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Titre : Optomécanique	hybrides	avec	polaritons	à	puits	quan8ques	

Résumé : L'optomécanique	hybride	est	un	domaine	de	recherche	au	carrefour	de	l'op8que,	de	

l'électrodynamique	quan8que	et	des	micro-disposi8fs	mécaniques.	Ce	 travail	 de	 thèse	porte	 sur	 la	

concep8on,	 la	 fabrica8on	 et	 la	mesure	 de	 résonateurs	 optomécaniques	 hybrides	 :	 des	 disques	 en	

arséniure	 de	 gallium	 (GaAs).	 Ces	 résonateurs	 forment	 une	 trinité:	 ils	 possèdent	 des	 modes	

mécaniques	à	haute	fréquence	(GHz),	des	modes	op8ques	de	galerie	à	haut	facteur	de	qualité,	et	des	

modes	excitoniques	associés	à	 l'intégra8on	de	structures	à	puits	quan8ques	mul8ples	en	arséniure	

de	gallium/indium	(InGaAs)	dans	le	plan	du	disque.	Le	confinement		dans	un	volume	sub-micronique	

des	 modes	 op8ques	 et	 excitoniques	 abou8t	 à	 une	 situa8on	 de	 couplage	 fort	 exciton-photon.	 Le	

système	accueille	alors	des	quasi-par8cules	hybrides	lumière-ma8ère	:	les	polaritons,	qui	partagent	à	

la	fois	les	propriétés	des	excitons	et	des	photons.	Dans	un	tel	résonateur,	les	mécanismes	de	couplage	

optomécanique	usuels	sont	complétés	par	des	effets	mécaniques	médiés	par	les	porteurs	de	charge.	

En	 raison	 de	 l'importance	 du	 couplage	 exciton-phonon,	 les	 interac8ons	 polariton-phonon	 peuvent	

largement	 surpasser	 le	 couplage	 optomécanique.	 Nous	 présentons	 un	modèle	 théorique	 construit	

pour	 décrire	 ce	 système	 à	 trois	 pôles	 (photon-phonon-exciton)	 et	 es8mons	 la	 force	 du	 couplage	

optomécanique	effec8f	dans	notre	architecture	de	type	disque.	Nous	présentons	les	développements	

technologiques	 et	 de	 concep8on	 qui	 nous	 ont	 permis	 la	 réalisa8on	 d'expériences	 avec	 ces	

résonateurs.	 Nous	 analysons	 les	 sources	 de	 dissipa8on	 op8que,	 mécanique	 et	 excitonique.	 Nous	

présentons	des	expériences	op8ques	démontrant	 la	généra8on	de	polaritons	dans	notre	structure,	

en	accord	avec	un	modèle	de	Hopfield	exprimé	exactement	pour	les	résonateurs	en	disque	à	modes	

de	 galerie.	 Enfin,	 nous	 exposons	 les	 premières	 expériences	 optomécaniques	 réalisées	 sur	 la	

plateforme	hybride.	Nous	terminons	la	discussion	par	une	prospec8ve.		

Mots clefs :	Optomécanique,	polariton	de	cavité,	couplage	fort,	mode	de	galerie,	cavité	op8que,	

mode	 de	 respira8on,	 puit	 quan8que,	 exciton,	 poten8el	 de	 déforma8on,	 cryogénie,	 couplage	

evanescent,	guide	d’onde,	photonique	intégrée,	GaAs,	InGaAs,	nanofabrica8on,	auto-oscilla8on.	

Title: Hybrid	Quantum	Well	Polariton	Optomechanics		

Abstract: Hybrid	 optomechanics	 is	 a	 field	 of	 research	 at	 the	 crossroads	 of	 op8cs,	 quantum	

electrodynamics,	 and	mechanical	micro-devices.	 This	 thesis	 deals	with	 the	 design,	 fabrica8on,	 and	

measurement	of	hybrid	optomechanical	resonators:	gallium	arsenide	(GaAs)	disks.	These	resonators	

form	 a	 trinity:	 they	 have	 high	 frequency	 (GHz)	mechanical	modes,	 high-quality	 op8cal	 whispering	

gallery	 modes	 (WGMs),	 and	 excitonic	 modes	 associated	 with	 the	 integra8on	 of	 gallium/indium	

arsenide	 (InGaAs)	 mul8ple	 quantum	well	 structures	 in	 the	 disk	 plane.	 The	 confinement	 in	 a	 sub-

micron	 volume	 of	 the	 op8cal	 and	 excitonic	 modes	 results	 in	 a	 situa8on	 of	 strong	 exciton-photon	

coupling.	The	system	thereupon	hosts	light-maXer	hybrid	quasipar8cles:	polaritons,	which	share	both	

exciton	and	photon	proper8es.	In	such	a	resonator,	the	usual	optomechanical	coupling	mechanisms	

are	 complemented	by	mechanical	 effects	mediated	by	 charge	 carriers.	Owing	 to	 the	 large	exciton-

phonon	 coupling,	 polariton-phonon	 interac8ons	 can	 greatly	 outperform	 optomechanical	 coupling.	

We	 present	 a	 theore8cal	 model	 constructed	 to	 describe	 this	 tripar8te	 (photon-phonon-exciton)	

system	and	es8mate	the	strength	of	the	effec8ve	optomechanical	coupling	 in	our	disk	architecture.	

We	present	the	technological	and	design	developments	that	have	allowed	us	to	perform	experiments	

with	 these	 resonators.	 We	 analyze	 sources	 of	 op8cal,	 mechanical,	 and	 excitonic	 dissipa8on.	 We	

present	 op8cal	 experiments	 demonstra8ng	 the	 genera8on	 of	 polaritons	 in	 our	 structure,	 in	

agreement	 with	 a	 Hopfield	 model	 expressed	 exactly	 for	 gallery	 mode	 disk	 resonators.	 Finally,	 we	

present	 the	first	optomechanical	 experiments	performed	on	 the	hybrid	plaZorm.	We	conclude	 the	

discussion	with	a	perspec8ve.	 

Keywords: Optomechanics,	cavity	polariton,	strong	coupling,	whispering	gallery	mode,	op8cal	

cavity,	radial	breathing	mode,	quantum	well,	exciton,	deforma8on	poten8al,	cryogenics,	evanescent	

coupling,	waveguide,	integrated	photonics,	GaAs,	InGaAs,	nanofabrica8on,	self-oscilla8on
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Abstract

Hybrid optomechanics is a field of research at the crossroads of optics, quantum electro-
dynamics, and mechanical micro-devices. This thesis deals with the design, fabrication, and
measurement of hybrid optomechanical resonators: gallium arsenide (GaAs) disks. These
resonators form a trinity: they have high frequency (GHz) mechanical modes, high-quality
optical whispering gallery modes (WGMs), and excitonic modes associated with the in-
tegration of gallium/indium arsenide (InGaAs) multiple quantum well structures in the
disk plane. The confinement in a sub-micron volume of the optical and excitonic modes
results in a situation of strong exciton-photon coupling. The system thereupon hosts light-
matter hybrid quasiparticles: polaritons, which share both exciton and photon properties.
In such a resonator, the usual optomechanical coupling mechanisms are complemented by
mechanical effects mediated by charge carriers. Owing to the large exciton-phonon cou-
pling, polariton-phonon interactions can greatly outperform optomechanical coupling. We
present a theoretical model constructed to describe this tripartite (photon-phonon-exciton)
system and estimate the strength of the effective optomechanical coupling in our disk ar-
chitecture. We present the technological and design developments that have allowed us to
perform experiments with these resonators. We analyze sources of optical, mechanical, and
excitonic dissipation. We present optical experiments demonstrating the generation of po-
laritons in our structure, in agreement with a Hopfield model expressed exactly for gallery
mode disk resonators. Finally, we present the first optomechanical experiments performed
on the hybrid platform. We conclude the discussion with a perspective.
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Résumé en français

L’optomécanique hybride est un domaine de recherche au carrefour de l’optique, de
l’électrodynamique quantique et des micro-dispositifs mécaniques. Ce travail de thèse porte
sur la conception, la fabrication et la mesure de résonateurs optomécaniques hybrides : des
disques en arséniure de gallium (GaAs). Ces résonateurs forment une trinité : ils possèdent
des modes mécaniques à haute fréquence (GHz), des modes optiques de galerie à haut fac-
teur de qualité, et des modes excitoniques associés à l’intégration de structures à puits
quantiques multiples en arséniure de gallium/indium (InGaAs) dans le plan du disque. Le
confinement dans un volume sub-micronique des modes optiques et excitoniques aboutit à
une situation de couplage fort exciton-photon. Le système accueille alors des quasi-particules
hybrides lumière-matière : les polaritons, qui partagent à la fois les propriétés des excitons
et des photons. Dans un tel résonateur, les mécanismes de couplage optomécanique usuels
sont complétés par des effets mécaniques médiés par les porteurs de charge. En raison de
l’importance du couplage exciton-phonon, les interactions polariton-phonon peuvent large-
ment surpasser le couplage optomécanique. Nous présentons un modèle théorique construit
pour décrire ce système à trois pôles (photon-phonon-exciton) et estimons la force du cou-
plage optomécanique effectif dans notre architecture de type disque. Nous présentons les
développements technologiques et de conception qui nous ont permis la réalisation d’expé-
riences avec ces résonateurs. Nous analysons les sources de dissipation optique, mécanique
et excitonique. Nous présentons des expériences optiques démontrant la génération de pola-
ritons dans notre structure, en accord avec un modèle de Hopfield exprimé exactement pour
les résonateurs en disque à modes de galerie. Enfin, nous exposons les premières expériences
optomécaniques réalisées sur la plateforme hybride. Nous terminons la discussion par une
prospective.

xvi



Introduction

During the last decades, the development of information and communication technology
(ICT) has drastically changed our world. Data transfer, digital support, inviolable encrypted
communications, ultra-performing and efficient computing are a few examples of the chal-
lenges the XXIst century has to overcome. One envisioned solution to face these challenges
is the development of quantum technologies, associated with the ability to control physical
systems at the nanoscale. The interest in quantum technologies goes now beyond the bor-
ders of the academic world, leading to major financial investments in the private and public
sector [1–9].

Optomechanics, i.e. the study of the interaction between an electromagnetic field and the
mechanical degrees of freedom of a physical system, represents a sub-field of quantum tech-
nologies, which inherits the assets of micro-electromechanical systems (MEMS) and photonic
devices [10,11]. Optomechanics is thus an hybrid technology. Hybridization [12–14], thanks
to the combination of various information carriers (photons, phonons, or electrons), can mar-
shal the strengths of each system to gain in versatility and performance. Optomechanical
systems exist in a large variety of forms, masses, and physical parameters as illustrated by
figure I and table I. Thanks to the development and progress of nano-fabrication techniques,
optomechanics has recently given rise to considerable applications such as:

• Force and mass sensing [15, 16], in association with AFM techniques [17, 18] for bio-
logical applications [19–21].

• Quantum information: mechanical resonators in their quantum fundamental ground
state [22, 23] act as transducers between optical photons and radiofrequency. Differ-
ent schemes involving quantum entanglement [24, 25], superposition [26] or telepor-
tation [27] have been designed and tested.

• Optical manipulation like wavelength conversion [28] or delays lines [29].

• Gravitational interferometry [30], notably enabled by a deep understanding of the
impacts and limits induced by the optical measurement inside an interferometer [31].
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Figure I – Experimental implementations of optomechanical systems. Pictures are taken
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Ωm/2⇡ [Hz] m [kg] Γm/2⇡ [Hz] Qmfm [Hz] c/2⇡ [Hz] c/Ωm g0 [Hz]

Atomic gas [45] 4.2 · 104 1 · 10�22 1 · 103 1.7 · 106 6.6 · 105 15.7 6 · 105

Si Photonic
crystal [46]

3.9 · 109 3.1 · 10�16 3.9 · 104 3.9 · 1014 5 · 108 0.13 9 · 105

SiN membrane [35] 1.3 · 104 4 · 10�11 0.12 1.5 · 1011 5 · 105 3.7 5 · 101

Sapphire
transducer [47]

103 1.85 2.5 · 10�6 4.1 · 1010 275 0.9 1.2 · 10�3

GaAs disk [37] 0.5 · 109 1 · 10�12 0.5 · 106 0.5 · 1013 1 · 109 2 1 · 106

Table I – Optomechanical system experimental parameters for a variety of system. fm =
Ωm/2⇡ mechanical frequency, m mass, Γm mechanical dissipation rate, Qm mechanical qual-
ity factor, c optical dissipation rate, g0 optomechanical coupling constant, see section 1.3
for further details

To push the hybridization beyond optics and mechanics, optomechanical devices can be
coupled to another third degree of freedom, forming an hybrid optomechanical system. This
extra degree of freedom can take the form of a true or artificial two-level atom, or of an
atomic assemble. A zoo of hybrid optomechanical system is already available in the litera-
ture [10, 38, 48–59] .

In this thesis we focus our attention on hybrid optomechanical systems composed of a
mechanical oscillator interacting with an electromagnetic field and with an electronic degree
of freedom in a semiconductor, hence forming an opto-electro-mechanical resonator (see
figure II (b)). Our device, schematically presented in figure II (a), consists in a GaAs ac-
tive optomechanical disk resonator embedding a quantum-well structure. It possesses some
specificities:

• Because of the peculiar disk shape, optical and mechanical modes of the resonator
have an azimuthal symmetry. The Whispering Gallery Modes (WGMs), combine
ultra-high quality factor and small mode volume, which has led to realizations in
microlasers [60], sensing [61, 62], non-linear quantum optics [63, 64], cavity quantum
electrodynamics [65] and optomechanics [37, 66]. The mechanical modes, in particu-
lar, the Radial Breathing Modes (RBMs), enable ultra-high frequencies (GHz) and
strong coupling to WGMs [67].

• In contrast to previous work of our team, the material constituting the disk embeds a
hetero-structure constituted of multiple quantum wells (MQW). This active material
can support well-controlled excitons (electron-hole pairs). Excitons can be strongly
coupled to the resonator photons, a regime where new quasi-particles emerge: exciton-
polaritons [68].

Ever since the pioneering work of Hopfield in 1958 [69] on bulk semiconductors, the
research on polaritons has grown a lot. The vivid progress in the fabrication of epitaxial
heterostructures, from 2D to 0D, has enabled the study of polaritons in a large variety
of systems [68, 70, 71]. Due to strong Coulomb interactions, polaritons exhibit large �(3)
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resonant nonlinearities that entail nonlinear optical phenomena such as parametric ampli-
fication [72] and oscillation [73]. Alternatively, polaritons exhibit bosonic behavior at low
densities. Under peculiar conditions, they can accumulate in the lowest energy state, forming
a Bose-Einstein condensate (BEC) [74–76]. Polariton interactions also lead to fascinating
effects such as superfluidity [77] or the generation of vortices [78].
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Figure II – (a) Sketch of an hybrid GaAs disk optomechanical resonator. The disk, composed
of a stack of different GaAs alloy layers, is both an optical resonator supporting WGMs
and a mechanical resonator sustaining different mechanical modes such as RBMs, (radial
expansion/contraction modes). In this thesis, it becomes as well an excitonic resonator, and
the exciton will couple to both WGMs and RBMs. An AlGaAs pedestal (dark grey) isolates
the disk from the sample substrate. The inset provides a closer look at the hetero-structure,
illustrating as well locations of excitons in the device. (b) Diagram of a hybrid system as
considered in this thesis. (c) SEM micrograph of an isolated hybrid disk of this thesis.
Magnification ' 20.7K.

Coupling polaritons to the mechanical motion of a micro/nanofabricated device broadens
the scope of possibilities. The first application is to take advantage of the hybrid light-
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matter nature of excitations in the semiconductor resonators to enhance optomechanical
interactions. Indeed the excitonic component is highly sensitive to strain fields via the
deformation potential [79, 80] which is large in the considered III-V materials. A second
prospect is to use the polariton condensate to act on the mechanical degree of freedom [81,82]
or inversely use the mechanical device to probe the peculiar dynamics of the condensate.

Outline of the thesis

Chapter 1 is dedicated to the theoretical framework of optomechanics and polaritons.
It introduces the tools required to describe a generic hybrid optomechanical system, pin-
pointing the new phenomena emerging from such architecture. This chapter establishes the
basic conceptual frame that will be needed to describe future QW-polariton optomechanical
realizations. Chapter 2 presents in great detail all the important parameters at play in
the hybrid GaAs disk resonator of this thesis: optical, mechanical, and excitonic modes,
as well as their mutual interactions ,are not only described but also modeled. As a result
of models developed along this thesis, quantitative optomechanical, electromechanical, and
optoelectrical coupling are computed and discussed. Chapter 3 gives a close look at exper-
imental techniques and constraints on the design of the sample. It includes a description of
the waveguide/disk evanescent coupling, with emphasis on dissipation mechanisms (optics,
mechanical, excitonic). A discussion of the MQW structure is provided, as well as a detailed
presentation of our clean-room fabrication techniques. Chapter 4 is dedicated to the obser-
vation of polaritons in our platform, associated with an analysis based on an original model
for WGM quantum-well excitons, developed in this thesis. Polariton lasing is also reported
and discussed. Chapter 5 finally presents the first optomechanical experiments carried
out on our hybrid system, discussing achievements and limitations. It opens on different
perspectives for the future.
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Chapter 1

Quantum-well hybrid optomechanics:
concepts and tools

Summary: This chapter presents the conceptual tools needed to describe a quantum-well
hybrid optomechanical system. We start by introducing the standard optomechanical for-
malism, then move to the description of quantum-well cavity exciton-polaritons. Finally, we
illustrate the different coupling Hamiltonians governing the hybrid tripartite system (photon-
phonon-exciton).

1.1 Optomechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.1 Hamiltonian description for a closed system . . . . . . . . . . . . . . 7
1.1.2 Modeling the environment . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1.2.1 Optical bath . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.2.2 Mechanical bath . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.2.3 Drive Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Dynamic optomechanical equations . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.1 Quantum Langevin equations . . . . . . . . . . . . . . . . . . . . . . 10
1.2.2 Linearized equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.3 The optomechanical cooperativity, cooling and amplification . . . . . 12

1.3 Optomechanical parameters of interest . . . . . . . . . . . . . . . . . . . . . 15
1.4 Hybrid optomechanics with quantum-well cavity polaritons . . . . . . . . . 16

1.4.1 Hopfield model for cavity polaritons . . . . . . . . . . . . . . . . . . . 16
1.4.1.1 Closed-system Hamiltonian . . . . . . . . . . . . . . . . . . 16
1.4.1.2 Strong coupling criterion for a dissipative system . . . . . . 18

1.4.2 Tripartite system: Photon, exciton, phonon . . . . . . . . . . . . . . 20

1.1 Optomechanics

This part presents the models employed to describe the interaction between light and
mechanical motion: how optical and mechanical modes couple together and how they can
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exchange energy [10,11].

1.1.1 Hamiltonian description for a closed system

	 	                                           


	 	 	 	 	                     


�ain, �l �a, �c
�b, �m

�H = � �g0 �a†
�a( �b + �b†)

Figure 1.1 – Archetypal optomechanical resonator : Laser driven Fabry-Pérot cavity with a
fixed and a free spring-mounted mirror

Figure 1.1 represents the archetypal optomechanical system. The optical cavity is a
Fabry-Pérot cavity, with optical frequency !c, photon annihilation (creation) â (â†) opera-
tor, and one mirror of the cavity is free to move (compliant). This mirror, with mass m,
behaves like a harmonic mechanical oscillator with a mechanical frequency !m and a phonon

annihilation (creation) b̂ (b̂†) operator. Both photonic (â, â†) and phononic operators (b̂, b̂†)
obey the bosonic commutation relation

⇥
â, â†

⇤
= 1. In the absence of any optomechanical

interaction, the Hamiltonian of the system is:

Ĥ = ~!câ
†â+ ~!mb̂

†b̂ (1.1)

Where does the optomechanical interaction come from? We assume first that the me-
chanical system (moving mirror) is at an equilibrium position. When light enters the optical
cavity, satisfying the cavity resonance condition, photo-induced forces like radiation pressure
displace the mirror. If the position of the mirror is modified, the same is true for the cavity
resonance condition. The circulating power inside the cavity therefore decreases, and the op-
tical forces exerted on the mirror as well, until the mirror reaches a new equilibrium position,
where the optical force balances the restoring force of the spring. If the displacement x̂ is
small enough, the cavity resonance frequency is modulated by the mechanical displacement:

!c(x̂) ' !c(0) + x̂
@!c

@x̂
' !c(0)� gomx̂ (1.2)

where x̂ = xZPF(b̂ + b̂†), with the amplitude of the mechanical zero point fluctuations

xZPF =
q

~

2mωm
and gom = �∂ωc

∂x̂
the optical frequency pull parameter. From now on !c(0) is

noted !c. For a Fabry-Pérot cavity, gom is given by gom = !c/L, where L is the cavity length.
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A seminal work of Law for a Fabry-Pérot cavity did establish the lowest order interaction
Hamiltonian of the optomechanical system [83,84], in the case of a single optical and single
mechanical mode:

Ĥ = ~!câ
†â+ ~!mb̂

†b̂� ~g0â
†â(b̂† + b̂)

Ĥ = ~!câ
†â+ ~!mb̂

†b̂+ Ĥcm

(1.3)

with g0 = xZPF·gom, the vacuum (or single-photon) optomechanical coupling, correspond-
ing to the optical frequency shift associated with the zero-point motion of the mechanical
oscillator. While originally established for a Fabry-Pérot cavity the Hamiltonian (1.3) is
quite general and can be applied to any system where the optical resonance frequency is
linearly shifted by a mechanical motion.

The conservative optical force is taken as the derivative of the interaction energy Ĥcm

with respect to the displacement:

F̂ = �@Ĥcm

@x̂
=

~g0
xZPF

â†â = ~gomn̂ (1.4)

This force is proportional to the number of photons inside the cavity n̂ = â†â.

1.1.2 Modeling the environment

A real physical system is not isolated but coupled to an environment, in our case the
field inside the cavity is coupled to an electromagnetic environment, while the mobile mirror
is coupled to a support via an anchor point. These couplings are responsible for the optical
and mechanical damping, and for the various noises (vacuum, thermal...). To depict this in
a cavity optomechanical system, a good starting point is the input-output formalism [85–88]
where the external environment is modeled as a bath of harmonic modes.

1.1.2.1 Optical bath

The optical environment is represented by a bath of photons, described by a continuum
of independent harmonic oscillators governed by the following Hamiltonian:

ĤO-bath = ~

Z

!Â†(!)Â(!)d! (1.5)

where the bath creation Â†(!) and annihilation Â(!) operators obey the commutation

relation
h

Â(!0), Â†(!)
i

= �(! � !0). We assume that only modes close to the resonance

frequency !c can be excited out from the vacuum, and the interaction between the system
and the bath to be of a Jaynes-Cummings form:

ĤO-bath,int = �j~
Z

d!
p

(!)
h

â†Â(!)� Â†(!)â
i

(1.6)
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where
p

(!) represents the strength of the interaction, such that the total optical Hamil-
tonian is:

Ĥopt = ~!câ
†â+

Z

d!
h

~!Â†(!)Â(!)� j~
p

(!)
⇣

â†Â(!)� Â†(!)â
⌘i

(1.7)

1.1.2.2 Mechanical bath

Similarly we can define a phononic bath in interaction with the mechanical mode where
each bath mode is coupled by a coupling coefficient

p

Γ(!):

ĤM-bath = ~

Z

!B̂†(!)B̂(!)d! (1.8)

ĤM-bath,int = �j~
Z

d!
p

Γ(!)
h

b̂†B̂(!)� B̂†(!)b̂
i

(1.9)

With this second bath defined, the total mechanical Hamiltonian is therefore:

Ĥmec = ~!mb̂
†b̂+

Z

d!
h

~!B̂†(!)B̂(!)� j~
p

Γ(!)
⇣

b̂†B̂(!)� B̂†(!)b̂
⌘i

(1.10)

1.1.2.3 Drive Hamiltonian

We consider now the action of the external pump laser, populating the laser mode ! = !l
1

with a coherent state |↵l(t)i, that obeys Âl|↵̂l(t)i = ↵l(t)|↵̂l(t)i where ↵l(t) = ↵ext exp(�j!lt).
This mode is coupled to the cavity mode with a constant

p

(!l) =
p
ext. We ap-

ply a unitary transformation defined by the following displacement operator D̂†[↵l(t)] =

exp
h

�↵l(t)Â
†
l + ↵⇤

l (t)Âl

i

, which keeps the mechanical Hamiltonian (1.10) and the inter-

raction Hamiltonian Ĥcm unchanged and transforms the total optical Hamiltonian (1.7)
into 2 [89]:

ĤD
opt = D̂†[↵l(t)]ĤoptD̂[↵l(t)] + j~

@D̂†[↵l(t)]

@t
D̂[↵l(t)]

= ~!câ
†â+ j~

p
ext↵ext

⇥
âejωlt � â†e�jωlt

⇤

+

Z

d!
h

~!Â†(!)Â(!)� j~
p

(!)
⇣

â†Â(!)� Â†(!)â
⌘i

(1.11)

1. We consider a pure monochromatic excitation and hence neglect phase noise

2. Up to a scalar constant that we have not expressed here. The new Schrödinger equation is ĤD
opt|Ψi =

j~∂t|Ψi, with |Ψi = D̂†[αl(t)]|Φi and |Φi a Hilbert vector before displacement solution of Ĥopt|Φi = j~∂t|Φi
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We finally use a rotating wave approximation
⇣

Û = exp
�
�j!lâ

†ât
�⌘

to recenter the

dynamics of the optical degrees of freedom close to the exciting laser frequency !l
3:

ĤUD
opt = Û †ĤD

optÛ + j~
@Û †

@t
Û

= �~∆â†â+ j~
p
ext↵ext

⇥
â� â†

⇤

+

Z

d!
h

~!Â†(!)Â(!)� j~
p

(!)
⇣

â†Â(!)ejωlt � Â†(!)âe�jωlt
⌘i

(1.12)

where ∆ = !l � !c, is the laser detuning with respect to the cavity mode 4.

After those transformations the total optomechanical Hamiltonian of the system now
reads:

Ĥtot =ĤUD
opt + Ĥmec + Ĥcm

Ĥtot =� ~∆â†â+ ~!mb̂
†b̂� ~g0â

†â(b̂† + b̂) + j~
p
ext↵ext

⇥
â� â†

⇤

+

Z

d!
h

~!Â†(!)Â(!)� j~
p

(!)
⇣

â†Â(!)ejωlt � Â†(!)e�jωltâ
⌘i

+

Z

d!
h

~!B̂†(!)B̂(!)� j~
p

Γ(!)
⇣

b̂†B̂(!)� B̂†(!)b̂
⌘i

(1.13)

1.2 Dynamic optomechanical equations

1.2.1 Quantum Langevin equations

After having performed the transformation ÛD̂, we next perform a Heisenberg trans-
formation (õ = V̂ †ôV̂ where ô is an arbitrary operator and dV̂ /dt = �jĤtotV̂ /~) in order
to derive the evolution equations for both photon and phonon annihilation operators in the
Heisenberg picture 5 [90]:

˙̂a =
dâ

dt
=

j

~

h

Ĥtot, â
i

= j∆â+ jg0â(b̂
† + b̂) +

p
ext↵ext +

Z

d!
p

(!)Â(!)ejωlt

˙̂
b =

db̂

dt
=

j

~

h

Ĥtot, b̂
i

= �j!mb̂+ jg0â
†â+

Z

d!
p

Γ(!)B̂(!)

(1.14)

The dynamics of the optical and mechanical fields are intrinsically coupled to the dy-
namics of the baths.

3. This transformation also does not impact Ĥmec and Ĥcm

4. At that stage, â and Â are the original field operators, and do not depend on time while ĤUD
opt do.

5. From now on, the operators that appear in the equations are in the Heisenberg representation, to
avoid making the expression more cumbersome, we kept the same notation.
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To get rid of the two integral terms in equation (1.14) we must compute explicitly their
dynamics. The method to do so is expressed in appendix A.2. We obtain consequently the
Langevin equation for the optomechanical system 6:

˙̂a = (j∆� c

2
)â+ jg0â(b̂

† + b̂) +
p
ext↵ext +

p
câin

˙̂
b = �(j!m +

Γm

2
)b̂+ jg0â

†â+
p

Γmb̂in

(1.15)

where âin and b̂in are operators representing the noise generated by the environment
interacting with the optomechanical system and can be considered as Langevin forces. Using
the first Markov approximation, these noises are delta-correlated in time and their expected
values follow the Planck distribution (see appendix A.3).

1.2.2 Linearized equations

We will now work in the weak coupling regime, where g0 ⌧ c. Indeed, all the optome-
chanical interactions are fundamentally non linear (presence of a quadratic term in photons
operators in the Hamiltonian (1.3)), but when g0 ⌧ c linearization of the equations (1.15)
is a good approximation. A more detailed discussion about the “quantumness” factor in
optomechanical interactions defined by g0/c is provided in [91].

The laser driving results in the displacement of both the optical and mechanical degrees
of freedom, since the average photon number inside the cavity exerts a static force on the
mechanical resonator leading to a new mechanical equilibrium position. A displacement
transformation can therefore be applied: â! ↵+ �â, b̂! �+ �b̂, where ↵ and � are strictly
speaking complex numbers that we take real, without loss of generality in the case of a
single cavity, ↵ =

p
Ncav the mean coherent state amplitude inside the cavity. �â and �b̂ are

operators that represent the fluctuations of the optical and mechanical fields around their
mean values. The quantum Langevin equations are rewritten as:

↵ =

p
ext↵ext

j∆0 � c/2
(1.16)

� =
g0Ncav

!m + jΓm/2
(1.17)

� ˙̂a = (j∆+
c

2
)�â+ jg0↵(�b̂

† + �b̂) + jg0�â(�b̂
† + �b̂) +

p
câin (1.18)

�
˙̂
b = �(j!m +

Γm

2
)�b̂+ jg0↵(�â

† + �â) + jg0�â
†�â+

p

Γmb̂in (1.19)

with ∆0 = ∆+ 2g0� = ∆+ gomhx̂i the shifted cavity detuning.

6. In this set of equations we could have distinguished for the input fields κext and κin, the first one being
associated with the external incoming laser coupling and the second one to all the other loss processes which
go undetected, the amplitude experience decay at a rate κc = κext + κin
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For strong driving conditions terms that are not driven can be safely neglected (jg0�â(�b̂
†+

�b̂) in eq. (1.18) and jg0�â
†�â in eq. (1.19)) leading to Langevin equations for �â and �b̂

corresponding to an effective linearized optomechanical Hamiltonian (in the absence of dis-
sipation)

Ĥ = �~∆�â†�â+ ~!m�b̂
†�b̂� ~G(�â† + �â)(�b̂† + �b̂) (1.20)

where G = g0
p
Ncav represents the enhanced coupling parameter. (1.20) is an Hamilto-

nian coupling linearly two harmonic oscillators �â and �b̂, each of them being on top coupled
to a dissipative bath at a rate c and Γm respectively. Given the symmetry of the problem,
it is natural to expect that the energy exchange between the two oscillators will be quanti-
fied by the adimensionnal parameter G2/Γmc = g20Ncav/Γmκc

, ratio between the interaction
strength and the loss of both oscillators.

For illustrative purpose, we detail here how this parameter indeed emerges as central in
the phenomena of side-band cooling and amplification of mechanical motion.

1.2.3 The optomechanical cooperativity, cooling and amplifica-
tion

Three important regimes can be singled-out in the interaction Hamiltonian (1.20) 7 [10,
92–94]:

∆ = �!m =) Ĥ = �~G(�â†�b̂+ �â�b̂†)

∆ = !m =) Ĥ = �~G(�â†�b̂† + �â�b̂)

∆ = 0 =) Ĥ = �~G(�â† + �â)(�b̂e�jωmt + �b̂†ejωmt)

(1.21)

When the driving laser is red-detuned from the cavity by precisely the mechanical fre-
quency (∆ = �!m, see figure 1.2-(a)), the elementary process where an incident laser photon
at !l absorbs a phonon before leaving the system at !c = !l+!m is resonantly enhanced by
the presence of the cavity, leading to a reduction of the phonon population (cooling) [95–97].
Conversely, for a blue-detuning at precisely the mechanical frequency (∆ = !m, see figure
1.2-(c)), the symmetric process where an incident photon at !l emits a phonon at !m before
leaving the system at !l � !m is resonantly favored. Phonons are generated into the me-
chanical mode in a coherent fashion, this is the regime of optomechanical amplification of
motion [98]. In the case where the driving is exactly on resonance with the cavity (∆ = 0,
see figure 1.2-(b)), the two previous processes have the same weight, there is no exchange of
energy between the two oscillators, this configuration can be used to read out the mechanical
motion.

7. These equations are obtained by applying a rotating wave approximation Û =

exp
⇣

�j∆δâ†δât+ jωmδb̂†δb̂t
⌘

onto the Hamiltionian (1.20)
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�m

�l �c �l = �c �c �l

�m �m �m �m �m

� = + �m� = � �m � = 0

��c

��m

|ncav, nmec�

|ncav + 1,nmec�

|ncav + 1,nmec � 1�

|ncav, nmec � 1�

|ncav, nmec + 1�

|ncav + 1,nmec + 1�

�l = �c � �m

�l = �c + �m

�c

(a) (b) (c)

A� A�A+ A+

Figure 1.2 – (a) Anti-Stokes (b) In-cavity and (c) Stokes scattering process represented here
in the regime (!m > c). Top panels: scattering picture. The black Lorentzian represents
the optical cavity mode, the blue Lorentzian the anti-Stokes peak, and the red one the
Stokes peak. A+ and A� represent here the Stokes and anti-Stokes cavity photon scattering
rates. Bottom panels: transition diagram representing the three schemes (cooling, readout,
amplification). ncav and nmec represent respectively the number of photons and phonons.
An appropriate detuning lead to the selection of one of these three processes

Let us formalize these phenomena with dynamic equations. The fourier transform of eq.
(1.18) and (1.19) under strong driving conditions gives (we drop the shifted index 0 and write
∆0 = ∆ thereafter):

�â[!] =
jG(�b̂†[!] + �b̂[!]) +

p
câin[!]

�j(! +∆) + κc

2

=
jG(�b̂†[!] + �b̂[!]) +

p
câin[!]

��1
c [!]

(1.22)

�b̂[!] =
jG(�â†[!] + �â[!]) +

p
Γmb̂in[!]

j(!m � !) + Γm

2

=
jG(�â†[!] + �â[!]) +

p
Γmb̂in[!]

��1
m [!]

(1.23)

where ��1
c [!] and ��1

m [!] are the optical and mechanical response functions.
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Injecting eq. (1.22) and its conjugate into eq. (1.23) leads after some algebraic manipu-
lations to the expression 8:

�b̂[!] = �0�1
m [!]

✓
p

Γmb̂in[!] +
jG

��1
c [!]

p
câin[!] +

jG

�̄�1
c [�!]

p
câ

†
in[!]

◆

(1.24)

with �0�1
m = j(!0

m � !) + Γ0
m

2
where the mechanical frequency and dissipation rate have

been modified by the optomechanical interaction: !0
m = !m + �!m, Γ

0
m = Γm + Γom. These

modifications are given by:

�!m[!] = G2 Im (�c[!]� �̄c[�!])

�!m ' G2

"

∆+ !m

(∆+ !m)
2 +

�
κc

2

�2 +
∆� !m

(∆� !m)
2 +

�
κc

2

�2

#

(1.25)

Γom[!] = 2G2 Re (�c[!]� �̄c[�!])

Γom ' G2

"

c

(∆+ !m)
2 +

�
κc

2

�2 �
c

(∆� !m)
2 +

�
κc

2

�2

#

(1.26)

For ! = !m, a valid approximation when | !m � ! |. Γm ⌧ c.

We will not discuss in detail the modification of the mechanical frequency by the optome-
chanical interaction (the optical-spring effect captured by equation (1.25) and illustrated in
figure 1.3 (b)) and rather discuss the optomechanical modification of the mechanical dissi-
pation Γom (equation (1.26) and figure 1.3 (a)).

Depending on the sign of ∆, Γom can be a damping or anti-damping of the mechanical
motion. Red pumping the cavity (∆ = �!m) leads to an attenuation of the mechanical
vibrations (Γom > 0). For !m � c and ∆ = �!m, Γom takes the simple form 4G2

κc
. In

such case the mechanical resonator is connected to two different baths: a thermal bath of
temperature T (rate of dissipation Γm) and an optical bath of low effective temperature
(rate of dissipation Γom). At equilibrium, this translates into a mean population in the me-
chanical mode of Γm

Γm+Γom
n̄mec
th , with n̄mec

th ' kbT/~ωm the thermal occupation of the mechanical

mode (see appendix A.3). The parameter Γom/Γm = 4G2/(Γmc) = 4g20Ncav/Γmc appears
as a quantification of the ability to reduce the mechanical population by optomechanical
sideband cooling 9.

Blue-detuned pumping of the cavity (∆ = !m) leads in contrast to an amplification
(anti-damping) of the mechanical motion (Γom < 0). When this amplification balances the

8. To obtain this result we have dropped terms proportional to χm[ω]δb̂ since δb̂ is strongly peaked
around ω = �ωm and χm[ω] peaked at ω = ωm. Their product is therefore negligible especially for narrow
bandwidth resonators ωm/Γm � 1.

9. This reasoning neglects the back-action of the optical force (no temperature for the photon bath).
For a further introduction to the phenemenon of optomechanical cooling we invite the reader to check the
appendix A.4
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Figure 1.3 – (a) Optomechanical damping and (b) optical spring effect as a function of the
detuning ∆/!m. Cooling/heating is maximal at ∆/!m = ±1. The color code corresponds
to different values of the !m/c ratio. From red to blue this ratio is equal to [0.2, 0.4, 0.5,
1, 2, 2.5, 5]

natural damping of the system (Γom = �Γm), the mechanical motion is “sustained” and
adopts a coherent sinusoidal trajectory equivalent to a mechanical laser. The threshold to
reach this regime (when !m � c) is 4g

2
0Ncav/Γmc = 1, pinpointing again the central role

of this adimensional parameter.

This parameter is called optomechanical cooperativity C, and has a broad significance
in most of the applications of linearized optomechanics such as optomechanical induced
transparency [99, 100] or measurements at the standard quantum limit (radiation pressure
shot-noise) [10].

1.3 Optomechanical parameters of interest

Mechanical resonator: A higher mechanical frequency !m facilitates observation of quan-
tum effects, most naturally accessible when ~!m � kBT . The mechanical quality factor
Qm = !m/Γm quantifies the level of decoupling of the mechanical mode from its environ-
ment. The “Qm · fm” product (fm = !m/2⇡) is in practice often the quantity to optimize,
and parametrizes the number of independent quantum operations that can be performed
before decoherence sets-in. The increase of fm is most generally achieved by decreasing the
size and the effective mass of the resonator. High Qm are obtained by working on the differ-
ent loss channels such as clamping losses, viscous losses, or intrinsic losses usually reduced
by cooling down the system to cryogenic temperatures [101].
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Optical resonator: Working at optical and telecom wavelengths, the optical resonant
frequency !c is fixed, and efforts are mostly focused on enhancing the optical quality factor
Qopt = !c/c, usually by mitigating the scattering and absorption in the device materials.

Optomechanical coupling: The strength of the optomechanical interaction character-
ized by g0 is central especially as it is squared in the cooperativity. A coherent driving of
the cavity can effectively increase the interaction (G = g0

p
Ncav). By increasing G we can

reach different coupling regimes such as: strong coupling (c,Γm,⌧ G ⌧ !m,∆) where
Rabi oscillations between the two eigenstates occurs [36, 102, 103] or ultrastrong coupling
(c,Γm,⌧ G . !m ⌧ ∆) where the interaction strength becomes of the order of the eigen-
frequencies [104].

During the past years, extensive work and progress have been made by the optomechani-
cal community to push the boundaries of these figures of merit. In our group, optical quality
factor up to 5 · 106 [105] has been reached, notably by improving the nanofabrication pro-
cess. The use of mechanical shield [106] has considerably enhanced the “Qm · fm” product.
Regarding the parameter g0, the value has somewhat saturated for several years around a
few MHz, like observed in nanoscale optomechanical disk and crystals. The fabrication of
ultimately small disks would allow pushing this value but at the cost of an increase in both
optical and mechanical dissipation.

This thesis aims at opening a new path to boost g0 to further levels by using a hybrid
system, without changing drastically the overall design of the device.

1.4 Hybrid optomechanics with quantum-well cavity

polaritons

Hybrid optomechanics is the sub-field of optomechanics where an extra quantum object
(a third degree of freedom) is added to the optomechanical resonator. This new object
is coupled either to the mechanics, to the optical field, or both. It can be a two-level
system such as an atom or artificial atoms [49–51] (NV-center [56,57], quantum dot [38,58],
superconducting Q-bit [13,55]), a cold gas or atomic condensate [45,48,52–54], or any other
controlled systems of interest [59]. Here we will focus on hybrid systems that involve cavity
polaritons formed on quantum well excitons [107, 108]. Before introducing the new hybrid
Hamiltonian we will briefly present the cavity polariton formalism based on the Hopfield
model [69].

1.4.1 Hopfield model for cavity polaritons

1.4.1.1 Closed-system Hamiltonian

Since the pioneering work of Purcell [109], it is known that the emission probability of a
two-level atom is enhanced when placed at the antinode of a standing electromagnetic wave
inside a Fabry-Pérot cavity. If the coupling between these two entities is strong enough, i.e.
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if the energy exchange is faster than the decay rate of each entity, the new eigenmodes of the
coupled system can be described as linear superpositions of the atomic and cavity degrees
of freedom: this is the strong coupling regime of cavity-QED.

If many identical atoms are employed instead of one, an atomic excitation can be delocal-
ized in the ensemble. If the ensemble is large, many atomic excitations can be accommodated
without interfering: a collective mode can be populated in a quasi-harmonic manner and
the associated operator becomes quasi-bosonic in the limit of a large ensemble: this is the
Holstein-Primakoff transform [110]. In a semiconductor quantum-well, we will see in the
next chapter how bosonic operators d̂ and d̂† can there as well describe the collective mode
associated to the fundamental exciton trapped within the well. The light-matter coupling
Hamiltonian for such quantum-well exciton coupled to a cavity mode â is given by 10:

Ĥcx = ~!câ
†â+ ~!xd̂

†d̂+
~ΩR

2

⇣

â†d̂+ âd̂†
⌘

(1.27)

where ~ΩR/2 is the coupling energy and ΩR the Rabi splitting. The Hamiltonian (1.27)
can be diagonalized (for d̂ operators bosonic) thanks to the Hopfield (unitary) transforma-
tion:

Ĥcx = Eup̂
†
up̂u + Elp̂

†
l p̂l (1.28)

where the two new eigenstates of the system called Upper Polariton (UP) and Lower
Polariton (LP) have their eigenenergy:

Eu/l =
1

2

✓

Ec + Ex ± ~

q

�2 + Ω2
R

◆

=
1

2

✓

~!c + ~!x ± ~

q

�2 + Ω2
R

◆

(1.29)

with ~� = Ec�Ex = ~!c� ~!x the cavity-exciton detuning. The corresponding bosonic
operators are given by:


p̂l
p̂u

�

=


�C X
X C

� 
â

d̂

�

, X2 =
1

2

 

1 +
�

p

�2 + Ω2
R

!

, C2 =
1

2

 

1� �
p

�2 + Ω2
R

!

(1.30)

where X and C are the (positive) real Hopfield coefficients [69] that represent respec-
tively the excitonic and photonic fractions of the polariton particle. X2 + C2 = 1 and at
zero detuning (� = 0) X2 = C2 = 1/2.

The eigenenergies of the polaritonic system exhibit characteristic anti-crossing behavior
in analogy with two classical coupled oscillators as illustrated in figure 1.4. When the cavity-
exciton detuning is null the energy splitting between the lower and upper branch is exactly
ΩR.

