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CHAPTER 1

INTRODUCTION

1.1 Research context

Brain tumors represent a significant public health issue all around the world, with
approximately 6,000 new cases diagnosed each year in France [1]. Despite advances in
surgical and medical treatments, the prognosis for patients with brain tumors remains
poor, with a 5-year survival rate of only 35% [2, 3]. Therefore, there is a pressing need to
develop innovative approaches to improve the tumor resection procedure with regards
to providing improved accuracy in identifying the tumor and other regions of the brain
to avoid interference on the healthy tissue as this can lead to post-surgical and recovery
complications amongst others.

In this PhD, we have narrowed our attention to one critical stage of brain tumor
resection procedure as illustrated in the thesis focus (see Figure 1.1). The medical man-
agement of newly diagnosed brain tumors comprised of the following several steps;
from the radiological diagnosis, to the surgical resection and the adjuvant treatment
[4]. The brain tumor resection stage requires the neurosurgeon correct understanding
of various brain functional regions in order to minimize the post-surgical neurolog-
ical impairment. Indeed, this aspect needs extreme care and high level of precision
because, any interference into unconcerned brain regions can lead to bleeding, brain
swelling, infection, brain damage or even death.

1
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Figure 1.1 – Thesis focus: neurosurgical planning stage.

Medical surgery is the usual treatment for most brain tumors. During the process of
brain tumor removal, a neurosurgeon creates an opening in the skull which is generally
referred to as craniotomy as illustrated in figure 1.2. Whenever possible, the surgeon
attempts to remove all the tumor while minimizing the risk of postoperative deficit, by
sparing important functional brain areas. If the tumor cannot be completely removed
without damaging vital brain tissue, doctors then aim to remove as much of the tumor
as possible. This brain tumor surgical procedure cannot be done without adequate
understanding of the various brain regions, since it helps to avoid non-tumor regions
of the brain. Generally, clinicians use magnetic resonance imaging (MRI) machines to
produce detailed images of the functional regions of the human brain, preoperatively
to identify the surrounding functional areas. It allows the realization of a presurgical
planning with the choice of the surgical access to the lesion and the appropriate resec-
tion goal tailored to each patient to minimize postoperative deficit. The MRI machine
is a non-invasive imaging technology used to investigate anatomy and function of the
body for both healthy subjects and unhealthy patients without the use of damaging
ionizing radiation. This non-invasive neuro-imaging option has gotten a lot of atten-
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tion for monitoring, and early diagnosis of neural disorders which allow useful efforts
to mitigate the progress. Using the blood oxygen level dependent (BOLD) imaging
technique, functional MRI (fMRI) indirectly measures the brain’s neural activity by de-
tecting blood flow changes. This is possible because, a local increase of cerebral blood
flow, which is detectable with MRI through the BOLD signal, aligns with the activation
of functional brain areas.

Figure 1.2 – Craniotomy approach of brain tumor removal [5].

The traditional task-based fMRI and resting-state fMRI are two of the main tech-
niques used in neuro-imaging. While task-based method analyzes the variation of
BOLD signals according to an activation paradigm to identify brain areas specifically
involved in the activation paradigm (e.g. language network), which requires patients’
cooperation and cognitive involvement. On the other hand, resting-state fMRI (rs-
fMRI) allows identification of functional networks without explicit requirement of sub-
jects to perform any cognitive task by analyzing the synchronicity of spontaneous low-
frequency (0.1Hz) BOLD signal oscillation between brain areas. In addition to the wide
interest among researchers on the advantages of resting-state fMRI over task-based
fMRI approach [6, 7], task-based fMRI is associated with limitations such as high test-
retest reliability [8], greater coverage of brain regions [9], reduced cognitive load [10],

3
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more sensitive to clinical populations [11, 12] and no reliance on cognitive cooperation
of the patient [13]. Resting-state fMRI approach is very interesting because, task-based
fMRI technique may not be suitable for patients who are unable to cooperate or realize
the task of the block paradigm due to special conditions such as unconscious patients,
patients in pain, infants and so on. Although resting-state fMRI appears more appeal-
ing, it is not routinely available because of the necessity to have an expert reviewer
who can manually identify each functional network. This revision stage is a labori-
ous and time consuming process because, it involves the sorting and observation of all
generated activation maps.

The application of machine learning in the field of neuroscience has the potential
to revolutionize the way brain tumors are managed, by providing improved accuracy
in diagnosis and better-informed treatment decisions. With the rapidly growing ad-
vancement and use of machine learning and computer vision to address critical prob-
lems in medical imaging research, there is an opportunity to leverage these advantages
to support neurosurgeons by proposing state-of-the-art machine learning algorithms,
that can be clinically validated and ensure better accuracy in brain tumor resection
procedure [14].

1.2 Thesis statement and research questions

In order to improve predictive power and precision current medical imaging mod-
els, the neurosurgical literature is increasingly focusing on replacing traditional statis-
tical models with more complex Machine Learning (ML) models [15, 16]. With a homo-
geneous distribution rate of machine learning adoption in clinical practice, it is clear
that neurosurgeons have become open to adopt advanced machine learning techniques
in different kinds of situation for example, in the survey carried our by V.E Staartijes
et al. about 60.2% use ML to predict outcome, 51.5% for neural complications and
50.5% to interpret and quantify medical imaging [17]. Machine learning techniques
have been used in various neurosurgery stages to detect cerebrospinal fluid leaks [18],
functional brain network analysis for early dementia detection [19], or predict post-
operative satisfaction [20]. Despite this interesting trend and availability of recent pub-
lications which reviews and proposes wide range of ML techniques in neurosurgery,
a data-driven approach based on machine learning algorithms for full automation of
the identification of functional brain networks has so far been hampered by lack of suf-
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ficient unhealthy data. In this PhD work, we aim to exploit some advanced machine
learning and computer vision techniques to propose and demonstrate functional brain
network identification for brain tumor removal procedure using resting-state fMRI im-
age data acquired from the department of neurosurgery of the University Hospital of
Angers.

There have been several advances towards an improved technology for brain tu-
mor removal. One of the most advanced technologies is fluorescence-guided surgery
(FGS), which utilizes a fluorescent marker to highlight tumor tissue and distinguish
it from surrounding healthy tissue. This technique enables neurosurgeons to achieve
more complete resections and has been shown to improve patient outcomes [21]. An-
other promising technology is intraoperative MRI (iMRI), which allows for real-time
imaging during surgery and helps neurosurgeons to accurately target and remove tu-
mor tissue [22]. Advanced multimodality image-guided operating (AMIGO) [23] is an-
other technology which allows neurosurgery operation to be guided for the removal
of brain tumors. It involves the integration of multiple imaging modalities, such as
magnetic resonance imaging (MRI), computed tomography (CT), and functional MRI
(fMRI), to provide real-time images of the patient’s brain during surgery. While all
these technologies presents interesting alternative to high precision surgery for brain
tumor removal, rs-fMRI has some advantages over these technologies because, it can
identify all functional networks in a single 15-minute resting MRI sequence, without
requiring the implementation of an MRI sequence and an experimental paradigm for
each function to be tested. This allows for a more comprehensive evaluation of func-
tional brain areas than FGS, which only highlights tumor tissue, and iMRI, which may
not capture the full extent of the tumor due to its limited field of view. Additionally,
rs-fMRI can detect functioning brain regions in patients unable to perform activation
tasks, making it a valuable tool for preoperative planning. In the case of AMIGO,
there is known risk of technical malfunctions, which can compromise the accuracy of
the images and increase the risk of surgical errors. Additionally, the cost of AMIGO
technology is already a significant barrier to its widespread adoption, as it requires
specialized equipment and training for its use. AMIGO technology is currently only
available in a limited number of hospitals, and its use may be restricted to high-volume
centers with specialized expertise in brain tumor surgery. Lastly, the accuracy of the
images produced by AMIGO depends on the skill and experience of the operator, who
must be able to interpret and integrate multiple sources of information in real-time.
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As a connection point, our focus in this research is to address the current limitation in
the use of resting-state fMRI as a clinical routine. This could also address some critical
neuroimaging limitations for general purpose usage [24].

Research Question 1 (RQ1): In effort to standardize the resting-state approach of fMRI
for functional brain network recognition, we identify that, an initial step is to explore
an automatic function brain network recognition to avoid the manual review process,
since it is one of the major limitations that affects routine adoption. We are interested in
investigating the use of machine learning algorithms to recognize and provide better
understanding of different brain areas to neurosurgeons while sparing healthy brain
tissues as well as reduce the likelihood of postoperative deterioration. To ensure our
deep learning model performs well with unhealthy data which may present spatial
irregularities like displacement or even destruction of brain functional areas due to
tumor invasion or local mass effect. It is necessary to train a machine learning model
with unique dataset of comparative class however, unhealthy fMRI data for functional
brain network recognition is limited owing to the fortunate rarity of brain tumors, as
well as the substantial inter-individual variation in tumor formation or location. This
motivates the extension of RQ1 to allow us investigate ways of exploiting the observed
similarity between healthy and unhealthy data. This approach could potentially, allow
transferability of features learned from healthy data to boost recognition accuracy of
fMRI functional brain networks in unhealthy data.

How can we efficiently automate functional brain network recognition in un-
healthy patent by exploiting the information gain from healthy data ?

Research Question 2 (RQ2): The manual review of functional brain networks by clin-
icians involves the process of data annotation as routinely required in rs-fMRI data
preprocessing stage. This data annotation process is tedious and time consuming. It is
also important to emphasize that this annotation process has no clinical benefit in the
brain tumor resection process. At this stage, we aim to eliminate the process of healthy
data annotation. This is important because, large amount of healthy data can be ac-
quired for model learning, while annotation can be avoided since healthy volunteers
can be easily enrolled for data acquisition in the non-invasive imaging modality.
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Can we avoid the annotation of healthy subject data since it has no clinical rele-
vance ?

Research Question 3 (RQ3): In our demonstration of feature transferability from healthy
data to unhealthy data, we observed interesting improvement in model accuracy which
signifies that, indeed there is useful similarity between the two classes of data. How-
ever, we also observed sharp drop in the accuracy of model trained and validated
with unhealthy data when compared with model trained and validated with healthy
data, which underscores the existence of difference in data class. These two conflicting
observations amount to data discrepancy which informed our intuition to better un-
derstand the indirect relationship that exist between healthy and unhealthy data. This
investigation is interesting because, visual observation from all data class, shows that
there is similarity between related functional brain network activation signals despite
individual variability. Although, we expect the influence of brain tumor on functional
brain network activation maps as a source of local difference in the case of unhealthy
data, the overall relation requires further evaluation for better understanding.

What is the source of observed data discrepancy between healthy and unhealthy
fMRI images ?

1.3 Research contributions

In this PhD, we proposed end-to-end deep learning models for the automatic iden-
tification of functional brain networks by analysing resting-state fMRI images. We
expect that, this will open-up resting-state approach for fMRI brain region identifi-
cation and further improve the precision of functional brain region identification in
order to avoid interference and preserve the patient’s neurological functions during
brain tumor resection. We demonstrate that, it is possible to implement data-driven
machine learning approach like deep learning, despite the well known limitation of
small amount of unhealthy fMRI data. In this case, we proposed and end-to-end deep
learning model for functional brain network identification. We also proposed to tackle
unhealthy data limitation while benefiting from observed similarity between healthy
and unhealthy data using transfer learning approach.
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Despite the recorded progress of boosting our model accuracy in unhealthy pa-
tients using transfer learning approach, an observed limitation is the annotation of
large dataset in this supervise learning technique. To address this problem, manual
annotation of healthy data as required in the transfer learning approach from healthy
to unhealthy fMRI data, needs to be avoided. We propose a self-supervision technique,
which prevents the annotation of this healthy data for which there is no clinical interest.
In this approach, we practically ensured that no healthy data annotation is necessary,
to allow potentially large data collection since the process is non-invasive and healthy
volunteers can easily be enrolled for data collection.

In effort to address the local and global relationship between healthy and unhealthy
data, we demonstrated several statistical techniques to reveal local differences in fMRI
images with respect to tumor influence on functional brain network activation. We
also showed that latent space visualization can be a useful tool to understand the low
dimensional distances between different classes of data in this difficult problem. Our
final result shows that, setting the same brain network activation volume threshold
for both healthy and unhealthy data resulted in the consistent ambiguous relationship
between healthy and unhealthy data, since those of unhealthy data are also influences
by brain tumor and other network activation map overlap-scenario.

The output of this PhD, demonstrates interesting insight in the use of deep learn-
ing techniques to automatically recognize critical regions of the brain and avoid
disruption during brain surgery for tumor removal. Additionally, The exploita-
tion of the similarity between healthy and unhealthy data is initiated by illustrat-
ing the use of transfer learning and self supervision technique to manage limited
unhealthy data and avoid healthy data labeling respectively.

1.4 Significance of the contributions

Several studies have pointed out major limitations in task-based fMRI by highlight-
ing that the performance of repetitive tasks may result in artifacts in the analysis of
BOLD signals [25], and resting-state fMRI is considered a more reliable mapping tech-
nique in pre-operative surgical planning compared to task-based fMRI [26, 27], because
of its ability to identify multiple networks at the same time, which saves scanning time
when information from multiple networks is required [28].
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The results presented in this report, opens a significant possibility in understand-
ing functional brain regions for brain tumor removal procedure. A recent survey by
M. Khosla et al. on machine learning in resting-state fMRI analysis argues that, there
is need open-up some limitations of resting-state fMRI analysis using the optimized
machine learning and medical imaging approach since resting-state is easier to stan-
dardize across sites compared to task-based protocols since it does not rely on external
stimuli [29]. The results of this study, like the identification of default mode network
(DMN) in resting-state connectivity provides interesting implications in neurological
and psychiatric disorders, including autism, schizophrenia and alzheimer’s [30, 31,
32]. Lastly, It is clear that clinical application of rs-fMRI is still limited, while many
potential clinical adoption are currently being investigated to allow inclusion of this
technique in presurgical planning for patients with brain tumor and epilepsy [28].

By addressing the main limitations of using resting-state fMRI method of func-
tional brain network recognition for neurosurgical procedure, this work pro-
motes accelerated standardization potential for this technique.

1.5 Structure of the document

The rest of this document is organized in three chapters (chapter 2, chapter 3 and
chapter 4) before a concluding chapter 5. In these three chapters, we present our main
methodological contributions:

In chapter 2, we present our work on machine learning algorithm for automatic
identification of functional brain networks using shallow machine learning techniques
and deep learning approach with further investigation of feature transferability [33,
34].

In chapter 3, we discuss our investigation on the use of self-supervision learning
technique to address healthy data annotation which is time consuming and has no
clinical benefit [35].

In chapter 4, we provide details of our study to better understand the local and
global relationship between healthy and unhealthy fMRI data.

To allow better understanding of strategies discussed in this document, we present
all relevant explanation of the terminology of machine learning and computer vision
used in this thesis report in Annex A. In Annex B, we provide details of the clini-
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cal procedure for fMRI functional brain image data acquisition and pre-processing for
machine learning experiments to simplify understanding and distinguish resting-state
fMRI data acquisition from our methodological contributions shown in chapters 2, 3 &
4. Lastly, in Annex C, we present a pilot study on the reduction of the complexity of
the models via graph encoding to perform graph representation learning using graph
neural network (GNN) [36].
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CHAPTER 2

AUTOMATIC FMRI NETWORK

RECOGNITION WITH SHALLOW AND

DEEP LEARNING TECHNIQUES

In this chapter, we propose an end-to-end deep learning algorithm to classify func-
tional brain networks in resting-state functional magnetic resonance imaging (rs-fMRI)
data [33]. Considering the available small size data of unhealthy functional magnetic
resonance imaging (fMRI) data, we demonstrated the use of transfer learning tech-
nique to improve our deep learning model which also highlights the existence of a
similarity between healthy and unhealthy dataset [34]. Therefore this chapter is based
on the above cited publications.

2.1 Introduction

One of the most researched applications of machine learning in healthcare is med-
ical imaging [37]. While effort remains consistent in developing and improving algo-
rithms, data availability is crucial for deploying efficient machine learning solutions
[38]. The recent covid-19 pandemic has demonstrated, for instance, how the availabil-
ity of a large annotated dataset could significantly boost the power of machine learning
[39]. However, in most clinical practices, such an initiative to share a large dataset is
still discouraged.

The machine learning community has developed several workarounds approaches
to compensate for the lack of data. This compensation can be obtained using algo-
rithms that learn faster, like in few-shot learning approaches [40]. The lack of data can
also be compensated by automatically generating fake data, which are realistic enough
to boost the training of algorithms. This includes the generation of synthetic data via
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simulators [41], generative models [42] or via data augmentation [43]. Another ap-
proach known as transfer learning, uses pre-trained models on similar datasets [44]. In
this chapter, we focus on this transfer learning approach.

While largely used in computer vision, transfer learning is still actively investigated
especially in the medical domain [45, 46]. One of the most common transfer learning
approach in computer vision is using pre-trained models from 2D color outdoor natu-
ral images. However, for specific application domains, such as medical imaging, this
approach is neither optimal nor possible, due to the difference in data structure be-
tween medical images and 2D color natural images (3D images instead of 2D images,
size of images, bit depth of images, . . . ) [47]. Also, the efficiency of transfer learn-
ing has been shown to be optimal when images share the similar content [48]. Lastly,
transfer learning helps when the data used for the pre-training is less expensive when
compared to images from the target domain. This analysis brings us to the simple and
yet innovative idea of investigating the value of a pre-trained model on healthy sub-
jects’ data when transferred to unhealthy patients. We propose testing and illustrating
this transfer learning idea in a specific clinical use case.

The rationale for the selection of this use case are:

a) We need a use case for which very few public datasets are indeed currently
available

b) We need a use case for which the impact of the disease on the image is not
too large to minimize the shift between healthy and unhealthy data

c) We need a use case for which imaging modality is non-invasive so that ac-
quisition of images on healthy control is relatively easy.

This brought us to the selection of the clinical use case presented in the next section
to test our original idea of transfer learning from healthy subjects’ data to unhealthy
patient data.

2.1.1 Clinical use case

Functional MRI (fMRI) is a method that eases the understanding of brain activation
by analyzing the blood-oxygen-level-dependent (BOLD) signals, allowing the identi-
fication and localization of functional brain areas. The development of this technique
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promotes a better understanding of the functional anatomy of the human brain and
a more accurate characterization of inter-individual topographical variability of func-
tional brain areas such as language areas [6]. Thus, some fMRI techniques are progres-
sively included as a procedure in several pathologies for surgical planning [49, 50, 51,
52].

