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ABSTRACTS

Abstract

The Internet of Things (IoT) is commonly employed for monitoring various physical quan-
tities. In the innovative approach of Massive IoT (MIoT), a massive deployment of highly
constrained sensors is considered to reduce deployment and maintenance costs. Aligned
with this scenario, this thesis focuses on the development of mechanisms to reduce sen-
sor energy consumption. The method relies on the principle of similarity: sensors can
be considered similar if they provide similar observations. This approach enables the
transmission of a subset of sensors to fulfill the monitoring requirements.

First, we identified and synthesized existing methods from the literature based on the
principle of similarity. We established that this approach can be decomposed into three
components, which we studied in the context of MIoT.

Next, we examined methods for managing sensor observations to maintain a constant
stream of messages over time. Our first method involves having a specified number of
sensors transmit in a round-robin fashion. The second method achieves precision results
comparable to the first while reducing the number of sensor updates when the sensor fleet
changes.

Finally, we propose a solution to form groups of sensors identified as similar by ana-
lyzing their observations. To this end, we introduce a new similarity measure based on
interpolation, coupled with a hierarchical clustering method.
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Résumé

L’Internet des objets (IoT) est couramment utilisé pour surveiller diverses grandeurs
physiques. Dans l’approche innovante du Massive IoT (MIoT), un déploiement massif
de capteurs très contraints est envisagé, afin de réduire les coûts de déploiement et de
maintenance. Conformément à ce scénario, cette thèse se concentre sur le développement
de mécanismes visant à réduire la consommation d’énergie des capteurs. La méthode re-
pose sur le principe de similarité : les capteurs peuvent être considérés comme similaires
s’ils fournissent des observations semblables. Cette approche permet la transmission d’un
sous-ensemble de capteurs répondant aux exigences de surveillance.

Tout d’abord, nous avons identifié et synthétisé les méthodes existantes provenant de la
littérature basées sur le principe de similarité. Nous avons établi que ce type d’approches
peut être décomposé en trois composantes, que nous avons étudiées dans le contexte du
MIoT.

Ensuite, nous avons examiné les méthodes de gestion des observations des capteurs
permettant de maintenir une quantité constante de messages au fil du temps. Notre
première méthode permet q’un un nombre spécifié de capteurs transmette en round-robin.
La deuxième méthode atteint des résultats de précision comparables à la première tout
en réduisant le nombre de mises à jour des capteurs lorsque la flotte de capteurs change.

Enfin, nous proposons une solution pour former des groupes de capteurs identifiés
comme similaires en analysant leurs observations. À cet effet, nous introduisons une
nouvelle mesure de similarité basée sur l’interpolation, associée à une méthode de re-
groupement hiérarchique.
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Chapter 1

INTRODUCTION

1 Evolution in IoT

An IoT (Internet of Things) network comprises sensors deployed in an environment to
monitor various physical quantities, such as temperature, humidity, or CO2 levels [Aky+02].
Its applications span across multiple domains, including healthcare, agriculture, envi-
ronment, public safety, military systems, transportation systems, and industry [RBC14;
GTG22]. The goal of an IoT network is to gain insights into an initially unknown envi-
ronment in order to control actuators, or identify anomalies, for instance.

Currently, there are approximately 15 billion IoT devices1, and it is projected that the
number of connected objects will reach 500 billions by 20502. To support the large-scale
deployment of these sensors, energy autonomy is a desired characteristic. Additionally,
it is crucial to maximize the lifespan of the network. As a result, significant research
efforts have focused on reducing the energy consumption of sensors during communica-
tion [Per+20b; JC19; Per+20a; RC23].

2 A Massive IoT Deployment

Traditionally, a limited number of highly reliable sensors are strategically placed to gather
targeted information. However, this approach suffers from an overreliance on each indi-
vidual sensor. Indeed, each sensor needs to be carefully positioned to provide relevant
observations. Moreover, if a sensor fails, it must be immediately replaced.

Today, the production cost of a constrained sensor, i.e., one with limited battery,
computational power, and memory, is as low as 1$ per unit. This affordability enables
the deployment of a large quantity of such sensors, for instance in everyday objects.
This scenario falls under the paradigm of Massive IoT [Stu+19; Jou+23]. For instance,

1https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
2https://emarsonindia.com/wp-content/uploads/2020/02/Internet-of-Things.pdf
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[Mot+20] propose a perspective on managing large-scale outdoor air quality by considering
a multitude of nodes, ranging from objects carried by individuals to vehicles. Additionally,
in the context of smart home, an illustration of a connected apartment, where a majority
of objects are furnished with IoT sensors, is presented in Fig. 1.1.

Figure 1.1: Illustration of an apartment with integrated IoT sensors: each red dot repre-
sents a sensor.

By increasing the number of observers in the environment and reducing their in-
dividual importance, this approach contributes to reduce deployment and maintenance
costs. While this proposal offers enhanced versatility and enables the further expan-
sion of IoT solutions, it also introduces new challenges in managing a fleet of sensors
efficiently [Jou+23].

3 Problem Investigated in this Thesis

Drawing inspiration from our connected apartment example, a non-slaved solution would
involve the sensors measuring the physical quantity (such as temperature) at regular inter-
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vals and directly transmitting it to the monitoring system. While this approach effectively
manages the studied environment, it demands a substantial sensor energy consumption.

Some deployed sensors are positioned in such close proximity that they generate highly
similar observations. These redundancies can be identified and exploited to minimize
sensor transmissions, thereby conserving their energy.

This thesis delves into effective collection methods suitable for the random deployment
of a substantial number of constrained sensors. The methodology we explore is grounded
in the assessment of similarity among sensors, which enables the reduction of transmitted
data. For instance, one potential approach could involve relying solely on a subset of
sensors to meet the required monitoring objectives without significantly compromising
tracking accuracy.

4 Surveys on Sensor Efficiency and Observation Col-
lection Management

The issue of energy efficiency is at the core of IoT challenges, and numerous solutions
have been proposed and categorized in various surveys [Kum+17; CH20; Zan+21; Azi+13;
Cor+07; DBO17; Eng+18; KL05; KAT12; Fas+07; MM08; NC23; CS16; WX06; Zhu+12;
YA08]. A taxonomy proposed in Fig. 1.2 from [RBC14] highlights various approaches in
this regard.

In this thesis, we focus on methods that aim to reduce the number of messages trans-
mitted by the sensors, as transmission represents the primary factor of energy consump-
tion [Ali+09; Ana+09]. Some surveys compiled methods that add intelligence to the node,
such as sensing reduction methods based on predictions [DBO17; Eng+18] or message
compression [KL05; KAT12; Fas+07; MM08; NC23]. Other surveys investigate strategies
for placing sensors to enable more efficient message transmission [CS16; WX06; Zhu+12;
YA08].

However, the sensors under consideration possess constrained memory and compu-
tational capacities, which restricts their ability to accommodate intelligent algorithms.
Furthermore, in the context of a MIoT solution, the main objective is to minimize the
human costs associated with strategic deployment. As a result, these introduced energy-
efficient methods are not applicable to our context.
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Figure 1.2: Taxonomy of IoT efficient mechanisms, from [RBC14]

5 A Novel Approach to Managing Observation Col-
lection Based on Similarity

A fundamental assumption for MIoT scenarios is the deployment of a large number of
nodes within the environment. Due to this high density of sensors, certain sensors are
likely to produce observations that are closely aligned.

As a result, the establishment of similarity connections based on geographic proximity
and/or the provision of analogous observations becomes feasible. Utilizing these similarity
links, it becomes possible to reduce the required sensor set to be used for completing
monitoring requirements, while the others can be in deep sleep to save their energy.
This approach significantly curtails the volume of transmitted observations, resulting in
substantial conservation of battery resources.

While this kind of approach has been proposed in some research papers, to our knowl-
edge, no formalization of this concept has been provided. We propose a formalization of
this methodology, structured into three key components. Specifically, these components
encompass:

• A similarity metric, which is a positive real-valued measure that quantifies the
proximity between sensors according to gathered information.
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• A covering subset algorithm, leveraging the identified sensor similarities to gen-
erate one or more sensor subsets. Each subset fulfills the environmental monitoring
requirements.

• An activation allocation method, which, based on the covering subset(s), dis-
tributes the observation load among the sensors.

In the upcoming part, we present a survey of solutions from the literature that are
based on the similarity concept. Through our analysis, we show that all the solutions
from the literature can be described using these three components.

6 Outline

The remainder of this thesis is split into three parts.
• Part I delves further into the problem under investigation in this thesis.

In Chapter 2, Specifications of the MIoT Scenario, we provide an in-depth exploration
of our interpretation of a MIoT deployment. This encompasses considerations such as
the types of sensors being considered, the network architecture envisioned, deployment
specifics, and the surrounding environment. This leads to the key aspects that an obser-
vation collection management approach based on similarity should adhere to.

In Chapter 3, A Survey on Data Collection Based on Sensors Similarity, we present
the first comprehensive survey focused on techniques for managing observation collec-
tions through the utilization of similarity principles. Specifically, we analyze the choices
proposed in existing research for each of the three components, and evaluate the proposi-
tions put forth in the literature based on points of interest for the development of MIoT.
Based on these findings, we propose novel approaches to overcome these limitations in
the subsequent chapters.
• Part II investigate the period allocation component, where the focus is distributing the
load of observations among a set of sensors, when sensors come and go.

Within Chapter 4, Selecting a Subset of Sensors in Round-Robin, we present a for-
malization of the activation allocation method, as the update of a sensor’s transmission
period after it has transmitted a message. Moreover, we introduce a method that facil-
itates a fair distribution of observation loads, ensuring the reception of observations at
strictly defined time intervals (the first parameter of the function), distributed among
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no more than a specified number of sensors transmitting in a round-robin manner (the
second parameter of our function).

In Chapter 5, Asynchronous 2-Level Round-Robin Activations, we propose a second
method that relaxes the strict message reception requirement and adapts to changes in
the sensor fleet with minimal associated costs. We demonstrate that while this solution is
theoretically sub-optimal, it closely approximates the performance of our initial solution.
Moreover, it is better suited to the inherent constraints of the MIoT environment.
• Part III consists of a single chapter that delves into the two other fundamental compo-
nents of the core method: the similarity metric and the covering subset algorithm.

In Chapter 6, Grouping Sensors Based on Observations, our focus is on the cluster-
ing of similar sensors based on a similarity metric derived from their observations. The
similarity metric utilizes the Kriging interpolation method to compute the average mag-
nitude difference between interpolations over shared time intervals. For the clustering
process, we devise a hierarchical approach that takes into account the common period
of presence of two sensors as a weighting factor in the linkage method. Through simu-
lation, we demonstrate the superior performance of our proposed methods compared to
state-of-the-art reference methods.
• Finally, we conclude this thesis in Chapter 7, where we propose future research direc-
tions.
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Chapter 2

SPECIFICATIONS OF THE MIOT
SCENARIO

This chapter serves as an introduction to the fundamental concepts and terminology
(highlighted in bold) that will be utilized throughout the thesis.

1 Environment, Deployment Strategy, Objective

Overall Objective

The objective is to monitor an environment (an agricultural field, a building for in-
stance), by measuring a physical quantity (temperature, humidity, CO2). The ultimate
goal can be to control this environment, possibly with actuators, although this thesis is
only limited to the measurement task.

Traditional Approach VS MIoT Paradigm

In some monitoring applications, such as environmental monitoring experiments discussed
in [US20], a traditional approach is adopted. This approach entails deploying on
few strategic positions sensors characterized by high reliability, precise measurements,
and large battery capacity. Implementing this approach requires the development of
customized deployment strategies for each specific use case, often utilizing efficient sensor
placement methods as presented in [CS16; WX06; Zhu+12; YA08]. Additionally, quick
replacement of malfunctioning sensors is necessary. Generally, this approach heavily relies
on each individual sensor, making it highly costly.

In this thesis, we adopt an alternative approach, based on the so-called Massive IoT
paradigm [Stu+19; Jou+23]. This approach involves managing a large number of small,
low-cost sensors with limited resources. For instance, in [Shi+01], a sensor density of up

13
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to 20 nodes per cubic meter was envisaged. This approach overcomes the limitations of
the traditional monitoring method: the deployment of MIoT is more convenient, as some
sensors can be poorly placed without significantly impacting the system. Furthermore,
there is no need for direct replacement of a battery-depleted sensor as long as there is
another sensor remaining active nearby.

Deployed Hardware

A massive number of low-cost standard sensors are then deployed, each constrained by
its energy, computational, and memory capacity, making them capable of performing only
simple tasks [Mot+20]. These sensors can be distributed throughout the environment or
integrated into objects. As time passes, new sensors may be added to the environment,
while others may be removed or become inactive due to battery depletion.

At the other end, the terminal is the ending point for the transmitted messages.
There is no energy limitation from the terminal’s perspective. In Fig. 2.1, we provide an
illustration of the sensors entering and exiting an environment and transmitting messages
directly to the gateway (we will discuss the protocol later).

Figure 2.1: Environment, sensors, communications
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Detailed Goal: Estimations for All Sensors at Target Observation
Period

The term estimation refers to the evaluation of the physical quantity over time. For
example, in a real-time temperature monitoring system, the system aims to receive ob-
servations at regular time intervals. For clarity, let’s consider the target observation
period as the desired interval for updating the estimations of all sensors.

Therefore, the objective is to generate estimations for sensors periodically, ensuring
that each sensor’s estimation is updated at regular intervals according to the target ob-
servation period. On the other hand, it is desired to extend the lifespan of sensors. This
will be elaborated further, but the primary objective is to extend the lifespan of sensors
in "densely deployed areas" considered more critical compared to zones where sensors are
isolated.

2 Communications and Protocol

Communications Between the Sensors and the Terminal

Motivated by the emergence of LPWANs (Low Power Wide Area Networks) built to enable
transmission over long distance with low consumption [Ban+22; Mek+19; BDK16], we
assume that communication is possible only between the sensors and the terminal, and
not among sensors [Kno06].

For this network, no message delivery guarantees are provided, which means that pack-
ets can potentially be lost in both sensor-to-terminal and terminal-to-sensor transmissions,
as studied in [JR22; GZD21].

To curb any single node from monopolizing the radio spectrum, each object is con-
straint by a duty cycle, meaning it can only transmit for a fraction of the time (typically
around 1% of the time) [Ade+17].

Sensor Modes and Protocol

A sensor operates in two modes, as illustrated in Fig. 2.2: the active mode, in which
the sensor takes an observation of the physical quantity and transmits it, followed by
a short listening period for period change orders from the terminal, and the deep sleep
mode, during which it is inactive. The active mode is much more energy consuming than
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Figure 2.2: Modes of a sensor and modification of its activation period

the deep sleep mode: the energy consumption ratio between the two modes can be as
high as 104 [Lal+18; Bou+18].

This represents the model of periodic wireless sensor networks as defined in [AA20].
The sensor is governed by a single parameter: the activation period, which corresponds
to the duration between two active modes. The opening window after each sensor message
is based on the LoRaWAN1(Low Range Wide Area Network) Class A, an LPWAN created
to be suitable for highly constrained sensors.

Each observation is directly sent to the terminal, insuring updates of fresh sensor
estimations. Additionally, the periodic transmission mode and the reprogrammability of
the activation period can be handled even for sensors with low algorithmic and memory
capacity.

Limitations on Commands Issued by the Terminal

As previously discussed, the terminal is constrained by duty-cycle limitations, which allow
only a small fraction of time for transmission. This constraint can become particularly
restrictive when dealing with a considerable number of sensors that need to be managed.

During the time when the terminal is transmitting commands, it is unable to receive
messages. Consequently, any observations transmitted by sensors within this timeframe
are lost.

From the sensor’s perspective, interpreting the need to adjust its activation period
requires the sensor to enter an extended listening mode and employ signal processing
methods, resulting in additional energy consumption.

1https://lora-alliance.org/

https://lora-alliance.org/
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Due to these factors, it holds significance to effectively minimize the quantity of com-
mands issued by the terminal.

3 Observations and Similarities

During its active mode, the sensor perceives a physical attribute from the environment,
which it transmits to the terminal as an observation. This observation comprises at-
tributes of both value and time.

Poor Quality Observations

The poor quality of the sensors makes the measuring tools imprecise, fragile and prone to
failure [Kar+16]. This results in erroneous observation values in the form of drift, fixed
error, or random error, for example [Elh+17; TC07].

Inexact Periodic Transmissions

The sensors transmit messages based on a periodic activation. However, due to their poor
quality, malfunctions can occur on the clock, which can alter the exact duration of the
deep sleep period [Tjo+04].

Physical Quantity Variations

The physical quantity exhibits spatial and temporal variations where certain typical be-
haviors may emerge, which we present in a non-exhaustive manner.

For instance, spatial variations can be very different from one location to another [Gru+06;
Wan+13]. One can imagine an environment partitioned into separate spaces, such as the
rooms of a building. Thus, the physical quantity may show small variations within the
same room, but very large variations between two points that are close but in different
rooms [LWP07].

Furthermore, spatial behavior can vary over time: two rooms may have a similar
temperature on a cloudy day (winter) but significantly different temperatures on a sunny
day (summer) [Gru+06; Mey+11].
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Similarity Between Sensors

Under the assumption of dense deployment, some sensors may return similar kind of
data, which has been observed in [Bur+09] in terms of the proximity of observation
values, or in [Kai+16] in terms of geographical proximity. Therefore, the similarity
metric is defined as the tendency for sensors to return the same observation values. In
cases of strong similarity, sensors can be identified as similar: when a sensor transmits
an observation, its estimation is updated, as can be the estimations of sensors that are
similar to it.

4 Definition and Purposes of the Observation Collec-
tion Scheme

This thesis focuses on methods aimed at limiting the active mode of sensors. In the
present network model, a so-called observation collection scheme is a method that
can modify the activation period of a sensor that has just sent a message, if required.

Objective of the Observation Collection Scheme

In a system lacking an observation collection scheme, each sensor transmits messages at
the target observation period. While this method fills the estimation requirements, it
leads to a high volume of transmitted messages.

According to this concept of similar sensors, we can avoid activating a sensor if its
estimation can be updated by a similar sensor. By leveraging this approach, we adapt
the active mode of sensors by adjusting the activation period of a sensor after it has
transmitted a message.

Leveraging Strong Similarities While Disregarding Isolated Sen-
sors

The sensors are deployed throughout the environment, forming sets of sensors with high
similarities, and others where sensors are only minimally or not at all similar to each
other.

With the observation collection scheme presented here, we can significantly prolong the
activation period of sensors in areas with high similarity among sensors, thus extending
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their lifespan. On the other hand, a sensor with no similarity will continue to consume
its energy at a high rate and will die quickly.

We consider that isolated sensors (with low similarity to other sensors) are poorly
positioned, and therefore, our objective is to identify the sets of sensors with very high
similarity to maximize their lifespan.

5 Sum-up of the Points of Interest for an Observation
Collection Scheme

We can summarize the essential points of interest for the development of an observation
collection scheme. These points will serve as guidelines to analyze the proposals from
the literature, as discussed in Chapter 3, and will also guide us for the further proposed
approaches in Chapters 4 to 6.

Regarding the study of the environment, we aim to investigate complex environ-
ment where the physical quantity varies differently across different zones. As a monitoring
solution must endure over time, we strive to adapt to a changing environment where
observed properties of the physical quantity fluctuate.

Our ambition lies in crafting a versatile solution capable of adapting to diverse sce-
narios. In terms of sensor deployment, we must grapple with deployment issues, which
may include poorly placed sensors. Furthermore, we aim to accommodate variations
in the number of sensors, encompassing the integration of new sensors as well as the
potential exit or failure of sensors due to battery depletion.

We seek a solution that boasts resilience within constrained networks, where packet
losses in both uplink and downlink are likely. When implementing the strategy, it remains
important to limit the number of commands issued by the terminal.

Finally, we address the issue of poor sensor quality. This involves managing clock
drift, characterizing the sensitivity of the measurement tool to deal with corrupted
sensors, which may transmit aberrant observation values like random values, fixed errors
or drift, and effectively handling measurement errors, which must not be neglected for
these constrained objects.



Chapter 3

A SURVEY ON DATA COLLECTION

BASED ON SENSORS SIMILARITY

This chapter delves into energy-efficient solutions derived from existing literature, which
harness the concept of similarity to efficiently distribute the observation workload among
sensors.

Through a comprehensive investigation of papers in the literature that tackle this sce-
nario, we demonstrate that a solution can be deconstructed into three core components.
For each of these components, we conduct a comprehensive review of the existing litera-
ture. We analyze them from different perspectives crucial to a MIoT deployment, thereby
shedding light on the limitations of previous works.

1 Overview of the Papers Examined in the Survey

Here, we introduce the papers that we will focus on in the following of the survey. These
papers share a common scenario: a large number of sensors are deployed in an environ-
ment, allowing to develop a similarity metric to reduce the energy consumption of each
sensor. For this, papers from diverse domains are relevant.

1.1 Similarity Metric Definition

Considering densely deployed sensors, some papers focus on studying the similarity be-
tween sensors. This similarity is defined in several manners.

In studying similarity, [SSV12] utilizes the concept of sensing range, which represents
the radius within which a sensor can measure its surrounding environment. Consequently,
the area covered by a sensor forms a circle (or sphere) centered around the sensor. Using
this model, the authors construct graphs where the vertices are the sensors, and edges are
established between sensors whose sensing areas intersect. They further investigate the
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effects of varying the sensing range and highlight its influence on the constructed graphs.
[VAA04] develops a correlation model between sensors based on distance, employing

statistical analysis. Gaussian process modeling is performed, assuming that the physical
quantity is a random process. Particularly, the proposed model accounts for encoding
performed by the sensor.

[APM09] explores the link between spatial similarity and similarity between observa-
tions of sensors. The goal is to validate spatial correlations by employing data-driven
metrics.

1.2 Data-driven Sensor Observations Scheduling

Several methods have been devised to reduce the volume of transmitted messages through
scheduling strategies among sensors, achieved by assessing the similarity based on the
returned observations. These techniques establish similarity connections whenever two
sensors transmit sufficiently similar observations. They further develop algorithms where,
in each round, a subset of sensors is activated. This subset, through the expansion of
their similarity connections, encompasses the entire array of sensors.

The ensuing research papers are the most closely related to the subject matter of this
thesis.

In [CKJ05], a method is proposed to build groups of sensors that return highly sim-
ilar observations, so that instead of all sensors being activated in each round, sensors
from a same cluster are activated in a round-robin fashion. An experiment is conducted
with light sensors placed under desk lamps and barriers positioned in certain areas. The
method successfully groups together sensors surrounded by barriers, resulting in an aver-
age reduction of sensor consumption by a factor of 3 and low precision loss. The authors
also present an extended simulation on a larger scale with similarly promising results.
An extended version of this method is proposed in [LWP07], where sensors are randomly
activating on time slots to create redundancy at the terminal end.

In [Liu+13b], similar principles are employed, with the transmission of information in
a mesh network considered. To handle this last hypothesis, sensors near the terminal are
more frequently activated to relay observations.

Another approach, presented in [KTP06], involves creating a transfer function that
allows estimating the observation of one sensor based on the observation of another sensor.
A link is established if the transfer function can accurately estimate the measurement of
one sensor from its own measurement. An experiment is conducted with 54 temperature
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and humidity sensors deployed with distances ranging from 6 to 15 feet. Through their
experiment, up to 12 subsets of sensors are constructed, where each subset is able to
update the estimation of the entire fleet of sensors, with the subsets transmitting in
round-robin fashion. The results showed that this approach achieved a level of precision
that is close to the scenario where all sensors are transmitting at each round.

1.3 Coverage Problem

Extensive research has been conducted on the coverage problem, and comprehensive ex-
planations can be found in surveys such as [Meg+01; Zhu+12]. The objective is to achieve
sufficient quality of service (called coverage) related to the spatial coverage of an environ-
ment, while minimizing the number of active sensors. The precise interpretation of the
coverage depends on the sensor coverage modeling. This area has been widely studied,
and we have herein focused on a subset of the proposed approaches.

The prevalent modeling considers sensors that cover the environment over a sensing
range and the objective is to select a subset of sensors to optimally cover the environment
(in totality, or with sufficient covering). [CW06] investigates a 3D environment, high-
lighting optimal conditions for sensor placement and developing a method for selecting
a subset of sensors that ensures complete coverage. [TG03] presents a sensor selection
method that is robust to packet loss, localization errors, and node failures through simu-
lations. [AC16] addresses adaptation mechanisms in response to the death of a sensor by
activating not used sensors. [Bah+14] also focuses on relay of depleted sensors. Specifi-
cally, they propose an efficient sleeping schedule for unused sensors that takes into account
the fact that, as time progresses, a sensor is more likely to be selected in coverage task
due to fewer available candidates.

[Mam14] assumes the same sensing modeling, and proposes a method that, at each
scheduling step, choose one subset of sensor that insures coverage, in order to overall
balance energy consumption across all sensors. [Mos+17] proposes a solution based on
reinforcement learning, where a set of sensors is chosen at each step, while learning for
future decision-making.

With the same range modeling for sensors, in [SP01], an algorithm is developed to
construct multiple subsets of sensors, with each subset taking turns being active. Similarly,
[Kra+11] suggests generating multiple covering subsets of sensors in conjunction with
addressing the efficient placement problem, demonstrating that it is more effective to
study both problems simultaneously rather than sequentially.
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In [DB12], a statistical model based on geography is used for sensor coverage model-
ing. The solution allows selecting a minimum subset of sensors, subject to a minimum
distortion constraint. Distortion is mathematically defined as the difference between the
phenomenon and its estimation. [Raj11] also uses a statistical modeling, and presents an
optimal sensor selection method based on an entropy metric.

1.4 Efficient Placement

The problem of efficient sensor placement aims to strategically position sensors in order
to transmit observations efficiently and conserve energy. This topic involves establishing
metrics to study similarities, and building algorithms for interpreting these similarities.

In the work presented in [Kra+06], the authors model the similarity between obser-
vations and the transmission cost using a Gaussian process over the spatial dimension.
Utilizing this model, they propose a sensor placement heuristic that finds a balance be-
tween sending diverse observations and minimizing communication costs.