10. This is the simplest form for the polariton Hamiltonian, we did not take into account the energy
dispersion of the exciton or cavity and we have considered pure spin states. Second-order terms describing
non-linear effects are also omitted.
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Figure 1.4 – UP and LP eigenenergy as a function of the cavity-exciton detuning �. The
color map corresponds to the excitonic fraction (X). ΩR=5 meV

1.4.1.2 Strong coupling criterion for a dissipative system

Just like for two coupled classical oscillators [111,112], we can insert relaxation phenom-
ena that confer to both exciton and photon a finite lifetime. The Langevin equations of the
coupled systems in the absence of any forces are 11:

˙̂a = �
⇣

j!c +
c

2

⌘

â� j
ΩR

2
d̂ (1.31)

˙̂
d = �

⇣

j!x +
x

2

⌘

d̂� j
ΩR

2
â (1.32)

where c, x are respectively the cavity photon and exciton decay rates. Inserting the
ansatz â/d̂ = â0/d̂0e

�jωt, and writing the equations in matrix form we get:


! � !c + j κc

2
�ΩR

2
ΩR

2
! � !x + j κx

2

� 
â0
d̂0

�

=


0
0

�

(1.33)

The corresponding determinant is:

(! � !c + j
c

2
)(! � !x + j

x

2
) =

Ω2
R

4
(1.34)

11. To obtain this set of equations we employ the same method used on eqs. (1.14) and (1.15), with the
Hamiltonian Ĥcx. The Langevin forces have been neglected and a thermal bath has been used to model the

exciton relaxation, ĤX�bath = ~
R
ωD̂†(ω)D̂(ω)dω and ĤX�bath,int = j~

R
dω
p

κ(ω)
h

d̂†D̂(ω)� D̂†(ω)d̂
i

(see appendix A.2.)
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The new eigenenergies are therefore given by:

Ẽu/l =
Ec + Ex

2
� j~

c + x

2
±

~

2

q

(� � j(c � x))2 + Ω2
R

=
~!̃

2
±

~

2

q

�̃2 + Ω2
R

(1.35)

with !̃ = !c + !x � j(c + x) the average complex angular frequency of the states and
�̃ = � � j(c � x) the effective complex detuning for the exciton-cavity couple.

Figure 1.5-(a) and (b) exhibit the real and imaginary part of !l/u = Eu/l/~ as a function
of the Rabi splitting ΩR for a zero cavity-exciton detuning. For � = 0, when ΩR <| c�x |
the square root in (1.35) is purely imaginary and the coupling term is not impacting the real
part of the eigenfrequencies: it is the weak coupling regime. On the other hand, when � = 0
and ΩR >| c�x | we enter in the strong coupling regime, where energy exchange between
the cavity and the exciton occurs, and two new hybrid eigenstates emerge. The situation
ΩR =| c � x | marks the difference between the two regimes.
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Figure 1.5 – (a) Real and (b) imaginary part of the eigenenergies !u/l as a function of the
Rabi splitting ΩR for a zero cavity-exciton detuning. Parameters are !c/c = 104, x = 0.
(c) UP and LP linewidth (~u/l) as a function of �. The color map corresponds to the
excitonic fraction (X). ΩR=5 meV, c=0.4 meV, x=0.06 meV

In the strong coupling regime the decay rates of the lower and upper branch are given

by l/u = � Im
n

Ẽl/u/~
o

:

l = X2x + C2c (1.36)

u = C2x +X2c (1.37)
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Their variations with the cavity-exciton detuning � are plotted in figure 1.5-(c).

1.4.2 Tripartite system: Photon, exciton, phonon
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Figure 1.6 – (a) - Sketch of the tripartite system. The system is composed of a resonator sup-
porting both an optical cavity resonance (C) and a mechanical resonance (M) at frequency !c

and !m. A quantum well QW, inserted inside the resonator, hosts exciton (X) at frequency
!x. Photons, phonons and excitons can be considered as bosons characterized by annihi-
lation/creation operators (â, â†),(b̂, b̂†) and (d̂, d̂†). c, Γm and x are the associated decay
rates. (b) Energy diagram: strong coupling induces a Rabi splitting ΩR = 2gcx between the
normal modes of the cavity/exciton, generating two polariton branches UP and LP. The
interaction of the mechanical mode with the polariton modes via the polariton-mechanical
coupling glm and gum is generating Stokes (S) and anti-Stokes (AS) sidebands

Hamiltonian description: We start this section by writing down the Hamiltonian of the
tripartite system (photon-exciton-phonon), illustrated in figure 1.6-(a) [113]:

Ĥ = Ĥ0 + Ĥint

= ~!câ
†â+ ~!xd̂

†d̂+ ~!mb̂
†b̂+ ~gcx(â

†d̂+ âd̂†)� ~gxmd̂
†d̂(b̂† + b̂)

� ~gcmâ
†â(b̂† + b̂)

(1.38)

where gcx = ΩR/2 and gcm = g0, and where gxm is the electromechanical coupling
parametrizing the interaction between the exciton and the phonon (detailed on section 2.6).
This Hamiltonian can be split into two different parts Ĥ0 and Ĥint corresponding respec-
tively to the bare energies of the three coupled systems, and their mutual interactions. The
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first term in Ĥint describes the Rabi exciton-cavity interaction, while the two others govern
the modulation of the cavity and exciton resonances by the mechanical motion.

In the strong coupling regime (g2cx > (c � x)2/4) we can rewrite this Hamiltonian in
the polariton basis introduced in eq. (1.30), after some algebra:

Ĥ = Ĥm + Ĥl + Ĥu + Ĥlum

Ĥm = ~!mb̂
†b̂

Ĥl = ~!lp̂
†
l p̂l � ~glmp̂

†
l p̂l(b̂

† + b̂)

Ĥu = ~!up̂
†
up̂u � ~gump̂

†
up̂u(b̂

† + b̂)

Ĥlum = �~glum(p̂†up̂l + p̂up̂
†
l )(b̂

† + b̂)

(1.39)

with glm = X2gxm + C2gcm, gum = C2gxm +X2gcm and glum = XC(gxm � gcm). Ĥl and
Ĥu look precisely like a canonical optomechanical Hamiltonian, where the cavity photon
mode has been replaced by a polariton mode and where the optomechanical coupling gcm
has been replaced by glm or gum. Ĥlum corresponds to phonon-accompanied scattering pro-
cesses between the two polariton branches.

• If the energy splitting between the UP and LP is close to the mechanical energy,
2gcx ' !m, the Hamiltonian Ĥlum will contain resonant terms corresponding to tran-
sitions between the UP and LP branch assisted by the emission or absorption of one
phonon. This scenario is highly unlikely in our system since the mechanical frequency
of the resonator is typically around the gigahertz while the Rabi splitting is around
ten terahertz.

• In consequence for quasi-resonant laser driving of the system close to one of the
polariton modes ⌘ = u, l the Hamiltonian (1.39) reduces to:

Ĥ = ~!mb̂
†b̂+ ~!ηp̂

†
ηp̂η � ~gηmp̂

†
ηp̂η(b̂

† + b̂) (1.40)

In this configuration, the system obeys the laws of optomechanics with photons in
the resonator simply replaced by polaritons. The coupling of the polaritons with the
mechanical motion, glm or gum, is a sum of the optomechanical and electromechanical
couplings, weighted by the excitonic and photonic fractions of the polariton. This
coupling will for example amongst others, generate Stockes and anti-Stokes sidebands,
as represented in figure 1.6 (b) similar to those illustrated in figure 1.2.

In conclusion, the emergence of polaritons does modify the strength of the effective op-
tomechanical interaction within the resonator. In this thesis, we are investigating devices
fabricated out of III-V semiconductors, where the deformation potential is strong and can
give rise to electromechanical couplings that are 10 to 1000 times larger than state-of-the-art
optomechanical couplings. In concrete devices, this may ultimately lead to an enhancement
of the effective optomechanical interaction g by a factor of 10 to 100 (as represented in figure
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1.7 (a)). Our experimental efforts will constitute first steps toward observing this effect.

On top of the g coupling factor, one should also look at how dissipation is affected
when polaritons emerge. This is overall well quantified by the cooperativity introduced
earlier in canonical optomechanical equations C = 4g2Ncav

Γmκc
, which we will take at the single-

particle level C0, considering that an experimentalist would employ as many polaritons in
the resonator as he/she would do with the photons. The ratio between the single-polariton
cooperativity and the single-photon cooperativity is given by:

C lm
0

C0

=
(X2 gxm

gcm
+ C2)

2

X2 κx

κc
+ C2

,
Cum

0

C0

=
(C2 gxm

gcm
+X2)

2

C2 κx

κc
+X2

(1.41)

The variations of those two ratios are represented in figure 1.7 (b). For the LP we
see that an enhancement of the cooperativity/optomechanical coupling is achieved as soon
as the excitonic fraction X start to increase, with a visible outcome for positive detuning
(X2 > 0.5), where the polariton will tend to have more an excitonic character. A similar
observation holds for the UP, with the cavity fraction C and when the detuning is negative
(C2 > 0.5).
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Figure 1.7 – Optomechanical coupling (a) and cooperativity (b) enhancement as a function
of the cavity-exciton detuning �. ⌘ = l/u - Green curves LP, red curves UP. ΩR = 5 meV,
c =0.4 meV, x = 0.06 meV, gxm/gcm = 10

We see that there are multiple challenges on the way to observe these effects of polaritonic
enhancement in optomechanical resonators. One should first control a platform where the
three degrees of freedom; photon, exciton, phonon; are controlled on the same footing, and
strongly interact with one another. At the same time the photon dissipation, the exciton
broadening, and the mechanical damping should all be mitigated and kept to a minimal
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amount. Finally, experiments should combine optomechanical techniques with spectroscopy
methods typical of polaritonics. The next chapter will present our efforts in such a direction.
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Chapter 2

Hybrid quantum well optomechanical
disk resonators in GaAs

Summary : In this chapter, we describe thoroughly the optical (section 2.1), mechanical
(section 2.2) and excitonic modes (section 2.3) of our GaAs disk resonator embeddingMQW
hetero-structures. We introduce new models, developed along this thesis, that enable full
calculation of the strength of their mutual interactions (sections 2.4, 2.5 and 2.6). While
WGM resonators per se are well-known photonic objects, at the beginning of this thesis,
there was no rigorous theory describing their interaction with an embedded quantum-well
at the quantum level. The same was true of the interaction between QW excitons and me-
chanical vibrations of a disk. The development of these theories along this thesis has been
an important ingredient of its advances, leading us to a quantitative analysis of the generic
parameters of hybrid quantum-well optomechanics introduced in the previous chapter.
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2.1 Electromagnetic modes of a dielectric disk : Whis-

pering Gallery Modes

2.1.1 General discussion

In this discussion, a microdisk refers to a piece of semiconductor shaped like a disk with
a µm-scale radius R and a thickness h comparable to λ

n
, where n is the refractive index

of the material, with a value usually close to 3 for III-V semiconductors. Such a structure
supports confined electromagnetic modes located close to the periphery of the disk called
Whispering Gallery Modes (WGMs) 1. Their analysis starts with Maxwell equations without
source terms :

r.("E) = 0 (2.1)

r.(µ0H) = 0 (2.2)

r⇥E = �j!µ0H (2.3)

r⇥H = j!"E (2.4)

where " = "0n
2 is the dielectric permittivity of the material, considered here as non

magnetic (µ = µ0). A combination of these equations in Fourier space leads to the well
known Helmoltz equation :

∆F +
n2!2

c2
F = 0 (2.5)

where F represents either the electric (E) or magnetic field (H) . The use of cylindrical
coordinates (r, ✓, z) is natural in a disk. The Laplacian operator in cylindrical coordinates
is given by :

1. This atypical name is because WGMs were first discovered in the context of sound waves. In 1877 [114]
Lord Rayleigh mentioned the term for the first time in an attempt to describe the peculiar acoustic of St-
Paul cathedral’s dome in London, where two persons can have a conversation by whispering along the dome
regardless of the distance between them. The optical counterpart was studied later in a large variety of
structures such as droplets, spheres, and of course disk.
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Inside a disk resonator of this thesis, the thickness is smaller than the radius (h⌧ R in
our system h/R ' 0.1). It seems reasonable decouple the electromagnetic field variations
along z from those along r and ✓. However, even considering this last statement to hold true,
there are no rigorous analytical solutions for the electromagnetic field in a such problem.
Numerical simulations (FEM, FDTD) or the effective index approach, can be independently
used to appreciatively obtain the spatial distribution of the electromagnetic modes. We
develop here the second option that consists in transforming the dimensionality of the 3D
problem into 2D+1. In the vertical z-direction, due to the step-index, the system will be
treated as an infinite slab waveguide whose eigenwaves are categorized into two different
groups: TE (transverse electric) modes, and TM (transverse magnetic) modes. Each group
comes with its own “effective refractive index” neff, which corresponds to the refractive
index “seen” by the TE or TM field in the 2D disk. Once that is accomplished we study the
propagation of the electromagnetic field in the plane of the disk and consider this time the
step-index in the radial direction 2. This 2D+1 effective index method represents admittedly
an approximation relying on strong assumptions, but it enables a useful analytic formulation
of the electromagnetic field.

2.1.2 Modes in a slab waveguide

x

y

z

h

Figure 2.1 – Geometry of a slab waveguide. The structure is infinite in the x and y direction,
the waveguide is formed by a semiconductor layer (red) with a refractive index n = 3.5
surrounded by vacuum n = 1 (gray).

We consider an infinite slab waveguide like in figure 2.1. Choosing a mode propagat-
ing in the y-direction, and invariant in x-direction, the nonzero components of the elec-
tromagnetic field can be written F (r) = F (x, z)ej(ωt�βy), with FTE = (Ex, Hy, Hz) and
FTM = (Ey, Ez, Hx) for TE and TM polarization. Keeping the component in the plane of
the slab and transverse to the propagation direction, the wave equation is :

2. In cylindrical coordinates for the 2D WGMs: TM modes - (Ez, Hr, Hθ 6= (0, 0, 0)), TE modes -
(Hz, Er, Eθ 6= (0, 0, 0)).
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@2

@z2
Fx(z) + (k2

0n(z)
2 � �2)Fx(z) = 0 (2.7)

with k0 = !
p
µ0"0 = 2π

λ
the propagation constant in vacuum and � = k0neff the propa-

gation constant along the y-axis. We consider a symmetric slab of height h surrounded by
vacuum, so n(z) = n for |z|  h

2
and n(z) = 1 for |z| > h

2
. We are interested in the guided

modes of the slab. We use the ansatz of an oscillating field in the slab and exponentially
decaying fields in the surroundings:

Fx(z) = Aσe
γzz for z < �h

2
(2.8)

Fx(z) = Bσe
jkzz + Cσe

�jkzz for �h

2
 z  h

2
(2.9)

Fx(z) = Dσe
�γzz for z >

h

2
(2.10)

with kz =
p

n2k2
0 � �2 and �z =

p

�2 � k2
0. Aσ, Bσ, Cσ and Dσ are constants with �

the polarization TE or TM . The waveguide is symmetric, leading to identify two types of
solutions: even and odd modes. In the case of vertically even modes the field is written as:

Fx(z) = Aσe
γz(z+

h
2
) for z < �h

2
(2.11)

Fx(z) = Bσ cos kzz for �h

2
 z  h

2
(2.12)

Fx(z) = Aσe
�γz(z�h

2
) for z >

h

2
(2.13)

For odd modes, the field is given by :

Fx(z) = �Aσe
γz(z+

h
2
) for z < �h

2
(2.14)

Fx(z) = Bσ sin kzz for �h

2
 z  h

2
(2.15)

Fx(z) = Aσe
�γz(z�h

2
) for z >

h

2
(2.16)

We focus now on TE modes, whose tangential component of the electric field (i.e. Ex)
must be continue at z = ±h

2
thus :

ATE = BTE cos
kzh

2
for even modes (2.17)

ATE = BTE sin
kzh

2
for odd modes (2.18)

The tangential component of the magnetic field (Hy) must also be continue at z = ±h
2
:
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ATE�z = BTEkz sin
kzh

2
for even modes (2.19)

�ATE�z = BTEkz cos
kzh

2
for odd modes (2.20)

By assembling the previous relations, we obtain characteristic equations:

�zh

2
=

kzh

2
tan

kzh

2
for even modes (2.21)

��zh
2

=
kzh

2
cot

kzh

2
for odd modes (2.22)

Certain specific values of �z and kz can satisfy these equations, i.e. the guide only sup-
ports a discrete set of modes. These equations cannot be solved analytically in a close-form,
and are rather treated with a numerical solver. 3

For TM modes the procedure is the same, and yields:

�zh

2
=

1

n2

kzh

2
tan

kzh

2
for even modes (2.25)

��zh
2

=
1

n2

kzh

2
cot

kzh

2
for even modes (2.26)

The effective indices calculated for the first modes of a slab of interest for us are plotted
in figure 2.2-(a). Given the thickness of our disk, 200 nm, it seems reasonable to take into
account only the first symmetric (even) TE and TM mode, as shown in figure 2.2 (b)).

3. However one can also remark that:

✓
γzh

2

◆2

+

✓
kzh

2

◆2

=
(β2 � k20)h

2

4
+

(k20n
2 � β2)h2

4

= (n2 � 1)

✓
k0h

2

◆2

= R2

(2.23)

which describes a circle in the plane (γz, kz). The solutions of the above characteristic equations are the
intersections of the circle with the tangents and cotangents of the expressions (??) and (2.22). By increasing
the thickness h or the step-index n, the number N of guided modes increases, obeying the relation:

N  2h

λ

p

n2 � 1 (2.24)
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Figure 2.2 – (a) Effective index for the first five modes TE and TM, as a function the of slab
thickness h. � = 900 nm and n=3.5. (b) First two TE modes, TE0 (solid dark) and TE1
(dashed dark) for a 200nm thick slab, � = 900 nm. The light red region represents the slab
waveguide and the dark red line indicate a centered position for a quantum well.

Effective length, area, and volume of an electromagnetic mode: The effective
mode length, area, volume are intrinsic characteristics of an electromagnetic mode defined
through the ratio between the energy stored within the mode and the maximum energy
density. For the 3D case of a volume, it is expressed as 4:

Veff =
1

M

ZZZ
"(r)

2
|E(r)|2 +

µ0

2
|H(r)|2d3r

M = max

✓
"(r)

2
|E(r)|2 +

µ0

2
|H(r)|2

◆ (2.27)

Mode volume is a piece of precious information, it appears in a large variety of physical
parameters such as the lasing threshold or the Purcell Factor. Energy losses by diffraction
and diffusion are usually assumed to be negligible so that the contribution of the electric
field and the magnetic field to the energy density is equal (energy conservation law) :

ZZZ ⌧
"(r)

2
|E(r)|2d(r)

�

=

ZZZ Dµ0

2
|H(r)|2d(r)

E

(2.28)

4. The definition of the mode volume is an open question: it depends on the physical problem studied
and different expressions can be found in the literature. Integrating over the entire space can sometimes
leads to a diverging integral, but this issue is mostly ignored and overcome by integrating over a finite
integration domain. Several other definitions independent of the computing volume are available for this
calculation [115], however, the corrections obtained thanks to these methods are relatively small, especially
for modes with a high-quality factor.
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with h...i the temporal mean value, we therefore obtain [116] :

Veff =
1

M

ZZZ
⌦
"(r)|E(r)|2

↵
d3r, M = max

⌦
"(r)|E(r)|2

↵
(2.29)

This definition is independent of the chosen field normalization coefficient.

In the case of the slab waveguide, one single dimension (z) is relevant, and the meaningful
notion is that of an effective length :

Leff =
1

M

Z +1

�1
dz
⌦
"(z)|E(z)|2

↵
,M = max

⌦
"(z)|E(z)|2

↵
(2.30)

As an example, of analytic expression, for the first even TE mode (TE0), we get:
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(2.31)

With a wavelength � = 900 nm, and a thickness h = 200 nm, the effective length is
Leff = 138.67 nm, with the effective index neff = 3.1341.

2.1.3 Whispering Gallery Modes

In the previous section, we obtained an effective index for the slab and calculated the
dependence of the field in the z-direction. We consider now the effect of the radial con-
finement in the disk. Looking at the Laplacian in cylindrical coordinate (2.6), we notice
that the only independent component is Fz. A separation of variables can be performed
Fz(r, ✓, z) = Fz,k(r, ✓)Fz,?(z) = Ψ(r)Λ(✓)X(z), where Fz,k is the field imposed by the radial
confinement (in the plane of the disk) while Fz,? is the field pattern imposed by the vertical
confinement, calculated in the prior section 2.1.2. Inserting this ansatz in (2.6) leads to :

8

>><

>>:

d2

dθ2
Λ(✓) +m2Λ(✓) = 0

d2

dz2
X(z) + ω2

c2
(n2 � n2

eff)X(z) = 0
⇣

d2

dr2
+ 1

r
d
dr

⌘

Ψ(r) +
⇣

n2
effω

2

c2
� m2

r2

⌘

Ψ(r) = 0

(2.32)

The first equation is solved analytically Λ(✓) = Ae�jmθ, where m 2 Z is called the
azimuthal number. The second equation is that of a slab waveguide solved previously.
Posing u = (!/c)neffr, the third equation reads :

(u2 @
2

@u2
+ u

@

@u
)Ψ(r) + (u2 �m2)Ψ(r) = 0 (2.33)
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If u is a complex number, the resonance frequencies ! possess an imaginary part. The
time dependence of solutions is ejωt. We pose ! = !0 + j with  > 0 to avoid divergence.
The solutions of (2.33) are Bessel and Hankel functions of the first and second kind (Jm(u),

Ym(u), H
(1)
m (u), H

(2)
m (u)). The field must be null at r = 0 (u = 0) in the disk, for both

polarizations. Outside of the disk, the field should decrease toward zero. The first condition
is only verified by the Bessel function of the first kind and the second by the Hankel function
of the second kind. Hence:

Ψ(r) =

(

NσJm(kneffr) for r  R

NσBH
(2)
m (kr) for r > R

(2.34)

with neff ' 1 in vacuum (r > R). Nσ is a normalization constant andB = Jm(kneffR)/H(2)
m (kR).

The tangential components of the electric and magnetic field must be continuous at the in-
terface (Hz, Eθ for TE polarization; and Ez, Hθ for TM polarization). We thus obtain to
the following characteristic equations :

nTM
eff

J̇m(kn
TM
eff R)

Jm(knTM
eff R)

=
Ḣ

(2)
m (kR)

H
(2)
m (kR)

for TM modes

J̇m(kn
TE
eff R)

Jm(knTE
eff R)

= nTE
eff

Ḣ
(2)
m (kR)

H
(2)
m (kR)

for TE modes

(2.35)

For a m number, several solutions km,p of equations (2.35) can exist: they are labeled
thanks to a radial number p. The azimuthal number m represents the number of field
oscillations around the disk, while its sign indicates if the phase propagation is “clockwise”
(m > 0 ) or “counter-clockwise” (m < 0). The radial number p corresponds to the number
of lobes of the field in the radial direction. The other components of the field are obtained
through 5:

TM modes

(

Hr =
m

ωµ0r
Ez

Hθ =
�j
ωµ0

∂Ez

∂r

TE modes

8

<

:

Er =
�m

ωε0ε
TE
eff r

Hz

Eθ =
j

ωε0ε
(TE)
eff

∂Hz

∂r

(2.38)

and are represented in figure 2.3.

5. In a more detailed version for r < R:

TM modes

8

<
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NTM

m,pm

ωµ0r
Jm(βm,pr)e

�jmθ

Hθ = �NTM
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ωµ0

⇥
m
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e�jmθ

(2.36)

TE modes
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ωε0ε
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m
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e�jmθ

(2.37)

with βm,p = km,pn
σ
eff.
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Figure 2.3 – Components of the electromagnetic field (real part) for a WGM m = 40 and
p = 1 - (a)-(b)-(c) TE mode �c= 851.97 nm - nTE

eff ' 3.3 - (d)-(e)-(f) TM mode �c= 855.59
nm. nTE

eff ' 3.1

We will later make use of a compact notation involving circularly polarized components
of the electromagnetic field: the normalized complex vectors E+ and E� defined by:

E± = E±

(x⌥ jy)p
2

ejωt (2.39)

where E± = |E±|e
jδ± is a complex-valued scalar quantity. Introducing the short-hand

basis:

v+ =
x� jyp

2
=

e�jθ

p
2
(r � jθ) = v⇤

� v� =
x+ jyp

2
=

ejθp
2
(r + jθ) = v⇤

+ (2.40)

one can write any electromagnetic field as a linear superposition:

E = Exx+ Eyx+ Ezz = Err + Eθθ + Ezz = E+v+ + E�v� + Ezz (2.41)

From the transfer matrices,
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we can deduce the following relations:

E± =
(Ex ± jEy)p

2
= e±jθ (Er ± jEθ)p

2
(2.43)

For the WGMs we obtain (for r < R):

Er ± jEθ = �
NTE

m,p�m,p

!"0"eff
Jm⌥1(�m,pr)e

�jmθ (2.44)

Hr ± jHθ =
NTM

m,p�m,p

!µ0

Jm⌥1(�m,pr)e
�jmθ (2.45)

which gives the following expression for the circularly polarized electric field (for r < R):

E± = �
NTE

m,p�m,pp
2!"0"eff

Jm⌥1(�m,pr)e
�j(m⌥1)θv± (2.46)

,which are represented in figure 2.4.
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Figure 2.4 – Circularly polarized components of the electromagnetic field (real part) for a
TE WGM (m = 40 and p = 1) at �c= 851.97 nm. nTE

eff ' 3.3.

We compute the effective area of such mode confined in the 2D disk:

Aeff =
1

M

ZZ

rdrd✓
⌦
"(r)|E(r, ✓)|2

↵
, M = max

⌦
"(r)|E(r, ✓)|2

↵
(2.47)

Using the basis of circularly polarized fields, we obtain :
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eff =
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J2
m+1(�m,pr) + J2

m�1(�m,pr)
⇤
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A

+
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R
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0
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NTE
m,pBkm,p

!"0
p
2

!2
⇥
H2

m+1(km,pr) +H2
m�1(km,pr)

⇤

1

A

(2.48)

Similar results can be obtained using the cylindrical basis, since E+E
⇤
++E�E

⇤
� = ErE

⇤
r+

EθE
⇤
θ . The expression of Am,p

eff does eventually not depend on the normalization coefficient
NTE

m,p�m,p which appears in M as well. Using this formula for a TE mode with m = 41 and
p = 1, we find an effective area Aeff = 2.654 µm2 for a disk of radius R = 2 µm, nTE

eff = 3.26.

2D+1 WGMs

The full 3D spatial distribution of the electromagnetic field can now be expressed, by
multiplying the slab waveguide vertical variation (section 2.1.2) by the in-plane variations
within the 2D disk (section 2.1.3): we get for r < R,

ETE
m,p = [E+(r, ✓) +E�(r, ✓)]Ex(z) = Em,p(r, ✓)Ex(z)

= E
(TE)
0�m,pEx(z)

⇥
Jm�1(�m,pr)e

�j(m�1)θv+ + Jm+1(�m,pr)e
�j(m+1)θv�

⇤ (2.49)

ETM
m,p = Ez(r, ✓)Ez(z) = �

1

j!"0"r

@Hx

@y
Ez(r, ✓)

= E
(TM)
0�m,pJm(�m,pr)e

imθHx(z)z

(2.50)

where the normalization factors introduced in previous relations (Aσ,Bσ,N
σ
m,p...) have

been merged into a single coefficient Eσ
0�m,p. Figure 2.5 provides a comparative view of the

electric field distribution in the disk, obtained either with our (2D+1) analytic model or
with 2D-axisymmetric FEM-simulations. The profile is almost identical: a small difference
remains in the predicted frequency of the mode (0.09 % error).

Using the expression (2.49) the effective (3D) volume in the TE case takes this form :

Veff =
1

M

ZZZ
⌦
"(r)|E(r)|2

↵
dV , M = max

⌦
"(r)|E(r)|2

↵

=
1

2M

Z +1

�1

Z 2π

0

Z +1

0

rdrd✓dz"0"r(r, z)
⇥
E+E

⇤
+(r, ✓) + E�E

⇤
�(r, ✓)

⇤
|Ex(z)|

2
(2.51)

where the permittivity "r(r, z) is described by the following function :

"r(r, z) = 1 + ("r � 1)⇥ Π

⇣z

h

⌘

⇥ H̃(r �R) (2.52)
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with

Π (z) =

(

1 for � 1
2
 z  1

2

0 for |z| > 1
2

and H̃(r) =

(

1 for r  0

0 for r > 0
(2.53)

The final expression of the effective volume is therefore :

V m,p
eff =

1

M

Z +1

�1
dz|Ex(z)|

2

Z 2π

0

Z +1

0

rdrd✓"0
⇥
E+E

⇤
+(r, ✓) + E�E

⇤
�(r, ✓)

⇤

+
1

M

Z +h/2

�h/2

dz|Ex(z)|
2

Z 2π

0

Z R

0

rdrd✓"0("r � 1)
⇥
E+E

⇤
+(r, ✓) + E�E

⇤
�(r, ✓)

⇤
(2.54)

This expression differs from that one would obtain by simply multiplying the prior ef-
fective length (eq. (2.31)) and effective area (eq. (2.48)). For a TE mode with m = 41 and
p = 1, represented in figure 2.5, the effective volume is equal to 0.181 µm3 ' 7.5(�/n)3 (i.e.
' 7.2% of the microdisk volume) consistent with values reported in [117, 118] for different
wavelength range/material. FEM simulations predict a similar value ' 0.179 µm3.

(a) (b)

Figure 2.5 – Norm of the electric field for a TE WGM (m = 41 and p = 1), obtained with
our 2D+1 model (a) �c= 860.35 nm, and with FEM simulation (b) �c= 859.58 nm. Disk
radius R = 2 µm; thickness h = 200nm

2.1.4 Quantization of the electromagnetic field and vector poten-
tial

This section aims to express the field operators in terms of the normal modes found
above. The expression will serve then to treat the interaction between light and matter.
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Without following the strict procedure of quantization of the electromagnetic field, using
a Lagrangian approach, we highlight here the similarities between the Hamiltonian of the
electromagnetic field and that from a harmonic oscillator, identify the corresponding mo-
mentum and position operators, before writing these in terms of annihilation and creation
operators. For more details on the procedure, see [119].

We start back with Helmholtz equation (2.5), which we rewrite for convenience :

(

r2E + n2

c2
∂2E
∂t2

= 0

r2H + n2

c2
∂2H
∂t2

= 0
(2.55)

A solution can be written as an expansion in normal modes, where the time dependence
and the spatial variations are separated:

E(r, t) =
X

n

An(t)un(r) (2.56)

The normal modes {un} form a basis and obey the bulk and boundary conditions of
Maxwell’s equations:

r2un = �k2
nun r · un = 0 n? ⇥ un = 0 (2.57)

where n? is a unit vector normal to the boundary surface 6. The modes also satisfy the
orthonormality condition :

Z

un(r)u
⇤
n0(r)d3r = �n,n0 (2.58)

Substituting the expression (2.57) in the wave equation leads to an equation for An(t):

X

n

d2An(t)

dt2
+

c2

n2
k2
nAn(t) = 0 (2.59)

Since the modes are independent :

d2An(t)

dt2
+

c2

n2
k2
nAn(t) = 0 (2.60)

This equation is that of an harmonic oscillator with frequency !n = ckn/n, hence An(t) /
e±jωnt. In a similar fashion we can express the magnetic field with a separation of variables,
H(r, t) =

P

n Bn(t)r⇥ un(r), where the coefficient Bn must satisfy Maxwell’s equations:

r⇥E = �µ0
@H

@t
)

X

n

An(t)r⇥un = �µ0

X

n

@tBn(t)r⇥un

) dBn(t)

dt
= � 1

µ0

An(t)

(2.61)

6. This third condition is imposed because the mode are considered transverse toward infinity
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Using Maxwell Ampere equation, we see that Bn obeys an harmonic oscillator equation
as well:

d2Bn(t)

dt2
+

c2

n2
k2
nBn(t) = 0 (2.62)

For the sake of clarity, we write the energy as function of the real fields E0 and H0:

Ĥ =
1

2

Z

d3r
�
"E2

0 + µ0H
2
0

�
(2.63)

and substituting the expression of the electric and magnetic field we obtain:

Ĥ =
1

2

X

n0,n

✓

"An(t)An0(t)

Z

un(r)un0(r)d3r+

µ0Bn(t)Bn0(t)

Z

(r⇥ un(r)) · (r⇥ un0(r))d3r

◆

=
X

n

1

2

�
"A2

n(t) + µ0k
2
nB

2
n(t)

�

(2.64)

where we have used
R
(r⇥ un(r)) · (r⇥ un0(r))d3r = k2

n�n,n0 . The electromagnetic
Hamiltonian is hence similar to the Hamiltonian of a set of harmonic oscillators:

Ĥh.o. =
X

n

1

2

✓
P 2
n(t)

2m
+m!2

nQ
2
n(t)

◆

(2.65)

with Qn and Pn = dQn

dt
the position and momentum. We can hence identify An and Bn

to an equivalent position and momentum:

Qn(t) () An(t) =

r

m!2
n

"
Qn(t) (2.66)

Pn(t) () Bn(t) =

s

1

µ0k2
nm

Pn(t) (2.67)

The position and momentum are themselves quantized and associated to an operator:

Q̂n(t) =

r

~

2m!n

�
â†n(t) + ân(t)

�
(2.68)

P̂n(t) = j

r

~m!n

2

�
â†n(t)� ân(t)

�
(2.69)

with ân and â†n the annihilation and creation operator of the quantum harmonic oscil-
lator (bosonic ladder operators). By analogy an operator is associated to the normal mode
coefficients An and Bn :
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Ân(t) =

r

~!n

2"

�
â†n(t) + ân(t)

�
(2.70)

B̂n(t) = j
c

n

s

~

2µ0!n

�
â†n(t)� ân(t)

�
(2.71)

The electric and magnetic fields are defined as the sum over these normal modes. We
can hence write the field operators at any position and time as 7:

Ê(r, t) =
X

n

r

~!n

2"

�
ânun(r)e

�jωnt + h.c
�

(2.72)

Ĥ(r, t) = �
X

n

j
c

n

s

~

2µ0!n

�
ânr⇥ un(r)e

�jωnt � h.c
�

(2.73)

Given these expressions, the Hamiltonian of the system now reads:

Ĥ =
X

n

~!n

2

�
â†nân + ânâ

†
n

�
=
X

n

~!n

✓

â†nân +
1

2

◆

(2.74)

This derivation is general and valid for an electromagnetic system governed by equations
(2.55) and (2.57). Going back to the WGMs of a dielectric resonator, we select a set of
normal modes satisfying the conditions of orthonormality and the conditions (2.57):

um,p(r) =
Eσ

m,p(r)
p

"(r)

p

V m,p
eff

r

max
⇣

"(r)
�
�Eσ

m,p(r)
�
�
2
⌘ =

Ẽm,p(r)eσ
p

V m,p
eff

=
Ẽx(z)Ẽm,p(r, ✓)(r)eσ

p

V m,p
eff

(2.75)

with eσ the polarization vector of the mode. In the case of WGMs, the set of harmonic
oscillators is no longer characterized by a unique quantum number n but by a couple of
azimuthal and radial numbers m and p 8. We can hence express the electric field operator
for a disk resonator as:

Ê(r, t) =
+1X

m=�1

+1X

p=1

s

~!m,p

2"V m,p
eff

⇣

âm,pẼm,p(r)e
�jωm,pteσ + h.c.

⌘

(2.76)

To obtain an expression of the vector potential operator, we need to choose a gauge.
We choose the Coulomb gauge, where the vector potential is transverse (r ·A = 0) and in
the absence of free charges, the scalar potential is null (Φ = 0). In that case, the relation
between the electric field and the vector potential is:

7. The evolution of the operator ân(t) and â†n(t) derives from the Heisenberg equation of motion dân

dt =

� j
~
[Ĥ, ân(t)] = �jωnân, hence ân(t) = ân(0)e

�jωnt. For convenience we wrote ân(0) as ân.
8. We consider in this thesis disks that are thin enough to only support the fundamental slab mode,

hence we will not explicitly involve a third quantization number to parametrize the vertical confinement
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E = �@A
@t

(2.77)

Implying that the electric field is also a transverse vector 9. The vector potential operator
expressed in the WGMs basis is:

Â(r, t) = j

+1X

m=�1

+1X

p=1

s

~

2"!m,pV
m,p
eff

⇣

âm,pẼm,p(r)e
�jωm,pteσ � h.c.

⌘

(2.78)

One can freely change the origin of the time in (2.78) and obtain the following equivalent
expression for the vector potential:

Â(r, t) =
+1X

m=�1

+1X

p=1

s

~

2"!m,pV
m,p
eff

⇣

âm,pẼm,p(r)e
�jωm,pt0eσ + h.c.

⌘

(2.79)

2.2 Mechanical modes of an elastic disk : Radial Breath-

ing Modes

The vibrational modes of an elastic object can be determined by solving the linear
equations of elasticity. The linear approximation is only valid for small strains (typically
under 10�3). The fundamental dynamics relation writes:

⇢
@2ui

@t2
= @j�ji + Fi (2.80)

where ui is the i-component of the displacement, ⇢ the density of the material, �ji the
ji-element of the stress-tensor, and F the external forces acting on the object. A linear
relation between the stress and the strain is added to obtain the elastic equation. The me-
chanical eigenmodes have eigenfrequencies !m and a spatial pattern u(r).

u(r, t) = u(r) cos (!mt) (2.81)

The collection of mechanical modes of a disk embeds two categories of interest: “in-
plane” modes and “out of plane” modes (“flexural modes”). If one assumes the elastic
material to be isotropic, the elastic disk problem acquires a rotation-invariance along the
disk vertical axis z 10. In such case, once can write the displacement field spatial pattern as
u(r, ✓, z) = u(r, z) cos(M✓ + Φ), where M 2 Z is called the mechanical azimuthal number.
For M = 0, the mode presents an azimuthal invariant profile. Furthermore, as for the optical

9. In the 2D+1 approximate description, the divergence of a TM mode is actually not strictly null, as a
consequence of the approximation.
10. Note that GaAs is not isotropic elastically, hence this assumption will serve only for first-order de-

scription
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WGMs, there is a mechanical radial number P as well which indicates the number of radial
oscillations [120]. Different approaches can be employed to solve for u(r, z).

2.2.1 Analytical model

1 -10
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Figure 2.6 – Radial displacement ur(r) and strain rr · un(r) for the three first RBMs com-
puted with the analytical model (a) RBM1 - (b) RBM2 - (c) RBM3

In this thesis, we are in particular interested in the “in-plane” modes, since they lead
to a better optomechanical coupling with the WGMs. Three types of “in-plane” modes
are generally discussed: Radial Breathing Modes (RBMs), tangential modes, and wineglass
modes [121,122]. From the optomechanical point of view, RBMs are the best candidates to
obtain large coupling. At first order of description, and for a thin disk, one can approximate
the deformation profile of a RBM, u(r, z) = ur(r)r, hence neglecting at that stage the out-
of-plane component uz as well as the variation of ur along z. Under these assumptions, and
assuming plane-stress-conditions, there exists an analytic solution to this RBM problem 11

[113,123,124]:

un(r) = AnJ1(↵nr)

rr · un(r) =
1

r

@

@r
[run(r)] = An↵nJ0(↵nR)

A�1
n =

q

J2
1 (↵nR)� J0(↵nR)J0(↵nR)

(2.82)

with An a normalization factor insuring that
R

V
drun(r)um(r) = V �n,m, R the radius of

the disk, and ↵n a constant depending on the properties of the material and the frequency
of the mode:

↵n = !n

s

⇢
�

E
1+σ

�
+
�

Eσ
1�σ2

� (2.83)

11. In this section the quantities u are dimensionless.
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with ⇢, E, and � the density, Young modulus, and Poisson ratio of the material, re-
ported in appendix C.1. RBMs of subsequent order are labeled with the number n. The
eigenfrequency !n of the RBM of order n is found by solving the implicit equation:

�nJ0(�n)

J1(�n)
= 1� � with �n = !m(n)R

r

⇢(1� �2)

E
(2.84)

�n has no dimension and only depends on the properties of the material. For a given �n,
smaller disks have higher mechanical frequency (the frequency scales as 1/R). The radial
displacement and strain profile associated with the first three RBMs are represented in figure
2.6.

2.2.2 Numerical simulation
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Figure 2.7 – Radial displacement ur(r) (dark blue) and strain rr · un(r) (light blue) profile
for the three first RBMs obtain with 2D axis symmetric FEM simulations (continuous lines)
and via the plane stress analytical model (square symbols). (a)-(b) RBM1 - (c)-(d) RBM2
- (e)(f) RBM3

We compare the results obtained via the above analytic approach with FEM simulations.
As can be seen in figure 2.7, the results are almost identical, confirming the validity of the
model. Table 2.1 lists the mechanical frequencies for the three first RBMs of our disk, cal-
culated with the two approaches. The results are close (gap below 1%) for 2D axisymmetric
and 3D simulations, especially for the RBM1. More pronounced differences among the dif-
ferent approaches appear for higher-order RBMs. One limitation of the analytical model is
that ur does not depend on z, which is only valid for the RBM1.

41



!m/2⇡ [MHz] Material RBM1 RBM2 RBM3
Plane-stress analytical Isotropic 695.9 1820.8 2894.7

2D axisymmetric FEM simulation Isotropic 695.5 1815.2 2871.7
3D FEM simulation Isotropic 695.5 1815.6 2873.6
3D FEM simulation Anisotropic 708.6 1964.8 3145.5

3D FEM simulation (AlGaAs pedestal included) Anisotropic 703.5 1849.6 2893.6

Table 2.1 – RBMs frequencies computed via different approaches

An important interest of FEM simulations is the possibility to include the effect of the
pedestal supporting the disk and/or the anisotropy of the GaAs crystal. For the face-
centered cubic lattice of GaAs, the thirty-six components of the elastic tensor C are reduced
to three : C11, C12, C44. Using such an anisotropic elastic tensor in the simulations leads
to the profiles represented in figure 2.8. With pedestal and anisotropy, the values for the
mechanical frequencies start deviating from the isotropic plane-stress model (Table 2.1).

1 00.5

(a) (b) (c)

Amplitude [a.u.]

Figure 2.8 – Total displacement for the three first RBMs obtain via 3D FEM simulations
including the anisotropy of the GaAs crystal. (a) RBM1 - (b) RBM2 - (c) RBM3

So far we considered our disk as constituted of a homogeneous GaAs whereas, in real-
ity, different materials compose the disk layer, given the presence of the hetero-structure.
Simulating the impact of the other materials by FEM simulations will be computationally
costly since the involved material layers are extremely thin (typically a few nanometers).
Besides, the mechanical properties of these alloys layers are close to those of plain GaAs
(see appendix C.2). We hence assume that these few layers do not impact the values of
mechanical frequency.

2.2.3 Effective mass and choice of the reduction point r0

Our mechanical disk is a 3D vibrating object, which we would like to describe with an
effective 1D mass on a spring picture. To do so, the displacement at a specific reduction point
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r0 will be taken as reference, which will in consequence determine an effective mass and an
effective spring for each mechanical mode [125]. For a RBM in the plane-stress description,
and a reduction point located at r0 from the origin, the ratio of effective mass to the true
mass of the disk is:

meff

m
=

✓

1� J0(↵nr0)J2(↵nr0)

J2
1 (↵nr0)

◆

(2.85)

The notion of reduction point will be very useful to define optomechanical parameters
such as the frequency-pull gom = �@!c/@x, which depends on the chosen reference displace-
ment x. To circumvent the dependence of gom on the chosen reduction point, we will instead
use the vacuum coupling g0 = xZPFgom, with xZPF =

p

~/(2meff!m).

