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Composition du Jury :
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INTRODUCTION

1.1/ INDUSTRY 4.0

We live in an era where the world is more connected than ever before and everything is

digitized from smartphones, smart vehicles to smart homes and smart cities. This tech-

nological shift propagated as well throughout the industrial world and is at the heart of the

4th Generational Industrial revolution (Industry 4.0) [Gilchrist, 2016, Greengard, 2015].

From supply chain optimization to autonomous driving vehicles, manufacturing units and

automotive companies are increasingly integrating smart sensors, smart cameras, smart

robots and many more Internet Of Things (IoT) devices to further improve the efficiency

of their processes and the quality of their products.

1.2/ DATA HETEROGENEITY

Despite the heterogeneity of these IoT devices, they all have one thing in common: they

generate vast amount of data. Furthermore, the data generated is as heterogeneous

as the smart devices themselves. For instance, IoT devices such as smart sensors and

cameras installed in smart vehicles or throughout a smart factory generate different data

types including:

• Digital image: consists of a set of pixels organized in a form of a grid. Each pixel

value denotes its brightness level (e.g. gray-scale image) or its color intensity (e.g.

RGB image). The collection of these pixels constitutes the image’s features such

as the image’s edges, corners, ridges, etc.

• Digital video: consists of a series of digital images combined and displayed in

succession.

• Structured relational data: consists of a table with different attributes and tuples

containing either categorical or quantitative values.

3
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1.3/ DATA CYCLE

Upon data generation, three main actors play major roles throughout the collection, re-

lease, and usage of the data :(i) data owners, (ii) data collectors and (iii) data consumers.

Data owners own the data and decide what will happen to it after generation. Whereas

data collectors (e.g., data engineers) collect and release the data in the following format:

• Static bulk dataset: all data points are grouped into one fixed size dataset that is

released once for processing purposes.

• Sequential/incremental dataset: a group of data points is collected into one sub-

set at each time interval and released for processing purposes. In other words, the

released dataset is a combination of subsets collected at different time intervals.

• Data stream: a new data point is generated, collected and released at each time

instant for processing purposes.

Last but not least, data consumers (e.g., data scientists in other organizational units

within the same company or 3rd party providers) extract relevant insights from the re-

leased data via descriptive reporting, correlation or predictive analytics. Several con-

cepts such as supervised Machine Learning [Muhammad et al., 2015] (e.g. Deep Learn-

ing [Bengio, 2009]), unsupervised Machine Learning [Grira et al., 2004] (e.g. cluster-

ing) or Reinforcement Learning (RL) [Kaelbling et al., 1996, Arulkumaran et al., 2017] are

usually employed by the data consumers when performing the reporting/analytical tasks

either in a centralized, distributed [Verbraeken et al., 2020a] or collaborative learning pro-

cess (e.g., Federated Learning [McMahan et al., 2017, Yang et al., 2019a]). In the follow-

ing, we briefly elaborate on the most relevant concepts to our study.

• Machine Learning (ML) [Qiu et al., 2016]: is an application of artificial intelligence

(AI) that provides machines the ability to automatically learn and predict certain out-

comes without being explicitly programmed to do so. ML approaches accomplish

that by iterating several times over data points and are usually classified into super-

vised and unsupervised. Supervised approaches (e.g. Deep learning) learn and

improve from labeled data points whereas unsupervised ML (e.g. clustering) learn

and discover patterns from unlabeled data.

• Deep Learning (DL) [Bengio, 2009]: Artificial Neural Network (ANN) [Haykin, 2010]

is a computational nonlinear model inspired by the biological systems in information

processing. It consists of artificial neurons (a.k.a. perceptrons) interconnected to

form three distinct layers: (i) input layer, (ii) hidden layer and (iii) output layer. Ar-

tificial neural networks with more than one hidden layer are called Deep Neural
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Networks (a.k.a. Deep Learning). DL techniques mainly employ supervised feature

learning to map input raw data (e.g. digital images) to a specific output (e.g., class,

bounding box, etc...). In other words, a deep neural network “learns” to extract rele-

vant features in an end-to-end manner via input/label pairs. Please refer to Chapter

2 for more details regarding DL and the learning process.

• Clustering [Grira et al., 2004]: is the task of grouping data points into clusters such

that data points within the same cluster have similar characteristics when compared

to data points in other clusters. This grouping can be achieved in an unsupervised

manner. Some of known clustering algorithms are K-means [Hartigan et al., 1979]

and hierarchical clustering [Johnson, 1967].

• Federated Learning (FL) [McMahan et al., 2017, Yang et al., 2019a]: is a ML set-

ting where multiple clients (e.g., data owners) collaborate in solving a machine

learning problem under the coordination of a central server/coordinator. Each

client’s raw data is stored locally without being exchanged nor transferred to the

central server; instead, the model’s parameters are shared/aggregated and used

to achieve the learning objective. Please refer to Chapter 5 for additional details

regarding the FL concept.

1.4/ PRIVACY: A NECESSITY

Generated data, whether it is static, sequential or a data stream, might contain in-

formation relating to an identified or identifiable data subject, i.e. personal data

[Jensen et al., 2019]. As defined in the Cambridge English Dictionary1, privacy is “some-

one’s right to keep their personal matters and relationships secret”. Individual’s privacy

and anonymity is more critical in our data-driven world due to the vast amount of data

being generated, released and processed daily. Hence, we talk about data privacy.

1.4.1/ DATA PRIVACY

Data privacy governs how data is collected, released and used. Several data protec-

tion regulations have been introduced by governments in the last couple of years such as

the General Data Protection Regulation (GDPR) in Europe [European Parliament, 2018b]

and the California Consumer Privacy Act (CCPA) [Legislature, 2018] in the United

States to protect the personal data and the privacy of the data subjects. Article

5 of the GDPR lists seven principles to consider when processing2 personal data

1https://dictionary.cambridge.org/dictionary/english/privacy
2processing includes data collection, organisation, structuring, storage, alteration, consultation, use, com-

munication, combination, restriction, erasure or destruction.

https://dictionary.cambridge.org/dictionary/english/privacy
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[European Parliament, 2018c]. In short, the seven principles are:

• Lawfulness, fairness and transparency

• Purpose limitation

• Data minimisation

• Accuracy

• Storage limitation

• Integrity and confidentiality (security)

• Accountability

Organizations are obliged to respect and enforce these seven principles to process per-

sonal data in a compliant way. Nonetheless, we elaborate on the third principle as it is

the most relevant to our study. “Data minimization” is defined in Article 5(1)(c) as the

following: ”Personal data shall be adequate, relevant and limited to what is necessary in

relation to the purposes for which they are processed” [European Parliament, 2018a].

In the following, we present an example scenario at a BMW Group manufacturing unit to

demonstrate when the question of data privacy arises and explain how the ”data mini-

mization” principle is relevant.

Example Scenario at BMW Group: Throughout the production process of a vehicle,

workers perform multiple quality checks around the assembly lines by inspecting different

parts and checking for faulty manufacturing (such as missing warning triangles, airbag

stickers or scratches as seen in Figure 1.1). ML and more specifically DL algorithms

trained for Computer Vision (CV) tasks (e.g., object detection [Liu et al., 2016], image

classification [Russakovsky et al., 2015a]. . . ) are deployed to assist plant workers with

the vehicle’s inspections to reduce the quality check cycles. On the one hand, training

these DL models requires capturing, storing and more specifically labeling large amounts

of images by ’human labelers’ [Ayle et al., 2020]. On the other hand, these captured

images might contain personal/sensitive information such as workers’ faces, workers’

belongings, or even name tags. These sensitive features are not relevant for labeling

nor for training the DL models to detect vehicle parts. Hence, using and labeling these

images without removing these identifying features is a breach to the ”data minimization”

principle.
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Figure 1.1: Automated Quality Checks via Object Detection techniques in order to check
that (a) Warning triangles and (b) Airbag Plugs are installed correctly on the correspond-
ing vehicles in production. The worker’s identifying features are highlighted in green.

1.4.2/ DATA ANONYMIZATION

As defined in [European Parliament, 2019, European Parliament, 2018b], data

anonymization is the process of creating anonymous information, namely informa-

tion which does not relate to an identified or identifiable natural person in such a manner

that the data subject is not or no longer identifiable. Numerous anonymization mecha-

nisms/techniques have been proposed in the literature for each data type. For instance,

perturbative [Dwork, 2008] and non-perturbative [Samarati et al., 1998] mechanisms

were proposed to guarantee the anonymity of the data subjects in structured relational

datasets. Similarly, many anonymization3 techniques (a.k.a. obfuscation techniques

in the context of images) such as pixelating, blurring or masking have been used to

protect/hide personal/sensitive (i.e., identifying) features in images by modifying the

images’ pixels [Hill et al., 2016b].

1.4.3/ PRIVACY ATTACKS

All anonymization techniques, whatever the data type, take into consideration the trade-

off between privacy and utility. It is a trade-off that is highly required to keep the

dataset suitable for analysis while preserving the data subject’s anonymity. How-
3Throughout the rest of this study, we will use the terms obfuscation and anonymization interchangeably

in the context of digital images.
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ever, sometimes it keeps anonymization vulnerable and unable to cope with all sort

of attacks [Wong et al., 2011a, Cormode et al., 2010, Kifer, 2009a, Bouna et al., 2015,

McPherson et al., 2016]. As defined in [Do et al., 2018] within the field of security, an

adversary refers to an attacker, often with malicious intents, that undertakes an attack on

a secure system to prevent or disrupt its proper operation. The adversary is presented as

a three-component model having a goal, assumptions (i.e., knowledge) and capabilities

(c.f. Figure 1.2 ).

Figure 1.2: The three components of the adversary model defined in [Do et al., 2018]

As the European Union Agency for Cybersecurity (ENISA) mentioned in their techni-

cal report published in 2019 [Jensen et al., 2019], anonymization techniques and privacy

models should always be re-investigated as the adversaries (adversarial models) are

evolving and becoming more challenging. Several privacy breaches proved through-

out the years that anonymization techniques should always be revisited: starting from

the Sweeny study back in 2000 [Sweeney, 2000] where the author linked de-identified

patient-specific medical data to a voters’ list and showed that 87.1% of the United States

population was uniquely identifiable from the combination of their Date of Birth (DoB), Sex

and Zip code, to the AOL [Barbaro et al., 2006] and Netflix cases [Narayanan et al., 2006]

in 2006. Please refer to [Awad, 2020] for a detailed description of these attacks. Below,

we present two more recent privacy breaches, more specifically in the context of relational

datasets and images:

• The case of Taxa 4x35 [Board, 2019]: Taxa 4×35 is a Danish taxi service that

allows its users to hail cabs in Copenhagen with an application. Similar to any

cab-driving company, taxa collects data including the customer’s name, telephone

number, the date of the trip, the payment methods. . . Taxa anonymized the data

by deleting the names associated with the trip records from their database. After

adapting/applying the GDPR law and principles in 2018, the Danish authorities,

i.e. Datailsynet, realized that this anonymization technique is inadequate and that

even after deleting the customer’s name, taxa still had enough information (e.g.
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customer’s phone number) to re-identify each individual in the dataset.

• Breaching privacy in obfuscated images: the authors in

[McPherson et al., 2016], demonstrated that modern image recognition ap-

proaches (i.e. DL models) can be employed to recover hidden information from

obfuscated protected images [McPherson et al., 2016]. The adversary suc-

cessfully identified obfuscated faces and objects by training image recognition

networks on obfuscated images (faces [Ng et al., 2014], digits [LeCun, 1998] and

objects [Krizhevsky et al., 2009]).

1.5/ PROBLEM AND CONTRIBUTIONS

Privacy regulations [European Parliament, 2018b] compel data-driven companies to

guarantee a level of anonymization that requires “irreversibility preventing identification

of the data subject”, taking into account all the means “reasonably likely to be used” for

identification. In other words, when applying an anonymization technique or a privacy

model, one should carefully study its resiliency and robustness against adversaries, e.g.,

the motivated intruder’s test proposed in the ICO code of conduct4. Therefore throughout

our thesis, we (i) propose and implement several anonymization techniques and tools in

the context of images and relational data streams and (ii) assess the robustness of these

techniques by simulating adversaries with different knowledge and several attacking ca-

pabilities. More specifically, our contributions can be summarized as the following:

1. In the first contribution, we design and implement an anonymization tool that lo-

calizes sensitive information in images/videos via DL-based techniques and obfus-

cates it accordingly. This chapter was published as a public GitHub Repository

[Tekli et al., 2021], as a press release by BMW Group [Hatzel, 2021] and as a white

paper by Intel Cooperation [Intel, 2021].

2. In the second contribution, we study the robustness of obfuscation techniques in

the context of images, more specifically facial images. We propose a recommen-

dation framework that evaluates the robustness of image obfuscation techniques

and recommends the most resilient obfuscation against adversaries executing DL-

assisted attacks. We embed and adapt the three-component model proposed in

[Do et al., 2018] to the facial image obfuscation context. We also study thoroughly

the privacy breaches in three threat levels with regard to the adversary’s knowl-

edge. This chapter was published partially in the 17th International Conference on

4https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-general-data-protection-regulation-gdpr/
accountability-and-governance/codes-of-conduct/

https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-general-data-protection-regulation-gdpr/accountability-and-governance/codes-of-conduct/
https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-general-data-protection-regulation-gdpr/accountability-and-governance/codes-of-conduct/
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Privacy, Security and Trust (PST) in 2019 [Tekli et al., 2019] and is currently under

peer review in a scientific journal [Tekli et al., NDb]

3. In the third contribution, we empirically demonstrate how adversaries can remedy

their lack of knowledge and leverage their attacking capabilities, against obfuscated

facial images, by collaborating via FL. We define and study 7 collective threat lev-

els based on the background knowledge of the adversaries and the sharing of

their knowledge. This chapter is currently under peer review in a scientific journal

[Tekli et al., NDa].

4. In the final contribution, we study the correlation problem after applying anatomy

[Xiao et al., 2006a] to a relational transactional data stream. We demonstrate the

privacy breaches by simulating two threat levels with regard to the adversary’s

knowledge. Then, we define privacy properties required to bind the correlation in a

data stream and we propose a novel clustering approach to enforce the aforemen-

tioned privacy properties by anonymizing incoming tuples on the fly. This chapter

was published in the International Conference on Information Security Practice and

Experience ISPEC 2018 [Tekli et al., 2018].

1.6/ OUTLINE OF THE THESIS DISSERTATION

This thesis report is split in two main parts. In Part II, we present preliminaries and back-

ground information regarding data privacy in the context of digital images and relational

datasets. In addition, we discuss briefly the basic concepts of DL and its applications

in CV. In Part III, we elaborate on our 4 contributions respectively in Chapters 3, 4, 5

and 6. In Chapter 3, we design and implement an obfuscation tool that localizes and

obfuscates sensitive/identifying features in images/videos. In Chapter 4, we propose a

generic and scalable framework to evaluate and recommend the most robust obfuscation

techniques for face images. The framework reconstructs/recognizes obfuscated faces

via DL-assisted attacks, evaluates the restoration/recognition via different metrics and

recommends the most robust obfuscation with regard to each metric. In Chapter 5, we

empirically demonstrate that FL can be used as a collaborative attack/adversarial strategy

to (i) remedy the lack of background knowledge, (ii) leverage the attacking capabilities of

an adversary and increase the privacy breaches. As for Chapter 6, we define new privacy

properties to address the correlation problem in the anonymization of a transactional data

stream. We propose a clustering-based technique to enforce the privacy properties. Last

but not least, we conclude our report in Part IV and give some perspectives.
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BACKGROUND AND PRELIMINARIES

2.1/ INTRODUCTION

This chapter serves as a preliminary discussion to Part III. We mainly present basic pri-

vacy concepts regarding two data types: (i) digital images and (ii) structured relational

data. First, we define in Section 2.2 a digital image, the feature extraction process and

we briefly discuss the basic concepts of DL and its CV applications. Furthermore, we

present in Section 2.3 obfuscation techniques in the context of images and attacks em-

ployed against these techniques. In Section 2.4, we discuss several privacy preserving

mechanisms and privacy models proposed in the literature in the context of structured re-

lational datasets and we describe the correlation problem in the context of a transactional

dataset. Sections 2.2 and 2.3 are relevant to chapters 3, 4 and 5 whereas Section 2.4 is

relevant to Chapter 6. Last but not least, the reader can refer to Chapters 3,4,5 and 6 for

a deep dive into the related works regarding each contribution.

2.2/ DEEP LEARNING FOR COMPUTER VISION APPLICATIONS

In the following section, we define a digital image and we elaborate on how to extract

relevant features from it. Second, we present the basic concepts of an artificial neural

network and of a convolution neural network. Last but not least, we enumerate several

CV tasks that we employed throughout our study using DL models.

2.2.1/ DIGITAL IMAGES

As mentioned in Chapter 1, a digital image consists of a set of pixels organized in a form

of a grid. Each pixel value denotes its brightness level (e.g. gray-scale image) or its color

intensity (e.g. RGB image). The collection of these pixels constitutes the image’s features

such as the image’s edges, corners, ridges, etc. CV applications allow machines to

13
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visualize, perceive and semantically understand their environments by extracting relevant

features from digital images.

2.2.2/ FEATURE EXTRACTION

Images feature extraction can be done either via (i) hand-crafted feature engineering or

(ii) feature learning [O’Mahony et al., 2019]. Hand-crafted feature engineering refers to

the process of employing/customizing specific techniques/algorithms (edge detection al-

gorithms, feature descriptors SIFT1 [Karami et al., 2017] and SURF2 [Bay et al., 2006],

HOG3 [Dalal et al., 2005]... ) to extract specific features from an image such as edges,

corners, ridges... Feature learning allows a system to automatically discover the repre-

sentations needed for feature detection or classification from raw images without deliber-

ately implementing different extraction techniques via a pipeline.

Early on, CV applications were achievable by a 2-steps process: (i) applying a hand-

crafted feature extraction algorithm (e.g. feature descriptors SIFT [Karami et al., 2017]

and SURF [Bay et al., 2006], HOG [Dalal et al., 2005]...) followed by (ii) training a tradi-

tional machine learning model on the extracted features [Viola et al., 2001].

Throughout the last two decades, artificial neural networks and more specifically deep

neural networks (DNNs) [Bengio, 2009] (i.e. Deep Learning DL) outperformed the tradi-

tional 2-steps process in terms of accuracy and inference time [O’Mahony et al., 2019].

DNNs and more specifically Deep Convolutional Neural Networks (DCNNs) ”learn” to

extract relevant features from input raw images in an end-to-end manner (c.f. Figure 2.1).

In the following section, we give a quick overview regarding the basic concepts of artificial

neural networks, how the learning process is achieved and how it can be improved. In

addition, we present swiftly the basic components of a CNN and the different CV applica-

tions that we employ throughout this study.

2.2.3/ ARTIFICIAL NEURAL NETWORK

2.2.3.1/ ARCHITECTURE

An Artificial Neural Network [Haykin, 2010] is a computational nonlinear model inspired

by the biological systems in information processing. It consists of artificial neurons (a.k.a.

perceptrons) interconnected to form three distinct layers: (i) input layer, (ii) hidden layer

and (iii) output layer (c.f. Figure 2.2). Raw data is fed to the network via the input layer.

The input layer then forwards the data to one or more hidden layers where the actual
1SIFT: Scale Invariant Feature Transform
2SURF: Speeded Up Robust Features
3histogram of oriented gradients
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Figure 2.1: (a) Traditional Computer Vision Workflow vs. (b) Deep Learning workflow.
Image taken from [O’Mahony et al., 2019]

processing takes place via weighted connections before being sent to the output layer.

Artificial neural networks with many hidden layers are called Deep Neural Networks (a.k.a.

DNNs). Deep learning techniques mainly employ supervised feature learning to map

input raw data (e.g. digital images) to a specific output (e.g., class, bounding box, etc. . . ).

In other words, a deep neural network “learns” to extract relevant features in an end-to-

end manner via input/label pairs. In the following section, we briefly explain the learning

process.

2.2.3.2/ LEARNING PROCESS

The learning process can be split into two main steps: (i) feed-forward and (ii) backward

pass.

• Feed-forward pass: upon receipt of input raw data, a DNN sequentially passes

the feature data from one layer to the next. This process is known as feed-forward

passing. More relevant (i.e. high level) features are extracted at deeper layers.

As seen in Figure 2.3, each neuron receives weighted inputs from the previous

layer. These weighted inputs are summed and fed to an internal activation function.

The output of the neuron mainly depends on the type of the activation function:

for instance, if the RELU function [Agarap, 2018] is used, then the output of the

neuron would be zero if the weighted sum is negative. Other activation functions

can be employed as well such as Logistic (Sigmoid) and hyperbolic Tangent (Tanh)

functions.

• Backward pass: as mentioned before, DL techniques often employ supervised

feature learning therefore, each given input has a label. Based on the raw data

fed to the input layer, the network generates a certain output. This output is then

compared with the input’s label to calculate an error value. This error value is used
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Figure 2.2: Deep Neural network architecture.

to compute the loss function and update the layers’ weights via backpropagation.

The exact type of loss function depends on the nature of the model, but it is es-

sentially a tool for evaluating the performance of a model on some given data. The

objective is to minimize the loss function and compute the combination of weight

values to reach that objective. Therefore, both the feed-forward and the backward

passes are repeated numerous times over the training data (input/labels) to update

the weight values and minimize this loss function. This repeated workflow is known

as ‘learning’.

2.2.3.3/ WEIGHTS OF A NEURAL NETWORK

In addition to the neural network’s architecture, the weights assigned to each connection

between the different layers play a vital role in minimizing the loss function. They basically

represent the ‘knowledge’ of the network. As mentioned in [Georgevici et al., 2019], the

weights are analogues to coefficients in a traditional statistical model and are also known

as the model’s parameters. Compared to a large multivariable statistical model which

might contain fewer than 50 coefficients, even small DNN can have many thousands of

weights, while large recurrent or convolutional networks often have many millions. We

denote in our report, both the network’s architecture and the corresponding weights as a

“DL model”.

2.2.3.4/ TRAINING AND TEST SETS

Like any machine learning model, training a neural network requires partitioning the

dataset into two sets: training and test sets. On the one hand, the network uses the
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Figure 2.3: Summation and activation within a single perceptron. Image taken from
[Georgevici et al., 2019]

training set examples to calculate the loss function and update its weights accordingly

(i.e. to fit the parameters). On the other hand, the test set provides an “unbiased” evalua-

tion of the already trained model. In other words, it is used to check if the learned weights

generalize well on unseen data.

2.2.3.5/ HYPERPARAMETERS

The hyperparameters are variables that determine (i) the network’s architecture and

(ii) the network’s training configuration. The number of hidden layers, the regulariza-

tion technique (e.g., dropout), the network’s weight initialization (e.g. Xavier initializa-

tion [Glorot et al., 2010]) in addition to choosing the activation function: all these are

hyperparameters related to the networks’ architecture. Whereas, the hyperparameters

related to the network’s training configuration affect basically the training process. In the

following, we present swiftly the hyperparameters affecting the network’s training configu-

ration as we employed/modified them frequently when training DL models throughout this

study.

• Learning rate: indicates at which pace the weights get updated. It can be fixed

or adaptively changed during the training process (i.e. adaptive algorithm Adam

[Kingma et al., 2014]). Adaptive techniques tend to reach better results in compari-

son with choosing a fixed learning rate throughout the entire training process.

• Number of epochs: is the number of times the whole training data is fed to the

network while training.

• Batch size: is the number of data samples fed to the network after which the pa-

rameter/weight update occurs.

Carefully choosing these hyperparameters might lead to a more accurate DL model. Fur-

thermore, additional steps can be considered when the training dataset is not big enough
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to train an accurate DL model.

• Data augmentation [Shorten et al., 2019]: DL models usually need a lot of data to

be properly trained. Therefore, creating additional data points from existing ones

using data augmentation techniques might enhance the training process. For in-

stance, employing rotation or flipping techniques in the context of images lead to

additional images that are not identical to the original one.

• Transfer learning [Weiss et al., 2016, Shao et al., 2014]: as mentioned before,

training a deep learning model requires lots of data and more importantly a long

time. However, one can apply already pre-trained weights to the neural network

architecture to fasten the training process. These pre-trained weights are usually

trained on huge datasets with numerous features.

2.2.3.6/ CONVOLUTIONAL NEURAL NETWORKS

There exist different deep neural network architectures that target problems in different

domains such as Convolutional Neural Networks (CNN), Deep Belief Networks (DBN),

Recurrent Neural Networks (RNN). . . In the following, we present briefly CNNs as they

are the most widely used when it comes to digital images.

In the last decade, Convolutional Neural Networks (CNN) [LeCun et al., 1998] have

become one of the most popular techniques in computer vision. CNNs outper-

formed traditional ML approaches in several CV tasks such as image classifica-

tion [Krizhevsky et al., 2012], object detection [Jiao et al., 2019], image segmenta-

tion [Minaee et al., 2021, Chen et al., 2017] and image restoration [Koh et al., 2021,

Pushpalwar et al., 2016, Nasrollahi et al., 2014]. This is mainly due to two main rea-

sons: (i) the development of efficient computing hardware (e.g., Graphical Processing

Units GPUs) and (ii) the large amount of publicly available datasets [Deng et al., 2009,

Lin et al., 2014, Cordts et al., 2016].

A CNN typically consists of three main layers, (i) a convolutional layer, (ii) a pooling layer

and (iii) Fully connected layer:

• The Convolutional layer: uses filters (i.e. kernels) that perform convolution opera-

tions as it is scanning the input image with respect to its dimensions. The resulting

output is called feature map or activation map (c.f. Figure 2.4).