In [Yog+18; GGJ09], an initial dense sensor deployment is considered, and the objec-
tive is to reduce the number of sensors to be retained. [Yog+18] addresses this scenario
by considering a large number of deployed sensors and aiming to select the most relevant
ones. It is proposed an algorithm that clusters similar sensors based on both sensors
observations and position; at the end, only one representative per cluster is retained in
the solution. In an experiment, 30 sensors were deployed for relative humidity, luminance,
and temperature measurements. It is demonstrated a reduction by four of the initially
deployed number, with minimal loss of precision in the tracking of the physical quantities.
In [GGJ09], the authors seek to decrease the number of sensors placed on the body for
movement recognition. They propose a method where, for each sensor, a graph is built:
the nodes represent different movements and an edge exists between two movements that
can be distinguished by that sensor. They developed a method to find the smallest set of
sensors such that each movement is completely distinguishable, equivalent to finding the
minimum number of sensors for which the union of the graphs induced by this subset is
fully connected.

1.5 Compression of Transmissions

The compression-based methods aim to reduce the amount of transmitted observations
by sending a data representation model instead of the entire data set. The papers that
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are linked to our topic propose to send a model composed of observations coming from
multiple sensors.

In [TM06], the authors propose grouping sensors that provide similar observations and
then sending an autoregressive model output that represents the combined observations
of the sensor group. Similarly, [Alm+16] applies the same principle by reconstructing the
linear evolution of the physical quantity for the considered cluster.

1.6 Fault Detection

The fault detection problem can be addressed by identifying similarities between sensors.
In [Yoo20], correlation analysis is performed, allowing non-disjoint grouping of correlated
sensors. Thus, a fault is identified when a sensor deviates from an assigned cluster. The
authors conduct experiments on an industrial process monitored by 17 sensors and achieve
better fault detection rates compared to some traditional methods.

2 Three Components to Define an Observation Col-
lection Scheme

We have presented papers from various research domains. The two closely related re-
search domains that extensively utilize similarity for reducing observation collection are
data-driven sensor observations scheduling and the coverage problem. The other research
domains focus on specific aspects of the problem or do not validate the main hypothesis:
that observations made by sensors are directly transmitted to the terminal.

We propose to categorize these studied papers under a unified framework. This frame-
work is centered around the core principle of leveraging similarity to curtail transmissions
from sensors. The main goal is to transform sensor information (such as sensor position
and sent observations) into a representation of similarity among sensors. Subsequently,
based on these similarity relationships, an algorithm is used to construct one or multiple
subsets of sensors, referred to as covering subsets, where each subset is built to fulfill the
prescribed monitoring requirements. Finally, the distribution of observation load among
sensors is defined.

This observation collection scheme can then be dissected into three principal compo-
nents:



2. THREE COMPONENTS TO DEFINE AN OBSERVATION COLLECTION
SCHEME 25

• Section 3 - Similarity metric: A real-value metric that quantifies the proximity be-
tween sensors, relying on known sensor information.
• Section 4 - Covering subset algorithm: Based on this similarity metric, one or more
covering subsets of sensors are constructed, where each subset ensures the fulfillment of
the requirements for monitoring the physical quantity.
• Section 5 - Activation allocation method: Building upon the covering subsets, this
component defines how to distribute the load of observation transmissions among sensors.

We present the choices made for each paper regarding each of the three components
in Table 3.1; for papers that address only a part of the problem, we indicate the missing
components with ∅.

In the upcoming sections, we will delve deeper into each component by examining the
specific approaches adopted by the reviewed papers. This exploration will be guided by
identifying the most suitable strategies for IoT deployments.
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Table 3.1: Studied contributions that reduce IoT sensor consump-
tion based on similarity.
Presented following the three-component structure of an observa-
tion collection scheme.

Ref Field Similarity metric Covering subset algorithm Activation allocation method

[SSV12]
Similarity metric
definition

Common area ∅ ∅

[VAA04]
Similarity metric
definition

Distortion ∅ ∅

[APM09]
Similarity metric
definition

Inter-sensor distance
Jaccard coefficient
Cosine similarity
Pearson coefficient

∅ ∅

[CKJ05]
Data-driven sen-
sor observations
scheduling

Max magnitude difference
Similar trends counting

Partition into cliques Round-robin

[LWP07]

Data-driven sen-
sor observations
scheduling

Max magnitude difference
Similar trends counting

Partition into cliques Round-robin

[Liu+13b]
Data-driven sen-
sor observations
scheduling

Max magnitude difference
Similar trends counting

Partition into cliques Round-robin

[KTP06]
Data-driven sen-
sor observations
scheduling

Isotonic regression func-
tion

Disjoint dominating sets Round-robin

[CW06] Coverage problem Common area
One covering subset:
heuristic

Same covering set in active mode

[TG03] Coverage problem Sponsored area
One covering subset: step-
by-step

Regularly changing covering set
in active mode
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Table 3.1: Studied contributions that reduce IoT sensor consump-
tion based on similarity.
Presented following the three-component structure of an observa-
tion collection scheme.

[AC16] Coverage problem Conflict parameter
Spatial correlation

One covering subset:
heuristic

Same covering set in active mode

[Bah+14] Coverage problem Inter-sensor distance
One covering subset:
heuristic

Same covering set in active mode

[Mam14] Coverage problem Common area
One covering subset:
heuristic

Regularly changing covering set
in active mode

[Mos+17] Coverage problem Thresholded distance
One covering subset: step-
by-step

Same covering set in active mode

[SP01] Coverage problem Common area
Partitioning into covering
subsets: heuristic

Round-robin

[Kra+11] Efficient placement
Coverage problem

Mutual information
Partitioning into covering
subsets: heuristic

Round-robin

[DB12] Coverage problem Distortion
One covering subset:
heuristic

Same covering set in active mode

[Raj11] Coverage problem Entropy
One covering subset:
heuristic

Same covering set in active mode

[Kra+06] Efficient placement Mutual information ∅ ∅

[Yog+18] Efficient placement Mean magnitude difference
Inter-sensor distance

K-means clustering
Gaussian mixture model

∅

[GGJ09] Efficient placement Bhattacharyya distance ∅ ∅
[TM06] Compression Max magnitude difference Partition into cliques ∅

[Alm+16] Compression Max magnitude difference
Similar trends counting

Partition into cliques ∅

[Yoo20] Fault detection Pearson correlation Gaussian mixture model ∅
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3 Similarity Metric

Figure 3.1: Similarity quantification between one sensor and other sensors according to
three levels of similarity: low, medium, high.

This section describes similarity metrics that can be used to compare either individual
sensors or sensor subsets. A similarity metric is defined as a positive real value, denoted
by S, and the dissimilarity (or distance) metric is denoted by D, and is calculated from
available sensor information. Fig. 3.1 illustrates the similarity between a sensor and the
other sensors.

In the existing literature, we identify two main families of similarity metrics:

• Section 3.1 - Based on the geography: These metrics utilize the geographical
positions of the sensors.

• Section 3.2 - History data driven: These metrics rely on the observations provided
by the sensors.

We provide a comprehensive presentation of these families of metrics, reviewing the
proposals from the literature. Hence, we compare them through points of interests for
MIoT, with highlights of the open issues.

3.1 Similarity Metrics Based on Geographical Proximity

Similarity metrics based on geography consider that the spatial variations of the physical
quantity are a function of the spatial dimension. In other words, sensors that are located
closer to each other are more likely to send similar observations. This section presents
various similarity metrics that are based on the geographic distance between sensors.
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We denote the geographic distance between two sensors by d and di with a specific
other sensor i.

3.1.1 Distance Estimation Using Network Communication

To use a similarity metric based on geography, it is supposed that the position of all sensors
is known, equivalent to the distance between each pair of sensors. In a dense deployment
of sensors, it is usually beneficial to use position estimation tools rather than registering
the positions. Since the behavior of electromagnetic waves used for sensor communication
can be mathematically modeled, it is feasible to utilize position estimation methods based
on various network metrics [Gez08]. It is needed at least three terminals for which the
position is known to evaluate the position of a sensor in 2D.

Trilateration can be used to determine the geographical coordinates of each sensor
based on the estimated distances to the terminals. The Received Signal Strength Indica-
tion of a message can be modeled as an inverse-square law decay relatively to the distance,
helping to estimate the sensor-terminal distance [OQ09]. The Time on Air can also be
used to estimate this distance, possibly in conjunction with a clock signal or ultrasonic
transmission [SHS01].

Other methods for estimating sensor positions rely on triangulation and exploit the
Angle of Arrival [DKP19].

One of the most accurate, albeit resource-intensive, method for determining sensor
positions is the GPS (Global Positioning System) and is based on the trilateration.

3.1.2 Inter-sensor Distance

One approach to measuring the similarity between sensors is to directly use their geo-
graphic distance. This dissimilarity metric, denoted as D = d, is employed between every
pair of sensors, and is used in [Bah+14] for selecting a subset of sensors for the coverage
problem.

3.1.3 Similarity Based on Sensing Range Modeling

Sensor similarity metrics based on geography are primarily used for the spatio-temporal
coverage problems, as defined in Section 1.3. Given a sensor capable of covering the
environment over a distance r (or ri for sensor i) called the sensing range, the goal is
to cover the entirety of the environment with a minimum number of sensors.
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Figure 3.2: Inter-sensor distance [Bah+14], sensing range, thresholded similarity [KS17],
common area metric [SSV12; Mam14; SP01; CW06] and sponsored sector [TG02; TG03]
illustrations

Similarity Between Two sensors

To compute the similarity between pairs of sensors, [KS17] suggests establishing a thresh-
old to the distance, constraining it to twice the sensing range: S = max(0, 2r − d); if
two sensors are at least a distance of 2r apart, they have no similarity; the similarity is
illustrated in Fig. 3.2. Alternatively, a binary version is proposed in [Mos+17], where
similarity is assigned a value of 1 if the sensors are within a distance less than 2r, and 0
otherwise.

Authors in [SSV12; Mam14; SP01] propose a method for calculating the exact propor-
tion of common area between two sensors, as illustrated in Fig. 3.2. This similarity metric
is defined as S = cos−1( d

2r
)

π
− d

π(2r)2 ×
√

((2r)2 − d2). Using union and intersection rules,
it is possible to calculate the total area covered by a set of sensors, which is not possible
with the method proposed in [KS17; Mos+17]. In [CW06], the problem is studied in three
dimensions, where the observation of a sensor comprises a volume rather than an area.

Authors in [TG02; TG03] define a similarity metric that allows for different sensing
ranges. They propose an asymmetric metric called the sponsored sector, which is defined
as the airspace formed by the circular arc at the intersection of common areas (if they
exist) and the segments directed toward the center of the sensor. This is illustrated in
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Fig. 3.2. If we consider ri and rj as the coverage radius centered on nodes i and j,
respectively, denoted as Sj→i, the following conditions apply: • If ri + d < rj, then the
sensing area of node i is entirely contained within the sensing area of node j, and the
similarity is upper bounded to S = 2π. • If d ≤ rj + ri, then the two sensing areas
intersect, and the similarity is determined by the angle of the sponsored sector from node
j to node i. Mathematically, this similarity is defined as Sj→i = 2 cos−1

(
d2+r2

i −r2
j

2rid

)
.

Similarity Between One and a Set of Sensors

It can be relevant to evaluate a similarity metric for a sensor in relation to a set of sensors.
In [AC16], the so-called conflict parameter is a dissimilarity metric which quantifies how
much the sensor has common sensing range with other sensors: D = ∑

j∈sensors
min(dj ,2r)

2r .
Moreover, a second metric called the spatial correlation parameter is presented, measuring
the distance of the sensor from active sensors without bounds by the sensing area: D =∑
j∈active sensors

dj

(
∑

active sensors)2 . This latter metric allows differentiating between two sensors
that have the same conflict parameter. A metric proposed by [Mam14] is the shared
sensing region, calculated from the similarity matrix based on the common areas between
pairs of sensors. This latter metric serves to define precisely the usefulness of a sensor in
relation to the other active sensors.

3.1.4 Random Processes for Spatial Variations Modeling

The use of probabilistic models to translate the functioning of an environment allows
obtaining exploitable theoretical results. Spatial variations of a physical quantity can be
modeled through a Gaussian process described by a mean function and a covariance func-
tion. Variogram-based methods are then used to specify the correlation function [Cre93].
The correlation between sensors is a dissimilarity metric defined through their distance d
and is denoted γ̂(d). For example, the exponential kernel is written γ̂σ,r(d) = σe(−d2/r), the
Matérn 3/2 is written γ̂σ,r(d) = σ(1 + d)e−d/r [Dur01], where σ is the variance parameter
and r is the length-scale parameter.

Based on this modeling framework, various similarity metrics can be employed. For
example, [Raj11] utilizes an entropy criterion, while [Kra+06; Kra+11] define the mutual
information retained for a subset of sensors. [VAA04; DB12] employ a metric known as
distortion, taking encoding into the statistical model.
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3.2 Similarity Metrics Based on Observation Histories

By utilizing historical transmission data, it is possible to quantify the proximity of two
sensors through the application of similarity metrics that are based on the sensors’ obser-
vations.

An observation comprises a value θt captured at time t, such that an observation
history is defined as θ = {θt, t ∈ T}, where T represents the set of times at which
observations are recorded.

Sliding Window Definition

It is possible to compute the similarities between sensors at the firsts steps of the moni-
toring process, assuming that the computed relationships between sensors remain static
throughout the monitoring duration. However, changes in the environment or behavior of
individual sensors can impact the relationships between sensors. In order to account for
these changes, continuous computation of similarities should be performed to dynamically
update the observation collection scheme accordingly.

To determine the time frame in which the recorded observations are retained, a sliding
window approach with a duration of ∆t is generally employed [Tao+23; Chu95; Vaf+14;
CN16; KGG11]. Specifically, considering the current time t̃, only the observations made
after t̃− ∆t are considered in the analysis: {θt, t̃− ∆t ≤ t ≤ t̃}.

In general, selecting a larger value of ∆t is advantageous in terms of improving similar-
ity robustness. On the other hand, giving too much weight to outdated data can reduce
responsiveness. If sensors with similar behavior begin to return vastly different readings,
a smaller value of ∆t is preferred to accurately characterize this deviation. Thus, a ju-
dicious choice of ∆t must be made to balance robustness and responsiveness to changing
environments, as can be discussed in [Che+12; KPK97; Chu+15] in related topics.

Specificities of the Observation Histories

Due to the continuous computation of similarity, the observation collection scheme adjusts
the transmission period of sensors over time. This, coupled with possible packet losses,
results in an irregularly sampled observation history between sensors.

Moreover, achieving a scenario where all sensors activate only on defined time stamps
is in general not feasible. Sensors are susceptible to clock drift, which slightly alters their
real activation periods, rendering the synchronization of a sensor fleet complex.
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Additionally, the use of low-cost sensors introduces noise during the sensing process,
which can make similarity calculation unreliable [Kar+16].

In summary, sensors transmit messages in an irregular manner, synchronization of
transmissions on the same time slots cannot be guaranteed, and sensor observations are
affected by noise. A general scheme of an observation history is presented in Fig. 3.3.

Figure 3.3: Generic representation of an observation history. The observation history θ
is represented as orange diamonds. The horizontal axis represents time, and the vertical
lines indicate the borders for the sliding window until the last observation.

Summary of History Data Driven Metrics

Different metrics between observation histories are proposed in the literature. In particu-
lar, we have classified them according to the way the observation histories are represented:

• Section 3.2.1 - Representing the observation history as a set of values:
erasing the temporal dimension of the observations to represent the observation
history only through the observation’s values, in order to use statistical sample
metrics [PT00].

• Section 3.2.2 - Representing the observation history as an ordered vector:
assuming that the ith observation’s time of all observation history are taken at the
same time, to use vector-based metrics [AC17; NWN15].

We do not specify whether the similarity metric is taken between one sensor and
another, or from one sensor to a set of sensors. The similarity metrics are based on
observation histories, which can be derived from one or multiple sensors.

3.2.1 Representing the Observation History as a Set of Values

In this part, the similarity between observation histories θi and θj is made through the
comparison of their two sets of values. Through this modeling approach, observation
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histories do not require any assumptions about the observation’s times synchronization
or their quantity, a significant advantage when observations are taken at different times
and samples.

[GGJ09] proposes using the Bhattacharyya distance under the assumption of Gaus-
sian distributions to evaluate the similarity between two different movements measured
by a set of sensors placed on a human body. Mathematically, considering µθi

and
Σθi

as the mean vector and covariance matrix associated with the set of values θi, re-
spectively, the Bhattacharyya distance D is defined as D = 2(1 − e−α(θi,θj)), where
α(θi, θj) = 1

8(µθi
−µθj

)′(Σθi
+Σθj

2 )−1(µθi
−µθj

)+ 1
2 ln

(
|Σθi

|+|Σθj
|√

|Σθi
||Σθj

|

)
. [APM09] proposes using

the Jaccard index, which does not have any a priori assumptions about the distribution
of values but needs values in a small range of values: the similarity metric counts the
proportion of exactly equal values returned by both observation histories. The Jaccard
index can be mathematically expressed as S = |θi∩θj |

|θi∪θj | . Techniques for rounding observa-
tion values can be employed to increase the proportion of similar values and thus improve
the effectiveness of the Jaccard index as a similarity metric.

These metrics are particularly valuable as they do not rely on observations taken at
the same time. However, it is essential to note that they do not consider the spatial
dimension of each observation.

3.2.2 Representing the Observation History as an Ordered Vector

One can leverage similarity metrics based on observations by interpreting them as vectors
of observation values for the similarity metric. The observation histories are taken at the
same time instances T , so that θi = {θi,t, t ∈ T} and θj = {θj,t, t ∈ T}. Moreover, in
general, these time instances are taken at regular intervals: T = {t0 + kτ, 1 ≤ k ≤ n}.

This type of metric is widely studied for anomaly detection [AC17; Cha09], clustering
[NWN15], and classification [Zhe+20]. We list here the existing metrics related to wireless
sensor observations.

Magnitude and Trend-based Dissimilarity Metric for Observation Histories

The authors of [CKJ05; LWP07; Liu+13b; TM06] define that two sensors are m-dissimilar
if there is at least one time when the values of the two sensors diverge by at least m:
∃t, |θi,t − θj,t| > m. Moreover, it is suggested to combine the magnitude based metric
with a trend distance, which allows for creating sensor pairs judged as similar with high
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confidence. This trend metric counts the number of times that the two considered sensors
have the same trends (growth or decline). Mathematically, let δθi,t be the rate of value
increase made at time t by θi (respectively δθj,t for θj), such that S = ∑

t 1(δθi,t×δθj,t > 0),
with 1(.) the indicator function, that is equal to 1 if the condition is realized, 0 otherwise.

[Alm+16] suggests defining this dissimilarity as an average, so as not to misjudge
sensors based on a single measurement: S =

∑
t

|θi,t−θj,t|
n

where n is the total number of
observations.

Correlation and Regression between Observation Histories

Let θ⃗i denote the associated vector (with values sorted by increasing t) of θi.
[APM09] proposes to evaluate similarity by searching for correlation. the cosine sim-

ilarity is used, which evaluates the collinearity between vectors θ⃗i and θ⃗j: S = θ⃗i·θ⃗j

|θ⃗i||θ⃗j| .
[APM09; Liu+13b; Yoo20] propose using the Pearson correlation coefficient, which is
based on covariance: S =

∣∣∣∣ cov(θ⃗i,θ⃗j)
σθi

σθj

∣∣∣∣ where σθi
is the standard deviation of θi. [KTP06]

proposes to build a piecewise constant monotonic function known as an isotonic regression
function to estimate the value of one sensor from the value of another.

These methods allow for highlighting hidden correlations between the sensors.

3.3 Discussion on the Choice of the Similarity Metric

Criteria for Comparing Similarity Metrics

For the analysis of the similarity measurement component, we have chosen specific points
of interest for MIoT, as presented in Chapter 2 Section 5, which we specify within the
context of this study on similarity metrics.

We examine whether the metric can identify particular similarities within a complex
environment. Furthermore, in consideration of clock desynchronization issues, and the
fact that the sensors are likely to have different activation periods, we take into account
in the similarity computation that assume that observations are not temporally
synchronized. Moreover, we evaluate how well the metrics handle the fact that sensors
may have poor sensing hardware, which lead to noisy observations and the possibility
of sensor corruption: transmission of aberrant observations.

In Table 3.2, we present a comparison of existing similarity metrics based on these
criteria.
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Table 3.2: Comparison of the similarity metric under MIoT criteria

Family/Proposal References

Handling complex environment

Assuming not synchronized observations

Handling noisy observations

Identifying corrupted sensors

Geography based
Inter-sensor distance [Bah+14] #  # #

Based on sensing range
[SSV12; Mos+17; Mam14;
KS17; CW06; TG03;
AC16]

#  # #

Based on statistical modeling [Kra+06; VAA04; DB12;
Raj11] #  # #

History data driven
Bhattacharyya distance [GGJ09] #    
Jaccard index [APM09] #  G  

Max difference and trend [Alm+16; CKJ05;
LWP07; Liu+13b; TM06]  # G  

Mean difference, correlation, regression [Alm+16; APM09;
Liu+13b; KTP06; Yoo20]  #   

# Not covered: the metric does not satisfy the criterion.
G Partially covered: The metric addresses the criterion only partially.
 Covered: The metric fully addresses the criterion.
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We have presented two main families of similarity metrics: measures based on the
geographical distance between sensors and those relying on the returned observations.
Now, we will discuss the advantages and drawbacks of each proposal.

Pros and Cons of Geography Based Similarity

The geography based similarities rely on distance evaluation methods, which can be highly
accurate when sufficient resources are available (such as GPS), but are less accurate when
relying on network information. Network metrics are known to be particularly sensitive to
obstacles and are less effective in urban or vegetated environments [MF09]. Moreover, at
least three gateways are required to perform position estimation, resulting in additional
hardware costs.

In all models (inter-sensor distance, sensing range, statistical), it is assumed that the
coverage range of a sensor is known and represented as a circular shape around the sensor.
However, this simplified representation is suitable for studying simple and well-understood
environments. In reality, the coverage capacity of a sensor is complex to evaluate and is
not typically circular in shape. Therefore, such a measurement approach does not fully
capture the complexity of real-world environments.

Another significant issue with this metric is that, since it does not rely on the observa-
tions of the sensors, it cannot consider measurement errors in the similarity computation.
Moreover, it is unable to identify and differentiate a corrupted sensor that might send
aberrant observations from the rest of the sensors.

One considerable advantage of this family of methods is that if the sensors do not
move, the metric does not change over time, allowing for great reliability in developing
an observation collection scheme.

Discussion on the Use of History-Driven Similarity

The correlation between sensor observations and geographic distance has been challenged
in studies such as [KTP06; APM09], leading to a preference for data-driven similarity
metrics for better reflecting the similarities between sensors. This type of metric allows
for the identification of similarities in more complex environments where the similarity is
not solely determined by geographic distance. For instance, grouping sensors based on
the rooms they belong to can be achieved using data-driven similarity metrics, which is
not possible with geography-based metrics, as developed in [LWP07].
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We presented different metrics based on specific representations of an observation
history. According to Table 3.2, no existing similarity metric can answer to the current
challenges.

At first glance, methods based on value sets (Bhattacharyya and Jaccard) appear to
fulfill the majority of the criteria we have defined. However, these metrics do not take into
account the temporal aspect of observations, which limits their ability to effectively mea-
sure similarity in a real complex environment. For the Jaccard index, it is a relevant metric
when the set of possible observation’s values is limited, such that similar sensor transmit
similar observation values. For the Bhattacharyya distance, it is assumed a Gaussian
distribution of values across the sensor data, which is a relatively strong assumption.

Ordered vector-based methods share an equivalent validation of criteria with metrics
based on value sets; these approaches include both value and time dimensions in the
computation of the metric. However, these methods do not account for the heterogeneity
of time stamps. Proposed solutions in the literature either assume an initialization phase
where all sensors transmit observations simultaneously at a high rate, or rely on the
unrealistic assumption that sensors transmit on the same time slots.

Open Issues

Relying on similarity measures based on observation histories is essential to explore finer
similarities, not solely dependent on geography. In order to utilize a continuous similarity
metric based on a sliding window, it is crucial to develop a similarity metric that can be
applied to observation histories with heterogeneous sampling, taking into account both
the time and value dimensions. However, we have not come across any such similarity
metrics in the existing literature.

In Chapter 6, we introduce an approach that leverages interpolation techniques to
handle irregular observations, subsequently defining a metric based on the average dif-
ference between interpolations. Through simulation performance evaluation, we show
that metrics based on maximal differences are sensitive to noisy observations, advocating
the construction of metrics founded on average differences (or correlation measures) as a
preferable alternative.

Moving forward with the survey, we keep in mind that a metric based on observations
must be considered. Such a metric possesses certain peculiarities: • the similarity mea-
surement varies over time, • the similarity between two sensors may not be reliable if the
observations are taken at different time instances and if the observations are noisy. These



4. COVERING SUBSET ALGORITHM 39

aspects will guide our exploration of further solutions in the subsequent sections.

4 Covering Subset Algorithm

In this section, we explore methods that leverage the similarity metric to identify subsets
of sensors that provide coverage.

Different Definitions of the Monitoring Objective

Across the surveyed papers, the definition of a covering subset varies based on the
specific monitoring objectives.

In the context of the coverage problem, the primary aim is to guarantee adequate
geographical coverage. For instance, in sensing range modeling scenarios (the predominant
modeling method), the intention is to cover a maximal portion of the environment through
the sensors in the covering set and their corresponding sensing areas. There is also the
objective, particularly in statistical sensing models, to select a defined number of sensors
in a manner that maximizes their diversity (with the term ’diversity’ carrying distinct
interpretations based on the employed metric).

On the other hand, for data-driven sensor observations scheduling, a covering subset
must enable the recovery of the complete set of sensor observations with minimal mea-
surement error. Likewise, in the context of one sensor placement paper under study, the
objective is to select a subset from a large deployment of sensors that can evaluate the
measurements of all sensors with minimal approximation error.

In less related domains, the primary objective is to create groups of sensors with
strong similarity. In the compression field, for instance, clusters of similar sensors are
formed, where only a representative per cluster transmits the compressed information to
the terminal. Similarly, in the fault detection field, the goal is to generate clusters of
similar sensors, so that if a sensor deviates from its designated cluster, an alert is raised.
Here, the concept of covering subsets slightly shifts, but one can consider that having a
representative sensor from each cluster contributes to forming a covering subset.

Thresholded Similarity Model

For methods focusing on data-driven sensor observations scheduling for instance, a thresh-
old is applied to the similarity metric. This means that when the similarity between two
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sensors surpasses a certain threshold, a link is established between them, and one sensor
effectively ’covers’ the other. Consequently, if a sensor is selected to be part of the cover-
ing subset, its corresponding similar sensor may not need to be actively involved, as it is
already accounted for in terms of coverage.

