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Combining genetic and modelling approaches to develop new noninvasive biomarkers of resilience based on milk metabolites
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In a context of increasing environmental perturbations, there is a growing interest in selecting more resilient livestock animals. Animal resilience is defined as the ability to overcome short-term environmental disturbances and quickly return to the pre-disturbance state (Colditz and Hine, 2016). This thesis is based on the hypothesis that different metabolic strategies to cope with short-term undernutrition are part of the hereditary mechanisms of resilience in dairy goats.

To establish an animal model for studying resilience, two divergent lines of goats for functional longevity were created at INRAE prior to this thesis (High_LGV and Low_LGV lines). The first part of the thesis demonstrates that the High_LGV line exhibits better survival after the first year of production, suggesting a cumulative difference in resilience to various disturbances over life. Additionally, the High_LGV line had lower somatic cell scores, higher live weight at the beginning of first lactation, and a lower fat to protein ratio.

On the evening of May 2020, during my M2 internship in Tahiti, I attempted to calm my stress through breathing exercises, lying on the living room carpet. In a few minutes, I was going to meet Rachel and Nicolas for the first time for a job interview for a thesis that my vague understanding of the subject had sparked curiosity and desire within me. I have a very vivid memory of this first interview; it was where I discovered the pleasure of our conversations. This pleasure remained intact throughout these three years of thesis, during our Monday meetings. Stress was no longer a burden. Today, I express my gratitude to my two supervisors for trusting me and giving me this opportunity. While I hoped to live up to their expectations on that evening in May 2020, these three years have far exceeded mine. I am aware of the high quality of the scientific environment in which I conducted this thesis, and for this, I also thank the various scientific collaborators who conducted the experimental measurements, farm agents, and project funders.

Within the Genphyse unit, I discovered a working environment characterized by kindness and the desire to collaborate, which stimulated the intellectual emulation of doctoral students, especially young female researchers. This laboratory is rich in many female figures of authority, inspiring in many ways. I thank the doctoral students and young scientists today for their support, with whom we were able to put into practice the concept of resilience, amidst the challenges inevitably faced by anyone who decides one day to undertake a thesis. These three years were undoubtedly rich in encounters, including those overseas. I warmly thank Professor Jiguo Cao, who welcomed me for four months into his team at Simon Fraser University and brought his valuable expertise to this work. My thoughts also go to the students I met during this stay; they were like little suns in Vancouver's rainy sky.

These three years conclude with this manuscript, and I want to thank the entire jury for their valuable feedback that provided perspective on this work during the thesis defense. I am particularly grateful for the rigor of the rapporteurs, who not only reintroduced me to the healthy practice of breathing exercises but also pushed me to deepen my reflection until the final weeks of this adventure.

Un soir de mai 2020, en stage de M2 à Tahiti, je tentais de contenir mon stresse par des exercices de respiration, allongée sur le tapis du salon. Dans quelques minutes j'allais rencontrer pour la première fois Rachel et Nicolas pour l'entretien d'embauche d'une thèse dont ma compréhension vague du sujet avait éveillée en moi curiosité et désir. Je garde un souvenir très vivace de ce premier entretien, j'y ai découvert le plaisir de nos conversations. Ce plaisir est demeuré intact tout au long de ces trois années de thèse, au cours de nos réunions du lundi. Le stresse en moins… Je remercie aujourd'hui mes deux encadrants pour m'avoir fait confiance et donné cette opportunité. Si j'espère avoir été à la hauteur des espérances qu'ils avaient en ce soir de mai 2020, ces trois années ont largement surpassé les miennes. J'ai conscience de la qualité du cadre scientifique dans lequel j'ai effectué cette thèse, et pour ceci je remercie également les différents collaborateurs scientifiques ayant effectué les mesures expérimentales, agents des fermes et financeurs de ce projet.

J'ai découvert au sein de l'unité Genphyse un cadre de travail caractérisé par la bienveillance et le désir de faire collectif, propre à stimuler l'émulation intellectuelle des doctorants, et notamment des jeunes doctorantes. Car ce laboratoire est riche de nombreuses figures d'autorité féminines, inspirantes à bien des égards. Doctorants et jeunes scientifiques que je remercie aujourd'hui pour leur soutient, et avec qui nous avons pu mettre en pratique le concept de résilience, au grès des difficultés rencontrées, incombant fatalement au destin de celui qui décide un jour d'entreprendre une thèse.

Ces trois années furent définitivement riches en rencontres, y compris outre-Atlantique. Je remercie bien chaleureusement le professeur Jiguo Cao qui m'a accueillie quatre mois au sein de son équipe à l'université Simon Fraser et a apporté son expertise précieuse à ce travail. Mes pensées vont également aux étudiants que j'ai rencontrés lors de ce séjour, ils ont été de petits soleils dans le ciel pluvieux de Vancouver.

Ces trois années s'achèvent avec le présent manuscrit, et je tiens à remercier l'ensemble du jury pour leurs retours précieux qui ont mis en perspective ce travail lors de la soutenance de thèse. Je remercie tout particulièrement l'exigence des rapportrices qui, outre le fait de me faire renouer avec cette Remerciements 12 pratique saine que sont les exercices de respiration, m'a poussée à approfondir ma réflexion jusqu'aux dernières semaines de cette aventure.

Cette aventure-ci s'achève, mais une autre est sur le point de commencer. Je mesure la chance qui m'a été accordée de pouvoir poursuivre cette carrière scientifique, et je ne saurais remercier suffisamment ceux qui les premiers ont cru en moi : Rachel et Nicolas. Mes pensées vont également à mes parents qui ont éveillé en moi la curiosité scientifique et le gout pour la santé animale. Ma famille ne m'a jamais laissée seule dans mes aventures, et je ne serai pas seule pour la prochaine. Car non seulement ces trois années m'ont offerte un métier, mais aussi un compagnon de route. Adam, merci d'avoir croisé mon chemin. J'ai hâte de partager avec toi les péripéties vers lesquelles nous mènent notre gout partagé pour la science.

"Is It Not A Strange Fate That We Should Suffer So Much Fear

And Doubt Over So Small A Thing." J.R.R. Tolkien

Résumé

Dans un contexte de perturbations environnementales croissantes, la sélection pour des animaux d'élevage plus résilients suscite un intérêt croissant. La résilience animale est définie comme la capacité à surmonter des perturbations environnementales de court terme et à revenir rapidement à l'état antérieur à la perturbation (Colditz et Hine, 2016). Ma thèse est basée sur l'hypothèse que les différentes stratégies métaboliques pour faire face à une courte période de sous-alimentation font partie des mécanismes de résilience héréditaires chez la chèvre laitière. Afin de créer un modèle animal pour l'étude de la résilience, deux lignées divergentes de chèvres pour la longévité fonctionnelle ont été créées à INRAE en amont de ma thèse (les lignées High_LGV et Low_LGV). La première partie de ma thèse montre que la lignée High_LGV a une meilleure survie après la première année de production, suggérant une différence de resilience cumulée à des peturbations diverses et variées. De plus la lignée High_LGV avait un score cellulaire inférieur ainsi qu'un poids vif supérieur en début de première lactation et un ratio TBTP inférieur.

Une période de sous-alimentation de deux jours a été imposée à ces chèvres en début de première lactation. Afin d'explorer la réponse métabolique des chèvres, nous avons d'abord dosé quatre métabolites sanguins journalièrement avant, pendant et après ce challenge alimentaire: Glucose, Urée, Acides gras non estérifiés (AGNE) et beta-hydroxy-butyrate (BOHB). Nous avons utilisé le modèle dit « piecewise » décrit par Friggens et al. (2016) et montré que les deux lignées n'avaient pas de réponses métaboliques différentes à l'echelle de ces 4 métabolites mesurés dans le sang.

Dans un second temps, un sous-ensemble de 140 de ces chèvres a fait l'objet d'une mesure de la concentration de 13 métabolites du lait et une enzyme : BOHB, Glucose, Urée, Glucose-6-Phosphate, Galactose, Isocitrate, Glutamate, NH2, Cholin, Malate, Urate, Triacylglycerol, Cholesterol et lactate deshydrogenase. Nous proposons une approche de modélisation basée sur l'ACP fonctionnelle. Nous avons d'abord effectué une prédiction supervisée de la ligné sur la base des sorties des ACP fonctionnelles, confirmant que les deux lignées montraient des réponses métaboliques au challenge similaires. Nous avons donc exploré la variabilité globale des réponses métaboliques à l'aide d'une classification non supervisée. Il en a résulté 3 groupes de chèvres définis par des réponses métaboliques différentes, chacun comportant des chèvres des deux lignées. Un groupe a été associé à une survie significativement plus faible que les deux autres. Ces résultats suggèrent que la plasticité métabolique pendant une déficit alimentaire court fait partie des mécanismes de résilience de la chèvre.

La dernière partie de la thèse étudie le déterminisme génétique de ces marqueurs du métabolisme. Les trajectoires des métabolites du sang et du lait ont été décrites par la méthode de l'ACP fonctionnelle. Nous avons trouvé 44 paramètres de métabolites sanguins et laitiers (sur 104) qui étaient significativement héritables. De plus, 150 animaux ont été génotypées avec la puce Illumina GoatSNP50 BeadChip et une analyse d'association tout génome a été réalisée sur les profils des métabolites sanguins. Une région située sur le chromosome 6 a été associée à la trajectoire de la glycémie pendant le challenge alimentaire. Ces résultats montrent le potentiel de plusieurs métabolites du lait pour la sélection génétique de la résilience : Glucose Glucose-6-P BOHB Cholestérol Malate et Galactose.

A two-day underfeeding period was imposed on the goats at the start of their first lactation. To explore the metabolic response, four blood metabolites (Glucose, Urea, Non-esterified fatty acids [NEFA], and beta-hydroxybutyrate [BOHB]) were measured daily before, during, and after the underfeeding challenge. Using the "piecewise" model described by Friggens et al. (2016), it was observed that the two lines did not exhibit significant differences in their metabolic responses.

In a second time, a subset of 140 goats underwent measurements of 13 milk metabolites and an enzyme: BOHB, Glucose, Urea, Glucose-6-Phosphate, Galactose, Isocitrate, Glutamate, NH2, Choline, Malate, Urate, Triacylglycerol, Cholesterol, and lactate dehydrogenase. An innovative approach based on functional principal component analysis (fPCA) was used to model these 14 profiles. Initially, supervised prediction of the lines based on the outputs of FPCA did not yield satisfactory results, indicating that both lines exhibited similar metabolic responses to the underfeeding challenge. Therefore, the overall variability of metabolic responses was explored using unsupervised clustering. This revealed three groups of goats characterized by distinct metabolic responses, with goats from both lines present in each group. One group had significantly lower survival than the other two groups. These results suggest that metabolic plasticity during short-term food deficits is part of the mechanisms underlying goat resilience.

The final part of the thesis investigates the genetic determinism of these metabolic markers. Trajectories of blood and milk metabolites were described using fPCA. It was found that 44 out of 104 blood and milk metabolite parameters were significantly heritable. Furthermore, 150 animals were genotyped using the Illumina GoatSNP50 BeadChip, and a genome-wide association analysis was conducted on the profiles of blood metabolites. A region on chromosome 6 was associated with the blood glucose trajectory during the feeding challenge. These results demonstrate the potential of several milk metabolites for genetic selection of resilience: Glucose, Glucose-6-P, BOHB, Cholesterol, Malate, and Galactose. 
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Introduction

In face of escalating environmental disturbances, there is a pressing need to develop strategies that enhance the resilience of livestock animals. Resilience, defined as the ability to withstand and recover from short-term environmental challenges, plays a crucial role in maintaining the productivity and sustainability of livestock production systems (Colditz and Hine, 2016). The selection of more resilient animals has gained significant attention as a means to mitigate the adverse effects of environmental stressors and ensure the long-term success of livestock farming.

Functional longevity, corresponding to the true longevity excluding the culling for productivity reasons (Sasaki, 2013), is not only a desired consequence of resilience but is also considered as the best single indicator of resilience (Friggens et al., 2017). Indeed it is a measure of an animal's ability to maintain productivity and health throughout its productive lifespan, provides valuable insights into resilience.

Animals with extended functional longevity are more likely to possess inherent resilience mechanisms, allowing them to withstand and adapt to environmental disturbances. In this context, the present doctoral research aims to investigate the metabolic strategies and genetic determinism of resilience in dairy goats, utilizing functional longevity as a key selection criterion.

The upcoming literature section aims to explore various aspects of the resilience concept, focusing on key components essential for modeling animal resilience. In particular, we will emphasize the necessity of a comprehensive integration of multivariate time series data, necessitating the adoption of ambitious statistical approaches. We will present and discuss different statistical methods that have been utilized in this context, outlining their respective advantages and limitations. Furthermore, we will highlight the significance of livestock resilience for the future, considering the evolving farming landscape. This discussion will pave the way for understanding the potential for genetic selection in enhancing animal resilience. We will explore the prospects and challenges associated with genetic selection strategies, shedding light on their implications for improving livestock's adaptive capacities.

Finally, the literature section will conclude with an overview of the contents of the present manuscript, summarizing the main topics and research objectives addressed within this doctoral research. Literature 1. Resilience concept 1.1. From ecosystems to psyches: the incredible resilience journey

The word resilience comes from the Latin "resilire", "re-salire", which means to jump again, to bounce back. The concept has been explored in literature and has gained scientific recognition in recent times.

Resilience is today a broad concept that cannot be universally defined and is used in a variety of fields, as the ability to resist shocks and recover balance after having been under some kind of short-term perturbation (Döring et al., 2015). Although the definition of resilience has common elements in all fields, each of them developed some specific concepts [START_REF] Baggio | Boundary object or bridging concept? A citation network analysis of resilience[END_REF]. It is interesting to note that the transposition of concepts usually confined to one domain to another can be a source of innovation [START_REF] Lesne | Robustness: confronting lessons from physics and biology[END_REF]. Ecology was a pioneer in the study of resilience in the biological sciences, defining an ecosystem's resilience as the ecosystem's ability to repair itself following disturbance and inertia as its ability to resist change when stressed [START_REF] Lavorel | Ecological Diversity and Resilience of Mediterranean Vegetation to Disturbance[END_REF][START_REF] Westman | Measuring the Inertia and Resilience of Ecosystems[END_REF]. Recently, astrophysicists have applied the concept of resilience to the study of life's ability to withstand astrophysical events such as supernovae, gamma-ray bursts, and large asteroid impacts at the planetary scale [START_REF] Sloan | The Resilience of Life to Astrophysical Events[END_REF]. In materials science, resilience is a material's ability to absorb energy and release it again [START_REF] Portela | Extreme mechanical resilience of self-assembled nanolabyrinthine materials[END_REF]. In psychology, resilience is now recognized as an individual's capacity to handle stress and adversity, whereas those who lack resilience are more prone to developing psychiatric disorders such as post-traumatic stress disorder after traumatic events [START_REF] An | Heart Rate Variability as an Index of Resilience[END_REF][START_REF] Wu | Understanding resilience[END_REF]. Applying the concept of resilience to animal biology, at the cellular and molecular level, one of the key mechanisms related to resilience is the ability to repair and maintain cellular integrity. This can be achieved through various mechanisms such as DNA repair, antioxidant systems, and the activation of stress response pathways. For example, the heat shock response, which is activated in response to high temperatures, helps to protect cells from heat-induced damage by increasing the expression of heat shock proteins. This thesis focuses on resilience at the animal level.

The following sections will discuss this broad definition and its implications.

1.1.

The interface between the animal and its environment Applied to animal science, resilience reflects the ability of an organism to cope with, adapt to, and recover from environmental challenges. Resilience involves the ongoing interaction between an animal's physiology and external environmental conditions and is an emergent property of the multiple underlying physiological homeostatic mechanisms. The animal's physiology and behaviour is constantly adapting to the environmental changes it is exposed to, and the animal's resilience influences how well it is able to maintain its physiology and how well it can recover from environmental challenges (Kitano, 2004). It is useful to consider the environment as having two components (Figure 1). The first is the general 'harshness' of the environment, which includes the average nutritional conditions, the constraints imposed by the farming system (e.g. dense animal population in housing),

and other stable factors such as the average meteorological conditions of the location (very low or high temperature or humidity). Surviving through general harshness implies long-term adaptation mechanisms, which call on the animals overall robustness (rather than its resilience per se). The robust farm animal has the ability to express its production potential in a wide range of environments without compromising its reproduction, health, and well-being [START_REF] Knap | Breeding robust pigs[END_REF]. reference level for the 4 graphs). The four combinations of environments that are on average good or poor, and stable or variable are shown. The need for animal robustness and/or resilience is indicated for each case. Adapted from (Friggens et al., 2022).

The second component of the environment relates to the frequency and intensity of environmental perturbations. Animals respond to these shorter-term perturbations by a dynamic pattern of response and recovery that is usually referred to as animal resilience mechanisms (Colditz and Hine 2016). Shortterm perturbations can refer to temperature variations, such as heat waves, short-term feed restriction or a rapid shift of the feed composition, infectious diseases, or stressful events. There is no scientific consensus on whether resilience is part of animal robustness or whether they are two separate concepts. On the one hand, one can consider a highly perturbed environment as a harsh environment, implying that resilience would be an underlying component of robustness. On the other hand, when perturbations persist over longer time frames the homeorhetic physiological responses that enable acclimatisation and adaptation are of a very different nature than short-term coping mechanisms (Collier et al. 2009).

Moreover, to study resilience, it is important to clearly define the environmental disturbance and understand the physiological reactions that are involved and evolve with time. [START_REF] Tsartsianidou | Understanding the seasonality of performance re silience to climate volatility in Mediterranean dairy sheep[END_REF] highlighted the diversity of the resilience mechanisms showing a negative genetic correlation (-0.09 to -0.27) between resilience to cold weather (10 °C) of dairy sheep that start producing milk in spring compared to autumn and winter. One animal that proved to be resilient to a specific type of challenge will not necessary be resilient to another type of challenge.

A temporal notion

Resilience refers to the ability of a system or individual to adapt and recover from disturbances or challenges over a period of time. For example, an animal that is able to quickly adapt to environment perturbation is commonly considered to be more resilient than one that takes a long time to adapt.

Similarly, an animal that is able to recover quickly from an injury or disease is considered to be more resilient than one that takes a long time to recover. Literature describes two main characteristics of the time trend of a performance trait in face of an environment perturbation as resilience indicator:

(1) the size of the performance deviation and (2) the duration of the deviation (Figure 2). Only repeated measurements allow us to grasp the underlying physiological mechanisms of resilience. This time related aspect of resilience implies the need for on farm sensors, or specific experiments, to collect data. It also implies longitudinal statistical models to analyse the data. The need for repeated measures over time in order to characterize resilience mechanisms and define new resilience indicators is no longer debated (Colditz and Hine, 2016;Scheffer et al., 2018). However, the general hypothesis that a smaller performance deviation corresponds to better resilience (Figure 2) is often postulated but seldom demonstrated. 

Rigidity or plasticity

One can see resilience as a balance between rigidity and plasticity. It requires an organism to have the ability to adapt to changes in its environment, but also the ability to maintain its integrity and functioning during and after the environmental stressors. An organism that is too rigid will not be able to adapt to changes in its environment, and an organism that is too plastic may lose its integrity or function. Several articles dealing with animal resilience associate resilience with rigidity (Poppe et al., 2020;Scheffer et al., 2018). In human psychiatry, [START_REF] An | Heart Rate Variability as an Index of Resilience[END_REF] showed that the heart rate variability during stressful events could be used as an index of resilience against post-traumatic stress disorder.

In other words, the flexibility of the autonomic nervous system is necessary for adaptive stress responses and may contribute to individual differences in resilience. One can view animals as sets of subsystems linked through a web of various feedbacks (nervous, autocrine, paracrine, endocrine systems) allowing organs to work together to maintain vital functions. These subsystems can be classified into two types: those that will gradually degrade when faced repeatedly with challenges, often regulating critical factors, such as temperature and body posture, and those called "tipping elements" that experience rapid failure when some challenge threshold is crossed. Failure of the tipping elements is associated with severe health problems (Scheffer et al., 2018). It could lead to the simplistic conclusion that resilience corresponds to high plasticity of some non-vital function in order to maintain the stability of other vital functions in the face of environmental perturbation.

In Figure 3, the resilience of an animal depends on the quality of the shock absorber that guaranties the safety of the vital function in response to perturbation. With time, those shock absorbers might wear out, implying larger shocks for vital functions, and eventually a fatal crash. While relevant to some extent, this simple diagram does not represent the full complexity of the homeostasis process involved.

Indeed, even if a given function is not vital, evolution and/or genetic selection could have prioritized it. This multilevel chain reaction scheme highlights the need for multilevel approach in studying resilience.

Figure 3.

On the buffering role of the non-vital functions in face of an environmental perturbation in order to maintain vital functions.

The need for a systemic approach

The notion of a biological system is crucial when considering resilience. This idea implies that resilience of a given system is the consequence of multiple components at lower levels of organisation: different combinations of its component mechanisms can achieve a given level of resilience. Hence, the difficulty with describing one animal's resilience by using environmental sensitivity of a single trait such as milk yield, is that it is only one part of the entire biological system. The resilience levels of the different subsystems of the body are not homogenous, some subsystems can compensate in part for the weakening of others. It is worth noting that in many animals, mortality risk increases exponentially with age, particularly beyond a certain point [START_REF] Stroustrup | The temporal scaling of Caenorhabditis elegans ageing[END_REF]. This rising mortality risk reflects a tendency for the resilience level of the different subsystems to decline in concert during the process of aging, depending on genetic make-up, stressors, and lifestyle. One possible explanation for the interdependence of the resilience of various subsystems is that external pressures affecting certain parameters, such as the accumulation of senescent cells, regulation of chaperone proteins, autophagy, and reactive oxygen species, can impact tissues throughout the entire organism [START_REF] López-Otín | The Hallmarks of Aging[END_REF][START_REF] Schumpert | Involvement of Daphnia pulicaria Sir2 in regulating stress response and lifespan[END_REF]. Additionally, the network of mutual dependencies among subsystems may also result in correlations between their respective levels of resilience. If one subsystem malfunctions, it can increase the stress on other subsystems, leading to their deterioration as well (Scheffer et al., 2018). For example, bad glucose regulation in a context of diabetes also influence water balance by increased urinary output, and cognition by glycation of proteins. In addition, organisms must also allocate resources among different subsystems, meaning that increased demand on one system may come at the expense of others (Scheffer et al., 2018). The perspective that organisms can be seen as intricate networks supports the relevance of looking for indicators of resilience. Indeed, given that the failure of one subsystem can lead to the failure of the entire organism, assessing the ability of a subsystem to withstand can serve as an indicator of the overall resilience of the system.

Then, the question is which subsystem to consider and how to assess it.

Measuring resilience

2.1.

Detect or provoke resilience expression

The study of one animal's resilience requires the animal to express its resilience mechanisms in face of a short-term environment perturbation. Consequently, two options can be considered: (i) detecting natural environmental perturbations in order to study the individual responses to it or (ii) imposing the same challenge to a group of animals. The first option has the advantage of being as close as possible to real farming conditions. Recent development of sensors allows collection of on-farm data through milking settings, pedometer activity, feed and water intake, body weight, or video [START_REF] Deng | Performance of Online Somatic Cell Count Estimation in Automatic Milking Systems[END_REF][START_REF] Post | Using Sensor Data to Detect Lameness and Mastitis Treatment Events in Dairy Cows: A Comparison of Classification Models[END_REF][START_REF] Ratsimbazafindranahaka | Characterizing the suckling behavior by video and 3D-accelerometry in humpback whale calves on a breeding ground[END_REF][START_REF] Yoshioka | Effectiveness of a real-time radiotelemetric pedometer for estrus detection and insemination in Japanese Black cows[END_REF]. It also offers access to large-scale data from various type of farms. However, the detection of unrecorded disturbances a posteriori is far from being trivial. It relies on the frequent monitoring of animals' performance (milk yield or growth for example), that needs to be contextualized relative to an estimation of the individual's theoretical undisturbed performance trajectory in order to measure the deviation from it (Codrea et al., 2011;[START_REF] Garcia-Baccino | Detection of unrecorded environmental challenges in high-frequency recorded traits, and genetic determinism of resilience to challenge, with an application on feed intake in lambs Selection Evolution[END_REF]Poppe et al., 2020). Figure 4 shows an example of unperturbed milk yield curve estimation through different degrees of smoothing applied to a lactation curve: the perturbations are supposed to occur when the observed performance (flexible smoothing) is far from the unperturbed curve (stiff smoothing). This approach raises several questions: how should we deal with records that are above the theoretical curve, i.e. should we consider them as a perturbation? Can we compare perturbations that are of different natures (the milk yield can be perturbed by heath wave, lower feed intake, infectious disease, etc.)? How can we detect long-term perturbations without underestimating the unperturbed theoretical curve? Although more restrictive to implement, imposing an experimental challenge greatly simplifies these last points. Literature shows different kinds of imposed challenge in order to study resilience : short term feed restriction in dairy goats (Friggens et al., 2016) and dairy cattle [START_REF] Borges | Effects of short-term feed restriction on the physiological parameters and metabolites of F1 Holstein x Zebu cows in different stages of lactation[END_REF] , longer term feed restriction in dairy cattle (Billa et al., 2020), stressful contention in rainbow trout (Sadoul et al., 2015) or experimental malaria infection in rodents [START_REF] Råberg | Disentangling genetic variation for resistance and tolerance to infectious diseases in animals[END_REF]. In those cases, the same challenge is applied to all animals; the beginning and the end of the challenge are known, simplifying the study of the different individual responses (Figure 5). Moreover, experimental challenges lead the way to explore new phenotypes that are not measured on farm. However, the difficulty of implementing these experiments generally allows only a limited number of animals to be gathered, which can decrease the power of the studies. Considering the type design of the experiment, the nature of the challenge, and the goal of the study, one can consider different type of model to grasp the underlying resilience mechanisms. time-series profiles relative to a nutritional challenge. Adapted from (Friggens et al., 2016).

Which model to understand

Literature recently proposed several models in order to study animal resilience. Scheffer et al. (2018) proposed several general measures of resilience (Figure 6). A non-resilient system is described as an unstable equilibrium system, with larger and slower fluctuation, resulting in high variance and high temporal autocorrelation. When considering the interactive dynamics of subsystems, the subsystems are predicted to become more correlated in a network with low systemic resilience. It implies that an increase in the degree of correlation between fluctuations of components within a network could signal a heightened likelihood of a complete system failure since the failure of one subsystem would be more likely to imply larger damages in the system. Poppe et al. (2020) applied this approach to the exploration of lactation curves in dairy cows, showing that variance was moderately heritable and lower variance was genetically associated with better udder health, better longevity, less ketosis, better fertility, higher BCS, and greater dry matter intake at the same level of milk yield. Adriaens et al. (2020) showed that the integration of several time series sensors data, including measures of variability, lactation curve shape, milk yield perturbations and activity spikes, could be predictive of the resilience ranking the cows (low, medium and low resilience index) within a given herd. 7). The two parameters characterizing the spring and the damper (C and K) can be interpreted as stiffness and resistance to the change of the system and yield intuitive meaning in terms of resilience. Friggens et al. (2016) deciphered the different stages of the system (pre-challenge, challenge, and recovery period) with a piece-wise model applied to time trend plasma metabolites and hormones through a short underfeeding challenge (urea, glucose, BHB, insulin and fatty acids). It pre-supposed a given shape of the response: a plateau value before the challenge, a linear slope during the challenge, and a quadratic function for the recovery postchallenge (Figure 5). The two previous models provided very intuitive interpretation of the outcomes in terms of resilience. The downside of these approaches is that they require strong assumption on the shape of the performance deviation trajectory. In the case of an early exploration of new phenotypes, one might wish to limit as much as possible the number of assumptions made. If the modelling of a single time series raises several questions, the multivariate integration of longitudinal data represents a statistical challenge. However, it appears as a cornerstone of animal resilience modelling. (2015).