• The Pooling Layer: is a down-sampling operation, typically applied over a feature

map. The Pooling layer can down-sample the feature map either by considering the

maximum or the average value as seen in Figure 2.5.
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Figure 2.4: Convolution process. Image taken from [Srihari, ]

Figure 2.5: Pooling functions max and average. Image taken from [Amidi, 2019]

• The fully connected (FC) layer: operates on a flattened input where each input is

connected to all neurons. If present, FC layers are usually found towards the end of

CNN architectures and can be used to optimize objectives such as class scores.

2.2.4/ CV TASKS USING DEEP LEARNING

In the following, we present swiftly several CV tasks (e.g. image classification, object

detection, semantic segmentation, image restoration) that benefited from the success

and advancements of different CNN architectures.

2.2.4.1/ IMAGE CLASSIFICATION

Image classification is the process of categorizing an image into a specific group/class.

For instance, a classification process can categorize the image presented in Fig-

ure 2.6.(a) as a person, a motorcycle, or a car. Several DL models such as

VGG [Simonyan et al., 2014], ResNet [He et al., 2016a], ResNext [Xie et al., 2017] and
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DenseNet [Huang et al., 2017] have been proposed to solve this task by training

the network over pairs of image/class annotations. These classifier networks are

also employed as feature extractors for neural networks designed to solve other

CV tasks (such as object detection or semantic segmentation). Several public

datasets such as ImageNet [Russakovsky et al., 2015a], MNIST [LeCun, 1998] and Face-

Scrub [Ng et al., 2014] provide thousands of image/annotation pairs. The reader can refer

to [Khan et al., 2020] for a detailed review regarding image classification with DL.

2.2.4.2/ OBJECT DETECTION

Object detection is the process of detecting the objects’ locations in an image (ob-

ject localization) and classifying them accordingly (object recognition/classification).

For instance, in Figure 2.6.(b), three objects are detected and classified, a person,

a car and a motorcycle. Several DL models such as Yolo [Redmon et al., 2016],

SSD [Liu et al., 2016], FasterRcnn [Ren et al., 2015] have been proposed to solve this

task via an end-to-end process by training the network via pairs of images/bounding-

box annotations. Several public datasets such as MS-COCO [Lin et al., 2014] and Pas-

cal VOC [Everingham et al., 2015] provide thousands of image/bounding-box annotation

pairs. The reader can refer to [Jiao et al., 2019] for a detailed review regarding object

detection with DL.

2.2.4.3/ SEMANTIC SEGMENTATION

Semantic Segmentation is the process of classifying each pixel in an image. In other

words, it creates a pixel-wise mask for the pixels that share similar semantic informa-

tion in an image. In contrast to object detection, semantic segmentation captures the

object’s shape, not only its location (c.f. Figure 2.6.(c)). Several DL models such as

DeepLab [Zhao et al., 2017] have been proposed to solve this task in an end-to-end

manner by training the networks via pairs of image/pixel-level annotations. Several

public datasets such as ADE20k [Zhou et al., 2017] and Cityscapes [Cordts et al., 2016]

provide thousands of image/pixel-level annotation pairs. The reader can refer to

[Minaee et al., 2020] for a detailed review regarding semantic segmentation with DL.

2.2.4.4/ IMAGE RESTORATION

Image restoration is the process of recovering high quality clear images from their de-

graded counterparts. The degradation can be caused by down-sampling (i.e., pixelating),

blurring [Hill et al., 2016b], inpainting (i.e., masking), etc. In this work, we describe briefly

the following three image restoration tasks that are most relevant to our study.
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Figure 2.6: (a) Original Image, (b) Object detection , (c) Semantic Segmentation

• Image super resolution and more specifically single image super resolution (SISR)

is the process of generating a single high-resolution (HR) image from a single

low-resolution (LR) image (e.g., downsampled image). Like the other CV appli-

cations, several deep neural networks including SRResNet [Ledig et al., 2017], SR-

GAN [Garcia, 2016] or EDSR [Lim et al., 2017] have been proposed to solve this

problem via an end-to-end process by using pairs of low-resolution/high-resolution

images. The reader can refer to [Yang et al., 2019b] for a detailed review regarding

image super resolution with DL.

• Image deblurring is the process of restoring a sharp image from a single

image blurred via a blurring kernel (e.g. Gaussian kernel, motion blur. . . ).

Several deep neural networks including SRResNet [Ledig et al., 2017] and De-

blurGANv2 [Kupyn et al., 2019, Shen et al., 2018a] have been proposed to solve

this problem via an end-to-end process by training the networks with pairs of

blurred/clear images. Several public datasets such as GoPro [Nah et al., 2017]

and RealBlur [Rim et al., 2020] provide thousands of clear/blurred image pairs. The

reader can refer to [Koh et al., 2021] for a detailed review regarding image deblur-

ring with DL.

• Image inpainting is the process of removing any type of distortion including text,

blocks, scratches, or any type of masks by synthesizing the hidden/missing parts of

the image. Several deep neural networks have been proposed in [Yeh et al., 2017]

to solve this problem via an end-to-end process. The reader can refer to

[Pushpalwar et al., 2016] for a detailed review regarding image inpainting.

In this section, we showed how feature extraction is achieved in the context of images. In

addition, we presented the basic concepts of artificial neural networks and of convolution

neural networks. Last but not least, we presented several CV tasks that we employed

throughout our report using DL models.
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Figure 2.7: (a) Image with missing region, (b) Inpainted Image. Image taken from
[Pathak et al., 2016].

2.3/ PRIVACY PRESERVATION FOR IMAGES DATASET

After presenting briefly the basic concepts of a neural network and the different CV-based

tasks, we discuss in the following section privacy concepts in the context of images that

are relevant to Chapters 3, 4 and 5.

2.3.1/ IMAGES DATASET

Processing images without taking into consideration the anonymity of the target iden-

tity/individual may lead to privacy breaches because visual features can reveal identifying,

quasi-identifying and sometimes sensitive information about her/him.

For instance, processing (e.g. sharing) images of an individual’s face (c.f. Figure 2.8.(a))

reveals vast amount of information about her/him such as:

• Identifying information: facial features can be used to uniquely identify an indi-

vidual in a dataset of images.

• Quasi-identifying information: facial features can be used as well to recognize

quasi-identifying attributes4 of an individual such as her/his age, gender, eye color....

• Sensitive information: facial features can be used to extract sensitive information5

about an individual. For instance considering a face images dataset released by

a hospital, identifying if a patient has a certain type of skin disease would reveal

sensitive information about her/him.
4A quasi-identifying attribute is an attribute that can narrow down the search for an identity when linked to

external data sources.
5A sensitive attribute reveals critical and sensitive information about a certain individual and must not be

directly linked to individuals’ identifying values.
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Therefore, digital images reveal private information if not properly protected.

Figure 2.8: Obfuscation techniques left to right , (a) Original plain image, (b) pixelated
image (4x), (c) Gaussian Blurred Image (σ = 5), (d) Motion blurred and (e) masking by
adding random black pixels. Image taken from [Tekli et al., 2019]

2.3.2/ OBFUSCATION TECHNIQUES

Storing and processing images without guaranteeing the anonymity of the target

individuals is a breach of the ’data minimization’ principle as discussed in Sec-

tion 1.4.1. To preserve the individual’s anonymity, numerous obfuscation tech-

niques have been proposed in the literature to hide/protect features in images

such as (i) the traditional techniques (e.g. pixelating, blurring, masking), (ii)

the k-same methods [Newton et al., 2005a] or (iii) the GAN-based inpainting ap-

proaches [Hao et al., 2019]. Nowadays, the majority of social media platforms, news

agencies and publicly available research datasets still use the traditional techniques such

as pixelating or blurring: for instance, Google Maps [Frome et al., 2009] as well as the

large-scale dataset nuScenes [Caesar et al., 2020] published in 2019 for autonomous

driving still employ blurring kernels to obfuscate individuals’ faces/homes or vehicle

plates. Therefore, we focus in this study on the following three obfuscation techniques:

pixelating, blurring and masking.

• Pixelating (a.k.a. mosaicking) is widely adopted as an obfuscation technique.

The identifying/sensitive information to be obfuscated is divided into a square grid,

a.k.a. “a pixel box”. Each pixel box will have one color after averaging the val-

ues of the grouped pixels in it [Hill et al., 2016b]. The size of the pixel box can

be modified depending on the needed level of privacy. The larger the box, the

more pixels will be averaged together, the higher the level of privacy. As stated in

[McPherson et al., 2016], although the size of the image stays the same, pixelating

can be thought of as reducing the obfuscated section’s resolution. For instance,

downscaling an image by a factor of 4 is equivalent to applying a pixel box of size

4x4.(c.f. Figure 2.8.b).
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• Blurring is also a degradation technique utilized in image processing. It can

be generated by a Gaussian kernel or via a camera motion effect, a.k.a. mo-

tion blur. A Gaussian like blur kernel is used extensively as an obfuscation tech-

nique [Hill et al., 2016a]. It removes details from an image by applying a Gaussian

kernel. The blurriness level is controlled by the standard deviation σ. A motion blur

alters the details of an image by generating the effect of a synthetic camera motion

blur [Boracchi et al., 2012]. The level of blurriness is affected by the length and the

angle of the synthesized motion (c.f. Figure 2.8(c-d)).

• Masking removes details from an image by replacing the original pixels by black

pixels. The masking technique can have multiple derivatives depending mainly on

the color intensity and location of the altered pixels. For instance, if an individual’s

face is considered sensitive, pixels can be modified around the eyes and nose or

at random points of the face. The level of privacy depends on the amount, location

and color intensity of the modified pixels (c.f. Figure 2.8.e).

In Chapter 3, we designed and implemented an anonymization tool (i) that localizes

via DL-based approaches (e.g., object detection and semantic segmentation presented)

identifying/sensitive features in images/videos and (ii) obfuscates them via pixelating,

blurring or masking.

Numerous studies focus on the validity of these techniques from different perspectives

such as privacy, intelligibility, viewer’s perception, etc. Please refer to the related works

section in Chapter 4 for more details.

2.3.3/ RECOGNITION AND RESTORATION-BASED ATTACKS

Obfuscation is done by altering/removing features from the images to hide identifying in-

formation while, at the same time, retaining some visual features to keep the image suit-

able for processing. However, these visual features can be used to identify/reconstruct the

obfuscated private information via different attacks that can be classified as recognition-

based [McPherson et al., 2016, Newton et al., 2005a, Lander et al., 2001] and restora-

tion-based attacks [Ruchaud et al., 2016, Abramian et al., 2019].

• Restoration-based attacks de-anonymize privacy-protected images by try-

ing to restore/reconstruct the plain original features of the obfuscated in-

formation [Ruchaud et al., 2016, Keys, 1981]. For instance, the authors in

[Lander et al., 2001] cancels the impact of pixelating, blurring and masking with

regard to face recognition algorithms by applying ad-hoc traditional image recon-

struction techniques (e.g., bicubic interpolation [Keys, 1981].
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Figure 2.9: Attacking scenarios: (a) Restoration-based attack, (b) Recognition-based
attack, (c) Restoration&Recognition-based attack

• Recognition-based attacks breach the images privacy and anonymity by training a

classifier to perform recognition tasks on obfuscated information. For instance, the

authors in [McPherson et al., 2016] demonstrate that obfuscated faces, objects and

digits can be recognized by deep neural networks trained via a supervised manner

on obfuscated/clear images.

• Restoration & Recognition-based (R&R) attacks perform a 2-steps attack

against an obfuscation technique by (1) restoring the hidden features of an ob-

fuscated image and (2) trying to associate the restored features with an identifying

attribute, i.e. classifying the restored image.

As mentioned in Section 2.2, DL outperforms traditional learning-based approaches

with regard to the different CV tasks [Russakovsky et al., 2015b, Yang et al., 2019b].

Hence, from a privacy perspective, these DL-based techniques are highly nominated

as strong recognition-based and restoration-based attacks [McPherson et al., 2016,

Hao et al., 2020].

The rise of such DL-assisted attacks complicates the process of choosing the most robust

obfuscation technique when anonymizing an images dataset. Therefore, we propose in

Chapter 4 a quantitative recommendation framework that evaluates the robustness of

several obfuscation techniques against adversaries performing DL-assisted attacks. In

addition, we study how the adversary’s capabilities (i.e., DL-assisted attacks) scale along

with her/his knowledge about the target dataset. We also demonstrate in Chapter 5 that

adversaries lacking knowledge and data, can leverage their attacking capabilities and

increase the privacy breaches by collaborating with other adversaries via FL.
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2.4/ PRIVACY PRESERVATION FOR STRUCTURED RELATIONAL

DATASETS

After discussing privacy preservation for images dataset, in the following section we

present several privacy preserving mechanisms and privacy models in the context of

structured relational datasets. The following section is relevant to Chapter 6.

2.4.1/ STRUCTURED RELATIONAL DATASET

As mentioned in Chapter 1, a structured relational (tabular) dataset consists of a table with

different attributes and tuples. Each table can be shared/released as macrodata or micro-

data [Bayardo et al., 2005]. In a macrodata release, each tuple represents an aggregated

statistic computed over a sample population. Whereas in a microdata release, each tuple

represents an entity/individual-related information. In this thesis and more specifically in

Chapter 6, we focus on microdata releases, hence a tuple is a finite ordered list of values

that corresponds to certain attributes. The attributes can be categorized as follows:

• Identifying attribute (Aid): is unique and linked to a single individual in a given

dataset.

• Quasi-identifying attribute (AQI): can narrow down the search for an identity when

linked to external data sources.

• Sensitive attribute(Asv): reveals critical and sensitive information about a certain

individual and must not be directly linked to individuals’ identifying values in data

sharing, publishing or releasing scenarios.

We consider the following example scenario to elaborate on the privacy concepts that are

relevant to Chapter 6.

Example Scenario Let us consider in Figure 2.10.(a) a microdata table released by a

hospital with regard to its patients’ drug use. The table is composed of four attributes: (i)

”User ID” is considered the identifying attribute (Aid), (ii) ”Age” and ”Gender” are consid-

ered the quasi-identifying attributes (AQI) and (iii) ”Drug Name” is considered the sensitive

attribute (Asv).

2.4.2/ PRIVACY PRESERVING MECHANISMS

Sharing a microdata table in its original form disclose the identities of the tuples’ own-

ers as well other sensitive information. Throughout the years, several privacy preserving
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mechanisms/techniques have been proposed to pre-process the microdata table prior

to release and prevent such disclosures. These mechanisms can be classified as (i)

perturbative and (ii) non-perturbative mechanisms/techniques [Mehmood et al., 2016].

On the one hand, a perturbative mechanism adds synthetic tuples so that the sta-

tistical information computed from the released data does not differ significantly from

that of the original data [Dwork, 2008]. On the other hand, a non-perturbative mecha-

nism sanitizes/modifies the original identifiable and quasi-identifiable values within the

dataset [Samarati et al., 1998]. In the following, we elaborate on the relevant ones to our

study:

• Suppression (non-perturbative): obfuscates the original value of an identifiable

or quasi-identifying attribute with a special character/value (e.g.*). For example,

replacing the (AQI) ”Gender” values for patients U1 and U2 in Figure 2.10.(b)) by *.

• Generalization (non-perturbative): transforms the original values into less specific

but semantically consistent values. For example, the value 20 of the (AQI) ”Age” is

generalized with an interval [20-28] in Figure 2.10.(b)).

• Bucketization (non-perturbative): splits the original table into two by separating the

QI attributes and the sensitive attributes and adds noise to the level of association

between the sensitive and identifying attributes (c.f. Figure 2.11.(b)).

2.4.3/ PRIVACY THREAT DISCLOSURES

Although these privacy preserving mechanisms increase the level of privacy, time has

shown that they fail to protect individual’s anonymity. As stated in [Majeed et al., 2020],

two major factors could lead to several privacy disclosures and jeopardize the individuals’

anonymity: (i) the knowledge of an adversary about the target dataset and (ii) flaws within

the privacy mechanism applied. Below, we list two privacy disclosures that are most

relevant to our study:

• Identity disclosure: arises when an adversary links an individual/identity to a par-

ticular tuple in the released dataset. Generally, an adversary can cause such disclo-

sure when equipped with certain knowledge (e.g., knowing that a certain individual

has a record within the dataset) and using additional data via external sources to

re-identify the individual. For instance, the authors in [Sweeney, 2000] proved that

suppressing the identifiers within a microdata dataset is not enough to preserve the

data owners’ anonymity.

• Attribute disclosure: arises when an adversary links an individual’s identifying or

quasi-identifying values to his/her corresponding sensitive information. This disclo-

sure usually occurs against an imbalanced dataset, i.e., due to a flaw of the privacy
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preserving mechanism (when the dataset lacks heterogeneity in terms of sensitive

values, i.e. homogeneity attack [Machanavajjhala et al., 2007]).

2.4.4/ PRIVACY MODELS

Multiple privacy models formalized the privacy preserving mechanisms discussed in Sec-

tion 2.4.2 to avoid identity and attribute disclosures. Below, we elaborate on the most

relevant ones to our study:

• k-anonymity [Sweeney, 2002]: acts against identity disclosure by dividing the

dataset into groups of k tuples where all the k tuples share the same QI-value.

In other words, each combination of quasi-identifier attribute values is shared by a

group of at least k tuples, i.e. QI-group. For instance, in table 2.10.(b) the adversary

cannot link an external tuple to the released dataset based on the quasi-identifying

attributes ”age” and ”gender” with a probability greater than 1/k.

However, as shown in [Machanavajjhala et al., 2007], k-anonymity might suffer from at-

tribute disclosure even with large k values due to homogeneity attacks. Therefore l-

diversity was introduced.

• l-diversity [Machanavajjhala et al., 2006]: acts against attribute disclosure by di-

versifying the values of the sensitive attribute within a single QI-group. Basically,

l-diversity requires the presence of at least l well-represented (different) values for

the sensitive attributes in a QI-Group.

A dataset is made k-anonymous and l-diverse by generalizing the original values as seen

in Figure 2.10.(b). The released table in Figure 2.10.(b) is a 2-anonymous and a 2-diverse

version of the original microdata table with 4 QI-groups.

Additional privacy preserving models were proposed and studied throughout the

years to address the limitations of both k-anonymity and l-diversity such as t-

closeness [Li et al., 2007], differential privacy [Dwork et al., 2016], etc. The reader can

refer to [Awad, 2020, Majeed et al., 2020] for a detailed review of the different privacy

preserving models.
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Figure 2.10: Applying k-anonymity and l-diversity to a microdata release

2.4.5/ GENERALIZATION VS BUCKETIZATION

As mentioned in Chapter 1, data utility plays a major role when it comes to data

anonymization. Generalizing the original values to satisfy the privacy constraints (i.e.

k-anonymity [Sweeney, 2002] or l-diversity [Machanavajjhala et al., 2006]) often leads to

considerable loss of information (c.f. Figure 2.10.(b)) especially with high-dimensional

quasi-identifying attributes [LeFevre et al., 2005]. Therefore, applying bucketization-

based mechanisms such as anatomy [Xiao et al., 2006a] might lead to less informa-

tion loss and better utility. Anatomy groups k tuples into l-diverse QI-groups and

produces two tables: a QI table and a sensitive table connected via a group ID as

seen in Figure 2.11.(b)). The QI-group size and grouping of tuples into QI-groups

via ensures that privacy constraints (such as k-anonymity [Sweeney, 2002] or l-

diversity [Machanavajjhala et al., 2006]) are satisfied.

2.4.6/ CORRELATION PROBLEM IN TRANSACTIONAL DATASETS

Although bucketization-based techniques [Xiao et al., 2006b, Li et al., 2012,

Ciriani et al., 2010, Terrovitis et al., 2012] might lead to better data utility com-

pared to generalization-based techniques [Campan et al., 2011, He et al., 2009,

Anjum et al., 2017] however they both assume a trade-off between data pri-

vacy and utility. It is a trade-off that is highly required to keep the dataset

suitable for analysis while preserving the individuals’ anonymity. However, it

keeps anonymization vulnerable and unable to cope with different sort of at-

tacks [Wong et al., 2011a, Cormode et al., 2010, Kifer, 2009a, al Bouna et al., 2015b]. It

is indeed difficult to provide a completely anonymous dataset without losing utility. There

are many reasons for this to happen, notably, is the ability to presume knowledge of the

adversary’s prior belief and her/his ability to gain insights after looking at the anonymized

dataset. For instance a transactional dataset6 may expose significant correlations

between identifying and sensitive values. An adversary can use her/his knowledge

6In a transactional dataset, an individual might have multiple tuples.
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of such correlations [Wong et al., 2011b, Kifer, 2009a], or use these correlations as

foreground knowledge [Li et al., 2008] to breach individuals’ privacy.

As stated in [al Bouna et al., 2013], inter and intra QI-group correlations may arise when

applying Anatomy [Xiao et al., 2006b] to a transactional dataset:

• Inter-group correlation: occurs when an adversary exposes a correlation between

identifying and sensitive values by observing the different released QI-groups. For

instance in Figure 2.11.(b), the individual ”U2” appears in all the QI-groups with the

”Retonic Acid” drug, hence it is likely that ”U2” is taking that drug. The adversary

might have certain facts about drug use as background knowledge (e.g. Retonic

Acid is a maintenance drug taken over a long period of time) or might learn some

drug use facts from the anonymized dataset and use it as foreground knowledge.

• Intra-group correlation: occurs when an adversary exposes a correlation within a

single QI-group where the number of transactions for a single individual results is

an inherent violation of l-diversity. For instance while observing the 4th QI-group in

Figure 2.11.(b), the adversary knows that the individual “U4” is taking both drugs

“Cytarbine” and “Azetaic Acid” because all tuples in the QI-group belong to her/him.

Figure 2.11: Bucketization-based techniques

To cope wih both the intra/inter correlation problem, safe grouping is proposed in

[Li et al., 2008, al Bouna et al., 2013] to ensure that the individuals’ tuples are grouped

in one and only one QI-group that is at the same time l-diverse, respects a minimum

diversity for identifying attribute values and all individuals in the same QI-group have an

equal number of tuples (c.f. Figure 2.11). For instance in Figure 2.11.(c), we notice that

both ”U2” and ”U3” appear with ”Retonic Acid” throughout the dataset. Hence, we cannot

single out ”U2” in this case as in Figure 2.11.(b) and potentially link her/him to the drug

”Retonic Acid”. (k,l)-diversity [Gong et al., 2017] is another technique that uses general-

ization to associate k distinct individuals to l-diverse QI-groups. Both techniques were

developed to deal with the correlation problem in the context of bulk static datasets. How-

ever, these techniques provide no proof of effectiveness in anonymizing a data stream

where data must be processed and protected on the fly. Hence, we propose in Chapter

6 a clustering-based approach, entitled (k, l)-clustering, that anonymizes a transactional
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data stream on the fly while taking into consideration the inter/intra-group correlations’

problem.

2.5/ CONCLUSION

This chapter serves as preliminary to Part III. We mainly presented basic privacy con-

cepts regarding two data types: (i) digital images and (ii) relational structured data.

First of all, we presented the basic DL concepts and several tasks for CV (e.g. clas-

sification [Krizhevsky et al., 2012], object detection [Jiao et al., 2019], image restoration

[Koh et al., 2021, Pushpalwar et al., 2016, Nasrollahi et al., 2014]). Then, we presented

several obfuscation techniques applied in the context of images (e.g. blurring, pixelating

and masking [Hill et al., 2016b]) and several attacks that try to defeat them (e.g. restora-

tion-based and recognition-based attacks). These concepts are relevant to Chapters 3, 4

and 5. In Chapter 3, we design and implement an obfuscation tool that localizes via DL-

based approaches (e.g. object detection [Jiao et al., 2019] and semantic segmentation

[Chen et al., 2018]) sensitive/identifying features in images/videos and obfuscates them.

Whereas, in Chapter 4, we propose a quantitative recommendation framework that eval-

uates the robustness of several obfuscation techniques against adversaries performing

DL-assisted attacks. In addition, we study how the adversary’s capabilities (i.e., DL-

assisted attacks) scale along with her/his knowledge about the target dataset. We also

demonstrate in Chapter 5 that adversaries lacking knowledge and data, can leverage

their attacking capabilities and increase the privacy breaches by collaborating with other

adversaries via FL. Second, we presented the different privacy preserving mechanisms in

the context of structured relational datasets (e.g., suppression, generalization, bucketiza-

tion) [Mehmood et al., 2016, Dwork et al., 2006], the different privacy threat disclosures

(e.g., identity and attribute disclosure [Sweeney, 2000, Machanavajjhala et al., 2007])

and some privacy models applied to avoid these privacy disclosures (e.g., k-anonymity

[Sweeney, 2002] and l-diversity [Machanavajjhala et al., 2006]). Afterwards, we showed

how anatomy [Xiao et al., 2006a] might lead to inter-group and intra-group correla-

tion problems [al Bouna et al., 2013] when applied to transactional datasets and how

certain techniques were developed to prevent it in the context of static bulk datasets

[Gong et al., 2017, al Bouna et al., 2013]. However, as these techniques were developed

for static datasets, they do not cope well with transactional data streams where new tuples

are generated at each instance, hence our contribution in Chapter 6.

