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THÈSE dirigée par :
M. THOME Nicolas, Professeur, Cedric, Cnam

et co-encadrée par :
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Marc Lafon pour tous nos échanges sur l’incertitude depuis son stage et lui souhaite bonne chance

pour sa thèse.
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Abstract

The last decade’s research in artificial intelligence and hardware development had a significant

impact on the advance of autonomous driving. Yet, safety remains a major concern when it comes

to deploying such systems in high-risk environments. Modern neural networks have been shown

to struggle to correctly identify their mistakes and to provide over-confident predictions instead of

abstaining when exposed to unseen situations. Progress on these issues is crucial to achieve certification

from transportation authorities but also to arouse enthusiasm from users.

The objective of this thesis is to develop methodological tools which provide reliable uncertainty

estimates for deep neural networks. In particular, we aim to improve the detection of erroneous

predictions and anomalies at test time.

First, we introduce a novel target criterion for model confidence, the true class probability (TCP).

We show that TCP offers better properties than current uncertainty measures for the task of failure

prediction. Since the true class is by essence unknown at test time, we propose to learn TCP criterion

from data with an auxiliary model (ConfidNet), introducing a specific learning scheme adapted to this

context. The relevance of the proposed approach is validated on image classification and semantic

segmentation datasets, demonstrating superiority with respect to strong uncertainty quantification

baselines on failure prediction.

Then, we extend our learned confidence approach to the task of domain adaptation for semantic

segmentation. A popular strategy, self-training, relies on selecting predictions on the unlabeled data

and re-training a model with these pseudo-labels. Termed ConDA, the proposed adaptation improves

self-training methods by providing effective confidence estimates used to select pseudo-labels. To meet

the challenge of domain adaptation, we equipped the auxiliary model with a multi-scale confidence

architecture and supplemented the confidence loss with an adversarial training scheme to enforce

alignment between confidence maps in source and target domains.

Finally, we consider the presence of anomalies and we tackle the ultimate practical objective of

jointly detecting misclassification and out-of-distributions samples. To this end, we introduce KLoS,

an uncertainty measure based on evidential models and defined on the class-probability simplex. By

keeping the full distributional information, KLoS captures both uncertainty due to class confusion and

lack of knowledge, which is related to out-of-distribution samples. We further improve performance

across various image classification datasets by using an auxiliary model with a learned confidence

approach.
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Résumé

Le véhicule autonome est revenu récemment sur le devant de la scène grâce aux avancées fulgurantes

de l’intelligence artificielle. Pourtant, la sécurité reste une préoccupation majeure pour le déploiement

de ces systèmes dans des environnements à haut risque. Il a été démontré que les réseaux de neurones

actuels peinent à identifier correctement leurs erreurs et fournissent des prédictions sur-confiantes, au

lieu de s’abstenir, lorsque exposés à des anomalies. Des progrès sur ces questions sont essentiels pour

obtenir la certification des régulateurs mais aussi pour susciter l’enthousiasme des utilisateurs.

L’objectif de cette thèse est de développer des outils méthodologiques permettant de fournir des

estimations d’incertitudes fiables pour les réseaux de neurones profonds. En particulier, nous visons

à améliorer la détection des prédictions erronées et des anomalies lors de l’inférence. Tout d’abord,

nous introduisons un nouveau critère pour estimer la confiance d’un modèle dans sa prédiction :

la probabilité de la vraie classe (TCP). Nous montrons que TCP offre de meilleures propriétés que

les mesures d’incertitudes actuelles pour la prédiction d’erreurs. La vraie classe étant, par essence,

inconnue à l’inférence, nous proposons d’apprendre TCP avec un modèle auxiliaire (ConfidNet),

introduisant un schéma d’apprentissage spécifique adapté à ce contexte. La qualité de l’approche

proposée est validée sur des jeux de données de classification d’images et de segmentation sémantique.,

démontrant une supériorité par rapport aux méthodes de quantification incertitude utilisées pour la

prédiction de d’erreurs.

Ensuite, nous étendons notre approche d’apprentissage de confiance à la tâche d’adaptation de

domaine. Une stratégie populaire, l’auto-apprentissage, repose sur la sélection de prédictions sur

données non étiquetées puis le réentrâınement d’un modèle avec ces pseudo-étiquettes. Appelée

ConDA, l’adaptation proposée améliore la sélection de pseudo-labels grâce à des meilleures estimations

de confiance. Afin de relever le défi de l’adaptation de domaine, nous avons équipé le modèle auxiliaire

d’une architecture multi-échelle et complété la fonction de perte par un schéma d’apprentissage

contrastif afin de renforcer l’alignement entre les cartes de confiance des domaines source et cible.

Enfin, nous considérons la présence d’anomalies et nous attaquons au défi pratique de la détection

conjointe des erreurs de classification et des échantillons hors distribution. A cette fin, nous

introduisonsKLoS, une mesure d’incertitude définie sur le simplexe et basée sur des modèles évidentiels.

En conservant l’ensemble des informations de distribution, KLoS capture à la fois l’incertitude due à

la confusion de classe et au manque de connaissance du modèle, cette dernière type d’incertitude étant

liée aux échantillons hors distribution. En utilisant ici aussi un modèle auxiliaire avec apprentissage de

confiance, nous améliorons les performances sur divers ensembles de données de classification d’images.
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Chapter 1

Introduction

1.1 Context

From Rosenblatt’s Perceptron [1] to the rise of attention-based neural networks (‘Transformers’) [2],

the field of artificial intelligence (AI) has been experiencing alternative periods of hype cycles followed

by disappointment, reduced funding and interest. However, the current advances in deep learning (DL)

[3] not only raised interest among AI researchers but also drive technological progress in many science

disciplines, including physics, biology, as well as in manufacturing and other industrial applications1.

Since the stunning victory of a convolutional neural network architecture, AlexNet [4], at the Large

Scale Visual Recognition Challenge (LSVRC) in 2012, deep learning is now ubiquitous in the fields of

computer vision (CV) [5, 6, 7], natural language processing (NLP) [8, 9], speech recognition [10, 11]

and reinforcement learning [12] (see Fig. 1.1), accounting for a larger portion of papers published in

each respective conference.

Recent breakthroughs in computer vision thanks to deep learning largely explain the spectacular

revival of autonomous driving with major tech players such as Waymo, Tesla, Baidu and Yandex

investing in self-driving car programs. Deep learning is now being used in various autonomous

driving modules. In perception, convolutional neural networks process information coming from visual

cameras to understand a scene and detect crucial aspects of the environment in real-time [18]: nature

and position of other vehicles, bicycles, pedestrians; position and meaning of road markings, signs,

lights; navigable space; position of obstacles; etc. To enrich scene analysis, perception systems in

autonomous driving complements traditional cameras with active sensors such as radar sensors and

LiDARs (Light Detection and Ranging) measuring sparse but direct tri-dimensional aspects of dynamic

scenes. Perception with these sensors also tend to rely more and more and deep learning models

[19, 20], hence they can be combined to improve the quality of the higher-level decision system via

sensor fusion [21]. As one of the world leaders in automotive sensors, Valeo, which is funding this

thesis, is positioned at the heart of this current revolution, developing high-quality LiDARs with their

SCALA technology. While deep learning is mostly used in perception modules, promising research

1To grasp the impact of AI on today’s world, the ‘State of AI Report’ published every year is a thorough compilation
of developments in research, industry and politics: https://www.stateof.ai.
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Figure 1.1: Examples of successful applications of AI: in computer vision (a,b,c), natural language
processing (d), speech recognition (e) and reinforcement learning mastering the game of Go (f). Image
credits to Krizhevsky et al. [4], Hui [13], Neuhold et al. [14], van den Oord et al. [15], Garcia-Martinez
et al. [16] and DeepMind [17].

aims to apply it also in planning, such as trajectory forecasting for the objects present in the car’s

environment. End-to-end approaches, from perception to control, by predicting steering angle and

acceleration is also starting to emerge with deep reinforcement learning [22]. While these incredible

progresses are undeniable, at the time of writing of this manuscript, robotaxis are not deployed yet and

many challenges still need to be resolved for autonomous driving before large scale commercialisation,

in particular by addressing issues related to safety.

1.2 Motivations

Despite its clear benefits to many applications, the deployment of machine learning (ML) models

in high-stakes environments raises serious questions about its impacts on our society. AI safety [23, 24]

is an area of research that aims to identify causes of unintended and harmful behaviour in machine

learning systems and to develop tools to ensure these systems work safely and reliably. Such behaviour

may emerge from machine learning systems [25] when:

• exposed to unusual situations, distributional changes on inputs [26] or long-tail scenarios [27]

(‘Robustness’ );

• subjected to corruptions during training, such as data poisoning [28], or during inference with

adversarial attacks from malicious opponents [29] (‘External Safety’ );

• the learning objective is not aligned with human values – which may be hard to specify though
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– or the model uses shortcuts during optimization [30] which are not transferable to more

challenging testing conditions (‘Alignment’ ).

When deployed in the wild, a machine learning system should be able to detect these hazardous cases

(‘Monitoring’ ) and estimate whether it is confident in its prediction in order to prevent accidents.

Accidents occurring with autonomous cars are typical examples where repercussions can be

catastrophic. During the perception step, low-level feature extraction such as image segmentation and

image localisation are used to process raw sensory inputs [31]. Outputs of such models are then fed

into higher-level decision-making procedures. However, mistakes done by lower-level machine learning

components can propagate up the decision-making process and lead to devastating results. One

striking example is the tragic incident which happened on May 7th 2016 near Williston (Florida, USA)

and resulted in the first death caused by a car with highly automated driving assistance [32]. Tesla,

the car manufacturer, stated that the accident originated from the vision system which incorrectly

classified the white side of a turning trailer truck as a bright sky2 (Fig. 1.2). Visual signals can

indeed be fooled or not adapted in some arduous conditions such as heavy raining, bright sky or night

time. As the NTSB noted in their report [32], “introducing automation in complex and unstructured

environment is very challenging” and they recommended to manufacturers of vehicles equipped with

automation systems to “incorporate system safeguards that limit the use of automated vehicle control

systems to those conditions for which they were designed”. Since then, several other accidents and

crashes with self-driving cars continue to occur, including the first recorded case of a pedestrian

fatality in 2018 [33]. Among the factors explaining the collusion, the NTSB report stated that the

system of the Uber test vehicle failed to recognize the woman, first identifying her as an unknown

object, next as a vehicle, then as the bicycle she was pushing. Correctly monitoring and assessing

system confidence in its predictions appears to be more than necessary to safely deploy ML models

in high-stakes environments [34]. Progress on these issues is crucial in autonomous driving to achieve

certification from transportation authorities but also to arouse enthusiasm from users.

Knowing when a model doesn’t know is important to improve trustworthiness and safety [34]. By

assigning high levels of uncertainty to erroneous predictions, a ML system could have been able to

avoid previous catastrophes by sending a trigger alarm or giving back control to users. Related to the

example of sensor fusion mentioned earlier, when evaluating high uncertainty for a prediction output

by the visual camera during night time, a system could decide to rely more on active sensors predictions

which are more robust to these light conditions. One key of a good uncertainty-based fusion of multiple

sensor’s predictions is to ensure that probabilities are well calibrated (see Section 2.3.3 for details about

the meaning of probability calibration). One would also like the confidence criterion to correlate

successful predictions with high values. Some paradigms, such as self-training with pseudo-labeling

[37, 38], consist in picking and labeling the most confident samples before retraining the network

accordingly. The performance improves by selecting successful predictions thanks to an accurate

confidence criterion.

For practical systems, it may also be important to understand what the model does not know.

2https://www.tesla.com/blog/tragic-loss
3https://www.nytimes.com/interactive/2016/07/01/business/inside-tesla-accident.html
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(a) Photo of the involved white truck (b) Outline of the accident

Figure 1.2: Tesla’s deadly crash in May 2016: photo of the white truck confused with bright sky by
Tesla’s vision system (Fig. 1.2a) and outline of the accident (Fig. 1.2b). Image credits: New York
Times3.

Common classification in uncertainty estimation distinguishes two types of uncertainty. Aleatoric

uncertainty, also termed data uncertainty, is due to the inherent stochasticity of the outcome of an

experiment. This type of uncertainty arises due to class confusion, sensor noise, or non-discriminant

features, such as in Fig. 1.3b where the model confuses a cat on a chair with a bird (known-unknown).

Epistemic uncertainty refers to uncertainty caused by a lack of knowledge of the model, for instance

an input from another distribution or from an unknown class (unknown-unknown), as illustrated in

Fig. 1.3c. A good estimation of uncertainty is also useful to discriminate unusual situations from

regular inputs, such as driving conditions in snowy roads in Russia while the car’s ML system has

been trained on data collected in California. By providing more data to a model, we can reduce this

uncertainty. Identifying samples with large epistemic uncertainty is also beneficial for classification

improvements in active learning [39] and for efficient exploration in reinforcement learning [40].

While confidence estimation4 has a long history in machine learning [41, 42, 43, 44], a series of

recent works showed that modern neural networks (NNs) suffer from several conceptual drawbacks

which make them unreliable [45, 46, 40, 47, 48]. In classification, the output of the last layer is fed

to the softmax function, which produces a probability distribution over class labels. However, with

modern NNs, these probabilities have been shown to be non-calibrated [49] which makes NNs unsuited

for a larger decision-making pipelines. To obtain uncertainty estimates, a widely used baseline with

NNs is to take the value of the predicted class’ probability [45], namely the maximum class probability

(MCP), or to use the predicted entropy given the predicted probability distribution. But as shown

in Fig. 1.3, these measures can produce high confident predictions for in-distribution errors, which

hardens error detection or selective classification where one would filter out these samples. When

deployed in real conditions, machine learning models often encounter samples that are away from the

training distribution, such as covariate shift or new classes. However, NNs are known to be brittle to

4The terms uncertainty and confidence estimation are used alternatively in this manuscript, the latter referring to
the opposite of uncertainty.
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(a) Correct prediction (b) In-distribution error (c) Out-of-distribution sample

Figure 1.3: Comparison of confidence estimates using MCP or predictive entropy for a model trained
on CIFAR-10 dataset [35] between a correct prediction (Fig. 1.3a), an in-distribution error (Fig. 1.3b),
and an out-of-distribution (OOD) sample taken from SVHN dataset [36]. The model assigned a higher
MCP value and a lower entropy, hence a large confidence score, to the error and the OOD sample
than to the correct prediction, which is not desirable in uncertainty estimation.

distribution shifts [26] with their prediction performances severely decreasing as they tend to rely on

spurious correlations [30]. Multiple works also showed that NNs provide over-confident predictions for

samples far from the training data [48], including fooling images [46] or adversarial inputs [50]. Fig. 1.3c

shows the example of an out-of-distribution sample taken from SVHN dataset [36] and predicted as a

bird with high confidence by a model trained on CIFAR-10 dataset [35].

The development of principled methods for deep learning models such as Bayesian neural networks

(BNNs) [51, 40, 52] and ensembles [53] enable deep neural networks to capture epistemic uncertainty

more accurately. Such as with ensemble, predictions with BNNs are obtain by averaging multiple

forward pass due to their finite approximation of the predictive distribution (Monte Carlo sampling).

But this comes at the expense of an increased computational cost to obtain uncertainty estimates. In

addition, recent works [54, 55] show they still fall short in giving useful estimates of their predictive

uncertainty. Despite these progress in uncertainty estimation, there remains a gap to be filled in

detecting in-distribution errors and abnormal samples to avoid serious repercussions when deploying

a fleet of driverless robotaxis.

1.3 Contributions and outline

In this thesis, we tackle the challenge of providing reliable uncertainty estimates along with deep

neural network predictions with applications for autonomous driving. In particular, we aim to improve

the detection of erroneous predictions at test time by distinguishing them from correct ones. Errors

can be of different natures and the following contributions will firstly address the task of in-distribution

misclassification detection, also known as failure prediction (Chapter 3). Along with the detection of

such examples at test time, we also elaborate on leveraging our proposed approach in the case of

5
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domain adaptation (Chapter 4), where self-training approaches rely on uncertainty estimates to select

samples in the re-labelling phase. Finally, we consider the presence of anomalies and consequently

propose to detect both in-distribution errors and out-of-distribution samples with a single uncertainty

measure (Chapter 5).

Outline. In regards with the challenges mentioned above, our contributions are the following:

• Chapter 3: Learning A Model’s Confidence via An Auxiliary Model

After exposing the limits of standard uncertainty measures with deep neural networks in

classification, we define a new confidence criterion, True Class Probability, which provides

theoretical guarantees and empirical evidence for confidence estimation. We propose to design

an auxiliary neural network, coined ConfidNet, which aims to learn this confidence criterion from

data. An exploration of the classification-with-rejection framework strengthens the rationale of

the proposed approach. Extensive experiments are conducted for validating the relevance of the

proposed approach on image classification and semantic segmentation datasets. An analysis of

the impact of loss function, criterion and learning scheme is also presented.

• Chapter 4: Self-Training with Learned Confidence for Domain Adaptation

Self-training has recently proven a potent strategy to improve the effectiveness of Unsupervised

Domain Adaptation (UDA) in semantic segmentation. This line of work mostly relies on the

generation of pseudo-labels over the unannotated target domain to incorporate target images

and learn a better segmentation adaptation model. A crucial issue is to base the pseudo-label

selection on reliable confidence measures. We propose to adapt our learned confidence approach

to estimate the confidence of the segmentation network in its predictions and to use these

confidence estimates as a criterion for pseudo-label selection. Named ConDA, the proposed

adaptation of our original approach to this new context includes two further contributions:

(1) an adversarial training scheme to reduce the gap between confidence maps in source and

target domains; (2) an enhanced architecture for the confidence network to perform multi-scale

confidence estimation. We show that this strategy produces more accurate pseudo-labels and

outperforms strong baselines on challenging UDA segmentation benchmarks.

• Chapter 5: Simultaneous Detection of Misclassifications and Out-of-Distribution Samples with

Evidential Models

Beyond errors due to misclassifications by deep neural networks, models may encounter data

that is unlike the model’s training data when deployed in the wild. In this chapter, we tackle

the task of jointly detecting errors and anomalies in a single uncertainty measure. To this end,

we leverage the second-order uncertainty representation provided by evidential models [56, 57],

a Bayesian method based on subjective logic, and we introduce KLoS, a KL-divergence criterion

defined on the class-probability simplex. We show that KLoS quantifies in-distribution and

out-of-distribution uncertainty more accurately than first-order measures such as the predictive

6
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entropy. In a similar spirit to the previous contribution, we design an auxiliary neural network,

KLoSNet, to learn a refined measure directly aligned with the evidential training objective. Our

experiments show that KLoSNet acts as a class-wise density estimator and outperforms current

first-order and second-order uncertainty measures to simultaneously detect misclassifications and

OOD samples. We study the impact of the choice of OOD training samples on our method and

concurrent measures, which sheds a new light on the impact of the vicinity of this data with

OOD test data.

Before delving in the core of the thesis, we present in Chapter 2 an overview of the recent progress

in uncertainty estimation with deep neural networks, including a thorough characterization of the

source of uncertainty, methods to model uncertainty and the various ways of evaluating the quality

of uncertainty estimates. Finally, in Chapter 6, we conclude this thesis with an overview of the

contributions of each chapter and we propose several interesting perspectives for future works.

1.4 Related publications

This thesis is based on the material published in the following papers:

Publication Chapter

Charles Corbière, Nicolas Thome, Avner Bar-Hen, Matthieu Cord, Patrick
Pérez. “Addressing Failure Prediction by Learning Model Confidence”, in
Advances in Neural Information Processing Systems (NeurIPS), 2019.

3

Charles Corbière, Nicolas Thome, Antoine Saporta, Tuan-Hung Vu, Matthieu
Cord, Patrick Pérez. “Confidence Estimation via Auxiliary Models”, in IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2021.

3,4

Charles Corbière, Marc Lafon, Nicolas Thome, Matthieu Cord, Patrick
Pérez. “Beyond First-Order Estimation with Evidential Models for Open-World
Recognition”, ICML 2021 Workshop on Uncertainty and Robustness in Deep
Learning.

5
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Chapter 2

Uncertainty Estimation in Deep Learning
for Classification

Chapter Abstract

In this chapter, we propose a general overview of the literature regarding uncertainty

estimation with deep neural networks. The sources of uncertainties are primarily discussed

in Section 2.1 with a formalisation in the context of supervised learning. Traditionally,

uncertainty is modeled in a probabilistic way and probabilistic methods have always been

perceived as the natural tool to handle uncertainty. In particular, the Bayesian framework

provides a probabilistic representation of uncertainty by incorporating degrees of belief.

After reviewing the basic concepts of deep learning, we will see in Section 2.2 how Bayesian

approaches model the different sources of uncertainty. In addition, we enumerate the

measures proposed along with standard and Bayesian approaches to quantify uncertainty.

We describe their behavior and, above all, their limits that will be addressed in this thesis.

While reliable uncertainty estimates are crucial in many safety-critical applications, their

evaluation remains challenging as the ‘ground truth’ uncertainty estimates are usually not

available. One would expect them to truly reflect probabilities in a multi-sensor perception

system where late fusion rely on these probabilities. On the other hand, the goal may be

to detect errors or anomalies and thus a reliable ranking between correct predictions and

abnormal samples is desired. In Section 2.3, we present the existing tasks commonly used

in the literature to evaluate the quality of uncertainty estimates with deep neural networks.

9
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2.1 Sources of uncertainty

Uncertainty can arise from various reasons and may require a different handling depending of their

nature. After introducing a traditional categorization of sources in uncertainty in machine learning

literature, we dive into a more precise identification within the setting of supervised learning.

2.1.1 General characterisation

The nature of uncertainties has been a topic of discussion by statisticians [58], economists [59],

engineers [60] and other specialists facing random processes. In the machine learning literature [61,

62, 63, 64, 57], sources of uncertainty are traditionally characterized as either aleatoric or epistemic.

When an outcome of an experiment may variate due to intrinsic randomness of a phenomenon, e.g.

coin flipping, we refer to aleatoric uncertainty. Another term used alternatively is data uncertainty,

which emphasizes that the stochasticity is inherent to the observed object rather than the model. This

type of uncertainty arises due to class confusion, noise, non-discriminant features e.g., sun glare or

rain drop in autonomous driving images (see Fig. 2.1).

Epistemic uncertainty refers to uncertainty caused by a lack of knowledge, hence intricately linked

to the model representing the random process. For models trained on computer vision tasks, we show

some examples of samples with large epistemic uncertainty in Fig. 2.2. In contrast with aleatoric

uncertainty, it can be reduced by providing additional information, here in the form of training data.

To illustrate the distinction between the types of uncertainty, let us consider weather forecasting [66]

which discriminates a predicted probability score from the uncertainty in that prediction: “[...] a

weather forecaster can be very certain that the chance of rain is 50%; or her best estimate at 20%

might be very uncertain due to lack of data.”. Here, the amount of aleatoric uncertainty corresponds

to 50%, due to the complex and multi-variate factors resulting to rain; while the weather forecaster

10
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(a) Rain drops and sun glare (b) Dice roll (c) Dog/wolf confusion

Figure 2.1: Examples of aleatoric uncertainty in computer vision. (a) Adverse weather conditions
in autonomous driving [65] harden perception for image-based modules; (b) a dice roll is inherently
stochastic due to the extreme sensitivity to initial conditions that cannot be measured with sufficient
precision; (c) although being a breed of dog, huskies share many similarities with wolves.

acknowledges not being confident in his prediction (20%), which relates to epistemic uncertainty. With

machine learning predictions, epistemic uncertainty is expected to be high for samples far from the

training distribution. Also known as distribution shifts, mismatch between input data in deployment

stage and the original training distribution can arise in many real-world tasks [26]. By providing more

data to a model, we can reduce this type of uncertainty. In summary, epistemic uncertainty refers to

the reducible part of the total uncertainty, whereas aleatoric uncertainty refers to the non-reducible

part.

(a) Snowy road (b) Rickshaw (c) Drawing of a dog

Figure 2.2: Examples of epistemic uncertainty in computer vision. An autonomous car can be exposed
to unseen conditions (Fig. 2.2a) or new semantic class (Fig. 2.2b). While being only trained on natural
images, an ImageNet-trained classifier might encounter images of known classes but with different
rendering e.g., drawings (Fig. 2.2c).

The idea between distinguishing the two types of uncertainty is to characterize the uncertainty

coming from the model and to take adequate actions to reduce it. For example, in active learning,

selecting and labelling regions with large epistemic uncertainty should better improve the model’s

capacity to generalize, while focusing on large aleatoric uncertainty would be inefficient [39]. However,

in some cases, such distinction may be unnecessary. For instance, when deploying a ML system for

autonomous driving applications, the source of uncertainty might be inconsequential: the main purpose

is to decide whether the agent should send a trigger alarm – or give back control to user – if the total

uncertainty estimation regarding its prediction is high. This case is studied in Chapter 5. On a related

matter, aleatoric and epistemic uncertainties are not absolute notions but are context-dependent. As
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Figure 2.3: Embedding data in a higher-dimensional space can reduce aleatoric uncertainty. While
the two classes are overlapping on the left plot, by adding a second feature x2 they become separable,
and consequently aleatoric uncertainty is reduced [63].

illustrated by [63] and replicated in Fig. 2.3, embedding data in a higher-dimensional space can reduce

aleatoric uncertainty but it may also increase epistemic uncertainty as more data are required to fit a

model.

This is why uncertainty modelling in machine learning should come with a clear description of the

setting of the learning problem.

2.1.2 Uncertainty in supervised learning

Let us consider a training dataset D = {(xn, yn)}N
n=1 composed of N i.i.d. training samples, where

xn ∈ X is an input, deep feature maps from an image or the image itself for instance, and yn ∈ Y
its corresponding output. These samples are drawn from an unknown joint distribution P (X,Y ) over

(X ,Y). Given loss function ℓ : Y × Y → R+, the goal of supervised learning is to find a hypothesis

h∗ : X → Y within a fixed class H of functions that minimizes the true risk :

h∗ ∈ arg min
h∈H

∫︂
X ×Y

ℓ(h(x), y)dP (x, y). (2.1)

Because the distribution P (X,Y ) is unknown to the learning algorithm, we restricted the goal to find

the hypothesis ĥ that minimizes the empirical risk given training data D:

ĥ ∈ arg min
h∈H

1
N

N∑︂
n=1

ℓ(h(xn), yn). (2.2)

Hypotheses h∗ and ĥ are also known respectively as the Bayes estimator and the empirical Bayes

estimator as they minimize the posterior expected value of loss ℓ. Obviously, ĥ is only an estimate of

h∗ whose quality depends on the amount and diversity of training data. The uncertainty that arises

due to this discrepancy is referred as approximation uncertainty.

Eventually, given an input x, what we’re interested in is to evaluate the predictive uncertainty

p(y|x), i.e. the uncertainty related to predicting an outcome. In the case of a stochastic dependency
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between X and Y, even with a perfect knowledge of P there still remain uncertainty, which is

characterized as aleatoric uncertainty. Given an input x with true label y, the best prediction would

be the point-wise Bayes estimator f∗:

f∗(x) = arg min
ŷ∈Y

∫︂
Y
ℓ(y, ŷ)dP (y|x). (2.3)

Due to the choice of the hypothesis space H, the Bayes estimator h∗ does not coincide with the

point-wise Bayes estimator f∗, which give rise to model uncertainty. Approximation uncertainty

and model uncertainty are related to model aspects, either due to model design or to training data.

Hence, they can be grouped as epistemic uncertainty. In practice, epistemic uncertainty is reduced

to approximation uncertainty as deep neural networks with non-linear activations can theoretically

approximate any continuous function (‘universal approximation theorem’ [67]), thus h∗ ≈ f∗.

2.2 Modelling uncertainty with deep neural networks

Capturing both aleatoric and epistemic uncertainty is crucial to provide accurate uncertainty

estimates. The Bayesian framework provides a natural probabilistic representation of uncertainty

by incorporating degrees of belief. After an overview of recent developments of deep learning, we

will see in this section how Bayesian approaches model uncertainty and which measures are used to

quantify uncertainty in practice.

2.2.1 Deep neural networks

Inspired by the simplified modelling of a biological neuron [68], an artificial feed-forward neural

network, simply shortened here as neural network (NN), is a non-linear function f : X → Y composed

of a succession of non-linear mathematical functions, called layers, that progressively transforms an

input x to an output y:

f(x) = f (L) ◦ f (L−1) ◦ f (L) ◦ · · · ◦ f (1)(x), (2.4)

where L is the number of layers. Each layer l ∈ J1, LK is parametrized by θl and we denote the overall

set of parameters of the neural network as θ = (θ1, ...,θL).

A classic layer is the fully-connected layer which consists in a linear combination of the input

followed by a nonlinear activation hl = ϕ(wlhl−1 + bl) applied element-wise and where θl = (wl, bl).
The typical nonlinearities are the sigmoid function, the hyperbolic tangent and the Rectified Linear

Unit (ReLU), the latter being currently the most popular. A neural network composed of at least

one hidden layer is called multi-layer Perceptron (MLP). Thanks to their depth, DNNs are able to

transform raw input data into more and more complex representations, from the low-level concepts

e.g., colours or contours in computer vision, to high-level concepts such as objects, which is particularly

useful for image classification. Interestingly, even with one sufficiently large hidden layer, MLPs can

model any arbitrary function of the input thanks to the universal approximation theorem [67]. The

last layer, also called the output layer, is followed by an activation reflecting the desired output.

13
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Figure 2.4: VGG-16 [74] architecture consists in a succession of convolutional layers and max-pooling
layers followed by fully-connected layers for image classification. Image credits: Durand [75].

For instance, in multi-class classification where Y = J1,KK with K being the number of classes, the

softmax function is commonly used to output a vector of categorical probabilities1:

∀k ∈ Y, P (Y = k| x,θ) =
exp

(︁
fk(x, θ)

)︁∑︁
j∈Y exp

(︁
fj(x, θ)

)︁ . (2.5)

Training. Neural networks are trained using gradient descent optimizers, such as stochastic gradient

descent (SGD) with momentum [69, 70], Adagrad [71], AdaDelta [72] and Adam [73]. The gradient of

the loss with respect to the model’s parameters θ is obtained via back-propagation [69]. In classification

tasks, a NN with softmax activation is commonly trained via maximum likelihood estimation on the

training data, or equivalently minimizing the negative log-likelihood :

θ̂ ∈ arg min
θ

1
N

N∑︂
n=1

− logP (yn|xn,θ). (2.6)

Convolutional neural networks. Deep learning became ubiquitous in computer vision in 2012 when

AlexNet [4] won the ImageNet Large Scale Visual Recognition Challenge. AlexNet is an architecture

that is part of a class of neural networks named convolutional neural networks (ConvNets). ConvNets

are composed of a succession of convolutional and pooling layers, the former being a special case

of matrix multiplication with circulant structure. By sharing a convolutional filter for all spatial

positions, convolutional layers reduce the storage requirements of the model and encode translation

equivariance. Pooling layers, or alternatively adding stride in a convolution, progressively aggregates

spatial information as we go deeper in the network and produce invariance to small translations,

1In the following, we write f(x, θ) to denote explicitly the dependence of f on its parameters θ
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Figure 2.5: SegNet [47] architecture is a fully-convolutional neural network with the particularity that
the decoder upsamples its input using the pool indices from its encoder. Image credits: Badrinarayanan
et al. [47].

which is particularly relevant for computer vision as we often want the response of a classifier to be

independent of the location of objects in the image. In Fig. 2.4, we show the architecture of a typical

ConvNet, VGG-16 [74]. As deep neural networks became deeper and deeper, training issues due to

vanishing gradient started to emerge: through a large number of layers, the loss gradient becomes

smaller and smaller. ResNets [76] overcome this issue by adding skip connections between blocks

of layers. Due to their strong performance on ImageNet, ResNets are now considered as a standard

architecture for computer vision. In Chapter 5, we use one instance of ResNets with 18 layers, ResNet-

18, which reaches 69.8% top-1 accuracy on ImageNet, compared to 56.5% with AlexNet and 71.6%

with VGG-16 but with considerably fewer parameters (12M for ResNet-18 vs. 138M VGG-16).

Fully-convolutional neural networks. Semantic segmentation can be seen a pixel-wise classification

problem. The desired output is a semantic map of the same size as the image input. To meet

this challenge, fully-convolutional neural networks adopt an encoder-decoder structure where the

encoder which reduce the spatial resolution and encodes a meaningful intermediate representation,

then the decoder progressively recovers the spatial information by using successive upsampling

operations. An example of fully-convolutional architecture used in Chapter 3 is shown in Fig. 2.5

with SegNet [47] which is based on VGG architecture. In Chapter 4, we also use DeepLab [7]

which showed tremendous performance on various benchmarks for semantic segmentation. While new

architectures now outperform DeepLab, this architecture became a standard, used in autonomous

driving benchmarks such as Cityscapes [77].

2.2.2 Bayesian approaches

In Bayesian statistics, a probability expresses a degree of belief or information about an event.

Given hypothesis h, we fix a prior distribution p(h) over h and learning consists in updating that prior

15



2.2. MODELLING UNCERTAINTY WITH DEEP NEURAL NETWORKS

Figure 2.6: Illustration of Bayesian inference. Training data D is used to update the posterior
distribution p(h|D). Then, given an input xq, the posterior predictive distribution is obtained by
Bayesian model averaging. Image credits: Hüllermeier et al. [63].

with the probability of the data given h, i.e. likelihood, according to Bayes’ rule:

p(h|D) = p(D|h)p(h)
p(D) ∝ p(D|h)p(h). (2.7)

The posterior distribution p(h|D) captures the model’s knowledge regarding hypothesis h given data

D. The more peaked this distribution is, the more certain the model will be in regards to epistemic

uncertainty.

