2

~2v−
,

1

τ−
=

2V 2
0 |+〈↑ | ↑〉−|2

~2v+
, (2.15)

The difference between the times comes due to the velocity. The two-state scattering is pictorially
presented in Fig. 2.2. For short-hand notation, we will use κ = |+〈↑ | ↑〉−|2. The Boltzmann
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equations for the populations n±(t) have the following form:
dn+(t)

dt
=
n−(t)

2τ−
− n+(t)

2τ+
,

dn−(t)

dt
=
n+(t)

2τ+
− n−(t)

2τ−
.

(2.16)

The equations are very similar to the TRI case, cf. Eq. (1.57). Assuming the initial state n+(0) = 1,
n−(0) = 0 the solution is given by:

n+(t) =
1

2

(
τ

τ−
+

τ

τ+
e−t/τ

)
n−(t) =

1

2

τ

τ+

(
1− e−t/τ

)
,

(2.17)

where τ is defined as
τ =

2τ+τ−
τ+ + τ−

. (2.18)

Of course, the sum of populations is constant, n+(t) + n−(t) = 1. The infinite-time stationary
populations are given by

n∞+ =
τ+

τ+ + τ−
, n∞− =

τ−
τ+ + τ−

. (2.19)

In contrast to the TRI case, the stationary populations are no longer equal. This is a result of the
difference between the velocities. The long-time average value of the velocity should be zero (even
in the classical approach), hence the populations must be unequal. Simple calculation shows that
the average velocity indeed vanishes 〈v〉 = v+n

∞
+ − v−n∞− = 0. The center of mass is calculated as

a contribution of both components:

〈x(t)〉 =

∫ t

0
(v+n+(t′)− v−n−(t′))dt′ = τv+

(
1− e−t/τ

)
. (2.20)

A similar result is obtained assuming that, initially, only the v− state was populated. If we denote
by 〈x±(t)〉 the center of mass time dependence for a ± initial state, we have

〈x±(t)〉 = ±τv±
(
1− e−t/τ

)
. (2.21)

This result closely reassembles the TRI system, see Eq. (1.59), where the scattering mean free path
is replaced by τv±, ` → v±τ , and is hence asymmetric between the + and − directions of motion,
but the relaxation time τ is the same in both directions.

Forward and backward scattered components of the center of mass

As we have shown in section 1.3.2, in the TRI case, the backscattered contribution to the center
of mass is always zero, even at the classical level. In our system, we can study the forward and
backward scattered components of the center of mass separately and compare the result to the TRI
system.

In order to derive the equations for the forward- and backscattered contributions, denoted 〈x(t)〉+
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and 〈x(t)〉− respectively, we start from the Boltzmann equations for the densities f±(x, t) of the
populations n±(t), i.e. n±(t) =

∫
f±(x, t)dx . The Boltzmann equation reads:(

∂f±
∂t

)
coll

=
∂f±
∂t
± v±

∂f±
∂x

, (2.22)

where (. . .)coll denotes the total change due to scattering events. It means that the equations for
the population densities are given by

∂f+

∂t
= −v+

∂f+

∂x
− f+

2τ+
+

f−
2τ−

,

∂f−
∂t

= v−
∂f−
∂x

+
f+

2τ+
− f−

2τ−
.

(2.23)

If we integrate the above equations over
∫

dx , we will get nothing but Eq. (2.16). If we integrate
them over

∫
xdx we will get the desired equations for the separated forward and backward scattered

contributions: 
∂〈x(t)〉+

∂t
= v+n+(t)− 〈x(t)〉+

2τ+
+
〈x(t)〉−

2τ−
,

∂〈x(t)〉−
∂t

= −v−n−(t) +
〈x(t)〉+

2τ+
− 〈x(t)〉−

2τ−
.

(2.24)

The change of the sign of the velocities results from the integration by parts. The densities n±(t)

are given by Eq. (2.17). It is thus easy to solve the differential equations Eq. (2.24). As there
are two possible initial states, we indicate them by an additional index inside 〈· · · 〉, i.e. 〈x±〉 =

〈x±〉+ + 〈x±〉−.
Solutions for the positive initial velocity:

〈x+(t)〉+ =τv+

[
2v−

v+ + v−

(
1− e−t/τ

)
+
v+ − v−
v+ + v−

(
t

τ

)
e−t/τ

]
,

〈x+(t)〉− =τv+

(
v+ − v−
v+ + v−

)(
1− e−t/τ −

(
t

τ

)
e−t/τ

)
.

(2.25)

Solutions for the negative initial velocity:

〈x−(t)〉+ =τv−

(
v+ − v−
v+ + v−

)(
1− e−t/τ −

(
t

τ

)
e−t/τ

)
,

〈x−(t)〉− =− τv−
[

2v+

v+ + v−

(
1− e−t/τ

)
− v+ − v−
v+ + v−

(
t

τ

)
e−t/τ

]
.

(2.26)

In both cases, the sum of contributions gives 〈x±〉 = ±τv±(1− e−t/τ ), as expected. The solutions
of the Boltzmann equations are presented in Fig. 2.3. In contrast to the TRI case, when v− 6= v+,
the backscattered contributions do not vanish. Moreover, the backscattered contributions are widely
different from the forward scattered ones. In the short-time regime 〈x+(t)〉− and 〈x−(t)〉+ scale as
t2, then they saturate at a finite value as t→∞.

The quadratic behavior of the backscattered center of mass may be explained easily. Without
loss of generality, we can assume that the initial velocity is positive. At t = 0 the center of mass
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Figure 2.3. Temporal dynamics of the center of mass for both initial states with positive velocity
v+ (upper panel) and negative velocity v− (lower panel) calculated using Eqs. (2.25), (2.26). The
ratio of velocities is v+/v− = 1.5. The center of mass 〈x±〉 is also divided into the forwardscattered
(〈x+〉+, 〈x−〉−) and backscattered (〈x+〉−, 〈x−〉+) contributions. Similarly the to the TRI case,
after the initial ballistic evolution the center of mass saturates at the finite value ±τv±.

x0

t = 0

v+δt

t = δt

−v−δt

t = δt

Figure 2.4. Time evolution of the wave packet for a very short time. Assuming an initial state
with v+, the majority of the packet moves forward but some parts may be immediately scattered
backwards. After some short time δt, we may expect another backward scattering. Thus, the total
backscattered part of the wave packet is located between −v−δt and v+δt (colored in blue). The
whole backscattered population should be proportional to δt/τ−, hence the 〈x+〉− ∝ δt2. Analogous
situation takes place for the initial state with the negative velocity.

position is at x = 0. Even for weak disorder, there is some small probability that the part of the
wave packet is scattered backwards immediately at the beginning of the evolution. After some small
but finite time δt, the leftmost backscattered part reaches position x = −v−δt; on the other side,
the rightmost backscattered part is at x = v+δt (assuming backscattering event at δt), see Fig. 2.4.
Moreover, at time t = δt, the total population of the backscattered part should be proportional to
δt/τ−. Altogether, this implies that the center of mass of the backscattered wave packet after t = δt

is proportional to (v+ + v−)δt2/τ−, hence we expect a quadratic behavior for a short time.
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Figure 2.5. (a) Temporal evolution of the classical populations calculated from Eq. (2.33) for a
system with δ = Ω = 5ER/~, V0 = 1.875ER and initial state energy E = 9.375ER. The momenta at
energy E are k1 = −3.9kR, k2 = 4.62kR, k3 = −2.44kR, and k4 = 1.71kR (velocities are given in the
main text). Solid lines show the results for an initially populated state with k1. Dashed lines show
results for the initial population only in the state with k2. After short-time evolution, dashed and
solid lines reach their stationary values independent of the initial state. (b) Calculation of total 〈x〉
in the same system for all possible initial states (indicated by the legend). As in the TRI case, after
the short initial ballistic motion the center of mass saturates around a finite value and the evolution
halts.

2.2.2 Four-state scenario: an example

While we will in the following analyze in detail the 2-state scenario, we would like to present an
example with four states at a given energy. We will only analyze the classical evolution of populations
and the total center of mass position.

We start by a simplification of the spin part of the Hamiltonian H0 = (~k)2/2m+Hs:

Hs =

(
~γk + ~δ

2
~Ω
2

~Ω
2 −~γk − ~δ

2

)
(2.27)

Because the HamiltonianHs includes only σz and σx matrices we can employ an useful representation
where the spin direction is determined by σθ = n · σ, where n = cos θn̂z + sin θn̂x. Then:

σθ =

(
cos θ sin θ

sin θ − cos θ

)
(2.28)
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The matrix has eigenvalues ±1 and its eigenvectors are

φ+ =

(
cos θ/2

sin θ/2

)
, φ− =

(
− sin θ/2

cos θ/2

)
, (2.29)

corresponding to the lower and upper bands. Using the matrix σθ we can rewrite the Hamiltonian
Hs:

Hs =

√(
~γk +

~δ
2

)2
+

~2Ω2

4
σθ, with tan θ =

Ω

2γk + δ
. (2.30)

Now, we can easily compute the transition amplitudes between the four possible states. Each state
is characterized by a different value of the angle θ, and the amplitudes are simply given by

〈φ+(θi)|φ+(θf )〉 = 〈φ−(θi)|φ−(θf )〉 = cos

(
θi − θf

2

)
,

〈φ+(θi)|φ−(θf )〉 = −〈φ−(θi)|φ+(θf )〉 = sin

(
θi − θf

2

)
.

(2.31)

Using the Fermi’s golden rule, the transition rates between the initial and the finial states are 1:

ri,f ∝
cos2((θi − θf )/2)

vf
between states of the same band

ri,f ∝
sin2((θi − θf )/2)

vf
between states of the different bands

(2.32)

where θi, θf denote the angles for the initial and final states, respectively, and vf is the absolute
value of the group velocity of the final state. The velocity shows up in the rate as a contribution to
the density of states (cf. Eq. (2.15)). In this case, the evolution of the populations is characterized
by:

dn

dt
= Rn, (2.33)

where n is defined as n = (n1(t), n2(t), n3(t), n4(t)), and R is a 4 × 4 scattering matrix. The total
population is conserved, hence the eigenvalues of the scattering matrix have to be non-positive,
λi ≤ 0. From the general form of the matrix R:

R =


−(r2,1 + r3,1 + r4,1) r1,2 r1,3 r1,4

r2,1 −(r1,2 + r3,2 + r4,2) r2,3 r2,4

r3,1 r3,2 −(r1,3 + r2,3 + r4,3) r3,4

r4,1 r4,2 r4,3 −(r1,4 + r2,4 + r3,4)

 ,

(2.34)
it can be easily shown that there always exists a zero eigenvalue, which is directly connected with
the infinite-time stationary populations.

For a given choice of parameters γ, δ and Ω, the solution of Eq. (2.33) can be easily calculated.
However, the general solution is rather complex. It involves solving a fourth order polynomial,
which in principle can be performed, but it means that the solutions are fairly complicated. Thus,

1. Equation (2.32) is noting but Eq. (2.15) for the two-state scenario, and κ is simply cos2(θi − θf )/2.
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Figure 2.6. Quantum time evolution of a total center of mass Eq. (2.37) computed for both inital
states, Eq. (2.36), as indicated by the legend. Although the spin-orbit system has no TRI we observe
the full boomerang effect – the center of mass returns to the origin. This clearly shows that the
quantum boomerang effect is present in systems without TRI. Results show that the characteristic
time scale of the phenomenon is independent of the initial velocity. The length scale seems to depend
on the initial velocity, as predicted by the classical approach, cf. Eqs. (2.25), (2.26). The results
have been averaged over 40960 disorder realizations. Error bars represent statistical errors of the
average.

in the following we restrict ourselves only to a short discussion of the classical results computed for
a system with δ = Ω = 5ER/~ for states at energy E = 9.375ER. The momenta corresponding to
the energy E are k1 = −3.9kR, k2 = 4.62kR, k3 = −2.44kR, and k4 = 1.71kR. The corresponding
absolute values of velocities: v1 = 3.0γ, v2 = 3.65γ, v3 = 3.12γ, and v4 = 2.64γ. The matrix R in
dimensionless units reads:

γR ≈


−0.178 0.017 0.006 0.139

0.014 −0.141 0.104 0.001

0.005 0.122 −0.171 0.052

0.158 0.002 0.061 −0.192

 . (2.35)

The time evolution of the populations is shown in Fig. 2.5 (a) for two different initial states. As
expected, the long-time values of ni(t) do not depend on the initial state and satisfy the condition
of zero long-time average velocity.

Figure 2.5 (b) presents the time evolution of the total center of mass for all four possible initial
states. It is clear that in this case 〈x(t)〉 cannot be described with a curve similar to `(1 − e−t/τ ).
Nonetheless, after the initial evolution, it stops and the center of mass saturates around some finite
value. This behavior is very similar to the (classical) two-state description.

2.3 Quantum boomerang effect in the two-state scenario

In section 2.2, we have performed classical calculations for the center of mass in a disordered
spin-orbit coupled system. Clearly, even for the case with only two possible states, the situation is
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more complicated than in the TRI case. For this reason, we will now study this situation in detail.
The simulations have been performed in a system with parameters δ = Ω = 5ER/~. The system
size is L = 4000/kR with a discretization constant ∆x = 0.08/kR. The initial energy of the state
was chosen as E0 = 0, so that the two states have momenta k− = −1.61kR and k+ = 2.96kR with
the absolute values of velocities v− = 1.335γ and v+ = 2.003γ. With κ = 0.505 and the disorder
strength V0 = 0.875ER, we have τ− = 12.944~/ER, τ+ = 8.626~/ER, and τ = 10.353~/ER. All
presented results have been averaged over 40960 disorder realizations. The two initial states are
labeled by ±, as it is done in section 2.2.1.

To obtain meaningful results, the simulations have to be performed using the eigenstates of the
Hamiltonian (2.1), not the spin-up and spin-down states used as the computational basis. This
means that the initial states are combinations of the spin-up and spin-down components. For a
given energy E0, using Eq. (2.3), we can easily compute the appropriate values of momenta, denoted
by the wave numbers k+ and k−. Using the eigenmomenta we define our initial states:

Ψ+
0 (x) = N exp(−x2/2σ2 + ik+x) |↑〉+ , Ψ−0 (x) = N exp(−x2/2σ2 + ik−x) |↑〉− , (2.36)

where the normalization constant is N = (πσ2)−1/4, and |↑〉± denote the (eigen) spin states for
corresponding values of the wave numbers k±. In our simulations, we have used σ = 20/kR. States
Ψ±0 are not the exact eigenstates of the Hamiltonian H0 – the finite value of σ means that they are
only approximations to monochromatic waves. However, taking into account the results of [3], we
can safely assume that as long as the initial states do not contain too many momentum components
and disorder is weak, the results are essentially independent of σ. We assume also that the width of
the wave packet σ is smaller than the mean free path 2.
The initial states have the PT -symmetry, cf. section 1.3.3, hence in the following analysis we study
directly the effect of the TRI breaking of the Hamiltonian on the quantum boomerang effect.

We compute the center of mass with the spin degrees of freedom averaged out:

〈x(t)〉 = 〈x(t)〉↑ + 〈x(t)〉↓ =

∫
x|ψ↑(x, t)|2dx +

∫
x|ψ↓(x, t)|2dx , (2.37)

where ψ↑(x, t) and ψ↓(x, t) are the wave functions represented in the spin (computational) basis, and
|ψ(x, t)|2 is the disorder averaged density. As we have pointed out in section 2.2.1, the two states
have different mean free times, τ+ and τ−. However, the characteristic lengths associated with these
time scales do not differ:

v+τ+ = v−τ− = `t (2.38)

We call this length scale transport mean free path `t. Figure 2.6 presents the result of simulations
for the two initial states. Even though TRI is broken in the system, we observe the full boomerang
effect.

Similarly to the TRI system, the center of mass returns to the origin. As in the TRI system,
the ballistic part of the motion is followed by a reflection, after which the particle slowly returns to
its initial position. The 〈x〉 curves for both initial states clearly indicate the existence of a single
time scale independent of the initial velocity. This agrees with the classical result (cf. Eqs. (2.21),

2. This condition is for convenience of the calculation. It can be relaxed, as in the TRI case, where there is no
needed inequality between σ and the mean free path [2].
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Figure 2.7. Center of mass 〈x(t)〉 calculated in simulations of the quantum system for both initial
states, compared with the classical prediction, Eqs.(2.25), (2.26). Similarly to the TRI system, after
agreement in the regime of the ballistic motion, the quantum particle starts a slow return to the
origin. Agreement for short times supports the hypothesis that the quantum phenomenon is also
characterized by a single time scale τ . The internal indices, 〈x±〉, indicate the initial velocity, while
external indices, 〈x〉±, denote the forward/backward scattered component. Note that the 〈x−〉+
contribution of the negative initial state has opposite sign to 〈x−〉− what is also predicted by the
classical solution (because v+ > v−, see Eq. (2.26)).

(2.25), and (2.26)). The center of mass presented in Fig. 2.6 is rescaled using the transport mean
free path `t different from τv+ and τv− which appear as the natural length scales in the solutions
of Boltzmann equations (Eqs. (2.25), (2.26)).

The data displayed in Fig. 2.6 constitutes a major result of this study of the boomerang effect in
systems where the TRI is broken, which is completely unexpected. Indeed, all previous studies
of the boomerang [2, 3, 21, 84, 85] insisted on the importance of TRI (in addition to Anderson
localization) for the boomerang effect. Here, we see that this point of view is clearly insufficient. We
can now give a negative answer to the question asked in the first paragraph of this chapter, page 31;
TRI is not necessary for the boomerang effect to exists. Moreover, as we have proved that all
generalized TRI are broken (see section 2.1 and appendix 2.A), this excludes any explanation of the
boomerang effect by symmetry considerations (as in section 1.3). Finally, we will show in section 2.6
how to perform a quasi-exact theoretical calculation of the boomerang effect in our system, which
will not use any symmetry argument and agrees perfectly (see Fig. 2.21) with our numerical results.
The short summary is: TRI is not needed for the quantum boomerang effect.

2.3.1 Backward and forward scattered wave functions

In the previous analysis, we average 〈x(t)〉 over the spin degree of freedom. It turns out that we
can extract more information using a tailored analysis of the spin state.
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If we assume weak disorder and that scattering happens only between the two states, then at
any time of evolution, we can write that the total wave function, including spin, has the following
form:

|ψ(x, t)〉 = ψ+(x, t) |↑〉+ + ψ−(x, t) |↑〉− , (2.39)

where ψ+(x, t) and ψ−(x, t) are the wave functions of the forward and backward scattered parts of
the whole wave function 3 and |↑〉± represent the proper spin eigenstates. The spin states are not
orthogonal: −〈↑ | ↑〉+ ≈ 0.71. Thus, we define the orthogonal counterparts, denoted by |↓〉±. By
projecting the total wave function onto the orthogonal spin states, we can extract ψ±(x, t):

ψ+(x, t) = −〈↓ |ψ(x, t)〉
−〈↓ | ↑〉+

, ψ−(x, t) = +〈↓ |ψ(x, t)〉
+
〈↓ | ↑〉−

. (2.40)

Now we can easily define the center of mass positions for the forward and backward scattered parts
of the wave function:

〈x(t)〉+ =

∫
x|ψ+(x, t)|2dx , 〈x(t)〉− =

∫
x|ψ−(x, t)|2dx . (2.41)

Nevertheless, the wave functions ψ±(x, t) are not orthogonal. When we calculate the center of mass
using Eq. (2.39), we find that 〈x(t)〉+ and 〈x(t)〉− do not add up to a total 〈x(t)〉:

〈ψ(x, t)|x|ψ(x, t)〉 =

∫
x
[
|ψ+(x, t)|2 + |ψ−(x, t)|2 +

+
〈↑ | ↑〉−(ψ+(x, t)ψ∗−(x, t) + c.c.)

]
. (2.42)

The cross-term proportional to
+
〈↑ | ↑〉− present in the integral is an oscillatory contribution ∼

ei(k+−k−)x, whose integral is around 1-2% of the total center of mass, thus almost negligible. The
calculation of separate contributions: the forward and backward scattered parts of the wave function,
enables us a direct comparison with the Boltzmann solutions, Eqs. (2.25), (2.26).

Figure 2.7 presents the comparison of the center of mass calculated in quantum simulations
with the classical predictions for both initial states. The center of mass is divided into forward and
backward scattered parts, allowing for a comparison of the separate components. The outcome of
the comparison is very similar to the TRI system. For a very short time, the Boltzmann solution
agrees with the quantum simulations. At longer times, all four contributions make an apparently
similar U-turn and return to the origin. Additionally, we have a confirmation of our guess that the
phenomenon is governed by a single time scale, τ . The center of mass for the initial state with
negative velocity, similarly to the classical prediction, shows that the backscattered contribution has
an opposite sign to the forward scattered one. The backscattered contribution moves in the direction
of the maximum velocity, cf. Eqs. (2.26), (2.25).

3. Comparing with the densities f±(x, t) used in Sec. 2.2.1 we have f±(x, t) = |ψ±(x, t)|2.
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2.4 Center of mass in terms of Green’s functions

To compute the center of mass theoretically, we express it using a product of the retarded and
advanced Green’s functions. We start from the general formula for the center of mass:

〈x(t)〉 =

∫
dxx|ψ(x, t)|2. (2.43)

To compute ψ(x, t) we use the Green’s functions:

ψ(x, t) =

∫
dx′GR(x, x′, t)Ψ0(x′), ψ∗(x, t) =

∫
dx′′

(
GR(x, x′′, t)

)∗
Ψ∗0(x′′), (2.44)

where Ψ0(x) is the initial state. To simplify the notation, we use the fact that
(
GR0 (x, x′′, t)

)∗
=

GA0 (x′′, x,−t), leading to:

〈x(t)〉 =

∫
dx dx′ dx′′ xGR(x, x′, t)GA(x′′, x,−t)Ψ0(x′)Ψ∗0(x′′). (2.45)

The average product of the Green’s functions is usually much more complicated than the product
of the average Green’s functions. In this and the following sections, we focus on simplifications and
application of the diagrammatic technique to compute this crucial object needed to calculate the
desired observable, the center of mass.

The Green’s functions have much simpler forms in the frequency representation. To simplify our
calculations, we use the following identity:

GR(x, x′, t)GA(x′′, x,−t) =
1

(2π~)2

∫
dε d(~ω1) e−iω1tGR(x, x′, ε)GA(x′′, x, ε− ~ω1). (2.46)

Now, if we put Eq. (2.46) into Eq. (2.45) we obtain:

〈x(t)〉 =
1

(2π~)2

∫
dx dx′ dx′′ dεd(~ω1)xe−iω1tGR(x, x′, ε)GA(x′′, x, ε− ~ω1)Ψ0(x′)Ψ∗0(x′′). (2.47)

As a final step, we Fourier transform both sides of Eq. (2.47). The integral over time domain can be
performed easily, yielding 2πδ(ω1 − ω). Then, the integration over frequency ω1 gives us the final
result:

〈x(ω)〉 =
1

2π~

∫
dx dx′ dx′′ dε xGR(x, x′, ε)GA(x′′, x, ε− ~ω)Ψ0(x′)Ψ∗0(x′′). (2.48)

Such an equation is not uncommon in many calculations. The temporal evolution, hence the dynam-
ics of the system, is expressed using a product of Green’s functions evaluated at different energies.
Equation (2.48) is fully general and does not depend on the TRI breaking or other features of the
system (for example spin).

2.5 Free Green’s functions in the spin-orbit system

In order to calculate 〈x(ω)〉 we need to find the expression for the product of the average Green’s
functions. We begin by expressing the disordered Green’s function using the Born expansion (see
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section 1.2, Eq. (1.13)) with the free Green’s GR/A0 (x, x′, ε) and the disordered potential V (x):

GR/A(x, x′, ε) =G
R/A
0 (x, x′, ε) +

∫
dx1G

R/A
0 (x, x1, ε)V (x1)G

R/A
0 (x1, x

′, ε)+∫
dx1 dx2G

R/A
0 (x, x1, ε)V (x1)G

R/A
0 (x1, x2, ε)V (x2)G

R/A
0 (x2, x

′, ε) + . . .

(2.49)

To compute GR/A(x, x′, ε), we need to find the free Green’s function in our model.
We study the system with an energy such that Hamiltonian (2.1) has only two solutions, which

we call the 2-state approximation. It means that the available states are from the lower band, with
energies:

εk =
~2k2

2m
− ~

2

√
(2γk + δ)2 + Ω2, (2.50)

and parameters γ, δ and Ω are such that there are only 2 solutions in the lower band at the given
energy. The group velocity is defined as

v(k) =
1

~
dεk
dk

. (2.51)

To calculate the Green’s functions, we use the standard approach, i.e. using the definition based on
the Fourier transform between configuration and momentum spaces:

GR0 (x, x′, ε) =

∫
dk

2π

eik(x−x′)

ε− εk + i0+
. (2.52)

In our system, for a given energy ε the integral has four poles such that ε − εk = 0. Two of them
are always real and two are fully complex. We denote the real poles as k− and k+, k− < k+.

2.5.1 Analysis of poles and branch cuts of Green’s functions

For a moment, let us consider a more general scenario where ε − εk = f(k) has some finite
number of zeros. Let the zeros be denoted by kj . We will argue that the main features of the
Green’s functions may be captured using only real (or close to being real) zeros of the function f(k).
The reason is that the imaginary part Im(kj) results in an exponential decay of the Green’s function:

GR0 (x, x′, ε) = −i
∑
kj∈Γ

1

~v(kj)
eiRe(kj)(x−x′)e− Im(kj)(x−x′), (2.53)

where Γ is an appropriate contour of integration such that Im(kj)(x− x′) > 0. It means that there
exists some finite range (in configuration space) of the effect of the Green’s function’s complex poles.

To quantitatively approach this problem, we propose to use an arbitrary length scale `0 as a
parameter. This creates a strip 1/`0 in the complex k space, see Fig. 2.8. In general, at distance
|x − x′| � `0, only the poles inside the strip give important contributions to the Green’s function.
If `0 is sufficiently large and all the complex poles kj lay outside the strip, the Green’s function may
be approximated using only the real poles. Moreover, the same reasoning applies to branch cuts
and other singularities of f(k). If such objects are outside the relatively narrow, 1/`0, region in the
complex k plane, we may discard their effect on the Green’s function.

The only problem remains when one is interested in the values of the Green’s function for
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Re k

Im k

1/`0

k1

k2

k3

k4

Figure 2.8. Strip defined by the length scale `0 in complex k space, where kj represent roots of
ε− ε(k). k2 and k3 are near real axis, shifted only due to infinitesimal positive imaginary part of ε
used in the calculation of the Green’s function GR0 (x, x′, ε), Eq. (2.53), and k1, k4 are fully complex.
If we are interested in distances |x− x′| � `0 then we can safely discard contributions of k1 and k4

to the Green’s function.

x − x′ < `0, e.g. x = x′. In such a situation, all poles of the Green’s function contribute equally.
For example, one could be interested in the density of states per unit volume, which is proportional
to ImGR0 (x′, x′, ε). If one does not take into account the complex poles of GR0 , the resulting Green’s
function will be discontinuous at x = x′ almost surely. Generally, the Green’s function for x = x′

including all poles kj is given by:

GR0 (x, x′, ε) ∝


∑

Im(kj)>0 v(kj)
−1, x→ x′ + 0+

−∑Im(kj)<0 v(kj)
−1, x→ x′ − 0+

(2.54)

Continuity requires that both expressions are equal on both sides of the limit x → x′. Indeed, this
is true when we include all zeros of f(k). In general:

∑
j

1

f ′(kj)
= 0 (2.55)

for any analytic function 1/f(k) with simple poles at kj . In our case, f ′(kj) corresponds to the
group velocity v(kj).