On the difficulty of the multivariate modelling of time series

The previous examples focus on univariate modelling of longitudinal data. However, the complex biological mechanisms underlying resilience stresses the importance of a multivariate approach. When compared to traditional longitudinal studies that focus on a single response variable, analysing multivariate longitudinal data can present additional challenges due to the correlation between both the repeated measurements from the same individual and the multiple response variables.

Multivariate dynamic linear models [START_REF] West | Bayesian Forecasting and Dynamic Models[END_REF]) can be used to take into account the interconnectedness of several variables of interest. [START_REF] Jensen | A multi-dimensional dynamic linear model for monitoring slaughter pig production[END_REF] showed that the implementation of a multivariate dynamic linear model on weight, feed, and water consumption of fattening pigs has the potential to identify disease outbreaks. This approach involved constructing a multivariate model and flags the poorly predicted data points as unhealthy. [START_REF] Lough | Health trajectories reveal the dynamic contributions of host genetic resistance and tolerance to infection outcome[END_REF] explored a novel approach in modelling the different phases of Listeria monocytogenes infection in mouse by plotting longitudinal pairwise measurements of body weight (a proxy for health status) and bacterial load (infection severity) in a two-dimensional space, and following their progression over time (Figure 8). The individual profil of infection severity-health trajectory for each mouse showed different patterns regarding the survival outcome. Such an approach could be applied in a multidimensional space. The STATIS (Structuration de Tableaux ATrois Indices de la Statistique) method addresses this question by finding a single set of representations, an overall summary of several tables (L'Hermier des [START_REF] Des Plantes | Structuration des tableaux à trois indices de la statistique[END_REF]. This approach aims to capture the essential information from each table and condense it into a single set of representations, providing a holistic view of the data across various dimensions. Even though they are powerful dimension reduction methods, the biological interpretation of such multidimensional trajectories can be challenging.

Figure 8.

Representative infection severity-health trajectory for each mouse strain by survival outcome. The trajectories were produced by plotting longitudinal pairwise measurements of body weight (BW) and infection severity (bacterial load) in a two-dimensional space, and following their progression over time. [START_REF] Lough | Health trajectories reveal the dynamic contributions of host genetic resistance and tolerance to infection outcome[END_REF].

Several articles dealt with the multivariate longitudinal aspects in two phases [START_REF] Ben Abdelkrim | Exploring simultaneous perturbation profiles in milk yield and body weight reveals a diversity of animal responses and new opportunities to identify resilience proxies[END_REF]Friggens et al., 2016). First, a univariate longitudinal modelling was applied to each time series, ending up with few scalars that summarized the trajectories (intensity and duration of the perturbation for example). Then a factorial dimension reduction method allowed the multivariate modelling by describing the correlation between different variables. Figure 9 shows principal component analysis (PCA) applied to several variables that describe perturbation profiles of cows' body weight and milk yield, highlighting correlation between milk yield and body weight trajectory. An unsupervised clustering showed three perturbation profiles, based on the time trend on several variables simultaneously. This two-step method appears as an effectiveexploratory method to deal with multivariate longitudinal data, and look for different multivariate patterns (the three perturbation profiles here). In terms of resilience, the multivariate response to a disturbance increases the difficulty of interpreting a primary response as favourable or unfavourable. Presumably, significant weight loss during an illness may be related to poor resilience to the illness, but what about the combined course of 10 variables? This point raises the need for a resilience benchmark. culling for performance reasons and farm management, is often defined as the best single indicator of resilience/robustness since it results from the cumulated consequences of the animal capacity of recovering after environmental perturbation over time (Friggens et al., 2017). Functional longevity was used in literature as a resilience benchmark in order to validate new resilience indicators (Poppe et al., 2020). Other resilience reference measures has been explored. 3. Why more resilient animals?

Selection for productivity and resilience

Selection for productivity and increased quality of the farming environment during the last century resulted in a large increase of productivity. For instance, milk production has more than doubled over the past fifty years, while the total number of dairy cows has decreased dramatically. Despite the great increase of production efficiency, it came with an erosion of several resilience traits such as, fertility, health, lameness, longevity, and environmental sensitivity (Schuster et al., 2020;[START_REF] Brito | Review: Genetic selection of high-yielding dairy cattle toward sustainable farming systems in a rapidly changing world[END_REF].

The always-increasing environmental quality that accompanied these gains in production meant that reduced animal resilience had relatively little consequences. Thus, genetic selection for production could erode animal resilience capability (Miglior et al., 2017).

The same was observed in dairy goats. In 2020, the mean cumulated milk yield per lactation was 989 kg per goat against 842 kg in 2010 (Table 1). Meanwhile we observed the decrease of several health and reproduction traits. Today, the mean productive longevity of goats in French herds is 3.8 years, which means that on average the animals do not finish their third lactation [START_REF] Inosys | Améliorer la longévité des troupeaux caprins[END_REF]. Nearly 40% of the farms have a culling rate higher than 30%. Considering the cost of raising kids and the low value of a cull, such results penalize the production costs of goat farms. However, in dairy goats Palhiere et al. (2018) showed no significant decrease for the estimated breeding values (EBV) of Artificial Insemination bucks for functional longevity over the past decades, suggesting that genetic merit for functional longevity has not deteriorated in the dairy goat population so far. That suggests that the decrease of longevity in dairy goats is rather due to farming management such as short dry period, high proportion of concentrate in food, off-season reproduction or simply the will of the farmer to speed up the genetic gain of the herd by increasing the culling rate. This erosion is supported by genetic antagonisms (trade-offs) between production traits such as growth and milk production with resilience related-traits. Indeed, many studies reported unfavourable genetic correlations between production and other life functions in different livestock species [START_REF] Pryce | Genetic relationships between calving interval and body condition score conditional on milk yield[END_REF]Rostellato et al., 2021;[START_REF] Vw Van Der Most | Trade-off between growth and immune function: a meta-analysis of selection experiments[END_REF]. The biological basis for those trade-offs is mostly unknown. Hypotheses include that 1) they are due to closely linked or pleiotropic genes that were simultaneous selected for or, 2) that there is underlying a competition for nutrients between biological functions. First, a few examples of pleiotropic genes have been published [START_REF] Fasquelle | Balancing selection of a frame-shift mutation in the MRC2 gene accounts for the outbreak of the Crooked Tail Syndrome in Belgian Blue Cattle[END_REF]Kadri et al., 2014;[START_REF] Rupp | A Point Mutation in Suppressor of Cytokine Signalling 2 (Socs2) Increases the Susceptibility to Inflammation of the Mammary Gland while Associated with Higher Body Weight and Size and Higher Milk Production in a Sheep Model[END_REF]. The second hypothesis is based on the evolutionary theory of resource allocation that considers the responses to selection according to the feed availability and to the competing demands for nutrients among the different functions of an organism [START_REF] Beilharz | Quantitative genetics and evolution: Is our understanding of genetics sufficient to explain evolution?[END_REF][START_REF] Gabriela Jimenez | The Same Thing That Makes You Live Can Kill You in the End": Exploring the Effects of Growth Rates and Longevity on Cellular Metabolic Rates and Oxidative Stress in Mammals and Birds[END_REF][START_REF] Hou | The energy trade-off between growth and longevity[END_REF][START_REF] Puillet | Using selection trajectories to optimize energy acquisition and allocation according to nutritional environment: towards a better understanding of trade-offs among biological functions[END_REF][START_REF] Rauw | Feed efficiency and animal robustness[END_REF]. [START_REF] Kuipers | The role of environmental sensitivity and plasticity in breeding for robustness: Lessons from evolutionary genetics. Breeding for Robustness in Cattle[END_REF] showed that having resilience mechanisms implied an energetic and entropy cost for the animal. In some environments, these costs may outweigh the benefits of having resilience mechanisms and therefore different types of environments may favour or penalise selection for resilience.

In small ruminants, [START_REF] Mucha | Animal Board Invited Review: Meta-analysis of genetic parameters for resilience and efficiency traits in goats and sheep[END_REF] conducted a large meta-analysis of genetic correlations between several production, resilience, and disease resistance traits. They found out that pooled estimated for genetic correlations were not significantly different from zero excepted that between mastitis (somatic cell score) and milk fat content. Even though the pooled estimates were nonsignificant, authors concluded that antagonisms may exist but only in specific populations and environments. In addition, the variability of estimates was often large with a range of values containing negative as well as positive values, reflecting the importance of the environmental conditions for the co-expression of resilience and production potential, or so to say genotype, by environment interactions. Thus, we need a better understanding of the genetic correlations between production and resilience related mechanisms.

Less and less stable farming conditions

The increase of productivity that occurred during 20 th century was not only due to animal genetic selection but also to enhanced farming environments. Vaccination and antiparasitic drugs developed, housing quality increased, and mechanization improved the quality of animal food and allowed cheap transport of soybean concentrate from South America. The 21 st century came with the idea that this growth was limited (Figure 10). Reduction in freshwater reserves, organic matter decrease in soil, erosion of ploughed land, and the greater expected frequency of environmental perturbations compromise farming environments quality [START_REF] Pörtner | Climate Change 2022: Impacts, Adaptation and Vulnerability[END_REF]. It is also likely that livestock will be exposed to other environmental perturbations resulting from climate change such as exposure to novel and exotic pathogens [START_REF] Yatoo | Effects of Climate Change on Animal Health and Diseases[END_REF] or harsh weather conditions (Figure 11). Meanwhile so-called "off-farm" breeding systems in ultra-controlled environments are increasingly criticized by public opinion, which will demand greater animal welfare and access to the outdoors. Thus, the animal of the future will have to adapt to a much greater variability in the quantity and quality of food without this greatly reducing its performance (Tixier-Boichard et al., 2015). Moreover, the access to the outdoors considerably modifies the possible sanitary strategies. Farming in buildings allows an easier control of temperature, humidity, and transmissible diseases. In this context, knowing which type of animal is best for the current and likely future environments is of major interest.

Resilience of farming systems is a major lever for coping with possible current and future disturbances, and animal physiological resilience is a key component. Animal resilience also appears as a way to mitigate environmental impact. Selecting more resilient livestock is necessary to move toward a more sustainable animal breeding in the context of agroecology [START_REF] Phocas | Des animaux plus robustes : un enjeu majeur pour le développement durable des productions animales nécessitant l'essor du phénotypage fin et à haut débit[END_REF]. In this context, ruminants have a role to play as they can use poor quality feeds, and pastures in areas that are completely or partially unsuitable to arable agriculture, turning them into high quality edible protein.

More specifically, small ruminants have shown great ability to thrive in very harsh environments [START_REF] Astruc | RUSTIC -Vers une approche intégrée de la robustesse des petits ruminants[END_REF]. 4. The genetic selection for animal resilience 4.1.

Breeding for resilience today

Genetic selection for dairy ruminants during the previous decades has been marked by the diversification of selection objectives, which integrate more and more health and durability criteria. Miglior et al. (2005) described the different selection indices for Holstein cows across 15 countries. In 2003, the average relative emphasis for production, durability, and health and reproduction was 59.5, 28, and 12.5%, respectively (Figure 12). In France in 2023, the single synthesis index (ISU) for Holstein cows includes a synthesised milk index (SYNT), a reproduction index (REPRO), a mammary health index (STMA), a functional longevity index (LGF), a milking speed index (TR) and a morphological index (MO), scaled as follows [START_REF] Geneval | Indexations bovines[END_REF].

  = 00 + 47,09 * (0,35 /5, + 0,5  + 0,5  + 0,05  + 0,05  + 0,5 )

In Lacaune dairy sheep, a somatic cells score (SCC) index and a mammary morphology index were added to milk production traits to the global selection index in 2005. In the three other main French dairy sheep breeds, only SCC index was added in 2016 [START_REF] Barillet | Objectifs de sélection et stratégie raisonnée de mise en oeuvre à l'échelle des populations de brebis laitières françaises[END_REF], allowing improved mammary health selection [START_REF] Rupp | Genetic parameters for milk somatic cell score and relationship with production and udder type traits in dairy Alpine and Saanen primiparous goats[END_REF]. The genetic improvement of the French Alpine and Saanen dairy goat breeds used to be driven by the "Caprine Production Index" (IPC), which was first defined in 1996. The IPC is centred around milk production traits (IMP: protein matter content, IMG: fat matter content, ITP: protein ratio, ITB: fat ratio). Additionally, since 2006, morphological traits have been selected using the "Caprine Morphological Index" (IMC), which comprises of five type scores: front udder, profile, floor, teat orientation and rear attachment width [START_REF] Clement | Elaboration d'un index synthétique caprin combinant les caractères laitiers et des caractères de morphologie mammaire[END_REF]. The IMC and IPC were then combined into a global composite index called the "Combined Caprine Index" (ICC).

  =  + 0.4  + 0.  + 0.    =  + 0.5 

The selection objective was expanded in 2013 to include mastitis resistance, based on an SCC index (ICEL) [START_REF] Clément | Somatic cell counts as a selection criterion for goat mastitis resistance[END_REF][START_REF] Palhiere | Un objectif de sélection qui augmente le profit des éleveurs caprins[END_REF]. Improving resilience though genetic selection in dairy ruminants, however, is currently limited to a few traits such as mastitis resistance (SCC, clinical mastitis) and longevity. The difficulty in improving these resilience traits in balanced breeding objectives comes from the low heritability of those traits (Table 2), their genetic antagonism with production traits, and limited weight in combined indexes [START_REF] Clément | Somatic cell counts as a selection criterion for goat mastitis resistance[END_REF][START_REF] Palhiere | Un objectif de sélection qui augmente le profit des éleveurs caprins[END_REF].

Some benefit is expected from the positive correlation of udder morphology with longevity and udder health [START_REF] Hu | Analysis of Longevity Traits in Holstein Cattle: A Review[END_REF]Sasaki, 2013) or SCC [START_REF] Rupp | Genetic parameters for milk somatic cell score and relationship with production and udder type traits in dairy Alpine and Saanen primiparous goats[END_REF]. The genomic selection increases the accuracy of the estimation of the genetic value of individuals and allows early estimation for traits expressed late in the animal's life such as functional longevity. The emergence of affordable genomic tools and techniques opened the way to speeding up selection for traits with low heritability such as health traits and longevity. In 2011, the first goat SNP chip was created and combined 54 000 SNP [START_REF] Maroteau | Genetic parameter estimation for major milk fatty acids in Alpine and Saanen primiparous goats[END_REF]. To prioritize traits related to animal health, longevity, and overall resilience, breeders must continue to refine their selection indices. This requires establishing criteria for traits that adequately represent animal resilience, are heritable, and can be cost-effectively measured in large numbers of animals, ideally relatively early in life [START_REF] Brito | Review: Genetic selection of high-yielding dairy cattle toward sustainable farming systems in a rapidly changing world[END_REF]Friggens et al., 2017). The ever-increasing access to a large amount of longitudinal farm data (animal and environmental records) opens the field for the definition of new resilience phenotypes and the inclusion of resilience indices in selection schemes [START_REF] Berghof | Opportunities to Improve Resilience in Animal Breeding Programs[END_REF]. Moreover, the increasing diversity of available measures could make it possible to dissect the different underlying mechanisms of resilience. For example weight and ingestion recordings could be used to characterize energy allocation; blood or milk metabolites, metabolomics and MIR spectra could lead to accurate characterization of energetic metabolism and the follow up of SCS, inflammatory markers or immunophenotype could characterize immune resilience to pathogens.

One hypothesis for the low heritability of resilience indicators that account for cumulated consequences of resilience, such as longevity, is that they results from a diversity of resilience mechanisms that are not necessarily positively correlated. Using underlying resilience traits as genetic selection proxies would potentially increase the genetic gain and allow a better control of the traits selected.

Aim and outline of this thesis

My thesis is based on the hypothesis that the evolution of milk metabolite concentrations during an imposed underfeeding challenge would reveal a diversity of metabolic responses, and that these responses are part of the heritable resilience mechanisms in the dairy goat. Milk metabolites are a promising avenue as they allow the characterization of a large number of metabolic reactions, are easily sampled, and can be assessed relatively early in the productive life of the animal.

In order to maximize the diversity of resilience-related traits in our animal model, we used two divergent lines of alpine dairy goats for functional longevity. The first part of this thesis aims to validate that the two genetic lines of goats showed contrasted levels of resilience (Article I published in the Journal of Dairy Science).

We then explored the metabolic responses to a two-day underfeeding challenge imposed during the beginning of the first lactation. The two-day underfeeding challenge was imposed to 267 primiparous goats from the two divergent lines for functional longevity at two INRAE experimental facilities. This two-day underfeeding challenge was designed to simulate a common environmental stressor and elicit the expression of metabolic strategies employed by the goats to overcome it. To assess the metabolic response to the underfeeding challenge, four key blood metabolites were measured daily. These metabolites were chosen based on their relevance to energy metabolism. By monitoring the fluctuations in these metabolites throughout the challenge, valuable insights can be gained into the metabolic strategies employed by the goats in response to short-term undernutrition. I participated in a paper, led by Marcelo Gindri, that used the piecewise model described in Friggens et al. (2016) to compare the metabolic responses in the two genetic lines of goats (Article II submitted to the Journal of Dairy Science).

A subset of 140 of these goats had daily measurements of the concentration of 13 milk metabolites and 1 enzyme. They provide a comprehensive view of the metabolic reactions occurring during the underfeeding challenge. They offer a promising avenue for characterizing the metabolic diversity and plasticity associated with resilience. Importantly, milk metabolites can be easily sampled and measured early in the productive life of the animals, providing valuable information for selecting and breeding more resilient individuals. Our aim was to propose a novel statistical method to integrate all the milk metabolites profiles and explore the different overall metabolic responses. Ahmed Ben Abdelkrim proposed a novel method to study the link between 9 milk metabolite profiles and several performance profiles during an underfeeding challenge in 16 dairy goats based on the piecewise model in an article I contributed to (Article V published in Animal). In thesis I proposed a different approach based on functional PCA to model the 14 milk metabolite profiles and explore the link between metabolic response to a two-day underfeeding challenge and lifetime resilience (Article III published in the Journal of Dairy Science).

The final part of the thesis investigates the genetic determinism of indicators in blood and milk metabolite profiles during the undernutrition challenge. It presents the estimated heritability of the blood and milk indicators. Furthermore, 150 animals were genotyped using the Illumina GoatSNP50

BeadChip, and a genome-wide association analysis was conducted on the profiles of blood metabolites. The GWAS results are preliminary, as genotyping of some of the goats is pending (Article IV in preparation).

Article I: Creating a suitable model for resilience by selection for functional longevity in goats

Improving our understanding of animal resilience requires studying animals with different resilience capacities. This trivial sentence implies setting a criterion for separating highly resilient animals from less resilient ones, which is much less trivial. Longevity is not only a desired consequence of resilience but is also considered as the best single indicator of resilience (Friggens et al., 2017). It starts from the idea that good longevity can result, all other things being equal, from the cumulative consequences of good resilience. Longevity corresponds to true longevity that includes all culling reasons and functional longevity: all culling reasons, except productivity (Sasaki, 2013). The analysis of the genetic determinism of functional longevity in 84,454 Alpine goats estimated the heritability of functional longevity around 10% and suggested that good udder health and udder shape significantly contributes to higher functional longevity in goat (Palhière et al., 2018). Based on the estimated breeding values (EBV) for functional longevity computed for 8,787 artificial insemination bucks, two genetic lines of goats were created in INRAE using hyperselected AI bucks with the most extreme estimated breeding values for functional longevity (Figure 13). A total of 440 goats, 228 in the high longevity (High_LGV) and 221 in the low longevity (Low_LGV) lines, were bred and monitored for 4 yr between 2017 and 2021. The aims of the following article were to validate the creation of hyperselected lines of goats for functional longevity, compare the longevity of the 2 lines raised in the same environment, and explore factors that contribute to the longevity to better understand the resilience mechanisms involved. 

ABSTRACT

Resilience is the ability of an animal to cope with environmental disturbances, such as pathogens or negative energy balance. To improve resilience through breeding, we need resilience indicators. Functional longevity might be a good indicator of a dairy goat's life-time resilience as it results from the ability to cope with and recover from all the challenges faced throughout its lifetime. The aim of this study was to validate the use of functional longevity as an indicator of resilience for selection. To address this question, we created 2 genetic lines of Alpine goats using hyperselected artificial insemination bucks with the most extreme estimated breeding values for functional longevity and the same milk yield performance. A total of 440 goats, 228 in the high longevity (High_LGV) and 221 in the low longevity (Low_LGV) lines, were bred and monitored for 4 yr. Health treatments, serum IgG concentration as a proxy of passive immune transfer in early life, kidding, age, and reason of culling were systematically noted.Weight and body morphology were monitored. Weight and growth during the first year of life were similar in both goat lines. In contrast, the Low_LGV goats had alower weight during the beginning of first lactation than High_LGV goats. The milk fat-to-protein ratio was also significantly higher in Low_LGV goats during first lactation. A multivariable Cox regression was fitted to the data to decipher survival at different stages of life inthe 2 lines. The overall survival of High_LGV goats was significantly better than Low_LGV goats (hazard ratio = 0.63, confidence interval = 0.47; 0.86) even after we included treatment, growth, serum IgG concentration at birth, and year effects in the model. The line effect was not constant over time; no significant effect was found during the first year, and the difference was observed

INTRODUCTION

There is increasing interest in animal robustness as a trait of importance in the future design of livestock systems, and genetic selection strategies to select for it are increasingly being sought. Food security in a world affected by climate change means that animals will be exposed to, and have to cope with, harsher and more variable environments. More specifically, small ruminants have shown great ability to thrive in very harsh environments (i.e., they can display a high level of robustness). In the context of robustness, it is useful to consider the environment as having 2 components (Friggens et al., 2017). The first is general "harshness"of the environment, requiring long-term adaptation mechanisms as a first aspect of robustness. The second component of the environment relates to the frequency and intensity of environmental perturbations. Animals respond to these shorter-term perturbations by a dynamic pattern of response and recovery that is usually referred to as an animal resilience mechanism (Colditz and Hine 2016). The animal's resilience can be seen as the most determinant part of robustness in a wellcontrolled farming environment (i.e., when harshness of the environment is low).

It is relevant to see functional longevity as strongly correlated with resilience because it results from the accumulated consequences of ability to cope with and recover from all the challenges faced throughout an animal's lifetime. Thus, it can be assumed that animals with poor resilience have shorter longevity. Longevity corresponds to (1) true longevity that includes all culling reasons and (2) functional longevity (all culling reasons, except productivity; Sasaki, 2013). It has recently been proposed that functional longevity maybe a good proxy for resilience (Rostellato at al., 2021). There is evidence that functional longevity has a genetic control and can be transmitted to progeny, as heritability estimates were around 0.10 (ranging from 0.1-0.29) in cattle (Sasaki, 2013) and in the range of 0.10 to 0.14 in goats (Castañeda-Bustos et al., 2017;Palhière et al., 2018). Accordingly, functional longevity has already been included in breeding programs of cattle (Miglior et al., 2005(Miglior et al., , 2017;;[START_REF] Tsuruta | Changing definition of productive life in US Holsteins: Effect on genetic correlations[END_REF]as a proxy for improving animal resilience and overall lifetime efficiency together with improving productivity. However, functional longevity is a complex trait, and the underlying mechanisms that are selected remain largely unknown. Furthermore, as genetic evaluation is made from commercial population data (i.e., numerous farms with different environments), there is a need to check the validity of the genetic response in the same farm environment.

Accordingly, the aims of this study were to (1) validate the creation of hyperselected lines of goats for functional longevity, (2) compare the longevity of the 2 lines raised in the same environment, and (3) explore factors that contribute to the difference of longevity to better understand the resilience mechanisms involved.

MATERIALS AND METHODS

The experiment was carried out in agreement with French National Regulations for the humane care and use of animals for research purposes. 

Animals

Following the method developed by Palhière et al. (2018), a genetic evaluation for functional longevity of 8,787 Alpine AI bucks was carried out. Briefly, length of productive life was computed for 84,454 Alpine goats as the time interval (in days) between first kidding (first milk recording) and the last milk recording registered in the national performance recording database. Estimated breeding values for length of functional life were then estimated for AI bucks using BLUP based on phenotypic information, pedigree information, and variance component estimates. Sires of the 2 lines were also required to show similar and favorable EBV for milk production traits to avoid confounding effects from an indirect response to selection for production traits. In 2020, the EBV of the bucks used were +85.1 d of functional life for the bucks of high longevity (High_LGV) lines and -108.7 d for the bucks of low longevity (Low_LGV) lines (Table 1). From 2017 and until 2021, we selected 35 AI bucks in total as follows: the 16 bucks who had the highest EBV among the whole AI bucks population founded the High_LGV line and the 19 bucks who had the lowest EBV founded the Low_LGV line (Table 1). The selection was mainly made on the males; the very strong selection that was made on the buck (the most extreme EBV of the national database) was relevant to create a model to produce the most divergent animals possible using functional longevity-based selection (high selection pressure on males: 36 out of 8,787 bucks with breeding values). In the later years of the a-c Letters correspond to significant differences within a row (P < 0.001). 1 LPL = length of productive life. Genetic evaluation for longevity was run on May 2021; genetic evaluation for milk yield, SCC, and body morphology was run on January 2021. No culling for low production reasons took place during lactation or at drying off during this period (up to the end of third lactation). At the age of 2 mo, all goats were treated against coccidiosis (Toltrazuril, Baycox) and were vaccinated against Q fever at the age of 4 mo (Coxevac).

The kids that died before 24 h of life were not included in the analysis(they corresponded to abortions).

Survival Length

Throughout the study, for a cleaner assessment of functional longevity, goats were not culled for performance reasons, which included not being culled for failure to conceive. This resulted in a small number of goats being kept for years without giving birth. However, this does not correspond to what is done in commercial farms. Therefore, it was decided to adjust the culling age for goats that were not pregnant during 2 successive years (1 yr of reproductive failure was tolerated). In this situation, the date of the last negative pregnancy determination (by ultrasound) was set as the culling date. This equated to culling ages of 680or 1,080 d, depending on the year of the first non birth. Consequently, we modified 15 dates of culling for 2 yr of successive reproductive failure.

Data Used to Decipher Survival

Each reason for culling was indicated by the farm staff. For processing, these data were grouped into the following 6 classes of culling reason: birth-associated, infection, accident, metabolic, skinny, and other. The passive immune transfer from the goat to the kid can be evaluated measuring serum IgG concentration at birth [START_REF] Weaver | Passive transfer of colostral immunoglobulins in calves[END_REF]. It was done by a radial immunodiffusion technique between 1 and 14 d of age.

Logarithmic transformation was applied to values before statistical analysis to normalize the distribution of the data. The date of each kidding was recorded, as well as any difficulties during kidding, the number of kids, and the weight of the litter. All health treatments were recorded in the same way and then grouped into the following 5 groups: infection, accident, metabolic, mechanical, and other.

Milk yield, milk fat content, milk protein content, and SCC were measured every 3 wk in first lactation,as part of the official milk records for the herd. The lactation somatic cell score (LSCS) was computed from the monthly test-day SCC in a 250-DIM period as described by [START_REF] Rupp | Divergent selection on milk somatic cell count in goats improves udder health and milk quality with no effect on nematode resistance[END_REF]. Briefly, the test-day SCC were transformed to SCS by logarithmic transformation to achieve a normal distribution. The LSCS was then computed as the weighted arithmetic meanof the testday SCS, adjusted for DIM. Total milk was calculated with the Fleishmann method using test-day records of each in 90 (MY90) or 250 DIM (MY250) lactation periods [START_REF] Ruiz | Comparison of models for describing the lactation curve of Latxa sheep and an analysisof factors affecting milk yield[END_REF]. The milk fat-to-protein ratio was calculated for the first test day in lactation (between 1 and 45 DIM).

