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Abstract
The global objective of this research is to develop a system that provides infor-
mation about sources and events influencing the temporal variation of indoor air
pollutants, in order to optimize the action to be taken to reduce the exposure of
the occupants. This study investigated a typical indoor air database obtained via
a monitoring campaign performed in a real open-plan office. Indoor and outdoor
pollutant concentrations and climatic parameters, occupancy and openings’ sta-
tus were recorded over a long period and with a fine time step. Inverse modeling
based mainly on statistical analysis and machine learning has been performed in
order to achieve the two main objectives: (i) the identification of indoor sources
(processes) explaining the variation of indoor particulate matter concentrations,
and (ii) the development of a predicting model for window opening action in the
open-plan office.

In the first part, the identification of the pollutant sources and their relative con-
tributions to the levels of indoor air particle concentrations has been achieved
by a tensor decomposition method called PARAFAC (Harshman, 1970). This
method can cope with data arrays of a high number of dimensions. The analyzed
tensors corresponded to different combinations of parameters monitored in the
open-plan office or outdoors. The different configurations always included size-
resolved particle data and, sometimes, other environmental parameters in two
different cases: monitored indoors or, indoors and outdoors simultaneously; in
addition, the tensor structures were arranged according to daily and hourly pro-
files. PARAFAC outputs were analyzed in terms of sources using complementary
data analysis and signal treatment methods. The method allowed to determine
the relative contributions of the identified sources and the attributable concentra-
tion at a given time. The identification model created by PARAFAC can be inte-
grated in a real-time system to provide information about the pollutant sources at
a given moment, helping to take decisions in order to avoid high pollution levels.

The second part of this thesis is dedicated to the prediction of the opening state
of a group of windows in the open-plan office. Three machine learning meth-
ods: Decision Trees, k-Nearest Neighbors and Kernel Approximation have been
implemented. To select the appropriate set of features for the model’s input, the
autocorrelation functions of the different variables and the predictor importance
estimates were calculated. Validation tests were performed to compare the out-
puts of themodels and themeasuredwindows statesmonitored during 18months
in the office. According to the different evaluation indicators, the results show that
all the three models perform well with the testing sets. The developed methods
can be helpful for understanding occupants’ behavior and also for controlling in-
door air pollutant levels in buildings, either as a standalone model or a part of a
real-time indoor air quality monitoring system.
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Résumé

L’objectif global de cette recherche est de développer un système qui fournit des
informations sur les sources et les événements influençant la variation temporelle
des polluants de l’air intérieur, afin d’optimiser les actions à entreprendre pour ré-
duire l’exposition des occupants. Cette étude a exploré une base de données typ-
ique pour la qualité de l’air intérieur dans un bureau paysager, obtenue via une
campagne de mesure. Les concentrations de polluants intérieurs et extérieurs et
les paramètres climatiques, l’occupation et l’état des ouvrants ont été enregistrés
sur une longue période et avec un pas de temps fin. Une modélisation inverse
basée principalement sur l’analyse statistique et l’apprentissage automatique a
été réalisée afin d’atteindre les deux objectifs principaux : (i) l’identification des
sources intérieures (processus) expliquant la variation des concentrations de par-
ticules à l’intérieur, et (ii) le développement d’un modèle de prédiction de l’action
d’ouverture des fenêtres dans le bureau paysager.

Dans la première partie, l’identification des sources de polluants et de leurs contri-
butions relatives aux niveaux de concentrations de particules dans l’air intérieur
a été réalisée par une méthode de décomposition tensorielle appelée PARAFAC
(Harshman, 1970). Cette méthode permet de traiter des tableaux de données de
grandes dimensions. Les tenseurs analysés correspondent à différentes combi-
naisons des paramètres mesurés à l’intérieur du bureau paysager ou à l’extérieur
de l’immeuble. Les différentes configurations comprennent toujours des don-
nées sur la granulométrie des particules et, parfois, d’autres paramètres environ-
nementaux dans deux cas : mesurés à l’intérieur ou à l’intérieur et à l’extérieur
du bureau simultanément ; de plus, les structures tensorielles sont organisées
selon des profils journaliers et horaires également. Les sorties de PARAFAC ont
été analysées en termes de sources en utilisant des méthodes complémentaires
d’analyse des données et de traitement du signal. Cette méthode a permis de
déterminer les contributions relatives des sources identifiées et leur concentration
attribuable à un moment donné. Le modèle d’identification créé par PARAFAC
peut être intégré dans un système en temps réel pour fournir des informations sur
les sources de polluants à un moment donné, aidant ainsi à la prise de décision
pour éviter des niveaux élevés de pollution.

La deuxième partie de la thèse est dédiée à la prédiction de l’état d’ouverture
d’un groupe de fenêtres dans le bureau paysager. Trois méthodes d’apprentissage
automatique : Decision Trees, k-Nearest Neighbors et Kernel Approximation ont
été mises en œuvre. Pour sélectionner l’ensemble le plus approprié de caractéris-
tiques à utiliser comme entrées du modèle, les fonctions d’autocorrélation des
différentes variables et les estimations de l’importance des prédicteurs ont été cal-
culées. Des tests de validation ont été effectués pour comparer les sorties des
modèles et les états mesurés des fenêtres mesurés pendant 18 mois dans le bu-
reau. Selon les différents indicateurs d’évaluation, les résultats montrent que les
trois modèles sont performants sur les ensembles de test. Les méthodes dévelop-
pées peuvent être utiles pour comprendre le comportement des occupants et aussi
pour contrôler les niveaux de polluants de l’air intérieur dans les bâtiments, soit
en tant que modèle autonome, soit comme partie intégrante d’un système de con-
trôle de la qualité de l’air intérieur en temps réel.
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Introduction

According to the World Health Organization (WHO), humans spend more than
90 percent of their time indoors (U.S. Environmental Protection Agency, 1989).
People work in offices, study at schools, stay at home or inside shopping malls, or
travel inside vehicules. They are constantly exposed to contaminants from both
outdoor and indoor sources when they are indoors. Due to the lock-down during
the COVID-19 health crisis leading to a restrictedmovement, working from home,
people spent even more time indoors.

Indoor air pollutants can have a variety of consequences on people’s health, such
as: skin irritation, nausea, headache, respiratory disorders, neurological prob-
lems, the development of some tumors, etc (Catelinois et al., 2006; Fisk et al.,
2010; Jones, 1999; Sundell, 2004). Indoor air quality has also an effect on school
and work performance, and hence productivity. According to the WHO’s global
statistics, the costs to the economy from poor IAQ in France are predicted to be
between 12.8 and 38.4 billion euros per year (Kirchner et al., 2011). Indoor Air
Quality (IAQ) has now become a public health concern and an essential research
topic.

IAQ modeling is a big challenge, due to the high complexity of the underlying
phenomena. An indoor environment is a microenvironment consisting in a com-
plex volume, due to its distinctive form, its numerous and fluctuating through
time, the diverse nature of pollutant transfers, and the physicochemical reactions
that might occur inside. Modeling such a system needs to have an inventory of
sources, characterize their emissions, then, highlight the transformation of emis-
sions, taking into account the influence of a variety of factors (climate, building
specificities, occupation and activity of the inhabitants) in order to retrieve the
concentrations that occur at a particular time and location.

These phenomena, starting from emissions, up to concentrations, should be mod-
eled by partial differential equations which do not admit an analytical solution, or
by a simplistic model if different assumptions are made. In this case, the transfor-
mations are addressed following the natural path of emissions to pollutant con-
centrations. There is a second way of modeling, using the concentrations (the
effect) as the starting point, called inverse modeling, by contrast with the direct
modeling starting from the cause (sources) to effects (pollutant concentrations in
the air) .

According to the research aim, direct or inverse modeling can be required. The
global objective of this research is to develop a system that provides information
about sources and events influencing the temporal variation of indoor air pollu-
tants, in order to optimize the action to be taken to reduce the exposure of the
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occupants. This study investigated a typical indoor air database obtained via a
monitoring campaign performed in a real open-plan office. Indoor and outdoor
pollutant concentrations and climatic parameters, occupancy and openings’ sta-
tus were recorded over a long period and with a fine time step. Inverse modeling
based mainly on statistical analysis and machine learning has been performed in
order to achieve the two main objectives: (i) the identification of indoor sources
(processes) explaining the variation of indoor particulate matter concentrations,
and (ii) the development of a predicting model for window opening action in the
open-plan office.

In the first part, the identification of the pollutant sources and their relative contri-
butions to the levels of indoor air particle concentrations has been achieved by a
tensor decomposition method called PARAFAC. This method can cope with data
arrays of a high number of dimensions. The analyzed tensors corresponded to
different combinations of parameters monitored in the open-plan office or out-
doors. The different configurations always included size-resolved particle data
and, sometimes, other environmental parameters in two different cases: moni-
tored indoors or, indoors and outdoors simultaneously; in addition, the tensor
structures were arranged according to daily and hourly profiles. PARAFAC out-
puts were analyzed in terms of sources using complementary data analysis and
signal treatment methods. The method allowed to determine the relative contri-
butions of the identified sources and the attributable concentration at a given time.
The identification model created by PARAFAC can be integrated in a real-time
system to provide information about the pollutant sources at a given moment,
helping to take decisions in order to avoid high pollution levels.

The second part of this thesis is dedicated to the prediction of the opening state
of a group of windows in the open-plan office. Three machine learning meth-
ods: Decision Trees, k-Nearest Neighbors and Kernel Approximation have been
implemented. To select the appropriate set of features for the model’s input, the
autocorrelation functions of the different variables and the predictor importance
estimates were calculated. Validation tests were performed to compare the out-
puts of themodels and themeasuredwindows statesmonitored during 18months
in the office. According to the different evaluation indicators, the results show that
all the three models perform well with the testing sets. The developed methods
can be helpful for understanding occupants’ behavior and also for controlling in-
door air pollutant levels in buildings, either as a standalone model or a part of a
real-time indoor air quality monitoring system.

In order to present the approach developped to reach these objectives, the thesis
is organized in eight chapters. The first chapter introduces the problem of indoor
air quality, the phenomena that govern it, the impact on the humans’ health and
present the characteristic of the indoor environments.

Then, the second chapter describes the study case (the open-plan office) and the
available data (pollutants’ concentration, climatic, occupancy and opening status);
the influence of occupancy and openings is highlighted.

After these two chapters containing general information about our study, the rest



3

of the thesis is divided in two main parts: (1) Source Identification and (2) Fore-
casting of the window opening state. Each part includes three chapters, which are
organized, in order: Literature review, Method, Results and Discussion.

The first original contribution of this thesis lies precisely in chapter 3. This chap-
ter begins with a literature review about blind source separation (BSS) in general,
followed by a short presentation of source separations methods in the environ-
mental field. A brief information on several common BSS methods is also pre-
sented, followed by some studies concerning the application of source separation
in outdoor and indoor environments. The application of BSS methods to the Par-
ticulate Matter (PM) source apportionment in environments and especially in an
open-plan office is also included in this subsection. Finally, discussions about the
advantages and disadvantages of different BSS methods and the reason for select-
ing PARAFAC is indicated. The selection PARAFAC to determine the sources of
variability in the pollutant time series is a first original point of this thesis.

Chapter 4 presents the selected method, PARAFAC, for our blind source sepa-
ration process. The general outline of this chapter is: data pre-processing for
PARAFAC, the mathematical equations for calculating the final sources profiles
and contributions and the method implementation. Some complementary data
analysis is performed in order to better understand the database. Different anal-
yses on the impact of the presence of occupants and windows opening on the
measured concentrations of fine and coarse particles are provided. Then, the de-
tailed PARAFAC implementation procedure is introduced with more detailed in-
formation about input data preprocessing, structuring and choosing the number
of components. Data structuring in a tensor, in different combinations, consists
also an originality of this study.

Chapter 5 presents four study cases with different structures of input data and
the corresponding output results using PARAFAC. Other data analysis or signal
processing methods were used to help the source identification and to explain
the variation of each source obtained by PARAFAC. In the end of the chapter, the
results are discussed and some elements are given to conclude this analysis.

Regarding the second part of the thesis, Chapter 6 presents a literature review of
different models predicting the windows opening state. The reason whywe chose
three machine learning models: Decision Trees, k-NN classification and kernel
approximation (SVM kernel) is presented.

Detailed information about three chosen ML classification methods is introduced
in the chapter 7. Themethods’ implementation and the results are presented in the
next chapter (chapter 8) where supplementary information about Autocorrelation
functions (ACF) of different environment parameters is also addressed. In this
chapter, the results about the rank of the important scores of predictors and deci-
sion boundaries are provided, followed by the prediction results using different
ML classification models. Evaluation methods and discussion are also included
in this chapter. The developped approach for predicting the opening state of a
groups of windows in the open-plan office is another original point of this thesis.

Finally, the conclusions recalls the contributions introduced in the work of this
thesis and presents several perspectives.
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Chapter 1

Indoor Air Quality

The first chapter introduces some generalities about Indoor air quality (IAQ) and
some scientific aspects of the thesis. The first section (section 1.1) presents some
general information on IAQ, especially certain IAQ-specific definitions and the
phenomena that govern it. Next, the typical indoor air contaminants are intro-
duced: their properties and some measurement methods; their sources as well as
their impact on human health and on the economy. Some more detailed informa-
tion about Particulate Matter is presented in the section 1.2, because this thesis
focuses on this pollutant. Finally, the third section (section 1.3) presents different
aspects of IAQ modeling from the literature.

1.1 General information on Indoor Air Quality

Outdoor air pollution levels are very often recorded by air quality monitoring
networks in the main urban areas. By contrast, the levels and the health impact of
indoor air contaminants has been recently taken into account. Indeed, indoor air
quality was not a major concern until the mid-1970s. Following the oil shocks of
the 1970s, the debates were mostly about energy issues. The investigations then
focusedmore on thermal concerns in order tomaximize energy performance. This
resulted in the increasing of confinement and changing the occupant behaviors.
All of these changes in building design have led to the degradation of indoor
air quality, with a potential impact on people’s health, expressed as a series of
symptoms (Stolwik, 1992). This was a ‘warning’ for the scientific community to
take a greater interest about IAQ. Consequently, scientists started to study the
containment and ventilation and developed investigations of the cause-and-effect
correlations between poor air quality and occupant health.

Historically, indoor air pollution problems were certainly much more apparent
than they are today, with soot discovered on the ceilings of prehistoric caves pro-
viding abundant evidence of high levels of pollution produced by poor ventila-
tion of open fires (Spengler and Sexton, 1983). The link between public health and
pollution in confined areas has been more obvious in recent decades (Hoskins,
2003; Jones, 1999), and the importance of emissions from various sources has been
underlined (Nazaroff et al., 2003; Wallace et al., 2004). Indoor air pollutants can
have a variety of consequences on people’s health, such as: skin irritation, nau-
sea, headache, respiratory disorders, neurological problems, the development of
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some tumors, etc (Catelinois et al., 2006; Fisk et al., 2010; Jones, 1999; Sundell, 2004).
They will be presented more in detail in the subsection 1.2.4: Impact of indoor air
pollutants.

1.1.1 Definitions related to Indor Air Quality
• An interior environment is a volume that is enclosed and secluded from the

outside world.

• The term "indoor air" refers to non-industrial spaces such as those found in
private homes, public buildings and in particular office buildings, as well as
in the modes of transportation such as trains or airport terminals, according
to NMRHC1 (Brown, 1997).

There are many definitions of IAQ. According to Kubba (2017), IAQ represents the
quality of the air inside the buildings expressed in terms of air contaminants con-
centrations and thermal conditions that affect health, comfort and performance of
the building’s occupants.

The quality of indoor air is the composition or state of the air at a given time. It
is classified into different categories: good, bad, acceptable, or unacceptable. Ac-
cording to ASHRAE2, Standard 62.1 it is acceptable when the air does not contain
pollutants at risky concentrations as determined by competent authorities and at
least 80% of those exposed do not express dissatisfaction.

The quality of the indoor air is decided by:

• the pollution of the outside air, which is transferred inside by ventilation,
combined with

• the presence of internal sources of specific pollution related to equipment
(heating and combustion devices, construction products, furniture, etc.), and

• human activities (smoking, cooking, cleaning, etc.) (U.S. Environmental Pro-
tection Agency, 1989)

1.1.2 Specificities of indoor environments
Indoor environments are characterized by different specific parameters as below:

• Occupancy density (Environmental Protection Agency, 2014): the presence
and number of people per area or volume (people/m2 or people/m3). It
varies according to the different enclosed spaces (dwellings, schools, offices,
places of leisure, etc.). The occupancy density inside is usually more im-
portant than outside. A high density of occupancy modifies the thermal
environment, and the confinement of the air, which implies the need for
ventilation or air conditioning.

1The National Health and Medical Research Council
2American Society of Heating, Refrigeration, and Air Conditioning Engineers
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• Frequency of occupancy. The results based on the data on time spent and
activities carried out by individuals (the so called Space-Time-Activities Bud-
get) agree that city dwellers spend more than 80% of their interior in con-
fined spaces (Derbez et al., 2006; Klepeis et al., 2001).

A study conducted in the United States shows that, on average, an individ-
ual spends 88% of his day inside buildings (homes, offices and schools), 7%
in a vehicle and only 5% outside (Jones, 1999; Robinson and Nelson, 1995).
In France, the representative campaign at the national level conducted by
the Observatory of Indoor Air Quality (OQAI) showed that the average time
spent at home is 16 hours per day and for 25% of the population, this amount
is greater than 20 hours (Zeghnoun et al., 2010).

• The surface-to-volume ratio (S/V). The interior environments are charac-
terized by numerous surfaces available with regard to their limited vol-
ume. These surfaces represent as many possibilities of interactions with
substances and particles present in the air. This surface/volume ratio varies
according to some criteria as below:

– the dimensions of the room;

– the proportion of surfaces covered by construction or decoration prod-
ucts;

– the present furniture;

– the number of occupants and their body surface;

– the particles suspended in the air.

A small room will have a higher S/V ratio than a larger room. In general,
the area/volume ratio in the premises is � 2 m2.m-3 (even � 3 m2.m-3 in
the highly furnished premises). This ratio is estimated at about 3 m2.m-3 in
indoor atmosphere (Nazaroff et al., 2003).

The study highlights the particularly important role of the surfaces as sources
and sinks of indoor air pollutants, their role as reservoirs of semi-volatile or-
ganic compounds and their role in the chemical reactivity of indoor air.

• The presence of specific pollutants. The composition of the indoor air can
be different from the composition of the outside air due to the origin of the
sources involved. Most importantly, some contaminants (mainly volatile
organic compounds) are found at higher indoor levels such as formalde-
hyde with a national median of 19.6 µg.m-3 indoors versus 1.9 µg.m-3 out-
doors (Kirchner et al., 2007).

• Ultraviolet (UV) radiation. The attenuation of UV radiation in an indoor
environment is much greater compared to outside when the windows are
closed. The absorption of UV is variable depending on the nature of the
glass and the type of glazing, but it is of the order of 90%. Indoor light
sources emit very little or not at all in the ultraviolet spectrum. As a result,
the photolysis of the substances in the air is negligible inside with respect to
the outside. This explains why some substances can accumulate more easily
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like nitrogen dioxide or formaldehyde. In an open window situation, the
radiation conditions tend to approach the external conditions. The radia-
tion energy entering the indoor environment is generally of the order of ⇠
1 W/m2 (day).

• Climatic parameters. The absence of precipitation and the generally lower
amplitude of temperature and humidity variation in indoor environments
lead to relative variations in air concentrations that are lower than outdoors.

1.1.3 Factors influencing Indoor Air Quality
Indoor air quality depends on various factors such as:

• The external environment (also called macro environment). The external
environment including: (i) sources of outdoor pollution, (ii) the nature of
the soil and its level of contamination, and (iii) climatic and meteorological
conditions, is in perpetual interactionwith the indoor environment (Institute
of Medicine, 2011). The air circulates from one to the other either freely
(open windows) or according to constraints (air inlet mouths, infiltrations).

The outside conditions of temperature, humidity and pressure have reper-
cussions on the casing of the frame, which restores all or part of these con-
ditions inside. Thermal exchanges between the exterior and the interior of
the building play an important role in the dispersion of pollutants. In addi-
tion, the sun causes a warming of surfaces inside and outside the building.
The external environment therefore influences the quality of indoor air at all
times. Its action will be modulated by the possible presence of a specific sys-
tem of ventilation and the intervention of the occupants in the openings (Na-
tional Research Council (US) Committee on Indoor Pollutants, 1981).

• Indoor climate conditions. The indoor climate conditions are mostly set by
the occupants or the building manager, through the presence and operating
parameters of a heating system and sometimes a specific ventilation system.
These systems will counterbalance or mitigate the impact of external condi-
tions in favor of a better thermal comfort of the occupants. These conditions
will influence the emission parameters of the sources and the air movements
between the different volumes of the interior space and consequently on the
levels and the distribution of the concentrations of substances and particles
in the air. They can also lead to favorable conditions for the proliferation
of bio-contaminants, microorganisms that can in turn emit substances and
toxins.

• The building. Building systems and components may have a direct and/or
indirect influence on indoor air quality, e.g. the enclosure shell at the ex-
terior/interior interface, the building materials and interior finishes (floor,
walls, ceiling, joints, and glues). In addition, the operation and nature of the
heating system, ventilation and air conditioning, the existing infiltrations
and ducts (piping, electrical wires) and all the relationships between these
elements also need to be taken into account.
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• The furniture. The nature of furnishing materials (wood species, wood
chips, foams and fabrics), the decoration, maintenance and cleaning prod-
ucts, affect the quality of the indoor air. In addition, office equipment (com-
puters, photocopiers, printers, etc.) especially in office spaces play an impor-
tant role (Bako-Biro et al., 2004).

• The occupant. The occupants have a determining role in the pollution levels
to which they are exposed. Their activities and behavior are very influential
factors in the quality of indoor air. They can activate sources of pollution via:
smoking, cleaning, cooking, use of combustion devices, presence of domes-
tic animals, cleaning products, etc. In addition, their actions on the opening
or starting of a system of ventilation or air treatment can lead to dilution of
the concentration of indoor pollutants or to increase the contribution of pol-
lutants from outside, especially oxidants (ozone, free radicals). The individ-
ual or collective perception of the occupants in terms of health and comfort
will condition their behavior and ultimately the quality of indoor air.

1.2 Indoor air pollution

Air pollution in indoor environments is a dynamic phenomenon characterized by
the variability of pollutant emissions from various sources (Seifert and Ullrich,
1987). These can be classified into two broad categories:

• Continuous emission sources (e.g. a particleboard, pressed-wood prod-
ucts). These are often influenced by environmental factors such as temper-
ature, air velocity, relative humidity, but also by the actions of the inhabi-
tants, whose acts on the apertures change the ambient conditions. Streaming
sources vary on a time scale from one day to one week or more.

• Intermittent emission sources. This type of emission changes significantly
faster and can alter in less than an hour, if not minutes. In general, the high-
est amounts of pollution (peaks) are observed during these short intervals
e.g. cigarette smoke, incense stick burning, usage of a home product, etc.

These sources characteristics can be used to define a typology of environments.
As a result, an office building may have distinct sources that are not present in a
private dwelling, and the sources and pollutants of a residential structure are also
specific. For example, an office is distinguished by the absence of a combustion
process. On the other hand, the operation of photocopiers and printers in the lat-
ter fosters the creation of a specific type of pollutant, such as suspended particles,
in levels that identify these settings.

This section, firstly, will be introduced some specific pollutants in the indoor en-
vironment (section 1.2.1). The information about their characteristics, limitation
guidelines and health effects will be briefly presented. As this study focuses on
Particulate Matter, this pollutant will be presented more in detail in a dedicated
subsection 1.2.2. Next, the sources of indoor air pollution, specific to an office en-
vironment are highlighted in the subsection 1.2.3. Finally, the overall impact of
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indoor air pollution on both the human health and economy is discussed in the
subsection 1.2.4.

1.2.1 Significant pollutants of an indoor environment
Pollutants emitted in different indoor environments are very numerous and var-
ied. Regarding their characteristics, they can be classified by:

1. Gaseous pollutants: carbonmonoxide (CO), oxides of nitrogen (NOx), ozone
(O3), heavy metals, formaldehyde (HCHO), VOCs, radon, etc;

2. Aerosols & bioaerosols: particulate matter, pollen, molds, bacteria, viruses,
etc;

General information about some significant pollutants of indoor air will be pre-
sented hereafter. Particulate matter is one of them, but it will be presented in a
dedicated subsection because it is in the center of this study.

• Ozone (O3). Ozone is present in the troposphere as a secondary pollutant.
Under the effect of solar radiation, nitrogen oxides are produced by the oxi-
dation of nitrogen in the air during the fuel combustion; they can react with
compounds resulting from car traffic, industries, and lead to the formation
of ozone. The amount of ozone present in the troposphere is thus an in-
dicator of significant ambient air pollution. Outside, ozone pollution rises
mostly in summer, particularly in the middle of the afternoon, when mete-
orological conditions are most favorable (high temperature, high UV radia-
tion, long insolation, low wind, and the presence of major pollutants). The
WHO ozone guideline limit for ambient outdoor pollution is 100 µg/m3 for
8-hour daily (WHO, 2021). Indoors, some equipment such as laser printers
or copiers (during operation) can emit ozone (Destaillats et al., 2008; Wens-
ing et al., 2006).

• Carbon monoxide (CO). Carbon monoxide is an odorless and colorless gas,
highly toxic even at low concentrations (Austin et al., 2002). Because it is im-
possible to see, taste or smell the toxic fumes, CO can kill people living in a
house before they are aware of it. The effects of CO vary from person to per-
son depending on their age, overall health, the concentration and duration
of exposure. CO comes from the incomplete combustion of fuels, including:
natural gas, petroleum derivatives or wood (the combustion of any carbon
product). Poorly maintained heating systems and gas stoves are the most
usually implicated sources of CO in indoor air. The WHO guidelines are
5 ppm for 24 hours, 10 ppm for 8 hours, and 90 ppm for 15 minutes of expo-
sure both indoors and outdoors. Several researches have revealed that CO
is likely to have a harmful effect on the health of cardiac patients at doses
sufficient to create a concentration of carboxyhemoglobin (CO-associated
hemoglobin molecule) of more than 2 to 3% (Brook et al., 2004).

