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Yoël Perreau

Composition du jury :
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Résumé

Cette thèse est consacrée à l’étude de la géométrie des espaces de Banach. Elle est composée
de trois chapitres que nous allons brièvement décrire dans la suite du paragraphe, et est centrée
autour deux grands thèmes de recherche, la géométrie non-linéaire et la géométrie isométrique.

Dans le premier chapitre, nous introduirons tout le bagage nécessaire en théorie asympto-
tique des espaces de Banach. On introduira les propriétés standards de lissité asymptotique
uniforme et de convexité asymptotique uniforme, et on décrira un large éventail de leur utili-
sation. On présentera ensuite les résultats majeurs de théorie du renormage dans le contexte
en relation avec l’indice de Szlenk, et on décrira quelques applications de cet invariant iso-
morphique en théorie linéaire des espaces de Banach. En particulier, on considérera la notion
fondamentale d’arbres dans un espace de Banach et on fera un brève incursion en théorie des
structures asymptotiques qui met en oeuvre dans le contexte de puissants outils combinatoires
provenant de la théorie des jeux. On terminera le chapitre par une présentation de la convexité
asymptotique moyennée sur laquelle on amènera quelques nouvelles observations.

Le deuxième chapitre est consacré à la géométrie non-linéaire. On introduira brièvement
toutes les notions de base de la théorie, et en particulier les diverses notions de plongements
métriques dont nous aurons l’usage. Le résultat principal de ce chapitre est l’extension d’un
résultat dû à Baudier, Kalton et Lancien concernant le non-plongement de la famille (TN)N≥1

des arbres hyperboliques à branchements dénombrables dans le contexte des espaces réflexifs
au contexte plus géneral des espaces quasi-réflexifs. On présentera ensuite une extension d’un
résultat de plongement dû à Baudier et ses co-auteurs des graphes diamants à branchements
dénombrables dans le contexte des espaces réflexifs qui possèdent une structure asymptotique
spécifique au contexte des espaces duaux pour lesquels une condition similaire sur la structure
asymptotique préfailbe est vérifiée. On terminera le chapitre par quelques commentaires sur
les modèles étalés des espaces de Banach et leur application en théorie linéaire et non-linéaire,
et on établira quelques liens avec l’indice de Szlenk et le plongement de certaines familles de
graphes.

Le troisième chapitre est dédié à la géométrie isométrique, et plus particulièrement à
l’étude des points de Daugavet et des points ∆ d’un espace de Banach. On se focalisera
plus spécifiquement sur l’influence de la géométrie asymptotique d’un espace de Banach sur
l’existence de tels points. Les résultats principaux de cette étude sont qu’aucun espace asymp-
totiquement uniformément lisse et qu’aucun espace réflexif asymptotiquement uniformément
convexe ne peut contenir de point ∆, et qu’aucun dual préfaiblement asymptotiquement uni-
formément convexe de peut contenir de point de Daugavet. On produira également des versions
locales de ces résultats. On s’intéressera aussi à la question de l’existence de ces points dans
les espaces super-réflexifs et on produira un critère qui garantit leur existence dans tout ultra-
puissance d’un espace donné dans ce contexte. Finalement on montrera que l’espace de James
JT construit sur un arbre dyadique n’admet pas de point ∆.

En appendice, on introduira brièvement l’indice `+
1 faible dû à Alspach Judd et Odell, et on

utilisera cet indice pour prouver la détermination séparable de l’indice de Szlenk par quotients
dans le cadre des espaces dits “ weakly compactly generated ”.



Abstract

This thesis is devoted to the study of the geometry of Banach spaces. It is composed of three
main chapters that we will briefly describe in the present paragraph, and is directed towards
two main fields of research, the non-linear geometry and the isometric geometry.

In Chapter 1 we introduce all the necessary background in the asymptotic theory of Banach
spaces which, roughly speaking, considers geometric properties of Banach spaces up to finite
dimensional subspaces. This chapter forms the foundations of the thesis as the material pre-
sented in it will be central for our studies both in the non-linear and in the isometric theory.
We introduce the standard properties of uniform asymptotic smoothness and convexity and
present a detailed investigation of their usage. We then present the major known results in the
related renorming theory in relation to the Szlenk index and describe some of the applications
of this isomorphic invariant to the linear theory of Banach spaces. In particular we consider
the important notion of trees in a Banach space and make a brief incursion in the theory of
asymptotic structures of Banach spaces which provide powerful combinatoric tools in the con-
text coming from the theory of games. We end the chapter with a presentation of the so-called
asymptotic midpoint uniform convexity and provide a few novel observations on the subject.

Chapter 2 is devoted to non linear-geometry. We briefly introduce all the necessary back-
ground in the theory, and in particular all the relevant notions of metric embeddings. The main
result of this chapter is the extension of a result by Baudier, Kalton and Lancien concerning
the non embeddability of the family (TN)N≥1 of hyperbolic countably branching trees in the
context of reflexive Banach spaces to the context of quasi-reflexive Banach spaces. As a corol-
lary we obtain the non embeddability of this family into James spaces Jp. We then present
an extension of an embeddability result by Baudier and his co-authors of countably branching
diamond graphs in the context of reflexive Banach spaces with specific asymptotic structural
properties to the context of dual spaces in which the weak∗ asymptotic structure presents a
similar behavior. We end the chapter with a few comments on the notion of spreading models
in Banach spaces and their usage in the non-linear theory, and in particular study their relation
with the Szlenk index and the embeddability of certain families of graphs.

Chapter 3 is devoted to isometric geometry, and more specifically to the study of the so-
called Daugavet- and ∆-points of a Banach space. We focus primarily on the influence of the
asymptotic geometry of the space on the existence of such points. The main results of this
chapter are that asymptotically uniformly smooth Banach spaces as well as reflexive asymptot-
ically uniformly convex Banach spaces do not admit ∆-points and that weak∗ asymptotically
uniformly convex dual spaces do not admit Daugavet-points. We also provide local versions of
those results. We then investigate the question of the existence of Daugavet- or ∆-points in
super-reflexive Banach spaces and provide a criterion ensuring in this context the existence of
such points in any utrapower of the space. Finally we show that the James tree space JT does
not admit ∆-points.

In the short Appendix A we introduce the weakly null `+
1 index from Alspach Judd and

Odell, and use this index to prove the determination of the Szlenk index by separable quotients
for weakly compactly generated Banach spaces.
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Introduction

The systematic study of complete normed vector spaces goes back to Banach’s thesis [Ban1]
published in 1922. With the publication in 1932 of Banach’s famous monograph [Ban2] the
nowadays called Banach spaces became a natural and powerful framework for modern functional
analysis. This thesis is devoted to the study of their geometry from a non-linear point of view
and from an isometric point of view. Our notation is standard and follows those of classical
textbooks such as [AK] or [FHH+]. In particular, if X is a Banach space, we will denote by
BX its closed unit ball, SX its unit sphere and X∗ its dual space. Unless otherwise stated, we
will work with infinite dimensional spaces, we will implicitly assume that subspaces are closed
subspaces, and we will consider real Banach spaces only. Also if M is a metric space, we will
denote by B(x, ε) the closed ball centered at a point x ∈M and of radius ε > 0.

Non-linear geometry and asymptotic theory

Every Banach space has a natural underlying complete metric structure, and the question
of the classification of Banach spaces up to non-linear transformations (see Section 2.1 for
precise definitions) turned out to be a very rich and still very active field of research. For an
overview of some of the most standard results in the area we refer to the classical book [BL2].
Concerning the question of the preservation of (linear) geometric properties of Banach spaces
under non-linear transformations, an important rigidity result was discovered by Ribe in [Rib1]
for the so-called local properties of Banach spaces, which roughly speaking are properties which
concerns finite dimensional subspaces of a given Banach space. Important examples of such are
super-reflexivity, type or cotype.

Theorem (Ribe, 1976). Let X and Y be Banach spaces, and let us assume that X coarse-
Lipschitz embeds into Y . Then X is crudely finitely representable in Y , that is there is a
constant C > 0 such that for every finite dimensional subspace E of X there is a finite dimen-
sional subspace F of Y and an isomorphism T from E onto F satisfying ‖T‖ ‖T−1‖ ≤ C.

One of the major consequence of this result is that every local property is stable under coarse-
Lipschitz embeddings, meaning that if a Banach space X coarse-Lipschitz embeds into a Banach
space Y and if Y has a local property (P ), then X also has property (P ). For the convenience
of the reader let us recall that a coarse-Lipschitz embedding is a metric embedding which
behaves like a standard Lipschitz embedding for large distances. In particular any uniform
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homeomorphism between Banach spaces X and Y , that is any uniformly continuous bijective
map with a uniformly continuous inverse naturally gives rise to a coarse-Lipschitz embedding
from X into Y and from Y into X. Let us also recall that Ribe also published in [Rib2] (1984)
the first example of uniformly homeomorphic separable Banach spaces which are not linearly
isomorphic, also proving that reflexivity is not preserved by uniform homeomorphisms.

After the discovery of this rigidity result it was speculated that local properties of Banach
spaces could admit purely metric characterizations and that their definition could be extended
to a general metric setting without any more mention of the linear structure. The first result in
this direction is the famous following characterization of super-reflexivity obtained by Bourgain
[Bou] which can be considered as the starting point of the nowadays called Ribe program. We
refer to the surveys [Nao1] and [Nao2] for an overview of some the most important results in
this area and for the surprisingly effective application of those results in computer science.

Theorem (Bourgain, 1986). A Banach space X is super-reflexive if and only if the family
(dN)N≥1 of hyperbolic dyadic trees of finite height does not equi-Lipschitz embed into X.

Similar characterizations of super-reflexivity where later obtained with other families of
metric graphs. In particular Johnson and Schechtman provided in [JS] (2009) an analogue to
Bourgain’s result with the family of (2-branching) diamond graphs and implemented a short and
elegant “ self-improvement argument ” for the non equi-Lipschitz embeddability of this family
into uniformly convex spaces. A similar argument was also used by Kloeckner in [Klo] (2013)
to provide a short proof of Bourgain’s non equi-Lipschitz embeddability of the family (dN)N≥1

into uniformly convex spaces. It should be pointed out here that those characterizations are
known to be completely independent since Ostrovskii proved in [Ost1] (2014) that the two
considered families are in some sense incomparable (they do not uniformly bi-Lipschitz embed
into each other). Also Swift provided in [Swi] (2018) a very large class of families of metric
graphs for which an analogue of Bourgain’s result can be stated, the families generated by a
finitely branching (non trivial) bundle graph.

Another important strengthening of Bourgain’s result was obtained by Baudier in [Bau1]
(2007) where it is proved that a “ barycentric gluing technique ” inspired from Ribe’s paper
[Rib2] allows to embed the dyadic tree of infinite height d∞ in any non super-reflexive space.
Such technique was developed further in several papers and culminated in the following result
from Ostrovskii proved in [Ost2] (with an unnecessary restriction to uniformly discrete metric
spaces which was then removed from subsequent versions of the paper). For more details on
the barycentric gluing technique and on its applications to metric geometry, we refer to the
paper [Bau2].

Theorem (Ostrovskii, 2012). Let M be a locally finite metric space, that is a metric space in
which all balls are finite. If the finite subsets of M uniformly bi-Lipschitz embed into a Banach
space X, then M bi-Lipschitz embeds into X.

In [BKL] an analogue of Bourgain’s (and Baudier’s) result was discovered in the parallel
“ asymptotic Ribe Program ” in the context of the asymptotic geometry of Banach spaces by
Baudier, Kalton and Lancien. Roughly speaking the asymptotic theory considers geometric
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properties of Banach spaces up to finite dimensional spaces and the most important objects
of the theory are (closed) subspaces of finite co-dimension or equivalently weakly open neigh-
borhoods of 0 in a given Banach space. This theory will be thoroughly studied in Chapter 1
but it should be pointed out that there is no equivalent result to Ribe’s rigidity theorem in
the asymptotic setting, and although strong analogies with the local theory appeared over time
there is no reason to believe that every asymptotic property should admit a purely metric
characterization or even should be stable under non-linear transformations. Their result is the
following.

Theorem (Baudier, Kalton, Lancien, 2010). Let X be a separable reflexive (infinite dimen-
sional) Banach space. The following assertions are equivalent.

1. The Szlenk index of the space X and the Szlenk index of the space X∗ are both equal to
the first infinite ordinal ω.

2. The family (TN)N≥1 of countably branching hyperbolic trees of finite height does not equi-
Lipschitz embed into X.

3. The countably branching tree T∞ of infinite height does not bi-Lipschitz embed into X.

Note that T∞ is not locally finite so that the last statement of this theorem does not follow
from Ostrovskii’s result (although similar gluing arguments are involved). Up to our knowledge
it is in fact still unknown whether the bi-Lipschitz embeddability of T∞ is implied by the
equi-Lipschitz embeddability of the familly (TN)N≥1. Also let us point out that one can easily
get rid of the separability assumption in this result by using the separable determination of
the Szlenk index. An alternative short proof of this result involving property (β) of Rolewicz
(whose existence up to renorming is sometimes referred to as asymptotic super-reflexivity) and
relying on a self improvement argument “ à la Kloeckner ” was also provided by Baudier and
Zhang in [BZ] (2016).

We introduce all the necessary background on asymptotic geometry in Chapter 1. In partic-
ular we introduce the notions of asymptotic smoothness and asymptotic convexity, and present
the well known duality between asymptotically smooth spaces and weak∗ asymptotically convex
dual spaces. We then introduce the Szlenk index of a Banach space which plays a fundamental
role in the linear and non-linear theory of Banach spaces and present the famous renorming
result from Knaust, Odell and Schlumprecht [KOS] which can be formulated as follows.

Theorem (Knaust, Odell, Schlumprecht, 1999). Let X be a separable Banach space. The
following assertions are equivalent.

1. The Szlenk index of X is equal to ω.

2. The space X admits an equivalent asymptotically uniformly smooth norm with power type.

It is very natural to ask wether the reflexivity assumption can be dropped in the result
from Baudier, Kalton and Lancien. Since T∞ embeds into any Banach space with Szlenk index
strictly greater than ω and into any Banach space whose dual has Szlenk index strictly greater
than ω, the question is essentially brought back to the following.
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Question. Let X be a (separable) non-reflexive Banach space. If the Szlenk index of X and the
Szlenk index of X∗ are equal to ω, do we have that the family (TN)N≥1 fails to equi-Lipschitz
embed into X?

Let us point out that there is no hope of extending the proof from Baudier and Zhang in
this context since property (β) implies reflexivity. We will provide an affirmative answer to this
question in Section 2.2 in the context of quasi-reflexive Banach spaces. The following theorem
will be the main result of the non-linear Chapter 2.

Theorem (P., 2019). Let X be a separable quasi-reflexive Banach space. If the Szlenk index of
the space X and the Szlenk index of the space X∗ are both equal to ω, then the family (TN)N≥1

does not equi-Lipschitz embed into X.

As a consequence we extend the result from Baudier, Kalton and Lancien to the quasi-
reflexive setting, and we obtain the non embeddability of T∞ into James spaces Jp (1 < p <∞)
which are known to be quasi-reflexive of order 1 and to satisfy SZ(Jp) = SZ(J∗p ) = ω.

Let us briefly explain some of the key ideas behind this result. The main difficulty in the
extension of the proof from [BKL] outside of the reflexive setting is the lack of weak sequential
compactness. Indeed one of the main tools in this proof is the use of sharp martingale like
estimates on certain weakly null trees which are provided by the asymptotic smoothness and
the asymptotic convexity of the space. The implementation of such arguments requires a first
crucial step of decomposition of metric trees into weakly null pieces by a process of successive
extractions of weakly converging subsequences at each level of the trees. At this point, a
very naive idea would be to embed our trees in the bidual of the target space instead of the
space itself, and then to make use of the available weak∗ sequential compactness in order to do
some extractions. Now since weak∗ asymptotic smoothness in a dual space is known to force
reflexivity, one has to rely on the asymptotic smoothness of the original space in order to obtain
estimates there. Yet by extracting in a bidual one could find himself far from the original space,
and there is no reason why such estimates should be provided.

This is where the quasi-reflexive assumptions pops out. For the convenience of the reader
let us recall that a Banach space X is said to be quasi-reflexive if it has finite co-dimension
in its bidual. In other words the bidual of any quasi-reflexive space can be decomposed as a
direct sum X∗∗ = X ⊕ E where E is a finite-dimensional space. Since the unit ball of any
finite dimensional space is compact, this assumption allows us to use a combinatorial result of
concentration from Ramsey which guarantees that at each fixed level of the trees in X∗∗ one can
ask differences between every two points at this level of the tree to be as close as we wish to an
element of the space X. Specific extractions then allow to obtain full subtrees for which every
sequence obtained by taking the difference between two branches of the tree which “ interlace ”
satisfy smoothness estimates. The origin of those ideas goes back to the paper [LR] from 2018
where Lancien and Raja used similar arguments in order to extend some previous results from
Kalton and Randrianarivony ([KR], 2008) on concentration phenomenon for Hamming graphs
to the quasi-reflexive setting. In particular their simple but key observation that smoothness
estimates do still hold for weak∗ null sequences rooted at points of X plays an important role
in the previously mentioned extractions.
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Another important result in the “ asymptotic Ribe program ” was discovered by Baudier
and his co-authors in [BCD+] (2017).

Theorem (Baudier, Causey, Dilworth, Kutzarova, Randrianarivony, Schlumprecht, Zhang).
Let X be a separable reflexive (infinite dimensional) Banach space and let us assume that X
has an unconditional asymptotic structure. Then the following assertions are equivalent.

1. The Szlenk index of the space X∗ is equal to ω .

2. The family (DN)N≥1 of countably branching diamond graphs does not equi-Lipschitz embed
into X.

Part of the result is based on another self-improvement argument “ à la Johnson and Schecht-
man ” and states in full generality that the family (DN)N≥1 fails to equi-Lipschitz embed into
any space which is asymptotic midpoint uniformly convex. This property was introduced in
[DKR+] in 2016 by Kutzarova and her co-authors as an (isometrically) weaker version of asymp-
totic convexity, and is closely related to the α size (where α stands for the Kuratowski index
of non-compactness) of so-called approximate midpoints in a given Banach space, a simple but
very powerful tool introduced by Enflo in an unpublished paper in order to prove that the space
L1 does not coarse-Lipschitz embed into `1. We refer to [Ben, Section 5] for a proof of Enflo’s
result. Let us also mention Kalton’s result [Kal2, Theorem 7.3] (2013) where similar ideas are
used in order to provide lower estimates for the spreading models of any Banach space X which
coarse-Lischpitz embeds into an asymptotic midpoint uniformly convex Banach space Y . In
Chapter 1 Section 1.4 we introduce a natural weak∗ version of asymptotic midpoint convexity
and make use of the renorming theorem from Knaust, Odell and Schlumprecht to prove that
this property is equivalent, up to renorming and under specific asymptotic structural properties
to the standard weak∗ asymptotic convexity. This is the following result.

Theorem (P., 2020). Let X be a separable Banach space and let us assume that X∗ has a
weak∗ unconditional asymptotic structure. Then the following assertions are equivalent.

1. The space X has Szlenk index ω.

2. The space X admits an equivalent norm whose dual norm is AUC∗.

3. The space X∗ admits an equivalent AMUC∗ norm.

Surprisingly we also stumbled on the fact that asymptotic midpoint convexity actually
coincides with its weak∗ version on any dual space, thus obtaining a major difference with the
standard asymptotic convexity. As a corollary we obtained the following result.

Theorem (P., 2020). There exists a Banach space X whose dual norm is AMUC∗ but which
admits no equivalent AUC∗ norm
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More specifically this space is the James tree space JT . Since the dual norm of this space
is known to be asymptotically convex (this is a result by Girardi, see [Gir]), the question of
the equivalence of asymptotic midpoint convexity and standard asymptotic convexity up to
renorming remains open.

The asymptotic structural properties which appear in the above results will be presented in
Chapter 1. Getting rid of those would certainly be an important breakthrough in the asymptotic
linear and non-linear theory but seems to ask for completely new ideas. For our part, we build
in Chapter 2 on the ideas from [BCD+] of using specific trees with a strong c0 like structure
on branches which arise from considerations on the asymptotic structure of the space implied
by properties of the Szlenk index. We extend their result in the context of dual spaces under
similar (weak∗) asymptotic structural requierements.

Theorem (P., 2020). Let X be a separable Banach space with Szlenk index strictly greater than
ω, and let us assume that X∗ has a weak∗ unconditional asymptotic structure. Then the family
(DN)N≥1 does equi-Lipschitz embed into X∗.

Let us point out that the results from [BCD+] were also extended by Swift in [Swi] (2018)
to families generated by non trivial countably branching bundle graphs, and our result can
also be naturally extended to those families thanks to his investigations. Let us also mention
that getting rid of separability assumptions in the characterization from [BCD+] cannot merely
be done by passing to a separable subspace since one might loose the essential asymptotic
structural properties of the dual space. It is thus required to pass to a separable quotient
while preserving the Szlenk index of the original space. This question might be very difficult
in general since it is already unknown whether separable quotients exists for arbitrary Banach
spaces. Yet it is possible to do so in weakly compactly generated Banach spaces, and we provide
a proof of this in the Appendix A by using the so-called weakly null `+

1 index introduced by
Alspach, Judd and Odell in [AJO] (2005).

Theorem (P., 2020). Let X be a weakly compactly generated Banach spaces and let α be
a countable ordinal. If the Szlenk index of X is strictly greater than α, then there exists a
separable quotient of X with Szlenk index stricly greater than α.

We end Chapter 2 and our non-linear studies with a few considerations on spreading models
in relation with the Szlenk index and the embeddability of the above families. Most of the results
of this section are certainly well known by experts in the field, but are often difficult to track
down in the literature. Yet the following result is new.

Proposition (P., 2020). Let X be a Banach space. If X contains a c0 spreading model, then
the family (DN)N≥1 does equi-Lipschitz embed into X.

The results announced in this section are based on the paper [Per1] and on the preprint
[Per2].
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Diameter two properties and isometric geometry

A powerful way of understanding some of the geometric characteristics of the unit ball BX of
a Banach space X from an isometric point of view is to look at the behavior of its slices which
are obtained by intersecting it with half-spaces supported by continuous functionals. This
apparently simple idea has lead to many deep and beautiful results in the field, at the interface
between geometry, probability and analysis (see for example the monographs [DGZ],[DU],[Pis]).
Historically two of the most studied properties in this field are the (isomorphic) Radon-Nikodým
property (RNP in short) and the Daugavet property which, in terms of behavior of slices, lie
at the opposite ends of the available spectrum. Indeed RNP spaces are known to have plenty
of slices of small diameter (more precisely every bounded subset of an RNP space admits
slices of arbitrarily small diameter, see [DU, Section VII. 6.] for a summary of the equivalent
reformulations of the RNP) while it is known that all slices of the unit ball of a space with the
Daugavet property have maximal diameter (that is diameter two).

For the convenience of the reader let us recall that a Banach space X is said to have the
Daugavet property if every rank-1 operator T from X to X satisfies the Daugavet identity
‖I + T‖ = 1 + ‖T‖. Note that the Daugavet identity is in fact satisfied in a space with the
Daugavet property for a much wider class of operators, and just to name a few for compact
operators, weakly compact operators, and operators not fixing a copy of `1. This property was
named after Daugavet who proved in [Dau] (1963) that the space C[0, 1] has the Daugavet
property. Other examples of spaces with the Daugavet property soon followed, for example
L1[0, 1] (Lozanovskii [Loz] 1966) or L∞[0, 1] (this is attributed to Pe lczyński 1965 in [Wer]).

The Daugavet property is known to have a strong influence on the linear structure of a
Banach space. For example, if X is a space with the Daugavet property, then X and its dual
X∗ fail to have the RNP, X contains an isomorphic copy of `1, X∗∗ contains an isometric
copy of L1[0, 1] (this is a more recent result by Abrahamsen, Lima, Nygaard and Troyanski
in [ALNT] (2016) concerning spaces with the strong diameter two property), and X does not
linearly embed into a space with an unconditional basis. We refer to the survey [Wer] for more
details and for references, as well as for further applications in operator theory. We focus on the
following geometric characterization of the Daugavet property which first appeared in [KSSW].

Proposition (Kadets, Shvidkoy, Sirotkin, Werner, 1997). Let X be a Banach space. The
following assertions are equivalent.

1. The space X has the Daugavet property.

2. For every x ∈ SX and every slice S of BX we have supy∈S ‖x− y‖ = 2.

A direct consequence of this result is that, as mentioned, every slice of the unit ball of a
space with the Daugavet property has diameter two and in fact every point contained in a slice
of the unit ball of a space with the Daugavet property is diametral in this slice. With modern
terminology, the Daugavet property implies the diametral local (or slice) diameter two property.
It was also proved by Shvydkoy in [Shv] (2000) that the Daugavet property implies other
stronger diameter two properties, where weakly open subsets of BX or convex combinations

10



of slices of BX are considered instead of slices. The study of diameter two properties and the
comparison between them has known a rich development those last years, and we refer for
example to [ABGLP], [ALN], [BGLPRZ] or [HLLN] for a few (far from exhaustive) results in
this direction. Also let us refer to Pirk’s thesis [Pir] for a nice presentation of the subject and
in particular for a few concise diagrams presented in appendix to synthesize all the relations
between those properties (and the known example to distinguish them) as well as stability
results under absolute sums.

The above characterization naturally gave rise in the paper [AHLP] by Abrahamsen, Haller,
Lima and Pirk in 2020 to the notion of Daugavet-points and to the associated more local weaker
notion of ∆-points. To be precise, a Daugavet-point in a space X is a element of SX satisfying
supy∈S ‖x− y‖ = 2 for every slice S of BX and a ∆-point in X is an element of SX satisfying
supy∈S ‖x− y‖ = 2 for every slice S of BX containing the point x. Since their introduction those
points have attracted a lot of attention and where systematically studied in classical Banach
spaces. We will say more about this at the start of Chapter 3 but we refer for example to [ALM],
[ALMT], [HPV], [JRZ] or [Vee] for results in this direction. In particular a few very surprising
results were discovered there showing that even very strong linear or geometric properties do
not provide an obstruction to the existence of Daugavet-points. The most striking examples are
the ones from [ALMT] by Abrahamsen, Lima, Martiny and Troyanski (2021) where a space with
an unconditional basis in which Daugavet-points are weakly dense is obtained, and from [Vee]
by Veeorg (2021) where a Lipschitz free-space with the RNP and admitting a Daugavet-point
is constructed.

In Chapter 3 we provide asymptotic geometric conditions which ensure that specific points
in the unit sphere of a given Banach fail to be ∆-points. An important tool in this study is
the Kuratowski index of non compactness which measures the smallest radius ε > 0 for which
one can hope to cover a given set by finitely many balls of radius ε. Our main results are the
following.

Theorem (Abrahamsen, Lima, Martiny, P., 2022). Let X be a Banach space and let x ∈ SX .
If x is an asymptotically smooth point, then x is not a ∆-point.

Theorem (Abrahamsen, Lima, Martiny, P., 2022). Let X be a Banach space and let x ∈ SX .
If there is a norm one functional which is norming for x and which defines slices of BX of
arbitrarily small Kuratowski index, then x is not a ∆-point.

As a consequence, we obtain that asymptotically smooth spaces as well as reflexive asymp-
totically convex spaces fail to contain ∆-points, providing several new examples of Banach
spaces without ∆-points such as spaces with the property (M∗) from Kalton, or spaces with
an FDD admitting block upper `p estimates such as the predual of the James tree space JT .
We also obtain that weak∗ asymptotically convex dual spaces fail to admit Daugavet-points as
a consequence of the following result.

Theorem (Abrahamsen, Aliaga, Lima, Martiny, P., Procházka,Veeorg, work in progress). Let
X be a Banach space with the Krein Milman property (KMP in short). If every extreme point
of BX is a denting point of BX (or equivalently a point of weak-to-norm continuity for the
identity map), then X fails to contain Daugavet-points.
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As a consequence, the James tree space JT fails to contain Daugavet-points. In this specific
case, we also improved by hand this result by showing that JT fails to contain ∆-points. The
main idea in this proof is the observation that if one starts with a finitely supported element x,
then there is only a finite number of combinations of segments in the tree for which x attains its
norm. So defining linear functionals supported on those combinations and taking their average,
one obtains a functional norming x which defines slices of the unit ball of JT in which every
element y has a large enough part concentrated on the same segments as x, thus obtaining a
bound on the norm of the difference x − y. Passing to elements with an infinite support then
requires a few technical adjustments, but is essentially based on the fact that if one restricts
arbitrary combinations of segments in the tree to a finite subtree, then one can only find finitely
many combinations of “ starting segments ” in this subtree. Our result is the following.

Theorem (Abrahamsen, Lima, Martiny, P., 2022). The James tree space JT fails to contain
∆-points.

We also provide a few results concerning weak∗ Daugavet- and ∆-points in dual spaces, a
natural extension of the notion of Daugavet- and ∆-points in the context of dual spaces where
only weak∗ closed slices are considered.

The results announced in this section are part of a joint work and appear in the preprint
[ALMP]. I wish to express here all my gratitude to Trond Abrahamsen, Vegard Lima and
Andre Martiny for their warm welcome in Kristiansand in fall 2021 where the majority of this
work was done. The result concerning spaces with the KMP was obtained in a work in progress
with the same collaborators and the additional participation of Antonin Procházka, Ramon
Aliaga, and Triinu Veeorg.
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Chapter 1

Asymptotic properties of Banach
spaces

1.1 Asymptotic uniform properties of norms

Following the standard notation from [JLPS] we define the asymptotic moduli of smoothness
and convexity of a Banach space originally introduced by Milman in [Mil].

Definition 1.1.1. Let X be a Banach space and let cof(X) be the set of all (closed) subspaces
of finite co-dimension of X. For every t ≥ 0 and for every x ∈ SX , let

ρX (t, x) = inf
Y ∈cof(X)

sup
y∈SY
‖x+ ty‖ − 1

and
δX (t, x) = sup

Y ∈cof(X)

inf
y∈SY
‖x+ ty‖ − 1.

The functions
ρX (t) = sup

x∈SX
ρX (t, x)

and
δX (t) = inf

x∈SX
δX (t, x)

are respectively called modulus of asymptotic smoothness and modulus of asymptotic convexity
of the space X.

Remark 1.1.2. By a simple convexity argument we also have

ρX (t, x) = inf
Y ∈cof(X)

sup
y∈Y,‖y‖≤1

‖x+ ty‖ − 1

and
δX (t, x) = sup

Y ∈cof(X)

inf
y∈Y,‖y‖≥1

‖x+ ty‖ − 1.
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It is then easy to check that the functions ρX and δX are both non-decreasing and 1-Lipschitz,
and that ρX is moreover convex. Also let us point out that if X0 is a subspace of X, then one
clearly has δX ≤ δX0 and ρX ≥ ρX0

. Since `1 has the best asymptotic modulus of convexity
and since every separable Banach space can be represented as a quotient of `1, see for example
[FHH+, Theorem 5.1], the modulus of asymptotic convexity of the quotient of a given Banach
space is not bounded below in general by the modulus of the space. However, the modulus of
asymptotic smoothness of any quotient of X is always bounded above by the modulus of X,
see [JLPS, Proposition 2.8].

One of the features of the moduli of asymptotic smoothness and convexity is that they
provide respectively upper and lower control on weakly converging sequences in Banach spaces.

Lemma 1.1.3. Let X be a Banach space. For every t > 0, for every x ∈ SX , and for every
weakly null sequence (xn)n≥1 in BX (respectively with norm ‖xn‖ ≥ 1) we have

lim sup ‖x+ txn‖ ≤ 1 + ρX (t, x)

and
lim inf ‖x+ txn‖ ≥ 1 + δX (t, x) .

Remark 1.1.4. In fact it is well known that the moduli of asymptotic smoothness and asymp-
totic convexity of a Banach space X can be computed directly from weakly converging sequences
provided that the space X does not contain `1, and in particular when the space X is reflexive
or the dual space X∗ is separable. A proof of this fact can be found for the modulus of asymp-
totic smoothness in [Dut, Section 6.4, Lemma 37] in the context of spaces with separable duals.
We will provide a proof below for spaces not containing `1.

On some occurrence it is useful to compute the two asymptotic moduli with weak neigh-
borhoods of 0 instead of subspaces of finite co-dimension. We state the following lemma here
for future reference, but let us first introduce some notation. For every x ∈ X we denote by
Vw(x) the set of all neigborhoods of x for the weak topology and we write

Vx∗1,...,x∗n;ε(x) = {y ∈ X : |〈x∗i , x− y〉| < ε for every 1 ≤ i ≤ n}

the fundamental weakly open neigborhoods of x. If x = 0 we write Vx∗1,...,x∗n;ε instead.

Lemma 1.1.5. Let X be a Banach space. For every t > 0 and for every x ∈ SX we have

ρX (t, x) = inf
V ∈Vw(0)

sup
v∈V,‖v‖=1

‖x+ tv‖ − 1

and
δX (t, x) = sup

V ∈Vw(0)

inf
v∈V,‖v‖=1

‖x+ tv‖ − 1,

and once again we can equivalently test the preceding expressions on elements with norm ‖v‖ ≤ 1
and respectively ‖v‖ ≥ 1.
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Proof. In both cases one of the inequality is obvious since every fundamental weak neighborhood
V = Vx∗1,...,x∗n;ε of 0 contains the subspace of finite co-dimension Y = ∩ni=1 kerx∗i . For the other
direction one simply needs to use the following well known observation: for every µ ∈ (0, t) and
for every Y ∈ cof(X) we can find a V ∈ Vw(0) such that for every v ∈ V with norm ‖v‖ = t
there is a y ∈ Y with norm ‖y‖ = t at distance less than µ form v.

To prove this observation fix some η > 0 to be chosen later and take an η-net (y∗i )
n
i=1 in the

unit sphere of Y ⊥ ≡ (X/Y )∗. Then let V = Vy∗1 ,...,y∗n;η. For any v ∈ V with norm ‖v‖ = t pick
y∗ ∈ SY ⊥ such that ‖q(v)‖ = |y∗(v)| where q = X → X/Y is the quotient map. Choosing a
suitable 1 ≤ i0 ≤ n we then have ‖q(v)‖ ≤

∣∣y∗i0(v)
∣∣ +

∥∥y∗ − y∗i0∥∥ ‖v‖ ≤ (1 + t)η < µ
2

if η was
chosen strictly smaller than µ

2(1+t)
. Since ‖q(v)‖ = dist(v, Y ) we can find a y ∈ Y such that

‖v − y‖ ≤ µ
2
. We then have ‖y‖ ∈

[
t− µ

2
, t+ µ

2

]
and as a consequence

∥∥∥v − ty
‖y‖

∥∥∥ ≤ µ. The

conclusion follows.

With this reformulation, the following result is then immediate.

Corollary 1.1.6. Let X be a Banach space. For every t > 0 and every x ∈ SX we have

ρX (t, x) = sup (lim sup ‖x+ txa‖ − 1)

and
δX (t, x) = inf (lim inf ‖x+ txa‖ − 1)

where the supremum and infimum are taken on all weakly null normalized nets (or equivalently
on weakly null nets in BX , and respectively with norm ‖xa‖ ≥ 1).

With this corollary in hands, the result mentioned in Remark 1.1.4 follows from profound
results by Rosenthal concerning spaces which do not contain `1 and in particular from the
following lemma.

Lemma 1.1.7. Let X be a Banach space not containing `1 and let (xa)a∈α be a bounded net in
X. If (xa)a∈α converges weakly to some element x ∈ X, then we can find a sequence (xn)n≥1 in
the set {xa}a∈α which converges weakly to x.

Proof. Let X be a Banach space not containing `1. With the terminology from [GG], every
bounded set in X is a Rosenthal set, that is a set in which every sequence admits a weakly
Cauchy subsequence. Thus the non separable version of Rosenthal’s result [Ros2, Theorem 3]
obtained in [GG, Theorem 2.6] gives that every bounded subset of X is weakly sequentially
dense in its weak closure.

So let us state the following result.

Lemma 1.1.8. Let X be a Banach space not containing `1. Then

ρX (t, x) = sup (lim sup ‖x+ txn‖ − 1)
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and
δX (t, x) = inf (lim inf ‖x+ txn‖ − 1)

where the supremum and infimum are taken on all weakly null normalized sequences (or equiv-
alently on weakly null sequences in BX , and respectively with norm ‖xn‖ ≥ 1).

