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Résumé

Le but de cette thèse est l'étude de trois aspects concernant l'arithmétique des corps de fonctions en lien avec les modules de Drinfeld.

Dans la première partie, nous travaillons au-dessus d'un corps de fonctions rationnelles F q (T ).

Nous introduisons et nous étudions la notion de polynômes définissant des unités sur les racines de translatés de polynômes de Carlitz.

Dans la seconde partie nous continuons de travailler au-dessus d'un corps de fonctions rationnelles F q (T ). Nous proposons un analogue des polynômes de Laguerre classiques. Nous montrons, entre autres, que le groupe de Galois du n ième polynôme sur F q (T ) est le groupe général linéaire GL n (F q ). Dans la dernière partie nous considérons le contexte suivant. Soit k/F q un corps global de fonctions algébriques. Soit ∞ une place de k. Soit A l'anneau des éléments de k réguliers en dehors de ∞.

Soit ρ un A-module de Drinfeld de rang 1 et normalisé par rapport à une fonction signe fixée.

Soit H *

A le corps normalisant de ρ. Soit B la clôture intégrale de A dans H * A . Soit m un idéal de A . Nous étudions alors la structure du B-module BΛ m engendré par les points de m-torsion du module de Drinfeld ρ, ainsi que son rang.

Abstract

The aim of this thesis is the study of three aspects concerning the arithmetic of functions fields related to the Drinfeld modules.

In the first part, we work over a rational functions field F q (T ). We introduce and study the notion of polynomials defining units on the roots of translates of Carlitz polynomials.

In the second part we continue to work over a rational function field F q (T ). We propose an analogue of the classical Laguerre polynomials. We show, among other things, that the Galois group of the n th polynomial over F q (T ) is the general linear group GL n (F q ).

In the last part we considered the following context. Let k/F q be a global algebraic function field.

Let ∞ be a place of k. Let A be the ring of elements of k regular outside ∞. Let ρ a Drinfeld A-module of rank one and sgn-normalized with respect to a fixed sign function. Let H * A be the normalizing field of ρ with respect to sgn. Let B be the integral closure of A in H * A . Let m be an ideal of A. We focused on the study of the structure of the B-module BΛ m generated by the m-torsion points of the Drinfeld module ρ, as well as its rank.

Introduction générale

Cette thèse est organisée en trois chapitres. Chaque chapitre traite d'une question particulière concernant l'arithmétique des corps de fonctions, en lien avec les modules de Drinfeld.

Ainsi, le premier chapitre est dédié à la caractérisation des polynômes définissant une infinité d'unités. Expliquons de quoi il s'agit. Soit q = p n la puissance d'un nombre premier p, et soit F q le corps fini à q éléments. Posons A = F q [T ], où T est une variable formelle. Soit k une clôture algébrique du corps k = F q (T ). Notons k{{τ }} (resp. k{τ }) la k-algèbre des séries (resp. polynômes) en le Frobenius τ vérifiant la relation τ r = r q τ, ∀r ∈ k.

Nous utiliserons dans les deux premiers chapitres le module de Carlitz ρ qui est par définition l'homomorphisme de F q -algèbres ρ : 

(ρ N i (X) -a) b -a - ρ N 0 (X) -a b -a p d i , i ≥ 1.
Il est donc intéressant de répondre à la question suivante.

-Q 1 . Peut-on décrire explicitement l'ensemble ∆ a,b ?

Le deuxiéme chapitre est consacré à la construction et l'étude, pour tout entier naturel n, d'un

INTRODUCTION GÉNÉRALE polynôme linéaire L n,ρ = e ρ (τ )Ψ n (log ρ (τ )τ n ) ∈ A{τ },
où e ρ (τ ) et log ρ (τ ) désignent respectivement l'exponentielle et le logarithme du module de Carlitz ρ. L'opérateur Ψ : k{{τ }} -→ k{{τ }} est tel que 

Ψ( ∞ i=0 c i τ i ) = ∞ i=1 c i [i]τ i-1 , où on a posé [i] = T q i -T ,
L n (x) = e x n!
d n dx n (e -x x n ). L'intérêt des polynômes L n,ρ est qu'ils ont un comportement similaire à celui des L n (x). Ils vérifient en particulier la relation de récurrence

L n+1,ρ = L n,ρ ([n + 1] + [n] -τ ) -L n-1,ρ [n] 2 .
Le résultat le plus remarquable au sujet de ces polynômes est le Théorème 2.3.18, où nous prouvons que le groupe de Galois sur le corps k = F q (T ) de L n,ρ (X) est isomorphe au groupe général linéaire GL n (F q ), Gal(L n,ρ (X)/k) GL n (F q ), en analogie totale avec le vieux résultat de Schur dans [START_REF] Schur | Gesammelte Abhandlungen. Band[END_REF], qui affirme que le groupe de Galois sur le corps Q de L n (X) est isomorphe au groupe symétrique S n . Dès lors se pose les questions suivantes :

-Q 2 . Étendre la définition de L n,ρ pour obtenir l'analogue des polynômes de Laguerre généralisés.

-Q 3 . Étendre toutes ces constructions au cas d'un corps global de fonctions algébriques à une variable.

Dans le troisième chapitre nous nous penchons sur le calcul du rang d'un certain module lié aux points de torsion d'un module de Drinfeld. Rappelons le contexte. Soit k/F q un corps global de fonctions algébriques. Soit ∞ une place de k. Soit A l'anneau des éléments de k réguliers en dehors de ∞. Soit ρ un A-module de Drinfeld de rang 1 et normalisé par rapport à une fonction signe fixée. Soit H * A le corps normalisant de ρ, qui est tout simplement le corps engendré par les coefficients des polynômes ρ x , x ∈ A. Notons aussi E ρ le sous-espace vectoriel de H * A {τ } engendré par les polynômes ρ x , x ∈ A. Alors nous montrons dans le Théorème 3.4.10, que l'espace vectoriel quotient H * A {τ }/E ρ est de dimension inférieure ou égale au genre g de k,

dim H * A (H * A {τ }/E ρ ) ≤ g, 11 
avec égalité si le degré de la place ∞ est égal à 1. Cela pose deux questions, Dans tout ce chapitre on fixe un corps fini F q à q éléments, où q est une puissance d'un nombre premier p. On notera k = F q (T ) le corps de fonctions rationnelles de variable T sur F q . On considère 

Q 4 et Q 5 , à savoir -Q 4 . A-t-on l'égalité dim H * A (H * A {τ }/E ρ ) = g
A = F q [T ] et v ∞ : k -→ R {∞} la valuation donnée par v ∞ ( 1 T ) = 1. On note k ∞ le complété de k pour la v ∞ -topologie.
A ∼ Z, k ∼ Q, et k ∞ ∼ R
1.1 Théorie algébrique des modules de Carlitz Soit k une clôture algébrique du corps k = F q (T ). Notons k{{τ }} (resp. k{τ }) la k-algèbre des séries (resp. polynômes) en le Frobenius τ vérifiant la relation τ r = r q τ, ∀r ∈ k.

Définition 1.1.1. On appelle module de Carlitz, l'homomorphisme de F q -algèbres ρ : A -→ k{τ } donné par

ρ T = T + τ.
Pour tout a ∈ A on note ρ a l'image de a par ρ. 

ρ a (τ ) = d i=0 [ a i ].τ i où chaque [ a i ] est un polynôme de A de degré (d -i)q i . De plus [ a 0 ] = a et [ a d ] est le coefficient dominant de a. Définition 1.1.3. Pour tout a ∈ A de degré d, on pose ρ a (X) = d i=0 [ a i ].X q i ∈ A[X]
Le module de Carlitz nous permet de définir une nouvelle structure de A-module sur k (ou sur C ∞ ), dite action du module de Carlitz, donnée par :

a.u = ρ a (u), ∀a ∈ A, ∀u ∈ k ou u ∈ C ∞
N.B : On peut utiliser la notation ρ a (u) = u a , intoduite par Hayes dans [START_REF] Hayes | Explicit class field theory for rational function fields[END_REF].

Pour a ∈ A, on note par Λ a l'ensemble des points de a-torsion de k ; C'est l'ensemble des éléments u ∈ k tels que ρ a (u) = 0. Alors Λ a est un sous-A-module de k. Puisque ρ a est séparable, Λ a est un F q -espace vectoriel de dimension d. 

P i A, 1 ≤ i ≤ t,
Φ M (X) = N ∈S (X -λ N ),
où S est un système complet de représentant des classes inversibles de l'anneau A/M A. Il est

clair que Φ M (X) ∈ A[X]. Définition 1.2.1. Soient a, N ∈ A tels que N = 0, et soit f ∈ A[X]. Si f = 0 alors les propriétés suivantes sont équivalentes 1) L'image de f dans A[X]/(X N -a)A[X] est inversible. 2) Il existe p, q ∈ A[X] tel que f (X)p(X) + (X N -a)q(X) = 1 3) f (λ) est une unité dans A[λ] pour toute racine λ de X N -a.
De plus, si f est irréductible alors les trois propriétés ci-dessus sont équivalentes à 4) α N -a est une unité dans A[α] pour toute racine α de f .

Lorsque la propriété 1) est satisfaite, on dit que f définit des unités sur les racines de ρ N (X) -a.

Les polynômes cyclotomiques définissant des unités

Notre objectif dans cette section, est de donner la liste complète des pairs {a, Φ M } tels que a ∈ A et Φ M définit des unités sur les racines de ρ N (X) -a pour une infinité de polynômes unitaires N ∈ A. Nous utiliserons les propriétés des polynômes cyclotomiques Φ M , où M ∈ A. On notera Div(M ) l'ensemble des diviseurs unitaires de M , et comme d'habitude, on note µ la fonction de Möbius sur A.

1. On a

X M = D∈Div(M ) Φ D (X), (1.3.1) 
2. D'après l'inversion de Möbius on obtient

Φ M (X) = D∈Div(M ) X D µ( M D ) , (1.3.2) 
3. Pour des polynômes unitaires irréductibles deux à deux distincts P 1 , P 2 , . . . , P r dans A, et des entiers positifs α 1 , . . . , α r on a

Φ P α 1 1 •••P αr r (X) = Φ P 1 P 2 •••Pr X P α 1 -1 1 •••P αr -1 r . (1.3.3)
4. Si M et L sont premiers entre eux et unitaires dans A, on a 

Φ M L (X) = D∈Div(M ) Φ L X D µ( M D ) . ( 1 
Φ D i (a) ∈ F * q pour tout i ∈ {1, . . . , s}, où D i = M i gcd(M i , N ) .
Or on a supposé que

M i divise N , donc D i = 1 d'où Φ D i (a) = a.
Étudions maintenant la condition Φ M (a) ∈ F * q .

Lemme 1. 

w M i λ q i = f (i), où f (x) = -(q -1)(d -x)q x + w(λ)q x et M i est définit dans la Proposition 1.1.2. Or la fonction f est strictement décroissante sur [0, d -1]. Ainsi on a w d-1 i=0 M i λ q i = min 0≤i≤d-1 w M i λ q i = w M d-1 λ q d-1 = q d-1 (w(λ) -(q -1)).
L'équation λ M = 0 implique alors w λ

q d = q d-1 (w(λ) -(q -1)) et donc w(λ) = -1. Proposition 1.3.4. Soit M un polynôme non nul dans A et soit a ∈ A. Alors Φ M (a) ∈ F * q =⇒            a ∈ F * q si deg(M ) = 0, a ∈ F q si deg(M ) > 0 et q ≥ 3, a = M + 1 si deg(M ) = 1 et q = 2, deg(a) ≤ 1 si deg(M ) ≥ 2 et q = 2. Démonstration. Le cas deg(M ) = 0 est trivial puisque, si M = a 0 ∈ F * q alors X M = a 0 X et Φ M (X) = X. Supposons que deg(M ) ≥ 1 et soit U M l'ensemble des racines de Φ M . Soit w une valuation normalisée de k(Λ M ) au-dessus de v ∞ . Supposons qu'on a deg(a) > 1 ou q > 2 et deg(a) = 1, alors grâce au Lemme 1.3.3 on a w(a) = -(q -1)deg(a) < -1 ≤ w(λ), pour tout λ ∈ U M . Si Φ M (a) ∈ F * q alors 0 = w (Φ M (a)) = λ∈U M w(a -λ) = deg(Φ M )w(a).
Ceci implique que deg(Φ M ) = 0, ce qui est absurde. Ainsi nous avons nécessairement deg(a) ≤ 1.

De plus si q > 2 alors a ∈ F q . Reste à vérifier que si q = 2 et, M et a sont de degré 1 alors

a = M + 1. Or si M = T + a 0 ∈ A, alors ρ T +a 0 (X) = X 2 + (T + a 0 )X et Φ M (X) = X + T + a 0 . Donc Φ M (a) ∈ F * q si et seulement si a = M + 1.
Proposition 1.3.5. Supposons q > 2. Soit M un polynôme unitaire non nul dans A et soit 

a ∈ A. Alors Φ M (a) ∈ F * q ⇐⇒ a ∈ F * q si deg(M ) = 0 (M = 1), a = 0 si deg(M ) > 0 et M n'est
(1.3.2) on a Φ M (X) = X P n /X P n-1 , et en particulier Φ M (0) = P ∈ F * q .
2. Le cas a = 0 et M = P α 1 1 • • • P αr r , où P 1 , . . . , P r sont des polynômes unitaires distincts irréductibles dans A et α 1 , . . . , α r sont des entiers positifs. Alors en évaluant en 0, l'égalité polynômiale

X M X = D∈Div(N ),D =1 Φ D (X) déduite de la formule (1.3.1), on obtient M = D∈Div(N ),D =1
Φ D (0). Or puisque Φ P e i (0) = P i pour tout entier positif e on trouve la relation

D∈Ξ Φ D (0) = 1,
où Ξ est l'ensemble des diviseurs unitaires de M qui ne sont pas puissance de polynômes irréductibles. Ce qui prouve que Φ M (0) ∈ F * q .

3. Le cas a ∈ F * q et M = P n , où P est un polynôme unitaire irréductible dans A. Là encore, on va utiliser l'égalité Φ M (X) = X P n /X P n-1 . Puisque la suite (d -i)q i i est strictement décroissante sur [0, d -1] pour tout d ≥ 1, on voit d'après la formule (1.1.2) que le degré en T de a P n est égale à q n deg(P )-1 . Ainsi, si n ≥ 2 alors le degré de Φ M (a) est q n deg(P )-1 -q (n-1) deg(P )-1 = 0. Si n = 1 le degré de Φ M (a) est q deg(P )-1 = 0.