Practically speaking, the reduction point is often chosen to sit on the disk periphery
(r0 = R): in that case for the three first RBMs we obtain a ratio meff/m of 0.789, 0.969,
0.988. The value of the effective mass can also be computed by FEM simulations: in this
case, we generally chose the reduction point where the displacement is maximal.

2.3 Quantum-well excitons in a disk

2.3.1 Crystalline and electronic properties of GaAs

This section introduces some basic properties of GaAs that can be extended to other
members of the III-V semiconductors group, like InAs or AlAs for instance. Most of the
III-V compounds semiconductors grow in the zinc-blende structure, a structure formed by
two intersecting face-centered cubic (FCC) lattices, which are shifted by one-quarter of the
cubic space diagonal against each other. The reciprocal lattice of such structure is a body-
centered cubic (BCC) lattice, whose first Brillouin zone (FBZ) is the Wigner-Seitz shown in
figure 2.9 (a). It exhibits high symmetry points, like Γ, L, or X.

Eight electrons per unit cell contribute to the chemical bonds in the III-V group: three
for Ga (4s24p1) and five for As (4s24p3). The s and p orbitals of neighboring atoms overlap
and hybridize, forming bonding and antibonding orbitals. Since the crystal consists of a
very large number of unit cells, these bonding, and antibonding orbitals form bands. The
conduction band of the material is formed by the antibonding orbitals of the lowest energy:
at the Γ point, the atomic part of the wavefunction in this band has a s orbital symmetry.
The valence bands are formed by the highest energy bonding orbitals: in these bands, the
wavefunction has a p symmetry for their atomic part. The band structure of GaAs is shown
in figure 2.9 (b).

In absence of spin-orbit coupling, the three p bands are degenerated at the Γ point; the
inclusion of the spin-orbit coupling lifts the degeneracy. p orbitals have an angular momen-
tum L = 1, that sums with the spin, J = L + S, to get two possible values J = 1/2 or
J = 3/2. This leads to two multiplets: a quadruplet with Γ8 symmetry (J = 3/2) and a
doublet with Γ7 symmetry (J = 1/2). This last doublet has lower energy and gives rise to
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Figure 2.9 – (a) First Brillouin zone of a zinc-blende lattice (b) Electronic bandstructure
of bulk GaAs computed with a 14-band k · p method [126, 127]. The green shaded area
is schematized in (c), with four different bands around the Γ point, and a position of the
Fermi level EF between the conduction and valence band. (d) Schematic representation of
a bound electron hole pair.

the so-called split-off bands. The Γ8 quadruplet is subdivided into two doublets, according
to the value of the angular momentum along z Jz. These two sub-bands have the same
energy at k = 0 but their dispersion, hence effective mass is different. The band associated
to Jz = ±3/2 is called heavy hole band, while that associated to Jz = ±1/2 is called light
hole band. This four-band model is illustrated in figure 2.9 (c).

2.3.2 Exciton in bulk semiconductor

Exciton is the name given to the bound state of an electron-hole pair 12 (see scheme in
figure 2.9 (d)). An exciton is hence a collective excitation of the many-body electrons system
in the crystal, including the interaction between electrons. In a minimal k · p approach,
semiconductor electrons are described by a model with two bands (valence and conduction),
quadratic dispersion, and direct bandgap Eg [128]. The energy dispersion of the electron
inside each band is given by:

12. Two types of excitons can be distinguished, mostly by the size and the binding energy: Frenkel and
Wannier-Mott excitons, the latter having a Bohr radius much larger than the interatomic spacing of the
crystal (aB ' 10 nm) and weak binding energy (Eb ' 1 � 10 meV). The physical properties and therefore
the type of excitons is determined by the value of the dielectric constant inside the material. A rather high
value for the dielectric constant, like in semiconductors, leads to a screening of the effective electron-hole
interaction, and thus to weaker binding energy, and large Bohr radius, i.e. Wannier-Mott excitons.
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Ev(k) = �
~
2k2

2m⇤
v

, Ec(k) = Eg +
~
2k2

2m⇤
c

, (2.86)

where m⇤
c and m⇤

v represents respectively the effective mass of conduction and valence
electrons (the convention m⇤

c ,m
⇤
v > 0 has been used). In second quantization, the Hamilto-

nian without interaction, Ĥ0, takes the form:

Ĥ0 =
X

k

⇣

Ev(k)ĉ
†
vkĉvk + Ec(k)ĉ

†
ckĉck

⌘

(2.87)

Here ĉv/ck and ĉ†v/ck are the annihilation and creation operators for Bloch electrons in
the valence and conduction band respectively. In the r-representation, the wavefunction for
the electron is:

hr|ĉ†αk|0i = hr|↵ki =
1p
V
e�jkruαk(r), ↵ ⌘ c/v (2.88)

with V the quantization volume and uαk(r) the periodic Bloch function.

The Hamiltonian for the interband interaction between the valence and conduction elec-
trons is given by [129,130] (jellium model) :

ĤI =
1

2

k1 6=k4X

k1k2k3k4

fk1k2k3k4 ĉ
†
vk1

ĉ†ck2
ĉck3 ĉvk4

fk1k2k3k4 = hk1v,k2c|V̂ |k3c,k4vi =
e2

"0"rV

1

|k1 � k4|
2 �k1�k4,k3�k2

(2.89)

Therefore the total exciton Hamiltonian reads :

Ĥex = Ĥ0 + ĤI

=
X

k

✓

Eg +
~
2k2

2m⇤
c

◆

ĉ†ckĉck +
X

k

✓

�~
2k2

2m⇤
v

◆

ĉ†vkĉvk

+

k1 6=k4X

k1k2k3k4

e2

4⇡"0"rV

1

|k1 � k4|
2 ĉ

†
vk1

ĉ†ck2
ĉck3 ĉvk4�k1�k4,k3�k2

(2.90)

The ground state of the system is found by occupying all electron states of the valence
band: it is described by a Slater determinant [131]:

Ψ0 = A{ vk1
(r1), vk2

(r2), ..., vkN
(rN )} (2.91)

where the symbol A indicates the anti-symmetric state, and N is the total number of
electrons in the crystal, or equivalently in second quantization :

|Ψ0i =
Y

k

ĉ†vk |0i (2.92)
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where |0i = |0, 0, ..., 0i = |0i ⌦ |0i ⌦ ...⌦ |0i is the many body vacuum state. |Ψ0i is an
eigenstate of the total Hamiltonian (2.90), with the following eigenvalue:

E0 =
X

k

Ev(k) (2.93)

The excited states correspond to superpositions of possibilities to promote one electron
from the valence to the conduction band:

|Ψi =
X

k,k0

O(k,k0) |k,k0i =
X

k,k0

O(k,k0)ĉ†ckĉvk0 |Ψ0i (2.94)

The amplitude O(k,k0) is an envelope function in the reciprocal space [128]. It is con-
venient to define new variables namely:

K =
m⇤

ck
0 +m⇤

vk

M
(2.95)

q = k � k0 (2.96)

With the previous definitions, relation (2.94) becomes:

|Ψi =
X

q,K

Oq(K)ĉ†c,K+(m⇤
c/M)q ĉv,K�(m⇤

v/M)q |Ψ0i (2.97)

where the summation index has been changed and whereOq(K) = O(K+(m⇤
c/M)q,K�

(m⇤
v/M)q). This choice corresponds to the electron-hole system in the center of mass frame.

(2.97) is an eigenstate of the Hamiltonian (2.90) if the coefficients Oq(K) obey the effective-
mass equation (see appendix B.1 for the derivation) that takes the following form for a given
couple (K, q):



�Ē +
~
2K2

2µ
+

~
2q2

2M

�

Oq(K) +
X

K0

e2

"0"rV

1

|K �K0|2
Oq(K

0) = 0 (2.98)

with M = m⇤
c +m⇤

v the total effective mass of the two-particle system, µ = m⇤
cm

⇤
v

m⇤
v+m⇤

v
the

reduced effective mass, and Ē = E�E0�Eg. Taking the Fourier transform of the coefficients
Oq(K) we introduce an envelope function in real space:

Ψenv(r,R) =
1

V

X

q,K

Oq(K)e�j(qR+Kr) (2.99)

The Fourier transform of eq. (2.98) leads to the Schrodinger equation of two particles in
an attractive Coulomb potential in the center of mass frame:

✓

� ~
2

2M
r2

R �
~
2

2µ
r2

r �
e2

4⇡"0"rr

◆

Ψenv = ĒΨenv (2.100)

This result is remarkable: starting from a many-body problem (repulsive Coulomb inter-
action between an electron of the conduction band and many other electrons in the valence
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band) we finally obtain an Hamiltonian of two particles in an attractive Coulomb potential,
equivalent to a hydrogenic problem. Separating the variations in r and R, eq. (2.100)
admits the following solutions [132]:

Ψ
q,n
env(r,R) = ejqRΦn(r), En(q) = Eg�E3D

b,n+
~
2|q|2

2M
= Eg�

Ry⇤

n2
+
~
2|q|2

2M
n 2 N

⇤ (2.101)

where Φn represents the atomic orbital state of the hydrogen problem and the choice
E0 = 0 has been made. The effective Rydberg energy Ry⇤ is given by Ry⇤ = ~

2/(2µa2B,3D),
with the exciton Bohr radius in 3D aB,3D = 4⇡~2"/(µe2),which is about two orders of mag-
nitude larger than the atomic Bohr radius, owing to the large dielectric constant and small
effective mass. The exciton energy levels lie below the bandgap of the semiconductor, and
the spectrum becomes increasingly dense at higher energy.

The eigenstates and eigenvalues of the exciton Hamiltonian are now defined, and we
introduce the exciton creation operator 13:

d̂†q,n =
X

K

On
q (K)ĉ†c,K+(m⇤

c/M)q ĉv,K�(m⇤
v/M)q (2.102)

Calculating the following commutator for excitons of zero momentum [133]

h

d̂0,n, d̂
†
0,n

i

=
X

K

|On
0 (K)|2

h

1� ĉ†c,K ĉc,K � ĉv,K ĉ†v,K

i

(2.103)

,we show that excitons behave approximately as bosons, and that the deviation is pro-
portional to the density of electrons in the conduction band and holes in the valence band.
The expectation value of the commutator for arbitrary momentum is [134]:

Dh

d̂q,n, d̂
†
q,n

iE

= 1�O(da3B) (2.104)

where d is the density of excitons in the system. Excitons behave as bosons as long as
the distance between them is larger than their spatial extent, parametrized by the Bohr
radius. In the following, we focus on the lowest internal state (i.e. Φn = Φ1) and thus drop
the index n. The wavefunction for this state is given by :

Φ
3D
1 (r) =

1
q

⇡a3B,3D

e�r/aB,3D Φ
3D
1 (K) =

p
8⇡a

3/2
B,3D

(1 + a2B,3DK
2)2

(2.105)

2.3.3 Exciton in a Quantum well

Up to now, we considered excitons in the bulk material. In this thesis we are interested
in excitons of a quantum well (QW), more precisely a type-I QW, where electrons and holes
are confined in the same layer. We have to introduce a QW 1D potential for carriers, which

13. q represents the total momentum of the electron-hole system conserved in the model, it is a good
quantum number to label the exciton wavefunctions and creation operators

47



will reduce the dimensionality from 3D to 2D.

In this configuration the effective mass equation (2.100) is transformed into [128,135]:

✓

� ~
2

2m⇤
c

r2
rc
� ~

2

2m⇤
v

r2
rv
� e2

" |rc � rv|
+ Vc(rc) + Vv(rv)� Ē

◆

Ψenv(rc, rv) = 0 (2.106)

where Vc/v(rc/v) represents the QW confinement potential energy for the electron in
the conduction and valence band respectively. We assume these z-direction confinement
potentials to be strong enough, and the well layer to be sufficiently thin, to confine the
exciton in the x� y plane (narrow well hypothesis). Therefore the Coulomb potential only
depends on the in-plane separation ρ = ρc � ρv. For such strong confinement, we can
separate the z and in-plane variations of the potential :

Vc(rc) = Vc,k(ρc) + Vc,?(zc) Vv(rv) = Vv,k(ρv) + Vv,?(zv) (2.107)

This couple of equation implies that the Hamiltonian (2.106) is separable in z and ρ,
and the exciton wave function can be written as:

Ψenv(rc, rv) = Φ(ρc,ρv)�c(zc)�v(zv) (2.108)

�c(zc) and �v(zv) are the eigenfunctions for a particle in a 1D box with rectangular
potential. We restrict the discussion to the lowest order wavefunction � associated to the
fundamental state of this 1D potential in z-direction. The remaining problem is to solve the
in-plane Hamitonian:

✓

� ~
2

2m⇤
c

r2
ρc
� ~

2

2m⇤
v

r2
ρv
� e2

" |ρ|
+ Vc,k(ρc) + Vv,k(ρv)� Ē + Ec,? + Ev,?

◆

Φ(ρc,ρv) = 0

(2.109)
where Ec/v,? are the energies of the conduction/valence band electron in the 1D potential

along z. By introducing the center of mass coordinates, we can expand the confinement
potential in power of ρ:

ρ = ρc � ρv (2.110)

Rk =
(m⇤

cρc +m⇤
vρv)

M
(2.111)

Vc/v,k(ρc/v) = Vc/v,k(Rk ±
m⇤

v/c

M
ρ) = Vc/v,k(Rk) +rVc/v,k(Rk)

m⇤
c/v

M
ρ+O(ρ2)

' Vc/v,k(Rk)

(2.112)

The last approximation is justified by the fact that the spatial scale of the 2D confinement
is much larger than the Bohr Radius of the exciton. The Hamiltonian (2.109) can then be
separated in the relative and center-of-mass in-plane coordinates. The exciton envelope
function takes the following form :
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Ψenv(rc, rv) = Φ(ρ)F (Rk)�c(zc)�v(zv) (2.113)

• Φ(ρ) is the solution of the 2D-hydrogen-like problem:

✓

� ~
2

2µ
r2

ρ �
e2

" |ρ|

◆

Φ(ρ) = E2D
b,nΦ(ρ) (2.114)

where E2D
b,n is the 2D binding energy, which relates to 3D through [136]:

E2D
b,n = 4E3D

b,n aB,2D = aB,3D/2 (2.115)

However, in real QW structures the exciton is not exactly two dimensional, and its biding
energy lies between E3D

b,n and 4E3D
b,n . Here as well we will restrict our discussion to the lowest

order orbital n = 1, with the associated wavefunction:

Φ
2D
1 (r) =

r

2

⇡

2

aB,2D

e�2r/aB,2D Φ
2D
1 (K) =

p
2⇡aB,2D

(1 + a2B,2DK
2/4)3/2

(2.116)

• F (Rk) is the solution of the problem:



� ~
2

2M
r2

Rk
+ Vc,k(Rk) + Vv,k(Rk)

�

F (Rk) = EkF (Rk) (2.117)

In the simple case of a free exciton in a infinite 2D plane Vc/v,k(Rk) = 0.

The eigenenergies of a bound 2D exciton state are consequently:

E = Eg + Ec,? + Ev,? + E2D
b,n + Ek (2.118)

Like in the case of the bulk exciton we define the creation operator:

d̂†α =
X

k,k0

Oα(k,k
0)ĉ†c,kĉv,k0 (2.119)

Oα(k,k
0) is a Fourier transform of the exciton wave function (2.113). The wave vector

will be later-on split in its in-plane and out of plane components k = (k?,kk). ↵ is a set of
numbers that label and characterize the state of relative and center of mass motion in the
plane. Calculating the commutator of these new bosonic operators leads to :
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X
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ĉ†v,k2

�
X
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X

k1,k2,k4

Oα(k1,k2)O
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�
X

k1,k2,k3

Oα(k1,k2)O
⇤
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†
c,k3

ĉc,k1

(2.120)

A result similar to the bulk case, i.e. excitons obey a bosonic behaviour if the exciton
density is smaller than a saturation density nsat ' 1/(2⇡a2B,2D) [137].

2.3.4 Exciton in a circularly patterned quantum well

So far we considered free excitons in a 2D-plane (therefore the F (Rk) = ejkk·Rk). In this
thesis, we are here interested in QW-exciton inside a disk, meaning that the QW layer is
now patterned with a circular symmetry. The wave function obeys then the Schrödinger
equation:



� ~
2

2M
r2

Rk
+ V (Rk)

�

F (Rk) = EkF (Rk) (2.121)

with V (Rk) a potential defined by :

V (Rk) =

(

0 for Rk < R

1 for Rk > R
(2.122)

where R is the radius of the disk. The polar-coordinates system (r, ✓) is again natural
to treat the problem. The equation (2.121) becomes:
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@r2
+

1

r

@

@r
+

1

r2
@2

@✓2

�

F (r, ✓) + V (r, ✓)F (r, ✓) = EkF (r, ✓) (2.123)

Substituting F (r, ✓) = L(r)N(✓) in (2.123) yields the following angular equation:

d2N(✓)

d✓2
= �m02N(✓) (2.124)

and to the following radial equation inside the circular potential well:

� ~
2

2M


@2

@r2
+

1

r

@

@r
� m02

r2

�

L(r) = EkL(r) (2.125)

The normalized solutions of (2.124) are given by:
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N(✓) =
1p
2⇡

e�jm0θ m0 2 Z (2.126)

Taking k =
p

2MEk/~, equation (2.125) is transformed into:
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+
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@
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+

✓

k2 � m02

r2

◆�

L(r) = 0 (2.127)

The solutions of a such equation are given by the Bessel functions of first kind Jm0(kr).
For an infinite potential barrier we adopt the boundary condition L(R) = 0 and the allowed
values of k are those satisfying the equation Jm0(kR) = 0. If we call xm0,p0 the p0-th root
of the Bessel function of order m0, the allowed values of k are km0,p0 = xm0,p0/R, and the
eigenenergies are given by Ek,m0,p0 = ~

2x2
m0,p0/2MR2.

For m0 6= 0, there are two eigenstates, corresponding each to the eigenenergy Em0,p0 :

Fm0,p0(r, ✓) = Km0,p0Jm0

⇣xm0,p0r

R

⌘

e�jm0θ = L(r)N(✓) (2.128)

where Km0,p0 is a normalization constant. For m0 = 0 there is only one eigenstate. All
eigenstates are normalized:

ZZ

rdrd✓ |F (r, ✓)|2 =

Z R

0

rdr |L(r)|2
Z 2π

0

d✓ |N(✓)|2 = 1 (2.129)

The function N(✓) requires a factor 1p
2π

to be normalized, the normalization constant
Km0,p0 thus obeys:
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2
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(2.130)

Since we have the relation [138]:

Z R

0

rJ2
m0(kr)dr =

R2

2

�
J2
m0(kR)� Jm0�1(kR)Jm0+1(kR)

�
(2.131)

Using Jm0�1(km0,p0R) = �Jm0+1(km0,p0R) the normalization constant Km0,p0 is given by :

Km0,p0 =

p
2

R

1p
2⇡

1
p

Jm0�1(xm0,p0)Jm0+1(xm0,p0)
=

1

R
p
⇡

1

|Jm0�1(xm0,p0)|
(2.132)

The in-plane profile of the final envelope function is illustrated in figure 2.10.

Similarly to the WGMs, the exciton wavefunction is characterized by a pair of quan-
tum numbers: the azimuthal number m0 and the radial number p0. Consequently, we can
introduce the following 2D exciton creation operator :

d̂†m0,p0 =
X

k,k0

Om0,p0(k,k
0)ĉ†c,kĉv,k0 (2.133)

51



Figure 2.10 – Exciton enveloppe function in a circularly patterned quantum well (m0=40,
p0=1) - Left : 2D-view - Right : radial distribution.

2.4 Optomechanical (photon-phonon) coupling

We now have described separately the optical, mechanical, and excitonic modes of our
resonators. The purpose of this section is to detail their coupling and provide tools to
compute the coupling parameter g0.

2.4.1 Optically induced forces

After having introduced the optomechanical formalism in section 1.2, we discuss here the
microscopic interactions at the origin of the coupling between light and mechanical motion.
When photons are confined inside a semiconductor disk resonator, they exert different types
of stress on the device. We express here all forces at play with a stress tensor formalism,
which relates to volume forces via:

Fi = �@j�ij (2.134)

2.4.1.1 Radiation pressure

In the case of a circular resonator, like our GaAs disk, a simple analysis through energy
and momentum conservation shows that the radial momentum transfer is equal to 2⇡~k per
round trip of a photon, where k represents the wave-vector in the dielectric material [122].
A more exact way to estimate radiation pressure in an arbitrary geometry is to compute

the Maxwell Stress Tensor (MST) T = ��(RP )
, which directly connects the electromagnetic

fields and the volume radiation pressure force [139]:
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ji = @jTji = @j



"0"r(EiEj �
1

2
�ij|E|2) + µ0µr(HiHj �

1

2
�ij|H|2)

�

(2.135)

with "r ⌘ "r(x, y, z) and µr ⌘ µr(x, y, z) the relative permittivity and permeability of
the dielectric material. This formalism can be used to calculate both normal and shear
(i 6= j) stresses. Usually, since mechanical devices cannot respond instantaneously to the
fast varying optical fields, the average value of the optical stress is computed.

2.4.1.2 Electrostriction

The above calculation of the MST assumed a perfectly rigid dielectric material which
is an approximation. To represent a deformable dielectric one can imagine a collection of
different dielectric domains: under an external electric field, every small domain polarizes
and gets attracted to the high-field regions. This provokes a contraction (expansion) in the
direction of the field and an expansion (contraction) in the perpendicular direction, as a
consequence of the Poisson effect. The generated displacement is thus proportional to E2,
in contrast to the piezoelectric effect where the displacement is proportional to E. In order
to compute the electrostrictive stress, we use the photoelastic tensor p, which links a change
in the material’s dielectric tensor " to the strain field Sij [122,140,141]:

"�1
i,j (Sk,l) = "�1

i,j (0) +∆("�1
i,j ) = "�1

i,j (0) + pi,j,k,lSk,l (2.136)

where ∆("�1
i,j ) represents the change in the inverse dielectric tensor due to the strain.

The electrostrictive stress and volume force are given by [125]:
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(2.138)

In the case of a cubic semiconductor like GaAs or silicon, the electrostrictive stress
components can be expressed as [122,142]:
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(2.139)

where the dielectric tensor has been reduced to "i,j = "�i,j = n2�i,j, with n the refractive
index of the material. At high refractive index, electrostrictive contributions usually have
an important role. This is indeed the case in our GaAs resonators. It is also important to
note that the photoelastic coefficients strongly increase near the GaAs band gap [143–148].
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2.4.1.3 Photothermal force

Light is absorbed, producing heat in the device, which strains under the effect of thermal
expansion: this is the photothermal stress effect. When a material is submitted to a local
temperature change ∆T , a local strain is generated:

∆S
(TH)
i,j = �i,j∆T (2.140)

where �i,j is the thermal expansion tensor. The thermal induced stress is thus given
by [125,149]:

�
(TH)
i,j = Ci,j,k,l�k,l∆T (2.141)

where Ci,j,k,l is the stiffness tensor.

This photothermal force has usually a large magnitude [97,150–152], that can overcome
the radiation pressure/electrostriction force. However, the thermal expansion coefficient of
GaAs is vanishing at cryogenic temperature [153], reducing the contribution of the pho-
tothermal force. Nevertheless, it can positively contribute to optomechanical operations
like self-oscillation [154] or cooling [155], especially at room temperature but not only (see
chapter 5).

2.4.2 Numerical simulations of optomechanical coupling

In a photoelastic material, we have seen that a strain changes the refractive index, and
hence the optical eigenfrequency of the resonator. The optomechanical frequency-pull gom
can therefore be split into two different contributions:

gom = �d!c

dx
= �@!c

@R

@R

@x
| {z }

ggeoom

�d!c

d"

d"

dx
| {z }

gpeom

(2.142)

The ggeoom contribution corresponds to the modification of the geometry of the resonator
(here its radius R), while gpeom translates the change in the electric permittivity " of the
resonator (hence refractive index).

2.4.2.1 Geometric contribution ggeoom

In the 2D+1 approach for a WGM ggeoom ' !c/R [10, 37]. This approximation works well
for the RBM1. To determine ggeoom for an arbitrary deformation profile, we use a perturbation
theory of Maxwell equations in the case of moving material boundaries [156,157]:

ggeoom = �!C

2

RR

S
q.n

⇥
∆("12)|Ek|

2 �∆("�1
12 )|D?|

2⇤ dA
RRR

V
"(r)| E |2d3r

(2.143)

where the integral is performed over the disk surface S, q is the normalized displacement
vector, n is the normal vector orthogonal to the disk surface, Ek and D? the tangential
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electric field and orthogonal electric displacement field, and ∆("12) = "1 � "2 the dielectric
constant contrast between the disk ("1 = n2) and the surrounding medium (vacuum "2 = 1).

2.4.2.2 Photoelastic contribution gpeom

The photoelastic contribution is computed using to the following formula [149,158,159]:

gpeom = �!c

2

RRR

V
e · " · edA

Max(u(r))
RRR

V
"(r)| E |2d3r

=
1

2

RRR

V
�
(ES),1
ij Si,j

~u(r0)
(2.144)

where �
(ES),1
ij is the electrostriction tensor exerted by a single photon and e the direction

of the electric field.

2.4.2.3 Results

Numerical simulation results are summarized in table 2.2 and illustrated in figure 2.11,
(the mechanical anisotropy of the GaAs is included in these simulations). Two different
WGMs are used: one that sits in the telecom band and a second in the exciton band 14.
Optomechanical coupling values g0 in our system evolve in the 2⇡ ⇥ 100 kHz range. Higher
values are obtained for modes in the exciton wavelength range, as expected from the greater
photoelastic coefficients close to the bandgap.

u(r) u(r)Er Er

� gpe
om �� gpe

om � (a) (b)

Figure 2.11 – 2D X-Y cut plane of 3D-FEM simulations exhibiting the radial component of
the electric field Er, the total mechanical displacement u(r) and the absolute value of the
local photoelastic contribution of the optomechanical coupling gpeom for 2 different WGMs (a)
TE m = 16, p = 1 - �c = 1566, 9 nm (b) TE m = 38, p = 1 - �c = 855, 9 nm

14. We are interested to study our disk in these two different wavelength ranges
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WGM TE m = 16, p = 1 - �c = 1566, 9 nm TE m = 38, p = 1 - �c = 855, 9 nm

fm [MHz] 708.6
meff/m (RBM1 0.629
xZPF [m] 1.18 · 10�15

ggeoom [THz/nm] 0.463 1.05
ggeo0 [rad/s] 5.49 · 105 1.24 · 106

gpeom [THz/nm] 0.343 1.284
gpe0 [rad/s] 4.07 · 105 1.52 · 106

gom [THz/nm] 0.81 2.33
g0/2⇡ [MHz] 0.152 0.433

Table 2.2 – Comparaison between geometric (ggeo) and photoelastic (gpe) contributions to
the optomechanical coupling for the first RBM of a 2 µm radius, 200 nm thick, GaAs disk
at room temperature, obtained through 3D FEM simulations with anisotropy. The results
are computed for two different WGMs in two different wavelength regions.

2.5 Optoelectronical (photon-exciton) coupling

Dipolar interaction:

We present here an original derivation to calculate the Rabi-splitting for a quantum-
well exciton embedded in a disk WGM resonator. This rigorous derivation is one of the
theoretical outcomes of this thesis. The Hamiltonian of the system we consider is :

Ĥ = Ĥex + ĤEM + ĤI (2.145)

with Ĥex/ĤEM the excitonic (electromagnetic) Hamiltonian, and where we introduce the
following interaction Hamiltonian (minimal coupling Hamiltonian [86,160–162]):

ĤI = �
e

2m

X

n

Â(r̂n) · p̂n + p̂n · Â(r̂n) +
e2

2m

X

n

�
�
�Â(r̂n)

�
�
�

2

(2.146)

where m is the electron mass, r̂n (p̂n) are the position (momentum) operator of the n-th
QW electron, and the sum runs over all the electrons in the system 15. We leave aside the

self interaction term in
�
�
�Â(r̂n)

�
�
�

2

for a moment and focus on the exciton-photon interac-

tion. In the Coulomb gauge the vector potential commutes with the electron momentumh

Â(r̂n), p̂n

i

= 0, since rÂ = 0. The interaction term can be rewritten as:

ĤI =
je

~

X

n

Â(r̂n) ·
h

r̂n, Ĥex

i

(2.147)

15. Note that in this section we place ourselves in the Schrödinger (S) picture, where operators do not

have an explicit time dependence. The expression of the vector potential Â differs from the one introduced
in the Heisenberg picture (H) in equation (2.78). The relation between the two expressions is given by:ÂH =

Û†ÂSÛ with Û = e�jĤEM t/~ the evolution operator
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since p̂n = jm
~

h

Ĥex, r̂n

i
16. The states |Ψαi = d̂†α |Ψ0i form a complete basis to describe

the single exciton formed in the many body system. We express the interaction Hamiltonian
in terms of exciton wave-functions by inserting the unity operator twice and using the
completeness relation:

X

α

|Ψαi hΨα| = I (2.148)

ĤI =
je

~

X

α,β

|Ψαi hΨα|
X

n

Â(r̂n) ·
h

r̂n, Ĥex

i

|Ψβi hΨβ| (2.149)

Using Ĥex |Ψαi = Eα |Ψαi, and the fact that Â(r̂) commute with Ĥex in the Coulomb
gauge, the equation can be rewritten as 17:

ĤI =
je

~

X

α,β

(Eβ � Eα) hΨα|
X

n

Â(r̂n) · r̂n |Ψβi |Ψαi hΨβ| (2.150)

Circular disk case:

We limit the exciton basis to the two lowest states, i.e. the ground state |Ψ0i and the
first excited state |Ψm0,p0i. We drop the index ↵/� and use the azimuthal/radial number
m0/p0 instead, since our exciton state is fully characterized by those two quantum numbers.
With those notations the interaction Hamiltonian (2.150) becomes:

ĤI = je
+1X

m0=�1

+1X

p0=1

!m0,p0

"

�hΨm0,p0 |
X

n

Â(r̂n) · r̂n |Ψ0i |Ψm0,p0i hΨ0|

#

+

"

hΨ0|
X

n

Â(r̂n) · r̂n |Ψm0,p0i |Ψ0i hΨm0,p0 |

#

ĤI = je

+1X

m0=�1

+1X

p0=1

!m0,p0

"

�hΨm0,p0 |
X

n

Â(r̂n) · r̂n |Ψ0i d̂†m0,p0

#

+

"

hΨ0|
X

n

Â(r̂n) · r̂n |Ψm0,p0i d̂m0,p0

#

ĤI = e

+1X

m0=�1

+1X

p0=1

!m0,p0

"

j hΨ0|
X

n

Â(r̂n) · r̂n |Ψm0,p0i d̂m0,p0 + h.c.

#

(2.151)

Where we identified |Ψm0,p0i hΨ0| as the creation operator d̂†m0,p0 and |Ψ0i hΨm0,p0 | as the

annihilation operator d̂m0,p0 . We evaluate the expression X̂m0,p0 = hΨ0|
P

n Â(r̂n) · r̂n |Ψm0,p0i

16. This relation formulated for single-particle operators, remains valid with Coulomb interactions as
considered here, this is because V̂Coulomb(r) commutes with r̂ for the single considered particle

17. hΨα|
P

n Â(rn) · rn |Ψβi is an operator that only acts on the photon Hilbert space

57



by expressing the action of
P

n Â(r̂n) · r̂n on the many-electron states in the Bloch function
basis.

According to the second quantization formalism [89], the expansion is given by:

X

n

Â(r̂n) · r̂n =
X

k,k0,α,α0

fk,k0,α,α0 ĉ†α,kĉα0,k0 (2.152)

where ĉ†α,k,ĉα0,k0 are the creation and annihilation operators introduced in eq. (2.88) and
fk,k0,α,α0 represents the matrix element:

fk,k0,α,α0 = h↵k|Â(r̂) · r̂|↵0k0i (2.153)

Using the orthogonality of the state ĉ†α,kĉα0,k0 |Ψ0i in association with the relation (2.133)
we obtain a new expression for the factor Xm0,p0 :

X̂m0,p0 =
X

k,k0

fk,k0,v,cOm0,p0(k
0,k) (2.154)

We will compute X̂m0,p0 , knowing that its conjugate can be obtained through 18

X

k,k0

fk,k0,v,cOm0,p0(k
0,k) =

 
X

k,k0

fk0,k,c,vO
⇤
m0,p0(k

0,k)

!†

.
We employ an explicit expression for the matrix element f for a TE optical mode 19:

fk,k0,v,c = hvk|Â(r̂) · r̂|ck0i

=
+1X

m=�1

1X

p=1

1

V

Z

dre�j(k0�k)rCm,p

h

âm,pẼm,p(r)e+ â†m,pẼ
⇤
m,p(r)e

⇤
i

· u⇤
kv(r)ruk0c(r)

(2.155)

where Cm,p =
q

~

2ε0n2
rωm,pV

m,p
eff

and where V is the quantization volume for the Bloch func-

tions.

The first term of equation (2.155) will give in the final Hamiltonian a term proportional
to d̂m0,p0 âm,p, which we will be eliminated due to its non resonant nature. We therefore

neglect this term, and reintroduce the matrix element f into X̂m0,p0 to obtain:

X̂m0,p0 =
+1X

m=�1

+1X

p=1

Cm,pâ
†
m,p

Z

dr

(

1

V

X

k,k0

Om0,p0(k
0,k)e�j(k0�k)r

)

Ẽ⇤
m,p(r)e

⇤

· u⇤
kv(r)ruk0c(r)

(2.156)

18. f⇤
k,k0,v,c = fk0,k,c,v since Â commutes with r̂ in the Coulomb gauge and both operators are hermitian.

19. Here ẼTE
m,p(r)eTE = Ẽm,p(r)e(r, θ), in the following the later vector is noted e for compactness
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We place ourselves at the band edge, i.e. k,k0 ' 0, thus ukc/v ' u0c/v ⌘ uc/v and the
only k-dependence is inside the curly braces 20. With this approximation, we identify the
expression between curly braces as the Fourier transform of the exciton envelope function
(eq. (2.99)), taken with the electron and the hole at the same position r:

1

V

X

k,k0

Om0,p0(k
0,k)e�j(k0�k)r = Φ(0)Fm0,p0(Rk)�c(zc)�v(zv) (2.157)

To evaluate the remaining integral 21,

I =

Z

drΦ(0)Fm0,p0(Rk)�c(z)�v(z)Ẽ
⇤
m,p(r)e

⇤ · u⇤
v(r)ruc(r) (2.158)

we decompose the space into a sum of atomic unit cells:

Z

dr =)
X

i

Z

cell

dri (2.159)

where ri = r � r0
i and r0

i denotes the position of the i-th atom in the crystal. At the
scale of a unit cell (' 0.1 nm), the functions appearing in the integral of eq.(2.158) do not
change noticeably, except for the atomic Bloch parts uc and u⇤

v.

I =
X

i

Z

cell

driΦ(0)Fm0,p0(R
0
k,i +Rk,i)�c(z

0
i + zi)�v(z

0
i + zi)Ẽ

⇤
m,p(ri + r0

i )e
⇤

· u⇤
v(ri + r0

i )(ri + r0
i )uc(ri + r0

i )

'
X

i

Φ(0)Fm0,p0(R
0
k,i)�c(z

0
i )�v(z

0
i )Ẽ

⇤
m,p(r

0
i )e

⇤ ·

Z

cell

driu
⇤
v(ri)riuc(ri)

(2.160)

The remaining integral is independent of i, and is precisely (up to the charge) the usual
dipole matrix element between the valence and conduction-band atomic Bloch functions:

rvc =
1

Vcell

Z

cell

dru⇤
v(r)ruc(r) = huv|r|uci (2.161)

By re-transforming the sum into an integral
P

i =) 1
Vcell

R
we obtain:

I = rvc ·

Z

drΦ(0)Fm0,p0(Rk)�c(z)�v(z)Ẽ
⇤
m,p(r)e

⇤ (2.162)

and X̂m0,p0 take the following form:

X̂m0,p0 =
+1X

m=�1

+1X

p=1

Cm,pâ
†
m,prvc ·

Z

drΦ(0)Fm0,p0(Rk)�c(z)�v(z)Ẽ
⇤
m,p(r)e

⇤ (2.163)

20. This approximation is justified since the k · p method that we will use later to determine momentum
matrix element works for low value of k.
21. With electron and hole occupying the same position we have zc = zv hence r = Rk + z
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Using again the commutator between the Hamiltonian and position operator, we derive
the following relation between matrix elements [163,164]:

rvc = pvc ·
�j~

m0(Ev � Ec)
' pvc ·

j

m0!m0,p0
(2.164)

with m0 the free electron mass. X̂m0,p0 becomes:

X̂m0,p0 =
+1X

m=�1

1X

p=1

1

!m0,p0m0

Cm,pΦ(0)I(z)I(r, ✓)â
†
m,p (2.165)

with

I(z) =

Z

dz�c(z)�v(z)Ẽ
⇤
x(z) ' Ẽ⇤

x(zQW )

Z

dz�c(z)�v(z) (2.166)

I(r, ✓) =

Z

rdrd✓Fm0,p0(r, ✓)Ẽ
⇤
m,p(r, ✓) [pvc · e

⇤(r, ✓)] (2.167)

I(z) is practically identical to the overlap integral of the electron and hole wave function
along the z axis. This integral also involves the z distribution of the electromagnetic mode:
this implies that the exciton can only couple to a cavity mode sharing the same parity in z.
In our case, these z-dependent functions are symmetric: cosine function inside the disk, with
exponentially decreasing tails outside. At the scale of the quantum well, one can neglect the
z-variations of the electric field, thus Ẽ⇤

x(z) ' Ẽ⇤
x(zQW ). Here the QW sits in the middle of

disk, as represented in figure 2.2 (b), hence Ẽ⇤
x(zQW ) = 1

After injecting the expressions in equation (2.151), the interaction Hamiltonian takes the
form:

HI =
+1X

m,m0=�1

+1X

p0,p=1

~gm,m0,p,p0

cx (âm,pd̂
†
m0,p0 + â†m,pd̂m0,p0) (2.168)

with

~gm,m0,p,p0

cx =
e

m0

Cm,pΦ(0)I(z)I(r, ✓) (2.169)

The scalar product [pvc · e
⇤(r, ✓)] is evaluated using standard momentum matrix ele-

ments, we present the calculation in appendix B.4. The coupling parameter gcx can now be
expressed for the disk WGM and excitonic wavefunction:
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~gm,m0,p,p0

cx =
ep
2m0

Cm,pΦ(0)I(z)Px

Z

rdrd✓Fm0,p0(r, ✓)[Ẽ
⇤
m,p,+e

jθ + Ẽ⇤
m,p,�e

�jθ](r, ✓)

=
e

m0

Cm,pΦ(0)I(z)Px

p
2

q

max
�
"(r)|Em,p(r)|

2�

Z R

0

dr

p

"(r)

�m,p

E0�m,pKm0,p0mJm0(
xm0,p0r

R
)Jm(�m,pr)

⇥
Z 2π

0

ej(m�m0)θd✓

(2.170)

where Px = |pcv| =
q

EPm0

2
is a parameter linked to the tabulated Kane energy EP .

Transition to the second line is done using the equations (2.49) and (2.128). The second in-
tegral imposes m = m0 to obtain non-zero coupling: as required by symmetry, the azimuthal
number m is conserved in the coupling. Using the definition of the oscillator strength per
unit of area:

f

S
=

2

m0~!m0,p0
|pcv|

2|Φ(0)|2
�
�
�
�

Z

dz�c(z)�v(z)

�
�
�
�

2

(2.171)

and assuming that !m0,p0 ' !m,p the final expression for the coupling constant is:

~gm,p,p0

cx =
2⇡P0

r

max
⇣

"(r)
�
�Eσ

m,p(r)
�
�
2
⌘

Z R

0

dr

p

"(r)

�m,p

E0�m,pKm0,p0mJm(
xm,p0r

R
)Jm(�m,pr)

(2.172)
where

P0 = ~

s

e2

2"0"rm0V
m,p
eff

f

S

is a parameter taking into account the properties of the quantum well (oscillator strength)
and the WGM (mode volume). The final result takes the form of an exciton-photon overlap
integral, which has the dimension of a length, multiplied by the parameter P0 which has the
dimension of an energy divided by a length. Interestingly, there is no strict selection rule on
the radial quantum number p0/p: the overlap can be non-zero even if p 6= p0. This said, for
m = m0 and p = p0 the exciton wavefunction and the electromagnetic mode distribution have
similar geometry, governed by the Bessel function, and the overlap integral is maximized.

Figure 2.12 shows the results obtained for the computation of ~gm,p,p0

cx for different cou-
ples (m, p): all these modes lie in the spectral vicinity of the exciton energy at cryogenic
temperature for our experimental device. The coupling is very sensitive to the radial num-
ber p and seems to be less impacted by a change of the azimuthal number m. Despite the
absence of a strict selection rule for the radial number, the coupling is still greatly reduced
when p0 6= p, as expected from the shape of the overlap integral. However, for increasing
p, this behavior becomes less pronounced, and non-negligible coupling can exist between a
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photonic and excitonic mode of distinct radial number (p0 = p±1). For low p values, the two
Bessel functions are almost in perfect accordance (�m,p ' xm,p/R), and the overlap integral
behave almost as a Dirac function.

 [
m

e
V

]
�

g
m

,p
,p

�

c
x

(42,1) (41,1) (37,2) (33,3) (29,4) (26,5) (23,6) (20,7) (17,8) ( )m , p

p� = p p� = p � 1 p� = p + 1

Figure 2.12 – Calculation of the coupling energy ~gm,p,p0

cx for a single QW located in the
middle of the disk considered in our experiments, for different couples of azimuthal and
radial numbers (m, p). Three situations are considered: p0 = p (red), p0 = p�1 (brown) and
p0 = p+ 1 (green).

The formula (2.172) derived in the case of the a single QW generalizes to the MQW
case 22 :

~gm,p,p0

cx (NQW ) =

v
u
u
t

NQWX

i=1

⌘2i
NQW

·
p

NQW~gm,p,p0

cx =

v
u
u
t

NQWX

i=1

1

NQW

E2
x(zQW,i)

E2
x(0)

·
p

NQW~gm,p,p0

cx

(2.173)
with NQW the number of QW in the structure. The coupling of the QW to the electro-

magnetic field depends on its position along the z-axis: its contribution is weighted by the
quantity ⌘. For five QWs, a structure that we use in our sample (structure 2 in figure 3.22),
the enhanced coupling is equal to 1.89 ⇥ gm,p0,p

cx , instead of the idealized factor
p
5 ' 2.23

that one may have in mind.

2.6 Electromechanical (exciton-phonon) coupling

Up to now, we have successfully described the optical, mechanical, and excitonic modes
of our hybrid disk, as well as their optomechanical and optoelectronic coupling. The last

22. See appendix B.5 for derivation.
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piece of the tripartite puzzle is to describe the coupling between excitons and phonons, i.e.
the electro-mechanical coupling.