The reader can also refer to Chapters 3,4,5 and 6 for a deep dive into the related works

of each contribution.
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3

IMAGE OBFUSCATION TOOL AT BMW
GROUP

3.1/ SCENARIO AND PROBLEM DEFINITION

As mentioned in Chapter 1, manufacturing units at BMW Group are increasingly inte-

grating DL models for CV-based applications mainly to assist plant workers with the

quality checks throughout the production line. As a result, a huge number of images

is being captured, stored and processed by data scientists on a daily basis. However,

these images might contain identifying/sensitive features (e.g., worker’s face or name

tag) which are not relevant to the DL workflow. Therefore, we designed and implemented

an obfuscation/anonymization1 tool that localizes and obfuscates identifying/sensitive

information in images/videos (c.f. Figure 3.1). Several obfuscation/anonymization tools

are available today on the market [eyedea Regonition, 2021, AI, 2018, brighter AI, 2019,

sightengine, 2020] however not a single one combines the following features: (i) scal-

able in terms of obfuscation techniques, (ii) agnostic in terms of localization approaches,

(iii) modular in terms of identifying/sensitive information, (iv) GDPR compliant, (v) open-

source2 and (vi) compatible with other DL-based tools for CV tasks developed at BMW

Group3. This work was published as a public GitHub Repository [Tekli et al., 2021], as a

press release by BMW Group [Hatzel, 2021] and as a white paper by Intel Cooperation

[Intel, 2021].

The remainder of this chapter is organized as follows. In Section 3.2, we present our

anonymization tool along with its features. In Section 3.3, we take a look at the avail-

able anonymization tools available today on the market and we elaborate on what distin-

guishes our proposed solution.

1Throughout this chapter, we will use the terms obfuscation and anonymization interchangeably.
2https://github.com/BMW-InnovationLab/BMW-Anonymization-API
3https://github.com/BMW-InnovationLab
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3.2/ PROPOSED ANONYMIZATION TOOL

We designed our anonymization tool as a micro-service that receives an image along with

a JSON object through which the user specifies: (i) the identifying/sensitive information

she/he wishes to obfuscate, (ii) the obfuscation technique, (iii) the obfuscation degree and

(iv) the localization method she/he wishes to employ4. For instance in Figure 3.1, the user

wishes to localize “persons” appearing in the input image via “semantic segmentation”

and obfuscate them via the “full masking technique” with “degree 1”.

Figure 3.1: Proposed Anonymization Tool

The anonymization tool parses the received data and triggers a 2-layered iterative work-

flow in order to obfuscate the identifying/sensitive information. The anonymization tool is

composed of 2 units: (1) the localization unit and the (2) obfuscation unit (c.f. Figure 3.2).

4Additional information are specified in the JSON object however we indicate the most relevant ones.
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Figure 3.2: A 2-layered architecture

• Localization Unit : contains instances of DL models trained to localize certain

objects in an image. These DL models can either perform object detection (e.g.

Yolo [Redmon et al., 2016], SSD [Liu et al., 2016] or FasterRcnn [Ren et al., 2015])

or semantic segmentation (e.g. DeepLab [Chen et al., 2018]). Based on the JSON

object and more specifically the identifying/sensitive information and the localization

technique provided by the user, the input image is mapped to the corresponding DL

model5. After inferring over the input image, the localization unit forwards the image

along with the inferences6 to the obfuscation unit (c.f. Figure 3.3).

• Obfuscation Unit : anonymizes the localized portion (e.g. bounding boxes or per-

pixel classes) via the obfuscation technique and the degree specified in the input
5For instance, let us consider a DL model ”Deeplab instance 1” that supports the semantic segmentation

of a “person”. This DL-model is present in the localization unit. If the user specifies in the input JSON
Object “person” as sensitive information and “semantic segmentation” as localization technique, then the
input image will be mapped to DL model “DeepLab instance 1”.

6If the DL-model performs object detection, then it infers bounding box along with the classes. Whereas
if the DL-model performs semantic segmentation, it infers per-pixel classes, i.e. segments.



38 CHAPTER 3. IMAGE OBFUSCATION TOOL AT BMW GROUP

JSON object (c.f. Figure 3.3).

Figure 3.3: A 2-steps workflow

3.2.1/ ANONYMIZATION TOOL’S FEATURES

As mentioned before, we designed our anonymization tool with the following characteris-

tics:

1. Scalable in terms of obfuscation techniques and degrees: as mentioned in

Chapter 2, different obfuscation techniques are proposed in the literature such as

blurring, pixelating [Hill et al., 2016b], masking, face swapping [Hao et al., 2019],

etc. Numerous studies investigate the validity of each obfuscation technique with

regard to different sensitive information and evaluation metrics [Tekli et al., 2019,

Hao et al., 2020] however to date there is no clear nor unified choice with regard to

which obfuscation to employ in each scenario. Therefore, we support in our tool not

only one but multiple obfuscation techniques. In addition, we offer the user full flexi-

bility with regard to the privacy-utility trade-off where she/he can specify the degree

of anonymization ranged between 0 and 1, 1 being the highest level of anonymiza-

tion (c.f. Figure 3.4).
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Figure 3.4: Scalibility in terms of obfuscation techniques and degrees.

2. Agnostic in terms of localization approaches: as mentioned in Chapter 2, we

can employ different DL-based approaches to localize an object in an image. Some

DL models are designed to detect objects via bounding boxes, i.e. object detection

whereas others are designed to classify each pixel connected to the target object,

i.e. semantic segmentation. The proposed anonymization tool supports both ob-

ject detection and semantic segmentation7(c.f. Figure 3.3). A scenario where we

might/can use the two localization techniques simultaneously is shown in Figure

3.5.

7Other localization techniques, such as instance segmentation, can be supported but for our use cases,
object detection and semantic segmentation were sufficient.
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Figure 3.5: Obfuscating the license plates and the individuals on the street. Image taken
from the cityscape dataset [Cordts et al., 2016]

3. Modular in terms of identifying/sensitive information: as mentioned in Sec-

tion 3.2, the localization unit contains DL models for localizing different objects via

detection and segmentation. Therefore, we can support the anonymization of iden-

tifying/sensitive information as long as we train a DL model to localize it and add

this DL model as an instance in the localization unit (c.f. Figure 3.2). At the BMW

Group manufacturing units, identifying/sensitive information are sometimes specific

to the plant environment. For instance, closets where workers store their personal

belongings sometimes appear in images taken at the manufacturing units and are

considered highly sensitive information. In that case, we need to train a DL model

(either for object detection or semantic segmentation) to localize these specific clos-

ets and anonymize them accordingly.

4. GDPR compliant: as mentioned in Chapter 1, privacy regulations

[European Parliament, 2018b] clearly state that the individual’s privacy should

be anonymized with irreversible effect. Based on Chapters 4, 5 and other studies

[Hao et al., 2020], we notice that blurring, pixelating and even random masking

are not bullet proof against restoration/re-identification attempts. Therefore, we

always recommend to employ full black masking with degree 1 in order to avoid any

restoration/re-identification attempts (c.f. Figure 3.4). However, if the user wishes to

employ other obfuscation techniques with lower degrees, then she/he should study

the robustness of the obfuscation via the recommendation framework proposed in

Chapter 4 before employing the obfuscation technique in the anonymization tool.

5. Open-Source: Unlike the solutions available today on the market, our anonymiza-

tion tool is accessible as a public repository on GitHub for the researcher/developer

communities [Tekli et al., 2021].

6. BMW Compatible: At BMW Group, we developed end-to-end DL-based solutions

for CV applications (i.e., Image classification, Object detection , semantic/instance

segmentation) for training/inference purposes. These solutions are published on
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GitHub8. The proposed anonymization tool is fully compatible with these train-

ing/inference solutions.

3.3/ RELATED WORKS

Multiple anonymization tools and solutions are available today on the market however

none of them combine the six features we listed in Section 3.2.1. For instance, Eyedea

Recognition [eyedea Regonition, 2021] offers an anonymization solution that only detects

faces along with license plates and applies blurring filters on top. Also, the developers at

UnderstandAI offer a similar anonymization tool and they published a demo version of

their code on github [AI, 2018] where they provide the user the option to use models

trained via the tensorflow Object detection API [Huang et al., 2021]. In addition, Celantur

is another company that offers a tool that supports both segmentation and detection for

anonymization [Celantur, ]. All of the above solutions do not offer scalability in terms of

obfuscation techniques and degrees (e.g. only support blurring) nor modularity in terms

of sensitive information (they are limited to 4 identifying/sensitive information, e.g. faces,

bodies, license plates and vehicles). In addition, they are not open-source.

On another note, the company docbyte offers another automated anonymization tool as

a micro-service that obfuscates sensitive information in documents such as texts and

faces on identity cards [docbyte, ]. They offer different obfuscation techniques (blurring

and masking) however they are not scalable in terms of identifying/sensitive information

nor agnostic in terms of localization techniques (e.g. they only employ object detection).

Also, they are not open-source.

In addition, Vaisala’s anonymization service is capable of detecting and anonymizing ve-

hicles and pedestrians in images and videos [vaisala, 2018]. They employ semantic seg-

mentation to localize the sensitive information. They claim that they are always improving

their DL models by training on newly generated data however similar to the above solu-

tions they only consider anonymizing specific features such as vehicles and individuals

and they are not open-source. Also, they are not agnostic in terms of localization tech-

niques, nor scalable in terms of obfuscations techniques and degree. Similar to Vaisala’s

solution, Sightengine [sightengine, 2020] also offers an anonymization tool as a micro-

service that hides faces and texts via blurring technique. Last but not least, BrighterAI

offers a proprietary anonymization tool that employs DL models to replace individuals

faces and license plate numbers with synthetically generated features [brighter AI, 2019].

8https://github.com/BMW-InnovationLab
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3.4/ CONCLUSION

In this chapter, we designed and implemented an obfuscation tool that localizes and ob-

fuscates (i.e. hides) sensitive/identifying features in images/videos in order to preserve

the individuals’ anonymity. Several tools are available today on the market however what

differentiates ours is that it is at the same time (i) agnostic in terms of localization tech-

niques, (ii) modular in terms of sensitive information, (iii) scalable in terms of obfuscation

techniques and (iv) compatible with other DL-based tools for CV tasks such as object de-

tection and semantic segmentation developed at BMW Group9. This work was published

as a public GitHub Repository [Tekli et al., 2021], as a press release by BMW Group

[Hatzel, 2021] and as a white paper by Intel Cooperation [Intel, 2021] as seen in Figure

3.6.

Figure 3.6: Press release regarding the anonymization tool

9https://github.com/BMW-InnovationLab

https://github.com/BMW-InnovationLab
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A FRAMEWORK FOR EVALUATING

IMAGE OBFUSCATION UNDER DEEP

LEARNING-ASSISTED PRIVACY

ATTACKS

4.1/ SCENARIO AND PROBLEM DEFINITION

As mentioned in Chapter 1, privacy regulations compel data-driven companies to guar-

antee a level of anonymization1 that requires “irreversibility preventing identification of

the data subject”, taking into account all the means “reasonably likely to be used” for

identification. This statement implores us to ask ourselves the following question when

anonymizing a dataset of images via the tool proposed in Chapter 3: “What is the most

robust image obfuscation technique that guarantees individuals’ anonymity against an

adversary performing any sort of attack?”

As defined in [Do et al., 2018] within the field of security, an adversary refers to an at-

tacker, often with malicious intents, that undertakes an attack on a secure system to

prevent or disrupt its proper operation. The authors in [Do et al., 2018] presented the ad-

versary as a three-component model having a goal, assumption (e.g. knowledge) and

capabilities.

Example Scenario Let us consider an adversary who has access to a dataset of obfus-

cated faces belonging to certain individuals and her/his goal is to recover their identities.

On the one hand, the adversary is capable of performing a recognition-based, a restora-

tion-based or an R&R-based attack in order to extract the needed information from the

anonymized faces (c.f. Section 2.3.3). On the other hand, undertaking these attacks

1Throughout this chapter, we will use the terms obfuscation and anonymization interchangeably.

43
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depends heavily on the adversary’s knowledge with regard to the anonymized dataset,

more specifically her/his background knowledge. For instance, the adversary should only

be aware of the obfuscation technique employed in the anonymized dataset when per-

forming a restoration-based attack. Whereas, she/he is capable of performing an identity

recognition-based or an R&R-based attack only when equipped with knowledge related

to the identities present2 in the target anonymized dataset.

Contributions Therefore, in order to consider different scenarios w.r.t. the adversary’s

attacks and provide a thorough evaluation of the obfuscation techniques we:

1. Proposed a quantitative recommendation framework that evaluates the robustness

of image obfuscation techniques and recommends the most resilient obfuscation

against DL-assisted attacks.

2. Embedded and adapted the three-component adversary model presented in

[Do et al., 2018] to our application domain, facial image obfuscation.

3. Defined different threat levels, with regard to the adversary’s background knowl-

edge, where she/he can perform restoration-based, recognition-based and R&R-

based attacks.

The remainder of this chapter is organized as follows. In Section 4.2, we present the rec-

ommendation framework, formalize the adversary and consider three threat levels. Sec-

tion 4.3 evaluates different faces obfuscation techniques via the proposed framework and

study the effect of the background knowledge on the adversary’s capabilities. In Section

4.4, we present how our recommendation framework can be extended to other identifying

information and scaled to include different adversaries, DL-assisted attacks and evalua-

tion metrics. In Section 4.5, we investigate works related to privacy attacks in the context

of images and to evaluation frameworks. This chapter was published partially in the 17th

International Conference on Privacy, Security and Trust (PST) in 2019 [Tekli et al., 2019]

and is currently under peer review in a scientific journal [Tekli et al., NDb]

4.2/ PROPOSED FRAMEWORK

In this section, we introduce the recommendation framework by (i) presenting a 4-layered

iterative workflow inspired by the KDD process [Fayyad et al., 1996], (ii) showcasing the

framework’s detailed structure when applied to a facial images dataset and (iii) defining

the 3-components adversary model with three threat levels and different attacking capa-

bilities. The framework attacks obfuscation techniques by restoring/recognizing hidden
2That possess obfuscated face images
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facial features, evaluates the reconstruction/recognition and suggests the most resilient

obfuscation. The framework is mainly composed of four units: (a) a data preparation unit,

(b) an adversary unit, (c) an evaluation unit and (d) an interpretation unit (c.f. Figure 4.1).

Figure 4.1: The generic recommendation framework

4.2.1/ DATA PREPARATION UNIT

The data preparation unit takes as inputs an image dataset along with the identify-

ing/sensitive information. It is divided into two modules: (a) detector and (b) obfuscator

(c.f. Figure 4.2). As its name indicates, the detector localizes and detects the identifying

information in the image, crops it and sends it to the obfuscator. As stated before, we

consider in this study the faces as identifying features. Hence, the detector employs the

OpenFace toolbox [Amos et al., 2016] to detect faces in an image, crop and forward it

to the obfuscator. In this study, the obfuscator anonymizes the features via: pixelating,

blurring (Gaussian/motion) and masking techniques and sends the anonymized images

to the adversary unit.
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Figure 4.2: Adapting the proposed generic framework to images with faces as identifying
features

4.2.2/ ADVERSARY UNIT

The adversary unit receives the obfuscated cropped face images. As shown in Figure

4.2, it is divided into four modules, one per obfuscation category: (a) the super-resolution

module (for pixelating), (b) the Gaussian deblur module (for Gaussian blurring), (c) the

motion deblur module (for motion blurring) and (d) the inpainting module (for masking).

Each module contains one or more adversaries.
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Adversary Model In our domain of application, an adversary undertakes an at-

tack on obfuscated images in order to extract particular information from the hid-

den facial features. Inspired by the authors in [Do et al., 2018, Bellare et al., 1993a,

Bellare et al., 1995a, Bellare et al., 2000], we define our adversary as a three-

components model (c.f. Figure 4.3) :

• Adversary’s goal: it refers to the adversary’s intentions and to the particular infor-

mation she/he attempts to obtain/extract from the anonymized dataset. In our work,

the adversary’s goal is to acquire the identity of the obfuscated faces.

• Adversary’s knowledge: similar to [chapman & Hall Book, 2016], we differentiate

between external knowledge and background knowledge. External knowledge is

obtained from external sources (e.g. images gathered from public datasets, social

network platforms. . . ) whereas background knowledge is any sort of information

regarding the anonymized dataset itself. In our work, (i) the obfuscation technique

used to anonymize the target face images along with its hyperparameters and (ii)

the identities present in the target dataset constitutes the background knowledge.

• Adversary’s capabilities: it represents to what extent can the adversary act

in order to reach her/his goal, i.e. the adversary’s abilities. It depends on the

adversary’s external and background knowledge. In our work, we consider that the

adversary can perform a restoration-based, a recognition-based or a R&R-based

attack.

Figure 4.3: Adapting the 3-components adversary model to the face obfuscation scenario

Threat Levels Inspired by Shannon’s Maxim3, we defined three threat levels T1, T2 and

T3 with regard to the adversary’s knowledge about the target obfuscated dataset (i.e., ”our

system”) (c.f. Table 4.1):
3”the enemy knows the system”, i.e, “one ought to design systems under the assumption that the enemy

will immediately gain full familiarity with them.”
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• Threat level T1: assumes an adversary aware of the obfuscation technique used

to protect the target dataset along with its hyperparameters.

• Threat level T2: assumes an adversary with full/partial knowledge about the iden-

tities present in the target dataset in addition to the obfuscation technique used and

its hyperparameters.

• Threat level T3: assumes an adversary with full/partial knowledge about the iden-

tities present in the target dataset in addition to the obfuscation technique used with-

out being aware of its hyperparameters.

Potential Attacks As we mentioned before, the adversary’s capabilities scale with re-

gard to her/his background knowledge. Hence, the attacks that the adversary can perform

vary between T1, T2 and T3. We consider three attacks: (i) restoration-based, (ii) recogni-

tion-based and (iii) Restoration & Recognition-based (R&R-based) attacks.

• Restoration-based attack: the adversary de-anonymizes obfuscated faces by

trying to reconstruct the clear original features of the anonymized information. Train-

ing a Deep Neural Network to perform a restoration-based attack requires randomly

gathering pairs of original/obfuscated face images. Hence, the adversary is capable

of performing this sort of attack in T1, T2 and T3
4.

• Recognition-based attack: the adversary breaches the images privacy and

anonymity by training learning-based algorithms to perform recognition tasks on

obfuscated faces. An identity recognition-based attack requires gathering obfus-

cated face images for specific identities. Hence, the adversary can perform this

attack in T2 and T3.

• Restoration & Recognition-based attack: the adversary attempts to defeat the

obfuscation technique via a two-steps attack: (1) reconstructing the hidden features

of an obfuscated face and (2) trying to associate it with an identity by training an

identity recognition model on clear face images. Therefore, only the adversaries in

T2 and T3 can perform this two-steps process because it requires knowledge of the

identities.

After each attack, the adversary outputs either a reconstructed face (in case she/he per-

formed a restoration-based or a R&R-based attack) or a predicted class label/probability

(in case she/he performed a recognition-based or a R&R-based attack). Both ways, each

face image has three derivatives: the clear, obfuscated and reconstructed class/face as

shown in Figure 4.4.
4In T3 the restoration-based attack could be less dangerous compared to T1 and T2 because the adversary

is not aware of the exact hyperparameters of the obfuscation technique.
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Table 4.1: Comparing the adversary’s capabilities and knowledge with regard to the two
threat levels

4.2.3/ EVALUATION UNIT

The evaluation unit is divided into two main modules: (1) the restoration and (2) the

recognition evaluation modules (c.f. Figure 4.2). The former assesses the reconstruction

ratio of the restoration-based attacks whereas the latter measures the accuracy of the

recognition-based attacks. As for the R&R-based attacks, both the restoration and the

recognition evaluation modules are employed.

Restoration evaluation module The restoration evaluation module assesses the face

restoration with regard to structural, verification and identification-based metrics. Each

metric-based sub-module receives as input three images: a clear face image (GT), an

obfuscated face image (AN) and a reconstructed face image (RC).

– The structural-based evaluation sub-module quantifies the image enhance-

ment/degradation quality after reconstruction attempts. In this study, we mea-

sure the holistic similarity between the clear image (GT) and the obfuscated im-

age (AN) and between the clear image (GT) and the reconstructed image (RC) via

SSIM5 [Zhou Wang et al., 2004]. For normalization purposes, the structural-based

sub-module computes the SSIM’s complement, i.e. 1-SSIM. Hence, the output val-

ues are between 0 and 1 where 0 means the two images are identical:

AN value struc = 1 − S S IM(GT, AN) (4.1)

5The Structural Similarity Index (SSIM) measures image quality modifications (enhance-
ment/degradations)



50CHAPTER 4. EVALUATING IMAGE OBFUSCATION UNDER DL-ASSISTED ATTACKS

Figure 4.4: (a) Ground truth, Anonymized and Reconstructed images output via the SR-
GAN network. (b) Ground truth, Anonymized and Reconstructed image outputed via the
SRResNet network.

RC value struc = 1 − S S IM(GT,RC) (4.2)

– The verification-based evaluation sub-module validates the identity of a target face

with a reference image. It mainly tries to conduct a 1-to-1 matching. In this study,

we compute the identity distance via the OpenFace6 toolbox [Amos et al., 2016]

between the reference clear face images (GT) and both the obfuscated face image

(AN) and the reconstructed face image (RC). OpenFace maps the two input faces

to an identity distance between 0 and 4. The verification-based evaluation mod-

ule normalizes the values to 0 and 1 where 0 value means that the two faces are

identical, hence:

AN value veri f = Normalized(OpenFace(GT, AN)) (4.3)

RC value veri f = Normalized(OpenFace(GT,RC)) (4.4)

We employed in this study SSIM [Zhou Wang et al., 2004] and the OpenFace tool-

box [Amos et al., 2016] because they are both publicly available and widely used in the

literature to evaluate the reconstruction of degraded faces in the context of image trans-

formation tasks [Shen et al., 2018a, Li et al., 2017a].

– The identification-based evaluation sub-module attempts to recognize an identifying

feature of an individual based on a single face image. It mainly tries to compare the

face in question with many others by conducting a 1-to-many matching. In our

study, we employed a DL-based identity recognition model (c.f. Section 4.3.1). The

identification-based sub-module uses the inferences over the three received images

in order to compute two average relative error values7. The average relative error

6OpenFace is a Python and Torch implementation of face recognition with deep neural net-
works [Schroff et al., 2015]. OpenFace directly learns a mapping from face images to a compact euclidean
space where distances directly correspond to a measure of face similarity.

7By definition, the average relative error is the absolute difference between the “exact theoretical” value
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ranges between 0 and 1. We denote the class probability returned by the DL-based

recognition model as conf.

AN value ident =
|con f (GT ) − con f (AN)|

con f (GT )
(4.5)

RC value ident =
|con f (GT ) − con f (RC)|

con f (GT )
(4.6)

In (5) and (6), both confidences in the numerator belong to the same predicted class

label. In other words, in case the inferences of the recognition model over the obfuscated

or reconstructed (AN or RC) image do not contain the GT class name, the AN value ident

or the RC value ident would be 1.

AN-values and RC-values, outputted by the three restoration evaluation sub-modules,

ranges between 0 and 1 where 0 indicates that the individual’s privacy is completely

breached whereas 1 means that it is intact. Each restoration evaluation sub-module

computes the average AN-values and the RC-values over the entire obfuscated/restored

dataset received from each DL-assisted attack and forwards them to the corresponding

module in the interpretation unit.

Recognition evaluation module The recognition evaluation module assesses the face

(obfuscated or restored) recognition ratio with regard to an accuracy -based metric. The

accuracy-based sub-module receives as input the class names and probabilities pre-

dicted (by recognition-based or R&R-based attacks) over the obfuscated face image

(AN-class) and the reconstructed face image (RC-class) along with the ground-truth label

(GT-class).

– Accuracy-based evaluation sub-module measures the Top-n accuracy of the DL-

based recognition models employed as recognition-based attacks by the adver-

saries. For each face image, the accuracy-based sub-module determines if the

GT class label (GT-class) is equal to one of the top n predicted class labels8 over

the obfuscated (AN-class) and the reconstructed (RC-class) faces. After analyzing

the entire obfuscated/restored dataset, the sub-module outputs the AN-value accur

and the RC-value accur. For normalization purposes, we compute the fraction and

the complement of the Top-n accuracy. Hence, the output values are between 0

and 1 where 0 means that the recognition model used by the adversary was highly

accurate9, i.e. the individual’s anonymity is completely breached.
and its ”measured” counterpart, divided by the “exact theoretical” value. We consider the inference over
the clear face image (GT) as the “exact” value whereas the prediction over the anonymized (AN) and the
reconstructed (RC) face images as the ”measured” values.

8Class labels with the Top n highest probabilities.
9Top-n accuracy is 100%.



52CHAPTER 4. EVALUATING IMAGE OBFUSCATION UNDER DL-ASSISTED ATTACKS

4.2.4/ INTERPRETATION UNIT

The interpretation unit selects the most robust obfuscation techniques per evaluation met-

ric based on the results provided by the evaluation unit. As seen in Figure 4.2, the

interpretation unit is divided into four selection modules, one per evaluation metric: (a)

structural-based, (b) identification-based, (c) verification-based and (d) accuracy-based

selection module. Each module performs a two-steps comparison in order to select the

most resilient obfuscation technique: (1) intra-attack and (2) inter-attack comparisons

(e.g., the structural-based selection module selects the most resilient obfuscation with re-

gard to the SSIM metric whereas the verification-based selection module selects the most

resilient obfuscation with regard to the Openface identity distance metric). As a first step,

the intra-attack comparison allows us to identify the strongest DL-assisted attack against

each obfuscation technique with regard to each evaluation metric. In other words, the

attack that restored/recognized most of the obfuscated face images. As a second step,

the inter-attack comparison chooses the most resilient obfuscation against the selected

DL-assisted attacks. A detailed example is showcased in Section 4.3.1.

