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Résumé

Introduction : Chaque année, environ 1,35 million de personnes perdent la vie dans des acci-

dents de la route dans le monde, l’OMS estime qu’une personne perd la vie toutes les 24 secondes.

Le nombre de fatalités routières reste élevé malgré les efforts juridiques et législatifs déployés pour

améliorer la sécurité routière. Depuis 1999, des technologies, des protocoles et des applications ITS

ont été développés dans le but de renforcer la sécurité routière et de réduire le nombre d’accidents.

Cette thèse se concentre sur la dernière génération (NR-V2X) et l’amélioration de la sécurité des com-

munications véhiculaires dans les réseaux 5G. Elle aborde les défis posés par les attaques de sécurité

et proposedes solutions innovantes pour renforcer la fiabilité et la sécurité des communications V2N.

Chapitre 2 : Étude de la littérature de la sécurité des réseaux véhiculaires : Ce chapitre examine

en détail les protocoles et les spécifications ITS et V2X de l’ETSI et du 3GPP. Il présente également

une revue complète de la littérature existante sur la sécurité V2X et les systèmes de détection de

comportements anormaux. Il identifie les lacunes dans la recherche actuelle, établissant ainsi le con-

texte pour les développements proposés dans les chapitres suivants. En examinant les recherches

antérieures, le chapitre identifie les lacunes et les défis non résolus, établissant ainsi un cadre de

référence pour les innovations proposées dans les chapitres suivants de la thèse. Cette revue per-

met de comprendre les tendances actuelles, les meilleures pratiques, et les limites des solutions ex-

istantes en matière de sécurité V2X.

Chapitre 3 : Une nouvelle fonction application de la sécurité du réseau central 5G pour la

couche Facilities de C-ITS basée sur l’IA : Ce chapitre détaille le développement d’un système no-

vateur de détection de comportement anormal, spécifiquement conçu pour identifier et prévenir

les attaques de falsification de position dans les communications V2X, et protéger les serveurs V2X

dans le contexte des réseaux 5G. Le système est soigneusement aligné avec les spécifications de

l’architecture 5G-V2X de la 3GPP, garantissant ainsi une intégration et une compatibilité optimales.

Le système proposé s’appuie sur des techniques de machine learning, et offre une détection précise

et efficace des menaces, en proposant un nouveau contrôle de plausibilité (ORPC) pour améliorer les

performances de détection.

Chapitre 4 : Détection des comportements V2X anormaux en tant que fonction de réseau 5G

central/edge basée sur l’IA/ML :Dans ce chapitre, l’accent est mis sur l’exploration d’un système col-

laboratif de détection de comportement anormal V2X, qui représente une avancée par rapport au sys-

tème introduit dans le chapitre précédent. Ce système tire parti de la collaboration entre les nœuds

des réseaux edge pour améliorer la détection des comportements anormaux, contribuant ainsi à

renforcer la sécurité des serveurs d’applications V2X dans les réseaux 5G edge. Le chapitre présente

en détail l’architecture du système, les mécanismes de collaboration en comparant cette approche

collaborative avec les systèmes de détection centralisés. Les résultats des simulations démontrent

une amélioration dans la capacité du système à identifier et à répondre aux menaces de sécurité,

soulignant l’efficacité de la collaboration dans le contexte des communications V2X sécurisées dans

les réseaux 5G.
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Chapitre 5 : Federated Learning pour la détection de comportement anormal V2X dans les

réseaux5G :Ce chapitre aborde enprofondeur la faisabilité et l’efficacité de l’utilisationde l’apprentissage

fédéré pour la détection de comportements anormaux dans les réseaux V2X au sein des réseaux

5G edge. Il compare la performance de détection des modèles d’apprentissage fédéré avec celle

des modèles centralisés et autonomes, mettant en évidence les forces et les limitations potentielles

de chaque approche. À travers des évaluations détaillées, il démontre que l’apprentissage fédéré

préserve non seulement la confidentialité des données, mais maintient également une précision de

détection comparable, voire supérieure. Cette investigation de l’apprentissage fédéré ouvre de nou-

velles voies pour son application dans les réseaux 5G edge, démontrant son potentiel en tant que

solution évolutive et efficace pour renforcer la sécurité des communications V2X.

Conclusion : La thèse résume les découvertes clés, soulignant leur importance pour la sécurité des

communications V2X et des réseaux 5G. Elle propose également des pistes pour des recherches fu-

tures, ouvrant la voie à des développements supplémentaires dans ce domaine en pleine expansion.
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1.1 . Background

Every year, approximately 1.35million people lose their lives due to road

accidents worldwide, theWorld Health Organization (WHO) estimates the loss

of one life every 24 seconds [1]. The number of road fatalities remains unac-

ceptably high despite legal and legislative efforts to improve road safety. Since

1999, Intelligent Transport Systems (ITS) technologies, protocols, and applica-

tions have been developed in an effort to increase traffic safety and lessen

accidents.

However, the first generation ITS technology, Dedicated Short-RangeCom-

munications (DSRC), faced several challenges that prevented its wide adop-

tion. The main challenges were the slow pace and the high deployment cost

of the required infrastructure.

Additionally, therewas amarket fragmentation in the automotive industry

between companies adopting DSRC and others preferring towait for the next-

generation ITS technology, namely Cellular Vehicle-to-Everything (C-V2X). An-

other significant challenge was the recent reallocation of the spectrum [2],
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initially reserved for DSRC, to C-V2X and Wi-Fi by the Federal Communication

Commission (FCC).

In 2023, C-V2X seems to address most of these challenges, by leverag-

ing the widely available cellular network infrastructure. It offers increased

bandwidth, lower latency, and wider network coverage which can empower

advanced network-hosted ITS services.

In addition to road safety applications, ITS can offer many other benefits,

such as:

• Traffic efficiency: like traffic management and parking solutions.

• Support for Connected Autonomous Vehicles (CAV) and coopera-

tive driving: by providing drivers and autonomous driving systems en-

hanced perception, and the ability to perform coordinated movement

and maneuvers.

• Environmental benefits: traffic management applications can con-

tribute to emissions reduction and improved fuel efficiency, providing

environmental advantages.

• Enhanced road user experience: this includes real-time information

about road conditions, traffic, and weather, as well as features like au-

tomatic toll payments, electric vehicle charging reservations, and in-

vehicle entertainment services.

1.1.1 . Vehicle-to-Everything (V2X)

ITS refers to the initiatives of utilizing the latest technologies in electronics,

information, and telecommunication to enhance safety, efficiency, sustain-

ability, and comfort of transportation systems; Cooperative Intelligent Trans-

port Systems (C-ITS) are ITS which harness the power of communication be-

tween two or more ITS stations (vehicle, roadside, central, mobile device) to

provide advanced ITS services, like: Vulnerable RoadUser (VRU) warning, dan-

gerous situation warning, cooperative overtaking, and platooning.

While C-ITS defines the systems and applications that interact directly with

road users, Vehicle-to-Everything (V2X) refers to the underlying communica-

tion protocol stacks and access technologies which enable C-ITS services.
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Standards Institute (ETSI), namely ETSI ITS-G5 [9] and ETSI ITS standards

[10].

• Cellular-based: The next-generation of V2X, developed by the The 3rd

Generation Partnership Project (3GPP), is coinedC-V2X. It re-utilizes IEEE

1609.x standard for the upper layers, while replacing IEEE 802.11p with

cellular-based radio access technologies: Fourth-generation of mobile

telecommunications technology (4G) Long TermEvolutionbasedVehicle-

to-Everything (LTE-V2X) and Fifth-generation of mobile telecommunica-

tions technology (5G) New Radio based Vehicle-to-Everything (NR-V2X),

which are detailed in Chapter 2.

1.1.2 . V2X Challenges

To fully unlock the potential of V2X, several significant challenges must

be addressed. Among them the interoperability. Specifically, different manu-

facturers may employ distinct communication standards, resulting in poten-

tial compatibility challenges. Therefore, it is imperative to establish a univer-

sally accepted standard to facilitate seamless communication. From a regula-

tory and legal perspectives, standardization stands out as a primary concern.

Regulatory bodies must establish standardized protocols for V2X communi-

cations to guarantee consistency and interoperability across all vehicles, de-

vices, and regions.

Another technical concern involvesminimizing latency and efficiently allo-

cating resources in a highly mobile network environment. In scenarios where

rapid decision-making is crucial, particularly in high-velocity situations, it is es-

sential to minimize communication delays. Ensuring optimal latency is critical

for the effectiveness of V2X communications.

Another challenge in this category pertains to the complexity of establish-

ing accountability, especially in the context of accidents or malfunctions. This

complexity is further amplified when multiple entities, including vehicles, in-

frastructure, and pedestrians, are involved in the communication process.

Besides, the scalability of V2X security solutions represents another chal-

lenge especially in the near future, when the number of connected vehicles

starts to rapidly increase. It is highly important to ensure that these solutions

can keep up with the high amount of traffic they might need to process.
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On the economic front, the substantial costs associated with V2X pose

a significant barrier. The initial investment required for V2X infrastructure,

both in vehicles and on roads, can be substantial. Furthermore, identifying

feasible and sustainable business models for V2X is challenging, especially

when considering that the technology is still in its early development phase.

Additionally, there are social challenges to consider. For V2X to be success-

ful, it is essential for the general public to trust and embrace the technology.

Addressing concerns, particularly those related to the handling of location

data, is crucial. Moreover, there is a need to assess the potential impact of

technology and automation on job redundancy, especially within the trans-

portation sector, which is a subject of concern.

1.1.3 . V2X Security Challenges

While V2X communications bring significant advantages andbenefits, they

also introduce a variety of unprecedented security challenges, due the dy-

namic and complex nature of V2X networks. These challenges must be taken

seriously to ensure the safety of road users and the reliability of ITS services.

1.1.3.1 . Authentication and Authorization

Authentication is the first layer of protection in all systems. In the context

of V2X, authentication mitigates the risk of unauthorized devices or vehicles

injecting false data into the system. Also, it is important to ensure that special

V2X services, like emergency vehicle warning, can only be accessed by autho-

rized vehicles.

1.1.3.2 . Data Integrity and Misbehavior Detection

As V2X applications heavily rely on the accuracy and timeliness of the data

they receive, any compromise in data integrity, whether due to interference,

malfunction, or transmission errors, can lead to vehicles or applications mak-

ing decisions based on incorrect information. This situation endangers the

safety of the vehicle’s occupants and other road users.

It is essential to enforce secure transmissions through implementing error-

checking and validation protocols, coupled with detection of anomalies or in-

consistencies in the data and reporting them for review. It is crucial to ensure

that compromised authenticated devices are quickly identified and discon-

nected from the network. The implementation of effective detection and re-
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vocation systems, capable of promptly responding to any threats, is vital.

1.1.3.3 . Data Privacy

V2X systems can produce a high volume of data, collecting an extensive in-

formation such as the location, speed, direction of vehicles, and even certain

aspects of driver behavior. The persistent flow of data gives rise to substan-

tial concerns regarding data privacy and storage. The collection, storage, and

processing of this type of data need to be under strict control andmonitoring.

Furthermore, the potential sharing of V2X data with external entities in-

troduces an additional level of complexity. While there might be legitimate

reasons for data sharing, such as traffic management or targeted marketing,

it is important to acknowledge the potential risks associated with accidental

data leak resulting from system breaches or illegal access.

Anonymization of data is often suggested as a solution to address privacy-

related concerns. However, even anonymized data isn’t entirely secure. In-

deed, advanced correlation techniques can sometimesde-anonymize this data,

leading to potential privacy breaches and exposing sensitive user information.

1.1.3.4 . Cybersecurity Concerns

As vehicles evolve into moving computers, they become attractive targets

for hackers. A successful attack, where a malicious actor gains control of a

vehicle’s systems, can have disastrous consequences.

The risks aren’t limited to just the vehicles. The infrastructure that sup-

ports V2X communications, such as traffic lights, sensors, communication tow-

ers, and V2X application servers, is equally vulnerable. A compromised com-

ponent of infrastructure can cause interruptions to traffic flow, accidents, and

potential loss of life.

The threats also encompasses malware and ransomware attacks. For in-

stance, amalware that feeds false data to the driver or other vehicles, causing

confusion and accidents. Alternatively, a vehicle is rendered inoperable and

held hostage until a ransom is paid.

Also, man-in-the-middle attacks are noteworthy threats, where malicious

actors might intercept andmanipulate communications between vehicles, in-

frastructure, or network. Replay and Sybil attacks, where the attacker re-

sends captured V2X messages or flood the network with false information
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pose a further complicated challenge.

The rapidly evolving landscape of cyber-threats requires the implementa-

tion of a comprehensive cyber-security management program that enables

all the major stakeholders (i.e., car manufacturers, vehicular infrastructure

providers, telecommunication providers, and authorities) to respond to new

attacks. This program has to include Over-The-Air (OTA) updates to partici-

pating vehicles and devices to ensure the timely patching of newly discovered

vulnerabilities.

1.1.3.5 . Legal and Regulatory Challenges

The regulatory environment related to V2X technology is is continually

evolving. Data ownership is a significant topic that requires attention. The

identification of data ownership involves various stakeholders including vehi-

cle owners, manufacturers, infrastructure providers, and other entities, and

it is a complex subject involving some legal consequences.

Furthermore, with the increasing global adoption of V2X technology, com-

plyingwith regulatory requirements inmultiple countries becomesmore chal-

lenging. Different countries and regions have distinct laws and regulations

related to the protection of data privacy, such as the General Data Protec-

tion Regulation (GDPR) implemented in Europe. For manufacturers and ser-

vice providers operating on a worldwide scale, the responsibility of maintain-

ing compliance with various regulatory frameworks can pose significant chal-

lenges.

1.2 . Thesis Problematic

Most of the proposed V2X security solutions are based on cryptography

[11], and themajority consists of creating a vehicular Public Key Infrastructure

(PKI) system to distribute and verify signed certificates for eligible vehicles.

While a PKI system is essential to protect against external threats, different

approaches should be considered to mitigate attacks launched bymalicious

insiders, who are authenticated and already part of the system. The most ef-

fective solution is to implement amisbehavior detection system thatmonitors

and analyzes the data sent by authenticated vehicles and reports potential

unusual behaviors. Researchers addressed the implementation of V2X mis-
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behavior detection system while assuming V2V communications [12]. Their

proposed solutions are critical; yet they are not suitable for V2N due to the

potential possibility of a vehicle exhibiting normal behavior on V2V while mis-

behaving on V2N. To the best of our knowledge, none tackled the protection

of V2X application servers in a 5G V2N environment against large-scale

data manipulation attacks launched by authenticated misbehaving vehicles.

These attacks can result in significant consequences.

Among the numerous threats that we can encounter, position data in-

tegrity is especially crucial due to its central role in various ITS applications,

including real-time traffic information exchange, advanced driver assistance

systems, and autonomous driving. The accuracy and integrity of position data

are of paramount importance. During a position falsification attack, the at-

tacker manipulates transmitted position data, creating a deceptive represen-

tation of the vehicle’s actual location. This can lead to a range of issues, from

minor disruptions in traffic flow to significant road accidents. For instance, a

vehicle that inaccurately declares its presence in a designated lane or at a spe-

cific geographical position may prompt unnecessary evasive maneuvers by

other vehicles, potentially resulting in traffic disturbances or even collisions.

Therefore, the detection and prevention of such attacks are critical to en-

sure the safety and efficiency of V2X communications. However, the detection

of position falsification attacks is a complex task that requires sophisticated

techniques and systems. Traditional securitymeasures, such as cryptography

techniques, are not sufficient to detect these attacks as they can only verify

the authentication of the sender but not the trustworthiness of the message

content.

1.2.1 . Research Motivation

Considerable academic research has been dedicated to the analysis of

misbehavior detection in V2V communications. These studies made notable

contributions to improve the security of Vehicular Ad-Hoc Network (VANET)

through the detection and elimination ofmisbehaving nodes. However, these

solutions do not monitor V2N traffic, therefore a significant gap exists within

misbehavior detection for V2N communications, specifically within the do-

main of 5G networks.