• Carbon dioxide (CO2). The two major sources of CO2 in confined areas are
metabolism and combustion. The human metabolism generates CO2, which
is emitted into the ambient upon expiration; the concentration varies de-
pending on the number of individuals present, their physical activity, and
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the ventilation of the occupied space. In general, a human emits nearly
15 L/h of carbon dioxide at rest and between 20 and 40 L/h when active.
This production is expected to be 20 L/h in an office. Because CO2 concen-
tration is utilized as a containment indication, it is an excellent bio-effluent
marker. CO2 can have negative physiological consequences on the central
nervous, cardiovascular, and respiratory systems at very high concentra-
tions (Institute of Medicine, 2011).

• Nitrogen oxides (NOx). There are different types of nitrogen oxides (NO2,
NO, N2O) among which nitrogen dioxide NO2 is the most prevalent in in-
door pollution studies (Maroni et al., 1995). It is also emitted during com-
bustion (heaters or hot water production, tobacco smoke, or by transferring
from the outside, coming from automobile pollution). For example, the rate
of NO2 range in a kitchen using gas, can be 8 to 10 times higher than out-
doors, with peaks above 1000 µg.m-3. NO2 is a pulmonary irritant.

The WHO Regional Office for Europe suggests for N2O a limit of 200 µg.m-3

(0.11 ppm) for one hour, 120 µg.m-3 (0.06 ppm) for eight hours and a max-
imum of 40 µg.m-3 for an annual exposure (WHO-Europe, 2000). It should
be emphasized that the guidelines make no distinction between indoor and
outdoor air exposure, because the location of exposure only affects the com-
position of the air and the quantity of certain pollutants, it has no direct
effect on the exposure-response connection (WHO-Europe, 2000).

• Volatile Organic Compounds (VOCs). VOCs are chemical families that
include alkenes, alkanes, aldehydes, ketones, esters, alcohols, and others.
They are emitted as gases from certain solids or liquids. Some VOCs may
have short- and long-term adverse health effects. Concentrations of many
VOCs are higher indoors (up to ten times) than outdoors. VOCs are released
from a variety of sources, including construction materials, glues, cleansers,
household items, deodorants, photocopiers, and solvents (Destaillats et al.,
2008; Fenech et al., 2010). Some occupant activities, such as smoking, clean-
ing and burning, are also producers of VOCs. Dominant permanent sources
are related to construction and insulating materials; aldehydes, especially
formaldehyde and acetaldehyde, are frequently in the majority. VOC con-
centrations are often less than 1 µg.m-3 (Lévesque et al., 2003).

• Formaldehyde (HCHO). Formaldehyde is a member of the VOC family and
is a colorless gas with a distinctive odor. It is irritating for the upper respi-
ratory system. In recent years, research on formaldehyde exposure has re-
ceived considerable attention in the IAQ field for fourmain reasons (Wolkoff
and Nielsen, 2010):

– The IARC (International Agency for Research on Cancer, 2006) classi-
fies HCHO as carcinogen;

– The study conducted by Nazaroff et al. (2003) stated that: the reactions
between ozone and monoterpenes form formaldehyde, and

– Epidemiological studies discovered the effects of HCHO exposure on
lung problems, and
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– Studies on the exposure of vulnerable people show that children, the el-
derly and people with asthma and other breathing problems are more
sensitive to the effects of formaldehyde; the HCHO effects seen in vul-
nerable people may potentially be more severe (Agency for Toxic Sub-
stances and Disease Registry, 2014).

WHO recommends a guideline value of 0.1 µg.m-3 (0.08 ppm) to protect the
population against irritant effects.

• Biological pollutants. These contaminants come from a variety of sources.
The growth of some biological contaminants can be reduced by controlling
the relative humidity level indoors at home. In general, a relative humid-
ity of 30-50 percent is suggested for dwellings. Molds, mildews, germs and
insects develop in standing water, water-damaged materials and moist sur-
faces. House dust and mites, which grow in moist, warm conditions, are a
source of one of the most potent biological allergens (Radford, 1976). Bac-
terial cells and spores, viruses, pollen, fungus, algae, detritus, and cell frag-
ments are all examples of bioaerosols. Bioaerosol particles are typically a
small fraction of aerosol particles in our environment, but their influence
can be significant. They are a source of disease transmissio and produce al-
lergic responses (Löndahl, 2014). In addition, researchers also indicated that
bioaerosols can have an impact on the global temperature, ecology, and bio-
diversity; some scientific studies showed that bioaerosols may have a sig-
nificant influence on clouds and precipitation (Després et al., 2012; Hamil-
ton and Lenton, 1998). The bioaerosols are a type of the large category of
aerosols, which will be presented next.

• Aerosols. Aerosols contain solid or liquid droplets in air or gas, having a
negligible rate of fall. The suspended particles cover a very wide spectrum,
ranging from a few fractions of nanometers to 100 microns (Seinfeld and
Pandis, 2012). A specific type of aerosols are the bioaerosols, which have
been presented earlier. Several classifications have been developed based
on their health effects or their physico-chemical characteristics. Indeed, ac-
cording to the particle size mass distribution there are:

– ultrafine particles (da < 0.1 µm: where da is the aerodynamic diame-
ter3)

– fine particles (0.1 < da < 2.5 µm) and

– coarse particles (da > 2.5 µm).

Thus, the terms PM10 and PM2.5 represent the fraction of the atmospheric
aerosol which contains particles having an aerodynamic diameter less than
or equal to 10 µm and 2.5 µm respectively (Chow and Watson, 1998). The
PM will be developped more in detail in the next subsection 1.2.2.

3The aerodynamic diameter is defined as the diameter of a spherical particle with a density of
1 g/cm3, which has the same sinking speed as the particle under consideration (Vincent, 2007).
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1.2.2 Indoor Particulate Matter
The transport, resuspension and deposition of particles in indoor environments
are fundamentally influenced by a series of transformations and different physic-
ochemical processes (Gundel et al., 2005).

1.2.2.1 Sources of particles

The mechanisms of formation and transformation are intrinsically linked to the
different sources, climatic parameters and occupation. Figure 1.1 shows the main
processes involved in determining the concentration of the indoor particles. These
factors could lead to considerable changes in the chemical composition of the par-
ticles, their physical characteristics and particle size distributions. To these effects,
the concentrations (in mass or in number) of the particles and the contribution of
their sources would vary in different ways depending on the extent of these pro-
cesses.

Figure 1.1: Particle sources and its flow of movement.

More information about these sources is presented below, according to their loca-
tion: outdoors or indoors.

• Outdoor environment sources. Particles are constantly moving between
indoor and outdoor environments via the ventilation systems, the building
shell and openings (doors and windows). At least half of the particles in-
haled inside are from outside (Wallace et al., 2003). This finding highlights
the importance of outdoor particulate pollution level affecting particle con-
centrations indoors.

The infiltration capacity of the particles is variable depending on the particle
size; it ranges from 0.38 to 0.94 for particles between 0.02-0.5 µm (ultrafine)
and it decreases, ranging from 0.12 to 0.53 for particles which are coarser
0.7-10 µm (Abt et al., 2000). Another research study has revealed that up to
33% of indoor/outdoor airborne particles can occur even with closed doors
and windows (Alzona et al., 1979).
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According to Han et al. (2015), external fluctuations can explain about 81%
to 90% of the variance in indoor PM2.5 concentration. To evaluate the con-
tribution of outdoor levels to indoor concentrations, a simple indicator such
as the indoor/outdoor ratio (Indoor/Outdoor - (I/O)) can be utilized. This
indication is dependent on a large variety of characteristics, but particularly
on the building’s internal sources and air exchanges with the outside. The
opening of windows, the ventilation equipment, and the permeability con-
nected to the construction of the building, in particular, play a key role in
these exchanges. As a result, extrapolating measures seen in certain types
of frames to all interior situations is extremely challenging. A review of the
literature on the relationship between indoor and outdoor concentrations by
the ratios I/O, penetration factor, and infiltration was conducted by Chen &
Zhao (2011).

• Indoor environment. In recent years, many studies have sought to examine
in detail the contribution of occupant activity to particulate concentrations.
In general, the use of the vacuum cleaner and the dust removal process con-
tribute to the increase of the mass of the coarse particles (6 - 10 µm). A
multiple linear regression analysis was applied to estimate the contribution
of the various domestic activities: cooking (cooking, grilling, blowing, etc);
cleaning (vacuum cleaner, dust removal, etc); occupancy (characterized by
occupant movement) and washing (Abt et al., 2000). The results of this study
show that these variables contribute in a distributive way according to the
size of the particles. Thus, according to the regression model, cooking and
occupant movement have more impact in determining the fraction of parti-
cles larger than 2 µm, washing is the least important except for particles in
size between 0.02 - 0.5 µm.

The emission of fine and ultrafine particles varies according to domestic ac-
tivities (Géhin et al., 2008). The combustion processes mainly cooking food
and the operation of a petroleum auxiliary heater represent the main sources
of particles in indoor environments with a high proportion of ultrafine par-
ticles.

1.2.2.2 Indoor particle concentrations variability

In France, the main source of data on particulate pollution in the various interior
spaces remains the national campaigns conducted by the OQAI 4. For the hous-
ing campaign (2003-2005), for example, different measurements were made in the
dwellings: in 297 dwellings, PM10 concentrations were monitored, while in other
290 dwellings, PM2.5 were measured. The dwelling were chosen to be represen-
tative, from a spatial distribution point of view, of the whole National Park. The
medians for the monitored PM10 and PM2.5 concentrations values were respec-
tively 31.3 µg.m-3 (max = 523 µg.m-3) and 19.1 µg.m-3 (max = 568 µg.m-3) (Kirchner
et al., 2007).

4Observatoire de la qualité de l’air intérieur - Indoor Air Quality Observatory
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A measurement campaign in 133 Paris offices with different ventilation systems
showed that, on average, the concentrations of particles smaller than 8 µm in of-
fices equippedwith controlledmechanical ventilation are the lowest, with 93.5 µg.m-3,
compared to 148 µg.m-3 for offices equippedwith an air conditioner and 136 µg.m-3

in naturally ventilated offices (Vincent et al., 1997). PM2.5 concentrations can reach
265 µg.m-3 in the presence of smokers in offices (Mosqueron et al., 2002) and on
average, they were around 100 µg.m-3 in the presence of at least two smokers in a
dwelling (Ramalho et al., 2012).

Several studies have attempted to quantify the contribution of computing devices
and office equipment to particle concentrations (Koivisto et al., 2010; Uhde et al.,
2006; Wensing et al., 2006). Most of these studies were performed in a simulation
chamber, so extrapolation of these results to real environments is still difficult.

1.2.3 Sources of indoor air pollution in the case of office environ-
ments

Indoor air pollution is caused by the complex interactions of various substances
present at different levels, depending on the location and the source emission.
Each pollutant is dependent of a variety of sources, and each source can produce
a variety of pollutants.

The pollutant concentration is generally determined by:

• the relationship between the volume of air contained in the confined space,

• the rate of pollutant production (or emission),

• the rate of pollutant elimination by reaction or deposition on surfaces,

• the pollutant’s external concentration, and

• the air transfer parameters , in particular airflow exchanged with the out-
side (Maroni et al., 1995).

Furthermore, the emissions of materials present in the interior environment are af-
fected by their age, environmental factors, and physicochemical properties (poros-
ity, etc.). The diluting function of air renewal is affected by the concentrations of
the outer and inner compartments, as well as the ventilation method. The effect
of the air change rate on indoor air quality reflects the ambiguity of its function
as both a source of pollution from the outside environment and a substantial sink
for pollutants in the indoor air.

The office is one of the places where a lot of people spend themajority of their time
per day, around 35 hours per week. Wolkoff (2013) sustained that the research
related to the office environments has been carried out in order to evaluate the
health impact and/or the performance of the occupants. The author concluded
that the impact of indoor pollutants in offices should not be ignored. Despite the
fact that several studies in the existing literature have indicated the presence of
different pollutants (PM, VOC, bio contaminants, etc) in both homes and work-
places, significant disparities must be underlined. Furthermore, because smoking
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is no longer legal in public places starting from the 1st February 2007 5, the pres-
ence of certain contaminants (like nicotine, carbon monoxide, and ammonia) in
office environments is no longer of concern.

On the other hand, other contaminants, such as VOCs, ozone, particles (e.g. toner
dust) and formaldehyde, may exist in sufficient quantity to characterize these at-
mospheres (Salthammer et al., 2010; Saraga et al., 2011). Laser printers, copiers,
and computers may all emit these substances into the air (Schripp et al., 2009).

Some recent research attempted to measure the emissions of particles emitted
by printers-photocopiers, focusing on the ultra-fine particles and VOCs in gen-
eral (Kagi et al., 2007; Lee and Hsu, 2007). Fine particle emissions from laser print-
ers and copiers are affected by several factors, including the age and the type of
the printer or photocopiers utilized, as well as the age and toner charge (Lee and
Hsu, 2007; Uhde et al., 2006; Wensing et al., 2006). It is the commissioning of the
equipment, in particular, that would be the source of particle pollution peaks in
office environments. In other words, while measuring occupant exposure to in-
door pollution in this sort of workplace, the number of prints and the start-up of
the copier should be taken into account.

Additionally, the usage of a vacuum cleaner is common in offices. It is hypoth-
esized that the symptoms of the sick-building syndrome are caused in part by
maintenance products that emit VOCs (Wolkoff, 2013). A review of the literature
on pollutants (specifically on semi-VOCs - SVOCs) emitted by different sources
specific to the office environment was conducted by (Destaillats et al., 2008). Ac-
cording to this research, the chamber concentration of ozone (O3) emitted by a
laser printer when it is in operation was about 9-10 ppbv6, meanwhile it was 6
ppbv for the all-in-one office machines. The PM10 chamber concentration was 65
ppbv emitted by the laser printers in operation and about 41 ppbv for the all-in-
one officemachines. In addition, the emission rate of the desktop PCs of formalde-
hyde was detected as 5.2-12.8 µg.h-1.unit-1 and the chamber concentration was
0.1 µg.m-3. Based on the different researches, the study included although the
re-emission of ambient particles deposited in the units has been demonstrated,
computers are typically not a source of ozone or particulate matter. For ozone, al-
though the emission rates are unclear, even low levels of ozone emitted by print-
ers and copier machines can react with other indoor pollutants, resulting in sec-
ondary pollutants and generation of ultrafine aerosol particles (Destaillats et al.,
2006; Singer et al., 2006). Furthermore, significant amount of particulate matter
are generally detected when printers, copiers and multi-functional devices are
used, therefore, it is needed to investigate both the physical and chemical charac-
terization of aerosol particle emissions during the printing process, especially for
ultrafine and nanoparticles.

5Ministère de la Santé et de la Prévention, 2014
6part per billion volume
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1.2.4 Impact of indoor air pollution
The influence of indoor pollution on inhabitants has turned into a major public
health concern. Some pollutants, most commonly found in indoor air (formalde-
hyde, benzene, CO, NO2, particulates, etc), but also in consumer items and food
(phthalates, pesticides, heavy metals, etc), are reported to induce predominantly
long-term health impacts (Zhang et al., 2010). These chemical and physical pol-
lutants have a cumulative effect on the body and might first express themselves
as symptoms (mucous irritation, dyspnea, dry skin, etc.) associated with poor air
quality (Hoskins, 2003).

Many recent researches have emphasized respiratory problems (Harley, 2020;
Nam and Ryu, 2018). In metropolitan France, the yearly number of lung can-
cer deaths due to home radon exposure varies from 1 200 to 2 900 (Kirchner et al.,
2011).

The International Agency for Research on Cancer has re-evaluated formaldehyde
in 2005 and concluded that formaldehyde is carcinogenic to humans, based on
sufficient evidence on humans and on experimental animals (Cogliano et al., 2005).

Many studies have been conducted to establish the root cause of IAQ problems,
and significant progress has been made in recent years in identifying pollutants
and the variables that lead to their existence. An up-to-date state of knowledge
can be found in the researches of Ilacqua et al. (2017) and Nadadur (2015), and
the role of different building components on the adverse effects of pollutant expo-
sures from various sources, in a study performed by Spengler (2001).

Besides the indoor air contaminants, temperature, humidity, air movement and
the quality of ventilation systems also affect IAQ. When someone suffers from
influenza, in a room with high humidity and poor ventilation, the other people
living there can easily be infected. The situation is worse when staying with
someone who suffers from serious infectious disease like Severe Acute Respira-
tory Syndrome (SARS) and the result could be fatal. Looking back to the year
2003, the outbreak of SARS has made more than 8000 people become sick with
severe acute respiratory syndrome that was accompanied by either pneumonia or
respiratory distress syndrome (Centers for Disease Control and Prevention, 2004).
Nearly ten percent of infected has been killed (774 people died in more than 23
countries). SARS spread rapidly around the world because some infected people
traveled by aircrafts, one of the typical public indoor environments.

These examples, and there are very many others which could not be mentioned
here, show why IAQ is so important.

In an indoor environment with good IAQ, human health can then be protected.
Besides, the indoor temperature and humidity plus a good ventilation system can
also bring us comfort. Evidence shows that the productivity is improved in a good
indoor air quality environment. On the other hand, an environment with poor
IAQ can lead to different issues. People simply do not feel comfortable. Besides,
poor IAQ also brings negative health impacts to us. Two common building related
health issues, the Sick Building Syndrome (SBS) and the Building Related Illness
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(BRI) are caused by poor IAQ. Working in an environment with poor IAQ also
leads to lower productivity and high absenteeism.

While symptoms of SBS include eye, nose or throat irritation, dry cough, dry
or itchy skin, headache, dizziness and nausea, poor concentration and fatigue,
building related illness (BRI) is a clinically diagnosed illness that is directly re-
lated to environments with poor indoor air quality. BRI is different from SBS, as
BRI requires prolonged recovery times after leaving the building. Examples of
BRI symptoms are allergic reactions, infectious disease or even cancer (Crook and
Burton, 2010; Seltzer, 1994).

For more information, the "Sick Building Syndrome" (SBS) is associated with the
1970s energy crisis, which triggered modifications in the design, building materi-
als, building equipment, and building systems such as, air conditioning, in order
to save energy. As a result, many individuals complain of discomfort, even pathol-
ogy: the quality of indoor air is frequently called into consideration. According to
the study of Ezzati (2005), the mix of pollutants in inhaled air indoors influences
symptoms or a combination of symptoms. VOCs levels have been linked to the
prevalence of SBS in certain research (Nakaoka et al., 2014; Suzuki et al., 2020). Re-
cently, a link between indoor particulate matter and black carbon with SBS symp-
toms in a public office building is addressed byNezis and colleagues (2022). How-
ever, the association between SBS and indoor air quality is not always systematic,
as many other psycho-sociological factors need to be taken into account (Dorothée
et al., 2013).

Indoor air quality has also an effect on school and work performance, and hence
productivity. Several worldwide, largely American, studies, have looked at the
costs of poor air quality (Fisk and Rosenfeld, 2004; Mendell et al., 2002). According
to the WHO’s global statistics, the costs to the economy from poor IAQ in France
are predicted to be between 12.8 and 38.4 billion euros per year (Kirchner et al.,
2011).

1.3 Modeling of Indoor Air Quality

This section discusses indoor air quality modeling, a big challenge, due to the
high complexity of the underlying phenomena. An indoor environment is a mi-
croenvironment consisting in a complex volume, due to its distinctive form, its
numerous and fluctuating through time, the diverse nature of pollutant trans-
fers, and the physicochemical reactions that might occur inside. Modeling such a
system needs to have an inventory of sources, characterize their emissions, then,
highlight the transformation of emissions, taking into account the influence of a
variety of factors (climate, building specificities, occupation and activity of the in-
habitants) in order to retrieve the concentrations that occur at a particular time
and location.

These phenomena, starting from emissions, up to concentrations, should be mod-
eled by partial differential equations which do not admit an analytical solution, or
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by a simplistic model if different assumptions are made. In this case, the transfor-
mations are addressed following the natural path of emissions to pollutant con-
centrations. There is a second way of modeling, using the concentrations (the
effect) as the starting point, called inverse modeling, by contrast with the direct
modeling starting from the cause (sources) to effects (pollutant concentrations in
the air) .

Whether via direct or inversemodeling, the two visions aim to comprehend and/or
explain the quality of the ambient air in interior spaces. When confronted with
this problem, there are two possibilities depending on the viewpoint of analy-
sis: physical modeling (direct cause-effect) or inverse modeling (usually statistics
or signal processing). The usage of one or the other necessitates the utilization of
their own sources of information and knowledge. Whereas models in the first sce-
nario require knowledge of the causes and mechanisms, resulting in determinism
that understands only the necessity or impossibility, statistical models represent
a world made up of events stated assets that can be realized or not, based on de-
grees. In statistical models, knowledge of the causes is not required to create an
explanation of the effects, but the effects are required to infer on the causes.

To clarify the framework within which indoor air quality modelingmight be built,
the deterministic method should be discussed first, followed by the "obstacles" it
confronts. Then, from another point of view and according to the "need" to un-
derstand, analyze or solve an IAQ particular aspect, statistical or signal processing
techniques should complete the previous discussion. For more detailed informa-
tion, manyworks use deterministic physical models to simulate the characteristics
of the indoor environment. A system of differential equations is typically used to
create the model for example when one is interested in the variation of a time se-
ries data (e.g. indoor air pollutant concentrations). These deterministic physical
models are used in the context of mass conservation equations, CMB (Chemical
Mass Balance) models (Christensen and Gunst, 2004).

Deterministic modeling often splits the domain into homogenous zones and then
applies a mass balance to each zone to calculate the various parameters. This idea
has been extensively studied and produces good results in simple experimental
circumstances when the variables fluctuate slightly or not at all.

For forecasting, one of the difficulties encountered by deterministicmodel ismethod-
ological: the physico-chemical parametrization is usually based on a static formu-
lation. A significant difficulty lies in the practical difficulty of implementing this
type of model in a real environment. For example, despite the importance of
the information listed in the PANDORE 7 database (Abadie and Blondeau, 2011),
which includes around 500 sources of pollutants representing nearly 7000 pollu-
tant emissions, the forecast remains difficult to implement. The elaboration of a
target volatile organic compounds (VOC) list based on the emission rates imple-
mented in the database is also described. However, there exits some constraints
for using this database as the emission rates are affected by the experimental con-
ditions. The application of this data for another environment has to be handled

7a comPilAtioN of inDOor aiR pollutAnt emissions
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with care. In addition, each pollutant was considered independently, meanwhile,
the cumulative risk of several components should be addressed instead.

Indeed, the range of possible emission rates for a given material is not known.
In addition, the coatings, form with the adhesive and the substrate, a composite
material for which it is difficult to determine the final emission rate which does
not result from an additivity hypothesis.

Moreover, the emission rates change over time not only due to climatic conditions,
but also by the action of certain oxidants capable of modifying the nature of the
emissions. Furthermore, the model does not take into account the presence and
behavior of the occupant who, through his/her actions, modifies the terms asso-
ciated with the emission, the renewal of air and, to a lesser extent, the surfaces
available for sorption of species present in the air. These parameters are crucial to
be able to predict the evolution of concentrations in a real occupied environment.

Regarding the statistical approach, this method is generally used when the a pri-
ori knowledge of a system is insufficient or when the parameters resulting from
the physical models cannot be completely specified. In this thesis, only the out-
puts (temporal variables) of the system could be collected by measurement (e.g.
indoor air pollutant concentrations and factors influencing them, but no informa-
tion about the source emissions). Statistical models then aim to use all available
information in order to better reproduce the behavior of the real system on the
basis of these data. In particular, inverse modeling makes it possible to infer the
nature of the system or to provide forecasts on the future state of the system.

Modeling of indoor air quality can also be motivated by two main practical objec-
tive: (i) to highlight the variability of the sources of fluctuation and their contri-
butions; (ii) for forecasting purposes: either by the single time series of pollutant
concentrations taken individually, or via a set of state variables and factors. More
details about these approaches and some examples from the scientific literature
will be presented in the next chapter.
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Chapter 2

Study Case and Data Presentation

Air quality in an indoor environment is often characterized by analyzing the air
composition using a technology designed to measure the concentrations of tar-
get contaminants in that environment. IAQ assessment can be more precise if
measurements are performed with a shorter time step over a longer period. A
sensor system providing the concentration of some target indoor air pollutants,
with a very short time step of 1 minute, in an open plan office, during a 4-year
(2012-2015) monitoring campaign has been analysed in this study and it will be
introduced in this chapter. This presentation will be completed by some over-
all statistics and analysis of the monitored data. A brief presentation will be given
here, but an exhaustive one is available via the report TRIBU (Ramalho et al., 2016).

2.1 The open-plan environments

The studied office is located in a building called ARIA, at the Scientific and Tech-
nical Center for Building - Centre Scientifique et Technique du Bâtiment (CSTB),
situated as 84 Avenue Jean Jaurès, 77420 Champs-sur-Marne. It is situated in
Greater Paris, in a suburban area bordered by many departmental routes (D199,
D104, D226...) as well as one highway (A4 – autoroute de l’Est), as presented on
the Figure 2.1. In the north-east direction, there is a lake called "Lac de Vaire sur
Marne" and a river called "LaMarne". Aside from that, two parks with lots of trees
(Parc de Champs sur Marne and Parc departmental de la Haute-Ile) are located
nearby.
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Figure 2.1: Map of the location of the studied office - CSTB (in blue).

The ARIA building is a relatively modern one in CSTB, with walls that are around
20 cm thick. It has two floors and several offices, conference rooms, experimental
laboratories, etc. The open-plan office is situated on the second floor, where there
are also many individual offices. The studied office is at the end of the entry
lobby (on the left side). As it is situated at the second floor and it is not covered
by the other buildings or trees, it can absorb a lot of sunshine and wind via a large
number of sliding windows (5 windows).