In this section, we described how our recommendation framework recommends the

most resilient obfuscation technique via the 4-layered iterative workflow: (a) de-

tecting/obfuscating the identifying/sensitive information, (b) restoring/recognizing via

the DL-assisted attacks performed by the adversaries, (c) evaluating the reconstruc-

tion/recognition and (d) selecting the most robust obfuscation based on the inter/intra-

attack comparisons.

4.3/ EXPERIMENTS

To validate and assess our approach, we set up our experiments to (i) evaluate the rec-

ommendation framework (c.f. Section 4.3.1) and study thoroughly the effect of the back-

ground knowledge on the adversary’s capabilities with regard to (ii) the identities present

in the target dataset (c.f. Section 4.3.2) and (iii) the obfuscation technique (c.f. Section

4.3.3). Throughout the three experiments, we considered that the adversaries have the

same goal: identify/recover the identities of the obfuscated faces. Furthermore, we con-

ducted our experiments on the CelebA dataset [Liu et al., 2015] with the celebrity faces

being the identifying features.
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Table 4.2: The different adversaries considered for the first experimental setup

4.3.1/ EVALUATING THE RECOMMENDATION FRAMEWORK

In this experimental setup, we evaluate our recommendation framework by considering

four obfuscation techniques: pixelation, Gaussian blur, motion blur and masking.

Input Dataset & Identifying Information In order to prepare our evaluation test

dataset, we select10 370 face images from the official CelebA test set [Liu et al., 2015].

Our test set contains face images belonging to male and female celebrities of different

races and different age (majority are above 18). To normalize our experimental setup,

we use the same face images to evaluate the different DL-assisted attacks. The training

sets vary between DL-assisted attacks, however, no face images from the test set were

included throughout the training of any of the DL models.

Obfuscation techniques We employed in this setup four obfuscation techniques: (1)

pixelation, (2) Gaussian blur, (3) motion blur and (4) masking. We specified for each

obfuscation technique a fixed parameter as shown in Table 4.2. Regarding the pixela-

tion, we simply downscaled the face images by a factor of 4. For the Gaussian blur,

we applied a Gaussian filter with a kernel size (31,31) and standard deviation of 5. As

for the motion blur, we synthesized a motion blur kernel from random 3D camera tra-

jectories [Boracchi et al., 2012]. Regarding the masking technique, we replaced random

10We first selected 1307 images from the official CelebA test set, then we filtered out, via a pre-trained
celebrity recognition model, the faces that were wrongly recognized or correctly recognized with a probability
lower than 0.7. This recognition model was used by the identification-based evaluation sub module.
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pixels all over the image by black pixels. As seen in Table 4.3, the different obfuscation

techniques guarantee ”visually” the anonymity of the target identities.

Adversaries & DL-assisted attacks We simulated four adversaries in T1 who perform

5 restoration-based attacks against the four obfuscation techniques (c.f. Table 4.2).

For the Super Resolution (SR) task, we considered that the adversary performed two

restoration-based attacks against pixelation: SRResNet and SRGAN. On the one hand,

the SRResNet is a ResNet-based architecture [He et al., 2016b] and is considered

a benchmark when it comes to SR algorithms [Yang et al., 2019b, Ledig et al., 2017].

Moreover, SRResNet is a generic SR-network applicable to our faces dataset11.

On the other hand, SRGAN is a GAN-based super resolution model implemented

by [Garcia, 2016] similar to [Yu et al., 2016]. The model was developed specifically for

faces. We generated the training pairs by downsampling the unobfuscated (GT) face

images by a factor of four and trained both networks from scratch.

For the deblur task, we considered two distinct adversaries against two distinct blurring

techniques. Regarding the Gaussian blur, we adapted the SRResNet architecture by

modifying the input size of the network implemented in [Majumdar, 2016] (i.e., Deblur-

ResNet). In addition, we generated the training pairs by applying Gaussian blur to the

unobfuscated (GT) face images and trained the network from scratch. As for the motion

blur, we used the implementation and the pre-trained model provided by the authors (i.e.,

DSF Deblur) [Shen et al., 2018b].

Last but not least, we considered that the adversary applied the deep generative model

DCGAN proposed in [Yeh et al., 2017] and the implementation in [Jin, 2018] to attack

the masking technique (i.e., DSI inpaint). We trained the DCGAN network on our face

dataset from scratch. Table 4.3 summarizes the technical details regarding each DL-

assisted attack.

Evaluation & Interpretation As stated in Section 4.2.3, the framework provides (i)

structural, (ii) verification and (iii) identification-based evaluations to assess the recon-

struction ration of the restoration-based attacks. Each evaluation sub-module in our

framework computes two metric-based values for each clear image: (a) AN-value and

(b) RC-value. These values range between 0 and 1 where 0 indicates that the individ-

ual’s privacy is completely breached. In the following sections, we report the average

values over the entire test set.

– Structural-based evaluation: As shown in Figure 4.5.(a), the average RC values -

11The implementation [Majumdar, 2016] provided a network which upscales the input image by a factor of
2. Hence, we added an upscaling function and re-trained it from scratch for upscaling by a factor of 4.
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Table 4.3: Technical details regarding the obfuscation techniques and the implementa-
tions of the DL-assisted attacks [Tekli et al., 2019]

struct of all the DL-assisted attacks are lower than the average AN values struct

since the reconstructed RC face images are overall more similar to the clear GT

face images than the obfuscated AN face images in terms of SSIM. As mentioned

in Section 4.2.4, the interpretation unit executes the intra/inter-attack comparisons

in order to select the most resilient obfuscation. First, the intra-attack comparison

selects the strongest DL-assisted attack against each obfuscation technique. For

instance in our case, all adversaries performed a single DL-assisted attack against

each obfuscation except ”Adversary 1” (c.f. Table 4.2) which performed two DL-

assisted attacks against the pixelation technique: (a) SRGAN and (b) SRResNet

attacks. Therefore, the intra-attack comparison selects the attack that caused the

highest privacy breach against pixelation, i.e. the SRResNet attack because it re-

sulted in the lowest RC value struct as seen in Figure 4.5.(a) when compared to

SRGAN. Furthermore, the inter-attack comparison selects the most resilient obfus-

cation technique, i.e. the obfuscation whose DL-assisted attack records the highest

RC value struct. As seen in Figure 4.5.(b), the “DSF-Deblur” attack records the

highest RC value struc, as such, “motion blur” is the most resilient obfuscation with

regard to the SSIM metric.

– Verification-based evaluation In Figures 4.6.(a,b), we report the average RC val -

verif and AN val verif values. The intra/inter-attack comparisons select ”masking”

as the most resilient obfuscation technique with regard to the identity distance met-

ric because the corresponding ”DSI Inpaint” attack recorded the highest RC-value -

verif in Figure 4.6.(b).
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(a) Before Intra-attack comparisons (b) After Intra-attack comparisons

Figure 4.5: The Structural-based evaluation sub-module output before and after the intra-
attack comparisons [Tekli et al., 2019]

(a) Before Intra-attack comparisons (b) After Intra-attack comparisons

Figure 4.6: The Verification-based evaluation sub-module output before and after the
intra-attack comparisons [Tekli et al., 2019]

– Identification-based evaluation In Figures 4.7.(a,b), we report the average AN -

values ident and RC values ident. The intra/inter-attack comparisons select

“Gaussian blur” as the most resilient obfuscation technique with regard to the

identification-based metric because the ”DeblurResNet” attack recorded the highest

RC values ident in Figure 4.7.(b).
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(a) Before Intra-attack comparisons (b) After Intra-attack comparisons

Figure 4.7: The Identification-based evaluation sub-module output before and after the
intra-attack comparisons [Tekli et al., 2019]

The ”masking” technique would be the most robust obfuscation with regard to the different

metrics, even after reconstruction attempts, if we were to block the entire face image with

black pixels. In this study, we are masking the face image by randomly placing black

pixels and leaving some original pixels intact (c.f. Figure 2.8.(e)), hence our results.

Comparison with other evaluation frameworks On a different note, the authors in

[Li et al., 2017b] considered a human-based evaluation where they showed each partici-

pant an obfuscated face image and a couple of clear face images in order for her/him to

match them up and guess the obfuscated identity. If we were to apply the same scenario

to our four obfuscations, it would be more difficult for a human to re-identify an identity

masked with random black pixels in comparison to the pixelated or blurred identities (as

seen via the obfuscated face images in Figure 4.8). Nevertheless, after reconstructing the

obfuscated faces via restoration-based attacks, the ”masking” technique becomes also

vulnerable to the human visual system (as seen via the reconstructed face images in Fig-

ure 4.8). Similarly, if we were only to evaluate the obfuscation techniques like the authors

did in [Nawaz et al., 2017, Dufaux et al., 2010, Korshunov et al., 2013] where they com-

pared the obfuscated image to the original image via quantitative metrics, then ”masking”

would be the most resilient obfuscation with regard to the different evaluation metrics as

we notice when observing the AN-values in Figures 4.5, 4.6 and 4.7 (e.g. the AN-values

of the ”masking” technique are always 1). However, we notice that it is not always the

case after performing the restoration-based attacks: for instance when observing Figure

4.5.(b), we notice that the RC value struct of ”masking” is lower than ”pixelation” and

”motion blur”, i.e. the reconstruction of the masked face images was better with regard

to the SSIM metric compared to the pixelated and motion blurred face images therefore
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making it more vulnerable. These two observations stress the importance of employing

restoration-based attacks when evaluating the robustness of an obfuscation technique.

As a future step, we would like to add a human-based evaluation sub-module similar

to what the authors did in [Li et al., 2017b]. Therefore, we would have the possibility to

select the most resilient obfuscation technique after reconstruction attempts with regard

to the human visual system as well.

Figure 4.8: Comparison of the different reconstructions. Columns from left to right include
Ground truth, Obfuscated and Reconstructed faces. Rows from top to bottom include the
DL-assisted attacks [Tekli et al., 2019]

4.3.2/ STUDYING THE EFFECT OF THE BACKGROUND KNOWLEDGE REGARDING

THE IDENTITIES present IN THE TARGET DATASET

In this experimental setup, we show how the adversary’s knowledge regarding the identi-

ties present in the target dataset affects her/his capabilities. In the earlier section, we iden-

tified ”masking”, ”motion blur” and ”Gaussian blur” as the most robust obfuscations with

regard to the different evaluation metrics in our framework. In this section, we focus on the

”Gaussian blur” obfuscation technique as it is still the most widely used technique for pri-

vacy preservation purposes [Frome et al., 2009, Caesar et al., 2020, Yang et al., 2021].

Data Preperation In this setup, we needed to train identity recognition models in order

to perform recognition-based and R&R-based attacks. Hence, we had to gather face im-

ages for each identity. Although the CelebA dataset [Liu et al., 2015] is not designated for

identity recognition tasks, we used it for training and evaluating the DL-assisted attacks12.

12For instance, we did not employ the FaceScrub dataset [Ng et al., 2014], which is designated for identity
recognition tasks, because the number of identities is limited to 530 whereas it is 10,177 in the CelebA
dataset.
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We selected13 854 identities from the CelebA dataset and we gathered 60 face images

for each celebrity14. Out of these 60 images, 5 were left for testing and the remaining

55 were used for training purposes. Therefore, our test set contained 4270 face images

(854 selected individuals x 5 test images) which are not part of the official CelebA test

set (58% are female and 42% are male). We resized all the images to 64x64 and then

applied the blurring function with a kernel size (31x31) and standard deviation of 5 (c.f.

Figure 2.8.(c)).

Incremental Background Knowledge In order to simulate the adversary in T2, we de-

signed an adversary with an incremental background knowledge regarding the number

of identities present in the target dataset. We denoted as N the set of identities known

by the adversary. We varied |N | between 0 (no knowledge about the identities present in

the target dataset, i.e. T1) and 854 (Full knowledge, i.e. T2)15. In total, we considered 10

distinct values for |N | = {0, 100, 200, ..., 800, 854}.

Adversary & DL-assisted attacks As mentioned in Section 4.2.2, the adversary in T2,

is capable of executing either a (i) R&R-based or a (ii) recognition-based attack.

On the one hand, the R&R-based attack is a combination of a DL restoration model

followed by a DL identity recognition model. Regarding the restoration model, we

trained the same DeblurResNet network [Ledig et al., 2017, Majumdar, 2016] as in sec-

tion 4.3.1. The only difference is that we included in the training set 10 pairs of

clear/obfuscated face images for each identity in N. As for the recognition model, the

adversary uses the remaining 45 clear face images of each identity in N to train a

SEResNext10116 classifier with |N | + 1 classes17 and attempt to recognize reconstructed

faces [Xie et al., 2017, Hu et al., 2019].

On the other hand, the recognition-based attack tries to associate each anonymized face

image with an identity (bypassing the reconstruction process). Therefore, the adversary

obfuscates the 55 face images of each identity in N and train a SEResNext101-based

classifier with |N | + 1 classes in order to recognize obfuscated face images. We applied

transfer learning to our classifier network by employing ImageNet pre-trained weights

[Russakovsky et al., 2015b] and also augmented our training datasets by randomly flip-

ping, resizing and adding noise (e.g. color variations and saturation) to the face images.

We simulated for each value of |N | the corresponding attacking capabilities hence we

13for additional details regarding the data preparation process, please contact jimmytekli@hotmail.com
14we mined images from google via google-images-download as well.
15854 being the maximum number of individuals in our test set
16https://github.com/BMW-InnovationLab/BMW-Classification-Training-GUI
17In addition to the classes regarding the individuals in N, we also added an additional class to our classifier

entitled “others” which grouped 800 images that belong to other individuals

https://github.com/BMW-InnovationLab/BMW-Classification-Training-GUI
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trained 1 restoration-based, 9 R&R-based and 9 recognition-based attacks as seen in

Table 4.4.

Table 4.4: Technical details regarding the DL-based models employed as restoration,
recognition and R&R-based attacks

Results and Interpretations We show how the incremental background knowledge

with regard to the identities present in the target dataset affect the adversary’s capabilities.

Our results show that:

• The incremental background knowledge does not affect the reconstruction accuracy

of the restoration models in the R&R-based attacks.

• The adversary breaches the privacy of the obfuscated face images via both the

R&R-based and the recognition-based attacks.

• The incremental background knowledge increases the accuracy of the recognition

models in both the R&R-based and the recognition-based attacks, i.e. increases

the privacy breaches.

• The adversary is more dangerous when performing recognition-based attacks com-

pared to R&R-based attacks.
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As stated in Section 4.2, our framework provides structural and verification-based eval-

uations regarding the restoration-based attacks. In the following part, we measure the

AN-values and the RC-values of the restoration models in the restoration-based and

R&R-based attacks for each value of |N |.

• The incremental background knowledge does not affect the reconstruction
accuracy of the restoration models in the R&R-based attacks: We notice

in Figure 4.9 for the different values of |N | that (a) the RC values struct and (b)

RC values verif values are stable with minor fluctuations. This demonstrate that

increasing |N | does not increase nor affect the reconstruction accuracy of the

restoration models with regard to the SSIM [Zhou Wang et al., 2004] and the Open-

face [Amos et al., 2016] evaluation metrics. In other words, even if the adversary

knows the identity of a particular individual in the target dataset, adding face images

of this particular individual to the training set of the restoration model (DeblurResNet

[Majumdar, 2016] in our case) does not affect its reconstruction accuracy.

(a) Structural-based metric (b) Verification-based metric

Figure 4.9: Effect of the background knowledge on the reconstruction quality with regard
to the structural and verification-based evaluation sub-modules

In the following part, we measure the Top-1 (Top-5) accuracy of the identity recogni-

tion models in the R&R-based attacks (SEResNext101 classifiers trained on clear faces

to recognize reconstructed faces) and in the recognition-based attacks (SEResNext101

classifiers trained on obfuscated faces to recognize obfuscated faces).

• The adversary breaches the privacy of the obfuscated face images via both
the R&R-based and the recognition-based attacks.

In Figures 4.10.(a,b), we show the Top-1(Top-5) accuracy of the identity recogni-

tion models employed in the R&R-based attacks for each value of |N |. Therefore,
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we report in both figures three distinct values: the GT values18 which serve as a

reference, the RC19 and the AN20 values in order to highlight the effect of the face

reconstruction process on the classifier’s accuracy compared to the anonymized

face images. We notice that Top-1(Top-5) accuracies report higher values for the

RC curve in comparison with the AN curve by almost 10% (30%). In other words,

the adversary breached and recovered, via R&R-based attacks, the identity of the

obfuscated faces 10(30) times more after reconstruction. The slight variations ob-

served in the RC curves are due to the margin of error resulted from the restora-

tion-based attack.

Furthermore, we report in Figures 4.11.(a,b) the Top-1(Top-5) accuracy of the iden-

tity recognition-models employed as recognition-based attacks by the adversary. In

this case, we only report the GT and the AN values without the RC values because

the reconstruction process is not part of the attack. The Top-1(Top-5) accuracy re-

ports higher values for the AN curves when compared to the GT curves because

the identity recognition models are trained on obfuscated face images in this case.

Most importantly, we notice that the adversary breached and recovered, via the

recognition-based attacks, the identity of the obfuscated faces nearly 55%(72%) of

the time.

(a) Top-1 accuracy (b) Top-5 accuracy

Figure 4.10: Measuring the Top-1/Top-5 accuracy of the different R&R-based attacks for
each value of |N |

18The accuracy of the classifiers when inferring over GT face images
19The accuracy of the classifiers when inferring over RC face images
20The accuracy of the classifiers when inferring over AN face images
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(a) Top-1 accuracy (b) Top-5 accuracy

Figure 4.11: Measuring the Top-1/Top-5 accuracy of the different recognition-based at-
tacks for each value of |N|

In the following part, we count the number of individuals who were re-identified and whose

anonymity was breached. As we mentioned before, our test set contains 5 anonymized

face images per identity. Hence, we consider that an individual is re-identified if L face

images out of 5 are correctly recognized (Top-1 recognition) where 0 < L <= 5. In the

following, we report the values for L = 2.

• The incremental background knowledge increases the accuracy of the recog-
nition models in both the R&R-based and the recognition-based attacks, i.e.,
increases the privacy breaches: In Figure 4.12.(a), we count the number of in-

dividuals re-identified by the R&R-based attacks. Because the recognition model

is trained on clear face images, the GT curve serves as a reference. We report

that the number of re-identified individuals with regard to the RC images increased

along with the background knowledge of the adversary. For |N |=100, the adver-

sary re-identified, via the R&R-based attack, 10 out of 854 (1.2%) individuals af-

ter reconstruction whereas at |N|=854 she/he recognized 135 individuals (15.8%).

In addition, in Figure 4.12.(b) we report the number of individuals re-identified by

the recognition-based attacks. We notice a steady increase in the number of re-

identified individuals with regard to the AN face images along with the background

knowledge. At |N |=854, the adversary re-identified 692 individuals out of 854, i.e.,

almost 81% of the anonymized individuals. The recognition-based attacks demon-

strate poor results when inferring over clear (GT) face images in Figure 4.12.(b)

because the identity recognition models are trained via obfuscated face images.

• The adversary is more dangerous when performing recognition-based attacks
compared to the R&R-based attacks: When comparing the adversary’s capa-



64CHAPTER 4. EVALUATING IMAGE OBFUSCATION UNDER DL-ASSISTED ATTACKS

bilities in Figure 4.12.(c), we notice that when equipped with |N |=100 as back-

ground knowledge, the adversary re-identified 10 individuals when performing a

R&R-based attack whereas she/he re-identified 81 when performing a recognition-

based attack. The same behavior persists throughout the incremental process of

the background knowledge. When equipped with |N|=854 as background knowl-

edge, the adversary re-identified 135 out of 854 (15.8%) when performing an R&R-

based attack whereas she/he re-identified 692 (79.8%) when performing a recogni-

tion-based attack.

(a) R&R-based attacks (b) Recognition-based attacks

(c) Recognition-based vs R&R-based attacks

Figure 4.12: Counting and comparing the number of recognized individuals in the test set
when performing R&R-based and recognition-based attacks
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4.3.3/ STUDYING THE EFFECT OF THE BACKGROUND KNOWLEDGE REGARDING

THE OBFUSCATION TECHNIQUE

In this experimental setup, we show how the background knowledge with regard to the ob-

fuscation technique and its hyper-parameters affects the adversary’s capabilities. Similar

to the previous section, we consider ”Gaussian blur” as the obfuscation technique.

Data Preparation We selected randomly 100 identities from the dataset prepared in

Section 4.3.2. For each identity, 55 face images were left for training purposes and 5

images were left for testing (i.e. 500 images in the test set). We prepared 7 different

versions of the target dataset, each blurred with a kernel from ktest= {19, 25, 31, 37, 43,

49, 55} (c.f. Table 4.5).

Table 4.5: The seven target datasets blurred with distinct ktest values

Background knowledge We consider threat level T3, i.e., the adversary is aware of the

obfuscation technique employed in the test/target dataset (e.g., Gaussian blur) however

not of its hyper-parameters (e.g., the blurring kernel’s size). In addition, we consider the

adversary is aware of the identities in the target dataset (i.e., |N| = 100).

Adversary & DL-assisted attacks We perform recognition-based attacks as it is more

dangerous compared to the R&R-based attacks as demonstrated in the earlier section

(c.f. Section 4.3.2). We employ the same SEResNext101 classifier and training param-

eters used in section 4.3.2. In T3, the adversary can choose any blurring kernel and

prepare the training dataset accordingly because she/he is not aware of the blurring ker-

nel used to obfuscate the target dataset. Hence, we trained 5 recognition-based attacks,

each with a distinct kernel from ktrain={31,37,43,49,55}. We report the privacy breaches

of each attack against the 7 target datasets blurred via ktest. Last but not least, we con-

sidered two training modes for each recognition-based attack: (i) “blur-&-clear mode”

where the training set contains clear and blurred version of each face image and (ii) “blur
mode” where the training set contains blurred face images only.

Results and Interpretations In the following section, we demonstrate that:
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• The adversary must not know the exact blurring kernel of a target dataset in order

to breach its anonymity.

• The privacy breaches decrease steadily in a linear fashion when attacking face

images blurred with kernels greater than the kernel chosen by the adversary while

preparing her/his training dataset.

• Including both, clear and blurred images in the training datasets increases the

recognition accuracy of the recognition-based attacks, specifically when the target

dataset’s blurring kernel is smaller than the training dataset’s.

• Preparing the training dataset with blurring kernel (37,37) provides the widest attack

range against the 7 target datasets.

Each subfigure in Figure 4.13 reports the Top-1 accuracy of the recognition-based attacks

(blur-&-clear and blur modes) trained with a specific kernel ktrain spe and attacking the

7 target datasets. For instance, Figure 4.13.(a) corresponds to the recognition-based

attacks (blur-&-clear and blur modes) trained on face images blurred via ktrain spe=(31,31).

We report the following observations:
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(a) ktrain spe = 31 (b) ktrain spe = 37

(c) ktrain spe = 43 (d) ktrain spe = 49

(e) ktrain spe = 54

Figure 4.13: Top-1 accuracy of the recognition-based attacks (blur-&-clear and blur
modes) trained with a specific kernel ktrain spe and attacking the 7 target datasets.
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• The adversary must not know the exact blurring kernel of the target dataset in
order to breach its anonymity. For instance in Figure 4.13.(e), we notice that the

adversary breached the faces’ anonymity 46% (blur-&-clear mode) and 36% (blur
mode) of the time on average against the 7 target datasets despite training the

recognition models with kernel size ktrain spe=(55,55). Similar behavior is observed,

although with different magnitudes, for the other ktrain spe values as well.

• The privacy breaches decrease steadily in a linear fashion when attacking
face images blurred with kernels greater than ktrain spe. As we notice in Figure

4.13.(a), the Top-1 accuracies (for both blur-&-clear and blur modes) decrease

steadily when the adversary attacks target datasets blurred with kernels greater

than ktrain spe=(31,31). The same behavior clearly persists in Figures 4.13.(b) and

4.13.(c) for ktrain spe=(37,37) and ktrain spe=(43,43) respectively.

• Including both, clear and blurred images in the training datasets increases
the recognition accuracy of the recognition-based attacks, specifically when
attacking a target dataset obfuscated with a kernel smaller than ktrain spe. When

trained via the blur mode, the highest privacy breach occurs when the training and

the target datasets are blurred with the same kernel, i.e., ktrain spe= ktest. Whereas,

when trained via the blur-&-clear mode, the highest privacy breach occurs against

the target dataset blurred with the smallest kernel, i.e., ktest=(19,19). Last but not

least, we notice that both, blur and blur-&-clear modes report almost the same

Top-1 accuracies for ktest=ktrain spe when observing subfigures 4.13.(b)-(c) and (d).

• Using blurring kernel (37,37) provides the widest attack range and highest
privacy breaches against the 7 target datasets. To estimate the range of each

attack against the 7 target datasets, we report in Table 4.6 the Area Under the

Curve (AUC) of the Top-1 accuracy curves for each kernel in ktrain (i.e., for each

sub-figure in Figure 4.13). We notice that kernel size (37,37) reports the highest

AUC values for both training modes, i.e. the highest privacy breaches and attack

range against the 7 target datasets. The adversary does not need to blur her/his

training datasets with the highest blurring kernel (ktrain spe=55 in our case) in order

to cause the highest privacy breaches over the different target datasets. In other

words, considering an adversary unaware of the target dataset’s blurring kernel, the

most dangerous attack she/he could perform is a recognition-based attack trained

via the blur-&-clear mode using kernel ktrain spe=(37,37).

