Introduction : Chaque année, environ 1,35 million de personnes perdent la vie dans des accidents de la route dans le monde, l'OMS estime qu'une personne perd la vie toutes les 24 secondes.

Le nombre de fatalités routières reste élevé malgré les efforts juridiques et législatifs déployés pour améliorer la sécurité routière. Depuis 1999, des technologies, des protocoles et des applications ITS ont été développés dans le but de renforcer la sécurité routière et de réduire le nombre d'accidents.

Cette thèse se concentre sur la dernière génération (NR-V2X) et l'amélioration de la sécurité des communications véhiculaires dans les réseaux 5G. Elle aborde les défis posés par les attaques de sécurité et propose des solutions innovantes pour renforcer la fiabilité et la sécurité des communications V2N.

Chapitre 2 : Étude de la littérature de la sécurité des réseaux véhiculaires : Ce chapitre examine en détail les protocoles et les spécifications ITS et V2X de l'ETSI et du 3GPP. Il présente également une revue complète de la littérature existante sur la sécurité V2X et les systèmes de détection de comportements anormaux. Il identifie les lacunes dans la recherche actuelle, établissant ainsi le contexte pour les développements proposés dans les chapitres suivants. En examinant les recherches antérieures, le chapitre identifie les lacunes et les défis non résolus, établissant ainsi un cadre de référence pour les innovations proposées dans les chapitres suivants de la thèse. Cette revue permet de comprendre les tendances actuelles, les meilleures pratiques, et les limites des solutions existantes en matière de sécurité V2X.

Chapitre 3 : Une nouvelle fonction application de la sécurité du réseau central 5G pour la couche Facilities de C-ITS basée sur l'IA : Ce chapitre détaille le développement d'un système novateur de détection de comportement anormal, spécifiquement conçu pour identifier et prévenir les attaques de falsification de position dans les communications V2X, et protéger les serveurs V2X dans le contexte des réseaux 5G. Le système est soigneusement aligné avec les spécifications de l'architecture 5G-V2X de la 3GPP, garantissant ainsi une intégration et une compatibilité optimales. Le système proposé s'appuie sur des techniques de machine learning, et offre une détection précise et efficace des menaces, en proposant un nouveau contrôle de plausibilité (ORPC) pour améliorer les performances de détection.

Chapitre 4 : Détection des comportements V2X anormaux en tant que fonction de réseau 5G

central/edge basée sur l'IA/ML : Dans ce chapitre, l'accent est mis sur l'exploration d'un système collaboratif de détection de comportement anormal V2X, qui représente une avancée par rapport au système introduit dans le chapitre précédent. Ce système tire parti de la collaboration entre les noeuds des réseaux edge pour améliorer la détection des comportements anormaux, contribuant ainsi à renforcer la sécurité des serveurs d'applications V2X dans les réseaux 5G edge. Le chapitre présente en détail l'architecture du système, les mécanismes de collaboration en comparant cette approche collaborative avec les systèmes de détection centralisés. Les résultats des simulations démontrent une amélioration dans la capacité du système à identifier et à répondre aux menaces de sécurité, soulignant l'efficacité de la collaboration dans le contexte des communications V2X sécurisées dans les réseaux 5G.

iii Chapitre 5 : Federated Learning pour la détection de comportement anormal V2X dans les réseaux 5G : Ce chapitre aborde en profondeur la faisabilité et l'efficacité de l'utilisation de l'apprentissage fédéré pour la détection de comportements anormaux dans les réseaux V2X au sein des réseaux 5G edge. Il compare la performance de détection des modèles d'apprentissage fédéré avec celle des modèles centralisés et autonomes, mettant en évidence les forces et les limitations potentielles de chaque approche. À travers des évaluations détaillées, il démontre que l'apprentissage fédéré préserve non seulement la confidentialité des données, mais maintient également une précision de détection comparable, voire supérieure. Cette investigation de l'apprentissage fédéré ouvre de nouvelles voies pour son application dans les réseaux 5G edge, démontrant son potentiel en tant que solution évolutive et efficace pour renforcer la sécurité des communications V2X.

Conclusion :

La thèse résume les découvertes clés, soulignant leur importance pour la sécurité des communications V2X et des réseaux 5G. Elle propose également des pistes pour des recherches futures, ouvrant la voie à des développements supplémentaires dans ce domaine en pleine expansion. 

CONCLUSION AND FUTURE WORK

. Background

Every year, approximately 1.35 million people lose their lives due to road accidents worldwide, the World Health Organization (WHO) estimates the loss of one life every 24 seconds [1]. The number of road fatalities remains unac- ceptably high despite legal and legislative efforts to improve road safety. Since 1999, Intelligent Transport Systems (ITS) technologies, protocols, and applications have been developed in an effort to increase traffic safety and lessen accidents.

However, the first generation ITS technology, Dedicated Short-Range Communications (DSRC), faced several challenges that prevented its wide adoption. The main challenges were the slow pace and the high deployment cost of the required infrastructure.

Additionally, there was a market fragmentation in the automotive industry between companies adopting DSRC and others preferring to wait for the nextgeneration ITS technology, namely Cellular Vehicle-to-Everything (C-V2X). Another significant challenge was the recent reallocation of the spectrum [2],

1 initially reserved for DSRC, to C-V2X and Wi-Fi by the Federal Communication Commission (FCC).

In 2023, C-V2X seems to address most of these challenges, by leveraging the widely available cellular network infrastructure. It offers increased bandwidth, lower latency, and wider network coverage which can empower advanced network-hosted ITS services.

In addition to road safety applications, ITS can offer many other benefits, such as:

• Traffic efficiency: like traffic management and parking solutions.

• Support for Connected Autonomous Vehicles (CAV) and cooperative driving: by providing drivers and autonomous driving systems enhanced perception, and the ability to perform coordinated movement and maneuvers.

• Environmental benefits: traffic management applications can contribute to emissions reduction and improved fuel efficiency, providing environmental advantages.

• Enhanced road user experience: this includes real-time information about road conditions, traffic, and weather, as well as features like automatic toll payments, electric vehicle charging reservations, and invehicle entertainment services.

. Vehicle-to-Everything (V2X)

ITS refers to the initiatives of utilizing the latest technologies in electronics, information, and telecommunication to enhance safety, efficiency, sustainability, and comfort of transportation systems; Cooperative Intelligent Transport Systems (C-ITS) are ITS which harness the power of communication between two or more ITS stations (vehicle, roadside, central, mobile device) to provide advanced ITS services, like: Vulnerable Road User (VRU) warning, dangerous situation warning, cooperative overtaking, and platooning.

While C-ITS defines the systems and applications that interact directly with road users, Vehicle-to-Everything (V2X) refers to the underlying communication protocol stacks and access technologies which enable C-ITS services.

2

Standards Institute (ETSI), namely ETSI ITS-G5 [START_REF] Etsi | Intelligent transport systems (its); its-g5 access layer specification for intelligent transport systems operating in the 5 ghz frequency band[END_REF] and ETSI ITS standards [START_REF] Etsi | Intelligent transport systems (its); communications architecture[END_REF].

• 

. V2X Challenges

To fully unlock the potential of V2X, several significant challenges must be addressed. Among them the interoperability. Specifically, different manufacturers may employ distinct communication standards, resulting in potential compatibility challenges. Therefore, it is imperative to establish a universally accepted standard to facilitate seamless communication. From a regulatory and legal perspectives, standardization stands out as a primary concern.

Regulatory bodies must establish standardized protocols for V2X communications to guarantee consistency and interoperability across all vehicles, devices, and regions.

Another technical concern involves minimizing latency and efficiently allocating resources in a highly mobile network environment. In scenarios where rapid decision-making is crucial, particularly in high-velocity situations, it is essential to minimize communication delays. Ensuring optimal latency is critical for the effectiveness of V2X communications.

Another challenge in this category pertains to the complexity of establishing accountability, especially in the context of accidents or malfunctions. This complexity is further amplified when multiple entities, including vehicles, infrastructure, and pedestrians, are involved in the communication process.

Besides, the scalability of V2X security solutions represents another challenge especially in the near future, when the number of connected vehicles starts to rapidly increase. It is highly important to ensure that these solutions can keep up with the high amount of traffic they might need to process.

On the economic front, the substantial costs associated with V2X pose a significant barrier. The initial investment required for V2X infrastructure, both in vehicles and on roads, can be substantial. Furthermore, identifying feasible and sustainable business models for V2X is challenging, especially when considering that the technology is still in its early development phase.

Additionally, there are social challenges to consider. For V2X to be successful, it is essential for the general public to trust and embrace the technology.

Addressing concerns, particularly those related to the handling of location data, is crucial. Moreover, there is a need to assess the potential impact of technology and automation on job redundancy, especially within the transportation sector, which is a subject of concern.

. V2X Security Challenges

While V2X communications bring significant advantages and benefits, they also introduce a variety of unprecedented security challenges, due the dynamic and complex nature of V2X networks. These challenges must be taken seriously to ensure the safety of road users and the reliability of ITS services.

. Authentication and Authorization

Authentication is the first layer of protection in all systems. In the context of V2X, authentication mitigates the risk of unauthorized devices or vehicles injecting false data into the system. Also, it is important to ensure that special V2X services, like emergency vehicle warning, can only be accessed by authorized vehicles.

. Data Integrity and Misbehavior Detection

As V2X applications heavily rely on the accuracy and timeliness of the data they receive, any compromise in data integrity, whether due to interference, malfunction, or transmission errors, can lead to vehicles or applications making decisions based on incorrect information. This situation endangers the safety of the vehicle's occupants and other road users.

It is essential to enforce secure transmissions through implementing errorchecking and validation protocols, coupled with detection of anomalies or inconsistencies in the data and reporting them for review. It is crucial to ensure that compromised authenticated devices are quickly identified and disconnected from the network. The implementation of effective detection and re-vocation systems, capable of promptly responding to any threats, is vital.

. Data Privacy

V2X systems can produce a high volume of data, collecting an extensive information such as the location, speed, direction of vehicles, and even certain aspects of driver behavior. The persistent flow of data gives rise to substantial concerns regarding data privacy and storage. The collection, storage, and processing of this type of data need to be under strict control and monitoring.

Furthermore, the potential sharing of V2X data with external entities introduces an additional level of complexity. While there might be legitimate reasons for data sharing, such as traffic management or targeted marketing, it is important to acknowledge the potential risks associated with accidental data leak resulting from system breaches or illegal access.

Anonymization of data is often suggested as a solution to address privacyrelated concerns. However, even anonymized data isn't entirely secure. Indeed, advanced correlation techniques can sometimes de-anonymize this data, leading to potential privacy breaches and exposing sensitive user information.

. Cybersecurity Concerns

As vehicles evolve into moving computers, they become attractive targets for hackers. A successful attack, where a malicious actor gains control of a vehicle's systems, can have disastrous consequences.

The risks aren't limited to just the vehicles. The infrastructure that supports V2X communications, such as traffic lights, sensors, communication towers, and V2X application servers, is equally vulnerable. A compromised component of infrastructure can cause interruptions to traffic flow, accidents, and potential loss of life.

The threats also encompasses malware and ransomware attacks. For instance, a malware that feeds false data to the driver or other vehicles, causing confusion and accidents. Alternatively, a vehicle is rendered inoperable and held hostage until a ransom is paid.

Also, man-in-the-middle attacks are noteworthy threats, where malicious actors might intercept and manipulate communications between vehicles, infrastructure, or network. Replay and Sybil attacks, where the attacker resends captured V2X messages or flood the network with false information pose a further complicated challenge.

The rapidly evolving landscape of cyber-threats requires the implementation of a comprehensive cyber-security management program that enables all the major stakeholders (i.e., car manufacturers, vehicular infrastructure providers, telecommunication providers, and authorities) to respond to new attacks. This program has to include Over-The-Air (OTA) updates to participating vehicles and devices to ensure the timely patching of newly discovered vulnerabilities.

. Legal and Regulatory Challenges

The regulatory environment related to V2X technology is is continually evolving. Data ownership is a significant topic that requires attention. The identification of data ownership involves various stakeholders including vehicle owners, manufacturers, infrastructure providers, and other entities, and it is a complex subject involving some legal consequences.

Furthermore, with the increasing global adoption of V2X technology, complying with regulatory requirements in multiple countries becomes more challenging. Different countries and regions have distinct laws and regulations related to the protection of data privacy, such as the General Data Protection Regulation (GDPR) implemented in Europe. For manufacturers and service providers operating on a worldwide scale, the responsibility of maintaining compliance with various regulatory frameworks can pose significant challenges.

. Thesis Problematic

Most of the proposed V2X security solutions are based on cryptography [START_REF] Petit | Pseudonym schemes in vehicular networks: A survey[END_REF], and the majority consists of creating a vehicular Public Key Infrastructure (PKI) system to distribute and verify signed certificates for eligible vehicles.