Le cas a ∈ F *

q et M = P α 1 1 • • • P αr r , où P 1 , . . . , P r sont des polynômes unitaires irréductibles distincts dans A et α 1 , . . . , α r sont des entiers positifs. Posons

N = P α 1 -1 1 • • • P αr-1 r et b = a N . Si N = 1 alors deg(b) = q deg(N )-1 , en particulier b ∈ F q . Puisque Φ M (a) = Φ P 1 ...Pr (b) d'après la formule (1.3.3), on déduit que Φ M (a) ∈ F * q grâce à la Proposition 1.3.4. Si N = 1 alors d'après la formule (1.3.2) on a Φ M (a) = D∈Div(M ) a D µ( M D ) et q deg (Φ M (a)) = D∈Div(M ),D =1 µ( M D )q deg(D) . L'hypothèse Φ M (a) ∈ F * q implique l'égalité D∈Div(M ),D =1 µ( M D )q deg(D) = 0. Pour i ∈ {1, 2} notons Ω i l'ensemble des D ∈ Div(M ), D = 1 et µ( M D ) = (-1) i . Puisque r ≥ 2 les ensembles Ω 1 et Ω 2 sont non vides et la dernière égalité s'écrit de la façon suivante. D∈Ω 1 q deg(D) = D∈Ω 2 q deg(D) .
Or on peut facilement montrer la relation

r i=1 (1 -q deg(P i ) ) -1 =          D∈Ω 2 q deg(D) - D∈Ω 1 q deg(D) si r est paire, D∈Ω 1 q deg(D) - D∈Ω 2 q deg(D) si r est impaire. (1.3.6)
Ceci implique que r i=1

(1 -q deg(P i ) ) = 1, mais cela est impossible.

Ce qui achève la preuve de la Proposition.

Lemme 1.3.6. On suppose q = 2. Alors

(i) ρ T n (1) = T + 1 et ρ (T +1) n (1) = T , pour tout entier n > 0. (ii) Φ T n (1) = Φ (T +1) n (1) = 1, pour tout entier n > 1. (iii) ρ D (1) = (D(0) -D(1)) T + D(1), pour tout polynôme D ∈ F 2 [T ]. En particulier, si D(0) = D(1) = 1 on a ρ D (1) = 1.
Démonstration. On montre (i) par récurrence sur l'entier n. On déduit (ii) de (i) puisque on a Φ P n (X) = X P n X P n-1 pour tout polynôme irréductible P dans A. Quant à (iii), il suffit de noter que

D = D(0) + d k=1
T n k , et ensuite appliquer (i).

Proposition 1.3.7. On suppose q = 2 et a ∈ F 2 . Écrivons M = T α (T + 1) β N , avec N unitaire et premier à T (T + 1). Alors Φ M (a) = 1 si, et seulement si, l'une des conditions suivantes est satisfaite :

(1) a = 0 et M n'est pas une puissance d"un polynôme irréductible, 1. Si M = T α ou M = (T + 1) α avec α ≥ 2, alors Φ M (1) = 1 grâce au Lemme 1.3.6. 

(2) a = 1 et M = 1, (3) a = 1, deg(M ) ≥ 2, N = 1 et (α, β) = (1, 1), ( 4 
) a = 1, deg(M ) ≥ 2, N = 1 mais α = 1 et β = 1, (5) 

Si

M = T (T + 1) alors Φ M (1) = 0 puisque on a Φ T (T +1) (X) = X + 1. 3. Si M = T α (T + 1) β avec α > 1 et β > 1, alors 1 T α-1 (T +1) β-1 = 0 grâce au Lemme 1.3.6, en particulier Φ M (1) = Φ T (T +1) (1 T α-1 (T +1) β-1 ) = Φ T (T +1) (0) = 1. 4. Si M = T (T + 1) β avec β > 1, alors Φ M (1) = Φ T (T +1) (1 (T +1) β-1 ) = Φ T (T +1) (T ) = T + 1. 5. Si M = T α (T + 1) avec α > 1, alors Φ M (1) = Φ T (T +1) (1 T α-1 ) = Φ T (T +1) (T + 1) = T . 6. Si M = T α (T + 1) β N avec (α, β) = (1, 1) et N =
Φ M (1) = D∈Div(N ) Φ T α (T +1) β (1 D ) µ( N D ) = Φ T α (T +1) β (1) D∈Div(N ) µ( N D ) = 1.
7. Si M = T (T + 1)N avec N unitaire et premier à T (T + 1), alors en utilisant la formule

(1.3.4) et le fait que Φ T (T +1) (X) = X + 1 on obtient Φ M (X) = D∈Div(N ) Φ T (T +1) (X D ) µ( N D ) = D∈Div(N ) X D + 1 µ( N D ) = D∈Div(N ) (X + 1) D µ( N D ) = Φ N (X + 1)
.

Donc Φ M (1) = Φ N (0). Ainsi Φ M (1) = 1 si, et seulement si, N n'est pas puissance d'un polynôme irréductible.
Ce qui achève le preuve du Lemme.

Lemme 1.3.8. On suppose q = 2. Alors on a :

(i) T T n = 0 et (T + 1) (T +1) n = 0, pour tout entier n positif. (ii) T D = D(0).T et (T + 1) D = D(1).(T + 1), pour tout polynôme D ∈ F 2 [T ].
Démonstration. On montre (i) par récurrence sur n. Pour montrer (ii) il suffit de remarquer que Φ a (a a n-1 ) = Φ a (0) = a.

D = D(0) + d k=1 T n k = D(1) + d k=1 (T + 1) m k , et ensuite appliquer (i).
2. Si n = 1 et N = 1 alors puisque Φ a n (a) = a même pour n = 0 on obtient Φ M (a) = D∈Div(N ) Φ a n (a D ) µ( N D ) = D∈Div(N ) (Φ a n (a)) µ( N D ) = D∈Div(N ) (a) µ( N D ) = 1 d'après la formule (1.3.4), le Lemme 1.3.8 et la formule (1.3.5). 3. Si n = 1 alors puisque Φ a (X) = X + a on a Φ M (X) = D∈Div(N ) Φ a (X D ) µ( N D ) = D∈Div(N ) X D + a µ( N D ) = D∈Div(N ) (X + a) D µ( N D ) = Φ N (X + a), d'après la formule (1.3.4) et le Lemme 1.3.8 (ii). On obtient l'égalié Φ M (a) = Φ N (0). Ainsi Φ M (a) = 1 si, et seulement si, N n'est pas puissance d'un polynôme irréductible.
Ce qui achève la preuve de la Proposition. 

Résultat principal du chapitre

(X N i -a) b -a - X N 0 -a b -a p d i , i ≥ 1.
Notre argument crucial dans la démonstration du Théorème 1. 

U i = b -α N i b -a et V i = α N i -a b -a , alors U i et V i sont des unités de O S , et sont tels que U i + V i = 1. Considérons l'application Ψ : N -→ O * S × O * S définie par Ψ(i) = (U i , V i ), où O *
S est le groupe des unités de O S . Si l'application Ψ est non injective, alors il existe i 0 < i 1 tel que α N i 1 -N i 0 = 0. En particulier g est égal, à une constante non nulle prés, à un polynôme cyclotomique Φ M . De plus, grâce au Lemme 

1.3.1, pour tout N ∈ Γ on a Φ D N (a) ∈ F * q et Φ D N (b) ∈ F * q , où D N = M gcd(M, N ) . Si q > 2,
U i j = u p d j et V i j = v p d j .
Ce qui implique les relations

α N i j -a b -a = α N i 0 -a b -a p d j -d 0
, pour tout j ≥ 0.

En d'autres termes, g divise dans A[X] tout les polynômes

(b -a) p d j -d 0 (b -a) (X N i j -a) -X N i 0 -a p d j -d 0 , j ≥ 0.
C'est exactement la définition de g ∈ ∆ a,b .

Chapitre 2

Polynômes de type Laguerre sur le corps de fonctions rationnelles

Dans ce deuxième chapitre nous continuons à explorer les propriétés de polynômes liés aux modules de Carlitz. En effet, les notations étant celles du chapitre 1, nous allons introduire une suite de polynômes (L n,ρ ) n , éléments de k{τ }, ayant un comportement similaire au polynômes de Laguerre classiques. Nous montrerons en particulier que le groupe de Galois de L n,ρ (X) sur F q (T ) est le groupe général linéaire GL n (F q ). On conservera les notations du chapitre 1, ainsi, A = F q [T ], où F q est le corps fini à q éléments, et k = F q (T ).

Polynômes de type Laguerre sur le corps de fonctions rationnelles

Le n ième polynôme de Laguerre classique est défini par la formule

L n (x) = e x n! d n dx n (e -x x n ),
à partir de laquelle on déduit que L n (x) = n!L n (x) vérifie la relation

L n+1 (x) = (n + 1 -x) L n (x) + x L n (x). (2.1.1)
qui implique en particulier que le polynôme L n (x) est de degré n et de coefficient dominant égal

à (-1) n n! . La dérivation D(f (x)) = xf (x) appliquée à L n (x) donne D( L n (x)) = n D( L n-1 (x)) -x L n-1 (x) .
Cela implique la formule 

L n+1 (x) = (2n + 1 -x) L n (x) -n 2 L n-1 (x), (2.1.2) et aussi l'équation différentielle D 2 ( L n (x)) -xD( L n (x)) + nx L n (x) = 0. ( 2 

Les polynômes L n,ρ

Dans la suite de ce chapitre, nous continuons de noter ρ : F q [T ] -→ k{τ } le module de Carlitz caractérisé par la condition ρ T = T + τ . On rappelle que la fonction exponentielle de Carlitz e ρ (τ ) ∈ k{{τ }} est l'unique élément de k{{τ }} qui satisfait à la multiplication complexe

ρ a (τ ) • e ρ (τ ) = e ρ (τ ) • aτ 0 , pour tout a ∈ F q [T ],
et dont le terme constant égal à 1. On a 

e ρ (τ ) = ∞ i=0 τ i D i , où D 0 = 1, et D i = (T q i -T )D q i-1 ,
e ρ (τ ) • log ρ (τ ) = log ρ (τ ) • e ρ (τ ) = τ 0 .
On déduit de l'équation fonctionnelle de e ρ (τ ) la relation suivante

log ρ (τ ) • ρ a (τ ) = a • log ρ (τ ), pour tout a ∈ F q [T ].
On rappelle le dévellopement en série de log ρ (τ ), on a 

log ρ (τ ) = ∞ i=0 (-1) i τ i L i , où L 0 = 1, et L i = (T q i -T )L i-1 ,
c i τ i ) = ∞ i=0 [i]c i τ i et Ψ( ∞ i=0 c i τ i ) = ∞ i=1 [i]c i τ i-1 .
Lemme 2.2.2. L'opérateur ∆ est une k-dérivation de k{{τ }}. De plus, on a

∆(e ρ (τ )) = τ • e ρ (τ ) et ∆(log ρ (τ )) = -log ρ (τ ) • τ.
Démonstration. C'est une simple vérification basée en particulier sur la relation

[i + j] = [i] + [j] q i .
Les propriétés suivantes de l'application Ψ sont facile à vérifier. Soit f (τ ), g(τ

) ∈ k{{τ }} et soit a ∈ k. Alors on a Ψ(f (τ )g(τ )) = Ψ(f (τ ))δ(g(τ )) + f (τ )Ψ(g(τ )), où δ(g(τ )) = τ • g(τ ) • τ -1 .
Si n est un entier strictement positif alors on a,

Ψ n (f (τ ) • τ ) = Ψ n (f (τ )) • τ + Ψ n-1 (f (τ )) • [n] (2.2.1) 
et 

Ψ n (f (τ ) • aτ 0 ) = Ψ n (f (τ )) • a q n (par récurence). ( 2 
L n,ρ = e ρ (τ )Ψ n (log ρ (τ )τ n ).
Un calcul facile donne

L 0,ρ = τ 0 , L 1,ρ = -τ + [1]τ 0 et L 2,ρ = τ 2 -([2] + [2] q )τ + [1][2]τ 0 .
Proposition 2.2.4. Pour tout entier naturel n, on a

L n+1,ρ = L n,ρ [n + 1] -τ L n,ρ + ∆(L n,ρ ). ( 2 

.2.3)

En particulier L n,ρ ∈ F q [T ]{τ } et est de degré n comme polynôme en τ . Si a i,n est le coefficient de τ i dans L n,ρ , alors on a la relation

a i,n+1 = a i,n [n + 1] q i -a q i-1,n + a i,n [i],
On en déduit par récurence que

a 0,n = [1][2] • • • [n] = L n et a n,n = (-1) n . Démonstration. On remarque d'abord que L n+1,ρ = e ρ (τ )Ψ n+1 (f (τ )τ ), où f (τ ) = log ρ (τ )τ n . D'après l'équation (2.2.1) on a Ψ n+1 (f τ ) = ∆(Ψ n (f )) + Ψ n (f )[n + 1]. Cela donne l'égalité L n+1,ρ = e ρ (τ )∆(log ρ (τ )L n,ρ ) + L n,ρ [n + 1].
On 

L 3,ρ = -τ 3 + ([3] + [3] q + [3] q 2 )τ 2 -(([2] + [2] q )[3] q + [2][3])τ + [1][2][3]τ 0 .
Proposition 2.2.5. Pour tout entier positif n nous avons

∆(L n,ρ ) = τ L n,ρ -L n,ρ τ + (∆(L n-1,ρ ) -τ L n-1,ρ )[n]. (2.2.4)
Démonstration. D'une part nous avons,

∆(L n,ρ ) = ∆(e ρ (τ )Ψ n (log ρ (τ )τ n )) = τ e ρ (τ )Ψ n (log ρ (τ )τ n ) + e ρ (τ )∆(Ψ n (log ρ (τ )τ n )) = τ L n,ρ + e ρ (τ )∆(Ψ n (log ρ (τ )τ n )).
D'autre part, le calcul de ∆(log ρ (τ )τ n ) donne la relation

Ψ(log ρ (τ )τ n ) = -log ρ (τ )τ n + log ρ (τ )[n]τ n-1 ,
puis en appliquant Ψ n-1 on obtient

Ψ n (log ρ (τ )τ n ) = -Ψ n-1 (log ρ (τ )τ n ) + Ψ n-1 (log ρ (τ )[n]τ n-1 ), puis ∆(Ψ n (log ρ (τ )τ n )) = Ψ n+1 (log ρ (τ )τ n )τ = -Ψ n (log ρ (τ )τ n )τ + Ψ n (log ρ (τ )[n]τ n-1 )τ = -Ψ n (log ρ (τ )τ n )τ + Ψ n (log ρ (τ )τ n-1 a)τ (a q n-1 = [n]) = -Ψ n (log ρ (τ )τ n )τ + Ψ n (log ρ (τ )τ n-1 )a q n τ (d'après (2.2.2)) = -Ψ n (log ρ (τ )τ n )τ + Ψ n (log ρ (τ )τ n-1 )τ [n] = -log ρ (τ )L n,ρ τ + ∆(log ρ (τ )L n-1,ρ )[n] = -log ρ (τ )L n,ρ τ -log ρ (τ )τ L n-1,ρ [n] + log ρ (τ )∆(L n-1,ρ )[n].
D'où la formule (2.2.4).