Chest size and height at the withers were measured every 2 mo during the first year and from then on 1to 4 times per year. Goats were weighed every single month from birth to the age of 1 yr and from 2 to 5 times a year thereafter. The BW data were processedfor inclusion in the survival analysis, as follows.

Integration of Weight Data During the First Year of Life

We used the functional data analysis smoothingmethod described by Ramsay and Silverman (2005). The application of this method to the BW data made it possible to estimate a corrected weight of individuals for every month from birth to 1 yr old as well as the first derivative. We used B-spline basis functions, which can construct piece-wise polynomial functions joined at the knots. The roughness penalty is adjusted by the scalar λ, (as λ increases, the penalty term becomes more decisive, and thus the second derivative converges to a straight line). The B-spline smoothing was run over 6,747 BW records for the 364 goats that were weighed at least 5 times (from 5-27 times). The age of the 75 goats for which less than 5 weight measures were recorded ranged from 1 to 30 d old.

To deal with the inevitable correlation between BW and age (thus BW and survival), a weight deviation (WD) was calculated, allowing the weight of an individual to be compared with that of other individuals of the same age as follows:

WDij = Wij -mean(Wj) , SD(Wj)
where WDij is the WD value of animal i for month of age j; Wij is the estimate of the weight after smoothing of individual i for month j. Mean(Wj) and SD(Wj)are the mean value and the standard deviation of the estimated weights in month of age j.

To include the weight record of kids who died early in the survival analysis, as all goats were weighed at birth, we decided to use the raw weight value (not estimated by Bspline analysis) for the first month WD calculation. A single value per animal was also calculated to summarize the average WD during the first year of age as follows:

mean_WDi = mean(WDij),
where WDij are all weight deviations of the ith animal for months ranging from j = 1 to 12. The same method was applied on the first derivative of the weight curves to calculate the growth rate deviation and the mean speed of growth deviation as follows: dWDij and mean_ dWDi. The effect of mean_WDi and mean_dWDi weretested in the survival analysis after 1 yr of age to checkif the growth during the first year of life had an effecton later survival.

Statistical Tests

All statistical analysis were done in the R statistical environment (https://www.r-project.org/). We ran linear regression using the lm and glm to compare between the 2 lines as follows: weight at birth, mean WD (meanWD), mean growth rate deviation (mean_dWD), logtransformed serum immunoglobulin concentration, and first lactation MY90, MY250, milk fat-to-protein ratio, and LSCS. Fixed effects were as follows: line and year in all models, as well as number of kids for weight at birth and age at first kidding for MY90, MY250, milk fat-to-protein ratio, and LSCS. Mixed models with an animal random effect were run for repeated data as follows: weight, chest size, height, number of treatments per year, kidding per adult year (logistic regression), and number of kids per kidding. We used the lme4 package in R [START_REF] Bates | Fitting linear mixed-effects models using Lme4[END_REF]. Only months when at least 20 goats were recorded were included in the analysis for weight and body morphology. We used raw data (no Spline transformed) to compare weights after the first year of life. We included the fixed effect of gestation during the 3 last months before kidding (0 vs. 1) for weight analysis. Supplementary analyses were run where line effect was nested into month for weight and body morphology analysis.

Survival Analysis

The R package 'survival' was used for the survival analysis [START_REF] Zhang | Time-varying covariates and coefficients in Cox regression models[END_REF]. Survival analysis was performed using a Cox model (Cox, 1972) as follows:

log(h (t|x )) = log(h0(t)) + x'β,
where h(t) is the expected hazard at time t, h0(t) is the baseline hazard, and β is the coefficient associated with the covariate x. The model included both fixed effects (i.e., those that were the same through all the animal's life including line, year of birth) and time-dependent covariates using the monthly records for data that changed with time [START_REF] Zhang | Time-varying covariates and coefficients in Cox regression models[END_REF].

The physiological status of the goats (kidding or not), their weight, and any treatments received could change every month. Before 1 yr old, the weight variable affecting survival at month j was assumed to be the weight deviation value at month j -1 (WDj -1). After the first year, the weight variable used was meanWD fitted as a fixed effect. The effect of the occurrence of a treatment or a kidding (both coded as 0 or 1) was evaluated over 3 mo after the event recording (i.e., the dummy variables were set to 1 if the event had occurred during the last 3 mo).

The proportional hazards hypothesis of the Cox's model [which is that the risk ratio (β) is assumed to be constant regardless of the age considered] was tested by visual inspection of the standardized Schoenfel residuals [START_REF] Zhang | Time-varying covariates and coefficients in Cox regression models[END_REF]. When the proportional hazards hypothesis was not found to hold, the hazard ratio was calculated separately over different time intervals using a stratification method (β is then considered constant within the different time intervals but differs between time intervals).

We selected the co-variables that remained in the survival model with a downward stepwise method from the maximum model, using a P-value threshold of 0.05.

Because of the number of goats included in the survival analysis, interactions were not included in the model.

RESULTS

Proportion of Culling, Health Treatments, and Reproductive Performances

No significant differences were found between lines inthe causes of culling. Cullings related to infections and accidents represented the 2 largest groups (54 goats each) followed by the birth-related group (48 goats).The birth group consisted of all deaths registered before 5 d and is the largest group of culling reasonsthat occurred in the first year of life (Figure 1). This represented 27% of culling in the first year on average (31% and 23% in the High_LGV and Low_LGV lines, respectively). After the first year of life, infections represented the main cause of culling (11.6% and 20.3%in the High_LGV and Low_LGV lines, respectively). Despite the small number of cullings in each group, Low_LGV goats were more numerous in the infection group as follows: 7% of High_LGV goats (16/228) and 12.7% of Low_LGV goats (27/212). There was no significant line effect on the number of treatments received per year (Table 3). Between 2017 and 2021, 344 treatments were given as follows: 171 (49% of goats) to High_LGV goats and 173 (51% of goats) to Low_LGV. Age at treatment ranged from 8 to 1,576 d. Infections represented 269 (78.2%) of these treatments (Figure 2).

No line effect on number of kiddings was found (P = 0.7). On average, 67.8% of goats had a kidding per adult year (Table 3). There were 424 kiddings, of which 199 were Low_LGV, and 225 were High_LGV. Similarly,the mean number of kids per kidding was 1.45 (min = 1, med = 1, max = 5) and was the same for the 2 lines (Table 3). The majority of kiddings were recorded as "normal" and 49 were "difficult" (12.8% of Low_LGV kiddings and 12.7% of High_LGV kiddings). There were 247 goats with at least 1 kidding recorded.

The median number of body morphology records per goats was 6. Mixed models were applied to height and chest size data over the whole life of goats. A line effect was found for chest size (P = 0.03), with High_LGV goats having a greater chest size than Low_LGV goats (83.7 cm vs 83.0 cm). The weight at birth was similar for Low_LGV and High_LGV (mean = 3.94 kg, min = 1.6, max = 5.9, n = 440), as well as mean weight deviation (mean_WD) and mean speed of growth deviation (mean_dWD; Table 3).

No line effect was found. However, when the line effect was nested into the month effect, High_LGV goat were significantly heavier than Low_LGV line between 12 and 16 mo (F test; P < 0.05), with a difference of 1.5 kg between lines at 13 mo of age (t-test; P = 0.003). Differences between lines were also significant at 24, 25, and 35 mo of age (Table 4). Smoothed weight curves of the 341 goats who had at least 5 weight measurements are shown in Figure 3.

Survival Analysis

There were 440 goats included in our study; 246 of them had been culled at the time of analysis. More Low_LGV goats had been culled than High_LGV goats (62.4% and 49.5%, respectively; Table 3). Out of 440 goats, the 194 (44.1%) animals that did not exit theflock before the end of the study were considered as censored. 4 Total milk yield estimation with Fleishmann method using test-day records of each in 90 or 250 DIM lactation period. 5 Ratio of fat content to protein content calculated for the first test day in lactation (between 1 and 45 DIM). 6 Serum immunoglobulin concentration during the first days of life. *0.01 < P < 0.1; **P < 0.01.

The Kaplan-Meier curves of the 2 lines are displayed in Figure 4. It shows a steep decline in the first few days after birth of the kids because 16.8% (74/440) of the goats died within the first month. The survival of Low_LGV goats seemed slightly better during the first year, yet not significant, before curves crossed around 450 d of age.

The Schoenfeld residual analysis showed evidence of violation of proportional hazards assumption for line effect (P = 0.01). From the visual inspection of the residual plot (Figure 5), we can see that the residuals for the High_LGV line relative to the Low_LGV line (shown as the reference line) decrease over time. The line effect was not significant during the first year, whereas the High_LGV line tended to be associated with a lower risk of being culled after 600 d of life, and more so after the second year. The Schoenfeld residual analysis showed no evidence of other factors that did not fit with the proportional hazards assumption, except for treatments (P = 0.02). However, no inversion of the line and treatment effect was observed. Thus, we decided not to stratify the line and treatments analysis over the different stages of life of the goats as it would not change the interpretation of the results.

The results of the multivariate Cox regression, including all significant covariates, are reported in Table 5.

Significant effects (P < 0.05) were found for the following: line, speed of growth deviation (dWD) before 13 mo, year of birth, health treatments, and high IgG concentration. The effects of birth weight as a fixed effect, monthly WD during the first year, latent effect of mean WD during the first year over the survival after the first year, WD after the first year, normal or difficult kidding (versus no kidding), and number of kids after a kidding were tested but found not to be significant, and thus were eliminated from the model. Some years of birth were associated with higher hazard ratio than others, especially 2021, when mortality was 3.007 times higher than in 2018. Health treatments were associated with increased hazard of culling in the following 3 mo. The average effect of line over all life stages was significant, with the High_LGV line having a decreased risk of culling (hazard ratio 0.63; CI = 0.465; 0.864).

DISCUSSION

Several studies estimated heritability of functional longevity (Castañeda-Bustos et al., 2017;Nayeri et al., 2017;Palhière et al., 2018) to be around 10% in goats.

Nevertheless, there was a need to check if a hyperselection on functional longevity done on the commercial population would translate into significant differencesin longevity in a common farm environment with direct longevity recording. Given the differences in the relative importance of different mechanisms contributing to survival in different environments, lifespan is likely to be affected by genetics × environment interactions. Differences in functional longevity between farms will be heavily influenced by the level of challenge encountered in the different farming environments (e.g., farmer culling rules and environment harshness). Moreover, 2 animals can have the same functional lifespan, but one can receive considerably more medicinal interventions throughout its lifetime and thus be less robust. Such a selection for functional longevity was run on rabbits and led to significant difference in longevity [START_REF] Garreau | Divergent selection for longevity in breeding does: Indirect response for energy balance and fat stores[END_REF].

To our knowledge, selection on longevity has never been done in dairy ruminants.

Our finding that hyperselection for functional longevity resulted in increased survival was observed in a single breed (Alpine) and in a single experimental herd over 5 yr with a management representative to that found in many commercial dairy goat farms (i.e., indoors, feeding forage and concentrate, using AI and twice day milking).

According to the national performance-recording database, the average milk yield for first lactation Alpine goats over 250 d was 707 kg in 2019 [START_REF] Thomas | Idele -Milk recording results of goats -France Year[END_REF]. In the present study, milk yield (± SD) was 619.6 kg (± 121.2) on a 250-d basis (Fleischmann's method). In the national database, the average LSCS in That can be explained, at least to some extent, by the fact that the genetic evaluation of bucks was run only on their daughters that had a registered milk yield (i.e.,the ones that survived the first unproductive year of life). Indeed, the life expectancy for goats that survived the first year was 1,498 d for the High_LGV compared with 1,097 d for the Low_LGV line (difference = 401 d). The survival analysis confirmed that the line effect was not constant over the life of the animal. The 2 lines had the same survival during the first 15 mo, whereas the High_LGV line had a better survival thereafter. This finding could be explained by the fact that the environmental challenges that affect the first year (e.g., overcoming birth, dealing with milk feeding and its related health effects, building an immunocompetence) are different than those faced by adults. Survival after the first year could rely on mechanisms that are not expressed before the first year. Further, some factors that would otherwise be present throughout the life of the animal, such as malformations and inappropriate body morphology, will be culled out soon after birth. In cattle, [START_REF] Pritchard | Understanding the genetics of survival in dairy cows[END_REF] found a positive genetic correlation (0.31) between heifer survival and lifespan score. The relatively low correlation suggested that survival in the rearing herd and the milking period are different traits. The small number of goats included in our study did not permit calculation of genetic correlations. However, our results highlighted the need to record culling information before first kidding of goats on a national scale to address that issue. Indeed, survival at early stage of life has been shown to be heritable in sheep [START_REF] Riggio | Genetic parametersfor early lamb survival and growth in Scottish Blackface sheep[END_REF]. Low serum immunoglobulin concentration shortly after birth was correlated with lower survival through life (P = 0.03). It has been shown that a lower passively acquired immunity is linked with an increase of diarrhea, lower weight gain, and increased mortality during the first month [START_REF] Bekele | Influence of pas-sively acquired colostral immunity on neonatal lamb mortality in Ethiopian highland sheep[END_REF][START_REF] Berge | Evaluation of the effects of oral colostrum supplementation dur-ing the first fourteen days on the health and performance of pre-weaned calves[END_REF]. Here, we showed that the deleterious effect of impaired immune transfer from colostrum remained even during subsequent stages of life. In our study, all kids were given the same amount (300 mL) of heat-treated colostrum sampled from a group of kidding goats. The variability of IgG absorption could be due to a difference in IgG concentration in colostrum pools (not standardized among samples), time before ingestion [START_REF] Weaver | Passive transfer of colostral immunoglobulins in calves[END_REF], heating time [START_REF] Saldana | Effect of different heating times of high-, medium-, and low-qual-ity colostrum on immunoglobulin G absorption in dairy calves[END_REF], or difference of first milk coagulation that could affect intestinal absorption [START_REF] Miyazaki | Short communication: Neonatal calves coagulate first-milking colostrum and pro-duce a large curd for efficient absorption of immunoglobulins after first ingestion[END_REF]. First lactation milk yield was similar for both lines. This confirmed that the selection procedure resulted in differences in functional longevity (i.e., longevity corrected for milk yield). No line difference was found for the number of kiddings per adult year nor in litter size. Thus, the better survival of the High_LGV line seemed neither to be due to better production nor better fertility.

The SCS score for first lactation was higher for low_LGV than High_LGV goats. This result was consistent with the slight difference in EBV for SCS in the sire bucks that could not be avoided when choosing extreme founders. That might mean a better udder health of High_LGV goats [START_REF] Poutrel | Cell content of goat milk: California mastitis test, coulter counter, and fossomatic for predict-ing half infection[END_REF][START_REF] Contreras | Physiological threshold of somatic cell count and California mastitis test for diagnosis of caprine subclinical mastitis[END_REF][START_REF] Jiménez-Granado | Factors affecting somatic cell count in dairy goats: A review[END_REF][START_REF] Rupp | Divergent selection on milk somatic cell count in goats improves udder health and milk quality with no effect on nematode resistance[END_REF].

There was no significant difference between lines concerning the number of treatments received. Indeed, despite treatment events significantly reducing survival over the 3 following months, including the treatment in the model did not affect the line effect. Although we cannot exclude the possibility that there were undetected disease events at play (affecting one line more than the other), the better survival of the High_LGV line suggested that in some way this line was more resilient to environmental perturbations. In this context, it is interesting to note that several studies found genetic correlations between functional longevity and udder traits in cows and goats. Palhière et al. (2018) found genetic correlations of functional longevity with milk SCS (from -0.29 to -0.35), rear udder attachment, and udder floor position (from 0.17 to 0.29). Such genetic associations of functional longevity with SCS were also reported in cattle (Sasaki 2013) and in goats (Castañeda-Bustos et al., 2017).

The month-per-month survival modeling allowed us to precisely implement the effect of events that occurred at different ages of the animal, or evolving variables such as treatments and BW. A strong correlation between survival and speed of growth was found during the first year. Several studies have found that kids (or lambs) with the lowest weight have a lower chance of survival [START_REF] Riggio | Genetic parametersfor early lamb survival and growth in Scottish Blackface sheep[END_REF][START_REF] Dwyer | Invit-ed review: Improving neonatal survival in small ruminants: Sci-ence into practice[END_REF][START_REF] Chauhan | Survival analysis of mortality in pre-weaning kids of Sirohi goat[END_REF] that could be partly attributed to the increased risk of hypothermia, which has been related to size as well as the individual's fat reserves [START_REF] Alexander | Temperature regulation in the new-born lamb. V. Summit metabolism[END_REF]. Moreover, smaller kids are penalized in all aspects of social competition.

It is interesting that the monthly growth rate (obtained from the B-spline smoothing) was more correlated with survival than BW. As a measure, growth rate is inherently more responsive to environmental challenges than is BW per se (a strong disease or nutritional challenge can cause growth rate to shift from positive to negative, whereas the corresponding change in BW is proportionally far less due to the cumulative nature of the measure). This finding suggested that the influence of growth rate on survival is associated with ability to cope with underlying disease or stress challenges. Several studies reported a negative correlation between growth rate and longevity [START_REF] Hou | The energy trade-off between growth and longevity[END_REF] and proposed that higher growth rate implies higher oxidative stress and shorter longevity [START_REF] Gabriela Jimenez | The Same Thing That Makes You Live Can Kill You in the End": Exploring the Effects of Growth Rates and Longevity on Cellular Metabolic Rates and Oxidative Stress in Mammals and Birds[END_REF]. We found no differences between lines during the first year in growth rate and BW. Moreover, no carry over effect of the average growth rate during the first year on later survival was found. The High_LGV goats were heavier during early lactation (between 12 and 16 mo). Because the body morphology records were less frequent than weighing and highly correlated with it, we did not include the min the survival analysis. However, the comparison of height and chest size between lines was of interest. No differences concerning the height at the withers was found, and High_LGV goats seemed to have a slightly wider chest (P = 0.03), indicating that High_LGV goats might have larger lipid reserves. In addition, the fat-to-protein ratio in milk during the first month of thefirst lactation was higher for the Low_LGV line. This suggested that this line had a greater negative energy balance in early lactation [START_REF] Bocquier | Effects of nutrition on ewes' milk quality[END_REF], despite milk yield being similar between lines during this critical period, and no differences in litter size or litter weight. These findings taken together tended to suggest that there were different resilience capacities between the lines, with different underlying priorities for usage of body lipid reserves. This may have contributed to the differences in functional longevity between them. The argument that body fatness dynamics confer robustness and help underpin resilience responses is supported by several studies. Savietto et al. (2015) showed that rabbits selected for productive longevity had a greater capacity for resources acquisition under constrained condition than rabbits selected for reproductive intensity. In cattle, body reserves have been shown to be predictive for reproduction and susceptibility to disease; excessive BCS at calving and great lossof BCS during early lactation were related to increased health disorders [START_REF] Roche | Invited review: Body condition score and its association with dairy cow productivity, health, and welfare[END_REF][START_REF] Roche | Assessing and managing body condition score for the preven-tion of metabolic disease in dairy cows[END_REF]. In dairy sheep, a divergent selection experiment for mastitis resistance was performed and showed a genetic link between susceptibility to udder infections and metabolic adaptation to energy shortage (Bouvier-Muller et al., 2018). However, the underlying mechanisms of the link between resilience, the dynamics of fat reserves, andBCS remain unclear.

The suggestion that the differences between low_LGV and High_LGV lines may be related to differencesin body reserve dynamics, and thus resilience, merits further study. Studies with more intensive recording of BW, BCS and energy metabolism, as well as ingestion should be of great value to explain different lifetimes of the 2 hyperselected lines of goats.

CONCLUSIONS

Hyperselection based on functional longevity of AI bucks successfully created 2 groups of goats with different lifespans. Monitoring of the lines indicated that functional longevity-based selection was associated with resiliencerelated mechanisms, as evidenced by better udder health with decreasing milk cell counts. In addition, the higher BW of High_LGV goats and lower milk fat-to-protein ratio during the beginning of the first lactation suggested different resource allocation profiles between lines. Our results supported the hypothesis that functional longevity reflects the accumulated consequences of resilience and thus provides a proxy measure for resilience.

Article I conclusions

 Selection for functional longevity is possible despite low heritability.

 Selection for functional longevity results in significantly different lifespans in a common farm environment.

 The survival of the two longevity lines differs after the second year of life.

 Lower somatic cells score in milk among High_LGV goats during first lactation suggest that better mammary health results in better functional longevity.

 Higher fat to protein ratio in milk and smaller chest size (for the same height) among

Low_LGV goats during first lactation suggest that higher body fat mobilization after first kidding results in lower functional longevity.

 This study validates our animal model: goats with different resilience related mechanisms.

Article II: Comparison of the blood metabolite profiles between the two longevity lines

Article I confirmed that genetic selection for functional longevity in goats was possible and suggested that High_LGV goats had different metabolism than Low_LGV goats in early lactation. We hypothesised that indicators of the energetic metabolism could be used as biomarkers of resilience and would allow selection of animals at an early stage of their productive life without indexing sires on progeny functional longevity. The metabotype is a so-called "internal" phenotype at the interface between the genotype and external phenotypes of interest in zootechnics [START_REF] Fontanesi | Metabolomics and livestock genomics: Insights into a phenotyping frontier and its applications in animal breeding[END_REF]. Today, it is used to characterize the variability of individual responses to a given environment [START_REF] Derno | Characterizing the metabotype and its persistency in lactating Holstein cows: An approach toward metabolic efficiency measures[END_REF][START_REF] Ghaffari | Discovery of different metabotypes in overconditioned dairy cows by means of machine learning[END_REF][START_REF] Zandkarimi | Metabotypes with elevated protein and lipid catabolism and inflammation precede clinical mastitis in prepartal transition dairy cows[END_REF]. Animals need to express their resilience-related mechanisms in order for these to be measurable. For this purpose, a short-term underfeeding challenge was used to induce a marked response from the animal and allow recovery thereafter. Early lactation in primiparous goats is a period of life when the animal's energy metabolism is under high stress, especially in one-year-old goats that are still growing and at the same time have to cope with the demands of early lactation. A short feeding restriction at this time will require the adaptation of several metabolic pathways in order to adapt to the nutritional deficits, implicating energetic metabolism and protein metabolism. In order to grasp these metabolic short-term adaptations to the underfeeding challenge, we meseared the evolution of 4 blood metabolite concentrations: beta-hydroxy-butyrate (BOHB), glucose (Glu), non-esterified fatty acids (NEFA) and Urea (Figure 14). The description of the time trend of these blood constituents through the underfeeding challenge will constitute a first step to describe the variability of metabolic responses and compare them between the two longevity lines. to a 2-d nutritional challenge in early lactation. The experiments consisted of a 5 or 7-day control period on a standard lactation diet followed by a 2-day nutritional challenge with straw-only feeding and then a 7 or 10-day recovery period on a standard lactation diet, for site Bourges and Grignon, respectively. During the challenge, plasma metabolite composition was recorded daily. Linear mixedeffects models were used to analyse all traits, considering the individual as a random effect and the 2x2 treatments (i.e., genetic line and site/year) and litter size as fixed effects. 

Introduction

The functional longevity of farm animals relies in part on their capacity to overcome or adapt to environmental challenges [START_REF] Savietto | Environmental sensitivity differs between rabbit lines selected for reproductive 478 intensity and longevity[END_REF]. The longer the animal stays functional in the herd, the more efficient the herd becomes because the non-productive young phase of life gets diluted by a longer productive lifespan. Dairy goats can have a long productive life, with several physiological/lactation cycles, on average 3.22 ± 1.9 parities but it can reach 8 parities per individual for the Alpine breed [START_REF] Arnal | Diversity of dairy goat lactation curves in France[END_REF]Ithurbide et al., 2022). In this context, it is likely that the goat's ability to cope with environmental disturbances is an underlying component of its ability to stay in the herd for a long time and increase herd efficiency. Among the adaptive strategies to cope with environmental disturbances, the increase of lipomobilization and protein catabolism during short-term nutritional challenges have been described [START_REF] Ndibualonji | Effects of starvation on plasma amino acids, urea and glucose in dairy cows[END_REF]Friggens et al., 2016;Billa et al., 2020). These strategies are both relevant to guarantee energy for basal functions, for offspring, and to alleviate oxidative stress during undernutrition. Therefore, it is likely that a goat's ability to cope with environmental disturbances is related to metabolism of energy and body reserves dynamics (Savietto et al., 2015). Friggens et al. (2016) have demonstrated a variety of individual metabolic responses to environmental challenge under experimental conditions using plasma metabolites related to body reserves mobilization. This suggests a genetic role on individual adaptive strategies to environmental disturbances. One way to assess this role is to select lines of individuals divergent on functional longevity and challenge them against environmental disturbances. However, studies evaluating this are scarce, even if the approach is promising (Gindri et al., 2022a;b).

Moreover, studies have demonstrated environmental effects on metabolism of energy and body reserves dynamics suggesting an environmental role on individuals' adaptive strategies to environmental disturbances [START_REF] Hales | The thrifty phenotype hypothesisType 2 diabetes[END_REF][START_REF] Cameron | The programming of individual differences in defensive responses and reproductive strategies in the rat through variations in maternal care[END_REF]. Therefore, understanding the extent to which genetics × environment plays a role in shaping these individual strategies is of considerable interest for future selection of more resilient animals. Accordingly, the objective of this study was to evaluate the metabolic responses to a nutritional challenge of goats divergently selected for functional longevity based on plasma metabolites and the extent to which these responses are repeatable across two experimental farms and years.

Materials and methods

Experiment, animals, diet, and treatments

All procedures performed on animals were approved by the Ethics Committee on Animal (Friggens et al., 2016). The experiments consisted of a 5

or 7-day control period followed by a 2-day nutritional challenge with straw-only feeding and then a 7

or 10-day recovery period, for site Bourges and Grignon, respectively. For this, we used a group of 267 first kidding goats, daughters of Alpine bucks divergently selected for functional longevity (LGV), Capgènes, the French AI center for goats. The average estimated difference in lifespan between the two lines is of 190 days (given a population lifespan of 1007 days (±710 days) and a heritability equal to 0.10) (Palhiere et al., 2018;Ithurbide et al., 2022).

Blood samples were collected from jugular veins daily, using evacuated tubes with EDTA (1.95 mg/mL;

Terumo Europe NV, Leuven, Belgium). Samples were centrifuged for 10 min at 3,000 × g at 4°C, and the plasma was conserved at -20°C until analysis for urea (mM), glucose (mM), β-hydroxybutyrate (BHB; mM), and non-esterified fatty acids (NEFA; µmol/L). For the plasma samples recorded at INRAE farm Bourges, the plasma samples were analyzed using an automatic analyzer (Arena 20XT, Thermo

Fisher Scientific, Cergy Pontoise, France) with commercial kits for glucose (glucose oxidase method; mM), BHB (d-β-hydroxybutyrate-dehydrogenase method; mM), urea (glutamate dehydrogenase method; Thermo Electron SAS, Courtaboeuf Cedex, France; mM), and NEFA (acylCoA synthase method;

Fujifilm Wako Chemicals Europe GmbH, Neuss, Germany; µmol/L). For the plasma samples recorded at INRAE farm Grignon, the plasma samples were analyzed using a Cobas Mira-Analyzer (Roche, Mannheim, Germany) with commercial kits for urea (11489364216), glucose (GL364), NEFA (FA115), and BHB (RB1007).