The working space of the open-plan office is occupied by 6-15 persons, depending
on the period of the year. According to the working hours, the office is normally
occupied from 8:00 to 18:00, from Monday to Friday. It has a total area of 132 m2

and a total volume of 364 m3. On the Figure 2.2, it is limited by a red border.
Glass walls or wood walls are used to separate the individual offices from the
center space.
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Figure 2.2: Plan of the studied office in CSTB (delimited in red).

On the plan presented on Figure 2.2, there is a common space (Corridor) right in
front of the entrance door where people use to have a break. In this area, an oven
is frequently used during lunchtime. In addition, there is a kettle for boiling water
and a coffee machine.

The walls of the workplace are painted a bright yellow tone. The floor is cov-
ered with felt carpet, and there are artificial ceiling pieces at the height of about 3
meters. The furniture is mostly made of compact melamine wood offices which
consists of: wood tables, polypropylene chairs, aluminum cabinets and around
18 computers. The number of active computers varies with occupancy, but gener-
ally, at least seven computers are permanently active during the working hours.
Two printers were active in 2012 and a multi-function printer-copier has been in
operation since 2013 (Figure 2.3). Other than this laser copier, there is no specific
source of particles in that open office. Besides, many papers and books are placed
around the room.
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Figure 2.3: The active printer in studied office

In addition to the natural ventilation (opening of windows and doors controlled
by the occupants or infiltration), a simple flow ventilation system without sweep-
ing is provided for the entire open space and individual offices. It provided a
constant air extraction rate of 252 m3/h in 2012 and 228 m3/h in 2014. The stud-
ied space communicates through the rest of the building via a single door that
leads to a circulation space, leading to the experimental hall, or a small outdoor
courtyard to reach the roof, or the left wing of the building.

Concerning the outdoor environment, a permanent weather station located on
the roof of the target building automatically recorded the temperature, relative
humidity, atmospheric pressure, solar irradiance, speed and direction values of
wind. It also detected rainy events.

2.2 Case study database

In this section, we introduce the different available data of the database used for
the open-plan office study. The active instrumentation of the environments de-
scribed above has provided more or less complete information on the ambient air
quality of these spaces: (i) measurements of pollutant concentrations; (ii) mea-
surements of climatic conditions and (iii) the influence of the occupation and the
state of the openings.

For each environment (indoors/outdoors), the active instrumentation monitored
time series with different time steps (from 1 minute to 1 hour) over periods rang-
ing from a few days to one year. The different measured parameters are listed in
Table 2.1.

Each time series is recorded according to the type of the variable considered (last
column of Table 2.1) and by different instruments or sensors.
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Table 2.1: The parameters measured in different environments (in-
doors/outdoors).

Parameter Device Variable
Name

Unit Type

Window Opening Opening detector OF 0/1 binaryDoor Opening (CSTBox) OP
Movement Passive infrared sensor

(CSTBox)
Occ 0/1 binary

Irradiance Solarimeter Irr W.m-2 double
Nitrogen oxides
(NOx) concentra-
tion

Microstation
Environnement SA

NO2,
NO

ppb (parts
per billion)

double

Ozone (O3) con-
centration

O3 double

Pressure Weather station Press hPa double
Temperature Q-Track Probe (indoors)

or Weather Station
(outdoors)

T °C
doubleRelative Humidity RH %

Carbon oxides con-
centration

CO2,
CO

ppm (parts
per million)

Rain Raining detector Rain 0/1 binary
Formaldehyde con-
centration

AL1021 Aerolaser
(Hantzsch reaction)

HCHO ppb (parts
per billion)

double

Aerosols concen-
tration

Optical measurement
Grimm Dust Monitor
1.108

PN Number
of parti-
cles/litter

double

2.2.1 Pollution and climatic data
The concentration in number of airborne particle per liter of sampled air, of 15 size
ranges (called also fractions), varying from 0.3 to 20 µm, is continuouslymeasured
(everyminute) by an optical particle counter (GrimmDustMonitor 1.108 - see also
Figure 2.4).

It is possible to calculate the specific humidity (Hs) by evaluating before the abso-
lute humidity (Habs), which is based on the relative humidity (RH), the air temper-
ature (T) and the molar mass of the water (Mwater) and of the air (Mair) by using
Rankine’s formula to approximate the saturated vapor pressure required for the
calculation (see equations (2.1) and (2.2)).

Habs(
g

kg humidAir
) =

RH
100

⇥ Mwater
Mair

⇥ e(13.7�
5120

T+273.15 ) ⇥ 1000 (2.1)

Hs(
g

kg dryAir
) =

Habs
(1000� Habs)

⇥ 1000 (2.2)

The mean daily temperature and the prevailing mean outdoor air temperature
(PMA) were calculated using the seven-day weighted running mean outdoor air
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temperature. Equation (2.3) gives the preferred expression for PMA with "an ex-
ponentially weighted, running mean of a sequence of mean daily outdoor tem-
peratures prior to the day in question", according to ASHRAE (American Society
of Heating Refrigerating and Air-Conditioning Engineers, 2017).

PMA = (1� a)[te(d�1) + ate(d�2) + ...+ a6te(d�7)] (2.3)

Formidlatitude climates, where people aremore familiar with synoptic-scale weather
variability, a lower value of a could be more appropriate so we chose a = 0.6. In
equation (2.3), te(d�1) represents the mean daily outdoor temperature for the pre-
vious day, te(d�2) is the mean daily outdoor temperature for two days before, and
so on.

2.2.1.1 Measurement of Particulate Matter

The optical counter of particles, the Dust Monitor model 1.108 (GRIMM) contin-
ually counts (every minute) the number of particles per size band (aeodynamic
diameter) for every liter of air sampled. The device counts the particles in the air
sample that passes through the light beam based on light diffraction (monochro-
matic laser diode). The size distribution of the collected particles (15 size classes
between 0.3 and 20 µm) is determined by measuring the angular dispersion gen-
erated by the passage of particles of different sizes through a light ray produced
by a monochromatic laser diode at an angle of 60°-120°. The equipment has a flow
rate of 1.2 L/min. With a sensitivity of 0.001 particles/cm3 and a reproducibility
of 2%, the device can count particles up to 2000 particles/cm3 without coincidence
effects.

To perform the measurements, the optical counter uses two laser powers. High
laser power is used between 0.3 and 2 µm. The low laser power is utilized be-
tween 2 and 20 µm. The measurement at 2 µm is repeated twice, once with high
laser power and once with low laser power, and the result is the average of the
two obtained values. When calibrating each device, the maximum allowable error
is 10% for the size range between 0.3 and 2 µm and 20% for the size range between
2 and 20 µm. Every minute, three measurements are obtained using three instru-
ments: two in the office area (one near the multifunction printer, the second one
directly opposite) and the third one, outside, on the building’s roof (Figure 2.4).

Particle concentrations are recorded every minute in a memory card with an au-
tonomy of more than 45 days. Data is retrieved approximately every 15 days.

It is much easier to obtain the PM (particulate matter in mass concentration) value
than the PN values in order to use them in a real-time model, because this type of
measurement is more in common (PM2.5 or PM10). From the PN concentrations,
it is possible to calculate the mass fractions of PM2.5 and PM10 according to the
method of Cheng and Lin (2010). The equations (2.4) and (2.5) explain how to
convert the particle concentrations obtained into mass concentration (µg.m-3) and
then calculate the PM2.5 and PM10 fractions.
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Figure 2.4: The Dust Monitor 1.108 optical counter, its principle and
the outdoor measurement box (GRIMM).

According to Cheng and Lin (2010), the concentration in number should be trans-
formed into mass concentration:

m(dpi) = Cf
p

6
d3pin(dpi) (2.4)

where i corresponds to the channel number of the optical particle counter, dpi
corresponds to the average diameter between the lower and upper limit of the
channel, m(dpi) is the mass concentration of particles having an average diameter
dpi. Cf is called by the author as the correction factor; it represents an effective
density of the particles. By default, it is fixed at 1 µg.cm-3 (Cheng and Lin, 2010),
but a correction can be made if the nature of the particles and their density are
known.

The value of Cf is not clearly determined; different researches tried to get an esti-
mate considering it as an effective density of the particles. In order to deepen this
subject, a litterature review has been performed.

Based on the measurements of ambient aerosol conducted in Beijing during win-
ter 2007, the material density and effective density of ambient particles were es-
timated to be 1.61 ± 0.13 g.cm-3 and 1.62 ± 0.38 g.cm-3 for PM1.8 and 1.73 ±
0.14 g.cm-3 and 1.67 ± 0.37 g.cm-3 for PM10 (Hu et al., 2012).

According to another research, the monthly mean effective densities for ambient
submicron particles were found to vary from 1.3 g.cm-3 to 1.6 g.cm-3 depending on
themonth of year with the lowest and highest densities 1.31 g.cm-3 and 1.62 g.cm-3

in November 2012 and August 2013, respectively (Zhao et al., 2017).

The mean apparent particle density, determined from aHarvard-Marple impactor
and number size distribution on a daily basis was 1.6 ± 0.5 g.cm-3 (Pitz et al., 2003).
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Interestingly, during a research conducted in New Delhi, India, the authors cal-
culated the aerosol effective density by using scanning mobility particle sizer
and quartz crystal microbalance (QCM) with the estimation of involved uncer-
tainty (Sarangi et al., 2016). The aerosol stream was subdivided into two parts.
One was sent to a condensation particle counter (CPC) to measure particle num-
ber concentration, whereas the other one was sent to the QCM to measure the
particle mass concentration simultaneously. Based on these two parts, the total
volume of particles was estimated and used to calculate the uncertainty and then
the effective density. Finally, this research indicated that effective density for am-
bient particles at the beginning of the winter period was 1.28± 0.12 g.cm-3.

After the calculation performed using equation (2.4) for each size, in order to ob-
tain PM2.5 and PM10 fractions, the previously calculated values, weighted by the
collection efficiency function specific to the Grimm counter used to determine the
number of particles for each size range, should be summed, as presented in equa-
tion (2.5):

PM =
15

Â
i=1

m(dpi) f (dpi) (2.5)

where PM corresponds to PM2.5 or PM10 and f (dpi) is the fraction of dpi taking
into account the collection efficiency of the reference instruments (Hinds, 1999).
The collection efficiency f (dpi) is a continuous function covering all the range of
the monitoring device. It can be expressed differently if it is used for PM10 or
PM2.5 estimation.

These contributions can be estimated for each fraction of particles by the equations
below:

fPM10(dpi) = 1 for dpi < 1.5µm (2.6)

fPM10(dpi) = 0.9585� 0.00408d2pi for 1.5 < dpi < 15µm (2.7)

fPM10(dpi) = 0 for dpi > 15µm (2.8)

fPM2.5(dpi) = [1+ exp(3.233dpi � 9.495)]�3.368 (2.9)

The collection efficiency functions f (dpi) used to calculate PM2.5 and PM10 ac-
cording to different particle fractions are represented in Figure 2.5:
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Figure 2.5: The collection efficiency functions for (a) PM2.5 and (b)
PM10, according to different particle fractions.

2.2.1.2 Measurement of CO2

Carbon dioxide (CO2) is a tracer of both metabolic and combustion activity. In
the absence of combustion sources, the only source of CO2 in the office area is the
metabolic activity associated with human presence. CO2 monitoring is thus re-
lated to the time of occupation, during which the amount of CO2 tends to rise due
to the occupants’ breath, in the absence of ventilation. The information provided
by the presence detectors indicate the presence of people in the room, but it can
also indicate the existence of other sources (other occupants) in the room, which
the detectors cannot obtain (out of the measurement range).

In the real conditions of this office, the level of CO2 in the room is affected by the
rate at which the air in the room is renewed. Consequently, the CO2 measurement
does not depend only of the people’s presence in the room. However, by analyz-
ing the variations in CO2 concentrations based on the occupation, it is possible
to explain this variable. This continuous monitoring allows us to estimate the air
renewal at various periods of the day.

In general, air exchange is determined experimentally at periodic intervals by in-
jecting a tracer gas. However, the variability of air renewal is practically never
provided. In addition, the occupants’ behavior, particularly the opening and clos-
ing of windows and doors, can significantly alter this variable over the day. Its
modification will have a direct impact on the oscillations of CO2 and other pollu-
tant concentrations. It is consequently very difficult to characterize the variability
of air renewal.

The measurement of CO2 in the office space is ensured by non-dispersive infrared
(NDIR) absorption method with a Q-Track probe model 8550 (TSI Inc.) which
records every minute the average values of CO2, temperature and relative hu-
midity.

Outdoors, the CO2 measurement is performed by an instrument developed at
CSTB on the same principle (NDIR sensor). Every 10 minutes, the instrument
(Lum’Air prototype) records the average CO2 value. It is placed inside the particle
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counter’s environmental box (see Figure 2.4). The box is ventilated, allowing CO2
monitoring and protecting the device from the weather damage. The coefficient of
variation of the instrument is 6% at 400 ppm and around 1% at 1000 and 2500 ppm.

The instruments have a range from 0 to 5000 ppm (up to 6000 ppm for the Q-
Track probe) and share the same uncertainty of ± (50 ppm + 3% of reading). The
instruments are equipped with a drift correction mechanism, but over the long
term, in the absence of interventions, it is still essential to correct a zero drift of
the order of +3 ppm per month for the Lum’Air prototypes.

2.2.2 The state of occupation and windows and door opening
In addition to the continuous measurement of these target pollutants, particulate
matter and CO2, more information has been continuously collected on the state
of the openings and the open-plan occupation. These two parameters make it
possible to understand the main causes of the real fluctuations of the IAQ.

As the concentration of CO2 largely reflects the metabolic activity of the occupant
and it is frequently considered a good tracer of human bio-effluents, CO2 and
occupancy status are therefore the most reliable indicative pair for presence.

The presence detection modules communicate with a device (CSTBox) that gath-
ers and handles data from a building’s network of sensors, contactors, or detec-
tors. When no motion is detected, no information is transmitted to the CSTBox,
and when one of the modules detects movement, the recorded value (during 10
seconds) is returned. The motion data is translated into binary data with a 1-
minute time step.

The doors and windows were equipped with contactor sensors, and the data on
the state of the openings (windows and doors) were recorded by the CSTBox (see
Figure 2.6). These opening detection modules have also been included in the CST-
Box. The data recorded by the CSTBox are time series with irregular time steps:
the detection modules send back information as soon as a change of state occurs.

(a) (b)

Figure 2.6: Window opening detector: (a) closedwindow, (b) opened
window (opened zone is indicted by the red arrow)
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To synchronize all the time series at the same time step, a data preprocessing has
been performed. It should be noted that only the open-plan’s office has been
instrumented with opening detectors. Motion detection was measured in both the
individual office and in the open-space. By converting the motion into a binary
variable and the state of the windows into a categorical variable, we can create
two exogenous variables that can explain the characteristics of the variability of
the IAQ parameters.
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2.3 Data Description

After introducing general information on available data in the dataset, some sim-
ple statistics and autocorrelation function analysis were applied and the results
will be presented in this section.

2.3.1 Simple statistics

2.3.1.1 Pollution and climatic parameters

The monitoring campaign in the open-plan office took place from late January
2012 to early July 2015, with a variable number of measured parameters. The
summary of the parameters measured by year is presented in Tables 2.2

The percentage represents the number of minutes during the year when the pa-
rameter has been recorded (Tables 2.2). Several parameters have not been entered
on a minute scale, i.e. the meteorological data in 2012 (most of them has been
measured at a 10-minute time step), outdoor CO2 measurement (10-minute time
step) and formaldehyde in 2014 and 2015 (20-minute time step). Therefore, the
3% of the 20-minutes reported for formaldehyde in 2015 are spread over 60% of
the year.

Long-term monitoring of such a huge number of parameters is subject to signif-
icant incidents, but it still needs regular check of the equipment by skilled indi-
viduals who are not always available during all-over the year. This explains the
year-to-year variation in reliable measurements available. In addition, the con-
ditions of each year are also different, some parameters, such as the counting of
electrical pulses (to characterize the printer activity), were just recently set up. De-
pending on the purpose of the study, these data can be used at the measurement
acquisition time step or at a greater time step, which would minimize the amount
of missing data points.

Some general statistics for pollutant data indoors and outdoors during the year
2014 are presented in Table 2.3 and Table 2.4, respectively. One can notice that in
general, the average levels of O3 concentration (6388 hours of indoors measure-
ment corresponding to 73% of the year) and irradiance outdoors (8760 hours of
measurement corresponding to the whole year) were much higher in comparison
with the indoor ones, which is often the case. These high values can be explained
by the fact that the pollutants coming from the traffic system (vehicles emit nitro-
gen oxides are transformed in ozone with the help of the sun light (irradiance)).
The maximum ozone concentration monitored indoors was 57 ppb (hourly aver-
aged), but its average was rather low (just 5.7 ppb). Interestingly, there was a high
difference between the mean and the median value of O3 concentration indoors
(mean value is 2 time higher than median value), in comparison with the concen-
tration outdoors (mean value is 10% higher than median value), as the variability
of ozone is the one of the consequences of the opening factor. Therefore, evenwith
only one window opened, the mean concentration could be higher.
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Table 2.2: Summary of the available data for the parameters moni-
tored outdoors and indoors 2012 to 2015 expressed in % of the whole
measurement period. Grey cells of the table: measurement time step
= 10 mins or 20 mins, for the other ones = 1 minute (Ramalho et al.,

2016).

Parameter Unit 2012 2013 2014 2015 a

Outdoors
Wind speed m/s 13% 79% 100% 94%
Wind direction 13% 79% 100% 71%
Temperature °C 13% 83% 100% 94%
Relative Humidity % 13% 83% 100% 94%
Specific Humidity g/kg dryAir 13% 83% 100% 94%
Irradiance W/m2 13% 83% 100% 94%
Pressure hPa 13% 83% 100% 94%
Rain 0/1 13% 83% 100% 94%
CO2 ppm – – 8% 10%
Particulates [0.35 – 20 µm] #part/L – 36% 95% 34%
Formaldehyde ppb – – – 3%
Parameter Unit 2012 2013 2014 2015

Indoors
Presence 0/1 78% 78% 99% 100%
Window opening 0/1 41% 78% 99% 100%
CO2 ppm 79% 65% 97% 96%
Temperature °C 79% 65% 96% 83%
Relative Humidity % 79% 65% 96% 93%
Specific Humidity g/kg dryAir 79% 65% 96% 93%
Irradiance W/m2 63% 68% 91% 84%
Printer Pulses 6% 90% 80% 61%
CO ppm – 41% 37% 28%
NO ppb – 42% – –
NO2 ppb – 33% – –
Ozone ppb – 42% 47% 92%
Particulates [0.35 – 20 µm]
– near the windows

#part/L 77% 43% 96% 86%

Formaldehyde ppb – 25% 3% 3%

aThe data has been recorded only from January to July 2015.



34 Chapter 2. Study Case and Data Presentation

Table 2.3: Some simple statistics of pollutants indoors for hourly data
of the year 2014.

O3 in-
doors
(ppb)

CO2
indoors
(ppm)

Irradiance
indoors
(W/m2)

HCHO
indoors
(ppb)

CO
indoors
(ppm)

Printer
Pulses
(counts/min)

No. of samples 6388 8760 8760 5033 4383 8171
Max value 56.33 863.80 402.23 50.81 0.79 5.07
Min value 0.00 424.50 0.00 2.95 0.00 0.00
Mean value 5.71 502.22 3.00 18.70 0.20 1.42
Median value 2.84 485.03 0.00 16.50 0.18 0.62
Std value 7.13 58.95 15.65 8.26 0.11 1.02

Table 2.4: Some simple statistics of pollutants outdoors, opening fac-
tor and occupancy for hourly data of the year 2014.

O3 out-
doors
(ppb)

CO2
outdoors
(ppm)

Irradiance
outdoors
(W/m2)

Number of win-
dows opened
(windows)

Presence
(0/1)

No. of samples 8541 7045 8760 8760 8760
Max value 158.00 553.50 913.99 5.00 1.00
Min value 0.00 333.83 0.00 0.00 0.00
Mean value 40.08 415.45 125.49 0.87 0.35
Median value 36.50 410.50 6.57 0.00 0.00
Std value 30.67 28.04 199.66 1.27 0.48

By contrast with the ozone, the CO2 concentration outdoors (7 045 hours of mea-
sured values corresponding to 80.4% of the year), was lower than in the indoor
environment (full year available data), which can be expected because indoor en-
vironment is a confined one and it is due to the presence of people in the office.

Regarding formaldehyde concentration indoors, the office has a good air quality,
while the average value of HCHO indoors was only 18.7 ppb. The maximum
concentration of HCHOwas only 50.81 ppb, still very low in comparison with the
WHO limit (guideline) which is 80 ppb.

Fortunately, the CO concentration was maintained at a fair level with the average
value of only 0.2 ppm and the highest one was only of 0.79 ppm (the limitation is
5 ppm).

For the same period of the year (from January to June), Table 8.1 and Table 8.2
represent the main statistics of the environmental parameters of the years 2014
and 2015, respectively. We can see that there are no significant differences be-
tween the averaged values of these two years during the 6 months (from January
to June). One can notice that the maximum values of PM2.5 and PM10 concentra-
tions in 2014 are quite higher than those monitored during 2015 (91.87 #/L and
106.78 #/L in 2014 in comparison with 21.3 #/L and 43.71 #/L in 2015).
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During these six-month of measurement, CO2 concentrations ranged from 420 to
1100 ppm with a median of around 475 ppm and a standard deviation of 65 ppm.
The average profile of the CO2 concentration remains stable at a level of about
500 ppm indoors. Similarly, these general statistics for meteorological variables
like temperature and specific humidity, indoors and outdoors, do not show sig-
nificant difference between these two years. Based on this comparison, we may
infer that the variations from year to year of: PM concentrations, CO2 concentra-
tion and climatic parameters values, were not significant.

Regarding the particle concentration in number (1-minute step), Table 2.7 and
Table 2.8 show the general statistics for different fractions for the outdoor and
indoor environment, respectively. For PN2.5, it shows that indoor PN2.5 concen-
tration in number varied from 0 to 2866 particles/liter (average: 45 particles/liter;
median: 35 particles/liter), and the range of outdoor concentrations was from 0
to 2777 particles/liter (average: 60 particles/liter; median: 50 particles/liter). The
maximum, minimum, average andmedian values of outdoor concentrations were
almost significantly higher than the values indoors, which indicates a low indoor-
outdoor air exchange rate. However, in some case, the indoor concentration was
temporarily higher than the outdoor one (max values of PN 1.8 and PN 2.5). This
could happen when the doors/windows of the office were closed after a peak of
outdoor concentration, as the required decay times for indoor concentrations is
longer than for outdoors.
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2.3.1.2 The state of occupation and opening of the windows

In this sub-section, some simple statistics on the data describing the state of the
openings and occupancy are presented. The variable "Occupancy" designates the
state of occupation of the open-plan office and it is classified as follows: it takes
the value of 1 if at least one of the sensors has detected a movement, and the value
of 0 otherwise.

In general, the office is occupied around 7.8% (41 088 minutes) of the time dur-
ing the period from the 1st of January 2014 to the 31st of December 2014 (with
1-minute time step). This data does not really provide information on the occu-
pancy of the open plan, but rather the total number of motion detections through-
out the measurement period. If the number of detections per hour is summed,
the variable "Occupancy" does not exceed 30 minutes per hour, with a maximum
value recorded at 10 a.m. corresponding to 10% of the total time during the occu-
pation period (from 7 a.m. to 7 p.m.). According to the motion detector, during
the daytime, the hourly occupancy rate is about 20 minutes per hour, regardless
weekends or holidays.

The parameter "Occupancy" is very variable due to various aspects (the number
of occupants, the spatial coverage of the environment by the sensors, etc.), but it is
less biased due to its quantificationmethod. Indeed, if we analyze the distribution
of occupation over all the hours of the day and regardless the day, we find that the
space was occupied 19% of the time, and 26% if weekends are excluded. These
numbers may appear to be erroneous, because in principle, we should expect a
proportion of roughly 20-25% for 20 working days per month and an 8-hour daily
presence. However, because the open-plan office is occupied by a different num-
ber of employers depending on the period of the year, the occupation is highly
variable.

When working with hourly averaged data, the Occupancy variable is recalculated
for an hourly time step; thus Occupancy for a specific hour will have the value of
1 when there are more than 20 minutes of presence detected and 0 if less (as we
want to have the definitive value instead of float value (i.e. Occupancy = 1 for 25
minutes of occupancy per hour instead of Occupancy = 25/60 = 0.42).

The simple statistics for hourly averaged data of this variable according to: the
hour of the day, the day of the week, and the month, during 2014 are displayed in
Figure 2.7 - Figure 2.9, respectively.



2.3. Data Description 39

0 5 10 15 20 25

Hour of the day

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
v
e
ra

g
e
 o

f 
p

ro
b

a
b

il
it

y
 o

f 
p

re
s
e
n

c
e

Occupancy probability for each hour of the day (2014)

Figure 2.7: Hourly average value of Occupancy according to the hour
of the day based on data during 2014.
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Figure 2.8: Hourly average value of Occupancy according to the day
of the week based on data during 2014.
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Figure 2.9: Hourly average value of Occupancy according to the
month based on data during 2014.



40 Chapter 2. Study Case and Data Presentation

After recalculating the hourly values of Occupancy as presented earlier, hourly
data shows that there are 5693 hours (65%) when the office is non-occupied and
3067 hours (35%) when the office is occupied. During working days, the open-
plan office was highly occupied between 9 a.m. and 6 p.m., with the probability
of being occupied more than 60% (see Figure 2.8). Besides, the ’arriving office
time’ (7 - 8 a.m.) and ’leaving office time’ (7 p.m.) are characterized by a lower
probability of being occupied, around 35%.