In Bayesian inference, given an unknown input x, the posterior predictive distribution p(y|x,D)
is obtained by Bayesian model averaging :

p(y|x,D) =
∫︂

H
p(y|x, h)dp(h|D). (2.8)

Hence, the posterior predictive distribution is a weighted average over its probabilities under all

hypotheses in H, weighted by the posterior probability p(h|D) (see Fig. 2.6).

Bayesian neural networks. While traditional deep neural networks output a single point-wise

prediction, Bayesian neural networks [78, 79] (BNNs) propose to apply Bayesian inference by

considering distributions over a network’s parameters θ and learning the posterior distribution p(θ|D).
The posterior predictive distribution p(y|x∗,D) is obtained by marginalizing over the parameters θ:

p(y|x,D) =
∫︂
p(y|x,θ)p(θ|D)dθ. (2.9)

When modelling complex real-world data, exact inference may be intractable because the previous

integrals cannot be expressed in closed form, since the parameters are mapped through non-linearities

in deep neural network architectures.
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Since the posterior distribution cannot usually be evaluated analytically, a few approximation

methods have been considered to compute the posterior predictive. A first simple approach consists in

approximating the posterior distribution p(θ|D) with a Dirac distribution centered on the maximum

likelihood estimator θ̂MLE:

θMLE ∈ arg max
θ

p(D|θ) = arg max
θ

N∏︂
n=1

p(yn|xn,θ) (2.10)

= arg max
θ

N∑︂
n=1

log p(yn|xn,θ). (2.11)

Then, the posterior predictive distribution is simply the evaluation of the prediction on this point:

p(y|x,D) ≈ p(y|x, θ̂MLE)2. However, we obtain a point estimate for parameters θ which may overfit.

For instance, with a dataset composed of 3 tosses landed head, we would then estimate θ̂MLE such

that p(y|x∗,D) = 1 for any toss! To mitigate this issue, one could instead compute the maximum-a-

posteriori estimate θMAP = arg maxθ p(θ|D) but it still remains a point estimate that underestimates

epistemic uncertainty.

With deep neural networks, a few methods have been explored including Laplace approximation

[78], Hamiltonian Monte Carlo sampling [80], and expectation-propagation [81, 82]. In particular,

variational inference [83, 84] gained a lot of popularity in the recent years due to better scaling.

The goal is to learn to approximate the exact posterior distribution by defining a simpler variational

distribution q(θ) and minimizing the Kullback-Leibler (KL) divergence between q(θ) and p(θ|D). For
instance, Variational Bayes [85] defines the variational distribution q(θ) as a Gaussian distribution

with a diagonal covariance, i.e. a fully factorized Gaussian. Another important example is Monte-

Carlo Dropout (MC Dropout) where Gal and Ghahramani [40] establish a connection between

variational inference and dropout layers [86], commonly used in neural networks for regularization. At

inference, the predictive distribution is approximated by Monte Carlo sampling and averaging over all

M forward predictions:

p(y|x,D) ≈ 1
M

M∑︂
m=1

p(y|x,θm), (2.12)

where θm ∼ p(θ|D) are the sampled weights from forward pass m. The total uncertainty can then

be quantified in terms of variance in the case of regression and entropy as detailed in the following

section.

With Bayesian Neural Networks, the crucial aspect is how well the posterior distribution p(θ|D)
is approximated [87]. Unfortunately, MCDropout has been shown to be a poor approximation to the

true posterior [88], resulting in unreliable uncertainty estimates [54, 89, 90].

Ensembles. Lakshminarayanan et al. [53] propose a simple but effective approach named Deep

Ensembles which outperforms Bayesian neural networks for uncertainty representation [54, 55]. An

ensemble ofM models is trained independently with random initialization. Such as with MC Dropout,

2Note that this method actually correspond to a standard neural network trained with maximum likelihood.
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predictions are obtained by averaging the M samples and uncertainty estimates can be derived from

the spread of the ensemble. While being originally considered as non-Bayesian, Deep Ensembles can

actually be seen as a Bayesian model average [91], whose samples provides a richer functional diversity

in the predictive integral Eq. (2.9). Further works [92, 93] explored ways to avoid training multiple

models to reduce training time by leveraging intermediate checkpoints of a model during training.

The main drawback of these approaches is the computational expense of training and storing weights

of M models, which is not convenient for embedded systems such as autonomous vehicles.

Gaussian processes. Considered as the gold standard of uncertainty estimation [94], Gaussian

processes are non-parametric Bayesian models. Unlike BNNs which define probability distributions

over networks’ weights, they directly specify distributions over the function f(·,θ) induced by the

network. This distribution is a joint Gaussian distribution defined over a collection of function values

f(x1), · · · , f(xn). The computation of the covariance function (or kernel) of the distribution requires

access to the full training dataset at inference time. Although some approximations [95] have been

proposed, this family of probabilistic methods does not scale well with the dimension of the data.

Previous methods proposed adapting neural networks to capture epistemic uncertainty thanks to

the spread of the posterior distribution p(θ|D). But how do we derive uncertainty estimates from

these Bayesian approaches? This will be addresses in 2.2.4.

2.2.3 Evidential models

To overcome the issue of approximation due to sampling, a recent class of models, named evidential

[57, 56] proposes instead to explicitly represent the distribution over probabilities. This line of work

is based on subjective logic [96], a probabilistic framework which formalizes the Dempster-Shafer [97]

theory’s notion of belief as a Dirichlet distribution. In the multi-class setting, the subjective opinion

of a multinomial random variable y ∈ Y is given by a triplet:

ω = (b, u,a) with
∑︂
k∈Y

bk + u = 1, (2.13)

where b = (b1, · · · , bK)T denotes the belief mass over Y, u ≥ 0 is the overall uncertainty mass and a

is the base rate distribution. Let ek ≥ 0 be the evidence derived for class k. The class belief bk and

the uncertainty u are computed as:

bk = ek

S
and u = K

S
, (2.14)

where S =
∑︁K

k=1(ek + 1). Note that the uncertainty u is inversely proportional to the total evidence.

The link to the Dirichlet distribution can be grasped by first considering the simpler problem

of inferring from a set D of N rolls the probability that a dice with K sides comes up as face

k [98]. We denote π = (π1, · · · , πK) the random variable over categorical probabilities, where∑︁K
k=1 πk = 1, and which lives on the (K-1)-dimensional simplex △K−1. Assuming i.i.d. data,

its likelihood reads p(D|π) =
∏︁K

k=1 π
Nk
k where Nk is the count of class k among the N draws.
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(a) Confident prediction (b) Conflicting evidence (c) Lack of evidence

Figure 2.7: Uncertainty representation on the simplex. Top row shows samples drawn from an
ensemble or a BNN. Bottom row illustrates the implicit distribution they are sampled from. A confident
prediction will have a distribution focused on a corner of the simplex and with a low dispersion
(Fig. 2.7a). Conflicting evidence (aleatoric uncertainty) will result in a distribution close to the
simplex center (Fig. 2.7b), reflecting a high class confusion. Finally, a lack of evidence (Fig. 2.7c)
corresponds to a distribution with high dispersion (epistemic uncertainty): each sample can yield very
different probabilities.

For its conjugate properties with the categorical distribution, the prior p(π) can be modeled as a

Dirichlet distribution with concentration parameters β. Then, the posterior p(π|D) is also a Dirichlet

distribution with parameters (β1 + N1,..., βK + NK) and the posterior predictive distribution for a

single multinoulli trial has the closed form P (Y = k | D) = E
[︁
πk|D] = βk+Nk∑︁

k
βk+N

. We observe that

the prior distribution acts as a Bayesian smoothing by adding pseudo-counts β to the empirical counts.

Let us extend the Bayesian treatment of a single categorical distribution to classification, i.e., the

goal is to predict the class label y from a categorical distribution that depends on input x. The training

dataset D consists of N i.i.d. samples (x, y) drawn from an unknown joint distribution P (X,Y ).
Obviously, for a test sample x∗, its label frequency count is now unknown and we are not able to

estimate the posterior predictive distribution P (Y |x∗,D). Bayesian models and ensembling methods

approximate the posterior predictive distribution by marginalizing over the network’s parameters

thanks to sampling. But this comes at the cost of multiple forward passes.

Evidential Neural Networks (ENNs) propose instead to model explicitly the posterior distribution

over categorical probabilities p(π|x, y) by a variational Dirichlet distribution,

qθ(π|x)=Dir
(︁
π|α(x,θ)

)︁
= Γ(α0(x,θ))∏︁K

k=1 Γ(αk(x,θ))

K∏︂
k=1

π
αk(x,θ)−1
k , (2.15)
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whose concentration parameters α(x,θ) = exp f(x,θ) are output by a neural network f with

parameters θ; Γ is the Gamma function and α0(x,θ) =
∑︁K

k=1 αk(x,θ) with αk = exp fk(x,θ) indexing
the kth element of the vector of all K concentration parameters α. Precision α0 controls the sharpness

of the density with more mass concentrating around the mean as α0 grows. By conjugate property,

the predictive distribution for a new point x∗ is

P (Y = k | x∗,D) ≈ Eqθ(π|x∗)[πk] = exp fk(x∗,θ)∑︁K
j=1 exp fj(x∗,θ)

, (2.16)

which is the usual output of a network f with softmax activation.

Instead of reasoning on first-order probabilities, we can now derive second-order uncertainty

measures on the Dirichlet distribution. Evidential models provide a second-order uncertainty

representation as shown in Fig. 2.7 where the expectation of the Dirichlet distribution relates to

aleatoric uncertainty and its criterion concerning its dispersion can measure the the amount of evidence

in a prediction, hence epistemic uncertainty

Training Objective The ENN training is formulated as a variational approximation to minimize the

KL divergence between the distribution qθ(π|x) and the true posterior distribution p(π|x, y):

Lvar(θ; D) = E(x,y)∼P (X,Y )
[︁
KL

(︁
qθ(π|x) ∥ p(π|x, y)

)︁]︁
(2.17)

The training objective and its derivation are further study in Chapter 5.

2.2.4 Uncertainty measures

In regression, while the predictive distribution p(y|x,D) remains intractable (Eq. (2.8)), likelihood

is assumed Gaussian and one can estimate the predictive distribution’s first two moments empirically

[40]. Given likelihood p(y|x,θ) = N (y; f(x,θ), τ−1I), the first moment Ep(y|x,D)[y] can be

approximated by the unbiased estimator Ẽ[y] = 1
M

∑︁M
m=1 f(x,θm) following Monte-Carlo sampling.

The model’s predictive variance Varp(y|x,D)[y] – the second moment – is given by the unbiased estimator

Var˜ [y] = τ−1I + 1
M

∑︁M
m=1 f(x,θm)T f(x,θm) − Ẽ[y]T Ẽ[y]. In particular, we note that the predictive

variance accounts both for the aleatoric uncertainty with τ−1I and for the epistemic uncertainty with

the second term.

When it comes to classification, the aleatoric uncertainty at an input point x is defined as the

entropy of the true conditional distribution p(Y |x,D):

H[Y |x,D] = −
∑︂
k∈Y

p(Y = k|x,D) log p(Y = k|x,D). (2.18)

The entropy attains its maximum value when all classes have equal uniform probability and its

minimum value of zero when one class has probability 1 and all others probability 0. But in

contrast with regression, we cannot rely on the previous derivation to estimate the predictive moments:

likelihood is now a categorical distribution and we cannot estimate its first two moments anymore:

p(Y |x,θ) = Cat
(︂
Y ;ϕ

(︁
f(x,θ)

)︁)︂
, (2.19)
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(a) Train data (b) Bayes optimal’s vs. model’s
decision frontiers

(c) Entropy map

Figure 2.8: Illustration of unreliable uncertainty estimates with MCP and entropy due to poor fitting
of the conditional distribution. A logistic regression classifier trained on only nine inputs sampled from
the distribution (Fig. 2.8a) will have its decision frontier differ greatly from the Bayes optimal classifier
h∗ given the marginal distribution of the Gaussian mixture (Fig. 2.8b). Consequently, uncertainty
measures estimated on the predictive distribution such as entropy (Fig. 2.8c) poorly reflect the true
aleatoric uncertainty of the conditional distribution.

where the softmax operator, ϕ : RK → △K−1, transforms logits into probabilities on the (K-1)-

dimensional unit simplex △K−1, thanks to an exponential form.

A first possibility is to use the entropy of the predictive distribution estimated by the model. In

the case of Monte Carlo sampling, this corresponds to averaging the probability vectors from the M

stochastic forward passes:

H[Y |x,D] = −
∑︂
k∈Y

p(Y = k|x,D) log p(Y = k|x,D) (2.20)

≈ −
∑︂
k∈Y

(︂ 1
M

M∑︂
m=1

p(Y = k|x,θm)
)︂

log
(︂ 1
M

M∑︂
m=1

p(Y = k|x,θm)
)︂

(2.21)

with θm ∼ p(θ|D) are the sampled weights from forward pass m.

Given an input x, it is also possible to estimate aleatoric uncertainty by looking at the likelihood

of the class predicted by the model m, which is by design the class associated with the maximum

probability:

MCPm(x) = max
k∈Y

p(Y = k|x,θm). (2.22)

In the case of Monte Carlo sampling, MCP is computed on the average probability vector. MCP values

range from 1/K to its maximum value of one when all probabilities are 0 except for the predicted

class, hence no uncertainty.

But the quality of uncertainty estimates given by MCP and predictive entropy depends on the

quality of the approximation of the posterior distribution p(θ|D) and consequently may be inaccurate.

For instance, Fig. 2.8 shows an uncertainty map computed from the predictive entropy output by
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a neural network trained only on nine samples on a toy dataset. This toy dataset is composed

of a Gaussian mixture with three equally weighted components having equidistant centers and equal

spherical covariance matrices. As the model’s decision frontiers do not coincide with the Bayes optimal

ones – given by the true conditional distribution p(y|x) –, the predictive entropy might be incorrectly

low in regions of high aleatoric uncertainty (close to Bayes optimal’s decision frontiers) and high in

confident regions.

To estimate the epistemic uncertainty, an intuitive idea with BNNs and ensembling is to consider

the variance of the predictions produced by the M stochastic forward passes. Gal [40] proposes to

compute the variation-ratio which is based on the frequency of prediction of the most predicted class:

var-ratio(x) = 1 − max
k∈Y

(︂ 1
M

M∑︂
m=1

1[ŷm = k]
)︂
. (2.23)

More interestingly, Depeweg et al. [99] propose to measure the mutual information I[y,θ|x,D]
between the prediction y and the posterior distribution, based on the decomposition of the predictive

uncertainty. Assuming that predictive entropy H[y|x,D] contains aleatoric and epistemic uncertainty

as it depends on dataset D, the mutual information corresponds to the difference between predictive

entropy and the expected entropy of each member of the ensemble Ep(θ|D)
[︂
H[y|x,θ]

]︂
, which does not

depend on the model anymore:

I[Y,θ|x,D] = H
[︂
Ep(θ|D)

[︁
p(Y |x,θ)

]︁]︂
− Ep(θ|D)

[︂
H[Y |x,θ]

]︂
(2.24)

≈ −
∑︂
k∈Y

(︂ 1
M

M∑︂
m=1

p(Y = k|x,θm)
)︂

log
(︂ 1
M

M∑︂
m=1

p(Y = k|x,θm)
)︂

+ 1
M

M∑︂
m=1

∑︂
k∈Y

p(Y = k|x,θm) log p(Y = k|x,θm). (2.25)

Consequently, mutual information is a dispersion measure which accounts for the variance of the

predictions produced by the M stochastic forward passes.

To gain intuition about the behavior of the previous measures, let us consider a classification task

with 3 classes and the following samples:

1. a sample where the model outputs probability vectors with maximum probability on the same

class:

p1 = {(1, 0, 0), (1, 0, 0), ..., (1, 0, 0)}

;

2. a sample where the model outputs probability vectors with uniform probability:

p2 = {(1
3 ,

1
3 ,

1
3), (1

3 ,
1
3 ,

1
3), ..., (1

3 ,
1
3 ,

1
3)}

;
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3. a sample where the model produces inconsistent probability vectors:

p3 = {(1, 0, 0), (0, 1, 0), ..., (0, 0, 1)}

.

This first sample p1 represents an input predicted with high confidence by the model and where the

aleatoric uncertainty is low. The second sample p2 presents high aleatoric uncertainty due to class

confusion but low epistemic uncertainty as the model always predicted the same probability vector.

In contrast, the model outputs very different predictions regarding the third sample p3, denoting a

large epistemic uncertainty. When computing the predictive entropy, we find that obviously H[p1] = 0
but H[p2] = H[p3] = 1.09, which does not enable us to separate the two sources of uncertainty. Now,

the mutual information gives us more information about the third sample as I[p1] = I[p3] = 0 and

I[p2] = 1.09, showing here it measures solely the dispersion between predictions. Again here, this

theoretical decomposition depends on the approximation to this posterior distribution which may

re-introduce approximation uncertainty in both terms.

Finally, with evidential models, a series of uncertainty measures based on the second-order Dirichlet

distribution allows one to measure different sources of uncertainty [100, 101]. In particular, the vacuity

is due to insufficient or unreliable information received from sources and represented by uncertainty

mass u in subjective logic. On the second-order Dirichlet distribution, this is equivalent to its precision

α0 which is a measure of its dispersion, hence capturing epistemic uncertainty. Related to aleatoric

uncertainty, dissonance corresponds to contradicting belief, such as in class confusion, and is defined

as:

diss(ω) =
∑︂
k∈Y

(︂bk
∑︁

j ̸=k bjBal(bj , bk)∑︁
j ̸=kbj

)︂
, (2.26)

where Bal(bj , bk) = 1 − |bj−bk|
bj+bk

if bkbj ̸= 0 and 0 if min(bj , bk) = 0 is the relative mass balance function

between two belief masses. For instance, given opinion (b1, b2, b3, u,a) = (0.3, 0.3, 0.3, 0.1,a), the

dissonance value is equal to 0.9. Its maximum value is 1 and its minimum value is 0.

2.3 Evaluation of the quality of uncertainty estimates

Evaluating the quality of predictive uncertainties is challenging as the ‘ground truth’ uncertainty

estimates are usually not available. Depending on the application, the desirable properties of

uncertainty estimates can vary: in a multi-modal system, we aim for calibrated uncertainty estimates

before fusion while one may only be interested in a reliable ranking between correct and erroneous

predictions.

We present in this section the existing tasks commonly used in the literature to evaluate the quality

of uncertainty estimates with deep neural networks.
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2.3.1 Selective classification

The idea of a reject option with ML systems has been around for ages [41]. Classification with a

reject option, also known as selective classification [44], consists in a scenario where a classifier can

abstain on points where its confidence is below a certain threshold. By abstaining from predicting

when in doubt, the main motivation is to reduce the error rate while keeping as many correct samples

as possible.

To select which sample to reject, a confidence-rate function κf is associated to the classifier f in

order to evaluate the degree of confidence of its predictions, the higher the value the more certain

the prediction. Uncertainty estimates are used here to assess this degree of confidence. Then, given a

threshold δ, an input x is rejected if its degree of confidence is lower than the threshold value,

g(x) =
{︄

1 if κf (x) ≥ δ ,

0 otherwise.
(2.27)

Ideally, uncertainty estimates should enable the selection function to split the test set in a subset

containing all errors and the other set containing all correct predictions.

The performance of a selective model is quantified using coverage and risk. Re-using the notations

introduced in Section 2.1.2, we also consider explicitly a test set Dtest composed of labeled samples

also following P (X,Y ). Coverage is defined to be the probability mass of the non-rejected region in

X , which can be approximated empirically by the number of non-rejected samples:

ϕ̂(g) = 1
|Dtest|

∑︂
(x,y)∈Dtest

g(x), (2.28)

where |Dtest| is the number of samples in the test set. The selective risk corresponds to the evaluation

of the loss ℓ on the non-rejected samples, which is commonly the 0/1 error with classification, divided

by coverage. Its empirical approximation writes as:

R̂(f, g) = 1
|Dtest|

∑︂
(x,y)∈Dtest

ℓ
(︁
f(x), y

)︁
g(x)

ϕ̂(g)
. (2.29)

Given test set Dtest, the task evaluation is based on risk-coverage curves such as shown in

Section 3.5.2. These curves are obtained by computing the empirical selective risk for various values

of coverage. The threshold δ depends on a user-specified cost for abstention. Consequently, to free

ourselves from choosing this threshold, we compare methods by computing the following metrics:

• AURC measures the Area Under the Risk-Coverage curve. This metric is threshold-independent.

The higher the AURC, the better the selective classifier.

• Excess-AURC (E-AURC). This is a normalized AURC metrics defined in [102]. It takes into

account the optimal ranking given the error rate of the classifier. More specifically, if we denote

κ∗
f the perfect confidence-rate function and r̂ the risk of classifier f , it writes as:

E-AURC(κf ) = AURC(κf ) − AURC(κ∗
f ) (2.30)

≈ AURC(κf ) −
(︁
R̂+ (1 − R̂) log(1 − R̂)

)︁
. (2.31)

24



2.3. EVALUATION OF THE QUALITY OF UNCERTAINTY ESTIMATES

With deep neural networks, we denote two types of approaches. The first one considers a trained

prediction model and constructs a selection mechanism [103]. Most of the time, the confidence-rate

function used is the value of MCP given by the softmax layer output. The second type of approaches

aims to jointly learn the classifier and the selection function [104]. In particular, Geifman & El-

Yaniv [105] train a DNN to optimize classification and rejection simultaneously. The reject function

corresponds to the output of a second head of the DNN.

2.3.2 Misclassification detection

Given a trained model, misclassification detection, also referred as failure prediction [106], is the

task of predicting at run-time whether the model has taken a correct decision or not for a given input.

Uncertainty estimates are used here as confidence score to compare to a threshold δ. We say that the

input x is estimated to be a correct prediction if its confidence score is above the threshold and to

be an error, otherwise. Consequently, misclassification detection boils down to a binary classification

task where instead of rejecting samples, we assign them a binary label:

g(x) =
{︄

1 if κf (x) ≥ δ ,

0 otherwise.
(2.32)

Such as for selective classification, the choice of the threshold impacts misclassification detection.

Given a threshold δ, the test set can be split into true positives (TP), false positives (FP), false

negative (FN) and true negatives (TN). From this confusion matrix, a common evaluation metrics is

to choose a threshold such that the True Positive Rate (TPR) is equal to 95% and then evaluate the

False Positive Rate (FPR):

FPR = FP

FP + TN
with TPR = TP

TP + FN
= 95%. (2.33)

Threshold-independent evaluation metrics include the Area Under the ROC curve (AUROC), where

the latter is a graphical plot showing the TPR and FPR against each other. It illustrates the ability of

a binary classifier as its discrimination threshold is varied and it can be interpreted as the probability

that a positive example has a greater detector score/value than a negative example. However, AUROC

may suffer from unbalanced dataset, for instance when there is a larger amount of good predictions

than wrong ones. In that case, AUROC will be close to 100% and the impact of wrongly ranking a

misclassification is mitigated [45].

Alternatively, the Area Under the Precision-Recall curve (AUPR) is based on the graph between

precision and recall:

precision = TP

TP + FP
and recall = TP

TP + FN
. (2.34)

AUPR is a metric that adjusts for different positive and negative base rates. As such, there is AUPR-

Success where good predictions are considered positive and AUPR-Error where misclassification are

now the positive class. In the second case, confidence scores are multiplied by −1.
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As we will see in Chapter 3, a widely-used baseline method with deep neural networks [45] is to

take the value of MCP given by the softmax layer output. A detailed review of proposed methods is

presented in Section 3.4.

While these evaluation metrics can be used to assess the misclassification detection performance

of a model, they cannot be used to directly compare performance across different models [55]. Correct

and incorrect predictions are specific for every model, therefore, every model induces its own binary

classification problem. The induced problems can differ significantly, since different models produce

different confidences and misclassify different objects.

2.3.3 Calibration

In a number of applications of machine learning, it is of increasing importance to know whether

the classifier output can be interpreted as actual probabilities. For instance, self-driving car with a

multi-modal prediction system needs its individual components to provide comparable probabilities.

Alternatively, in medical diagnosis, a ML system could request an additional analysis from human

doctors if its output probability of a disease diagnosis is too low [107].

Given the probability distribution p̂(x) = p(Y |x,θ) output by the model for a sample x, a

probabilistic classifier is calibrated if any predicted class probability is equal to the true class

probability according to the underlying data distribution [108]:

∀x ∈ X , P
[︁
Y | p̂(x)

]︁
= p̂(x). (2.35)

Any deviation from the perfect calibration is called miscalibration. A weaker condition [49] is to

consider only the probability, or confidence estimate κf , associated with the predicted class ŷ:

∀x ∈ X , P
[︁
Y = ŷ | κf (x)

]︁
= κf (x). (2.36)

For instance, given 100 predictions with a confidence κf (x) = 0.7, we expect that 70 samples should

be correctly classified if the classifier is perfectly calibrated according to Eq. (2.36).

Expected calibration error (ECE) [109] is a metric that estimates model miscalibration by splitting

the probability scores into M bins Bm and comparing them to average accuracies inside these bins:

ECE =
M∑︂

m=1

Bm

N
| acc(Bm) − conf(Bm) |, (2.37)

where

acc(Bm) = 1
|Bm|

∑︂
x∈Bm

δ(ŷ(x) − y(x)) and conf(Bm) = 1
|Bm|

∑︂
x∈B

κf (x).

But ECE metric suffers from certain shortcomings. Due to binning, it does not monotonically increase

as predictions approach ground truth (a biased estimator of the true calibration). Then, it only

estimates miscalibration in terms of the maximum probability and does not evaluate the first condition

in Eq. (2.35). Worse, a model may attain a perfect ECE score while being not accurate. For instance,

on a binary classification, a model always predicting the first class y = 1 with confidence κf (x) = 0.3
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may be perfectly calibrated on a dataset with 70% inputs of class 0 and 30% inputs of class 1, although
its accuracy is only 0.3.

Alternatively, Lakshminarayanan et al. [53] argues that models should be trained and evaluated

using a proper scoring rule to achieve good calibration. For instance, the Brier score measures the

squared error between the predictive probability of a label and one-hot encoding of the correct label:

BS = 1
|Dtest|

∑︂
(x,y)∈Dtest

(︂ 1
K

∑︂
k∈Y

[︁
p(Y = k | x,θ) − δ(y − k)

]︁2)︂
. (2.38)

Finally, a popular metric for measuring the quality of in-distribution uncertainty is to measure the

negative log-likelihood (NLL):

NLL = − 1
|Dtest|

∑︂
(x,y)∈Dtest

log p(y|x,D). (2.39)

In classification, NLL boils down to computing the cross-entropy loss on the test set. It directly

penalizes high probability scores assigned to incorrect labels and low probability scores assigned to

the correct labels.

Recent work [49] revealed that deep neural networks are poorly calibrated. Among recalibration

methods, a popular approach is to apply temperature scaling on models’ logit [49]. The temperature

parameter T is learned on a validation dataset Dval by minimizing the negative log-likelihood and

keeping model’s weight fixed:

min
T ∈R+

1
|Dval|

∑︂
(x,y)∈Dval

log
exp

(︁
fy(x,θ)/T

)︁∑︁
k∈Y exp

(︁
fk(x,θ)/T

)︁ . (2.40)

Even though temperature scaling improves calibration, it does not affect the ranking of the confidence

score between inputs. Consequently, temperature scaling is not effective to improve misclassification

detection or selective classification mentioned in the previous sections.

2.3.4 Out-of-distribution detection

Until now, we reviewed tasks that evaluate uncertainty estimation on test samples assumed to be

drawn i.i.d. from the same distribution than the training data. But as motivated in Chapter 1, in

many safety-critical applications, ML systems are deployed in an open-world scenario [110]. Inputs

can be subject to distributional shifts which are categorized either as covariate shifts maintaining

semantic consistency, such as a drawing of a dog when training data was only composed of natural

images, or semantic shifts where the label space Y is different from in-distribution data, such as input

from a new class.

In the ML literature, several fields attempt to address the issue of identifying the

unknowns/outliers/anomalies samples in the open-world setting. In their survey, Yang et al. [111]

provide an interesting unified framework of these subtopics, summarized in Fig. 2.9 reproduced from

their paper. In classification tasks, we can define five subcategories depending on the problem setting:
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Figure 2.9: Reproduction of the out-of-distribution framework proposed in [111]. Five detection tasks
are represented depending on their problem setting. Semantic anomaly detection, multi-class novelty
detection and open-set recognition are considered as subcategories of out-of-distribution detection.

1. Sensory anomaly detection: training data is composed of only one class and test data may

present non-semantic covariate shift, the goal is to detect these anomalies;

2. Semantic anomaly detection: training data is still composed of only one class and test data may

now present semantic shift, such as new classes, the goal is to detect these anomalies;

3. Multi-class novelty detection: training data is composed of C classes and test data may present

semantic shift, such as new classes, the goal is still to detect these anomalies;

4. Open-set recognition: training data is composed of C classes and test data may present semantic

shift, such as new classes, but now the goal is twofold: correctly classify in-distribution data while

detecting these anomalies;

5. Outlier detection: a transductive problem where all observations are provided, we do not consider

a train/test split anymore, and some samples can present any distributional shift, the goal is

still to detect these outliers, for instance to clean data.

Among these previous tasks, we commonly refer as out-of-distribution detection the sensory/semantic

anomaly detection and multi-class novelty detection.

Out-of-distribution (OOD) detection shares similarities with misclassification detection as they

both aim to detect errors or abnormal samples in a given test set. AUROC and AUPR metrics

where the positive class is composed of OOD samples are used to evaluate the capacity of a model

independently of a specific threshold to separate OOD samples from in-distribution samples according

to a confidence score.

With deep neural networks, post-processing logits with temperature scaling using a large

temperature T on a pre-trained model has been shown to be effective to reduce model’s over-confidence

on OOD samples [112]. At test time, the authors use the MCP as confidence score to detect OOD

samples after applying the temperature scaling. Also in the family of post-processing methods, Lee
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et al. [113] assumed that intermediate feature maps – in particular the penultimate before last

classification layer – of a trained deep neural network follow class-conditional Gaussian distributions

with a tied covariance matrix. They estimate its parameters on training data:

µ̂k = 1
Nk

N∑︂
n:yn=k

f(xn,θ) and Σ̂ = 1
N

∑︂
k∈Y

N∑︂
n:yn=k

(︁
f(xn,θ) − µ̂k

)︁(︁
f(xn,θ) − µ̂k

)︁T
, (2.41)

where Nk is the number of training samples with label k. Their confidence score correspond to

the maximum Mahalanobis distance between input x and the closest class-conditional Gaussian

distribution:

M(x) = max
k∈Y

−
(︁
f(x,θ) − µ̂k

)︁T Σ̂−1(︁
f(x,θ) − µ̂k

)︁
. (2.42)

These two previous methods also used adversarial perturbations to improve the separability of OOD

samples from in-distribution data. In contrast to the original literature on adversarial perturbation,

they use fast gradient sign method [114] (FGSM) to increase the probability of the model on the

predicted class (see Section 2.3.5). A limitation of these methods is that they need relevant OOD

samples to find the right hyper-parameters T and ε.

On the other hand, a range of methods assumed that a set of OOD samples may be available

during training. For instance, Hendrycks et al. [115] proposed to train a deep neural network to

simultaneously classify in-distribution samples and to produce high predictive entropy for samples

from a known large out-of-distribution dataset Dout:

LOE(θ,D,Dout) = E(x,y)∼D
[︁
log p(y|x,θ)

]︁
+ λEx∼Dout

[︁
H[p(·|x,θ)]

]︁
. (2.43)

While this method remains the best OOD detector so far, the assumption of available OOD data

during training may be unrealistic in many applications [116, 117]. In addition, we show in Chapter 5

that all these previous methods are brittle to the choice of the OOD dataset.

Along with Mahalanobis-based OOD detection, a set of density-based methods relying on

generative models attempt to model in-distribution data and to detect anomalous test data assuming

OOD samples have low likelihood. In the context of deep learning, a classic method is to use an

auto-encoder (AE) or a variational auto-encoder [118] (VAE) as generative model. However, Nalisnick

et al. [119] find that the density learned by flow-based models [120], VAEs [121] and PixelCNNs

[122] may assign a larger likelihood to OOD samples than in-distribution samples in some vision

benchmarks (CIFAR-10 vs. SVHN, FashionMNIST vs MNIST, CelebA vs. SVHN, ImageNet vs.

CIFAR-10). Finally, recent works [123, 124] explored using energy-based models (EBMs) for OOD

detection, due to their natural fit within a discriminative framework. EBMs are generative models that

use a scalar energy score to express probability density through unnormalized negative log probability

[125]. But their learning process can be computationally unstable as they requires approximations,

such as stochastic gradient Langevin dynamics [126] to estimate integrals.

2.3.5 Adversarial robustness

In contrast with anomalies, adversarial examples are inputs which are indistinguishable to the

human eye but confuse a neural network, resulting in a misclassification (see Fig. 2.10). Adversarial
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Figure 2.10: Example of an adversarial attack with FGSM in classification. An original input correctly
classified as a panda becomes a misclassified input when applying the adversarial perturbation. Worse,
its confidence score, here MCP, is arbitrarily high, wrongly indicating a confident prediction. Image
credits: Goodfellow et al. [114].

examples are crafted by applying small perturbations to the input and restricting the magnitude of

the attack to a value inferior to a bit of an 8-bit image encoding. In the original paper, the adversarial

attack used rely on the fast gradient sign method [114] (FGSM):

x̃ = x+ ε · sign∇xf(x,θ) (2.44)

Since, a profusion of different adversarial attacks has been proposed in the literature [127, 128, 129,

130].