Statistical analysis

The plasma metabolite concentrations recorded daily during the nutritional challenges were first analyzed using a piecewise approach in which the response trait was represented by different functions over specific time intervals according to biological responses to the challenge, as proposed and validated by Friggens et al. (2016). That is, the response trait was decomposed into three different phases throughout the challenge experiment. The first phase is the pre-challenge where the response variable is not perturbed. For this phase, the piecewise model has the overall intercept of the model The piecewise approach is based on adding effects. The time variable was expressed as days from the challenge and segmented into two time variables that represent the periods of response and recovery from the challenge and used in the model as regressors for V2, V3, and V4. The following piecewise mixed-effects model was fitted:

 ℎ =   * ℎ + ( * )  * ℎ + (3 * 3)  * ℎ + (4 * 3)  * ℎ +   + ( * )  + (3 * 3)  + (4 * 3)  +  ℎ [1]
where  ℎ is the dependent variable, V1 is the model intercept, T2 and T3 are the two time variables that represent the periods during the response to the challenge (T2) and recovery from the challenge (T3). V2, V3, and V4 are the regression coefficients for response and recovery. i*j+h are the fixed effects of genetic line i, site:year j, and litter size (i.e., single or multiple) h. k is the random effect of the animal estimated for V1, V2, V3, and V4, which are assumed to be ~iidN(0, σ 2 k). e is the residual error ( ℎ ~N(0, R)), with R as the heterogenous autoregressive of order 1 error covariance structure, used to correct for lack of independence in the residual and to correct for heterogeneity of variance. The interaction between genetic line and site:year was tested in the model as a fixed effect. The piecewise models were fitted using the lme function, and the variance components of all evaluated plasma metabolites were recorded using the VarCorr function of the nlme package [START_REF] Pinheiro | Mixed-Effects Models in S and S-PLUS[END_REF] in the R software (R Core Team, 2022). Statistical significance was set at P ≤ 0.05.

Contrasts on the model's parameters, using general hypothesis testing, function glht of the multcomp package [START_REF] Hothorn | Simultaneous Inference in General ParametricModels[END_REF] in the R software (R Core Team, 2022), were used to evaluate differences between sites within the year 2021 and among years within the site. Contrasts were also used to compare the stabilization period (i.e., post-challenge after recovery) (V5) to the pre-challenge level (V1). V5 is derived from the other coefficients as shown in equation 2. The contrasts to compare the post-challenge level to the pre-challenge level (V5 -V1) were set according to the following equation:

5 - = ( +  *  + 3 * 4 + 4 * 4 2 ) - [2]
The previously described piecewise mixed-effects model was also fitted for all plasma metabolites without considering the fixed effect of the genetic line on all piecewise parameters (V1, V2, V3, and

Article II: Comparison of the blood metabolite profiles between the two longevity lines 58 V4). The four individual parameters of all the metabolites were then integrated into a Sparse Partial Least Square Discriminant Analysis (sPLS-DA) (Lê Cao et al., 2011) to compare the goat metabolism response to the challenge on a multivariate scale. The sPLS-DA seeks the components, built as a linear composition of the individual parameters, that best predict the longevity line of the goats. The number of components was chosen using a 5-fold cross-validation on a model that comprised all variables, and the number of variables to select on each component was tuned. The variable selection on each component was run using lasso penalization. The quality of the model's prediction was assessed by calculating a balanced error rate within a 5-fold cross-validation.

Results

The plasma metabolites, glucose, NEFA, BHB, and urea concentrations responded to the 2-d nutritional challenge (P < 0.001; Figure 1). Glucose concentration decreased, while NEFA and BHB increased during the nutritional challenge. Plasma urea concentrations decreased during the nutritional challenge for site Bourges, regardless of year, and increased for the experiments run at the site Grignon. On average, none of the metabolites returned to the prechallenge level two weeks after the nutritional challenge (P < 0.01). The interaction genetic line*(site:year) was not significant for none of the evaluated traits (P ≥ 0.21).

The evaluated plasma metabolites suggested that the selection for functional longevity does not affect plasma metabolites responses/recoveries to a 2-d nutritional challenge (P ≥ 0.18; Table 1). However, site, year, and litter size seem to affect these responses (Table 1). The responses/recoveries of all plasma metabolites were different between sites within year 2021 (P ≤ 0.02; Table 1). In general, the responses/recoveries of plasma glucose, NEFA, and BHB were similar among years within the site Grignon but different among years within the site Bourges (Table 1). Goats that had carried one foetus presented faster plasma glucose response to challenge and quicker and sharper recovery from challenge than goats that had carried multiple foetus (P ≤ 0.054; Table 1). However, the opposite was observed for the other evaluated plasma metabolites (i.e., NEFA, BHB, and urea; P ≤ 0.049; Table 1).

Moreover, the plasma metabolites seem not to fully recover to prechallenge levels after the recovery phase (P < 0.01). Plasma glucose and urea postchallenge level were above prechallenge levels and the opposite was observed for plasma NEFA and BHB. When the individual response/recoveries metabolic profiles were studied taking into account their interconnections using the multivariate approach, the sPLS-DA analysis was also not able to discriminate between the two longevity lines (52.2% of balanced error rate; Figure 2). This result was obtained even if the sPLS-DA analysis summarized almost 50% of the total between individual variability into the two selected components. Plasma BHB response and recovery to the 2-d nutritional challenge were the traits selected for the first selected component, that explained 29% of total between individuals' variability. This indicates that plasma BHB has the highest between individuals' variability when compared to other traits in our dataset. Plasma NEFA response and recovery also demonstrated high variable among individuals due to their great contribution to the second selected component.

The results of sPLS-DA analysis also corroborate the results of the variance components from the piecewise mixed-effects models. We observed meaningful between individual variation in plasma BHB, especially on the prechallenge and rate of response and rate of recovery from the 2-d nutritional challenge (CV = 26.2%, 36.1%, and 41.2%, repeatability = 0.749, 0.322, and 0.741, respectively; Table 2). Plasma NEFA recovery from challenge also demonstrated high variability among individuals (CV = 16.4%, repeatability = 0.323; Table 2). These results suggest plasma metabolites related to body reserves dynamics and liver fatty acid oxidation are highly variable among individuals especially during the phase of recovery from a 2-d nutritional challenge. 

Discussion

The adaptive capacity of animals to overcome environmental challenges relies on the animals' capacity to adjust its metabolism. The use of body lipid reserves is one of the key strategies of domestic ruminants to cope with feed shortage situations. Our results demonstrated an increase in blood NEFA concentration during the nutritional challenge and a drop in blood glucose concentration. This indicates an increase of lipolysis during the 2-d nutritional challenge, along with a reduction of fatty acid re-esterification and reduction in glycerol 3-phosphate synthesis from glucose. During feed shortage, glucose becomes a scarce metabolite for survival and maintaining lactose synthesis and milk production. Along with this, BHB also increased during the nutritional challenge, demonstrating incomplete β-oxidation of mobilized NEFA by the liver, which is used as an oxidable substrate in specific tissues to spare blood glucose. Similar results were also demonstrated by studies with dairy cows and dairy goats during early, mid, and late lactation.

However, in disagreement with our hypothesis, plasma NEFA, BHB, and glucose responses to the nutritional challenge were not different between genetic lines. This was found both for the univariate analysis of the piecewise shapes of response/recovery for each plasma metabolite and for the multivariate analysis across all plasma metabolites. Thus, although the literature indicates that body energy dynamics are central to adaptive capacity, the use of goats from lines divergently selected on functional longevity did not provide the expected contrast in resilience profiles. Physiological reasons for this and the influence of other factors in this study are discussed below.

A study comparing Barbary and Lacaune ewes constantly fed with low energy supply for 22 weeks demonstrated that Barbary ewes, a breed adapted to harsh environments, presented a better ability to maintain a moderate rate of fat mobilization and decrease energy expenditure and keep their higher level of body fatness than Lacaune ewes during the same feed restriction. These findings suggest that there is a distinction to be made between short-term and long-term responses to changes in environmental conditions. In this context, the 2-d nutritional challenge may not be long enough to differentiate the mechanisms related to longer-term body energy dynamics in individuals divergently selected for functional longevity. [START_REF] Monaghan | Early growth conditions, phenotypic development and environmental change[END_REF] proposed three levels of phenotypic changes triggered by the environment during development changes. Monaghan proposed that within a certain level of environmental change, organisms may be able to adjust their phenotype such that fitness is maintained (plasticity). Outside this range of environmental change, fitness declines as the development of an optimal phenotype is constrained, and phenotypic adjustments may mitigate the negative effects on fitness, and trade-offs between traits or across life-history stages may occur. Beyond this "mitigation zone," pathologies develop, and fitness drops dramatically. In the present study, with the two days of nutritional challenge, the focus was on short-term metabolic resilience, which may only be one aspect underpinning differences in functional longevity.

Not only body lipids but also body proteins have a role in metabolic adaptations during nutritional deficit. Body protein contributes by providing energy precursors for gluconeogenesis to spare body lipid reserves and alleviate the toxic effects of lipid metabolites during the nutritional challenge. Dairy cows after two days of starvation demonstrated increased muscle protein catabolism by increasing blood concentration of 3-methylhistidine (indicator of muscle protein catabolism in cattle) and urea.

Increased arterial urea concentration during feed restriction has also been demonstrated by other studies with 1-3 days of fasting in dairy cows. The increase in blood urea during feed restriction can also be related to an increase in urea recycling to the rumen by liver synthesis. Even with its high cost, urea recycling is beneficial to feed efficiency and metabolizable protein supply during feed shortage situations. On the other hand, some studies with dairy cattle and goats have demonstrated a decrease in blood urea concentration during feed restriction. This has been attributed to a lower ammonia load in the rumen due to reduced nitrogen intake. In our results, urea responses to the two-day nutritional challenge were not different between genetic lines, demonstrating that urea metabolism in response to a two-day nutritional challenge is not different among goats divergently selected for functional longevity. However, the overall urea response/recovery profiles were markedly affected by the site:year effect. More generally, our results demonstrated significant differences in metabolic responses across sites and years but with no interaction with genetic line.

With regard to litter size, our results demonstrated that plasma glucose and NEFA response/recoveries to the 2-day nutritional challenge depend on litter size during the previous gestation. Females who had carried one single fetus presented quicker and sharper plasma NEFA recovery from the challenge during the subsequent lactation than females who had carried more than one fetus. The opposite was observed for plasma glucose. Litter size has been related to body condition score and plasma glucose and NEFA levels in sheep. In general, females who had carried one single fetus demonstrate higher body condition score than females who had carried more than one fetus, even after weaning. Studies

have demonstrated that the lipolytic potential is regulated according to physiological needs and by the amount of lipid stored. Studies with thin and fat ewes have shown that the lipid mobilization during lactation is clearly dependent on initial fatness when they are severely underfed. This was also observed in dairy cows.

Even though body energy dynamics, as indicated by plasma NEFA, were not different between genetic lines subjected to a short-term nutritional challenge, literature suggests that there may be other adaptations of goats divergently selected for functional longevity to cope with nutritional disturbances. In rabbits, increased ability for resource acquisition under a constrained environment has been related to longer functional longevity. Genetic studies have also found that dairy sheep selected for different levels of somatic cell count had different levels of adipose tissue mobilization (plasma NEFA), fatty acid utilization for energy production (plasma BHB), and fat-to-protein milk ratio.

This suggests that body energy dynamics are linked with udder infection, an important underlying component of functional longevity. Therefore, other metabolic adaptations, rather than those related to body energy dynamics, may occur during a short-term nutritional challenge, which may be related to functional longevity. This more nuanced view of the links between short-term adaptive capacity and functional longevity is reflected in the high, and meaningful, between-individual variability for plasma NEFA and BHB responses/recoveries from the 2-day nutritional challenge found in the present study.

This diversity of plasma BHB and NEFA concentration within a group of animals under similar housing and feeding conditions has also been observed in dairy cows.

The between-individual variability in short-term adaptive capacity is of interest. Friggens et al. (2016), evaluating the response/recovery profiles of dairy goats to nutritional challenge, also found significant variation between individuals in their plasma metabolite responses and recovery. Recent multivariate studies have shown how this individual variance in metabolic responses can be used to characterize differences in resilience and thereby assess the contribution of this resilience to functional longevity.

Conclusion

Response/recovery profiles of plasma metabolites to a two-day nutritional challenge in dairy goats

were not different between animals selected to be divergent on functional longevity. There were significant effects of site and year within the study, and an effect of litter size. The litter size effect on the response/recoveries seems dependent on nutritional status before challenge. Plasma NEFA and BHB response/recovery presented high variability between individuals, indicating individual adaptative characteristics to nutritional challenges not related to the environmental conditions but to inherent individual characteristics.

Article II conclusions

 Response/recovery profiles of plasma metabolites to a two-day nutritional challenge in dairy goats were not different between animals selected to be divergent on functional longevity.

 There was a strong environmental effect of farm x year on all the components of the plasma metabolite profiles.

 There was significant effect of litter size on the Glucose and NEFA profiles during the challenge.

 The litter size effect on the response/recoveries seems dependent on nutritional status before challenge.

 Plasma NEFA and BHB response/recovery presented high variability between individuals, indicating individual adaptative characteristics to nutritional challenges not related to the environmental conditions but to inherent individual characteristics.

Article III: Integration of mulitivariate time series of milk metabolites to model resilience

Even if the 4 blood metabolites we described in Article II are well known indicators of the metabolism, they only reflect a limited part of the energetic metabolism. In addition, blood sampling is invasive and difficult to use for large-scale phenotyping. Milk metabolites would be a non-invasive way of approaching metabolism. Furthermore, as they reflect the cumulative amount of metabolites that have reached the milk compartment between two milkings, milk metabolites may be less fluctuating measures than blood metabolites, which can vary over the course of a day. To investigate the use of milk metabolites as non-invasive biomarkers of resilience, we measured the evolution of 13 milk metabolites and one enzyme in a subset of 138 previously described goats (Figure 15). We selected a broad range of milk components that are part of different metabolic pathways: lactose synthesis, 

Description of the thirteen milk metabolites and one enzyme measured 1. Metabolites involved in intracellular energetic metabolic pathways

Glucose

Blood glucose is transported to mammary cells by active transport.

The mammary glucose content is not strictly correlated with blood glucose since the transport of glucose from plasma into the cell is the rate-limiting step for intracellular metabolism (Threadgold and Kuhn, 1984;[START_REF] Wilde | Lactose synthesis and the utilisation of glucose by rat mammary acini[END_REF]. Milk glucose equilibrates with mammary cell glucose across the apical membrane of mammary secretory cells, so milk concentrations reflect intracellular glucose concentrations [START_REF] Faulkner | Metabolic significance of milk glucose[END_REF]. The concentration of glucose in milk is strongly correlated with energy balance (Billa et al., 2020;[START_REF] Pires | Milk metabolites as non invasive indicators of physiological state and energy balance of early lactation cows[END_REF][START_REF] Xyz Xu | Milk Metabolomics Data Reveal the Energy Balance of Individual Dairy Cows in Early Lactation[END_REF] and feed restriction Glucose serves as a precursor for galactose synthesis in the mammary epithelial cell, as well as a precursor for isocitrate and glucose-6P, these are part of several metabolic pathways, including the production of reducing potential (i.e., NADPH) associated with de novo synthesis of fatty acids and mitigation of oxidative stress (Billa et al., 2020;Chaiyabutr et al., 1981;[START_REF] Zachut | Milk glucose-6-phosphate dehydrogenase activity and glucose-6-phosphate are associated with oxidative stress and serve as indicators of energy balance in dairy cows[END_REF]. The intracellular glucose concentration represents the difference between the rate of glucose transport into the cell and the rate of its utilization.

Glucose 6 Phosphate

Glu6P is synthetized within mammary cell from Glu. G6P is a precursor for NADPH via the pentoses pathway that leads to fatty acids synthesis (Garnsworthy et al., 2006). Several studies report an increased G6P milk concentration during feed restriction in dairy goats and cows (Billa et al., 2020(Billa et al., , 2020;;Chaiyabutr et al., 1981;Larsen et al., 2016).

Isocitrate

Like Glu6P, Isocitrate is synthetized within mammary cell from Glu and is part of Krebs cycle. Isocitrate is a precursor for NADPH via the pentoses pathway that leads to fatty acids synthesis (Garnsworthy et al., 2006). During feed restriction, the inhibition of mammary fatty acid synthesis leads to the accumulation of isocitrate (Billa et al., 2020;Chaiyabutr et al., 1981).

Galactose

Galactose is synthetized within mammary cells from Glu. Galactose is an hexose formed 

Protein-metabolism related milk metabolites

Urea

Urea is the main product of protein catabolism. It is synthetized from ammonia in the liver. Several studies report an increase of milk urea during a feed restriction, linked with the catabolism of body proteins [START_REF] Ansia | Feed restriction in mid-lactation dairy cows. II: Effects on protein metabolism-related blood metabolites[END_REF][START_REF] Hossaini-Hilali | Fluid balance and milk secretion in the fed and feed-deprived black Moroccan goat[END_REF][START_REF] Pascottini | Feed restriction to induce and meloxicam to mitigate potential systemic inflammation in dairy cows before calving[END_REF]. In contrast to the Paris dataset, in the Bourges dataset, urea concentration decreased during the feed restriction. That can be explained because the fodder of the basic ration given to the goats was only composed of alfalfa hay. Hence the high pre-challenge level of the goats and the drop during the challenge. Krogh et al. (2020) showed that urea milk concentration depended more on the ration and the farm than on individual variation.

Urate

Like urea, uric acid is a product of catabolism of protein, which is partly excreted in milk. Moreover, like urea, there is an exogenous origin of urate with ruminal microbiota activity, and an endogenous contribution i.e. muscle protein degradation. Several studies report a decrease of urate milk concentration during feed restriction in cows (Billa et al., 2020;Pires et al., 2022). Increase in uric acid in goats may be due to greater reliance on muscle protein degradation.

Glutamate

Glutamate is a semi-essential amino acid that can be extracted from the diet or synthesized from ammonia and glutamic acid mainly in muscle. It is a partially essential nutrient under stressful conditions, such as infections, injuries, high temperatures and weaning. Billa et al. (2020) found that milk glutamate decreases during feed restriction in cows.

NH2

In metabolism studies, NH2 is used to index amino acids. The measurement of free NH2groups in protein-free milk (protein is precipitated) is a global indicator of free amino acids in milk. NH2 milk concentration is expected to decrease during feed restriction (Billa et al., 2020). 2020) reported that complementing the ration with oil and wheat starch decreased the milk BOHB concentration compared with a non-complemented ration. However, they reported no effect in goats.

LDH

Lactate dehydrogenase is an enzyme known to be an indicator of mastitis [START_REF] Akerstedt | Natural variation in biomarkers indicating mastitis in healthy cows[END_REF][START_REF] Chagunda | L-lactate dehydrogenase and N-acetylbeta-D-glucosaminidase activities in bovine milk as indicators of non-specific mastitis[END_REF]Larsen, 2005;[START_REF] Nyman | Associations of udder-health indicators with cow factors and with intramammary infection in dairy cows[END_REF]. In goats this indicator seems to be quite trustworthy despite days in milk and parity are also impacting LDH concentration in milk [START_REF] Stuhr | Influence of udder infection status on milk enzyme activities and somatic cell count throughout early lactation in goats[END_REF]. The increase of LDH concentration seems surprising during a feed restriction. [START_REF] Foldager | Predicting physiological imbalance in Holstein dairy cows by three different sets of milk biomarkers[END_REF] also reported an increased LDH concentration in cows with a negative energy balance. We can hypothesis that inflammatory cytokines are released during feed restriction, leading to LDH increase. [START_REF] Ansia | Feed restriction in mid-lactation dairy cows. II: Effects on protein metabolism-related blood metabolites[END_REF] reported that cytokines are released around calving due to disease, stressors or even nutritional imbalances.

INTRODUCTION

Today, there is growing interest in selecting for resilience, as livestock are expected to face increasingly harsh environmental and climatic conditions. Animal resilience is defined as the ability to overcome short-term environmental disturbances and quickly return to its predisturbance state (Colditz and Hine, 2016). In this context, resilience can be seen as an underlying component of longevity since it corresponds to the ability to cope with and recover from challenges to allow the animal to carry on its productive life (Friggens et al., 2017;Scheffer et al., 2018). Longevity corresponds to true longevity (all culling reasons) and functional longevity that includes all culling reasons, except productivity (Sasaki, 2013). Several studies estimated heritability of functional longevity to be around 10% in cattle and goats (Castañeda-Bustos et al., 2017;Nayeri et al., 2017;Palhière et al., 2018). Ithurbide et al. (2022) showed that selection on functional longevity in a commercial population of dairy goats translated into significant differences in longevity and resilience related traits such as better mammary health and lower body fat mobilization during the beginning of the first lactation for goats selected for longer functional longevity. Selection seems to be possible; however, improvements are expected to be slow due to low heritability. This low heritability could be explained by the fact that longevity is a multifactorial trait, i.e., there are other factors than resilience contributing to longevity, and that strong genetic x environmental interactions can be involved [START_REF] Tsartsianidou | Understanding the seasonality of performance re silience to climate volatility in Mediterranean dairy sheep[END_REF]. Thus, there is a need to find more direct resilience indicators. Being less multifactorial, more direct resilience indicators could have a higher heritability than functional longevity, and allow a more efficient selection and for instance select animals for longevity at an early stage of productive life. We hypothesized that the metabolic response to shortterm feed restriction could provide information about some genetic characteristics of goat resilience. The objective of this study is to explore the existence of underlying resilience components within the time-course of 13 milk metabolites and 1 enzyme activity during an underfeeding challenge imposed to goats of 2 divergent lines of goats for functional longevity. We propose a new statistical approach to model and explore multivariate longitudinal data.

MATERIALS AND METHODS

The 

Underfeeding challenge

A total of 138 one-year-old primiparous dairy goats were exposed to a 2-d underfeeding challenge during early lactation (35.5 d in milk (DIM) ± 5.6 SD). The design of the underfeeding challenge followed the protocol described in detail in Friggens et al. (2016); briefly, the challenge consisted of a 2-d, straw only feeding. Milk samples were collected for the 4 d pre-challenge, throughout the challenge period, and for 4 d following the challenge. From parturition and for 2 weeks post-challenge animals received a standard lactation diet. At P3R Bourges, the goats received a ration based on lucerne hay offered in collective troughs, complemented with concentrate that was dispensed by automatic concentrate feeders and in the milking parlor. At Paris, the lactation diet was offered as a TMR containing on a DM basis: 20% concentrate, 24% hay, 29% Lucerne, 27% beet pulp, and 1% mineral and vitamin supplement (as described by Gindri et al., 2023). Forage and water were offered ad libitum. All goats were milked twice a day. During pre-challenge, challenge and recovery periods respectively 3, 2, and 4 milk samples were collected during morning milking. Fixed standard volume were taken after mixing the total production in the milking jar. The concentrations of 13 milk metabolites and 1 enzyme were measured: glucose-6-phosphate (Glu6P), glucose (Glu), galactose (Gal), β-hydroxy-butyrate (BOHB), isocitrate, glutamate, NH2 groups, lactate dehydrogenase (LDH), urea, choline, malate, urate, triacylglycerols (TAG), cholesterol (Chol). Each goat had 13 milk metabolites and 1 enzyme curves with data points at days -7, -4, -1, 0, 1, 2, 3, 4, 5 and 6 for Bourges and every day from day -4 to 12 in the Paris facility. Day 0 being the last morning milking before the underfeeding challenge that started the same day. Milk urea was analyzed with a FIAstar 5000 Analyzer (Foss Tecator AB, Höganäs, Sweden) using flow injection analysis [START_REF] Nielsen | Quarter health, milking interval, and sampling time during milking affect the concentration of milk constituents[END_REF]. Enzymatic-fluorometric methods were used to analyze TAG and minor milk constituents: LDH activity (Larsen, 2005), BOHB [START_REF] Larsen | Fluorometric Determination of β-hydroxybutyrate in milk and blood plasma[END_REF], urate [START_REF] Larsen | Fluorometric determination of uric acid in bovine milk[END_REF], TAG [START_REF] Larsen | Enzymatic and fluorometric determination of triacylglycerols in cow milk and other opaque matrices[END_REF], Chol [START_REF] Larsen | Enzymatic-fluorometric quantification of cholesterol in bovine milk[END_REF], isocitrate [START_REF] Larsen | Fluorometric determination of free and total isocitrate in bovine milk[END_REF], Glu and Glu6P [START_REF] Larsen | Fluorometric determination of free glucose and glucose 6-phosphate in cows' milk and other opaque matrices[END_REF]. Gal in milk was analyzed by an analog procedure to Glu, using bgalactose dehydrogenase (EC 1.1.1.48) to start the fluorometric determination. Moreover, weight, MY, milk composition (MFC, MPC) and udder health indicator (SCS) were measured the same days as the milk samples in both facilities.

Statistical Analysis

Fitting of the individual milk metabolite curves All statistical analysis were done in the R statistical environment (https://www.r-project.org/). To model the individual metabolite concentration curves we used the functional data analysis smoothing method described by Ramsay and Silverman (2005). We used a spline interpolation, i.e., a piece-wise interpolation that joins several low degree polynomial functions at knots (predetermined time points along the time-series of data). We used natural cubic splines: i.e., a piece-wise cubic polynomial that is a continuous when differentiated twice, fixing a minimum degree of the polynomial at 5. The degree of smoothing of the spline was controlled by a roughness penalty.

Three goats exhibited outlier metabolic trajectories with BOHB concentrations in milk above 3 SD. The recordings of these goats were excluded. In addition, 10 implausible data points were excluded from the analysis (10 out of 27594 data points). None of these points belonged to the underfeeding period (d 0 to 2) and each belonged to different goats and metabolite curve. As such, removing these points did not distort the general shape of the curves. Figure 1 shows the smoothed curves of the 13 milk metabolites and 1 enzyme from one randomly selected goat.

Correction for the year x facility effect with functional regression

To minimize the impact of non-genetic factors, such as the global environment, on the metabolic response to the underfeeding challenge, we accounted for the facility x year effect by running a functional regression analysis:

Xi(t) = β0(t) + β1(t) × Year_i + ξi(t),
where Xi(t) was the milk metabolite curve for the i th goat, β0(t) was the intercept function, β1(t) was a function of time corresponding to the regression coefficient associated with the year-facility effect, Year_i was a dummy variable corresponding to the year-facility of study of the i th goat and ξi(t) was the residual term. Using a functional regression coefficient allows a correction of the year-facility effect. The corrected individual curves were then estimated as:

Xi_correct(t) = β0(t) + ξi(t).
Figure 2. sets out a summary of the milk metabolite curves modeling steps and shows smoothed curves of isocitrate milk concentration before and after correction for year-facility effect. Note that, at Paris, animals were reared from weaning until mid-gestation on 2 different diets but these were balanced and equally distributed between years, they were also equally distributed between clusters in the present analyses, and consequently were ignored. Functional Principal Component Analysis We characterized milk metabolite curves upon challenge using a functional PCA (FPCA) for each year-facility corrected milk metabolite [START_REF] Yao | Functional data analysis for sparse longitudinal data[END_REF] using the R package "FDA." Functional PCA is a statistical method for investigating the dominant modes of variation of a functional data set. It allows the time related variation to be captured in a small number of principal components (see Figure 2). In other words, FPCA decomposes a set of random function Xj(t) from the j th metabolite in the following representation:

  () = ∑     () ∞ 1
, where ωjk's are orthogonal functions across k knots, i.e., the functional principal components (FPCs) that are common to all goats, and γjk's are the FPC scores that characterize individual curves. The first step to this decomposition was to estimate the functional principal components ωjk. Let Cj(s,t) be the covariance function of Xj(t), and it corresponds to a selfadjoint and positive semi-definite operator Cj: L2(τ)→L2(τ) The FPC ωjk(t)'s satisfy the following eigen equation:

C j ω jk = ρ jk ω jk ,
where ρjk's are the eigenvalues of Cj and Cj gives the following integral transform:

Cj ωjk = ∫ Cj (s,t)ωjk (s)ds.