To represent this, a graph structure can be employed, where each sensor corresponds
to a vertex in the graph. Links between vertices are established if the similarity between
the corresponding sensors surpasses a given threshold. Fig. 3.4 depicts a sensor similarity
graph based on the similarity illustration shown in Fig. 3.1.

Figure 3.4: Sensors similarity graph based on the illustration shown in Fig. 3.1. A link
is established between two sensors if the similarity metric exceeds the high similarity
threshold (illustrated in green in the previous figure).

Covering Subset Algorithm Families

In this section, we delve into the methods proposed to address the covering subset problem.
Specifically, we explore the various ways this problem is approached and categorize them
into three families:

The literature offers a range of solutions that can be grouped into three main families:

• Section 4.1 - Search for one covering sensor subset: this approach involves
identifying one covering subset of sensors.

• Section 4.2 - Partitioning into Covering Subsets: in this approach, the objective
is to partition the sensor network into disjoint subsets, each of which is covering.

• Section 4.3 - Clustering Similar Sensors: this approach focuses on forming clus-
ters of similar sensors, where one sensor is covering for the entire group of sensors
within its cluster. By selecting one sensor per cluster, a covering set is established.
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We provide a comprehensive presentation of these methods, including their application
in the literature, as well as a discussion of any remaining open issues.

4.1 Search for a Covering Sensor Subset for Coverage Problem

One straightforward way to address the problem of reducing the number of messages is
to identify one covering subset of sensors. The goal is to select the minimum number of
sensors such that the set is covering.

This type of solution is proposed in the coverage problem. In the papers examined, sen-
sors are selected based on their dissimilarity with other sensors. As an example, in [AC16],
the objective for achieving a covering subset is to encompass 95% of the environment using
sensors and their respective sensing areas.

In some papers such as [CW06; TG03; AC16; Bah+14; Mos+17], dissimilarity is
based on the sensing range, and sensors are selected until the minimum required coverage
is achieved. For instance, [CW06; AC16; Bah+14; Mam14] propose centralized heuristics
to determine the covering subset. In [TG03], each node determines its membership in the
covering subset with active neighbors; this decision is made at regular time intervals to
avoid blind spots. In [Mos+17], a learning-based method is proposed where nodes are
initially activated randomly, and sensors are added or removed based on evaluating the
quality of the selected sensor set in terms of coverage proportion and the number of nodes
selected.

On the other hand, in papers such as [DB12; Raj11], dissimilarity is based on statistical
measures related to geography. In these instances, the proposed centralized methods are
designed to maximize the diversity of the information transmitted to the terminal.

4.2 Partitioning into Covering Subsets

In this part, we discuss the methods that find the maximum number of disjoint subsets
of sensors that are covering.

4.2.1 Partitioning the Sensor Field for the Coverage Problem

From the literature, [SP01] proposes a partitioning approach such that each subset of
sensors with their respective sensing area covers the environment. A first subset is com-
pleted by adding sensors one by one until it becomes covering (from a spatial point of
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view). When a subset is completed, a new one is created (if possible) using the remaining
sensors. The goal is to maximize the number of subsets that each is covering.

In another approach proposed in [Kra+11], the objective is to partition sensors into
subsets of a fixed maximum size. For each subset, the goal is to maximize the variance
between sensors.

4.2.2 Graph-based Partitioning for Sensor Observations Scheduling

If we rely on a threshold-based measure to define pairs of similar sensors, we can establish
a graph-based structure. Known graph-based methods can be applied to address the
partitionning problem.

In graph theory, a subset of sensors is called dominating if, for all existing sensors, it
is either a member of the set or has a common edge with it. This definition aligns with
our concept of a covering subset in the context of graphs. A set of subsets are denoted
as disjoint if each node belongs to at most one subset. The problem of finding disjoint
dominating sets (DDS) in a graph is then to partition the sensor set into a maximum
number of disjoint covering subsets.

As an illustration, in Fig. 3.5 are displayed 3 subsets that have been generated based
on the graph model shown in Fig. 3.4.

Figure 3.5: Disjoint Dominating Set generated from the sensor similarity graph in Fig. 3.4.
Three disjoint subsets of sensors are displayed, and each subset is dominant.

The DDS Problem is extensively discussed in [HLR09]. This problem has been proven
to be NP-complete, which implies that the resolution time increases exponentially with
the size of the problem, i.e., the number of sensors. Exact resolution is achieved through
constraint programming, which is defined by a set of constraints and the maximization
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function, which is in this case the number of subsets. In practice, the methods proposed
in the literature provide heuristic methods that find non-optimal solutions in polynomial
computation time [Car+02; NH07]. In a solution proposed in [KTP06], the authors
apply a DDS resolution to a directed graph, utilizing integer linear programming with the
CPLEX package to determine the covering subsets.

4.3 Clustering Similar Sensors

Figure 3.6: Similar sensor Clusters based on the illustration shown in Fig. 3.1. The
method depicted in the figure groups sensors together based on a high level of similarity,
also relaxing by allowing the grouping of sensors with medium similarity.

Clustering is a data mining technique which groups unlabeled data based on their
similarities or differences1. Various clustering techniques are available, including hierar-
chical methods, partition-based methods, density-based methods, and grid-based methods
[Bou07; MMR05].

In the studied case, a clustering algorithm construct groups of sensors that are consid-
ered similar. Thus, each sensor becomes covering with respect to its cluster. Therefore,
selecting one sensor per cluster results in a covering set. An example of clustering result
is shown in Fig. 3.6, where the clusters are created based on the similarities partially
illustrated in Fig. 3.1 and the links represented in Fig. 3.4. In this example, the clustering
is looking for globally similar groups of sensors and does not require full links within the
clusters.

1https://www.ibm.com/topics/unsupervised-learning

https://www.ibm.com/topics/unsupervised-learning
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4.3.1 Graph-based Clustering

In the literature, proposals have been made to address this problem by utilizing the con-
cept of similar sensors based on a threshold similarity measure, transforming the problem
into a graph-based formulation.

For instance, in papers related to data-driven sensor observations scheduling [CKJ05;
LWP07; Liu+13a] or the compression field [TM06; Alm+16], a graph is built based on
a data-driven similarity measure using the maximum magnitude and trend. The objec-
tive is to perform clique partitioning: dividing the set of sensors into groups in such a
way that within each group, every pair of sensors are connected; this is a known NP-
complete problem. To solve this, heuristic approaches have been developed, like a greedy
approach in [LWP07] that builds a cluster by iteratively aggregating the available fully
linked sensors, starting by the largest degree nodes.

4.3.2 Clustering for Fault Detection

Clustering methods for fault detection in sensor networks are also found in the literature.
The goal of these methods is to group sensors that make similar observations to detect
when a sensor reports observations that deviate from the norm of the cluster, as presented
in the survey [PSP22]. For instance, in [Yoo20], a Gaussian mixture model is used to
cluster sensors based on observation driven similarity between pairs of sensors. Each
cluster defines a normal behavior framework for all the sensors it contains: a fault is
detected if a sensor’s observations fall outside the bounds of its cluster. In this method,
groups of similar sensors are created, but this is not interpreted in terms of covering sets.

4.3.3 Clustering for Sensor Placement

By deploying a large number of sensors for a testing phase, it becomes possible to apply
clustering methods to identify key locations for the placement of a reduced number of
sensors. Such an approach is proposed in [Yog+18], where a clustering method is used
to group sensors based on their data-driven characteristics. The center of each cluster
is then selected as a reference point, allowing the replacement of the entire cluster with
a single sensor positioned near its center. The clustering process is conducted in two
steps. Initially, the k-means clustering algorithm is employed with a data-driven ap-
proach. Subsequently, the density-based clustering algorithm is utilized, incorporating
a geography-based metric to distinguish clusters that exhibit similarity in data but are
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physically distant from each other. This methodology aids in optimizing the sensor de-
ployment and reducing the number of sensors required while preserving critical monitoring
locations. Here, the selected sensors can be seen as a chosen covering subset.

4.4 Discussion on the Choice of the Covering Subset Algorithm

Chosen Criteria for Covering Subset Algorithms Comparison

We now proceed to compare the various solutions aimed at looking for covering sub-
set(s). In Table 3.3, we evaluate these solutions based on some points of interest outlined
in Chapter 2 Section 5.

We evaluate whether the solution is capable of utilizing the entirety of the sen-
sors. As we will delve into in the subsequent section (Section 5.3), relying on only a
subset of sensors to fulfill the monitoring requirements is not ideal. Specifically, receiv-
ing observations solely from dissimilar sensors makes the detection of corrupted sensors
impossible. Additionally, we will see that in practical implementation, utilizing only a
portion of sensors introduces additional costs at the sensor level.

We assess their adaptability to different scenarios, taking into account variations in the
sensor field, including the management of adding or removing sensors. In terms of
handling changes in the environment and the variability of measured similarity links, we
focus on scenarios involving the adaptation to changes in similarity links: cutting
a similarity link, adding a link between sensors or groups of sensors. These two criteria
are evaluated based on the extent of modification required in the solution (in terms of
modification of the covering subsets) in response to these perturbations. It’s important
to note that substantial alterations to the covering subsets inevitably entail significant
management costs, i.e., need for instructions from the terminal to the sensors.

Lastly, we will investigate whether the methods address the issue of unreliability
in similarity measurements between sensors: to what extent the measurement errors
of sensors negatively affect the effectiveness of covering subset search.

Here, we discuss proposed methods as resolution models. We do not account for
the constraints outlined in the studied papers. As an example, for methods relying on
geography-based similarity, we investigate the robustness of the covering algorithm to
variations in the similarity metric over time. This approach is realistic since sensors could
be in motion, even though such scenarios are not addressed in the analyzed papers.
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Table 3.3: Comparison of the covering subset algorithms under MIoT criteria

Family/Proposal References

Utilizing the entierety of the sensors

M
anaging input and output of sensors

Adapting to changes in similarities

Addressing unreliable similarities

Search for one covering sensor subset

Heuristic [CW06; AC16; DB12; Raj11;
Bah+14; Mam14] #  G ∅

Set-by-step [TG03; Mos+17] #  G ∅
Partitioning into covering subsets
Heuristic [SP01; Kra+11]  G G ∅
DDS [KTP06]  G G G
Clustering similar sensors

Clique partitioning [CKJ05; LWP07; Liu+13a;
TM06; Alm+16]    G

Traditional clustering [Yoo20; Yog+18]     

∅ Not applicable: it is not possible to evaluate the criteria for the proposal.
# Not covered: the proposal does not satisfy the criteria.
G Partially covered: The proposal addresses the criterion only partially.
 Covered: the proposal meets the criteria.
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Critique of Solutions Based on One Covering Subset

Solutions based on a single covering subset generally exhibit good adaptability to the
uncertainties of MIoT. In most cases, minimal modifications to the covering subset are
required when a link is added or removed, or when a sensor is added or withdrawn.
However, a major drawback of this approach is that it relies on only a portion of the
available sensor pool. As elucidated in the presentation of the criteria, this choice has
limitations, as it results in additional sensor consumption and prevents the identification
of a corrupted sensor once it is in use.

Critique of Solutions Based on Partitionning Covering Subsets

Solutions relying on multiple covering subsets encounter issues related to their inflexibility.
When changes occur in similarity links, such as the addition or removal of a link, it
typically necessitates the search for entirely new covering subsets. Similarly, when a
sensor is added or removed, a completely new configuration of the covering subsets needs
to be devised, and modifying the existing solution to accommodate these changes is not
straightforward.

In cases of perturbations within the MIoT, these solutions must be recreated from
scratch. Generally, the new covering subsets are quite different, which implies significant
modifications to the subsets.

Discussion on the Development of the Clustering Method

In contrast to methods based on finding one or multiple covering subsets, the methods
based on the search for similar sensor groups are inherently more flexible.

By assuming an existing structure of similar clusters, when a new sensor is added,
the clustering method will choose to include the sensor in one of the existing groups.
Similarly, if a sensor becomes inactive, it is simply removed from its cluster.

When there are variations in similarities, clustering methods are likely to require
few modifications to their structures. For instance, in the case of clique partitioning,
the heuristic initially groups together sensors with the highest similarity rates. Adding
or removing a link subsequently results in only slight alterations to the order of sensor
joining. More generally, it is conceivable that the emergence of new similarities lead to
the merging of two clusters; if similarities disappear, the connected cluster may separate
into multiple clusters.
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An additional significant advantage, not accounted for in the criteria-based compar-
ison in Table 3.3, is the ability to adapt to the variability in the number of similarities.
Clustering methods can effectively isolate poorly placed sensors in individual clusters, cre-
ate smaller groups for localized phenomena, and form larger clusters for more prevalent
phenomena. This level of flexibility is not possible in partitioning-based methods.

Open Issues

Based on this review, we can conclude clustering methods appear to be a preferable choice,
as they demonstrate superior flexibility, adaptability to variations in similarities, and the
capability to handle the variability in the number of similar sensors.

In Chapter 6, we introduce a hierarchical clustering approach designed to group sensors
based on their overall similarities. We compare our conventional clustering method with
a threshold-based clustering approach, which, as demonstrated in this section, serves as
the primary reference. Through our simulations, we demonstrate that methods that rely
on setting a threshold on metrics computed between pairs of sensors, especially when
dealing with noisy observations and varying time instances, tend to underperform due to
their inflexibility. Our findings suggest that embracing conventional clustering methods
is more effective in managing such uncertainties.

5 Activation Allocation Method

In this section, we study what proposals are made in the literature to define explicitly the
output of the observation collection scheme. An activation allocation method determines
the modes of the sensors over time: sleep mode, where the sensor is inactive in monitoring,
and active mode, where the sensor observes the environment and sends observations to
the terminal.

Based on our analysis of the literature, we have identified two main families of activa-
tion allocation methods, which we will elaborate on in the following subsections:

• Section 5.1 - One covering set in active mode: Only one covering set is utilized
at a time, while the other sensors remain in deep sleep mode.

• Section 5.2 - Round-robin: Sensors are activated in a manner that forms a round-
robin sequence among the different covering subsets.
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The choice of the activation allocation method depends on the output of the covering
subset algorithm, which can have three different representations. If a covering subset is
selected, then it is not feasible to use methods based on round-robin, and it is proposed
in the literature to use this covering set as the active one, the others being in deep sleep.
On the other hand, when the decision is to use a partitioning into covering subsets or
clustering of similar sensors, the literature consistently opts for an activation allocation
method based on round-robin, although it is technically feasible to select one covering
subset as the active one.

We will examine the solutions proposed in the literature, and we will discuss the most
relevant methods for our MIoT scenario.

5.1 One Covering Set in Active Mode

Figure 3.7: Activation allocation method where always the same active sensor subset is
chosen. The figure is based on the graph-based DDS resolution shown in Fig. 3.5, with
the active subset corresponding to one of the covering sets. The sensors in the chosen
covering subset activate at regular intervals, while all other subsets of sensors remain in
deep sleep mode.

One approach to defining the activation allocation method is to select a covering subset
of sensors that will be activated while the remaining sensors stay in deep sleep mode. The
covering subset can be modified over time. For example, as illustrated in Fig. 3.7, the
Disjoint Dominating Set (DDS) resolution from Fig. 3.5 can be used for this purpose.

5.1.1 Same Active Subset Until a Sensor Fails

In the conventional approach, once a covering subset is selected, [Raj11; AC16; Bah+14;
DB12; Mos+17] propose to consistently use this subset of sensors in active mode until a
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sensor failure occurs.

Role of Active Sensors

In [Raj11; Bah+14; DB12], the activation mechanism of the sensors is not explicitly spec-
ified, implying that the activated sensors remain constant over time. In [AC16], two types
of sensors are considered: trigger-based sensors that transmit messages upon detecting
changes, and periodic sensors that activate at regular intervals (without specifying the
period).

In [Mos+17], a two-phase process is introduced. During the initial phase, the ac-
tive subset of sensors is updated at each time step. Upon completing this phase, the
final solution is derived, and the set of active sensors remains unchanged throughout the
operation.

Take Over when a Sensor Fails

In the event of a sensor failure, other sensors need to be in active mode to assume the
responsibilities. Two approaches are proposed for transferring responsibility when a sensor
fails. The first method involves maintaining the inactive sensor in a listening mode,
awaiting a handover directive [AC16; Raj11]. While ensuring swift handover, this solution
demands substantial energy due to continuous radio activation.

The second method periodically switches sleeping sensors to listening mode, gradually
shortening the listening period using a Weibull distribution, as outlined in [Bah+14].
As time advances, the likelihood of a sleeping sensor taking over from a defunct one
increases, leading to a reduction in its listening mode duration. This second approach
is more realistic in terms of energy consumption, yet it might introduce latency in the
handover process as the sensor needs to transition to the listening mode before becoming
active.

5.1.2 Regular Updates of the Active Sensor Set

Another approach is to regularly change the active subset of sensors. In [TG03], at each
round, a sensor decides whether to activate based on its similarities with its neighbors.
The activated sensors stay active and transmit every 0.5 seconds during the entire round
duration of 10 seconds.
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In [Mam14], at each round, the active subset is chosen based on various criteria such
as the number of neighbors, shared sensing region, residual energy, and the number of
consecutive times the node has been in active mode. The selected subset remains active
for the entire duration of a round. The objective here is to avoid excessive use of a
particular sensor and to balance the energy consumption among all sensors.

5.2 Round-Robin

Another activation allocation method is based on the slotted timeline and round-robin
methods applied to subsets of sensors. In this model, sensors are activated in a way that,
in turns, covering subsets becomes active in a round-robin fashion.

5.2.1 Round-robin between Disjoint Covering Subsets

After using a method based on partitioning into disjoint covering subsets, several studies,
such as [KTP06; Kra+11; SP01], propose applying round-robin between each covering
subset. In this approach, during each round, one covering subset becomes active while
the rest of the sensors remain in deep sleep mode. In [KTP06] and [Kra+11], the covering
subsets are activated in a round-robin fashion every 30 seconds, while [SP01] does not
specify the duration of a round.

5.2.2 Round-robin within Each Cluster of Similar Sensors

Starting with clusters of similar sensors, [CKJ05] proposes load balancing within each
cluster. The sensors belonging to a cluster are activated in a round-robin fashion to
receive messages at regular intervals, for example, every 5 minutes. A revised version
of [CKJ05] is proposed in [LWP07]. In this new approach, sensors no longer have fixed
transmission periods; instead, they are assigned activation probabilities for each time
slot. The solution introduces a factor to increase the likelihood of multiple sensors in the
same cluster transmitting simultaneously. This modification aims to improve packet loss
management and enables the evaluation of the ongoing relevance of similarities.

Another probabilistic activation approach is proposed in [Liu+13a], where a trans-
mission probability is assigned to each node in a cluster, with all sensors transmitting at
similar time stamps. The activation probability is inversely proportional to the cluster
size and linearly dependent on the distance from the terminal. As a result, this method
achieves a balanced distribution of transmissions among the sensors within a cluster.
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Moreover, sensors located closer to the terminal are activated more frequently, as they
play a crucial role in relaying observations within the mesh network.

Figure 3.8: Three sensors transmitting in a round-robin manner: each sensor’s observation
is represented by colored squares. The result shows the set of observations made by the
three sensors: receptions of observations at regular intervals, evenly distributed among
the three sensors.

Fig. 3.8 illustrates the round-robin method applied to a set of 3 sensors belonging
to the same cluster, ensuring the reception of messages from the cluster at regular time
intervals.

5.2.3 Translation of a Round-Robin Method into Activation Period Updates

In the papers we have presented, only theoretical round-robin principles have been ex-
posed. We propose a translation of a round-robin method into the form of activation
period updates.

The sensors operating in a round-robin fashion share a common activation period,
which is a multiple of the number of rounds within the round-robin cycle. This period is
fixed, and in case of adding or removing rounds, activation periods need to be redefined,
during the active mode of the concerned sensors.

Moreover, when a sensor enters the environment, it needs to be included in the schedul-
ing time steps. According to our communication hypothesis, the new sensor must receive
two consecutive orders to adjust its activation period and be included in the scheduling
time steps.
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5.3 Discussion on the Choice of the Activation Allocation Method

Chosen Criteria for Activation Allocation Method Comparison

We have presented activation allocation families that we propose to compare in Table 3.4.
We rely on the points of interest outlined in Chapter 2 Section 5 to highlight the different
aspects that an activation allocation method should fulfill. We assess whether the solution
minimizes the control of sensors, which pertains to the reduction of listening times for
inactive sensors, directly impacting their battery longevity. Then, we evaluate whether the
distribution of activations allows for the identification of corrupt sensors. Finally,
we assess the flexibility of the solution concerning clock drift.

Table 3.4: Comparison of the activation allocation methods under MIoT criteria

Method References

M
inimizing the control of sensors

Identifying corrupt sensors

Adapting to clock drift

One covering set in active mode
Same active set [Raj11; AC16; Bah+14; DB12] # #  
Updates of the active set [TG03; Mam14] # G #
Round-robin
Between disjoint covering subsets [KTP06; Kra+11; SP01]   #
Within each group of similar sensors [CKJ05; Liu+13a; LWP07]   #

# Not covered: the proposal does not satisfy the criteria.
G Partially covered: The proposal addresses the criterion only partially.
 Covered: the proposal meets the criteria.

Critique of the Activation of One Covering Subset

We have identified significant limitations to the activation of a covering subset of sensors.
The first lies in the power consumption of the sensors that are not actively used in moni-
toring. In order to take over, these sensors must periodically enter a listening mode. This
consumption can become very significant when a large majority of deployed sensors are
not used in the active covering set, but still need to consume energy during the listening
mode.
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The other limitation is related to the lack of information diversity. Solutions based
on one covering subset heavily rely on the active sensors. Consequently, in the event of
an issue with an active sensor (e.g., a corrupted sensor), it is challenging to identify the
problematic sensor since there are no other active similar sensors.

Furthermore, in solutions that involve periodic handover (when the active subset is
updated regularly), all sensors must be synchronized to enter listening mode at the same
time during the change of the active sensor subset. This kind of choice is complex to
implement, especially for low-cost sensors considered, sensitive to clock drift.

Discussion on the Round-Robin Model

The round-robin method addresses most of the limitations of solutions based on using only
one active covering subset. In this approach, all sensors are utilized in the monitoring
process. Since similar sensors take turns in activating, it becomes possible to identify if
one of them deviates from normal behavior. Additionally, this type of solution does not
lead to overconsumption of sensors as long as there are no variations in similarities or in
the number of sensors.

Nonetheless, these methods rely on activation synchronization, a challenge discussed
in the preceding section, which is difficult to achieve in practical scenarios. Sensors are
susceptible to clock drift, leading to slight variations in their actual activation periods.
Consequently, frequent readjustments are necessary to maintain synchronization.

Another aspect worth mentioning, although not indicated in the criteria of Table 3.4, is
that to include a new sensor, it needs to synchronize with the existing time steps. For this
to happen, the new sensor must receive two consecutive orders. This can be particularly
problematic if transmissions are not guaranteed, and receiving two consecutive orders
from the terminal might be hard to do.

Open Issues

We have presented two main families of activation allocation methods. However, none
of the proposed solutions in the literature fully satisfies the criteria we have defined for
an MIoT deployment. Among the available options, the most feasible approach seems to
be the round-robin-based methods, which involve activating all sensors in the network.
Nevertheless, the existing solutions require strict synchronization among sensors to en-
sure that estimation updates occur at strictly regular intervals. This constraint poses a
significant limitation to the effectiveness of the solution.
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In Chapter 4, we provide a formal definition of an activation allocation method as a
function that redefines the activation period of a newly activated sensor, and we propose
a technique that activates a predefined maximum number of sensors using a round-robin
approach. The approach outlined in Chapter 5 relaxes the strict message reception re-
quirement and enables a more equitable distribution of the workload among all sensors
within similar clusters, achieving a significantly reduced number of period changes.

6 Conclusion

In this survey, we have explored methods for reducing sensor transmissions in a dense
sensor deployment while considering the constraints of a MIoT deployment. To achieve a
reduction in observation transmissions, an appropriate approach is to leverage the prin-
ciple of similarity. This involves three core components: the similarity metric, the
covering subset algorithm, and the activation allocation method. These compo-
nents have been thoroughly studied and characterized, taking into account factors such
as a heterogeneous environment, low-cost sensors, and network constraints.

Regarding the first component, discussed in Section 3, we have concluded that estab-
lishing similarity based on sensor observations is highly beneficial for effectively managing
complex environments. However, current solutions lack the ability to incorporate similar-
ity based on observations taken at different time instances.

Moving on to the second component, addressed in Section 4, we have highlighted
the advantages of using clustering approaches for similar sensors, as they enable better
adaptation to system dynamics.

Finally, in the third component, presented in Section 5, we have found that round-
robin methods are the most viable solution for reducing sensor power consumption and
identifying corrupted sensors. Presently, round-robin methods rely on a strict scheduling
approach, limiting its real application in practice.

For the subsequent chapters constituting the contribution of this manuscript, we make
choices grounded in the conclusions drawn from this survey. We outline the overarching
scheme as follows: we employ a similarity metric based on sensor observations, acknowl-
edging its associated uncertainties and potential temporal fluctuations. With this simi-
larity metric as a foundation, we partition the sensor set into clusters of similar sensors.
Given the dynamic nature of these groups, owing to sensors entering and exiting clus-
ters and evolving similarities, we propose a method for distributing the observation load
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within each cluster.
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Chapter 4

SELECTING A SUBSET OF SENSORS IN

ROUND-ROBIN

In the preceding section, we introduced the framework of our study, which we presented
within the context of a Massive IoT paradigm. We emphasized the significance of de-
veloping effective observation collection methods based on similarity, a topic we then
extensively explored through a literature review.

In this chapter, we formally define the period allocation function component, as up-
dates of the activation period of a sensor that has just activated, according to the knowl-
edge up to that time. We then propose a solution that allows having a constant number
of messages returned by a whole sensor fleet. Without prior knowledge of the number of
sensors entering the environment dynamically, the proposed method guarantees regular
and strict interval reception of observations, with a predefined maximum number of sen-
sors activating in round-robin. Such a solution can be seamlessly integrated to distribute
the observation load within a cluster of similar sensors.

Our experimental results highlight the trade-off between tracking quality and system
lifetime. Moreover, we demonstrate that when dealing with a relatively large sensor fleet
(e.g., 300 sensors), it is advantageous to select only a subset of sensors to activate in a
round-robin fashion. Moreover, the target activation period, a parameter of our period
update function, also has a significant impact on this trade-off between tracking quality
and system lifetime.