While a PKI system is essential to protect against external threats, different approaches should be considered to mitigate attacks launched by malicious insiders, who are authenticated and already part of the system. The most effective solution is to implement a misbehavior detection system that monitors and analyzes the data sent by authenticated vehicles and reports potential unusual behaviors. Researchers addressed the implementation of V2X mis-behavior detection system while assuming V2V communications [START_REF] Van Der Heijden | Survey on misbehavior detection in cooperative intelligent transportation systems[END_REF]. Their proposed solutions are critical; yet they are not suitable for V2N due to the potential possibility of a vehicle exhibiting normal behavior on V2V while misbehaving on V2N. To the best of our knowledge, none tackled the protection of V2X application servers in a 5G V2N environment against large-scale data manipulation attacks launched by authenticated misbehaving vehicles.

These attacks can result in significant consequences.

Among the numerous threats that we can encounter, position data integrity is especially crucial due to its central role in various ITS applications, including real-time traffic information exchange, advanced driver assistance systems, and autonomous driving. The accuracy and integrity of position data are of paramount importance. During a position falsification attack, the attacker manipulates transmitted position data, creating a deceptive representation of the vehicle's actual location. This can lead to a range of issues, from minor disruptions in traffic flow to significant road accidents. For instance, a vehicle that inaccurately declares its presence in a designated lane or at a specific geographical position may prompt unnecessary evasive maneuvers by other vehicles, potentially resulting in traffic disturbances or even collisions.

Therefore, the detection and prevention of such attacks are critical to ensure the safety and efficiency of V2X communications. However, the detection of position falsification attacks is a complex task that requires sophisticated techniques and systems. Traditional security measures, such as cryptography techniques, are not sufficient to detect these attacks as they can only verify the authentication of the sender but not the trustworthiness of the message content.

. Research Motivation

Considerable academic research has been dedicated to the analysis of misbehavior detection in V2V communications. These studies made notable contributions to improve the security of Vehicular Ad-Hoc Network (VANET) through the detection and elimination of misbehaving nodes. However, these solutions do not monitor V2N traffic, therefore a significant gap exists within misbehavior detection for V2N communications, specifically within the domain of 5G networks. 

V2N communications play

. Research Objectives

The main objective of this work is to investigate innovative solutions for enhancing the security of V2X communications within 5G networks. This thesis focuses specifically on the development and evaluation of misbehavior detection systems capable of detecting and mitigating position falsification attacks in 5G V2N communications. The objectives of the investigation can be further specified as follows:

O1: Design and implement a novel misbehavior detection system, coupled with the 5G network, capable of detecting and preventing position falsification attacks in 5G V2N communications. This system will take profit from machine learning techniques to identify anomalies in position data and detect possible attacks. Compatibility with 3GPP 5G V2X architecture specifications will ensure the system's applicability in real-world scenarios.

O2: Investigate the feasibility of a collaborative approach to V2X misbehavior detection. This study will investigate how cooperation between edge network nodes can improve the performances of the malicious behavior detection system. The collaborative system will be implemented to protect V2X application servers in the 5G edge network, thereby enhancing the security of V2X communications.

O3: Investigate federated learning for V2N misbehavior detection in 5G edge networks. Federated learning is an approach to machine learning that enables the collaborative training of models across multiple decentralised devices or servers containing local data samples without sharing the data. This research will investigate how federated learning can be implemented in 5G edge networks in order to improve the scalability of the misbehavior detection system.

. Contributions

To address the aforementioned problematic, we shared our three contributions in the conference papers below: Furthermore, we had the opportunity to contribute to the European project SARWS [START_REF] Sarws | Sarws project[END_REF]: real-time location-aware road weather services composed from multi-modal data. We led Task 3.4 of the project, titled "Security of V2X communications and applications". It was a collaborative effort between multiple academic and industry partners to generate Deliverable D3.4, which is a technical report on the security aspect of the project.

C1: H.

. Thesis Outline

This thesis is divided into six chapters, organized as follows:

Chapter 

. ETSI ITS Architecture

To better understand our solution architecture detailed in Chapters 3, 4, and 5, it is necessary to give insights into the ITS station reference architecture, the ITS security architecture defined by ETSI, and the 5G V2X architecture proposed by 3GPP. We will also discuss in this chapter the state-of-the-art of V2X misbehavior detection.

. ITS-S Reference Architecture

Several standard organizations are working on the development of ITS standards. While their published standards are generally similar due to harmonization efforts, they might have minor differences to comply with certain legal or technical requirements. Within the framework of our work, we will focus on the standards developed by ETSI and 3GPP.

An ITS Station (ITS-S) is a communication device that participates in an ITS network. ITS-S can be part of an OBU on a vehicle or a pedestrian mobile equipment, an RSU, or an ITS application server.

The ITS-S protocol stack, depicted in Figure 2.1, encompasses six layers, four horizontal layers: ITS Applications Layer, Facilities Layer, Networking and

Layer facilitates the collection of information from the surrounding environment and sharing them with multiple ITS applications that might need them.

Besides controlling session management, the Facilities Layer also specifies the messages format and their sending frequency, e.g. ETSI's Cooperative Awareness Messages (CAM) [START_REF] Etsi | Intelligent transport systems (its); vehicular communications; basic set of applications; part 2: Specification of cooperative awareness basic service[END_REF] and Decentralized Environmental Notification Messages (DENM) [START_REF] Etsi | Intelligent transport systems (its); vehicular communications; basic set of applications; part 3: Specifications of decentralized environmental notification basic service[END_REF] are two essential basic messages used for road safety defined at the Facilities Layer.

CAM messages are periodically sent by the ITS-S to share its position, velocity, and heading at different frequencies ranging between 10 and 100 milliseconds, depending on multiple predefined factors.

DENM messages are used to broadcast and notify about certain road events, like accidents, upcoming hazard, slippery road, or traffic jam, etc.

The Facilities layer provides other application-support services such as time-stamping and geo-stamping of V2X messages, which are essential for ensuring the integrity and relevance of the messages. Additionally, this layer manages the publish/subscribe mechanism for known data objects, enabling ITS applications on higher layers to process LDM data.

. Networking and Transport Layer

The Networking and Transport layer is positioned immediately below the Facilities Layer. As the name implies, this layer combines both Transport and Network layers of the OSI reference model.

Multiple communication protocols can be utilized within this layer. Notably, Basic Transport Protocol (BTP) [START_REF] Etsi | Intelligent transport systems (its); vehicular communications; geonetworking; part 5: Transport protocols; sub-part 1: Basic transport protocol[END_REF] and GeoNetworking [START_REF] Etsi | Intelligent transport systems (its); vehicular communications; geonetworking; part 4: Geographical addressing and forwarding for point-to-point and point-to-multipoint communications; sub-part 1: Media-independent functionality[END_REF] are non-IP protocols specifically designed for ITS, serving safety applications and timecritical local broadcasts. Additionally, standard protocols such as TCP [START_REF]Transmission Control Protocol[END_REF] and UDP [START_REF]User Datagram Protocol[END_REF] over IPv6 [START_REF] Deering | Rfc 8200: Internet protocol, version 6 (ipv6) specification[END_REF] are employed for non-time-critical end-to-end communications.

It's worth noting that standard groups selected non-IP solutions for safety applications, even though IP communications could have been equally effective.

. Access Layer

The Access Layer encompasses both the Data Link and Physical Layers in the OSI reference model. This layer focuses on the wireless communication aspects, including channels, Quality of Service (QoS), access mechanisms, and

. Security Layer

The second vertical layer is the Security Layer. It is in charge of enforcing trust and privacy, through certificates management, encryption keys, and synchronizing the change of pseudonyms and identifiers across the horizontal layers.

For instance, when a vehicle decides to change its pseudonym certificate, the station ID, IP and MAC addresses have to be changed at the same time to eliminate simple correlations and inference attacks.

To standardize secure session establishment, International Organization for Standardization (ISO) created ISO 21177 standard [START_REF] Iso | Intelligent transport systems -ITS station security services for secure session establishment and authentication between trusted devices[END_REF], which defines the specifications and procedures for secure ITS stations communications and access control; it is also compatible with both ETSI vehicular certificates [START_REF] Etsi | Intelligent transport systems (its); security; security header and certificate formats; release 2[END_REF] and IEEE 1609. The security services provided by the Security Layer are spread across all the horizontal layers, their placement is depicted in Figure 2.4, and they can be categorized as follows:

• Enrollment services: manage the enrollment credentials with the EA.

• Authorization services: manage the authorization tickets with the AA.

• Accountability services: record incoming and outgoing messages for accountability purposes.

• Identity management services: supports simultaneous change of communication IDs (pseudonym certificate, station ID, network ID, MAC address).

• Security Association management services: establish secure communications between ITS stations.

• Integrity services: calculate, insert, and validate checksum values.

• Replay protection services: verify the consistency of messages by including and verifying their timestamps and sequence numbers.

• Payload plausibility validation service: determines the reliability of information derived from an incoming communication.

• Reporting service: reports suspicious activities to ITS infrastructure.

• Remote management services: allow ITS infrastructure to remotely manage the transmission capabilities of a misbehaving ITS station.

. V2X Communications in 3GPP

Local V2X messages in C-V2X are primarily transmitted over the sidelink, also called the PC5 interface, which utilizes short-range direct communication in the 5.9 GHz [33] frequency band. This ensures low latency and high reliability, making it ideal for safety-critical applications like collision avoidance.

Similarly, the Uu interface can be used to transmit V2X messages through the network, which can provide vehicles with a wider range of communication compared to PC5. However, as depicted in Figure 2.5, this requires the support of a network-hosted V2X Application Server, and might introduce delay.

• Medium Access Control (MAC) [38] sublayer is responsible for multiplexing, scheduling information reporting, and error correction.

• On the control-plane, signaling protocols may include the following:

• Non-Access Stratum (NAS): It is responsible for the establishment, management, and release of end-to-end connections, including mobility management, security procedures, and user data transmission between the UE and the core network.

• Radio Resource Control (RRC): It is responsible for the configuration, management, and release of radio resources between the UE and the network. This includes processes such as broadcast of system information, connection establishment, handovers, and re-configurations.

• PC5-Signaling (PC5-S): The protocol used for the control plane signaling over the PC5 reference point for the secure layer-2 link.

. V2X Architecture in 3GPP

2.2.1.1 . 3GPP Release 14 where the availability of cellular network infrastructure might be compromised.

2. Replacing legacy public safety communication used by public authorities, like police, ambulance and firefighters.

3. Offloading traffic from cellular network in a crowded environment like a stadium or concert.

As direct communication between vehicles is also required in V2X, D2D

and the sidelink fulfill many of the requirements for the basic use cases of V2X communications which are focused on road safety and traffic management.

To improve reliability, the vehicles are pre-authorized by the service provider to utilize the PC5 interface to communicate with each others, even when they are "out of coverage". Which means that the vehicles can still communicate and exchange V2X messages despite the absence of the cellular network and the base stations.

. 3GPP Release 15

In 3GPP Release 

. 3GPP Release 16

In order to meet the strict delay, reliability, and throughput requirements Together, these network components create a robust framework to support the V2X service within the 5G ecosystem.

b) 5G User-Plane

The 5G user-plane consists of: 

. 3GPP Release 16

NR-V2X Sidelink security (NR-PC5 interface): Starting with 3GPP release 16, access layer confidentiality and integrity protection are supported on the side-link, enabling optional encryption for V2V, V2I, and V2P unicast communications. However, encryption of groupcast and broadcast communications is not defined in release 16, because these communication types are mostly used for road safety purposes where confidentiality is not required.

The key used to protect local V2X unicast communications is called K N RP (New Radio PC5), and the key hierarchy is depicted in Figure 2.12. The procedures to establish secure unicast direct communication and encrypt user plane data on the access layer between two NR-V2X-enabled vehicles on the PC5 interface are depicted in Figure 2.13.

Uplink/Downlink security (NR-Uu interface):

The main advantage of 5G Authentication and Key Management (5G-AKA) over EPS-AKA is that the user's permanent identifier Subscription Permanent Identifier (SUPI) is sent encrypted and never in its clear text form. In 5G System (5GS), cipher algo-the network and achieve faster authentication/re-authentication for vehicles.

