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Introduction

The work presented in this manuscript consists in describing topological pumps within the
context of slow-fast quantum systems. Let us first recall briefly the notion of topological
pump before explaining the motivation of this reformulation.

1 Topological pumps

The experimental discovery of the quantized Hall effect by von Klitzing et al. in 1980 [1] is
a breakthrough in the understanding of topology as an alternative to symmetries to char-
acterize phases of matter. This experiment provides a measure of the electric conductivity
of a two-dimensional electron gas at low temperature and under a magnetic field. For high
values of the magnetic field, the transverse conductivity of the Hall sample is measured
to be proportional to a ratio of fundamental constants e2/h, with e the electric charge of
an electron, h the Planck constant, and where the proportionality factor is measured to
be an integer with a relative uncertainty lower than 10−9. Soon after this experimental
discovery, Thouless, Kohmoto, Nightingale, and den Nijs [2], showed that this extreme
precision was of topological origin, deriving the integer factor as a topological invariant,
corresponding mathematically to a Chern number [3–5]. The understanding of the topo-
logical origin of the quantization of Hall conductivity allowed the definition of a new type
of pumps, topological pumps as topological responses of a slowly driven quantum system.

Laughlin pump

This topological property of matter was early discussed in relation with pumping phe-
nomena. In an enlightening gedankenexperiment, Laughlin [6] considered a Hall sample
wrapped on a cylinder and related the quantized conductivity to a transfer of charges
between the edges. The Laughlin argument was extended by Halperin [7], leading to
a modern interpretation of a quantum Hall pump as a pumping of charge between the
edges of a Hall cylinder as an enclosed magnetic flux is smoothly increased through the
cylinder [8, 9]. Seeing this external magnetic flux as a slow drive of the Hall sample, this
quantum Hall pump is the first example of topological pump displaying a quantized re-
sponse of a slowly driven quantum system. This has been realized recently in a synthetic
atomic Hall cylinder [10].
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Thouless pumps

This quantized adiabatic pumping of a time-dependent quantum system was soon gener-
alized beyond the quantum Hall effect to a driven one-dimensional band insulating crystal
by Thouless [11]. For a suitable periodic time-dependence, exemplified by the Rice-Mele
model [12], Thouless showed the appearance of a quantized steady current in the bulk
of the crystal. The quantization involves the same topological invariant as the quan-
tum Hall effect, a Chern number. Such topological pumping can be characterized by a
quantized anomalous velocity for semiclassical states of non-interacting particles in an
insulating band [13], recently realized experimentally using cold atoms lattices [14–17],
quasicrystals [18, 19], optical waveguides [20–22], magnetically coupled mechanical res-
onators [23], stiffness-modulated elastic plates [24], or electromagnetic waveguides [25].
Thouless pumps are the canonical examples of topological pumps. They have been sub-
jected to numerous studies since the seminal work of Thouless. We refer the reader to the
recent review [26] for additional information.

Topological response of flux networks

Later on, Niu, Thouless and Wu introduced the notion of generalized boundary conditions
for quantum Hall states [27]. The quantum Hall topological properties are expressed as
the Chern number of the ensemble of many-body groundstates over the closed manifold
of phase boundary conditions. Niu and Thouless [28] introduced similar boundary con-
ditions to study Thouless pumps in presence of many-body interaction. These boundary
conditions parameters were later related by Avron et al. to electromotive forces through
loops connecting opposite edges of the sample [29] effectively generalizing the topology of
Laughlin’s gedankenexperiment to that of a torus. This was then generalized to describe
quantum transport in mesoscopic multiply connected systems, consisting of a mesoscopic
piece of metal or superconductor containing holes threaded by magnetic fluxes. A topo-
logical quantization of conductances is associated to Chern numbers defined from the
parametrization of the Hamiltonian by these time-dependent fluxes [30].

Mesoscopic superconducting systems

Extensions of these pumping schemes were unveiled recently in slowly driven quantum
system of effective zero spatial dimension. The first theoretical proposal was in the context
of Cooper pair pumps. A Cooper pair pump [31] is a mesoscopic superconducting network
of Josephson junctions whose boundaries are connected to macroscopic superconducting
leads, for which control parameters such as gate voltages are externally modulated in
time. Topological quantization by a Chern number of the charge transported between
the leads were theoretically proposed [32, 33]. Later on, another manifestation of topo-
logical response of a slowly driven zero dimensional quantum system were discovered in
multi-terminal Josephson junction [34,35], were the drives consists in independent super-
conductors’ phase differences. The study of topological properties of Josephson tunnel
junction circuits and multi-terminal Josephson junctions is an active domain of research,
see e.g. [36–42]. We refer to the recent review [43] concerning multi-terminal Josephson
junctions.
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Topological frequency conversion

Another mechanism of topological response of a driven zero dimensional system was pro-
posed recently, named topological frequency conversion [44]. The simplest realization
was a qubit driven at two frequencies, later extended to more complex driven zero di-
mensional devices [45–53]. Using a Floquet description of the dynamics of the quantum
system slowly and periodically driven at several frequencies, it is inferred a quantized
current in an abstract space of harmonics of the drives. This current thereby effectively
describes a transfer of energy between the drives.

2 Motivation for an alternative description of topo-
logical pumping
What is pumping?

The above examples of topological pumps were historically described as a response of
a slowly driven quantum system, i.e. considering its origin from an imposed external
drive, see also [54, 55]. The topological property is related to a dynamical feature of
the quantum system: an anomalous velocity of electrons along the cylinder in Laughlin
pumps, an anomalous velocity of particles in a one dimensional periodic potential in
Thouless pumps, or an anomalous velocity in an abstract space of harmonics in topological
frequency converters. The above cited experimental realizations are measures of such
quantized velocities.

Figure 1: Archimedes screw pump (modern view).

But what is a pump? Let us consider the historical example of Archimedes’ screw
pump, represented on Fig. 1. It is made of three elements: an engine, a screw, and a
fluid. The engine, here represented by a motor, slowly rotates the screw which, in return,
induces a flow of a fluid. As such, pumping corresponds to a transfer of energy from one
system (the motor) to second one (the fluid) mediated by a third one (the screw). Hence,
describing pumping naturally amounts to consider the rotation of the motor and the flow
of the fluid. Focusing only on the rotation of the screw provides an indirect description
of pumping. In the topological pumps discussed above, the screw corresponds to the
quantum system, and the rotation of the screw is the dynamics of the driven quantum
system, on which the previous descriptions of pumping have focused – thereby amounting
for an indirect characterization of the pumping process.
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Purpose of this thesis

The starting point of this thesis is to reconcile the description of such a topological
device with that of traditional pumps, by considering the driving parameters as the slow
degrees of freedom of the environment coupled to the quantum system, and focusing on
their effective dynamics. The topological property is a feature of the couplings between
these systems. Hence, we are led to consider a closed quantum system containing a
separation of timescales, namely a slow-fast system. The coupled degrees of freedom of
the environment are slower than the inner dynamics of the quantum system. When we
describe the effective adiabatic dynamics of the slow degrees of freedom by taking into
account the backaction of the fast subsystem onto the slow one, the topological nature of
the coupling translates in an energy or charge exchange between these slow subsystems.
This leads us to consider new physical phenomena in isolated quantum systems originating
from a topological coupling between slow and fast quantum subsystems.

Organization of the manuscript

This description of topological pumps within the context of slow-fast quantum systems
will be introduced step by step in this manuscript, in increasing level of complexity. This
manuscript is organized as follows.

• In chapter 1, we describe the adiabatic evolution of a slowly time-dependent quan-
tum system. Since the historical descriptions of topological pumps focus on the inner
dynamics of a driven system, they rely on this formalism. We introduce a notion of
adiabatic states of the driven system as those leading to the slowest time-evolution
of physical observables. Such a slowly driven quantum system is a particular case
of a slow-fast system, where the fast subsystem is the quantum system and the slow
subsystem corresponds to external classical variables inducing the time-dependence.
The peculiar aspect of this description is that the dynamics of the slow variables is
given a priori, meaning that we assume that it is unaffected by the coupling to the
quantum system. There is no backaction.

• In chapter 2, we introduce slow-fast quantum systems. Physically, they correspond
to the same kind of systems as those considered in the first chapter, namely a
closed quantum system containing two types of degrees of freedoms, associated to a
separation of timescales. The advantage of treating the drives of chapter 1 as slow
degrees of freedom is in particular to describe the backaction of the fast subsystem
onto the slow dynamics. Indeed, we are here looking at an effective dynamics of
the slow degrees of freedom, describing states of the total system evolving only at
the slow timescales. This effective dynamics involves a geometric object, a Berry
curvature, carrying the topological notion of Chern number on which this manuscript
is rooted. In the first two sections, we introduce the subject with the historical
examples of the Born-Oppenheimer treatment of a molecule, and of the semiclassical
dynamics of electrons in a crystal. In sections 2.3 and 2.4, we detail a general
theory of adiabatic dynamics of such a slow-fast quantum system. The main goal
is to construct a subspace of states of the total system, the adiabatic subspace,
and to derive their effective slow dynamics. The determination of the adiabatic
subspace follows the same method as the definition of the adiabatic states of a
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slowly driven quantum system in chapter 1, whereas the technical implementation
of the method differ. In particular, we provide precise conditions of validity of the
adiabatic expansion.

• In chapter 3, we apply the description of chapter 2 to the case of topological coupling
between slow and fast quantum systems, which allows to describe topological pumps
as a slow-fast system with a quantized transfer of charge or energy between the
slow degrees of freedom. This formalism enables the identification of the physical
observables whose dynamics carry the topological property, namely the quantized
transfer of charge or energy. We restrict ourselves to a classical description of the
dynamics of the slow system. This chapter is based on the first three sections of the
publication [56].

• In chapter 4, we illustrate the virtue of the formalism introduced in chapter 3 with
an experimental proposal of topological coupling between microwave modes and a
superconducting quantum circuit. The topological nature of the coupling induces
a quantized redistribution of powers between the microwave modes. We identify
the observables carrying the topological invariant. The experimental proposal is
designed to allow for an experimental measure of the topological flow. This chapter
is based on the last section of the publication [56].

• In chapter 5, we extend the formalism of topological coupling between slow classical
degrees of freedom and a fast quantum system of chapter 3 to a full quantum
description, describing quantum mechanically both slow and fast quantum systems,
thus recovering the formalism of chapter 2 of adiabatic dynamics of a slow-fast
quantum system. We focus on the simplest example of a two-level system, a qubit,
topologically coupled to two quantum modes. In contrast with the chapter 2, we
pay attention on the nature of the adiabatic states, the states evolving slowly and
described by the effective adiabatic dynamics. We show that they are not naturally
prepared experimentally, but that any initial state decomposes into a sum of two of
such states. The topological nature of the coupling leads to a separation of these two
components in phase space, leading generically to a creation of cat states. Besides,
we quantify the entanglement between the qubit and the quantum modes in terms
of geometric objects, and characterize the time-evolution of the quantum fluctuation
of the modes. This chapter is based on the submitted article [57].

• In chapter 6, we consider the dynamics of two quantum harmonic oscillators topo-
logically coupled to a qubit. On short timescales, we recover the adiabatic dynamics
described in chapter 5, superposed by Landau-Zener processes, leading to a mech-
anism in which the topological pumping rates are reversed in a roughly periodic
sequence. At long timescales, the topological nature of the coupling leads to chaotic
behavior. This quantum chaotic behavior manifests itself in spectral properties via
level repulsion, and by two families of eigenstates with different distributions of
average value of observables.
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Chapter 1
Adiabatic time-dependent perturbation
theory

Adiabatic time-dependent perturbation theory deals with the dynamics of a slowly time-
dependent closed quantum system. When such a system is time-independent the eigen-
states of the Hamiltonian are initial states of particular interest. They are stationary in
the sense that they lead to no change in time of the statistics of measure of any physical
observable.

For a time-dependent Hamiltonian, there is no longer a notion of stationary state
in general. The eigenstates of the Hamiltonian are time-dependent and preparing the
quantum system in an instantaneous eigenstates of the Hamiltonian does not lead in
general to time-independent statistics of measure of physical observables. However, one
expects the evolution of the system to remain close to eigenstates when the Hamiltonian
evolves very slowly. The purpose of the adiabatic theorem of quantum mechanics is to
quantify this expectation.

The notion of adiabaticity in quantum mechanics dates back to the beginning of quan-
tum theory, with the work of Ehrenfest [58] who studied the role of adiabatic invariants
in the old formulation of the correspondence between classical and quantum mechanics.
His work contains the ideas behind the now common time-dependent adiabatic theory,
introduced in the modern formulation of quantum mechanics by Born and Fock [59], and
further precised onto the adiabatic theorem by Kato [60].

The adiabatic theorem of quantum mechanics states that when the system is prepared
in an instantaneous eigenstate of the Hamiltonian then in the limit of an infinitely slow
time-dependence of the Hamiltonian and under certain conditions to be precised, the
system stays in an instantaneous eigenstate during the time evolution. The physical
phenomena we are interested in this manuscript require to extend the results in this limit.
Thus, we will start by a detailed discussion of this adiabatic theorem before developing
their extensions in the reminder of this thesis.

The strategy employed in the literature consists in working with the leading corrections
in this limit. We present the derivation of such corrections in Sec 1.1. This method leads
to the notion of geometric phase acquired by the state-vector during the time evolution,
and to the first correction to the approximation of staying in an instantaneous eigenstate.

In Sec. 1.2, we present a more personal understanding of the adiabatic time-dependent
theory. We introduce a notion of adiabatic states, different from the eigenstates. These
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Chapter 1. Adiabatic time-dependent perturbation theory

states are defined to be those leading to the slowest time-evolution of physical observables.
In this manuscript, we emphasize the physical relevance of this second strategy.

Finally, in Sec. 1.2.3 we discuss in details the conditions of validity of the adiabatic
perturbative expansion and discuss Landau-Zener transitions, which are non-perturbative
and non-adiabatic effects.

1.1 Time evolution of an instantaneous eigenstate

1.1.1 Result of the first order adiabatic approximation
We consider a time-dependent closed quantum system and note H(t) its time-dependent
Hamiltonian. The adiabatic theorem states that when prepared in an instantaneous eigen-
state, the system remains in an instantaneous eigenstate in the limit of an infinitely slow
variation of the Hamiltonian. We note H(t) its time-dependent Hamiltonian and |ψν,0(t)⟩
its instantaneous normalized eigenstates of eigenenergy Eν,0(t)

H(t) |ψν,0(t)⟩ = Eν,0(t) |ψν,0(t)⟩ . (1.1)

The index “0” is explained in Sec. 1.2, where the eigenstates appear as the zeroth order
approximation of adiabatic states. We use this notation in this section for consistency.
Note that there is a large amount of arbitrariness in the definition of the instantaneous
eigenstates, since the phase of the eigenstate at each time t is chosen arbitrarily. A set
of “continuous”1 eigenstates |ψν,0(t)⟩ corresponds to a choice of gauge. We assume an
arbitrary smooth gauge, meaning that the time derivatives of |ψν,0(t)⟩ are well-defined
and continuous. The physical observables are always gauge independent.

Crucially, we consider the initial state in an eigenstate ν

|Ψ(t = 0)⟩ = |ψν,0(t = 0)⟩ . (1.2)

As will be explained in Sec. 1.2.3, one condition of adiabaticity is that the Hamiltonian
depends smoothly on time and for all time t the corresponding eigenenergy Eν,0(t) is not
degenerate:

Eµ,0(t) ̸= Eν,0(t) for µ ̸= ν, (1.3)
for all time t. We further detail the condition of validity of the following result in Sec. 1.2.3.
As derived in Sec. 1.1.3, the time-evolution of the instantaneous eigenstates at first order
in adiabatic expansion reads

|Ψ(t)⟩ = eiγd
ν,0(t)+iγg

ν,0(t)

|ψν,0(t)⟩ − iℏ
∑
µ ̸=ν

⟨ψµ,0(t)| d
dt
|ψν,0(t)⟩

Eν,0(t)− Eµ,0(t)
|ψµ,0(t)⟩


+ iℏ

∑
µ̸=ν

eiγd
µ,0(t)+iγg

µ,0(t)
[
⟨ψµ,0(t)| d

dt
|ψν,0(t)⟩

Eν,0(t)− Eµ,0(t)

]
t=0
|ψµ,0(t)⟩ (1.4)

with the dynamical phase defined by

γd
ν,0(t) = −1

ℏ

∫ t

0
Eν,0(t′)dt′, (1.5)

1 The subtle notion of parallel transport is not essential in this manuscript. It is presented in [61] and
its role in physical contexts is discussed in [62].
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1.1. Time evolution of an instantaneous eigenstate

while the geometric phase satisfies

γg
ν,0(t) =

∫ t

0
⟨ψν,0(t′)| i

d
dt′ |ψν,0(t′)⟩ dt′. (1.6)

The denomination “geometric” phase is explained in the next section. Although the last
term of Eq. (1.4) is often ignored in the literature, we explain in Sec. 1.2 that it is physically
very relevant and originates from the difference between eigenstates and adiabatic states.

1.1.2 Limit of infinitely slow variation of the Hamiltonian and
Berry phase

Infinitely slow limit

The adiabatic theorem deals with the limit of an infinitely slow Hamiltonian. To dis-
cuss this limit we consider that the time-dependence of the Hamiltonian originates from
the dependence on the time-variation of external parameters denoted collectively ξξξ =
{ξ1, ξ2, . . . } = {ξα}:

H(t) = H(ξξξ(t)) ; |ψν,0(t)⟩ = |ψν,0(ξξξ(t))⟩ ; Eν,0(t) = Eν,0(ξξξ(t)). (1.7)

In Chap. 3, these variables ξξξ will be treated as phase-space coordinates of a slow dynamical
classical system. For now, they are considered as external parameters. The limit of an
infinitely slow Hamiltonian corresponds to the limit ξ̇α → 0, where ξ̇α denotes the time
derivative of ξα. To discuss this limit, we isolate in the expression (1.4) the dependence on
the velocities ξ̇α(t) from the dependence on the instantaneous value ξξξ(t) of the parameters:

|Ψ(t)⟩ = eiγd
ν,0(t)+iγg

ν,0(t) |ψν,0(ξξξ)⟩

−
∑

α

ξ̇α(t)
∑

µ ̸=ν

eiγd
ν,0(t)+iγg

ν,0(t) ℏAµν,α,0(ξξξ)
Eν,0(ξξξ)− Eµ,0(ξξξ)

|ψµ,0(ξξξ)⟩


+
∑

α

ξ̇α(t = 0)
∑

µ̸=ν

eiγd
µ,0(t)+iγg

µ,0(t)
[

ℏAµν,α,0(ξξξ)
Eν,0(ξξξ)− Eµ,0(ξξξ)

]
t=0
|ψµ,0(ξξξ)⟩

 , (1.8)

where we introduce the components of the non-abelian Berry connection

Aµν,α,0(ξξξ) = i ⟨ψµ,0(ξξξ)|∂αψν,0(ξξξ)⟩ , (1.9)

with the notation ∂α = ∂
∂ξα . The Berry connection, and the Berry curvature introduced

below, play a central role in the geometrical description of an ensemble of quantum states
parametrized by continuous parameters. See [63] for a pedagogical introduction. We
obtain the result of the adiabatic theorem: in the limit of infinitely slow time variation of
the Hamiltonian, a state initially prepared in an instantaneous eigenstate remains in an
instantaneous eigenstate:

|Ψ(t)⟩ →
ξ̇α→0

eiγd
ν,0(t)+iγg

ν,0(t) |ψν,0(ξξξ(t))⟩ . (1.10)
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Chapter 1. Adiabatic time-dependent perturbation theory

Geometric phase

The parametrization of the Hamiltonian by external continuous variables enables also to
discuss the geometric nature of the geometric phase γg

ν,0(t). This phase takes the form of
a line integral in parameter space, such that it depends only on the path taken in this
space, and not on the velocity of travel along this path:

γg
ν,0(t) =

∫
P[ξξξ(0)→ξξξ(t)]

∑
α

Aν,α,0(ξξξ)dξα (1.11)

where P [ξξξ(0) → ξξξ(t)] denotes the path ξξξ(t′) in parameter space from ξξξ(0) to ξξξ(t), and
where we introduce the components of the Berry connection of eigenstates ν

Aν,α,0(ξξξ) = Aνν,α,0(ξξξ) = i ⟨ψν,0(ξξξ)|∂αψν,0(ξξξ)⟩ . (1.12)

Berry phase and Berry curvature

The Berry phase corresponds to the geometric phase associated to a cyclic trajectory in
parameter space, for which ξξξ(T ) = ξξξ(0). This notion raised a lot of interest since the
work of Berry [64] partly because he highlighted its gauge invariance, in the sense that it
does not depend on the choice of phase made in the definition of the eigenstates |ψν,0(ξξξ)⟩.

To emphasize the gauge invariance of the Berry phase, Berry introduced a way to
compute it from a gauge invariant quantity, the Berry curvature, which plays a central
role in this manuscript. The components of the Berry curvature are defined by

Fν,αβ,0(ξξξ) = ∂αAν,β,0(ξξξ)− ∂βAν,α,0(ξξξ) (1.13)

and are gauge invariant. The Berry phase associated to a closed path P [ξξξ(0) → ξξξ(0)]
can be computed by integrating the Berry curvature on any surface S surrounded by this
path ∮

P[ξξξ(0)→ξξξ(0)]

∑
α

Aν,α,0(ξξξ)dξα =
∫

S

∑
α<β

Fν,αβ,0(ξξξ)dξα ∧ dξβ. (1.14)

This result is a particular case of Stokes’ theorem for differential forms, see [63] for an
introduction in physical contexts, and [61] for an introduction of the mathematical for-
malism.

1.1.3 Canonical method of derivation
We present here the canonical derivation of the time evolution of a slowly time dependent
quantum system. This method consists in solving differential equations governing the
time evolution of coefficients entering the decomposition of the state of the system on
the instantaneous eigenstates of the time-dependent Hamiltonian H(t). This method is
partly discussed in quantum mechanics textbooks, see for example [65, 66], and [67] for
a detailed discussion of its variants. This section follows more closely the first appendix
of [56].

The main advantage of this method is that it leads to explicit expressions of the state-
vector |Ψ(t)⟩, the geometric phase, and the dynamical phase of the quantum system, such
that it is useful for practical computations. Its main disadvantage is that the identification
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1.1. Time evolution of an instantaneous eigenstate

of the small parameter for perturbation theory and its generalizations at higher orders
in the perturbation theory is unclear. In this section we discuss briefly the nature of
the small parameter, and we postpone a more detailed discussion to section 1.2.3. Let
us stress that the notion of adiabatic states detailed in section 1.2 enables a geometric
intuition of the result, and is physically relevant as will be emphasized in this manuscript.

Let us mention that the historical technique of derivation of the adiabatic theo-
rem [60, 68] slightly differs from the one presented below. It consists in using a unitary
transformation of the Hamiltonian to put it on a traditional form of perturbation the-
ory H0(t) + V (t) where H0(t) is a Hamiltonian generating an ideal adiabatic evolution
and V (t) is a perturbation. It has the advantage to be clearly formulated in terms of
standard time-dependent perturbation theory. This method is also very enlightening in
the context of Shortcuts To Adiabaticity where the purpose is to search for a modified
Hamiltonian whose exact evolution corresponds to the ideal adiabatic evolution of the
unmodified Hamiltonian [69]. However, it does not provide an explicit expression of the
state-vector |Ψ(t)⟩, but an expression of the time evolution operator. In particular, the
determination of the geometric and dynamical phases requires minors extra steps, which
is probably a reason for its lack of use nowadays.

Method

To determine the time evolution of this initial state, we decompose the state of the
system |Ψ(t)⟩ on the instantaneous eigenstates

|Ψ(t)⟩ =
∑

µ

aµ(t) |ψµ,0(t)⟩ . (1.15)

We aim at solving the time-dependent Schrödinger equation

iℏ
d
dt |Ψ(t)⟩ = H(t) |Ψ(t)⟩ (1.16)

by solving the corresponding system of coupled differential equations for the coefficients aµ(t),
obtained by differentiating (1.15) with respect to time and projecting it onto |ψµ,0(t)⟩:

ȧµ(t) = i

[
i ⟨ψµ,0(t)|

d
dt |ψµ,0(t)⟩ −

1
ℏ
Eµ,0(t)

]
aµ(t)−

∑
σ ̸=µ

⟨ψµ,0(t)|
d
dt |ψσ,0(t)⟩ aσ(t) . (1.17)

We get rid of the first term introducing the dynamical phase (1.5) and the geometric
phase (1.6) by the substitution aµ(t) = eiγd

µ,0(t)+iγg
µ,0(t)ãµ(t). After substitution and time-

integration, we express (1.17) in the form

ãµ(t)− ãµ(0) = −
∑
σ ̸=µ

∫ t

0
dt′ eiγBohr

σµ,0 (t′)fµσ(t′)ãσ(t′), (1.18)

with
γBohr

σµ,0 (t) = γd
σ,0(t)− γd

µ,0(t) = −1
ℏ

∫ t

0
dt′(Eσ,0(t′)− Eµ,0(t′)) (1.19)

a dynamical phase evolving at the Bohr frequency (Eσ,0 − Eµ,0)/ℏ, and

fµσ(t) = eiγg
σ,0(t)−iγg

µ,0(t) ⟨ψµ,0(t)|
d
dt |ψσ,0(t)⟩ . (1.20)
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Chapter 1. Adiabatic time-dependent perturbation theory

So far everything is exact. We start the perturbation expansion of (1.18) considering
the exponential of the dynamical phase as a fast oscillating term, oscillating at the Bohr
frequency. The strategy consists in doing successive integration by part of the exponential
term, such that at each step a factor of inverse of Bohr frequency ℏ/(Eσ,0 − Eµ,0) comes
out:∫ t

0
dt′ eiγBohr

σµ,0 (t′)fµσ(t′)ãσ(t′)

=
[
eiγBohr

σµ,0 (t′) iℏ
Eσ,0(t′)− Eµ,0(t′)

fµσ(t′)ãσ(t′)
]t

0

−
∫ t

0
dt′ eiγBohr

σµ,0 (t′) d
dt′

(
iℏ

Eσ,0(t′)− Eµ,0(t′)
fµσ(t′)ãσ(t′)

)
(1.21)

=
[
eiγBohr

σµ,0 (t′) iℏ
Eσ,0(t′)− Eµ,0(t′)

fµσ(t′)ãσ(t′)
]t

0

−
[
eiγBohr

σµ,0 (t′) iℏ
Eσ,0(t′)− Eµ,0(t′)

d
dt′

(
iℏ

Eσ,0(t′)− Eµ,0(t′)
fµσ(t′)ãσ(t′)

)]t

0
+ . . .

(1.22)

We then have to check at each step that the terms in front of the inverse of instantaneous
gap Eσ,0(t)−Eµ,0(t) is small compared to this gap. In particular, the coefficient ℏfµσ(t) and
its time derivatives have to be small compared to the instantaneous gap. To discuss this,
as in the previous section, we consider that the time dependence of the Hamiltonian orig-
inates from the dependence on parameters ξξξ(t). The amplitude of the coefficient ℏfµσ(t)
then scales as the velocities |ℏfµσ(t)| = |∑α ℏξ̇αAµσ,α,0(ξξξ)|. Using the expression (1.11) of
the geometric phase, we find that its time derivatives also scales as higher time derivatives
of the parameters. This gives an ensemble of conditions on how slowly the parameters ξξξ(t)
have to evolve such that the first order of the adiabatic expansion is valid.

The adiabatic expansion then consists in replacing (1.22) in (1.18), and using in the
right-hand-side the lowest order result ãµ(t) = ãµ(0). For an initial state prepared in an
instantaneous eigenstates, we have ãµ(0) = δµν and we recover (1.4) at first order.

1.1.4 Historical treatment of the infinitely slow limit
In the historical works on the adiabatic theorem is considered a change of the Hamilto-
nian H(t) of a closed quantum system from an initial Hamiltonian Hi = H(t = 0) to
a final Hamiltonian Hf = H(t = T ) during a time T [60, 68, 70]. The slowness of the
time-dependence of the Hamiltonian is then controlled by the duration T of the change of
Hamiltonian, were the limit of infinitely slow Hamiltonian correspond to the limit T →∞.
The strategy to study this limit was to use a rescaled dimensionless time s = t/T , such
that the Schrödinger equation becomes

iℏ
d
ds |Ψ(s)⟩ = TH(s) |Ψ(s)⟩ , (1.23)

which is studied in the limit of large timescale T , among other typical timescales to be
determined. A lot of mathematical subtleties arise from the singularity of such equation
in the limit T →∞ [71].

12



1.2. Adiabatic states

The factor 1/T can be placed in front of ℏ in Eq. (1.23). This is the reason why
the adiabatic limit shares common features with the semiclassical limit, which is often
discussed as the limit where ℏ is much smaller than any other typical scale of action of
the system.

The genuine difficulty of the adiabatic perturbation theory is the a priori identification
of small dimensionless perturbative parameter. We know physically that we require a
slow Hamiltonian, such that the corresponding small dimensionless quantity is a ratio
of typical timescales, or frequency scales. There are several frequencies in the problem,
such as: the instantaneous Bohr frequencies, the rate of variation of the Hamiltonian – or
equivalently the rate of variation of the external variables governing its time-dependence
–, or the matrix elements of the Hamiltonian divided by ℏ. The definition of the small
dimensionless parameter from these frequency scales is not clear a priori.

We address this difficulty is the next section by defining a notion of adiabatic state.
Translating their physical definition into a mathematical construction enables us to de-
fine a posteriori the dimensionless adiabatic parameter. The method to construct the
adiabatic states will share a lot of common ideas with the method to derive the adiabatic
dynamics of a slow-fast quantum system presented in Chap. 2.

1.2 Adiabatic states
In this section, we develop a personal understanding of the adiabatic approximation of
a slowly time-dependent quantum system, introducing a notion of adiabatic state and a
non-standard method to construct them enabling to discuss the condition of validity of
the adiabatic approximation.

As discussed in the introduction of this chapter, the eigenstates of the Hamiltonian of a
time-independent quantum system are physically interesting because they are stationary
states: they lead to an absence of time evolution of the physical observables. Each of
these stationary states is associated with an eigenenergy which enters the dynamics of
non-stationary initial state. Non-stationary initial states decompose into a superposition
of stationary states, and the rate of change of the physical observables are given by the
Bohr frequencies set by the difference of eigenenergies of stationary states divided by the
Planck constant ℏ.

In the time-dependent case, the instantaneous eigenstates of the time-dependent Hamil-
tonian are no longer stationary states in general, in the sense introduced above. In this
section, rather than looking at the time evolution of an instantaneous eigenstate, we in-
troduce the concept of adiabatic states which are constructed to have properties similar to
the stationary states of a time-independent quantum system. Besides, we will emphasize
in this manuscript that they are the physically relevant states to consider when dealing
with a quantum system with slow and fast degrees of freedom.

1.2.1 Physical definition of the adiabatic states
We consider a slowly time-dependent quantum system, described by a Hamiltonian H(t).
We define the adiabatic states as solutions of the Schrödinger equation with the slowest
time-evolution of the physical observables, at a rate of change which is of the same order
of magnitude as the rate of change of the time-dependent Hamiltonian.
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Chapter 1. Adiabatic time-dependent perturbation theory

Similarly to the stationary states in the time-independent case, we also expect the
adiabatic states to be associated with energies, such that we can define Bohr frequencies
from pairs of different adiabatic states. We then expect the rate of change of the adiabatic
states to be small compared to these Bohr frequencies, in order to be able to distinguish
external drive from the internal quantum dynamics in the time-variation of a physical
observable. With this definition, we understand that the notion of adiabatic state is
relevant for rates of time-dependence of the Hamiltonian small compared to its bare Bohr
frequencies.

Slow manifold

Let us comment on the link between our definition of the adiabatic states and the notion
of slow manifold, which plays a central role in physics. We consider the example of
the derivation of hydrodynamic equations starting from kinetic equations for a fluid in
motion. When the fluid is at equilibrium, we define thermodynamic variables, such as the
density, the temperature, and the pressure. Slightly out of equilibrium, the hydrodynamic
equations do not describe all the microscopic initial conditions of the fluid, but only those
for which a notion of local equilibrium exists, with local thermodynamic variables which
vary slowly in space and in time. The set of these initial conditions is what is called a
slow manifold, and the hydrodynamic equations govern the dynamics within this slow
manifold.

In quantum mechanics, the eigenstates of a time-independent Hamiltonian are the
initial states for which the physical observables are at equilibrium, they do not vary in
time, analogously to the thermodynamic variables of a fluid at equilibrium. For a slowly
time-dependent Hamiltonian, what we define as the adiabatic states are those leading to
slow evolution of the observables, analogously to the slow manifold of a fluid slightly out
of equilibrium.

Method of construction

In this manuscript, we use the following approach. We study a time-dependent quantum
system for which we assume a separation of time-scales. In the limit of infinite separa-
tion, the dynamics simplifies. We will introduce a variable λ to identify the dimensionless
quantities controlling the separation of timescales. We physically expect that the dynam-
ics simplifies in the limit of infinitely slow time-variation of the Hamiltonian. This will
correspond to the limit λ → 0. The idea is to build a perturbation theory around this
limit.

More precisely, we consider a family of physical problems, parametrized by the vari-
able λ. The limit λ→ 0 corresponds to the problem of an infinitely slow time variation of
the Hamiltonian, for which the dynamics simplifies. The limit λ→ 1 corresponds to the
physical problem we are studying, namely a quantum system governed by the time de-
pendent Hamiltonian H(t). The variable λ interpolates between the limit of an infinitely
slow Hamiltonian and the physical problem we are considering.

The strategy is to identify the solutions of the problems perturbatively in power series
of λ. As we will explain, the conditions of validity of a formal expansion, related to the
conditions of convergence of the series for λ = 1, provides the dimensionless quantity of
validity of the condition of adiabaticity.

14



1.2. Adiabatic states

We use the same method in Chap. 2 to define the adiabatic dynamics of a slow-fast
quantum system. The difference between these two chapters is the technical implemen-
tation of the method.

Besides, this method will be fruitful to determine the topological properties of adia-
batic states. We come back to these aspects in Chap. 5.

Use of the density matrix

To consider the rate of change of a physical observable, it is not necessary to consider
the rate of change of the state-vector |Ψ(t)⟩. Indeed, a time-variation of a global phase
of |Ψ(t)⟩ does not induce any time-variation of the average value of an observable. Instead,
we consider the density matrix ρ(t) = |Ψ(t)⟩ ⟨Ψ(t)|, that encodes the rate of variation of
any observable Ô:

⟨Ô⟩(t) = Tr
[
ρ(t)Ô

]
. (1.24)

The density matrix was used historically in analogy with the treatment of adiabaticity in
classical Hamiltonian mechanics [72,73].

1.2.2 Construction of the adiabatic states
Equations of definition

We note ρ̃(t) the density matrix of a solution of the problem where the speed of variation
of the Hamiltonian has been scaled by a factor λ, i.e. evolving according to H(λt),

iℏ
d
dt ρ̃(t) = [H(λt), ρ̃(t)]. (1.25)

In order to write the Schrödinger equation (1.25) on a suitable form for perturbation
theory, we define ρ(t) = ρ̃(t/λ), such that2 Eq. (1.25) written for ρ(t) gives

λiℏ
d
dtρ(t) = [H(t), ρ(t)]. (1.26)

In particular, for λ = 1, ρ̃(t) = ρ(t) is a dynamical solution of H(t), the problem we are
interested in.

For λ→ 0, a simple solution of the previous equation is |ψν,0(t)⟩ ⟨ψν,0(t)| for an ensem-
ble of instantaneous eigenstates |ψν,0(t)⟩ of H(t). We suppose that some solutions ρν(t)
of (1.26) for finite λ can be defined perturbatively from this λ→ 0 solution, i.e. decom-
posed as a power series

ρν(t) = ρν,0(t) + λρν,1(t) + · · · =
∑

k

λkρν,k(t). (1.27)

We define the ν-th adiabatic state of the time-dependent Hamiltonian H(t) as such so-
lution for λ = 1, namely for the physical problem we are considering. We will show in

2The time-dependent density matrices ρ̃(t) and ρ(t) obviously depend on λ. We could write
them ρ̃(t;λ) and ρ(t;λ). We do not write explicitly the dependence on λ to lighten the notations.
The dependence is manifest when we introduce the power series decomposition. The solutions of the
physical problem of interest are obtained for λ = 1.
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Chapter 1. Adiabatic time-dependent perturbation theory

Sec. 1.2.4 that when these adiabatic states exist they are the solutions leading to the
slowest time-evolution of physical observables.

Let us comment on the analogy between our method and the derivation of hydrody-
namic equations from kinetic equations. In this analogy, the left hand side of Eq. (1.26)
is analogous to a Liouville term, and the right hand side to a “collision term”. When
λ→ 0, the “collision term” dominates, such that [H(t), ρν,0(t)] = 0 (analogous to a “local
equilibrium condition”). The time dependence leads to a small non-zero value to the LHS,
so we need to introduce ρν(t) into ρν,0(t) + λρν,1(t), and so on. This is formally similar to
the Chapman-Enskog perturbation theory used to derive hydrodynamic equations. The
main difference is that there is no “thermalization” here, simply a condition to remain
close to equilibrium states.

Recurrence relations

Inserting the power expansion (1.27) into (1.26) provides recurrence relations between the
successive orders of the expansion

[H(t), ρν,k(t)] = iℏρ̇ν,k−1(t), (1.28)

where the right hand side of (1.28) vanishes for k = 0.
As shown below in the algorithm of determination of ρν(t), we must consider a pure

state condition. Usually when solving the Schrödinger equation, we do not care about this
condition because we aim at solving it from an initial condition which is a pure state ρ(t =
0) = |ψ(t = 0)⟩ ⟨ψ(t = 0)|. The time-evolution of a pure-state by the Schrödinger equation
is a pure state such that the condition is automatically satisfied for all time t. In contrast,
here we want to identify the adiabatic state ρν(t) for all time t at once. As shown below,
the recurrence relation (1.28) does not define uniquely ρν(t), but imposing the extra pure
state condition ρν(t)2 = ρν(t) does. This condition leads to the recurrence relations
between the different orders

k∑
l=0

ρν,l(t)ρν,k−l(t) = ρν,k(t). (1.29)

Asymptotic series and condition of adiabaticity

Let us discuss the interpretation of the power series expansion (1.27). Such an expansion
is an asymptotic series (also called Poincaré expansion) [71]. This means that the leading
terms often provide a good approximation of the true solution ρν(t). Higher corrections
are relevant as long as they are small compared to the previous ones. Namely, ∑N

k=0 ρν,k(t)
provides a good estimate of the ν-th adiabatic state of H(t) as long as ρν,N(t) is much
smaller than the previous orders. The comparison between operators will be precised
below.

In particular, for the perturbative expansion to be valid as a starting point, the first
correction ρν,1(t) has to be much smaller than the zeroth order ρν,0(t). We will quantify the
ratio between ρν,1(t) and ρν,0(t), and we define it as the dimensionless adiabatic parameter,
which has to be small compared to 1. This dimensionless parameter is determined a
posteriori, after the perturbative construction of the adiabatic states.
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Crucially, such an expansion (1.27) cannot capture non-perturbative effects. A non
perturbative quantity is a non-analytic function of λ, typically exp(−α/λ). In mathemat-
ical terms, the equations involving ρν(t) are true up to O(λ∞) terms. We emphasize the
physical relevance of non-perturbative effects in Sec 1.2.5 by considering non-perturbative
Landau-Zener transitions, useful to determine the time of validity of the adiabatic approx-
imation.

Algorithm of computation

We present the algorithm to compute order by order the adiabatic states, allowing to
determine explicitly the conditions of validity of the perturbative expansion from the
expression of the first order.

At zeroth order, the conditions (1.28) and (1.29) are expressed as

[H(t), ρν,0(t)] = 0 (1.30)
ρν,0(t)2 = ρν,0(t) (1.31)

which are satisfied by any ν-th instantaneous non degenerate eigenstate

ρν,0(t) = |ψν,0(t)⟩ ⟨ψν,0(t)| . (1.32)

We find that at order zero in the adiabatic expansion, the adiabatic states are provided
by the instantaneous eigenstates. This is expected since the rates of change of the instan-
taneous eigenstates are indeed slow, of the same order of magnitude as the rate of change
of the Hamiltonian. However, they are not solutions of Eq. (1.26), and the higher order
terms correct this.

In the following, it is useful to express the matrix elements of the k-th order ρν,k(t)
in the basis of the instantaneous eigenstates |ψµ,0(t)⟩, for an arbitrary3 gauge. The equa-
tion (1.28) gives the off-diagonal elements for which Eµ,0(t) ̸= Eσ,0(t):

⟨ψµ,0(t)| ρν,k(t) |ψσ,0(t)⟩ = iℏ
⟨ψµ,0(t)| ρ̇ν,k−1(t) |ψσ,0(t)⟩

Eµ,0(t)− Eσ,0(t)
for µ, σ s.t. Eµ,0(t) ̸= Eσ,0(t).

(1.33)
The equation (1.29) gives the ν-th diagonal element

⟨ψν,0(t)| ρν,k(t) |ψν,0(t)⟩ = −
k−1∑
l=1
⟨ψν,0(t)| ρν,l(t)ρν,k−l(t) |ψν,0(t)⟩ , (1.34)

and the matrix elements on the terms different from ν

⟨ψµ,0(t)| ρν,k(t) |ψσ,0(t)⟩ =
k−1∑
l=1
⟨ψµ,0(t)| ρν,l(t)ρν,k−l(t) |ψσ,0(t)⟩ for µ, σ ̸= ν.

(1.35)
We should in particular check the compatibility between (1.33) and (1.35) for matrix
elements (µ, σ) such that Eµ,0(t) ̸= Eσ,0(t).

From these three equations (1.33), (1.34) and (1.35), we can compute systematically
the adiabatic state order by order. In particular at first order it gives

ρν,1(t) = −iℏ
∑
µ ̸=ν

|ψµ,0(t)⟩
⟨ψµ,0(t)| d

dt
|ψν,0(t)⟩

Eν,0(t)− Eµ,0(t)
⟨ψν,0(t)|+ h.c. (1.36)

3C.f. note 1 above.
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Chapter 1. Adiabatic time-dependent perturbation theory

1.2.3 Conditions of adiabaticity
As explained above, we get the quantitative conditions for the adiabatic expansion to
be valid by requiring that the first order ρν,1(t) is small compared to ρν,0(t). Given the
expression of ρν,0(t) Eq. (1.32), we require the matrix elements of ρν,1(t) to be small
compared to 1. It leads to

ℏ

∣∣∣⟨ψµ,0(t)| d
dt
|ψν,0(t)⟩

∣∣∣
|Eν,0(t)− Eµ,0(t)|

= ℏ

∣∣∣⟨ψµ,0(t)| dH
dt

(t) |ψν,0(t)⟩
∣∣∣

|Eµ,0(t)− Eν,0(t)|2
≪ 1 for µ ̸= ν. (1.37)

As such, rather than a unique parameter we obtain a family of time-dependent quantities
associated to each transition µ ̸= ν

εµν(t) = ℏ

∣∣∣⟨ψµ,0(t)| dH
dt

(t) |ψν,0(t)⟩
∣∣∣

|Eµ,0(t)− Eν,0(t)|2
(1.38)

which have to be small compared to 1 for the adiabatic expansion to be relevant. We can
then construct the adiabatic small parameter εadiab as the maximum of these quantities

εadiab = max
t

max
µ̸=ν

εµν(t). (1.39)

This quantity was introduced in [68] via a strategy different from the one discussed in
this manuscript.

It is instructive to consider the case where the time-dependence of the Hamilto-
nian originates from the coupling to parameters ξξξ(t), as introduced in Sec. 1.1.2. Us-
ing | ⟨ψµ,0| d

dt
|ψν,0⟩ | = |∑α ξ̇

αAµν,α,0|, Eq. (1.37) provides conditions on how slowly the
parameters have to vary for the adiabaticity to be valid. The component Aµν,α,0 of the
non-abelian Berry connection converts the velocity ξ̇α of the variable ξα into a scale of
frequency which has to be small compared to the Bohr frequency. We require for all ξα(t)
variables4 ∣∣∣ξ̇α(t)Aµν,α,0(ξξξ(t))

∣∣∣≪ |Eµ,0(ξξξ(t))− Eν,0(ξξξ(t))|
ℏ

. (1.40)

If εµν(t) ≪ 1, then the expansion is valid up to order ρν,N(t) as long as it is small
compared to the previous orders k < N . We obtain these conditions from the recursive
expression of the matrix elements of the k-th order correction ρν,k(t) given in Sec. 1.2.2.
In particular, from Eq. (1.33) we obtain the condition

|⟨ψµ,0(t)| ρ̇ν,k(t) |ψσ,0(t)⟩| ≪
|Eµ,0(t)− Eσ,0(t)|

ℏ
(1.41)

for the order ρν,k+1(t) to be relevant. In terms of typical timescale of variations of param-
eters ξξξ(t), Eq. (1.41) translates into conditions on the higher order time derivatives of the
parameters.

4Of course Eq. (1.37) requires the less restrictive condition |
∑

α ξ̇
αAµν,α,0| ≪ |Eµ,0−Eν,0|/ℏ. Requir-

ing Eq. (1.40) for all ξα variable is sufficient, and it is physically relevant to consider separate conditions
for the velocity of each variable.
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1.2. Adiabatic states

1.2.4 Rate of variation of observables
We introduce the energy associated to the adiabatic states, then derive the dynamics of
any state to show that the adiabatic states are those leading to the slowest time-evolution
of physical observables, according to their physical definition.

Energy of adiabatic state

The adiabatic state ρν(t) defines a time-dependent energy

Eν(t) = Tr[ρν(t)H(t)]. (1.42)

At zeroth order, it reduces to the instantaneous eigenenergies Eν,0(t) of the Hamilto-
nian. The first order correction (1.36) being purely off-diagonal, Eν(t) also reduces to the
eigenenergy Eν,0(t) at first order. At higher orders, these two energies may differ.

Dynamics of an adiabatic state

The density matrix of the adiabatic states ρν(t) are constructed to be solutions of the time-
dependent Schrödinger equation. The density matrix can be written ρν(t) = |ψν(t)⟩ ⟨ψν(t)|,
with |ψν(t)⟩ the adiabatic states vectors for a given choice of gauge. From the result of
first order (1.36), it can be written at first order as

|ψν,0(t)⟩ − iℏ
∑
µ̸=ν

⟨ψµ,0(t)| d
dt
|ψν,0(t)⟩

Eν,0(t)− Eµ,0(t)
|ψµ,0(t)⟩ . (1.43)

However, in general such a choice of gauge |ψν(t)⟩ is not a dynamical solution, i.e. a
solution of the time-dependent Schrödinger equation (1.16). A dynamical solution satis-
fies |Ψ(t)⟩ = eiθ(t) |ψν(t)⟩ with θ(t) a phase factor to be determined. We obtain this phase
factor by substitution of this dynamical solution in the Schrödinger equation (1.16), pro-
jection onto |ψν(t)⟩, and time-integration. It leads to

|Ψ(t)⟩ = eiγd
ν (t)+iγg

ν (t)+iα |ψν(t)⟩ , (1.44)

with the dynamical phase associated to the gauge-invariant energy

γd
ν(t) = −1

ℏ

∫ t

0
Eν(t′)dt′, (1.45)

and with the geometric phase associated to the gauge choice

γg
ν(t) =

∫ t

0
⟨ψν(t′)| i d

dt′ |ψν(t′)⟩ dt′, (1.46)

and with α a remaining global phase, the phase relating |Ψ(t = 0)⟩ to |ψν(t = 0)⟩.
Let us mention that we do not have to care about these phase factors if we are only

interested in the dynamics originating from an initial state prepared in an adiabatic state.
These phases are only necessary to consider the dynamics of generic states.
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Chapter 1. Adiabatic time-dependent perturbation theory

Time evolution of an arbitrary state

If the spectrum of the Hamiltonian is never degenerate Eµ,0(t) ̸= Eσ,0(t), for all σ ̸= µ,
for all t, we can construct an adiabatic state from each instantaneous eigenstate. Two
distinct adiabatic states are orthogonal5, such that, at each time t, the adiabatic states
form an orthonormal basis of the Hilbert space {|ψν(t)⟩ , ν = 1, 2, . . . }. In a sense, we
have constructed a basis of the space of solutions of the Schrödinger equation. Any initial
state decomposes on this basis

|Ψ(t = 0)⟩ =
∑

ν

aν |ψν(t = 0)⟩ , (1.47)

such that the time evolution is given by

|Ψ(t)⟩ =
∑

ν

eiγd
ν (t)eiγg

ν (t)aν |ψν(t)⟩+O(λ∞), (1.48)

where O(λ∞) denotes non-perturbative effects explained in Sec. 1.2.5.
Let us compare with the result derived in Sec. 1.1. The time-evolved instantaneous

eigenstate (1.4) has components oscillating at different dynamical phase rates, illustrating
that the initial eigenstate |ψν,0(t = 0)⟩ is not an adiabatic state but has small components
on the other adiabatic states |ψµ(t = 0)⟩, for µ ̸= ν.