1 Problem Statement and Model

1.1 Assumptions and Notations on Sensors

Throughout this thesis, we are interested in the monitoring of an environment with IoT
sensors. Sensors are dynamically integrated in the management system at the time of

59
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their first activation, also called initialization, that we denote by ti for the sensor i.
Considering the already presented sensors transmissions modeling, recall that a sensor

is in activation mode periodically, transmitting a message, and during a short period of
time after the transmission, it is possible to modify the activation period of the send-
ing sensor. As the main objectives of this manuscript revolve around managing sensors
activations, we develop the period allocation as a function f , defined in more detail
hereafter, for that purpose.

A sensor is said to be alive at a time t if, at that time, its initialization is passed and
it has enough energy to activate again. Conversely, a sensor that is not alive anymore
at time t is said to be dead. We talk about the end of monitoring when there are
no more alive sensors. For the whole chapter, we consider proposals where the n sensors
come alive without the monitoring stopping in the meantime.

We consider known the initial energy of a sensor i, equal to ei. In the strategy
presented hereafter, we take into account a consumption model based on radio energy
consumption, as it is the most significant factor compared to other sources of energy
consumption [Bou+18]. We denote the sensor energy consumption for each sensor-to-
terminal observation activation by ce, and the sensor energy consumption for the terminal-
to-sensor period change orders by cr. We assume that each sensor utilizes its energy until
its battery is depleted.

1.2 Formalization of the Period Allocation Function

In Chapter 3, we have discussed on the various components necessary for the development
of an active mode control policy: a similarity metric, a covering subset algorithm, and a
period allocation. In this section, we focus on formalizing the period allocation function in
the context of constraint network and constraint sensors. Here, the function is responsible
for redefining the activation period of a sensor upon receiving a sensor message. The
function takes the sensors’ knowledge history up until that point as an input and returns
a new activation period for the sensor.

Definition 1. Let us denote by Ht the knowledge up to and including time t.
A period allocation function is a function f :

f : Ht −→ R+∗, (4.1)

where f(Ht) represents the new activation period for a sensor that has just sent a message
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at time t.

The function f is used for each new received message. In particular, f defines the initial
period of sensors. If the function f returns a different period from the sensor’s current
one, a downlink activation from the terminal (with an energy cost cr to the sensor) takes
place to modify that period, so that after sending a message at time t, a sensor’s period
always equals f(Ht).

1.3 Ensuring Regular Observations from a Sufficient Number of
Sensors

The objective of this chapter is to study the influence of the period allocation function
on tracking quality and sensor consumption. By using the three-component architecture
developed in the state of the art, let us consider a scenario where a cluster of similar
sensors has been identified. Our aim is to limit the overall number of messages sent by
that cluster by adapting to the number of sensors present.

Nevertheless, solely receiving observations from a limited subset of sensors might not
provide a comprehensive and reliable view of the environment. Indeed, it remains crucial
to gather observations from diverse sources to detect variations in sensor similarities, for
instance identify potential sensor corruption.

Additionally, we will investigate the impact of the update period on the accuracy of
the estimations. Hence, our goal is to study the trade-off between the number of sensors
to transmit to update estimations with defined period, and the quality of tracking.

1.4 Definition of the Quality Metric

To quantify the quality of the messages received by the terminal, we introduce the concept
of diversity which measures the amount of information received from various sources
weighted by their relative importance.

In this context, we define the relevance of a piece of data based on its aging. The
freshness of a message evaluated at t [Bou04; ES07; SC19] represents the relevance of
the activated information as a function of its age. This is a positive decreasing function
taking as argument the difference between the observation time t and the message sending
time t′, i.e., ∆t = t− t′ > 0.

Sensors send messages to the management system, updating their activation period
after an activation if told so by the terminal. We apply the notion of freshness to a sensor
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by considering its most recent activation, in order to propose the following definition
of diversity. Illustrations depicting the freshness evolution of two sensors over time are
provided in Fig. 4.1(a).

Definition 2. The diversity at time t is defined as the sum of the freshnesses of all sensors
that are or were alive at that time.

The average diversity is the average of the diversities over the entire monitoring
duration. The average diversity related to a period allocation function f is denoted by
D(f).

Below are two examples of freshness functions:

• uT (∆t) = 1∆t<T , for some value T > 0, meaning that the value of some received
data remains constant during T then suddenly drops to 0.

• vT (∆t) = exp (−∆t
T

), with a smoother depletion of the information value over time.

The parameter T characterizes the relevance time of data: if T is large, then we consider
that "old" data remains relevant.

To illustrate the meaning of the diversity measure, consider the freshness function
uT (.): if a period allocation function f induces a diversity X, then that means that
over a sliding window of size T , messages are received on average by X different sensors.
Similarly, the diversity measure depicted in Fig. 4.1(b) using the function vT (.) illustrates
an example with two sensors.

1.5 Definition of the Monitoring Duration

We utilize a comprehensive energy efficiency metric known as the monitoring duration.
This metric represents the total duration of the monitoring period, starting from the
initialization of the first sensor and extending until the end of the monitoring (death of
the last).

In this way, we characterize a bi-objective problem: we can quantify and compare the
qualities of period allocation functions through our two performance metrics, for energy
efficiency and monitoring quality.
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Figure 4.1: Evolution of freshness over time for 2 sensors in (a) and the corresponding
diversity in (b). The x-axis represents time, with the observations sent by the sensors
labeled as S1 and S2. The y-axis represents the freshness (or the sum of freshness)
according to the observations, with the exponential freshness function.



2. ENSURING PERIODIC ACTIVATIONS FROM AT MOST M SENSORS 64

2 Ensuring Periodic Activations From at Most M

Sensors

In this section, we develop a strategy to guarantee, by defining the period allocation
function, that there is one (and only one) periodic activation, with a period τ , and that
at most M sensors activate in turn (M and τ are chosen by the monitoring manager).

2.1 Definition of Effectiveness

As stated in the initial problem statement (Chapter 2), our objective is to track the average
value of a physical quantity over time by gathering observations at regular intervals.

Hence, starting from the instant of the first message received at time t0, we want in
this part to receive exactly one message at regular time intervals from one of the alive
sensors. Referring back to the term target activation period, denoted here as τ , this
characteristic of strictly periodic reception will be referred to as effectiveness. This
property is formalized as follows:

Definition 3. A period allocation function is said to be effective over the instants
of period τ if the sensor activations verify that:

• Starting at t0, one and exactly one activation is made at each target activation period
τ as long as there are alive sensors.

• Apart from the initialization, no sensor activates between each time interval τ .

Consider Π as an initial scenario: a sensor i ∈ Π has an initialization time ti and an
initial energy level ei. The size of the sensor set is denoted by |Π| = n.

For this set Π, and considering an effective period allocation function over time inter-
vals of duration τ , we can quantify its efficiency by calculating the sample span.

Definition 4. Given an effective period allocation function f and a sensor set Π, its
sample span L(f,Π) is defined as the number of consecutive activations over the instants
of period τ until the end of the monitoring.

The monitoring duration of a period allocation function effective over the instants
of period τ is then simply defined as τL(f,Π).

We develop below an analytical upper bound for the span (and thus, duration) of
effective period allocation functions.
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Proposition 1. For an effective period allocation function f and a sensor configuration Π
of size n satisfying the condition that all sensors initialize without the monitoring stopping
in the middle and that no sensor comes alive exactly at an instant of the form t0 + kτ for
an integer k, the sample span is upper-bounded by the following expression:

L(f,Π) ≤ (∑i∈Π ei) − nce − (2n− 1)cr
ce

(4.2)

The proof is developed in Appendix B.1. This result is based on the observation that
in order to achieve an effective allocation function, we need to change the activation period
of sensors (except the first one) at least twice.

In the rest of this section, we develop a specific function, that we will denote by fM,τ ,
and that we will show is effective over the instants of period τ , while jointly using up to
M sensors to provide some diversity.

2.2 Overall Principle of the Period Allocation Function

Considering the scenario of tracking an average physical quantity, we want to develop
a period update function allowing to receive messages at regular intervals; the target
activation period τ is the first parameter of our function.

In a context such as the one predicted for MIoT, it is possible to have faulty sensors
or variations in the similarities among sensors. It may then be necessary to receive infor-
mation from various sources (quantified by the average diversity). The second parameter
of the function, that we will denote by M , will be the number of sensors activating in a
round-robin fashion. The selection of this value for M influences the frequency of neces-
sary period changes; a higher count of sensors in round-robin entails more frequent period
adjustments.

For given parameters τ and M , we therefore want to define a period allocation function
fM,τ such that at most M sensors activate in turn, with periodic activations of period τ .

If any, the other sensors will be set in sleep mode, and successively take over the dead
sensors.
• When the number of alive sensors is below M , all alive sensors activate in turn. In that
case, each alive sensor has an activation period set to τ times the number of alive sensors.
As long as the number of sensors is below M , if a new sensor comes alive or dies, all the
sensors then change their activation period to maintain that property.
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• As soon as the number of alive sensors is more than M alive sensors, our proposed
scheme works differently: M sensors activate periodically, with a period of Mτ , and the
period of all the other sensors is set so that they successively take over dead sensors.
When one such sensor takes over the death of another one, its period is set to Mτ , to
ensure the same role.

An illustrative example of sensor activations using the period allocation function is
shown in Fig. 4.2. The activations of each sensor i, are represented as dots along the
horizontal line corresponding to y = i. The black squares indicate period changes after
each activation, as determined by the function fM,τ .

As per the initial objective, there is precisely one activation on each target activation
period τ , except for the first activation. This can be observed on the upper horizontal
line, which aggregates all the activations.

It is worth noting that when there are at least 3 sensors active simultaneously, the
activations are cyclically shared among these 3 sensors, following the periodic activation
pattern established by fM,τ .
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Figure 4.2: Illustration of sensor activations using the function fM,τ with parameters
M = 3 and τ = 1. In this scenario, we have a set of 7 sensors, each with equal battery
capacities (e = 10) and activation and period change consumption (ce = cr = 1). These
sensors become active at random times between t = 0 and t = 25.
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2.3 Formal Definition of the Period Allocation Function

The function is constructed in two parts, distinguishing between the first activation of
the sensor and the case where it is already alive. We denote by |Π(t)| the number of
sensors at time t, including a new sensor initializing at t, or deleting a sensor whose last
activation took place at this time.
• First, the activating sensor was already alive before. When the total number of alive
sensors does not exceed M (i.e. an insufficient number of sensors has come alive or a
too important number of sensors is out of battery), the function defines for each sensor a
period f(Ht) = |Π(t)|τ .

When there are enough alive sensors (|Π(.)| > M), then f(Ht) = Mτ . Thus, for
already alive sensors, the period allocation function is defined by:

fM,τ (Ht) = min(M, |Π(t)|)

• When a sensor comes alive, there are 2 different cases:
· If the number of alive sensors is less than M , then new sensors get included in the round-
robin scheduling. When a sensor initializes, it needs to be scheduled over the instants of
period τ , activating τ units of time after the sensor that activated just before. (t− t0)%τ
(where "%" represents the remainder operator in the division algorithm) represents the
time between the previous time interval of length τ and t. Since Π(t) has been incremented
by one upon the arrival of this new sensor, the period allocation function is defined by:

fM,τ (Ht) = τ |Π(t)| − (t− t0)%τ (4.3)

This last formula also works in the case where multiple sensors are initializing between
two instants of period τ .

This principle is illustrated in Fig. 4.2, where the example of sensor number 2 is
depicted. In this case, the activation period of sensor 2 (blue square) is adjusted after its
first activation so that it transmits after the first two sensors that were already active.
Following the initialization of sensor 2, the activation periods of sensors 0 and 1 are
adjusted to include sensor 2, with their new activation period of 3τ .
· We consider now the second case - one sensor initializing when there are already at least
M alive sensors. Then, a sensor that comes alive is put to sleep until a sensor dies. The
sensor takes over from a sensor whose relay is not taken, i.e., activates Mτ after its last
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activation:
fM,τ (Ht) = death time of a sensor − t+Mτ

We now introduce an object allowing to keep in memory the predicted deaths of each
sensor. We define death-date the list sorted by ascending date of the dead sensors whose
death is not covered by a relaying sensor. Algorithm 1 defines the death update al-
gorithm, updating the list death-date. This algorithm is executed each time a message
is received, following the use of the period allocation function. When a new sensor ini-
tializes, we use the first element of the death-date list to determine its initial activation
period. Since the relay for this sensor has been assured, the corresponding element is
removed from the list.

Certain specific aspects of this algorithm have been partly commented upon in the
pseudo code, enclosed within curly braces. Additionally, we provide detailed explanations
for lines 5 and 7. The purpose of these lines is to update the "death date" of sensors in the
scenario where a sufficient number of sensors initialize, i.e., |Π(t)| > M . In this scenario,
if a sensor previously had a period of Mτ , from its next activation onwards, it consumes
the remaining energy (ei − ce) to transmit at a period of Mτ . Conversely, if the condition
is not met, the sensor must adjust its period during its next activation to Mτ , resulting
in a remaining energy of ei − ce − cr after the next activation. From that moment (which
is t + pi), it will transmit all its energy at intervals of Mτ , equivalent to a duration of
Mτ

⌊
ei−ce

ce

⌋
if pi = Mτ (or Mτ

⌊
ei−ce−cr

ce

⌋
otherwise).

This leads us to a formal definition of fM,τ :

Definition 5. The period allocation function fM,τ used for a sensor just after it sent a
message is defined by:

• if first message received from that sensor,

fM,τ (Ht) =
 τ |Π(t)| − (t− t0)%τ if |Π(t)| ≤ M

death-date[0] − t+Mτ if |Π(t)| > M

• Else, fM,τ (Ht) = min(M, |Π(t)|)τ

(4.4)

The death-date list is updated to always contain the sorted list of sensor death instants
whose relays are not covered. In particular, when a sensor comes alive while |Π(t)| ≥ M ,
the death date of the sensor whose relay has just been taken is replaced by the predicted
death of the new sensor. One property of this list is that its size never exceeds M .

Note that for the special cases M = 1 and M = +∞ (all present sensors in round-
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Algorithm 1 Death update algorithm
i is the ID of the transmitting sensor, ei its energy just after it has transmitted the
message and pi its period which has just been set by fM,τ . The function called "add" (and
"update") adds (and updates) elements to the list while sorting it in ascending date order.
Require: death-date, time t, sensor index i, period pi, remaining energy ei

1: if |Π(t)| ≤ M then
2: if ei < ce then
3: Remove sensor i from death-date {i dies without another sensor taking over, the

other sensors transmit in turn.}
4: else if pi = Mτ then
5: Update death-date of sensor i with value t+ pi +Mτ

⌊
ei−ce

ce

⌋
6: else
7: Update death-date of sensor i with value t+ pi +Mτ

⌊
ei−ce−cr

ce

⌋
8: end if
9: else

10: if first activation from i then
11: add death-date of sensor i with value death-date[0] +Mτ(1 +

⌊
ei−ce−cr

ce

⌋
) {i takes

over after death-date[0], its death date is updated as if it were activating at a
constant period of Mτ afterward.}

12: remove death-date[0] from death-date {The relay from death-date[0] is taken, so
it is removed from the list.}

13: end if
14: end if
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robin), combinatorial and memory space simplifications can be done to implement fM,τ .

2.4 Properties of fM,τ

The following propositions establish that fM,τ behaves as we wanted it to, with depiction
of bounds on the sample span.

Proposition 2. The fM,τ period allocation function is effective on the instants of period
τ .

Proposition 3. By simplifying the expression (removing the floor terms), and considering
sensors with the same initial energy e, the sample span of fM,τ is at least:

Lmin(fM,τ ) := ne− nce − (2n− 1 +M(M − 1))cr
ce

(4.5)

and at most:
Lmax(fM,τ ) := ne− nce − (2n− 1M=1)cr

ce
(4.6)

Proof (sketch). As long as there are no more than M alive sensors, in the worst scenario
each new sensor that comes alive disrupts the existing schedule, forcing all other sensors
to consume energy to change their activation period.

To get the upper bound, we on the contrary consider the most favorable scenario, that
is when the first M sensors come alive in the same time interval of length τ , and n is a
multiple of M .

Formal demonstrations of Propositions 2 and 3 are respectively developed in Appen-
dices B.2 and B.3.

The solution in the optimistic scenario is close to the global optimum Lmax of Propo-
sition 1.

In general, for a fixed τ , increasing the parameter M results in a higher number of pe-
riod changes. In the worst case, this increase follows a quadratic relationship with respect
to M . Since period changes are accounted for in our sensor energy consumption model,
a higher number of period changes leads to increased sensor energy consumption, con-
sequently reducing the overall monitoring duration. Additionally, though not measured
here, it is worth noting that downlink transmissions need to be limited in constrained net-
works. For instance, in LoRa networks, adherence to duty cycles on the gateway side can
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constrain the number of commands given to sensors, and antennas operating in downlink
mode cannot listen to the uplink, potentially significantly impacting the overall Quality
of Service [DHT19].

3 Simulations

This section discusses the experimental analysis of the period allocation function fM,τ ,
carried out through simulations. We propose to study the performance by using the
function fM,τ for different values of the number M of sensors jointly activating and of
the target activation period τ . From the initial conditions defined in Table 4.1, we apply
the period allocation function fM,τ for each activation of sensor until the end of the
monitoring, in order to determine monitoring duration and average diversity performance
indicators.

Parameter Meaning Value
n Number of sensors 300
ei = e Battery capacity 500
ce = cr activation and reception energy cost 1
ti − ti−1 Time between 2 consecutive initializations 15 ∗ 3.14(π)
T Relevance time of a data 20
Freshness function Depletion of the data over time v20

Table 4.1: Simulation parameters

3.1 Influence of the Number M of Sensors Jointly Activating

For a fixed target activation period τ , the parameter M influences both performance met-
rics, as Fig. 4.3 illustrates. The sample span (thus, the monitoring duration) decreases
when M increases (Fig. 4.3(a)), confirming the trends of the bounds developed in Propo-
sition 3. Between M = 1 and M = 300, we observe a relative decrease of 6.2% of the total
monitoring time for τ = 7.4. It drops to 34.02% of relative difference for τ = 0.8, since
the sensors get scheduled more quickly and therefore are disturbed more times when new
sensors come alive.

At a fixed τ , larger values of M offer greater diversity, as more sensors update their
value periodically (Fig. 4.3(b)), with diminishing diversity gains as M increases (hence a
concave function).
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Figure 4.3: Representation of some performance indicators using the period allocation
function fM,τ , varying the number of jointly activating sensors M , for a few target ac-
tivation periods τ . (a) corresponds to the sample span with analytical bounds, (b) the
diversity. Each curve show values obtained over 100 simulation runs.

3.2 “Diversity Versus Duration” Trade-Offs

We represent in Fig. 4.4 the monitoring time and average diversity metrics obtained with
fM,τ , for different values of (M, τ). Of course, one would like to be as north-east as
possible in the figure (high diversity and high monitoring duration). Interestingly, the
Pareto front is not always attained with the same value of M : if the network designer
preferences (or the application needs) favor the monitoring duration, smaller values of M
should be preferred, while larger values should be chosen if diversity matters most.

If the need for diversity is not very strong, then choosing a small value of M and a
relatively large τ target activation period (compared to the relevance time of data T ) al-
lows to extend considerably the total monitoring duration (and induce a low consumption
of the downlink). On the other hand, if the need for diversity is more important, it is
necessary to choose a larger value of M , and a small target activation period τ , leading
to a more frequent energy consumption, at the price of a shorter monitoring duration. As
an example, if the diversity requirement is D > 10, then choosing M = 44 and τ = 1.97,
ensures the best monitoring duration, with 2.9 ∗ 105.

Hence the methodology leading to Fig. 4.4 can be adapted to the specific parameters
of a new scenario, and applied to determine the best-performing parameters M and τ for
the needs of the application.
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Figure 4.4: Performance of the update period function fM,τ , for several values of M (given
in the legend) and τ (from 0.5 to 10 by 0.1 increments). Each point corresponds to the
two-dimensional performance metrics (Diversity on the x-axis and monitoring duration
on the y-axis), for fixed parameters M, τ of the update function.
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4 Conclusion

This chapter lays the groundwork for the development of period allocation functions. We
have introduced a function that dynamically manages the arrival of new sensors. It is
composed of two key parameters: the time between message receptions and the number
of sensors involved in the transmissions. Through simulations, we have established that
these parameters need to be carefully chosen to strike a trade-off between energy efficiency
and monitoring quality.

Our research findings have been published in [Mau+22].



Chapter 5

ASYNCHRONOUS 2-LEVEL

ROUND-ROBIN ACTIVATIONS

In the previous chapter, we demonstrated that in a scenario where sensor observations
are similar and frequent updates are desired, a trade-off must be made between tracking
quality and system lifetime. Nevertheless, that solution is based on a strong assumption:
the perfect knowledge of sensors’ energy consumption, which allows predicting the instants
when sensors deplete their battery. In reality, battery consumption is not so deterministic,
and other independent factors can make a sensor out.

In this new section, we continue our research on period allocation functions. We
consider the scenario where sensors can enter and exit the environment without prior
notice. Building on the work presented in the previous chapter, we can only utilize the
method that activates all sensors in a round-robin fashion, that defines our baseline. We
mathematicaly prove that assigning the same activation period to all sensors maximizes
average diversity, and having strictly periodic receptions maximizes minimum diversity.
However, this solution has limitations, especially about the excessive number of period
changes when dealing with a large number of changes in the sensor field. Additionally,
the proposed synchronized scheduling approach (strict regular receptions) is challenging
to implement in practice.

To address these issues, we develop a method that ensures overall regular sensor obser-
vations over time, at a user-selected rate, while minimizing management costs associated
with sensor arrivals and departures. This solution is based on a binary tree structure for
defining the allocation function.

By modeling arrivals and departures as random processes, we derive analytical ap-
proximations for the diversity metric based on the message reception rate parameter.
Furthermore, by comparing our solution to the baseline function, which exhibits remark-
able properties in terms of average diversity and limitation of minimum diversity, we
demonstrate that relaxing the assumptions does not significantly affect the diversity met-
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ric in practice. Overall, since this new function significantly reduces the number of period
changes, it is better suited for the Massive IoT context considered in this research.

1 Problem Statement and Model

In this chapter, we consider a scenario that is largely similar to the one presented in Chap-
ter 4. The similar assumptions are listed as follows:

• Sensors are deployed in the environment, and their initialization occurs during the
monitoring process.

• Sensors have limited energy, which is consumed during activations.

• Sensors activate periodically, and their activation period can be updated following
a sent message. We aim to define a period allocation function that can redefine a
sensor’s activation period after it sends a message.

• The freshness of a sensor is defined by the freshness of its last message, and diversity
is a function defined over time as the sum of the freshness values of all sensors. The
objective is to maximize this diversity.

Here, we want to propose a more realistic modeling approach for the initial condition of
a sensor. In the previous chapter, we assumed that we knew the sensor’s energy level and
transmission consumption, allowing us to anticipate a sensor’s death and manage it by
taking over its tasks.

However, in this chapter, we consider that we don’t know the sensor’s energy level,
hence we cannot anticipate a sensor’s death. In our simulation model, we will assume
that a sensor can die for two reasons. Firstly, it may deplete its battery, and transmitting
more information increases the likelihood of its battery running out. The second reason is
unrelated to the number of activations made: the sensor physically leaves the environment
or experiences a hardware issue preventing it from providing relevant observations.

We no longer consider a sensor’s period change in terms of its energy consumption;
instead, we introduce it as a metric by tallying the total number of period changes.
When a sensor needs to listen for an order from the terminal, it must keep its radio
on for a longer time and employ signal processing algorithms to interpret the message,
resulting in additional energy consumption. Moreover, the number of period changes
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affects the terminal, as it cannot receive messages from sensors while transmitting an
order [JR22]. This can significantly impact the quantity of messages received by the
terminal. Furthermore, particularly within constrained networks, duty-cycle constraints
may be enforced to regulate node activity, thereby restricting gateway communication to,
for instance, only 1% of the time [DHT19].

In our simulation model, we assume that sensors continuously arrive in the environ-
ment, and we evaluate a solution over a specified duration. A period allocation function
is thus evaluated based on two metrics, aiming to find a desirable trade-off. The objective
for the user is to strike a balance by maximizing monitoring accuracy (represented by
high diversity) while controlling management costs (the number of period change orders).

2 The Synchronized Round-robin Allocation Func-
tion

2.1 Definition of the Round-robin Function

Based on the work proposed in Chapter 4, we can extract a feasible solution under the
more realistic assumptions of this new chapter. This baseline solution will serve as a
reference for comparison with our novel contribution. Notably, this method exhibits
remarkable properties in terms of maximizing average diversity.

Under the new assumptions of this chapter, it is no longer possible to evaluate the
depletion of sensors. The only viable solution for fM,τ occurs when M = +∞, meaning
the sensors are scheduled in a pure round-robin fashion. The period update function,
denoted by fSRR,τ is:

• fSRR,τ (Ht) = τ |Π(t)| − (t− t0)%τ , if first message received from that sensor
• = τ |Π(t)| , else

(5.1)
where Ht denotes the information gathered up to the current time. In this case, we store
the value of |Π(t)|, which represents the number of present sensors, including the new
sensors if any, and t0 corresponds to the initialization time of the first sensor.
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2.2 Properties

Although its expression is extremely simple, the function fSRR,τ exhibits remarkable prop-
erties. Two key characteristics of this function are that (i) all sensors have the same ac-
tivation period, and (ii) messages are received by the terminal at strict regular intervals.

Firstly, in order to maximize average diversity, all sensors must have the same activa-
tion period.

Proposition 4. Assuming a freshness function that is strictly monotonic and differen-
tiable, for a constant global reception frequency ∑i∈Π

1
pi

= 1
τ
, all sensors must have the

same period pi = τ |Π| to maximize the average diversity.

The proof of this proposition is based on the method of Lagrange multipliers and is
developed in Appendix C.1.

On the other hand, strict regular reception allows for locally maximizing the minimum
diversity.

Proposition 5. For n sensors transmitting with a period of nτ , at intervals of τ , shift-
ing the activation time of a sensor away from its τ interval will decrease the minimum
diversity.

The proof of this proposition is based on the direct calculation of diversity, noting that
the local minimums of diversity occur before each new activation. The proof is developed
in Appendix C.2.