Based on the LuST scenario [START_REF] Codeca | Luxembourg sumo traffic (lust) scenario: 24 hours of mobility for vehicular networking research[END_REF], van der Heijden et al. created VeReMi [START_REF] Van Der Heijden | Veremi: A dataset for comparable evaluation of misbehavior detection in vanets[END_REF],

a publicly accessible dataset of V2X attacks. The dataset was generated using the vehicular network simulators SUMO [START_REF] Lopez | Microscopic traffic simulation using sumo[END_REF] and Veins [START_REF] Sommer | Bidirectionally Coupled Network and Road Traffic Simulation for Improved IVC Analysis[END_REF]. The dataset contains the tracks of both normal and misbehaving vehicles, the latter engage in five distinct position falsification attacks in V2V. The dataset was utilized by the authors to compare various plausibility checks.

In [START_REF] Kamel | Simulation framework for misbehavior detection in vehicular networks[END_REF] They proved that the Random Forest and Ensemble models outperformed the related strategies.

In [START_REF] Bißmeyer | Central misbehavior evaluation for vanets based on mobility data plausibility[END_REF], Bißmeyer et al. proposed a centralized misbehavior detection system for VANETs. This system receives and analyzes misbehavior reports sent by network nodes upon the detection of an incident. Based on the plausibility of the data received in these reports, the centralized system makes the final decision whether the reported vehicle is considered as behaving correctly or not. The proposed system employs a Bayesian network to calculate the probability of misbehavior based on the reported data, and it is shown to be effective in detecting various types of misbehavior attacks in simulations.

In [START_REF] Gyawali | Misbehavior detection using machine learning in vehicular communication networks[END_REF], Gyawali et al. proposed a misbehavior detection model that runs locally on vehicles, and consists of two main components: a misbehavior detection system for position falsification attacks, and a false alert verification scheme which protects against false alert attacks. They used VeReMi dataset for position falsification, however, they generated their own private dataset to simulate false alert attacks.

In [START_REF] Kim | Reliable detection of location spoofing and variation attacks[END_REF] The encoder projects the input data to a lower dimensional space, and the decoder restores the lower dimensional representation to the output in the input dimensional space. The auto-encoder is then trained to minimize the reconstruction error while using only normal behavior data. After that, the model can then be leveraged to classify normal and abnormal data based on a pre-defined error rate threshold.

In [START_REF] Lv | Misbehavior detection in vehicular ad hoc networks based on privacy-preserving federated learning and blockchain[END_REF] 

. Conclusion

This 

. Introduction

In the near future, vehicles will leverage 5G to communicate with each others and to access C-ITS applications hosted in the cloud. The V2X market is expected to rapidly grow, and the number of C-ITS service providers and services will increase. Most service providers will leverage V2N communications to provide various services to vehicles, like centralized road hazard notifications, traffic efficiency, weather alerts and forecasts, pollution meters, and even entertainment services. Securing these V2N-based services is an additional challenge which has not been deeply addressed yet.

In this chapter, we propose and implement a novel misbehavior detection system, compliant with 3GPP 5G V2X architecture specifications. It uses machine learning techniques, to detect and prevent position falsification attacks that might occur during V2N communications, protecting, hence, V2X application servers. When an abnormal position is detected, fast and reactive countermeasures against the sending vehicle are taken in collaboration with the 5G core network, to stop the attack.

. Problem Statement

While a vehicular PKI system is essential to protect against external threats, other approaches should be considered to mitigate attacks launched by malicious insiders, whom are authenticated and already part of the system. The most effective solution is to implement a misbehavior detection system. It monitors and analyzes the data sent by authenticated vehicles and report potential unusual behaviors. Various papers addressed the implementation of V2X misbehavior detection system adapted for V2V communications. However, none of the existing studies have addressed the issue of protecting V2X application servers in a 5G V2N environment from data manipulation attacks initiated by authenticated misbehaving vehicles.

For instance, an ITS service related to weather and pollution will highly rely on the accuracy of the data, measurements, and their respective positions reported by vehicles. A misbehaving vehicle, whether intentionally or unintentionally, sending incorrect positions will contaminate the database used in calculations and forecasting. Consequently, the ITS service provider's business might be negatively impacted. In severe cases, the amount of contaminated data might affect the functionality of the ITS service to an extent where it becomes inaccurate, irrelevant, or even unusable. In such a scenario, the loss of users' trust in the service will occur, and the data manipulation attack might be seen as a form of DoS attack. In addition, it is important to note that these types of attacks have the potential to target safety-related services, potentially resulting in significant consequences.

In this chapter, we address the challenge of detecting malicious vehicles that behave normally in V2V but manipulate positions during V2N communications in a 5G network environment to attack V2X application servers. Note that the position manipulation attacks addressed in this chapter correspond to the five attack types described in VeReMi dataset [START_REF] Van Der Heijden | Veremi: A dataset for comparable evaluation of misbehavior detection in vanets[END_REF], as depicted in Fig-

• Detection Function (DF) which is responsible for real-time analysis and monitoring of V2X traffic packets on the user-plane. Its functionality is detailed in depth in Section 3.4

• Reporting Function (RF) integrated within the 5G core network controlplane to allow telecommunications service providers and legal authorities to revoke the access of reported malicious vehicles and stop the attack.

The data flow in an end-to-end V2N scenario in a 5G environment, where multiple vehicles are sending position information to a V2X application server hosted in the public domain is as follow:

1. The traffic generated by the vehicles is transmitted to the 5G base station using NR radio over the Uu interface.

2. The gNB encapsulates the data using the GPRS Tunnelling Protocol (GTP)

protocol, and tunnels it toward the UPF over the N3 interface. To handle internal user-plane routing, telecommunications service providers by adding GTP-U headers to all traffic crossing the N3 interface.

3. Finally, the PDU Session Anchor-UPF (PSA-UPF), which terminates a PDU session and has a direct connection to the public/private domains, removes the GTP-U header before forwarding the traffic to the V2X Application Server in a normal TCP/IP encapsulation over the N6 interface.

To implement our security application, the UPF is configured to forward the V2X traffic specific to the protected V2X service to the DF. The latter will analyze the traffic in real-time, before forwarding it to the V2X AS. When an attack is detected, the DF will notify the RF, which can initiate the countermeasure procedure to stop the attack. Alternatively, the UPF can be configured to duplicate the data it sends to V2X AS and send a copy of it to the DF.

In Figure 3.3, we present a high-level end-to-end workflow of the countermeasure that our security application initiates if an attack is detected. The DF is continuously analyzing V2X traffic as it flows from vehicles toward the V2X AS.

. Proposed AI-based Detection

Misbehavior detection can be achieved through different techniques. In [START_REF] Van Der Heijden | Survey on misbehavior detection in cooperative intelligent transportation systems[END_REF], the authors classified these techniques into two categories, node-centric and data-centric. Essentially, node-centric misbehavior detection places a higher importance on evaluating the trustworthiness of the nodes inside the network. In contrast, data-centric misbehavior detection focuses on guaranteeing the integrity and authenticity of the data, which leverage the use of plausibility checks. They are simple and quick verification methods used to determine whether data or values are reasonable and likely to be accurate.

They do not perform extensive validation, but rather play the role of initial filters to identify errors or anomalies. In [START_REF] So | Integrating Plausibility Checks and Machine Learning for Misbehavior Detection in VANET[END_REF], the authors proved the benefit of utilizing Machine Learning combined with plausibility checks to improve misbehavior detection results.

In this section, we will first summarize the general concept of Machine

Learning and its different applications, before presenting the details of our proposed detection model.

. Machine Learning

Machine learning is a branch of Artificial Intelligence (AI) that is centered on utilizing data and algorithms to replicate the learning process seen in humans, with the aim of progressively enhancing its accuracy.

Machine Learning has received significant attention and has had a significant impact in several businesses and academic domains. It focuses on the advancement of algorithms to acquire knowledge and make decisions or forecasts by leveraging data, rather than depending on explicit programming.

Essentially, instead of being coded with explicit instructions, these algorithms undergo training using extensive datasets, enabling them to independently generate predictions or make classifications when given new data. In light of the growing field of big data, machine learning presents an opportunity for recognizing significant patterns and gaining valuable insights from this extensive data store that is generally difficult for the human brain to detect. Its potential applications span a wide range of fields, including health diagnostics and financial predictions, among many others.

The main machine learning algorithms can be categorized as follows:

• Supervised learning is the most common form of machine learning, it is mainly used for classification and regression applications. If the new position sent by the vehicle falls under the 95% CI on both directions, the score of the new position is set to 0, meaning that the position is plausible. However, if the new position is determined to be outside 95% CI but within 99% CI, then the score is increased by 1 per direction. Lastly, if the new position is outside the 99% CI, the score is increased by 2 per direction.

Therefore, the score range of location plausibility check is between 0 and 4, where 4 means that the position received is unlikely to be plausible.

Movement Plausibility Check (MPC) compares the displacement with velocity. If the calculated displacement is 0 while the average velocity is not 0, the score is set to 1, which means that the vehicle is not reporting a change in position despite its movement. Otherwise, the score is set to 0.

Plausibility checks can be used on their own to detect misbehaviors. However, combining plausibility checks results with quantitative information about the vehicle's movement and behavior, to use them as input features for machine learning can enhance the detection results.

As we are following a data-centric approach, we depend on the data itself and its semantic to perform the detection. In other words, we aim to evaluate if the received data is relevant and thus possible/plausible.

We propose a detection algorithm which enhances the algorithm proposed in [START_REF] So | Integrating Plausibility Checks and Machine Learning for Misbehavior Detection in VANET[END_REF], by adding a new plausibility check called On-Road Plausbility Check (ORPC), in order to improve detection performance. We recall that in [START_REF] So | Integrating Plausibility Checks and Machine Learning for Misbehavior Detection in VANET[END_REF] the authors used supervised machine learning with input features LPC, MPC, and the 4 quantitative values to classify the labeled data in VeReMi dataset. Our algorithm falls under the same supervised category. However, we use an unsupervised learning method to compute the score of our proposed plausibility check.

ORPC verifies whether the new received position is on the road or not.

To achieve this, it leverages historical location data sent by vehicles which passed by the covered area earlier. Historical location data consist of a set of latitudes and longitudes recorded without any vehicle identification or labels.

They designate normal positions where vehicles are expected to be. Therefore, when a new position is received, we can calculate how close it is to the nearest normal position. If it's relatively close, the new position is considered plausible. If not, it is considered implausible.

As the historical data is not labeled, we cannot leverage it using supervised machine learning. Instead, we propose to use an unsupervised machine learning approach, namely, anomaly detection (also called outlier detection).

Anomaly detection is the identification of data points that do not conform to the expected pattern of a given group. One of the anomaly detection tech-Our algorithm, depicted in Figure 3.4, uses seven input features. Four features use quantitative information which are the first, second, third, and fourth input features. Three plausibility check results are the fifth, sixth and seventh input features:

1. Difference between calculated average velocity based on displacement and time and the predicted average velocity based on reported velocity and time in the X direction.

2. Same as (1) but in the Y direction.

3. The magnitude of features ( 1) and (2).

4. Displacement based on calculated distance vs. predicted displacement based on average velocity.

5. Location Plausibility Check (LPC) result.

6. Movement Plausibility Check (MPC) result.

7. On-Road Plausibility Check (ORPC) result.

. Performance Evaluation

. 5G network environment and dataset

In order to evaluate the performance of our proposed solution, we emulate a 5G Standalone (SA) network, then implement our security application, and finally integrate it with the 5G architecture. We utilize VeReMi-ML dataset to evaluate the proposal.

The dataset is split into two sub-datasets, one for training and one for testing, using four-to-one (4:1) size ratio. Our scheme runs in four phases: During the first phase, all features including plausibility checks' scores and quantitative information are calculated. In the second phase, the machine learning model is trained using the calculated values in the previous step as input. In the third phase, a performance baseline is set by using the trained model to evaluate an unused portion of the training dataset. In the fourth phase, the real performance is measured by evaluating the results produced by the trained model using the test dataset that was never used during previous phases.

For 5G emulation, we use EstiNet [94] to build our evaluation environment. EstiNet added a 5G version to its simulator which includes UE and gNB simulation, as well as 5G core emulation imported from free5GC [START_REF]free5GC Project[END_REF]. EstiNet includes all the major functions of 5GC CP such as AMF, SMF, PCF, AUSF, NSSF, UDM, UDR, and NRF. Each function runs on its own docker instance, making it compliant with the microservices architecture. EstiNet also includes the UP components. First, the UE and RAN simulation, running on the same node, both registering with the core network. Second, the emulated UPF function, controlled by the SMF, connects the UEs to the DN where the V2X application server is hosted. EstiNet also supports integrating custom-built applications through docker images, which is essential to integrate our proposed solution.

Using Estinet, we built a topology corresponding to the proposed architecture in Figure 3.2. Our security application has two components, the misbehavior detection function (DF) and the reporting function (RF). We developed the detection function using python and scikit-learn [START_REF] Pedregosa | Scikit-learn: Machine learning in python[END_REF], while the reporting function was developed in C. Then, we transformed our application into a docker image, which runs as an Application Function (AF) connected to the 5G core network.