To obtain the FPCs, we could solve the eigen equations for k = 1,...,K for a fixed K. Equivalently, the solution fits the maximization problem of: with its associated operator C ˆj. For obtaining estimates ω ˆj k , we solve the maximization or eigen equation problem by replacing C(s,t) with its empirical version C ˆ(st).

The second step was the calculation of the individual FPC scores as the projections of Xj(t) onto the FPCs through the inner product: 

γjk = Xj, ωjk = ∫ Xj (t)ωjk (t)dt.

Prediction of the longevity lines of goats based on the metabolite curves model.

For the supervised clustering we used Sparse Partial Least Square Discriminant Analysis (sPLS-DA) to evaluate the ability of milk metabolite curves to distinguish the longevity lines of the 138 goats. This is a linear multivariate model which performs classification tasks and is able to predict the class of new samples (R package "MixOmics," Lê Cao et al., 2011). The method integrated a continuous data matrix comprising the individual FPCs of the 13 milk metabolites and 1 enzyme and enzyme and a categorical outcome variable: the line of the goat (High_LGV versus Low_LGV). sPLS-DA seeks the components that best separate the sample groups, and also selects variables that best discriminate between groups using lasso penalization. We chose the number of components using cross validation on a non-sparse model (comprising all variables) and then tuned the number of variables to select on each component using lasso selection. We assessed the final performance of the model using a 5-fold cross validation.

Unsupervised clustering of the milk metabolite curves.

Hierarchical Clustering We ran an unsupervised hierarchical clustering on all the FPCs (Dash et al., 2003, R package "FactoMineR"), to define the different types of metabolic responses to the underfeeding challenge for each goat, and independently of the longevity line. First, a 5-dimensions PCA was run on the FPCs. The PCA hierarchical clustering starts by treating each goat as a separate cluster. Then, it recursively executes the following steps: (1) identify the 2 closest clusters; (2) merge the 2 closest clusters. This process continues until all the clusters are merged together. The final number of clusters was automatically chosen based on the inertia gain, i.e., finding a minimum number of clusters allowing a low intra-cluster variability and a high inter-cluster variability.

To easily understand the differences between clusters we compared the milk metabolite curves between clusters using a permutation test (Ramsay and Silverman, 2005;[START_REF] Sirski | On the statistical analysis of functional data arising from designed experiments[END_REF]. The test begins by taking the absolute value of a t-test-type statistic at each point along the curve:

() = [ ̅̅̅̅ () - ̅̅̅̅ ()]²  [() -   ̅̅̅̅ ()]² +  [() -   ̅̅̅̅ ()]²
Then it uses a permutation test to assess significance, by randomly reordering the curves and recalculating the test statistic with the new groups of curves. We used the default setting of 200 random reorderings. One main advantage of the permutation test is that, unlike parametric tests, it does not assume theoretical probability distributions.

Data used to compare clusters The R package 'survival' was used to compare lifespan between the clusters of goats resulting from the unsupervised clustering. Survival analysis was performed using a Cox model (Cox, 1972).

Because of the lack of survival data in Paris data set, the survival analysis was thus run over a sub data set of the 3 clusters, excluding the Paris data. Analysis of variance tests were used to compare the following data. Weight, chest size and height at the withers were measured at 6 mo old. The estimated breeding values of the sires of the goats for functional longevity and milk performances were also compared between clusters.

The weight and milk performance curves (milk yield (MY), milk fat content (MFC), milk protein content (MPC), ratio of fat content to protein content (F:P ratio), and somatic cell score (SCS)) during the underfeeding challenge were compared between clusters following the exact same methodology as the milk metabolite curves: spline interpolation, correction for year x site effect and permutation test.

RESULTS

Modeling of the individual milk metabolite curves with functional PCA

The smoothed curves of the 13 milk metabolites and 1 enzyme of one randomly selected goat are presented in the Figure 1, and Table 2 shows the distribution of the milk metabolite concentrations during the whole period of sampling among the 138 goats. After smoothing, the general shape of the curve was preserved and the bounce that occurred during the challenge was correctly fitted. Linear regression correctly corrected for the year-facility effect, leading to similar mean curves per year-facility for each metabolite. Between 2 and 4 functional components were necessary to explain 90% of variation for each metabolite. The interpretation of those principal components should be made as follows (Figure 2): using the isocitrate components as an example, the first component (PC1) of isocitrate roughly corresponds to a flat line over the whole period, a goat with a higher than average milk isocitrate concentration over the whole period will have a proportionally high score FPCs on this component. The second component (PC2) shows a positive flat line before challenge and a shift to negative value during the challenge: a goat with higher than average concentration of isocitrate before challenge and a lower than average concentration post-challenge will get a high score on this component. In total 48 FPCs were attributed to each goat to characterize the variation of the 13 milk metabolites and 1 enzyme through the underfeeding challenge. The FPCs were then used to compare the milk metabolite variations between lines.

Supervised clustering to compare the milk metabolite curves between the 2 longevity lines of goats

The optimal number of components in the sPLS-DA to discriminate the 2 longevity lines of goats was 1. The lasso penalization selected 13 variables for this component (Figure 3). Chief among these were Gal (3rd fPCA component), glutamate and urea (respectively 1st and 2nd fPCA component). The balanced error rate (i.e., the percentage of misclassifications) estimated overall for the model was 49.5%. It was 61.3% and 37.7% respectively for Low_LGV and High_LGV lines. Thus, the milk metabolite curves during an underfeeding challenge could not predict the longevity line of the goats coming from the 4 year-sites of experiment. However, if the analysis was run on P3R Bourges and Paris separately, the balanced error (BER) rate was respectively 44 and 37%. Figure 3 shows the contributions of the selected fPCscores to the prediction of the longevity line within Paris and P3R Bourges data sets.

When the analysis was made on each of the 4 yearfacilities separately, the BER ranged from 30% (Paris 2022) to 39% (P3R Bourges 2021).

Unsupervised clustering on the milk metabolite curves

Description of the clusters. The correlation circle of the PCA applied on the 48 FPCs of the 138 goats is shown in Figure 4A. Three clusters were identified: cluster 1, 2 and 3 respectively gathered 36, 53 and 49 goats (Figure 4B). Distribution of goats from the 4 yearfacility combinations did not differ along clusters nor between longevity lines and the number of kids per kidding (P > 0.70). The mean milk metabolite curves per cluster and permutation test result are shown in Figure 5.

The permutation test over the milk metabolites curves between clusters indicates which milk metabolites were significantly different between clusters. The metabolite curves that were significantly different between clusters are: BOHB, Chol, choline, Glu, Glu6P, glutamate, LDH, malate, NH2, TAG (permutation test, 5% critical value).

Except for TAG and Chol, the differences were significant only after the beginning of the feed restriction. Variable names indicate the fPCscore of the metabolite that was selected.

For Chol and TAG the values were significantly higher for cluster 2 before day (-2). Cluster 1 was mainly characterized by lower Glu, malate and glutamate during the recovery period, higher Gal and Chol during the recovery period, higher BOHB, TAG and choline during challenge and lower NH2 and Glu6P during challenge and early recovery. The cluster 2 was mainly characterized by lower TAG, Choline, BOHB, LDH and Chol during challenge. The cluster 3 was mainly intermediate between clusters 1 and 2 with the exception of a higher LDH during challenge.

Comparison of resilience related features between clusters.

The Kaplan-Meier survival curves of the 3 clusters are displayed in Figure 6. The Cox analysis shows poorer survival of goats belonging to the cluster 1 relative to both clusters 2 and 3 (P = 0.04, hazard ratio = 2.63 and P = 0.02, hazard ratio = 3.70 respectively, Table 3). Note that a Cox analysis comparing cluster 1 relative to the rest of the goats (i.e., cluster 2 and 3 merged) shows a more significant effect (hazard ratio = 2.97, P = 0.009). Table 4 presents ANOVA results between clusters. No significant difference could be seen in sire's EBV (longevity, milk yield, milk components and SCS), morphology at 6 mo old and days in milk at the beginning of the challenge (P> 0.05). Figure 7 shows the mean curves of the milk performance and weight within the 3 clusters through a 2-d underfeeding challenge. Cluster 1 showed higher F:P ratio and MFC, during and after challenge, as well as higher MPC during challenge and higher SCS after challenge (permutation test, 5% critical value).

This study presents an innovative design using longevity lines exposed to a short-term challenge with repeated measures of multiple milk metabolites. We hypothesized that the metabolic responses to a short-term feeding restriction would characterize a resilience mechanism that has an impact on goat survival within herd. Repeated measurements over time were of great value in understanding the temporal aspect of resilience (Döring et al., 2015). Moreover, animal resilience is a complex trait as it involves many interconnected physiological regulations and metabolic pathways. Novel data analysis methods of 13 milk metabolites and 1 enzyme concentrations over time allowed us to both grasp the time varying aspect of the process and some of its complexity. Several studies report the modeling of a physiological response to short-term perturbation (Sadoul et al., 2015;Friggens et al., 2016).

Those models made strong assumptions concerning the shape of the curves to decipher the different components of the reaction (pre-challenge baseline, response, recovery). To deal with the complexity of the metabolic pathways that we explored, and reduce the number of assumptions made a priori, we used spline interpolations as they were flexible and do not make a priori assumptions regarding curve shapes. Both the sparsity of the time points and the heterogeneity of variance between days (a sharp difference occurred during the 2 d of underfeeding challenge) made it difficult to settle on a proper roughness penalty that would be strong enough to prevent boundary effects and flexible enough to capture the bounce during challenge. That is why we used natural cubic splines, fixing a minimum degree of the polynomial at 5. The natural cubic spline is considerably 'stiffer' than a polynomial in the sense that it has less tendency to oscillate between data points. Imposing a minimum complexity via the natural cubic spline allowed both a small boundary effect and a good fitting of the sharp increases and decreases during the underfeeding challenge. Moreover, Friggens et al. (2016) showed an interesting variability in the reaction to the challenge but also strong correlation between the presupposed components of the reaction suggesting redundancy among them. This is why we decided to use FPCA which allowed an efficient dimension reduction since each principal component is orthogonal to the others, avoiding any redundancy. In a sense, one can see FPCA as an alternative piecewise modeling since the individual curves can be estimated as the linear combination of the functional principal components weighted by the FPC scores (Figure 2), but with automatically optimized components rather than pre-supposed components. 

Findings of supervised clustering

The prediction of the longevity line of goats by the sPLS-DA was associated with a 49.5% error rate, showing that no discrimination of the genetic line was possible by this approach. There may be several explanations for this high error rate. First, as previously stated, the selection for functional longevity might lead to a large intra-line variability i.e., many factors affecting the longevity could be selected. Ithurbide et al. (2022) showed that the high longevity line of goats had higher body weight and lower fat to protein ratio in milk at the beginning of the first lactation, suggesting that the better survival of the High_LGV line was linked with lower body fat mobilisation. However, the nature of 2 d underfeeding challenge we imposed in the present study does not exactly mimic the challenges that can be naturally undergone during the beginning of the first lactation. The differences in the metabolic reaction to the early lactationrelated energy deficit and a negative energy balance induced by feed restriction have been investigated in dairy cows (Gross and Bruckmaier, 2015). Moreover, functional longevity is a complex trait, and selection for better longevity can result in animals with different kind of resilience or robustness mechanism (resilience or resistance to diseases for example). The present study only explored one aspect of the resilience: the energy metabolism. This diversity of the possible underlying components of longevity reduces the statistical power of the analysis (some goats could be considered High_LGV because they have good genetic value for disease resilience despite low energy metabolism resilience).

Despite the finding that the 2-d underfeeding challenge we used was shown to induce acute metabolic and production deviations (Friggens et al., 2016), resilience and longevity may reflect a broader range of (short and long-term) coping mechanisms to a diversity of challenges such as heat waves, behavioral stress, infectious diseases. We found a large batch effect between the 4 year x facility combinations of the study. That finding is corroborated by several studies that showed large farm to farm variability in either the proportion of variance explained or in the panel of dynamic features which best predicted resilience (Adriaens et al., 2020;Krogh et al., 2020;Poppe et al., 2020). We chose to apply a linear functional regression to deal with this batch effect. This functional linear regression relied on the hypothesis that the difference we observe between years was not due to resilience related differences. This correction was necessary to run an unsupervised clustering, but not for the sPLS DA. We decided to present the result of the sPLS DA based on FPCA over the milk metabolite curves corrected for yearfacility effect to compare the conclusions of the 2 approaches based on the same FPC scores. However, the sPLS DA based on the non-corrected curves did not result in better prediction (results not shown). The prediction run separately on the 2 years of experiments in Paris and the 2 years in Bourges showed better results (respectively 37 and 44% BER). This suggests a possible interaction between the longevity line and the environment, as well as the importance to further study those effects. The housing and the staff differed between the 2 facilities. As explained in the materials and methods section, the diets were different between facilities. Feed quality can also vary between years due to the prevailing weather, and other factors. The 2 farms had performance levels similar to commercial farms, as described in Ithurbide et al. (2022).

The previous points highlighted that, even if the selection for functional longevity implied differences for several resilience traits (Ithurbide et al., 2022), it did not result in 2 strictly different metabolic responses to the underfeeding challenge but rather to a large variability of response that overlapped between the 2 longevity lines of goats. This led us to explore the diversity of responses to the challenge without any preliminary hypothesis on the level of resilience of the goats, i.e., without taking into account line, through the unsupervised clustering of the metabolic responses to the underfeeding challenge. 

Findings of unsupervised clustering

The unsupervised clustering based on the fPCscores of all the 13 metabolites and the activity of 1 enzyme was a powerful method to explore the diversity of metabolism responses to underfeeding. This analysis defined 3 clusters of metabolic response to the underfeeding challenge. The survival of goats of cluster 1 was lower than cluster 2 and 3, with an estimated hazard ration equal to 2.97 (P = 0.009) i.e., at any age of life, a goat from the cluster 1 had 2.97 times more risk of being culled than other goats (cox model analysis). It should be noted that survival records were only available for goats in the Bourges facility. Interestingly, the cluster that was associated with the lowest survival (cluster 1) had the highest milk TAG, Choline, Chol and BOHB concentrations during challenge and recovery periods (Figure 6). Milk Chol and Choline are shown to be associated with milk TAG (Billa et al., 2020). Increased milk fat content and BOHB during the underfeeding challenge suggests higher body fat mobilization in cluster 1 (Bjerre-Harpøth et al., 2012;Pires et al., 2022). A possible interpretation is that a high body fat mobilization during short-term feed restriction is linked with lower resilience mechanism. This was confirmed by the higher F:P ratio and higher MFC of the cluster 1 during challenge (Figure 7). Interestingly Ithurbide et al. ( 2022) showed that Low_LGV goats had higher F:P ratio during early lactation, indicating a link between resilience and body fat mobilization.

Cluster 1 was also defined by lower Glu and Glu6P during the recovery period and from the beginning of challenge respectively. Milk G6P is synthetized in the mammary gland from Glu and is a precursor for NADPH via the pentose phosphate pathway that provides reduction equivalents for preventing oxidative stress and also for reductive biosyntheses (Garnsworthy et al., 2006). Several studies report an increased G6P milk concentration during feed restriction (Chaiyabutr et al., 1981;[START_REF] Faulkner | Reviews of the progress of dairy science: secretion of citrate into milk[END_REF]Larsen et al., 2016;Billa et al., 2020). [START_REF] Zachut | Milk glucose-6-phosphate dehydrogenase activity and glucose-6-phosphate are associated with oxidative stress and serve as indicators of energy balance in dairy cows[END_REF] suggested that the increase in milk Glu6P concentrations observed at the onset of lactation may be due to activation of the pentose phosphate pathway in mammary epithelial cells. The Glu6P increase would meet the NADPH requirements for the attenuation of cellular oxidative stress during periods of increased fatty acids oxidation. The lower Glu6P among cluster 1 goats might indicate a lower ability to mitigate oxidative stress. Surprisingly, cluster 1 also presented higher Gal concentration during the recovery period. Similarly to Glu6P, Gal is synthetized in the mammary gland from Glu. That might indicate that Glu is preferably used for Gal synthesis rather than Glu6P among cluster 1 animals, which might increase oxidative stress. Interestingly, Ben [START_REF] Abdelkrim | Milk metabolites can characterise individual differences in animal resilience to a nutritional challenge in lactating dairy goats[END_REF] found that Glu and BOHB milk concentrations were part of the most informative milk components for determining membership of clusters of milk metabolite curves through a 2 d underfeeding challenge in late lactating dairy goats. The glutamate, malate and NH2 decrease during challenge tended to be greater in cluster 1 with a slower increase during recovery. Overall, cluster 1 corresponds to goats that have stronger modifications of milk metabolite concentrations during challenge. The idea that a better resilience is associated with smaller metabolic variations is explored in several articles. For example lower variation and autocorrelation of the daily milk yield (Poppe et al., 2020) or the relative height of the milk yield maximum compared with the milk yield in late lactation [START_REF] Arnal | Genetic parameters for first lactation dairy traits in the Alpine and Saanen goat breeds using a random regression test-day model[END_REF]. The comparison of the milk composition and SCS between clusters showed that cluster 1 had significantly higher SCS during the recovery period. Milk SCS in goats is an indicator of inflammation and bacterial mastitis [START_REF] Paape | Milk somatic cells and lactation in small ruminants[END_REF][START_REF] Luengo | Influence of intramammary infection and non-infection factors on somatic cell counts in dairy goats[END_REF][START_REF] Moroni | Risk factors for intramammary infections and relationship with somatic-cell counts in Italian dairy goats[END_REF]. Interestingly cluster 1 also showed higher LDH concentration around d 4 after the beginning of the challenge. Endogenous LDH in milk originates mainly from somatic cells, leucocytes and invading microorganisms (Larsen, 2005) and is an indicator of inflammation (Krogh et al., 2020). Increased LDH during feed restriction could be partly explained by cell damage of mammary tissue during the challenge period and was also reported in Ben [START_REF] Abdelkrim | Milk metabolites can characterise individual differences in animal resilience to a nutritional challenge in lactating dairy goats[END_REF]. Inflammation imposes a metabolic burden, because it requires glucose and other limiting nutrients in ruminants, and may explain decreased concentrations of glucogenic milk metabolites concomitant with increased SCS in cluster 1 (Bouvier-Muller et al.,. 2016;[START_REF] Kvidera | Glucose requirements of an activated immune system in lactating Holstein cows[END_REF]. Our study suggests that the goats of the cluster 1 were characterized by lower resilience mechanisms, related both to energy metabolism and the inflammatory system.

CONCLUSION

This study presented the curves of 13 milk metabolites and 1 enzyme through an underfeeding challenge among 138 early lactating primiparous goats selected for extreme functional longevity. A novel functional PCA approach was used to model the milk metabolites curves, allowing to address the dynamic and multifactorial patterns of the responses. The approach did not discriminate the 2 longevity lines, highlighting a large variability within lines. Unsupervised clustering of such profiling however showed distinct metabolite curves associated with length of productive life in the flock. Moreover, we found that Cholesterol, Glu6P, Glu, TAG and BOHB were the most discriminating metabolites for the cluster. These results confirm that multivariate analysis of non-invasive milk measures shows potential for deriving new resilience phenotypes.

Article III conclusions

• The functional PCA was an effective way to model the milk metabolite curves during an imposed underfeeding challenge.

• There is a large variability of responses to the underfeeding challenge in each longevity line of goats.

• Milk metabolite curves do not discriminate the two longevity lines of goats. .

• The unsupervised clustering of milk metabolite curves suggests that one type of metabolic response is related to poor survival.

• This low survival group has the highest milk concentrations of TAG, cholesterol, and BOHB during challenge and recovery, suggesting that greater mobilization of body fat during short-term food deprivation would correspond to low resilience.

• This low survival group has low Glu, Glu6P and Malate milk concentration during challenge suggesting that lower energy balance during short-term food deprivation would correspond to low resilience. Associated with slightly higher Gal concentration after challenge, it suggests that the preferential use of the Glu to Galactose pathway rather than NADPH precursors could induce higher oxidative stress.

• This low survival group has a lower milk NH2 and Glutamate concentrations suggesting that a larger decrease of amino acids milk content while a similar protein catabolism (Urea and Urate) would correspond to low resilience.

• This low survival group has a higher milk LDH concentration and SCS after challenge suggesting a link between nutritional stress and inflammatory responses.

Introduction

Today, the monitoring of metabolic function and health in dairy ruminants is revolutionized by the continued gains of knowledge related to the animal metabolism and its relationships with disease, reproduction and milk yield, along with the rapid advances in technologies that will enable real-time, automated measurement. Several blood metabolites show strong potential as indirect predictors of health status in ruminants. In cows, the concentrations of circulating nonesterified fatty acids (NEFA) and beta-hydroxy-butyrate (BOHB) reflect changes in lipid metabolism and links with ketosis [START_REF] Sundrum | Metabolic Disorders in the Transition Period Indicate that the Dairy Cows' Ability to Adapt is Overstressed[END_REF][START_REF] Overton | A 100-Year Review: Metabolic health indicators and management of dairy cattle[END_REF]. Futher, it has been shown that access to time-series measurements on indicators has potential for detecting perturbations such as diseases, calving or environmental perturbation (Codrea et al., 2011;Poppe et al., 2020). Together, these two elements offer the opportunity to quantify the individual variability in responses to perturbation. This is a key concept in phenotyping resilience (Sadoul et al., 2015;Friggens et al., 2022;Ben Abdelkrim et al., 2023). Ithurbide et al. (2023) proposed a multivariate modelling approach of milk metabolites trajectory during underfeeding challenge and showed that distinct patterns of response were associated with length of productive life in the flock. The objective of this study was to estimate the heritability (h²) of several blood and milk metabolite trajectories during two stress periods, parturition and an underfeeding challenge, in order to provide proof of concept regarding the potential for selection for resilience based on blood and milk metabolites.

Materials and methods

The experiment was carried out in agreement with French National Regulations for the humane care Table 1. Distribution of the number of primiparous goats for which the different traits were disposable (production traits, blood metabolites during underfeeding challenge, blood metabolites around lambing, milk metabolites during underfeeding challenge) born at INRAE facilities of P3R Bourges and Mosar Paris between 2017 and 2021.

Design and measures

The design of the underfeeding challenge is described in Ithurbide et al. (2023). The 225 one-year-old primiparous goats underwent a 2-d underfeeding challenge during early lactation (36.7 DIM ± 6.2 SD), 33 in 2020 and 36 in 2021. Each challenge consisted of a 7-d control period, 2-d of straw only feeding, and a 4-d recovery period. During pre-challenge, challenge and recovery periods respectively 4, 2, and 4 milk and blood samples were collected during morning milking. The 4 blood metabolites were: glucose (Glu), beta-hydroxy-butyrate (BOHB), Urea and non-esterified fatty acids. The concentration of 13 milk metabolites and 1 enzyme were measured: glucose-6-phosphate (Glu6P), glucose (Glu), galactose (Gal), beta-hydroxy-butyrate (BOHB), isocitrate (micorM), glutamate (microM), NH2 groups (glutamate micro equivalent), lactate dehydrogenase (LDH), urea, choline, malate, urate, triacylglycerol, cholesterol. Each of the goats had 10 samplings around the underfeeding challenge, respectively at days -4, -1, 0, 1, 2, 3, 4, 5 and 6. Day 0 being the last morning before the underfeeding challenge that started the same day. Additionally, the same 4 blood metabolites were measured every week from the fourth week before kidding to the second week after kidding (5 time points) were measured every month during the first lactation (one measure before the underfeeding challenge and one every month after). MFC, MPC and SCS were only measured in P3R Bourges facility.

Moreover, during the first year of life, body weight was measured monthly.

In order to account for missing time points and reduce noise, we smoothed the weight, MY, MFC, MPC and SCS curves with B spline interpolation using PACE package of R software. We estimated cumulated MY during 90 and 250 first days in milk (MY_90_CUMUL and MY_250_CUMUL). We estimated the SCS at 90 DIM and MFC, MPC and fat to protein ratio (F:P = MFC/MPC) at 30 and 250 DIM (SCS_90, MFC_30, MFC_250, MPC_30, MPC_250, F:P_30, F:P_250). We also estimated body weight at birth and at 6 months old (Weight_birth,Weight_6mo). Table 1 describes the number of goats for which the different traits were disposable.

Definition of the blood and milk metabolite phenotypes

The metabolite trajectories during underfeeding challenge were described by a functional PCA (fPCA) method. The latter method allowed to derive 2 to 5 scores (fPC scores) per metabolite describing the resilience pattern around the underfeeding challenge as described in (Ithurbide et al., 2023). Briefly fPCA is a statistical method for investigating the dominant modes of variation of a time-series dataset.

It allows the time related variation to be captured in a small number of principal components. We can interpret the biological meaning of the fPC scores by looking at the fPC plots. For a given metabolite, a goat with a high fPC score has high concentration values when the fPC is high and low concentration values when the fPC is low. Respectively 48 and 10 PC scores described the 14 milk and 4 blood metabolite trajectories during underfeeding challenge. In order to compare those results to more classic measures, we also calculated the mean concentration of the blood and milk metabolites before the underfeeding challenge.

Considering the larger time interval between successive blood samples around kidding (5 time points),

we did not apply a functional PCA to this dataset. We estimated the heritability of each weekly blood metabolite concentration around kidding and the mean concentration before and after kidding (5+2=7 variables per metabolite).

Genotypes analysis

A total of 150 Goats from Bourges P3R facility were genotyped with the Illumina GoatSNP50 BeadChip (53,347 SNP). SNP quality control was based on the following inclusion criteria: call rate above 99%, MAF above 1% and Hardy-Weinberg P-value above 10-6. After editing, a total of 47,260 on goat autosomes CHI1 to CHI29 were used for analysis. Marker orders and positions were based on the ARS1 genome assembly as described on the VarGoats website (http://www.goatgenome.org/projects.html)

and made publicly available by the International Goat Genome Consortium.

Genetic analysis

Variance components were estimated with REML applied to 104 single trait animal models (one per metabolic feature), using Wombat software [START_REF] Meyer | WOMBAT-A tool for mixed model analyses in quantitative genetics by restricted maximum likelihood (REML)[END_REF]. A total number of phenotyped animals of 225, 244, 225 and 138 were used for the production traits, blood metabolites around kidding, blood metabolites during feeding restriction and milk metabolites during feeding restriction respectively

(Table 1). The following linear mixed animal model was applied to all traits:

 =  +  +  + 
where  is the record of the trait of interest;  is the fixed overall mean;  is the fixed effect of the facility x year group and number of kids;  is the random additive genetic effect; and  is the random error term. The random animal and residual terms were assumed to be independent and distributed as follows: a∼N(0, Aσ²a) and  ∼N(0, Iσ²e), where σ²a and σ²e are animal additive genetic and residual variances, respectively, and A and I are additive relationship and identity matrices, respectively. Five generations of ancestors were traced back with the relationship matrix, resulting in a total number of animals ranging from 865 to 1148. After estimating the variance components, individual genetic values were estimated using fixed variance components.