V2N communications play a vital role in the V2X communications ecosys-

9



tem by enabling the transmission of information between vehicles and net-

work components. The transmission of information plays a crucial role in

the operation of intelligent transportation systems, facilitating functionalities

such as centralized traffic management, early hazard warnings, intelligent

path selection, and other services based on cloud computing.

The objective of this thesis is to address this gap by studying misbehav-

ior detection in V2N within the context of 5G networks. This work aims to

leverage Artificial Intelligence (AI) technologies, specifically machine learning,

deep learning, and federated learning, to propose and implement innovative

systems for detecting andmitigating position falsification attacks in V2N com-

munications.

1.2.2 . Research Objectives

The main objective of this work is to investigate innovative solutions for

enhancing the security of V2X communications within 5G networks. This the-

sis focuses specifically on the development and evaluation ofmisbehavior de-

tection systems capable of detecting and mitigating position falsification at-

tacks in 5G V2N communications. The objectives of the investigation can be

further specified as follows:

O1: Design and implement a novel misbehavior detection system, coupled

with the 5G network, capable of detecting and preventing position fal-

sification attacks in 5GV2N communications. This systemwill take profit

frommachine learning techniques to identify anomalies in position data

and detect possible attacks. Compatibility with 3GPP 5G V2X architec-

ture specifications will ensure the system’s applicability in real-world

scenarios.

O2: Investigate the feasibility of a collaborative approach to V2X misbehav-

ior detection. This studywill investigate how cooperation between edge

network nodes can improve the performances of the malicious behav-

ior detection system. The collaborative system will be implemented to

protect V2X application servers in the 5G edge network, thereby en-

hancing the security of V2X communications.

O3: Investigate federated learning for V2Nmisbehavior detection in 5Gedge

networks. Federated learning is an approach to machine learning that
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enables the collaborative training ofmodels acrossmultiple decentralised

devices or servers containing local data samples without sharing the

data. This research will investigate how federated learning can be im-

plemented in 5G edge networks in order to improve the scalability of

the misbehavior detection system.

1.3 . Contributions

To address the aforementioned problematic, we shared our three contri-

butions in the conference papers below:

C1: H. Yakan, I. Fajjari, N. Aitsaadi, C. Adjih, "A Novel AI Security Application

Function of 5G Core Network for V2X C-ITS Facilities Layer", in IEEE In-

ternational Conference on Communications (ICC) 2023. (Accepted)

C2: H. Yakan, I. Fajjari, N. Aitsaadi, C. Adjih, "5G V2X Misbehavior Detection

as Edge Core Network Function based on AI/ML", in IEEE Global Com-

munications Conference (GLOBECOM) 2023. (Accepted)

C3: H. Yakan, I. Fajjari, N. Aitsaadi, C. Adjih, "Federated Learning for V2XMis-

behavior Detection System in 5G Edge Networks", in ACM International

Conference on Modeling, Analysis and Simulation of Wireless and Mo-

bile Systems (MSWiM) 2023. (Accepted as Full Paper)

Furthermore, wehad theopportunity to contribute to the Europeanproject

SARWS [13]: real-time location-aware road weather services composed from

multi-modal data. We led Task 3.4 of the project, titled "Security of V2X com-

munications and applications". It was a collaborative effort between multiple

academic and industry partners to generate Deliverable D3.4, which is a tech-

nical report on the security aspect of the project.
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1.4 . Thesis Outline

This thesis is divided into six chapters, organized as follows:

Chapter 2: Literature Study. It gives insights into the existing literature on

V2X security and misbehavior detection systems. Specifically, it provides an

analysis of the current state of research in the field and identifies research

deficiencies that will be addressed by this thesis.

Chapter 3: Development of a Novel Misbehavior Detection System in 5G

V2N. This chapter presents an novel system for detecting and preventing po-

sition falsification attacks in V2X communications. The system leverages ma-

chine learning techniques and conforms to the 3GPP 5G V2X architecture

requirements. In this chapter, the system’s architecture, machine learning

model design, implementation details, and evaluation results are detailed.

Chapter 4: Exploration of a Collaborative V2X Misbehavior Detection Sys-

tem. This chapter investigates a collaborativemachine learningmodel for V2X

misbehavior detection, expanding on the concept introduced in Chapter 3. It

explains how collaboration between edge detection nodes can improve the

detection results of the misbehavior detection system and protect V2X appli-

cation servers in the 5G edge network.

Chapter 5: Investigation of Federated Learning for V2X Misbehavior De-

tection. This chapter examines the application of federated learning for de-

tecting V2X misbehaviour in 5G edge networks. It compares the detection

performances of distributed and centralized V2X misbehavior detection sys-

tem in 5G edge networks.

Chapter 6: Summary - The concluding chapter of the thesis provides a

summary of the main research findings. The implications of these findings

and the future work for V2X communications and cellular network security

are discussed.
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2 - LITERATURE STUDY
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2.1 . ETSI ITS Architecture

To better understand our solution architecture detailed in Chapters 3, 4,

and 5, it is necessary to give insights into the ITS station reference architec-

ture, the ITS security architecture defined by ETSI, and the 5G V2X architecture

proposed by 3GPP. We will also discuss in this chapter the state-of-the-art of

V2X misbehavior detection.

2.1.1 . ITS-S Reference Architecture

Several standard organizations are working on the development of ITS

standards. While their published standards are generally similar due to har-

monization efforts, they might have minor differences to comply with certain

legal or technical requirements. Within the framework of our work, we will

focus on the standards developed by ETSI and 3GPP.

An ITS Station (ITS-S) is a communication device that participates in an ITS

network. ITS-S can be part of an OBU on a vehicle or a pedestrian mobile

equipment, an RSU, or an ITS application server.

The ITS-S protocol stack, depicted in Figure 2.1, encompasses six layers,

four horizontal layers: ITS Applications Layer, Facilities Layer, Networking and
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Layer facilitates the collection of information from the surrounding environ-

ment and sharing them with multiple ITS applications that might need them.

Besides controlling session management, the Facilities Layer also speci-

fies the messages format and their sending frequency, e.g. ETSI’s Coopera-

tive Awareness Messages (CAM) [19] and Decentralized Environmental Notifi-

cation Messages (DENM) [20] are two essential basic messages used for road

safety defined at the Facilities Layer.

CAM messages are periodically sent by the ITS-S to share its position, ve-

locity, and heading at different frequencies ranging between 10 and 100 mil-

liseconds, depending on multiple predefined factors.

DENMmessages are used to broadcast andnotify about certain road events,

like accidents, upcoming hazard, slippery road, or traffic jam, etc.

The Facilities layer provides other application-support services such as

time-stamping and geo-stamping of V2X messages, which are essential for

ensuring the integrity and relevance of the messages. Additionally, this layer

manages the publish/subscribe mechanism for known data objects, enabling

ITS applications on higher layers to process LDM data.

2.1.1.3 . Networking and Transport Layer

The Networking and Transport layer is positioned immediately below the

Facilities Layer. As the name implies, this layer combines both Transport and

Network layers of the OSI reference model.

Multiple communication protocols can be utilized within this layer. No-

tably, Basic Transport Protocol (BTP) [21] and GeoNetworking [22] are non-IP

protocols specifically designed for ITS, serving safety applications and time-

critical local broadcasts. Additionally, standard protocols such as TCP [23] and

UDP [24] over IPv6 [25] are employed for non-time-critical end-to-end com-

munications.

It’s worth noting that standard groups selected non-IP solutions for safety

applications, even though IP communications could have been equally effec-

tive.

2.1.1.4 . Access Layer

The Access Layer encompasses both the Data Link and Physical Layers in

the OSI reference model. This layer focuses on the wireless communication

aspects, including channels, Quality of Service (QoS), accessmechanisms, and
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2.1.1.6 . Security Layer

The second vertical layer is the Security Layer. It is in charge of enforc-

ing trust and privacy, through certificates management, encryption keys, and

synchronizing the change of pseudonyms and identifiers across the horizon-

tal layers.

For instance, when a vehicle decides to change its pseudonym certificate,

the station ID, IP and MAC addresses have to be changed at the same time to

eliminate simple correlations and inference attacks.

To standardize secure session establishment, International Organization

for Standardization (ISO) created ISO 21177 standard [27], which defines the

specifications and procedures for secure ITS stations communications and

access control; it is also compatible with both ETSI vehicular certificates [28]

and IEEE 1609.2 certificates [29], aswell as the Internet Engineering Task Force

(IETF) RFC 8902 [30] which adds support of vehicular certificates to Transport

Layer Security (TLS) version 1.3 protocol. The services that can be provided

by this layer are detailed in Section 2.1.2.4.

2.1.2 . ITS Communications Security Architecture

2.1.2.1 . Vehicular PKI System

As per ETSI specifications, ETSI TS 102 941 [32], a vehicular PKI system shall

be in place to secure V2X communications. It provides access control, trust

and privacy management, and confidentiality when required. As depicted in

Figure 2.3, this system consists of:

1. Enrollment Authority (EA): Its main role is to authenticate the ITS sta-

tions and provide them with the necessary permissions for ITS com-

munications. Every ITS station has a unique ID and cryptography keys

established during the initialization process. Afterward, the enrollment

phase begins, during which the ITS-S authenticates itself with the EA to

obtain enrollment credentials. These credentials grant the ITS-S gran-

ular permissions for specific ITS applications and services. Only the EA

has access to the real identity of an ITS-S.

2. Authorization Authority (AA): Its main role is issuing multiple Autho-

rization Tickets to an ITS station after validating its Enrollment Creden-

tials with the Enrollment Authority. Authorization Tickets are pseudony-

mous certificates, which are swapped often to keep the real ITS station
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The security services provided by the Security Layer are spread across all

the horizontal layers, their placement is depicted in Figure 2.4, and they can

be categorized as follows:

• Enrollment services: manage the enrollment credentials with the EA.

• Authorization services: manage the authorization tickets with the AA.

• Accountability services: record incoming and outgoingmessages for ac-

countability purposes.

• Identity management services: supports simultaneous change of com-

munication IDs (pseudonym certificate, station ID, network ID, MAC ad-

dress).

• Security Association management services: establish secure communi-

cations between ITS stations.

• Integrity services: calculate, insert, and validate checksum values.

• Replay protection services: verify the consistency of messages by in-

cluding and verifying their timestamps and sequence numbers.

• Payload plausibility validation service: determines the reliability of in-

formation derived from an incoming communication.

• Reporting service: reports suspicious activities to ITS infrastructure.

• Remotemanagement services: allow ITS infrastructure to remotelyman-

age the transmission capabilities of a misbehaving ITS station.

2.2 . V2X Communications in 3GPP

Local V2X messages in C-V2X are primarily transmitted over the sidelink,

also called the PC5 interface, which utilizes short-range direct communication

in the 5.9 GHz [33] frequency band. This ensures low latency and high relia-

bility, making it ideal for safety-critical applications like collision avoidance.

Similarly, the Uu interface can be used to transmit V2X messages through

the network, which can provide vehicles with a wider range of communication

compared to PC5. However, as depicted in Figure 2.5, this requires the sup-

port of a network-hosted V2X Application Server, and might introduce delay.
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• Medium Access Control (MAC) [38] sublayer is responsible for multi-

plexing, scheduling information reporting, and error correction.

• Physical layer (PHY), defined in [39][40][41][42][43][44][45], is positioned

at the lowest level of the protocol stack. It receives the control informa-

tion from Radio Resource Control (RRC) to perform coding, data modu-

lation, resource mapping, and antenna mapping for sending or receiv-

ing the data on the physical medium.

On the control-plane, signaling protocols may include the following:

• Non-Access Stratum (NAS): It is responsible for the establishment, man-

agement, and release of end-to-end connections, includingmobilityman-

agement, security procedures, and user data transmission between the

UE and the core network.

• Radio Resource Control (RRC): It is responsible for the configuration,

management, and release of radio resources between the UE and the

network. This includes processes such as broadcast of system informa-

tion, connection establishment, handovers, and re-configurations.

• PC5-Signaling (PC5-S): The protocol used for the control plane signaling

over the PC5 reference point for the secure layer-2 link.

2.2.1 . V2X Architecture in 3GPP

2.2.1.1 . 3GPP Release 14

3GPP introduced, in Release 14 [46], the first generation of cellular V2X

communications based on LTE. A new architecture is defined for V2X and it is

integrated as part of Evolved Packet System (EPS) and the existing LTE-based

radio communications.

LTE-V2X [47] is based on the development of Device-to-Device (D2D) com-

munications, also called Proximity Services (ProSe) [48], delivered as part of

3GPP Release 12 [49]. The essential functionality of D2D is to enable direct

communication between mobile devices through the creation of a new com-

munication interface, the sidelink or PC5, enabling traffic to be directly trans-

ferred from a device to another without transiting over a base station. The

main use-cases of D2D are:
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1. Providing proximity communications during disasters, like earthquakes,

where the availability of cellular network infrastructure might be com-

promised.

2. Replacing legacy public safety communication used by public authori-

ties, like police, ambulance and firefighters.

3. Offloading traffic from cellular network in a crowded environment like

a stadium or concert.

As direct communication between vehicles is also required in V2X, D2D

and the sidelink fulfill many of the requirements for the basic use cases of V2X

communications which are focused on road safety and traffic management.

To improve reliability, the vehicles are pre-authorizedby the service provider

to utilize the PC5 interface to communicate with each others, even when they

are "out of coverage". Which means that the vehicles can still communicate

and exchange V2X messages despite the absence of the cellular network and

the base stations.

2.2.1.2 . 3GPP Release 15

In 3GPP Release 15 [50], the first phase of 5G [51] [52] [53] is introduced.

The new5GCore (5GC) network andNR radio access technology specifications

includingMillimeterWave (mmWave) [54]were developed andpublished. How-

ever, the V2X architecture in this release is still based on LTE (4G).

The work on V2X in this release focused on defining new advanced V2X

use cases, coined enhanced Vehicle-to-Everything (eV2X), like platooning, au-

tonomous driving, remote driving, and extended sensors, which have strict

latency, reliability and throughput requirements. These requirements cannot

be achieved using LTE-V2X. 3GPP Release 15 uses the same V2X EPS archi-

tecture introduced in 3GPP Release 14. Also, it utilizes LTE-V2X on the PC5

interface with improvements to radio specifications like 64-Quadrature Am-

plitude Modulation (QAM), numerology, and link aggregation.

2.2.1.3 . 3GPP Release 16

In order to meet the strict delay, reliability, and throughput requirements

of eV2X use cases, 3GPP needed to develop NR-V2X. It is considered the sec-
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ond generation C-V2X technology and it was released as part of 3GPP Release

16 [55].

A new V2X architecture based on 5GC is introduced, also, the NR-V2X [56]

is defined to be simultaneously used on the sidelink with LTE-V2X. The inten-

tion is to use LTE-V2X for the basic road safety use cases, and dedicate NR-V2X

to serve the advanced use cases of eV2X, due to its better performance and

higher throughput. Also, one of the important features introduced with NR-

V2X is the support of unicast, groupcast and broadcast communications, com-

pared to the broadcast-only LTE-V2X. Furthermore, the Uu interface is based

on NR instead of LTE providing better uplink and downlink performance for

V2N services.

Thenew5GV2X architecture brings numerous performance improvements,

including:

1. Software-Defined Network (SDN) architecture segregates Control Plane

(CP) and User Plane (UP), which can minimize the end-to-end commu-

nication delay by bringing the services closer to users.

2. The use of micro-services and Network Function Virtualization (NFV) ar-

chitectures have the potential benefit of improving performance, relia-

bility, capacity, and availability of the control functions.

3. Network slicing enables the creation dedicated slices for specific V2X

services to optimize their performance and isolate them from the re-

maining services hosted by the telecommunications service provider.