Rate of variation of observables

Let us now study the speed of evolution of the expectation values (1.24), in order to derive
explicit conditions for the adiabatic states to be those leading to the slowest evolution of
the physical observables.

From Eq. (1.48), we obtain

⟨Ô⟩(t) =
∑

ν

|aν |2 ⟨ψν(t)| Ô |ψν(t)⟩+
∑
µ̸=ν

eiγBohr
µν (t)aνa

∗
µe

−iγg
µ(t) ⟨ψµ(t)| Ô |ψν(t)⟩ eiγg

ν (t) (1.49)

with the “Bohr phase factor”

γBohr
µν (t) = γd

µ(t)− γd
ν(t) = −1

ℏ

∫ t

0
(Eµ(t′)− Eν(t′)) dt′. (1.50)

In the time evolution of an observable Ô in an arbitrary state (1.49), the first term
corresponds to time-evolution in adiabatic states, and the second term correspond to the
effect of the non-adiabaticity of the initial state. We thus require the second term to vary
much faster than the first one.

The rate of variation of a physical observable Ô in ρν(t) is controlled by ρ̇ν(t). We
estimate it with an operator norm, such as the Frobenius norm

||ρ̇ν(t)||2F = Tr
[
ρ̇ν(t)†ρ̇ν(t)

]
=
∑
µ ̸=ν

∣∣∣∣∣⟨ψµ(t)| d
dt |ψν(t)⟩

∣∣∣∣∣
2

. (1.51)

5See [74]. In this reference, the authors discuss the commutation of two adiabatic projectors Π̂ν

and Π̂µ associated to two different eigenenergies, in the context of slow-fast quantum systems introduced
in Chap. 2. The density matrix ρν(t) of the adiabatic state can be written as the Weyl symbol of such
adiabatic projector, such that the commutation between Π̂ν and Π̂µ for µ ̸= ν is equivalent to the
orthogonality between |ψν(t)⟩ and |ψµ(t)⟩ for all time t. The notions of adiabatic projector and Weyl
symbol are discussed in Chap. 2.
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1.2. Adiabatic states

In Eq. (1.49), the rate of variation of eiγg
ν (t) |ψν(t)⟩ identifies with the rate of variation

of the density matrix ρν(t). Indeed, from (1.46), we get
∣∣∣∣∣
∣∣∣∣∣ d
dt
(
eiγg

ν (t) |ψν(t)⟩
)∣∣∣∣∣
∣∣∣∣∣
2

=
∑

µ

∣∣∣∣∣⟨ψµ(t)| d
dt
(
eiγg

ν (t) |ψν(t)⟩
)∣∣∣∣∣

2

(1.52)

=
∑
µ ̸=ν

∣∣∣∣∣⟨ψµ(t)| d
dt |ψν(t)⟩

∣∣∣∣∣
2

= ||ρ̇ν(t)||2F . (1.53)

Hence, the first term of (1.49) varies much slower than the second term as long as ρν(t)
varies much slower than the Bohr phase factor. We can then write the condition as

∣∣∣∣∣⟨ψµ(t)| d
dt |ψν(t)⟩

∣∣∣∣∣≪ ∣∣∣γ̇Bohr
µν (t)

∣∣∣ = |Eµ(t)− Eν(t)|
ℏ

for µ ̸= ν. (1.54)

These conditions have to be satisfied such that the adiabatic states are the slowest states.
In particular, at lowest order, we recover the condition of validity of the perturbative
expansion discussed in Sec. 1.2.3.

1.2.5 Landau-Zener non-perturbative transitions
We obtained in Sec. 1.2.3 the time-dependent quantities εµν(t) which have to be small
compared to 1 for the adiabatic expansion to be valid. If those are small initially, a first
estimate of the validity of the time-dependent solution amounts to evaluate the time t
when the εµν(t) become of order 1.

We can refine the time of validity of the adiabatic approximation by considering tem-
poral fluctuations of the εµν(t), evaluating the collision times tcol at which an adiabatic pa-
rameter εµν(t) becomes temporarily larger. This typically occurs when the time-dependent
gap |Eν,0(t) − Eµ,0(t)| of the Hamiltonian reaches a minimum. For small gaps, Landau-
Zener transition take place [75,76], which are transitions between adiabatic states |ψν(t)⟩
and |ψµ(t)⟩. The probability of transition between the two adiabatic states is proportional
to exp(−π/(4εµν(tcol))) [75,76]. It is evaluated by a linearization of the time-dependence
of the Hamiltonian around the time of collision tcol. In this formula, we identify a charac-
teristic time of the collision τ col

µν = |Eµ,0 − Eν,0|/
∣∣∣⟨ψµ,0| dH

dt
|ψν,0⟩

∣∣∣, which converts into an
energy broadening δE = ℏ/τ col

µν . Transitions occur when this broadening is comparable
with the gap Eµ,0(tcol)−Eν,0(tcol), and the parameter εµν(tcol), which controls the validity
of the adiabatic approximation, identifies with this ratio εµν(tcol) = δE/|Eµ,0 − Eν,0|.

The Landau-Zener probability is not perturbative in εµν(t). This gives an estimation
of the non-perturbative contributions denoted O(λ∞) in the time-evolved state (1.48) as

|⟨ψµ(t+)|U(t+, t−) |ψν(t−)⟩|2 ≃ exp
(
− π

4εµν(tcol)

)
(1.55)

with the limits of the collision interval t± = tcol± τ col
µν /2, and U(t+, t−) the time-evolution

operator between these two times. The Landau-Zener collision is a transition process
between two adiabatic subspaces.
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Chapter 1. Adiabatic time-dependent perturbation theory

Note that in the works of Zener [75] and Landau [76], the time-dependence of the
Hamiltonian is linearized around the collision time, and the collision are considered be-
tween t± = ±∞. Moreover, they do not consider transition amplitude between adia-
batic states but between their zeroth order approximation, the eigenstates |ψν,0(−∞)⟩
and |ψµ,0(+∞)⟩. For a Hamiltonian depending linearly on time, the adiabatic states
identify with the eigenstates in the limit t→ ±∞, such that we recover Eq. (1.55).

This analysis is particularly useful when we consider a series of similar Landau-Zener
transitions separated by a typical mean free time τmft, for example when the spectrum
reaches similar gap minima associated to a typical adiabatic collision parameter. It is
then possible to determine the characteristic time of validity of the adiabatic approxi-
mation τadiab by constraining the cumulative transition probability to be sizable, e.g. of
order 0.1, such that we get

τadiab ≈ 0.1 τmft exp
(

π

4εµν(tcol)

)
. (1.56)

Note that for the above analysis to be consistent, the collision time τ col
µν must be smaller

than the mean free time τmft. Since we focus on aperiodic evolution, we also neglected
the effect of relative phases accumulated between the transitions [77].

1.2.6 Comment on the denominations
In this manuscript, we denote by “adiabatic” all quantities that express in perturbative
expansion of the perturbative parameter λ. In particular, the first order correction (1.36)
of the adiabatic density matrix ρν(t) is called an “adiabatic effect”.

We denote all the quantities which are not perturbative in λ as “non-adiabatic”, such
as the Landau-Zener transition probability.

Sometimes in the literature (see e.g. [55]), the denomination “non-adiabatic” is used
to refer to any effects originating from corrections to the limit of infinitely slow variation
of the Hamiltonian, such as the first order correction (1.36).

1.3 Conclusion of chapter
In this chapter, we discussed the perturbation theory of a slowly time-dependent quantum
system. We first discussed in Sec. 1.1 the canonical derivation of the time evolution
of an instantaneous eigenstate. The adiabatic theorem states that when the quantum
system is prepared in an instantaneous eigenstate, then, in the limit of an infinitely slow
time dependence of the Hamiltonian, the quantum system remains in an instantaneous
eigenstate. We identified the difficulty of the adiabatic perturbation theory, the a priori
determination of perturbative dimensionless parameter.

We addressed this aspect in Sec. 1.2, by defining a notion of adiabatic state as the
dynamical solutions leading to the slowest time-evolution of the physical observables. We
construct their density matrix perturbatively, in an adiabatic small quantity which is
determined a posteriori, requiring that the perturbative expansion is valid.

In the next chapter, we discuss the adiabatic dynamics of a slow-fast quantum system.
It corresponds to a closed quantum system with two types of degrees of freedom with
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a separation of characteristic dynamical timescales. The external drive imposing a time
dependence of the Hamiltonian of a quantum system is replaced by a coupling to a second
“slow” dynamical quantum system. We will quantify what we mean by a “slow” dynamical
quantum system by defining a notion of adiabatic subspace, following the same method as
the one discussed in Sec. 1.2.1 to define adiabatic states. The technical tools to implement
this method will be different, in order to keep track of the back-action of the fast subsystem
onto the slow one.

23





Chapter 2
Slow-fast quantum systems

Slow-fast quantum system are closed quantum system whose dynamics contains a sep-
aration of characteristic timescales, or frequency scales. The total system splits in two
types of degrees of freedom, the slow and the fast ones, associated to the corresponding
timescales. The “adiabatic elimination” consists in deriving an effective dynamics of the
slow degrees of freedom accounting for the back action of the fast degrees of freedom. This
chapter is an introduction to slow-fast quantum systems, and to the geometrical proper-
ties entering the effective dynamics of the slow degrees of freedom. Different examples
of possible slow-fast quantum systems with their corresponding slow and fast subsystems
are given in Table 2.1.

In Sec. 2.1 we discuss the historical example of a slow-fast quantum system, a molecule.
The Born-Oppenheimer method introduces the main ideas of the adiabatic theory of a
slow-fast quantum system, in particular a notion of effective subspace. In Sec. 2.2, we
discuss the historical example of an electron in a crystal. This example introduces the
effective equations of motion within the effective subspace involving the Berry curvature.
We will then detail a general theory of adiabatic dynamics of a slow-fast quantum system.
The method to construct this adiabatic dynamics is the same as the one introduced in
Chap. 1 to define the adiabatic states of a slowly driven quantum system. The technical
tools used to implement this method are different. We introduce these tools in Sec. 2.3.
We present this theory and its conditions of validity in Sec. 2.4.

Comment on the notations

In Chap. 1, we considered a slowly time-dependent quantum system. We noted H(t)
its time-dependent Hamiltonian, |ψν,0(t)⟩ its instantaneous eigenstates, and |ψν(t)⟩ its
perturbatively constructed adiabatic states.

In this chapter, we are led to consider a Hamiltonian H(x,p) of the fast subsystem
depending on phase space variables of the slow subsystem (x,p). We use the nota-
tion |ψν(x,p)⟩ for its eigenstates instead of the notation |ψν,0(x,p)⟩ of Chap. 1. No
confusion is possible in this chapter given that, in general, there is no notion of adi-
abatic states of the fast subsystem, but only a notion of adiabatic states of the total
system. We will introduce a notion of adiabatic projector of the total system, which de-
fines the adiabatic states of the total system. Its lowest order (Weyl symbol1) is noted

1The Weyl symbol of an operator is defined in Sec. 2.3.3.
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Πν,0(x,p) = |ψν(x,p)⟩ ⟨ψν(x,p)|. The (Weyl symbol of the) adiabatic projector at all
orders is noted Πν(x,p).

Total system Slow degrees of freedom Fast degrees of freedom
Molecules Nuclei positions Electrons positions
Electron in a crystal Position on Bravais lattice Dynamics inside unit cell
Metals Phonons Electrons
Frustrated magnets Collective zero energy

modes
Gapped magnon excita-
tions

Mesoscopic superconduc-
tors

Collective modes Bogoliubov quasi-particles

Superconducting tunnel
junctions

Collective modes Andreev bound states

Relativistic spinor Position and spin Particle – antiparticle de-
gree of freedom

Circuit QED Cavity electromagnetic
modes

Superconducting qubit

Table 2.1: Examples of slow-fast quantum systems.

2.1 Historical Born-Oppenheimer problem
We present the canonical example of a molecule as a slow-fast quantum system using the
approach of the Born-Oppenheimer approximation. This method contains the main ideas
needed to discuss the geometrical aspects in slow-fast quantum systems.

2.1.1 Molecules as canonical slow-fast quantum systems
A molecule is a canonical example of quantum system with slow and fast degrees of
freedom. The nuclei being much heavier than the electrons, we expect them to be much
slower. We describe a molecule by the positions of the nuclei and the positions of the
electrons, ignoring the spin for simplicity. Then the Hilbert space of the total system
splits in

Htot = Hnuclei ⊗Helectrons. (2.1)
We note collectively R = {Ri} the position coordinates of all the nuclei, and P their
conjugated momenta. We note similarly r the position coordinates of the electrons and p
the conjugated momenta. To simplify the notations, we assume that all the atoms are
of the same element such that all the nuclei have the same mass M , and we note m the
mass of an electron. The total Hamiltonian of the molecule reads

Ĥtot =
∑

i

P̂ 2
i

2M +
∑

j

p̂2
j

2m + V (R̂, r̂) (2.2)

where V (R̂, r̂) is the potential Coulomb energy of interaction between the nuclei, between
the nuclei and the electrons, and between the electrons. The historical work of Born and
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2.1. Historical Born-Oppenheimer problem

Oppenheimer [78] consists in deriving the spectrum of the molecule using perturbation
theory in the small ratio m/M . However, what is now referred as the Born-Oppenheimer
approximation [68,79] is a different method to diagonalize the Hamiltonian of the molecule
using important ideas on which this manuscript is rooted.

2.1.2 Born-Oppenheimer ansatz and effective Hamiltonian
The starting point of the Born-Oppenheimer approximation amounts to neglect the kinetic
energy of the nuclei in the Hamiltonian of the molecule (2.2), in the limit where the mass
of the nuclei is larger than the mass of the electrons. The Hamiltonian simplifies into

Ĥ =
∑

j

p̂2
j

2me

+ V (R̂, r̂) (2.3)

which commutes with the position operators of the nuclei R̂. As such, we can co-
diagonalize Ĥ and the position operators of the nuclei

Ĥ |R⟩ ⊗ |ψν(R)⟩ = Eν(R) |R⟩ ⊗ |ψν(R)⟩ (2.4)

where |ψν(R)⟩ ∈ Helectrons are electronic states. They are the normalized eigenstates of
the electronic operator H(R) for fixed positions R of the nuclei. When we use this form of
eigenstates of the molecule, we consider the positions of the nuclei as conserved quantities
meaning that they do not change during the dynamics, so we indeed treat the nuclei as
infinitely slow.

Then we aim at determining the eigenstates of the molecule treating the kinetic energy
of the nuclei as a perturbation. We will use a variational ansatz for this purpose. Let
us motivate this ansatz. A small perturbation modify two eigenstates close in energy, for
which Eν(R)−Eν′(R′) is of the order of the perturbation. Moreover, the perturbation is
written in terms of the momenta operators of the nuclei, which are local in position. Hence,
the perturbation can only alter pairs of eigenstates for which R ≃ R′. The energy Eν(R)
being continuous with respect to R we have Eν(R) ≃ Eν(R′) for R′ ≃ R, such that the
whole family of states |R⟩⊗ |ψν(R)⟩ for all R at a fixed ν is affected by the perturbation.
If the energy differences between electronic states of different families ν ′ ̸= ν around
the same position Eν(R) − Eν′(R) are sufficiently large, then an eigenstate of the total
Hamiltonian (2.2) will decompose mostly onto a simple family of eigenstates |R⟩⊗|ψν(R)⟩.
We thus expect a suitable ansatz for the eigenstates of the total Hamiltonian (2.2) to be

|Ψtot⟩ =
∫

dR χ(R) |R⟩ ⊗ |ψν(R)⟩ (2.5)

with a complex function χ(R) to determine.
Using the variational method with respect to χ(R) [68,80], we obtain an approximate

eigenstate of the total Hamiltonian of energy E for a function χ(R) satisfying[∑
i

(
(−iℏ∂Ri

− ℏAν,Ri
(R))2

2M + ℏ2

2Mgν,RiRi
(R)

)
+ Eν(R)

]
χ(R) = E χ(R), (2.6)

with the Mead-Berry connection

Aν,Ri
(R) = i ⟨ψν(R)|∂Ri

ψν(R)⟩ , (2.7)
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and the quantum metric

gν,RiRi
= Re ⟨∂Ri

ψν | (1− |ψν⟩ ⟨ψν |) |∂Ri
ψν⟩ . (2.8)

Let us mention an alternative method to obtain Eq. (2.6), which is more explicit
and frequently used. We can decompose generically the total state |Ψtot⟩ on the basis
{|R⟩⊗|ψν(R)⟩}R,ν of the total Hilbert space using a family of functions χν(R), rather than
restrict the decomposition (2.5) on one family ν. Then the time-independent Schrödinger
equation leads to coupled differential equations between the χν(R). Ignoring the couplings
between χν(R) and χµ ̸=ν(R) corresponds to the Born-Huang approximation [79] and leads
to Eq. (2.6).

2.1.3 Born-Oppenheimer method

We summarize the important steps of the Born-Oppenheimer method, which are at the
basis of the general adiabatic theory of slow-fast quantum systems exposed in Sec. 2.4.
This is often referred as the “adiabatic elimination” because this amounts to eliminate
the fast degrees of freedom and to focus only on the slow ones, with the intuition that
the state of the fast system is determined by the state of the slow system. In that case it
is sufficient to focus on the slow system in order to infer all the information we want on
the total system. This is a reduction of the number of degrees of freedom.

The adiabatic elimination can be summarized by the following steps:

1. Identify the slow and fast degrees of freedom.

2. Freeze the slow variables.

3. Parametrize the states of the total system by the states of the slow system.

4. Unfreeze the slow variables.

Step 1: Identify the slow and fast degrees of freedom.

This step is immediate when we study a molecule. The fast degrees of freedom are the
electrons positions and the slow degrees of freedom are the nuclei positions. This provides
the splitting of Hilbert space (2.1).

Step 2: Freeze the slow variables.

For the Born-Oppenheimer problem, we freeze the slow variables by considering the case
of infinitely massive nuclei, ignoring their kinetic energy in the Hamiltonian. Then the
positions of the nuclei are frozen in the sense that they are constants of motion: the
remaining Hamiltonian Ĥ commutes with the positions R̂. The eigenstates of the frozen
Hamiltonian are eigenstates of the positions of the slow variables, of the form |R⟩ ⊗
|ψν(R)⟩.

28



2.1. Historical Born-Oppenheimer problem

Step 3: Parametrize the states of the total system by the states of the slow
system.

The diagonalization of the frozen Hamiltonian gives a decomposition of the total Hilbert
into a direct sum of subspaces Hν,0, which we will call the Born-Oppenheimer subspaces

Htot = Hnuclei ⊗Helectrons =
⊕

ν

Hν,0 (2.9)

such that intuitively within each subspace ν, we can parametrize the states of the total
system by a state of the nuclei lying in Hnuclei. The subscript “0” is used to distinguish
the Born-Oppenheimer subspace Hν,0 from the adiabatic subspace Hν detailed in Sec. 2.4.
This mapping appears in the decomposition (2.5) of the total state: if we interpret the
function χ(R) as a wavefunction of the nuclei, then every state of Hν,0 is associated to a
state in Hnuclei. We have an approximate isomorphism between Hν,0 and Hnuclei. In the
end of the chapter, we will quantify through the relation (2.108) to which extent the two
spaces fail to be exactly isomorphic.

Let us comment this approximate isomorphism by introducing briefly the notion of
vector bundle2. For each position R of the nuclei, the ν-th electronic eigenstate |ψν(R)⟩
defines a one dimensional subspace of Helectrons, noted C |ψν(R)⟩ = {z |ψν(R)⟩ ; z ∈ C}.
The collection of all of these subspaces for R lying in the configuration space of the
nuclei defines a line bundle over this configuration space. If the configuration space of
the slow subsystem is compact, then this line bundle can have a non-trivial topology.
In such a case, the isomorphism between the Hilbert space of the slow system and the
Born-Oppenheimer subspace Hν,0 is not guarantied [82–84]. The non-trivial topology of
line-bundles plays a central role in this thesis.

The notion of Born-Oppenheimer subspace, and the notion of adiabatic subspace that
we will define in Sec. 2.4, are fundamental in this manuscript. They are defined by an
orthogonal projector onto this subspace. In the case of Born-Oppenheimer treatment of
a molecule, the Born-Oppenheimer projector Π̂ν,0 takes the form

Π̂ν,0 =
∫

dR |R⟩ ⟨R| ⊗ |ψν(R)⟩ ⟨ψν(R)| . (2.10)

Step 4: Unfreeze the slow variables.

For a molecule, this corresponds to taking into account the kinetic energy of the nuclei,
such that the positions R of the nuclei are no longer conserved quantities. This step is
implemented in different ways in various approaches. The Born-Oppenheimer treatment
of a molecule assumes that an eigenstate decomposes within a subspace Hν,0 and uses
a variational method. In the wavepacket approach of the semiclassical dynamics of an
electron in a crystal discussed in Sec. 2.2, the state of the electron is assumed to lie within
such a subspace Hν,0 and equations of motion governing the center of the wavepacket
are derived from a Lagrangian approach. In the general theory introduced in Sec. 2.4,
we rather construct a deformed version of the Born-Oppenheimer subspace Hν,0, the
adiabatic subspace Hν , which is stable3 by the dynamics and derive equations governing
the evolution of the state within this subspace.

2We refer to [61,81] for an introduction to the mathematical formalism of vector bundles.
3The adiabatic subspace is stable up to non-perturbative effects, in a sense precised in Sec. 2.4.
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Each of these steps contain different types of difficulties depending on the physical
system we consider, which are discussed in this chapter.

2.1.4 Role of Mead-Berry connection
Interpretation of the function χ(R)

The role of the Mead-Berry connection (2.7) in Eq. (2.6) enlighten an important aspect of
step 3 of the adiabatic elimination: the parametrization of the states of the total system in
the subspace Hν,0 by a state of the slow system (the nuclei) in Hnuclei. If we interpret the
wavefunction χ(R) used in the decomposition (2.5) as the wavefunction of the nuclei, then
the representation of their momenta P̂ differs from a canonical spatial representation.

To explain this, we recall that the electronic states |ψν(R)⟩ are defined as eigenstates
of the Hamiltonian H(R). This leads to a gauge freedom in the parametrization, where
a gauge transformation reads

|ψν(R)⟩ → |ψ′
ν(R)⟩ = eiα(R) |ψν(R)⟩ , (2.11)

χ(R)→ χ′(R) = e−iα(R)χ(R), (2.12)

and a corresponding transformation of Aν,Ri
(R) as

Aν,Ri
(R)→ A′

ν,Ri
(R) = Aν,Ri

(R)− ∂α

∂Ri

(R). (2.13)

As such, the modulus square of the function χ(R) is gauge independent and corre-
sponds indeed to a probability density of position of the nuclei, i.e. for an observable f(R̂)
depending only on the nuclei positions we have

⟨Ψtot| f(R̂) |Ψtot⟩ =
∫

dR |χ(R)|2f(R). (2.14)

However, the function χ(R) is not sufficient to get information on the momenta P̂i: the
connection components Aν,Ri

(R) are also required,

⟨Ψtot| P̂i |Ψtot⟩ =
∫

dR χ(R)∗ (−iℏ∂Ri
− ℏAν,Ri

(R))χ(R), (2.15)

which is indeed gauge invariant.

Role of connection and curvature

In the early works on the Born-Oppenheimer approximation, the connection Aν,Ri
(R)

was often not considered in (2.6), either as an approximation or assuming that a suitable
gauge transformation could make it vanish possibly at the cost of considering multivalued
electronic eigenstates |ψν(R)⟩ and multivalued wavefunction χ(R) [85, 86]. The role of
the connection has been identified following the seminal work of Mead and Truhlar [86].
We refer to the review of Mead [87] for discussions of the literature.

For our purpose, we are interested in the case where the curvature of this connection
does not vanish4

Fν,RiRj
(R) = ∂Ri

Aν,Rj
(R)− ∂Rj

Aν,Ri
(R) ̸= 0. (2.16)

4It can vanish locally, for some R, but not globally, not for all R.
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2.2. Semiclassical dynamics of electrons in a crystal

The curvature being gauge invariant, in this case there cannot be any gauge transforma-
tion for which the connection vanish globally. This connection acts as a vector potential
and the Berry curvature as the corresponding effective magnetic field. Then, if we use a
correspondence principle from the effective Hamiltonian (2.6) (despite the delicate inter-
pretation of the function χ(R) explained above), we get classical equations of motion for
the nuclei containing an effective Lorentz force originating from this effective magnetic
field [80,88].

The experimental signatures of the geometric phase associated to the Mead-Berry
connection were studied in the spectra of molecules [81, 87]. Spectral signatures of topo-
logical properties of the fiber bundle of the Born-Oppenheimer decomposition were also
studied [82–84]. In this manuscript, we are mainly interested in dynamical signatures. For
a review on the different theoretical treatments of the dynamics of electrons and nuclei in
molecular systems within the chemical physics community, we refer to [89]. These works
do not focus on the geometrical aspects entering effective dynamics.

2.2 Semiclassical dynamics of electrons in a crystal
In this section, we discuss the semiclassical dynamics of electrons in a crystal. This is
an historical example of slow-fast quantum system for which the Berry curvature was
understood to play an important role in the equations of motion of the slow variables.
It is also the first example where the Berry curvature depends on compact variables, the
Bloch momenta, necessary to define a topological Chen number.

2.2.1 Decomposition into slow and fast degrees of freedom
We consider a single electron in a crystal in d dimensions and describe this system as a
slow-fast quantum system. We introduce the Bloch theorem as a tool to identify the slow
variables of step 1 of the adiabatic elimination introduced in Sec. 2.1.3. This discussion
does not only apply to an electron in a crystal but also to any wave in a periodic medium.

We saw in Sec. 2.1 on the Born-Oppenheimer treatment of a molecule that the positions
of the nuclei are the slow variables because, in the limit of infinite mass of the nuclei, they
are conserved quantities which means that they do not have any dynamics. We follow
this strategy to identify the slow degrees of freedom for an electron in a crystal. The
Bloch theorem states that the crystal momentum is a good quantum number, i.e. a
conserved quantity, for a particle in a periodic potential. We thus define a degree of
freedom associated to the crystal momentum, with a splitting of the total Hilbert space
similar to the splitting (2.1).

Splitting of the Hilbert space

The state of the electron |Ψ⟩ is given by a wavefunction Ψ(x) depending on the real space
position x ∈ Rd

|Ψ⟩ =
∫

Rd
dx Ψ(x) |x⟩ . (2.17)

The dynamics of the electron in a periodic potential is given by a Hamiltonian

Ĥ = p̂2

2m + V (x̂) (2.18)
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where the momentum operator p̂ is −iℏ∇x in position representation, namely ⟨x| p̂i |Ψ⟩ =
−iℏ∂xi

Ψ(x). The potential has the translation symmetry of a Bravais lattice Γ. We label
by R ∈ Γ the discrete set of Bravais lattice translations which we identify to the discrete
set of positions of unit-cells by fixing an origin of space. We have for all x ∈ Rd and R ∈ Γ

V (x + R) = V (x). (2.19)

We introduce the discrete and compact variables used in the description of an elec-
tron in a periodic medium. This discussion is useful to discuss other types of compact
variables [90] which will be considered in this manuscript. A position x in real space is
given by a value of unit cell R and a position r inside the unit-cell via the unique decom-
position x = R + r. To consider separately the Bravais lattice position R ∈ Γ and the
position inside the unit-cell r, we define Ψ(R, r) = Ψ(R + r), where we have the subtle
periodic conditions

(R, r + a) ≡ (R + a, r) (2.20)

for R, a ∈ Γ and for r on the boundary of unit cell5. Defining |R⟩ ⊗ |r⟩ = |R + r⟩ with
the same periodic conditions, we have decomposed the Hilbert space in a discrete degree
of freedom R ∈ Γ, and a continuous and compact degree of freedom r ∈ Rd/Γ

Htot ≃ HBravais-lattice ⊗Hunit-cell (2.21)

with

|Ψ⟩ =
∑
R∈Γ

∫
unit-cell

dr Ψ(R, r) |R⟩ ⊗ |r⟩ . (2.22)

Discrete and compact variables

We now introduce the Bloch momentum, which is the compact conserved quantity of
an electron in a periodic potential. This discussion of compact variables conjugated to
discrete variables will also be useful when discussing quantum modes.

The reciprocal lattice Γ⋆ is made of vectors G ∈ Rd such that G · R ∈ 2πZ for all
lattice vectors R ∈ Γ. The Bloch momentum k lying in the first Brillouin zone Rd/Γ⋆ is
the momentum of the electron defined up to a reciprocal lattice vector. We can define it
in the same way as the position with the unique decomposition p = ℏ(G + k) for p ∈ Rd,
G ∈ Γ⋆ and k ∈ Rd/Γ⋆. We introduce a compact basis of HBravais-lattice made of |k⟩ states,
Fourier transform of the discrete basis of |R⟩ states

|k⟩ =
√
Vcell

(2π)d

∑
R∈Γ

eik·R |R⟩ (2.23)

with Vcell the volume of the unit cell. This is an orthonormal basis of Hunit-cell when k ∈
BZ,

⟨k′|k⟩ = δ(k− k′) ;
∫

BZ
dk |k⟩ ⟨k| = 1HBravais-lattice . (2.24)

5This is due to the embedding Γ×Unit-Cell → Rd

(R, r) 7→ R + r .
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2.2. Semiclassical dynamics of electrons in a crystal

In short, HBravais-lattice has a discrete basis of states |R⟩ of position on the Bravais
lattice R ∈ Γ, and a compact and continuous basis of states |k⟩ of crystal momen-
tum k ∈ Rd/Γ⋆. Similarly, Hunit-cell has a compact and continuous basis of states |r⟩ of
position in the unit cell r ∈ Rd/Γ, and a discrete basis of states |G⟩ of reciprocal lattice
vectors G ∈ Γ⋆, even though the latter is rarely used. The Bloch theorem states that
the Bloch momentum is a conserved quantity for the Hamiltonian (2.18) associated to
the discrete translational symmetry by the Bravais lattice. Similarly, the position of the
nuclei is a conserved quantity for a molecule if we ignore the kinetic energy of the nuclei.

However, contrary to the case of a molecule, we usually do not introduce an operator k̂
corresponding to the Bloch momentum acting on HBravais-lattice, even if we could by defin-
ing (2.23) as its eigenstate associated to the eigenvalue k such that it corresponds to the
periodic operator conjugated to the discrete operator R̂ [90], [R̂i, k̂j] = iδij1HBravais-lattice .

Bloch basis

In the study of an electron in a crystal, it is convenient is to introduce a basis of Bloch
states of the total Hilbert space Htot. This is a basis which has a simple expression in
the representation of Bloch momenta and position inside the unit cell. A simple basis is
made of |k⟩ ⊗ |r⟩ with k ∈ BZ and r ∈ Rd/Γ. However, as discussed below, the position
operator of the electron x̂ does not have a convenient expression in this basis. A choice of
Bloch basis is characterized by a function α(k, r), where we define the states |k, r⟩ ∈ Htot
as

|k, r⟩ = eiα(k,r) |k⟩ ⊗ |r⟩ =
√
Vcell

(2π)d

∑
R∈Γ

eik·Reiα(k,r) |R⟩ ⊗ |r⟩ . (2.25)

The choice of function α(k, r) corresponds to a choice of convention of Fourier transform,
or geometrically to a choice of trivialization of the Bloch bundle [62] which is not canonical.
This ensemble of states is a basis of the total Hilbert space when k ∈ BZ and r ∈ unit-cell

⟨k′, r′|k, r⟩ = δ(k− k′)δ(r− r′) ;
∫

BZ
dk
∫

unit-cell
dr |k, r⟩ ⟨k, r| = 1Htot . (2.26)

A Bloch state |k, u⟩ is characterized by a crystal momentum k ∈ BZ and a state |u⟩ ∈
Hunit-cell which is given by a periodic function satisfying u(x + a) = u(x). It is defined by

|k, u⟩ =
∫

unit-cell
dr u(r) |k, r⟩ =

∫
Rd

dx eik·R+iα(k,r)u(r) |x⟩ , (2.27)

where in the last expression, R and r are defined from the unique decomposition x = R+r.
Note that the Bloch base states |k, r⟩ are separable for the decomposition (2.21) of the

total Hilbert space but in general a Bloch state |k, u⟩ defined from a state |u⟩ ∈ Hunit-cell
is not separable unless α(k, r) = a(k)b(r). A choice which would seem practical is to
consider α(k, r) = 0. This would be the case in the discussion of the Born-Oppenheimer
treatment of a molecule, where k would be replaced by the momentum P of the nuclei
and r by the position of the electron. This will be also the case in Chap. 5 where we
consider the dynamics of quantum modes topologically coupled to a qubit, where k will
be replaced by the phase ϕ of the modes and |r⟩ by base states of the qubit Hilbert space.

However, this is not a practical choice in the case of an electron in a crystal. The
reason is that we are interested in the position operator x̂ which acts on Htot and not
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solely on HBravais-lattice, so a separable basis has no reason to be particularly suited. The
use of the Bloch theorem gives an “almost” canonical choice [62]

α(k, r) = k · r, (2.28)

such that the state (2.27) is a common eigenstate of the all operators of translation by
lattice vectors R ∈ Γ. We describe this choice in the following paragraph.

Choice of Bloch basis from Bloch theorem

The Bloch theorem states that the eigenstates |ψν,k⟩ of the total Hamiltonian are labelled
by k ∈ BZ and by a band index ν such that their wavefunction has the form

ψν,k(x) = eik·xuν(k,x) (2.29)

with a periodic Bloch function uν(k,x + R) = uν(k,x). This means that the eigen-
states |ψν,k⟩ ∈ Htot are common eigenstates of the Hamiltonian Ĥ and all the opera-
tors e− i

ℏ p̂·R of translations in real space by lattice vectors R ∈ Γ:

e− i
ℏ p̂·R |ψν,k⟩ = e−ik·R |ψν,k⟩ , (2.30)
Ĥ |ψν,k⟩ = Eν(k) |ψν,k⟩ . (2.31)

We check that to write |ψν,k⟩ under the form (2.27), we have to consider α(k, r) = k · r

|ψν,k⟩ = |k, uν(k)⟩ if α(k, r) = k · r. (2.32)

This choice gives a natural expression of the Bloch basis in the real space basis |x⟩ of Htot,
with x ∈ Rd

|k, r⟩ =
√
Vcell

(2π)d

∑
R∈Γ

eik·Reiα(k,r) |R⟩ ⊗ |r⟩ (2.33)

=
√
Vcell

(2π)d

∑
R∈Γ

eik·(r+R) |r + R⟩ if α(k, r) = k · r. (2.34)

This is the reason why these states diagonalize the translations by lattice vectors.

Projected observables and covariant derivative

Let us explain that the previous choice of Bloch basis is useful to manipulate the position
operator x̂. We consider a wavepacket projected in a band ν

|Ψ⟩ =
∫

BZ
dk χ(k) |ψν,k⟩ . (2.35)

In this case, as already noticed by Blount in the beginning of the formalism of band the-
ory [91] and then highlighted by King-Smith and Vanderbilt studying electric polariza-
tion [92] the action of the projected position operator on such projected state corresponds
to a covariant derivative with respect to the connection

Aν,i(k) = i ⟨uν(k)|∂ki
uν(k)⟩ = i

∫
unit-cell

dr uν(k, r)∗∂uν

∂ki

(k, r), (2.36)
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i.e.

⟨Ψ| x̂i |Ψ⟩ =
∫

BZ
dk χ∗(k)

(
i
∂

∂ki

+ Aν,i(k)
)
χ(k) if α(k, r) = k · r. (2.37)

This is also the reason why such convention is well suited when we consider a tight-binding
Hamiltonian, where we replace the unit cell positions |r⟩ by orbital degrees of freedom |j⟩
localized around rj on the unit-cell, such that we should consider α(k, j) = k ·rj to have a
similar expression of the position operator x̂ [62,63,93]. But if we are interested in other
observables, other conventions can be more convenient.

2.2.2 Semiclassical dynamics of center of wavepacket
The Bloch theorem provides a splitting of the Hilbert space of an electron in a crystal
into band subspaces Hν,0

Htot =
⊕

ν

Hν,0 (2.38)

where the projector on each band ν is defined by

Π̂ν,0 =
∫

BZ
dk |ψν,k⟩ ⟨ψν,k| . (2.39)

This is a spectral decomposition of the total Hilbert space, in the sense that each sub-
space Hν,0 is stable under the dynamics of the translation invariant Ĥ (2.18). This is
in contrast to the Born-Oppenheimer subspaces introduced in Sec. 2.1 which are not
stable under the dynamics of the total Hamiltonian of the molecule but only under the
dynamics of the Hamiltonian (2.3) where we ignore the mass of the nuclei. So step 2 of
adiabatic elimination, the freezing of the slow variables, is already done if we consider an
unperturbed crystal.

If the electron is also coupled to a weak and slowly varying in space classical electro-
magnetic field, then the translational symmetry by the Bravais lattice vectors is broken,
and the Bloch momentum is no longer a conserved quantity. By Peierls substitution [94],
the Hamiltonian reads

Ĥtot = 1
2m (p̂ + eA(x̂))2 + V (x̂)− eϕ(x̂) (2.40)

with A(x) the electromagnetic vector potential and ϕ(x) the electromagnetic scalar po-
tential.

The Bravais lattice translational symmetry of the Hamiltonian Ĥ (2.18) is broken in
the perturbed Hamiltonian Ĥtot. We use respectively the notations Ĥtot and Ĥ to keep
the parallel with respectively the total Hamiltonian Ĥtot of the molecule (2.2) and the
Hamiltonian Ĥ (2.3) of the molecule without the kinetic energy of the nuclei, under which
the position of the nuclei is conserved (Ĥ is symmetric by nuclei momenta translations).

We are now interested in the semiclassical dynamics of the electron. Historically, one
of the strategies to derive the equations of motion governing the center of an electronic
wavepacket was to construct an effective Hamiltonian and to use the correspondence
principle [94]. This is similar to the correspondence principle mentioned in Sec. 2.1.4
to derive effective equations of motion for the nuclei position in the Born-Oppenheimer
treatment of a molecule.
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We do not discuss the vast literature on this subject but rather present the theory
based on electronic wavepackets projected into a band because this theory highlights the
role of the Berry curvature in the dynamics. It is rooted in the works of Chang, Niu,
and Sundaram [95–97], and is detailed in the review [13]. We do not enter into the
technical details of this theory but rather explain the main strategy, the difficulties and
the limitations.

A core assumption of this approach consists in focusing on electronic wavepacket
projected into a band of the unperturbed Hamiltonian Ĥ and localized in phase space

|Ψ⟩ =
∫

BZ
dk χ(k) |ψν,k⟩ (2.41)

which is similar to considering a Born-Oppenheimer state in Eq. (2.5). The center of the
wavepacket in crystal momentum is kc =

∫
BZ dk k|χ(k)|2, and the center in real space

is xc = ⟨Ψ| x̂ |Ψ⟩. In order to determine the time-evolution of the center of the wavepacket,
the total Hamiltonian is linearized around it. A subtlety of this linearization is that the
unperturbed Hamiltonian Ĥ – from which we define the Bloch eigenstates – is defined
from a linearization in position of the total Hamiltonian Ĥtot around the center of the
wavepacket xc. As such, the Bloch eigenstates |ψν,k⟩ depend on xc, and also enter the
definition of xc via xc = ⟨Ψ| x̂ |Ψ⟩. This leads to a self-consistent definition of the center
of the wavepacket. The strategy is then to consider xc and kc as classical dynamical
variables and determine their equation of motion. Niu et al. introduced a Lagrangian
governing the dynamics of xc and kc

L(xc, ẋc,kc, k̇c) = ⟨Ψ|
(
iℏ∂t − Ĥtot

)
|Ψ⟩ . (2.42)

The linearization of the total Hamiltonian induces a term in the Lagrangian involving
the average value of the position operator x̂ which, as given by Eq. (2.37), depends on
the connection (2.36), such that the corresponding equations of motion involve the Berry
curvature. We do not detail the derivation of the equations of motion from the Lagrangian.
They read [13]

ṙc = 1
ℏ
∇kcEν,m − k̇c × Fν , (2.43a)

ℏk̇c = −eE− eṙc × B. (2.43b)
These equations involve the electric field E(xc) = −∇xϕ(xc), the magnetic field B(xc) =
∇x × A(xc), the Berry curvature written as a 3-dimensional vector

Fν(kc) = ∇k × Aν(kc) (2.44)

where the connection is written as a 3-dimensional vector Aν whose components are given
by Eq. (2.36), and a modified band energy

Eν,m(kc) = Eν(kc)−B ·mν(kc) (2.45)

with the orbital magnetic moment of Bloch electrons

mν(k) = −i e2ℏ [⟨∇kuν(k)| × (Eν(k)−H(k)) |∇kuν(k)⟩] (2.46)

with the Bloch Hamiltonian H(k) = exp(−ik · x̂)Ĥ exp(ik · x̂).
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In the first historical studies of the semiclassical dynamics of an electron in a crystal,
the role of the Berry curvature was not highlighted in the equations of motion [98].
The semiclassical dynamics of an electron was understood by considering only a group
velocity ∇kEν/ℏ.

In one dimension, the Berry curvature and magnetic field vanishes, such that for a
uniform electric field Eq. (2.43b) leads to a linear increase in time of the crystal momen-
tum, which corresponds to a periodic motion through the one dimensional Brillouin zone.
The energy being periodic in momentum, this translates via Eq. (2.43a) into periodic
oscillations in real space, named Bloch oscillations [99,100], at a period h/(ea|E|) with a
the size of the lattice unit cell.

In this manuscript, we are mostly interested in the role of the Berry curvature in the
equations of motion. In the absence of a magnetic field B = 0, the Berry curvature leads
to a contribution to the velocity ṙc transverse to the electric field eE × Fν/ℏ called the
anomalous velocity. It was discovered earlier by Karplus and Luttinger in the study of
the Hall effect in ferromagnets [91, 101].

In terms of slow-fast quantum system, there is an important difference between the
semiclassical dynamics of an electron in a crystal and the Born-Oppenheimer treatment
of a molecule. Eq. (2.43) are equations governing the center of the electron wavepacket xc

and kc. They do not correspond to observables of the slow subsystem of the decom-
position Eq. (2.21), because xc is a position in real space, so an observable of the total
systemHtot, and not the Bravais lattice position R. In contrast, in the Born-Oppenheimer
method, the effective equations are written in terms of the slow degrees of freedom only,
namely the positions of the nuclei.

2.2.3 Experimental signatures

This semiclassical theory of electron dynamics in a crystal ignores incoherent scattering
of the electron on impurities. As such, it is valid to describe the dynamics of the electron
on timescales shorter than its scattering time. Historically the observation of Bloch os-
cillations in semiconductors was very difficult because the scattering time of electrons is
usually shorter than the Bloch period h/(ea|E|). This difficulty was overcome experimen-
tally using semiconductor superlattices to increase the lattice spacing a and thus reduce
the Bloch period [102].

The use of the semiclassical dynamics of a wavepacket to measure experimentally
the Berry curvature in cold atom experiments was proposed theoretically in 2012 and
2013 [103, 104]. It was then realized experimentally with ultracold fermions in an opti-
cal lattice implementation of the Haldane model [105], and with ultracold bosons in an
implementation of Hofstadter bands [106]. Such local Hall deflection in ultracold atoms
platform were observed in anomalous Floquet topological systems [107, 108]. Similar
role of the Berry curvature in the dynamics of excitons was proposed theoretically [109]
and observed experimentally [110] in 2017. Measurements of the Berry curvature via
the anomalous velocity were realized in photonic systems in 2017 [111], and in polariton
systems in 2020 [112]. The anomalous Hall drift along a synthetic dimension made of
magnetic sublevels of an atom was observed experimentally in 2020 [113].
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2.2.4 Adiabaticity beyond semiclassical wavepacket states
The theory of semiclassical dynamics of electronic wavepackets uses both a semiclassical
approximation and an adiabatic approximation. The adiabatic approximation is related
to the assumption that the state (2.41) of the electron stays projected in a band Hν,0,
whereas the semiclassical approximation is the assumption that the wavepacket is localized
in phase space such that it can be characterized by its average value of position and crystal
momentum.

In this theory, it is not clear how to quantify separately the conditions of validity of
both approximations. In particular, the condition of adiabaticity is less restrictive than
the semiclassical approximation. The use of the effective equations of motion enables us
to describe the dynamics of a larger class of initial states containing but not restricted to
semiclassical wavepacket states. We discuss this point in the next section and in Chap. 5.

2.3 Framework of adiabatic perturbation theory
In Sec. 2.4, we will detail the general theory of adiabatic dynamics of a slow-fast quantum
system. We will present this theory according to the method we used in the first chapter
to define and construct the adiabatic states of a slowly driven quantum system, detailed
in Sec. 1.2.1. The technical tools to implement this method in the context of slow-fast
quantum system are different from those of the first chapter.

In Sec. 2.3.1, we recall our strategy introduced in the first chapter, which involves a
variable λ interpolating between a physical problem where the dynamics simplifies and
the physical problem we are interested in. In Sec. 2.3.2, we argue that this variable should
be introduced via the commutator of the slow variables. In Sec. 2.3.3, we introduce the
Wigner-Weyl representation, which is a phase space representation of quantum mechanics
well suited for perturbation theory in the variable introduced in Sec. 2.3.2. Finally, in
Sec. 2.3.4, we discuss related approaches of the literature using this phase space represen-
tation, and their main differences with our approach.

2.3.1 Adiabatic perturbative expansion
We recall our approach to study slow-fast systems. We study a quantum mechanical sys-
tem for which we suppose a separation of time-scales controlled by dimensionless quan-
tities, which are not known a priori. In the limit where these quantities go to zero, the
dynamics simplifies. To identify these quantities, we introduce a smooth extrapolation
controlled by a variable λ, where the limit λ → 0 corresponds to the limit where the
dynamics simplifies, and the limit λ → 1 corresponds to the physical problem we are
considering. The goal is to construct observables of interest perturbatively in λ.

The central object which we will determine perturbatively is a projector Π̂ν acting on
the total system, which we call the adiabatic projector. It is defined by an asymptotic
series in λ

Π̂ν = Π̂ν,0 + λΠ̂ν,1 + λ2Π̂ν,2 + · · · =
∑

k

λkΠ̂ν,k. (2.47)

We recall the meaning of such asymptotic series:
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2.3. Framework of adiabatic perturbation theory

(i) For the expansion to be relevant, the first order correction Π̂ν,1 has to be small
compared to the lowest order Π̂ν,0. We will explain how we compare two operators.

(ii) The leading terms often provide a good approximation of the solution Π̂ν . In other
words, ∑N

k=0 Π̂ν,k provides a good estimation of the adiabatic projector of the prob-
lem as long as Π̂ν,N is much smaller than the previous orders.

(iii) The series cannot capture non-perturbative effects6 in λ, denoted O(λ∞).

The dimensionless quantities controlling the separation of timescales of the quantum
system are identified from the condition (i). We will determine them quantitatively in
Sec. 2.4.4. In particular, we precise the notion of “slowness” of the slow subsystem, and
we obtain new conditions in terms of gauge covariant tensors which were not discussed
previously in the literature.

2.3.2 Role of the commutator of the slow variables
In this section, we introduce the variable λ of the adiabatic perturbation theory from
the commutator of the slow observables. Let us motivate this by extending the Born-
Oppenheimer treatment of a molecule to other physical systems. The Born-Oppenheimer
treatment of a molecule uses the core property that the electrons couple only to the posi-
tion of the nuclei and not to their momentum. As such, when we ignore the kinetic energy
of the nuclei, the corresponding Hamiltonian Ĥ (2.3) depends only on the positions of the
nuclei, which are commuting operators. In other words, Ĥ is invariant by translation of
the nuclei momenta. We can then diagonalize Ĥ and the positions R̂ at the same time.
The corresponding eigenstates |R⟩ ⊗ |ψν(R)⟩ are obtained by a diagonalization of the
Hamiltonian of the electron with fixed nuclei positions H(R). Similarly, in the case of
an electron in a crystal, in absence of electromagnetic fields, the Hamiltonian is invariant
under translation by Bravais lattice vectors, and the eigenstates of the Hamiltonian are
also eigenstates of Bloch momenta. In the following, we consider a more general situa-
tion where the fast quantum system couples to non-commuting observables of the slow
quantum system, such that no symmetry preserves the slow-fast decomposition.

Notations

We consider a quantum system made of two subsystems, the slow and the fast subsystem.
The total Hilbert space splits into

Htot = Hslow ⊗Hfast. (2.48)

The slow subsystem is composed of N degrees of freedom corresponding to conjugated
operators x̂i, p̂i, i = 1, . . . , N , noted collectively x̂ and p̂. In the case of a molecule, they
correspond respectively to the positions and momenta of the nuclei R and P, whereas

6We recall that a typical non-perturbative term in λ has the form exp(−α/λ). They are physically
relevant, like the tunnel effect or the Landau-Zener transitions of a time-dependent quantum system
discussed in Sec. 1.2.5.
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Chapter 2. Slow-fast quantum systems

for an electron in a crystal they correspond respectively to the position on Bravais lattice
and Bloch momentum R and k.