For later reference let us also point out the following strengthening of Lemma 1.1.3 for
the modulus of asymptotic smoothness which has been proved in [LR, Proposition 2.1] using
Goldstine’s theorem. It basically says that the modulus of asymptotic smoothness also provides
upper control on weak∗ converging sequences in the bidual X∗∗ of the space provided the limit
point is an element of X.

Lemma 1.1.9. Let X be a Banach space. For every t ∈ (0, 1), for every x ∈ SX , and for every
weak∗-null sequence (x∗∗n )n≥1 in BX∗∗ we have

lim sup ‖x+ tx∗∗n ‖ ≤ 1 + ρX (t, x) .

The following asymptotic properties naturally arise when one wants to obtain non-trivial
estimates in all the above inequalities. Let us point out that we are doing a slight abuse of
language and of notation here as well as in previous definitions since all this concerns specifically
the underlying norm on the considered space and is not preserved by taking equivalent norms.
We will follow the convention and keep it as it is whenever there is no risk of confusion.

Definition 1.1.10. We say that X is uniformly asymptotically smooth (AUS in short) if the

modulus ρX satisfies limt→0
ρX(t)
t

= 0 and we say that X is asymptotically uniformly convex

(AUC in short) if the modulus δX satisfies δX (t) > 0 for every t > 0.

By Remark 1.1.2 asymptotic smoothness and convexity pass to subspaces and asymptotic
smoothness passes to quotients. Moreover it is well known that property AUS and AUC are
dual one to the other in the reflexive setting. In order to obtain a general duality result, we need
to introduce the weak∗ version of the modulus of asymptotic convexity and the corresponding
property AUC∗.

Definition 1.1.11. Let X Banach space and let |.| be an equivalent norm on X∗. Also let
cof∗(X∗) be the set of all weak∗ closed subspaces of finite co-dimension of X∗. For every t > 0
and for every x∗ ∈ S|.|, let

δ
∗
|.| (t, x

∗) = sup
E∈cof∗(X∗)

inf
e∗∈E,|e∗|=1

|x∗ + te∗| − 1.

The function
δ
∗
X∗ (t) = inf

x∗∈S|.|
δ
∗
|.| (t, x

∗)

is called modulus of weak∗ asymptotic convexity of (X∗, |.|). We say that |.| is weak∗ asymp-
totically uniformly convex (AUC∗ in short) if the modulus δ

∗
|.| satisfies δ

∗
|.| (t) > 0 for every

t > 0.
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Since an equivalent norm on a dual space is not necessarily the dual norm of an equivalent
norm on the space itself, it is formally required to define the modulus of weak∗ asymptotic
convexity as above. If |.| = ‖.‖X∗ is the dual norm of the underlying norm on the space X, we

will use the notations δ
∗
X∗ (t, x∗) and δ

∗
X∗ (t). In practice we can always get back to such a case

for AUC∗ norms thanks to the following fact.

Lemma 1.1.12. Let X be a Banach space and let |.| be an equivalent AUC∗ norm on X∗. Then
|.| is the dual norm of an equivalent norm on X.

Proof. It follows from the definition of the modulus δ
∗
|.| that any equivalent AUC∗ norm on

X∗ is weak∗ lower semicontinuous. It is well known that such norms are dual norms (see for
example [DGZ, Chapter 1, Fact 5.4]).

From the definition of the moduli, it is clear that δ
∗
|.| ≤ δ|.| for every equivalent norm |.| on

X∗ and thus any AUC∗ norm is AUC. The converse does not hold true in general, as witnesses
the dual of the James Tree space JT . Indeed, JT ∗ is AUC by a result from [Gir] but is known
to admit no equivalent AUC∗ norm by an argument that we will encounter later (JT is not
Asplund and thus does not admit an equivalent AUS norm, see Remark 1.1.15).

The modulus of weak∗ asymptotic convexity shares similar properties with its weak version.
In particular it is 1-Lipschitz, non-decreasing, and can be expressed as in Lemma 1.1.5 using
weak∗ neighborhoods of 0 instead of weak∗ closed subspaces of finite co-dimension. As a conse-
quence it can be computed using weak∗ convergent nets as in Corollary 1.1.6 and it gives lower
control on weak∗ null sequences in X∗. We gather those results in the following lemma. In
this context we will denote by Vw∗(x∗) the set of all neighborhoods of an element x∗ of X∗ for
the weak∗ topology and we will write Vx1,...,xn;ε(x

∗) and Vx1,...,xn;ε the fundamental weak∗ open
neighborhoods of x∗ and of 0.

Lemma 1.1.13. Let X be a Banach space and let |.| be an equivalent norm on X∗. For every
t > 0 and for every x∗ ∈ S|.| we have:

δ
∗
|.| (t, x

∗) = sup
V ∈Vw∗ (0)

inf
v∗∈V,|v|=1

|x∗ + tv∗| − 1,

and we can equivalently consider elements with norm |v∗| ≥ 1 in the previous expression. For
every weak∗ null sequence (x∗n)n≥1 with norm |x∗n| ≥ 1, we have

lim inf |x∗ + tx∗n| ≥ 1 + δ
∗
|.| (t, x

∗) .

Furthermore, if X is separable, then

δ
∗
|.| (t, x

∗) = inf (lim inf |x∗ + tx∗n| − 1)

where the infimum is taken on all weak∗ null normalized sequences (or equivalently on weak∗

null sequences with norm |x∗n| ≥ 1).

The key point here is the well known fact that (X∗/E)∗ ≡ E> where E> is the pre-
orthogonal of E in X whenever E is a weak∗ closed subspace of X∗.
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The following duality result was proved in [GKL2, Proposition 2.6] for separable spaces and
in [DKLR, Proposition 2.1] in the general setting.

Proposition 1.1.14. Let X be a Banach space and let σ, τ ∈ (0, 1).

1. If ρX (σ) < στ , then δ
∗
X∗ (6τ) ≥ στ .

2. If δ
∗
X∗ (τ) > στ , then ρX (σ) ≤ στ .

An immediate consequence of this result is that X is AUS if and only if X∗ is AUC∗. In
particular a reflexive Banach space X is AUC if and only if its dual space is AUS.

Remark 1.1.15. Let us point out that this duality result does not hold true in general if
one consider the sequential versions of the asymptotic properties of smoothness and (weak∗)
convexity which are defined by asking the exact same above conditions on the sequential moduli
instead of the generalized ones. Indeed the space `1 has the Schur property (every weakly
convergent sequence in `1 is norm convergent) and thus is sequential AUS, but its dual space
`∞ does not admit an equivalent sequential AUC∗ norm. Indeed, such norm would be AUC∗

since `1 is separable, and thus would be by Lemma 1.1.12 and by duality the dual norm of an
equivalent AUS norm on `1. Now `1 is not Asplund since it is separable with a non-separable
dual and [JLPS, Proposition 2.4] tells us that ρ|.| (t) = t for every t > 0 and for every equivalent
norm |.| on `1. Yet this sequential duality does hold true for reflexive spaces or for separable
spaces not containing `1 since the sequential and generalized moduli coincide in this context.

At this point the reader might wonder why we did not bother introducing a weak∗ version
of the modulus of asymptotic smoothness. This is because the existence of an equivalent AUS
norm on a dual space X∗ which is a dual norm forces X to be reflexive. This follows from the
duality AUS/AUC∗ and the following result, which is proved for example in [CL1, Proposition
2.6].

Lemma 1.1.16. Let us assume that the bidual norm ‖.‖X∗∗ is AUC∗. Then the space X is
reflexive.

Let us now give the following fundamental examples.

Example 1.1.17. Let p ∈ (1,∞) and take t ∈ (0, 1). Using a gliding hump argument, one can

show that ρc0 (t) = 0, ρ`p (t) = δ`p (t) = (1 + tp)
1
p − 1 and δ

∗
`1

(t) = t for the weak∗ topology
σ(l1, c0). Thus c0 has the best modulus of asymptotic smoothness while `1 has the best modulus
of (weak∗) asymptotic convexity. Since asymptotic moduli do not see spaces of finite dimension,
the same actually goes for

(∑
n≥1 Fn

)
X

where the Fn are finite dimensional spaces and X is
any of the above space.

This motivates the following definitions.
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Definition 1.1.18. Let X be a Banach space. We say that X is p-AUS or AUS with power type
p for some p ∈ (1,∞) if there is a constant C > 0 such that ρX (t) ≤ Ctp for every t ∈ (0, 1).
Also we say that X is asymptotically uniformly flat (AUF in short) if there is a t0 > 0 such
that ρX (t0) = 0. We say that X (respectively X∗) is p-AUC (respectively p-AUC∗) for some
p ∈ [1,∞) if there is a constant c > 0 such that δX (t) ≥ ctp (respectively δ

∗
X∗ (t) ≥ ctp) for

every t ∈ (0, 1).

With the preceding computations c0 is AUF, `p is p-AUS and p-AUC for every p ∈ (1,∞),
and `1 is 1-AUC∗.

An immediate consequence of Proposition 1.1.14 is that a Banach space X is p-AUS for
some p ∈ (1,∞) if and only if its dual space is p∗-AUC∗ where p∗ is the conjugate exponent of
p (that is p∗ ∈ (1,∞) and 1

p
+ 1

p∗
= 1). Also X is AUF if and only if X∗ is 1-AUC∗. Those

definitions capture the asymptotic behavior of c0, `1 and `p spaces.

Lemma 1.1.19. Let X be a Banach space. If X is p-AUS for some p ∈ (1,∞) then there is a
constant C > 0 such that for every x ∈ X and for every weakly null sequence (xn)n≥1 in X we
have

lim sup ‖x+ xn‖p ≤ ‖x‖p + C lim sup ‖xn‖p .
By Lemma 1.1.9 this also applies to weak∗ null sequences in X∗∗. Next if X is q-AUC for some
q ∈ [1,∞), then there is a constant c > 0 such that for every x ∈ X and for every weak-null
sequence (xn)n≥1 in X we have

lim inf ‖x+ xn‖q ≥ ‖x‖q + c lim inf ‖xn‖q .

A similar statement holds for q-AUC∗ duals.

Let us point out that this is known to imply the following proposition. The proof can be
done by a direct induction but then involves a few technical tricks. A more elegant proof can
be done by using the so called Orlicz iterated norms associated with the asymptotic moduli.
We will introduce those later in the text (Chapter 2, Section 2.1) but we refer the interested
reader to [Kal2, Lemma 4.3 and related] or [LPP, Lemma 3.4 and related] for definitions and
a few basic results. Note that there is no way here to obtain a similar result in general in the
bidual of the space for the AUS part since each step would require limit points to be in the
space itself. Skirting around this obstruction will be a key point in the forthcoming non-linear
section when we will be working in the bidual of non-reflexive AUS spaces. Let us also point
out that this proposition is connected to the so called p-Banach-Saks and p-co-Banach-Saks
property, see again [Kal2, Proposition 4.6 and related].

Proposition 1.1.20. Let X be a Banach space. If X is p-AUS for some p ∈ (1,∞) or if X
is AUF, then there is a constant C > 0 such that for every weakly null sequence (xn)n≥1 in X
we can extract a subsequence (xni)i≥1 for which we have the following property: for every k ≥ 1
and for every n1 < · · · < nk we have∥∥∥∥∥

k∑
i=1

xni

∥∥∥∥∥
p

≤ C

k∑
i=1

‖xni‖
p ,
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and respectively ∥∥∥∥∥
k∑
i=1

xni

∥∥∥∥∥ ≤ C max
1≤i≤k

‖xni‖ .

Next if X is q-AUC for some q ∈ [1,∞), then there is a constant c > 0 such that for every
weak-null sequence (xn)n≥1 in X we can extract a subsequence (xni)i≥1 for which we have the
following property: for every k ≥ 1 and for every n1 < · · · < nk we have∥∥∥∥∥

k∑
i=1

xni

∥∥∥∥∥
q

≥ c
k∑
i=1

‖xni‖
q .

A similar statement holds for q-AUC∗ duals.

Remark 1.1.21. It is well known that every separable AUF space is isomorphic to a subspace
of c0 (see [GKL1, Section 2] in which the result is stated with a different terminology and [GKL1,
Section 4] for some non-separable versions, and see [JLPS, Theorem 2.9] for an easier proof and
a few historical remarks). Subspaces of c0 are not necessarily isomorphic to quotients of c0, but
if one fixes a sequence (Fn)n≥1 of finite dimensional spaces which is dense in Banach-Mazur
distance in the space of all finite dimensional spaces, then it is known since the results from
[JZ] that subspaces of U∞ =

(∑
n≥1 Fn

)
c0

(and in particular subspaces of c0) are isomorphic to

quotients of U∞. By duality, we then immediately obtain that if the dual of a separable space is
1-AUC∗, then it has to be isomorphic to a weak∗ closed subspace of

(∑
n≥1 F

∗
n

)
`1

. A remarkable

isometric version of those results can be obtained by applying the results from [KW] which are
based on property (m∞) from Kalton (we provide a proof below for the sake of completeness).
Also we refer to the paper [CL2] for very recent analogue results obtained for finite exponents
p. The optimality of the standard asymptotic convexity modulus can also be formulated in two
different ways: isometrically with the condition δX (t) = t for every t > 0, and isomorphically
with 1-AUC. In [PRZ, Proposition 4.8] the isometric optimality is shown to have implications
on some metric properties of infinite subsets of the space and thus on the octahedrally of the
associated Lipschitz-free space. It is asked (Remark 4.10) whether every such space has to
embed almost isometrically into an `1-sum of finite dimensional spaces. Up to our knowledge
the question is still open in general, but we have the following weak∗ result.

Theorem 1.1.22. Let X be a separable Banach space and let us assume that δ
∗
X∗ (t) = t for

every t ∈ (0, 1). Then X∗ embeds almost isometrically into an `1-sum of finite dimensional
spaces.

Proof. Let us assume that δ
∗
X∗ (t) = t for every t ∈ (0, 1). We will prove that the space X

has property (m∞) as introduced in [Kal1], that is that for every x ∈ X and every weakly null
sequence (xn)n≥1 in X we have lim sup ‖x+ xn‖ = max{‖x‖ , lim sup ‖xn‖}.

First let us use duality results to prove that ρX (t) = 0 for every t ∈ (0, 1). For any fixed
t ∈ (0, 1) and ε ∈ (0, t) we have δ

∗
X∗

(
ε
t

)
= ε

t
> ε = t × ε

t
so that ρX (t) ≤ t × ε

t
= ε by

Proposition 1.1.14. Letting ε go to 0 we obtain ρX (t) = 0 as desired. Also observe that this
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implies that ρX (1) = 0 since ρX is continuous, and thus that ρX (t) = ρX (t) − ρX (1) ≤ t − 1
for every t ≥ 1 since ρX is 1-Lipschitz as mentioned in Remark 1.1.2.

Now let us fix a non-zero point x ∈ X and let us fix a weakly null sequence (xn)n≥1 in X.
A direct reformulation of Lemma 1.1.3 then yields

lim sup ‖x+ xn‖ ≤ ‖x‖
(

1 + ρX

(
lim sup ‖xn‖
‖x‖

))
,

and by the above properties of ρX we easily obtain lim sup ‖x+ xn‖ ≤ max{‖x‖ , lim sup ‖xn‖}.
By weak lower continuity of the norm, we have ‖x‖ ≤ lim inf ‖x+ xn‖ and we may thus

assume that α = lim sup ‖xn‖ > 0. By using standard Mazur techniques presented for example
in [AK, Chapter 1, Section 1.5] we can then extract for every ε > 0 a subsequence (xnk)k≥1 of
(xn)n≥1 such the sequence (yk)k≥1 defined by y1 = x

‖x‖ and yk =
xnk−1

α
for every k ≥ 2 is (1 + ε)

basic. Then
1

1 + ε
max{‖x‖ , α} ≤ ‖‖x‖ y1 + αyk‖ =

∥∥x+ xnk−1

∥∥
for every k ≥ 2 so that

1

1 + ε
max{‖x‖ , α} ≤ lim sup

∥∥x+ xnk−1

∥∥ ≤ lim sup ‖x+ xn‖ .

Letting ε go to 0 we obtain lim sup ‖x+ xn‖ ≥ max{‖x‖ , lim sup ‖xn‖} and X has property
(m∞) as announced.

To conclude we appeal to [KW, Theorem 3.2] which states that for any separable Banach
space with property (m∞) and for every ε > 0 there exists a quotient of the space

(∑
n≥1 Fn

)
c0

which is (1 + ε) isomorphic to X, where (Fn)n≥1 is any fixed sequence of finite dimensional
spaces which is dense in Banach-Mazur distance in the space of all finite dimensional spaces.

Let us conclude the section by giving a few more examples.

Example 1.1.23. It is shown in [JLPS, Proposition 2.3] that the moduli of asymptotic smooth-
ness and convexity of a Banach space X are respectively controlled by the standard modulus of
smoothness ρX of X and by the modulus of convexity δX of X. More precisely, ρX ≥ 1

2
ρX and

δX ≤ δX on (0, 1). As a consequence any uniformly smooth space is AUS and any uniformly
convex space is AUC. In particular the classical Lp[0, 1] spaces for p ∈ (1,∞) are both AUS
and AUC with power types determined in [Han]. Also see [BCL] for discussions about the
optimality of those results.

Observe that Example 1.1.17 already provides easy examples of reflexive Banach spaces
which are p-AUS and p-AUC but not super-reflexive, such as

(∑
n≥1 `

n
∞
)
`p

. In the following

we denote by c00 the space of all eventually null sequences of real numbers and we denote by
(ei)i≥1 the canonical unit vector basis of c00.
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Example 1.1.24. Let p ∈ (1,∞). For every x ∈ c00, we introduce the quantity

‖x‖pBp = sup

{
n∑
i=1

‖Eix‖p`1 : E1 < · · · < En ⊂ N and |Ei| ≤ Ei for every 1 ≤ i ≤ n

}

where Ex stands for the projection of the vector x on the space [en]n∈E for every non empty
subset E of N and E1 < · · · < En means that maxEi < minEi+1 for every 1 ≤ i ≤ n− 1. The
Baernstein space Bp is the completion of the space (c00, ‖.‖Bp). It is known to be reflexive, p-

AUC (the unit vector basis (ei)i≥1 of c00 forms a monotone unconditional basis of Bp and satisfies
lower `p estimates, see Example 1.1.26), but not super reflexive since failing the Banach-Saks
property. Basic properties of the Baernstein space B = B2 are presented in the introductory
Chapter 0 of [CS, Construction 0.9].

Example 1.1.25. Let p ∈ (1,∞). For every x ∈ c00 we introduce the p-variation of x

‖x‖pJp = sup
k≥1

sup
1≤n1<···<nk

k−1∑
i=1

∣∣xni+1
− xni

∣∣p .
The James space Jp is the completion of the space (c00, ‖.‖Jp). It is known to be quasi-

reflexive of order 1 (i.e. to satisfy dim J∗∗p /Jp = 1) and to admit an equivalent p-AUS norm.
It is also known that its dual J∗p admits an equivalent p∗-AUS norm where p∗ is the conjugate
exponent of p, and that its bidual J∗∗p also admits an equivalent p-AUS norm. We refer to [LPP,
Section 5] for more information and for references, and to [Net, Section 2.3] for the construction
of the equivalent norms.

Example 1.1.26. Let X be a Banach space with an FDD E. We say that E admits block
upper `p estimates for some p ∈ (1,∞) if there is a constant C > 0 such that for every finite

blocking F of E and for every x1, . . . xN in the blocking we have
∥∥∥∑N

n=1 xn

∥∥∥p ≤ C
∑N

n=1 ‖xn‖
p.

We say that E admits block lower `q estimates for some q ∈ (1,∞) if there is a constant c > 0
such that for every finite blocking F of E and for every x1, . . . xN in the blocking we have∥∥∥∑N

n=1 xn

∥∥∥q ≥ c
∑N

n=1 ‖xn‖
q. It is well known that an FDD admitting upper `p estimates is

shrinking while an FDD admitting lower `q estimates is boundedly complete (we refer to [LT,
Section 1.g] for definitions in this context). The latter can be proved by using the following
criterion (whose extension to the FDD context is straightforward), which is left as an exercise
in [AK, exercice 3.8] and whose proof is can be found in [Cau1, proposition 3.1]: an FDD E

is boundedly complete if and only if supN

∥∥∥∑N
n=1 xn

∥∥∥ = ∞ for any sequence (xn)n≥1 bounded

away from 0 in a blocking F of E. The former is then obtained by duality. Applying [GLR,
corollary 2.4] we then have that any space with a monotone FDD admitting block upper `p
estimates is p-AUS while any space admitting a monotone FDD with block lower `q estimates
is q-AUC∗ as the dual of the space of Y = span{rng (PE

i )∗, i ≥ 1} where the PE
i are the

projections associated with the FDD E. In particular we will see later in Chapter 2 Section
3.4 that the James tree space JT is 2-AUC∗.

22



Remark 1.1.27. As already mentioned, spaces which are not Asplund do not admit equivalent
AUS norms, and in particular both `1 and JT do not admit equivalent AUS norms. It is also
known that any AUC space (respectively any AUC∗ dual) satisfies the point of continuity
property (PCP) [JLPS, Proposition 2.6] (respectively the weak∗ PCP) and furthermore that
any equivalent norm |.| on a space without the PCP satisfy δ|.|(

1
2
) = 0 [Gir, Proposition 6].

In particular the spaces c0, `∞, L1[0, 1] and C[0, 1] do not admit equivalent AUC norms since
they all fail the PCP in a strong way: their norms satisfy the diameter two property (i.e. every
weakly open subset in the unit ball of those spaces has diameter two).

1.2 Szlenk index and trees in Banach spaces

The Szlenk index is a fundamental object in the linear theory of Banach spaces which was
introduced in [Szl] (in a slightly different form which coincides with the nowadays standard
following definition provided that the considered space does not contain `1) in order to prove
that there is no separable reflexive universal Banach space for the class of separable reflexive
Banach spaces. It is an ordinal which is obtained by measuring the speed of a certain “ peeling
procedure ”.

Generally speaking, implementing a peeling procedure on a topological space X consists
in constructing for every ε > 0 and for every ordinal α ≥ 1 a function fαε which associates
to any given closed subset K of X a closed subset fαε (K) of K, such that the family (fαε )ε,α
is decreasing with respect to the parameter ε and with respect to the parameter α. In other
words, if one fixes a closed subset K of X, then fαε (K) gets bigger as ε goes to 0 for any fixed α
and fαε (K) gets smaller as α increases for any fixed ε. The standard way of constructing such
a family is to start by fixing a derivation on X, that is to provide for every ε > 0 a function
fε which associate to any given closed subset K of X a closed subset fε(K) of K, such that
the family (fε)ε>0 is decreasing with respect to the parameter ε. Then one obtains a peeling
procedure inductively by defining, for a fixed ε > 0, f 1

ε = fε, f
α+1
ε = fε ◦ fαε for any ordinal

α ≥ 1, and fβε =
⋂
α<β f

α
ε for any limit ordinal β. For a fixed closed subset K of X, the index

for the peeling procedure (fαε )ε,α or for the derivation (fε)ε>0 for the set K is then defined as
I(K) = supε>0 I(K, ε) where I(K, ε) is equal to the minimum of the set {α ≥ 1 : fαε (K) = ∅}
if such an ordinal exists and otherwise is given an abstract ∞ value.

Let X be a Banach space, let K be a weak∗-compact subset of X∗ and fix ε > 0. Denote
by V the set of all weak∗-open subsets V of X∗ satisfying diam (V ∩ K) ≤ ε and define
sε(K) = K\

(⋃
V ∈V V

)
. Observe that

sε(K) = {x∗ ∈ K : ∀V ∈ Vw∗(x∗), diamV ∩K > ε}.

The Szlenk index of the set K is the index associated with the derivation (sε)ε>0 and it is
denoted by SZ(K) = supε>0 SZ(K, ε).

Definition 1.2.1. The Szlenk index of a Banach space X is defined as SZ(X) = SZ (BX∗). We
also write SZ(X, ε) = SZ(BX∗ , ε).
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For convenience we gather a few basic properties of the Szlenk index. An extensive study
of its properties and of its usage both in the linear and non-linear theory can be found in the
survey [Lan2].

Proposition 1.2.2. Let X be a Banach space.

1. The space X is finite dimensional if and only if SZ(X) = 1. Moreover, if X is infinite
dimensional, then SZ(X) ≥ ω where ω is the first infinite ordinal.

2. The Szlenk index is invariant under linear isomorphisms. Moreover, if Y is a subspace
of X, then SZ(Y ) ≤ SZ(X) and SZ(X/Y ) ≤ SZ(X).

3. The ordinal SZ(X, ε) is never a limit ordinal. In particular SZ(X) ≤ ω if and only if
SZ(X, ε) < ω for every ε > 0.

4. The function SZ(X, .) is submultiplicative: for every ε, ε′ > 0, we have SZ(X, εε′) ≤
SZ(X, ε)SZ(X, ε′). In particular if SZ(X) = ω then there is a constant C > 0 and a
p ∈ [1,∞) such that SZ(X, ε) ≤ Cεp for every ε > 0.

It is also mentionned in [Lan2, Proposition 3.3] that the Szlenk index is equal to ωα for some
ordinal α whenever it has an ordinal value (i.e. is not equal to∞). The set of all possible values
for the Szlenk index of a Banach space is completely described in [Cau2, Theorem 1.5], and
this result is refined in [CL1] by using a construction from Lindenstrauss, which for any given
separable space X provides a Banach space Z satisfying Z∗∗/Z ' X and SZ(Z) = SZ(Z∗) = ω,
the latter being proved in [CL1, Theorem 1.2]. In this dissertation we will mainly focus on
the ω value, and we will refer the reader to appropriate references for higher ordinals when
generalizations exist.

Note that the Szlenk index coincides with the Oscillation index of the identity map id :
(BX∗ , w

∗)→ (BX∗ , ‖.‖). Thus the standard characterization of Banach spaces admitting sepa-
rable duals can be written as follows (see [Lan2, Theorem 3.8] for more details).

Theorem 1.2.3. Let X be a separable Banach space. The following assertions are equivalent.

1. The space X∗ is separable.

2. The Szlenk index SZ(X) is countable, that is SZ(X) < ω1 where ω1 is the first uncountable
ordinal.

3. The identity map from (BX∗ , w
∗) to (BX∗ , ‖.‖) is Baire-1.

In fact the Szlenk index plays a fundamental role in the Asplund theory, see for example
the monograph [DGZ].

Theorem 1.2.4. Let X be a Banach space. The following assertions are equivalent.
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1. The space X is Asplund.

2. Every bounded non-empty subset of X∗ admits non-empty weak∗ slices of arbitrarily small
diameter.

3. The space X∗ has the Radon-Nikodým property (RNP).

4. Every separable subspace of X has a separable dual.

5. Every bounded non-empty subset of X∗ admits non-empty relatively weak∗ open subsets
of arbitrarily small diameter (X∗ satisfy the weak∗ PCP).

6. The Szlenk index has an ordinal value, that is SZ(X) <∞.

Remark 1.2.5. Let us point out that the above assertions are not equivalent to the space X∗

having the PCP property. Indeed the James tree space JT is not Asplund since it is separable
and has a non-separable dual, but its dual space JT ∗ is AUC [Gir] and thus has the PCP, see
Remark 1.1.27.

The following theorem is one of the fundamental results in the asymptotic theory of Banach
spaces. The original proof from [KOS] is based on deep studies of the asymptotic structure of
Banach spaces with an FDD, a concept originally introduced in [MMTJ]. We will present an
elementary introduction to this theory in the next section.

Theorem 1.2.6 (UKK∗ renorming, [KOS]). Let X be an infinite dimensional separable Banach
space. The following assertions are equivalent.

1. The space X admits an equivalent norm whose dual norm is UKK∗.

2. The space X satisfy SZ(X) = ω.

3. The space X admits an equivalent norm whose dual norm is UKK∗ with power type
modulus.

See bellow for the definition of the UKK∗ property. In fact a stronger structural result was
proved in [KOS] and can be reformulated as follows.

Theorem 1.2.7. Let X be a separable infinite dimensional Banach space with SZ(X) = ω.
Then there exists a Banach space Y with a shrinking FDD satisfying block upper `p estimates
for some p ∈ (1,∞) such that X is isomorphic to a quotient of Y .

An alternative proof of the renorming Theorem 1.2.6 was given in [GKL2] based on tight
estimates on the so called convex Szlenk index CZ(X) = CZ(BX∗) associated with the derivation
given by cε = conv sε, and on considerations about the maximal height of certain weakly null
trees in the unit ball of the space. In particular the following result concerning the best possible
power type for the UKK∗ renorming was obtained.
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Theorem 1.2.8 ([GKL2], Theorem 4.8). Let X be an infinite dimensional separable Banach

space with SZ(X) = ω and let pX = limε→0
logSZ(X,ε)
|log ε| be the Szlenk power type of X. Then for

every p > pX there is an equivalent norm on X whose dual norm is UKK∗ with power type p.

Remark 1.2.9. The Szlenk power type can be also expressed as

pX = inf

{
p ≥ 1 : sup

ε>0
εpSZ(X, ε) is finite

}
.

In a way Theorem 1.2.8 is optimal since the small loss on the exponent cannot be relaxed in
general, even in the reflexive setting. Indeed was pointed out in [KOS, Remark 7.2] that the
Tsirelson’s space is known to admits equivalent p-UKK norms for every p > 1 but to admit no
equivalent 1-UKK norm. We provide a short proof of this fact here even though the necessary
tools will be introduced a bit later.

Proof. Let T be the space constructed by Figiel and Johnson (see [CS, Chapter 1]) and which
corresponds to the dual of the original Tsirelson’s space. We claim that for any weakly null
bounded tree (xs)s∈Tn in T rooted at 0 we can find a branch (xt)t≤s where s ∈ Tn is of maximal
length such that

∥∥∑
t≤s xt

∥∥ ≥ 1
4

∑
t≤s ‖xt‖. Roughly the idea is to use a gliding hump argument

to construct a sequence (yi)
n
i=1 in T such that n ≤ supp y1 < · · · < supp yn and ‖yi‖ '

∥∥∥xs|i∥∥∥
for every 1 ≤ i ≤ n, and then to use the fundamental property of T , [CS, Proposition I.2],
which then implies ‖

∑n
i=1 yi‖ ≥

1
2

∑n
i=1 ‖yi‖. From the claim and from Lemma 1.2.17 it follows

that SZ(T ∗, ε) . ε−1 so that T ∗ has Szlenk index ω and Szlenk power type pT ∗ = 1. Now T ∗

is reflexive so it cannot be isomorphic to a subspace of c0 (see for example [AK, Proposition
2.2.1]) and thus it cannot have any equivalent AUF norm. By duality, T has no 1-AUC (or
equivalently since T is reflexive no 1-UKK) norm.

Those results where extended to the non-separable setting in [Raj] where a different geo-
metric approach of renorming based on “slow slicing methods” involving the Kuratowski index
on non-compactness is also proposed. In [LPR] general measures of non-compactness are con-
sidered and applications to higher ordinals are given (in the separable case). In particular the
following [LPR, Corollary 5.1] was obtained, filling the gaps in previous results from [HS].

Theorem 1.2.10. Let X be a separable Banach space. Then CZ(X) = SZ(X).

Those results where extended to the non-separable setting and for operators in [CD1] and
further generalizations concerning higher ordinal Szlenk power type where then obtained in
[Cau5].

The uniform Kadec-Klee property (UKK in short) was first introduced in [Huf]. Let us
recall that X is UKK if for every ε > 0 we can find a δ > 0 such that for every element x ∈ X,
if there exists an ε-separated sequence (xn)n≥1 in BX which converges weakly to x , then x
has to be in (1 − δ)BX . Let us also recall that a sequence (xn)n≥1 is said to be ε-separated if
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sep{xn}n≥1 = infn6=m ‖xn − xm‖ is bigger than or equal to ε. Looking at the best possible δ(ε)
in the above definition one can define a UKK modulus as in [KOS] and consider the notion of
power type UKK. The following lemma is well known but the proof is scattered in the literature.
We provide a sketch of it bellow for completeness.

Lemma 1.2.11. Let X be a Banach space. The following assertions are equivalent.

1. The space X is UKK.

2. For every ε > 0 we can find a δ > 0 such that for every element x ∈ BX , if there exists
(xn)n≥1 in BX which converges weakly to x and satisfies ‖x− xn‖ ≥ ε for every n ≥ 1
then x has to be in (1− δ)BX .

3. For every t > 0 we can find a δ > 0 such that for every x ∈ SX and for every weak-null
sequence (xn)n≥1 in X with norm ‖xn‖ ≥ 1, we have lim inf ‖x+ txn‖ ≥ 1 + δ.

Proof. (1) =⇒ (2) Fix ε > 0 and let (xn)n≥1 be a sequence in BX converging weakly to some
x ∈ BX and satisfying ‖x− xn‖ ≥ ε for every n ≥ 1. For any fixed n0 ≥ 1 we have, by lower
semicontinuity of the norm, lim inf ‖xn − xn0‖ ≥ ‖x− xn0‖ ≥ ε so we can find some N ≥ 1 such
that ‖xn − xn0‖ ≥ ε

2
for every n ≥ N . Building on this observation we construct inductively a

subsequence (xnk)k≥1 which is ε
2
-separated.

(2) =⇒ (3) Goes by contraposition. Fix t > 0, let x ∈ SX , and let (xn)n≥1 be a weak-null
sequence with norm ‖xn‖ ≥ 1 such that lim inf ‖x+ txn‖ < 1 + δ for some δ ∈ (0, 1). Then
let us assume as we may that ‖x+ txn‖ ≤ 1 + δ for every n ≥ 1. We define zn = x+txn

1+δ
for

every n ≥ 1 and z = x
1+δ

. Then the sequence (zn)n≥1 ⊂ BX converges weakly to z, and we have

‖z − zn‖ ≥ ‖txn‖
1+δ
≥ t

2
for every n ≥ 1 and ‖z‖ = 1

1+δ
= 1− δ

1+δ
≥ 1− δ

2
.

(3) =⇒ (1) Let x ∈ BX and let (xn)n≥1 be an ε-separated sequence in BX converging
weakly to x. We define z = x

‖x‖ and zn = x−xn
‖x‖ for every n ≥ 1. The sequence (zn)n≥1 converges

weakly to 0 and we have ‖zn − zm‖ = ‖xn−xm‖
‖x‖ ≥ ε for every distinct n,m ≥ 1 so that ‖zn‖ ≥ ε

2

or ‖zm‖ ≥ ε
2
. Passing to a subsequence we may assume that ‖zn‖ ≥ ε

2
for every n ≥ 1. Then

observe that ‖z + zn‖ = ‖xn‖
‖x‖ ≤

1
‖x‖ for every n ≥ 1 so that lim inf ‖z + zn‖ ≤ 1

‖x‖ .

A direct consequence of this lemma is that a norm is UKK if and only if it is sequentially
AUC, and it is moreover contained in the above proof that the corresponding moduli are
equivalent. By the results mentioned in Section 1.1 (Lemma 1.1.8) UKK is equivalent to AUC
for spaces not containing `1. In full generality, AUC is equivalent to the following generalized
version of UKK property introduced in [Lan1].

Lemma 1.2.12. Let X be a Banach space. Then X is AUC if and only if it satisfies the
following property: for all ε > 0 there is a ∆ > 0 such that for all x ∈ BX , if ‖x‖ > 1−∆ then
there is a weak-neighborhood V of x such that diamV ∩BX ≤ ε.
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Proof. Using Lemma 1.1.5 the property “ X is AUC ” can be reformulated in the following way:
for every t > 0 there is a δ > 0 such that for every x ∈ SX there exists a weak neighborhood
V ∈ Vw(0) of 0 such that ‖x+ tv‖ ≥ 1 + δ for every v ∈ V with norm ‖v‖ ≥ 1. Also the
generalized UKK property is clearly equivalent to the following: for all ε > 0 there is a ∆ > 0
such that for all x ∈ BX , if ‖x‖ > 1 −∆ then there is a weak-neighborhood V of 0 such that
x + v /∈ BX for every v ∈ V with norm ‖v‖ > ε. Thus the proof (by contraposition in both
directions) is brought back to straightforward rescaling arguments as in the proof of Lemma
1.2.11.