In adversarial robustness, the goal of an adversarial defense mechanism is to improve robustness

of deep neural networks against adversarial attacks, i.e. reduce the gap between ‘clean’ accuracy on

original inputs and ‘adversarial‘ accuracy on adversarial examples. Multiple defense mechanisms have

been proposed over the years but they almost all end up being defeated by new adversarial attacks,

except for adversarial training [131] which remains correct under certain conditions. Consequently,

recent advances in adversarial robustness tend to construct certified defenses where neural networks

are provably robust against adversaries [132].

Recently, Tsipras et al. [133] showed the goal of adversarial robustness might fundamentally be

at odds with that of standard generalization. For instance, adversarial training improves adversarial

accuracy but also produce a slight decrease in original test accuracy. Instead of considering robustness

to adversarial attacks, a different line of work [134, 135] investigates detection of these adversarial

attacks. As with misclassification detection and OOD detection, the evaluation metric used are

threshold-independent metrics such AUROC and AUPR.
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2.4 Conclusion

Uncertainty estimation is a wide research area, ranging from theoretical perspectives with Bayesian

approaches to practical considerations with the detection of abnormal samples to avoid critical

failures. Uncertainty can arise due to the stochasticity of the latent data generative process

(aleatoric uncertainty) or due to the lack of knowledge of the model on an input (epistemic

uncertainty). While ‘ground-truth’ uncertainty estimates are usually not available, different tasks

aims at evaluating the capacity of the model to provide accurate uncertainty estimates. Selective

classification, misclassification detection and calibration evaluate in-distribution uncertainty, either

for rejecting/detecting errors or to ensure a classifier which outputs correct probabilities. Out-

of-distribution detection considers an open-world setting where distribution shifts and inputs from

unknown classes may occur. Finally, adversarial robustness is a particular task where inputs have

been corrupted to fool the classifier. In particular, one may see these adversarial examples as a

worst-case analysis of distribution shift [136].

In this thesis, we will start by addressing in-distribution uncertainty estimation by proposing

a learning confidence approach with auxiliary model to improve misclassification and selective

classification in Chapter 3. The task of selective classification is also useful for self-training methods

presented in Chapter 4. Finally, we tackle the challenge of jointly quantifying in-distribution and out-

of-distribution (OOD) uncertainties in Chapter 5 with an uncertainty measure which account both for

aleatoric and epistemic uncertainty.
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Chapter 3

Learning A Model’s Confidence via An
Auxiliary Model

Chapter Abstract

Reliably quantifying the confidence of deep neural classifiers is a challenging yet

fundamental requirement for deploying ML models in safety-critical applications. In this

chapter, we are interested in the problem of detecting in-distribution erroneous predictions

of deep neural networks in the context of classification. We introduce a novel target

criterion for a model’s confidence, namely the True Class Probability (TCP) and show

that TCP offers better properties for failure prediction than standard uncertainty measures.

Since the true class is by essence unknown at test time, we propose to learn the TCP

criterion from data with an auxiliary model, ConfidNet, introducing a specific learning

scheme adapted to this context. A major benefit of ConfidNet is to be a separate network

which can estimate the model confidence of any trained classifier. We evaluate our

approach on the task of failure prediction and selective classification and we validate that

the proposed approach provides accurate confidence estimates. We study various network

architectures and experiment with small and large datasets for image classification and

semantic segmentation. In every tested benchmark, our approach outperforms strong

baselines.

The work described in this chapter is based on the following publications:

• Charles Corbière, Nicolas Thome, Avner Bar-Hen, Matthieu Cord, Patrick Pérez.

“Addressing Failure Prediction by Learning Model Confidence”. In Advances in Neural

Information Processing Systems (NeurIPS), 2019.

• Charles Corbière, Nicolas Thome, Antoine Saporta, Tuan-Hung Vu, Matthieu Cord,

Patrick Pérez. “Confidence Estimation via Auxiliary Models”. In IEEE Transactions

on Pattern Analysis and Machine Intelligence, 2021.
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3.1 Context

Propagating an erroneous prediction of a machine learning system or over-estimating its confidence

may carry serious repercussions in critical visual-recognition applications such as in autonomous

driving, medical diagnosis [137] or nuclear power plant monitoring [138]. In classification, failure

prediction is the task of predicting at run-time whether a trained model has taken a correct decision

or not for a given input. By detecting an erroneous prediction, a system could decide to stick to the

prediction or, on the contrary, to hand it over to a human or a back-up system with, e.g. other sensors,

or simply to trigger an alarm. Closely related to failure prediction, classification with a reject option

[41], also known as selective classification [44], consists in a scenario where the classifier is given the

option to reject an instance instead of predicting its label. These two tasks refer to the same problem

of ordinal ranking, which aims to estimate confidence values whose ranking of samples is effective to

distinguish correct from incorrect predictions (see Fig. 3.1). Then, the user can specify a threshold so

that some inputs with predicted confidence is below it are considered as erroneous predictions.

In failure prediction, a widely used baseline with neural-network classifiers is to take the value of

the predicted class’ probability, namely the maximum class probability (MCP), given by the softmax

layer output. Although recent evaluations of MCP with modern deep models reveal reasonable

performance [45], they still suffer from several conceptual drawbacks. In particular, MCP leads by

design to high confidence values, even for erroneous predictions, since the largest softmax output is

used. This design tends to make erroneous and correct predictions overlap in terms of confidence and

thus limits the capacity to distinguish them. Another common uncertainty measure is the predictive
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Figure 3.1: Illustration of an effective confidence measure for ordinal ranking on in-distribution
samples. When ranking samples according to their confidence score, correct predictions (in green)
should have higher values on average than misclassifications (in red) to enable the model to distinguish
them.

entropy [139] which captures the average amount of information contained in the probability vector

output by the model. It is worth mentioning that these entropy-based criteria measure the softmax

output dispersion, where the uniform distribution has maximum entropy. But it is not clear how well

these dispersion measures are adapted to distinguishing failures from correct predictions. We elaborate

on these limits in Section 3.2.2.

In this chapter, we identify a better confidence criterion, the true class probability (TCP), for deep

neural network classifiers with a reject option (Section 3.2). We provide simple guarantees of the

quality of this criterion regarding confidence estimation. Since the true class is obviously unknown at

test time, we propose a novel approach, ConfidNet, which consists in designing an auxiliary network

specifically dedicated to estimate the confidence of a prediction (Section 3.3). Given a trained classifier

f , this auxiliary network learns the TCP criterion from data. When applied to failure prediction, we

observe significant improvements over strong baselines (Section 3.5.2). A thorough analysis of our

approach, including relevant variations, ablation studies and qualitative evaluations of confidence

estimates, helps to gain insight about its behavior in Section 3.5.3.

3.2 Defining a confidence measure for effective ordinal ranking

In this section, we first briefly introduce the task of classification with a reject option, along

with necessary notations. We also address semantic image segmentation, which can be seen as a
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pixel-wise classification problem, where a model outputs a dense segmentation mask with a predicted

class assigned to each pixel. As such, all the following material is formulated for classification, and

implementation details for segmentation are specified when necessary. We point out the limits of

current measures and present our effective confidence-rate function for neural-net classifiers.

3.2.1 Problem formulation

Following notations introduced in Chapter 2, we consider a training dataset D = {(xn, yn)}N
n=1

composed of N i.i.d. training samples, where xn ∈ X ⊂ RD is a D-dimensional data representation,

deep feature maps from an image or the image itself for instance, and yn ∈ Y = J1,KK is its true class
among the K predefined categories. These samples are drawn from an unknown joint distribution

P (X,Y ) over (X ,Y).

Definition 3.1 (Selective classifier). A selective classifier [44, 103] is a pair (f, g) where f : X → Y is

a prediction function and g : X → {0, 1} is a selection function which enables to reject a prediction:

(f, g)(x) =
{︄
f(x), if g(x) = 1 ,
reject, if g(x) = 0 .

(3.1)

We focus on classifiers based on artificial neural networks. Given an input x, such a network F with

parameters θ outputs non-negative scores over all classes, which are normalized through softmax. If

well trained, this output can be interpreted as the predictive distribution F (x; θ̂) = P (Y |x, θ̂) ∈ ∆K−1,

with ∆K−1 the probability (K-1)-simplex in RK and θ̂ the learned weights. Based on this distribution,

the predicted sample class is usually the maximum-a-posteriori estimate:

f(x) = argmax
k∈Y

P (Y = k|x, θ̂) = argmax
k∈Y

F (x; θ̂)[k]. (3.2)

We are not interested here in trying to improve the accuracy of the already-trained model F , but

rather in making its future use more reliable by endowing the system with the ability to recognize

when the prediction might be wrong.

To this end, a confidence-rate function κf : X → R+ is associated to f so as to assess the degree

of confidence of its predictions, the higher the value the more certain the prediction [44, 103]. A

suitable confidence-rate function should correlate erroneous predictions with low values and successful

predictions with high values. Finally, given a user-defined threshold δ ∈ R+, the selection function g

can be simply derived from the confidence rate:

g(x) =
{︄

1 if κf (x) ≥ δ ,

0 otherwise.
(3.3)

3.2.2 Limits of current uncertainty measures

For a given input x, a standard uncertainty measure for a classifier F is the probability associated

to the predicted max-score class, that is the maximum class probability :
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(a) Erroneous prediction, entropy = 0.79 (b) Correct prediction, entropy = 0.79

Figure 3.2: Illustrating the limits of predictive entropy as confidence estimation on the SVHN test
samples. Red-border image (Fig. 3.2a) is misclassified by the classification model; green-border image
(Fig. 3.2b) is correctly classified. Predictions exhibit similar high entropy in both cases. For each
sample, we provide a plot of their softmax predictive distribution.

Definition 3.2 (Maximum Class Probability). For a given input x and a classifier F , the Maximum

Class Probability (MCP) is defined as:

MCPF (x) = max
k∈Y

P (Y = k|x, θ̂) = max
k∈Y

F (x; θ̂)[k]. (3.4)

However, by taking the largest softmax probability as a confidence estimate, MCP leads to high

confidence values both for correct and erroneous predictions alike, making it hard to distinguish them,

as shown in Fig. 3.3a.

Taking the predictive entropy as uncertainty measure may not also be always adequate. In Fig. 3.2,

we show side-by-side two samples with a similar distribution entropy taken from a small convolutional

network trained on SVHN, a street-view numbers dataset [36]. Left image (red-border) is misclassified

while the right one enjoys a correct prediction (green-border). Predictions exhibit similar high entropy

in both cases. But as entropy is a symmetric measure in regards to class probabilities: a correct

prediction with [0.65, 0.35] distribution is evaluated as confident as an incorrect one with [0.35, 0.65]
distribution, which is undesirable for accurate failure prediction.

3.2.3 The True Class Probability

When the model misclassifies an example, the probability associated to the true class y is lower

than the maximum one and likely to be low. Based on this simple observation, we propose to consider

instead this true class probability as a suitable confidence-rate function.

Definition 3.3 (True Class Probability). Given a classifier F , for any admissible input x ∈ X we

assume the true class y(x) is known, which we denote y for simplicity. The True Class Probability

(TCP) is defined as

TCPF (x, y) = P (Y = y|x, θ̂) = F (x; θ̂)[y]. (3.5)
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(a) Maximum Class Probability (b) True Class Probability

Figure 3.3: Distributions of MCP and TCP confidence estimates computed over correct and erroneous
predictions by a trained VGG-16 model on CIFAR-10. When ranking according to MCP (a) the test
predictions of a convolutional model trained on CIFAR-10, we observe that correct ones (in green) and
misclassifications (in red) overlap considerably, making it difficult to distinguish them. On the other
hand, ranking samples according to TCP (b) alleviates this issue and allows a much better separation.

In Fig. 3.3, we can observe that TCP allows a much better separation than MCP. In particular,

TCP offers the following interesting guarantees regarding its ability to characterize correct or erroneous

predictions of a model.

Proposition 3.1. Given a properly labelled example (x, y), then:

• TCPF (x, y) > 1/2 ⇒ f(x) = y, i.e. the example is correctly classified by the model;

• TCPF (x, y) < 1/K ⇒ f(x) ̸= y, i.e. the example is wrongly classified by the model,

where class prediction f(x) is defined by Eq. (3.2).

Proof. Let F be a trained neural network classifier with learned weights θ̂, K be the number of labels

and x ∈ RD a sample with its associated true label y ∈ Y such that TCPF (x, y) > 1
2 . Starting from

the definition of TCP we have:

TCPF (x, y) = P (Y = y|x, θ̂) > 1
2 (3.6)

⇐⇒ 1 −
∑︂

k∈Y,k ̸=y

P (Y = k|x, θ̂) > 1
2 (3.7)

⇐⇒
∑︂

k∈Y,k ̸=y

P (Y = k|x, θ̂) < 1
2 . (3.8)

Since probabilities are positive, we obtain that ∀k ̸= y, P (Y = k|x, θ̂) < 1
2 < P (Y = y|x, θ̂). Denoting

ŷ = f(x) the class predicted by the network, we have ŷ = arg maxk∈Y P (Y = k|x, θ̂). Hence ŷ = y.
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In the same way, for any (x, y) ∈ RD × Y, such that TCPF (x, y) < 1
K , we have:

P (Y = y|x, θ̂) < 1
K

(3.9)

⇐⇒ 1 −
∑︂

k∈Y,k ̸=y

P (Y = k|x, θ̂) < 1
K

(3.10)

⇐⇒
∑︂

k∈Y,k ̸=y

P (Y = k|x, θ̂) > k − 1
K

. (3.11)

If the model correctly classifies this sample, i.e., ŷ = y, then ∀k ̸= y, P (Y = y|x, θ̂) ≥ P (Y = k|x, θ̂).
We have: ∑︂

K∈Y,K ̸=y

P (Y = k|x, θ̂) ≤ (K − 1)P (Y = y|x, θ̂) ≤ K − 1
K

, (3.12)

which contradicts Eq. (3.11). Hence, there exists at least one k such that P (Y = k|x, θ̂) > P (Y =
y|x, θ̂), which results in ŷ ̸= y.

Within the range [1/K, 1/2], there is no guarantee that correct and incorrect predictions will not

overlap in terms of TCP. However, when using deep neural networks, we observe that the actual overlap

area is extremely small in practice, as illustrated in Fig. 3.3b on the CIFAR-10 dataset. One possible

explanation comes from the fact that modern deep neural networks output overconfident predictions

and therefore non-calibrated probabilities (see Section 2.3.3). We provide consolidated analyses on

this aspect in Section 3.5 and further results on other datasets in Section A.2.

We also introduce a normalized variant of the TCP confidence criterion, which consists in

computing the ratio between TCP and MCP:

Definition 3.4 (Normalized True Class Probability). Given a classifier F , for any admissible input

x ∈ X we assume the true class y(x) is known, which we denote y for simplicity. The normalized

True Class Probability (nTCP) is defined as

nTCPF (x, y) = P (Y = y|x, θ̂)
P (Y = ŷ|x, θ̂)

. (3.13)

The normalized criterion nTCP presents stronger theoretical guarantees than TCP, since correct

predictions will be, by design, assigned the value of 1, whereas errors will range in [0, 1[. On the other

hand, learning this criterion may be more challenging since all correct predictions must match a single

scalar value.

3.3 ConfidNet: learning to predict TCP with an auxiliary model

Using TCP as a confidence-rate function on a model’s output would be of great help when it

comes to reliably estimate its confidence. However, the true classes y are obviously not available when

estimating confidence on test inputs.
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Figure 3.4: Learning confidence approach. The fixed classification network F , with parameters
θ = (θE ,θcls), is composed of a succession of convolutional and fully-connected layers (encoder E)
followed by last classification layers with softmax activation. The auxiliary confidence network C, with
parameters ω, builds upon the feature maps extracted by the encoder E, or its fine-tuned version E′

with parameters θE’: they are passed to ConfidNet, a trainable multi-layer module with parameters
φ. The auxiliary model outputs a confidence score C(x;ω) ∈ [0, 1], with ω = φ in absence of encoder
fine-tuning and ω = (θE′ ,φ) in case of fine-tuning.

3.3.1 Principle

We propose to learn TCP confidence from data. More formally, for the classification task at hand,

we consider a parametric selective classifier (f, g), with f based on an already-trained neural network

F . We aim at deriving its companion selection function g from a learned estimate of the TCP function

of F . To this end, we introduce an auxiliary model C, with parameters ω, that is intended to predict

TCPF and to act as a confidence-rate function for the selection function g. An overview of the proposed

approach is available in Fig. 3.4. This model is trained such that, at runtime, for an input x ∈ X with

(unknown) true label y, we have:

C(x;ω) ≈ TCPF (x, y). (3.14)

In practice, this auxiliary model C will be a neural network trained under full supervision on

D to produce this confidence estimate. To design this network, we can transfer knowledge from

the already-trained classification network. Throughout its training, F has indeed learned to extract

increasingly-complex features that are fed to its final classification layers. Calling E the encoder part

of F , a simple way to transfer knowledge consists in defining and training a multi-layer head with

parameters φ that regresses TCPF from features encoded by E. We call ConfidNet this module. As a

result of this design, the complete confidence network C is composed of a frozen encoder followed by

trained ConfidNet layers. The complete architecture can be later fine-tuned, including the encoder,

as in classic transfer learning. In that case, ω will encompass the parameters of both the encoder and

the ConfidNet’s layers.
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3.3.2 Architecture

Standard image classification models are composed of convolutional layers followed by one or more

fully-connected layers and a final softmax operation. In order to work with such a classification network

F , we build ConfidNet upon a late intermediate representation of F . ConfidNet is designed as a small

multilayer perceptron composed of a succession of dense layers with a final sigmoid activation that

outputs C(x;ω) ∈ [0, 1]. ConfidNet is train in a supervised manner, such that it predicts well the

true-class probability assigned by F to the input image. Regarding the capacity of ConfidNet, we have

empirically found that increasing further its depth leaves performance unchanged for estimating the

confidence of the classification network (see Section 3.5.3).

3.3.3 Loss function

As we want to regress a score between 0 and 1, we use a mean-square-error (MSE) loss to train

the confidence model:

Lconf(ω; D) = 1
N

N∑︂
n=1

(︁
C(xn;ω) − TCPF (xn, yn)

)︁2
. (3.15)

Since the final task here is the prediction of failures, with confidence prediction being only a means

toward it, a more explicit supervision with failure/success information could be considered. In that

case, the previous regression loss could still be used, with 0 (failure) and 1 (success) target values

instead of TCP. Alternatively, a binary cross entropy loss (BCE) for the error-prediction task using

the predicted confidence as a score could be used. Seeing failure detection as a ranking problem, where

good predictions must be ranked before erroneous ones according to the predicted confidence, a batch-

wise ranking loss can also be utilized [140]. We experimentally assessed all these alternative losses,

including a focal version [141] of the BCE to focus on hard examples, as discussed in Section 3.5.3.

They lead to inferior performance compared to using Eq. (3.15). This might be due to the fact that

TCP conveys more detailed information than a mere binary label on the quality of the classifier’s

prediction for a sample. Hinton et al. [142] make a similar observation when using soft targets in

knowledge distillation. In situations where only very few error samples are available, this finer-grained

information improves the performance of the final failure detection (see Section 3.5.3).

3.3.4 Learning scheme

We decompose the parameters of the classification network F into θ = (θE ,θcls), where θE denotes

its encoder’s weights and θcls the weights of its last classification layers. Such as in transfer learning, the

training of the confidence network C starts by fixing the shared encoder and training only ConfidNet’s

weights φ. In this phase, the loss Eq. (3.15) is thus minimized only w.r.t. ω = φ.

In a second phase, we further fine-tune the complete network C, including its encoder which is now

untied from the classification encoder E (the main classification model must remain unchanged, by

definition of the addressed problem). Denoting E′ this now independent encoder, and θE′ its weights,

this second training phase optimizes Eq. (3.15) w.r.t. ω = (θE′ ,φ) with θE′ initially set to θE .
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We also deactivate dropout layers in this last training phase and reduce learning rate to mitigate

stochastic effects that may lead the new encoder to deviate too much from the original one used for

classification. Data augmentation can thus still be used. ConfidNet can be trained using either the

original training set or a validation set. The impact of this choice is evaluated in Section 3.5.3.

3.4 Related work

Confidence estimation [43, 42] has a long history in the machine learning community, tightly related

to classification with a reject option [41]. The following works [143, 144, 104] explored alternative

rejection criteria. In particular, [104] proposes to jointly learn the classifier and the selection function.

El-Yaniv [44] provides an analysis of the risk-coverage trade-off that occurs when classifying with a

reject option. More recently, [103, 105] extend the approach to deep neural networks, considering

various confidence measures. Since the wide adoption of deep learning methods, confidence estimation

has raised even more interest as recent works [46, 48] reveal that modern neural networks tend to be

overconfident and provide unreliable uncertainty estimates.

Bayesian neural networks [79] offer a principled approach for confidence estimation by adopting

a Bayesian formalism which models the weight posterior distribution. As the true posterior cannot

be evaluated analytically in complex models, various approximations have been developed, such as

variational inference [85, 52, 40] or expectation propagation [81]. In particular, MC Dropout [40]

has raised a lot of interest due to the simplicity of its implementation. Predictions are obtained

by averaging softmax vectors from multiple feed-forward passes through the network with dropout

layers. When applied to regression, the predictive distribution uncertainty can be summarized by

computing statistics, e.g., variance. However, when using MC Dropout for uncertainty estimation

in classification tasks, the predictive distribution is averaged to a point-wise softmax estimate before

computing standard uncertainty criteria such as entropy. It is worth mentioning that these entropy-

based criteria measure the softmax output dispersion, where the uniform distribution has maximum

entropy. It is not clear how well these dispersion measures are adapted to distinguishing failures

from correct predictions as we will see in Section 3.2.2. [62] presented a framework to decompose the

uncertainty into aleatoric and epistemic terms. But it requires multiple forward passes for inference.

Lakshminarayanan et al. [53] propose an alternative to Bayesian neural networks by leveraging an

ensemble of neural networks to produce well-calibrated uncertainty estimates. However, it requires

training multiple classifiers, which has a considerable computing cost in training and inference time.

In failure prediction, a widely used baseline is to take the value of the predicted class’ probability

given by the softmax layer output, namely the maximum class probability (MCP), suggested by [145]

and revised by [45]. As stated before, MCP presents several limits regarding both failure prediction

and out-of-distribution detection, as it outputs unduly high confidence values. More recently, [146]

proposed a new confidence measure, ‘Trust Score’, which measures the agreement between the classifier

and a modified nearest-neighbor classifier on the test examples. More precisely, the confidence criterion

used in Trust Score is the ratio between the distance from the sample to the nearest class different

from the predicted class and the distance to the predicted class. One clear drawback of this approach
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is its lack of scalability, since computing nearest neighbors in large datasets is extremely costly in both

computations and memory. Another more fundamental limitation related to the Trust Score itself is

that local distance computation becomes less meaningful in high dimensional spaces [147], which is

likely to negatively affect the performances of this method as shown in experiments. Finally, DeVries

& Taylor [148] share with us the same purpose of learning confidence in neural networks. Their work

differs by focusing on out-of-distribution detection and learning jointly a distribution confidence score

and classification probabilities. In addition, they use predicted confidence scores to interpolate output

probabilities and target whereas we specifically craft our proposed criterion for failure prediction.

Figure 3.5: Distribution of MCP after
temperature scaling for a VGG-16 on

CIFAR-100.

In tasks closely related to failure prediction, Guo

et al. [49], for confidence calibration, and Liang et

al. [112], for out-of-distribution detection, proposed to

use temperature scaling to mitigate confidence values.

However, this does not affect the ranking of confidence

scores and therefore the separability between errors and

correct predictions. For instance, we plot in Fig. 3.5

the distribution of MCP confidence estimates after

temperature scaling ith a VGG-16 model on CIFAR-

10. The temperature parameter T has been found using

validation data, such as described in [49]. Even though

overconfidence is reduced, the separability between

errors and correct predictions still remains problematic.

3.5 Application to failure prediction

We evaluate our approach to predict failures in both classification and segmentation settings.

First, we run comparative experiments against strong confidence estimation and Bayesian uncertainty

estimation methods on various datasets. These results are then completed by a thorough analysis of

the influence of the confidence criterion, the training loss and the learning scheme in our approach.

Finally, we provide a few visualizations to get additional insight into the behavior of our approach.

Our code is available at https://github.com/valeoai/ConfidNet.

3.5.1 Experiment setup

Datasets. We run experiments on image datasets of varying scale and complexity: MNIST [149]

and SVHN [36] datasets provide relatively simple and small (28 × 28) images of digits (10 classes).

They are split into 60,000 training samples and 10,000 testing samples. CIFAR-10 and CIFAR-100

[35] bring more complexity to classify low resolution images. In each dataset, we further keep 10%

of training samples as a validation dataset. We also report experiments for semantic segmentation

on CamVid [150], using ConfidNet’s training and architecture introduced in Section 3.3.2, with dense

layers replaced by 1 × 1 convolutions with an adequate number of channels. CamVid is a standard
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road scene dataset. Images are resized to 360 × 480 pixels and are segmented according to 11 classes

such as ‘road’, ‘building’, ‘car’ or ‘pedestrian’.

Classification network. For each dataset, we use standard neural network architectures as classifiers.

Network architectures range from small convolutional networks for MNIST [149] and SVHN [36] to

VGG-16 architectures [74] for CIFAR datasets [35]. We also added a multi-layer perceptron (MLP)

with 1 hidden layer of size 100 for MNIST dataset in order to investigate performances on small

models. Finally, we implemented SegNet following [47]. All models are trained in a standard way

with a cross-entropy loss and an SGD optimizer with a learning rate of 10−3, a momentum of 0.9 and

a weight decay of 10−4. The number of training epochs depends on the dataset considered, varying

from 100 epochs on MNIST to 250 epochs on CIFAR-100. As we also want to compute Monte Carlo

samples following [40], we include dropout layers. Best models are selected on validation-set accuracy.

Baselines. To demonstrate the effectiveness of our method, we implemented competitive confidence

and uncertainty estimation approaches including Maximum Class Probability (MCP) as a baseline

[45], Trust Score [151], and Monte-Carlo Dropout (MC Dropout) [40]. For Trust Score, we used

the code provided by the authors1. With MC Dropout, we use the same model as baseline (which

already includes dropout layers) and we sample 100 times from the classification model at test time

keeping dropout layers activated. We then compute the average softmax probability over all samples

to conduct Monte Carlo integration. Model uncertainty is estimated by calculating the entropy of the

averaged probability vector across the class dimension.

Evaluation metrics We measure the quality of failure prediction following standard metrics used in

the literature [45]. We enumerate these metrics in the following and refer the reader to Section 2.3 for

a more detail description:

• FPR at 95% TPR measures the False Positive Rate (FPR) when the True Positive Rate (TPR) is

equal to 95%. True Positive Rate can be computed by TPR = TP/(TP+FN), where TP and FN
denote numbers of true positives and false negatives respectively. The False Positive Rate can

be computed by FPR = FP/(FP + TN), where FP and TN denote the number of false positives

and true negatives respectively. This metric can be interpreted as the probability that an

error is misclassified as a correct prediction when the True Positive Rate (TPR) is as high as 95%.

• AUROC measures the Area Under the Receiver Operating Characteristic curve (AUROC).

The ROC curve is a graph showing True Positive Rate versus False Positive Rate. This

metric is a threshold-independent performance evaluation, such as AUPR. It can be interpreted

as the probability that a positive example has a greater prediction score than a negative example.

1https://github.com/google/TrustScore
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• AUPR measures the Area Under the Precision-Recall (PR) curve. The PR curve is a graph

showing precision = TP/(TP + FP) versus recall = TP/(TP + FN). As we specifically want to

detect failures, we use AUPR-Error (shortened here AUPR) as the primary metrics to assess

performances.

As an additional, indirect way to assess the quality of the predicted classifier’s confidence, we also

consider the selective classification problem that was discussed in Section 2.3.1. In this setup, the

predictions by the classifier F that get a predicted confidence below a defined threshold are rejected.

Given a coverage rate (the fraction of examples that are not rejected), the performance of the classifier

should improve. The impact of this selection is measured in average with:

• Area under the risk-coverage curve (AURC). In classification with a reject option, the risk-

coverage curve is the graph of the empirical risk of the classifier given a loss (usually 0/1 loss) as

a function of the empirical coverage, which is the proportion of the non-rejected samples. This

metric is threshold-independent, as AUROC and AUPR.

• Excess-AURC (E-AURC). This is a normalized AURC metric defined in [102]. It takes into

account the optimal ranking given the error rate of the classifier.

ConfidNet. For each of the considered classification models, ConfidNet is built upon the penultimate

layer, which is a convolutional layer with non-linear activation and optionally followed by a

normalization layer. We train ConfidNet for 100 epochs with the Adam optimizer with a learning

rate 1 × 10−4, dropout, weight decay 10−4 and the same data augmentation as in the classifier’s

training. The relevance of selecting the same training dataset used for classifier learning or a hold-out

dataset is specifically discussed in Section 3.5.3. We select the best model based on the AUPR on the

validation dataset. In the second training step involving encoder fine-tuning, the training is completed

on very few epochs based on previous best model, using Adam optimizer with learning rate 1 × 10−6

or 1 × 10−7 and no dropout to mitigate stochastic effects that may lead the new encoder to deviate

too much from the original one used for classification. Once again, the best model is selected on

validation-set AUPR.

3.5.2 Comparative results

Comparative results are summarized in Table 3.1. We observe that our approach outperforms

baseline methods in every setting, with a significant gap on small models/datasets. This confirms both

that TCP is an adequate confidence criterion for failure prediction and that our approach ConfidNet

is able to learn it. TrustScore also presents good results on small datasets/models such as MNIST

where it improved the baseline. While ConfidNet still performs well on more complex datasets, Trust

Score’s performance drops, which might be explained by high dimensionality issues with distances as

mentioned in Section 3.5.1. For its application to semantic segmentation where each training pixel is a

‘neighbor’, computational complexity forced us to reduce drastically the number of training neighbors

and of test samples. We sampled randomly in each train and test image a small percentage of pixels
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Table 3.1: Comparison of confidence estimation methods for failure prediction and selective
classification. For each dataset, all methods share the same classification network. For MC Dropout,
test accuracy is averaged through random sampling. The first three metrics are percentages and
concern failure prediction. The two last ones (the lower, the better) concern selective classification
and their values have been multiplied by 103 for clarity. Scores are averaged over 5 runs, best results
are in bold, second best ones are underlined.

Dataset Model FPR@95%TPR ↓ AUPR ↑ AUROC ↑ AURC ↓ E-AURC ↓

MNIST
MLP

MCP [45] 14.88 ±1.42 47.25 ±1.67 97.28 ±0.20 0.83 ±0.07 0.61 ±0.06
MC Dropout [40] 15.17 ±1.08 40.98 ±1.24 97.10 ±0.18 0.85 ±0.07 0.63 ±0.06
TrustScore [151] 14.80 ±2.03 52.13 ±1.79 97.36 ±0.10 0.82 ±0.04 0.59 ±0.03
ConfidNet 11.61 ±1.96 59.72 ±1.90 97.89 ±0.14 0.70 ±0.05 0.47 ±0.04

MNIST
SmallConvNet

MCP [45] 5.53 ±1.25 36.08 ±3.60 98.49 ±0.07 0.15 ±0.01 0.12 ±0.01
MC Dropout [40] 5.03 ±0.72 42.12 ±5.52 98.53 ±0.12 0.16 ±0.01 0.12 ±0.01
TrustScore [151] 9.60 ±2.69 33.47 ±3.82 98.20 ±0.23 0.18 ±0.03 0.15 ±0.02
ConfidNet 5.32 ±1.14 45.45 ±3.75 98.72 ±0.07 0.13 ±0.02 0.10 ±0.01

SVHN
SmallConvNet

MCP [45] 32.17 ±0.91 46.20 ±0.50 92.93 ±0.13 5.58 ±0.14 4.50 ±0.09
MC Dropout [40] 33.54 ±1.06 45.15 ±1.29 92.84 ±0.08 5.70 ±0.11 4.61 ±0.09
TrustScore [151] 34.01 ±1.11 44.77 ±1.30 92.65 ±0.29 5.72 ±0.11 4.64 ±0.12
ConfidNet 29.90 ±0.76 48.64 ±1.08 93.15 ±0.15 5.51 ±0.09 4.43 ±0.08

CIFAR-10
VGG16

MCP [45] 49.19 ±1.42 48.37 ±0.69 91.18 ±0.32 12.66 ±0.61 8.71 ±0.50
MC Dropout [40] 49.67 ±2.66 48.08 ±0.99 90.70 ±1.96 13.31 ±2.63 9.46 ±2.41
TrustScore [151] 54.37 ±1.96 41.80 ±1.97 87.87 ±0.41 17.97 ±0.45 14.02 ±0.34
ConfidNet 45.08 ±1.58 53.72 ±0.55 92.05 ±0.34 11.78 ±0.58 7.88 ±0.44

CIFAR-100
VGG16

MCP [45] 66.55 ±1.56 71.30 ±0.41 85.85 ±0.14 113.23 ±2.98 51.93 ±1.20
MC Dropout [40] 63.25 ±0.66 71.88 ±0.72 86.71 ±0.30 101.41 ±3.45 46.45 ±1.91
TrustScore [151] 71.90 ±0.93 66.77 ±0.52 84.41 ±0.15 119.41 ±2.94 58.10 ±1.09
ConfidNet 62.70 ±1.04 73.55 ±0.57 87.17 ±0.21 108.46 ±2.62 47.15 ±0.95

CamVid
SegNet

MCP [45] 63.87 ±0.76 48.53 ±0.34 84.42 ±0.09
MCDropout [40] 62.95 ±0.72 49.35 ±0.30 84.58 ±0.08
TrustScore [151] 20.42 ±1.02 68.33 ±1.17
ConfidNet 61.52 ±0.67 50.51 ±0.26 85.02 ±0.08

to compute TrustScore. ConfidNet, in contrast, is as fast as the original segmentation network. We

also improve state-of-art performances at the time of publication from MCDropout, whose drawbacks

regarding failure prediction have been highlighted previously in Fig. 3.2.