Corollaire 2.2.6. Pour tout entier positif n nous avons

L n+1,ρ = L n,ρ ([n + 1] + [n] -τ ) -L n-1,ρ [n] 2 (2.2.5) Démonstration. D'après la formule (2.2.3) nous avons L n+1,ρ = L n,ρ [n + 1] -τ L n,ρ + ∆(L n,ρ ). Or on sait, grâce à la formule (2.2.4) que ∆(L n,ρ ) = τ L n,ρ -L n,ρ τ + (∆(L n-1,ρ ) -τ L n-1,ρ )[n]. Cela donne L n+1,ρ = L n,ρ [n + 1] -L n,ρ τ + (∆(L n-1,ρ ) -τ L n-1,ρ )[n].
Maintenant, si on remplace n par n -

1 dans la formule (2.2.3) on obtient L n,ρ -L n-1,ρ [n] = ∆(L n-1,ρ ) -τ L n-1,ρ . D'où la proposition.
Proposition 2.2.7. Pour tout entier naturel n on a

∆ 2 (L n,ρ ) -τ ∆(L n,ρ ) + L n,ρ ([n + 1] -[1])τ = Λ(τ L n,ρ -L n,ρ τ ), où Λ(f ) = ∆(f ) -τ f .
Démonstration. Appliquons ∆ à la formule (2.2.3), et écrivons la formule (2.2.4) pour n + 1 au lieu de n. Nous obtenons alors 

∆(L n,ρ )[n + 1] -∆(τ L n,ρ ) + ∆ 2 (L n,ρ ) = ∆(L n+1,ρ ) = τ L n+1,ρ -L n+1,ρ τ + (∆(L n,ρ ) -τ L n,ρ )[n + 1].
. L n+1,ρ = L n,ρ [n + 1] -τ L n,ρ + ∆(L n,ρ ). 2. L n+1,ρ = L n,ρ ([n + 1] + [n] -τ ) -L n-1,ρ [n] 2 . (n > 0) 3. ∆ 2 (L n,ρ ) -τ ∆(L n,ρ ) + L n,ρ ([n + 1] -[1])τ = Λ(τ L n,ρ -L n,ρ τ ), où Λ(f ) = ∆(f ) -τ f et [n] = T q n -T .
Définition 2.2.9. Pour tout entier naturel n on pose 

L n,ρ (X) = n i=0 a i,n X q i = (-1) n X q n + • • • + [1][2] • • • [n]X.
P n,m (τ ) = e ρ (τ )Ψ m (log ρ (τ )τ n ).
Par exemple on a P n,0 (τ

) = τ n , P n,1 (τ ) = -τ n + [n]τ n-1 et P n,n (τ ) = L n,ρ . Les polynômes P n,m (τ ) 
et P n,m+1 (τ ) sont reliés par la formule

P n,m+1 (τ ) = -δ(P n,m (τ )) + Ψ(P n,m (τ )), pour tout m < n, (2.2.6) 
on en déduit que 

P n,2 (τ ) = (τ 2 -([n] + [n] q )τ + [n -1][n]τ 0 )τ n-2 .
a 0,n = [1][2] • • • [n], la proposition suit.
2.3 Le groupe de Galois de L n,ρ (X)

Soit V n l'ensemble des racines de L n,ρ (X) dans k. Il est clair que V n est un F q -espace vectoriel de dimension n. Le corps N n,ρ = k(V n ) est une extension Galoisienne de k puisque L n,ρ (X) est séparable. Notons G n,k , le groupe de Galois de N n,ρ /k. Pour toute F q -base Z = (z 1 , . . . , z n ) de

V n , on définit le morphisme de groupes

Ψ n,Z : G n,k -→ GL n (F q )
qui à chaque élément de G n,k associe la matrice de sa restriction à V n dans la base (z 1 , . . . , z n ). Il est clair que Ψ n,Z est injectif et que Ψ 1,Z est un isomorphisme. Dans la suite nous utiliserons le "déterminant de Moore"

∆(z 1 , . . . , z n ) =       z 1 z 2 . . . z n z q 1 z q 2 . . . z q n . . . . . . . . . . . . z q n-1 1 z q n-1 2 . . . z q n-1 n      
Le lecteur peut consulter [START_REF] Ore | Oystein On a special class of polynomials[END_REF] et [START_REF] Goss | Basic structures of function field arithmetic[END_REF] pour une présentation détaillée des proporiétés de ce déterminant. En particulier, d'après [13, Corollary 1.3.8] on a 

∆(z 1 , . . . , z n ) q-1 = [1][2] • • • [n]. ( 2 

2.3.1

Le sous-groupe de décomposition de G n,k en P pour les polynômes P de degré n

Fixons un polynôme irréductible P ∈ F q [T ] de degré n. Puisque L n,ρ (X)/X est Eisentein en P et q n -1 premier à p, on déduit que le groupe de Galois Gal(k P (V n,P )/k P ) est cyclique d'ordre q n -1 et que l'extension k P (V n,P )/k P est totalement modérément ramifiée. Alors on a Corollaire 2.3.1. Il existe dans G n,k un automorphisme τ d'ordre q n -1. De plus, pour tout

z ∈ V n \ {0} on a V n \ {0} = {τ i (z), 0 ≤ i ≤ q n -2}.
Démonstration. C'est une simple conséquence du fait que Gal(k P (V n,P )/k P ) est cyclique et que k P (π P (z)) = k P (V n,P ). 

Le

A i = (q i -1, v T (a i,n
)) sont exactement les sommets du polygone de Newton de L n,ρ (X)/X en T . En particulier,

L n,ρ (X)/X = g 1 (X) • • • g n (X),
où, g 1 (X), . . . , g n (X) sont des polynômes irréductibles de k T [X]. Le degré de chaque g i (X) est

q i-1 (q -1) et si λ ∈ Ω T est une racine de g i (X) alors v T (λ) = 1 q i-1 (q -1)
.

Démonstration. d'après le Lemme 2.3.2 le polygone de Newton de L n,ρ (X)/X en T est l'enveloppe convexe inférieure des points (0, n), (q -1, n -1), . . . , (q n-1 -1, 1), (q n -1, 0).

Une vérification rapide des pentes du polygone défini par les points ci-dessus montre qu'il s'agit des sommets de notre polygone de Newton. Le reste de la proposition est une application directe de la méthode NP, voir [START_REF] Gouvêa | p-adic numbers[END_REF]Theorem 7.4] ou [13, Proposition 2.6].

Proposition 2.3.4. Soit λ 1 , . . . , λ n des éléments de V n,T tels que g i (λ i ) = 0.

1. L'ensemble (λ 1 , . . . , λ n ) est une F q -base de V n,T .

2. Les racines de g i (X) sont tous les sommes

a 1 λ 1 + • • • + a i-1 λ i-1 + a i λ i , où a 1 , . . . , a i-1 ∈ F q et a i ∈ F × q .
3. Le sous-espace vectoriel de V n,T engendré par (λ 1 , . . . , λ i ) est l'ensemble des racines du produit

g 1 (X) • • • g i (X). Démonstration. Clair, puisque v T (λ n ) < v T (λ n-1 ) < • • • < v T (λ 1 ).
Pour déterminer le groupe Gal(k(V n,T )/k T ) nous allons utiliser quelques méthodes utilisées en théorie des groupes formels de Lubin-Tate. Pour tout i ∈ {1, . . . , n} on pose

f i (X) = (-1) i Xg 1 (X) • • • g i (X).
Sans perte de généralité, nous pouvons supposer que le coefficient dominant de chaque g i (X) est -1. On sait d'après la Proposition 2.3.4 que g 1 (X), . . . , g n (X) sont des polynômes d'Eisentein. ceci implique que f i (X) est de la forme

f i (X) = X q i + f i,i-1 X q i-1 + • • • + f i,0 X, oùf i,j ∈ k T sont tels que v T (f i,j ) > 0 et v T (f i,0 ) = i. Considérons le polynôme [T ] = X q + T X et soient [T i ] par récurrence par la formule [T i+1 ] = [T i ] • [T ].
Ces polynômes sont bien connus dans la théorie de Lubin-Tate. En particulier on a

[T i ](X) = X q i + t i,i-1 X q i-1 + • • • + t i,0 X, avec v T (t i,j ) > 0 et t i,0 = T i .

Soit k ur

T l'extension maximale non ramifiée de k T dans Ω T . Soit L = k ur T la clôture de k ur T dans Ω T . Puisque f i,0 /T i est une unité, on déduit de [33, Proposition 3.2] ou [START_REF] Iwasawa | Kenkichi Local class field theory[END_REF]Lemma 3.11] 

l'existence d'une unité u ∈ L telle que ϕ i (u) u = f i,0 T i , où ϕ est l'extension à L de l'automorphisme de Frobenius de k ur T /k T . D'après [33, Proposition 3.1] il existe une unique série formelle θ i (X) ∈ O L [[X]] telle que f i • θ i = θ ϕ i i • [T i ].
La série formelle θ i (X) est additive, en d'autres termes, on a θ i (X + Y ) = θ i (X) + θ i (Y ). Elle satisfait aussi à l'équation θ i (aX) = aθ i (X), pour tout a ∈ F q . Donc, si V f i (resp. V [T i ] ) est l'ensemble des racines de f i (resp. [T i ]) alors θ i donne un isomorphisme

θ i : V [T i ] -→ V f i ,
de F q -espaces vectoriels. Exactement comme dans [29, Lemma 4.10], on déduit que L( 

V f i ) = L(V [T i ] ) et même k ur T (V f i ) = k ur T (V [T i ] ),
(V [T i ] ) est une extension abelienne totalement ramifiée de k ur T et [k ur T (V [T i ] ) : k ur T ] = (q -1)q i-1 .
(V f i ) = k T (λ 1 , . . . , λ i ) est une extension abelienne totalement ramifiée de k T , et on a [k T (V f i ) : k T ] = (q -1)q i-1 . En particulier on a k T (V f i ) = k T (λ i ).

Pour la suite on choisit µ

n ∈ V [T n ] \ V [T n-1 ] et pour i ∈ {1, . . . , n} on pose µ i = [T n-i ](µ n ). Alors (µ 1 , . . . , µ n ) est une F q -base de V [T n ] .
Proposition 2.3.6. Soit (λ 1 , . . . , λ n ) la famille définie par λ i = θ n (µ i ) pour i ∈ {1, . . . , n}.

Alors (λ 1 , . . . , λ n ) est une F q -base de V n,T . Soit f : Gal(k T (V n,T )/k T ) -→ GL n (F q ) le morphisme injectif qui à chaque élément de Gal(k T (V n,T )/k T ) associe la matrice de sa restriction dans la base

(λ 1 , . . . , λ n ). Alors, pour tout σ ∈ Gal(k T (V n,T )/k T ) il existe a 1 ∈ F * q et a 2 , . . . , a n ∈ F q tels que f (σ) =          a 1 a 2 a 3 • • • a n 0 a 1 a 2 • • • a n-1 0 0 a 1 • • • a n-2 . . . . . . . . . . . . . . . 0 0 0 • • • a 1          . Démonstration. On peut voir tout élément σ ∈ Gal(k T (V n,T )/k T ) comme un élément de Gal(k ur T (V [T n ] )/k ur T Alors il existe a 1 ∈ F * q et a 2 , . . . , a n ∈ F q tels que σ(µ n ) = a 1 µ n + a 2 µ n-1 + • • • + a n µ 1 .
Pour calculer les images de µ j , il suffit d'appliquer [T n-j ] à l'égalité ci-dessus. Ceci donne

σ(µ j ) = a 1 µ j + a 2 µ j-1 + • • • + a j µ 1 .
Pour calculer σ(λ j ), on applique simplement la série θ n à l'égalité ci-dessus.

Corollaire 2.3.7. Le corps des constantes de N n,ρ est égal à F q .

Démonstration. Ceci découle du fait que l'extension k T (V n,T )/k T est totalement ramifiée.

Corollaire 2.3.8. Il existe une F q -base (z 1 , . . . , z n ) de V n telle que l'image de

Gal(N n,ρ /k(z 1 , . . . , z n-1 , ∆(z 1 , . . . , z n ))) par Ψ n,Z contient toutes les matrices          1 0 0 • • • a 0 1 0 • • • 0 0 0 1 • • • 0 . . . . . . . . . . . . . . . 0 0 0 • • • 1          , a ∈ F q .
Démonstration. On prend (z 1 , . . . , z n ) telle que (λ 1 = π T (z 1 ), . . . , λ n = π T (z n )) est une base de

V n,T comme dans la Proposition 2.3.6. Posons

E = k(z 1 , . . . , z n-1 , ∆(z 1 , . . . , z n )) et E T = k T (λ 1 , . . . , λ n-1 , ∆(λ 1 , . . . , λ n )).
Alors le groupe de décomposition de Gal(N n,ρ /E) en T est isomorphe à Gal(k T (V n,T )/E T ). En effet, si σ ∈ Gal(k T (V n,T )/E T ) alors la restriction res(σ) de σ à N n,ρ est telle que

π T • res(σ) = σ • res(π T ),
où res(π T ) est la restriction de π T à N n,ρ . L'application σ -→ res(σ) est l'isomorpisme évoqué.