Remark 1.2.13. Using the derivation given by

w − sε(F ) = {x ∈ F : ∀V ∈ Vw(x), diamV ∩BX > ε}

for any weakly closed bounded subset F ofX we define another peeling index which is sometimes
referred to as the weak Szlenk index of X and that we denote w−SZ(X). Although this index
shares most of the basic properties of the Szlenk index, lack of weak-compactness in the non-
reflexive setting provides a strong obstruction to the extension for this index of most of the
more involved applications of the Szlenk index. For example the condition w − SZ(X) < ∞
is known to be equivalent to the PCP but as already mentioned does not imply the RNP
(Remark 1.2.5). The above Lemma 1.2.12 can be reformulated as follows: AUC is equivalent to
the following: for every ε > 0, there exists a δ > 0 such that w−sε(BX) ⊂ (1−δ)BX . Iterating,
this implies that w−SZ(X, ε) is finite for every ε > 0 in any AUC space and thus we have that
AUC implies w − SZ(X) ≤ ω (and in particular AUC implies PCP). However, the renorming
question “ Does a Banach space X with weak Szlenk index ω admit an equivalent AUC norm?
” is still unanswered. Let us also mention here that, as pointed out in [DGK, Proposition 2
and following comment], (sequential) UKK does not imply the PCP in general: the Bourgain-
Rosenthal space constructed in [BR] has the Schur property and thus is (sequential) UKK but
fails the PCP. In particular this space is an example of a space with a sequential AUC norm
but with no equivalent AUC norm.

As for the AUC∗ property we define a weak∗ version of the UKK property in dual spaces (the
UKK∗ property) by replacing the weak topology in the UKK definition by the weak∗ topology.
Proving an analogue of Lemma 1.2.11 in this context and appealing to Lemma 1.1.13 we then
obtain that UKK∗ is equivalent to AUC∗ in duals of separable spaces. We also have an analogue
of Lemma 1.2.12 in this context, and this result can even be further improved by using the
weak∗ compactness of the unit ball of dual spaces.

Lemma 1.2.14. Let X be a Banach space. The following properties are equivalent.

1. The space X∗ is AUC∗.

2. For all ε > 0 there is a ∆ > 0 such that for all x∗ ∈ BX∗, if ‖x∗‖ > 1 − ∆ then
there is a weak∗-neighborhood V of x∗ such that diamV ∩ BX∗ ≤ ε. In other words
sε(BX∗) ⊂ (1−∆)BX∗.
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3. For all ε > 0 there is a ∆ > 0 such that for all x∗ ∈ BX∗, if ‖x∗‖ > 1 − ∆ then
there is a weak∗ slice S(x, δ) of BX∗ which contains x∗ and whose Kuratowski index of
non-compactness α(S(x, δ)) is smaller than ε.

Before proving this lemma, let us recall that a weak∗ (open) slice of a bounded convex
set C in X∗ is a subset of the form S(x, δ;C) = {x∗ ∈ C : x∗(x) > supy∗∈C y

∗(x) − δ}
where x ∈ SX and δ > 0. If C = BX∗ we simply write S(x, δ). Also let us recall that
the Kuratowski index of a subset A of a Banach space X is defined as α(A) = inf{ε > 0 :
A is covered by a finite number of balls of radius ε}. We will give more details about slices
and about the Kuratowski index in Chapter 3. Let us sketch the proof of Lemma 1.2.14.

Proof of Lemma 1.2.14. The equivalence between (1) and (2) goes as above by appealing to
Lemma 1.1.13. A detailed proof can also be found in [Net, Section 1.3.5, Proposition 1.3.33].

(2) =⇒ (3) Take any x∗ in BX∗ with norm ‖x∗‖ > 1 − ∆. Using the weak∗ version of
Hahn-Banach separation theorem (see for example [FHH+, Corollary 3.34]) we can find a weak∗

slice S(x, δ) of BX∗ containing x and whose closure S(x, δ) does not intersect (1−∆)BX∗ . Now
if any point in S(x, δ) is contained in a weak∗ open set of diameter less than ε, so one can
extract by weak∗ compactness a finite subcover of S(x, δ) and thus get α(S(x, δ)) ≤ ε.

(3) =⇒ (2) Let us assume that x∗ ∈ BX∗ belongs to a weak∗ slice S(x, δ) of Kuratowski
index smaller than ε. Then take x∗1, . . . x

∗
n ∈ X∗ such that S(x, δ) ⊂

⋃n
i=1 B(x∗i , ε) and let

I = {1 ≤ i ≤ n : x∗ /∈ B(x∗i , ε)}. The set U = S(x, δ)\
⋃
i∈I B(x∗i , ε) is a relatively open subset

of BX∗ for the weak∗ topology and we have ‖u∗ − v∗‖ ≤ ‖u∗ − x∗‖ + ‖x∗ − v∗‖ ≤ 4ε for every
u∗, v∗ ∈ U since U ⊂

⋃
i/∈I B(x∗i , ε) and since each of the remaining balls contains x∗.

Remark 1.2.15. If we consider the derivation given by

kε(K) = {x∗ ∈ K : ∀S(x, δ;K) weak∗ slice of K containing x∗, α(S(x, δ;K)) > ε}

we obtain an index called the weak∗ Kuratowski index of X denoted by K(X), which coincides
with the convex Szlenk index CZ(X) (see [HL, Proposition 4.8]). We do not know whether
there is an example of a Banach space for which the weak version of this result fails. We also
don’t know of any example of a space being AUC but not KUC (that is such that for every
ε > 0 there is a ∆ > 0 such that w − kε(X) ⊂ (1 − ∆)BX). Note that any point in the unit
sphere of a KUC space has to be “ quasi-denting ” that is to be contained in slices of arbitrarily
small Kuratowski index. Finding a point in the unit sphere of JT ∗ which is not quasi-denting
would thus provide a counter-example.

As hinted above, the notion of tree plays an important role in general index theory as well
as in the asymptotic theory. For simplicity we will only work with countably branching trees
and most of the time we will only consider trees of finite height. For non-separable spaces or
for higher ordinals more general definitions are needed, and we refer the interested reader to
[Cau4] for such considerations.

For every n ∈ [1, ω], let Nn be the set of all sequences of elements of N of length n. For
all N ≥ 1, let TN = {∅} ∪

⋃N
n=1 Nn be the countably branching tree of height N . Also let

T∞ =
⋃
N≥1 TN . We will use the following notation.

29



1. For every non empty s ∈ T∞, |s| is the length of the sequence s. Also |∅| := 0.

2. For every non empty s = (s1, . . . , sn) and t = (t1, . . . , tm) in T∞, s a t is the concatenation
of the sequences s and t that is s a t := (s1, . . . , sn, t1, . . . , tm). Also s a ∅ := s and
∅ a t := t.

3. For every non empty s = (s1, . . . , sn) ∈ T∞ (respectively s = (si)i≥1 ∈ Nω), s|k is the
troncation of the sequence s at level k, that is s|k := (s1, . . . , sk) for every 1 ≤ k ≤ n
(respectively for every k ≥ 1) and s|0 := ∅. Also, s− := s||s|−1 is the predecessor of s.

4. For all s, t ∈ T∞ ∪ Nω, we write s ≤ t whenever the sequence t is an extension of the
sequence s and we say that s is an ancestor of t. This defines an ordering of T∞ ∪ Nω.

For a given N ∈ [1,∞], a subtree T of TN is a non empty subset of TN containing all the
predecessors of its elements, and a full subtree of TN is a subtree T of TN such that all the sets
T ∩ {s a n, n ∈ N} with s ∈ T ∩ TN−1 (s ∈ T if N =∞) are infinite. Those sets will be called
the forks of the tree T .

For any finite N ≥ 1 and any subtree T of TN , a leaf of T is a maximal element of T (in
particular an element of height N if T is a full subtree of TN). If T is a subtree of T∞ then a
leaf of T is either a maximal element of T or an element s ∈ Nω such that s|k ∈ T for every
k ≥ 1.

Let X be a Banach space. A tree in X is a subset of X indexed by a full subtree T of TN or
of T∞. In the first case we say that the tree is of finite height N , and in the second case we say
that it is of infinite height. Let (xs)s∈T be a tree in X. We will use the following denomination.

1. The root of the tree is the element x∅.

2. A fork is a set of the form {xsan : n ∈ N and s a n ∈ T} where s is an element of T
which is not a leaf.

3. A branch is a set of the form {xs, s ≤ t} where t ∈ T is a leaf. If we are working with an
unrooted tree, we omit x∅ in this definition.

We say that the tree is bounded (respectively normalized) if the corresponding subset is
bounded (respectively is contained in the unit sphere of X with the eventual exception of its
root 0). We say that it is weakly null if every fork forms a weakly null sequence in X, that is if
w− limn xsan = 0 for all s ∈ T . For any ε > 0 we will call weakly convergent ε-climbing tree in
X any tree (zt)t∈T obtained by summing the elements of a weakly null tree (xs)s∈T in X rooted
at 0 and satisfying ‖xs‖ ≥ ε for every non empty s ∈ T along a branch of T , that is given by
zt =

∑
s≤t xs for every t ∈ T . We define in the same way the notion of weak∗ null trees and

weak∗ convergent ε-climbing trees in a dual space.

Remark 1.2.16. For some statements (for example for tree reformulations of asymptotic struc-
tural properties in Section 1.3), it will be required not to include roots of trees. In theory an
unrooted tree is simply a tree deprived of its root. Yet for convenience we will implicitly put
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value 0 to x∅ whenever we speak about unrooted trees so as to extend all the above definitions
in a natural way and to avoid heavy T\{∅} kind of notations. The only notable exceptions
are that normalized unrooted trees will be trees (xs)s∈T in X with x∅ = 0 and ‖xs‖ = 1 for
every non empty sequence s ∈ T , and that branches of unrooted trees will not involve the root
anymore.

If X is a separable Banach space, then the Szlenk derivation sε(K) is equivalent to the
derivation

lε(K) = {x∗ ∈ K : ∃(z∗n)n≥1 ⊂ K : ∀n ≥ 1, ‖z∗n − x∗‖ ≥ ε, and z∗n
w∗→ x∗}.

In other words, an element x∗ of K is in sε(K) if and only if we can find a weak∗ null sequence
(x∗n)n≥1 in X∗ such that ‖x∗n‖ ≥ ε and x∗ + x∗n ∈ K for every n ≥ 1. Iterating, an element x∗

of K belongs to sNε (K) (respectively to sωε (K)) if and only if we can find a weak∗ convergent ε-
climbing tree of height N (respectively of infinite height) rooted at the point x∗ (i.e. translated
at x∗) which is contained in K. Building on this observation, we obtain the following.

Lemma 1.2.17. Let X be a separable Banach space. Then SZ(X) > ω if and only if there
exists ε > 0 such that for every N ≥ 1 we can find a weak∗ convergent ε-climbing tree of height
N in BX∗. In particular, if X has Szlenk index ω, then SZ(X, ε) is equivalent to the integer
N(ε) corresponding to the maximal height of weak∗ convergent ε-climbing trees in BX∗.

Proof. In the proof of [Lan2, Proposition 3.3], the following identity is mentioned: 1
2
BX∗ +

1
2
sαε (BX∗) ⊂ sαε

2
(BX∗) for any ordinal α and for every ε > 0. In particular 0 ∈ sαε

2
(BX∗)

whenever sαε (BX∗) is non-empty.
If SZ(X) > ω, then there is an ε > 0 such that SZ(X, ε) > ω, and thus sNε (BX∗) 6= ∅ for

every N ≥ 1. By the above observations we can find weak∗ convergent ε
2
-climbing trees of

height N in BX∗ for every N ≥ 1.
The converse follows from the fact that SZ(X, ε) is never a limit ordinal: if sNε (BX∗) 6= ∅

for every N ≥ 1, then SZ(X, ε) > ω.

Remark 1.2.18. Since reflexive spaces do not contain `1 and since the weak and weak∗ topology
coincide for duals of reflexive spaces, the derivations sε and lε are also equivalent in this context
by Lemma 1.1.7 and thus the above observations as well as Lemma 1.2.17 extend to non-
separable reflexive spaces.

Let us now introduce the notion of tree estimates in Banach spaces.

Definition 1.2.19. Let X be a Banach space, and let p ∈ [1,∞].

1. We say that X satisfies the upper `p finite tree property if there is a constant C > 0 such
that for every finite n ≥ 1 and for every weakly null normalized tree (xs)s∈Tn of height n in

X we can find a leaf s of Tn such that
∥∥∥∑n

i=0 aixs|i

∥∥∥ ≤ C ‖a‖`p for every a = (ai)i≥0 ∈ Rn.
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2. We say that X satisfies the upper `p infinite tree property if there is a constant C > 0
such that for every weakly null normalized tree (xs)s∈T∞ of infinite height in X we can

find a leaf s ∈ Nω of T∞ such that
∥∥∥∑i≥0 aixs|i

∥∥∥ ≤ C ‖a‖`p for every a = (ai)i≥0 ∈ c00.

Remark 1.2.20. Let us recall one of the corollaries of the famous combinatorial theorem from
Ramsey. For every n ≥ 1 and for every non empty subset A of X, if for every tree (xs)s∈Tn in
X we can find a leaf s of Tn such that xs ∈ A, then we can find for every tree (xs)s∈Tn in X a
full subtree T of Tn such that for every leaf s of T , xs ∈ A.

In particular, if a space satisfies the upper `p finite tree property, then one can extract for
every weakly null normalized tree in X of finite height a full subtree for which all the branches
admit the above upper `p estimates. For trees of infinite height this requires more delicate
combinatorial considerations, and we refer to [CD2].

For spaces not containing `1, Banach spaces with the upper `p finite (respectively infinite)
tree property belong to the class Ap (respectively Tp) from [CFL]. Using the tools mentioned
before Proposition 1.1.20 it is not difficult to prove that any p-AUS space (respectively any
AUF space) satisfies the upper `p finite tree property for 1 < p <∞ (respectively for p =∞).
Passing to infinite tree requires more involved combinatorial tools, but let us point out that
[Cau3] contains the following result.

Theorem 1.2.21. Let X be a Banach space. Then the following assertions are equivalent.

1. The space X is in the class Tp.

2. The space X admits an equivalent p-AUS norm.

Note that it is known that the upper `p finite tree property does not force a space to admit
an equivalent p-AUS norm (as witnesses the dual of the q-convexification (Tq)

∗ of Figiel and
Johnson’s construction of the Tsirelson’s space, see [CS, Paragraph X.E]), and in fact it is
known that Tp ⊂

6=
Ap ⊂

6=

⋂
q>p Tp =

⋂
q>pAp. However, the following renorming theorem was

obtained in [CFL].

Theorem 1.2.22. Let X be a Banach space. Then the following assertions are equivalent.

1. The space X is in the class Ap.

2. For every t0 > 0, the space X admits an equivalent norm |.| for which there is a constant
C > 0 such that for every t ≥ t0, ρ|.| (t) ≤ Ctp.

Similarly we can define lower tree properties in Banach spaces.

Definition 1.2.23. Let X be a Banach space and let q ∈ [1,∞].

1. We say that X satisfies the lower `q finite tree property if there is a constant c > 0 such
that for every finite n ≥ 1 and for every weakly null normalized tree (xs)s∈Tn of height n in

X we can find a leaf s of Tn such that
∥∥∥∑n

i=0 aixs|i

∥∥∥ ≥ c ‖a‖`q for every a = (ai)i≥0 ∈ Rn.
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2. We say that X satisfies the lower `q infinite tree property if there is a constant C > 0
such that for every weakly null normalized tree (xs)s∈T∞ of infinite height in X we can

find a leaf s ∈ Nω of T∞ such that
∥∥∥∑i≥0 aixs|i

∥∥∥ ≥ c ‖a‖`q for every a = (ai)i≥0 ∈ c00.

In this context it also makes sense to replace the weak topology by the weak∗ topology in
order to define the weak∗ lower `q finite and infinite tree properties in X∗.

Remark 1.2.24. Clearly upper `1 tree estimates are trivial. The fact that lower `∞ tree
estimates are also trivial is less obvious at first sight, but follows easily from the fact that one
can always extract from a weak∗ null normalized tree a full subtree which forms, for a suitable
ordering, a basic sequence (with basic constant as close to 1 as one wishes). We state a precise
statement in Chapter 2, Lemma 2.3.12.

It is again not difficult to show that any q-AUC space satisfies the lower `q finite tree
property for 1 ≤ q ≤ ∞ (and we have a similar version for the weak∗ topology), and it also
seems to be known to imply the lower `q infinite tree property. We couldn’t find a suitable
reference for the latter, and up to our knowledge no analogue of the above theory has been
fully developed for (weak∗) lower tree estimates yet.

Remark 1.2.25. In [OS, Theorem 4.1] it is proved that any separable reflexive space satisfying
both the upper and lower `p infinite tree property for some p ∈ (1,∞) has to be isomorphic to
a subspace of an `p-sum of finite dimensional spaces. As a corollary it is then proved that the
upper `p infinite tree property and the lower `p∗ infinite tree property are dual to one another
in the separable reflexive setting [OS, Corollary 4.6]. We do not know if the latter extends
to a more general setting (with the weak∗ topology for lower estimates in X∗) and we also
do not know if there is a counter example for the first statements for finite tree properties. A
consequence of those results is that any separable reflexive space admitting an equivalent p-AUS
norm and an equivalent p-AUC norm for some p ∈ (1,∞) has to be isomorphic to a subspace
of an `p-sum of finite dimensional spaces (also see [JLPS, Proposition 2.11] for an alternative
proof). However, let us observe that the James space Jp is a non-reflexive separable space with
an equivalent p-AUS norm and such that J∗∗p admits an equivalent p-AUC∗ norm, see Example
1.1.25 and references therein, so that those kind of conditions do not imply reflexivity.

We end the section with a few remarks on separable determination. The proof of the
following result is sketched in [Lan2, Theorem 3.11] for the dentability index and can easily be
adapted to the Szlenk index.

Proposition 1.2.26. Let X be a Banach space and let α < ω1 be a countable ordinal. If
SZ(X) > α, then there is a separable subspace Y of X with Szlenk index SZ(Y ) > α.

The following result is proved in [DKLR, Proposition 3.1].

Proposition 1.2.27. Let X be a reflexive Banach space and let α < ω1 be a countable ordinal.
If SZ(X) > α, then there is a subspace Y of X such that X/Y is separable and has Szlenk index
SZ(X/Y ) > α.
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We will extend this result to weakly compactly generated (WCG in short) spaces in Ap-
pendix A by using the so called `+

1 weakly null index from [AJO].

Proposition 1.2.28. Let X be a WCG Banach space and let α < ω1 be a countable ordinal. If
SZ(X) > α, then there is a subspace Y of X such that X/Y is separable and has Szlenk index
SZ(X/Y ) > α.

1.3 Asymptotic structure

We give a brief overview of the so called asymptotic structure theory of Banach spaces introduced
in [MMTJ]. Although we will not dwelve into it, this theory is closely related to the theory of
games in Banach spaces. We refer to [AH, Chapter 3] for basics in the theory of games and
to [Pro, Chapter 2] and references therein for a few applications in Banach space geometry. A
brief description of the translation of the properties of this section in the language of games
can be found for example in [BLMS, Remark 3.2] or in [BCD+, Paragraph 3.2].

Let X be a Banach space. For every n ≥ 1, let En be the set of all triplets (E, ‖.‖E , (ei)ni=1)
where (E, ‖.‖E) is an n-dimensional normed space and (ei)

n
i=1 is a normalized basis of E. When

there is no risk of confusion, we will write E = (E, ‖.‖E , (ei)ni=1) ∈ En but one should keep in
mind that there is an underlying norm and a fixed underlying normalized basis in the space E.

We say that a space E ∈ En is in the nth asymptotic structure of X up to a constant C ≥ 1
and we write E ∈ {X}n,C if we have the following property:

∀ε > 0, ∀X1 ∈ cof(X), ∃x1 ∈ SX1 : . . . , ∀Xn ∈ cof(X), ∃xn ∈ SXn :

(xi)
n
i=1 is C(1 + ε)-equivalent to (ei)

n
i=1.

If C = 1, we say that E is in the nth asymptotic structure of X and we write E ∈ {X}n.
We say that X is asymptotically `p (respectively asymptotically c0) or that X has an `p

(respectively c0) asymptotic structure if there is a constant C > 0 such that for every n ≥ 1 and
for every E ∈ {X}n, the underlying basis (ei)

n
i=1 of E is C-equivalent to the unit vector basis

of the space `np (respectively `n∞). Also we say that X is asymptotically unconditional or that
X has an unconditional asymptotic structure if there is a constant C > 0 such that for every
n ≥ 1 and for every E ∈ {X}n, the underlying basis (ei)

n
i=1 of E is C-unconditional.

It is well known that a space X is asymptotically `p if and only if there is a constant C > 0
such that

∃X1 ∈ cof(X) : ∀x1 ∈ SX1 , . . . , ∃Xn ∈ cof(X) : ∀xn ∈ SXn ,
(xi)

n
i=1 is C-equivalent to the unit vector basis of `np . (Ψ)

The same goes for asymptotically c0 spaces and asymptotically unconditional spaces. This
becomes very clear once those kind of properties are reformulated in terms of generalized trees.

Let Y := cof(X) and for every n ≥ 1 let Y≤n be the set of finite non-empty sequences
of elements of Y of length at most n. We will say that a generalized tree (xy)y∈Y≤n in X is
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weakly null if xy ∈ Xk for every y = (X1, . . . , Xk) ∈ Y≤n. This terminology comes from the
fact that any node (xyaZ)Z∈Y in such a tree forms a weakly null net. The following lemma is
easily proved by induction on n.

Lemma 1.3.1. Let X be a Banach space.

1. For every E ∈ En, E ∈ {X}n,C if and only if we can find for every ε > 0 a weakly null
generalized unrooted tree (xy)y∈Y≤n in SX of height n whose branches are all C(1 + ε)
equivalent to the underlying basis (ei)

n
i=1 of E.

2. A Banach space X satisfies the above property (Ψ) if and only if there is a constant C ≥ 1
such that for every n ≥ 1 and for every weakly null generalized unrooted tree (xy)y∈Y≤n in
SX of height n, we can find a branch which is C-equivalent to the unit vector basis of `p.

The next lemma then follows from Lemma 1.1.7 and the fact that the distance d(xn, Y )
from a weakly null normalized sequence (xn)n≥1 in X to any fixed Y ∈ cof(X) goes to 0, see
for example [BLMS, Lemma 3.4 and 3.5].

Lemma 1.3.2. Let X be a Banach space which does not contain `1.

1. For every E ∈ En, E ∈ {X}n,C if and only if we can find for every ε > 0 a weakly
null normalized unrooted tree (xs)s∈Tn in X of height n whose branches are all C(1 + ε)
equivalent to (ei)

n
i=1.

2. A Banach space X is asymptotically `p if and only if there is a constant C ≥ 1 such that
for every n ≥ 1 and for every weakly null normalized unrooted tree (xs)s∈Tn in X of height
n, we can find a branch which is C-equivalent to the unit vector basis of `p.

We have a similar characterization for asymptotically c0 and asymptotically unconditional
spaces.

Remark 1.3.3. A space satisfying the second part of point (2) is sometimes referred to as
having the finite `p (respectively c0 or unconditional) tree property.

Example 1.3.4. Let p ∈ (1,∞). Using a gliding hump argument, one can show that any space
X which is p-AUS renormable and p-AUC renormable is asymptotically `p. Also any space
which is 1-AUC renormable is asymptotically `1. In particular any `p-sum of finite dimensional
spaces is asymptotically `p for 1 ≤ p < ∞ and the p-James space Jp is asymptotically `p for
every 1 < p < ∞. We refer to [OSZ] for results concerning the structure of asymptotically `p
reflexive spaces.

Example 1.3.5. Using again a gliding hump argument, we can prove that any space X with an
unconditional basis is asymptotically unconditional. As mentioned in [BCD+, Remark 3.4] the
latter is a strictly weaker property: the Argyros-Delyianni space constructed in [AD, Section
3] is asymptotically `1 but does not contain any unconditional basic sequence.
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Remark 1.3.6. A consequence of results from [Cau6] is that a Banach space is asymptotically
c0 if and only if it has summable Szlenk index as introduced in [KOS, Definition 6.6], also
see [GKL2, Theorem 4.10]. Looking back at the proof following Remark 1.2.9, Lemma 1.3.2
combined with a small refinement of the argument there shows that the space T constructed by
Figiel and Johnson is asymptotically `1 and that the original Tsirelson’s space T ∗ has summable
Szlenk index and thus is asymptotically c0. Also see [BLMS, Inequality (6) and related] for a
direct argument.

Let us recall two famous results in Banach space theory. For those we refer respectively to
the papers [Jam] and [Ros1].

Theorem 1.3.7 (James, non-distordability of c0). For all m ≥ 1, C ≥ 1 and ε > 0, there is an
n ≥ 1 such that: any basic sequence (ei)

n
i=1 of length n which is C-equivalent to the unit vector

basis of `n∞ admits a block basis of length m which is (1 + ε)-equivalent to the unit vector basis
of `m∞.

Theorem 1.3.8 (Krivine/Rosenthal). Let 1 ≤ p <∞. For all m ≥ 1, C ≥ 1 and ε > 0, there
is an n ≥ 1 such that: any basic sequence (ei)

n
i=1 of length n which is C-equivalent to the unit

vector basis of `np admits a block basis of length m which is (1 + ε)-equivalent to the unit vector
basis of `mp .

We will use these results and the preceding tree characterizations to optimize constants
in the asymptotic structure for spaces not containing `1. This is stated in full generality in
[BCD+, Lemma 3.1] but a few details are missing in the proof, and in particular we don’t know
if the key stabilization argument below (Claim 1) can be obtained without passing to countably
branching trees and using Ramsey’s theorem.

Lemma 1.3.9. Let X be a Banach space which does not contain `1 and let 1 ≤ p ≤ ∞. If
there is a constant C ≥ 1 such that `np ∈ {X}n,C for all n ≥ 1, then `np ∈ {X}n for all n ≥ 1.

Proof. For the purpose of this proof we will say that two elements E,F ∈ En are C-equivalent
for some C ≥ 1 if the underlying basis (ei)

n
i=1 of E is C-equivalent to the underlying basis (fi)

n
i=1

of F . As for the standard Banach-Mazur distance between n-dimensional normed spaces, this
allows to define a distance on En which turns En into a compact metric space.

Let us assume that X does not contain `1 and that there is a constant C > 0 such that for
every n ≥ 1, `np ∈ {X}n,C . Then we have the following.

Claim 1. For every n ≥ 1 we can find a space En ∈ En which is 2C equivalent to `np and
belongs to {X}n.

Proof of Claim 1. This is a standard stabilization argument. Let us fix n ≥ 1 and ε ∈ (0, 1).
By compactness of En we can find a finite collection Fε of elements of En such that every space
E ∈ En which is 2C-equivalent to `np has to be (1 + ε) equivalent to some space in Fε. Since
X does not contain `1 we can find by Lemma 1.3.2 a weakly null normalized unrooted tree
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(xs)s∈Tn in X whose branches are all 2C-equivalent to the canonical basis of `np . So for every
branch β of the tree there is a space Eβ ∈ Eε which is (1 + ε)-equivalent to the linear span of
β. By Ramsey’s theorem we may assume up to the extraction of a full subtree that there is a
space Eε ∈ Eε such that the linear span of every branch β of the tree is (1 + ε)-equivalent to
Eε.

Now let us fix any sequence (εi)i≥1 in (0, 1) converging to 0. Using sequential compactness
we can assume up to the extraction of a subsequence that there is a space E ∈ En such that
the sequence (Eεi)i≥1 converges to E. Then E is 2C-equivalent to `np and we can find for every
ε > 0 a weakly-null normalized unrooted tree in X whose branches are all (1 + ε)-equivalent to
the underlying basis (ei)i≥1 of E. By Lemma 1.3.2 E ∈ {X}n, and we are done.

Now let us fix m ≥ 1 and ε > 0. By Lemma 1.3.1 we need to provide a generalized weakly
null unrooted tree (xy)y∈Y≤m in SX whose branches are all (1 + ε)-equivalent to the unit vector
basis of `mp . So let us fix any η > 0 to be chosen later. By applying either Theorem 1.3.7 or
Theorem 1.3.8, we can find an n ≥ 1 such that every normalized basic sequence of length n
which is 2C equivalent to the canonical basis of `np admits a normalized block basis of length m
which is (1+η)-equivalent to the canonical basis of `mp . Now use Claim 1 to find a space En ∈ En
which is 2C equivalent to `np and belongs to {X}n and use the preceding statement to pick a
normalized block basis (fj)

m
j=1 of the underlying basis (ei)

n
i=1 of En which is (1 + η)-equivalent

to the canonical basis of `mp . We need the following.

Claim 2. The space F = ([fj]
m
j=1, ‖.‖E , (fj)mj=1) is in {X}m.

Proof. Proof of Claim 2.
Fix some δ > 0. Since En ∈ {X}n we can find a weakly null generalized unrooted tree

(xy)y∈Y≤n in SX whose branches are all (1 + δ)-equivalent to (ei)
n
i=1. For every 1 ≤ j ≤ m

let us introduce nj = min(supp fj) and lj = |supp fj|. For every y = (X1, . . . , Xj) ∈ Y≤m
we define inductively y0 = y and yi = yi−1 a Xj for every 1 ≤ i ≤ lj − 1 and we consider

zy =
∑lj−1

i=0 e∗nj+i(fj)xyi . Then zy ∈ Xj so that (zy)y∈Y≤m is a weakly null generalized tree,
and by construction every branch of the tree is (1 + δ)-equivalent to (fj)

m
j=1. Using a standard

perturbation argument we then get a normalized weakly null generalized unrooted tree whose
branches are all (1 + 2δ)-equivalent to (fj)

m
j=1, and the conclusion follows by letting δ go to 0.

Now by Claim 2 we can find a weakly null generalized tree (xy)y∈Y≤m in SX whose branches
are all (1 + η)-equivalent to (fj)

m
j=1 and thus (1 + η)2-equivalent to the unit vector basis of `mp .

The conclusion follows if η was initially chosen so that (1 + η)2 ≤ (1 + ε).

Replacing finite co-dimenisonal subspaces by weak∗ closed finite co-dimensional subspaces
we define in a similar way the nth weak∗ asymptotic structure of a dual space {X∗}w∗n,C and

{X∗}w∗n and the notion of weak∗ asymptotically `p, c0 or unconditional spaces. Then we have
the following results.

37



Lemma 1.3.10. Let X be a separable Banach space. For all n ≥ 1 and for all n-dimensional
space E with a normalized basis (ei)

n
i=1, E is in the nth weak∗ asymptotic structure of X∗ up to

a constant C ≥ 1 if and only if for all ε > 0, there is a weak∗-null normalized unrooted tree of
height n whose branches are all C(1 + ε)-equivalent to (ei)

n
i=1.

Lemma 1.3.11. Let X be a separable Banach space and let 1 ≤ p ≤ ∞. If there is a constant
C ≥ 1 such that the space `np is in the nth weak∗ asymptotic structure of X∗ up to C for all
n ≥ 1, then `np ∈ {X∗}w

∗
n for all n ≥ 1.

Lemma 1.3.12. Let X be a separable Banach space. Then X∗ is weak∗ asymptotically `p (re-
spectively c0 or unconditional) if and only if it has the weak∗ `p (respectively c0 or unconditional)
finite tree property.

For the sake of completeness, let us provide a proof for Lemma 1.3.10 . This will be the
occasion to introduce the following concept which allows to implement inductive proofs for
trees. We say that an enumeration (σi)i≥1 of a tree T is a compatible linear ordering of T if it
satisfies the following condition: for every i ≥ 1 and for every ancestor s of σi, there is a j < i
such that s = σj.

Proof of Lemma 1.3.10. Let X be a separable Banach space, let us fix some n ≥ 1 and some
space E ∈ En, and let us first assume that E ∈ {X∗}w∗n,C . Since X is separable, we can choose
a dense sequence (zk)k≥1 in SX . For all k ≥ 1, let us define the weak∗ closed subspace of finite

codimension Zk =
⋂k
i=1 ker zi of X∗ where zi is identified with its image in X∗∗. Then we have

the property that any normalized sequence (z∗k)k≥1 in SX∗ such that z∗k ∈ Zk for all k ≥ 1 is
weak∗-null. Let us fix ε > 0. Using the assumption on E, we will build a normalized unrooted
tree (z∗s)s∈Tn in SX∗ such that:

1. For all s ∈ Tn−1, for all k ∈ N, z∗sak ∈ Zk.

2. All the branches of (z∗s)s∈Tn are C(1 + ε)-equivalent to (ei)
n
i=1.

This gives the desired tree by the choice of the subspaces Zk. In order to do this construction let
us introduce a compatible linear ordering (σi)i≥1 of Tn\{∅}. By an easy induction we provide
a sequence (z∗σi)i≥1 in SX∗ such that:

1. If σi = σ−i a k for some k ∈ N then zσi ∈ Zk.

2. If l = |σi| = n, then (z∗σ, σ ≤ σi) is C(1 + ε)-equivalent to (ei)
n
i=1.

3. If l = |σi| < n it satisfies:

∀Xl+1 ∈ cof∗(X∗), ∃x∗l+1 ∈ SXl+1
, . . . , ∀Xn ∈ cof∗(X∗), ∃x∗n ∈ SXn :

(z∗σ, σ ≤ σi) a (x∗i )
n
i=l+1 is C(1 + ε)-equivalent to (ei)

n
i=1.
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Second, let us fix ε > 0 and let us take δ > 0 such that: for every normalized sequences
(vi)

n
i=1 and (wi)

n
i=1 in X∗, if (vi)

n
i=1 is C(1 + δ)-equivalent to (ei)

n
i=1 and if ‖vi − wi‖ ≤ δ for all

i ≤ n, then (wi)
n
i=1 is C(1 + ε)-equivalent to (ei)

n
i=1. Then let us assume that there is a weak∗-

null normalized unrooted tree (z∗s)s∈Tn in SX∗ whose branches are all C(1 + δ)-equivalent to
(ei)

n
i=1. Let us recall the following well known property: if Z is a weak∗ closed subspace of finite

codimension of X∗ and if (z∗k)k≥1 is normalized and weak∗-null, then the distance dist(z∗k, SZ)
goes to 0. Using this, a straightforward induction shows that the following property holds for
all 1 ≤ j ≤ n:

∀X1 ∈ cof(X∗), ∃x∗1 ∈ SX1 , . . . , ∀Xj ∈ cof(X∗), ∃x∗j ∈ SXj , ∃s ∈ Tn, |s| = j :

∀1 ≤ i ≤ j,
∥∥∥x∗i − z∗s|i∥∥∥ ≤ δ

where the Xi are weak∗ closed subspaces of finite co-dimension of Y . By our choice of δ and
by the properties of the branches of our tree, we get the desired result.

We end the section with a few results concerning the asymptotic structure of a space X
satisfying SZ(X) > ω and of its dual space under some separability assumptions. We start by
providing a small improvement of [BKL, Proposition 2.2] which rests on the following classical
result from Mazur.

Lemma 1.3.13 (Mazur). Let (x∗k)k≥1 be a weak∗-null sequence in X∗ such that ‖x∗k‖ ≥ 1 for
all k ≥ 1, and let F be a finite subset of X∗. Then there is a sequence (xk)k≥1 in SX such that
xk ∈

⋂
y∗∈F ker y∗ for all k ≥ 1 and lim inf x∗k(xk) ≥ 1

2
.

Proposition 1.3.14. Let X be a separable Banach space with SZ(X) > ω. For all n ≥ 1 and
for all δ, there exist a weak∗-null bounded tree (x∗s)s∈Tn in X∗ and a normalized tree (xs)s∈Tn in
X such that:

1. For all s ∈ Tn\{∅}, ‖x∗s‖ ≥ 1 and
∥∥∑

t≤s x
∗
t

∥∥ ≤ 3.

2. For all s ∈ Tn, x∗s(xs) ≥ 1
3
‖x∗s‖.

3. For all s 6= t in Tn, |x∗s(xt)| ≤ δ.

Moreover, if X has a separable dual, then one can ask the tree (xs)s∈Tn to be weakly null.