Risk-coverage curves [44, 103] depicting the performance of ConfidNet and other baselines for every

tested dataset appear in Fig. 3.6. ‘Coverage’ corresponds to the probability mass of the non-rejected

region after using a threshold as a selection function [103]. For both datasets, ConfidNet presents a

better coverage potential for each selective risk that a user can choose beforehand. In addition, we can

see that the improvement is more pronounced at high coverage rates - e.g. in [0.8, 0.95] for CIFAR-10

(Fig. 3.6d) and in [0.86, 0.96] for SVHN (Fig. 3.6c) - which highlights the capacity of ConfidNet to

identify successfully critical failures.
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(a) MLP on MNIST (b) Small ConvNet on MNIST

(c) Small ConvNet on SVN (d) VGG-16 on CIFAR-10

(e) VGG-16 on CIFAR-100

Figure 3.6: Comparison of risk-coverage curves for various uncertainty measures on respective test
sets. ‘Selective risk’ (y-axis) represents the percentage of errors in the remaining test set for a given
coverage percentage.
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3.5.3 Effect of learning variants

Confidence loss function. In Table 3.2, we compare training ConfidNet with the MSE loss (Eq. (3.15))

to training with a binary-classification cross-entropy loss (BCE), a focal BCE loss [141] and a batch-

wise approximate ranking loss. Even though BCE specifically addresses the failure prediction task, it

achieves lower performances on CIFAR-10 datasets. Similarly, the focal loss and the ranking one yield

results below TCP’s performance in every tested benchmark. Similar results on SVHN and CamVid

dataset are available in Section A.1. Our intuition is that TCP regularizes the training by providing

finer-grained information about the quality of the classifier’s predictions. This is especially important

in the difficult learning configuration where only very few error samples are available due to the good

performance of the classifier.

Table 3.2: Effect of loss function with ConfidNet on CIFAR-10. Results are percentages (%).

Dataset Loss FPR@95%TPR ↓ AUPR ↑ AUROC ↑

CIFAR-10
VGG-16

BCE 45.20 47.95 91.94
Focal 45.20 47.76 91.93
Ranking 46.99 44.04 91.49
nTCP 45.02 48.78 92.06
TCP 44.94 49.94 92.12

We also evaluate the impact of regression to the normalized criterion nTCP: performance is lower

than the one of TCP on small datasets such as CIFAR-10 where few errors are present, but can

be higher on larger datasets such as CamVid where each pixel is a sample (see Table A.1). This

emphasizes once again the complexity of incorrect/correct classification training.

Hold-out dataset for training ConfidNet. Most neural networks used in our experiments tend to

overfit. On small datasets such as MNIST and SVHN, convolutional neural networks already achieve

nearly perfect accuracy on test set, above 96%, which leaves very few errors available. For this reason,

we also experimented with training ConfidNet on a hold-out dataset. We report results on all datasets

in Table 3.3 for validation sets with 10% of samples. We observe a general performance drop when

using a validation set for training TCP confidence. The drop is especially pronounced for small datasets

(MNIST), where models reach >97% train and val accuracies. Consequently, with a high accuracy

and a small validation set, we do not get a larger absolute number of errors using the validation

set compared to the train set. One solution would be to increase validation set size but this would

damage the model’s prediction performance. By contrast, we take care with our approach to base our

confidence estimation on models with levels of test predictive performance that are similar to those

of baselines. On CIFAR-100, the gap between train accuracy and validation accuracy is substantial

(95.56% vs. 65.96%), which may explain the slight improvement for confidence estimation using the

validation set (+0.17%). We think that training ConfidNet on the validation set with models reporting

low/middle test accuracies could improve the approach.
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Table 3.3: Ablation study between training ConfidNet on train set or on validation set. Comparison
in AUPR (the higher, the better) on all benchmarks. Results are percentages (%).

MNIST MNIST SVHN CIFAR-10 CIFAR-100 CamVid
MLP SmallConvNet SmallConvNet VGG-16 VGG-16 SegNet

ConfidNet (using train set) 57.34 43.94 50.72 49.94 73.68 50.28
ConfidNet (using val set) 33.41 34.22 47.96 48.93 73.85 50.15

Table 3.4: Impact of the encoder fine-tuning on the error-prediction performance of ConfidNet.
Comparison in AUPR (the higher, the better) on all benchmarks. Results are percentages (%).

MNIST MNIST SVHN CIFAR-10 CIFAR-100 CamVid
MLP SmallConvNet SmallConvNet VGG-16 VGG-16 SegNet

Confidence training 58.42 44.54 48.49 50.18 71.30 50.12
+ Fine-tuning ConvNet 59.72 45.45 48.64 53.72 73.55 50.51

ConfidNet’s encoder fine-tuning. We analyse in Table 3.4 the effect of the encoder fine-tuning.

Learning only ConfidNet on top of the pre-trained encoder E (that is, ω = φ), our confidence network

already achieves significant improvements w.r.t. the baselines. With a subsequent fine-tuning of both

modules (that is, ω = (θE′ ,φ)), its performance is further boosted in every setting, by around 1-2%.

Note that using a vanilla fine-tuning without the deactivation of the dropout layers did not bring any

improvement.

ConfidNet’s architecture We experiment different architectures for ConfidNet on the SVHN dataset,

varying the number of layers. Except for the first and last layers, whose dimensions respectively

depend on the size of the input and of the output, each layer presents the same number of units (400).

In Fig. 3.7, we observe that starting from 3 layers, ConfidNet already improves baseline performance.

Figure 3.7: Influence of ConfidNet’s depth on its performance. Performance in AUPR as a function of
the number of layers used in ConfidNet on SVHN test set and compared to the performance of MCP
and True Score baselines.
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3.5.4 Comparison with a two-fold ensemble

As ConfidNet with fine-tuning induces an increased capacity of the whole model by using a complete

auxiliary network in conjunction with the original one, one might hypothesize that this contributes

to its superior performance. To investigate this question, we compare its performance with the MCP

metric taken from an ensemble of two neural networks. Comparative results for each dataset are

presented in Table 3.5. At equal computational cost, ConfidNet outperforms an ensemble of two

neural networks in every setting.

Table 3.5: Equal-capacity comparisons. Comparison between ConfidNet trained on 1 neural network
(1NN) and the MCP metric taken from the average prediction of an ensemble of two neural networks
(2NNs). Results are percentages (%).

MNIST MNIST SVHN CIFAR-10 CIFAR-100
MLP SmallConvNet SmallConvNet VGG-16 VGG-16

Method AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC

MCP-1NN 47.30 97.22 37.87 98.54 46.17 92.92 47.88 91.45 71.39 85.76
MCP-2NNs 43.70 97.25 43.16 98.70 46.35 92.98 48.81 92.26 70.52 86.38
ConfidNet-1NN 60.17 97.90 47.81 98.75 48.67 93.17 54.00 92.39 73.30 87.00

3.5.5 Effect on calibration

Table 3.6: Comparative calibration results. Performance in ECE (the lower, the better) when using
MCP baseline (‘Baseline’) or ConfidNet as confidence estimator on the six benchmarks, and when
using dedicated temperature scaling (‘T. Scaling’). Results are percentages (%)

MNIST MNIST SVHN CIFAR-10 CIFAR-100 CamVid
MLP SmallConvNet SmallConvNet VGG-16 VGG-16 SegNet

Baseline 0.37 0.20 0.50 4.48 22.37 9.65
ConfidNet 0.66 0.30 1.11 3.45 15.61 7.57
Baseline + T. Scaling 0.20 0.69 1.30 2.88 5.16 4.77

We observed that ConfidNet tends to lower the confidence of an example that the model wrongly

classified while being over-confident (high MCP). As a side experiment, we study whether using

ConfidNet as confidence estimation can improve the calibration of deep neural networks.

In Table 3.6, we report the expected calibration error (ECE) which is an approximate measure of

miscalibration between confidence and accuracy [49]. ConfidNet yields equivalent or better ECE results

than the MCP baseline, with clear superiority on complex datasets such as CIFAR-10, CIFAR-100

and CamVid. On MNIST and SVHN, the baseline already offers a small ECE. These results confirm

our intuition about the capacity of ConfidNet to address over-confident predictions, even though it

has not been designed for. Nevertheless, dedicated methods such as temperature scaling used in [49]

remain preferred for calibrating deep neural networks. Reliability diagrams in Fig. 3.8 illustrates this

result with a VGG-16 architecture trained on CIFAR-100.
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(a) MCP (b) ConfidNet (c) Temperature Scaling

Figure 3.8: Reliability diagrams for a VGG-16 model on CIFAR-100. Even though ConfidNet
improves calibration over MCP, it remains less effective than dedicated methods for calibration, such
as temperature scaling.

3.5.6 Visualisations and failure cases

We provide an illustration on CamVid (Fig. 3.9) to better understand our approach for failure

prediction. Compared to MCP baseline, our approach produces higher confidence scores for correct

pixel predictions and lower ones on erroneously predicted pixels, which allows a user to better detect

error area in semantic segmentation.

In Fig. 3.10, we present some failures of ConfidNet on the SVHN dataset. On these selected

samples, the classifier outputs an erroneous prediction with high MCP, but Confidnet fails to predict

the low TCP values, hence to identify these misclassifications. We can observe that these samples

are hard to classify, due to low image quality and confusing shapes. For instance, the classifier has

assigned Fig. 3.10a to a 9 while the correct label was 3. In this example, even though ConfidNet

output remains high (0.74), it manages at least to be significantly lower than the original MCP value

(0.93).
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(a) Input image (b) Ground truth map (c) Prediction map

(d) Model errors (e) ConfidNet (f) MCP

Figure 3.9: Visualization of inverse confidence (uncertainty) map for ConfidNet (Fig. 3.9e) and MCP
(Fig. 3.9f) on one CamVid scene. The top row shows the input image (Fig. 3.9a) with its ground-truth
(Fig. 3.9b) and the semantic segmentation mask (Fig. 3.9c) predicted by the original classification
model. The error map associated with the predicted segmentation is shown in (Fig. 3.9d), with
erroneous predictions flagged in white. ConfidNet (55.53% AP-Error) allows a better prediction of
these errors than MCP (54.69% AP-Error).

(a) MCP = 0.93 ,
ConfidNet = 0.74,

TCP = 0.06

(b) MCP = 0.94 ,
ConfidNet = 0.78,

TCP = 0.06

(c) MCP = 0.89 ,
ConfidNet = 0.90,

TCP = 0.11

(d) MCP = 0.82 ,
ConfidNet = 0.91,

TCP = 0.17

(e) MCP = 0.90 ,
ConfidNet = 0.94,

TCP = 0.10

Figure 3.10: Failure cases of ConfidNet. On these misclassified digits from SVHN’s test images,
ConfidNet fails to regress the corresponding TCP values, hence to predict the low confidence that
should be assigned to the classifier’s decisions.
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3.6 Conclusion

In this chapter, we defined a new confidence criterion, TCP, which enjoys simple guarantees and

empirical evidence of improving the confidence estimation for classifiers with a reject option. We

proposed a specific method to learn this criterion with an auxiliary neural network built upon the

encoder of the model that is monitored. Applied to failure prediction, this learning scheme consists

in training the auxiliary network and then enabling the fine-tuning of its encoder (the one of the

monitored classifier remains frozen). In each image classification experiment, we were able to improve

the capacity of the model to distinguish correct from erroneous samples and to achieve better selective

classification. Besides failure prediction, other applications can benefit from this improved confidence

estimation. In the next chapter, we propose a new application of our learned confidence approach

related to the task of unsupervised domain adaptation for semantic segmentation using self-training.
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Chapter 4

Self-Training with Learned Confidence for
Domain Adaptation

Chapter Abstract

Semantic segmentation is a key component for scene understanding with application in self-

driving cars and robotics. But collecting and manually annotating urban street scenes with

dense pixel-level labels is extremely costly due to the large amount of human effort required.

On the other hand, recent advances in computer graphics make it possible to train models

on photo-realistic synthetic images with computer-generated annotations. Unsupervised

domain adaptation (UDA) aims at learning only from source supervision a well-performing

model on target-domain samples.

Self-training has recently proven a potent strategy to improve the effectiveness of UDA in

semantic segmentation. This line of work mostly relies on the generation of pseudo-labels

over the unannotated target domain to incorporate target-domain images and learn a better

segmentation adaptation model. A crucial issue in this context is to base the pseudo-label

selection on reliable confidence measures.

In this chapter, we propose to adapt our learning confidence approach with an auxiliary

model to estimate the confidence of the segmentation network in its predictions and to use

these confidence estimates as a criterion for pseudo-label extraction. We further enforce

confidence distribution alignment between source and target domains using adversarial

training, and we equip the architecture of the confidence network with multi-scale prediction

suitable for semantic segmentation. We show that this strategy produces more accurate

pseudo-labels and outperforms strong state-of-the-art baselines at the time of publication

on three challenging UDA segmentation benchmarks.

The work described in this chapter is based on the following publication:

• Charles Corbière, Nicolas Thome, Antoine Saporta, Tuan-Hung Vu, Matthieu Cord,

Patrick Pérez. “Confidence Estimation via Auxiliary Models”. In IEEE Transactions

on Pattern Analysis and Machine Intelligence, 2021.
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4.1 Context

Perception systems in autonomous cars require in-depth understanding of scenes in which they

operate. For this reason, semantic segmentation modules are often incorporated to obtain class-

label predictions for every scene pixel. While recent advances in deep convolutional networks

have significantly improved segmentation performance, their efficacy depends on large quantities of

accurately labeled training data. But the labeling process usually requires experts’ efforts and the

annotation cost limits the operational domains of such systems. On the other hand, a lot of driving

scenes data are synthesized by game engines such as GTA5 [152]. Consequently, recent works try to

leverage this cheap alternative supervision by training models on these image sources and predicting on

real images. But direct transfer is not effective as we observe a drop in performance when evaluating

on real images, due to a ‘domain gap‘.

Unsupervised Domain Adaptation (UDA) is the field of research that aims at reducing this domain

gap between source and target domains. In the UDA context, annotated source samples along with

some unlabeled target images are available at train time. Most works in this line of research aim

at minimizing the distribution discrepancy between the source domain and the target domain, at the

feature [153] or prediction level [154, 155], potentially combined with translation methods transforming

source images to match the target domain ‘style’ [156]. Recently, self-training [38, 157, 158] proved

its ability to boost adaptation performance significantly. The rationale behind these approaches is

to label automatically the most confident target pixels according to current network prediction and

to retrain the network accordingly. While this idea is appealing, the presence of noisy or incorrect

pseudo-labels could be detrimental to the training of the neural network. As an example, using a ratio

of 70% of pseudo-labels in [38] leads to a performance of around 48% mIoU, which is better than 34%
with direct transfer (only trained on source domain), but still largely below 63% obtained with the

same amount of ground-truth labels. Therefore, defining good measures of confidence to select reliable

predictions is of crucial importance towards the development of error-free self-training.
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To improve self-training efficiency, we propose to adapt our learning confidence approach developed

in the previous chapter for the particular context of unsupervised domain adaptation for semantic

segmentation. Using an auxiliary model, we select a pool of pixels with high confidence scores to

perform the pseudo-labeling (Section 4.3.1). We propose ConDA, a new deep framework for UDA

semantic segmentation with self-training. ConDA leverages the general idea of ConfidNet, but includes

the following adaptations specifically designed for UDA:

• an adversarial training scheme to prevent drifts in confidence distribution between source and

target domains (Section 4.3.2);

• an ‘atrous’ pyramidal pooling architecture for the confidence network to perform multi-scale

confidence estimation (Section 4.3.3).

In Section 4.4, we empirically demonstrate that ConDA brings systematic improvements in

performance over self-training based on the standard Maximum Class Probability (MCP), with

experiments on various challenging UDA benchmarks with synthetic source datasets and real target

datasets and using multiple UDA semantic segmentation methods [38, 155, 159], some of them

including multiple modalities (e.g. depth [159]).

4.2 Unsupervised domain adaptation

Formally, let us consider the annotated source-domain training set Ds = {(xs,n,ys,n)}Ns
n=1, where

xs,n is a color image of size (H,W ) and ys,n ∈ YH×W its associated ground-truth segmentation map.

A segmentation network F with parameters θ takes as input an image x and returns a predicted

soft-segmentation map F (x;θ) = Pθx ∈ [0, 1]H×W ×K , where Pθx[h,w, :] = P (Y [h,w] |x;θ) ∈ ∆K−1,

with ∆K−1 the probability (K-1)-simplex. The final prediction of the network is the segmentation

map f(x) defined pixel-wise as f(x)[h,w] = argmaxk∈Y Pθx[h,w, k]. This network is learned over the

source domain samples (xs,ys) using the cross-entropy segmentation loss:

Lseg(xs,ys) = −
H∑︂

h=1

W∑︂
w=1

logP (h,w,k∗)
xs

, (4.1)

which is minimized over the parameters θF of the network and where k∗ is the ground-truth

segmentation class for pixel (h,w)1.

In UDA, the main challenge is to use the unlabeled target set Dt = {xt,n}Nt
n=1 available during

training to learn domain-invariant features on which the segmentation model would behave similarly

in both domains. Common strategies to perform this task are to minimize the maximum mean

discrepancy (MMD) [160], to align the second-order statistics of the distributions (CORAL) [161] or

to adopt an adversarial training approach to produce indistinguishable source-target distributions

in feature space [153] or output space [154]. For the semantic segmentation task, most recent

progresses have been found around the latter. To cite a few methods: CyCADA [156] first stylizes

1We omit the location dependence (h, w) on k∗ for conciseness.
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Target
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Pseudo-labels

ST-improved 
Target
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(4) Repeat (2) 

(3) UDA
Training
with ST

Figure 4.1: Self-training (ST) for UDA. A segmentation model is first learned with UDA and used
to collect pseudo-labels on target domain images. These automatically annotated data are used to
subsequently retrain the model, an operation that can be iterated.

the source images as target-domain images before aligning source and target in the feature space;

AdaptSegNet [154] constructs a multi-level adversarial network to perform domain adaptation at

different feature levels; AdvEnt [155] aligns the entropy of the pixel-wise predictions with an adversarial

loss; BDL [38] learns alternatively an image translation model and a segmentation model that promote

each other; DISE [162] disentangles images into domain-invariant structure and domain-specific texture

representations, enabling image translation across domains and label transfer to improve segmentation

performance.

In the following, we denote LF as the objective function of the classifier F , regardless of the method

used for UDA. For instance, with adversarial training methods, we would write LF = Lseg+Ladv where

Ladv is the adversarial term in the objective function.

Self-training Within semi-supervised learning literature [37, 163], self-training with pseudo-labeling

showed to be a simple but effective strategy that relies on picking up the current predictions on the

unlabeled data and using them as if they were true labels for further training. It is shown in [37]

that the effect of pseudo-labeling is equivalent to entropy regularization [163]. In a UDA setting, the

idea is to collect pseudo-labels on the unlabeled target-domain samples in order to have an additional

supervision loss in the target domain. To select only reliable pseudo-labels, such that the performance

of the adapted semantic segmentation network effectively improves, BDL [38] resorts to standard

selection with MCP. ESL [164] uses instead the entropy of the prediction as confidence criterion

for its pseudo-label selection. CBST [158] proposes an iterative self-training procedure where the

pseudo-labels are generated based on a loss minimization. In [158], the authors also propose a way

to balance the classes in their pseudo-labels to avoid the dominance of large classes as well as a way

to introduce spatial priors. More recently, the CRST framework [157] proposes multiple types of

confidence regularization to limit the propagation of errors caused by noisy pseudo-labels.

By attaching pseudo-labels ŷt to the target-domain images xt, the objective function of F with

self-training can be written:

L∗
F = LF + λST

|Dt|
∑︂
xt∈Dt

Lseg(xt, ŷt), (4.2)
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Figure 4.2: Proposed self-training with learned confidence. Instead of relying only on the segmentation
model to generate pseudo-label maps for target images, we propose to use a confidence model
specifically trained to this end. This model outputs a reliable confidence map which helps to improve
the quality of the final pseudo-label map.

with a weight λST to balance the self-training term.

Self-training in UDA leverages the domain alignment that has already been achieved by the UDA

strategy, assuming that the predictions of the current segmentation network F on target domain are

relatively accurate. A high-level view of self-training for semantic segmentation with UDA is described

in Fig. 4.1:

1. Train a segmentation network for the target domain using a chosen UDA technique;

2. Collect pseudo-labels among the predictions that this network makes on the target-domain

training images;

3. Train a new semantic-segmentation network from scratch using the chosen UDA technique in

combination with supervised training on target-domain data with pseudo-labels;

4. Possibly, repeat from step 2 by collecting better pseudo-labels after each iteration.

While the general idea of self-training is simple and intuitive, collecting good pseudo-labels is quite

tricky. If too many of them correspond to erroneous predictions of the current segmentation network,

the performance of the whole UDA can deteriorate. Thus, a measure of confidence should be used in

order to only gather reliable predictions as pseudo-labels and to reject the others.

4.3 ConDA: Confidence learning in domain adaptation

Leveraging automatic pseudo-labeling of target-domain training examples is in particular a simple,

yet powerful way to further improve UDA performance with self-training. One key ingredient of such
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Figure 4.3: Overview of proposed confidence learning for domain adaptation (ConDA) in semantic
segmentation. Given images in source and target domains, we pass them to the encoder part of the
segmentation network F to obtain their feature maps. This network F is fixed during this phase
and its weights are not updated. The confidence maps are obtained by feeding these feature maps
to the trainable head of the confidence network C, which includes a multi-scale ConfidNet module.
For source-domain images, a regression loss Lconf (Eq. (4.4)) is computed to minimize the distance
between Cωxs

and the fixed true-class-probability map TCPF (xs,ys). An adversarial training scheme –
based on discriminator’s loss LD(ψ) (Eq. (4.6)) and adversarial part Ladv(ω) of confidence net’s loss
(Eq. (4.8)) –, is also added to enforce the consistency between the Cωxs

’s and Cωxt
’s. Dashed arrows

stand for paths that are used only at train time.

an approach being the selection of the most promising pseudo-labels, the proposed auxiliary confidence-

prediction model lends itself particularly well to this task. In this section, we detail how the proposed

approach to confidence prediction can be adapted to semantic segmentation, with application to

domain adaptation through self-training.

4.3.1 Selecting pseudo-labels with a confidence model

Following the self-training framework previously described, a confidence network C is learned at

step (2) to predict the confidence of the UDA-trained semantic segmentation network F and used to

select only trustworthy pseudo-labels on target-domain images as illustrated in Fig. 4.2.

To this end, the framework proposed in Section 3.3 in an image classification setup, and applied

to predicting erroneous image classification, needs here to be adapted to the structured output of

semantic segmentation, which can be seen as a pixel-wise classification problem. Given a target-

domain image xt, we want to predict both its soft semantic map F (xt;θ) and, using an auxiliary
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model with trainable parameters ω, its confidence map:

C(xt;ω) = Cωxt
∈ [0, 1]H×W . (4.3)

Given a pixel (h,w), if its confidence Cωxt
[h,w] is above a chosen threshold δ, we label it with its

predicted class f(xt)[h,w] = argmaxk∈Y Pθxt
[h,w, k], otherwise it is masked out. Computed over all

images in Dt, these incomplete segmentation maps constitute target pseudo-labels that are used to train

a new semantic-segmentation network. Optionally, we may repeat from step (2) and learn alternately

a confidence model to collect pseudo-labels and a segmentation network using this self-training.

4.3.2 Confidence training with adversarial loss

To train the confidence network C, we propose to jointly optimize two objectives. Following the

approach proposed in Section 3.3, the first one supervises the confidence prediction on annotated

source-domain examples using the known true class probabilities for the predictions from F . Specific

to semantic segmentation with UDA, the second one is an adversarial loss that aims at reducing the

domain gap between source and target. A complete overview of the approach is provided in Fig. 4.3.

Confidence loss. The first objective is a pixel-wise version of the confidence loss Eq. (3.15). On

annotated source-domain images, it requires the confidence network C to predict at each pixel the

score assigned by the classifier F to the (known) true class:

Lconf(ω; Ds) = 1
Ns

Ns∑︂
n=1

⃦⃦
Cωxs,n

− TCPF (xs,n,ys,n)
⃦⃦2
F
, (4.4)

where ∥ · ∥F denotes the Frobenius norm and, for an image x with true segmentation map y and

predicted soft one-hot F (x; θ̂), we note

TCPF (x,y)[h,w] = F (x; θ̂)
[︂
h,w,y[h,w]

]︂
(4.5)

at location (h,w). On a new input image, C should predict at each pixel the score that F will assign

to the unknown true class, which will serve as a confidence measure.

However, compared to the application in the previous chapter, we have here the additional problem

of the gap between source and target domains, an issue that might affect the training of the confidence

model as in the training of the segmentation model.

Adversarial loss. The second objective concerns the domain gap. While the confidence network C

learns to estimate TCP on source-domain images, its confidence estimation on target-domain images

may suffer dramatically from this domain shift. As classically done in UDA, we propose an adversarial

learning of our auxiliary model in order to address this problem. More precisely, we want the confidence

maps produced by C in the source domain to resemble those obtained in the target domain.
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A discriminator D : [0, 1]H×W → {0, 1}, with parameters ψ, is trained concurrently with C with

the aim to recognize the domain (1 for source, 0 for target) of an image given its confidence map. The

following loss is minimized w.r.t. ψ:

LD(ψ; Ds ∪ Dt) = 1
Ns

Ns∑︂
n=1

Ladv(xs,n, 1) + 1
Nt

Nt∑︂
n=1

Ladv(xt,n, 0), (4.6)

where Ladv denotes the cross-entropy loss of the discriminator based on confidence maps:

Ladv(x, λ) = −λ log
(︁
D(Cωx ;ψ)

)︁
− (1 − λ) log(1 −D

(︁
Cωx ;ψ)

)︁
, (4.7)

for λ ∈ {0, 1}, which is a function of both ψ and ω. In alternation with the training of the discriminator

using Eq. (4.6), the adversarial training of the confidence net is conducted by minimizing, w.r.t. ω,

the following loss:

LC(ω; Ds ∪ Dt) = Lconf(ω; Ds) + λadv
Nt

Nt∑︂
n=1

Ladv(xt, 1), (4.8)

where the second term, weighted by λadv > 0, encourages C to produce maps in the target domain

that will confuse the discriminator.

This proposed adversarial confidence learning scheme also acts as a regularizer during training,

improving robustness of the unknown TCP target confidence. As the training of the confidence model

may actually be unstable, adversarial training provides additional information signal, in particular

imposing that confidence estimation should be invariant to domain shifts. We empirically observe that

this adversarial confidence learning provides better confidence estimates and improves convergence and

stability of the training scheme.

4.3.3 Multi-scale ConfidNet architecture

In semantic segmentation, models consist of fully convolutional networks where hidden

representations are 2D feature maps. This is in contrast with the architecture of classification models

considered in Chapter 3. Consequently, we replace fully-connected layers in the ConfidNet module by

1×1 convolutional layers with the adequate number of channels.

In many segmentation datasets, the existence of objects at multiple scales may complicate

confidence estimation. As in recent works dealing with varying object sizes [7], we further improve

our confidence network C by adding a multi-scale architecture based on spatial pyramid pooling. It

consists of a computationally efficient scheme to re-sample a feature map at different scales, and then

to aggregate the confidence maps. We illustrate the multi-scale architecture for a confidence network

in Fig. 4.4.

From a feature map, we apply parallel atrous convolutional layers with 3×3 kernel size and different

sampling rates, each of them followed by a series of 4 standard convolutional layers with 3×3 kernel

size. In contrast with convolutional layers with large kernels, atrous convolution layers enlarge the field

of view of filters and help to incorporate a larger context without increasing the number of parameters

and the computation time. Resulting features are then summed before upsampling to the original
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Figure 4.4: Multi-scale architecture for confidence learning. Four atrous convolutional layers are
applied to a feature map in parallel, each of them is followed by a series of four standard convolutional
layers. Confidence maps are obtained by summing the resulting features and upsampling to original
image size.

image size of H × W . We apply a final sigmoid activation to output a confidence map with values

between 0 and 1.

The whole architecture of the confidence model C is represented in the orange block of Fig. 4.3,

along with its training given a fixed segmentation model F (blue block) with which it shares the

encoder. Such as in the previous section, fine-tuning the encoder within C is also possible, although

we did not explore the option in this semantic segmentation context due to the excessive memory

overhead it implies.

4.4 Experiments

In this section, we analyse on several semantic segmentation benchmarks the performance

of ConDA, our approach to domain adaptation with confidence-based self-training. We report

comparisons with state-of-the-art methods at the time of publication on each benchmark at the time

of publication. We also analyse further the quality of ConDA’s pseudo-labelling and demonstrate via

an ablation study the importance of each of its components.

4.4.1 Experimental setup

Datasets As in many domain adaptation works for semantic segmentation, we consider the specific

task of adapting from synthetic to real data in urban scenes. We experiment with two synthetic
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source datasets – SYNTHIA [165] and GTA5 [152] – and two real target datasets – Cityscapes [77]

and Mapillary Vistas [14]. More specifically, we use the SYNTHIA-RAND-CITYSCAPES split for

SYNTHIA [165], composed of 9,400 color images generated in a simulator, of dimension 1280 × 760
and annotated for semantic segmentation with 16 classes in common with Cityscapes [77]. As for

GTA5 [152], the dataset is composed of 24,966 images extracted from the eponymous game, of

dimension 1914 × 1052, with semantic segmentation annotation with 19 classes in common with

Cityscapes [77]. On the other hand, Cityscapes [77] is a dataset of real street-level images. It is

split in a training set, a validation set and a test set. For domain adaptation, we use the training set

as the target dataset during training. It is composed of 2,975 images of dimension 2048 × 1024. Since
the ground-truth segmentation maps are missing from the testing dataset, we exploit the validation set

composed of 500 images for testing purposes. We also validate the approach on Mapillary Vistas [14],

another dataset of street-level images. As Cityscapes [77], it is split in a train set, a validation set and

a test set, and the ground-truth maps are missing from the testing dataset. For domain adaptation,

we use the 18,000 images from the training set as target and the 2,000 images from the validation set

for testing. On Mapillary Vistas [14] experiments, we consider 7 ‘super classes’ that include the 19

and 16 classes used in Cityscapes [77] experiments with GTA5 [152] and SYNTHIA [165], respectively.

All results are reported in terms of the mean intersection over union (mIoU) metric. The higher this

percentage, the better.

Network architectures. We evaluate the proposed self-training method on three state-of-the-art

domain adaptation architectures at the time of publication. They all are based on DeepLabV2 [7], a

standard semantic segmentation network. The domain alignment modules are nevertheless different:

• AdaptSegNet [154] performs adversarial domain adaptation on the output of the semantic

segmentation network to align directly the segmentation maps between source and target

domains.

• AdvEnt [155] proposes another adversarial learning framework for domain adaptation: instead

of the softmax output prediction, AdvEnt aligns the entropy of the pixel-wise predictions.

• DADA [159] uses depth information on source images as privileged information during

segmentation training.

Implementation details The semantic segmentation models are initialized with backbones pretrained

on ImageNet [4]. The segmentation network is optimized by Stochastic Gradient Descent with learning

rate 2.5 × 10−4, momentum 0.9 and weight decay 10−4. As for the discriminator, it is optimized

by Adam [73] with learning rate 10−4. The hyperparameters λadv and λST are fixed at 10−3 and 1,
respectively. For each baseline model, we start our self-training procedure from the pre-trained weights

given on the author’s GitHub2. In some experiments, we use translated source images into the target

domain. Those translated images are pre-computed using a CycleGAN [166], as provided by [38].

2https://github.com/valeoai/ADVENT, https://github.com/liyunsheng13/BDL
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(a) GTA5 (b) SYNTHIA

(c) Cityscapes (d) Mapillary Vistas

Figure 4.5: Images sample from datasets used in UDA experiments. Synthetic datasets used as source
domains are GTA5-dataset (a) and SYNTHIA (b); real datasets used as target domains are Cityscapes
(c) and Mapillary Vistas (d).

Regarding confidence training, we use the same training dataset than in segmentation training. As in

Chapter 3, hyperparameters are chosen based on validation-set AUPR.