The standard fMRI approach is a task-based block paradigm contrasting brain ac-
tivation at rest and when performing a specific task. However, despite its usefulness,
this technique presents several drawbacks, and inconsistencies [53]; the patient’s coop-
eration is needed, and it is unsuitable for young children and patients who are unable
to perform the task. In addition, the study of several functional networks is time-
consuming, and it requires the acquisition of each network with subsequent develop-
ment of a specific activation task paradigm [54].

An alternative for the task-based characterization of functional networks is the
resting-state fMRI (rs-fMRI), which studies the synchronization of low-frequency os-
cillation between brain areas at rest [55, 56]. It is possible and practical to identify
from these signals the so-called Intrinsic Connectivity Networks (ICNs), which re-
flect the neuro-anatomical substrate that corresponds to brain functional networks [57,
58]. However, rs-fMRI for functional network identification is not yet part of the pre-
operative routine, because of the high level of expertise needed for ICNs identification.
Indeed, each of the ICNs needs to be visually reviewed by an expert to identify an in-
dividual functional network of interest [59]. To broaden the use of this technique in
the pre-surgical planning for various surgical procedures, the initial stage consists of
effective automation of fMRI brain network identification in patients’ data.

In the literature, automated machine learning algorithms have been the subject of
several studies to identify disease patterns in rs-fMRI data, especially in epilepsy [60,
61], as well as traumatic brain injuries [62], addiction [63], cognitive impairment [64],
and psychiatric disorders like depression and schizophrenia [63, 61]. There have been
relatively few attempts [65, 66, 57, 67] to automatically identify functional networks
on rs-fMRI data using machine learning. Lu et al. [65] developed an instance-based
automated method for identifying language networks in brain tumor subjects using
independent component analysis (ICA)-based mapping on rs-fMRI. By contrast, we
are data-driven and do not limit ourselves to only language networks. In fact, our
study considers seven functional networks. Additionally, each of the previous stud-
ies has its defined scopes, data variants, and functional networks used for automated
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identification in rs-fMRI for pre-surgical planning. In [66], the authors proposed a
task-free paradigm for acquiring fMRI data, which was less demanding for patients
and easy to administer. Further investigation was carried out on right-handed healthy
control subjects. A semi-automated language component identification procedure was
proposed and tested on healthy patients [66]. In this chapter, we consider unhealthy
patients in addition to healthy subject data. In the study by [57], a model was trained
to identify the main functional networks in a small number of healthy volunteers for
different functional networks. The performance of the simple feed-forward network
proposed in [57] is ultimately dependent on handcrafted features extracted from fMRI
images. The above concerns motivated our proposition to design a specific end-to-end
deep learning [68, 69] knowledge transfer method to identify and automate the detec-
tion of functional networks in rs-fMRI of unhealthy patients. This approach has the
advantage of being applicable to patients in need of brain surgery due to brain tumors
or other reasons.

While some efforts are being made to provide more and more public datasets of
medical images of large interest, there are currently few available public datasets of
resting-state fMRI of healthy or unhealthy individuals [70, 71]. However, these datasets
have been produced with slightly different protocols than ours. The differences include
the type of disease, number of participants, and MRI sequence for some areas. There-
fore, these differences would prevent the transfer learning approach on our dataset.
Other related datasets include the database of [72]. It is made of 227 healthy individu-
als aged 18 to 74 to investigate the impact of adult age on functional brain connectivity;
the database of [73] includes 993 patients and 1, 421 healthy individuals to classify psy-
chiatric disorders. We investigate patients with brain tumors. Therefore, these datasets
would also not allow a direct transfer learning approach from healthy to unhealthy on
our data. Therefore, the situation of clinical interest considered in this study is perfectly
suited to test the possibility of transferring knowledge from healthy to unhealthy pa-
tients.

As an innovative elements, (i) we automatically identify functional networks on rs-
fMRI data for the first time with an end-to-end deep learning method as opposed to
handcrafted features that were previously proposed in the closest literature for this
problem [57]. (ii) We demonstrate the value of transfer learning from a model of
healthy control subjects to unhealthy patients with a brain tumor.
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2.2 Materials and methods

In this study, preprocessed resting-state fMRI signals of functional brain network
activation of 81 healthy control subjects and 55 unhealthy patients to acquire features
which correspond to 7 biological networks of the brain, which are the Language Net-
work (LANG), Salience Network (SAL), Ventral Attention Network (VAN), Default
Mode Network (DMN), Left Fronto-parietal Control Network (lFPCN), Right Fronto-
parietal Control Network (rFPCN), Dorsal Attention Network (DAN). The seven se-
lected brain features represent the main intrinsic connectivity network (ICN) identified
and described in resting-state fMRI literature. These particular networks were selected
for the DMN to serve as a control for the others because of the inter-individual vari-
ability that makes them difficult to identify using detection software or by non-expert
reviewers. The detailed process of fMRI data acquisition and preprocessing is pro-
vided in Annex B. All acquired images where processed in ‘tmaps or gray level image
and thresholded’ format from healthy subject data as shown in Figure 2.1.

a)  gray level image b)  threshold image

Figure 2.1 – Slice view of LANG network in a) gray level and b) threshold format.

2.3 Identification of functional brain networks through

machine learning algorithms

The analysis of fMRI data involves the identification of functional brain networks
that reflect the intrinsic organization of the human brain and its dynamic interactions
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with the environment. However, this task is challenging due to the high dimension-
ality and complexity of fMRI data, as well as the limited prior knowledge about the
underlying biological processes. To address these challenges, machine learning algo-
rithms have emerged as a powerful tool for the analysis of fMRI data. These algorithms
can be used to identify functional brain networks by capturing the intrinsic patterns of
brain activity, as well as their correlations with external variables such as behavioral,
demographic, and clinical factors. Over the past decade, a growing number of studies
have applied machine learning algorithms to fMRI data, including independent com-
ponent analysis (ICA) [74], graph-based methods [75], and deep learning [76]. In this
approach, we explored both shallow and deep learning algorithms to better under-
stand the applicability and evaluate its performance on our fMRI data task.

2.3.1 Shallow learning classification algorithms

These algorithms are characterized by their simple architecture, which consists of
only a single layer of processing unit, and are well suited for tasks where the data has
a low dimensionality or is relatively straightforward to model. There are numerous
algorithms that have been developed for various purposes such as image classifica-
tion, speech recognition, and natural language processing. Shallow learning, which
is also known as shallow neural network or single-layer network, is among the most
commonly used categories of machine learning algorithms. Our initial experiments
focused on using some well known shallow learning algorithms for the classification
of functional brain networks. These shallow learning algorithms are briefly discussed
as follow:

Random forest: An approach for ensemble learning called “random forest” can be
applied to both classification and regression problems. It is a form of decision tree
method that mixes several decision trees rather than depending just on one decision
tree to produce a prediction. The fundamental principle of random forest is to con-
struct numerous decision trees on bootstrapped data samples and then utilize their
combined forecasts to arrive at a final prediction. Problems involving regression and
classification can both be solved using random forests. As applied to our fMRI brain
network classification experiment, we used the entropy parameter to determine how
nodes branch in a decision tree
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Entropy =
c

∑
i=1
−pi ∗ log2(pi), (2.1)

where pi is the frequency of label i at a node and c is the number of unique labels.

Naïve bayesian classifier: The naïve bayes classifier is a simple probabilistic machine
learning algorithm based on Bayes’ theorem. it presumes that all aspects are indepen-
dent hence, it is referred to as “Naïve”. In a naïve bayes classifier, the goal is to predict
the class of a given data point based on the values of its features. Given a set of classes
C = c1, c2, ..., ck, the probability of a data point x belonging to a class ci can be calcu-
lated using bayes’ theorem

P(ci/x) =
P(x/ci) ∗ P(ci)

P(x)
, (2.2)

where P(ci/x) is the posterior probability of x belonging to class ci, P(x/ci) is the like-
lihood of observing x given that it belongs to class ci, P(ci) is the prior probability of
class ci, and P(x) is the evidence, which is calculated as the sum of the likelihoods of
observing x for all classes.

Depending on the naïve bayes algorithm being utilized, the naïve bayes classi-
fier can be trained using either bayesian inference or maximum likelihood estimation.
Gaussian naïve bayes, multinomial naïve bayes, and bernoulli naïve bayes are the three
primary varieties of naïve bayes algorithms. For example, gaussian naïve bayes are
best suited to continuous data, while multinomial or bernoulli naïve bayes are better
suited to discrete data. In our experiment, we explored the bernoulli naïve bayes for
fMRI image classification task.

K-Nearest neighbors: This algorithm is a non-parametric, instance-based, supervised
learning algorithm used for classification and regression tasks. The basic idea behind
K-Nearest neighbors (KNN) is to find the K-nearest data points to a given test data
point and make predictions based on the majority class or average value of the K-
nearest neighbors

d(q, p) =

√
n

∑
i=1

(qi − pi)2. (2.3)

where d(q, p) is Euclidean distance’s between data points p and q.
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Mathematically, given a training set of N points in a D-dimensional feature space,
the KNN algorithm computes the distance between the test data point and each of
the N training points, using a distance metric such as Euclidean distance, Manhattan
distance, or Cosine similarity. The K-nearest neighbors are then selected and the pre-
diction is made based on either the majority class of the K-nearest neighbors (in classifi-
cation tasks) or the average value of the K-nearest neighbors (in regression tasks). Most
commonly with euclidean distance as implemented in this experiment, KNN uses the
Equation 2.3 to iterative compute the data point values related to fMRI functional net-
work maps.

Support vector machine: Support vector machine (SVM) is another supervised learn-
ing algorithm used for classification and regression tasks. It is based on the concept of
finding the maximum margin hyperplane that separates the data into two classes. The
maximum margin hyperplane is the one that has the largest margin, or distance, from
the closest data points, called support vectors. We describe the optimization problem
that is tackled by SVMs as

minw,b,ζ
1
2

w⊤w + C
n

∑
i=1

ζ, (2.4)

yi(w⊤ϕ(xi) + b) ⩾ 1− ζi, (2.5)

where ζi is the distance to the correct margin with ζi ⩾ 0, i=1,...,n; C is the regular-
ization parameter; w⊤w =

∥∥w2
∥∥ is the normal vector; ϕ(xi) denotes the transformed

input space vector; b is a bias parameter; lastly, yi denotes the i-th target value.

Although, SVM can also be extended to non-linear classification problems for map-
ping the data into a high-dimensional feature space using a kernel function, our inter-
est point in this experiment is on linear kernel for our multi-class fMRI images classi-
fication. In this case, the objective of the support vector machine algorithm is to find
a hyperplane in an N-dimensional space(N — the number of features) that distinctly
classifies different data points.

Classification tree: A classification tree is a tree-based technique that iteratively di-
vides the data into progressively smaller subsets depending on the characteristics that
produce the greatest information gain or impurity reduction at each split. The end
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result is a decision tree, where each leaf node represents a class prediction and each in-
terior node represents a feature test. The path from the root to a leaf node based on the
feature values is used to forecast a new data point. In our fMRI image classification,
we explore this technique since its simpler and easier to interpret, although random
forest models can be more complex as it combines multiple decision trees to improve
classification performance.

Feed forward neural network: A feed-forward neural network is a type of artificial
neural network that consists of multiple layers of interconnected nodes, or artificial
neurons. The name ‘feed-forward’ refers to the fact that data flows through the net-
work from input to output, without looping back.

Each neuron in a feed-forward neural network takes inputs from the previous layer,
performs a weighted sum of these inputs, and applies an activation function to pro-
duce an output, which becomes the input for the next layer. The activation function
is typically a non-linear function, such as a sigmoid or a rectified linear unit (ReLU),
that introduces non-linearity into the model and allows the network to learn complex
non-linear relationships between the inputs and outputs. Mathematically, a feedfor-
ward neural network is represented in Equation 2.7 while the cost function is given
in Equation 2.6. Let x be the input vector, W and b is the weight and bias matrices,
respectively, and f is the activation function. The cost function of the network is given
by

C(W, b) =
1

2n ∑
x
∥y(x)− a∥2 , (2.6)

where w is weights gathered in the network; b is biases n is number of inputs for
training; ∥v∥ is vector v′s normal length; x is input and a is output vectors. The output
y of a single neuron in layer l is given by:

y = f (Wlx + bl), (2.7)

To identify the most suited family of machine learning algorithm for functional
network classification, we implemented six machine learning algorithms mentioned
above, which includes: random forest, feed forward neural networks, naïve bayesian
classifier, K-nearest neighbors, support vector machine, and classification tree. In our
experiment, the random forest classifier consists of a combination of tree classifiers,
100 in our experiment. Each classifier is generated using a random vector sampled
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independently from the input vector. Each tree casts a unit vote for the most popu-
lar class to classify an input vector. Bayesian classifiers are statistical classifiers. They
can predict class membership probabilities, such as the probability that a given sample
belongs to a particular class. Naïve bayesian classifiers assume that the effect of an at-
tribute value on a given class is independent of the values of the other attributes. The
k-nearest neighbors classifier [77] stores the complete training data. New examples are
classified by choosing the majority class among the k-closest examples in the training
data. We used the Euclidean distance to measure the tile distance between examples
for our particular problem. Support vector machine is another powerful method for
building a classifier. It aims to create a decision boundary between two classes that en-
ables the prediction of labels from one or more feature vectors. This decision boundary,
known as the hyperplane, is orientated so that it is as far as possible from the closest
data points from each of the classes. Decision trees [78] recursively split the feature
space based on tests that evaluate one feature variable against a threshold value. We
used the information gain criteria for choosing the best test and top-down pruning
with a value of 0.95 to reduce over-fitting.

2.3.2 Deep learning with CNN

Following the implementation of shallow machine learning models we consider the
implementation of an end-to-end deep learning algorithm. Since deep learning allows
modelling to learn from complex data structure and extract features from various sig-
nals like speech and images by using neural networks with numerous hidden layers
(hence the name “deep”). Unlike shallow machine learning algorithms which require
manual feature engineering, deep learning algorithms can extract and learn rich as well
as meaningful representations of the data from the raw inputs, such as activation sig-
nals in our fMRI image etc. This makes deep learning particularly well-suited for tasks
where the data is high-dimensional and complex, and where manual feature engineer-
ing is challenging and non-feasible or needs to be avoided. Our focus at this stage is
to demonstrate the possibility of an end-to-end deep learning methods in our bench-
mark test. This is interesting because, it avoids the use of handcrafted features of our
medical image data which allows greater flexibility of our model. We selected the pre-
dominant approach in computer vision, namely deep convolutional neural networks
[79]. The baseline approach resorts to standard supervised training of the prediction
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model (the neural network) on the target training data. No additional data sources
were used. In particular, given a training set comprised of K pairs of images fi and
labels ŷi, we train the parameters θ of the network r using stochastic gradient descent
to minimize empirical risk.

θ∗ = arg min
θ

K

∑
i=1
L(ŷi, r( fi, θ)), (2.8)

L denotes the loss function, which is cross-entropy in our case. The minimization is
carried out using the adam optimizer [80] with a learning rate of 0.001. The architec-
ture of networks r(·, ·), shown in Figure 2.2, has been optimized on a cross-sample set
and is given as follows: three convolutional layers with filters of size 3×3 and respec-
tive numbers of filters; 64, 128 and 256, each followed by ReLU activations and 2×2
max pooling; a fully connected layer with 256 units, ReLU activation and dropout (0.5)
and a fully connected output layer for 7 classes and a softmax activation. The hyper-
parameters of the optimized CNN were based on a grid-search operating on the depth
of the neural network. Other dimensions could be further investigated such as width
as done in Efficient Net [81]. Here, we do not seek an absolute best performance but
rather focus on the possible relative gain of performance brought by transfer learning
from healthy control to unhealthy patients. In addition to the optimized CNN of Fig-
ure 2.2, we also included comparison with standard CNN architectures like VGG16
[82], ResNet [83] and DenseNet [84].

Max-Pooling-2D --> ReLu activation ReL
u ac
tivat
ion

softmax
activation} Brain network classes

LANG 

SAL 

VAN 

DAN

INPUT
(42 x 51 x 34)

Output
classes

1st-64 filters -->  2nd-128 filters --> 3rd-256 filters

1-fully connected
256 neurons 

Figure 2.2 – Proposed end-to-end convolutional neural network(CNN) architecture for
fMRI network classification.
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The tested shallow and deep supervised learning classification algorithms were im-
plemented based on fMRI data from 81 healthy subjects. The training dataset included
78 individual cartography with each of the seven main functional brain networks, cor-
responding to the 7 identified networks among the 55 ICs generated for each of the 78
healthy control subjects in the training group. In order to reduce the dimensionality
and minimize over-fitting in shallow learning algorithms, we extracted the coordinates
of the network activation peak of each cluster in order to minimize the number of vari-
ables considered for training before feeding the data into algorithms. Each algorithm
was trained ten times with a cross-validation strategy to ensure robustness and confi-
dence. Algorithms were then tested using the fMRI data from the four other healthy
subjects. We used each of these algorithms for each patient to identify the seven iden-
tified networks among generated 55 ICs from the main functional networks. The iden-
tified networks were further compared to the reference networks by our two expert re-
viewers for validation. We identified the most suited algorithms for identifying seven
main functional networks (DMN, lFPCN, LANG, rFPCN, SAL, DAN, and VAN). Fi-
nally, we tested the different parameters of the model to optimize the results. The best
method was selected based on the highest classification performances. We consider
further investigation on the possibility to increase our datasize to allow model training
with more generalize data.

2.4 Data augmentation

In effort to strengthen the generality of our data, we explored the option of simulat-
ing some possible clinical noise as discussed in Table 2.1. This was a relevant approach
because, it allows the opportunity to evaluate the influence of clinical noise in our
model. Furthermore, this considerably increased the amount of our experiment data
following systematic tune of augmentation parameters which provided the 9 variants
in each case as shown in Table 2.2 which was observed to have significantly boost our
model performance.

Some of the data augmentation options for simulating the clinical noise includes:

— Elastic transformation: Elastic image transformation is a technique used to change
or distort a picture in a non-rigid way. While warping or deforming the pixels
to conform with a new shape or position, elastic image transformation aims to
preserve the semantic content of the image.
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Table 2.1 – Clinical noise simulation from image data augmentation.

Name Parameters Medical simulation
Elastic transformation Alpha, Sigma Neuroplasticity
Horizontal flip xyz-Axis Symmetry of the brain

Pepper noise probability Common noise artifact
in MRI images

Sharpen alpha,
brightness

Simulation of susceptibility
artifacts

Scale Zoom Average human brain
size

— Horizontal flip: This option provides the flip of both rows and columns hori-
zontally for a given image. This allows the observation to understanding the
level of horizontal symmetry of the brain.