We note Ĥtot the Hamiltonian of the total system. We can decompose the Hamilto-
nian Ĥtot of the total system into

Ĥtot = Ĥslow + Ĥ, (2.49)

where Ĥslow is the bare Hamiltonian of the slow subsystem, acting solely on Hslow,
whereas Ĥ contains the bare Hamiltonian of the fast subsystem as well as coupling be-
tween the two subsystems. In the following, Ĥ is called the fast Hamiltonian.

The decomposition (2.49) is physically natural, but is not essential for the theory. The
fast timescales will be derived from Ĥ only, but the slow timescales will be derived from
the total Hamiltonian Ĥtot and not solely from Ĥslow. In short, what is key is not to
determine the decomposition (2.49), but rather to identify in the total Hamiltonian the
observables x̂ and p̂ which we physically expect to be slow.

In the following, we write the operators acting on the slow subsystem Hslow with hats,
such as x̂i. We also write the operators acting on both subsystems with hats, such as the
Hamiltonian Ĥ of a molecule without the kinetic energy of the nuclei of Eq. (2.3). On the
other hand, operators acting solely on the fast subsystem are written without hat, such
as the operator H(R) acting on the electrons with fixed position of the nuclei introduced
in Sec. 2.1.2. This convention is useful to distinguish easily between operators and Weyl
symbols in the following.

Perturbative variable λ

In the case of a molecule or of an electron in a crystal, Ĥ depends only on commut-
ing observables of the slow subsystem: respectively the positions R̂ of the nuclei or the
Bloch momenta k̂. To diagonalize Ĥ we can freeze the slow variables and diagonalize the
remaining Hamiltonian of the fast system for each value of the slow variables, leading re-
spectively to the electronic eigenstates |ψν(R)⟩ for the molecule and the unit-cell periodic
Bloch states |uν(k)⟩ for the electron in a crystal. This corresponds to the Step 2 of the
Born-Oppenheimer method discussed in Sec. 2.1.2.

In the general case where Ĥ depends on both x̂ and p̂, it is not possible to freeze all
the slow variables because x̂i and p̂i do not commute. The intuitive strategy is to build
a perturbative theory whose perturbative parameter corresponds to this commutator.
Intuitively, the lowest order of this approximation corresponds to commuting x̂ and p̂
such that we freeze them and diagonalize the remaining Hamiltonian acting on the fast
subsystem.

Besides, the physical intuition about the ideal adiabatic limit is that all slow variables
involved in the total Hamiltonian are constants of motion. So we have to consider their
commutator with the total Hamiltonian Ĥtot, and not only with Ĥ. Phrased differently,
in Heisenberg representation, the time variation of these observables is given by their
commutator with the total Hamiltonian. One way to recover the limit of infinitely slow
observables is then to rescale their commutator.

We thus introduce a family of physical problems indexed by the variable λ, given by
the Hilbert space and Hamiltonian introduced above. For each problem, the operators of
the slow subsystem satisfy

[x̂i, p̂j] = λiℏδij1. (2.50)
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As such, the λ→ 0 limit corresponds to a problem where all the observables of the slow
subsystem commute with the total Hamiltonian, so they are conserved quantity: they
do not change with respect to time. So this limit corresponds indeed to the limit of an
infinitely slow subsystem.

Let us comment on the physical dimension of the commutator of the slow observables.
In the case of an electron in a crystal, the operators of the slow subsystem are the Bravais
lattice position R̂ and the Bloch momenta k̂ introduced in Sec. 2.2.1. Their commutator
does not involve ℏ. To build a perturbation theory in this case, the variable λ is introduced
as

[R̂i, k̂j] = λiδij1. (2.51)
Similarly, if the slow subsystem is made of quantum electromagnetic modes, x̂i and p̂i can
correspond to quadratures of the field, which can be adimensionalized, such that their
commutator is i1. In this case, the starting point is also a commutation relation with
the variable λ and no factor ℏ. In the following, we consider that the commutator of
the conjugated observables of the slow subsystem involves ℏ through (2.50). Namely, xi

and pi have the dimension of classically conjugated physical observables.

2.3.3 Wigner-Weyl phase space representation
We want to construct a perturbation theory in λ introduced in Eq. (2.50). A suited
technical tool to perform computation in perturbative series in the scale of commutators
is the Wigner-Weyl representation. We present in this section the most useful technical
aspects of this representation and refer to the Appendix 2.A for further technical details.

Different aspects of this representation were first introduced by Wigner [114], Weyl [115],
Baker [116], Moyal [117], and Bopp [118], as well as Blount [91] in the context of band
theory. For pedagogical introductions of these notions, we refer the reader to [119–121].

Weyl symbol

The Wigner-Weyl representation is a phase space representation of quantum mechanics.
In this representation, an operator Â acting on the total system Htot is represented by
a function of operators A(x,p). For each point (x,p) in the phase space of the slow
system, A(x,p) is an operator acting on the fast subsystem Hfast. A(x,p) is called the
Weyl symbol, or symbol, of the operator Â.

We consider that the slow variables have a continuous and infinite domain x,p ∈ RN .
This is the case for the position and momentum of the nuclei of a molecule, and for
quadratures of a quantum electromagnetic mode. We discuss below the case of discrete
and compact variables like the Bravais lattice position and Bloch momenta.

The symbol A(x,p) of the operator Â and is defined by

A(x,p) =
∫

dy exp
(
−ip · y

λℏ

)〈
x + y

2

∣∣∣∣ Â ∣∣∣∣x− y
2

〉
. (2.52)

Note that if the operator Â acts on the slow subsystem Hslow only, then A(x,p) is a scalar.
In general, A(x,p) is an operator acting on Hfast.

Conversely, the expression of the operator Â from its symbol A(x,p) is given by

⟨x1|Â|x2⟩ = 1
(λ2πℏ)N

∫
dp exp

(
i
p · (x1 − x2)

λℏ

)
A
(x1 + x2

2 ,p
)
. (2.53)
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The factor λℏ in the exponential corresponds to the factor of the commutator (2.50).
A useful expression is the trace of an operator Â, given by the phase space integral of

the trace of its symbol A(x,p)

TrHtot

(
Â
)

= 1
(λ2πℏ)N

∫
dxdp TrHfast (A(x,p)) . (2.54)

Product of observables – Moyal product

The main reason for the usefulness of this representation within the adiabatic perturbation
theory is the natural expansion in λ of the symbol of a product of observables.

Noting Ĉ = ÂB̂ the product of two observables, the symbol C(x,p) of this product
is given by a non-commutative product of the symbols A(x,p) and B(x,p), called the
Moyal product or ⋆-product, and often written (A ⋆ B)(x,p). It is given by

C(x,p) = (A ⋆ B)(x,p) (2.55)

= A(x,p) exp
λiℏ2

N∑
i=1

 ←−∂
∂xi

−→
∂

∂pi

−
←−
∂

∂pi

−→
∂

∂xi

 B(x,p) (2.56)

= A(x,p)B(x,p) + λ
iℏ
2

N∑
i=1

(
∂A

∂xi

∂B

∂pi

− ∂A

∂pi

∂B

∂xi

)
(x,p) +O(λ2). (2.57)

We provide the expression of the expansion of the Moyal product at all order in λ in
the appendix 2.A, explaining the condensed notation (2.56). The Weyl symbol of the
operators x̂i and respectively p̂i are naturally given by the functions (x,p) 7→ xi1Hfast and
respectively (x,p) 7→ pi1Hfast . As such, from the expression of the Moyal product, the
Weyl symbol of their commutator is naturally given by the constant function λiℏ1Hfast .

Wigner function

The Wigner function is a rescaled Weyl symbol of a density matrix, which plays a role of
quasi-density in phase space, in the sense explained below.

We consider a state of the total system |Ψ⟩ ∈ Htot. We note ρ(x,p) the Weyl symbol
of its density matrix ρ̂ = |Ψ⟩ ⟨Ψ|

ρ̂ = |Ψ⟩ ⟨Ψ| −→
Weyl symbol

ρ(x,p). (2.58)

The Wigner function of the slow subsystem is the scalar function

w(x,p) = 1
(λ2πℏ)N

TrHfast [ρ(x,p)]. (2.59)

For an observable â of the slow subsystem, i.e. an operator acting on Hslow only, its Weyl
symbol a(x,p) is a scalar function. The average of the observable â in the state |Ψ⟩ is
then given by

⟨Ψ| â |Ψ⟩ =
∫

dxdp w(x,p)a(x,p). (2.60)

As such, the normalization of the Wigner function by the factor (λ2πℏ)N enables us to
interpret it as a phase space quasi-density7. The Wigner function is a quasi-density and
not a proper phase-space density because it can take negative values.

7Eq. (2.60) is not an immediate consequence of the trace relation (2.54). We expect from Eq. (2.54) to
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Case of discrete and compact variables

In Eq. (2.52) and Eq. (2.53), the integrals are over RN because we consider slow variables
of continuous and infinite domain x,p ∈ RN . Blount introduced a similar Wigner-Weyl
representation in the case of electron in a crystal [91, 122] which he called “mixed repre-
sentation”. In this case x is replaced by the Bravais lattice position R and p by the Bloch
momentum8 k. The formulas do not involve ℏ in this case, because k ·R is dimensionless.
The integrals over k are done over the Brillouin zone, and the integral over p are replaced
by discrete sum for R lying on the Bravais lattice. Note that Blount does not introduce
a dimensionless perturbative variable λ. He identifies the order of perturbative expansion
in Eq. (2.56) as the order of phase space derivative. For more technical discussions on the
Wigner-Weyl formalism for lattice models, we refer to [123].

2.3.4 Other introductions of a perturbative parameter
In the literature, a “small parameter” ϵ is often used saying that it controls the separation
of timescales between the slow and the fast quantum system, and that its physical meaning
depends on the context. The Wigner-Weyl formalism is then used to study the limit ϵ→ 0.
We cite [124], which provides in particular a discussion of the literature. We discuss briefly
different ways which are often employed to introduce this parameter, and then explain
the main difference of our approach.

Semiclassical approximations

The perturbative variable λ is introduced in factor of ℏ in Eq. (2.50), because we want to
consider the limit of small commutators of the slow variables. In the first chapter, to define
the adiabatic states of a slowly time-dependent quantum system, we also introduced the
parameter λ in factor of ℏ in Eq. (1.26). It originated from the fact that we considered
the dynamics under the Hamiltonian H(λt).

The fact that λ can be introduced as a factor of ℏ explains why in many works
the adiabatic approximations are discussed as semiclassical approximations. We cite for
example [74].

Quantization of adiabatic invariants

An adiabatic small parameter ϵ was used historically in classical mechanics, with a classical
Hamiltonian depending on two pairs of conjugated variables (q, p) and (Q,P ) by

Htot(ϵq, p;Q,P ) (2.61)

where the limit ϵ → 0 leads to p being a classical conserved quantity. The degree of
freedom (q, p) can be seen as the slow degree of freedom, and (Q,P ) as the fast degree of

have a Moyal product between the Wigner function w(x,p) and the symbol a(x,p) in the integral. The
result (2.60) shows that the leading term w(x,p)a(x,p) in the expansion in λ is the only non-vanishing
one after integration.

8The fast subsystem then correspond to Hunit-cell, as discussed in Sec. 2.2.1. Blount does not discuss
directly operators acting on this subspace. Instead, he uses a band representation, with band indices.
This just means that he expresses these operators in the Bloch basis |uν(k)⟩ of Eq. (2.32).
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freedom. The quantization of such classical system proceeds by introducing a Hamiltonian

Htot(ϵq,−iℏ∂q;Q,−iℏ∂Q). (2.62)

The study of such problem can be traced back to the Solvay Congress in 1911. We cite
the work of Karasev [125] which aim at comparing the adiabatic limit and semiclassical
limit by comparing ϵ and ℏ, in a sense which has to be precised.

Coupled wave equations and multicomponent WKB approximation

A small parameter ϵ is also often introduced when discussing multicomponent classical
wave equations. We recover wave equations from a slow-fast quantum system using the
position representation of the slow variables. A state of the slow subsystem is represented
by a wavefunction ψ(x). A possible representation of the operators x̂ and p̂ satisfying
the commutation relation (2.50) is

(x̂iψ)(x) = xiψ(x) (2.63)

(p̂iψ)(x) = λ(−iℏ) ∂ψ
∂xi

(x). (2.64)

In this case, the degrees of freedom of the fast subsystem are captured by a multicom-
ponent wave field ψα(x). Within a quantum mechanical language, we introduce a ba-
sis |eα⟩ of Hfast and for a state of the total system |Ψ⟩ ∈ Htot, the field components
read ψα(x) = (⟨x| ⊗ ⟨eα|) |Ψ⟩. The Hamiltonian Ĥtot is then represented by a matrix of
differential operators acting on the wave vector field ψα(x)

Htot(x,−λiℏ∇x). (2.65)

The multi-component WKB approximation is a method to determine the eigenstates
of a Hamiltonian written similarly, H(x,−iϵ∇x), in the limit ϵ → 0. Littlejohn and
Flynn [126] revealed the role of Berry phases and Berry curvature in this theory. In
WKB theory, the eigenstates are constructed from a classical Hamiltonian description.
Littlejohn and Flynn showed that this classical Hamiltonian description is affected by
the Berry curvature and by a modified energy, in a similar way than the semiclassical
equations of motion of an electronic wavepacket in the later theory of Niu et al., see
Eq. (2.45) in Eq. (2.43a).

Scale of phase space variation of an observable

The perturbation theory based on Wigner-Weyl calculus is also well suited when we deal
with observables which are slowly varying in phase space. Indeed, as explicitly written in
appendix 2.A, a term of a given order in λ is of the same order of the number of phase
space derivative of symbols.

This is relevant in the context of an electron in a crystal, where we deal with pertur-
bative electromagnetic potentials slowly varying in space. Blount discussed the notion of
order of perturbation theory in this way [91]. In general, the Wigner-Weyl representa-
tion is relevant for any wave equations with slowly varying parameters [126]. We refer
to the PhD thesis of Nicolas Perez for applications in the context of topological waves in
geophysics [127].
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Distinct formalisms

Other approaches have been developed to study the adiabatic or semiclassical theory of
slow-fast quantum systems. For example, Kuratsuji and Iida developed a path integral
approach in the late ’80s [128–132]. See also [133] for a Lagrangian approach in the
context of the Born-Oppenheimer treatment of a molecule. In this manuscript, we focus
on Hamiltonian approaches.

Gosselin et al. developed Hamiltonian approaches motivated by the study of the
electron dynamics of a crystal [134–137]. Their approaches do not use phase space repre-
sentation, but contains ideas similar to the previous works of Littlejohn and Flynn [126],
and of Emmrich and Weinstein [74]. We do not discuss the approach of Gosselin et al. in
this manuscript.

Main difference of our approach

In the different approaches discussed above, ϵ is considered as a small parameter and
computations are done in the limit ϵ→ 0. In our case, we use a variable λ to interpolate
between a problem of infinitely slow subsystem and the problem we are interested in,
which enables us to determine the conditions of validity of the adiabatic expansion via
the condition (i) of Sec. 2.3.1. This condition is not stated explicitly in the literature which
I have considered. We will provide an explicit form of this condition in the following.

2.4 Adiabatic theory of a slow-fast quantum system
In this section, we detail a general adiabatic theory of a slow-fast quantum system. For
a general slow-fast quantum system introduced in Sec. 2.3.2, the goal is to construct a
family of states of the total system evolving slowly, and to evaluate their dynamics. This
is the idea of a slow manifold mentioned in Sec. 1.2.1 of the first chapter.

The family of states is defined from a projector, called the adiabatic projector. We
introduce it in Sec. 2.4.1. The evaluation of the dynamics of this family of states is
discussed in Sec. 2.4.2. These two subsections are partly based on the work of Emmrich
and Weinstein [74], and of Stiepan and Teufel [124]. In these works, the authors do not
talk about a slow manifold. Their goal is to construct a family of states of the total
system which is stable by the dynamics, and to evaluate the effective dynamics within
this subspace. We provide our personal understanding of these results.

In Sec. 2.4.3, we provide an explicit expression of the adiabatic projector at first
order. This enables us to discuss quantitatively the conditions of validity of the theory in
Sec. 2.4.4. These two subsections describe an original work.

2.4.1 Adiabatic projector and adiabatic subspace
Adiabatic projector

The adiabatic projector Π̂ν defines the family of initial states for which the adiabatic dy-
namics is valid. This is the slow manifold, constructed perturbatively in the parameter λ,
where the limit λ→ 0 corresponds to the problem of infinitely slow subsystem. We thus
assume that it can be expressed as an asymptotic series of λ, given by Eq. (2.47).
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The adiabatic projector Π̂ν is defined as an orthonormal projector into an almost-
invariant subspace, meaning that it commutes with the total Hamiltonian up to non-
perturbative terms in λ. As such, an initial state prepared in the adiabatic subspace
remains in it during the dynamics, up to non-perturbative effects. The defining equations
of this projector are then

[Ĥtot, Π̂ν ] = O(λ∞), (2.66a)
(Π̂ν)2 = Π̂ν . (2.66b)

Written in terms of the Weyl symbol Πν(x,p), these defining equations read
(Htot ⋆ Πν)(x,p) = (Πν ⋆ Htot)(x,p), (2.67a)

(Πν ⋆ Πν)(x,p) = Πν(x,p). (2.67b)
The Weyl symbol Πν(x,p) of the adiabatic projector is constructed order by order insert-
ing the decomposition (2.47) of the adiabatic projector and the expansion (2.116) of the
⋆-product into Eqs. (2.67).

The mathematical definition of the adiabatic projector is discussed in the book of S.
Teufel [71], which contains a review of the various contributions to its definition. The
most important ones are the mathematical work of Emmrich and Weinstein [74] who gave
the detailed algorithm of computation based on the previous physical work of Littlejohn
and Flynn [126], and the article of Stiepan and Teufel [124] who showed the existence
under certain conditions9.

Zeroth order

In the Born-Oppenheimer treatment of a molecule, we identify a subspace of variational
ansatz by a diagonalization of the Hamiltonian of the electrons fixing the position R
of the nuclei. This subspace Hν,0 is characterized by the Born-Oppenheimer projec-
tor Π̂ν,0 (2.10).

For an electron in a crystal, we consider a band subspace Hν,0 characterized by a
spectral projector (2.39). It is defined from the diagonalization of the Bloch Hamiltonian
for which the Bloch momentum k is a parameter.

We show that the zeroth order of the adiabatic projector Π̂ν,0 has a similar structure.
It is obtained from the diagonalization of the fast Hamiltonian by “freezing” the slow
variables. Here we “freeze” the slow variables by considering the Weyl symbol Htot(x,p)
of the total Hamiltonian Ĥtot.

Indeed, at zeroth order, Eq. (2.67) read
Htot(x,p)Πν,0(x,p) = Πν,0(x,p)Htot(x,p), (2.68)

Πν,0(x,p)2 = Πν,0(x,p), (2.69)
which is satisfied for the projector on an eigenstate |ψν(x,p)⟩ of Htot(x,p)

Πν,0(x,p) = |ψν(x,p)⟩ ⟨ψν(x,p)| . (2.70)
9 Stiepan and Teufel [124] showed mathematically that (under certain conditions) the adiabatic pro-

jector is a true projector, in the sense that (2.66b) does not require non perturbative O(λ∞) corrections.
In the literature preceding their work, the adiabatic projector is constructed as an almost projector
(Π̂ν)2 = Π̂ν +O(λ∞). The fact that (2.66b) does not require O(λ∞) terms is physically meaningful. It
means that Π̂ν defines effectively a subspace of states the total Hilbert space, the adiabatic states. But
this subspace is stable under time evolution only up to non-perturbative (Landau-Zener) effects in λ.
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Notation of the energies

To clarify the following notations, we note that from the decomposition of the total
Hamiltonian (2.49), its symbol splits into

Htot(x,p) = Hslow(x,p)1Hfast +H(x,p) (2.71)

where Hslow(x,p) is the scalar Weyl symbol of the slow Hamiltonian Ĥtot, which is nothing
but the classical Hamiltonian of the slow system.

We diagonalize the symbol of the total Hamiltonian Htot(x,p), or equivalently the
one of the fast system H(x,p), for each value of the phase space coordinates of the
slow variables (x,p). We note Eν(x,p) the corresponding energies associated to the
eigenstate |ψν(x,p)⟩ ∈ Hfast:

Htot(x,p) |ψν(x,p)⟩ = Eν(x,p) |ψν(x,p)⟩ , (2.72)

with
Eν(x,p) = Hslow(x,p) + Eν(x,p), (2.73)

and with Eν(x,p) the eigenenergy of the fast Hamiltonian H(x,p). The slow timescales
will be derived from Eν , from both Hslow and Eν , whereas the fast timescales will be
derived from the gaps Eν − Eµ = Eν − Eµ, only from the fast Hamiltonian10. This is
expressed by Eqs. (2.102) and (2.101) in Sec. 2.4.4.

Adiabatic subspace

The specificity of the Born-Oppenheimer setting is that the fast quantum system couples
only to one of the two conjugated variables of the slow subsystem, either x or p. In such
a case, the operator Π̂ν,0 associated to the symbol Πν,0(x,p) is itself a projector acting on
the total system Htot. It thus defines a subspace of the total Hilbert space Hν,0 introduced
in Eq. (2.9) and Eq. (2.38).

The Born-Oppenheimer approximation assumes that the eigenstates lies in Hν,0, while
the electronic wavepacket approach assumes that the state stays inHν,0 during the dynam-
ics. This is an approximation, this subspace is not stable under the dynamics of the total
Hamiltonian. Equivalently the eigenstates of the total Hamiltonian are dressed with com-
ponents in the different subspaces. It terms of operators, this just means [Ĥtot, Π̂ν,0] ̸= 0.
The conditions of validity of this approximation are not easily derived within the Born-
Oppenheimer method, nor from the wavepacket approach of the dynamics of an electron
in a crystal.

The adiabatic projector Π̂ν defines the adiabatic subspaceHν of the total Hilbert space
which is stable by the dynamics up to non-perturbative effects. The adiabatic subspace
consists in the projected states

Hν =
{
|Ψ⟩ ∈ Htot | Π̂ν |Ψ⟩ = |Ψ⟩

}
. (2.74)

10As explained in Sec. 2.3.2, this choice of notation separating the energy of the slow and fast sub-
systems is useful to interpret physically the results and to adopt similar notations to the historical
Born-Oppenheimer problem, but it is not necessary for the general theory. One can deal solely with
the energies Eν(x,p) of the symbol of the total Hamiltonian. Then their gaps are associated to the fast
timescales and their phase space derivatives are associated to the slow timescales, in a sense which will
be precised in Sec. 2.4.4.
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Besides, in the case where the fast system couples to both conjugated variables x̂
and p̂, the operator Π̂ν,0 is not even a projector acting on Htot despite the fact that for
each (x,p) its Weyl symbol (2.70) is a projector on Hfast. As such, there is no relevant
notion of zeroth order adiabatic subspace outside the Born-Oppenheimer situation.

We further describe the adiabatic subspace in Sec. 2.4.4. The core problem consists
in deriving the dynamics within this subspace.

2.4.2 Projected dynamics
Role of the classical equations of motion in the literature

In the Born-Oppenheimer problem, classical equations of motions of the nuclei are some-
times considered using a correspondence principle from the Hamiltonian (2.6), leading to
a Lorentz force originating from the Berry curvature [80], as discussed in Sec. 2.1.4. In
the context of the construction of WKB eigenstates of coupled linear wave equations, a
classical Hamiltonian system is used to construct the eigenstate. This classical system is
then sometimes interpreted as providing equations of motion of the slow variables. Little-
john et al. showed the role of the Berry curvature in these equations [126, 138]. Finally,
in the wavepacket approach of the dynamics of an electron in a crystal of Niu et al. [13],
equations of motions governing the center of the wavepacket prepared in the zeroth order
subspace Hν,0 are derived, involving the Berry curvature.

The relation between these classical equations of motion and the adiabatic dynamics
is indeed rather general. We present here the result of Stiepan and Teufel [124], which
clarify this relation between the effective classical Hamiltonian and the quantum dynamics
within the adiabatic subspace Hν . They show that the effective classical Hamiltonian
system governs in first order in λ the time evolution of the Wigner function of the slow
system, and of the Weyl symbol of the slow observables.

Classical equations of motion

To each subspace Hν is associated a classical Hamiltonian of the slow system, i.e. a
function hν(x,p) defined on the phase space of the slow system

hν(x,p) = Eν(x,p) + λMν(x,p), (2.75)

where the correction of the energy Mν(x,p) is expressed as

Mν(x,p) = ℏ
N∑

i=1
Im ⟨∂xi

ψν(x,p)| (Htot(x,p)− Eν(x,p)) |∂pi
ψν(x,p)⟩ . (2.76)

It corresponds to the “no-name” term of Littlejohn and Flynn’s multicomponent WKB
approximation [126]. It also corresponds to the modified energy Eq. (2.45) including the
effect of the electron orbital magnetization of the electron wavepacket approach.

The classical equations of interest contains the components of the Berry curvature

Fν,αβ(x,p) = i (⟨∂αψν(x,p)|∂βψν(x,p)⟩ − (α↔ β)) . (2.77)
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2.4. Adiabatic theory of a slow-fast quantum system

These equations are

ẋi = ∂hν

∂pi

+ λℏ
N∑

j=1

(
Fν,pipj

∂hν

∂xj

− Fν,pixj

∂hν

∂pj

)

ṗi = −∂hν

∂xi

− λℏ
N∑

j=1

(
Fν,xipj

∂hν

∂xj

− Fν,xixj

∂hν

∂pj

)
.

(2.78a)

(2.78b)

Classical Hamilton equations require a Poisson bracket or equivalently a symplectic form
characterizing the geometry of the classical phase space11. These equations correspond
to a modified symplectic form involving the Berry curvature Ων(x,p) = ∑N

i=1 dpi ∧ dxi +
λℏFν(x,p).

The solutions of these equations of motion are summarized by the classical Hamiltonian
flow ϕt

ν(x,p), which corresponds to the evolution in phase space after a time t under the
equations (2.78) for an initial condition, namely

(x(t),p(t)) = ϕt
ν (x(t = 0),p(t = 0)) , (2.79)

where (x(t),p(t)) satisfy Eqs. (2.78).

Time evolution of a slow observable

We are interested in a first result of Stiepan and Teufel [124] which states that the equa-
tions of motion (2.78) govern the time evolution of a slow observable in Heisenberg repre-
sentation. We consider an observable â of the slow subsystem, i.e. a hermitian operator
acting on Hslow only. We consider its time evolution in Heisenberg representation â(t).
Stiepan and Teufel showed that the classical equations govern at first order the evolution
of the Weyl symbol of the observable. More precisely, the observable â is associated to a
Weyl symbol a(x,p), a scalar function on the slow phase space defined from Eq. (2.52).
The classical equations of motion leads to a classical evolution in phase space a◦ϕt

ν(x,p).
This scalar function on phase space can then be translated with the Weyl quantization
Eq. (2.53) into an operator â ◦ ϕt

ν acting on Hslow. When projected by Π̂ν , i.e. for initial
states within Hν , â ◦ ϕt

ν corresponds to the quantum mechanical evolution â(t) at first
order in λ: ∣∣∣∣∣∣Π̂ν

(
â(t)− â ◦ ϕt

ν

)
Π̂ν

∣∣∣∣∣∣ = O(λ2). (2.80)

Time evolution of an average value of observable

The above result illustrates that the classical equations are mainly useful in the phase
space representation, using the Wigner-Weyl transform. Indeed, the Weyl quantization
of the classically evolved symbol a ◦ ϕt

ν(x,p) is hardly trackable in practice. It is much
more convenient to compute the average value of an observable using directly the phase
space representation. To do so, we consider an initial state of the total system |Ψ(t = 0)⟩
lying in the adiabatic subspace Hν . We insist on the fact that the following relation is

11We refer to [139] for a presentation of classical Hamiltonian mechanics within the formalism of
symplectic geometry.
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valid only for initial states prepared within this subspace, i.e. the initial state has to be
projected

Π̂ν |Ψ(t = 0)⟩ = |Ψ(t = 0)⟩ . (2.81)

This condition is often overlooked in the literature. We will study its consequences in
details in Chap. 5. We note w(x,p) the Wigner function of the initial state |Ψ(t = 0)⟩,
given by Eq. (2.59). The relation Eq. (2.80) translates into the evolution of the average
value of observable ⟨Ψ(t)| â |Ψ(t)⟩ in the projected state

⟨Ψ(t)| â |Ψ(t)⟩ =
∫

dxdp w(x,p) a
(
ϕt

ν(x,p)
)

+O(λ2). (2.82)

This relation is the precise sense in which the classical equations (2.78) govern the dy-
namics of the slow subsystem within the adiabatic subspace Hν .

Remark on the phase space measure It is tempting to introduce a notion of time-
evolution of the Wigner function of the slow subsystem from Eq. (2.82), with a change
of variable leading to w(ϕ−t

ν (x,p)) as the time evolution of the Wigner function. How-
ever, such a change of variable does not preserve the phase space measure dxdp. In-
deed, ϕt

ν(x,p) is the Hamilton flow associated to a Hamilton system of symplectic two-
form Ων = ∑N

i=1 dpi ∧ dxi + λℏFν . The Liouville measure associated to this Hamilton
system is the phase space measure invariant under the Hamilton flow. This measure is

(−1)N(N−1)/2 1
N ! Ων ∧ · · · ∧ Ων︸ ︷︷ ︸

N times

=
(

1− λℏ
N∑

i=1
Fν,xipi

)
dxdp +O(λ2). (2.83)

Accordingly, to be relevant, the notion of time-evolution of the Wigner function should
contain the prefactor

(
1− λℏ∑N

i=1 Fν,xipi

)
of Eq. (2.83), see [124]. This prefactor is dis-

cussed as a modified phase space density in [140], which is important when we consider
thermodynamic equilibrium quantities [13,124]. We show in the next section that it also
enters the condition of validity of the adiabatic expansion.

2.4.3 Adiabatic projector at first order

In this section, we derive an explicit expression of the first order term Π̂ν,1 of the adia-
batic projector Π̂ν . Doing so, we obtain explicit conditions of validity of the adiabatic
approximation. In particular, we precise in which sense the slow subsystem has to be
“slow”, and derive an extra condition based on new gauge covariant tensors. We define
the gauge covariance and provide expressions of these tensors in Appendix 2.B.1.

The adiabatic projector Π̂ν can be constructed recursively order by order, as explained
in Sec. 2.4.1. The corresponding procedure is provided by Emmrich and Weinstein in [74].
They show the existence at all order of the projector under certain conditions, but do not
provide explicit expressions. In this section, we derive such an explicit expression of the
Weyl symbol at first order Πν,1(x,p) in terms of gauge covariant quantities.
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2.4. Adiabatic theory of a slow-fast quantum system

First order equations

In the following, we give the expression of the first order correction of the adiabatic pro-
jector Πν,1(x,p) in the basis of Hfast consisting of the eigenstates |ψµ(x,p)⟩ of Htot(x,p).
These matrix elements will involve the components of the non-abelian Berry connection

Aµν,α(x,p) = i ⟨ψµ(x,p)|∂αψν(x,p)⟩ , (2.84)

where we note ξξξ = {ξα} = (x,p) the phase space coordinates, and ∂α = ∂
∂ξα . These

coefficients are gauge covariant for µ ̸= ν. We provide further details in Appendix 2.B
on the derivation of the following results. In the following expressions, we do not always
write explicitly the dependence on (x,p) of the symbols to lighten the notations.

Using the development (2.47) of the adiabatic projector and the expansion (2.57) of
the Moyal product, the defining equations (2.67) give at first order

HtotΠν,1 − Πν,1Htot = iℏ
2 {Πν,0, Htot} −

iℏ
2 {Htot,Πν,0} (2.85a)

Πν,1 − Πν,1Πν,0 − Πν,0Πν,1 = iℏ
2 {Πν,0,Πν,0} (2.85b)

where, for two symbols A(x,p) and B(x,p), we define the Poisson bracket {A,B}(x,p)
by {A,B} = ∑N

i=1

(
∂A
∂xi

∂B
∂pi
− ∂A

∂pi

∂B
∂xi

)
, not to be confused with an anticommutator.

Block-diagonal matrix elements – Curvatures

From Eq. (2.85b) we obtain the first matrix element in terms of the Berry curvature Fν

⟨ψν(x,p)|Πν,1(x,p) |ψν(x,p)⟩ = −ℏ
2

N∑
i=1

Fν,xipi
(x,p). (2.86)

The other block-diagonal matrix elements, for µ1, µ2 ̸= ν are written in terms of the
non-abelian curvature F{ν}. This curvature is associated to the family of eigenstates {ν}
made of all the eigenstates µ ̸= ν. This is an operator-valued two-form, whose compo-
nents F{ν},xipi

(x,p) are operators acting on the subspace generated by the |ψµ̸=ν(x,p)⟩.
A simple expression of its matrix elements in terms of the connection (2.84) is

F
(µ1µ2)
{ν},αβ

(x,p) = i (Aµ1ν,α(x,p)Aνµ2,β(x,p)− (α↔ β)) . (2.87)

We give further expression of this object in Appendix 2.B.1.
From Eq. (2.85b), we get the block diagonal matrix element for µ1, µ2 ̸= ν:

⟨ψµ1(x,p)|Πν,1(x,p) |ψµ2(x,p)⟩ = ℏ
2

N∑
i=1

F
(µ1µ2)
{ν},xipi

(x,p). (2.88)

Two levels energy tensor

To express the other matrix elements, we introduce a new tensor. It is homogeneous to
an energy and associated to a pair of energy levels (µ, ν). To motivate the definition of
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this quantity, we first identify in the modification of energy Mν (2.76) a rank 2 tensor Gν

homogeneous to an energy. Its components are given by

Gν,αβ(x,p) = ⟨∂αψν(x,p)| (Htot(x,p)− Eν(x,p)) |∂βψν(x,p)⟩ . (2.89)

If xi and pi are two conjugated coordinates, their product has the dimension of an action,
and the component ℏGν,xipi

(x,p) has the dimension of an energy. The modification of
the energy takes the form

Mν(x,p) = ℏ
N∑

i=1
ImGν,xipi

(x,p). (2.90)

The tensor Gν enters the expression of the orbital magnetization of a Bloch electron [13,63]
and is discussed in [141] for many-body physics.

We introduce a new tensor associated to a pair of energy levels. To motivate its
definition, we first analyze the definition (2.89) of the tensor Gν associated to the energy
level ν. It corresponds to matrix elements of the Hamiltonian whose energies are expressed
with respect to Eν(x,p). We note this operator ∆νH(x,p)

∆νH = H − Eν1Hfast (2.91)
=
∑
σ ̸=ν

(Eσ − Eν) |ψσ⟩ ⟨ψσ| , (2.92)

such that12

Gν,αβ = ⟨∂αψν |∆νH |∂βψν⟩ . (2.93)

We now introduce a new tensor Gµ,ν homogeneous to an energy, which we call the two
levels energy tensor. It is defined for a pair of energy levels (µ, ν) as

Gµ,ν,αβ = ⟨∂αψµ|∆µ,νH |∂βψν⟩ , (2.94)

where

∆µ,νH = H − Eµ1Hfast − (Eν − Eµ) |ψν⟩ ⟨ψν | (2.95)
=

∑
σ /∈{µ,ν}

(Eσ − Eµ) |ψσ⟩ ⟨ψσ| . (2.96)

Note that µ and ν do not play symmetric roles.
Again, if xi and pi are two conjugated coordinates, their product has the dimension

of an action and the component ℏGµ,ν,xipi
(x,p) has the dimension of an energy. We give

further expressions of the tensor Gµ,ν in Appendix 2.B.1.

12Note that since we consider energy differences, from Eq. (2.73) the energy of the slow sys-
tem Hslow(x,p) in the expression (2.71) of the total Hamiltonian Htot(x,p) does not play a role in
the expression. Only the fast Hamiltonian H(x,p) with its eigenergies Eµ(x,p) are involved.
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Off-diagonal matrix elements

The relation (2.67a) gives the expression of the off-diagonal matrix elements of Πν,1. We
obtain for µ ̸= ν (omitting the implicit (x,p) dependence of all quantities)

⟨ψµ|Πν,1 |ψν⟩ =
N∑

i=1

[
∂

∂xi

(Eν + Eµ

2

) ℏAµν,pi

Eν − Eµ

− ∂

∂pi

(Eν + Eµ

2

) ℏAµν,xi

Eν − Eµ

+ ℏ ImGµ,ν,xipi

Eν − Eµ

]
(2.97)

= (⟨ψν |Πν,1 |ψµ⟩)∗ .

2.4.4 Conditions of adiabaticity
As explained in Sec. 2.3.1, the condition of validity of the expansion of the adiabatic
projector is obtained by constraining the first order correction Π̂ν,1 to be small compared
to the zeroth order Π̂ν,0. We require the symbol Πν,1(x,p) to be small compared to the
symbol Πν,0(x,p). Given the expression Eq. (2.70) of Πν,0(x,p), we require all the matrix
elements of Πν,1(x,p) to be small compared to 1

|⟨ψσ1(x,p)|Πν,1(x,p) |ψσ2(x,p)⟩| ≪ 1. (2.98)

This gives a family of dimensionless quantities which have to be small. Let us discuss
them.

The off-diagonal matrix element Eq. (2.97) is a sum of different terms. We require all
of them to be small. We rewrite the first two terms to obtain similar conditions as the
Eq. (1.40) we derived in the first chapter in the definition of the adiabatic states of a time
dependent quantum system. We recognize in Eq. (2.97) derivatives of energies with respect
to a phase space variable. This can be interpreted as the time derivative of its conjugated
variable in a classical Hamiltonian formalism, for a classical Hamiltonian (Eν +Eµ)/2. We
note this classical Hamiltonian

Hνµ(x,p) = Eν(x,p) + Eµ(x,p)
2 = Hslow(x,p) + Eν(x,p) + Eµ(x,p)

2 , (2.99)

which contains explicitly the Weyl symbol Hslow(x,p) of the slow Hamiltonian, i.e. its
classical Hamiltonian in a classical description of the slow degrees of freedom. We interpret
the partial derivatives of Hνµ as phase space velocities of the slow degrees of freedom

ẋcl
i (x,p) = ∂Hνµ

∂pi

(x,p) (2.100a)

ṗcl
i (x,p) = −∂Hνµ

∂xi

(x,p). (2.100b)

The first two terms of Eq. (2.97) give the conditions

∣∣∣ṗcl
i (x,p)Aµν,pi

(x,p)
∣∣∣≪ |Eν(x,p)− Eµ(x,p)|

ℏ
for µ ̸= ν∣∣∣ẋcl

i (x,p)Aµν,xi
(x,p)

∣∣∣≪ |Eν(x,p)− Eµ(x,p)|
ℏ

for µ ̸= ν

(2.101)

(2.102)
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which are similar to Eq. (1.40). These equations express quantitatively how “slow” the
slow subsystem has to be: the components of the multiband Berry connection Aµν,α

translate the classical velocities ẋcl
i and ṗcl

i into frequency scales, which have to be small
compared to the Bohr frequencies.

We obtain another condition from the third term of Eq. (2.97). It states that the
components of the two-level tensor ℏGµ,ν associated to conjugated variables have to be
small compared to the gap in energy

|ℏ ImGµ,ν,xipi
(x,p)| ≪ |Eν(x,p)− Eµ(x,p)| for µ ̸= ν. (2.103)

From the block-diagonal matrix elements Eq. (2.86) and Eq. (2.88), we obtain con-
ditions on the coefficients of the Berry curvature associated to conjugated phase space
coordinates

|ℏFν,xipi
(x,p)| ≪ 1 and

∣∣∣∣ℏF (µ1µ2)
{ν},xipi

(x,p)
∣∣∣∣≪ 1 for µ1, µ2 ̸= ν. (2.104)

We can interpret this condition from the effective classical dynamics Eq. (2.78) which in-
volves a modified symplectic form Ων = ∑N

i=1 dpi∧dxi+λℏFν . The condition ℏ|Fν,xipi
| ≪ 1

compares the zeroth and first order in λ of the component of Ων along dpi ∧ dxi. This
can be interpreted in terms of phase space density comparing the trace of Πν,0(x,p)
and Πν,1(x,p). From properties on the multilevel Berry curvature F{ν} given in Ap-
pendix 2.B.1, Eq. (2.86) and Eq. (2.88) gives

TrHslow [Πν,1(x,p)] = −ℏ
N∑

i=1
Fν,xipi

(x,p). (2.105)

The trace of Πν,0(x,p) is 1. We then obtain the condition
∣∣∣∣∣ℏ

N∑
i=1

Fν,xipi
(x,p)

∣∣∣∣∣≪ 1 (2.106)

where we recognize the correction of the phase space density discussed on Eq. (2.83).
Here we recover the same notion of phase space density by computing the total number

of states within the adiabatic subspaceHν . A state of the slow subsystem occupies a phase
space volume (2πℏλ)N . We have formally

dimHslow =
∫ dxdp

(λ2πℏ)N
. (2.107)

The total number of states within the adiabatic subspace Hν is given by the trace of the
adiabatic projector Π̂ν . Using the expression of the trace of an operator from its Weyl
symbol (2.54), we get

dimHν = dimHslow − λ
N∑

i=1

∫ dxdp
(λ2πℏ)N

ℏFν,xipi
(x,p) +O(λ2). (2.108)

The components of the Berry curvature with respect to conjugated variables gives the
difference in number of states between the adiabatic subspace and the Hilbert space of
the slow subsystem.
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Example: a two-level system as the fast subsystem

The interpretation of ẋcl
i and ṗcl

i as classical phase space velocities of the slow subsystem
is even more natural if we consider the fast subsystem to be a two level system. In this
case, the fast Hamiltonian H(x,p) can be decomposed on Pauli matrices – without term
proportional to 1Hfast–, with two opposite eigenergies Eν(x,p) = −Eµ(x,p). The Hamil-
tonian Hµν(x,p) then reduces to Hslow(x,p), such that ẋcl

i and ṗcl
i correspond precisely

to the phase space velocities of the slow subsystem when we describe it classically.
Moreover, when the fast subsystem is a two-level system, the two-level energy ten-

sor Gµ,ν vanishes, as explicitly seen from Eq. (2.96). As such, ℏ ImGµ,ν,xipi
(x,p) can be

interpreted as a source of transition between two levels originating from the presence of
additional levels.

We will study in details the situation where the fast subsystem is a two-level system
in chapter 5.

Domain of validity in phase space

We derived the conditions of validity of the adiabatic expansion Eqs. (2.101) to (2.103)
and (2.106). They are conditions on different functions depending on the phase space
coordinates (x,p) of the slow subsystem. The most restrictive conditions are Eqs. (2.101)
to (2.103) which require in particular that the eigenenergy Eν(x,p) of the symbol of the
fast Hamiltonian H(x,p) is not degenerate.

For the operator Π̂ν to be defined, we require its Weyl symbol Πν(x,p) to be defined
a priori on the whole phase space. This requires in particular Eν(x,p) to be nowhere
degenerate. This is the condition used to prove mathematically the existence of the
adiabatic projector Π̂ν [74, 124].

This condition is satisfied when dealing with the dynamics of an electron in a band
insulator. But it is quite strong and rarely satisfied in other physical contexts. As a
consequence, in general, the adiabatic projector Π̂ν is not an operator well-defined on the
whole Hilbert space Htot. Mathematically, it is neither surprising nor annoying. After all,
usually operators are not defined on an entire infinite dimensional Hilbert space but only
on a restricted domain. Physically, it is not surprising either. It just states that some
states of the total system lead to a dynamics containing a separation of timescales, and
other states do not. The mathematically rigorous definition of this domain is certainly
a difficult task. We provide a physically motivated definition, saying that it is made of
the states whose phase space support is localized on the regions satisfying the required
conditions.

We thus define the phase space domain on which the previous conditions hold

Dν = { (x,p) | Eqs. (2.101) to (2.103) and (2.106) holds } . (2.109)

Then the domain of definition DΠ̂ν
of the adiabatic projector Π̂ν is defined to be made

of the states |Ψ⟩ ∈ Htot of the total system whose Wigner function w(x,p), defined
by Eq. (2.59), has a support lying in Dν . This makes sense because the product of two
operators is local in phase space from the expression of the Moyal product. Hence, to
compute the action of Π̂ν on |Ψ⟩, only the values of the symbol Πν(x,p) for (x,p) lying
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in the support of w(x,p) matters13. Physically, the subspace DΠ̂ν
of Htot corresponds to

the states of the total system whose dynamics contains a separation of timescales. The
adiabatic subspace Hν is then made of the projection of these states

Hν =
{

Π̂ν |Ψ⟩ | |Ψ⟩ ∈ DΠ̂ν

}
. (2.110)

In a sense which will be precised in Chap. 5, they are those that evolve at the slow
timescales.

Let us comment on the domain of validity of the adiabatic theory. The adiabatic
theory applies for initial states localized within the phase space region Dν . The theory
describes the dynamics as long as the time-evolved state remains localized within this
region. If we are interested in spectral properties of the total Hamiltonian or thermody-
namic equilibrium quantities, we are often led to consider states which are delocalized in
phase space, such as the electronic Bloch eigenstates of a crystal. The condition that the
support of these eigenstates is localized within the region Dν is more restrictive. Hence,
the use of the adiabatic projector would provide an incomplete description of eigenstates
in general.

Presence of degeneracies

When the energy Eν(x,p) of the fast Hamiltonian H(x,p) is degenerate with a constant
multiplicity in an extended region in phase space, an adiabatic projector can also be
constructed. Technically, the symbol at lowest order Πν,0(x,p) in Eq. (2.70) is simply
replaced by the spectral projector of Eν(x,p) [74]. This is relevant when we consider an
electron in a crystal within a degenerate or quasi-degenerate band, which can be the case
when dealing with the electron spin. In this case, the semiclassical equations governing
the center of an electron wavepacket involves a non-abelian Berry curvature [13].

The case where Eν(x,p) is degenerate on localized regions in phase space leads to very
different physical phenomena. These regions in phase space are called conical intersections
in the Born-Oppenheimer treatment of a molecule [86]. They are called mode conversion
points in the context of semiclassical analysis of wave equations [142]. Mode conversions
are non-perturbative tunnelling processes between two adiabatic subspaces, reminiscent
of Landau-Zener transitions discussed in the previous chapter. The semiclassical notions
loose their relevance in this case. We come back to these aspects in Chap. 6.

2.5 Conclusion of chapter
We have considered closed, time independent, quantum systems which decompose into
two types of degrees of freedom, the slow and the fast ones. The goal of this chapter
was to present the adiabatic theory of such slow-fast quantum system. We considered
in Sec. 2.1 the historical example of a molecule studied with the Born-Oppenheimer
approximation. This example brings the notion of effective subspace of the total sys-
tem, the Born-Oppenheimer subspace, within which the eigenstates are computed via the

13The Moyal product Eq. (2.56) is not rigorously local because it contains all the orders of phase space
derivatives. If the Wigner function vanishes identically outside Dν we expect no problem to happen, up
to maybe – once again – non-perturbative effects.
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Born-Oppenheimer variational ansatz. We then considered another historical example in
Sec. 2.2, which is the dynamics of an electron in a crystal perturbed by an electromagnetic
field. In this example, the separation into slow and fast degrees of freedom is more subtle.
A spectral band of the unperturbed crystal plays the role of the Born-Oppenheimer sub-
space. The theory based on localized electronic wavepacket projected in a band highlights
the role of the Berry curvature in the effective dynamics. The equations of motion govern-
ing the center of a localized electronic wavepacket contain the Berry curvature, defining
an anomalous velocity.

We then defined a theory of adiabatic dynamics of general slow-fast quantum systems.
In Sec. 2.3, we introduced the framework on which this theory relies, which corresponds
mainly to the use of the Wigner-Weyl representation to define a notion of order of per-
turbative expansion. The theory is presented in Sec. 2.4. The main idea is to construct
perturbatively a subspace of the total system, the adiabatic subspace, which is stable
under the dynamics (up to non-perturbative effects). The adiabatic dynamics is the dy-
namics of states within this subspace. This adiabatic subspace is defined from a projector,
the adiabatic projector, which is constructed perturbatively from the Born-Oppenheimer
projector. While the perturbative construction of the adiabatic projector was introduced
by the mathematical physics community, we provide an original interpretation of the per-
turbative expansion. We then present results of the literature concerning the role of the
Berry curvature in the effective dynamics within the adiabatic subspace, at first order in
the perturbative expansion.

Our interpretation of the adiabatic expansion enabled us to derive in Sec. 2.4.4 quanti-
tative conditions of validity of the adiabatic approximation, from a quantitative expression
of the first order adiabatic projector detailed in Sec. 2.4.3. Doing so, we define the domain
of the adiabatic projector, which, physically, are the states of the total system for which
a separation of timescales exists. The projection of these states are the states of the total
system for which the adiabatic dynamics is valid, i.e. the states within the adiabatic
subspace.

These adiabatic states are tricky to characterize. This point is usually overlooked in
the literature. We will study it in detail in Chap. 5. In particular, the slow and fast
subsystems are usually physically distinct degrees of freedom. As such, it is natural to
consider the entanglement between the subsystems. We quantify it in Chap. 5, and address
the question of the experimental preparation of the projected states. In this Chap. 5, we
establish the relation between the adiabatic states of a slowly driven quantum system, and
the states of the total system lying in the adiabatic subspace Hν , for a class of models. We
also characterize the dynamics within this subspace beyond the center of wavepacket and
beyond the average of observables, quantifying the time evolution of quantum fluctuations
of the slow observables.