Table 4.6: AUC table
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4.4/ FRAMEWORK DISCUSSION

In this section, we describe briefly how our recommendation framework is generic in terms

of identifying/sensitive features and scalable with regard to the obfuscation techniques,

the adversaries and the evaluation metrics.

First, our recommendation framework is generic because it can be adapted to other iden-

tifying/sensitive information. Let us consider the worker’s badge name as the identifying

feature instead of the worker’s face. In other words, our goal is to recommend the most

robust obfuscation techniques for the workers’ badge names. In short, we need to:

• Change/train a detector in the data preparation unit to localize and detect the

text/Badge Names in an image, e.g. OpenCV’s scene text detector21.

• Train DL-assisted attacks to restore/recognize obfuscated characters in image by

adding pairs of clear/obfuscated text images to their training sets.

• Change/adapt the evaluation metrics in the evaluation unit: for instance, employing

the Tesseract OCR library22 in the verification-based sub-module in order to extract

the text from the clear, obfuscated and restored images and compare the extracted

results.

Second, our recommendation framework is scalable with regard to the:

• Obfuscation techniques: we can evaluate the robustness of the GAN-based inpaint-

ing method in the context of face images [Hao et al., 2019] by implementing it in the

obfuscater (data preparation unit) and train a DL-assisted attack accordingly.

• Adversaries: we can also consider adversaries with different threat levels, capable

of performing more dangerous DL-assisted attacks either by considering additional

knowledge, different neural network architectures [Zhang et al., 2020], other train-

ing hyper-parameters or larger training datasets. . .

• Evaluation metrics: including additional metrics provides ’redundancy’ and ’diversity’

for the evaluation process. For instance in the context of face images, we can

consider human evaluators as in [Li et al., 2017b] or other identity-based metric to

measure the identity distance between two faces alongside the OpenFace tool.

21https://docs.opencv.org/master/da/d56/group text detect.html
22https://github.com/tesseract-ocr/tesseract

https://docs.opencv.org/master/da/d56/group__text__detect.html
https://github.com/tesseract-ocr/tesseract
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4.5/ RELATED WORKS

In this section, we investigate works related to (i) adversaries attacking obfuscated im-

ages via recognition/restoration-based attacks and (ii) to evaluation frameworks.

4.5.1/ RECOGNITION-BASED ATTACKS

In [Newton et al., 2005b], Newton et al. designed an algorithmic attack to identify peo-

ple from pixelated and blurred face images. The recognition rates increased after ap-

plying the same obfuscation to the probe and gallery set of the face recognition ap-

proach [Turk et al., 1991]. They showed that small pixel box (e.g., 2x-4x) and simple

blurring cannot prevent identification attacks. In another study [Gopalan et al., 2012],

Gopalan et al. presented a method to recognize faces obfuscated with non-uniform blur-

ring by examining the blurred images. As a follow-up study [Punnappurath et al., 2015],

Punnappurath et al. applied blurring effects to images in the target gallery and mea-

sured the minimal distance between the gallery images and the blurred probe im-

age. On another note, the authors in [McPherson et al., 2016] demonstrated that mod-

ern image recognition approaches, based on artificial neural networks, can be em-

ployed as attacks to recover hidden information from obfuscated images. They fo-

cused on three forms of obfuscation: pixelating, blurring and P3 (an encryption-

based method [Ra et al., 2013]). The adversary successfully identifies obfuscated faces

and objects by training DL networks with obfuscated images (faces [Ng et al., 2014,

Cambridge, 1994], digits [LeCun, 1998] and objects [Krizhevsky et al., 2009]). Also in

a recent medical study [Packhäuser et al., 2021], the authors performed DL-assisted at-

tacks against a publicly available anonymized medical dataset [Wang et al., 2017] con-

taining x-rays of patients with sensitive meta-data such as treatment history, clinical in-

stitution, diagnosis. . . They considered an adversary aware of the identities present in

the target dataset. Therefore, she/he can perform recognition-based attacks and link the

known identity to the anonymized x-rays in the target anonymized dataset in order to gain

more sensitive data about the identity.

Similar to [Packhäuser et al., 2021] and unlike the other studies, we assume a more re-

alistic scenario where an adversary can perform a recognition-based attack only when

equipped with the proper background knowledge. Additionally in our case, we study

thoroughly how the background knowledge affects the recognition-based attacks. For in-

stance, in T2 we show how the incremental background knowledge regarding the identities

present in the target dataset intensifies the privacy breaches and increases the number of

re-identified individuals. Whereas in T3, we show how an adversary can perform a recog-

nition-based attack and breach the face’s anonymity despite lacking knowledge regarding

the hyper-parameters of the obfuscation technique used.
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4.5.2/ RESTORATION-BASED ATTACKS

The authors in [Ruchaud et al., 2016] tackled the privacy-preservation question in the

context of obfuscated faces by restoring obfuscated features and evaluating the recon-

struction with regard to face recognition. They considered three obfuscations: pixelating,

blurring and masking. They used traditional image reconstruction techniques (i.e., recon-

struction [Dong et al., 2011] and interpolation-based [Keys, 1981] techniques for super

resolution). In addition, they evaluated the identity restoration using the same traditional

face recognition techniques as in [Korshunov et al., 2013]. In our framework, we adopted

DL-based techniques for both, face reconstruction and recognition because as stated in

[Ledig et al., 2017, Amos et al., 2016], DL-based techniques demonstrate great superior-

ity over traditional methods. Alternatively, the authors in [Abramian et al., 2019] investi-

gated the amount of obfuscation needed to guarantee patients anonymity. They applied

CycleGAN [Zhu et al., 2017] in order to reconstruct features from anonymized medical

imaging. They considered two anonymization techniques: (a) blurring and (b) masking.

They also compared the results qualitatively and quantitatively by computing correlation

coefficients and SSIM between the original and reconstructed images as well as between

the original and anonymized images. In our approach, we add a level of abstraction to

the restoration and evaluation process, i.e. the intra/inter attack comparisons in the in-

terpretation unit, in order to not only evaluate the reconstruction process but recommend

the most robust obfuscation technique.

4.5.3/ BACKGROUND KNOWLEDGE EFFECT

In a similar study to ours, the authors in [Hao et al., 2019] evaluated the effectiveness of

8 obfuscation techniques by considering three threat levels based on the knowledge of

the adversary with regard to the obfuscation technique employed along with its hyper-

parameters. They considered that the weakest adversary has no knowledge about the

obfuscation used whereas the strongest knows the exact one employed. In addition,

they performed three types of attacks: an recognition-based, a verification-based and

a restoration-based attack and they showed that the privacy breaches increase along

with the background knowledge. In our work, we first defined the background knowl-

edge of the adversary with regard to the identities present in the target dataset, not only

the obfuscation technique employed. Second, we designed the adversary with an in-

cremental background knowledge with regard to the number of identities known by the

adversary. Whereas the authors in [Hao et al., 2019] considered a specific number of

known identities when performing identification attacks and it was not part of the back-

ground knowledge. Third, in our work we considered the hyper-parameters of the obfus-

cation technique as part of the background knowledge. Last but not least, we adapted
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the three-components adversary model (i.e., goal, knowledge and capability) to the im-

age obfuscation application domain to clearly define and demonstrate how these different

components (mainly knowledge and capabilities) affect one another.

4.5.4/ EVALUATION FRAMEWORKS

Several evaluation frameworks have been proposed in the literature to evaluate obfusca-

tion techniques in the context of images/videos. Some frameworks rely on human partic-

ipants [Li et al., 2017b] whereas others rely on quantitative metrics [Dufaux et al., 2010,

Nawaz et al., 2017] e.g. SSIM, recognition algorithms...

On the one hand, the authors in [Li et al., 2017b] conducted an online experiment with

271 participants to evaluate the effectiveness of different obfuscation techniques (e.g.

blurring, pixelating, inpainting. . . ) against human recognition and how they affect the

viewing experience. In our study, we employ quantitative-based metrics however we

can hybridize our framework by including either a human-based adversary that attempts

to recognize obfuscated/restored faces or a human-based evaluation module that at-

tempt to assess the reconstruction of the images. On the other hand, the authors in

[Nawaz et al., 2017] propose a framework that evaluates the obfuscation techniques (pix-

elating, blurring, complete masking, cartooning) based on the privacy and utility aspects

in the context of videos via quantitative-based metrics. They assess the privacy as-

pect by quantifying the appearance similarity between the original and the obfuscated

image and assess the utility by quantifying the structural similarity. Also, the authors

in [Wu et al., 2020b] propose an adversarial framework to address the privacy preser-

vation problem regarding action recognition in videos. The framework explicitly min-

imizes a hybrid loss function combining both, privacy and utility aspects in order to

find an optimal level of privacy (anonymization) while maintaining a good level of util-

ity. Our framework evaluates the robustness of obfuscation techniques by (i) simulating

adversaries with different background knowledge, (ii) performing attacks (recognition or

restoration-based) and (iii) evaluating these attacks via structural, verification, identifica-

tion and accuracy-based metrics. In [Dufaux et al., 2010], the authors proposed a frame-

work to verify the effectiveness of obfuscation techniques (pixelating, blurring, scram-

bling) by conducting recognition-based attacks via the PCA [Turk et al., 1991] and LDA

[Belhumeur et al., 1997] algorithms. Also, the authors in [Korshunov et al., 2013] inves-

tigated the privacy-intelligibility trade-off by proposing a framework for evaluation of pri-

vacy filters. They applied several privacy techniques to faces (e.g. blurring, pixelating and

masking) with varying intensities. The accuracy of the face recognition algorithm was

considered a measure of privacy (a specific person should not be identified). Whereas,

the accuracy of the face detection algorithm was used as a measure of intelligibility (a

face should be detected). Similar to [Dufaux et al., 2010], they applied traditional meth-
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ods for face recognition such as PCA [Turk et al., 1991], LDA [Belhumeur et al., 1997]

and LBP [Ahonen et al., 2006]. They concluded that an increase in the strength of pri-

vacy filters leads to an increase in privacy and a decrease in intelligibility. Similarly,

the framework proposed in [Korshunov et al., 2013] evaluates the best obfuscation tech-

nique regarding the privacy-intelligibility trade-off by varying the level of privacy and com-

paring the accuracy of both face detection and recognition algorithms. Here and un-

like [Dufaux et al., 2010, Korshunov et al., 2013], (i) we employ DL-based approaches in-

stead of traditional approaches, (ii) we add a level of abstraction to the framework to not

only evaluate but recommend the most robust obfuscation technique and (iii) we study

thoroughly how the background knowledge can limit/increase the adversary’s attacking

capabilities (restoration-based or recognition-based attacks) and privacy breaches.

4.6/ CONCLUSION

In this chapter, we proposed a generic and scalable framework to evaluate and recom-

mend the most robust obfuscation techniques for specific identifying/sensitive informa-

tion, such as an individual’s face. The framework reconstructs/recognizes obfuscated

faces via DL-assisted attacks, evaluates the reconstruction/recognition via different met-

rics and recommends the most robust obfuscation with regard to each metric. We pre-

sented the recommendation framework by (i) proposing a 4-layered iterative process, (ii)

showcasing the framework’s detailed structure when applied to a facial images dataset

and (iii) defining the 3-components adversary model (goal, knowledge and capabilities)

to our application domain (i.e., facial features obfuscations) with three threat levels and

3 attacking capabilities. We conducted three sets of experiments on the CelebA dataset

[Liu et al., 2015]. In the first experiment, we validated our approach by implementing

and testing our framework on obfuscated faces. Throughout the second experiment, we

demonstrated how the adversary’s attacking capabilities scale with her/his knowledge

and how it increased the potential risk of breaching the identities of blurred face images.

Throughout the third experiment, we studied the possible privacy breaches and the at-

tack range of an adversary against blurred face images while lacking knowledge about

the obfuscation’s hyper-parameters.
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LEVERAGING DEEP

LEARNING-ASSISTED ATTACKS

AGAINST IMAGE OBFUSCATION VIA

FEDERATED LEARNING

5.1/ SCENARIO AND PROBLEM DEFINITION

In Chapter 4, we adapted the adversary model proposed in [Do et al., 2018,

Bellare et al., 1993b, Bellare et al., 1995b] to the context of facial image obfuscation1. We

presented the adversary as a three-component model having a goal, knowledge and ca-
pabilities (c.f. Figure 4.3). The goal was to recover the identities of the obfuscated faces

in a target dataset. The knowledge, more specifically the background knowledge, was

any sort of information regarding the anonymized target dataset, which constitutes: (i)

the obfuscation technique employed to anonymize the target dataset and (ii) the identi-

ties that possess obfuscated face images in the target dataset. As for the capabilities,

it represented to what extent an adversary is able to achieve her/his goal by perform-

ing DL-assisted attacks such as recognition-based or restoration-based attacks. Similar

to [Hao et al., 2019], we also showed that the lack of background knowledge reduces

drastically the adversary’s attacking capabilities and we demonstrated that simply as-

suming additional background knowledge leverages these capabilities, hence the privacy

breaches. Although the former assumption provides different aspects of the adversary’s

capabilities, it is challenging to uphold in practice. Hence, the following question arises

“Can an adversary, lacking background knowledge, leverage her/his attacking capabilities

and cause more privacy breaches by collaborating with other adversaries?”

1Throughout this chapter, we will use the terms obfuscation and anonymization interchangeably.

75
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Example Scenario Let us consider a target dataset containing obfuscated face images

of “Bob”, “Alice” and “Trudy”. The same obfuscation is used throughout the entire target

dataset, e.g., all the face images are obfuscated via Gaussian blur (kernel (31x31) and

σ=5). Adversaries A, B and C are attacking the target dataset at once as standalone enti-

ties, via recognition-based attacks, in order to recover the identities of the obfuscated
faces i.e., they all have the same goal (c.f. Figure 5.12). On the one hand, the three

adversaries know that “Bob”, “Alice” and “Trudy” have obfuscated face images in the tar-

get dataset i.e., each adversary can mine face images of the known identities. On the

other hand, adversary A has no knowledge about the obfuscation technique employed

in the target dataset, adversary B knows a different obfuscation technique than the one

employed (in our case, it is pixelating 4x4) and adversary C knows the exact obfuscation

technique employed (in our case it is Gaussian blurring with (31x31) kernel and σ=5).

Therefore, as standalone entities, adversary A can train an identity recognition model on

clear face images whereas adversary B can train via clear/pixelated face images and ad-

versary C can train via clear/blurred face images. The accuracy of the recognition-based

attacks would differ: for instance, the attack performed by adversary A would be less

accurate than the one performed by adversary C. That is mainly due to adversary A’s

lack of background knowledge, with regard to the obfuscation technique in this case, in

comparison with adversary C.

Figure 5.1: Adversaries acting as standalone entities and performing recognition-based
attacks against the target dataset

A possible attack strategy that copes well with the lack of background knowledge

would be to join forces with other adversaries and perform a collaborative attack

against the target dataset. Several studies in the literature [Xu, 2008, Chen et al., 2008,

2It is recommended to view all the figures in this manuscript in color mode.
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Duong et al., 2010] showed to what extent collaborative attacks could scale. For instance,

in [Duong et al., 2010], the authors model multiple adversaries with different background

knowledge and describe a mechanism for sharing the knowledge.

Figure 5.2: Adversaries collaborating via traditional DML by sharing their datasets with a
server node while attacking the target dataset

On the one hand, when performing DL-assisted attacks, collaboration usually compels

the engaged adversaries to share their local training datasets in a centralized loca-

tion and delegate a server node to train a unified model via parallelism over different

worker nodes i.e., traditional Distributed Machine Learning (DML) scenario (c.f. Figure

5.2) [Verbraeken et al., 2020b]. On the other hand, sharing/disclosing the local training

datasets with other adversaries compromises the data privacy and depreciates its value.

As stated in [Yang et al., 2019a], any sort of information, especially raw data, is most

valuable when it is kept private.

Federated learning (FL) [McMahan et al., 2017, Yang et al., 2019a] has recently gained

much attention as a machine learning setting where multiple clients collaborate in solving

a machine learning problem under the coordination of a central server/coordinator. Each

client’s raw data is stored locally without being exchanged nor transferred to the central

server; instead, the model’s parameters are shared/aggregated and used to achieve the

learning objective.
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Contributions In this chapter, we empirically demonstrate that FL can be used as a

collaborative attack/adversarial strategy to (i) remedy the lack of background knowledge

and data shortage, (ii) leverage the attacking capabilities of each participating adversary

and (iii) increase the privacy breaches without the need to share/disclose the local training

datasets in a centralized location (i.e. traditional DML [Verbraeken et al., 2020b]) (c.f.

Figure 5.2). In our scenario (c.f. Figure 5.3), we assume the following:

• A target dataset contains obfuscated face images where the same obfuscation is

used throughout the entire target dataset.

• Multiple adversaries attack the same target dataset using DL-based techniques.

• Multiple adversaries can collaborate together, in order to train more accurate DL

models for more serious attacks without disclosing their own local training datasets.

• Unlike the previous chapter and [McPherson et al., 2016, Hao et al., 2019], we as-

sume in this case that the adversaries do not have enough training data samples to

train accurate DL models and attack the target dataset. In other words, the adver-

saries in our study suffer from data shortage in addition to their lack of background

knowledge.

Figure 5.3: Adversaries collaborating via FL without disclosing their local datasets while
attacking the target dataset

We define and study 7 collective threat levels based on the background knowledge of
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the different adversaries and the sharing of their knowledge. We also consider recog-

nition-based attacks as attacking capabilities and Gaussian blurring [Frome et al., 2009,

Hill et al., 2016b] as the obfuscation technique employed in the target dataset. In addi-

tion, we focus on individuals’ faces because they are the most identifying and revealing

in the context of images.

The remainder of this chapter is organized as follows. In Section 5.2, we review the

basic FL concepts. We present our FL-based collaborative attack in Section 5.3 and the

different collective threat levels in Section 5.4. Section 5.5 evaluates the privacy breaches

caused by the FL-assisted attack throughout the different threat levels. In Section 5.6, we

investigate works related to collaborative attacks and the lack of background knowledge in

the context of face obfuscation. This chapter is currently under peer review in a scientific

journal [Tekli et al., NDa].

5.2/ PRELIMINARIES: FEDERATED LEARNING

FL is a collaborative learning technique that allows different parties (clients) to build a

joint machine learning model by training locally on their datasets and sharing only the

model’s parameters/weights [McMahan et al., 2017, Kairouz et al., 2019]. In general, the

FL system is based on a client-server architecture3 (c.f. Figure 5.4). Let K = {k0, ..., kN}

denote the set of K clients, each of which has a local private dataset. The training process

consists of the following 5 steps, i.e. a FL round (step 1-5):

Figure 5.4: Client-Sever communication in a FL scenario

1. Server S initializes the initial parameters and forwards them to the different clients

3In some cases, the clients are in a peer to peer communication (no server).
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participating in the current round.

2. Each client ki loads the parameters and trains a local model on its local training

dataset.

3. Each client ki shares the local model’s parameters with the server.

4. Server S aggregates the shared local models via weighted average and generates

a global model.

5. Server S pushes back the new global model to the clients which update their local

models respectively.

The FL process consists of numerous rounds until the global model converges. The

performance of the resulting FL model should be a good approximation of an ideal

model where the local datasets are grouped for a centralized training. The widely used

FL algorithm for averaging the models’ weights is the one proposed by McMahan in

[McMahan et al., 2017] i.e., federated averaging.

The FL server can select a C-fraction of clients for each round and compute the weighted

average over the data held by these clients. For instance, C = 1 means the server waits

for the updates of “all” the clients participating in the FL process4 before initiating the next

round.

The authors in [Kairouz et al., 2019] categorize the FL applications as (1) cross-device

and (2) cross-silo. In a cross-device FL setting, the clients represent a very large num-

ber of mobile or IoT devices (|K| up to 1010 clients) where each client likely participates

once in the FL process (0 < C < 1) [Hard et al., 2018, McMahan et al., 2017]. Whereas

in a cross-silo FL setting, the clients are mainly different organizations (e.g. medi-

cal [Courtiol et al., 2019, Reina et al., 2019], industrial5) or geo-distributed datacenters

(2 < |K| < 100 clients) where each client participates in each round of the FL process

(usually C = 1). In our collaborative attack scenario, we consider the cross-silo setting

with 3 clients (adversaries)6 and C = 1 (i.e., synchronous communication where the FL

server does not initiate the next round until it receives the updates from all the clients).

In addition, each client participating in the FL process is an independent entity and has

complete autonomy over its local dataset [Yang et al., 2019a]. Therefore, as stated in

[Wu et al., 2020a, Kulkarni et al., 2020], three main challenges arise:
4The communication between the FL server and the clients can be either synchronous or asynchronous.

Throughout a synchronous communication, the server waits for all clients to send their update before he
starts with the aggregation process.

5url=http://musketeer.eu/project/
6We can easily leverage the collaborative attack by adding additional clients (adversaries) to the FL pro-

cess however we fixed the number of clients (adversaries) to 3 because it is sufficient to highlight the different
aspects of the background knowledge with regard to (i) the obfuscation technique, (ii) the identities in the
target dataset and show that it affects the FL process.
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• Device heterogeneity: means that the clients have different computation, storage

or communication capacities.

• Data heterogeneity: represents imbalanced and not identically distributed data due

to the following aspects [Kairouz et al., 2019]:

- Same label, different features: the same label can have training images with

different features at different clients (adversaries), e.g. due to different background

knowledge with regard to the obfuscation technique. For example, two adversaries

A and B are collaborating via FL to train a recognition model and recognize the

blurred face images of “Bob”: both adversaries have access to clear face images of

“Bob”. However, adversary A knows that blurring, with a kernel size (31x31) and a

standard deviation of 5, is used to obfuscate Bob‘s face images in the target dataset

whereas adversary B has no knowledge whatsoever. Therefore, adversary A trains

a recognition model on clear and blurred face images of Bob’s face whereas ad-

versary B trains a recognition model on clear face images. In other words, both

adversaries will have face images of the same label “Bob” with different features

(clear and blurred images with adversary “A” but only clear face images with adver-

sary “B”).

- Label distribution skew : when clients (adversaries) are tied to particular

geo-regions or have different external knowledge (c.f. Chapter 4), the distribution

of labels may vary across them. For example, two adversaries A and B are col-

laborating via FL to train a recognition model and recognize the blurred faces of

“Bob” and “Alice”: As part of their external knowledge, Adversary A has access to

Bob’s social media accounts whereas Adversary B has access to Alice’s accounts.

Therefore, adversary A can mine images of Bob’s face to her/his training dataset

and adversary B can do the same with regard to Alice’s face images. Therefore,

each adversary possesses training images for only a single identity/label although

she/he attempts to recognize both “Bob” and “Alice”.

- Quantity skew : different clients (adversaries) can hold different quantities of

training data. For example, two adversaries A and B are collaborating via FL to train

a recognition model and recognize the blurred faces of “Bob” and “Alice”. Adversary

A possesses 7 training examples for “Bob” and 19 for “Alice”. Whereas adversary

B possesses 20 training images for “Bob” and 5 for “Alice”.

In both quantity and label distribution skew scenarios, the clients attempt to recognize

the same labels i.e., the clients have the same number of classes in the final Fully Con-

nected (FC) layer of the neural network (all the clients possess the exact neural network

architecture). On the one hand, a label distribution skew scenario arises when a client

does not possess “any” training image with regard to certain labels whereas the other
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clients do. On the other hand, a quantity skew scenario appears when all clients possess

training images for each label however in different quantities.

There are additional aspects of the data heterogeneity, however we listed above the ones

that are the most relevant to our study [Kairouz et al., 2019].

• Model heterogeneity: denotes that each client needs a model specifically cus-

tomized for her/his environment. In other words, each client (adversary) has a dif-

ferent model architecture, in our case a different neural network architecture. For

instance, two adversaries A and B are collaborating via FL to train their recognition

models and attack a target dataset containing obfuscated face images of “Bob”,

“Alice” and “Trudy”. Adversary A attempts to recognize the obfuscated images of

“Bob” whereas adversary B attempts to recognize the images of “Alice” and “Trudy”.

Both adversaries employ the same classifier. However, adversary A’s network has

1 class in the final FC layer whereas adversary B’s network has 2 classes. In other

words, the final FC layers differ between the two classifiers. Hence, the model het-

erogeneity.

5.3/ COLLABORATIVE ADVERSARIES

In this chapter, we consider multiple adversaries7 collaborating via FL in order to attack a

target obfuscated dataset (c.f. Figure 5.3). The adversaries in our FL-based collaborative

attack are characterized as follows:

1. They have the same goal; recover the identities of the anonymized images in the

target dataset.

2. They can/might suffer, with varying degrees, from lack of background knowledge.

In other words, the adversaries can/might have different background knowledge
with regard to (i) the obfuscation technique employed in the target dataset and (ii)

the identities present8 in the target dataset.

3. They can/might share their background knowledge with one another. As stated

in [Yang et al., 2019a, Xu, 2008], during the training process of FL, clients can ex-

change information as long as the exchange does not reveal any protected private

portions of the data on each site. In this work, we consider two sharing scenarios:

(1) none of the adversaries share their background knowledge (i.e., worst case sce-

7We consider that all adversaries are based on the three-component model discussed in the previous
chapter.

8That possess obfuscated face images
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nario) or (2) all adversaries share all their background knowledge with one another

(i.e., best case scenario)9.