2.6.1 Deformation potential

It is a well-known fact that mechanical strain has an effect on the electronic properties
of a semiconductor [79, 80, 165–168]. When a piece of semiconductor material undergoes
vibrations, the local distribution of atoms in the crystal lattice is modified, ergo its electronic
properties change. The electron energy shift caused by this mechanism is grasped by the
deformation potential [169, 170]:

Ê(rc, rv) = acr ·U (rc)� avr ·U (rv) (2.174)

where rc/rv are the positions of the carriers in the conduction/valence band, r ·U (r)
the strain at r, and ac/av the volume deformation potential for electrons and holes 23 (listed
in the tables C.1 and C.2 of appendix C.3). Here the mechanical displacement is defined as
U = xZPF · u(r), with xZPF the amplitude of the zero-point fluctuations and u(r) the nor-
malized adimensional mechanical wavefunctions introduced in (2.82). The exciton-phonon
Hamiltonian corresponding to the deformation potential interaction in second quantization
is given by [169,171,172]:

Hxm = �~gxmd̂†d̂b̂+ h.c. (2.175)

2.6.2 The disk case

In the case of the disk resonator, the excitonic operators d̂ and d̂† are characterized
by a set of quantum numbers ↵ = (m0, p0), corresponding to the wavefunction considered.
The phononic operator is labeled by a single number n, if we restrict the discussion to the
coupling with RBMs of order n:

Hxm = �~gα,nxm d̂†αd̂αb̂n + h.c. (2.176)

In the course of this Ph.D. work carried in tight link with the work of Zakari Denis [173],
an expression was derived for the exciton-phonon coupling in the disk [113]:

� ~gα,nxm = h0,Ψα
env|Ê|un,Ψ

α
envi =

Z

V

drcdrvΨ
α⇤
env(rc, rv)E(rc, rv)Ψ

α
env(rc, rv)

=

Z

V

dRkdρdzcdzv|Fα(Rk)|
2|Φ(ρ)|2

⇥


acr ·U (
m⇤

c

M
ρ+Rk)|�(zc)|

2 � avr ·U (�m⇤
v

M
ρ+Rk)|�(zv)|

2

�

(2.177)

23. The effect of the shear in the deformation potential is here neglected, since it involves contribution of
εr,θ and εr,θ which are precisely null in the case of RBMs, moreover under the plane stress condition the
contribution of the b terms vanish as well, see appendix C.3
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This expression can be simplified by assuming two things: the Bohr radius is small
compared to the mechanical in-plane wavelength, and the thickness of the quantum well is
small compared to the out-of-plane variation scale of the strain, ideally infinite for a RBM.
The calculation of the exciton-phonon coupling is this way reduced to a simple 2D overlap
integral in the disk plane between the exciton envelope and the strain distribution for a
single phonon :

� ~gα,nxm = (ac � av)

Z

S

dRk|Fα(Rk)|
2
r ·U (Rk, zQW ) (2.178)

The single-phonon mechanical strain is obtain with the analytic formula (2.82):

r ·U (Rk) = "rr + "θθ + "zz =

✓

1� �

1� �

◆

("rr + "θθ)

=

✓

1� �

1� �

◆

Anx
n
ZPFJ0(↵nRk)

(2.179)

where the plain-stress condition has been used again. All in all, we obtain in the disk
case:

� ~gm
0,p0,n

xm = (ac � av)

✓

1� �

1� �

◆
2x

(n)
ZPFAn↵n

|Jm0�1(xm0,p0)|
2

Z 1

0

⇣d⇣J2
m0(xm0,p0⇣)J0(↵n⇣R) (2.180)

As ↵n is inversely proportional to the radius of the disk R, so is the ratio gm
0,p0,n

xm /x
(n)
ZPF,

a relation that reminds that of the geometric contribution to the optomechanical frequency-
pull ggeoom ' !c/R.

The results computed for the electromechanical coupling are reported in figure 2.13 for
the first three RBMs of the type of disk investigated in this thesis. As we can see the value
of the electromechanical coupling can be several times larger than the optomechanical cou-
pling at the exciton wavelength, which was computed in section 2.4. It is yet about a decade
larger than the optomechanical coupling at telecom wavelength.

In the case of the disk resonator, the strain is maximal towards the center of the disk
(r ' 0), regardless of the order of the RBM. This is an area where the amplitude of the
exciton wavefunction is expected to be null (see figure 2.10). In consequence, the absolute
value of gxm decreases when the exciton azimuthal number increases (see figure 2.13-(d)),
which pushes the exciton wavefunction towards the disk periphery. For higher-order RBMs,
gxm is likely to change sign as a function of m0 and p0, and even to frankly decrease when
the radial variation of the exciton wavefunction will be on a scale small with respect to the
mechanical wavelength.

As for the absolute value one can expect from gxm: it also depends on this mechanical
wavelength. If the mechanical wavelength becomes small enough to approach the quantum-
well thickness, routes are open for an increased strain at the quantum-well position zQW . In
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this regard, higher-order mechanical modes of a disk, or Bragg modes of a micropillar, offer
the prospect of getting increased gxm.
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Chapter 3

Experimental set-up, device design
and clean-room fabrication

Summary : This chapter yields an overview of all the experimental techniques involved
in this thesis. We provide first (section 3.1) a detailed description of the employed cryogenic
optical set-up. In section 3.2 we review the tools involved in the conception of our disk
resonator. Section 3.3 illustrates the clean-room techniques used to fabricate our resonator
samples.

3.1 Experimental set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.1.1 General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.1.2 Cryostat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.1.3 Laser sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.1.3.1 Titanium sapphire : M-squared SolsTiS laser . . . . . . . . 72

3.1.3.2 Telecom Tunics laser . . . . . . . . . . . . . . . . . . . . . . 74

3.1.4 Optical and mechanical readout . . . . . . . . . . . . . . . . . . . . . 74

3.2 Sample design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.2.1 Disk resonator-waveguide coupling . . . . . . . . . . . . . . . . . . . 76

3.2.1.1 Coupled Mode theory . . . . . . . . . . . . . . . . . . . . . 76

3.2.1.2 Origin of optical losses - κin . . . . . . . . . . . . . . . . . . 79

3.2.1.3 Efficient waveguide to disk coupling - κext . . . . . . . . . . 83

3.2.1.4 Efficient waveguide . . . . . . . . . . . . . . . . . . . . . . . 88

3.2.2 Quantum well hetero-structure . . . . . . . . . . . . . . . . . . . . . 91

3.2.2.1 Energy of the transitions . . . . . . . . . . . . . . . . . . . . 92

3.2.2.2 Effect of the residual strain on the exciton energy . . . . . . 93

3.2.2.3 Impact of the Indium fraction . . . . . . . . . . . . . . . . . 96

3.2.2.4 The polariton linewidth and spectral broadening . . . . . . 97

3.3 Sample fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.3.1 Protocol steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.3.2 E-beam lithography . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.3.2.1 Preparation of the chip . . . . . . . . . . . . . . . . . . . . . 102

66



3.3.2.2 E-beam resist deposition . . . . . . . . . . . . . . . . . . . . 102

3.3.2.3 E-beam exposure and lithography . . . . . . . . . . . . . . . 103

3.3.2.4 Development of the e-beam resist . . . . . . . . . . . . . . 104

3.3.3 Inductively Coupled Plasma Reactive Ion Etching . . . . . . . . . . . 105

3.3.4 Selective wet under-etching . . . . . . . . . . . . . . . . . . . . . . . 107

3.3.5 Mesa Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.3.5.1 Photosensitive mask for the mesa . . . . . . . . . . . . . . . 108

3.3.5.2 Mesa wet etching . . . . . . . . . . . . . . . . . . . . . . . . 110

3.3.6 Atomic Layer Deposition and surface passivation . . . . . . . . . . . 113

3.1 Experimental set-up

In this section, we describe the setup employed to carry out optomechanical experiments,
photo-luminescence (PL), as well as our spectroscopy measurements. A general description
is issued first, followed by a more precise discussion of the different apparatus.

3.1.1 General description

A schematic representation of the set-up is given in figure 3.1. A continuous tunable laser
source is used to generate a monochromatic light either in the telecom band (� 2 [1.5, 1.63]
µm) or in the exciton band (� 2 [800, 900] nm). This light is injected into a single-mode fiber
and sent into a variable optical attenuator (VOA), and then goes through a Fiber Polariza-
tion Controller (FPC) which allows us to select the polarization for TE or TM WGMs. The
light path continues to a cold environment (⇠ 3.4 K), where the sample sits on a cold sample
holder. At this stage, light is injected into the sample’s waveguides (input port) thanks to a
first microlensed fiber (µ-lensed fiber) (figure 3.3 (c)) and then collected through the other
opposite (output) port of the waveguide with a second µ-lensed fiber. The optical output
is then analyzed by using a quasi-DC photo-diode (PDDC, ThorLabs PDA 10CS-EC, range
900-1700 nm - ThorLabs PDA 36A2, range 350-1100 nm) for WGMs laser spectroscopy or
with an Optical Spectrum Analyzer (OSA HP 70951A, range 600-1700 nm) for PL experi-
ments. For mechanical mode measurements, we switch to a fast (AC) photo-diode (PDAC,
ThorLabs DET08CFC/M, range 800-1700 nm, 5 GHz - NewPort 818-45-BB, range 500-
900 nm, 12.5 GHz) and analyze the photo-diode output signal with an Electrical Spectrum
Analyzer (ESA Rhode & Swartz ZVL, 3GHz). When moving our experiments from the
telecom band to the exciton band, we replace the whole single-mode fiber path from SMF28
to 780HP, including the µ-lensed fibers, which are fabricated for a specific target wavelength.

On top of such optical experiments through the waveguide, our setup opens the dual
possibility of using a confocal microscope on top, in a direction perpendicular to the sample
plane (Optical Head in figure 3.1). This confocal microscope allows to visualize the sample
in the cryostat with a camera and perform confocal spectroscopy and excitation/collection
experiments.
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Figure 3.1 – Global setup. The yellow lines represent optical single mode fibers, the black
lines electric cables. FBS : Fiber Beam Splitter - DAQ : Electronic Data Acquisition card.

3.1.2 Cryostat

It is pivotal (not essential, but most natural) to work at cryogenic temperature to per-
form quantum optomechanical experiments. Furthermore, we work here with quantum well
excitons and seek to get the best excitonic signal. PL signals at room temperature are usu-
ally broader and weaker due to enhanced non-radiative channels, and excitons are destroyed
by the thermal motion (kBT � Eb). Another benefit of working at cryogenic temperatures
is the improvement of Qm, in our case by a factor of 10 to 50. For all these reasons, we
need to cool down our device: all our experiments at cryogenic temperature were carried out
with the Attocube Photonic Probe Station cryostat [174]. This apparatus combines a dry
cryocooler (Cryomech Cryogenic Refrigerator PT407 ), a piezo-controlled movable station
where the µ-lensed fibers and the sample sits, and an optical head that allows us to observe
the sample “from the top” (it is actually from below since the sample is mounted upside-
down) and perform confocal PL experiments. A picture and a scheme of the apparatus are
provided in figure 3.2.

The cooling power of the cryostat comes from a pulsed-tube refrigerator. This type of
cryocooler offers several advantages: first no need to fill the cryostat with liquid helium
since the operation principle is based on a gaseous helium closed-loop circuit, second the
temperature reached is often below the 4 K, 3.4 K during our experiments and 2.6 K in
the best case, third the maintenance is relatively easy. In our cryostat set-up, a coaxial
configuration is adopted: the pulsed tube is placed on top of the cryostat chamber where
two stages can be distinguished. During a cycle of compression/decompression of the gaseous
helium, heat is extracted from the first stage, which typically reaches a temperature close to
56 K, this stage, in turn, extracts heat from the second stage where the probe station itself
lies, with the sample and the lensed fibers. This last stage reaches a temperature of about
3 K. The chamber of the cryostat is pumped to ⇠ 10�6 � 10�7 mbar to avoid heat transfer
through the wall of the cryostat. A cooling cycle takes approximately 12 hours. Further
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details on the working principle of pulse tube refrigerators can be found in [175].
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Figure 3.2 – (a) Picture and (b) Scheme of the Attocube cryostat dubbed with the Photonic
Probe Station (first generation). The red arrows in (b) represent the heat transfer between
the different stages of the chamber

Photonic probe station and optical head :

At the 3 K stage, we find the probe station itself (see figure 3.3 (a)), this station includes
a piezo stage with two degrees of freedom X and Y, on which sit the sample holder and two
XYZ piezo stepper-positioners working on the “slip-stick” principle [176]. These positioners
combine a large traveling range (⇠6 mm) and a nanometer position resolution, and support
the µ-lensed fibers holders. By using the three degrees of freedom (XYZ), we can achieve
a good coupling between the µ-lensed fibers and the waveguide of the sample (see figure
3.3 (b)). The piezo-positioners are controlled with the attocube ANC300 and ANC350 con-
trollers. Note that the sample is rigidly stuck with vacuum grease on the sample holder.
Moving the first XY piezo stage in one direction moves the whole structure consisting of
µ-lensed fibers+sample. Under the sample holder, a microscope objective (magnification ⇥
100) mounted on a Z-piezo is placed. The optical axis of this objective is fixed and coincides
with the optical axis of the cryostat, while the sample is moved in the XY plane perpendic-
ular to this axis. The output optical signal of the objective is partially collected by a CCD
camera placed in an “optical head” unit located just outside and under the cryostat chamber
(figure 3.3 (b)). This camera enables imaging the sample and aligning the µ-lensed fibers to
the waveguides. The optical head contains as well other channels that can be configured for
confocal laser excitation or detection. Each channel has a fiber port, a collimator, and ✓/�
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by red dashed lines (c) Microscope picture of the µ-lensed fiber, Magnification = 500

tilt mirrors that guide the optical beams in free space within the unit before entering or leav-
ing the cryostat through an optical window located next to the microscope insert. Thanks to
this, we can carry out PL/optical spectroscopy experiments in three different configurations:

• First configuration: traditional confocal micro-photoluminescence scheme (C-µPL):
a tunable laser source is sent onto the top of the disk via the microscope objective
and the scattered and emitted signal is collected confocally. (Figure 3.4 (a))

• Second configuration: Confocal excitation/ collection through waveguides. In this
configuration, the laser excitation is performed confocally but we employ suspended
waveguides integrated into the vicinity of the disk-like antennas, collecting the emitted
light from the disk. µ-lensed fibers are then located at the tips of the waveguides to
extract the light out of the cryostat chamber. (Figure 3.4 (b))

• Third configuration: traditional in-plane laser spectroscopy configuration. Tunable
laser light is injected at one port of the waveguide, collected at the other port. (Fig-
ure 3.4 (c))

The probe station also includes two resistive heaters (one at each stage 3 K and 56 K),
that allow us to vary the temperature inside the cryostat. The temperature is monitored
with a temperature controller (LakeShore 335) with configurable PID control loops.
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(b)

(a)

(c)

Figure 3.4 – (a) C-µPL configuration (b) Confocal excitation and collection through waveg-
uides. Blue arrows indicate excitation light beams with an energy higher than the exciton.
Red arrows in (a), (b) correspond to light close to the exciton energy. (c) In-plane laser
spectroscopy configuration. The red arrows in (c) represent tunable laser light either in the
telecom band or in the exciton band.

3.1.3 Laser sources

For optomechanical experiments, we need a stable monochromatic source of light with
low noise. Two different wavelength ranges are used that correspond to two different laser
sources:

• 800-900 nm : Exciton band with a M-squared SolsTiS laser
• 1500-1630 nm : Telecom band with a Yenista Tunics T100S-HP

Both options have strengths and drawbacks. In the exciton band, WGMs are usually
more confined within the disk, but the vicinity in energy to the GaAs gap can lead to extra
linear absorption. However, since photoelastic constants rise sharply near the gap we can
expect a higher optomechanical coupling. Working in the telecom band for small disks
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(R  2µm, h = 200 nm) increases bending losses and lowers Qopt. However, an erbium-
doped optical fiber amplifier (EDFA) of very low noise can be used in this range, which eases
the mechanical motion readout.

3.1.3.1 Titanium sapphire : M-squared SolsTiS laser

Principles of operation : Ti:S laser sources typically operate in a 700-1000 nm range
thanks to the broad optical gain of the Ti:S (Ti-Al2O3) crystal. The picture and archi-
tecture of the laser are represented in figure 3.5. The gain medium is pumped by a very
stable green (� = 532 nm) solid-state laser (Lighthouse Sprout-G laser; absorption of Ti:S
typically occurs between 400 to 600 nm). The cavity geometry is the “bow-tie” ring cavity
geometry, which forces the light to travel uni-directionally, and results in the absence of
standing waves depleting the gain medium and producing spatial-hole burning. To select
the output wavelength of the cavity several components are used. First of all, a birefringent
filter (BRF) is placed in the optical path: by rotating the BRF a wavelength-dependent loss
in the cavity is introduced and a selection of the lasing modes is achieved. Nevertheless,
this selection is relatively coarse compared to the free spectral range (FSR) of the bow-tie
cavity (mode spacing ⇠ 416 MHz or ⇠ 1 pm for a center wavelength at 850 nm [177]), thus
to increase the selectivity, an etalon Fabry-Pérot resonator is introduced. This Fabry-Pérot
has a relatively short cavity length (⇠ 1mm), resulting in a small FSR (⇠ 0.4 nm for a
center wavelength of 850nm). By changing its length (thanks to a piezoelectric translator
PZT), fine-tuning can be achieved (the cavity has a high finesse resulting in the selection of
a unique longitudinal mode). At this point, single-mode lasing is achieved but depending on
external fluctuations (mechanical vibrations, change in temperature/pressure, pump power
fluctuations...) the laser can oscillate between two or several frequencies. To address this
undesirable effect an electronic locking of the etalon is added.

Always seeking for the narrowest possible linewidth, several improvements are made to
the architecture of the laser. One of the mirrors of the bow-tie cavity is mounted on a slow
and long-range PZT: tuning the cavity length allows perfectly matching the single oscillat-
ing longitudinal cavity mode frequency of the etalon. Another improvement is the addition
of one highly stable reference cavity (Fabry-Pérot) with high finesse. This cavity is used
as a reference for feedback in a Pound-Drever-Hall stabilization scheme [178]. Indeed, a
small fraction of the output light of the laser is directed to the reference cavity and the
main laser cavity becomes slaved to this reference. The error signal is then sent to the
PZT-mounted mirror of the main cavity, which also possesses a fast and short-range PZT
for rapid stabilization. All these improvements enable reaching a linewidth inferior to 50kHz.

Scanning modes : In order to perform laser spectroscopy experiments, we need to carry
out scans of the laser wavelength. We need to reach a resolution close to 50 GHz since the
typical spectral linewidth of the WGMs lies in this range and above, between 1 to 200 pm.
When a rotation of the BRF is operated, the laser frequency is tuned in steps following the
FSR of the etalon, close to 0.4 nm, which is not fine enough for our purpose. To overcome
this limitation, a stiching scheme is implemented into the system to effectively enable a con-
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Figure 3.5 – (a) Picture and (b) Scheme of the bow-tie cavity of the M-Squared SolsTiS
laser. DPSSL : Diode Pumped Solid State Laser.

tinuous scan. The principle is as follows: the wavelength is continuously scanned by varying
the dimension of the etalon or by modifying the cavity length with the piezo-mounted mir-
ror: at a certain point the lasing mode hops, the etalon is sent back to its original position
and the BRF is rotated to retrieve the last wavelength obtained before hopping. The scan
is then taken over, repeating these steps until the final wavelength of the scan is reached.
This allows us to carry out long-range scans (⇠ 100 nm). This comes however with some
limitations: firstly it is not a true continuous scan if we monitor the evolution of the wave-
length along time the curve looks like a linear curve superposed with a sawtooth pattern.
Secondly, this mode of scan is long: the stitching takes ⇠ 10 seconds, which results in a
total scan time of 40-60 minutes for a 100 nm scan range.
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3.1.3.2 Telecom Tunics laser

The Tunics laser is an External Cavity Diode Laser (ECDL): its operation principle is
rather simple. A laser diode chip is integrated into a frequency selective element like a
diffraction grating, completed with a collimating lens. The chip typically possesses an anti-
reflection coated facet and a high-reflectivity coated facet. In the case of the Tunics laser,
the Littrow architecture is adopted. The 1st-order diffracted beam provides optical feedback
to the laser diode chip, whereas the 0th-order is the laser output. By rotating the diffraction
grating, the wavelength at the output is tuned. One of the main advantages of this kind
of laser is that the whole wavelength range can be scanned in just a few seconds, which is
extremely convenient for spectroscopy experiments. There are no mode hops in the Tunics
laser, at variance with the SolsTiS.

3.1.4 Optical and mechanical readout

Optical mode characterization : Optical modes are generally measured by laser spec-
troscopy (third configuration figure 3.4). We vary the laser wavelength and measure the
voltage at the output. The electrical signal is directly proportional to the optical transmis-
sion of the waveguide-disk structure. By calibrating the different stages of the set-up we
directly access the circulating power inside the disk. A typical optical spectrum is presented
in figure 3.6 (a), it can be modeled as a Lorentzian and the full width at half maximum
(FWHM) ∆�, is linked to the optical quality factor Qopt= �c/∆�.

Mechanical mode characterization : Mechanical modes are measured thanks to the
AC photodetector since the optical signal is modulated at the mechanical frequency. We set
the laser on the blue-flank of the resonance (∆ > 0) and detect the fluctuations of output
optical power caused by the mechanical motion. For low optical power, the optomechanical
dissipation rate Γom is negligible compared to the intrinsic mechanical dissipation rate Γm.
The optical-spring frequency shift �!m is also small compared to the mechanical frequency
!m. The mechanical spectrum can be also fitted to a Lorentzian (see figure 3.6 (b)), where
the FWHM Γm, is associated to the mechanical quality factor Qm= !m/Γm.

The value of Γm is set by multiple sources of mechanical dissipation:

• Viscous/fluidic damping: mechanical dissipation due to the surrounding fluid. When
the disk boundaries move the mechanical energy is dissipated through viscosity and
emission of acoustic waves in the fluid.

• Clamping losses: the disk’s mechanical dissipation can take place through the pedestal
of the disk. Work has been made in the group on the design of the disk and its
pedestal, by adding a shield. Reduction of the mechanical dissipation through the
anchoring point was this way observed [179].

• Thermo-elastic losses: the deformation profile of the mechanical modes is note uni-
form, regions of the material under compressive strain heat up, while regions under
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tensile strain cool down. As a result, a heat flow is generated between the “hot” and
“cold” areas, leading to the creation of entropy and dissipation. This is one example
of losses induced by phonon-phonon interactions resulting from the non-harmonicity
of the lattice. These losses are greatly diminished working at cryogenic tempera-
ture [122].

• Material Induced losses: material losses are caused by the relaxation of defects (two-
level systems) mainly localized at the surface of the resonator, but also present within
the bulk. These losses tend to diminish at lower temperatures, at least in most crys-
talline materials [180].
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Figure 3.6 – (a) Optical transmission spectrum for a TE mode in the telecom band, Qopt '
105 (b) Mechanical spectrum for the RBM1 at room temperature in vacuum Qm ' 103

3.2 Sample design

We provide a short overview of the key features of the sample design. First how we cou-
ple light inside disk resonators using “fully-suspended” waveguides, and second how these
waveguides are designed. We also review the mechanisms responsible for optical losses in
the resonators.

A crucial point in the design of the sample is also the choice of the quantum-well het-
erostructure, which will directly tailor the properties of the exciton. Including such a hetero-
structure inside the disk comes at a price: optical properties of the disk/waveguide are im-
pacted, equivalently some properties of the bare hetero-structure are impacted by the disk
geometry and fabrication process.
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3.2.1 Disk resonator-waveguide coupling

Our GaAs disks are WGMs resonators with an intrinsically good quality factor, now the
key point for applications is to efficiently couple light to them. Correct excitation of the
modes can be reached by spatial and temporal matching. Experimentally speaking, this can
be achieved by using a tapered waveguide, where the evanescent field of the guide overlaps
with that of the resonator modes.

sin(t) sout(t)

�in

�ext

a(t)

gwd

w

sin(t)

sout(t)

�ext

a(t)�

�in

(a) (b)

Figure 3.7 – Waveguide/disk coupling described by the CMT. (a) Waveguide coupled optical
cavity (b) Single sided coupled optical cavity. The two schemes are equivalent. gwd represents
the gap distance between the disk and the waveguide, w represent the width of the waveguide.

3.2.1.1 Coupled Mode theory

A good way to describe the resonator-waveguide coupling is to use the Coupled Mode
Theory (CMT) under a slowly varying envelope assumption. In this perturbative theory,
the presence of the waveguide in the vicinity of the resonator does not modify the WGMs
of the disk resonator, reciprocally the presence of the disk does not impact the modes of
the waveguide. A full presentation of this theory is found in [121,122,181,182], we will just
review here the main useful relations and apply the formalism from [183].

The resonator-waveguide coupling is described with three parameters: !c the cavity
resonance frequency, in the intrinsic cavity loss rate, and ex the cavity coupling to the
waveguide, with the relation c = in+ex, for c the total loss rate of the cavity mode (see
figure 3.7). The time evolution of the fields inside the cavity and the waveguide are given
by :

da(t)

dt
= �(j!c +

in

2
+
ext

2
)a(t) +

p
extsin(t) (3.1)

sout(t) = +sin(t)�
p
exta(t) (3.2)

where sin(t) and sout(t) represent respectively the incident and output field onto/from
the cavity. Note that we retrieve here precisely eq. (1.15) of chapter 1, obtained with the
input-output formalism (apart from the optomechanical term and the vacuum input noise
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âin that is absent in classical CMT). a(t) and sin(t) have different dimensions, since |a|2

corresponds to the normalized resonator electromagnetic energy and |sin|
2 the normalized

incoming power. In absence of input field and intrinsic losses, the energy of the resonator
evolves as :

d|a(t)|2

dt
= �ext|a(t)|2 (3.3)

i.e. all the energy stocked in the disk leaks to the waveguide output.

We usually use the ansatz sin / e�jωlt to describe the incoming port, and assume that the
system responds linearly, which means that the cavity field evolves at the same frequency
(a / e�jωlt). In this case eq. (3.1) leads to the following expression :

a =

p
extsin

+j∆� (κin

2
+ κext

2
)

(3.4)

with ∆ = !l�!c the laser-cavity detuning. The number of photons in the WGM is given
by :

Ncav =
|a|2

~!l

=
κext

~ωl

∆2 + (κin

2
+ κext

2
)2
|sin|

2 (3.5)

Using (3.2) we obtain the outgoing field sout, finally leading to the optical transmission
T 1 through the waveguide :

T =
|sout|

2

|sin|
2 =

∆2 + (κin

2
� κext

2
)2

∆2 + (κin

2
+ κext

2
)2

(3.6)

The transmission contrast C is then given by :

C = 1� T (∆ = 0) =
inext

(κin

2
+ κext

2
)2

(3.7)

Figure 3.8 represents the normalized transmission and the number Ncav of photons in
the cavity in function of the wavelength, for different values of the ratio r = κext/κin. The
linewidth that appears in the transmission resonance reflects the total loss and the loaded
quality factor (Qopt) is given by :

1

Qopt

=
1

Qext

+
1

Qin

=
ext

!c

+
in

!c

=
c

!c

(3.8)

Different regimes can be identified as a function of the ratio r. When ext = in (r = 1),
the so-called critical coupling regime, the contrast in transmission is 100% and the number
of photons in the cavity is maximal. When ext < in (r < 1), in the under-coupled regime,
the contrast is below 100%, the linewidth of the resonance is narrower but photons tend to

1. Since we collect the light that is passing through the waveguide we refer to a transmission measurement.
However, as illustrated in figure 3.7, sout can actually rather be seen as the field “reflected” by the cavity,
in a single-port vision.
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Figure 3.8 – (a) Waveguide transmission and (b) Number of photons Ncav in the cavity in
function of the laser wavelength for different value of the ratio r = ext/in. Parameters of
the mode (in the exciton band) : Qin = ωc

κin
= 2 · 104, �c =

2πc
ωc

= 870 nm, |sin|
2=10µW.

be intrinsically lost by the disk, which means a loss of information. When ext > in (r > 1),
in the over-coupled regime, the contrast is still below 100%, the linewidth of the resonance
is broader but photons tend to preferentially escape from the disk through the waveguide,
i.e. can be collected on the photodetector.

In a perfect circular disk, two WGMs coexist at the same energy: the clockwise (CW) and
the counterclockwise (CCW). Surface roughness or departure from the circular symmetry
is responsible for lifting this degeneracy and creating two standing wave modes. This CW-
CCW coupling is characterized by a coefficient � [184]. In that case, the number of photons
in the cavity and the transmission of the waveguide are given by [121] :

Ncav = (
1

(∆� �)2 + (κin

2
+ κext

2
)2

+
1

(∆+ �)2 + (κin

2
+ κext

2
)2
)
ext |sin|

2

2~!l

(3.9)

T =
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2

|sin|
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�
�
�
�
�
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4
� κext

4
)2

�∆2 + (κin

2
+ κext

2
)2 + �2 + 2j∆(κin

2
+ κext

2
)

�
�
�
�
�

2

(3.10)

As seen in the figure 3.9, in the case of CW-CCW coupling the shape of the singlet reso-
nance is transformed into a doublet. Ncav is still maximal at the critical regime (r = 1) but
the transmission contrast is not anymore. For our small disk, this CW-CCW phenomenon
is more pronounced for WGMs in the telecom band, whose electromagnetic fields are closer
to the edges of the disk.
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Figure 3.9 – (a) Waveguide transmission and (b) Number of photons Ncav in the cavity in
function of the laser wavelength for different value of the ratio r = ext/in. Parameters of
the mode (in the telecom band) : Qin = ωc

κin
= 2 · 105, �c =

2πc
ωc

= 1550 nm, |sin|
2=10µW,

� = 2in.

Achieving the critical coupling regime is often useful in our experiments : it maximizes
Ncav while maintaining a good Qopt. We have distinguished extrinsic losses (Qext = ωc/κext)
from intrinsic losses (Qin = ωc/κin). To obtain r = 1 we should ideally understand and control
both terms.

3.2.1.2 Origin of optical losses - κin

E
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VB

EF

Mid-gap

states

(c)(b)(a)

CB

VB

ℏω

E(d)

Surface roughness

Scattered photons

GaAs

Air

Figure 3.10 – Mechanisms responsible for intrinsic optical losses in the disk (a) Bending
losses (b) Surface scattering due to disk roughness (c) Linear absorption, an arbitrary Fermi
level EF is represented (d) Two-photon absorption TPA

Sources of intrinsic loss are multiple : bending losses Q�1
bend, scattering losses Q�1

scat, linear
absorption losses Q�1

abs and the non-linear two-photon absorption losses (TPA) Q�1
TPA (see
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figure 3.10). We treat these channels of dissipation as independant. The intrinsic quality
factor of the WGM resonator can be therefore written as [121,182] :

Q�1
in = Q�1

bend +Q�1
scat +Q�1

abs +Q�1
TPA (3.11)

Qbend : Bending losses of a WGM (see figure 3.10 (a)) depend on the curvature of the disk
resonator. They increase when the radius of the disk decreases, and can in general not be
neglected even for an ideal material and perfect fabrication. These losses can be computed
by FEM simulations (see figure 3.11): a Perfectly Matched Layer (PML) is placed around
the simulation domain, mimicking absorption of the radiated field at infinity. The losses are
manifested by the appearance of an imaginary part in the eigenfrequency !c :

Qbend =
Re(!c)

2Im(!c)
(3.12)

Numerically the limitations of our FEM calculations places an upper bound of Qbend '
109�10. For a given disk, the bending losses tend to increase at a larger optical wavelength.

(a) (b)

Figure 3.11 – FEM 2D axi-symmetric simulations of WGM optical modes (a) Exciton-band
TE mode : m = 37, p = 2, �c = 843,28 nm (b) Telecom-band TE mode : m = 12, p = 2,
�c = 1563,72 nm

Qscat : Scattering losses take their origins in imperfections of the circular geometry of the
disk. Indeed despite the excellent nanofabrication protocol a residual roughness, as well as
a GaAs reconstruction layer are present at the disk surfaces (see figure 3.10 (b)). These
imperfections have been previously analyzed by TEM observations [121, 185] and possess a
spatial correlation length from 20 to 70 nm. Scattering can be important especially for low
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radial p number WGMs, i.e. modes localized close to the disk borders. Another way to un-
derstand this effect is to consider the refractive index perturbation that causes polarization
currents disrupting the cavity modes [121, 184, 185]. The scattering also affects tiny disks,
where imperfections represent a larger fraction of the disk volume.

Qabs and QTPA : The absorption of photons stored in WGMs is another source of optical
losses. Linear absorption occurs naturally when the energy of photons exceeds the GaAs
bandgap. At room temperature the bandgap is at 1.42 eV (⇠ 873 nm), and at cryogenic
temperature (T ⇠ 3K) at 1.52 eV (⇠ 816 nm). For these two temperatures, working with
telecom wavelength (between 0.76 and 0.82 eV) should not lead to absorption. However
linear absorption of telecom photons still occurs in our disk, evidenced by the thermo-optic
distortion of WGMs resonances (see section 3.2.1.2). Experiments indicate that most of this
linear absorption happens at the surface of the disk [185]. The GaAs surface reconstruction
layer (' 2 nm thick) is again accountable for this effect: it can host new electronic states
that reside within the GaAs bandgap. These “mid-gap states” can assist linear absorption
(see figure 3.10 (c)), hence the importance of reducing their influence by using an ALD
process after the device fabrication (see section 3.3.6). ALD treatment can improve by a
factor 10 the Qopt showing the preponderant role played by surface states [105].

If we now consider photons in the exciton band (energy between 1.38 and 1.55 eV), we
can expect an increase in the linear absorption. Even with exciton-band photons with an
energy slightly below the GaAs bandgap, the presence of the QW hetero-structure inside
the disk is believed to provoke the apparition of bulk defects increasing linear absorption.
The typical energy of the QW fundamental transition lies between 1.3 and 1.4 eV depending
on the temperature (see section 3.2.2.1). This situation is all the more problematic as the
waveguide, just like the disk, also contains the hetero-structure. Its transmission will be
greatly impacted by these absorptive transitions. Only photons with smaller energy will
have the chance to pass through the waveguide with small attenuation.

On top of these linear phenomena comes nonlinear two-photon absorption (TPA). If one
photon of the telecom band is not energetic enough (E=0.8 eV at �=1550 nm) to promote an
electron from the valence band to the conduction band, two photons have sufficient energy to
do so, even at cryogenic temperature (2⇥0.8 eV > 1.52 eV). This non-linear effect becomes
clearly visible in our experiments when high optical powers are involved [185]. It scales with
the square of optical intensity inside the disk :

dI(z)

dz
= �↵I(z)� �I(z)2 (3.13)

where I(z) represents the light intensity along an optical path z, ↵ the linear absorption
coefficient and � the TPA coefficient (between 5 and 10 cm/GW for �=1550 nm at room
temperature), which should decrease when decreasing the temperature [186]. For photons
in the exciton band, a model [187] predicts that when the energy of photons becomes com-
parable with the energy band gap, the coefficient � vanishes. We can expect a lower impact
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of TPA in the exciton band.

All these sources of intrinsic losses are limiting Qopt. Typically we expect the best values
of Qin in the range of 104 � 105 for modes in the exciton band and 105 � 106 in the telecom
band.

Signature of absoprtion : Thermo-optic distortion

The thermo-optic distortion is a phenomenon directly linked to the absorption processes
mentioned above. We will provide a phenomenological description and refer the reader
to [121,185] for a more complete one.
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Figure 3.12 – Thermo-optic distortion of a telecom-band WGM resonance, measured in the
waveguide optical transmission spectrum. The optical power is increased from blue to red (7
µW, 40 µW, 59 µW, 88 µW, 128 µW and 186 µW respectively of input power), progressively
revealing the thermo-optic triangular shape of the resonance. Here the resonance has a
doublet structure due to the CW-CCW coupling. Disk radius is 2 µm.

The thermo-optic distortion of optical resonances is a consequence of temperature eleva-
tion in the resonator, induced by absorption of light. When the laser sits on the blue flank
of a WGM resonance, photons are injected into the disk, and the optical power increases.
A fraction of this power is absorbed, which increases the temperature. The refractive index
increases due to the positive thermo-optic coefficient of GaAs and the WGM resonance is
red-shifted. As the laser wavelength is further swept towards resonance this thermo-optic
redshift increases all the more, effectively pushing the resonance to the red. When the laser
wavelength finally reaches the resonance condition, this effect ceases and the optical trans-
mission suddenly recovers its out-of resonance value, resulting in a response that adopts a
triangular shape as observed in figure 3.12. For a higher laser power, the heating is more
pronounced and the shift extends to larger wavelengths.

82



3.2.1.3 Efficient waveguide to disk coupling - κext

We shall now assess the value of the extrinsic losses ext and try to match it with in
in order to reach the critical regime. This can be done by waveguide design: varying the
distance between the disk and the tapered part of the waveguide (gdw), as well as modifying
the width of this taper wt (see figure 3.13). It is more comfortable to work with a large
waveguide, since it leads to a more confined guided mode and with a “large” gap distance
between the disk and waveguide, to minimize proximity effects during the fabrication process
(see section 3.3.2.3).

Tapering length lt Tapered part 

wt

gdw

ww wtip

Inverted taper
y

xz

lt

Figure 3.13 – Sketch representing the design of the inverted taper waveguide. The central
taper is crucial for the coupling to the disk whereas the inverted tapers at the guide endings
tip are designed to optimize the coupling to the µ-lensed fibers

The value of ext will greatly depend on the range of wavelengths: exciton band or the
telecom band. These two ranges differ in the value of the GaAs refractive index n. As seen in
figure 3.14, n is larger in the exciton band, the variation with wavelength is more pronounced.
A direct consequence will be on the evanescent part of the fields. The higher n, the higher
the effective refractive index neff in the GaAs slab from which we start. As seen in section
2.1 for an infinite dielectric slab, the exponential decay rate is given by � = k0

p

n2
eff � 1.

For a similar slab, the decay rate of the fundamental TE mode is 2.3 times faster at 900
nm than at 1550 nm. The same arguments hold for WGMs, we can locally assimilate the
edge of the disk to a straight waveguide [188] and approximate the Hankel function with a

decaying exponential : H
(2)
m (kr) ⇠ Jm(kneffR)e�γ(r�R). WGMs in the telecom range have

hence longer evanescent tails (as already visible in figure 3.11), which means that a good
overlap between the waveguide mode and the WGM can be achieved even with a large gap
distance.

If the dielectric slab effective index model is relatively valid in the case of the disk (since
its aspect ratio is relatively high: R/h = 10) it is not the case for the tapered part of the
waveguide where the dimensions have been reduced in two directions z and y (figure 3.13).
To compute the field in this narrow dielectric rod of rectangular cross-section we use Mar-
catili’s approach [191, 192]. In this method, the cross-section of the waveguide is divided
into nine regions of different refractive indexes. The fields in the four corner regions are not
considered since these regions are less essential for the waveguiding properties (see inset in
figure 3.15). For the other regions

’
the fields are assumed to be (co)sinusoidally distributed

inside the waveguide and decaying exponentially outside. In the case of a highly symmetric
waveguide, where the refractive index of all the surrounding regions is the same (in our case
vacuum n=1), the problem consists in solving the case of two intersected dielectric slabs:
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Figure 3.14 – GaAs refractive index in function of the wavelength at room temperature -
Theoretical model adapted from [189], the values are extremely close to the the ones recently
measured by ellipsometry in [190]

one vertical and one horizontal. In the original paper of Marcatili, the refractive index of
the dielectrics was slightly larger than that of the surroundings, but since then some works
extended the method to a high index contrast [192], where Marcatilis’s method works only in
the well-guided case, at high enough frequencies. The effective refractive index of Marcatili’s
method agrees well with the values obtained by FEM simulations, as illustrated in figure 3.15.

Marcatili’s method is also interesting to compute the number of modes supported by the
waveguide. We have assumed in the framework of the coupled-mode theory that the disk
was coupled to a single-mode waveguide, but in practice, it could sometimes be different.
For instance in figure 3.15 (c) if we work with wt=400 nm, two TE and two TM modes are
supported. If the disk couples to these modes it can induce changes in the transmission ex-
pression, depending on employed experimental conditions [193]. In this context, Marcatili’s
method allows calculating the cut-off frequency of the tapered waveguide. As seen in the
figure 3.16, TE and TM modes only appear when the taper has a sufficient width. For
wavelengths in the exciton band (curves 1 and 2 in figure 3.16), they appear for relatively
narrow taper (⇠150 nm for TE, less than 100 nm for TM). As the wavelength increases
(and refractive index of GaAs decreases), the cut-off frequency is reduced and modes in the
telecom range only appear for wider taper waveguide. This effect is particularly pronounced
for the case of TM modes (curves 8 and 9 figure 3.16 (b)).
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Figure 3.15 – (a)/(b) Cross section of TM/TE-like guided mode for a symmetric 200 nm
square waveguide surrounded by vacuum obtain by FEM simulations, � = 800nm (c) Vari-
ation of the effective refractive index of different modes in function of the width of the
waveguide (waveguide height h=200 nm) - Marcatili’s method at � = 800nm ; Blue continu-
ous line : TE00 mode - Blue dashed line TE10 mode ; Dark red continuous line : TM00 mode
- Dark red dashed line TM10 mode. The markers are the values of effective index obtained
by FEM simulations : Blue open circles : TE00 mode - Blue squares TE10 mode - Dark red
open circles : TM00 mode - Dark red squares TM10 mode. The inset is representing a cross
section of the waveguide and the different regions considered in Marcatili’s approach

Within the Coupled Mode Theory, the coupling rate ext between the disk and the
waveguide is calculated by a three-dimensional overlap of the resonator field Er with the
waveguide field Ew. This overlap integral in the case of the disk resonator is [194]:

p
ext = j

"0!

4

Z yt/2

�yt/2

dy

ZZ

x,z

dxdz(n2 � 1)E⇤
rEwe

�jβy (3.14)
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where the coordinates x, y and z match those of figure 3.13, yt is the interaction length,
taken here as the length of the tapered central part, and � is the modal waveguide propaga-
tion constant. This equation underlines the importance of phase matching to obtain proper
coupling. The WGM field possesses an azimuthal phase dependence (e±jmθ) that should
match that of the waveguide: this condition will determine the optimal width of the taper
wt and gap distance gdw. This obviously depends on the selected WGM, different WGMs
will couple to the waveguide with different ext.
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Figure 3.16 – (a)/(b) Variation of the effective refractive index of mode TE/TM00 mode in
function of the width of the waveguide, for different wavelengths - Marcatili’s method. �
= 800,900,1000,1100,1200,1300,1400,1500 and 1600 nm labelled with number from 1 to 9.
Waveguide height h=200 nm
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(a) (b)

Figure 3.17 – Maps showing the coupling quality factor Qext = ωc/κext as function of the taper
width wt and gap distance gdw. (a) Exciton-band mode : TE ; m=40 ; p=1 (b) Telecom-
band mode : TE ; m=19 ; p=1. The solid black lines mark a region where Qext is between
5 · 104 and 5 · 105. Our targeted technological compromise is highlighted by a dashed square

Equation (3.14) enables computing maps of Qext in function of the taper width and gap
distance (see figure 3.17). These maps confirm our intuition: working in the exciton band
requires a narrower taper and smaller gap distance with respect to the telecom band usually
employed in our group. This represents a technical challenge we had to face in this thesis.
A too wide waveguide would turn multimode and reconfine the mode, which should be
compensated by a smaller gap distance, incompatible with fabrication. The compromised
target region is shown in figure 3.17. These results are only valid for a specific WGM, for
different radial/azimuthal numbers p/m the phase-matching condition is not the same 2.

Global waveguide/disk coupling simulations with FEM

To complement Couple Mode Theory, simulations that can assess the evanescent coupling
efficiency and calculate the waveguide transmission spectrum are provided by FEM. In such
a simulation, we excite one port of the waveguide with a fundamental mode and collect the
signal at the other port. An example of such simulation is shown in figure 3.18, where a TE
WGM is efficiently excited. Simulations like that are extremely demanding in 3D, but they
can be run of a standard computer in 2D if the slab-effective index method is employed.

2. A more flexible solution would be to use a “pulley scheme” [179, 180, 195], where the coupling taper
wraps around the disk resonator (see figure 3.38 (b)). In that configuration, the interaction length is increased
and can counteract the impact of poor phase matching.
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Figure 3.18 – FEM eigenmode analysis simulations. A fundamental TE mode is injected
on the left side of the waveguide, the fraction of power that passes through the structure is
collected on the right side. The waveguide is 140 nm wide. TE mode m=44 p=6, is excited
at � ' 863.7 nm.