— Pepper noise: Pepper noise is a type of image noise that appears as black pixels.
Generally, this is referred to as “salt and pepper noise” when its random black
and white pixels. In this case, It allows us to simulate the MRI noise in our
images by imitating possible errors in the image acquisition process, such as
a faulty sensor or transmission errors, or by image processing operations that
introduce errors into the image.

— Sharpen: In effort to manipulate the sharp appearance of our input image, we
applied a filter to the image, which enhances the high-frequency content of the
image and increases the contrast between adjacent pixels.

— Scale: Image scale augmentation in this case is achieved through a variety of
techniques, including resizing the images, cropping the images, or zooming in
or out on the images.

The implementation of the above data augmentation options followed the proce-
dure described in [85]. We observed non-compatibility for 3-dimension peppered noise
augmentation, therefore, we implemented algorithm 2, which to allows 3-dimensional
peppered noise augmentation option for our dataset. All other image augmentation
options followed the described procedure in algorithm 1 and the visual output of the
6 initial data augmentation options are provided in Figure 2.3, while further efforts to
use generated lesion mask in the strategic application of augmentation to simulate a
more realistic effort of tumor presence is show in Figure 2.4.

Further data augmentation to simulate the impact of brain tumor in fMRI brain
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LANG                     SAL                        VAN                       DMN                      LFPCN                  RFPCN                   DAN

Original

Horizontal

 Flip


(x-axis)

Pepper

noise


(p = 0.75)

Sharpen
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lightness=2.5)

Scale

(1.5)
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(alpha=1
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Figure 2.3 – Visualization of fMRI data augmentation using clinical noise simulation.
Functional networks are represented column-wise. 1st row represent original fMRI
data while while 2nd through 6th represent the different augmentation options.

activation networks, was achieved in two ways. First, we computed a spatial stretch
on the healthy fMRI network images similar to the effect of a brain tumor on the area
within and about 3− 5px range around the region of the lesion mask (see Figure 2.6). A
classical filter known as pinch-explode was used for this purpose (see Figure 2.5). Sec-
ondly, we introduced a randomly generated 3D lesion mask. The lesion masks were
chosen with a radius of 0− 10px across the 10th to 32nd channels of our image data
with dimension 42px× 51px× 34channels comparable to real tumor masks as shown
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Patient14_tMapsClass0006_DMN

Patient44_tMapsClass0040_SAL

Patient06_tMapsClass00020_LANG

Patient10_tMapsClass0050_VAN Patient18_tMapsClass0035_LFPCN

Patient15_tMapsClass0035_rFPCN

Healthy patient image Mask-based Augmentation (pixels diff) from  healthy patient image Generated Mask 

21 3 1 2 3

1 2 3

Figure 2.4 – Data augmentation via generated mask for pixel difference compensation.

in Figure 2.7. With such a signal void, we turned the image voxels of the brain tumor
region using our masks into zero values, i.e., no signal, to mimic an observe drop in
mean pixel intensity inside the tumor. In both data augmentation ways, the input im-
ages were healthy patients. The transformation were chosen (stretch and signal-void)
to simulate the expected impact of the tumor on the fMRI signal. In this spirit, data
augmentation is another form of transfer learning from healthy to unhealthy patients
to be compared with the other transfer learning approaches of the previous sections.

2.5 Transfer learning strategy

In this machine learning strategy, a model that has been trained for one task is
repurposed for a different, related task. The idea is that, some aspects of the problem,
such as low-level features, are shared across tasks, and therefore can be leveraged to
improve the performance of a model on the target task.

Transfer learning is particularly useful in this scenarios since the amount of un-
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Algorithm 1: fMRI 3D image augmentation
Data: 3D image
Result: augmented 3D image

1 image data object← load nibabel library;
2 width, height, channel← image dimension;
3 A← augmentation parameter;
4 Bi,j ← image pixel;
5 X̂← augmented image pixel;
6 for each i in channel do
7 for each j in height do
8 for each k in width do
9 if Ai,j ⩾ 0 then

10 apply Bi,j ← A ; // apply desired image augmentation

11 X̂i,j ← Bi,j ; // return augmented image

12 end
13 else
14 X̂i,j ← Bi,j
15 end
16 end
17 end
18 end
19 return← X̂ ; // return augmented 3D image.

b)a)

Figure 2.5 – LANG Network a) with Pinch-explode augmentation b).

healthy rs-fMRI data available for the target task is limited, but there is a larger amount
of healthy rs-fMRI data available for the related functional brain network classification
task. In these cases, the model can be pre-trained on the source healthy data, and then
fine-tuned on the target task data. The pre-training step allows the model to learn
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Algorithm 2: Pepper noise augmentation for 3D images
Data: 3D image
Result: 3D peppered noise image

1 image data object← load nibabel library;
2 width, height, channel← image dimension;
3 M← new generated 3D image;
4 A← augmentation parameter;
5 Bi,j ← image pixel;
6 X̂i,j ← augmented image pixel;
7 for each i in height do
8 for each j in width do
9 let r← random number ; // random application of noise

10 if r < x/2 then
11 Mi,j ← pepper noise ; // apply black pixels (pepper noise)

12 end
13 else
14 Mi,j ← Xi,j
15 end
16 end
17 end
18 return←M ; // return image with pepper noise.

Table 2.2 – fMRI Image augmentation options for clinical noise simulation and variants.

Type Code Description Augmented variants
O Original image -
A1 Elastic transform 9
A2 Flip 9
A3 Pepper noise 9
A4 Sharpen 9
A5 Scale 9

useful representations of the data, which can then be fine-tuned to the target task.

The best model from the previous section was then investigated in its capability to
transfer to unhealthy patients. We explored three main transfer learning techniques:
brute transfer, mix transfer, and weight transfer. These techniques allow our test on
unhealthy data to be better identified by some knowledge from healthy data and even
simulated (augmented) data. In the brute transfer, a model was entirely trained on
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a) b) c)

Figure 2.6 – LANG Network a), Lesion mask b) and mask overlay on functional net-
work activation c).

Generated Mask

Original Mask 

Figure 2.7 – Cross view between synthetic and original mask over 34 fMRI image chan-
nels.

data from healthy control and directly evaluated with unhealthy data, while in the
mix transfer, the training database contained some unhealthy data. For the weight
transfer method, our saved model weights from healthy data were loaded for further
training and fine-tuning with unhealthy patient data. We tested the model with unseen
unhealthy data (patients with tumors). We trained all transfer learning models at a
learning rate of 1e− 5 with 500− 1000 epochs. To minimize over-fitting, we used an
early stopping method based on the validation error increase. A grid-search algorithm
chose optimal hyperparameters for the CNN model based on maximized precision of
the training data: the stopping points for network training were ten validation failures
followed by a model checkpoint.
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2.6 Results and discussion

We implemented both shallow and deep learning algorithms described above, and
all observed results were recorded for further evaluation. In this section, we com-
pared the performance of several machine learning techniques to find the best baseline
method which was used in the next phase for our transfer learning experiments. Fi-
nally, we compare our result with the closely related literature.

2.6.1 Performance comparisons

The comparison of the different algorithms in Table 2.3 identified the proposed
CNN model as the most efficient approach for identifying the functional networks of
interest on both healthy subjects and unhealthy patients data. In addition to the com-
parison presented in Table 2.3, we extended our effort to implement other well-known
CNN architectures like VGG16, ResNet, and DenseNet on our dataset. However, the
performance of these models was recorded in the range of 50% to 55% on healthy data
and, therefore, perceived to be unreliable. The observed difficulty was in the dimen-
sion of the original images and the total number of images in our dataset. The typ-
ical image size for well-known CNN architectures for computer vision (like VGG16,
ResNet, and DenseNet) is considered to be at 224pixels× 224pixels as they are mainly
designed to work on the ImageNet database [86]. Our original images are in multi-
channel format and therefore have a size of 42pixels × 51pixels × 34 (width, height,
channel). In order to adjust the image size, a bi-cubic interpolation has been used to
up-sample image size by a factor of 4. This up-sampling reduced the quality of images
and caused a significant drop in the performance of the models. On the other hand,
the number of training images is much lower than the number of image samples in
well-known CNN architecture, which led the model to over-fit and reduced the model
performance.

Following our deep learning model implementation, we recorded the classification
accuracy as shown in Table 2.4. This results provides better insights on the possibility
of strengthening the robustness of our model by allowing the use of data variants. With
the accuracy of 0.89 ± 0.01 in tMaps image version of our healthy subject data, it is
clear that more data samples could improve our result. We can also observe that some
of our augmentation strategies did not increase our result in any way which indicates
that further observation is in fact required to understand and quantify the amount of
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Table 2.3 – fMRI brain network classification results of various supervised machine
learning techniques with Healthy subjects data.

Classification Techniques Healthy Data
1 Proposed CNN 0.86 ± 0.01
2 Random Forest 0.82 ± 0.01
3 Feed forward NN 0.84 ± 0.02
4 Naïve Bayesian classifier 0.45 ± 0.02
5 K-Nearest neighbors 0.83 ± 0.02
6 Support vector machine 0.83 ± 0.01
7 Classification tree 0.64 ± 0.06

influence each augmentation option has in model improvement.

2.6.2 Transfer learning

We selected the best method identified in Table 2.3 for healthy data and conducted
the transfer learning approaches on this method with data from unhealthy patients.
The results in Table 2.5 show the recorded accuracy values for several experiments on
the proposed CNN model. Each defines the data used for training and testing with
their respective data sizes. It has to be mentioned that the trained model never sees
the testing data, neither during the training process, nor the hyper-parameters tuning
process.

Table 2.4 – fMRI brain network classification results with CNN using healthy data aug-
mentation.

Data Organisation tMaps images Threshold
Size Loss Accuracy Loss Accuracy

1 Original 567 0.67 ± 0.03 0.86 ± 0.01 0.70 ± 0.03 0.86 ± 0.01
2 Original + A1 5530 0.65 ± 0.06 0.88 ± 0.01 0.72 ± 0.06 0.88 ± 0.02
3 Original + A2 5530 0.76 ± 0.08 0.81 ± 0.02 0.69 ± 0.04 0.84 ± 0.02
4 Original + A3 5530 1.22 ± 0.14 0.85 ± 0.03 0.86 ± 0.09 0.87 ± 0.01
5 Original + A4 5530 0.51 ± 0.05 0.87 ± 0.02 0.48 ± 0.02 0.87 ± 0.01
6 Original + A5 5530 0.68 ± 0.05 0.86 ± 0.02 0.67 ± 0.04 0.88 ± 0.01
7 Original +A1+A3+A4+A5 5530 0.81 ± 0.06 0.89 ± 0.01 0.86 ± 0.07 0.88 ± 0.01

Several baseline experiments were conducted to assess the other added value of
transfer learning approaches. First, we trained on healthy control data and tested on
healthy control. This experiment provided an upper bound of performance with the
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highest accuracy of 86%. This high score is possibly also due to the expected higher ho-
mogeneity of healthy control. The same experiment was carried out while training un-
healthy and testing unhealthy patients. A drop of about 10% of accuracy was observed,
which builds a second baseline with fewer patients. The investigated transfer learn-
ing approaches were expected to provide performances between these two bounds.
We considered four transfer learning strategies for this experiment (i) brute transfer
(training on healthy and testing on unhealthy data), (ii) mixed transfer (adding some
unhealthy data to healthy data to train the model), (iii) weight transfer (fine-tuning on
unhealthy data), and (iv) transfer learning with data augmentation.

On the brute transfer strategy, as indicated in Table 2.5 row 3, we trained our model
with 81 healthy control subjects and conducted testing on all 55 unhealthy patients. We
recorded an average accuracy of 0.74± 0.01 for all test data size ranges. The brute trans-
fer is therefore not bringing any improvement here. For the mix transfer strategy, Ta-
ble 2.5 row 4, we trained our model with 81 healthy control subjects and unhealthy pa-
tients (45). At the same time, we performed our model test with ten unhealthy patients.
An improvement in accuracy to 0.77± 0.01 on test data was observed by comparison
with the brute transfer. The addition of data helps, even with a mixture of healthy and
unhealthy patients by comparison with pure unhealthy patients experiment of row
1. However, we do not reach the upper bound performance of row 1 despite having
more data than in this experiment. This performance demonstrates a discrepancy be-
tween healthy and unhealthy patients. Figure 2.8 shows the validation accuracy (from
validation data) of the trained model on healthy data for various amount of added un-
healthy patients (10, 20, 30, 45). We recorded ∼= 1% increase in validation accuracy for
every ten unhealthy patient data added to training data(7 functional network images
per patient). As the third transfer learning strategy, in Table 2.5 row 5, we transferred
the weight and bias of a model fully trained on healthy data (model of row 1) to a
model for training on unhealthy data. The model was retrained and fine-tuned on 45
unhealthy patients and tested on 10 remaining patients. Performance of 0.78 ± 0.01
is obtained on unhealthy test data. This result is the highest performance among all
tested transfer learning strategies. The three transfer learning strategies were repeated
in the presence of augmented data (see Table 2.5 rows 6 to 10). Augmented data was
produced by data augmentation techniques (see section 2.4) from healthy data to sim-
ulate unhealthy data. The recorded performances in these experiments remained in
the same range as other transfer learning approaches.
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Table 2.5 – fMRI network classification results for healthy and unhealthy data (patients
counted as whole represent 7 fMRI network images in each case).

Training Testing
SN Data description Patient data Data description Patient data Accuracy
1 Healthy 71 Healthy 10 0.86 ± 0.02
2 Unhealthy 45 Unhealthy 10 0.75 ± 0.01
3 Healthy 81 Unhealthy 55 0.74 ± 0.01
4 Healthy + Unhealthy 81 + 45 Unhealthy 10 0.77 ± 0.01

5 Fine-tuning on Unhealthy from
Healthy 45 Unhealthy 10 0.78 ± 0.01

6 Augmentation (unhealthy
simulation) 81 Unhealthy 10 0.75 ± 0.01

7 Healthy + Augmentation (unhealthy
simulation) 81 + 81 Unhealthy 10 0.73 ± 0.01

8 Fine-Tuning on Unhealthy from
healthy + Signal void 45 Unhealthy 10 0.76 ± 0.00

9 Healthy + Signal Void 81 Unhealthy 10 0.73 ± 0.01
10 Signal Void + Unhealthy 45 Unhealthy 10 0.74 ± 0.02

Figure 2.8 – Validation accuracy curve of unhealthy patients data added to model train-
ing with healthy subject data.

2.6.3 Comparison with prior works

As closely related work, Mitchell et al. [57] focus on identifying selected functional
networks in 21 healthy volunteers by training a simple feed-forward neural network
model. This approach was achieved using a Multilayer Perceptron (MLP), which usu-
ally follows the procedure of hand-crafted features extracted from data. Generally,
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Multilayer Perceptrons (MLP) are fully connected neural networks which generate
outputs based on inputs. Literature sometimes uses MLP interchangeably with Deep
Neural Network (DNN); However, there is a sharp contrast because, MLP is a subset
of DNN. In this case, there is a pre-selection of ICs of interest. Our ICs were generated
using a bottom-up, data-driven approach using an independent component analysis.
ICA has gained popularity as one of the two frequently selected analytical methods
for rs-fMRI data, which requires no seed on any predefined region [87, 88]. In contrast,
ICs generated in Mitchell et al. study used canonical seed regions of interest scattered
across the brain. These two approaches may provide similar features for further anal-
ysis. However, hand-crafted feature extraction can limit the flexibility and potential of
identifying certain functional brain areas, as demonstrated in our approach. In addi-
tion, the location of the seed regions could significantly impact the resulting pattern of
a functional system like the Language network. Furthermore, sensitivity to systematic
noise like head movement and physiological nuisance signals causes false identifica-
tion of non-language areas (false positive) and false detection of putative language
areas (false negative), which limits the clinical application of seed-based rs-fMRI in
language mapping [65]. The comparison of our proposed CNN performed in the same
conditions as Mitchell’s method [57] is given in Table 2.6, and this further demonstrates
the interest of our approach.

Table 2.6 – Comparison of our proposed end-to-end deep learning model with related
approach.

Proposed CNN T. J. Mitchell et al.
Training: Healthy – Test: Healthy 0.86± 0.02 0.84± 0.01
Training: Unhealthy – Test: Unhealthy 0.75± 0.01 0.72± 0.01
Transfer Learning from Healthy to Unhealthy 0.74± 0.01 0.71± 0.01

2.6.4 Error analysis

The results of this study indicate that, healthy control can help to boost the func-
tional network identification for unhealthy patient data by adding the healthy data
during the training process. In this section, we discuss the observed errors and further
analyze the origin of the transferability between healthy to unhealthy data.

One may wonder “where did the classification errors in this experiment can come
from ?”. To reveal this, we generated the confusion matrix (see Figure 2.9) as well as

33



Part , Chapter 2 – Automatic fMRI Network Recognition with Shallow and Deep Learning Techniques

sensitivity (true positive rate) and specificity (true negative rate) of the classification
individual functional brain networks to discover the most sensitive cases. Table 2.7
shows model evaluation of each individual networks for classification of healthy sub-
jects, unhealthy patients and transfer learning respectively. The primary source of con-
fusion between the different functional networks is the spatial overlap between the
activated areas. We segmented the functional network identification into classifica-
tion steps, identifying in each of them between the 55 ICs the best fitted ICs for all
seven functional networks. We realized that the main sources of error came from the
confusion between LANG and the VAN as well as DAN and rFPCN as shown in Fig-
ure 2.9. The difficulty in differentiating between DAN and rFPCN may be explained
by the spatial overlapping between the two networks[89]. In contrast, the relation-
ship between VAN and LANG networks is more complex than in other networks. The
distinction between the language and ventral attentional networks in rs-fMRI may be
difficult, as they present similar activations in the ventrolateral prefrontal cortex, infe-
rior frontal cortex, and temporal gyrus in right-handed patients [90]. However, slight
differences in the activation may allow for discrimination between these two networks
in the inferior parietal lobule, in which the activation is more anterior, located in the
temporoparietal junction and the supramarginal gyrus for the attentional network, and
more posterior in the angular gyrus for the language network [90, 91, 6]. The ventral at-
tentional network is also located in the non-dominant hemisphere, almost symmetrical
to the language network in the dominant hemisphere, which may also explain the dif-
ficulties of discriminating between these two networks. Considering the lateralization
of these two networks, the handedness assessment using the Edinburgh handedness
inventory has been considered as a supplement to discriminate between ventral atten-
tional and language networks [6]. However, while this information may be useful in
right-handed patients where the left-hemisphere dominance exists in 96% of patients.
Left-handed patients should be considered with caution since only 27% of left-handed
patients have a dominant right hemisphere, and therefore, a left-lateralized ventral
attentional network [92].