De plus, on déduit de la Proposition 2.3.6 que l'ensemble des matrices Ψ n,Z (res(σ)), σ ∈ Gal(k T (V n,T )/E T ), est exactement l'ensemble décrit par la proposition.

Le groupe G 2,k

Proposition 2.3.9. Il existe une F q -base (z 1 , z 2 ) de V 2 telle que la restriction de Ψ 2,Z au groupe

Gal(N 2,ρ /k(∆(z 1 , z 2 )
)) est un isomorphisme :

Gal(N 2,ρ /k(∆(z 1 , z 2 ))) SL 2 (F q ).
Démonstration. On prend (z 1 , z 2 ) comme dans le corollaire 2.3.8. La formule (2.3.2) implique que

Ψ(Gal(N 2,ρ /k(∆(z 1 , z 2 )))) ⊂ SL 2 (F q ).
Le Corollaire 2.3.8 montre que Ψ 2,Z (Gal(N 2,ρ /k(∆(z 1 , z 2 ))) contient toutes les matrices élémen-

taires 1 a 0 1 , a ∈ F q . Soit τ ∈ Gal(N 2,ρ /k) tel que τ (z 2 ) = z 1 . Alors on a τ (z 1 ) = αz 1 + βz 2 , avec α ∈ F q et β ∈ F * q . De sorte que si on choisit σ ∈ Gal(N 2,ρ /k(∆(z 1 , z 2 ))) tel que Ψ 2,Z (σ) = 1 a 0 1 , alors Ψ 2,Z (τ -1 στ ) = 1 0 aβ 1 .
Puisque ces matrices engendrent SL 2 (F q ) la proposition suit. Proposition 2.3.12. Les sommets du polygone de Newton de L n,ρ (X)/X en S sont les points (0, 1), (q n-1 -1, 0) et (q n -1, 0).

(∆(z 1 , z 2 )) : k] = q -1 puisque ∆(z 1 , z 2 ) est une racine du polynôme irréductible X q-1 -[1][2].

En particulier,

L n,ρ (X)/X = h 1 (X)h 2 (X), où h 1 (X) et h 2 (X) sont des polynômes de k S [X] tels que 1. h 1 (X) est irréductible de degré q n-1 -1. Si α ∈ Ω S est une racine de h 1 (X) alors v S (α) = 1 q n-1 -1 .
2. Si β ∈ Ω S est une racine de h 2 (X), alors on a v S (β) = 0.

Démonstration. On déduit du Lemme 2.3.11 que le polygone de Newton de L n,ρ (X)/X en S est l'enveloppe convexe inférieure des points (0, 1), (q -1, 1), . . . , (q n-2 -1, 1), (q n-1 -1, 0), (q n -1, 0).

Ses sommets sont donc (0, 1),(q n-1 -1, 0) et (q n -1, 0). Le reste de la proposition est une application directe de la méthode NP.

Proposition 2.3.13. L'ensemble des racines de Xh 1 (X) dans Ω S est un F q -espace vectoriel de dimension n -1. Soit α 1 , . . . , α n des éléments de V n,S tels que h 2 (α n ) = 0 et (α 1 , . . . , α n-1 ) est une F q -base de l'ensemble des racines de Xh 1 (X). Alors la famille (α 1 , . . . , α n ) est une F q -base de V n,S .

Démonstration. Cette proposition découle directement de la Proposition 2.3.12.

Lemme 2.3.14. Le groupe de Galois Gal(N n,ρ /k) agit transitivement sur l'ensemble des sousespaces vectoriels de V n de dimension n -1.

Démonstration. Il existe exactement

q n -1 q -1 sous-espaces de V n de dimension n-1. Soit z ∈ V n \{0}
et soit τ ∈ Gal(N n,ρ /k) comme dans le Corollaire 2.3.1. Soit M le sous-espace de V n engendré par z, τ (z), . . . , τ n-2 (z). La dimension de M est exactement n-1. En fait la famille z, τ (z), . . . , τ n-1 (z)

est une base de V n . Les images τ i (M ), pour 0 ≤ i < q n -1 q -1 , sont deux à deux distinctes. En effet, si on a τ i (M ) = τ j (M ), avec 0 ≤ i ≤ j < q n -1 q -1 , alors τ j-i (M ) = M .
Ceci implique que τ j-i (z) = az, pour un certain a ∈ F * q et par suite τ (j-i)(q-1) est l'application identité. Comme l'ordre de τ est égale à q n -1, on déduit que i = j. Ce qui achève la preuve du lemme.

Proposition 2.3.15. Il existe une F q -base (z 1 , . . . , z n ) de V n telle que [N n,ρ : k(z 1 , . . . , z n-1 , ∆(z 1 , . . . , z n ))] ≥ q n-1 -1.
Démonstration. Soit (z 1 , . . . , z n ) une F q -base de V n comme dans le Corollaire 2.3.8. On sait, grâce au Lemme 2.3.14 qu'il existe γ ∈ G n,k tel que (π S (γ(z 1 )), . . . , π S (γ(z n-1 )) est une base de l'ensemble des racines de Xh 1 (X). Pour tout i ∈ {1, . . . , n} on pose

z i = γ(z i ) et α i = π S (z i ). Posons E = k(z 1 , . . . , z n-1 , ∆(z 1 , . . . , z n ))
On sait, grâce au corollarire 2.3.8, que pour tout a ∈ F q il existe σ a ∈ Gal(N n,ρ /E) tel que σ a (z n ) = z n +az 1 . On sait d'après la Proposition 2.3.12 et la Proposition 2.3.13 que k S (α 1 , . . . , α n-1 ) est une extension Galoisienne de k S . Soit X un système complet de représentants du groupe Gal(k S (α 1 , . . . , α n-1 )/k S ) modulo le groupe de Galois Gal(k S (α 1 , . . . α n-1 )/k S (α q-1 1 ). Le cardinal de X est égal au degré [k S (α q-1 1 ) :

k S ] = q n-1 -1 q -1 . Pour tout τ ∈ X on note par τ une extension de τ à k S (V n,S ) = k S (α 1 , . . . , α n ).
La restriction de τ à N n,ρ est un k-automorphisme de N n,ρ , on la note encore par τ . Il est facile de vérifier que

τ -1 σ a τ ∈ Gal(N n,ρ /E). Si τ (z n ) = x 1 ( τ )z 1 + • • • + x n-1 ( τ )z n-1 + x n ( τ )z n , où x 1 ( τ ), . . . , x n-1 ( τ ) ∈ F q et x n ( τ ) ∈ F × q alors on a τ -1 σ a τ (z n ) = z n + ax n ( τ ) τ -1 (z 1 ),
Ce qui permet de déduire que l'application X × F × q -→ Gal(N n,ρ /E) qui à chaque (τ, a) associe l'automorphisme τ -1 σ a τ , est injective. Ce qui achève la preuve de la proposition.

Corollaire 2.3.16. Il existe une F q -base (z 1 , . . . , z n ) de V n telle que l'ordre du groupe de Galois

D = Gal(N n,ρ /k(z 1 , . . . , z n-1 , ∆(z 1 , . . . , z n )) est exactement q n-1 .

Chapitre 3

Remarques sur les modules de Drinfield de rang 1 et leurs points de torsion

On sait que les points de torsion des modules de Drinfeld de rang un sont utilisés pour donner une description explicite des corps de classe. Ils sont également utilisés pour construire des unités, des systèmes d'Euler et des annulateurs des groupes de classes d'idéaux de l'anneau des sections globales de certaines courbes affines. Dans ce chapitre nous voulons étudier la structure de certains modules engendrés par ces éléments de torsion. Le contexte est le suivant. Soit k/F q un corps global de fonctions algébriques, où le corps des constantes est F q le corps fini à q éléments. On fixe 

Rappels sur les modules de Drinfeld

On se donne un corps L contenant F q et notons L{τ } l'anneau des polynômes en τ muni de la multiplication tordue donnée par τ a = a q τ pour tout a ∈ L On fixe une application structurale δ : A -→ L de A vers L. Dans la pratique, le morphisme δ est soit l'inclusion, soit la réduction modulo un idéal premier. Si δ est injectif alors on dit que L est sans caractéristique. Si δ est non injectif alors son noyau Q est un idéal premier de A. Dans ce cas, on dit que Q est la A-caractéristique de L. On considére l'application D : L{τ } -→ L donnée par D i≥0 c i τ i = c 0 , elle joue un rôle important dans la définition d'un module de Drinfeld. Nos références pour la présentation suivante sont [26, Chapitre 13], [START_REF] Hayes | Explicit class field theory in global function fields[END_REF] et [START_REF] Hayes | Stickelberger elements in function fields[END_REF]. 

Les A-modules normalisés

On désigne par κ(∞) le corps des constantes de k ∞ , il est isomorphe au corps résiduel en ∞, de degré d ∞ sur F q . Soit U (1) ∞ le groupe des unités principales en ∞.

Un A-module de Drinfeld ρ sur Ω de rang 1 est dit de caractéristique générique si l'application 1. sgn est un morphisme de groupes multiplicatifs.

sgn(U (1)

∞ )=1 3. sgn induit l'identité sur κ(∞) * On prend sgn(0) = 0. Soit σ un automorphisme de κ(∞). Le composé σ • sgn est appelé, fonction signe tordue ( ou fonction signe tordue de sgn par σ). 

pour tout x de k ∞ . Ainsi, Il existe exactement W ∞ = q d∞ -1 fonctions signe sur k ∞ .
Soit ρ un A-module de Drinfeld normalisé de caractéristique générique sur Ω. Alors s ρ est une application multiplicative de A \ {0} vers κ(∞) et s ρ (a) = a pour a ∈ F * q . Par conséquent s ρ s'étend d'une manière unique à k * . Puisque on a s ρ (U (1) ∞ ∩ k * ) = 1 d'après [18, 

Une génération du corps normalisé

On fixe ρ comme A-module de Drinfeld sgn-normalisé de caractéristique générique. Soit m un idéal entier de A. On note Λ m l'ensemble des points de m-torsion pour l'action de A sur Ω définie par ρ. On rappelle que Λ m ∼ = A/m en tant que A-module, ce qui implique que le groupe des [18, §4]). On rappelle le Théorème 3.1.5. [18, §4] L'extension K m /H * A est abélienne de degré Φ(m). Les places correspondants aux idéaux premiers divisant m ou au dessus de ∞, sont les seules places de H * A ramifiées dans K m /H * A . Soit a un élément de A premier à m tel que sgn(a) = 1 alors on a

A-automorphismes de Λ m est isomorphe (A/m) * . Posons alors K m ,
g m : Gal(K m /H * A ) -→ (A/m) * ce qui montre que K m /H * A est abélienne. En fait, g m est un isomorphisme et que [K m : H * A ] = Card(A/m) * = Φ(m) (voir
ρ a (λ) = ρ a (λ) = λ σa , où a = aA et σ a i est l'automorphisme de H * A (Λ m )/H * A associé à a par l'application d'Artin.

Rang du module engendré par les points de torsion

Fixons une fonction signe sgn : k × ∞ -→ κ(∞) × . Soit ρ un A-module de Drinfeld de caractéristique générique et sgn-normalisé, dans le sens de [18, §4]. Soit H * A le sous-corps de Ω normalisé par rapport à la fonction sgn. On rappelle que H * A est une extension abelienne de k, non ramifiée en toutes places v = ∞. Le groupe de Galois Gal(H * A /k) est isomorphe au quotient I A /P * A , où I A le groupe des idéaux fractionnaires de A et P * A est le groupe des idéaux fractionnaires principaux xA, avec x ∈ k non nul et vérifie sgn(x) = 1. Dans ce chapitre nous montrons Théorème 3.2.1.

(Théorème 3.4.10) Soit E ρ ⊂ H * A [τ ] le H * A -espace vectoriel engendré par tous les polynômes ρ x , x ∈ A. Alors le quotient R ρ = H * A [τ ]/E ρ est un H * A -espace vectoriel de dimension ≤ g, où g est le genre de k. Si d ∞ = 1 alors on a dim H * A (R ρ ) = g.
Pour tout x ∈ A, la multiplication à droite par ρ x donne une application linéaire de R ρ , qu'on note par Φ ρ (x). Ce qui offre un morphisme d'anneaux

Φ ρ : A -→ End(R ρ ),
qu'on peut utiliser pour munir R ρ d'une structure de A-module (a.v = Φ ρ (a)(v)). Si m = 0 est un idéal de A, alors le sous-module de R ρ des points de m-torsion est donné par 2) q = 2 et tout idéal premier p de A divisant m est tel que deg(p) ≥ 2.

X m = {v ∈ R ρ , Φ ρ (a)(v) = 0, pour tout a ∈ m}.

La dimension dim

3) q = 2 et m = p n , où p est un idéal premier tel que deg(p) = 1.

En particulier, chaque idéal premier de A admet la propriété (P). Lemme 3.3.2. On suppose que m admet la propriété (P). Alors l'anneau quotient A/m admet une F q -base (a 1 , . . . , a deg(m) ), où les éléments a i ∈ A sont premier à m.

Démonstration. Le lemme est trivial si m est un idéal premier. Supposons que nous ayons prouvé le lemme d'un idéal m = (1). Soit p un idéal premier de A. Démontrons le lemme pour n = mp.

On utilise pour cela la suite exacte

0 -→ m/n -→ A/n -→ A/m -→ 0.
Soit (f 1 , . . . , f r ) une base de A/m telle que les f i sont premier à m. Soit (g 1 , . . . , g s ) une base de m/n, alors (g 1 , . . . , g s , f 1 , . . . , f r ) est une F q -base de A/n. Si p | m alors (g 1 + f 1 , . . . , g s + f 1 , f 1 , . . . , f r ) est une base de A/n satisfaisant les conditions du lemme. Supposons maintenant que p m. Alors les éléments g i sont premier à p. Puisque s = deg(p) < N (p) -1 il existe α ∈ A premier à p tel que α -g j ∈ p pour tout j. Pour tout i on choisit un élément f i ∈ A tel que

f i ≡ f i modulo m et f i ≡ α modulo p.
Alors la famille (g 1 -f 1 , . . . , g s -f 1 , f 1 , . . . , f r ) est une F q -base de A/n dont éléments sont tous premier à n. Le lemme est maintenant prouvé. 