4. 5GC is a Service-Based Architecture (SBA), where all functions can com-

municate with each other’s using 3GPP-defined Application Program-

ming Interface (API) over HTTP/2 protocol.

a) 5G Control-Plane

The 5GC network contains all of the control-plane functions:

• Access and Mobility Management Function (AMF) [57]: manages regis-

tration procedures, connection mobility, and User Equipment (UE) au-

thentication. It interacts with the Radio Access Network (RAN) to fa-

cilitate the establishment of connections between user devices and the

network, hence enabling smooth transitions across various access tech-

nologies or geographical areas.
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The AMF obtains subscription information for V2X from the UDM. It col-

laborates with the PCF to provide necessary V2X service-related parameters

for both the UE and the Next-Generation Radio Access Network (NG-RAN). It

also aids in creating or updating user context specifically for the V2X service,

hence enabling seamless service delivery.

TheUDMmanages subscription information for V2X communication, which

are stored on the UDR.

The PCF is responsibile for the provision of the V2X policy and parame-

ters to specific UEs based on their PC5 capabilities. It provisions UEs with au-

thorization and policy parameters for V2X communication over PC5 and Uu

interfaces. It also supplies the AMF with PC5 QoS parameters for NG-RAN.

The NRF assists in identifying the appropriate PCF that supports the V2X

service. This function helps route V2X service-related requests to the correct

PCF.

Lastly, V2X Application Server, which is considered an AF, handles both

uplink and downlink data between UEs. It can request QoS sustainability ana-

lytics from the NWDAF through the Network Exposure Function (NEF) [67][68]

for potential QoS changes in specific geographic areas. It’s responsible for

provisioning the 5GC and UEs with V2X communication parameters for both

PC5 and Uu interfaces. The NEF further contributes by allowing the external

V2X Application Server to update information related to the V2X service within

the 5G network.

Together, these network components create a robust framework to sup-

port the V2X service within the 5G ecosystem.

b) 5G User-Plane

The 5G user-plane consists of:

• UE: amobile phone, vehicle, or V2X infrastructure. TheUEperforms var-

ious tasks, including reporting V2X capabilities and PC5 capabilities to

the 5GCore (5GC) over theN1 interface. It can communicate its need for

V2X policy provisioning and receive V2X parameters from the 5GC. Addi-

tionally, the UE manages procedures for V2X communication over the

PC5 interface, configuring parameters related to communication and

mapping V2X service types to frequencies. These parameters can be

pre-configured or updated through signaling from the PCF or the V2X
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tectionmechanismsdefined in IEEE 1609.2 to provide the optional V2X application-

level data confidentiality, when needed, during transmission over the PC5 in-

terface [71].

Uplink/Downlink security (LTE-Uu interface): Confidentiality and in-

tegrity protection for V2X communications over LTE-Uu interface can be en-

abled similarly to the encryption and protection of standard mobile commu-

nication. In the EPS, LTE leverages EPS Encryption Algorithm (EEA) and EPS

Integrity Algorithm (EIA) to ensure the confidentiality and integrity protection

respectively. Both algorithms support the highly secure Advanced Encryption

Standard (AES) and Zu Chongzhi (ZUC) algorithms, however, they also support

weaker algorithms, like SNOW 3G [72]. Also, in LTE, integrity protection on

LTE-Uu interface is only supported for signaling but not for user-plane traffic.

The EPS authentication protocol, Evolved Packet System Authentication

and Key Agreement (EPS-AKA), which provides users’ authentication, is vul-

nerable to identity theft attacks, as it occasionally allows sending the user’s

permanent identifier, International Mobile Subscriber Identity (IMSI), in clear

text. The key used to encrypt user traffic on the LTE-Uu interface is KUPenc

and the key hierarchy is depicted in Figure 2.10.

2.2.2.2 . 3GPP Release 16

NR-V2X Sidelink security (NR-PC5 interface): Startingwith 3GPP release

16, access layer confidentiality and integrity protection are supported on the

side-link, enabling optional encryption for V2V, V2I, and V2P unicast commu-

nications. However, encryption of groupcast and broadcast communications

is not defined in release 16, because these communication types are mostly

used for road safety purposes where confidentiality is not required.

The key used to protect local V2X unicast communications is calledKNRP

(New Radio PC5), and the key hierarchy is depicted in Figure 2.12. The pro-

cedures to establish secure unicast direct communication and encrypt user

plane data on the access layer between two NR-V2X-enabled vehicles on the

PC5 interface are depicted in Figure 2.13.

Uplink/Downlink security (NR-Uu interface): The main advantage of

5G Authentication and Key Management (5G-AKA) over EPS-AKA is that the

user’s permanent identifier Subscription Permanent Identifier (SUPI) is sent

encrypted and never in its clear text form. In 5G System (5GS), cipher algo-
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the network and achieve faster authentication/re-authentication for vehicles.

Basedon the LuST scenario [78], vanderHeijden et al. created VeReMi [79],

a publicly accessible dataset of V2X attacks. The dataset was generated using

the vehicular network simulators SUMO [80] and Veins [81]. The dataset con-

tains the tracks of both normal and misbehaving vehicles, the latter engage

in five distinct position falsification attacks in V2V. The dataset was utilized by

the authors to compare various plausibility checks.

In [82], Kamel et al. proposed Framework ForMisbehaviorDetection (F2MD)

which is a framework based on Veins simulator that can be leveraged to de-

velop, test and compare different misbehavior detection algorithms in V2V

environment. The preventionmechanism proposed depends on revoking the

certificate of misbehaving vehicles.

In [83], So et al. made used of a machine learning-based method for de-

tecting V2Vmisbehavior. They developed, taking profit of MATLAB, amachine

learning version of the VeReMi dataset before proposing a model that makes

use of six input features, including two plausibility checks and four numerical

measurements of the vehicle’s movement. The authors compared the per-

formance of standalone plausibility checks, K-Nearest Neighbors (KNN) and

Support Vector Machine (SVM) algorithms. The authors showed that accu-

racy was improved by 6 to 7 percent, and the precision improved by around 20

percent, while maintaining the recall within 5 percent margin. In [84], Sharma

et al. used Scikit-learn [85] to evaluate more machine learning algorithms, in-

cluding Naïve Bayes (NB), Random Forest, and Ensemble Boosting and Voting.

They proved that the RandomForest and Ensemblemodels outperformed the

related strategies.

In [86], Bißmeyer et al. proposed a centralized misbehavior detection sys-

tem for VANETs. This system receives and analyzes misbehavior reports sent

by network nodes upon the detection of an incident. Based on the plausibil-

ity of the data received in these reports, the centralized system makes the fi-

nal decision whether the reported vehicle is considered as behaving correctly

or not. The proposed system employs a Bayesian network to calculate the

probability of misbehavior based on the reported data, and it is shown to be

effective in detecting various types of misbehavior attacks in simulations.

In [87], Gyawali et al. proposed a misbehavior detection model that runs
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locally on vehicles, and consists of two main components: a misbehavior de-

tection system for position falsification attacks, and a false alert verification

scheme which protects against false alert attacks. They used VeReMi dataset

for position falsification, however, they generated their own private dataset

to simulate false alert attacks.

In [88], Kim et al. compared KNN, SVM, RF, Extreme Gradiant Boosting

(XGB), and Multi-Layer Perceptron (MLP) on the VeReMi-ML dataset. They

further introduce a new extended set of differential features that allow the

checking of mobility constraints and inconsistencies, which, as per the re-

ported results, proved to improve themachine learningmodels’ performance.

When the extended features are used, MLP performs the best, followed by

XGB and RF. The authors also proposed Zero-Day Attack Detection based

on Auto-encoder architecture. The auto-encoder is a Deep Neural Network

(DNN) encompassing an encoder and a decoder with internal hidden layers.

The encoder projects the input data to a lower dimensional space, and the

decoder restores the lower dimensional representation to the output in the

input dimensional space. The auto-encoder is then trained to minimize the

reconstruction error while using only normal behavior data. After that, the

model can then be leveraged to classify normal and abnormal data based on

a pre-defined error rate threshold.

In [89], Lv et al. proposed a misbehavior detection system for VANET us-

ing privacy-preserving federated learning and blockchain technology. Their

approach allows vehicles to request receiving a shared training model from

a RSU, train this model using its local data, and upload the updated model’s

parameters without sharing local training data with the RSU. The RSU receives

models frommultiple vehicles and aggregates thembased on accuracy scores

to produce a new averaged model, which is stored on the blockchain.

In [90], Kamel et al. created an extended version of the VeReMi dataset.

This expansion comprises 19 attack types, including a large set of sophisti-

cated V2X attacks like Denial of Service (DoS), Data Replay, and Sybil, at vari-

ous vehicles densities. The study also uses basicmisbehavior detectionmech-

anism based on Long Short-Term Memory (LSTM) and DNN. The results are

considered as a baseline for further research. This large dataset can be lever-

aged to compare and enhance their detection mechanisms and develop new

ones.
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Alladi et al. proposed in [91] a misbehavior categorization scheme based

on deep learning for intrusion detection in V2V. They propose centralized

training in the cloud, while the detection nodes are located on Edge servers

close to RSUs. They exclude Delayed Messages and Eventual Stop attacks,

and study the seventeen remaining attacks in the VeReMi-extension dataset.

Single-stage andmulti-stage classifiers are proposedwith similar performances,

and several deep learning model architectures are compared. They consist

of several layers of Convolutional Neural Network (CNN) and/or LSTM. The

authors found that the models with 2-CNN/1-LSTM layers and 4-LSTM layers

performed slightly better than other models.

Sedar et al. proposed in [92] a V2Xmisbehavior detection systembased on

LSTM and reinforcement learning. To distinguish between genuine and false

data, the proposed model analyzes V2X data from vehicles as time-series at

an Edge or Cloud server. Using VeReMi extension dataset, they assessed their

approach against various attack types and reported promising results.

2.4 . Conclusion

This chapter delved into the ETSI ITS and 3GPP V2X specifications. It de-

tailed the ITS station protocol stack, ITS communication security architecture,

ITS station security services, C-V2X communications interfaces and protocol

stack, 5G V2X network architecture in 5G, 5G control-plane and user-plane

protocol stacks, and C-V2X communications security.

Next, the chapter presented the state-of-the-art in V2Xmisbehavior detec-

tion techniques proposed by fellow researchers which are focused on V2V.

This highlights the the lack of solutions and standardization of misbehavior

detection for V2N communications, which we address in the next chapter.
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Table 2.2: Summary of recent proposals for V2X misbehavior detection

Paper Dataset Approach Simulator/Tools
Solution

Environment

[79] VeReMi
Local Plausibility

Checks

Veins, OMNeT++,

SUMO
V2V, DSRC

[83] VeReMi
Local Machine

Learning
MATLAB V2V

[84] VeReMi
Local Machine

Learning
scikit-learn V2V

[87]

VeReMi + private

dataset for false

alerts

Local Machine

Learning

scikit-learn, Veins,

OMNeT++, SUMO
V2V, DSRC

[88]
VeReMi + modified

VeReMi attacks

Local Machine

Learning, MLP, and

Autoencoder

Not provided V2V

[89] VeReMi

Local MLP,

Federated Learning

on Edge, Blockchain

PyTorch
V2V, V2I, Edge,

Backend

[90] VeReMi Extension

Local Plausibility

Checks, Misbehavior

Report

F2MD, Veins,

OMNeT++, SUMO

V2V, V2I, DSRC,

LTE-V2X, Backend

[82] VeReMi Extension

Local Plausibility

Checks, Machine

Learning, MLP,

LSTM, Misbehavior

Report, and Global

Analysis

F2MD, Veins,

OMNeT++, SUMO,

scikit-learn,

TensorFlow

V2V, V2I, DSRC,

LTE-V2X, Backend

[91]

VeReMi Extension

excluding two

attacks

Edge CNN, LSTM Not provided V2V, V2I, Edge

[92] VeReMi Extension

Centralized

Reinforcement

Learning

Not provided V2V, V2I, Edge/Cloud
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3.1 . Introduction

In the near future, vehicles will leverage 5G to communicate with each

others and to access C-ITS applications hosted in the cloud. The V2X mar-

ket is expected to rapidly grow, and the number of C-ITS service providers

and services will increase. Most service providers will leverage V2N commu-

nications to provide various services to vehicles, like centralized road hazard

notifications, traffic efficiency, weather alerts and forecasts, pollution meters,

and even entertainment services. Securing these V2N-based services is an

additional challenge which has not been deeply addressed yet.

In this chapter, we propose and implement a novel misbehavior detec-

tion system, compliant with 3GPP 5G V2X architecture specifications. It uses
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machine learning techniques, to detect and prevent position falsification at-

tacks that might occur during V2N communications, protecting, hence, V2X

application servers. When an abnormal position is detected, fast and reactive

countermeasures against the sending vehicle are taken in collaboration with

the 5G core network, to stop the attack.

3.2 . Problem Statement

While a vehicular PKI system is essential to protect against external threats,

other approaches should be considered to mitigate attacks launched by ma-

licious insiders, whom are authenticated and already part of the system. The

most effective solution is to implement a misbehavior detection system. It

monitors and analyzes the data sent by authenticated vehicles and report po-

tential unusual behaviors. Various papers addressed the implementation of

V2X misbehavior detection system adapted for V2V communications. How-

ever, none of the existing studies have addressed the issue of protecting V2X

application servers in a 5G V2N environment from data manipulation attacks

initiated by authenticated misbehaving vehicles.

For instance, an ITS service related toweather and pollutionwill highly rely

on the accuracy of the data, measurements, and their respective positions re-

ported by vehicles. A misbehaving vehicle, whether intentionally or uninten-

tionally, sending incorrect positionswill contaminate the database used in cal-

culations and forecasting. Consequently, the ITS service provider’s business

might be negatively impacted. In severe cases, the amount of contaminated

data might affect the functionality of the ITS service to an extent where it be-

comes inaccurate, irrelevant, or even unusable. In such a scenario, the loss of

users’ trust in the service will occur, and the data manipulation attack might

be seen as a form of DoS attack. In addition, it is important to note that these

types of attacks have the potential to target safety-related services, potentially

resulting in significant consequences.

In this chapter, we address the challenge of detecting malicious vehicles

that behave normally in V2V but manipulate positions during V2N communi-

cations in a 5G network environment to attack V2X application servers. Note

that the position manipulation attacks addressed in this chapter correspond

to the five attack types described in VeReMi dataset [79], as depicted in Fig-
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• Detection Function (DF) which is responsible for real-time analysis and

monitoring of V2X traffic packets on the user-plane. Its functionality is

detailed in depth in Section 3.4

• Reporting Function (RF) integrated within the 5G core network control-

plane to allow telecommunications service providers and legal author-

ities to revoke the access of reported malicious vehicles and stop the

attack.

The data flow in an end-to-end V2N scenario in a 5G environment, where

multiple vehicles are sending position information to a V2X application server

hosted in the public domain is as follow:

1. The traffic generated by the vehicles is transmitted to the 5G base sta-

tion using NR radio over the Uu interface.

2. The gNBencapsulates the data using theGPRS Tunnelling Protocol (GTP)

protocol, and tunnels it toward the UPF over the N3 interface. To han-

dle internal user-plane routing, telecommunications service providers

by adding GTP-U headers to all traffic crossing the N3 interface.

3. Finally, the PDU Session Anchor-UPF (PSA-UPF), which terminates a PDU

session and has a direct connection to the public/private domains, re-

moves the GTP-U header before forwarding the traffic to the V2X Appli-

cation Server in a normal TCP/IP encapsulation over the N6 interface.

To implement our security application, the UPF is configured to forward

the V2X traffic specific to the protected V2X service to the DF. The latter will

analyze the traffic in real-time, before forwarding it to the V2X AS. When an

attack is detected, the DF will notify the RF, which can initiate the countermea-

sure procedure to stop the attack. Alternatively, the UPF can be configured to

duplicate the data it sends to V2X AS and send a copy of it to the DF.