4. They do not have enough training data samples to train an accurate DL-assisted

classifier and perform a strong recognition-based attack as a standalone entity, i.e.,

they suffer from data shortage due to small local training datasets.

5. They perform recognition-based attacks against the target dataset, i.e., they train

deep convolutional neural networks to perform recognition tasks on obfuscated face

images such as in Chapter 4 and [McPherson et al., 2016].

6. They have different clear/non-obfuscated training datasets. For instance, even if

multiple adversaries are trying to recognize the same identity, they will have different

training images belonging to that particular identity.

7. They are honest and exchange accurate information with one another and with

the server10.

8. They have the same computing capabilities (the device heterogeneity discussed

in Section 5.2 is not considered in this study).

5.4/ COLLECTIVE THREAT LEVELS

As mentioned previously, the background knowledge of an adversary is any information

about (i) the obfuscation technique and (ii) the identities present in the target dataset.

The threat level of an adversary depends heavily on her/his background knowledge

[Hao et al., 2019] (c.f. Chapter 4). For instance, an adversary can perform a recognition-

based attack only when equipped with partial/full knowledge about the identities present

in the target dataset. In our case, because multiple adversaries are collaborating to attack

a target dataset, we identify seven collective threat levels based on the background

knowledge of the different adversaries and the sharing of this knowledge. We defined the

threat levels by answering 3 main questions:

• “Do the adversaries lack background knowledge about the obfuscation tech-
nique used to anonymize the face images in the target dataset?“

• “Do the adversaries lack background knowledge about the identities present
in the target dataset?”

9Additional sharing scenarios can be explored in future studies where some (not all) adversaries decide
to share part of their background knowledge

10Issues with regard to attacking the FL setting, e.g. via model poisoning [Bagdasaryan et al., 2020] and
data poisoning [Biggio et al., 2012, Liu et al., 2018], are not part of this study’s scope.
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Table 5.1: Collective threat levels

• “Are all the adversaries sharing their background knowledge with one an-
other?” (c.f. Table 5.1).

Therefore, we defined the following threat levels:

• Threat Level T1: assumes that none of the adversaries lack background knowledge.

In other words, each adversary collaborating via FL knows (i) the exact obfuscation

technique used to anonymize the target face images and (ii) all the identities present

in the target dataset (i.e., full knowledge regarding the identities). Hence, sharing

the background knowledge in this case does not have additional effect because the

adversaries already possess the same information.

• Threat Levels T2/T3: assume the adversaries lack knowledge about the obfuscation

technique used to anonymize the target dataset. In other words, all the adversaries

(i) have full knowledge regarding the identities present in the target dataset however

(ii) not all of them know the exact obfuscation technique employed to obfuscate the

face images. Sharing the background knowledge between the adversaries may

affect the FL process, the attacking capabilities and the privacy breaches which

is why we talk about two threat levels T2 and T3. We consider T2 the collective

threat level when the adversaries decide to not share their background knowledge

whereas T3 is when the background knowledge is shared11.

• Threat Levels T4/T5: assume the adversaries lack knowledge about the identities

present in the target dataset. In other words, all the adversaries are aware of (i)

the exact obfuscation technique used to anonymize the face images in the target

dataset, however, (ii) they have partial knowledge regarding the identities. Sharing

the background knowledge can have an effect on the FL process, attacking ca-

pabilities and the privacy breaches which is why we mention two threat levels T4

(background knowledge is not shared) and T5 (background knowledge is shared)12.
11We study thoroughly the difference between T2 and T3 in use case 2, Section 5.5.2.
12Refer to use case 3 in Section 5.5.2 for more details.
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• Threat Levels T6/T7: assume the adversaries lack knowledge about both the ob-

fuscation technique and the identities present in the target dataset. Sharing the

background knowledge can have an effect on the FL process, attacking capabilities

and the privacy breaches which is why we talk about two threat levels T6 (back-

ground knowledge is not shared) and T7 (background knowledge is shared)13.

5.5/ EXPERIMENTS

5.5.1/ EXPERIMENTAL SETUP

The main idea of our attack is to leverage the capabilities of standalone adversaries that

lack background knowledge by jointly training deep neural networks via FL to recognize

the identities of obfuscated faces (i.e., perform recognition-based attacks). In our exper-

imental setup, we consider a cross-silo FL setting where the number of clients (adver-

saries) is 3 and all of them participate in the FL process (i.e. send their weights to the

server) during each round (i.e., C = 1, c.f. Section 5.2). As mentioned in section 5.2, we

can easily leverage the collaborative attack by adding additional clients (adversaries) to

the FL process, however, we fixed the number to 3 because it is sufficient to highlight the

different aspects of the background knowledge and show that it affects the FL process.

We also assume that the 3 clients (adversaries) are employing the same classifier to per-

form the recognition-based attacks14 and have access to a limited amount of clear face

images per known identity15, i.e. data shortage.

We implemented/adapted the original federated averaging algorithm proposed in

[McMahan et al., 2017] based on the publicly available code16 [Luo et al., 2019]. In all

of our experiments, the training datasets and the test dataset are disjoint.

Obfuscation technique In this chapter, we consider a target dataset obfuscated via

the blurring technique with a kernel size (31x31) and a standard deviation of 5. Blurring is

a degradation technique utilized in image processing. It can be generated by a Gaussian

kernel. It removes details from an image by applying a Gaussian kernel. The blurriness

level is controlled by the standard deviation σ. Other obfuscation techniques and degrees

should/will be considered in future work.

13Refer to use case 4 in Section 5.5.2 for more details.
14In a real scenario, the adversaries (clients) participating in the FL process can agree on the classifier’s

choice before the start of the collaborative attack. In addition, a new adversary (client) willing to join the FL
process must employ the same classifier.

15In a real scenario, these images can be mined from social media accounts, public datasets...
16https://github.com/FederatedAI/FATE

https://github.com/FederatedAI/FATE
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Dataset We used the publicly available FaceScrub dataset for training and testing pur-

poses17. The FaceScrub dataset [Ng et al., 2014] is a large dataset originally consisting

of 106,863 face images of 530 female and male celebrities. For our experiments, we

randomly selected a set of 100 identities denoted as N (50 female, 50 male celebrities)

with 70 clear face images each. Out of these 70 images, 5 were left for testing and the

remaining 65 images were distributed over the different adversaries for training purposes

(i.e., our test dataset contains |N | ∗ 5= 500 face images). We resized all the images to

64x64 and applied the blurring function (31x31) afterwards (c.f. Figure 5.5).

Figure 5.5: Obfuscated and Ground Truth images from the FaceScrub dataset

Three training setups We performed three different training setups for each exper-

imental scenario: First, we considered the normal FL process where the adversaries

collaboratively train without sharing their datasets but only their models’ weights. Sec-

ond, we grouped the datasets of the different adversaries and launched a centralized
training (traditional DML setting) in order to show how good/bad approximation the FL

model is, compared to the ideal centralized model. Third, we trained each adversary as

a standalone entity similar to Chapter 4 and [Yu et al., 2020, Hao et al., 2019] in order

to showcase how the FL process affects the capabilities of the standalone adversaries

and the privacy breaches. We employed the same configuration and hyper-parameters

for the centralized, FL and standalone setups for fair comparison. In addition, we used

“clear” and “obfuscated” versions of each face image in the training datasets as an image

augmentation process.

Training Implementation Throughout our experiments, we used the Resnet5018 ar-

chitecture as the local neural network (classifier) for each adversary [He et al., 2016c].

In addition, we adapted the federated averaging algorithm implemented in pytorch

[Luo et al., 2019] to our Resnet50 classifier19. Similar to [Luo et al., 2019], we replaced

the server-client communication with saving and restoring checkpoints on hard-devices.

17http://vintage.winklerbros.net/facescrub.html
18The implementation of the resnet50 architecture is provided by the pytorch framework via https://pytorch.

org/docs/stable/ modules/torchvision/models/resnet.html#resnet50.
19The code will be published alongside the scientific contribution

https://pytorch.org/docs/stable/_modules/torchvision/models/resnet.html#resnet50
https://pytorch.org/docs/stable/_modules/torchvision/models/resnet.html#resnet50
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Hence, the adversaries (clients) and the server were always deployed on the same ma-

chine (i.e. same computing capabilities and stable communication between the clients

and the server).

Training parameters We specified the number of rounds executed between the adver-

saries and the server as 500. Each adversary executed 1 local epoch (l = 1) with a

batch size of 4 (b = 4) over her/his own local training dataset before sharing the model’s

weights with the server. We trained the Resnet50 networks [He et al., 2016c] via RM-

Sprop optimizer [Hinton et al., 2016, Ruder, 2016] with an initialization learning rate of

10−5. Also, we initialized all the local Resnet50 networks with the ImageNet pre-trained

weights [Russakovsky et al., 2015b]. We unfroze all the layers of the Resnet50 network

while training, that way the back-propagation would affect not only the last FC layer but

all the network’s layers. As mentioned before, our code was implemented and executed

using Pytorch [Paszke et al., 2019] on a machine with Intel Xeon E5-2698 CPUs and 8

Tesla V100 GPUs (cuda version 10.1).

5.5.2/ EXPERIMENTAL USE CASES

We designed and performed 4 experimental use cases (c.f. Table 5.2) in order to show

how the lack of background knowledge along with data shortage can limit the adversaries’

capabilities to breach the target dataset’s privacy and how these limitations are remedied

via FL.

Table 5.2: Use case description

We used two metrics throughout the four experimental use cases: (1) the Top-1 recog-

nition accuracy of the recognition-based attacks over the obfuscated test set and (2) the

number of accurately recognized individuals20 (c.f. Section 4.3.2). Also, we performed

each training two times and reported the average values, with regard to both metrics, in

the section below.

20Our test set contains 5 anonymized face images per individual. Hence, we consider that an individual
is accurately recognized if L images out of 5 are recognized (Top-1 recognition) where 0 < L <= 5. In our
experiments, we report the values for L= 3.
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Use case 1 (T1) In this use case, we demonstrate that data shortage (i.e., small local

training datasets) limit the capabilities of standalone adversaries and that these capabili-

ties can be remedied and leveraged via FL. We consider threat level T1 where none of the

adversaries lack background knowledge. In other words, each adversary trains a classi-

fier via “clear” and “blurred” face images to recognize the blurred faces of the |N | = 100

identities present in the target dataset.

We conducted 4 scenarios by modifying (a) the number of face images per identity (label)

in the local training datasets of the adversaries (scenario 1.a-1.c in Table 5.3) and (b) the

number of adversaries participating in the FL-assisted attack (scenario 1.d). In short, we

show that:

– FL leverages the attacking capabilities and remedies the shortage of local training

datasets.

– Increasing the number of adversaries participating in the FL-assisted attack lever-

ages the attacking capabilities and intensifies the privacy breaches

Table 5.3: Experimental set up in use case 1

– FL leverages the attacking capabilities and remedies the shortage in local
training datasets (scenario 1.a, 1.b and 1.c): In comparison with the standalone

setups, adversaries A, B and C breach the privacy of the individuals in the target

dataset by almost 50% more after collaborating via FL. For instance as visible in

Figure 5.6.a and Table 5.4 (scenario 1.a), adversary A recognized 29 individuals

when performing a standalone recognition-based attack (top-1 accuracy of 36.2%)

however she/he recognized 71 individuals when collaborating with the other two

adversaries through FL (61.8%)21. Similar behavior persists throughout scenario

21Basically in the pytorch framework, the weights of a network can be saved via two methods state dict()
or params(). state dict() saves the weights containing both parameters and persistent buffers (e.g., Batch
Normalization’s running mean and var), i.e. the complete weight structure. Whereas params() only saves the
parameters without the persistent buffers. In our implementation, when averaging we are saving and loading
the parameters via param(). The buffers for each network will not be shared nor aggregated. Therefore, the
local classifiers’ performances will be close but not identical.
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1.b and 1.c as visible in Figure 5.6.b-c and Rable 5.4, proving that data shortage

(i.e. small local training datasets) can be remedied via FL-based collaboration.

Table 5.4: Top-1 accuracy of recognition-based attacks in use case 1
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(c) Scenario 1.c

Figure 5.6: Number of recognized individuals by the recognition-based attacks in use
case 1

– Increasing the number of adversaries participating in the FL-assisted attack
leverages the attacking capabilities and remedies the shortage of local train-
ing datasets: As shown in Figure 5.7 and Table 5.5, we notice that the number of

recognized individuals increased along with the number of adversaries participating
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in the collaborative FL-assisted attack (In this scenario, we considered that each

adversary has 14 ”clear” and 14 ”blurred” face images per identity). For instance,

when a standalone adversary performed a single attack against the target dataset,

she/he recognized 33 individuals out of 100 (38.6%). When 2 adversaries collab-

orated together, the average number of recognized individuals was 50 out of 100

(50.8%) whereas when 5 adversaries collaborated together, the average number

was 89 out of 100 (71.2%).

Table 5.5: Top-1 accuracy of recognition-based attacks in scenario 1.d
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Figure 5.7: Average Number of recognized individuals by the adversaries in scenario 1.d

Use case 2 (T2/T3) In this use case, we demonstrate that the lack of background knowl-

edge, with regard to the obfuscation technique used to obfuscate the face images in the

target dataset, limits the attacking capabilities of standalone adversaries and that these

limitations can be remedied via FL. In short, we demonstrate that:

– FL leverages the attacking capabilities and remedies the lack of background knowl-

edge with regard to the obfuscation technique.

– Sharing the background knowledge, with regard to the obfuscation technique, in-

tensifies the privacy breaches and leads to more serious FL-assisted attacks.

As seen in Table 5.6, the adversaries, and more specifically adversaries A and B, lack

background knowledge about the obfuscation technique employed in the target dataset.

Therefore in T2, each adversary trains a classifier using different images features: for
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instance adversary A trains a classifier model with “clear” face images (the number of

face images per identity/label in the training set is 14), whereas adversary B trains with

“clear” and “pixelated” face images and adversary C trains with “clear” and “blurred” face

images (the number of face images per identity/label in adversary B and C’s local training

datasets doubles to 28). Therefore, we talk in T2 about data heterogeneity with regard to

the “quantity skew” and most importantly the “same label different features” aspect (c.f.

Section 5.2).

In T3, after sharing their background knowledge, the adversaries possess the same infor-

mation with regard to the obfuscation technique. As a consequence, their local training

datasets have the same features, i.e., a “clear”, “pixelated” and “blurred” version of each

face image. Therefore, the data heterogeneity with regard to both “quantity skew” and

the “same label different features” aspects is lifted.

Table 5.6: Experimental setup use case 2

– FL leverages the attacking capabilities and remedies the lack of background
knowledge with regard to the obfuscation technique: On the one hand, we

notice in T2 (c.f. Figure 5.8 and Table 5.7) that both adversaries A and B, when

performing as standalone entities, recognized only 1 individual in the target dataset

(top-1 accuracy of 1.4% and 1.3%). That is because the face images in their lo-

cal training datasets are “clear” and “pixelated” whereas they are trying to attack

“blurred” face images. After collaborating with adversary C via FL, both adversaries

recognized respectively 57 (52.6%) and 54 (52.2%) individuals in the target dataset,

i.e., roughly a 52% increase in privacy breaches. In other words, adversary A and

B, with no knowledge about the exact obfuscation technique in the target dataset,

breached the privacy of roughly 52% of the individuals in the target dataset by

only sharing their model weights with adversary C. Besides, the accuracy of the

recognition-based attacks performed by adversary C was almost the same. On the
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other hand, after sharing their background knowledge in T3, we notice that the ad-

versaries A, B and C recovered the identities of almost 50 individuals in the target

dataset (51% as top-1 accuracy) when performing as standalone entities (because

they all trained their models with “clear”, “pixelated” and “blurred” face images). In

addition after collaborating via FL, the three adversaries breached the privacy of

the individuals in the target dataset almost 20% more. On average after collabo-

rating via FL, the adversaries recognized the identities of 88 individuals out of 100

(72.4%).

– Sharing the background knowledge, with regard to obfuscation technique,
intensifies the privacy breaches and leads to more serious FL-assisted at-
tacks: When comparing the two threat levels T2 and T3, we notice that sharing

the background knowledge between the adversaries (with regard to the obfuscation

techniques in this case) resulted in more serious FL-assisted attacks. As visible in

Table 5.7 and Figure 5.8, when collaborating via FL, the adversaries in T2 were able

to recognize the identities of 58 individuals (53%) on average, whereas in T3, they

recognized 88 individuals (72%).

Table 5.7: Top-1 accuracies of recognition-based attacks in use case 2
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Figure 5.8: Number of recognized individuals by recognition-based attacks in use case 2
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Use case 3 (T4/T5) In this use case, we demonstrate that the lack of background knowl-

edge with regard to the identities present in the target dataset, can limit the attacking

capabilities of standalone adversaries and that these capabilities can be remedied via

FL-based collaboration. In short, we show that:

– FL leverages the attacking capabilities of the adversaries and remedies their lack

of background knowledge with regard to the identities present in the target dataset,

only when the adversaries share their background knowledge.

As seen in Table 7, the three adversaries A, B and C know that blurring is the obfuscation

technique employed in the target dataset (i.e. they all have “blurred” and “clear” versions

of each face image in their local training datasets). However, we consider that adversary

A knows a set of identities DA, adversary B is aware of a set of known identities DB and

adversary C of a set DC where DA∪DB∪DC = N. We also assume that DA∩DB∩DC = Ø

with |DA| = |DB| = 33 and |DC | = 3422. In other words, each adversary knows a distinct

subset of the identities present in the target dataset.

Table 5.8: Experimental setup in use case 3

In T4, each adversary has a distinct neural network architecture specifically with regard

to the final FC layer: for instance, adversary A has the identities in DA as classes for

her/his classifier (i.e. 33 classes), whereas adversary B has DB (i.e., 33 classes) and ad-

versary C has DC (i.e., 34 classes). We talk in T4 about model heterogeneity (c.f. Section

5.2). Therefore, we cannot implement the standard FL process where the adversaries

share/aggregate the weights of the complete neural network. Instead, we implement

personalized FL similar to [Arivazhagan et al., 2019, Yu et al., 2020] where we split the

22We intentionally chose |DC | to be different than |DA| and |DB| in order to highlight the model heterogeneity
aspect when the adversaries do not share their knowledge and therefore differentiate in terms of neural
network architecture (e.g. Adversary C has 34 output classes in the final FC layer whereas adversary A and
B have 33).
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neural network’s layers in two parts: (a) global and (b) personalized layers. We consider

the classifier layer (final FC layer) as personalized layer. Basically only the global layers’

parameters are shared and aggregated by the server. After aggregation each adversary

trains the personalized layers of the neural network on her/his local dataset.

After sharing their background knowledge in T5, the adversaries possess the same infor-

mation with regard to the identities present in the target dataset therefore their respective

neural network architectures have the same 100 classes at the FC layer level. In other

words, the model heterogeneity is lifted however the data heterogeneity with regard to

the “label distribution skew” aspect arises (c.f. Section 5.2): for instance, adversary A has

face images for only the individuals in DA, adversary B has face images for the individuals

in DB and adversary C for DC
23. Therefore, we do not need to perform personalized FL.

Our results show that:

– FL leverages the attacking capabilities of the adversaries and remedies the
lack of background knowledge with regard to the identities present in the tar-
get dataset, only when the adversaries share their knowledge: We notice in

T4 (c.f. Table 5.9 and Figure 5.9.a) that the three adversaries perform similarly as

standalone entities and after collaborating via personalized FL (similar behavior was

observed/studied in [Yu et al., 2020]). In other words, aggregating only the global

layers’ weights did not affect the learning of the local classifiers. Whether the ad-

versaries decide to collaborate or not while suffering from model heterogeneity, the

privacy breach is roughly the same. For instance, we notice in Figure 5.9.a that ad-

versary A recognized exactly 19 individuals when performing as a standalone entity

and when collaborating with the other adversaries via personalized FL. Employing

personalized FL in our scenario did not affect the accuracy of the recognition-based

attacks, i.e., the privacy breaches did not increase after the FL-based collaboration.

After sharing their background knowledge, we notice in T5 that the adversaries are

more dangerous after collaborating together via standard FL. For instance, adver-

sary A recognized 17 individuals as a standalone entity whereas she/he was able to

recognize 44 after participating in the FL-assisted attack although she/he only had

face images of |DA| = 33 known identities (c.f. Figure 5.9.b).

23In this study, we consider that the adversary does not migrate face images of the newly known identities
shared by other adversaries (e.g. via external knowledge) in order to study the effect of the label distribution
skew on the FL-based attack.
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Table 5.9: Top-1 accuracy of recognition-based attacks in use case 3
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(b) Threat level T5

Figure 5.9: Number of recognized individuals by recognition-based attacks in use case 3

Use case 4 (T6/T7) In this experimental use case, we demonstrate that the lack of

background knowledge, with regard to both the obfuscation technique and the identities

present in the target dataset, limits the attacking capabilities of standalone adversaries

and that FL can remedy these limitations. In short, we demonstrate that:

– FL leverages the attacking capabilities of the adversaries and remedies the lack of

knowledge with regard to both the obfuscation technique and the identities present

in the target dataset, only when the adversaries share their knowledge.

As seen in Table 5.10, the three adversaries lack background knowledge.

In T6, each adversary has a distinct neural network architecture specifically regarding the

final FC layer and trains a classifier using different images features. We talk in T6 about

model heterogeneity and data heterogeneity with regard to “quantity skew” and “same

label different features” aspects (c.f. Section 5.2). Therefore similar to T4 in use case 3,

we implemented personalized FL. We also consider the classifier layer (final FC layer) as

personalized layer.
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Table 5.10: Experimental setup in use case 4

In T7, after sharing their background knowledge, all the adversaries possess the same

information with regard to the obfuscation technique and the identities present in the

target dataset. Hence, their respective neural network architectures will have the same

100 classes at the FC layer level and their training datasets will have the same features:

for instance, all adversaries will have a “clear”, “pixelated” and “blurred” version of each

face image in their local training datasets. In other words, the model heterogeneity and

the data heterogeneity with regard to “quantity skew” and “same label different features”

aspects are lifted. Therefore, we do not need to perform personalized FL. However,

the data heterogeneity with regard to the “label distribution skew” aspect arises (i.e.,

adversary A has face images for only the identities in DA, adversary B has face images

for the identities in DB and adversary C for DC). Our results demonstrate that:

– FL leverages the attacking capabilities of the adversaries and remedies the
lack of knowledge, with regard to both the obfuscation technique and the
identities present in the target dataset, only when the adversaries share their
knowledge (c.f. Figure 5.10 and Table 5.11): We notice that all adversaries per-

form similarly as standalone entities and after collaborating together via person-

alized FL. Whether the adversaries decide to collaborate or not while not sharing

their background knowledge, the privacy breach is roughly the same. For instance

in Figure 5.10.a, adversary A recognized exactly 1 individual when performing as a

standalone entity and when collaborating with the other adversaries via personal-

ized FL. After sharing their background knowledge, we notice in T7 that the adver-

saries are more dangerous when collaborating via standard FL. For instance in Fig-

ure 5.10.b, adversary A recognized 20 individuals as a standalone entity whereas

she/he was able to recognize 43 after participating in the FL-assisted attack. Again,

sharing the background knowledge between the adversaries led to more privacy
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breaches of the target dataset.

Table 5.11: Top-1 accuracy of recognition-based attacks in use case 4
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Figure 5.10: Number of recognized individuals by recognition-based attacks in use case
4

5.5.3/ DISCUSSION

First, we compare T1 (more specifically scenario 1.b in use case 1) and T5 (use case 3)

because the only difference between these two scenarios is the “label distribution skew”

(c.f. Table 5.12). In both scenarios, the adversaries have the same number of “clear” face

images per identity (e.g. 14), the same images features (e.g. “clear” and “blurred” face

images) and are attacking the same identities. However, the data distribution over the

different adversaries in T5 is unbalanced and non-identical whereas it is the opposite in

T1. Hence, a direct comparison between these two scenarios shows the effect of the data

heterogeneity in terms of “label distribution skew” on the FL process. As seen in Table

5.12, we notice a 25% decrease in terms of top-1 accuracy between threat level T1 (more

specifically scenario 1.b) and T5. Similar behavior has been observed and studied with

the federated averaging algorithm in [Zhao et al., 2018, Hsu et al., 2020, Hsu et al., 2019,

Hsieh et al., 2020]. Possible approaches to limit the decline in accuracy would be either
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Table 5.12: Threat levels comparison

(i) to try federated averaging with server momentum [Hsu et al., 2019, Hsu et al., 2020],

(ii) share a small dataset between the clients [Zhao et al., 2018] or (iii) employ group

normalization instead of batch normalization [Hsieh et al., 2020].

Another observation is regarding threat level T1 (scenario 1.b in use case 1) and T3 (use

case 2). Although, the simplest (almost non-realistic) setting in terms of background

knowledge was the one presented in T1, the results reported in T3 were slightly better (c.f.

Table 5.12). That is because in T3, we used three versions of each face image in the

training sets (“clear”, “blurred” and “pixelated”) instead of only two (“clear” and “blurred”)

which served as an image augmentation process for the local trainings.

Also as seen in Table 5.12, the weakest FL-assisted attack was in T6 (use case 4) where

the adversaries suffered from model heterogeneity, data heterogeneity in terms of “same

labels different features” and “quantity skew”. That is because they lacked background

knowledge with regard to the obfuscation technique, the identities present in the target

dataset and they did not share their knowledge with one another.