To summarize the properties of the Synchronous Round-Robin function:
- For n sensors and a fixed total number of messages per unit of time at 1

τ
, transmitting

with a period of nτ maximizes the average diversity and is the same regardless of the
scheduling.
- If we consider a perfectly slotted scheduling, where sensors transmit in a pure round-
robin fashion and the overall message transmission occurs at τ intervals, then it is the
best local solution in terms of minimum diversity. Shifting the activation time of any
sensor reduces the minimum diversity. Note that intuitively, we expect that this regular
scheduling among sensors is also a global maximum for the minimum diversity over time,
but we did not manage to prove it analytically.
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3 The 2-Level Round-Robin Allocation Function

This section presents the contribution of the chapter, a period allocation function that
maintains a constant overall period τ of data receptions with low number of period
changes. With the function we propose, all sensors activate with a similar (up to a factor
2) activation period, while the terminal needs to send only one or two period change
orders for each sensor arrival or departure.

Although this solution is no longer optimal in terms of average diversity since the
periods are not the same for all sensors, this choice significantly reduces the number of
period changes.

Furthermore, strict message reception synchronization is relaxed, resulting in a more
varying diversity over time. The strict periodic reception of observations comes with
practical costs: on one hand, it necessitates that a sensor receives two consecutive orders
from the gateway to be included (which is not always guaranteed in practice), and on the
other hand, sensors are susceptible to clock deviations that slightly shift their activation
periods, thereby undermining strict scheduling. Similar observations have been made to
critique synchronous routing solutions in [THH02], where all sensors turning on at the
same time to relay information is shown difficult to achieve in practice.

3.1 Functioning Principle of the Allocation Method

To introduce the function, let us provide the global principle of functioning. We begin
with a set of sensors that adhere to the global message reception property at the interval
τ . The goal is to include and exclude sensors while minimizing the number of period
change orders, all the while maintaining the property of receiving messages at the global
average interval of τ .

When a new sensor is added, one of the existing sensors shares its message transmission
load with the newcomer by doubling its activation period. The newly added sensor adopts
this same new activation period.

On the other hand, when a sensor dies, the message emission load of the leaving sensor
is added to the load of one of the sensors in use: its new activation period is defined so
that the sensor activates as many times as both itself and the sensor that has just died.
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3.2 Construction of the Period Allocation Function

To formalize this approach, we represent sensors as the leaves of a binary tree. The depth
of a sensor in the tree represents its activation period in the form of 2depthτ . Figure 5.1
illustrates how the tree evolves as sensors enter and leave the system.

The tree has a fundamental property: it is full, meaning that a node has either 0 or 2
children.

Furthermore, we impose that this tree is complete: the difference in depth between
leaf nodes does not exceed 1. This limits the difference between activation periods by a
factor of 2. Maintaining this property incurs a small additional cost in terms of period
changes, which we elaborate on here.

Figure 5.1: Evolution of the binary tree representation as sensors enter (top) or leave
(bottom) the system; each sensor is represented with a colored circle with an ID, and
horizontal dotted lines represent the activation periods of the sensors at that depth. A
dotted line around a sensor means that its position (and height) was changed in the tree
(hence a period change order is needed).
The top part represents the successive arrivals of sensors indexed from 1 to 5; the bottom
one shows the successive departure of sensors 4, 2, and 3 (departures are symbolized by
a cross).

Since the tree is balanced, the active sensors can therefore be grouped into two cat-
egories, whether their representation in the tree is in the last or second-last level in the
tree, that we define as respectively high-depth and low-depth categories. We should
note that if all the sensors belong to the same category, by convention we consider them
all high-depth. Here we present the evolution of the representation tree when a modi-
fication occurs, such as the entry or exit of a sensor from the environment. This tree
representation is then directly used for the definition of the period allocation function.
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•When a new sensor arrives in the environment, if all sensors are high-depths, we now
consider all of them being low-depths, so that in all cases there is a low-depth sensor.
Hence, one of these (low-depth) sensors changes position by increasing its depth by one,
and the new sensor becomes its sibling (with a same parent), both being high-depth
thereafter.
•When a sensor leaves, there are 2 cases:

· If the leaving sensor is of high-depth, by construction it has a sibling, which becomes
of low-depth by decreasing its depth by one. This is the case for the exits of sensors 2
and 3 in Fig. 5.1.

· If the leaving sensor is of low-depth, it is substituted with a high-depth sensor, whose
displacement is treated like the departure of a high-depth sensor (described above). This
is the case for the departure of sensor 4, replaced by 3 in Fig. 5.1.

For a sensor i that just sent a message, the period allocation function f that we suggest
is then simply:

f2LRR(Ht) = 2diτ (5.2)

Where Ht represent the information collected up to time t. Here, we store and update
the depth di of each sensor i.

3.3 Properties

We show here that our suggested period allocation function meets the objectives initially
set, regarding the reception at a global rate of τ , with a limited number of period change
orders over time. To that goal, we make the approximation that the period of a sensor of
depth d is exactly 2dτ at any moment, while in reality, when a sensor changes positions
in the tree (because of another sensor’s arrival or departure), its activation period is only
modified after its next activation.

For n sensors, let us denote by h the minimum depth of the tree, h = ⌊log2(n)⌋. Then,
according to the binary tree representation, we can say that:
• nmin = 2h+1 − n sensors activate at period 2hτ and are of low-depth. To understand
this, if nmin additional sensors are added in the environment, they become complementary
to each of the sensors of low-depth in order to make the binary tree perfect, with exactly
n+ nmin = 2h+1 sensors.
• nmax = 2(n−2h) sensors activate with an activation period of 2h+1 and are of high-depth.

For instance, nmin + nmax = n.
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Proposition 6. At any moment, the average time between two sensor activations is τ .
Mathematically, if Π denotes the current set of sensors in the tree, containing n sensors,
and pi the activation period of sensor i, we have:

∑
i∈Π

1
pi

= nmax

2h+1τ
+ nmin

2hτ = 2n− 2h+1

2h+1τ
+ 2h+1 − n

2hτ = 1
τ
.

Changing the position of a sensor in the tree results in a change of its activation
period, ordered at its next activation. If the position is changed several times before a
new activation, the sensor changes its activation period only once. Therefore, counting
the number of position changes in the tree of a sensor provides us with an upper bound for
the actual number of period change orders over time, a useful insight on the management
cost of our method. From our tree construction, those position changes are quantified
below.

Proposition 7. When a new sensor arrives, the number of position changes in the tree
(counting the position definition of the incoming sensor) is r = 2.

When a sensor leaves the environment, the number of position changes is r = 1 if the
sensor that dies is of high-depth and r = 2 if it is of low-depth.

4 A Markovian Model for Performance Evaluation

In this section, we develop a model to analyze as a Markov chain the evolution over time
of the number n of jointly used sensors. This will be used to estimate the steady-state
values of our performance metrics for the 2-level round-robin period allocation function.

4.1 Modeling Sensor Arrivals and Departures

We model sensor arrivals as a Poisson process, with an average arrival rate of λ sensors
per time unit.

Regarding departures, we assume that a sensor can leave the environment for two
main reasons:
• The sensor has consumed all its energy and switches off. We consider that the sensor
has an initial energy which follows an exponential law with mean ce/γ, with ce the en-
ergy consumed for each activation, and γ a parameter characterizing the variability of the
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battery state when joining the environment. To have a continuous-time Markov chain,
we slightly relax the periodic-activation assumption from sensors, by assuming that each
sensor i with period pi transmit messages according to a Poisson process with rate 1/pi
(note that in our simulations, activations are really periodical). With this model, the time
before running out of battery follows an exponential law of parameter γ

pi
. At any mo-

ment, the time before one sensor leaves because of battery depletion is then exponentially
distributed, with parameter ∑i∈S

γ
pi

= γ/τ , thanks to Proposition 6.
• The sensor leaves the environment because it has been physically removed, turned off, or
has undergone a technical failure. For each sensor, the time before this occurs is modeled
through an exponential law of parameter µ, hence with n sensors the time before one
departure for this reason is exponentially distributed with parameter nµ.

With those assumptions, the continuous-time process describing the number n of sen-
sors in the system is a Markov chain, whose transition diagram is displayed in Fig. 5.2.

· · ·n· · ·10
λ λ

(n + 1)µ + γ
τnµ + γ

τ

λ λ

2µ + γ
τµ + γ

τ

Figure 5.2: Continuous Markov modeling of the number of active sensors over time

4.2 Performance Metrics Estimation For 2LRR

We now use the Markov chain previously described to derive the steady-state distribution
on n, and corresponding expected values for our performance metrics (approximating the
actual ones).

4.2.1 Number of Sensors in the Steady State

Denoting by πn the steady-state probability of having n active sensors, we have λπn−1 =
(nµ+ γ

τ
)πn for all n ≥ 1, leading to:

π0 = 1
1+
∑+∞

n=1

(∏n

j=1
λ

jµ+ γ
τ

)
n ≥ 1, πn =

(∏n
j=1

λ
jµ+ γ

τ

)
π0
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4.2.2 Number of Period Changes

The number ṙn of position changes of sensors in the tree per time unit if there are n

sensors is, by splitting between low and high-depth sensors (from Proposition 7):

ṙn = 2
(
γ

τ

2nmin

2nmin + nmax
+ nminµ

)
+
(
γ

τ

nmax

2nmin + nmax
+ nmaxµ

)
+ 2λ

An upper bound for the average number of period change orders sent per time unit is
then:

ṙ =
+∞∑
n=1

πnṙn

4.2.3 Mean Diversity

Considering the freshness function uT (x) = e− x
T , the average diversity for one sensor of

activation period p is:
1
p

∫ p

0
e− t

T dt = T/p(1 − e−p/T )

Then, we can estimate the average diversity Dn for n sensors as

Dn = Tnmax
1 − e

−2h+1τ
T

2h+1τ
+ Tnmin

1 − e
−2hτ

T

2hτ ,

and the (steady-state) average diversity D as

D =
+∞∑
n=1

πnDn. (5.3)

5 Simulation Results

This section compares the 2-level round-robin method developed in this chapter to other
strategies, highlighting that it is the best fitted method under the hypotheses and ob-
jectives considered. Moreover, we show that the analytical study can help find the user
parameter τ maximizing the diversity.
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Parameter Meaning Value
Start of diversity acquisition 20000s
Duration of the first phase 50000s
Duration of the second phase 50000s

λ1 Sensor arrival rate - first phase 0.1s−1

λ2 Sensor arrival rate - second phase 0.001s−1

1/γ Average number of send messages 1000 activations
µ Rate of departure for other reasons 0.00001s−1

Freshness Value depletion with time x e−x/T

T Relevance time of data 100s

Table 5.1: Simulation parameters

5.1 Comparative Performance Evaluation

5.1.1 Simulation Setting

We consider an initially empty system, with sensors entering and leaving as per the
random processes described in Section 4.1, except activations are really periodic. We
assume two consecutive phases: in the first one, many sensors enter the environment,
while in the second one, sensors enter the environment more rarely. We start observing
the environment (i.e., computing the metrics) after an initialization time. Through this
simulation, our method should save the energy of the sensors when they are in high
density, so as to ensure a better diversity (because more sensors will still be alive) when
sensors enter more occasionally.

For all three methods, we apply the period allocation function after each sensor mes-
sage reception, and evaluate the overall performance after the simulation is completed.
The parameters of the simulation are given in Table 5.1.

Recall our two metrics are diversity (that varies over time) and management cost
(overall number of period update orders). Rather than the average diversity value over
time, we display here its 5th percentile, that is, the diversity value that is guaranteed 95%
of the time. For the management cost, we just count the period update orders sent per
time unit.

5.1.2 Other Scheduling Methods for Comparison

To compare our two-level round-robin period allocation function, we also implement the
synchronized round-robin function. Both functions are parameterized by τ , which corre-
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sponds to the (average) time between two sensor activations. The synchronized round-
robin function has the property of maximizing the average diversity when aiming to receive
a constant number of messages per unit of time.

Moreover, we also propose to implement the simplest sensor management method,
that fixes the same (given) activation period p to all newly arrived sensors. This method
can represent a non-slaved solution, where we do not modify the initial period of a sensor,
although in our simulations, we will evaluate the quality of the solution for different
choices of p. That method, that we call static, minimizes the number of period change
order, but does not adapt to the changing number of present sensors.

5.1.3 Performance Evaluation
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Figure 5.3: Diversity over time for a simulation, with global period τ = 0.1s for round-
robin methods and individual period p = 150s for the static method, and diversity guar-
antee (fifth percentile) for each method (horizontal lines).

Fig. 5.3 illustrates a simulation trajectory, showing the diversity over time for the 3
management methods, with parameters τ = 0.1s for the two round-robin methods, and
p = 150s for the static one. The curves show how the period allocation function manages
sensor activations, in particular how it adapts to sensor field changes. We graphically
show our overall diversity metric, that is the 5th-percentile over the observation period:
95% of the time, the instantaneous diversity exceeds that value.



5. SIMULATION RESULTS 87

10−1 100
0

100

200

300

400

500

600

700

Global target period τ (s)

Fi
ft

h
pe

rc
en

til
e

of
di

ve
rs

ity

2-level round-robin
synchronized round-robin

102 102.5
Individual period p (s)

Static

(a)

10−1 100

10−1

100

101

Target global period τ (s)

N
b

of
pe

rio
d

ch
an

ge
s

pe
r

tim
e

un
it

2-level round-robin
synchronized round-robin

102 102.5
Individual period p (s)

Static

(b)

Figure 5.4: Fifth percentile of diversity (a) and number of period change per time unit (b)
for the three methods, versus their parametrization. Parameters for round-robin methods
are in bottom x-axis and in top x-axis for static.
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The overall performance metrics of the three methods for different parameters are
shown in Fig. 5.4(a,b), for different parameter values (τ on the bottom x-axis for round-
robin methods, and p for static on the top).

From Fig. 5.4(a), the best methods under the simulation conditions are the round-
robin ones, each insuring the best monitoring quality for τ around 0.1s, with minimum
95% diversity guarantee of 578. The static method performs less well in our simulations,
even with the most favorable fixed period p: the maximum diversity guarantee is 420 with
p ≃ 150, i.e. a 30% lower performance. One reason for this is that it does not adapt to the
number of present sensors, hence may overuse the sensors when there is a high density,
rather than saving their energy for later.

Note that although the synchronized round-robin should lead to a more stable and
better diversity due to strict periodic message receptions and similar activation periods
to all senors, both round-robin methods provide fairly similar diversity over time.

However, those strict periodic receptions come with a high management cost, as il-
lustrated in Fig. 5.4(b). For τ = 0.1, synchronized round-robin implies 59 times more
period update messages to the sensors than 2-level round-robin. This is due to our tree
structure, that limits the number of period change orders to 1 or 2 for each arrival or
departure, instead of n for synchronized round-robin .

5.2 Search for the Optimal τ Parameter

We show here how to choose the parameter τ to have the best monitoring quality, in a
steady-state situation (we take here the second phase of our simulation, as an example). In
Fig. 5.5(a), we show the instantaneous diversity over time when τ = 5, with a steady-state
behavior around the theoretical expected value computed in (5.3) from the Markovian
model. In Fig. 5.5(b), we compare that theoretical mean diversity from (5.3) with the
simulated fifth percentile for different values of τ .

From these results, if sensor arrivals and departures are reasonably modeled with
Markovian models, then we can approximate the mean diversity in the steady state, for
a given user parameter τ . This can be used to choose a well-performing τ , which should
also be close to optimal for the fifth percentile, as suggested by Fig. 5.5 (b).
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Figure 5.5: Simulation versus theoretical results, with constant parameters for sensor
arrivals and departures. One simulation trajectory of diversity over time is shown in (a),
with the corresponding steady-state mean value for the Markovian model, for τ = 5.
In (b) we compare the fifth percentile of simulated diversity with the theoretical mean
diversity: both reach their maximum for approximately the same global period τ .

6 Conclusion and Discussions

In this chapter, we have introduced a novel period allocation function that enables the
reception of messages at globally regular time intervals using the observation period as its
sole parameter. This new approach significantly reduces the frequency of period changes,
as compared to the approach presented in Chapter 4 (which emphasizes maximal accuracy
properties) and offers greater adaptability by not mandating strictly periodic message re-
ceptions. Through simulations, we have demonstrated that relaxing the requirement for
uniform sensor periods and strict message reception has minimal impact on our accu-
racy metric. By modeling sensor arrivals and departures as Poisson processes, we have
extracted theoretical insights that provide approximations of average diversity. These
insights aid in the pursuit of the optimal target observation period parameter that maxi-
mizes diversity.

The period allocation methods proposed in this thesis part have a specific objective: to
complement similar sensor clustering solutions, aiming to distribute the observation load
within clusters of identified similar sensors. Given the temporal variability of the sensor
fleet and the emergence and disappearance of similarity links, these clusters are inherently
sensitive to changes. Consequently, our focus has been on the robustness to such changes,
ensuring effective load distribution within clusters of similar sensors. Notably, in the latest
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version presented in Chapter 5, we have introduced mechanisms that significantly reduce
the frequency of period changes when modifications occur within the sensor cluster (such
as sensor additions or removals).

Our research findings have been published in [Mau+23].
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Chapter 6

GROUPING SENSORS BASED ON

OBSERVATIONS

In this part, encompassing a single chapter, we present a contribution to the similarity
metric and covering subset algorithm components. Specifically, we propose an evaluation
of sensor similarity based on their observed data, followed by the creation of clusters of
similar sensors. Our focus is on a generic scenario that has not been extensively explored
in existing literature: sensors are deployed in the environment for a finite duration and
transmit noisy observations irregularly over time, without synchronization between them.

Firstly, we propose a distance metric that employs the Kriging interpolation method
to evaluate the differences in average magnitude between interpolations. Additionally,
we introduce a hierarchical clustering solution that groups similar sensors, proposing a
linkage method that assigns higher weights to distances calculated over longer durations.

Through simulations, we demonstrate that our distance metric effectively distinguishes
historical observations following the same phenomenon from those following different ones,
outperforming the Jaccard index, which is our comparative metric due to its suitability for
our assumptions. Furthermore, we adapt an existing solution from the literature, aiming
to limit the maximum discrepancy between all interpolations within the same cluster. We
establish the superiority of our approach in terms of the quality of sensor grouping.

1 Sensors, Observation Histories, and Objectives

In this section, we outline the objective and the hypotheses concerning the deployment
of sensors and their observations.

93
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1.1 Identifying Sensors Belonging to the Same Phenomenon

Sensors are deployed in a given environment, which can be divided into multiple distinct
phenomena, each exhibiting specific characteristics. For instance, in a building, temper-
ature variations may differ from one room to another.

Our objective is to group sensors that observe the same phenomenon. Initially, we
aim to define a similarity metric to assess the proximity between sensors. Subsequently,
we develop a clustering solution to group together sensors deemed similar. The broader
goal (not done in the chapter) is to establish observation collection schemes that leverage
similarity to reduce the amount of information transmitted by sensors, thereby conserving
their energy resources.

1.2 Incoming and Outgoing Sensors

We consider scenarios where sensors enter and exit the environment dynamically. For
example, new sensors might be added over time, while others may become inactive due
to hardware issues or depleted batteries. For instance, in a logistics exchange platform,
sensors may be associated with specific shipments and can stay only temporarily in the
environment.

Consequently, the similarity between two sensors can only be evaluated when they
are coexisting within the environment. Notably, this shared time interval of operation is
variable or even non-existent.

1.3 Observations Sent by the Sensors

A sensor provides observations of a particular phenomenon, which it directly transmits
to the terminal. Here, the sensors are transmitting noisy observations due to imprecise
measuring devices.

It has been shown in [THH02], that activating sensors on the same instants is highly
costly. Hence, we assume that the sensors cannot be synchronized to operate on jointly
defined time steps.

Furthermore, we assume that sensors send observations irregularly. The specific
data collection method employed by a sensor (e.g., trigger-based, model-based [DBO17],
similarity-based) influences the observation period, which tends to vary over time.
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1.4 Observation History Definition

An observation history refers to a set of observations generated by a sensor, each
observation being composed of a time and a corresponding value. Our investigation
centers on the transmissions conducted by these sensors; henceforth, moving forward,
the object for which we intend to assess similarity and subsequently group are denoted
as observation histories. We refrain from using the term "time series" because, although
related, time series assume observations made at the same time instants and regular
intervals, which is not the case in our context.

2 Defining a Distance Metric Based on Sensor Ob-
servations

As explored in Chapter 3 Section 3, there exist similarity metrics proposed based on
sensor observations. However, none of these metrics are capable of fully satisfying the
constraints inherent to an MIoT deployment, which include realistic environment, accom-
modating non-synchronized observations, managing noisy observations, and identifying
compromised sensors. An example of two observation histories to be compared is de-
picted in Fig. 6.1

Figure 6.1: Representation of two observations histories.

In this section, we introduce a distance metric that relies on two key components.
Firstly, we utilize an interpolation method to convert irregular observations into a con-
tinuous representation. Subsequently, we define the distance between two interpolations
over their common time interval by the average magnitude difference.
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2.1 Interpolation Function Based on an Observation History

The historical observations are irregularly spaced and noisy, making direct comparisons
challenging. Therefore, as an initial step, we propose to employ an interpolation method
on each observation history. This approach transforms the observations into continuous
functions defined over intervals, facilitating comparisons.

Justification of the Kriging Choice

An interpolation function is a mathematical function defined over all time points based
on a set of noisy observations. Its objective is to minimize the average discrepancy be-
tween the interpolated function and the measured phenomenon. Numerous interpolation
methods exist, as documented in [CQ98].

Since the observed data is subject to noise, we aim to relax the constraint of passing
through all data points. Consequently, certain methods like Spline are not applicable.

Kriging is an interpolation method based on Gaussian processes governed by prior
covariances [Kle09]. This approach is particularly well-suited for various noise reduction
applications, as summarized in [PWG13], as it allows the estimation and incorporation
of measurement errors into the modeling. For instance, in [Zim+99], an experimental
study demonstrated the superiority of Kriging over the inverse distance weighting method.
Kriging has been applied in the domain of the IoT as well, such as in [Cas+10], where it
was used to propose a sensor positioning solution based on the data they provide.

Principle of the Variogram

The variogram is a function based on a statistical model, where each observation is consid-
ered to be a random variable. It quantifies the correlation between two observation values
according to their temporal separation. It is used in the kriging model to evaluate the
correlation between a value to interpolate for a target time and the known observations.

Since the true variogram is typically unknown, it is estimated using known observa-
tions. This estimation is obtained by initially calculating the experimental variogram.
We denote by θ = {θt, t ∈ T} an observation history, where T represents the set of mea-
surement time instants and θt is an observation made at time t. Then, the experimental
variogram γ is computed for each pair of points, so that:

∀(t1, t2) ∈ T 2, γ(|t1 − t2|) = 0.5(θt1 − θt2)2
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Figure 6.2: Diagram illustrating the variogram model based on experimental variogram
points. The variogram consists of three parameters: nugget, sill, and range.

The points of the experimental variogram are depicted in Fig. 6.2. To obtain a con-
tinuous representation from this discrete experimental variogram, we fit these points to
a function referred to as the variogram model, denoted by γ̂. This model allows us to
characterize the correlation between two observations based on their temporal separation.

For example, spherical, exponential, and Gaussian models are characterized by three
parameters and illustrated in Fig. 6.2:

• The nugget n: Reflects the amount of short-range variability in the data. It is
related to the measurement noise.

• The sill s: Represents the value at which the variogram levels off.

• The range r: Denotes the lag distance at which the variogram reaches the sill value.

The Gaussian variogram is given by:

γ̂(∆t) = n+ s

(
1 − e− ∆2

t
r2

)
(6.1)

Calculations for the Simple Kriging

Kriging is an interpolation method rooted in statistical modeling. It assumes that each
observation is a random variable with a finite mean and variance.
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Here, θ = (θt)t∈T constitutes the vector representing the observation history. The
covariance matrix of the observation history vector is defined using the variogram γ̂ as
follows: K = E[θθ⊤] = (γ̂(t1, t2))t1,t2∈T .

Our objective is to evaluate the value at the point t̂. Let Θt̂ denote the random
variable representing the value at t̂. The covariance vector between the value at t̂ and
each observation in the observation history is defined based on the variogram model:
kt̂ = E[θΘt̂] = (γ̂(t̂, t))t∈T .

Based on these notations, we present the result for the simple kriging. The strong
assumption here is that the mean expectation of values at all time instances is the same
and known, assumed to be zero: ∀t, E[Θt] = 0. In the case of ordinary kriging (another
kriging modeling), the expectation is similar across all points and unknown; for universal
kriging, a polynomial trend model is incorporated. By subtracting the general function,
we get back to the basic case of solving simple kriging.

The core principle of kriging is that interpolation at a point is defined as a linear
combination of the observed values. Hence, the estimator at the point t̂, denoted by θ̂t̂,
is the sum of observation values of the observation history, weighted by the coefficient
vector ψt̂ = (ψt,t̂)t∈T :

θ̂t̂ =
∑
t∈T

ψt,t̂θt = ψ⊤
t̂ θ

The weights are defined to minimize the expectation of the squared difference between
the estimator and the quantity to predict at this new point t̂:

∆(t̂) = E[(θ̂t̂ − Θt̂)2] (6.2)

Through the development of this equation, elaborated in Appendix D, we can deduce
that:

∆(t̂) = ψ⊤
t̂ Kψt̂ − 2ψ⊤

t̂ kt̂ + constant (6.3)

∆(t̂) is minimized when ψt,t̂ = K−1kt̂, leading to the estimation of the value at t̂:

θ̂t̂ = k⊤
t̂ K

−1θ (6.4)

The estimator at a given time t̂ is the result of a matrix computation. Here, K
represents the covariance matrix among the observations within the observation history,
and kt̂ denotes the covariance between the observations from the observation history
and the target value. All of these covariance values are computed using the variogram
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model, which defines the correlation between observation values based on their temporal
separation.

2.2 Distance Based on Mean Magnitude Difference

Let i : {θi,t, t ∈ Ti} and j : {θj,t, t ∈ Tj} be the observation histories under study,
so that θ̂i(t) and θ̂j(t) be the interpolations obtained using Kriging. We use the mean
magnitude difference to evaluate the distance between two interpolations, as schematically
represented in Fig. 6.3.

Figure 6.3: Orange diamonds and dashed green squares represent two observation his-
tories, with time on the x-axis and observation values on the y-axis. The interpolations
are depicted as solid orange and dashed green lines, respectively. The vertical dashed
lines indicate the common temporal domain of the two interpolations [a(., .), b(., .)]. The
distance between the two interpolations is defined by the mean distances (red arrows)
over the common definition interval.