Sketch of a proof. Let p = deg f(k) > 2, and γR be a great circle with radius R in
the complex k plane. From Jordan’s lemma:∣∣∣∣∫

γR

dk

f(k)

∣∣∣∣ ≤ C 2πR

Rp
R→∞−−−−→ 0. (2.56)

On the other hand, we can calculate the integral using the residue theorem inside
the contour γR. If kj are simple poles of the function 1/f(k), we can write that
f(k) = (k − kj)g(k) around k = kj , with g(kj) being analytic and f ′(kj) = g(kj).
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Then, the integral can be easily evaluated:∫
γR

dk

f(k)
= 2πi

∑
k

1

f ′(kk)
. (2.57)

This immediately shows that ∑
j

1

f ′(kj)
= 0. (2.58)

It means that if one includes all poles of Green’s function, it will be continuous at
x− x′ = 0.

Coming back to our original problem, we may have 2 real and 2 complex poles of the Green’s
function. However, due to the square root function, there are also 2 branch cuts in the complex k
plane. It turns out that the branch cuts lay closer to the real axis than the 2 complex solutions
(conjugates of each other). The branch cuts may be found in the same way as cuts of the function√
z2 + 1. In our case, due to the presence of γ, δ and Ω, the cuts are parallel to the imaginary

axis, from points (−δ/2γ,±iΩ/2γ) to (−δ/2γ,±i∞), so that, if they lay outside the 1/`0 strip, their
contributions can be neglected.

2.5.2 Green’s functions

In disordered systems, the characteristic length scale is set by `, i.e. the mean free path. If,
in our calculations, we are interested only in distances of the order of `, we can approximate the
Green’s function using only the real poles. Then, the Green’s function can be easily calculated. For
the retarded Green’s function, the k+ (resp. k−) pole has a positive (resp. negative) velocity v+

(resp. v−). It means that, when x > x′, the integral in Eq. (2.52) is computed using the k+ pole
(upper contour) and if x < x′ the k− pole is used (lower contour):

GR0 (x, x′, ε) =

− i
~v+ e

ik+(x−x′), x− x′ > 0

− i
~v− e

ik−(x−x′), x− x′ < 0
, (2.59)

where v− and v+ are absolute values of v(k±). The advanced Green’s function is

GA0 (x′, x, ε) =

 i
~v+ e

−ik+(x−x′), x− x′ > 0

i
~v− e

−ik−(x−x′), x− x′ < 0
. (2.60)

As expected for Green’s functions, GA0 = (GR0 )†, which translates into GA0 (x, x′, ε) =
(
GR0 (x′, x, ε)

)∗.
Note, however, that in systems with TRI, the Green’s functions also obey GR/A(k, ε) = GR/A(−k, ε)
which is not true in our system.

In the following, we will also use GA0 (x′, x, ε− ~ω), with ω � ε. To calculate it, we change only
the phase factor of the Green’s functions Eq. (2.60):

k−(ε− ~ω) ≈ k− +
ω

v−
,

k+(ε− ~ω) ≈ k+ − ω

v+
.

(2.61)
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x

x1 x′ x′′ x2 x3 x4 x5 x x6

Figure 2.9. Example of a diagram contributing to GR(x, x′, ε)GA(x′′, x, ε). Solid lines represent GR0 ,
dashed lines represent GA0 , scattering events occur at points xi. The vertical unfolding of the lines
only allows for a convenient representation of the diagram, otherwise has no physical meaning.

so that

GA0 (x′, x, ε− ~ω) =

 i
~v+ e

−i(k+−ω/v+)(x−x′), x− x′ > 0

i
~v− e

−i(k−+ω/v−)(x−x′), x− x′ < 0
. (2.62)

The Green’s functions clearly show that the evolution of a particle from left to right is controlled
by the positive pole k+ with the positive velocity, and from right to left by the negative one k−.
This introduces an asymmetry between the left and right directions of motion, what is expected in
a system with broken TRI.

2.6 Berezinskii diagrammatic technique

Now, with explicit expressions for the free Green’s functions, we can start the calculation of the
average product of the retarded and advanced Green’s functions. The studied problem is considered
in a one-dimensional system and we can use a very powerful tool: the Berezinskii diagrammatic
technique [4]. To evaluate the product GR(x, x′, ε)GA(x′′, x, ε − ~ω) we use the Born expansion
Eq. (2.49) for both GR and GA, so that the GRGA involves only products of free Green’s functions
and potentials, that is multiply scattered paths.

The average product GR(x, x′, ε)GA(x′′, x, ε− ~ω) includes all possible paths between points x′

and x. In our approach, each contribution is represented as a diagram, see Fig. 2.9. Solid lines
represent the free retarded Green’s function and dashed lines depict the free advanced Green’s
functions. This way we can represent diagrammatically all terms appearing in the Born series,
Eq. (2.49). The scattering events occur at the points xi. For example, the top part of the diagram
in Fig. 2.9 corresponds to a term with 6 scattering events and 7 free retarded Green’s functions,
whereas the bottom part to a term with 5 scattering events and 6 free advanced Green’s functions.

However, we do not consider all possible diagrams. When disorder averaging is taken into account
for the Gaussian δ-correlated potential, due to Wick’s theorem, only diagrams whose scattering
events are paired together contribute. An example of a diagram contributing to the averaged result
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x

x1 x2 x′ x′′ x3 x4 x5 x6 x7 x x8

Figure 2.10. Diagram which contributes after disorder averaging, assuming δ-correlated Gaussian
disorder. Solid lines represent GR0 , dashed lines represent GA0 , and the green lines are the correlation
functions of the disordered potential.

is shown in Fig. 2.10. In the end, our aim is to sum all possible diagrams with nonzero contributions
after the integration over x in Eq. (2.48).

In the diagrams, we assume that, for a given path connecting the initial point x′ with the final
point x, all scattering events happen at points xi, i = 1, . . . , n. Because we are in a one-dimensional
system, these points can be ordered:

−∞ < x1 ≤ . . . ≤ xi ≤ x′ ≤ xi+1 ≤ . . . ≤ xj ≤ x ≤ xj+1 ≤ . . . ≤ xn <∞. (2.63)

Thanks to the ordering procedure, the signs of xi − xj are fixed. The diagrams are built of the free
propagators GR/A0 (xj , xi) and the correlation functions of the disorder at points xi. The main idea
of the Berezinskii diagrammatics is to transfer the factors from the lines to the scattering points,
called scattering vertices. For example, if xi > xj , the free Green’s function can be split:

GR0 (xi, xj , ε) = − i

~v+
eik+(xi−xj) =

√
− i

~v+
eik+xi ·

√
− i

~v+
e−ik+xj , (2.64)

where we formally associate the exponential factors to the vertices at points xi and xj . The difference
between the TRI system and the unitary one is that the factors depend on the direction of movement.
All possible situations are shown in Fig. 2.11. In the TRI system, the difference between propagation
lines (a) and (b) reduces to a sign change of the phase factor. In our case, we have different velocities
and phases. Nonetheless, the whole procedure is very similar, we have to analyze the initial and
final points of the propagation lines, this time also taking into account their direction.

2.6.1 Initial vertices

To limit our analysis to the relevant diagrams, we start by selecting the appropriate initial
vertices. In general, there are four possibilities presented in Fig. 2.12. The caption includes the
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xi

xj

(a)

xi

xj

(b)

xi

xj

(c)

xi

xj

(d)

Figure 2.11. All possible propagation lines, where xi is treated as the initial point in all situa-
tions. Expressions corresponding to the propagation lines: (a) − i

~v+ exp(ik+xj) exp(−ik+xi), (b)
− i

~v− exp i(k−xj) exp(−ik−xi), (c) i
~v+ exp(−ik+xj) exp(ik+xi), (d) i

~v− exp(−ik−xj) exp(ik−xi)

x′
x′′

(a)

x′
x′′

(b)

x′
x′′

(c)

x′
x′′

(d)

Figure 2.12. List of possible initial vertices. They correspond to factors:
(a) (~v+)−1 exp(ik+(x′′ − x′)) exp(−iωx′′/v+), (b) (~v−)−1 exp(ik−(x′′ − x′)) exp(iωx′′/v−),
(c) (~2v−v+)−1/2 exp(i(k+x′′ − k−x′)) exp(−iωx′′/v+),
(d) (~2v−v+)−1/2 exp(i(k−x′′ − k+x′)) exp(iωx′′/v−)

factors corresponding to the vertices. Vertices (c) and (d) carry terms proportional to exp(i(k±x′′−
k∓x′)). Upon integration over the initial points (cf. Eq. (2.48)) and taking into account the initial
states Ψ0(x′), Ψ∗0(x′′), they have a negligible contribution. Thanks to this, in the following, we
consider only (a) and (b) as the possible initial vertices. They correspond to two different initial
states of our system: the positive initial velocity (a) and the negative initial velocity (b). A similar
analysis can be performed for the final vertices.

Further simplification is based on the assumption that no scattering happens between the initial
points x′ and x′′. In the study of the TRI quantum boomerang effect [3], this assumption was
justified by the fact that the initial state is much narrower than the mean free path. However, this
assumption can be loosened and the same approach remains valid. There is no direct constraint on
the relation between the wave packet width and the mean free path. Following the study of the
TRI boomerang [2], we introduce r = x′ − x′′ and x̃ = (x′ + x′′)/2. We see that the initial vertices
Fig. 2.12 (a) and (b), in the limit ω → 0, can be approximated by similar vertices starting from
a single point. This is visualized in Fig. 2.13. At the level of Green’s functions this simplification

x′
x′′

≈ e−ik+r
x̃

(a)

x′
x′′

≈ e−ik−r
x̃

(b)

Figure 2.13. Graphical representation of simplification due to introduction of r = x′ − x′′ and
x̃ = (x′ + x′′)/2 in the limit of ω → 0.
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takes the following form (cf. also [86]):

GR(x, x′, ε)GA(x′′, x, ε− ~ω) ≈ e−ik±rGR(x, x̃, ε)GA(x̃, x, ε− ~ω), (2.65)

where k+ is used for the vertex Fig. 2.12 (a) and k− for Fig. 2.12 (b). We can plug this formula to
Eq. (2.48):

〈x(ω)〉 =
1

2π~

∫
dx dx̃ dr dε x e−ik±rGR(x, x̃, ε)GA(x̃, x, ε− ~ω)Ψ0(x̃+ r/2)Ψ∗0(x̃− r/2). (2.66)

The r dependence can be integrated out using a prescription for the Wigner function (quasi-
probability distribution) W (x̃, k):∫ +∞

−∞
dr e−ik±rΨ0(x̃+ r/2)Ψ∗0(x̃− r/2) = 2π~W (x̃, k±). (2.67)

We end up with two Wigner’s functions describing the two possible initial vertices associated with
the different initial states:

〈x+(ω)〉 =

∫
dx dx̃ dε xW (x̃, k+)︸ ︷︷ ︸

vertex (a)

GR(x, x̃, ε)GA(x̃, x, ε− ~ω)

〈x−(ω)〉 =

∫
dx dx̃ dε xW (x̃, k−)︸ ︷︷ ︸

vertex (b)

GR(x, x̃, ε)GA(x̃, x, ε− ~ω)

(2.68)

In the final simplification, we use a trick where we introduce the spectral function A(ε, k) [86]. In
the weak disorder limit, we can safely use the free spectral function:

A(ε, k) = δ(ε− εk) = (~v+)−1δ(k − k+) + (~v−)−1δ(k − k−). (2.69)

Then

W (x̃, k+) = ~v+

∫ +∞

α
dkW (x̃, k)A(ε, k), W (x̃, k−) = ~v−

∫ α

−∞
dkW (x̃, k)A(ε, k), (2.70)

where α is an arbitrary constant such that k− < α < k+ . It is used only to split the contributions
of k+ and k− (e.g. if k+ and k− have opposite signs one may use α = 0). This allows us to arrive
at a formula very similar to the TRI case. If we use the initial state with positive velocity, i.e.
W (x̃, k) = ~−1δ(x̃)δ(k − k+) we end up with:

〈x+(ω)〉 = v+

∫
dxxGR(x, 0, ε0)GA(0, x, ε0 − ~ω), (2.71)

where ε0 is the energy of the initial state. In this final formula, simplified by the analysis of relevant
initial vertices, we are left with the average product of retarded and advanced Green’s functions.
Thanks to the statistical translational invariance, the integrand depends only on the relative position
of the initial and final points. To simplify the next steps in the analysis, we will keep the initial
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point x̃ in the the integral:

〈x+(ω)〉 = v+

∫
d(x− x̃) (x− x̃)GR(x, x̃, ε0)GA(x̃, x, ε0 − ~ω), (2.72)

and treat (x − x̃) as a single variable. In order to calculate this integral, we will now analyze the
structure of the diagrams.

2.6.2 Calculation of the diagrams

Scattering vertices

In general, we would like to sum all significant diagrams to evaluate GRGA. This task cannot be
done directly. Let us reconsider the diagram presented in Fig. 2.10. The diagrams can be divided into
intervals between consecutive scattering events, i.e. intervals between xi and xi+1. Each interval has
a specific number of lines inside. There are in total 4 kinds of lines: retarded lines (in two directions)
and advanced lines (also in two directions).

The numbers of lines are denoted as g+, g−, (g+)′, and (g−)′ respectively. For example, the
interval between points x′ and x3 in Fig. 2.10 has the following set of lines (2, 1, 2, 1). The intervals are
separated by scattering events which may change the number of lines. Each scattering vertex makes
a definite change of respective lines, which we denote ∆g± (retarded lines) and (∆g±)′ (advanced
lines).

The vertices with nonzero phases are negligible due to disorder averaging: different phases aver-
age to zero. Each incoming and outgoing GR0 line from a vertex at point x carries a phase depending
on the direction of the line and its type (in/out). Every incoming (outgoing) positive line, i.e. prop-
agating to the right, carries a ik+x (−ik+x respectively) phase. For the negative (i.e. propagating
to the left) lines, the phases for incoming and outgoing lines are −ik−x and ik−x respectively. For
advanced lines, the phases are complex conjugates.

For single line vertices involving only retarded Green’s functions, the phase of a scattering vertex
is calculated from the total change of the number of lines, i.e. ±i(∆g+k+x − ∆g−k−x). The
condition for phaselessness of the vertex in the limit of ω → 0 is that the total numbers of incoming
and outgoing lines (of each type) have to be equal, that is ∆g± = 0. This condition is very similar
to the one found in [3, 4, 20, 22, 86]. However, in our system, k+ and k− do not cancel each other.

In the case of the mixed-line vertices, involving both GR0 and GA0 , the problem is slightly different:
lines from GR0 and GA0 may cancel each other. The total phase of a vertex is

i
(
(∆g+ − (∆g+)′)k+ − (∆g− − (∆g−)′)k−

)
x.

This means that the phaseless vertices are only if ∆g± = (∆g±)′.

The scattering vertices also have to keep the solid and dashed lines continuous. The list of possible
phaseless scattering vertices is shown in Fig. 2.14. Each vertex corresponds to a well defined factor
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(a1) (a2)

(b1) (b2) (b3)

(c)

(d1) (d2) (d3) (d4)

(e) (f)

Figure 2.14. All possible phaseless scattering vertices. Vertices from (a), (b), and (c) families have
also dashed-lines counterparts. The weights associated to the vertives are written in Eq. (2.73).
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x

x1 x2 x̃ x3 x4 x5 x6 x x7

L Z R

Figure 2.15. An example of a diagram contributing to GRGA built from the vertices presented in
Fig. 2.14. The diagram is divided into L, Z, and R parts at points x̃ and x.

based on the scattering type. The weights are:

a1 : − V 2
0

(~v+)2
, a2 : − V 2

0

(~v−)2
,

b1 : − V 2
0

(~v+)2
, b2 : − V 2

0

(~v−)2
, b3 : − V 2

0

(~v+)(~v−)

c : −V
2

0 |−〈↑ | ↑〉+|2
(~v+)(~v−)

,

d1 :
V 2

0

(~v+)2
, d2 :

V 2
0

(~v−)2
, d3 :

V 2
0

(~v+)(~v−)
, d4 :

V 2
0

(~v+)(~v−)
,

e :
V 2

0 |−〈↑ | ↑〉+|2
(~v+)(~v−)

exp

(
iωx

(
1

v+
+

1

v−

))
, f :

V 2
0 |−〈↑ | ↑〉+|2
(~v+)(~v−)

exp

(
−iωx

(
1

v+
+

1

v−

))
.

(2.73)
Vertices (c), (e), and (f) have double backscattering events. It means that, in the spin system,
the weights include a spin state overlap factor |−〈↑ | ↑〉+|2 = κ. Vertex (a) represents an in place
scattering event, that is GR/A0 (xi, xi−1, ε)V (xi)G

R/A
0 (xi, xi, ε)V (xi)G

R/A
0 (xi+1, xi, ε).

Equations

From this point, to lighten the notations, we put ~ = 1.
Knowing all possible scattering vertices relevant for our problem, we can write down the equations

describing the diagrams. For a moment, we will assume that x̃ < x. Each diagram contributing
to the final sum may be divided into L, Z, and R parts, like it is done in Fig. 2.15. The parts
of the diagram are characterized by the total number of incoming and outgoing solid and dashed
lines. Because the scattering vertices change the number of lines by at most 2, we know that the
L and R parts always have g± = (g±)′ = m lines attached . Thus, we denote g = g+ + g− and
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Figure 2.16. Schematic representation of Eq. (2.74). Lm′(x̃ + δx) can be constructed with Lm′(x̃)
and all possible combinations of the scattering vertices. The figure shows one example for each
scattering vertex.
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(g)′ = (g+)′ + (g−)′ and for the left and right parts g = (g)′ = 2m. For example, for L in Fig. 2.15
we have g = (g)′ = 2.

The central block Z has one additional line which "connects" points x′ and x, so its direction
depends on the sign of x− x′. In total, Z has g = (g)′ = 2m+ 1 lines at each boundary. However,
these numbers may differ between the boundaries, for example, the Z block from Fig. 2.15 has
g = (g)′ = 3 at the left boundary, while g = (g)′ = 1 at the right boundary.

As the next step in the calculation, we denote by Lm′(x̃) the sum of contributions from all
left-hand L parts that have the right boundary at the point x̃ with g = 2m′ lines. Analogously, by
Rm(x) we denote the sum of right-hand contributions R which have the left boundary at point x
with g = 2m lines. The central part contributions are gathered under Zm′,m(x̃, x) where the left
boundary has g = 2m′ + 1 lines and the right one has g = 2m+ 1.

Now, to calculate Lm′(x̃), we consider how it changes with an infinitesimal change of the boundary
position, say x̃→ x̃+ δx by adding all possible contributions from different scattering vertices. For
this purpose, we number the lines on the boundary by assigning consecutive numbers to the outgoing
and incoming lines, as presented in Fig. 2.16. The figure also shows a schematic way of adding new
vertices to the diagram. Then, we count all possibilities of adding new vertices to Lm′(x̃), bearing in
mind that the lines cannot create loops nor cross each other. Finally, we get the following equation:

Lm′(x̃+ δx) = Lm′(x̃) + V 2
0 δxLm′(x̃)

[
−2m′

v2
+

− 2m′

v2
−

]

+ V 2
0 δxLm′(x̃)

[
−m

′(m′ − 1)

v2
+

− m′(m′ − 1)

v2
−

− 2m′2

v+v−
− 2κm′(m′ − 1)

v+v−
+
m′2

v2
+

+
m′2

v2
−

+
2m′2

v+v−

]

+
δxV 2

0 κ

v+v−

[
m′2Lm′+1(x̃)e

iωx̃( 1
v+

+ 1
v−

)
+m′2Lm′−1(x̃)e

−iωx̃( 1
v+

+ 1
v−

)
]
.

(2.74)
After taking the limit δx→ 0 and some simplifications:

dLm′(x̃)

dx′
=− V 2

0 Lm′(x̃)

[
m′

v2
+

+
m′

v2
−

+
2κm′(m′ − 1)

v+v−

]
+

V 2
0 κm

′2

v+v−

[
Lm′+1(x̃)e

iωx̃( 1
v+

+ 1
v−

)
+ Lm′−1(x̃)e

−iωx̃( 1
v+

+ 1
v−

)
]
.

(2.75)

This equation can be solved under the form of Lm′(x̃) = e
−iωm′x̃( 1

v+
+ 1
v−

)
Lm′ , where Lm′ does not

depend on x̃. We find the algebraic equation for Lm′ :(
− v2

+ + v2
− − 2κv+v−
κv+v−

+
iω(v+ + v−)

κV 2
0

)
Lm′ +m′

(
Lm′+1 + Lm′−1 − 2Lm′

)
= 0. (2.76)

In other words, Lm satisfies:

sLm +m(Lm+1 + Lm−1 − 2Lm) = 0, (2.77)
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x̃

(a) Γ+,·

x̃

(b) Γ−,·

x

(c) Γ·,+

x

(d) Γ·,−

Figure 2.17. Possible initial and final vertices, after all simplifications. Their weights are
as follows: (a) Γ+,· = (~v+)−1 exp(−iωx̃/v+); (b) Γ−,· = (~v−)−1 exp(iωx̃/v−); (c) Γ·,+ =
(~v+)−1 exp(iωx/v+); (d) Γ·,− = (~v−)−1 exp(−iωx/v−)

where

s = −v
2
+ + v2

− − 2κv+v−
κv+v−

+
iω(v+ + v−)

κV 2
0

. (2.78)

The equation for Lm is the same as in the TRI case [3], and the full solution is given in [22]:

Lm(s) = −sΓ(m+ 1)Ψ(m+ 1, 2;−s), (2.79)

where Ψ(a, b; z) is the confluent hypergeometric function of the second kind. The right blocks Rm(x)

are found to obey Rm(x) = Lm(−x) with the same Rm = Lm.

In the TRI system, Lm satisfies Eq. (2.77) but with sTRI = 2iωv0/V
2

0 , where v0 is the velocity
of the state with the energy ε0 in the TRI system. The main difference is that the sTRI is fully
imaginary, while in our case s has a finite real part. However, when ω � 1, the real part of s can
be neglected and does not influence the final result.

The equation for Zm′,m is a little more involving. For the outer parts L and R the numbers of
left and right lines are equal. This has to be true simply because if the particle line goes into Rm it
must also go out (and vice versa). On the other hand, the central part Zm′,m has in total 2m′+1 and
2m+ 1 lines, the one extra line has a direction determined by the sign of x− x̃. It introduces a kind
of asymmetry because our vertices differentiate left and right lines. Here, we use the assumption
that x̃ < x, so the additional line is going from left to right (see Fig. 2.15). Furthermore, the total
derivative of Z.,m(x) with respect to x has to include also the ending vertex (or initial vertex for
Zm′,.(x̃)). Formally

dZ.,m(x)

dx
=

dZ.,m(x)

dx

∣∣∣∣∣
"vertex"

· Z.,m(x)
∣∣∣
"body"

+ Z.,m(x)
∣∣∣
"vertex"

· dZ.,m(x)

dx

∣∣∣∣∣
"body"

. (2.80)

The "vertex" derivative depends on the type of the vertex: final or initial and the velocity associ-
ated. The list of all possible initial and final vertices is shown in Fig. 2.17. The "body" derivative
is calculated in the same manner as the derivative for Lm(x), by counting all scattering vertex
contributions.

For example, the derivative calculated at the right border, assuming that x̃ < x, and taking the
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vertex to be Γ·,±:

dZ.,m(x)

dx
=± iω

v±
Z.,m(x)− γZ.,m(x)

[
m+ 1

v2
+

+
m

v2
−

+
2m2κ

v+v−

]
+

γκ

v+v−

[
m2Z.,m−1e

−iωx( 1
v+

+ 1
v−

)
+ (m+ 1)2Z.,m+1e

iωx( 1
v+

+ 1
v−

)
]
.

(2.81)

If x̃ > x, which means that there are more lines going to the left, only the expression in the first
bracket changes:

dZ.,m(x)

dx
=± iω

v±
Z.,m(x)− γZ.,m(x)

[
m

v2
+

+
m+ 1

v2
−

+
2m2κ

v+v−

]
+

γκ

v+v−

[
m2Z.,m−1e

−iωx( 1
v+

+ 1
v−

)
+ (m+ 1)2Z.,m+1e

iωx( 1
v+

+ 1
v−

)
]
.

(2.82)

Of course, in such a case with x̃ > x, we may also need to adjust the vertex derivative, depending
on its type. When v− = v+ and κ = 1, all these equations reduce to the TRI solution, reproducing
the results found in [3].

Unfortunately, we are not aware of any analytic solution for the recursion relation Eq. (2.82).
This is, however, not a major obstacle, a quasi-analytic calculation of the quantum boomerang effect
being possible, as shown in the next section.

2.6.3 How to compute 〈x(t)〉?

We can now compute 〈x(ω)〉 using Eq. (2.71) and the weights of diagrams computed in sec-
tion 2.6.2. To gather all possible diagrams, we divide them into 4 families, Γ±,±(x, x̃), where ±
denote the initial/final vertices Γ±,± (see Fig. 2.17). The connection between Γ±,±(x, x̃) and L, Z
and R is not completely trivial – it depends on the sign of x − x̃. To distinguish different objects,
we introduce another index: Γx̃<x±,± = Γ±,±(x̃, x) and Γx̃>x±,± = Γ±,±(x, x̃). Here we will focus on Γx̃<x+,+ ,
which is a contribution of diagrams with the initial and the final positive velocities and x̃ < x:

Γx̃<x+,+ =
∞∑

m=0,
m′=0

Lm′(x̃)Zm′,m(x̃, x)Rm(x). (2.83)

A simple analysis shows that the similar contribution for x̃ > x is slightly different:

Γx̃>x+,+ =

∞∑
m=0,
m′=0

Lm′+1(x)Zm′,m(x, x̃)Rm+1(x̃). (2.84)

Now, we are ready to compute the 〈x+〉x̃<x+ contribution. Because the weights of the initial and
final vertices are not included into L, Z or R, we also have to take into account the weight of the
Γ+,+ = v−2

+ :

〈x+(ω)〉x̃<x+ =
v+

v2
+

∫ ∞
0

d(x− x̃) (x− x̃)Γx̃<x+,+ =
2`t
v+

∑
m′

Lm′S
0
m′ , (2.85)
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where to get S0
m′ we use the definition of Γx̃<x+,+ :

∑
m′

Lm′S
0
m′ =

1

2`t

∫ ∞
0

d(x− x̃) (x− x̃)
∑
m,m′

Lm′(x̃)Zm′,m(x̃, x)Rm(x), (2.86)

from which we infer that

S0
m′ =

1

2`t

∑
m

∫ ∞
0

d(x− x̃) (x− x̃)e
−iωm′x̃

(
1
v−

+ 1
v+

)
Zm′,m(x̃, x)Rm(x) (2.87)

To simplify the integral, we introduce 4

ν = ω
v+ + v−
κV 2

0

(2.88)

such that
S0
m′ =

1

2`t

∑
m

∫ x

−∞
dx̃ (x− x̃)e−iνm

′x̃/2`tZm′,m(x̃, x)eiνmx/2`tRm, (2.89)

and we have changed the variables of the integration. We will not calculate this integral directly.
Instead, using the derivative of Zm′,m(x̃, x) we want to find an iterative equation for S0

m′ . We briefly
sketch the idea behind the calculation of the equation for S0

m′ .