In the introduction of this thesis, we presented topological pumps as it was historically
considered, namely a topological response of a slowly driven quantum system. As such,
it mainly relies on the time-dependent adiabatic theory, in the sense that it focuses on
the quantum dynamics of a slowly driven quantum system. We argued that to consider
it as a pumping phenomenon, it is much more natural to embed it in a description of
slow-fast system, where the topological property manifest itself in the dynamics of the
slow subsystem. We develop such description in Chap. 3. We introduce a hybrid classical-
quantum model enabling to identify the physical observables whose dynamics is affected
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by the topological property, by defining a topological coupling between slow and fast
systems.
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2.A Wigner-Weyl phase space representation

We give further relations concerning the Wigner-Weyl representation in complement of
the Sec. 2.3.3.

The trace of the product of two operators is given by

TrH
(
ÂB̂

)
= 1

(λ2πℏ)N

∫
dxdpA(x,p)B(x,p). (2.111)

The expression for more than two operators do not only involve the product of symbols,
but also the Moyal ⋆-product.

Expressions of the Moyal product

In the following, we do not write explicitly the phase space coordinates dependence of the
Weyl symbols A(x,p), B(x,p) of the operators Â, B̂ to lighten the notations.

The expansion of the Moyal ⋆-product in powers of λ is simple for one degree of
freedom, N = 1,

A ⋆ B = A exp
λiℏ2

←−∂
∂x

−→
∂

∂p
−
←−
∂

∂p

−→
∂

∂x

B (2.112)

=
∞∑

n=0
λn 1
n!

(
iℏ
2

)n n∑
k=0

(−1)k

(
n

k

)
∂nA

∂pk∂xn−k

∂nB

∂xk∂pn−k
(2.113)

= AB + λ
iℏ
2 {A,B}+O(λ2). (2.114)

It generalizes for N degrees of freedom x = (x1, . . . , xN), p = (p1, . . . , pN)

A ⋆ B = A exp
λiℏ2

N∑
i=1

 ←−∂
∂xi

−→
∂

∂pi

−
←−
∂

∂pi

−→
∂

∂xi

B (2.115)

=
∞∑

n=0
λn Cn (2.116)

where the symbol of order λn is given by

Cn = 1
n!

(
iℏ
2

)n n∑
k=0

(−1)k

(
n

k

)
N∑

i1,...,in=1

∂nA

∂pi1 . . . ∂pik
∂xik+1 . . . ∂xin

∂nB

∂xi1 . . . ∂xik
∂pik+1 . . . ∂pin

.

(2.117)

These expressions show that the order in λ in the ⋆-product also corresponds to the order
of phase space derivatives of the symbols.

In particular, if one of the two operators is polynomial in x and p, the series contains
a finite number of terms such that an exact expression of the ⋆-product is easily obtained.
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2.B Derivation of the adiabatic projector at first or-
der

2.B.1 Gauge covariant tensors

We provide relations concerning the gauge covariant tensors entering the matrix elements
of Πν,1(x,p).

We note ξξξ = {ξα} = (x,p) the phase space coordinates, and ∂α = ∂
∂ξα . We note |ψµ(ξξξ)⟩

the (continuous) normalized eigenstates of H(ξξξ) of eigenenergy Eµ(ξξξ).
We introduce below different quantities depending on energy levels indices, written

from a gauge choice |ψµ(ξξξ)⟩. A quantity Xµν(ξξξ) is gauge covariant if under a gauge
transformation, ∣∣∣ψ̃µ(ξξξ)

〉
= eiθµ(ξξξ) |ψµ(ξξξ)⟩ , (2.118)

it transforms as
X̃µν(ξξξ) = e−iθµ(ξξξ)Xµν(ξξξ)eiθν(ξξξ), (2.119)

such that it corresponds to the matrix elements of an operator.
In the following, the non-abelian Berry connection Aµν,α(ξξξ) is gauge covariant for µ ̸=

ν, the Berry curvature of a family E of levels F (µν)
E ,αβ(ξξξ) is gauge covariant for µ, ν ∈ E ,

and the two levels energy tensor Gµ,ν,αβ(ξξξ) is gauge covariant.
To lighten the notations in the following, we omit the ξξξ dependence of the tensors.

Berry connection

The components of the non-abelian Berry connection satisfy

Aµν,α = i ⟨ψµ|∂αψν⟩ = −i ⟨∂αψµ|ψν⟩ . (2.120)

They are gauge covariant for µ ̸= ν. In the derivation, it is always useful to write the
result in terms of the components of the non-abelian Berry connection.

We note the Berry connection of level ν as

Aν,α = Aνν,α = i ⟨ψν |∂αψν⟩ . (2.121)

It is gauge dependent. In the derivations, the components of the Berry connection for a
single level ν have to be combined to the other components of the Berry connection to
form the following gauge covariant tensors.

Berry curvature of level ν

Fν,αβ = i (⟨∂αψν |∂βψν⟩ − (α↔ β)) (2.122)
= i

∑
µ̸=ν

(Aνµ,αAµν,β − (α↔ β)) (2.123)
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Berry curvature of the complement family of levels {ν}

We note {ν} = {1, 2, . . . }⧹{ν} the ensemble of all the levels µ ̸= ν.
The non-abelian curvature F{ν} is an operator-valued two-form, whose components

F{ν},xipi
are operators acting on the subspace generated by the |ψµ̸=ν⟩. Its matrix elements

in terms of the connection (2.84) satisfies, for µ1, µ2 ̸= ν

F
(µ1µ2)
{ν},αβ

= i

⟨∂αψµ1|∂βψµ2⟩ −
∑
µ̸=ν

Aµ1µ,αAµµ2,β − (α↔ β)
 (2.124)

= i (Aµ1ν,αAνµ2,β − (α↔ β)) . (2.125)

We have the following relation between Fν and the trace of F{ν}

∑
µ̸=ν

F
(µµ)
{ν},αβ

= −Fν,αβ. (2.126)

Berry curvature of an ensemble of levels

The two previous definitions generalize for an ensemble E = {ν1, ν2, . . . } of levels. The
components of the Berry curvature of the ensemble E are, for ν1, ν2 ∈ E

F
(ν1ν2)
E ,αβ = i

⟨∂αψν1 |∂βψν2⟩ −
∑
ν∈E

Aν1ν,αAνν2,β − (α↔ β)
 (2.127)

= i
∑
µ/∈E

(Aν1µ,αAµν2,β − (α↔ β)) . (2.128)

The Berry curvature associated to two levels E = {µ, ν} will be involved in the following
relations.

Energy tensor of level ν

From the spectral decomposition

H =
∑

µ

Eµ |ψµ⟩ ⟨ψµ| (2.129)

and from the above relations, we derive the following expressions of the imaginary part
of the energy tensor of band ν in terms of the eigenenergies and the Berry curvatures

ImGν,αβ = Im ⟨∂αψν | (H − Eν) |∂βψν⟩ (2.130)

= Im ⟨∂αψν |

∑
µ̸=ν

(Eµ − Eν) |ψµ⟩ ⟨ψµ|

 |∂βψν⟩ (2.131)

= 1
2EνFν,αβ −

1
2
∑
µ ̸=ν

EµF
(νν)
{µ},αβ

. (2.132)
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Two levels energy tensor of levels (µν)

Similarly, we obtain the following expression of the imaginary part of the two-levels energy
tensor of bands µ and ν in terms of the eigenenergies and the Berry curvatures

ImGµ,ν,αβ = Im ⟨∂αψµ|

 ∑
σ /∈{µ,ν}

(Eσ − Eµ) |ψσ⟩ ⟨ψσ|

 |∂βψν⟩ (2.133)

= 1
2EµF

(µν)
{µ,ν},αβ −

1
2

∑
σ /∈{µ,ν}

EσF
(µν)
{σ},αβ

. (2.134)

2.B.2 Matrix elements of the first order projector
From Eq. (2.85b), we obtain

⟨ψν |Πν,1 |ψν⟩ = −iℏ2 ⟨ψν | {Πν,0,Πν,0} |ψν⟩ (2.135)

= −iℏ2

N∑
i=1

(
⟨ψν |

∂Πν,0

∂xi

∂Πν,0

∂pi

|ψν⟩ − (xi ↔ pi)
)
. (2.136)

Inserting the identity ∑µ |ψµ⟩ ⟨ψµ| between the derivatives of Πν,0 = |ψν⟩ ⟨ψν |, we obtain
after development of the derivative of |ψν⟩ ⟨ψν |

⟨ψν |Πν,1 |ψν⟩ = −iℏ2

N∑
i=1

∑
µ̸=ν

Aνµ,xi
Aµν,pi

− (xi ↔ pi) (2.137)

= −ℏ
2

N∑
i=1

Fν,xipi
, (2.138)

where we use the expression of the Berry curvature in terms of the non-Abelian connec-
tion (2.123).

From Eq. (2.85b), we obtain for µ1, µ2 ̸= ν

⟨ψµ1 |Πν,1 |ψµ2⟩ = iℏ
2 ⟨ψµ1| {Πν,0,Πν,0} |ψµ2⟩ (2.139)

= iℏ
2

N∑
i=1

(
⟨ψµ1|

∂Πν,0

∂xi

∂Πν,0

∂pi

|ψµ2⟩ − (xi ↔ pi)
)

(2.140)

= iℏ
2

N∑
i=1

(Aµ1ν,xi
Aνµ2,pi

− (xi ↔ pi)) (2.141)

= ℏ
2

N∑
i=1

F
(µ1µ2)
{ν},xipi

. (2.142)

From Eq. (2.85a), we obtain for µ ̸= ν

⟨ψµ|Πν,1 |ψν⟩ = iℏ
2

1
Eν − Eµ

⟨ψµ| ({Htot,Πν,0} − {Πν,0, Htot}) |ψν⟩ . (2.143)

= iℏ
2

1
Eν − Eµ

N∑
i=1
⟨ψµ|

(
∂Htot

∂xi

∂Πν,0

∂pi

− ∂Πν,0

∂xi

∂Htot

∂pi

− (xi ↔ pi)
)
|ψν⟩ .

(2.144)
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We then use the spectral decomposition

Htot =
∑

σ

Eσ |ψσ⟩ ⟨ψσ| , (2.145)

insert the identity ∑
σ′ |ψσ′⟩ ⟨ψσ′ | between the derivatives of the operators, and expand

the derivatives. We first write the expression in terms of the non-abelian Berry connec-
tion (2.120), and then in terms of the Berry curvatures for ensemble of levels Eq. (2.128).
It leads to

⟨ψµ|Πν,1 |ψν⟩ = ℏ
Eν − Eµ

N∑
i=1

(
∂

∂xi

(Eν + Eµ

2

)
Aµν,pi

− (xi ↔ pi)
)

+ 1
2

ℏ
Eν − Eµ

N∑
i=1

EµF
(µν)
{µ,ν},xipi

−
∑

σ /∈{µ,ν}
EσF

(µν)
{σ},xipi

 . (2.146)

We recognize in the last term the expression of the two-level energy tensor provided in
Eq. (2.134), leading to the final result Eq. (2.97).
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Chapter 3
Hybrid classical-quantum formulation of
topological pumps

In the introduction of this thesis, we presented historical descriptions of topological pump-
ing as the response of a driven quantum system. We discussed examples for quantum
systems of different physical dimension D. These previous descriptions focused on the
dynamics of the driven quantum system, imposed by an external classical drive. This
description of pumping calls for a key generalization that includes explicitly the coupled
degrees of freedom of the environment if one wants to model the observable topological
transfer.

We develop such a global framework in this chapter. We discuss topological pumps as
a particular type of couplings between a fast quantum system and slow degrees of freedom.
We consider the driving fields as a dynamical system, and topological pumping manifests
itself in the dynamics of these fields. This enables us to identify the physical observables
affected by the topological property, and provides a unified framework for the description
of different physical realizations of topological pumps. In particular, we show that to
define a topological Chern coupling, what is important is not the physical dimension D of
the fast quantum system, but the number of slow degrees of freedom coupled to it. This
allows us to define a notion of topological coupling between two slow degrees of freedom
and a fast quantum system.

In this chapter, we restrict our attention to a classical treatment of the slow degrees
of freedom of the environment. In particular, this is sufficient to identify the physical
observable carrying the topological transfer. This hybrid classical-quantum framework
is technically simpler than the general theory of slow-fast quantum systems introduced
in Chap. 2. We pay attention on the case of classical modes, or action-angle variables,
which describe the periodic drives of a quantum system. These drives were discussed
as classical parameters in previous descriptions of topological pumps. Here we consider
them as slow classical degrees of freedom. The interaction between them and the gapped
quantum system, when treated within the adiabatic approximation, effectively reduces on
average to a topological coupling leading to a quantized pumping between the classical
subsystems composing the environment.

This chapter is based on the first three sections of the publication [56].
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Comment on the notations

In this chapter, we adopt the notations of Chap. 2 regarding eigenstates and eigenenergies,
which slightly differ from the Chap. 1. We are led to consider a Hamiltonian H(q) of the
fast subsystem depending on classical variables q = {qi}. Its eigenstates are noted |ψν(q)⟩
and its eigenenergies Eν(q).

3.1 Slow classical degrees of freedom coupled to a
fast quantum system

We provide a general model of coupled fast and slow degrees of freedom by resorting to
a mixed classical - quantum description, see Fig. 3.1. Hybrid classical-quantum dynam-
ical systems have been considered in different contexts in the literature, not necessarily
to describe slow-fast systems. For example, semiclassical theories of gravity have been
discussed in this way [143,144], introducing a notion of mixed brackets [145,146]. Similar
mixed classical-quantum descriptions for slow-fast systems were used by M.V. Berry and
J. Robbins [73] to discuss a geometric force on the slow subsystem, without deriving an
effective classical dynamics of the slow subsystem. Q. Zhang et al. [147] used a similar
formalism to discuss the geometric forces in a restricted class of Hamiltonian, relying
technically on canonical transformations. Such frameworks based on canonical transfor-
mations were also used in [148] to discuss the role of Berry phase and Hannay angle in the
effective dynamics. Our general framework of coupled classical-quantum system enables
us to derive the classical dynamics of the slow subsystem relying only on the adiabatic
approximation described in chapters 1 and 2.

3.1.1 Hamilton equations of motion
The slow degrees of freedom are described by classical pairs of conjugated variables qi, pi,
i = 1, ...N satisfying the Poisson bracket relations {qi, pj} = δij [149]. The dynamics of
each pair of classical variables, prior to the coupling to the quantum system, is assumed
to be slow and described by classical dynamics deduced from a classical Hamiltonian
Hi(qi, pi) following

q̇
(0)
i = ∂Hi

∂pi

and ṗ
(0)
i = −∂Hi

∂qi

. (3.1)

We consider the common case where the quantum system couples to only one of the
variable of each pair of conjugate variables, which includes in particular the case of a
driven quantum system. We note them collectively q = {qi}.

The quantum system is then described by a Hamiltonian H(q) that depends on the
states of the classical variables qi. We focus on quantum systems that remain gapped
during the evolution of the classical modes. This allows to approximate at shorter times
the dynamics of the quantum system by an adiabatic evolution, driven by the slow dy-
namics of the classical modes. More precisely, we consider a quantum system prepared
at time t = 0 into one of the eigenstates denoted |ψν(q(t = 0))⟩ of the t = 0 Hamiltonian
H(q(t = 0)). This amounts to assume an initial correlation between the state {qi(t = 0)}
of the classical environment and the quantum system. Through the coupling to qi(t), the
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Fast
Quantum

Figure 3.1: We consider a general gapped and fast system (in blue) coupled to slow
variables of the environment (in red). The energy separation of the fast quantum system is
assumed to be much larger than that of the slow degrees of freedom, allowing a description
of the latter by classical pairs of conjugate variables. While of different nature, we denote
generically these variables by qi, pi. The dynamics of each pair follows from a classical
Hamiltonian Hi. The quantum system couples instantaneously to a single variable qi of
each degree of freedom of the classical environment.

quantum system will slowly evolve in time on a timescale dictated by the slow classical
environment. We denote its instantaneous state |Ψ(t)⟩ and assume that it remains ap-
proximately within the same eigensubspace of the Hamiltonian, which is the essence of
the adiabatic approximation discussed in Chap. 1. In return, the coupling of the classical
degrees of freedom to the quantum system also perturbs their dynamics and results in an
effective coupling between different pairs of slow degrees of freedom.

The modified Hamilton equations of motion for the slow variables are

q̇i = q̇
(0)
i , (3.2)

ṗi = ṗ
(0)
i − ⟨Ψ(t)| ∂H

∂qi

|Ψ(t)⟩ . (3.3)

Let us stress that the above description ensures the conservation of the total energy of
both quantum and classical degrees of freedom. Indeed, the Schrödinger equation in
finite dimension corresponds to classical Hamiltonian equations associated to a Hamilto-
nian function E(Ψ) = ⟨Ψ|H |Ψ⟩ and to a natural Poisson bracket structure on the Hilbert
space [150,151]. Therefore, the total phase space also inherits a Poisson bracket structure
and the above equations of motion derive from the Hamiltonian functionHtot({qi}, {pi},Ψ) =∑

iHi(qi, pi) + ⟨Ψ|H({qi}) |Ψ⟩, thus abiding by the conservation of the total energy.

Backaction of the quantum system

The second term in Eq. (3.3) represents the backaction of the quantum system onto the
classical system. To evaluate it, we now describe the adiabatic evolution of the quantum
state |Ψ(t)⟩. Due to the slow evolution of the Hamiltonian H(q(t)), the state |Ψ(t)⟩ of the
quantum system does not identify with the instantaneous eigenstate |ψν(q(t))⟩ defined by
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H(q(t)) |ψν(q(t))⟩ = Eν(q(t)) |ψν(q(t))⟩. Its expression is given by Eq. (1.8) of the first
chapter. The corresponding correction to the dynamics of the slow classical variables pi

in Eq. (3.3) is now expressed as

ṗi = ṗ
(0)
i −

∂Eν

∂qi

+ ℏ
∑
j ̸=i

q̇
(0)
j Fν,qiqj

, (3.4)

see Appendix 3.A for the detailed derivation. The first correction relates to the energy
variation of the quantum state and follows from the standard classical - quantum coupling.
The last correction is more exotic: it manifests an effective coupling between the different
slow variables qi, pi. The strength of this transverse coupling depends on the geometry
of the eigenstates |ψν(q)⟩ of the quantum system through the components Fν,qiqj

of the
two-form Berry curvature which are defined as

Fν,qiqj
= i

∑
µ̸=ν

⟨ψν | ∂qi
H |ψµ⟩ ⟨ψµ| ∂qj

H |ψν⟩
(Eν − Eµ)2 − (i↔ j). (3.5)

The equation (3.4) enables the identification of the physical observables affected by the
geometrical and topological properties of the coupling between the slow and fast subsys-
tems. They enter the dynamics of the variables pi conjugated to the variables qi coupled
to the quantum system. We use this consideration of conjugated variables in the next
chapter in an experimental proposal of topological coupling between a superconducting
qubit and microwave modes, in order to identify the physical observables carrying the
geometrical and topological properties.

Adiabatic states and slow manifold

As detailed in Appendix 3.A, to recover Eq. (3.4) at first order in the adiabatic ap-
proximation, the quantum system has to be initialized not in its instantaneous eigen-
state |ψν(q(t = 0))⟩ but in an adiabatic state, provided by Eq. (3.25). If the quantum
system is initialized in its instantaneous eigenstates, then we have extra terms oscillating
at the Bohr frequencies. In such a case, the classical variables do not evolve only on the
slow timescales associated to the classical Hamiltonian, but also on the fast timescales of
the quantum system.

We thus recover that the adiabatic states are the initial state on a slow manifold,
leading to a slow evolution of the physical observables, as discussed in Sec. 1.2.1 of the
first chapter. Eq. (3.4) is the equation of motion within this slow manifold.

Condition of adiabaticity

The condition of validity of the time dependent adiabatic approximation is discussed
in details in Sec. 1.2.3 of the first chapter. In particular, the velocity q̇

(0)
i of the slow

variable, given by Eq. (3.1), has to satisfy the condition (1.40), and the time of validity
of the adiabatic approximation is given by Eq. (1.56).

3.1.2 Geometrical power transfer
The geometrical coupling in (3.4) between the different subsets of slow variables qi(t), pi(t)
is associated with an energy transfer between them. The change of energy of each classical
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degree of freedom is:

dEi

dt = q̇i
∂Hi

∂qi

+ ṗi
∂Hi

∂pi

= −q̇(0)
i

∂Eν

∂qi

+ ℏ
∑
j ̸=i

q̇
(0)
i q̇

(0)
j Fν,qiqj

. (3.6)

The antisymmetry of the Berry curvature ensures the conservation of the total energy.

3.1.3 Nature of classical degrees of freedom
Let us discuss briefly the implications of the previous modification of Hamilton equations
for different types of classical slow degrees of freedom coupled to a quantum system.

Massive classical particles

The initial context of the Born-Oppenheimer approximation, at the origin of the adiabatic
approximation, was the description of light particles, the electrons, coupled to heavy
particles, the nuclei. In this situation, the slow degrees of freedom described classically
are those of the massive particles: their position qi and conjugated momentum pi. The
corresponding Hamiltonian is Hi = p2

i /(2M) + V (qi), parametrized by the mass M and
potential V (q). The equations of motion in this case take the form

q̇i = pi

M
, (3.7)

ṗi = −V ′(qi)− ∂qi
Eν + ℏ

∑
j ̸=i

pj

M
Fν,qiqj

. (3.8)

Equation (3.8) describes the associated anomalous geometrical force [73, 80].

Classical modes

While the previous adiabatic formalism was initially designed with classical massive degree
of freedom in mind, it also applies to the case of slow action-angle ϕi, ni variables, which we
will call a classical mode. In more details, we consider a variable pi = ℏni where ni takes
only integer values and its canonical phase qi = ϕi, a 2π periodic phase. Of particular
interest is the situation of a monochromatic mode, corresponding to the Hamiltonian
Hi = ℏωini = ωipi whose linearity in ni is the distinctive feature compared with the
massive case. In this situation, the modified Hamilton equations of motion read

ϕ̇i = q̇i = ωi, (3.9)

ℏṅi = ṗi = −∂Eν

∂ϕi

+ ℏ
∑
j ̸=i

ωjFν,ϕiϕj
. (3.10)

In the case of classical modes, the Eq. (3.10) describes the filling rate of mode i. The
energy transferred between the different modes corresponds to

dEi

dt =− ωi
∂Eν

∂ϕi

+ ℏ
∑
j ̸=i

ωiωjFν,ϕiϕj
. (3.11)
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3.2 Topological pumps as coupling between a classi-
cal environment and a quantum system

In the following, we develop a slow-fast description of topological pumps by showing how
they can naturally be described with the formalism of Sec. 3.1 of adiabatic topological
coupling between classical slow variables of different nature.

3.2.1 Topological versus geometrical couplings
In the above section, we have shown how a geometrical quantity, the Berry curvature,
encodes the strength of the effective coupling mediated by a quantum system between
classical variables. Of particular interest is the case of two classical variables, e.g. q1
and q2 with a compact configuration space denoted [0, 2π]2. In this situation, the Chern
number Cν,12, defined as ∫

[0,2π]2
dq1dq2 Fν,q1q2 = 2π Cν,12, (3.12)

is an integer topological quantity, i.e. it is insensitive to perturbations of the quantum
Hamiltonian H provided the gap between Eν and other states does not close.

Noting that (3.12) is nothing but the averaged Berry curvature over the configuration
space, the case of a Hamiltonian H characterized by a topological Chern number corre-
sponds to a quantized averaged coupling in Eq. (3.4). We define the topological coupling
as that between two slow degrees of freedom and the fast quantum system when the Chern
number is non-zero.

When the Berry curvature fluctuates in the configuration space around its topological
average, a quantized coupling between the classical variables is only recovered when aver-
aging over initial position in configuration space, which is hardly practical. Alternatively,
we can resort to a time average: if the evolution of classical phase variables is ergodic on
the compact configuration space [0, 2π]2, an average over the configuration space can be
replaced by an average over a sufficiently long time.

3.2.2 D = 2 Quantum Hall pump
In an enlightening argument, B. Laughlin related the quantization of the transverse con-
ductivity of the quantum Hall state to a transfer of charge between edges in a Corbino
geometry as the flux threading the disk is increased by one quantum [6]. Later on, Niu,
Thouless and Wu introduced the notion of generalized boundary conditions for quantum
Hall states [27]. The quantum Hall topological properties are expressed as the Chern
number of the ensemble of many-body groundstates over the closed manifold of phase
boundary conditions. These boundary conditions parameters were later related to elec-
tromotive forces through loops connecting opposite edges of the sample [3, 29] effectively
generalizing the topology of Laughlin’s gedanken experiment to that of a torus and al-
lowing for a dynamical description of the quantum Hall effect over a classical parameter
space [54].

Here we consider the classical phases entering the generalized boundary conditions as
dynamical variables. This effectively amounts to realize a quantum Hall topological pump
between two LC harmonic circuits. Let us consider a quantum Hall sample coupled to
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Figure 3.2: (a) Schematic quantum Hall circuit where two LC branches, described by
classical conjugate variables Φ and Q, are connected through a quantum Hall sample.
(b) Schematic Thouless pump driven by a phase ϕ2 = ω2t conjugate to a variable n2,
and coupled to an LC branch. Topological pumping gives rise to a current in the LC
circuit. (c) Topological mode coupler, or frequency converter, in which two classical modes
described by ϕ1, n1 and ϕ2, n2 variables are coupled topologically through a quantum
system.

two independent electrical circuits in the x and y direction, see Fig. 3.2(a). The coupling
between each circuit and the quantum Hall sample follows from the boundary conditions
of Niu et al. [27] on the many-body ground state wave function Ψ(xk, yk):

Ψ(xk + Lx, yk) = eiΦ1 Ψ(xk, yk), (3.13a)
Ψ(xk, yk + Ly) = eiΦ2 Ψ(xk, yk). (3.13b)

The two phases Φ1,Φ2 are related to the voltage drop Vi in each directions as Φi(t) =
(e/ℏ)

∫ t Vi(t′)dt′. If we model each electric branch associated to this voltage drop as an LC
circuit [152], these phases are dynamical classical variables, whose canonically conjugate
momenta are the (rescaled) accumulated charge in each circuit Qi = (ℏ/e)

∫ t Ii(t′)dt′, Ii

being the current in each circuits. The classical Hamiltonian describing each LC circuit
is

Hi = e2

2ℏ2Ci

Q2
i + ℏ2

2e2Li

Φ2
i , (3.14)

where Li is the inductance and Ci the capacitance of the corresponding circuit [152].
Hence, the dynamics of an LC circuit identifies to that of a massive particle of position
qi = Φi and momentum pi = Qi, in a harmonic potential.

The Hamilton’s equations (3.7 and 3.8) include a correction to the usual relations
between flux and current

Q̇1 = ℏ
e
I1 = −

(
ℏ
e

)2 Φ1

L1
+ ℏFΦ1Φ2

e

ℏ
V2 (3.15)
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via the Berry curvature FΦ1Φ2 of the quantum Hall effect ground states derived by Niu et
al. [27]. This Berry curvature being independent of the external fluxes and thus constant
over the parameter space, it is related to the quantum Hall Chern number C12 via FΦ1Φ2 =
C12/(2π). Thus, the corrected classical equation of motion of the LC circuits reads

I1 = −ℏ
e

Φ1

L1
+ e2

h
C12V2. (3.16)

We recover the quantization of Hall conductivity in the limit L1 →∞.
Note that the energy transferred from one LC circuit to the other, following (3.6), is

dE1

dt = ℏFΦ1Φ2Φ̇1Φ̇2 = C12

(
e2

h

)
V1V2 = δI1V1. (3.17)

In the limit of an ideal Hall measurement, where the L1C1 circuit corresponds to an
ammeter, we get V1 = 0, and no energy is transferred between the two circuits.

3.2.3 D = 1 Thouless pump
Let us now turn to the canonical example of a topological pump, proposed by D. Thou-
less [11], which consists in a D = 1 crystal suitably periodically driven in time, such as the
Rice-Mele model [12]. The single electron dynamics is thus described by a time-dependent
Bloch Hamiltonian H(k, ϕ(t)) periodic both in momentum over the Brillouin zone, and in
a 2π periodic phase ϕ(t) = ωt. This Hamiltonian is assumed to be gapped at all time, and
with energy band eigenstates |ψν(k, ϕ)⟩ possessing a finite Chern number Cν,kϕ over the
2-torus constituted of the D = 1 Brillouin zone and periodic phase configuration space of
phase ϕ. In such a system, topological pumping is usually described as the appearance of
a steady current in the bulk of a closed ring, corresponding to an anomalous geometric
velocity for semi-classical states in band ν ⟨ẋ⟩ = ⟨Fν,kϕ⟩∂tϕ = 2π Cν,kϕ ω [13,101]. We refer
to the review [26] on Thouless pumping, which in particular discusses its generalizations
and experimental realizations.

The difference between topological and geometrical coupling discussed in Sec. 3.2.1 is
reminiscent of the difference between topological and geometrical charge pumping in the
context of Thouless pumps [153], while the use of a time-average on the slow variables is
reminiscent of the use of Bloch oscillations to recover a topologically quantized Thouless
pumping [154,155].

We propose an alternative description of such a Thouless pump, by considering an open
D = 1 crystal of size L connected on both ends to an electrical LC circuit, analogous to
the quantum Hall pump, see Fig. 3.2(b). The coupling between the charged particles in
the crystal and the LC circuit follows from the boundary conditions (3.13) on the many-
body groundstate wavefunction Ψ(x = 0, ϕ(t)) = eiΦ1Ψ(x = L, ϕ(t)). This amounts to
couple the crystal to a pair of classical conjugated variables Q1,Φ1 identical to those in the
quantum Hall pump, with a classical Hamiltonian (3.14) describing their dynamics. The
periodic driving of the Hamiltonian is now interpreted as the coupling between the charges
of the crystal and a dynamical classical variable ϕ2 = ωt, conjugated to a variable n2. The
dynamics ϕ̇2 = ω, ṅ2 = 0, correspond to that of a classical mode introduced in Sec. 3.1.3.

In this representation, the topological coupling between the LC circuit and the classical
mode leads to a modified equation of motion in the LC circuit, manifesting the appearance
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of a charged current. The modified Hamilton equation (3.7) reads

Q̇1 = ℏ
e
I1 = −

(
ℏ
e

)2 Φ1

L
+ ℏFΦ1ϕ2ω, (3.18)

which leads to a steady charge current I1 = e2πFΦ1ϕ2/T through the driven crystal,
corresponding to an average number Cν,Φ1ϕ2 = Cν,kϕ of charge transferred across the chain
per period T of the drive. This result identifies with the standard steady anomalous
velocity in the bulk of the Thouless pump.

3.2.4 D = 0 Power pump
In the previous section, we interpreted a time-periodic quantum Hamiltonian as a coupling
between a fast quantum system and a slow classical mode. A natural extension consists
in considering a single quantum system coupled to the phases ϕi of an arbitrary number
N of classical modes, see Fig. 3.2(c). The quantum dynamics of such a system can be
described within Floquet theory [44]. The topological Chern numbers of such a quantum
system are defined in Floquet space, and, when non-zero, leads to a topological frequency
conversion mechanism.

The description of such a quantum mode coupler is natural in terms of an effective
classical dynamics of the modes. We assume that the quantum system couples only to
the phases of the modes, corresponding to a Hamiltonian H(ϕ1(t), . . . , ϕN(t)). In such a
case, the equations of motions are given by (3.9, 3.10) with a power leaving each mode
given by Eq. (3.11). In the particular case of two modes of frequency ω1, ω2, we recover
the result of Martin et al. for the averaged power transfer between two modes given by
dE1/dt = ℏω1ω2 Cν,ϕ1ϕ2/(2π) [44].

3.3 Conclusion of chapter
We presented a formalism of slow-fast quantum system, where the slow subsystem is
described classically. The formalism focuses on the effective slow dynamics of the classical
system. It is motivated by the modelization the observable topological transfer occurring
in topological pumps. These topological pumps were discussed historically through the
dynamics of a driven quantum system. Considering this driving as originating from the
coupling to external dynamical variables, we show that the geometrical properties of the
coupling impact the dynamics of the conjugated observables of these variables. To define
a topological Chern coupling, what is essential is not the physical dimension D of the fast
quantum system, but the number of slow degrees of freedom coupled to it. We defined
a topological coupling between two slow degrees of freedom and a fast quantum system.
We described the D = 2 quantum Hall effect, the D = 1 Thouless pump, and the D = 0
topological frequency conversion within this formalism of topological coupling between
classical slow variables of different nature.

In the next chapter, building on this general description of topological pumping, we
propose a realization of such a quantum topological coupler between microwaves modes
using an artificial 3 level atom, a qutrit. We identify the physical observables carrying
the topological property. The experimental proposal is designed for their measure to be
of experimental reach.
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This hybrid classical-quantum formulation of topological coupling between slow and
fast systems misses fundamental quantum aspects, such the entanglement between the two
subsystems, the quantum fluctuations of the slow degrees of freedoms, or the dynamics
of non-classical states. We describe these aspects in Chap. 5. Besides, we emphasize the
importance of the preparation of the initial state in this chapter.

74



3.A. Derivation of the backaction at first order

3.A Derivation of the backaction at first order
In this appendix, we derive the expression of the backaction of the quantum system onto
the dynamics of the variable pi.

We consider the time-evolution |Ψ(t)⟩ of the quantum system evolving according to
the Hamiltonian H(q(t)) which is time-dependent due to the coupling to the time de-
pendent variables q(t). According to Sec. 1.1 in the first chapter, when prepared in an
instantaneous eigenstate |Ψ(t = 0)⟩ = |ψν(q(t = 0))⟩, the time evolution of the quantum
state at first order in adiabatic perturbation theory is given by

|Ψ(t)⟩ = eiγd
ν,0(t)+iγg

ν,0(t)

|ψν(q(t))⟩ − ℏ
∑
µ ̸=ν

∑
j

q̇j(t)
Aµν,qj

(q(t))
Eν(q(t))− Eµ(q(t)) |ψµ(q(t))⟩


+ ℏ

∑
µ ̸=ν

∑
j

eiγd
µ,0(t)+iγg

µ,0(t)
[
q̇j(t)

Aµν,qj
(q(t))

Eν(q(t))− Eµ(q(t))

]
t=0
|ψµ(q(t))⟩ , (3.19)

with the components of the non-abelian Berry connection satisfying for µ ̸= ν

Aµν,qi
(q) = i ⟨ψµ(q)|∂qi

ψν(q)⟩ = i
⟨ψµ(q)| ∂H

∂qi
(q) |ψν(q)⟩

Eν(q)− Eµ(q) , (3.20)

and where the zeroth order dynamical phase reads

γd
ν,0(t) = −1

ℏ

∫ t

0
Eν(q(t′))dt′, (3.21)

and the zeroth order geometric phase reads

γg
ν,0(t) =

∫ t

0
⟨ψν(q(t′))| i d

dt′ |ψν(q(t′))⟩ dt′. (3.22)

We recall that, in this chapter, we use the notations |ψν(q)⟩ for the eigenstates and Eν(q)
for the eigenenergies of the Hamiltonian of the fast system, in contrast to the first chapter.

The correction to the equation of motion of the variable pi at first order is then

− ⟨Ψ(t)| ∂H
∂qi

|Ψ(t)⟩ = −⟨ψν |
∂H

∂qi

|ψν⟩

+ ℏ
∑
µ̸=ν

∑
j

q̇j(t)
i⟨ψν | ∂H

∂qi
|ψµ⟩ ⟨ψµ| ∂H

∂qj
|ψν⟩

(Eν − Eµ)2 + c.c.


−ℏ
∑
µ̸=ν

∑
j

(
eiγBohr

µν,0 (t)eiγg
µ,0(t)−iγg

ν,0(t) q̇j(0)Aµν,qj
(q(0))

Eν(q(0))− Eµ(q(0)) ⟨ψν(q(t))| ∂H
∂qi

(q(t)) |ψµ(q(t))⟩+ c.c.
)

(3.23)

where in the first two lines, the derivatives of the Hamiltonian, the eigenstates, and the
eigenenergies are evaluated at q(t). The last term of (3.23) corresponds to terms rapidly
oscillating at the bare instantaneous Bohr frequencies

γBohr
µν,0 (t) = γd

µ,0(t)− γd
ν,0(t) = −1

ℏ

∫ t

0
dt′(Eν(q(t′))− Eµ(q(t′))). (3.24)
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They come from the fact that the effective adiabatic dynamics is actually valid for the
quantum states prepared in an adiabatic state rather than in an eigenstate. Indeed, these
terms are canceled at first order if the initial state is prepared in an adiabatic state at
this order, namely

|Ψ(t = 0)⟩ = |ψν(q(t = 0))⟩ − iℏ
∑
µ ̸=ν

∑
j

q̇j(t = 0)Aµν,qj
(q(t = 0))

Eν(q(t = 0))− Eµ(q(t = 0)) |ψµ(q(t = 0))⟩ .

(3.25)
We recover that the adiabatic states are the initial states on a slow manifold, leading to
slow evolution of the physical observables as discussed in Chap. 1.

Returning to Eq. (3.23), the dynamics of the classical variables qj is not modified by the
coupling to the quantum system, q̇j = q̇

(0)
j = ∂Hj

∂pj
. Thus, using the relation ⟨ψν | ∂H

∂qi
|ψν⟩ =

∂Eν

∂qi
and the expression of the components of the Berry curvature two form given in (3.5),

we obtain for the correction of ṗi

−⟨Ψ| ∂H
∂qi

|Ψ⟩ = −∂Eν

∂qi

+ ℏ
∑
j ̸=i

q̇
(0)
j Fqiqj

. (3.26)
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Chapter 4
Topological pump in quantum circuits: the
topological qutrit

In the previous chapter, we developed a formalism of topological pumps as topological
coupling between a quantum system and slow degrees of freedom of its environment. The
topological nature of the coupling leads to a quantized energy transfer between the clas-
sical subsystems composing the environment. To illustrate the virtues of this formalism,
we propose a realization of a Chern mode coupler enabling to measure a topologically
protected power transferred between electromagnetic modes. The proposed setup con-
sists in using a three level quantum system, a qutrit, realized from the first three levels of
a highly anharmonic superconducting circuit, a fluxonium, driven at multiple microwave
frequencies. The driven fluxonium realizes a time-dependent version of a Haldane model
on a Lieb lattice. The corresponding phase diagram can directly be revealed by measuring
the power transfer between the microwave modes. The topological pumping leads to a
topological redistribution of energy between the three microwave modes. This experimen-
tal proposal is guided by the goal to measure directly the physical observables carrying
the quantized energy flow. For pedagogical introductions of the field of circuit quantum
electrodynamics, we refer to [156,157], and to [158] for a review on recent progress of the
field.

This chapter is based of the section IV of the publication [56].

4.1 Case of a qubit
It is possible to apply the concept of geometrical and topological response of gapped states
to the simplest quantum system, the quantum bit or qubit. The first experimental measure
of a Berry phase using a superconducting qubit was done in 2007 [159]. The measure of a
Berry curvature from the inner dynamics of a superconducting qubit, in order to deduce its
associated topological Chern number, was done in 2014 [160,161]. The role of geometrical
response in dephasing of a superconducting qubit was also demonstrated [162]. A quantum
metric was measured with a superconducting qubit in [163] to infer the value of a Chern
number.

The seminal work of Martin, Refael, and Halperin [44] proposed to use a spin-1/2
under two frequency drives to observe the quantized pumping of energy from one drive to
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the other. Measuring such a power transfer presents a substantial experimental challenge.
Recently, Malz and Smith [164] used the IBM Quantum Experience to observe the inner
dynamics of a superconducting qubit state that would correspond to a topological quan-
tum transition. However, their control scheme was mixing the flows of power between the
drives – hindering a direct measurement of the power transfer. As such, this protocol is
similar to the previous experiments [160, 161]. Similarly, other experiments on NV cen-
ters demonstrate a topological transition in the qubit dynamics but could not explore the
quantized pumping of power [165].

Essentially, the model proposed in Ref. [44] consists in engineering the Hamiltonian

H(ϕ1, ϕ2) ∝ sin(ϕ1)σX + sin(ϕ2)σY + (M − cos(ϕ1)− cos(ϕ2))σZ , (4.1)

where σi are the Pauli operators of the qubit, M is a parameter that drives the topological
transition and the phases ϕ1 = ω1t and ϕ2 = ω2t are driven at two incommensurate
frequencies. We envision three ways to realize this Hamiltonian.

• As in Ref. [164], it is possible to drive a single superconducting qubit, i.e. a
transmon, with a complex amplitude [X(t) + iY (t)] e−2iπfqt−2i

∫ t

0 Z(τ)dτ , where fq is
the qubit frequency in order to implement any driving term of the sort H(t) =
X(t)σX + Y (t)σY +Z(t)σZ . However, while it is possible to infer what is the trans-
ferred power between frequency components at ω1 and ω2 from the measured qubit
dynamics, this power flow lacks physical embodiment and cannot be measured using
any known apparatus.

• Alternatively, the σZ term in the Hamiltonian (4.1) can be achieved by control-
ling the frequency of the qubit directly, hence physically separating the source of
power from the three terms corresponding to each Pauli operator in Eq. (4.1). The
frequency of flux tunable qubits can be tuned rapidly using an on-chip flux con-
trol. However, measuring the power of the drive used for such a flux-tunable bias
has never been achieved to our knowledge and requires some important technical
development.

• Lastly, the frequency of the qubit can be controlled by exploiting the AC-Stark shift
created by a drive far detuned from the qubit transition frequency. The AC-Stark
shift is a commonly used method to engineer the spectrum of artificial atoms but
the relatively low anharmonicity of transmons imposes a finite bandwidth on the
control parameter Z(t).

All these solutions present serious practical limitations either on the achievable Z-
control or – more importantly – on the ability to measure the quantized power transfer.
To circumvent this difficulty, we propose to extend the size of the Hilbert space. In this
extended pumping scheme, we use a qutrit to engineer gapped states.

4.2 Implementation with a superconducting qutrit

4.2.1 Principle of the experiment
The experiment we propose consists in driving a superconducting qutrit at several fre-
quencies in order to establish a topologically given power flow between microwave modes
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Figure 4.1: (a) Schematic of the experimental setup. A fluxonium circuit is embedded
in a host cavity. The transitions between the first three levels of the fluxonium are
driven with a detuning δi, an amplitude Ωi, and a modulation frequency ωi (blue, red and
green). The power of the outgoing signals are recorded with a power spectrum analyzer
that provides the instantaneous photon flux of each frequency mode. (b) Spectrum of the
driving tones. Each fluxonium transition is driven with two side-bands used to implement
a topologically protected power transfer. (c) For decoherence rates smaller than the
modulation frequencies ωi, the power of each sideband can be resolved. The quantized
power transferred is expressed as a function of the difference of the spectral power ∆Si

in the sidebands of each reflected driving tone according to Eq. (4.8).
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at various frequencies. We propose to use a superconducting circuit behaving as a qutrit
where every transition can be addressed individually with a well-defined phase. In the
following, we denote the transitions |0⟩ − |1⟩ as 1, |1⟩ − |2⟩ as 2, and |0⟩ − |2⟩ as 3 for
the sake of simplicity. By modulating the drive amplitude Ωi of each transition i at a fre-
quency ϕ̇i = ωi, it is possible to engineer an effective Hamiltonian in a configuration space
defined by the phases ϕ1, ϕ2, ϕ3. By enforcing ϕ3 = ϕ1−ϕ2, the dimension is reduced while
still enabling the observation of a topological transition in the power transferred between
the various driving tones. The difference between any two transition frequencies of the
qutrit shall be much greater than any drive amplitude Ωi and modulation frequency ωi in
order to enable the direct measurement of the power transfer between any driving modes.
Finally, all the above-mentioned timescales should be much smaller than the coherence
time of the qutrit transitions.

An example of a superconducting circuit satisfying these requirements is the fluxonium
artificial atom. The fluxonium is a highly anharmonic superconducting circuit whose
first three energy levels can be used as a three level atom, a qutrit. The circuit is a
loop composed of a Josephson junction shunted by a large inductance, see Fig. 4.1(a).
When the loop is threaded by an external magnetic flux corresponding to almost (but
not exactly) half a flux quantum, no selection rule prevents the direct driving of all three
transitions while the circuit transitions have been shown to display record long coherence
times [166–168].

The circuit is embedded in a cavity with a single port connected to a transmission
line. The cavity is used as an off-resonant readout mode dispersively coupled to the
circuit transitions [169]. The cavity also acts as a filter that protects the circuit from
direct energy dissipation into the electromagnetic environment of the transmission line,
while preserving fast microwave control through the direct coupling of the input port to
the circuit antenna.

Incoming microwave modes carry the modulated drives [see Fig. 4.1(b)] to the qutrit
and outgoing modes carry the reflected signal before being measured by a power spec-
trum analyzer. At the input, each drive at frequency fi is modulated in amplitude at a
frequency ωi, resulting in the pairs of sidebands in Fig. 4.1(b). The geometrical and topo-
logical signatures can be observed in the power transfer between these various frequency
modes. We model the propagating mode in the transmission lines at frequency f as a
classical mode of energy hfnf such that the net photon flux is given by the difference
between the outgoing and incoming signals at this frequency (Sout[f ] − Sin[f ])/hf . Pre-
cisely, one first needs to probe the difference ∆Si in power spectral density between two
sidebands [see Fig. 4.1(c)] and convert it in photon flux ṅi = ∆Si/hfi (see Appendix 4.B
for a refined expression).

4.2.2 Hamiltonian in the rotating frame
The fluxonium Hamiltonian reads [170]

Hfluxonium = 4ECN̂
2 + EL

2 φ̂2 − EJ cos(φ̂− φext), (4.2)

where N̂ is the charge on the capacitor of the circuit, φ̂ is the phase twist across the
inductance, φext is the external magnetic flux threading the loop, and EC , EL, EJ are

80



4.2. Implementation with a superconducting qutrit

respectively the charging energy, inductive energy and Josephson energy of the circuit.
The fluxonium is addressed by a microwave drive applied on a capacitance, so that each
pump induces a term proportional to cos(ϕi) cos(θi)N̂ in the Hamiltonian, where θi(t) =
2πfit + θ0

i is the phase of each tone and ϕi(t) = ωit is the phase of their amplitude
modulation. We denote as |0⟩ , |1⟩ , |2⟩ the first three energy levels of the fluxonium (4.2).
The frequencies of the three drives f1, f2 and f3 are constrained to satisfy f3 = f1 + f2
such that each tone drives a single transition of the fluxonium. This constraint can be
enforced in the microwave domain by using mixers to generate a tone at f3 using tones
at f1 and f2 or by direct numerical synthesis.

We use a rotating frame description by applying the unitary diagonal transforma-
tion U(t) = diag(1, exp(−2iπf1t), exp(−2iπf3t)). One can choose the initial phases θ0

i

of the tones such that, in the rotating frame and using the rotating wave approximation,
the dynamics of the qutrit is governed by the Hamiltonian

H̃(ϕ1, ϕ2, ϕ3) = ℏ

 0 Ω1 cos(ϕ1) −iΩ3 cos(ϕ3)
Ω1 cos(ϕ1) δ1 Ω2 cos(ϕ2)
iΩ3 cos(ϕ3) Ω2 cos(ϕ2) δ3

 , (4.3)

which depends on the phases ϕi(t) = ωit of the drive amplitude modulations, the two δ1 =
2πf01− 2πf1 and δ3 = 2πf02− 2πf3 being the frequency detuning between the fluxonium
transition frequencies and the drive frequencies (see Appendix 4.A for details). Note that
the above constraint on drive frequencies sets δ2 = δ3 − δ1. Besides, in order to simplify
the dynamics, we impose an additional constraint on the modulation frequencies, namely
ϕ3 = ϕ1 − ϕ2. Therefore, the effective Hamiltonian can be described by a Hamiltonian
evolution controlled by two phases only H(ϕ1, ϕ2) ≡ H̃(ϕ1, ϕ2, ϕ1 − ϕ2). The rotating
wave approximation is valid if the detunings δi and the drive amplitudes Ωi are much
lower than the fluxonium transitions frequencies fij and the difference between any two
transition frequencies, which is one of the requirements detailed above.

4.2.3 Chern insulator on the Lieb lattice

In this section, we show that the fluxonium qutrit emulates in time the physics in momen-
tum space of a Chern insulator on a Lieb lattice, which is illustrated in Fig. 4.2(a). This
proposal thus provides a missing implementation of a new three level topological model,
which in particular supersedes a recent proposal based on molecular enantiomers [53].
In this quantum simulation correspondence, the drive detunings δ1 and δ3 correspond to
onsite potential energies on the Lieb lattice, while the drive amplitudes Ω1 and Ω2 mimic
nearest-neighbor tight-binding amplitudes, and Ω3 simulates a next-nearest-neighbor cou-
pling along one diagonal direction. The relative π phase between the Ω1,Ω2 and Ω3 terms
in Eq. (4.3) originates from a periodic pattern of staggered magnetic fluxes, as shown in
Fig. 4.2(a). These fluxes break the time-reversal symmetry of the tight-binding model,
while preserving the translation invariance of the Bravais lattice.