Regarding the day of the week (see Figure 2.8), the working days (Monday to
Friday) are characterized by the highest value of occupancy; the values varied
from 45% on Monday and Thursday to 51% on Wednesday. The other working
days (Tuesday and Friday) were occupied with the average probability of 48%.

The month of December got the lowest value of occupancy with only 26% (Fig-
ure 2.9). This can be explained by the fact that this month includes the Christmas
and New Year holidays (around 2 weeks), when all the people are not at the of-
fice. Similarly, as May and November are the months with many national holi-
days, these two months also have a low percentage of occupancy (around 29%).
In August, October, February and June, there are also some national holidays and
vacations, leading to the value of occupancy slightly decreased – around 35%.
There are also some students who are sometimes in the offices, sometimes at their
university.

Regarding the opening factor, there are five windows in total, which are equipped
with 5 sensors to detect their open/close status and transmit it to the CSTBox via
a wireless network.

During the working time, the occupants tend to open at least one window, and
rarely open all the five windows at the same time. In addition, the probability
that no window is opened during the occupation is about 29%.

According to the daytime profile, when leaving the open-plan office, occupants
tend to leave at least one window opened, especially on Thursdays and Fridays.
We also notice that certain windows were opened on Saturday but not on Sunday,
indicating that there was somebody present on that day who would have closed
the windows (probably the guard’s round or the cleaning service), even if in a
punctual way. Furthermore, the presence detectors show that there are brief oc-
cupations throughout late-night and weekend hours (probably the guard’s round
or the cleaning service again).

2.3.2 Autocorrelation Function
In order to obtain more information about the monitored time series, the autocor-
relation functions (ACF) have been calculated (using hourly averaged data). The
ACF of a time series Y(t) provides a measure of the correlation between yt and
yt+k, where k = 0, ...,K (k 2 Z, K is not larger than T/4, where T is the total num-
ber of observations) and yt is assumed to be the realization of a stochastic process.
According to Box et al. (1994), the autocorrelation rk for lag k is:

rk = ck/c0 (2.10)
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where:

ck =
1
T

T�k

Â
t=1

(yt � y)(yt+k � y) (2.11)

and c0 is the sample variance and y is the sample mean of the time series.

The ACF result defines how data points in a time series are related, or, it measures
the self-similarity of the signal over different time delay.

The examples for ACF values of hourly averaged HCHO concentration indoors
and hourly averaged Occupancy values are displayed in Figure 2.10 and Fig-
ure 2.11, respectively. One can notice that the autocorrelations of HCHO persist
in the positive for long delays, which means that a value at time t of the HCHO
concentration can have an impact on a value of several days later. In contrast,
the ACF of the Occupancy hourly values becomes negative and remains at low
levels, and then switches back to positive values after a lag of around 17 hours.
In general, Occupancy depict the same structures of spectral variability as CO2
concentration: the fundamental frequency peaks at every 24 hours. The ACF of
Occupancy value alternates sign every 8 hours on a lag of 24 hours. Furthermore,
the ‘weekly periodicity’ (at the lag of 168 hours) in the ACF values of Occupancy
is noteworthy.
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Figure 2.10: ACF value of HCHO concentration indoor 2014.

Figure 2.12 presents the autocorrelation function (ACF) values calculated from
the time series of the concentration in number of particles indoors of the year
2014. The autocorrelation values corresponding to the sizes of fine particles (PN
0.35 and PN 1.3) were significantly high with a very slow decreasing. Similar
to HCHO, the long persistence and high value of ACF are expressed. In fact,
this persistence materialized by a slow decrease in autocorrelations (long-term
correlation) represents a complex mechanism associated with the sources of fine
particles. These sources present multi-frequency fluctuations, i.e. according to
different time scales (Ramalho et al., 2016).

Regarding the values of ACF of medium (PN 4.5) and coarse (PN 17.5) size par-
ticles, the similar type of behavior as ACF values of CO2 indoors concentration
and Occupancy are observed. These autocorrelation functions presented like a



42 Chapter 2. Study Case and Data Presentation

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
ACF of Occupancy in 2014

0 50 100 150

Lag (hours)

Figure 2.11: ACF value of hourly averaged value of Occupancy in
2014.
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Figure 2.12: Autocorrelation function values of the time series of (a)
PN 0.35, (b) PN 1.3, (c) PN 4.5 and (d) PN 17.5 concentration in num-

ber in 2014.

mixture of exponential and sinusoidal functions, the values keep switching be-
tween negative and positive level and the fundamental frequency peaks at every
24 hours are showed. The ’weekly periodicity’ also easy to indicated. Indeed, the
ACF of these fractions reflects the seasonal aspect of their concentration.
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2.3.3 Remarks
In this section, we introduced about the studied open-plan office, where all the
data in our dataset are measured. The information about available data on pol-
lution, climatic, opening factors and occupation is then presented. We then per-
formed some simple statistics and autocorrelation function analysis to have gen-
eral information about the dataset.

According to the available data and the objective of the study, data of allover the
year 2014 (almost fully recorded) was used for the first part in order to identify
the pollutant sources of an open-plan office and assess their relative contributions
to the general level of pollutant concentrations of particulate matter. In the second
part, data of 18 months (from January 2014 to June 2015) was used for predicting
the windows opening state as it is interesting to test the trained model (using data
of 2014) for a completely new year data (data of 2015).
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Part I

Source identification of indoor
pollutants
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This part of the thesis concentrates on tackling the first objective: identifying the
pollutant sources of an open-plan office and assessing their relative contributions
to the general level of pollutant concentrations of particulate matter. We have fo-
cused this work on pariculate matter because this pollutant is the cause of many
health effects as presented in chapter 1 - section 1.2, and it is characterized, further-
more, by a complex chemical composition. This study tries to reveal the under-
lying factors that affect the temporal variation of particle matter in the open-plan
office.

The concentration of particulate matter (PM) indoors can be affected by several
factors including deposition on surfaces, resuspension, inherent variation of par-
ticle source strength, transfer from outdoors or from adjacent rooms, air exchange
rate and climatic parameters such as: humidity and temperature. Considering
the multitude of these factors, it is quite challenging to identify the PM sources
inside the open-plan office based only on the observation data. In addition, the
presence of occupants and their behavior can affect several of these factors, air ex-
change rate in particular through the action of windows opening. Both occupants’
presence and windows opening are monitored and provided in our database, as
presented in chapter 2.

Given that we have at our disposal only somemeasurements concerning the effect
(the PM pollutant concentrations), an inverse (or receptor) modeling has to be
developed in order to get information about the PM sources. In this case, there
are two possibilities to get back to the sources: either by using the blind source
separation methodology or by using a direct model coupled with the observation
information, via the data assimilation. The first alternative has been chosen as it is
difficult to have at our disposal a physical model for the open-plan office.

From the various methods used for blind source separations (BSS), a tensor de-
composition method called PARAFAC was selected and applied to size-resolved
particle data measured in the open-plan office. In order to help interpreting the
identified factors which are the PARAFAC outputs, complementary data analysis
and signal treatment methods were applied to them.

The general outline of this part is briefly described. Firstly, chapter 3 presents
some generalities about the BSS techniques, focusing on their theoretical founda-
tion (section 3.1), followed by a brief introduction of several source separations
methods in the literature and some examples of their application for time se-
ries data of indoor and outdoor environments (section 3.2). Chapter 4 presents
the detailed information about the selected BSS method - PARAFAC). The data
pre-processing, the PARAFAC mathematical equations and the implementation
procedure are introduced. In this chapter, different pre-processing methods are
applied to PN concentration data in order to have a well-organized tensor as in-
put for the PARAFAC decomposition. In chapter 5, different structures of input
data are constructed to implement in the PARAFAC model and the results about
source profiles and their contributions are presented, followed by a detailed in-
terpretation for the source identification. Some conclusions and a brief discussion
close this part.
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Chapter 3

Blind source separation techniques

This section presents a literature review about blind source separation (BSS) in
general (section 3.1), followed by the introduction of source separations methods
in the environment field (section 3.2). A brief presentation of several common BSS
methods is given in subsection 3.2.1. Some studies concerning source separation
in outdoor and indoor environments are presented in subsection 3.2.2. The appli-
cation of BSS methods in the particular case of Particulate Matter, the pollutant
studied in this thesis, for the source apportionment in different environments and
especially in an open-plan office, our main subject of interest, is also included in
this subsection. Finally, section 3.3 presents a discussion about the advantages
and disadvantages of different BSS methods and gives the main argument for se-
lecting the PARAFAC method in this thesis.

3.1 Generalities on Blind Source Separation (BSS)

The problem of source separation from a mixture of signals is not a problem spe-
cific to the environment, it may also be found in other fields. The typical exam-
ples were presented in speech signal processing (Choi et al., 2002; McDermott,
2009),which attempted to obtain voice separation from recorded voices of various
persons speaking at the same time using several microphones (the ’Cocktail party
effect’). The ’Cocktail party effect’ was first defined and named "the cocktail party
problem" by Colin Cherry (1953). In his study, Cherry attempted to perform at-
tention experiments in which participants simultaneously listened to differentiate
two different signals from a single loudspeaker. His research shows that the ca-
pacity to distinguish sounds from background noise is affected by a combination
of factors, including the speaker’s gender, the direction from where the sound is
originating, the pitch and the tempo of speech.

In the both previously cited fields, an equivalent mathematical formalism can be
applied. Despite the fact that the source separation problem is mathematically
formalized in the same way in both signal processing and environment, the as-
sumptions or the constraints imposed have given rise to a variety of solution ap-
proaches.

In the field of the air quality, the purpose is generally to emphasize/highlight the
"signatures" of the different sources, allowing thus their identification. Assum-
ing that the elements emitted by a source must be found grouped (statistically
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Figure 3.1: General principle of blind source separation meth-
ods (Gilbert, 2019).

correlated) in the environment, the use of classification and pattern recognition
methods remains very appropriate due to their ability to highlight the groups cor-
responding to the strongest correlations (interpreted then in terms of "signatures"
of the sources) (Ionescu, 2010).

Blind Source Separation (BSS) is a generic term for problems that involve the re-
constructing of a set of time series of unknown sources from observations on mix-
tures of these sources. The word "blind" in the BSS term refers to the fact that
there is no (or very little) information about the sources or the mixing system. In
statistics, it refers to unsupervised learning approaches (without prior knowledge
about the mixtures). The term "blind" is imposed in telecommunications literature
and is now universally used (Comon and Jutten, 2007).

Figure 3.1 (Gilbert, 2019) shows the general principle of blind source separation
methods. In this method, the available information is represented by a set of ob-
servations (x1, ..., xn); each observation is a combination (mixture) of the different
unknown sources (s1, ..., sn), via an unknown mixing system A. The purpose of
BSS is to use the observation (x1, ..., xn) in order to estimate the sources (y1, ..., yn),
typically via an estimated de-mixing system W . Because the source estimating
method only has access to the observations of the mixed sources with no knowl-
edge about the sources or the mixing technique used to obtain the observations.
This sort of source separation is referred to as "blind" and can comply with an
infinity of solutions.

The simplemathematical explanation for Figure 3.1 is represented in equation (3.1).

xi(t) =
n

Â
j=1

aijsj(t) + e(t) (3.1)

In this equation, xi(t) represents the observed/measured data at instant t, sj(t)
represents the original sources and e(t) is the noise or the error measurement.
The equation (3.1) could be written in a more compact form as in equation (3.2):

x(t) = As(t) + e(t) (3.2)
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where A is the mixing matrix (A 2 Rnxn) which contains the mixture coeffi-
cients aij, s(t) = [s1(t), . . . , sn(t)]T is an nx1 column vector including the sources
signals at a given time t and the vector x(t) = [x1(t), . . . , xn(t)]T is composed
of the n observed signals at the same moment t. For the simplest BSS model
with assumption of independence among the entries of the input vector s(t) and
possibly some a priori information about the probability distribution of the in-
puts, a nxn ‘demixing-matrix” W (W 2 Rnxn) can be used to calculate y(t) =
[y1(t), . . . , yn(t)]T as given in the equation (3.3):

y(t) = Wx(t) (3.3)

As already said before, equation (3.1) accepts an infinity of solutions. In order
to select the most suitable one according to the problem to be solved, some con-
straints should be imposed. Even with these constraints, the method is still called
"blind".

The initial research on blind source separation started in the 1980s and originally
focused on physiological signal processing, specifically decoding vertebrate mo-
tion (Roll, 1981). The biological challenge that prompted the study on source sepa-
ration is described in the study of Comon and Jutten (2007). This problem entailed
investigating the muscle responses emitted following various types of excitations.
Since then, the resolution of source separation problems has moved to other aca-
demic disciplines and aroused the scientific community’s attention. The goal is to
use BSS algorithms to answer questions in a wide variety of applications dealing
with various types of signals.

3.2 Source separation in the environmental field

In the environmental field, receptor models are commonly used to find informa-
tion on the sources of air pollutants. "Receptor models are mathematical or statis-
tical procedures for identifying and quantifying air pollution sources at a receptor
location" (United States Environmental Protection Agency, 2022). These models
use approaches for tackling the mixture problem resolution by using chemical
composition data for gases and particles measured. These models are therefore
a complement to other air quality models for identifying sources contributing to
air quality problems. The fundamental principle of receptor modeling is based
on the assumption that mass is conserved; on this basis a mass balance analysis
can be used to identify and apportion sources in the atmosphere (Hopke, 2010).
These methods are based on some assumptions regarding the source, chemical
species and measurement methodology if this information is not known. They
require a certain degree of knowledge about the sources such as: the number
of sources, source profiles (which substances are emitted by which source) or
source strengths. Of all considered techniques, conventional factorization and
chemical mass balances represent the two extremes. Conventional factorization
requires little knowledge, while chemical mass balance strategies require exact
knowledge about the source(s). Other techniques, such as Positive Matrix Fac-
torization or UNMIX, can be considered as intermediate strategies and are based
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Figure 3.2: Approaches for estimating pollution source contribu-
tions using receptor models (modified from the study of Schauer et
al. (2006)). Specific models are shown in italics and with dotted ar-

rows (Vianaa et al., 2008) .

on partly overlapping or slightly different assumptions and source knowledge
requirements.

Figure 3.2 illustrates a wide spectrum of methods that address the issues of iden-
tification and contributions of pollution sources by putting into perspective the
level of information required to solve the source identification problems. Clearly,
the mass balance model (CMB, for Chemical Mass Balance) requires a "perfect" a
priori knowledge of the type of the sources influencing the measurement site (and
their chemical profile or strength) and seeks only their contributions.

On the other hand, the so-called "statistical" methods such as the Positive Matrix
Factorization (PMF), the Non-Negative Matrix Factorization (NMF) or Principal
Component Analysis (PCA) are based on the identification of sources a posteriori
among the factors, taking into account themost probable interpretation in the con-
text. All these methods can be included within the Exploratory Factor Analysis
Models. They are all factorization techniques, under different constraints applied
to the factors: PMF or NMF under the constraint of positivity (or non-negativity),
PCA under the constraint of orthogonality or decorrelation, ICA under the con-
straint of statistical independence.

In order to identify the different source categories and estimate their respective
contributions, advanced multivariate receptor models have been developed and
applied successfully in many air pollution studies. The three most widely ap-
plied source apportionment techniques are: principal component analysis/abso-
lute principal component scores (PCA/APCS), chemical mass balance (CMB) and
positive matrix factorization (PMF). In this section, the brief information about
these techniques is introduced in complementary with introduce about the cho-
sen method PARAFAC in our study.
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Figure 3.3: An example of PCA for projecting 2D data (cloud) into
1D (a line).

3.2.1 The most common source separation models
This section presents a state of the art of the four most widely applied source ap-
portionment techniques above. The aim is not to give an exhaustive list of possible
approaches but rather to show their diversity. These methods will be presented
because their later application will have as a goal to highlight the "signatures" of
the various sources, thus allowing their identification.

Indeed, by making the hypothesis that the elements emitted by a source must be
found in the environment of this one grouped (statistically correlated), the use of
the methods of classification and recognition of forms demeures very appropriate
by their capacity to highlight the groups corresponding to the strongest correla-
tions (interpreted then in terms of "signatures" of the sources).

3.2.1.1 Principal Component Analysis

Principal Component Analysis (PCA) was first formulated in statistics by Pear-
son (1901), who described this analysis as the search for lines and planes corre-
sponding to the best fit to a system of points in space, in other words, a reduced
dimensional image of the scatter plot. In 1933, Hotelling proposed it to solve the
problem of statistical decorrelation (Hotelling, 1933). Since then, PCA has become
a widely used tool in signal processing, especially for compression and pattern
recognition.

PCA also be called "geometric data analysis" or "correlation analysis" (Wolff, 2003),
this method is a descriptive technique for studying the relationships between
quantitative variables, without taking into account any structure a priori. It con-
sists in summarizing (synthesizing) the information contained in a table of num-
bers by replacing the initial variables by a smaller number of composite variables
(the components), which are not correlated with each other. From an algebraic
point of view, PCA corresponds to a representation of the cloud of points in a
lower dimensional space.
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The purpose of PCA is to provide the best possible visualization of multivariate
data in lower dimensions to best represent the original data.

Figure 3.3 shows a simple example of how the 2D data project to 1D by PCA. There
are a cloud of sample points x1, ..., xn, which are denoted as xk on 2D space and
pk is the projected point of this sample on new 1D space. The distance between xk
and pk is dk. The PCA process try to select the line which minimizes the sum of dk
and best represents xk. Then this line is represented as the new feature space.

The general process of PCA computation is as follow:

1. Compute mean vector µ and covariance matric S of original points

2. Compute eigenvectors n and eigenvalues l of S ( eigenvectors and eigen-
values satisfy this equation: Sn = ln)

3. Select top n eigenvectors (n is the number of dimensions of the final space)

4. Project original points (samples) onto subspace:

y = A(x� µ) (3.4)

where y is the new projected point/sample, x is the original one and the
rows of A are the eigenvectors.

The advantages of PCA are that it preserves the important feature of data and
greatly reduces the dimensionality of the feature space.

3.2.1.2 Chemical mass balance

Chemical Mass Balance (CMB) or Mass Balance Analysis (MBA) is used to solve
linear mixing problems in ambient air, provided that the compositions of the
sources are known; as the name indicates, the basic principle is based on the mass
balance (Hopke, 1991).

The concentration ci of an element i measured at the receptor site is composed of
the sum of the contributions of each of the surrounding sources:

ci = Â
j
cij + e (3.5)

where cij is the concentration of element i from source j; e is the error term that
takes into account the background concentration and analytical uncertainties.

The term cij can be decomposed as follows:

cij = aij ⇥ f j (3.6)

where aij is the contribution of source j for element i; and f j is the composition
profile of source j.

Each source can be described by an association of specific elements and their
abundances in this source j, the profile corresponds to the concentrations of el-
ements specifically from of source j.
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The main assumptions of the CMB model are:

• there is no chemical reaction among chemical species (they add linearly);

• the compositions of the sources are linearly independent;

• the number of sources does not exceed the number of chemical species;

• the measurement uncertainties are random, uncorrelated and follow a nor-
mal distribution (Christensen and Gunst, 2004).

3.2.1.3 Positive Matrix Factorisation

Positive Matrix Factorisation (PMF) was introduced by Paatero in the 90’s for the
quantification of the contribution of air pollution sources (1994). This method
seeks a factorization of a positivematrix into a product of positivematrices (source
profiles and source contribution). One of the most common application is when
chemical analyses are performed in the environment giving the concentration of
different species.

This method assumes that the concentration of a chemical species j in a sample
i is equal to the product of the contribution of a source k in this sample and the
concentration of the chemical species in this same source k. Formally, the problem
is mathematically reduced to the following formulation:

X = G • F+ E (3.7)

The matrix X 2 Rnxm represents the concentrations recorded for m species (the
columns of X) of n samples (the rows of X). The species concentration matrix X
can be factorized into two matrices: G is the factor contribution matrix and F is
the factor profile matrix, while E is the residual matrix. This decomposition is not
unique and according to the constraint imposed, there are different well-known
approaches.

The number of sources is unknown a priori and has to be chosen by the user ac-
cording to different criteria. The method allows talking into account the uncer-
tainity of the measurement by introducing different weights. In the case of the
time series analysis, the method can be applied to determine the main factors or
sources of variability. The matrix X in equation (3.7) represents the observations
recorded by m sensors at T different times: X 2 RmxT. A column of X represents
the sensor records at a given time. These records come from n sources. The emis-
sion intensities of the sources at a given time t are in the column t of a matrix
X 2 RmxT.

The PMF method tries to estimate F and G by using a least squares minimization
of the error E:

min
G>0,F>0

kX�G • Fk2 (3.8)
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3.2.1.4 Nonnegative Matrix Factorization

The Nonnegative Matrix Factorization (NNMF) is very similar to PMF. In both
cases, PMF and NNMF are looking for positive or non-negative factors. One of
the main differences between the two methods is that the NNMF does not weight
systematically the measurement uncertainties.

The algorithms used to solve the NNMF have been specifically developped. To
solve the least squares minimization problem, Lee and Seung (1999) use the pro-
jected gradient method: fix the matrix F; perform a gradient descent with respect
to G; set all the negative components of G to zero; completely change the roles
of variables F and G and repeat the process until convergence. The same au-
thors have also developed other algorithms to minimize the Frobenius norm of
the residue, or to minimize a divergence Kullback-Liebler divergence. The resolu-
tion of the NNMFwith a second order optimization has been achieved by Zdunek
and Cichocki (2007) by combining two methods: the projected gradient method
and the conjugate gradient method, in order to improve the convergence of the
NNMF.

NNMF has found awide range of applications in the field of signal processing and
image processing (Cichocki et al., 2006; Lee et al., 1999; Li et al., 2001). Regarding
the environmental field, this method has recently been used under constraints for
PM2.5 source apportionment in Northern France (Kfoury et al., 2014, 2016, or for
source identification of PM10 from an industrial area (Limem et al., 2014).

3.2.1.5 PARAFAC

Tensor decomposition is developed in order to be able to treat complex (multidi-
mensional) data. This method can deal with data arrays of a higher dimension,
presenting a tensor structure. Moreover, tensor decomposition-based methods
avoid the ambiguity of rotation and have the advantage of the solution’s unique-
ness in comparison with the matrix decomposition methods.

By definition, tensors are generalizations of matrices to higher dimensions and
can consequently be treated as multidimensional fields (Hitchcock, 1927). In gen-
eral, the tensor decomposition tries to express a tensor as a minimum-length lin-
ear combination of rank-1 tensors. For the definition of a tensor’s rank by giving
some examples to illustrate it, see Table 3.1.

The Parallel Factor Analysis (PARAFAC) method is one of the several decom-
position methods for multi-dimensional data. This method extends the bi-linear
principal component analysis method to higher order arrays. The approach was
proposed simultaneously by Harshman (1970) and by Carrol and Chang (1970),
the latter being known under the name CANDECOMP (CANonical DECOMPo-
sition) and the method PARAFAC/CANDECOMP is also known as Canonical
Polyadic Decomposition (CPD).

“Factor analysis seeks the minimum number of parameters to describe the max-
imum amount of inter-correlation among the variables. Whenever one is fitting
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Table 3.1: The illustration for the rank of a tensor definition.

Tensor
Dimensionality,
rank or order of
tensor

Example

Scalar 0 14
Vector 1 [14 07]
Matrix 2


14 07
20 06

�

Cube 3


14 07
20 06

� 
21 12
24 03

��

a model to data, one seeks parameters of the model that fit the data as closely as
possible - parameters that optimize some measure of fit.” (Green, 1966).

Using the least-squares criterion of fitting, PARAFAC analysis procedure fits the
mathematical model to the data as close as possible (Paatero, 1997). Even if its cor-
responding model fitting degree is not as good as for other matrix decomposition
methods (PCA, ICA, PMF, etc.), it presents the advantage that it gives a unique
output and it is very easy to increase the complexity of the data dealt with (just
adding more dimensions to the input).

A simple PARAFAC model for a 3-dimension array is given by three loading ma-
trices A, B and C, leading to a trilinear model (Paatero, 1999) (see equation 3.9
and Figure 3.4). With the parameters ai f , bj f , and ck f which correspond to the
i,j,k mode’s loading vectors, respectively, the model tries to minimize the sum of
squares of the residuals eijk

xijk =
F

Â
f=1

ai f bj f ck f + eijk (3.9)

where xijk is the original pre-processed data, F is the number of factors / sources / com-
ponents extracted in each mode (i,j,k).

Figure 3.4: An example of PARAFAC model for 3-dimension array
input.

The study of Paatero (1999) introduced a PARAFAC model in the environmen-
tal field for the chemical composition of aerosol samples, according to the equa-
tion 3.9. The 3-dimensional tensor xijk consists of the concentrations of different
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chemical species, measured in different times and locations, the mode j repre-
sents the chemical species, the mode i indicates observation times (e.g. years,
days, hours) and mode k corresponds to locations of measurement (e.g. indoor,
outdoor, personal). For example, a layer x··k corresponds to the values which were
measured at location k. Each column f of factor loading matrices A, B, and C rep-
resents one source of aerosol particles. For example, the column A· f represents
the temporal development of aerosol concentration due to source f (the source
contribution in time), the column B· f represents the chemical composition emit-
ted by source f (the source profile). Finally, the coefficients A· f show the spatial
distribution of the concentration due to source f among the K locations where
measurements have been made.

Similarly, Hopke et al. (2003) use this three-way factor method to retrieve the
source contribution estimates of indoor and outdoor particulate matter data. In
this study, the versatile air pollutant samplers (VAPS) were considered as a three-
dimensional array using a model based on the equation 3.9 where ai f is the f th

source contribution for each ith sampling interval, bj f contains the jth concentra-
tion in the f th source profile, and ck f indicates the kth sample type (community,
central indoor, or outdoor) such that the product of ai f and ck f provides the source
contributions for each sample.

In general, the loadings can be interpreted as the strength of influence on the
correlation for the respective i,j,kmode. The higher the loading value, the stronger
the influence of the respective feature on the correlation.