In Figure 3.3, we present a high-level end-to-end workflow of the counter-

measure that our security application initiates if an attack is detected. The DF

is continuously analyzing V2X traffic as it flows from vehicles toward the V2X

AS.
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3.4 . Proposed AI-based Detection

Misbehavior detection can be achieved through different techniques. In

[12], the authors classified these techniques into two categories, node-centric

and data-centric. Essentially, node-centric misbehavior detection places a

higher importance on evaluating the trustworthiness of the nodes inside the

network. In contrast, data-centric misbehavior detection focuses on guaran-

teeing the integrity and authenticity of the data, which leverage the use of

plausibility checks. They are simple and quick verification methods used to

determine whether data or values are reasonable and likely to be accurate.

They do not perform extensive validation, but rather play the role of initial

filters to identify errors or anomalies. In [83], the authors proved the bene-

fit of utilizing Machine Learning combined with plausibility checks to improve

misbehavior detection results.

In this section, we will first summarize the general concept of Machine

Learning and its different applications, before presenting the details of our

proposed detection model.

3.4.1 . Machine Learning

Machine learning is a branch of Artificial Intelligence (AI) that is centered

on utilizing data and algorithms to replicate the learning process seen in hu-

mans, with the aim of progressively enhancing its accuracy.

Machine Learning has received significant attention and has had a sig-

nificant impact in several businesses and academic domains. It focuses on

the advancement of algorithms to acquire knowledge and make decisions or

forecasts by leveraging data, rather than depending on explicit programming.

Essentially, instead of being coded with explicit instructions, these algorithms

undergo training using extensive datasets, enabling them to independently

generate predictions or make classifications when given new data. In light of

the growing field of big data, machine learning presents an opportunity for

recognizing significant patterns and gaining valuable insights from this exten-

sive data store that is generally difficult for the human brain to detect. Its

potential applications span a wide range of fields, including health diagnos-

tics and financial predictions, among many others.
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The main machine learning algorithms can be categorized as follows:

• Supervised learning is the most common form of machine learning,

it is mainly used for classification and regression applications. It in-

volves the training of algorithms using labeled data, where the desired

output is already known. The main objective of the algorithms is to ac-

quire knowledge of a systematic relationship between input data and

corresponding output data. Once the algorithms are trained, they pos-

sess the capability to make predictions for new inputs that they have

not previously encountered. Supervised learning algorithms include a

variety of methods, some of which:

– Linear Regression

– Logistic Regression

– Decision Trees and Random Forests

– Support Vector Machines (SVM)

– k-Nearest Neighbors (k-NN)

– Neural Networks

• Unsupervised learning applications encompass clustering, dimen-

sionality reduction, and anomaly detection. Unsupervised learning

algorithms differ from supervised learning algorithms in that they are

designed to handle datasets without explicit labels. However, the pri-

mary objective of these algorithms is to identify underlying patterns

within the dataset, such as clusters or groups. The algorithms falling

under this particular category are:

– K-Means Clustering

– Hierarchical Clustering

– Principal Component Analysis (PCA)

• Reinforcement learning is characterized by the agent’s iterative en-

gagement with its surrounding environment in order to acquire knowl-

edge and improve performance. The agent is provided with feedback

based on its behaviors, which might be in the form of incentives for
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correct decisions or penalties for unfavorable actions. The agent’s be-

havior is refined over time via an iterative process that involves taking

action and receiving feedback, with the aim of maximizing the cumula-

tive reward. Reinforcement learning encompasses a range of essential

algorithms and techniques, including:

– Deep Q-Networks (DQN)

– Policy Gradient Methods

– Monte Carlo Tree Search

The process of training a supervised machine learning model involves uti-

lizing a dataset that contains predetermined input-output pairings in order to

train the model on extracting certain relationships between the two. The first

step involves the collection and preparation of data, whereby unprocessed

data is subjected to cleaning, transformation, and division into separate sets

for training and testing. The selection of an appropriate algorithm is there-

after determined according to the specific job at hand, such as classification

or regression. During the training process, themodel utilizes the training data

to generate predictions. The difference between these predictions and the

true labels is calculated using a loss function. The internal parameters of the

model are modified in order to minimize the loss function, usually using op-

timization methods such as gradient descent. After training, the model’s per-

formance is assessed on the testing dataset. Modifications, including the tun-

ing of hyperparameters, may be conducted in light of this assessment, prior

to considering the model suitable for deployment.

3.4.2 . Proposed Model

Many plausibility checks for V2X are proposed in the related work. For in-

stance, Location Plausibility Check (LPC) utilizes i) current vehicle speed and

position, ii) average acceleration, and iii) Gaussian distribution for Confidence

Intervals (CIs) to predict the next vehicle position on both X and Y directions.

If the new position sent by the vehicle falls under the 95% CI on both direc-

tions, the score of the new position is set to 0, meaning that the position is

plausible. However, if the new position is determined to be outside 95% CI

but within 99% CI, then the score is increased by 1 per direction. Lastly, if the

new position is outside the 99% CI, the score is increased by 2 per direction.
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Therefore, the score range of location plausibility check is between 0 and 4,

where 4means that the position received is unlikely to be plausible.

Movement Plausibility Check (MPC) compares the displacement with ve-

locity. If the calculated displacement is 0 while the average velocity is not 0,

the score is set to 1, which means that the vehicle is not reporting a change in

position despite its movement. Otherwise, the score is set to 0.

Plausibility checks can be used on their own to detect misbehaviors. How-

ever, combining plausibility checks resultswith quantitative information about

the vehicle’s movement and behavior, to use them as input features for ma-

chine learning can enhance the detection results.

As we are following a data-centric approach, we depend on the data itself

and its semantic to perform the detection. In other words, we aim to evaluate

if the received data is relevant and thus possible/plausible.

Wepropose adetection algorithmwhich enhances the algorithmproposed

in [83], by adding a new plausibility check called On-Road Plausbility Check

(ORPC), in order to improve detection performance. We recall that in [83] the

authors used supervised machine learning with input features LPC, MPC, and

the 4 quantitative values to classify the labeled data in VeReMi dataset. Our

algorithm falls under the same supervised category. However, we use an un-

supervised learningmethod to compute the score of our proposedplausibility

check.

ORPC verifies whether the new received position is on the road or not.

To achieve this, it leverages historical location data sent by vehicles which

passed by the covered area earlier. Historical location data consist of a set of

latitudes and longitudes recorded without any vehicle identification or labels.

They designate normal positions where vehicles are expected to be. There-

fore, when a new position is received, we can calculate how close it is to the

nearest normal position. If it’s relatively close, the new position is considered

plausible. If not, it is considered implausible.

As the historical data is not labeled, we cannot leverage it using super-

visedmachine learning. Instead, we propose to use an unsupervisedmachine

learning approach, namely, anomaly detection (also called outlier detection).

Anomaly detection is the identification of data points that do not conform to

the expected pattern of a given group. One of the anomaly detection tech-
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Our algorithm, depicted in Figure 3.4, uses seven input features. Four

features use quantitative information which are the first, second, third, and

fourth input features. Three plausibility check results are the fifth, sixth and

seventh input features:

1. Difference between calculated average velocity based on displacement

and time and the predicted average velocity based on reported velocity

and time in the X direction.

2. Same as (1) but in the Y direction.

3. The magnitude of features (1) and (2).

4. Displacement based on calculated distance vs. predicted displacement

based on average velocity.

5. Location Plausibility Check (LPC) result.

6. Movement Plausibility Check (MPC) result.

7. On-Road Plausibility Check (ORPC) result.

3.5 . Performance Evaluation

3.5.1 . 5G network environment and dataset

In order to evaluate the performance of our proposed solution, we emu-

late a 5G Standalone (SA) network, then implement our security application,

and finally integrate it with the 5G architecture. We utilize VeReMi-ML dataset

to evaluate the proposal.

The dataset is split into two sub-datasets, one for training and one for

testing, using four-to-one (4:1) size ratio. Our scheme runs in four phases:

1. Feature extraction phase

2. Training phase

3. Validation phase

4. Testing phase
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During the first phase, all features including plausibility checks’ scores and

quantitative information are calculated. In the second phase, the machine

learning model is trained using the calculated values in the previous step as

input. In the third phase, a performance baseline is set by using the trained

model to evaluate an unused portion of the training dataset. In the fourth

phase, the real performance is measured by evaluating the results produced

by the trained model using the test dataset that was never used during pre-

vious phases.

For 5G emulation, we use EstiNet [94] to build our evaluation environ-

ment. EstiNet added a 5G version to its simulator which includes UE and gNB

simulation, as well as 5G core emulation imported from free5GC [95]. EstiNet

includes all themajor functions of 5GC CP such as AMF, SMF, PCF, AUSF, NSSF,

UDM, UDR, and NRF. Each function runs on its own docker instance, making

it compliant with the microservices architecture. EstiNet also includes the UP

components. First, the UE and RAN simulation, running on the same node,

both registering with the core network. Second, the emulated UPF function,

controlled by the SMF, connects the UEs to the DN where the V2X application

server is hosted. EstiNet also supports integrating custom-built applications

through docker images, which is essential to integrate our proposed solution.

Using Estinet, we built a topology corresponding to the proposed architec-

ture in Figure 3.2. Our security application has two components, the misbe-

havior detection function (DF) and the reporting function (RF). We developed

the detection function using python and scikit-learn [85], while the report-

ing function was developed in C. Then, we transformed our application into

a docker image, which runs as an Application Function (AF) connected to the

5G core network.

As Free5GC does not implement all 3GPP procedures, we could not imple-

ment the countermeasureworkflowasplanned. Instead, weuse aworkaround

to disconnect the attacker’s PDU session using the upCnxState deactivation

procedure described in [58]. While this workaround should not be used in

actual 5G implementations, it produces a similar effect of disconnecting the

PDU sessions of reported vehicles during the simulation.

We use the recorded traces of both normal and false positions in VeReMi-

ML dataset to simulate traffic sent by vehicles to the V2X application server.
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As the dataset was originally created for VANET and V2V scenarios, we had

to perform some modifications to fit our V2N environment. The two main

customization are:

• Arrangeby sender: Theoriginal dataset is arrangedbasedon sender/receiver

pair. The first modification wemade is to merge all themessages of the

dataset, arrange them based on sender ID and sending time, and then

filter and remove duplicate messages. In doing so, we create lists of all

the messages sent by each sender across themap. We also assume full

5G coverage area and message visibility.

• Last message assessment: The last two messages received from the

same sending vehicle are directly evaluated against the machine learn-

ing model. Note that in the original algorithm, the evaluation is vehicle-

based. It means that it occurs only when the receiving vehicle stops

receiving messages from the sending vehicle. This change helps mak-

ing real-time predictions while limiting the number of cached positions

to only one, preserving the vehicle’s path privacy.

3.5.2 . Performance metrics

The performance of the models is determined by the number of True Pos-

itive (TP), True Negative (TN), False Positive (FP), and False Negative (FN) produced

by themodels. Which can also be represented using the four formulas below:

Accuracy =
TP + TN

TP + TN + FP + FN
(3.1)

Accuracy is the ratio of correctly classified instances to the total number

of instances.

Precision =
TP

TP + FP
(3.2)

Precision indicates the ratio of correctly predicted attacks to the overall

detection predicted by the model.

Recall =
TP

TP + FN
(3.3)
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Recall, also called detection rate, represents the ratio of correctly pre-

dicted attacks to the overall actual attacks.

We recall that a high precision implies a small number of false positives.

And high recall suggests fewer false negatives, which also translates to an

increased detection rate. Consequently, a performing model is characterized

by high precision and high recall.

F1− score = 2×
Precision×Recall

Precision+Recall
(3.4)

The F1-score is not a distinct metric; rather, it combines precision and

recall into a single value.

3.5.3 . Evaluation and Results

We evaluate our proposed solution on two stages:

• Offline analysis: using Python and Scikit-learn to numerically evaluate

the performance of different ML classification models directly on the

dataset. During the offline analysis stage, we compare theperformances

of multiplemachine learning algorithm on the dataset, including: Logis-

tic Regression, Decision Tree, Random Forest, SVM, KNN, Naïve Bayes,

Ensemble: Voting, Bagging, Boosting, and Stacking, and finally Neural

Network.

• Real-time scenario: using the 5G network emulator running in a simu-

lated scenario to analyze the vehicles’ V2N traffic in real-time while it is

transmitted over the 5G network.

3.5.3.1 . Offline Analysis

In the offline evaluation, the dataset is split into two main sets. An 80

percent dedicated for training and cross-validation, and 20 percent assigned

as the test set. We run 5-fold cross-validation, where the training set is split

into five sub-sets, four for training and one for validation. The process runs

five times alternating the selection of the validation set between the sub-sets.

With each run, a different sub-set is considered as a validation set and the rest

are used for training. The results of training and cross-validation assist us fine-

tuning themodels’, and establishing a baseline for the expected performance

during the test phase. After tuning the machine learning models, they are
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trained on all of the 80 percent training/cross-validation set (all five sub-sets).

Then, it is used to evaluate the test set which forms 20 percent of the original

dataset.

Table 3.1 compares the performances of several ML algorithms, with and

without usingORPC, per attack type andwhen all of the attacks are combined.

Six different machine learning models, per algorithm, are trained using

the training dataset. Five models trained uniquely with one specific type of

attacks. And the sixth model is trained using all the five types of attacks. The

first five models are used for analysis purposes only, because in a real-world

scenario, the model needs to be trained on all of the attacks, like the sixth

model. After the models training using the training dataset, the models are

used to locally evaluate (offline) the messages recorded in the test dataset.

The results are generated by comparing each message prediction to its re-

spective label in the dataset, and calculating the metrics described in the pre-

vious section.

Analyzing the results in Table 3.1, starting with attack type 1, the Random

Forest model achieves the highest precision, while KNN outperforms it in re-

call and the overall F1-score.

Concerning attack type 2 results, all of the algorithms performed poorly

before adding ORPC. This is due to a high bias problem, where the input fea-

tures are not enough to predict the correct classification of this kind of attacks.

Therefore, after adding ORPC as an additional input feature, the detection re-

sults are considerably enhanced. All of the algorithms perform well with a

slight edge to SVM in precision, Logistic Regression, Ensemble Stacking and

Neural Network in recall and F1-scores.

The nature of attacks type 4 and type 8 includes randomization, therefore,

they are considered as the easiest attacks to detect. All the machine learning

algorithms were able to detect all of the attacks.

Due to the nature of attack type 16, the labels used in the dataset for mes-

sages are not consistent; they do not reflect the actual state of the sent mes-

sage, instead, the label 16 is assigned to all messages sent by an attacking

vehicle whether the vehicle is performing the attack or behaving normally.

Therefore, the detection performance on attack type 16 seems to be the low-

est. Under these circumstances, the best performing algorithms on precision
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are Random Forest and Ensemble Bagging. Naïve Bayes scores slightly better

than the rest on recall, and on the overall F1-score, which also shows a good

performance from SVM.