We thus end up with a generalization of the celebrated Haldane’s model [171] but on
the Lieb instead of the honeycomb lattice. In the sublattice basis (0, 1, 2) [see Fig. 4.2(a)],
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Figure 4.2: (a) Schematic representations of a Haldane model on the Lieb lattice and its
square Brillouin zone with the four inversion-invariant momenta. The sublattices 0, 1, and
2 respectively have on-site potential energies 0, δ1, and δ3. The regular and bold black
lines represent the nearest-neighbor tight-binding amplitudes Ω1 and Ω2. The dashed
black lines depict the next-nearest-neighbor coupling Ω3. (b) Two allowed configurations
of the band parities pν at the inversion-invariant momenta. A trivial insulator can be adi-
abatically connected to an atomic limit, which is necessarily characterized here by positive
parity products πν = +1. A band insulator exhibiting negative parity products πν = −1
is therefore topological. Identifying all the configurations of the parity eigenvalues of the
different phases of the model allows to identify their topological nature and leads to the
topological phase diagram in panel (c) (see Appendix 4.C). (c) Phase diagram of the
qutrit model. Each colored region corresponds to a set of band Chern numbers. On the
boundaries one of the two gaps closes for at least one combination of phases ϕ1 and ϕ2.
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the corresponding Bloch Hamiltonian is

H(k) = ℏ


0 Ω1 cos

(
kx

2

)
−iΩ3 cos

(
kx−ky

2

)
Ω1 cos

(
kx

2

)
δ1 Ω2 cos

(
ky

2

)
iΩ3 cos

(
kx−ky

2

)
Ω2 cos

(
ky

2

)
δ3

 . (4.4)

The pseudo-momentum k is dimensionless, corresponding to a lattice constant chosen as
a length unit. The qutrit Hamiltonian (4.3) is then recovered through the substitutions
kx → 2ϕ1 and ky → 2ϕ2. Note that our model also captures the dynamics of other
quantum systems such as spin chains [172].

First, we determine the phase diagram of the model (4.4). This is achieved by de-
termining the conditions for a crossing between two of the bands. The parity symmetry
constrains these crossing to occur at the high symmetry points Γ,X,Y ,M of the Brillouin
zone, which simplifies greatly the analysis, see App. 4.C. The resulting phase diagram is
shown in Fig. 4.2(c). In more details, we aim at determining the nature of the various
phases in this diagram, i.e. the range of drive parameters Ωi, δi that lead to topologically
nontrivial band structures for the model of Eq. (4.4). By definition, a topological band
structure cannot be smoothly deformed to that of an atomic limit [173]. In contrast, a
trivial band structure admits some band representations of the crystal space group on a
basis of symmetric localized orbitals [174–177]. An efficient strategy to detect topological
band structures then consists in enumerating all possible band representations of a space
group and identifying band structures that do not support such representations. This
strategy lies at the heart of the recent paradigm of Topological Quantum Chemistry and
led to the predictions of exhaustive catalogues of topological materials [178–182]. We can
use this methodology to efficiently determine the phase diagram of model (4.4).

We first determine the band representations of the Lieb lattice in Fig. 4.2(a) for the
atomic limit Ω1,2,3 = 0. For non-degenerate onsite energies δ1,3 ̸= 0 and δ1 ̸= δ3, and in
the presence of staggered magnetic fluxes, the lattice only has inversion symmetry and
belongs to the wallpaper space group p2. The three orbitals occupy the maximal Wyckoff
positions q0 = (1/2, 0), q1 = (0, 0), and q2 = (0, 1/2) in the primitive unit cell. Their
elementary band representations are determined from the band parities pν = ±1 — i.e.
eigenvalues of the parity operator — at the inversion-invariant momenta in the Brillouin
zone depicted in Fig. 4.2(a) [183]. It leads to the band representations summarized in the
top panel in Fig. 4.2(b). The parity product

πν = pν(Γ)pν(X)pν(Y )pν(M) (4.5)

of each band ν is always positive in the atomic limit. Therefore, band structures with
negative parity products πν fall outside these band representations and are topological.

Away from the atomic limit, i.e. for Ω1,2,3 ̸= 0, we identify all the parity configurations
of the band structure H(k) at the inversion-invariant momenta (see Appendix 4.C and
Fig. 4.6). Each configuration leads to a colored region in the δ1δ3-plane in Fig. 4.2(c).
The ivory colored regions correspond to the parity configurations of the atomic limit
in Fig. 4.2(b). Thus, they describe trivial band insulators. In contrast, we find that
the red, green, and yellow regions exhibit negative parity products, thus characterizing
topological insulators. As an illustration, the bottom panel in Fig. 4.2(b) specifies the
parity configuration of the yellow region, where πν = −1 for ν = 0 and ν = 2. It shows
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that the change of parity products between the trivial atomic limit and the topological
insulator requires the bands ν = 1 and ν = 0 (ν = 2) to switch parities at point X (Y ) of
the Brillouin zone. More generally, a parity switch cannot occur continuously and requires
the band gap to close at one of the inversion-invariant momentum (see Appendix 4.C).

We recover the announced very efficient determination of the phase diagram of Fig. 4.2(c)
by considering the gap closing at these inversion-invariant momenta as a function of the
Ωi and δi. Such band crossings mark the borders between topologically distinct regions
in the phase diagram represented in Fig. 4.2(c), where from now on we use the shorthand
notation for the Chern number Cν =

∫
[0,2π]2 dϕ1dϕ2 Fν,ϕ1ϕ2/(2π). One can further show

that this Chern number is non-zero when the parity product is negative [184,185]. Since
the qutrit Hamiltonian in Eq. (4.3) is recovered via the substitutions kx,y → 2ϕ1,2, the
Chern number for the fluxonium qutrit is four times larger than for the Lieb insulator,
hence the values summarized in the table in Fig. 4.2(c).

4.2.4 Topological power transfer between three modes
We now discuss how the topological nature of the qutrit pump manifests itself in fill-
ing rates of the three modes. The dynamical system consists of three classical modes
described by the classical phases ϕi conjugated to ni coupled to the qutrit through the
Hamiltonian (4.3) in the rotating frame. The equations of motion have the same form
in the rotating frame ṅi = −1

ℏ ⟨Ψ| ∂ϕi
H̃ |Ψ⟩ , i = 1, 2, 3 where the dynamics of the qutrit

state |Ψ(t)⟩ in the rotating frame is governed by the Hamiltonian (4.3), see Appendix 4.D
for details.

As said above, the frequencies of amplitude modulation satisfies ω3 = ω1 − ω2 such
that ϕIII = ϕ1 − ϕ2 − ϕ3 is a constant of motion. Hence, we can keep ϕ1 − ϕ2 − ϕ3 = 0
at all time. As such, the qutrit is effectively coupled to two dynamical phases ϕ1 and ϕ2.
According to the model described in Chap. 3, the backaction of the qutrit affects the
dynamics of their conjugated numbers of quanta nI and nII . They are defined such that
they satisfy the canonical commutation relations with ϕ1 and ϕ2, while commuting with
the constraint ϕ1 − ϕ2 − ϕ3. We identify them by the following canonical transformation
nI = n1 + n3, nII = n2 − n3, ϕI = ϕ1, ϕII = ϕ2. If the qutrit is prepared in its ν-th
eigenstate, the dynamics of nI and nII is then given by

ṅI = ṅ1 + ṅ3 = −1
ℏ
∂Eν

∂ϕ1
+ Fν,ϕ1ϕ2ω2 (4.6a)

ṅII = ṅ2 − ṅ3 = −1
ℏ
∂Eν

∂ϕ2
− Fν,ϕ1ϕ2ω1 (4.6b)

with Eν the energy and Fν the Berry curvature of the band ν of the HamiltonianH(ϕ1, ϕ2) ≡
H̃(ϕ1, ϕ2, ϕ1− ϕ2) in which the qutrit is initially prepared (see Appendix 4.D for details).
Then, the topological power transfer between the modes 1, 2, 3 is

ℏω1⟨ṅ1 + ṅ3⟩t = ℏ
Cν

2πω1ω2 = −ℏω2⟨ṅ2 − ṅ3⟩t, (4.7)

with Cν the Chern number of the band ν of the Hamiltonian.
Let us recall that, as explained in Sec. 3.1 of Chap. 3, to recover Eq. (4.6), the qutrit

has to be initialized in an adiabatic state, which slightly differs from the eigenstate at
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first order. A superconducting qutrit is fully controllable, and any quantum state can
be prepared [186–188]. For this experimental proposal, a preparation in an eigenstate is
sufficient. It would induce subdominants corrections to the pumping rate. We discuss in
details the role of the initial state in Chap 5.

From a more experimental point of view, the power transfer to demonstrate is

∆S1

hf1
+ ∆S3

hf3
= Cν

2πω2 and ∆S2

hf2
− ∆S3

hf3
= −Cν

2πω1. (4.8)

In order to get a sense of how feasible this measurement is, let us set some possible figures
for the experiment that fulfill the criterion discussed earlier. The fluxonium frequencies
could be set to f01 = 4 GHz, f12 = 6 GHz and f02 = 10 GHz. It is then possible to
drive the transitions with Ω1,2,3/2π = 100 MHz and a similar range of variation for the
detunings. The modulation frequencies could then be ω1/2π = 5 MHz, ω2/2π ≃ 3 MHz.
From the simulations below, we see that the topological power transfer can be resolved
in about 30 periods 2π/ωi, which is a few µs. This is well below the typical decoherence
times of fluxonium qubits, which will not limit the dynamics of the system during the
measurement. Thus, verifying Eq. (4.8) requires measuring instantaneous powers in the
range of hfiωi. This corresponds to a power of several dozens of aW, which is a level of
precision that is now routinely reached experimentally [189–191].

4.3 Numerical analysis of topological pumping

4.3.1 Topological power transfer
In order to perform numerical simulations of the proposed experiment, we solve the time-
dependent Schrödinger equation of the qutrit under the rotating wave approximation (4.3).
We first determine the optimal parameters for the pump: the stability of the adiabaticity
evolution requires the largest gap. This is reached at the resonant drive δ1 = δ3 = 0,
point A in the phase diagram in Fig. 4.4(a), and with equal driving amplitudes Ω1,2,3 = Ω,
resulting in a gap 0.87 ℏΩ. In these conditions, from the analysis of Fig. 4.2(c) both
bands 0 and 2 have non-zero Chern number C = ±4, whereas the band 1 is topologically
trivial with C = 0. Therefore, the two lowest energy states do not constitute an effective
topological qubit, given than only one of these bands is topological: this will lead to a
different dynamics than for a conventional 2 level pump as we will see below. To ensure
an ergodic exploration of the classical configuration space of the pump, we choose an
irrational ratio between phases frequencies ω1/ω2 = (1 +

√
5)/2.

Keeping parameters of the pump to point A in the phase diagram in Fig. 4.4(a), we
initialize the qutrit at t = 0 in its ground state. The evolution of the filling ni of each
individual modes is represented in Fig. 4.3(a), and varies linearly in time. However, the
filling rate ṅi are not set by the topological nature of the pump, and depend on the precise
values of the pump parameters: changing slightly these from point A to point B in the
same topological region of Fig. 4.4(a) leads to different filling rates, as seen in Fig. 4.3(a).
On the other hand, the linear combination corresponding to the topological power transfer
defined in Eq. (4.7) is insensitive to the precise values of the pump parameters, as shown
in Fig. 4.3(b).
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Figure 4.3: Pumping by a qutrit initialized in its ground state. (a) Filling of the different
modes ni as a function of time, for three different sets of pump parameters corresponding
to points A, B and C in Fig. 4.4(a). The driving amplitudes are chosen all equals Ω1,2,3 =
Ω. The filling rates are found to depend on the parameters of the pump. (b) The two
different combinations of fillings display the topological power ℏω1ω2C0/2π (grey dashed
lines), invariant on the region of stability of the phase diagram, where C0 = 4 is the Chern
number of the ground state for all parameter sets A,B,C.

Besides the linear topological evolution in time, this power transfer displays temporal
fluctuations which have two different origins as deduced from Eq. (4.6): a dominant spec-
tral term, corresponding to variation of the energy E0 of the qutrit, and a geometrical
contribution originating from fluctuations of the Berry curvature around its topologically
quantized average value (see Appendix 4.E). Thus, the order of magnitude of the correla-
tion timescale of these fluctuations corresponds to the period of the drive. A reasonable
requirement to detect the topological power transfer is to average it over 30 such indepen-
dent fluctuations, leading to a measurement time of 8 µs, as announced in the previous
section.

4.3.2 Numerical detection of topological transitions

Having established that the average topological power transfer gives access to the Chern
number of the band in which the qutrit was initialized, we now address the detection of
the topological phase transitions of Fig. 4.2(c) when the detuning parameters δ1, δ2 are
varied. The richness of the adiabatic dynamics of the qutrit pumps requires different
experimental protocols adjusted to each phase transition. For example, sets A and C
of parameters in Fig. 4.4(a) lead to exactly the same topological power rate for a qutrit
initialized in the ground state, as shown in Fig. 4.3(b), but corresponds to a different
topological qutrit phase. Indeed, the corresponding qutrit phases differ by the topological
nature of the excited bands 1 and 2, while the nature of the ground state is unchanged.
Thus detecting this particular transition requires an initialization of the qutrit in the first
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Figure 4.4: Topological transitions for bands 0 and 1 in the case of drive ampli-
tudes Ω1,2,3 = Ω. For each working point of the phase diagram, we fit the time evo-
lution of the energy E1 = ℏω1(n1 + n3) linearly over a time ∆t = 8µs to construct
the reduced power rate 2πĖ1/ℏω1ω2 (red dots) when the qutrit is initialized in band 0,
panels [(b),(e),(h)], or in band 1, panels [(c),(f),(i)]. The average populations of the
qutrit p̄µ = 1

∆t

∫∆t
0 | ⟨ψµ(t)|Ψ(t)⟩ |2dt are displayed to evaluate adiabaticity. [(a)-(c)] Tran-

sition line DE, with a transition between bands 1 and 2 at δ1/Ω = −1, and between
bands 0 and 1 at δ1/Ω = 1. [(d)-(f)] Transition line HI, with a transition between bands 0
and 1 at δ1/Ω = −1, and between bands 1 and 2 at δ1/Ω = 1. [(g)-(i)] Transition line FG,
with a transition between the three bands at δ1/Ω = ±

√
2/2.
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excited state 1.
To detect all transitions, we monitor the evolution of the pumps with both initialization

in the 0 and 1 states. Figure 4.4 displays the resulting power rate, determined by a linear
fit using Eq. (4.7), as well as the average populations p̄µ = 1

∆t

∫∆t
0 | ⟨ψµ(t)|Ψ(t)⟩ |2dt of

the qutrit state |Ψ(t)⟩ on the three instantaneous eigenstates |ψµ(t)⟩. Figures 4.4(b,e,h)
correspond to a pump with qutrit initialized in band 0, while Fig. 4.4(c,f,i) correspond to
an initial preparation in band 1.

Along the lines DE and HI in Fig. 4.4(a,d), the topological transitions occur between
two bands only, whereas along the line FG in Fig. 4.4(g) the gaps between all three bands
close at the transitions. Along any line, the transition is detected by the evolution of the
populations. Moreover, a quantized power transfer in a given state appears as a direct
test of the adiabatic nature of the evolution, related to the distance to the transitions.
In that respect, optimal choice of parameters for the pump correspond to point A in
the yellow topological phase of the phase diagram, in which the bands 0 and 2 are non-
trivial and spectrally separated by a trivial band 1 and thus generically separated from a
trivial phase by two transitions. Far from any transition near point A, the instantaneous
energy separation with different eigenstates is large, resulting in an adiabatic evolution:
the average population of the qutrit in the initial band remains close to 1 and the power
rate is quantized and set by the Chern number of the band.

In the other topological states of the qutrit, the effects of non-adiabaticity are manifest,
resulting from shorter distances to phase transitions and thus small gaps. For example
along line DE for a qutrit prepared in band 1, while the Chern number C1 takes values −4
and +4 for respectively δ1/Ω < −1 and δ1/Ω > 1, the qutrit does not evolve adiabatically
and the dynamics of the classical variables (4.6) must be corrected, leading to an unquan-
tized power transfer shown in Fig. 4.4(c). Similarly, in Fig. 4.4(b) the Chern number +4
of band 0 for δ1/Ω < 1 manifests itself as a pleateau of power rate for a reduced set of
parameters for −1.5 < δ1/Ω < 0.5 (between points C and B).

4.3.3 Non-adiabatic pumping
The importance of the non-adiabatic effects can be anticipated from the estimation of
the time of validity of the adiabatic approximation τadiab introduced in Eq. (1.56) of the
first chapter. In this expression, we consider the maximum of the adiabatic parameter εµν

– given by Eq. (1.38) – evaluated on all the values of phases ϕ1 and ϕ2. The mean
free time τmft is the time between two successive Landau-Zener transition whose order
of magnitude is the phases’ periodicity, we take τmft = 2π/ω2 ∼ 0.3 µs. For the point
A, B and C of the phase diagram, the Landau-Zener collision time τ col

01 associated to
the transition between states 0 and 1 is one order of magnitude below this mean free
time, which is consistent with the assumptions made in the derivation of the adiabatic
time τadiab discussed in Sec. 1.2.5.

For the point A of maximal stability with a preparation in band 0, we get τA
adiab ∼

150 ms such that the non-adiabatic effects will not be a limiting factor for experiments
with these parameters values. This is illustrated in Fig. 4.5(a), where the evolution
for 100 µs of the energy ℏω1(n1 + n3) and the populations pµ(t) = | ⟨ψµ(t)|Ψ(t)⟩ |2 of
the qutrit state |Ψ(t)⟩ on the three instantaneous eigenstates |ψµ(t)⟩ are displayed. The
qutrit stays in the ground state with p0(t) > 0.997, and the energy is transferred at the
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Figure 4.5: Non-adiabatic effects at longer time. The time evolution for the qutrit pre-
pared in band 0 of the topological energy combination ℏω1(n1 + n3) and qutrit popula-
tions pµ(t) in the instantaneous eigenstates are displayed for three working points A, B
and C in the phase diagram of Fig. 4.4(a). (a) Point A, case of resonance δ1 = δ3 = 0
where the evolution of the qutrit remains adiabatic during 200 periods, so the pumping
rate is stable. (b) Point B, limit case beyond which pumping is no longer quantized on
Fig. 4.4(b), where the evolution of the qutrit is no longer adiabatic after approximately
8 µs, so the pumping rate is no longer quantized. (c) Point C, other limit case beyond
which pumping is no longer quantized on Fig. 4.4(b), where in this phase the Chern num-
ber of band 1 is opposite to band 0, so we see pumping in the other direction when band 1
is mainly populated. Downsampling of data has been applied for clarity of presentation.

topologically quantized rate.
Figure 4.5(b) corresponds to point B closer to the topological transition line towards

the phase where C0 = 0. The estimated time of adiabaticity for band 0 is τB
adiab ∼ 6 µs.

After this typical time, the population on state 1 exceeds 0.1, in agreement with the
definition of τadiab, and the pumping rate deviates from its topologically quantized value.
Figure 4.5(c) corresponds to point C, where we crossed a different topological transition
line, where the ground state remains topological but the first excited state switches from
trivial to non-trivial with Chern number C1 = −4. We compute here τC

adiab ∼ 8 µs in
agreement with the observed deviations from the adiabatic evolution. At longer times,
about 70 µs, the first excited state is mostly populated and the energy pumping is reversed,
manifesting the associated change of Chern number.

4.4 Conclusion of chapter
We have proposed an experiment that is able to observe a topologically protected power
exchange. The topological properties appear in the measured incoming and outgoing
energy flows that drive a quantum system. Considering a qutrit instead of a qubit is
key for two aspects. First, it offers a path to circumvent the tremendous challenge to
probe the power flows that drive a two level topological pump. Second, owing to its richer
dynamics, which simulates the topological band properties of a 3-band Chern model, it
gives access to various protocols of pumping which can be freely chosen by setting the
initial state of the qutrit.

Besides the fascinating perspective to actually measure this topological power transfer,
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such a system also opens the paths to the study of the interplay between decoherence
and the topological adiabatic evolution of the quantum system. Our framework raises
two natural questions. Topological pumping requires an initial correlation between the
qutrit and the classical modes. How long does this correlation and thus the pumping
survive in presence of qutrit decoherence? Besides, could we revert the perspective and
use the developed framework and measurable pumping rate as a tool to characterize the
correlations between the quantum system and the classical modes. We consider this aspect
in the next chapter.

Let us stress that while we have proposed an experiment demonstrating the topologi-
cally protected transfer of microwave power using a superconducting circuit, our general
framework can be applied to any quantum system and its driving environment such as
cold atoms, mechanical oscillators or polaritons. Besides, symmetries are essential to
classify topological matter and in particular topological pumps [192]. The enforcement of
these symmetries to protected topological pumping in these different systems is another
stimulating perspective.
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4.A Details on the derivation of the Hamiltonian
We detail here the derivation of the Hamiltonian of the qutrit in the rotating frame ex-
plained in Sec. 4.2.2. The circuit is driven by three drives whose amplitudes are modulated
in time according to the drive Hamiltonian

Hdrive = ℏ
3∑

i=1
gi cos(ϕi) cos(θi)N̂ , (4.9)

with θi(t) = 2πfit+ θ0
i the phase of the electromagnetic field of frequency fi, ϕi(t) = ωit

the phase of the time modulation of the amplitude, and gi the coupling rates. In the
basis (|0⟩ , |1⟩ , |2⟩) of the three eigenstates of Hflux (4.2) of lowest energy, the Hamiltonian
in the laboratory frame Hlabo = Hflux +Hdrive has the form:

Hlabo = 2πℏf01 |1⟩ ⟨1|+ 2πℏf02 |2⟩ ⟨2|+ ℏ
2∑

a,b=0

3∑
i=1

Ωi,ab cos(ϕi) cos(θi) |a⟩ ⟨b| (4.10)

where f01 and f02 are the transition frequencies ofHflux, and Ωi,ab = gi ⟨a| N̂ |b⟩. We change
of reference frame with the unitary transformation U(t) = diag(1, exp(−i2πf1t), exp(−i2πf3t)).
The frequencies of the three pumps satisfy the constraint f3 = f1 +f2, so the Hamiltonian
in the rotating frame is

Hrot = U †HlaboU − iℏU † dU
dt (4.11)

= ℏδ1 |1⟩ ⟨1|+ ℏδ3 |2⟩ ⟨2|+ ℏ
2∑

a=0

3∑
i=1

Ωi,aa cos(ϕi) cos(θi) |a⟩ ⟨a|

+
(
e−i2πf1t

3∑
i=1

Ωi,01 cos(ϕi) cos(θi) |0⟩ ⟨1|+ h.c.
)

+
(
e−i2πf2t

3∑
i=1

Ωi,12 cos(ϕi) cos(θi) |1⟩ ⟨2|+ h.c.
)

+
(
e−i2πf3t

3∑
i=1

Ωi,02 cos(ϕi) cos(θi) |0⟩ ⟨2|+ h.c.
)
, (4.12)

with the detuning δi given by

δ1 = 2πf01 − 2πf1 (4.13)
δ2 = 2πf12 − 2πf2 (4.14)
δ3 = 2πf02 − 2πf3 = δ1 + δ2. (4.15)

The phases of the drives are given by θi(t) = 2πfit+ θ0
i . In the rotating wave approxima-

tion, we ignore the terms of the Hamiltonian in the rotating frame which oscillate at the
frequency of the drives, so we approximate the Hamiltonian by

Hrot(t) ≃ H(ϕ1, ϕ2, ϕ3) = ℏ

 0 1
2Ω1,01 cos(ϕ1)eiθ0

1 1
2Ω3,02 cos(ϕ3)eiθ0

3

c.c. δ1
1
2Ω2,12 cos(ϕ2)eiθ0

2

c.c. c.c. δ3

 (4.16)
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where the other terms oscillate at the frequency fi ± fj. We recover the Hamilto-
nian (4.3) by noting the drive amplitudes Ω1 = 1

2 |Ω1,01| = 1
2g1| ⟨0| N̂ |1⟩ |, Ω2 = 1

2 |Ω2,12| =
1
2g2| ⟨1| N̂ |2⟩ | and Ω3 = 1

2 |Ω3,02| = 1
2g3| ⟨0| N̂ |2⟩ |, and by choosing the initial pump

phases θ0
i to set the complex phase of the couplings at the desired value. The rotating

wave approximation is valid if the drive amplitudes and detunings are much lower than
the frequencies fi±fj of the oscillating terms, which means that they must be much lower
than the difference between any two transition frequencies of the fluxonium as said in the
Sec. 4.2.1.

4.B Classical variables coupled to the qutrit
In terms of slow-fast system, the total system is actually made of three subsystems.
The slowest subsystem is made of the three degrees of freedom associated to the phases of
amplitude modulation ϕ1, ϕ2, and ϕ3 of the microwave modes introduced in Appendix 4.A.
The fastest subsystem is made of the bare fluxonium and of the three degrees of freedom
associated to the phases of the carrier waves θ1, θ2 and θ3. The intermediate system
emerges after the rotating wave approximation discussed in Appendix 4.A. It is made
of the fluxonium highly dressed by the carrier waves, which reduces to a qutrit whose
dynamics is governed by Eq. (4.16). So the rotating wave approximation is a first adiabatic
elimination, reducing the total dynamics to the dressed fluxonium coupled to the slow
degrees of freedom ϕi. The second adiabatic elimination reduces the dynamics to ϕ1, ϕ2,
ϕ3, and their conjugated number of quanta ni. We identify these observables ni in the
following.

The fluxonium is coupled to three drives whose amplitudes are modulated in time.
The coupling Hamiltonian in the laboratory frame is

Hdrive = ℏ
( 3∑

i=1
gi cos(ϕi) cos(θi)

)
N̂ (4.17)

where θi(t) = 2πfit is the phase of the drive and ϕi(t) = ωit is the phase of time-
modulation of the amplitude of the drive. The term in parentheses is proportional to the
amplitude of the propagating wave on the line

A(t) =
3∑

i=1
2Ai cos(ϕi(t)) cos(θi(t)) (4.18)

=
3∑

i=1
Ai

(
cos
(
θ+

i (t)
)

+ cos
(
θ−

i (t)
))

(4.19)

with θ±
i = θi±ϕi. Thus, the transmission line contains six modes at frequencies f±

i = fi±
ωi/2π, for i = 1, 2, 3 (see Fig. 4.1). As explained in Sec. 4.2.1, we model the propagating
mode at frequency f±

i as a classical mode of energy hfn±
i , where the phase θ±

i of each
mode is conjugated to ℏn±

i , such that the net photon flux is given by the difference
between the outgoing and incoming signals at this frequency hf±

i ṅ
±
i = Sout[f±

i ]−Sin[f±
i ].

The topological pumping describes the dynamics of the observables conjugated to ϕi.
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Let us identify these observables. The change of variables

θi = 1
2
(
θ+

i + θ−
i

)
(4.20)

ϕi = 1
2
(
θ+

i − θ−
i

)
(4.21)

mi = n+
i + n−

i (4.22)
ni = n+

i − n−
i (4.23)

is a canonical change of variables, which means that it preserves the Poisson brackets, so
the variable ℏni = ℏ(n+

i − n−
i ) is conjugated to the phase ϕi. The topological pumping

relates the rates ṅi, so we want to measure

ṅi = Sout[f+
i ]− Sin[f+

i ]
hf+

i

− Sout[f−
i ]− Sin[f−

i ]
hf−

i

(4.24)

≃ ∆Si

hfi

(4.25)

with ∆Si = Sout[f+
i ]− Sout[f−

i ] if we consider f±
i ≃ fi and Sin[f+

i ] = Sin[f−
i ].

4.C Chern insulator on the Lieb lattice
The three-band insulator on the Lieb lattice satisfies inversion symmetry. We write the
inversion operator as P (k)=diag(eikx ,1,eiky). It leads to four inversion-invariant momenta
in the 2D Brillouin zone: Γ = (0, 0), X = (π, 0), Y = (0, π), and M = (π, π). At these
high-symmetry points, the Bloch Hamiltonian commutes with the inversion operator.
Thus, the parities pν – eigenvalues of the inversion operator – are good quantum numbers
to label each energy band ν at the inversion-invariant momenta. We sort the energy bands
as E0 < E1 < E2 and introduce the triplet π = (π0, π1, π2), where πν is the band parity
product

πν = pν(Γ)pν(X)pν(Y )pν(M) = ±1 . (4.26)

We now determine the different configurations of parity products allowed for the three
bands emulated by the fluxonium.

At momentum Γ, the parity operator reduces to the identity matrix. All energy bands
have the same parity, regardless of the Hamiltonian parameters. This leads to the parity
triplet p(Γ) = (p0(Γ), p1(Γ), p2(Γ)) = (+,+,+).

At momentum X, the parity operator and the Bloch Hamiltonian read P (X) =
diag(−1, 1, 1) and

H(X) =

 0 0 0
0 δ1 Ω2
0 Ω2 δ3

 . (4.27)
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Figure 4.6: Parity product of the bands: The central map represents the minimum value of
the lower gap (∆01) or upper gap (∆12) over the Brillouin zone, as a function of the detunings δ1
and δ3. It is obtained from numerical diagonalization of the Bloch Hamiltonian (4.4). Energy is
in units of Ω1 = Ω2 = Ω3 = Ω. The white areas correspond to values of the detuning for which
a band gap closes. They are well described by the dashed (dotted) lines obtained analytically
from the closing conditions of gap ∆01 (∆12) at the inversion-invariant momenta Γ, X, Y , and
M in the Brillouin zone. These degeneracy lines mark the transitions between topologically
nonequivalent band insulators, where the parity product πν of certain bands changes signs. The
inversion eigenvalues labeling the bands at Γ, X, Y , and M are shown in the green boxed insets,
as a parity triplet p = (p0, p1, p2) associated with the band energies E0 < E1 < E2. It is only
shown for insulating regions that exhibit negative band parity products. In such regions, the
band structures do not support any band representation and cannot be adiabatically connected
to an atomic limit. The fluxonium qutrit then simulates nontrivial Chern insulators.



4.C. Chern insulator on the Lieb lattice

The eigenspace of parity −1 is associated with the energy level E∗(X) = 0. This is fixed
regardless of the Hamiltonian parameters. In contrast, the eigenspace of parity +1 refers
to the energy levels

E±(X) = δ1 + δ3

2 ± 1
2
√

4Ω2
2 + (δ1 − δ3)2 , (4.28)

which depends on the fluxonium drives. This allows three different configurations of
parities:

• E∗(X) < E−(X) < E+(X) with parities p(X) = (−,+,+). It occurs when δ1 > 0,
δ3 > 0, and δ3 > Ω2

2/δ1.

• E−(X) < E+(X) < E∗(X) with parities p(X) = (+,+,−). It occurs when δ1 < 0,
δ3 < 0, and δ3 < Ω2

2/δ1.

• E−(X) < E∗(X) < E+(X) with parities p(X) = (+,−,+) otherwise.

At momentum Y , the parity operator and the Bloch Hamiltonian read P (Y ) =
diag(1, 1,−1) and

H(Y ) =

 0 Ω1 0
Ω1 δ1 0
0 0 δ3

 . (4.29)

The eigenspace of parity −1 is associated with the energy level E∗(Y ) = δ3. The
eigenspace of parity +1 refers to the energy levels

E±(Y ) = δ1

2 ±
1
2

√
4Ω2

1 + δ2
1 . (4.30)

This allows three different configurations of parities:

• E∗(Y ) < E−(Y ) < E+(Y ) with parities p(Y ) = (−,+,+). It occurs when 2δ3 <

δ1 −
√

4Ω2
1 + δ2

1.

• E−(Y ) < E+(Y ) < E∗(Y ) with parities p(Y ) = (+,+,−). It occurs when 2δ3 >

δ1 +
√

4Ω2
1 + δ2

1.

• E−(Y ) < E∗(Y ) < E+(Y ) with parities p(Y ) = (+,−,+) otherwise.

At momentum M , the parity operator and the Hamiltonian read P (M) = diag(−1, 1,−1)
and

H(M) =

 0 0 −iΩ3
0 δ1 0
iΩ3 0 δ3

 . (4.31)

The eigenspace of parity +1 is associated with the energy level E∗(M ) = δ1. The
eigenspace of parity −1 refers to the energy levels

E±(M) = δ3

2 ±
1
2

√
4Ω2

3 + δ2
3 . (4.32)

This allows three different energy configurations:
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• E∗(M) < E−(M ) < E+(M) with parities p(M ) = (+,−,−). It occurs when
δ1 < 0 and δ3 > δ1 − Ω2

3/δ1.

• E−(M ) < E+(M ) < E∗(M) with parities p(M ) = (−,−,+). It occurs when
δ1 > 0 and δ3 < δ1 − Ω2

3/δ1.

• E−(M ) < E∗(M ) < E+(M ) with parities p(M ) = (−,+,−) otherwise.

This shows that any change of band parity requires the band gap to close at the
inversion-invariant momenta. All the band-parity configurations determined above, as
well as their parity products, are summarized in the insets of Fig. 4.6 as a function of δ1
and δ3.

4.D Dynamics in the rotating frame
The equations of motion of the classical variables ni conjugated to the phases ϕi are first
written in the laboratory frame

ṅi = −1
ℏ
⟨Ψlabo(t)|

∂Hlabo

∂ϕi

|Ψlabo(t)⟩ , (4.33)

where the dynamics of state |Ψlabo(t)⟩ of the qutrit in the laboratory frame is governed
by the Hamiltonian Hlabo({ϕj, θj}), introduced before (4.10). In the rotating frame, the
dynamics of |Ψrot(t)⟩ = U †(t) |Ψlabo(t)⟩ is governed by Hrot = U †HlaboU − iℏU † dU

dt
which

satisfies ∂Hrot
∂ϕi

= U † ∂Hlabo
∂ϕi

U since the unitary transformation U(t) does not depend on the
phase ϕi. Thus, the equation of the dynamics of ni has the same form in the rotating
frame

ṅi = −1
ℏ
⟨Ψrot(t)|

∂Hrot

∂ϕi

|Ψrot(t)⟩ (4.34)

where in the rotating wave approximation, we consider Hrot({ϕj, θj}, t) ≃ H̃(ϕ1, ϕ2, ϕ3),
with the 3 phases Hamiltonian given by (4.3). This is, as explained in Appendix 4.B, a
first adiabatic elimination of the fastest degrees of freedom {θj}.

As derived in Chap. 3, under the approximation, the equations of motions of the
variables ni are given by Eq. (3.10). This provides the equations of motion of the three
degrees of freedom (ϕi, ni), i = 1, 2, 3. We further impose a condition on the frequencies ωi,
leading to ϕ1−ϕ2−ϕ3 being a conserved quantity. Thus, the dynamics finally simplifies to
two effective slow degrees of freedom. We note them (ϕI , nI) and (ϕII , nII). We identify
them by the following canonical change of variable

nI = n1 + n3 ; ϕI = ϕ1 (4.35a)
nII = n2 − n3 ; ϕII = ϕ2 (4.35b)
nIII = −n3 ; ϕIII = ϕ1 − ϕ2 − ϕ3 (4.35c)

satisfying {ϕA, nB} = 1/ℏ, A,B = I, II, III. Since these new variables are conjugated,
the equations of motion are

ṅA = −1
ℏ
∂Eν

∂ϕA

+
∑

B ̸=A

ϕ̇BFν,ϕAϕB
(4.36)
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with Eν the energy and Fν the Berry curvature of the band ν of H(ϕI , ϕII , ϕIII) =
H̃(ϕI , ϕII , ϕI − ϕII − ϕIII). The frequencies of the phases ϕ1, ϕ2, ϕ3 are chosen such
that ω3 = ω1 − ω2, thus ϕ̇III = 0 and we keep ϕIII = 0 at all time with the initial
condition. Thus, the equations of motion reduce to (4.6).

4.E Temporal fluctuations
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Figure 4.7: Different terms in the variation of the energy ℏω1(n1 + n3), in the case of
resonance δ1 = δ3 = 0, point A in Fig. 4.4(a). In blue: Time-integration of the term of
variation of the energy of the qutrit −ω1

∂Eν

∂ϕ1
. In orange: Time-integration of the term

of fluctuation of the geometrical coupling ℏω1ω2(Fν,ϕ1ϕ2 − Cν

2π
). In green: Topological

energy transfer at constant rate ℏω1ω2
2π
Cν . The fluctuation of the energy of the qutrit is

the predominant source of temporal fluctuation of the energy.

During the adiabatic evolution, the time derivative of the energy of a mode can be
decomposed into a sum of three terms

ℏω1(ṅ1 + ṅ3) = −ω1
∂Eν

∂ϕ1
+ ℏω1ω2(Fν,ϕ1ϕ2 −

Cν

2π ) + ℏ
ω1ω2

2π Cν . (4.37)

The first term is the variation of the energy Eν of the band ν of the qutrit, corresponding
to an energy exchange between the qutrit and the mode. The second term corresponds to
the fluctuation of the Berry curvature Fν,ϕ1ϕ2 around its topologically quantized average
value Cν

2π
, with Cν the Chern number. This corresponds to the fluctuation of the geometrical

transfer of energy between the two modes. The last term is the topological power rate,
the only non-zero term in time-average. The two first terms are responsible for the time
fluctuation of the energy of the mode.

In Fig. 4.7 is represented the time-integration of each term in the case of resonance δ1 =
δ3 = 0, point A in Fig. 4.4(a). We see that the temporal fluctuation of the energy is mainly
due to the energy exchange between the qutrit and the mode, and the fluctuation of the
Berry curvature is much lower. This is the case for every value of parameters in the region
of interest of the phase diagram.

These temporal fluctuations are further discussed in the following chapter.
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Chapter 5
Adiabatic cat states

In Chap. 3, we described topological pumps as a topological coupling between a fast
quantum system and slow classical degrees of freedom of its environment. In particular,
we described the mechanism of topological frequency conversion as a topological coupling
between two slow classical modes driving a quantum system, focusing on the dynamics of
the slow classical modes. We showed that the topological nature of the coupling induces
a transfer of energy from one mode to the other. In this chapter, we consider on equal
footing the drives and the quantum system, describing all of them quantum mechanically.
We model the drives as quantum modes, characterized by a pair of conjugated operators
accounting for their phase and number of quanta. This extends previous mixed quantum-
classical descriptions of the drives [56,193–195]. We will focus on the simplest case where
the fast quantum system is a two-level system, a qubit.

We thus consider such a topological pump as a particular example of a slow-fast
quantum system in the sense discussed in Chap. 2, where we introduced the general
adiabatic theory of such system, which amounts to define effective dynamics of peculiar
initial states, the adiabatic states lying in the adiabatic subspace. At first order in the
perturbative theory, this effective dynamics involves a Berry curvature which carries the
topological property discussed in Chap. 3. While most of the works on slow-fast quantum
systems focus on the derivation of the effective dynamics, here we pay attention on the
nature of the states of the total system for which it applies. We show that these adiabatic
states entangle the slow and the fast subsystems. As such, they are not naturally prepared
experimentally, but they form a basis on which any initial state decomposes. The adiabatic
dynamics acts on all three components of the pump. In the case of topological couplings,
it separates in phase space the components of the two modes, leading to a creation of
a cat state. We denote cat state a superposition of two states distinguishable through
measures of the modes’ energy, but not necessarily an equal weight superposition. In this
sense, we show that the creation of cat states is generic and not accidental.

This chapter also makes the bridge between Chap. 1 and Chap. 2 concerning the
nature of adiabatic states. In Chap. 1, we introduced a notion of adiabatic state of a
slowly driven quantum system, here corresponding to the qubit. We introduce a model
of quantum modes coupled to a fast quantum system which enables the generalization of
these states into adiabatic states of the fast quantum system – the qubit – parametrized
by the phases of the slow quantum modes. This enables us to define a notion of dressed
Berry curvature, which generalizes the Berry curvature beyond the order 0 of the adiabatic
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expansion. The dynamics of the slow quantum modes involve this dressed Berry curvature
instead of the bare Berry curvature. We show that both carry the same topology. We
further show that the entanglement between the slow and fast subsystems – between the
quantum modes and the qubit – depends on the geometric properties of these adiabatic
states. We unveil the role of their quantum metric tensor in this entanglement, as well as
in the weight of the cat states.

Interestingly, similar qubit-modes quantum systems were recently proposed [196] and
experimentally realized in quantum optical devices [197] to simulate topological lattice
models. In this context, the Hamiltonians of a qubit coupled to cavities was expressed in
terms of Fock-state lattices, and shown, with two cavities, to realize a chiral topological
phase [198, 199], and, with three cavities, the quantum or valley Hall effect [196, 200].
Indeed, the focus of these realizations was on synthetic topological models and their asso-
ciated zero-energy states. Our approach bridges the gap between the study of topological
pumping of driven systems and these studies of quantum optical devices.

This chapter is organized as follows. In Sec. 5.1 we introduce the model of a qubit
driven by two quantum modes (Sec. 5.1.1) and discuss qualitatively the typical dynamics
of adiabatic cat states (Sec. 5.1.2). In Sec. 5.2 we characterize the two components of
the cat states as adiabatic states and identify their effective dynamics which splits them
apart in energy. We characterize the weight of each cat component for a separable initial
state. In Sec. 5.3 we study each cat component, relating the entanglement between the
qubit and the modes to the quantum geometry of the adiabatic states (Sec. 5.3.1), and
discussing the evolution of the number of quanta of each mode in relation with Bloch
oscillations and Bloch breathing (Sec. 5.3.2).

This chapter is based on the submitted article [57].

Comment on the notations

In this chapter, we are lead to consider the Hamiltonian H(Φ) of the fast quantum system
– the qubit – parametrized by the phases Φ of the slow modes. We adopt similar notations
than in Chap. 1. We note |ψν,0(Φ)⟩ the eigenstates of H(Φ), Eν,0(Φ) their eigenenergy,
and Fν,ϕiϕj ,0(Φ) = i

(〈
∂ϕi
ψν,0(Φ)

∣∣∣∂ϕj
ψν,0(Φ)

〉
− (i↔ j)

)
the Berry curvature. We will

define the adiabatic states of the qubit noted |ψν(Φ)⟩, their energy Eν(Φ), and their
dressed Berry curvature Fν(Φ) = i (⟨∂ϕ1ψν(Φ)|∂ϕ2ψν(Φ)⟩ − (1↔ 2)).

In this chapter, we use the convention for the conjugated quantum phase and number
of quanta [n̂, ϕ̂] = i, rather than the convention {ϕ, ℏn} = 1 of conjugated classical phase
and number of quantum used in Chap. 3. With the classical convention {ℏn, ϕ} = 1
corresponding to the quantum convention adopted in this chapter, the classical equations
of motion (3.9), (3.10) read

ℏṅi = ∂Eν,0

∂ϕi

+ ℏ
∑
j ̸=i

ωjFν,ϕiϕj ,0, (5.1a)

ϕ̇i = −ωi. (5.1b)

We will recover similar equations with this convention of signs in this chapter.
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5.1 A qubit driven by two quantum modes

Figure 5.1: Phase and number representations of a quantum qubit – 2 modes model.
(a) Phase representation, convenient to represent the dynamics of the qubit. At each
value of the phases Φ are associated qubit eigenstates |ψ±,0(Φ)⟩ represented by a vector
b±,0(Φ) = ±h(Φ)/|h(Φ)| on the Bloch sphere (in grey). The adiabatic states |ψ±(Φ)⟩,
represented by a vector b±(Φ), are a perturbative deformation of the eigenstates. (b)
Number representation, convenient to represent the dynamics of the modes. In this view-
point the model can be interpreted as an unusual model of spin-half particle on a discrete
lattice where N = (n1, n2) ∈ Z2 represents its position on the lattice and Φ ∈ [0, 2π]2
the Bloch momenta. This particle is submitted to an electric field ℏω · N̂ and a strong
spin-orbit coupling h(Φ̂) · σ. As a consequence, the adiabatic states are associated to
energy bands E± tilted in the direction ω of the electric field and separated by the gap ∆
due to the spin-orbit coupling.

5.1.1 Model of quantum rotors
We consider the dynamics of two quantum modes coupled to a fast quantum degree of
freedom, chosen for clarity as a two level system, a qubit. Each slow mode is described by
a phase operator ϕ̂i of continuum spectrum [0, 2π], conjugated to a number operator n̂i

of discrete spectrum Z, such that [n̂i, ϕ̂j] = iδij [90]. We assume that the fast degree
of freedom couples only to the phases of the modes, through a Hamiltonian H(Φ̂) with
Φ̂ = (ϕ̂1, ϕ̂2). Noting ω = (ω1, ω2) the frequencies of the modes, and N̂ = (n̂1, n̂2) their
respective number operators, the dynamics of the full quantum system is governed by the
Hamiltonian

Ĥtot = ℏω · N̂ ⊗ 1 +H(Φ̂) , H(Φ̂) =
3∑

α=1
hα(Φ̂)⊗ σα . (5.2)

Such a model appears as the natural quantization of a 2-tone Floquet systems, where
the time-dependent parameters ϕi(t) = ωit of the qubit Hamiltonian h(ϕ1(t), ϕ2(t)) · σ
are here considered as true quantum degrees of freedom. Note that we will focus on the
adiabatic dynamics of such a Floquet model, valid for slow frequencies ℏωi compared with
the qubit’s spectral gap 2|h|.

Physically, the two modes of model (5.2) often result from the coupling to harmonic
oscillators [193,195,196,198]. Describing this oscillator by a pair of conjugated operators
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n̂i, ϕ̂i is valid for states with a number of quanta n̄ large compared to any dynamical
variation of and spreading of n, ∆n ≪ n̄ [193]. We will come back to these aspects in
Chap. 6, showing in addition that such rotor model captures very well the dynamics of
quantum harmonic oscillators coupled to a two level system on a first part of the dynamics,
at short times.

The modes’ intrinsic energies depend on the number of quanta N while the qubit’s
energy depends on their phases: hence we will use two dual representations of the dynam-
ics of the system through this paper. When focusing on the qubit’s evolution, the phase
representation is natural, represented in Fig. 5.1(a): at each value of the phases Φ are
associated qubit’s eigenstates |ψ±,0(Φ)⟩. The modes’ dynamics translate into an evolution
with time of the phase, and thus an evolution of the associated qubit’s states |ψ±(Φ)⟩
which slightly differ from the eigenstates and will be discussed in section 5.2.1.

Focusing on the quantum modes, their dynamics is conveniently represented in num-
ber representation, Fig. 5.1(b). In this viewpoint, we can interpret the model as that
of a particle on a 2D lattice of sites N = (n1, n2), Φ = (ϕ1, ϕ2) being the associated
Bloch momenta in the first Brillouin zone. The Hamiltonian (5.2) describes its motion,
submitted to both a spin-orbit coupling H(Φ̂) and an electric field ℏω. We will use this
analogy to relate the geometrical and topological properties of gapped phases on a lattice
to those of the above quantum model. Note that in this case, there is no embedding of
this lattice in R2 as opposed to the Bloch theory of crystals discussed in Sec. 2.2.1 of
Chap. 2. The position operator identifies with coordinate operator on the lattice. As a
consequence, there is no ambiguity in a choice of Bloch convention and definition of the
Berry curvature [62,93].

Topological coupling

In the following, we consider a topological coupling between the qubit and the two quan-
tum modes. This corresponds to the situation where the qubit remains gapped irrespec-
tive of the phase Φ of the quantum modes, i.e. |h(Φ)| ≥ ∆ > 0 for all values of Φ.
Besides, the topological nature of the drive originates from the condition that the map
Φ ∈ [0, 2π]2 → h(Φ) wraps around the origin in R3. This is a condition of strong cou-
pling between the qubit and the drive. Indeed, if we represent the qubit’s eigenstates by
a vector b±,0(Φ) = ±h(Φ)/|h(Φ)| on the Bloch sphere, then any point of the sphere cor-
responds to a ground state of the qubit for a particular phase state of the drive. This is in
contrast with the familiar weak coupling limit where states around the south pole, |↓⟩, are
associated to the ground states and those close to the north pole, |↑⟩, to excited states.
In the present case, knowledge of the state of the qubit is not sufficient to determine
whether it is in the excited or ground state: information on the state of the driving modes
is necessary.

Throughout this paper, the numerical results are obtained by considering an example
of such a topological coupling provided by the quantum version of the Bloch Hamiltonian
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of the half Bernevig-Hughes-Zhang (BHZ) model [201]:

hx(Φ̂) = ∆
2 sin

(
ϕ̂1
)
, (5.3a)

hy(Φ̂) = −∆
2 sin

(
ϕ̂2
)
, (5.3b)

hz(Φ̂) = ∆
2
(
1− cos

(
ϕ̂1
)
− cos

(
ϕ̂2
))
, (5.3c)

where the parameter ∆ > 0 is the gap of the qubit. See appendix 5.F for details on the
numerical method.