Proof. For separable spaces, this is [BKL, Proposition 3.2]. So let us assume that X has a
separable dual and satisfies SZ(X) > ω, and let us pick a dense sequence (y∗k)n≥1 in SX∗ . We

define Yk =
⋂k
i=1 ker y∗i . Then any normalized sequence (xk)k≥1 in X such that xk ∈ Yk for all

k ≥ 1 is weakly-null. Now let us fix n ≥ 1 and δ > 0.
It is explained in [BKL] that the submultiplicativity of the Szlenk index forces SZ(X, 1

3
) > ω,

and since X is separable we can find as in Lemma 1.2.17 a weak∗-null bounded tree (x∗s)s∈Tn
in X∗ rooted at 0 such that for all s ∈ Tn\{∅}, ‖x∗s‖ ≥ 1 and

∥∥∑
t≤s x

∗
t

∥∥ ≤ 3. Let us pick a
compatible linear ordering (σi)i≥1 of TN and let us assume as we may that this ordering also
satisfies the following property: if σi = σi0 a m and σj = σi0 a m′ with m < m′ then i < j.
By induction, we can build a sequence (θi)i≥1 in Tn and a sequence (xθi)i≥1 in SX such that:

39



1. θ1 = ∅

2. If σ−i = σi0 then θi = θi0 a m′ for some m′ ∈ N bigger than max{l : ∃j < i : θj = θi0 a l}
and xθi ∈ Ym.

3. For all i < j,
∣∣∣x∗θj(xθi)∣∣∣ ≤ δ and x∗θi(xθj) = 0.

4. For all i ≥ 1, x∗θi(xθi) ≥
1
3

∥∥x∗θi∥∥.

For i = 1, just let θ1 = ∅ and pick any x∅ in SX such that x∗∅(x∅) ≥
1
3

∥∥x∗∅∥∥. Now let us
assume that θ1, . . . θi and xθ1 , . . . , xθi have been chosen with the required properties. Since we
are working with a compatible linear ordering, there is some i0 ≤ i and such that σ−i+1 = σi0 .

Since (x∗θi0ak
)k≥1 is weak∗-null there is a K ∈ N such that

∣∣∣x∗θi0ak(xθj)∣∣∣ ≤ δ for all j ≤ i

and for all k ≥ K. Moreover, we can apply Mazur’s lemma to this sequence with F =
{y∗1, . . . , y∗m, x∗θ1 , . . . , x

∗
θi
} and take any m′ big enough in order to get a element xθi0am′ ∈ SYm

such that x∗θi0am′
(xθi0am′) ≥

1
3

∥∥∥x∗θi0am′∥∥∥ and x∗j(xθi0am′) = 0 for all j ≤ i and also m′ bigger than

K and bigger than max{l : ∃j < i : θj = θi0 a l}. We conclude by putting θi+1 = θi0 a m′.
Then T = {θi, i ≥ 1} defines a full subtree of Tn and for every node (xθi0am′k)k≥1 of T there is
a strictly increasing sequence (mk)k≥1 in N such that xθi0am′k ∈ SYmk . Consequently, (xs)s∈T is
a weakly-null tree in X and satisfies all the required properties together with (x∗s)s∈T .

Using those biorthogonal trees, we can prove the following. This is an extension of a reflexive
result contained in the proof of [BCD+, Lemma 3.5].

Theorem 1.3.15. Let X∗ be the dual of a separable Banach space X with SZ(X) > ω, and
assume that X∗ is weak∗ asymptotically unconditional. Then `n∞ ∈ {X∗}w

∗
n for every n ≥ 1.

Proof. Let us assume that X is separable and that X∗ is asymptotically unconditional. By
Lemma 1.3.12 and by Ramsey’s combinatorial theorem there is a constant C ≥ 1 such that any
weak∗ null normalized unrooted tree of finite height in X∗ has a full subtree whose branches
are all C unconditional. Moreover it is sufficient by Lemma 1.3.10 and Lemma 1.3.11 to show
that there is a constant D ≥ 1 such that for all n ≥ 1, there is a weak∗ null normalized tree
of height n in X∗ whose branches are all D-equivalent to the unit vector basis of `n∞. Let us
fix some n ≥ 1 and let us fix δ > 0 to be chosen later. By proposition 1.3.14, there exist a
weak∗-null bounded tree (x∗s)s∈Tn in X∗ and a normalized tree (xs)s∈Tn in X such that:

1. For all s ∈ Tn\{∅}, ‖x∗s‖ ≥ 1 and
∥∥∑

t≤s x
∗
t

∥∥ ≤ 3.

2. For all s ∈ Tn, x∗s(xs) ≥ 1
3
‖x∗s‖.

3. For all s 6= t in Tn, |x∗s(xt)| ≤ δ.
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As mentioned one can assume, up to passing to some full subtree, that all banches of (x∗s)s∈Tn are
C-unconditional. For all s ∈ Tn, let ys = x∗s

‖x∗s‖
. Since the function (a0, . . . , a|s|) ∈ [−1, 1]|s| 7→∥∥∑

t≤s atx
∗
t

∥∥ is continuous and convex we have:

max

{∥∥∥∥∥∑
t≤s

atyt

∥∥∥∥∥ , at ∈ [−1, 1]

}
≤ max

{∥∥∥∥∥∑
t≤s

atx
∗
t

∥∥∥∥∥ , at ∈ [−1, 1]

}

= max

{∥∥∥∥∥∑
t≤s

atx
∗
t

∥∥∥∥∥ , at ∈ {−1, 1}

}

≤ C

∥∥∥∥∥∑
t≤s

x∗t

∥∥∥∥∥
≤ 3C.

Thus, for all s ∈ Tn with |s| = n and for all a0, . . . , an ∈ R, we have:∥∥∥∥∥∑
t≤s

a|t|yt

∥∥∥∥∥ ≤ 3C max
0≤i≤n

|ai| .

As mentioned in Remark 1.2.24 lower `∞ tree estimates are trivial so up to the extraction
of a full subtree we have the desired result (with D as close as 3C as we wish).

Theorem 1.3.16. Let X be an asymptotically unconditional Banach space with a separable
dual, and with SZ(X) > ω. Then `n1 ∈ {X}n for every n ≥ 1.

Proof. Let us assume that X is an asymptotically unconditional Banach space with a separable
dual. Then X does not contain `1 and by Lemma 1.3.2 there is a constant C ≥ 1 such that
any weak-null normalized tree of finite height in X has a full subtree whose branches are all
C unconditional. Moreover it is sufficient by Lemma 1.3.2 and by Lemma 1.3.9 to show that
there is a constant D ≥ 1 such that for all n ≥ 1, there is a weak-null normalized tree of height
n in X whose branches are all D-equivalent to the unit vector basis of `n1 . Let us fix some n ≥ 1
and let us fix δ > 0 to be chosen later. By proposition 1.3.14, there is a weak∗-null bounded
tree (x∗s)s∈Tn in X∗ and a normalized weak-null tree (xs)s∈Tn in X such that:

1. For all s ∈ Tn\{∅}, ‖x∗s‖ ≥ 1 and
∥∥∑

t≤s x
∗
t

∥∥ ≤ 3.

2. For all s ∈ Tn, x∗s(xs) ≥ 1
3
‖x∗s‖.

3. For all s 6= t in Tn, |x∗s(xt)| ≤ δ.

As mentioned one can assume, up to passing to some full subtree, that all branches of (xs)s∈Tn
are C-unconditional. Since (xs)s∈TN is normalized, a simple triangular inequality yields:∥∥∥∥∥∑

t≤s

a|t|xt

∥∥∥∥∥ ≤
n∑
i=0

|ai|
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for all a0, . . . , an ∈ R and for all s ∈ Tn of length n.
Moreover, ∥∥∥∥∥∑

t≤s

a|t|xt

∥∥∥∥∥ ≥ 1

C

∥∥∥∥∥∑
t≤s

sign a|t|a|t|xt

∥∥∥∥∥
≥ 1

3C

〈∑
t≤s

∣∣a|t|∣∣xt〉∑
t≤s

x∗t

≥
(

1

9C
− nδ

) n∑
i=0

|ai|

≥ 1

D

n∑
i=0

|ai|

for any chosen constant D > 9C if δ was initially chosen small enough.

Remark 1.3.17. Looking back at the characterization from Lemma 1.2.17 of the value ω of
the Szlenk index of separable Banach spaces in terms of weak∗ convergent ε-climbing trees, we
would like to point out that the condition SZ(X) = ω can be characterized in general by the
following asymptotic games: for every ε > 0 there is an N ≥ 1 such that for every n ≥ N ,

∃X1 ∈ cof∗(X∗) : ∀x∗1 ∈ Xε
1 , . . . , ∃Xn ∈ cof∗(X∗) : ∀x∗n ∈ Xε

n,
n∑
i=1

x∗i does not belong to BX∗

where Eε = {x ∈ E : ‖x‖ ≥ ε} for any E ∈ cof∗(X∗).

1.4 Asymptotic midpoint convexity

Following [DKR+] we introduce a modulus of asymptotic midpoint convexity.

Definition 1.4.1. Let X be a Banach space. For every t > 0 and for every x ∈ SX , let

δ̂X (t, x) = sup
Y ∈cof(X)

inf
y∈SY

max{‖x+ ty‖ , ‖x− ty‖} − 1.

The function
δ̂X (t) = inf

x∈SX
δ̂X (t, x)

is called modulus of asymptotic midpoint convexity of X.

Note that this modulus is equivalent to the one introduced in [Kal2] where an actual average
is taken. This modulus shares a lot of the properties of the asymptotic modulus of convexity.
We list a few of them below, their proof can be directly imported from Section 1.1.
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Lemma 1.4.2. Let X be a Banach space and take t > 0 and x ∈ SX .

1. We have
δ̂X (t, x) = sup

Y ∈cof(X)

inf
y∈Y,‖y‖≥1

max{‖x+ ty‖ , ‖x− ty‖} − 1.

In particular the function δ̂X is non-decreasing and 1-Lipschitz.

2. We have
δ̂X (t, x) = sup

V ∈Vw(0)

inf
v∈V,‖v‖=1

max{‖x+ tv‖ , ‖x− tv‖} − 1,

and we can equivalently take ‖v‖ ≥ 1 in the above expression.

3. For every weakly null sequence (xn)n≥1 in X with norm ‖xn‖ ≥ 1 we have

lim inf max{‖x+ txn‖ , ‖x− txn‖} ≥ 1 + δ̂X (t, x) .

4. If the space X does not contain `1, then

δ̂X (t, x) = inf (lim inf max{‖x+ txn‖ , ‖x− txn‖} − 1)

where the infimum is taken on all weakly null normalized sequences (or equivalently on
weakly null sequences with norm ‖xn‖ ≥ 1).

We now introduce the asymptotic property associated with the modulus δ̂X .

Definition 1.4.3. Let X be a Banach space. We say that X is asymptotically midpoint uni-
formly convex (AMUC in short) if δ̂X (t) > 0 for every t > 0.

It is clear from the definition that δX ≤ δ̂X so that any AUC space is AMUC. Let us point
out that [DKR+, Theorem 2.4] provided a renorming of `2 which is AMUC but not AUC.
However, the question of the equivalence between AUC and AMUC up to renorming is still
open, see below for a few partial results. Also note that (4) shows the equivalence between
AMUC and sequential AMUC for spaces not containing `1. A different proof of this fact was
provided in [DKR+, Corollary 2.3].

Remark 1.4.4. A modulus of sign-asymptotic smoothness is also considered in [DKR+, Section
4] and a corresponding SAUS property is introduced. Yet unlike the above mentioned example,
a general reverse inequality between the two moduli is obtained (with however a loss on power
types) and the equivalence in every Banach space between AUS and SAUS is proved.

The main reason for the introduction of the modulus of asymptotic midpoint convexity is
that is provides control on the Kuratowski index of sets of approximate midpoints in a Banach
space. Let us recall the following definition. Let M be a metric space and let x, y ∈ M . For
every δ > 0 we denote by

Mid (x, y; δ) =

{
z ∈M : max{d(x, z), d(y, z)} ≤ 1 + δ

2
d(x, y)

}
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the set of δ-approximate midpoints between x and y. It appears that the comparison of the size
of those sets in different Banach spaces yields simple powerful arguments for preventing the
existence of certain type of non-linear embeddings between those spaces. We will say more on
this in Chapter 2 Section 2.3 but we refer to [KR, Section 3], [BCD+, Section 4], [Kal2, Section 7]
or [Net, Chapters 2 and 3] for examples of usage of midpoint techniques in non-linear geometry.
The following simple result was first proved in [Laa, Section 5].

Lemma 1.4.5. A Banach space X is uniformly convex if and only if diam(Mid (x,−x; δ)) tends
uniformly to 0 on SX .

The asymptotic analogue was proved in [DKR+, Theorem 2.1].

Lemma 1.4.6. A Banach space X is AMUC if and only if α (Mid (x,−x; δ)) tends uniformly
to 0 on SX .

We recall that the Kuratowski measure of non-compactness α of a set A is the infimum of
all ε > 0 such that A can be covered by a finite number of balls of diameter less than ε. Let
us also point out that the modulus of uniform convexity (respectively of asymptotic midpoint
convexity) is equivalent to the function f(t) = sup{δ > 0 : ∀x ∈ SX , diam(Mid (x,−x; δ)) < t}
(respectively f̂(t) = sup{δ > 0 : ∀x ∈ SX , α(Mid (x,−x; δ)) < t}).

Now let us introduce the weak∗ version of property AMUC in dual spaces.

Definition 1.4.7. Let X be a Banach space and let |.| be an equivalent norm on X∗. For every
t > 0 and for every x∗ ∈ S|.|, let

δ̂∗|.| (t, x
∗) = sup

E∈cof∗(X∗)

inf
e∗∈E,|e∗|=1

max{‖x∗ + te∗‖ , ‖x∗ − te∗‖} − 1.

The function
δ̂∗|.| (t) = inf

x∗∈S|.|
δ̂∗X (t, x∗)

is called modulus of weak∗ asymptotic midpoint convexity of (X∗, |.|). We say that |.| is weak∗

asymptotically midpoint uniformly convex (AMUC∗ in short) if δ̂∗|.| (t) > 0 for all t > 0.

Note that we clearly have δ
∗
X ≤ δ̂∗X so that any AUC∗ norm is AMUC∗. Also δ̂∗X ≤ δ̂X and

any AMUC∗ norm is AMUC. An analogue of Lemma 1.4.2 is available in this context, replacing
the condition X does not contain `1 by X is separable in the last statement.

Remark 1.4.8. Unlike Lemma 1.1.12 it is not clear that any equivalent AMUC∗ norm on a
dual space has to be weak∗ lower continuous. Thus we don’t know if every equivalent AMUC∗

norm on a dual space has to be a dual norm. Also there is no clear duality result in this context.
Indeed the example from [DKR+] of a norm which is AMUC but not AUC combined with the
equivalence of properties SAUS and AUS mentioned in Remark 1.4.4 show that AMUC∗ cannot
be the dual property of SAUS even in the reflexive setting.
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We will now show that the existence of an equivalent AMUC∗ on a dual space X∗ implies
some tree property in X∗, and take advantage of tree reformulations of the condition SZ(X) = ω
from Section 1.1 and of the renorming theorem Theorem 1.2.6 to obtain the equivalence between
AMUC∗ and AUC∗ up to renorming for duals of separable spaces under some specific condition
on the weak∗ asymptotic structure. Let (z∗t )t∈Tn be a weak∗ convergent ε-climbing tree in X∗,
that is z∗t =

∑
s≤t x

∗
s for every t ∈ Tn where (x∗s)s∈Tn is a weak∗ null tree in X∗ satisfying x∗∅ = 0

and ‖x∗s‖ ≥ ε for every non empty sequence s ∈ Tn. We say that (z∗t )t∈Tn is absolutely contained
in BX∗ is for every leaf t of Tn and for every (εi)

n
i=1 in {−1, 1}n we have

∑n
i=1 εix

∗
t|i ∈ BX∗ .

Then we introduce the following property.

Definition 1.4.9. Let X be a Banach space. We say that X∗ has the infinite weak∗ absolute
climbing tree property (property (∗) in short) if there is an ε > 0 such that for every n ≥ 1, we
can find a weak∗ convergent ε-climbing tree of height n in X∗ which is absolutely contained in
BX∗ .

We have the following result.

Proposition 1.4.10. Let X be a Banach space and let |.| be an equivalent AMUC∗ norm on
X∗. Then X∗ fails property (∗). In other words: for every ε > 0 there is an integer N ≥ 1 such
that for every n ≥ N and for every weak∗ null tree (x∗s)s∈Tn in X∗ with x∗∅ = 0 and ‖x∗s‖ ≥ ε
for every s ∈ Tn non empty, there exists a leaf t ∈ Tn and a sequence of signs (εi)

n
i=1 in {−1, 1}

such that
∥∥∥∑n

i=1 εix
∗
t|i

∥∥∥ > 1.

Proof. Let us assume that X∗ has property (∗). Then there exists ε > 0 such that for every
n ≥ 1 one can find a weak∗ convergent ε-climbing tree of height n which is absolutely contained
in BX∗ . Fix n big enough for our later purpose and fix a weak∗ null tree (x∗s)s∈Tn in X∗ with
x∗∅ = 0 and ‖x∗s‖ ≥ ε for every s ∈ Tn non empty such that for every leaf t ∈ Tn and every

sequence of signs (εi)
n
i=1 in {−1, 1} we have

∥∥∥∑n
i=1 εix

∗
t|i

∥∥∥ ≤ 1. Note that by weak∗ lower

continuity of the norm, one has in fact
∥∥∥∑k

i=1 εix
∗
t|i

∥∥∥ ≤ 1 for every 1 ≤ k ≤ n and for every leaf

t of Tk.
Now let us assume that X∗ is AMUC∗ and let δ = δ̂∗X∗ (ε) > 0. By the weak∗ analogue of

Lemma 1.4.2 we have that for every x∗ ∈ BX∗ and for every weak∗ null sequence (x∗k)k≥1 in X∗

with ‖x∗k‖ ≥ ε for every k ≥ 1 one has

lim inf max{‖x∗ + x∗k‖ , ‖x∗ − x∗k‖} ≥ (1 + δ) ‖x∗‖ .

Thus working by induction in the weak∗ null tree (x∗s)s∈Tn we obtain for any fixed x∗ in the
first level of the tree a leaf s ∈ Tn and a sequence of signs (εi)

n
i=2 in {−1, 1}n−1 such that∥∥∥x∗ +

∑n
i=2 εix

∗
s|i

∥∥∥ ≥ ‖x∗‖ (1 + δ)n ≥ ε(1 + δ)n. Now this is strictly bigger than 1 if n was

initially chosen larger than some constant depending on ε, and we obtain a contradiction.

Using this we can prove the following.
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Theorem 1.4.11. Let X be a separable space and let us assume that X∗ is weak∗ asymptotically
unconditional. Then the following properties are equivalent.

1. The space X has Szlenk index SZ(X) = ω.

2. The space X admits an equivalent norm whose dual norm is AUC∗.

3. The space X∗ admits an equivalent AMUC∗ norm.

Proof. (1) =⇒ (2) comes from Theorem 1.2.6 and from a weak∗ version of Lemma 1.2.11 and
(2) =⇒ (3) is clear.

For (3) =⇒ (1) recall that the dual X∗ of a separable space with a weak∗ unconditional
asymptotic structure has the weak∗ unconditional finite tree property (Lemma 1.3.12): there is
a constant C ≥ 1 such that one can extract a full subtree whose branches are all C-unconditional
of any weak∗ null normalized tree in X∗. So if X∗ is AMUC∗, Proposition 1.4.10 provides for
every ε > 0 an integer N = N(ε) ≥ 1 such that: for every n ≥ N and for every weak∗ null tree
(x∗s)s∈Tn in X∗ such that x∗∅ = 0 and ‖x∗s‖ ≥ ε

C
for all s ∈ Tn non-empty, there is a leaf s ∈ Tn

and a sequence of signs (εi)
n
i=1 in {−1, 1}n such that

∥∥∥∑n
i=1 εix

∗
s|i

∥∥∥ > 1. Now

C

∥∥∥∥∥
n∑
i=1

x∗s|i

∥∥∥∥∥ ≥
∥∥∥∥∥

n∑
i=1

εix
∗
s|i

∥∥∥∥∥ > 1,

so that 0 /∈ sNε (BX∗) and sN2ε(BX∗) = ∅ by Lemma 1.2.17. In other words, SZ(X, 2ε) ≤ N(ε)
for every ε > 0 and it follows that SZ(X) ≤ ω.

Remark 1.4.12. Working with the weak topology we can prove in a similar way that any
asymptotically unconditional Banach space X which is AMUC has weak Szlenk index w −
SZ(X) = ω. In particular such a space has the PCP. We do not know if any AMUC space
has the PCP. A counterexample to that would in particular provide an AMUC space with no
equivalent AUC norm. Let us point out that for several reasons, the predual of the James
tree space JT∞ introduced in [GM1] and constructed on a countably branching tree would be
a natural candidate to investigate for this problem. Indeed it is known that (JT∞)∗ fails the
PCP (see for example [GM1, Proposition IV.2]) but satisfies a weaker convex PCP property
[GMS], and from the work of [Gir] we know that the original binary version JT of the James
tree space has an AUC (pre)dual.

Using the midpoint characterization of AMUC we show that the property coincides with its
weak∗ version on dual spaces.

Proposition 1.4.13. Let X be a Banach space. Then X∗ is AMUC if and only if it is AMUC∗.

Proof. From the definition of the moduli any AMUC∗ norm is AMUC on a dual space.
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Now let us assume that X∗ is not AMUC∗. Following [DKR+, Theorem 2.1] we will prove
that α (Mid (x∗,−x∗; δ)) does not tend uniformly to 0 on SX∗ . Since X∗ is not AMUC∗ we can
find some t ∈ (0, 1) such that for every δ > 0, we can find x∗δ ∈ SX∗ such that:

∀Y ∈ cof∗(X∗), ∃y∗ ∈ SY : max{‖x∗δ + ty∗‖ , ‖x∗δ − ty∗‖} ≤ 1 + δ,

that is to say ty∗ ∈ Mid (x∗δ ,−x∗δ ; δ).
Fix δ > 0 and pick x∗ = x∗δ satisfying the above property. Then one can choose inductively

a sequence (y∗k)k≥1 in SX∗ , and a sequence (yk)k≥1 in SX such that

1. y∗k(yk) ≥ 1
2

and y∗k ∈
⋂k−1
i=1 ker yi

2. ty∗k ∈ Mid (x∗,−x∗; δ).

Then we have ‖ty∗k − ty∗l ‖ ≥ (ty∗k − ty∗l )(yk) ≥ t
2

for every k, l ≥ 1 with k > l and thus
α (Mid (x,−x; δ)) ≥ α ({ty∗k}k≥1) ≥ t

2
. By Lemma 1.4.6, X∗ is not AMUC.

Remark 1.4.14. It is not clear that the same can be proved for equivalent AMUC∗ norms on
X∗ which are not dual norms (if such norms exists).

As a consequence we obtain the following example.

Corollary 1.4.15. There exists a separable Banach space whose dual norm is AMUC∗ but
which admits no equivalent norm whose dual norm is AUC∗. In particular AMUC∗ does not
imply the weak∗ PCP.

Proof. Let JT be the James tree-space. It was proved in [Gir] that the dual JT ∗ of JT is
AUC. In particular JT∗ is AMUC and by the preceding result it is also AMUC∗. But since JT
is not Asplund it admits no equivalent AUS norm (see Remark 1.1.15) and thus no equivalent
norm whose dual norm is AUC∗ by duality (in fact there is no equivalent AUC∗ norm on JT∗

by Lemma 1.1.12 ).

Remark 1.4.16. In terms of trees, this means that BJT ∗ contains weak∗ convergent ε-climbing
trees of arbitrarily high height for every ε > 0 (and in fact of arbitrarily high ordinal height
with trees from Appendix A) while there is an ε > 0 and an N ≥ 1 such that any ε-climbing
tree of height n ≥ N leaves BJT ∗ at least in one direction (that is for at least one choice of
signs as in property (∗)).

To conclude this section, let us make a few last remarks concerning property (∗). Looking
back at Proposition 1.3.14 and Theorem 1.3.15 let us observe that property (∗) contains all the
necessary conditions to prove the following result. In fact the assumption “ X∗ asymptotically
unconditional ” seems to be only an artificial condition which allows to recover property (∗)
from the assuption SZ(X) > ω. We do not know if a Banach space with property (∗) has to
be asymptotically unconditional.
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Theorem 1.4.17. Let X be a separable Banach space and let us assume that X∗ has property
(∗). Then `n∞ ∈ {X∗}w

∗
n for every n ≥ 1.

Also observe as in Remark 1.3.17 that the following asymptotic games would correspond to
a generalized version of the negation of property (∗): for every ε > 0 there is an N ≥ 1 such
that for every n ≥ N ,

∃X1 ∈cof∗(X∗) : ∀x∗1 ∈ Xε
1 , ∃X2 ∈ cof∗(X∗), ∃ε1 ∈ {−1, 1} : ∀x2 ∈ Xε

2 , · · · :
∃Xn ∈ cof∗(X∗), ∃εn−1 ∈ {−1, 1} : ∀x∗n ∈ Xε

n, ∃εn ∈ {−1, 1} :

x∗1 +
n∑
i=2

εi−1x
∗
i does not belong to BX∗

where Eε = {x ∈ E : ‖x‖ ≥ ε} for any E ∈ cof∗(X∗).

It is not difficult using the weak∗ analogue of Lemma 1.4.2 and a rescaling argument as in
Lemma 1.2.14 the prove the following result.

Lemma 1.4.18. A dual space X∗ is AMUC∗ if and only if it satisfies the following property:
for all ε > 0 there is a ∆ > 0 such that for all x∗ ∈ BX∗, if ‖x∗‖ > 1−∆ then there is a weak∗-
neighborhood V of x∗ such that for every y∗ ∈ X∗ with norm ‖y∗‖ ≥ ε we have x∗+y∗ /∈ V ∩BX∗

or x∗ − y∗ /∈ V ∩BX∗.

However it is not clear how one could define a suitable derivation in order to obtain a peeling
index which would be related to property (∗) for duals of separable spaces.
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Chapter 2

Non-linear geometry of Banach spaces

2.1 Hyperbolic countably branching trees

Let us start by recalling a few definitions about metric embeddings. For a more complete
presentation of the theory we refer to the monograph [Ost3, Chapter 1].

Definition 2.1.1. Let M and N be two metric spaces, and let f be a map from M to N . For
every t ≥ 0, let

ρf (t) := inf{dN(f(x), f(y)) : x, y ∈M and dM(x, y) ≥ t}

with the convention inf ∅ :=∞, and let

ωf (t) := sup{dN(f(x), f(y)) : x, y ∈M and dM(x, y) ≤ t}.

The function ρf is called modulus of compression of f , and the function ωf is called modulus
of expension of f .

Remark 2.1.2. Note that for every x and y in M we have

ρf (dM(x, y)) ≤ dN(f(x), f(y)) ≤ ωf (dM(x, y)).

In particular, the map f is uniformly continuous if and only if limt→0 ωf (t) = 0 and f is
Lipschitz (respectively coarse-Lipschitz) if and only if ωf is bounded above by a linear function
(respectively an affine function).

We will consider the following metric embeddings.

Definition 2.1.3. Let M and N be two metric spaces, and let f be a map from M to N .

1. We say that f is a Lipschitz or bi-Lipschitz embedding if we can find constants A,B > 0
such that for every t ≥ 0 we have At ≤ ρf (t) and ωf (t) ≤ Bt.

2. We say that f is a coarse-Lipschitz embedding if we can find constants A,B,C > 0 such
that for every t ≥ 0 we have At− C ≤ ρf (t) and ωf (t) ≤ Bt+ C.
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3. We say that f is a coarse embedding if limt→∞ ρf (t) = ∞ and if ωf (t) < ∞ for every
t ≥ 0.

Remark 2.1.4. Clearly a map f is a Lipschitz embedding if and only if it is Lipschitz, injective,
and has a Lipschitz inverse, and in practice we can write this in the following way: there exists
constants a, b > 0 such that for every x and y in M we have

adM(x, y) ≤ dN(f(x), f(y)) ≤ bdM(x, y).

The distortion of a Lipschitz embedding f is defined as the product of the Lipschitz constant
of f by the Lipschitz constant of its inverse.

Also if a map f is a coarse-Lipschitz embedding then there exists constants a, b, θ > 0 such
that for every x and y in M satisfying dM(x, y) ≥ θ, we have

adM(x, y) ≤ dN(f(x), f(y)) ≤ bdM(x, y)

so a coarse-Lipschitz embedding behaves like a bi-Lipschitz embedding for “ large distances ”.

We will say that M Lipschitz embeds (or bi-Lipschitz embeds) into N if there is a Lipschitz
embedding f : M → N . We will use the same terminology for other kind of embeddings. Also
we say that M Lipschitz embeds into N with distortion D for a constant D ≥ 1 if there is a
Lipschitz embedding f : M → N with distortion smaller than or equal to D.

For families of metric spaces, we will need the following definition.

Definition 2.1.5. Let (Mi)i∈I be a family of metric spaces and let N be a metric space. We
say that (Mi)i∈I equi-Lipschitz embeds into N if there is a constant D ≥ 1 such that each Mi

embeds into N with distortion D. Also we say that (Mi)i∈I equi-coarsely embeds into N if there
exists functions ρ, ω : R+ → R+ ∪ {∞} and maps fi : Mi → N such that limt→∞ ρ(t) =∞ and
ω(t) < ∞ for every t ≥ 0, and ρ(t) ≤ ρfi(t) and ωfi(t) ≤ ω(t) for every i ∈ I and for every
t ≥ 0.

Now let us recall that for every N ≥ 1, TN := {∅}∪
⋃N
n=1 Nn is the countably branching tree

of height N , and T∞ :=
⋃
N≥1 TN if the countably branching tree of infinite height. We will

use notation from Chapter 1 Section 1.2 and take advantage of the ordering of T∞ introduced
there to turn T∞ into a metric space. For every sequences s, t in T∞ let us denote by as,t the
greatest common ancestor of s and t. We define

d(s, t) := d(as,t, s) + d(as,t, t) = |s|+ |t| − 2 |as,t| .

It is easy to check that d is a distance on T∞, and it induces a distance on every TN that we
will still denote by d. This distance is sometimes referred to as the hyperbolic distance on T∞
because it is equal to the graph distance associated with the following natural graph structure
on T∞: G = (T∞, E) where E = {{s, s−} : s ∈ T∞ non empty}. We refer again to [Ost3] for a
detailed presentation of the theory of metric graphs.
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Let us now give two simple but fundamental examples of bi-Lipschitz embeddings of T∞
into Banach spaces.

Example 2.1.6. (1) Let X =: `1(T∞), that is

X :=

{
x = (xs)s∈T∞ ⊂ R : ‖x‖1 =

∑
s∈T∞

|xs| <∞

}
and let (es)s∈T∞ be the unit vector basis of X. We introduce the map f : T∞ → X given by

f(s) :=
∑
t≤s

et

for every s ∈ T∞. For every distinct s, t ∈ T∞ we have

f(s)− f(t) =
∑

as,t<u≤s

eu −
∑

as,t<v≤t

ev,

so that
‖f(s)− f(t)‖1 = d(as,t, s) + d(as,t, t) = d(s, t),

and the map f is an isometric embedding.

(2) Let Y := c0(T∞) be the completion of the space (c00(T∞), ‖.‖∞) and let (σs)s∈T∞ be the
sequence of elements of c0(T∞) defined by

σs =
∑
t≤s

et

for every s ∈ T∞ where (es)s∈T∞ is the unit vector basis of Y . We introduce the map g : T∞ → Y
given by

g(s) :=
∑
t≤s

σt =
∑
t≤s

∑
u≤t

eu

for every s ∈ T∞. For every distinct s, t ∈ T∞ and for every u ∈ [as,t, s] ∪ [as,t, t], let us write
du = d(as,t, u). We have

g(s)− g(t) = Σs − Σt

where Σs =
∑

as,t<u≤s σu has coordinate 0 everywhere, except on the segment [∅, s] where
its coordinates are given by Σs,u = ds if u ≤ as,t and Σs,u = ds − du + 1 if as,t < u ≤ s.
Similarly Σt =

∑
as,t<v≤t σv has coordinate 0 everywhere, except on the segment [∅, t] where its

coordinates are given by Σt,v = dt if v ≤ as,t and Σt,v = dt − dv + 1 if as,t < v ≤ t. It then
follows that

‖g(s)− g(t)‖∞ ≤ ‖Σs‖∞ + ‖Σt‖∞ = ds + dt = d(s, t)

and

‖g(s)− g(t)‖∞ ≥ max{ds, dt} ≥
1

2
d(s, t)

looking at the successor of as,t on the segments [as,t, s] and on the segment [as,t, t], so that T∞
bi-Lipschitz embeds in Y with distortion 2.
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Building on those examples and using the bi-orthogonal trees that we mentioned in Chapter
1 Section 1.2 (Proposition 1.3.14), Baudier Kalton and Lancien proved in [BKL] the following
result.

Theorem 2.1.7. Let X be a separable Banach space. If SZ(X) > ω or if SZ(X∗) > ω, then
the family (TN)N≥1 equi-Lipschitz embeds into X and into X∗.

Remark 2.1.8. More precisely, it is proved in [BKL, Proposition 2.3] that there is a universal
constant C ≥ 1 such that TN bi-Lipschitz embeds into X and into X∗ with distortion C
whenever X is a separable Banach space satisfying SZ(X) > ω. Then it is proved in [BKL,
Proposition 2.5] that a “ lift up argument ” can be implemented using Goldstine’s theorem to
show that TN bi-Lipschitz embeds into X with distortion C whenever X is a separable Banach
for which SZ(X∗) > ω.

Those results are respectively improved in [BKL, Theorem 2.4] using a Gluing technique
similar to the one from [Bau1], and in [BKL, Theorem 2.6] using a much more technical argu-
ment, and we in fact have the following.

Theorem 2.1.9. Let X be a separable Banach space. If SZ(X) > ω or if SZ(X∗) > ω, then
T∞ bi-Lipschitz embeds into X and into X∗.

Note that the separable determination of the Szlenk index allows to forget about the sep-
arability assumption in the above results. In [BKL, Theorem 3.1] the converse of Theorem
2.1.7 was obtained for reflexive Banach spaces. The proof there is done by contradiction and
is based on one side on a certain tree decomposition which is done by a process of successive
extractions of weakly convergent subtrees (for which weak sequential compactness is key), and
on the other side on sharp martingale like computations in those trees based on upper and
lower tree estimates coming from the asymptotic renorming theory.

Theorem 2.1.10. Let X be a reflexive Banach space. If SZ(X) ≤ ω and SZ(X∗) ≤ ω, then
the family (TN)N≥1 does not equi-Lipschitz embed into X.

Combining the above results thus yield the following.

Theorem 2.1.11. Let X be a reflexive Banach space. The following assertions are equivalent.

1. The space X satisfies SZ(X) ≤ ω and SZ(X∗) ≤ ω.

2. The family (TN)N≥1 does not equi-Lipschitz embed into X.

3. The metric space T∞ does not bi-Lipschitz embed into X.

In particular the space T∞ does not bi-Lipschitz embed into any `p-sum of finite dimensional
spaces nor into Lp[0, 1] for 1 < p <∞. Using a self-improvement argument “ à la Kloeckner ”
based the property (β) of Rolewicz, Baudier and Zhang gave in [BZ] a short elegant proof of
Theorem 2.1.10, which is very similar to the one of Kloeckner for Bourgain’s characterization
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of super-reflexivity from [Klo], and which moreover has the advantage of providing a lower
bound on the distortion of the TN ’s into any Banach space X with a power type (β) modulus.
However, note that this argument cannot be extended to a more general non-reflexive setting
since property (β) implies reflexivity. In fact the extension of Theorem 2.1.10 that we will
provide below shows that the non bi-Lipschitz embeddability of T∞ (or the non equi-Lipschitz
embeddability of the family (TN)N≥1) cannot provide a purely metric characterization of prop-
erty (β) since it does not force reflexivity. We refer to [Zha] and to [BG] for recent progress on
the question of providing purely metric characterizations of property (β).

Remark 2.1.12. Concerning weaker types of embeddings, let us point out that it was proved
in [BLS, Theorem 3.6] that a Banach space X has finite dimension if and only if the family
(TN)N≥1 does not equi-coarsely embed into X if and only if T∞ does not coarsely embeds into
X, thus providing a purely metric characterization of finite dimensionality.