As Free5GC does not implement all 3GPP procedures, we could not implement the countermeasure workflow as planned. Instead, we use a workaround to disconnect the attacker's PDU session using the upCnxState deactivation procedure described in [58]. While this workaround should not be used in actual 5G implementations, it produces a similar effect of disconnecting the PDU sessions of reported vehicles during the simulation.

We use the recorded traces of both normal and false positions in VeReMi-ML dataset to simulate traffic sent by vehicles to the V2X application server.

As the dataset was originally created for VANET and V2V scenarios, we had to perform some modifications to fit our V2N environment. The two main customization are:

• Arrange by sender: The original dataset is arranged based on sender/receiver pair. The first modification we made is to merge all the messages of the dataset, arrange them based on sender ID and sending time, and then filter and remove duplicate messages. In doing so, we create lists of all the messages sent by each sender across the map. We also assume full 5G coverage area and message visibility.

• Last message assessment: The last two messages received from the same sending vehicle are directly evaluated against the machine learning model. Note that in the original algorithm, the evaluation is vehiclebased. It means that it occurs only when the receiving vehicle stops receiving messages from the sending vehicle. This change helps making real-time predictions while limiting the number of cached positions to only one, preserving the vehicle's path privacy.

. Performance metrics

The performance of the models is determined by the number of True Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN) produced by the models. Which can also be represented using the four formulas below:

Accuracy = T P + T N T P + T N + F P + F N (3.1)
Accuracy is the ratio of correctly classified instances to the total number of instances.

P recision = T P T P + F P (3.2)

Precision indicates the ratio of correctly predicted attacks to the overall detection predicted by the model.

Recall = T P T P + F N (3.3)
Recall, also called detection rate, represents the ratio of correctly predicted attacks to the overall actual attacks.

We recall that a high precision implies a small number of false positives.

And high recall suggests fewer false negatives, which also translates to an increased detection rate. Consequently, a performing model is characterized by high precision and high recall.

F 1 -score = 2 × P recision × Recall P recision + Recall (3.4)
The F1-score is not a distinct metric; rather, it combines precision and recall into a single value.

. Evaluation and Results

We evaluate our proposed solution on two stages:

• Offline analysis: using Python and Scikit-learn to numerically evaluate the performance of different ML classification models directly on the dataset. During the offline analysis stage, we compare the performances of multiple machine learning algorithm on the dataset, including: Logistic Regression, Decision Tree, Random Forest, SVM, KNN, Naïve Bayes, Ensemble: Voting, Bagging, Boosting, and Stacking, and finally Neural Network.

• Real-time scenario: using the 5G network emulator running in a simulated scenario to analyze the vehicles' V2N traffic in real-time while it is transmitted over the 5G network.

. Offline Analysis

In the offline evaluation, the dataset is split into two main sets. An 80 Then, it is used to evaluate the test set which forms 20 percent of the original dataset.

Table 3.1 compares the performances of several ML algorithms, with and without using ORPC, per attack type and when all of the attacks are combined.

Six different machine learning models, per algorithm, are trained using the training dataset. Five models trained uniquely with one specific type of attacks. And the sixth model is trained using all the five types of attacks. The first five models are used for analysis purposes only, because in a real-world scenario, the model needs to be trained on all of the attacks, like the sixth model. After the models training using the training dataset, the models are used to locally evaluate (offline) the messages recorded in the test dataset.

The results are generated by comparing each message prediction to its respective label in the dataset, and calculating the metrics described in the previous section.

Analyzing the results in Table 3.1, starting with attack type 1, the Random Forest model achieves the highest precision, while KNN outperforms it in recall and the overall F1-score.

Concerning attack type 2 results, all of the algorithms performed poorly before adding ORPC. This is due to a high bias problem, where the input features are not enough to predict the correct classification of this kind of attacks.

Therefore, after adding ORPC as an additional input feature, the detection results are considerably enhanced. All of the algorithms perform well with a slight edge to SVM in precision, Logistic Regression, Ensemble Stacking and Neural Network in recall and F1-scores.

The nature of attacks type 4 and type 8 includes randomization, therefore, they are considered as the easiest attacks to detect. All the machine learning algorithms were able to detect all of the attacks.

Due to the nature of attack type 16, the labels used in the dataset for messages are not consistent; they do not reflect the actual state of the sent message, instead, the label 16 is assigned to all messages sent by an attacking vehicle whether the vehicle is performing the attack or behaving normally.

Therefore, the detection performance on attack type 16 seems to be the lowest. Under these circumstances, the best performing algorithms on precision are Random Forest and Ensemble Bagging. Naïve Bayes scores slightly better than the rest on recall, and on the overall F1-score, which also shows a good performance from SVM.

In summary, we notice similar performances between most of the machine learning algorithms, with very slight advantage to Random Forest and Ensemble learning algorithms. Also, adding ORPC shows it effectiveness especially in detection of attack type 2, which affects the overall performance, improving the precision by 3 percent, the recall by 15 percent, and F1-score by 11 percent. 

. Real-Time Evaluation

After the offline analysis, we evaluate the online scenario using the 5G emulator. We define a custom scenario with 171 simulated V2X vehicles, 32 benign and 139 misbehaving, sending more than 7500 messages as V2N traffic which are distributed as shown in Table 3.2. As Random Forest model performed related well during the offline stage, we use it to analyze the live traffic during the online scenario.

The online results are collected in two different configurations of the security application:

• Detection mode: the attackers are neither reported nor disconnected, and the objective is to expose the security application to the maximum amount of messages and record the detection performance on the messagelevel.

• Prevention mode: in order to protect the V2X application server, the security application will report and request the disconnection of a detected attacker once it reaches a pre-defined attack threshold, and the results are recorded in terms of number of disconnected vehicles.

Also, we run each mode three times, using three models: it estimates an abnormal/manipulated position. If an attack is predicted, the attack counter of that vehicle ID is incremented. In prevention mode, when the attack counter reaches a previously set reporting threshold, the vehicle ID and its related information are reported to the core network to revoke the attacking vehicle's connection to the V2N service. The reporting threshold helps tuning the sensitivity of the security application.

Detection Mode

The results of six simulations are depicted in Figure 3 As there is no remarkable difference in precision between the models, we compare their recall performance only at different reporting thresholds. As depicted in Figure 3.7, using the lowest reporting threshold value of 1, models (i) and (ii) scored a detection rate of 98.56 percent, while model (iii) scores slightly better at 99.28 percent.

The importance of using ORPC is demonstrated starting with reporting threshold value of 2, where both models that uses the additional plausibility check (models ii and iii) achieve approximately 5 percent higher than the model that does not use it (model i). In conclusion, using ORPC not only improves the message-level detection but also the vehicle-level detection rate, especially when the detection system's threshold and sensitivity level are tuned, hence, improving the system's flexibility and reliability. 
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. Introduction

Within the complex framework of V2X communications, the integrity and correctness of transmitted data emerge as important concerns, especially in the field of 5G networks. While the previous chapter delved into the foundational aspects of integrating a V2X misbehavior detection for V2N communications within the 5G system architecture, this chapter focuses on bringing the solution to the edge network to improve scalability and meet the low-latency requirements of some V2X applications while exploiting the potential of a collaborative approach between edge detection nodes.

The rationale behind a collaborative approach comes from the concept of leveraging the feedback of a previous edge node on a specific vehicle to improve the likelihood of a correct classification made by the current node.

In this chapter, we present our novel V2X edge misbehavior detection system that utilizes machine learning techniques in compliance with 3GPP 5G V2X architecture specifications. Our proposed system aims to detect and prevent position falsification attacks that may occur during V2N edge communications, thus ensuring the authenticity of data received by V2X application servers. The misbehavior detection application instances are implemented in the edge network, where they are interconnected and can collaborate to improve detection accuracy. We evaluate the performance of our system to demonstrate its effectiveness in detecting attacks.

. Problem Statement

Traditional V2V misbehavior detection techniques might eliminate malicious nodes on V2V and V2N when these nodes are misbehaving on both PC5

and Uu interfaces. However, it is possible for a vehicle to behave normally on V2V while acting maliciously on V2N. This could potentially result in V2V misbehavior detection systems failing to detect and mitigate all attacks, thereby necessitating the implementation of additional solution.

As 5G V2X networks enable the deployment of low-latency V2N services in the edge network, it is important to ensure that misbehaving vehicles cannot compromise the edge-hosted services. While standalone detection nodes within an edge network can detect and respond to anomalies, their isolated perspectives might limit their detection capabilities. This limitation becomes even more evident when considering sophisticated attacks that may exploit the nature of decentralized V2X communications.

Throughout this chapter, our main objective is to address the following crucial question: How can a collaborative approach in V2X misbehavior detection within the 5G edge network enhance the overall security of the system?

While individual nodes possess localized data and insights, collaboration can potentially harness an enhanced view of the network, leading to more accurate and timely detection of misbehaviors.

Note that, in this chapter, we address the five types of position manipulation attacks that were identified in the VeReMi dataset [START_REF] Van Der Heijden | Veremi: A dataset for comparable evaluation of misbehavior detection in vanets[END_REF], which are the same attack types addressed in Chapter 3, and depicted in Figure 3.1. We propose a V2X misbehavior detection system for the 5G edge network which utilizes two advanced machine learning models to improve detection accuracy.

I-UPF. For each C-ITS application instance, a misbehavior detection function

(DF) instance is created to protect the application as shown in Figure 4.1.

Our proposed misbehavior detection system is considered as an extension of the proposed system in the previous chapter, and it consists of two main components:

• Several instances of interconnected Detection Functions (DFs): they perform real-time analysis and monitoring of V2X traffic packets on the UP.

Each DF instance will analyze the V2X traffic flowing between vehicles and local V2X AS. DF instances can communicate and exchange detection information related to vehicles moving between their respective coverage areas.

• A single instance of Reporting Function (RF): integrated with the 5G core network control-plane to enable telecommunications operators or legal authorities to revoke access of the reported malicious vehicles and stop the attack. It acts as an Application Function (AF), which controls the application's traffic flows by interacting with the 5G core network using 3GPP standard API.

. Collaborative Proposal: AI-based Detection

We propose two machine learning models: Standalone and Collaborative, which we will refer to as S.A. and Collab., respectively. The S.A. model is the same model used in Chapter 3 which includes seven features, while the Collab. model provides an improvement over the previous model by adding an eighth feature. To predict if the vehicle's behavior is benign or malicious, both models utilize the six input features proposed in [START_REF] So | Integrating Plausibility Checks and Machine Learning for Misbehavior Detection in VANET[END_REF]. We recall that these feature are the following.

1. The difference between calculated average velocity based on displacement and time and the predicted average velocity based on reported velocity and time in the X direction.

2. Same as feature (1) but in the Y direction.

3. The magnitude of features ( 1) and ( 2).

An Example is depicted in Figure 4.2, where we can notice that when a new vehicle enters area 1 and it's not previously known by any other neighbor area, the S.A. model is selected to analyze this vehicle's traffic because the previous attack ratio cannot be determined. Once this vehicle moves to area 2, the attack ratio calculated in area 1 will be transmitted and used as an input to the Collab. model instance of area 2. When this car moves from area 2 to area 3, the new attack ratio predicted by the Collab. instance in area 2 will serve as an input feature to the next Collab. instance of area 3, and so on.

. Performance Evaluation

To evaluate the performance and efficiency of our proposed scheme, we utilize two evaluation approaches:

• Offline analysis which numerically evaluates the VeReMi-ML dataset using Python and Scikit-learn [START_REF] Pedregosa | Scikit-learn: Machine learning in python[END_REF], to compare the initial performance of the standalone and collaborative models.

• Real-time scenario using free5GC [START_REF]free5GC Project[END_REF] 5G network emulator, UERAN-SIM [97], and generating new attacks in real-time, by utilizing a subset of VeReMi-ML dataset to create new traffic sent by vehicles to the V2X application servers.

We leverage Accuracy, Precision, Recall, and F1-score metrics to evaluate the models. The formulas of these metrics are detailed in Section 3.5.2. In the previous chapter, we established that RF algorithm is one of the top-performing algorithms on the dataset. Therefore, we employ it for all the evaluation models in this chapter.