3.2.1.4 Efficient waveguide

Light injection in the waveguide

We should now take care of the coupling between the µ-lensed fibers and the waveguide.
Our µ-lensed fibers typically deliver a 2 µm waist diameter Gaussian beam 3. In order to
couple efficiently our guide to this mode, we should design a proper “mode matcher” that
allows for low loss and displacement tolerant coupling. The chosen design consists of an
inverted taper [196], which relies on an adiabatic expansion of the waveguide mode, while
simultaneously reducing the mode effective index to match that of the µ-lensed fiber. This
allows converting the confined mode of the guide into the deconfined mode at the tip of the
guide’s ending. The key parameters for the design are the width of the tip wtip, the width
of the waveguide ww at its largest part and the tapering length lt (see figure 3.13). Our
inverted tapers are fully-suspended, which provides a large index contrast.

This inverted taper is optimized by Finite Difference Time Domain (FDTD) simulations.
The end of the inverted taper is excited by a pulsed source with 2 µm waist diameter Gaus-
sian beam, with 100 nm spectral width and a central wavelength of 850 nm for the exciton
band and of 1550 nm for the telecom band. The propagation is simulated and we collect
at the other end of the inverted taper the power flowing in the waveguide cross-section.
We compute this way the transmission, varying the geometric parameters and obtaining
the correct set of parameters for optimal transmission. We obtain a good transmission
(T ⇠ 70� 80%) in both wavelength ranges. Inverted tapers optimized for the exciton band
are typically thinner (wtip ⇠ 50 nm, ww ⇠ 400 nm for the TE case) than their telecom
counterparts (wtip ⇠ 75 nm, ww ⇠ 1000 � 1500 nm for the TE case). The tapering length
also has great importance in terms of transmission but its value is rather set by the adiabatic

3. For both exciton and telecom-band optimized µ-lensed fibers
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criterion discussed now.

Love adiabatic criterion

In our waveguide design (see figure 3.13) we find two types of tapers : the first is used
to evolve from wtip to ww and the second from ww to the central taper width wt. We would
like the taper length to be as short as possible to make the fully-suspended structure robust.
However, if the tapering is too abrupt, energy is coupled from the fundamental guided mode
into higher-order modes along with the propagation. Modes that may be not supported by
the taper part, resulting in a power loss. According to Love, [197] this power transfer is
minimized if the tapering length lt is larger than the beat length lb, i.e. the coupling length
between the fundamental and high-order modes :

lb =
2⇡

�1 � �2
(3.15)

where �1 and �2 are the propagation constants of the fundamental and high order mode
(second here). For linear tapering, this sets a minimum tapering length. As demonstrated
in figure 3.19 this minimal length is longer for waveguides in the exciton band, where the
difference between indices of the fundamental and second-order modes is smaller. In the
telecom case, we only obtain a criterion for TE modes since no higher-order TM mode is
supported in the range of width considered here.
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Figure 3.19 – Love adiabatic criterion for a waveguide optimized in the (a) exciton band (�
= 850 nm) (b) telecom band (� = 1550 nm). Waveguide thickness = 200 nm. Red curves :
TE modes - Blue curve : TM modes

Total waveguide simulation

With all geometric parameters of the final design of our waveguide, we can simulate the
whole structure with FDTD simulations, as illustrated in figure 3.20. The global transmis-
sion (injection µ-lensed fiber to collection µ-lensed fiber) according to FDTD is between
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50 and 60%, which corresponds to about the square of the transmission of one inverted
taper structure, which means that we can safely neglect all losses along the path of the
whole waveguide structure. Of course, the simulations do not take into account all the other
possible sources of losses such as the residual roughness or the absorption. Typically for
a waveguide in the telecom range the global transmission, we obtain in our experiments is
around 25%, corresponding µ-lensed fiber to inverted taper transmission of around 50%.

(a)

(b)

Figure 3.20 – FDTD TE simulation results for the whole waveguide structure (a) Exci-
ton band : central wavelength 850 nm - Transmission ⇠ 60% (b) Telecom band : central
wavelength 1550 nm - Transmission ⇠ 55%

One source of losses that we can simulate as well is the impact of the anchoring points
that hold the waveguide suspended. Those anchorings should be thin enough to minimize
scattering. We routinely used 100 nm wide anchors to hold the guide, for such a geometry
FDTD simulations (see figure 3.21) show a minor impact on the total transmission, inducing
a drop of only 2-3%.
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Figure 3.21 – FDTD simulations of anchoring point losses. The waveguide is 400 nm wide
and the anchoring point 100 nm. A fundamental TE mode is injected on the left side of the
waveguide, and collected on the right side. In this configuration the transmission only drops
by 2-3% when the anchoring point are present. �= 900 nm.

3.2.2 Quantum well hetero-structure
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Figure 3.22 – Different hetero-structures employed during this thesis. Structure 1 : Single
InGaAs QW with 13% of Indium - Structure 2 : MQW with 5% of Indium - Structure 3
: MQW with 13% of Indium. h represents the total thickness of the disk embedding the
“active” layer

We review in this section the different characteristics of the hetero-structure present in
core of the “active” disk. During the course of this thesis we try several structures rep-
resented in figure 3.22. Structure 1 corresponds to a single InGaAs QW inside GaAs
with a fraction of indium equal to 13%. Structure 2 and 3 are InGaAs Multiple Quantum
Wells (MQW) inside GaAs with 5 QWs and a fraction of indium of 5% and 13% respectively.

The two 20 nm Al0.2Ga0.8As layers visible in figure 3.22, do not belong to the QW
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structure : they were added to improve the confinement of carriers in the GaAs barriers and
consequently in the well. To avoid oxidation of these extra layers, which would obviously
lead to degradation of the resonator, two cap layers of 5 nm of GaAs were placed at the
bottom and top of the disk layer.

3.2.2.1 Energy of the transitions

The energy diagram of the well in 1D can be calculated using a finite one-dimensional
potential well for a particle with a mass equal to the effective mass of the considered band.
This implies to solving a transcendental equation similar to the infinite dielectric slab case :

k
m⇤

b

m⇤
w

tan (kL/2) = ↵ for even cases

k
m⇤

b

m⇤
w

cot (kL/2) = �↵ for odd cases

(3.16)

with k =
q

2m⇤
b

~2
(E + V0) the 1D wavevector, ↵ =

q

�2m⇤
b

~2
E, E the energy of the wave

parametrized by k, m⇤
b the effective mass in the barrier, m⇤

w the effective mass in the well,
L the length of the well and V0 the well depth.

The method described above is not perfectly adequate for the valence bands, as states
are derived from more than one bulk band (valence band mixing). A more sophisticated
method is to compute a discrete version of the 1D Schrödinger equation for a Zinc-Blende
semiconductor such as GaAs and its alloys. The non parabolicity can be implemented thanks
to k · p theory and the 2-band Kane model [126, 198] for the conduction band and with a
k ·p theory and 6-band Luttinger-Kohn model [199] for the valence band. With this k ·p ap-
proach, the effect of the strain, which we will detail later, can be included via the Bir-Pikus
Hamiltonian [79]. The results of such computations are shown in figure 3.23. For the sake
of clarity, we have represented the fundamental transition (C-HH) only, but other transi-
tions involving notably light holes and heavy holes exist in both structures, they are poorly
interesting in the context of this thesis. The evolution of the energies with temperature is
computed using Varshni’s model [200].

Regarding the design of the MQW (Structure 2 and 3), particular attention was paid
to having wide enough barriers to avoid wavefunctions of adjacent wells to overlap. In other
words, the tunneling probability from well to well was essentially set to zero. Within the
previous computation of the electronic states, we calculate this tunneling probability T via
:

T =
4E(V0 � E)

4E(V0 � E) + V 2
0 sin2

✓q
2m(V0�E)

~
L

◆ (3.17)

In our designed MQW structures, the tunneling probability was always below 0.01 %
both at room and cryogenic temperatures.
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Figure 3.23 – QW energy band calculations as function of the temperature and the well layer
thickness for a fraction of indium equal to 5% ((a)-(c)-(e)) and 13% ((b)-(d)-(f)). Figure
(a) and (b) are representing the energy diagram calculated at cryogenic temperature (T = 3
K). The black lines trace the conduction and valence band profile. The calculated energies
(dashed lines) and envelope functions �c/v (solid lines) for the electrons and heavy-holes
along the growth axis z are respectively represented in blue and green. (c) and (d) are for
a well thickness of 12 and 8 nm. The temperature in (e) and (f) is 3 K.

3.2.2.2 Effect of the residual strain on the exciton energy

a
S

< a
L

a
S

> a
L

Figure 3.24 – Sketch representing the built-in strain generated when an over-layer is grown
on top of a substrate with a different lattice parameter.

As we have already mentioned earlier, the strain affects the energy band of semiconductor
material: this phenomenon is particularly of interest for epitaxially grown hetero-structure.
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When an over-layer with lattice constant aL is grown on a substrate with lattice constant
aS and adapts to it, the strain in the deposited over-layer can be approximated to :

"k =
aS � aL

aL
"? = �"k

�
(3.18)

with � the Poisson ratio. For a small lattice mismatch, the over-layer initially grows in
perfect match with the substrate. However, the strain energy grows as the over-layer thick-
ness increases. At some point, it becomes more favorable for the over-layer to accommodate
dislocations. In simple theories, this occurs for a critical thickness given by [201] :

dc '
aS

2
�
�"k
�
�

(3.19)

In table 3.1 we list the built-in strains and critical thicknesses for all interfaces encoun-
tered in this thesis: we can see that our grown layers are always below the critical thickness.
We can hence safely assume that a limited amount of dislocations is generated in our wafer
and that a non-negligible amount of built-in strain exists. Note that more advanced models
are available to compute this effect [187,202–204].

Substrate Over-layer "k (%) dc (nm) ∆EC�HH (meV)
Al0.8Ga0.2As GaAs 0.11 257 �13.9

GaAs Al0.2Ga0.8As �0.0027 1030 �0.35
GaAs In0.05Ga0.95As �0.36 75 45.9
GaAs In0.13Ga0.87As �0.81 35 100.2

Table 3.1 – Built-in strain, critical thickness, and ∆EC�HH energy shift computed for all
the interfaces encountered in this thesis. The parameters required to compute these results
are discussed in section C.2

To compute the effect of strain on the energy bands, we use the Bir-Pikus Hamiltonian,
an extension of the Luttinger-Kohn Hamiltonian, detailed in appendix C.3. For a strained
layer on a (001) substrate the strain components are given by [205,206]:

"xx = "yy = "k "zz = "? = �"xx
�

� =
C11

2C12

(3.20)

where C11 and C12 are components of the material stiffness tensor. The evolution of the
fundamental transition (C-HH) is thus given by (see appendix C.3) :

EC�HH(k = 0) = EC�HH(" = 0) + 2a"k(
C11 � C12

C11

) + b"k(
C11 + 2C12

C11

) (3.21)

The values of these energy shifts for different over-layers are reported in table 3.1.

A feature of particular interest in the case of our suspended disk resonators is the state
of this built-in strain once the disk is under-etched and sitting on its pedestal. Indeed,
at the end of the fabrication process, the periphery of the disk is completely under-etched

94



with no underneath AlGaAs layer anymore. In this released state, strain relaxation occurs:
the strain distribution in the suspended disk is not uniform anymore (see figure 3.25 (a)).
The strain tends to zero at the periphery of the disk while it is still pronounced close to
the pedestal. The pedestal is of paramount importance for this strain distribution. In fig-
ure 3.25 (b), we plot the calculated energy shift of the conduction band of GaAs, grown
on Al0.8Ga0.2As layer and then under-etched into a disk, for different pedestal size and as
a function of the position along the radius of the disk. For small pedestals (blue curve,
Rped = 0.1 ·R) we have a large homogeneous portion of the disk where the energy of the con-
duction band is constant, equal to that of free GaAs. When the size of the pedestal increases
(green curves), the energy is not uniform and can locally be higher or lower than the free
crystal case. A similar yet more complex reasoning can be carried out for the valence band,
indicating that energy of the HH should slightly decrease towards the center of the disk. In
consequence of these effects, we should expect varying energy for the C-HH exciton depend-
ing on its position in the under-etched structure. This was indeed experimentally measured
in this thesis, illustrated in figure 3.25 (c). By reducing the size of the pedestal we mini-
mize these under-etch effects and obtain one signal for the exciton in the disk at fixed energy.

r [ m]

0 1 2
-10

-5

0

Wavelength [nm]

864 866 868 870 872

P
L

 s
ig

n
al

 [
a.

u
.]

0

0.2

0.4

0.6

0.8

1
(a) (b) (c)

 [
m

e
V

]
�

E
C

3 meV�E �

� 10
�4

Figure 3.25 – (a) Strain in an under-etched disk : color map of the strain component "rr+"θθ
across the plane of the disk (diameter R=2 µm, Rped = 0.5 · R the position of the pedestal
is represented by a dark dashed line). (b) Evolution of the energy of the (1D) conduction
band of GaAs as a function of the radial position in the suspended disk. The pedestal radius
is taken to vary Rped = 0.1 � 0.9 · R from dark blue to green curves, Radius R=2µm (c)
C-µPL spectra measured at the periphery (blue curve) and at the center (green curve) of a
suspended disk at low temperature (diameter R=2 µm, Rped = 0.5 ·R).

Similar effects were observed in a different platform involving a bulk active material [207]:
our argumentation developed here works well and fits experimental observations. In the case
of a heterostructure, the phenomenon was also observed [208], but the interpretation is more
complex there since different materials are present. In every interface of our hetero-structures
in this thesis, the critical thickness was sufficiently large to consider that grown layers would
adopt the lattice constant of the underlying part. This is the assumption we took to compute
strain relaxation by FEM in figure 3.25 (a). However this intuition should be confirmed,
an analysis of the strain in the structure with X-ray diffraction spectroscopy would be very
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enlightening.

3.2.2.3 Impact of the Indium fraction

We review here the influence of the indium fraction on the properties of our InGaAs
QW hetero-structures. A relatively high fraction of indium (>10%) presents both benefits
and challenges. On one hand, the carriers are better confined due to the lower gap of InAs
compare to GaAs: this means thinner layers, both for wells and barriers and an overall
more compact structure, especially useful in the case of a MQW. On the other hand, one
might face issues during the epitaxial growth, mostly due to a higher lattice mismatch (dis-
locations, residual strain), triggering large inhomogeneous broadening of the exciton and
possible alloys fluctuations. Concerning the energy of the transitions, the lower the indium
fraction the higher the energy of the fundamental C �HH transition, as expected from the
electronic band parameters listed in appendix C.1.
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Figure 3.26 – (a) Rydberg energy and Bohr radius as a function of the Indium fraction - 2D
ideal case (b) Exciton binding energy as a function of the QW width, the different insets
show the QW potential and wave functions of electrons for different QW widths. The dashed
line represents the infinite well case. Adapted from [209,210]

Regarding exciton properties, increasing the indium fraction reduces the binding energy
and increases the Bohr radius as illustrated in figure 3.26 (a) in the ideal case of a 2D QW.
We see that for the fraction we employ (between 5% and 13%) the thickness of the QW is
larger than the Bohr radius: in that case, the hypothesis of the narrow (thin) QW is no longer
true. The bounded exciton itself is confined by the well and keeps the internal structure of a
3D hydrogen atom. In such case, the separation of variables in z (perpendicular to the QW
plane) and ⇢ (parallel to the QW plane) is not valid. One alternative to face this difficulty
is the definition of an effective pseudo-potential for the relative in-plane motion of electrons
and holes [209]:

"

�~2
2µ
r2

ρ �
e2

"

ZZ

dzcdzv
|�(zc)|

2|�(zv)|
2

p

⇢2 � (ze � zh)2

#

Φ(⇢) = E2D
b,nΦ(⇢) (3.22)
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In the limit of the ideal 2D case where the separation of variables holds, �(zc/v) = �(zc/v)
and the previous equation is transformed into (2.114).

For realistic QW structures the exciton binding energy ranges from E3D
b,n to 4E3D

b,n and
depends on the QW width and barrier heights for electrons and holes. The binding energy
increases if the exciton confinement strengthens: following that argument one can guess
why the dependence of the binding energy on the QW becomes non-monotonous as depicted
in figure 3.26 (b). For relatively thick wells the confinement increases when the thickness
decreases, while for narrow wells the trend is inverted due to the tunneling effect of wave
functions into the barriers. In the case of an infinite-barrier well, the confinement simply
increases when the well thickness decreases. Consequently, by playing with the indium
fraction, one can tune to the optimum in terms of well thickness and binding energy.

3.2.2.4 The polariton linewidth and spectral broadening

The homogeneous radiative exciton linewidth of a quantum well can be expressed by
[160,211]:

~x =
e2

4"2r"0m0c

f

S
(3.23)

where f/S is the oscillator strength of the exciton per unit area, a quantity directly
linked to the strength of the exciton interaction with the electromagnetic field and that
amounts to [128,212,213]:

f

S
=

2

m~!x

|huv | e · p | uci|2|�(0)|2
�
�
�
�

Z

dz�c(z)�v(z)

�
�
�
�

2

(3.24)

where uc,v are the conduction and valence band atomic Bloch function, e the polariza-
tion vector associated to the vector potential A representing the electromagnetic field, p the
momentum, � is in-plane relative motion of the electron and hole, �c,v the envelope wavefunc-
tions for the electron and hole along the z axis, and |huv | e ·p | uci| the Kane optical matrix
element. Given the structure of the QW we use in our experiments (In0.05Ga0.95As/GaAs)
we found ~x ' 0.06 meV which is an order of magnitude lower than c.

However this picture is only partially true: excitons greatly suffer from inhomogeneous
broadening, a mechanism that takes its origin in different sort of microscopic phenomena
such as disorder [68,214–216], coloumbian interactions between excitons [217–219] or exciton-
phonon interactions [169]. At very low exciton density the collisional Coulomb interaction
between excitons can be neglected, and we assume that all the relaxation phenomena can be
treated independently. Variations in the QW-thickness over the sample, fluctuations in the
alloys composition, residual rugosity, built-in strain, and interactions with acoustic phonons
are all factors that contribute to inhomogeneous broadening. As a result of this inhomo-
geneous broadening, the expected individual peak in the photo-luminescence/absorption
spectrum can turn into several narrow peaks as depicted in figure 3.27-(a). This situation
corresponds to an ensemble of spectrally separated emitters, that can be used to simulate
the spectral broadening of quantum-well exciton-polaritons [160,220–222]. In this model the
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Figure 3.27 – (a) Inhomogeneous distribution of the exciton, modeled as an ensemble of
emitters following a Gaussian distribution. x represents the homogeneous linewidth of one
emitter and inh the FWHM of the distribution (b) UP and LP linewidth (~u/l) as a function
of the cavity-exciton detuning �, taking into account the inhomogenenous broadening of the
exciton. The color map corresponds to the excitonic fraction (X). ΩR=5 meV, c=0.4 meV,
x=0.06 meV, inh=2 meV

polariton linewidth dependence on the inhomogeneous broadening ⇢ of the exciton transition
is given by [223–225]:

l = X2̃x + C2c = X2[x + ⇡�2xl⇢(�xl)] + C2c

u = C2̃x +X2c = C2[x + ⇡�2xu⇢(�xu)] +X2c
(3.25)

with �xu/l the exciton to upper/lower polariton detuning ~�xu/l = Ex � Eu/l = �~�/2⌥
~
p

�2 + Ω2
R and ⇢ the spectral density function describing the inhomogeneous broadening of

the exciton taken here as a Gaussian distribution :

⇢(!) =
1

inh

r

4 ln(2)

⇡
e

✓

�4 ln(2)
(ω�ωx)2

κ2
inh

◆

(3.26)

where inh is the FWHM of the distribution. Those definitions yield an expression for
the polariton linewidth that depends on the cavity-exciton detuning �. Those variations are
plotted in figure 3.27-(b). They drastically differ from the ones plotted in figure 1.5-(c).
In the case of the LP, for an increasing excitonic fraction X we observe an increase in the
polariton linewidth that overcomes at some point c. For large detuning this increase stops
and the LP linewidth slowly gets back to the exciton homogenous linewidth x [226, 227],
since �xl⇢(�xl) tends to zero. A similar discussion can be made for the UP analyzing the
cavity fraction C.

A direct consequence of this effect is the modification of the optomechanical cooperativity
enhancement :
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As illustrated in figure 3.28 the enhancement of the cooperativity greatly depends on the
value of the exciton inhomogeneous broadening and the boost is diminished with respect to
the ideal situation plotted in figure 1.7. However, for a reasonable value of the broadening
(inh ' 1 meV), we see that this enhancement can still be of a least two orders of magnitude
for a certain range of cavity-exciton detuning �.
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Figure 3.28 – Cooperativity enhancement as a function of the cavity-exciton detuning � and
the exciton inhomogeneous broadening inh (a) LP - C lm

0 /C0. (b) UP - C lm
0 /C0. ΩR = 5

meV, c =0.4 meV, x = 0.06 meV, gxm/gcm = 10

In summary, the inhomogeneous broadening of the exciton inh is responsible for increas-
ing the polariton linewidth. This broadening is usually one or two orders of magnitude larger
than the exciton radiative decay rate x, impacting the cooperativity of the tripartite sys-
tem. It is therefore of crucial importance to reduce it, notably by improving the fabrication
of the hetero-structure.

3.3 Sample fabrication

We present the different tools and methods involved in the fabrication of our hybrid
optomechanical systems. All fabrication steps, except the growth of the epitaxial structure,
are carried in the Matériaux et Phénomènes Quantiques clean room at the Université de
Paris.

Several wafers were used in this thesis: some were grown at the Centre de Nanosciences
et de Nanotechnologies in Palaiseau, in collaboration with the team of Aristide Lemaitre,
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and some others were grown in the III-V lab of Thales/Nokia/CEA-LETI, also located
in Palaiseau. The hetero-structures are grown on top of a commercial GaAs buffer layer
and then consist of : a 500 nm thick layer of epitaxial GaAs, a sacrificial 1.8 µm layer
of Al0.8Ga0.2As, and a 200 nm active layer of GaAs with an embedded InGaAs quantum
well (QW) or multiple InGaAs quantum wells (MQW). Further details on the quantum well
structures are provided in the prior section 3.2.2.

Even though the protocol presented in this section is the evolution of developments, im-
provements, and hard work of several Ph.D. students in past years, the fabrication remains
extremely delicate and tricky. The slightest mistake in one of the protocol steps can yield to
a failure of the global fabrication process. In this Ph.D. thesis, the main originality in terms
of fabrication is: (1) the presence of a hetero-structure in the active layer, which provokes
larger built-in strains distorting suspended structures (see section 3.2.2.2); (2) working in
the exciton-band (' 900 nm), which implies smaller dimensions of the suspended waveg-
uides, evanescent couplers, and inverted tapers. These have generated specific fabrication
challenges in this thesis.

3.3.1 Protocol steps

The protocol steps of the fabrication are as follows:

• A piece of wafer is first cleaved
• The chip obtained is cleaned and prepared for the first resist deposition (Fig 3.29 (a))
• The resist is spin-coated on the surface of the chip, then baked and exposed with an
Electron Beam Lithography (EBL) system (Fig 3.29 (b))

• After exposition the resist is developed, only the exposed parts remain on the chip
(Fig 3.29 (c))

• A first non-selective Inductively Coupled Plasma (ICP) Reactive Ion Etching (RIE)
is carried on the sample (Fig 3.29 (d)), followed by a second selective chemical hy-
drofluoric acid (HF) under-etching (Fig 3.29 (e)) : this defines the resonators and
waveguides and let them suspended.

• A second resist is spin-coated on the surface of the chip to prepare an optical lithog-
raphy and define the so-called mesa structure (Fig 3.29 (f))

• A second non-selective chemical etching (H3PO4/H2O2 or BCK solution) is then
carried out (Fig 3.29 (g)) to etch the mesa laterally.

• The resist is then washed in hot acetone and the sample is flash-dried and ready to
be used (Fig 3.29 (h))

All these steps are detailed in the following sections.
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Wafer - epitaxial structure

(b)

(c) (d)

(e) (f)

(g) (h)

E-beam resist deposition

Exposed and developed pattern Non-selective ICP-RIE dry etch

Selective HF under-etching Optical resist photolithography

Mesa wet etching Resist stripping - Final sample

GaAs buffer AlGaAs sacrificial layer GaAs active layer 

MaN-2401 e-beam resist S1818 optical resist

Figure 3.29 – Protocol steps of the fabrication. The different sketches are zoomed in one
structure waveguide-microdisk, the anchoring point of the waveguide and its support pillars
are represented as well
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3.3.2 E-beam lithography

3.3.2.1 Preparation of the chip

The first important thing is to prepare the chip by cleaning and avoiding the presence of
dust and residuals which can impact the precision of EBL. We start by cleaving a small chip
(usually 1cm ⇥ 1cm) from the wafer. We dip it in acetone (good polar solvent used mostly
to remove the organic contaminant from the wafer) and sonicate it for 10 minutes. Without
drying the sample, we place it in isopropanol, (IPA, secondary solvent suited to remove the
contaminant related to acetone and the nonpolar contaminant left on the wafer) and again
sonicate it for 5 minutes. The sample is then dried with dinitrogen (N2) and dehydrated on
a 220°C hot plate for 10 minutes. The sampled is now ready for the resist deposition (Fig
3.29 (a)).

3.3.2.2 E-beam resist deposition

Speed Ramp Time
Ti-Prime 6000 rpm 3 30 s
MaN-2401 3000 rpm 5 30 s

Table 3.2 – Parameters used for the spin coating

For the EBL we use a negative tone e-beam resist, the MaN-2401 4 (i.e. exposed patterns
will stay on the surface of the sample after the development). To obtain good adhesion of
the resist, we deposit first a thin layer of adhesion promoter called Ti-prime. This primer is
directly spin-coated on the surface of the sample after the dehydration procedure: it makes
the surface hydrophobic since water can damage the resist adhesion. The sample is then
baked at 120°C for 2 minutes. The MaN-resist is then spin-coated on top of this primer and
baked at 95°C for 65 seconds. This second baking eliminates the solvent that is contained
in the resist film. The parameters used during the spin-coating like the rotation speed and
the acceleration (ramp) are very important: they define the resist layer thickness and its
homogeneity. We seek to obtain a 100 nm thick resist layer with the parameters listed in 3.2.

As the resist is very viscous, surface tension will provoke accumulation in the edges of the
chip: therefore the chip surface must be sufficiently large to obtain a homogeneous working
area in the middle (Fig 3.29 (b)). The thickness is also a function of the age of the resist:
an “old” resist prepared several months ago contains less solvent 5 and leads to thicker layer.
Thickness is a key parameter since it impacts the resolution of the written patterns and the
dose required for exposure in the EBL.

We must also be careful with the baking time and temperature of the resist since it can
lead to thermally induced cross-linking and increase the development time after exposure.

4. Mix of a phenolic resist and a photocrosslinker, bisazide
5. Batch of resist are fabricated from a stock solution with a solvent that can evaporate in time
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For all these reasons it is judicious to perform a “dose test” before executing the lithography
of the whole sample. All these steps are carried out in a UV-free environment since this
resist is also UV-sensitive.

3.3.2.3 E-beam exposure and lithography

10 mm

1
0
 m

m

Figure 3.30 – Schematic of the chip and e-beam waveguide/disk patterns (scale is not re-
spected). The little crosses located on both sides of patterns are markers used for the photo-
lithography alignment. The dashed lines are cutting lines meant to separate the different
samples

The design of the mask is implemented with the E-line software and then adapted to
the Raith EBL system of our cleanroom. There are several distinct sample designs per chip
(usually 5 designs) : the chip will be cleaved in several samples after the ICP process (Fig
3.30). We review here several parameters used for the EBL :

• An acceleration voltage of 20 kV is used: this value is a compromise between the
resolution of the lithography and the settings of the beam parameters. It determines
also the writing time of the lithography: higher voltage leads to faster lithography.

• The typical dose used for exposure is 100 µC/cm2, insuring a good pattern quality.
The dose is not uniform on the mask. A crucial point is to avoid proximity effects,
when a pattern is exposed with a high dose, electrons scattered away from the beam
spot expose nearby parts involuntarily. Small gaps between two patterns, like the
waveguide and the disk, can be closed by this effect, making the sample useless. The
dose is generally higher for the narrow patterns of the mask, such as the waveguide
anchoring points, or the tip of the waveguide.

• The aperture is 10 µm (current around 26 pA)
• Step size is 10 nm
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• Write-field is 100 µm: during the lithography, the electron beam is deflected to
expose patterns contained in a 100 µm ⇥ 100 µm square centered on the central
(un-deflected) beam position. Then the platform moves to the next write-field and
repeats the procedure, until the end of the mask. Aligning those write fields is another
paramount point.

3.3.2.4 Development of the e-beam resist

A chemical solution of tetramethylammonium hydroxide ([(CH3)4N
+,OH�], very strong

base), AZ-276-MIF, is used to develop the resist after exposure. The cross-linked part of
the resist, i.e. the part exposed during the EBL, is the only one to remain on the surface
after development. The procedure of development consists of a repetition of several dip-
pings: AZ-276-MIF for 8 seconds, distilled water (DI-H2O) for 10 seconds, and in another
beaker, DI-H2O for 30 seconds. We repeat this procedure at least 2 or 3 times and check
between each cycle, with an optical microscope (magnification 50 or 150), the state of the
sample, and if another cycle is necessary or not. The sample at this stage of the process is
represented in the figure (Fig 3.29 (c)).

To improve the roughness of the sidewalls and lateral patterns, a resit reflow can be
carried out. This technique consists of heating briefly (⇠ 30 seconds) the sample, up to the
resist softening temperature. Due to surface tension, the resist forms back smooth interfaces,
hence reducing roughness. Two pictures of the resist mask after the reflow are represented
in figure 3.31. Improving the roughness of sidewalls enhances the optical quality factor of
the disk [121]. To improve the quality of the waveguide/ disk edges, and remove properly
resist residuals stuck in the gap, an extra oxygen O2-plasma step (18 seconds) or an O2-RIE
(10 seconds) can be added to the protocol. Nevertheless, this process provokes a reduction
of the resist layer thickness, which can lead to a weaker mask for the next step.

2 μm 2 μm

(a) (b)

Figure 3.31 – (a)Optical microscope picture of the resist mask after reflow, disk radius 1 µm
- Magnification = 1.5K (b) SEM micrograph of the resist mask after reflow , disk radius 2
µm - Magnification ⇠ 2.3K
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3.3.3 Inductively Coupled Plasma Reactive Ion Etching

The ICP-RIE is a conventional etching technique used to manufacture semiconductor
devices : based on an inductively coupled plasma (ICP) source and illustrated in figure 3.32.
Inside the ICP chamber, we place the sample as well as a gaseous mix of different species.
Thanks to the action of a magnetic field generated by a first RF antenna (coil), we obtain a
high-density plasma. A second RF antenna induces a bias that displaces first the electrons
(self-bias), and then attracts the ions to the sample surface. Ions having a larger mass than
electrons, their impact on the sample surface induces a physical sputtering and starts the
etching process. This simple picture is incomplete, as the etching mechanism does also rely
on the chemical reaction of free radicals, generated in the chamber, with GaAs/AlGaAs.
This etching is often referred as dry since it does not involve solution, and anisotropic, as
ICP-etching can be almost vertical when the ions are accelerated vertically. The gas mix
employed in our ICP chamber is composed of argon (Ar) and silicon tetrachloride (SiCl4),
the temperature is around 10°C, and the pressure is low, around 0.1 Pa, in order to limit
collision between ions and improve the anisotropy. Species like SiCl4 in the plasma are active
and chemically react with the sample, others serve to locally increase the temperature and
generate radicals.
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Figure 3.32 – ICP-RIE etching. see text for principles of operation. The first RF antenna
(ICP RF) creates the plasma. The second RF antenna (RF bias), creates the final attraction
of ions onto the surface. The laser interferometer serves to track the etching depth.

The duration of the ICP process depends on the depth of etching: usually, we seek to
etch the whole GaAs disk layer and approximately the same depth in the AlGaAs sacrificial
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layer. The progress in etching is monitored by laser interferometry. During this Ph.D. thesis,
the etching process never exceeded 45 minutes. For longer etching, it is essential to carefully
choose resist parameters since the resist mask gets damaged during etching. Thicker resist
layer leads to deeper anisotropic etch. For very deep etching the MaN should be replaced
by a more resistant resist mask such as obtained with HSQ.

The nature of the gaseous mix, the temperature, the pressure in the chamber, the plasma
density, the bias as well as the hardness of the resist are numerous parameters to be mastered
in order to obtained state-of-the-art etching and performances. For further details on the
ICP etching method, see [121, 179, 180, 228–230]. A SEM micrograph of a test sample after
ICP etching is presented in figure 3.33.

GaAs active 

layer AlGaAs 

sacrificial 

layer

2 μm

Figure 3.33 – SEMmicrograph after the ICP-etching. Test sample containing disk of different
size. The duration of etching has been increased to completely etch the AlGaAs layer and
check the smoothness of the sidewalls

E-beam resist removal

After the ICP etching is completed, samples are immediately split, dipped, and kept
in IPA in order to avoid the creation of a thin oxide layer that can damage the following
fabrication steps. The size of the chips at this stage is ⇠ 2 mm ⇥ 10 mm.

The next step consists in removing the e-beam resist, the reason for that is twofold: on one
hand, remaining resist on top of the disk can affect both its optical and mechanical properties
(refractive index contrast altered and mechanical friction in the resist long polymer chains).
On the other hand parasite chemical reactions can happen between the resist and the HF
solution: disturbing the under-etching, or making the resist mask more resistant and harder
to remove. It is therefore essential to strip the e-beam resist mask on top of the sample
surface. Both resist reflow and ICP process have already heated the resit mask, while a
simple acetone solution is usually sufficient to remove unbaked MaN resist, it is not working
here. We use a specific resist stripper called SVC-14, heated in a bain-marie at 80°C, and let
the samples inside for 1 to 2 hours. SVC-14 can be used at higher temperatures compared
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to acetone and is non-corrosive for GaAs and AlGaAs. In practice, this removal procedure
is not 100% efficient, some residuals might remain, another possible solution is to perform
an O2-plasma cleaning for several minutes.

3.3.4 Selective wet under-etching

In order to create the fully suspended waveguide structure as well as the pedestal under
the disk, we need to get rid of the sacrificial AlGaAs layer selectively. For a content of
aluminum superior to 50% in an AlxGa1�xAs alloy, using concentrated HF solutions (40
to 50%) leads to an extremely selective etching [231, 232]. HF etches AlxGa1�xAs a million
times faster than GaAs. However, since this reaction is extremely violent and releases a large
quantity of dihydrogen (H2) at room temperature, we need to reduce the concentration of
HF and cool down the etchant solution to slow down. We typically use a solution of 1.25%
HF at 4°C and achieve an average etching speed around 10-20 nm/sec. Moreover cooling
down the solution helps to obtain smoother, more regular pedestals.

When the ICP etch does not remove the entire AlGaAs layer, a great amount of reaction
products of AlGaAs with HF are generated (aluminum hydroxides), which are poorly soluble
in HF and water and can re-deposit on the surface. To remove these by-products we use a
strong base potassium hydroxide (KOH) solution that favors their solubility [233]. Before
moving the sample from the HF solution to the KOH solution, we perform a quick dip in
water to drastically increase the sample pH and avoid exothermic reactions. The following
procedure is employed:

• HF 1.25% at 4°C typically for 2 to 3 minutes.
• DI-H2O (first beaker) for 3 seconds.
• KOH solution, (10 g/100 mL) for 2 minutes.
• DI-H2O (second beaker) for 10 seconds
• DI-H2O (third beaker) for 3 minutes
• IPA (first beaker) for 20 seconds
• IPA (final beaker) for 30 seconds

These steps can be repeated until the desired amount of etching is obtained. Taking into
account the hazardous nature of these chemical products, all steps are carried out under
a dedicated chemical hood and extra protections (extra pair of gloves, mask, disposable
apron) are required. The HF under-etching of AlxGa1�xAs, at least in our conditions, favors
some crystallographic axes. Manually steering the sample in the HF solution is important
to mitigate this anisotropy. Without proper steering (steering the sample with a moderate
speed in all possible directions) “square” pedestal is obtained, which impacts the mechan-
ical performances of the resonator. The disks fabricated for this thesis are rather small (1
or 2 µm radius), and these anisotropy effects were only observed for larger disks with an
under-etching performed at room temperature. The structures, once released, become very
brittle (fully suspended waveguides): the sample should be manipulated with extra care.
SEM micrographs of a sample at this stage of the fabrication are presented in figure 3.34.
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2 μm

(b)(a)

200 nm

Figure 3.34 – SEM micrographs after the HF under-etching, disk radius 2 µm. (a) 5 disk
with their waveguides, Magnification ⇠ 1.4K (b) Isolated disk, Magnification ⇠ 20.7K

Flash-dry

Once the selective HF under-etching is finished, we do not dry the samples or remove
them from the liquid, as the suspended waveguides might collapse under the action of surface
tension of the liquid and capillary forces. The procedure we have retained to avoid this issue
is to place the sample in IPA, whose surface tension is lower than that of water, and then
put it on a very hot plate (270°C) and perform a flash-dry for less than 5 seconds. This high
temperature (but perfectly fine for GaAs) decreases the surface tension and locally provokes
the evaporation of IPA. This process turns out to be efficient in our case and prevents the
suspended structures to collapse on the substrate. An alternative method could be using a
critical point drying machine.

3.3.5 Mesa Fabrication

The last part of the fabrication procedure and the most delicate is the creation of a mesa,
elevating the fully suspended waveguide structure above the substrate and freeing the tips of
the waveguide. This mesa aims at giving room to place the µ-lensed fibers in the vicinity of
the fully suspended waveguide, (see figure 3.35 and figure 3.37 (b), (c)): we need the depth
of the mesa to be close to the µ-lensed fibers diameter, i.e. around 100 µm. To achieve
that we use this time optical lithography coupled to a wet chemical etching. For such deep
etching, using a physical method like ICP is less appropriate since the time of etching would
be extremely long.

3.3.5.1 Photosensitive mask for the mesa

We first deposit an optical resist on the sample. For this photosensitive mask, we use
a positive (non-exposed parts remain after the development) UV-photoresist, the S-1818.
This resist has the advantage to be transparent for the visible spectrum, which turns out to
be crucial to control the advancement of the mesa etch. We apply a spin coating procedure
close to the prior one (Ramp 5, Speed 5000 rpm, Time 30s) but we double the resist layer,
i.e. we repeat twice the operation. The resist is baked at 110°C for 1 minute after each
spin-coating process. In the end, the thickness of the resist layer is around 3.6 µm, a thick-
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Figure 3.35 – Sketch of the sample with mesa, with the µ-lensed fibers positioned it the
vicinity of the structures. The scale is not respected

ness that is large enough to protect the structures. Again surface tension of S-1818 provokes
accumulation of the resist on the chip edges, however, the width of the chip is now divided
by five, which makes the problem more severe. To prevent it, we place dummy pieces of
wafer around the chip to virtually increase its surface and reduce resist accumulation at the
edges.

We then expose the resist with UV (� = 350 � 450 nm, the resist is optimized for the
UV-G line, � = 436 nm). The employed mask is a glass plate with a thin metal layer (the
metal absorbs the UV). The mask design is a 2 mm wide rectangle. We align this rectangle
with the marker structures (Figure 3.30) of the sample thanks to a MJB4 aligner. The
markers are located at 80 µm distance from the waveguide tips on both sides: the etching
process being more or less isotropic, with this distance it will reach the required depth. We
expose the resist for 40 seconds and repeat the operation on the other side of the sample: we
obtain a resist strip with a width around 200 µm. After the exposure, we develop the resist
in an alkaline solution (MF319) and rinse the sample in distilled water. Generally, another
cycle of exposure and development is required to get proper results. The choice of the resist
strip width is important: a too-large strip might collapse during the etching process.

Despite its lower resolution, photo-lithography is convenient for the mesa since the time
of exposure is short and a very large zone can be exposed at the same time. For such a deep
etching process (⇠ 100 µm) the thickness of the sample is greatly reduced, resulting in an
overall fragility that makes the sample difficult to handle. We protect the back surface of
the sample with some resist to help. It is impossible to use standard spin-coating techniques
for this task since it would damage the structures: with the help of a cotton q-tip, we gently
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deposit a thin layer of resist on the back of the sample.

3.3.5.2 Mesa wet etching

Magnetic stirrer Alternating orthogonal flow 

Top view

Side view

Sample

Etching 

solution

(a) (b)

(c)

Figure 3.36 – Schematic of the sample steering during the mesa etching. (a) Side view (b)
Top view (c) Flow around the sample

For the mesa we would prefer vertical walls (as represented in Figure 3.35): we need
the lateral etch speed to be slightly lower than the vertical one. GaAs wet etching consists
in the formation of an oxide at the surface, followed by the dissolution of these oxidized
products by a base or an acid [234]. Hence the key ingredients to any wet etchant are an
oxidizer (Ox), a strong acid (for example) (Ac) and a diluent (D), to help the transport of
the reactants and control the different etch rates [235]. We have at our disposal two etching
solutions that have proved to efficiently generate nice mesa structures:

• BCK: solution made with an isovolumic mixing of hydrobromic acid (HBr, Ac), acetic
acid (CH3COOH, D) and potassium dichromate (K2Cr2O7, Ox) aqueous solutions
[236].

• H3PO4/H2O2 : solution made with an isovolumic mixing of phosporic acid (H3PO4,
Ac), hydrogen peroxide (H2O2, Ox) and water (H2O, D) [237,238]

Each option has strengths and drawbacks. BCK possesses a vertical speed that is higher
than the lateral: it produces smooth walls and is not dependent on the crystallographic
orientation. However, the solution is highly toxic (it requires extra equipment to handle it)
and it is turbid with a dark brown/black color that forbids seeing the sample through. On
the other hand, H3PO4/H2O2 is colorless and transparent, also less toxic, but the choice of
the mask orientation with respect to the crystal is paramount: one of the orientations leads
to a lateral speed higher than the vertical, which is a no-go for our purpose. In short, if we
know the orientation of the mask with respect to the crystal we can choose H3PO4/H2O2,
otherwise, we should use BCK. Other compositions are possible for the two solutions, and
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different etch speeds and mesa shapes can be expected.

Mesa 

edges

(a)

4 μm

(b)

2 μm

2 μm100 μm

(c) (d)

Figure 3.37 – (a) Optical microscope image of a sample after 18 minutes of etching in
H3PO4/H2O2 : the mesa edges can be seen through the resist mask and the etching is
symmetric and regular ; disk radius 2 µm, Magnification = 500. (b) SEM micrograph
after the mesa process and removing the resist : the tips of the waveguides are free and
the mesa walls are symmetric (left/right), disk radius : 1 µm, Magnification ⇠ 1K. (c)
SEM micrograph after the mesa process, exhibiting mesa walls (colored in light-red) that
are not very steep but do not hinder the fibers approach, Magnification ⇠ 130 (d) SEM
micrograph, the mesa was asymmetric here resulting in waveguide tips stuck on the substrate
Magnification ⇠ 5K

After having chosen the right option, we place the sample at room temperature in a
beaker containing the etching solution (see figure 3.36 (a)). The sample is held by acid
proof Teflon tweezer, itself firmly hold by a mount. As for HF etching, the steering condi-
tions are very important: we use here a magnetic stirrer in the etching solution to control
the flow of etchant impinging the sample. The most efficient way to etch for us is to use
an orthogonal flow [179] (see figure 3.36 (c)): we place the sample close and perpendicular
to the beaker’s edge. To have a symmetric mesa etching we need to alternate in time the
rotation of the magnetic rod (clockwise and counter-clockwise). The tangential speed profile
is not uniform (see figure 3.36 (b)): this will impact the etch speed and result in a symmetric

111



but not equally advanced mesa. To prevent that we rotate the sample at half the etching
duration: this is why it is also very important that the design was centered on the sam-
ple. Images of symmetric (left-right) mesa with disks and suspended waveguides at different
stages of fabrication are shown in figures 3.37 (a), (b), and (c). An asymmetric mesa can
lead to waveguide tips stuck to the substrate, which obviously make the optical coupling
to the disk impossible (see Figure 3.37 (d)). Despite these precautions, the mesa etching is
not highly reproducible: the slightest perturbation in the steering or defects in the S-1818
resist strip, can have severe consequences on the final mesa and its operation for experiments.