Here, we start by expanding the integral from Eq. (2.89) using integration by parts:∫
fdg hdx̃ = (fgh)−

∫
df ghdx̃ −

∫
fgdhdx̃ , (2.90)

where we take

f = x− x̃, g =
2`t
−iνm′ e

−iνm′x̃/2`t , h = Zm′,m(x̃, x)eiνmx/2`tRm. (2.91)

After performing the expansion, it suffices to sum both sides over 1/2`t
∑

m to get the desired
iterative relation:

2`tQ
0
m′ + iν

(
m′ +

v−
v+ + v−

)
S0
m′ − 2`tV

2
0 β

+
m′S

0
m′ + (m′)2S0

m′−1 + (m′ + 1)2S0
m′+1 = 0, (2.92)

where Q0
m′ is defined in the following way:

Q0
m′ =

1

2`t

∑
m

∫ x

−∞
dx̃ e−iνm

′x̃/2`tZm′,m(x̃, x)eiνmx/2`tRm, (2.93)

and it obeys its own iterative equation (calculated in a similar way to Eq. (2.92)):

Rm′ + iν

(
m′ +

v−
v+ + v−

)
Q0
m′ − 2`tV

2
0 β

+
m′Q

0
m′ + (m′)2Q0

m′−1 + (m′ + 1)2Q0
m′+1 = 0. (2.94)

The same concept can be applied to 〈x+(ω)〉x̃>x+ , where we denote the S0 and Q0 counterparts by

4. Note when ω � 1, iν is equal to s from Eq. (2.77).
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S1 and Q1. Their equations are found:

−2`tQ
1
m+iν

(
m+

v+

v− + v+

)
S1
m − 2`tV

2
0 β
−
mS

1
m +m2S1

m−1 + (m+ 1)2S1
m+1 = 0,

Rm+1+iν
(
m+

v+

v− + v+

)
Q1
m − 2`tV

2
0 β
−
mQ

1
m +m2Q1

m−1 + (m+ 1)2Q1
m+1 = 0,

(2.95)

The m-dependent factors β±m come from the derivatives of Zm′,m(x̃, x):

β+
m =

m+ 1

v2
+

+
m

v2
−

+
2κm2

v−v+

β−m =
m

v2
+

+
m+ 1

v2
−

+
2κm2

v−v+

(2.96)

Similar equations can be calculated for Γx̃<x+− and Γx̃>x+− . This time:

Γx̃<x+− =

∞∑
m=0,
m′=0

Lm′(x̃)Zm′,m(x̃, x)Rm+1(x), Γx̃>x+− =

∞∑
m=0,
m′=0

Lm′(x)Zm′,m(x, x̃)Rm+1(x̃) (2.97)

The variables connected with 〈x+(ω)〉− are called S2, Q2 and S3 and Q3. Because all equations are
akin to Eqs. (2.92), (2.94), we do not write all of them in the main text of the thesis.
In total, we can write that the complete solution is given by:

〈x+(ω)〉+ =
2`t
v+

∑
m

(
LmS

0
m + Lm+1S

1
m

)
,

〈x+(ω)〉− =
2`t
v−

∑
m

(
LmS

2
m + LmS

3
m

)
.

(2.98)

The problem is reduced to finding a solution of the equations for the families of S and Q. Up to our
best knowledge, there are no known fully analytic solutions for these quantities. However, we can
take advantage of the fact that both S and Q can be expanded in powers of 1/ν and compute 〈x(t)〉
as a time series. The details of this calculation and a comment on β±m are presented in appendix 2.B.

In the calculation of 〈x(t)〉 in the TRI system [2, 3] the final result depends only on Lm and
Qm. Our equations have an extra quantity, Sm. Additionally, Qm and Sm consist of four families
(denoted by the upper index) instead of two. There are two main reasons for this difference. The
first is due to the fact that we calculate the center of mass directly, see Eq. (2.45), instead of using
the Ehrenfest theorem. This step means that we have an additional term, (x − x̃), in the integral,
see for example Eq. (2.89). If this term was absent, there would be only Qm in the final formula.
The second difference comes from the fact, that in the TRI system, there are connections between
the families of diagrams Γ±±(x, x̃). They reduce the total number of different quantities needed for
the final formula.

2.6.4 Center of mass 〈x(t)〉

Finally, we have the desired result: the time evolution of both components of the total center of
mass in the form of a time series. Without any loss of generality, we focus on the solutions for the
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xx′ x

Figure 2.18. Diagram constructed using scattering vertices (d), (e), and (f). With three or more
scattering vertices, it is possible to construct diagrams which are not included in the Boltzmann
approximation.

positive initial velocity. To simplify the notation, we use v+ = v and v− = ∆ · v, so that the time
series is expressed only in the terms of ∆

∆ =
v−
v+
, (2.99)

and the characteristic time and length scales. The results are given by:

〈x+(t)〉+
vτ

=
t

τ
− 1

1 + ∆

(
t

τ

)2

+
3−∆

6(1 + ∆)

(
t

τ

)3

+
∆(∆ + 1)

(
∆
(
∆2 + ∆− 3

)
− 7
)
− 2

12(∆ + 1)5

(
t

τ

)4

+O
(
t5
)

〈x+(t)〉−
vτ

=
1−∆

2(1 + ∆)

(
t

τ

)2

− 1−∆

3(1 + ∆)

(
t

τ

)3

+
∆(9−∆(∆(3∆(∆ + 3) + 8)− 8)) + 3

24(∆ + 1)5

(
t

τ

)4

+O
(
t5
)

(2.100)
The solutions agree up to third order with the Boltzmann predictions, Eqs. (2.25):

〈x+(t)〉Boltz.+

vτ
=
t

τ
− 1

1 + ∆

(
t

τ

)2

+
3−∆

6(1 + ∆)

(
t

τ

)3

+
∆− 2

12(1 + ∆)

(
t

τ

)4

+O(t5)

〈x+(t)〉Boltz.−
vτ

=
1−∆

2(1 + ∆)

(
t

τ

)2

− 1−∆

3(1 + ∆)

(
t

τ

)3

+
1−∆

8(1 + ∆)

(
t

τ

)4

+O(t5)

(2.101)

The same behavior was observed in the calculation of 〈x(t)〉 in the TRI case [3]. The reason is
the following: the whole set of scattering vertices, shown in Fig. 2.14, allows for a construction of
diagrams which are not included into the classical solution obtained with the ladder diagrams [7].
All Boltzmann-type diagrams can be obtained using vertices (d), (e), and (f). However, even this
restricted set of scattering vertices allows for the construction of diagrams not included in the
Boltzmann approximation. To build such a diagram, there have to be at least three scattering
events, meaning that the quantum correction should appear at fourth order in the time series. A
diagram built of the vertices (d) and (e), contributing to the quantum correction, is presented in
Fig. 2.18.

Similarly to the TRI boomerang study [3], the time series has a finite radius of convergence. In
the TRI case, the radius was numerically found to be tconv. = 4τ , where τ is the scattering mean
free time. In our study, we do not analyze the convergence in detail. Nonetheless, from our results it
seems that the radius slightly depends on the value of ∆, i.e the ratio of the velocities. Figure 2.19
shows the comparison of the numerical data, the Boltzmann, and the quantum solution (calculated
up to (t/τ)11 order). Similarly to the TRI results, all curves agree very well for very short times.
Then the quantum solution deviates due to the finite radius of convergence. Nevertheless, we note
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Figure 2.19. Comparison of the numerical results (solid lines with error bars), Boltzmann solutions
(dashed lines), Eq. (2.25) and the short-time quantum solution ∆ = 2/3 (dotted lines), Eq. (2.100)
for 〈x+(t)〉+ and 〈x+(t)〉−, plotted for very short times. In this time regime, the classical and
quantum solutions almost do not differ and agree very well with the numerical data.

that the classical solution is an excellent approximation at very short times.

There is an important question: is there, similarly to the TRI system, universality for the
center of mass time dependence? From the classical solution in our system, cf. Eq. (2.21), we
have seen that the 〈x〉 curve does not depend on the ratio of velocities 5. The quantum solution,
〈x+〉 = 〈x+〉+ + 〈x+〉−, agrees with the classical solution up to the third order, similarly to the TRI
case:

〈x+(t)〉
vτ

=
t

τ
− 1

2

(
t

τ

)2

+
1

6

(
t

τ

)3

− ∆(∆(∆(∆ + 4) + 8) + 4) + 1

24(∆ + 1)4

(
t

τ

)4

+O(t5)

〈x+(t)〉Boltz.
vτ

=
t

τ
− 1

2

(
t

τ

)2

+
1

6

(
t

τ

)3

− 1

24

(
t

τ

)4

+O(t5)

(2.102)

However, all terms starting from fourth order depend on ∆. This breaks the universality of the 〈x〉
curve in the quantum solution. In other words, the dependence of 〈x+(t)〉/vτ versus t/τ , which is
universal in the TRI system, here depends on the additional parameter ∆ = v−/v+. The TRI time
series is fully recovered when ∆ = 1 is used.

We should also note that the time series has the same form when ∆ → ∆−1 (up to a constant
factor). In the numerical data, we have seen that the sum of contributions does not depend on the
choice of the initial state (up to the total sign). This bevahior is expected and proven by the theory.

To describe the center of mass time evolution beyond the short-time regime, following the same
idea as in [3], we use a Padé approximant. It is clear that the long-time scaling should be the same as
in the TRI system, that is, 〈x(t� τ)〉 ∼ t−2 with some unknown constants. This is also supported

5. In fact τ depends on the velocities, however here we are considering an explicit dependence on the ratio of the
velocities.
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Figure 2.20. Comparison of the Padé approximated quantum results for the TRI system (blue line)
and broken TRI systems with different values of velocities ratio ∆ = v−/v+ (∆ = 2/3 orange line,
∆ = 1/3 green line).

by the numerical evidence. In our approach, we compute the center of mass as:

〈x(t)〉
τv±

=
(τ
t

)2
lim
n→∞

Rn(t), (2.103)

where Rn(t) is a diagonal Padé approximant, whose coefficients are calculated from the short-time
Taylor series. To obtain high accuracy of the approximation, we use n = 30, but there is no visible
difference between results obtained with lower n, for example n = 20. For practical purposes, the
calculation of Rn(t) is done for each studied value of ∆ separately – full symbolic calculations are
cumbersome and do not bring any added value.

Figure 2.20 shows resulting curves of 〈x(t)〉 for the TRI system and the spin-orbit system for
two different values of ∆. One can immediately see that the difference between the TRI result
and our result for ∆ = 2/3, which approximately describes our system investigated numerically, is
extremely small. Due to the finite size of statistical errors, such curves may not be distinguishable
using numerical data. A bigger difference between the spin-orbit and TRI systems is visible for
a much higher (or lower) ratio of the velocities, showing that in fact the quantum solution is not
universal.

We finish the section with a comparison of the theoretical solution with the numerical data.
Figure 2.21 presents the results for both initial states. In this case, we performed a slight refitting of
the theoretical prediction to the data. From previous works [3, 84], it is known that the boomerang
curves need a very high number of disorder realizations to have small statistical error bars. Moreover,
the theoretical approach is valid in the weak disorder limit, k`� 1, where the mean free path is rather
large, requiring large system sizes. This makes the numerical simulations difficult and extremely time
consuming. However, to see the agreement between the data and the theoretical predictions, we do
not have to make such simulations.

The net difference in the results appears as a difference between the exact mean free time and
length (present in the simulations) and their values calculated with the Born approximation (used in
the theoretical calculations). It means that the difference can be captured using a simple adjustment



66 Chapter 2. Quantum boomerang effect in systems without time reversal invariance

0.00

0.25

0.50

0.75

〈x
〉/
τ
v +

〈x+〉+
〈x+〉−
〈x+〉

0 20 40 60 80
t/τ

−1.0

−0.5

0.0

〈x
〉/
τ
v −

〈x−〉−
〈x−〉+
〈x−〉

Figure 2.21. Comparison of the quantum solutions (dashed lines) with the numerical data (solid
lines with error bars) for both possible initial states. Theoretical curves are subjected to a small
adjustment procedure to account for differences between the exact scattering mean free time and
its value computed with the Born approximation (details in the main text). The theoretical and
numerical results overlap almost perfectly. The result shows that the boomerang effect is fully
present in a system without time reversal invariance, and that we have a quasi-exact theoretical
prediction which works extremely well.
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of the time and length scales. We use this approach in Fig. 2.21. The rescaling is done using a fitting
procedure, which also includes weights based on the statistical errors. The fitted parameters differ
from the values computed with the Born approximation on the order of few %. For the positive
velocity, where k+(τv+) ≈ 120:

〈x+〉 : τfit = 1.03τ, `fit = 1.015τv+

〈x+〉+ : τfit = 1.04τ, `fit = 1.01τv+

〈x+〉− : τfit = 1.03τ, `fit = 1.07τv+

(2.104)

For the negative velocity, k−(τv−) ≈ 45:

〈x−〉 : τfit = 0.99τ, `fit = 0.99τv+

〈x−〉+ : τfit = 1.13τ, `fit = 0.87τv+

〈x−〉− : τfit = 1.01τ, `fit = 1.00τv+

(2.105)

The corrections performed for the backscattered contributions are slightly higher than for the forward
scattered contributions. The backscattered components are intrinsically of higher order than the
forward components, hence the larger difference between the exact and Born parameters is expected.
After these small corrections, the agreement between the theory and the numerical data is almost
perfect. The final result shows that the boomerang effect not only survives the breaking of TRI,
but also the time evolution of the center of mass can be captured theoretically, using similar, albeit
somewhat generalized, tools.

Discussion of broad wave packets

Initially, in the theoretical calculations, we have assumed that the initial size of the wave packet
is smaller than the scattering mean free path. In the TRI system, it is known that the initial width of
the wave packet may be larger than the scattering mean free path [2]. In our numerical simulations,
anticipating that this could be true also in the spin-orbit system, we have used an initial width σ
only slightly smaller than τv+ and τv−. Indeed, the same idea as in the TRI system can be used to
relax the assumption on the initial width of the wave packet.

We follow here the same reasoning as in [2]. If we assume that the average density profile is
given by the average density propagator P (x, t) and the initial state density |Ψ0(x)|2:

|ψ(x, t)|2 =

∫
dx̃ P (x− x̃, t)|Ψ0(x̃)|2. (2.106)

The propagator P (x− x̃, t) represents the average probability of particle initially at point x̃ reaching
x at time t. The density |ψ(x, t)|2 is then used to compute the center of mass position. The change
of variables x′ = x̃ − x shows that the width of the initial density does not play any role in the
calculation of the center of mass.

2.6.5 The four-state scenario – return to the origin.

In our study of the quantum boomerang effect in the system without TRI, we do not analyze in
detail the case with more than 2 possible momentum states. Even though, our preliminary numerical
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Figure 2.22. Preliminary results for temporal evolution of the center of mass computed for a 4-state
scenario. The values of parameters δ = Ω = 5ER/~ are the same as in the 2-state analysis. The
energy is E = 9.375ER and V0 = 1.875ER (the same as in Fig. 2.5) and there are two eigenstates
from the lower band and two eigenstates from the upper band. The initial state is constructed
similarly to the two component case. Here, we chose the initial momentum k4 = 1.71kR with
velocity v4 = 2.64γ (corresponding to red curve in Fig. 2.5 (b)). The center of mass undergoes more
complicated dynamics, nonetheless the preliminary result suggests a full return to the origin.

results indicate that the return to the origin is still present. This hints the possibility of studying
the boomerang effect in even more complicated systems. A preliminary result is shown in Fig. 2.22.

Nonetheless, the presence of more momentum states at a given energy introduces many difficul-
ties. The higher number of scattering channels makes the analysis of mean free times, and Green’s
functions much more complicated. For sure, the diagrammatic approach should consist of many new
vertices making the Berezinskii technique additionally complex.

We have observed that, with states from the lower and upper bands involved, even a rather weak
disorder mixes additional states, making numerical simulations more difficult.

2.7 The final density

The last part of our study of the TRI broken system is the analysis of the localization length
and the final state spatial density. Although the mean free path can be estimated from the spectral
function, we calculate the localization length directly. This way we avoid the errors related to the
Born approximation and may check if the localization length is given by ξloc = 2`t in the spin-orbit
system. This is a prediction of DMPK equation [87, 88] for a single scattering channel situation, i.e.
two-state approximation, for details see [89].

2.7.1 Recursive Green’s function method

To compute numerically the localization length ξloc, we use the recursive Green’s function method
proposed by MacKinnon and Kramer [90–92]. The method was successfully used in many theoretical
works, see, for example [93–95]. We briefly explain the method and compare its prediction with the
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result of our study. Let us consider a one-dimensional tight-binding nearest neighbor Hamiltonian

H =
∑
i,j

Hi,j |i〉 〈j| =


H1,1 V1

V ∗1 H2,2 V2

V ∗2 H3,3
. . .

. . . . . .

 (2.107)

where |i〉 represents the state on a regular lattice at site i. The system may be divided into two parts:
for sites 1, . . . , N and for site N + 1. This way we can construct the Green’s function describing
the whole system and the Green’s function for the site N + 1. The Green’s function of the central
region is such that [92]:

(E + i0+ −Hi,j)Gi,j −Hi,j+1Gi+1,j −Hi,i−1Gi−1,j = δi,j , (2.108)

where E is the energy. Now, consider a lattice with the total length N . If we add another site, then
the new Hamiltonian will consist of three parts:

H = Hi,j + (VN + V ∗N ) +HN+1,N+1 (2.109)

where VN = HN,N+1 is the off-diagonal part coupling the Nth site to (N + 1)th site. Here we
assume that the coupling between the sites is the same for all sites, VN = V . To calculate the
Green’s function for the (N + 1) site system, we start with the Dyson’s equation:

G
(N+1)
i,j = G

(N)
i,j +G

(N)
i,N V G

(N+1)
N+1,j . (2.110)

The upper index denotes the total number of sites in the system. This equation simply means that
if we know the Green’s function for a system of length N , and we know the coupling between the
system and the newly added site, we can compute the Green’s function for the larger system. In
particular, for j = N + 1 we get:

G
(N+1)
i,N+1 = G

(N)
i,N+1 +G

(N)
i,N V G

(N+1)
N+1,N+1 = G

(N)
i,N V G

(N+1)
N+1,N+1. (2.111)

The first term vanishes because it represents a connection between sites i and N + 1 in a N site
system. Now, if we consider Eq. (2.108) for i = j = N + 1 we get(

E + i0+ −H(N+1)
N+1,N+1

)
G

(N+1)
N+1,N+1 − V ∗G

(N+1)
N,N+1 = 1. (2.112)

The final simplification comes from Eq. (2.111) with i = N . Together with Eq. (2.111), but this time
for i = 1, we end up with two equations allowing an iterative calculation of the Green’s functions:

G
(N+1)
1,N+1 = G

(N)
1,N V G

(N+1)
N+1,N+1,

G
(N+1)
N+1,N+1 =

(
E + i0+ −H(N+1)

N+1,N+1 − V ∗G
(N)
N,NV

)−1
.

(2.113)
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Figure 2.23. Comparison of the final density profile (tmax = 90τ) of the initial state with positive
velocity, and the Gauss-Gogolin profile given by Eq. (2.116). The inset shows the same quantities
plotted in a logarithmic scale. The agreement is excellent, the tiny difference in the wings will
disappear at longer time.

To calculate the localization length, we start with the observation that the transmission of the system
is |G1,N |2. The inverse localization length is given by:

ξ−1
loc = − lim

L→∞
ln |G1,N (L)|2

L
, (2.114)

where L is the length of the system. Within this approach, the typical transmission is proportional
to exp(−L/ξloc). Thanks to the theorems by Furstenberg and Oseledets [96, 97], this quantity is
self-averaging, meaning that the propagation of the Green’s function over very large systems has a
similar result to averaging over different disorder realizations.

In practice, the iterative procedure used in the calculations can be implemented very efficiently.
The method may be easily generalized to quasi-one-dimensional systems, see, for example [98]. In
the spin-orbit case, the objects used in the calculations are 2× 2 matrices. The length of the system
can be easily extended even up to 109 sites giving very precise results.

In a weakly disordered TRI one-dimensional system, the localization length is simply given by 2
transport mean free paths, ξloc = 2` [14]. In our simulation scenario, the transport mean free path
is `t = v+τ+ = v−τ− is `t = 34.57/kR. The localization length calculated from the recursive Green’s
function method is ξloc = (69.72±0, 008)/kR. This result confirms that in our system, in the 2-state
scenario, the localization length is given by 2 transport mean free paths 6, ξloc = 2`t. The small
difference between the numerical values is caused by higher order corrections.

2.7.2 Wave packet density at long time

The full return of the wave packet to its initial position in TRI systems also means that its
infinite-time density profile is symmetric around x = 0. In the case of an initially well localized wave

6. In the one-dimensional TRI system with isotropic scattering the transport mean free path and scattering mean
free path are equal.
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packet, this infinite-time density is the Gogolin profile [20], parametrized by the mean free path `:

|ψGogolin
` (x, t =∞)|2 =

∫ ∞
0

dη π2

32`

η(1 + η2)2 sinh(πη)e−(1+η2)|x|/8`

(1 + cosh(πη))2
, (2.115)

Our numerical simulations extend up to tmax = 90τ . Naturally, this value is far from the infinite-
time limit, but the maximal time should be sufficient to observe that the final density converges to
the infinite-time profile. For the reason that our initial state is a Gaussian wave packet, the final
density profile is not the Gogolin profile, but a convolution of the Gogolin profile with a Gaussian,
which we call Gauss-Gogolin profile:

|ψGG(x)|2 =
1√
πσ2

∫ +∞

−∞
dx′ e−(x−x′)2/σ2 |ψGogolin

` (x′)|2. (2.116)

The Gauss-Gogolin profile is parametrized both by the mean free path and the initial width of
the Gaussian wave packet σ. Figure 2.23 shows the final density for the forward and backward
scattered components of the wave function, as well as their sum together with the Gauss-Gogolin
profile calculated for σ = 20/kR and `t = 34.57/kR. The agreement between the data and the
theoretical profile is excellent. The inset shows the same plot on a logarithmic scale where tiny
deviations can be seen – we attribute them to the finite time of the simulation. The figure presents
data for the initial positive velocity, but the results for the negative velocity initial state are exactly
the same. Once again, we observe a similar behavior as in the TRI case. Independently of the
initial velocity, the final wave function density is symmetric around x = 0. We should note that the
original Gogolin profile was calculated in the TRI system with the help of the Berezinskii technique
[20]. This indicates that the same result could be obtained using our diagrams.

2.8 Conclusion

In this chapter, we have studied the quantum boomerang effect in a system where TRI and
all anti-unitary symmetries are broken. We have analyzed the problem both in the classical and
quantum approaches. The classical solution is very alike the classical one in the TRI system: after
the initial ballistic motion, the wave packet localizes at a finite distance. The simulations of the
quantum system with broken TRI and all anti-unitary symmetries have shown that the quantum
boomerang effect is present in the system. In the simulation, we have used a PT -symmetric initial
state, so that our analysis has directly probed the influence of TRI of the Hamiltonian on the
quantum boomerang effect.

By generalizing the Berezinskii diagrammatic technique to a system without TRI, we have com-
puted the time evolution of the center of mass in a quasi-analytic way. The result predicts a full
boomerang effect, that is, the return of the wave packet to its origin. The analytical and numerical
results show an excellent agreement. Even though the original diagrammatics have been modified
to some extent, similar concepts in the solutions have been used. Finally, we have also shown that
the final density profile almost perfectly agrees with our theoretical prediction.

The lack of time reversal symmetry plays no role in the existence of the quantum boomerang
effect. Even in a truly unitary system, the wave packet with nonzero initial velocity returns to
the initial point. Our result shows that as long as the initial state has PT symmetry (cf. sec-
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tion 1.3.3), time reversal symmetry is not necessary for the phenomenon to occur, which generalizes
and somewhat contradicts the conclusions of [21].

Our analysis showing that the boomerang exists in systems without TRI means also that the
quantum boomerang effect is not fully understood. Originally, TRI was used to prove the boomerang
effect existence. This means that we are lacking a simple explanation why just the Anderson lo-
calization is needed for the quantum boomerang effect. This should be the primary perspective for
future work.

Another interesting direction for future studies would be to study higher-dimensional systems,
where it is known that, above some energy, the states are no longer localized. It would be very
interesting to use the presence of the boomerang as a tool for pinpointing the transition position
(similarly to TRI three-dimensional system [3]). Our study is mainly focused on the single scattering
channel system, so it could be desired to extend the diagrammatic approach to systems with more
scattering channels.
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Appendix 2.A Discussion: energy spacings, mean gap ratio, and
symmetry classes
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Figure 2.24. Numerically calculated distributions P (r) of gap ratio, Eq. (2.118) computed in the
spin-orbit system with δ = Ω = 5ER/~, around different energies: E = 0, E = 3.125ER and
E = 6.25ER. Black dashed line shows the theoretical distribution for the GUE symmetry class,
Eq. (2.119). Independently of energy, the numerical distributions are in very good agreement with
the theoretical curve.

Symmetry properties of quantum systems can be analyzed using the spectral properties of the
Hamiltonian [99–101]. Level spacing distributions may fall into one of several classes of Gaussian
matrix ensembles. This may give a hint about the symmetries. In our case, we know that the system
breaks TRI, hence one would expect the statistics to follow the Gaussian Unitary Ensemble (GUE). It
means that the spacing distribution should be given approximately by (for details, see [80, 102, 103]):

P (s) =
32

π2
s2e−4s2/π, (2.117)

where s are spacings normalized to unity s = (Ei+1 − Ei)/∆, with ∆ the mean spacing. Direct
comparison between numerical spacings and theoretical prediction is not an easy task because the
normalization of the spacings is obtained through a procedure called unfolding. It is possible to
avoid the unfolding by computing the gap ratio rn as defined in [104, 105]:

rn = min

(
rn,

1

rn

)
, rn =

δn
δn−1

, (2.118)

where δn is the spacing between neighbouring energy levels. This may be also used to calculate the
mean gap ratio 〈r〉, i.e. the average value around a chosen energy in the spectrum. The full analysis
of 〈r〉 for our system is beyond the scope of the present appendix 7.

Still, we would like to show that, even if the complete analysis may be very complicated, it is
possible to support our prediction about the symmetry class of the system. Taking into account our

7. The detailed study of the mean gap ration for one- and two-dimensional Anderson model was presented in [106].
Recently, the problem was revisited in [107, 108] where one-dimensional Anderson and Aubry-André models were
considered.
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theoretical investigation of symmetries, one could expect that the distribution of the gap ratio will
reproduce the GUE prediction (see [105]):

PGUE(r) =
81
√

3

2π

(r + r2)2

(1 + r + r2)4
. (2.119)

We calculate numerically distributions of r in the spin-orbit system with δ = Ω = 5ER/~ (the same
values as used to study the dynamics of the center of mass) and disorder strength V0 = 3.125ER,
where an uncorrelated uniform distribution of the disorder has been used. The results have been
averaged over 5000 disorder realizations. Figure 2.24 presents the distributions obtained around three
different energies, E = 0, E = 3.125ER and E = 6.25ER, and a comparison with the theoretical
GUE distribution, Eq. (2.119). Clearly, the numerical distributions agree with the theoretical curve.
All of them show a characteristic quadratic bevahior for small values of r.

The very good agreement between the numerical distributions and the theoretical GUE distri-
bution supports our claim that the studied Hamiltonian belongs to the unitary symmetry class.
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Appendix 2.B Calculation of the time series 〈x(t)〉

2.B.1 Equations for different types of diagrams

In section 2.6.3 we give the full equations for the Γx̃<x+,+ and Γx̃>x+,+ contributions to the center of
mass. Below we also add the equations used to calculate 〈x+〉−. Equations for Γx̃<x+− :

2`tQ
2
m+iν

(
m+

v−
v− + v+

)
S2
m − 2`tγβ

+
mS

2
m +m2S2

m−1 + (m+ 1)2S2
m+1 = 0

Rm+1+iν
(
m+

v−
v− + v+

)
Q2
m − 2`tγβ

+
mQ

2
m +m2Q2

m−1 + (m+ 1)2Q2
m+1 = 0

(2.120)

Equations for Γx̃>x+− :

−2`tQ
3
m+iν

(
m+

v+

v− + v+

)
S3
m − 2`tγβ

−
mS

3
m +m2S3

m−1 + (m+ 1)2S3
m+1 = 0

Rm+1+iν
(
m+

v+

v− + v+

)
Q3
m − 2`tγβ

−
mQ

3
m +m2Q3

m−1 + (m+ 1)2Q3
m+1 = 0

(2.121)

where ν = (v− + v+)ω/κV 2
0 , and

β+
m =

m+ 1

v2
+

+
m

v2
−

+
2κm2

v−v+

β−m =
m

v2
+

+
m+ 1

v2
−

+
2κm2

v−v+

(2.122)

2.B.2 Solution for short time: large ω expansion

The full center of mass position 〈x(t)〉 can be written as a time series with coefficients χn:

〈x(t)〉 =
∞∑
n=1

(−1)n+1χn

(
t

τ

)n
. (2.123)

The first term should represent the initial ballistic motion. Using Fourier transform of tn, F (tn) =

(iω)−(n+1)Γ(n+ 1), and using also ω = κV 2
0 ν/(v− + v+):

〈x(ν)〉 =
∑
n

(−1)n+1χn
Γ(n+ 1)(v− + v+)n+1

(iν)n+1τn(κV 2
0 )n+1

(2.124)

We can also expand Eq. (2.98) in a series in 1/ν.