BΛ m ∩ H * A (Λ n ) ⊂ B. Démonstration. Soit K m = H * A (Λ m ) (resp. K n = H * A (Λ n )). Puisque BΛ m ∩ H * A (Λ n ) ⊂ K m ∩ K n , il suffit de prouver que K m ∩ K n ⊂ H * A . L'hypothése m + n = A implique que Λ mn = Λ m ⊕ Λ n , et que le corps K mn = K m K n est le compositum de K m et K n .
ρ p n-1 T K p n /L ( λ) = ρ p n-1 σ∈G 2 ( λ) σ = σ∈G 2 ρ p n-1 (( λ) σ ) = σ∈G 2 ρ p n-1 ( λ) σ .
Soit ρ = p n-1 * ρ le module de Drinfeld défini par Hayes dans [17, formula (3.3)]. On sait, d'après [START_REF] Hayes | Explicit class field theory in global function fields[END_REF]Theorem 3.10] que ρ p n = ρ p • ρ p n-1 . Cela implique que ρ p n-1 ( λ) ∈ Λ ρ p , où Λ ρ p est l'ensemble des racines de ρ p . On a d'après [18, section 4 page 18] que ρ est un module de Drinfeld sgn-normalisé.

En particulier, on a Λ ρ p ⊂ K p et 

ρ p n-1 T K p n /L ( λ) = σ∈G 2 ρ p n-1 ( λ) σ = T Kp/H * A ρ p n-1 ( λ) = 0, grâce à (3.3.1). On déduit que T K p n /L ( λ) ∈ Λ p n-1 ∩ L = {0}. Maintenant,
i + m j = A si i = j. Soit m = m 1 • • • m r et supposons que q = 2 ou q = 2 et pour tout idéal premier p de A divisant m est tel que deg(p) ≥ 2. alors on a BΛ m = BΛ m 1 ⊕ • • • ⊕ BΛ mr . Démonstration. La décomposition Λ m = Λ m 1 ⊕ • • • ⊕ Λ mr montre que BΛ m = BΛ m 1 + • • • + BΛ mr .
Pour vérifier que la décomposition est directe, nous pouvons appliquer le Lemme 3. 

ρ a i (λ) = ρ a i (λ) = λ σa i , où a i = a i A et σ a i est l'automorphisme de H * A (Λ m )/H * A associé à a i par l'application d'Artin. Donc, puisque P a ses coefficients dans H * A on a P (ρ a i (λ)) = P (λ) σa i = 0.
Maintenant, chaque µ ∈ Λ m peut s'écrire comme combinaison linéaire sous la forme µ = r 1 ρ a 1 (λ) + • • • + r t ρ at (λ), où r 1 , . . . , r t sont dans F q . Un calcul facile donne

P (µ) = t i=1 r i P (ρ a i (λ)) = 0.

La division Euclidienne à droite dans H

* A [τ ] appliquée à P et ρ m donne P = Qρ m + R, où Q, R ∈ H * A [τ ] et deg τ (R) < deg(m). On note deg τ (R) est le degré de R comme polynôme en τ . Puisque R(µ) = 0 pour tout µ ∈ Λ m on a forcément R = 0. Pour tout n ≥ 0 on définit E n =< ρ x , x ∈ L(n∞) > H * A . Pour tout entier positif δ on pose Ξ nδ : L H * A (nδ∞) -→ E nδ l'application H * A -linéaire qui à chaque somme finie i a i ⊗ v i associe le polynôme i a i ρ v i . Encore, on pose Ξ nδ l'application linéaire L H * A (nδ∞)/L H * A ((n -1)δ∞) -→ E nδ /E (n-1
)δ , déduite de Ξ n . Dans la suite, on suppose que δ ≥ 1 est tel que L(δ∞) \ L((δ -1)∞) = ∅ et on fixe ω ∈ L(δ∞) \ L((δ -1)∞). Nous considérons dans lemme suivant, les applications linéaires

M ω : H * A ⊗ Fq A -→ H * A ⊗ Fq A et N w : H * A [τ ] -→ H * A [τ ] définies par M ω a i ⊗ v i = a i ⊗ ωv i et N ω (P ) = P ρ ω .
Corollaire 3.4.5. Soit δ et r(δ) comme au-dessus. Soit m = 0 un idéal de A. Si m admet la propriété (P) alors

1 - r(δ) δd ∞ deg(m) -1 -g -δd ∞ ≤ rank B (BΛ m ).
Démonstration 

i P i ) ≤ nδd ∞ ≤ deg(m) -1.
Ce qui implique que Nous pouvons également utiliser la formule (3.6.1) pour reécrire la formule (3.6.2) comme suit ρ x -(τ + βτ 0 )(τ + ατ 0 ) + B 1 τ 0 ρ x = s q τ 2 + (βs + A q 0 + t)τ + (βA 0 + B 0 )τ 0 Puisque ρ x (τ ) est unitaire de degré 2 on déduit s q ρ x (τ ) = s q τ 2 + (βs + A q 0 + t)τ + (βA 0 + B 0 )τ 0 ρ x (τ ) = (τ + βτ 0 )(τ + ατ 0 ) + (B 1 + s q )τ 0 = τ 2 + (α q + β)τ + (αβ + B 1 + s q )τ 0 s q a = βs + A q 0 + t. (3.6.4) 

(deg(r i e i )) ≤ nδd ∞ ≤ deg(m) -1. Donc r 1 e 1 + • • • + r ν e ν = 0, ce qui implique que r 1 = • • • = r ν = 0. Soit ν = deg(m) -ν. Soient f 1 , ...,

L'application résidue

E 3 = H * A τ 0 ⊕ H * A ρ x ⊕ H * A ρ y et E 4 = H * A τ 0 ⊕ H * A ρ x ⊕ H * A ρ y ⊕ H * A ρ x 2 .

En appliquant les décompositions

  Soit A l'anneau des éléments de k réguliers en dehors de ∞. Soit ρ un A-module de Drinfeld de rang 1 et normalisé par rapport à une fonction signe fixée. Soit H * A le corps normalisant de ρ. Soit B la clôture intégrale de A dans H * A . Soit m un idéal de A. Nous étudions alors la structure du B-module BΛ m engendré par les points de m-torsion du module de Drinfeld ρ, ainsi que son rang.
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  F q [T ] -→ k{τ } tel que l'image de T est ρ T = τ + T τ 0 . Alors le Théorème 1.4.1, qui est le résultat principal de ce premier chapitre, peut être énoncé comme suit. Soient a, b ∈ A tels que a = b. Soit Γ un ensemble infini de polynômes unitaires N ∈ A. Soit f ∈ A[X] un polynôme irréductible. Supposons que pour tout N ∈ Γ, les éléments ρ N (α) -a et ρ N (α) -b sont des unités de A[α] pour toute racine α du polynôme f . Alors si q > 2 le polynôme f vérifie une des conditions suivantes. 1) Il existe ε ∈ F * q et un polynôme unitaire M ∈ A tel que f = εΦ M , où Φ M est le polynôme cyclotomique défini dans [16, section 2]. De plus, a, b ∈ F * q et M divise tous les polynômes N ∈ Γ. 2) Le polynôme f appartient à l'ensemble ∆ a,b , qui consiste en tous les polynômes irréductibles g ∈ A[X] tel qu'il existe une suite de polynômes unitaires (N i ) i∈N , N i ∈ A, dont les degrés forment une suite strictement croissante (d i ) i∈N * et tel que g divise tous les polynômes

  pour tout entier naturel i. Nous attirons l'attention du lecteur que l'application ∆(f ) = Ψ(f ) • τ est une k-dérivation de k{{τ }}. Les polynômes L n,ρ sont défini par analogie avec les polynômes de Laguerre classiques

-Q 5 .

 5 dans tous les cas ? Que se passe-t-il si on considère des modules de Drinfeld de rang supérieur à 1 ? Soit maintenant B la clôture intégrale de A dans H * A . Soit m un idéal de A et soit Λ m l'ensemble des racines de ρ m . Nous savons que Λ m est un A-module isomorphe à A/m. Nous avons aussi réussi à montrer dans le Théorème 3.4.13, que si m est premier à un certain idéal m ρ alors le B-module engendré par Λ m , que nous noterons BΛ m , est libre de rang rang B (BΛ m ) = dim Fq (A/m), au moins si q > 2. Nous avons aussi une formule dans le cas q = 2. Nous sommes parvenus à déterminer l'idéal m ρ dans de nombreux cas, notamment, si d ∞ = 1 et g ≤ 1 alors m ρ = A. D'où les questions -Q 6 . Que vaut l'idéal m ρ en général ? -Q 7 . Dans le cas où m ρ = A, quelle serait la structure du B-module BΛ m ainsi que son rang ? Chapitre 1 Polynômes définissant des unités dans les corps de fonctions Nous introduisons dans ce chapitre la notion de polynômes définissant des unités dans le cas des corps de fonctions rationnelles, en utilisant la théorie cyclotomique de Carlitz. Nous nous inspirons en cela du travail d'Osnel Broche et Ángel del Río, publié en 2016, cf. [4].

  sont les seules places finies de k ramifiées dans k(Λ a )/k. On a [k(Λ a ) : k] = φ(a), en particulier Ψ a est un isomorphisme. Théorème 1.1.7. [26, Theorem 12.10] Soit b ∈ A un polynôme unitaire, irréductible premier à a. Alors, l'automorphisme d'Artin de l'idéal premier bA dans l'extension k(Λ a )/k est l'automorphisme σ b qui à chaque λ ∈ Λ a associe ρ b (λ). Soit f le plus petit entier tel que b f ≡ 1 mod aA. Alors, bO a est le produit de φ(a) f idéaux premiers dont le degré résiduel égal à f . En particulier, bA se décompose totalement si et seulement si b ≡ 1 mod aA.

.3. 4 ) 5 .Lemme 1 . 3 . 1 .Corollaire 1 . 3 . 2 .

 45131132 Pour M = 1 unitaire dans A, on a D∈Div(M ) µ(D) = 0. (1.3.5) Pour tout polynôme non nul M ∈ A, on note λ M ∈ k une racine fixée de Φ M (X). Soient M, N, a ∈ A tels que M et N sont des polynômes unitaires. Soit D = M gcd(M, N ) . Alors les propriétés suivantes sont équivalentes a) Φ M définit des unités sur les racines de ρ N (X) -a. b) λ D -a est une unité dans A[λ M ]. c) λ D -a est une unité dans A[λ D ]. d) Φ D (a) ∈ F * q . Démonstration. Voir la preuve de [4, Proposition 3]. Soit a ∈ F * q et soit M 1 , . . . , M s ∈ A des polynômes unitaires. Alors le polynômes f = Φ M 1 • • • Φ Ms définit des unités sur les racines de ρ N (X) -a pour tout N multiple commun des polynômes M i , i = 1, . . . s. Démonstration. Soit N ∈ A unitaire multiple commun des polynômes M i , i = 1, . . . s. D'après la Définition 1.2.1, f = Φ M 1 • • • Φ Ms définit des unités sur les racines de ρ N (X) -a si, et seulement si, pour tout i ∈ {1, . . . , s} le polynôme Φ M i définit des unités sur les racines de ρ N (X) -a. D'après le Lemme 1.3.1, ceci est équivalent à

3 . 3 .

 33 Soit M un polynôme non nul dans A. Soit w une valuation normalisée de k(Λ M ) au-dessus de v ∞ . Soit λ un élément non nul de Λ M . Alors on a w(λ) ≥ 0 ou w(λ) = -1. Démonstration. On sait, d'après le Théorème 1.1.8 que w = (q -1)v ∞ sur k. Notons deg(M ) par d et le coefficient dominant de M par a d . Si d = 1 alors, grâce à la Proposition 1.1.2, on a 0 = λ M = a 1 λ q + M λ. Puisque λ = 0 on obtient immédiatement que w(λ) = -1. Si d ≥ 2 et w(λ) < 0 alors pour tout i ∈ {0, . . . , d} on a

4 on doit considérer les cas suivants : 1 .

 41 pas puissance d'un polynôme irréductible. Démonstration. Le cas M = 1 est trivial. Supposons que deg(M ) ≥ 1. Selon la Proposition 1.3.Le cas a = 0 et M = P n , où P est un polynôme unitaire irréductible dans A. D'après la formule

a = 1 ,

 1 (α, β) = (1, 1) et N n'est pas une puissance d'un polynôme irréductible. Démonstration. Puisque le cas deg(M ) = 0 est évident et, puisque le cas deg(M ) = 1 est impossible d'après la Proposition 1.3.4, on suppose que deg(M ) ≥ 2. Alors en raisonnant comme le cas q > 2, on peut montrer que Φ M (0) = 1 ⇐⇒ M n'est pas une puissance d'un polynôme irréductible. Si a = 1 on obtient les résultats suivants.

1

 1 unitaire et premier à T (T + 1), alors d'une part, d'après l'étude précédente on a Φ T α (T +1) β (1) = 0, d'autre part, d'après l'assertion (iii) du Lemme 1.3.6 on a 1 D = 1 pour tout diviseur unitaire D de N . Les formules (1.3.4) et (1.3.5) impliquent

Proposition 1 . 3 . 9 .