1 μm 2 μm

(d)(c)

2 μm

(b)(a)

2 μm

Figure 3.38 – SEM micrographs compilation of different fabricated sample (a) Magnification
⇠ 2.4K. (b) Magnification ⇠ 4.4K (c) Magnification ⇠ 14.8K (d) Magnification ⇠ 1.8K

The average lateral etching speed for the mesa is in the range 4-8 µm/min: etching speed
is always higher for freshly-prepared solutions and decreases in time. The total etching time
is around 20-30 minutes. To reach the desired mesa, we check on several occasions the
amount of etching under an optical microscope (see figure 3.37 (a)): for this, we rinse the
sample in a first beaker of distilled water for 30 seconds and repeat the operation in a second
beaker. When the target dimension is obtained, we remove the resist in an SVC-14 beaker,
place the sample in a water bath (80°C) for 1-2 hours (can be even longer), and proceed to
a flash dry. The sample is now ready to be measured, we keep it in a vacuum box to avoid
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oxidation and contamination. The final state of the sample is presented in SEM pictures
(figure 3.38).

3.3.6 Atomic Layer Deposition and surface passivation

Recently an effort was made in our group regarding the passivation of surface states of
the microresonator [105]. Mid-gapes states at the surface of resonators can absorb photons
of energy below the bandgap and generate optical losses [239]. Atomic Layer Deposition
(ALD) of alumina (Al2O3) increases the performances of GaAs based nano-electronic struc-
tures [240]. The addition of an ALD nanolayer improves the surface quality and the quality
factor of the disk. A quality factor of several million could be fabricated thanks to this tech-
nique [105]. Different ALD oxide materials, both amorphous or poly-crystalline have been
also tested to understand and control surface mechanical dissipation in our resonators [101].

ALD post-treatment also has positive effects on the exciton, since improving the surface
state also has a positive influence on the multiple dissipation mechanisms of the exciton.
We have observed that for an ALD treated sample, the required power of excitation to
obtain the same level of PL-signal than for a bare sample is divided by a factor 6. We also
observed a lowering of the lasing threshold. Regarding the exciton linewidth, we have mixed
conclusions: we have not observed an improvement of exciton linewidth with ALD.
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Chapter 4

Observation of quantum-well exciton
polaritons in whispering gallery
resonators

Summary: This chapter reports the observation of exciton-polariton in our hybrid quantum-
well whispering gallery mode resonators. We start by presenting the polaritonic expecta-
tions in terms of spectra and signal behavior. We then show the different techniques used
to observe polaritons and the models used to fit the associated data. A discussion of the
phenomenon of polariton lasing at high excitation power ends the chapter.
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4.1 Conditions for exciton-photon strong coupling

We review the conditions required to observe strong coupling regime, more precisely in
the case of the WGM-resonators and quantum-wells.

4.1.1 Experimental signature of strong coupling

The most famous signature of strong coupling is the observation of an anti-crossing be-
tween the upper and lower polariton branches. Several experiments of optical reflection,
transmission, or PL can be imagined to witness this phenomenon. Observing two peaks
in an optical spectrum near the resonance, instead of one, is insufficient to claim strong
coupling, since such doublet can have different physical origins. For instance, one could
observe two excitonic modes with slightly different energy because of a different nature (HH
and LH). In the course of this thesis, we observed a doublet in the PL spectra of disks
(see figure 3.25-(c)), which was due to strain relaxation and was disappearing for sufficient
under etching. A solid proof of strong coupling regime relies at best on the anti-crossing
behavior (illustrated in figure 1.4), observed as a function of the cavity-exciton detuning.
This detuning � can be changed in different manners:

• Cavity mode tuning: A suitable design fabrication of the sample can be carried
out where a linear variation of the energy of the cavity mode is implemented. One
can imagine a linear variation of the thickness of the cavity for instance, like in the
pioneering work of Weisbuch [241] or in [76]. One can tune the cavity modes directly
inside the set-up using condensation of gas [242–244]. In our system of WGMs sup-
ported by disks, it is natural to tune the cavity through the disk radius.

• Exciton mode tuning: One can tune the exciton energy with a gradient in the thick-
ness of the QW epitaxial structure, or by wisely playing with the device strain [245,
246]. A coarse way of doing this is also at the epitaxial level, by playing with the
QW alloy composition.

• Cavity and exciton mode tuning: It is possible to tune at the same time both
energies by changing the temperature of the device [247–250]. Of course, this makes
sense if the two energies do not evolve identically with temperature. This can be
done over a limited temperature range, since the exciton tends to disappear above a
certain threshold.

Note that other methods are available to identify the strong coupling regime, such as
time-resolved experiments [251] (direct observation of the Rabi oscillations) or angle-resolved
photo-luminescence experiments [252]. In this work we will focus on the anti-crossing be-
havior: thanks to our original set-up with three configurations (see figure 3.4), we will be
able to perform non-resonant PL studies as well as resonant spectroscopy. And this despite
the highly confined nature of WGMs, which we investigate both through out-of-plane and
in-plane experiments. Before going further we should determine the aspect of the two kinds
of spectrum.
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4.1.2 Spectrum calculation

4.1.2.1 Without exciton inhomogeneous broadening

Let us take back the quantum linear model from eq. (1.27).

Ĥcx = ~!câ
†â+ ~!xd̂

†d̂+
~ΩR

2
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â†d̂+ âd̂†
⌘

(4.1)

Using again the input-output approach (see appendix A.2), we derive the quantum
Langevin equations for the operators â and d̂ :
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where we used the rotating wave approximation
⇣
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to recen-

ter the dynamics of both degrees of freedom around the laser frequency, hence ∆0 = !l�!x.

We now rewrite equations (4.2) for the mean value of the fields (ā,d̄) and look for their
solutions in the steady-state :
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which leads us to
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Using now the input-output relations (eq. 3.2) conditions we obtain the following ex-
pression for the waveguide transmission:
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where the critical coupling regime for photons (ext = κc/2) is assumed. For ΩR = 0 we
recover the expression of the transmission (eq. (3.6)) at the critical coupling regime. Trans-
mission spectra are plotted in figure 4.1 for different values of the cavity-exciton detuning
�. We recognize two lorentzian dips with resonances located at Ẽu/l [253,254] and linewidth
equal to u/l.
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Figure 4.1 – Waveguide optical transmission spectrum for different cavity-exciton detuning
(a) � = �ΩR - (b) � = 0 - (c) � = ΩR. Green (black dashed) curves corresponds to inh = 0
(2) meV

4.1.2.2 With exciton inhomogeneous broadening

If we now account for the effect of the exciton inhomogeneous broadening (introduced in
the previous chapter, section 3.2.2.4), we replace the operator d̂ by a collection of excitonic
operators d̂ω of frequency ! distributed around the central exciton frequency !x, all having
the same linewidth x. Accordingly, the Hamiltonian of the system is transformed into [255]:
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2
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where we have ignored interactions between excitons. The coefficient ↵(!) is proportional
to the contribution of each excitonic mode to the coupling with photon (each exciton is
coupled with a strength ΩR↵(!)/2). We assume a Gaussian distribution with inh as FWHM
like in section 3.2.2.4:

↵(!) =

"

1

inh

r

4 ln(2)

⇡
e

✓

�4 ln(2)
(ω�ωx)2

κ2
inh

◆#1/2

(4.7)

The total oscillator strength of the exciton should remain unchanged therefore we have
R
d!↵2(!) = 1. By following the same approach as above, we derive the quantum Langevin

equations for â and d̂ω:

˙̂a = (j∆� c

2
)â� j

ΩR

2

Z

d!↵(!)d̂ω +
p
ext↵ext +

p
âin

˙̂
dω = (j∆0 � x

2
)d̂ω � j

ΩR

2
â+
p
xd̂in

(4.8)

and rewrite them in the steady-state regime:
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2
ā

(4.9)

By introducing a linear combination of all the excitonic operator d̂ω:

d̂ =

Z

d!↵(!)d̂ω (4.10)

we find a set of equations that is close to the homogeneous case (4.4):

0 = (j∆� c

2
)ā� j

ΩR

2
d̄+
p
ext↵ext

0 = (j∆0 � x

2
)d̄� j

ΩR

2
ā

(4.11)

with ∆0 and x replaced by ∆0 and x defined by:

∆0 =
� Im{�(!l)}

| �(!l) |
2 , x =

Re{�(!l)}

| �(!l) |
2 with �(!0) =

Z

d!
↵2(!)

κx

2
� j(! � !0)

(4.12)

Figure 4.1 compares optical spectra obtained with and without exciton inhomogeneous
broadening. For inh = 0 the splitting between the peaks and their linewidth are fully de-
termined by the homogeneous linewidth of the exciton and the photon. When inh > 0 at
zero-detuning, the splitting, as well as the linewidth, remain almost unchanged. Far from
zero-detuning, the inhomogeneous broadening has a relatively important impact on the spec-
trum: the excitonic resonance is noticeably displaced and broader, while the photonic peak
seems little affected.

The optical absorption A of the system can also be derived using the simple relation
A = 1 � T . It is represented as a map in figure 4.2. It exhibits as well the characteristic
anti-crossing behavior, and the higher the excitonic fraction in the polariton, the larger the
absorption signal. Since absorption is intrinsically linked to the PL, in our experiments
we will often use the PL spectrum to visualize the anti-crossing. Our polaritons share the
properties of WGMs and excitons: their PL will adopt a radiation pattern similar to that
of the WGMs. Extracting the PL signal with such radiation pattern is not an easy task:
understanding this pattern is required to establish the best strategy to collect the PL signal.

4.1.3 WGMs radiation pattern

We study here the radiation pattern (far-field emission) of our disk optical resonator.
For WGMs, it is quite natural to think that this emission is mostly contained in the equa-
torial plane of the disk. It is also natural to think that geometric irregularities may scatter

118



Figure 4.2 – Absorption spectrum as a function of cavity-exciton detuning. ΩR = 5 meV,
inh = 2 meV.

light and provoke partial re-direction of the emission in the vertical direction of the disk.
Nevertheless, for a good sample with a high quality of fabrication (no mask residues on the
top of the disk, smooth vertical ICP-etching...) the number of geometric defects is small
and the emission in the normal direction should be negligible.

To better understand this radiation pattern we follow the approach introduced in [256],
where the authors develop a diffraction scalar theory in cylindrical coordinates that yields
a formula for the far-field intensity distribution:

I(✓) / 1

⇢

�
�
�
�
�

F (k sin ✓)

H
(2)
m (kR cos ✓)

�
�
�
�
�

2

(4.13)

with ⇢ =
p
r2 + z2,k = 2⇡/�, cos ✓ = r/⇢, sin ✓ = z/⇢ and F (k sin ✓) the Fourier

transform of the near field distribution (see figure 4.3 (a)). The width of the Hankel function

term 1/|H
(2)
m (kR cos ✓)|

2
being narrower that the width of |F (k sin ✓)|2, it dominates the

angular distribution of the far field:

I(✓) /
�
�
�
�
�

1

H
(2)
m (kR cos ✓)

�
�
�
�
�

2

(4.14)

The angular distribution is represented in figure 4.3 (b): the maxima are located around
0 and 180°, and their angular width is around 22°. However, in contrast to [256], our disk
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resonators are not located at the edge of the chip and we should take into account the
underlying GaAs substrate. The radiation pattern transforms to:
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H
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(4.15)

where d is the distance between the disk and the GaAs substrate (we neglect the thickness
of the disk) and r(✓) is the reflection coefficient of the substrate given by the Fresnel laws :
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n

�2
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�2
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�2
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q
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�
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n

�2
(4.16)

for the s and p polarization (electric field perpendicular/parallel to the incident plane).
The radiation pattern in these two cases is added in figure 4.3 (b): notice that the maxima
are no longer centered around 0 and 180° but rather at 5°, while their angular distribution is
thinner, around 10°. Reflection on the substrate also creates a secondary maximum located
at 17° for the s-polarization and 14.5° for the p-polarization.

In practise, TE and TM WGMs are a combination of s and p polarizations. Still, we
expect a radiation pattern with narrow angular distribution close to the equatorial plane of
the disk, and with an azimuthal symmetry around the disk axis. The extraction of light in
this configuration is quite complex. In order to collect efficiently the PL signal coming from
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WGMs we understand that a standard (vertical) confocal configuration (figure 3.4 (a)) is
inadequate. In this thesis, we will instead often rely on a near-field approach, employing our
suspended waveguides, which have been engineered and optimized to couple with WGMs.
They will act as dielectric antennae collecting the signal of PL and guiding it to our fibers.
Because the coupling is selective, this collection approach will naturally filter out spurious
light blurring our signals (stray light). At the same time, this will enable us to perform
direct selective resonant laser spectroscopy of the WGM resonators.

4.1.4 Nuances and intricacies

In this section we highlight two features making our observation of polaritons more
complex: first, we have several cavity/exciton modes in our system; second, it is impossible
in practice to observe the upper-polaritons (UPs).

4.1.4.1 Multimode polaritons

So far we only considered the strong coupling between a single exciton and a single
photon. The system can be generalized to more than one exciton or photon mode. This
will generate multimode polaritons [257, 258], whose Hamiltonian Ĥm

cx is derived from the
single-mode one Ĥcx(eq.(1.27)), by summation over the exciton and photon modes :

Ĥm
cx =

NcX

i

~!ciâ
†
i âi +

NxX

j

~!xj d̂
†
j d̂j +

Nc,NxX

i,j

~
Ω

ij
R

2
(â†i d̂j + âid̂

†
j) (4.17)

where Nc and Nx represent respectively the number of cavity and exciton modes. In
most cases, the photon and exciton modes are not all coupled to one another, i.e. Ω

ij
R can

be null and is certainly likely to vary as a function of i and j.

In our case we have a priori an infinity of cavity and excitonic modes, characterized by
the azimuthal and radial numbers m,m0, p, p0, as introduced in chapter 2:

Ĥm
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+1X
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+1X
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R

2
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†
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(4.18)

Obviously only a finite number of WGMs, NWGM, are close enough to the energy of the
exciton to give rise to appreciable hybridization. What about the number of excitonic modes
? The energy of the different excitonic modes is given by relation (2.118), notably indicating
that they are extremely close to one another. Two different exciton modess (m0

1, p
0
1 and

m0
2, p

0
2) only differ by the in-plane envelope function shape of their center of mass. This

means that their energies differ by an amount (xm0
1,p

0
1
� xm0

2,p
0
2
)~2/2MR2. For two adjacent

excitonic modes with (m0
1, p

0
1) = (40, 1) and (m0

2, p
0
2) = (39, 1) this energy difference is about
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1.7 µeV, well below our OSA resolution, and well below the binding energy Eb. Hence, in
practice, in experiments we will only deal with one excitonic mode !m0,p0 ' !x. Moreover
each WGM will couples preferably to the exciton mode giving the best overlap and largest
value for Ωm,m0,p,p0

R , hence respecting the selection rule m0 = m. In the end, the Hamiltonian
will take the following structure 1:

Ĥm
cx =

NWGMM

i=1
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(4.19)

This matrix is block diagonal: we can diagonalize each block via the Hopfield method, in
the end, we obtain 2⇥NWGM eigenenergies with corresponding set of Hopfield coefficients.
The energy spectrum of a four-WGMs cavity is depicted in figure 4.4 (a).

Note that the dimension of the polariton Hilbert space (number of polariton branches)
is open to discussion [258]. Two formalisms are encountered in the literature: one single
Hamiltonian with a dimension equals to the sum of photonic modes and excitonic resonances
(Nx + Nc) ⇥ (Nx + Nc), involving the appearance of mid-polaritons branches [259–261], or
a set of independent Hamiltonians (one for each photon mode) with a dimension equal to
(NcNx+Nc)⇥ (NcNx+Nc) [262,263]. Transitions between these two situations can appear
for different experimental realizations [257]. Here, we clearly have chosen the second option
to describe our system, a Hilbert space consisting in NWGM independent sub-spaces.

4.1.4.2 Anticrossing with the exciton line

The anticrossing between the UPs and LPs for a multimode polariton and single polari-
ton case is illustrated in figure 4.4 (a) and (b), forming the hallmark of strong coupling. In
deeply etched structures, the UP branch is not visible in experiments [73, 76, 264, 265]; and
our work in this thesis indicates that the same is true in our disk. This is in contrast to
historical 2D planar cavities. As a consequence, we had in this thesis to rather analyze the
anti-crossing between the LP and the exciton line, the latter turning out by chance to in
contrast visible. The reason for UPs to be hardly visible on the PL spectra, and difficult to
access by other emission means is until today not perfectly understood. Our interpretation

1. The cavity modes are orthogonal, hence each cavity mode will couple finally to a single excitonic mode;
giving birth to orthogonal polariton sub-spaces. In practice, because we took ωm0,p0 ' ωx, we will no further
differentiate the excitonic modes and consider that we have a single excitonic mode coupled independently
to a set of WGMs
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of the anticrossing with the exciton line

builds on different remarks:

• The bare exciton line remains observable in PL, even in the polariton regime for
WGMs. Some exciton emission does not pass through WGMs and couples to other
electromagnetic modes, enabling collection, (inefficient) in confocal configuration for
example.

• At such small disk diameters, confined electromagnetic modes, like WGMs, are proba-
bly coupled to the free 3D electromagnetic continuum through geometric irregularities
of the disk.

• Polaritons tend to relax towards the lowest energy states available: UPs should in
any case have a weaker PL signal compared to LPs [225,266].

• In order to observe polaritons, we collected signals using the suspended waveguide
located close to the disk. Those waveguides, by construction, also contain the MQW
structure: they can hence absorb photons at high energy and emit photons at the
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energy of the exciton.

These remarks call for further investigations, but they show that we had direct experi-
mental access to the exciton line even in the polariton regime. The anticrossing of LPs with
the exciton line (as represented in figure 4.4 (b)) served us as a mean to investigate the
strong exciton-photon coupling regime.

4.2 Observation of the strong coupling

We start this section by focusing on PL measurements: those are performed at cryogenic
temperatures (3 to 4K) using our pulsed-tube cryostat. The excitation beam is provided by
our continuous-wave Ti:Sapphire laser (energy 1.530 eV), focused with a cryogenic micro-
scope objective onto a ⇠ 2µm radius spot (see chapter 3). The beam waist was measured
using knife-edge techniques in reflection [267]. To increase the collection of polaritons emis-
sion, and prevent the inadequate spatial filtering caused by the radiation pattern of WGMs,
we use the suspended waveguides integrated on-chip in the vicinity of the disk. In this
configuration (see figure 3.4 (b)) the waveguides act like antennae, collecting the emitted
light of the hybrid exciton-photon system. µ-lensed fibers are then located at the tips of the
waveguides to extract the light from the cryostat up to photodetectors.

In order to experimentally prove the polaritonic nature of the different signals observed
in the PL or resonant waveguide transmission signal, the latters need to present the char-
acteristic anti-crossing with the exciton line. To vary the exciton detuning � = Ec � Ex

we chose two strategies: use the temperature to tune simultaneously the cavity and exciton
modes, and tune the cavity energy by slightly varying the radius of the disk.

4.2.1 Exciton and Cavity energy variation in function of temper-
ature

By increasing the temperature at the sample holder inside the cryostat chamber, we
observe a redshift in energy of both the exciton and the WGMs, as shown in 4.5-(a). The
variation of the MQW excitonic energy with temperature is in agreement with theoretical
prediction based on three different models: Varshni (eq. 4.20), Viña (eq. 4.21) and Passler
(eq. 4.22) [200,268,269]:

Ex(T ) = Ex(0)� ↵
T 2

� + T
(4.20)

Ex(T ) = EB � aB



1 +
2

exp(Θb/T )� 1

�

(4.21)

Ex(T ) = Ex(0)�
↵Θ

2

"

p

s

1 +

✓
2T

Θ

◆p

� 1

#

(4.22)
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Those models were originally proposed to compute the energy of the bandgap in semi-
conductor materials, but they also operate for the energy of QW excitons [270]. The model
of Varshni, the oldest one, is purely empirical: Ex(0) is the energy of the exciton at 0 K, and
↵ and � are fitting parameters to be determined. Viña’s model is a semi-empirical model
based on the Bose-Einstein distribution: EB � aB is the energy at 0 K and Θb ⌘ ~!/kB is
an effective phonon energy, expressed on the temperature scale. The last model, Passler’s,
is also a semi-empirical theory: it takes into account the effect of lattice expansion and
electron-phonon interactions on the gap energy. Ex(0) represents the exciton energy at 0
K, ↵ is the high-temperature limit of the forbidden entropy, Θ the effective average phonon
temperature, and p a parameter related to the electron-phonon spectral function. The fitting
results for these three models are grouped in Table 4.1. They all lead to a good agreement
with experimental data, notably Vina’s and Passler’s models. For the rest of the thesis, we
choose to fit the exciton energy variations with the model of Viña, as shown in figure 4.5
(a), since it uses only three fitting parameters instead of four for Passler’s.

Model Parameters

Varshni Ex(0) [eV] ↵ [⇥10�4 eV/K] �[K] ... r2

1.4732± 4.41⇥ 10�6 11.999± 2.2 998.9± 195.5 ... 0.981
Viña EB [eV] aB [eV] Θb [K] ... r2

1.4832± 3.51⇥ 10�5 0.01033± 3.57⇥ 10�5 109.29± 0.165 ... 0.998

Passler Ex(0) [eV] ↵ [⇥10�4 eV/K] Θ [K] p r2

1.4729± 1.13⇥ 10�6 1.8354± 0.012 85.58± 0.54 3.442± 0.15 0.999

Table 4.1 – Fitting parameters for the Varshni, Viña and Passler models, r2 represents the
correlation coefficient, the values are indicated with 95% confidence intervals

The redshift of the optical WGMs when temperature increases is mostly due to the
refractive index variation (thermal expansion of the disk is negligible in comparison). Mod-
eling these thermo-optic variations at cryogenic temperature is a tricky task: the effect of
temperature on the semiconductors refractive index and in particular of GaAs was the sub-
ject of many publications [271–275]. In these works, the refractive index is given in form of
a Sellmeier equation with a varying number of poles. The parameters involved in such an
equation are usually measured far from our cryogenic temperatures (T' 3 � 4 K). To our
knowledge, no model is available to describe the variation of GaAs refractive index in our
range of temperatures. Additionally, since we study WGMs that are quite close in energy
we decided to disregard the impact of wavelength and simply model the evolution of the
refractive index as a Taylor expansion function of the temperature:

n = n0 + A1T + A2T
2 + A3T

3 + ... (4.23)

where n0 represents the value of the refractive index at 0 K and A1,A2,A3 are fitting
parameters to determine. We then choose an approximate relation for the WGMs resonant
wavelength of the disk cavity :
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Figure 4.5 – (a) Fitting models for the energy shift of the exciton (Ex - green) and the
WGMs (Ec - red) energies according to the temperature. Dots: Experimental data - Green
Solid line: Viña’s Model (r2 ' 0.999) - Red Solid line: custom model (r2 ' 0.992). Inset:
Confocal µPL spectra taken at different temperature inside the cryostat, spectra shifted for
clarity. (b) WGMs transmission spectra taken by varying the temperature in cryostat, the
spectra had been shifted for clarity, the black dotted lines are guides to the eye.

2⇡Rneff ' m� (4.24)

where m is the azimuthal number of the considered WGM, R is an effective radius of
the disk, and neff the effective index of the disk slab layer. Expressing this last condition
in terms of energy leads to a custom expression for the temperature variation of a WGM
energy :

EWGM
c =

mhc

2⇡R

1

n0
eff + A1T + A2T 2 + A3T 3 + ...

(4.25)

Stopping the development at the cubic power leads to a good agreement with our exper-
imental data as shown in figure 4.5 (a). We used this model to fit the variations of more
than 20 distinct WGMs, and the values extracted for fitting parameters A1,A2, and A3 were
always agreeing with relative variations under 5 %. The WGMs used to test this model
had to be quite far from any excitonic resonance in our experiments in order to avoid the
influence of the MQW on the energy variations. In figure 4.5 (b) we present the waveguide
transmission spectra showing resonances of different WGMs, as function of temperature.
The modes are spectrally separated by 20 to 30 meV from the MQW exciton, and therefore
behave as pure cavity modes (polaritonic effects can be neglected).
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4.2.2 Cavity energy variation as a function of the disk radius

The second tuning parameter employed is the dimension of the disk, upon which WGMs
are extremely sensitive. Increasing the radius R of the cavity provokes a decrease in WGMs
eigenenergy. To quantify this variation we use two methods. The first one is to model the
evolution of eigenenergies directly by FEM, as presented in figure 4.6(a). With the COMSOL
software, we predict an almost perfect linear variation of the energy with the radius with the
same slope for three investigated WGMs, equal to �0.62 meV per nm. Similar results are
obtained using the effective index method presented in section 2.1.3. The second method
is based on PL measurements using a pump laser diode (� = 810 nm) at high power to
reach the lasing threshold. Using a high excitation power and a sample that only contained
one QW, guarantees that we are in the exciton-photon weak coupling regime. By precisely
measuring the wavelength of the lasing signal, we deduce the spectral position of the cavity
mode, as shown in figure 4.6(b) and (c). Competition is present between several WGMs: by
tracking the lasing spectrum as a function of each disk radius, we can plot the evolution of
the energy for each WGM. From these results, we also infer a linear variation of the WGMs
eigenenergies with the radius. The slope, however, varies from mode to mode and is smaller
between -0.2 and -0.4 meV per nm.
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Figure 4.6 – (a) Variation of different WGMs energies as a function of the disk radius
calculated with COMSOL, for a disk thickness of 200 nm. Solid lines are linear fits : Green
TE, m = 41, p = 1, r2 = 1 - Red TE, m = 32, p = 3, r2 = 1 - Blue TE, m = 36, p = 2,
r2 = 0.997. Black markers are FEM computed. (b) Cavity modes energies deduced from
(c) as a function of the disk radius. The colored solid lines are linear fits (r2 ' 0.9) and the
colored open symbols the experimental values. (c) PL lasing map as a function of microdisk
radius. Laser excitation power > 2 mW

From a practical point of view, it is hard to control the size of the disk at the nm scale,
which is below e-beam lithography and nano-fabrication resolution (which explains the fluc-
tuations observed in figure 4.6 (b)). The sample contains a distribution of different disks
designed to have a radius varying by step of 1 nm: in this way even if the radius variation
between two neighboring disks is not perfectly respected, the evolution of WGMs eigenener-
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gies, at the scale of the whole sample, will still follow in average the expected evolution. This
systematic radius variation on the sample, allows us to work with the same set of WGMs,
but with slightly varying initial detuning �0 = �(T = 4K).

These imperfections in the fabrication process might mitigate the 1 nm variation per
disk. This can explain the different values obtained for the slope in figure 4.6. The fact
that the WGMs observed in the PL spectra are probably different from the one simulated
explain also this discrepancy.

4.2.3 Lower Polaritons PL spectrum variations and Hopfield model
fit
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Figure 4.7 – PL signal as a function of temperature for 3 different disks of slightly decreasing
radius ( (a) R = 1.992 µm (b) R = 1.989 µm, (c) R = 1.984 µm). The top panels represent
the spectrum of each disk at 4 K, exhibiting the exciton signal (labeled as X), as well as
several lower-polariton lines (labeled with numbers). In the 2D maps the temperature starts
at 4K (top), and is then incremented in steps of 2K.

Figure 4.7 presents PL maps measured for three disks of different diameters, acquired
by varying the temperature inside the cryostat [276]. The PL is excited confocally by a
non-resonant laser at � = 810 nm, and the emission signal is collected through the sus-
pended waveguides in the near-field of the disk. The spectrum located at the top of each
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map is the initial spectrum taken at 4 K. The maps exhibit several peak features: the
exciton line (labeled as X), and the emission lines of six different LP branches labeled in
order of increasing detuning to the exciton (decreasing excitonic fraction X2). Each LP
branch corresponds to a different WGM. When the radius of the disk decreases, the en-
ergy of the WGMs increases and the detuning �0 between WGMs and exciton increases.
Consequently, a gradual blueshift of the different LPs lines is observed. On the last map,
the LP1 branch seems to vanish: in fact for increasing detuning, LPs are adopting a more
pronounced exciton character, hence their PL signal will merge with the signal of the exciton.

To ensure that the different signals we observe are polaritons, we used the Hopfield model
to reproduce our observations on the different LP branches, as a function of disk radius and
function of temperature. We model the evolution of the eigenenergies of UPs and LPs with
temperatures according to:

Eu/l(T,m, p) =
1

2

✓

Ex(T ) + Ec(T,m, p)± ~

q

�2(T,m, p) + Ω2
R(m, p)

◆

(4.26)

where the ± sign stands respectively for UPs/LPs, and Ω2
R represents the Rabi splitting

between the exciton and WGM (m, p). The energy variation of the cavity (Ec) and the
exciton (Ex) with temperature are given by the above mentioned models (figure 4.5 (a)). In
eq. (4.26), we efficiently neglect the effect of the radial number p in the temperature varia-
tion. Without assuming a precise model for ΩR at first level (it can actually be calculated
as we show in section 2.5), we are at first sight let with a fitting model only containing two
independent fitting parameters, the Rabi splitting ΩR and the azimuthal number m, for each
polariton branch. By slightly varying the radius of the disk, we vary the initial detuning
�0 = �(4K). Since the value of the Rabi splitting is almost identical for disks of similar
radii, like the three disks considered here, we can fit simultaneously the data coming from
the three disks, and taking Ω2

R(m) as a common parameter, letting the azimuthal number
m as a free parameter for each individual LP branch.

Radius R �0 of LP2 [meV] �0 of LP3 [meV] �0 of LP5 [meV]
1.992 µm 1.6897 - 0.9435 - 1.2041
1.989 µm 3.3248 0.2741 0.0390
1.984 µm 5.3273 2.0049 1.7335

Table 4.2 – Evolution of the exciton-cavity initial detuning as function of radius, for different
LP modes 2,3 and 5.

Figure 4.8 presents the evolution of the LPs energy with temperature for the three dif-
ferent disks of different radius, for three different modes (LP2, LP3 and LP5) [276]. The
data are fitted by the Hopfield model taking into account five different disks (only three are
represented here for convenience). We see the influence of cavity radius on the detuning:
decreasing the radius increases the initial detuning �0 at 4 K (see Table 4.2). According to
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Figure 4.8 – (a) Exciton/LP3 PL peak energy as function of temperature. Brown circles:
Measured LP2 emission energy; Solid brown line: LP fit derived from the Hopfield model;
Dashed brown lines: UP line derived from the Hopfield model; Open green circles: Measured
exciton emission energy; Dotted green line: Exciton fit model; Dotted red line: WGM fit
model - R = 1.992 µm. (b)-(c)-(d) LP2, 3 and 5 PL peak position as function of temperature
for 3 disks of decreasing radius (Brown R = 1.992 µm - Orange R = 1.989 µm - Yellow
R = 1.984 µm). Solid Lines: LP; Dashed Lines: UP branches predicted by Hopfield model;
Plain circles: Experimental data

the sign of �0, an anticrossing may, or may not, be observed as illustrated in 4.9.

Potential improvement of the employed Hopfield fitting model is possible by taking into
account the dissipation of the system to write the complex eigenenergies (eq. (1.35)):

Ẽu/l(T,m, p) =
1

2
[(Ex(T ) + Ec(T,m, p))� j~ (c(T,m, p) + x(T ))]

±
~

2

q

[�(T,m, p)� j(c(T,m, p)� x(T )]2 + Ω2
R(m, p)

� (4.27)

Such a dissipative model requires the knowledge of both the exciton and cavity linewidth,
their variations with temperature. If the information on the linewidth of the exciton is easily
accessible, it is far more complicated for the cavity modes. In our experimental configuration,
the linewidth we measure on the WGM signals certainly include information about the
intrinsic losses of the WGM c but, also information on the extrinsic losses i.e. the coupling
of the WGM to the waveguide. c is different for each WGM, a rough estimation being here
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Figure 4.9 – Energy dispersion of the exciton (X) in our system, of a WGM of our disk,
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�2 meV) (b) Positive initial detuning (�0 ' 2 meV). UP and LP lines are color-coded
according to the excitonic Hopfield coefficient. Green : exciton (X) - Red : WGM. ΩR =5
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comprised between 0.2 and 0.3 meV. Taking this into account leads to an underestimation
of the Rabi splitting by 6% for c =0.3 meV, ̃x =2 meV and ΩR = 5 meV.

LP mode n°2 n°3 n°5
ΩR [meV] 6.64 5.79 9.14

Table 4.3 – Rabi Splitting energy extracted from the fitting of the PL signal

Comparison of inferred Rabi-splitting with theoretical expectation The Rabi
splitting values extracted from the Hopfield model of our data are listed in table 4.3. These
values can be compared to those obtained by the theoretical model introduced in section
2.5. For the 5-QW structure and for the WGMs employed here, this model leads to values
of ~ΩR = 2 · ~gcx between 6.4 meV and 10.2 meV. The value found experimentally are
lower than expected (typically 10-20%). Several explanations are possible to account for
this difference. Imperfections in the fabrication/design of the wafer, ultimately responsible
for a decrease of the QWs oscillator strength, reduce the Rabi-splitting energy. The ma-
terial parameters (effective masses, Kane energy...) used in the calculation of Rabi energy
depends on the epitaxial growth, different estimations are found in the literature leading to
relatively large value interval for the Rabi energy. Also, as mentioned above disregarding
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the dissipation lead to an underestimation of ΩR from our experimental data.

We present in figure 4.10 complementary PL maps measured for seven disks of different
diameters, acquired by varying the temperature inside the cryostat. These measurements
can be split into two sets: first set (figure 4.10 (a) to (e)) is acquired with the same experi-
mental conditions as the ones used to obtain figure 4.7, the radii of the disks are different;
for the second set (figure 4.10 (f) to (i)), a higher excitation is used (7 times more powerful
with respect the power used before), allowing to keep track of the PL signal at a higher tem-
perature. Nevertheless, using a power this high brings us close to lasing-related phenomena,
a regime where exciton-exciton or polariton-polariton interactions can occur, and the energy
dispersion of the polariton branches is likely to change (see section 4.3).

4.2.4 Waveguide transmission spectrum for direct resonant spec-
troscopy of polaritons

Figure 4.11 (a) shows the LPs energy measured on a disk using two different configura-
tions: Non-resonant confocal excitation PL and collection via the waveguides, and resonant
spectroscopy through the waveguide (illustrated respectively in figure 3.4 (b) and (c)). One
waveguide optical transmission spectrum for T=4 K, obtained using resonant spectroscopy
is illustrated in figure 4.11 (b). Small differences appear between the two sets of results,
explained by the fact that the energies are not measured by the same apparatus (not cali-
brated identically). Apart from this effect, the temperature variations seem to be consistent
in both configurations, as well as the energy separation between the LP branches. Both con-
figurations have benefits and drawbacks. In the resonant laser spectroscopy configuration,
one advantage is to collect a larger number of LPs signals: indeed LPs that are strongly neg-
atively detuned behave almost as pure photonic cavity modes and are consequently hardly
visible in PL spectrum. In resonant laser spectroscopy through the waveguide we resolve
them, explaining why in figure 4.11 some signals are only present using this configuration.
However, the MQW is also present in the plane of the waveguide, resulting in an absorption
of the light of the tunable laser, and mitigating the resolution of the exciton signal. More-
over, because of this absorption, a non-negligible quantity of the injected light is lost, and it
is hard to estimate the fraction of the power that makes its way to the disk WGMs. Finally,
we choose the second experimental configuration (figure 3.4) most of the time since it leads
to a cleaner signal.

Let us summarize: in figure 4.8 (a) we did observe the LP-exciton anti-crossing for
LP3, and fitted it with Hopfield model. We tested this behavior as function of detuning
in figure 4.8 (b). We extended this observation to several other LP branches and showed
two of them in figure 4.8 (c) and (d). The measured Rabi energy was consistent with our
independent theoretical model of section 2.5. Similar observations were made in PL and
resonant spectroscopy. This all forms a solid level of proof that strong coupling polariton
particles are indeed present in our WGM resonators.
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Figure 4.10 – PL signal as a function of temperature for 7 different disks of varying radius
( (a)/(g) R = 1.991 µm, (b) R = 1.990 µm, (c) R = 1.988 µm, (d) R = 1.986 µm, (e)/(h)
R = 1.985 µm, (f) R = 1.992 µm, (i) R = 1.984 µm . The top panels represent the spectrum
of each disk at 4 K, exhibiting the exciton signal (labeled as X), as well as several lower-
polariton lines (labeled with numbers). In the 2D maps (a) to (e) the temperature starts at
4K, and is then incremented in steps of 2K. For the maps (f) to (i) the temperature starts
at 4K, and is then incremented in steps of 3K.
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Figure 4.11 – (a) Energy variation of eight LP branches as function of temperature, for a
disk with R = 1.984 µm and the 5-QW structure. Circles : Measured through PL emission
using the second experimental configuration (section 3.1). Triangles : Measured resonant
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(b) Waveguide optical transmission spectrum at 4 K for the same disk. The triangle markers
highlight the exciton and LPs, the colors used correspond to the ones in (a).

4.3 Polariton lasing

Here we address another particular feature of the polaritonic regime, the phenomenon
of polariton lasing. When exciting non resonantly the semiconductor microcavity at higher
energy, polaritons can exhibit peculiar kinetics. Generated electron-holes lose their coher-
ence and start to populate the exciton reservoir. Polaritons will finally populate the lowest
energy states by overcoming the bottleneck effect (a moment where phonon scattering is
no more efficient, but other mechanisms such as polariton/free-carrier interaction or po-
lariton/polariton interaction take over. [277–281]): the density of polaritons in the lowest
states therefore increases. If this density remains below the saturation density nsat ' a�2

B,2D,
polaritons behave almost as bosons. For a high enough pump power, the population in the
lowest states can be macroscopic and polaritons start to condensate: this is the regime of
polariton lasing, also dubbed non-equilibrium polariton condensate [282,283].

A polariton condensate can emit coherent light very much like a laser. The corresponding
threshold is however not given by a population inversion condition, and can be significantly
lower than the one required for conventional photon lasing. In semiconductors, evidence of
polariton lasing is accompanied by the appearance of a second threshold, at higher excita-
tion power, corresponding to the occurrence of conventional photon lasing [76, 284]. This
transition happens for high density, where excitons are dissociated into an electron-hole
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plasma (bleaching). The mechanisms responsible for such dissociation are multiple [285]:
Phase-space filling : electron and hole states out of which excitons are created are all filled,
excitons cannot be created; Screening : degradation of the electron-hole interaction due to
the presence of other carriers; Exchange interaction: carriers with the same spin avoid each
other.

4.3.1 Bose-Einstein condensation of polaritons

The pioneering works of Einstein [286] and Bose [287] on a dilute gas of bosons has
put forward the existence of a critical temperature below which bosonic stimulation and
condensation occurs (quantum phase transition) [288] :

Tc =
⇣ n

2.612L3

⌘2/32⇡~2

mkB
(4.28)

in a three-dimensional system, with L the typical dimension of the system. This temper-
ature is inversely proportional to the mass m of the bosonic particles. Famous experimental
demonstration of this Bose-Einstein Condensate (BEC) was realized on alkali atoms [289]
at extremely low temperature ' 200 nK. The condensation temperature can be increased
by using bosons of lower mass. Due to their partial photonic nature, polaritons inherit a
really low effective mass, 109 times smaller than the rubidium atoms [290], making them
suitable candidates for the observation of BEC at regular cryogenic temperature or even
room temperature.

The historical BEC models consist in noninteracting bosons albeit the Boson gas must
adopt a well define temperature T. In true experiments bosons do interact: in the case of
polaritons, the interaction comes from exciton-exciton interaction (charge interaction), since
photons themselves do not interact with one another. The exciton/photon Hamiltonian
taking into account excitonic interactions is given by [72,291]:

Ĥ int
cx + = ~!xd̂

†d̂+ ~!câ
†â+ ~gcx(â

†d̂+ âd̂†)

+
~gexh
2

d̂†d̂†d̂d̂� gpae(âd̂
†d̂†d̂+ â†d̂†d̂d̂)

(4.29)

The first term of the second line corresponds to the Coulomb exchange interaction be-
tween excitons, while the second term is called photon-assisted exchange scattering, or
phase-space filling. It represents the annihilation/creation of two excitons accompanied
by the creation/annihilation of a pair of exciton and photon: this last term reduces the
Rabi splitting, and leads to a blue-shift of the LP and a red-shift of the UP [292]. From
that Hamiltonian one can derive the Heisenberg equations of motion in the exciton/photon
basis, and reach the Gross-Pitaevskii set of equations similar to those employed in atomic
condensates [288, 290]. Despite all these similarities, polariton condensation differs from
atomic BEC notably. Indeed, polariton lifetimes are usually very short, continuous pump-
ing is required to maintain polariton condensates steadily alive for a time longer than decay
times of the system.
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4.3.2 Experimental observation

Figure 4.12 groups the emission energy and intensity of all LP modes of a disk, as a func-
tion of the pump power P , measured in the confocal excitation path just before impinging
on the disk. Different regimes can be observed: For P < 100 µW , as the power increases
we observe a slight increase in the PL signal, with relatively constant emission energies.
For 100 µW < P < 800 µW (gray shaded area in figure 4.12), we observe sharp nonlinear
increase of the different PL signals, together with a pronounced blueshift on the energies.
This behavior is consistent with a signature of polariton lasing, where the blueshift is the
consequence of the polariton-polariton interactions. In this regime, we observe a rise in the
signal intensity of LP modes when decreasing energy: this effect was were not visible in the
prior spectra at lower excitation power. This is consistent with the idea that as polaritons
become more numerous, they will tend to populate lower energy states, involving some scat-
tering mechanisms. This regime seems only prevail for a certain range of excitation power,
and for P > 800 µW , the signal intensity starts to decrease and the energies come back to
their initial value. It is our understanding that it is due to an overpumping of the sample
(experiments are performed under continuous pumping), which would deteriorate the polari-
tons through heating or generation of an electron-hole plasma. One way out would then be
to chop our pump signal: it may mitigate heating and stabilize the polariton lasing regime
at higher power. In our present set of experiments, we observed an increase of emitted signal
by one order of magnitude before losing the regime.

How to be sure that what we observe is actually polariton lasing? It has been an open
question for many years in the polariton community [293–295]. As a matter of fact, an
emission blueshift is not enough to prove the persistence of the strong coupling regime, at
variance with the observation of a second threshold at higher excitation density. The fact
that we do not observe this second threshold is questioning. In a MQW case bleaching
(transition to a plasma) is expected to appear at higher power compared to a single QW,
since the exciton density is distributed over several QWs, still we should be able to observe it.