3.2.2 Application of source separation methods in environmen-
tal sciences

The application of source separation and identification methods in environmental
sciences often appears in a perspective of source recognition based on chemical
signatures (association of chemical elements specific to the source). Often this
knowledge exists although a little bit uncertain but is required for the interpre-
tation of the results. Sometimes, they are not unique, because we find "partial"
signatures that can correspond to several sources. Therefore, detailed knowledge
of the study site can help to identify them.

3.2.2.1 Outdoors

Outdoor environmental pollution has been the subject of study in parallel with
the rapid development of modern urbanization and industrialization, due to high
pollution levels as well as negative health impacts from outdoor environmental
exposure.

Efforts have been made for more than 50 years to link observed levels of airborne
components to their sources. Measurement technology has progressed through-
out this time period, enabling the gathering of exceptionally time-resolved, com-
plete chemical compositional data. Similarly, advances in computer technology
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have permitted the contemporaneous development of data analysis tools that al-
low information to be extracted from this data. There is currently a strong po-
tential for delivering pertinent information on pollution sources and atmospheric
processing that can help affecting air quality management policies. To generate
more precise apportionments, attempts have been made to integrate receptor and
chemical transport models (Hopke, 2016).

According to the review fromHopke (2016), Colucci and Begeman (1965) were the
first authors to report the apportionment of pollutants (polycyclic aromatic hydro-
carbons, PAHs) to a specific source type (automobile emissions) based on the con-
centrations of the co-emitted carbon monoxide (CO) and lead. In their research,
the particulatematter samples were taken at three sites: (1) John Lodge-Edsel Ford
Freeway Interchange, Detroit (Freeway), (2) Grand Circus Park, Detroit (Down-
town), (3) General Motors Technical Center, Warren (Suburban). Chemical anal-
yses were performed afterwards for these particulate matter samples. Further-
more, detailed meteorology information, especially the direction and velocity of
the wind was obtained from the United States Department of Commerce Monthly
Data and Data Supplements for Detroit City Airport, as they are a significant as-
pect in sampling operations. The apportionment was based on concentrations
of lead, carbon monoxide, "tar" and polynuclear aromatic hydrocarbons, in both
exhaust gas and in the atmosphere. They also made an assumption that automo-
biles are the exclusive sources of lead and carbon monoxide in the environment;
therefore, the calculated contributions by automobiles to the polynuclear aromatic
hydrocarbons in air are maxima, and the actual contributions might be lower.

In 1967, Blifford and Meeker (1967) based their research on the correlation matrix
and the principal components analysis (PCA) to examine particle composition
data collected by the National Air Sampling Network (NASN) at 30 urban loca-
tions in the United States for the years 1957 through 1961. The first four principal
factors were tentatively assigned to (I) industrial pollution, (II) automobiles, (III)
fuel burning, and (IV) petroleum refining, on the basis of their chemical compo-
sition. These four factors account for about 70% of the variance while another
20% appears to be due to the widespread use of plating materials. In this re-
search, they also indicated that factor analysis appears to be a helpful approach
for building pollution models, and additional factorial experiments including dif-
ferent data sets and the introduction of meteorological information would most
likely lead to further separation of pollution sources. Such investigations might
serve as a foundation for the reasonable design of sampling networks that use the
minimum number of stations and analyses.

In general, Positive Matrix Factorization (PMF) is widely used in the atmospheric
community to identify and quantify the contribution of sources to ambient con-
centrations in urban and rural regions (Mooibroek et al., 2011) as well as in indus-
trial locations (Kara et al., 2015). In a study conducted on source apportionment of
VOCs in Los Angeles, USA (Brown et al., 2007), the authors succeeded to identify
different factors at two sites: Azusa and Hawthorne, respectively. There, eight 3-h
canister samples were collected every third day at a number of sites in the Los An-
geles South Coast Air Basin during the ozone season (generally July–September)
from 2001 to 2003. By using PMF as a source apportionment tool, five factors were
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identified at Azusa: (1) evaporative emissions (31%), (2) liquid/unburned gaso-
line (27%), (3) motor vehicle exhaust (22%), (4) coatings (17%), and (5) biogenic
emissions (3%). Meanwhile, at Hawthorne, six factors were identified: (1) evap-
orative emissions (34%), motor vehicle exhaust (24%), industrial process losses
(15%), natural gas (13%), liquid/unburned gasoline (13%), and biogenic emissions
(1%). In general, transportation related factors accounted for 71-80% of total re-
constructed VOC mass concentration, these results are similar to previous source
apportionment results using the chemical mass balance (CMB) model.

Another similar studywas conducted inHouston, USA (Leuchner and Rappenglück,
2010). From the measurements located at the Moody Tower on the University of
Houston campus, eight factors were identified, of which industrial sources ac-
counted for approximately two-thirds of the reconstructed VOC mass concentra-
tion. In this study, the EPA PMF 1.1 receptor model based on the multilinear
engine ME-2 (Paatero, 1999) was applied. According to this research, the PMF
model provides robust results for the identification of sources in complex atmo-
spheric environments (e.g. Houston). In this work, PCA and UNMIX models
were also applied to the data set. The source profiles obtained by the PMF were
the physically most reasonable results. Additionally, the modeled profile com-
positions show good agreement with canister samples taken within the Houston
area representing crude oil handling, traffic, and an oak forest.

A study which was conducted in Shanghai, China also succeeded to use PMF
to identify seven factors at the central Shanghai site, where transportation sources
accounted for 40% of the reconstructedmass concentration (Cai et al., 2010). VOCs
were sampled from 6:00 to 9:00 using a 6 Litters silonite canister from January
2007 to March 2010. In order to study the diurnal variations, VOCs were in-
tensively measured (8 samples a day with a 3 h interval) from August 25th to
September 20th, 2009. Based on the measured VOC concentrations, a PMF model
coupled with the information related to VOC sources (the distribution of major
industrial complexes, meteorological conditions, etc.) was applied to identify the
major VOC sources in Shanghai. The seven factors identified were: (1) vehicle-
related source (25%), (2) solvent-based industrial source (17%), (3) fuel evapora-
tion (15%), (4) paint solvent usage (15%), (5) steel-related industrial production
(12%), (6) biomass/biofuel burning (9%) and (7) coal burning (7%).

A study of Polissar et al. (1996) also applied PMF to measurements at seven Na-
tional Park Service sites in Alaska. For each site, the authors have a large number
of daily samples (between 300 and 600) of suspended particulate matter (PM2.5).
This application has shown that themain sources of pollution are regional sources,
located at long distance. The extended study by the same authors (1998) have
highlighted the possible sources, which they have classified in 4 categories, in-
dependently of the study site: transported aerosols of anthropogenic nature, sea
salt, local soil dust particles and aerosols with high concentrations of black carbon
from local or regional sources (forest fire).

A hybrid receptor model of constrained weighted-non-negative matrix factoriza-
tion (CW-NMF) was used to investigate the impact of steelworks emission on the
composition of PM2.5 in Dunkerque, Northern France (Kfoury et al., 2016). In
this research, the knowledge on source tracers and the relative composition of the
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different sources was used as a priori information when running the CW-NMF
model. According to the results, this study succeeded to identify eleven source
profiles with varying contributions: 8 sources are characteristics of coastal urban
background site profiles, and other 3 sources are related to steelmaking activi-
ties. The most significant contributors are: secondary nitrates, secondary sulfates,
and combustion profiles, which account for 93% of the PM2.5 concentration. The
authors also indicated that this work is the first to propose the use of a priori in-
formation in a hybrid receptor model based on a matrix factorization method and
taking into account soft constraints on chemical profiles.

Regarding the tensor decomposition method, a multidimensional modeling of
aerosol monitoring data has been obtained from the study of Astel et al. (2010).
A three-way particulate matter (PM) data set obtained from four separate sam-
pling locations in the Lower Austria area was used as input for the three-mode
principal component analysis (Tucker3) model. Finally, the tensor decomposi-
tion model chemometric approach was successful in evaluating particulate mat-
ter chemical profiles in order to identify the main sources of pollution and analyze
their spatiotemporal impact. Three latent factors determining data structure were
well structured. These factors are linked to the pollution and natural source pro-
files in particulate matter generation in the monitoring area, such as combustion
processes (indicators PM10, OC, EC), soil (indicators Si, Al), and street dust (indi-
cators Ca, Fe). According to the study, the most significant benefit of multivariate
modeling is the opportunity to analyze seasonal effects within the monitoring
procedure.

PARAFACwas used to model a four-way environmental data set that comes from
air quality monitoring in two industrial regions in Austria (Stanimirova and Sime-
onov, 2005). However, this study was more focused on the influence of chemical
composition on the air quality than the variation of its sources.

3.2.2.2 Indoors

In the past, source separation was mainly addressed in the context of the outdoor
environment. Some studies focus on the estimation of a particular source contri-
bution, which is the outdoor environment, seeking to analyze the variability of
the indoor-outdoor concentration ratio or transfer. Some studies stop at this level,
others look for more details, separating the sources (and their contributions) in
the indoor environment. The most studied environments are residential, schools
or mobile environments, such as car or bus interiors.

We can find publications on the following topics in the specialized literature:

• The characterization of sources by an emission profile obtained by direct
measurement, at the source;

• The identification of sources and in certain cases the source’s contributions
by receptor models.

The major sources of indoor pollution are now relatively well-known, although
their contributions have rarely been evaluated. A significant number of research
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focus on the search for a specific input: the contribution of outdoor air, by exam-
ining the association between pollutant values obtained indoors and those mea-
sured outdoors. Some studies end there, while others dig a bit deeper, trying to
identify the sources (and their contributions) at the level of the indoor environ-
ment.

Guo (2011) studied the sources of VOCs in 100 selected homes in Hong Kong in
winter 2002. In this study, the author applied PCA with VARIMAX, then evalu-
ated the contributions by using the absolute principal component scores (APCS)
technique combined with multiple linear regression (MLR). This technique differs
from classical PCA by the positivity constraint imposed on the profiles and contri-
butions. The choice of their method was justified by the fact that the APCS tech-
nique requires a minimum of inputs characteristics for the sources, but provides
information on both the profiles and the contributions. This receptor model, like
all others for that matter, may fail to separate sources if they are highly correlated
(collinear). The authors analyzed samples for 15 species of VOCs and formalde-
hyde. They concluded that the dominant VOCs sources in Hong Kong homes
were: (1) off-gassing of building materials (76.5 ± 1%), (2) room freshener (8 ±
4%), (3) household products (6 ± 2%), (4) mothballs (5 ± 3%), (5) painted wood
products (4 ± 2%) and (6) consumer products. In addition, the analysis of the
emission strengths of the six identified sources revealed that a small number of
homes were the significant contributors to the increased concentrations of target
VOCs released from these sources.

Suryawanshi et al. (2016) have used PMF to identify the strength of indoor air
pollution sources in India. A total of 96 samples of PM0.6 were collected from
different indoor microenvironments in IIT Kanpur campus, from November 2013
to September 2014. The collected samples were then subjected to chemical analy-
sis. PMF was used for the source apportionment process. The analysis shows that
five sources were responsible for the indoor pollution. These five sources were:
coal combustion (21.8%), tobacco smoking (9.8%), wall dust (25.7%), soil particles
(17.5%) and wooden furniture/paper products (25.2%). The study also indicated
that factor contributions of the sources were not constant and they changed with
time. This change in the contribution of factors with time might be due to the
change in temperature, humidity and other influences.

Regarding inversemodels for identifying the sources of particles, Zhao et al. (2007)
investigated the exposure of 56 asthmatic children (aged 6-13) in schools using an
expanded PMF receptor model as expressed in equations (3.10) and (3.11) below:

xijdt =
N

Â
p=1

gipdt fjp +
N+H

Â
p=N+1

hipdt fip t = 1/2: personal/indoor (3.10)

xjdt =
N

Â
p=1

gpdt fjp t = 3: outdoor (3.11)
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where i represents the individual (subject), j is the pollutant species (17 species:
EC, NO3-, Na, Mg, Al, Si, S, Cl,K, Ca, Ti, Mn, Fe, Co, Cu, Zn, and Br), d is the sam-
pling date, t is the type of environment (personal/indoor/outdoor), N is the num-
ber of outdoors sources and H is the number of indoor sources. Based on these
explanations, xijdt means the concentration of pollutant j with type t collected on
subject i on the date d. g denotes the contribution of source and f represents the
relative concentration of species j in source p.

The authors searched for common sources of PM2.5 in three categories of habi-
tats in Denver: personal house, indoors (school), and outdoors (school). Samples
were collected by Teflon filters over two winter periods and then weighed and
examined by X-ray fluorescence (XPF) to detect elemental concentrations from
Na to Pb. For the three types of environments, they discovered four outside
sources (Secondary sulfate, Soil, Secondary nitrate and Motor vehicle emissions)
and three indoor sources (Chlorine-based cleaning, Cooking and Environmental
tobacco smoking). Cooking was found to be the most important indoor source
(30.2% contribution). Tobacco has a significant impact on the particles in personal
dwellings (9.2%). The impact of high traffic flow outside the school was observed
(26.5%). The authors employed an expanded model for PMF, with 4-dimensional
element matrices (as equation 3.10) representing the concentration of the pollu-
tants in a sample of a certain environment (houses, indoors, outdoors) taken on
a given subject on a given day. The record of indoor activities (cleaning, swim-
ming, cooking, etc.) on personal exposure was helpful in identifying the sources
collected by the PMF. For example, the chlorine concentration exposure strength
of the evening cleaning-exposed participants was twice that of the non-cleaning
exposed.

Similar to the research above, in 2014, Amato and colleagues (2014) presented
their study on source apportionment by using a constrained PMF model. In this
research, two criteria (based on signal-to-noise ratio and detection limit) were
used to select 31 strong and 2 weak species out of the total of 61 available species
as the input of PMF. PM2.5 samples were collected at indoor and outdoor environ-
ments of 39 primary schools in Barcelona during 2012. After the source separation
process, seven outdoor sources (Traffic, Secondary Sulfate & Organics, Secondary
Nitrate, Road Dust Metallurgy, Sea Spray and Heavy Oil Combustion) and two
children-activity-related sources (Mineral, Organic/Textile/Chalk - OTC) were
identified. In conclusion, the research shows that children are exposed to a signif-
icantly high level of PM2.5 by the high infiltration rate of outdoor urban sources
(53%) and the contribution of the OTC source (45% of indoor PM2.5). In addition,
this research also indicated that “traffic contributions were significantly higher for
classrooms with windows oriented directly to the street, rather than to the interior
of the block or to playgrounds”. This emphasizes the significance of urban design
in reducing children’s exposure to traffic pollutants.

A receptor model based on Non-negative Matrix Factorization (NMF) has been
applied to the particle number concentrations (PNC), which were measured dur-
ing the period from January 1st, 2015, to June 30th, 2015, in the same environment
(the open-plan office in CSTB) as in our study (Ouaret et al., 2021). This research
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focuses on the time variability source characterization, namely the “temporal fin-
gerprint” of the sources or group of sources. NMF has distinguished five major
patterns obtained from the PN concentrations time series. The apportionment re-
sults were then expressed as source diurnal profiles and strengths by relating the
obtained source contributions to the source information provided by the office
occupancy and natural ventilation (the effect of opening windows).

Another study byMolnar et al. (2014) uses PMF for source identification of PM2.5,
with themajority contribution being outdoor sources with 69% of all sources stud-
ied. Occupant activity accounted for 21% (2.2 µg/m3) of personal exposure. The
study took place in Gothenburg, Sweden in spring (April 2nd–June 7th, 2002 and
March 27th–June 12th, 2003) and autumn (September 26th–November 6th, 2002 and
October 7th–30th, 2003) seasons. 30 participants were performed in parallel with
PM2.5 measurement for personal exposure, indoor, and residential outdoor. In
addition, the measurement also took place at a stationary outdoor urban back-
ground station. The participants lived within 0.8–15 km from the urban back-
ground station (median distance 3.3 km). The sampling time was 24 hours. Ac-
cording to this study, the PMF approach with factor selection has been proven to
be a valuable tool in the PMF study of different microenvironments. By integrat-
ing the records for the distinct microenvironments into a bigger dataset and utiliz-
ing the PMFwith factor selection approach, the accurately estimating of the source
contributions increases. In conclusion, a four-factor model (long range transport
(LRT) + ship emissions (69%), local combustion (20%), traffic, and sea salt + resus-
pension) identified the major sources for PM2.5 at the urban background and resi-
dential outdoor sampling sites. The small contribution from traffic was due to the
fact that the measurement locations were not close to any major traffic routes. Re-
garding the sources of PM2.5 indoors, six different sources/factors could be iden-
tified: indoor resuspension (5 µg/m3), traffic (2.2 µg/m3). The remaining four
factors (marine, indoor Cu, soil resuspension and LRT) contribute to a lower, but
similar extent. This research is interesting because not many studies performed
the measurements of PM in both personal, indoor and residential outdoor simul-
taneously and then performed source apportionment using the PMF technique on
the datasets.

A study by Yi et al. (1990) tried to identify the contribution of the various sources
of particulate matter to that deposited on the semiconductor wafer by using fac-
tor analysis, mainly PCA. The particle concentrations in number were measured
by optical particle counter in two cleanrooms: one at IBM (with four pollutant
sources) and the other at the University of Cincinnati, US (with five pollutant
sources). In conclusion, a receptor model for source resolution of microcontam-
ination in these clean rooms was presented. Quantitative contributions of par-
ticulate sources to the aerosol concentration near the wafer fabricating units also
be determined. For more detail, with the actual source particle size distribution
is normalized (Âi gij = 1), the particles number concentration balances in a size
interval i is represented as equation (3.12):

Pi = Â
j
Njgij (3.12)
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where Pi is the predicted number concentration in size interval i at a receptor
site, gij is the fractional number concentration size i for particles emitted from
source j and Nj is the contribution of the source j to the total number concentration
measured at the receptor.

Kopperud et al. (2004) applied a CMB-type technique to estimate the contribu-
tion of outdoor sources and indoor activities creating resuspension of particles in
indoor air. For five consecutive days in April 2000 in California (US), the par-
ticle counters, nephelometers, and filter samples of integrated PM were used to
measure the indoor and outdoor PM concentration, chemical composition, and
air-exchange rate for the PM with an aerodynamic diameter of less than or equal
to 2.5 µm (PM2.5) and PM with an aerodynamic diameter of less than or equal to
5 µm (PM5). A CMB Receptor Model Version 8 was used to determine the source
contributions for each study day. In conclusion, the study revealed that indoor
sources can account for up to 89% for high-activity days. Meanwhile, during the
minimal-activity days, indoor sources accounted for about 30% of PM2.5 and 50%
of PM5. This study also indicated that typical indoor activities can resuspend
significant amounts of PM2.5. Even the very normal movement around the house
can result in enough dust resuspension to account for more than 25% of the indoor
PM2.5 concentration.

In 2017, Zhang et al. (2017) tried to extract the indoor airborne particle sources in
urban office areas in Guangzhou, China by applying PCA. Regarding the studied
data, measurements of indoor and outdoor PM2.5 were conducted in five types
of office spaces: single-user, multi-user, photocopy room, ETS (Environmental to-
bacco smoking) office and fresh air office. PM2.5 was collected simultaneously
by intelligent PM2.5 samplers (TH-150C ) at the indoor and outdoor sites, from
March 1st to 8th, 2015 (high pollution event days) and June 14th to 21st, 2015 (low
pollution event days). The samplers were set at a flow rate of 100 L/min for 24
hours. The researchers investigated in the indoor-outdoor interactions between
PM2.5 mass and its chemical constituents, which includedwater-soluble ions, car-
bonaceous species, and metal elements. A principle component analysis (PCA)
was used to confirm the relationship between indoor and outdoor PM2.5 pollu-
tion. In conclusion, the printing and tobacco smoking were found to be the two
most important sources of PM2.5 in the office. The study also suggested that im-
proper human behavior can lead to the formation of indoor PM2.5 on a daily basis.
In addition, unexpected outside pollution events might result in poor indoor air
quality in urban office environments. Office workers should pay attention to their
office environment because after hours of busy working, they need to maintain
the human body healthily.

An onlinemonitoring and interpretationmethod of IAQusing parallel factor anal-
ysis (PARAFAC) has been developed in the study of Lee et al. (2014)). Two types
of models (global and seasonal models) were developed and their performances
were also compared. The results demonstrate that there are certain differences
according to the periodic pattern of the IAQ dynamics. The analysis results indi-
cated that the seasonal models outperformed the global model in terms of model
fit and the interpretation of indoor air contaminants. Furthermore, PARAFAC
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helps to identify hourly fluctuations in IAQ dynamics as well as seasonal varia-
tions. The results of an experiment at a subway station shown that the proposed
method provides more accurate online monitoring and a more physically rele-
vant interpretation of IAQ than conventional univariate and multiway principal
component analysis (MPCA) monitoring methods.

Martuzevicius and colleagues (2008) investigated the sources of PM2.5 in six dwellings
located next to major highways (30-300 m), focusing on the impact of traffic and
the link between outside and inside particle levels. The sampling campaigns were
conducted fromMarch 30th to May 14th, 2004 and from September 13th to October
22nd, 2004. The authors used a multilinear model of positive matrix factorization,
specifically a trilinear model termed PARAFAC, to calculate the amount of parti-
cles originating from the traffic of inside residences. Thanks to the uniqueness of
the solution advantage of PARAFAC, the paired indoor and outdoor PM concen-
trations can form a three-way array, assuming that these are attributed to similar
sources, and only the strength of those sources varies between indoor and outdoor
measurements. Chemical analyses of the samples were used to create the database
(EC, OC, Si, S, Mn, Fe, Zn, Br, Pb). The authors concluded that indoor sources (ac-
tivities like: smoking, cleaning, cooking and painting) contributed more to total
PM2.5 levels than outdoor sources, even under conditions close to road traffic.
The PM2.5 I/O ratio ranged from 0.5 ± 0.2 to 2.9 ± 1.2 in spring and from 0.7
± 0.1 to 4.7 ± 6.9 in fall. According to the study conclusion, the structure of the
house envelope and ventilation pattern appear to be the more important factors in
affecting the indoor concentrations of the traffic-related aerosol, which were not
quantitatively assessed in the study.

Furthermore, other researches (Hopke et al., 2003; Larson et al., 2004; Yakovleva
et al., 1999) also used the PARAFAC model in their works. Hopke et al. (2003)
use this three-way factor method to retrieve the source contribution estimates of
indoor and outdoor particulate matter data. Two sets of measurement data were
analyzed: versatile air pollutant samplers (VAPS) sample particle composition
collected at the community, outdoors, and central indoors of an elderly residential
facility, and personal exposure monitors (PEM) sample particle composition col-
lected from 10 elderly subjects for outdoor, central indoor, personal, and individ-
ual apartment environments. For the VAPS data set, secondary sulfate, secondary
nitrate, motor vehicles, and organic carbon (OC) were identified as the sources.
Meanwhile, for the PEM sets, sulfate, soil, and an unknown factor were identified
as outdoor sources. Regarding the indoor environment, gypsum or wallboard,
personal care products, and activity related were identified as internal factors.
External factors contributed 63% to personal exposure with the most significant
contribution from sulfate (48%). In this model, whereas the impact of both out-
door and indoor sources on indoor concentrations was successfully assessed, its
data set was limited to a maximum of 24 samples and species above the detection
limit.
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3.3 Discussion

The reviewed papers in the literature show the similarity of the different meth-
ods to blindly separate the sources contributing to the observed level of particles
in indoor and outdoor environments. However, separation is not identification.
Without external information, the extracted factors remain difficult to identify. Af-
ter their extraction, a second phase of exploitation must therefore be carried out
to search for associations between the extracted factors and other observed phe-
nomena leading to their identification.

Regarding the separation methods, each method has her own advantages and
limitations. In general, the PMF method showed good agreement with the UN-
MIX model (Anderson et al., 2002) and performed very well in comparison with
CMB and PCA (Willis, 2000). Miller et al. (2002) found out that in comparison
with CMB and PCA model approaches, the extracted factors from the PMF anal-
ysis represented the major sources that were used to generate the simulated data
most closely. The lack of the non-negativity constraint is another significant lim-
itation of PCA and CMB (Anderson et al., 2002). Without this constraint, the val-
ues of the factors profiles could be large negative, leading to the result that less
of the variability in the data was explained. It should be take into account also
the weighted NMF algorithm (Delmaire et al., 2010), which has been modified by
applying constraints, a new version of the NMF in order to take into account the a-
priori knowledge on the source chemical composition, considering the individual
variances on the data input.

Therefore, the application of these techniques to indoor pollutant time series re-
quires making some additional assumptions about the nature of the sources and
their mixtures: linear or nonlinear, convoluted or instantaneous, time-varying or
time-invariant.

Regarding the extracted factors from different studies in the literature, there were
several factors of similar type/origin in the different environments. Typical ambi-
ent/outdoor sources were: region-related sources, traffic-related sources, crustal
material, and marine influence (when relevant). Several of these sources also con-
tributed in various degrees to indoor and personal exposure. Common indoor
and personal sources were: air resuspension of particulate matter, indoor activi-
ties such as cooking, and other personal activities. The absolute (or relative) con-
tribution of these sources or other ones, may differ from study to study due to
local and regional conditions, for example, the size of the city, vehicle fleet com-
position, building types and ventilation, climate, season, and industries nearby
the sampling stations. It also depends on which substances were measured and
used in themodels. It is therefore hard tomake quantitative comparisons between
studies from different locations, but qualitative comparisons can be helpful, espe-
cially during the factor identification process.

The matrix factorization methods can create a model that is well-suited to the
data. However, if the dimension of the data structure is increased to more than
two, these techniques must deal with the problem of rotation, uniqueness of the
solution, and data complexity.
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Meanwhile, PARAFAC can cope with data array of a greater complexity-higher
number of dimension. Even if its corresponding model fitting degree is not as
excellent as that of other matrix decomposition methods, it produces a unique
output and permits to easily expand the complexity of the data.