〈x+(ω)〉+ =
2`t
v+

∑
m

(LmS
0
m + Lm+1S

1
m) =

∑
n

ζn
(iν)n

, (2.125)

where ζn are calculated from the expansion of Lm and Sm in powers of 1/ν. Then, we can easily
calculate the time components χn:

χn = (−1)n+1 τnζn+1

Γ(n+ 1)(v− + v+)n+1
. (2.126)

For the purpose of calculation of ζn we start with an assumption that Lm, Rm = Lm, Qm, and
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Sm have expansions in powers of 1/ν:

Lm(ν) =
∞∑
n=0

lm,n
(iν)n

, Qm(ν) =
∞∑
n=0

qm,n
(iν)n

, Sm(ν) =
∞∑
n=0

sm,n
(iν)n

. (2.127)

Values of lm,n can be calculated directly because for very large ω (which also means ν):

Lm = −iνΓ(m+ 1)Ψ(m+ 1, 2;−iν), (2.128)

and the series expansion of the confluent hypergeometric function of the second kind is known
analytically, see [54] and appendix A.

The only difficulty lays in the calculation of qm,n and sm,n. To find the expansions, we can
use the iterative structure of the equations for Qim and Sim. In general, these equations have the
following form:

[iνam + bm]Qm +m2Qm−1 + cmQm+1 + dm = 0, (2.129)

where, for example, dm = Rm for the equation for Q0
m, and dm series coefficients are denoted by

dm,n. To solve this equation, the strategy is the following. We start with m = 0 and find the solution
for the lowest order of (iν)−1. It can be easily found that q0,0 = 0. Then, we move to m = 1 and
find that q0,1 = q1,1 = 0. In general:

qm,n = 0 for n ≤ m, (2.130)

thus we can write that

Qm(ν) =

∞∑
n>m

qm,n
(iν)n

. (2.131)

By scanning m and solving the equations for the (next) lowest order in (iν)−1 we end up with a set
of equations, which can be solved iteratively:

qm,m+1 = − 1

am
(dm,m +m2qm−1,m),

qm,m+2 = − 1

am
(dm,m+1 + bmqm,m+1 +m2qm−1,m),

qm,m+i = − 1

am
(dm,m+i−1 + bmqm,m+i−1 +m2qm−1,m+i−1 + cmqm+1,m+i−1) for i ≥ 3.

(2.132)

The strategy for finding sm,n is exactly the same. As the equations for Sim include Qim the series
expansions of Qim have to be found in the first step. Due to the fact that for all types of Qim we
have qm,n≤m = 0 the series for Sm is shifted:

sm,n = 0 for n ≤ m+ 1. (2.133)

Then sm,n are calculated using very similar iterative equations to Eqs. (2.132) (with a shift of m by
1), where for example dm,n = 2`tqm,n for S0

m.

Knowing the series expansions of Sm and Lm the coefficients χn can be calculated easily, giving
the whole time series Eq. (2.123).
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2.B.3 Comment on the choice of β

To calculate the center of mass, we use the set of equations for S and Q. They include β+
m (used

in Eqs. (2.94), (2.92) and (2.120)) and β−m (used in Eqs. (2.95) and (2.121)). From the discussion
presented in section 2.6.4 we know that the quantum short-time solutions have to agree with the
classical Boltzmann solutions. This is not the case when β±m are used. We have empirically found
that using β0

m:

β0
m =

2κm2 + 2m+ 1

v−v+
(2.134)

gives the correct results for the first three χn terms. Moreover, we have also found an excellent
agreement of predictions using β0

m with the numerics at all times.
We suppose the reason of this empirical rule lies in the contribution of the vertices (a) in Fig. 2.14,

which involves GR/A0 (x, x). This factor is not correctly computed, see the discussion in section 2.5.
The work on this problem is still in progress at the time of writing the thesis.





Chapter 3

Quantum boomerang effect for
interacting particles in the mean-field
approximation

After the introduction of the quantum boomerang effect in chapter 1 and the study of time
reversal symmetry breaking in chapter 2, we analyze the effect of interactions on the phenomenon.
In this chapter, we discuss the effects of interactions under the form of nonlinearity included into
the Schrödinger equation, i.e. in the mean-field approximation for a bosonic gas.

The chapter begins with a short introduction to weakly interacting bosonic gases in section 3.1,
where we introduce the Gross-Pitaevskii equation. In section 3.2, we briefly explain the model and
the numerical implementation of the nonlinearity. Section 3.3 presents the main numerical results:
the destruction of the boomerang effect due to interactions and its dependence on the initial state.
In section 3.4 we introduce a method allowing for the analysis of the "plane wave boomerang".
The main result of the chapter: an effective description of the boomerang effect in the interacting
system using a single parameter, is presented in section 3.5. Then, in section 3.6, we show that
this parameter is related to the self-energy in the interacting system. The parameter also describes
the changes of the scattering mean free time and scattering mean free path, what we discuss in
section 3.7. Finally, section 3.8 concludes the chapter.

3.1 Weakly interacting bosonic gases

In a cold atomic gas, atoms are not independent particles, but do interact. Even under a high
level of control over systems’ properties, one should analyze the effect of inter-particle interactions.
In our case, we analyze the interactions in cold bosonic gases. The situation described in the chap-
ter is probably the most common experimental scenario, where an initially trapped Bose-Einstein
condensate is allowed to evolve in a disorder potential [15, 109].

For dilute bosonic gases, the following condition holds: the range of interactions r0 is much
smaller than the average distance between particles q = n−1/d, where n is the average gas density
and d is the dimensionality of the system. This scenario means that we can focus only on two-body
interactions, because diluteness ensures that simultaneous interactions of three or more particles
are much less frequent. If the momenta relevant for the scattering process satisfy p � ~/r0, the

79
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scattering amplitude may be reduced to a single low-energy quantity describing the scattering in
the s-wave channel: the scattering length a. In such systems, we may use this length as the only
parameter characterizing interactions. We define the regime of weak interactions by |a| � q. In our
scenario, the particles repel each other, so a > 0. Note however, that we study weak interactions,
so that most conclusions apply also for weakly attractive interactions, a < 0.

Let us start by analyzing the two-body bosonic Hamiltonian

Ĥ =

∫
Ψ̂†(r)

(
− ~2

2m
∆ + Vext(r)

)
Ψ̂(r)dr +

1

2

∫
Ψ̂†(r′)Ψ̂†(r)V (r′ − r)Ψ̂(r)Ψ̂(r′)dr dr′ , (3.1)

where V (r − r′) is the two-body potential and Ψ̂(†)(r) are bosonic field operators fulfilling the
standard commutation relations: [

Ψ̂(r), Ψ̂†(r′)
]

= δ(r − r′). (3.2)

Vext(r) represents any external single-particle potential, for example, disorder. The time-dependent
equation for the field operator is obtained in the Heisenberg picture

i~∂tΨ̂(r) =
[
Ψ̂(r), Ĥ

]
. (3.3)

Now, if we now assume that we are in a dilute gas with weak interactions, we can use the approxi-
mation called Bogoliubov prescription [110]:

Ψ̂(r) = â0ψ(r) + δΨ̂(r), (3.4)

where â0 is the operator annihilating a particle in the ψ(r) state, ψ(r) is a classical field and
δΨ̂(r) is a small quantum correction. The first term describes the condensate fraction, while the
correction includes all non-condensed particles. In a system dominated by the condensate, we may
put δΨ̂(r) = 0, and replace â0 by

√
N . These steps greatly simplify Eqs. (3.1), (3.3) which, in such

a situation, describe a single-particle wave function ψ(r). The wave function is normalized to unity,
whereas the total number of particles calculated from the field operator is N .

Until now, we have not used any assumption about the interaction potential. It can be replaced
by an effective potential which has the same scattering length in the s-wave channel, for example,
the contact interaction potential:

V (r − r′) = V0δ(r − r′). (3.5)

At first order, i.e. Born approximation, the scattering length is:

a =
µ

2π~2

∫
V (r)dr =

µ

2π~2
V0, (3.6)

where µ is the reduced mass of the two-body system. For systems where particles have the same
mass, such as in Bose-Einstein condensates, µ = m/2 and we can write [111]:

V0 =
4π~2a

m
. (3.7)
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As expected, the result depends only on one parameter, the scattering length a. For low energy
collisions, this approach can be used extensively as long as one studies scales larger than a. The
simplification of the real interaction potential may lead to a breakdown of the approximation when
analyzing microscopic phenomena. Although we will study one-dimensional systems, we should note
that the effective delta-potential requires a proper regularization in higher-dimensional systems.

3.1.1 Gross-Pitaevskii equation

We can now focus on the equation governing the evolution of a weakly interacting Bose-Einstein
condensate in a disordered potential Vdis(r). Starting from Eq. (3.3) and Eq. (3.4), and neglectig
the quantum correction δΨ̂(r), we obtain the time dependent Schrödinger equation for ψ(r):

i~∂tψ(r, t) =

(
− ~2

2m
∆ + Vdis(r) +N

∫
dr′ V (r′)|ψ(r′, t)|2

)
ψ(r, t), (3.8)

where we also substituted â†0â0 by the total number of particles N . The last step involves using the
effective contact potential V (r′) = V0δ(r

′):

i~ψ(r, t) =
(
− ~2

2m
∆ + Vdis(r) + g|ψ(r, t)|2

)
ψ(r, t), (3.9)

where we have introduced the interaction strength g = NV0. The wave function ψ(r, t) is normalized
to unity: ∫

dr |ψ(r, t)|2 = 1. (3.10)

Equation (3.9) is called Gross-Pitaevskii equation (GPE) named after Eugene Paul Gross [112] and
Lev Petrovich Pitaevskii [113]. The equation was derived to study non-uniform Bose gases at low
temperature. It has the form of a single-particle Schrödinger equation with an additional nonlinear
time-dependent potential g|ψ(r, t)|2 which describes the interaction between particles.

The energy functional can be calculated starting from Eq. (3.1). Following all simplifying steps
described above, we arrive at

E =

∫ (
~2

2m
|∇ψ(r)|2 + Vdis(r)|ψ(r)|2

)
dr +

g

2

∫
|ψ(r)|4dr . (3.11)

Here, the energy is calculated from the single-particle wave function ψ(r), hence if one is interested
in the total energy, it is given by Etot = NE. The first term in Eq. (3.11) is a typical sum of the
kinetic and potential single-particle energies. The second one is the interaction energy.

The applicability of the GPE is somewhat restricted. Firstly, the total number of particles N
has to be large. The second approximation is the use of an effective potential, so by using the
GPE we can only investigate phenomena which take place on distances larger than the interaction
range. Lastly, the derivation assumes that the interactions are only in the s-wave channel, and the
interaction strength (directly connected to the scattering length) is small. Finally, in our study we
are interested in the dynamics of such systems. In such a situation, someone could question the
validity of approximations leading to the GPE. However, the GPE is more than merely a description
of the single-particle wave function, the authors of [114, 115] rigorously prove that indeed the GPE
preserves the underlying many-body correlations. The GPE was successfully used in many experi-
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ments involving cold bosonic gases, see [116]. More details about the cold atomic dilute gases may
be found in [117, 118].

In the following sections, we analyze the effect of interactions treated in the mean-field approx-
imation on the quantum boomerang effect. We should also comment on the possibility of using
higher-order approximations, i.e. Bogoliubov excitations. Disordered systems including quantum
corrections were successfully studied in many works, for example see [119–125]. The main obstacle
for the application of the GPE to describe the boomerang effect may be the depletion of the conden-
sate fraction. This effect could be grasped using the quantum corrections. However, it is known that
even the mean-field nonlinearity strongly affects localization effects. Hence, we stay at the simplest
level, restricting the study to the GPE.

3.2 The model

To study the boomerang effect in the presence of interactions, we use the one-dimensional GPE:

i~
∂ψ(x, t)

∂t
=
( p2

2m
+ V (x) + g|ψ(x, t)|2

)
ψ(x, t), (3.12)

where g is, as defined above, the interaction strength, and V (x) is the disordered potential which is
a representation of a Gaussian uncorrelated process:

V (x) = 0, V (x)V (x′) = γδ(x− x′). (3.13)

The parameter γ measures the disorder strength and determines the characteristic scattering mean
free time τ0 and the scattering mean free path `0, which are given in the Born approximation by (cf.
section 1.2, Eqs. (1.36) and (1.40)):

τ0 =
~3k0

2mγ
, `0 = v0τ0 =

~4k2
0

2m2γ
. (3.14)

Similarly to chapter 2, we can use the uncorrelated disorder because it is sufficient to capture the
main features of the boomerang effect. Following [3], we take a Gaussian wave packet with mean
velocity ~k0/m as the initial state:

ψ(x, t = 0) =
( 1

πσ2

)1/4
exp(−x2/2σ2 + ik0x), (3.15)

where σ and k0 as chosen such that the initial wave function is sharply peaked around ~k0 in
momentum space. This is satisfied when σk0 � 1. This initial state resembles an experimental
scenario, where the BEC is prepared in a harmonic trap, e.g. [32]. Although, the Gaussian state
with k0 = 0 is not a true ground state of a harmonic trap in the presence of interactions, for small
values of interaction strength, Gaussians (with k0 = 0) may be seen as a good approximation. This
detail does not influence the results presented below. We work in the weak disorder regime, where
the mean free path is much longer than the particle de Broglie wavelength. This is fulfilled as long
as k0`0 � 1. Finally, the center of mass position (CMP) is calculated in a similar way to section 2.4:

〈x(t)〉 =

∫
x|ψ(x, t)|2dx . (3.16)
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Two assumptions: about the width of the initial wave packet k0σ � 1 and about weak disorder,
k0`0 � 1, allow to have a well-known non-interacting limit. There is, however, no constraint relating
the wave packet width σ and the mean free path `0, for example, the wave packet may be very broad
compared to `0. If the assumptions about the wave packet width σ and the disorder strength γ are
not valid, the initial wave packet will consist of many momentum components, and hence instead of
one mean free time, one will deal with a whole distribution of mean free times. This unnecessarily
complicates the studied phenomenon, most probably without any change of the final conclusions.

3.2.1 Numerical experiments

For all numerical works, there is an important question about the method used to simulate the
quantum system. In this problem we are interested only in the time evolution of the system and
for this purpose we use the Chebyshev kernel method (see section 1.5.3). However, the expansion of
the evolution operator includes only the linear part,

H = p2/2m+ V (x), (3.17)

and cannot be used for the the nonlinear part g|ψ(x, t)|2, which is time-dependent.
The Chebyshev method is a typical iterative method, where the evolution is calculated using

small time steps ∆t. The advantage of the method is that its complexity, i.e. the total number of
terms in the Chebyshev series, also depends on the size of the time step ∆t. For large time steps
one has to calculate many terms in the series, while for fairly small steps, the same results can be
obtained with a much smaller number of terms in the expansion.

The nonlinear part of the Hamiltonian can be applied to the wave function simply in the form
of a phase factor exp(−ig|ψ(x, t)|2∆t/~).

ψ(x, t+ ∆t) ≈ exp

(
− iH∆t

~

)
︸ ︷︷ ︸

Chebyshev

exp

(
− ig|ψ(x, t)|2∆t

~

)
︸ ︷︷ ︸
diagonal in position space

ψ(x, t) (3.18)

Using a small time step ∆t we can control the size of this phase factor, keeping it reasonably small in
order to avoid errors in the evolution. This approximation is efficient only when g is also sufficiently
small. Typically, we should keep g|ψ(x, t)|2∆t of the order of 10−2. This, of course, is the simplest
possible solution of the problem. It is possible to use a more elaborate method as, for example, the
symmetric Trotter expansion, see [126, 127], which decreases the total error accumulated during the
time evolution. As long as g is small (the situation we are interested in), using Eq. (3.18) is sufficient
and computationally efficient.
In our simulations, we chose 1/k0 to be the unit of length. The total length of the system simulated
was L = 4000/k0, divided into 20000 points, so that the discretization effects are negligible. The
disorder strength used is γ = 0.1~4k3

0/m
2 meaning that we may assume disorder to be weak:

k0`0 = 5

k0∆x = 0.2
(3.19)

Naturally, 1/k0`0 corrections to the Born approximation may be expected, however they do not
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influence our results, because the boomerang effect is robust and does not depend on the Born
approximation. Maximal time in the simulations is tmax = 2500τ0.

The interaction strength is expressed in units of ~2k0/m, energy is expressed via E0 = ~2k2
0/2m

(in units of ~2k2
0/m), and time by τ0 (in units of m/~k2

0). This may be regarded as a basis for
geometric parameter scaling. For an arbitrary real number λ, we can rescale the problem x → λx,
k0 → k0/λ, t→ λ2t, γ → γ/λ3, and g → g/λ3 yielding the same results. The idea of the geometric
scaling is valid only in the case of Gaussian uncorrelated disorder. For correlated potentials, the
correlation length of the potential introduces and additional scale which breaks this scaling. A
consequence is that the connection between τ0 and `0 is more complex [128].
In all numerical results presented in this chapter, we put k0 = 1, m = 1 and ~ = 1. The results have
been averaged over 5× 105 disorder realizations (unless otherwise stated).

3.3 Effect of the nonlinearity on the boomerang effect

3.3.1 Nonlinearity and Anderson localization

The effects of nonlinearities on Anderson localization were analyzed in many previous theoretical
works, often controversial, see [129–139]. The main conclusion is that the nonlinearity acts as a
decoherence mechanism which leads to the destruction of full localization and revival of the transport.
The nonlinear part of the Hamiltonian (3.9), g|ψ(x, t)|2, may be considered as a time-dependent
random potential. It means that each scattering path carries a small fluctuating phase. In total,
this breaks the interference between multiple scattering paths and destroys the coherence needed for
Anderson localization. The effect depends both on the interaction strength and the local density in
configuration space. It can be viewed as a competition between localization and decoherence effects
leading to subdiffusion of the wave packets in time, see [140]. Subdiffusion dilutes the wave packet,
weakening the effect of nonlinearity which consequently allows for some revival of localization. It is
the competition between decoherence and dilution which governs the long-time dynamics.

Subdiffustion is described by a power law, 〈x2〉 ∝ tα with α < 1, see [141]. Interaction induced
subdiffusion in a disordered system was successfully observed in a cold atomic experiment based
on Potassium atoms [142]. The experimental data suggests that α < 1/2, which is consistent with
the theoretical works. However, the theoretical predictions do not agree on the specific value of α,
which ranges from α = 1/3 [132], to α = 2/5, for example, in [129, 135]. One of the latest numerical
works strongly supports that, for a very long-time evolution, the exponent is α = 1/3 [139]. The
cited results consider only one-dimensional systems, the value of α should depend on the dimension
of the system.

We are not focused on the subdiffusion process. Aforementioned numerical and theoretical works
analyze initial states with zero average velocity, which is not our case. Nevertheless, using the initial
state defined in Eq. (3.15) with the initial width σ = 10/k0, we numerically investigate the time
evolution of 〈x2(t)〉. The result is presented in Fig. 3.1. The numerical data clearly shows a power-
like time dependence, however, we restrain ourselves from further analysis of this phenomenon,
which is not the main point of the boomerang study. From the boomerang effect perspective, the
presence of the subdiffusion may be an indication of its destruction. The time reversal symmetry
argument for the existence of the full boomerang effect presented in section 1.3 (see also [2, 3]) used
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Figure 3.1. Average value of the mean squared displacement 〈x2〉 versus time for the state with
initial width σ = 10/k0, for different values of interaction strength. Numerical data clearly shows a
power-like behavior. The black dashed line represents power law 〈x2〉 ∝ tα with α = 1/3. Numerical
results are compatible with the exponent α ≈ 1/3 within 5%. The size of the error bars is of order
of the line width.

a connection between the center of mass 〈x〉 and the mean squared displacement 〈x2〉:

∂t〈x2〉 = 2v0〈x〉. (3.20)

In the non-interacting system, the left hand side of this equation vanishes due to Anderson localiza-
tion. If subdiffusion is present, we may expect 〈x(t = ∞)〉 6= 0. Naturally, Eq. (3.20) may not be
valid in nonlinear systems. However, this still may constitute a first indication that the boomerang
effect is destroyed or weakened by interactions.

3.3.2 Destruction of the boomerang effect

We start the numerical study with the initial state, Eq. (3.15), with σ = 40/k0, much broader
than the mean free path, `0 = 5/k0. Results for various interaction strengths g are presented in
Fig. 3.2. The initial evolution is very similar to the non-interacting case: the center of mass initially
moves ballistically. The next phase of the evolution is also analogous, we observe that the CMP is
reflected towards the origin. However, the long-time behavior is affected by the interactions. For all
nonzero values of g, the center of mass does not fully return to its origin, saturating at some finite
value. A preliminary observation of the partial destruction of the boomerang effect can be found in
the arXiv preprint [143] and [2]. However, these results are not part of the published work [3].

When g = 0, disorder induces Anderson localization causing the wave packet to return to its
origin: the boomerang effect. With nonzero g, the nonlinear part of the GPE (3.9) is a time-
dependent source of dephasing. The dephasing partially destroys the quantum interference effects
between multiple scattering paths, affecting the boomerang effect. The impact of the interactions is
not immediate and the interactions do not destroy the localization completely. If this were the case,
we would observe a classical motion of the CMP (see section 1.3).

Center of mass temporal evolutions among different disorder realizations are normally dis-
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Figure 3.2. Center of mass position time evolution for an initial wave packet with σ = 40/k0 for
different values of the interaction strength g. The short-time bevahior remains almost unchanged,
whereas the long-time evolution clearly depends on the interaction strength. The error bars represent
statistical average errors.
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Figure 3.3. Distribution of x(t = 240τ0) among various realizations of disorder (105 disorder real-
izations), calculated for g = 0. Very similar results are obtained for nonzero g.
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Figure 3.4. Long-time average 〈x〉∞ versus interaction strength g for the wave packet with initial
width σ = 40/k0. Data includes error bars calculated as the standard deviation of the points used
in the average, Eq. (3.21).

.

tributed 1 what is shown in Fig 3.3, such that we use the standard error of the mean as the estimator
of the errors for 〈x(t)〉.

To study in detail the long-time evolution, we calculate the long-time average of the CMP, 〈x〉∞,
defined in the following way:

〈x〉∞ =
1

t2 − t1

∫ t2

t1

〈x(t)〉dt , (3.21)

where we choose t1 ≈ 1250τ0 and t2 ≈ 2500τ0. The results are essentially independent of these
bounds, provided they are very much longer than the scattering mean free time τ0. This way we
calculate a very good estimate of the infinite-time value of the saturated CMP. The results are
shown in Fig. 3.4. For small values of the interaction strength g, the dependence is quadratic and
becomes approximately linear for larger values of g. Data points also include error bars representing
the standard deviation. For the long time t� τ0, when the CMP is saturated, the values of 〈x(t)〉
at various t are strongly correlated. Due to this effect, there is no guarantee that the points are
normally distributed, and, for the error estimate, we use only the standard deviation.

Before moving to a more detailed analysis of 〈x〉∞ for various initial widths we restrict the
analysis to the weak interaction regime, where the long-time CMP 〈x〉∞ � `0.

3.3.3 Dependence on the initial density

Because the interaction depends on |ψ(x, t)|2, the initial width of the wave packet σ is an impor-
tant parameter of our system. Although the calculations showing the existence of the boomerang
effect assume that the initial wave packet is narrow, this assumption can be loosened almost com-
pletely without any change in the proof (see [2] for details). Independently of the wave packet’s
width, the non-interacting CMP follows the same analytically known time evolution. For interact-
ing systems, this is no longer true and their long-time behavior depends on the initial width σ. The

1. As discussed in section 1.3.3, the expectation value 〈x(t→∞)〉 is in general nonzero for a single realization of
disorder. It is only after averaging over disorder realizations that is vanishes.
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Figure 3.5. (a) Comparison of the non-interacting center of mass 〈x(t)〉 for wave packets of widths
σk0 = 10, 20 and 40. All three curves overlap, indicating that 〈x(t)〉 is independent of σ in the
non-interacting limit. (b) Same as panel (a) but for nonzero interaction strength g = 2.0. Here,
the saturation point of 〈x(t)〉 is higher for initially narrower, i.e. denser, wave packets. Error bars
indicating statistical erros are shown only in panel (a) for σ = 10 to indicate their order of magnitude.

nonlinearity is initially larger for spatially narrow wave packets due to the higher average density.
Thus, the effect of the interactions on the boomerang effect is expected to be stronger. This is
precisely depicted in Fig. 3.5, where we show CMP time evolutions for wave packets with initial
widths σk0 = 10, 20, 40 for the non-interacting case g = 0 and for g = 2.0. In the first case, there is
no difference between the results. For nonzero interactions, their effect is the weakest for the widest
wave packet, and the largest for the narrowest one. This clearly shows that 〈x〉∞ does not depend
only on the interaction strength, but also on the wavepacket size.

The final CMP is evidently a function of σ and g, however it is not a function of these two
independent variables. A closer investigation reveals that the same values of 〈x〉∞ can be obtained
by different combinations of σ and g. As an example, in Fig. 3.6 we show 〈x(t)〉 for σk0 = 5, 10, 20

and 40 with different values of g. The curves are very similar, with approximately the same 〈x〉∞.
This result suggests that there exists a different parameter, a combination of g and σ, describing
the observed destruction of the boomerang effect.

3.4 Plane wave boomerang

In section 3.3.3, we have shown that the final CMP depends on both the interaction strength g
and the initial wave packet size σ. In principle, we could analyze a broader and broader wave packet
with increasing σ but there is a well defined formal limit σ = ∞, i.e. plane wave. Plane waves,
ψ0(x) =

√
ρ0 exp(ik0x) correspond to a definite initial momentum ~k0 and we can treat them as

infinitely broad wave packets. They are extensively used in other studies of disordered systems and
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Figure 3.6. Center of mass 〈x(t)〉 versus time for different initial states chosen such that 〈x〉∞/`0 ≈
0.08. All the curves overlap within statistical errors. Results have been averaged over 16000 disorder
realizations, the error bars are shown only for σ = 5/k0.

serve as generic states used in theoretical works.
Plane waves have a flat density profile, which implies that the |ψ(x, t)|2 is also uniform at any

time, and thus, from Eq. (3.16) 〈x(t)〉 = 0 at all times. Nonetheless, there exists a possibility of
measuring an effective center of mass time evolution for plane waves. Using the Ehrenfest theorem
[144, 145] we can connect the center of mass to the average momentum. In the non-interacting
system we can write:

d〈x〉
dt

=
1

m
〈p(t)〉 ⇐⇒ 〈x(t)〉 = x0 +

1

m

∫ t′

0
〈p(t′)〉dt′ , (3.22)

where, for our problem, the initial position is x0 = 0. We should, however, note that the Ehrenfest
theorem is valid only for infinite systems, or if we restate the condition, for wave functions which
do not touch the system boundaries 2. Plane waves do touch the system boundaries and the first
equality in Eq (3.22) is not valid. However, the integral in Eq. (3.22) is well defined. Thus, to study
CMP for plane waves, σ = ∞, we propose the following observable, which is an extension of the
usual center of mass position:

〈x(t)〉p.w. :=
1

m

∫ t

0
〈p(t′)〉dt′ . (3.23)

The above approach is valid for any wave packet, even in more complicated systems, like the spin
system studied in chapter 2. For any initial state, it is possible to calculate the average momentum,
and then extract the CMP out of it. When employing the Ehrenfest theorem, one can use the periodic
boundary condition. The method may be practical for small systems, where a direct calculation of
〈x(t)〉 may be strongly influenced by the boundary effect. Then, the CMP calculated from Eq. (3.23)
includes the total distance traveled by the center of mass.