A genome wide association study (GWAS) was applied on genetic values for traits describing blood metabolites trajectories during underfeeding challenge. A single SNP regression mixed linear model implemented in the Gema software was used [START_REF] Zhou | Genome-wide efficient mixed-model analysis for association studies[END_REF] :

 =  +  +  + 
where  is a vector of the trait of interest;  is the fixed mean effect;  is the slope of the linear regression on the recoded genotype of the SNP;  is a vector of original A/B genotypes recoded as the number of A alleles in the genotype of the SNP;  is a vector of the random additive polygenic effects with u~N(0, Gσ 2 ), with G the genomic relationship matrix; and  is a vector of random error terms. To account for multiple tests, the Bonferroni correction was controlled at 5% genome-wise and

Article IV: Genetic analysis 100 chromosome-wise levels to identify significant and highly significant associations, respectively.

Quantile-quantile (Q-Q) plots was used to compare observed distributions of -log(P-value) to the expected distribution under the no association model for each trait.

Results and discussion

Genetic parameters for production traits

Heritability estimates for 11 production traits on 154 to 225 goats are summarised in [START_REF] Wolber | Genetic analysis of lifetime productivity traits in goats[END_REF]. [START_REF] Maroteau | Genetic parameter estimation for major milk fatty acids in Alpine and Saanen primiparous goats[END_REF] showed that in French Alpine dairy goats, the heritability estimates for milk yield, fat and protein contents, and SCS were 0.22, 0.23, 0.39 and 0.09 respectively, which is in line with our results. [START_REF] Gul | Heritability and environmental influence on pre-weaning traits in Kilis goats[END_REF] estimated the heritability of weight at birth and weight at weaning in Kilis goats to be 0.18 ± 0.03 and 0.50 ± 0.04 respectively.

Despite the large standard errors (SE) our dataset showed consistent results and allowed the detection of moderately to highly heritable traits. The heritability estimates showed that 8 out of the 28 parameters that described the blood metabolites concentrations around kidding were significantly different from 0 (h²>1SE). These heritabilities ranged from 0.16 to 0.25 (Table 3). The standard errors (SE) were relatively large and ranged from 0.12 to 0.17, in agreement with the limited number of records. Three of these 8 heritable traits referred to mean concentration before or after kidding (mean NEFA before kidding and mean BOHB before and after kidding). The 5 other traits corresponded to unique blood concentration at a given week around challenge. [START_REF] Benedet | Heritability estimates of predicted blood βhydroxybutyrate and nonesterified fatty acids and relationships with milk traits in early-lactation Holstein cows[END_REF] found a maximum heritability of blood BOHB and NEFA at 10 days after calving in Holstein cows (0.31 ± 0.06 and 0.19 ± 0.05 for BOHB and NEFA, respectively). [START_REF] Cecchinato | Genetic variation in serum protein pattern and blood β-hydroxybutyrate and their relationships with udder health traits, protein profile, and cheese-making properties in Holstein cows[END_REF] also showed a heritability of 0.37 for plasma BOHB in Holstein cows. We found that the mean BOHB concentration after kidding was heritable, with an estimated value h²=0.20±0.14. NEFA concentration after kidding was also maximally heritable during the second week after kidding, although barely significant (h²=0.16±0.16). Our results suggest that the strong environmental effect on blood metabolite concentration, but also by daily variation of these concentrations, probably influence the large variability of the heritability estimates of these traits.

Genetic parameters for blood metabolites around kidding

Genetic parameters for blood metabolites during underfeeding challenge

The heritability estimates for blood metabolites during the underfeeding challenge showed standard errors (SE) ranging from 0.13 to 0.21 (Table 4). The underfeeding challenge was done at 35.5 DIM ± 5.6 SD, that is approximately two weeks after the last blood samples described in the previous section.

The mean blood Urea before challenge showed significant heritability (h²=0.51±0.21). The same was observed for Glu (h²=0.26±0.16) and NEFA (h²=0.19±0.14). The fPC scores allowed us to study the genetic determinism of the metabolism plasticity during an underfeeding challenge. Five out of the 10 fPC scores that described the blood metabolites profiles during the underfeeding challenge showed heritability significantly different from 0 (h²>1SE). The significant heritability ranged from 0.15 to 0.29. Interestingly, 3 of these fPC scores described the blood Glu profile (1Glu, 2Glu, 3Glu). Looking at the shape of the Glu fPC (Table 4) the 1st, 2nd and 3rd fPC account respectively for the mean Glu concentration throughout the entire period of time, the size of Glu decrease during the challenge and the ratio of Glu after challenge compared with before challenge.

Blood Glu concentration has been showed to be predictive for the energy balance of Holstein cows (Billa et al., 2020). However, little is known concerning the impact of Glu regulation plasticity on animals' health. The 2 other fPC scores showing significant heritability were 2BOHB and 1NEFA. The fPC 1NEFA accounts for the average NEFA concentration through the whole challenge, which explains the close heritability estimate between mean NEFA concentration before challenge and the 1NEFA fPC score. On the contrary, 2BOHB accounts for the BOHB concentration increase during the 2-day challenge. Even if the mean BOHB concentration before and during challenge (mean concentration before and 1BOHB) does not show significant heritability, it seems that the BOHB trajectory during the underfeeding challenge has significant genetic determinism.

Genetic parameters for milk metabolites during feeding restriction

The heritability estimates run on the 138 goats showed standard errors (SE) ranging from 0.04 to 0.31, and did not converge for two fPC scores and mean NH2 concentration before challenge (Table 5). There was 15 out of the 48 fPC scores that described the milk metabolites profiles during the underfeeding challenge that showed heritability significantly different from 0 at 1 SE, 3 at 2 SE and 3 at 3 SE. The heritabilities ranged from 0.23 to 1.00. Literature is scarce concerning the genetic determinism of milk metabolites, even less concerning their evolution during an underfeeding challenge. [START_REF] Do | Genetic parameters of milk cholesterol content in Holstein cattle[END_REF] found out that milk cholesterol content in Holstein cattle showed a heritability of 0.17 ± 0.06. [START_REF] Lou | Genetic parameters of milk cholesterol content in Holstein cattle[END_REF] showed that the heritability of the predicted milk BOHB concentration based on MIR spectra in primiparous Holstein cows was 0.131 ± 0.023. [START_REF] Buitenhuis | Estimation of genetic parameters and detection of quantitative trait loci for metabolites in Danish Holstein milk[END_REF] 

Genome wide association study

The Principal Component Analysis run on the SNP of the 150 goats genotyped showed the uniformity of the studied population. Genome-wide association analysis for blood metabolites profile during the 2 days underfeeding challenge identified only 1 SNP significant at a genome-wise Bonferonni 5%

(Figure 1) for the second component describing blood glucose profile (2Glu). A Q-Q plot for 2Glu (Figure 2) showed that deviation of the observed distribution of the P-values from the expected distribution under the null hypothesis was minor and acceptable. This SNP for 2Glu was identified on chromosome 6 between 85 to 90 Mb. Our results indicate that several SNP in this region, including RUFY3, MOB1B, DCK, SLC4A4, GC, NPFFR2, ADAMTS3, ANKRD17 and AFM are located within the confidence interval of the identified QTL region.

Figure 1. Genome-wide association analysis using single SNP regression mixed linear model for second component describing blood glucose profile during a two day underfeeding challenge. The -log10 of the P-value analysis for association with SNP is plotted. The red line is the threshold for significant SNP at a 5% after Bonferonni correction.

The 2Glu trait accounted for the size of the drop of blood glucose concentration during the underfeeding challenge (Table 3). This trait had a heritability of 0.28 ± 0.17 (mean ± SE). The size of the blood glucose drop might be linked with responsiveness and sensitivity of extrahepatic tissues to insulin, that is lowered in ruminants after parturition [START_REF] Hayirli | The role of exogenous insulin in the complex of hepatic lipidosis and ketosis associated with insulin resistance phenomenon in postpartum dairy cattle[END_REF]. In goats, high resistance to insulin after parturition is linked with higher risk of subclinical hyperketonemia [START_REF] Liu | Surrogate Indexes of Insulin Resistance in Dairy Goats: Transitional Variation in Subclinical Hyperketonemia[END_REF].

The present article shows a strong heritability of the plasma and milk Glu profiles during the two-day underfeeding challenge. The fPC plots show that the plasma Glu traits that are significantly heritable are the mean Glu concentration (1Glu), the size of the Glu drop during challenge (2Glu) and the before to after challenge concentration ration (3Glu). Even though milk Glu originates from the blood compartment, the milk Glu profile does not necessarily strictly mirror the blood Glu profile. This is because the fraction of blood Glu directed towards the mammary tissue is regulated by blood pressure regulation and active cellular transport mechanisms. The heritable traits in milk Glu profile are the mean milk Glu concentration (1Glu) and the after challenge concentration, i.e. the speed of recovery (2Glu). The milk and plasma Glu profiles were similar between the two longevity lines of goats (Gindri et al. 2023, Ithurbide et al, 2023). However, Ithurbide et al. (2023) showed that goats undergoing a two-day underfeeding challenge exhibited a metabolic response characterized by a slightly lower reduction in milk glucose (Glu) levels and a sluggish recovery post-challenge. These goats displayed low lifetime survival rates, suggesting that the regulation of milk glucose metabolism during short- 

Conclusion

In the present study, genetic parameters for blood metabolites around parturition and blood and milk trajectories during feeding restriction were reported. We found 44 blood and milk metabolites parameters (out of 104) that were significantly heritable (h²-SE >0). Among them: milk urate, BOHB, LDH, and Glu6P during feeding restriction and blood GLU. The heritability estimation of several production traits showed the consistency of our dataset despite the small number of individuals. A genome-wide association study detected one peak region for blood glucose trajectory during underfeeding challenge. Those results show the potential of metabolite-based biomarkers for genetic selection of resilience.

Article IV conclusions

• Genetic parameters for blood metabolites around parturition and blood and milk trajectory during feeding restriction were reported.

• We found 8 blood metabolites parameters around kidding (out of 28) that were significantly heritable (h²-SE >0). Three of them were NEFA blood concentration and four were BOHB concentrations.

• We found 8 blood metabolites parameters during the underfeeding challenge (out of 14) that were significantly heritable (h²-SE >0). Four of them described the blood Glu concentration profile. A genome-wide association study detected one peak region for blood glucose trajectory during underfeeding challenge.

• We found 28 milk metabolites parameters during the underfeeding challenge (out of 62) that were significantly heritable (h²-SE >0). Among them, several were part of the parameters that defined the cluster 1 (see Article III).

• Those results show the potential of metabolite-based biomarkers for genetic selection of resilience.

General discussion

1. A statistical model to explore the complex processes of resilience to short term stress Functional PCA offered several advantages for our analysis. By utilizing functional PCA, we were able to extract the principal components that represented the major sources of variation in the univariate longitudinal data. The functional PCA calculates the principal components that describe the maximum of the variability of our dataset, each principal component being orthogonal to the previous ones (i.e.

the phenotypic correlation is zero). This approach is particularly interesting when combined with a genetic analysis since it allows exploration of the genetic determinism of distinct traits, potentially under different genetic control. These principal components not only provided a lower-dimensional representation of the data but also facilitated the interpretation of the metabolic changes.

However, each functional PCA was run on a single metabolite, the multivariate integration was made in a second step by applying a classical PCA on the fPC scores of all the metabolites. An alternative approach could have been considered for multivariate integration in our analysis by reversing these steps, i.e. starting by the multivariate integration and fitting the individual profiles within this multivariate space. Figure 17 shows the PCA plot applied to all the milk metabolites concentration records (each individual corresponds to a milk sample described by 14 milk metabolite concentrations).

This simple approach allows a graphic representation of the overall metabolic modification throughout the underfeeding challenge. The time points during the underfeeding challenge appear to be gathered on the right side of the plot, characterized by increased TAG, Chol, and BOHB concentrations, and decreased Glu, NH2, and Glutamate concentrations. In this multidimensional space, each goat can be characterized by a composite metabolic pathway, by assuming that the metabolism of the goat underwent a continuous modification through the underfeeding challenge. , 1976). STATIS is a multivariate integration technique that enables the joint analysis of multiple datasets (here each day of the study is a dataset). It operates by structuring the data blocks, measuring their similarities, and projecting them onto common subspaces.

This approach allows for the identification of relationships between metabolites across the whole period. However, this approach does not allow easy correction for the batch effect we observed between years and farms. One solution could be to apply the STATIS method to smoothed curves, corrected by functional linear regression as done in the first steps of the Article III. Figure 18 shows the 3-dimensional profiles of the three clusters defined in Article III, after applying the STATIS method on the smoothed metabolites curves corrected for the year/ farm effect. This graphical representation highlights that cluster 1 corresponded to a distinct metabolic pathway compared with the two others.

Nevertheless, the biological interpretation of those integrated metabolic pathways is unclear based on this representation. Interestingly, Article V proceeded to a smoothing step within a PCA that described overall goat metabolic responses to an underfeeding challenge. Similar to the approach depicted in Figure 17, this method employed a piecewise model to represent the individual responses to the underfeeding challenge, and postulated that these responses are part of an infinite continuum of potential metabolic reactions.

Another statistical approach to deal with the multivariate integration of longitudinal data would be to use compartmental models. Based on the principles of system dynamics, compartmental models are used to describe the flow of substances between different compartments within a system [START_REF] Abdou-Arbi | Exploring metabolism flexibility in complex organisms through quantitative study of precursor sets for system outputs[END_REF]Lemosquet et al., 2009). In our context, compartmental models can be employed to represent the metabolic pathways in which the different metabolites are involved (for example the lactose synthesis pathway, Figure 16). The interactions between compartments are described by a set of differential equations that capture the rates of flow between compartments. By using compartmental models, we can gain insights into the underlying dynamics of the metabolic system.

The model can provide estimates of metabolic rates, turnover rates, and other relevant parameters that can help understand how the system responds to underfeeding challenges. However, the compartmental methods are difficult to parameterise and require fine measurements on as many of the transition pathways as possible. In this sense, it is arguable that this method could have been applied on our dataset.

The choice between functional PCA, STATIS, and compartmental models depends on the specific research question and the characteristics of the data. Functional PCA is useful for capturing individual variability and reducing the dimensionality of longitudinal data, while STATIS enables joint analysis of multiple datasets and the identification of relationships between variables. Compartmental models, on the other hand, provide a mechanistic representation of the underlying metabolic processes and can offer insights into the dynamics of the system.

Thesis contribution to resilience knowledge

We conducted our study on resilience by focusing on two distinct lines of goats with varying levels of functional longevity, assuming that these lines would exhibit different degrees of resilience. Article I confirmed that the two divergent lines had significantly different survival after the second year of life and suggested that the High_LGV line had lower body fat mobilization during early lactation and better mammary health. The distribution of the culling reasons did not differ significantly between lines, whether over the whole life span, during the first year or after the first year of life. The possible reason for this could be the relatively small population of culled animals during the study, particularly when comparing culling rates at different ages. This comparison is crucial, as it helps to understand the varying impact of the line over time. Amiri et al. (submitted) showed that Low_LGV goats had a greater body weight in pregnancy but then lost more weight in early lactation compared to high_LGV goats, which showed a greater body weight after kidding. Moreover, the high_LGV goats had a higher initial milk yield, an earlier but less marked lactation peak and more persistency in milk production in late lactation than Low_LGV goats. This finding suggests that the High_LGV goats allocate less to milk production and more for structural mass. However, Article II and Article III demonstrated that both genetic lines exhibited similar metabolic responses during a short-term underfeeding challenge at the onset of the first lactation. This conclusion was drawn based on the analysis of blood and milk metabolites using two modeling approaches: piecewise models and functional PCA. Interestingly, individual metabolite profiles did not exhibit significant differences between the longevity lines, and the application of multivariate integration (sPLS DA) to predict the longevity line did not yield promising results.

We may wonder whether a two-day undernourishment challenge was too short to activate the longterm body fat plasticity that differed between lines in Article I and Amiri et al. (submitted). Moreover, these results highlight the large diversity of goats within each longevity line. As discussed in Article III, the divergent selection conducted on functional longevity resulted in the selection of bucks whose daughters exhibited either very low or very high functional longevity for various reasons, not solely limited to metabolic factors. This intra-line diversity would decrease the statistical power of our analysis. It highlights the limit of using the functional longevity as a resilience benchmark (2.4. On the need for resilience benchmark for model validation).

In Article III, the analysis delved deeper into exploring the diversity of metabolic reactions to the underfeeding challenge. The unsupervised clustering analysis revealed that one particular type of metabolic reaction was associated with poor survival. This group of goats were characterized by a greater mobilization of body fat, lower Glu, Malate and Glu6P milk concentration during and after challenge and higher milk LDH concentration and SCS after challenge. The lower Glu, Malate and Glu6P associated with slightly higher Gal concentration after challenge suggests that the preferential use of the Glu to Galactose pathway rather than NADPH precursors could induce higher oxidative stress. The low survival group had also a lower milk NH2 and Glutamate concentrations suggesting that a larger decrease of amino acids milk content while a similar protein catabolism, indicated by unchanged Urea and Urate profiles, would correspond to low resilience. Article IV showed that several of those metabolites, notably BOHB, Chol, Cholin, Gal, Glu Glu6P, LDH Malate and Glutamate profiles were significantly heritable, indicating their potential as biomarkers of resilience. In our introduction, we pointed out that a large deviation in the face of a perturbation of a given variable could be expected to be associated with good or poor resilience, depending on the nature of the variable (1.3. Rigidity or plasticity). Article III showed that the low survival group was associated with greater deviations in milk metabolites.

Unlike the differences observed between the longevity lines, this disparity in survival emerged right from the first lactation. This finding indicates that the variation in survival between the longevity lines and the clustering of milk metabolites rely on distinct mechanisms that manifest at different life stages.

It confirms the interest of adding a new resilience index based on milk metabolite to the selection scheme, since they do not fully overlap with direct selection for longevity.

Besides the plasticity of the energetic metabolism, this thesis presents various pieces of evidence that support the connection between immunity and resilience. Article I suggested the Low_LGV line had deteriored mammary durinf the first lactation (high SCS). Article III showed that the group of goats with low survival had slightly higher milk LDH concentration after challenge and higher milk SCS after challenge. Another approach that could be applied to our animal model would be to compare the immune systems of the two longevity lines. The modeling approach we have proposed could be applied to develop a novel longitudinal immunophenotyping in a context of an imposed immune challenge.

Perspectives of genetic selection for resilience

Today, genetic selection for health criteria in dairy goats only focusus on morphology traits and somatic cells score. Article I confirmed the possibility for genetic selection on functional longevity despite the low estimated heritability (h²=10%). The implementation of functional longevity in the selection index of dairy goats seems feasible. The aim of this thesis was to explore the potential of milk metabolites as biomarkers of resilience. Milk metabolites offer a promising approach due to their ability to characterize numerous metabolic reactions, convenient sampling, and the possibility of early assessment during the animal's productive lifespan. Article II and Article III revealed a significant environmental influence on blood and milk metabolite profiles. Consequently, it was essential to address this batch effect to enable a fair comparison of goats from different farms. In Article III, we employed functional linear regression to correct the milk metabolite profiles. The functional linear regression did not only correct for the year/farm effect on the mean concentration, but also precisely corrected the shape of the curves. By applying this correction method, the study found promising results indicating the potential use of milk metabolite profiles for individual phenotyping, provided there is enough data to estimate the herd effect. In this context, Article IV showed that, despite the significant environmental effect on blood and milk metabolite profiles, several fPC scores showed significant heritability despite the small number of animals included in the study. This confirms the genetic determinism of these metabolite profiles.

If correcting for the batch effect in the metabolite curves was necessary for conducting an unsupervised clustering analysis, it might not have been required for a prediction analysis. Article II and Article III demonstrated that predicting longevity based on the data was not feasible. However, the findings of Article III suggest that there could be potential for predicting survival using milk metabolites. This could have been achieved by incorporating the underlying spline coefficients of the metabolite curves directly into a Cox model within a cross-validation framework. Currently, the significant proportion of censored survival data, representing the goats that are still alive, poses a challenge for such an approach. Nevertheless, it could become feasible in the coming years.

The present thesis concludes that there is strong evidence that the milk metabolite profiles, during a short-term underfeeding challenge, can be used to grasp part of the heritable resilience mechanism in dairy goats. However, the use of milk metabolites as resilience proxy in commercial farms depends on the access to cheap phenotyping. In our case two main constraints can be seen: ( 1) an imposed underfeeding challenge could hardly be done in commercial farms, (2) the milk metabolites considered in our study are not routinely measured. Answering these two questions is beyond the scope of this thesis. However, as discussed in the introduction (2.1. Detect or provoke resilience expression), several studies aim at detecting naturally occuring challenge. Those approaches open the way to explore alternative methodologies that can capture resilience expression without the need for imposed underfeeding challenges (Codrea et al., 2011;[START_REF] Garcia-Baccino | Detection of unrecorded environmental challenges in high-frequency recorded traits, and genetic determinism of resilience to challenge, with an application on feed intake in lambs Selection Evolution[END_REF]. Additionally, efforts should be made to develop cost-effective and efficient techniques for routinely measuring the relevant milk metabolites on commercial farms. In this context, the refinement of MIR spectra prediction for different milk metabolite concentration could be of great value [START_REF] Benedet | Prediction of blood metabolites from milk mid-infrared spectra in early-lactation cows[END_REF][START_REF] Luke | Metabolic profiling of early-lactation dairy cows using milk mid-infrared spectra[END_REF].

By addressing these areas, a more comprehensive understanding of resilience mechanisms in dairy goats can be achieved, paving the way for the practical application of milk metabolites as valuable proxies for assessing resilience in commercial farming settings. When resilience is low (B vs. A), slopes around the equilibrium are less steep, implying slower return rates to equilibrium. (C and D) Simulated recovery rates upon a small perturbation. (E and F) Simulated dynamics in a system subject to a stochastic regime of perturbations illustrating that fluctuations are larger and slower in a frail system (F vs. E), as reflected in higher variance and higher temporal autocorrelation. (G and H) Interactive dynamics of subsystems are predicted to become more correlated in a network with low systemic resilience (H vs. G). Adapted from Scheffer et al. (2018). 23 Article IV Figure 1. Genome-wide association analysis using single SNP regression mixed linear model for second component describing blood glucose profile during a two day underfeeding challenge. The -log10 of the P-value analysis for association with SNP is plotted. The red line is the threshold for significant SNP at a 5% after Bonferonni correction. 
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Figure 1 .

 1 Figure 1. Schematic representation of environment quality (y-axis in the insert graphs) through time (x-axis), the solid red lines represent the environmental quality (the dotted line shows the same

Figure 2 .

 2 Figure 2. Different performance deviation profiles after an environmental perturbation.

Figure 4 .

 4 Figure 4. An example of different degrees of smoothing applied to a lactation curve of milk-yield records. The different degrees of smoothing are obtained by imposing different weights on the roughness penalty term λ. The unperturbed milk yield curve is estimated by imposing a large roughness penalty (λ = 10 8 ) whereas the short-term disturbances in milk yield can be detected with low roughness penalty (λ = 100). Adapted from Codrea et al. (2011).

Figure 5 .

 5 Figure 5. A-The 16 individual time trends for milk yield through a two days imposed underfeeding challenge. B-Schematic representation of the piecewise model for describing response and recovery

Figure 6 .

 6 Figure 6. Left: A resilient system. Right: A frail system with low resilience. (A and B) Resilience is represented as the basin of attraction around a healthy state. Slopes correspond to rates of change. When resilience is low (B vs. A), slopes around the equilibrium are less steep, implying slower return rates to equilibrium. (C and D) Simulated recovery rates upon a small perturbation. (E and F)Simulated dynamics in a system subject to a stochastic regime of perturbations illustrating that fluctuations are larger and slower in a frail system (F vs. E), as reflected in higher variance and higher temporal autocorrelation. (G and H) Interactive dynamics of subsystems are predicted to become more correlated in a network with low systemic resilience (H vs. G). Adapted fromScheffer et al. (2018).
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 7 Figure 7. The Kelvin-Voigt model composed of a spring and a damper in parallel and characterized respectively by the parameters K and C (A). During a perturbation a force of perturbation (Fpert) pulls on the system and the measure of interest, x(t), is increased (B). Adapted from Sadoul et al.

Figure 9 .

 9 Figure 9. Characterization and classification of concurrent perturbation profiles: biplots of loading and score for the first 2 components of a principal component analysis based on different variables selected to characterize the perturbations of milk yield (MY) and body weight (BW). AUC = areas under the curve of the difference between the short-term variation and long-term potential performance; AUCLD = loss per day; ΔT = duration of deviation detected; Tcol = collapse phase time by deviation; Trec = recovery phase time by deviation; MML = maximum performance loss during deviation; Vmin = minimum value during the deviation. Adapted from Ben Abdelkrim et al. (2021)
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 10 Figure 10. Prediction of climate change effects. Prospective developments of milk productivity by region according to increasing forage yields. Yellow and red regions have higher risk of suffering from forage shortage, thus higher need to adopt their systems and breeds. Source: GentoreFiBL, GenTORE project (gentore.eu).
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 11 Figure 11. Regional impacts to major crop yields and food production loss events. Trends in food production shocks in different food supply sectors since 1961. Projected impacts are for Representative Concentration Pathway RCP4.5 mid-21st century, taking into account adaptation and CO2 fertilization for crop yield productivity. Source: Giec 2022 (Pörtner and Roberts, 2022).
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 12 Figure 12. Relative emphasis on production (grey), durability (white), and health and reproduction (black) components in selection indices of countries in August 2003. Source : Miglior et al. (2005)
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 13 Figure 13. Explanatory diagram of the creation of divergent lines for functional longevity at INRAE experimental facility P3R Bourges.
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 1 Figure 1. Distribution of culling reasons that occurred before and after 365 d of age in the high longevity (High_LGV; n = 111 goats) and low longevity (Low_LGV; n = 135 goats) lines.

Figure 2 .

 2 Figure 2. Distribution of treatment reasons that occurred before and after 365 d of age in the high longevity (High_LGV) and low longevity (Low_LGV) lines.

Figure 3 .

 3 Figure 3. (A) Smoothed weight curves of the 341 goats from birth to 12 mo. (B) First derivative of the smoothed weight curves of the 341goats from birth to 12 mo.

  Alpine goats was 5.34 (±1.59) compared with 4.74 (±2.05) in the presentstudy. The survival advantage of the High_LGV line was consistent between years, even though mortalityrates and environment conditions (i.e., forage quality, infectious pressure) varied. This study showed that it is possible to get a selection response for functional longevity in goats despite a low heritability. The High_LGV median survival time was 830 d compared with 787 d for Low_LGV line (difference = 43 d), showing that there was a strong delay in involuntary culling achieved by selection. This difference is, however, lower than what we estimated based on the length of productive life of the AI bucks' daughters (1,071 d for the High_LGV and 909 for the Low_LGV line, difference = 162 d).

Figure 4 .

 4 Figure 4. Plot of Kaplan-Meier curve showing survival against time for high longevity line (High_LGV) and low longevity line (Low_LGV). Shaded areas represent the 95% confidence intervals calculated by Cox analysis.

Figure 5 .

 5 Figure 5. Plot of scaled Schoenfeld residuals against transformed event time for Cox proportional hazards model for line covariable. The effect of the high longevity line (High_LGV) compared with the low longevity line is represented. The solid curve is the smoothed LOESS curve of β(t), and broken lines represent the 95% confidence intervals. β(t) corresponds to the estimation of the hazard ratio associated with High_LGV compared with the low longevity line at age t. The green broken line corresponds to the average High_LGV line effect estimated by the Cox model. The slope suggests violation of the proportional hazards assumption for the line effect.

Figure 14 .