It is important to have a dataset which can analyze both the hourly and daily
variations of indoor air quality, caused mainly by occupancy and daily weather
changes. This study, fortunately, has a chance to work with an extremely detailed
database (see chapter 2 for detailed information). Therefore, in this study other
kind of information, such as measured locations (indoors/outdoors) was used
to introduce as two different layers of the same variables, and other measured
pollutants concentration (HCHO, O3, CO2, etc.), the other environmental param-
eters such as: climatic, opening state, etc. were also used as input. Based on the
advantages of PARAFAC, we decided to use this method to interpret such time
correlations and then, to identify the sources of indoor air.

The detailed information about PARAFACmethod and its implementation is pre-
sented in the next chapter.
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Chapter 4

Tensor Decomposition method –
PARAFAC

This chapter presents the selected BSS method, PARAFAC, in particular: data pre-
processing to prepare PARAFAC inputs (section 4.1), the mathematical equations
for calculating the final sources profiles and contributions (section 4.2) and, the
method implementation (section 4.3).

4.1 Data pre-processing for PARAFAC

Preprocessing n-way (n � 3) arrays is more difficult than preprocessing two-way
arrays; this is comprehensible given the multilinear variation assumed to be an
appropriate model of the data (Bro, 1997). For the three-way array pre-processing,
centering the first mode can be done by unfolding the calibration array to an I x
JK matrix, and then centering this matrix as in ordinary PCA (see Figure 4.1).

xcentijk = xijk � xjk (4.1)

where

xjk =
ÂI

i=1 xijk
I

(4.2)

Figure 4.1: An example of three-way unfolded array. Centering must
be done across the columns of this matrix and scaling has to be done

on the rows.
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This is commonly known as single-centering. The centering represented above is
known as centering across the first mode, according to the terminology proposed
by Berge (1989).

Depending on the situation, the centering can be applied to anymode. If centering
is to be conducted across several modes, it must be done by first centering one
mode and then centering the outcome of this centering.

When 2-centering is accomplished in this way, it is commonly referred to as dou-
ble centering. Triple-centering involves focusing on each of the three modes one
at a time. The effect of scaling and centering on the trilinear behavior of the data
is discussed in several studies (Berge, 1989; Harshman, 1970; Paatero, 1999).

The scaling presented above is known as scaling within the first mode. When
scaling across several modes is needed, the problem becomes more difficult since
scaling one mode influences the scale of the other modes. If scaling to norm one
is needed within many modes, this must be done iteratively until convergence is
achieved (Berge, 1989). Another complicated matter is the relationship between
centering and scaling. Scaling within one mode, in general, affects prior centering
within that mode but not across other modes. Centering across one mode inter-
feres with scaling across all modes (Harshman, 1970). As a result, only centering
across arbitrary modes or scaling within one mode is simple, and not all iterative
scaling and centering combinations will converge.

Centering can then be performed after scaling and thereby it is assured that the
modes to be centered are indeed centered (Bro and Kiers, 2003).

An M-file is included in the Matlab code available on the Internet1 to run the
iterative scaling and centering procedures. Centering across the mode of interest
is a typical guideline, however, the aim of centering is to remove constant levels,
therefore, data understanding can determine the appropriate preprocessing. The
required centering and scaling processes are presented in Figure 4.1 which shows
the array unfolded to a matrix . Centering must be performed across the columns
of this matrix, whereas scaling must be performed across the rows of this matrix.

1https://www.mathworks.com/matlabcentral/fileexchange/1088-the-n-way-toolbox
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4.2 Source profiles and contributions

Based on the mathematic equation of PARAFAC (equation 3.9), the source con-
centration profiles and contribution values were calculated according to the equa-
tions below.

As the data needed to be scaled for the PARAFAC input preparation, the scaled
3-dimensions input data is calculated by the equation 4.3:

Xijkscaled =
F

Â
r=1

AirBjrCkr + Eijk = F1 + F2 + F3 + Eijk (4.3)

Then, the approximated value (with hat) of each extracted source is obtained by
the equations 4.4- 4.6 below:

Ŝ1 = F1. ⇤ std(xijk)J ; (4.4)

Ŝ2 = F2. ⇤ std(xijk)J ; (4.5)

Ŝ3 = F3. ⇤ std(xijk)J ; (4.6)

where std(xijk) is calculated according to equation 4.7:

Xijkscaled =
Xijkr

ÂI
i=1 ÂK

k=1
x2ijk
IK

=
Xijk

std(xijk)J
=

S1 + S2 + S3
std(xijk)J

(4.7)

The equation 4.7 can be expressed as in equation 4.8:

S1
std(xijk)J

+
S2

std(xijk)J
+

S3
std(xijk)J

= F̂1 + F̂2 + F̂3 (4.8)

The notations used here are the following:

A (capitalized, bold) 3D array
A (capitalized, bold, italic) 3D array unfold to a matrix
A (capitalized, italic) matrix
a (italic) vector
a scalar

.⇤ multiple with correspondence index (element by
element multiplication)

Based on these equations, it is possible to estimate the source’s profile and its
attributable concentration at a given moment. The detailed results are presented
in the next section.
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4.3 PARAFAC Implementation

This section presents the implementation process of PARAFAC. Firstly, the sub-
section 4.3.1 briefly reminds the information about input data and some simple
statistics. In addition, different analyses on the impact of the presence of occu-
pants, windows opening on the measured concentrations of fine and coarse par-
ticles are presented. In the subsection 4.3.2, the PARAFAC implementation proce-
dure is introduced with more detailed information about input data structuring
and choosing the number of components/factors.

4.3.1 Input data
Different inputs configuration have been considered: combined PNdata (indoors/out-
doors) with/without other environmental parameters into different structures (with
3, 4, 5 dimensions, etc).

The most important data is the number concentration of particles for different
fractions measured every minute during one year (2014). The concentration is
presented as a number of particles of a given size range per liter of air (so called
PN - Particle Number concentration). There are 15 fractions in total, named as:
PN0.35, PN0.45, PN0.575, PN0.725, PN0.9, PN1.3, PN1.8, PN2.5, PN3.5, PN4.5,
PN6.25, PN8.75, PN12.5, PN17.5 and PN20 according to their sizes (optical diam-
eter in µm). For each size fraction, the concentration was scaled by dividing it,
by the standard deviation of the concentrations of this size fraction (values of the
standard deviation is given in Table 4.1 and Table 4.2).

The general statistics parameters (min, max, mean, median, standard deviation
(std) and amplitude range) of these PN data according to each size fraction are
displayed in the Table 4.1 and Table 4.2 for Outdoor and Indoor environments,
respectively.

From September 21st to September 29th, outdoor recorded data are missing due to
the dysfunction of the measuring instrument. As a consequence, 1.6% of the full
year data (505 571 minutes) are missing. Most of the time, outdoor PN parameters
(min, max, mean, median, standard deviation and amplitude range) are higher
than indoors.
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Table 4.3: Statistics of other parameters monitored during 2014 (other
pollutant concentrations, and printer’s pulse). *the short name will

be used for legending the figures.

O3 indoors CO2 outdoors CO2 indoors CO indoors HCHO indoors Printer Pulse
Unit ppb ppm ppm ppm ppb counts/min
Short named* O3 C2o C2i CO HC Pls
No of sample 6388 7045 8759 4383 5033 8171
Max 56.33 553 864 0.79 51 5.1
Min 0 334 424 0 3.0 0
Mean 5.7 415 502 0.20 19 1.4
Median 2.8 410 485 0.18 17 0.6
Std 7.1 28 59 0.11 8.3 1.0

Regarding other environment parameters, Table 4.3 and Table 4.4 present the gen-
eral statistics of other measured pollutants and meteorological parameters, re-
spectively. It is worth noting that several pollutant levels were not fully recorded
for the entire year 2014, particularly wind directions and CO concentrations inside
(about 4300 hours per year).

Figure 4.2 presents the hourly values of temperature outdoors and indoors moni-
tored during 2014. One can notice that temperature indoors is more stable, having
a smaller amplitude range than the temperature outdoor and the mean value in-
doors is much higher than outdoors (23.41 °C avaraged indoors in comparison
with 15.79 °C avaraged outdoors).
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Figure 4.2: Hourly average value of temperature outdoors (in blue)
and indoors (in orange) during 2014.

Similarly, the variation of hourly values of specific humidity indoors and outdoors
during 2014 is displayed in Figure 4.3. There is no significant difference between
the specific humidity values of these two environments.
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Table 4.4: Statistics of meteorological parameters in 2014.

Wind velocity outdoors according to direction (m/s)
Est Nord South West Nord Est Nord West South East South West

Short named E N S W NE NW SE SW
No of sample 4398 4392 6541 4948 3902 4716 6227 6203
Max 11.30 11.30 16.99 11.66 11.20 12.56 13.21 12.87
Min 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40
Mean 2.44 2.56 2.77 2.74 2.50 2.71 2.61 2.75
Median 2.12 2.28 2.54 2.49 2.10 2.44 2.38 2.51
Std 1.17 1.17 1.32 1.27 1.23 1.34 1.17 1.23

Table 4.4: Statistics of meteorological parameters in 2014 (continue).

Specific humidity (g/kg) Temperature (°C) Irradiance (W/m2)
Hs outdoors Hs indoors T outdoors T indoors Ir outdoors Ir indoors

Short named Hso Hsi To Ti Io Ii
No of sample 8759 8759 8759 8759 8759 8759
Max 17.30 15.11 35.61 31.30 914 402
Min 3.98 4.28 -0.22 14.98 0 0
Mean 9.65 8.88 15.79 23.41 125 3
Median 9.66 8.95 15.83 22.94 6.6 0
Std 2.47 1.91 5.91 2.43 200 16
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Figure 4.3: Hourly averaged values of specific humidity outdoors (in
blue) and indoors (in orange) during 2014.
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PN concentration values were categorized according to the conditions of Occu-
pancy and Opening. For comparison, firstly, the averaged number concentra-
tion measured values of the two representative size fractions of PN (PN0.725 for
the fine particles and PN8.75 for the coarse ones) are presented in the Figure 4.4.
Next, Figure 4.5 and Figure 4.6 show the same averaged concentration for these
two representative size fractions, but under the different conditions of Occupancy
and Windows Opening. All of the averaged concentration values are calculated
according to: (i) the day of the week, (ii) the hour of the day and (iii) the month.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.4: Averaged number concentration of PN0.725 for fine par-
ticles (left side) and PN8.75 for coarse particles (right side) according
to the day of the week, the hour of the day and themonth (year 2014).
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(a) (b)

(c) (d)

(e) (f)

Figure 4.5: Averaged number concentration of PN0.725 for fine par-
ticles (left side) and PN8.75 for coarse particles (right side) when
the office is occupied and non-occupied, according to the day of the

week, the hour of the day and the month (year 2014).
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(a) (b)

(c) (d)

(e) (f)

Figure 4.6: Averaged number concentration of PN0.725 for fine par-
ticles (left side) and PN8.75 for coarse ones (right side) when win-
dows are opened (at least 1 window is opened) or closed (all of the
windows are closed), according to the day of the week, the hour of

the day and the month (year 2014).
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Several remarks can be made from the figures:

• The influence of the occupancy

– The status of occupancy does not seem to have a significant impact on
the fine PN concentration according to the day of the week, hour of
the day or month (see Figure 4.5a, 4.5c and 4.5e). Similar situations are
obtained for these other fine PN fractions (up to PN1.8 – see the detailed
results in the Appendix section).

– In contrast, coarse size PN is much more affected by the occupancy.
During the working day (Monday – Friday), the hourly averaged num-
ber concentration of PN8.75 is approximately 4 times higher when the
office is occupied thanwhen non-occupied. Similarly, theworking hour
period (9 a.m. – 7 p.m.) with occupancy shows a much higher value of
coarse size PN thanwithout occupancy. Themonthly averaged number
concentration of PN8.75 (coarse particles) is also higher considering the
occupancy (around 2 particles/L) or the non-occupancy period (around
0.4 particles/L).

• The influence of the windows opening state

– There are differences in the overall trend of fine PN (PN0.725)and coarse
PN (PN8.75) according to the day of the week (Figure 4.6a and 4.6b)
and the hour of the day (Figure 4.6c and 4.6d), in both cases Opened
and Closed.

– Both fine PN and coarse size PN have higher concentrations when win-
dows are opened, excepting during the weekends and from October to
December.

– Similar to the impact of occupancy, when the windows opening status
is changed from Closed to Opened, the number of coarse size PN is
much higher during the working hour period and working days.

– The concentration of fine particles according to the hour of the day is
higher during nighttime and lower during the daytime in both cases
(opened and closed windows). This is very similar to the trend of fine
particulate when the office is non-occupied.

• The combined influence of occupancy and windows opening state

In addition, the averaged number concentration of these two size fractions
for the combined situations of Opening state and Occupancy status are dis-
played in Figure 4.7. The total of four cases: opened/occupied, opened/non-
occupied, closed/occupied and closed/non-occupied were studied in order
to see which factor has the most important impact on the concentration of
particles. Similar remarks could be obtained from this figure where higher
levels of coarse particles were correlated with the Occupancy and both fine
and coarse particles were affected by the opening of the windows.

Morever, one can notice that there were two clear peaks of fine particles on
Sunday (Figure 4.7a) and at 11 p.m. (Figure 4.7c) for closed/occupied case
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(green color). In fact, these results were not representative as there were only
two samples that met the conditions of: Sunday, occupied (maybe the guard
round) and closed windows. One sample took place at 4 a.m. of January 5th
(321 particles/L) and another one at 11 p.m. of 9th March (6250 particles/L –
during pollution episode). The latter sample also was the reason for a peak
at 11 p.m. on Figure 4.7c.

Based on these observations, one can conclude that:

- Both fine and coarse particles are highly affected bywindows opening (higher
infiltration of outdoor particles);

- Meanwhile, coarse size particles are mainly correlated with occupancy.

This information could be useful to explain the time variation in the sources’ pro-
files which are extracted by PARAFAC.
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Figure 4.7: Averaged number concentration of PN0.725 for fine par-
ticles (left side) and PN8.75 for coarse particles (right side) in the dif-
ferent cases of window and occupancy status, according to the day

of the week, the hour of the day and the month (year 2014).

4.3.2 Implementation
For the PARAFAC implementation, the following steps were performed: data
pre-processing (1), data structuring (2) and then, choosing the optimal number
of components (3).
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1. Data pre-processing.

• Hourly averaged values were used.

• In order to replace missing values, a linear interpolation was applied.

• Then, the scaling within the variable mode (PN fractions, meteorologi-
cal parameters and pollutant concentrations) was performed according
to equation 4.9. Scaling offers the same possibility or weight to each
variable to contribute to the model, avoiding the fact that the variables
have different units and different amplitude ranges:

xijkscaled =
xijkr

ÂI
i=1 ÂK

k=1
x2ijk
IK

(4.9)

where xijk represents the concentration of particles expressed in num-
ber/L for all the size of PN and climatic parameters and othermeasured
pollutants concentrations (j up to J) for the I day sample (i up to I) and
for the hour k from 1 to 24 (K).

2. Data structuring.

Depending on the aim of the analysis, a n-layer tensor is built containing the
values of the PN fractions and additionally some other data. After this step,
the n-dimensional array is obtained as input data of PARAFAC.

3. Determining the number of components.

To select themost suitable number of components or factors for the PARAFAC
decomposition, many criteria can be used, such as: the variance explained
by the model, the visual appearance of loadings, the number of algorithm it-
erations, and the core consistency diagnostic (CORCONDIA) (Bro and Kiers,
2003). CORCONDIA is one of the most frequently applied techniques in the
literature (Andersen and Bro, 2003). CORCONDIA’s estimate of the number
of components, however, remains challenging in the context of complicated
data. As a result, rather than being dependent on a single diagnostic tool, it
is generally advised to use several diagnostic techniques be used in combi-
nation (Harshman, 1970).

The determination of the number F of components (or factors) is challeng-
ing, and no method that provides clear values has yet been discovered.
When F is too small, not all of the effects in the input data are identified.
However, if F is too large, noise is more modeled, and the observed effects
in the data are characterized by coupled components (Bro, 1997). The idea
is to increase the number of components F until the decline in the residual
error diminished sufficiently and there is no need to incease the number of
components because the error decrease is not significant. The model with
the fewest components was then picked as the one capable of explaining the
most variance without correlation among the components.
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Figure 4.8: An example of PARAFAC diagnostic for a 3-dimensions
PN fractions. Each number of components is fitted 3 times.

In this study, the core consistency diagnostic method was applied to choose
the optimal number of components. The most suitable number of compo-
nents is chosen as the highest number with a valid core consistency value
(from 80% to 100%). An example of the core consistency diagnostic is dis-
played in Figure 4.8 where not only the information about core consistency
but also the sum of the squares of the residuals and the number of iterations
are taken into account.

4. Results post-processing. After the data construction and the diagnostic step
to choose the suitable number of components, the obtained PARAFAC out-
puts were analyzed by different data analysis methods or signal processing
techniques, in order to help the interpretation and the identification of the
determined factors as possible sources (or cluster of sources) of the parti-
cle concentration variability. For example, autocorrelation functions (ACF)
were applied to the time profiles of the retrieved factors. The contributions
of the obtained "sources" to the monitored concentration values (data input)
were furthermore calculated.
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Chapter 5

Different data cases: Implementation,
Results and Discussion

Four study cases with different structures of input data were constructed and
the corresponding output results using PARAFAC are presented and analyzed in
this chapter. Other data analysis or signal processing methods were used to help
the source identification and to explain the variation of each source obtained by
PARAFAC. In the end of the chapter, the results are discussed and some elements
are given to conclude this analysis.

5.1 Indoor data

This section presents the results of the two first input structures: (i) the 3D-array
(tensor) containing the different size of PN concentrations indoors and (ii) the 3D-
array containing, in addition, some other supplementary variables indoors, too.

5.1.1 Case 1: Only particulate matter data
We structured the variation of the measured particles indoors according to daily
variations taken as samples and hourly variations taken as events. Therefore, a
15-layer tensor containing the values of PN for the 15 size fractions structured
according to 365 days and 24 hours events, has been structured in a 3D-array of
365days ⇤ 15PN f ractions ⇤ 24hours, the input data of PARAFAC.

In this case, a PARAFAC model for this three-dimensional data of measured par-
ticle indoors is illustrated in Figure 5.1. The three output matrices represent the
loading vectors of 3 modes: (A) day of the year, (B) PN fraction and (C) hour of
the day while the tensor E contains the modeling residuals.
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Figure 5.1: The PARAFAC model for three-dimensional data of in-
door particle measurements (PN indoors)

Regarding themost suitable number of components, the diagnostic lead to a choice
of 3 factors, with a value of the core consistency of 93% (see Figure 5.2).
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Figure 5.2: PARAFAC diagnostic for indoor particulate matter input.

Based on the three loading matrices which are the output of PARAFAC, it was
possible to identify the potential sources that jointly contribute to the indoor air
particle levels. The summary and the detailed loading matrices are displayed in
Figure 5.3 and Figure 5.4, respectively.
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In addition, the autocorrelation functions for the three daily profiles obtained in
the first loading matrix A and corresponding to Figure 5.3a and to the first line of
the Figure 5.4 are displayed in Figure 5.5.
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Figure 5.5: Auto-correlation functions for the three daily profiles ob-
tained in the first loading matrix A, for the first (top of the figure),

second (middle), and the third (bottom) factors.

Figure 5.5 shows that the first daily profile corresponding to the 1st factor has
a high autocorrelation value at one-day lag (daily periodicity). In addition, ac-
cording to PN fractions size (see Figure 5.3b and second line, first column of the
Figure 5.4), the loading profile of this factor shows that it is associated mainly
with the small size fractions (mainly PN 0.35 - 1.3 µm). Figure 5.6 shows the cor-
relation between the previous day outdoor concentration and the present indoor
values of concentrations as daily means. The determination coefficient R2=0.61



90 Chapter 5. Different data cases: Implementation, Results and Discussion

suggests that 61% of the variance of the first factor can be explained by the fine
particles coming from outdoors, which are found, some of them (⇡61%), indoors
one day later.
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Figure 5.6: Correlation between the previous day concentration of
fine PN daily averaged values monitored outdoors and attributable

number concentration (daily averaged) of the 1st component.

Moreover, in the monthly profile associated with the first factor, the high val-
ues observed in March are related to a specific outdoor pollution episode that
occurred within all the area. According to the report from the European Envi-
ronment Agency, "The factors leading to such high concentration levels were a
combination of meteorological conditions (stable and calm weather, which pre-
vents air pollution from dispersing; and relatively high temperatures during the
daytime for the period) and various emissions sources" (2014). This allows us to
associate the first factor mainly with outdoor particle sources. High indoor pollu-
tion concentrations were observed when this outdoor pollution episode occurred,
showing the impact of the outdoor environment (sources) on the indoor envi-
ronment. This impact is higher for finer particles bacause they can penetrate also
by infiltration even if windows are closed. The penetration seems to be slightly
higher during the nighttime (see Figure 5.4a bottom), but it is rather uniform ac-
cording to the hour.

A 7 days periodicity is detected for the second factor loading, according to the
autocorrelation value (see Figure 5.5 middle). In addition, its loading is very high
during the daytime (8 a.m. – 8 p.m.) in comparison with nighttime (8 p.m. –
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8 a.m.), as shown in Figure 5.3c and Figure 5.4b. This is similar to the trend and
periodicity of CO2 indoor concentration, which traces the presence of occupants
indoors. The PARAFAC loading output also shows that this component concerns
the coarse size particles, see Figure 5.3b and Figure 5.4b, especially sizes higher
than 4.5 µm. The second factor can thus be attributed to indoor sources in par-
ticular those related to the occupants and their activities. It is known that the
occupants produce coarse particles indoors by walking and cleaning, etc.

The third factor includes medium size particles but it does not have an obvious
identification. This factor has no specific trend or periodicity, but it is not random
because it is structured in a way. According to the model’s loading output, it is
slightly increasing during daytime and is associated with middle range particle
sizes between 2 and 4 µm. This factor can be associated with a group of particle
sources which could not be unmixed. It thus corresponds to unexplained varia-
tions.

Figures 5.7 represents the time profiles of the attributable hourly concentration
of each source, based on the calculations given in Section 4.2 (regression by mul-
tiple with standard deviation values). The time profiles help in improving the
identification results, while the first component presents the outdoor-peak event
duringMarch, the second component clearly shows a weekly profile and the third
component does not present any specific trend.
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The PN concentration attributable of the second factor (’occupants’) was com-
pared with the concentration of CO2 indoors, as the CO2 concentration is the most
appropriate parameter related to the human presence indoors. The comparisons
of the variations of these two concentrations allover the year 2014 and specifically
in September 2014 are displayed in Figure 5.8 and Figure 5.9, respectively. One
can notice the synchronization of these two profiles. This result makes the identi-
fication of the second factor more reliable.
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In order to estimate the source contributions, the attributable concentration in
number profile should be transform as an attributable mass concentration (using
the equations in the section 2.2). Figure 5.10 presents the attributable PM10 con-
centration of the three extracted components, obtained by the conversion from
concentration in number to mass concentration. The original measured concen-
tration in number has also to be converted in mass concentration (PM10).
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Figure 5.10: Time profile of the attributable hourly mass concentra-
tion of each source during 2014.

The regression between the 1st attributable PM10mas concentration and the origi-
nal PM10 showed that 40% of the total variance is explained by the 1st component.
Similarly, the 2nd component explained 26% of the total variance. Meanwhile, the
3rd component accounted for only 6%.

In conclusion, based on the autocorrelation value of the factor attributable concen-
tration, we were able to identify two major sources. The result of PARAFAC and
its factor concentration gives us an acceptable result of identification. The three
factors were tentatively identified as the following sources: outdoor inputs (1st
component) contributing to 40% of the variability of the indoor air pollution and
more specifically concenrning the fine particles; indoor occupancy and related
activities (2nd component) contributing to 26.3% of the variability of the indoor
air pollution and more specifically concenrning the coarse particles; and finally,
a source or a group of non-identified sources with a very specific profiles or sub-
mitted to a non-linear mixture (3rd component) which contributes only 5.8% of
the variability of the indoor air pollution.
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5.1.2 Case 2: All indoor data
Similar to the structure of PARAFAC input in the previous subsection, with the
input data including all of the available indoor data, a 3-dimensional array of
127days ⇤ 31variables ⇤ 24hours is obtained. As the data of other pollutants are not
fully recorded during the whole year, it was possible to examine only the period
of June – October 2014 (127 days), which is the period when all the variables are
fully measured.

An illutration of the PARAFACmodel for this three-dimensional data is presented
in Figure 5.11. The three output matrices containt the loading vectors of the three
modes: (A) day of the year, (B) variables (15 PN fractions; CO, O3, CO2 andHCHO
concentrations; 8 wind direction and speed, Printer Pulse, Irradiance, Tempera-
ture and Specific humidity) and (C) hour of the day.

Figure 5.11: The PARAFAC model for three-dimensional data of all
indoors measurements (PN, other poluttants concentrations indoors

and climatic parameters).

Once again, the most suitable number of components was determined to be three,
with the value of core consistency of 84.4% (see Figure 5.12).

The three loading matrices output of PARAFAC are displayed in Figure 5.13 and
detailed in Figure 5.16. It can be observed that when including all of the stan-
dardized measured data indoors as inputs, the outputs of PARAFAC for PN (con-
sidering second and third factor) are quite similar to the previous model outputs
(when using only PN indoors data as input) but with some additional informa-
tion. These new results concerning the consistency of PARAFAC indicate again a
best selection for three factors, as in the case when using only PN data indoors.
Again, the component related to occupants indoors is easily detected by its high
loading during working hours (8 a.m. – 8 p.m.) in the hourly mode and weekly
periodicity in the daily mode.

In addition, the second component shows high loadings for coarse size particulate
matter, printer pulse value and CO2 concentration. These results are expected, as
printer pulse is related to the use of the printer that occurs only when occupants
are present and CO2 is directly emitted by humans in the office.
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Figure 5.12: The core consistency diagnostic for all indoor data from
June to October 2014.