5.1.2 Topological dynamics of adiabatic cat states
In this section, we illustrate the topological dynamics of the system starting from a typical
state. This dynamics is analyzed quantitatively in the remaining of this paper. We focus
on separable initial state, easier to prepare experimentally:

|Ψ(t = 0)⟩ = |χ1⟩ ⊗ |χ2⟩ ⊗ |ψq⟩ . (5.4)

Each quantum mode is prepared in a Gaussian state |χi⟩, characterized by an average
number of quanta n0

i and a phase ϕ0
i = 0, with widths ∆ni,∆ϕi satisfying ∆ϕi∆ni = 1

2 .
The qubit is prepared in a superposition |ψq⟩ = (|↑z⟩+ |↓z⟩)/

√
2.

We consider modes with frequency of the same order of magnitude, ℏω1 = 0.075∆ and
ω2/ω1 = (1 +

√
5)/2 ≃ 1.618, such that in the following, time is arbitrarily expressed in

unit of period of the first mode T1 = 2π/ω1. In Fig. 5.2, we represent the dynamics of
this state |Ψ(t)⟩ by displaying the associated number distribution of the modes Pn1n2(t) =
⟨n1, n2| ρ̂12(t) |n1, n2⟩, with ρ̂12(t) the corresponding reduced density matrix of the modes.
Three initial states with respective initial number width ∆n = ∆n1 = ∆n2 = 5, ∆n = 0.7
and ∆n = 1/(2π) (quasi-Fock state delocalized in phase ∆ϕ = π) are shown respectively
in Fig. 5.2 (a1), (b1) and (c1). The time evolved states at respectively t = 0, 8/3, 16/3, 8
and t = 32/3 are represented respectively on columns 1 to 5 of Fig. 5.2. We observe a
splitting of the initial state into a superposition of two states

|Ψ(t)⟩ = |Ψ−(t)⟩+ |Ψ+(t)⟩ . (5.5)

The photon number distributions of |Ψ−(t)⟩ and |Ψ+(t)⟩ drift in opposite directions,
corresponding to energy transfers between modes 1 and 2 in opposite directions. This
drift is a manifestation of the topological pumping discussed in classical-quantum models
of Chap. 3. This pumping is conveniently represented by introducing rotated number
coordinates

nE = 1
|ω|

(ω1n1 + ω2n2), (5.6)

n⊥ = 1
|ω|

(−ω2n1 + ω1n2), (5.7)

with |ω| =
√
ω2

1 + ω2
2. ℏ|ω|nE corresponds to the total energy of the modes and is constant

up to the instantaneous energy exchange with the qubit. n⊥ is the coordinate in the
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Figure 5.2: Typical dynamics of adiabatic cat states. Distribution of number of quanta
of the two modes Pn1n2 = ⟨n1, n2| ρ̂12 |n1, n2⟩ at different times for three initial states.
The modes are prepared in a Gaussian state with an average value of phase ϕ0

1 = ϕ0
2 = 0

and an equal width in number of quanta ∆n1 = ∆n2 = ∆n, corresponding to a width
∆ϕ = 1/(2∆n) in phase. The qubit is prepared in (|↑⟩ + |↓⟩)/

√
2. The evolution of

states with different initial width ∆n is represented: line (a), ∆n = 5, ∆ϕ ≃ 0.03π; line
(b), ∆n = 0.7, ∆ϕ ≃ 0.23π, and line (c), Quasi-Fock state ∆n = 1/(2π), delocalized in
phase ∆ϕ = π. The columns (2) to (5) represent the time evolved state at respectively
t = 8/3, 16/3, 8 and t = 32/3 in units of the period of the first mode T1 = 2π/ω1. The
dynamics splits the initial state in a cat state in the sense of a superposition of two states
with distinguishable energy content.
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direction perpendicular to ω. A transfer of energy between mode 1 and mode 2 naturally
translates into a drift in the n⊥ direction, at fixed average nE. We also observe that for
small initial ∆n, corresponding to lines (b) and (c), each component |Ψ−(t)⟩ and |Ψ+(t)⟩
undergoes a complex breathing dynamics around the drift. This oscillatory behavior is
reminiscent of Bloch oscillations of the associated particle submitted to an electric field,
superposed with a topological drift originating from the anomalous transverse velocity.
After an initial time of separation, the number distributions for |Ψ−(t)⟩ and |Ψ+(t)⟩
no longer overlap (Fig. 5.2 columns 4 and 5). The system is then in a cat state: a
superposition of two states with well distinguishable energy content.

We will now study quantitatively these cat states and their dynamics. In section 5.2,
we identify the two components |Ψ±(t)⟩ as adiabatic states (Sec. 5.2.1). We study their
topological dynamical separation into a cat state (Sec. 5.2.2). We characterize the weight
of each component of the cat (Sec. 5.2.3) and identify a family of cat states with equal
weight on each component. In section 5.3.1 we analyze the entanglement between the
qubit and the modes for each cat component, and relate it to the quantum geometry of
the adiabatic states. Finally, we discuss the dynamics of each cat component around the
average drift, in relation with Bloch oscillations and Bloch breathing on the associated
lattice (Sec. 5.3.2).

5.2 Adiabatic decomposition

5.2.1 Adiabatic projector

When the driving frequencies remain small compared to the qubit’s gap, ℏωi ≪ ∆, we
naturally describe the effective dynamics of the coupled qubit and drives in terms of
fast and slow quantum degrees of freedom. This is traditionally the realm of the Born-
Oppenheimer approximation, discussed in Sec. 2.1 of Chap. 2. Historically both degrees of
freedom were those of massive particles, the slow modes being associated with the heavy
nucleus of a molecule and the fast ones with the light electrons [68,79,86]. In this context,
the Born-Oppenheimer approximation assumes that the time evolved state decomposes
onto the instantaneous eigenstates of the fast degrees of freedom – more precisely remains
projected on the Born-Oppenheimer subspace introduced in Sec. 2.1.2 –, and describes
the resulting effective dynamics of the slow degree of freedom.

The distinctive characteristic of the present quantum modes - qubit model from the
usual Born-Oppenheimer setting is the linearity of the Hamiltonian (5.2) in the vari-
able N̂ . This allows to express in a simple form the corrections to the Born-Oppenheimer
approximation for the adiabatic states. This rotor model enables to express the states of
the adiabatic subspace of a slow-fast quantum system introduced in Sec. 2.4 of Chap. 2
in terms of the adiabatic states of a slowly driven quantum system introduced in Sec. 1.2
of Chap. 1. Let us explain the procedure to construct such states, while referring to
appendix 5.B for technical details.

We note |Φ⟩ the eigenstates of the phase operator of the modes Φ̂. Due to the linearity
in N̂ of the Hamiltonian (5.2), the time evolution of a phase eigenstate |Φ⟩ ⊗ |ψ⟩, where
|ψ⟩ is a state of the qubit, is |Φ− ωt⟩ ⊗ U(t; Φ) |ψ⟩. The time evolution operator U is
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deduced from that for the time-dependent model parametrized by classical phases ωt:

U(t; Φ) = T exp
[
− i
ℏ

∫ t

0
dτ H(Φ− ωτ)

]
, (5.8)

where T denotes time ordering. See Appendix 5.A for details. This property is the reason
why the adiabatic projector (as defined in Chap. 2) of the quantum rotors model is going
to be written in terms of adiabatic states of the fast subsystem as defined for a slow driven
quantum system in Chap. 1.

Adiabatic projector of the qubit

We denote by |ψν,0(Φ)⟩, ν = ±, the normalized eigenstates of the two-level Hamilto-
nian H(Φ) |ψν,0(Φ)⟩ = ν|h(Φ)| |ψν,0(Φ)⟩ for each Φ in [0, 2π]2. For small frequencies ωi,
given the time evolution of phase eigenstates, we can reasonably expect that the coupled
qubit-modes system prepared in an eigenstate |Φ⟩ ⊗ |ψν,0(Φ)⟩ will remain in a trans-
lated eigenstate. However, this simple picture is only qualitatively valid: eigenstates get
hybridized by adiabatic dynamics, even at arbitrarily small driving frequencies. As a con-
sequence, we identify the family of adiabatic states |ψν(Φ)⟩ such that the dynamics occurs
within each family of states |Φ⟩ ⊗ |ψν(Φ)⟩. Adiabatic evolution is then represented as a
transport from |Φ⟩⊗|ψν(Φ)⟩ to |Φ′⟩⊗|ψν(Φ′)⟩ within this family, indexed by translations
of Φ→ Φ′ = Φ− ωt.

In practice, the adiabatic states of the fast subsystem |ψν(Φ)⟩ are conveniently deter-
mined from their adiabatic projector πν(Φ) = |ψν(Φ⟩ ⟨ψν(Φ)|, similarly to the adiabatic
state of a slowly driven system defined from their density matrix in Chap. 1. As in
Chap. 1 and 2, we define them perturbatively from the limit of infinitely slow subsystem.
In this model of rotors, this limit is simply reached by rescaling the frequencies ω by a
dimensionless factor λ, such that the limit λ → 0 corresponds to the limit of infinitely
slow quantum modes, and the limit λ → 1 to our problem of interest. πν(Φ) is defined
as a series in λ: πν(Φ) = ∑

k λ
kπν,k(Φ). Stability of each family of adiabatic states under

the dynamics amounts to impose the condition

U(t; Φ;λ)πν(Φ)U(t; Φ;λ)† = πν(Φ− λωt) , (5.9)

where the evolution operator U(t; Φ;λ) is defined in (5.8) replacing ω by λω. Solving
order by order in λ for this equation, together with the constituting property of a projector
π2

ν(Φ) = πν(Φ), leads to the solution at order 0: πν,0(Φ) = |ψν,0(Φ)⟩ ⟨ψν,0(Φ)| and to first
order

πν,1(Φ) =
∑
µ̸=ν

|ψµ,0(Φ)⟩
∑

i ℏωiAµν,i,0(Φ)
Eµ,0(Φ)− Eν,0(Φ) ⟨ψν,0(Φ)|+ h.c. (5.10)

with Aµν,i,0(Φ) = i ⟨ψµ,0(Φ)|∂ϕi
ψν,0(Φ)⟩ the components of the non-abelian Berry con-

nection of the eigenstates, and E±,0(Φ) = ±|h(Φ)| the eigenenergies, similarly to the
derivation of Chap. 1.

Adiabatic grading of the Hilbert space

The above adiabatic decomposition of the qubit states allows for a natural decomposition
of all states of the qubit-modes system. We proceed by extending the adiabatic projector
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of the qubit πν(Φ) to the adiabatic projector acting on the Hilbert space of the whole
system

Π̂ν =
∫

dΦ |Φ⟩ ⟨Φ| ⊗ πν(Φ) , ν = ± . (5.11)

This projector provides a decomposition of any qubit-mode state |Ψ⟩ into two adiabatic
states

|Ψ⟩ = |Ψ−⟩+ |Ψ+⟩ , |Ψν⟩ = P̂ν |Ψ⟩ , ν = ± . (5.12)
For a separable initial state (5.4), each adiabatic component |Ψν⟩ is characterized by

a wave amplitude χν(Φ) according to

|Ψν⟩ =
∫

d2Φ χν(Φ) |Φ⟩ ⊗ |ψν(Φ)⟩ , (5.13)

χν(Φ) = χ(Φ) ⟨ψν(Φ)|ψq⟩ . (5.14)

with χ(Φ) = ⟨ϕ1|χ1⟩ ⟨ϕ2|χ2⟩ the wavefunction of the modes in the initial state (5.4). This
splits the total Hilbert space Htot in two adiabatic subspaces Htot = H− ⊕ H+, where
H− and H+ are respectively the images of the projectors Π̂− and Π̂+.

Topology of the family of adiabatic states

The ensemble of adiabatic states |ψν(Φ)⟩ parametrized by the classical configuration space
Φ ∈ [0, 2π]2 defines a vector bundle, the adiabatic bundle. This vector bundle is a smooth
deformation parametrized of the eigenstates bundle |ψν,0(Φ)⟩ associated to a spectral
projector (Fig. 5.1(a)).

As a consequence, the local curvature associated with the adiabatic bundle

Fν(Φ) = i ⟨∂ϕ1ψν(Φ)|∂ϕ2ψν(Φ)⟩ − (1↔ 2), (5.15)

differs from the canonical Berry curvature associated with the eigenstates bundle [64]. The
curvature (5.15) generalizes the Berry curvature to all orders in the adiabatic parameter λ,
in a similar way that the Aharonov-Anandan phase [202] generalizes the Berry phase.

On the other hand, the Chern number Cν of both bundles are identical. Indeed, the
switching on of finite but small frequencies ω1 and ω2 is a smooth transformation of the
fiber bundle of the eigenstates |ψν,0(Φ)⟩ to that of the adiabatic states |ψν(Φ)⟩. Such a
smooth transformation does not change the bundle topology. This fails for larger frequen-
cies comparable with the spectral gap. In other words, the perturbative variable λ ∈ [0, 1]
defines a smooth transformation between the eigenstate bundle and the adiabatic bundle.
As such, they are topologically equivalent and share the same Chern number.

The decomposition of the total Hilbert space is not a spectral decomposition of the
total Hamiltonian. It cannot be deduced from a measure on the two-level system alone,
since for a topologically non-trivial decomposition of states |ψ±(Φ)⟩, any qubit state
corresponds either to a state |ψ−(Φ)⟩ of the ground bundle or to a state |ψ+(Φ′)⟩ in its
complementary bundle depending on the states Φ and Φ′ of the modes.

Non-adiabatic Landau-Zener transitions

The adiabatic splitting of the Hilbert space is defined perturbatively in the perturbative
variable λ by the stability condition (5.9). As discussed in the first two chapters, this
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stability is valid up to non-perturbative effects with typical exponential dependence of
the form exp(−α/λ). The adiabatic dynamics is the effective dynamics on each sub-
space, and the non-perturbative transitions between the two subspaces are Landau-Zener
transitions. The amplitude of the Landau-Zener transitions can be estimated to obtain
the time of validity of the adiabatic approximation as presented in Sec. 1.2.5, τadiab ≈
0.1 exp(π/(4εadiab))T1, with εadiab = maxΦ ℏ| ⟨ψ+,0| dH

dt
|ψ−,0⟩ |/(E+,0 − E−,0)2. In this

work, we choose the coupling and the frequencies of the modes such that τadiab ≈ 3100T1,
allowing to neglect such Landau-Zener transitions. Within this approximation the weight
on each adiabatic subspace

Wν(Ψ) = ||Π̂ν |Ψ⟩ ||2 = ⟨Ψν |Ψν⟩ (5.16)

is a conserved quantity.

Comment on the linearity in number of quanta

In terms of slow-fast quantum system, the specificity of the rotor model is the linearity
of the total Hamiltonian in N̂ , and the coupling of the fast subsystem – the qubit – only
to its conjugated variable Φ̂. This property is at the origin of the decomposition (5.11) of
the adiabatic projector in phase representation: Π̂ν is written only in terms of the phase
operators of the modes Π̂ν = Πν(Φ̂). This enables us to define adiabatic states of the fast
subsystem |ψν(Φ)⟩ depending only on the value of the phases Φ of the slow subsystem.

For other models which are not linear in N , for example if quadratic terms proportional
to n̂2

i are added to the total Hamiltonian, we can show that the adiabatic projector
at all orders Π̂ν is written also in terms of N̂ . Projected states then have the form∫

d2Φ f(Φ) |Φ⟩ ⊗ |ψν,f (Φ)⟩ with states of the qubit |ψν,f (Φ)⟩ depending both on the
value of the phase Φ and on the derivatives of the envelope function f(Φ) (which is
related to the value of N ). This is natural: the adiabatic states of the fast subsystem
depend on both conjugated variables of the slow subsystem. The use of a phase-space
representation, such as the Wigner-Weyl representation, may be more suited to study this
particular situation.

However, for initial states such that the matrix elements of the linear term of the
Hamiltonian ℏω · N̂ are dominant over the non-linear terms, we expect Eq. (5.11) to be
a very good estimate of the adiabatic projector defined in Sec. 2.4 of Chap. 2. The rotor
model is a model from which we can characterize quantitatively many aspects of the dy-
namics which are expected to remain present in realistic situations. Such terms quadratic
in the slow variables are natural in the Born-Oppenheimer context, corresponding to the
kinetic energy of the nuclei. If Φ and N correspond respectively to superconducting
phases and number of Cooper pairs of superconducting leads, capacitive elements are also
associated to quadratic Hamiltonian in ni. The characterization of the adiabatic states
in situations where they are significant goes beyond the scope of this thesis.

5.2.2 Topological splitting of adiabatic components
In this section, we show that the topological dynamics splits in energy the two adiabatic
components, thereby creating an adiabatic cat state.
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Equation of motion

The energy function Eν(Φ) = ⟨ψν(Φ)|H(Φ) |ψν(Φ)⟩ as well as the curvature (5.15) govern
the adiabatic dynamics of the slow modes. Using the Ehrenfest theorem, for each adiabatic
component of the initial state, we get

d
dt⟨n̂1⟩Ψν(t) =

∫
d2Φ

|χν(Φ)|2
Wν(Ψ) ⟨ψν(Φ− ωt)| 1

ℏ
∂H

∂ϕ1
|ψν(Φ− ωt)⟩ (5.17)

=
∫

d2Φ
|χν(Φ)|2
Wν(Ψ)

(
1
ℏ
∂Eν

∂ϕ1
(Φ− ωt) + ω2Fν(Φ− ωt)

)
. (5.18)

A similar relation obtained by the exchange 1 ↔ 2 holds for the second mode. See
appendix 5.D for details. This expression differs by two aspects from the first order
average power transfer obtained within a classical-quantum description [44,56] described
in Chap. 3.

First, the instantaneous rate in parentheses is averaged by the normalized phase
wavepacket density |χν(Φ)|2/Wν(Ψ) of the adiabatic component. The phase density plays
the role of density probability of the initial phase, due to its quantum fluctuations. The
linearity in N̂ of the rotor model induces a non-dispersive evolution of the phase, such
that, during time evolution, the phase density is just translated on the torus [0, 2π]2.
Second, at all orders in adiabatic theory, the equation of motion takes a similar form
as the first order theory of Chap. 3 and Chap. 2, obtained by replacing respectively the
eigenenergy and Berry curvature by the adiabatic energy and dressed Berry curvature.
The geometric details of the dynamics changes, but the topological drift is the same, as
discussed below.

Topological splitting

As in the case of a hybrid classical-quantum description of a topological pump [44, 56]
of Chap. 3 and Chap. 4, we assume an incommensurate ratio between the frequencies ω1
and ω2 such that a time average of the rate of change (5.18) reduces by ergodicity to an av-
erage over the phases Φ ∈ [0, 2π]2. The average of the derivative of the energy in Eq. (5.18)
vanishes by periodicity, while the average of the adiabatic curvature Fν(Φ) is quantized
by the first Chern number Cν of the vector bundle of adiabatic states |ψν(Φ)⟩. The
topological coupling between the modes and the qubit corresponds to two non-vanishing
Chern numbers C+ = −C−. In this situation, we recover a topological pumping or topo-
logical frequency conversion between the two modes. In terms of the rotated coordinates
of Eq. (5.6,5.7), the topological pumping corresponds to opposite evolutions of n⊥ for the
two adiabatic components |Ψ±⟩:

⟨n̂⊥⟩Ψ±(t) = ⟨n̂⊥⟩Ψ±(0) ∓
|ω|t
2π C− + δn⊥(t), (5.19)

where δn⊥(t) denotes bounded oscillations, the temporal fluctuations of pumping, dis-
cussed in Sec. 5.3.2.

As a result, the topological dynamics splits in energy the two adiabatic components
of the initial state from each other. A cat state is created when the two adiabatic com-
ponents no longer overlap. We note ∆nmax

⊥ the maximal spread in n⊥ developed during
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the dynamics, which is discussed in section 5.3.2. The time of separation of the two cat
components reads

tsep ≈
2π
|ω|C

∆nmax
⊥ (5.20)

with C = |C±|. After tsep, the weight of the state on the region n⊥ < n0
⊥ identifies with

the adiabatic weight W−(Ψ).

5.2.3 Weight of the adiabatic cat state
In this section, we focus on the weight Wν(Ψ) (5.16) of each component of the cat state.
This will allow us to show that the dynamical splitting into a cat state is generic, and to
identify the conditions on the initial states to realize ideal adiabatic cat states with equal
weights W+(Ψ) = W−(Ψ).

We can represent the states |ψν(Φ)⟩ and |ψq⟩ by vectors on the Bloch sphere, respec-
tively bν(Φ) and Q, see Fig. 5.3(a). The qubit’s state representation Q is parametrized
by the angle θq with the z-axis and its azimuthal angle φq. In this section, we focus
without loss of generality on φq = 0, i.e. on Q lying in the xz plane, and on the mode
prepared in a Gaussian state centered on ϕ0

1 = ϕ0
2 = 0. The adiabatic states are obtained

in a perturbative expansion around the eigenstates |ψν,0(Φ)⟩. Hence, they are represented
by bν(Φ) which is perturbatively close to bν,0(Φ).

General expression of the weights

The phase states in the decomposition (5.13) being orthogonal, the weight Wν(Ψ), ν = ±
is the weight of the wave amplitude χν(Φ) = χ(Φ) ⟨ψν(Φ)|ψq⟩:

Wν(Ψ) =
∫

d2Φ |χν(Φ)|2. (5.21)

The overlap between |ψν(Φ)⟩ and |ψq⟩ is | ⟨ψν(Φ)|ψq⟩ |2 = (1 + bν(Φ) ·Q)/2 such that the
weight (5.21) now reads

Wν(Ψ) = 1
2
(
1 + bν ·Q

)
, ν = ±, (5.22)

with
bν =

∫
d2Φ |χ(Φ)|2 bν(Φ) (5.23)

the statistical average of the adiabatic states with respect to the initial phase distribu-
tion |χ(Φ)|2. The phase density |χ(Φ)|2 on the torus translates via the map Φ 7→ bν(Φ)
to a density of adiabatic states on the Bloch sphere. bν is the average of this density.
We represent the density associated to the ground state b−,0(Φ) in colored density plot
on Fig. 5.3(b) as well as the average ground state b̄−,0 for four widths ∆ϕ = ∆ϕ1 = ∆ϕ2.
b̄− is perturbatively close to b̄−,0.

For small ∆ϕ, the phase density is localized around Φ0 and b̄ν ≈ bν(Φ0) close to
the surface of the Bloch sphere. When increasing the width ∆ϕ, we average vectors over
an increasing support on the Bloch sphere, reducing the norm |b̄±| which controls the
minimum weight of the cat (Fig. 5.3(d)). For the chosen value ϕ0

1 = ϕ0
2 = 0, b̄−,0 lies

on the z-axis as inferred from (5.3). In the extreme case of ∆ϕ = π (Fock state), the
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Figure 5.3: Weight W− of the adiabatic states superposition. The modes are in a Gaus-
sian state centered on ϕ0

1 = ϕ0
2 = 0. We vary the width ∆ϕ of the Gaussian state and

the qubit initial state |ψq⟩ represented by its polarization Q on the Bloch sphere. (a)
Averaged ground state b̄−,0, lying on the z-axis. The average adiabatic state b̄− is per-
turbatively close to b̄−,0. (b) The phase density |χ(Φ)|2 on the torus translates via the
map Φ 7→ b−(Φ) to a density of adiabatic states on the Bloch sphere represented in color
for different ∆ϕ. b− is the average of this density. (c) Weight of the cat depending on
the width in phase ∆ϕ. The average Bloch vector remains approximately on the z-axis,
such that a cat with W− = 1

2 is obtained for the qubit on the equator θq = π/2. The
deviation from W− = 1/2 at θq = π/2 is due to the difference between the eigenstates
and the adiabatic states. In the limit of small ∆ϕ for |ψq⟩ = |ψ−(Φ0)⟩ (θq = 0) and
|ψq⟩ = |ψ+(Φ0)⟩ (θq = π) the weight of adiabaticity is controlled by the quantum metric
g−,ij(Φ0) of the adiabatic states. (d) Weight of the cat depending on the initial state
of the qubit, varying θq at φq = 0. The norm of the average adiabatic state defines the
bounds (1± |b̄−|)/2 of the weight. For ∆ϕ = 0.38π, |b̄±| ≃ 0 such that a cat with almost
equal weight is created independently of the initial state of the qubit.
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density is homogeneous on the torus. However, while b±(Φ) covers the whole sphere, the
associated density is not homogeneous due to the anisotropy of the couplings (5.3). This
leads to a non-vanishing b̄−.

Symmetric cat states

Following the analysis above, we can identify two types of initial states that give rise
to symmetric cat states with W+ = W− = 1

2 . The first class is obtained by preparing
the qubit orthogonally to this average adiabatic state b̄±. For our initial phase Φ0, this
average adiabatic state is perturbatively closed to the z-axis as discussed above. Hence, a
qubit prepared on the equator of the Bloch sphere corresponds to two almost equal weights
for all ∆ϕ. This corresponds to the choice made for Fig. 5.2. This case is represented by
the orange curve on Fig. 5.3(c). The adiabatic weight is computed numerically from the
topological splitting of the adiabatic components discussed in the previous section. The
deviation to W− = 1/2 originates from the difference between the eigenstates and the
adiabatic states, see appendix 5.G for details. The second class of symmetric cat states
is obtained for well-chosen gaussian states of the modes: the weight (5.22) of the cat is
bounded by (1 + |b̄±|)/2. For ∆ϕ = 0.38π, b̄± ≃ 0 such that the cat has (almost equal)
weights W+ = W− independently of the initial state of the qubit θq (Fig. 5.3(d) green
curve).

Quasi phase states

The only separable states lying in an adiabatic subspace, corresponding to W+ = 1 or
W− = 1, are pure phase states |Φ0⟩⊗ |ψ±(Φ0)⟩ for which |b±| = 1, shown as the blue and
green curves of Fig. 5.3(c) in the ∆ϕ = 0 limit. Given that these states are fully delocalized
in quanta number N , and thus in energy according to (5.2), we expect them to be hard
to realize. Any other separable state lies at a finite distance from each adiabatic subspace
and will be split into a cat state under time evolution. Let us comment on this adiabatic
decomposition for almost pure phase states with small ∆ϕ. In this case, the correction to
adiabaticity is controlled by the quantum metric g±,ij of the adiabatic states [80,203]:

g±,ij = Re ⟨∂ϕi
ψ±| (1− |ψ±⟩ ⟨ψ±|)

∣∣∣∂ϕj
ψ±
〉
. (5.24)

Indeed, the weight (5.21) is dominated by the local variations of the adiabatic states
|ψ±(Φ)⟩ over the narrow phase support |χ(Φ)|2. These variations are encoded by the
quantum metric: | ⟨ψ±(Φ0 + δΦ)|ψ±(Φ0)⟩ |2 = 1−∑i,j g±,ij(Φ0)δϕiδϕj +O(δϕ3). In the
limit of a small width (∆ϕ1,∆ϕ2) the weight (5.21) for |ψq⟩ = |ψ±(Φ0)⟩ reduces to

W±(Ψ) = 1− (∆ϕ1)2g±,11(Φ0)− (∆ϕ2)2g±,22(Φ0) +O(∆ϕ4). (5.25)
Hence for a state close to a phase state, the first correction to Wν is quadratic in ∆ϕ =
1/(2∆n) with a factor set by the quantum metric of the adiabatic states, as shown in
black dashed line on Fig. 5.3(c).

5.3 Characterization of cat components
Having characterized the balance between the two components of an adiabatic cat state,
we now study the dynamics of each component. We will focus first on the entanglement
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between the qubit and the two modes, before focusing on their Bloch oscillatory dynamics
in the number of quanta representation.

5.3.1 Entanglement
Adiabatic states naturally entangle the fast qubit with the slow driving modes, a phe-
nomenon out-of-reach of previous Floquet or classical descriptions of the drives [44, 45,
47, 48, 51–53, 56]. We focus on cat states with almost equal weight Wν ≃ 1/2, obtained
with Φ0 = 0 and θq = π/2 following the analysis of section 5.2.3. In the following, we
study the entanglement of the qubit with the modes for the different types of cat states,
varying the initial spread ∆ϕ of the modes and the initial azimuthal angle φq of the qubit.

The entanglement between the qubit and the two modes in an adiabatic component
|Ψν(t)⟩, ν = ±, is captured by the purity γν(t) = Tr

(
ρ2

q,ν(t)
)

= (1 + |Qν(t)|2)/2 of the
qubit, where ρq,ν(t) is the reduced density matrix of the qubit and Qν(t) its polarization.
From the adiabatic time evolution (5.9), we deduce the reduced density matrix ρq,ν(t) of
the qubit in the adiabatic state |Ψν(t)⟩ as

ρq,ν(t) =
∫

d2Φ
|χν(Φ + ωt)|2

Wν

|ψν(Φ)⟩ ⟨ψν(Φ)| (5.26)

= 1
2(1 + Qν(t) · σ), (5.27)

where the polarization of the qubit Qν(t) reads

Qν(t) =
∫

d2Φ
|χν(Φ + ωt)|2

Wν

bν(Φ). (5.28)

The qubit is in the statistical mixture of the adiabatic states |ψν(Φ)⟩ weighted by the
translated normalized phase density |χν(Φ + ωt)|2/Wν .

Entanglement of quasi-phase states.

Let us first focus on the adiabatic component of a cat obtained from a quasi-phase state of
small ∆ϕ. We show below that entanglement between the qubit and the quantum modes
of such a state is set by the quantum metric of the adiabatic states.

The translated phase density |χ(Φ + ωt)|2 of the modes is a normalized 2π-periodic
Gaussian centered on Φ0−ωt and of width (∆ϕ1,∆ϕ2). Plugging expansions of Eqs. (5.14)
and (5.21), and bν(Φ) around Φ0 − ωt in the limit of small ∆ϕ1,∆ϕ2 into Eq. (5.28) we
get

Qν(t) = bν(Φ0 − ωt) + 1
2
∑

i

(∆ϕi)2∂
2bν

∂ϕ2
i

(Φ0 − ωt) +O(∆ϕ4). (5.29)

Note that in the limit ∆ϕ1 = ∆ϕ2 = 0 of the classical description of the phase, we
recover that the qubit follows the instantaneous adiabatic state bν(Φ0 − ωt). From the
normalization of the adiabatic states |bν |2 = 1, we deduce the relation bν · ∂2

ϕi
bν =

−∂ϕi
bν ·∂ϕi

bν = −4gν,ii where the last equation is an expression of the quantum metric of
a two-level system in terms of the Bloch vectors [204, 205]. From this, we unveil the role

113



114 Chapter 5. Adiabatic cat states

Figure 5.4: Purity of the qubit γ+(t) and γ−(t) in each cat components |Ψ+(t)⟩ and
|Ψ−(t)⟩. The qubit is prepared on the equator θq = π/2 to create a cat of equal weight
W± = 1/2 for all values of ∆ϕ and φq. (a1), (b1) The phase densities |χ−(Φ + ωt)|2
and |χ+(Φ + ωt)|2 of each cat components translate to densities of adiabatic states on
the Bloch sphere (respectively in blue and orange). The qubit state is the statistical
mixture weighted according to these densities with resulting polarizations Q±. (a2) For
small ∆ϕ, the phase densities are localized around Φ0−ωt. The adiabatic states have small
variations around Φ0−ωt1 and larger variation around Φ0−ωt2, inducing γ−(t1) > γ−(t2).
These local variations are quantified by the quantum metric of the adiabatic states. (b2)
(d) For large ∆ϕ, the adiabatic states cover a large part of the Bloch sphere, corresponding
to a high entanglement. The phase densities of the two components have complementary
support on the torus, leading to different densities on the Bloch sphere. The purity of
each component oscillates in opposite phase around their temporal average (black dotted
line). The details of the oscillations depend on the shape of the phase densities which
changes with the qubit initial state φq. (c) Time average of the purity and temporal
fluctuations (errorbars) depending on ∆ϕ. A large support ∆ϕ on the torus translates to
a large support on the Bloch sphere due to the topological nature of the coupling, and
thus a large entanglement.
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of the quantum metric in the entanglement between the qubit and the quantum modes.
We obtain the expansion at order ∆ϕ2 of the purity

γν(t) = 1− 2(∆ϕ1)2gν,11(Φ0 − ωt)− 2(∆ϕ2)2gν,22(Φ0 − ωt) +O(∆ϕ4). (5.30)

For a two level system, the quantum metric of the two levels identifies g+,ij = g−,ij such
that the qubit is equally entangled with the modes in each adiabatic component |Ψ±⟩. The
topological coupling corresponds to a non-vanishing average Berry curvature Fν . From
the inequality gν,11 + gν,22 ≥ |Fν | originating from the positive semidefiniteness of the
quantum geometric tensor [206] we obtain a lower bound on the entanglement between
the qubit and the modes:

⟨γν⟩t ≤ 1− |C−|
π

(∆ϕ)2 +O(∆ϕ4). (5.31)

This demonstrates that a topological pump necessarily entangles the qubit with the modes,
a property only captured by the quantum description provided in this paper.

The statistical average of the adiabatic states is represented on Fig. 5.4(a1) for an
initial width of the Gaussian state ∆ϕ = ∆ϕ1 = ∆ϕ2 ≃ 0.09π, corresponding to ∆n1 =
∆n2 ≃ 2.6, with the qubit initialized in φq = 0. At a given time t, the densities on the torus
of each component |χ±(Φ + ωt)|2/Wν is centered on Φ0 − ωt with the initial width ∆ϕ.
This translates into complementary densities of adiabatic states on the Bloch sphere (in
blue and orange) encoding the statistical mixture of the qubit in |Ψ±⟩. In Fig. 5.4(a2),
the purity of the qubit after the time of separation tsep is represented respectively in blue
and orange for each component |Ψ±(t)⟩. The temporal fluctuations of this purity follow
those of the quantum metric at Φ0−ωt represented by a black dashed line, as predicted
by Eq. (5.30). As an illustration, we notice that the quantum metric is smaller at time t1
than at t2, manifesting that the evolution of adiabatic states with the phase Φ is weaker
at Φ = Φ0 −ωt1 than at Φ = Φ0 −ωt2. This translates into a larger purity of the qubit
at t = t1 than at t = t2.

Entanglement of quasi-Fock state

We now consider states with an increasing initial width in phase ∆ϕ. The dependence on
∆ϕ of the time averaged qubit purity ⟨γ±⟩t is represented on Fig. 5.4(c) for each adiabatic
component. The amplitude of its temporal fluctuations are represented as errorbars. This
average purity decreases with ∆ϕ, corresponding to an increase of entanglement: the larger
the phase support on the torus, the larger the support on the Bloch sphere, and thus the
smaller the polarization (5.28). The large support on the Bloch sphere originates from
the topological nature of the coupling, which imposes that the adiabatic states b±(Φ)
reaches all points of the Bloch sphere as Φ varies. A topologically trivial coupling would
lead to a localized distribution of adiabatic states on the Bloch sphere corresponding to
an almost pure state of the qubit. This is another manifestation that topological pumping
and entanglement between the qubit and the modes are strongly intertwined.

The time average of the purity is the same for the two adiabatic components ⟨γ+⟩t =
⟨γ−⟩t for every ∆ϕ. A qualitative explanation is the following. Given (5.28) the pu-
rity ⟨γ±⟩t corresponds to an average of adiabatic states with respect to translated phase
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distributions. The time average depends only on the extension of the phase density |χ±(Φ)|2,
which, from (5.14), satisfies

|χ+(Φ + ωt)|2 + |χ−(Φ + ωt)|2 = |χ(Φ + ωt)|2. (5.32)

Hence, they split the phase density of the total system |χ(Φ+ωt)|2 in two complementary
supports, as illustrated in appendix 5.H. For cat states with equal weight W+ = W−,
according to (5.21) these two supports have equal weight, leading to the same average
purity over time.

As discussed above, for quasi phase states the purity of both components fluctuates
temporally in phase Fig. 5.4(a2). In the opposite limit of an initial Fock state fully de-
localized in phase with ∆ϕ = π, these two purities fluctuates in phase opposition. This
is represented Fig. 5.4(b2) and (d), where the qubit is initialized respectively on φq = 0
and φq = π/4. The phase density of the modes is uniform |χ(Φ)|2 = 1/(2π)2, such that
according to (5.32) the phase density of the two cat components have complementary
supports on all the torus [0, 2π]2. We represent on Fig 5.4(b1) in blue the density of
adiabatic states b−(Φ) associated to the support |χ−(Φ−ωt)|2 and in orange the density
of adiabatic states b+(Φ) associated to the support |χ+(Φ − ωt)|2. At t = t3, the den-
sity |χ+(Φ−ωt3)|2 covers a larger portion of the sphere than the density |χ−(Φ−ωt3)|2,
corresponding to |Q+(t3)|2 < |Q−(t3)|2 and γ+(t3) < γ−(t3) on Fig. 5.4(b2), while the
situation is opposite at t = t4. The details of the temporal variations of the purity depend
on the details of the shape of the densities |χ±(Φ)|2, which depends on the initial state φq

of the qubit. Temporal oscillations for φq = π/4 are represented on Fig 5.4(d): the tem-
poral average remains of the same order of magnitude and the temporal fluctuations of
the purity of each component remain in phase opposition.

5.3.2 Breathing dynamics and Bloch oscillations
We now discuss in more details the oscillations of both the center of mass and of the
width in number of each adiabatic component of cat states that manifest themselves on
the examples of Fig. 5.2. This dynamics is reminiscent of Bloch oscillations and Bloch
breathing [195, 207–209]. As discussed in Sec. 2.2.2 of Chap. 2, Bloch oscillations corre-
spond to temporal oscillations of the center of a wavepacket on a lattice when submitted
to an electric field. Bloch breathing corresponds to temporal oscillations of the width of
this wavepacket. The nature of these oscillations and breathing depends on the width
of the wavepacket’s momentum distribution. In our context, the lattice corresponds to
the numbers of quanta N = (n1, n2). The first term of the Hamiltonian (5.2) is linear
in N and plays the role of the coupling to an electric field ω, while the second term
corresponds to a spin-orbit coupling as discussed in section 5.1.1. Hence, the dynamics in
N representation of the adiabatic components identifies with the Bloch oscillations and
breathing in the presence of both a longitudinal electric field and an anomalous transverse
topological velocity.

Qualitative evolution of an adiabatic component

Two trajectories of the average value of number of quanta ⟨N̂⟩Ψ±(t) are represented on
Fig. 5.5(a) and (b) for two widths ∆ϕ. The two adiabatic subspaces ν = ± are associated
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Figure 5.5: From Bloch oscillations to Bloch breathing. (a) Trajectories of the average
values of numbers of quanta of each cat component |Ψ±(t)⟩ for the example of Fig. 5.2(a)
localized in phase. The two components split along n⊥ at an average velocity ±v =
∓(−ω2, ω1)C/(2π). Bloch oscillations are the temporal fluctuations of the average number
of quanta around this drift. (b) Trajectories for the initial Fock state of Fig. 5.2(c). The
temporal fluctuations are reduced. (c) Photon number distribution of Fig. 5.2(c4) zoomed
on the component |Ψ−(t)⟩ for t = ta a quasi-period. (d) Photon number distribution
of Fig. 5.2(c5) zoomed on the component |Ψ−(t)⟩ for t = tb a time of expansion. (e)
Circles: amplitude ∆t⟨n̂E⟩ and ∆t⟨n̂⊥⟩ of the Bloch oscillations depending on the width
in phase ∆ϕ. Triangles: temporal average of the spreading ∆Qn̂E and ∆Qn̂⊥, with the
amplitude of their temporal fluctuations in errorbar. In small ∆ϕ limit, the spreading
is constant, the state remains gaussian with ∆Qn̂i = 1/(2∆ϕ). When ∆ϕ increases, the
amplitude of the Bloch oscillations ∆t⟨n̂i⟩ decreases and the temporal fluctuations of the
spreading increase, corresponding to a breathing. (f,g,h) Bloch oscillations. Temporal
fluctuations of the average value of number of quanta ⟨N̂⟩ in the component |Ψ−(t)⟩
around the quantized drift vt. At quasi-periods t = ta and t = tb, the evolution is
almost given by the quantized drift ⟨N̂⟩ = vt. The increase of ∆ϕ corresponds to a
decrease of the temporal fluctuations. (i) Time evolution of the spreading ∆Qn̂i in the
component |Ψ−(t)⟩ for an initial state localized in phase. The state remains Gaussian
with constant spreading ∆Qn̂i = 1/(2∆ϕ). (j,k) Bloch breathing of the spreading for
small ∆ϕ. The wavepacket localizes at quasi-periods t = ta and t = tc, and expands in
between (t = tb).



Chapter 5. Adiabatic cat states

to opposite anomalous velocities ∓v with v = (ω2,−ω1)C−/(2π). This induces a drift of
the two wavepackets in opposite directions along n⊥, shown on the figure. We highlight
the dynamics of the component |Ψ−(t)⟩ around this drift on Fig. 5.5(c) and (d), the results
for |Ψ+(t)⟩ being similar. In this figure, we note ⟨n̂i⟩(t) the average values of n̂i in |Ψ−(t)⟩
in the rotated coordinates (5.6), n̂i referring to n̂E or n̂⊥. We denote as ∆Qn̂i(t) =
[⟨n̂2

i ⟩(t)− ⟨n̂i⟩(t)2] 1
2 the quantum fluctuations, or spreading of n̂i in |Ψ−(t)⟩ Fig. 5.5(c-d).

The numbers of quanta ⟨N̂⟩(t) have temporal fluctuations around the quantized
drift vt represented on Fig. 5.5(f-h) for the three adiabatic cats of Fig. 5.2. When
we increase the width ∆ϕ of the initial state, the amplitude ∆t⟨n̂i⟩ of these tempo-
ral fluctuations is reduced, while the spreading of the wavepacket ∆Qn̂i increases. For
small ∆ϕ, ∆Qn̂i is almost constant (Fig. 5.5(i)), the state remains Gaussian with its ini-
tial width ∆Qn̂i = 1/(2∆ϕ) as illustrated on Fig. 5.2(a1-a4). When ∆ϕ increases, ∆Qn̂i

oscillates in time 5.5(j-k). This corresponds to breathing: oscillations, such as at t = tb
on Fig. 5.5(d), between relocalization occurring e.g. at t = ta and tc on Fig. 5.5(c). The
corresponding time evolution of the width ∆Qn̂i is represented on Fig. 5.5(i-k).

Quasi-periods

In Fig. 5.5(j-k), we observe, for a large initial ∆ϕ, a relocalization of the wavepacket at
specific times such as ta and tc. These fluctuations in time of the adiabatic wavepacket
correspond to two-dimensional Bloch oscillations [207–209]. We first introduce the quasi-
periods associated to two-dimensional Bloch oscillations before discussing wavepacket
relocalization below.

Historically, Bloch oscillations were first considered in one dimension [102]. The elec-
tric field induces a constant increase of the Bloch momenta of a semiclassical wavepacket,
which crosses periodically the one dimensional Brillouin zone. As a consequence the
average position of the wavepacket oscillates periodically. In two dimensions, Bloch os-
cillations are richer. The Bloch momenta evolves on the two-dimensional Brillouin zone
along the direction of the electric field: Φ(t) = Φ0 − ωt. Such an evolution is peri-
odic for a commensurate ratio between ω1 and ω2, corresponding to an electric field in
a crystalline direction. Noting ω1/ω2 = p1/p2 with p1 and p2 coprime integers, the tra-
jectory of the Bloch momenta on the two-dimensional Brillouin zone is periodic with
period T = p12π/ω1 = p22π/ω2. In practice any real number ω1/ω2 can be approximated
by a set of rational numbers [195, 208]. Each rational approximation leads to a quasi
period T for which Φ0 − ωT ≃ Φ0. The times ta and tc on Fig. 5.5 are two examples of
these quasi-periods for our choice of ω1, ω2.

The periodicity of a trajectory on the Brillouin zone translates into a periodic motion
in the direction of the electric field nE but not in the transverse direction n⊥, even in
the absence of an anomalous velocity [209, 210]. For an initial phase Φ0, the classical
equations of motion in adiabatic space ν of the center of the wavepacket, recovered from
Eq. (5.18), can be written as

nE(t) =
∫ t

0

1
ℏ
∂Eν

∂ϕE

(Φ(t′))dt′ , (5.33)

n⊥(t) =
∫ t

0

(
1
ℏ
∂Eν

∂ϕ⊥
(Φ(t′))− |ω|Fν(Φ(t′))

)
dt′, (5.34)
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where the evolution of the phase reads in the rotated phase coordinates: ϕE(t) = ϕ0
E−|ω|t

and ϕ⊥(t) = ϕ0
⊥. We choose the origin of the number of quanta set by their initial values,

such that nE(0,Φ0) = n⊥(0,Φ0) = 0. The time integral can be rewritten as a line integral
over ϕE, leading to the conservation equation ℏ|ω|nE(t,Φ0) = Eν(Φ0)−Eν(Φ(t)), which
is vanishingly small at a quasi-period T such that Φ(T ) ≃ Φ0. A quasi-period defines an
almost closed trajectory on the torus. The line integral of (5.34) does not vanish on this
closed trajectory, and reads n⊥(T,Φ0) ≃ vT . The approximation gets better for longer
quasi-periods T , i.e. large p1 and p2.

Bloch oscillations of the average number of quanta

In the hybrid classical-quantum description of a topological pump [44,56], the topological
quantization of the pumping rate is recovered under a time-average of the instantaneous
flux of quanta ṅi(t). This time average of the Berry curvature entering the pumping rate
is set by the Chern number of the adiabatic states over the torus [0, 2π]2. The quantum
nature of the mode induces another source of averaging. The time evolution of the average
number of quanta (5.18) corresponds to an average of the classical evolution (5.34) with
respect to the phase density |χν(Φ)|2 of the adiabatic component. Thus, an increase of
the support |χν(Φ)|2 reduces the temporal fluctuations of the average number of quanta
around its average drift. The quantization of topological pumping is indeed better between
quantum than classical modes. This is represented on Fig. 5.5(e). We note ∆t⟨n̂i⟩ the
amplitude of the fluctuations with time of the average value of ⟨n̂i⟩. These temporal
fluctuations are reduced when ∆ϕ increases (circles on Fig. 5.5(e)).

The reduction of the temporal fluctuations of pumping is set by the width of the phase
density |χν(Φ)|2. One would expect that a complete delocalization in phase, |χν(Φ)|2 =
1/(2π)2, averages instantaneously the classical pumping rate over the whole phase space
such that ⟨N̂⟩(t) ≃ vt without any temporal fluctuations. Such a projected state with
uniform delocalization in Φ corresponds to a Wannier state for a particle on a lattice
which is topologically obstructed [211–213]. First, let us note that the spreading ∆Qn̂i

is infinite in such obstructed Wannier state, making them hard to realize experimentally.
Moreover, due to the adiabatic decomposition (5.12) of the initial (separable) state, such
adiabatic states are never realized: the phase density |χν(Φ)|2, defined in (5.14) contains
the density of projection of the qubit initial state | ⟨ψν(Φ)|ψq⟩ |2 which necessarily vanishes
on the configuration space for a topological pump, irrespective of |ψq⟩. A Wannier state
cannot be obtained by the adiabatic decomposition of a separable state, and the temporal
fluctuations of the pumping remain finite.

Bloch breathing of the spreading

When the phase density |χν(Φ)|2 is localized around Φ0, the center of mass performs Bloch
oscillations following the classical trajectory N (t,Φ0) (5.33), (5.34). Intuitively, when the
adiabatic state has a large support in phase |χν(Φ)|2, the different trajectories N (t,Φ)
on this support superpose, inducing a spreading of the wavepacket. The spreading of the
wavepacket is then captured by the variance Var|χν |2 [ni(t,Φ)] of the classical trajectories
with respect to the (normalized) initial phase distribution |χν(Φ)|2/Wν :

Var|χν |2 [ni(t,Φ)] =
∫

d2Φ
|χν(Φ)|2
Wν

ni(t,Φ)2 −
(∫

d2Φ
|χν(Φ)|2
Wν

ni(t,Φ)
)2

. (5.35)
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We show in appendix 5.I that the time evolution of the spreading ∆Qn̂i in the adiabatic
state |Ψν(t)⟩ is indeed related to this variance, and is the sum of three different terms.

For a quasi-phase state with a narrow distribution |χν(Φ)|2, the classical trajectories
for an initial phase on this support are all similar, such that the variance term (5.35) van-
ishes. The quantum fluctuations weakly evolve in time ∆Qn̂i(t) ≃ ∆Qn̂i(0) ≃ 1/(2∆ϕ), as
shown in Fig. 5.5(i). In the case of large ∆ϕ, the classical evolution ni(t,Φ) follows differ-
ent trajectories for the different values of Φ on |χν(Φ)|2, leading to a large Var|χν |2 [ni(t,Φ)]
and an expansion of the wavepacket, seen for example at t = tb on Fig. 5.5(d)(k). At a
quasi-period T discussed in Sec. 5.3.2, the classical trajectories lead almost to the same
quantized drift N (T,Φ) ≃ vT for all initial phases Φ, such that Var|χν |2 [ni(T,Φ)] ≃ 0.
The wavepacket refocuses at these quasi-periods, seen at t = ta and t = tc on Fig. 5.5(k).