Let us recall that a Banach space X is quasi-reflexive if the quotient X∗∗/X is of finite
dimension or equivalently if there is a finite dimensional space E such that X∗∗ = X ⊕ E. We
will provide the following improvement of Theorem 2.1.10.

Theorem 2.1.13. Let X be a quasi-reflexive Banach space. If SZ(X) ≤ ω and SZ(X∗) ≤ ω,
then the family (TN)N≥1 does not equi-Lipschitz embed into X.

As a direct consequence of this result, we obtain the following (see Example 1.1.25 for
definitions).

Theorem 2.1.14. Let p ∈ (1,∞). The family (TN)N≥1 does not equi-Lipschitz embed in the
James space Jp and it does not equi-Lipschitz embed in its dual J ∗p .

So as mentioned above, the non equi-Lipschitz embeddability of the family (TN)N≥1 into a
space X does thus not force the reflexivity of X.

Remark 2.1.15. In view of previous results, an immediate consequence of Theorem 2.1.13
is that the characterization from Theorem 2.1.11 extends to the quasi-reflexive setting. In
particular this imply that the condition SZ(X) ≤ ω and SZ(X∗) ≤ ω is stable in the class of
quasi-reflexive Banach spaces under coarse-Lipschitz embeddings, that is if X is a quasi-reflexive
Banach space and if X coarse-Lipschitz embeds into a quasi-reflexive Banach space Y satisfying
SZ(Y ) ≤ ω and SZ(Y ∗) ≤ ω, then X also has to satisfy SZ(X) ≤ ω and SZ(X∗) ≤ ω. In [BKL,
Theorem 4.3], it is proved that the condition X reflexive, SZ(X) ≤ ω and SZ(X∗) ≤ ω is stable
under coarse-Lipschitz embeddings without any further restriction to a subclass of Banach
spaces. To shed some light on the peculiarity of such result, let us recall that reflexivity
(and even the condition X reflexive and SZ(X∗) ≤ ω) is not stable under coarse-Lipschitz
embeddings. Indeed Ribe showed in [Rib2] that the space E =

(∑
n≥1 `pn

)
`2

where (pn)n≥1 is a

sequence of real numbers strictly decreasing to 1 is uniformly homeomorphic to E ⊕ `1 so that
E⊕`1 coarse-Lipchitz embeds into E. However, E is reflexive, 2-AUC and satisfies SZ(E) = ω2

(this can be proved by direct computations, or can be seen as a direct consequence of [Bro,
Theorem 2.11]).
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We do not know if [BKL, Theorem 4.3] extends to the quasi-reflexive setting. Yet let us
point out that this result follows from Theorem 2.1.11 and from [BKL, Theorem 4.1] which
states that if a separable Banach space X coarse-Lipschitz embeds into a separable reflexive
Banach space Y with SZ(Y ) = ω, then X has to be reflexive. It is far from clear that the latter
extends to the quasi-reflexive setting and in fact a few results from the litterature tends to point
towards the negative. Indeed [BKL, Theorem 4.1] essentially relies on James characterization of
reflexivity and on a concentration phenomenon for Hamming graphs from [KR, Theorem 4.2],
which can be reformulated using the terminology from [Fov] as follows: any p-AUS reflexive
Banach space has HFCp. In [LR] it is proved that this concentration result somehow extends to
the quasi-reflexive setting: any p-AUS quasi-reflexive Banach space has HICp. Now it is known
that HFCp implies reflexivity (this is contained in the proof of [BKL, Theorem 4.1]). However,
the stability result from [Fov] of concentration properties for Hamming graphs under `p-sums
of Banach spaces showed that the space `2(J) satisfies HIC2 while being non quasi-reflexive.

The proof of Theorem 2.1.13 will be postponed to Section 2.2. It will closely follow the proof
from [BKL] but will need a few non trivial adjustments because of the lack of compactness in
this setting. In particular the development of specific upper tree estimates will be required. We
end the present section by presenting all the necessary tools for this purpose.

First we recall a few basic notions coming from the theory of Orlicz sequence spaces. Fol-
lowing [LT, Chapter 4] we say that a function Φ : R+ → R+ is an Orlicz function if it is
convex, continuous, non-decreasing, and satisfies Φ(0) = 0 and limt→∞Φ(t) = ∞. For an
Orlicz function Φ we introduce the space

`Φ :=

{
(xn)n≥1 ⊂ R : ∃t > 0 :

∑
n≥1

Φ

(
|xn|
t

)
<∞

}
and the space

hΦ :=

{
(xn)n≥1 ⊂ R : ∀t > 0 :

∑
n≥1

Φ

(
|xn|
t

)
<∞

}
.

For every x := (xn)n≥1 in `Φ we introduce the quantity

‖x‖`Φ := inf

{
t > 0 :

∑
n≥1

Φ

(
|xn|
t

)
≤ 1

}
.

This defines a norm on `Φ which turns `Φ into a Banach space called Orlicz sequence space
associated with Φ. The space hΦ is easily seen to be a closed subspace of `Φ and the unit vector
basis of c00 is known to be a symmetric basis of hΦ.

Example 2.1.16. (1) Let Φ be an Orlicz function. If there exists a t > 0 such that Φ(t) = 0,
then Φ is called degenerate, and in this case the space `Φ is isomorphic to `∞ and the space hΦ

is isomorphic to c0.
(2) For every 1 ≤ p <∞, the function t→ tp is an Orlicz function and the associated Orlicz

sequence space is known to be isometric to the space `p.
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Note that in general the space hΦ is a proper subspace of `Φ. In fact the two spaces coincide
if and only if the function Φ satisfies the so called ∆2 condition at 0, see [LT, Proposition
4.a.4]. Also note that if two Orlicz functions coincide on an interval [0, t0] for some t0 > 0, then
the associated Orlicz sequence spaces are isomorphic. In particular we have the following easy
lemma.

Lemma 2.1.17. Let Φ and Ψ be two Orlicz functions. If there is a constant C > 0 such that
Φ(t) ≤ CΨ(t) for every t ∈ [0, 1], then there is a constant A > 0 such that ‖x‖`Φ ≤ A ‖x‖`Ψ for
every x ∈ c00.

Now let Φ be a non degenerate Lipschitz Orlicz function. Then the limit α := limt→∞
Φ(t)
t

exists and we define a function NΦ : R2 → R+ by letting

NΦ(x, y) := |x|
(

1 + Φ

(
|y|
|x|

))
for every x 6= 0 and y ∈ R and

NΦ(0, y) := α |y| .

We then define inductively functions NΦ
k : Rk → R+ by letting first NΦ

1 (.) := |.|, and then

NΦ
k (x1, . . . xk) := NΦ(NΦ

k−1(x1, . . . , xk−1), xk)

for every k ≥ 2 and every x1, . . . , xk ∈ R. For every k ≥ 1, the function NΦ
k is a norm on Rk,

and for every x := (xn)n≥1 in c00 we then define the quantity

‖x‖ΛΦ
:= sup

k≥1
NΦ
k (x1, . . . , xk).

This defines a norm on c00, and the iterated Orlicz space associated to Φ is the completion ΛΦ of
the space (c00, ‖.‖ΛΦ

). The space ΛΦ is known to be isomorphic to hΦ and we have the following
result, see [Kal2, Lemma 4.3].

Lemma 2.1.18. Let Φ be a non degenerate Lipschitz Orlicz function. For every x ∈ c00 we
have

1

2
‖x‖`Φ ≤ ‖x‖ΛΦ

≤ e ‖x‖`Φ .

Let X be a Banach space and let us assume that X is not AUF. Then we have ρX(t) > 0 for
all t > 0 by the results mentioned in Remark 1.1.21. So combined with the basic properties of
ρX mentioned in Remark 1.1.2, we have that ρX is a non degenerate 1-Lipschitz Orlicz function.

Now let us assume that the space X is AUC. Then the function δX satisfies the condition

δX(t) > 0 for all t > 0. Since δX need not be convex but is such that t→ δX(t)
t

is non decreasing,

we introduce, following [Kal2, Section 3], an auxiliary function δ(t) =
∫ t

0
δX(s)
s
ds which turns

out to be a 1-Lipschitz non degenerate Orlicz function, and to satisfy 1
2
δX ≤ δ ≤ δX . Then

combining the above Lemma 2.1.17 and Lemma 2.1.18 we have the following.
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Lemma 2.1.19. Let X be an infinite dimensional Banach space.

1. If X is p−AUS for some p ∈ (1,∞) and if it is not AUF, there is a constant A > 0 such
that:

∀v ∈ c00, ‖v‖ΛρX
≤ A ‖v‖lp .

2. If X is q − AUC for some q ∈ (1,∞), there is a constant a > 0 such that:

∀v ∈ c00, ‖v‖Λδ
≥ a ‖v‖lp .

We have a similar result for q − AUC∗ duals with the Orlicz function δ∗(t) =
∫ t

0
δ
∗
X∗ (s)
s

ds.

As mentioned in the previous Chapter 1 the theory of Orlicz spaces allows to implement
short elegant proofs of the fact that any p-AUS space satisfies the upper `p finite tree property,
as well as other related results. Indeed this is a consequence of the following result (that we
only state with countably branching trees for convenience, but which extends easily to the
generalized trees from [CFL]) combined with the estimates from Lemma 2.1.19.

Proposition 2.1.20. Let X be a Banach space. For every weakly null normalized unrooted
tree (xs)s∈TN in X of finite height N ≥ 1, we can find a full subtree T of TN such that for every
leaf s of T we have

1

2
‖a‖Λδ

≤

∥∥∥∥∥
N∑
i=1

aixs|i

∥∥∥∥∥ ≤ 2 ‖a‖ΛρX

for every a = (ai)
N
i=11 in RN . In a dual space we have similar lower estimates for weak∗ null

normalized trees with ‖.‖Λδ∗
.

Remark 2.1.21. Passing to trees of infinite height requires more sophisticated combinatorial
Ramsey like theorems. For such considerations we refer to [Cau3].

For convenience we also state here a simplified version of the key Proposition 2.2.4 from the
next Section 2.2 which gives a weaker version of upper tree estimates in the bidual of any quasi-
reflexive space holding for differences of interlaced branches in weak∗ null normalized trees only
but still relying on the modulus of asymptotic smoothness of the space itself. By interlaced
leaves of TN we mean any two leaves s, t of TN which satisfy either s1 < t1 < · · · < sN < tN or
t1 < s1 < · · · < tN < sN .

Proposition 2.1.22. Let X be a quasi-reflexive Banach space. For every weak∗ null normalized
unrooted tree (x∗∗s )s∈TN of finite height N ≥ 1 in X∗∗ we can find a full subtree T of TN such
that for any two interlaced leaves s and t of T we have∥∥∥∥∥

N∑
i=1

ai(x
∗∗
s|i − x∗∗t|i)

∥∥∥∥∥ ≤ 4
∥∥∥∼a∥∥∥

ΛρX

for every a = (ai)
N
i=1 in RN with

∼
a =

(
ai

∥∥∥x∗∗s|i − x∗∗t|i∥∥∥)N
i=1

.
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The proof of those is essentially contained for a fixed a ∈ RN in the proof of Proposition
2.2.3 and respectively of Proposition 2.2.4 from the next section. Further Ramsey arguments
combined with standard compactness tricks allow to recover a subtree which does the job
for every a ∈ RN . We leave the details to the reader. Yet let us already mention that the
key ingredient in the proof of Proposition 2.1.22 is the following concentration theorem from
Ramsey.

Theorem 2.1.23. Let K be a compact metric space and let (xs)s∈Nn be a family of elements
of K indexed by Nn. For every ε > 0 there is an infinite subset M of N such that for every
elements s and t of Mn we have d(s, t) ≤ ε.

The main idea is then to use the standard norm compactness for finite dimensional balls in
order to show that the differences between any two elements of a weak∗ null tree in the bidual
of a quasi-reflexive space have to be close, once the tree is property concentrated, to points of
the space X, thus allowing to apply Lemma 1.1.9 and to obtain estimates from the modulus of
asymptotic smoothness of X.

Although the above result could be proved directly by using sequential moduli, the proof
of Proposition 2.2.3 and of Proposition 2.2.4 will require a few more technical tricks. For this
purpose we introduce some convenient inequalities using the asymptotic uniform moduli from
Section 1.1. Let X be a Banach space. The following result follows immediately from Lemma
1.1.5.

Proposition 2.1.24. Fix x∗ ∈ SX∗ , σ ≥ 0 and ε > 0. There is a weak∗ neighborhood V of 0
such that

∀y∗ ∈ V, ‖y∗‖ ≥ σ =⇒ ‖x∗ + y∗‖ ≥ 1 + δ
∗
X∗ (σ)− ε.

Using this, we obtain the following.

Lemma 2.1.25. Fix x∗ ∈ SX∗ , R > 0 and ε > 0. There is a weak∗ neighborhood V of 0 such
that

∀y∗ ∈ V ∩RBX∗ , ‖x∗ + y∗‖ ≥ 1 + δ
∗
X (‖y∗‖)− ε.

Proof. Fix η ∈ (0, 1) and take a finite η-net (σi)1≤i≤n in [0, R] containing 0. Applying the
preceding proposition we get a weak∗ neighborhood V of 0 such that

∀i ∈ {1, . . . , n}, ∀y∗ ∈ V, ‖y∗‖ ≥ σi =⇒ ‖x∗ + y∗‖ ≥ 1 + δ
∗
X (σi)− η.

Now take y∗ ∈ V with ‖y∗‖ ≤ R. We can find some 1 ≤ i0 ≤ n such that σi0 ≤ ‖y∗‖ ≤ σi0+η.
Applying the preceding inequality we get

‖x∗ + y∗‖ ≥ 1 + δ
∗
X (‖y∗‖) + δ

∗
X (σi0)− δ∗X (‖y∗‖)− η

≥ 1 + δ
∗
X (‖y∗‖)− ωδ∗X∗ (η)− η

where ωδ∗X∗ is the modulus of continuity of the function δ
∗
X . The result follows because δ

∗
X is

uniformly continuous.
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After a straightforward non-sequential generalization of the result from [LR, Proposition
2.1] (Lemma 1.1.9) we have the following.

Proposition 2.1.26. Fix x ∈ SX , σ ≥ 0 and ε > 0. There is a weak∗-neighborhood V of 0 in
X∗∗ such that

∀y∗∗ ∈ V, ‖y∗∗‖ ≤ σ; ‖x+ y∗∗‖ ≤ 1 + ρX (σ) + ε.

Then as above we can prove the following result.

Lemma 2.1.27. Fix x ∈ SX , R ≥ 0 and ε > 0. There is a weak∗-neighborhood V of 0 in X∗∗

such that
∀y∗∗ ∈ V ∩RBX∗∗ , ‖x+ y∗∗‖ ≤ 1 + ρX (‖y∗∗‖) + ε.

2.2 Non embeddability of T∞ into certain quasi-reflexive

Banach spaces.

This section is devoted to the proof of the main result of this chapter.

Theorem 2.2.1. Let X be a quasi-reflexive Banach space satisfying SZ(X) ≤ ω and SZ(X∗) ≤
ω. Then the family (TN)N≥1 does not equi-Lipschitz embed into X.

In order to prove our result, let us consider a quasi-reflexive infinite dimensional Banach
space X and let us assume that (TN)N≥1 equi-Lipschitz embeds into X. Then we may assume
that there exist a constant c > 0 and functions fN : TN → X with fN(∅) = 0 such that

∀N ≥ 1, ∀s, t ∈ TN , d(s, t) ≤ ‖fN(s)− fN(t)‖ ≤ cd(s, t).

Considering the closed linear span of
⋃
N≥1 fN(TN) in X, we may further assume that X and

therefore all its iterated duals are separable.
Now suppose that X satisfies SZ(X) ≤ ω and SZ(X∗) ≤ ω. By Theorem 1.2.6 and by

duality, we may assume that ‖.‖X is p−AUS and that the dual space X∗ admits an equivalent
q∗−AUS norm |.| for some p, q∗ ∈ (1,∞). As mentioned we get that the dual norm |.| on X∗∗

is q − AUC∗ where q is the conjugate exponent of q∗. We may also assume that

|.| ≤ ‖.‖ ≤ e |.|

for some constant e ≥ 1 on X∗∗.
Let us fix some N ≥ 1 which is to be determined later and let us write f = fN . We will be

considering the function f as a function with values in X∗∗. For all t ∈ TN , t 6= ∅, we put

z(t) = f(t)− f(t−).

Note that ‖z(t)‖ ≤ c for every t ∈ TN . Hence, using weak∗ sequential compactness and passing
to a full subtree, we may assume that for all 1 ≤ j ≤ N and for all ∀t ∈ TN−j, the iterated
weak∗ limit

∂jz(t) = w∗ − lim
n1

. . . w∗ − lim
nj
z(t a (n1, . . . , nj))
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is well defined. We also denote ∂0z(t) = z(t). Note that ‖∂jz(t)‖ ≤ c by lower semi-continuity
of the norm. For all 1 ≤ j ≤ k ≤ N and for all t ∈ TN of length |t| ≥ j, we introduce

zk,j(t) = ∂k−jz
(
t|j
)
− ∂k−j+1z

(
t|j−1

)
.

Also, let zk,0(t) = ∂kz(∅). Note that zk,j(t) only depends on the j first coordinates of the
sequence t and that ‖zk,j(t)‖ ≤ 2c. Moreover, we have the following properties. The proof of
these results is straightforward but we will apply them often in the sequel.

Proposition 2.2.2. For all t ∈ TN , t 6= ∅, we have:

1. f(t) =
∑|t|

k=1 z(t|k) =
∑|t|

k=1

∑k
j=0 zk,j(t)

2. ∀1 ≤ l ≤ k ≤ |t| ,
∥∥∥∑l

j=0 zk,j(t)
∥∥∥ ≤ c

3. ∀1 ≤ j ≤ k ≤ N, j ≤ |t|, w∗ − limn zk,j
(
t|j−1 a n

)
= 0.

Now let us assume that N = 3QM for some Q > 3 and M ≥ 1. Then for all 1 ≤ k ≤ N , there
is a unique 1 ≤ Mk ≤ M + 1 such that QMk−1 ≤ k < QMk . Thus we can define exponentially
decreasing indices αk,0 = k, αk,r = k −Qr for 1 ≤ r < Mk and αk,Mk

= −1. We consider block
functions wk,r defined on the roof of the tree TN by

wk,r(t) =

αk,r−1∑
j=αk,r+1

zk,j(t).

Our goal in the sequel will be to give upper and lower estimates of the quantity

N∑
k=1

Mk∑
r=1

‖wk,r(t)‖

in a certain full subtree in order to get a contradiction when Q and M are sufficiently big.
In the reflexive case, it is possible to get such estimates using the result from [KOS] (The-

orem 1.2.7) where the space is embedded into a Banach space admitting a finite dimensional
decomposition in which nice upper and lower `p and `q estimates hold. We will replace this
result in our setting by the two following propositions.

Proposition 2.2.3. There is a constant a > 0 such that for all η > 0, there is a full subtree
T of TN such that for all 1 ≤ L ≤ N, for all 0 ≤ i1 ≤ j1 < · · · < iL ≤ jL ≤ N and for all
N ≥ ki ≥ ji, we have ∣∣∣∣∣

L∑
l=1

Bl(t)

∣∣∣∣∣ ≥ a

(
L∑
l=1

|Bl(t)|q
) 1

q

− η

whenever t is an element of T of length |t| ≥ jL, where Bl is the block function defined by

Bl(t) =

jl∑
j=il

zkl,j(t).

59



Proposition 2.2.4. There is a constant A > 0 such that for all η > 0, there is a full subtree
T of T2N such that for all 1 ≤ L ≤ N , for all 0 ≤ i1 ≤ j1 < · · · < iL ≤ jL ≤ N and for all
N ≥ ki,≥ ji, we have∥∥∥∥∥

L∑
l=1

Bl(s)−Bl(t)

∥∥∥∥∥ ≤ A

(
L∑
l=1

∥∥∥∥∥
jl∑
j=il

Bl(s)−Bl(t)

∥∥∥∥∥
p) 1

p

+ η

whenever s and t are two elements of TN of length |t| = |s| ≥ jL such that the interlaced
sequence s ∝ t = (s1, t1, s2, . . . ) belongs to T , where Bl is the block function defined by

Bl(t) =

jl∑
j=il

zkl,j(t).

The proof of these two propositions will be postponed to the end of the section to make the
reading lighter. We turn to the proof of the main result.

Proof of 2.2.1. Fix η > 0 and assume that the two propositions are satisfied respectively on
the whole TN and T2N for this constant.

First, we apply Proposition 2.2.3 for every 1 ≤ k ≤ N to the block functions wk,r with r
running from 1 to Mk. We get(

Mk∑
r=1

|wk,r(t)|q
) 1

q

≤ 1

a

(∣∣∣∣∣
Mk∑
r=1

wk,r(t)

∣∣∣∣∣+ η

)
≤ c+ η

a

for every t ∈ TN of length N because

Mk∑
r=1

wk,r(t) =
k∑
j=0

zk,j(t)

is of norm at most c. Then assuming that η ≤ c and using Hölder’s inequality, we get

N∑
k=1

Mk∑
r=1

|wk,r(t)| ≤
2c

a
(M + 1)

1
q∗N.

So
N∑
k=1

Mk∑
r=1

‖wk,r(t)‖ ≤ (M + 1)
1
q∗QM+1

if Q is was chosen bigger than 6ce
a

.
Second, we want to get an estimate from below. To do that, we will use some computation

tricks. We start with an easy lemma.
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Lemma 2.2.5. Let 1 ≤ m ≤ M . For all Qm ≤ l ≤ N − Qm and for all s, t ∈ TN such that
|s| = |t| ≥ l +Qm and |as,t| = l, we have∥∥∥∥∥

l+Qm∑
k=l+1

m∑
r=1

wk,r(s)− wk,r(t)

∥∥∥∥∥ ≥ 2Qm.

Note that the condition l ≥ Qm is crucial in order to ensure that the wk,r appearing in the
sums are well defined.

Proof. Let us recall that zk,j only depends on the j first coordinates of the sequence. So if
we take s, t ∈ TN satisfying the properties of the lemma and if we take 1 ≤ j ≤ l, then
zk,j(s) = zk,j(t) whenever j ≤ k ≤ N . Thus for every 1 ≤ l ≤ L ≤ |s| we have

f
(
s|L
)
− f

(
t|L
)

=
L∑

k=l+1

k∑
j=0

zk,j(s)− zk,j(t),

and thus, we get ∥∥∥∥∥
L∑

k=l+1

k∑
j=0

zk,j(s)− zk,j(t)

∥∥∥∥∥ ≥ 2(L− l).

Moreover, we have

l+Qm∑
k=l+1

m∑
r=1

wk,r(s)− wk,r(t) =

l+Qm∑
k=l+1

αk,0∑
j=αk,m+1

zk,j(s)− zk,j(t)

=

l+Qm∑
k=l+1

k∑
j=k−Qm+1

zk,j(s)− zk,j(t)

=

l+Qm∑
k=l+1

k∑
j=0

zk,j(s)− zk,j(t)

because k−Qm + 1 ≤ l+ 1 whenever l+ 1 ≤ k ≤ l+Qm. Combining the two facts, we get the
desired result.

Next fix 1 ≤ m ≤ M , Qm ≤ l ≤ N − Qm and l + 1 ≤ k ≤ N − (Q − 1)Qm−1. For every
0 ≤ n ≤ Q− 1 and for every t ∈ TN of length N , we have

m−1∑
r=1

wk+nQm−1,r(t) =

k+nQm−1∑
j=k+(n−1)Qm−1+1

zk+nQm−1,j(t).

In particular,∥∥∥∥∥
m−1∑
r=1

wk+nQm−1,r(t)

∥∥∥∥∥ ≤
∥∥∥∥∥∥
k+(n−1)Qm−1∑

j=0

zk+nQm−1,j(t)

∥∥∥∥∥∥+

∥∥∥∥∥∥
k+nQm−1∑

j=0

zk+nQm−1,j(t)

∥∥∥∥∥∥ ≤ 2c.
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Now, we apply Proposition 2.2.4 to the block functions
∑m−1

r=1 wk+nQm−1,r with n running
from 0 to Q− 1. We get∥∥∥∥∥
Q−1∑
n=0

m−1∑
r=1

wk+nQm−1,r(t)− wk+nQm−1,r(s)

∥∥∥∥∥ ≤ A

(
Q−1∑
n=0

∥∥∥∥∥
m−1∑
r=1

wk+nQm−1,r(t)− wk+nQm−1,r(s)

∥∥∥∥∥
p) 1

p

+ η

≤ 4cAQ
1
p + η

for all interlacing sequences s, t ∈ TN of length N .
Thus, assuming that η ≤ 4cA and summing over k, we get∥∥∥∥∥

l+Qm∑
k=l+1

m−1∑
r=1

wk,r(s)− wk,r(t)

∥∥∥∥∥ =

∥∥∥∥∥∥
l+Qm−1∑
k=l+1

Q−1∑
n=0

m−1∑
r=1

wk+nQm−1,r(s)− wk+nQm−1,r(t)

∥∥∥∥∥∥
≤ 8cAQ

1
pQm−1

≤ Qm

if Q was chosen bigger than (8cA)p
∗
, where p∗ is the conjugate exponent of p.

Combining this and the lemma, we get that whenever we take interlacing s, t ∈ TN of length
N satisfying |as,t| = l, we have∥∥∥∥∥

l+Qm∑
k=l+1

wk,m(s)− wk,m(t)

∥∥∥∥∥ ≥ Qm,

and thus at least one of the quantities
∥∥∥∑l+Qm

k=l+1wk,m(s)
∥∥∥ or

∥∥∥∑l+Qm

k=l+1wk,m(t)
∥∥∥ is bigger than

1
2
Qm. Then, using Ramsey’s theorem, it is easy to get a full subtree of TN where this inequality

holds for every sequence of length N .
Consequently, we can assume up to the successive extraction of finitely many full subtrees

that for all t ∈ TN of length N , for all 1 ≤ m ≤M and for all Qm ≤ l ≤ N −Qm, we have∥∥∥∥∥
l+Qm∑
k=l+1

wk,m(t)

∥∥∥∥∥ ≥ 1

2
Qm.

Now take 1 ≤ γ ≤ QM−m and let l = γQm. Then

l+Qm∑
k=l+1

wk,m(t) =

(γ+1)Qm∑
k=γQm+1

wk,m(t).

Using the preceding inequality and summing over γ we get

QM−m∑
γ=1

∥∥∥∥∥∥
(γ+1)Qm∑
k=γQm+1

wk,m(t)

∥∥∥∥∥∥ ≥ QM

2
.
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Thus, by the triangle inequality,

N∑
k=Qm+1

‖wk,m(t)‖ ≥ QM

2
.

Finally, let us recall that k ≥ Qm implies Mk > m. Thus, after reordering, we obtain

N∑
k=1

Mk∑
m=1

‖wk,m(t)‖ ≥
M∑
m=1

N∑
k=Qm+1

‖wk,m(t)‖ ≥M
QM

2
.

Gathering the two estimates, we get that if Q is bigger than some constant depending only
on a,A, e, c and p∗, we have

M
QM

2
≤ (M + 1)

1
q∗QM+1.

This gives a contradiction for M large enough.

We end this section with the proof of Proposition 2.2.3 and Proposition 2.2.4.

Proof of Proposition 2.2.3. Let δ∗ be the Orlicz function introduced in the preceding section
and which is equivalent to the weak∗ modulus of asymptotic convexity of (X∗∗, |.|). We will show
by induction on L that for all ξ > 0, there is a full subtree T of TN such that for all 1 ≤ L ≤ N
and for all choices of block functions B1, . . . , BL as in the statement of the proposition, we have∣∣∣∣∣

L∑
l=1

Bl(t)

∣∣∣∣∣ ≥ N δ∗

L

(
|B1(t)| , . . . , |BL(t)|

)
− ξ

for all t ∈ T of length |t| ≥ jL, where jL corresponds to the maximal “height” of the block
function BL. The conclusion will then follow from Lemma 2.1.19 applied to the space (X∗∗, |.|).
Note that all our blocks Bl(t) are of norm |.| at most R = 2Nc.

For L = 1, the property is satisfied on the whole TN for all choices of ξ > 0 because N δ∗
1 = |.|

by convention.
Now, suppose that our property it is satisfied for all choices of ξ > 0 for a given 1 ≤

L ≤ N − 1. Fix η > 0. By the uniform continuity of N δ∗
2 , we can find a ν > 0 such that∣∣N δ∗

2 (u)−N δ∗
2 (v)

∣∣ ≤ η
2

whenever ‖u− v‖1 ≤ ν in R2. For our later use, we assume that ν ≤ η
2
.

We may assume that the inequalities for L block functions are satisfied on the whole TN for
the constant ξ = ν.

First fix L block functionsB1, . . . , BL with jL ≤ N−1 and fix t ∈ TN with |t| = jL. Assuming
that

∑L
l=1Bl(t) 6= 0, we apply Lemma 2.1.25. There is a weak∗ neighborhood V = Vx∗1,...,x∗m;ε of
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0 such that for all x∗∗ ∈ V ∩RB(X∗∗,|.|) we have∣∣∣∣∣
L∑
l=1

Bl(t) + x∗∗

∣∣∣∣∣ ≥
∣∣∣∣∣
L∑
l=1

Bl(t)

∣∣∣∣∣
1 + δ

∗
X∗

 |x∗∗|∣∣∣∑L
l=1Bl(t)

∣∣∣
− η

2

= N δ∗

2

(∣∣∣∣∣
L∑
l=1

Bl(t)

∣∣∣∣∣ , x∗∗
)
− η

2

From this, we easily deduce, using the inequality for L block functions, the definition of N δ∗
L+1

and our choice of ν that∣∣∣∣∣
L∑
l=1

Bl(t) + x∗∗

∣∣∣∣∣ ≥ N δ∗

L+1

(
|B1(t)| , . . . , |BL(t)| , |x∗∗|

)
− η

whenever x∗∗ ∈ V and |x∗∗| ≤ R.
Our goal now is to extract a full subtree over the sequence t which is fully contained in the

weak∗-neighborhood V . We know that w∗ − lim zk,jL+1(t a n) = 0 for every N ≥ k ≥ jL + 1.
Thus we can find some N1 ≥ 1 such that

∀n1 ≥ N1, ∀N ≥ k ≥ jL + 1, zk,jL+1(t a n1) ∈ Vx∗1,...,x∗m; ε
2
.

Then fix some n1 ≥ N1. Again, we know that w∗ − lim zk,jL+2(t a (n1, n)) = 0 for every
N ≥ k ≥ jL + 2. Thus we can find some N2(n1) ≥ 1 such that

∀n2 ≥ N2(n1), ∀N ≥ k ≥ jL + 2, zk,jL+2(t a (n1, n2)) ∈ Vx∗1,...,x∗m; ε
4
.

Iterating this procedure, we obtain a full subtree T (t) of TN−jL such that

∀(n1, . . . , nj) ∈ T (t), ∀N ≥ k ≥ jL + j, zk,jL+j(t a (n1, . . . , nj)) ∈ Vx∗1,...,x∗m; ε
2j
.

Consequently, this subtree satisfies: for all choices of block function BL+1, for all s ∈ T (t)

such that |t a s| ≥ jL+1, BL+1(t a s) ∈ V and thus∣∣∣∣∣
L∑
l=1

Bl(t) +BL+1(t a s)

∣∣∣∣∣ ≥ NL+1

(
|B1(t)| , . . . , |BL(t)| , |BL+1(t a s)|

)
− η.

Note that Bl(t) = Bl(t a s) for all 1 ≤ l ≤ L because the block function Bl only depends on
the jl ≤ jL first coordinates of a sequence. Thus, by “gluing” every T (t) over the corresponding
point t, we get a full subtree T of TN satisfying the required property for our initial choice of
block functions B1, . . . , BL.

Since choosing L block functions is equivalent to choosing integers 0 ≤ i1 ≤ j1 < · · · < iL ≤
jL ≤ N − 1 and N ≥ ki ≥ ji a finite number of successive extractions will give us the desired
inequality on a full subtree of TN for every choice of L+ 1 block functions B1, . . . , BL+1.
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Proof of Proposition 2.2.4. Again, we will show by induction on L that for all ξ > 0, there
is a full subtree T of T2N such that for all 1 ≤ L ≤ N and for all choices of block functions
B1, . . . , BL, we have∥∥∥∥∥

L∑
l=1

Dl(s, t)

∥∥∥∥∥ ≤ N
ρX
L

(
‖D1(s, t)‖ , . . . , ‖DL(s, t)‖

)
+ ξ

whenever s, t ∈ TN are of length |t| = |s| ≥ jL and satisfies s ∝ t = (s1, t1, s2, . . . ) ∈ T , where
Dl(s, t) is defined as the difference Bl(s) − Bl(t). Note that these objects are all of norm at
most R = 4Nc.

Again, this is clear for L = 1. Suppose that the property is satisfied for all choices of ξ for
some 1 ≤ L ≤ N − 1. Fix η > 0. By the uniform continuity of N

ρX
2 , we can find a ν > 0

such that
∣∣∣NρX

2 (u)−NρX
2 (v)

∣∣∣ ≤ η
4

whenever ‖u− v‖1 ≤ ν in R2. For our later use, we assume

that ν ≤ η
4
. Again, we may assume that the inequalities for L differences of block functions are

satisfied for every s, t ∈ TN of same length for the constant ν.
At this point we appeal to the quasi-reflexive assumption and to Ramsey’s concentration

theorem. Since X is quasi-reflexive, there is a space E of finite dimension such that: X∗∗ =
X ⊕ E. For all u ∈ TN , let zk,j(u) = xk,j(u) + ek,j(u) be the associated decomposition in this

sum. Also denote by D
(X)
l and D

(E)
l the projections of the functions Dl respectively on X and

on E. By Ramsey’s concentration theorem (Theorem 2.1.23), we may assume after passing to
a full subtree that for all 1 ≤ j ≤ k ≤ N and for all u, v ∈ TN of length N we have

‖ek,j(u)− ek,j(v)‖ ≤ ν

N
.

Note that this inequality holds in fact whenever ek,j(u) and ek,j(v) are defined since they only
depends on the j first coordinates of u and v.

Now fix L block functions B1, . . . , BL and fix w ∈ T2N , |w| = 2jL. Also take s, t ∈ TN with
|s| = |t| = jL such that s ∝ t = w.

Again, assuming that
∑L

l=1D
(X)
l (s, t) 6= 0 and applying Lemma 2.1.27 there is a weak∗

neighborhood V = Vx∗1,...,x∗m;ε of 0 such that for all x∗∗ ∈ V ∩RBX∗∗ , we have∥∥∥∥∥
L∑
l=1

D
(X)
l (s, t) + x∗∗

∥∥∥∥∥ ≤
∥∥∥∥∥

L∑
l=1

D
(X)
l (s, t)

∥∥∥∥∥
1 + ρX

 ‖x∗∗‖∥∥∥∑L
l=1D

(X)
l (s, t)

∥∥∥
+

η

4

= N
ρX
2

(∥∥∥∥∥
L∑
l=1

D
(X)
l (s, t)

∥∥∥∥∥ , ‖x∗∗‖
)

+
η

4

Now, we have
∥∥∥∑L

l=1D
(E)
l (s, t)

∥∥∥ ≤ ν thanks to the concentration in E obtained before.
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Thus ∥∥∥∥∥
L∑
l=1

Dl(s, t) + x∗∗

∥∥∥∥∥ ≤ N
ρX
2

(∥∥∥∥∥
L∑
l=1

Dl(s, t)

∥∥∥∥∥+ ν, ‖x∗∗‖

)
+ ν +

η

4

≤ N
ρX
2

(∥∥∥∥∥
L∑
l=1

Dl(s, t)

∥∥∥∥∥ , ‖x∗∗‖
)

+
3η

4

≤ N
ρX
L+1

(
‖D1(s, t)‖ , . . . , ‖DL(s, t)‖ , ‖x∗∗‖

)
+ η

whenever x∗∗ ∈ V and |x∗∗| ≤ R using the inequality for L difference functions, the definition
of N

ρX
L+1 and the choice of ν.

Using the same arguments as in the proof of the first proposition, we can find a full subtree
T (w) ⊂ TN−jL such that for all u = (u1, . . . , uj) ∈ T (w) and for all k ≥ jL + j, zk,jL+j(s a u) ∈
Vx∗1,...,x∗m; ε

4j
and zk,jL+j(t a u) ∈ Vx∗1,...,x∗m; ε

4j
.