4.4.2 ConDA vs. MCP self-training

We compare the adaptation results using MCP to collect pseudo-labels and using ConDA

instead, on two different methods: AdaptSegNet [154] and AdvEnt [155]. Results are available in

Table 4.1. On GTA5 ▷Cityscapes benchmark, we can see that, for both method, ConDA improves

over MCP in self-training framework for domain adaptation by adding respectively +1.0 point mIoU

improvement on AdaptSegNet and +0.9 point mIoU improvement on AdvEnt, which is our best

result on this benchmark. We also compare the best adaptation method (Advent) on two other

datasets: as shown in Table 4.1, we observe a systematic improvement over MCP: +0.5 point mIoU

on SYNTHIA ▷Cityscapes and +1.3 point mIoU on ‘SYNTHIA ▷Mapillary’. Finally, we also extend

to methods dealing with multiple modalities (e.g. depth) such as DADA [159] and we observe similarly

that ConDA outperforms MCP by +1.1 point. These results demonstrate the relevance of our method

by selecting better pseudo-labels to improve adaptation, regardless of the segmentation method or the
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Table 4.1: Comparison on mIoU of MCP-based vs. ConDA-based self-training over multiple
architectures and benchmarks. For DADA* architecture, segmentation models are trained using depth
as privileged information.

GTA5 ▷Cityscapes SYNTHIA ▷Cityscapes SYNTHIA ▷Mapillary
Self-Training AdaptSegNet AdvEnt AdvEnt AdvEnt DADA*

MCP 48.3 49.0 45.5 65.1 70.9
ConDA 49.3 49.9 46.0 66.4 72.0

UDA segmentation benchmark used.

4.4.3 Comparison with UDA baselines

In this section, ConDA results correspond to applying our self-training approach on AdvEnt domain

adaptation method.

GTA5 ▷Cityscapes. Results for semantic segmentation on the Cityscapes validation set using GTA5

as source domain are available in Table 4.2 in the following page. We first notice that self-training

based methods from the literature improved performance on this benchmark up to 48.5% mIoU with

BDL [38]. ConDA outperforms all those methods on this framework by reaching 49.9% mIoU. Note

also that combining AdvEnt with MCP self-training already achieved 49.0% mIoU.

SYNTHIA ▷Cityscapes. We extend experiments by using another source domain dataset. We report

in a consistent way adaptation results for the task ‘SYNTHIA ▷Cityscapes’ in Table 4.3. Following

relevant literature on this dataset, mIoU results for 16 categories and for 13 categories are available.

Again, ConDA achieves state-of-the-art performance on this benchmark at the time of publication

with 46.0% mIoU .

SYNTHIA ▷Mapillary. Along with results on Cityscapes, we further study domain adaptation

on another target dataset, namely Mapillary Vistas. Table 4.4 presents semantic segmentation

performance using SYNTHIA as source dataset. This benchmark has also been used in other recent

works, such as in AdvEnt [155] and DADA [159]. ConDA outperforms the baseline method with

66.4% mIoU compared to 65.2% mIoU in AdvEnt. When using depth from SYNTHIA as privileged

information such as in DADA, proposed method (ConDA*) further increases performance from 67.6%
mIoU to 72.0% mIoU.
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Table 4.4: Comparison in mIoU for SYNTHIA ▷Mapillary experiments. DADA* and ConDA* are
trained using depth as privileged information.

SYNTHIA ▷Mapillary

Method S
el
f-
T
ra
in
.

fl
a
t

co
n
st
r.

o
b
je
ct

n
a
tu
re

sk
y

h
u
m
a
n

ve
h
ic
le

mIoU

AdvEnt [155] 86.9 58.8 30.5 74.1 85.1 48.3 72.5 65.2
ESL [164] ✓ 88.4 55.7 32.0 75.4 84.3 43.5 76.2 65.4
ConDA (Ours) ✓ 89.1 63.5 28.3 72.7 88.2 49.7 73.0 66.4

DADA* [159] 86.7 62.1 34.9 75.9 88.6 51.1 73.8 67.6
ConDA* (Ours) ✓ 87.8 67.5 40.5 76.8 92.3 60.7 78.5 72.0

4.4.4 Ablation study

To study the effect of the adversarial training and of the multi-scale confidence architecture on the

confidence model, we perform an ablation study on the GTA5 ▷Cityscapes benchmark. The results

on domain adaptation after re-training the segmentation network using collected pseudo-labels are

reported in Table 4.5. In this table, “ConfidNet” refers to the simple network architecture defined

in Section 3.3 (adapted to segmentation by replacing the fully connected layers by 1×1 convolutions

of suitable width); “Adv. ConfidNet” denotes the same architecture but with the adversarial loss

from Section 4.3.2 added to its learning scheme; “Multi-scale ConfidNet” stands for the architecture

introduced in Section 4.3.3; Finally, the full method,“ConDA”amounts to having both this architecture

and the adversarial loss. We notice that adding the adversarial learning achieves significantly better

performance, for both ConfidNet and multi-scale ConfidNet, with respectively +1.4 and +0.8 point

increase. Multi-scale ConfidNet (resp. adv. multi-Scale ConfidNet) also improves performance up

to +0.9 point (resp. +0.3) from their ConfidNet architecture counterpart. These results stress the

importance of both components of the proposed confidence model.

Model Multi-Scale. Adv mIoU

ConfidNet 47.6
Multi-Scale ConfidNet ✓ 48.5
Adv. ConfidNet ✓ 49.0
ConDA (Adv. Multi-scale ConfidNet) ✓ ✓ 49.9

Table 4.5: Ablation study on semantic segmentation with pseudo-labelling-based adaptation. Full-
fledged ConDA approach is compared on GTA5 ▷Cityscapes to stripped-down variants (with/without
multi-scale architecture in ConfidNet, with/without adversarial learning).
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4.4.5 Quality of pseudo-labels

We analyze the effectiveness of MCP and ConDA as confidence measures to select relevant pseudo-

labels in the target domain. For a given fraction of retained pseudo-labels (coverage) on target-domain

training images, we compare in Fig. 4.6 the precision of each method. Here, precision means the

ratio between the number of correct predictions and the total number of collected pseudo-labels, i.e.

accuracy. We vary the coverage between 70% and 90%3.

Figure 4.6: Comparative quality of selected pseudo-labels. Proportion of correct pseudo-labels
(precision) for different coverages on GTA5 ▷Cityscapes, for MCP and ConDA.

ConDA outperforms MCP for all coverage levels, meaning it selects significantly fewer erroneous

predictions for the next round of segmentation-model training. Along with the segmentation

adaptation improvements presented earlier, these coverage results demonstrate that reducing the

amount of noise in the pseudo-labels is key to learning a better segmentation adaptation model.

Fig. 4.7 presents qualitative results of those pseudo-labels methods. We find again that MCP and

ConDA seem to select around the same amount of correct predictions in their pseudo-labels, but with

ConDA picking out a lot fewer erroneous ones.

Computational Cost. Composed of only four atrous convolutional layers in parallel, our multi-scale

confidence network remains light. When collecting pseudo-labels, the overhead cost induced by our

method is minor when estimating confidence, only adding roughly 10% time increase compared to

MCP. In our setting, a forward pass using ConDA takes 43ms on average. Note that segmentation

3For instance, in our previous experiment with AdvEnt on ‘GTA5 ▷Cityscapes’, 80.5% pixels were kept using MCP
and 82.0% using ConDA.
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Figure 4.7: Qualitative result of pseudo-label selection for semantic-segmentation adaptation. The
three first panels present a target-domain image of the GTA5 ▷Cityscapes benchmark (a) along with
its ground-truth segmentation maps (b) and the predicted map before self-training (c). The error
map associated with the predicted segmentation is shown in (d), with erroneous predictions flagged
in white. We compare pseudo-labels collected with MCP (e) and with ConDA (f). Green (resp. red)
pixels are correct (resp. erroneous) predictions selected by the method and black pixels are discarded
predictions. ConDA retains fewer errors while preserving approximately the same amount of correct
predictions.

training and inference are not changed, which makes ConDA suitable for real-time purposes.

4.5 Conclusion

In this chapter, we show that applied to self-training with pseudo-labels, using an auxiliary

model dedicated to estimate the confidence of predictions help to better select relevant pixels

for pseudo-labeling. Our learning approach brings systematic improvements in performance

over self-training based on the standard MCP. We reach state-of-the-art results at the time

of publication on three synthetic-to-real unsupervised-domain-adaptation benchmarks (GTA5 ▷

Cityscapes, SYNTHIA ▷Cityscapes and SYNTHIA ▷Mapillary Vistas). To achieve these results,

we equipped the auxiliary model with a multi-scale confidence architecture and supplemented the

confidence loss with an adversarial training scheme to enforce alignment between confidence maps in

source and target domains. In particular, a clear benefit of our learning approach is to be compatible

with any models which use domain adaptation, without adding substantial overhead cost (only 10%

time increase compared to MCP in our experiments).

Thus far, we focused on detecting errors to reject them or to alternatively select only correct

predictions. However, in the wild, a ML system may also encounter data that is unlike its training

data. In addition to in-distribution errors, we will also consider the detection of out-of-distribution

samples in the next chapter to be robust to any kind of hazardous predictions.
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Chapter 5

Simultaneous Detection of Misclassifications
and Out-of-Distribution Samples with
Evidential Models

Chapter Abstract

A safe deployment of ML systems should include an accurate monitoring of errors but

also unusual inputs where predicting might be hazardous. In this chapter, we address

the task of jointly detecting errors and anomalies in classification tasks. Evidential

models are a Bayesian approach which provides a sampling-free way of deriving second-

order uncertainty measures on the simplex, i.e. measures on the distribution over

probabilities, that estimate different sources of uncertainty. In this chapter, we leverage

the second-order representation provided by evidential models and we introduce KLoS, a

Kullback–Leibler divergence criterion defined on the class-probability simplex. By keeping

the full distributional information, KLoS captures in-distribution and out-of-distribution

(OOD) uncertainties in a single score. A crucial property of KLoS is to be a class-wise

divergence measure built from in-distribution samples and to not require OOD training data,

in contrast to current uncertainty measure used with evidential models. We further design

an auxiliary neural network, KLoSNet, to learn a refined criterion directly aligned with

the evidential training objective. In the realistic context where no OOD data is available

during training, our experiments show that KLoSNet outperforms every other uncertainty

measures to simultaneously detect misclassifications and OOD samples. When training

with OOD samples, we also observe that existing measures are brittle to the choice of the

OOD dataset, whereas KLoS remains more robust.

The work described in this chapter is based on the following publication:

• Charles Corbière, Marc Lafon, Nicolas Thome, Matthieu Cord, Patrick Pérez.

“Beyond First-Order Estimation with Evidential Models for Open-World Recognition”.

ICML 2021 Workshop on Uncertainty and Robustness in Deep Learning.
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5.1 Context

Machine learning models commonly rely on the closed-set assumption that source and target data

are independent and identically distributed (i.i.d.). Yet in practice, distribution shifts arise naturally

in many real-world scenarios. For instance, self-driving cars struggle to perform well under conditions

different to those of training, such as variations in weather [167], light [168], and object poses [169].

Worse, models can be exposed to inputs from unseen classes which they will attempt to predict anyway.

These failures may remain unnoticed as they do not result in explicit errors in the model.

While previous works address separately misclassification detection and OOD detection, we argue

it is necessary for a recognition system to be able to identify both in-distribution misclassifications and

unknown/unseen inputs at test time for a safe deployment in open-world settings [110]. We illustrate

this task in Fig. 5.1. In particular, we find in Section 5.5 that all previous approaches do not perform

equally well on both detection tasks, which mitigates their ability on the joint detection task.

To address the task of simultaneous detection of misclassifications and OOD samples, an

uncertainty measure should discriminate between correct predictions and erroneous predictions for

in-distribution samples while increasing for inputs far from distribution. Consequently, it should

capture both aleatoric and epistemic uncertainty. Bayesian approaches [40, 52] and ensembles [53, 54]

are principled methods which induce a more accurate estimation of epistemic uncertainty. These

techniques produce a probability density over the predictive categorical distribution p(y|x,D) obtained
from sampling as shown in Chapter 2 (top row of Fig. 2.7). But this comes at the expense of an

increased computational cost.

A recent class of models, coined evidential [57, 56], proposes instead to explicitly learn the

concentration parameters of a Dirichlet distribution over probabilities. Based on the subjective logic

framework [96], evidential models enrich uncertainty representation with evidence information and

enable a model to represent different sources of uncertainty (bottom row of Fig. 2.7). Conflicting
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Figure 5.1: Simultaneous detection of misclassifications and OOD samples. When ranking samples
according to their confidence value, correct predictions (in green) should have higher scores on average
than misclassifications (in red) and OOD samples (in blue) to enable the model to distinguish them.

evidence, e.g., noise or class confusion, is characterized by the expectation of the second-order Dirichlet

distribution while the distribution spread on the simplex expresses the amount of evidence in a

prediction [101]. These sources of uncertainty correspond respectively to aleatoric uncertainty and

epistemic uncertainty in the machine learning literature [135]. Evidential models have been shown to

improve generalisation [170], OOD detection [171] and adversarial attack detection [135].

In this chapter, we leverage the second-order uncertainty representation that evidential models

provide and we introduce KLoS, a measure that accounts for both in-distribution and out-of-

distribution sources of uncertainty and that is effective even without having access to auxiliary

OOD data at train time. KLoS computes the Kullback–Leibler (KL) divergence between the

model’s predicted Dirichlet distribution and a specifically designed class-wise prototype Dirichlet

distribution. Prototype distributions are designed with concentration parameters shared with in-

distribution training data, which enables a model to detect OOD samples without assuming any

restrictive behavior, e.g., having low precision α0. KLoS naturally reflects the training objective used

in evidential models and we propose to learn an auxiliary model, named KLoSNet, to regress the

values of a refined objective for training samples and to improve uncertainty estimation. To assess the

quality of uncertainty estimates in open-world recognition, we design the new task of simultaneous

detection of misclassifications and OOD samples. Extensive experiments show the benefits of KLoSNet

on various image datasets and model architectures. In presence of OOD training data, we also found

that our proposed measure is more robust to the choice of OOD samples while previous measures may

perform poorly. Finally, we show that KLoS can be successfully combined with ensembling to improve

performance.
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5.2 Evidential neural networks

In this section, we partially remind the reader the framework of evidential models introduced in

Chapter 2 and focus on the derivation of the training objective to put in perspective the link with

our proposed uncertainty measure afterwards. The training dataset D consists of N i.i.d. samples

(x, y) drawn from an unknown joint distribution P (X,Y ). We denote π = (π1, · · · , πK) the random

variable over categorical probabilities, where
∑︁K

k=1 πk = 1, and which lives on the (K-1)-dimensional

simplex △K−1.

Evidential Neural Networks (ENNs) propose to model explicitly the posterior distribution over

categorical probabilities p(π|x, y) by a variational Dirichlet distribution,

qθ(π|x)=Dir
(︁
π|α(x,θ)

)︁
= Γ(α0(x,θ))∏︁K

k=1 Γ(αk(x,θ))

K∏︂
k=1

π
αk(x,θ)−1
k , (5.1)

whose concentration parameters α(x,θ) = exp f(x,θ) are output by a neural network f with

parameters θ; Γ is the Gamma function and α0(x,θ) =
∑︁K

k=1 αk(x,θ) with αk = exp fk(x,θ) indexing
the kth element of the vector of all K concentration parameters α. Precision α0 controls the sharpness

of the density with more mass concentrating around the mean as α0 grows. By conjugate property,

the predictive distribution for a new point x∗ is

P (Y = k | x∗,D) ≈ Eqθ(π|x∗)[πk] = exp fk(x∗,θ)∑︁K
j=1 exp fj(x∗,θ)

, (5.2)

which is the usual output of a network f with softmax activation.

The concentration parameters α can be interpreted as pseudo-counts representing the amount of

evidence in each class. For instance, in Fig. 5.2a, the α’s output by the ENN indicate that the image

is almost equally likely to be classified as wolf or as dog. More interestingly, it also distinguishes these

in-distribution images from the OOD sample in Fig. 5.2b via the total amount of evidence α0.

Training Objective The ENN training is formulated as a variational approximation to minimize the

KL divergence between the distribution qθ(π|x) and the true posterior distribution p(π|x, y):

Lvar(θ; D) = E(x,y)∼P (X,Y )
[︁
KL

(︁
qθ(π|x) ∥ p(π|x, y)

)︁]︁
(5.3)

= 1
N

∑︂
(x,y)∈D

[︂ ∫︂
qθ(π|x) log qθ(π|x)

p(π|x, y)
]︂

(5.4)

= 1
N

∑︂
(x,y)∈D

[︂ ∫︂
qθ(π|x) log qθ(π|x)p(y|x)

p(y|π,x)p(π|x)
]︂

(5.5)

= 1
N

∑︂
(x,y)∈D

[︂
Eqθ(π|x)

[︁
− log p(y|π,x)

]︁
+ KL

(︁
qθ(π|x) ∥ p(π|x)

)︁
+ log p(y|x)

]︂
, (5.6)

where N = card(D). As the log-likelihood log p(y|x) does not depend on parameters θ,

min
θ

Lvar(θ; D) = min
θ

1
N

∑︂
(x,y)∈D

[︂
Eqθ(π|x)

[︁
− log p(y|π,x)

]︁
+ KL

(︁
qθ(π|x) ∥ p(π|x)

)︁]︂
. (5.7)
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(a) In-distribution image
MCP = 0.50 , entropy = 0.97, KLoS = 97.85

(b) Outlier with same class confusion
MCP = 0.50 , entropy = 0.97, KLoS = 104.71

Figure 5.2: Limitations of first-order uncertainty measures and their handling with KLoS. (a) An in-
distribution image with conflicting evidence between dog and wolf. (b) An outlier with the same class
confusion but a lower amount of evidence. An evidential neural network (ENN) outputs class-wise
evidence information as concentration parameters of a Dirichlet density (visualized on the simplex)
over 3-class distributions. Although this density is flatter for the second input, the predictive entropy
and MCP, only based on first-order statistics, are equal for both inputs. In contrast, the proposed
measure, KLoS, captures both class confusion and lack of evidence, hence correctly reflecting the larger
uncertainty for the latter sample.

For conciseness, we denote αk = αk(x,θ), ∀k ∈ Y hereafter. For a sample (x, y), the reverse cross-

entropy term amounts to Eπ∼qθ(π|x)
[︁
− log p(y|π,x)

]︁
= −

(︁
ψ(αy)−ψ(α0)

)︁
where ψ is the digamma

function. Hence, the optimization objective is written as:

min
θ

Lvar(θ; D) = 1
N

∑︂
(x,y)∈D

−
(︁
ψ(αy)−ψ(α0)

)︁
+ KL(qθ(π|x) ∥ p(π|x)). (5.8)

Considering that most of the training inputs x are associated with only one observation y in D,

we should choose small concentration parameters β for the prior p(π|x) = Dir(π|β) to prevent the

resulting posterior distribution p(π|x) = Dir(π|β1, ..., βy + 1, ..., βK) from being dominated by the

prior. However, this causes gradients to be very large in small-value regimes due to the digamma

function, e.g. ψ′(0.01) > 10−4.

To stabilize the optimization, we follow [170] and use the non-informative uniform prior distribution

p(π|x) = Dir
(︁
π|1

)︁
where 1 is the all-one uniform vector, and we weight the KL divergence term with

λ > 0:
Lλ
var(θ; D) = 1

N

∑︂
(x,y)∈D

−
(︁
ψ(αy) − ψ(α0)

)︁
+ λKL

(︁
Dir(π|α(x,θ))||Dir(π|1)

)︁
. (5.9)

In particular, minimizing loss Eq. (5.9) enforces training sample’s precision α0 to remain close to the

value K + 1/λ [135].

While Lλ
var(θ; D) slightly differs from Lvar(θ; D), both functions lead to the same optima. Indeed,

by considering their gradient, we can show that a local optimum of Lvar(θ; D) is achieved for a sample

x when α∗ = (β1, ..., βy + 1, ..., βK) and a local optimum of Lλ
var(θ; D) is α• = (1, · · · , 1 + 1/λ, · · · , 1).

Hence, their ratio between each element is equal:

∀i, j ∈ J1,KK,
α∗

i

α∗
j

= α•
i

α•
j

. (5.10)
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5.3 Capturing in-distribution and out-of-distribution uncertainties

In this section, we present the limits of current uncertainty measures used in evidential models

(Section 5.3.1) and we introduce our measure to effectively capture class confusion and lack of evidence

with evidential models (Section 5.3.2). We further propose a confidence learning approach to enhance

in-distribution uncertainty estimation in Section 5.3.3.

5.3.1 Limits of current uncertainty measures with evidential models

For open-world recognition, a model should be equipped with an uncertainty measure which

accounts both for first-order and second-order uncertainties to detect misclassifications and out-

of-distribution samples. However, current uncertainty measures do not leverage the distribution

over output probabilities on the simplex to derive such a joint measure of the two sources of

uncertainty. The predictive entropy H[Y |x,D] and the maximum class probability (MCP) targeting

total uncertainty actually reduce distributions of probabilities on the simplex to their expected value

and compute first-order uncertainty measure from point-wise probabilities [56, 170]. This significantly

limits the expressiveness of the resulting measures. In particular, they are invariant to the spread

of the distribution over probabilities. This causes a significant loss of information. Given similar

conflicting evidence, first-order uncertainty measures assign the same value to in-distribution and out-

of-distribution samples as shown in Fig. 5.2, which is undesirable. With the goal of obtaining accurate

estimates, measures should allow uncertainty caused by class confusion and lack of evidence to be

cumulative, a property naturally fulfilled by the predictive variance in Bayesian regression [98].

Other uncertainty measures used with evidential models include second-order uncertainty measures

which quantify the distribution dispersion on the simplex, e.g., precision α0 or mutual information.

While adequate to detect OOD samples, these measures are not suited to estimate aleatoric

uncertainty, which is characterized by the expectation of the Dirichlet distribution.

Figure 5.3: Precision densities
for ID (CIFAR-10) and OOD
(TinyImageNet) samples when
no OOD training data is used.

In addition, the success of these measures rely on the assumption

that the Dirichlet distribution spread is larger for OOD than for

in-distribution (ID) samples. Consequently, some previous works

[57, 135, 171] propose to use auxiliary OOD data during training

to enforce higher distribution spread on OOD inputs, which may be

unrealistic in many applications. This has been debated recently by

[116]. Finally, this assumption is not always fulfilled in absence of

OOD training data [116, 117]. As shown in Fig. 5.3 for a model

trained on CIFAR-10, α0 values largely overlap between IDs and

OODs when no OOD training data is used, limiting the effectiveness

of existing second-order uncertainty measures. Consequently, neither

current first-order nor second-order uncertainty measures appear to

be suited for open-world settings.
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5.3.2 KLoS: a Kullback-Leibler divergence measure on the simplex

By explicitly learning a distribution of the categorical probabilities π, evidential models provide

a second-order uncertainty representation where the expectation of the Dirichlet distribution relates

to class confusion and its spread to the amount of evidence. While originally used to measure the

total uncertainty, the predictive entropy H[y|x,θ] and the maximum class probability MCP(x,θ) =
maxk P (y = k|x,θ) only account for the position on the simplex. These measures are invariant to

the dispersion of the Dirichlet distribution that generates the categorical probabilities. This can be

problematic, as illustrated in Fig. 5.2. To capture uncertainties due to class confusion and lack of

evidence, an effective measure should account for the sharpness of the Dirichlet distribution and its

location on the simplex.

We introduce a novel measure, named KLoS for“KL on Simplex”, that computes the KL divergence

between the model’s output and a class-wise prototype Dirichlet distribution with concentrations γŷ

focused on the predicted class ŷ.

Definition 5.1 (KLoS). For any admissible input x ∈ X , its KLoS measure is defined as:

KLoS(x) ≜ KL
(︂
Dir

(︁
π|α(x,θ)

)︁
∥ Dir

(︁
π|γŷ

)︁)︂
, (5.11)

where α(x,θ) = exp f(x,θ) is the model’s output and γŷ = (1, . . . , 1, τ, 1, . . . , 1) are uniform

concentration parameters except for the predicted class with concentration τ .

The lower KLoS is, the more certain the prediction is. Correct predictions will have Dirichlet

distributions similar to the prototype Dirichlet distribution γŷ and will thus be associated with

a low uncertainty score (Fig. 5.4a). Samples with high class confusion will present an expected

probability distributions closer to simplex’s center than the expected class-wise prototype p∗
ŷ =

( 1
K−1+τ , · · · , τ

K−1+τ , . . . ,
1

K−1+τ ), resulting in a higher KLoS score (Fig. 5.4b). Similarly, KLoS also

penalizes samples having a different precision α0 than the precision α∗
0 = τ +K − 1 of the prototype

γŷ. Samples with smaller (Fig. 5.4c) and higher (Fig. 5.4d) amount of evidence than α∗
0 receive a

larger KLoS score.

Effective measure without OOD training data. Since in-distribution samples are enforced to have

precision close to α∗
0 during training, the class-wise prototypes are fine estimates of the concentration

parameters of training data for each class. Hence, KLoS is a divergence-based metric, which only

needs in-distribution data during training to compute its prototypes. This behavior is illustrated in

Section 5.5.1. The proposed measure will be effective to detect various types of OOD samples whose

precision is far from α∗
0. In contrast, second-order uncertainty measures, e.g., mutual information,

assume that OOD samples have smaller α0, a property difficult to fulfill for models trained only with

in-distribution samples (see Fig. 5.3). In Section 5.5.5, we explore more in-depth the impact of the

choice of OOD training data on the actual α0 values for OOD samples.

Decomposition of KLoS Even though our method targets the simultaneous detection of

misclassifications and OOD samples, one can detect the source of uncertainty in KLoS scores by
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Figure 5.4: KLoS on the probability simplex. Given the input sample, the blue region represents the
distribution predicted by the evidential model and the orange region represents the prototype Dirichlet
distribution with parameters γŷ = (1, · · · , 1, τ, 1, . . . , 1) focused on the predicted class ŷ. Illustration
of the behavior of KLoS in absence of uncertainty (a), in case of class confusion (b) and in case of a
different amount of evidence, either lower (c) or higher (d).

using the following decomposition:

Proposition 5.1. By approximating the digamma function ψ, KLoS can be decomposed as:

KLoS(x) ≈ −(τ − 1) log
(︁αŷ

α0

)︁
+

(︂
− (τ − 1)( 1

2α0
− 1

2αŷ
) + KL

(︁
Dir(π|α) ∥ Dir(π|1)

)︁)︂
+ r, (5.12)

where r = −
(︁

log Γ(τ) − log Γ(K − 1 + τ) − log Γ(K)
)︁
does not depend on the model parameters θ nor

on the input x.

Proof. The KL divergence between two Dirichlet distributions can be obtained in closed form and

KLoS can be calculated as:

KLoS(x) = KL
(︂
Dir

(︁
π|α

)︁
∥ Dir

(︁
π|γŷ

)︁)︂
(5.13)

= log Γ(α0) − log Γ(K − 1 + τ) + log Γ(τ) −
K∑︂

k=1
log Γ(αk)

+
∑︂
k ̸=y

(︁
αk − 1

)︁(︁
ψ(αk) − ψ(α0)

)︁
+

(︁
αŷ − τ

)︁(︁
ψ(αŷ) − ψ(α0)

)︁
. (5.14)

On the other hand, the KL divergence between the model’s output and an uniform Dirichlet

distribution Dir
(︁
π|1

)︁
reads:

KL
(︂
Dir

(︁
π|α

)︁
∥ Dir

(︁
π|1

)︁)︂
= log Γ(α0)−log Γ(K)−

K∑︂
k=1

log Γ(αk)+
K∑︂

k=1

(︁
αk−1

)︁(︁
ψ(αk)−ψ(α0)

)︁
. (5.15)

Hence, KLoS can be written as:

KLoS(x) = −(τ − 1)
(︁
ψ(αŷ) − ψ(α0)

)︁
+ KL

(︁
Dir(π|α) ∥ Dir(π|1)

)︁
+

(︁
log Γ(τ) − log Γ(K − 1 + τ) − log Γ(K)

)︁
. (5.16)
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By considering the asymptotic series approximation to the digamma function, ψ(x) = log x− 1
2x +

O( 1
x2 ), the previous expression can be approximated by:

KLoS(x) ≈ −(τ − 1) log(αŷ

α0
) +

(︂
− (τ − 1)( 1

2α0
− 1

2αŷ
)) + KL

(︁
Dir(π|α) ∥ Dir(π|1)

)︁)︂
+ r, (5.17)

where r = −
(︁

log Γ(τ) − log Γ(K − 1 + τ) − log Γ(K)
)︁
.

The first term is the standard log-likelihood and relates only to expected probabilities, hence to

the class confusion. The ratio αŷ/α0 makes it invariant to any scaling of the concentration parameters

vector α. The second term takes into account the spread of the distribution by measuring how close

α0 is to (τ +K − 1), and measures the amount of evidence.

5.3.3 Improving uncertainty estimation with confidence learning

Figure 5.5: KLoS∗ measures the
distance to the prototype Dirichlet

distribution centered on the true class
y (green).

When the model misclassifies an example, i.e., the

predicted class ŷ differs from the ground truth y, KLoS

measures the distance between the ENN’s output and the

wrongly estimated posterior p(π|x, ŷ). This may result

in an arbitrarily high confidence / low KL divergence

value. Measuring instead the distance to the true posterior

distribution p(π|x, y) (Fig. 5.5) more likely yield a greater

value, reflecting the fact that the classifier made an error.

Thus, a better measure for misclassification detection

would be:

KLoS∗(x, y) ≜ KL
(︂
Dir

(︁
π|α(x,θ)

)︁
∥ Dir

(︁
π|γy

)︁)︂
, (5.18)

where γy corresponds to the uniform concentrations except

for the true class y with τ = 1 + λ−1.

Connecting KLoS∗ with Evidential Training Objective Interestingly, the following proposition that

choosing such value for τ results in KLoS∗ matching the objective function in Eq. (5.9).

Proposition 5.2. If τ = 1 + λ−1, then minimizing the evidential training objective Lλ
var(θ; D) is

equivalent to minimizing the KLoS∗ value of each training point x.

Proof. Let us decompose Lλ
var(θ; D) = 1

N

∑︁
(x,y)∈D l

λ
var(x, y,θ).

By deriving KLoS∗ in a similar way than Eq. (5.16), we can observe that:

KLoS∗(x) = lλvar(x, y,θ) + r, (5.19)

where r = −
(︁

log Γ(1+1/λ)− log Γ(K−1+1/λ)− log Γ(K)
)︁
does not depend on the model parameters

θ.
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Hence, minimizing the evidential training objective Lλ
var(θ; D) is equivalent to minimizing the

KLoS∗ value of each training point x.

This means that KLoS∗ is explicitly minimized by the evidential model during training for in-

distribution samples. By mimicking the evidential training objective, we reflect the fact that the

model is confident about its prediction if KLoS∗ is close to zero. In addition, minimizing the KL

divergence between the variational distribution qθ(π|x) and the posterior p(π|x, y) is equivalent to

maximizing the evidence lower bound (ELBO) [98]. Hence, a small KLoS∗ value corresponds to a high

ELBO, which is coherent with the common assumption in variational inference that higher ELBO

corresponds to “better” models [172].

Obviously, the true class of an output is not available when estimating confidence on test samples.

We propose to learn KLoS∗ by introducing an auxiliary confidence neural network, KLoSNet, with

parameters ω, which outputs a confidence prediction C(x,ω). KLoSNet consists in a small decoder,

composed of several dense layers attached to the penultimate layer of the original classification network.

During training, we seek ω such that C(x,ω) is close to KLoS∗(x, y), by minimizing

LKLoSNet(ω; D) = 1
N

∑︂
(x,y)∈D

⃦⃦
C(x,ω) − KLoS∗(x, y)

⃦⃦2
. (5.20)

KLoSNet can be further improved by endowing it with its own feature extractor. Initialized with the

encoder of the classification network, which must remain untouched for not affecting its performance,

the encoder of KLoSNet can be fine-tuned along with its regression head. This amounts to minimizing

Eq. (5.20) with respect to both sets of parameters.

The training set for confidence learning is the one used for classification training. In the

experiments, we observe a slight performance drop when using a validation set instead. Indeed,

when dealing with models with high predictive performance and small validation sets, we end up with

fewer misclassification examples than in the train set. At test time, we now directly use KLoSNet’s

scalar output C(x,ω′) as our uncertainty estimate. As previously, the lower the output value, the

more confident the prediction.

5.4 Related work

We detail here related work on OOD detection used in the following experiments. For

misclassification detection, we refer to the related work in Section 3.4 and the presentation of the

task in the background chapter (Section 2.3.2).

In the literature, a range of methods aim to detect anomalies in the form of out-of-distribution

(OOD) samples. Applied on a pre-trained model, ODIN [112] mitigates over-confidence by post-

processing logits with temperature scaling and by adding inverse adversarial perturbations. [113]

proposes a confidence score based on the class-conditional Mahalanobis distance, with the assumption

of tied covariance. Although effective, both approaches need OOD data to tune hyperparameters,

which might not generalize to other OOD datasets [173]. Finally, Liu et al. [124] interpret a pre-trained
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NN as an energy-based model and compute the energy score to detect OOD samples. Interestingly,

this score corresponds to the log precision logα0, which is similar to the EPKL measure [135] used in

ENNs.

5.5 Experiments

We evaluate our approach against: first-order uncertainty metrics (Maximum Class probability

(MCP) and predictive entropy (Entropy)), second-order metrics (mutual information (Mut. Inf.),

differential entropy (Diff. Ent.), expected pairwise KL divergence (EPKL) and dissonance), post-

training methods for OOD detection (ODIN and Mahalanobis) and for misclassification detection

(ConfidNet). Except in Section 5.5.5, we consider setups where no OOD data is available for training.