 14 Figure 14. The curves of 4 blood metabolites from 267 goats. Day 0 corresponds to the beginning of the 2 days underfeeding challenge. The 4 metabolites are beta-hydroxy-butyrate (BOHB), glucose (Glu), non-esterified fatty acids (NEFA) and Urea.

  longevity plus (LGV+; n=137), and longevity minus (LGV+; n=130). The experiments were carried out in two different experimental INRAE Farms, Bourges and Grignon, France, in 2018 (n=21 LGV-and 13 LGV+), 2019 (n=35 LGV-and 27 LGV+), 2020 (n=21 LGV-and 29 LGV+), 2021 (n=21 LGV-and 28 LGV+) (site Bourges), and 2021 (n=17 LGV-and 18 LGV+) and 2022 (n=15 LGV-and 22 LGV+) (site Grignon). The two lines were created at the INRAE experimental facility of GenPhyse in close collaboration with

(

  V1). The second phase is the response to the 2-d challenge where the individuals are subjected to the 2-d nutritional challenge. For this phase, the piecewise model has the parameter V2 which gives the linear rate of response per unit time from the time the challenge starts. The third phase is the recovery from the challenge where the individuals are no longer subjected to the 2-d nutritional challenge. For this phase, the piecewise model has the parameters V3 and V4. The recovery phase is non-linear, and a quadratic model can represent this phase, as proposed byFriggens et al. (2016).

Figure 1 .

 1 Figure 1. Plasma metabolites concentration average time trends (Glucose (mM), non-esterified fatty acids (NEFA; µmol/L), Urea (mM), and B-hydroxybutyrate (BHB; mM)) following nutritional challenge of first lactation Alpine goats from two divergent genetic lines, according to lifespan duration, longevity plus (LGV+) and longevity minus (LGV-) evaluated across six years in two different sites (Bourges and Grignon). Symbol and line represent observed and predicted trajectory from the fixed part of the fitted mixed-effects model only, respectively.

Figure 2 .

 2 Figure 2. Scores plot from the Sparse Partial Least Square Discriminant Analysis applied to the random parameters from the piecewise mixed-effects model, adjusted for the effect of litter size and site:year, to discriminate two lines of goats selected for extreme functional longevity, longevity plus (LGV+) and longevity minus (LGV-), evaluated across six years in two different sites (Bourges and Grignon)

Figure 3 .

 3 Figure 3. Deviations of the individuals (grey lines) throughout the nutritional challenge across site:year and genetic lines estimated by the piecewise model. These are first lactation Alpine goats from two divergent lines, selected for extreme functional longevity, longevity plus (LGV+) and longevity minus (LGV-), evaluated across six years in two different sites (Bourges and Grignon)

  protein catabolism, ketone bodies and inflammation indicators. Professor Torben Larsen measured them in the department of Animal Science in Aarhus University (Denmark). The piecewise model used in Article II showed interesting results to characterize the individual time trends of the 4 blood metabolites. However, this model sets strong assumptions concerning the shapes of the curves. For the milk metabolite dataset, we wanted to propose a novel approach for the integration of multivariate data, using as little as possible a priori knowledge concerning the shape of the curves. In collaboration with Jiguo Cao (Canada Research Chair in Data Science, Professor, Department of Statistics and Actuarial Science, Simon Fraser University), we developed a pipeline of statistical analysis for the exploration of multivariate longitudinal data. The following section will briefly describe the 14 milk constituents measured before Article III.

Figure 15 .

 15 Figure 15. The curves of 13 milk metabolites and 1 enzyme from 138 goats. Day 0 corresponds to the beginning of the 2 days underfeeding challenge. The 13 milk metabolites and 1 enzyme are glucose-6-phosphate (Glu6P), glucose (Glu), galactose (Gal), beta-hydroxy-butyrate (BOHB), isocitrate, glutamate, NH2 (glutamate micro equivalent), lactate dehydrogenase (LDH), Urea, choline, malate, urate, triacylglycerol (TAG), cholesterol (Chol).

  from glucose in the mammary gland. Lactose is composed of one molecule of Gal and one molecule of Glu linked together by an osidic bond. Several studies report that the decrease of lactose production was proportional to the decrease of milk yield[START_REF] Hossaini-Hilali | Fluid balance and milk secretion in the fed and feed-deprived black Moroccan goat[END_REF][START_REF] Ansia | Feed restriction in mid-lactation dairy cows. II: Effects on protein metabolism-related blood metabolites[END_REF]. Maintenance of galactose concentration while glucose decreases can be explained because other mechanisms stimulate lactose synthesis rather than fatty acids synthesis(Lemosquet et al. 2009). Further, fat tissues might increase their resistance to insulin in order to increase the amount of glucose available for mammary gland(Gross et al. 2015).MalateFew articles are available concerning the metabolism of malate in milk and even fewer in the context of food restriction. Malate is involved in Krebs cycle and in the transport of NADPH. Evolution of malate concentration in milk probably reflects an intracellular metabolism shift.

Figure 16 .

 16 Figure 16. Schematic representation of the lactose synthesis pathway in the mammary cell.

3 .

 3 Metabolites linked with milk fat content Triacylglycerol TAG (Triacylglycerol) corresponds to the milk fat content. In milk TAG is synthetized by mammary gland epithelial cells, binding free fatty acids for incorporation in milk. Milk fat content increases during restriction and negative energy balance.CholesterolIncrease of milk cholesterol concentration may be linked with increased milk fat content, because cholesterol is present in milk fat globule membranes. Higher milk fat content may be associated with greater cholesterol content for "packaging" milk fat. There might also be a link between increased plasma concentration of cholesterol during feed restriction and milk concentration(Bjerre-Harpøth et al., 2012; Gross et al., 2015). However some studies report a decrease of plasma concentration of cholesterol during feed restriction[START_REF] Zenobi | Feeding increasing amounts of ruminally protected choline decreased fatty liver in nonlactating, pregnant Holstein cows in negative energy status[END_REF].CholineCholine is an essential nutrient originally classified in the group of B vitamins. It can be synthesized by the liver, although in insufficient quantities. Like cholesterol it is involved in the packing of milk fat globules as choline is part of the phospholipids of cell membrane. The increase of choline concentration during the feed restriction might be due to the increase of fat concentration in milk.[START_REF] Xyz Xu | Milk Metabolomics Data Reveal the Energy Balance of Individual Dairy Cows in Early Lactation[END_REF] reported an increase of milk choline concentration during a small negative energy balance period but a decrease of choline during a strong negative energy balance period. -hydroxy-butyrate) is a ketone body produced by the catabolism of fatty acids (ketogenesis) in the liver. It is an early indicator of ketosis in plasma and generally increases during feed restriction[START_REF] Klein | Correlations between Milk and Plasma Levels of Amino and Carboxylic Acids in Dairy Cows[END_REF] Pires et al., 2019;[START_REF] Xyz Xu | Milk Metabolomics Data Reveal the Energy Balance of Individual Dairy Cows in Early Lactation[END_REF]. However, increase in plasma BHB depends on when restriction is performed (early vs late lactation), and how intense feed restriction is(Bjerre-Harpøth et al., 2012).Krogh et al. (2020) reported that 54% of the variability of BOHB concentration was due to farm and feeding effect rather than individual variability. Most of the articles are based on experiments on cows, howeverBernard et al. (
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 1 Figure1. The smoothed curves of 13 milk metabolites and 1 enzyme from one randomly selected goat. Day 0 corresponds to the beginning of the 2 d underfeeding challenge. Points correspond to observed values. The 13 milk metabolites and 1 enzyme are: glucose-6-phosphate (Glu6P, microM), glucose (Glu, microM), galactose (Gal, microM), β-hydroxy-butyrate (BOHB, microM), isocitrate (microM), glutamate (microM), NH2 (glutamate micro equivalent), lactate dehydrogenase (LDH, UI), urea (mM), choline (mM), malate (microM), urate (microM), triacylglycerols (TAG, mM), cholesterol (Chol, microM). The 138 goats belonged to 2 divergent lines selected on high longevity or low longevity bred at INRAE facilities of P3R Bourges and Mosar Paris.
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  We chose the minimum number of components that explained at least 90% of the variability. A small number of FPC scores thus characterized each individual milk metabolite curve. The Figure2.4. represents the 3 FPCs for isocitrate and the corresponding scores for one given goat.Note that by construction, the mean values of the FPC equals 0. The 1 st FPC plot was positive across the whole period of time, increasing slightly during challenge. The chosen goat has a negative 1 st score for isocitrate (1isocitrate), indicating that this goat has a low overall isocitrate concentration. The individual curve plotted in Figure2.3 confirms that. Likewise, we can interpret the negative 2isocitrate score value as a high isocitrate concentration compared with pre challenge and recovery concentration, and the negative 3isocitrate as a low postchallenge / pre-challenge concentration ratio compared with other goats.

Figure 2 .

 2 Figure 2. Scheme showing the different stages of analysis of one milk metabolite curves data set (here isocitrate is shown as example). In the raw curves plot (1), smoothed curves plot (2), and curves corrected for year x facility effect (3) each red line correspond to one goat. The bold blue line corresponds to one randomly chosen goat. The functional principal components of the fPCA for isocitrate are plot in 4.1. and the corresponding scores for the randomly chosen goat are shown in 4.2. The fPC scores of the 13 milk metabolites and 1 enzyme are then used to predict the longevity line of the goats with a sPLS DA (5.A) and classify the goats within clusters with the same overall metabolic response to underfeeding challenge (5.B).

Figure 3 .

 3 Figure 3. Loading plot from the sPLS-DA to discriminate the 2 lines selected on functional longevity, based on 13 milk metabolites and 1 enzyme curves through a 2-d underfeeding challenge run separately on goats from P3R Bourges facility (left, n = 69) and Paris facility (right, n = 69). Colors indicate the longevity line in which the median is maximum for each fPCscore: red = Low_LGV, blue = High_LGV. Variable names indicate the fPCscore of the metabolite that was selected.

Figure 4 .

 4 Figure 4. Hierarchical clustering on PCA of the 138 goats described with 48 functional Principal Component scores (FPCs) of 13 milk metabolites and 1 enzyme curves through a 2-d underfeeding challenge. The 138 goats belonged to 2 divergent lines selected on high longevity or low longevity bred at INRAE facilities of P3R Bourges and Mosar Paris. A-Correlation circle of the PCA applied on the 48 FPCs of the 138 goats. B-Individual plot of the PCA. The colours correspond to the 3 clusters determined by the hierarchical clustering.

Figure 5 .

 5 Figure 5. Mean curves of the milk 13 milk metabolites and 1 enzyme within the 3 clusters identified by unsupervised clustering in 138 goat through a 2-d underfeeding challenge. These curves are corrected for the year x facility effect with a functional linear regression. The red area indicates the time period during which the variables are significantly different between clusters (permutation test, 5% critical value).

Figure 6 .

 6 Figure 6. Plot of Kaplan-Meier curve showing survival against time in 69 goats of the 3 clusters identified by unsupervised clustering. The unsupervised clustering defined 3 overall metabolic responses to a 2-d underfeeding challenge based on milk metabolite curves. The 69 goats belonged to 2 divergent lines selected on high longevity or low longevity bred at INRAE facilities of P3R Bourges. The cox model analysis showed significantly poorer survival of the cluster 1 over cluster 2 and 3 (* P<0.05).

Figure 7 .

 7 Figure 7. Mean curves of the milk performance and weight within the 3 clusters identified by unsupervised clustering in 138 goat through a 2d underfeeding challenge: daily milk yield (MY), ratio of fat content to protein content (F:P), fat content (MFC), protein content (MPC), somatic cells score (SCS) and weight (Weight). These curves are corrected for the year x facility effect with a functional linear regression. The red area indicates the time period during which the variables are significantly different between clusters (permutation test, 5% critical value). The 138 goats belonged to 2 divergent lines selected on high longevity or low longevity bred at INRAE facilities of P3R Bourges and Mosar Paris.

  and use of animals for research purposes. Animals were bred at two experimental INRAE Farms: P3R Bourges (UE0332, La Sapinière, Osmoy, France, licence to carry out animal experiments: C18-174-01) and Experimental Installation, UMR MoSAR (Route de la Ferme, Thiverval-Grignon, France) close to Paris licence to carry out animal experiments: A 78 615 1002). All procedures performed on animals were approved by the Ethics Committee on Animal Experimentation and the French Ministry of Higher Education, Research and Innovation (APAFIS#8613-2017012013585646 V4 and APAFIS#24314-2019120915403741).

  term underfeeding periode plays a role in the resilience mechanisms of goats. This study highlights the heritability of Glu profiles in plasma and milk, showing the importance of genetic factors and their influence on goat resilience. Understanding the complexities of glucose metabolism and its impact on survival may help in the development of new biomarkers of resilience in dairy goats.

Figure 2 .

 2 Figure 2. Quantile-quantile (Q-Q) of P-values of SNP from single SNP regression mixed linear model for second component describing blood glucose profile during a two day underfeeding challenge. The Q-Q plots of P-values of SNP are shown. The dots (blue) represent the -log10(P-values) to the expected distribution under the null hypothesis of no association. The line (red) denotes the expected pattern under the null hypothesis. Deviations between the line and dots indicate how the test statistics of loci deviate from the null hypothesis.

  Our primary goal was to model mulitivariate time series of 14 milk metabolites, with the aim of exploring the metabolic reactions of goats to underfeeding challenges. To achieve this, we employed functional principal component analysis (PCA) as a flexible and effective tool for capturing the individual variability of longitudinal processes. To this end, I initiated an international collaboration with Jiguo Cao (Canada Research Chair in Data Science, Professor) of the Department of Statistics and Actuarial Sciences at Simon Fraser University, where I spent four months during my second year of doctoral studies.

Figure 17 .

 17 Figure 17. Left-Correlation circle of the PCA applied on the 1971 milk samples of the 138 goats characterized by 14 milk metabolites concentrations. Right-Individual plot of the PCA. The colours correspond to the day from the beginning of the two-days underfeeding challenge.

Figure 18 .

 18 Figure18. STATIS method applied on the smoothed metabolites curves corrected for year x farm effect. Up: Correlation plot. Down: The mean 3 dimensional profiles of the three clusters defined in Article III. The lines represents the metabolic pathways followed by each cluster of goats, from day -6 to day +6 from the beginning of the two-days underfeeding challenge.
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 12345226 Figure1. Schematic representation of environment quality (y-axis in the insert graphs) through time (x-axis), the solid red lines represent the environmental quality (the dotted line shows the same reference level for the 4 graphs). The four combinations of environments that are on average good or poor, and stable or variable are shown. The need for animal robustness and/or resilience is indicated for each case. Adapted from(Friggens et al., 2022). ............................................................................ 16Figure 2. Different performance deviation profiles after an environmental perturbation. ................. 18 Figure 3. On the buffering role of the non-vital functions in face of an environmental perturbation in order to maintain vital functions........................................................................................................... 19 Figure 4. An example of different degrees of smoothing applied to a lactation curve of milk-yield records. The different degrees of smoothing are obtained by imposing different weights on the roughness penalty term λ. The unperturbed milk yield curve is estimated by imposing a large roughness penalty (λ = 10 8 ) whereas the short-term disturbances in milk yield can be detected with low roughness penalty (λ = 100). Adapted from Codrea et al. (2011). ......................................................................... 21 Figure 5. A-The 16 individual time trends for milk yield through a two days imposed underfeeding challenge. B-Schematic representation of the piecewise model for describing response and recovery time-series profiles relative to a nutritional challenge. Adapted from (Friggens et al., 2016)............. 22 Figure 6. Left: A resilient system. Right: A frail system with low resilience. (A and B) Resilience is represented as the basin of attraction around a healthy state. Slopes correspond to rates of change.When resilience is low (B vs. A), slopes around the equilibrium are less steep, implying slower return rates to equilibrium. (C and D) Simulated recovery rates upon a small perturbation. (E and F) Simulated dynamics in a system subject to a stochastic regime of perturbations illustrating that fluctuations are larger and slower in a frail system (F vs. E), as reflected in higher variance and higher temporal autocorrelation. (G and H) Interactive dynamics of subsystems are predicted to become more correlated in a network with low systemic resilience (H vs. G). Adapted fromScheffer et al. (2018). 23 
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 78910111213141516171 Figure 7. The Kelvin-Voigt model composed of a spring and a damper in parallel and characterized respectively by the parameters K and C (A). During a perturbation a force of perturbation (Fpert) pulls on the system and the measure of interest, x(t), is increased (B). Adapted from Sadoul et al. (2015). ............................................................................................................................................................... 24 Figure 8. Representative infection severity-health trajectory for each mouse strain by survival outcome. The trajectories were produced by plotting longitudinal pairwise measurements of body weight (BW) and infection severity (bacterial load) in a two-dimensional space, and following their progression over time. Lough et al. (2015). .......................................................................................... 26 Figure 9. Characterization and classification of concurrent perturbation profiles: biplots of loading and score for the first 2 components of a principal component analysis based on different variables selected to characterize the perturbations of milk yield (MY) and body weight (BW). AUC = areas under the curve of the difference between the short-term variation and long-term potential performance; AUCLD = loss per day; ΔT = duration of deviation detected; Tcol = collapse phase time by deviation; Trec = recovery phase time by deviation; MML = maximum performance loss during deviation; Vmin = minimum value during the deviation. Adapted from Ben Abdelkrim et al. (2021) .............................. 27

Figure 2 .

 2 Figure 2. Distribution of treatment reasons that occurred before and after 365 d of age in the high longevity (High_LGV) and low longevity (Low_LGV) lines.

Figure 3 .

 3 Figure 3. (A) Smoothed weight curves of the 341 goats from birth to 12 mo. (B) First derivative of the smoothed weight curves of the 341 goats from birth to 12 mo.

Figure 4 .

 4 Figure 4. Plot of Kaplan-Meier curve showing survival against time for high longevity line (High_LGV) and low longevity line (Low_LGV). Shaded areas represent the 95% confidence intervals calculated by Cox analysis.

Figure 5 .Figure 1 .

 51 Figure 5. Plot of scaled Schoenfeld residuals against transformed event time for Cox proportional hazards model for line covariable. The ef-fect of the high longevity line (High_LGV) compared with the low longevity line is represented. The solid curve is the smoothed LOESS curve of β(t), and broken lines represent the 95% confidence intervals. β(t) corresponds to the estimation of the hazard ratio associated with High_LGV compared with the low longevity line at age t. The green broken line corresponds to the average High_LGV line effect estimated by the Cox model. The slope suggests violation of the proportional hazards assumption for the line effect.
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 231 Figure2. Scores plot from the Sparse Partial Least Square Discriminant Analysis applied to the random parameters from the piecewise mixed-effects model, adjusted for the effect of litter size and site:year, to discriminate two lines of goats selected for extreme functional longevity, longevity plus (LGV+) and longevity minus (LGV-), evaluated across six years in two different sites (Bourges and Grignon) Figure3. Deviations of the individuals (grey lines) throughout the nutritional challenge across site:year and genetic lines estimated by the piecewise model. These are first lactation Alpine goats from two divergent lines, selected for extreme functional longevity, longevity plus (LGV+) and longevity minus (LGV-), evaluated across six years in two different sites(Bourges and Grignon) 

Figure 2 .

 2 Figure2. Scheme showing the different stages of analysis of one milk metabolite curves data set (here isocitrate is shown as example). In the raw curves plot (1), smoothed curves plot (2), and curves corrected for year x facility effect (3) each red line correspond to one goat. The bold blue line corresponds to one randomly chosen goat. The functional principal components of the fPCA for isocitrate are plot in 4.1. and the corresponding scores for the randomly chosen goat are shown in 4.2. The fPC scores of the 13 milk metabolites and 1 enzyme are then used to predict the longevity line of the goats with a sPLS DA (5.A) and classify the goats within clusters with the same overall metabolic response to underfeeding challenge (5.B).

Figure 3 .

 3 Figure 3. Loading plot from the sPLS-DA to discriminate the 2 lines selected on functional longevity, based on 13 milk metabolites and 1 enzyme curves through a 2-d underfeeding challenge run separately on goats from P3R Bourges facility (left, n = 69) and Paris facility (right, n = 69). Colors indicate the longevity line in which the median is maximum for each fPCscore: red = Low_LGV, blue = High_LGV. Variable names indicate the fPCscore of the metabolite that was selected.

Figure 4 .

 4 Figure 4. Hierarchical clustering on PCA of the 138 goats described with 48 functional Principal Component scores (FPCs) of 13 milk metabolites and 1 enzyme curves through a 2-d underfeeding challenge. The 138 goats belonged to 2 divergent lines selected on high longevity or low longevity bred at INRAE facilities of P3R Bourges and Mosar Paris. A-Correlation circle of the PCA applied on the 48 FPCs of the 138 goats. B-Individual plot of the PCA. The colours correspond to the 3 clusters determined by the hierarchical clustering.

Figure 5 .

 5 Figure 5. Mean curves of the milk 13 milk metabolites and 1 enzyme within the 3 clusters identified by unsupervised clustering in 138 goat through a 2-d underfeeding challenge. These curves are corrected for the year x facility effect with a functional linear regression. The red area indicates the time period during which the variables are significantly different between clusters (permutation test, 5% critical value).

Figure 6 .

 6 Figure 6. Plot of Kaplan-Meier curve showing survival against time in 69 goats of the 3 clusters identified by unsupervised clustering. The unsupervised clustering defined 3 overall metabolic responses to a 2-d underfeeding challenge based on milk metabolite curves. The 69 goats belonged to 2 divergent lines selected on high longevity or low longevity bred at INRAE facilities of P3R Bourges.The cox model analysis showed significantly poorer survival of the cluster 1 over cluster 2 and 3 (* P<0.05).

Figure 7 .

 7 Figure 7. Mean curves of the milk performance and weight within the 3 clusters identified by unsupervised clustering in 138 goat through a 2-d underfeeding challenge: daily milk yield (MY), ratio of fat content to protein content (F:P), fat content (MFC), protein content (MPC), somatic cells score (SCS) and weight (Weight). These curves are corrected for the year x facility effect with a functional linear regression. The red area indicates the time period during which the variables are significantly different between clusters (permutation test, 5% critical value). The 138 goats belonged to 2 divergent lines selected on high longevity or low longevity bred at INRAE facilities of P3R Bourges and Mosar Paris.

Figure 2 .

 2 Figure 2. Quantile-quantile (Q-Q) of P-values of SNP from single SNP regression mixed linear model for second component describing blood glucose profile during a two day underfeeding challenge. The Q-Q plots of P-values of SNP are shown. The dots (blue) represent the -log10(P-values) to the expected distribution under the null hypothesis of no association. The line (red) denotes the expected pattern under the null hypothesis. Deviations between the line and dots indicate how the test statistics of loci deviate from the null hypothesis.

  

  

  

  

  [START_REF] Poppe | Development of resilience indicator traits based on daily step count data for dairy cattle breeding[END_REF] used health traits (mastitis, claw and uterus disorders), fertility, and body condition score to validate resilient indicators. Adriaens et al. (2020) ranked cows for lifetime resilience by calculating a score for each cow based on her number of calvings, her 305-day milk yield, her age at first calving, her calving intervals, and the

days in milk at the moment of culling, taking into account her entire lifetime. Interestingly, this ranking was found to be only consistent within a given herd. Indeed, like functional longevity, the different resilience benchmarks based on the long-term performances of an animal are much impacted by farm management, weather variations, and infectious disease occurrences. Hence, they cannot directly be used to compare the resilience of animals from different herds. While these benchmarks are needed to validate new resilience indicators, resilience indicators that would describe more underlying components of resilience, such as physiology or metabolic characterization, may be less influenced by environmental factors, paving the way for more effective genetic selection for resilient animals.

Table 1 .

 1 Productivity

		2010	2015	2018	2019	2020
	Number of lactation	268 200	262 854	256 095	249 579	232 915
	Lactation / farm	156	192	186	181	181
	Milk yield / goat (kg)	842	925	964	963	989
	Days in milk (days)	274	301	319	318	321
	Milk protein content (g/kg)	32.3	32.7	33.0	33.2	33.4
	Fat protein content (g/kg)	37.0	36.7	37.1	37.5	37.6
	Number of farms	1 715	1 540	1 503	1 492	1 473

of the French dairy goats' farms followed by the national milk recording between 2010 and 2020. Source FCL, Institut de l'Elevage.

Table 2 .

 2 The estimated heritability of different health traits in literature.

	Trait	Measure	Heritability	Reference
			0.13±0.02-dairy sheep	Mucha et al. 2022
		Milk SCC	0.21±0.01-dairy goat	Mucha et al. 2022
	Mastitis		0.11±0.04 -meat sheep	McLaren et al., 2018
		California Mastitis Test	0.08 ±0.04 -meat sheep	McLaren et al., 2018
		Clinical cases	0.04 ±0.03 -meat sheep	O'Brien et al., 2017
	GI Parasites	Faecal egg count	0.07±0.01 -dairy goat 0.14±0.04 -dairy sheep	Mucha et al. 2022
			0.29±0.03 -meat sheep	
	Functional Longevity	Length of life (1 st calving-culling)	0.08±0.002 -dairy goat 0.19±0.01 -dairy cattle 0.097 -dairy cattle	Palhiere et al., 2018 Castañeda-Bustos et al., 2017 Nayeri et al., 2017
	4.2.	Toward more specific resilience index(es)?	

Table 1 . Estimated breeding values for length of functional life and production traits for 35 bucks that sired the high longevity

 1 

	(High_LGV; n = 16)

Table 2 .

 2 Distribution of the 440 goats within the 2 lines selected on high longevity (High_LGV) or low longevity (Low_LGV) bred at INRAE facility of Bourges between 2017 and 2021

	Year of birth of each cohort				
	Item	2017	2018	2019	2020	2021	Total
	Low_LGV High_LGV	48 45	46 45	39 42	40 68	39 28	212 228
	Total	93	91	81	108	67	440
	study, some animals were daughters of High_LGV or Low_LGV mothers (of the 440 females used, 262, 144, 41, and 3 were from generation 1, 2, 3, and 4, respectively). We produced goats belonging to the High_LGV and Low_LGV lines at the experimental INRAE farm (La

Sapinière, Osmoy, France)

. Numbers of goats bred per year are shown in Table

2

. All goats were managed identically in the same facility. The farm staff did not know which line the goats belonged to. They were reared indoors all year round, and inseminated at about 7 mo of age. Reproduction was seasonal, and kidding ranged from January until early February. Milking occurred twice a day with a DeLaval milking machine (DeLaval France) in a Rotolactor parlor (Eurl Gabard Systeme) from February to October. Goats were then dried off for 3 mo. Theration was based on Lucerne hay and complemented with concentrates dispensed in the milking parlor and in collective troughs.

Table 3 .

 3 The ANOVA testing for the difference between lines (LSM or odds ratio) for the high longevity (High_LGV) and low longevity(Low_LGV) divergent goat lines

	High_LGV line	Low_LGV line	Analysis of variance

1 Mean speed of growth deviation during the first year of life. 2 Mean weight deviation during the first year of life.

3 

Adjusted SCS.

Table 4 .