We investigated the possible overlapping surface of thresholded functional net-
works and the lesion mask in unhealthy patients to understand better the possibility
of transfer from healthy to unhealthy data. The distribution of intersection over union
(IoU) values of 3D binary images of all unhealthy patients data for correct and wrong
classification. Most of the thresholded functional networks have little or no overlap
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(a) Confusion matrix of brute transfer learning from healthy to unhealthy data.

(b) Confusion matrix of brute training on healthy and validation with all unhealthy
data.
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(c) Confusion matrix of weight transfer learning from healthy to unhealthy data.

Figure 2.9 – Confusion matrix of functional network prediction by proposed CNN
model on all individual functional brain networks as classes LANG, SAL, VAN, DMN,
lFPCN, rFPCN, and DAN.

Table 2.7 – Model performance evaluation for each functional networks of healthy sub-
jects, unhealthy patients and transfer learning (Healthy to unhealthy) approach.

Networks Healthy Subjects Unhealthy Patients Healthy-to-Unhealthy
Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

DMN 1.00 1.00 0.97 1.00 0.98 0.90
LANG 0.98 0.70 0.97 0.80 0.97 0.60
LFPCN 1.00 1.00 0.95 0.70 0.98 0.90
RFPCN 0.98 0.90 0.95 0.80 0.98 0.70
VAN 0.95 0.90 0.95 0.80 0.88 0.80
DAN 1.00 0.90 1.00 0.60 0.92 0.80
SAL 0.98 1.00 0.98 0.97 0.95 0.8

with the lesion mask. The normalized versions of these histograms are provided in
Figure 2.10.

In our statistical evaluation, the two distributions were observed to be highly-
skewed values of 2.11 and 1.94 for IoU of correctly and wrongly classified images,
respectively, indicating non-Gaussian distribution. These histograms show that the
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Figure 2.10 – Normalized histogram of IoU of functional network activation and lesion
mask of unhealthy subject data.

category (correctly classified or wrongly classified) are estimated to be equal across the
different IoU values as also confirmed by the p-value of 0.75 in the t-test carried out
from the IoU distribution, which indicates non-significance (>0.05) in a difference be-
tween the two categories. To qualitatively illustrate this statistical fact, Figure 2.11 pro-
vides a scenario where images with or without overlap are correctly or wrongly classi-
fied. No direct effect of the tumor on the thresholded functional networks targeted is
observed in our dataset. This observation can explain the possibility of transfer learn-
ing from healthy to unhealthy data. Nonetheless, we found a useful but not perfect
transferability, and therefore, a discrepancy exist. This could be in the intrinsic shape
of the functional network of unhealthy patients, which may be distorted when located
in the vicinity of the tumor. The further investigation of this observed discrepancy
to establish a reliable relationship between healthy and unhealthy data is provided in
chapter 4.
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Figure 2.11 – Visualization of correctly and wrongly classified images (with and with-
out Overlap)- a is correctly classified with overlap; b is wrongly classified with overlap;
c is correctly classified without overlap; d is wrongly classified without overlap

2.7 Conclusion and perspective

This work demonstrates the interesting possibility of transfer learning from healthy
control to unhealthy patient data. This was illustrated for the automatic identification
of functional brain networks in rs-fMRI for patient with brain tumors. This result is
important because, it opens an easy way to overcome the lack of data in machine
learning for biomedical imaging. We demonstrated that healthy control data could
boost the classification of functional brain networks in rs-fMRI for patient with brain
tumors. This was obtained with an optimized classical CNN, which was shown to out-
perform standard CNN architectures and shallow learning methods, including the one
previously tested in the literature on healthy subjects. The overall best performance ob-
tained with unhealthy patients after transfer learning was 0.78%. The remaining errors
where found to be indeed corresponding to difficult cases. The gain brought by the
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transfer from healthy subjects was about 4%, which is a classical order of magnitude
in transfer learning. These performances remain smaller than the best performance
obtained only on healthy control subjects (0.86%). Brain tumors make the classifica-
tion harder than in healthy subjects; nonetheless, the knowledge gained from healthy
control subjects can help classify functional brain networks in rs-fMRI with unhealthy
patients. It is, therefore, an interesting result since healthy control subjects can be easily
enrolled for data acquisition through the non-invasive rs-fMRI studies.

The limiting factor in transferring knowledge from healthy to unhealthy may be
the discrepancy between healthy control and unhealthy patients, which occur due to
the influence of tumor on a region of the functional brain network. Several paths to
compensate for this discrepancy could be investigated. Style transfer from healthy to
unhealthy could be investigated to perform this compensation in the image domain.
Also, one could consider domain adaptation in the neural network to operate this shift
in the latent space rather than in the image. Lastly, one could also consider the pre-
processing image approach to compensate in the image domain for the distortion (spa-
tial deformation, bold signal attenuation, . . . ) brought by the tumors in the images.

In this chapter, we proposed an end-to-end deep learning method for functional
brain network identification and demonstrated the possibility of transfer of knowl-
edge from healthy to unhealthy patients. This initial approach aim to compensate for
limited availability of unhealthy dataset by feature transfer from healthy data to im-
prove model prediction on unhealthy data. In effort to achieve this, we acquired more
healthy data which is relatively easier in this non-invasive fMRI approach however,
annotation requirement is a bottleneck. This observation motivates us to further in-
vestigate the use of self-supervision learning to avoid healthy data annotation since
it constitutes significant time loss for the clinician, and has no benefit in the tumor
resection procedure. This methodology can be extended to address other biomedical
imaging problems for the production of large cohort is essential to improve the deep
learning accuracy. As a possible improvement, this work still rely on manual data
annotation by a clinical expert which can be complex and time consuming process.
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CHAPTER 3

SELF-SUPERVISED LEARNING WITH

FMRI DATA

This chapter describes a follow-up study on our deep learning model for functional
brain network identification to propose a methodology for learning from healthy data
to improve functional brain network recognition accuracy in unhealthy data with-
out the need of annotating them, using contrastive supervision learning approach.
This method will allow the possibility to acquire more healthy data through the non-
invasive medical imaging modality as well as exploit the similarity between healthy
and unhealthy data. This chapter is based on a publication titled “Self-Supervised
Learning for Functional Brain Networks identification in fMRI from Healthy to Un-
healthy Patients”.

3.1 Introduction

Although, the recorded progress in computer vision driven medical imaging has
been well related to the possibility of using labeled data to train machine learning
model (supervised machine learning approaches) [93]. However, this supervised learn-
ing technique poses some common limitations. One of these limitations is the usual
lack of large annotated data sets which may be because it is hard to acquire large data
of rare disease, or because the international community maintain limited distribution
of public dataset, or because human expertise for the annotation of the dataset is lim-
ited.

There are several workarounds to compensate for the limited availability of dataset
[94, 95]. These include few-shot learning, creation of artificial data, generative models,
or data enhancement. Transfer learning, another common strategy, makes use of mod-
els that have already been trained on comparable dataset. As demonstrated in a recent
work [34], which propose to use such transfer learning approach from healthy subjects
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to unhealthy patients. This is very interesting approach for medical imaging modal-
ities which are purely non-invasive and therefore for which it is rather easy to enroll
healthy control. This proposal was illustrated for functional brain network identifica-
tion task in resting-state functional magnetic resonance imaging (rs-fMRI) data. Initial
observation suggest that the gain in classification performance recorded was because,
the brain tumor of the unhealthy patients have very limited impact on the rs-fMRI
signals hence, transferability of useful features was possible.

Transfer learning approach as illustrated in Figure 3.1, allows a mode to learn the
features from healthy subject data and perform significantly better in unhealthy data
prediction. One common limitation as observed in this approach with transfer learning
from healthy patients to unhealthy patients [34], is the need of manual annotation of
the healthy patients data. This annotation process is time consuming while it has to be
performed on patients for which there is clearly no clinical interest. To avoid this un-
necessary step while trying to take benefit from the similarity between healthy subjects
and unhealthy patients by transfer learning, we propose to investigate the possibility
of self-supervision and use healthy data without the need of annotating them.

fMRI dataset (labeled 
Healthy and Unhealthy)

Training + Fine-tuning
Output 

functional brain network 
classificaition

VGG, ResNet, DenseNet,...

Pretrained Model

Object 
classification

ImageNet (~1.4 million labeled 
images)

0.85

0.02


...


...

0.11

0.01


...


...


...

0.13

Figure 3.1 – Visual description of transfer learning strategy.

Self-supervision is an unsupervised learning approach, where machine learning
models are trained with unlabeled data for a pre-defined task to allow the model learn
useful information in the data and can be used for further prediction. Self-supervision
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learning allows the understanding of underlying pattern in unlabeled sample data
[96]. It can be regarded as an intermediate form between supervised and unsuper-
vised learning. It is usually based on an artificial neural networks. The training of
the network is performed in two stages. First, a pretext task is solved to earn pseudo-
labels which contributes to initialize the network weights. Secondly, the target task is
performed with supervised learning but with much fewer need of data annotation due
to the initialisation from the weights trained on the pretext task.

In the following sections, we describe a methodology based on self-supervised ma-
chine learning for avoiding healthy data annotation. We demonstrate the potential of
this approach using resting-state fMRI data for functional brain network classification.

3.1.1 Application of self-supervision in medical imaging

In medical imaging, self-supervision can be applied to various tasks such as image
reconstruction [97], denoising [98], segmentation [99], and registration [100]. One of
the benefits of self-supervision in medical imaging is that it can significantly reduce
the dependence on annotated medical data, which is often subjective to availability
of expert annotator. Self-supervision allows the models to learn underlying represen-
tations from the medical data by avoiding data labeling or uses a small database of
annotated images [101]. This makes self-supervision an attractive solution for medical
imaging problems, where obtaining annotations is often difficult or expensive.

Self-supervision technique is also used in medical imaging modalities, such as mag-
netic resonance imaging (MRI), computed tomography (CT), and ultrasound images
[101]. In MRI, self-supervision has been used to reconstruct images from undersam-
pled data, reduce noise, and improve the accuracy of segmentation algorithms [97]. In
CT, self-supervision has been used to improve the accuracy of image registration and
denoising algorithms [102]. In ultrasound images, self-supervision has been used to
improve the accuracy of image segmentation and registration algorithms [103].

In functional magnetic resonance imaging (fMRI), self-supervision has been used to
learn representations of functional connectivity patterns in the brain, without the need
for explicit annotations [104]. These learned representations can be used for a variety
of tasks, such as the classification of patients into different diagnostic groups, the pre-
diction of clinical outcomes, and the identification of biomarkers for neurological and
psychiatric disorders. Some interesting application of self-supervision includes; de-
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noising fMRI data, self-supervision has been used to remove noise and artifacts from
the data, while preserving the underlying functional connectivity patterns. In the re-
construction of functional connectivity patterns, self-supervision has been used to esti-
mate the functional connectivity patterns from undersampled fMRI data, without the
need for explicit annotations. In the classification of patients into different diagnostic
groups, self-supervision has been used to learn representations of functional connec-
tivity patterns in the brain, which can be used to discriminate between patients with
different neurological and psychiatric disorders. Self-supervision is now applied in all
fields of computer vision but recently, began to receive consideration for fMRI related
data [105, 106]. In [105] a regression task to predict the fatigue from patient based on
their fMRI patterns is targeted. In [106], the authors proposed a transformer frame-
work which uses a two-phase training approach where the model is first trained to
reconstruct 3D volume data using self-supervised training and then fine-tuned on spe-
cific tasks using ground truth labels, for various fMRI tasks such as age and gender
prediction and schizophrenia recognition. In this study, we explore the strategy of self-
supervision to avoid healthy data annotation in feature transfer process from healthy
to unhealthy data as illustrated in the use case of [34] where functional brain networks
have to be identified from rs-fMRI images.

Our focus to tackle this prevailing limitation in the use of resting-state fMRI for
functional brain network identification is very crucial for scalability of our model. This
is because, manual annotation of healthy data is not practical when dealing with large
amounts of data. Furthermore, this process has no clinical relevance in brain tumor
removal procedure. To specify the extend for which data annotation consumes the
time of the clinician, it generally takes ≈10 minutes to annotate data of a healthy
control subject or volunteer and ≈15 minutes to annotate unhealthy patient data as
described by the clinical expert who conducted the rs-fMRI data preprocessing. It is
understood that, unhealthy data annotation takes more time to complete because of
the extra care needed to understand the regional displacements due to the presence of
tumor in the brain. To further standardize the approach of resting-state fMRI for brain
tumor removal procedure, we propose to contribute through self-supervision learning
technique, to avoid the tedious and time consuming healthy data annotation which is
routinely done by clinicians manually. As an initial step, we start by discussing details
of our database and how we approach this investigation.
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3.2 Materials and methods

At this stage, we adopt the described procedure of resting-state fMRI signals acqui-
sition and preprocessing as provided in section 2.2. Using the selected key networks of
LANG, DMN, SAL, VAN, lFPCN, DAN, and rFPCN from the 55 produced ICs for each
patient based on fMRI spatial distribution and activation peaks of these activations. We
also process two versions of the annotated images: complete gray level images (con-
nectivity map) and equivalent thresholded image copy. Figure 3.2 illustrates a DMN
network image sample from unhealthy group show both gray level and thresholded
version. At the cluster level, individual spatial components were thresholded at z =
2, corresponding to the 5% most active voxels in each intrinsic connection network.
This approach is consistent with the literature and allows for the identification of the
anatomical location of activated brain regions despite background clinical noise [107].
Following the data acquisition stage, we perform random visual examination on the
acquired data to better understand the similarity relationship.

(a) Gray level image (b) Thresholded image

Figure 3.2 – Visualization of healthy fMRI image data variants with example from De-
fault Mode Network (DMN).

Based on visual observation of the acquired dataset of rs-fMRI images in Figure 3.3.
One can suggest that, although the influence of brain tumor result to displacement
and distortion of the functional brain activation volume, it is indeed non-visible in un-
healthy patients data. This is interesting because, it justify the reason for the observed
transferability as demonstrated using transfer learning technique in chapter 2 of this
document.
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DMN	 Healthy: LANG	 LFPCN	

DMN	 Unhealthy: LANG	 LFPCN	

Lesion Mask

Figure 3.3 – Visual observation of sample image slices from selected functional net-
works in unhealthy and unhealthy patient data.

3.3 Self-Supervision learning for fMRI image classifica-

tion

In recent years, a number of self-supervised learning algorithms have been pro-
posed for image recognition and classification tasks [108]. The literature on self-supervised
learning for fMRI image classification is growing rapidly, and a number of recent stud-
ies have reported promising results. For example, some studies have demonstrated
that self-supervised learning algorithms can outperform traditional supervised learn-
ing algorithms in terms of accuracy and generalization performance. Other studies
have shown that self-supervised learning algorithms can be effective in learning com-
plex representations of fMRI images [109], which can be used for a variety of tasks,
including classification, segmentation, and regression. While all these techniques rep-
resent a clear demonstration of learning good representation from comparative data, it
inspires our adaptation to propose self-supervision in the usecase of rs-fMRI as illus-
trated in Figure 3.4. First, we start by reviewing some common techniques to provide
better understanding and ensure that the most suitable option is implemented.

A number of interesting self-supervision approaches has been proposed in recent
years, and two of the most prominent ones are contrastive and non-contrastive self-

46



3.3. Self-Supervision learning for fMRI image classification

Few labeled 
unhealthy data

Learned 
Representation Unlabeled healthy data

Pretext task i.e rotation, 
cropping, random translation, 
Gaussian blur, etc.

Z-Latent space

ConvNet

fMRI network 
classification

Stage2: Train linear classifier on learned features and finetune for downstream task

Stage1: Train ConvNet on a pretext task using unlabeled dataset

Rotation 

Classifier

ConvNet

Train and Fine-Tuned

00


900


1800 


2700

DMN


LANG


VAL 


SAL

900       1800       2700

Figure 3.4 – Learning good representation by context prediction from image augmen-
tation.

supervision. Non-contrastive self-supervised learning involves training the model to
predict some form of auxiliary information, such as the location of an object in an image
or the next frame in a video. This approach is regarded as counter-intuitive because,
it only uses positive sample pairs to train the representation (and only the distance
between them is minimized), it may appear that the representation will collapse into
a constant solution, where all inputs map to the same output. The loss function is
expected to reach zero which represent smallest possible value, with a collapsed rep-
resentation. This technique shows the ability to learn good representation regardless
of the lack of negative examples [110]. This approach demonstrates that, training a
non-contrastive self-supervised learning framework leads to a useful local minimum
but not to the global trivial minimum which is what informed our intuition towards
investigative contrastive learning approach for our high dimensional fMRI data.

3.3.1 Contrastive Self-supervision learning

Contrastive self-supervision is a technique in which the model is trained on posi-
tive and negative pairs of samples, with the aim of learning to differentiate between
similar and dissimilar images. This approach learns representations by minimizing the
distance between two views of the same data point and maximising views from dif-
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ferent data points. Essentially, it reduces the distance between positive and negative
data to a minimum and increases the distance between negative and positive data to
a maximum. In this work, we centered our focus on the approach of contrastive self-
supervision learning and we describe the general intuition of two of the key algorithms
in contrastive learning below:

a) Momentum contrast — The rationale for this approach is the intuition that in or-
der to learn an effective representation, we require a large dictionary with a wide
variety of negative examples while maintaining the dictionary key encoder’s max-
imum consistency. Using the dictionary as a queue rather than as a static memory
bank or a mini-batch is the fundamental component of this strategy. By divorcing
the dictionary size from the mini-batch size, this produces a dynamic lexicon that
offers a wealth of negative instances and can be expanded as necessary [111].

b) SimCLR — The key here is to employ significantly higher batch sizes (8192, to ob-
tain a rich set of negative examples), greater data augmentation (cropping, color
distortion, and gaussian blur), non-linear processing of the embeddings prior to
similarity matching, a larger model, and longer training times. This research pro-
vides empirical evidence that experimenting with these are some of the obvious
things to do in order to increase performance [112].

3.3.2 Self-Supervision experiments

We adopted SimCLR [113] for our implementation, a technique based on contrastive
learning, to efficiently learn visual representations from unlabeled images. Through a
contrastive loss in a hidden representation of neural networks, SimCLR learns rep-
resentations by maximizing agreement [114] between many augmented views of the
same data sample as illustrated in Figure 3.5.

In this method, two augmented views are generated from an image for contrastive
prediction. A typical possibility in the generated augmentation such as cropping, can
be global and local or adjacent views as illustrated in Figure 3.6. In this case, Solid
rectangle represent images and dashed rectangles are generated augmentation views.
By randomly cropping images, we sample contrastive predication tasks that include
global to local view (Ai → Aj) or adjacent view (Bi → Bj) prediction as proposed by
[113].
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Figure 3.5 – Illustration of contrastive training with input fMRI image x to obtain two
correlated views x̂i and x̂j.

a) Global and local views. a) Adjacent views.