Consequently, the results reported for ODIN and Mahalanobis are obtained without adversarial

perturbations, which is also the best configuration for the considered tasks. We indeed show in

Section 5.5.4 that these perturbations degrade misclassification detection.

5.5.1 Synthetic experiment

We analyse the behavior of the KLoS measure and the limitations of existing first- and second-

order uncertainty metrics on a 2D synthetic dataset composed of three Gaussian-distributed classes

with equidistant means and identical isotropic variance (Fig. 5.6):

p(X = x, Y = y) = 1
3 · N (X = x | µy, σ

2I2×2), (5.21)

where µ1 = (0,
√

3/2), µ2 = (−1,−
√

3/2) , µ3 = (1,−
√

3/2) and σ = 4. The marginal distribution of

x is a Gaussian mixture with three equally weighted components having equidistant centers and equal

spherical covariance matrices. The test dataset consists of 1,000 other samples from this distribution.

Finally, we construct an out-of-distribution (OOD) dataset following [135], by sampling 100 points in

R2 such that they form a ‘ring’ with large noise around the training points. Some OOD samples will

be close to the in-distribution while others will be very far (see Fig. 5.6). The number of OOD samples

has been chosen so that it amounts approximately to the number of test points misclassified by the

classifier. The classification is performed by a simple logistic regression. A set of five models is trained

for 200 epochs using the evidential training objective with regularization parameter λ = 5e-2 and Adam

optimizer with learning rate 0.02. Uncertainty metrics – MCP, Entropy, Mut. Inf., Malahanobis and

KLoS – are computed from these models. This constitutes a scenario with high first-order uncertainty

due to class overlap. OOD samples are drawn from a ring around the in-distribution dataset and are

only used for evaluation.

Fig. 5.6c shows that Entropy correctly assigns large uncertainty along decision boundaries, which is

convenient to detect misclassifications, but yields low uncertainty for points far from the distribution.

Mut. Inf. (Fig. 5.6d) has the opposite behavior than desired by decreasing when moving away from

the training data. This is due to the linear nature of the toy dataset where models assign higher

concentration parameters far from decision boundaries, hence smaller spread on the simplex, as also
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(a) Toy dataset (b) Corr./Err. (c) Entropy

(d) Mut. Inf. (e) Mahalanobis (f) KLoS

Figure 5.6: Comparison of various uncertainty measures for a given evidential classifier on a toy
dataset. (a) Training samples from 3 input Gaussian distributions with large overlap (hence class
confusion) and OOD test samples (blue); (b) Correct (yellow) and erroneous (red) class predictions on
in-domain test samples; (c-f) Visualisation of different uncertainty measures derived from the evidential
model trained on the toy dataset. Yellow (resp. purple) indicates high (resp. low) certainty.

noted in [116]. Additionally, Mut. Inf. does not reflect the uncertainty caused by class confusion along

decision boundaries. Neither Entropy nor Mut. Inf. is suitable to detect OOD samples in this synthetic

experiment. In contrast, KLoS allows discriminating both misclassifications and OOD samples from

correct predictions as uncertainty increases far from in-distribution samples for each class (Fig. 5.6f).

KLoS measures a distance between the model’s output and a class-wise prototype distribution. Here,

we can observe that it acts as a divergence-based measure for each class.

We extend the comparison to include Mahalanobis (Fig. 5.6e), which is a distance-based measure

by assuming Gaussian class conditionals on latent representations, here in the input space. However,

Mahalanobis does not discriminate points close to the decision boundaries from points with a similar

distance to the origin. Hence, it may be less suited to detect misclassifications than KLoS. Additionally,

KLoS does not assume Gaussian distributions in the latent space nor tied covariance, which may be a

strong assumption when dealing with a high-dimension latent space. In Section B.2.1, a complementary
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quantitative evaluation on this toy problem confirms our findings regarding the inadequacy of first-

order uncertainty measures such as MCP and Entropy, and the improvement provided by KLoS over

Mahalanobis on misclassification detection.

Decomposition of KLoS. To gain further intuition about the decomposition, we provide illustrations

of the first term (negative log-likelihood, NLL) and the second term in Fig. 5.7. We observe that the

NLL term, which is equivalent to MCP measure, helps to detect misclassifications while the second

term denotes increasing uncertainty as we move far away from training data. Hence, by using either

the NLL term or the second term, one could distinguish the source of uncertainty if needed.

(a) KLoS (b) NLL term (c) Second term

Figure 5.7: Visualisation of the decomposition of KLoS on the toy dataset.

5.5.2 Simultaneous detection of errors and out-of-distribution samples

The task of detecting both in-distribution misclassifications and OOD samples gives the

opportunity to jointly evaluate in-distribution and out-of-distribution uncertainty representations

of a method. In this binary classification problem, correct predictions are considered as positive

samples while misclassified inputs and OOD examples constitute negative samples. Following standard

practices [45], we use the area under the ROC curve (AUROC) to evaluate threshold-independent

performance.

The models used in the experiments present high predictive performances. Most often, there are

much fewer misclassifications in the test set than considered OOD samples. Hence, joint detection

performances might be dominated by the evaluation of the quality of OOD detection. To mitigate this

unbalance, we propose to consider the following scheme based on oversampling. Let AM be the subset

of in-distribution test examples that are misclassified by the observed model and AO the set of OOD

test samples. We randomly sample κ|AO| points in AM, with κ = 1. Supposing |AO| ≥ |AM|, this
corresponds to oversampling the set of misclassifications. This over-sampled set is then added to the

OOD set to form the negative examples for detection training. The set of correct predictions remains
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(a) CIFAR-10 (b) TinyImageNet (c) LSUN (d) STL10

Figure 5.8: Images samples from OOD datasets (b,c,d) used in experiments and compared to in-
distribution CIFAR-10 (a).

the same. We observed that the variance in AUROC due to this sampling is negligible and we report

only the mean hereafter.

In the following, uncertainty measures are derived from an evidential model (Eq. (5.9)) with λ =
10−2, except for second-order metrics where we found that setting λ = 10−3 improves performance. We

rely on the learned classifier to train our auxiliary confidence model KLoSNet, using the same training

set and following loss Eq. (5.20). Experiments are conducted with VGG-16 [74] and ResNet-18 [76]

architectures on CIFAR-10 (Fig. 5.8a) and CIFAR-100 datasets [35]. The OOD datasets used for

evaluation are presented in Fig. 5.8: TinyImageNet1 – a subset of ImageNet (10,000 test images with

200 classes) –, LSUN [174] – a scene classification dataset (10,000 test images of 10 scenes) –, STL-10

– a dataset similar to CIFAR-10 but with different classes, and SVHN [36] – an RGB dataset of 28×28
house-number images (73,257 training and 26,032 test images with 10 digits) –. We downsample each

image of TinyImageNet, LSUN and STL-10 to size 32×32. All details about architectures, training

algorithms and datasets are available in Chapter B.

Along with simultaneous detection results, we provide separate results for misclassifications

detection and OOD detection respectively in Table 5.1. On OOD detection, Mahalanobis and KLoSNet

outperform other methods, including second-order measures. ODIN also fails to deliver here as logits

are small due to regularization in the evidential training objective. Mut. Inf. and other spread-based

second-order uncertainty measures fall short to detect correctly OOD. Indeed, for settings where

OOD training data is not available, there is no guarantee that every OOD sample will result in lower

predicted concentration parameters as previously shown by the density plot of precision α0 in Fig. 5.3.

This stresses the importance of class-wise divergence-based measure.

While Mahalanobis may sometimes be slightly better than KLoSNet for OOD detection, it performs

significantly less well in misclassification detection, in line with the behavior shown in synthetic

experiments. As a result, KLoSNet appears to be the best measure in every simultaneous detection

benchmark. For instance, for CIFAR-10/STL-10 with VGG-16, KLoSNet achieves 81.8% AUROC

while the second best, Mahalanobis, scores 78.8%.

1https://tiny-imagenet.herokuapp.com/
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Table 5.1: Comparative experiments on CIFAR-10 and CIFAR-100. Misclassification (Mis.), out-of-
distribution (OOD) and simultaneous (Mis+OOD) detection results (mean % AUROC and std. over
5 runs). Bold type indicates significantly best performance (p<0.05) according to paired t-test.

LSUN TinyImageNet STL-10
Method Mis. OOD Mis+OOD OOD Mis+OOD OOD Mis+OOD

C
IF
A
R
-1
0

V
G
G
-1
6

MCP 87.6 ±1.6 79.7 ±1.1 84.9 ±1.1 80.3 ±1.5 85.2 ±1.5 60.3 ±1.2 75.2 ±1.4
Entropy 83.5 ±2.4 83.8 ±0.3 87.9 ±0.2 82.3 ±0.4 87.2 ±0.4 60.1 ±1.2 75.0 ±1.4
ConfidNet 90.2 ±0.8 82.1 ±1.5 87.6 ±1.1 83.5 ±0.6 88.3 ±0.7 61.5 ±1.6 77.2 ±1.1
Dissonance 91.9 ±0.2 84.8 ±0.3 90.1 ±0.1 84.2 ±0.2 89.7 ±0.1 64.1 ±0.1 79.6 ±0.1
Mut. Inf. 84.1 ±1.5 84.6 ±0.6 85.1 ±1.0 80.6 ±0.8 83.4 ±1.1 61.3 ±0.8 65.0 ±2.5
Diff. Ent. 86.8 ±1.0 85.6 ±0.5 87.2 ±0.7 82.7 ±0.7 85.8 ±0.8 62.0 ±1.0 75.4 ±1.3
EPKL 83.9 ±1.5 84.5 ±0.7 85.1 ±1.0 80.4 ±0.8 83.2 ±1.2 61.3 ±0.8 73.8 ±1.1
Diss.+Mut. Inf. 92.0 ±0.2 86.5 ±0.3 89.8 ±0.2 83.6 ±0.3 89.5 ±0.3 63.6 ±0.5 79.4 ±0.4
ODIN 86.0 ±2.0 79.5 ±1.2 83.8 ±1.5 79.6 ±1.9 84.0 ±2.0 54.7 ±1.5 65.0 ±2.6
Mahalanobis 91.2 ±0.3 88.9 ±0.2 91.3 ±0.1 86.4 ±0.2 90.2 ±0.1 63.4 ±0.2 78.8 ±0.3
KLoSNet (Ours) 92.5 ±0.6 87.6 ±0.9 91.7 ±0.9 86.6 ±0.9 91.2 ±0.8 67.7 ±1.4 81.8 ±0.9

C
IF
A
R
-1
0

R
es
N
et
-1
8

MCP 84.9 ±0.8 79.6 ±1.0 83.0 ±0.9 77.2 ±0.7 81.8 ±0.7 58.5 ±1.2 72.5 ±0.4
Entropy 84.6 ±0.8 79.6 ±1.1 82.8 ±0.9 77.2 ±0.7 81.6 ±0.7 58.4 ±1.2 72.2 ±0.4
ConfidNet 90.7 ±0.4 84.6 ±1.1 88.6 ±0.6 83.5 ±1.1 88.0 ±0.6 63.2 ±1.2 77.9 ±0.5
Dissonance 92.9 ±0.4 90.3 ±0.4 92.7 ±0.4 87.7 ±0.3 91.4 ±0.3 67.3 ±0.5 81.2 ±0.4
Mut. Inf 80.6 ±0.6 77.0 ±1.2 79.4 ±0.9 74.3 ±0.8 78.0 ±0.7 56.4 ±1.0 69.1 ±0.2
Diff. Ent 82.7 ±0.6 78.3 ±1.2 81.1 ±0.9 75.9 ±0.8 79.9 ±0.7 57.5 ±1.1 70.8 ±0.3
EPKL 80.2 ±0.6 76.8 ±1.3 79.0 ±0.9 74.1 ±0.8 77.7 ±0.7 56.2 ±1.0 68.9 ±0.3
Diss.+Mut. Inf. 92.4 ±0.5 86.7 ±1.0 90.1 ±0.8 84.3 ±0.5 88.8 ±0.6 65.2 ±0.7 80.3 ±0.4
ODIN 83.7 ±0.7 78.9 ±1.0 81.9 ±0.9 76.5 ±0.7 80.7 ±0.7 57.9 ±1.2 71.5 ±0.4
Mahalanobis 91.2 ±0.4 90.7 ±0.4 91.8 ±0.3 87.6 ±0.4 90.3 ±0.4 66.8 ±0.5 80.0 ±0.3
KLoSNet (Ours) 93.9 ±0.4 93.1 ±1.1 94.4 ±0.3 90.6 ±0.6 93.2 ±0.2 68.5 ±0.3 82.3 ±0.2

C
IF
A
R
-1
00

V
G
G
-1
6

MCP 82.9 ±0.8 62.8 ±1.3 77.6 ±0.9 72.0 ±0.5 81.8 ±0.7 69.7 ±0.7 80.9 ±0.7
Entropy 82.2 ±0.8 63.2 ±1.4 77.2 ±1.0 72.5 ±0.6 81.5 ±0.8 70.1 ±0.8 80.6 ±0.7
ConfidNet 84.4 ±0.6 65.3 ±2.0 80.0 ±1.3 73.8 ±0.6 83.7 ±0.7 71.5 ±0.6 82.7 ±0.3
Dissonance 84.1 ±0.4 62.5 ±1.4 78.7 ±0.8 70.3 ±0.4 82.5 ±0.4 69.3 ±0.4 82.2 ±0.4
Mut. Inf. 78.9 ±0.8 65.6 ±0.7 76.2 ±0.9 71.8 ±0.2 79.1 ±0.4 70.1 ±0.6 78.5 ±0.6
Diff. Ent. 80.2 ±0.8 65.6 ±0.9 77.2 ±0.8 72.7 ±0.3 80.4 ±0.4 71.0 ±0.5 79.7 ±0.5
EPKL 78.8 ±0.8 65.2 ±1.0 76.1 ±0.9 71.6 ±0.2 78.9 ±0.4 70.0 ±0.6 78.3 ±0.6
Diss.+Mut. Inf. 84.2 ±0.6 65.1 ±0.3 80.1 ±0.4 70.1 ±0.3 82.5 ±0.5 69.5 ±0.3 82.3 ±0.5
ODIN 82.1 ±0.8 62.9 ±1.4 77.1 ±1.0 71.9 ±0.6 81.3 ±0.8 69.6 ±0.8 80.3 ±0.7
Mahalanobis 84.0 ±0.2 71.1 ±1.0 82.4 ±0.5 77.0 ±0.5 84.9 ±0.3 75.4 ±0.3 84.3 ±0.5
KLoSNet (Ours) 86.7 ±0.4 68.4 ±1.1 83.0 ±0.6 76.4 ±0.4 86.4 ±0.4 75.0 ±0.5 86.0 ±0.4

C
IF
A
R
-1
00

R
es
N
et
-1
8

MCP 84.0 ±0.4 70.4 ±0.9 81.0 ±0.3 76.6 ±0.5 83.6 ±0.4 75.4 ±0.5 83.1 ±0.2
Entropy 83.7 ±0.4 70.4 ±0.9 80.8 ±0.3 76.9 ±0.5 83.5 ±0.3 75.7 ±0.5 83.0 ±0.3
ConfidNet 87.1 ±0.2 73.0 ±1.4 84.5 ±0.6 79.1 ±0.3 86.8 ±0.3 78.5 ±0.8 86.6 ±0.5
Dissonance 86.7 ±0.4 72.3 ±0.4 84.0 ±0.2 75.0 ±0.4 85.3 ±0.4 74.7 ±0.3 85.2 ±0.2
Mut. Inf 82.6 ±0.4 70.2 ±1.1 80.0 ±0.4 76.4 ±0.6 82.6 ±0.3 75.1 ±0.5 82.1 ±0.3
Diff. Ent 83.0 ±0.4 70.1 ±1.1 80.2 ±0.4 76.8 ±0.5 83.0 ±0.3 75.6 ±0.5 82.5 ±0.3
EPKL 82.5 ±0.4 70.2 ±1.1 80.0 ±0.4 76.3 ±0.6 82.5 ±0.3 75.0 ±0.5 82.0 ±0.2
Diss.+Mut. Inf. 86.5 ±0.4 71.8 ±0.8 83.6 ±0.5 76.1 ±0.3 84.7 ±0.4 75.2 ±0.5 84.6 ±0.3
ODIN 83.7 ±0.4 70.3 ±0.9 80.8 ±0.3 76.6 ±0.5 83.5 ±0.3 75.4 ±0.5 83.0 ±0.3
Mahalanobis 85.9 ±0.4 75.2 ±0.6 84.5 ±0.1 78.4 ±0.5 85.9 ±0.3 77.5 ±0.4 85.6 ±0.3
KLoSNet (Ours) 86.9 ±0.3 73.1 ±0.4 84.4 ±0.1 80.8 ±0.2 87.3 ±0.2 79.0 ±0.2 86.7 ±0.3
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Table 5.2: Impact of confidence learning. Comparison of detection performances (% AUROC) between
KLoS and KLoSNet for CIFAR-10 and CIFAR-100 experiments with VGG-16 architecture.

LSUN TinyImageNet STL-10
Method Mis. OOD Mis+OOD OOD Mis+OOD OOD Mis+OOD

CIFAR-10
VGG-16

KLoS 92.1 ±0.3 86.5 ±0.3 91.2 ±0.2 85.4 ±0.3 90.4 ±0.2 64.1 ±0.3 79.6 ±0.3
KLoSNet 92.5 ±0.6 87.6 ±0.9 91.7 ±0.9 86.6 ±0.9 91.2 ±0.8 67.7 ±1.4 81.8 ±0.9

CIFAR-100
VGG-16

KLoS 85.4 ±0.2 65.1 ±1.1 81.3 ±0.6 74.5 ±0.4 85.4 ±0.4 72.7 ±0.3 84.8 ±0.4
KLoSNet 86.7 ±0.4 68.4 ±1.1 83.0 ±0.6 76.4 ±0.4 86.4 ±0.4 75.0 ±0.5 86.0 ±0.4

We also observe that KLoSNet significantly improves misclassification detection, even compared

to dedicated methods such as ConfidNet or second-order measures related to class confusion, e.g.,

dissonance. Another baseline could be to combine two measures specialized respectively for class

confusion and lack of evidence, such as Dissonance+Mut.Inf. But it still performs less well than

KLoSNet.

Impact of Confidence Learning. To evaluate the effect of the uncertainty measure KLoS and of the

auxiliary confidence network KLoSNet, we report a detailed ablation study in Table 5.2. We can notice

that KLoSNet improves misclassification over KLoS but also OOD detection in every benchmark. We

intuit that learning to improve misclassification detection also helps to spot some OOD inputs that

share similar characteristics.

Figure 5.9: Impact of the oversampling factor κ
(CIFAR-10/TinyImageNet).

Oversampling Factor. When deploying a model

in the wild, it is difficult to know beforehand the

proportions of misclassifications and OOD samples

the model will have to handle. Until now, we

assumed an equal proportion in order to evaluate

equally the capacity to detect both kinds of inputs.

In Fig. 5.9, we vary the oversampling factor κ

in [0.01, 100] for CIFAR10/TinyImageNet to assess

the robustness of tested methods and our approach.

The higher the oversampling factor is, the more

misclassifications will be sampled in the test

set, hence giving importance to misclassification

detection, and vice versa. Results show that

regardless of the value chosen for oversampling,

KLoSNet consistently outperforms all other measures, with a larger gain when κ increases.

Combining KLoS with Ensembling. Aggregating predictions from an ensemble of neural networks not

only improves generalization [53, 175] but also uncertainty estimation [54]. We train an ensemble of ten

evidential models on CIFAR-10 and evaluate the performance of various uncertainty measures – MCP,
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(a) Mis. detection (b) OOD detection (c) Mis.+OOD detection

Figure 5.10: Comparative gain with ensembling for each detection task on CIFAR10 vs.
TinyImageNet. Ensembling improves performances with every tested method, in particular in OOD
detection (Fig. 5.10b). KLoS remains the best method when combined with ensembling.

predictive entropy, precision, mutual information, and KLoS – obtained from averaged concentration

parameters. Results for each detection task with CIFAR-10/TinyImageNet benchmark are available in

Fig. 5.10. As expected, every method obtains improved performance when computed from an ensemble

of models. The gain is particularly pronounced for OOD detection: for instance performance with

precision α0 is improved by +8.0 and with mutual information by +7.8 points. These gains are

due to the diversity in predictions provided by ensembling which helps to better capture epistemic

uncertainty, as explained in Chapter 2. While improvements with KLoS are less significant, KLoS

remains the best measure in each detection task with respectively 93.8% AU-ROC in misclassification

detection, 88.7% in OOD detection and 92.3% in the joint detection. One possible explanation is that

KLoS was already capturing effectively epistemic uncertainty and the improvement with ensembling

may consequently be less significant.

5.5.3 Selective classification in presence of distribution shifts

Classification with a reject option, also known as selective classification [44], consists in a scenario

where a classifier can abstain on samples where its confidence is below a certain threshold. This is

appropriate for applications where the system can hand over to human experts or users. Performance

can be measured on risk-coverage curves. We recall evaluation metrics in the following and refer

the reader to Section 2.3 for a more detail description. The coverage is the probability mass of the

non-rejected region in X and can be empirically estimated by the percentage of the non-rejected

samples. The risk of a selective classifier is the average loss on the accepted samples. Given a chosen

coverage, good selective classifiers correlate with low risk. Averaged performances are evaluated on

risk-coverage curves with a threshold-independent area-under-curve metric, denoted here AURC. The

lower the AURC, the better the selective classifier.

Previous works evaluate the performance on in-distribution data. However, a classifier may

encounter data drawn from a different distribution when deployed in the wild. Following [26], we

extend selective classification by penalizing non-rejected OOD samples. If a sample is drawn from the

in-distribution, we compute the 0/1 cost function as usual. For OOD samples, we apply the maximum
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(a) CIFAR-10-C

(b) CIFAR-100-C

Figure 5.11: Aggregated results for selective classification on CIFAR-10-C and CIFAR-100-C.
Comparative performance in AURC (%) of classification with the option to reject misclassified test
samples and samples from shifted distributions. Results are averaged on 5 runs (mean ± std.).

cost of 1, whatever the prediction. As for simultaneous detection, we rely on oversampling to mitigate

the unbalance between misclassifications and OOD samples.

Experiments are conducted with previously trained VGG-16 networks on CIFAR-100. We measure

their selective classification when subject to distribution shifts by considering CIFAR-100C [176] as

OOD dataset. This dataset is constructed by corrupting the original CIFAR-100 test set. There

is a total of 15 types of corruptions, which can be grouped into four families, namely noise, blur,

weather and digital. Each corruption comes with five different levels of severity. While this dataset is

commonly used to measure robustness to distribution shift, we focus here on models’ ability to reject

these samples along with misclassifications made on the original CIFAR-100 test set.

The results are reported by corruption families (noise, blur, weather and digital) in Section 5.5.3

and further detailed in Section B.2.3. One common observation regardless of the criterion is that

selective classification is harder when subject to noise perturbations than other types of perturbation.

In each case, KLoSNet and ConfidNet obtain the best performances. For instance, for weather
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perturbations on CIFAR-10-C, KloSNet achieves 42.7% AURC and ConfidNet 43.4% AURC. In

particular, KloSNet outperforms every other method for blur, weather and digital perturbations

of CIFAR-100-C. Hence, when subject to an unforeseen distribution shift, a model equipped with

KLoSNet provides more accurate uncertainty estimates without sacrificing predictive performances.

Note that for noise corruptions, the results depend widely on the run, which makes interpretation

more difficult.

5.5.4 Impact of Adversarial Perturbations

In the original papers, ODIN and Mahalanobis preprocess inputs by adding small inverse

adversarial perturbations to reinforce networks in their prediction; this has also the observed benefit

to make in-distribution and out-of-distribution samples more separable. The tuning of the adversarial

noise’s magnitude depends on the evaluated OOD data.

In Fig. 5.12a, we plot the AUC of each detection task with different values of perturbation

magnitude ε with ODIN, Mahalanobis and KLoS, using SVHN as OOD dataset. Even though there

exists a particular noise value for improved OOD detection (Fig. 5.12a, middle), increasing noise

magnitude deteriorates performances in misclassification detection (Fig. 5.12a, left) for each method.

The best results on the simultaneous detection task (Fig. 5.12a, right) correspond to ε = 0, as done

in experiments presented in previous sections.

Except with SVHN, adversarial perturbations are detrimental even to OOD detection. We

report the AUC results of varying adversarial perturbations on CIFAR-10 dataset when using LSUN

(Fig. 5.12b), TinyImageNet (Fig. 5.12c) and STL-10 (Fig. 5.12d) as OOD datasets. The best results

on each considered task correspond to ε = 0 and KLoS outperforms both Mahalanobis and ODIN.

As opposed to results with SVHN as OOD dataset, we did not observe improvements on any method

(ODIN, Mahalanobis and KLoS) when using inverse adversarial perturbations for OOD detection with

LSUN, TinyImageNet and STL-10 datasets. Similar results are observed in [112] (Appendix B, Fig. 8)

when using WideResNet architectures.

5.5.5 Effect of training with out-of-distribution samples

Previous results demonstrate that simultaneous detection of misclassifications and OOD samples

can be significantly improved by KLoSNet. We now investigate settings where OOD samples are

available. We train an evidential model to minimize the reverse KL divergence [135] between the model

output and a sharp Dirichlet distribution focused on the predicted class for in-distribution samples,

and between the model output and a uniform Dirichlet distribution for OOD samples. This loss

induces low concentration parameters for OOD data and improves second-order uncertainty measures

such as Mut. Inf

The literature on evidential models only deals with an OOD training set somewhat related to the

in-distribution dataset, e.g. CIFAR-100 for models trained on CIFAR-10. Despite semantic differences,

CIFAR-10 and CIFAR-100 images were collected the same way, which might explain the generalisation

to other OOD samples in evaluation.
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(a) CIFAR-10 / SVHN

(b) CIFAR-10 / LSUN

(c) CIFAR-10 / TinyImageNet

(d) CIFAR-10 / STL-10

Figure 5.12: Effect of inverse adversarial perturbations on OOD-designed measures and KLoS for
misclassification detection, OOD detection and simultaneous detection with VGG-16 architecture.

92



5.5. EXPERIMENTS

Figure 5.13: Effect of OOD training data on precision α0. Density plots for CIFAR-10/TinyImageNet
benchmark: (a) without OOD training data, (b,c) with inappropriate OOD samples (SVHN, LSUN);
(d) with close OOD samples (CIFAR-100).

Contrarily, CIFAR-10 objects and SVHN street-view numbers differ more for instance. In Fig. 5.14,

we vary the OOD training set and compare the uncertainty metrics taken from the resulting models.

(a) Mis. detection (b) OOD detection (c) Mis.+OOD detection

Figure 5.14: Comparative detection results with different OOD training datasets. While using OOD
samples in training improves performance in general, the gain varies widely, sometimes even being
negative for inappropriate OOD samples e.g., SVHN. KLoS remains the best measure in every setting.
Experiment with VGG-16 architecture on CIFAR-10 dataset.

As expected, using CIFAR-100 as training OOD data improves performance for every measure

(MCP, Mut. Inf. and KLoS). However, the boost provided by training with OOD samples depends

highly on the chosen dataset: The performance of Mut. Inf. decreases from 92.6% AUC with CIFAR-

100 to 82.9% when switching to LSUN, and even becomes worse with SVHN (78.5%) compared to

using no OOD data (80.6%). Indeed, Fig. 5.13 shows that only the CIFAR-100 dataset seems to be

effective to enforce low α0 on unseen OOD samples.

We also note that KLoS outperforms or is on par with MCP and Mut. Inf. in every setting. These

results confirm the adequateness of KLoS for simultaneous detection and extend our findings to settings

where OOD data is available at train time. Most importantly, using KLoS on models without OOD

training data yields better detection performance than other measures taken from models trained with

inappropriate OOD samples, here being every OOD dataset other than CIFAR-100.
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5.6 Conclusion

Based on evidential models, we define KLoS, a Kullback–Leibler divergence criterion defined

on the class-probability simplex. By design, KLoS encompasses both class confusion and evidence

information, which is necessary for open-world recognition. We adapt our learning confidence approach

to evidential models and proposed KLoSNet, an auxiliary model to estimate the uncertainty of a

classifier for both in-domain and out-of-domain inputs. KLoSNet is trained to predict the KLoS∗ value

of a prediction. Our experiments extensively demonstrate its effectiveness across various architectures,

datasets and configurations, and reveal its class-wise divergence-based behavior. We also show that,

far from being the panacea, using training OOD samples depends critically on the choice of these

samples for existing uncertainty measures. KLoS, on the other hand, is more robust to this choice and

can alleviate their use altogether.
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Chapter 6

Conclusion and Perspectives

We first summarize the contributions that we proposed in this thesis before discussing interesting

directions for future work.

6.1 Summary of contributions

The main contribution of this thesis is to use an auxiliary confidence model to learn prediction

confidence from deep neural networks in classification. Given a trained classification model, the

confidence model learns from data to estimate an adequate criterion derived from the classifier,

such as the true class probability for standard neural networks and KLoS for evidential models. At

test time, we directly use the confidence model’s output as our uncertainty estimate. One major

benefit of this method is to be architecture-agnostic: in our experiments, we successfully improve

uncertainty estimation for classification models with different deep learning architectures (MLP,

LeNet, VGGs, ResNets). We applied our approach on three tasks: failure prediction (Chapter 3),

unsupervised domain adaptation for semantic segmentation (Chapter 4), and simultaneous detection

of in-distribution errors and out-of-distribution samples (Chapter 5). For each task, there are two

main challenges to address: (1) which criterion should we use, and (2) how to efficiently train the

confidence model.

Failure prediction with learned confidence. Chapter 3 starts by detailing the fundamental

limit of maximum class probability (MCP), which yields over-confident uncertainty estimates for

misclassifications. We define the true class probability (TCP) as an alternative measure which provides

a better ranking between correct predictions and misclassifications than MCP. As the true class is

unknown at test time, we introduce ConfidNet, an auxiliary confidence neural network trained to

learn TCP from data. ConfidNet consists in a small decoder neural network composed of several

dense layers and initially sharing the same ConvNet encoder as the classification model. ConfidNet’s

learning scheme consists in training the auxiliary network to regress TCP values and then enabling the

fine-tuning of its encoder by decoupling it from the classification’ encoder. We were able to improve

the capacity of the model to distinguish correct from erroneous samples and to achieve better selective
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classification with many different architectures and for each image classification experiment. In the

long history of classifiers with a reject option, our contribution on learning a model’s confidence can be

seen as a specific case of selective classification, where the selection function is based on an independent

neural network to define the underpinning confidence-rate.

Selection of confident pseudo-labels for domain adaptation. Chapter 4 shows that reliable confidence

estimates are key to improve self-training approaches in domain adaptation. We transpose the idea

of learning confidence via an auxiliary model and we select relevant pixels for pseudo-labeling based

on confidence estimates output by this auxiliary model. In a manner analogous to ConfidNet, we

learn to regress to TCP from training data. The proposed adaptation of our original approach to

this new context, termed ConDA, involves an ‘atrous’ pyramidal pooling architecture with structured

output to perform multi-scale confidence estimation and we adopt an adversarial learning scheme

which enforces alignment between confidence maps in source and target domains. Results showed

significant improvements from strong baselines in each benchmark.

Detecting errors and out-of-distribution samples with evidential models. Finally, we extend our

learning confidence via auxiliary models to the context of simultaneous detection of in-distribution

errors and out-of-distribution samples. It first requires defining a criterion that captures aleatoric

and epistemic uncertainty in a single score. As a Bayesian approach, evidential models enrich

uncertainty representation with evidence information and allows one to fulfill the previous requirement

by deriving second-order measures on the class-probability simplex. Consequently, we defined KLoS,

a KL divergence criterion between a model’s output and a class-wise prototype Dirichlet distribution

focused on the predicted class. By design, KLoS encompasses both class confusion and evidence

information, thanks to its class-wise divergence-based behavior. An auxiliary model, KLoSNet, is then

trained to predict a refined criterion, KLoS*, measuring KL divergence with a prototype based on the

true class of an input. Across various architectures, datasets and configurations, KLoSNet improves

performance on the joint detection and reveals itself to be more robust to the type of OOD samples

in scenarios allowing this type of auxiliary training data.

6.2 Perspectives for future work

Let us now discuss interesting directions that could be addressed in future work in relation to our

contributions.

6.2.1 Error data generation to ease confidence learning

Confidence learning showed significant improvements over strong baselines in uncertainty

estimation for each considered work. Nevertheless, the training of the auxiliary model depends on

the quality of the dataset, i.e. the number of errors available. Modern neural networks are over-

parameterized and tend to over-fit training data, hence achieving high accuracy on training sets and
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leaving only a small fraction of misclassified samples. We believe this data imbalance issue mitigates

performance in confidence learning. In Chapter 3, we experimented training ConfidNet on a hold-

out dataset. We observed a general performance drop when using a validation set for training TCP

confidence. The drop is especially pronounced for small datasets (MNIST). Consequently, with a

high accuracy and a small validation set, we do not get a larger absolute number of errors using the

validation set compared to the train set. In preliminary experiments, we also tried a weighted MSE

loss (and a weighted binary cross-entropy) where the cost of wrong TCP estimates were higher for

misclassifications than for correct predictions. But it did not result in improved performance either.

To mitigate the imbalance issue, another solution would be to artificially generate errors.