In order to gain understanding, we also performed power-dependent experiments on an-
other type of sample with embedding a single QW with a higher fraction of indium (13%).
We do believe that this sample always operates in the weak coupling regime: we do not ob-
serve emission branches at low excitation power and energy lower than the exciton, and we
observe a lasing behavior at high excitation power, which is understood as a regular photonic
lasing. The results of this experiment, performed at varying temperatures are presented in
figure 4.13. The observed observed is typical of a regular photon laser: above a certain
power threshold, the intensity rises sharply (figure 4.13 (a)) and the linewidth decreases
(figure 4.13 (c)). We notice that the power lasing threshold, which slightly increases when
we increase the temperature, is almost an order of magnitude higher than in the strong-
coupling case with the 5-QW structure, consistent with the fact that polariton lasing occurs
at lower excitation. However, we still observe a blueshift of the emission (figure 4.13 (b)),
indicating that exciton-exciton interactions still take place. Note that we are not losing this
regime even at higher power, up to 104 µW..
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Figure 4.12 – (a) Map of emission spectra of a GaAs disk embedding a 5-QW heterostructure
(same as before) as function of pump power. (b) Emission signal intensity (log-log scale)
and (c) emission energy of different LP modes as function of the excitation power, extracted
from the map (a) and indicated by the white arrows. The colors brown to yellow indicate
LP modes with an increasing energy, i.e. with an increasing excitonic fraction

This series of experiments does enable us able to be perfectly conclusive. On one hand,
we observe a lower lasing threshold and a stronger blueshift in the strong coupling sample
embedding 5 QWs, but we do not observe a second threshold. On the other hand, a single
QW sample showing photon lasing also exhibits a blueshift in the emission. To advance
in understanding and confidence on polariton lasing, we should estimate and model the
polariton density in our device and compare it to the saturation density. A conclusion can
be drawn from this information. The discussion of the different lasing regimes is illustrated
in figure (d). A further study on the lasing regime at different cavity-exciton detuning will
also bring us more information.
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Figure 4.13 – Lasing of a disk containing a single QW. Emission signal intensity (a), energy
(b) and linewidth as function of the excitation power and temperature inside the cryostat.
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Chapter 5

Optomechanical measurements in a
hybrid quantum-well disk resonator

Summary : We present in this chapter the first optomechanical experiments we carried
out in hybrid quantum-well WGM resonators. We notably report experiments involving the
self-oscillation regime and highlight peculiar visible features that were hardly visible in a
mere optomechanical resonator. We present the first steps towards perspective experiments
to be carried out in the exciton band and in a two-color telecom/exciton band configuration.

5.1 Optomechanical self-oscillation regime . . . . . . . . . . . . . . . . . . . . . 139
5.1.1 Experimental observation . . . . . . . . . . . . . . . . . . . . . . . . 140
5.1.2 Absorption and thermal effects . . . . . . . . . . . . . . . . . . . . . 142

5.1.2.1 Evolution of the temperature inside the microdisk . . . . . . 142
5.1.2.2 Changes in optical cavity resonance . . . . . . . . . . . . . . 144
5.1.2.3 Photothermal forces and coupled optomechanical equations

with thermal effects . . . . . . . . . . . . . . . . . . . . . . 145
5.1.3 Miscellaneous observations . . . . . . . . . . . . . . . . . . . . . . . . 147

5.1.3.1 TPA induced photo-luminescence . . . . . . . . . . . . . . . 147
5.1.3.2 Self-pulsing regime of the optical cavity . . . . . . . . . . . 149
5.1.3.3 Anti-crossing in “mechanical” radio-frequency spectrum . . 151

5.2 Perspectives for future experiments . . . . . . . . . . . . . . . . . . . . . . . 152
5.2.1 Optomechanical experiments in the exciton band . . . . . . . . . . . 152
5.2.2 Two-color experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 154
5.2.3 Phonoritons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.1 Optomechanical self-oscillation regime

Now that we demonstrated that our resonator hosts polaritons resonances (chapter 4),
we need to confirm that the presence of the QW hetero-structure does not perturb the op-
tomechanical properties of resonators. In our case, this can be investigated by running usual
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optomechanical experiments in the telecom band, where we usually operate bare GaAs res-
onators. One of the most common optomechanical experiments is that of the self-oscillation
regime [296–298]. This regime was introduced in chapter 1: under blue detuned conditions,
mechanical fluctuations are optomechanically amplified and grow exponentially if the ampli-
fication overcomes the natural mechanical damping. Non-linear effects provoke saturation of
this exponential amplification, and the mechanical resonator stabilizes on a trajectory where
coherent harmonic oscillations are sustained by optical forces. This situation resembles that
of laser (or more precisely that of an Optical Parametric Oscillator), hence the name of
mechanical lasing or phonon lasing sometimes encountered in the literature. This regime
has potential applications notably in sensing [299]. In this section, we focus on experiments
run at telecom wavelength on hybrid QW-disks and highlight similarities and differences in
the self-oscillating regime, compared to the case of a bare GaAs optomechanical disk.

5.1.1 Experimental observation
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Figure 5.1 – Evolution of mechanical spectra as a function of the laser wavelength, measured
at cryogenic temperature (T⇠ 3.5 K). (a) Two dimensional map (b) 3D complementary view.
RBW = 1 kHz, !m = 2⇡ · 702.6 MHz, Qm ' 103, R = 1.998µm.

Figure 5.1 presents the evolution of measured mechanical spectra as a function of the
laser wavelength, as the latter varies on the blue flank of a WGM resonance. For sufficiently
high optical power, the optical resonance adopts a characteristic triangular shape as a con-
sequence of the thermo-optic effect (see section 3.2.1.2 for a discussion). In this regime,
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the in-cavity power is approximatively linear with wavelength. In figure 5.1, we see that
the mechanical signal is red-shifted and amplified when the wavelength is increased. The
considered mechanical mode is the first RBM, calculated analytically and numerically on
section 2.2, it possesses an eigenfrequency around 700 MHz.

Let us describe the data of figure 5.1 more progressively. We start the experiment by
setting the laser wavelength on the blue side of the optical resonance, out of the resonance
(� = 1542.5 nm). By gradually increasing the wavelength, we progressively enter the optical
resonance: the circulating optical power in the WGM increases, increasing the amplitude
of optically induced forces acting on the disk motion. The optomechanical dynamical back-
action mechanism described in section 1.2.3 provokes a parametric amplification of the disk
movement (Γ0

m decreases since Γom < 0, see figure 1.3 (a)). In consequence, the linewidth of
the mechanical signal decreases as seen in figure 5.1 from � = 1542.5 to 1543.7 nm.At some
point, when the circulating power inside the disk reaches a certain threshold Pth proportional
to Q�1

m Q�3
opt [296], the amplification of the motion compensates the mechanical damping (at

this point Γ0
m = 0). This happens close to � = 1543.8 nm. The movement of the resonator

is self-sustained and the amplitude motion is high, orders of magnitude higher than the
Brownian motion. At the same time, the mechanical linewidth strongly narrows, which is a
marker of the oscillator threshold.

In parallel with this evolution towards self-oscillation, the mechanical frequency is pro-
gressively reduced with wavelength. This is in contrast with the optical spring effect in-
troduced in section 1.2.3, and will be explained below as a consequence of thermal effects
associated with the increase of circulating power.

Figure 5.2 presents radio-frequency spectra of the photo-detected light similar to 5.1, but
taken at different central frequency and different frequency span. On a large span (several
GHz) like in figure 5.2 (d), several peaks appear. They correspond to the fundamental ('
700 MHz) and harmonics of the periodic signal coming from the mechanical RBM1. At large
amplitude of motion reached in self-oscillation, the linearized picture introduced in eq. (1.20)
is no longer valid: multiple harmonics do appear in the output signal, even if the mechanical
motion is predominantly sinusoidal. These harmonics also follow a linear variation with the
laser wavelength, as shown in figure 5.2 (a), (b) and (c) but with different slopes, the ra-
tios of these slopes correspond to an expected factor 1, 2, and 3 for the harmonics 1, 2 and 3.

When reducing the span and decreasing the resolution bandwidth (figure 5.2 (e)), sym-
metric lateral sidebands appear on the spectrum, located at ± 7 MHz around the main peak
at 702 MHz. These features were observed in the past in our group in GaAs disks, and in a
few other systems [297,300].
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Figure 5.2 – Evolution of the “mechanical” radio-frequency spectrum of the output light as
a function of laser wavelength. Two dimensional map (a) Fundamental RBM1 mode (b)
Second harmonic (c) Third harmonic. Radio-frequency spectrum of a self oscillating disk
(d) Large-span exhibiting the fundamental as well as the next three harmonics. RBW = 100
kHz, !m = 2⇡ · 699.4 MHz, Qm ' 103, R = 2.008µm, thickness h = 200 nm (e) Small-span
centered around the fundamental RBM1, displaying side-bands at ±7 MHz. RBW = 1 kHz,
!m = 2⇡ · 702.6 MHz, Qm ' 103, R = 1.998µm, thickness h = 200 nm.

5.1.2 Absorption and thermal effects

5.1.2.1 Evolution of the temperature inside the microdisk

As introduced on section 3.2.1.2, optical absorption is present on our semiconductor
disks. This absorption is a consequence of linear or non-linear mechanisms, resulting in an
elevation of the temperature. The evolution of the temperature is governed by [301,302]:

d∆T

dt
= �∆T

⌧th
+

Rth~!labs

⌧th
|a(t)|2 = �∆T

⌧th
+

Γpth

⌧th
|a(t)|2 (5.1)

where ⌧th is the disk thermal response time, Rth the thermal resistance linking the temper-
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Figure 5.3 – Schematic representation of the three mechanisms responsible for the optical
absorption. The telecom linear absorption (represented in orange) involves mid-gap states
present either at the surface or in the bulk of the disk. TPA (represented in dark red)
promotes an electron from the valence to the conduction band. The free carriers generated
this way in the conduction band give rise to FCA (represented in blue). The GaAs band
gap, Eg is designated by the black double arrow, while the MQW fundamental transition
E 0

g is indicated by a green double arrow.

ature increase to the intra-cavity absorbed power, and abs the total intra-cavity absorption
rate. This latter parameter accounts for several contributions schematized in figure 5.5 and
listed below abs = lin + TPA + FCA:

• Linear absorption (lin): Even if working with telecom photons (~! ' 0.8 eV) of
energy well below the band gap (1.42 eV at room temperature - 1.52 eV at cryogenic
temperature), the presence of impurities and defects, notably at surface [121], gener-
ates mid-gap states, creating available absorption transitions. This linear absorption
is a fraction ✏ of intrinsic losses lin = ✏in

• Two-Photon absorption (TPA) (TPA): TPA describes the simultaneous absorp-
tion of two sub-bandgap photons, promoting one electron from the valence band to
the conduction band. The two-photon absorption rate TPA is given by [303] :

TPA =
�c2

n2VTPA

~!l|a(t)|
2 (5.2)

with n the refractive index of the material, � the two-photon absoption coefficient (eq.
(3.13)), and VTPA the effective volume of two-photon absorption defined by [303,304]:
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VTPA =

�
n2(r)|E(r)|2

�2
dr

n4(r)|E(r)|4dr
(5.3)

that can be computed by FEM simulations.

• Free-Carrier Absorption (FCA) (FCA): It is the absorption of one or several
photons that promotes one free carrier (electron or hole) to a higher energy free-carrier
level. The absorption rate, FCA takes the form [303]:

FCA =
�FCAc

n
Nc (5.4)

where Nc is the density of free carriers and �FCA the free-carrier cross section in m2

Since the GaAs bandgap energy is higher than the energy of telecom photons, the only
possibility to generate free carriers is via TPA. The number of free carriers therefore
obeys the equation :

dNc

dt
= �Nc

⌧fc
+

VTPA

2V 2
FCA

TPA|a(t)|
2

= �Nc

⌧fc
+

�c2~!l

2n2V 2
FCA

TPA|a(t)|
4

(5.5)

where ⌧fc is the free carrier relaxation time and VFCA the effective volume of free-
carrier absorption [303]:

VFCA =

�
n2(r)|E(r)|2

�3
dr

n6(r)|E(r)|6dr
(5.6)

that can also be computed by FEM simulations.

5.1.2.2 Changes in optical cavity resonance

An important consequence of these absorption effects is the modification of the refractive
index of the material upon heating on one hand, and upon changes in the density in free
carriers on the other hand. The optical cavity eigenfrequency changes accordingly:

!c �! !c �
✓
!c

n

dn

dT
∆T

◆

�
✓
!c

n

dn

dNc

Nc

◆

(5.7)

with dn/dT the thermo-optic coefficient [305], ∆T the increase of the system’s tempera-
ture, dn/dNc the free-carrier dispersion coefficient [306] and Nc the density of free carriers.
Consequently the classical Langevin equation given in (1.17) is modified according to :

↵̇ = �ext + ✏in + TPA + FCA

2
↵ + j

✓

∆+ gomx
!c

n

dn

dT
∆T +

!c

n

dn

dNc

Nc

◆

↵ +
p
ext↵ext

(5.8)
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with x = xZPF(� + �⇤).

5.1.2.3 Photothermal forces and coupled optomechanical equations with ther-
mal effects

We write down an extension of standard optomechanics equations in the classical regime
(1.15), which describes the evolution of the mean value of operators â and b̂. We wish to
now include the effects of absorption described above. In order to do so, we need to add
a supplementary optically-induced force: the photothermal force, resulting from thermal
distortion and movement of the mechanical system upon heating. The photothermal force
can be derived from the thermal-induced stress �th (eq. (2.141)) [125,301,302]:

Fth =

Z

V

dV �th
ij Sij = ↵th∆T (5.9)

with ↵ the thermal expansion coefficient and S the modal strain profile for the considered
mechanical mode. With all absorptive effects now included (eq. (5.1), (5.5) and (5.8)), we
obtain the generalized equations [301]:

↵̇ = �ext + in + TPA + FCA

2
↵ +
p
ext↵ext

+ j

✓

∆+ gomx
!c

n

dn

dT
∆T +

!c

n

dn

dN
N

◆

↵
(5.10)

meff

⇥
ẍ+ Γmẋ+ !2

mx
⇤
= Fopt + Fth (5.11)

d∆T

dt
= �∆T

⌧th
+

Rth~!l

⌧th
(✏in + TPA + FCA)|a(t)|

2 (5.12)

dN

dt
= �Nc

⌧fc
+

�c2~!l

2n2V 2
FCA

TPA|a(t)|
4 (5.13)

This set of four coupled equations is far more complete than the two coupled equations
of standard optomechanics. It grasps all the complexity of the dynamics that can settle in
semiconductor optomechanical systems 1. Taking the Fourier transform of these equations,
after linearization as done in chapter 1 for the standard case leads to a modified mechanical
frequency and damping. The evolution of these parameters will greatly differ from the one
plotted in figure 1.3. This generalized model enables retrieving the behavior of evolution
towards optomechanical self-oscillation [121, 299, 307]. Ignoring the influence of the free
carriers, linearizing equations (5.10), (5.11), and (5.12), and moving in the Fourier space,
we derive an effective mechanical frequency !00

m and an effective mechanical damping Γ0
m:

1. At cryogenic temperature and low excitation power we should nevertheless come closer to the standard
behavior, as thermal expansion and thermal effects approach zero
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Figure 5.4 – Optomechanical fitting model, experimental data are extracted from the self-
oscillation spectra series of figure 5.1 (a) Optical waveguide transmission spectrum, Injected
laser power in the waveguide ' 1 mW. Red curve: Experimental data. Dark blue curve:
thermo-optic model. Mechanical frequency (b) and linewidth (c) as a function of the laser
wavelength. The open symbols are experimental data, while the solid lines are fits with equa-
tions (5.14) and (5.15). (d) Modelled evolution of the mechanical radio-frequency spectrum
as function of the telecom laser wavelength. The arrows in (c) and (d) mark the transition
to the mechanical lasing regime.
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with !0 = !m+
∂ωm

∂T
∆Teq. These expressions are used to predict optomechanical frequency

shifts and self-oscillations thresholds, as represented in figure 5.4.
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5.1.3 Miscellaneous observations

We report different experimental observations that differ from usual behaviors experi-
enced in our group with bare GaAs disk resonators that do not embed QW heterostructure.
Among other things, it seems that free carriers play a more important role: the MQW, whose
energy gap is below the GaAs bandgap (see figure 5.5), can trap generated carriers and give
rise to light emission. The data presented below are taken at cryogenic temperatures (3 to
4 K).

5.1.3.1 TPA induced photo-luminescence

A first marked observation is the emission of light at the energy of the MQW transitions,
i.e. photo-luminescence, as the system is optically injected with telecom light at 1.5 µm: it
is represented in figure 5.5 (a) and (b).

The quantity of signal emitted depends on the position of the laser wavelength inside the
optical mode of the disk: it seems to be proportional to the number of photons injected in
the mode. The evolution of the PL signal, plotted in figure 5.5 (c), follows almost perfectly
the shape of the optical resonance distorted by the thermo-optic effect (figure 5.5 (a)).

Photons in the telecom range do not have sufficient energy to promote an electron from
the MQW valence band to the conduction band. This PL is enabled by the action of the
TPA mechanism. Electrons from the GaAs or MQW valence band are promoted to the GaAs
conduction band via TPA, once there, they cascade to the bottom of the well conduction
band via non-radiative mechanisms and relax by emitting a photon.

If TPA is responsible for the emitted PL signal, we naively expect a quadratic evolution
of the quantity of this PLsignal (PPL) with respect to the power dropped by the waveguide
to the disk resonator (Pdrop). It is not what we observe here, the amount of PL signal is
rather linear in the power injected in the waveguide (and therefore in the power dropped
in the resonator), as illustrated in figure 5.6 (a) and implied by the shape of the signal in
5.5 (c). To explain this variation, we start by establishing a relation between the dropped
and the circulating power inside the disk Pcirc. In the linear regime, this relation is: Pcirc =
(Qopt/2πm) · Pdrop, with m the azimuthal number of the WGM, and Qopt the optical quality
factor. Using the expression introduced in the prior section 5.1.2 we have:

Pcirc =
1

2⇡m

!c

ext + ✏in + TPA + FCA

Pdrop

=
1

2⇡m

!c

ext + ✏in + FCA + βc2~ωl

n2VTPA
Pcirc⌧rt

Pdrop

(5.16)

with ⌧rt ' 2⇡m/!c the cavity round trip time. Pcirc answers therefore to the following
equation :

[ext + ✏in + FCA]Pcirc +
�c2~!l

n2VTPA

⌧rtP
2
circ =

!c

2⇡m
Pdrop (5.17)
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Figure 5.5 – (a) Optical waveguide transmission spectrum showing a WGM resonance with
a thermo-optic distortion. (b) CCD camera pictures of the disk imaged from the top with
the confocal microscope, for different telecom laser wavelengths inside the WGM resonance.
The CCD camera is silicon-based and can only detect photons of wavelength . 1µm: it does
not respond to the laser photons at 1.5 µm. The color of the picture frame corresponds to
the arrow in (a). (c)-(d) Evolution of the PL signal and energy as a function of the telecom
laser wavelength, collected from the top with the confocal cold objective. Injected telecom
laser power in the waveguide 188 µW

In the regime of high powers, the first term in the previous equation can be neglected,
we thus obtain :

Pcirc '
s

!c

2⇡m

n2VTPA⌧rt

�c2~!l

Pdrop (5.18)

As PPL is proportional to P 2
circ, we recover the behavior observed in figure 5.6 (a).

In addition to that, one interesting of this TPA activated PL is the evolution of the
energy of the emitted signal. Since the energy depends on the temperature, we can de-
duce the shift in disk temperature between out-of-resonance and in-resonance conditions for
the telecom input laser, making use of the calibration curve represented in figure 4.5 (a).
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Figure 5.6 – Evolution of the PL signal (a) and energy (b) as a function of the estimated
telecom laser power injected in the waveguide. PL is collected from the top with the cold
confocal objective. The emitted signal is always measured at the bottom of the telecom
distorted optical resonance. The red dashed line in (a) is a linear fit (r2 > 0.9). The black
dashed line in (b) is a guide to the eye.

This temperature elevation ∆Teq is proportional to the number of photons inside the cavity
∆Teq = Rth~!labs|a(t)|

2. Taking data of figure 5.5 (d), we deduce this way that this tem-
perature increase is of 50 K when the telecom laser is at the optical resonance. This value
is consistent with FEM simulations, as represented in figure 5.7.

45 40 35 30 25 20 15 10 5

Temperature [K]

(a) (b)

Figure 5.7 – Temperature profile (steady-state) inside the disk. The geometry of disk repro-
duces the micrograph 3.34-(b). (a) 3D view. (b) Cross-section in 2D view. Injected telecom
laser power in the waveguide 188 µW.

5.1.3.2 Self-pulsing regime of the optical cavity

As already mentioned the strong optical confinement inside our tiny disk resonators mod-
ifies the local free-carrier density and temperature, in particular through the TPA mecha-
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nism. Strong thermo-optic and free-carrier effects are this way appearing: the interplay of all
these mechanisms can possibly activate a self-induced modulation of the cavity field, usually
referred as self-pulsing. [308–312]. The experimental manifestation of this phenomenon in
our case is illustrated in figure 5.8.

Amplitude [dBm] Amplitude [dBm]

(a) (b)

Figure 5.8 – (a)-(b) Two dimensional map of radio-frequency power spectral densities as
a function of the laser wavelength, showing a self-pulsing regime (delineated by the white
dashed lines) and mechanical self-oscillation thin vertical line at ⇠ 0.7 GHz. Data collected
on two different disks with identical radius R = 1.998 µm.

Again, the laser wavelength is tuned to the blue flank of a WGM resonance, at suffi-
cient power to show a strong thermo-optic distortion. By scanning the laser wavelength
progressively towards the mode, two phenomena start-off in consequence. The first is the
optomechanical self-oscillation discussed above, appearing abovePth. The second is the self-
pulsing, where harmonics of the self-pulsing oscillation appear (between the white dashed
lines in figure 5.8). The power threshold for this self-pulsing Psp, scales as VeffQ

�2
opt [313], with

Veff the effective mode volume of the cavity. In our common experiments, optomechanical
self-oscillation occurs before self pulsing, which means that Pth < Psp .

One can also notice in figure 5.8 that the frequency of the self-pulsing oscillation varies
with the laser wavelength. The frequency of this oscillation is given by [314] :

Ωsp ' 5

s

⌧fc Im{TPA}FCA

2(~!c)
2Veff

· Tmax

✓
Pin!c

2Qopt

◆2

� ∆

5
(5.19)
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where Tmax is the maximum waveguide transmission at low input power, ∆ the laser-
cavity detuning, and where TPA is a complex number to represents the effect of both
free-carrier induced absorption and dispersion. Since these parameters evolve with the cir-
culating power inside the microdisk, the frequency of the self-pulsing oscillation naturally
changes with the laser wavelength.

This self-pulsing oscillation also has a signature in the time domain. The output telecom
signal alternates between transmission close to unity and transmission close to zero. This
situation can evolve chaotically or periodically for a few minutes. In this situation, the disk
appears to be “blinking” when we observe it with the CCD camera. The QW emission
reproduced the apparent dynamic of the cavity.

5.1.3.3 Anti-crossing in “mechanical” radio-frequency spectrum

The last phenomenon presented in this section is not attributed to the free-carriers dy-
namics but is worth mentioning in complement.

Amplitude [dBm]

Figure 5.9 – Two-dimensional map of “mechanical” radio-frequency power spectral densities
of the output signal, as a function of the laser wavelength. Two regimes (separated by
the white dashed line) are present: a regime of mechanical hybridization and a regime of
self-oscillating regime. The white dotted curves are guides to the eye.

On a few disks, we have observed an anti-crossing phenomenon in the “mechanical”
radio-frequency spectrum of the output signal. By varying the laser wavelength, we wit-
nessed the appearance of a mechanical doublet instead of a unique Lorentzian, as presented
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in figure 5.9. When the circulating power inside the cavity reaches the self-oscillating thresh-
old (white dashed line in figure 5.9), we lose this doublet regime and we recover the usual
self-oscillating signal with its sidebands. This anti-crossing should not be mistaken for op-
tomechanical strong coupling [10, 315], which should appear for a red detuning, at variance
with what we observe here. The most plausible scenario for this anti-crossing is a hybridiza-
tion of two mechanical modes that are sufficiently close in energy. If the coupling between
these two modes is stronger than their dissipation, we can observe a doublet. As the tem-
perature is evolving when we change the laser wavelength, the detuning between these two
mechanical modes can change, generating an anti-crossing behavior. The fact that two
modes of a disk hybridize is surprising since these modes are supposedly orthogonal. This
said, we observed in the past that a mode of the disk, mostly confined in the disk can couple
to modes of the pedestal [316], leading to such hybridization.

This phenomenon was observed sporadically. We will keep it in mind as a nonideality of
our resonators.

5.2 Perspectives for future experiments

We review now the perspectives for hybrid optomechanics addressable by our experimen-
tal platform. We also present the first characterization steps towards these.

5.2.1 Optomechanical experiments in the exciton band

So far in section 5.1.1 and 5.1.3, we reported optomechanical experiments with the drive
laser in the telecom band. The most wanted experiment would consist in switching the
wavelength range toward the exciton band and exploring exciton-assisted optomechanical
effects. The last months of this Ph.D. were dedicated to this task, however, working in the
exciton band to observe optomechanical signatures presents several difficulties:

• The laser source we use in this band is not as user-friendly as the technology we use
for telecom wavelength. Taking laser scans with the M-squared laser is very long,
and measuring an optical spectrum can demand several hours of alignment especially
if we are working at room temperature, where the PL signal cannot help for this
purpose.

• A stronger linear absorption is present in this wavelength range, in comparison to
telecom, which means that the optical power we collect at the output of the set-up
is weak, typically below a few µW even when working at high laser power. This
absorption mostly happens occurs in the suspended waveguide (by construction the
waveguide also contains the MQW structure), which is thermally isolated from the
rest of the sample and hence very sensitive to the thermo-optic effect. When the
temperature inside the waveguide rises, QW absorption band-edges are red-shifted,
causing even more absorption for a fixed laser wavelength. The local temperature of
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the disk and waveguide become distinct: the waveguide absorbs photons at energy
smaller than the disk, preventing us to resolve optical resonances coming from the
disk, especially for modes that are close to the exciton energy, i.e. potential polari-
tonic modes. Figure 5.10 illustrates this effect: we see that the spectral position of
the WGMs or WGM polaritons is merely affected by the increase of input power,
while marked absorption is visible for the waveguide QW heterostructure. If the in-
put power is increased the absorption edge is red-shifted (figure 5.10). The signal
at energy higher than the edge is not transmitted by the waveguide: it is absorbed
and lost for the output light. If we want to optically address the exciton and disk
polariton modes spectrally close to it, we are doomed to work with low power, posing
severe constraints on achievable optomechanics experiments.
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Figure 5.10 – Evolution of the waveguide/disk transmission spectrum measured at different
input powers. Blue trace P , green trace ' 3.8 · P , red trace 7.5 · P . The black arrow indi-
cates the absorption edge below which the waveguide ceases to absorb. The black triangles
highlights some of the WGMs or polaritons present in the spectrum.

• In addition to working with low optical power, the exciton band lacks proper optical
amplification technologies. For the telecom range, Erbium-Doped Fiber Amplifier
(EDFA) enables amplification of signal with very low added noise, an advantage that
we lose in the exciton band.

Despite these issues and the consequences of working with low power, we have carefully
analyzed and optimized the different stages of our chain of detection: measuring the Brow-
nian motion in this exciton band should be possible. The last months before writing this
thesis have been dedicated to this task, and experiments are currently underway.

The first experiment will be to measure in a calibrated manner the optomechanical cou-
pling parameter g0. By varying different cavity-exciton detuning we can tune the value of g0
and obtain a controllable optomechanical coupling. Our model predicts a value above that
measured in the telecom range. A strong boost in the g0 paves the way to regimes such as
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single-photon optomechanics, which has up to now remained impossible to explore with the
current state of technology. The “quantumness” factor g0/c [91] discriminates the entrance
into this regime, where photon blockade is for instance expected. This ultimate optomechan-
ical regime is completely unprecedented in the field of meso/nanoscopic optomechanical de-
vices and was only demonstrated in a formally-equivalent ultracold gas experiment [317]. In
addition to that, boosting g0 is tantamount to improving the optomechanical cooperativity,
of great importance in nowadays quantum optomechanics applications.

5.2.2 Two-color experiments

VOA

ESA

DAQ

Optical

 Head

FPCTelecom laser
FBS

PDDC

VOA

FPC
Exciton band 

laser

PDAC

Figure 5.11 – Two-color experiment set-up. The yellow lines represent single mode telecom
fiber, blue lines single mode exciton band fibers ,and the black lines electric cables. The
inset represents a close-up of the sample located inside the cryostat chamber.

Another perspective for the future is to fully exploit the potential of our original optical
set-up by performing two-color experiments: combining optomechanical techniques in the
telecom band with traditional polariton spectroscopy in the exciton band. Our sample can
be excited either from the top, in confocal configuration, to generate polaritons for instance,
or with the suspended waveguide in the plane of the disk. By exploiting these two possi-
bilities, we can simultaneously actuate and detect the mechanical motion of the disk with
telecom light and create polaritons by either quasi-resonant or non-resonant excitation in
the exciton band, as represented in figure 5.12.

Under peculiar conditions, quantum-well exciton-polaritons in a cavity can form a Bose-
Einstein condensate. The two-color scheme would allow studying the interaction between a
mechanical resonator and such a condensate [81,318,319], or inversely to impact this conden-
sate with a well defined mechanical motion. The superfluid behavior of polariton gas [77,320]
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could be probed optomechanically with high resolution enabled by telecom technologies.

(a)

(b) (c)

2 μm

Figure 5.12 – (a) SEM micrograph of a sample with a double-waveguide structure, Magnifica-
tion ⇠ 1.6K. (b) Schematic representation of the double-waveguide structure corresponding
to (a). (c) Schematic representation of a more complex double-waveguide structure, the space
between the tips of each waveguide is increased to avoid a simultaneous injection on both
waveguides. The color red/blue corresponds to the waveguide optimized for telecom/exciton
band.

This hybrid configuration, combining a confocal and in-plane approach is ready, and
experiments will be carried out very soon. Now, if we want to make a complete in-plane
approach for the two-color experiments several dedicated features need to be brought. This
concern notably the design of our waveguide/resonator units. The simplest option to op-
erate a resonator with two colors is to employ a single waveguide and make it compliant
with both photon-bands (exciton and telecom). With this mindset, we tried several com-
binations of taper width wt, and gap distance gdw. Unfortunately, as already illustrated in

155



figure 3.17, the range of waveguide geometric parameters required for optimized operation in
the two photon-bands is very different. For instance, using the geometric parameters of the
exciton band waveguide (small gdw, small wt), lead to an over-coupled regime for photons
in the telecom band. Another approach is to use two waveguides, one for each band, as
represented in figure 5.12. This four-port photonic chip approach was used in our group to
demonstrate Second Harmonic Generation and Spontaneous Parametric Down Conversion
in an AlGaAs platform [63]. This type of architecture is, however, less compact (especially
structures with the architecture illustrated in figure 5.12 (c)) and increases the length of the
light path inside the waveguide, which is problematic when having linear absorption in the
material. Another issue is that in our set-up, we can only address two ports, one on each
side of the chip, meaning that if we use the two µ-lensed fibers to inject both telecom and
exciton band photons in the two respective waveguides, the only possible solution to collect
the signal is to use the confocal configuration, which is not efficient to collect signal coming
from WGMs.

In the current state of our chip design, we choose to keep a single waveguide approach.
The sample possesses both waveguide/resonator units optimized for telecom and exciton
band wavelength.

5.2.3 Phonoritons

As the effective optomechanical coupling strength increases with the number of polariton
inside the cavity, it can at some point exceed both the polariton decay rate l/u and mechan-
ical damping rate Γm. In that scenario, the energy exchange between mechanical motion
and polaritons is strong, and the normal modes of the system become hybrid. These are
so-called phonoritons, a superposition of photons, excitons, and phonons (see figure 5.13 (b)).

Historically the notion of phonoritons was introduced in reference [321]. In terms of
second quantization operators âk,d̂k,b̂k for photons, excitons and phonons, the Hamiltonian
describing the system reads [322]:

Ĥ =
X

k

~



!c(k)â
†
kâk + !x(k)d̂

†
kd̂k +

ΩR

2
(â†kd̂+ âkd̂

†
k)

�

+
X

q

~!m(q)b̂
†
q b̂q +

X

k,q

h

M(k � q)d̂†kd̂q(b̂k�q + b̂†q�k) + c.c.
i (5.20)

This Hamiltonian can be rewritten in the polariton basis :

Ĥ =
X

k

~!η(k)p̂
†
η,kp̂η,k+

X

k

~!m(k)b̂
†
kb̂k+

X

k,q

h

M 0(k � q)p̂†η,kp̂η,q(b̂k�q + b̂†q�k) + c.c.
i

(5.21)

An expression that recalls the Hamiltonians of eqs. (1.39), where ⌘ represents a polariton
that sits either in the upper or lower branch. Considering now a strong pumping close to

156



the resonance of the polariton mode k0, one can diagonalize the Hamiltonianto obtain a new
energy dispersion :

!± =
1

2
(!(k)� !(k0) +/� !m(k0 � k))±

1

2

⇥
[!(k)� !(k0)� !m(k0 � k)]2 +XQ

⇤1/2
(5.22)

with X the excitonic fraction of the polariton and Q =
p
V N0M(k� k0), where V is the

volume of the crystal, and N0 the occupation number of the incident polariton. The sign ±
stands for the two phonoriton branch (+: upper phonoriton - UPho, �: lower phonoriton -
LPho), while +/� is for the Stokes/Anti-stokes scattering process, i.e. for ! = !0±!m(k0�k).
This dispersion results in the appearance of a new gap and a new anti-crossing behavior as
illustrated in figure 5.13 (a).
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Figure 5.13 – (a) Dispersion of the phonoriton close to the Stokes frequency (b) Energy
diagram of the phonoritons coupling. UPho: upper phonoritons. LPho: lower phonoritons

There has been little experimental evidence of the existence of phonoritons phenomena.
Our system is a potential candidate to reach this regime.
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Conclusion

This doctoral work has been focused on the conceptual development, design, fabrication,
and testing of hybrid GaAs disk optomechanical resonators embedding MQW structures. We
developed a minimal quantum model to describe this tripartite system involving photons,
excitons, and phonons. This led us to establish which phenomena could be expected to occur
in such a platform. Thorough modeling of the optical, mechanical, and excitonic modes in
the geometry of a disk resonator was then carried out, as well as analytic expressions to
quantitatively predict their mutual coupling. We then went through the challenges in terms
of design, experiments, and fabrication, induced by such a hybrid structure. Great efforts
were devoted to enabling the optic l operation of the devices in the wavelength range of
the MQW exciton, but also in the telecom range traditionally used by the group until now.
Despite our first success, further improvement in the technology will involve a reduction of
the exciton linewidth and an improvement in the injection/collection efficiency of suspended
waveguides (particularly working in the exciton range).

We experimentally demonstrated the existence of polaritons, half-matter half-light par-
ticles, in our GaAs disks. Strong coupling signatures, such as anti-crossing, were obtained
by tuning optical modes and excitonic resonances, varying both the temperature and cavity
size. To our knowledge, it is the first observation of quantum-well exciton-polaritons in a
whispering gallery mode resonator. This observation was enabled by the peculiarities of
our experimental set-up, which allows different configurations of signal excitation/collection
combining confocal microscopy with resonant near-field laser spectroscopy. The control of
polaritons in such a disk resonator establishes this platform for polaritonic optomechanical
experiments.

Concomitantly, we checked that the presence of this MQW does not disturb optome-
chanical operations at telecom wavelength. Optomechanical self-oscillation was for example
achieved at both room temperature and cryogenic temperature. We highlighted specific
features in the behavior of our structure that arises from modified free carriers dynamics
imputable to the presence of the active MQW structure. In a near future, efforts will be
pursued to perform optomechanical experiments in the exciton wavelength range. In such
a regime, polaritons are generated and enhancement of the optomechanical coupling is ex-
pected. A second step will be to combine telecom optomechanical experiments with the
generation of a polariton condensate and use this disk platform to study the condensate
interacting with mechanical vibrations.
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Appendix A

Input-Output Formalism: application
to hybrid optomechanics

A.1 Mathematical definitions

Throughout this section, we use the following definition for the Fourier transform of a
random signal u(t).

u[!] =
1p
2⇡

Z +1

�1
u(t)e�jωtdt (A.1)

u(t) =
1p
2⇡

Z +1

�1
u[!]ejωtd! (A.2)

For operators Û(t) the definitions are similar :

Û [!] =
1p
2⇡

Z +1

�1
Û(t)e�jωtdt (A.3)

Û(t) =
1p
2⇡

Z +1

�1
Û [!]ejωtd! (A.4)

Û †[!] =
1p
2⇡

Z +1

�1
Û †(t)e�jωtdt (A.5)

(A.6)

Note the same definition is used for taking the Fourier transform of the conjugate, mean-

ing that Û †[!] =
⇣

Û [�!]
⌘†

.

The power spectrum Suu(!) of a real random signal u(t) is a function describing how
the total power of this signal is distributed over the different frequencies constituting the
signal. If the process corresponding to this signal is stationary and the two time-correlation
function g(⌧) ⌘ hu(t)u(t+⌧)i only depends on the time difference ⌧ then the power spectrum
is linked to u(t) and to its Fourier transform U [!] via :
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Suu(!) =

Z +1

�1
hu(t)u(t+ ⌧)iejωτd⌧ (A.7)

=

Z +1

�1
hu(!)u(!0)id!0 (A.8)

The first relation is a direct result of the Wiener-Kinchin theorem, the second one comes
from Fourier transforms properties. The above definitions can be applied to operators [88,
323].

A.2 Introduction to the formalism

A.2.0.1 Example : Single optical cavity

In this section, we follow the method described in [90] to obtain the quantum stochastic
Langevin equation of a system coupled to an external bath. We consider here the case of a
single optical cavity (harmonic oscillator) coupled to a thermal environment. The cavity is
described by the following Hamiltonian :

Ĥsys = ~!câ
†â (A.9)

with !c the resonance frequency and â† (â) the creation (annihilation) operator. The
thermal bath is described by a continuum of independent harmonic oscillators represented
by the Hamiltonian,

Ĥbath = ~

Z

!Â†(!)Â(!)d! (A.10)

where the bath creation Â†(!) and annihilation Â(!) operators obey the commutation

relation
h

Â(!0), Â†(!)
i

= �(! � !0). The coupling Hamiltonian describing the interaction

between the system and the bath is given by :

Ĥcoupling = �j~
Z

d!
p

(!)
h

â†Â(!)� Â†(!)â
i

(A.11)

where
p

(!) represents the strength of the interaction. The actual frequency limits
are (0,1) but for high-frequency optical systems we can shift the integration to the cavity
resonance frequency, the limits become then (�!c,+1), but as !c is large, set the lower
limit to �1 is a good approximation.

The Heisenberg equation of motion for Â(!) at any given pulsation ! is :

˙̂
A(!) = �j!Â(!) +

p

(!)â (A.12)

There is two different ways of solving this equation either we integrate with an initial
condition t0 < t (input), or we integrate with a final condition t1 > t (output). t0 corresponds

164



physically to the initial time when the cavity and the bath are not in interaction and t1 the
duration of the interaction. The two solutions are respectively :

Â(!) = e�jω(t�t0)Â0(!) +

Z t

t0

p

(!)ejω(t�t0)â(t0)dt0 (A.13)

with Â0(!) the value of Â(!) at t = t0 and,

Â(!) = e�jω(t�t1)Â1(!)�
Z t1

t

p

(!)e�jω(t�t0)â(t0)dt0 (A.14)

where Â1(!) the value of Â(!) at t = t1. The first term in both solutions corresponds
to the evolution of the bath isolated, while the second term represents the evolution of the
optical mode leaking into the bath.

The system annihilation operator obeys to the following Heisenberg equation of motion
:

˙̂a = �j!câ�
Z +1

�1
d!
p

(!)Â(!) (A.15)

In terms of the initial condition we have the following equation :

˙̂a = �j!câ�
Z +1

�1
d!
p

(!)e�jω(t�t0)Â0(!)�
Z +1

�1
d!(!)

Z t

t0

e�jω(t�t0)â(t0)dt0 (A.16)

We proceed now to a new assumption, we take (!) nearly constant (frequency indepen-
dent) over the bandwidth of the external modes, this approximation is also know as the first
Markov approximation [90]. Thus we set :

p

(!) =

r
c

2⇡
(A.17)

where c corresponds to the cavity decay rate which determines the out-coupling of the
cavity modes with the external modes. We also define an input field operator as :

âin =
�1p
2⇡

Z +1

�1
d!e�jω(t�t0)Â0(!) (A.18)

Given the fact that,

Z +1

�1
d!e�jω(t�t0) = 2⇡�(t� t0) (A.19)

we can demonstrate that the input field satisfy the following relation
h

âin(t), â
†
in(t

0)
i

=

�(t� t0). A quick analysis of the previous equations shows that âin and Â0(!) have different
units, the system is interacting at each time t with a delta-bath like function independent
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of other bath modes at earlier or other times.

With the Markovian approximation we get :

Z +1

�1
d!(!)

Z t

t0

e�iω(t�t0)â(t0)dt0 ' c

2⇡

Z +1

�1
d!

Z t

t0

e�iω(t�t0)â(t0)dt0

=
c

2⇡
2⇡

Z t

t0

�(t� t0)â(t0)dt0 =
c

2
â(t)

(A.20)

where we have used the following relation :

Z t

t0

�(t� t0)f(t0)dt0 =

Z t1

t

�(t� t0)f(t0)dt0 =
1

2
f(t), (t0 < t < t1) (A.21)

The system creation operator thus obeys the following quantum Langevin equation :

˙̂a(t) = �j!câ�
Z +1

�1
d!
p

(!)e�iω(t�t0)Â0(!)�
Z +1

�1
d!(!)

Z t

t0

e�iω(t�t0)â(t0)dt0

= �j!câ�
c

2
â(t) +

p
câin(t)

= �(j!c +
c

2
)â(t) +

p
câin(t)

(A.22)

This quantum stochastic differential equation (QSDE) for the intra-cavity field indicates
that the amplitude is damped at a rate c/2 due to energy radiation to the bath, and that
the quantum noise entering the cavity appears explicitly as the input operator âin(t).

In a similar fashion, if we use the final condition (eq. (A.14)), we define an output field
and obtain the QSDE for the output modes :

˙̂a(t) = �(j!c �


2
)â(t)�pcâout(t) (A.23)

where the output field is defined as,

âout =
�1p
2⇡

Z +1

�1
d!e�jω(t�t1)Â1(!) (A.24)

By using the equations (A.22) and (A.23) we finally obtain the input-output boundary
condition :

âout(t) =
p
â(t)� âin(t) (A.25)

To include an external laser driving of the cavity, we can either admit that the input
field âin(t) has an average value or add an explicit linear driving term of the form :

Ĥdrive = �j
�
↵exte

�jωltâ† + h.c.
�

(A.26)
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A.2.0.2 Quantum Stochastic Differential Equations for phonons and excitons

Provided that the thermal bath and the coupling Hamiltonian possess the same form,
this formalism can be applied to any bosonic operator. For the phonon (b̂ and the exciton
(d̂) we have similar relations :

d

dt
b̂(t) = �(j!m +

Γm

2
)b̂(t) +

p

Γmb̂in(t) (A.27)

d

dt
d̂(t) = �(j!x +

x

2
)d̂(t) +

p
xd̂in(t) (A.28)

where Γm/x represents the damping and b̂in/d̂in the input-operator for the phonon/exciton.