The default of refocusing is usually discussed in the literature in relation with the
default of rephasing Var|χν |2 [ni(T,Φ)] ̸= 0 [195, 207], such that (∆Qn̂i)(T ) ≳ (∆Qn̂i)(t =
0). We note an important point about these rephasing events: even if the refocus-
ing is perfect (∆Qn̂i)(T ) = (∆Qn̂i)(t = 0) the spread at these refocusing times corre-
sponds to the initial spread of the adiabatic component |Ψ−(t = 0)⟩ and not to the initial
state |Ψ(t = 0)⟩. This is the reason why on Fig. 5.5(c) the state does not refocus into a
Fock state. Indeed, as discussed above the phase distribution |χ−(Φ)|2 is not fully de-
localized on the torus, such that by Heisenberg inequality the distribution of number of
quanta in |Ψ−(t = 0)⟩ is not fully localized. For the cat state with equal weight, we dis-
cussed in section 5.3.1 that |χ−(Φ)|2 covers approximately half the torus, corresponding
to a spread of order π/4, such that ∆Qn̂i(t = 0) ≥ 2/π ≃ 0.63. This is approximately the
values of the spreading at the refocusing times on Fig. 5.5(k).

5.4 Conclusion of chapter
In this chapter, we have shown that the dynamics of a qubit topologically coupled to
two slow quantum modes generically creates a cat state, a superposition of two adiabatic
states with mesoscopically distinct energy content. For each adiabatic component of the
cat, the topological nature of the coupling induces an intrinsic entanglement between the
qubit and the modes, characterized by the geometry of adiabatic states of the qubit, their
quantum metric.

Let us stress that we have focused on the adiabatic limit of a quantum description of
a Floquet system. We characterized the entanglement between the drives and the driven
quantum system in terms of the quantum geometry of adiabatic states. Extending this
relation between entanglement and geometry beyond the adiabatic limit [214, 215] is a
natural and stimulating perspective.

The realization of such topological adiabatic cat states opens interesting perspectives,
in particular to elaborate protocols to disentangle the qubit from the quantum modes,
creating an entangled cat state between the modes. One can build on existing pro-
tocols for a superconducting qubit dispersively coupled to quantum cavities, with cats
composed of coherent states non-entangled with the qubit, of typical form (|α1, α2, ↑⟩ +
|β1, β2, ↓⟩)/

√
2 [216]. From our analysis of Sec. 5.3.1, similar states are obtained from an

adiabatic cat state in the quasi-phase limit at a time t where a small value of the quantum
metric gij(Φ0−ωt) is reached. Besides, it is worth pointing out that the topological split-
ting of the two adiabatic components allows for the experimental preparation of adiabatic

120



5.4. Conclusion of chapter

states, by using a projection on the number of quanta (n1, n2) such that n1−n2 > n0
1−n0

2
after the time of separation. In the perspective of a superconducting qubit coupled to
quantum cavities, such a measurement protocol can be adapted from the methods of
photon number resolution [217] using an additional qubit dispersively coupled to the two
cavities.

Our model of quantum rotors coupled to a qubit shows that the adiabatic curva-
ture, which generalizes the Berry curvature while carrying the same topology, governs
the dynamics of adiabatic states. The models of quantum rotors describes accurately the
dynamics of quantum harmonic oscillators topologically coupled to a fast quantum sys-
tem. In the next chapter, we consider the dynamics of such system on longer timescales,
unveiling a rich dynamics combining adiabatic pumping and Landau-Zener scattering,
which leads to a non-standard notion of chaos.
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5.A Time evolution of phase states
We consider a model of quantum rotors whose Hamiltonian is Ĥtot = ℏω · N̂ + H(Φ̂)
where ω = (ω1, · · · , ωN), N̂ = (n̂1, · · · , n̂N), Φ̂ = (ϕ̂1, · · · , ϕ̂N), where the operators n̂i

and ϕ̂i are conjugated [n̂i, ϕ̂j] = iδij1, and ω · N̂ = ∑
i ωin̂i. We determine the time

evolution of a phase eigenstate |Ψ(t = 0)⟩ = |Φ⟩ ⊗ |ψ⟩ with |ψ⟩ an arbitrary state of the
two-level system. In the interaction representation with respect to the Hamiltonian of the
modes, the time evolved state is:

|ΨI(t)⟩ = exp
[
itω · N̂

]
|Ψ(t)⟩ . (5.36)

The dynamics of |ΨI(t)⟩ is governed by the Hamiltonian in the interaction representation:

ĤI(t) = exp
[
itω · N̂

]
H(Φ̂) exp

[
−itω · N̂

]
(5.37)

= H(Φ̂− ωt) (5.38)

since the operators n̂i are generators of phase translations. As a consequence,

ĤI(t) (|Φ⟩ ⊗ |ψ⟩) = |Φ⟩ ⊗H(Φ− ωt) |ψ⟩ (5.39)

such that the time-evolution of the initial state |Φ⟩⊗|ψ⟩ in the interaction representation
is

|ΨI(t)⟩ = T exp
[
− i
ℏ

∫ t

0
dτ ĤI(τ)

]
|Φ⟩ ⊗ |ψ⟩

= |Φ⟩ ⊗ U(t; Φ) |ψ⟩ (5.40)

where T denotes time-ordering and U(t; Φ) = T exp
[
− i

ℏ
∫ t

0 dτ H(Φ− ωτ)
]

is the time
evolution operator associated to the time-dependent Hamiltonian H(Φ−ωt) for classical
modes. We then obtain the time-evolved state in the Schrödinger representation

|Ψ(t)⟩ = exp
[
−itω · N̂

]
|ΨI(t)⟩ (5.41)

= |Φ− ωt⟩ ⊗ U(t; Φ) |ψ⟩ . (5.42)

5.B Definition of the adiabatic subspaces
For the sake of completeness, we detail the definition of the adiabatic states of the qubit,
which is similar to the construction of adiabatic states in Chap. 1.

We construct the states of the two-level system |ψν(Φ)⟩ such that the family of states
|Φ⟩ ⊗ |ψν(Φ)⟩ with Φ ∈ [0, 2π]2 is stable under the dynamics governed by the total
Hamiltonian Ĥtot = ∑

i ℏωin̂i + H(Φ̂). This family of states corresponds to the image of
the associated adiabatic projector

Π̂ν =
∫

dΦ |Φ⟩ ⟨Φ| ⊗ |ψν(Φ)⟩ ⟨ψν(Φ)| (5.43)

=
∫

dΦ |Φ⟩ ⟨Φ| ⊗ πν(Φ). (5.44)
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5.C. Time evolution of the adiabatic states

We first construct the family of projectors of the two-level system πν(Φ) = |ψν(Φ)⟩ ⟨ψν(Φ)|.
As detailed in appendix 5.A, for an arbitrary state |ψ⟩ of the fast quantum degree of free-
dom, the phase eigenstates evolve according to

exp
(
−iĤtott/ℏ

)
(|Φ⟩ ⊗ |ψ⟩) = |Φ− ωt⟩ ⊗ U(t; Φ) |ψ⟩ (5.45)

with U(t; Φ) the time evolution operator associated to the Floquet Hamiltonian H(Φ −
ωt). Thus, the previous family of states is stable if the projectors πν(Φ) satisfy

U(t; Φ)πν(Φ)U(t; Φ)† = πν(Φ− ωt) , (5.46)

or equivalently −iℏω · ∇Φπν(Φ) = [H(Φ), πν(Φ)]. This equation can be solved pertur-
batively from the limit of infinitely slow subsystem. We introduce the dimensionless
parameter λ connecting this limit to our problem by rescaling the frequencies: ω → λω.
We search a projector πν(Φ) expressed a formal series of λ

πν(Φ) =
∑

k

λkπν,k(Φ) = πν,0(Φ) + λπν,1(Φ) + . . . (5.47)

solution of (5.46), which translates into

−λiℏω · ∇Φπν(Φ) = [H(Φ), πν(Φ)] (5.48)
πν(Φ)2 = πν(Φ) . (5.49)

The algorithm of construction of πν(Φ) from these equations is identical to the algorithm
detailed in Sec. 1.2.2 of Chap. 1, leading to the expression provided in Sec. 5.2.1.

5.C Time evolution of the adiabatic states
For the sake of completeness, we derive the time evolution of the adiabatic states of
the fast subsystem, which is similar to the one derived in Chap. 1 for a driven system,
replacing time dependence by dependence on Φ − ωt. The only difference is that here
we keep track of the initial phase Φ, such that the dynamical and geometrical phases,
summarized into θν(t; Φ) below, depend on this initial phase. This aspect is relevant when
considering the time evolution of quantum fluctuations in appendix 5.I.

In appendix 5.B we constructed the projectors πν(Φ) = |ψν(Φ)⟩ ⟨ψν(Φ)| on the states
of the two-level system such that the image of the adiabatic projector Π̂ν is stable under
the dynamics. As discussed in the main text, such states |ψν(Φ)⟩ have to satisfy

U(t; Φ) |ψν(Φ)⟩ = eiθν(t;Φ) |ψν(Φ− ωt)⟩ (5.50)

with U(t; Φ) the time evolution operator associated to the time-dependent Hamiltonian
H(Φ − ωt) and with θν(t; Φ) a phase factor to be determined. By definition, the time
evolution operator U(t; Φ) satisfies

iℏ
d
dtU(t; Φ) = H(Φ− ωt)U(t; Φ), (5.51)
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Chapter 5. Adiabatic cat states

such that (5.50) leads to
1
iℏ
H(Φ− ωt) |ψν(Φ− ωt)⟩ = i

∂θν

∂t
(t; Φ) |ψν(Φ− ωt)⟩ −

∑
i

ωi |∂ϕi
ψν(Φ− ωt)⟩ . (5.52)

The phase factor θν(t; Φ) is then given by

θν(t; Φ) =
∫ t

0
dt′
(
−1
ℏ
Eν(Φ− ωt′)−

∑
i

ωiAν,i(Φ− ωt′)
)

(5.53)

with the energy function
Eν(Φ) = ⟨ψν(Φ)|H(Φ) |ψν(Φ)⟩ (5.54)

and the connection
Aν,i(Φ) = i ⟨ψν(Φ)|∂ϕi

ψν(Φ)⟩ (5.55)
of the adiabatic states |ψν(Φ)⟩.

5.D Pumping rate in an adiabatic state
We derive the time-evolution (5.18) of the pumping rate ⟨n̂1⟩ for an initial state (5.12)
projected in the adiabatic subspace ν

|Ψν(t = 0)⟩ =
∫

d2Φ χν(Φ) |Φ⟩ ⊗ |ψν(Φ)⟩ . (5.56)

From appendix 5.C, the time evolution of this projected state is

|Ψν(t)⟩ =
∫

d2Φ χν(Φ)eiθν(t;Φ) |Φ− ωt⟩ ⊗ |ψν(Φ− ωt)⟩ , (5.57)

with the phase factor θν(t; Φ) given by (5.53). The Ehrenfest theorem reads
d
dt⟨n̂1⟩Ψν(t) = 1

iℏ
⟨[n̂1, Ĥtot]⟩Ψν(t) (5.58)

where from the Hamiltonian (5.2) we have [n̂1, Ĥtot] = i ∂H
∂ϕ1

(Φ̂) such that

d
dt⟨n̂1⟩Ψν(t) =

∫
d2Φ

|χν(Φ)|2
Wν

1
ℏ
⟨ψν(Φ− ωt)| ∂H

∂ϕ1
(Φ− ωt) |ψν(Φ− ωt)⟩ (5.59)

with Wν = ⟨Ψν(t)|Ψν(t)⟩ given by (5.23). The average value of the derivative of the
Hamiltonian can be written

⟨ψν |
∂H

∂ϕ1
|ψν⟩ = ∂

∂ϕ1
(⟨ψν |H |ψν⟩)− ⟨∂ϕ1ψν |H |ψν⟩ − ⟨ψν |H |∂ϕ1ψν⟩ (5.60)

where the dependence on Φ − ωt is implicit. The first term of this equation gives the
term of variation of energy in (5.18). We recall that |ψν⟩ are not the eigenstates of the
Hamiltonian, but the adiabatic states, such that H |ψν⟩ is given by (5.52). Using this
relation as well as the normalization condition ⟨∂ϕ1ψν |ψν⟩ = −⟨ψν |∂ϕ1ψν⟩, we write the
last two terms of (5.60) in terms of the curvature Fν (5.15) such that we obtain the
expression (5.18) of the pumping rate

d
dt⟨n̂1⟩Ψν(t) =

∫
d2Φ

|χν(Φ)|2
Wν

(
1
ℏ
∂Eν

∂ϕ1
(Φ− ωt) + ω2Fν(Φ− ωt)

)
(5.61)

with the energy function Eν(Φ) = ⟨ψν(Φ)|H(Φ) |ψν(Φ)⟩ and the curvature Fν(Φ) (5.15).
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5.E. Gaussian phase states

5.E Gaussian phase states
The modes are prepared in a Gaussian state ⟨ni|χi⟩ ∝ exp(−(ni − n0

i )2/(2∆ni)2 + iϕ0
ini)

centered on (n0
i , ϕ

0
i ), and of width ∆ni. In the case of a quantum harmonic oscillator

for which n̂i = â†â, a coherent state |α⟩ with α =
√
n0

i e
iϕ0

i with an average number of
quanta n0

i ≫ 1 reduces to a Gaussian state with ∆ni =
√
n0

i . By Fourier transform, the
phase distribution | ⟨ϕi|χi⟩ |2 of the modes is a periodic normalized Gaussian centered on
ϕ0

i and of width ∆ϕi = 1/(2∆ni) in each direction

| ⟨ϕi|χi⟩ |2 = f(ϕi − ϕ0
i ,∆ϕ) exp

(
−(ϕi − ϕ0

i )2

2(∆ϕi)2

)
(5.62)

where f(ϕi − ϕ0
i ,∆ϕ) is a function ensuring normalization and periodicity. Explicitly

f(ϕi − ϕ0
i ,∆ϕ) = 2(∆ni)2

∣∣∣ϑ3
(
−2iπ(∆ni)2(ϕi − ϕ0

i ), e−4π2(∆ni)2
)∣∣∣2

ϑ3

(
0, e− 1

2(∆ni)2
) , (5.63)

with ϑ3 the third Jacobi theta function. Such phase distribution is almost uniform
for ∆ϕ ≳ π.

5.F Numerical construction of the adiabatic projec-
tor

For the numerical simulation, we diagonalize the Hamiltonian in (n1, n2) representation,
where eiϕ̂i |ni⟩ = |ni − 1⟩, with the truncation −59 ≤ n1 ≤ 59 and −52 ≤ n2 ≤ 52.
We keep only the positions (n1, n2) in a rectangle oriented along the directions n⊥ and
nE (5.6), corresponding to

|nE| =
1√

ω2
1 + ω2

2

|ω1n1 + ω2n2| ≤ 30 (5.64)

|n⊥| =
1√

ω2
1 + ω2

2

| − ω2n1 + ω1n2| ≤ 50 (5.65)

with ω2/ω1 = (1 +
√

5)/2. We use open boundary conditions.
We construct numerically the adiabatic projector up to order 1 in the perturbative

variable λ. The adiabatic projector Π̂ν is defined by an asymptotic series in the formal
dimensionless variable λ

Π̂ν =
∞∑

k=0
λkΠ̂ν,k = Π̂ν,0 + λΠ̂ν,1 + . . . (5.66)

such that

[Ĥtot, Π̂ν ] = 0 (5.67)
Π̂νΠ̂ν = Π̂ν (5.68)

125



Chapter 5. Adiabatic cat states

with
Ĥtot = H(ϕ̂1, ϕ̂2) + λ(ω1n̂1 + ω2n̂2). (5.69)

We use the half-BHZ model for the qubit (5.3) with the gap parameter ∆ = 2. The
maximum on (ϕ1, ϕ2) of the ground state energy ofH(ϕ1, ϕ2) for these values of parameters
is Emax

−,0 = −1, and the minimum of excited state energy is Emin
+,0 = 1.
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Figure 5.6: Numerical spectrum of the truncated Hamiltonian H(ϕ̂1, ϕ̂2). In green, edge
states whose energy lies in the gap of the untruncated Hamiltonian H(ϕ̂1, ϕ̂2). We do
not take them into account in the definition of the adiabatic projector. The zeroth order
adiabatic projector Π̂−,0 is the spectral projector on the ground band of H(ϕ̂1, ϕ̂2) (states
in blue). The first order correction Π̂−,1 of the adiabatic projector has matrix elements
between the ground and excited band (states in orange) of H(ϕ̂1, ϕ̂2), given by Eq. (5.74).

At order 0, Π̂ν is a spectral projector of the Hamiltonian H(ϕ̂1, ϕ̂2). We diagonalize
numerically the Hamiltonian at zero frequency H(ϕ̂1, ϕ̂2) in the truncated Hilbert space,
providing the energies Ea and states |Ψa⟩ such that

H(ϕ̂1, ϕ̂2) |Ψa⟩ = Ea |Ψa⟩ . (5.70)

The projector at order 0 is the projector on the states of the ground band, i.e. on the
states such that Ea < Emax

−,0

Π̂−,0 =
∑

a
Ea<Emax

−,0

|Ψa⟩ ⟨Ψa| (5.71)

Note that we do not take into account the edge states whose energy lie in the gap for the
construction of the projectors, as illustrated on Fig. 5.6.

The conditions (5.67) and (5.68) translate into recursive conditions for the different
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5.G. Difference between eigenstates and adiabatic states.

orders Π̂ν,k of the projector

Π̂ν,k =
k∑

l=0
Π̂ν,lΠ̂ν,k−l (5.72)

[H(Φ̂), Π̂ν,k] = [Π̂ν,k−1, ℏω · N̂ ] (5.73)

from which we can deduce order by order the expression of Π̂ν,k in the basis of |Ψa⟩. At
order 1 we obtain

Π̂−,1 =
∑
a,b

Ea<Emax
−,0

Eb>Emin
+,0

|Ψa⟩
⟨Ψa| ℏω · N̂ |Ψb⟩

Ea − Eb

⟨Ψb|+ h.c. (5.74)

which can be evaluated numerically.

5.G Difference between eigenstates and adiabatic states.
Fidelity
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Figure 5.7: Fidelity F (Ψ<,Ψ−,0) and F (Ψ<,Ψ−,0 + Ψ−,1) between the cat compo-
nent |Ψ<(t)⟩ and the adiabatic projections at order 0 |Ψ−,0(t)⟩ and at order 1 |Ψ−,0(t)⟩+
|Ψ−,1(t)⟩. After the time of separation tsep ≃ 8, the cat component |Ψ<(t)⟩ is very close to
the lowest order adiabatic approximation |Ψ−,0(t)⟩ with a fidelity of 99.5%. The fidelity
further increases with the adiabatic projection of order 1, such that |Ψ<(t)⟩ identifies
with |Ψ−(t)⟩.

We show that after the time of separation tsep, the cat component which splits in the
direction n⊥ < n0

⊥ identifies with the adiabatic component Π̂− |Ψ(t)⟩ of the total state.
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Chapter 5. Adiabatic cat states

We note Π̂< the projector on the states |n1⟩⊗|n2⟩⊗|s⟩ with n⊥ = (−ω2n1+ω1n2)/|ω| <
n0

⊥, s =↑z, ↓z, and |Ψ<(t)⟩ = Π̂< |Ψ(t)⟩ the component of the system on this region n⊥ <

n0
⊥. We aim at comparing Π̂< |Ψ(t)⟩ and Π̂− |Ψ(t)⟩.

The adiabatic projector Π̂− is constructed perturbatively by Eq. (5.66) detailed in
App. 5.F. The adiabatic projection of the total states then decomposes into

Π̂− |Ψ(t)⟩ =
∑

k

|Ψ−,k(t)⟩ (5.75)

with the k-th order projection |Ψ−,k(t)⟩ = Π̂−,k |Ψ(t)⟩. Note that we let λ = 1 since we
consider the adiabatic projector of our problem of interest.

We note F (Ψ1,Ψ2) = ⟨Ψ1|Ψ2⟩ /(⟨Ψ1|Ψ1⟩ ⟨Ψ2|Ψ2⟩) the fidelity between two states |Ψ1⟩
and |Ψ2⟩. The figure 5.7 represents the fidelity between the n⊥ < n0

⊥ cat components and
the adiabatic states computed numerically respectively at zeroth and first order, namely
respectively F (Ψ<,Ψ−,0) and F (Ψ<,Ψ−,0 + Ψ−,1). After the time of separation tsep ≃ 8,
the cat component has a fidelity of approximately 99.5% with the zeroth order |Ψ−,0(t)⟩
and 99.9% with the first order |Ψ−,0(t)⟩+ |Ψ−,1(t)⟩. As such, the adiabatic projection at
order 0 gives a very good approximation of the cat component, corrected at higher orders
to give the full adiabatic component |Ψ−(t)⟩. The slight decrease with time of the fidelity
after the time of separation is due to the successive Landau-Zener transitions.

Weight
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W−,0 + W−,1

Figure 5.8: Effect of the difference between eigenstates and adiabatic states on the weight
of the cat. Initial state of the Fig. 5.3(c) with θq = π/2. In blue, weight W− of the cat
computed dynamically from the splitting (same as Fig. 5.3(c)). In orange, weight W−,0 =
⟨Ψ(t = 0)| Π̂−,0 |Ψ(t = 0)⟩ computed from the zeroth order adiabatic projector Π̂−−, 0. In
green, weight W−,0 + W−,1 = ⟨Ψ(t = 0)| (Π̂−,0 + Π̂−,1) |Ψ(t = 0)⟩ from the projector at
order 1, which almost identifies with the weight obtained dynamically.

The difference between the adiabatic projector Π̂− and the spectral projector Π̂−,0
is visible in the weight of the cat state. We represent on Fig. 5.8 the weight of the
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5.H. Purity from initial Fock state

adiabatic projection computed dynamically from the splittingW− = ⟨Ψ<(tsep)|Ψ<(tsep)⟩ =
⟨Ψ(tsep)| Π̂< |Ψ(tsep)⟩. We also represent the weight in the adiabatic subspace computed
from the numerical construction of the adiabatic projector

W− = ⟨Ψ(t = 0)| Π̂− |Ψ(t = 0)⟩ =
∑

k

W−,k (5.76)

with the weight of order k given by W−,k = ⟨Ψ(t = 0)| Π̂−,k |Ψ(t = 0)⟩.
The initial state is a Gaussian state centered on Φ0 = (0, 0) and the qubit in φq = 0,

θq = π/2. As discussed in Sec. 5.2.3, the corresponding average ground state b̄−,0 lies on
the z-axis for all ∆ϕ such that W−,0 = 1

2 . As seen in Fig. 5.8, this zeroth order provides
a good approximation with the weight of the cat, while the weight computed at first
order W−,0 +W−,1 almost identifies with the weight obtained dynamically W−.

5.H Purity from initial Fock state

Figure 5.9: Phase densities |χ±(Φ−ωt)|2 of the cat components |Ψ±(t)⟩ translated to den-
sities of adiabatic states on the Bloch sphere via the map Φ 7→ b±(Φ). The polarization
of the qubit Q±(t) is the average of adiabatic states with respect to these densities.

We illustrate the role of the phase densities in the entanglement between the qubit and
the modes in the cat components |Ψ±(t)⟩ for a quasi-Fock initial state ∆ϕ = π, and the
qubit initialized in θq = π/2, φq = 0. As discussed in Sec. 5.3.1, for an initial quasi-Fock
state the phase densities |χ±(Φ+ωt)|2 of the two components of the cat split the torus in
two complementary supports of equal weight. We represent these densities on Fig. 5.9 at
the time t = t3 and t = t4 indicated on Fig. 5.4(b2). The densities on the torus translate
into densities of adiabatic states on the Bloch sphere via the map Φ 7→ b±(Φ).

At t = t3, |χ−(Φ + ωt3)|2 covers a smaller part of the Bloch sphere than |χ+(Φ +
ωt3)|2, such that the qubit is more entangled with the modes in |Ψ+(t3)⟩ than in |Ψ−(t3)⟩:
|Q+(t3)| < |Q−(t3)|. During the dynamics, the phase densities are translated on the torus
with no dispersion, changing the densities on the Bloch sphere and the purity of the qubit.
At t = t4, the domains have been almost exchanged |χ−(Φ − ωt4)|2 ≃ |χ+(Φ − ωt3)|2,
such that Q−(t4) ≃ −Q+(t3) and Q+(t4) ≃ −Q−(t3).

For the figures, the densities are computed from the eigenstates |ψ−,0(Φ)⟩.
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Chapter 5. Adiabatic cat states

5.I Time evolution of the quantum fluctuations
We derive the time evolution of the quantum fluctuation, or spreading, of the modes’
number of quanta in an adiabatic component |Ψν(t)⟩ (5.13)

[∆Qn̂i(t)]2 = ⟨n̂2
i ⟩Ψν(t) − ⟨n̂i⟩2Ψν(t) (5.77)

with ⟨Ô⟩Ψν(t) = ⟨Ψν(t)| Ô |Ψν(t)⟩ / ⟨Ψν(t)|Ψν(t)⟩, and i = 1, 2. We show that due to the
linearity in N̂ of the Hamiltonian we can relate these quantum fluctuations to the vari-
ance of the classical trajectories ni(t; Φ) [44,56] which are obtained in a hybrid classical-
quantum description of the qubit-mode coupling

ni(t,Φ) =
∫ t

0
dt′
1
ℏ
∂Eν

∂ϕi

(Φ− ωt′) +
∑

j

ωjFν,ij(Φ− ωt′)
 . (5.78)

According to (5.57) the time evolution of the adiabatic component is given by

|Ψν(t)⟩ =
∫

d2Φ ξν(t,Φ) |Φ− ωt⟩ ⊗ |ψν(Φ− ωt)⟩ (5.79)

with
ξν(t,Φ) = χ̃ν(Φ)eiθν(t;Φ), (5.80)

χ̃ν(Φ) = χν(Φ)/Wν the normalized wave-function of the decomposition (5.12) of the
initial state and θν(t; Φ) the phase factor (5.53). This form of the time evolution is due to
the linearity in N of the Hamiltonian: the phase density is translated without dispersion
and the acquired phase θν(t; Φ) is given by the energy function Eν(Φ) (5.54) and the
connection Aν,i(Φ) (5.55).

As derived in appendix 5.D, the time evolution of the average number of quanta
reduces to a statistical average of the classical trajectories with respect to the initial
phase density |χ̃ν(Φ)|2

⟨n̂i⟩Ψν(t) = ⟨n̂i⟩Ψν(t=0) +
∫

d2Φ |χ̃ν(Φ)|2ni(t,Φ). (5.81)

Using ⟨ϕ′
i| n̂i |ϕi⟩ = −i∂ϕi

δ(ϕ′
i − ϕi), we get after a few lines

⟨n̂2
i ⟩Ψν(t) =

∫
dΦ ξν(t,Φ)∗

(
i
∂

∂ϕi

+ Aν,i(Φ− ωt)
)2

ξν(t,Φ) +
∫

d2Φ |ξν(t,Φ)|2gν,ii(Φ− ωt)

(5.82)

with gν,ii the quantum metric of the adiabatic states (5.24). Let us comment this equa-
tion. In a single band approximation of Bloch oscillations, we ignore the rotation of the
states |ψν(Φ)⟩ such that we assume that ξν(t,Φ) is the wavefunction of the modes ig-
noring the role of the projection Π̂ν . The average value of n̂2

i is then given by (5.82)
without the connection Aν,i and the metric gν,ii. Here the first term corresponds to the
average value of the projected observable (Π̂νn̂iΠ̂ν)2, where Π̂νn̂iΠ̂ν reduces to a covariant
derivative with the connection Aν,i in the representation |Φ⟩⊗ |ψν(Φ)⟩. The second term
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5.I. Time evolution of the quantum fluctuations

involving the quantum metric originates from the difference between the observables and
the projected observables

Π̂νn̂
2
i Π̂ν = (Π̂νn̂iΠ̂ν)2 + Π̂νn̂i(1− Π̂ν)n̂iΠ̂ν , (5.83)

such that we show ⟨Π̂νn̂i(1− Π̂ν)n̂iΠ̂ν⟩ =
∫

d2Φ|ξν(t,Φ)|2gν,ii(Φ− ωt).
We express the time evolution (5.82) it terms of the classical trajectories ni(t,Φ) (5.78).

Using Aν,i(Φ − ωt) − Aν,i(Φ) =
∫ t

0 dt′∑j ωj∂jAν,j(Φ − ωt′) and Fν,ij = ∂iAν,j − ∂jAν,i,
these trajectories can be expressed in terms of the phase factor θν(t,Φ) (5.53)

ni(t,Φ) = −∂θν

∂ϕi

(Φ; t) + Aν,i(Φ− ωt)− Aν,i(Φ), (5.84)

such that after expanding the time evolution (5.80) of the wavefunction ξν(t,Φ) we obtain

⟨n̂2
i ⟩Ψν(t) =

∫
d2Φ χ̃ν(Φ)∗

(
i
∂

∂ϕi

+ Aν,i(Φ)
)2

χ̃ν(Φ) +
∫

d2Φ |χ̃ν(Φ)|2ni(t,Φ)

+ 2
∫

d2Φ Jν,i(Φ)ni(t,Φ) +
∫

d2Φ |χ̃ν(Φ)|2gν,ii(Φ− ωt) (5.85)

= ⟨n̂2
i ⟩Ψν(t=0) +

∫
d2Φ |χ̃ν(Φ)|2ni(t,Φ) + 2

∫
d2Φ Jν,i(Φ)ni(t,Φ)

+
∫

d2Φ |χ̃ν(Φ)|2(gν,ii(Φ− ωt)− gν,ii(Φ)) (5.86)

with the current density of the initial state

Jν,i = i

2

(
χ̃∗

ν

∂χ̃ν

∂ϕi

− χ̃ν
∂χ̃∗

ν

∂ϕi

)
+ |χ̃ν |2Aν,i (5.87)

satisfying ⟨n̂i⟩Ψν(t=0) =
∫
Jν,i(Φ)dΦ.

As a result, the time evolution of the spreading is given by the variance (5.35) of the
classical trajectories and by two other terms

[(∆Qn̂i)(t)]2 =[(∆Qn̂i)(t = 0)]2 + Var|χν |2 [ni(t,Φ)]

+
∫

dΦ |χ̃ν(Φ)|2 (gν,ii(Φ− ωt)− gν,ii(Φ)) + δCi(t), (5.88)

where δCi(t) is a bounded term taking the form of correlations between the classical
trajectories ni(t,Φ) and a current density of the initial state Jν,i(Φ)

δCi(t) = 2
∫

d2Φ Jν,i(Φ)ni(t,Φ)− 2⟨n̂i⟩Ψν(t=0)

∫
d2Φ |χ̃ν(Φ)|2ni(t,Φ) (5.89)

As discussed above, the classical trajectories ni(t,Φ) characterize the spreading of the
projected observables Π̂νn̂iΠ̂ν , and the quantum metric relates the spreading of the pro-
jected and non-projected observables. Concerning Bloch oscillations and Bloch breathing,
the important feature of this quantum metric contribution is that it is small compared to
the initial value [(∆Qn̂i)(t = 0)]2 in the case of small ∆ϕ, and it is vanishingly small at
quasi-periods T such that Φ−ωT ≃ Φ. The last term δCi(t) has the same features. It is
vanishingly small at quasi-periods T since ni(T,Φ) ≃ 0. It is also small in the small ∆ϕ
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Chapter 5. Adiabatic cat states

limit since it can be written as classical correlations with respect to the density |χ̃ν(Φ)|2
between the function ∂iα(Φ) + Aν,i(Φ) and ni(t,Φ), with α(Φ) the complex argument
of χ̃ν(Φ).

We thus recover the behaviors of Bloch oscillations and Bloch breathing discussed
in Sec. 5.3.2: the spreading of the cat component remains almost constant (∆Qn̂i)(t) ≃
(∆Qn̂i)(t = 0) in the case of localization in phase ∆ϕ ≪ 1, and it refocuses at quasi-
periods T , (∆Qn̂i)(T ) ≃ (∆Qn̂i)(t = 0) irrespective to the value of ∆ϕ.
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Chapter 6
Long-time topological dynamics and chaos

The model of rotors couped to a two-level system studied in Chap. 5 describes accurately
the dynamics of quantum modes on short timescales for initial states localized in number
of quanta. It is an approximation of more natural couplings between quantum harmonic
oscillators and a qubit. In the rotor model, we consider a coupling of the qubit to the
phase of the quantum modes only. When considering harmonic oscillators, natural cou-
pling involve quadratures, such that the qubit couples also to the number of quanta. In
this chapter, we study the consequences of topological coupling between two harmonic
oscillators and a qubit on the dynamics on long time-scales and on the spectral properties
of the model.

In Sec. 6.1, we define the topological coupling between two harmonic oscillators and
a qubit. The main difference with Chap. 5 is that, due to the coupling of the qubit to
the number of quanta, the topological nature of the coupling depends on the number of
quanta, leading to topologically trivial and non-trivial domain in the space of number of
quanta.

In Sec. 6.2, we study the long time dynamics of the system. Initial states prepared
inside the topological domain leads to topological pumping dynamics on short timescales,
non-adiabatic Landau-Zener scattering on intermediate timescales, and reaches a quasi-
stationary state on long timescales with a notion of ergodicity within the topological
domain. On the other hand, initial states prepared in the topologically trivial domain
remains localized, without any notion of ergodicity.

In Sec. 6.3, we study the spectrum of the system from the perspective of quantum
signatures of chaos. The two families of initial states translate into two families of eigen-
states of the total system lying at the same energy. The trivial family of eigenstates has
no signature of chaos, whereas the topological family displays such signatures. Estimat-
ing the Thouless energy of the topological family of eigenstates, we argue that they lie in
the limit of validity of random matrix theory, in contrast with standard quantum chaotic
systems.

This chapter is based on an article in preparation.
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Chapter 6. Long-time topological dynamics and chaos

Figure 6.1: Two quantum harmonic oscillators, represented by cavities, coupled to a two
level system, represented by the Bloch sphere. Generically every Pauli direction of the
qubit can couple to the quadratures of the oscillators, leading to a total Hamiltonian of
the form Ĥtot = ℏω1â

†
1â1 + ℏω2â

†
2â2 +∑

α=x,y,z hα(â1, â
†
1, â2, â

†
2)σα.

6.1 Topological coupling between a qubit and two
harmonic oscillators

In Chap. 5, we considered two quantum modes topologically coupled to a two-level system,
a qubit. We described the modes by quantum rotors, with number of quanta and phase op-
erators n̂, ϕ̂. A rotor model is a natural approximation of a quantum harmonic oscillator,
described by creation and annihilation operators âi, â†

i , i = 1, 2, satisfying [âi, â
†
j] = δij1.

In terms of phase and number of quanta, âi and â†
i correspond to √nie

±iϕi in the classical
limit. In this case, the natural couplings between a qubit and the modes involve linear
combinations between the qubit observables and these operators. The rotor model ig-
nores the ni dependence of these coupling. The analysis of Chap. 3 and Chap. 5 based on
the phase dependence of the qubit Hamiltonian enables to define a notion of topological
coupling between a qubit and quantum harmonic oscillators. Let us precise this definition.

6.1.1 Topological coupling
We consider two quantum harmonic oscillators coupled to a two level system, a qubit. We
denote “mode” each harmonic oscillator in the following. The annihilation and creation
operators of the modes are noted âi, â†

i , i = 1, 2, satisfying [âi, â
†
j] = δij1. Using similar

notations as those of Chap. 2 and Chap. 5, the Hamiltonian of the total system reads

Ĥtot = ℏω1â
†
1â1 + ℏω2â

†
2â2 + Ĥ, (6.1)

where Ĥ contains the bare Hamiltonian of the qubit and the coupling to the modes.
Generically, we decompose this Hamiltonian on the Pauli matrices of the qubit, consider-
ing that each of them can couple to the quadratures of the modes,

Ĥ =
∑

α=x,y,z

hα(â1, â
†
1, â2, â

†
2)σα. (6.2)

This is represented schematically on Fig. 6.1. For example, for one mode only, the Hamil-
tonian of the frequently considered quantum Rabi model [218,219] contains the bare qubit
Hamiltonian, corresponding to a z component in the above decomposition, and a coupling
to a quadrature in the perpendicular x component, Ĥ/ℏ = ωqσz/2− ig(â− â†)σx, with ωq

the qubit bare frequency and g a coupling strength.

134



6.1. Topological coupling between a qubit and two harmonic oscillators

Figure 6.2: Topologically trivial and non-trivial coupling. Yellow surface: closed surface
defined by the ensemble of vectors h(ϕ1, ϕ2, n1, n2) for all values of the phases ϕ1, ϕ2 ∈
[0, 2π] at fixed (n1, n2). (a) Trivial coupling: the surface does not enclose the origin. In
blue and red: ensemble of respectively excited and ground state of the qubit for all values
of phases. (b) Topological coupling: the surface encloses the origin. Any qubit state on
the Bloch sphere corresponds either to a ground or excited state depending on the value
of the phases.

As in Chap. 3, the definition of topological couplings relies on a classical description
of the modes, because we need to assign definite values to both ni and ϕi variables.
Of course, having said this, the model has to be solved fully quantum-mechanically. It
amounts to replacing respectively the operators âi and â†

i by the classical variables √nie
iϕi

and √nie
−iϕi , where the phase ϕi and number of quanta ni satisfy the classical Poisson

bracket relation {ℏni, ϕj} = δij. This is precised by considering the Hamiltonian Ĥ in
the Weyl representation introduced in Chap. 2, see appendix 6.A for details. We then
consider the Hamiltonian of the qubit parametrized by the phase space variables of the
modes

H(ϕ1, ϕ2, n1, n2) = h(ϕ1, ϕ2, n1, n2) · σ, (6.3)

with h(ϕ1, ϕ2, n1, n2) a vector of R3 parametrized by the phases and numbers of quanta of
the modes. At fixed value of the number of quanta, we recover a quantum system coupled
to two periodic phases for which we can define the regime of topological coupling as in
section 3.2.1. We provide here a simple condition for a two-level system.

When we fix n1, n2 and vary the periodic phases ϕ1, ϕ2 in their compact configuration
space [0, 2π], the ensemble of vectors h(ϕ1, ϕ2, n1, n2) defines a closed surface in R3. Such
a surface is represented schematically on Fig. 6.2. The bare qubit Hamiltonian ℏωqσz/2
leads to a component of these vectors along the z-axis, defining the center of the surface.
The size of the surface is related to the amplitude of the couplings between the qubit and
the phases.

In the usual case where the qubit bare transition frequency ωq is very large compared
to these couplings, the surface is high along the z direction and does not enclose the
origin. This is the situation of topologically trivial coupling, represented on Fig. 6.2(a).
The eigenstates of the qubit for a given value of phases and numbers of quanta are given
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Chapter 6. Long-time topological dynamics and chaos

by the Bloch vectors ±h(ϕ1, ϕ2, n1, n2)/|h(ϕ1, ϕ2, n1, n2)|. The ensemble of excited states
of the qubit at fixed (n1, n2) is represented on the Bloch sphere by the projection of
the surface, represented in red, whereas the ensemble of qubit ground states is the blue
surface. Since the blue and red surfaces do not overlap, we can determine whether the
qubit is in its ground or excited state without any knowledge on the state of the modes.
This is the common situation of a weak coupling.

In contrast, the topological coupling corresponds to the case where the surface encloses
the origin. Then any point on the Bloch sphere can correspond either to a ground or
excited state, depending on the state of the modes. There is no relevant notion of qubit
ground or excited state independently of the modes. The topological coupling is a regime
of strong coupling, in the sense explained above: the coupling of the qubit to the phases
have to be of same order of magnitude as the bare qubit frequency. We will consider
linear couplings between the modes’ quadratures and the qubit Pauli matrices, of the form
g(âi + â†

i )σα, such that topological coupling requires g√ni of same order of magnitude
as the bare qubit frequency. Moreover, this picture shows that the topological coupling
requires to couple all three Pauli matrices of the qubit to the quadratures of the modes.

6.1.2 Model
Any model of quantum system topologically coupled to classical periodic phases ϕ1, ϕ2
provides a model of topological coupling between harmonic oscillators by replacing cos(ϕi)
and sin(ϕi) by respectively (âi + â†

i )/2 and (âi − â†
i )/(2i). In the following numerical re-

sults, we consider the simplest example of Hamiltonian displaying this regime of topolog-
ical coupling, the quantum oscillators version of the half Bernevig-Hughes-Zhang model
considered in Chap. 5:

Ĥ/ℏ = −ig1(â1 − â†
1)σx + ig2(â2 − â†

2)σy +
(
ωq

2 − g1(â1 + â†
1)− g2(â2 + â†

2)
)
σz, (6.4)

with ω2/ωq = 0.1 ; g1/ωq = 0.0925 ; g2/ωq = 0.0675, and we use the same ratio between
the frequencies as in Chap. 5, ω1/ω2 = 1+

√
5

2 ≃ 1.618. We thus consider the regime where
the coupling rates are of the same order of magnitude as the frequency of the modes. This
is a regime of deep strong coupling [220,221]. In the following, we express the energies in
units of the bare transition energy of the qubit ℏωq.

We use the same notations as in Chap. 5, Φ = (ϕ1, ϕ2) and N = (n1, n2). The qubit
Hamiltonian with classical description of the slow modes (i.e. its Weyl symbol) is given
by Eq. (6.3) with

hx(Φ,N )/ℏ = 2g1
√
n1 sin(ϕ1), (6.5a)

hy(Φ,N )/ℏ = −2g2
√
n2 sin(ϕ2), (6.5b)

hz(Φ,N )/ℏ = ωq

2 − 2g1
√
n1 cos(ϕ1)− 2g2

√
n2 cos(ϕ2), (6.5c)

such that the symbol of the total Hamiltonian reads

Htot(Φ,N ) = ℏω1n1 + ℏω2n2 + h(Φ,N ) · σ. (6.6)

The following numerical results are obtained from an exact diagonalization of the Hamil-
tonian in a truncated Hilbert space. We detail the numerical method in appendix 6.C.
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6.2. Dynamics

The frequencies of the modes are chosen to be an order of magnitude smaller than
the bare transition frequency of the qubit, leading to a slow-fast system with the slow
modes and the fast qubit. We thus describe the dynamics of this system using the general
adiabatic theory described in Chap. 2.

6.2 Dynamics

6.2.1 Adiabatic dynamics
Domain of adiabaticity in phase space

Figure 6.3: Adiabatic dynamics. (a) Domain of adiabaticity in phase space, estimated
with a maximum of Landau-Zener transition probability. The adiabatic theory describes
the evolution of states localized in the region of small Pmax

LZ . When Pmax
LZ = 1, the gap of the

qubit closes for one value of phases, corresponding to the orange curve on (b). (b) Sketch
of adiabatic classical trajectories of the two adiabatic subspaces. At a fixed energy E,
they are confined in domains of constant energy Ẽ±(Φ,N ) = E, represented respectively
in red and blue for the subspaces + and −. The regions of non-zero Chern number are
the domains of topological coupling and lead to topological drifts in opposite directions
for the two subspaces, represented by opposite arrows. In the region of vanishing Chern
number, the trajectories are confined without average drift, represented by a black dot.

The first step of the adiabatic theory is to identify its domain of validity in the phase
space of the slow modes, as detailed in Sec. 2.4.4. To do so, we consider the dimensionless
adiabatic ratio εadiab(Φ,N ) which has to be small, defined by Eqs. (2.101) to (2.103)
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Chapter 6. Long-time topological dynamics and chaos

and (2.106). Following the notations of Chap. 2, we note E±(Φ,N ) and |ψ±(Φ,N )⟩ the
energy and eigenstates of the symbol of the total Hamiltonian (6.6). We have

E±(Φ,N ) = ℏω1n1 + ℏω2n2 ± |h(Φ,N )|. (6.7)

The condition (2.103) is not involved for a two level fast system, since the two level
energy tensor vanishes. As a first estimate of the adiabatic ratio, let us consider the sole
conditions (2.102) and (2.101) which provide

εadiab(Φ,N ) =
∣∣∣∣∣

2∑
i=1

ℏωiA+−,ϕi
(Φ,N )

E+(Φ,N )− E−(Φ,N )

∣∣∣∣∣ (6.8)

with Aµν,ϕi
= i ⟨ψµ|∂ϕi

ψν⟩ = i ⟨ψµ| ∂H
∂ϕi
|ψν⟩ /(Eν − Eµ).

We represent the domain of validity of adiabatic dynamics projected in the (n1, n2)
plane. To do so, at a given value of number of quanta, we use the adiabatic parameter (6.8)
to express a maximum probability of Landau-Zener transition, following the analysis of
Chap. 1:

Pmax
LZ (N ) = max

Φ∈[0,2π]2
exp

(
− π

4εadiab(Φ,N )

)
. (6.9)

We come back to the Landau-Zener processes in the next section, explaining in more
details the meaning of this maximum of Landau-Zener transition probability. In the
regions of small Pmax

LZ , the dynamics is well described by the adiabatic theory. It is
represented for the model on Fig. 6.3(a). The black domain corresponds to a transition
probability close to one, meaning that the adiabatic parameter is high for some values of
phases: adiabaticity breaks down when the phase density approaches this point.

Classical equations of motion

Let us consider an initial state located in the phase space region for which εadiab(Φ,N )
is small (see Fig. 6.3(a)). It decomposes into a sum of two adiabatic states, lying in the
adiabatic subspaces H± discussed in the previous chapter 5. The dynamics within each
subspace at first order in adiabatic expansion is governed by the equations of motion1

discussed in Sec. 2.4.2 of Chap. 2:

ṅi = 1
ℏ
∂Ẽ±

∂ϕi

+ 1
ℏ
∑

j

(
F±,ϕiϕj

∂Ẽ±

∂nj

− F±,ϕinj

∂Ẽ±

∂ϕj

)
, (6.10a)

ϕ̇i = −1
ℏ
∂Ẽ±

∂ni

− 1
ℏ
∑

j

(
F±,niϕj

∂Ẽ±

∂nj

− F±,ninj

∂Ẽ±

∂ϕj

)
. (6.10b)

The Hamiltonian containing the modified energy function

Ẽ±(Φ,N ) = ℏω1n1 + ℏω2n2 ± |h(Φ,N )|+M±(Φ,N ), (6.11)
1We have factors 1/ℏ in the equations of motion because ni and ϕi are dimensionless, namely their

Poisson bracket is {ℏni, ϕi} = 1. Writing Eqs (2.78) with xi = ℏni and pi = ϕi leads to (6.10). In other
words, Eqs. (6.10) are the Hamilton equations of motion associated to the classical Hamiltonian Ẽ± and
the symplectic form Ω± = ℏ

∑
i dϕi ∧ dni + ℏF±, at first order in the Berry curvature F±.
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6.2. Dynamics

where the modification of energy M±(Φ,N ) is given by2 Eq. (2.76). The Berry curvature
is defined by

F±,αβ(Φ,N ) = i (⟨∂αψ±(Φ,N )|∂βψ±(Φ,N )⟩ − (α↔ β)) , (6.12)

with the phase space coordinate notation ξξξ = {Φ,N} = {ξα} and ∂α = ∂
∂ξα .

Let us show that we recover the equations of motion of the rotor model in the limit of
large n1 and n2. For a coupling between the qubit and the modes linear in the quadratures,
such as the model we consider, we show in Appendix 6.B the following scaling of the
energies and Berry curvature components in the limit n1, n2 ≫ 1

|h| = O (√ni) ; M± = O
(

1
√
ni

)
(6.13)

F±,ϕiϕj
= O (1) ; F±,ϕinj

= O
(

1
nj

)
; F±,ninj

= O
(

1
ninj

)
(6.14)

such that, in the limit n1, n2 ≫ 1, the classical equations of motions reads

ṅi = ±1
ℏ
∂|h|
∂ϕi

+
∑
j ̸=i

ωjF±,ϕiϕj
+O

(
1
√
ni

)
, (6.15)

ϕ̇i = −ωi +O
(

1
√
ni

)
. (6.16)

We thus recover Eqs (5.1) and the topological pumping dynamics when the Berry curva-
ture carries a non-vanishing Chern number, which depends on the value of N

C±(N ) = 1
2π

∫
[0,2π]2

d2Φ F±,ϕ1ϕ2(Φ,N ) ∈ Z. (6.17)

The regions of non-vanishing Chern number correspond to the topological coupling regime
defined in Sec. 6.1. The Chern number is an integer associated to a gapped spectrum of
qubit eigenstates. Discontinuous changes of Chern number occur when the gap closes for
at least one value of phase Φ, which correspond to the curve Pmax

LZ = 1 on Fig. 6.3(a) and
to the orange curve on Fig. 6.3(b). It separates the (n1, n2) plane into regions of different
Chern number configurations.

Classical trajectories

We sketch on Fig. 6.3(b) the structures of the classical trajectories (6.10) projected on
the (n1, n2) plane. At a given energy E, the classical trajectories lie in the region of
phase space of constant Hamiltonian Ẽ±(Φ,N ) = E. The projection of these domains on
the (n1, n2) plane for the ground and excited adiabatic subspaces are represented respec-
tively in blue and red on Fig. 6.3(b). Within the region of non-vanishing Chern number,
the topological pumping dynamics corresponds to an average drift in N represented by
the arrows, in opposite directions for the two subspaces, as described in Chap. 5. For the
numerical illustration, we used E±(Φ,N ) as an approximation of Ẽ±(Φ,N ), ignoring the
subdominant correction M±(Φ,N ).