 139 On suppose q = 2 et soit a = T ou a = T + 1. Soit M = a n N , avec N unitaire et premier à a, et n est un entier positif. Alors Φ M (a) = 1 si, et seulement si, n = 1 et N = 1 ou n = 1 et N n'est pas puissance d'un polynôme irréductible. Démonstration. Selon la Proposition 1.3.4, on a Φ M (a) = 1 implique que M = a + 1 ou deg(M ) ≥ 2. Supposons que deg(M ) ≥ 2. Alors, on doit considérer les cas suivants. 1. Si n ≥ 2 et N = 1 alors d'après la formule (1.3.3) et le Lemme 1.3.8 on a Φ M (a) =

  4.1 est le suivant. Soit L un corps de fonctions global et soit F le corps des constantes de L. Soit S un ensemble fini de premier fini de L. Alors l'équation Diophantienne X + Y = 1 admet un nombre fini de solutions (u, v) telles que u et v sont des S-unités non constantes dans L et telles que l'extension L/F(u) est séparable [26, Theorem 7.19]. Mais comme on peut facilement vérifier les couples (u p n , v p n ) satisfont aussi à l'équation X + Y = 1, sont des S-unités non constantes dans L alors que les extensions L/F(u p n ) sont inséparables. Ce phénomène nous amène à conclure qu'un polynôme f vérifiant les hypothèses du théorème 1.4.1, peut avoir des facteurs irréductibles qui ne sont peut-être pas nécessairement des polynômes cyclotomiques, mais plutôt des éléments de ∆ a,b . À ce stade cet ensemble nous semble mystérieux. Nous espérons pouvoir décrire complètement ses éléments dans un futur proche. Théorème 1.4.1. Soit f ∈ A[X] et soient a, b ∈ A tels que a = b. Soit Γ ⊆ A un ensemble infini. On suppose que f définit des unités sur les racines de ρ N (X) -a et sur les racines de ρ N (X) -b pour tout N ∈ Γ. Soit g ∈ A[X] un facteur irréductible de f . Alors g satisfait à l'une des conditions suivantes. 1) Il existe ε ∈ F * q et un polynôme unitaire M ∈ A tel que g = εΦ M . De plus, si q > 2 alors a, b ∈ F * q et M divise tous les polynômes N ∈ Γ. Si q = 2 alors a et b sont de degré au plus égale à 1 et M est explicitement décrit dans la Proposition 1.3.7 et la Proposition 1.3.9. 2) Le polynôme g appartient à ∆ a,b . Démonstration. Soit α ∈ k une racine de g. Les hypothèses impliquent qu'il existe une suite infinie de polynômes unitaires N 0 , N 1 , . . . , N i , N i+1 , . . . dont les degrés forment une suite croissante telle que α N i -a et α N i -b sont des unités dans A[α]. Soit S 0 l'ensemble des places v de L = k(α) telles que b -a ou α n'est pas unité en v. Soit S ∞ l'ensemble des places de L au dessus de la place infinie. Alors S = S 0 ∪ S ∞ est fini. Soit O S l'anneau de Dedekind des éléments de L qui sont entiers en toute place v ∈ S. Alors A[α] ⊂ O S , En particulier si on pose

  alors puisque a = b on déduit de la Proposition 1.3.5 que a, b ∈ F * q et D N = 1, en d'autres termes M divise tous les polynômes N . Si q = 2, on a d'après la Proposition 1.3.4, que deg(a) ≤ 1 et deg(b) ≤ 1, les polynômes correspondants sont décrits dans Proposition 1.3.7 et Proposition 1.3.9. Supposons que l'application Ψ est injective. Alors, d'après [26, Theorem 7.19], il existe u et v dans O * S et deux suites d'entiers strictement croissantes (i j ) j∈N et (d j ) j∈N telles que

grâce à [ 29 ,

 29 Lemma 3.1]. Mais on sait, d'après [29, Proposition 5.2], que le corps k ur T
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 3412311 Le groupe G n,k pour n ≥ 3 La détermination de G n,k , pour n ≥ 3, nécessite sur l'étude du groupe de décomposition de G n,k en les places au-dessus des polynômes irréductibles dont le degré égale à n -1. Fixons alors S(T ) ∈ F q [T ] un polynôme irréductible de degré n -Lemme Soit m ∈ {2, . . . , n}, alors v S (a n-1,n,m ) = 0 et pour tout i ∈ {n -m, n -m + 1, . . . , n -2} on a v S (a i,n,m ) = 1 . Démonstration. Le lemme peut se démontrer par récurrence sur m en se basant sur les formules (2.3.3) et (2.3.4).

  une place ∞ de k de degré deg(∞) = d ∞ et soit A ⊂ k l'anneau des éléments réguliers de k en toutes les places sauf ∞. On sait, d'après [27, Corollary 3.2.8 et Proposition 3.2.9] par exemple, que A est un anneau de Dedekind, et que les premiers de k différents de ∞ correspondent aux idéaux maximaux de A. On note v ∞ la valuation normalisée associée à ∞, soient k ∞ le complété de k pour la v ∞ -topolologie et Ω le complété d'une clôture algébrique de k ∞ . On note encore v ∞ la valuation sur Ω qui prolonge celle de k. Pour a ∈ A on appelle degré de a l'entier naturel donné par deg(a) = dim Fq A/aA, on sait qu'on a deg(a) = -v ∞ (a).d ∞ . Plus généralement, si I est un idéal de A alors le degré de I est défini par la relation deg(I) = dim Fq A/I. Nous commençons par donner un petit rappel sur les modules de Drinfeld.

Définition 3 . 1 . 1 .

 311 On appelle A-module de Drinfeld sur L tout morphisme d'algébres ρ : A -→ L{τ } qui à chaque a ∈ A associe ρ a (τ ) ∈ L{τ } tel que, pour tout a ∈ A, D(ρ a ) = δ(a) et que l'image de ρ n'est pas inclus dans L. On note Drinf A (L) l'ensemble des A-modules de Drinfeld sur L.

xDéfinition 3 . 1 . 2 .

 312 -→ D(ρ x ) pour x ∈ A est l'inclusion A → Ω. Un tel module est dit normalisé si le coefficient dominant s ρ (x) de ρ x appartient à κ(∞) pour tout x ∈ A \ {0}. On sait d'après [17, Proposition 10.4], que chaque classe d'isomorphisme de A-module de Drinfeld sur Ω contient un A-module normalisé. Soit sgn : k * ∞ -→ κ(∞) * une application. On dit que sgn est une fonction signe si :

Soient

  sgn et sgn deux fonctions signe sur k ∞ , d'après [18, Lemma 4.2] il existe a ∈ κ(∞) * tel que sgn(x) = sgn (x).a deg x d∞ (3.1.1)

  H * A (X m ), semble être liée au rang du B-module engendré par Λ m noté BΛ m , où B est la fermeture intégrale de A dans H * A et Λ m est le sous-module de m-torsion de Ω. Rappelons que Λ m est un A-module. L'action de a ∈ A sur λ ∈ Λ m est donnée par a.λ = ρ a (λ). Comme le prouve Hayes dans [18, §4] il existe un isomorphisme Λ m A/m. En particulier Λ m est un F q -espace vectoriel de dimension deg(m) = dim Fq (A/m). Puisque chaque F q -base de Λ m engendre BΛ m comme B-module, on a rank B (BΛ m ) ≤ deg(m). Notre second objectif est de démontrer le theorème principal suivant, Théorème 3.2.2. (Théorème 3.4.13) Soit m ρ l'idéal introduit dans la définition 3.4.12. Soit m = 0 un idéal de A premier à m ρ . Alors le B-module BΛ m est libre et on a rank B (BΛ m ) =    deg(m) -s + 1, si q = 2 et s ≥ 1, deg(m), si q > 2 ou (q = 2 et s = 0), où s est le nombre exacte des idéaux premiers p divisant m et deg(p) = 1. Les preuves des deux Théorèmes sont intimement liées, et reposent essentiellement sur les propriétés arithmétiques des extensions H * A (Λ m ) prouvées par Hayes dans [17, 18], le théorème de Riemann-Roch et le théorème de densité de Chebotarev. L'idéal m ρ ne dépend pas de ρ. De plus, il est facile de prouver que m ρ = A lorsque k = F q (T ) et ∞ est le pôle du polynôme T . En fin, On montre que m ρ = A lorsque d ∞ = 1 et g = 1. Nous ne savons pas si m ρ = A en général.

3. 3

 3 Quelques propriétés générales de BΛ m Nous donnons deux résultats préliminaires. on prouve d'abord l'existence d'une F q -base de A/m avec propriétés particulières. Le deuxième résultat concerne l'additivité des modules BΛ m . Comme d'habitude, le cardinal de l'anneau quotient A/m sera noté par N (m). Définition 3.3.1. Soit m = 0 un idéal de A. Nous dirons que m admet la propriété (P) si l'une des conditions suivantes est satisfaite 1) q > 2.

Remarque. 2 = αz w∞ 2 ,Corollaire 3 . 3 . 4 .Lemme 3 . 3 . 5 .

 22334335 Dans le cas où k = F 2 (T ) et A = F 2 [T ]. Soit m = T (T + 1)A, alors m n'admet pas la propriété (P) et la conclusion du Lemme 3.3.2 n'est pas satisfaite pour l'anneau A/m. Lemme 3.3.3. Il existe β ∈ A tel que β ≡ 1 modulo m et sgn(β) engendre le groupe cyclique κ(∞) × . Démonstration. Soit ε un générateur de κ(∞) × . Soit z ∈ k tel que v ∞ (z -ε) > 0, où v ∞ est la valuation normalisée définie par ∞. Alors on a sgn(z) = ε. Écrivons m = p e 1 1 • • • p es s , où p 1 , . . . , p s sont les premiers de A divisant m. Pour tout p i , on désigne par v i la valution normalisée associée à p i . d'après le théorème d'approximation faible, il existe α∈ k tel que v i (α -1) = e i et v ∞ (α -z) > 0. Donc on a sgn(α) = ε. Écrivons α = x/y avec x, y ∈ A. il est facile de voir que v i (x) = v i (y) pour tout i. Maintenant, d'après le théorème d'approximation forte il existe u ∈ k tel que v i (u) = -v i (x), pour tout i v(u) ≥ 0 pour toute valuation normalisée v ∈ {v 1 , . . . , v s , v ∞ }.Les éléments ux et uy sont dans A, ils sont premiers à m et ux ≡ uy modulo m. Soit x ∈ A tel que x (ux) ≡ 1 modulo m. Soit z 1 = x ux et z 2 = x uy. Alors, on peut prendre l'élément β du lemme comme suit β = z 1 z w∞-1où w ∞ est l'ordre du groupe cyclique κ(∞) × . On suppose que l'idéal m admet la propriété (P). Alors l'anneau quotient A/m admet une F q -base (a 1 , . . . , a deg(m) ), où les éléments a i ∈ A sont premiers à m et tels que sgn(a i ) = 1, pour tout i ∈ {1, . . . , deg(m)}. Démonstration. Soit (a 1 , . . . , a deg(m) ) une F q -base de A/m comme décrite dans le Lemme 3.3.2. Soit β ∈ A l'élément défini dans Lemme 3.3.3. Pour tout i, on pose a i = β n i a i , où n i est un entier positif tel que sgn(a i ) = sgn(β) -n i . Alors la famille (a 1 , . . . , a deg(m) ) est satisfaite aux conditions du corollaire. Soit m et n deux idéaux non nuls et premiers entre eux dans A, alors

  De plus, on sait d'après[18, §4] quepour tout idéal c = 0 de A le degré [K c : H * A ] est égal à l'ordre du groupe multiplicatif (A/c) × qu'on notera par ϕ(c). Puisque ϕ(mn) = ϕ(m)ϕ(n) on déduit que K m ∩ K n = H *A ce qui implique le lemme. Proposition 3.3.6. Soit p un idéal premier de A. Supposons qu'on a q = 2 ou q = 2 et deg(p) ≥ 2. Alors on a BΛ p n ∩ B = 0, pour tout entier positif n. Démonstration. Démontrons d'abord le lemme pour n = 1. Soit λ ∈ Λ p tel que λ = 0. Alors λ est un générateur du A-module Λ p . Le polynôme irréductible de λ sur H * A est ρ p (X)/X. Puisque ρ p ∈ H * A [τ ], il est facile de vérifier que T Kp/H * A (λ) = 0 (3.3.1) si q = 2 ou si q = 2 et deg(p) ≥ 2. On en déduit que si x ∈ BΛ p alors T Kp/H * A (x) = 0. Puisque T Kp/H * A (b) = -b pour tout b ∈ B, on conclut que BΛ p ∩ B = 0. Dans le cas général n ≥ 2, les hypothèses permettent d'écrire le groupe de Galois Gal(K p n /H * A ) comme produit direct G 1 × G 2 , avec ord(G 1 ) = N (p) n-1 et ord(G 2 ) = (N (p) -1). Il est facile de voir que K p est le corps stabilisé par le sous-groupe G 1 . Soit L le corps stabilisé par G 2 , et soit λ un élément de Λ p n . Nous prétendons que T K p n /L ( λ) = 0. En effet, on a
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 1346 i P i = 0. On en déduit que b 1 = • • • = b s = 0 car (P 1 , . . . , P s ) est libre. Maintenant, pour conclure la preuve du corollaire, nous utilisons simplement le fait que s = dim H * A (E nδ ) donné dans le Corollaire 3.4.4 et l'inégalité n ≥ deg(m) -1 δd ∞ Corollaire Soit δ et r(δ) comme au-dessus. Soit m = 0 un idéal de A, alors rank B (BΛ m ) ≤ 1 -r(δ) δd ∞ deg(m) + 1 + g + δd ∞ + +∞ k=1 (r(δ) -r k ). Démonstration. Soit n = [ deg(m) -1 δd ∞ ] et soit ν = dim Fq (L(nδ∞)). On sait d'après le théorème de Riemann-Roch que ν = nδd ∞ + 1 -g + dim Fq L(W -nδ∞). Soit (e 1 , ..., e ν ) une F q -base de L(nδ∞). Alors (e 1 , ..., e ν ) est encore libre modulo l'idéal m. En effet, supposons qu'on a une somme z = r 1 e 1 + • • • + r ν e ν ∈ m, où r 1 , . . . , r ν sont dans F q . Si z = 0 alors deg(z) ≥ deg(m). C'est une contradiction avec le fait que deg(z) ≤ max 1≤i≤ν

3. 4 . 3 2 Proposition 3 . 4 . 11 .Définition 3 . 4 . 12 .Théorème 3 . 4 . 13 .