In summary, we notice similar performances between most of the ma-

chine learning algorithms, with very slight advantage to Random Forest and

Ensemble learning algorithms. Also, adding ORPC shows it effectiveness es-

pecially in detection of attack type 2, which affects the overall performance,

improving the precision by 3 percent, the recall by 15 percent, and F1-score

by 11 percent.
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Table 3.1: Offline Results: ORPC Impact on Performance

Attack 1 Attack 2 Attack 4 Attack 8 Attack 16 All Attacks

Metric Algorithm
with

ORPC

without

ORPC

with

ORPC

without

ORPC

with

ORPC

without

ORPC

with

ORPC

without

ORPC

with

ORPC

without

ORPC

with

ORPC

without

ORPC

Logistic Reg. 0.9897 0.9897 0.9898 0.0000 1.0000 1.0000 1.0000 0.9990 0.6595 0.6436 0.9388 0.8995

Decision Tree 0.9943 0.9955 0.9730 0.2723 1.0000 1.0000 1.0000 1.0000 0.5296 0.5381 0.9252 0.8343

Random Forest 0.9977 0.9977 0.9898 0.2624 1.0000 1.0000 1.0000 1.0000 0.7074 0.7066 0.9609 0.9111

KNN 0.9760 0.9741 0.9730 0.2912 1.0000 1.0000 1.0000 1.0000 0.5440 0.5416 0.9304 0.8450

SVM 0.9888 0.9876 0.9906 0.0000 1.0000 1.0000 1.0000 1.0000 0.6585 0.6575 0.9383 0.9134

Precision Naive Bayes 0.8500 0.9233 0.9897 0.0000 1.0000 0.9980 0.9892 0.9863 0.6474 0.6001 0.9108 0.8800

Ens. Voting 0.9943 0.9955 0.9888 0.2820 1.0000 1.0000 1.0000 1.0000 0.5296 0.6492 0.9507 0.8776

Ens. Bagging 0.9955 0.9955 0.9889 0.2878 1.0000 1.0000 1.0000 1.0000 0.7080 0.7032 0.9596 0.9084

Ens. Boosting 0.9966 0.9966 0.9888 0.5000 1.0000 1.0000 1.0000 1.0000 0.6552 0.6529 0.9348 0.9270

Ens. Stacking 0.9943 0.9955 0.9898 0.0000 1.0000 1.0000 1.0000 1.0000 0.6606 0.6584 0.952020.9111

Neural Network 0.9888 0.9899 0.9898 0.0000 1.0000 1.0000 1.0000 1.0000 0.6608 0.6590 0.9376 0.9205

Logistic Reg. 0.7962 0.7962 0.9656 0.0000 1.0000 1.0000 1.0000 0.9960 0.6309 0.6294 0.8758 0.7066

Decision Tree 0.7935 0.7953 0.9466 0.2009 1.0000 1.0000 1.0000 1.0000 0.4901 0.5107 0.8440 0.7012

Random Forest 0.7953 0.7944 0.9647 0.0480 1.0000 1.0000 1.0000 1.0000 0.5152 0.5205 0.8623 0.6923

KNN 0.8116 0.8161 0.9457 0.2271 1.0000 1.0000 0.9990 0.9990 0.5411 0.5403 0.8687 0.7375

SVM 0.7962 0.7962 0.9538 0.0000 1.0000 1.0000 1.0000 0.9960 0.6370 0.6370 0.8758 0.7015

Recall Naive Bayes 0.7962 0.7962 0.9611 0.0000 1.0000 1.0000 1.0000 1.0000 0.6507 0.6613 0.8909 0.7093

Ens. Voting 0.7917 0.7935 0.9629 0.0878 1.0000 1.0000 1.0000 1.0000 0.5548 0.5563 0.8603 0.7021

Ens. Bagging 0.7944 0.7944 0.9638 0.0534 1.0000 1.0000 1.0000 1.0000 0.5297 0.5320 0.8618 0.6935

Ens. Boosting 0.7944 0.7944 0.9629 0.0009 1.0000 1.0000 1.0000 1.0000 0.6218 0.6126 0.8820 0.6980

Ens. Stacking 0.7935 0.7953 0.9656 0.0000 1.0000 1.0000 1.0000 1.0000 0.6309 0.6294 0.8611 0.7072

Neural Network 0.7962 0.7962 0.9656 0.0000 1.0000 1.0000 1.0000 0.9990 0.6317 0.6355 0.8763 0.7010

Logistic Reg. 0.8825 0.8825 0.9776 0.0000 1.0000 1.0000 1.0000 0.9975 0.6449 0.6364 0.9062 0.7915

Decision Tree 0.8826 0.8842 0.9596 0.2313 1.0000 1.0000 1.0000 1.0000 0.5091 0.5240 0.8827 0.7620

Random Forest 0.8851 0.8845 0.9771 0.0811 1.0000 1.0000 1.0000 1.0000 0.5962 0.5995 0.9089 0.7868

KNN 0.8863 0.8881 0.9592 0.2552 1.0000 1.0000 0.9995 0.9995 0.5425 0.5410 0.8985 0.7876

SVM 0.8821 0.8816 0.9719 0.0000 1.0000 1.0000 1.0000 0.9980 0.6476 0.6471 0.9060 0.7936

F1-score Naive Bayes 0.8223 0.8551 0.9752 0.0000 1.0000 0.9990 0.9946 0.9931 0.6491 0.6293 0.9007 0.7855

Ens. Voting 0.8815 0.8831 0.9757 0.1339 1.0000 1.0000 1.0000 1.0000 0.5419 0.5992 0.9033 0.7801

Ens. Bagging 0.8836 0.8836 0.9763 0.0901 1.0000 1.0000 1.0000 1.0000 0.6060 0.6057 0.9081 0.7865

Ens. Boosting 0.8841 0.8841 0.9757 0.0018 1.0000 1.0000 1.0000 1.0000 0.6380 0.6321 0.9077 0.7964

Ens. Stacking 0.8826 0.8842 0.9776 0.0000 1.0000 1.0000 1.0000 1.0000 0.6454 0.6436 0.9043 0.7963

Neural Network 0.8821 0.8825 0.9776 0.0000 1.0000 1.0000 1.0000 0.9995 0.6459 0.6470 0.9059 0.7959
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3.5.3.2 . Real-Time Evaluation

After the offline analysis, we evaluate the online scenario using the 5G

emulator. We define a custom scenario with 171 simulated V2X vehicles, 32

benign and 139misbehaving, sending more than 7500messages as V2N traf-

fic which are distributed as shown in Table 3.2. As Random Forest model per-

formed relatedwell during the offline stage, we use it to analyze the live traffic

during the online scenario.

The online results are collected in two different configurations of the se-

curity application:

• Detection mode: the attackers are neither reported nor disconnected,

and the objective is to expose the security application to the maximum

amount ofmessages and record thedetectionperformance on themessage-

level.

• Prevention mode: in order to protect the V2X application server, the

security application will report and request the disconnection of a de-

tected attacker once it reaches a pre-defined attack threshold, and the

results are recorded in terms of number of disconnected vehicles.

Also, we run each mode three times, using three models:

1. Without ORPC

2. With ORPC

3. With ORPC while excluding attack type 16 from the training

As depicted in Figure 3.5, simulated vehicles are assigned vehicle IDs from

the test set. They register with the 5G network before they start sending their

V2N messages with the exact timing, frequency, and position recorded in the

dataset. When the message reaches the security application, the vehicle ID is

checked to determine if it is previously known. If the vehicle ID is new, time

and position information included in the first message are cached. When the

second message arrives from the same vehicle ID, the previous message is

retrieved from the cache and combined with the newmessage. The twomes-

sages are processed to create the plausibility checks scores and calculate the

quantitative values. Then, they are submitted as input to the ML classification

model. The model returns 0 if it predicts a normal position, and returns 1 if
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Table 3.2: Online Scenario: Number of Vehicles and Messages

Vehicle Type Vehicles count Messages count Prediction count

Normal 32 1483 1451

Attack 1 35 1308 1273

Attack 2 30 1249 1219

Attack 4 29 1369 1340

Attack 8 22 790 768

Attack 16 23 1470 1447

Total 171 7669 7498

it estimates an abnormal/manipulated position. If an attack is predicted, the

attack counter of that vehicle ID is incremented. In prevention mode, when

the attack counter reaches a previously set reporting threshold, the vehicle ID

and its related information are reported to the core network to revoke the at-

tacking vehicle’s connection to the V2N service. The reporting threshold helps

tuning the sensitivity of the security application.

3.5.3.2.1 Detection Mode

The results of six simulations are depicted in Figure 3.6. The three tables

on the left represent the results of binary classification. While the three con-

fusion matrices on the right are used for analysis purposes only. They are

obtained using multi-class classification models.

In models (i), where ORPC is not used, there a is high number of false neg-

atives. Around 25 percent of the messages labeled as malicious are predicted

as normal, the recall score is 0.7528. The multi-class confusion matrix in (i)

reveals that around half of attacks type 2 and type 16 messages are misclas-

sified. The misclassification of attack type 2 is due to the lack of features as

discussed earlier in the offline results section, which we address by adding

ORPC. Concerning attack type 16, its lower performance is due to the incon-

sistency of labels discussed earlier. Also, we notice the model’s confusion in

classification of attack types 1 and 16, due to the similarities between the two
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Figure 3.7: Online Results: Vehicle-level Detection Rate Comparison

However, when reporting threshold is increased to 2 and beyond, both mod-

els do not produce any false positives, achieving a perfect precision. Also,

model (ii) did not produce any false positives at all reporting thresholds.

As there is no remarkable difference in precision between the models, we

compare their recall performance only at different reporting thresholds. As

depicted in Figure 3.7, using the lowest reporting threshold value of 1, models

(i) and (ii) scored a detection rate of 98.56 percent, while model (iii) scores

slightly better at 99.28 percent.

The importance of using ORPC is demonstrated starting with reporting

threshold value of 2, where both models that uses the additional plausibil-

ity check (models ii and iii) achieve approximately 5 percent higher than the

model that does not use it (model i). In conclusion, using ORPC not only im-

proves the message-level detection but also the vehicle-level detection rate,

especiallywhen thedetection system’s threshold and sensitivity level are tuned,

hence, improving the system’s flexibility and reliability.

61



3.6 . Conclusion

In this chapter, wepropose a framework to protect V2X application servers

in 5G networks. Our proposed solution integrates a V2X misbehavior detec-

tion system, as an application function, to the 5G core network. In order

to detect position manipulation attacks, we propose a detection mechanism

basedonAI, which leverages historical data to calculate an on-roadplausibility

check. The message-level results demonstrate a considerable improvement

in recall and a slight enhancement in precision. Also, in vehicle-level detection

results, our algorithm scored 5 percent higher regarding the detection rate.
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4.1 . Introduction

Within the complex framework of V2X communications, the integrity and

correctness of transmitted data emerge as important concerns, especially in

the field of 5G networks. While the previous chapter delved into the founda-

tional aspects of integrating a V2Xmisbehavior detection for V2N communica-

tions within the 5G system architecture, this chapter focuses on bringing the

solution to the edge network to improve scalability and meet the low-latency

requirements of some V2X applications while exploiting the potential of a col-

laborative approach between edge detection nodes.

The rationale behind a collaborative approach comes from the concept

of leveraging the feedback of a previous edge node on a specific vehicle to

improve the likelihood of a correct classification made by the current node.

In this chapter, we present our novel V2X edgemisbehavior detection sys-

tem that utilizes machine learning techniques in compliance with 3GPP 5G

V2X architecture specifications. Our proposed system aims to detect and pre-

vent position falsification attacks that may occur during V2N edge commu-

nications, thus ensuring the authenticity of data received by V2X application
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servers. The misbehavior detection application instances are implemented

in the edge network, where they are interconnected and can collaborate to

improve detection accuracy. We evaluate the performance of our system to

demonstrate its effectiveness in detecting attacks.

4.2 . Problem Statement

Traditional V2V misbehavior detection techniques might eliminate mali-

cious nodes on V2V and V2N when these nodes are misbehaving on both PC5

and Uu interfaces. However, it is possible for a vehicle to behave normally on

V2V while acting maliciously on V2N. This could potentially result in V2V mis-

behavior detection systems failing to detect and mitigate all attacks, thereby

necessitating the implementation of additional solution.

As 5G V2X networks enable the deployment of low-latency V2N services

in the edge network, it is important to ensure that misbehaving vehicles can-

not compromise the edge-hosted services. While standalone detection nodes

within an edge network can detect and respond to anomalies, their isolated

perspectives might limit their detection capabilities. This limitation becomes

even more evident when considering sophisticated attacks that may exploit

the nature of decentralized V2X communications.

Throughout this chapter, our main objective is to address the following

crucial question: How can a collaborative approach in V2Xmisbehavior detec-

tion within the 5G edge network enhance the overall security of the system?

While individual nodes possess localized data and insights, collaboration can

potentially harness an enhanced view of the network, leading to more accu-

rate and timely detection of misbehaviors.

Note that, in this chapter, we address the five types of position manipu-

lation attacks that were identified in the VeReMi dataset [79], which are the

same attack types addressed in Chapter 3, and depicted in Figure 3.1. We

propose a V2X misbehavior detection system for the 5G edge network which

utilizes two advanced machine learning models to improve detection accu-

racy.
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I-UPF. For each C-ITS application instance, a misbehavior detection function

(DF) instance is created to protect the application as shown in Figure 4.1.

Our proposed misbehavior detection system is considered as an exten-

sion of the proposed system in the previous chapter, and it consists of two

main components:

• Several instances of interconnectedDetection Functions (DFs): they per-

form real-time analysis andmonitoring of V2X traffic packets on the UP.

Each DF instance will analyze the V2X traffic flowing between vehicles

and local V2X AS. DF instances can communicate and exchange detec-

tion information related to vehicles moving between their respective

coverage areas.

• A single instance of Reporting Function (RF): integrated with the 5G core

network control-plane to enable telecommunications operators or legal

authorities to revoke access of the reportedmalicious vehicles and stop

the attack. It acts as an Application Function (AF), which controls the

application’s traffic flows by interacting with the 5G core network using

3GPP standard API.

4.4 . Collaborative Proposal: AI-based Detection

We propose twomachine learningmodels: Standalone and Collaborative,

which we will refer to as S.A. and Collab., respectively. The S.A. model is the

same model used in Chapter 3 which includes seven features, while the Col-

lab. model provides an improvement over the previous model by adding an

eighth feature. To predict if the vehicle’s behavior is benign ormalicious, both

models utilize the six input features proposed in [83]. We recall that these fea-

ture are the following.

1. The difference between calculated average velocity based on displace-

ment and time and the predicted average velocity based on reported

velocity and time in the X direction.

2. Same as feature (1) but in the Y direction.

3. The magnitude of features (1) and (2).
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An Example is depicted in Figure 4.2, wherewe can notice that when a new

vehicle enters area 1 and it’s not previously knownby any other neighbor area,

the S.A. model is selected to analyze this vehicle’s traffic because the previous

attack ratio cannot be determined. Once this vehicle moves to area 2, the

attack ratio calculated in area 1 will be transmitted and used as an input to

the Collab. model instance of area 2. When this car moves from area 2 to area

3, the new attack ratio predicted by the Collab. instance in area 2 will serve as

an input feature to the next Collab. instance of area 3, and so on.

4.5 . Performance Evaluation

To evaluate the performance and efficiency of our proposed scheme, we

utilize two evaluation approaches:

• Offline analysis which numerically evaluates the VeReMi-ML dataset us-

ing Python and Scikit-learn [85], to compare the initial performance of

the standalone and collaborative models.

• Real-time scenario using free5GC [95] 5G network emulator, UERAN-

SIM [97], and generating new attacks in real-time, by utilizing a subset

of VeReMi-ML dataset to create new traffic sent by vehicles to the V2X

application servers.

We leverage Accuracy, Precision, Recall, and F1-score metrics to evaluate

the models. The formulas of these metrics are detailed in Section 3.5.2.

Table 4.1: Offline Results: ORPC

ML Model Accuracy Precision Recall F1-score

w/o ORPC 0.8926 0.9131 0.6921 0.7874

w/ ORPC 0.9504 0.9609 0.8626 0.9091

In the previous chapter, we established that RF algorithm is one of the

top-performing algorithms on the dataset. Therefore, we employ it for all the

evaluation models in this chapter.
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• Step 2b - S.A. prediction and attack ratio calculation: The S.A. model

performs its evaluation of Y1. The attack ratio of a vehicle is calculated, it

is the number of predicted attack messages by S.A. to the total number

of predictions.

• Step 2c - Training Collab. model: The attack ratio, calculated in the

previous step, is combined with the remaining features extracted from

Y2, and all the eight features are utilized to train the Collab. model.

• Step 3a - Input test set to S.A.: After S.A. and Collab. models are

trained, the third step is to utilize the test subset Z to compare the per-

formances of both models. Similar to subset Y, subset Z is divided into

two halves, where the first half Z1 is evaluated using S.A. model only.

• Step 3b - S.A. prediction and attack ratio calculation: S.A. performs

message classification for the messages assumed under the first area,

Z1, and the attack ratio is then calculated.

• Step 3c - Input test set to S.A. and Collab.: For a fair evaluation, we

limit the comparison of the models to subset Z2 only, because it is the

only set evaluated by both models.