• Step 2b -S.A. prediction and attack ratio calculation:

The S.A. model performs its evaluation of Y 1 . The attack ratio of a vehicle is calculated, it is the number of predicted attack messages by S.A. to the total number of predictions.
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Precision Area 0.9905 1.0000 0.9929 1.0000 0.9932 1.0000 0.9931 1.0000 0.9905 1.0000 0.9984 1.0000 Area 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 The attack types that exhibited the most notable enhancements are attack type 1 and attack type 16. The primary factor contributing to the sub-optimal performance of attack type 1 lies in our real-time prediction approach, which takes into account only the last two messages without considering the complete trajectory of the vehicle. Consequently, when a malicious vehicle remains stationary in reality while transmitting a fake fixed position, the standalone model erroneously classifies this behavior as benign. On the other hand, the collaborative model mitigates this limitation by adding the historical behavior of the vehicle through the attack ratio feature, leading to a notable 13 percent improvement in the detection rate for attack type 1. Finally, there is a notable improvement in the detection of attack type 16, characterized by inconsistent labelling, with an increase of 9 percent.

. Conclusion

In this chapter, we propose a collaborative V2X misbehavior detection system to protect V2X application servers in the 5G edge network. To detect position manipulation attacks, we propose an improved machine learning model which leverages collaboration between detection nodes to improve performance.

Our work presents a significant step in exploring the advantages of leveraging collaboration between edge network nodes to enhance detection results. More studies are needed to explore different methods of collaboration and address more sophisticated V2X attacks. We take into account all the nineteen V2X misbehavior types included in VeReMi-extension dataset [START_REF] Kamel | Veremi extension: A dataset for comparable evaluation of misbehavior detection in vanets[END_REF], which are depicted in The attack types are the following:
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. Problem Statement

• Attack type 1 (Constant Position): The misbehaving vehicle reports the same fixed position despite its movement.

• Attack type 2 (Constant Position Offset): The vehicle adds a predetermined fixed value to its current position, resulting in the generation of a path that is parallel to the true path.

• Attack type 3 (Random Position): The misbehaving vehicle sends a random position instead of its actual one.

• Attack type 4 (Random Position Offset): The vehicle adds a random number to its true position, creating a fuzzy path.

• The next four attacks, namely Attack type 5 (Constant Speed), Attack type 6 (Constant Speed Offset), Attack type 7 (Random Speed), and Attack type 8 (Random Speed Offset), are respectively similar to the first four, the only difference is that the misbehaving vehicle alters its speed value instead of its location. This is also reflected in the four corresponding graphs in Figure 5.1 which depict speed values.

• Attack type 9 (Eventual Stop): The vehicle sends its precise location and speed information at first, but after a certain duration, it starts reporting a fake fixed position and zero speed.

• Attack type 10 (Disruptive): The vehicle replays information previously received from random neighbors to overwhelm the network.

• Attack type 11 (Data Replay): The attacking vehicle replays the information received from a specific target neighbor as its own.

• Attack type 12 (Delayed Messages): The attacking vehicle sends its old accurate movement information after a pre-defined period of time.

• Attack type 13 (DoS): The attack consists of sending accurate information at an increased frequency to flood the network.

• Attack type 14 (DoS Random): The attack is similar to DoS in terms of message frequency, however, all the values included in the messages are random and not accurate. C-ITS services requiring low latency may need to be hosted on the edge network deployed as multiple application instances. In this case, the misbehavior detection system needs to be implemented accordingly.

The proposed architecture, depicted in Figure 5.2, consists of:

• Several instances of Misbehavior Detection Functions (MDFs) distributed geographically on Edge networks.

• Federated Learning Central (FL-C) server.

• Misbehavior Reporting Function (MRF) in the central cloud coupled with the 5G core network.

• Honeypot server.

The MDFs are in charge of real-time processing and monitoring of V2N Deep learning, has emerged as a very influential domain in the field of AI. It is inspired by the structure of the human brain, particularly the neural networks that mimic brain's neurons connections. Artificial Neural Networks (ANNs) are composed of many neurons and they are capable of complex data processing, hence empowering computers to do activities that were previously believed to be within the realm of human capabilities.

A single neuron inside a neural network, as depicted in Figure 5.3, performs a computation to generate an output, which is determined by the in- In contrast, Recurrent Neural Networks (RNNs), depicted in Figure 5.6, are specifically designed to handle sequential input, rendering them well-suited for applications such as language modeling or time series forecasting.

An RNN operates on sequences of data. At each timestep t, given: get gate, and the output gate. The function of these gates is to regulate the processes of information storage, information removal, and value output in the present time step.

Given the notation:

• i t : Activation vector of the input gate at time t.

• f t : Activation vector of the forget gate at time t.

• o t : Activation vector of the output gate at time t.

• g t : Candidate value for the memory cell at time t.

• c t : Memory cell state at time t.

• h t : Hidden state at time t.

• x t : Input vector at time t.

• W : Weight matrix (subscript denotes the gate or operation it's associated with).

• σ: Sigmoid activation function.

• tanh: Hyperbolic tangent activation function.

1. Input Gate: It determines how much of the new information should be stored in the memory cell.

i t = σ(W i • [h t-1 , x t ])
2. Input Modulation Gate: This gate generates a candidate value that could be added to the state.

g t = tanh(W g • [h t-1 , x t ])
3. Forget Gate: It decides which parts of the memory cell's previous state should be discarded or retained. 

f t = σ(W f • [h t-1 , x t ])
o t = σ(W o • [h t-1 , x t ]) h t = o t × tanh(c t )
5. Memory Cell Update: The memory cell's state is updated based on the decisions made by the above gates. 

c t = f t × c t-1 + i t × g t 5 

. Performance Evaluation

This section outlines the 5G network evaluation environment specifications, dataset criterias, dataset splitting methodology, deep learning and federated learning hyper-parameters utilized in the evaluation, performance metrics, simulation results, and results discussion.

. Evaluation environment, dataset considerations, and models parameters

The assessment of performance was conducted on a modern testing plat- 20.04 as the operating system, TensorFlow 2.12.0 [START_REF] Abadi | TensorFlow: Large-scale machine learning on heterogeneous systems, Software available from tensorflow[END_REF] as the deep learning framework running on Python 3.9.16, free5GC 3.1.1 [START_REF]free5GC Project[END_REF] as the 5G core network emulator, and UERANSIM [97] as the user equipment and radio network simulator.

To enhance the privacy of vehicles in a V2V ad-hoc environment, each vehicle is assigned multiple pseudo certificates and pseudo IDs, which are frequently swapped to protect its real identity. When a pseudo ID change occurs, IP and MAC addresses are also replaced in parallel on the PC5 interface, which is the interface used for V2V, V2I, and V2P communications in C-V2X.

The intention is to protect the vehicle from being tracked by malicious peers.

However, in a 5G V2N environment, which can be considered as client-server architecture, the interface utilized is the Uu interface, and the privacy require-ments are different. To communicate on V2N, the vehicle has to pass the 5G authentication process to receive an IP address during the PDU session establishment procedure. Therefore, assuming that 5G security best-practices are followed and IP spoofing attacks are not possible, the 5G core network can always identify the source of V2N traffic and link it to a specific vehicle or UE, even if it uses multiple pseudo IDs. For this reason, our model, which intends to protect V2N traffic, analyzes the dataset based on sender IDs instead of pseudo IDs. After converting all datasets to CSV format, we appended them with the three differential features discussed in Section 5.4.2.1 (deltaTime, deltaPosition, and deltaSpeed). Then, in order to implement federated learning, we split the map into six equal geographical areas. The data size distribution between areas 1, 2, 3, 4, 5, and 6 is approximately 22%, 9%, 22% 31%, 13%, and 3% respectively. To correctly split vehicles' data between areas, we utilize the Ground Truth files provided in the VeReMi-extension dataset. They contain authentic data that would have been transmitted by the attacking vehicles if they were not malicious.

To evaluate the performance and efficiency of our proposed federated learning scheme, we compare three approaches:

• A single centralized model, trained on all data from all areas.

• Six standalone models, each trained exclusively on the subset of its respective area.

• Our proposed scheme, which consists of six federated models, each trained solely with its corresponding subset while leveraging the Federated Averaging process. To compare the models, we use Accuracy, Precision, Recall, and F1-score metrics which are detailed in Section 3.5.2.

The evaluation is conducted in two stages. The initial phase involves a numerical evaluation, wherein the models' performance is assessed offline by directly analyzing the datasets without transmitting the data through the network. The second phase involves utilizing 5GC emulation and UE simulation, wherein the data is transmitted through the 5G network and analyzed on the edge servers.

. VeReMi Extension Offline Analysis

For the numerical analysis stage, the three previously mentioned models are trained on 90% of the MixAll dataset, 10% used for validation, and the remaining 38 datasets are utilized for extensive testing. All datasets were split into six subsets, representing six areas. The results of this comprehensive evaluation are presented in Table 5.1 and Table 5.2. The table represents a weighted average aggregation of the results from all the areas. The performance of the three models was not satisfactory when tested on three attack datasets, specifically the Constant Position Offset, low density, and the two datasets related to the Eventual Stop attack.

Additionally, we can observe that distributed schemes (standalone and federated) significantly improved detection rates on Delayed Messages attacks compared to centralized model. This attack consists of sending accurate position and speed information after a time delay. It is possible that a certain vehicle has moved into a new area while reporting its old position in a previous area, which makes it easier for the distributed models to detect out-of-area positions.

Furthermore, we noticed that the areas with the lowest amount of training data, namely area 2 and area 6, performed poorly in standalone mode. Which is even more obvious with Random Position Offset and Random Speed Offset attacks. On the other hand, federated models were able to mitigate the lack of sufficient training data and greatly improve performance in these two areas due to federated averaging.

The primary outcome of this offline stage indicates that our proposed federated learning model has a slightly superior performance across all metrics. However, it is worth noting that the aim of our study is not centered on enhancing performance but rather on demonstrating the feasibility of utilizing federated learning to achieve privacy and scalability benefits without sacrificing the level of protection of C-ITS application servers. 96 Autoencoders for Zero-day Attack Detection: The use of autoencoders presents a promising avenue for detecting zero-day attacks, given their ability to reconstruct input data and identify anomalies. Leveraging their efficacy and scalability in the context of V2X security, could enable the early detection of novel threats.

. Medium-term

Real-world Implementation: Moving from theoretical models to real-world implementations and testing these systems in live vehicular networks will be a crucial step forward. It will be an opportunity to capture real-world delays, and adapt the proposed solutions accordingly.

Scalability of Detection Mechanisms: As vehicular networks grow and become more complex, the scalability of detection systems will be paramount.

Exploring scalable architectures and algorithms, especially those that can handle vast networks with minimal latency, will be crucial.

Real-world Attack Datasets: Creating new attack datasets based on recorded traces from real vehicles is very important to optimize the proposed misbehavior detection solutions for real-world scenarios.

. Long-term

3GPP Framework for V2X Misbehavior Detection System: An important milestone will be the standardization of a unified framework for V2X misbehavior detection systems in upcoming 3GPP releases.

Misbehavior Authority and 5G: The integration and standardization of 5G

V2N misbehavior detection solutions with the V2V Misbehavior Authority defined by ETSI can be an important step to eliminate vehicles misbehaving on V2N from V2V networks as well.
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  Cellular-based: The next-generation of V2X, developed by the The 3 rd Generation Partnership Project (3GPP), is coined C-V2X. It re-utilizes IEEE 1609.x standard for the upper layers, while replacing IEEE 802.11p with cellular-based radio access technologies: Fourth-generation of mobile telecommunications technology (4G) Long Term Evolution based Vehicleto-Everything (LTE-V2X) and Fifth-generation of mobile telecommunications technology (5G) New Radio based Vehicle-to-Everything (NR-V2X), which are detailed in Chapter 2.

  a vital role in the V2X communications ecosys-tem by enabling the transmission of information between vehicles and network components. The transmission of information plays a crucial role in the operation of intelligent transportation systems, facilitating functionalities such as centralized traffic management, early hazard warnings, intelligent path selection, and other services based on cloud computing. The objective of this thesis is to address this gap by studying misbehavior detection in V2N within the context of 5G networks. This work aims to leverage Artificial Intelligence (AI) technologies, specifically machine learning, deep learning, and federated learning, to propose and implement innovative systems for detecting and mitigating position falsification attacks in V2N communications.

  Physical layer (PHY), defined in [39][40][41][42][43][44][45], is positioned at the lowest level of the protocol stack. It receives the control information from Radio Resource Control (RRC) to perform coding, data modulation, resource mapping, and antenna mapping for sending or receiving the data on the physical medium.