 4 The ANOVA testing for the difference of weight between high longevity (High_LGV) and low longevity (Low_LGV) divergent goat lines 1

		Low_LGV			High_LGV	
	Month of age	Weight, kg	SD	Weight, kg	SD	P-value
		8.0 13.2 18.6 23.5 27.0 30.4 32.1 34.1 37.0 37.3 41.6 41.3 43.1 41.8 40.9 43.4 46.5 46.0 48.5 48.1 49.6 49.6 54.7 55.2 55.1 58.8 60.0 57.5 64.7	0.375 0.390 0.395 0.399 0.398 0.406 0.417 0.439 0.502 0.499 0.574 0.570 0.508 0.478 0.497 0.785 0.484 0.527 0.847 0.847 0.816 0.485 0.643 0.659 0.818 1.114 0.814 0.778 0.771	8.1 13.3 18.9 23.9 26.8 30.5 32.4 33.9 36.8 37.1 41.6 40.7 43.4 43.4 42.1 45.1 48.0 46.4 49.2 48.2 49.9 50.2 57.2 53.1 53.7 56.9 58.1 58.1 65.5	0.370 0.385 0.394 0.404 0.394 0.403 0.411 0.442 0.504 0.556 0.643 0.712 0.513 0.470 0.499 0.663 0.482 0.546 0.777 0.741 0.792 0.495 0.585 0.618 0.676 0.821 0.799 0.715 0.667	0.826 0.772 0.560 0.415 0.676 0.861 0.641 0.582 0.776 0.677 0.931 0.478 0.660 0.003* 0.032* 0.089 0.006* 0.568 0.525 0.856 0.763 0.339 0.001* 0.011* 0.193 0.157 0.086 0.605 0.427
		61.9	1.057	60.2	0.753	0.177

1 

The animal was included in the model as a random effect. The line effect was nested into month of age. Results are averaged over the levels of year, gestation, and kidding. *0.01 < P < 0.1.

Table 5 .

 5 Hazard ratios (HR) with 95% lower and upper CI from Cox hazard model for culling data in 440goats of the high l ongevity (High_LGV) and low longevity (Low_LGV) lines

	Risk factor	HR	CI		P-value
	High_LGV line vs. Low_LGV Birth year 2017 vs. 2018 Birth year 2019 vs. 2018 Birth year 2020 vs. 2018 Birth year 2021 vs. 2018 d_WD 1 Health treatment vs. none 2	0.645 1.453 1.456 1.072 3.016 0.328 2.029	0.474 0.971 0.915 0.576 1.523 0.251 1.315	0.878 2.176 2.316 1.996 5.973 0.427 3.128	0.005 0.069 0.113 0.826 0.002 <0.001 0.001
	High IgG concentration 3	0.687	0.492	0.960	0.028

  The linear mixed-effects model using a piecewise arrangement was used to analyse the response/recovery profiles to the nutritional challenge. Random parameters estimated for each individual, using the mixed-effects models without the fixed effects of genetic line, were used in a Sparse Partial Least Square Discriminant Analysis (sPLS-DA) in order to compare the goat metabolism response to the challenge on a multivariate scale. The plasma metabolites, glucose, β-hydroxybutyrate (BHB), and non-esterified fatty

acids (NEFA), and urea concentrations responded to the 2-d nutritional challenge. Selection for functional longevity does not affect plasma metabolites, glucose, NEFA, BHB, and urea concentrations, responses/recoveries to a 2-d nutritional challenge. However, site, year, and litter size seem to affect these responses. Moreover, the plasma metabolites seem not to fully recover to prechallenge levels after the recovery phase. The sPLS-DA analysis was also not able to discriminate between the two longevity lines. We observed meaningful between individual variation in plasma BHB, especially on the prechallenge and rate of response and rate of recovery from the 2-d nutritional challenge (CV = 26.2%, 36.1%, and 41.2%, repeatability = 0.749, 0.322, and 0.741, respectively). Plasma NEFA recovery from challenge also demonstrated high variability among individuals (CV = 16.4%, repeatability = 0.32; Table

2

). Functional longevity does not affect plasma metabolites responses to a two-day nutritional challenge in dairy goats. Plasma NEFA and BHB response/recovery presented high variability between individuals, indicating individual adaptive characteristics to nutritional challenges not related to the environmental conditions but to inherent individual characteristics.

  Experimentation and the French Ministry of Higher Education, Research and Innovation (APAFIS#8613-2017012013585646 V4 and APAFIS#24314-2019120915403741, for sites Bourges and Grignon, respectively). Six experiments were carried out with the objective to measure time-series measurements of plasma metabolites linked to nutritional status and body reserves mobilization were made in dairy goats exposed to a 2-d nutritional challenge in early lactation (38 ± 8 days in milk; the body reserve mobilization phase of lactation)

Table 2 .

 2 Summary statistics for between-individuals variation in time trends (variance components of piecewise mixed-effects models considering the fixed effects of genetic line, litter size, and site:year) following two-days nutritional challenge of first lactation Alpine goats from two divergent lines, according to functional lifespan duration, longevity plus and longevity minus evaluated across six years in two different sites(Bourges and Grignon) 

	Trait		Mean	SD	CV 1	Repetibility 2
	Glucose				
	V1 (mM)		5.04		0.294	5.84	0.173
	V2 (mM/d)		-0.493	0.092	18.6	0.0199
	V3 (mM/d)		1.21		0.2809	23.2	0.160
	V4 (mM/d 2 )		-0.232	0.0572	24.7	0.00785
	NEFA				
	V1 (μmol/L)		523		123	23.6	0.141
	V2 (μmol/L/d)		612		100	16.3	0.0969
	V3 (μmol/L/g)		-1277	210	16.4	0.323
	V4 (μmol/L/d 2 )		226		37.4	16.5	0.0149
	BHB				
	V1 (mM)		0.482	0.126	26.2	0.749
	V2 (mM/d)		0.140	0.050	36.1	0.322
	V3 (mM/d)		-0.300	0.124	41.2	0.741
	V4 (mM/d 2 )		0.0544	0.0210	38.5	0.0757
	Urea				
	V1 (mM)		4.34		0.521	12.0	0.399
	V2 (mM/d)		-0.346	0.155	44.9	0.0556
	V3 (mM/d)		-0.734	0.476	64.9	0.357
	V4 (mM/d 2 )		0.241	0.0977	40.6	0.0228
	1 Coefficients of variance (CV, %) were calculated as standard deviation of variance components divided by the
	respective mean value of the estimated fixed effects across line and diet
	2 Repeatability = (σ  2	/(σ  2	+ σ  2	)	
	Pre-challenge level (V1) Rate of response (V2), Rate of recovery (V3), Rate of deceleration in recovery (V4).

Table 1 .

 1 Distribution of the 138 goats within the 2 divergent lines selected on high longevity (High_LGV) or low longevity (Low_LGV) bred at INRAE facilities of P3R Bourges and Mosar Paris that underwent the underfeeding challenge during early lactation (36.7 DIM ± 6.2 SD)

		Year of the underfeeding challenge / INRAE facility	
		2020 / P3R Bourges	2021 / P3R Bourges	2021 / Paris	2022 / Paris	Total
	Low_LGV High_LGV	15 18	14 22	17 17	14 21	60 78
	Total	33	36	34	35	138

Table 2 .

 2 Concentrations of 13 milk metabolites and 1 enzyme collected during 10 morning milkings among 138 goats that underwent an underfeeding challenge during early lactation: 2 samples were taken during underfeeding challenge of 2 d, 4 before and 4 after. The 138 goats belonged to 2 divergent lines selected on high longevity or low longevity bred at INRAE facilities of P3R Bourges and Mosar Paris

		Pre-challenge	Challenge	Post-challenge
		n = 552 samples	n = 276 samples	n = 552 samples
		Mean (SD)	Mean (SD)	Mean (SD)
	BOHB (microM) Chol (microM) Choline (mM) Gal (microM) Glu (microM) Glu6P (microM) Glutamate (microM) Isocitrate (microM) LDH (UI) Malate (microM) NH2 (glutamate micro eqv) TAG (mM) Urate (microM) Urea (mM) MY (kg) MFC (g/kg) MPC (g/kg) F:P ratio	27.3 (±8.8) 192.0 (±74.4) 1.5 (±0.9) 65.9 (±22.4) 226.8 (±120.6) 60.8 (±19.0) 250.0 (±95.3) 162.2 (±45.5) 10.2 (±4.7) 98.0 (±51.2) 1687.1 (±377.1) 44.7 (±15.5) 58.9 (±31.7) 6.7 (±3.7) 3.1 (±0.5) 40.5 (±6.2) 33.2 (±2.5) 1.3 (±0.2)	39.8 (±25.1) 480.9 (±192.7) 3.3 (±1.3) 86.5 (±36.2) 117.2 (±57.2) 40.9 (±20.9) 103.3 (±43.3) 239.3 (±76.5) 45.5 (±27.8) 38.0 (±20.5) 1356.5 (±300.6) 83.6 (±31.3) 116.5 (±70.7) 6.5 (±2.1) 1.7 (±0.6) 65.9 (±15.5) 34.8 (±3.9) 1.9 (±0.4)	25.0 (±7.5) 258.6 (±144.3) 1.5 (±1.0) 66.3 (±29.9) 269.8 (±161.1) 55.6 (±20.7) 283.2 (±157.8) 118.7 (±42.2) 13.9 (±14.0) 78.6 (±34.1) 1893.5 (±414.9) 44.4 (±20.6) 76.2 (±57.7) 4.8 (±3.1) 2.5 (±0.6) 38.7 (±10.7) 32.8 (±2.8) 1.2 (±0.3)
	SCS	4.9 (±1.8)	5.6 (±3.0)	6.1 (±1.8)

Glucose-6-phosphate (Glu6P), glucose (Glu), galactose (Gal), β-hydroxy-butyrate (BOHB), isocitrate, glutamate, NH2, urea, choline, malate, urate, triacylglycerols (TAG), cholesterol (Chol) and lactate dehydrogenase enzyme (LDH). Milk performance: daily milk yield (MY), ratio of fat content to protein content (F:P ratio), fat content (MFC), protein content (MPC), somatic cells score (SCS).

Table 3 .

 3 Hazard ratios (HR) with 95% lower and upper CI from Cox hazard model for culling data in 69 goats of the 3 clusters identified by unsupervised clustering. The unsupervised clustering defined 3 overall metabolic responses to a 2-d underfeeding challenge based on milk metabolite curves. The 69 goats belonged to 2 divergent lines selected on high longevity or low longevity bred at INRAE facilities of P3R Bourges

	Risk factor	HR	CI		P-value
	Cluster 1 vs 2 Cluster 1 vs 3	2.63 3.70	1.07 1.25	6.25 11.11	0.04 0.02
	Cluster 2 vs 3	0.70	0.24	2.06	-

Table 4 .

 4 The ANOVA testing (LSMEANS) for the difference between the 3 clusters identified by unsupervised clustering in 138 goats through a 2-d underfeeding challenge. The ANOVA included the year x site effect. The 138 goats belonged to 2 divergent lines selected on high longevity or low longevity bred at INRAE facilities of P3R Bourges and Mosar Paris

		Number of records	cluster 1	cluster 2	cluster 3	p_value
	EBVsire for functional longevity (days) EBVsire _MPC (g/L) EBVsire _MFC (g/L) EBVsire _SCS EBVsire _MY (kg) Weight_6mo (kg) Chest_6mo (cm) Height_6mo (cm)	124 124 124 124 124 137 136 137	-1.82 0.50 -0.04 100.7 15.06 34.0 71.4 66.2	23.59 0.02 0.00 100.6 14.43 33.0 71.2 66.7	6.30 0.39 0.13 98.4 4.75 33.8 71.0 66.7	--------
	DIM (days)	138	34.7	35.8	35.9	-

Estimated breeding values of the goats' fathers for functional longevity (EBVsire for functional longevity), milk protein content (EBVsire _MPC), milk fat content (EBVsire _MFC), somatic cells score (EBVsire _SCS) and milk yield (EBVsire _MY). Morphology at 6 mo of age: weight (Weight_6mo), chest size (Chest_6mo), height at the withers (height_6mo). Days in milk at the beginning of the challenge (DIM).

  . Besides

	Total 225 225 244 138 34 the milk yield (MY), milk fat content (MFC), milk protein content (MPC) and somatic cells score (SCS) P3R Bourges Paris 2017 2018 2019 2020 2020 2021 Production traits 34 50 34 36 34 37 Blood metabolites during challenge 34 50 34 36 34 37 Blood metabolites around lambing 34 54 39 45 35 37 Milk metabolites during challenge --33 36

Table 2 .

 2 Despitethe low number of animals, those results show consistency with literature. The heritability of the

	cumulated milk yield (MY) over 250 days in milk (DIM) was 0.26 (±0.17) and was close to what was
	reported in literature

Table 2 .

 2 Heritability

	(h² ± SE) of production traits in 225 Alpine goats. (*) indicates traits with h²>1SE;
	(**) h²>2SE; (***) h²>3SE.				
	Phenotype	h2	SE		N
	MY_90_CUMUL	0.09 ±	0.15		225
	MY_250_CUMUL	0.26 ±	0.17	*	225
	SCS_90	0.06 ±	0.15		154
	MFC_30	0.38 ±	0.20	*	154
	MFC_250	0.53 ±	0.20	**	154
	MPC_30	0.67 ±	0.19	***	154
	MPC_250	0.68 ±	0.19	***	154
	F:P_30	0.31 ±	0.21	*	154
	F:P_250	0.35 ±	0.20	*	154
	Weight_birth	0.47 ±	0.20	**	225
	Weight_6mo	0.59 ±	0.19	***	225
	The estimated phenotypes are : cumulated MY during 90 and 250 first days in milk (MY_90_CUMUL and
	MY_250_CUMUL). The SCS at 90 DIM and MFC, MPC and fat to protein ratio (F:P = MFC/MPC) at 30 and 250 DIM
	(SCS_90, MFC_30, MFC_250, MPC_30, MPC_250, F:P_30, F:P_250). Body weight at birth and at 6 months old
	(Weight_birth, Weight_6mo).				

Table 3 .

 3 Heritability (h², ± SE) of blood metabolite concentration around kidding in 225 Alpine goats. (*) indicates traits with h²>1SE; (**) h²>2SE.

	Metabolite	Week to kidding	h2		SE	N
		-4	0.06	±	0.17	
		-2	0.00	±	0.13	
	Glucose	-1 1 2	0.00 0.00 0.11	± ± ±	0.13 0.15 0.14	
		Mean before	0.02	±	0.12	
		Mean after	0.04	±	0.13	
		-4	0.15	±	0.15	
		-2	0.23	±	0.16	*
	NEFA	-1 1 2	0.07 0.01 0.16	± ± ±	0.13 0.13 0.16	*
		Mean before	0.21	±	0.16	*
		Mean after	0.07	±	0.12	
		-4	0.04	±	0.14	
		-2	0.23	±	0.17	*
	BOHB	-1 1 2	0.16 0.17 0.09	± ± ±	0.16 0.17 0.13	*
		Mean before	0.25	±	0.16	*
		Mean after	0.20	±	0.14	*
		-4	0.09	±	0.13	
		-2	0.13	±	0.14	
	Urea	-1 1 2	0.13 0.17 0.04	± ± ±	0.13 0.17 0.15	*
		Mean before	0.13	±	0.13	
		Mean after	0.00	±	0.13	

Table 4 .

 4 Heritability (h², ± SE) of fPC scores describing the blood metabolites profiles during a 2 days underfeeding challenge in 225 Alpine goats. The functional Principal Components that define the FPCA scores are plotted on the left. The red area corresponds to the two days underfeeding challenge. (*) indicates traits with h²>1SE; (**) h²>2SE.

		Phenotype	h²		SE	
	Mean Glu before challenge	O.26	±	0.16	*
	fPC scores	1Glu 2Glu 3Glu	0.29 0.28 0.15	± ± ±	0.16 0.18 0.14	* * *
	Mean NEFA before challenge	0.19	±	0.14	*
	fPC scores	1NEFA 2NEFA	0.19 0.00	± ±	0.13 0.16	*
	Mean BOHB before challenge	0.04	±	0.15	
	fPC scores	1BOHB 2BOHB	0.07 0.18	± ±	0.13 0.15	*
	Mean Urea before challenge	0.51	±	0.21	**
	fPC scores	1Urea 2Urea 3Urea	0.12 0.08 0.18	± ± ±	0.15 0.14 0.18	

Table 5 .

 5 A. Heritability (h², ± SE) of fPC scores describing the milk metabolites profiles during a 2 days underfeeding challenge in 138 Alpine goats. The functional Principal Components that define the FPCA scores are plotted on left. The red area corresponds to the two days underfeeding challenge. (*) indicates traits with h²>1SE; (**) h²>2SE; (***) h²>3SE.The fPC scores are novel indicators of metabolic adaptive capacity during a short term underfeeding challenge.Ithurbide et al. (2023) showed that one type of overall metabolic profile corresponded to goats with low lifetime survival. These fPC scores can be seen as indicators of the resilience of the energetic metabolism of the goats. Several metabolites that most characterized the low resilience
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 5 B. Heritability (h², ± SE) of fPC scores describing the milk metabolites profiles during a 2 days underfeeding challenge in 138 Alpine goats. The functional Principal Components that define the FPCA scores are plotted on left. The red area corresponds to the two days underfeeding challenge. (*) indicates traits with h²>1SE; (**) h²>2SE; (***) h²>3SE.
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 1 Distribution of the 138 goats within the 2 divergent lines selected on high longevity (High_LGV) or low longevity (Low_LGV) bred at INRAE facilities of P3R Bourges and Mosar Paris that underwent the underfeeding challenge during early lactation (36.7 DIM ± 6.2 SD)
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 2 Concentrations of 13 milk metabolites and 1 enzyme collected during 10 morning milkings among 138 goats that underwent an underfeeding challenge during early lactation: 2 samples were taken during underfeeding challenge of 2 d, 4 before and 4 after. The 138 goats belonged to 2 divergent lines selected on high longevity or low longevity bred at INRAE facilities of P3R Bourges and Mosar Paris
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 3 Hazard ratios (HR) with 95% lower and upper CI from Cox hazard model for culling data in 69 goats of the 3 clusters identified by unsupervised clustering. The unsupervised clustering defined 3 overall metabolic responses to a 2-d underfeeding challenge based on milk metabolite curves. The 69 goats belonged to 2 divergent lines selected on high longevity or low longevity bred at INRAE facilities of P3R Bourges
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 4 The ANOVA testing (LSMEANS) for the difference between the 3 clusters identified by unsupervised clustering in 138 goats through a 2-d underfeeding challenge. The ANOVA included the year x site effect. The 138 goats belonged to 2 divergent lines selected on high longevity or low longevity bred at INRAE facilities of P3R Bourges and Mosar Paris
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 1 Distribution of the number of primiparous goats for which the different traits were disposable (production traits, blood metabolites during underfeeding challenge, blood metabolites around lambing, milk metabolites during underfeeding challenge) born at INRAE facilities of P3R Bourges and Mosar Paris between 2017 and 2021.
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 2 Heritability (h² ± SE) of production traits in 225 Alpine goats. (*) indicates traits with h²>1SE; (**) h²>2SE; (***) h²>3SE.

Table 3 .

 3 Heritability (h², ± SE) of blood metabolite concentration around kidding in 225 Alpine goats. (*) indicates traits with h²>1SE; (**) h²>2SE.

Table 4 .

 4 Heritability (h², ± SE) of fPC scores describing the blood metabolites profiles during a 2 days underfeeding challenge in 225 Alpine goats. The functional Principal Components that define the FPCA scores are plotted on left. The red area corresponds to the two days underfeeding challenge. (*) indicates traits with h²>1SE; (**) h²>2SE.

Table 5 .

 5 Heritability (h², ± SE) of fPC scores describing the milk metabolites profiles during a 2 days underfeeding challenge in 138 Alpine goats. The functional Principal Components that define the FPCA scores are plotted on left. The red area corresponds to the two days underfeeding challenge. (*) indicates traits with h²>1SE; (**) h²>2SE; (***) h²>3SE.

Speed of growth deviation (d_WD) is the normalized value of the first derivative of the weight curve and is implemented each month between 1 and 13 mo.

Health treatment is a dummy variable = 1 if the animal received a treatment in the past

mo and 0 if else.[START_REF] Mcbride | Energy cost of absorption and metabolism in the ruminant gastrointestinal tract and liver: a review[END_REF] Log-transformed serum immunoglobulin concentration during first days following birth [Log(IgG)] is a permanent effect over whole life. High group corresponds to a value higher than 2 and is compared with goats with values lower than 2.

J. Dairy Sci. TBC https://doi.org/10.3168/jds.2023-23332 © TBC, The Authors. Published by Elsevier Inc. and Fass Inc. on behalf of the American Dairy Science Association ® . This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Acknowledgements ................................................................................................................................. Remerciements ..................................................................................................................................... Introduction...........................................................................................................................................

Acknowledgements

Acknowledgements 10 This adventure is ending, but another one is about to begin. I realize the opportunity I have been given to pursue this scientific career, and I cannot thank enough those who first believed in me: Rachel and Nicolas. My thoughts also go to my parents, who awakened my scientific curiosity and passion for animal health. My family has never left me alone in my adventures, and I will not be alone for the next one. Because these three years not only gave me a profession but also a companion on the journey. Adam, thank you for crossing my path. I look forward to sharing with you the adventures that our shared love for science will lead us to. With all my gratitude, Marie Remerciements ACKNOWLEDGMENTS The authors thank the staff of the INRAE experimental unit at Bourges, France, for technical support in producing, raising, and monitoring the animals.This work was performed in the framework of the EU H2020 SMARTER project (grant no. 772787, Castanet Tolosan, France) and the national APIS-GENE (Paris, France) funded projects ActiveGoat and Resilait. M. Ithurbide acknowledges EU H2020 (SMARTER) and APIS-GENE (Resilait) for her PhD grant. The authors have not stated any conflicts of interest. Acknowledgements The authors thank the staff of the INRAE experimental unit at Bourges and the Experimantal Installation of UMR MoSAR at Grignon for technical support in producing, raising, and monitoring the animals. This work was performed in the framework of the EU H2020 SMARTER project (grant n°772787), the ADAPTHERD project, part of the PRIMA program supported by European Union, and the national APIS-GENE (Paris, France) funded projects ActiveGoat and Resilait. M Ithurbide acknowledges EU H2020 (SMARTER) and APIS-GENE (Resilait) for her PhD grant. The authors have not stated any conflicts of interest. ACKNOWLEDGMENTS The authors thank the staff of the INRAE experimental unit P3R at Bourges and the Experimental Installation of UMR MoSAR at Paris Grignon, France, for technical support in producing, raising, and monitoring the animals. This work was performed in the framework of the EU H2020 SMARTER project (grant no. 772787, Castanet Tolosan, France) and the national APIS-GENE (Paris, France) funded projects Active-Goat and Resilait. M. Ithurbide acknowledges EU H2020 (SMARTER) and APIS-GENE (Resilait) for her PhD grant. The authors do not have any conflicts of interest. Acknowledgements The authors thank the staff of the INRAE experimental unit P3R at Bourges and the Experimental Installation of UMR MoSAR at Paris Grignon, France, for technical support in producing, raising, and monitoring the animals. This work was performed in the framework of the EU H2020 SMARTER project (grant no. 772787, Castanet Tolosan, France) and the national APIS-GENE (Paris, France) funded projects ActiveGoat and Resilait. M. Ithurbide acknowledges EU H2020 (SMARTER) and APIS-GENE (Resilait) for her PhD grant. The authors do not have any conflicts of interest.

Animals

The animal model is described in Ithurbide et al. (2022). Briefly, we created 2 genetic lines of Alpine goats using hyperselected artificial insemination (AI) bucks with the most extreme estimated breeding values for functional longevity and the same milk yield performance (Palhiere et al., 2018). Between 2017 and 2022, 225 goats were bred in two INRAE facilities (P3R Bourges and Paris). Milk and blood metabolites concentration were measured repeatedly during two periods of stress: around parturition and during a feeding challenge (48h with straw only) in early first lactation.

ABSTRACT

In a context of growing interest in breeding more resilient animals, a non-invasive indicator of resilience would be very valuable. We hypothesized that the timecourse of concentrations of several milk metabolites through a short-term underfeeding challenge could reflect the variation of resilience mechanisms to such a challenge. We submitted 138 one-year-old primiparous goats, selected for extreme functional longevity, i.e., productive longevity corrected for milk yield (60 low longevity line goats (Low_LGV), and 78 high longevity line goats (High_LGV)), to a 2-d underfeeding challenge during early lactation. We measured the concentration of 13 milk metabolites and the activity of 1 enzyme during pre-challenge, challenge and recovery periods. Functional PCA summarized the trends of milk metabolite concentration over time efficiently without preliminary assumptions concerning the shapes of the curves. We first ran a supervised prediction of the longevity line of the goats based on the milk metabolite curves. The partial least square analysis could not predict the longevity line accurately. We thus decided to explore the large overall variability of milk metabolite curves with an unsupervised clustering. The large year x facility effect on the metabolites concentrations was precorrected for. This resulted in 3 clusters of goats defined by different metabolic responses to underfeeding. The cluster that showed higher BOHB, cholesterol, and triacylglycerols increase during the underfeeding challenge was associated with poorer survival compared with the other 2 clusters (P = 0.009). These results suggest that multivariate analysis of non-invasive milk

Article IV: Genetic analysis

Article III showed evidence of the link between energetic metabolism during an underfeeding challenge and animal resilience. In order to implement genetic selection for resilience, it is necessary to quantify the genetic variability of such metabolic signature, and identify individual metabolic signature that can be transmittes, and which can serve as proxies for genetic improvment of resilience.

The final part of the thesis investigates the genetic determinism of indicators in blood and milk metabolite profiles during two periods of stress: around parturition and during a feeding challenge. . Article IV presents the estimated heritability of the indicators for blood and milk metabolites profiles as well as blood metabolite concentrations around kidding. The indicators of blood and milk metabolite profiles during the underfeeding challenge that were used were the scores of functional PCA, as described in Article III. The same fPCA method was applied on the blood metabolite dataset described in Article IIBesides, a total of 150 Goats from Bourges P3R facility were genotyped with the Illumina GoatSNP50 BeadChip so far. We run a genome-wide association study (GWAS) for blood metabolite profils indicators only. The GWAS results are preliminary, as genotyping of part of the goats has not yet been completed. *marie.ithurbide@inrae.fr

Heritability of novel metabolite-based resilience biomarkers in dairy goat

Abstract

The aim of this study was to explore the genetic determinism of metabolite-based resilience biomarkers in dairy goat. Metabolites were measured repeatedly during two periods of stress: around parturition and during a feeding challenge (48h of straw only feeding) in early first lactation in two INRAE facilities. A total of 225 goats were phenotyped and 150 were genotyped with the Illumina GoatSNP50 BeadChip. The 4 blood metabolites were: Glucose, Beta-Hydroxy-Butyrate, Urea and Non-Esterified Fatty Acids. The 14 milk metabolites were: Beta-Hydroxy-Butyrate, Glucose, Urea, Glucose-6-Phosphate, Galactose, Isocitrate, Glutamate, NH2, Lactate deshydrogenase, Cholin, Malate, Urate, Triacylglycerol, Cholesterol. The metabolite trajectories during the underfeeding challenge were described using a functional PCA method. Variance components were estimated using an animal polygenic model. We found 44 blood and milk metabolites parameters (out of 104) that were significantly heritable (h²-SE >0) with h² estimates ranging from 0.15 (±0.14) to 1.00 (±0.24). Among them: milk Urate, BOHB, LDH, and Glu6P during feeding challenge and blood Glucose showed the strongest heritability. A genome-wide association study was performed for blood metabolites traits during underfeeding challenge, for 150 goats genotyped with the Illumina GoatSNP50 BeadChip, using a single SNP regression mixed linear model. One peak region located on CHI 6 was associated with blood glucose trajectory during underfeeding challenge. Those results show the potential of metabolite-based biomarkers for genetic selection of resilience. Tixier-Boichard, M., Verrier, E., Rognon, X., Zerjal, T., 2015. Farm animal genetic and genomic resources from an agroecological perspective. Frontiers in Genetics 6.

Scientific valorisation
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