• Step 3d - Performance comparison: The results of this process are

shown in Table 4.2. The scores of the Standalone and the Collabora-

tivemodels are, respectively: 0.9400 and 0.9721 on accuracy, 0.9335 and

0.9338 onprecision, 0.8518 and 0.9716 on recall, 0.8908 and 0.9523 on F1-

score. The enhanced performance of the Collaborativemodel across all

metrics during the offline evaluation is a strong indicator of the positive

impact derived from incorporating the attack ratio feature.

Table 4.2: Offline Results: Standalone and Collaborative Models

ML Model Accuracy Precision Recall F1-score

S.A. 0.9400 0.9335 0.8518 0.8908

Collab. 0.9721 0.9338 0.9716 0.9523

70







Table 4.3: Online Results: Standalone and Collaborative Models

Attack 1 Attack 2 Attack 4 Attack 8 Attack 16 All Attacks

Metric Area S.A. Collab. S.A. Collab. S.A. Collab. S.A. Collab. S.A. Collab. S.A. Collab.

Area 1 0.7182 1.0000 0.9945 1.0000 1.0000 1.0000 1.0000 1.0000 0.7143 1.0000 0.8092 1.0000

Area 2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Area 3 0.9729 0.9986 0.9533 1.0000 0.9986 1.0000 0.9953 1.0000 0.9729 0.9898 0.9661 0.9962

Accuracy Area 4 0.8555 1.0000 0.9782 1.0000 0.9966 1.0000 0.9897 1.0000 0.8555 0.9048 0.8964 0.9683

Area 5 0.8252 0.9313 0.9869 1.0000 0.9995 1.0000 0.9896 1.0000 0.8256 0.9313 0.8756 0.9542

Area 6 0.9797 0.9679 0.9545 0.9196 0.9938 0.9601 0.9857 0.9334 0.9739 0.9197 0.9707 0.9405

Area 7 0.8209 0.8760 0.9924 1.0000 0.9995 1.0000 0.9886 1.0000 0.8203 0.8745 0.8746 0.9169

Overall 0.8912 0.9501 0.9779 0.9863 0.9982 0.9932 0.9908 0.9886 0.8909 0.9315 0.9187 0.9569

Area 1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Area 2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Area 3 0.9972 1.0000 0.9970 1.0000 0.9973 1.0000 0.9973 1.0000 0.9972 1.0000 0.9994 1.0000

Precision Area 4 0.9905 1.0000 0.9929 1.0000 0.9932 1.0000 0.9931 1.0000 0.9905 1.0000 0.9984 1.0000

Area 5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Area 6 0.9860 0.9365 0.9866 0.9364 0.9877 0.9415 0.9875 0.9383 0.9872 0.9366 0.9974 0.9869

Area 7 0.9985 1.0000 0.9990 1.0000 0.9991 1.0000 0.9990 1.0000 0.9985 1.0000 0.9998 1.0000

Overall 0.9956 0.9885 0.9965 0.9895 0.9966 0.9896 0.9965 0.9895 0.9957 0.9882 0.9992 0.9978

Area 1 0.4333 1.0000 0.9890 1.0000 1.0000 1.0000 1.0000 1.0000 0.4286 1.0000 0.7709 1.0000

Area 2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Area 3 0.9485 0.9973 0.9093 1.0000 1.0000 1.0000 0.9932 1.0000 0.9485 0.9797 0.9599 0.9954

Recall Area 4 0.7179 1.0000 0.9633 1.0000 1.0000 1.0000 0.9862 1.0000 0.7179 0.8096 0.8771 0.9619

Area 5 0.6504 0.8627 0.9738 1.0000 0.9991 1.0000 0.9792 1.0000 0.6510 0.8626 0.8507 0.9450

Area 6 0.9710 1.0000 0.9214 0.9002 1.0000 0.9813 0.9838 0.9278 0.9602 0.9005 0.9672 0.9408

Area 7 0.6422 0.7517 0.9858 1.0000 1.0000 1.0000 0.9782 1.0000 0.6410 0.7486 0.8497 0.9002

Overall 0.7839 0.9100 0.9593 0.9830 0.9998 0.9968 0.9851 0.9876 0.7850 0.8733 0.9031 0.9503

Area 1 0.6047 1.0000 0.9945 1.0000 1.0000 1.0000 1.0000 1.0000 0.6000 1.0000 0.8706 1.0000

Area 2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Area 3 0.9722 0.9986 0.9512 1.0000 0.9986 1.0000 0.9952 1.0000 0.9722 0.9897 0.9793 0.9977

F1-score Area 4 0.8324 1.0000 0.9779 1.0000 0.9966 1.0000 0.9896 1.0000 0.8324 0.8948 0.9338 0.9806

Area 5 0.7882 0.9263 0.9867 1.0000 0.9995 1.0000 0.9895 1.0000 0.7886 0.9262 0.9193 0.9717

Area 6 0.9784 0.9672 0.9529 0.9180 0.9938 0.9610 0.9857 0.9330 0.9735 0.9182 0.9821 0.9633

Area 7 0.7817 0.8582 0.9924 1.0000 0.9995 1.0000 0.9885 1.0000 0.7807 0.8562 0.9187 0.9475

Overall 0.8772 0.9476 0.9775 0.9862 0.9982 0.9932 0.9908 0.9886 0.8779 0.9272 0.9487 0.9735
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very slight advantage in terms of precision.

The attack types that exhibited themost notable enhancements are attack

type 1 and attack type 16. The primary factor contributing to the sub-optimal

performance of attack type 1 lies in our real-time prediction approach, which

takes into account only the last two messages without considering the com-

plete trajectory of the vehicle. Consequently, when a malicious vehicle re-

mains stationary in reality while transmitting a fake fixed position, the stan-

dalone model erroneously classifies this behavior as benign. On the other

hand, the collaborativemodelmitigates this limitation by adding the historical

behavior of the vehicle through the attack ratio feature, leading to a notable

13 percent improvement in the detection rate for attack type 1. Finally, there

is a notable improvement in the detection of attack type 16, characterized by

inconsistent labelling, with an increase of 9 percent.

4.6 . Conclusion

In this chapter, we propose a collaborative V2Xmisbehavior detection sys-

tem to protect V2X application servers in the 5G edge network. To detect posi-

tion manipulation attacks, we propose an improved machine learning model

which leverages collaboration between detection nodes to improve perfor-

mance.

Our work presents a significant step in exploring the advantages of lever-

aging collaboration between edge network nodes to enhance detection re-

sults. More studies are needed to explore different methods of collaboration

and address more sophisticated V2X attacks.
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5.1 . Introduction

Maintaining the integrity and security of V2X systems requires detecting

and preventing malicious activities that might target V2X-enabled devices, in-

cluding position falsification, Denial of Service (DoS), sybil and replay attacks.

Misbehavior detection is a critical component for protecting V2X communica-

tions.

Initial proposals to address misbehavior detection in V2X rely on creating

simple plausibility checks to detect abnormal behaviors. Later, several pa-

pers leverage these plausibility checks along with additional vehicles’ move-

ment data to train traditional machine learning models to improve detection

results. With the advancement of machine learning and deep learning, new

solutions are proposed based on Recurrent Neural Networks (RNN) due to

their ability to retain trajectory information.
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With the emergence of AI and 5G, the potential to leverage techniques

such as Federated Learning to effectively resolve the scalability challenge has

emerged as a promising solution.

In this chapter, we propose a distributed misbehavior detection system

based on LSTM and Federated Learning, where the nodes of the system are

installed in the 5G edge network across the coverage zone, to protect C-ITS

application servers hosted on the edge, cloud, or the internet, against a wider

variety of V2X attacks.

The scalability of Federated Learning makes it the best solution for imple-

menting a V2Xmisbehavior detection system in large-scale deployments. Due

to the anticipated exponential growth of the number of connected vehicles

and low-latency requirements of some V2X applications, traditional central-

ized approaches may not always be capable of meeting the massive data vol-

ume and computational demands. Federated Learning distributes the learn-

ing process, enabling edge nodes to provide their local knowledge and par-

ticipate in training without overwhelming central servers. This distributed

computing paradigm enables efficient and scalable V2X misbehavior detec-

tion systems, capable of accommodating the expected growth in vehicle con-

nectivity.

Federated Learning provides a convenient solution for detecting V2X mis-

behavior in 5G networks. It enables V2X systems to detect and prevent posi-

tion falsification attacks and other malicious behaviors while protecting the

privacy of individual vehicles by leveraging the power of collaborative and

privacy-preserving learning. Federated Learning paves the way for robust

and effective V2X misbehavior detection systems in the era of 5G-enabled

connected vehicles via its adaptability, scalability, and ability to integrate real-

time data from diverse sources.

5.2 . Problem Statement

While the primary line of defense for V2X networks relies on the vehicular

PKI systems, which are crucial for protecting against external threats, addi-

tional measures are necessary to mitigate attacks that could be launched by

malicious insiders who have already authenticated and are part of the net-

work. To address this issue, a Misbehavior Detection System can be imple-
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mented, it acts like an Intrusion Detection/Prevention System (IDS/IPS) in tra-

ditional IT networks.

The introduction of advanced machine learning algorithms has emerged

as a viable approach to enhance security measures inside the expanded 5G

network architecture, in the developing landscape of V2X communications.

Federated Learning, characterized by its decentralized training methodology,

introduces a new framework that has the potential for improving scalability

and data privacy. Nevertheless, the use of Federated Learning into V2X sys-

tems for detectingmisbehavior, especially inside 5G edge networks, is an area

that has not been thoroughly studied.

The primary issue addressed in this chapter is to explore the effective

use of Federated Learning for the purpose of V2X misbehavior detection in

5G edge networks. Additionally, it examines whether Federated Learning can

maintain the detection performance attainedby conventional centralized learn-

ing approaches used in a V2X misbehavior detection context.

We take into account all the nineteen V2X misbehavior types included in

VeReMi-extension dataset [90], which are depicted in Figure 5.1. In the fig-

ure, the blue dots represent the authentic values that the vehicle would have

transmitted if it was benign, whereas the red and other colored dots are the

values that were actually transmitted by the attacker. The gray dots are an

aggregation of normal values transmitted by non-malicious vehicles.

The attack types are the following:

• Attack type 1 (Constant Position): The misbehaving vehicle reports

the same fixed position despite its movement.

• Attack type 2 (Constant Position Offset): The vehicle adds a prede-

termined fixed value to its current position, resulting in the generation

of a path that is parallel to the true path.

• Attack type 3 (Random Position): The misbehaving vehicle sends a

random position instead of its actual one.

• Attack type 4 (Random Position Offset): The vehicle adds a random

number to its true position, creating a fuzzy path.

• The next four attacks, namely Attack type 5 (Constant Speed), Attack
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type 6 (Constant Speed Offset), Attack type 7 (Random Speed), and

Attack type 8 (Random Speed Offset), are respectively similar to the

first four, the only difference is that the misbehaving vehicle alters its

speed value instead of its location. This is also reflected in the four cor-

responding graphs in Figure 5.1 which depict speed values.

• Attack type 9 (Eventual Stop): The vehicle sends its precise location

and speed information at first, but after a certain duration, it starts re-

porting a fake fixed position and zero speed.

• Attack type 10 (Disruptive): The vehicle replays information previ-

ously received from random neighbors to overwhelm the network.

• Attack type 11 (Data Replay): The attacking vehicle replays the infor-

mation received from a specific target neighbor as its own.

• Attack type 12 (Delayed Messages): The attacking vehicle sends its

old accurate movement information after a pre-defined period of time.

• Attack type 13 (DoS): The attack consists of sending accurate informa-

tion at an increased frequency to flood the network.

• Attack type 14 (DoS Random): The attack is similar to DoS in terms of

message frequency, however, all the values included in the messages

are random and not accurate.

• Attack type 15 (DoS Disruptive): This attack combines the increased

sending frequencywith the flooding of previously received randomneigh-

bors’ messages.

• Attack type 16 (Grid Sybil): The intention of the attacker is to create

a fake congestion by creating ghost vehicles, where vehicle pseudo IDs

are created for nonexistent vehicles in a specific target position, and

the attacker maintains a realistic communication profile of the ghost

vehicles. Each pseudo ID is represented with a different color in the

corresponding graph in Figure 5.1.

• Attack type 17 (Data Replay Sybil): This attack is a more sophisti-

cated form of Attack type 11. The attacker replays the data of a targeted

neighbor using multiple pseudo IDs to masquerade the real attacker’s

identity.
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C-ITS services requiring low latency may need to be hosted on the edge net-

work deployed asmultiple application instances. In this case, themisbehavior

detection system needs to be implemented accordingly.

The proposed architecture, depicted in Figure 5.2, consists of:

• Several instances ofMisbehaviorDetection Functions (MDFs) distributed

geographically on Edge networks.

• Federated Learning Central (FL-C) server.

• Misbehavior Reporting Function (MRF) in the central cloud coupled with

the 5G core network.

• Honeypot server.

The MDFs are in charge of real-time processing and monitoring of V2N

traffic packets. Each MDF instance is connected to an Intermediate-UPF (I-

UPF) on a Local Access Data Network (LADN). The MDF is also considered as

a Federated Learning client, where it shares its local model parameters with

the FL-C server without sharing local training data collected from vehicles.

The Federated Learning Central server acts as a central hub for organizing

and compiling improved machine learning models derived from the received

models from MDF instances. Without having any access to local data, it aver-

ages the models’ weights to enable collaborative learning. This methodology

preserves data security and privacy while enabling scalability and leveraging

the collective intelligence of all MDF instances.

Misbehavior Reporting Function (MRF) is considered an Application Func-

tion (AF) co-located with the 5GC network. In case an attack is detected, the

MRF has the ability to initiate traffic-steering requests to the core network,

which can re-route the attacker’s traffic to the Honeypot server instead of the

C-ITS application instance, protecting the application from falsified data. It

also records security incidents and notifies Telecommunication network op-

erators or legal authorities, who can completely revoke access for the misbe-

having vehicle or take legal action if necessary.

The Honeypot server has the role of a decoy server that will collect ma-

licious V2X messages, creating a new dataset of attacks that can be studied
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and leveraged to improve the training and efficiency ofmisbehavior detection

models.

Our proposed architecture aims to offer enhanced data privacy, improved

application security, and effective misbehavior detection for V2X ASs in C-ITS

systems. It achieves this goal by combining the power of Federated Learning,

5G control functions and traffic steering functionality, and cybersecurity best

practices.

5.4 . Detection Model Proposal

5.4.1 . Deep Learning

5.4.1.1 . Artificial Neural Networks (ANNs)

Deep learning is a sub-branch of machine learning, and both are within

the field of artificial intelligence. Machine learning algorithms, including lin-

ear regression, decision trees, and support vector machines, acquire knowl-

edge from data and use it to generate predictions or make judgments. In

contrast, deep learning utilizes neural networks characterized by several lay-

ers, hence the term "deep". Deep neural networks are specifically designed

to autonomously and flexibly acquire complex data representations, making

them highly suitable for tasks involving large quantities of data, such as the

recognition of images and sounds. Machine learning methods often need

feature engineering and user intervention, while deep learning models usu-

ally have the capability to autonomously extract features from unprocessed

data. On the other hand, deep learning requires larger datasets and is de-

manding when it comes to computing resources, hence cutting-edge GPUs

are usually needed.

Deep learning, has emerged as a very influential domain in the field of

AI. It is inspired by the structure of the human brain, particularly the neural

networks that mimic brain’s neurons connections. Artificial Neural Networks

(ANNs) are composed of many neurons and they are capable of complex data

processing, hence empowering computers to do activities that were previ-

ously believed to be within the realm of human capabilities.

A single neuron inside a neural network, as depicted in Figure 5.3, per-

forms a computation to generate an output, which is determined by the in-
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Figure 5.5: Convolutional Neural Network (CNN)

The process of training a deep learning model entails providing it with

large quantities of data and iteratively modifying the weights of its connec-

tions in order to decrease the difference between its predictions and the data

labels. The accomplishment of this task is often realized thanks to the use

of algorithms such as gradient descent. The objective is to identify the most

favorable combination of weights that leads to the minimal prediction error,

as measured by a loss function.