2The expression of the modified energy is obtained from Eq. (2.76) with xi = ℏni and pi = ϕi.
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Chapter 6. Long-time topological dynamics and chaos

In the region of zero Chern number, the trajectories correspond to confined Bloch
oscillations described in Chap. 5, without any topological drift. As such, an initial state
prepared outside the topological region – at a distance to the topological boundaries
larger than the amplitude of Bloch oscillations – remains confined within the domain of
adiabaticity, whereas a preparation in the topological region leads to a topological drift
towards a domain of breakdown of adiabaticity, leading to a Landau-Zener scattering pro-
cess discussed below. Topology manifests itself as an inherent breakdown of adiabaticity
at an intermediate timescale, and leads to a new type of dynamics described below.

6.2.2 Landau-Zener scattering

Figure 6.4: Landau-Zener scattering. (a) Photon number distribution Pn1n2 of the initial
state. (b) Adiabatic drift in (mostly) the ground-space, t = 12.7 T1. (c) Qubit ground
and excited energy ±|h(Φ,N )| respectively in blue and orange, for N = (46.5, 33) on
the topological transition line (green point on (b)). The gap closes locally at Φ = (0, π).
(d) First Landau-Zener tunnelling at t = 16.11 T1 when the center of wavepacket reaches
a small gap minimum in phase space. (e) Second Landau-Zener tunneling at t = 27.92 T1
(f) Succession of Landau-Zener tunnelling leading to a complex scattering process between
the two adiabatic subspaces, t = 48.32 T1.
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6.2. Dynamics

Initial state decomposition

Let us start our discussion of the Landau-Zener scattering by an illustration on a numerical
example. We first discuss briefly the initial state. We consider the quantum modes in
coherent states |αi⟩, with αi =

√
n0

i e
iϕ0

i , n0
i and ϕ0

i the respective average number of
quanta and phase of the coherent state, and the qubit in the groundstate associated to
the center of the coherent state

|Ψ(t = 0)⟩ = |α1⟩ ⊗ |α2⟩ ⊗
∣∣∣ψ−(Φ0,N 0)

〉
. (6.18)

We consider an initial state in the topological region. The photon number distribution of
this initial state is represented on Fig. 6.4(a), for n0

1 = 36, n0
2 = 61, ϕ0

1 = 0, ϕ0
2 = π/2. We

represent in blue and red the lines delimitating the phase space regions of the classical
dynamics corresponding to the energy of the initial state E = ⟨Ψ(t = 0)| Ĥtot |Ψ(t = 0)⟩.

As shown in Chap. 5, such an initial state is close to but not exactly an adiabatic state:
it splits in two components of unequal weights during the adiabatic dynamics. The time
evolution at t = 12.7 T1, with T1 = 2π/ω1 the period of the first mode, is represented on
Fig. 6.4(b). The component in the excited band is small for large n0

i , barely seen in the
red excited region, whereas the dominant ground-space component drifts from mode 2 to
mode 1, with its center localized in the blue ground region.

We estimate the weight W+ in the excited subspace from the expression (5.25) which
provides a contribution (∆ϕi)2g−,ϕiϕi

(Φ0,N 0) to the weight due to the quantum fluctua-
tion ∆ϕi of each phase variable and due to the phase dependence of the qubit eigenstates,
with g− the quantum metric of the qubit groundstates3. The formula does not take into ac-
count the dependence on N of the eigenstates. The spreads in photon number and phase of
a coherent state are given respectively by ∆ni =

√
n0

i , and ∆ϕi = 1/(2∆ni) = 1/(2
√
n0

i ).
We extend the relation (5.25) to take into account the dependence on the number of
photons as

W+ ≈
1

4n0
1
g−,ϕ1ϕ1(Φ0,N 0)+ 1

4n0
2
g−,ϕ2ϕ2(Φ0,N 0)+n0

1g−,n1n1(Φ0,N 0)+n0
2g−,n2n2(Φ0,N 0)

(6.19)
where the quantum metric components satisfy the scaling relations g−,ϕiϕi

= O(1) and
g−,nini

= O(1/(n2
i )) for ni ≫ 1.

Let us now illustrate the Landau-Zener scattering process, leading to a splitting of
the wavepacket and a reverse direction of pumping. A similar process was discussed
qualitatively in [193] in the restricted case where one of the two modes is not a dynamical
quantum mode but a Floquet drive, which in particular does not allow for the following
analysis based on energy domains.

Landau-Zener tunnelling

Landau-Zener transitions split the wavepacket, and correspond to partial tunneling be-
tween the two adiabatic subspaces. Following the analysis of Chap. 1, we expect such
a tunnelling to occur when the center of the wavepacket reaches a local gap minimum,
located at a point (Φcol,Ncol) of phase space. This is illustrated on Fig. 6.4(c) where we

3We consider here the qubit eigenstates rather than adiabatic states as a first estimate.
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Chapter 6. Long-time topological dynamics and chaos

represent the qubit energies ±|h|(Φ,N ) for N = (46.5, 33) on the topological boundary
(green point on Fig. 6.4(b)), the gap closing locally for Φ = (0, π). A wavepacket com-
ponent of relative weight proportional to exp(−π/(4ϵadiab(Φcol,Ncol))) scatters between
the two subspaces. In particular, the relative weight is given by the maximum Landau-
Zener probability Pmax

LZ (Ncol) (6.9), when the phase distribution of the state is localized
around (0, π). Note that when the center of wavepacket approaches the topological tran-
sition line in N -space, Landau-Zener tunnelling does not immediately occur. It requires
the phase distribution of the state (which is almost translated in time on the torus ac-
cording to (6.16)) to be localized near (0, π) in Φ-space. We observe such a transition
at t = 16.11 T1 (Fig. 6.4(d)), where part of the wavepacket tunneled from the blue to
the red region. This component now follows the adiabatic dynamics of the excited space,
pumping energy in the direction opposite to the initial component, such that it drifts
away from the Landau-Zener region and does not tunnel back in the ground-space (in
first approximation).

We have a succession of Landau-Zener splittings of the initial wavepacket, at all times
where the phases reach a gap minimum, which are separated typically by timescales
of order of magnitude of a few modes’ period. Indeed, a second transition is visible
at t = 27.92 T1 (Fig. 6.4(e)). The succession of Landau-Zener tunnelling leads to a complex
scattering process between the two adiabatic subspaces, until most of the ground-space
component has tunneled to the excited space (Fig. 6.4(f) at t = 48.32 T1). In Fig. 6.4(f),
we also see weight in the ground-space region, due to split wavepackets that underwent
already two Landau-Zener scattering.

We expect this process combining topological pumping and Landau-Zener scattering
to occur in any model of topological coupling between two harmonic oscillators and a
qubit. Indeed, such a model contains topologically distinct sectors in N -space, associ-
ated to regimes of topologically trivial or non-trivial coupling. The topological pumping
dynamics carries wavepackets towards transition curves between these domains, neces-
sarily associated to a gap closure, i.e. a breakdown of adiabaticity and a Landau-Zener
scattering process.

6.2.3 Long time quasi-stationary state
After the first Landau-Zener scattering on a topological boundary, the wavepacket has
been split in several wavepackets in the excited band. Each of them evolves adiabatically,
with a pumping in the opposite direction toward the other topological boundary. This
leads to a series of Landau-Zener scattering events, separated by the time of pumping
between the two topological boundaries.

After a few scattering processes, the wavepacket reaches a quasi-stationary state de-
localized in N in the region delimited approximately by the topological transition lines
and the region of energy conservation. We represent the photon number distribution of
this long time quasi-stationary state at t = 150 T1 on Fig. 6.5(a).

We obtain a notion of ergodicity in phase space, in the sense that at long times the state
is delocalized in the entire region allowed by energy conservation, and (approximately) by
the topological constraint.

On the other hand, an initial state prepared outside the topological region remains
localized in N space, on a scale given by the amplitude of Bloch oscillations, without any
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Figure 6.5: Long time quasi-stationary states vs eigenstates. (a) Quasi-stationary state
at t = 150 T1 for an initial state prepared inside the topological region (center on green
dot). After multiple Landau-Zener scattering processes between the topological regions,
the state is delocalized in a domain delimited by the topological boundaries and energy
conservation. (b) Eigenstate delocalized within the topological region, with components
on both adiabatic domains. (c) Quasi-stationary state at t = 150 T1 for an initial state
outside topological region (initial center on green dot). The state remains localized outside
the topological domain. (d) Eigenstate localized outside the topological region, confined
mainly on one adiabatic domain (the blue ground-space domain).
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notion of ergodicity. We represent such a state at t = 150 T1 on Fig. 6.5(c), for an initial
state prepared with N 0 = (70.4, 4) (green dot).

The two initial states corresponding to the long time quasi-stationary states of Fig. 6.5(a,c)
have the same total energy E = ⟨Ψ| Ĥtot |Ψ⟩ ≃ 10.7. We identified two families of initial
states, whether they lie inside or outside the topological region, leading to very different
long times quasi-stationary states, delocalized or not, related to a presence or absence
of notion of ergodicity. It is natural to wonder whether the very different natures of the
quasi-stationary long time states in different parts of the phase diagram are also present
for the corresponding eigenstates. Besides, ergodicity is often discussed in relation with
chaos. We now turn to the study of the eigenstates and spectrum, from the perspective
of quantum signatures of chaos.

6.3 Eigenstates and spectrum

6.3.1 Two families of eigenstates
The two examples of long time quasi-stationary states, originating from a preparation
inside or outside the topological region (see Fig. 6.5(a,c)), have the same average en-
ergy E ≃ 10.7. We show on Fig. 6.5(b) an eigenstate of similar energy whose average
number of quanta is located inside the topological region. It has the same qualitative fea-
ture as the long time quasi-stationary state of Fig. 6.5(a): it is delocalized (approximately)
inside the entire topological region, constrained by the energy boundaries of the classical
dynamics. On the other hand, on Fig. 6.5(d), we represent an eigenstate at approximately
the same energy located outside the topological region: it is localized in N -space and lies
only within one of the two adiabatic regions (in this case the ground-space).

Let us describe more quantitatively these two families of eigenstates. On Fig. 6.6(a),
every point corresponds to the average value of N̂ in one eigenstate. The color is the
spreading ∆n⊥ in the direction of pumping n⊥ = (−ω2n1 + ω1n2)/|ω| (see Fig. 6.5(b,d)).
Every eigenstate located outside the topological sector is localized in the pumping direc-
tion, corresponding to a small ∆n⊥, whereas every eigenstate located inside the topological
domain is extended in the pumping direction, with a large ∆n⊥ of the order of magnitude
of the width of the topological domain. Note that we consider only the eigenstates of
energies not affected by the numerical truncation of Hilbert space, see appendix 6.C for
details.

On Fig. 6.6(b), we represent in color the relative weight W+−W− of each eigenstate in
the two adiabatic subspaces. The weight W± of an eigenstate of energy E is computed by
summing the photon number probability Pn1n2 of the eigenstate for (n1, n2) lying in the
blue or red region of Fig. 6.3(b) associated to its eigenenergy E. The eigenstates located
outside the topological region have a relative weight of approximately ±1, corresponding
to a localization on one of the two adiabatic subspaces only. On the other hand, the eigen-
states located inside the topological domain are delocalized in both adiabatic subspaces,
with approximately W+ −W− ≃ −0.3 (due to the larger extension of ground-space re-
gion, see Fig. 6.5(b)). We identify a third family of eigenstates, whose average value of N̂
lies near the topological boundaries, which have different repartition between the ground
and excited spaces. We interpret them as a signature of the dynamical mechanism of
successive Landau-Zener transitions occurring in this region of breakdown of adiabaticity.
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Figure 6.6: Two families of eigenstates. Every point corresponds to the average value
of N̂ in an eigenstate. (a) In color: spreading ∆n⊥ =

√
⟨n̂2

⊥⟩ − ⟨n̂⊥⟩2 of the eigenstate in
the pumping direction (see Fig. 6.5(b,d)). Eigenstates outside the topological domain are
localized, with small ∆n⊥. Eigenstates inside the topological region are delocalized in the
pumping direction, in between the two topological boundaries. (b) Distribution of the
eigenstates between the two adiabatic subspaces. In color: difference of weights W+−W−
between the two subspaces. In the topologically trivial domain (and far from the topolog-
ical boundaries), the eigenstates are localized within one adiabatic subspace. Inside the
topological domain, the eigenstates are distributed between the two subspaces.
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We recover properties related to the Eigenstate Thermalization Hypothesis (ETH) [222]
for eigenstates located within the topological region. This hypothesis states in particular
that the average value of an observable Ô in an eigenstate varies very little with respect
to the energy, i.e., neighboring eigenstates in energy have similar average values of ob-
servables. We observe this behavior for the eigenstates within the topological region on
Fig. 6.6: their average value of N̂ forms a dense cloud localized at mid-distance of the
two topological boundaries (illustrating their almost uniform delocalization between the
boundaries). On the other hand, the average value of eigenstates outside the topologi-
cal region fills almost uniformly the N -space, illustrating that eigenstates with similar
eigenenergies have very different average value of N̂ in this region, thereby violating ETH.
This is explicitly shown on Fig. 6.7(a), where we display the average value of the pump-
ing coordinate n̂⊥ with respect to the energy eigenstate. The dense cloud of eigenstates
between the orange dotted lines corresponds to the dense cloud of eigenstates within the
topological region of Fig. 6.6: their average value of n̂⊥ varies little with respect to the
energy, satisfying ETH. On the other hand, the eigenstates above and below the dotted
lines are the eigenstates localized in the topologically trivial domains, with average values
varying erratically with respect to the energy. In the following, we denote “topological
family” the eigenstates contained in between the orange dotted lines of Fig. 6.7(a), and
“trivial family” the eigenstates above and below the orange dotted lines. Note that in the
trivial family of eigenstates, we also consider the little amount of “Landau-Zener” eigen-
states located near the topological boundaries inside the topological domain on Fig. 6.6.
The low energy eigenstates in grey on Fig. 6.7(a) correspond to eigenstates localized in
the region of small ⟨n̂1⟩ (below 15 on Fig 6.6). In this region, the adiabatic dynamics does
not apply, so we do not take them into account in the analysis.

A family of eigenstates satisfying ETH is often considered as a quantum signature of
chaos [222]. A striking feature here is the coexistence of these two families of eigenstates
at similar energies. Usually, an entire range of energy has either chaotic or non-chaotic
signatures. Here, a model of topological coupling exhibits mixed spectrum, with the
topological family of eigenstates carrying signature of chaos, and a family of eigenstates
carrying signature of absence of chaos. Other common signatures of chaos lie in spectral
statistics [223], which we consider in the following.

6.3.2 Spectral statistics

For quantum systems having a classical correspondence, it is understood that the distri-
butions of energy level spacings differ radically whether the classical analog of the system
is chaotic or integrable [223]. The quantization of a chaotic classical Hamiltonian displays
a level repulsion, i.e. quasi-degenerate energies are very rare, whereas for a classically
integrable system, quasi-degenerate energies occur. Due to the presence of the two-level
quantum subsystem, our total system has no immediate classical correspondence. Nev-
ertheless, let us examine if the spectra of the two families of eigenstates have similar
properties.

We represent the level spacing distribution P (δ) of the two families of eigenstates on
Fig. 6.7(b). More precisely, we consider the ordered eigenstates Ek of each family, Ek+1 ≥
Ek, and show the histogram of energy differences between two successive eigenstates δk =
Ek+1 − Ek. We observe a clear level repulsion for the topological family (in orange), i.e.
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Figure 6.7: (a) Average value in eigenstates of the pumping coordinate n̂⊥ = (−ω2n1 +
ω1n2)/|ω| depending on the eigenenergy. Between the orange dotted lines: “topological
family” of eigenstates, forming the dense cloud inside the topological domain of Fig. 6.6.
Above and below the orange dotted line: “trivial family” of eigenstates filling (almost)
uniformly the trivial domains in Fig. 6.6 and violating ETH. We do not consider the low
energy eigenstates (in grey). Note that in the trivial family, we also consider the little
amount of “Landau-Zener” eigenstates located near the topological boundaries inside the
topological domain on Fig. 6.6. (b) Level spacing statistics. Histogram of the level
spacing δk = Ek+1 − Ek between two successive eigenstates of the trivial family (in blue,
without level repulsion), and for the topological family (in orange, with level repulsion).
The trivial family follows the Poisson exponential distribution. The topological family
does not follow exactly the Wigner distributions of the Gaussian unitary (dotted green
line) or symplectic (dotted red line) random matrices ensembles. Spectra have been
unfolded following the procedure detailed in appendix 6.D.
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the distribution satisfies P (δ)→ 0 as δ → 0, in contrast to the distribution of the trivial
family (in blue).

A success of the Random Matrix Theory (RMT) for the study of quantum chaotic
systems lies in the justification that, in many situations, the level spacing distribution
follows a universal law determined by symmetry classes of the Hamiltonian [223, 224].
Integrable systems typically display Poisson distribution of level spacings, leading to the
exponential decay in grey dotted line of Fig. 6.7(b). The trivial family of eigenstates
follows this law. The most common ensemble of random matrices are Gaussian ensembles,
leading to the Wigner distributions of level spacings [223]. We represent in dotted green
and red lines respectively the laws obtained from Gaussian unitary (GUE) and symplectic
(GSE) ensembles, corresponding respectively to a breaking of time reversal symmetry, or
to time reversal symmetry with T 2 = −1. The level spacing distribution of the topological
states does not follow these two laws. The topological family does not carry any standard
signatures of chaos.

These universal laws describe statistical variations of the level spacing. To compare a
spectrum to these universal laws, we have to unfold it in order to evaluate the statistical
variation of the level spacing δk with respect to the mean level spacing δ̄. We describe the
unfolding procedure in appendix 6.D. In the following, we estimate the Thouless energy
of the topological family of eigenstates, in order to show that it lies at the limit of validity
of random matrix theory. As such, this family displays signatures of chaos which are not
accurately described by the most canonical ensembles of RMT.

6.3.3 Thouless energy and Random Matrix Theory
Thouless energy

The Thouless energy ETh was historically introduced in the context of the Anderson
localization of an electron in a mesoscopic disordered sample [225], as an energy scale as-
sociated with the sensitivity to boundary conditions. For a diffusive system, it is defined
by ETh = ℏD/L2 = ℏt−1

d , with D the diffusion constant, L the sample size, and td the clas-
sical diffusion time through the sample. It was then extended for ballistic systems [226],
as an inverse time of flight between scattering events. In our model, Landau-Zener scat-
tering occurs on the boundaries of the topological region. We note Ntopo the length of the
topological domain in the pumping direction n⊥, represented on Fig. 6.8(a). We define
the Thouless energy as ETh = ℏt−1

pump with the pumping time between the topological
boundaries tpump = Ntopo/ṅ⊥ = 2πNtopo/(|ω|C), with C = |C±|.

When looking for a quantum signature of chaos, the Thouless energy is understood
as the maximum energy range on which random matrix theory accurately describes spec-
tral correlations [224, 226]. Namely, statistical correlations between eigenergies lying in
range [E,E+ETh] (where statistical averages are taken with respect to the position E of
the range) are accurately described by statistical correlations of a random matrix ensem-
ble. In particular, RMT applies when ETh is large compared to the mean level spacing δ̄.

Let us estimate the Thouless energy from the spectral properties of the model. To do
so, we consider the variance of the number of states VarN(∆E) in a strip of width ∆E.
Noting N(E,∆E) the number of states whose energy lies in [E,E + ∆E], this variance
is defined by

VarN(∆E) =
〈
N(E,∆E)2

〉
E
− ⟨N(E,∆E)⟩2E , (6.20)
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Figure 6.8: (a) Estimation of the mean energy level spacing δ̄ of topological family of
eigenstates. The number of topological eigenstates of energy lying in a range dE is equal
to the number of quantum state in the grey domain. (b) Variance of number of states
in an energy range [E,E + ∆E]. In blue, topologically trivial family of eigenstates:
the variance follows at low energy the result of a Poisson distribution of energy levels
(grey dotted line). In orange, topological family of eigenstates: the variance growths
logarithmically at small ∆E, following approximately the GUE random matrix result,
and follows a power law above ∆E ≳ δ̄ providing an estimation of the Thouless energy.
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where ⟨.⟩E denotes average4 with respect to E. We represent the variance of number of
states for the trivial and topological families of eigenstates in respectively blue and orange
on Fig. 6.8. For a random matrix model, this variance increases logarithmically for ∆E
large compared to the mean level spacing δ̄ [224] (green dotted line in Fig. 6.8(b) for GUE).
In the study of the motion of an electron in a mesoscopic disordered system, it was shown
that for energy range ∆E larger than ETh, the number variance is proportional to (∆E)d/2,
with d the space dimension [224,227]. This enables to estimate the Thouless energy from
a spectrum, as the energy scale of crossover between logarithmic and polynomial growth
of the number variance [228].

The number variance of the topological family (in orange on Fig. 6.8(b)) follows ap-
proximately the GUE law at small ∆E, up to ∆E ≲ δ̄, above which it increases as a power
law. As a result, we estimate the Thouless energy to be of the order of the magnitude of
the mean level spacing. This is a regime at the limit of validity of random matrix theory,
thereby we expect the signatures of chaos of the topological family of eigenstates to be
non-standard. For δ̄ ≲ ∆E ≲ 20 δ̄, the number variance scales approximately as (∆E)0.5

(black dotted line on Fig. 6.8(b)). We interpret this as a signature of an almost one di-
mensional transport between scattering events, corresponding to the topological pumping
dynamics between Landau-Zener scatterings. A more precise fit of the variance on this
range of energy provides a scaling of approximately (∆E)0.57. On the other hand, the
number variance of the trivial family (in blue on Fig 6.8(b)) increases linearly with ∆E for
small ∆E (dotted grey line). This is characteristic of Poisson spectra without correlations
obtained for non-chaotic systems [224,228].

We observe on Fig. 6.8(b) another break point in the number variance near ∆E ≃ 10 δ̄,
for both the topological and trivial families of states. This can be explained considering
that an increase of the energy translates the energy domain of the eigenstates (blue and
red in Fig. 6.3(b)) along the direction of the frequency vector ω (see Fig. 6.8(a)). We
therefore expect a transition when the energy difference between two eigenstates is large
enough such that they have small overlaps.

Mean level spacing

Considering spectral statistics, we observed above that the Thouless energy ETh of the
topological family of eigenstates is of the order of the magnitude of their mean level
spacing δ̄. Let us precise this relation by estimating the mean level spacing δ̄ of this
family of eigenstates.

We consider the number of eigenstates dN(E) inside the topological domain of energy
lying in [E,E + dE], such that δ̄ = (dN/dE)−1. As discussed in Sec. 6.3.1, a topological
eigenstate of energy E is delocalized in the n⊥ direction inside the topological region,
inside the blue and red energy domains displayed in Fig. 6.3(b). These two energy do-
mains are approximately symmetric with respect to the line of constant energy of the
modes ℏω1n1 + ℏω2n2 = E (green dotted line in 6.8(a)). Hence, when the energy E is
increased by dE, these domains are slightly translated in the direction of the frequency
vector |ω| by dE/(ℏ|ω|). The number of extra states corresponds then to the number of
states in the grey area of Fig. 6.8(a): dN ≃ 2NtopodE/(ℏ|ω|), where the factor 2 accounts

4The spectrum Ek of each family of eigenstates is first unfolded to remove macroscopic variation of
the density of states δ̄ with respect to E, see appendix 6.D.
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for the qubit degree of freedom. Hence, we estimate δ̄ ≃ ℏ|ω|/(2Ntopo).
Moreover, we estimated above the Thouless energy as the inverse pumping time be-

tween the topological boundaries: ETh = ℏ|ω|C/(2πNtopo). We thus obtain

ETh ≃
C
π
δ̄. (6.21)

The above argument is independent of the model-dependent shape of the topological
domain. As a result, we expect it to be valid for any model of topological coupling
between two harmonic oscillators and a qubit. The topological family of eigenstates has
a Thouless energy of the order of magnitude of their mean level spacing. As such, this
family lies at the limit of validity of RMT. It is expected to display signatures of chaos
which are not accurately described by the canonical ensembles of RMT.

Role of Landau-Zener scattering matrix

The Thouless energy was historically introduced as a measure of the sensitivity of a
diffusive system to boundary conditions. In our situation, we have semiclassical trajecto-
ries of wavepackets drifting towards a topological boundary due to topological pumping.
A Landau-Zener tunnelling event can be viewed as a scattering process between these
classical trajectories. As such, the spectral properties of the topological family of eigen-
states, and their possible universality class, should depend on the associated scattering
matrix. More precisely, let us note

∣∣∣±, N̄ , Φ̄
〉

an adiabatic wavepacket within the adia-
batic subspace H± and localized in phase space around (N̄ , Φ̄). A Landau-Zener tun-
nelling event is a scattering process between an input adiabatic wavepacket

∣∣∣−, N̄ in, Φ̄in
〉

(Fig. 6.4(b)) into a superposition of two output wavepackets in the two adiabatic subspaces
Ŝ
∣∣∣−, N̄ in, Φ̄in

〉
=
∣∣∣−, N̄ out

− , Φ̄out
−

〉
+
∣∣∣+, N̄ out

+ , Φ̄out
+

〉
(Fig. 6.4(d)). The relative weight of

the + component, namely
∣∣∣〈+, N̄ out

+ , Φ̄out
+

∣∣∣ Ŝ ∣∣∣−, N̄ in, Φ̄in
〉∣∣∣2, can be estimated using the

Landau-Zener transition probability (which rely on a hybrid classical-quantum descrip-
tion of the system). However, the phase space positions of the output states (N̄ out

± , Φ̄out
± )

cannot be estimated by a Landau-Zener analysis as described in Chap. 1, which involves a
classical description of the slow degrees of freedom. A full quantum mechanical description
of the Landau-Zener tunnelling process is required. A possible origin of the signatures of
chaos of the topological family of eigenstates can be an extreme sensitivity of the output
phase space position (N̄ out

± , Φ̄out
± ) on the input phase space position (N̄ in

− , Φ̄in
−).

We illustrate in appendix 6.E the dependence of the spectral properties of the topolog-
ical eigenstates on a numerical example, by considering another set of parameters of the
Hamiltonian leading to quantitatively different spectral statistics of the topological family,
while displaying the same level repulsion and order of magnitude of Thouless energy.

6.4 Conclusion of chapter
We extended the model of quantum rotors topologically coupled to a two level system to
the case of two quantum harmonic oscillators topologically coupled to a qubit. A classical
limit of the harmonic oscillators enables to define the topological coupling between the
qubit and the two modes following the result of Chap. 3. The topological or trivial
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nature of the coupling depends on the number of quanta of the two harmonic oscillators.
The quanta number plane is then split in topologically distinct domains. Far from the
transitions lines between these domains, the adiabatic dynamics is valid.

The adiabatic dynamics of a wavepacket prepared inside the topological domain is
characterized by topological pumping leading to a drift of the wavepacket towards a
topological transition line, where adiabaticity breaks-down. This leads to a Landau-Zener
scattering mechanism from one adiabatic subspace to another, and to a reverse direction
of pumping. After a succession of adiabatic drifts and Landau-Zener scattering events,
the wavepacket reaches a quasi-stationary state delocalized within a domain delimited by
the topological and energy conservation boundaries. This provides a notion of ergodicity
for initial states prepared within the topological domain. On the other hand, initial
states prepared in the topologically trivial domain remain localized during the dynamics,
without any notion of ergodicity.

These two families of long time quasi-stationary states translate into two families of
eigenstates, the trivial and the topological family. The topological family of eigenstates
satisfies an ETH feature, characteristic of chaotic systems, while the trivial does not. The
striking property of the system is the coexistence of two family of eigenstates lying at
similar energies. The topological family carries quantum signatures of chaos, whereas the
trivial family does not.

We precised the quantum signatures of chaos of the topological family of eigenstates by
considering spectral statistics. The topological family of eigenstates displays a clear level
repulsion, in contrast to the trivial family. Interestingly, the level spacing distribution of
topological states does not follow precisely universal laws of canonical classes of random
matrix theory. We explained this by estimating their Thouless energy, which sets the
domain of application of random matrix theory. From spectral statistics, we deduce this
energy to be of the same order of magnitude as the mean level spacing, corresponding to
the limit of validity of RMT. By estimating the Thouless energy as an inverse of topological
pumping time, we argued that this behavior is expected for any model of topological
coupling between two quantum harmonic oscillators and a qubit. A characterization of
the non-adiabatic Landau-Zener scattering matrix would precise the origin of the chaotic
behavior.
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6.A Phase and number of quanta of the harmonic
oscillator

The adimensionalized quadratures of the modes are defined by

x̂i = âi + â†
i√

2
(6.22)

p̂i = âi − â†
i

i
√

2
(6.23)

satisfying [x̂i, p̂j] = iδij1, i.e. in the classical limit the quadratures satisfy the Poisson
bracket relations {

√
ℏxi,
√
ℏpj} = δij. The following change of variable is symplectic

xi =
√

2ni cos(ϕi), (6.24)
pi =

√
2ni sin(ϕi), (6.25)

meaning that the photon number and phase satisfy the classical Poisson bracket {ℏni, ϕj} =
δij. The classical limit of â and â† is then √nie

±iϕi .

6.B Scaling of energies and Berry curvature
To express the scaling relations of the Berry curvature and the quantum metric, we write
them in terms of the Hamiltonian. We consider the quantum geometric tensor

Tν,αβ = ⟨∂αψν | (1− |ψν⟩ ⟨ψν |) |∂βψν⟩ (6.26)

=
∑
µ̸=ν

⟨ψν | ∂αH |ψµ⟩ ⟨ψµ| ∂βH |ψν⟩
(Eµ − Eν)2 (6.27)

where the last expression is obtained using ⟨ψµ|∂αψν⟩ = i ⟨ψµ| ∂αH |ψν⟩ /(Eν−Eµ) for µ ̸=
ν.

We consider a linear coupling between the bosonic operators âi, â
†
i and the qubit, i.e.

Ĥ does not involve products of annihilation or creation operators. As such, its sym-
bol H(Φ,N ) scales as √ni. Its eigenvalues have the same scaling Eν(Φ,N ) = O(√ni),
and the matrix elements of ∂ϕi

H scale as √ni whereas those of ∂ni
H scale as 1/√ni. We

deduce from (6.27)

T±,ϕiϕj
= O (1) ; T±,ϕinj

= O
(

1
nj

)
; T±,ninj

= O
(

1
ninj

)
. (6.28)

We have Fν,αβ = −2 ImTν,αβ and gν,αβ = ReTν,αβ, such that the components of the Berry
curvature and quantum metric satisfy the same scaling.

The energy correction reads

Mν =
2∑

i=1
Im ⟨∂ni

ψν | (H − Eν) |∂ϕi
ψν⟩ , (6.29)

=
2∑

i=1
Im ⟨ψν | ∂ni

H |ψµ⟩ ⟨ψµ| ∂ϕi
H |ψν⟩

Eµ − Eν

, (6.30)

such that, according to the above scaling relations, Mν = O(1/√ni).
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6.C Numerical Truncation
Let us first provide the analytical expressions of the topological and energy boundaries
of Fig. 6.3(b). The orange lines are the topological boundaries, corresponding to the
values of N for which the gap of the qubit |h|(Φ,N ) closes for some value of phase Φ.
From (6.5), we obtain gap closing if Φ is (0, 0), (0, π), or (π, 0) and N satisfies

ωq

2 ± 2g1
√
n1 ± 2g2

√
n2 = 0. (6.31)

The above condition leads to the tilted orange parabola on 6.3(b) delimitating the topo-
logical domain.
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Figure 6.9: Numerical truncation of the Hilbert space. (a) We first consider a box in N -
space 0 ≤ n1 ≤ nmax

1 , 0 ≤ n2 ≤ nmax
2 . Here (nmax

1 , nmax
2 ) = (100, 175). We then consider

the domain of maximum energy Emax which lies in this box (dotted lines). We ignore
the points N above this domain (white region) in the diagonalization. (b) Example
of (photon number distribution of) eigenstates of energy E > Emax, affected by the
finite size numerical truncation. In the spectral analysis, we keep only the eigenstates of
energy E < Emax, unaffected by the numerical truncation.

The blue and red energy domains on 6.3(b) are the values of N such that it exists Φ ∈
[0, 2π]2 for which ℏω1n1 + ℏω2n2 ± |h(Φ,N )| = E. We define

|h(N )|max/ℏ = max
Φ∈[0,2π]2

|h(Φ,N )|/ℏ = ωq

2 + 2g1
√
n1 + 2g2

√
n2, (6.32)

|h(N )|min/ℏ = min
Φ∈[0,2π]2

|h(Φ,N )|/ℏ = min


ωq

2 − 2g1
√
n1 + 2g2

√
n2

ωq

2 + 2g1
√
n1 − 2g2

√
n2

−ωq

2 + 2g1
√
n1 + 2g2

√
n2

, (6.33)

such that the blue ground domain of Fig. 6.3(b) corresponds to the values of N such that

E + |h(N )|min ≤ ℏω1n1 + ℏω2n2 ≤ E + |h(N )|max, (6.34)
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and the red excited domain to the values of N such that

E − |h(N )|max ≤ ℏω1n1 + ℏω2n2 ≤ E − |h(N )|min. (6.35)

Let us now detail the truncation of Hilbert space and the selection of eigenstates of low
enough energy. We diagonalize the Hamiltonian in the basis |n1⟩⊗|n2⟩⊗|↑ / ↓⟩. We expect
the eigenstates to be contained in the energy domains of Fig. 6.3(b), whose boundaries
are defined above. We first consider a rectangle, 0 ≤ n1 ≤ nmax

1 , 0 ≤ n2 ≤ nmax
2 . For the

numerical simulation of main text, we use nmax
1 = 100 and nmax

2 = 175 (see Fig. 6.9(a)).
We then keep only the values (n1, n2) lying in energy domains fully contained in this
rectangle. The corresponding maximum energy is

Emax/ℏ = max
ω1n

max
1 + ω2n

max
2 − ωq

2 − 2g1
√
nmax

1

ω1n
max
1 + ω2n

max
2 − ωq

2 − 2g2
√
nmax

2
. (6.36)

The domain of energy Emax is represented in dotted lines on Fig. 6.9(a). We then keep
only the (n1, n2) values satisfying

ω1n1 + ω2n2 −
ωq

2 − 2g1
√
n1 − 2g2

√
n2 ≤ Emax/ℏ, (6.37)

which amounts to truncate the white domain on Fig. 6.9(a). We thus expect all the
eigenstates of the untruncated Hamiltonian of energy E ≤ Emax to be localized in our
truncation of Hilbert space.

We diagonalize the Hamiltonian within this truncation. The eigenstates of energy
greater than Emax are expected to be affected by the finite size effects of the truncation,
because their energy domain is outside the Hilbert space truncation, see for example such
an eigenstate on Fig. 6.9(b). We ignore them in our analysis, keeping only the eigenstates
of energy E < Emax (which, for our parameters, amounts to consider the 12397 eigenstates
of lowest energies among the 17600 eigenstates of the truncated Hamiltonian).

6.D Spectrum unfolding
In order to compare the statistics of a spectrum to laws provided by random matrix theory,
the mean level spacing has to be uniform, i.e. to be independent of the energy range.
In other words, random matrix theory describes fluctuations of energy level spacings of
a spectrum around its mean level spacing. To do so, the spectrum is “unfolded”. We
note Ek the original spectrum of a family of eigenstates, ordered such that Ek ≤ Ek+1.
Let us insist on the fact that Ek is not the entire spectrum, but only a selected family
of eigenstates (in our case, the topological or trivial family of eigenstates). We represent
the original spectrum of the trivial and topological families of eigenstates respectively
in blue and orange on Fig. 6.10(a). The energy is almost linear with respect to k for
the topological family, illustrating that the mean density of state of this family is almost
independent of the energy. On the other hand, the mean density of states of the trivial
family clearly varies with the energy, such that unfolding is required.

The unfolding is a transformation of a spectrum ek = f(Ek), such that the unfolded
spectrum ek has a mean level spacing equal to 1. There exist different unfolding pro-
cedures, i.e. transformation function f [223]. A common choice is the following. We
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Figure 6.10: Spectrum unfolding. (a) Energy spectrum Ek of the trivial family of eigen-
states (in blue) and the topological family of eigenstates (in orange). In order to compare
the spectral correlations to results of random matrix theory, the spectra have to be un-
folded, in order to have a uniform mean level spacing. (b) Unfolded spectrum ek = f(Ek),
increasing linearly with respect to k up to fluctuations which can be compared to those
of a random matrix.

require ek+1 − ek = df
dE

dE
dk

= 1 in average, such that f is the integrated mean density of
states

f(E) =
∫ E

−∞

∆N
∆E (E ′)dE ′ (6.38)

with the mean density of states obtained by computing the number ∆N of eigenstates
whose energy lie in [E ′, E ′ + ∆E], where ∆E has to be large compared to the mean level
spacing and small compared to the scale of macroscopic variation of the density (which,
as seen on Fig. 6.10, is of order 1 in units of ℏωq). We take ∆E = 1 in the numerical
analysis. This provides the unfolded spectrum on Fig. 6.10(b). The unfolded energy ek is
linear with respect to k, up to fluctuations which can be compared to the fluctuations of
a random matrix.

6.E Role of topological boundary position
Let us illustrate the dependence of the spectral properties of the topological eigenstates
on a numerical example, by considering another set of parameters of the Hamiltonian.
We diagonalize the Hamiltonian with g1/ωq = 0.035, g2/ωq = 0.0575, ω2/ωq = 0.05, and
the same ratio between the frequencies of the modes. This set of parameters leads to the
topological boundary in red on Fig. 6.11(a). The difference between this example and the
one of main text is the right part of the topological boundary, which here lie almost along
the n2 = 0 axis for the energy scales we consider. This leads to an almost gap closing of
the qubit |h(Φ,N )| ≃ 0 for n2 ≃ 0, n1 ≃ 50 on the entire line ϕ1 = 0 on the torus (see
Fig. 6.11(b)), rather than a local gap closing on Φ = (0, π) as on Fig. 6.4(c). We thus
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Figure 6.11: Spectral analysis of the Hamiltonian for another set of parameters g1/ωq =
0.035, g2/ωq = 0.0575, ω2/ωq = 0.05. (a) Average value of N̂ of each eigenstate. In or-
ange, the dense family of topological eigenstates. (b) The bottom part of the topological
boundary (in red on (a)) lie almost on the n2 = 0 axis, where the qubit gap almost closes
on the entire line ϕ1 = 0 on the torus for N ≃ (50, 0) (green point), in contrast with the
local gap closing at Φ = (0, π) for N on the topological boundary of the model considered
in main text (Fig. 6.4(c)). We thus expect a qualitatively different Landau-Zener scatter-
ing matrix inducing qualitatively different spectral statistics of the topological eigenstates.
(c) The level spacing distribution of the topological eigenstates (in orange) still displays a
clear level repulsion but differs more radically from the GUE and GSE laws (respectively
green and red dotted lines). The distribution of topologically trivial states follows the
Poisson (non-chaotic) distribution (grey dotted line). (d) Variance of number of eigen-
states for topological (orange) and trivial (blue) families of eigenstates. Green (respective
red) dotted lines: GUE (respectively GSE) laws. The topological family still displays a
crossover between logarithmic and polynomial scaling around ∆E ≃ δ̄, such that ETh ≃ δ̄.
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expect different features of the Landau-Zener scattering matrix, translating into different
spectral statistics of topological states.

The dense cloud of selected topological eigenstates is shown in orange on Fig. 6.11(a).
Their level spacing distribution is represented in orange on Fig. 6.11(c). It displays
a clear level repulsion, but deviates more from the GUE and GSE laws (respectively
dotted green and red lines) than the level spacing distribution of topological eigenstates
of the Hamiltonian considered in main text (Fig. 6.7(b)). The level distribution of the
topologically trivial family of eigenstates (in blue on Fig. 6.11(c)) follows the Poisson
distribution characteristic of non-chaotic systems, as for the example of main text.

The number variance is represented on Fig. 6.11(d) (respectively in blue and orange
for the trivial and topological families of eigenstates). They have the same qualitative
dependence as the case considered in main text (Fig. 6.8(b)). The number variance of the
topological family of eigenstates displays a crossover between the GUE logarithmic scaling
(green dotted line) and a polynomial scaling around ∆E ∼ δ̄, such that we estimate the
same Thouless energy ETh ≃ δ̄.
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1 Results
Reinterpreting topological pumps within the context of slow-fast quantum systems allowed
us to define a notion of topological coupling between slow and fast quantum degrees of
freedom. Topological pumps were historically described as a response of a slowly driven
quantum system. The purpose of this thesis was to consider these drives as dynamical
quantum degrees of freedom topologically coupled to the quantum system. The topologi-
cal nature of the couplings leads to a transfer of charge or energy between the slow degrees
of freedom. We payed special attention to the nature of the quantum states leading to the
pumping dynamics, the adiabatic states, i.e. the states for which the effective adiabatic
dynamics accurately describes the evolution of the slow degrees of freedom. We called
them the adiabatic states, in close analogy with the notion of slow manifold.

In the chapter 1, we introduced the adiabatic evolution of a slowly driven quantum
system, where we defined in particular the adiabatic states as those leading to the slowest
time evolution of physical observables. Here no backaction of the quantum system onto
the slow drives was considered. These slow drives were described in chapter 2 as slow
quantum degrees of freedom coupled to a fast quantum system, allowing to consider
the backaction of the fast subsystem onto the slow one. Our main contribution in this
chapter was to precise the conditions of validity of the adiabatic approximation, providing
quantitative conditions of existence of the adiabatic states. The description of the effective
slow dynamics of these adiabatic states involves a geometric object, the Berry curvature,
which carries the topological invariant.

This enabled us to define a notion of topological coupling between slow and fast
quantum systems in chapter 3, reinterpreting examples of topological pumps within this
framework. We illustrated the virtues of this formalism in chapter 4 with an experimental
proposal of topological coupling between microwave modes and a superconducting quan-
tum circuit, with a detailed measurement protocol for the topological redistribution of
energy between the modes.

Considering the simplest example of topological coupling between two quantum rotors
and a qubit, we showed in chapter 5 that adiabatic states are not naturally prepared
experimentally, but any initial state decomposes into a pair of those. The topological
pumping dynamics splits apart the two adiabatic components in the phase space of the
modes, leading generically to a cat state. We described the weights of the cat as well as the
entanglement between the modes and the qubit in terms of the geometry of the adiabatic
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states, quantified by their quantum metric tensor. Finally, in chapter 6, we considered
quantum harmonic oscillators topologically coupled to a qubit, with more common type of
coupling encountered in quantum optics. The topological nature of the couplings depends
on the number of quanta of the oscillators, leading to two families of initial states lying
at the same energy scales, the topological and the trivial ones. The dynamics on short
timescales is accurately described by the rotor model of chapter 5. On long timescales,
the topological family of initial states leads to quasi-stationary states with a notion of
ergodicity constrained by topological transition lines. The two families of quasi-stationary
states translate into two families of eigenstates lying at similar energies. The trivial family
of eigenstates carries no signature of chaos, whereas the topological family carries non-
standard signatures of chaos. A more precise characterization of the chaotic behavior of
the topological eigenstates is a stimulating perspective. In particular, the origin of chaos
is suspected to arise from features of the Landau-Zener scattering matrix, more precisely
from the sensitivity of the phase-space output position of scattered wave-packets to initial
conditions.

2 Perspectives
Other topological invariants

We defined a topological coupling between two slow quantum degrees of freedom and a fast
quantum system characterized by a non-trivial first Chern number. A natural perspective
is to translate topological pumps based on other topological invariants into an extended
notion of topological coupling between slow-fast quantum systems, which could lead to
new types of long-time dynamics and spectral statistics as those discussed in Chap. 6.

For example, a gapped quantum system depending on four, six, and in general an
even number of periodic parameters allows to define higher Chern numbers. Higher di-
mensional topological pumps [26, 45, 229–234], corresponding to quantum Hall effect in
higher dimensions could then be translated into a topological coupling between an even
number of slow quantum degrees of freedom and a fast quantum system. Similarly, other
types of topological coupling could be defined, considering the classification of topolog-
ical pumps based on symmetry [235, 236], higher-order symmetry protected topological
invariants [26, 237, 238], or non-abelian generalizations for a degenerate fast quantum
system [26, 239–241]. It would also be interesting to extend the recent Floquet energy
pumps [242–246], characterized by a topological winding number, into a coupling between
quantum modes and a quantum system. This would correspond to a different type of slow-
fast system since some of the modes are not slower than the quantum system, such that
they have to be included as part of the fast subsystem.

Open slow-fast quantum systems

We studied the dynamics of closed quantum system with a slow-fast separation. Consider-
ing dissipation and decoherence is a natural and experimentally very relevant perspective.
As we saw in chapter 5, the adiabatic states are the only ones whose dynamics does not
lead to cat states of the modes, such that they may correspond to pointer states [247]
when considering the environment coupled to the qubit - two modes system.
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Besides, in the experimental proposal of chapter 4, we modeled each microwave mode
at a given frequency by a pair of conjugated phase and number of photons. Transmission
lines having finite bandwidth, a continuous family of modes is actually present. In order
to take into account the continuous family of slow degrees of freedom, we could extend
as a first step the model introduced in chapter 3, where we expect the pumping equa-
tion (3.10) to be replaced by an integral over the mode frequencies, with a continuous
number of Berry curvature components. Wether the presence of these Berry curvature
components would affect the topological dynamics is a natural question. An interesting
alternative description would be to formulate the reflection of microwave pulses on the
superconducting qubit using an input-output approach [248]. Such a formulation may
share similarities with the scattering formulation of parametric pumping [192, 249, 250],
which is another form of (non necessarily quantized) pumping.

In order to consider dissipation in topologically coupled slow-fast quantum system,
we could also build on the description of pumping in open systems described by a slowly
time-dependent master equation [251–253], where the pumped observables are not related
to a topological Chern number – obtained by integrating a Berry curvature – but to a
circulation of a Landsberg connection (an open system analog of the Berry connection).
The strategy would be to promote the drive parameters as dynamical slow quantum
degrees of freedom and look at their effective slow dynamics. Moreover, other notions
of adiabatic elimination exist in open systems, where the slow and fast time-scales do
not correspond to inner dynamical timescales but to ratios between dissipative terms in
a master equation [254]. Combining these different ideas of adiabatic eliminations of
closed and open systems, with their geometric and topological features, is a stimulating
perspective.
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Abstract:
This thesis introduces a notion of topological coupling between quantum systems with

a slow-fast decomposition. I study the dynamics of the slow degrees of freedom, showing
that the topological nature of coupling induces a quantized transfer of charge or energy
between them. Considering the slow degrees of freedom as classical parameters imposing
a time-dependence to the fast quantum system, we recover the appearance of a permanent
current through this quantum system, discussed previously in the context of topological
pumps. Guided by the goal of a direct measure of this transfer, I propose an experimental
realization of such coupling between microwave electromagnetic modes and a supercon-
ducting quantum circuit.

I study then the nature of the quantum states of the total system, showing that
the topological nature of coupling imposes an entanglement between the slow and fast
subsystems. Generically, any initial state decomposes into a superposition of states which
are separated in phase space by the topological dynamics, thereby creating a cat state.

In a last part, I identify two families of initial states of such a system, leading or not to
a topological dynamics. This separation in two families of initial states translates into two
families of eigenstates of the total system at the same energies. The family of eigenstates
associated to a non-trivial topology carries signatures of a non-standard quantum chaos,
whereas the one associated to a trivial topology does not.

Résumé :
Cette thèse introduit une notion de couplage topologique entre des systèmes quantiques

ayant une séparation lent-rapide. J’étudie la dynamique des degrés de libertés lents,
montrant que la nature topologique du couplage induit un transfert quantifié d’énergie ou
de charge entre ceux-ci. En considérant les degrés de libertés lents comme des paramètres
classiques qui imposent une dépendance temporelle au système quantique rapide, nous
retrouvons l’apparition d’un courant permanent au sein de ce système quantique discuté
précédemment dans le contexte des pompes topologiques. Guidé par l’objectif d’une
mesure directe de ce transfert, je propose une réalisation expérimentale d’un tel couplage
entre des modes électromagnétiques micro-ondes et un circuit quantique supraconducteur.

J’étudie ensuite la nature des états quantiques du système complet, montrant que la
nature topologique du couplage impose une intrication entre les sous-systèmes lents et
rapides. De façon générique, tout état initial se décompose en une superposition d’états
que la dynamique topologique sépare dans l’espace des phases, créant un état de chat.

Dans une dernière partie, j’identifie deux familles d’états initiaux d’un tel système, qui
mènent ou non à une dynamique topologique. Cette séparation en deux familles d’états
initiaux se traduit en deux familles d’états propres du système total aux mêmes échelles
d’énergies. La famille d’états propres associée à une topologie non triviale porte des
signatures d’un chaos quantique non standard, tandis que celle associée à une topologie
triviale n’en porte pas.
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