Ai

A
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Figure 3.6 – Image augmentation views for contrastive prediction.

Generally, the encoder network in divided into two parts: a based encoder f (·)
and, a projection head g(·). The base network works just like the deep convolutional
neural network and its responsible for extracting a representation features from the
augmented data samples. The projection head g(·) maps the feature representation h
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Figure 3.7 – Vector space representation of positive and negative similarity views.

Subject #2_ LANG

x

z

y

(a) Positive sampling.

(b) Negative sampling. 

Vector space representation

Final vector space representation

Subject #6_ LANG

ConvNet

Subject #61 LANG

Subject #70 DMN

ConvNet

Figure 3.8 – Vector space representation of positive and negative at the end of pretext
task stage.

into a space where we apply the contrastive loss like aggregate similarities between
vectors (see Figure 3.7). The vector space representation due the repeated maximiza-
tion and minimisation of agreements at the pretext task stage is shown in Figure 3.8
while the vector space representation at the end of downstream task stage is shown in
Figure 3.9. The projection head g(·) is normally discarded after the contrastive training
is completed, while f (·) is used as a pretrained feature extractor. The representations z
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Figure 3.9 – Vector space representation of positive and negative at the end of down-
stream task stage.

obtained from the projection head g(·) have been shown to perform worse than those
of the base network f (·) when finetuning the network for a new task. This is due to the
fact that the representation z are trained to become invariant to many features like the
local embeddings that can be important for downstream tasks. Therefore f (·) is only
required at the contrastive stage.

Given a mini-batch of images that were chosen at random, each image xi is aug-
mented twice using random rotation, gaussian blur, and random crop resulting in two
views of the same example both x2k−1 and x2k. To construct representations h2k−1 and
h2k, the two images are encoded using an encoder network f (·) (ResNet). After that,
the representations are altered again using a non-linear transformation network g(·),
yielding z2k−1 and z2k that are used for the contrastive loss. The contrastive loss be-
tween two positive cases i, j (augmented from the same image) is presented using a
mini-batch of encoded samples as follows;

lNT−Xnet
i,j = −log

exp(Cosim(zi, zj)/τ))

∑2N
k=1 1[k ̸=i]exp(Cosim(zi, zj)/τ)

, (3.1)

sim(zi, zj) =
z⊤i · zj

∥zi∥ ·
∥∥zj

∥∥ , (3.2)

where 1[k ̸=i] ∈ {0, 1} is an indicator function evaluating to 1 iff [k ̸= i], Cosim(·, ·) is
cosine similarity between two vectors as show in equation 3.2, and τ is a temperature
scalar.
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We trained the model at a learning rate of 1e− 5 with 100, 000 epochs. To reduce
model over-fitting, we adopt an early stopping method which uses the value of in-
crease in validation error to make decision. Furthermore, we used grid-search algo-
rithm to select optimal hyper-parameters for the SimCLR model related to increased
precision of training data. The halting point of the training model was after 10, 000
validation failures and then a model checkpoint.

In SimCLR cosine similarity, the maximum cosine similarity obtainable is 1, while
-1 is the minimum obtainable. By implementation, we observe that the features of
two different views of images converge to a cosine similarity around zero since the
minimum, -1, actually required zi and zj to be in the direct opposite location in all
feature dimensions, and this limits its flexibility. The iterative training process with
the cosine similarity functions results in attraction of related views and repulsion of
views from different image augmentation as illustration in Figure 3.10 and Figure 3.11
respectively.

Attract

CNN CNN CNN CNN

Attract

MLPMLPMLPMLP

Pretext Task

Learning  good 

representation

cropping, random 
translation, Gaussian blur, 
and random zoom layers

Figure 3.10 – Contrastive similarity maximization in related augmented features.

For contrastive learning, we employed image augmentations including cropping,
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Figure 3.11 – Contrastive similarity minimization in unrelated augmented features.

which pushes the model to encode various portions of the same image, as well as ran-
dom translation, Gaussian blur, and random zoom layers. We concurrently loaded a
large batch of unlabeled data from healthy subject images and a smaller batch of anno-
tated samples from unhealthy subject images during training. We also used random
horizontal flips as the second image augmentation method. To prevent overfitting on
the few labeled samples, stronger augmentations, such cropping, are used for con-
trastive learning together with weaker ones like horizontal flips at the pretext task
stage.

The encoder model was pretrained on unannotated images with a defined con-
trastive loss. The encoder’s top is equipped with a nonlinear projection head, which
enhances the quality of encoder representations. We employed the NT-Xent loss (Nor-
malized Temperature-scaled Cross Entropy), which has the following meaning: Each
image in the batch is treated as if it were its own class. Then, for each “class”, we have
two instances (a pair of augmented views). The representation of each perspective is
compared to the representation of every possible pair (for both augmented versions).
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Figure 3.12 – Illustration of our experiments with supervised and self-supervised ap-
proach.

As logits, we employ the temperature-scaled cosine similarity of comparing represen-
tations. Finally, as the “classification” loss, we employ categorical cross-entropy. In
order to monitor the pretraining performance, we used two metrics of contrastive ac-
curacy [113] and linear probing accuracy. We fine-tuned the encoder on the annotated
subjects, by adding a single, fully connected classification layer with a random initial-
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ization on top.

3.4 Results and discussion

In this section, we provide details of outcomes from our experiments by using
data collection procedure and training techniques explained in section 3.2 and illus-
trated in Figure 3.12. The values in table Table 3.1 display the experimental accuracy
numbers that were recorded from different experiments organized from the adopted
self-supervised model as well as a comparison with the proposed supervised learning
model in [34]. Data sizes that are utilized for testing and training were specified in each
case. It is important to note that neither during training nor during hyper-parameter
adjustment does the trained model ever view testing data.

Table 3.1 – Supervised and Self-supervised fMRI brain network classification results
with healthy and unhealthy data (7 fMRI network activation image corresponds to
single patient in all cases).

No. of
training subjects

No. of
testing subjects SimCLR CNN [34]

Healthy to Healthy 71 (labeled healthy) 10 81.74% 86%
Unhealthy to Unhealthy 45 (labeled unhealthy) 10 73.48% 75%
Healthy to Unhealthy 81 (labeled healthy) 55 69.21% 74%
Unhealthy to Unhealthy
With unlabeled healthy

81(unlabeled healthy)
+ 45 (labeled unhealthy) 10 76.39% —

Fine-tune on Unhealthy data from
Healthy data 45 (labeled unhealthy) 10 — 78%

We performed data randomization at several points in the model training pipeline
to provide a more consistent and reliable output, and we make sure the model has
never seen test data before. Although the use of cross-validation techniques could be
an alternative, we were unable to consider this option in order to keep our model sim-
ple and avoid further training complexity, which would have increased the computing
resources needed for our contrastive learning model.

Initially, we trained and evaluated our model using data from healthy control sub-
jects. This approach gave an absolute limit of performance with the highest accuracy of
81%, which is almost 5% less than the CNN model proposed in chapter 2. The accuracy
evaluation in this case is very encouraging, owing to the known spatial consistency of
healthy image data. In this experiment, the CNN model proposed in chapter 2 reached
the best performance on the CNN model compared with SimCLR. However, it has to
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be mentioned that a CNN method has an additional cost from data annotation. In
contrast, the self-supervised method can perform similarly with few annotated data.

In similar experiment, where training and testing of our model was organized with
solely unhealthy patients, a reduction of about 8% compared to our previous result
was recorded, which created a second baseline with fewer data. The same behavior
was observed in the chapter 2 between the classification of unhealthy patients and
healthy subjects, where a performance drop was around 11%. Although, the perfor-
mance on this baseline is less than the first experiment, the results are more interesting
as this performance is achieved with fewer annotated data, therefore very applicable
in clinical purposes.

On the brute-transfer strategy, (learning from healthy subjects data without fine-
tuning on unhealthy data), as shown in Table 3.1 row 3, we trained both our self-
supervised and supervised model with 81 annotated healthy control subjects and con-
ducted testing on 55 unhealthy patients data. This time, we recorded an average ac-
curacy of 69% for different ranges of test data sizes. It can be agreed that the brute-
transfer learning does not introduce any accuracy enhancement in this case, similar to
what was observed in chapter 2. Although, this observation highlights a significant
difference between healthy and unhealthy patient data which quantifies its impact on
transferability.

The fourth row of Table 3.1 shows the performance of a new experiment, where the
SimCLR model is trained on a portion of unhealthy patients (45) and all unlabelled
healthy data, which is fed to the model during the training among augmented images
(pretext task). This experiment shows the most important result as its performance
is more than the CNN model on unhealthy patients (2nd row) and the brute-transfer
learning (3rd row) with about 3% and 7% respectively. The advantage of the SimCLR
model in this experiment compared with other models in chapter 2 is the use of non-
labeled and few labeled data to train a model, while for CNN and transfer learning
models, a large amount of label data is required.

The last row of the Table 3.1, indicates the best performance of the transfer learning
model in [34] while the CNN model has been trained once on all annotated healthy
data. Then the model weights have been transferred and fined-tuned on unhealthy
data. Although this model has the maximum accuracy among other experiments, the
cost of the training model is too high as we need to use all 81 annotated healthy sub-
jects and 45 annotated unhealthy subjects during the training. This cost can reduce
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the method’s applicability for clinical purposes as we always lack annotated database
in this domain, while the self-supervised method can gain similar performance with
fewer data.

3.5 Conclusion and perspective

Self-supervised learning is a rapidly growing area of research in fMRI image anal-
ysis, and has shown great promise for tasks such as image classification. While there
are still a number of challenges and limitations that need to be addressed, the future
of self-supervised learning for fMRI image classification is promising, and there is a
growing body of evidence to support its progressive development and refinement for
standardization of resting-state fMRI image processing.

In this work, we proposed ways to tackle the dependence on large annotated dataset
and demonstrated the use of self-supervision to directly avoid healthy data annotation.
Firstly, few shot learning remains a promising alternative to reduce the dependence
on large annotated healthy data. This is possible, since only a few label samples are
required to train a model to understand the underline feature patterns in our data. Sec-
ondly, synthetic data generation via generative model, data augmentation or enhance-
ment is another promising method since in this case, no data annotation is required.
Lastly, we applied contrastive self-supervision method to illustrate the use of unanno-
tated healthy data to learn useful features in unhealthy data prediction. The technique
demonstrated is interesting because, it accelerates learning in medical imaging, where
healthy patients can be easily enrolled. In contrast to traditional fine tuning process of
transfer learning as required in supervised learning approach, it does not require anno-
tation of healthy subject data, while few labeled unhealthy patients data can be used.
This strategy therefore, opens the possibility to greatly improve our model by benefit-
ing from the demonstrated transferability of healthy data features for unhealthy data
prediction. Large size of healthy control subject data (volunteer subjects) can be easily
acquired by enrolling more subjects into this non-invasive medical imaging modal-
ity without data annotation requirement since there is no clinical interest for labeling
healthy data.

In the experiments discussed in this chapter, we provide an application of self-
supervision technique in the identification of functional biological networks, and for-
tunately, the same method can be used for any non-invasive medical imaging task for
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which healthy controlled subject can be acquired easily and there is similarity between
healthy and unhealthy data.

58



CHAPTER 4

FMRI IMAGE DATA DISCRIMINATION IN

HEALTHY AND UNHEALTHY SUBJECTS

In this chapter, we explored various techniques to demonstrate local and global
relationship that exist in our fMRI image database. This approach has become neces-
sary because of the observed discrepancy identified in our data, since we have bene-
fited through feature transferability which indicates similarity, while at the same time,
model validation with unhealthy data shows a significant drop.

4.1 Introduction

In previous chapters (see chapter 2), we demonstrated the transferability of func-
tional brain network recognition by allowing our model to learn from features of healthy
subject fMRI images to improve prediction in unhealthy data. In this study, we aim to
further develop our investigations on the origin of the similarity and dissimilarity be-
tween the healthy and unhealthy fMRI data. Since we performed classification of the
functional activation networks with convolutional neural networks the most direct ap-
proach to start with is to consider the perspective of the healthy and unhealthy data
discrimination with CNN.

4.2 Deep learning approach

A systematic accuracy drop between healthy and unhealthy fMRI data across the
7 functional brain networks was observed, as shown in Figure 4.1, from performance
analysis with the best CNN model from chapter 2. The best performance accuracy
when training on healthy data and testing on healthy data was 0.86 while, on aver-
age, training on unhealthy data and testing on unhealthy data provides an accuracy of
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0.75. This implies that unhealthy data are more difficult to classify when compared to
healthy data. We extend our follow up on this observation to binary discrimination of
healthy and unhealthy data to evaluate the extent of this difficulty.

Figure 4.1 – CNN classification result of individual functional brain network in fMRI
healthy and unhealthy data.

We implemented a PyTorch based CNN model for binary classification between
healthy and unhealthy fMRI images. This was achieved by assigning the label “1” for
all healthy data across all functional network while assigning the label “0” to all un-
healthy data across 7 functional networks. With our output layer of 2, we indicated the
early stopping of 20 steps, and train our model with learning rate starting from 1e-7 to
1e-3. It is important to note that, the CNN model explained here is different from the
proposed model in chapter 2, which is a multi-class classifier model 7 functional brain
network classification. In the evaluation phase of this experiment, we recorded binary
classification results of healthy and unhealthy data as shown in row 4 of Table 4.1. As a
basis of meaningful comparison, as well as to underscore the prevailing data discrep-
ancy, we included results of 7 functional brain network classification from our previous
experiments as show in rows 1, 2 & 3 of Table 4.1 respectively. This clearly shows that
despite the usefulness of feature transfer demonstrate in previous experiment we were
unable to fully compensate for the accuracy drop due to data discrepancy. Our current
observations with the binary classification shows strong evidence of data distinguisha-
bility between healthy and unhealthy data. Furthermore, we provided the confusion

60



4.2. Deep learning approach

matrix in Figure 4.2 of the model evaluation to understand cases of misclassification
errors.

Table 4.1 – CNN binary discrimination of healthy and unhealthy data with other fMRI
network classification approach with similar data.

CNN Classification Model
Description

Train/Validation/Test
data size

Classification
Accuracy

Healthy fMRI brain networks 427/70/70 0.86 ± 0.02 [33]
Unhealthy fMRI brain networks 245/70/70 0.75 ± 0.01 [33]
Transfer learning 567 - 245/70/70 0.78 ± 0.01 [34]
Healthy and Unhealthy
discrimination 574/98/89 0.95 ± 0.02

Figure 4.2 – Confusion matrix of CNN binary classification of healthy and unhealthy
fMRI data with row and column summary as percentage of true-positive and true-
negative respectively.

To understand how this end-to-end deep learning model was able to discriminate
between the two classes, we observed the latent space representation of the network.
We provide a t-distributed stochastic neighbor embedding (T-SNE) of a combined rep-
resentation of healthy and unhealthy data with respect to the 7 functional brain net-
works in the same latent space in Figure 4.3 to understand the relationship between
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the features of healthy and unhealthy data in 7 functional brain networks. The visu-
alization of healthy data representation in the same latent space with unhealthy data
allows us to measure the local displacement between different functional brain net-
works. The corresponding visualization obtained from binary classification improve
our understanding of the local similarly among related networks while the difference
between the two data sources remains a close distance in the groups.

DMN
LANG
LFPCN
RFPCN
VAN
DAN
SAL
un-DMN
un-LANG
un-LFPCN
un-RFPCN
un-VAN
un-DAN
un-SAL

Figure 4.3 – Latent space visualization of fMRI healthy and Unhealthy data with T-
SNE, across 7 functional networks in the two groups.

We also explored the latent space visualization in respect to our binary image clas-
sification as shown in Figure 4.4 which represent our data in 2 dimensional space using
principal component analysis (PCA) and Figure 4.5 to allow effective representation of
non-linear relationships in T-SNE. This is interesting because, we aim to understand
the representation of these two visualization options since, PCA aim to maintain the
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global layout of our fMRI data while T-SNE focuses on preserving the local structures
of data points to allows more realistic visualization. Although, we can see clear distinc-
tion in the healthy and unhealthy data representation shown in both cases, the T-SNE
option provides a better view of the similarity in healthy data compared to the PCA
option.

healthy
unhealthy

Figure 4.4 – PCA visualization of healthy and unhealthy fMRI data.
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healthy
unhealthy

Figure 4.5 – T-SNE visualization of healthy and unhealthy fMRI data.

We extend our effort to the use of GRADient-weighted Class Activation Mapping
(Grad-CAM), a more versatile version of CAM, which can provide visual explanations
for any arbitrary convolutional neural network (CNN) [115]. This process allows us to
produces a coarse localization map that highlights the important regions in our fMRI
brain network images for healthy and unhealthy data discrimination. Our implemen-
tation computes the gradient of the logits in each class with respect to the activation
maps of the final convolutional layer, and then averages the gradients across each fea-
ture map to generate an importance score which help to improve interpretability, and
easier understanding of the local features used by the network for classification by our
CNN model.
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Figure 4.6 – Grad-CAM visualization of healthy and unhealthy data across 3 sample
functional brain networks.

Our deep learning, latent space and Grad-CAM visualization provided great in-
sight to evaluate the level of the identified discrepancy. Clearly, there is a systematic
shift between healthy and unhealthy data as demonstrated by the strong discriminabil-
ity of our CNN model. This explains why a model trained on healthy data does not
performs well on unhealthy data validation, which in turn explains why the model
performance on unhealthy data is less compared to healthy data. Nevertheless, when
looking at the functional network in the latent space, the discrepancy between healthy
and unhealthy data is systematically less obvious than the discrepancy between func-
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tional networks. This observation explains the transferability of the learned represen-
tation in our CNN mode from healthy to unhealthy data, since the latent space has the
same “macro” structure. In the case of Grad-CAM visualization, it is apparent that fea-
ture maps used for discrimination in both healthy and unhealthy data are consistently
global across healthy and unhealthy data as well as in different functional brain net-
work as shown in Figure 4.6. In effort to reveal the local relationship between healthy
and unhealthy data, we extend this investigation to statistical analysis of local features
in our fMRI data.

4.3 Statistical analysis approach

4.3.1 Pixel intensity difference between region of lesion and region

of non-lesion in unhealthy patient data

We performed statistical evaluation of the difference between pixel intensities of
lesion and non-lesion region of unhealthy patient image in order to better understand
the cause of accuracy drop as seen in our deep learning classification model. This was
done by comparing the pixel intensities of tumor regions which is referred to as “le-
sion” via the provided masks and the remaining region of the network image, referred
to as “non-lesion”

x = µL − µnL, (4.1)

where we denote x as the difference of average gray level between lesion (tumor) area
and non-lesion area as depicted in Figure 4.7

We provide an illustration of lesion and non-lesion region separation in a mathe-
matical expression (see Equation 4.1), and visual observation in Figure 4.7 as applied
to our unhealthy fMRI data. While this operation helps to observe the mean pixel in-
tensity differences across all images (see Figure 4.8), which was in fact dynamic within
the 0.0 - 0.2 pixel range. We also conducted statistical analysis on the two variables
in order to determine the significance of the associated differences between the two
collections.