The first component has a high loading profile for temperature and humidity. Be-
sides, the significant high loadings for CO2 and formaldehyde (HCHO) concen-
trations are also noteworthy. This means that these parameters (temperature, hu-
midity, CO2, HCHO) have an important impact on it or are significantly correlated
to it. However, this component shows very low loadings for all the PN fractions
and thus seems not being related to particulate matter. Similarly, this component
has a constant loading around 0.2 across the whole day and around 80 during the
whole period, so it does not present any time variability. This factor seems related
to indoor data other than PN characterizing the thermal comfort inside the office
(temperature, humidity) and other pollutant such as CO2 and HCHO.

The third component is correlated with fine particles and has a slightly higher
loading in the morning than in the afternoon. This trend is similar to the first
component - ’outdoor environment’ sources of the previous section when only
PN indoors concentration were taken into account.
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As no constraint has been imposed in the PARAFACmodel, negative values were
obtained for the 2nd component as presented in Figure 5.14. Due to this reason, the
model was re-implemented by applying the non-negativity constraint, the sum-
mary and detailed loadings and the attributable number concentration of the three
new components are displayed in Figure 5.15, Figure 5.16 and Figure 5.17, respec-
tively (the 2nd and 3rd component order are different in comparison with the ’no
constraint’ results).

According to the loading results of PARAFACwith non-negativity constraint, one
can easily notice that the 3rd component significant by related to ’occupants’ in-
doors. This component shows high loadings during working hours and it is
mainly correlated with coarse particles. In addition, the time profile of the at-
tributable number concentration of 3rd component is also lowest during August
as this month is the time of holiday, and so not many occupants were in the office.

Again, the 1st component remains unexplained and the 2nd component can be
associated with ’outdoor environment’ sources.
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source in number of particles/liter for all indoor data input. No con-

straint was applied for the PARAFAC model.
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Figure 5.16: Detailed loadings of the three output matrices for all
quantitative indoor data from June to October 2014.
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5.2 Both Indoor and Outdoor data

This section presents the results of two other input structures: (i) a 4D-array which
contains PN concentrations indoors and outdoors and (ii) a 3D-array which con-
tains all the measured variables indoors and outdoors.

5.2.1 Case 3: Only particle matter data
As stated in the Introduction part, outdoor data has been introduced as another
layer of the input array of PARAFAC. Therefore, in this subsection, the varia-
tion of indoor environment data according to different times and locations of
measurement (I/O) is analyzed. A 4-dimensional array is constructed: 365days ⇤
15PN f ractions ⇤ 24hours ⇤ 2locations.

An illutration of the PARAFAC model for this 4-dimensional data is presented
in Figure 5.18. The four output matrices contain the loading vectors of 4 modes:
(A) day of the year, (B) PN fractions, (C) hour of the day and (D) measurement
location.

Figure 5.18: The PARAFACmodel for 4-dimensional data of PNmea-
surements indoors and outdoors.

In this case, the most suitable number of components is also determined to be
three, with the value of core consistency of 70.4% (see Figure 5.19).
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Figure 5.19: The core consistency diagnostic for both indoor and out-
door particulate matter (4D-structure).

The loadings of PARAFAC are displayed in Figure 5.20 and detailed in Figure 5.21.
The second component mainly depends on the concentration of small size parti-
cles with a higher loading for PN 0.35 - PN 1.3 (fine particles). The specific outdoor
pollution episode on March was also detected for this component. In addition,
this component is not affected by the location (the same loading for indoors and
outdoors), meaning that they have an equivalent influence on the variation of the
fine particles. Therefore, this component could be associated with outdoor fine
particles that infiltrate indoors with few or no deposition on surfaces, and with-
out the contribution of potential indoor sources of fine particles.
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Figure 5.20: The PARAFAC outputs for both indoor and outdoor par-
ticulate matter (4D-structure).
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The third component (coarse particles) is strongly correlated to the indoor envi-
ronment (loading value = 0.92). In addition, a weekly periodicity is detected and a
typical daily profile is observed (see Figure 5.22). This is the same as the periodic-
ity of CO2 indoor concentration, which corresponds to the presence of occupants
indoors.
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Figure 5.22: Comparison of the daily profile of CO2 indoor concen-
tration and the third PARAFAC component.

The first component (medium and coarse size particles) is more correlated with
the outdoor environment. The coarse particles from outdoors can be caused by
the resuspension of coarse outdoor dust or by crustal erosion, caused by the
wind. These higher size particles are also more importantly affected by deposition
on surfaces when they infiltrate indoors, hence the outdoor prevalent influence.
Based on these results, we can then calculate the source’s attributable number
concentration, by using the calculation from section 4.2 (regression by multiple
with standard deviation values), as in Figure 5.24, respectively. In this case, the
non-negativity constraint was imposed for the PARAFAC algorithm in order to
obtain positive values. The loading outputs with non-negativity constraint are
very similar to the ones obtained in the "no constraint" case (see Figure 5.23). The
order of components also remains the same as in Figure 5.20.
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Figure 5.23: The PARAFAC outputs for both indoor and outdoor par-
ticulate matter (non-negativity constraint applied).
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In addition, to corroborate these assumptions, a PCA was applied to the matrix
of daily averaged values of indoor and outdoor PN fractions as active variables
(PARAFAC components are used as passive or supplementary variables). The
result of the PCA shows the correlation of each component with locations and
particle size fractions (Figure 5.25). The first component is clearly correlated with
medium and coarse outdoor particles. The second component is associated with
fine particles both indoors and outdoors. The third component presents similar
variations with coarse indoor particles.

Figure 5.25: PCA for 15 fractions of PN indoors and outdoors
(2nd and 3rd component explaining 32% of the variance) and the 3
PARAFAC extracted components CP1, CP2 and CP3 (as passive vari-
ables - blue color). The name convention for PN fractions is: fractions

size_i for PN indoors and fractions size_o for PN outdoors).

Figure 5.26 presents the attributable PM10 concentration of the three non-negativity
extracted components, obtained by the conversion from concentration in number
to mass concentration.
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Figure 5.26: Time profile of the attributable hourly mass concentra-
tion of each source during 2014 (Non negativity constraint was ap-

plied to avoid negative results).

The regression between the 2nd attributable PM10mas concentration and the orig-
inal PM10 showed that 37% of the total variance is explained by the 1st compo-
nent. Similarly, the 3rd component explained 30% of the total variance. Mean-
while, the 1st component accounted for only 2%.

5.2.2 Case 4: All indoor and outdoor data
In this subsection, all of the monitored data both indoors and outdoors was used
as input for PARAFAC (period with full measured data - from June to October
2014). Therefore, a 3-dimensional array is constructed: 127days ⇤ 50variables ⇤ 24hours.

A PARAFAC model for this 3-dimensional data is illutrated in Figure 5.27. The
four output matrices contain the loading vectors of 3 modes: (A) day of the year,
(B) variables (15 PN fractions indoors and outdoors; CO, O3 and HCHO concen-
trations indoors; CO2 concentrations indoors and outdoors; 8 wind directions and
speeds, Printer Pulse; Irradiance, Temperature and Specific humidity indoors and
outdoors), and (C) hour of the day.
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Figure 5.27: The PARAFACmodel for 3-dimensional data of all mea-
surements variables (PN frations, other pollutants and climatic pa-

rameters) indoors and outdoors.

With all indoor and outdoor data used as inputs, the most suitable number of
components was determined to be two, the value of core consistency being 100%
(Figure 5.28). The two loading matrices output of PARAFAC are displayed in
Figure 5.29 and detailed in Figure 5.30.
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It is interesting to note that only two components were extracted for an acceptable
core consistency value. With three components, the core consistency drops to 60%.

The second component is related to the “working hours” and so it can correspond
to indoor occupants and related activities as shown especially by the hourly pro-
file (see Figure 5.29 – Hour mode and Figure 5.30(b)). It also displays high loading
values for all the sizes of indoor and outdoor particles.
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Figure 5.30: Detailed loadings of the three output matrices for the
input data including all the recorded data indoors and outdoors.

Regarding the first component, it looks very similar to the first component re-
trieved from PARAFACwhen applied on all indoor data (Case 2: All indoor data).
It displays high loading values for temperature and humidity both indoors and
outdoors, and for CO2 and HCHO concentration. In addition, one can notice the
very low values of loading for all the PN fractions (Figure 5.30a middle) and the
loading value is constant for both the daily profile (0.2, see Figure 5.30a bottom)
and for the whole period (100, see Figure 5.30a top). This component is not related
to particulate matter and represents the other ambient data that vary much less
than particles during the studied period.



5.3. Conclusion and Discussion 115

Regarding the attributable concentration to each source in number of particles/liter
for this case, Figure 5.31 represents the time profile of the two extracted compo-
nents. Similar to the other results (Case 1-3), the low concentration in August
is also detected by the 2nd component, the one related to indoor occupants and
related activities.
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Figure 5.31: Time profile of the attributable hourly concentration for
each source in number of particles/liter for all recorded data indoor

and outdoor input.

5.3 Conclusion and Discussion

In this research, we have successfully applied PARAFAC as a tensor decomposi-
tion algorithm to decompose the n-dimensional data, which contains the number
concentration of airborne particles of different sizes with or without other mea-
sured data (climatic and other pollutants). From the loadings, we are able to an-
alyze the variation in the data, identify the main sources of pollutants and assess
their relative contributions. The particularity of this method (PARAFAC) is that
indoor and outdoor particles of given sizes are considered in parallel layers and
not as different variables of the same layer (matrix-based methods such as PMF).
This structure allowed to determine the relative contribution of outdoor sources to
the indoor concentration of particles, which is a topic of utmost interest in Indoor
Air Quality studies nowadays.

When applied to PN concentrations, three factors were retrieved from PARAFAC
and identified: outdoor sources, indoor sources caused by occupants’ presence
and activities, and an unexplained factor that may include other random events.
The method allowed to determine the relative contributions of the sources and
the attributable concentration at a given time. A system based on PARAFAC that
provides information about pollutant sources at a givenmoment, could be created
in the future.
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The addition of other data did not improve the separation and identification of
particle sources. The other data were identified as a single factor with no relation
to particulate matter. The addition of outdoor PN data allowed to retrieve three
explainable factors with the addition of a new dimension. In particular, it allowed
to dissociate fine particle from outdoors that behave the same indoors and medi-
um/coarse particles from outdoors that vary differently compared to indoors. The
added dimension also increases the complexity of interpretation. The use of PCA
afterwards helped to better understand the retrieved factors.
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Part II

Forecasting of the window opening
state
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The opening state of the windows has an important influence on the IAQ, as it
can modify the air exchange rate and as such the transfer between indoor and
outdoor environments. Opening a window may lead to a sudden increase in the
air exchange rate and to both (i) a quick decrease of the concentration of indoors
generated pollutant like CO2 and (ii) a possible increase of the indoor concentra-
tion of pollutants coming from outdoors as PM. The thermal comfort and indoor
air quality can be improved by window opening/closing. It is therefore necessary
to understand and model the influence of this factor on IAQ.

In this second part of the thesis, we tried to model the windows opening state
in a real open-plan office with five windows. From the various approaches three
machine learning models: Decision Tree, kNN and Kernel Approximation, were
selected to be tested in our study case.

The general outline of this part is organized as follows:

• Chapter 6 - literature review concerning the models employed to predict the
windows opening state.

• Chapter 7 - presentation (description) of the three selected ML models.

• Chapter 8 - model implementation process (parameters selection and hyper-
parameter setting); the results concenrning the performance of different ML
prediction models and discussion.
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Chapter 6

Modeling of the windows opening
state in the literature

The opening state of the windows has an important influence on IAQ, as it can
modify the air exchange rate and as such the transfer between indoor and out-
door environments (Godish and Spengler, 1996). Opening a window may lead
to a sudden increase in the air exchange rate and to both (i) a quick decrease of
the concentration of indoors generated pollutant like CO2 and (ii) a possible in-
crease of the indoor concentration of pollutants coming from outdoors as PM. A
research in a mock-up building revealed that the thermal comfort and indoor air
quality can be improved by window opening/closing (Park, 2013). It is therefore
necessary to understand and model the influence of this factor on IAQ.

Window-opening activity is affected by a variety of parameters, such as outdoor
temperature, air quality, human presence and season (Park and Choi, 2018; Park
et al., 2020; Raja et al., 2001). Occupant’s behavior is an important factor but it can
vary among individuals (Park and Choi, 2018), leading to different impacts on the
indoor environment (Park et al., 2020).

On the one hand, theoretical physics-based models (models based on physics
rules) struggle to explain the changes in window-opening behavior (Dai et al.,
2020), in the perspective of direct modeling. On the other hand, machine learning
models develop computational algorithms designed to simulate human intelli-
gence by learning from their surroundings (El Naqa and Murphy, 2015), in the
perspective of inverse modeling. Considering the complexity of the underlying
relationships, a machine learning model could be a good alternative to a physics-
based model and a powerful tool for predicting or forecasting window-opening
behavior.

In the last decades, Machine Learning (ML) models have been effectively used
in the prediction of indoor air quality (Chen et al., 2018; Martínez-Comesaña et
al., 2022; Wei et al., 2019) and energy consumption (Amasyali and El-Gohary,
2018; Edwards et al., 2012), proving the potential of using machine learning mod-
els in indoor environments. Regarding windows opening modeling, a recent
study (Tien et al., 2021) has used the Deep Learning technique for Neural Net-
works (a specific type of ML) for the detection and recognition of the opening
state of the windows by using a camera in order to propose frameworks for en-
ergy saving.
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According to the review paper of Dai and his colleagues (2020), the common ML
models for predicting window-opening behavior include: logistic regression, ar-
tificial neural networks (ANN), the Markov chain model, and support vector ma-
chines (SVM). Figure 6.1 presents different types of ML algorithms (Atul, 2022)
and some of them will be presented more in detail in chapter 7.

Figure 6.1: Different types of Machine Learning algorithms (Atul,
2022).

It is important to notice that we decided to present all these models within the
frame ofML. They can be presented as well as statistical models. This aspect is not
of utmost importance, because we refer to the same model. Their most important
common feature is that they are data-driven models and that an inverse modeling
is performed each time. Figure 6.1 gives some examples: the well-known statis-
tical technique of regression can be equivalently used as a supervised ML model.
Multivariate statistical analysis performed by using PCA or K-means clustering
can be considered as unsupervised ML techniques.

A stochastic window status profile generator (WinProGen) has been introduced
by Cali and colleagues (2018). For the development of window state profiles,
three models have been established in WinProGen; they depend on the hour of
the day, the day of the week, and/or on the daily average ambient temperature.
This model uses a database with transition probability matrices obtained from
300 windows in 60 apartments in southern Germany, monitored during 2012 with
1-minute time step.

Reliable predictions of buildings’ energy performance are obtained when apply-
ing these generatedwindow state profiles to the dynamic simulation of two demon-
strator buildings. The implemented stochastic models are Markov chains. The
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Markov chain describes a sequence of possible events in which the next state
Xk+1 is conditionally dependent on the past X0, . . . ,Xk�1) given the present state
Xk (Serfozo, 2009). With this assumption, we have that:

pijk = p(Xk+1 = sj|Xk = si) (6.1)

p(Xk+1 = sj|X1,X2, ...Xk) = p(Xk+1 = sj|Xk) (6.2)

where pijk represents the transition probability and it denotes the probability of the
system to change from state si (open/close) to state sj (close/open) at time step k.

This model has the advantage of appropriately accounting for the process’s time
dependency. However, according to the authors, this model struggled to deal
with a large number of input variables in comparison with the logistic regression
method. Therefore, they proposed, as future work, to develop a hybrid model,
combining both the Markov chain technique and the logistic regression analy-
sis (Cali et al., 2018).

Most of the research used logistic regression to compute the correlation between
the probability of a window opening and the variables of influence (Andersen et
al., 2013; Yao and Zhao, 2017). Logistic regression (Hosmer and Lemeshow, 2000)
is a statistical approach that determines the likelihood of a given event (e.g., open-
ing awindow) occurrence based on relevant factor elements (e.g., outdoor/indoor
air temperature or PM2.5 concentrations). The Wald statistic test, which has a c-
squared distribution, is an useful approach to identify the contribution of various
components to the event occurrencewhen using logistic regression. Thus, a signif-
icant 2-tailed P-value for a certain predictor indicates if this predictor is essential
in the logistic regression model (Pan et al., 2018), as given in equation (6.3):

P =
e(a+bx)

[1+ e(a+bx))]
(6.3)

where P is the probability of the window-opening, x is an influential factor, a and
b are constants, which represent the regression coefficients. These constants are
estimated by regression analysis using a maximum likelihood estimation.

Andersen and Yao used logistic regression to compute the correlation between
window opening and the variables of influence in order to predict the probabil-
ity of a window opening/closing event. In their researches, 19 dwellings in Bei-
jing (Yao and Zhao, 2017) and 15 residences in Denmark (Andersen et al., 2013) are
studied. Predictive models of the occupants’ window opening behavior were es-
tablished based on multivariate linear logistic regression. Their results indicated
that outdoor air temperature was the most influential variables in determining
the window opening and closing probability, followed by indoor CO2 concen-
tration, indoor air temperature, outdoor and indoor relative humidity, ambient
PM2.5 concentrations, and outdoor wind direction and wind speed.

This method has the advantage of providing interpretative parameters and could
be regularized to minimize over-fitting. However, the model struggles to ad-
dress the complicated relationships, due to its low flexibility (Dreiseitl and Ohno-
Machado, 2002).
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Other researchers attempted to apply a data-mining approach to discover the
effects of the window opening and closing behavior on energy consumption in
buildings (D’Oca and Hong, 2014). This paper proposes a framework for identi-
fying valid window operating patterns, in measured data, by combining logistic
regression analysis with two data-mining approaches: (i) cluster analysis and (ii)
association rules mining. Analyses were performed on the data set obtained by
monitoring 16 offices in Frankfurt am Main (Germany). The dataset contains in-
door and outdoor physical factors as well as human interaction with operable
windows, which was measured in 10-min interval data over two complete years
(2006 and 2007). In their study, 8 non-numerical and 7 numerical variables are
used for calculating the probability of opening and closing for a window. In to-
tal, a huge quantity of detailed data was used. According to the four aims of
the research, (i) three motivational (thermal-driven, thermal/time-driven, time-
driven), (ii) three opening duration (long, medium, short), (iii) three interactivity
(active, neutral, passive) and (iv) three degree of opening position (small, inter-
mediate, big) behavioral patterns were achieved. The authors succeeded to obtain
distinct behavioral patterns to serve as a basis for 12 association rules, which clas-
sified two typical window opening office user profiles: (i) physical environmental
driven and (ii) contextual driven. Based on that, appropriate recommendations
for different natural ventilation strategies as well as robust building design could
be achieved.

A similar study (Markovic et al., 2018) suggested a generic model that identifies
window states using a fully connected feed-forward neural network. The net-
work consists of 25 neurons in the input layer, corresponding to 22 variables from
the current time step and 3 variables from 10 minutes before the current time
step, as input features. An optimal performance was achieved by a five hidden
layers neural network. For both training and testing processes, this model used
around 20 million data samples. Data from Aachen University’s offices was used
for the training step. The data were logged in a minute-wise frequency from Jan-
uary 1st, 2014 to October 1st, 2015, including detailed indoor climate, air quality
and occupant behavior information from 52 single or double occupied offices. Af-
ter that, the proposed model was evaluated on other additional data sets, which
were collected from offices in Frankfurt (Germany) and Philadelphia (USA). The
additional data set was divided into adaptation set and evaluation set. During
the adaptation process, the pre-trained weights were adapted by running several
tuning iterations, while no hyperparameter tuning or further calibration was re-
quired. Based on this procedure, the only required step is the weight adaptation
when applied to the other buildings, other while, this model did not require any
parameter search or calibration. The resulting evaluation accuracy and F1 scores
on the office buildings ranged between 86 and 89% and 0.53–0.65 respectively. The
resulted model could be used by the engineers and designers as a standalone, or
as a part of a thermal building simulation.

Six machine learning algorithms were trained in the research of Park et al. (2020).
The authors have used monitoring data of 23 sample homes located in Seoul and
suburban areas for predicting the occupant’s behaviour in the manual control of
windows. According to the analysed predictive performance, the k-NN model
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shows the best fitness with the monitored data set. Regarding the input parame-
ters, the Gini importance score indicated that there are five main driving param-
eters: (i) prevailing mean outdoor air temperature (PMA), (ii) mean daily tem-
perature, (ii) CO2 indoor concentration, (iv) relative humidity indoors and (v) the
difference between outdoor temperature and the operative temperature indoors.

The Kernel Approximation method has been mainly applied in speech enhance-
ment methods (Zhao et al., 2016). Regarding the Decision Tree, this method has
been used to classify the most important parameters among a large range of vari-
ables such as: sociodemographic data, health and lifestyle habits, ergonomic and
psychological factors for the Sick Building Syndrome (SBS) (Sarkhosh et al., 2021).

For our research situation, many supervised ML methods such as Decision Trees,
Support Vector Machines, k-Nearest Neighbor, and Ensemble classification can be
used. We decided to study the ability of different ML classifiers including: deci-
sion trees, k-NN classification and kernel approximation (SVM kernel), to predict
the state of the window opening in an open-plan office, as presented hereafter.
The reason for selecting the Decision Trees is that this method offers the possi-
bility to get the extracted rules and apply them for other study cases. Regarding
k-NN, this method is recommended as ’a theoretically optimal method of clas-
sification’ (Hastie et al., 2001). Finally, we chose Kernel Approximation as it can
take into account the non-linearity relationship among the variables. The detailed
information about these three methods is presented in the chapter 7.
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Chapter 7

Description of the models used for
predicting the windows opening state

Before introducing the different models that we have used in our study, we want
to provide some terminologies frequently used in ML classification method as
below:

• Model-based algorithm: an alternative methodology for applying machine
learning, which seeks to create a bespoke solution tailored to each new prob-
lem. The solution is expressed through a compact modeling language, and
the corresponding custom machine learning code is then generated auto-
matically (Bishop, 2012).

• Instance-based algorithm (sometimes called memory-based learning): an
opposite of model-based algorithm, this methodology generates classifica-
tion predictions using only specific instances (Aha et al., 1991), or in other
words, "it constructs hypotheses directly from the training instances them-
selves" (Norvig and Peter, 1995).

• Supervised: in supervised learning, labeled data are used. They represent a
data set that has been categorized, to infer a learning algorithm. The data set
is used as the basis for predicting the classification of other unlabeled data
using machine learning algorithms (Mark et al., 2015).

• Unsupervised: unsupervised learning algorithms are used to group cases
based on similar attributes, or naturally occurring trends, patterns, or rela-
tionships in the data. Unsupervised models include clustering techniques
and self-organizing maps (Colleen, 2015).

• Reinforcement: a machine learning training method that rewards desired
behaviors and/or punishing undesired ones. In general, it is capable of
perceiving and interpreting its environment, taking actions and learning
through trial and error (Kaelbling et al., 1996).

• NP-hard: any solving algorithm can be translated into an algorithm for solv-
ing an NP-problem in order to appreciate its computing time (Nondetermin-
istic Polynomial time problem). NP-hard therefore means "at least as hard
as any NP-problem" in terms of computing time.
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• Feature: an individualmeasurable property or characteristic of a phenomenon (Bishop,
2006). Choosing informative, discriminating and independent features is a
crucial element of effective algorithms in pattern recognition, classification
and regression.

• Samples: a smaller, manageable representation of a larger group; it is a sub-
set of a bigger population that contains the features of that larger group (Ke-
ton, 2021).

An example about features and samples in a dataset is displayed in Fig-
ure 7.1 where the lines represent the samples and columns represent the
features.

Figure 7.1: An example database about Indoor Air Quality classifi-
cation.

• Overfitting: "the production of an analysis that matches too closely or per-
fectly to a specific collection of data, and may thus fail to fit to new data
or predict future observations accurately" (Oxford Dictionaries, 1930). An
overfitted model is a statistical model that has more parameters than can
be justified by the data (Everitt and Skrondal, 2010). In this case, we can
say that the algorithms "learns by heart" the samples and it is not able to
generalize when applied to unseen ones.

• Underfitting: a data science scenario in which a data model is unable to
accurately capture the connection between the input and output variables,
resulting in a high error rate on both the training set and unseen data (Edu-
cation, 2021).

Figure 7.2 illustrates an example of over-fitting and under-fitting.

• Decision boundary: a hypersurface that separates the data points into spe-
cific classes, where the algorithm switches from one class to another (Sahu,
2021).

• Bias: a systematic error in science and engineering. Statistical bias is caused
by an unfair sample of a population or by an estimating procedure, that does
not produce accurate findings on average (Welsh and Begg, 2016).
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Figure 7.2: An example of over-fitting and under-fitting.

• Training set: a data set of samples is used during the learning process and
is used to fit the parameters of a classifier (Ripley, 1996). For classification
tasks, a supervised learning algorithm examines the training data set to de-
termine, or learn, the appropriate variable combinations that will provide a
strong prediction model.

• Testing set: a data set that is independent of the training data set but has the
same probability distribution (Ripley, 1996).

• Validation set: a collection of samples used to fine-tune a classifier’s hyper-
parameters.

• Cross-validation: a resampling approach that tests and trains a model on
different iterations using different subsets of the data (Stone, 1974). The
purpose of cross-validation is to evaluate the model’s ability to predict new
data, which was not used in the estimation process. Based on that, it is pos-
sible to identify errors such as overfitting or bias selection. In addition, this
method provides insight into how the model would generalize to an inde-
pendent dataset (Cawley and Talbot, 2010).

7.1 k- Nearest Neighbor Classification

k-Nearest Neighbors models (Fix and Hodges, 1951) are a type of instance-based
model that is used mainly for classification in the Machine Learning field. Its
fundamental is as follows: similar objects exist in close proximity.

While model-based algorithms (the opposite of instance-based models) use the
training data to create a model with input parameters, the instance-based models,
such as k-Nearest Neighbors, use the entire training data set to determine the
model, without learning any parameters to assign a class or category to a specific
new data point.