5.4.1.2 . Other Forms of Neural Networks: CNNs and RNNs

ANNs are considered the basic form of deep learning, more sophisticated

deep learning designs are able to unlock more advanced capabilities. An ex-

ample of that are Convolutional Neural Networks (CNNs), which are designed

for the purpose of image processing. Convolutional layers are used to per-

form localized scanning of input pictures, enabling the detection of various

patterns such as edges, textures, and forms, as depicted in Figure 5.5.

In contrast, Recurrent Neural Networks (RNNs), depicted in Figure 5.6, are

specifically designed to handle sequential input, rendering them well-suited

for applications such as language modeling or time series forecasting.

An RNN operates on sequences of data. At each timestep t, given:

85







get gate, and the output gate. The function of these gates is to regulate the

processes of information storage, information removal, and value output in

the present time step.

Given the notation:

• it: Activation vector of the input gate at time t.

• ft: Activation vector of the forget gate at time t.

• ot: Activation vector of the output gate at time t.

• gt: Candidate value for the memory cell at time t.

• ct: Memory cell state at time t.

• ht: Hidden state at time t.

• xt: Input vector at time t.

• W : Weight matrix (subscript denotes the gate or operation it’s associ-

ated with).

• σ: Sigmoid activation function.

• tanh: Hyperbolic tangent activation function.

1. Input Gate: It determines how much of the new information should be

stored in the memory cell.

it = σ(Wi · [ht−1, xt])

2. InputModulationGate: This gate generates a candidate value that could

be added to the state.

gt = tanh(Wg · [ht−1, xt])

3. Forget Gate: It decides which parts of the memory cell’s previous state

should be discarded or retained.

ft = σ(Wf · [ht−1, xt])
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4. Output Gate: It determines what portion of the memory cell’s current

state should be outputted.

ot = σ(Wo · [ht−1, xt])

ht = ot × tanh(ct)

5. Memory Cell Update: The memory cell’s state is updated based on the

decisions made by the above gates.

ct = ft × ct−1 + it × gt

5.4.1.4 . Federated Learning

Introduced by Google in [99], Federated Learning enables the decentral-

ization of the training process, allowing for model training directly on devices

or nodes where the data is hosted. In contrast, traditional centralized ma-

chine learning requires the data to be sen to a central server. The primary

objectives behind the development of Federated Learning are related to data

privacy, scalability, bandwidth efficiency, and latency.

The fundamental objective of Federated Learning is to facilitate the train-

ing of a global model by using data from several devices, while avoiding the

need of directly sharing rawdata. Every individual device updates localmodel,

using its own local data, and thereafter transmits just this updated model to

a central server. The models are collected and aggregated by the server in

order to enhance the global model, which is then sent back to the devices

for further local training. This iterative process is repeated until the model

convergences or satisfies a predetermined criteria.

Federated Learning offers several advantages. It enhances data privacy

since raw data is not shared, reducing the risk of data breaches. It also per-

mits the training on edge devices, making it suitable for applications where

real-time insights are crucial, and bandwidth or connectivity is limited. How-

ever, Federated Learning also presents challenges. The non-IID (indepen-

dent and identically distributed) nature of local datasets can affectmodel con-

vergence. Additionally, devices with limited computational resources might

struggle with complex model training.

Given the notation:
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patterns and dependencies by maintaining an internal memory state. It is ca-

pable of modeling the dynamic characteristics of vehicle movement. In tasks

such as abnormal route detection or route prediction, understanding the links

between past and future positions is essential, and it can be helpful in vehi-

cle movement analysis. This gives the model the ability to accurately classify

normal and abnormal trajectories and forecast future positions, ensuring a

thorough understanding of the vehicle’s movement dynamics.

In Federated Learning, data processing andmodel training can be directly

performed on edge nodes, enabling the protection of V2X server in the edge

networks. In doing so a significant reduction in latency can be achieved. Fed-

erated Learning effectively manages large training datasets by utilizing the

processing capacity of multiple devices. It also favors better data representa-

tion. The training method captures rich variations and nuances by combining

a variety of data sources from diverse devices or places. The resulting global

model benefits fromawider range of viewpoints, guaranteeing improved gen-

eralization across various contexts. Federated Learning can also enable coop-

eration between multiple Telecommunications operators. It makes it easier

for them to collaborate without exchanging users’ data or location. It pro-

motes collaboration and information sharing while adhering to privacy laws

and protecting company interests by allowingmodel training without location

data sharing.

5.4.2.1 . Features

Basic vehicle movement features are mainly related to time, position, and

speed in both longitude (x) and latitude (y) directions. Theymight also include

altitude, acceleration, and heading. Training a deep learning misbehavior de-

tection model using only raw features does not always lead to optimal per-

formance. Also, using the time and position values of a dataset in their raw

format may cause the model to overfit, which might degrade accuracy with

new data while performing well on training data. To avoid these problems, we

add differential features like deltaTime and deltaPosition, which represent the

differences between the current received position and time and their recently

received values from the same vehicle. Also, to verify the consistency between

the received values of time, position, and speed, we calculate a new speed

value based on deltaTime and deltaPosition, independently from the received
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speed value. After that, we deduct the newly calculated speed value from the

received speed value to obtain deltaSpeed. In summary, the features we used

comprise: time, deltaTime, position, deltaPosition, speed, and deltaSpeed.

5.4.2.2 . Federated Averaging

The implementation of the Federated Averaging function, summarized in

Algorithm 1, accepts three parameters, namely client_models, data_sizes, and

performances. The client_models parameter is a set of client models which are

participating in the federated averaging process. The data_sizes parameter

denotes the corresponding size of training data utilized by each client model.

The performances parameter represents the accuracy scores of each client

model. To determine the coefficient assigned to each client model during the

averaging process, we utilize training data sizes and performance, giving the

former double the importance of the latter. To obtain the averagedmodel, the

algorithmaggregates themultiplications of the layerweights of eachmodel by

its corresponding clientmodel coefficient, calculated in the previous step. The

averaged model will then be shared with clients. This process is considered

one cycle and can be repeated as necessary.

5.5 . Performance Evaluation

This section outlines the 5G network evaluation environment specifica-

tions, dataset criterias, dataset splitting methodology, deep learning and fed-

erated learning hyper-parameters utilized in the evaluation, performancemet-

rics, simulation results, and results discussion.

5.5.1 . Evaluation environment, dataset considerations, andmod-

els parameters

The assessment of performance was conducted on amodern testing plat-

form, utilizing a machine with high specifications, equipped with an Nvidia

GeForce RTX 3090 graphics card, an Intel Core i7-11700KF processor, 64 GB

of DDR4 RAM, and 2 TB of NVMe SSD storage. The computational capacity of

the machine facilitated the efficient processing of demanding deep learning

algorithms that were utilized for themisbehavior detectionmodel. The exper-

imental software setup consisted of VirtualBox 6.1 as the hypervisor, Ubuntu
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Algorithm 1: Federated Averaging Function
Parameters:

client_models: set of participating client models

data_sizes: corresponding training data size per client model

performances: accuracy score per client model

Function:

norm_data_sizes← normalize ( data_sizes )

norm_perf ← normalize ( performances )

combine← 2/3 * norm_data_size + 1/3 * norm_perf

client_norm_coeffs← normalize ( combine )

averaged_weights← [ ]

client_models_weights← [ ]

for model in client_models do
client_models_weights.append (model.get_weights ( ) )

for weights in client_models_weights do
initialize ( averaged_layer )

formodel_id in client_models do
averaged_layer← averaged_layer +

client_norm_coeffs [model_id ] * weights
averaged_weights.append ( averaged_layer )

averaged_model.set_weights ( averaged_weights )

return averaged_model

20.04 as the operating system, TensorFlow 2.12.0 [100] as the deep learning

framework running on Python 3.9.16, free5GC 3.1.1 [95] as the 5G core net-

work emulator, and UERANSIM [97] as the user equipment and radio network

simulator.

To enhance the privacy of vehicles in a V2V ad-hoc environment, each ve-

hicle is assigned multiple pseudo certificates and pseudo IDs, which are fre-

quently swapped to protect its real identity. When a pseudo ID change oc-

curs, IP and MAC addresses are also replaced in parallel on the PC5 interface,

which is the interface used for V2V, V2I, and V2P communications in C-V2X.

The intention is to protect the vehicle from being tracked by malicious peers.

However, in a 5G V2N environment, which can be considered as client-server

architecture, the interface utilized is the Uu interface, and the privacy require-
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ments are different. To communicate on V2N, the vehicle has to pass the 5G

authentication process to receive an IP address during the PDU session estab-

lishment procedure. Therefore, assuming that 5G security best-practices are

followed and IP spoofing attacks are not possible, the 5G core network can

always identify the source of V2N traffic and link it to a specific vehicle or UE,

even if it uses multiple pseudo IDs. For this reason, our model, which intends

to protect V2N traffic, analyzes the dataset based on sender IDs instead of

pseudo IDs.

The VeReMi-extensiondataset consists ofmore than 63 gigabytes of recorded

vehicle traces in JSON format. It covers 19 types of V2X attacks in a total of

39 datasets. Two datasets per attack (high density: 37.03 vehicles/km2 and

low density: 16.36 vehicles/km2), each containing two hours of recorded ve-

hicle messages; and one comprehensive dataset named MixAll, which en-

compassed all 19 attacks that occurred within a 24-hour timeframe (23.29

vehicles/km2). Note the all of the datasets have a misbehaving vehicle ratio

of 30%.

After converting all datasets to CSV format, we appended them with the

three differential features discussed in Section 5.4.2.1 (deltaTime, deltaPosi-

tion, and deltaSpeed). Then, in order to implement federated learning, we

split the map into six equal geographical areas. The data size distribution be-

tween areas 1, 2, 3, 4, 5, and 6 is approximately 22%, 9%, 22% 31%, 13%, and

3% respectively. To correctly split vehicles’ data between areas, we utilize the

Ground Truth files provided in the VeReMi-extension dataset. They contain

authentic data that would have been transmitted by the attacking vehicles if

they were not malicious.

To evaluate the performance and efficiency of our proposed federated

learning scheme, we compare three approaches:

• A single centralized model, trained on all data from all areas.

• Six standalone models, each trained exclusively on the subset of its re-

spective area.

• Our proposed scheme, which consists of six federated models, each

trained solely with its corresponding subset while leveraging the Feder-

ated Averaging process.
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The models’ design, depicted in Figure 5.8, consists of two bidirectional

LSTM layers with 64 nodes each, two Dropout layers with the rate set to 0.2 to

minimize overfitting, and one Dense layer with 24 nodes. During the training

phase, we optimized the selected hyperparameters of the model. It utilizes a

window size of 20, allowing the inclusion of the preceding 20 vehiclemessages.

The loss function is binary cross-entropy with Adam used as an optimization

algorithm. The latter is widely utilized in neural network models, with a learn-

ing rate of 0.0001. The batch size is set to 64. The number of epochs is not

fixed, since we implemented an Early Stop mechanism with a patience value

of 5, leading to early termination of training if the validation loss did not im-

prove for 5 consecutive epochs.

To compare the models, we use Accuracy, Precision, Recall, and F1-score

metrics which are detailed in Section 3.5.2.

The evaluation is conducted in two stages. The initial phase involves a nu-

merical evaluation, wherein the models’ performance is assessed offline by

directly analyzing the datasets without transmitting the data through the net-

work. The second phase involves utilizing 5GC emulation and UE simulation,

wherein the data is transmitted through the 5G network and analyzed on the

edge servers.

5.5.2 . VeReMi Extension Offline Analysis

For the numerical analysis stage, the three previously mentioned models

are trained on 90% of the MixAll dataset, 10% used for validation, and the

remaining 38 datasets are utilized for extensive testing. All datasets were split

into six subsets, representing six areas. The results of this comprehensive

evaluation are presented in Table 5.1 and Table 5.2. The table represents a

weighted average aggregation of the results from all the areas.

The performance of the threemodels was not satisfactory when tested on

three attack datasets, specifically the Constant Position Offset, low density,

and the two datasets related to the Eventual Stop attack.

Additionally, we can observe that distributed schemes (standalone and

federated) significantly improved detection rates on Delayed Messages at-

tacks compared to centralized model. This attack consists of sending accu-

rate position and speed information after a time delay. It is possible that a
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certain vehicle has moved into a new area while reporting its old position in

a previous area, which makes it easier for the distributed models to detect

out-of-area positions.

Furthermore, we noticed that the areaswith the lowest amount of training

data, namely area 2 and area 6, performed poorly in standalonemode. Which

is evenmore obvious with Random Position Offset and Random Speed Offset

attacks. On the other hand, federatedmodels were able tomitigate the lack of

sufficient training data and greatly improve performance in these two areas

due to federated averaging.

The primary outcome of this offline stage indicates that our proposed fed-

erated learning model has a slightly superior performance across all metrics.

However, it is worth noting that the aim of our study is not centered on en-

hancing performance but rather on demonstrating the feasibility of utilizing

federated learning to achieve privacy and scalability benefits without sacrific-

ing the level of protection of C-ITS application servers.
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Table 5.1: Offline Results: Centralized and Federated Models Comparison

Centralized Federated (our proposal)

Dataset Density Acc. Prec. Recall F1-score Acc. Prec. Recall F1-score

1-ConstPos High 0.9903 0.9942 0.9728 0.9834 0.9859 0.9960 0.9553 0.9753

Low 0.9841 0.9915 0.9575 0.9742 0.9845 0.9949 0.9557 0.9749

2-ConstPosOffset High 0.9903 0.9942 0.9728 0.9834 0.9859 0.9960 0.9553 0.9753

Low 0.8563 0.8309 0.5517 0.6631 0.8468 0.9751 0.5187 0.6772

3-RandomPos High 0.9895 0.9941 0.9709 0.9824 0.9988 0.9960 1.0000 0.9980

Low 0.9976 0.9925 1.0000 0.9962 0.9985 0.9951 1.0000 0.9976

4-RandomPosOffset High 0.9978 0.9943 0.9980 0.9962 0.9878 0.9955 0.9625 0.9788

Low 0.9974 0.9925 0.9995 0.9960 0.9886 0.9949 0.9686 0.9816

5-ConstSpeed High 0.9939 0.9942 0.9846 0.9894 0.9911 0.9956 0.9737 0.9845

Low 0.9925 0.9918 0.9843 0.9880 0.9915 0.9950 0.9778 0.9864

6-ConstSpeedOffset High 0.9973 0.9943 0.9963 0.9953 0.9925 0.9961 0.9782 0.9871

Low 0.9959 0.9919 0.9951 0.9935 0.9894 0.9949 0.9713 0.9830

7-RandomSpeed High 0.9983 0.9943 1.0000 0.9971 0.9988 0.9959 1.0000 0.9980

Low 0.9974 0.9919 1.0000 0.9960 0.9985 0.9951 1.0000 0.9976

8-RandomSpeedOffset High 0.9968 0.9943 0.9949 0.9946 0.9853 0.9957 0.9539 0.9744

Low 0.9962 0.9919 0.9962 0.9941 0.9858 0.9949 0.9600 0.9771

9-EventualStop High 0.8525 0.9899 0.5020 0.6662 0.8895 0.9943 0.6263 0.7685

Low 0.8360 0.9816 0.4870 0.6510 0.8848 0.9923 0.6388 0.7772

10-Disruptive High 0.9983 0.9943 1.0000 0.9971 0.9987 0.9957 1.0000 0.9979

Low 0.9971 0.9919 0.9989 0.9954 0.9978 0.9951 0.9978 0.9965

11-DataReplay High 0.9962 0.9943 0.9929 0.9936 0.9949 0.9957 0.9874 0.9915

Low 0.9920 0.9912 0.9831 0.9872 0.9892 0.9950 0.9707 0.9827

12-DelayedMessages High 0.9036 0.9918 0.6761 0.8040 0.9882 0.9956 0.9640 0.9795

Low 0.8861 0.9863 0.6462 0.7809 0.9845 0.9948 0.9552 0.9746

13-DoS High 0.9989 0.9986 0.9997 0.9991 0.9993 0.9989 0.9999 0.9994

Low 0.9989 0.9982 1.0000 0.9991 0.9991 0.9985 1.0000 0.9993

14-DoSRandom High 0.9992 0.9987 1.0000 0.9993 0.9994 0.9991 1.0000 0.9996

Low 0.9987 0.9979 1.0000 0.9990 0.9992 0.9986 1.0000 0.9993

15-DoSDisruptive High 0.9991 0.9986 1.0000 1.0000 0.9994 0.9990 1.0000 0.9995

Low 0.9987 0.9979 1.0000 0.9989 0.9992 0.9986 1.0000 0.9993

16-GridSybil High 0.9993 0.9990 1.0000 0.9995 0.9995 0.9992 1.0000 0.9996

Low 0.9988 0.9983 1.0000 0.9992 0.9993 0.9990 1.0000 0.9995

17-DataReplaySybil High 0.9965 0.9943 0.9940 0.9942 0.9945 0.9962 0.9856 0.9909

Low 0.9930 0.9918 0.9858 0.9888 0.9916 0.9950 0.9782 0.9865

18-DoSRandomSybil High 0.9987 0.9975 1.0000 0.9988 0.9992 0.9985 1.0000 0.9992

Low 0.9983 0.9967 1.0000 0.9984 0.9989 0.9979 1.0000 0.9989

19-DoSDisruptiveSybil High 0.9987 0.9975 1.0000 0.9988 0.9992 0.9985 1.0000 0.9992