Firstly, the interpolations can only be compared over their common definition interval.
If there exists a common definition interval between i and j, we denote it by [a(i, j), b(i, j)].
This interval begins at the time of the first observation in the observation history that
started the latest, and it ends at the time of the last observation in the observation history
that ended the earliest:

a(i, j) = max{min{t ∈ Ti},min{t ∈ Tj}}
b(i, j) = min{max{t ∈ Ti},max{t ∈ Tj}}

(6.5)

If the definition intervals do not overlap, i.e. a(i, j) > b(i, j), it is not possible to define
a distance between these sensors. Hence, the duration of the common definition interval,
denoted by δ(i, j), is defined by:
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δ(i, j) = max{0, (b(i, j) − a(i, j))} (6.6)

Furthermore, since the interpolation method aims to minimize the average difference
between the ground truth and the estimation, we define the distance d(i, j) as the mean
magnitude difference between the interpolations. If the duration of the common definition
interval is not zero, it can be mathematically expressed as:

dinterp-mean(i, j) = 1
δ(i, j)

∫ b(i,j)

a(i,j)
|θ̂i(t) − θ̂j(t)|dt (6.7)

3 Tuned Linkage Hierarchical Clustering

In the state-of-the-art chapter (Chapter 3 Section 4), we concluded that for the covering
subset algorithm component, it is preferable to use methods based on grouping sensors
considered similar. In this section, we propose a method that relies on a continuous
similarity measure to cluster together observation histories that are considered similar,
using a hierarchical clustering approach.

3.1 Specification of the Clustering Problem

In a conventional clustering problem, we consider objects with n variables and aim to
group together objects that are close when represented in a space where each variable
constitutes a dimension [Déj+07; ASY15; Lia05].

In our context, an object represents an observation history and, consequently, an
interpolation defined over a time interval. These objects can no longer be represented in
a space of n dimensions. The distances between objects are not so straightforward, which
is why we have dedicated a specific section to define the distance between two objects.
For a pair of observation histories, we have defined a distance d(., .) on their common
definition interval duration δ(., .).

This change implies specific considerations in devising a clustering solution:

• Some objects may have an unknown distance: they are defined over disjoint intervals,
making it impossible to determine their proximity,

• The comparison time frame is an essential indicator for defining the quality of the
distance measure: a distance calculated over a longer definition duration carries
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more significance than one computed over a very short time span.

3.2 The Agglomerative Hierarchical Clustering

Algorithm Principles

For this problem, we choose to focus on solutions based on agglomerative hierarchical
clustering. This clustering method involves iteratively merging clusters together [LW67].

Initially, each object (observation history) is considered as its own cluster. At each
iteration, the two closest clusters are merged to form a new cluster. Consequently, in each
iteration, we obtain one less cluster than in the previous iteration. The stopping criterion
for merging is either when a distance threshold is exceeded or when the desired number
of clusters is reached.

The Linkage Method

An essential aspect here is the definition of the distance between clusters. The method that
relies on inter-object distances to determine the inter-cluster distance is referred to as the
linkage method. In Fig. 6.4, we illustrate several linkage methods: Simple-link defines
the distance between clusters as the smallest distance between any pair of objects from a
different cluster; complete-link uses the largest distance between any pair of objects from
a different cluster; average-link calculates the average of all pairwise distances between
objects from a different cluster.

Figure 6.4: Examples of linkage methods, from [Gue11].

As shown in Fig. 6.4, the distance between clusters is not always defined by all distances
between individual objects. Therefore, by tuning the linkage method, it is possible to
achieve a clustering method that takes into account unknown distances between objects.
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3.3 Tuning of the Linkage Method

In the literature, various common linkage methods exist, all of which involve linear combi-
nations of distances between the observation histories within the clusters being compared.

Here, we choose to adapt the average-link to better suit our problem. We weigh the
distances by the duration of the common definition interval to give more importance to
distances calculated over longer periods.

Let d(i, j) be the distance between observation history i and j calculated using the
method described in Eq. (6.7), and δ(i, j) be the duration of their common definition
interval, as defined in Eq. (6.6). When two observation histories are not directly com-
parable, δ(i, j) = 0, and d(i, j) = None, and our convention dictates δ(i, j)d(i, j) = 0 in
order not to involve unknown distance in the linkage method.

We define the distance between two clusters as the sum of distances between pairs
of objects from different clusters, weighted by their common definition interval duration.
Considering i ∈ I as the set of observation histories included in cluster I, and j ∈ J for
J , the distance between clusters I and J is given by:

D(I, J) =
∑
i∈I
∑
j∈J δ(i, j)d(i, j)∑

i∈I
∑
j∈J δ(i, j)

(6.8)

(If all distances between i and j are unknown, then by convention, we will have D(I, J) =
None, and we will not merge I and J .)

For this linkage method, we employed the Lance-Williams algorithm as a reference for
hierarchical clustering construction [MC12]. This algorithm updates the distance between
clusters at each merging step. Let us denote the cluster composed of elements from clusters
I and J as I+J , and another cluster as K. Considering the total shared duration between
all pairs of observation histories in clusters I and J , the update formulas are as follows:

D(I + J,K) = δ(I,K)
δ(I,K)+δ(J,K)D(I,K) + δ(J,K)

δ(I,K)+δ(J,K)D(J,K)
δ(I + J,K) = δ(I,K) + δ(J,K)

As a reminder of the agglomerative algorithm, in each round, we choose to merge
clusters with the smallest distance D based on this distance definition.
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4 Simulations

In this section, we perform simulations by generating two distinct continuous phenomena,
each observation history consistently following one of the two phenomena. Specifically, an
observation is the value of the corresponding phenomenon at the time of measurement,
with added noise.

We model the characteristics of observation histories using exponential laws, such as
creation of new observation histories and their duration, and the observations made over
time. We vary the measurement noise to study the extent to which our solution can
identify similarities and group observation histories following the same phenomenon.

Firstly, we demonstrate that our distance definition better identifies observation his-
tories that follow the same phenomenon compared to a distance metric based on sets from
the literature.

Next, we adapt a solution from the literature to our constraints, aiming to group
observation histories while limiting the maximum differences between observations within
the same group. We show that an approach based on means, as proposed in this chapter,
is preferable.

4.1 Generation of Phenomena and Observation Histories

Generation of Phenomena

We define a phenomenon using a continuous function over time. In this study, we consider
two phenomena, each generated in the same way. Specifically, the generic function is given
by:

f(t) =
30∑
i=1

(αi cosωit+ βi sinϕit)

For each i ∈ {1, 30} and for each of the two phenomena, the constants αi and βi

are chosen from a uniform distribution U(−100, 100), and the frequencies ωi and ϕi are
chosen from a uniform distribution U(0, 2π

30 ) (ensuring a minimum oscillation period of 30,
limiting the variability). Then, we rescale the function to the range [−1, 1] (compressing
the phenomena values into a small value segment). We keep the same phenomena for all
the simulation parts, and they are depicted in Fig. 6.5.
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Figure 6.5: Phenomena: (a) in their entirety, (b) zoomed between t = 0 and 200.
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Generation of Observation Histories

Each sensor follows one of the two phenomena, always the same one, and sends a noisy
observation of the phenomenon, with Gaussian noise of standard deviation σ, i.e., N (0, σ).
In this chapter, we study the impact of noise on a solution’s ability to cluster sensors
belonging to the same phenomenon. For this reason, we conduct a sampling of 500
simulations at constant intervals for σ ∈ [0, 0.5] (keeping in mind that the values of the
phenomena are bounded within [−1, 1]).

For a single simulation (i.e., a measurement noise level of σ), a new set of sensors’
observations is generated. This set of observations is then used for all the compared
methods.

The arrivals, departures, and transmission instants of the sensors are generated ac-
cording to statistical laws. New sensors enter the environment over time, following a
Poisson distribution with a parameter of λ = 0.1, and each of them follows one of the two
phenomena with equal probability. The duration of a sensor’s stay in the environment
follows an exponential distribution with a parameter of µ = 0.01. While in the environ-
ment, a sensor transmits observations following a Poisson distribution with a parameter
of γ = 1.

We terminate the simulation at t = 1000. To avoid sensors that only have zero common
definition intervals with other sensors (which can occur initially when few sensors are
present), we consider only sensors that are still active after t = 200.

Given that the average duration of a sensor in the environment is 1
µ

= 100, it is
noteworthy that there are a considerable number of pairs of sensors with zero overlapping
definition intervals.

From this scenario, we analyze the observation histories, where an observation his-
tory is defined as the set of observations generated by a sensor during its time in the
environment. Our objective is to group sensors that track the same phenomenon.

4.2 Kriging Parameter Settings

The kriging requires fitting the experimental variogram to the variogram model. We have
chosen the Gaussian model defined in Eq. (6.1). In the survey [PWG13], it was established
that the choice of variogram model is relatively unimportant compared to the parameters
associated with this model.

In our simulations, we used the Pykrige package in Python, which we utilized to create
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kriging interpolations. This module can estimate the parameters of nugget n, sill s, and
range r based on a given variogram model. However, since the observation histories are
randomly generated with random measurement noise, the parameter estimation was not
always accurate. In some cases, the parameter estimation led to very strong variations in
the interpolation (e.g., small range r), while in other cases, it resulted in a nearly linear
interpolation (e.g., very large range r).

To address this issue, for a given simulation, assuming that all compared observation
histories have the same underlying form (since they are generated using the same random
laws), they should be interpolated with the same variogram. To achieve this, for a given
simulation, we fix the parameters n, s, and r that will be the same for all observation
histories.

For one simulation, for each observation history i, we estimate the triplet of parameters
ni, si, and ri using the fitting function provided by the PyKrig package. Consequently,
for each parameter, we define the value for the variogram model across all observation
histories in the simulation as the median value of the estimated parameters. For example,
we set the range r as the median value obtained from the set of estimated ranges ri, and
this value is chosen for all observation histories.

4.3 Evaluation of the Similarity Metric

Let’s begin by evaluating our choice of similarity metric based on interpolation. We
compare our method to the state of the art and show its superiority.

4.3.1 Comparative Distance: Jaccard Distance

According to the state of the art presented in Chapter 3 Section 3, the only similarity
metric that can compare the observation histories considered here is the one based on
value sets. In particular, only the Jaccard distance can be directly applied to our case,
and is proposed in [APM09].

The Jaccard score counts the proportion of common values between two value sets. If
θ1 and θ2 represent two value sets of observations from an observation history, then the
Jaccard distance is defined as:

dJaccard(θ1, θ2) = 1 − |θ1 ∩ θ2|
|θ1 ∪ θ2|
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In our scenario, the values of observations are continuous. To allow for common values
between two observation histories, we discretize these values. While evaluating the per-
formance of the Jaccard metric (detailed in the performance evaluation) for time steps of
0.001, 0.005, 0.01, and 0.05, we select a time step of 0.005 as the visually optimal choice
(with little difference from the time steps of 0.001 and 0.01).

4.3.2 Performance Evaluation

Methodology for Similarity Metric Comparison

We evaluate our distance based on interpolation and mean magnitude difference in com-
parison to the Jaccard distance. The objective of such distance metric is to give a large
distance for sensors that follow different phenomena and a small distance for those that
follow the same phenomenon.

For each simulation and chosen distance metric, we retain all the existing distances
computed between pairs of sensors. We categorize these distances into two groups: those
calculated between sensors that follow the same phenomenon and those between sensors
that follow different phenomena. It is worth noting that in the majority of cases (on
average 80%), we cannot calculate a distance because the common definition interval
durations are null.

For each distance metric, as shown in Fig. 6.6, we present the median distances along
with the 10th and 90th percentiles, both for cases where distances are computed between
sensors belonging to the same phenomena and when they are computed for sensors be-
longing to different phenomena.

Our objective is to obtain a distance metric where sensors following the same phe-
nomenon have relatively smaller distances compared to sensors tracking different phe-
nomena. Thus, we aim for medians that are significantly apart and for intervals between
the 10th and 90th percentiles to have minimal overlap.

Criticism of the Jaccard Distance

The Jaccard measure counts the number of times the observations are exactly the same
within a range of 0.005 in a possible value space of [−1, 1]. Since the observations are taken
at different time points, even if the observation histories follow the same phenomenon,
there is little chance that they transmit exactly the same observation value. This obser-
vation is reflected in Fig. 6.6(b). We observe a difference of 5.2 × 10−2 between the two
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Figure 6.6: Median, 10th and 90th percentiles of distances between sensors either from the
same or different phenomena.
(a): Using our metric based on interpolation and mean amplitude difference.
(b): Using the Jaccard distance.
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median distances for zero noise, which quickly drops to 8 × 10−3 for σ = 0.2. Similarly,
the range of distances between the 10th and 90th percentiles overlaps significantly. In
conclusion, the Jaccard measure fails to differentiate between pairs of sensors that follow
the same phenomenon from those that follow different phenomena.

Discussion on the Performance of our Similarity Metric

On the other hand, using our interpolation and average magnitude difference distance
yields significantly better performance, as shown in Fig. 6.6(a). For zero noise, the median
distance is 1 × 10−3 when the sensors are following the same phenomena, whereas it is
around 0.363 when the phenomena are different. Up to a noise level of σ = 4 × 10−2, the
percentile intervals do not overlap, indicating that 90% of the distances for those following
the same phenomenon are lower than 90% of the distances calculated between different
phenomena.

Starting from σ = 0.16, the interval containing 80% of the median values (between the
10th and 90th percentiles) when following the same phenomenon is encompassed within
the interval when following different phenomena. This implies that the distances between
sensors belonging to the same phenomenon are mixed with the distances when the sensors
do not belong to the same phenomenon. This phenomenon occurs due to the substantial
dispersion of distances when sensors follow different phenomena. For instance, at σ =
0.16, the 10% − 90% interval size is 0.87 (compared to 0.06 when sensors track the same
phenomenon).

The medians still remain relatively far apart. For example, at σ = 0.38, the median
distance between sensors following the same phenomenon is 9.1×10−2, compared to 0.249
when they follow different phenomena.

From σ = 0.38, we observe that the distances become much more variable, reaching
maximal amplitudes of 103, which is unrealistic for observations within a constrained
value range [−1, 1] with a noise standard deviation lower than 0.5. This phenomenon is
due to the fragility of the interpolation method, which struggles to interpolate accurately
when points close in time are relatively far apart due to high noise levels.

4.4 Evaluation of the Clustering Solution

We now proceed to assess the performance of our clustering solution based on the con-
structed similarity metric. We develop a concurrent clustering method that aims to



4. SIMULATIONS 110

minimize the maximum difference between interpolations within the same cluster. We
demonstrate the superiority of our solution, which relies on the minimization of average
differences.

4.4.1 Comparative Solution: Limiting the Maximum Distance Within a Clus-
ter

Our solution is built to group sensors by seeking similar mean behaviors, and consists of
two main components. Firstly, it employs a distance metric based on the interpolation
of observation histories through kriging. This metric measures the difference in average
magnitude between two interpolations over their common definition interval. Secondly,
it utilizes an iterative hierarchical clustering method, merging clusters iteratively by se-
lecting the smallest inter-cluster distance. This inter-cluster distance is defined as the
weighted average of distances between sensors (using our distance definition) where the
weights correspond to the duration of common presence between the compared sensors.

We propose to compare our solution to an approach extracted from the literature,
specifically the solution proposed in [CKJ05; LWP07; TM06]. In these references, the
sensors transmit observations at exactly the same time points. Two sensors are defined as
similar if the maximum amplitude difference between their observations does not exceed a
threshold. The sensors are grouped so that all pairs of sensors are similar within a group.

Itis essential to note that the assumptions underlying these references differ from those
we have outlined in this chapter, which is why we propose a comparative solution inspired
by these references. To facilitate a meaningful comparison between our approach and the
one proposed in the literature, we retain some aspects of our methodology. The aim of
this comparative solution (the same goal of the state-of-the-art proposal) is to restrict the
maximum magnitude difference between all sensors interpolations within a cluster.

Hence, for the definition of distance, we maintain the same kriging-based interpolation
method for observation histories while redefining the distance between two interpolations.
Additionally, this new approach also relies on hierarchical clustering but employs a dif-
ferent linkage method.

Distance Based on Max Magnitude Difference

For this comparative solution, we retain the same interpolations made by kriging for
this distance definition. The new distance is defined by the maximum deviation between
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the two interpolations. According to the duration of the common definition interval
[a(i, j), b(i, j)] defined in Eq. (6.5), the distance dinterp-max(i, j) is defined as follows:

dinterp-max(i, j) = max[|θ̂i(t) − θ̂j(t)|, t ∈ [a(i, j), b(i, j)]]

Complete Linkage Method for Hierarchical Clustering

We choose to keep the same clustering algorithm as the solution proposed in this chapter
and utilize the complete linkage [GR17]. This linkage method defines the distance between
two clusters as the maximum existing distance between each pair of objects from different
clusters:

D(I, J) = max{d(i, j), d(i, j) ̸= None, i ∈ I, j ∈ J}

If clusters I and J are merged, the distance between this new cluster and any other
cluster K is defined as the maximum distance between I and K, and J and K:

D(I + J,K) = max{D(I,K), D(J,K)}

In cases where one of these distances is None, the other one is used, and if both are None,
the distance remains None.

Since, iteratively, the sensors group together while adhering to this rule, when clusters
I and J are merged, this distance is greater than any distances between sensors belonging
to the same cluster. For any cluster K present at this stage (including cluster I + J), it
holds that ∀k1, k2 ∈ K,D(I, J) ≥ d(k1, k2).

Furthermore, the distance between sensors is determined by the maximum magnitude
difference between their interpolations. Ultimately, the distance between two clusters
that have just merged establishes a threshold. This threshold ensures that, for any pair
of sensors within the same cluster, the amplitude difference between the interpolations
does not exceed this distance.

Overall, following the initial principle outlined in the literature, the method we are de-
veloping limits the maximum magnitude difference between any pair of sensors belonging
to the same cluster.

4.4.2 Threshold of 5 Clusters for the Agglomerative Hierarchical Clustering

We need to define a stopping condition for the hierarchical clustering algorithm to stop
merging two clusters.
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The solutions we are comparing are both based on the ascending hierarchical cluster-
ing method, and we want to compare them on the same evaluation ground. Since the
distances, as well as the linkage methods, are different, we do not fix a distance-based
threshold.

Therefore, we choose to opt for a threshold linked to the maximum number of clusters.
The ideal threshold is to obtain 2 clusters, with, in the best case, one cluster containing
the sensors following the first phenomenon, and the second containing those following the
second phenomenon. However, as visible in the previous performance section, there are
some pairs of sensors that follow different phenomena and have a very low distance: the
values they return and that are interpolated are very close on their common definition
interval. In this case, they would early be grouped. These groups formed by sensors fol-
lowing a different phenomenon would, a priori, have less similarity with sensors following
one of the two phenomena. Therefore, we deliberately increase the desired number of
clusters to isolate these small groups of sensors that were grouped together by mistake.

It is worth noting that in most cases, hierarchical clustering of sensors works well.
These precautions are taken due to the large number of simulations and the random
dimension of these simulations.

Thus, we arbitrarily impose the minimum number of clusters to be 5. In this case,
this choice is not optimal (as explained, the optimal number is 2 clusters), but it is a
compromise to obtain sufficiently consistent groups while allowing the isolation of groups
of sensors that were initially grouped incorrectly.

It should be noted that in a more performant real-world implementation, one would
prefer to apply a fixed or adaptive distance threshold.

4.4.3 Performance Evaluation

Methodology for Clustering Comparison

To assess the performance of a clustering solution, we evaluate the clustering results with
respect to the true membership of sensors to the corresponding phenomena, called ground
truth. For this purpose, we employ the Rand index proposed in [Ran71]. This metric
quantifies whether, on average for a pair of objects, the two clustering solutions make the
same choice. For any pairs of sensors, if both clustering solutions separate the two sensors
or assign them to the same group, the score is 1; otherwise, the result is 0. The average
is calculated over all pairs of objects to obtain a similarity score between 0 and 1.
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Mathematically, let (i)1≤i≤N be the set of sensors, (I)I∈I be a set of clusters (or a
partition) created by one clustering method, and let the ground truth represent another
clustering method (J)J∈J. Then, the similarity between I and J, denoted by c(I, J), is
calculated as:

c(I, J) =
∑N
i<j ϵi,j(I, J)(

N
2

)
where

ϵi,j(I, J) =



1 if there exist I ∈ I and J ∈ J such that i et j are both in I and J

1 if there exist I ∈ I and J ∈ J such that i is in both I and J while j
is in neither I or J
0 otherwise

We compare two clustering solutions, that are based on two paradigms: one that
groups by seeking similar mean behaviors, and the other that groups by ensuring that
within a group, the maximum deviations between the interpolations are limited. We used
the same hierarchical clustering method for both solutions, setting the stopping rule to
5 groups to ensure fully comparable results. In Fig. 6.7, the clustering performance is
visualized while varying the sensor measurement noise.

Comparison Results

Since both solutions rely on the same interpolations, when the noise becomes too sig-
nificant (σ ≥ 0.38), the performance are no longer reliable, and the similarity tends to
converge towards random clustering performance, i.e. 0.5.

We propose to visualize the trends in the performance of each method using linear
regression, which we perform on noise levels σ < 0.3. The performance interpolation of
a clustering method concerning a standard deviation σ is denoted by fclustering method(σ),
thereby yielding the following regression equations:

finterp-mean-tuned(σ) = −0.82σ + 1.00
finterp-max-complete(σ) = −0.70σ + 0.88

(6.9)

The method based on the maximum and complete linkage relies on interpolation for
distance calculation and seeks similarities in the definable interpolations. However, since
the observations are not taken at the same time points, there is measurement noise, and
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Figure 6.7: Similarity between ground truth and a clustering based on the observations
histories. Linear regression of performance for σ < 0.3.
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the two phenomena are very close and variable, making the choice of maximum difference
between all pairs of interpolations not an effective strategy. Based on the regressions
proposed in Eq. (6.9), we can assert that there is at least a superiority of 9.7 × 10−2 in
similarity for σ < 0.3 in favor of the method based on the mean, representing a 17%
minimum improvement.

In our previous conclusions in Section 4.3.2 regarding the evaluation of the distance
between sensors by calculating the mean difference of interpolations, we concluded that
from σ = 0.16 there was a significant overlap in distances when sensors followed the
same phenomenon and when they followed a different one. However, we can see that
the clustering method remains relatively robust to this, offering (based on the regression
results) a similarity of 0.87 between the clustering result and the ground truth when
σ = 0.16.

However, there is relatively high variability in the performance of the clustering meth-
ods. We interpret this variability as being influenced by the strict choice of 5 clusters and
the use of hierarchical clustering. Indeed, dividing the set of observation histories into
5 clusters by default, compared to the reference of 2 clusters, influences negatively the
results.

5 Conclusion and Perspectives

In this chapter, we proposed a method for grouping sensors based on their observations.
Our approach was designed to handle a pessimistic scenario where sensors come and go
over time, sending irregular and noisy observations of possibly different phenomena.

Firstly, we developed a similarity metric that accommodates irregular and non-synchronous
observations. We demonstrated that our distance metric effectively characterizes pairs of
sensors when they follow the same phenomenon versus a different one, outperforming the
Jaccard distance.

Additionally, we use a hierarchical clustering method that relies on our similarity
metric, accounting for variable and possibly null coexisting interval between two sensors.
Our proposed approach aims to find groups of sensors that are close on average. Compared
to a method inspired by the state-of-the-art, which seeks to limit the maximum difference
between observations within a cluster, our solution shows at least a 17% improvement in
terms of clustering performance.

However, there are still further analyses to be conducted, as we have explored only
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a portion of potential solutions. For example, alternative interpolation methods or dif-
ferent comparison metrics between two interpolations could be considered. Furthermore,
while we implemented hierarchical clustering methods, there is a vast array of clustering
techniques available that could be explored to enhance our approach.

Still, our findings in this pessimistic scenario highlight the feasibility of identifying
groups of similar sensors by analyzing their observations. Such an analysis enables the
application of observation collection schemes based on this similarity. For instance, the
Asynchronous 2-Level Round-Robin method presented in Chapter 5 could be utilized for
each identified cluster. An experimental study combining the three components of an ob-
servation collection scheme would further validate this approach of observation collection
scheme.
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Chapter 7

CONCLUSION AND RESEARCH

DIRECTIONS

1 Summary of our Works

Currently, there exists a plethora of mechanisms aimed at reducing sensor power con-
sumption. In this thesis, we have introduced a novel energy-saving mechanism based on
the efficient collection of sensor observations through similarity. This approach relies on
deploying a large number of sensors, a common paradigm experiencing a resurgence due
to the development of IoT-enabled networks, referred to as MIoT.

We have devised the concept of an observation collection scheme, which relies on
the principle of similarity to reduce the volume of observations transmitted by sensors
and thereby preserve their energy resources. To expound on this method, we conducted
the first thorough investigation of the existing literature, representing a proposal into
three primary components. Specifically, the similarity metric enables the assessment of
similarity between sensors based on available information. Using this similarity metric,
the covering subset algorithm generates one or more subsets of sensors, each capable of
fulfilling monitoring requirements. Finally, the activation allocation method distributes
the observation load among sensors. For each of these components, we conducted a
thorough examination of existing proposals, significantly influencing the development of
our contributions.
• For the similarity metric component, we have concluded that it is crucial to rely on
sensor observations-based similarities, this allowing for the consideration of realistic and
complex environments. However, we found that there were no suitable proposals in the
current literature to evaluate similarity between sensors based on their observations when
transmissions are not synchronized.

In response to this, we proposed in Chapter 6 a similarity metric that utilizes kriging
as an interpolation tool for the observations and evaluates the mean magnitude differ-
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ence between interpolations over the common time intervals between two sensors. We
demonstrated the superiority of our approach over the state-of-the-art Jaccard distance.
However, we also observed that under highly uncertain conditions (significant noise), the
evaluation of similarity did not yield satisfactory results, as the interpolation method was
no more accurate.
• Regarding the covering subset algorithm component, our state-of-the-art study led to
the conclusion that it is more appropriate to develop algorithms that involve the entire
set of sensors as multiple covering subsets rather than seeking a single covering subset as
the solution. Additionally, we found that a clustering-based approach is more suitable
than the disjoint covering approach. The clustering method can handle the heterogeneity
of similarity links and create sensor groups of varying sizes, making it more suitable in
our context of MIoT deployment.