Thus, for all choices of block function BL+1, for all u, v ∈ T (w) such that |s a u| = |t a v| ≥
jL+1, DL+1(s a u, t a v) ∈ V and so∥∥∥∥∥

L∑
l=1

Dl(s, t) +DL+1(s a u, t a v)

∥∥∥∥∥ ≤ N
ρX
L+1

(
‖D1(s, t)‖ , . . . , ‖DL(s, t)‖ , ‖DL+1(s a u, t a v)‖

)
+η.

Noting that the function Dl only depends on the jl ≤ jL first coordinates of both sequences,
and considering the full subtree T

(w)
2 of T2(N−jL) for which each sequence of even length is

obtained by interlacing two sequences of T (w), we can conclude in the same way as in the
preceding proof.

2.3 Diamond graphs

We define and study the metric geometry of another important family of metric graphs, the
countably branching diamond graphs. Informally their construction is done by induction by the
following procedure. The first diamond D1 is the graph consisting in two distinguished vertices,
a top and a bottom, which are connected by edges to countably many vertices in-between. Then
the diamond DN+1 of depth N + 1 is constructed for any N ≥ 1 by replacing all the edges
of the diamond of depth N by a copy of D1. The metric on DN is then define as the usual
hyperbolic or graph distance. Note that in order to compute the distance between two vertices
in DN there are always two possible shortest path to consider: one top-bottom and the other
bottom-top. We refer to [BCD+, Section 2] for a formal construction, as well as a non-recursive
construction giving a precise expression for the distance on DN .

In [BCD+] it is proved that those graphs equi-Lipschitz embed into any Banach space which
contains a family of trees with a strong c0 behavior, the so called good `∞-trees. So let us recall
the following definition.
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Definition 2.3.1. Let X be a Banach space, let (σi)i≥1 be a linear compatible ordering of Tn in
the sense of Section 1.3, let p ∈ [1, ∞], and let C,D ≥ 1. A normalized unrooted tree (xs)s∈Tn
in X is called a (C,D) good `p-tree of height n if if satisfies the two following properties:

1. All the branches of the tree are C2-equivalent to the unit vector basis of `np .

2. The sequence (xσi)i≥1 is D-basic.

We say that X contains good `p-trees of arbitrary height almost isometrically if for every
n ≥ 1 and for every ε > 0, X contains a (1 + ε, 1 + ε) good `p-tree of height n.

The following result is [BCD+, Theorem 3.1].

Theorem 2.3.2. Let X be a Banach space. If X contains good `∞-trees of arbitrary height
almost isometrically, then for every ε > 0 and for every N ≥ 1 the diamond DN bi-Lipschitz
embeds into X with distortion 6 + ε. If moreover the good trees are bi-monotone for a well
chosen linear compatible ordering, then the distortion can be improved up to 3 + ε.

Example 2.3.3. The space c0 ≡ c0(T∞) contains bi-monotone good (1, 1) `∞-trees of arbitrary
height, and as a consequence the diamond DN bi-Lipschitz embeds into c0 (and in fact into
c+

0 following the proof of [BCD+]) with distortion 3 for every N ≥ 1. Note that by doing so
one recovers the optimal constant obtained in [Pel] concerning the best possible distortion of
arbitrary separable metric spaces into c0+ and providing a sharp version of the famous result
from the paper [Aha] of Aharoni. However, [KL] states that distortion 2 can be attained for
embeddings into c0, and we refer to this paper for more details on the subject.

In [BCD+, Section 3.2] the authors then looked for sufficient conditions ensuring that a
Banach space would contain good `∞-trees of arbitrary height almost isometrically. Based on
results coming from the theory of asymptotic structure exposed in Section 1.3 they obtained
the following result.

Theorem 2.3.4. Let X be a separable reflexive Banach space with an unconditional asymptotic
structure. If SZ(X∗) > ω, then X contains good `∞-trees of arbitrary height almost isometri-
cally.

Our goal in this section is to extend this result to a a larger setting, namely to duals of
- separable Banach spaces with a Szlenk index strictly greater than ω - which admit a weak∗

unconditional asymptotic structure. Before explaining the ins and outs of those results, let us
present the non-embeddability results obtained in [BCD+, Section 4].

Theorem 2.3.5. Let X be a Banach space with property AMUC. Then the family (DN)N≥1

does not equi-Lipschitz embed into X.

This result heavily relies on considerations about the size of approximate midpoints given
by property AMUC, and is again based on a self improvement argument “ à la Johnson and
Schechtman ”. A precise lower estimates on the distortion of diamonds is moreover obtained
when the space X has a modulus of asymptotic midpoint convexity with power type. Com-
bined with Theorem 2.3.2, Theorem 2.3.4, and with renorming theorems from Section 1.2 they
obtained the following characterization.
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Theorem 2.3.6. Let X be a separable reflexive (infinite dimensional) Banach with an uncon-
ditional asymptotic structure. Then the following assertions are equivalent.

1. The Szlenk index of X∗ is equal to ω.

2. The space X admits an equivalent AUC norm.

3. The space X admits an equivalent AMUC norm.

4. The family (DN)N≥1 does not equi-Lipschitz embed into X.

Note that the separability assumption can be removed in this result by passing to a separable
quotient using Proposition 1.2.27.

Remark 2.3.7. It is also known that DN bi-Lipschitz embeds into the space L1 with distortion
2 for every N ≥ 1 and that this distortion is optimal. We refer to [BCD+, Section 3.3] for
comments on this point and for a constructive approach involving Bernouilli random variables.
Let us also point out that a transfer result from dyadic diamond in a space X to countably
branching diamonds in Lp(X) is obtained in [BCD+, Section 3.4] using similar tools, and is
then applied to obtain a new renoming result for Lp(X) in [BCD+, Corollary 5.5].

Actually a more general result in obtained in [BCD+, Section 4] since it is proved that no
family generated by a (non trivial) countably branching bundle graph can equi-Lipschitz embed
into a Banach space with property AMUC. Let us recall the following definition.

Definition 2.3.8. A top-bottom graph is a graph with two distinguished vertices, one designated
as the top and the other as the bottom. A countably branching bundle graph is a top-bottom
graph which can be formed, starting by a path of length 1, by a finite sequence of the following
operations.

1. Parallel composition: given two countably branching bundle graphs, identify the top of
one with the bottom of the other and let the bottom of the first (respectively top of the
second) be the bottom (respectively the top) of the new graph.

2. Series composition: take countably many copies of a countably branching bundle graph
and identify all the bottoms (respectively all the tops) with each other.

A non-trivial countably branching bundle graph is a bundle graph obtained by such a
sequence with at least one series composition. Every bundle graph is endowed with its graph
distance.

We refer to [Swi, Section 2] for a non recursive definition of bundle graphs and for explicit
formula for distances in them. We also refer to [Swi, Section 6] for a formal definition of the
operation � which consists in replacing every edge of some countably branching bundle graph
by another countably branching bundle graph. As for the diamond graphs we define inductively
for every (non trivial) countably branching bundle graph G the family (G�N)N≥1 of countably
branching bundle graphs generated by G by G�1 = G and G�(N+1) = G�G�N for every N ≥ 1.
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The result from [BCD+, Theorem 4.1] is the following.

Theorem 2.3.9. Let G be a non-trivial countably branching bundle graph and let X be a
Banach space with property AMUC. Then the family (G�N)N≥1 does not equi-Lipschitz embed
into X.

In [Swi], Swift generalized all the above mentioned results from [BCD+] to countably branch-
ing bundle graphs. We refer to his paper for precise statements.

We end the section by proving the following extension of Theorem 2.3.4

Proposition 2.3.10. Let X be a separable Banach space with SZ(X) > ω and let us assume
that X∗ has a weak∗ unconditional asymptotic structure. Then X∗ contains good `∞-trees of
arbitrary height almost isometrically.

Combined with the results from [Swi] and the renorming results from Section 1.2 this yields
the following.

Theorem 2.3.11. Let X be a separable Banach space and let us assume that X∗ has a weak∗

unconditional asymptotic structure. Also let G be any non-trivial countably branching bundle
graph. Then the following assertions are equivalent.

1. The space X satisfies SZ(X) ≤ ω.

2. The space X admits an equivalent norm whose dual norm is AUC∗.

3. The space X∗ admits an equivalent AMUC norm.

4. The family (G�N)N≥1 does not equi-Lipschitz embed into X∗.

Since Mazur’s work it is a well known fact that it is possible to extract a basic subsequence
from every weakly null normalized sequence. A simple extension of Mazur’s proof using the
concept of linear compatible ordering allows to prove the following tree version of this result.

Lemma 2.3.12. Let X be a Banach space and let (xs)s∈Tn be a weakly null normalized tree in
X. For all δ ∈ (0, 1) there is a full subtree T of Tn and a compatible linear ordering (σi)i≥1 of
T such that the sequence (xσi)i≥1 is (1 + δ)-basic.

The same goes for weak∗ null trees in a dual space and in this case it is even possible to do
a bit better by extracting a weak∗ basic full subtree in the sense of [JR] . The following is thus
a direct consequence of Lemma 1.3.10.

Lemma 2.3.13. Let X be a separable Banach space, let p ∈ [1,∞], and let us assume that
`np ∈ {X∗}w

∗
n for every n ≥ 1. Then X∗ contains good `p-trees of arbitrary height almost

isometrically.

Thus as a consequence of Theorem 1.3.15 we obtain.
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Proposition 2.3.14. Let X be a separable Banach space satisfying SZ(X) > ω, and let us
assume that X∗ has a weak∗ unconditional asymptotic structure. Then X∗ contains good `∞-
trees of arbitrary height almost isometrically.

Also note that by Theorem 1.3.16 we also have.

Proposition 2.3.15. Let X be a Banach space with separable dual, with an unconditional
asymptotic structure and with SZ(X) > ω. Then X contains good `1-trees of arbitrary height
almost isometrically.

Finally note that property (∗) defines in Definition 1.4.9 is actually sufficient thanks to
Theorem 1.4.17 to obtain the conclusions from Proposition 2.3.14, and by the results from
Swift we obtain the following result.

Proposition 2.3.16. Let X be a separable Banach space and let us assume that X∗ has property
(∗). Then every non-trivial countably branching bundle graph embeds bi-Lipschitz into X∗ with
distortion less than 6 + ε.

2.4 Spreading models

In this section we briefly introduce the important notion of spreading models of a Banach space
and gather a few results concerning the embeddability of the family (TN)N≥1 into a Banach
space in the presence of an `1 or a c0 spreading model.

Definition 2.4.1. Let X be a Banach space. By using Ramsey’s theorem, one can show that
for every bounded sequence (xn)n≥1 ⊂ X there a subsequence (yn)n≥1 such that for all k ≥ 1

and for all a1, . . . , ak ∈ R the limit limn1<···<nk

∥∥∥∑k
i=1 aiyni

∥∥∥ exists. Let (ei)i≥1 be the unit

vector basis of c00. If the sequence (yn)n≥1 is not convergent the quantity∥∥∥∥∥
k∑
i=1

aiei

∥∥∥∥∥ = lim
n1<···<nk

∥∥∥∥∥
k∑
i=1

aiyni

∥∥∥∥∥
defines a norm on c00. The completion of the space (c00, ‖.‖) is called spreading model associated
with the fundamental sequence (ei)i≥1 and generated by the sequence (yn)n≥1. Note that the
fundamental sequence is spreading in the sense that for all k ≥ 1, for all a1, . . . , ak ∈ R and for

all 1 ≤ n1 < · · · < nk we have the norm equality
∥∥∥∑k

i=1 aiei

∥∥∥ =
∥∥∥∑k

i=1 aieni

∥∥∥. For a Banach

space E we shall say that X has an E spreading model if X has a spreading model isomorphic
to E.

We refer to [BL1] for a detailed presentation of the theory of spreading models. In partic-
ular [BL1, Chapter 4] presents plenty of examples of classifications up to isomorphisms of the
spreading models of classical Banach spaces. In view of the construction of spreading models,
the following result directly follows from consideration on Orlicz spaces as in the end of Section
2.1 and is a sharp version of Proposition 1.1.20.
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Theorem 2.4.2. Let X be a Banach space. There is a constant C > 0 such that for every
spreading model E of X generated by a weakly null sequence and for every n ≥ 1 we have

1

C

∥∥∥∥∥
n∑
i=1

ei

∥∥∥∥∥
`δ

≤

∥∥∥∥∥
n∑
i=1

ei

∥∥∥∥∥
E

≤ C

∥∥∥∥∥
n∑
i=1

ei

∥∥∥∥∥
`ρX

where δ is the Orlicz function considered at the end of Section 2.1 and which is equivalent to
the modulus of asymptotic convexity δX .

Remark 2.4.3. Let us point out that striking analogues of this result where obtained in the
non-linear theory in [KR] and [Kal2] for coarse-Lipschitz embeddings, in particular see [Kal2,
Theorem 7.4 and following remark]. Those are particularly interesting in the theory since they
provide easy obstructions to the coarse-Lipschitz embeddability of some Banach spaces into
others depending on the behavior of their respective spreading models.

We will now focus on `1 and c0 spreading models. A direct consequence of Theorem 2.4.2
(eventually combined with some considerations on the classification of Orlicz sequence spaces)
is that any AUS Banach space (respectively any AUC Banach space) fails to admit an `1

(respectively a c0) spreading model generated by a weakly null sequence. We will explain
shortly after how to get rid of this assumption. For now let us state the following two results.

Proposition 2.4.4. If X has an `1 spreading model then for every ε > 0 there is a normalized
sequence (xk)k≥1 in X such that for every k ≥ 1, for every sequence a = (ai)

k
i=1 in Rk and for

every integers n1, . . . , nk satisfying k ≤ n1 < · · · < nk we have

1

1 + ε
‖a‖1 ≤

∥∥∥∥∥
n∑
i=1

aixni

∥∥∥∥∥ ≤ (1 + ε) ‖a‖1 .

Proposition 2.4.5. If X has a c0 spreading model then for every ε > 0 there is a normalized
sequence (xk)k≥1 in X such that for every k ≥ 1, for every sequence a = (ai)

k
i=1 in Rk and for

every integers n1, . . . , nk satisfying k ≤ n1 < · · · < nk we have

1

1 + ε
‖a‖∞ ≤

∥∥∥∥∥
n∑
i=1

aixni

∥∥∥∥∥ ≤ (1 + ε) ‖a‖∞ .

Remark 2.4.6. Observe that the sequences (xk)k≥1 obtained in Proposition 2.4.5 have to be
weakly null. Indeed if we assume that for a fixed ε > 0 the corresponding sequence (xk)k≥1 fails
to be weakly null, then up to the extraction of a subsequence we can assume that there is a
norm one functional f ∈ X∗ and a constant δ > 0 such that for every k ≥ 1 we have f(xk) ≥ δ.
But then nδ ≤ f (

∑n
i=1 xk+i−1) ≤ ‖

∑n
i=1 xk+i−1‖ ≤ (1 + ε) for every n ≥ 1. A contradiction. In

particular any AUC Banach space fails to admit a c0 spreading model. Also note that by [Kal2,
Proposition 4.5] we actually have that any AMUC Banach space fails to admit a c0 spreading
model.
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Using Proposition 2.4.5 it is proved in [BLS, Proposition 3.4] by a direct construction that
the family (TN)N≥1 equi-Lipschitz embeds into any Banach space X which admits a c0 spreading
model. A similar construction can easily be done for `1 spreading models using Proposition
2.4.4 but we can actually prove stronger statements.

Theorem 2.4.7. Let X be a Banach space. If X has an `1 spreading model, then SZ(X) > ω.

Proof. Let us assume that SZ(X) ≤ ω and that X admits an `1 spreading model E generated
by some sequence (xk)k≥1. By Proposition 2.4.4 we may assume that the fundamental sequence
(ei)i≥1 of E is actually equivalent to the unit vector basis of `1. Also X fails to contain `1

since SZ(X) ≤ ω by assumption, and we may assume by Rosenthal’s `1 theorem that the
sequence (xk)k≥1 is weakly Cauchy. Thus the sequence (x2k − x2k−1)k≥1 is weakly null, and it
generates a spreading model F which is also isomorphic to `1. Indeed if we denote by (fj)j≥1

the fundamental sequence of F we have∥∥∥∥∥
m∑
j=1

ajfj

∥∥∥∥∥
F

=

∥∥∥∥∥
2m∑
i=1

(−1)i+1a2i−1e2i−1

∥∥∥∥∥
E

for every sequence (aj)
m
j=1 in Rm so that (fj)j≥1 is also equivalent to the unit vector basis of

`1. Now by the renorming theorems from Section 1.2 we may also assume that X is AUS, and
this contradicts Theorem 2.4.2.

In [BL1, Chapter 3 Section 4] a duality result between `1 and c0 spreading models is pre-
sented. In particular it is shown that if a quotient of a space X has a c0 spreading model, then
the dual space X∗ has an `1 spreading model. The following result is thus a direct consequence
of Theorem 2.4.7

Corollary 2.4.8. Let X be a Banach space. If X has a c0 spreading model, then SZ(X∗) > ω.

In particular the following is then a direct consequence of Theorem 2.1.9.

Theorem 2.4.9. Let X be a Banach space. If X has an `1 spreading model or if X has a c0

spreading model, then T∞ bi-Lipschitz embeds into X and into X∗.

Remark 2.4.10. The space E =
(∑

n≥1 `pn
)
`2

where (pn)n≥1 is a sequence of real numbers

strictly decreasing towards 1 already encountered in Remark 2.1.15 and its dual provide easy
examples showing that the converse of any of the above results fails even in the reflexive setting.
Indeed, using a gliding hump argument, it is not difficult to prove that the property of admitting
no `1 spreading model is stable by taking `2 sums. Thus the space E does not admit any `1

spreading model. Since it satisfies SZ(E∗) = ω it also fails to admit c0 spreading models. Yet
SZ(E) = ω2 so that T∞ does bi-Lipschitz embed into E.

Actually we can slightly improve Corollary 2.4.8.
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Proposition 2.4.11. Let X be a Banach space. If X has a c0 spreading model, then `n∞ ∈ {X}n
for all n ≥ 1.

Proof. Fix n ≥ 1 and ε > 0, and take a normalized (weakly null) sequence (xk)k≥1 as in
Proposition 2.4.5. Then for every s = (s1, . . . , sk) ∈ Tn non empty, let ys = xφ(s) where

φ(s) = n +
∑k

i=1 si. Then (xs)s∈Tn is a weakly null normalized unrooted tree and since n ≤
φ(s|1) < · · · < φ(s) for every leaf s of Tn, we have that every branch of this unrooted tree is
(1 + ε)2 equivalent to the unit vector basis of `n∞. The conclusion follows from Lemma 1.3.1.

Since we are working directly with trees in the preceding Proposition, we actually have that
any Banach space admitting a c0 spreading model contains good `∞-trees of arbitrary height
almost isometrically, and thus by the results from Section 2.3 we obtain.

Proposition 2.4.12. Let X be a Banach space. If X has a c0 spreading model, then for every
ε > 0 every non-trivial countably branching bundle graph embeds into X with distortion 6 + ε.
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Chapter 3

Daugavet and ∆-points in Banach
spaces

3.1 Daugavet- and Delta-points

Daugavet- and ∆-points first appeared in [AHLP] as natural pointwise versions of geometric
characterizations of the Daugavet property [Shv, Lemma 2] and of the so called spaces with
bad projections [IK, Theorem 1.4] (also known as spaces with the diametral local diameter two
property (DLD2P) [BGLPRZ]).

Definition 3.1.1. Let X be a Banach space, let x ∈ SX , and let ε > 0. We introduce

∆X
ε (x) := {y ∈ BX : ‖x− y‖ ≥ 2− ε},

and we will simply write ∆ε(x) := ∆X
ε (x) when there is no risk of confusion.

1. We say that x is a (2 − ε) Daugavet-point if BX = conv ∆ε(x), and we say that x is a
Daugavet-point if it is a (2− ε) Daugavet-point for every ε > 0.

2. We say that x is a (2− ε) ∆-point if x ∈ conv ∆ε(x), and we say that x is a ∆-point if it
is a (2− ε) ∆-point for every ε > 0.

We recall that for any x∗ ∈ SX∗ and δ > 0 we define a slice of BX by

S(x∗, δ) := {y ∈ BX : x∗(y) > 1− δ}.

The corresponding closed slice is denoted

S(x∗, δ) := {y ∈ BX : x∗(y) ≥ 1− δ} .

Remark 3.1.2. Slices and closed slices of BX can also be defined using non-zero functionals in
X∗ by replacing the 1 above by the norm of the corresponding functional. Now if x∗ is a non-

zero functional we have S(x∗, δ) = S
(

x∗

‖x∗‖ ,
δ
‖x∗‖

)
and we would like to point out that working
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with non-normalized functionals can cause delicate computational problems (see e.g. the proof
of Theorem 3.2.6). We will avoid them as much as possible. We will also informally say that
a Banach space has thin slices of arbitrary large diameter when the diameter of S(x∗, δ) is as
close as we want to 2 for small δ.

For every x ∈ X, let us write D(x) := {x∗ ∈ SX∗ : x∗(x) = ‖x‖}. We state the following
lemma here for future reference.

Lemma 3.1.3. Let x ∈ SX . For every n ≥ 1, δ > 0, and x∗1, . . . , x
∗
n ∈ D(x), we have:

S

(
1

n

n∑
i=1

x∗i ,
δ

n

)
⊂

n⋂
i=1

S(x∗i , δ).

Proof. Let x∗ = 1
n

∑n
i=1 x

∗
i . Since every x∗i is in D(x), we immediately obtain that x∗ is in D(x)

and in particular that ‖x∗‖ = 1. Now if y ∈ S
(
x∗, δ

n

)
, we have, for every 1 ≤ i0 ≤ n,

x∗i0(y) = nx∗(y)−
n∑
i=1
i 6=i0

x∗i (y) > n− nδ

n
− (n− 1) = 1− δ,

and the conclusion follows.

Note that the fact that every functional x∗i attains its norm at x is crucial here to guarantee
that the average of the x∗i remains a norm one functional.

Using Hahn–Banach separation we get the following well known lemma that we will use
without reference.

Lemma 3.1.4. Let X be a Banach space, let x ∈ SX , and let ε > 0.

1. The point x is a (2−ε) Daugavet-point if and only if for all δ > 0 and all x∗ ∈ SX∗, there
exists y ∈ S(x∗, δ) such that ‖x− y‖ ≥ 2− ε.

2. The point x is a (2 − ε) ∆-point if and only if for all δ > 0 and all x∗ ∈ SX∗ such that
x ∈ S(x∗, δ), there exists y ∈ S(x∗, δ) such that ‖x− y‖ ≥ 2− ε.

It is also well known that this result can be strenghened in the following way, see for example
[JRZ, Lemma 2.2].

Lemma 3.1.5. Let X be a Banach space and let x ∈ SX .

1. If x is a Daugavet-point, then for all ε > 0, and for all δ > 0 and all x∗ ∈ SX∗, there
exists η > 0 and y∗ ∈ SX∗ such that S(y∗, η) ⊂ S(x∗, δ) and ‖x− y‖ ≥ 2 − ε for every
y ∈ S(y∗, η).

2. If x is a ∆-point, then for all ε > 0, and for all δ > 0 and all x∗ ∈ SX∗ such that x ∈
S(x∗, δ), there exists η > 0 and y∗ ∈ SX∗ such that S(y∗, η) ⊂ S(x∗, δ) and ‖x− y‖ ≥ 2−ε
for every y ∈ S(y∗, η).
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As observed in [JRZ, Remark 2.4] this implies the following.

Corollary 3.1.6. Let X be a Banach space, let x ∈ SX , and let A be a subset of BX such that
convA = BX .

1. The point x is a Daugavet-point if and only if for all ε > 0, and for all δ > 0 and all
x∗ ∈ SX∗, there exists y ∈ S(x∗, δ) ∩ A such that ‖x− y‖ ≥ 2− ε.

2. The point x is a ∆-point if and only if for all ε > 0, and for all δ > 0 and all x∗ ∈ SX∗
such that x ∈ S(x∗, δ), there exists y ∈ S(x∗, δ) ∩ A such that ‖x− y‖ ≥ 2− ε.

In [AHLP] it is proved that Daugavet- and ∆-points coincide for L1(µ) spaces and C(K)
spaces (as well as in some Müntz spaces) and precise characterizations are given for those points
in relation to the support of the the considered function. However, it is proved there that the
two notions behave quite differently with respect to sums of Banach spaces. In particular, `p
sums of Banach spaces never contain Daugavet-points for 1 < p < ∞ while C[0, 1] ⊕`2 C[0, 1]
has the DLD2P and every point of its unit sphere is a ∆-point. This work was then pursued
in [HPV], and much more subtle behavior where obtained for Daugavet-points in comparison
with the Daugavet property which is known to be persevered only by `∞ and `1 sums among
all absolute sums. We also refer to [Pir, Section 3.3] for an overview of the question. In
[ALMT, ALM] other examples of ∆-points which are not Daugavet-points where provided and
[JRZ] showed that examples of this sort are very natural and easy to construct in the context
of Lipchitz free spaces.

We also introduce a weak∗ version of Daugavet- and ∆-points in dual spaces.

Definition 3.1.7. Let X be a Banach space, let x∗ ∈ SX∗ , and let ε > 0.

1. We say that x∗ is a (2− ε) weak∗ Daugavet-point if BX = convw
∗

∆ε(x
∗). We say that x∗

is a weak∗ Daugavet-point if it is a (2− ε) weak∗ Daugavet-point for every ε > 0.

2. We say that x∗ is a (2 − ε) ∆-point if x∗ ∈ convw
∗

∆ε(x
∗). We say that x is a weak∗

∆-point if it is a (2− ε) weak∗ ∆-point for every ε > 0.

For any set A ∈ X∗, the norm closure A
‖.‖

of A is contained in the weak∗ closure A
w∗

of A

(in short A
‖.‖ ⊂ A

w∗

), so that any (2 − ε) Daugavet-point (respectively (2 − ε) ∆-point) is a
(2 − ε) weak∗ Daugavet-point (respectively a (2 − ε) weak∗ ∆-point). The converse is known
to be false. Indeed it is pointed out in [Wer] that the Daugavet property does not pass from
X to X∗ (although it is equivalent to every point in SX∗ being a weak∗ Daugavet-point) since
C[0, 1]∗ fails the Daugavet property. As a consequence this space must contain points which
are weak∗ Daugavet-points but not Daugavet-points.
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We recall that for any x ∈ SX and δ > 0 we define a weak∗ slice of BX∗ by

S(x, δ) := {y∗ ∈ BX∗ : y∗(x) > 1− δ}.

The corresponding closed slice is denoted

S(x, δ) := {y∗ ∈ BX∗ : y∗(x) ≥ 1− δ} .

Using the Hahn-Banach separation theorem for the weak∗ topology (see for example [FHH+,
Corollary 3.34]), we obtain a weak∗ analogue of Lemma 3.1.4, Lemma 3.1.5 and Corollary 3.1.6
with weak∗ slices instead of slices and a subset A of X∗ satisfying convw

∗
A = BX∗ .

Note that if Y is a subspace of X, then for every x ∈ SY we have ∆Y
ε (x) ⊂ ∆X

ε (x) so that
if x is a (2− ε) ∆-point in Y , then x is also a (2− ε) ∆-point in X. The same goes for (2− ε)
weak∗ ∆-points if x∗ ∈ SE where E is a weak∗ closed subset of X∗.

Remark 3.1.8. Note that this fails for Daugavet-points since the `2 sum of any two Banach
spaces does not contain such point.

In particular, if x ∈ SX is a (2 − ε) ∆-point, then x is a (2 − ε) ∆-point in X∗∗. By
Goldstine’s theorem we have the following.

Lemma 3.1.9. Let X be a Banach space, let x ∈ SX , and let ε > 0. If x is a (2 − ε)
Daugavet-point, then x is a (2− ε) weak∗ Daugavet-point in X∗∗.

Proof. Let us assume that x ∈ SX is a Daugavet-point. Then

BX = conv ∆X
ε (x) ⊂ conv‖.‖∆X∗∗

ε (x) ⊂ convw
∗

∆X∗∗

ε (x).

As a consequence BX∗∗ = BX
w∗ ⊂ convw

∗
∆X∗∗
ε (x) and x is a weak∗ (2− ε) Daugavet-point in

X∗∗.

The following result can be extracted from the proof of [AHLP, Lemma 3.5]. It relies on
the principle of local reflexivity, and was used there to show that Daugavet- and ∆-points also
coincide in L1(µ) preduals.

Lemma 3.1.10. Let X be a Banach space, let x, y ∈ SX , and let ε > 0. If y ∈ conv ∆X∗∗
ε (x),

then y ∈ conv ∆X
ε′ (x) for every ε′ > ε.

As a consequence an element x ∈ SX is a ∆ point in X if and only if it is a ∆-point in X∗∗,
and it is a Daugavet point in X if and only if BX ⊂ conv ∆X∗∗

ε for every ε > 0.
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We recall that a point x ∈ BX is denting if it is contained in slices of BX of arbitrarily small
diameter. A point x∗ ∈ BX∗ is called weak∗ denting if it is contained in weak∗ slices of BX∗ of
arbitrarily small diameter. It was observed in [JRZ, Proposition 3.1] any Daugavet-point in a
space X has to be at distance 2 from every denting-point of BX . In the same paper it is proved
that the converse does hold true for Lipschitz free spaces over compact metric spaces, and this
was extended in [Vee] to general metric spaces. Let us point out that this does also hold true
in RNP spaces.

Lemma 3.1.11. Let X be a Banach space with the Radon-Nikodým property. Then a point
x ∈ BX is a Daugavet-point if and only if it is at distance 2 from every denting-point in BX .

Proof. It is a well known fact that every closed bounded non empty subset in an RNP space
is equal to the closure of the convex hull of its denting points. We refer to the monograph
[DU] for considerations about the Radon-Nikodým property, and in particular to [DU, Section
VII.6.] for a summary of the equivalent reformulations of this property.

So if X has the RNP, then any slice of BX contains a denting-point of BX , and it follows
immediately that any point which is at distance two from every denting-point in BX has to be
a Daugavet-point.

In particular observe that if x ∈ SX is a Daugavet-point and if X has the RNP, then for
every δ > 0 and every x∗ ∈ SX∗ , there is a y ∈ S(x∗, δ) such that ‖x− y‖ = 2. The weak∗

analogue of this result follows from Theorem 1.2.4.

In view of the previous observations, the example from [Vee] of a Lipchitz free space satis-
fying the RNP and admitting a Daugavet-point is particularly surprising. In the same lines let
us point out that there exists a Banach space with a 1-unconditional basis such that the set of
Daugavet-points are weakly dense in the unit ball [ALMT, Theorem 4.7].

A Banach space X is said to be uniformly non-square if there exists ε > 0 such that for
all x, y ∈ BX we have either ‖1

2
(x + y)‖ ≤ 1 − ε or ‖1

2
(x − y)‖ ≤ 1 − ε. Uniformly non-

square spaces were introduced by James in [Jam]. It is well known that uniformly non-square
spaces are super-reflexive and that uniformly convex and uniformly smooth spaces are uniformly
non-square (see e.g. [KMT, Proposition 1]). The following simple observations characterizes
uniformly non-square spaces in terms of slices.

Proposition 3.1.12. Let X be a Banach space. The following assertions are equivalent.

1. The space X is uniformly non-square.

2. There exists ε > 0 such that for all x∗ ∈ SX∗ the diameter of S(x∗, ε) is smaller than
2− 2ε.

Proof. (1) =⇒ (2) Let ε > 0 be such that for all x, y ∈ BX we have either ‖1
2
(x+ y)‖ ≤ 1− ε

or ‖1
2
(x− y)‖ ≤ 1− ε. If x∗ ∈ SX∗ and x, y ∈ S(x∗, ε), then ‖x + y‖ ≥ x∗(x + y) ≥ 2− 2ε, so

that ‖x− y‖ ≤ 2− 2ε.
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(2) =⇒ (1) If X is not uniformly non-square, then for every ε > 0 there exists x, y ∈ BX

such that ‖x + y‖ > 2 − ε and ‖x − y‖ > 2 − ε. Take x∗ ∈ SX∗ such that x∗(x + y) > 2 − ε.
Then x, y ∈ S(x∗, ε) and ‖x− y‖ > 2− ε.

If x is a ∆-point then for all δ > 0 and x∗ ∈ SX∗ with x∗(x) > 1−δ we have diamS(x∗, δ) = 2
so we immediately get the following.

Corollary 3.1.13. Let X be a uniformly non-square Banach space. Then X does not admit
∆-points.

If a Banach space X is not uniformly non-square then for every ε > 0 there is a slice S(x∗, ε),
x∗ ∈ SX∗ , with diameter strictly greater than 2−2ε, so X admits thin slices of arbitrarily large
diameter. Observe that if X is a dual space, then we may assume that the functional x∗ in the
proof of (2) =⇒ (1) in Proposition 3.1.12 is weak∗ continuous. Hence a dual space which is not
uniformly non-square has a unit ball with small weak∗ slices of arbitrarily large diameter. These
simple observations show that for spaces that are not uniformly non-square there is no hope of
ruling out ∆-points by some upper bound on the diameter of slices of the unit ball. Note that
any Banach space X of dimension greater or equal to 2 has an equivalent norm | · | such that
(X, | · |) is not uniformly non-square [KMT, Corollary 1]. In particular, Corollary 3.1.13 does
not rule out ∆-points in super-reflexive or finite dimensional spaces. In particular it is natural
to ask the following.

Question 3.1.14. Do all finite dimensional spaces fail to contain ∆-points?

Question 3.1.15. Do all super-reflexive Banach spaces fail to contain ∆-points?

We will provide a positive answer to Question 3.1.14 in Section 3.3, but we will first end
the present section by an attempt to simplify Question 3.1.15. As we have seen, even super-
reflexive spaces whose norm is not uniformly non-square have thin slices of the unit ball with
diameter arbitrary close to 2. However, for a super-reflexive space X we know that the dual
of an ultrapower XU is isometric to (X∗)U , and this opens the door to using ultrafilter limits.
Since XU is also super-reflexive we do not leave the context of super-reflexive spaces when
passing to ultrapowers. Motivated by this we introduce the following definitions which are a
weakening of the notions of Daugavet- and ∆-points.

Definition 3.1.16. We say that X admits almost Daugavet-points if it admits a (2 − ε)
Daugavet-point for every ε > 0, and we say that X admits almost ∆-points if it admits a
(2− ε) ∆-point for every ε > 0.

For our later purpose let us say that a Banach space X contains `np ’s uniformly for some
1 ≤ p ≤ ∞ if for every ε > 0 and every n ≥ 1 there exist x1, . . . , xn ∈ BX such that for every
sequence a = (ai)

n
i=1 in Rn we have

(1 + ε)−1‖a‖p ≤

∥∥∥∥∥
n∑
i=1

aixi

∥∥∥∥∥ ≤ ‖a‖p.
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We will start by studying the existence of almost Daugavet- and ∆-points in some classical
spaces. We highlight the following observation, which although obvious from the definition will
provide an easy way of constructing almost ∆-points.

Observation 3.1.17. Let ε > 0. If x ∈ conv ∆ε(x), then x is a (2− ε) ∆-point.

Building on this observation, we can prove the two following lemmas.

Lemma 3.1.18. If a Banach space X contains `n1 ’s uniformly, then X admits almost ∆-points.

Proof. Take ε > 0 and n ≥ 1, and find x1, . . . , xn ∈ BX from the definition of containing `n1 ’s
uniformly. Let x = 1

n

∑n
i=1 xi. Then ‖x‖ ≤ 1 and for each 1 ≤ j ≤ n we have

‖x− xj‖ =

∥∥∥∥∥∑
i 6=j

1

n
xi +

(
1

n
− 1

)
xj

∥∥∥∥∥ ≥ (1 + ε)−1

(
2− 2

n

)
which can be made as close to 2 as we like. The conclusion follows from Observation 3.1.17.

Lemma 3.1.19. If a Banach space X contains `n∞’s uniformly, then X admits almost ∆-points.

Proof. Since `n1 ⊂ `2n
∞ for every n ≥ 1, the conclusion immediately follows from Lemma 3.1.18.