As a first step, we have compared the evolutions of 〈x(t)〉 and 〈x(t)〉p.w. for a wave packet. The

2. The Ehrenfest theorem uses the commutator [x,H] = [x, p2]/2m which is not only i~p/m but also contains
boundary terms in a finite system. When the wave function ψ(x) does not touch the boundary, these terms can be
neglected.
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Figure 3.7. Comparison of non-interacting 〈x(t)〉 for wave packets with widths σk0 = 10, 40 and
〈x(t)〉p.w. calculated using Eq. (3.23). All three curves are in excellent agreement.
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Figure 3.8. Temporal evolution of the center of mass for plane waves calculated using Eq. (3.23)
for different values of interaction g. All curves have been averaged over 16000 disorder realizations.
The plane wave density is ρ0 = 1/L = 2.5× 10−4k0.

excellent agreement validated our idea that 〈x(t)〉p.w. is really a meaningful extension of 〈x(t)〉 for
the quantum boomerang effect. As a next step, we present 〈x(t)〉p.w. calculated for plane waves as
well as 〈x(t)〉 computed for finite width wave packets in Fig. 3.7. The result for plane wave is in
excellent agreement with curves for wave packets with finite σ. Therefore, CMP for plane waves
agrees with the theoretical prediction of the quantum boomerang effect. This result goes beyond
the original boomerang effect where only finite width wave packets were studied [3].

We now turn to interacting systems. The presence of interactions should not change the corre-
spondence between 〈x(t)〉 and 〈x(t)〉p.w.. Such a test is very simple, hence for this purpose we ana-
lyzed the numerical simulation of the CMP for interacting, finite width wave packet with σ = 10/k0.
Then we compared the 〈x(t)〉 with 〈x(t)〉p.w.. Both methods give the same results.

The density of plane wave ρ0 = 1/L may be treated as a parameter in place of the wave packet
width σ. As a consequence, the same 〈x(t)〉p.w. curves are obtained for different systems sizes,
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provided g is scaled such that g/L = gρ0 is constant. Accordingly, from now, we identify 〈x(t)〉p.w.
with 〈x(t)〉 introduced for wave packets and omit the subscripted label onwards.

For plane waves with nonzero values of g, our main observation remains the same as for the wave
packets. After the initial ballistic evolution and reflection towards the origin, the boomerang effect
is partially destroyed. This result is presented in Fig. 3.8. The interactions strengths used are, as
expected, much larger than those used for wave packets. This agrees with our intuition that the final
value of the CMP depends both on the interaction strength and the spatial density |ψ|2. A closer
look at Fig. 3.8 shows another interesting feature of plane waves. Even though the simulations are
averaged only over 16000 realizations (versus 5× 105 for the wave packets), the statistical error bars
are comparable to the errors for wave packets. This is because plane waves explore a much larger
space (i.e. the whole system), thus average faster over a smaller number of disorder configurations.
In the next sections, for the final CMP, we use 5× 105 disorder realizations also for the plane waves.

3.5 Universal scaling of the boomerang effect in interacting systems

From the results presented in sections 3.3 and 3.4, it is natural to wonder whether the observed
phenomenon – the destruction of the boomerang effect, studied through 〈x〉∞ – can be described
using a single parameter. This can be viewed similarly to scaling approaches well known from
single-particle Anderson localization, see [17, 18, 146–148].

3.5.1 Break time and break energy

Before we attempt to rescale the final CMP, we introduce a parameter, which will be very useful
in the following. The long-time behavior in the non-interacting case is known (see section 1.3,
Eq. (1.77)):

〈x(t)〉 ≈ 64`0
ln(t/4τ0)τ2

0

t2
, (3.24)

for t� τ0. If we neglect the logarithmic part, 〈x(t)〉 decays as t−2. For small values of g, the behavior
of 〈x〉∞ is clearly quadratic with g, see Fig. 3.4. It suggests that one may define a characteristic
time scale associated with weak interactions inversely proportional to the interaction g. We call this
time scale brak time tb and define it by the relation

〈x(tb)〉g=0 = 〈x〉∞(g), (3.25)

where for the left hand side we use the prediction of the non-interacting theory, Eq. (3.24), and, for
the right-hand side, we use the numerically obtained values of the final CMP 〈x〉∞. For any time
scale in quantum mechanics, one can associate an energy scale. Here, we introduce the break energy :

Eb =
2π~
tb
. (3.26)
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Figure 3.9. Dependence of the long-time average 〈x〉∞, Eq. (3.21), on the initial interaction energy.
For wave packets Eint(t = 0) = g/(2

√
2πσ), while Eint(t = 0) = gρ0/2 for plane waves. Error bars

represent standard deviation of the averaged points.

3.5.2 Interaction energy

A natural candidate for a parameter depending both on g and the wave packet size σ is the
average interaction energy:

Eint(t) =
g

2

∫
|ψ(x, t)|4dx . (3.27)

We also recall that the total energy is conserved by the GPE, and is the sum of the non-interacting
part (kinetic and potential) and the interacting part:

Etot =
〈p2〉
2m

+ 〈V 〉+ Eint. (3.28)

The simplest approach to the interaction energy is to study its initial value. For t = 0, the interaction
energy is given by

Eint(t = 0) =
g

2
√

2πσ
for wave packets, Eint(t = 0) =

gρ0

2
for plane waves. (3.29)

For example, the curves presented in Fig. 3.6 show similar values of 〈x〉∞ having widely different
pairs of σ and g; however, their initial values of the interaction energy are comparable.

Figure 3.9 presents the values of long-time averages 〈x〉∞ versus the initial interaction energy
Eint(t = 0) for wave packets σk0 = 10, 40 and plane waves. While the values of σ and g are very
different across the initial states, the curves shown in Fig. 3.9 are qualitatively similar. This suggests
that indeed the interaction energy is an important parameter. The behavior of the final CMP is
quadratic for small values of the initial interaction energy. From the previous section, we know that
there is another quantity derived from the long-time averages 〈x〉∞ – the break energy Eb.

Using this observation, we turn to the study of the break energy versus the initial interaction
energy. We show this dependence in Fig. 3.10. First of all, we immediately see that the break
energy is comparable to the initial interaction energy (within a factor 4). In particular, because
Eint(t = 0) is proportional to the interaction strength g, we find the sought linear dependence of the
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Figure 3.10. Break energy Eb versus initial interaction energy Eint(t = 0). The break energy is
defined by Eb = 2π~/tb, where the break time tb is calculated using Eq. (3.25) and is a characteristic
time beyond which the boomerang effect disappears. Error bars on the break energy are due to the
error bar on the break time calculated from the long-time average of CMP, and ultimately to the
statistical error bars on 〈x(t)〉.

break energy Eb on the interaction energy Eint(t = 0). For small values of the interaction energy,
the curves seem to be linear and their slope increases with the width of the initial state. Moreover,
the curve for σ = 40/k0 does not deviate much from the limiting case σ =∞ for plane waves.

3.5.3 Randomization of the interaction energy

It is clear that the initial interaction energy is not the best parameter describing the breaking of
the quantum boomerang effect by interactions. Results shown in Figs. 3.9, 3.10 do not fall on the
same universal curve. The main reason comes from the fact that Eint(t) varies significantly from t = 0

onwards. Examples for different initial states and interaction strengths are presented in Fig. 3.11.
It shows that the time evolution of the interaction energy may be divided into two main stages.
In the first stage, at short time, Eint(t) rapidly increases, while in the second stage, Eint(t) slowly
decays in the case of wave packets, whereas for plane waves its value remains stationary. Figure 3.11
shows only 3 examples, but the situation is generic for all initial states and all interaction strengths
considered.

The first stage may be explained by analyzing the initial part of the time evolution. By definition,
Eq. (3.27), the interaction energy, depends on the fourth moment of the field, |ψ(x, t)|4, which obeys:

|ψ(x, t)|4 = |ψ(x, t)|22
+ Var

(
|ψ(x, t)|2

)
. (3.30)

For plane waves, whose initial profile |ψ(x, t = 0)|2 is completely flat, the variance at t = 0 is
zero. However, at a short time, on the scale of the scattering mean free time, the density develops
fluctuations due to scattering on the disordered potential. This increases the variance and the
interaction energy. In the case of plane waves, we observe a doubling of the initial interaction
energy. The factor 2 enhancement can be explained by assuming that, after a few scattering mean
free times, ψ(x, t) becomes a complex Gaussian variable. This can be easily verified in numerical
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Figure 3.11. Temporal evolution of the average interaction energy for different initial states and
interaction strengths. The plot shows data for wave packets with [σ = 10, g = 0.25], [σ = 40, g = 1.0]
and [σ = ∞, g = 45, ρ0 = 0.00025]. In the plane wave limit, specklization doubles Eint(t = 0) over
a short-time scale comparable to the scattering mean free time τ0, which then remains stationary
at long time. For finite σ, randomization is also visible, but followed by a slow decay at long times
due to wave packet spreading. From t = tb onwards, however, the decay is very slow. The location
of the break time tb is indicated by arrows for each curve.
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Figure 3.12. Histograms of the real (blue) and imaginary (green) parts of the wave function ψ(x, t)
at time t = 4τ0 for an initial plane wave state without interactions. The orange dashed line plotted
in both histograms represents the distribution given by Eq. (3.31). This proves that, after few
scattering events, the wave function ψ(x, t) is a Gaussian distributed complex random variable.
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simulations.
Figure 3.12 shows histograms of the real and imaginary parts of ψ(x, t) after t = 4τ0, for a single

disorder realization, for a plane wave in the non-interacting case (similar histogram is obtained in
the interacting case g 6= 0). At such time, the components of the wave function are fully randomized.
Both histograms of the real and imaginary parts are almost perfect Gaussian distributions whose
variance is given by the state’s initial density ρ0 = 1/L:

P
(
Reψ(x, t)

)
= P

(
Imψ(x, t)

)
= N (0, ρ0/2), (3.31)

where N (µ, σ2) denotes the Gaussian normal distribution:

N (µ, σ2) =
1√

2πσ2
e−

(x−µ)2
2σ2 . (3.32)

This fully agrees with the expected distributions for a (circular) complex Gaussian variable, P (ψ(x, t)) =

CN (0, ρ0) [149, 150]. Hence, after the randomization, the variance in Eq. (3.30) is |ψ(x, t)|22
, ef-

fectively doubling |ψ(x, t)|4. Because the randomization takes place at a very short time, of the
order of τ0, the interactions do not change this reasoning and it is also valid for interacting systems.
The randomization is very similar to the appearance of optical speckles in scattering media, see, for
example [13], thus we call this phenomenon specklization of the wave function.

The specklization implies that, for plane waves Eint(t � τ0) = 2Eint(t = 0). For wave packets
with finite widths, the effect is also present, albeit slightly smaller. The reason is the following: the
infinitely wide plane waves are randomized very efficiently by the disordered potential. A similar
enhancement is observed for wave packets, as long as they cover many speckle grains, that is, for
k0σ � 1.

The second stage of the time evolution of the interaction energy is much less complicated. For
the finite width wave packets, we observe a decay due to broadening and dilution of the wave packet.
The decay slows down quickly, together with a decrease of the spreading, due to the dilution and
localization effects which slow down the overall dynamics of the system, see section 3.3.1. The
interaction energy of plane waves remains almost constant, without any visible decline, as expected.

3.5.4 Nonlinear energy

The complicated time evolution of Eint(t) makes a detailed rescaling analysis of the boomerang
effect rather complex. Figure 3.11 shows that after the break time tb, Eq. (3.25), the values of Eint(t)

approximately do not change in time 3. This suggests to use the value of the interaction energy at
the break time tb, instead of the initial one. Although, for the finite σ wave packets, the interaction
energy still slowly evolves, we show below that this approach provides us with very satisfactory
results.

Before probing such a rescaling, we make a final adjustment. The matter of our interest, the
boomerang effect, is a dynamical phenomenon governed by the GPE, see Eq. (3.9). The structure
of the GPE shows that the dynamical evolution is governed by a quantity twice as large as the
interaction energy, whose density is proportional to g|ψ(x, t)|4/2. On this basis, we introduce the

3. At very long time, t � tb the system may display a subdiffusive behavior with a very slow decrease of the
interaction energy, see section 3.3.1. This regime, however, is out of the scope of our study.
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Figure 3.13. Infinite-time position of the center of mass 〈x〉∞ for different initial states (wave packets
of various sizes, plane wave) and various interaction strengths g, plotted versus the nonlinear energy
at the break time ENL(t = tb), see Eqs. (3.33), (3.25). The fact that all numerical data collapse on
a single curve proves that the quantum boomerang effect for interacting particles is universal and is
governed by a single parameter.
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Figure 3.14. Comparison of the break energy, Eb, and the nonlinear energy at the break time
ENL(t = tb) (see Eqs. (3.33), (3.25)), for increasing values of the interaction strength. Each panel
presents results for a different initial state. The excellent agreement shows that ENL(t = tb) is the
proper parameter controlling the quantum boomerang effect for interacting particles.
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nonlinear energy, defined as

ENL(t) = 2Eint(t) = g

∫
|ψ(x, t)|4dx . (3.33)

In section 3.6 we will show that the nonlinear energy is closely related to the nonlinear self-energy
of the system.

We can now re-analyze the boomerang effect using the nonlinear energy at the break time,
ENL(t = tb), as the control parameter of the interaction strengths and wave packet widths. We
show in Fig. 3.13 the final CMP 〈x〉∞ as a function of the nonlinear energy calculated at the break
time. In contrast with Fig. 3.9, now all points collapse on a single universal curve. As initially
expected, in the regime of small nonlinear energy, 〈x〉∞ shows a quadratic dependence (and later a
linear dependence). This means that the nonlinear energy is the desired parameter governing the
destruction of the quantum boomerang effect.

Finally, in Fig. 3.14 we compare the values of the break energy Eb = 2π~/tb which characterize
the breaking of the quantum boomerang effect and the nonlinear energy at the break time, ENL(t =

tb), for wave packets with σ = 10/k0, 40/k0 and plane waves, σ = ∞, and for various values of
the interaction strength g. It shows a compelling evidence that these quantities are very similar.
A small difference is visible for plane waves. We suspect this discrepancy to be related to an
early thermalization, which leads to a slow residual decay of 〈x〉. This, in turn, results in an
underestimation of the break energy.

Such a good agreement shows that, even for a complex phenomenon like the boomerang effect,
it is possible to establish a simple model able to capture the main features of the phenomenon. Our
parameter, the nonlinear energy at the break time, successfully characterizes the essential features
of the quantum boomerang effect for interacting particles.

3.5.5 Comment on the weak interaction and the weak disorder limits

Weak interaction regime

Until now, we have not specified what we exactly understand by the regime of weak interactions,
stating only that we will focus on the regime of interactions for which 〈x〉∞ � `0. The observed
final values of CMP 〈x〉∞ depend both on the initial width σ and interaction strength g. As we have
shown, this dependence may be captured by a single parameter, the nonlinear energy ENL at the
break time. However, to quantitatively establish some bounds for the weak interaction, it is simpler
to analyze the matter from the perspective of the break time. The regime of 〈x〉∞ � `0 may be
restated using the time domain: the break time has to be much larger than the mean free time, i.e.
tb � τ0. This is the case in our study, where the shortest break times are larger than 25τ0.

The break time may be viewed as a function of the nonlinear energy, which explicitly depends on
the interaction strength. In most cases, the time evolution of the nonlinear energy is highly nontrivial
and it is difficult to estimate the values of g for which one remains in the regime 〈x〉∞ � `0. However,
using plane waves, we can make an estimation for the break time, because we know the value of the
nonlinear energy for time much larger than τ0, ENL(t� τ0) = 2gρ0. This gives an estimate for the
break time in the case of plane waves:

tb =
π~
gρ0

. (3.34)
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Figure 3.15. Comparison of data for plane waves, ρ0 = 2.5 × 10−4, for two different values of the
disorder strength γ such that k0`0 = 5 and k0`0 = 10 with k0 = 1. When the interaction strength g
is scaled proportionally to γ, the same curves are obtained, proving the validity of the scaling of the
break time tb with g, and the universality governing the breaking of the quantum boomerang effect
by interactions.

The numerically calculated values of the break time agree with this prediction within a 10–15%
margin. The condition tb � τ0 now translates into

g � π~
ρ0τ0

, (3.35)

which, for our choice of system parameters, gives an estimate g � 2500. The highest value of the
interaction strength used in our numerical simulations is g = 90, i.e. largely in the weak interaction
regime. Yet, we suspect that the small discrepancies visible in the right part of Fig. 3.14 for σ =∞
are the precursors of the breaking of the weak interaction regime.

In the case of wave packets, the evolution of the nonlinear energy is more complicated. Nonethe-
less, we may give a rough estimate for the interaction strength based on Eq. (3.35). Replacing ρ0

by 1/σ, we get

g � π~σ
τ0

, (3.36)

what is also true for all values used in our study.

Disorder strength

We have studied only one value of the disorder strength γ. How does the change of γ influence
the values of 〈x〉∞? In the non-interacting case, the whole boomerang dynamics is completely
determined by values of the scattering mean free time τ0 and the scattering mean free path `0,
which explicitly depend on the disorder strength, see Eq (3.14). In the interacting system, another
quantity comes into the game, the interaction strength g. The important parameter for the rescaling
of the boomerang is, however, the ratio of the break time tb and the mean scattering time τ0. As an
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Figure 3.16. Numerically calculated real parts of the self energy Σ(g) (solid lines) versus time, for
several values of the interaction strength. In the plot we additionally show the evolution of nonlinear
energies ENL(t) (dashed lines). The legend indicates the curves from bottom to top.

example, if we consider the plane waves, we obtain:

tb
τ0

=
2πm

~2ρ0k0

γ

g
. (3.37)

From this, it is completely clear that, if we rescale both the disorder strength γ and the interaction
strength g by the same factor, we will obtain equivalent results when the 〈x〉/`0 is plotted versus
t/τ0. This is shown in Fig. 3.15, where we compare two pairs of curves computed for plane waves
with different values of γ and g. Curves with the same γ/g ratio overlap confirming our prediction.
Additionally, the agreement between different pairs γ and g also confirms the scaling of tb with the
interaction strength g. Of course, this simple approach is expected to work only in the regime of
weak interactions and weak disorder.

3.6 Self-energy in interacting systems

In the previous sections, we have seen that the interactions modify the long-time dynamics. These
changes, depending both on the interaction g and the initial state (through σ), may be encompassed
by the use of the nonlinear energy ENL. In this section, we also show that the same nonlinear energy
is relevant for the short-time dynamics. Let us consider first the non-interacting case.

The self-energy is a key concept in the analysis of disordered systems. It is a complex valued
function of the state energy E and its momentum ~k0, responsible for the change of the dispersion
relation and the exponential decay of the average Green’s function in configuration space, for details
see section 1.2. In the following, we will denote it by ΣE(k0). The self-energy is connected with the
average Green’s function through

G
R
E(k0) =

1

E − E0 − ΣE(k0)
, (3.38)

where GRE(k0) is the average retarded Green’s function. The energy E0 is just the energy of states
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in a disorder-free system, e.g. E0 = ~2k2
0/2m. The self-energy vanishes in a disorder-free system

and, in the weak disorder limit, it is much smaller than E0.
Therefore, if the self-energy is that important, how can we determine it? It cannot be done in

a direct way, like the center of mass position, 〈x〉. We will use a different approach. Consider the
evolution operator – it is the temporal Fourier transform of the Green’s function. Assuming that
the self-energy is a smooth function of E, we may calculate the average autocorrelation function for
plane waves:

〈ψ0|ψ(t)〉 = e−i(E0+ΣE(k0))t/~ = e−i(E0+Re ΣE(k0))t/~eIm ΣE(k0)t/~, (3.39)

|ψ0〉 being a plane wave with wave vector k0. From this, it is clear that Re ΣE is an energy shift and
− Im ΣE is the decay rate of the autocorrelation 〈ψ0|ψ(t)〉 as a result of the presence of disorder.
Equation (3.39) allows us to extract the self-energy. Numerical calculations have to be done carefully
because we have to compute the complex logarithm of the quickly decreasing average autocorrelation
〈ψ0|ψ(t)〉. Nonetheless, this gives us access to the self-energy ΣE(k0). For a non-interacting system,
the imaginary part of the self-energy is

Im Σ
(0)
E (k0) = − ~

2τ0
, (3.40)

where the superscript (0) denotes the zero interaction.
In the case of interacting systems, for example, described by the GPE, the situation is in general

much more complicated. The nonlinearity in the GPE, see Eq. (3.9), causes the whole notion of a
linear time evolution operator not to be valid any more. In addition, the notion of self-energy is
not well defined, because the autocorrelation 〈ψ0|ψ(t)〉 has no reason to have an exponential form
as in Eq. (3.39). However, we can still extract an effective self-energy using this equation from the
numerical simulations performed for plane waves. In fact, there are two possible approaches: the
static one, where the self-energy is calculated directly from Eq. (3.39) and the dynamical one, where
the self-energy could be computed from the following equality:

log 〈ψ0|ψ(t)〉 = −iE0t− i
∫ t

0
ΣE(k0, t

′)dt′ . (3.41)

The self-energy extracted both ways is time-dependent. The dynamical method should be preferred
over the static one 4. Despite this, in our work, we use the static method, because the results
obtained with the dynamical method were too noisy to get meaningful results. In some sense, it is
a phenomenological attempt to quantify the effect of disorder in an interacting system.

To study the impact of the interactions on the self-energy, we define the nonlinear part of the
self-energy, Σ(g) in the following way:

Σ(g) = Σ
(g)
E (k0)− Σ

(0)
E (k0), (3.42)

where both Σ
(g)
E (k0) and Σ

(0)
E (k0) are calculated numerically using the average autocorrelation,

Eq. (3.39). The results of numerical simulations are shown in Fig. 3.16, where we observe that
the nonlinear self-energy increases during several τ0 and then saturates approximately around twice

4. The static self-energy depends on the whole evolution up to time t. This retardation effect is visible in our
results, see Fig. 3.16. The expected saturation of the nonlinear self-energy Σ(g) (see the main text and Eq. (3.45))
takes longer than for the nonlinear energy ENL.
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Figure 3.17. Fitted values of the scattering mean free time τ for wave packets of different initial
widths versus the nonlinear energy average over the fit window Eshort

NL . The black dashed line shows
the prediction of Eq. (3.46)

its initial value.

It is easy to compute exactly Σ(g) at short time:

〈ψ0|ψ(t)〉 ≈ e−i(E0+Σ
(0)
E0

+gρ0)t/~
, (3.43)

from which we have the result:

Σ(g)(t = 0) = ENL(t = 0) = gρ0. (3.44)

The first equality is valid for any initial state ψ0(x). The second equality holds only for plane
waves. From section 3.5.3, we know that due to disorder, after a few scattering mean free times, the
specklization of the wave function leads to an enhancement of the nonlinear energy by a factor 2.
It is thus very natural, and fully confirmed by our numerical results, shown in Fig. 3.16, that the
nonlinear self-energy also doubles in time, and, for long time, we have:

Σ(g)(t� τ0) = ENL(t� τ0) = 2gρ0. (3.45)

This can be shown using theoretical tools [151] and discussed in appendix 3.A. Our numerical data
presented in Fig. 3.16 confirm the relation between the nonlinear self-energy and the nonlinear
energy at intermediate time. After the initial growth, both quantities saturate around 2gρ0 and
follow a close evolution. Altogether, our observations strongly suggest that Σ(g) and ENL govern the
dynamics of interacting disordered systems. This also justifies the conclusion of section 3.5, since
the self-energy is typically involved in calculations of observables, in particular of the center-of-mass
position.
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3.7 Modification of the observed mean scattering time

One of our first observations made in section 3.3 is that the initial evolution of the CMP is not
affected by interactions. Closer investigations of Fig. 3.2 confirm that, in the short-time regime, i.e.
t < 20 − 30τ0, all CMP curves are almost unaffected by the nonlinearity. The only visible effect
is that both the mean free time and mean free path are slightly increased. The non-interacting
theoretical prediction for 〈x(t)〉 depends on τ and `, see section 1.3. By fitting this prediction to
our interacting data restricted to a short time, we can extract the values of the effective scattering
mean free time τ and scattering mean free path `.

Fits have been performed for a time window t ∈ [0, tfit], with tfit = 20τ0. We have also included
weights to the data points inversely proportional to the statistical errors of the points. The size of
the time window tfit is chosen to include the whole ballistic part of the evolution and the beginning
of the reflection. Change of tfit does not significantly modify the results.

From τ and `, we calculate the mean velocity v = `/τ . We observe that v remains almost un-
changed by the interactions. It is, however, a little bit higher than the value ~k0/m predicted by the
Born approximation. This apparent discrepancy is caused by corrections to the Born approximation,
which are of higher order in 1/k0`0 � 1. Given this, we can restrict ourselves to the analysis of the
mean scattering time τ only.

The fitted values of τ are presented in Fig. 3.17 as a function of the nonlinear energy averaged
over the fitting time window Eshort

NL . We chose such an averaging because, at short time, the nonlinear
energy undergoes a rapid increase due to the specklization of the wave function. The increase of τ ,
especially at small values of Eshort

NL , is linear for all initial states. To explain this behavior we expand
the scattering mean free time at the Born approximation τ(E ' E0 + ENL) to the leading order in
ENL � E0, which yields:

τ ' τ(g = 0) +
~

2k0γ
ENL, (3.46)

where τ(g = 0) is the true value of the scattering mean free path. In our system τ(g = 0) ≈ 0.95τ0.
The predictions of equation Eq. (3.46) are presented in Fig. 3.17 as a dashed black line, where for
τ(g = 0) we use a point computed for σ = 40/k0. The agreement between the numerical data and
Eq. (3.46) is very good. The values of τ increase with the rate predicted by the equation. The
fact that the curves for different initial widths are shifted is due to a small dependence of τ(g = 0),
which is interaction independent, on the width σ, which is beyond the Born approximation. At larger
values of Eshort

NL , all curves deviate from the linear behavior and start bending upwards. This effect
is smaller with decreasing the wave packet’s initial width. This alteration happens in a regime of a
relatively strong boomerang breakdown, hence the application of a fit based on the non-interacting
prediction is less reliable.

3.8 Conclusion

In this chapter, we have studied the quantum boomerang effect in the presence of interactions on
the basis of the one-dimensional Gross-Pitaevskii equation. The interactions are introduced through
a nonlinear term in the Schrödinger equation, hence in a mean-field approach. We found that the
interactions do not destroy completely the quantum boomerang effect, that is, the center of mass
a wave packet launched with a finite velocity is still retro-reflected after several scattering events.
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Nevertheless, the effect is only partial: the interactions inhibit the full return to the origin, stopping
the center of mass at some finite position on its way back.

Our interpretation of the phenomenon is the following: the interactions, which have the form of
a time-dependent random potential, destroy the coherence between multiple scattering paths. To
characterize this phenomenon, we have introduced a break time – the characteristic time scale beyond
which the destruction of interference prevents the wave packet to return to its initial position. Finally,
using this break time, we have shown that it is possible to universally describe the phenomenon for
all initial states and interaction strengths using a single parameter, the nonlinear energy calculated
at the break time. Additionally, we have shown that the nonlinear energy is closely connected with
a part of the self-energy originating from the interactions, and may be also used to explain the
modification of the scattering mean free time and path.

The analysis presented in this chapter is limited to the regime of weak disorder and weak in-
teractions. For stronger disorder, the quantitative description of the phenomenon becomes more
complicated, but the overall conclusions are expected to be the same, at least for weak interactions.
For a stronger disorder scenario, the wave function contains many energy components, each being
characterized by different mean free scattering time and mean free path. In such a case (but without
interactions), each component will undergo the boomerang effect, and the final result will contain
a superposition of various scattering times and lengths. This will surely complicate the analysis of
the center of mass time evolution. With the interactions included, we expect that each energy com-
ponent will display a partial destruction of the boomerang, i.e. nonzero value of the final position
〈x〉∞.

In the regime of weak disorder and strong interactions, we may expect the break time to decrease
to the order of the mean scattering time. This may also change qualitatively the phenomenon
introducing a much stronger competition between interaction and disorder effects, which is not
present in the weak disorder and weak interaction limit.