  3GPP introduced, in Release 14 [46], the first generation of cellular V2X communications based on LTE. A new architecture is defined for V2X and it is integrated as part of Evolved Packet System (EPS) and the existing LTE-based radio communications. LTE-V2X [47] is based on the development of Device-to-Device (D2D) communications, also called Proximity Services (ProSe) [48], delivered as part of 3GPP Release 12 [49]. The essential functionality of D2D is to enable direct communication between mobile devices through the creation of a new communication interface, the sidelink or PC5, enabling traffic to be directly transferred from a device to another without transiting over a base station. The main use-cases of D2D are: 1. Providing proximity communications during disasters, like earthquakes,
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 123 of eV2X use cases, 3GPP needed to develop NR-V2X. It is considered the sec-ond generation C-V2X technology and it was released as part of 3GPP Release 16[55].A new V2X architecture based on 5GC is introduced, also, the NR-V2X[56] is defined to be simultaneously used on the sidelink with LTE-V2X. The intention is to use LTE-V2X for the basic road safety use cases, and dedicate NR-V2X to serve the advanced use cases of eV2X, due to its better performance and higher throughput. Also, one of the important features introduced with NR-V2X is the support of unicast, groupcast and broadcast communications, compared to the broadcast-only LTE-V2X. Furthermore, the Uu interface is based on NR instead of LTE providing better uplink and downlink performance for V2N services. The new 5G V2X architecture brings numerous performance improvements, including: Software-Defined Network (SDN) architecture segregates Control Plane (CP) and User Plane (UP), which can minimize the end-to-end communication delay by bringing the services closer to users. The use of micro-services and Network Function Virtualization (NFV) architectures have the potential benefit of improving performance, reliability, capacity, and availability of the control functions. Network slicing enables the creation dedicated slices for specific V2X services to optimize their performance and isolate them from the remaining services hosted by the telecommunications service provider. 4. 5GC is a Service-Based Architecture (SBA), where all functions can communicate with each other's using 3GPP-defined Application Programming Interface (API) over HTTP/2 protocol. a) 5G Control-Plane The 5GC network contains all of the control-plane functions: Access and Mobility Management Function (AMF) [57]: manages regis- tration procedures, connection mobility, and User Equipment (UE) authentication. It interacts with the Radio Access Network (RAN) to facilitate the establishment of connections between user devices and the network, hence enabling smooth transitions across various access technologies or geographical areas. The AMF obtains subscription information for V2X from the UDM. It collaborates with the PCF to provide necessary V2X service-related parameters for both the UE and the Next-Generation Radio Access Network (NG-RAN). It also aids in creating or updating user context specifically for the V2X service, hence enabling seamless service delivery. The UDM manages subscription information for V2X communication, which are stored on the UDR. The PCF is responsibile for the provision of the V2X policy and parameters to specific UEs based on their PC5 capabilities. It provisions UEs with authorization and policy parameters for V2X communication over PC5 and Uu interfaces. It also supplies the AMF with PC5 QoS parameters for NG-RAN. The NRF assists in identifying the appropriate PCF that supports the V2X service. This function helps route V2X service-related requests to the correct PCF. Lastly, V2X Application Server, which is considered an AF, handles both uplink and downlink data between UEs. It can request QoS sustainability analytics from the NWDAF through the Network Exposure Function (NEF) [67][68] for potential QoS changes in specific geographic areas. It's responsible for provisioning the 5GC and UEs with V2X communication parameters for both PC5 and Uu interfaces. The NEF further contributes by allowing the external V2X Application Server to update information related to the V2X service within the 5G network.

  chapter delved into the ETSI ITS and 3GPP V2X specifications. It detailed the ITS station protocol stack, ITS communication security architecture, ITS station security services, C-V2X communications interfaces and protocol stack, 5G V2X network architecture in 5G, 5G control-plane and user-plane protocol stacks, and C-V2X communications security. Next, the chapter presented the state-of-the-art in V2X misbehavior detection techniques proposed by fellow researchers which are focused on V2V.This highlights the the lack of solutions and standardization of misbehavior detection for V2N communications, which we address in the next chapter.
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 342 It involves the training of algorithms using labeled data, where the desired output is already known. The main objective of the algorithms is to acquire knowledge of a systematic relationship between input data and corresponding output data. Once the algorithms are trained, they possess the capability to make predictions for new inputs that they have not previously encountered. Supervised learning algorithms include a variety of methods, some of which: Decision Trees and Random Forests -Support Vector Machines (SVM) -k-Nearest Neighbors (k-NN) -Neural Networks • Unsupervised learning applications encompass clustering, dimensionality reduction, and anomaly detection. Unsupervised learning algorithms differ from supervised learning algorithms in that they are designed to handle datasets without explicit labels. However, the primary objective of these algorithms is to identify underlying patterns within the dataset, such as clusters or groups. The algorithms falling under this particular category are: Reinforcement learning is characterized by the agent's iterative engagement with its surrounding environment in order to acquire knowledge and improve performance. The agent is provided with feedback based on its behaviors, which might be in the form of incentives for correct decisions or penalties for unfavorable actions. The agent's behavior is refined over time via an iterative process that involves taking action and receiving feedback, with the aim of maximizing the cumulative reward. Reinforcement learning encompasses a range of essential algorithms and techniques, including: -Deep Q-Networks (DQN) -Policy Gradient Methods -Monte Carlo Tree Search The process of training a supervised machine learning model involves utilizing a dataset that contains predetermined input-output pairings in order to train the model on extracting certain relationships between the two. The first step involves the collection and preparation of data, whereby unprocessed data is subjected to cleaning, transformation, and division into separate sets for training and testing. The selection of an appropriate algorithm is thereafter determined according to the specific job at hand, such as classification or regression. During the training process, the model utilizes the training data to generate predictions. The difference between these predictions and the true labels is calculated using a loss function. The internal parameters of the model are modified in order to minimize the loss function, usually using optimization methods such as gradient descent. After training, the model's performance is assessed on the testing dataset. Modifications, including the tuning of hyperparameters, may be conducted in light of this assessment, prior to considering the model suitable for deployment. Proposed Model Many plausibility checks for V2X are proposed in the related work. For instance, Location Plausibility Check (LPC) utilizes i) current vehicle speed and position, ii) average acceleration, and iii) Gaussian distribution for Confidence Intervals (CIs) to predict the next vehicle position on both X and Y directions.

  percent dedicated for training and cross-validation, and 20 percent assigned as the test set. We run 5-fold cross-validation, where the training set is split into five sub-sets, four for training and one for validation. The process runs five times alternating the selection of the validation set between the sub-sets. With each run, a different sub-set is considered as a validation set and the rest are used for training. The results of training and cross-validation assist us finetuning the models', and establishing a baseline for the expected performance during the test phase. After tuning the machine learning models, they are trained on all of the 80 percent training/cross-validation set (all five sub-sets).

3 .

 3 With ORPC while excluding attack type 16 from the training As depicted in Figure 3.5, simulated vehicles are assigned vehicle IDs from the test set. They register with the 5G network before they start sending their V2N messages with the exact timing, frequency, and position recorded in the dataset. When the message reaches the security application, the vehicle ID is checked to determine if it is previously known. If the vehicle ID is new, time and position information included in the first message are cached. When the second message arrives from the same vehicle ID, the previous message is retrieved from the cache and combined with the new message. The two messages are processed to create the plausibility checks scores and calculate the quantitative values. Then, they are submitted as input to the ML classification model. The model returns 0 if it predicts a normal position, and returns 1 if
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 637 Figure 3.7: Online Results: Vehicle-level Detection Rate Comparison
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  Step 2c -Training Collab. model: The attack ratio, calculated in the previous step, is combined with the remaining features extracted from Y 2 , and all the eight features are utilized to train the Collab. model. Step 3a -Input test set to S.A.: After S.A. and Collab. models are trained, the third step is to utilize the test subset Z to compare the performances of both models. Similar to subset Y, subset Z is divided into two halves, where the first half Z 1 is evaluated using S.A. model only. • Step 3b -S.A. prediction and attack ratio calculation: S.A. performs message classification for the messages assumed under the first area, Z 1 , and the attack ratio is then calculated. Step 3c -Input test set to S.A. and Collab.: For a fair evaluation, we limit the comparison of the models to subset Z 2 only, because it is the only set evaluated by both models. Step 3d -Performance comparison: The results of this process are shown in Table 4.2. The scores of the Standalone and the Collaborative models are, respectively: 0.9400 and 0.9721 on accuracy, 0.9335 and 0.9338 on precision, 0.8518 and 0.9716 on recall, 0.8908 and 0.9523 on F1score. The enhanced performance of the Collaborative model across all metrics during the offline evaluation is a strong indicator of the positive impact derived from incorporating the attack ratio feature.
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 51752925192529553 Introduction . . . . . . . . . . . . . . . . . . . . . . . Problem Statement . . . . . . . . . . . . . . . . . . . 76 5.3 5G Edge Misbehavior Detection System Architecture . 80 5.4 Detection Model Proposal . . . . . . . . . . . . . . . . 82 5.4.1 Deep Learning . . . . . . . . . . . . . . . . . . 82 5.4.2 Proposed Model: LSTM/Federated Learning . . 90 5.5 Performance Evaluation . . . . . . . . . . . . . . . . . Evaluation environment, dataset considerations, and models parameters . . . . . . . . . . . . . VeReMi Extension Offline Analysis . . . . . . . Online Scenario . . . . . . . . . . . . . . . . . 99 5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 101 5.1 . Introduction Maintaining the integrity and security of V2X systems requires detecting and preventing malicious activities that might target V2X-enabled devices, including position falsification, Denial of Service (DoS), sybil and replay attacks. Misbehavior detection is a critical component for protecting V2X communications. Initial proposals to address misbehavior detection in V2X rely on creating simple plausibility checks to detect abnormal behaviors. Later, several papers leverage these plausibility checks along with additional vehicles' movement data to train traditional machine learning models to improve detection results. With the advancement of machine learning and deep learning, new solutions are proposed based on Recurrent Neural Networks (RNN) due to their ability to retain trajectory information. With the emergence of AI and 5G, the potential to leverage techniques such as Federated Learning to effectively resolve the scalability challenge has emerged as a promising solution. In this chapter, we propose a distributed misbehavior detection system based on LSTM and Federated Learning, where the nodes of the system are installed in the 5G edge network across the coverage zone, to protect C-ITS application servers hosted on the edge, cloud, or the internet, against a wider variety of V2X attacks. The scalability of Federated Learning makes it the best solution for implementing a V2X misbehavior detection system in large-scale deployments. Due to the anticipated exponential growth of the number of connected vehicles and low-latency requirements of some V2X applications, traditional centralized approaches may not always be capable of meeting the massive data volume and computational demands. Federated Learning distributes the learning process, enabling edge nodes to provide their local knowledge and participate in training without overwhelming central servers. This distributed computing paradigm enables efficient and scalable V2X misbehavior detection systems, capable of accommodating the expected growth in vehicle connectivity. Federated Learning provides a convenient solution for detecting V2X misbehavior in 5G networks. It enables V2X systems to detect and prevent position falsification attacks and other malicious behaviors while protecting the privacy of individual vehicles by leveraging the power of collaborative and privacy-preserving learning. Federated Learning paves the way for robust and effective V2X misbehavior detection systems in the era of 5G-enabled connected vehicles via its adaptability, scalability, and ability to integrate realtime data from diverse sources.
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 51 In the figure, the blue dots represent the authentic values that the vehicle would have transmitted if it was benign, whereas the red and other colored dots are the values that were actually transmitted by the attacker. The gray dots are an aggregation of normal values transmitted by non-malicious vehicles.