Still let us propose a constructive argument for that.
Take ε > 0 and n ≥ 1, and find x1, . . . , xn ∈ BX from the definition of containing `n∞’s

uniformly. For every 1 ≤ i ≤ n we define

yi = −2xi +
n∑
k=1

xk.

Then we let x = 1
n

∑n
i=1 yi, that is

x =

(
1− 2

n

) n∑
k=1

xk.

Then ‖x‖ ≤ 1 and for every 1 ≤ j ≤ n we have

‖yj − x‖ =

∥∥∥∥∥∑
k 6=j

2

n
xk +

(
2

n
− 2

)
xj

∥∥∥∥∥ ≥ (1 + ε)−1

(
2− 2

n

)
which can be made as close to 2 as we like. Again, the conclusion follows from Observation
3.1.17.

The two lemmas above can be formulated as follows: if X does not have finite co-type or
does not have non-trivial type, then X admits almost ∆-points. In particular the spaces c0

and `1 both admits almost ∆-points. Let us recall that they do not admit ∆-points (by e.g.
[ALMT, Theorem 2.17]). For those spaces we can say more.
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Lemma 3.1.20. The space c0 does not admit almost Daugavet-points.

Proof. Let x = (xi)i≥1 ∈ Sc0 . Given δ ∈ (0, 1) there exists a finite non-empty set J ⊂ N of
cardinality n ≥ 1 such that |xj| ≥ 1−δ for every j ∈ J and |xi| < 1−δ for every i ∈ N\J . Now
let x∗ = 1

n

∑
j∈J sign(xj)e

∗
j ∈ S`1 . By Lemma 3.1.3 we have S(x∗, δ

n
) ⊂

⋂
j∈J S(sign(xj)e

∗
j , δ)

so if y = (yi)i≥1 is in S(x∗, δ
n
), then it satisfies |xj − yj| ≤ δ for every j ∈ J , and thus

‖x− y‖ ≤ max{δ, 2− δ}. The conclusion follows.

Lemma 3.1.21. The space `1 admits almost Daugavet-points.

Proof. Fix n ≥ 1 and let x = 1
n

∑n
i=1 ei ∈ S`1 where (ei) is the unit vector basis of `1. Then

x is a (2 − 2
n
) ∆-point by Observation 3.1.17 and we will show that it is in fact a (2 − 2

n
)

Daugavet-point. Indeed fix x∗ ∈ S`∞ and δ > 0. Since supi |x∗(ei)| = 1 we can find some i0
such that |x∗(ei0)| > 1− δ that is ei0 ∈ S(x∗, δ) or −ei0 ∈ S(x∗, δ). Now it is easy to check that
‖x± ei0‖ ≥ 2− 2

n
so we are done.

Remark 3.1.22. We will see in Theorem 3.3.3 that if a Banach space X has Rolewicz’ property
(α), thenX has no ∆-points. ButX can contain almost ∆-points. Indeed, let T be the Tsirelson
space. Even though T fails Rolewicz’ property (α) there exists an equivalent norm | · |, so that
(T, |·|) has Rolewicz’ property (α) by [Mon, Theorems 3 and 4]. Since T contains `n1 ’s uniformly
the same holds for (T, |·|) by James’ `1-distortion theorem. Thus (T, |·|) admits almost ∆-points
by Lemma 3.1.18.

The following result, whose proof is clear from Proposition 3.1.12, covers a lot of classical
norms, and in particular uniformly smooth and uniformly convex ones.

Proposition 3.1.23. If X is uniformly non-square, then X does not admit almost ∆-points.

By Proposition 3.1.12 again, the unit ball of every non uniformly non-square norm admits
thin slices of diameter arbitrarily close to 2, so ruling out almost Daugavet- and ∆-points is
also non-trivial even in super-reflexive spaces. The following result is the main reason for the
introduction of the notions almost Daugavet- and almost ∆-points.

Proposition 3.1.24. Let X be a super-reflexive Banach space and let U be some free ultrafilter
on N. If X admits almost ∆- (resp. Daugavet-) points, then there exists x ∈ XU with ‖x‖ = 1
such that for any slice S of BXU containing x (resp. any slice S of BXU ) there exists y ∈ S
with ‖y‖ = 1 and ‖x− y‖ = 2.

In particular, if there exists a super-reflexive Banach space which admits almost ∆- (resp.
Daugavet-) point, then there exists a super-reflexive Banach space with a ∆- (resp. Daugavet-)
point.

Proof. Let U be a free ultrafilter on N. Since X is super-reflexive we have (XU)∗ = (X∗)U (see
e.g. [Hei, Proposition 7.1]). For each n ∈ N choose a (2− 1

n
) ∆-point xn ∈ BX . Let x = (xn)U .

We have ‖xn‖ ≥ 1− 1
n

hence ‖x‖ = limU ‖xn‖ = 1.
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Let x∗ = (x∗n)U with ‖x∗‖ = 1 and δ > 0. Assume that x ∈ S(x∗, δ). This means that there
is an η > 0 such that x∗(x) = limU x

∗
n(xn) > 1− δ + η and thus there is a set A ∈ U such that

x∗n(xn) > 1− δ + η = ‖x∗n‖ − (‖x∗n‖ − (1− δ + η)).

for every n ∈ A. In particular we have ‖x∗n‖ > 1− δ + η for these n and

xn ∈ Sn := {y ∈ BX : x∗n(y) > ‖x∗n‖ − (‖x∗n‖ − (1− δ + η))}.

We can then use the definition to find yn ∈ Sn with ‖xn − yn‖ ≥ 2− 1
n
. For n /∈ A we just let

yn = 0.
Now y = (yn) ∈ XU and

‖y‖ = lim
U
‖yn‖ ≥ lim

U
(‖xn − yn‖ − ‖xn‖) ≥ lim

U
(2− 1

n
− 1) = 1.

Finally we check that y is in the slice S(x∗, δ)

x∗(y) = lim
U
x∗n(yn) = lim

U
‖x∗n‖ lim

U

x∗n
‖x∗n‖

(yn) ≥ 1− δ + η > 1− δ.

For the in particular part we just note that ultrapowers of super-reflexive spaces are super-
reflexive by finite representability of XU in X.

By Proposition 3.1.24 we can thus restate Question 3.1.15 in the following way.

Question 3.1.25. Is it possible to find a super-reflexive space admitting almost ∆-points or
almost Daugavet-points?

In particular it would be interesting to investigate the following question.

Question 3.1.26. Is it possible to find a renorming of `2 with almost ∆-points or almost
Daugavet points?

Also note that proving that super-reflexive spaces do not admit ∆- (or Daugavet-) points
in general would immediately imply by Proposition 3.1.24 that super-reflexive spaces do not
admit almost ∆- (or Daugavet-) points.

3.2 Asymptotic smoothness and ∆-points

The goal of this section is to show that Banach spaces with an asymptotic uniformly smooth
norm do not admit ∆-points. Let us recall that for every x ∈ X, we write D(x) := {x∗ ∈ SX∗ :
x∗(x) = ‖x‖}. Also let us recall that if X is a Banach space and A is a bounded subset of X,
we denote by α(A) the Kuratowski measure of non-compactness of A which is defined as the
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infimum of ε > 0 such that A can be covered by a finite number of sets with diameters less
than ε, that is,

α(A) := inf

{
ε > 0 : A ⊂

n⋃
i=1

Ai, Ai ⊂ X, diam(Ai) < ε, i = 1, 2, . . . , n

}
.

Our first result connects the pointwise modulus of asymptotic smoothness ρX(t, x) at x ∈ SX
with the measure of non-compactness of the slices defined by x. In his thesis Dutrieux gave a
proof that a separable Banach space is AUS if and only if its dual is weak∗ uniformly Kadec–
Klee [Dut, Proposition 36]. Our proof of the following proposition follows closely part of the
proof given by Dutrieux, but we do not assume separability.

Proposition 3.2.1. Let X be a Banach space, and fix x ∈ SX and ε > 0. If there exists t > 0
such that ρ̄X(t, x)/t < ε, then we can find δ > 0 such that α(S(x, δ)) < 4ε.

To prove this proposition we will need two well known lemmas. The first lemma is from
[JLPS, Lemma 2.13]. A nice different proof can be found in the thesis of Dutrieux [Dut,
Lemma 38].

Lemma 3.2.2. Let X be a Banach space. For all Y ∈ cof(X) and all ε > 0, there exists a
compact set Kε such that BX ⊂ Kε + (2 + ε)BY .

The proof of the next lemma is simple using contradiction, so we skip it.

Lemma 3.2.3. Let X be a Banach space, let x∗ ∈ BX∗, and let ε > 0. If lim supα ‖x∗−x∗α‖ < ε

whenever (x∗α) ⊆ BX∗ and x∗α
w∗→ x∗, then there exists a weak∗-neighborhood V of x∗ such that

V ∩BX∗ ⊆ B(x∗, ε).

Proof of Proposition 3.2.1. Let us assume that ρ̄X(t, x)/t < ε and let us write δx = εt−ρ̄X(t, x).
We then have the following.

Claim. Take any δ < δx. For every x∗ ∈ S(x, δ) and every net (x∗α) ⊂ BX∗ such that
x∗α → x∗ weak∗ we have lim supα ‖x∗ − x∗α‖ < 2ε.

Before proving the claim let us see how to finish the proof. Pick any δ < δx and take δ′

such that δ < δ′ < δx. By the claim and by Lemma 3.2.3 we can find for every x∗ ∈ S(x, δ′) a
weak∗-neighborhood Vx∗ of x∗ with Vx∗ ∩BX∗ ⊆ B(x∗, 2ε). Then (Vx∗)x∗∈S(x,δ′) is an open cover
of S(x, δ′) and therefore an open cover of the weak∗ compact set S̄(x, δ). By compactness there
is a finite subcover.

Proof of the claim. Fix some δ < δx and let x∗ ∈ S(x, δ) and (x∗α) ⊂ BX∗ such that x∗α → x∗

weak∗. We will show that L = lim supα ‖x∗−x∗α‖ < 2ε. Again pick any δ′ such that δ < δ′ < δx.
By definition of δx we then have ρ̄X(t, x) < εt− δ′ so there exists Z ∈ cof(X) such that

sup
z∈BZ

‖x+ tz‖ ≤ 1 + εt− δ′.
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Now let Y = Z ∩ ker(x∗) and let η > 0. By Lemma 3.2.2 there exists a compact set K in
X such that BX ⊆ K + (2 + η)BY .

By compactness of K and boundedness of (x∗α) we have that x∗α → x∗ uniformly on K. We
may therefore choose β such that

• |〈x∗β − x∗, k〉| < η for all k ∈ K;

• x∗β(x) > 1− δ;

• |‖x∗β − x∗‖ − L| < η.

Choose xβ ∈ SX such that 〈x∗β − x∗, xβ〉 > L − η. Now write xβ = kβ + (2 + η)yβ with
kβ ∈ K and yβ ∈ BY . We get

x∗β(yβ) = 〈x∗β − x∗, yβ〉 =
〈x∗β − x∗, xβ〉 − 〈x∗β − x∗, kβ〉

2 + η
>
L− 2η

2 + η

since yβ ∈ ker(x∗). Therefore

1− δ +
t(L− 2η)

2 + η
< 〈x∗β, x〉+

t(L− 2η)

2 + η
< 〈x∗β, x+ tyβ〉 ≤ ‖x+ tyβ‖ ≤ 1 + εt− δ′.

Finally
L− 2η < (2 + η)(ε− θ)

with θ = δ′−δ
t
> 0. Since η > 0 was arbitrary we get L ≤ 2(ε− θ) < 2ε as desired.

As an immediate corollary we get.

Corollary 3.2.4. Let X be a Banach space and let x ∈ SX be an asymptotically smooth point,
that is a point for which limt→0

ρX(t,x)
t

= 0. Then limδ→0 α(S(x, δ)) = 0.

We will now show that this condition on the Kuratowski index of the slices S(x, δ) prevents
the point x to be a ∆-point. In fact it appears that this is the case as soon as one of the slices
S(x, δ) admits a non-trivial covering by finitely many balls. In order to prove this result, we
will need the following refinement of Lemma 3.1.3.

Lemma 3.2.5. Let n ≥ 1, x∗1, . . . , x
∗
n ∈ SX∗, and δ > 0. Define δ′ := δ

2n
. If

∥∥ 1
n

∑n
i=1 x

∗
i

∥∥ >
1− δ′, then

S

(
1

n

n∑
i=1

x∗i , δ
′
)
⊂

n⋂
i=1

S(x∗i , δ).

The proof is similar to the one of Lemma 3.1.3 and we leave the details to the reader. We
now state and proof the announced result.

Theorem 3.2.6. Let X be a Banach space and let x ∈ SX . If there exists a δ > 0 such that
α(S(x, δ)) < 2, then x is not a ∆-point.

Proof. Take δ0 > 0 and ε ∈ (0, 2) such that α (S(x, δ0)) < ε, pick any δ ≤ δ0 such that ε+δ < 2,
and let η = 2 − (ε + δ). We have α (S(x, δ)) ≤ α (S(x, δ0)) < ε, so we can find n ≥ 1 and
non-empty subsets A1, . . . , An of X∗ with diameter smaller than ε such that S(x, δ) ⊂

⋃n
i=1 Ai.

By an easy refinement we obtain the following.
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Claim. For every δ′ ≤ δ, we can find 1 ≤ m ≤ n and y∗1, . . . , y
∗
m ∈ X∗ such that

1. y∗j ∈ SX∗ ∩ S(x, δ′) for every 1 ≤ j ≤ m;

2. SX∗ ∩ S(x, δ′) ⊂
⋃m
j=1B(y∗j , ε).

Proof of the Claim. For any δ′ ≤ δ, we have SX∗ ∩ S(x, δ′) ⊂
⋃n
i=1Ai. Now this set is not

empty since it contains D(x), and the set J = {1 ≤ i ≤ n : (SX∗ ∩S(x, δ′))∩Ai 6= ∅} thus has
cardinality |J | = m for some 1 ≤ m ≤ n.

Picking for every j ∈ J an element y∗j ∈ (SX∗ ∩ S(x, δ′)) ∩ Aj, we obtain SX∗ ∩ S(x, δ′) ⊂⋃
j∈J Aj ⊂

⋃
j∈J B(y∗j , ε) since Aj has diameter smaller than ε, and the conclusion follows

(relabelling the y∗j ’s if necessary).

Now let us find 1 ≤ m ≤ n and y∗1, . . . y
∗
m ∈ SX∗ as in the Claim for δ′ = δ

2n
, and let us define

y∗ = 1
m

∑m
j=1 y

∗
j . Since y∗j (x) > 1− δ′ for every 1 ≤ j ≤ m, we have y∗(x) > 1− δ′ ≥ ‖y∗‖ − δ′

so that x ∈ S (y∗, δ′) and ‖y∗‖ > 1− δ′ ≥ 1− δ
2m

. It thus follows from Lemma 3.2.5 that

S

(
y∗,

δ

2m

)
⊂

m⋂
j=1

S(y∗j , δ)

and as a consequence we have

x ∈ S (y∗, δ′) ⊂
m⋂
j=1

S(y∗j , δ).

To conclude, let us take y ∈ S(y∗, δ′), and let us take z∗ ∈ SX∗ such that ‖x− y‖ = z∗(x−y).
We distinguish two cases.

Case 1: If z∗(x) > 1− δ′, then

z∗ ∈ SX∗ ∩ S (x, δ′) ⊂
m⋃
j=1

B(y∗j , ε)

so there exists j0 ∈ {1, . . . ,m} such that ‖z∗ − y∗j0‖ ≤ ε. Now we have y ∈ S(y∗j0 , δ) by the
above inclusion so that

‖x− y‖ = z∗(x) + (y∗j0 − z
∗)(y)− y∗j0(y) ≤ 1 + ε− (1− δ) = ε+ δ = 2− η.

Case 2: If z∗(x) ≤ 1− δ′, we have

‖x− y‖ = z∗(x)− z∗(y) ≤ 1− δ′ + 1 = 2− δ′.

Combining the two cases we obtain ‖x − y‖ ≤ max{2 − δ′, 2 − η} and x cannot be a
∆-point.

Combining Theorem 3.2.6 and Proposition 3.2.1 we then get
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Proposition 3.2.7. Let X be a Banach space and let x ∈ SX satisfy ρX(t, x) < t
2

for some
t > 0. Then x is not a ∆-point.

In particular no asymptotically smooth point can be a ∆-point and we obtain the following
result.

Theorem 3.2.8. Let X be an AUS Banach space. Then X does not admit a ∆-point.

Since property AUS passes to subspaces and quotients (see Remark 1.1.2) we do have that
any subspace or quotient of c0 fails to contain ∆-points. More generally any subspace of quotient
of a Banach space with property (M∗) fails to contain ∆-points.

Recall that a Banach space has Kalton’s property (M) if whenever x, y ∈ X with ‖x‖ = ‖y‖
and (xα) is a bounded weakly null net in X, then

lim sup
α
‖x+ xα‖ = lim sup

α
‖y + xα‖.

Similarly X has property (M∗) if whenever x∗, y∗ ∈ X∗ with ‖x∗‖ = ‖y∗‖ and (x∗α) is a bounded
weak∗ null net in X∗, then

lim sup
α
‖x∗ + x∗α‖ = lim sup

α
‖y∗ + x∗α‖.

If X has property (M∗), then X has property (M) and X is an M -ideal in X∗∗ (see e.g. [HWW,
Proposition VI.4.15]) that is X is M -embedded. In particular, X is an Asplund space (see e.g.
[HWW, Theorem III.3.1]). Also it is well known that property (M∗) is inherited by both
subspaces and quotients (see e.g. [Oja2]) and by chasing references we find that the following
proposition holds.

Proposition 3.2.9. Assume a Banach space X has property (M). The following are equivalent:

1. X is AUS;

2. X contains no copy of `1;

3. X has property (M∗).

Proof. 1 ⇒ 2. If X is AUS, then X is Asplund (see e.g. [JLPS, Proposition 2.4]). Hence X
contains no copy of `1.

2⇒ 3. If X contains no copy of `1, then no separable subspace of X can contain `1. Clearly
every separable closed subspace of X has property (M) (both net and sequential version, see
[Oja1, Proposition 1]) and then they all have property (M∗) (both net and sequential version)
by Theorem 2.6 in [KW]. Finally X has property (M∗) if every separable closed subspace does
[Oja2, Proposition 3.1].

3⇒ 1. Dutta and Godard [DG] proved that if X is a separable Banach space with property
(M∗), then X is AUS. However, using property (M∗) and Proposition 2.2 in [GLR] one finds
ρ̄X(t, x) = ρ̄X(t) for all x ∈ SX and their proof also works in the non-separable case.
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Note that there are M -embedded spaces which are not AUS. For example the Schreier
space S is not AUS since it does not have property (M∗). Indeed, if a Banach space X has
property (M∗), then the relative norm and weak∗ topologies on SX∗ coincide (see e.g. [HWW,
Proposition VI.4.15]). But if (ei) is the unit vector basis in S and (e∗i ) the the biorthogonal
functionals in the dual, then e∗2 + e∗i ∈ SS∗ and converges weak∗ to e∗2, but not in norm. Note
however that S does admit ∆-points by Proposition 2.15 in [ALMT].

Looking back at Example 1.1.26 we also have that any subspace or quotient of a Banach
space with an FDD admitting block upper `p or of the predual of a Banach space with an FDD
admitting lower `q estimates fails to contain ∆-points. This applies in particular to subspaces
and quotients of the predual JT∗ of the James tree space (see Section 3.4) or of duals B∗p of
Baernstein spaces (see Example 1.1.24).

3.3 Asymptotic convexity

The main result of this section is that reflexive AUC spaces do not admit ∆-points. The proof
uses the characterization of reflexive AUC spaces in terms of the measure of non-compactness
of slices and relies on the following result of Kuratowski (see e.g. [BM, p. 151])

Lemma 3.3.1. Let (M,d) be complete metric space. If (Fn) is a decreasing sequence of non-
empty, closed, and bounded subsets of M such that limn α(Fn) = 0, then the intersection F∞ =⋂∞
n=1 Fn is a non-empty compact subset of M .

A Banach space X has Rolewicz’ property (α) if for every x∗ ∈ SX∗ and ε > 0 there exists
δ > 0 such that α(S(x∗, δ)) ≤ ε. We say that X has uniform property (α) if the same δ works
for all x∗ ∈ SX∗ . These properties were introduced by Rolewicz in [Rol]. If X has Rolewicz’
property (α), then it is reflexive (see e.g. [Mon]).

Implicit in Rolewicz [Rol, Theorem 3] is the result that X is AUC and reflexive if and only
if X has uniform property (α) (Rolewicz uses the term “X is ∆-uniformly convex” instead of
X is AUC and reflexive). Note that this is contained in Lemma 1.2.14. It is also known that X
is AUC and reflexive if and only if X is nearly uniformly convex (NUC) [Huf]. The difference
between these two types of uniform convexity is that they use different (but equivalent) measures
of non-compactness.

We also note that for dual spaces we have that if X∗ is AUC∗ then X∗ is has weak∗ uniform
property (α), that is, for all ε > 0 there exists δ > 0 such that α(S(x, δ)) ≤ ε for all x ∈ SX
(this is Lemma 1.2.14). Our Corollary 3.2.4 is a pointwise version of this result. Lennard [Len,
Proposition 1.3] states that X∗ has the weak∗ version of the uniform Kadec–Klee property if
and only if X∗ has weak∗ uniform property (α). Note that Lennard credits this result to Sims
and he uses a different measure of non-compactness.

Let us first prove a pointwise version of the main result.

Theorem 3.3.2. Let X be a Banach space and x ∈ SX . If there exists x∗0 ∈ D(x) such that
limδ→0 α(S(x∗0, δ)) = 0, then x is not a ∆-point.
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Proof. Let x ∈ SX be such that there exists x∗0 ∈ D(x) with limδ→0 α(S(x∗0, δ)) = 0 and let us
assume for contradiction that x is a ∆-point.

Define a set of functionals norming x by

D0(x) :=

{
fx∗ :=

x∗ + x∗0
2

: x∗ ∈ D(x)

}
.

If δ > 0 and f = fx∗ ∈ D0(x), then by Lemma 3.1.3

S

(
f,
δ

2

)
= S

(
x∗ + x∗0

2
,
δ

2

)
⊂ S(x∗, δ) ∩ S(x∗0, δ)

and therefore limδ→0 α(S(f, δ)) = limδ→0 α(S(f, δ)) = 0 for all f ∈ D0(x).
Given f ∈ D0(x) and a sequence (δn) ⊆ (0, 1) decreasing to 0 we define for each n

F f
n := S(f, δn) ∩∆δn(x).

Each F f
n is a closed non-empty subset of BX with α(F f

n )→ 0 hence F f = ∩nF f
n is non-empty

and compact for every f ∈ D0(x) by Lemma 3.3.1. Using a compactness argument we can then
prove the following.

Claim.
F :=

⋂
f∈D0(x)

F f 6= ∅.

Before proving this claim let us see that it will give us the desired conclusion. Indeed, if
z ∈ F , then ‖x− z‖ = 2 and for all f ∈ D0(x) we must have f(z) = 1, in particular x∗0(z) = 1.
But this is nonsense since for any x∗ ∈ SX∗ with x∗(x − z) = 2 we must have x∗(x) = 1 and
x∗(z) = −1, so

1 = fx∗(x) =
x∗ + x∗0

2
(z) =

−1 + 1

2
= 0.

This contradiction shows that x is not a ∆-point. To finish the proof we only need to prove
the claim that F 6= ∅.

Proof of the Claim. It is enough to show that (F f )f∈D0(x) has the finite intersection property
since all the sets F f are compact and non-empty. So let f1, . . . , fk ∈ D0(x), which means

fj =
x∗j+x∗0

2
for x∗j ∈ D(x), and define f = 1

k

∑k
j=1 fj = 1

2

(
x∗0 + 1

k

∑k
j=1 x

∗
j

)
.

Clearly f ∈ D0(x). By Lemma 3.1.3 we have for all δ > 0

S

(
f,
δ

k

)
⊂

k⋂
j=1

S(fj, δ)

and hence

S

(
f,
δ

k

)
∩∆ δ

k
(x) ⊂

k⋂
j=1

S(fj, δ) ∩∆δ(x).
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Since (δn) is decreasing to 0 there must for any n exist m with δm < δn/k. By the above
inclusion we thus get

F f
m ⊂

k⋂
j=1

F fj
n

and hence by commutativity of intersections

∅ 6= F f =
⋂
n

F f
n ⊆

k⋂
j=1

⋂
n

F fj
n =

k⋂
j=1

F fj

and the claim is proved.

From Theorem 3.3.2 we immediately get.

Theorem 3.3.3. If X has Rolewicz’ property (α), then X does not have ∆-points.

As we noted above a Banach space X is reflexive and AUC if and only if it has uniform
property (α). Also finite-dimensional spaces are trivially AUC since for example α(S(x∗, δ)) = 0
for slices of BX in finite-dimensional spaces.

Theorem 3.3.4. If X is reflexive and AUC, then X does not have ∆-points.
In particular, if X is finite-dimensional then X does not have ∆-points.

Remark 3.3.5. Let X be a Banach space such that for every x ∈ SX there exists x∗ ∈ D(x)
with limδ→0 α(S(x∗, δ)) = 0. Then by Theorem 3.3.2 X does not admit a ∆-point. Note that
unlike Rolewicz’ property (α) (see [Rol]) this property does not imply reflexivity.

Indeed, every separable Banach space has an equivalent locally uniformly rotund renorming
and if (the norm of) X is locally uniformly rotund, then every x ∈ SX is strongly exposed by
x∗ ∈ D(x) so that for all ε > 0 there exists δ > 0 such that S(x∗, δ) has diameter less than ε.
In particular, α(S(x∗, δ)) < ε.

Together with the results from Section 3.1 we also obtain.

Corollary 3.3.6. If X is finite dimensional, then it does not admit almost ∆-points.

Proof. This is an immediate consequence of Proposition 3.1.24 since finite dimensional spaces do
not admit ∆-points and since any ultrapower of a finite dimensional space is trivially identified
with the space itself (under the diagonal map).

Using the duality AUS/AUC in reflexive spaces we can in fact combine Theorem 3.2.8 and
3.3.4.

Corollary 3.3.7. If X is reflexive and AUC, then neither X nor X∗ admit ∆-points.
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In particular we can apply this result to Baernstein’s spaces Bp (1 < p <∞) from Example
1.1.24. Let us recall that the space B = B2 was originally introduced in [Bae] as an example of
a reflexive space failing the Banach–Saks property. It is known to have a normalized (uncon-
ditional) basis with block lower `2 estimates and thus to be 2-AUC (see [Par, Theorem 3] with
the NUC terminology). Also the optimal modulus of near convexity of B has been estimated
in [BOS]. From our preceding results the space Bp and its dual space B∗p both fail to have
∆-points.

Here is a pointwise application of Theorem 3.3.2.

Corollary 3.3.8. Let X be a Banach space and let x∗ ∈ SX∗ be a norm one functional which
attains its norm at some x ∈ SX . If limt→0

ρ(t,x)
t

= 0, then x∗ is not a ∆-point.

Proof. By Corollary 3.2.4 we have limδ→0 α(S(x, δ)) = 0 and the conclusion follows directly
from Theorem 3.3.2 since x ∈ D(x∗).

Let X be a Banach space. An element x ∈ BX is said to be a quasi denting-point if given
ε > 0, there exists x∗ ∈ SX∗ and δ > 0 with x ∈ S(x∗, δ) such that α(S(x∗, δ)) < ε. Recall that
x is a denting-point if the above can be strengthened to S(x∗, δ) ⊂ B(x, ε). In dual spaces one
can similarly define weak∗ (quasi) denting-points by requiring x∗ to be weak∗ continuous. Giles
and Moors [GM2] introduced quasi denting-points (under the name α denting-points) see e.g.
[MMT] or [Tro].

Let X be a Banach space such that the dual is AUC∗, then every x∗ ∈ SX∗ is a quasi
denting-point. This is essentially contained in e.g. [HL, Proposition 4.8], but we include the
straightforward argument. As mentioned in Section 1.2, AUC∗ is equivalent to the following
generalized version of UKK∗: for every ε > 0 there exists δ > 0 such that if x∗ ∈ BX∗ and all
weak∗ neighborhoods V of x∗ satisfy diam(V ∩ BX∗) > ε, then ‖x∗‖ ≤ 1 − δ. Now fix ε > 0
and choose δ > 0 as above. If x∗ ∈ SX∗ , then we can find x ∈ SX with x∗(x) > 1 − δ. Let
0 < δ′ < δ. If y∗ ∈ S(x, δ), then ‖y∗‖ > 1− δ and there exists a weak∗ open neighborhood Vy∗
of y∗ with diam(Vy∗ ∩ BX∗) ≤ ε. We therefore have an open cover of the weak∗ compact set
S̄(x, δ′) and by compactness we have a finite cover and hence x∗ is a weak∗ quasi denting-point.

If the dual X∗ is AUC∗, then X is AUS and by Corollary 3.3.8 no norm-attaining x∗ ∈ SX∗
can be a ∆-point, but we do not know if a weak∗ quasi-denting point, or more generally a quasi
denting-point, can be a Daugavet-point or a ∆-point. For non-reflexive AUC spaces, we do not
even know if every element of the unit sphere is quasi denting.

We end the section with a few more partial results concerning AUC∗ duals. We recall that
X has the Krein-Milman property (KMP in short) if every non empty bounded closed convex
set in X has an extreme point.

Proposition 3.3.9. Let X be a Banach space with the KMP and assume that every extreme
point of BX is denting. Then X does not admit Daugavet-points.

Proof. For a point x ∈ BX we denote

Fx :=
⋂

f∈D(x)

{y ∈ BX : f(y) = f(x)} .
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This is a non-empty closed convex bounded set, so it admits an extreme point y ∈ Fx. Moreover
it is an extremal set of BX so it follows that y ∈ ext(BX). Now our hypothesis yields that
y ∈ dent(BX) so if x is a Daugavet point, we get ‖x− y‖ = 2. Let f ∈ SX∗ be norming for
x− y. Then we must have f(x) = 1 and f(y) = −1. But since y ∈ Fx we also have f(y) = 1,
which is a contradiction.

Remark 3.3.10. Let us recall that a point x ∈ BX is a point of weak-to-norm continuity (in
short point of continuity) if the identity map idX : (BX , σ(X,X∗)) → (BX , ‖.‖) is continuous
at the point x. Lin, Lin, and Troyanski proved in [LLT] that an extreme point of continuity
in a bounded closed convex subset of a Banach space is a denting point. Thus one can replace
denting points by points of continuity on the unit sphere in the assumptions in Proposition 3.3.9.

We have a weak∗ analogue of Proposition 3.3.9 for weak∗ Daugavet-points when every ex-
treme point of BX∗ is weak∗ denting, or equivalently is a point of weak∗-to-norm continuity.
Note that Huff and Morris showed in [HM] that KMP and RNP are equivalent for dual spaces.
In particular we obtain the following result.

Corollary 3.3.11. Let X be a Banach space and let us assume that X∗ is AUC∗. Then X∗

does not admit weak∗ Daugavet-points.

Proof. By Theorem 1.2.4 a dual AUC∗ space has the RNP and thus the KMP. Moreover any
point x∗ ∈ SX∗ in such space is a point of weak∗-to-norm continuity so that every extreme point
in BX∗ is weak∗ denting (this is an easy consequence of Choquet’s lemma). The conclusion
follows from the weak∗ version of the above proposition.

3.4 Delta-points in the James tree space

Let T = {∅} ∪
⋃
n≥1{0, 1}n be the infinite binary tree and let us denote by ≤ the natural

ordering on T . A totally ordered subset S of T is called a segment if it satisfies:

∀s, t ∈ S, [s, t] = {u ∈ T : s ≤ u ≤ t} ⊂ S.

An infinite segment of T is also called a branch of T . Let us denote by F the set of all finite
families of disjoint segments in T . The James tree space JT is define as follows:

JT =

{
x = (xs)s∈T ⊂ R : ‖x‖2

JT = sup
F∈F

∑
S∈F

x2
S <∞

}

where xS =
∑

s∈S xs for every non-empty segment S and x∅ = 0.
It is well known that JT is a Banach space and that the set of canonical unit vectors {et}t∈T

of c00(T ) forms, for the lexicographic order, a normalized monotone boundedly complete basis
of JT . Moreover, it is also known that the closed linear span JT∗ = [e∗t ]t∈T of the set of
biorthogonal functionals in JT ∗ is a unique isometric predual of JT . If S is a segment of T
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or if β is a branch of T we will sometimes refer to the set {es}s∈S as a segment of JT and
the set {et}t∈β as a branch of JT . From the definition of the norm, it is easy to show that
‖x+ y‖2

JT ≥ ‖x‖
2
JT + ‖y‖2

JT whenever x, y ∈ JT have totally disconnected supports (that is if
conv(suppT x) ∩ conv(suppT y) = ∅). Since we are working with the lexicographic order on T ,
this applies whenever suppx < supp y with respect to the ordering of the basis, and {et}t∈T thus
satisfies block lower `2 estimates as stated in Example 1.1.26. It follows that JT is 2-AUC∗ and
Corollary 3.3.11 combined with Theorem 3.2.8 applied to the 2-AUS JT∗ yields the following
result.

Theorem 3.4.1. The space JT does not admit weak∗ Daugavet-points. The predual JT∗ of the
James tree space does not admit ∆-points.

Let us also emphasize that ‖x‖JT ≥ ‖x‖`2 for every x ∈ JT . It is also worth mentioning

that if one consider the equivalent norm ‖x‖2 = supS1<···<Sn
∑n

i=1 x
2
Si

on the James space J ,
where the Si are segments of N, then one obtains a Banach space isometric to the closed linear
span [et]t∈β of any branch of JT . In particular all the results we will obtain for the space JT
will also apply to (J, ‖.‖).

As we see from Proposition 3.1.12 the unit ball of spaces that are not uniformly non-square
contain thin slices of diameter arbitrary close to 2. Let us start by illustrating this by exhibiting
slices of diameter 2 in JT.

Proposition 3.4.2. For every δ > 0 we can find some x∗ ∈ SJT ∗ such that diamS(x∗, δ) = 2
and the diameter is attained.

Proof. For convenience let us work in the space (J, ‖.‖) introduced above. Doing the same
construction on any branch (xt)t∈β of JT would do the work for JT .

Fix δ > 0, fix n ≥ 1, and let

x =
1√
n

n∑
i=1

(−1)i+1e2i−1 =
1√
n

(1, 0,−1, 0, . . . ,−1, 0, 0, 0, . . .)

and

y =
1√
n

n∑
i=1

(−1)ie2i =
1√
n

(0,−1, 0, 1, . . . , 0, 1, 0, 0, . . .)

so that

x− y =
1√
n

(1, 1,−1,−1, . . . ,−1,−1, 0, 0, . . .)

and

x+ y =
1√
n

(1,−1,−1, 1, 1, . . . ,−1,−1, 1, 0, 0, . . .).

It is easy to check that ‖x‖ = ‖y‖ = 1, ‖x− y‖ = 2, and ‖x+ y‖ =
√

1+(n−1)×22+1
n

=√
4− 2

n
.
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By assuming that n was chosen large enough so that
√

4− 2
n
> 2 − δ and by choosing a

norming functional x∗ ∈ SJ∗ for x + y we then have x∗(x + y) = ‖x+ y‖ > 2 − δ and this
implies that x, y ∈ S(x∗, δ). Since ‖x− y‖ = 2 the conclusion follows.

We start by showing that the elements of the basis of JT are weak∗ denting (and even
strongly exposed by an element of the predual) and then use this to give a simple proof of the
fact that JT does not admit weak∗ Daugavet-points.

Lemma 3.4.3. For each t ∈ T , limδ→0 diamS(e∗t , δ) = 0.

Proof. Let us fix t ∈ T and δ > 0, and let us take y ∈ S(e∗t , δ). By the triangle inequality, we
have

‖y − et‖JT ≤ ‖y − ytet‖JT + (1− yt) ≤ ‖y − ytet‖JT + δ

so we only need to estimate ‖y − ytet‖JT .
If t is not in the support of a family F ∈ F , that is if t /∈

⋃
S∈F S, then the segment {t} is

disjoint from all the segments in F and we have

y2
t +

∑
S∈F

(y − ytet)2
S = y2

t +
∑
S∈F

y2
S ≤ ‖y‖

2
JT ≤ 1

so that ∑
S∈F

(y − ytet)2
S ≤ 1− (1− δ)2 ≤ 2δ.