To evaluate the significance of pixel intensity difference between region of lesion
and region of non-lesion in unhealthy patient data, we computed the chi-square p-
value X2 using
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Unhealthy image Non-lesionLesion Lesion mask

Figure 4.7 – Visual presentation of lesion and non-lesion region subtraction process
from unhealthy fMRI images.

Figure 4.8 – Histogram of pixel difference between lesion and non-lesion region shown
on the actual scale of pixel intensity range (1− 10).

X2 = ∑
(Oi − Ei)

Ei
, (4.2)

Oi = observed value (pixel intensities) and Ei = expected value. We obtained a p-value
of 0.3242 (>0.05), as a test of significance between the pixel intensities of each image and
the expected value of 1.0 (normalized image pixel range is 0-1). This observation sug-
gests that the difference in pixel intensity of those obtained from lesion region, against
those from non-lesion region is statistically insignificant. Since this approach compares
small region of brain tumor (lesion) against the remaining region of the brain, we be-
lieve that more accurate relationship between the data can be uncovered by proposing
a more realistic comparison.
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4.3.2 Pixel intensity evaluation of lesion area and surrounding re-

gion of unhealthy patient data

At this stage, we investigate the differences between the lesion region and its sur-
rounding area, as opposed to the differences between the lesion location and the re-
mainder of the brain region. This was achieved by comparing pixels intensities of
tumor region with pixel values from 5− 10px surrounding region of the tumor. This
approach is more subtle because, in clinical perspective, the actual effect of brain tu-
mor, which includes distortion or total displacement of brain region may be observed
within this indicated surrounding area of the brain. A surrounding mask of the le-
sion is generated via morpho-mathematical 3D dilation process as shown in Figure 4.9.
This defines new set of pixels intensity distribution of lesion and surrounding region
of lesion. Then, we revisit Equation 4.1 to analyze the difference of both lesion and
surrounding region of lesion.

fMRI image Surrounding region of lesionLesion Lesion mask

Figure 4.9 – Functional brain network image of lesion and non-lesion(surrounding)
area of unhealthy data.

The chart in Figure 4.10 is the normalized histogram of all images showing the pixel
distribution for both lesion and surrounding non-lesion region of the fMRI data. It can
be seen that, the frequency across different pixel groups are progressively similar and
to further justify this, we used

Skewness = ∑N
i (Xi − X̂)3

(N − 1) ∗ σ3 , (4.3)

where Xi = ith is a random variable, X = Mean of the pixel intensity distribution, N =
Number of image features in the distribution and σ = Standard distribution. We eval-
uated the two variables and recorded a highly skewed value of 1.3094 and 1.6903 for
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Figure 4.10 – Pixel distribution of fMRI images with respect to lesion and surrounding
region of lesion.

lesion and lesion surrounding respectively, which also established that the two vari-
ables fall in the same distribution. Furthermore, using the expression in Equation 4.2,
we provided the result of chi-square p-value test of 0.1300 (>0.05) which shows that the
difference between the pixel distribution of lesion and lesion surrounding (see Equa-
tion 4.1) is statistically insignificant. While the above listed approaches failed to find
the origin of the discrepancy between healthy and unhealthy region of our data, we
now get interested in understanding the possible influence of brain tumor overlap with
functional network activation maps.

4.3.3 Intersection over union (IoU) of rs-fMRI network activation im-

ages of unhealthy patients and Lesion mask

In order to understand the effect of the overlap between lesion mask and func-
tional brain activation network, we conducted a statistical examination on the values
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of IoU and the prediction of each test image, whether correctly classified or misclassi-
fied by our CNN model. We achieved this by finding the area of intersection between
functional brain network activation and the brain tumor against the area of the union
between the functional brain network activation and brain tumor as expressed in

IoU =
a ∩ b
a ∪ b

, (4.4)

and visually illustrated in Figure 4.11.

a b

Figure 4.11 – Binarized image sample of a) network activation; b) lesion mask.

To understand the influence of tumor overlap with network activation and ability
of our model to correctly classify functional brain network, we observed the skewe-
ness value of both data at 2.1124 and 1.9409 for IoU of true positive (correctly classified
images) and true negative (wrongly classified images) respectively, this indicates that,
although the distribution is highly positively skewed, the two variables belong to the
same statistical distribution. This fact is also supported by the visualization provided
in Figure 4.12, which shows that there is no pattern between the value of IoU and
model classifiability. Our investigation at this stage, only reveals the effect of overlap
on functional network classifiability. Therefore, we extend our investigation to ana-
lyze the local relationship in activation region with lesion, and region without lesion
overlap.
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d)  rFPCN  -  IoU: 0.42

a)  LANG  -  IoU: 0.00 b)  rFPCN  -   IoU: 0.73

c)  LANG  -  IoU: 0.00

Misclassified networksCorrectly classified networks

Figure 4.12 – Visualization of correctly and wrongly classified LANG and rFPCN net-
works with and without lesion overlap - a) correctly classified without overlap; b)
correctly classified with overlap; c) wrongly classified without overlap; d) wrongly
classified with overlap

.

4.3.4 Pixel intensity difference between region of network activation

without lesion and region of network activation with lesion

overlap

We performed pixel intensity analysis between region of network activation with-
out lesion and region of activation with lesion in thresholded images. This observation
could reveal whether the difference between healthy and unhealthy data emanated
from the influence of tumor overlap with network activation or not (see figure 4.13).
To evaluate the differences in the pixel intensity between these two regions, we ex-
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pressed the non-negative difference X as in

X = |µ(α)− µ(β)| (4.5)

where X is the pixel intensity difference between region of overlap α and non-overlap
β with activation network.

Network activation

Thresholded

gray level image

Lesion mask

β

Figure 4.13 – Description of activation network separation between region of lesion
overlap α and non-overlap β in a single brain network image.

In the statistical test conducted, result shows a chi-square p-value of 0.4858 (>0.05)
from our pixel difference distribution whose intensity ranges from 0-10 across all re-
gion of activation as shown in Figure 4.14. This values therefore, demonstrate that the
difference in pixel intensity in region of network activation with lesion overlap and
region of network activation without lesion overlap is statistically insignificant.

Following the investigation on local relations between healthy and unhealthy data,
we extend our findings to understand whether separate components in fMRI brain
network activation map of healthy and unhealthy data observe any systematic spatial
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Figure 4.14 – Normalized IoU of images (network activation and lesion mask) in true
positive (correctly classified) and true negative (wrongly classified) cases in functional
brain network classification.

pattern.

4.3.5 fMRI brain network activation components

We computed a basic feature concerning the number of component of the activation
map in presence or absence of lesion as shown in Figure 4.15.

To ensure fair assessment between healthy and unhealthy data, we sampled through
equal amount of data from the two groups. The result shown in Figure 4.16, suggests
that the number of connected components across different functional brain networks
were not significant and may not have contributed to the similarity or difference be-
tween healthy and unhealthy data.

4.3.6 fMRI brain network activation volume

Using the binary version of our image data, we computed the volume of functional
brain network activation pixels for each corresponding network in healthy and un-
healthy data. This was necessary to understand how the volume of pixels present in
each network map, possibly influence model recognizable features, and consequently
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Components: 9LANG network

Figure 4.15 – Counting disconnected components in fMRI images of network activation
map

Figure 4.16 – Network map components size distribution across functional brain net-
works for healthy and unhealthy data.

fMRI network classifiability. To achieve this, the overall pixel volume representation of
each functional network activation map which indicate activated pixels were collected
(see Figure 4.11b). After computing the pixel volumes, we analyzed result for each
corresponding network map for healthy and unhealthy data.
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The observation of the 7 distinct functional brain network volume for the 55 subjects
from both healthy and unhealthy data as shown in Figure 4.17 attracts our attention.
This was because, all other discriminating factors we explored so far depends on the
presence of the network feature representation while the brain network activation vol-
ume reveal the level of abundance of these features. We also extend our statistical test
here, to understand whether the differences between these two volume distribution
across 7 functional networks (see Figure 4.18).

We recorded a p-value of 0.00076(< 0.05), which in fact shows that the difference in
this volume distribution is statistically significant. Furthermore, a closer look into this
volume distribution, reveals the big picture, which suggest that functional brain net-
work activation pixel representation in healthy subject data is consistently more abun-
dant than those observed in unhealthy data. This means that, more of the activation
volumes as observed in healthy subjects data, supports better detection accuracy as
obvious in our deep leaning models. On the other hand, fewer pixels activation value
is responsible for the drop in accuracy and this can easily be attributed to the presence
of tumor which may have overlapped network activation map (see Figure 4.18).

4.4 Discussion and conclusion

In this chapter, we investigated the origin of the feature transferability and data dis-
crepancy as observed in our healthy and unhealthy fMRI dataset used for experiments
in the previous chapters. While a convolutional approach demonstrated clear discrim-
inability between the healthy and unhealthy data, we struggled to find simple features
that could be used to measure this data discriminability. This further emphasize that,
a similarity exist between them hence, transferability was possible.

To further measure the level of local or regional similarities or differences in our
data, we explored a number of statistical experiments to establish whether the ob-
served relationship in our data is significant or insignificant, as shown in Table 4.2. As
a summary of our statistical tests, it is evident that all our tests to determine the signifi-
cance of the possible differences in image features were negative, except the volume of
activated pixels in healthy and unhealthy data, which reliably shows that, these images
are indeed hard to distinguish at sub-regional level. The fact that a global feature such
as the volume of activated voxels is significantly discriminative between healthy and
unhealthy is coherent with the clinical knowledge that the presence of brain tumor
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Figure 4.17 – fMRI network activation pixel volume distribution by different functional
networks.

is expected to decrease the BOLD signal. Observation on the impact of the volume
is also consistent with the observation made on the Grad-CAM which shows feature
highlight in all network activation maps, i.e. as a global feature.
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Figure 4.18 – Distribution of pixels volume in fMRI network activation map for healthy
and unhealthy data.

Table 4.2 – Summary of statistical tests to discriminate between healthy and unhealthy
fMRI data.

Statistical test description Results
Lesion and non-lesion region Statistically insignificant

Lesion and surrounding region of lesion Statistically insignificant

Intersection over union of RSN network
activation and brain tumor

Statistically similar

RSN activation with and without lesion
overlap

Statistically insignificant

Activated pixels volume distribution in
healthy and unhealthy data

Statistically significant

In summary, we investigated the identified fMRI data discrepancy between healthy
and unhealthy images to provide a reliable relationship that explains why we were able
to demonstrate transferability of healthy features to better recognize unhealthy data,
and at the same time, why we observe a decrease in classification accuracy from our
deep learning models.
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CHAPTER 5

CONCLUSION AND PERSPECTIVES

5.1 Methodological contributions in medical imaging modal-

ities

In this thesis, we contributed to neuroscience using computer vision and machine
learning techniques to propose methodology for automatic functional brain network
recognition by learning from provided healthy and unhealthy resting-state functional
MRI (rs-fMRI) data. We have organize our contributions in three parts.

In a first contribution (chapter 2), we proposed an end-to-end deep learning algo-
rithm for functional brain network classification. This model was evaluated with fMRI
images from healthy control subjects and unhealthy (tumor) patients data. The main
novelty of this work is that, we demonstrated feature transferability from healthy con-
trol data to improve model prediction accuracy in unhealthy patients data using trans-
fer learning approach. This transfer learning is promising since healthy patient are easy
to enroll in clinical studies. However, the limitation of such an approach is that healthy
patient have to be annotated which represent a loss of time for clinicians. In a second
contribution (chapter 3), we focused on addressing the problem of healthy data anno-
tation in the process of predicting unhealthy data using contrastive self-supervision
technique. Learning on healthy data to predict unhealthy data is rather counter intu-
itive and can be seen as paradoxical. In order to better understand what makes this
transfer possible but also what makes healthy distinct from unhealthy data in resting
state fMRI, we proposed in the third contribution (chapter 4), to investigate the pre-
vailing discrepancy between healthy and unhealthy data in different strategic ways
including latent space representation of convolutional network, local contrast, global
volume of activated signals in functional networks, and number of disconnected net-
work components.
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5.2 Perspectives

The proposed end-to-end deep learning algorithm for functional brain network
classification represents a significant step forward in the field of neuroimaging. By
demonstrating the transferability of features learned from healthy control data to im-
prove model prediction accuracy on unhealthy patient data using transfer learning
approach, the model’s accuracy can be improved significantly. Moreover, this study
showed that learning on healthy data can scale the model prediction capability, since
unhealthy data is generally limited. From a clinical point of view, future research could
extend this work to identify the various types of brain tumors. At another end, from
a signal processing point of view, we can process the BOLD signals for investigating
voxel-level analysis in raw temporal activation signals as depicted in Figure 5.1.

One could also investigate the translation of our approach to other clinical appli-
cations. Specifically, the proposed self-supervision learning approach which allows
pretraining on healthy data without the need for annotation is by nature generic. This
method has the potential to reduce the laborious and time-consuming data annotation
required for transfer learning, which is a significant advantage. Further research could
investigate the potential of this method in other medical imaging applications. This
could apply in all imaging modalities where the disease itself is not directly visible yet
the contrasts of these imaging modalities constitute a necessity to visualize anatomical
or functional areas of interest.

Another direction we envisioned to follow up our work, is the use of alternative
encoding of data in order to reduce the computational cost of the proposed models.
The results obtained with CNN on functional neural network are rather convincing.
However, they are obtained with huge amount of parameters and one can wonder if
more frugal end-to-end learning approach could deliver similar performances. Since
we are targeting biological networks, one can think of an encoding of the images in
the form of graphs connecting the main activated areas in the functional network. We
started such investigations and present some preliminary results in Annex C related
to this direction. Our initial results to reduce model parameters using dimension re-
duction and consequently, graph representation is very encouraging however, a better
graph encoding approach could be explored to mitigate the observed accuracy loss in
our graph neural network (GNN) model.
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Figure 5.1 – Voxel-level analysis for more efficient data discrimination between healthy
and unhealthy data.
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CHAPTER 6

ANNEX A: DEFINITION OF TERMINOLOGY

6.1 Machine learning

Machine learning is a subfield of artificial intelligence (AI), that involves the use
of statistical algorithms to enable computer systems learn and improve from experi-
ence. Machine learning models are designed to automatically learn and improve from
data, without being explicitly programmed for every task. By using patterns and sta-
tistical inference, these models can be trained to make predictions or decisions based
on previously unseen data. The data are transcoded by feature vectors. The feature
space is the reference frame where data are represented. Often this feature space is in
Rn where n > 3. Dimension reduction techniques [116] such as principal component
analysis (PCA) [117], t-distributed stochastic neighbor embedding (T-SNE) [118] and
linear discriminant analysis (LDA) [119], are used to project the feature space from Rn

to R2 or R3 as applicable in the case of our high dimensional fMRI images, to visual-
ize the structure of data in the reduced space. There are several ways of learning the
structure of the data in the feature space including supervised learning, unsupervised
learning, self-supervised learning and reinforcement learning. Throughout this study,
we investigated and addressed problems using supervised and variant of unsuper-
vised machine learning (self-supervision). Supervised machine learning refers to the
algorithms where you have input variables x and an output variable Y called labels,
and you use an algorithm to learn the mapping function from the input to the label.
The goal is to approximate the mapping function so well that you can predict the cor-
rect Y for a new input data x. On the other hand, unsupervised machine learning seeks
to identify structure among unlabeled data x.
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6.2 Deep learning

Deep learning is a type of machine learning that involves training artificial neural
networks to learn from data. In this case, neural networks consist of layers of inter-
connected nodes that process and transform input data to produce an output. Deep
learning algorithms use multiple (hidden) layers of these nodes to learn complex rep-
resentations of data (see Figure 6.1). By learning these representations, deep learning
models can perform tasks such as image classification, speech recognition, natural lan-
guage processing, and more.

Deep learning has become increasingly popular in recent years due to its ability to
handle large, complex datasets and its state-of-the-art performance on various tasks.
Some examples of deep learning applications include highly sensitive intelligent or
predictive systems, virtual assistants, medical imaging and computer aided diagnosis,
and image and speech recognition.

Figure 6.1 – Deep convolutional network model for rs-fMI network classification.

Although traditional machine learning algorithms are resilient, they still require
human intervention to establish the features, and there is no guarantee that the charac-
teristics chosen are the most appropriate for solving a problem. In practice, traditional
machine learning algorithms are frequently simple and have few parameters to opti-
mize during the training phase. As a result, they attain their full performance peak
(see Figure 6.2) irrestpective of the additional amount of training data size.

Deep learning, on the other hand, which is a subset of a family of machine learning
methods based on artificial neural networks, improves with the addition of data. The
complexity of deep learning algorithms, which have millions of parameters to change
and hence require big datasets to be resilient, explains this. Deep learning architec-
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Figure 6.2 – Machine learning and Deep learning performance comparison in respect
to data.

tures are made up of end-to-end raw data transformations that are chained together
from top to bottom. Unlike traditional machine learning, deep learning architectures
select features from raw data. Today, supervised machine learning methods, including
deep learning, are the most robust in computer vision applications. They do, however,
necessitate image annotation.

6.3 Transfer learning

Transfer learning is a machine learning technique where a model trained on one
task is reused or adapted as a starting point for another related task. In transfer learn-
ing, the knowledge learned from one task, which typically involves a large dataset, is
transferred to a different but related task where the data set is relatively smaller. This
approach helps in situations where there may not be enough labeled data available for
the new task, or training from scratch would be computationally expensive or time-
consuming.

For example, a model trained on a large dataset for object recognition can be used
as a starting point for another task, such as image classification or object detection (see
Figure 6.3). The pre-trained model can be fine-tuned on the new task using the smaller
dataset, or the model’s weights can be frozen, and additional layers can be added to the

85



fMRI dataset (labeled 
data)

Training + Fine-tuning
Output 

fMRI network 
classificaition

Deep learning model training

Pretrained Model

10 ClassesFashionMNIST (labeled data)

0.85



0.02



0.31

...

...


0.43

Figure 6.3 – Illustration of transfer learning strategy.

model to learn the new task’s specific features. Transfer learning has been successfully
applied to many applications, including computer vision, natural language processing,
and speech recognition.