Adversarial perturbations [114, 131] are small perturbations to the input that are almost imperceptible

to humans but which fool a neural network, hence switching a correct prediction to an erroneous one.

A combined set of genuine and adversarial inputs would help to re-balanced training. Mix-up [177],

and more generally aggressive data augmentation techniques such as AugMix [178] and CutMix [179]

have been shown to improve robustness and could be also applied here to generate samples with mixed

probabilities, hence providing a larger range of TCP values for confidence training.

6.2.2 Confidence learning of an ensemble

As a simple alternative to fully Bayesian methods, ensembles have been a popular research topic

within probabilistic methods [180, 181, 53]. With deep neural networks, not only they improved

generalization but they also outperformed other Bayesian methods and a single model in uncertainty

estimation [54]. In particular, diversity between individual NN’s predictions allows an ensemble to

better capture epistemic uncertainty: the more diverse predictions are, the more the model is uncertain

about this input. Measures such as mutual information can be derived to evaluate this diversity. Yet,

when it comes to failure prediction, previous methods rely on averaging the predictions into a single

probability vector and deriving usual measures such as MCP and entropy.

Chapter 3 proposed to improve failure prediction only on a single model as the auxiliary confidence

model should be initially attached to an intermediate representation of the classifier. An interesting

direction should be to combine the idea of confidence learning to the context of ensembles. The

straightforward solution would be to train an auxiliary model to regress the TCP value of the average

probability vector. But preliminary experiments showed difficulties in converging to regress such

averaged values as each individual model behaves differently and we cannot rely on initialized weights

from one arbitrary model. One could try to attach an auxiliary model to each member of the ensemble

and train them separately before averaging outputs of all confidence models. A clever approach would

imply leveraging the diversity in predictions to refine the criterion to estimate during confidence

learning.

6.2.3 Generative models for out-of-distribution detection

In Chapter 5, we highlighted the class-wise density estimator behaviour of KLoS, which is a

crucial property in the absence of OOD training data to improve the simultaneous detection of
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misclassifications and OOD samples. Along with this contribution, our experiments also revealed

that while performance of existing uncertainty measures are considerably improved by using training

OOD samples, it also critically depends on the choice of these samples (Section 5.5.5).

Among methods using OOD samples when training deep classifier, Hendrycks et al. [115] propose

to learn to classify in-distribution samples while producing high predictive entropy for OOD samples:

LOE(θ,D) = E(x,y)∼pin

[︁
log p(y|x,θ)

]︁
+ λEx̃∼pout

[︁
H[p(y|x̃,θ)]

]︁
. (6.1)

Accordingly, they use predictive entropy to discriminate between in-distribution samples and OOD

samples. It relies on the availability of a large OOD dataset, for instance 80 Million Tiny Images1

with CIFAR-10 or CIFAR-100 as in-distribution dataset. With evidential models, multiple works

[57, 135, 171] proposed a similar approach by enforcing OOD samples to have low precision α0:

LRKL(θ; D) = E(x,y)∼pin

[︁
KL

(︁
Dir(π|α(x,θ) ∥ Dir(π|βin)

)︁]︁
+ λEx̃∼pout

[︁
KL

(︁
Dir(π|α(x,θ) ∥ Dir(π|1)

)︁]︁
.

(6.2)

Figure 6.1: Illustration of
ideal OOD training data

on a toy dataset.

The uncertainty measure used for OOD detection in that case is a

dispersion measure, such as mutual information or precision.

Previous methods have been shown to be really effective to improve

OOD detection. But while finding suitable OOD samples may be easy

for some academic datasets, it may turn more problematic in real-world

applications [116, 117], with the risk of degrading performance with an

inappropriate choice.

Building a suitable OOD training set for real tasks is an open research

perspective which could alleviate the need for real but hard-to-find OOD

samples. To ensure good generalization to other types of anomalies, the

main challenge is to produce samples which are close to the in-distribution,

even at the boundary such as for the toy dataset shown in Fig. 6.1.

Generative models such as proposed in [182, 117, 183] could be an interesting solution to fulfill this

problem.

6.2.4 Further applications of confidence learning

In an analogous way to Chapter 4, the confidence learning approach could be applied to new

contexts where the quality of uncertainty estimates is crucial.

Application to semi-supervised learning. Unfortunately, the efficacy of deep neural networks depends

on large quantities of accurately labeled training data. But the labeling process usually requires

arduous and expensive efforts, which is one of the major limitations to train a fully-supervised deep

neural network. If only a few labeled samples are available, it is challenging to build a successful ML

system. In contrast, unlabeled data is usually abundant and can be easily or inexpensively obtained.

1https://groups.csail.mit.edu/vision/TinyImages/
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Semi-supervised learning (SSL) [184] is a learning paradigm that aims to improve learning performance

from labeled data by using additional unlabeled instances. A family of approaches for SSL [37, 163]

proposed to infer pseudo-labels on unlabeled data and to re-train a network using these pseudo-labels.

The key is to select the most confident labels. Obviously, due to the close connection between domain

adaptation and semi-supervised learning methods, a natural extension to ConDA is to apply it in the

latter context.

Application to active learning. An alternative to semi-supervised learning is active learning in

which data are actively sampled to be labeled by human oracles with the goal of maximizing model

performance while minimizing labeling costs. Various sampling strategies have been proposed for active

learning over the years coming from different perspectives, e.g. uncertainty [39] and representativeness

[185]. Uncertainty-based methods are based on measures derived from the probability vector, such as

entropy, MCP or margin sampling. Confidence learning could improve the selection of useful samples,

such as done in a related work where the authors aim to learn the loss value [186].

Application to multi-modal fusion. The joint operation of several types of sensors is a key part of

autonomous driving systems. Currently, the majority of systems are based on a late fusion due to safety

reasons such as redundancy but also due to technical (vehicle network architecture) or commercial (use

of several suppliers) constraints. As mentioned in Chapter 1, early multi-modal fusion could benefit

from reliable uncertainty estimates. A system could rely more on a certain sensor or discard predictions

from other sensors due to a low confidence estimate. On a related topic, Kendall et al. [187] showed

that multi-task learning can be improved by weighting each task by a task-dependent uncertainty

estimate. While this approach was developed for multi-output, it could be adapted in the scenario of

multi-input and with confidence learning.

6.2.5 From uncertainty estimation to robustness

In this thesis, we focused on deriving reliable uncertainty estimates to ensure proper monitoring of

deployed ML systems in real-world tasks. Alternatively, a whole part of AI safety literature aims to

improve the robustness of deep neural networks to distribution shift. Mismatches in data distributions

in test time compared to training time can cause a surprisingly large drop in predictive performance

[26]. Robustness to distribution shifts has recently been an increasingly popular topic among machine

learning researchers [188, 178, 189, 190]. For instance, ImageNet-trained models have been shown to

lack robustness against common corruptions [176], adversarial inputs [114], change in renditions [191]

(e.g. painting, embroidery, etc.). In contrast to the out-of-distribution samples studied in Chapter 5,

all of these input manipulations do not change the semantic content of the input, and thus, machine

learning models should not change their decision-making behavior in their presence. Consequently, the

field is also sometimes referred to out-of-distribution generalization [192]. A long-term perspective for

this thesis is to leverage the tools developed for uncertainty estimation to improve out-of-distribution

generalization.
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Résumé de la Thèse

Introduction

Depuis la victoire éclatante d’AlexNet [4], une architecture de réseau de neurone convolutif, au

Large Scale Visual Recognition Challenge (LSVRC) en 2012, l’apprentissage profond est omniprésent

dans les domaines de la vision par ordinateur [5, 6, 7], du traitement du langage naturel [8, 9], de

la reconnaissance vocale [10, 11] et de l’apprentissage par renforcement [12]. Les récentes percées en

vision par ordinateur grâce à l’apprentissage profond expliquent aussi en grande partie le spectaculaire

renouveau de la conduite autonome avec des acteurs technologiques majeurs comme Waymo, Tesla,

Baidu et Yandex investissant dans des programmes de voitures autonomes. En tant qu’un des leaders

mondiaux des capteurs automobiles, Valeo, qui finance cette thèse, se positionne au cœur de cette

révolution actuelle, en développant des LiDAR de haute qualité avec leur technologie SCALA®.

Si ces progrès sont indéniables, les robotaxis ne sont toujours pas déployés au moment de la

rédaction de ce manuscrit et de nombreux défis doivent encore être résolus pour commercialiser la

voiture autonome à grande échelle, notamment ceux liés à la sécurité. Les accidents survenant avec

des voitures autonomes sont des exemples typiques où les répercussions peuvent être catastrophiques.

Un exemple frappant est l’incident tragique qui s’est produit le 7 mai 2016 près de Williston (Floride,

États-Unis) et qui a entrâıné le premier décès causé par une voiture à assistance de conduite hautement

automatisée [32]. Le constructeur automobile Tesla a déclaré qu’une des origines de l’accident était

liée au système de vision qui avait incorrectement classé le côté blanc d’un camion-remorque comme un

ciel éblouissant2. Le contrôle et la correct évaluation de la confiance du système dans ses prédictions

semblent être plus que nécessaires pour déployer en toute sécurité des modèles d’apprentissage dans

des environnements à fort enjeux [34].

L’estimation de la confiance a une longue histoire en apprentissage automatique [41, 42, 43, 44].

Pourtant, une série de travaux récents ont montré que les réseaux de neurones (NNs) modernes

souffrent de plusieurs inconvénients conceptuels qui les rendent peu fiables [45, 46, 40, 47, 48]. En

classification, ils peinent à détecter les prédictions erronées [45] et produisent des probabilités non

calibrées [49]. Les NNs sont également connus pour être fragiles aux changements de distribution

[26], leurs performances de prédiction diminuant sévèrement car ils ont tendance à s’appuyer sur

des corrélations parasites [30]. Enfin, de nombreux travaux ont montré que les NNs fournissent des

prédictions trop confiantes pour des échantillons loins des données d’entrâınement [48], y compris des

2https://www.tesla.com/blog/tragic-loss
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images trompeuses [46] ou adverses [50].

Dans cette thèse, nous relevons le défi de fournir des estimations d’incertitude fiables pour les

prédictions des réseaux de neurones profonds avec application en conduite autonome. En particulier,

nous cherchons à améliorer la détection des prédictions erronées au moment du test en les distinguant

des prédictions correctes. Les erreurs peuvent être de différentes natures et les contributions suivantes

aborderont tout d’abord la tâche de détection d’erreur de classification. En plus de la détection de ces

exemples au moment du test, nous élaborons également sur l’utilisation de l’approche proposée dans

le cas de l’adaptation au domaine, où les approches d’auto-formation s’appuient sur les estimations

d’incertitude pour sélectionner les échantillons dans la phase de ré-étiquetage. Enfin, nous considérons

la présence d’anomalies et proposons de détecter simultanément les erreurs et les échantillons hors

distribution à l’aide d’une seule mesure.

Apprentissage de confiance via un modèle auxiliaire

La prédiction d’échec consiste à prédire à l’exécution si un modèle entrâıné a pris une décision

correcte ou non pour une entrée donnée. En détectant une prédiction erronée, un système peut décider

de s’en tenir à la prédiction ou, au contraire, de la transmettre à un humain ou à un système de secours

avec d’autres capteurs, ou simplement de déclencher une alarme. Étroitement liée à la prédiction

d’échec, la classification avec option de rejet [41], également connue sous le nom de classification

sélective. [44], consiste en un scénario où le classifieur a la possibilité de rejeter une instance au lieu

de prédire son étiquette. Ces deux tâches renvoient au même problème de classement ordinal, qui vise

à estimer les valeurs de confiance dont le classement des échantillons est efficace pour distinguer les

prédictions correctes des prédictions incorrectes (voir Fig. 3.1).

Une méthode de référence largement utilisée avec les classifieurs de type réseaux de neurones

consiste à prendre la valeur de la probabilité de la classe prédite, à savoir la probabilité de classe

maximale (MCP), donnée par la sortie de la couche softmax :

MCPF (x) = max
k∈Y

P (Y = k|x, θ̂) = max
k∈Y

F (x; θ̂)[k]. (6.3)

Cependant, en prenant la plus grande probabilité softmax comme estimation de confiance, MCP

conduit à des valeurs de confiance élevées à la fois pour les prédictions correctes et erronées, ce qui

rend difficile de leur distinction, comme le montre Fig. 3.3a. Prendre l’entropie prédictive comme

mesure d’incertitude n’est également pas adéquat. Dans Fig. 3.2, nous montrons côte à côte deux

échantillons présentant une entropie similaire, issus d’un petit réseau convolutif entrâıné sur SVHN,

un jeu de données de numérotation urbaines[36].

Probabilité de la Vrai Classe. Lorsque le modèle classifie mal un exemple, la probabilité associée à

la vraie classe y est inférieure à la probabilité maximale et risque d’être petite. Sur la base de cette

simple observation, nous proposons de considérer plutôt cette probabilité de la vrai classe comme une

mesure de confiance appropriée.

TCPF (x, y) = P (Y = y|x, θ̂) = F (x; θ̂)[y]. (6.4)
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Dans Fig. 3.3, nous pouvons observer que TCP permet une bien meilleure séparation que MCP.

En particulier, TCP offre les intéressantes garanties suivantes concernant sa capacité à caractériser les

prédictions correctes ou erronées d’un modèle.

• TCPF (x, y) > 1/2 ⇒ f(x) = y, i.e. l’exemple est correctement classé par le modèle ;

• TCPF (x, y) < 1/K ⇒ f(x) ̸= y, i.e. l’exemple est mal classé par le modèle,

Dans l’intervalle [1/K, 1/2], rien ne garantit que les prédictions correctes et incorrectes ne se

chevauchent pas en termes de TCP. Cependant, nous observons qu’avec des réseaux neuronaux

profonds, la zone de chevauchement réelle est extrêmement petite en pratique, comme l’illustre

Fig. 3.3b sur le jeu de données CIFAR-10. Une explication possible vient du fait que les réseaux

neuronaux profonds modernes produisent des prédictions trop confiantes et donc des probabilités non

calibrées.

ConfidNet. L’utilisation du TCP comme mesure de confiance sur la sortie d’un modèle serait d’une

grande aide lorsqu’il s’agit d’estimer de manière fiable sa confiance. Cependant, la vraie classe y n’est

évidemment pas disponible lors de l’estimation de la confiance sur les entrées de test. Nous proposons

donc d’apprendre la confiance TCP à partir des données. À cette fin, nous introduisons un modèle

auxiliaire C, avec des paramètres ω, qui est destiné à prédire TCPF et à agir comme une mesure

de confiance pour la fonction de sélection g. Un aperçu de l’approche proposée est disponible dans

Fig. 3.4. Ce modèle est entrâıné de telle sorte qu’au moment de l’exécution, pour une entrée x ∈ X
avec l’étiquette vraie (inconnue) y, nous avons :

C(x;ω) ≈ TCPF (x, y). (6.5)

En pratique, ce modèle auxiliaire C est un réseau de neurone entrâıné sous supervision complète

sur D pour produire cette estimation de confiance. Pour concevoir ce réseau, nous pouvons

transférer les connaissances du réseau de classification déjà entrâıné. Nous construisons ConfidNet

sur une représentation intermédiaire tardive de F . ConfidNet est conçu comme un petit perceptron

multicouche composé d’une succession de couches denses avec une activation sigmöıde finale qui produit

C(x;ω) ∈ [0, 1]. Comme nous voulons régresser un score entre 0 et 1, nous utilisons une fonction de

perte d’erreur quadratique moyenne pour entrâıner le modèle de confiance :

Lconf(ω; D) = 1
N

N∑︂
n=1

(︁
C(xn;ω) − TCPF (xn, yn)

)︁2
. (6.6)

Nous décomposons les paramètres du réseau de classification F en θ = (θE ,θcls), où θE désigne

les poids de son encodeur et θcls les poids de ses dernières couches de classification. Comme dans

l’apprentissage par transfert, l’apprentissage du réseau de confiance C commence par fixer l’encodeur

partagé et n’entrâıner que les poids φ de ConfidNet. Dans cette phase, la fonction de perte Eq. (3.15)

est donc minimisée uniquement par rapport à ω = φ. Dans une deuxième phase, nous affinons le

réseau complet C, y compris son encodeur qui est maintenant délié de l’encodeur de classification
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E (le modèle de classification principal doit rester inchangé, par définition du problème traité). En

désignant par E′ cet encodeur désormais indépendant, et par θE′ ses poids, cette seconde phase

d’apprentissage optimise Eq. (3.15) en fonction de ω = (θE′ ,φ) avec θE′ initialement fixé à θE . Nous

désactivons également les couches de dropout dans cette dernière phase d’apprentissage et réduisons la

vitesse d’entrainement afin d’atténuer les effets stochastiques qui pourraient amener le nouvel encodeur

à trop s’écarter de l’encodeur original utilisé pour la classification. L’augmentation des données peut

donc encore être utilisée. ConfidNet peut être entrâıné en utilisant soit l’ensemble d’entrâınement

original, soit un ensemble de validation.

Expériences. Pour démontrer l’efficacité de notre méthode, nous avons implémenté et comparé des

approches concurrentes d’estimation de la confiance et de l’incertitude, notamment la probabilité de

classe maximale (MCP) comme méthode de référence [45], TrustScore [146] et Monte-Carlo Dropout

(MC-Dropout) [40]. Les comparaisons sont effectués sur des jeux de données d’images d’échelle et de

complexité variables : MNIST [149], SVHN [36], CIFAR-10 et CIFAR-100. Nous présentons également

des expériences de segmentation sémantique sur CamVid [150], un jeu de données standard de scènes

de conduite. Les architectures profondes de classification suivent les architectures standarement

utilisées en classification d’images, telles que les architectures de perceptron multicouche (MLP),

LeNet et VGG16. Pour CamVid, nous avons implémenté un modèle de segmentation sémantique

SegNet, suivant [47]. Enfin, nous mesurons la qualité de la prédiction des défaillances en suivant

les métriques utilisées dans la littérature [45] : AUPR-Error, AUPR-Success, FPR at 95% TPR et

AUROC. Nous nous concentrerons principalement sur l’AUPR-Error, qui calcule l’aire sous la courbe

Précision-Rappel en utilisant les erreurs comme classe positive.

Les résultats comparatifs montrent que notre approche surpasse les méthodes usuelles dans toutes

les configurations, avec un écart significatif sur les petits modèles et jeux de données. Cela confirme

à la fois que le TCP est un critère de confiance adéquat pour la prédiction des défaillances et que

notre approche ConfidNet est capable de l’apprendre. Nous fournissons une illustration sur CamVid

(Fig. 3.9) pour mieux comprendre notre approche pour la prédiction de défaillance. Par rapport à la

méthode de base MCP, notre approche produit des scores de confiance plus élevés pour les prédictions

de pixels corrects et plus faibles pour les pixels mal étiquetés, ce qui permet à l’utilisateur de mieux

détecter les zones d’erreurs.

Auto-apprentissage avec confiance apprise pour l’adaptation de domaine

Les systèmes de perception des voitures autonomes nécessitent une compréhension approfondie

des scènes dans lesquelles ils évoluent. Pour cette raison, des modules de segmentation sémantique

sont souvent incorporés afin d’obtenir des prédictions d’étiquettes de classe pour chaque pixel de

la scène. Bien que les récents progrès des réseaux convolutifs profonds aient considérablement

amélioré les performances de segmentation, leur efficacité dépend de grandes quantités de données

d’entrâınement étiquetées avec précision. Mais le processus d’étiquetage nécessite généralement
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l’intervention d’experts et le coût de l’annotation limite les domaines opérationnels de ces systèmes.

D’un autre côté, de nombreuses données de scènes de conduite sont synthétisées par des moteurs de

jeux tels que GTA5 [152]. Par conséquent, des travaux récents tentent d’exploiter cette supervision

alternative bon marché en entrâınant des modèles sur ces sources d’images et en prédisant sur des

images réelles. Mais le transfert n’est pas directement efficace car on observe une baisse de performance

lors de l’évaluation sur des images réelles, due à un gap entre les domaines.

L’adaptation de domaine non supervisée (UDA) est le domaine de recherche qui vise à réduire cet

écart de domaine entre les domaines source et cible. Dans le contexte de l’UDA, des échantillons sources

annotés et des images cibles non étiquetées sont disponibles au moment de l’entrainement. La plupart

des travaux de cette ligne de recherche visent à minimiser l’écart de distribution entre le domaine source

et le domaine cible, au niveau des features extraites ou de la prédiction [153], potentiellement combiné à

des méthodes de translation transformant les images sources pour qu’elles correspondent au ‘style’ [156]

du domaine cible. Récemment, l’auto-formation [38, 157, 158] a prouvé sa capacité à augmenter les

performances d’adaptation de manière significative. Le principe de ces approches est d’étiqueter

automatiquement les pixels cibles les plus confiants selon la prédiction actuelle du réseau et de ré-

entrainer le réseau en conséquence. Bien que cette idée soit séduisante, la présence de pseudo-étiquettes

avec du bruit ou incorrectes pourrait nuire à l’entrainement du réseau de neurones. À titre d’exemple,

l’utilisation d’un ratio de 70% de pseudo-étiquettes dans [38] conduit à une performance d’environ 48%
mIoU, ce qui est mieux que 34% avec le transfert direct (uniquement entrainé sur le domaine source),

mais toujours largement inférieur aux 63% obtenus avec la même quantité d’étiquettes de terrain. Par

conséquent, la définition de bonnes mesures de confiance pour sélectionner des prédictions fiables est

d’une importance cruciale pour le développement d’un auto-apprentissage sans erreur.

Pour améliorer l’efficacité de l’auto-formation, nous proposons d’adapter notre approche

d’apprentissage de confiance développée dans le chapitre précédent au contexte particulier de

l’adaptation non supervisée de domaine pour la segmentation sémantique. Un réseau de confiance

C est appris pour prédire la confiance du réseau de segmentation sémantique F entrâıné par UDA et

utilisé pour sélectionner uniquement les pseudo-étiquettes jugée confiantes sur les images du domaine

cible, comme illustré dans Fig. 4.2. À cette fin, le cadre proposé dans Section 3.3 dans une configuration

de classification d’images, et appliqué à la prédiction de classification d’images erronées, doit ici être

adapté à la sortie structurée de la segmentation sémantique, qui peut être vue comme un problème de

classification par pixels. Étant donné une image du domaine cible xt, nous voulons prédire à la fois

sa carte sémantique F (xt;θ) et, en utilisant un modèle auxiliaire avec des paramètres entrâınables ω,

sa carte de confiance :

C(xt;ω) = Cωxt
∈ [0, 1]H×W . (6.7)

Étant donné un pixel (h,w), si sa confiance Cωxt
[h,w] est supérieure à un seuil choisi δ, nous l’étiquetons

avec sa classe prédite f(xt)[h,w] = argmaxk∈Y Pθxt
[h,w, k], sinon elle est masquée. Calculées sur toutes

les images de Dt, ces cartes de segmentation incomplètes constituent des pseudo-étiquettes cibles qui

sont utilisées pour entrâıner un nouveau réseau de segmentation sémantique.
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Entrâınement. Pour entrâıner le réseau de confiance C, nous proposons d’optimiser conjointement

deux objectifs. Le premier objectif est une version pixel-à-pixel de la perte de confiance Eq. (6.6). Sur

des images annotées du domaine source, il exige que le réseau de confiance C prédise à chaque pixel

le score attribué par le classifieur F à la vraie classe (connue) :

Lconf(ω; Ds) = 1
Ns

Ns∑︂
n=1

⃦⃦
Cωxs,n

− TCPF (xs,n,ys,n)
⃦⃦2
F
, (6.8)

où ∥ · ∥F désigne la norme de Frobenius et, pour une image x avec une carte de segmentation vraie y

et une carte de segmentation prédite F (x; θ̂), on note

TCPF (x,y)[h,w] = F (x; θ̂)
[︂
h,w,y[h,w]

]︂
(6.9)

à l’emplacement (h,w). Sur une nouvelle image d’entrée, C doit prédire à chaque pixel le score que F

attribuera à la vraie classe inconnue, qui servira de mesure de confiance.

Cependant, par rapport à l’application du chapitre précédent, nous avons ici le problème

supplémentaire du gap entre les domaines source et cible, un problème qui pourrait affecter

l’entrâınement du modèle de confiance comme dans l’entrâınement du modèle de segmentation. Le

deuxième objectif concerne donc le gap entre les domaines. Alors que le réseau de confiance C apprend

à estimer le TCP sur les images du domaine source, son estimation de la confiance sur les images du

domaine cible peut souffrir considérablement de ce gap de domaine. Comme cela se fait classiquement

dans l’UDA, nous proposons un apprentissage adversarial de notre modèle auxiliaire afin de résoudre

ce problème. Plus précisément, nous voulons que les cartes de confiance produites par C dans le

domaine source ressemblent à celles obtenues dans le domaine cible.

Un discriminateur D : [0, 1]H×W → {0, 1}, avec les paramètres ψ, est entrâıné simultanément avec

C dans le but de reconnâıtre le domaine (1 pour la source, 0 pour la cible) d’une image étant donné

sa carte de confiance. La fonction de perte suivante est minimisée par rapport à ψ :

LD(ψ; Ds ∪ Dt) = 1
Ns

Ns∑︂
n=1

Ladv(xs,n, 1) + 1
Nt

Nt∑︂
n=1

Ladv(xt,n, 0), (6.10)

où Ladv désigne la perte d’entropie croisée du discriminateur basé sur les cartes de confiance :

Ladv(x, λ) = −λ log
(︁
D(Cωx ;ψ)

)︁
− (1 − λ) log(1 −D

(︁
Cωx ;ψ)

)︁
, (6.11)

pour λ ∈ {0, 1}, qui est fonction à la fois de ψ et de ω. En alternance avec l’apprentissage du

discriminateur à l’aide de Eq. (6.10), l’apprentissage adversarial du réseau de confiance est effectué en

minimisant, par rapport à ω, la fonction de perte suivante :

LC(ω; Ds ∪ Dt) = Lconf(ω; Ds) + λadv
Nt

Nt∑︂
n=1

Ladv(xt, 1), (6.12)

où le deuxième terme, pondéré par λadv > 0, encourage C à produire des cartes dans le domaine cible

qui confondront le discriminateur.
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Le schéma d’apprentissage adversarial de confiance proposé agit également comme un régulateur

pendant la formation, améliorant la robustesse de la confiance de la cible TCP inconnue. Comme

l’apprentissage du modèle de confiance peut en fait être instable, l’apprentissage adversarial fournit

un signal d’information supplémentaire, imposant en particulier que l’estimation de la confiance

soit invariante aux changements de domaine. Nous observons empiriquement que cet apprentissage

adversarial de la confiance fournit de meilleures estimations de la confiance et améliore la convergence

et la stabilité du schéma d’apprentissage.

Architecture multi-échelle. Dans de nombreux jeux de données de segmentation, l’existence d’objets

à des échelles différentes peut compliquer l’estimation de la confiance. Comme dans les travaux récents

traitant d’échelles variables des objets [7], nous améliorons encore notre réseau de confiance C en

ajoutant une architecture multi-échelle basée sur le regroupement spatial pyramidal. Cette architecture

consiste en un schéma efficace en termes de calcul pour ré-échantillonner une carte de caractéristiques

à différentes échelles, puis pour agréger les cartes de confiance. Nous illustrons l’architecture multi-

échelle pour un réseau de confiance dans Fig. 4.4. À partir d’une carte de features, nous appliquons en

parallèle des couches convolutives à trous avec des noyaux de taille 3x3 et des taux d’échantillonnage

différents, chacune d’entre elles étant suivie d’une série de quatre couches convolutives standardes avec

des noyaux de taille 3x3. Contrairement aux couches convolutionnelles avec de grands noyaux, les

couches de convolution à trous élargissent le champ de vision des filtres et permettent d’incorporer un

contexte plus large sans augmenter le nombre de paramètres et le temps de calcul. Les caractéristiques

résultantes sont ensuite additionnées avant d’être sur-échantillonnées à la taille de l’image originale de

H ×W . Nous appliquons une activation sigmöıde finale pour obtenir une carte de confiance avec des

valeurs comprises entre 0 et 1.

Expériences. Nous considérons la tâche spécifique d’adaptation de données synthétiques à des

données réelles dans des scènes urbaines. Nous expérimentons avec deux jeux de données sources

synthétiques – SYNTHIA [165] et GTA5 [152]. – et deux ensembles de données cibles réelles :

Cityscapes [77] et Mapillary Vistas [14]. Nous évaluons la méthode d’auto-apprentissage proposée sur

trois architectures d’adaptation de domaine état de l’art (au moment du projet): AdaptSegNet [154],

AdvEnt [155], DADA [159]. Elles sont toutes basées sur DeepLabv2 [7], un réseau de segmentation

sémantique standard. ConDA apporte une amélioration systématique des performances par rapport

à l’auto-formation basée sur la probabilité de classe maximale (MCP) standard. Fig. 4.7 présente

les résultats qualitatifs de ces méthodes de pseudo-étiquetage. En particulier, ConDA obtient des

résultats état de l’art (au moment du projet) sur trois benchmarks de segmentation UDA (GTA5

→ Cityscapes, SYNTHIA ▷Cityscapes et SYNTHIA ▷Mapillary Vistas) en utilisant le réseau de

segmentation standard DeepLabv2 [7] comme backbone.
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Détection conjointe d’erreurs et d’anomalies avec les modèles évidentiels

Les modèles d’apprentissage automatique reposent généralement sur l’hypothèse que les données

source et cible sont indépendantes et identiquement distribuées (i.i.d.). Pourtant, dans la pratique, les

changements de distribution apparaissent naturellement dans de nombreux scénarios du monde réel.

Par exemple, les voitures autonomes ont du mal à être performantes dans des conditions différentes

de celles de l’entrainement, comme les variations de météo [167], de lumière [168] et de pose d’objets

[169]. Pire encore, les modèles peuvent être exposés à des entrées provenant de classes non vues qu’ils

tenteront de prédire malgré tout. Ces échecs peuvent passer inaperçus car ils n’entrâınent pas d’erreurs

explicites dans le modèle.

Alors que les travaux précédents de la littérature traitent séparément de la détection des erreurs

de classification et de la détection des entrées hors distributions (OOD), nous soutenons qu’il est

nécessaire pour un système de reconnaissance d’être capable d’identifier à la fois les erreurs de

classification et les entrées inconnues/invisibles au moment du test pour un déploiement sûr dans

des environnements ouverts [110]. Nous illustrons cette tâche dans Fig. 5.1. En particulier, nous

constatons dans Section 5.5 que toutes les approches précédentes ne sont pas aussi performantes sur

les deux tâches de détection, ce qui atténue leur capacité sur la tâche de détection conjointe.

Pour répondre à la tâche de détection simultanée des mauvaises classifications et des échantillons

OOD, une bonne mesure d’incertitude devrait discriminer les prédictions correctes et les prédictions

erronées pour les échantillons issus de la même distribution que celle d’entrainement tout en

augmentant les valeurs d’incertitudes pour les entrées loin de la distribution. Par conséquent, elle

devrait capturer à la fois l’incertitude aléatoire et épistémique. Les approches bayésiennes [40, 52]

et les ensembles [53, 54] sont des méthodes qui induisent une estimation plus précise de l’incertitude

épistémique. Ces techniques produisent une densité de probabilité sur la distribution catégorielle

prédictive p(y|x,D) obtenue par échantillonnage comme le montre la ligne supérieure de Fig. 2.7.

Mais cela se fait au prix d’un coût de calcul accru.

Une classe récente de modèles, appelée réseaux de neurones évidentiel (ENN) [56, 135, 170],

propose plutôt d’apprendre explicitement les paramètres de concentration d’une distribution de

Dirichlet qθ(π|x) = Dir.
(︁
π|α

)︁
sur les probabilités de sortie. Il a été démontré qu’elles améliorent

la généralisation [170] et la détection des OOD [171]. L’apprentissage des ENN est formulé comme

une approximation variationnelle visant à minimiser la divergence de Kullback-Leibler (KL) entre la

distribution qθ(π|x) et la vraie distribution postérieure p(π|x, y). En suivant [170], nous utilisons un

prior uniforme p(π|x) = Dir
(︁
π|1

)︁
. La fonction de perte d’entrâınement d’un ENN est :

Lvar(θ; D) = 1
N

∑︂
(x,y)∈D

(︂
ψ(αy) − ψ(α0) + λKL

(︁
Dir(π|α) ∥Dir(π|1)

)︁)︂
, (6.13)

avec l’hyperparamètre λ > 0. En particulier, la minimisation de cette fonction de perte impose que

la précision de l’échantillon d’apprentissage α0 reste proche de C + 1/λ.

Basés sur le cadre de la logique subjective [96], les modèles évidentiels capturent différentes sources
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d’incertitude. L’incertitude de premier ordre concerne l’espérance de la distribution de Dirichlet et est

causée par des preuves contradictoires, par exemple la confusion entre classes. L’incertitude de second

ordre exprime le manque d’évidence dans une prédiction [101], qui est caractérisée par la dispersion de

la distribution de Dirichlet. Par exemple, les huskies partagent de nombreuses caractéristiques avec

les loups bien qu’ils soient une race de chien, ce qui entrâıne une grande incertitude du premier ordre

due à la confusion de classe. En présence d’un dessin d’un husky, on s’attend à une confusion de classe

similaire, mais à une quantité moindre de preuves en raison du changement de distribution.

De manière surprenante, les précédents travaux de la littérature n’exploitent pas la distribution

sur les probabilités sur le simplex pour dériver une telle mesure jointe des deux sources d’incertitude.