The last important question is to know whether the observed destruction of the boomerang effect
due to interactions remains valid beyond the mean-field description. This may be an interesting
problem for possible ultra-cold atom experiments, and is the subject of chapter 4.
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Appendix 3.A Nonlinear self-energy corrections

Here we briefly sketch the calculation of the self-energy for interacting systems based on the
approach presented in [151]. To lighten the notation we put ~ = 1. At lowest order in g and disorder
strength γ, here represented by (k0`0)−1, the two first diagrams contributing to the self-energy are:

Σ = + 2× (3.47)

The first one represents the self-energy at the Born approximation in a non-interacting system, cf.
section 1.2:

Σ(0)
ε (k) =

1

2π

∫
dk′ P (k − k′)GR0 (ε, k′), (3.48)

where GR0 (ε, k) = (ε − k2/2m + i0+)−1 is the disorder-free Green’s function (assuming a one-
dimensional system), and P (k − k′) is the disorder correlation function in momentum represen-
tation. The second diagram shows the nonlinearity event, where the propagating Green’s function
is scattered on an density |ψ|2. To better understand this diagram, we show it with more details
in Fig. 3.18. Solid lines with arrows depict the free Green’s functions in the energy-momentum
representation GR0 (ε, k), the square is a nonlinearity event – a scattering event on the density (thus
proportional to g), while the circle represents the average intensity Iε,ω(k) defined as a diagonal part
of

Iε,ω(k, q) = ψε+ω
2

(
k +

q

2

)
ψ∗ε−ω

2

(
k − q

2

)
, Iε,ω(k, q) = (2π)δ(q)Iε,ω(k), (3.49)

where ψε(k) is the wave function in the energy-momentum representation. This also means that the
average intensity is given by:

Iε,ω(k) = ψε+ω
2
(k)ψ∗ε−ω

2
(k) (3.50)

The factor 2 before the second diagram in Eq. (3.47) comes from two possibilities of pairing one of
the incoming solid lines as a partner for the dashed line (see Fig. 3.18). To compute the first-order
nonlinear contribution to the self-energy, we have to evaluate the diagram shown in Fig. (3.18). To
calculate the outgoing Green’s function with energy ε and momentum k, we have to integrate over

GR0 (ε− ω, k) GR0 (ε, k)

Iε′,ω(k′)

Figure 3.18. Diagram representing a nonlinear average Green’s function generated by the second
diagram from Eq. (3.47). The solid lines represent free Green’s functions GR0 (ε, k), the circle depicts
the average intensity defined in Eq. (3.49), and the square represents the scattering of the Green’s
function on the intensity, called a nonlinearity event. The factor 2 in Eq. (3.47) comes from two
possibilities of pairing the incoming solid lines (vertical or horizontal one) with the dashed line.
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all possible incoming energies and momenta:

G(g)(ε, k) = 2g

∫ +∞

−∞

dε′

2π

∫ +∞

−∞

dω

2π

∫
dk ′

2π
GR0 (ε− ω, k)Iε′,ω(k′)GR0 (ε, k). (3.51)

At first sight, the equation suggests that the nonlinearity induces a shift in the energy, that is, a
redistribution of the energy because of nonlinear scattering events. This is true in general. However,
if we start from a plane wave, that is a uniform density, the situation is much simpler, and the
calculation can be performed at first order in g.

To compute this integral, we start by using the normalization condition for the wave functions:

ψ(x, t)ψ∗(x, t) = ρ0θ(t), (3.52)

where θ(t) is the Heaviside step function. We can express the density using the diagonal intensity
Iε,ω(k):

ψ(x, t)ψ∗(x, t) =∫
dk

2π

dq

2π

dε

2π

dω1

2π
e−ixqe−iω1tψε+ω1

2

(
k +

q

2

)
ψ∗
ε−ω1

2

(
k − q

2

)
=

∫
dk

2π

dε

2π

dω1

2π
e−iω1tIε,ω1(k),

(3.53)

where we have used the definitions of the average intensity and its diagonal part. This yields:

ρ0θ(t) =

∫
dk

2π

dε

2π

dω1

2π
e−iω1tIε,ω1(k). (3.54)

Finally, we multiply both sides by eiωt and integrate over the time domain. Then, the left-hand
side of the equation is Fourier transformed into frequency domain and the right-hand side can be
simplified thanks to a Dirac-delta function in frequency:

ρ0

−iω + 0+
=

∫
dk

2π

dε

2π
Iε,ω(k). (3.55)

This identity allows us to finally calculate the integral from Eq. (3.51).

G(g)(ε, k) = 2gρGR0 (ε, k)

∫
dω

2π

GR0 (ε− ω, k)

−iω + 0+
= 2gρ0

(
GR0 (ε, k)

)2
. (3.56)

The last integral is performed thanks to the fact that the GR0 (ε− ω, k) as a function of ω has poles
only in the upper complex half-plane (cf. section 1.2). From this equation, we conclude that the
nonlinear self-energy (center of the diagram Fig. 3.18) is just a multiplication by the factor 2ρ0g.
Thus, the full self-energy in the nonlinear system is given by:

Σ(g)
ε (k) = 2gρ0 +

1

2π

∫
dk′ P (k − k′)GR0 (ε, k′), (3.57)

where the integral in the right-hand side of the equation is the self-energy of the linear part of the
problem at the Born approximation, Eq. (3.48). Here, the interactions and disorder are decoupled:
the self-energy has two independent contributions, one depending solely on disorder and the second
depending only on the interactions. As we will show in the following section, there is also another
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×

×

x′′ x

x′

x′′′

(a)

×

×

x′′ x

x′

x′′′

(b)

Figure 3.19. Two types of diagrams contributing to the hybrid correlator |ψ(x, t)|2V (x′). The circle
denotes the average intensity, solid and dashed lines are the propagators, cf. Fig. 3.18, while the
cross represents scattering on the disordered potential.

contribution which emerges from the interplay between the interactions and disorder.

The physical interpretation of Eq. (3.57) is rather clear. As the average density is spatially
uniform, it results in a spatially uniform average interaction energy. Upon a shift of the total energy
by this interaction energy, one is back to the non-interacting case.

If the average density is not uniform, e.g. an initial wave packet, one can infer that, in a local
density approximation, one can replace ρ0 in Eq. (3.57) by a local, space-dependent density. This
will result in a self-energy depending both on time and space, that is a more complicated situation.
The local fluctuations of the density give a contribution which is smaller, discussed in section 3.A.1.

3.A.1 Hybrid correlator

At first order of the interaction strength g, there exists another diagram where the disorder
potential V (r) is correlated with the effective nonlinear time dependent potential g|ψ(x, t)|2. Dia-
grams representing this kind of scattering are shown in Fig. 3.19. We call such an object a hybrid
correlator. Using the hybrid correlator, we can calculate the self-energy, similarly to the self-energy
at the Born approximation in a linear system:

Σ(hybrid)
ε (k) =

1

2π

∫
dk′ PNL(k − k′)G(0)

ε (k′), (3.58)

where the power spectrum is defined as

PNL(k) = 4g

∫
d(x− x′) e−ik(x−x′)|ψ(x, t)|2V (x′), (3.59)

where 4g comes from two contributions: factor 2g from two possibilities of pairing the lines (as in the
nonlinear self energy) and a factor 2 because we have to include also diagrams for |ψ(x′, t)|2V (x).
To calculate the contribution of the diagram, we use Eq. (3.53) and explicitly write the propagators:

|ψ(x′, t)|2V (x) =

γ

∫
dε

2π

dω

2π

dk

2π
e−iωtIε,ω(k)

∫
dx′′ dx′′′ V (x′)V (x′′′)×[

GRε (x, x′′)GAε (x′′, x′′′)GAε (x′′′, x′′) +GAε (x′′, x)GRε (x′′′, x′′)GRε (x, x′′′)
]
.

(3.60)



3.A. Nonlinear self-energy corrections 107

To simplify the equation, we use the fact that V (x)V (x′) = γδ(x−x′) and also introduce the average
energy distribution fε(t):

fε(t) =
1

2πνε

∫
dω

2π

dk

2π
e−iωtIε,ω(k), (3.61)

where νε is the average density of states. Then, the hybrid correlator may be written as

|ψ(x′, t)|2V (x) =

γ2

∫
dε νεfε(t)

∫
dx′′

[
GRε (x, x′′)GAε (x′′, x′)GAε (x′, x′′) +GAε (x′′, x)GRε (x′, x′′)GRε (x, x′)

]
.

(3.62)

The final simplification uses the following identity:

γ

∫
dx′GRε (x′)GAε (x′ − x) = i/(2πνε)(G

R
ε (x)−GAε (x)), (3.63)

yielding:

|ψ(x′, t)|2V (x) =
iγ

2π

∫
dε fε(t)

[(
GRε (x′, x)

)2 − (GAε (x, x′)
)2]

. (3.64)

In the weak disorder limit and for short time, the energy distribution remains sharply peaked at
ε = ε0 = k2

0/2m and we can easily perform the integral obtaining the final result:

|ψ(x′, t)|2V (x) =
iγ

2πνε0

[(
GRε (x′, x)

)2 − (GAε (x, x′)
)2] ∝ e−|x−x′|/2`0 sin(2k0|x− x′|). (3.65)

Comparison between the predictions of Eq. (3.65) and numerical data, unfortunately, has shown
rather large discrepancies. For short time, we have observed that the exponential decay of the
correlation function is faster than predicted by the theoretical approach. Only the oscillatory part
was confirmed, however this is an obvious fact – the change of momentum during the scattering
is always 2k0 in the weak disorder limit in one-dimensional systems. The probable reason of this
difference lays in the theoretical assumptions used to derive this equation. The theory presented in
this section was proposed to describe three- and two-dimensional systems in the diffusive regime,
where a perturbative diagrammatic expansion is meaningful. On the contrary, the one-dimensional
disordered systems are always localized, i.e. the diffusive approach and approximations are not
valid in such systems. Nevertheless, the numerically observed |ψ(x′, t)|2V (x) correlator is not widely
different from the predictions of Eq. (3.65). We have calculated the values of the self-energy defined
in Eq. (3.58) using the numerically calculated function PNL(k). The results clearly show that this
correction is much smaller than gρ0. This is to be expected: the self-energy correction originating
from the hybrid correlator is k0`0 times smaller than first order correction.

A correct calculation of the hybrid correlator in one-dimensional system could possibly be ob-
tained using the phase formalism introduced by H. Prüfer in [152]. The formalism initially founded
to study Sturm-Liouville problems, see for example [153], was successfully applied to one-dimensional
disordered quantum systems, e.g. [154–157]. Similar ideas were also successfully applied to quasi-
two-dimensional systems, e.g. [158].

Altogether, it remains that the effect of the |ψ(x′, t)|2V (x) correlator is much smaller than the
dominant contribution computed in Eq. (3.57).





Chapter 4

Many-body quantum boomerang effect

After a detailed study of the boomerang effect in systems with mean-field interactions in chap-
ter 3, here we attempt the quasi-exact approach. Apart from the study of weakly interacting bosons
and fermions, we analyze the quantum boomerang effect in the Tonks-Girardeau gas, where impen-
etrable bosons are known to be fully Anderson localized.

The chapter starts with an introduction of the methods used to simulate many-body systems in
section 4.1. In section 4.2 we also introduce the matrix product states, and the time evolving block
decimation algorithm used in our simulations. Weakly interacting bosons are analyzed in section 4.3,
where we make a comparison with the the mean-field approximation. In section 4.4 we compute the
break times for weakly interacting bosons and show their connection with the interaction strength.
Section 4.5 relates the observed results to the phenomenon of many-body localization. Simulations of
the Tonks-Girardeau gas together with the numerical evidence for the presence of the full boomerang
effect are the subject of section 4.6. In section 4.7, we analyze the impact of interactions for strongly
interacting bosons, which map onto weakly interacting fermions. Finally, we show that the case
of strongly interacting bosons can also be described by break times in section 4.8. In this section,
we also show that this characteristic time scale may be related to other time scales present in the
system. The chapter is concluded in section 4.9.

4.1 Simulations of the many-body system

4.1.1 Mapping to Bose-Hubbard model

Let us start, as before (cf. section 3.1) with a one-dimensional many-body bosonic Hamiltonian:

Ĥ =

∫
Ψ̂†(x)

(
− ~2

2m
∆ + Vext(x) +

U

2
Ψ̂†(x)Ψ̂(x)

)
Ψ̂(x)dx , (4.1)

where Vext(x) represents the disorder, and U is the strength of the two-body contact potential. In
the thermodynamic limit, in the absence of Vext(x), the Hamiltonian is integrable, and its ground
state can be found exactly [159], using the famous Bethe ansatz. For nonzero external potential, the
integrability is lost and different numerical methods have to be employed to study such systems.

In the following, we adopt the method introduced in [160] and map the Hamiltonian (4.1) to a
model on a equidistant grid, where the position is given by xj = ∆xj, j ∈ Z, and ∆x is called a grid
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(lattice) spacing. We start by expressing the field operators by

Ψ̂(x) =
∑
j

ψj(x)âj , (4.2)

where âj are bosonic annihilation operators with commutation relation [âi, â
†
j ] = δi,j , and the single-

particle wave functions ψj(x) are defined in the following way:

ψj(x) =

(∆x)−1/2 for x ∈
[
(j − 1

2)∆x, (j + 1
2)∆x

]
,

0 elsewhere
(4.3)

so that ψj(x) is a rectangular function centered around x = xj . The lattice constant has to obey
two conditions. The first is natural – the lattice spacing has to be much smaller than the average
distance between the particles ρ−1. The second comes from the interactions. In the model, we
replace the true interaction potential by the short-range effective contact potential described by the
scattering length denoted by a. It means that the lattice constant ∆x should be much larger that
the scattering length a. Both things considered, ∆x has to fulfill:

a� ∆x� ρ−1. (4.4)

In the discretization procedure, the integrals are replaced by sums and the derivative is expressed
as the three-point stencil:

∂2Ψ̂(xj)

∂x2
→ Ψ̂(xj−1)− 2Ψ̂(xj) + Ψ̂(xj+1)

∆x2
. (4.5)

The resulting Hamiltonian has the form of a Bose-Hubbard Hamiltonian [161]:

Ĥ = −J0

∑
j

(
â†j âj+1 + c.c.

)
+ Vj

∑
j

n̂j +
U0

2

∑
j

n̂j(n̂j − 1), (4.6)

where the parameters J0, U0 and Vi are directly connected with the lattice constant and the param-
eters of Hamiltonian 1 (4.1):

J0 =
~2

2m∆x2
, U0 =

U

∆x
, Vj = Vext(xj). (4.7)

In (4.6) we have neglected the term 1/∆x2
∑

j n̂j , which is nothing else than a constant energy
shift N/∆x2 since the number of particles in conserved. The mapping allows one to use a method
developed for simulations of lattice models to study many-body bosonic systems.

We have mapped the continuous system to the Bose-Hubbard model. Let us mention that the
model features a transition between Mott insulator and superfluid phases [162, 163] which was
successfully observed in a cold atomic experiment [164], using an optical lattice (for more details see
[165, 166]). However, in the ∆x→ 0 limit, the parameter J0/U0 tends to infinity, like 1/∆x. Then,

1. The final form of the Hamiltonian depends on the discretization scheme used for the derivative in Hamilto-
nian (4.1). We could have used a different stencil, e.g. a five point one. Besides improving the convergence of the
derivative, it also changes the final form.
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the average occupation number goes to zero, so that our model is always in the superfluid phase.

4.2 The model

4.2.1 Time-evolving block decimation algorithm

Bose-Hubbard model is not tractable analytically and is quite difficult for numerical studies.
The dimension of the Hilbert space Db grows exponentially both in the system size M (number of
sites) and the particle number N , Db = (N +M − 1)!/(N !(M + 1)!). It implies that the simulations
of large systems, where we discretize a continuous space fulfilling assumption given in Eq. (4.4),
may be extremely difficult. On these grounds, we turn toward one of the most effective methods
for simulations of quantum one-dimensional systems: the time-evolving block decimation (TEBD)
approach. The method and algorithm were proposed by G. Vidal in [5, 6], and utilize matrix product
state techniques.

Consider N identical bosons on M lattice sites. The full basis can be built using Fock states
|i1, i2, . . . , iM 〉, where, at each site, we may have up to N particles with the constraint that their
sum is constant, i.e.

∑
l il = N . Then, any many-body state can be written in the following form:

|Ψ〉 =
∑

i1,...,iN

ci1,...,iM |i1, i2, . . . , iN 〉 , (4.8)

where ci1,...,iM are complex coefficients. This form is not very convenient for numerical simulations.
Instead, it is possible to express states using matrix product states (MPS, for reviews see [167–169]),
in the form proposed by G. Vidal in [5]:

|Ψ〉 =
∑

α1,...,αM
i1,...,iM

Γi11,α1
λ[1]
α1

Γi2α1,α2
, . . . ,ΓiMαM ,1 |i1, i2, . . . , iM 〉 . (4.9)

At each site l, we introduce a set of matrices Γil and, at bonds between sites l and l + 1 (lth
bond), vectors λ[l]. The indices il run from 0 to the maximal occupation imax; the indices αl run
from 1 to χ, which is an important MPS parameter called bond dimension. For sufficiently large
χ (e.g. χ ≥ Db) the representation of state |Ψ〉 is exact. However, for many interesting states an
excellent approximation is obtained for a much smaller value of χ 2. Using this state representation,
the Schmidt decomposition of the state |Ψ〉 into subsystems A (containing sites 1 to l) and B

(containing sites l + 1 to M), simply reads:

|Ψ〉 =
∑
αl

λ[l]
αl
|A[1···l]

αl
〉 |B[(l+1)···M ]

αl
〉 , (4.10)

2. Note that G. Vidal considered spin-1/2 chains, so that imax = 1. For bosons, the proper choice of imax is an
additional degree of freedom in the approximation. Usually, the maximal occupation imax is chosen so that the results
are converged.
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where the subsystems’ states are expressed using the matrices Γil and vectors λ[l]:

|A[1···l]
αl
〉 =

∑
α1,...,αl−1

Γi11,α1
λ[1]
α1
, . . . ,Γilαl−1,αl

|i1, . . . , il〉

|B[(l+1)···M ]
αl

〉 =
∑

αl+1,...,αM

Γ
il+1
αl,αl+1 , . . . , λ

[M−1]
αM−1

ΓiMαM ,1 |il+1, . . . , iM 〉
(4.11)

If the states are only slightly entangled, the λ[l] decay fast and the bond dimension can be low, while
keeping an excellent approximation to the state. The key problem lays in calculating the matrices
and vectors from the coefficients ci1,...,iM . This task can be done by performing a series of Schmidt
decompositions of the state |Ψ〉 using SVDs [5]. The first SVD gives:

|Ψ〉 =
∑
i1,α1

Γi11,α1
λ[1]
α1
|i1〉 |Φ[2...M ]

α1
〉 , (4.12)

where |Φ[2...M ]〉 is the state describing sites 2 to M . The next SVD is applied to the state |Φ[2...M ]〉,
which allows for the calculation of λ[2] and Γi2 . This way one can obtain the whole state |Ψ〉 in the
MPS representation, Eq. (4.9). For simple states, e.g. Fock states, the decomposition is not needed,
the vectors λ[l] and matrices Γil may be written explicitly.

The dimension of matrices Γil determines the amount of computational resources needed to
perform numerical simulations. The effectiveness of the MPS representation decreases with the
growth of states’ entropy because of the growing χ needed for faithful state’s approximation. Thus,
only slightly entangled states can be simulated effectively.

The algorithm

When acting with the evolution operator on the state |Ψ〉, matrices Γil and vectors λ[l] change.
In the following, we assume that the Hamiltonian describing the system consists only of single-
site operators, for example, site particle number n̂j , and two-site operators, e.g. â†j âj+1. In the
description of the algorithm, we focus on the more involving two-site operators. To simplify the
presentation of the algorithm, we will explicitly write the dimensions of the various tensors, using
the local Hilbert space dimension d = imax + 1 and the bond dimension χ.

Let us consider a two-site operator Ô. Suppose we want to compute the result of its action on the
state |Ψ〉 at sites l+ 1, l+ 2. The operator can be expressed in the local basis as a d2 × d2 matrix:

O(il+1il+2),(i′l+1i
′
l+2) = 〈il+1, il+2| Ô |i′l+1, i

′
l+2〉 . (4.13)

Because the operator acts on sites l + 1, l + 2, we need only to consider the vectors and matrices
associated with these sites. If we introduce a 4-dimensional tensor (d× d× χ× χ):

Ψil+1il+2 = λ[l]Γil+1λ[l+1]Γil+2λ[l+2], (4.14)

where the vectors λ have dimension χ, and Γ are 3-dimensional tensors with (d × χ × χ). We can
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easily write down the action of the operator Ô on Ψilil+1 :

Φ
il+1il+2
αl,αl+2 =

∑
i′l+1,i

′
l+2

O(il+1il+2),(i′l+1i
′
l+2)Ψ

i′l+1i
′
l+2

αl,αl+2 . (4.15)

The resulting 4-dimensional tensor Φil+1il+2 has dimensions (d × d × χ × χ). The state after the
action of Ô has to be re-expressed as a MPS, thus the structure of the matrices and vectors has to
be restored. We group the 4 indices of Φil+1il+2 into two composite indices (αlil+1), (il+2αl+2) of
dimension dχ, and perform SVD of the dχ× dχ matrix:

Φ(αlil+1),(il+2αl+2) =
∑
αl+1

U(αlil+1),αl+1
λ̃[l+1]
αl+1

(V †)αl+1,(il+2αl+2). (4.16)

After the decomposition, the new λ̃[l+1] may contain dχ singular values. To keep the dimensions of
the matrices and vectors constant, a truncation is used, and only χ the highest singular values are
kept. The truncation is the main source of error in the algorithm. To restore the original form of
the MPS, we define:

Γ̃
il+1
αl,αl+1 =

(
λ[l]
)−1

αl
U
il+1
αl,αl+1 , Γ̃

il+2
αl+1,αl+2 = V

il+2†
αl+1,αl+2

(
λ[l+2]

)−1

αl+2

, (4.17)

so that the Φ has the form (cf. the from of Ψ before applying Ô, Eq. (4.14)):

Φil+1,il+2 = λ[l]Γ̃il+1 λ̃[l+1]Γ̃il+1λ[l+2] (4.18)

The action of the single-site operators is much simpler because they change only the matrices Γil .
In practice one-site operators can be included into two-site operators.

To perform the time evolution of |Ψ〉, we act with the evolution operator e−iHt on the whole
state. We assume now that the Hamiltonian consists of only two-site operators,

Ĥ =
∑
l

ĥl, (4.19)

where ĥl acts only on sites l, l+ 1. We can see that the whole set of ĥl can be split into two families,
acting on odd and even links:

Ĥ = Ĥo + Ĥe, Ĥo =
∑
odd l

ĥl Ĥe =
∑
even l

ĥl. (4.20)

All operators from a given family commute with each other, i.e. [ĥj , ĥj+2] = 0. We can use this fact
in the evolution procedure. If we denote by δt the small time step, the evolution operator can be
expressed using a Suzuki-Trotter decomposition [126, 170]. For example, second order decomposition
reads:

e−iHδt = e−iHoδt/2e−iHeδte−iHoδt/2 +O(δt3). (4.21)

As the operators from a given family (odd/even) commute, their action on a state can be calculated
in parallel. Furthermore, higher order evolution operator decompositions can also be used, see
[127, 170]. In our numerical scheme, we use the standard symmetric Trotter decomposition, as well
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as the recently proposed fourth order expansions using 10 exponentials [171].

4.2.2 Matrix Product State and momentum kick

In this thesis, we concentrate on the dynamics of wave packets having nonzero initial velocities.
For the single-particle wave functions, it means that we multiply a wave function with zero average
velocity by a phase factor including the velocity eik0x. When the state is in the MPS form, the
procedure is quite different, we cannot multiply all matrices (or vectors) by the phase factor.

The kick acts on the state in configuration space, whereas the MPS is represented in a space
which is a mixture of configuration space and Fock basis. Moreover, in our approach we want all of
the particles to have the same initial velocity – we do not differentiate them. Fortunately, this can
be achieved in a straightforward way.

The total phase imprinting the initial velocity should include factors for all particles:

N∏
n=1

exp(ik0xn) = exp

(
ik0

N∑
n

xn

)
, (4.22)

where n numbers the particles and k0 represents the velocity by v0 = ~k0/m with m being the
particle mass. The sum inside the exponent may be rewritten using particle occupations at each site

N∑
n

xn =
∑
l

ilxl. (4.23)

This allows us to use the MPS representation. To kick the MPS, we modify the matrices Γil as:

Γil → Γil · eik0ill∆x. (4.24)

The vectors λ[l] are not changed because the kick does not change the properties of the MPS links.
Moreover, the proposed idea does not change the form of the MPS. In general, however, if one would
want to kick only part of the particles, the situation would be much more difficult. The only solution
then would be to split the particles into two separate groups which changes the MPS form as well
as the forms of matrix product operators in the Hamiltonian.

4.2.3 Numerical simulations

The dynamics of a disordered many-body system were successfully studied using this approach.
In [172], the many-body Anderson localization of solitons was analyzed. We follow the same ideas
and use similar tools in the analysis. The disorder, as in the previous chapters, is a Gaussian
uncorrelated disorder:

V (x) = 0, V (x)V (x′) = γδ(x− x′), (4.25)

where γ is the disorder strength. Together with the state’s energy, determined by the value of k0, it
gives the values of the mean free time and mean free path at the Born approximation (cf. section 1.2,
Eqs. (1.36), (1.40)):

τ0 =
~3k0

2mγ
, `0 =

~4k2
0

2m2γ
. (4.26)
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For the initial state, we have chosen a non-interacting Gaussian wave packet, similarly to section 3.2.
To prepare the state in the MPS form, we have computed the ground state of N non-interacting
bosons in a harmonic potential using imaginary time evolution. The frequency of the potential was
chosen to match the desired initial wave packet width 3 . The resulting particle density n0(x)

n0(x) =
N√
σ2π

e−x
2/σ2

, (4.27)

corresponds to the superposition of N single-particle wave functions (cf. section 3.2):

ψ0(x, t = 0) =

(
1

πσ2

)1/4

exp(−x2/2σ2). (4.28)

As the last step of preparation, the state was kicked, as described in section 4.2.2. As before, the
parameters of the initial state σ and k0 are chosen in such a way, that the single-particle wave
function does not contain many momentum components, i.e. σk0 � 1.

The center of mass time evolution is studied through the particle density n(x, t):

〈x(t)〉 =
∑
l

xl n(xl, t), (4.29)

where (· · · ) denotes the average over disorder realizations. The density n(xl, t) = 〈Ψ(t)|n̂l|Ψ(t)〉 can
be conveniently calculated using the MPS form of the state |Ψ〉. Because n̂l acts only on a single site
we split the state |Ψ〉 into three components: the subsystem containing sites 1, . . . , l − 1, denoted
|Φ[1,...,l−1]〉, the subsystem containing sites l + 1, . . . ,M , |Φ[l+1,...,M ]〉, and the state containing only
site l, |Φ[l]〉, similarly to Eqs. (4.10), (4.11):

|Ψ〉 = |Φ[l+1,...,M ]〉 |Φ[l]〉 |Φ[l+1,...,M ]〉 . (4.30)

In the calculation of the particle number, the states |Φ[1,...,l−1]〉 and |Φ[l+1,...,M ]〉 factor out, because
they do not contain any information about the site l. We are left only with the contribution of site l:

〈Ψ|n̂l|Ψ〉 =
∑

αl−1,αl,il

il

(
λ[l−1]
αl−1

)2 (
λ[l]
αl

)2 ∣∣∣Γilαl−1,αl

∣∣∣2 . (4.31)

Even with MPS and TEBD approaches, the numerical calculations are extensive. Bearing in
mind that the boomerang effect needs many disorder realizations to average properly, we have
restricted ourselves to a rather small system, with short maximal time and weak interactions. The
interactions lead to a fast increase of the entropy of entanglement 4, requiring an increasing value of
χ to represent the many-body state faithfully.

The maximal time of the simulations has a similar effect. While, in a crude approximation,
interactions decide on the rate of entanglement increase, the total simulation time sets the maximum
value of the entropy. Hence, to perform longer simulations, higher values of χ are needed. Finally,
the system size also plays a role, albeit it is less important than the value of MPS dimension χ.