In Chapter 6, we proposed a hierarchical clustering method and adapted the link-
age method to account for the varying common presence time between two sensors. We
compared our solution to the most common state-of-the-art method that aims to form
groups by minimizing the maximum observation deviations within each group. The sim-
ulation results demonstrated that attempting to limit the maximum deviations between
sensors within the same group led to decreased performance in our context characterized
by high variability, noisy observations, and the possibility of sensors following different
yet closely related phenomena. In contrast, our clustering-based solution, which focuses
on grouping sensors with similar average observations, proved to be more reliable under
such challenging scenarios.
• Finally, concerning the activation allocation method, the most suitable existing solutions
from the literature propose a round-robin-based approaches, where covering sensor sub-
sets activate at constant time slots, taking turns to transmit instead of all transmitting
simultaneously. However, these literature methods tend to be quite rudimentary and not
well-suited to the uncertainties encountered in a MIoT deployment.

We then proposed two solutions, each discussed in separate chapters. The goal of
these approaches is to build upon a clustering solution. Once a cluster of similar sensors
is identified, we aim to distribute the observations load evenly among the sensors. Specif-
ically, we sought to receive the same quantity of messages regardless of the number of
similar sensors within the cluster. Since the number of sensors and evaluated similarity
can vary over time, the groups may also change over time. As a result, we focused on
adapting the activation periods relative to these changes, minimizing the costs associated
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with period adjustments.

In a preliminary version (Chapter 4), we presented a formalism for a function to
update the activation periods. Our proposed method allows for the dynamic inclusion
of new sensors and ensures strictly regular reception, controlled by the time interval
between receptions and the number of sensors transmitting in round-robin mode. This
study highlighted the trade-off between tracking quantity and system lifetime, which is
controlled by the two parameters of our function. We demonstrated that to achieve the
best balance between these objectives, it is generally preferable to activate only a subset of
sensors in the round-robin process. Activating all sensors in round-robin mode becomes
costly when dealing with a large set of them, as including/excluding a sensor requires
adapting the activation periods of all other sensors.

In Chapter 5, we propose a method that ensures a constant quantity of observations
over time, while efficiently including and excluding sensors with minimal period change
costs. We also relax the strict periodic reception constraint imposed by the previous
method since achieving strict temporal synchronization for a fleet of sensors is costly in
practice. Through our solution, we demonstrate that minor changes to individual sensor
periods and the relaxation of strict message reception have minimal impact on tracking ac-
curacy. Additionally, our approach requires significantly fewer period adjustments, which
is advantageous in terms of sensor power consumption and network downlink overhead.
We present theoretical results on the estimation of tracking quality based on the function
parameter, helping to optimize this parameter effectively.

This dissertation has contributed to formalizing a novel energy-efficient mechanism
for the IoT, enabling more efficient transmission of sensor observations. This method
is applicable within the context of MIoT, where highly constrained devices are widely
distributed, for instance in everyday objects. While this mechanism complements existing
energy-efficient approaches for IoT, it extends the capability to encompass a broader
range of sensors, including those with extremely limited capacities transmitting on highly
constrained networks — a feat not achievable by all existing energy-efficiency mechanisms.
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2 Limitations and Perspectives

2.1 Need to Address All the Fixed MIoT’s Points of Interest

We have developed proposals that address most of the points of interest for a MIoT
deployment that we initially defined in Chapter 2 Section 5. However, our solutions still
fall short of satisfying all the specified expectations.

Regarding the activation allocation methods presented in Chapter 4 and Chapter 5,
we extensively worked on handling variations in the number of sensors, with the aim of
minimizing downlink transmissions. In Chapter 5, we tackled the challenge of downlink
packet loss, wherein the solution no longer requires two consecutively well-received orders
from the terminal. For the similarity metric and the covering subset algorithm, our
work in Chapter 6 also attempted to account for significant variations of the number of
present sensors. By utilizing a data-based similarity approach, we effectively managed
complex and realistic environments. Our solution handled clock drift issues and noisy
sensor measurements. The clustering structure allowed for easy isolation of poorly placed
sensors, although this aspect was not thoroughly explored in the simulations.

However, notably for the similarity metric and the covering subset algorithm compo-
nents, we did not account for potential variations in similarity between sensors over time.
Such situations may arise when a sensor becomes corrupted, and we need to exclude it
from its group of similar sensors, or when the environment undergoes changes, prompting
the grouping or separation of similar sensor groups. One possible approach to address this
limitation is to employ online change detection methods, such as using sliding windows
to identify evolving similarities over time.

Regarding the activation allocation methods, we made the assumption of perfect mes-
sage reception, but in reality, observations are not always received, and there can be a
need for including this in the solution. We will discuss this aspect further in Section 2.3.3
but adapting the quantity of sent messages to the proportion of successfully transmitted
messages can be a solution to maintain a desired quantity of received observations.

2.2 Benefits of Establishing a Testbed

The work presented here remains at the simulation stage, representing a proof of concept.
Similar methods from the state of the art have already demonstrated the relevance of such
approaches in testbeds, showing that using the similarity principle can significantly reduce
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the number of transmitted messages without significantly affecting tracking quality.
To further validate our approach, it would be pertinent to conduct a real-world study

of this scenario. While we attempted to create a realistic scenario for phenomena, sensor
transmissions, and observation quality, our similarity and clustering solutions have, so
far, been evaluated on synthetic data, which does not completely validate the proposal.
A comparative study of multiple similarity and clustering solutions on real data would
provide concrete conclusions on the optimal choices for each component. This real-world
testbed would allow us to observe the performance of our proposed solutions in practical
scenarios, thus strengthening the validity and applicability of the methodology.

Up to this point, the experiments conducted in the literature have primarily focused
on recognizing the potential for reducing sensor observations without implementing a con-
crete policy for changing sensor activation periods. Applying such policy in an experiment
would inevitably lead to technical challenges. For instance, issues related to real traffic
congestion in both uplink and downlink could arise. Additionally, it is crucial to assess the
real-time reprogrammability of sensor activation periods after their activation, especially
in the context of LoRaWAN Class A devices.

2.3 Generalizing the Problem: Managing Heterogeneous Sen-
sors

Throughout this thesis, we assumed a single network with standard sensors transmitting
standardized observations. However, in reality, we can encounter different development
phases, with energy-linked sensors transmitting over wired networks and coexisting with
other deployments using different sensor brands and networks.

2.3.1 Different Networks, Different Data Formats

Today, multiple types of networks coexist without the possibility of interconnection. More-
over, they transmit data in formats that are different from one sensor to another. These
challenges can be characterized as interoperability issues and are theoretically addressed
in [TDT07; Tol03] as the first two levels of system interoperability. These challenges are
not fully addressed yet and are critical for the realistic implementation of the solutions
we consider.
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2.3.2 Integration of Sensors Connected to an Energy Source

It is crucial to distinguish between sensors that are linked to an energy source and those
that are not. For sensors connected to an energy source, the number of transmissions does
not impact their lifespan. Thus, they can transmit observations more frequently without
energy constraints.

Integrating these energy-source-connected sensors into a dense sensor fleet requires the
application of similarity metric components and search for covering sets to establish links
of similarity with other sensors. These similar sensors (powered by batteries) can preserve
their energy more effectively and serve as a means of validating observations transmitted
by sensors with an infinite energy source. They can take over if the sensor connected to
an energy source becomes corrupted.

2.3.3 Diverse Transmission Efficiencies

The transmission performance of sensors (packet delivery ratio for instance) varies based
on the transmission mode and sensor location.

Integrating such parameters into observation collection management policies is pos-
sible. At least two types of strategies can be envisaged: those based on pure energy
efficiency and those based on pure load distribution.

One approach involves optimizing the overall consumption by prioritizing sensors with
cost-effective transmissions. On the other hand, this strategy may overconsume these
efficient sensors, resulting in the depletion of batteries, leaving only the lower-quality
sensors operational.

Another choice is to distribute the transmission load among all sensors at all costs.
This involves increasing the message sending rate of sensors with lower transmission prob-
abilities to ensure an adequate message quantity is received, albeit potentially accelerating
their energy depletion. While this scenario could lead to a shorter system lifespan due to
increased consumption, it does not excessively burden the more reliable sensors.

2.3.4 Varying Sensor Accuracy

The brand and quality of a sensor necessarily influence the precision of the measurement
tool. Even with standardized objects, precision can vary from one object to another. It
is relevant to handle this variability in sensor management policies.

In a broad sense, under assumptions of Gaussian noise (as considered in this thesis),
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increasing the number of observations enhances precision. Consequently, for a given
precision requirement, a more accurate sensor would need to transmit fewer observations
than a less accurate one.

Similarly, akin to the diversity in transmission efficiency, we can outline two primary
strategies: those emphasizing energy efficiency and those centered on load distribution.

One strategy could prioritize sensors with high accuracy, as fewer transmissions would
be necessary to achieve a certain level of tracking precision. However, once these high-
precision sensors deplete their batteries, only the remaining less-precise sensors would
continue functioning, inevitably leading to a performance decline.

Conversely, we can pursue a strategy of precision balance, wherein less accurate sensors
transmit more frequently to attain the same accuracy level as the more accurate sensors.
This approach would allow precise sensors to assist in calibrating less accurate ones, which
are more susceptible to drift and fixed errors. Nonetheless, this solution is less energy-
efficient due to the increased transmission demands on the sensors.
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Appendix A

RÉSUMÉ EN FRANCAIS

Les objets connectés, ou "Internet of Things" (IoT), sont couramment utilisés pour sur-
veiller diverses grandeurs physiques. Dans l’approche novatrice du Massive IoT (MIoT),
on imagine un déploiement massif de capteurs à faible coût alimentés par batterie in-
tégrés à des objets du quotidien, par exemple sous chaque plaque de faux plafond dans
un bâtiment, dans le but de réduire les coûts de déploiement et de maintenance. Cette
thèse se concentre sur le développement de mécanismes visant à réduire la consommation
d’énergie des capteurs, dans le but de prolonger la durée de vie de ce type de déploiement
IoT. Plus précisément, nous étudions dans cette thèse les méthodes qui s’appuient sur la
similarité entre capteurs pour gérer la collecte d’observations de capteurs de manière plus
efficace.

Dans Chapter 2, le scénario de déploiement Massive IoT est défini, mettant en lumière
les hypothèses relatives aux capteurs, au réseau, et à l’environnement étudié. Les capteurs
sont considérés comme étant déployés en grand nombre, ce qui implique qu’ils sont proches
les uns des autres et susceptibles de retourner des observations très similaires. L’objectif
est d’identifier ces liens de similarité entre les capteurs pour gérer efficacement leurs
transmissions. Par exemple, une approche consiste à recevoir uniquement les messages
d’une sous-partie de l’ensemble des capteurs, que l’on appelle un ensemble couvrant. Les
autres capteurs restent alors en mode veille, tout en garantissant que les exigences de
précision de suivi de l’environnement sont respectées. Pour répondre aux contraintes des
capteurs et du réseau, une solution de gestion des observations des capteurs est définie
par la mise à jour de la période de transmission d’un capteur à la suite de sa transmission
de message.

Ensuite, en Chapter 3, une étude est menée sur les méthodes existantes issues de
l’état de l’art. Ces méthodes partagent l’application du principe de similarité entre les
capteurs pour réduire la quantité de messages transmis par la flotte de capteurs. Cette
étude regroupe des travaux provenant de différents domaines de recherche. À ce jour,
aucune étude de cette envergure n’a été entreprise dans la littérature. L’un des domaines
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étroitement liés vise à réduire le volume de messages transmis en utilisant des stratégies
de planification des observations des capteurs. Ces travaux établissent des liens de simi-
larité entre deux capteurs qui transmettent des observations suffisamment similaires. À
partir de ces liens, des sous-groupes de capteurs couvrants sont créés, de sorte que chaque
sous-groupe englobe tous les capteurs en utilisant l’extension de leurs liens de similarité.
Au lieu de permettre à tous les capteurs de transmettre en permanence, les sous-groupes
couvrants transmettent en alternance. Un autre domaine étroitement lié à notre problé-
matique vise à obtenir une couverture spatiale cible en utilisant un minimum de capteurs
pour répondre à cette exigence de surveillance. Par exemple, les capteurs couvrent une
zone grâce un rayon de couverture, et on cherche à couvrir un pourcentage minimum
de l’environnement en utilisant un minimum de capteurs. Pour unifier l’ensemble de ces
contributions, nous décomposons ce type de méthode en trois composantes principales : la
métrique de similarité, l’algorithme de sous-ensemble couvrant, et la méthode d’allocation
d’activations. La métrique de similarité est une métrique réelle qui quantifie la proxi-
mité entre les capteurs, en se basant sur les informations connues des capteurs. À partir
de cette métrique de similarité, l’algorithme de sous-ensemble couvrant construit
un ou plusieurs sous-ensembles de capteurs, où chaque sous-ensemble garantit la satisfac-
tion des exigences de surveillance de la grandeur physique. Enfin, en s’appuyant sur les
sous-ensembles de couverture, la méthode d’allocation d’activations définit comment
répartir la charge des transmissions d’observations entre les capteurs. Pour chaque com-
posant, nous présentons ce qui a été proposé dans la littérature, en identifiant les limites
existantes.

Les chapitres suivants constituent les contributions de la thèse. En particulier, nous
avons étudié la méthode d’allocation d’activation dans Chapter 4 et Chapter 5 ; la mesure
de similarité et l’algorithme de sous-ensemble couvrant sont étudiés dans le chapitre Chap-
ter 6. Nous présentons ainsi les conclusions et limites tirées de notre étude de la littérature,
ainsi que nos propositions de réponse.

• En ce qui concerne la métrique de similarité, dans la littérature, elle est calculée soit à
partir de la position géographique des capteurs, soit à partir des observations retournées
par les capteurs. Notre étude conclut qu’il est préférable de s’appuyer sur une métrique
basée sur les observations retournées par les capteurs, car elle permet de mieux décrire des
environnements complexes. Les solutions existantes traitent un historique d’observations
comme un ensemble de valeurs, ignorant la dimension temporelle des observations, ou
supposent que tous les historiques d’observations sont effectués simultanément. Ces deux
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approches présentent des limitations significatives, notamment la perte de précision en
supprimant la dimension temporelle des observations, ainsi que la complexité en pratique
de la synchronisation des capteurs pour obtenir des historiques d’observation simultanés.

Nous avons ainsi proposé en chapitre Chapter 6 une mesure de similarité basée sur
les observations qui contourne ces limitations. À partir d’un historique d’observations
quelconque, nous définissons une méthode interpolation de krigeage, prenant en compte
d’éventuelles erreurs de mesure. La métrique de similarité entre deux capteurs est en-
suite calculée comme la différence moyenne entre les interpolations sur leur intervalle de
définition commun. Nous avons comparé notre solution à la métrique de Jaccard, qui
évalue la proportion de valeurs similaires entre deux ensembles de valeurs (en ignorant
la dimension temporelle), et nous montrons sa supériorité à minimiser la distance entre
les capteurs suivant un phénomène similaire et maximiser la distance entre les capteurs
suivant un phénomène différent.
• En ce qui concerne l’algorithme de sous-ensemble couvrant, les méthodes existantes
proposent soit de rechercher un sous-ensemble couvrant, soit de partitionner l’ensemble
des capteurs en sous-ensembles couvrants, soit de créer des clusters de capteurs similaires,
où chaque capteur couvre les autres capteurs appartenant au même cluster. Nous avons
conclu que pour s’adapter aux variations du nombre de capteurs et des similarités, il était
préférable d’opter pour une structure de clustering.

Dans le chapitre Chapter 6, nous présentons une méthode de clustering hiérarchique
en définissant la distance inter-cluster comme la distance moyenne entre les capteurs,
pondérée par la durée de leur intervalle de définition commun. Cette approche accorde
davantage d’importance aux paires de capteurs présents ensemble sur des durées plus
longues, ce qui renforce la fiabilité de la distance calculée. Nous avons comparé cette so-
lution (en utilisant notre métrique de similarité basée sur l’interpolation) a une méthode
adaptée d’une référence de la littérature. Cette méthode de comparaison vise à faire des
groupes de capteurs similaires, en limitant la différence maximale entre les interpolations
de toutes paires de capteurs appartenant au même cluster. Nous montrons la supério-
rité de notre proposition en termes de capacité à grouper correctement des capteurs qui
suivent un même phénomène. Ainsi, nous soulignons qu’il est plus pertinent d’évaluer les
comportements moyennement similaires dans un environnement où les observations sont
effectuées à des intervalles irréguliers et sont soumises au bruit.
• Enfin, en ce qui concerne la méthode d’allocation d’activations, les solutions de la litté-
rature proposent soit d’utiliser un seul ensemble couvrant pour répondre aux besoins de
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monitoring, soit de faire tourner sous forme de round robin strict les ensembles couvrants
construits. Nous avons interprété comment ces méthodes sont appliquées dans notre
réseau à fortes contraintes, c’est-à-dire sous la forme de la mise à jour de la période de
transmission d’un capteur qui vient de transmettre. Nous avons conclu qu’il est préférable
d’utiliser la totalité des capteurs disponibles dans la solution (méthodes round-robin), car
cela nécessite moins d’ordres à donner aux capteurs et permet d’identifier plus facilement
qu’un capteur devient aberrant en le comparant aux capteurs similaires.

Nous proposons deux méthodes qui permettent, au sein d’un groupe de capteurs si-
milaires, de recevoir une quantité constante de messages par unité de temps, tout en
prenant en compte que le nombre de capteurs varie au cours du temps. La première
méthode, développé en Chapter 4, permet de recevoir des messages à intervalle constant
cible, en utilisant un round-robin strict entre un nombre maximum de capteurs. Nous
concluons qu’un compromis doit être trouvé entre la durée de vie du système et la préci-
sion du suivi, et nous montrons qu’il est préférable d’utiliser uniquement un sous-ensemble
de capteurs en round-robin pour obtenir une solution optimale. Dans une seconde mé-
thode, décrite en Chapter 5 nous assouplissons la réception stricte des messages pour
la rendre plus facilement applicable, et nous proposons des mécanismes nécessitant un
nombre limité d’ordres de changement de périodes pour maintenir la propriété de récep-
tion d’observations à intervalles de temps constants. La première solution présente des
propriétés mathématiques d’optimalité en termes de précision. La seconde solution ob-
tient presque les mêmes performances en expérimentation, tout en demandant un nombre
bien moindre de changements de périodes.
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PROOFS OF BOUNDS AND

EFFECTIVENESS IN CHAPTER 4

In this part of the appendix, we provide the proofs for the propositions presented in Chap-
ter 4. Firstly, we present the proof of the upper bound of the sample span for an effective
allocation function in Appendix B.1. Next, in Appendix B.2, we demonstrate that the de-
veloped function fM,τ is effective on the instants of period τ . Lastly, we establish bounds
for the sample span of fM,τ in Appendix B.3.

B.1 Upper Bound of an Effective Period Allocation
function

For the analysis, we explicit the scenario Π, considering that the sensors entering the
environment are indexed in ascending order of arrival. For the n incoming sensors in the
environment, they are indexed as (i)0≤i≤n−1, t0 < t1 < . . . < tn−1.

B.1.1 Preliminaries

Our objective is to characterize the sample span in terms of the number of period changes.
To achieve this, we introduce the terms of number of period changes made by a sensor i
during the monitoring duration using an effective period allocation function f , that we
denoted by ri(f).

Proposition 8. The sample span of a period allocation function f , effective over the
instants of period τ is:

L(f,Π) =
n−1∑
i=0

⌊
ei − ce − crri(f)

ce

⌋
(B.1)
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Proof. For a sensor i, it consumes energy during the initial activation (ce) and also the
period changes (crri(f)). Its remaining energy (ei − ce − crri(f)) is consumed over the
instants of period τ . Hence, the number of activation on these time steps corresponds to⌊
ei−ce−crri(f)

ce

⌋
.

Since the activations on instants of period τ between sensors are disjoint and not
discontinuous, the number of observations is exactly the sum of the observations made by
each sensor at the instants.

Lemma 1. Let f and g be 2 effective period allocation functions. If ∀i, ri(f) ≥ ri(g),
then the sample span of g is greater than that of f : L(f,Π) ≤ L(g,Π).

Proof.

ri(f) ≥ ri(g) =⇒
⌊
ei − ce − crri(f)

ce

⌋
≤
⌊
ei − ce − crri(g)

ce

⌋

This being true for all i, by summation and from Proposition 8, we have that L(f,Π) ≤
L(g,Π)

B.1.2 Demonstration of Eq. (4.2) (Page 65)

Proof. We want to prove that all period allocation functions are upbounded by
∑n−1

i=0 ei−nce−(2n−1)cr

ce
.

We can represent an inequality in order to describe the sample span of a period
allocation function:

(∑n−1
i=0 ei) − nce − (2n− 1)cr

ce
≥

n−1∑
i=0

⌊
ei − ce − cr(1 + 1i>0)

ce

⌋

Hence, we need to prove that the minimum number of period changes is 1 + 1i>0.
In the proposition, it is assumed that the sensors do not come alive at the instants of

period τ i.e.
ti ̸≡ t0[τ ] (B.2)

Then, let us consider f an effective period allocation function. We will show that
∀i, ri(f) ≥ 1 + 1i>0.
-i = 0. Necessarily, f change at least one time the period of the sensor 0. Then r0(f) ≥ 1.
-i > 0. Let us suppose ri(f) < 2, then ri(f) = 1. We note p its period of activation. Since
f is effective, its first activation after initialization is on the time steps τ i.e. ti+p ≡ t0[τ ].
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But from (B.2), ti is not on the instants of period τ , hence the period p is not a multiple
of τ : ti + p ≡ t0[τ ]&ti ̸≡ t0[τ ] =⇒ p ̸≡ 0[τ ]. Looking at the following activation ti + 2p,
we come across an absurdity. Thus ri(f) ≥ 2.

Hence, ri = 1+1i>0 is the minimum number of changes for each sensor. From Lemma 1,
f has a lower sample span than a period allocation function with period changes equal to
ri = 1 + 1i>0:

L(f,Π) ≤ ∑n−1
i=0

⌊
ei−ce−cr(1+1i>0)

ce

⌋
≤ (

∑n−1
i=0 ei)−nce−(2n−1)cr

ce

B.2 Effectiveness of fM,τ Over the Instants of Period
τ

We first introduce some tools to track the behavior of sensors over time, and then propose
a proof of the effectiveness of the function fM,τ .

B.2.1 Sensor Representation Set

Definition 6. A sensor i alive at time t is represented by the state Ei(t), such that:

Ei(t) :=


ei(t) ≥ ce : remaining energy at time t
pi(t) > 0 : activation period
δi(t) > 0 : time before sending a message after t

(B.3)

Ei(t) := ∅ if the sensor i is not alive at time t (didn’t initialized yet or is dead).
We denote by Π(t) the set of alive sensors at time t, |Π(t)| is the quantity of alive

sensors at time t. For instance, we have that i ∈ Π(t) ⇔ Ei(t) ̸= ∅.
We define E(t), so that:

E(t) := (Ei(t))i∈Π(t)

The formalization of the state E(.) will help to prove that the function fM,τ is effective,
i.e. the activations of the sensors (except initializations) are on the instants of period τ .
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First of all, we can define E(.) until the first activation of the first sensor:

t < t0, E(t) = ()

E(t0) = (E0(t0)),& E0(t0) =


e0(t0) = e0 − ce − cr

p0(t0) = f(Π(t0))
δ0(t0) = f(Π(t0))

(B.4)

The initial activation period of the sensor is defined by f . The sensor consumes energy
for its first activation and the setting of its period: ce + cr. Then, from time t0, the next
activation occurs after a duration of f(Π(t0)).

Moreover, E(.) evolves over time, for each activation. We characterize the variations
from state E(t) to state E(t+ ∆t).

To clearly track the updates of activation periods, we will assume that sensors change
their activation period at most once between t and t + ∆t. More generally, we consider
∆t to be smaller than all activation periods:

∀i, ∆t ≤ pi

∆t ≤ f(.)
(B.5)

We now characterize the evolution from t to t+ ∆t under condition (B.5).

• If i is a sensor that is alive at time t, i.e. i ∈ Π(t). Moreover, if the sensor does not
activate between t and t + ∆t, δi(t) > ∆t. Then, the periods and energies states don’t
change. The duration before the next activation at time t+ ∆t is decreased by ∆t:

Ei(t+ ∆t) =


ei(t+ ∆t) = ei(t)
pi(t+ ∆t) = pi(t)
δi(t+ ∆t) = δi(t) − ∆t

(B.6)

• If i was already alive and activates between t and t + ∆t: 0 < δi(t) ≤ ∆t. Then, it
consumes an energy ce. Moreover, the function f is used to determine the new activation
period of the sensor. It will consume an additional energy cr if the defined period is
different from the current one. The sensor is represented in E(t + ∆t) only if it is alive
at t+ ∆t i.e. if it has enough energy to transmit again. In order to define a simple form
of Ei(t+ ∆t), we define the energy remaining in the sensor i at time t+ ∆t. ei(t+ ∆t) =
ei(t) − ce − cr1f(Π(t+δt)) ̸=pi(t) (1 is the indicator function).
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Then:

Ei(t+ ∆t) =


∅ , if ei(t+ ∆t) < ce
ei(t+ ∆t)
pi(t+ ∆t) = f(Π(t+ δt))
δi(t+ ∆t) = δi(t) − ∆t+ f(Π(t+ δt))

, else
(B.7)

• Finally, if a new sensor i comes alive between t and t+ ∆t, ti ∈]t, t+ ∆t], i ̸∈ Π(t), i ∈
Π(t+ ∆t) . In this case, f defines the activation period of i and:

Ei(t+ ∆t) =


ei(t+ ∆t) = ei − ce − cr

pi(t+ ∆t) = f(Π(ti))
δi(t+ ∆t) = ti − (t+ ∆t) + f(Π(ti))

(B.8)

In all these cases, if (B.5) is verified, then δ.(.) > 0.
As explained above, the notations are used here to help the proof of efficiency of fM,τ .

Thus, we use the following notations allowing simplification in the writings.

B.2.2 Characterization of the Sensor Set Over the Instants of
Period τ

Definition 7. We define the characterization of the sensor set over the instants
of period τ :

Ek := E(t0 + kτ)

In the same way, we define (Πk)k∈N := {Π(t0 + kτ), k ∈ N}.
For i ∈ Πk:

Ei,k := Ei(t0 + kτ) =


ei,k = ei(t0 + kτ)
pi,k = pi(t0 + kτ)
δi,k = δi(t0 + kτ)

.