• Attack type 15 (•

 15 DoS Disruptive): This attack combines the increased sending frequency with the flooding of previously received random neighbors' messages. • Attack type 16 (Grid Sybil): The intention of the attacker is to create a fake congestion by creating ghost vehicles, where vehicle pseudo IDs are created for nonexistent vehicles in a specific target position, and the attacker maintains a realistic communication profile of the ghost vehicles. Each pseudo ID is represented with a different color in the corresponding graph in Figure 5.1. Attack type 17 (Data Replay Sybil): This attack is a more sophisticated form of Attack type 11. The attacker replays the data of a targeted neighbor using multiple pseudo IDs to masquerade the real attacker's identity.
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 54 traffic packets. Each MDF instance is connected to an Intermediate-UPF (I-UPF) on a Local Access Data Network (LADN). The MDF is also considered as a Federated Learning client, where it shares its local model parameters with the FL-C server without sharing local training data collected from vehicles. The Federated Learning Central server acts as a central hub for organizing and compiling improved machine learning models derived from the received models from MDF instances. Without having any access to local data, it averages the models' weights to enable collaborative learning. This methodology preserves data security and privacy while enabling scalability and leveraging the collective intelligence of all MDF instances. Misbehavior Reporting Function (MRF) is considered an Application Function (AF) co-located with the 5GC network. In case an attack is detected, the MRF has the ability to initiate traffic-steering requests to the core network, which can re-route the attacker's traffic to the Honeypot server instead of the C-ITS application instance, protecting the application from falsified data. It also records security incidents and notifies Telecommunication network operators or legal authorities, who can completely revoke access for the misbehaving vehicle or take legal action if necessary. The Honeypot server has the role of a decoy server that will collect malicious V2X messages, creating a new dataset of attacks that can be studied and leveraged to improve the training and efficiency of misbehavior detection models. Our proposed architecture aims to offer enhanced data privacy, improved application security, and effective misbehavior detection for V2X ASs in C-ITS systems. It achieves this goal by combining the power of Federated Learning, 5G control functions and traffic steering functionality, and cybersecurity best practices. Detection Model Proposal 5.4.1 . Deep Learning5.4.1.1 . Artificial Neural Networks (ANNs)Deep learning is a sub-branch of machine learning, and both are within the field of artificial intelligence. Machine learning algorithms, including linear regression, decision trees, and support vector machines, acquire knowledge from data and use it to generate predictions or make judgments. In contrast, deep learning utilizes neural networks characterized by several layers, hence the term "deep". Deep neural networks are specifically designed to autonomously and flexibly acquire complex data representations, making them highly suitable for tasks involving large quantities of data, such as the recognition of images and sounds. Machine learning methods often need feature engineering and user intervention, while deep learning models usually have the capability to autonomously extract features from unprocessed data. On the other hand, deep learning requires larger datasets and is demanding when it comes to computing resources, hence cutting-edge GPUs are usually needed.
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 55 Figure 5.5: Convolutional Neural Network (CNN)

  .4.1.4 . Federated Learning Introduced by Google in [99], Federated Learning enables the decentralization of the training process, allowing for model training directly on devices or nodes where the data is hosted. In contrast, traditional centralized machine learning requires the data to be sen to a central server. The primary objectives behind the development of Federated Learning are related to data privacy, scalability, bandwidth efficiency, and latency. The fundamental objective of Federated Learning is to facilitate the training of a global model by using data from several devices, while avoiding the need of directly sharing raw data. Every individual device updates local model, using its own local data, and thereafter transmits just this updated model to a central server. The models are collected and aggregated by the server in order to enhance the global model, which is then sent back to the devices for further local training. This iterative process is repeated until the model convergences or satisfies a predetermined criteria. Federated Learning offers several advantages. It enhances data privacy since raw data is not shared, reducing the risk of data breaches. It also permits the training on edge devices, making it suitable for applications where real-time insights are crucial, and bandwidth or connectivity is limited. However, Federated Learning also presents challenges. The non-IID (independent and identically distributed) nature of local datasets can affect model convergence. Additionally, devices with limited computational resources might struggle with complex model training. Given the notation: patterns and dependencies by maintaining an internal memory state. It is capable of modeling the dynamic characteristics of vehicle movement. In tasks such as abnormal route detection or route prediction, understanding the links between past and future positions is essential, and it can be helpful in vehicle movement analysis. This gives the model the ability to accurately classify normal and abnormal trajectories and forecast future positions, ensuring a thorough understanding of the vehicle's movement dynamics. In Federated Learning, data processing and model training can be directly performed on edge nodes, enabling the protection of V2X server in the edge networks. In doing so a significant reduction in latency can be achieved. Federated Learning effectively manages large training datasets by utilizing the processing capacity of multiple devices. It also favors better data representation. The training method captures rich variations and nuances by combining a variety of data sources from diverse devices or places. The resulting global model benefits from a wider range of viewpoints, guaranteeing improved generalization across various contexts. Federated Learning can also enable cooperation between multiple Telecommunications operators. It makes it easier for them to collaborate without exchanging users' data or location. It promotes collaboration and information sharing while adhering to privacy laws and protecting company interests by allowing model training without location data sharing.5.4.2.1 . FeaturesBasic vehicle movement features are mainly related to time, position, and speed in both longitude (x) and latitude (y) directions. They might also include altitude, acceleration, and heading. Training a deep learning misbehavior detection model using only raw features does not always lead to optimal performance. Also, using the time and position values of a dataset in their raw format may cause the model to overfit, which might degrade accuracy with new data while performing well on training data. To avoid these problems, we add differential features like deltaTime and deltaPosition, which represent the differences between the current received position and time and their recently received values from the same vehicle. Also, to verify the consistency between the received values of time, position, and speed, we calculate a new speed value based on deltaTime and deltaPosition, independently from the received speed value. After that, we deduct the newly calculated speed value from the received speed value to obtain deltaSpeed. In summary, the features we used comprise: time, deltaTime, position, deltaPosition, speed, and deltaSpeed.5.4.2.2 . Federated AveragingThe implementation of the Federated Averaging function, summarized in Algorithm 1, accepts three parameters, namely client_models, data_sizes, and performances. The client_models parameter is a set of client models which are participating in the federated averaging process. The data_sizes parameter denotes the corresponding size of training data utilized by each client model. The performances parameter represents the accuracy scores of each client model. To determine the coefficient assigned to each client model during the averaging process, we utilize training data sizes and performance, giving the former double the importance of the latter. To obtain the averaged model, the algorithm aggregates the multiplications of the layer weights of each model by its corresponding client model coefficient, calculated in the previous step. The averaged model will then be shared with clients. This process is considered one cycle and can be repeated as necessary.

  The models' design, depicted in Figure5.8, consists of two bidirectional LSTM layers with 64 nodes each, two Dropout layers with the rate set to 0.2 to minimize overfitting, and one Dense layer with 24 nodes. During the training phase, we optimized the selected hyperparameters of the model. It utilizes a window size of 20, allowing the inclusion of the preceding 20 vehicle messages.The loss function is binary cross-entropy with Adam used as an optimization algorithm. The latter is widely utilized in neural network models, with a learning rate of 0.0001. The batch size is set to 64. The number of epochs is not fixed, since we implemented an Early Stop mechanism with a patience value of 5, leading to early termination of training if the validation loss did not improve for 5 consecutive epochs.
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 5326 Online ScenarioFor online analysis, we utilize the MixAll dataset, divided into six subsets representing the six coverage areas. These subsets were further partitioned into three parts: training, validation, and testing. The size of the data allocated for training is 72%, enabling the model to learn and generalize patterns from a significant portion of the available samples. The validation set, which forms 8% of a subset, to enable fine-tuning of the model's hyperparameters. Finally, the testing part, which corresponds to the remaining 20% of the data, wasn't exposed to the model during training and validation. It was rather used to assess the performance of the model. Our online testing scenario contains 4544 vehicles: 3176 normal and 1368 misbehaving, sending more than 400, 000 messages. Table 5.3 compares the performances of the models per area during the online scenario. The Federated model demonstrated similar to slightly better performance compared to the Centralized model, with both models outperforming the Standalone model. The Federated model significantly enhanced the performance of areas which have the least amount of training data. This further validates the previous observation made during numerical analysis. In Table 5.4, we present a summary of the models' detection performances at vehicle-level during the online scenario. Although the Federated model demonstrated superior performance in offline analysis and online windowlevel results, the Centralized model detected five additional vehicles. The majority of misbehaving vehicles that were undetected by the models can be attributed to Constant Position Offset and Eventual Stop attacks. The former can be effectively resolved by using the plausibility check we proposed in Chapter 3, or alternatively, by utilizing a map. The latter can be attributed to the labeling methodology employed by the authors of the dataset, which is a persistent problem inherited from the original VeReMi dataset. The authors assert that they have addressed the labeling issue of this attack by individually labeling each message. However, in the publicly available version of the dataset, the labeling is still assigned on a vehicle basis. Lastly, in the Delayed Messages attack, the Centralized model managed to detect at least one window per vehicle, while missing many others. Such robust detection systems.
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2.1.2 . ITS Communications Security Architecture

  

	2 certificates [29], as well as the Internet Engineering Task Force
	(IETF) RFC 8902 [30] which adds support of vehicular certificates to Transport
	Layer Security (TLS) version 1.3 protocol. The services that can be provided
	by this layer are detailed in Section 2.1.2.4.
	2.1.2.1 . Vehicular PKI System
	As per ETSI specifications, ETSI TS 102 941 [32], a vehicular PKI system shall
	be in place to secure V2X communications. It provides access control, trust
	and privacy management, and confidentiality when required. As depicted in
	Figure 2.3, this system consists of:
	1. Enrollment Authority (EA): Its main role is to authenticate the ITS sta-
	tions and provide them with the necessary permissions for ITS com-
	munications. Every ITS station has a unique ID and cryptography keys
	established during the initialization process. Afterward, the enrollment
	phase begins, during which the ITS-S authenticates itself with the EA to
	obtain enrollment credentials. These credentials grant the ITS-S gran-
	ular permissions for specific ITS applications and services. Only the EA
	has access to the real identity of an ITS-S.
	2. Authorization Authority (AA): Its main role is issuing multiple Autho-
	rization Tickets to an ITS station after validating its Enrollment Creden-
	tials with the Enrollment Authority. Authorization Tickets are pseudony-
	mous certificates, which are swapped often to keep the real ITS station

  , Kamel et al. proposed Framework For Misbehavior Detection (F2MD)which is a framework based on Veins simulator that can be leveraged to de-

velop, test and compare different misbehavior detection algorithms in V2V environment. The prevention mechanism proposed depends on revoking the certificate of misbehaving vehicles.

In

[START_REF] So | Integrating Plausibility Checks and Machine Learning for Misbehavior Detection in VANET[END_REF]

, So et al. made used of a machine learning-based method for detecting V2V misbehavior. They developed, taking profit of MATLAB, a machine learning version of the VeReMi dataset before proposing a model that makes use of six input features, including two plausibility checks and four numerical measurements of the vehicle's movement. The authors compared the performance of standalone plausibility checks, K-Nearest Neighbors (KNN) and Support Vector Machine (SVM) algorithms. The authors showed that accuracy was improved by 6 to 7 percent, and the precision improved by around 20 percent, while maintaining the recall within 5 percent margin. In

[START_REF] Sharma | A Machine-Learning-Based Data-Centric Misbehavior Detection Model for Internet of Vehicles[END_REF]

, Sharma et al. used Scikit-learn

[START_REF] Pedregosa | Scikit-learn: Machine learning in python[END_REF] 

to evaluate more machine learning algorithms, including Naïve Bayes (NB), Random Forest, and Ensemble Boosting and Voting.

  , Kim et al. compared KNN, SVM, RF, Extreme Gradiant Boosting (XGB), and Multi-Layer Perceptron (MLP) on the VeReMi-ML dataset. They further introduce a new extended set of differential features that allow the checking of mobility constraints and inconsistencies, which, as per the reported results, proved to improve the machine learning models' performance.

When the extended features are used, MLP performs the best, followed by XGB and RF. The authors also proposed Zero-Day Attack Detection based on Auto-encoder architecture. The auto-encoder is a Deep Neural Network (DNN) encompassing an encoder and a decoder with internal hidden layers.

Table 2 .

 2 2: Summary of recent proposals for V2X misbehavior detection Introduction . . . . . . . . . . . . . . . . . . . . . . . 39

	Paper	Dataset	Approach	Simulator/Tools	Solution Environment
	[79]	VeReMi	Local Plausibility Checks	Veins, OMNeT++, SUMO	V2V, DSRC
	[83]	VeReMi	Local Machine Learning	MATLAB	V2V
	[84]	VeReMi	Local Machine Learning	scikit-learn	V2V
	[87]	VeReMi + private dataset for false alerts	Local Machine Learning	scikit-learn, Veins, OMNeT++, SUMO	V2V, DSRC
	[88]	VeReMi + modified VeReMi attacks	Local Machine Autoencoder Learning, MLP, and	Not provided	V2V
	[89]	VeReMi	Local MLP, Federated Learning on Edge, Blockchain	PyTorch	V2V, V2I, Edge, Backend
	[90]	VeReMi Extension	Local Plausibility Checks, Misbehavior Report	F 2 MD, Veins, OMNeT++, SUMO	V2V, V2I, DSRC, LTE-V2X, Backend
			Local Plausibility		
			Checks, Machine	F 2 MD, Veins,	
	[82]	VeReMi Extension	Learning, MLP, LSTM, Misbehavior	OMNeT++, SUMO, scikit-learn,	V2V, V2I, DSRC, LTE-V2X, Backend
			Report, and Global	TensorFlow	
			Analysis		
		VeReMi Extension			
	[91]	excluding two	Edge CNN, LSTM	Not provided	V2V, V2I, Edge
		attacks			
			Centralized		
	[92]	VeReMi Extension	Reinforcement	Not provided	V2V, V2I, Edge/Cloud
			Learning		
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Table 3 .