6.4 Self-supervision learning

Self-supervised learning is a technique in machine learning that enables a model
to learn from the data itself, without requiring explicit supervision. The goal of self-
supervised learning is to leverage the structure and patterns present in the data to
generate supervisory signals that can be used to train the model (see Figure 6.4). Self-
supervised learning has been successfully applied in various domains, including nat-
ural language processing, computer vision, and speech recognition.

One of the most popular approaches for self-supervised learning in computer vi-
sion is contrastive learning, where the model is trained to distinguish between pairs of
similar and dissimilar examples. For instance, in the case of image data, the model is
trained to distinguish between pairs of images that are taken from the same scene or
object (positive examples) and those that are not (negative examples). This approach
has been shown to be effective in pre-training image representations that can be fine-
tuned for downstream tasks such as image classification and object detection.
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Figure 6.4 – Self-supervision learning on comparative dataset using context prediction.

6.5 Medical imaging

Medical imaging refers to the use of various technologies and techniques to cre-
ate visual representations of the interior of the human body for clinical analysis and
medical intervention. Medical imaging techniques include X-ray, computed tomog-
raphy (CT), magnetic resonance imaging (MRI), ultrasound, and nuclear medicine
imaging. These techniques can provide information about the structure, function, and
physiological processes of the body, allowing medical professionals to diagnose and
monitor diseases and injuries, plan and guide treatments, and evaluate the effective-
ness of interventions (see Figure 6.5). Medical imaging has revolutionized the practice
of medicine, enabling non-invasive and precise diagnosis, reducing the need for ex-
ploratory surgery and improving patient outcomes.

6.6 Image classification

Image classification is a fundamental task in computer vision that involves predict-
ing a label or category for an input image. The goal of image classification is to build a
model that can accurately assign a label to an image based on its visual features. In re-
cent years, deep learning has emerged as a powerful technique for image classification,
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Figure 6.5 – Application of computer vision in medical imaging.

with convolutional neural networks (CNNs) being the most popular deep learning ap-
proach for this task. CNNs consist of multiple layers of learnable filters that extract
increasingly complex and abstract features from an input image.

Image classification (see Figure 6.1) refers to a predictive modeling problem where
a class label is predicted for a given functional brain network image. A model will
use the training dataset (fMRI images and labels) and will calculate how to best map
examples of input data to specific class labels. Some popular examples of classifica-
tion algorithms are: k-Nearest Neighbors [120], Decision Trees [121], Support Vector
Machine [122], Naive Bayes [123] and convolutional neural network (CNN) [124].

6.7 Graph representation learning

Graph representation learning is a popular research area in machine learning that
aims to learn low-dimensional vector representations of nodes or subgraphs in a graph,
capturing the structural and relational information of the graph. Node embedding is
one of the popular approaches for graph representation learning that learns a low-
dimensional representation of each node that can capture its structural and relational
context in the graph. Several methods for node embedding include matrix factorization-
based methods, random walk-based methods, and neural network-based methods
such as Graph Convolutional Networks (GCNs).

One of the challenges in graph representation learning is to learn node embeddings
that capture both local and global information of the graph. Recent research has pro-
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Figure 6.6 – Critical stages of graph representation learning method.

posed several methods to address this challenge, such as the Graph Attention Network
(GAT) [125] and the GraphSAGE algorithm [126]. GAT uses attention mechanisms to
learn node embeddings that capture the importance of different nodes and edges in the
graph. GraphSAGE algorithm uses a sampling strategy to generate subgraphs around
each node, then applies a multi-layer perceptron to learn node embeddings that cap-
ture both the local and global context of the subgraph. These methods have shown
promising results in various applications, such as node classification, link prediction,
and graph classification (see Figure 6.6).
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CHAPTER 7

ANNEX B: FMRI FUNCTIONAL BRAIN

IMAGE DATA ACQUISITION

7.1 Introduction

In this section, we provide background details of functional magnetic resonance
imaging (fMRI) data and discuss the various steps followed to acquired the data and
preprocess our resting state fMRI (rs-fMRI) images for machine learning application.

Certain brain functions, such as motor skills, vision, and memory, have constant
inter-individual functional localization, but others, such as language, social cognition,
and attention, exhibit substantial inter-individual anatomical heterogeneity as pro-
posed by Vigneau et al. in there work [91]. In order to preserve these functional
areas after tumor resection, it is required to design and implement in routine surgical
practice techniques that allow clinicians to identify these areas and preserve them.

Neuro-monitoring and awake surgery allows intra-operative identification and preser-
vation of cortical functional areas and bundles of white fibers, it also represent the stan-
dard of surgical therapy for brain lesions located in the eloquent zone. Preoperative
identification of eloquent brain areas is necessary for surgical risk assessment, surgi-
cal planning, and to guide cortical mapping during surgery in order to preserve the
neurological status of the patient and optimize the quality of surgical resection. mag-
netic resonance imaging (MRI) machine, is one of the preferred methods for detecting
functioning brain regions and white fiber bundles (see Figure 7.1a).

The Blood oxygen level dependent (BOLD) imaging effect is a local increase in cere-
bral blood flow on the surface of activated cortical areas that is observable in MRI by
measuring the deoxyhemoglobin/oxyhemoglobin ratio. Once quantified, this BOLD
impact can be studied using various approaches to identify functioning brain areas
and utilized to plan eloquent brain region during neurosurgery [127].

Functional activation MRI is one of the modalities for identifying different func-
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Figure 7.1 – Task-based and resting-state fMRI image acquisition with MRI machine
(Fig. 7.3b [13]).

tional regions of the brain. This identification is based on a comparison of activation
between periods of performing a task that is particular to the brain function we aim to
identify and succeeding rest periods. The block paradigm (see Figure 7.2) is achieved
by alternating between stages of stimulus and repose, and by comparing the variation
of the BOLD signal with the anticipated theoretical hemodynamic response obtained
by multiplying the canonical cerebral hemodynamic response by the block paradigm
as proposed by [128] and illustrated in Figure 7.3, it is possible to statistically identify
the brain regions that were specifically active during the task that was performed.

Test

Control

Figure 7.2 – MRI in block paradigm.

This fMRI method is the most widely used in everyday practice and is easy to setup.
Unfortunately, there are a number of drawbacks to this method. It takes time to set up
and have the patient complete a paradigm that is unique to each brain function whose
functional brain areas we are trying to identify. This paradigm also places a great
deal of emphasis on the patient’s capacity to complete the requested task, which can
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Figure 7.3 – Correspondence of neural function and metabolic reactivity in BOLD fMRI
[128].

be challenging for patients who are young, old, claustrophobic, sedated patients, or
moderately impaired before surgery.

The analysis of the synchronicity of spontaneous BOLD signal oscillation between
brain areas during resting state fMRI (rs-fMRI) enables the identification of functional
networks without performing any explicit tasks, in contrast to task-based fMRI, which
studies the BOLD signal increase in brain areas during a language task to identify brain
language areas.

By measuring the spontaneous fluctuations of the BOLD signal of various brain
regions during a so-called “resting” MRI session, where the patient is only instructed
to look at a fixation cross and let go of his internal thoughts, it is also feasible to identify
functioning brain areas [27]. Without requiring the patient to perform tasks during
the MRI, it is possible to identify intrinsic connectivity networks by performing an
independent component analysis starting from the supposition that brain areas with
synchronous variation of their BOLD signal in low frequencies (<0.1Hz) are a part of
the same network.

Many studies [128, 129] have demonstrated an association between functional brain
regions identified by activation MRI and cortical stimulation and intrinsic connection
networks especially for language identification as shown in Figure 7.4. This analy-
sis, which was done in separate components, creates brain maps of the regions with
synchronous BOLD signal activity. These maps must then be manually inspected to
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Figure 7.4 – Resting-state fMRI language network identification with Independent
component analysis.

identify the networks of interest and assist the preservation of brain processes.

7.2 Clinical background and data acquisition stages

The data collected in the acquisition stage of our experiment is from two groups
of participants, which are: healthy control subjects or volunteers and patients with tu-
mors. While healthy data was acquired from the volunteer group, unhealthy data were
obtained from patients with brain tumors with a specific lesion region as indicated by
the provided binary lesion mask. A further description of the unhealthy population is
provided in [6]. This data acquisition experiment, is a single-center, prospective, open-
label trial, in compliance with regulation and ethical guidelines for clinical research,
approved by the local ethics committee (Comité de protection des personnes Ouest
II, decision reference CPP 2012-25). Eighty-one healthy volunteers (36 females and 45
males) aged from 23 to 38 years old were included and signed written informed con-
sent. Fifty-five adult patients with a brain lesion treated in the Department of Neuro-
surgery of the university hospital of Angers (CHU Angers) underwent a preoperative
fMRI language mapping with both rs-fMRI and task fMRI as well as a perioperative
cortical mapping of eloquent brain language areas in awake condition. All subjects
gave their written, informed consent before enrolling in this study.

Summary of Preprocessing stages:

a) Data acquisition: Resting-state fMRI scans are acquired using magnetic resonance
imaging (MRI) techniques, capturing the spontaneous neural activity of the brain
in the absence of specific tasks.

b) Preprocessing: The acquired fMRI data undergo several preprocessing steps to cor-
rect for various artifacts and noise. These steps may include slice-timing correction

94



to align slices in time, motion correction to compensate for head motion during the
scan, and spatial normalization to align the data to a standard brain template.

c) Brain extraction: The next step involves extracting the brain region from the fMRI
data while removing non-brain tissue, such as skull and scalp, to focus only on the
brain activity.

d) Spatial smoothing: Smoothing is applied to the fMRI data to reduce noise and en-
hance the signal-to-noise ratio. This is typically achieved by convolving the data
with a spatially defined kernel.

e) Temporal filtering: Low-frequency drifts and high-frequency noise are removed
through temporal filtering. Common approaches involve high-pass filtering to re-
move slow drifts and low-pass filtering to eliminate high-frequency noise.

f) Independent component analysis (ICA): ICA is applied to the preprocessed fMRI
data to identify independent components or spatially distinct brain networks. ICA
separates the fMRI signal into spatially independent components, each representing
a distinct pattern of neural activity.

g) Identification of functional brain networks: After performing ICA, the independent
components corresponding to functional brain networks are identified based on
their spatial patterns and known neuroanatomical information. These networks
represent coherent patterns of activity across different brain regions.

h) Activation map image volume generation: Activation maps are generated by quan-
tifying the strength of connectivity or functional activity within each identified
brain network. This involves calculating measures such as correlation coefficients
or z-scores to represent the level of activity or connectivity within each network.

A process diagram show the complete flow of preprocessing steps in resting-state
fMRI from acquisition to independent component identification and functional brain
network activation map image volume generation is illustrated in Figure 7.5.

7.2.1 Data preprocessing

In this experiment, all datasets were acquired on a 3.0 Tesla MR Scanner (Magne-
tom® Skyra Medical Systems™). During image acquisition, patients laid supine with
the head immobilized by foam pads and straps, with earphones, and kept in darkness.
Patients watched a black screen with a red fixation cross in the center through a prism.
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Figure 7.5 – Summarized flow of fMRI data collection and preprocessing stages.

The first three acquisition volumes in each functional series were discarded, to
allow the longitudinal magnetization to stabilize. Preprocessing was carried out us-
ing SPM8 (Wellcome Department of Imaging Neuroscience, University College, Lon-
don, UK, http://www.fil.ion.ucl.ac.uk/spm) running under MATLAB (The Math-
Works). Each patient’s native space images were corrected for time delays between
slices. Then, all images were realigned to the first volume of the first session and un-
wrapped to correct head movement and susceptibility distortions. The three-dimensional
dataset was segmented in native space, using the VBM 8.0 toolbox for statistical para-
metric mapping (SPM®) and co-registered to the mean functional image using gray
matter segmentation as a reference image. The coregistered gray matter segmentation
was then used to spatially normalize data into a standard template provided by the
Montreal Neurological Institute (MNI template) [130]. Finally, the images were spa-
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tially smoothed with a 6-mm kernel of full width at half-maximum. + Echo planar
imaging (EPI) sequence was used for each fMRI with the following parameters TR =
2,280 ms, TE = 30 ms, flip angle = 90°, 42 axial interleaved slice of 4 mm slice thick-
ness, in-plane matrix = 64 × 64 with a field of view = 168 × 187 mm, yielding a voxel
size of 3 × 3 × 4 mm3, covering the whole brain including the cerebellum. During
task fMRI, we acquired 270 functional volumes per session over two sessions, and for
rsfMRI, we acquired 270 functional volumes over one session. A T1-weighted anatom-
ical three-dimensional dataset was also obtained, covering the whole brain to coregis-
ter and normalize EPI images, with the following parameters: 192 contiguous sagittal
slices, in-plane matrix 256 × 256, yielding a voxel size of 1 × 1 × 1 mm3.

For task fMRI analysis, the two conditions were the two successive epochs of a
trial: TL and SG. A generalized linear model approach was used with regressors corre-
sponding to each of the two conditions SG and TL convolved with a model of canonical
hemodynamic response incorporated in the SPM8 package. Each individual time se-
ries of the preprocessed datasets was then analyzed by voxel-wise multiple regression.
Low-frequency noise was removed by 128-s cutoff high-pass filtering. No global signal
normalization was applied.

For rs-fMRI data analysis, a spatial independent component analysis (SICA) ap-
proach was used, employing a customized version of the Infomax algorithm running
under MATLAB, for the identification of large-scale networks [131]. Fifty-five spatial
independent components (ICs) were computed on preprocessed images of each indi-
vidual run. Individual spatial components were thresholded at z = 2 which produces
two variants of images the gray scale (tMaps) and thresholded images.

For all healthy and unhealthy data, we have extracted 55 features independent com-
ponent analysis (ICA) with a specific interest in 7 brain features. One of the main
difficulties with independent component analysis in resting-state fMRI is the determi-
nation of the total number of components (TNC) to be used, which may lead to sub-
optimal decompositions with the merging of multiple networks in case of low TNC,
or the fragmentation of a functional network into multiple components in case of high
TNC [132, 133]. Our choice to analyze 55 ICs among all patients was based on previous
works and appeared to be a good compromise to identify functional brain networks.
[134, 58]

Matlab function to merge tmaps images During this PhD, we extend our effort to
support the preprocessing stage of resting-state fMRI data, by creating a matlab mod-

97



ule to assist the neurosurgeon to generate a 4-dimensional version (4D.nii) of the high
dynamic range (.hdr) fMRI images faster. We provide a simple flowchart in Figure 7.6
to describe how our algorithm works. This function was provided through a intu-
itive and non-technical user interface as show in Figure 7.7, and it is available as a
standalone application for windows, Linux Ubuntu and Mac operating system. Early
feedback from clinician who used this matlab function, emphasize how much it saves
time in the prepossessing stage.

Select files to 
convert

Upload 
successful ?

No

Yes

.hdr      4D.nii 

Save new file to 
directory 

Figure 7.6 – Flowchart of Matlab module for merging 3D fMRI images.

fMRI image dataset description

The extracted 7 brain features correspond to 7 biological networks of the brain,
which are the Language Network (LANG), Salience Network (SAL), Ventral Attention
Network (VAN), Default Mode Network (DMN), Left Fronto-parietal Control (lFPCN),
Right Fronto-parietal Control Network (rFPCN), Dorsal Attention Network (DAN).
The seven brain features that were chosen to reflect the key ICN found and discussed
in the literature about resting-state fMRI [135, 133]. Because of the inter-individual
heterogeneity that makes it difficult to discover using detection tools or by non-expert
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Figure 7.7 – Process illustration of 4D image generator function.

reviewers, these specific networks were chosen for the DMN to serve as a control for
the others. This was done in order to ensure the accuracy of the results. These connec-
tivity networks match to recognized functional networks that are critical for maintain-
ing cognitive processes and have been incorporated into pre-surgical planning. The
connectivity networks were also found to be consistent between rs-fMRI various fMRI
data acquisition and analysis techniques [136]. Functional networks without anatom-
ical variabilities, such as the motor, sensory, or visual cortex, were not considered for
algorithm training and automated identification because of their consistent anatomical
location.

Image labels for each healthy and unhealthy data file marked by domain experts
were used to assign each image to its respective network class. In addition to the two
variants of network images provided for both healthy and unhealthy data as shown in
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a)  gray level image b)  threshold image

Figure 7.8 – Output rs-fMRI functional brain network activation images in 2 variants (
a)-gray level and 2)-threshold) after preprocessing stage.

Figure 7.8, unhealthy data includes details of the brain tumor as described in Table 7.1
and shown in Figure 7.9.

Table 7.1 – Description of preprocessed fMRI data of unhealthy patients.

Unhealthy Patient Image Data Description
Files provided Description

1 Lesion.nii This file is the binary mask for the brain tumour, each
corresponds to a patients

2 Grey matter mask (mrwp1) Is the mask for the grey matter (useful since the
activation are all in the grey matter)

3 White matter mask (mrwp2)

Is the mask for the white matter (no activation inside
the white matter, but may be a good way to estimate
the brain deformations linked to the tumour and the
peritumoural edema)

4 Cerebrospinal fluid mask (mrwp3)
The mask for the cerebrospinal fluid (like for the white
matter, no activation inside, but may be useful to
estimate brain deformations)

5 Whole brain-white grey matter (wms)
The whole brain (white and grey matter) in T1
anatomical MRI sequence, with the skin and skull
clipped

6 Whole brain (wmrs) This provides view of the whole brain cerebrospinal
fluid, skull and skin included

7.3 Conclusion

In this Annex, we provide detailed description of the steps follow to acquire resting-
state fMRI images of 7 selected functional brain network activations which are the main
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Figure 7.9 – Visual representation of the described data of unhealthy patients in Ta-
ble 7.1 (a is the lesion mask, b is the grey matter mask; c is white matter mask; d is cere-
brospinal fluid mask; e is whole brain, cerebrospinal fluid (skull and skin included); f
is whole brain(white & grey matter).

data sources used in the experiments describe in other chapters of this documents.

The functional MRI approach described in this Annex allows the identification of
functional connectivity networks in a single 15-minute resting MRI sequence, eliminat-
ing the need to implement an MRI sequence and an experimental paradigm for each
function that needs to be evaluated. Additionally, this method enables the recognition
of functional brain regions in individuals unable to complete activation tasks (children,
elderly patients, confused and so on). The main drawback of resting MRI is that the
maps produced by independent component analysis must be manually reviewed in
order to find the maps of interest. This method requires a reviewer with extensive un-
derstanding of the anatomy of functional brain networks and the examination is metic-
ulous, time-consuming, and requires a professional proofreader and the possibility of
human error is to be expected because some functional networks’ have very similar
morphologies, such as the language network and the ventral attention network.