In short, we demonstrate via the above experiments three main behaviors. Throughout

the 4 use cases, we demonstrate that FL leverages the capabilities of each adversary col-

laborating in the attack in spite of (i) the data shortage and (ii) the lack of their background

knowledge with regard to both the obfuscation technique and the identities present in the

target dataset. In use case 1, we demonstrate that increasing the number of adversaries

participating in the FL-assisted attack leverages the attacking capabilities and intensifies

the privacy breaches. Last but not least, throughout use cases 2, 3 and 4, we demon-

strate that sharing the background knowledge between the adversaries, with regard to
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both the obfuscation techniques and identities present in the target dataset, leverages

significantly their capabilities to breach the target dataset’s privacy.

5.6/ RELATED WORKS

In this section, we investigate works related to (i) the effect of the background knowledge

on the adversaries’ capabilities in the context of face obfuscation and (ii) to the collabora-

tive attacks.

5.6.1/ LACK OF BACKGROUND KNOWLEDGE

We (c.f. Chapter 4) and the authors in [Hao et al., 2019] demonstrate how the adver-

sary’s capabilities to breach privacy heavily depend on the background knowledge in the

context of face obfuscation. On the one hand, the authors in [Hao et al., 2019] showed

that a lack of background knowledge, with regard to the obfuscation technique used to

anonymize the target dataset, reduces drastically the privacy breaches: when attacking

a dataset of blurred faces, an adversary, with no idea whatsoever about the obfuscation

technique, performed an identity recognition DL-assisted attack with a 0.009 accuracy.

In Chapter 4, we studied the lack of background knowledge with regard to the identities

present in the target dataset and its effect on the privacy breaches: for instance, when

attacking a dataset of blurred face images, an adversary, equipped with 12% of the iden-

tities present in the target dataset, performed an identity recognition DL-assisted attack

that re-identified almost 10% of the anonymized face images. On the other hand, we (c.f.

Chapter 4) and the authors in [Hao et al., 2019] leveraged the adversary’s capabilities and

increased the privacy breaches by simply considering additional background knowledge.

For instance, the authors in [Hao et al., 2019] showed that when the adversary knew the

obfuscation technique along with its hyper parameters used in the target dataset, she/he

performed an identity recognition DL-assisted attack with a 0.783 accuracy. Furthermore

we showed in the previous chapter that when equipped with all the identities present in

the target dataset, an adversary executed a recognition-based attack and re-identified

almost 81% of the anonymized face images. In addition, the authors always tend to as-

sume that the adversaries have enough training data samples to train the DL models

and attack the target dataset i.e., the adversaries never suffer from data shortage (c.f.

Chapter 4 [McPherson et al., 2016, Hao et al., 2019]. Although the former assumptions

provide different aspects of the adversary’s capabilities, they are challenging to uphold

in practice. Therefore, in this chapter we considered adversaries lacking background

knowledge, suffering from data shortage and performing DL-assisted attacks.
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5.6.2/ COLLABORATIVE ATTACKS

In [Xu, 2008], the authors envisioned the idea of collaborative attacks in the context of

cyber-security. They categorized the collaborative attacks in terms of (i) time-aspect (i.e.

offline/on-line coordination between the adversaries during the attack), (ii) space-aspect

(i.e. centralized, distributed, peer to peer architecture. . . ), (iii) information exchanged dur-

ing attack (i.e. one/two-way) and (iv) effect of attack (e.g. spatial collaboration24 ). Based

on their categorization, our adversaries (i) communicate with the FL server to share and

average their DL models’ weights before performing the attack, i.e., offline coordination,

(ii) are distributed following a client-server architecture, (iii) exchange information with the

server, but not with each other, in a two-way manner and (iv) perform the attack at the

same time after training their local DL model via FL.

Also in [Chen et al., 2008], the authors studied malicious adversaries that perform in-

ference attacks against a database to extract identifying/sensitve information. Similar

to our study, they consider multiple adversaries working together, merging their knowl-

edge and jointly inferring sensitive information. Also they showed that generalizing from

a single-adversary to a multi-adversary collaborative system increases the information

breach. Last but not least, the authors in [Duong et al., 2010] examine a network of ad-

versaries who seek to discover the sensitive information of target individuals in a dataset.

They model multiple adversaries with different background knowledge and they describe

a mechanism for sharing this knowledge.

On the one hand, similar to the above studies, we consider multiple adversaries attacking

a target anonymized dataset while sharing their background knowledge prior to the attack.

Also, we demonstrate that the collaboration leverages the capabilities of the standalone

adversaries and increases the privacy breaches in most of the cases. On the other hand,

the main differences rely in (i) attacking a dataset of obfuscated facial images via (ii) DL-

assisted privacy attacks and (iii) collaborating via FL instead of the traditional machine

learning approach where all the local datasets are grouped for a centralized training. To

the best of our knowledge, our work is the first that considers FL-based collaborative

attacks against an anonymized images dataset.

5.7/ CONCLUSION

In this chapter, we empirically demonstrated that FL can be used as a collaborative at-

tack/adversarial strategy to (i) remedy the lack of background knowledge and data short-

age, (ii) leverage the attacking capabilities of an adversary and (iii) increase the privacy

24The set of adversarial computers, which are located in different geographic or network places, are coor-
dinated to launch attacks against a target at (roughly) the same time.
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breaches without the need to share/disclose the local training datasets in a centralized

location. We defined seven collective threat levels based on the background knowledge

of the different adversaries and the sharing of that knowledge. We conducted four ex-

perimental use cases on the Face Scrub dataset [Ng et al., 2014]. Throughout the four

use cases, we showed that FL leverages the capabilities of each adversary participating

in the FL-assisted attack despite data shortage and the lack of background knowledge.

For instance, in one threat level, an adversary, with no knowledge about the obfusca-

tion technique, leveraged the recognition-based attack against blurred face images and

re-identified 57 out of 100 individuals instead of just 1 while only sharing the model’s

parameters. Second, we demonstrated that increasing the number of adversaries partic-

ipating in the FL-assisted attack leads to more serious attacks and intensifies the privacy

breaches. For instance, when 2 adversaries collaborated together, the average number

of recognized individuals was 50 out of 100 (50.8%) whereas when 5 adversaries col-

laborated together, the average number was 88 out of 100 (71.2%). Last but not least,

we showed that sharing the background knowledge between the adversaries increases

significantly the attacking capabilities. For instance, the adversaries were able to recog-

nize the identities of 58 individuals (53%) on average without sharing their knowledge,

whereas they recognized 88 individuals (72%) when sharing it.
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(k,l)-CLUSTERING FOR

TRANSACTIONAL DATA STREAMS

ANONYMIZATION

6.1/ SCENARIO AND PROBLEM DEFINITION

In Chapter 2 and more specifically Section 2.4, we discussed privacy preservation in

the context of static relational datasets. We discussed (i) different privacy models pro-

posed to protect the individual’s tuples against identity and attribute disclosure by apply-

ing generalization and bucketizaton-based mechanisms, (ii) the correlation problem that

arises in the context of static transactional datasets, specifically when applying anatomy

[Xiao et al., 2006a], and (iii) the techniques proposed to counter act against this problem

such as Safe Grouping [al Bouna et al., 2013, al Bouna et al., 2015a] and (k, l)-diversity

[Gong et al., 2017]. While these techniques are useful in dealing with the correlation

problem on bulk datasets, they provide no proof of effectiveness in anonymizing a data

stream. These techniques assume all data to be available at initial time whereas in the

context of a data stream it is quite the opposite: New tuples are generated at each in-

stance and must be protected on the fly before being stored in an anonymized dataset.

We consider that the anonymization technique has a partial view of the data stream,

limited to the batch of tuples undergoing the anonymization.

Example Scenario Let us consider a car rental example scenario depicted in Figure

6.1 where each smart vehicle triggers an event between two piers in the form of a trans-

action to be stored in a dataset for analysis. Transactions are generated continuously as

long as customers are driving their vehicles to form a data stream. In this scenario, we

assume that the anonymization must be performed on the stream of tuples generated

by the data source to output an anonymized dataset in the form shown in Figure 6.2.

103
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Figure 6.1: Smart car rental scenario

The same correlation problem noted in Chapter 2 (c.f. Section 2.4) arise in the context

of a data stream (i.e. inter and intra QI-group correlations). For instance, the released

2-diverse dataset is divided into two separate tables to hide the link between the identi-

fying and sensitive values as in [Xiao et al., 2006a, Li et al., 2012, Wang et al., 2010]. In

a QI-group an identifying value cannot be associated with a sensitive value with a proba-

bility greater than 1/2. The problem arises when the identifying and sensitive values cor-

relate across the QI-groups [Amiri et al., 2018, al Bouna et al., 2013, Gong et al., 2017]

(e.g. inter-group correlations in the first two QI-groups in Figure 6.2(b)). This leads to an

implication that the sensitive values belong to the same individual.

Contributions In this chapter, we extend the work in [al Bouna et al., 2013,

al Bouna et al., 2015a] to address the correlation problem in the anonymization of a trans-

actional data stream where new data is continuously generated and its distribution is im-

balanced. We propose (k, l)-clustering that continuously groups k distinct individuals into

l-diverse QI-groups and ensures that these individuals remain grouped together in future

releases of QI-groups. (k, l)-clustering keeps track of incoming identifying values to safely

release them across the QI-groups. It is a bucketization technique that prevents attribute

disclosure, releasing trustful information. Our main contributions in this chapter include:

• Defining privacy properties that are required to bind the correlations in a data

stream.

• Proposing a novel clustering approach to enforce the aforementioned privacy prop-

erties.

The remainder of this chapter is organized as follows. In Section 6.2, we define the basic
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Figure 6.2: Rental data stream anonymized

concepts and definitions. We present our privacy model in Section 6.3 and describe

the (k, l)-clustering approaches. Section 6.4 evaluates the performance of our algorithm

by adopting two clustering techniques to a data stream. In section 6.5, we investigate

works related to the anonymization of a data stream. This chapter was published in the

International Conference on Information Security Practice and Experience ISPEC 2018

[Tekli et al., 2018].

6.2/ PRELIMINARY DEFINITIONS

In this section, we present the basic concepts and definitions to be used in the remainder

of this chapter.
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Definition 1: Tuple - t

A tuple t is a finite ordered list of values {v1,v2,...,vb} where, given a set of at-

tributes {A1 ,...,Ab }, ∀i (1≤i≤b) vi=t[Ai] refers to the value of attribute Ai in t. We

categorize attributes as follows:

• Identifier (Aid) is an attribute whose value is linked to an individual in a

given dataset. For example, a social security number anonymized in a way

to represent uniquely an individual but cannot explicitly identify her/him.

• Sensitive attribute (As) reveals critical and sensitive information about a

certain individual and must not be directly linked to individuals’ identifying

values in data sharing, publishing or releasing scenarios.

• Time-stamp (Ats) indicates the arrival time of the tuple, its position in S. The

time-stamp is considered identifying, which can be used to expose individ-

uals’ privacy in a transactional data stream. Here, we do not publish the

time-stamp, we use it instead for evaluating the utility of our anonymization

technique.

Definition 2: Data Stream - S

A data stream S= t1,t2..., is a continuously growing dataset composed of infinite

series of tuples received at each instance. Let U be the set of individuals of a

specific population, ∀ u ∈ U we denote by Su the set of tuples in S related to the

individual u, where ∀ t ∈ Su, t[Aid]=vid.

Definition 3: Cluster - C

Let S ′ ⊂ S be a set of tuples in S. A cluster C over S ′ is defined as a set of

tuples {t1, ..., tn} and a centroid Vid consisting of a set of identifying values such

that, ∀t ∈ C, t[Aid] ∈ Vid. We use the notation Vid(C) to denote the centroid Vid of

C.

Definition 4: Equivalence class / QI-group

[Samarati, 2001] A quasi-identifier group (QI-group) is defined as a subset

QI j, j = 1, 2, ... of released tuples in S∗ =
⋃∞

j=1 QI j such that, for any j1 , j2,

QI j1 ∩ QI j2 = ∅.

We stick with the QI-group terminology for compatibility with the broader anonymization

literature, which can include identifying as well as quasi-identifying attributes.
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Table 6.1: Notations

S Incoming Stream
tp Tuple in S arriving at instance p
u Individual described in S
S u Set of tuples related to individual u
A Attribute of S
Aid Identifying attribute of S
Asv Sensitive attribute of S
Ats Time-stamp attribute of S
vid Identifying value of a tuple in S
vs Sensitive value of a tuple in S
QI Quasi-identifier group
|U | Number of distinct individuals in S
|S | Total number of tuples in S
C Cluster over S
Vid(C) Centroid of a cluster C
S ∗ Anonymized version of S

6.3/ PRIVACY PRESERVATION

We work under the assumption that the anonymization of the data stream will continu-

ously release l-diverse QI-groups, and these QI-groups, if joined together, will not expose

unsafe correlations between identifying and sensitive values. We define two threat levels

with regard to the adversary’s knowledge about the anonymized data stream.

• Threat level T1: assumes the adversary has no prior knowledge concerning the in-

dividuals and the correlations of their identifying and sensitive values in the dataset.

She/He is able, however, to extract foreground knowledge from the anonymized

dataset that can be used to breach privacy. For example extracting/knowing renting

patterns of individuals, which might lead to link their identifying values to their true

identity and track them in the anonymized dataset.

• Threat level T2: assumes the adversary is equipped with a certain knowledge about

the individuals and the correlations of their identifying and sensitive values in the

dataset before having access to its anonymized version. She/he can exploit that

background knowledge to provoke a privacy breach. In our renting example, know-

ing the true identity in plain text of an individual (e.g. Full Name) alongside her/his

location patterns might lead to link her/his identity to her/his identifying value in the

stream thus exposing her/him in the anonymized stream.
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6.3.1/ PRIVACY MODEL

Given a stream S and two user-defined constants l ≥ 2 and k ≥ 2, we say that an

anonymization technique safely anonymizes S if it produces a stream S ∗ that satisfies

the following properties:

Property 1 (Safe release of QI-groups). provides safe correlation of identifying and sen-

sitive values across the released QI-groups such that the intersection of any QI-groups in

S ∗ on their identifying attribute Aid yields either k identifying values or none. Formally,

∀vid ∈ D(Aid), if vid ∈ πAid QI1 ∩ ... ∩ πAid QI j, then there exists a set of

identifying values Vid ⊆ D(Aid), such that Vid = {vid, vid1 , ..., vidk−1} and Vid = πAid QI1 ∩ ... ∩

πAid QI j. In other words,

πAid QI1 ∩ ... ∩ πAid QI j =


Vid if ∃vid ∈ πAid QI1

∩ ... ∩ πAid QI j

∅ otherwise

(6.1)

In a less formal definition, the identifying values that are grouped together in a QI-group

must always remain grouped together throughout the entire anonymized stream.

Property 2 (l-diverse QI-groups). ensures that all the anonymized and released QI-

groups are l-diverse. Formally,

∀vid ∈ D(Aid),∀QI ∈ S ∗, Pr(vid, vs|QI) ≤ 1/l.

Property 3 (Safe correlation of identifying values). prohibits linking correlated identi-

fying values in the same QI-group to their corresponding sensitive values, which re-

sult in an inherent violation of l-diversity [al Bouna et al., 2013, al Bouna et al., 2015a,

Gong et al., 2017]. Formally,

∀vid1 , vid2 , f (vid1 ,QI j) = f (vid2 ,QI j) where f (vidi ,QI j) is a function that returns the number

of occurrences of vidi in QI j.

Property 3 hides frequent correlations of identifying values in the same QI-groups. It

handles cases arising when an adversary may be able to link an individual to his/her

sensitive value or to narrow the possibilities for other individuals.

6.3.2/ (k, l)-CLUSTERING FOR PRIVACY PRESERVATION

To preserve our privacy properties, we propose a (k, l)-clustering technique that groups

tuples into clusters of disjoint centroids and releases, from these clusters, l-diverse QI-

groups containing k distinct identifying values. In brief, our clustering technique works as

follows:
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• It creates centroids containing k distinct identifying values: ∀QIi,QI j two QI-groups

released from C, πAid QIi = πAid QI j = Vid(C) where |Vid(C)| = k.

• It ensures that an identifying value exists in one and only centroid: ∀C1,C2 Vid(C1)∩

Vid(C2) = ∅.

• It releases a QI-group from a cluster C such that: ∀QI, a QI-group created from a

subset of tuples in the cluster C, and ∀t ∈ QI, t[Aid] ∈ Vid(C).

(k, l)-clustering is a bucketization technique that releases l-diverse QI-groups created from

a subset of clusters having disjoint centroids. It ensures safe correlation of identifying and

sensitive values across the QI-groups, i.e., once k identifying values are grouped in a QI-

group, they will remain grouped together in future releases of QI-groups throughout the

anonymized stream. We assume that the clustering can be done in two ways, unsuper-

vised and supervised as defined below.

• Unsupervised (k, l)-clustering: has no prior knowledge about the distribution

of identifying values in the original dataset. The clustering is done on first-

come, first-serve basis inspired by ”bottom-up” agglomerative clustering algorithms

[Amiri et al., 2016a]. Unsupervised (k, l)-clustering creates cluster centroids and

groups tuples accordingly, in reference to their identifying values and privacy con-

stants k and l.

• Supervised (k, l)-clustering: has a partial or full view over the distribution of iden-

tifying values in the original dataset, thus and unlike the unsupervised clustering,

clusters are created based on a predefined set of centroidsV = {V1
id, ...,V

m
id} that are

fed to the clustering technique prior the anonymization. Hence, the identifying and

sensitive values that are highly correlated are grouped together in the same cluster

to reduce the chances of having these values anonymized/suppressed in order to

meet the privacy properties.

As shown in Figure 6.3(c), ‘Allen U1’ and ‘Cathy U3’ are grouped together in 3 QI-groups

because they occur the most in the incoming stream. However in Figure 6.3(b), ‘Allen U1’

is grouped alongside ‘Betty U2’ and ‘Cathy U3’ alongside ‘David U4’ due to the order of

their tuples in the data stream.
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Figure 6.3: Applying unsupervised and supervised (k, l)-clustering on a data stream with
k,l=(2,2)

Lemma 1. Given a transactional stream S, safe clustering ensures the safe release of

QI-groups in the published version S∗.

Proof. Since (k, l)-clustering is applied, ∀QIi,QI j two QI-groups released from C, πAid QIi =

πAid QI j = Vid(C) where |Vid(C)| = k. Alternatively, since (k, l)-clustering ensures that an

identifying value exists in one and only centroid, ∀C1,C2, two distinct clusters over S∗,

Vid(C1) ∩ Vid(C2) = ∅ can be written as πAid QI1 ∩ πAid QI2 = ∅ where, QI1,QI2 are two QI-

groups released respectively from C1 and C2. Hence, the intersection of any QI-groups in

S* on the identifying values yields either k identifying values or none.

�

6.3.3/ (k, l)-CLUSTERING ALGORITHM

In this section, we present our (k, l)-clustering algorithm applied on a transactional data

stream. The main idea behind it is to process incoming tuples on the fly while guarantying

safe release of l-diverse QI-groups. It requires two privacy constants k and l, the stream

S, and a set of centroids V. (k, l)-clustering outputs an anonymized data stream. The

algorithm is composed of two main steps; ”safe clustering” and ”tuple assignment”.
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Algorithm 1 (k, l)-clustering(S ,k ,l, V)
Input: k, l, S ,V

Output: S ∗

/** V can either be empty or can contain a set of predefined centroids*/

1: C:={};

2: C:= create clusters(V); /**Creates |V| empty clusters and assigns each one a cen-

troid in V */

3: while S is not empty do
4: Let tp be the tuple arrived from S ;

5: Csel:=sa f e clustering(tp ,V);

6: tuple assignment(tp ,Csel);

7: end while

6.3.4/ SAFE CLUSTERING

The function assigns tuples to their corresponding clusters based on their identifying val-

ues.

tp is assigned to


Ce if ∃Vid(Ce) ⊂ V where

tp[Aid] ∈ Vid(Ce)

Cq where |Vid(Cq)| < k otherwise

1: function SAFE CLUSTERING(tp,V)
2: selected cluster :={};
3: if (tp[Aid] < V) then
4: Cq:= Find Cq in C where |Vid(Cq)| < k;
5: if Cq = null then
6: Vid(Cq):={};
7: Vid(Cq)← tp[Aid]; /**Adds tp[Aid] to the empty centroid Vid(Cq)*/;
8: selected cluster := Cq;
9: else

10: Vid(Cq)← tp[Aid]; /**Adds tp[Aid] to the non-empty centroid Vid(Cq) */;
11: selected cluster := Cq;
12: end if
13: else
14: Find Ce in C where tp[Aid] ∈ Vid(Ce);
15: selected cluster := Ce;
16: end if

return selected cluster;
17: end function

Safe clustering first verifies if the identifying value of the incoming tuple tp[Aid] has been

assigned to a centroid, i.e., if it exists in one of the centroids in V. If that is not the case,

the algorithm searches for a cluster Cq having a centroid with less than k identifying values
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(Steps 3-4). If Cq exists, the new identifying value tp[Aid] is added to the centroid Vid(Cq)

and the cluster Cq is returned (Steps 10-11). However, if Cq is empty, a new centroid is

created for tp[Aid] and the empty cluster Cq is returned (Steps 5 to 8). Now, if tp[Aid] has

been already assigned to a centroid, safe clustering returns its corresponding cluster Ce

(Steps 14-15).

6.3.5/ TUPLE ASSIGNMENT

It assigns a tuple tp to the selected cluster Csel as follows: In a given cluster, all tuples are

distributed over multiple sub-groups. The same identifying value does not appear twice

in the same sub-group (steps 3-4-5). A sub-group must contain k tuples before verifying

its l-diversity (step 6-7). Each sub-group is published as two separate tables QItable and

SVtable linked by the same GroupID (GID) in case the l-diversity property is verified (steps

8-9). Otherwise, the sub-group is added to temp which is a unique structure for each

cluster that combines all the non l-diverse sub-groups (Steps 10-11). Each time we add

a non l-diverse sub-group to temp, its l-diversity is tested (Steps 12-13). In addition, the

procedure empties temp after publishing it.
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1: procedure TUPLE ASSIGNMENT(tp,Csel)

2: sub-group:={};

3: sub-group:=Find largest sub-group in Csel.subgroups[] where tp[Aid] <

πAid sub-group;

4: if sub-group , null then
5: sub-group ← tp; /**Add tp to sub-group*/

6: if (sub-group.size = k) then
7: if (sub-group is l-diverse) then
8: Publish sub-group as QItable and SVtable linked by GID

9: Delete sub-group

10: else
11: temp := temp

⋃
sub-group

12: if (temp.size > k and temp is l-diverse) then
13: Publish temp as QItable and SVtable linked by GID

14: Delete temp

15: end if
16: end if
17: end if
18: else
19: sub-group ← tp;

20: subgroups[] ← sub-group; /**Add sub-group to the rest of the non-published

subgroups in the cluster*/

21: end if
22: end procedure

After processing the entire stream, the algorithm will publish all temporary sub-groups

(stored in the temp structure), i.e. the groups which are not l-diverse nor reached size k,

by suppressing the identifying values. This guarantees the privacy constraint but impacts

the utility of the dataset. This temporary sub-group in each cluster will have the same

GID key once published, no matter its size.

6.4/ EXPERIMENTS

In this section, we evaluate the efficiency of our unsupervised and supervised (k, l)-

clustering techniques by conducting a set of experiments detailed hereinafter. The al-

gorithm is implemented in JAVA and tested on a PC with 2.20 GHz Intel Core i7 CPU, 8.0

GB RAM.
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Input Data Stream & Relational Schema To simulate a data stream scenario, we used

a rental transaction dataset composed of 109763 tuples where each tuple is associated

with a timestamp. We assume that at each time instant exactly one tuple arrives. As

a result, timestamps range from 1 to |S|. The dataset contains 2374 distinct identifying

values.

We designed two different sets of experiments in order to examine the effectiveness of

our approach in terms of utility by:

• Evaluating the percentage of suppressed identifying values.

• Evaluating the delay-retention of tuples in the queue before being released in QI-

groups.

As previously stated, after processing the stream over a specified interval of time, our

algorithm suppresses the identifying values in the QI-groups that are not l-diverse nor of

size k.

Percentage of suppressed identifying values Using the unsupervised (k, l)-

clustering, we vary the value of k from 3 to 8, and examine the percentage of suppressed

values. The parameter l is set to 3. For high values of k, the percentage of suppressed

values increases. It reaches almost 60% for k=8 as shown in Figure 6.4. Here, we cluster

identifying values based on their order of arrival. Each k individuals clustered together

might not have the same distribution over the stream. Therefore when k increases, it

becomes more difficult to form QI-groups leading to an increase in the amount of sup-

pressed values.

Using the supervised (k, l)-clustering we ensure that the most frequent identifying val-

ues are clustered then grouped together in the QI-groups. Consequently, we suppress

fewer identifying values and thus, obtain better utility, as shown in Figure 6.4, where the

percentage of suppressed values reaches 1% for k=20.

Retention of tuples A tuple is retained in the queue if it remains a) in a sub-group that

did not reach size k or b) in the temporary sub-group of the corresponding cluster.

To determine the average retention delay, we run our algorithm multiple times while vary-

ing k between 3 and 8 for both approaches. For each set of {k,l} values, we measure the

retention delay of each tuple in memory. Then we compute the average time of all the

tuples. For both methods, the average value falls in the range of 1 to 2 seconds. This

value is chosen as the delay constraint δ defined in [Pervaiz et al., 2015]

We consider a tuple that remains more than the specified delay δ in the memory a “de-

layed or outdated tuple”. δ slightly varies with k. We applied our algorithm on the same
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Figure 6.4: Percentage of suppressed values for l = 3 while varying k for both Unsuper-
vised and Supervised (k, l)-clustering approaches

rental dataset we used before, while adopting both approaches, as shown in Figure 6.5.