 432341134123413 Preuve du Théorème 3.2.Soit p un idéal premier de A, alors x n = deg(p n ) -rank B (BΛ p n ) est une suite croissante bornée d'entiers positifs. En particulier, on a rank B (BΛ p n+1 ) -rank B (BΛ p n ) = deg(p), pour n assez grand. Démonstration. La suite x n est bornée grâce au Corollaire 3.4.5 et à la Proposition 3.4.8. De plus, on a x n+1 -x n = deg(p) -(rank B (BΛ p n+1 ) -rank B (BΛ p n )). Soit (λ 1 , . . . , λ u ), u = deg(p), lafamille des éléments de Λ p n+1 donnant un F q -base de Λ p n+1 /Λ p n . Alors le B-module BΛ p n+1 /BΛ p n est engendré par les images de λ 1 , . . . , λ u ce qui prouve que x n+1 ≥ x n . Pour tout idéal premier p de A on posed p = min{n ≥ 0, tel que pour tout m ≥ n, rank B (BΛ p m+1 ) -rank B (BΛ p m ) = deg(p)}.d'après le Corollaire 3.4.7 et la Proposition 3.4.8 on a d p = 0 pour presque tout idéal premier de A. On définit m ρ = p p dp . où le produit est sur les idéaux premiers de A. Pour tout idéal m = 0 premier à m ρ , le B-module BΛ m est libre et on arank B (BΛ m ) =    deg(m) -s + 1, si q = 2 et s ≥ 1, deg(m), si q > 2 ou (q = 2 et s = 0),(3.4.1) où s est le nombre exact des idéaux premiers p divisant m et deg(p) = 1. Démonstration. Supposons d'abord que q > 2 ou q = 2 et s = 0. Écrivons m = p e 1 1 • • • p er r , où p 1 , . . . , p r sont des idéaux premiers et e 1 , . . . , e r sont des entiers strictement positifs. Puisque les idéaux p i sont premiers à m ρ on a d p i = 0. Cela signifie que rank B (BΛ p m i ) = deg(p m i ) pour tout m ≥ 1. Le Corollaire 3.3.8 implique qu'on a rank B (BΛ m ) = deg(m). Supposons maintenent que q = 2 et s ≥ 1. Écrivons m = m 1 m 2 , avec m 1 et m 2 sont premiers entre eux et m 2 divisible par tous les idéaux premiers qui divise m et dont le degré égal à 1. Dans une telle situation, nous avons nécessairement BΛ m = BΛ m 1 ⊕ BΛ m 2 , grâce au Lemme 3.3.5 et au Corollaire 3.3.7. D'une part, nous avons rank B (BΛ m 1 ) = deg(m 1 ), d'après la première partie de la preuve. D'autre part, nous savons que BΛ m 2 est libre et rank B (BΛ m 2 ) = deg(m 2 ) -s + 1, grâce à la Proposition 3.3.11, d'où la formule (3.4.1).

SoitLemme 3 . 5 . 5 .c

 355 R un supplémentaire de l'espaceE ρ =< ρ z , z ∈ A > H * A dans H * A [τ ]. Autrement dit, on a R ⊕ E ρ = H * A [τ ]. (3.5.1) Soit R n = R ∩ V n , où V n = {P ∈ H * A [τ ], deg τ (P ) ≤ nd ∞ }, alors on a, R n ∩ E n ⊂ R ∩ E ρ = 0. Supposons que dim H * A R = g. On prend P i = ρ e i et Q j = ρ f j , pour i = 1, . . . , s -1 et j = 1 . . . ,g, où e i et f j sont comme au-dessus. Alors la matrice associée S est inversible. Démonstration. Soit V = (b 1 , . . . , b g ) ∈ (H * A ) g tel que SV t = 0. d'après l'équation (3.5.6) et le Lemme 3.5.3 on a g j=1 b j Q j = g j=1 b j G j ρ z + g j=1 b j T j . Par hypothéses, il existe c 1 , . . . , c s ∈ H * A tels que g j=1 b j T j = s i=1 c i ρ e i . Écrivons chaque G j comme une somme finie G j = x∈E j c (j)x ρ x , où E j est un sous-ensemble fini de A et c(j) x ∈ H * A . d'après le Corollaire 3.4.9 l'application linéaire surjectiveΞ : H * A ⊗ Fq A -→ E ρ , qui à chaque somme finie a i ⊗ v i on lui associe a i ρ v i , est un isomorphisme. Ainsi on a i ⊗ e i .Mais nous avons supposé que la famille (e 1 , . . . , e s-1 , e s , f 1 , . . . , f g ) est libre sur F q . Cela implique que b j = 0 pour tout j = 1, . . . , g.La deuxième assertion duThéorème 3.5.2 découle de Lemme 3.5.3, Lemme 3.5.4 et Lemme 3.5.5. Remarque. Lorsque k est un corps de fonctions rationnelles, nous avons dim H * A (R) = 0, et le Théorème 3.5.2 implique que rank B (BΛ m ) = deg(m), pour tout idéal non nul m de A ayant la propriété (P). En d'autres termes, nous avons m ρ = A.

3. 6 Proposition 3 . 6 . 2 .

 6362 Le cas d ∞ = g = 1 Dans cette section, on suppose que k est un corps de fonctions de genre g = 1 et que d ∞ = deg(∞) = 1. D'après le Théorème de Riemman-Roch, on a dim Fq L(n.∞) = n pour tout entier positif n. En prennant n = 2 et n = 3, on voit qu'il existe deux fonctions x ∈ L(2.∞) et y ∈ L(3.∞) dont le pôle diviseurs est respectivement 2.∞ et 3.∞. Lemme 3.6.1. On a A = F q [x, y].Démonstration. On prend e 0 = 1, pour tout entier n strictement positif on prend e 2n = x n et e 2n+1 = x n-1 y. Donc la famille (e 0 , e 2 , e 3 , ..., e n ) est une F q -base de L(n.∞), puisque deg(ei ) = i et dim Fq L(n.∞) = n. Cela implique que A = n∈N L(n.∞) = F q [x, y].Comme indiqué dans la remarque 3.4.2, pour tout entier strictement positif n on a R ⊕E n = V n , où R =< τ > H * A . Pour tout z ∈ A, il existe φ R (z) ∈ H * A tel que Φ R (z)(τ ) = φ R (z)τ . L'application φ R : A -→ H * A est un morphisme d'anneaux Supposons qu'on a d ∞ = g = 1, alors l'homomorphisme d'anneaux φ R : A -→ H * A est injectif.En particulier on a m ρ = A.Démonstration. Puisque d ∞ = 1 on a sgn(x), sgn(y) ∈ F q . Donc on peut supposer que sgn(x) = sgn(y) = 1. On écritρ x = τ 2 + aτ + xτ 0 et ρ y = τ 3 + cτ 2 + bτ + yτ 0 ,où a, b, c ∈ H * A . En fait, a, b, c ∈ B, grâce au Corollaire [16, Corollary 7.4]. Remarquons d'abord que

  R ⊕ E n = V n pour n = 3 et n = 4, en posant s = -φ R (x) et t = -φ R (y), on obtient les équationsρ y = (τ + ατ 0 )ρ x + sτ + A 0 τ 0 (3.6.1) et ρ x 2 = (τ + βτ 0 )ρ y + tτ + B 0 τ 0 + B 1 ρ x ,(3.6.2) α, β, A 0 , B 0 , B 1 ∈ B. De la formule (3.6.1) on tire αx + A 0 = y. (3.6.3)

  Aussi, puisque Λ a est l'ensemble des racines du polynôme séparable ρ a (x) ∈ A[x] ⊆ k[x], l'extension k(Λ a )/k est Galoisienne finie. Les éléments de Λ a sont entiers sur A car le coefficient dominant de ρ a (x) est dans F q . De plus, si O a désigne Si on fixe un générateur λ de Λ a , alors chaque σ ∈ G a est déterminé par son action sur λ. Théorème 1.1.6. [26, Theorem 12.8] Soit a ∈ A, et écrivons a = αP e 1 1 ...P et t sa décomposition en polynômes irréductibles, où α ∈ F q et les P i sont des polynômes unitaires irréductibles de A.

	la fermeture intégrale de A dans k(Λ a ), alors on a O a = A[λ], voir [26, Proposition 12.9].
	Soit G a le groupe de Galois de l'extension k(Λ a )/k. Puisque l'action du module de Carlitz est
	donnée par des polynômes à coefficients dans k, alors cette action commute avec celle de G a sur
	k. Ainsi, σ(λ) = ρ b (λ) pour un certain b de A premier à a, car σ tronsporte un générateur de Λ a à
	un autre générateur de Λ a . De plus, b ne dépend pas du choix de λ. Ainsi, l'application
	Ψ a : σ -→ b mod aA
	définit bien un morphisme de groupes injectif de G a dans le groupe des unités (A/aA) * de l'anneau
	A/(aA). On a les résultats suivants,
	Alors, k(Λ a ) est le compositum des corps k(Λ P e i i ). Les places correspondants aux idéaux premiers
	si a et b sont premiers entre eux, où φ(a) est l'ordre du groupe multiplicatif de l'anneau A/aA.
	1.1.2 Le corps de fonctions cyclotomique k(Λ a ).

Théorème 1.1.4. [16, Theorem 1.6] Le A-module Λ a est cyclique, isomorphe à A/aA, où aA est l'idéal de A engendré par a. Corollaire 1.1.5. [16, Corollary 1.8] Le A-module Λ a admet exactement φ(a) générateurs. Plus précisément, si λ est un générateur de Λ a et b ∈ A, alors ρ b (λ) est un générateur si et seulement Soit a ∈ A un polynôme de degré strictement positif. Considérons l'extension de corps k(Λ a ) de k engendrée par le A-module fini Λ a . Soit λ un générateur du A-module cyclique Λ a . Puisque ρ b (λ) ∈ A[λ] pour tout b ∈ A, on a k(Λ a ) = k(λ).

  On note par ∞ la place de k donnée par la valuation v ∞ .

	1.2 Polynôme définissant des unités dans les corps de fonc-
	tions	
	Sot M un élément non nul de A, d'après les rappels faits dans les sections précédentes on sait
	que si λ est un générateur du A-module Λ M alors les autres générateurs sont λ N , où N ∈ A est
	premier à M . De plus, le polynôme irréductible de λ sur k est	
	1.1.3 Ramification en ∞.	
	Théorème 1.1.8. [26, Theorem 12.14] Soit J = σ α ∈ G a | α ∈ F * q	et posons k(Λ a ) + le corps
	fixé par J. Alors ∞ se décompose totalement dans k(Λ a ) + et chaque premier au dessus de ∞ dans
	k(Λ a ) + est totalement et modérement ramifié dans k(Λ a ). En particulier, l'indice de ramification
	de ∞ dans l'extension k(Λ a )/k est e ∞ = q -1.	
	Corollaire 1.1.9. Pour tout a ∈ A, le corps des constantes k(Λ a ) est F q . C'est à dire, L'extension
	k(Λ a )/k est géométrique.	

  .1.3) Ce qui est encore remarquable, c'est le fait que L n est irréductible dans Q[T ]. Cela a été prouvé pour la première fois par Schur dans [34]. Il a également prouvé que le groupe Galois sur Q de L n est égale au groupe symétrique S n .

  Définition 2.2.1. Pour tout entier naturel i, on pose [i] = T q i -T et on note ∆ et Ψ les opérateurs k-linéaires définis sur k{{τ }} par

	∞
	∆(
	i=0

voir [13, page 56].

  en déduit notre relation (2.2.3) grâce au Lemme 2.2.2. Les autres assertions de la proposition sont des conséquences directes de la formule (2.2.3). Puisque nous avons déjà calculé le polynôme L 2,ρ , la formule (2.2.3) donne

  Proposition 2.2.10. Les coefficients a i,n de L n,ρ sont divisible par [n] pour tout i < n. En particulier L n,ρ (X)/X est Eisentein en tout diviseur irréductible de [n] de degré n.

Démonstration. Pour tout entier naturel m ≤ n, on pose

  .3.1)Il est facile de vérifier que pour tout σ ∈ Gal(N n,ρ /k) on aσ(∆(z 1 , . . . , z n )) = det(Ψ n,Z (σ))∆(z 1 , . . . , z n ),(2.3.2) Pour étudier les propriétés de Ψ n,Z pour n ≥ 2 nous devons explorer certains sous-groupes de décomposition de G n,k . Mais introduisons d'abord quelques notations. Pour tout polynôme irréductible P (T ) ∈ F q [T ], désignons k P le complété de k relativement à la place déterminée par P et soit Ω P un corps complet et algébriquement clos contenant k P . Notons v P la valuation de Ω P qui satisfait à v P (P ) = 1. On fixe un k-plongement π

P : k -→ Ω P et posons V n,P = π P (V n ). Le plongement π P détermine une unique place P de k au-dessus de la place de k associée à P . Le sous-groupe de décomposition de G n,k en P est isomorphe à Gal(k P (V n,P )/k P ).

  sous-groupe de décomposition de G n,k en T

	Démonstration. La formule est facilement déduite par récurence sur m des formules (2.3.3) et
	(2.3.4).	
	Proposition 2.3.3. Les points	
	Nous commençons notre étude concernant ce sous-groupe, en décomposant L n,ρ (X)/X dans
	k T [X] en utilisant son polygone de Newton associé. Soit a i,n,m les coefficients de P n,m . De la
	formule (2.2.6), on déduit que	
	a n,n,m = (-1) m et a i,n,m = 0 si i < n -m.	(2.3.3)
	De plus,	

a i,n,m+1 = a i+1,n,m [i + 1] -a q i,n,m . (2.3.4) Lemme 2.3.2. Pour tout m ≤ n et tout i ∈ {n -m, n -m + 1, . . . , n} on a v T (a i,n,m ) = n -i.

  On déduit alors ce qui suit Corollaire 2.3.5. Soit (λ 1 , . . . , λ n ) une famille comme dans la Proposition 2.3.4. Alors pour tout i ∈ {1, . . . , n}, le corps k T

  Théorème 2.3.10. Pour toute F q -base (z 1 , z 2 ) de V 2 , le morphisme de groupes Ψ 2,Z est un isomorphisme.Démonstration. Il suffit de prouver le théorème pour au moins une base. On choisit (z 1 , z

2 ) comme dans le Corollaire 2.3.8. Dans ce cas, le théorème est une conséquence de la Proposition 2.3.9 et le fait que le degré [k

  Lemma 4.4], on déduit que s ρ est continue sur k * pour la v ∞ -topologie et qu'elle s'étend d'une manière unique à une fonction continue sur k * ∞ , notée aussi s ρ , elle est triviale sur U (1) ∞ . En fait, s ρ est une fonction signe tordue sur k * ∞ (voir [18, Proposition 4.5]). Pour une fonction signe sgn on dit que ρ est sgn-normalisé si ρ est normalisé et que s ρ est une fonction signe tordue de sgn. D'après [18, Proposition 4.6], chaque module de Drinfeld de caractéristique générique sur Ω est isomorphe à un module sgn-normalisé.