The preprocessing stage of our fMRI data, followed standard procedure according
to the template provided by the Montreal Neurological Institute (MNI template) [130],
for both healthy and unhealthy data. Our observation from data discrimination ex-
periments from chapter 3, suggest that indeed, the observed discrepancy in this work
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could be better managed by introducing recalibration based on the severity of brain
tumor influes in the case of unhealthy data.
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CHAPTER 8

ANNEX C: TOWARD MORE FRUGAL

MODELS FOR FUNCTIONAL CEREBRAL

NETWORKS AUTOMATIC RECOGNITION

WITH RESTING STATE FMRI

In this Annex, we advance our investigation on one of the perspectives in the contri-
butions of this PhD. In our proposed deep learning model in chapter 2, we anticipate
that the addition of more data will increase model prediction accuracy, and to guar-
antee the feasibility of this objective, model parameters must be kept at minimal to
ensure a simple and efficient model as well as avoid the possibility of overfitting. Un-
fortunately, this was not the case due to the fact that our input fMRI data are of high
dimension, which has resulted in a large model parameters thus resulting in a complex
model. An approach to simplify and efficiently represent the functional activation sig-
nals in our image data is required to ensure an optimized and scalable model.

In the following pages, we described our strategy to simplify our high dimensional
data, and discussed our graph encoding strategy to demonstrate a more efficient rep-
resentation with superpixels graphs from resting-state fMRI images of functional cere-
bral networks recognition.
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Toward more frugal models for functional cerebral networks
automatic recognition with resting state fMRI
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Résumé – Nous considérons une situation d’apprentissage machine où des modèles à base de réseaux de neurones convolutionnels classiques
ont montré de bonnes performance. Nous investiguons différentes techniques d’encodage sous forme de supervoxel puis de graphes pour réduire
la complexité du modèle tout en limitant la perte de performance. Cette approche est illustrée sur une tâche de reconnaissance de réseaux
fonctionnels de repos pour des patients atteints de tumeurs cérébrales. Les graphes encodant des supervoxels préservent les caractéristiques
d’activation des réseaux cérébraux fonctionnels à partir des images, réduisant les paramètres du modèle de 26 fois tout en maintenant les
performances du modèle CNN.

Abstract – We refer to a machine learning situation where models based on classical convolutional neural networks have shown good perfor-
mance. We are investigating different encoding techniques in the form of supervoxels, then graphs to reduce the complexity of the model while
tracking the loss of performance. This approach is illustrated on a recognition task of resting-state functional networks for patients with brain
tumors. Graphs encoding supervoxels preserve activation characteristics of functional brain networks from images, optimize model parameters
by 26 times while maintaining CNN model performance.

1 Introduction

Convolutional neural networks (CNN) are powerful tools to
perform computer vision tasks. CNN are however very de-
manding in terms of energy, data and annotation due to the
large amount of parameters to be tuned during their training.
These limitations are specially important in medical imaging
where the constitution of large cohorts of unhealthy patients
can be a bottleneck as frequently observed in cases of rare dis-
eases like brain tumor. Recently, we have shown the possibil-
ity to circumvent this limitation by the use of transfer learn-
ing from self-supervised training on healthy data to unhealthy
data [1]. We used small data in our experiments, and approach
opens the possibility for scalability when a larger model is
trained from additional data acquired.

This was obtained for the automatic recognition of func-
tional cerebral networks via resting-state functional magnetic
resonance imaging (rs-fMRI) [2] for patient with brain tumors.
The CNN architecture proposed for the classification of func-
tional brain network with 3D fMRI images by Ismaila et al.
, was observed with high model training parameters despite
the small data size [2] which constitutes a complex model and
struggles with risks of overfitting.

In this work, we test possible ways to simplify deep learning
models by reducing the overall parameter size. To this pur-
pose, we propose to compare a basic CNN method with the

approach depicted in Fig.1. Based on a recent work by Gousia
et al. , which highlighted the benefits of graph encoding in op-
timizing CNN model parameters especially in medical imaging
[3]. We investigate various ways of encoding the rs-fMRI 3D
volume data in more compacted fashions and systematically
compare our observation with the performance obtained in [2].
This effort only represent an initial attempt towards more effi-
cient encoding of our brain volume images, as well as opens the
possibility for scalability when a larger model is trained from
additional data acquired.

2 Database
fMRI brain network activation image data of 81 healthy sub-
jects and 55 unhealthy patients were collected. Regular vol-
unteers provide the healthy data, while patients with brain tu-
mors where a binary mask indicate region of lesion in the brain
constitute the unhealthy data. This analysis, was done in sepa-
rate components which creates brain maps of the regions with
synchronous blood oxygen level dependent (BOLD) signal ac-
tivity. In the data acquisition stage, we extracted the intrin-
sic connectivity networks (ICNs) by using methods that com-
bine the information of both the temporal and spatial dimen-
sions, such as independent component analysis. The extracted
signals represent the neuro-anatomical basis for the functional
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Figure 1: Visual abstract of our method. We consider as base-
line performance either in terms of number of parameters and
accuracy of CNN applied on raw rs-fMRI activation maps for
functional cerebral network automatic recognition. We com-
pare this performance with neural networks applied on com-
pacted versions of the images.

networks in the brain [4]. The statistical parametric map-
ping (SPM) anatomy toolbox for Matlab was used to generate
the 3D brain volume images, from the initial spatio-temporal
fMRI signals. Among the 55 ICNs processed for each pa-
tients, 7 of these signals where recognized manually by experts
to be biological networks of the brain such as Default Mode
Network (DMN), Language Network (LANG), Right Fronto-
parietal Control Network (rFPCN), Left Fronto-parietal Con-
trol (lFPCN), Salience Network (SAL), Dorsal Attention Net-
work (DAN) and Ventral Attention Network (VAN). The anno-
tated images were used in two versions: full images (connec-
tivity map) and corresponding thresholded images.

3 Spatial dimension reduction
One may wonder if the entire 3D volume in gray levels is fully
informative for automatic recognition of the functional cere-
bral networks. Several dimension reduction approaches can be
envisioned. From the acquired brain volumes of resting-state
fMRI images 42px× 51px× 34channels, we normalized the
pixel intensity range to 0-1 and computed several reduced ver-
sion of these raw data as depicted in Fig.2.

First, one can reduce the number of spatial dimension via a
projection. We produced 2D gray level image by performing

Mean operation on pixel intensity across the axial (A) plane
as shown in Fig. 2 Secondly, to understand whether the inten-
sity of the activation map holds discriminative information, we
created 2D binary images by performing an OR operation in re-
spect to sagittal, coronal and axial (SCA) plane respectively,
which were further stacked together to provide SCA binary
stack image. Also, we performed another OR operation across
the axial plane to obtain a 3D binary volume image which over-
all, resulted in 4 variants of generated images as illustrated in
Fig.2. Lastly, we tested if the full resolution of voxels is neces-
sary for the classification of the functional network, which are
rather formed by large structures than fine details. To this pur-
pose, segmentation of the gray level activation map was per-
formed using SLIC algorithm [5, 6]. We processed the 2D
segmented labels to obtain a superpixels image, while the 3D
segmented labels provided the supervoxels image as shown in
Fig. 4. Furthermore, we averaged (smoothened) the pixel in-
tensities within each segment of our superpixels and supervox-
els images. This step allows us to evaluate the integrity of the
functional brain network features which was done by training a
CNN model for 7 distinct functional brain network classifica-
tion using the generated superpixels/supervoxels images.
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Figure 2: fMRI image dimension reduction process.

Table 1: CNN based fMRI brain network classification with
unhealthy data.

Data Train-Test Accuracy Parameters
3D gray level 315-70 0.75 ± 0.01 2,356,807
3D binary 315-70 0.66 ± 0.02 2,356,807
2D gray level 315-70 0.68 ± 0.01 2,337,799
2D binary 315-70 0.63 ± 0.01 2,337,799
SCA-binary stack 315-70 0.68 ± 0.02 2,011,271
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Figure 3: Pixel image segmentation into superpixels and super-
voxels.
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Figure 4: fMRI (LANG network) image spatial transformation.

When using the dimension reduction from 3D to 2D or from
grey level to binary images, we observe performance drop as
provided in Tab. 1. This suggests that, there is information in
the gray level distribution and the 3D shape of the network
which are not preserved via the simple spatial dimension re-
duction tested. By contrast, the values in Tab. 2 represent the
functional brain network classification results with CNN model
using pixels, superpixels and supervoxels data respectively. In-
terestingly the loss of performance is very limited when one
reduces the gray levels to the average value of the pixels inside
a supervoxel or even a superpixel image. Therefore, despite the
spatial dimension reduction tested, the reduction of the number
of parameters in the models is so far very limited or negligible.
To produce this reduction of the model, we proposed to encode
the most promising dimension reduction technique (supervox-
els) in a compact way as described in the next section.

Table 2: CNN classification of functional brain networks using
superpixels/supervoxels images generated in the segmentation
stage of graph encoding process with unhealthy subjects as in-
put data.

Data Train-Test Accuracy Parameters
3D gray level 315-70 0.75 ± 0.01 2,356,807
Superpixels image 315-70 0.69 ± 0.02 2,356,807
Supervoxels image 315-70 0.73 ± 0.02 2,356,807

4 Graph encoding

To further benefit from the spatial dimension reduction of the
previous section, we investigate the possibility to reduce the
complexity of the associated neural networks models with lim-
ited reduction of performance on the functional cerebral net-
work recognition. To this purpose, we consider to encode our
supervoxelized images into graphs. Commonly in graphs, in-
teracting nodes are connected by edges whose weights can be
defined by either temporal connections or anatomical junctions,
because, graphs are naturally good at relational organization
between entities, which makes them great option for represent-
ing the 3D capture of voxelwise signals mapped to a specific
region of the brain [7]. Therefore, a possibly efficient repre-
sentation of these fMRI network activations in images can be
tested using a graph relation network, which connects nodes of
related regions via graph edges.

To obtain a graph representation of our supervoxels images,
we connected the segmented neighboring regions through an
edge, and denoted the center of each region as a graph node,
segment-wise attributes were encoded as node spatial embed-
dings. This step was repeated until all neighboring nodes were
traversed (see Fig.5). We implemented this approach using the
region adjacency graph technique [8], which simply represents
each region of the segment as graph nodes and the link between
two touching regions as edge using the provided labels of the
segmented regions [9]. From the extracted relative spatial co-
ordinates of each superpixel of our image data via the carte-
sian function, we computed the node position as edge attribute
(pos[i]− pos[j]) via k-NN graph transformation.

K-NN graph transformation

C = pos[i] − pos[j] = eij


node centroid
eij

C

spatial embeddings

Figure 5: Graph encoding process from superpix-
els/supervoxels images.

The number of supervoxels was fixed empirically based on
the typical size of the activation spots. The resulting graphs



from the encoding stage were observed to be structurally in-
distinguishable from the connectivity point of view. The con-
trastive information is expected to stand on the distribution of
edge values, which differ from one structural network map to
another.

We implemented our method using SplineCNN, a graph neu-
ral network which uses a novel type of spline-based convo-
lutional layer for learning [10]. This state-of-the-art GNN is
suitable for image-based graph classification task because, it
allows the capture of local patterns using spatial relationship
between graph nodes by performing global graph pooling. We
trained our model parameters with 2 convolutional layers and
2 fully connected output layers with indication of 7 classes in
the output layer and a softmax activation. Best results were ob-
tained by training with 2-step learning rate values of 1e− 3 for
epochs 0 − 200 and 1e − 5 for epochs 200 − 500 with early
stopping.

For fair comparison with the best result obtained with CNN
model in [11], we performed transfer learning during the train-
ing of the CNN and GNN models using 80% - 10% - 10%
ratio for train-validation-test data slit respectively, as well as
early stopper with patient set to 10 misses. The performance
provided in Tab. 3 shows the recorded result from fMRI func-
tional network classification using this transfer learning strat-
egy. Brute transfer indicates the strategy of training directly on
healthy data and testing on unhealthy data for both CNN and
GNN models. In this cohort, results were compared with val-
ues from training and testing on unhealthy data using CNN and
GNN model, which provided the 1st baseline and 2nd baseline
values of 0.75 ± 0.01 and 0.64 ± 0.03 respectively, while 0.78
± 0.01 and 0.70 ± 0.01 were recorded in the transfer learning
approach with CNN and GNN respectively. As a consequence,
we demonstrate the possibility to obtain a compression of a
factor of 26 on the number of model parameters after super-
voxeization and graph encoding with only a reduction of 8%.

Table 3: Transfer learning classification with CNN and GNN
models.

Data Train-Test Accuracy Parameters
CNN brute-transfer healthy-unhealthy 0.75 ± 0.01 2,356,807
CNN fMRI healthy
(pretrained)

unhealthy-unhealthy 0.78 ± 0.01 2,356,807

GNN brute-transfer healthy-unhealthy 0.67 ± 0.02 90,855
GNN fMRI healthy
(pretrained)

unhealthy-unhealthy 0.70 ± 0.01 90,855

5 Conclusion
In this study, we investigated ways to reduce the complex-
ity of end-to-end machine learning models based on convolu-
tional neural networks for the automatic recognition of func-
tional cerebral networks via resting-state fMRI data. A com-
paction of the activation maps into superpixels or supervoxels
shows limited impact on the classification performance. We
emphasize the anticipated influence of our 3D multi-channel

images in model parameters, which motivates exploration of
a dimension reduction technique before introducing the graph
encoding technique. Model evaluation based on spatial dimen-
sion reduction was done to investigate its minimal influence in
reducing our model parameter. However, this stage was im-
portant towards more efficient data encoding (graph structure),
which was later shown to have significantly reduced the model
parameter. Our initial encoding effort produces a compression
of a factor 26× where associated reduction in performance was
observed at only 8%.

The effort to reduce the complexity of the models was con-
centrated on the encoding approach of our fMRI data. It would
naturally be interesting to couple such effort with investigation
on the architecture of the models [12, 13].
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Titre : Application de l’apprentissage automatique en neurosciences pour la procédure d’abla-
tion pré-chirurgicale d’une tumeur cérébrale
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Résumé :
La résection d’une tumeur cérébrale est

une procédure médicale essentielle pratiquée
par les neurochirurgiens. Les zones fonction-
nelles du cerveau doivent être identifiées et
préservées pendant l’opération afin de main-
tenir la fonction neurologique altérée par la tu-
meur. L’imagerie par résonance magnétique
fonctionnelle (IRMf) est utilisée pour la plani-
fication chirurgicale afin d’identifier ces zones
sur la base du signal dépendant de l’oxygène
du sang (BOLD), qui augmente le flux sanguin
dans les régions cérébrales activées. Des pa-
radigmes basés sur des tâches, comme le ta-
potement des doigts ou la parole, sont tradi-
tionnellement utilisés pour cette identification,
mais ils prennent du temps et nécessitent la
coopération du patient. L’IRMf à l’état de re-
pos (IRMf-R) est une méthode alternative qui
analyse les oscillations spontanées du signal
BOLD pour identifier les réseaux de connec-
tivité indépendants. Cependant, la reconnais-
sance manuelle de ces réseaux pendant l’in-
tervention chirurgicale est difficile et sujette
à des erreurs. Pour y remédier, nous avons
proposé d’utiliser des techniques d’apprentis-
sage automatique et de vision par ordinateur
pour reconnaître automatiquement sept ré-
seaux cérébraux fonctionnels à partir de don-
nées d’IRMf.

La collecte de grandes quantités de don-
nées d’IRMf est difficile en raison des limites

du partage des données. Nous avons exploré
l’apprentissage par transfert en formant des
modèles avec des données saines et en les
appliquant à des données malsaines pour sur-
monter cette limitation. Cette approche tire
parti de la similitude entre les réseaux d’acti-
vation fonctionnelle du cerveau chez les sujets
sains et non sains. En outre, nous avons dé-
veloppé un modèle d’apprentissage par auto-
supervision qui utilise des ensembles de don-
nées saines non étiquetées pour pré-entraîner
le modèle, éliminant ainsi la nécessité d’une
annotation fastidieuse des données par les cli-
niciens.

Nous avons également étudié les diffé-
rences entre les données saines et malsaines
afin de comprendre leur relation et la manière
dont elles affectent la transférabilité et la clas-
sification des réseaux cérébraux fonctionnels.
En outre, nous avons proposé une méthode de
réduction des dimensions et un encodage gra-
phique des images IRMf en utilisant l’appren-
tissage de la représentation graphique pour
éviter les paramètres d’apprentissage impor-
tants, les modèles complexes et les exigences
informatiques. Cette approche permet d’ap-
prendre efficacement les signaux utiles dans
les images d’IRMf et d’obtenir des résultats
comparables aux modèles de réseaux neuro-
naux convolutionnels (CNN) avec des para-
mètres de modèle réduits.



Title: Machine Learning Application In Neuroscience For Pre-Surgical Brain Tumor Removal
Procedure

Keywords: machine learning, deep learning, computer vision, medical imaging, transfer learn-

ing, resting-state fMRI, functional brain networks, Self-supervision, image classification, graph

neural network, data augmentation.

Abstract:
Brain tumor resection is a critical medi-

cal procedure performed by neurosurgeons.
Functional brain areas need to be identified
and preserved during the surgery to main-
tain neurological function impaired by the tu-
mor. Functional magnetic resonance imaging
(fMRI) is used for surgical planning to identify
these areas based on the blood oxygen de-
pendent (BOLD) signal, which increases blood
flow in activated brain regions. Task-based
paradigms like finger tapping or speech are
traditionally used for this identification but are
time-consuming and require patient coopera-
tion. Resting state fMRI (rs-fMRI) is an al-
ternative method that analyzes spontaneous
BOLD signal oscillations to identify indepen-
dent connectivity networks. However, manual
recognition of these networks during surgery
is challenging and prone to errors. To ad-
dress this, we proposed using machine learn-
ing and computer vision techniques to auto-
matically recognize seven functional brain net-
works from rs-fMRI data.

Collecting large amounts of fMRI data is

difficult due to medical data sharing restric-
tions. We explored transfer learning by train-
ing models with healthy data and applying
them to unhealthy data to overcome this lim-
itation. This approach leverages the similarity
between functional brain activation networks
in healthy and unhealthy subjects. Addition-
ally, we developed a self-supervision learning
model that uses unlabeled healthy datasets to
pretrain the model, eliminating the need for
time-consuming data annotation by clinicians.

We further investigated the differences be-
tween healthy and unhealthy data to under-
stand their relationship and how it affects
transferability and the classification of func-
tional brain networks. Additionally, we pro-
posed a dimension reduction method and
graph encoding of fMRI images using graph
representation learning to avoid large train-
ing parameters, complex models, and com-
putational demands. This approach effec-
tively learns useful signals in fMRI images and
achieves comparable results to convolutional
neural network (CNN) models with reduced
model parameters.
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