From Definition 7, we mathematically define the effectiveness informally presented
in Definition 3 (page 64):

Definition 8. A period allocation function is said to be effective over the instants
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of period τ if, using characterization of the sensor set over the instants of period τ :

∀k ∈ N, |Πk| > 0 ⇒ ∃!i ∈ Πk : δi,k = τ

∀j ∈ Πk, j ̸= i ⇒ δj,k > τ
(B.9)

Then, its sample span L is defined by:

L := max{k, |Πk| > 0} + 1 (B.10)

B.2.3 Preliminaries and Proof Scheme for the Effectiveness of
fM,τ

First, we consider that the description of the algorithm is sufficient to assert that

Assertion 1. death-date is a list updated at each new activation, such that it corresponds
to the list sorted by ascending order of death of sensors whose relay is not already provided
by other sensors.

To prove the Proposition 2 (page 70), we propose a reasoning by induction. We prove
the statement called P (k):

Looking at the instant t0 + kτ :

• If the number of alive sensors does not exceed M , then the alive sensors activate
exactly on the next consecutive jτ instants, 1 ≤ j ≤ |Πk|.

• Otherwise, the jτ instants are covered for the first M instants by M sensors. The
next activation of the other sensors occurs at least Mτ after the death of the next
sensor. There is exactly one that activates Mτ after the death of the next sensor,
and all the rest activates after that time.

Mathematically, introducing the sensors not implied in the round-robin Ik = {i ∈
Πk, δi,k > Mτ}, P (k) can be mathematically written as:

-If |Πk| ≤ M, ∀j, 1 ≤ j ≤ |Πk|,∃!i ∈ Πk : δi,k = jτ

-Else,


∀j, 1 ≤ j ≤ M,∃!i ∈ Πk : δi,k = jτ

∃!i ∈ Ik : δi,k = next-death(k) − (t0 + kτ) +Mτ

∀i ∈ Ik, δi,k ≥ next-death(k) − (t0 + kτ) +Mτ
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Where next-death(k) represents the death time of the next sensor after t0 + kτ .
Thanks to the proof of P (k), we will directly conclude that fM,τ is effective on the

time intervals of length τ based on Eq. (B.9).

B.2.4 Demonstration of Proposition 2 (Page 70)

Proof. Proof by induction:
Initialization: We want to prove P (0). |Π0| = 1 ≤ M . fM,τ sets the period to τ , so

that δ0,0 = τ , hence P (0) is true.
Heredity: Assume P (k) is true for some k ≥ 0. We define n := |Πk|.
Disjunction of cases.

• If |Πk| ≤ M and |Πk+1| ≤ M .
· If there is no variation in the set of alive sensors, |Πk| = |Πk+1| = n ≤ M .

According to P (k), sensors become active over the next j instances where 1 ≤ j ≤ n.
For sensors that remain inactive until a subsequent instance, say 1 < j, there exists a
unique sensor i ∈ Πk such that δi,k = jτ , which consequently implies δi,k+1 = (j − 1)τ .

For the sensor that activates at time t0 + (k + 1)τ (i such that δi,k = τ), according
to the period update function Eq. (4.4), we have fM,τ = |Πk+1|τ = nτ , which means
δi,k+1 = nτ .

Finally
∀j, 1 ≤ j ≤ n,∃!i : δi,k+1 = jτ,

which means P (k + 1) is true.
· If a sensor with index l becomes inactive between states Ek and Ek+1, it means that
δl,k = τ and Πk+1 = n−1. Similar to the previous case, based on property P (k), the other
sensors activate in state Ek for the following instances where 1 < j ≤ n, which implies
that in state Ek+1 they activate at instances 1 ≤ j < n (same reasoning as the previous
point). Therefore, we directly observe that for 1 ≤ j ≤ n − 1, δi,k = jτ , leading to the
conclusion that P (k + 1) holds true.
· We now consider a scenario in which m new sensors indexed as (l + r)r∈[1,m] initialize
between states Ek and Ek+1, and no sensor becomes inactive; here, l represents the index
of the last sensor that initialized before t0 + kτ .

Since Πk+1 = Πk
⋃ (l + r)r∈[1,m] ≤ M , we have n+m ≤ M . Without loss of generality,

let us assume that they initialize in ascending order: t0 + kτ < tl+1 < tl+2... < tl+m ≤
t0 + (k + 1)τ .
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The period for all these new sensors is set using fM,τ :

fM,τ (Π(tl+r)) = τ |Π(tl+r)| − (tl+r − t0)%τ

with |Π(tl+r)| = n + r, as per Eq. (4.4). Furthermore, it can be asserted that tl+r =
t0 + kτ + (tl+r − t0)%τ . Consequently, applying Eq. (B.8), we can expand δl+r,k+1 as
follows:

∀r, 1 ≤ r ≤ m,

δl+r,k+1 = tl+r − (t0 + (k + 1)τ)
+fM,τ (Π(tl+r))

= tl+r − (t0 + (k + 1)τ)
+(|Π(tl+r)|τ − (tl+r − t0)%τ)

= (|Π(tl+r)| − 1)τ
= (n+ r − 1)τ

Now from induction hypothesis, ∃!i ∈ Πk : δi,k = τ , that thanks to fM,τ implies that
δi,k+1 = (n+m)τ ; plus, for 1 < j ≤ n,∃!i ∈ Πk implying that δi,k = jτ ⇒ δi,k+1 = (j−1)τ .
Finally:

∀j, 1 ≤ j ≤ n+m,∃!i ∈ Πk+1 : δi,k = j

Which means P (k + 1) is true.
It could also be possible to demonstrate that if between the states Ek and Ek+1, one

sensor dies and several comes alive, P (k + 1) remains true.
• If |Πk+1| > M .
· If there is no variation in the alive sensors Πk = Πk+1. From P (k), ∀j, 1 ≤ j ≤ M, ∃!i ∈
Πk : Πk = jτ . Then, since the period of these sensors is Mτ (definition of fM,τ ), from the
same reasoning as above ∀j, 1 ≤ j ≤ M, ∃!i ∈ Πk+1 : Πk+1 = jτ .

For the sensors which do not transmit on the first M instants, no sensor dies, so
next-death(k) = next-death(k+1). From P (k), ∃!i ∈ Ik+1 : δi,k+1 = next-death(k+1) −
(t0 + (k + 1)τ) + Mτ and ∀i ∈ Ik+1, δi,k+1 ≥ next-death(k+1) − (t0 + (k + 1)τ) + Mτ .
Hence, P (k + 1) is true.
· If m sensors, indexed as (l + r)r∈[1,m], become active and no sensors become inactive.

Firstly, if |Πk| < M , then the initializing sensors follow the same pattern as a case
studied previously, until |Πk| = M . Without loss of generality, we now consider the
situation where (l + r)r∈[1,m] become active while there are already M active sensors.

As seen previously, the sensor for which δi,k = τ transitions to δi,k+1 = Mτ , and the
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other sensors that were at instants 1 < j ≤ M in state Ek shift to instants 1 ≤ j < M in
state Ek+1. This means that ∀j, 1 ≤ j ≤ M,∃!i ∈ Πk+1 : δi,k+1 = τj.

Furthermore, the function fM,τ sequentially sets the period of sensors indexed by
(l+ r)r ∈ [1,m] to death-date[0]− tl + 1+Mτ and removes death-date[0] from death-date.
Consequently, this property holds for the sensors in the set Ik+1, and thus P (k + 1) is
true.

· If a sensor l ∈ Πk dies. Then, δl,k = τ and Πk+1 = Πk/{l}. Then next-death(k) =
t0 + (k + 1)τ . We consider, from hypothesis P (k), i so that δi,k = next-death(k) − (t0 +
kτ) +Mτ = (M + 1)τ and δi,k+1 = Mτ . Hence :

∀j, 1 ≤ j ≤ M,∃!i ∈ Πk+1 : Πk+1 = jτ

Moreover, next-death(k+1) is updated to the death date of the next sensor, and from
assertion 1, and the definition of fM,τ , one sensor will transmit Mτ after the death of the
next sensor i.e. ∃!i ∈ Ik+1 : δi,k+1 = next-death(k+1) − (t0 + (k + 1)τ) + Mτ . Moreover,
all the other sensors will transmit after that time: ∀i ∈ Ik+1, δi,k+1 ≥ next-death(k+1) −
(t0 + (k + 1)τ) +Mτ . P (k + 1) is true.

Based on these base cases, it is possible to construct all possible cases to prove that if
P (k) is true, then P (k + 1) is also true.

Conclusion: For any k ≥ 0, P (k) holds true. This implies that fM,τ is effective on the
instants of period τ .

B.3 Bounds of the Sample Span of fM,τ

B.3.1 Preliminaries to the Proof of the Lower Bound

We aim to prove Eq. (4.5) (page 70). In reality, we develop our proof in two cases. By
simplifying and assuming that the sensor consumes its entire energy, we can remove the
floor functions in the expressions to obtain a single, easier-to-understand result.

One the one hand, for n
2 > M :
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L(fM,τ ) ≥ ∑M−1
i=0

⌊
e−ce−(M−i+1i>0)cr

ce

⌋
+ (n− 2M) ∗

⌊
e−ce−2cr

ce

⌋
+ ∑n−1

i=n−M

⌊
e−ce−(i−n+M+2)cr

ce

⌋
= ∑M−1

i=0
e−ce−(i+1+1i>0)cr

ce
+ (n− 2M) ∗ e−ce−2cr

ce

+ ∑M−1
i=0

e−ce−(i+2)cr

ce

= ∑M−1
i=0

2e−2ce−(2i+3+1i>0)cr

ce
+ (n− 2M) ∗ e−ce−2cr

ce

= n(2e−2ce)−(4M−1)cr

ce
+ M(M−1)

ce
+ (n− 2M) ∗ e−ce−2cr

ce

= ne−nce−(2n−1+M(M−1))cr

ce

(B.11)

Furthermore, for M ≥ n
2 , we have another formulae. Observing that 2M −n+1i>0 =

(M − i+ 1i>0) + (i− n+M), we have that:

L(fM,τ ) ≥ ∑n−M−1
i=0

⌊
e−ce−(M−i+1i>0)cr

ce

⌋
+ ∑M−1

i=n−M

⌊
e−ce−(2M−n+1i>0)cr

ce

⌋
+ ∑n−1

i=M

⌊
e−ce−(i−n+M+2)cr

ce

⌋
= ne−nce

ce
−
(∑M−1

i=0
M−i+1i>0

ce
+∑n−1

i=n−M
i−n+M

ce
+∑n−1

i=M
2
ce

)
cr

= ne−nce

ce
−
(
M(M+1)

2ce
+ M−1

ce
+ M(M−1)

2ce
+ (n−M)∗2

ce

)
cr

= ne−nce

ce
−
(
M(M−1)

ce
+ M+(M−1)+2n−2M

ce

)
cr

= ne−nce−(2n−1+M(M−1))cr

ce

(B.12)

B.3.2 Demonstration of the Lower Bound of fM,τ

Proof. Let a sensor indexed i. It modifies 1 + 1i>0 times its activation period to adjust
itself with respect to the other sensors during its first two activations.

|Π(.)| varies at each initialization and death of a sensor. We will study the case where
a sensor i is subject to the most period changes.
· If i comes alive while |Π(.)| ≤ M , it can need to modify its activation period for any
new sensor activating, until there are M alive sensors i.e. at most M − i − 1 additional
times.

In that case, the sensor i needs to transmit at least once between each initialization.
This is the case if the time between two initializations is greater than the period of i. We
can quantify a sufficient condition to have this realized:

∀i, 1 ≤ i ≤ M − 1, ti − ti−1 > τi
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· Furthermore, if we consider a sensor i that is alive when there are no more than M

remaining sensors alive, it could need to change its activation period for each sensor
death from the time when there are M remaining sensors. Considering that the sensors
are alive at sufficiently spaced instants, and that they have the same initial energy, then
the initialization index corresponds to the death index of the sensors. Thus, the sensor i
will change its activation period at the death of sensors if i ≥ n−M . It will thus change
at most i− (n−M) additional times.
· In the final case, the sensor takes over the responsibilities of a sensor that has just
died, and it maintains its activation period at Mτ thereafter. This results in two period
changes.

Depending on the chosen value of M , they are 2 cases:
•If M is small relative to n i.e. M < n

2 .
The sensors will have a different number of period changes following these 3 intervals,

as also illustrated in Fig. B.1:

If 0 ≤ i ≤ M − 1, ri = M − i+ 1i>0

If M − 1 ≤ i ≤ n−M, ri = 2
If n−M ≤ i ≤ n− 1, ri = i− (n−M) + 2

Figure B.1: Representation of the number of period changes depending on the index of
the sensor when M < n

2

We can define the number of activations on the time steps τ without duplicates, and
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thus have a lower bound formula for the sample span:

L(fM,τ ) ≥ ∑M−1
i=0

⌊
e−ce−(M−i+1i>0)cr

ce

⌋
+ (n− 2M) ∗

⌊
e−ce−2cr

ce

⌋
+ ∑n−1

i=n−M

⌊
e−ce−(i−n+M+2)cr

ce

⌋
•If M is close to n i.e. M ≥ n

2 .
In this case, the intervals [0,M − 1] and [n − M,n − 1] overlap. We study the 3

following intervals (Fig. B.2):

If 0 ≤ i ≤ n−M, ri = M − i+ 1i>0

If n−M ≤ i ≤ M − 1, ri = 2M − n+ 1i>0

If M − 1 ≤ i ≤ n− 1, ri = i− (n−M) + 2

Figure B.2: Representation of the number of period changements depending on the index
of the sensor when M ≥ n

2

We can then get the minimization:

L(fM,τ ) ≥ ∑n−M−1
i=0

⌊
e−ce−(M−i+1i>0)cr

ce

⌋
+ ∑M−1

i=n−M

⌊
e−ce−(2M−n+1i>0)cr

ce

⌋
+ ∑n−1

i=M

⌊
e−ce−(i−n+M+2)cr

ce

⌋

This leads us directly to the simplified expression Eq. (4.6) (page 70).
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B.3.3 Demonstration of the Upper Bound of fM,τ

We will here demonstrate:

L(fM,τ ) ≤
n−1∑
i=0

⌊
e− ce − cr(1 + 1M>1 or i>0)

ce

⌋

that will directly lead us, by inequality computations, to the more understandable ex-
pression without the integer parts in Eq. (4.6).

Proof. We consider that the first M sensors come alive in the first time interval τ i.e.

∀i, 1 ≤ i ≤ M, ti ∈ [t0, t0 + τ ]

Let us consider these first M sensors. The first sensor of index 0 : fM,τ modifies its
activation period a first time to τ , then modifies it to Mτ if M ̸= 1. For the sensors of
index 0 < i < M , their first activation period is τ |Π(ti)|− (t− t0)%τ . Their second period
is exactly τM . Each sensor performs exactly ri = 2 period changes.

Moreover, for the following sensors, they also change their activation period a first
time to transmit following the death of a sensor, then the period is fixed to Mτ . Finally,
since all the sensors turned on at the same time and consumed a similar amount of energy,
if n ≡ 0[M ], then the cycles of M sensors will be renewed each time at the same time, and
thus the M last sensors will die at the same time in turn (no additional period change
consumption). In this case, all sensors must change their activation period twice, except
for the 0 sensor, if M = 1:

L(fM,τ ) ≤
n−1∑
i=0

⌊
e− ce − cr(1 + 1M>1 or i>0)

ce

⌋



Appendix C

PROOFS OF DIVERSITY PROPERTIES OF

SYNCHRONOUS ROUND-ROBIN

IN CHAPTER 5

In this part of appendix, we provide proof of the remarkable properties of the period
allocation function Synchronous Round-Robin. Specifically, we demonstrate that for a
global reception frequency, it is necessary for all sensor activation periods to be equal
in Appendix C.1. Additionally, starting with a set of sensors transmitting with activation
periods of nτ , where the allocation function is effective (i.e., sensors transmit over the
instants of period τ), we show that if a sensor is shifted away from its interval, the
minimum diversity is reduced, in Appendix C.2.

C.1 Same Activation Periods to Maximize the Mean
Diversity

Let us consider a set of sensors Π, sending periodic messages with constant periods (pi)i∈Π.
We look at the solutions where the mean number of message per time unit is fixed to

1
τ
: ∑

i∈Π

1
pi

= 1
τ

By definition, a freshness function is a positive decreasing function. The proof holds
for a strictly monotonic and differentiable function f(x), with the derivative denoted as
f ′(x) and a primitive function denoted as F (x).

The mean diversity is the sum of the mean freshness of all sensors. As the sensors
activate periodically with a constant period, we can compute the mean freshness over one
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period. For the sensor i with period pi, it freshness Fi is:

Fi = 1
pi

∫ pi
0 f(t)dt

= F (pi)−F (0)
pi

with the mean diversity D = ∑
i∈Π Fi.

This brings us to the search for:

i ∈ Π, 0 < pi, max(∑i∈Π
F (pi)−F (0)

pi
)∑

i∈Π
1
pi

= 1
τ

We then introduce the Lagrangian:

L((pi)i∈Π, λ) =
∑
i∈Π

F (pi) − F (0)
pi

+ (
∑
i∈Π

1
pi

− 1
τ

)λ

Since we are looking for an extremum, all partial derivatives are null:

∀j ∈ Π, δL
δpj

= f(pj)pj−(F (pj)−F (0))
p2

j
− λ

p2
j

= 0
δL
δλ

= ∑
i∈Π

1
pi

− 1
τ

= 0

Let us develop the first equation:

δL
δpj

= 0 ⇔ f(pj)pj−(F (pj)−F (0))−λ
p2

j
= 0

⇔ λ = f(pj)pj − (F (pj) − F (0))

We define g(x) = f(x)x− (F (x) − F (0)), so that:

g′(x) = f ′(x)x+ f(x) − f(x)
= f ′(x)x

Since f is strictly monotonous, f ′ keeps the same sign, so does g′(x) for x > 0. This
indicates that g is strictly monotonic. Consequently, g(x) = λ has a unique pre-image,
implying that:

∀j ∈ Π, λ = f(pj)pj − (F (pj) − F (0)) =⇒ pj = g−1(λ)

All pj are the same, and equal to |Π|τ with |Π| the number of sensors.
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The mean diversity is then D = F (|Π|τ)−F (0)
τ

C.2 Regular Time Stamps to Maximize Minimum
Diversity

We consider a set of sensors indexed in increasing order as Π = [0, n− 1], all transmitting
at a period of nτ . Since these sensors activate at the same period, our analysis can be
confined to a segment of size nτ . By assuming that the activation of sensor 0 occurs at
t = 0 without any loss of generality, we can effectively focus our study on the segment
[0, nτ [. Thus, we consider t0 = 0 < t1... < tn−1 < nτ .

Let’s consider f as a strictly decreasing function.
The freshness of sensor i ∈ [0, n− 1] transmitting at ti over time is defined as:

fi(t) = f(nτ − ti + t) if t < ti

= f(t− ti) if t ≥ ti

Specifically, the global minimum diversity occurs at one of the local minima located
at t−j , as the diversity function is decreasing on the intervals ]tj−1, tj[. The diversity at
these points is:

D(0−) = ∑n−1
i=0 f(nτ − ti)

D(t−j ) = ∑j−1
i=0 f(tj − ti) +∑n−1

i=j f(nτ − ti + tj)
(C.1)

By taking tj = jτ , we obtain:

D(0−) = ∑n−1
i=0 f((n− i)τ)

= ∑n
i=1 f(iτ)

D(t−j ) = ∑j−1
i=0 f((j − i)τ) +∑n−1

i=j f((n− j + i)τ)
= ∑j

i=1 f(iτ) +∑n
i=j+1 f(iτ)

= ∑n
i=1 f(iτ)

In particular, D(0−) = ... = D(t−n−1) = ∑n
i=1 f(iτ) = min(D(t)). The scheduling of

activations for 5 sensors is illustrated in Fig. C.1.
Now, let’s consider moving one of the activations, say tj, from its original scheduling

at jτ . Without loss of generality, for j ∈ [1, n − 2], let’s examine the case where tj is
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Figure C.1: Diversity over time when 5 sensors have the same activation period and are
scheduled to receive observations at regular intervals. Time is represented on the x-axis,
with points S0, S1, S2, S3, and S4 indicating sensor activations; diversity is shown on the
y-axis.

moved, i.e., tj ̸= jτ .
• If we move it to the right: jτ < tj < (j + 1)τ , then for all i where i ̸= j, we have
f(tj − iτ) < f(jτ − iτ) and f(nτ + tj − iτ) < f(nτ + jτ − iτ) due to the strict decreasing
nature of f . By evaluating the diversity at t−j , using Eq. (C.1):

D(t−j ) = ∑j−1
i=0 f(tj − iτ) +∑n−1

i=j f(nτ + tj − iτ)
<
∑j−1
i=0 f(jτ − iτ) +∑n−1

i=j f(nτ + jτ − iτ)
= ∑n

i=1 f(iτ)

By evaluating the diversity at t−j , we observe that the diversity is lower, indicating that
the overall global minimum diversity is lower when we move tj from its original scheduling
at jτ . In Fig. C.2, we illustrate the reduction of the minimum diversity by moving the
activation of S3 to the right.
• If tj is moved to the left: tj < jτ < (i−1)τ , then f((j+1)τ−tj) < f((j+1)τ−jτ) = f(τ).
By evaluating the diversity at t−j+1 = (j + 1)τ :

f(tj+1) = f(tj+1) +∑j
i=0 f(tj+1 − ti) +∑n−1

i=j+1 f(nτ + tj − ti)
= ∑n

i=2 f(iτ) + f((j + 1)τ − tj)
<
∑n
i=1 f(iτ)

We also observe that by moving tj to the left, the minimum diversity becomes lower, as
illustrated in Fig. C.3.

Overall, by locally moving an observation tj away from its scheduled time jτ , the
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Figure C.2: Diversity when sensors have the same activation period, moving S3 to the
right.
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Figure C.3: Diversity among sensors with the same activation period, moving S3 to the
left.
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minimum diversity is reduced.
Intuitively, arranging the sensors in a strict order would likely maximize the overall

minimum diversity, although we have not found a formal proof for this.



Appendix D

CALCULATIONS FOR SIMPLE KRIGING

RESOLUTION

From the definition of θ̂t̂, we can already establish through its expectation calculation that
it is unbiased: E[θ̂t̂] = E[Θt] = 0. Furthermore, by expanding their squared difference
defined in Eq. (6.2), we have:

∆(t̂) = E[(ψ⊤
t̂
θ − Θt̂)2]

= E[ψ⊤
t̂
θθ⊤ψt̂ − Θt̂θ

⊤ψt̂ − ψ⊤
t̂
θΘt̂ + Θ2

t̂
]

= ψ⊤
t̂
E[θθ⊤]ψt̂ − 2E[Θt̂θ

⊤]ψt̂ + E[Θt̂]2

= ψ⊤
t̂
Kψt̂ − 2k⊤

t̂
ψt̂ + σ2

t̂

Where σt̂ = E[Θt̂], independent of ψt̂, leading to Eq. (6.3).
We aim to find the vector ψt̂ that minimizes ∆(t̂). The derivative with respect to each

ψt,t̂ is zero, resulting in:
∂∆(t̂)
∂ψt̂

= 2Kψt̂ − 2kt̂ = 0
⇔ ψt̂ = K−1kt̂

K is a symmetric matrix, so K−1 is a symmetric matrix, leading us to the expression of
the estimation θ̂t̂ defined in Eq. (6.4):

θ̂t̂ = k⊤
t̂ K

−1θ
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Mot clés : Internet des Objets Massif, Efficacité pour l’IoT, Gestion des Collections d’Observations

Résumé : L’Internet des objets (IoT) est couram-
ment utilisé pour surveiller diverses grandeurs
physiques. Dans l’approche innovante du Mas-
sive IoT (MIoT), un déploiement massif de cap-
teurs très contraints est envisagé, afin de réduire
les coûts de déploiement et de maintenance.
Conformément à ce scénario, cette thèse se
concentre sur le développement de mécanismes
visant à réduire la consommation d’énergie des
capteurs. La méthode repose sur le principe
de similarité : les capteurs peuvent être consid-
érés comme similaires s’ils fournissent des ob-
servations semblables. Cette approche permet
la transmission d’un sous-ensemble de capteurs
répondant aux exigences de surveillance. Tout
d’abord, nous avons identifié et synthétisé les
méthodes existantes provenant de la littérature
basées sur le principe de similarité. Nous avons

etablit que ce type d’approche peut être dé-
composé en trois composantes, que nous avons
étudiées dans le contexte du MIoT. Ensuite, nous
avons examiné les méthodes de gestion des ob-
servations des capteurs permettant de maintenir
une quantité constante de messages au fil du
temps. Notre première méthode permet de trans-
mettre en round-robin un nombre spécifié de cap-
teurs. La deuxième méthode atteint des résultats
de précision comparables à la première tout en
réduisant le nombre de mises à jour des cap-
teurs lorsque la flotte de capteurs change. En-
fin, nous proposons une solution pour former des
groupes de capteurs identifiés comme similaires
en analysant leurs observations. À cet effet, nous
introduisons une nouvelle mesure de similarité
basée sur l’interpolation, associée à une méth-
ode de regroupement hiérarchique.

Title: Exploiting Sensor Similarity to Enhance Data Collection in Massive IoT Networks

Keywords: Massive Internet of Thing, IoT Efficiency, Observation Collection Management

Abstract: The Internet of Things (IoT) are com-
monly employed for monitoring various physical
quantities. In the innovative approach of Mas-
sive IoT (MIoT), a massive deployment of highly
constrained sensors is considered to reduce de-
ployment and maintenance costs. Aligned with
this scenario, this thesis focuses on the devel-
opment of mechanisms to reduce sensor energy
consumption. The method relies on the principle
of similarity: sensors can be considered similar if
they provide similar observations. This approach
enables the transmission of a subset of sensors
to fulfill the monitoring requirements. First, we
identified and synthesized existing methods from
the literature based on the principle of similarity.

We established that this approach can be decom-
posed into three components, which we studied
in the context of MIoT. Next, we examined meth-
ods for managing sensor observations to main-
tain a constant stream of messages over time.
Our first method involves transmitting a specified
number of sensors in a round-robin fashion. The
second method achieves precision results com-
parable to the first while reducing the number of
sensor updates when the sensor fleet changes.
Finally, we propose a solution to form groups of
sensors identified as similar by analyzing their
observations. To this end, we introduce a new
similarity measure based on interpolation, cou-
pled with a hierarchical clustering method.
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