 3 1: Offline Results: ORPC Impact on Performance

			Attack 1	Attack 2	Attack 4	Attack 8	Attack 16	All Attacks
	Metric	Algorithm	with ORPC	without ORPC	with ORPC	without ORPC	with ORPC	without ORPC	with ORPC	without ORPC	with ORPC	without ORPC	with ORPC	without ORPC
		Logistic Reg.	0.9897 0.9897 0.9898 0.0000 1.0000 1.0000 1.0000 0.9990 0.6595 0.6436 0.9388 0.8995
		Decision Tree	0.9943 0.9955 0.9730 0.2723 1.0000 1.0000 1.0000 1.0000 0.5296 0.5381 0.9252 0.8343
		Random Forest 0.9977 0.9977 0.9898 0.2624 1.0000 1.0000 1.0000 1.0000 0.7074 0.7066 0.9609 0.9111
		KNN	0.9760 0.9741 0.9730 0.2912 1.0000 1.0000 1.0000 1.0000 0.5440 0.5416 0.9304 0.8450
		SVM	0.9888 0.9876 0.9906 0.0000 1.0000 1.0000 1.0000 1.0000 0.6585 0.6575 0.9383 0.9134
	Precision Naive Bayes	0.8500 0.9233 0.9897 0.0000 1.0000 0.9980 0.9892 0.9863 0.6474 0.6001 0.9108 0.8800
		Ens. Voting	0.9943 0.9955 0.9888 0.2820 1.0000 1.0000 1.0000 1.0000 0.5296 0.6492 0.9507 0.8776
		Ens. Bagging	0.9955 0.9955 0.9889 0.2878 1.0000 1.0000 1.0000 1.0000 0.7080 0.7032 0.9596 0.9084
		Ens. Boosting	0.9966 0.9966 0.9888 0.5000 1.0000 1.0000 1.0000 1.0000 0.6552 0.6529 0.9348 0.9270
		Ens. Stacking	0.9943 0.9955 0.9898 0.0000 1.0000 1.0000 1.0000 1.0000 0.6606 0.6584 0.952020.9111
		Neural Network 0.9888 0.9899 0.9898 0.0000 1.0000 1.0000 1.0000 1.0000 0.6608 0.6590 0.9376 0.9205
		Logistic Reg.	0.7962 0.7962 0.9656 0.0000 1.0000 1.0000 1.0000 0.9960 0.6309 0.6294 0.8758 0.7066
		Decision Tree	0.7935 0.7953 0.9466 0.2009 1.0000 1.0000 1.0000 1.0000 0.4901 0.5107 0.8440 0.7012
		Random Forest 0.7953 0.7944 0.9647 0.0480 1.0000 1.0000 1.0000 1.0000 0.5152 0.5205 0.8623 0.6923
		KNN	0.8116 0.8161 0.9457 0.2271 1.0000 1.0000 0.9990 0.9990 0.5411 0.5403 0.8687 0.7375
		SVM	0.7962 0.7962 0.9538 0.0000 1.0000 1.0000 1.0000 0.9960 0.6370 0.6370 0.8758 0.7015
	Recall	Naive Bayes	0.7962 0.7962 0.9611 0.0000 1.0000 1.0000 1.0000 1.0000 0.6507 0.6613 0.8909 0.7093
		Ens. Voting	0.7917 0.7935 0.9629 0.0878 1.0000 1.0000 1.0000 1.0000 0.5548 0.5563 0.8603 0.7021
		Ens. Bagging	0.7944 0.7944 0.9638 0.0534 1.0000 1.0000 1.0000 1.0000 0.5297 0.5320 0.8618 0.6935
		Ens. Boosting	0.7944 0.7944 0.9629 0.0009 1.0000 1.0000 1.0000 1.0000 0.6218 0.6126 0.8820 0.6980
		Ens. Stacking	0.7935 0.7953 0.9656 0.0000 1.0000 1.0000 1.0000 1.0000 0.6309 0.6294 0.8611 0.7072
		Neural Network 0.7962 0.7962 0.9656 0.0000 1.0000 1.0000 1.0000 0.9990 0.6317 0.6355 0.8763 0.7010
		Logistic Reg.	0.8825 0.8825 0.9776 0.0000 1.0000 1.0000 1.0000 0.9975 0.6449 0.6364 0.9062 0.7915
		Decision Tree	0.8826 0.8842 0.9596 0.2313 1.0000 1.0000 1.0000 1.0000 0.5091 0.5240 0.8827 0.7620
		Random Forest 0.8851 0.8845 0.9771 0.0811 1.0000 1.0000 1.0000 1.0000 0.5962 0.5995 0.9089 0.7868
		KNN	0.8863 0.8881 0.9592 0.2552 1.0000 1.0000 0.9995 0.9995 0.5425 0.5410 0.8985 0.7876
		SVM	0.8821 0.8816 0.9719 0.0000 1.0000 1.0000 1.0000 0.9980 0.6476 0.6471 0.9060 0.7936
	F1-score	Naive Bayes	0.8223 0.8551 0.9752 0.0000 1.0000 0.9990 0.9946 0.9931 0.6491 0.6293 0.9007 0.7855
		Ens. Voting	0.8815 0.8831 0.9757 0.1339 1.0000 1.0000 1.0000 1.0000 0.5419 0.5992 0.9033 0.7801
		Ens. Bagging	0.8836 0.8836 0.9763 0.0901 1.0000 1.0000 1.0000 1.0000 0.6060 0.6057 0.9081 0.7865
		Ens. Boosting	0.8841 0.8841 0.9757 0.0018 1.0000 1.0000 1.0000 1.0000 0.6380 0.6321 0.9077 0.7964
		Ens. Stacking	0.8826 0.8842 0.9776 0.0000 1.0000 1.0000 1.0000 1.0000 0.6454 0.6436 0.9043 0.7963
		Neural Network 0.8821 0.8825 0.9776 0.0000 1.0000 1.0000 1.0000 0.9995 0.6459 0.6470 0.9059 0.7959
							56							

Table 3 .

 3 2: Online Scenario: Number of Vehicles and Messages

	Vehicle Type Vehicles count Messages count Prediction count
	Normal	32	1483	1451
	Attack 1	35	1308	1273
	Attack 2	30	1249	1219
	Attack 4	29	1369	1340
	Attack 8	22	790	768
	Attack 16	23	1470	1447
	Total	171	7669	7498
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 4 

		1: Offline Results: ORPC
	ML Model Accuracy Precision Recall F1-score
	w/o ORPC 0.8926	0.9131 0.6921 0.7874
	w/ ORPC	0.9504	0.9609 0.8626 0.9091

Table 4 .

 4 

	2: Offline Results: Standalone and Collaborative Models
	ML Model Accuracy Precision Recall F1-score
	S.A.	0.9400	0.9335 0.8518 0.8908
	Collab.	0.9721	0.9338 0.9716 0.9523

7839 0.9100 0.9593 0.9830 0.9998 0.9968 0.9851 0.9876 0.7850 0.8733 0.9031 0.9503

  

			very slight advantage in terms of precision.
			1.0000 1.0000
		Area	0.9860 0.9365 0.9866 0.9364 0.9877 0.9415 0.9875 0.9383 0.9872 0.9366 0.9974 0.9869
		Area	0.9985 1.0000 0.9990 1.0000 0.9991 1.0000 0.9990 1.0000 0.9985 1.0000 0.9998 1.0000
		Overall	0.9956 0.9885 0.9965 0.9895 0.9966 0.9896 0.9965 0.9895 0.9957 0.9882 0.9992 0.9978
		Area	0.4333 1.0000 0.9890 1.0000 1.0000 1.0000 1.0000 1.0000 0.4286 1.0000 0.7709 1.0000
		Area	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
		Area	0.9485 0.9973 0.9093 1.0000 1.0000 1.0000 0.9932 1.0000 0.9485 0.9797 0.9599 0.9954
	Recall	Area	0.7179 1.0000 0.9633 1.0000 1.0000 1.0000 0.9862 1.0000 0.7179 0.8096 0.8771 0.9619
		Area	0.6504 0.8627 0.9738 1.0000 0.9991 1.0000 0.9792 1.0000 0.6510 0.8626 0.8507 0.9450
		Area	0.9710 1.0000 0.9214 0.9002 1.0000 0.9813 0.9838 0.9278 0.9602 0.9005 0.9672 0.9408
		Area	0.6422 0.7517 0.9858 1.0000 1.0000 1.0000 0.9782 1.0000 0.6410 0.7486 0.8497 0.9002
		Overall 0.Area 0.6047 1.0000 0.9945 1.0000 1.0000 1.0000 1.0000 1.0000 0.6000 1.0000 0.8706 1.0000
		Area	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
		Area	0.9722 0.9986 0.9512 1.0000 0.9986 1.0000 0.9952 1.0000 0.9722 0.9897 0.9793 0.9977
	F1-score Area	0.8324 1.0000 0.9779 1.0000 0.9966 1.0000 0.9896 1.0000 0.8324 0.8948 0.9338 0.9806
		Area	0.7882 0.9263 0.9867 1.0000 0.9995 1.0000 0.9895 1.0000 0.7886 0.9262 0.9193 0.9717
		Area	0.9784 0.9672 0.9529 0.9180 0.9938 0.9610 0.9857 0.9330 0.9735 0.9182 0.9821 0.9633
		Area	0.7817 0.8582 0.9924 1.0000 0.9995 1.0000 0.9885 1.0000 0.7807 0.8562 0.9187 0.9475
		Overall	0.8772 0.9476 0.9775 0.9862 0.9982 0.9932 0.9908 0.9886 0.8779 0.9272 0.9487 0.9735

  4. Output Gate: It determines what portion of the memory cell's currentstate should be outputted.

  The VeReMi-extension dataset consists of more than 63 gigabytes of recorded vehicle traces in JSON format. It covers 19 types of V2X attacks in a total of 39 datasets. Two datasets per attack (high density: 37.03 vehicles/km 2 and low density: 16.36 vehicles/km 2 ), each containing two hours of recorded vehicle messages; and one comprehensive dataset named MixAll, which encompassed all 19 attacks that occurred within a 24-hour timeframe (23.29 vehicles/km 2 ). Note the all of the datasets have a misbehaving vehicle ratio of 30%.

Table 5 .

 5 1: Offline Results: Centralized and Federated Models Comparison

	Centralized	Federated (our proposal)

Table 5 .

 5 2: Offline Results: Standalone and Federated Models Comparison

	Standalone	Federated (our proposal)
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. Conclusion

In this chapter, we propose a framework to protect V2X application servers in 5G networks. Our proposed solution integrates a V2X misbehavior detection system, as an application function, to the 5G core network. In order to detect position manipulation attacks, we propose a detection mechanism based on AI, which leverages historical data to calculate an on-road plausibility check. The message-level results demonstrate a considerable improvement in recall and a slight enhancement in precision. Also, in vehicle-level detection results, our algorithm scored 5 percent higher regarding the detection rate. a result can explain the difference between window-level and vehicle-level detection scores in this particular attack.

In summary, our proposed Federated model demonstrated comparable performance to the Centralized model while offering the advantages of scalability and privacy. 

. Conclusion

In this chapter, we proposed a novel approach for protecting V2X application servers for 5G edge networks through the implementation of a distributed V2X misbehavior detection system that relies on Federated Learning.

After rigorous testing using a large public dataset, we demonstrated the fea- 

. Conclusion

This thesis encompassed an in-depth investigation of C-ITS and C-V2X ar- Security of Vehicle-to-Everything (V2X) communications is of significant importance due to the possible threats to vehicle networks. This thesis in-cluded three main contributions:

Firstly, we addressed the pressing requirement to implement and integrate effective misbehavior detection systems that leverage machine learning in the recently introduced environment of 5G Vehicle-to-Network (V2N) communications. This is essential to protect V2X application servers from common V2X attacks such as position falsification.

Secondly, a noteworthy discovery derived from our second contribution was the added benefit of collaboration among edge detection nodes. By enabling the exchange of reputation metrics, such as attack ratio, the precision and effectiveness of misbehavior detection can be improved.

Lastly, another notable finding is the promising use of Federated Learning for the deployment of V2X misbehavior detection systems in 5G. By using a decentralized approach to the learning process, we can leverage scalability benefits offered by Federated Learning while still attaining detection performance that is on par with centralized systems. Our exploration of the use of LSTM networks has shown their effectiveness in modeling and classifying sequential data, making them an important resource in the domain of V2X misbehavior detection. Additionally, the capacity to grasp extended temporal relationships enables them to proficiently identify complex patterns that may indicate misbehavior.

. Future Work

While this thesis has shed light on several aspects of V2X security, it also opens the door to numerous avenues for future contributions.

. Short-term

Exploring the integration of the Location Management Function (LMF) of the 5G core network with the proposed 5G V2X misbehavior detection systems will be a crucial area for future research. This integration has the potential to enhance detection accuracy and system efficiency, thanks to the additional location information supplied by the NG-RAN, which can be leveraged to validate the integrity of the received UEs' positions.

Advanced Neural Architectures: Beyond LSTMs, exploring the potential of other neural architectures, such as Transformers, could yield even more