A.3 Bath correlation functions

Photons, phonons and excitons are bosons described by the Hamiltonian of a quantum
harmonic oscillator, their occupancy probability for an certain energy level p(n) is given by
the Bose-Einstein statistics :

p(n) = exp

✓
n~!

kBT

◆

(1� exp

✓
~!

kBT

◆

) (A.29)

The mean occupation of the oscillator is :

nth = hn̂i =
1X

n=0

np(n) =



exp

✓
~!

kBT

◆

� 1

��1

(A.30)

In this way, if we suppose that the external bath is initially in a thermal state, i.e. every
bath modes exist at a temperature T and a time t, we get the following correlations for the
input operators :

D

êin(t), ê
†
in(t

0)
E

= (nth + 1)�(t� t0)
D

ê†in(t
0), êin(t)

E

= nth�(t� t0)

hêin(t), êin(t0)i =
D

ê†in(t
0), ê†in(t

0)
E

= 0

(A.31)

where êin(t) is a generic input operator. In the case of optical systems and exitonic
resonances, the range of frequency is sufficiently high (~!l, ~!c, ~!x � kBT ) to approximate
the bath as a zero temperature (vacuum, ncav

th ' 0), thus for the photon and the exciton the
previous noise correlation functions become :

D

âin(t), â
†
in(t

0)
E

= �(t� t0)
D

d̂in(t), d̂
†
in(t

0)
E

= �(t� t0)
D

â†in(t
0), âin(t)

E

= 0
D

d̂†in(t
0), d̂in(t)

E

= 0

hâin(t), âin(t0)i =
D

â†in(t
0), â†in(t

0)
E

= 0
D

d̂in(t), d̂in(t
0)
E

=
D

d̂†in(t
0), d̂†in(t

0)
E

= 0

(A.32)

167



Regarding the mechanical noise operator, the noise correlations are then given by :

D

b̂in(t), b̂
†
in(t

0)
E

= (nmec
th + 1)�(t� t0)

D

b̂†in(t
0), b̂in(t)

E

= nmec
th �(t� t0)

D

b̂in(t), b̂in(t
0)
E

=
D

b̂†in(t
0), b̂†in(t

0)
E

= 0

(A.33)

The lowest temperature Tmin being accessed in our cryostat is 3K (accentuated by the
black dashed line on figure A.1), at this temperature the phonon occupancy for the first
three RBMs is well above 1. For T � Tmin, and for the mechanical frequencies relevant here,
the approximation n̄mec

th = kBT/~! is valid.
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Figure A.1 – Thermal phonon population as a function of temperature for the first three
RBMs (see Table 2.1)

A.4 Limitation of cooling via dynamical back-action

We compute here the quantum noise spectrum of the linearized radiation pressure derived
from the hamiltonian (1.20) :
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F̂ =
~G

xZPF

(�â† + �â) (A.34)

In the absence of the optomechanical coupling the spectral density of this force is given
by 1 [96]:

SFF [!m] =

✓
~G

xZPF

◆2
c

(∆+ !m)
2 +

�
κc

2

�2 (A.35)

evaluated here for ! = !m. We introduce the coefficients A+ and A� proportional
respectively to the Stokes and anti-Stokes scattering rates (illustrated respectively by red
and blue double arrows on figure 1.2) of cavity photons and defined by :

A± =
x2
ZPFSFF [⌥!m]

~2
=

G2c

(∆⌥ !m)
2 +

�
κc

2

�2 (A.36)

The cooling process then occurs when A� > A+ and amplification in the opposite situ-
ation. These two factors can be directly derived from Fermi’s Golden Rule applied to the
optomechanical interaction Hamiltonian Ĥint [88]. Hence they logically appear in the ex-
pression of the optical damping, Γom = A� � A+. The steady-state phonon occupancy hni
in terms of the frequency domain fluctuation operators is :

hni = h�b̂†(t)�b̂(t)i = 1

2⇡

Z +1

�1
d!

Z +1

�1
ej(ω+ω0)h�b̂†[!]�b̂[!]i

=

Z +1

�1
d!

Γ0
m/2⇡

(!m � !)2 + (Γ0
m/2)

2

| {z }

L[ω]


Γmn̄

mec
th

Γ0
m

+
G2

Γ0
m

1

(∆⌥ !m)
2 + (c/2)

2

�
(A.37)

In the expression (A.37) the Lorentzian function L[!] is peaked around ! = !m, we
assume that the bracketed term in (A.37) is approximately constant over the bandwidth of
the expression, the phonon occupancy is therefore given by :

hni = Γmn̄
mec
th

Γ0
m

| {z }

n̄th

+
A+

Γ0
m

|{z}

n̄ba

(A.38)

where n̄mec
th is the thermal occupation of the mechanical mode (see appendix A.3), n̄th

the classical cooling limit and n̄ba the fundamental quantum limit originating from the back-
action. For significant cooling Γ0

m � n̄mec
th Γm, this fundamental limit can be simplified to

:

n̄ba '
A+

A� � A+

=
4(∆+ !m)

2 + 2c
�16!m∆

(A.39)

which leads to a minimum phonon occupancy of

1. see the definition of the quantum power spectral density provided on section A.1
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min(n̄ba) =
1

2

 s

1 +
2c
4!2

m

� 1

!

(A.40)

Obtained for an optimal laser detuning of∆ = �
p

!2
m + 2c/4 and exhibited in figure A.2.

In the unresolved sideband regime (!m ⌧ c), the quantum limit is min(n̄ba) = c/(4!m)
(∆ = �c/2), the minimum phonon number cannot reach 1, which precludes the ground
state cooling of the mechanical resonator. On the other hand, in the resolved sideband
regime (!m � c), the quantum limit is simplified into min(n̄ba) = 2c/(16!

2
m) (∆ = �!m)

which makes the ground-state cooling possible [95, 96, 324–326]. In this last regime the

minimum thermal phonon occupancy is given by min(n̄th) ' n̄mec
th

1+C
, where C corresponds to

the optomechanical cooperativity of the system defined by :

C =
Γom

Γm

|∆=�ωm
= NphC0 C0 =

4g20
cΓm

(A.41)

C0 represents the single-photon cooperativity which quantifies the coupling strength of
the mechanical resonator to the optical noise bath compared to the mechanical thermal bath.
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Figure A.2 – Phonon population fundamental quantum limit around the anti-Stokes side-
band. The color code corresponds to different value of the !m/c ratio. From red to blue
this ratio is equal to [0.2, 0.4, 0.5, 1, 2, 2.5, 5]

The cooperativity can be artificially enhanced for a higher number of photons in the
cavity, however when the injected power is increased some parasite thermal effect usually
comes into play. Maximizing C0 represents a safer way to reach the ground state. In the
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light of this, one question is whether new phenomena can emerge by reaching the regime of
large single-photon cooperativity C0 > 1. Very few system have reached this condition [93]
but some recent works already beat this criterion [327–331]. These last remarkable results
are the product of extensive design improvements and optimization.
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Appendix B

Quantum-well and excitons:
supplements

B.1 Derivation of the effective mass equation in bulk

semiconductor

In this section we derive the effective mass equation in bulk semiconductor. The deriva-
tion starts with the many body Hamiltonian (2.90):

Ĥex = Ĥ0 + ĤI

=
X

k1

✓

Eg +
~
2k2

1

2m⇤
c

◆

ĉ†ck1
ĉck1

| {z }

1

+
X

k1

✓

�~
2k2

1

2m⇤
v

◆

ĉ†vk1
ĉvk1

| {z }

2

+

k1 6=k4X

k1k2k3k4

e2

4⇡"0"rV

1

|k1 � k4|
2 ĉ

†
vk1

ĉ†ck2
ĉck3 ĉvk4�k1�k4,k3�k2

| {z }

3

(B.1)

We need to find an equation for the coefficients O(k,k0) in order to make |Ψi =
P

k,k0 O(k,k0) |Ψ0i an eigenstate of Ĥex i.e. :

Ĥex |Ψi = E |Ψi (B.2)

We are going to examine the action of Ĥex on the exciton state, starting with the part
related to the conduction electrons:

1 |Ψi =
X

k1

X

k,k0

✓

Eg +
~
2k2

1

2m⇤
c

◆

ĉ†ck1
ĉck1 ĉ

†
ckĉvk0O(k,k0) |Ψ0i (B.3)

To simplify the product of creation and annihilation operators we apply the fermionic
commutation relations:
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n

ĉσk, ĉ
†
σ0k0

o

= ĉσkĉ
†
σ0k0 + ĉ†σ0k0 ĉσk = �k,k0�σ,σ0

{ĉσk, ĉσ0k0} =
n

ĉ†σk, ĉ
†
σ0k0

o

= 0 8k,k0, �, �0
(B.4)

Using these rules we find:

ĉ†ck1
ĉck1 ĉ

†
ckĉvk0 = �k1,kĉ

†
ck1

ĉvk0 � ĉ†ck1
ĉ†ckĉck1 ĉvk0

= �k1,kĉ
†
ck1

ĉvk0 + ĉ†ck1
ĉ†ckĉvk0 ĉck1

(B.5)

Acting on the ground state |Ψ0i:

ĉ†ck1
ĉck1 ĉ

†
ckĉvk0 |Ψ0i = �k1,kĉ

†
ck1

ĉvk0 |Ψ0i+ ĉ†ck1
ĉ†ckĉvk0 ĉck1 |Ψ0i

| {z }

=0

(B.6)

The last term on the right hand side vanishes, since the conduction band is empty in the
ground state. In the end the term 1 acting on |Ψi becomes:

1 |Ψi =
X

k,k0

✓

Eg +
~
2k2

2m⇤
c

◆

O(k,k0)

�

ĉ†ckĉvk0 |Ψ0i (B.7)

Similarly, the part associated with the valence electrons gives the following term:

2 |Ψi =
X

k1

X

k,k0

✓

�~
2k2

1

2m⇤
v

◆

ĉ†vk1
ĉvk1 ĉ

†
ckĉvk0O(k,k0) |Ψ0i (B.8)

As a result, we should simplify the following product of operators:

ĉ†vk1
ĉvk1 ĉ

†
ckĉvk0 = ĉ†ckĉvk0 � ĉvk1 ĉ

†
vk1

ĉ†ckĉvk0

= ĉ†ckĉvk0 + ĉvk1 ĉ
†
ckĉ

†
vk1

ĉvk0

= ĉ†ckĉvk0 + �k1,k0 ĉvk1 ĉ
†
ck � ĉvk1 ĉ

†
ckĉvk0 ĉ†vk1

(B.9)

Again acting on the ground state |Ψ0i:

ĉ†vk1
ĉvk1 ĉ

†
ckĉvk0 |Ψ0i = ĉ†ckĉvk0 |Ψ0i+ �k1,k0 ĉvk1 ĉ

†
ck |Ψ0i � ĉvk1 ĉ

†
ckĉvk0 ĉ†vk1

|Ψ0i
| {z }

=0

(B.10)

The last term on the right hand side vanishes because in the ground state the valence
band is full, no extra electron can be created. The term 2 acting on |Ψi becomes:

2 |Ψi =
X

k,k0

2

6
6
6
6
4

0

B
B
B
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@
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A
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7
7
7
7
5

ĉ†ckĉvk0 |Ψ0i (B.11)
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Last but not least, we now study the part linked to the Coulomb interaction:

3 |Ψi =
X

k,k0

k1 6=k4X

k1k2k3k4

e2

4⇡"0"rV

1

|k1 � k4|
2 �k1�k4,k3�k2 ĉ

†
vk1

ĉ†ck2
ĉck3 ĉvk4 ĉ

†
ckĉvk0O(k,k0) |Ψ0i

(B.12)
Simplify this last expression is a bit more complicated, we have to study a product of

six fermionic operators:

ĉ†vk1
ĉ†ck2

ĉck3 ĉvk4 ĉ
†
ckĉvk0 = �ĉ†vk1

ĉ†ck2
ĉvk4 ĉck3 ĉ
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= �ĉ†vk1
ĉ†ck2
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†
ck

= ��k3,kĉ
†
vk1

ĉ†ck2
ĉvk4 ĉvk0 + ĉ†vk1

ĉ†ck2
ĉvk4 ĉvk0 ĉ†ckĉck3

(B.13)

Acting on the ground state, the last term on the right-hand sight vanishes using the
same argument as for eq. (B.6). The problem is therefore reduced to the following product
of four operators:
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†
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ĉvk4 ĉ
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ck2
� �k3,kĉvk4 ĉ

†
ck2
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(B.14)

Again the last term on the right hand side vanishes using the same argument as for eq.
(B.10). As a consequence, the term 3 acting on |Ψexi takes the following form:

3 |Ψi =
X

k,k0

k1 6=k4X

k1k2k3k4

e2

4⇡"0"rV
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| {z }

B

(B.15)

Given the existing condition on the wavevectors k1 6= k4 the Kronecker symbol �k1,k4 in

the term A implies that this term is null. Regarding the term B we have k1 = k0 and
k3 = k, it can be rewritten as:

B =) �
X

k,k0

X

k2k4

e2

4⇡"0"rV

1

|k0 � k4|
2 �k0�k4,k�k2O(k,k0)ĉ†ck2

ĉvk4 |Ψ0i (B.16)

174



The way the wave-vectors are labeled is completely arbitrary, there is no consequence in
changing the indexes, we choose to operate the following change in two times, first k2  !
k,k4  ! k0 and then k4  ! k1,k2  ! k1. As the result the term B take the following
form:

B =) �
X

k,k0

X

k1k2

e2

4⇡"0"rV

1

|k2 � k0|2
�k2�k0,k1�kO(k1,k2)ĉ

†
ckĉvk0 |Ψ0i (B.17)

If we choose to call k2 � k0 = �q0 and put the parts 1 , 2 and 3 together we have:

1 |Ψi+ 2 |Ψi+ 3 |Ψi = E |Ψi
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Closing (B.18) with the bra hkα,kβ| = hΨ0| ĉ
†
v,kβ

ĉc,kα
gives:
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where we have used the following relation:

hΨ0| ĉ
†
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(B.20)

By changing the variables to the center of mass frame (eq. (2.95) and eq. (2.96)) we get:
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Consequently, we obtain eq. (2.98).
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B.2 Exciton operators commutator :

• Exciton creation operator d̂†0,n =
P

K On
0 (K)ĉ†c,K ĉv,K

• Exciton annihilation operator d̂0,n =
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†
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0,n
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(B.24)
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B.3 Momentum matrix element

We start this section with the commonly used parabolic band model derived in the Kane
model and also used in the more complete Luttinger-Kohn model (Table : B.1).

For a wave vector k not along the z-direction as supposed in the Kane model we need
to use a unitary transformation to find the basis functions in the general coordinate sys-
tem. If the electron wave vector k has a general direction specified by (k, ✓,') in spherical
coordinates:
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Table B.1 – Periodic parts of the band-edge Bloch functions of a tetrahedral point group
symmetry - Kane Model

Symmetry |J,mJi ΨJ,mJ
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k = k sin ✓ cos'x+ k sin ✓ sin'y + k cos ✓z (B.28)

the following transformation may be employed:
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(B.29)

The spherical symmetrical functions maintains its symmetry S(r0) = S(r) since unitary
transformation preserve length. Here the superscript prime (0) means that the new z-axis is
set along the k-direction. Using the previous unitary transformation the band edges wave
functions are as follows:

Conduction bands :

|jS "0i and |jS #0i (B.30)

Heavy-Hole bands :
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Light-Hole bands :
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Spin-orbit split-off bands :
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We compute now the optical momentum matrix element:

pcv = huc|p|uvi = M

= huc|
~

j

@

@x
|uvix+ huc|

~

j

@

@y
|uviy + huc|

~

j

@

@z
|uvi z

(B.37)

For conduction to heavy-hole transitions we obtain Mc�hh as:

⌧

jS "0
�
�
�
�
p

�
�
�
�

3

2
,
3

2

�0
= � [(cos ✓ cos'� j sin')x+ (cos ✓ sin'+ j cos')y � sin ✓z]

⇥ Pxp
2

⌧

jS #0
�
�
�
�
p

�
�
�
�

3

2
,�3

2

�0
= [(cos ✓ cos'+ j sin')x+ (cos ✓ sin'� j cos')y � sin ✓z]

⇥ Pxp
2

⌧

jS "0
�
�
�
�
p

�
�
�
�

3

2
,�3

2

�0
= 0

⌧

jS #0
�
�
�
�
p

�
�
�
�

3

2
,
3

2

�0
= 0

(B.38)

Similarly for conduction to light-hole transitions we obtain Ml�hh as:

⌧
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In those last equations we have defined the Kane parameter P and a momentum matrix

parameter Px as:

P =
~

m0

hjS|pz|Zi =
~

m0

Px

Px = hjS|px|Xi = hjS|py|Y i = hjS|pz|Zi
(B.40)
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To compute this momentum matrix element in the case of bulk or in the case of a
quantum well we need to take an average value for it. For a bulk semiconductor, we take the
average of the momentum matrix element with respect to the solid angle dΩ. For example
with a TE polarization (i.e. the polarization vector of the electric field, e is taken as x) and
for a conduction to heavy hole transition we have :

|e · pcv|
2 =

⌦
|e ·Mc�hh|

2↵ =
1

4⇡

Z π

θ=0

Z 2π

ϕ=0

|x ·Mc�hh|
2 sin ✓d✓d'

=
1

4⇡

Z π

θ=0

sin ✓d✓

Z 2π

ϕ=0

d'(cos2 ✓ cos2 '+ sin2 ')
Px

2

2

=
1

3
Px

2

(B.41)

We obtain the same result for another direction for the electric field (e = y or z) since
bulk crystal is isotropic.

In the case of quantum well, the momentum matrix element is averaged along the
azimuthal angle ' in the plane and will become polarization dependent. We consider a
quantum-well structure with the growth axis along the z-direction. For a TE-polarization
(e = x) and a conduction to heavy hole transition the following momentum matrix element:

|e · pcv|
2 =

⌦
|e ·Mc�hh|

2↵ =
1

2⇡

Z 2π

ϕ=0

|x ·Mc�hh|
2d'

=
1

2⇡

Z 2π

ϕ=0

d'(cos2 ✓ cos2 '+ sin2 ')
Px

2

2

=
1

4
(1 + cos2 ✓)Px

2

(B.42)

The result for the TE-polarization would be the same if we had chosen e = y. In the
case of TM-polarization (e = z) we have:

|e · pcv|
2 =

⌦
|e ·Mc�hh|

2↵ =
1

2⇡

Z 2π

ϕ=0

|z ·Mc�hh|
2d'

=
1

2
sin2 ✓Px

2

(B.43)

The angular factor cos ✓ can be related to the electron or hole wavevector, but at the band
edge, we have ✓ = 0 which gives according to the previous equations a momentum matrix
element null for the TM polarization. This last result is nothing else than the quantum well
selection rule.
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B.4 Evalutation of the scalar product p.E

We aim in this section to evaluate the scalar product [pvc · e
⇤(r, ✓)] for an electronic

transitions involving conduction band electrons and heavy holes. We start the calculation
by expressing pcv at the band edge (eq. (B.38)) 1
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�
�
�
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�
�
�
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3

2
,
3

2

�0
= � Pxp

2
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2
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�e�jθx� je�jθy
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jS #0
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�
�
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,�3

2

�0
=
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2
[(cos ✓ + j sin ✓)x+ (sin ✓ � j cos ✓)y]

=
Pxp
2

⇥
ejθx� jejθy

⇤

(B.44)

We write now the expression of the 2D electric field Ẽm,p(r, ✓) (in the plane of the QW)
in cartesian coordinates using equations (2.40) and (2.49):

Ẽm,p(r, ✓) =E0�m,p
xp
2

⇥
Jm�1(�m,pr)e

�j(m�1)θ + Jm+1(�m,pr)e
�j(m+1)θ

⇤

+E0�m,p
jyp
2

⇥
Jm+1(�m,pr)e

�j(m+1)θ � Jm�1(�m,pr)e
�j(m�1)θ

⇤ (B.45)

Using pvc = p⇤
cv, we can express the scalar product for the case involving the band |3

2
, 3
2
i:
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⇤
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(B.46)

Similarly, we found for the case involving the band |3
2
,�3

2
i:

pvc · Ẽ
⇤
m,p(r, ✓) = PxE0�m,pJm+1(�m,pr)e

jmθ = PxẼ
⇤
m,p,�e

�jθ (B.47)

A priori, the electron participating in the transition can be in the two valence bands
(having a different orbital momumtum), we construct a general state as follows:

1. Note that in this section we change the name of the angle ϕ, commonly use in spherical coordinates
by θ, its counterpart in cylindrical coordinates.
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The wavefunction should be anti-symmetric, hence the “-” between the states. For the
conduction band the electron has only one choice an will be in the |Si state. The scalar
product [pvc · e

⇤(r, ✓)] is therefore given by:

pvc · Ẽ
⇤
m,p(r, ✓) = ±

Pxp
2
(Ẽ⇤

m,p,+e
jθ + Ẽ⇤

m,p,�e
�jθ) (B.49)

By injecting this last expression into (2.167) we obtain equation (2.170).

B.5 Optoelectronical coupling in the MQW case

In this section, we present a simple demonstration of the optoelectronical coupling in
the case of a MQW structure, with NQW the number of QW, and where each individual
QW possesses a different coupling to the electromagnetic field. For the sake of clarity we
consider here the case where NQW = 3. The demonstration remains valid for an arbitrary
number of QW. The interaction Hamiltonian of a such system is given by:

Ĥint = g1

⇣

â†d̂1 + âd̂†1

⌘

+ g2

⇣

â†d̂2 + âd̂†2

⌘

+ g3

⇣

â†d̂3 + âd̂†3

⌘

(B.50)

where â/â† are the bosonic operator for the electromagnetic field and d̂i/d̂
†
i the bosonic op-

erators for the exciton in the ith QWwith a coupling to the electromagnetic field parametrized
by gi. We consider the first QW to have an optimized coupling to the electromagnetic field,
and serve us as a reference (g1 > g2, g3). We define a new operator for the bright mode
involving the 3 different QW:

D̂ =
1

q

1 +
g22
g21

+
g23
g21

✓

d̂1 +
g2
g1
d̂2 +

g3
g1
d̂3

◆

(B.51)

This last operator obeys to the usual bosonic commutation relation
h

D̂, D̂†
i

= 1. Con-

sequently the interaction Hamiltonian of the system now reads:

Ĥint = g1â
†

✓

d̂1 +
g2
g1
d̂2 +

g3
g1
d̂3

◆

+ g1â

✓

d̂†1 +
g2
g1
d̂†2 +

g3
g1
d̂†3

◆

Ĥint = g1

s

1 +
g22
g21

+
g23
g21

⇣

â†D̂ + âD̂†
⌘

= G
⇣

â†D̂ + âD̂†
⌘

(B.52)

The system behaves like in the single QW case, but with a new coupling characterized
by the coupling factor G.
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Appendix C

Material properties and Bir Pikus
Hamiltonian

C.1 Binary alloys material properties

GaAs AlAs InAs
Structural properties

a (Å) 5.6532 5.6611 6.0583
⇢ (kg.m�3) 5317 3730 5667

Electronic Properties
EΓ

g (eV) 1.42 (1.516) 2.163 (2.239) 0.360 (0.42)
m⇤

c/m0 0.067 0.15 0.026
m⇤

hh/m0 0.5 0.47 0.42
m⇤

lh/m0 0.081 0.185 0.026
Elastic Properties

E (GPa) 85.9 82.2 51.4
� 0.312 0.324 0.352

C11 (GPa) 122.1 125.0 83.29
C12 (GPa) 56.6 53.4 45.26
C44 (GPa) 60 54.2 39.59

Deformation Potential
ac (eV) �7.17 �5.64 �5.08
av (eV) 1.16 2.47 1.00
b (eV) �2.0 �2.3 �1.8
d (eV) �4.8 �3.4 �3.6

Table C.1 – Binary alloys parameters at room temperature. The parameters are taken
from [201, 332–338] or from COMSOL material library. For the energy gap EΓ

g , the values
between parenthesis are taken at 3K
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C.2 Ternary alloys material properties

To compute the parameters for ternary alloys we use Vegard’s law in a quadratic form
with bowing parameter :

K(A1�xBxC) = (1� x)K(AC) + xK(BC)� x(1� x)Kbow (C.1)

where K represents a physical parameter and Kbow a bowing parameter that arises from
the increasing disorder generated by the alloying.

Al0.8Ga0.2As Al0.2Ga0.8As In0.05Ga0.95As In0.13Ga0.87As
Structural properties

a (Å) 5.6585 5.6548 5.6735 5.7059
⇢ (kg.m�3) 4047 4999 5345 5362

Electronic properties
EΓ

g (eV) 1.87 1.54 1.34 1.23
m⇤

c/m0 0.13 0.08 0.064 0.061
m⇤

hh/m0 0.476 0.49 0.503 0.506
m⇤

lh/m0 0.16 0.10 0.077 0.071
Elastic properties

E (GPa) 82.9 85.2 84.2 81.4
� 0.322 0.314 0.314 0.317

C11 (GPa) 124.4 122.7 120.2 117.1
C12 (GPa) 54.04 55.96 56.03 55.12
C44 (GPa) 55.36 58.84 58.98 57.35

Deformation potential
ac (eV) �5.95 �6.86 �7.19 �7.19
av (eV) 2.21 1.42 1.15 �1.14
b (eV) �2.24 �2.06 �1.99 �1.83
d (eV) �3.68 �4.52 �4.74 �4.64

Table C.2 – Ternary alloys band parameters, computed with Vegard’s law, bowing parame-
ters are from [334]

C.3 Bir-Pikus Hamiltonian

Bir-Pikus Hamiltonian [79] is an extension of the Luttinger-Kohn Hamiltonian taking
into account the effect of strain on the electronic band structure, its expression is given
below :
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where the various parameters are defined by :
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(C.3)
�1, �2 and �3 are the Luttinger parameters derived from matrix elements between various

bands and experimentally measured [199]. They notably take into account the influence of
other electronic bands (remote bands) that are not represented in the theory. This last
Hamiltonian only represents the valence bands, by including the conduction band, another
similar Hamiltonian (8 ⇥ 8) can be derived [126]. A more complex model that takes into
consideration strain effect on the conduction band with respect to the valence band can be
derived [339], but in the limit of large band gaps like in GaAs, the Bir-Pikus Hamiltonian
grasps all the relevant subtleties.

To that extent the evolution of the transition (C-HH) and (C-LH) for a biaxial strain
are given by:

EC�HH(k = 0) = Eg + (ac � av)("xx + "yy + "zz)�
b

2
("xx + "yy � 2"zz)

EC�HH(k = 0) = Eg + (�Ec
hyd + �Ev

hyd) +
1

2
�Esh

(C.4)

EC�LH(k = 0) = Eg + (ac � av)("xx + "yy + "zz) +
b

2
("xx + "yy � 2"zz)

EC�LH(k = 0) = Eg + (�Ec
hyd + �Ev

hyd)�
1

2
�Esh

(C.5)

where we have defined �E
c/v
hyd = ±(ac/v)("xx+ "yy + "zz) the hydro-static energy shift and

1
2
�Esh = � b

2
("xx + "yy � 2"zz) the shear energy shift. These last energy shifts are illustrated

in figure C.1.
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Figure C.1 – Sketch representing the impact of the built-in strain on the electronic bands
when an over-layer is built on top of a substrate with a different lattice parameters. Biaxial
strain case : the wafer is grown along the (001) direction. Blue curve: Conduction band -
Green curve: Heavy holes band - Green dashed curve: Light holes band.
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et al. Optomechanical resonating probe for very high-frequency sensing of atomic
forces. Nanoscale, 12(5):2939–2945, 2020. 1, 2

[19] Wenyan Yu, Wei C Jiang, Qiang Lin, and Tao Lu. Cavity optomechanical spring
sensing of single molecules. Nature communications, 7(1):1–9, 2016. 1

[20] Eduardo Gil-Santos, Jose J Ruz, Oscar Malvar, Ivan Favero, Aristide Lemâıtre, Priscila
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Suffit, Pascal Filloux, ARISTIDE Lemâıtre, Ivan Favero, and GIUSEPPE Leo. Fre-
quency doubling and parametric fluorescence in a four-port aluminum gallium arsenide
photonic chip. Optics letters, 45(10):2878–2881, 2020. 3, 156, 159

[64] Dmitry V Strekalov, Abijith S Kowligy, Yu-Ping Huang, and Prem Kumar. Optical
sum-frequency generation in a whispering-gallery-mode resonator. New Journal of
Physics, 16(5):053025, 2014. 3

[65] DW Vernooy, A Furusawa, N Ph Georgiades, VS Ilchenko, and HJ Kimble. Cavity
qed with high-q whispering gallery modes. Physical Review A, 57(4):R2293, 1998. 3

[66] A Schliesser and TJ Kippenberg. Cavity optomechanics with whispering-gallery-mode
microresonators. In Cavity Optomechanics, pages 121–148. Springer, 2014. 3

[67] Christopher Baker, William Hease, Dac-Trung Nguyen, Alessio Andronico, Sara Ducci,
Giuseppe Leo, and Ivan Favero. Photoelastic coupling in gallium arsenide optomechan-
ical disk resonators. Optics express, 22(12):14072–14086, 2014. 3

[68] C Weisbuch, R Dingle, AC Gossard, and W Wiegmann. Optical characterization of
interface disorder in GaAs-Ga1�xAlxAs multi-quantum well structures. Solid State
Communications, 38(8):709–712, 1981. 3, 97

191



[69] JJ Hopfield. Theory of the contribution of excitons to the complex dielectric constant
of crystals. Physical Review, 112(5):1555, 1958. 3, 16, 17

[70] E Wertz, A Amo, DD Solnyshkov, L Ferrier, Timothy Chi Hin Liew, D Sanvitto,
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PhD thesis, Université Paris-Saclay, 2020. 98

[225] Benjamin Besga, Cyril Vaneph, Jakob Reichel, Jérôme Estève, Andreas Reinhard,
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[252] R Houdré, C Weisbuch, RP Stanley, U Oesterle, P Pellandini, and M Ilegems. Mea-
surement of cavity-polariton dispersion curve from angle-resolved photoluminescence
experiments. Physical Review Letters, 73(15):2043, 1994. 115

203



[253] HJ Carmichael, RJ Brecha, MG Raizen, HJ Kimble, and PR Rice. Subnatural
linewidth averaging for coupled atomic and cavity-mode oscillators. Physical Review
A, 40(10):5516, 1989. 116

[254] Lucio Claudio Andreani, Giovanna Panzarini, and Jean-Michel Gérard. Strong-
coupling regime for quantum boxes in pillar microcavities: Theory. Physical Review
B, 60(19):13276, 1999. 116

[255] V Savona and C Weisbuch. Theory of time-resolved light emission from polari-
tons in a semiconductor microcavity under resonant excitation. Physical Review B,
54(15):10835, 1996. 117

[256] T-D Lee, P-H Cheng, J-S Pan, R-S Tsai, Y Lai, and K Tai. Far-field emission narrowing
effect of microdisk lasers. Applied physics letters, 72(18):2223–2225, 1998. 119

[257] M Balasubrahmaniyam, Cyriaque Genet, and Tal Schwartz. Coupling and decoupling
of polaritonic states in multimode cavities. Physical Review B, 103(24):L241407, 2021.
121, 122

[258] Steffen Richter, Tom Michalsky, Lennart Fricke, Chris Sturm, Helena Franke, Marius
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[261] F Réveret, P Disseix, J Leymarie, A Vasson, F Semond, and M Leroux. Influence
of optical confinement and excitonic absorption on strong coupling in a bulk GaN
microcavity grown on silicon. Superlattices and Microstructures, 52(3):541–551, 2012.
122

[262] Jacqueline Bloch, R Planel, V Thierry-Mieg, JM Gérard, D Barrier, JY Marzin, and
E Costard. Strong-coupling regime in pillar semiconductor microcavities. Superlattices
and microstructures, 22(3):371–374, 1997. 122
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[276] A. Lemâıtre R. De Oliveira, M. Colombano and I. Favero. Quantum well exciton-
polaritons in a whispering gallery mode semiconductor microcavity. in prepraration.
128, 129, 159

[277] F. Tassone, C. Piermarocchi, V. Savona, A. Quattropani, and P. Schwendimann.
Bottleneck effects in the relaxation and photoluminescence of microcavity polaritons.
Phys. Rev. B, 56:7554–7563, Sep 1997. 134

[278] F Tassone and Y Yamamoto. Exciton-exciton scattering dynamics in a semicon-
ductor microcavity and stimulated scattering into polaritons. Physical Review B,
59(16):10830, 1999. 134

205



[279] Alexey Kavokin and Guillaume Malpuech. Cavity polaritons. Elsevier, 2003. 134

[280] AI Tartakovskii, M Emam-Ismail, RM Stevenson, MS Skolnick, VN Astratov,
DM Whittaker, Jeremy J Baumberg, and JS Roberts. Relaxation bottleneck and
its suppression in semiconductor microcavities. Physical Review B, 62(4):R2283, 2000.
134
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Albert Einstein: Akademie-Vorträge: Sitzungsberichte der Preußischen Akademie der
Wissenschaften 1914–1932, pages 245–257, 2005. 135

[287] Satyendra Nath Bose. Plancks gesetz und lichtquantenhypothese. 1924. 135

[288] Allan Griffin, David W Snoke, and Sandro Stringari. Bose-einstein condensation.
Cambridge University Press, 1996. 135

[289] Mike H Anderson, Jason R Ensher, Michael R Matthews, Carl E Wieman, and Eric A
Cornell. Observation of Bose-Einstein condensation in a dilute atomic vapor. science,
269(5221):198–201, 1995. 135

[290] Hui Deng, Hartmut Haug, and Yoshihisa Yamamoto. Exciton-polariton bose-einstein
condensation. Reviews of modern physics, 82(2):1489, 2010. 135

[291] G Rochat, C Ciuti, V Savona, C Piermarocchi, A Quattropani, and P Schwendimann.
Excitonic Bloch equations for a two-dimensional system of interacting excitons. Phys-
ical Review B, 61(20):13856, 2000. 135
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Résumé détaillé en français

Ce manuscrit de thèse présente les différents résultats de notre travail théorique et expe-
rimental portant sur les systèmes d’optomécanique quantiques hybrides. L’optomécanique
hybride représente une sous-branche de l’optomécanique, où vient s’ajouter en complément
d’un système optique et mécanique, un troisième objet quantique, représentant de nouveaux
degrés de liberté supplémentaires. Nous nous sommes tout particulièrement intéressés ici
au couplage d’une structure de type puit quantique à un système optomécanique constitué
d’un disque en Arséniure de Gallium (GaAs), un système optomécanique de cavité dont la
fabrication et la technologie sont maitrisées dans notre groupe depuis plusieurs années.

Une nouvelle phénoménologie émerge de ce couplage, notamment avec l’apparition d’un
nouveau type de boson : l’exciton. Ce dernier est le résultat d’une excitation élémentaire du
puit quantique et vient se coupler aux photons et phonons déjà présents en optomécanique
traditionnelle. Le modèle théorique associé à ce nouveau système à trois pôles, prévoit dans
un régime de couplage fort entre les photons et les excitons, la création d’un nouveau type
de quasi-particule : les polaritons. Ces polaritons possédant une nature à la fois photonique
et électronique, se couplent aux phonons créant ainsi un système optomécanique hybride.

Les trois premiers chapitres de ce manuscrit définissent le cadre théorique, les différents
paramètres physiques propres à notre système ainsi que les méthodes expérimentales uti-
lisées pendant cette thèse. Les deux derniers chapitres présentent les principaux résultats
expérimentaux originaux obtenus pendant ce doctorat.

Nous introduisons dans le chapitre 1 les systèmes optomécaniques hybrides à puit quan-
tique. Nous commençons par présenter un système optomécanique traditionnel ainsi que le
cadre théorique nécessaire pour décrire la physique en jeu. L’Hamiltonien général d’une
cavité optomécanique de type Fabry-Pérot, composée d’un résonateur optique avec un mi-
roir mobile est décrit. Afin de tenir compte de la dissipation, autrement dit, des différentes
inéluctables pertes optiques et mécaniques dues au couplage du système avec son environ-
nement, nous présentons des Hamiltoniens de couplage du système à des bains thermiques.

En écrivant les équations de Langevin quantiques en régime linéarisé, nous exposons
deux applications potentielles du couplage optomécanique : le refroidissement et l’amplifi-
cation du mouvement mécanique. Nous en profitons pour introduire une grandeur phare en
optomécanique : la coopérativité, un paramètre sans dimension, definit par le ratio entre la
valeur du couplage optomécanique au carré et les le produits des taux de dissipations du
système (optique et mécanique). Ce paramètre traduit la capacité du système à transférer

211



une énergie optique en énergie mécanique (et inversement), avant que les phénomènes de
dissipation prennent l’avantage. En d’autres termes la coopérativité représente le niveau de
contrôle que l’on possède sur le résonateur optomécanique.

Nous passons brièvement en revue l’ensemble des paramètres impliqués dans les résonateurs
optomécanique. En particulier, il est toujours interessant de maximiser la valeur du couplage
optomécanique et de minimiser la valuers des différentes source de dissipation du système, et
par conséquent augmenter la valeur de la coopérativité. La stratégie retenue dans ce manus-
crit consiste principalement à augmenter la valeur du couplage optomécanique, en utilisant
une approche hybride.

Avant d’introduire l’Hamiltonien d’un système optomécanique hybride, nous traitons
tout d’abord le régime de couplage fort entre exciton et photon, grâce au modèle de Hop-
field. Nous décrivons les nouveaux états propres du système dans ce régime, ainsi que les
énergies propres qui y sont associées. Nous définissons aussi la notion de fraction excitonique
et fraction photonique qui décrivent le comportement du polariton. Enfin, nous présentons
une formulation théorique du système hybride complet où, photons, phonons et excitons sont
tous en interaction. L’Hamiltonien de ce triple système peut être ré-exprimé dans la base des
polaritons. On obtient alors un système d’équation pour les opérateurs polaritoniques qui
prend la même forme que l’Hamiltonien optomécanique usuel. Le couplage des polaritons à
la mécanique est alors pondéré par les fractions excitonique et photonique. Le couplage des
excitons à la mécanique pouvant être jusqu’à trois ordres de grandeur supérieur à celui des
photons, l’interaction des polaritons avec les phonons est en conséquence accrue par rapport
à l’optomécanique standard. Une situation où les valeurs de la coopérativité peuvent s’en-
voler avec des effets bénéfiques pour certaines applications de l’optomécanique.

Le chapitre 2 présente de façon plus détaillée tous les paramètres physiques relatifs
à notre système optomécanique hybride : un disque en GaAs avec une structure compor-
tant plusieurs puits quantiques à base d’Arséniure d’Indium-Gallium (InGaAs). Nous com-
mençons ce chapitre par la description des modes optiques de notre cavité : des modes “chu-
chotements de galerie” (Whispering Gallery Modes - WGMs en anglais). Nous présentons
une méthode analytique qui permet d’obtenir la distribution spatiale ainsi que l’énergie
des différents modes électromagnétiques. Nous comparons ces résultats à ceux obtenus par
simulation numérique sur un logiciel d’analyse par éléments finis (COMSOL).

Dans un second temps nous traitons les modes mécaniques de notre système et plus
particulièrement nous nous intéressons à la famille des modes radiaux de respiration (Radial
Breathing Modes - RBMs en anglais). Nous procédons de la même façon, nous introduisons
un modèle analytique et nous comparons les résultats obtenus grâce au logiciel COMSOL.

Nous nous occupons ensuite du dernier type de bosons présents dans le système : les
excitons. Nous débutons par le cas des semi-conducteurs massifs (bulk en anglais) et nous
traitons le cas d’un puit quantique dans un second temps. Le cas d’un puit quantique à
symétrie cylindrique présent par construction dans notre résonateur, vient clore cette partie.
La fonction d’onde de l’exciton arbore alors une géométrie similaire à celle des modes de
galerie optiques.

Une fois que les modes photoniques, phononiques et excitoniques ont été proprement
introduits nous calculons leurs couplages respectifs. En ce qui concerne le couplage op-
tomécanique nous employons une méthode purement numérique (logiciel COMSOL). Pour
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les deux autres couplages (opto-éléctronique et electro-mécanique) restants nous présentons
des modèles analytiques reposant sur des descriptions Hamiltoniennes. Ces deux dernières
quantités prennent la forme d’une intégrale de recouvrement entre la fonction d’onde et
le profil de déformation/le champs électrique pour le couplage electro-mécanique/opto-
éléctronique. Nous calculons ces deux facteurs de couplage en fonction des différent pa-
ramètre du système.

Le chapitre 3 passe en revue les différentes techniques expérimentales utilisées lors de
cette thèse. Nous présentons tout d’abord brièvement le montage expérimental comprenant
notamment un cryostat à tube pulsé, différentes sources laser, ainsi qu’une station photo-
nique permettant de sonder avec plusieurs configurations notre système.

En second lieu, nous expliquons les différents points clefs du design de l’échantillon.
Nous insistons notamment sur la lecture des modes optiques et le couplage évanescent du
disque à des guides suspendus. Ces guides, par l’intermédiaire de fibres optiques micro-
lentillées nous permettront d’extraire l’information optique. Cette optimisation du couplage
et du guide d’onde est présentée pour deux gammes de longueur d’onde différentes : la
gamme des longueurs d’onde telecom (1500 -1630 nm) traditionnellement utilisée pour les
technologies à base de GaAs et une gamme de longeur d’onde proche de l’énergie de transition
du puit quantique et donc de l’exciton (800-900 nm). Nous listons également les différentes
sources de pertes optiques propres à notre système. Concernant le design des puits quantiques
plusieurs caractéristiques sont à prendre en compte notamment la composition et la taille.
La présence de matériaux possédant des paramètres de maille légèrement différents entrâıne
l’apparition de contrainte mécanique sur la structure du résonateur. Nous terminons cette
discussion par un commentaire sur la largeur inhomogène de l’exciton. Un phénomène qui
augmente la dissipation des excitons et par extension des polaritons. Cet élargissement a pour
conséquence de limiter le boost de coopérativité obtenu par l’intervention des polaritons.

Dans un dernier temps, nous énumérons les diverses techniques de nano-fabrication de
l’échantillon en salle blanche, nous mettons l’accent sur la minutie et la précision dont on
doit faire preuve à chacune des étapes de fabrication.

Le chapitre 4 traite principalement de l’observation expérimentale du régime de cou-
plage fort exciton-photon dans notre système. Nous parcourons d’abord les différentes at-
tentes en terme de spectres optiques et de resultats que l’on peut obtenir pour l’observation
des polaritons dans notre système. En particulier, notre système possède plusieurs modes
optiques capables de se coupler aux excitons ce qui raisonnablement nous conduit à l’exis-
tence de plusieurs branches polaritoniques. De plus, nous constatons dans notre système
une absence de signaux provenant des branches dites “hautes” ( Upper Polariton - UP en
anglais ), un phénomène qui peut s’expliquer par de diverses raisons. En conséquence, nous
observons uniquement des signaux provenant de l’exciton et des branches dites “basses” (
Lower Polariton - LP en anglais ).

Afin de prouver la nature polaritonique des signaux observés, nous devons reconstruire la
courbe de dispersion de ces derniers en fonction de la différence d’énergie entre modes de ca-
vité et excitons. Pour modifier cette quantité, nous utilisons la température, une élévation en
température provoquant un double décalage en énergie des modes de galerie et de l’exciton.
L’évolution de l’énergie des différents signaux observés est comparée au modèle théorique
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d’Hopfield et nous permet de conclure sur le caractère polaritonique. Grâce à cette procédure,
nous pouvons extraire la valeur du couplage entre exciton et photon, que nous comparons
à notre modèle théorique. Une discussion sur les phénomènes observés à haut pompage op-
tique vient clore ce chapitre. Pour un pompage à haute puissance optique des régimes de
laser à polaritons ou à photon apparaissent.

Le dernier chapitre (chapitre 5) porte sur les premières expériences d’optomécanique
réalisées sur ce type de résonateur. Nous présentons notamment des résultats d’auto-oscillation
dans la gamme des longueurs d’onde télécom. Les observations que nous faisons sont cohérentes
avec celles effectuées sur un système composé d’un simple disque en GaAs (système non
hybride) à quelques différences près. À savoir que le rôle des porteurs de charges libres
diffère dans notre système principalement à cause de la présence du puit quantique. Des
phénomènes de photo-luminescence liés à l’absorption à deux photons de la matrice GaAs
sont observés ainsi que des signatures d’instabilité optique. Nous présentons dans un second
temps, les différentes perspectives pour notre système comme la réalisation d’experience
d’optomécanique avec des polaritons, la réalisation d’expérience à deux longueurs d’onde
différent ou encore la génération d’une particule hybride polariton-phonon : les phonoritons.

Mots-clefs : Optomécanique, polariton de cavité, couplage fort, mode de galerie, cavité
optique, mode de respiration, puit quantique, exciton, potentiel de déformation, cryogénie,
couplage evanescent, guide d’onde, photonique intégrée, GaAs, AlGaAs, InGaAs, nanofabri-
cation, auto-oscillation.
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