Maintenant, on fixe une fonction signe sgn, et soit ρ un A-module de Drinfeld de caractéristique générique sgn-normalisé sur Ω. Soit I * (ρ) le sous-corps de Ω engendré par les coefficients de ρ x , x ∈ A. D'après [17, §8], I * (ρ) contient le corps de classe de Hilbert H A , où H A est l'extension abelienne maximale non ramifiée de k dans laquelle ∞ se décompse totalement. De plus, il existe w ∈ Ω * tel que ρ = w.ρ.w -1 est définie sur H A . On a I * (ρ) ⊆ H A (w), H A (w)/H A est une extension de Kummer. En particulier, I * (ρ)/k est une extension finie séparable. Définition 3.1.3. Le corps I * (ρ) ne dépend pas du A-module de Drinfeld de caractéristique générique sgn-normalisé ρ (voir [18, Definition 4.9]), on le note simplement H * A ; On l'appelle le corps normalisé associé à la fonction sgn. L'extension H *

A /H A est abélienne de degré r = q d∞ -1 q -1 .

Théorème 3.1.4. [18, Theorem 4.10] L'extension H * A /k est abélienne de degré rhd ∞ , elle est non ramifiée sauf en ∞, et H * A /H A est totalement ramifiée en ∞. où h est le nombre de classe de k.

  le corps obtenu par adjonction à H * A des éléments de Λ m . On rappelle que Puisque Λ m est exactement l'ensemble des racines du polynôme linéaire ρ m (t) ∈ H * A [t], l'extension K

m /H * A est galoisienne. Puisque A agit sur Ω via des polynômes à coefficients dans H * A , nous avons un morphisme injectif naturel

  par le même argument du cas n = 1 on obtient que BΛ p n ∩ B = 0. Corollaire 3.3.7. Soit m, n deux idéaux non nuls et premiers entre eux dans A. Supposons qu'on a q = 2 ou q = 2 et tout idéal premier p de A divisant mn est tel que deg(p) ≥ 2. Alors on a BΛ m ∩ BΛ n = BΛ m ∩ B = 0.

	Démonstration. La preuve est une application directe du Lemme 3.3.5 et de la Proposition
	3.3.6.

Corollaire 3.3.8. Soit m 1 , . . . , m r des idéaux de A tels que m

  BΛ p n+1 /BΛ p n B, BΛ p n B n et BΛ p n ∩ B = BΛ p .De plus, BΛ p est un idéal principal de B engendré par l'unique élément dans Λ p \ {0}.Démonstration. Soit m un entier positif, alors tout élément λ ∈ Λ p m+1 \ Λ p m donne une F 2 -base de Λ p m+1 /Λ p m . Le B-module BΛ p m+1 /BΛ p m est engendré par l'image de λ. Cette image est non nulle puisqueH * A (λ) = H * A (Λ p m+1 ) et le degré [H * A (Λ p m+1 ) : H * A (Λ p m )] = 2, grâce [18, §4]. Cela implique que BΛ p m+1 /BΛ p m B et BΛ p m+1 ∩ B = BΛ p m ∩ B.Maintenant, il est facile de vérifier que BΛ p est un idéal principal de B engendré par l'unique élément de Λ p \ {0}. Ce qui conclut la preuve de lemme. Nous attirons l'attention du lecteur qu'on a pB = BΛ p , grâce à [18, Lemma 4.18]. où g est le genre de k et W son diviseur canonique. Voir par exemple [27, Theorem 1.5.15]. Nous En particulier, on pose E ρ =< ρ x , x ∈ A > H * A . Lemme 3.4.1. Soit m = 0 un idéal de A tel que m admet la propriété (P). Soit λ un générateur de Λ m . Soit P ∈ E ρ tel que P (λ) = 0. Alors, on a P (µ) = 0 pour tout µ ∈ Λ m . Autrement dit, il existe Q ∈ H * A [τ ] tel que P = Qρ m .

	utiliserons également le produit tensoriel
	L H * A (n∞) = H * A ⊗ Fq L(n∞),
	Si S est un sous-ensemble de H * A [τ ] alors on note par < S > H * A le H * A -espace vectoriel engendré
	par S.
	3.5 et le
	Corollaire 3.3.7.

Lemme 3.3.9. Supposons qu'on a q = 2. Soit p un idéal premier de A tel que deg(p) = 1. Alors pour tout entier positif n on a Démonstration. Soit t = deg(m). Alors d'après le Corollaire 3.3.4, l'anneau A/m admet une F q -base (a 1 , . . . , a t ), où les éléments a i ∈ A sont premier à m tels que sgn(a i ) = 1 pour tout i ∈ {1, . . . , t}. D'après

[START_REF] Hayes | Stickelberger elements in function fields[END_REF] Theorem 4

.12] on a

  . Prouvons d'abord que rank B (BΛ m ) ≥ dim H * A (E nδ ), où n = [ , . . . , P s ) est une base de E nδ . Soit λ un générateur de Λ m , donc on a Λ m = {ρ a (λ), a ∈ A}. Nous prétendons que la famille {P 1 (λ), . . . , P s (λ)} est libre sur H * A . En effet, supposons qu'on une relation linéaire de la forme b 1 P 1 (λ) + • • • + b s P s (λ) = 0, où b 1 , . . . , b s ∈ H * A . D'après le Lemme 3.4.1, il existe Q ∈ H * A [τ ] tel que P i = Qρ m . Pour P ∈ H * A [τ ] on désigne par deg τ (P ) le degré de P comme polynôme en τ . Puisque les polynômes P i sont dans E nδ on a

	deg(m) -1 δd ∞	]. Soit
	(P 1 s	
	i=1 s b i deg τ ( b	
	i=1	

  f ν des éléments de A tels que (e 1 , ..., e ν , f 1 , ..., f ν ) est une F q -base de A/m. Soit λ un générateur de Démonstration. Puisque V est contenu dans L(n∞) pour n assez grand, on peut prendre V = L(n∞), ou même V = L(nδ∞), où δ est un entier positif tel que L(δ∞) \ L((δ -1)∞) = ∅. Mais dans ce cas on a Sp(L(nδ∞)) = E nδ , et on sait, grâce à la Proposition 3.4.8 et au Corollaire3.4.4, que dim H * A (Sp(L(nδ∞))) = dim Fq (L(nδ∞)). Soit E ρ ⊂ H * A [τ ] le H * A -espace vectoriel engendré par tous les polynômes ρ x , x ∈ A. Alors le quotient R ρ = H * A [τ ]/E ρ est un H * A -espace vectoriel de dimension ≤ g, où g est le genre de k. Si d ∞ = 1 alors on a dim H * A (R ρ ) = g. Démonstration. Soit V n = {P ∈ H * A [τ ], deg τ (P ) ≤ nd ∞ }, alors les quotients V n /E ρ ∩ V n définis une filtartion naturelle H * A [τ ]/E ρ . De plus, puisque E n ⊂ E ρ ∩ V n et E n = Sp(L(n∞)) on a, d'après le corollaire 3.4.9, dim H * A (V n /E ρ ∩ V n ) ≤ dim H * A (V n /E n ) = (nd ∞ + 1) -dim Fq (L(n∞)) ≤ g,où la dernière inégalité est obtenue grâce au théorème de Riemann-Roch. Cela prouve qu'on adim H * A (H * A [τ ]/E ρ ) ≤ g. Si d ∞ = 1 alors on a l'égalité, facile à prouver. En effet, E n+1 ∩ V n = E n pour tout n ≥ 0. Ce qui implique que E ρ ∩ V n = E n pourtout n ≥ 0 et par suite dim H * A (H * A [τ ]/E ρ ) = g. Remarque. Soit i 1 < . . . < i g les g nombres gap de ∞ définis par le Théorème de Gap de Weierstrass (voir par exemple [27, Theorem 1.6.8]). Alors, il est facile de voir que l'espace vectoriel R =< τ i 1 , . . . , τ ig > H * A est tel que R ⊕ E n = V n pour tout n ≥ 2g -1 et également on a R ⊕ E ρ = H

	Théorème 3.4.10.	
	Λ m , alors l'application U : E nδ × (H * A ) ν -→ H * A Λ m définie par
	ν	
	U(P, b 1 , . . . , b ν ) = P (λ) +	b j ρ f j (λ).
	j=1	

est surjective. En particulier, on a rank B (BΛ m ) ≤ dim H * A (E nδ ) + ν . Un calcul facile en utilisant le fait que n ≥ deg(m) -1 δd ∞ -1 donne ν ≤ δd ∞ + g. On conclut grâce au Corollaire 3.4.4. * A [τ ].
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Démonstration. C'est une conséquence de la Proposition 2.3.15 et le fait que l'ordre de D divise q n-1 . Proposition 2.3.17. Il existe une F q -base (z 1 , . . . , z n ) de V n telle que la restriction de Ψ n,Z à Gal(N n,ρ /k(∆(z 1 , . . . , z n ))) est un isomorphisme Gal(N n,ρ /k(∆(z 1 , . . . , z n ))) SL n (F q ). Démonstration. On choisit (z 1 , . . . , z n ) comme dans le Corollaire 2.3.16. On procède ensuite comme dans la preuve de la Proposition 2.3.9, pour montrer que l'image Ψ n,Z (Gal(N n,ρ /k(∆(z 1 , . . . , z n )))) contient toutes les matrices élémentaires. Mais, contrairement au cas n = 2, ici il faut utiliser le Lemme 2.3.14 et le Corollaire 2.3.16. Par conséquent ce groupe contient SL n (F q ). Théorème 2.3.18. Pour toute F q -base (z 1 , . . . , z n ) de V n , l'homomorphisme de groupes Ψ n,Z est un isomorphisme.

Démonstration. Il suffit de montrer le théorème pour au moins une base. On choisit (z 1 , . . . , z n ) comme dans la Proposition 2.3.17. Dans ce cas, le théorème est une conséquence de la Proposition 2.3.17 et le fait que le degré [k(∆(z 1 , . . . , z n )) : k] = q -1 puisque ∆(z 1 , . . . , z n ) est racine du

Lemme 3.3.10. Supposons qu'on a q = 2. Soit m un idéal non nul A, divisible par deux idéaux premiers p et q tels que deg(p) = deg(q) = 1. Alors on a

Démonstration. Nous devons prouver que B ⊂ BΛ m . Soit λ p (resp. λ q ) l'unique élémnent dans Ce qui achève la preuve de la proposition.

Preuve des principaux résultats

Filtrations de Riemann-Roch

Les espaces de Riemann-Roch sont des ingrédients utilisés dans la preuve des théorèmes 3.4.10 et 3.4.13. Ces F q -espaces constituent une filtration naturelle de A. Rappelons leur définition. Si n ∈ N, on pose

Il est facile de voir que L(n∞) ⊂ A et que A = n∈N L(n∞). d'après le théorème de Riemann-Roch la dimension exacte dimension de l'espace L(n∞) est donnée par la formule 

Démonstration. On utilise simplement la formule dim

De plus, on a les suites exactes 

pour i suffisament grand. La même contradiction peut être obtenue si l'on suppose que ε i < 0 pour tout i. Nous laissons les détails au lecteur. fini F q α est un sous-corps du complété k v de k en v. Ce qui implique que tout premier v ∈ S se décompose totalement dans k(F q α ). Mais S contient tous, sauf un nombre fini, des premiers de k. Donc, grâce au théorème de densité de Chebotarev [26, Theorem 9.13A], on a forcément

Preuve du Théorème 3.2.1

Pour donner la preuve du théorème 3.2.1 nous avons besoin du résultat suivant Corollaire 3.4.9. Soit V ⊂ A un F q -espace vectoriel de dimension finis inclus dans A. On a

La dernière inégalité est une conséquence du Théorème 3.2.2. Donc, R n = R pour n assez grand. En particulier, R est un espace vectoriel de dimension finie et on a

Pour n assez grand, nous utiliserons la décomposition (3.5.1) ci-dessus pour définir un homomorphisme d'anneaux

où End(R) est l'anneau des endomorphismes de R. Notons p R l'application de projection 

Soit Ψ : R -→ R l'isomorphisme défini par Ψ(P ) = p R (P ). Alors l'homomorphisme d'anneaux

Démonstration. Évident.

Théorème 3.5.2. Soit m = zA un idéal principal non nul de A de degré dd ∞ suffisamment grand. Si l'idéal m a la propriété (P), alors il existe un entier positif r(z)

Démonstration. Supposons que d soit suffisamment grand pour avoir R ⊕ 

Soit Q 1 , . . . , Q r des éléments de E ρ . Pour tout j = 1, ..., r, il existe g j , R j dans

Fixons une base (Φ 1 , ..., Φ r ) de R et notons φ R (z) la représentation matricielle de l'endomorphisme Φ R (z) dans cette base. d'après les équations (3.5.1) et (3.5.2) il existe des éléments s

Considérons les deux matrices carrées S(z) = (s

i (z)), avec r lignes et r colonnes.

Lemme 3.5.3. On a M (z) = -φ R (z)S(z).

Démonstration. Par définition il existe D 1 , . . . , D r ∈ E ρ tels que

Si l'on prend en compte des formules (3.5.4) et (3.5.5) alors on obtient (P 1 , ..., P s-1 , P s ) sous la forme de (ρ e 1 , . . . , ρ e s-1 , ρ es ), où e s = z et (e 1 , . . . , e s ) est une F q -base de L(d∞). Nous laissons au lecteur le soin de vérifier que (e 1 , . . . , e s-1 ) est libre modulo m. Soient f 1 , ..., f g des éléments de A tels que (e 1 , ..., e s-1 , f 1 , ..., f g ) est une F q -base de A/m. Puis le système

(ρ e 1 (λ), ..., ρ e s-1 (λ), ρ f 1 (λ), ..., ρ fg (λ)) est une famille génératrice de H * A Λ m . Posons Q j = ρ f j , pour j = 1, . . . , g. a = α q + β.

(3.6.5)

Supposons maintenent que Φ R est non injective. Alors ker(Φ R ) = ker(φ R ) est un idéal non nul de A, donc A/ ker(φ R ) est corps fini. Puisque ker(φ R ) = A alors le quotient A/ ker(φ R ) est isomorphe à un sous-corps fini de H * A . Or F q est le corps des constantes de H * A , donc nécessairement on a s, t ∈ F q . Ainsi, on tire de la formule (3.6.5) et de la formule (3.6.4) la relation sα q = A q 0 + t En utilisant la formule (3.6.3) on obtient la relation sα q = (y -αx) q + t qu'on peut l'écrire sous la forme (sα -t) q = (y -αx) q , par conséquent on a α(s + x) = y + t Cela implique que α ∈ B ∩ k = A. De plus, on a v ∞ (α) = v ∞ (y + t/x + s) = -1, ce qui est absurde.