Low 0.9982 0.9965 1.0000 0.9983 0.9989 0.9979 1.0000 0.9989

Overall 0.9807 0.9890 0.9408 0.9589 0.9852 0.9963 0.9540 0.9709
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Table 5.2: Offline Results: Standalone and Federated Models Comparison

Standalone Federated (our proposal)

Dataset Density Acc. Prec. Recall F1-score Acc. Prec. Recall F1-score

1-ConstPos High 0.9810 0.9927 0.9412 0.9663 0.9859 0.9960 0.9553 0.9753

Low 0.9768 0.9866 0.9390 0.9622 0.9845 0.9949 0.9557 0.9749

2-ConstPosOffset High 0.9810 0.9927 0.9412 0.9663 0.9859 0.9960 0.9553 0.9753

Low 0.8639 0.9708 0.5778 0.7244 0.8468 0.9751 0.5187 0.6772

3-RandomPos High 0.9981 0.9934 1.0000 0.9967 0.9988 0.9960 1.0000 0.9980

Low 0.9964 0.9887 1.0000 0.9943 0.9985 0.9951 1.0000 0.9976

4-RandomPosOffset High 0.8441 0.9280 0.4711 0.6249 0.9878 0.9955 0.9625 0.9788

Low 0.8263 0.9016 0.4609 0.6100 0.9886 0.9949 0.9686 0.9816

5-ConstSpeed High 0.9912 0.9930 0.9767 0.9848 0.9911 0.9956 0.9737 0.9845

Low 0.9896 0.9885 0.9785 0.9835 0.9915 0.9950 0.9778 0.9864

6-ConstSpeedOffset High 0.9921 0.9933 0.9793 0.9862 0.9925 0.9961 0.9782 0.9871

Low 0.9887 0.9871 0.9770 0.9820 0.9894 0.9949 0.9713 0.9830

7-RandomSpeed High 0.9980 0.9931 1.0000 0.9966 0.9988 0.9959 1.0000 0.9980

Low 0.9962 0.9882 1.0000 0.9941 0.9985 0.9951 1.0000 0.9976

8-RandomSpeedOffset High 0.9427 0.9912 0.8099 0.8914 0.9853 0.9957 0.9539 0.9744

Low 0.9411 0.9802 0.8253 0.8961 0.9858 0.9949 0.9600 0.9771

9-EventualStop High 0.8938 0.9896 0.6438 0.7801 0.8895 0.9943 0.6263 0.7685

Low 0.8805 0.9808 0.6320 0.7687 0.8848 0.9923 0.6388 0.7772

10-Disruptive High 0.9971 0.9931 0.9969 0.9950 0.9987 0.9957 1.0000 0.9979

Low 0.9921 0.9875 0.9877 0.9876 0.9978 0.9951 0.9978 0.9965

11-DataReplay High 0.9872 0.9930 0.9626 0.9775 0.9949 0.9957 0.9874 0.9915

Low 0.9763 0.9870 0.9369 0.9613 0.9892 0.9950 0.9707 0.9827

12-DelayedMessages High 0.9829 0.9926 0.9481 0.9699 0.9882 0.9956 0.9640 0.9795

Low 0.9773 0.9871 0.9392 0.9626 0.9845 0.9948 0.9552 0.9746

13-DoS High 0.9985 0.9982 0.9993 0.9988 0.9993 0.9989 0.9999 0.9994

Low 0.9972 0.9965 0.9991 0.9978 0.9991 0.9985 1.0000 0.9993

14-DoSRandom High 0.9989 0.9982 1.0000 0.9991 0.9994 0.9991 1.0000 0.9996

Low 0.9980 0.9969 1.0000 0.9984 0.9992 0.9986 1.0000 0.9993

15-DoSDisruptive High 0.9988 0.9980 1.0000 0.9990 0.9994 0.9990 1.0000 0.9995

Low 0.9980 0.9968 1.0000 0.9984 0.9992 0.9986 1.0000 0.9993

16-GridSybil High 0.9980 0.9988 0.9993 0.9990 0.9995 0.9992 1.0000 0.9996

Low 0.9979 0.9977 0.9993 0.9985 0.9993 0.9990 1.0000 0.9995

17-DataReplaySybil High 0.9876 0.9930 0.9642 0.9784 0.9945 0.9962 0.9856 0.9909

Low 0.9783 0.9873 0.9434 0.9648 0.9916 0.9950 0.9782 0.9865

18-DoSRandomSybil High 0.9985 0.9970 1.0000 0.9985 0.9992 0.9985 1.0000 0.9992

Low 0.9975 0.9952 1.0000 0.9976 0.9989 0.9979 1.0000 0.9989

19-DoSDisruptiveSybil High 0.9986 0.9971 1.0000 0.9986 0.9992 0.9985 1.0000 0.9992

Low 0.9975 0.9952 1.0000 0.9976 0.9989 0.9979 1.0000 0.9989

Overall 0.9755 0.9902 0.9250 0.9505 0.9852 0.9963 0.9540 0.9709
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5.5.3 . Online Scenario

For online analysis, we utilize the MixAll dataset, divided into six subsets

representing the six coverage areas. These subsets were further partitioned

into three parts: training, validation, and testing. The size of the data allocated

for training is 72%, enabling the model to learn and generalize patterns from

a significant portion of the available samples. The validation set, which forms

8% of a subset, to enable fine-tuning of the model’s hyperparameters. Finally,

the testing part, which corresponds to the remaining 20% of the data, wasn’t

exposed to the model during training and validation. It was rather used to

assess the performance of the model. Our online testing scenario contains

4544 vehicles: 3176 normal and 1368misbehaving, sendingmore than 400, 000

messages.

Table 5.3 compares the performances of the models per area during the

online scenario. The Federated model demonstrated similar to slightly better

performance compared to the Centralized model, with both models outper-

forming the Standalone model.

The Federated model significantly enhanced the performance of areas 2

and 6, which have the least amount of training data. This further validates the

previous observation made during numerical analysis.

In Table 5.4, wepresent a summary of themodels’ detectionperformances

at vehicle-level during the online scenario. Although the Federated model

demonstrated superior performance in offline analysis and online window-

level results, the Centralized model detected five additional vehicles.

Themajority of misbehaving vehicles that were undetected by themodels

can be attributed to Constant Position Offset and Eventual Stop attacks. The

former can be effectively resolved by using the plausibility check we proposed

in Chapter 3, or alternatively, by utilizing a map. The latter can be attributed

to the labeling methodology employed by the authors of the dataset, which is

a persistent problem inherited from the original VeReMi dataset. The authors

assert that they have addressed the labeling issue of this attack by individu-

ally labeling each message. However, in the publicly available version of the

dataset, the labeling is still assigned on a vehicle basis.

Lastly, in the Delayed Messages attack, the Centralized model managed

to detect at least one window per vehicle, while missing many others. Such
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a result can explain the difference between window-level and vehicle-level

detection scores in this particular attack.

In summary, our proposed Federated model demonstrated comparable

performance to the Centralized model while offering the advantages of scal-

ability and privacy.

Table 5.3: Online Results: Models Performance Comparison (window-

level)

Metric Model Area 1 Area 2 Area 3 Area 4 Area 5 Area 6 Overall

Centralized 0.9817 0.9769 0.9838 0.9838 0.9795 0.9570 09813

Accuracy Standalone 0.9640 0.9533 0.9780 0.9553 0.9555 0.9620 0.9619

Federated 0.9891 0.9816 0.9847 0.9803 0.9833 0.9851 0.9838

Centralized 0.9945 0.9938 0.9929 0.9959 0.9962 0.9613 0.9934

Precision Standalone 0.9988 0.9860 0.9961 1.0000 0.9905 0.9941 0.9958

Federated 0.9946 0.9888 0.9897 0.9925 0.9992 1.0000 0.9933

Centralized 0.9609 0.9570 0.9684 0.9656 0.9573 0.9667 0.9631

Recall Standalone 0.9140 0.9141 0.9513 0.8944 0.9081 0.9417 0.9159

Federated 0.9789 0.9720 0.9738 0.9606 0.9631 0.9750 0.9692

Centralized 0.9775 0.9751 0.9805 0.9805 0.9764 0.9640 0.9780

F1-score Standalone 0.9545 0.9487 0.9732 0.9442 0.9475 0.9672 0.9542

Federated 0.9867 0.9804 0.9817 0.9763 0.9808 0.9873 0.9811

100



Table 5.4: Online Results: Correctly Classified Vehicles

Vehicle Type Veh. Count Cent. S.A. Fed.

0-Normal 3176 3121 3141 3116

1-ConstPos 72 72 68 71

2-ConstPosOffset 64 50 35 41

3-RandomPos 71 71 71 71

4-RandomPosOffset 77 77 16 75

5-ConstSpeed 70 70 68 70

6-ConstSpeedOffset 56 56 56 56

7-RandomSpeed 78 78 78 78

8-RandomSpeedOffset 72 69 49 70

9-EventualStop 81 51 57 57

10-Disruptive 75 75 75 75

11-DataReplay 68 68 64 68

12-DelayedMessages 59 59 59 59

13-DoS 64 64 64 64

14-DoSRandom 78 78 78 78

15-DoSDisruptive 83 83 83 83

16-GridSybil 88 88 88 88

17-DataReplaySybil 61 61 61 61

18-DoSRandomSybil 77 77 77 77

19-DoSDisruptiveSybil 74 74 74 74

All Attacks 1368 1321 1221 1316

5.6 . Conclusion

In this chapter, we proposed a novel approach for protecting V2X appli-

cation servers for 5G edge networks through the implementation of a dis-

tributed V2Xmisbehavior detection system that relies on Federated Learning.

After rigorous testing using a large public dataset, we demonstrated the fea-

sibility and advantages of Federated Learning in V2X misbehavior detection

in protecting V2X application servers in 5G core networks.
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6 - CONCLUSION AND FUTURE WORK
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6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 103

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . 104

6.2.1 Short-term . . . . . . . . . . . . . . . . . . . . 104

6.2.2 Medium-term . . . . . . . . . . . . . . . . . . 105
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6.1 . Conclusion

This thesis encompassed an in-depth investigation of C-ITS and C-V2X ar-

chitecture and concepts. Moreover, it conducts an in-depth study of 5G NR-

V2X, the latest cellular technology for vehicles communications and part of

3GPP Release 16. It includes comprehensive information on the 5G core net-

work and its functions supporting cellular V2X communications. Our research

focused on the integration of 5GC and misbehavior detection systems pro-

tecting V2X application servers from a variety of attacks that my occur during

V2N communications.

The thesis highlights the importance of implementing security measures

on V2N. Specifically, we explored the aspects of security in C-ITS and NR-V2X,

including: i) the use of machine learning to improve detection results, ii) cre-

ating countermeasures to stop detected attacks, iii) leveraging collaboration

between detection nodes to improve performance, and iv) leveraging Feder-

ated Learning to enhance scalability of the detection system.

Therefore, this thesis provided an in-depth analysis of the related work

on security in V2X communications. The manuscript discussed different ap-

proaches and algorithms proposed in the literature, pointing out their added-

values and drawbacks in 5G V2X scenarios.

Security of Vehicle-to-Everything (V2X) communications is of significant

importance due to the possible threats to vehicle networks. This thesis in-

103



cluded three main contributions:

Firstly, we addressed the pressing requirement to implement and inte-

grate effective misbehavior detection systems that leveragemachine learn-

ing in the recently introduced environment of 5G Vehicle-to-Network (V2N)

communications. This is essential to protect V2X application servers from

common V2X attacks such as position falsification.

Secondly, a noteworthy discovery derived from our second contribution

was the added benefit of collaboration among edge detection nodes. By

enabling the exchange of reputation metrics, such as attack ratio, the preci-

sion and effectiveness of misbehavior detection can be improved.

Lastly, another notable finding is the promising use of Federated Learn-

ing for the deployment of V2X misbehavior detection systems in 5G. By using

a decentralized approach to the learning process, we can leverage scalability

benefits offered by Federated Learning while still attaining detection perfor-

mance that is on par with centralized systems. Our exploration of the use

of LSTM networks has shown their effectiveness in modeling and classifying

sequential data, making them an important resource in the domain of V2X

misbehavior detection. Additionally, the capacity to grasp extended temporal

relationships enables them to proficiently identify complex patterns that may

indicate misbehavior.

6.2 . Future Work

While this thesis has shed light on several aspects of V2X security, it also

opens the door to numerous avenues for future contributions.

6.2.1 . Short-term

Exploring the integration of the Location Management Function (LMF) of

the 5G core network with the proposed 5G V2X misbehavior detection sys-

tems will be a crucial area for future research. This integration has the poten-

tial to enhance detection accuracy and system efficiency, thanks to the addi-

tional location information supplied by the NG-RAN, which can be leveraged

to validate the integrity of the received UEs’ positions.

Advanced Neural Architectures: Beyond LSTMs, exploring the potential

of other neural architectures, such as Transformers, could yield even more
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robust detection systems.

Autoencoders for Zero-day Attack Detection: The use of autoencoders

presents a promising avenue for detecting zero-day attacks, given their abil-

ity to reconstruct input data and identify anomalies. Leveraging their efficacy

and scalability in the context of V2X security, could enable the early detection

of novel threats.

6.2.2 . Medium-term

Real-world Implementation: Moving from theoreticalmodels to real-world

implementations and testing these systems in live vehicular networks will be

a crucial step forward. It will be an opportunity to capture real-world delays,

and adapt the proposed solutions accordingly.

Scalability of Detection Mechanisms: As vehicular networks grow and be-

come more complex, the scalability of detection systems will be paramount.

Exploring scalable architectures and algorithms, especially those that canhan-

dle vast networks with minimal latency, will be crucial.

Real-world AttackDatasets: Creating newattack datasets basedon recorded

traces from real vehicles is very important to optimize the proposed misbe-

havior detection solutions for real-world scenarios.

6.2.3 . Long-term

3GPP Framework for V2X Misbehavior Detection System: An important

milestone will be the standardization of a unified framework for V2X misbe-

havior detection systems in upcoming 3GPP releases.

Misbehavior Authority and 5G: The integration and standardization of 5G

V2N misbehavior detection solutions with the V2V Misbehavior Authority de-

fined by ETSI can be an important step to eliminate vehicles misbehaving on

V2N from V2V networks as well.
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