Certaines méthodes se concentrent sur la détection des OOD en caractérisant uniquement la dispersion

de la distribution, e.g., en utilisant l’information mutuelle [135]. Les approches ciblant l’incertitude

totale réduisent en fait les distributions de probabilité sur le simplexe à leur valeur en espérance et

calculent des mesures d’incertitude du premier ordre, e.g., l’entropie prédictive [56]. Cependant, ces

mesures sont invariantes à la dispersion de la distribution, alors que l’incertitude causée par la confusion

de classe et le manque de preuves devrait être cumulative, une propriété naturellement remplie par la

variance prédictive dans la régression bayésienne [98]. En outre, certaines méthodes pour les modèles

évidentiels utilisent des données auxiliaires pendant la formation afin d’imposer un étalement de

distribution plus élevé sur les entrées OOD. Mais lorsque l’accès aux données d’entrâınement OOD

n’est pas envisageable, le comportement de grande dispersion n’est pas garanti pour tous les exemples

OOD [116, 117] et les mesures d’incertitude d’ordre deux peinent à les discriminer des exemples issus

de la distributio d’entrainement.

KLoS. Nous introduisons une nouvelle mesure, appelée KLoS, qui calcule la divergence KL entre la

sortie du modèle et une distribution de Dirichlet ”peaké” avec des concentrations γŷ concentrées sur

la classe prédite ŷ :

KLoS(x) ≜ KL
(︂
Dir

(︁
π|α

)︁
∥ Dir

(︁
π|γŷ

)︁)︂
, (6.14)

où α = exp f(x,θ) sont la sortie du modèle et γŷ = (1, . . . , 1, τ, 1, . . . , 1) sont les paramètres de

concentration uniforme sauf pour la classe prédite avec τ = 1/λ+ 1.

Plus KLoS est petit, plus la prédiction est certaine. Les prédictions correctes auront des

distributions de Dirichlet similaires à la distribution de Dirichlet du prototype γŷ et seront donc

associées à un score d’incertitude faible (Fig. 5.4a). Les échantillons présentant une confusion de classe

élevée présenteront une distribution de probabilité en espérance plus proche du centre du simplex que

le prototype de classe en espérance p∗
ŷ = ( 1

K−1+τ , · · · , τ
K−1+τ , . . . ,

1
K−1+τ ), ce qui entrâıne un score

KLoS plus élevé (Fig. 5.4b). De même, KLoS pénalise également les échantillons dont la précision

α0 est différente de la précision α∗
0 = τ + K − 1 du prototype γŷ. Les échantillons dont la quantité

d’évidence est inférieure (Fig. 5.4c) et supérieure (Fig. 5.4d) à α∗
0 reçoivent un score KLoS plus élevé.

Puisque les échantillons de la distribution doivent avoir une précision proche de α∗
0 pendant

l’entrainement, les prototypes par classe sont des estimations fines des paramètres de concentration

des données d’entrainement pour chaque classe. Par conséquent, KLoS est une métrique basée sur
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la divergence, qui n’a besoin que des données de la distribution pendant l’entrainement pour calculer

ses prototypes. Ce comportement est illustré dans Section 5.5.1. La mesure proposée sera efficace

pour détecter différents types d’échantillons OOD dont la précision est loin de α∗
0. En revanche, les

mesures d’incertitude de second ordre, telles que l’information mutuelle, supposent que les échantillons

OOD ont des α0 plus petits, une propriété difficile à respecter pour les modèles entrainés uniquement

avec des échantillons issus de la distribution d’entrainement (voir Fig. 5.3). Dans Section 5.5.5, nous

explorons plus en profondeur l’impact du choix des données d’entrâınement OOD sur les valeurs réelles

de α0 pour les échantillons OOD.

KLoSNet. Lorsque le modèle classe mal un exemple, c’est-à-dire que la classe prédite ŷ diffère de la

vérité terrain y, KLoS mesure la distance entre la sortie du ENN et le postérieur p(π|x, ŷ) estimé sur

la mauvaise classe. Mesurer plutôt la distance à la distribution postérieure à la vraie classe p(π|x, y)
donnerait plus probablement une plus grande valeur, reflétant le fait que le classifieur a fait une erreur.

Ainsi, une meilleure mesure pour la détection des erreurs de classification serait :

KLoS∗(x, y) ≜ KL
(︂
Dir

(︁
π|α

)︁
∥ Dir

(︁
π|γy

)︁)︂
, (6.15)

où γy correspond aux concentrations uniformes sauf pour la vrai classe y avec τ = 1/λ+ 1.

Évidemment, la vraie classe d’une prédiction n’est pas disponible lors de l’estimation de la confiance

sur des échantillons de test. Nous proposons d’apprendre KLoS∗ en introduisant un réseau de neurone

auxiliaire de confiance, appelé KLoSNet, avec des paramètres ω, qui produit une prédiction de

confiance C(x,ω). KLoSNet consiste en un petit décodeur, composé de plusieurs couches denses

attachées à l’avant-dernière couche du réseau de classification original. Pendant l’apprentissage, nous

cherchons ω tel que C(x,ω) soit proche de KLoS∗(x, y), en minimisant

LKLoSNet(ω; D) = 1
N

∑︂
(x,y)∈D

⃦⃦
C(x,ω) − KLoS∗(x, y)

⃦⃦2
. (6.16)

Expériences. Nous avons évalué notre approche sur la tâche de détection simultanée des mauvaises

classifications et des échantillons OOD par rapport à diverses méthodes de référence, y compris

les métriques d’incertitude de premier et de second ordre, les méthodes de post-entrainement pour

la détection OOD [112, 113]) et notre précédent travail ConfidNet. Les prédictions correctes sont

considérées comme des échantillons positifs tandis que les entrées mal classées et les exemples OOD

constituent des échantillons négatifs. Des expériences sont menées avec les architectures VGG-16

[74] et ResNet-18 [76] sur les jeux de données CIFAR-10 et CIFAR-100 [35]. Les résultats montrent

que KLoSNet agit comme un estimateur de densité par classe et surpasse les mesures d’incertitude

actuelles.

La littérature sur les modèles évidentiels ne traite que d’un ensemble d’entrâınement OOD en lien

avec le jeux de données d’entrainement, e.g., CIFAR-100 pour les modèles entrâınés sur CIFAR-10.

Dans Fig. 5.14, nous faisons varier l’ensemble d’entrâınement OOD utilisé pour entrâıner un modèle

évidentiel avec la fonction de perte de divergence KL inverse [135] et évaluons les performances en
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utilisant TinyImageNet comme ensemble de test OOD. Comme prévu, l’utilisation de CIFAR-100

comme données d’entrâınement OOD améliore les performances pour chaque mesure (MCP, Mut. Inf.

et KLoS). Cependant, l’amélioration apportée par l’entrâınement avec des échantillons OOD dépend

fortement de l’ensemble de données choisi. La performance de Mut. Inf. diminue de 92,6% AUC avec

CIFAR-100 à 82,9% en passant à LSUN, et devient même pire avec SVHN (78,5 %) par rapport à

l’utilisation de données OOD (80,6%). Nous constatons également que KLoS surpasse ou est à égalité

avec MCP et Mut. Inf. dans tous les cas. Plus important encore, l’utilisation de KLoS sur des modèles

sans données d’entrâınement OOD donne de meilleures performances de détection que d’autres mesures

prises à partir de modèles entrâınés avec des échantillons OOD inappropriés, c’est-à-dire tous les jeux

de données OOD autres que CIFAR-100.

Conclusion et perspectives

La principale contribution de cette thèse est d’utiliser un modèle de confiance auxiliaire pour

apprendre la confiance d’une prédiction d’un réseaux de neurone profond en classification. Étant donné

un modèle de classification entrâıné, le modèle de confiance apprend à estimer à partir des données un

critère adéquat dérivé du classifieur, tel que la probabilité de la vrai classe pour les réseaux de neurones

standard et KLoS pour les modèles évidentiels. Au moment du test, nous utilisons directement la sortie

du modèle de confiance comme estimation de l’incertitude. L’un des principaux avantages de cette

méthode est d’être agnostique en termes d’architecture : dans nos expériences, nous avons réussi à

améliorer l’estimation de l’incertitude pour les modèles de classification avec différentes architectures

d’apprentissage profond (MLP, LeNet, VGGs, ResNets). Nous avons appliqué notre approche à trois

tâches : prédiction d’échec (Chapter 3), adaptation non supervisée de domaine pour la segmentation

sémantique (Chapter 4), et détection simultanée des erreurs de distribution et des échantillons hors

distribution (Chapter 5). Pour chaque tâche, il y a deux défis principaux à relever : (1) quel critère

utiliser, et (2) comment entrâıner efficacement le modèle de confiance.

Discutons maintenant des directions intéressantes qui pourraient être abordées dans des travaux

futurs en relation avec nos contributions.

Génération de données d’erreurs pour faciliter l’apprentissage de confiance . L’apprentissage de

confiance a montré des améliorations significatives par rapport aux méthodes de références pour

l’estimation de l’incertitude dans chacun des travaux considérés. Néanmoins, l’apprentissage du

modèle auxiliaire dépend de la qualité du jeu de données, c’est-à-dire du nombre d’erreurs disponibles.

Les réseaux de neurones modernes sont sur-paramétrés et ont tendance à sur-apprendre les données

d’entrâınement, atteignant ainsi une grande précision sur les jeux d’entrâınement et ne laissant qu’une

petite fraction d’échantillons mal classés. Nous pensons que ce problème de déséquilibre des données

atténue les performances de l’apprentissage de confiance. Pour résoudre le problème du déséquilibre,

une solution serait de générer artificiellement des erreurs. Les perturbations adversariales sont de

petites perturbations de l’entrée qui sont presque imperceptibles pour les humains, mais qui trompent

un réseau de neurone, transformant ainsi une prédiction correcte en une prédiction erronée. Un
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ensemble combiné d’entrées authentiques et adverses permettrait de rééquilibrer la formation. Il a

été démontré que Mix-up [177], et plus généralement les techniques agressives d’augmentation des

données telles qu’AugMix [178] et CutMix [179] améliorent la robustesse et pourraient également être

appliquées ici pour générer des échantillons avec des probabilités mixtes, fournissant ainsi une plus

grande gamme de valeurs TCP pour l’apprentissage de la confiance.

Apprentissage de la confiance d’un ensemble En tant qu’alternative simple aux méthodes entièrement

bayésiennes, les ensembles a été un sujet de recherche populaire au sein des méthodes probabilistes

[180, 181, 53]. Pourtant, lorsqu’il s’agit de prédire les défaillances, les méthodes précédentes reposent

sur la réduction des prédictions en un seul vecteur de probabilité moyen et sur la dérivation des

mesures habituelles telles que le MCP et l’entropie. Une direction intéressante serait de combiner

l’idée de l’apprentissage de confiance au contexte des ensembles. La solution la plus simple serait

d’entrâıner un modèle auxiliaire pour régresser la valeur TCP du vecteur de probabilité moyen. Les

expériences préliminaires ont montré des difficultés à converger vers la régression de telles valeurs

moyennes, car chaque modèle individuel se comporte différemment et nous ne pouvons pas nous fier

aux poids initialisés d’un modèle arbitraire. Nous pourrions essayer d’attacher un modèle auxiliaire à

chaque membre de l’ensemble et de les entrâıner séparément avant de faire la moyenne des sorties de

tous les modèles de confiance. Une approche intelligente impliquerait de tirer parti de la diversité des

prédictions pour affiner le critère à estimer pendant l’apprentissage de la confiance.

Modèles génératifs pour la détection d’échantillons hors distribution Dans le Chapter 5, nous avons

mis en évidence le comportement d’estimateur de densité par classe de KLoS, qui est une propriété

cruciale en l’absence de données d’entrâınement OOD pour améliorer la détection simultanée des

erreurs de classification et des échantillons OOD. Parallèlement à cette contribution, nos expériences

ont également révélé que si les performances des mesures d’incertitude existantes sont considérablement

améliorées par l’utilisation d’échantillons OOD, elles dépendent aussi de manière critique du type

de ces échantillons (Section 5.5.5). Parmi les méthodes utilisant des échantillons OOD lors de

l’apprentissage de classifieur profonds, Hendrycks et al. [115] proposent d’apprendre à classer les

échantillons de la distribution d’entrainement tout en produisant une entropie prédictive élevée

pour les échantillons OOD. En conséquence, ils utilisent l’entropie prédictive pour distinguer les

échantillons de la distribution d’entraiement des échantillons hors distribution. Cette méthode repose

sur la disponibilité d’un grand ensemble de données OOD, par exemple 80 millions TinyImages avec

CIFAR-10 ou CIFAR-100 comme jeu de données de distribution. Mais si trouver des échantillons

OOD appropriés peut être facile pour certains jeux de données académiques, cela peut s’avérer

plus problématique dans les applications du monde réel [116, 117], avec le risque de dégrader les

performances avec un choix inapproprié. La construction d’un ensemble d’entrâınement OOD adapté

aux tâches réelles est une perspective de recherche qui pourrait alléger le besoin d’échantillons OOD

réels mais difficiles à trouver. Pour garantir une bonne généralisation à d’autres types d’anomalies, le

principal défi consiste à produire des échantillons proches de la distribution, même à la limite, comme

pour l’ensemble de données jouet présenté dans Fig. 6.1. Les modèles génératifs tels que proposés dans

[182, 117, 183] pourraient constitués une solution intéressante pour répondre à ce problème.
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Applications supplémentaires de l’apprentissage de confiance De manière analogue au Chapter 4,

l’approche de l’apprentissage de confiance pourrait être appliquée à de nouveaux contextes où la

qualité des estimations d’incertitude est cruciale. L’apprentissage semi-supervisé (SSL) [184] est un

paradigme d’apprentissage qui vise à améliorer les performances d’apprentissage à partir de données

étiquetées et des instances non étiquetées supplémentaires. Une famille d’approches pour SSL [37, 163]

propose de prédire des pseudo-étiquettes sur des données non étiquetées et de réentrâıner un réseau

en utilisant ces pseudo-étiquettes. La clé est de sélectionner les étiquettes les plus fiables. De toute

évidence, et en raison du lien étroit entre l’adaptation de domaine et les méthodes d’apprentissage

semi-supervisé, une extension naturelle de ConDA consiste à l’appliquer dans ce dernier contexte.

Une alternative à l’apprentissage semi-supervisé est l’apprentissage actif dans lequel les données sont

échantillonnées pour être étiquetées par des oracles humains dans le but de maximiser la performance

du modèle tout en minimisant les coûts d’étiquetage. Diverses stratégies d’échantillonnage ont été

proposées pour l’apprentissage actif au fil des ans, selon des perspectives différentes, par exemple

l’incertitude [39] et la représentativité [185]. L’apprentissage par la confiance pourrait améliorer la

sélection d’échantillons utiles, comme cela est fait dans un travail connexe où les auteurs visent à

apprendre la valeur de perte [186].
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Appendix A

Additional Analysis for Failure Prediction
Experiments

A.1 Effect on confidence loss

The influence of the loss (MSE, BCE, Focal Loss or Ranking based on TCP) is analysed for SVHN,

CIFAR10 and CamVid in Table A.1. We also tested the normalized variant of the TCP confidence

criterion, nTCP. We can observe that its performance is lower than the one of TCP on small datasets

such as CIFAR-10 where few errors are present, but higher on larger datasets such as CamVid where

each pixel is a sample. This emphasizes once again the complexity of incorrect/correct classification

training.

A.2 Empirical error and success distributions

In this section, we provide the plots, analogous to Figure 1 in the main paper, that show the

distribution of the confidence measures over correct and incorrect predictions respectively, for each

dataset and each model in our failure prediction experiments. We also include absolute numbers of

incorrect and correct predictions grouped into 3 bins (‘> 1/K’, ‘[ 1
K ,

1
2 ]’ and ‘> 1/2’) to validate our

assumptions about TCP’s properties. The plots are available for MNIST with MLP in Fig. A.1, for

MNIST with a small convnet in Fig. A.2, for SVHN with a small convnet in Fig. A.3, for CIFAR-100

with VGG-16 in Fig. A.4 and for CamVid with SegNet in Fig. A.5.
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A.2. EMPIRICAL ERROR AND SUCCESS DISTRIBUTIONS

Table A.1: Effect of the loss and of the confidence criterion on the error-detection performance of
ConfidNet. Comparison in between proposed MSE and three other alternatives, all based on TCP as
confidence criterion, except last one which is MSE with normalized TCP (nTCP). This table extends
Table 3.2.

Dataset Loss FPR@95%TPR ↓ AUPR ↑ AUROC ↑

SVHN
SmallConvNet

BCE 29.34% 50.00% 92.76%
Focal 28.67% 49.96% 93.01%
Ranking 31.04% 48.11% 92.90%
nTCP 30.19% 47.04% 93.12%
TCP 28.58% 50.72% 93.44%

CIFAR-10
VGG-16

BCE 45.20% 47.95% 91.94%
Focal 45.20% 47.76% 91.93%
Ranking 46.99% 44.04% 91.49%
nTCP 45.02% 48.78% 92.06%
TCP 44.94% 49.94% 92.12%

CamVid
SegNet

BCE 61.68% 48.96% 83.41%
Focal 61.64% 49.05% 84.09%
nTCP 60.41% 51.35% 85.18%
TCP 61.52% 50.51% 85.02%

Figure A.1: Distributions of MCP and TCP confidence estimates computed over correct and erroneous
predictions by a trained MLP on MNIST.

(a) MCP (b) TCP

Model Nb. of Errors Nb. of Successes AUPR ↑ AUROC ↑
> 1/K [ 1

K ,
1
2 ] > 1/2 < 1/K [ 1

K ,
1
2 ] > 1/2

MCP 0 25 170 0 28 9777 37.70% 97.13%
TCP 81 114 0 0 28 9777 98.77% 99.98%
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A.2. EMPIRICAL ERROR AND SUCCESS DISTRIBUTIONS

Figure A.2: Distributions of MCP and TCP confidence estimates computed over correct and erroneous
predictions by a trained small ConvNet model on MNIST.

(a) MCP (b) TCP

Model Nb. of Errors Nb. of Successes AUPR ↑ AUROC ↑
> 1/K [ 1

K ,
1
2 ] > 1/2 < 1/K [ 1

K ,
1
2 ] > 1/2

MCP 0 8 82 0 11 9899 35.05% 98.63%
TCP 32 58 0 0 11 9899 99.41% 99.41%

Figure A.3: Distributions of MCP and TCP confidence estimates computed over correct and erroneous
predictions by a trained small ConvNet architecture on SVHN.

(a) MCP (b) TCP

Model Nb. of Errors Nb. of Successes AUPR ↑ AUROC ↑
> 1/K [ 1

K ,
1
2 ] > 1/2 < 1/K [ 1

K ,
1
2 ] > 1/2

MCP 0 329 857 0 206 24640 48.18% 93.20%
TCP 500 686 0 0 206 24640 98.93% 99.95%
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A.2. EMPIRICAL ERROR AND SUCCESS DISTRIBUTIONS

Figure A.4: Distributions of MCP and TCP confidence estimates computed over correct and erroneous
predictions by a trained VGG-16 model on CIFAR-100.

(a) MCP (b) TCP

Model Nb. of Errors Nb. of Successes AUPR ↑ AUROC ↑
> 1/K [ 1

K ,
1
2 ] > 1/2 < 1/K [ 1

K ,
1
2 ] > 1/2

MCP 0 603 2801 0 118 6478 71.99% 85.67%
TCP 2724 680 0 0 118 6478 99.91% 99.91%

Figure A.5: Distributions of MCP and TCP confidence estimates computed over correct and erroneous
predictions by a trained SegNet model on CamVid.

(a) MCP (b) TCP

Model Nb. of Errors Nb. of Successes AUPR ↑ AUROC ↑
> 1/K [ 1

K ,
1
2 ] > 1/2 < 1/K [ 1

K ,
1
2 ] > 1/2

MCP 0 401,573 55,506,172 0 188,128 34,166,526 48.53% 84.42%
TCP 41,84,875 1,722,871 0 0 188,128 34,166,526 99.92% 99.99%
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Appendix B

Details and Further Experiments for KLoS

B.1 Experimental Setup

In this section, we provide comprehensive details about the datasets, the implementation and the

hyperparameters of the experiments shown in Chapter 5.

B.1.1 Image Classification Datasets.

In Section 5.5 to Section 5.5.5, the experiments are conducted using CIFAR-10 and CIFAR-100

datasets [35]. They consist in 32×32 natural images featuring 10 object classes for CIFAR-10 and

100 classes for CIFAR-100. Both datasets are composed with 50,000 training samples and 10,000 test

samples. We further randomly split the training set to create a validation set of 10,000 images.

OOD datasets are TinyImageNet1 – a subset of ImageNet (10,000 test images with 200 classes) –,

LSUN [174] – a scene classification dataset (10,000 test images of 10 scenes) –, STL-10 – a dataset

similar to CIFAR-10 but with different classes, and SVHN [36] – an RGB dataset of 28×28 house-

number images (73,257 training and 26,032 test images with 10 digits) –. We downsample each image

of TinyImageNet, LSUN and STL-10 to size 32×32.

Training Details. We implemented in PyTorch [193] a VGG-16 architecture [74] in line with the

previous works of [116, 135, 171], with fully-connected layers reduced to 512 units. Models are trained

for 200 epochs with a batch size of 128 images, using a stochastic gradient descent with Nesterov

momentum of 0.9 and weight decay 5e-4. The learning rate is initialized at 0.1 and reduced by a

factor of 10 at 50% and 75% of the training progress. Images are randomly horizontally flipped and

shifted by ±4 pixels as a form of data augmentation.

Balancing Misclassification and OOD Detection. Most neural networks used in our experiments tend

to overfit, which leaves very few training errors available.

1https://tiny-imagenet.herokuapp.com/
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B.2. ADDITIONAL RESULTS

CIFAR-10 CIFAR-100

Train 99.0 ±0.1 91.2 ±0.2
Val 93.6 ±0.1 70.6 ±0.3
Test 93.0 ±0.3 70.1 ±0.4

Table B.1: Mean accuracies
(%) and std. over five runs.

We provide accuracies on training, validation and test sets in

Table B.1. With such high predictive performances, the number of

misclassifications is usually lower than the number of OOD samples

(∼10,000). Hence, the oversampling approach proposed in the paper

helps to better balance misclassification detection performances and

OOD detection performances in the reported metrics.

KLoSNet. We start from the pre-trained evidential model described

above. As detailed in Section 3.2 of the main paper, KLoSNet consists of a small decoder attached

to the penultimate layer of the main network. In CIFAR experiments, this corresponds to VGG-16’s

fc1 layer of size 512. This auxiliary neural network is composed of five fully-connected layers of size

400, except for the last layer obviously. KLoSNet decoder’s weights ω are trained for 100 epochs with

ℓ2 loss (Eq. 8 in the main paper) and with Adam optimizer with learning rate 1e-4. As KLoS∗ ranges

from zero to large positive values (>1000), one may encounter some issues when training KLoSNet.

Consequently, we apply a sigmoid function, σ(x) = 1
1+e−x , after computing the KL-divergence between

the NN’s output and γy. To prevent over-fitting, training is stopped when validation AUC metric for

misclassification detection starts decreasing. Then, a second training step is performed by initializing

new encoder E′ such that θE′ = θE initially and by optimizing weights (θE′ , ω) for 30 epochs with

Adam optimizer with learning rate 1e-6. We stop training once again based on the validation AUC

metric.

B.2 Additional Results

B.2.1 Detailed Results for Synthetic Experiments

We detail in Table B.2 the quantitative results for the task of simultaneous detection of

misclassifications and of OOD samples for the synthetic experiment presented in Section 4.1 of the

paper. First-order uncertainty measures such as MCP and Entropy perform obviously well on the

first task with 80.2% AUC for MCP. However, their OOD performance drops to ∼15% AUC on

this dataset. On the other hand, Mahalanobis is adapted to detect OOD samples but not as good

for misclassifications. KLoS achieves comparable performances to best methods in misclassification

detection and in OOD detection (79.4% for Mis. and 98.8% for OOD). As a result, when detecting

both inputs simultaneously, KLoS improves all baselines, reaching 89.2% AUC.

B.2.2 Results with SVHN as OOD test dataset

We report in Fig. B.1 all the results when evaluating with SVHN [36] as OOD dataset. Along

with simultaneous detection results, we also provide separate results for misclassifications detection

and OOD detection respectively. Similarly to the comparative results in the main paper, KLoSNet

outperforms all the baselines in every simultaneous detection benchmark, with Mahalanobis being

second.
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B.2. ADDITIONAL RESULTS

Method Mis. (↑) OOD (↑) Mis+OOD (↑)

MCP 80.2 ±1.1 15.9 ±0.7 48.6 ±1.9
Entropy 78.4 ±1.5 11.0 ±0.3 45.7 ±1.0
Mut. Inf. 75.0 ±2.3 2.2 ±0.2 38.8 ±1.2
Diff. Ent. 74.2 ±2.7 1.9 ±1.0 38.0 ±1.3
Mahalanobis 51.5 ±2.8 98.5 ±0.3 75.0 ±1.4

KLoS 79.4 ±1.2 98.8 ±0.3 89.2 ±0.5

Table B.2: Synthetic experiment: misclassification (Mis.), out-of-distribution detection (OOD) and
simultaneous detection (Mis+OOD) (mean % AUC and std. over 5 runs). Bold type indicates
significant top performance (p < 0.05) according to paired t-test.

B.2.3 Detail results of selective classification

In addition to aggregated results shown in Section 5.5.3, we provide detailed results of selective

classification in presence of domain shifts by corruption for CIFAR-10-C (Section B.2.3) and CIFAR-

100-C (Section B.2.3). For almost every corruption, KLoSNet outperforms other methods. When

averaged on all corruptions, KLoSNet scores 48.6% AURC while the second best, ConfidNet, reaches

49.0% AURC.

Noise Blur Weather Digital
Method Clean Gaussian Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG Mean

MCP 48.3% 46.7% 48.0% 43.7% 48.6% 45.7% 45.4% 43.4% 44.4% 42.5% 40.4% 46.5% 43.3% 43.3% 43.0% 1.9% 42.2%
Entropy 48.8% 47.2% 48.5% 43.9% 49.1% 45.9% 45.6% 43.6% 44.7% 42.7% 40.6% 46.9% 43.5% 43.7% 43.2% 2.0% 42.5%
ConfidNet 47.4% 45.8% 47.1% 42.9% 48.1% 45.2% 44.9% 42.5% 43.5% 41.6% 39.1% 45.9% 42.6% 42.0% 42.1% 1.3% 41.4%
Mut. Inf. 53.6% 52.3% 53.2% 48.3% 53.0% 49.3% 49.1% 48.8% 49.8% 47.8% 46.9% 51.5% 47.9% 49.8% 48.2% 4.8% 47.1%
ODIN 49.3% 47.7% 48.9% 44.3% 49.5% 46.3% 46.0% 44.1% 45.2% 43.2% 41.2% 47.3% 43.9% 44.3% 43.7% 2.2% 42.9%
Mahalanobis 48.9% 46.9% 48.6% 42.5% 49.7% 45.3% 44.8% 43.1% 44.1% 41.4% 38.6% 45.8% 42.6% 42.9% 42.4% 1.0% 41.8%
KLoSNet 47.0% 45.3% 46.9% 42.3% 48.0% 45.0% 44.6% 42.2% 43.1% 41.1% 38.1% 45.2% 42.4% 41.8% 42.0% 0.9% 41.0%

Table B.3: Detailed results for selective classification on CIFAR-10-C. Comparative performance in
AURC (%) of classification with the option to reject misclassified test samples and samples from
shifted distributions. Results are average on 5 runs (mean ± std.).

Noise Blur Weather Digital
Method Clean Gaussian Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG Mean

MCP 53.3% 52.7% 55.2% 50.8% 54.0% 52.8% 52.5% 51.3% 52.0% 50.5% 47.9% 52.1% 50.7% 50.4% 51.3% 13.1% 49.4%
Entropy 53.5% 53.0% 55.8% 51.3% 54.8% 53.3% 53.1% 51.8% 52.6% 51.0% 48.2% 52.7% 51.1% 50.9% 51.7% 13.5% 49.9%
ConfidNet 53.5% 52.8% 55.0% 50.1% 53.7% 52.3% 51.9% 50.8% 51.6% 50.0% 47.2% 51.7% 50.3% 49.8% 50.9% 11.7% 49.0%
Mut. Inf. 54.5% 54.0% 57.1% 53.1% 56.2% 54.9% 54.7% 53.5% 54.3% 52.6% 50.0% 54.4% 52.4% 53.0% 53.2% 16.5% 51.5%
ODIN 53.4% 52.9% 55.5% 51.2% 54.5% 53.2% 52.9% 51.7% 52.4% 50.9% 48.2% 52.5% 51.0% 50.8% 51.7% 13.7% 49.8%
Mahalanobis 54.5% 53.9% 56.7% 50.9% 55.5% 52.8% 52.9% 52.2% 52.5% 50.7% 47.8% 52.4% 51.0% 51.4% 51.9% 11.0% 49.9%

KLoSNet 54.0% 53.1% 55.5% 49.5% 53.6% 51.6% 51.4% 50.7% 51.1% 49.2% 46.5% 51.3% 49.9% 49.7% 50.7% 9.7% 48.6%

Table B.4: Detailed results for selective classification on CIFAR-100-C. Comparative performance
in AURC (%) of classification with the option to reject misclassified test samples and samples from
shifted distributions. Results are average on 5 runs (mean ± std.).
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B.2. ADDITIONAL RESULTS

(a) CIFAR-10 with VGG-16

CIFAR-10 SVHN
Method Mis. (↑) OOD (↑) Mis+OOD (↑)

MCP 87.6 ±1.6 87.3 ±2.2 88.9 ±0.5
Entropy 83.5 ±2.4 85.5 ±2.3 86.9 ±1.9
ConfidNet 90.2 ±0.8 89.0 ±3.1 91.0 ±1.1
Mut. Inf. 84.1 ±1.5 80.0 ±3.9 83.2 ±1.7
Diff. Ent. 86.8 ±1.0 86.0 ±2.0 87.6 ±0.9
EPKL 83.9 ±1.5 79.4 ±4.2 82.8 ±1.9
ODIN 86.0 ±2.0 86.8 ±2.2 87.7 ±1.0
Mahalanobis 91.2 ±0.3 89.1 ±2.8 91.5 ±1.1

KLoSNet (Ours) 92.5 ±0.6 89.8 ±3.0 92.7 ±1.2

(b) CIFAR-10 with ResNet18

CIFAR-100 SVHN
Method Mis. (↑) OOD (↑) Mis+OOD (↑)

MCP 84.9 ±0.8 79.6 ±1.0 83.0 ±0.9
Entropy 84.6 ±0.8 79.6 ±1.1 82.8 ±0.9
ConfidNet 90.7 ±0.4 84.6 ±1.1 88.6 ±0.6
Mut. Inf 80.6 ±0.6 77.0 ±1.2 79.4 ±0.9
Diff. Ent 82.7 ±0.6 78.3 ±1.2 81.1 ±0.9
EPKL 80.2 ±0.6 76.8 ±1.3 79.0 ±0.9
ODIN 83.7 ±0.7 78.9 ±1.0 81.9 ±0.9
Mahalanobis 91.2 ±0.4 90.7 ±0.4 91.8 ±0.3

KLoSNet (Ours) 93.9 ±0.4 93.1 ±1.1 94.4 ±0.3

(c) CIFAR-100 with VGG-16

CIFAR-10 SVHN
Method Mis. (↑) OOD (↑) Mis+OOD (↑)

MCP 82.9 ±0.8 70.8 ±3.9 81.3 ±2.0
Entropy 82.2 ±0.8 72.9 ±3.9 81.5 ±2.0
ConfidNet 84.4 ±0.6 68.0 ±3.4 80.8 ±2.0
Mut. Inf. 78.9 ±0.8 72.7 ±4.9 79.5 ±2.5
Diff. Ent. 80.2 ±0.8 72.4 ±4.9 80.2 ±2.5
EPKL 78.8 ±0.8 72.7 ±4.8 79.4 ±2.4
ODIN 82.1 ±0.8 72.0 ±3.8 81.3 ±1.9
Mahalanobis 84.0 ±0.2 73.4 ±5.6 83.2 ±2.5

KLoSNet (Ours) 86.7 ±0.4 70.4 ±5.7 83.5 ±2.8

(d) CIFAR-100 with ResNet18

CIFAR-100 SVHN
Method Mis. (↑) OOD (↑) Mis+OOD (↑)

MCP 84.9 ±0.8 79.6 ±1.0 83.0 ±0.9
Entropy 84.6 ±0.8 79.6 ±1.1 82.8 ±0.9
ConfidNet 90.7 ±0.4 84.6 ±1.1 88.6 ±0.6
Mut. Inf 80.6 ±0.6 77.0 ±1.2 79.4 ±0.9
Diff. Ent 82.7 ±0.6 78.3 ±1.2 81.1 ±0.9
EPKL 80.2 ±0.6 76.8 ±1.3 79.0 ±0.9
ODIN 83.7 ±0.7 78.9 ±1.0 81.9 ±0.9
Mahalanobis 91.2 ±0.4 90.7 ±0.4 91.8 ±0.3

KLoSNet (Ours) 93.9 ±0.4 93.1 ±1.1 94.4 ±0.3

Figure B.1: Results with SVHN as OOD dataset (% mean AUROC and std. over 5 runs).
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