Now if we take any segment S of T containing t, we can write S = S− ∪ {t} ∪ S+ with
S− < {t} < S+ segments of T , and by the preceding computations we have

(y − ytet)2
S ≤ y2

S− + y2
S+ + 2

√
y2
S−y

2
S+ ≤ 6δ.

By combining the two observations we get
∑

S∈F (y − ytet)
2
S ≤ 8δ for every F ∈ F , that is

‖y − ytet‖2
JT ≤ 8δ. The conclusion follows.

Corollary 3.4.4. The space JT does not admit weak∗ Daugavet-points.

Proof. Let us fix x ∈ SJT . If x = et for some t ∈ T then x is a weak∗ denting point by the
preceding lemma and x cannot be a weak∗ Daugavet-point. So let us assume that x is not of
that form and let us take t ∈ T such that xt 6= 0 and xs = 0 for every s < t.

Now let us write xt = θα with α ∈ (0, 1) and θ ∈ {−1, 1}. Because of the choice of t we
clearly have

‖x− xtet‖2
JT = sup

F∈Ft

n∑
S∈F

x2
S

where Ft is the set of finite families of disjoint segments of T not intersecting [∅, t]. Since

x2
t +

∑
S∈F

x2
S ≤ ‖x‖

2
JT
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for every such family we obtain

‖x− xtet‖2
JT ≤ 1− α2 < 1.

Thus
‖x− θet‖JT ≤ ‖x− xtet‖JT + (1− α) ≤ 2− α

so that x is at distance strictly less than 2 from a (weak∗) denting point of JT . The conclusion
follows from a weak∗ version of [JRZ, Proposition 3.1].

Now we will show that JT does not admit ∆-points. For this purpose let us introduce some
more notations. Let us write F∞ for the set of (finite or infinite) families of disjoint segments
in T . Note that every infinite F ∈ F∞ has to be countable. For any segment S of T , let us
write 1S =

∑
s∈S e

∗
s. A molecule in JT ∗ is an element of the form

∑
i≥1 λi1Si where {Si} ∈ F∞

and λ = (λi) ∈ B`2 . The molecule is finite if the family {Si} contains only finitely many non-
empty segments, and we will write M (resp. M∞) for the set of finite (resp. finite or infinite)
molecules of JT ∗.

Molecules play an important role in the study of the space JT because they turn computa-
tions in JT into computations in `2 and because of the following result due to Schachermayer
[Sch, Proposition 2.2].

Theorem 3.4.5. The unit ball BJT ∗ of the dual of JT is the norm closed convex hull of M.

Remark 3.4.6. It is also known that M∞ is the weak∗ closure of M in BJT ∗ .

We will use some specific molecules to provide norming functionals for elements of SJT . For
x ∈ SJT and F ∈ F∞, let us write mx,F =

∑
S∈F xS1S. Since

∑
S∈F x

2
S ≤ ‖x‖JT = 1, those

elements are molecules in JT ∗. Moreover, we have the following result.

Lemma 3.4.7. Let us assume that
∑

S∈F x
2
S = ‖x‖JT = 1. Then the molecule mx,F belongs

to D(x) (that is, it is a norm one functional and it norms x). Moreover, if y ∈ S(mx,F , δ) for
some δ > 0, then we have ∑

S∈F

(xS − yS)2 ≤ 2δ.

Proof. The key observation here is that for every y ∈ JT , we have

mx,F (y) =
∑
S∈F

xSyS = 〈(xS)S∈F , (yS)S∈F 〉`2 .

In particular we have, by the Cauchy–Schwartz inequality,

|mx,F (y)| ≤ ‖(xS)S∈F‖`2 ‖(yS)S∈F‖`2 ≤ ‖x‖JT ‖y‖JT ,

so ‖mx,F‖JT ∗ ≤ 1. By assumption mx,F (x) = ‖(xS)S∈F‖2
`2

= 1 and the first part of the lemma
follows.
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Now y ∈ S(mx,F , δ) if and only if 〈(xS)S∈F , (yS)S∈F 〉`2 > 1−δ and thus every y in S(mx,F , δ)
satisfy

‖(xS − yS)S∈F‖2
`2

= ‖(xS)S∈F‖2
`2

+ ‖(xS)S∈F‖2
`2
− 2〈(xS)S∈F , (yS)S∈F 〉`2

≤ 2− 2(1− δ) = 2δ.

Note that it is not obvious at first that such a norm attaining family exists. We will first
do a warm up with finitely supported elements in JT for which this is obvious, and then prove
it in a lemma.

Proposition 3.4.8. Let x ∈ SJT be an element of finite support. Then x is not a weak∗

∆-point.

Proof. Let x ∈ SJT be an element of finite support Σ and let FΣ be the set of families of disjoint
segments of the convex hull of Σ in T (that is the smaller subset of T containing [s, t] for every
s ≤ t in Σ). Then FΣ is finite and we have

‖x‖2
JT = max

F∈FΣ

∑
S∈F

x2
S.

Now let D = {F ∈ FΣ :
∑

S∈F x
2
S = 1}. The set D is a non-empty subset of FΣ and since this

set is finite we can find a constant ηx > 0 such that for every F ∈ FΣ\D we have∑
S∈F

x2
S < (1− ηx)2.

Let us introduce x∗ = 1
|D|
∑

F∈Dmx,F where mx,F is the molecule associated to x and F .

For every F ∈ D, the molecule mx,F is in D(x) by the preceding lemma, and by Lemma 3.1.3
we know that x∗ is in D(x) and that for every choice of a δ > 0 we have

S

(
x∗,

δ

n

)
⊂
⋂
F∈D

S(mx,F , δ).

To conclude choose any δ ∈ (0, 1) and let us take y ∈ S
(
x∗, δ

n

)
. If F ∈ F does not belong to

D, then by Minkowski’s inequality we have

∑
S∈F

(xS − yS)2 ≤

√∑
S∈F

x2
S +

√∑
S∈F

y2
S

2

≤ (2− ηx)2.

Now if F ∈ D we have y ∈ S(mx,F , δ) and by the preceding lemma we get∑
S∈F

(xS − yS)2 ≤ 2δ.

Finally ‖x− y‖JT ≤ max{2− ηx,
√

2δ} and this quantity is strictly less than 2 since δ < 1. To
conclude, note that x∗ ∈ JT∗ since all the segments involved in the construction are finite.
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To tackle the other elements of JT we first need to ensure the existence of norm attaining
(possibly infinite) families.

Lemma 3.4.9. Let x ∈ SJT . Then there is an F ∈ F∞ such that
∑

S∈F x
2
S = 1.

Proof. Let x ∈ SJT . By Krein–Milman x attains its norm on an extreme point x∗ ∈ BJT∗. By
Milman’s converse, Lemma 3.4.5 and Remark 3.4.6, x∗ ∈M∞, so we can write x∗ =

∑
i≥1 λi1Si

for some λ = (λi) in B`2 and {Si} in F∞. To conclude, consider µ = (xSi) in B`2 and observe
that

〈λ, µ〉`2 = x∗(x) = 1,

so λ strongly exposes µ in B`2 . Thus λ = µ and ‖µ‖`2 = 1 which is precisely the desired
result.

For every x ∈ SJT let us introduce D(x) = {F ∈ F∞ :
∑

S∈F x
2
S = 1}. By the preceding

lemma D(x) is non-empty, but it does not need to be finite. To get around this problem we
will consider the restriction of families in D(x) to a subtree of finite level. So for every N ≥ 1
let us write TN = level[0, N ] = {∅} ∪

⋃N
n=1{0, 1}n the binary tree of height N and let us write

DN(x) = {F ∩ TN : F ∈ D(x)} where F ∩ TN = {S ∩ TN : S ∈ F}. Then DN(x) is a finite
non-empty set and we have, similarly to the finite support case, the following lemma.

Lemma 3.4.10. For every x ∈ SJT and for every N ≥ 1, there is a constant ηx,N > 0 such
that

∑
S∈F x

2
S < (1− ηx,N)2 for every F in F for which F ∩ TN does not belong to DN(x).

Proof. If this was not true, then since F ∩ TN is also finite we could find a family F ∈ F of
segments of TN not belonging to DN(x) and a sequence (Fi)i≥1 ⊂ F such that Fi∩TN = F and∑

S∈Fi x
2
S >

(
1− 1

i

)2
for every i ≥ 1. Using a compactness argument (weak∗ extractions for the

sequence of corresponding molecules in BJT ∗ and metrizability of the weak∗ topology on BJT ∗)
we would then obtain a family G ∈ F∞ for which

∑
S∈G x

2
S = 1 and such that G ∩ TN = F .

But then this would mean that F ∈ DN(x) and we would get a contradiction.

We will need a last easy fact which states that any x ∈ SJT has its norm almost concentrated
on a subtree of finite level. The proof is elementary and comes from the definition of the norm
of JT .

Lemma 3.4.11. Let x ∈ SJT and let ε > 0. There is an N ≥ 1 such that for every family
F ∈ F∞ of segments of T which do not intersect TN one has

∑
S∈F x

2
S ≤ ε2.

With those tools in hand we can now prove the main result of this section.

Theorem 3.4.12. Let x ∈ SJT . Then x is not a ∆-point.

Proof. Let us fix some x ∈ SJT and let us assume that x has infinite support. Let us also fix
some ε > 0 and let us take some N ≥ 1 for which x is almost concentrated on TN in the sense
of the previous lemma.

For every F in DN(x) we pick a representative family FR in D(x) which satisfy FR∩TN = F .
This means that for every S ∈ F there is (a unique) SR ∈ FR such that SR ∩ TN = S. For
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every such F we define x∗F = mx,FR to be the molecule associated to x and FR and we let x∗ be
the average of the x∗F s with F ∈ DN(x). Since each x∗F is in D(x), Lemma 3.1.3 tells us that
x∗ ∈ D(x) and that

S

(
x∗,

ε2

2n

)
⊂

⋂
F∈DN (x)

S

(
x∗F ,

ε2

2

)
for n = |DN(x)|. We now want to get a uniform bound for ‖x− y‖JT on S

(
x∗, ε

2

2n

)
.

So let us take y ∈ S
(
x∗, ε

2

2n

)
and let us fix some G ∈ F . First observe that Lemma 3.4.10

allows us to get rid of the case G ∩ TN /∈ DN(x) exactly as in the finite support proof because
it yields ∑

S∈G

(xS − yS)2 ≤ (2− ηx,N)2.

So let us assume that F = G∩ TN belongs to DN(x). We will split the family G into 4 disjoint
subfamilies Gi, 1 ≤ i ≤ 4, and we will estimate separately the sums

∑
S∈Gi(xS − yS)2. For this

we will use repeatedly the two following inequalities.

Claim A. Let H be a subfamily of FR. Then∑
S∈H

(xS − yS)2 ≤ ε2.

Proof of claim A. Since segments in H are in FR and since y ∈ S
(
x∗F ,

ε2

2

)
with x∗F = mx,FR

Lemma 3.4.7 yields ∑
S∈H

(xS − yS)2 ≤
∑
S∈FR

(xS − yS)2 ≤ 2ε2

2
= ε2.

Claim B. Let H be a family of disjoint segments of T which do not intersect TN . Then∑
S∈H

(xS − yS)2 ≤
∑
S∈H

y2
S + ε2 + 2ε.

Proof of claim B. Since segments in H do not intersect TN we have, by our initial choice of N ,∑
S∈H x

2
S ≤ ε2 and so using Minkowski’s inequality∑

S∈H

(xS − yS)2 ≤
∑
S∈H

x2
S +

∑
S∈H

y2
S + 2

√∑
S∈H

x2
S

√∑
S∈H

y2
S

≤
∑
S∈H

y2
S + ε2 + 2ε.

Now let us split the family G and let us start the computations of the corresponding sums.
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Claim 1. Let G1 = {S ∈ G : S ⊂ TN−1}. There is a γ1 = γ1(ε) such that∑
S∈G1

(xS − yS)2 ≤ γ1.

Proof of Claim 1. Since segments in G1 are contained in TN−1, every segment S in G1 has to
be equal to its representative SR because SR ∩ TN = S. This means that G1 is a subfamily of
FR and the result follows directly from Claim A.

Claim 2. Let G2 = {S ∈ G : S ⊂ T\TN}. There is a γ2 = γ2(ε) such that∑
S∈G2

(xS − yS)2 ≤
∑
S∈G2

y2
S + γ2.

Proof of Claim 2. Since segments in G2 do not intersect TN the result follows directly from
Claim B.

The remaining segments of G are those that intersect the N th level of T . For those, we
will distinguish between segments S such that S and its representative SR are on the same
branch of T and those for which S and SR split at some higher level. So let G3 be the subset
of the remaining segments of G satisfying the first condition and let G4 be the subset of those
satisfying the second condition.

Note that if S is a segment in G3, then since S and SR are on the same branch and are
equal in TN we have either S ⊂ SR or SR ⊂ S and the complements are in either case segments
which do not intersect TN . Thus.

Claim 3. Let G3,1 = {S ∈ G3 : S = SR}, let G3,2 = {S ∈ G3 : S $ SR} and let
G3,3 = {S ∈ G3 : SR $ S}. There is a γ3 = γ3(ε) such that∑

S∈G3

(xS − yS)2 ≤
∑
S∈G3,2

y2
SR\S +

∑
S∈G3,3

y2
S\SR + γ3.

Proof of Claim 3. By definition G3,1 is a subfamily of FR so Claim A yields∑
S∈G3,1

(xS − yS)2 ≤ ε2.

Now let us deal with G3,2. By Claim A we know that∑
S∈G3,2

(xSR − ySR)2 ≤ ε2.

Moreover, for every S ∈ G3,2, we know that the segment SR\S does not intersect TN and thus
Claim B yields ∑

S∈G3,2

(xSR\S − ySR\S)2 ≤
∑
S∈G3,2

y2
SR\S + ε2 + 2ε.
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So finally we get∑
S∈G3,2

(xS − yS)2 =
∑
S∈G3,2

[(xSR − ySR)− (xSR\S − ySR\S)]2

≤
∑
S∈G3,2

(xSR − ySR)2 +
∑
S∈G3,2

(xSR\S − ySR\S)2

+ 2

√ ∑
S∈G3,2

(xSR − ySR)2

√ ∑
S∈G3,2

(xSR\S − ySR\S)2

≤
∑
S∈G3,2

y2
SR\S + ε2 + (ε2 + 2ε) + 4ε.

Similar computations allow us to deal with G3,3 and the conclusion follows by combining the 3
inequalities.

Finally let us take S ∈ G4. Since S and its representative SR are equal on TN the segments
S− = S\(S ∩ SR) and S−R = SR\(S ∩ SR) do not intersect TN (and are non-empty). Thus.

Claim 4. There is a γ4 = γ4(ε) such that∑
S∈G4

(xS − yS)2 ≤ 1 +
∑
S∈G4

y2
S− +

∑
S∈G4

y2
S−R

+ γ4.

Proof of Claim 4. Using again Claim A and Claim B, we have

a =
∑
S∈G4

(xSR − ySR)2 ≤ ε2,

b =
∑
S∈G4

(xS− − yS−)2 ≤
∑
S∈G4

y2
S− + ε2 + 2ε,

and
c =

∑
S∈G4

(xS−R
− yS−R)2 ≤

∑
S∈G4

y2
S−R

+ ε2 + 2ε.

Thus we get, using the
√
u+ v ≤

√
u+
√
v identity for the last term:∑

S∈G4

(xS − yS)2 =
∑
S∈G4

[(xSR − ySR)− (xS−R
− yS−R) + (xS− − yS−)]2

≤ a+ b+ c+ 2
√
ab+ 2

√
ac+ 2

√
bc

≤ ε2 +
∑
S∈G4

y2
S− +

∑
S∈G4

y2
S−R

+ 2(ε2 + 2ε) + 4
√
ε2(1 + ε2 + 2ε)

+ 2

√∑
S∈G4

y2
S−

√∑
S∈G4

y2
S−R

+ 2
√

2(ε2 + 2ε) + (ε2 + 2ε)2
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so it only remains to show that

2

√∑
S∈G4

y2
S−

√∑
S∈G4

y2
S−R
≤ 1.

To show this, observe that if you take two different segments S and T in G4, then you obviously
have S ∩T = ∅ and SR ∩TR = ∅ since we work with families of disjoint segments, but you also
have S∩TR = ∅ and T ∩SR = ∅ since S and T have disjoint starting parts in TN . Consequently:∑

S∈G4

y2
S− +

∑
S∈G4

y2
S−R
≤ ‖y‖2

JT = 1.

The conclusion follows since the function f(x) = x
√

1− x2 has maximum 1
2

on [0, 1] (attained
at 1√

2
).

Now letting γ =
∑4

i=1 γi and combining the results from the 4 claims, we obtain:∑
S∈G

(xS − yS)2 ≤ 1 +
∑
S∈G2

y2
S +

∑
S∈G3,3

y2
S\SR +

∑
S∈G4

y2
S−

+
∑
S∈G3,2

y2
SR\S +

∑
S∈G4

y2
S−R

+ γ,

and since we work with families of disjoint segments we get∑
S∈G

(xS − yS)2 ≤ 3 + γ.

Finally, ‖x− y‖JT ≤ max{2 − ηx,N
√

3 + γ} and this quantity is strictly less than 2 if we take
a small enough ε since γ goes to 0 as ε goes to 0.

Remark 3.4.13. Here the segments involved can be infinite so the functional x∗ we slice with
does not have to be in JT∗. This raises the following question.

Question 3.4.14. Does JT admit weak∗ ∆-points?

From the work of [Gir] we know that the dual of the James tree space JT ∗ is AUC. Now JT
does not admit an equivalent norm whose dual norm is AUC∗. Indeed such norm would be AUS
by the asymptotic duality. This is impossible because JT is not Asplund (it is separable while
JT ∗ is not), see [JLPS, Proposition 2.4]. In view of those observations JT ∗ would be a natural
candidate for our study and the question of the existence of ∆- or Daugavet-points there, as
well as the question of the existence of non quasi-denting points would be particularly relevant.
Unfortunately it seems that computations are still out of reach in this context, although the
use of molecules facilitates them, and we where only able to obtain a few partial results even
while trying to restrict ourselves to J∗.
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Lemma 3.4.15. Let s, t ∈ T be two distinct points. For any ε > 0 and z∗ ∈ JT ∗ with
{s, t} ∩ supp(z∗) = ∅ we have

‖e∗t − εe∗s + z∗‖ > 1.

Proof. Let x∗ = e∗t − εe∗s + z∗ for some ε > 0 and z∗ supported in T\{s, t}. Assume first that
ε ≥ 1, and let α = 1/

√
2 and x = αet − αes. We have ‖x‖ = 1 and

x∗(x) = α + εα ≥ 2/
√

2 > 1.

Next if ε < 1 we let α =
√

1− ε2 and x = αet − εes. We have ‖x‖ = 1 since α2 + ε2 = 1 and
(α− ε)2 ≤ 1− 2αε < 1. Now

x∗(x) = α + ε2 > α2 + ε2 = 1.

In both cases, ‖x∗‖ > 1.

Lemma 3.4.16. In JT ∗ every basis vector e∗t is an extreme point of BJT ∗, and therefore a
weak∗ denting point.

Proof. Assume that x∗ and y∗ are norm one elements such that e∗t = x∗+y∗

2
. Then we have

x∗(et) = y∗(et) = 1 and x∗(es) = −y∗(es) for all s 6= t. If we have x∗(es) < 0 for some s 6= t,
then with z∗ = x∗ − (e∗t + x∗(es)e

∗
s) we get

‖x∗‖ = ‖e∗t + x∗(es)e
∗
s + z∗‖ > 1

by Lemma 3.4.15. Hence x∗ = y∗ = e∗t .
By Proposition 3.d.19 in [FGdB] we know that e∗t is a point of weak∗ to norm continuity on

the unit ball of JT ∗ so the conclusion follows by applying Choquet’s lemma (see for example
[FHH+, Lemma 3.69]) which tells that the weak∗ slices form a neighborhood basis of e∗t . Indeed
the continuity of the identity map at e∗t then ensures that any ball around e∗t contains a weak∗

slice containing e∗t .

Corollary 3.4.17. No molecule in JT ∗ is a weak∗ Daugavet point.

Proof. Let x∗ =
∑

i≥1 λi1Si where Si are disjoint segments of T and
∑

i≥1 λ
2
i ≤ 1. If there is

an i0 ≥ 1 such that λi0 = 1, then x∗ = 1Si0
. Since the biorthogonal functionals are (weak∗)

denting points we may assume that Si0 contains at least two points of T . Now if we let si0 be the

starting point of this segment, and if we let Ti0 = Si0\{si0}, we have
∥∥∥x∗ − e∗si0∥∥∥ =

∥∥1Ti0∥∥ = 1

so x∗ is at distance strictly less than 2 from a (weak∗) denting point in JT ∗ and thus cannot
be a weak∗ Daugavet point.

Next let us assume that λi ∈ (0, 1) for every i ≥ 1 and let us fix any i0 ≥ 1. We define
as above si0 and Tsi0 (which might eventually be empty) and we let Ti = Si for any i 6= i0.

Since the Ti are disjoint segments of T we have
∥∥∥x∗ − e∗si0∥∥∥ ≤ 1 − |λi0| +

∥∥∥x∗ − λsi0e∗si0∥∥∥ =

1− |λi0 |+
∥∥∑

i≥1 λi1Ti
∥∥ ≤ 2− λsi0 < 2 and the conclusion follows as above.
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In light of the above we ask:

Question 3.4.18. Can molecules in JT ∗ be ∆-points?

Note that the observation from [JRZ, Remark 2.4] applied to the set of molecules in JT ∗

which satisfies as mentioned convM = BX∗ gives the following simplification.

Lemma 3.4.19. Let x∗ ∈ SJT ∗. Then x∗ is a ∆-point if and only if we can find, for every
ε > 0 and for every slice S of BJT ∗, some m ∈M∩ S such that ‖x−m‖ ≥ 2− ε.

Although it is possible to do some computations in very specific cases (for example when
x∗ is a molecule supported on two segments) it seems to be difficult to estimate the distance
between two molecules in general even when they are supported on the same branch of T .
Moreover, it is not completely trivial to distinguish norm one molecules in M and to find
suitable norming elements in JT .

Finally let us mention that with techniques similar to those for JT, it is possible to prove
that also J with the equivalent norms ‖ · ‖J and ‖ · ‖0 as given on p. 62 in [AK], fail to
contain ∆-points. However, if we replace the binary tree T by the countably branching tree
T∞ = {∅}∪

⋃
n≥1 Nn in the definition of the James tree space we obtain the Banach space JT∞

originally introduced in [GM1] which shares some of the basic properties of JT, but presents a
few striking dissimilarities. Indeed it is proved in [GM1] that the predual of JT∞ fails the PCP
and as a consequence admits no equivalent AUC norm (in fact δ|.|(

1
2
) = 0 for any equivalent

norm |.| on (JT∞)∗, see [Gir]) while it satisfy the so called convex PCP, see [GMS]. For our
study we have as before that JT∞ is 2-AUC∗ and admits no weak∗ Daugavet-points, but our
proof of non-existence of ∆-points fails for infinitely supported elements since restricting the
support of such element to a finite level of the tree does not necessarily provide finitely many
nodes of T∞ anymore. It is thus natural to ask the following.

Question 3.4.20. Does JT∞ admit ∆-points?
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Appendix A

The weakly null `+1 index from Alspach
Judd and Odell

As mentioned at the end of Section 1.2, the Szlenk index of any Banach space is separably
determined (Proposition 1.2.26). This result proved to be useful in Chapter 2 since it allowed
to extend for free a couple of linear and non-linear results from the separable setting, where some
practical tools such as sequences or trees are readily available, to the non-separable setting.

However, as pointed out in Section 2.3, the separable determination of the Szlenk index
by subspaces does not allow to get rid of separability assumptions in Theorem 2.3.11 since we
might loose all the information on the asymptotic structure of the dual space X∗ by passing to
a subspace of X. For the original result from [BCD+] the determination of the Szlenk index
by separable quotients in reflexive Banach spaces (Proposition 1.2.27) was used in order to
overcome this hindrance. In the present appendix, we extend Proposition 1.2.27 to a larger
setting, namely the class of weakly compactly generated Banach spaces, and as an application
get rid of separability assumptions in Theorem 2.3.11 in this context. The main tool in our
proof is the so called weakly null `+

1 index introduced in [AJO] and that we will define in the
following section.

To conclude this short introductory paragraph, let us point out that the classical problem of
the existence of separable quotients in Banach spaces is still open, and we refer to the surveys
[Muj] and [FKLPS] for more details on the subject. In particular the extension of Proposition
1.2.27 to a fully general setting might be very difficult.

A.1 The weakly null `+
1 index

In order to introduce this index, we need to consider a more general definition for trees. We
essentially follow [AJO, Section 2].

Definition A.1.1. We will call tree any non empty partially ordered set (T,≤) for which all
the subsets of the form {y ∈ T : y ≤ x} with x ∈ T are linearly ordered and finite. For any
tree T we will use the following denomination.
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1. A root of T is a minimal element of T and a leaf of T is a maximal element of T .

2. If an element x ∈ T is not a root of T , then the predecessor of x is the maximal element
of the set {y ∈ T : y < x}.

3. If an element x ∈ T is not a leaf of T , then any minimal element of the set {y ∈ T : y > x}
is an immediate successor of x. The set of all immediate successors of x is called a fork
of T , and we say that T is countably branching if every fork of T is countable.

4. A branch of T is a maximal linearly ordered subset of T . We say that T is well founded
if it does not admit any infinite branch.

For any well founded tree T , we define the derived tree D(T ) := T\L(T ) where L(T ) is
the set of all leaves of T . We also let D(∅) := ∅. Then we define inductively trees Tα for any
ordinal α by letting T 0 := T , Tα+1 := D(Tα) for every ordinal α ≥ 0, and T β :=

⋂
α<β T

α if β
is a limit ordinal. The order of a tree T is defined as the minimum of the set {α ≥ 0 : Tα = ∅}
if such an ordinal exists, and otherwise is given an abstract ∞ value.

Example A.1.2. The countably branching trees TN from Section 1.2 are well founded trees,
and the order of TN is N + 1 for every N ≥ 1. However T∞ is not well founded. In order to
obtain well founded countably branching tree of higher order, we construct inductively subtrees
Tα of T∞ for every α < ω1 by letting T0 := {∅}, Tα+1 := {∅} ∪

⋃
N≥1N a Tα for every ordinal

α ≥ 0 where N a Tα := {N a t, t ∈ Tα}, and if β is a limit ordinal, we pick any ordering
(αN)N≥1 of {α : 1 ≤ α < β} and let Tβ := {∅} ∪

⋃
N≥1N a TαN . Then every Tα is well

founded, has a single root ∅, and has order α + 1. Also note that Tα is a minimal countably
branching tree of order α + 1 with the terminology from [AJO, Definition 2.3].

As is Section 1.2 a tree in a Banach space X will simply be a family (xs)s∈T of elements of X
indexed by a tree T , and the terminology used there extends naturally in the present context.

Following [AJO, Definition 3.6] we say that a finite sequence (xi)
n
i=1 in a Banach space X

is a K `+
1 -sequence if it is normalized, K basic, and satisfies

1

K

n∑
i=1

ai ≤

∥∥∥∥∥
n∑
i=1

aixi

∥∥∥∥∥
for every sequence (ai)

n
i=1 ∈ (R+)n of positive real numbers. Also we will say that a tree in X

is a K `+
1 -tree if every branch of the tree forms a K `+

1 -sequence. We define the weakly null `+
1

index of X by
I+
w (X) := sup

K≥1
I+
w (X,K)

where I+
w (X,K) is defined as the supremum of the set of all ordinals α for which there exists

a countably branching weakly null K `+
1 -tree of order α in X.

Remark A.1.3. The ordinal I+
w (X,K) is never a limit ordinal, and by minimality of the trees

Tα it is also equal to the supremum of the set of all ordinals α for which there exists a weakly
null K `+

1 -tree indexed by Tα in X.
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One of the main results from [AJO] is that the weakly null `+
1 index coincide with the Szlenk

index for Banach spaces not containing `1. We sketch some of the main ideas of the proof below.

Theorem A.1.4. Let X be a Banach space not containing `1. Then SZ(X) = I+
w (X).

Sketch of proof. As mentioned above, the Szlenk index is separably determined and it is clear
that this does also hold true for the weakly null `+

1 index. Thus we may assume that the space
X is separable. Now if X is separable and does not contain `1, then by [AJO, Theorem 3.14]
we have that I+

w (X) is countable if and only if X∗ is separable, and by Theorem 1.2.3 we know
that this is equivalent to having SZ(X) countable. So we may also assume that X∗ is separable.

Let us explain how the inequality SZ(X) ≤ I+
w (X) can be proved. First note that since

X∗ is assumed to be separable, the weakly null `+
1 index of X has to be of the form ωα for

some countable ordinal α < ω1 by [AJO, Theorem 3.22]. As mentioned in Section 1.2 the same
goes for the Szlenk index of X. Thus it is sufficient for our purpose to show that for any fixed
countable ordinal α < ω1, if SZ(X) > ωα then I+

w (X) > ωα.
If such an α is fixed, and if we assume that SZ(X) > ωα, then following the proof of Lemma

1.2.17 we can use the separability assumption on X to show that X∗ contains for some ε > 0
weak∗ convergent ε-climbing trees of order β for every β ≤ ωα. Next using Mazur’s Lemma
1.3.13 we can construct as in Proposition 1.3.14 weakly null bi-orthogonal trees of order β in
X and X∗, and using those trees we follow the proof of Theorem 1.3.16 to construct weakly
null trees of order β whose branches all form K `+

1 sequences for some K ≥ 1 independent of β.
This yields I+

w (X,K) > ωα since I+
w (X,K) is never a limit ordinal, and the conclusion follows.

The converse inequality follows from [AJO, Proposition 4.10]: if X contains a weakly null
K `+

1 -tree of order α, then lα1
K

6= ∅ where lαε is the derivation introduced just before Lemma

1.2.17.

A.2 Determination of the Szlenk index by separable quo-

tients for weakly compactly generated Banach spaces

Let us recall that a Banach space X is weakly compactly generated (WCG in short) if there is
a weakly compact subset K of X such that span(K) = X. As we shall see the main reason
for working with WCG Banach spaces is that this property passes to quotients and that the
density of any WCG Banach space is equal to the weak∗ density of its dual. This can be found
for example in [FHH+, Section 13.1]. As mentioned, we will prove the following result.

Theorem A.2.1. Let X be a WCG Banach space and let α < ω1 be a countable ordinal. If
SZ(X) > α then there is a subspace Y of X such that the quotient Z = X/Y is separable and
satisfies SZ(Z) > α.

Proof. Let us start by assuming that X does not contain `1. Then I+
w (X) = SZ(X) > α and

we can find a weakly null K `+
1 -tree (xs)s∈Tα of order α in X which witnesses this inequality.

For every element s in Tα pick a norming functional fs of xs and for every branch β of Tα and
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every sequence a = (as)s∈β in Q+ pick a norming functional ga,β of
∑

s∈β asxs. Note that the
set of all branches of Tα is countable because Tα is well founded. Then let F be the set of all
functionals fs and ga,β and let Y = F> be the pre-orthogonal of F . It is a well known fact

that the dual of the quotient Z = X/Y is isometric to the weak∗ closure F
w∗

of F in X∗ which
is weak∗ separable by construction. Now Z is WCG as quotient of a WCG space and thus it
is separable since its density is the same as the weak∗ density of its dual. Moreover the tree
(Q(xs))s∈Tα where Q is the quotient map is normalized in Z thanks to the functionals fs and
has branches which form K − `+

1 sequences over Q thus also over R thanks to the functionals
ga,β. It follows that the weakly null `+

1 index of Z will also be strictly greater than α. Now Z
cannot contain `1 as a quotient of a space not containing it (it is well known that `1 can be
lifted from quotients) so SZ(Z) = I+(Z) > α and we are done.

Now if X contains `1 the same idea allows to build a separable quotient of X which also
contains `1 and this is enough to conclude.

This allows to give a non-separable version of Theorem 2.3.11 for WCG Banach spaces.

Theorem A.2.2. Let X be a WCG Banach space and let us assume that X∗ has a weak∗

asymptotic unconditional structure. Also let G be any non-trivial countably branching bundle
graph. Then the following assertions are equivalent.

1. The space X satisfies SZ(X) ≤ ω.

2. The space X admits an equivalent norm whose dual norm is AUC∗.

3. The space X∗ admits an equivalent AMUC norm.

4. The family (G�N)N≥1 does not equi-Lipschitz embed into X∗.
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eter two properties. J. Convex Anal., 22(1):1–17, 2015.

[AD] S. A. Argyros and I. Deliyanni. Examples of asymptotic l1 Banach spaces. Trans.
Amer. Math. Soc., 349(3):973–995, 1997.

[AH] R. Aumann and S. Hart, editors. Handbook of Game Theory with Economic Appli-
cations, volume 1. Elsevier, 1 edition, 1992.

[Aha] I. Aharoni. Every separable metric space is Lipschitz equivalent to a subset of c+
0 .

Israel J. Math., 19:284–291, 1974.

[AHLP] T. A. Abrahamsen, R. Haller, V. Lima, and K. Pirk. Delta- and Daugavet points
in Banach spaces. Proc. Edinb. Math. Soc. (2), 63(2):475–496, 2020.

[AJO] D. Alspach, R. Judd, and E. Odell. The Szlenk index and local l1-indices. Positivity,
9(1):1–44, 2005.

[AK] F. Albiac and N. J. Kalton. Topics in Banach space theory, volume 233 of Graduate
Texts in Mathematics. Springer, New York, 2006.

[ALM] T. A. Abrahamsen, V. Lima, and A. Martiny. Delta-points in Banach spaces gen-
erated by adequate families. arXiv:2012.00406, 2020.

[ALMP] T. A. Abrahamsen, V. Lima, A. Martiny, and Y. Perreau. Asymptotic geometry
and delta-points. arXiv:2203.14528, 2022.

[ALMT] T. A. Abrahamsen, V. Lima, A. Martiny, and S. Troyanski. Daugavet- and delta-
points in Banach spaces with unconditional bases. Trans. Amer. Math. Soc. Ser.
B, 8:379–398, 2021.

[ALN] T. Abrahamsen, V. Lima, and O. Nygaard. Remarks on diameter 2 properties. J.
Convex Anal., 20(2):439–452, 2013.

[ALNT] T. A. Abrahamsen, V. Lima, O. Nygaard, and S. Troyanski. Diameter two proper-
ties, convexity and smoothness. Milan J. Math., 84(2):231–242, 2016.

107



[Bae] A. Baernstein. On reflexivity and summability. Studia Math., 42:91–94, 1972.

[Ban1] S. Banach. Sur les opérations dans les ensembles abstraits et leur application aux
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Reprint of the 1932 original.

[Bau1] F. Baudier. Metrical characterization of super-reflexivity and linear type of Banach
spaces. Arch. Math. (Basel), 89(5):419–429, 2007.

[Bau2] F. P. Baudier. Barycentric gluing and geometry of stable metrics. Rev. R. Acad.
Cienc. Exactas F́ıs. Nat. Ser. A Mat. RACSAM, 116(1):Paper No. 37, 48, 2022.

[BCD+] F. Baudier, R. Causey, S. Dilworth, D. Kutzarova, N. L. Randrianarivony,
T. Schlumprecht, and S. Zhang. On the geometry of the countably branching
diamond graphs. J. Funct. Anal., 273(10):3150–3199, 2017.

[BCL] K. Ball, E. A. Carlen, and E. H. Lieb. Sharp uniform convexity and smoothness
inequalities for trace norms. Invent. Math., 115(3):463–482, 1994.

[Ben] Y. Benyamini. The uniform classification of Banach spaces. In Texas functional
analysis seminar 1984–1985 (Austin, Tex.), Longhorn Notes, pages 15–38. Univ.
Texas Press, Austin, TX, 1985.

[BG] F. Baudier and C. Gartland. Umbel convexity and the geometry of trees.
arXiv:2103.16011, 2021.
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New York, 2011. The basis for linear and nonlinear analysis.
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Mathématiques et applications Bourgogne Franche-Comté 2019.
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