3. Similarly to section 3.2 a Gaussian wave packet is not the ground state of the interacting system in a harmonic
trap. Because the studied values of interaction strengths are small, we assume that this does not change significantly
the results. Additionally, in the present section, we want to be consistent with the approach from section 3.2.

4. See Fig. 4.6 in section 4.5, where the entropy growth is discussed.
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Figure 4.1. Comparison of simulations calculated for non-interacting bosons (solid line with error
bars) and the theoretical single-particle prediction Eq. (1.80) (dashed line) using the same parameters
of the system. The many-body simulations have been averaged over 1000 disorder realizations. The
agreement between the curves is quite good (within the error bars) indicating that the TEBD
simulations well reproduce the exact dynamics, in the absence of interactions.

We have to underline that the simulations are only quasi-exact, meaning that we can control the
error by a proper choice of the parameters. Even though the simulations have been performed using
a large computer grid structure, PL-Grid 5, converged results are obtained for low N only.

Similarly to the Gross-Pitaevskii study, we chose 1/k0 as the unit of length. The system size
is Lsize = 400/k0, and the system is divided into L = 2000 lattice sites, so that the discretization
∆x = 0.2/k0 is the same as in the mean-field calculation, described in section 3.2. The disorder
strength is chosen to be γ = 0.1~4k3

0/m
2 meaning that k0`0 = 5 so that the disorder is weak. In this

study, we use only one width of the wave packet, σ = 10/k0. This value allows for a modest size of
the system, while, in the mean-field calculations, we have seen that σ = 2`0 gives results which do
not much differ from the results obtained for broader wave packets, see section 3.5.

The maximal time of simulations is, unfortunately, much shorter, tmax = 60τ0 than in the GPE
study. Nonetheless, this value allows us to observe the desired phenomenon. In our simulations, we
have to keep the total number of particles quite low, N = 5. In this numerical scheme, higher values
seem to be completely unattainable. In all numerical results, we assume that k0 = 1, m = 1, and ~ =

1. The many-body simulations have been averaged over 500 disorder realizations (unless otherwise
stated). In the following section, we also present numerical results for the mean-field system, where
the same parameters have been used, apart from the number of disorder configurations, which is
105.
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4.3 Weakly interacting bosons

4.3.1 Non-interacting system

We start our study with a very simple but important check – observation of the boomerang for
non-interacting bosons simulated using the TEBD algorithm. In Fig. 4.1 a comparison of the many-
body (but without interactions) and the theoretical single-particle prediction Eq. (1.80) is shown.
The results agree very well – as expected. For the numerical data, we compute the statistical errors,
which are estimated by the errors of the average. To account for differences between the exact
scattering mean free time τ (scattering mean free path `) and the mean free time τ0 (mean free path
`0), we perform a fitting of the theoretical 〈x(t)〉, which yields τ = 0.94τ0 and ` = 1.07`0. Figure 4.1
shows also that the statistical errors are quite large, of the order of 0.1`. This shows how important
is the total number of disorder configurations used in the simulations.

4.3.2 Comparison with the Gross-Pitaevskii equation

Similarly to the mean-field study, we expect that the interactions will destroy the full boomerang
effect. The center of mass should be reflected and, during the return to the origin, it should saturate
at some finite value of 〈x〉. This time, however, due to large values of the statistical errors, we focus
on the comparison of many-body and mean-field results. The latter can be easily calculated with a
much larger number of disorder realizations, so that the statistical errors are almost negligible.

Before we make an accurate comparison between the many-body and the mean-field results, we
have to make an adjustment to the Gross-Pitaevskii equation. Usually, when the Gross-Pitaevskii
equation is derived, it is assumed that the number of particles is very large, N � 1. When the
equation is inferred from the energy functional, it takes the following form [117, 173]:

i~∂tψ(x, t) =

(
− ~2

2m
∆ + Vext(x) + U(N − 1)|ψ(x, t)|2

)
ψ(x, t). (4.32)

If we put g = U(N − 1) we are back to the Gross-Pitaevskii equation, Eq. (3.9) from section 3.1.1.
When N � 1 we can safely replace N − 1 by N in the interaction term. However, when the number
of particles is N = 5, we cannot make such a replacement.

In the analysis of the mean-field boomerang effect, one of our main conclusions is that the
infinite-time position of the center of mass depends on the nonlinear energy, directly connected to
the g factor. This means that to get a meaningful comparison of many-body and mean-field results,
the GPE has to include the correct factor, i.e. in our case g = U(N − 1).
Note that when we simulate only one particle, N = 1, using such an approach, the many-body
Hamiltonian and the GPE reduce (properly) to a non-interacting description.

In Fig. 4.2, we show comparisons of the results for many-body and mean-field systems for different
interaction strengths. Unsurprisingly, we observe that, for nonzero interactions, the boomerang effect
is only partial. After the initial evolution, typical for the boomerang effect, the center of mass does
not return to the origin but saturates at some finite position. This closely resembles the behavior
observed in the mean-field approach.

5. The processors used are Intel Xeon E5-2680v3 12C 2.5 GHz, with 24 threads available. The calculations were
run in parallel (depending on the problem using either 6, 12 or 24 threads).
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Figure 4.2. Comparison of results obtained in the many-body simulations (solid lines with error
bars), the mean-field simulations (orange dashed lines), and the single-particle theoretical prediction,
Eq. (1.80) (green dashed line). Panels correspond to (a) U = 0.1, (b) U = 0.15, and (c) U = 0.2.
While for the lowest interaction between particles the curves seem to agree qualitatively (panel (a)),
with the increase of the interactions the many-body result saturates at a significantly higher value.
Many-body results are averaged over 500 disorder realizations.
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Figure 4.3. (a) The absolute value of the initial one-body density matrix |ρ0(x, x′)|, Eq. (4.37).
(b) Average of the absolute value of the one-body density matrix |ρ(x, x′)| of the final state for the
interaction strength U = 0.2. During the time evolution, disorder destroys the initial correlation.
The final average density matrix is correlated only around x = x′.

From the numerical side, in the case of U = 0.05 (not shown in Fig.4.2) and U = 0.1, we have
used the bond dimension χ = 250 and imax = 5, and the average CPU-time needed for simulation
of a single disorder realization has been tCPU ≈ 500 CPUh. For U = 0.15 and U = 0.2 we have
used χ = 350 and imax = 4 (similar results have been obtained with imax = 5), with the total time
tCPU ≈ 850 CPUh for a single disorder realization. Altogether, generating Fig. 4.2 thus requires
∼ 106 CPUh.

As in the non-interacting case, the statistical errors of the many-body results are much higher.
On the one side, it can be seen that, for the lowest presented value of interaction U = 0.1, the
many-body and mean-field solutions are in agreement (within error bars). On the other side, when
the interaction strength is higher, for example, in panels (b) and (c), the curves seem to separate
and the many-body 〈x(t)〉 saturates significantly higher than the mean-field one.

The interactions present in the system may be understood as a source of dephasing mechanism
which destroys Anderson localization, hence the boomerang. From this perspective, it should be
natural that, when we treat the interactions without approximation, their impact should be larger,
meaning that the final center of mass position could be higher. This would explain the increase in
the positions of the saturation level. However, the simulations include only few particles (barely
exceeding the regime of few body quantum mechanics). We cannot exclude that, in the limit of a
very large number of particles, this difference vanishes.

Another fact that should also be taken into account is that the maximal time of the many-body
simulations is much shorter than in our study of the mean-field system. Although there are no
reasons to claim that, in the infinite-time limit, the many-body and mean-field results agree, it may
be that the many-body 〈x(t)〉 is subject to some slow residual dynamics which decrease the final
center of mass position.
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4.3.3 One-body reduced density matrix

In order to study the difference between the many-body and the mean-field results, we analyze
the one-body reduced density matrix. It is defined in the following way:

ρ(x, x′) = 〈Ψ̂†(x′)Ψ̂(x)〉, (4.33)

and is frequently used to study correlations in many-body systems, see [117]. For a pure state
Ψ(x1, x2, . . . , xN ) it is calculated as

ρ(x, x′) = N

∫
dx2 dx3 . . . dxN Ψ∗(x′, x2, . . . , xN )Ψ(x, x2, . . . , xN ). (4.34)

The diagonal part of the density matrix is the particle density ρ(x, x) = n(x), and it is normalized
according to: ∫

ρ(x, x)dx = N. (4.35)

We want to compare the average features of the one-body density matrix to a true condensate
(described by the GPE). If the system is entirely in the condensate, i.e.

Ψ(x1, . . . , xN ) = φ(x1)φ(x2) . . . φ(xN ),

where φ(x) denotes the one-particle condensate wave function, the density matrix is simply given
by:

ρ(x, x′) = Nφ(x)φ∗(x′). (4.36)

For example, in our case, the initial density matrix is given by

ρ0(x, x′) =
N√
σ2π

e−(x2+x′2)/2σ2+ik0(x−x′), (4.37)

because we use a non-interacting initial state.
To study numerically the one-body density matrix, we have slightly changed the parameters

of the system – we have increased the disorder strength, so that k0`0 = 2.5. We have checked
that, in this situation, the many-body simulations also reproduce the results presented earlier in the
section – the boomerang effect is only partial. To simulate the problem more efficiently, every single
disorder realization simulation has been divided into temporal intervals where the bond dimension χ
is progressively increased. The maximal bond dimension used χmax = 500, with maximal occupation
imax = 4, resulting in tCPU ≈ 1150 CPUh.

Such parameters allow us to calculate the final state at tmax = 120τ0, which should be a better
approximation of the infinite-time limit. Figure 4.3 shows the initial density matrix, Eq. (4.37), and
the average absolute value of the one-body density matrix, |ρf (x, x′)| at the final time calculated for
U = 0.2. Contrary to the initial density matrix, the final one is strongly correlated only around the
diagonal, x = x′. This effect is caused by disorder, which destroys the initial correlation 6.

To quantitatively check the amount of the condensate fraction in the final density matrix, we
have to compute the eigenvalues of ρ(x, x′), the largest one being the condensate fraction [174, 175].

6. Due to localization, using a single-particle approach, we expect the correlation to decay over one scattering
mean free path `, 〈ψ∗(x′)ψ(x)〉 ∼ exp(−|x− x′|/`).
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Figure 4.4. Time evolution of the center of mass (solid lines) in the interval [30τ, 64τ ] where a fitting
of the algebraic decay (dashed lines), Eq. (4.42), is performed. When the exponent α = 3 is used,
the resulting fits yield very good results.

We diagonalize ρ(x, x′) as:
ρ(x, x′) =

∑
j

λjχj(x)χ∗j (x
′), (4.38)

where λj are eigenvalues and χj(x) span an orthonormal basis. In non-interacting systems, the func-
tions χj(x) correspond to single-particle wave functions and the eigenvalues are their occupations.
When such a system is fully condensed, as, e.g. in the initial state Eq. (4.37), there is only one major
eigenvalue, λ0 = N and χ0(x) is the condensate wave function. When interactions are present, this
approach may be generalized. The interactions decrease the value of λ0, however∑

j

λj = N. (4.39)

The state is considered a condensate as long as λ0 ∼ N .
In our case, we calculate the average values of the four highest λj . It turns out that:

λ0

N
≈ 0.15,

λ1

N
≈ 0.11,

λ2

N
≈ 0.09,

λ3

N
≈ 0.06. (4.40)

This shows that the final state of the system is very far from a true condensate. The Gross-Pitaevskii
equation describes only the condensate fraction of the system, while our system mainly consists of
particles outside the condensate, hence its dynamics cannot be accurately described by means of the
Gross-Pitaevskii equation. This reinforces the conclusion that the difference between the numerical
results of the many-body and mean-field systems comes from truly many-body effects.

4.4 Break time for weakly interacting bosons

Knowing that the boomerang effect for weakly interacting bosons is similar to the mean-field
approximation, following the ideas of section 3.3, we try to extract the break time, a time scale after
which the boomerang effect vanishes.
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In the case of the mean-field approximation, to study the long-time center of mass position, we
used the long-time average, calculated in the following way:

〈x〉∞ =
1

t2 − t1

∫ t2

t1

〈x(t)〉dt . (4.41)

For the weakly interacting bosons, the maximal time of simulation tmax ≈ 64τ is much shorter
than in section 3.3, where the maximal evolution time extended over 2500τ0. For example, in our
simulations, even for the non-interacting case, the final CMP is nonzero. Because of this, we cannot
trust the results computed using the average, Eq. (4.41). To overcome this problem, we fit an
algebraic decay to the data:

〈x(t)〉 = 〈x〉∞ +
β

tα
, (4.42)

where 〈x〉∞ and β are fitting parameters. The fit is performed in the time interval [30τ, tmax ≈ 64τ ],
where τ denotes the true mean free time extracted by fitting the theoretical boomerang effect
prediction (see section 1.3.5, Eq. (1.80)) to the non-interacting results. We remind that for the non-
interacting system the long time evolution of the center of mass reads (section 1.3.4, Eq. (1.77)):

〈x(t� τ)〉 ≈ 64`
ln(t/4τ)τ2

t2
, (4.43)

where τ and ` are the mean free time and mean free path. When U = 0, the exponent α = 2 in
Eq. (4.42) results in 〈x〉∞ = 0. For nonzero interactions, we find that the decay is slightly faster and
we put α = 3. Figure 4.4 shows a comparison of the numerical data with fitted functions. The fits
show very good agreement with the data. It also turns out that the overall fitting results, i.e. the
values of 〈x〉∞, only slightly depend on the exponent value α in Eq. (4.42) and the time interval.

The next step is to calculate the break time tb – characteristic time which has proven extremely
useful in the study of the mean-field approximation, see section 3.5. It can be computed using the
following relation (cf. Eq. (3.25)):

〈x(tb)〉non-int. = 〈x〉∞(U), (4.44)

where the left-hand side is the non-interacting theoretical prediction, Eq (1.80), and for the right-
hand side we use the final CMP 〈x〉∞ from the fit of the algebraic decay, Eq. (4.42). Fitting errors
on the 〈x〉∞ values allow us to compute the error bars on the break times.

In analogy to the mean-field study, we expect 1/tb to be proportional to the counterpart of the
nonlinear energy introduced in section 3.5.4. We use the interaction strength U , as a measure of the
interaction energy in the system. The dependence of 1/tb versus U is shown in Fig. 4.5, where we
present the many-body results as well as the mean-field results (where 〈x〉∞ is calculated from the
long-time average, Eq. (4.41)). While for the mean-field results the dependence is obviously linear,
the meany-body result also suggests a linear behavior, with a small deviation of the point with
U = 0.05. This point, the lowest value of the interaction, requires the longest time of evolution to
saturate around the true 〈x〉∞ value. It means that the long-time CMP value may be overestimated,
which leads to an underestimation of the break time. On the opposite side, for stronger interactions
the linearity is better. This is also related to the fact that the final CMP values are higher, hence,
to compute the break time, a shorter time evolution is needed.
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Figure 4.5. Inverse of the break time tb computed for the many-body simulations (blue points with
error bars, computed from the fits of the algebraic decay, Eq. (4.42)) and the mean-field simulations
(orange points, calculated using long-time averaging, Eq. (4.41)) versus the interaction strength U .
Dashed lines present the best linear fits τ/tb = aU , with slope coefficients amany-body = 0.22 and
amean-field = 0.076. The mean-field data is clearly linear, as expected. For the many-body results,
with a small deviation of the point for U = 0.05, the points strongly suggest linear dependence. The
error bars represent the error of the estimation of the break time based on the errors on the final
CMP value.

Figure 4.5 clearly shows that the break times in many-body simulations are significantly shorter
than in the mean-field approximation, what is also visible in Fig. 4.2. From the fitted linear functions
(dashed lines in Fig. 4.5) we estimate that

tmany-body
b

tmean-field
b

≈ 0.35. (4.45)

The fact that the break time is shorter for the full many-body calculation than in the mean-field
approximation, emphasizes the importance of quantum fluctuations. This is also supported by the
analysis of the average one-body density matrix in section 4.3.3.

4.5 Comment on many-body localization

Anderson localization describes non-interacting particles. For many years, the question of its
fate in interacting systems was puzzling physicists. The field was revitalized by the seminal works
of Gornyi, Mirlin and Polyakov [176], and Basko, Aleiner and Altshuler [177], where a perturbative
approach led to the discovery of a new phenomenon called many-body localization (MBL). The
works predict the existence of an insulating phase in disordered interacting many-body systems. In
recent years, many-body localization has been intensively studied in numerous theoretical works (for
reviews see [178, 179]) and observed using different experimental platforms [180–184].

Although we do not investigate many-body localization in detail, we cannot escape from making
a comment on MBL and we make an attempt to relate the results obtained in our work to the known
properties of the many-body localized systems.
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Figure 4.6. Time evolution of bipartite entanglement entropy S(t) defined in Eq. (4.46), S0 denotes
the average long-time value of the entropy in the non-interacting system (approximately constant).
The results show a hint of logarithmic growth for times t > 30τ .

Our numerical method allows us to calculate the time dependence of the supremum of the
entanglement entropy [172] over all possible bipartitions of the system:

S = sup
l

(
−
∑
αl

(
λ[l]
αl

)2
ln
(
λ[l]
αl

)2
)
, (4.46)

where l runs over all links between sites. In a single realization of disorder, typically, the entropy is
maximal at a single link around the center of the system. In generic many-body localized systems,
the entanglement entropy is expected to grow logarithmically with time, S ∼ ln(t), what was firstly
observed numerically in [185, 186] and then proved theoretically in [187, 188].

The time evolution of the entanglement entropy defined by Eq. (4.46) is presented in Fig. 4.6.
This result shows that the entropy in our system may indeed grow logarithmically. However, this
should not be treated as a sign of many-body localization for several reasons. Typically, MBL is
studied in systems with much higher interaction strengths (for example, see [189, 190]) than consid-
ered in our work, where U0/J0 � 1 (translating ∆x, and U to Bose-Hubbard model parameters).
The other ingredient are particles – in our system the average filling, taking into account only the
sites occupied by the initial density profile, is also very low, n ≈ 0.1. Together with the small number
of particles considered, this cannot be compared to other studies of interacting bosons localized on
a lattice.

Moreover, the maximal time of the evolution is probably too short to say whether the observed
entropy growth is logarithmic. Lastly, the disorder strength used in our work corresponds to the
Anderson localization weak disorder regime, which should not be sufficient to induce the many-body
localization effect.
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4.6 Strongly interacting bosons – Tonks-Girardeau limit

After the analysis of weakly interacting bosons, we now turn to the other extreme case – strong
interactions. From the perspective of the earlier GPE analysis, this regime of interactions is new
and may lead to phenomena absent in weakly interacting systems.

A one-dimensional system of bosons with repulsive contact interactions may be described by the
Lieb-Liniger model, [159]:

H =

N∑
j=1

(
− ~2

2m

∂2

∂x2
j

+ Vext(xj)

)
+ U

∑
1≤j<k≤N

δ(xj − xk), (4.47)

where U > 0 is the coupling constant and m denotes the atom mass. The model is frequently
characterized by a dimensionless parameter ζ = mU/~2n, where n = N/L being the average density
of bosons, and L is the system length. When ζ = 0, the model corresponds to free bosons while
ζ →∞ is called the Tonks-Girardeau limit.

The Tonks-Girardeau gas describes impenetrable (or hard-core) bosons, which can be mapped
to non-interacting spinless 7 fermions, [191, 192]. The model can be solved exactly in the free case
Vext = 0 (for details see [193]). Reference [194] proved that the Tonks-Girardeau gas can be obtained
in cold atomic experiments, and the experimental observations of hard-core Rubidium bosons were
reported shortly after in [195, 196].

The Tonks-Girardeau gas is highly correlated. However, it does not mean that the interactions
destroy Anderson localization. Because the bosons are mapped to non-interacting fermions, An-
derson localization is expected to be fully present in the system. The disordered non-interacting
fermions are localized in a one-dimensional disordered system. Anderson localization of the Tonks-
Girardeau gas is discussed in [197].

If Anderson localization is present, we expect that, for a wave packet with some initial velocity,
we should observe the return to origin. To answer whether it still looks like the boomerang effect,
we performed numerical simulations using the same approach as in the case of weakly interacting
bosons.

The MPS representation has a parameter which describes the local Hilbert space. For simulations
of N bosons, it is natural to set the maximal site occupation around the value of the total particle
number, imax ≈ N . This parameter can be also used in the other way – we can restrict the maximal
occupation to be imax = 1, so that no more than one particle can reside at the same lattice site.
This realizes the concept of impenetrability of the Tonks particles.

On the numerical side, our results have been simulated in a similar way to the weakly interacting
bosons. The main difference is that, in the Tonks-Girardeau gas, we enlarged the discretization
constant, so that ∆xk0 = 1. By using larger ∆x, we can decrease the number of lattice sites in
the simulations and scale down CPU-time. The main effect of larger ∆x is its influence on the
dispersion relation. As we show in the next sections, apart from the change of velocity due to worse
discretization, the quantum return to the origin still can be analyzed.

7. In literature also: spin-polarized.
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4.6.1 Initial state

In all previously studied cases, the initial state was given by a Gaussian wave packet. The
Gaussian wave packet is the single-particle ground state of a harmonic trap. In the boomerang
studies, we are always interested in initially localized states and the harmonic trap potential gives
us a control over the initial width of the wave packet. However, for Tonks particles (imax = 1), a
Gaussian wave packet cannot be considered as a proper ground state of the Tonks-Girardeau gas.
Since hard-core bosons are mapped to non-interacting fermions, the ground state of the Tonks-
Girardeau gas can be calculated exactly in the absence of the disordered potential.

Let ψn(x) denote a single-particle eigenstate in the harmonic potential. In the case of non-
interacting bosons, we assume that all of them are described by the eigenstate of the lowest energy,
ψ0(x). When the particles are fermionic, they cannot occupy the same eigenstate, hence the state
with the lowest energy has the following form in the Fock basis (ordered by increasing energy):

|GS〉 = |1 . . . 1︸ ︷︷ ︸
N

0 . . .〉 . (4.48)

The occupation density can be calculated through nGS(x) = 〈Ψ̂†(x)Ψ̂(x)〉GS, where Ψ̂(x) and Ψ̂†(x)

are field operators. Action of the field operator Ψ̂(x) on |GS〉 produces a sum with single-particle
eigenstates as weights:

Ψ̂(x) |GS〉 =
N−1∑
n=0

ψn(x) |GS〉n , (4.49)

where |GS〉n denotes a Fock state with zero at the n-th position. Then the occupation density can
be calculated easily, yielding

nGS(x) =

N−1∑
n=0

|ψn(x)|2. (4.50)

The resulting density is much broader than the ground state of the harmonic oscillator of the single-
particle. It has N maxima, see Fig. 4.8. They can be viewed as the positions of classical particles
repelling each other, residing in a confined space.

For practical purposes, the ground state of the Tonks-Girardeau gas in a harmonic trap is cal-
culated using the imaginary time evolution. Application of this method guarantees that the state
has a proper MPS structure and, after a kick as described in section 4.2.2, it is directly applicable
to the real time evolution. The resulting numerical density can be compared with the theoretical
one – indeed the agreement is excellent.

4.6.2 Boomerang effect in Tonks-Girardeau gas

Figure 4.7 presents the time evolution of the center of mass 〈x(t)〉 for the Tonks-Girardeau
gas. The center of mass time evolution follows the single-particle boomerang effect. To show the
agreement between the numerical data and the theoretical prediction (see section 1.3.5, Eq. (1.80))
we perform a refitting procedure which accounts for the difference between the exact mean free
time τ (mean free path `) and the mean free time τ0 (mean free path `0) computed using the Born
approximation. The simulations of the Tonks-Girardeau gas are fairly simple, in our case for N = 5

particles, bond dimension χ = 35 was enough to approximate the system with the MPS efficiently,
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Figure 4.7. Time evolution of center of mass 〈x〉 for Tonks-Girardeau gas (solid blue line with
error bars) compared with single-particle theoretical prediction (orange dashed line) section 1.3.5,
Eq. (1.80). Result is fitted using theoretical boomerang prediction to rescale the mean scattering
time τ and length `. After rescaling the numerical data perfectly agrees with the theoretical curve.
The results have been averaged over 10000 disorder realizations. Error bars represent statistical
average uncertainties.
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Figure 4.8. Final density profile for kicked hard core bosons (blue solid line with error bars),
compared with the Tonks-Girardeau-Gogolin profile (dashed orange line) and the initial particle
density (dashed green line), Eq. (4.50). The numerical data agrees fully with the theoretical Tonks-
Girardeau-Gogolin profile nTGG(x), Eq. (4.52). The inset shows the theoretical and numerical final
profiles to show agreement even in the exponentially decaying tails.
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yielding tCPU ≈ 0.15 CPUh per disorder realization.

After refitting, the agreement between the Tonks-Girardeau gas and the theoretical prediction
is excellent. The disorder strength used should result in k0`0 = 5. The fitted exact values of mean
free time and path are τ = 0.97τ0 and ` = 0.9`0, which means that the values are consistent with
the Born approximation. There is, however, a slight complication. The particles of the Tonks-
Girardeau gas have slightly different energies, because they are different eigenstates of the harmonic
potential. This should mean that each particle has a different mean free time, hence 〈x(t)〉 should
be a superposition of the boomerang curves with different τ .

The energy of the n-th eigenstate of the harmonic potential is (n+ 1
2)~ω, where ω is the frequency

of the potential. In our analysis we use kicked states, and the kick adds ~2k2
0/2m to the total energy.

If ~2k2
0/2m� (n+ 1

2)~ω, we may assume that all states have roughly the same scattering mean free
time and path. This is the case in our simulations, where ω = 0.01. The small dispersion of energies
does not influence the final 〈x(t)〉, and we observe the universal boomerang curve.

We also study the final particle density. It is symmetric and has exponentially decaying tails.
Although [197] used a slightly different initial state (ground state of the trap including the disorder),
a similar behavior of the tails in their simulations was reported. After our observation that the
boomerang effect is described by a single-particle theoretical result, we construct an infinite-time
density profile based on the (single-particle) Gogolin profile:

|ψGogolin
` (x, t =∞)|2 =

∫ ∞
0

dη π2

32`

η(1 + η2)2 sinh(πη)e−(1+η2)|x|/8`

(1 + cosh(πη))2
, (4.51)

which depends on the mean free path. Analogously to section 2.7.2, the final density should be given
by the convolution of the Gogolin profile with the initial particle density nGS(x):

nTGG(x) =

∫ +∞

−∞
dx′ nGS(x− x′)|ψGogolin

` (x′)|2, (4.52)

The initial density is a sum of separated densities of consecutive harmonic oscillator eigenstates.

In the analysis of the final density profile, we also fit nTGG(x) to numerical data. The numerical
calculation of the Tonks-Girardeau-Gogolin profile for x/` � 1 is laborious, thus we fit the profile
only around x = 0 for several points. The value of the fitted mean free path is `fit ≈ 4.025/k0. The
mean free path extracted from the center of mass 〈x(t)〉 is ` = 4.5/k0. Taking into account the fact
that `0k0 = 5, so that corrections to the Born approximation may be visible, the agreement between
`fit and ` is good.

Figure 4.8 shows both the numerical and fitted final densities as well as the initial density profile.
Even this very crude fitting method gives us very good results – the numerical and theoretical infinite-
time densities agree very well. The inset presenting the densities in a logarithmic scale shows almost
no difference far from the region of fit. Similarly to the center of mass, we could expect to observe a
superposition of Tonks-Girardeau-Gogolin profiles with different values of `. However, because the
differences between the energies of the component states are small, the final result can be fitted with
a single curve. The initial maxima in the profile are completely lost in the final density. The final
density is symmetric around the origin, hence we observe the full return to the origin.
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4.7 Strongly interacting bosons – mapping to weakly interacting
fermions

For an arbitrary interaction strength in Hamiltonian (4.47), the bosonic model can be mapped to
interacting fermions [198–200]. The interaction is much more complicated, it maps to a momentum-
dependent attractive interaction [201]. The fermions are governed by the following Hamiltonian:

HF =

N∑
j=1

(
− ~2

2m

∂

∂xj
+ Vext(xj)

)
+ VF , (4.53)

where VF denotes the fermionic interaction term:

VF =
~4

m2U

∑
1≤j<k≤N

(
∂

∂xj
− ∂

∂xk

)
δ(xj − xk)

(
∂

∂xj
− ∂

∂xk

)
. (4.54)

The eigenfunctions of the Lieb-Liniger Hamiltonian Eq. (4.47) coincide with the eigenstates of Hamil-
tonian (4.53) when particle coordinates xj are ordered and their sign is changed upon exchange of
the particle coordinates. The models have the same eigenspectra.