The delay constraint can be chosen according to the data stream application requirement

regarding availability of the anonymized tuples as stated in [Pervaiz et al., 2015].

6.5/ RELATED WORKS

In [Cao et al., 2011], Cao et al. extend the definition of k-anonymity to apply it on

data streams and propose CASTLE, a clustering-based algorithm that publishes k-

anonymized clusters in an acceptable delay. An extension of CASTLE is presented

in [Pervaiz et al., 2015] to reduce the number of tuples in the clusters and to maxi-

mize the utility of the anonymized dataset. In another work [Zakerzadeh et al., 2011],

FAANST is proposed to anonymize numerical data streams. It achieves suitable pro-

cessing time with good trade-off between utility and privacy. However, while applying

FAANST, some tuples might be stuck in memory and expire. Hence, the authors in

[Zakerzadeh et al., 2013] proposed two approaches that define a soft deadline for each

tuple in memory, and if a tuple stays more than the specified deadline in the system,

the algorithms force the tuple to be published. FADS is an anonymization algorithm

proposed in [Mohammadian et al., 2014, Guo et al., 2013] that has convenient time and

space scale with additional constraints on the size of the clusters size and their reuse

strategy. Also in another study [Mohamed et al., 2016], the authors proposed a clustering

approach for k-anonymizing distributed data streams generated by different sites. The

authors performed the clustering locally on each site and then shared the local clusters

with a global server in order to construct the global cluster and publish the anonymized

stream. Also, the authors in [Sopaoglu et al., 2020] proposed a tunable algorithm UBDSA

in which the importance of loss in terms of data latency and quality can be adjusted.

The authors in [Wang et al., 2018] extend ρ–uncertainty [Cao et al., 2010] and apply it

to a transactional data stream. On another note, the authors in [Wang et al., 2010]
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Figure 6.5: Percentage of published tuples for both approaches before δ

applied the bucketization-based technique, anatomy [Xiao et al., 2006a], in the context

of data stream. While these techniques extend privacy solutions mainly based on k-

anonmyity [Sweeney, 2002] and l-diversity[Machanavajjhala et al., 2006] in the context of

data streams, they do not take into account the correlation of the identifying and sensitive

values across the QI-groups due to the transactional nature of the data. In this work, we

assume that identifying attributes along with non-sensitive and sensitive attributes must

be combined together and stored in the dataset for analysis purposes. Moreover, sev-

eral studies [Kifer, 2009b, Wong et al., 2011b, Gong et al., 2017, Amiri et al., 2018] have

shown that correlations attacks can be launched not only on bucketization-based tech-

niques but on generalization-based techniques as well. In [Domingo-Ferrer et al., 2019],

the authors propose a generalization-based micro-aggregation algorithm for stream k-

anonymity that meets a maximum delay constraint, without preserving the order of in-

coming tuples in the published stream such as in [Cao et al., 2011]. Then, they improve

the preservation of the original order of the tuples by using steered micro-aggregation

while adding the timestamp as an artificial attribute. Similar to [Cao et al., 2011], we do

not publish the time stamp attribute due to privacy constraints however we use it for ex-

perimental purposes.

A similar work to ours is defined in [Amiri et al., 2016b] where the authors include back-

ground knowledge in their anonymization algorithm to deal with strong adversaries able

to associate the sensitive values to their owners based on quasi-identifying values. They

propose a hierarchical agglomerative algorithm that works in two separate phases. The

first generates clusters of tuples and the second enforces the privacy constraints, namely

k-anonymity, β-likeness, and l-diversity, in order to prevent attribute and identity disclo-

sure. By doing so, the authors only address one facet of the problem, which is the one
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related to correlations known to the adversary. Here, we consider that the correlations can

be mined from the dataset and used as foreground knowledge to link individuals to their

sensitive values. Also the authors in [Amiri et al., 2016b] worked in the context of static

tabular datasets whereas in our case we are acting against the correlation in the context of

a data stream. On the one hand, the authors in [Amiri et al., 2018] propose a knowledge-

based sequential anonymization algorithm (KSAA) for privacy preservation in the con-

text of a sequential data publishing scenario1. They present a bottom-up anonymization

algorithm, KSAA that uses generalization to protect against background knowledge at-

tacks. KSAA clusters tuples and generates QI-groups satisfying the privacy model in

the current view. It checks, in a second step, if the privacy constraint is satisfied when

several views are joined together. On the other hand, the authors in [Amiri et al., 2019,

Riboni et al., 2012] address the correlation problem by proposing generalization-based

techniques in the context of continuous data publishing scenario2. The proposed algo-

rithms in [Amiri et al., 2018, Amiri et al., 2019, Riboni et al., 2012] tackle the correlation

problem however not in a data stream scenario where three requirements must be met

including low retention of tuples, balanced memory usage and run time. On another note,

several noticeable works [Bonomi et al., 2016, Zhang et al., 2017, Nie et al., 2016] have

been done for differential privacy [Dwork et al., 2016] for streaming data. In this work, we

choose to work with bucketization-based technique that releases trustworthy information.

We particularly extend previous works [al Bouna et al., 2013, al Bouna et al., 2015a] to

address correlations in the data stream in data sharing scenarios.

6.6/ CONCLUSION

In this chapter, we defined new privacy properties in order to address the correlation

problem in the anonymization of a transactional data stream. A bucketization-based tech-

nique, entitled (k, l)-clustering, is proposed to enforce these privacy properties. (k, l)-

clustering processes incoming tuples on the fly. It continuously groups k distinct individu-

als into l-diverse QI-groups and ensures that these individuals remain grouped together

in future releases of QI-groups. We evaluated our algorithm in terms of utility and time

complexity by considering two approaches: supervised and unsupervised. We showed,

by conducting a set of experiments, that both approaches cope well with the streaming

nature of the data while respecting the privacy constraints. The supervised approach

yielded better results due to the fact that it has a partial or full view over the distribution of

identifying values in the dataset.

1A sequential publishing scenario is when we publish different views/versions of a table where each one
may contain a different subset of attributes, i.e. the set of published attributes change over the different
views.

2A continous publishing scenario is when we continuously release new tuples that belong to the dataset
while preserving the same schema (i.e., the same attributes).
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GENERAL CONCLUSION

7.1/ CLOSING WORDS

7.1.1/ ABUNDANCE OF DATA

Almost every product that we use throughout our daily lives generates and releases a

certain type of data (e.g., digital images, relational data, sensory data. . . ). As mentioned

in [Schneier, 2015], ”we as a species were generating by 2010 more data per day than

we did from the beginning of time until 2003”. Furthermore, the generated data depicts

us, the product users/the data subjects, in one way or another. It can monitor and record

our behavior when it comes to breathing, eating, driving, talking/chatting with our family

and friends, doing sports, sleeping . . . On the one hand, this huge amount of information

(i.e. Big Data) that is gathered and stored can indeed enhance the quality of the products

that we use and make our lives easier: for instance, recommending the next book to read

or which restaurant to go to next or which turn to take while driving. On the other hand,

if we look at it from a different perspective, the gathering, storing and processing of this

information is complementary to the definition of the surveillance concept: “The act of

observing persons or groups either with notice or their knowledge (overt surveillance) or

without their knowledge (covert surveillance)”1.

7.1.2/ PRIVACY AND ANONYMITY

”In the privacy of our home or bedroom, we can relax in a way that we can’t when
someone else is around. Privacy is an inherent human right, and a requirement for
maintaining the human condition with dignity and respect. It is about choice and
having the power to control how you present yourself to the world.”
∼ Bruce Schneier (Data and Goliath [Schneier, 2015], p. 148).

1https://www.law.cornell.edu/wex/surveillance
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First of all, privacy is an essential right for every human being [Committee, 1948]. Pro-

cessing data without taking into consideration the data subject’s privacy is a breach to

her/his essential rights, hence a crime. Second of all, committing this crime has reper-

cussions on individuals’ liberties and freedom of choice as well as on democratic ref-

erendums and elections (Cambridge Analytica scandal [Cadwalladr et al., 2018]). Auto-

mated systems (recommendation systems or information filtering systems) that are em-

bedded almost in every platform/product nowadays can affect the user’s behavior from

purchase choices (by recommending certain products based on the user’s location) to

political views (by filtering the news the user receives based on her/his profile data, loca-

tion or social connections). Specifically in the latter case, data misconducts and privacy

breaches can manipulate and mislead societies to fit/accomplish certain goals that are

sometimes not in their best interest. History showed us multiple times the dangerous

repercussions of mis-lead and indoctrinated societies.

As a result, several data protection regulations were introduced in the last cou-

ple of years such as the GDPR [European Parliament, 2018b] in Europe and CCPA

[Legislature, 2018] in the United States. These regulations compel data-driven organi-

zations and companies to process data in a responsible and compliant way by respect-

ing and preserving the rights of the data subjects including their privacy and anonymity.

One way to preserve these rights and protect personal data against privacy breaches

is to apply privacy preserving techniques such as data anonymization2. As stated in

[Schneier, 2015], ”anonymity protects privacy, it empowers individuals and it is funda-

mental to liberty”.

7.1.3/ RE-EVALUATING ANONYMIZATION TECHNIQUES

”The very notion of anonymization needs to be revisited, as the adversarial models
are evolving and, thus, anonymization is becoming more and more challenging in
real case scenarios.”
∼ European Union Agency for Cybersecurity ENISA (Pseudonymisation techniques and

best practices [Jensen et al., 2019], p. 43).

Multiple data anonymization techniques have been proposed, developed, and adopted

throughout the years. However, as mentioned in the ENISA technical report

[Jensen et al., 2019], anonymization techniques and privacy models should always be

2Several other steps should be taken as well from getting consent from the user to limiting the amount of
data that is being gathered and processed.
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re-evaluated as the adversaries are evolving and becoming more challenging. New at-

tacking scenarios regarding the adversary’s goal, knowledge and capabilities should be

studied to re-assess anonymization techniques and in some cases enhance them to try

and guarantee the anonymity of the data subjects. Therefore, throughout our thesis, we

(i) propose and implement several anonymization techniques and tools in the context of

relational data streams and images and (ii) assess the robustness of these techniques

by simulating adversaries with different knowledge and several attacking capabilities. In

addition, we designed our proposed frameworks to be scalable because new attacking

capabilities as well as new anonymization techniques should be considered in the future.

7.2/ SUMMARY OF THE DIFFERENT CONTRIBUTIONS

In this section, we summarize our contributions and we discuss briefly the experimental

results that we conducted throughout this study.

7.2.1/ THE FIRST CONTRIBUTION

In Chapter 3, we designed and implemented an anonymization tool that localizes and

obfuscates identifying/sensitive information in images/videos via DL-based techniques.

Several anonymization tools are available today on the market [sightengine, 2020,

brighter AI, 2019, eyedea Regonition, 2021, Celantur, ] however not a single one com-

bines the following features: (i) scalable in terms of obfuscation techniques, (ii) agnostic

in terms of localization approaches, (iii) modular in terms of sensitive information, (iv)

GDPR compliant, (v) open-source and (vi) BMW compatible.

7.2.2/ THE SECOND CONTRIBUTION

In Chapter 4, we proposed a generic and scalable framework to evaluate and recommend

the most robust obfuscation techniques for specific identifying/sensitive information, such

as an individual’s face. The framework reconstructs/recognizes obfuscated faces via DL-

assisted attacks, evaluates the reconstruction/recognition via different metrics and recom-

mends the most robust obfuscation with regard to each metric. We presented the recom-

mendation framework by (i) proposing a 4-layered iterative process, (ii) showcasing the

framework’s detailed structure when applied to a facial images dataset and (iii) defining

the 3-components adversary model (goal, knowledge and capabilities) to our application

domain (i.e., facial features obfuscations) with two threat levels and three attacking capa-

bilities. We conducted three sets of experiments on the CelebA dataset [Liu et al., 2015].

In the first experiment, we validated our approach by implementing and testing our frame-
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work on obfuscated faces. Throughout the second experiment, we demonstrated how the

adversary’s attacking capabilities scale with her/his knowledge and how it increased the

potential risk of breaching the identities of blurred face images. In the third experiment,

we studied the possible privacy breaches and the attack range of an adversary against

blurred face images while lacking knowledge about the obfuscation’s hyper-parameters.

7.2.3/ THE THIRD CONTRIBUTION

In Chapter 5, we empirically demonstrated that Federated Learning (FL) can be used

as a collaborative attack/adversarial strategy to (i) remedy the lack of background knowl-

edge and data shortage, (ii) leverage the attacking capabilities of an adversary and (iii) in-

crease the privacy breaches without the need to share/disclose the local training datasets

in a centralized location. We defined seven collective threat levels based on the back-

ground knowledge of the different adversaries and the sharing of that knowledge. We

conducted four experimental use cases on the Face Scrub dataset. Throughout the four

use cases, we showed that FL leverages the capabilities of each adversary participating

in the FL-assisted attack despite data shortage and the lack of background knowledge.

For instance, in one threat level, an adversary, with no knowledge about the obfusca-

tion technique, leveraged the recognition-based attack against blurred face images and

re-identified 57 out of 100 individuals instead of just 1 while only sharing the model’s

parameters. Second, we demonstrated that increasing the number of adversaries partic-

ipating in the FL-assisted attack leads to more serious attacks and intensifies the privacy

breaches. For instance, when 2 adversaries collaborated together, the average number

of recognized individuals was 50 out of 100 (50.8%) whereas when 5 adversaries col-

laborated together, the average number was 88 out of 100 (71.2%). Last but not least,

we showed that sharing the background knowledge between the adversaries increases

significantly the attacking capabilities. For instance, the adversaries were able to recog-

nize the identities of 58 individuals (53%) on average without sharing their knowledge,

whereas they recognized 88 individuals (72%) when sharing it.

7.2.4/ THE FOURTH CONTRIBUTION

In Chapter 6, we have defined new privacy properties in order to address the corre-

lation problem in the anonymization of a transactional data stream. We proposed a

bucketization-based technique, entitled (k, l)-clustering, to enforce the privacy properties.

(k, l)-clustering processes incoming tuples on the fly. It continuously groups k distinct

individuals into l-diverse QI-groups and ensures that these individuals remain grouped

together in future releases of QI-groups. We evaluated our algorithm in terms of utility

and time complexity by considering two approaches: supervised and unsupervised. We
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showed, by conducting a set of experiments, that both approaches cope well with the

streaming nature of the data while respecting the privacy constraints. The supervised

approach yielded better results due to the fact that it has a partial or full view over the

distribution of identifying values in the dataset.

7.3/ LIMITATIONS AND FUTURE WORKS

In this section, we note some of the limitations of our work and we try to propose possible

approaches to address them in future works.

7.3.1/ IMPROVING THE FIRST CONTRIBUTION

In Chapter 3, we considered the three traditional obfuscation techniques e.g., pixelating,

masking, and blurring. However, other obfuscation techniques such as the GAN-based

inpainting approaches [Hao et al., 2019] or k-same methods [Newton et al., 2005a] might

provide higher privacy levels while preserving relevant features in the image. Therefore,

adding and adapting such obfuscation techniques should be considered in future works.

7.3.2/ IMPROVING THE SECOND CONTRIBUTION

Prospects that we did not explore in Chapter 4 could be addressed in future work:

• Other visual features such as an individual’s name tag, posture or personal be-

longings can be identifying and considered sensitive. In this work, we focused on

individuals’ faces because they are the most revealing in the context of images.

• The adversary’s background knowledge covered the identities present in the target

dataset, therefore she/he can mine images for each known identity and perform a

DL-assisted attack to recognize and re-identify the identity of the obfuscated face

images. Nevertheless, in other scenarios the adversary’s background knowledge

could be limited to quasi-identifying information such as the individual’s race or gen-

der. If that is the case, the adversary could perform DL-assisted attacks to recognize

the gender or the race of the target individual instead of the full identity which might

lead as well to potential privacy breaches when linked to other data sources (i.e.,

identity disclosure via linking attacks).

• Different approaches have been proposed in the context of image classification and

identity recognition to trick, ruin or corrupt DL models. Some approaches rely on de-

signing adversarial examples by perturbing the query image at the inference phase
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either physically (e.g. the target individual wears special accessories, e.g. glasses

or hats [Komkov et al., 2021]) or quantitatively [Goodfellow et al., 2014] (small per-

turbations are added on a pixel level which are not visible to the human visual

system). Other approaches rely on modifying/corrupting the training dataset via

data poisoning (clean-label [Shafahi et al., 2018, Shan et al., 2020] and dirty-label

attacks [Biggio et al., 2012]), to ruin the neural network’s weights and trick it into in-

ferring incorrect labels when queried with non-perturbed images, i.e., breaking the

DL models at training phase. These approaches can be employed in our scenario

as a defense mechanism against the adversary’s attempts to breach the obfuscated

faces’ anonymity. Nevertheless, it requires a thorough examination and investiga-

tion therefore we leave the defender concept for a future study.

7.3.3/ IMPROVING THE THIRD CONTRIBUTION

There are also some limitations in Chapter 5 that could be addressed in future work.

• We did not consider other obfuscations such as pixelating or masking a person’s

face in the target dataset. Furthermore, we can consider studying other types of

DL-assisted attacks such as restoration-based attacks.

• It is vital to extensively study the defender concept and how to counteract against

the FL-assisted attack. Different approaches can be employed such as data poi-

soning [Biggio et al., 2012] or model poisoning [Bagdasaryan et al., 2020] to try and

decrease the accuracy of the FL-assisted attack. Also as mentioned in Section 5.2,

in this work we adapted the standard federated averaging algorithm which does

not perform well when the local datasets are heterogeneous. Therefore as men-

tioned in Section 5.5.3, additional approaches [Zhao et al., 2018, Hsu et al., 2020,

Hsu et al., 2019, Hsieh et al., 2020] could be adapted/applied to remedy these lim-

itations, hence perform a stronger FL-assisted attack.

7.3.4/ IMPROVING THE FOURTH CONTRIBUTION

In Chapter 6, we proposed the (k, l)-clustering algorithm to address the correlation prob-

lem while anonymizing a transactional data stream. Each tuple within the stream had

three attributes: VIN (i.e., ID), location and time stamp. Considering another dataset with

additional attributes (e.g., quasi-identifying attributes) increases the attack surface of the

adversaries. Hence, we need to adapt/improve our algorithm to respect and preserve the

privacy constraints (e.g. k-anonymity) when considering additional attributes.
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7.4/ CONCLUSION

In this thesis, we (i) proposed and implemented several anonymization techniques and

tools in the context of images and relational data streams and (ii) assessed the robust-

ness of these techniques by simulating adversaries with different knowledge and several

attacking capabilities.

Designing, developing and implementing new privacy preserving techniques (e.g. ob-

fuscation techniques for images or perturbative/non-perturbative techniques for rela-

tional datasets) is important. Similarly, simulating adversaries with different background

knowledge to re-evaluate and assess the validity and robustness of these techniques

is equally vital. These two concepts, i.e. defender and adversary, should always be

investigated simultaneously. For instance regarding the obfuscation techniques in the

context of images, we believe that in the coming years, the GAN-based techniques

[Hao et al., 2019] will/should gain more momentum. These techniques modify the im-

ages’ features while maintaining the semantic information: For instance, these techniques

can obfuscate an individual’s face by replacing the original facial features (e.g., eyes,

mouth, lips, nose) with synthetic ones. . . . The GAN-based techniques [Hao et al., 2019]

techniques can/should preserve the anonymity of the data subjects while maintaining

better utility in comparison with the current mainstream obfuscation techniques (e.g. blur-

ring, pixelating, or masking) [Caesar et al., 2020, Frome et al., 2009]. However, further

quantitative and qualitative evaluations similar to the ones performed in Chapter 4 and

[Li et al., 2017b, Dufaux et al., 2010, Nawaz et al., 2017] should be conducted to mea-

sure the validity and robustness of these techniques.

On another note, the different scientific contributions constituting this report are the fol-

lowing:

• Image Obfuscation tool at BMW Group: this chapter was published as a

public GitHub Repository [Tekli et al., 2021], as a press release by BMW Group

[Hatzel, 2021] and as a white paper by Intel Cooperation [Intel, 2021]

• A Framework for Evaluating Image Obfuscation under Deep Learning-
Assisted Privacy Attacks: this chapter was published partially in the 17th Interna-

tional Conference on Privacy, Security and Trust (PST) in 2019 [Tekli et al., 2019]

and is currently under peer review in a scientific journal [Tekli et al., NDb].

• Leveraging Deep Learning-Assisted Attacks against Image Obfuscation via
Federated Learning: this chapter is currently under peer review in a scientific jour-

nal [Tekli et al., NDa].

• (k,l)-Clustering for Transactional Data Streams Anonymization: this chapter
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was published in the International Conference on Information Security Practice and

Experience ISPEC 2018 [Tekli et al., 2018].
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Abstract:

Individual’s privacy and anonymity is becoming
highly critical in our data-driven world due to the
vast amount of data being generated and processed
daily (e.g., Industry 4.0). Data anonymization is
the process of creating anonymous information,
namely information which does not relate to an
identified or identifiable natural person in such
a manner that the data subject is not or no
longer identifiable. Privacy regulations compel
data-driven companies to guarantee a level of
anonymization that requires “irreversibility preventing
identification of the data subject”, taking into account
all the means “reasonably likely to be used” for
identification. Therefore, we (i) propose and
implement several anonymization techniques and
tools in the context of images and relational data
streams and (ii) assess the robustness of these
techniques by simulating adversaries with different
knowledge and several attacking capabilities. In
the first contribution, we design and implement an
anonymization tool that localizes identifying/sensitive
features in images/videos via Deep Learning
DL-based localization techniques (i.e., semantic
segmentation) and obfuscates it accordingly via

pixelating, blurring, or masking. In the second
contribution, we propose a recommendation
framework that evaluates the robustness of image
obfuscation techniques and recommends the
most resilient obfuscation against adversaries
executing DL-assisted attacks (e.g., restoration-
based or recognition-based attacks). In addition,
three threat levels are studied thoroughly based
on the adversary’s knowledge (e.g., background
knowledge). In the third contribution, we empirically
demonstrate how adversaries can remedy their
lack of knowledge and leverage their attacking
capabilities, against obfuscated facial images,
by collaborating via Federated Learning. Seven
collective threat levels are defined and studied based
on the background knowledge of the adversaries and
the sharing of their knowledge. Finally, we address
in the fourth contribution the correlation problem in
the anonymization of a transactional relational data
stream. A bucketization-based technique, entitled
(k,l)-clustering, is proposed to prevent such privacy
breaches by ensuring that the same k individuals
remain grouped together over the entire anonymized
stream.

Titre : Conception et évaluation de techniques d’anonymisation des images et des flux de données
relationnels via des approches d’apprentissage automatique à BMW Group.

Mots-clés : Confidentialité des données, Anonymisation, Obfuscation des images, Apprentissage profond,
Attaques assistées par l’apprentissage profond, Apprentissage fédéré, Attaques collaboratives, flux des
données, Corrélation

Résumé :

La protection des données à caractère personnel
est essentielle et vitale dans notre monde axé sur
les donnes (e.g. industrie 4.0). L’anonymisation
est un processus qui modifie les données de
telle manière que la personne concernée ne soit
pas ou plus identifiable. Les réglementations
de protection des données obligent souvent les
entreprises qui utilisent des données de garantir
un niveau d’anonymisation qui exige ”l’irréversibilité
empêchant la ré-identification de la personne
concernée”, en tenant compte de tous les moyens
”raisonnablement susceptibles d’être utilisés” pour
l’identification. Par conséquent, nous (i) proposons
et implémentons plusieurs techniques et outils
d’anonymisation dans le contexte des images et
des flux de données relationnels et (ii) évaluons
la robustesse de ces techniques en simulant des
adversaires avec plusieurs capacités d’attaque.
Dans la première contribution, nous concevons
et implémentons un outil d’anonymisation qui
localise les caractéristiques personnelles (c’est-
à-dire, identifiantes) dans les images/vidéos par
des techniques de localisation basées sur des
approches de � Deep Learning DL � (par
exemple, la détection des objets ou la segmentation
sémantique des pixels) et applique des techniques
d’obfuscation par pixellisation, � blurring � ou

masquage. Dans la deuxième contribution, nous
proposons un � Framework � qui évalue la
robustesse des techniques d’anonymisation des
images et recommande la technique la plus
résiliente contre des adversaires qui exécutent
des attaques assistées par DL (par exemple, des
attaques qui reconstruisent/reconnaissent les pixels
anonymes). En outre, nous étudions trois niveaux
d’attaque dont chacun dépend des connaissances
� knowledge � de l’adversaire à propos des images
anonymisés. Dans la troisième contribution, nous
démontrons d’une manière empirique comment
les adversaires peuvent remédier à leur manque
de connaissances et améliorer leurs capacités
d’attaque, contre des images anonymisés, en
collaborant via � Federated Learning �. Nous
définissons sept niveaux d’attaque collective en
fonction des connaissances des adversaires et du
partage de leurs connaissances. Dans la quatrième
contribution, nous considérons le problème de
corrélation dans le contexte d’anonymisation d’un
flux de données relationnelles transactionnelles.
Nous proposons une technique, intitulée (k,l)-
clustering, qui garantit l’anonymité de flux de
données relationnel en toujours groupant les tuples
des mêmes k individus ensemble tout au long du
flux.
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