Strongly repulsive bosons map to weakly attractive fermions with, assuming no disorder and
no traping potential, Fermi momentum kF = nπ, with the Fermi energy EF = n2π2~2/2m, where
n is the average density [200]. The mapping can be used to study systems in different potentials
including disordered ones, e.g. [202] studies the fluid-insulator transition for strongly interacting
bosons.

In section 4.2.3, we argued that the simulations of disordered many-body systems are very
difficult and require large amounts of computational resources. To compute simulations of strongly
interacting bosons (mapping to weakly interacting fermions), we allow only two particles at one
site, imax = 2. In the case of weak interactions, such constraint would for sure change the results
and simulations would not be faithful. On the other hand, when the interactions are strong, the
probability of having more than two particles at one site is small 8. This trick greatly reduces the
cost of simulations. We note that the fermionic interaction strength is proportional to U−1, see
Eq. (4.54). In order to simplify the notation, in the following sections we use UF = U−1 to represent
the interaction strength between the fermions.

In the study of weakly interacting bosons, the anticipations about the possible outcome were
based on the mean-field treatment. Now, with weakly interacting fermions, we do not have such help,
hence our simulations are more expensive. This is the reason why we increase ∆x from ∆xk0 = 0.2

to ∆xk0 = 1. This move allows us to save the computational resources and calculate the time
evolution for longer times than for weakly interacting bosons.

4.7.1 Destruction of the boomerang effect

At the qualitative level, the effect of interactions on the boomerang effect should not depend
on their details. For strongly interacting bosons, mapping to weakly interacting fermions, we also
expect that interactions will weaken Anderson localization. The interactions, which are considered

8. Remember that also the total number of particles is rather low, N = 5 and that the interaction energy in the
Bose-Hubbard model for n particles at the same site is Un(n− 1)/2 = 3U for n = 3.



130 Chapter 4. Many-body quantum boomerang effect

0 20 40 60 80 100 120

t/τ

0.0

0.2

0.4

0.6

0.8

〈x
〉/
`

U =∞
U = 50

U = 25

U = 20

U = 15

Figure 4.9. Center of mass time evolution for different values of interactions U . Similarly to mean-
field and weakly interacting bosons, the short time evolution is almost unaffected by interactions.
At longer times, the center of mass saturates are some finite values. Error bars indicate statistical
average errors and are shown only for one curve to indicate their magnitude.

as an effective dephasing mechanism, lead to the destruction of coherence between scattering paths,
and finally to destruction of the full boomerang effect.

Figure 4.9 presents the result of the center of mass time evolution. Similarly to the non-
interacting case, after the initial ballistic evolution, the center of mass is reflected towards the
origin. Analogously to the mean-field and weakly interacting bosonic cases, the destruction of the
boomerang effect is visible in the long time regime. For all situations with non-infinite U (nonzero
effective interaction between fermions UF ), we observe that the return is not complete: the CMP
saturates at some nonzero value. The figure shows also the statistical error bars. Because the number
of disorder realizations is small, the errors are relatively large. Nonetheless, the effect of interactions
is clearly visible and can be analyzed taking into account the uncertainties. The limited maximal
time of evolution does not allow us to study in detail the mean square displacement of the particle
density.

The numerical simulations have been divided into temporal intervals with growing bond dimen-
sion. In all simulations imax = 2, and the following maximal bond dimensions have been used:

U = 50 : χmax = 820, tCPU ≈ 720 CPUh,

U = 25 : χmax = 680, tCPU ≈ 330 CPUh,

U = 20 : χmax = 530, tCPU ≈ 140 CPUh,

U = 15 : χmax = 390, tCPU ≈ 55 CPUh.

(4.55)

The computation times denote the time used for a single disorder configuration.

The main observation is that the boomerang effect is only partial, even though the effective
interactions between fermions are attractive and fairly complicated. There is no qualitative differ-
ence between the results of the mean-field approximation, weakly interacting bosons and weakly
interacting fermions. Interactions weaken the quantum boomerang effect.
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Figure 4.10. Time evolution of the center of mass in the interval [60τ, 120τ ] (solid lines) and fits of
the algebraic decay, Eq. (4.56) (dashed lines). Similarly to Fig. 4.4, with the exponent α = 3, the
resulting fits yield satisfactory results.

4.7.2 Final center of mass position

Similarly to the study of the boomerang effect in the mean-field approximation in section 3.3
and the weakly interacting bosons in section 4.4, we analyze the final center of mass position. Even
though the calculations for strongly interacting bosons have larger maximal time, the observed
destruction of the boomerang is smaller – saturation levels are much closer to the non-interacting
curve. Moreover, similarly to the weakly interacting bosons, the non-interacting CMP is significantly
above zero, even near the final time of the simulation.

Once again, instead of calculating the long-time average Eq. (4.41), we use the algebraic fit in
the time interval [60τ, 120τ ]:

〈x(t)〉 = 〈x〉∞ +
β

tα
, (4.56)

where 〈x〉∞ and β are fitting parameters. Analogously to the weakly interacting bosons, we expect
that for the exponent α = 2, the fit for the non-interacting will return 〈x〉∞ = 0. This is the case.
Moreover, for the nonzero values of UF = U−1 we take α = 3 (as in section 4.4). Figure 4.10
shows a comparison of the numerical data with fitted functions. The data shows high correlation
between different interaction strengths because we use the same disorder realizations. Also in this
case, we have checked that the overall fitting result is almost independent of the exponent value α
in Eq. (4.56).

In Fig. 4.11, we present the dependence of the final CMP on the effective interaction strength
UF between fermions. Likewise, in the case of the mean-field approximation, section 3.3.2, for the
smallest values of the interaction strength, the dependence seems to be quadratic. This confirms
that the observed breakdown of the full boomerang effect does not depend on the details of the
interactions present in the system.
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Figure 4.11. Final center of mass position 〈x〉∞ versus UF = U−1. The errors for the points result
from the fitting of the decay Eq. (4.56). Alike in the mean-field study, the dependence of the final
CMP on the effective interaction strength between fermions UF = U−1 is quadratic.
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Figure 4.12. Inverse of the break times tb versus UF = U−1 calculated for the final center of
mass 〈x〉∞ by fitting an algebraic decay, Eq. (4.56). The errors are calculated using the errors of
〈x〉∞. The data strongly suggests linear dependence. The dashed line presents the best linear fit
τ/tb = 0.28UF = 0.28/U .
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4.8 Break time for strongly interacting bosons

Given the results presented in the previous section, we may ask whether the destruction of the
boomerang effect for strongly interacting bosons can be effectively described using the break time,
a universal parameter introduced in section 3.5 (see Eq. (3.25) and Eq. (3.26)).

4.8.1 Break time – boomerang effect

For the weakly interacting bosons, the use of break time was a natural extension of the mean-field
approximation. In the case of strongly interacting bosons (mapping to weakly interacting fermions),
this has to be analyzed in detail. Figure 4.11 shows the approximately quadratic dependence of
〈x〉∞ on the effective interaction strength between fermions UF . We, once again, remind the long
time evolution of the center of mass

〈x(t� τ)〉 ≈ 64`
ln(t/4τ)τ2

t2
, (4.57)

which, if we neglect the logarithmic part, supports the idea of calculating the break time based on
the t−2 decay. Analogously to the case of weakly interacting bosons, the break time is computed
from (cf. Eq. (4.44))

〈x(tb)〉non-int. = 〈x〉∞(U), (4.58)

where the left hand side is the non-interacting theoretical prediction. For the right-hand side, we
use 〈x〉∞ extracted from the fits.

This time, we expect 1/tb to be proportional to the fermionic counterpart of the nonlinear
(interaction) energy introduced for the mean-field analysis (cf. section 3.5.4). From the form of the
fermionic interaction term, Eq. (4.54), we see that UF = U−1 is a measure of the interaction energy.

Figure 4.12 shows the dependence of 1/tb on the effective interaction UF = U−1 suggesting a
linear behavior. Similarly to the weakly interacting bosons case, the point for the weakest interactions
slightly deviates from the linear dependence. When the boomerang effect is only moderately affected
by the interactions, the time evolution has to be very long to extract the exact value of the final
CMP. When 〈x〉∞ are overestimated, the corresponding tb are smaller than the exact break times.

Nonetheless, the results are very similar to the ones obtained for the mean-field approximation,
see section 3.5, and for the weakly interacting bosons, see Fig. 4.5. It means that the underlying
mechanism of the destruction of the boomerang effect is similar, independently of the type of in-
teraction. The destruction of the boomerang may be fully characterized by a single parameter, the
break time tb, proportional to the interaction strength between the particles.

4.8.2 Break time for the entropy of entanglement

In the simulations, we can also observe another interaction-driven phenomenon, which can be
characterized by its own time scale. Due to the interactions, we observe a growth of the entropy of
entanglement in the system. Does it increase on the same time scale tb?

Figure 4.13 shows the time evolution of the entropy of entanglement averaged over the possible
bipartitions. For the Tonks-Girardeau gas case, apart from the initial growth, the entropy saturates,
what is also confirmed by the analysis of the supremum of the entropy. We denote the final value of
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Figure 4.13. Time evolution of the entropy of entanglement (average over all possible bipartitions)
for different values of the interaction strength U . S∞0 denotes the final value of the entropy in the
Tonks-Girardeau gas.

the entropy for the Tonks-Girardeau gas by S∞0 . When the interactions are not infinite, the entropy
grows further.

We can define a characteristic time scale called entropy break time, denoted by tSb , for which the
entropy between the interacting particles exceeds the final value of the Tonks-Girardeau gas entropy
S∞0 . We calculate its value from the following relation:

S(tSb )(U) = S∞0 , (4.59)

where for the left-hand side, we use the data for nonzero interactions. Figure 4.14 presents a
comparison of the boomerang break times and entropy break times. The relation between the
break times is approximately linear. The ratio between the break times is similar for all points,
approximately equal to tSb /tb ≈ 0.5.

There is yet another time scale that we can compare with our results. Bose-Hubbard model,
Eq. (4.6), for strong repulsion U0 � J0 can be effectively described by the Heisenberg XXZ spin
chain where doubly occupied lattices are mapped to spin-up states and empty sites to spin-down
states [203–205]. The characteristic time scale of the spin system is given by U0/J

2
0 . It turns out

that the boomerang break times (expressed in units of the scattering mean free time) agree within
several percent with the characteristic times coming from the spin chain:

U0 = 50
U0

J2
0

= 200 tb = 133.2τ,

U0 = 25
U0

J2
0

= 100 tb = 95.6τ,

U0 = 20
U0

J2
0

= 80 tb = 77.2τ,

U0 = 15
U0

J2
0

= 60 tb = 52.1τ.

(4.60)
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Figure 4.14. Entropy based break times tSb plotted versus boomerang break times tb. The values
of break times are comparable within a factor 2. The dependence is more or less linear, the slight
deviation for the point around tb ≈ 130τ originates probably in the overestimation of the 〈x〉∞ due
to too short time evolution.

As explained above, the break time for the highest interaction strength U0 is underestimated.
The last observation together with the fact that tSb ≈ 0.5tb strongly suggests that the destruction

of the quantum boomerang effect can be characterized by the same time scale as other many-body
phenomena existing in the system. Such observation goes far beyond the mean-field analysis and
shows that the destruction of Anderson localization in many-body systems may be grasped using
the same tools which allow to exhibit the effects of interactions in many-body systems.

4.9 Conclusion

In this chapter we have discussed the effect of interactions on the quantum boomerang effect
using quasi-exact many-body approach. On the numerical side, the simulations have been performed
using the time evolving block decimation algorithm based on matrix product states. This has allowed
us to study the weakly interacting bosons, the Tonks-Girardeau gas, and strongly interacting bosons,
which can be mapped to weakly interacting fermions.

The first part of our study has shown that the effect of weak interactions between the bosons
is qualitatively similar to the behavior in the mean-field approximation. This time, however, the
interactions are not approximated, which strengthens their effect on the destruction of the boomerang
effect: the final center of mass positions are higher than in the mean-field approximation. This
translates to shorter break times of the many-body system. In the simulations, the total number
of particles is not very high, so, to support this conclusion, we have also analyzed the features
of the average one-body density matrix which have clearly shown that the condensate fraction in
our system is very low. Hence, the observed phenomena are necessarily exceeding the mean-field
analysis.

In the second part of the chapter, we have shown that the particles of the Tonks-Girardeau gas
undergo the full boomerang effect. Apart from agreement between the numerical and theoretical
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results for the center of mass evolution, we have shown that the final particle density is given by
a convolution of the Gogolin profile and the initial particle density. In the presence of non-infinite
interactions between bosons (that is, effective weak interactions between fermions), the boomerang
effect is only partial. To study the destruction of the boomerang effect in detail, we have calculated
the break time and shown that is proportional to the interaction strength between bosons, i.e.
inversely proportional to the effective interaction strength between the fermions. Moreover, from
the analysis of the entropy of entanglement, we have computed another characteristic time and
shown that this time is comparable and proportional to the break time.

To understand better the presented results, simulations with a larger number of particles should
be performed as a continuation of this work, e.g. for N = 10 particles. In [172], many-body
Anderson localization of a bright soliton was studied from the perspective of the composite particle.
It would be very interesting to check whether such a composite object undergoes the quantum
boomerang effect. Another perspective could be an investigation of the boomerang effect in systems
with different interaction models. Furthermore, a very interesting study of the boomerang effect
could be performed in the regime of higher interactions and disorder strengths. This might allow
for making more connections with the many-body localization phenomenon, although it may require
huge computer resources.



Conclusion

In this thesis, we have investigated various aspects of the quantum boomerang effect, a newly
discovered phenomenon present in Anderson localized disordered systems. We have studied the
influence of time reversal symmetry breaking on the existence of the phenomenon and analyzed the
impact of interactions using the mean-field approximation and a quasi-exact approach.

Summary of the results

In chapter 2, we have studied a one-dimensional system with spin-orbit coupling, which breaks
time reversal invariance and all anti-unitary symmetries. Until now, the fate of the boomerang
effect in systems without time reversal invariance was not known. We have directly shown that time
reversal invariance of the system is not a necessary condition for the quantum boomerang effect. The
classical picture is very similar to the one in systems with time reversal invariance: after the initial
ballistic evolution, particles localize at a finite distance. Using a generalization of the Berezinskii
diagrammatic technique, we have calculated, in a quasi-analytic form, the quantum prediction for
the temporal evolution of the center of mass which agrees perfectly with the quantum numerical
simulation. The result confirms that the particle returns to its origin at very long time. In contrast
to the time reversal invariant system, the theoretical solution is not universal. It depends on an
additional parameter. Furthermore, we have shown that the final wave packet density is described
by the Gogolin profile.

The analysis of the impact of the interactions on the quantum boomerang effect consists of two
parts. In chapter 3, we have thoroughly investigated the problem using the mean-field approximation.
For nonzero interactions, we have observed a partial destruction of the boomerang effect. After the
initial evolution and reflection of the center of mass, it saturates at a finite position. The interactions
are viewed as a time-dependent fluctuating potential which weakens Anderson localization, hence
the boomerang effect. In addition to wave packets, we have performed the analysis of the boomerang
effect for plane waves. The numerical results have led us to an important parameter that universally
characterizes the destruction of the boomerang effect: the nonlinear energy. This parameter captures
all features of the destruction of the boomerang effect.

The second part of the study of interactions has used a quasi-exact approach to many-body
systems. Chapter 4 includes the analysis of weakly interacting bosons, the Tonks-Girardeau gas,
and strongly interacting bosons. The numerical simulations have been based on the time-evolving
block decimation algorithm employing matrix product states. For weakly interacting bosons, we have
observed the destruction of the boomerang, similar to the mean-field study. In this case, however,
the effect of the interactions is stronger. Analyzing the average one body density matrix, we have
shown that the final state is far from a Bose-Einstein condensate. It shows that quantum corrections,
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absent in the mean-field approximation, have a strong effect on the destruction of the boomerang
effect. Break times, i.e. time scales at which the boomerang effect is destroyed, calculated from the
many-body simulations are significantly shorter than in the mean-field approach.

For the Tonks-Girardeau gas, we have observed the full quantum boomerang. The particles in
a disordered Tonks-Girardeau gas are Anderson localized. Hence, the boomerang effect is expected.
Moreover, we have shown that the final density agrees with a theoretical infinite-time profile based
on the Gogolin profile.

The last part of the study has focused on strongly interacting bosons, which map to weakly
interacting fermions. Likewise, the interactions weaken the boomerang effect. We have shown that
for strongly interacting bosons, the observed phenomenon may also be captured using the same
approach as in the mean-field approximation. Taken together, these findings demonstrate that the
destruction of the boomerang effect due to interactions is universal. Additionally, we compared
break times to other interaction-driven time scales, showing many similarities.

Outlook

To complete the thesis’ conclusion, we would like to propose possible directions for future studies.
The results presented in the thesis extend the knowledge of the quantum boomerang effect and can
serve as starting points for future research.

We have to underline once more the importance of the results of chapter 2. Initially, the proof of
the existence of the quantum boomerang effect was based on two pillars: Anderson localization and
time reversal symmetry. We now know that the phenomenon does not need this symmetry. However,
we have only a technical proof for the two-state scenario and preliminary results showing that the
boomerang effect is present in the four-state scenario. It reveals that the quantum boomerang effect
is more general than initially assumed. This sets the most important direction for future research.
We are lacking a simple explanation that only Anderson localization is needed for the quantum
boomerang effect. This perspective is, probably, the most important, intriguing, as well as desired.

The existence of the boomerang effect without time reversal invariance leads to another interest-
ing perspective: a study of the boomerang effect in higher-dimensional systems. We revealed that
time reversal symmetry is not needed for the phenomenon in one-dimensional systems, but we do
not have any evidence that it is true in higher dimensions. Answering this question may also help in
understanding why time reversal invariance is not a necessary condition for the quantum boomerang
effect.

In the thesis, we slightly generalized the Berezinskii technique. In our opinion, it is a little bit
forgotten. We believe that the diagrammatic approach may be adopted also to other one-dimensional
systems and used in theoretical calculations.

Future research should also address interacting systems. Interactions are an indispensable part
of experiments, the results of which, as theorists, we would like to see. The analysis of the mean-
field approximation could be reinvestigated by including Bogoliubov excitations or using a novel
hydrodynamic approach [206]. This is probably a tractable problem which could shed light on the
difference between the mean-field and many-body results.

Studies should not restrict only to approximate treatments of interactions. For example, we are
curious if a solitonic boomerang may be observed. Alike the Tonks-Girardeau gas, bright solitons in
disordered systems display Anderson localization. Hence, we could expect the full boomerang effect
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in such a system. The quantum return to the origin of a composite object would be a new unseen
phenomenon.

Lastly, also from the perspective of many-body interactions, an investigation of many-body local-
ized systems could be very intriguing. Whether a many-body localized system displays a quantum
boomerang effect – either partial, total, or zero – is a challenging question left for future studies.





Appendix A

Formulary

Useful formulas with all necessary constants

A.1 Fourier transforms

Transforms between position x and wave number k domains, assuming d dimensions:

f(x) =
1

(2π)d

∫
dkd eik·xf̂(k), (A.1)

f̂(k) =

∫
dxd e−ik·xf(x). (A.2)

Dirac delta function normalization:∫
dkd eik·x = (2π)dδ(x),

∫
dxd e−ik·x = (2π)dδ(k). (A.3)

Transforms between time t and frequency ω domains:

f(t) =
1

2π

∫
dω e−iωtf̃(ω), (A.4)

f̃(ω) =

∫
dt eiωtf(t). (A.5)

Dirac delta function normalization:∫
dω eiωt = 2πδ(t),

∫
dt e−iωt = 2πδ(ω). (A.6)

Transforms between time t and energy ε domains:

f(t) =
1

2π~

∫
dε e−iεt/~f̃(ε), (A.7)

f̃(ε) =

∫
dt eiεt/~f(t). (A.8)
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Dirac delta function normalization:∫
dε eiεt/~ = 2π~δ(t),

∫
dt e−iεt/~ = 2π~δ(ε). (A.9)

A.2 Density of states

For a spectrum ε = ~2k2
ε /2m:

1D: νε =
m

πkε~2
(A.10)

2D: νε =
m

2π~2
(A.11)

3D: νε =
mkε

2π2~2
(A.12)

In general:

νε =
dAd

(2π)d
mkd−2

ε

~2
, (A.13)

where Ad is the volume of the unit sphere in d dimensional space:

Ad =
πd/2

Γ(1 + d/2)
, A1 = 2, A2 = π, A3 =

4π

3
. (A.14)

A.3 Green’s functions for a free particle

Energy-momentum representation:

GR,A0 (ε, k) =
1

ε− εk ± i0+
(A.15)

Energy-configuration space representation:

1D: GR,A0 (ε, r) = ∓iπνεe±ikε|r|, (A.16)

2D: GR,A0 (ε, r) = ∓iπνεH(1,2)
0 (kε|r|) , (A.17)

3D: GR,A0 (ε, r) = −πνε
e±ikε|r|

k|r| , (A.18)

where H(1,2)
0 (x) is the Hankel function of the first or second kind: H(1,2)

0 = J0(x)± iY0(x) and J0(x),
Y0(x) are the Bessel functions of the first and second kind.

A.4 Averaged Green’s functions

Energy-momentum representation:

G
R,A

(ε, k) =
1

ε− εk ± i ~
2τ

, (A.19)

where no real part of self energy is assumed and 1/τ = −2 Im Σ(ε, k)/~.
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Energy-configuration space:

(in any dimension) G
R,A

(ε, r) = GR,A0 e−|r|/2`, (A.20)

where ` is defined as ` = ~k
m τ , and the weak disorder limit, k`� 1, is assumed:√

k2 ± im/~τ ≈ k ± i/2`.

In the above equations the momentum ~k is a representation of the energy, not a variable.

A.5 Disorder strength γ

In any dimension:

γ =
~

2πνετ
. (A.21)

For particular dimensions:

1D: γ =
~4k2

2m2`
(A.22)

2D: γ =
~4k

m2`
(A.23)

3D: γ =
π~4

m2`
(A.24)

A.6 Generally useful mathematical formulas

Simple pole residue calculation using de l’Hôpital rule. Assume that function f(z) has a
simple pole at z = c, additionally assume that f(z) = g(z)/h(z), where g(z) and h(z) are holomor-
phic, and such that h(c) = 0 and h′(c) 6= 0. Then we can show that:

Resz→cf(z) = lim
z→c

(z − c)g(z)

h(c)

de l’Hôpital
= lim

z→c
g(z) + zg′(z)− cg′(z)

h′(z)
=

g(c)

h′(c)
. (A.25)

Sokhotski-Plemelj theorem (sometimes called Cauchy formula). Assume that we want to eval-
uate a Cauchy type integral over an interval a < 0 < b on a real axis. Let f(z) be complex function
continuous on the real axis (inside desired interval). Then

lim
ε→0+

∫ b

a

f(x)

x± εdx = ∓iπf(0) + P
∫ b

a

f(x)

x
dx , (A.26)

where P denotes Cauchy principal value.

Sign of imaginary part of a simple pole. Assume that we are interested in calculating integral
of a function (ε−H(k))−1 over a real k axis. Let ki(ε) be one of solutions to equation ε−H(k) = 0.
Then, usually, for integration we use residue theorem which facilitates the integral. We have to
determine what are the poles that we include into the contour of the integration, depending on the
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sign of their imaginary part. For this we may use following:

ki(ε+ iη) ≈ ki(ε) + iη
dki(ε)
dε

, (A.27)

so that the sign of the imaginary part is determined by the derivative of ki with respect to ε. If
we know the inverse relation, i.e. dispersion relation ε(k), the sign is determined by the sign of the
group velocity vg(k).

Asymptotic expansion of the confluent hypergeometric function of the second kind.
This function appears in the solution of Berezinskii equations for the center of mass time evolution.
In our analysis we are interested in a series expansion for short times, which translates to large
frequencies ω � 1. The analytic expansion is known, it can be found in Abramovitz and Stegun (p.
508) [54]:

Ψ(a, b; z) = z−a
(R−1∑
n=0

(a)n(1 + a− b)n
n!

z−n +O(|z|−R)

)
, for |z| � 1, and − 3π

2
< arg z <

3π

2
,

(A.28)
where (a)n is the Pochhammer symbol:

(a)n = a(a+ 1)(a+ 2) . . . (a+ n− 1), (a)0 = 1. (A.29)
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Quantum boomerang effect in disordered ultra-cold atomic gases

Abstract : In this thesis, we theoretically and numerically investigate the quantum boomerang
effect – i.e. the return of a wave packet launched with a nonzero velocity to its initial position –
in ultra-cold disordered atomic gases. We address three main problems. We study the effect of the
time-reversal symmetry breaking on the existence of the quantum boomerang phenomenon. We show
that time-reversal symmetry is not a necessary condition for the presence of the quantum boomerang.
Next, we investigate the impact of interactions on the quantum boomerang effect, using the mean-
field approximation. The interactions lead to partial destruction of the boomerang effect. Within
the framework of the Gross-Pitaevskii equation, we identify a universal parameter that describes the
observed destruction of the particle’s return to the origin. Finally, we numerically study the effect
of interactions using a quasi-exact approach. To this end, we study weakly interacting bosons, the
Tonks-Girardeau gas, and strongly interacting bosons, which map to weakly interacting fermions. We
find that weakly interacting bosons exhibit stronger destruction of the boomerang effect than in the
case of the mean-field approach, thus that quantum fluctuations play a major role. Results for the
Tonks-Girardeau gas show the existence of the full quantum boomerang phenomenon. Moreover, the
results for strongly interacting bosons, where the boomerang is also only partial, provide evidence that
the destruction of the quantum boomerang effect does not depend on the details of the interactions
between particles.

Keywords : Anderson localization, quantum boomerang effect, time-reversal invariance, Gross-
Pitaevskii equation, many-body interactions

Résumé: Nous étudions théoriquement et numériquement l’effet boomerang quantique - c’est-à-
dire le retour à son point de départ d’un paquet d’ondes lancé avec une vitesse non nulle - dans
les gaz atomiques désordonnés ultra-froids. Nous étudions tout d’abord l’effet d’une rupture de la
symétrie par renversement du temps et montrons que, contrairement à ce qui était couramment
admis, cette symétrie n’est pas une condition nécessaire à la présence de l’effet boomerang. Ensuite,
nous étudions l’impact des interactions sur l’effet boomerang, en utilisant l’approximation de champ
moyen. Dans le cadre de l’équation de Gross-Pitaevskii, nous montrons que les interactions conduisent
à une destruction partielle de l’effet et identifions un paramètre universel qui décrit cette destruction.
Enfin, nous étudions numériquement l’effet des interactions en utilisant une approche "many-body"
quasi-exacte. À cette fin, nous étudions les bosons en interaction faible, le gaz de Tonks-Girardeau, et
les bosons en interaction forte, qui correspondent à des fermions en interaction faible. Nous observons
que les bosons faiblement interagissant présentent une destruction plus forte de l’effet boomerang que
dans le cadre du champ moyen, ce qui signifie que les fluctuations quantiques jouent un rôle majeur.
Pour le gaz de Tonks-Girardeau, nous montrons montrent que le phénomène de boomerang quantique
est complet. Les bosons en forte interaction, où l’effet boomerang n’est que partiel, fournissent la
preuve que la destruction de l’effet ne dépend pas des détails des interactions entre particules.

Mots clés : localisation d’Anderson, effet boomerang quantique, invariance par renversement du
temps, equation de Gross-Pitaevskii, problème à N corps
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