Because of their non-parametric nature, the k-NN models can quickly assess the
viability of a multi-class classification problem. k-Nearest Neighbors is one of the
most simple and easy-to-use model to classify data.

One of the main advantages of the k-NN of models is that they are able to quickly
adapt to new samples since they do not need to recalculate any weights. The
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downside is that all the dataset even very large is kept in memory and not a re-
duced or compact set of weights, which might be computationally very costly.

7.1.1 The k-NN algorithm
The basic steps of the k-NN algorithm for classification are described below:

1. Load the data

2. Initialize k to the chosen number of neighbors. In the k-NN model, k is
defined as the number of nearest neighbors. This parameter is the core-
deciding factor. When k=1, then the algorithm is known as the nearest neigh-
bor algorithm. The more detailed information about how to select the suit-
able k-value is presented in the subsection 7.1.2.

3. For each data sample:

(a) calculate the distance between the query sample and the current sample
from the dataset by using distance measures such as Euclidean, Cheby-
shev, City Block, Cosine, etc. The main intuitions of some distance met-
rics are displayed in the Figure 7.3.

Figure 7.3: Different distance measures used in k-NN classification.

(b) Add the distance and the index of the example to an ordered collection

4. Sort the ordered collection of distances and indices from smallest to largest
(in ascending order) by distances

5. Pick the first k entries from the sorted collection

6. Get the labels of the selected k entries

7. Return the mode (the value that appears the most often) of the k labels.

The obtained label is assigned to the query sample in the classification task.

Examples of k-nearest neighbor classifiers are displayed in Figure 7.4 and Fig-
ure 7.5. In the case of the ’nearest neighbor’ classification, the classifier searches
for just one nearest neighbor and the query sample is assigned to Group 2 (star
shape). Meanwhile, using the same set of initial data, in the case of the 3-nearest
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Figure 7.4: An example of the nearest neighbor classification (k=1).
The sample is finally classified as belonging to group 2 (‘star shape’).

Figure 7.5: An example of the k-nearest neighbor classification (k=3).
The sample is finally classified as belonging to group 1 (‘triangle

shape’).

neighbor, the query sample is categorized as Group 1 (triangle shape), after check-
ing the labels of the three nearest neighbors. This is interesting because the deci-
sion of choosing the number of neighbors has an impact on the final outcome.

7.1.2 Choosing the most adapted value for k
To find the most adapted k-value for the data, it is necessary to run the k-NN al-
gorithm many times with different values of k and pick the k-value that decreases
the amount of errors while maintaining the algorithm’s capacity to make accurate
predictions when presenting data that it has never seen before.

When the value of k equals to one, the predictions become less stable. Inversely,
when k increases, the forecasts become more stable owing to majority voting/av-
eraging and, as a result, more likely to be correct (up to a certain point). When
one begins to notice an increase in the amount of errors, it means that the value of
k has been pushed too much.
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In order to get a majority vote among labels (e.g., determining the mode in a
classification issue), k is normally chosen as an odd number to have a tiebreaker.

So, how to choose the right k value? There are no pre-defined statistical proce-
dures for determining the optimal value of k. Choose a random k-value and begin
calculating. A small value of k results in unstable decision boundaries. A high k-
value is preferable for classification since it smooths out the decision boundaries.
One needs to create a visualization of the error rate versus k for values within a
given range. Then select the k-value with the lowest error rate. Typically, the ideal
k-value is determined to be the square root of N, where N is the total number of
samples (Jirina, 2011).

The k-NN classification is recommended as ’a theoretically optimal method of
classification’ (Hastie et al., 2001). However, this method is not easy to interpret
and it does not offer the possibility to extract a rules set in order to apply it for
another dataset. In addition, the k-NN classification cannot deal with both nu-
merical and categorical data at the same time. It is required to convert numerical
data to categorical.

7.2 Decision Tree

Decision Tree (Quinlan, 1986) is a Supervised ML Algorithm that employs a set
of rules to make decisions in the same way that people do. Some classification
methods, such as Naïve Bayes, are probabilistic, although a rule-based technique
is also available.

7.2.1 A tree that makes decisions
The idea behind Decision Trees is to use dataset attributes to create binary yes/no
questions, and then segment the dataset until all the data points from each class
become isolated. With this strategy, one can organize the data in a tree structure.
A node is added to the tree when a question is asked. Furthermore, the first node
is known as the root node. The answer to a question separates the dataset and
creates new nodes based on the value of a characteristic. If the process is stopped
after a split by some rules (for example: stop splitting if more than 95% belong to
a single class, stop splitting if less than 5 individuals, do not split if the new node
has less than 5 individuals, . . . ), the final nodes are known as leaf nodes.

A basic Decision Tree structure and its terminologies are introduced in the Fig-
ure 7.6:
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Figure 7.6: A basic structure of a Decision Tree.

Parent and Child Node: A Parent Node (nodes 1 and 2 in the figure) is a node
that is divided into sub-nodes, and these sub-nodes are known as Child Nodes
(nodes 3-6 in the figure). Because a node may be split into several sub-nodes, it
can act as a Parent node for a large number of Child Nodes.

Root Node: The decision tree’s highest node. There is no Parent node for this
node.

Leaf / Terminal Nodes: Nodes that do not have any Child Node (nodes 3-6 in the
figure).

The technique attempts to have all the leaf nodes belonging to a single class. These
are referred to as pure leaf nodes (like nodes 4-6 in Figure 7.6). However, most of
the time the final result consists in mixed leaf nodes, which means that not all
data points belong to the same class (like node 3 in the figure). In the end, the
algorithm can only assign one class to each leaf node’s data points. With pure leaf
nodes, there is no further ambiguity because all the data points in that node have
the same class. However, in the case of mixed leaf nodes, the method assigns
the most frequent class among all the data points in that node. For example in
Figure 7.6, node 3 would be assigned to the class of blue color.

The ideal tree is the smallest tree with the fewest splits that can correctly catego-
rize all the data points. This appears to be an easy issue; however, it is a nondeter-
ministic polynomial (NP)-hard problem (see NP-hard problem’s definition at the
beginning of this Chapter 7). Building the optimal tree would require a polyno-
mial time, which rises exponentially with the size of the dataset. For example, if a
dataset contains only 10 data points and the algorithm is of quadratic complexity,
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O(n2), the tree is built in 10*10 = 100 iterations. Increasing the size of the dataset to
100 data samples, the number of iterations of the algorithmwill increase to 10.000.

To convert the NP-hard task into a computationally viable one, the solution em-
ploys a greedy strategy to create the next best tree. Instead of attempting to make
the best overall decision, this method makes locally optimum judgments to se-
lect the feature utilized in each split. Because it optimizes for local decisions, it
is solely concerned with the node at hand and what is optimal for that node in
particular. As a result, it is not necessary to investigate all possible splits for that
node and beyond (Bento, 2021).

Picking the best split

The algorithm attempts to partition the dataset into the lowest subset feasible at
each split. The aim, like with any other Machine Learning method, is to minimize
the loss function as much as feasible (Tan et al., 2005). Stochastic Gradient Descent
is a popular loss function for classification algorithms. Given that the loss function
should be differentiable, it is not possible to use in this circumstance. However,
because data points from distinct classes have to be separated, the loss function
should assess a split based on the proportion of data points from each class before
and after the split. In other words, a loss function that assesses the split based
on the cleanliness of the resultant nodes is desirable. Examples of loss functions
that compare the class distribution before and after a split are Gini Impurity and
Entropy (Tan et al., 2005).

• Gini Impurity

Gini Impurity is a measure of the variance across the different classes (James
et al., 2013):

G(node) =
c

Â
k=1

pk(1� pk) (7.1)

where pk is the probability of picking a data point from class k, c is the total
number of classes (or labels) of data.

• Entropy

Similar to Gini Impurity, Entropy is a measure of chaos within the node. In
addition, chaos, in the context of decision trees, means having a node where
all the classes are equally present in the data.

Entropy(node) = �
c

Â
k=1

pklog(pk) (7.2)

When using Entropy as a loss function, a split is performed only if the En-
tropy of each of the resulting nodes is lower than the Entropy of the parent
node. Otherwise, the split is not locally optimal.

7.2.2 Decision Tree’s advantages
Decision trees are based on a simple algorithm and present several advantages (Bento,
2021):
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• Interpretability: The decision tree can be visualized. One of the most sig-
nificant advantages of tree-based algorithms is the ability to visualize the
model. You can see the algorithm’s decisions and how it categorized the
various data pieces. This is a significant benefit because most algorithms
operate as black boxes, making it difficult to determine what led the algo-
rithm to predict a specific result.

• No preprocessing required: There is no need to prepare the data before
generating the model. Instead of examining the full feature set, the rules
in tree-based algorithms are developed around each particular feature. Be-
cause each choice is made by examining one characteristic at a time, their
values do not need to be normalized.

• Data robustness: The algorithm works well with all types of data. Tree-
based algorithms are excellent when dealing with different data types. The
dataset can contain both numerical and categorical data, and none of the
categorical characteristics must be encoded.

Despite their benefits, Decision Trees are not as accurate as other classification and
regression techniques. Overfitting is a disadvantage of decision trees. Overfitting
the training set is common when designing a very long tree, partitioning the fea-
ture set until achieved pure leaf nodes. The resultant tree is not only complicated,
but also difficult to read and interpret. Optimal trees can also be spruced to avoid
overfitting, but it requires another data set. However, if the decision tree is too
tiny, it will underfit the data, resulting in excessive bias.

In addition, Decision Trees are robust in terms of the data types they can han-
dle, but the algorithm itself is not very robust. A slight change in the data can
drastically change the tree and, consequently the final results (James et al., 2013).

To summarize, Decision Trees are a rule-based method for solving classification
and regression tasks. They divide the dataset using the values in each feature to
group all data points with the same class together. However, there is an obvious
trade-off between interpretability and performance. A small tree is simple to per-
ceive and comprehend, but it contains a lot of variation. A little modification in
the training set can result in an entirely different tree and predictions. A large tree
with several splits, on the other hand, produces better classifications. However, it
is most likely, to remember the training dataset (overfitting).

7.3 Kernel Approximation

When data is not linearly separable in the current feature space, kernel techniques
project input data points into a high-dimensional feature space via nonlinear map-
ping and determine the appropriate hyperplane in that feature space. However, if
the number of data points is enormous, the size of the kernel matrix will be large,
which may influence the efficiency of the algorithms. For example, computing the
kernel matrix when the size of observation matrix is mxn, leads to an algorithm
with at least O(n2) storage space and O(n2m) running time. In addition, the in-
verse of a kernel matrix calculation is the main computational burden with O(n3)
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running time. Facing with this problem, the study of low-rank approximation of
the kernel matrix to reduce the algorithm complexity is introduced (Zhao et al.,
2016).

7.3.1 Kernel-based method
Kernel methods like Support Vector Machines (SVM) or kernelized PCA rely on
the property of reproducing kernel Hilbert spaces (Schölkopf and Smola, 2002).
For any positive definite kernel function K (a so-called Mercer kernel), it is guar-
anteed that there exists a mapping into a Hilbert space H, such that

K(xi, xj) = <f(xi), f(xj)> (7.3)

where <., .> denotes the inner product in the Hilbert space. xi, xj 2 X are two
samples. The nonlinear feature mapping f : X ! F maps each element of the ob-
servation space X into a high-dimensional feature space F. By using this mapping
method, it is not necessary to represent explicitly as long as kernel algorithms
have access to K. That means f(x) can be high-dimensional or even infinite-
dimensional, the inner products can be evaluated in an inexpensive manner by
K (Le et al., 2013). This is referred to as the “kernel trick”.

An example illustration of this mapping method for SVM is displayed in the Fig-
ure 7.7.

Figure 7.7: Kernel trick in Support Vector Machine.

The kernel function K(xi, xj) is intended to measure the “similarity” between xi
and xj (the larger, the more similar). The two most widely-used such functions
are

• Linear kernel: K(xi, xj) = <xi, xj>

• Gaussian kernel: K(xi, xj) = � expkxi�xjk2

2s2

The linear kernel gives a signedmeasure of the similarity between xi and xj, in the
sense that the angle between the two points plays a role in determining how sim-
ilar they are, and can lead to negative values of K. On the contrary, the Gaussian
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kernel depends only on the Euclidean distance between xi and xj, and is based
on the assumption that similar points are close one to each other in the feature
space (in terms of Euclidean distance). This latter assumption is very reasonable
in many cases, hence the Gaussian kernel is often used in practice.

The advantage of using the Kernel function K is that the mapping f never has to
be calculated explicitly, allowing for arbitrary large features (even infinite). Mean-
while, one drawback of the kernel methods is that it might be necessary to store
many kernel values K(xi,xj) during optimization. If a kernelized classifier is ap-
plied to new data xk, K(xi,xk) needs to be computed to make predictions, possibly
for many different xi in the training set (Pedregosa et al., 2022).

7.3.2 Kernel Approximation and its advantages
Kernel approximation is an effective technique for overcoming the low scalabil-
ity of kernel-based techniques by establishing an explicit mapping y: Rd ! Rs

such that K(x, y) ⇡ y(x)Ty(y). By doing so, an efficient linear model can be
well learned in the transformed space withO(ns2) time andO(ns)memory while
retaining the expressive power of nonlinear methods, where n is the number of
samples in the original d-dimensional space and s is the number of features, which
is normally a very high number. According to the review paper of Liu and col-
leagues (2021), in recent years, a number of kernel approximation algorithms,
such as divide-and-conquer approaches (Hsieh et al., 2014), greedy basis selec-
tion techniques (Alex and Bernhard, 2000) and Nyström methods (Williams and
Seeger, 2001), have been developed.

While these approaches provide a data-dependent vector representation of the
kernel, the Random Fourier features (RFF) (Rahimi and Recht, 2008), on the other
hand, is a typical data-independent technique to approximate the kernel function.
The Random Features is one of the most popular techniques to speed up kernel
methods in large-scale problems. For further information, RFF applies in partic-
ular to shift-invariant (also called “stationary”) kernels that satisfy K(x1, x2) =
K(x1 � x2). By virtue of the correspondence between a shift-invariant kernel
and its Fourier spectral density, the kernel can be approximated by K(x1, x2) ⇡
f(x1), f(x2), where the explicit mapping f : Rd ! Rs is obtained by sampling
from a distribution defined by the inverse Fourier transform of K. To scale kernel
methods in the large sample case (e.g., n � d), the number of random features s
is often taken to be larger than the original sample dimension d but much smaller
than the sample size n to achieve computational efficiency in practice.

The Random Kitchen Sinks (Rahimi and Recht, 2008) and Fastfood (Le et al., 2013)
are two examples of random feature expansions; these schemes tried to approxi-
mate Gaussian kernels of the kernel classification algorithm for big data in a com-
putationally efficient way. Firstly, they find a random transformation so that its
dot product approximates the Gaussian kernel:

K(x1, x2) = <f(x1), f(x2)> ⇡ T(x1)T(x2)T (7.4)
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where T(x)maps x in Rp (p is the number of input features) to a high-dimensional
space (Rm). The Random Kitchen Sinks scheme uses the random transformation

T(x) = m�1/2exp(iZxT)T (7.5)

where Z 2 Rmxp is a sample drawn from N(0, s�2) and s2 is a kernel scale. This
scheme requires O(mp) computation and storage.

The Fastfood scheme introduces another randombasisV instead of Z usingHadamard
matrices combined with diagonal Gaussian scaling matrices.

V =
1

s
p
d
SHGPHB (7.6)

where P 2 {0, 1}dxd is a permutation matrix and H is the Walsh-Hadamard ma-
trix. S,G and B are all diagonal random matrices.

When the implemented function uses the Fastfood scheme for random feature ex-
pansion and uses linear classification to train a Gaussian kernel classification, the
model needs only to form a matrix of size nxm, with m typically much less than n
for big data, in comparison with support vector machine that requires computa-
tion of the nxn Gram matrix. This random basis reduces the computation cost to
O(mlogp) and reduces storage to O(m).

Kernel approximation is used in a variety of contexts and its use is crucial for
scaling many learning algorithms to a very large task (Cortes et al., 2010). Ap-
proximate subspaces can be built adaptively using streaming data acquisition.
After that, explicit feature vectors are obtained using a transformation onto the
estimated subspace, and linear learning approaches can be used. In terms of com-
putation, processes in kernel techniques can be easily parallelized, and advanced
infrastructures may be used to create efficient computing. Furthermore, the pro-
duced explicit feature vectors may be simply integrated with different learning
approaches (Yu et al., 2018).
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Chapter 8

Models Implementation, Results and
Discussion

This chapter presents the implementation procedure for three prediction models.
Firstly, the parameters selection based on autocorrelation function values is pre-
sented. In the second section, the detailed information for data preparation and
hyperparameter values setting are introduced.

8.1 Parameters selection

The data quality and quantity have an influence on the majority of data-driven
techniques, including data mining and machine learning. Furthermore, it is im-
portant to determine which factors impact the target value (themodel output) and
how many features (model inputs) should be used to build predictive models. In
practice, several environmental factors may influence the accuracy of window
opening prediction. However, due to realistic limits, it is impossible to search
for all of these features. According to some previous studies, the outdoor tem-
perature, indoor CO2 concentration and the prevailing mean air temperature (see
section 2.2 for the definition) are the most important variables in determining the
probability of opening/closing the windows, followed by indoor air temperature,
outdoor and indoor humidity (Andersen et al., 2013; Fabi et al., 2012; Park et al.,
2020; Yao and Zhao, 2017).

In addition, non-environmental factors, such as: seasonal change, time of the day
and personal preference, also affect the window-opening probability (Pan et al.,
2018). Thus, in our model, the following variables were selected:

• temperature (T) and specific humidity (Hs) of both indoor and outdoor en-
vironments and the prevailing mean outdoor air temperature (PMA);

• indoor CO2 and indoor particulatematter concentrations (PM2.5 and PM10);

• wind direction, raining condition, door status, occupancy status;

• month, day of the week, hour of the day.

The studied office has a permanent mechanical exhaust ventilation. The single
flow ventilation system provides a constant air extraction rate of 228 m3. h-1 (mea-
sured in 2014 at ± 6%). Ten air inlets are attached to the joinery of the five sliding
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windows. These five windows were equipped with sensors that detected each
opening or closing event and recorded by the CSTBox-DIN4 through a wireless
motion detector (see Figure 2.6). The collected data is transmitted to and stored
on a central server, which enabled viewing and downloading. The opening fac-
tor data are time series with irregular time steps as the detection modules send
back information as soon as a change of state occurs. Therefore, a pre-processing
step was performed to synchronize all the time series at the same time step (1
minute) (Ramalho et al., 2016).

The main statistics of the monitored environmental parameters for the years 2014
and 2015 are displayed in Table 8.1 and Table 8.2, respectively. It should be noted
that the comparison of these two years is not very representative as 2014 data cov-
ered the whole year, and the 2015 monitoring set covered only the first 6 months.
However, there are no significant differences between the averaged values of these
two years. One can notice that the maximum values of PM2.5 and PM10 concen-
trations in 2014 are quite higher than those monitored during 2015 (91.87 µg.m-3

and 106.78 µg.m-3 in 2014 in comparison with 21.3 µg.m-3 and 43.71 µg.m-3 in
2015). This can be explained by the outdoor pollution episode of particulate mat-
ter that happened in March 2014, a quite remarkable event. In addition, higher
specific humidity is observed in 2014 compared to 2015, but the monitored data
of 2015 does not include July to December.
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In reality, the windows opening status does not change much within a given hour,
hence using such a detailed database with a 1-minute time step is not necessary.
In addition, some monitored data were missing, therefore we decided to use the
hourly average data in this study.

Based on the 1-minute time step data, the hourly average values of the selected
parameters were calculated as in equation 8.1. A linear interpolation was applied
in order to replace missing values.

xhourly =
1
60

60

Â
i=1

xminutei (8.1)

The window opening status for a specific hour was calculated as the mode value
(most frequent) of the number of opened windows, according to the equation 8.2.

xhourly = mode(xminutei) (0 < i  60) (8.2)

As the value of opened windows is not varied much during 60 minutes, the mean
(averaged) and mode value are almost the same, so we could use either of them.

The ACF results of the environmental data monitored during 2014 are represented
in the Figure 8.1. Very similar results were obtained for data of the year 2015 so
they are not presented here. One can notice the persistence of the temperature
(T) and specific humidity (Hs) indoors and outdoors, which means that a value at
time t of the temperature or specific humidity is correlated to a value one day later
(t+24), two days later (t+48), or even three days later (t+72). In addition, the ACF
of the CO2 concentrations becomes negative and remains at low levels, and then
switches back to positive values after a lag of 17 hours. While for outdoor T and
Hs (indoors and outdoors), the autocorrelations persist in the positive domain
for long delays. In general, temperatures depict the same structures of spectral
variability as CO2: the fundamental frequency peaks at every 24 hours. The ACF
of CO2 alternates sign every 8 hours on a lag of 24 hours. This implies that, instead
of using the information of the ’previous hour’, in the real-time system, we could
use the value of ’the previous 24th hour’ (t-24) environmental data as input for
this model, which is easier to access.

Furthermore, the ‘weekly periodicity’ (at the lag of 168 hours) in the ACF values
of CO2 and PM10 concentration is noteworthy. The information of the ‘previous
168th hour’ data could be then used as input for the model when the ‘previous
24th hour’ data is not available. Besides, it can be also noticed that the ACFs of
PM concentrations and number of openedwindows present high values at a lag of
24 hours (see Figure 8.1d and 8.1c). We decided to use also the PM concentrations
and the number of opened windows, corresponding to the 24 hours lag, as inputs
of the prediction model.

In conclusion, non-environmental, environmental features and window status of
the previous 24th hourmoment, were selected as initial inputs of a model built in
order to predict the opening status of windows at the current hour as presented
in the section 8.2.
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Figure 8.1: Autocorrelation values of environmental variables in
2014: (a) Indoor and outdoor temperature, (b) indoor and outdoor
humidity, (c) indoor CO2 and number of opened windows, and (d)
indoor PM2.5 and PM10. The 24-hour and 7-day peaks are indicated
on the plot of each ACF (X represents the lag and Y represents the

ACF value).

8.2 Classification model Implementation

In this section, the data pre-processing is introduced, followed by the model’s
parameterization.

8.2.1 Data pre-processing
After recalculating the number of opened windows for a specific hour using the
mode value (equation 8.2), these values were then categorized into four different
groups, labeled as follows:

• ALL CLOSED: all of the windows are closed (xhourly = 0)

• MOSTLY CLOSED: 1 window is opened (xhourly = 1)

• MOSTLY OPENED: 2 or 3 windows are opened (2  xhourly < 4)

• ALL OPENED: 4 windows or more are opened (xhourly � 4)
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We remind that the office is equipped with five windows. In 2015, one window
sensor was out of order, thus the respective window remained closed all the time.
Therefore, the maximum number of opened windows is five in 2014 and four in
2015.

The distribution profiles according to the non-environmental parameters (month,
day of the week and hour of the day) and the initial statistics of these four groups
during the years 2014 and 2015 are displayed in Figure 8.2 and Figure 8.3, respec-
tively.
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Day of week profile of window opening
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Figure 8.2: Distribution profile of window opening of 2014 according
to the (a) Month, (b) Hour of the day and (c) Day of the week.(d)

Statistics for window opening categories.

Figure 8.2d shows that in 2014, for more than half of the time (55.68%), the status
of this group of windows is ‘ALL CLOSED’. This label is dominant during the
winter period (November –March). ‘MOSTLYCLOSED’ and ‘MOSTLYOPENED’
labels are quite equally distributed with 24% and 14%, respectively. The fourth
label ‘ALL OPENED’ accounts for just 6.3% of the total time and it appears only
in summer and the beginning of autumn (June – October) and during the working
time (9 a.m. – 6 p.m.) only. This is expected because “during the working time,
the occupants tend to open at least one window, and rarely open the full five
windows at the same time” (Ramalho et al., 2016).

The statistics for the window opening state according to the previous defined cate-
gories show in 2015 even a higher percentage (88.9%) of the "ALL CLOSED" label.
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Monthly profile of window opening of 2015 (Jan-Jun)
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The day of the week profile of opening window of 2015 (Jan-Jun)
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Figure 8.3: Statistic profile of 4 groups of window opening from Jan-
uary to June of 2015 according to (a) Temperature, (b) Specific hu-

midity (c) CO2 concentration and (d) PM concentration.

The "ALL OPENED" label is obtained only in June with 0.8% for the 6-month pe-
riod. The "ALL CLOSED" profile can be observed almost all the time from January
to April (Figure 8.3a). This is quite different in comparison with the distribution
profile of the year 2014 without an obvious reason.

Regarding the environmental parameters, Figure 8.4 presents the mean values
and the standard deviations of these variables according to the groups. Differ-
ences in the mean values of the outdoor temperature, specific humidity (indoors
and outdoors) and PM10 indoors can be observed for the four windows cate-
gories (Figures 8.4a, 8.4b and 8.4d). For these parameters, the higher the value, the
greater number of windows are opened. For indoor temperature and PM2.5 the
differences among groups are small. The indoor mean CO2 concentration keeps a
stable value among these four groups (Figure 8.4c). Given that the measurement
uncertainty is 50 ppm ± 3% for reading, the range of variation 480-520 ppm is
less than the uncertainty. So, one can consider that the CO2 value does not vary
significantly, which means that the office is "well ventilated".
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Figure 8.4: Statistics (mean and standard deviation) of (a) Tempera-
ture, (b) Specific humidity (c) CO2 concentration and (d) PM concen-

tration, for each opening label, from January to June 2015.

For the model implementation, different data sets are required: training, valida-
tion, testing, etc. We decided to divide the time series data into sets of 25 hours
and use the 20 first hours for training and validation, and the remaining 5 hours
for testing (ratio 80:20 – see Figure 8.5). The reason why we did not use the day
365th for training is that we need the windows status of this day to evaluate the
testing set of the 364th day (‘previous 24th hour’). In total, 6980 hours were used
for training.

A 10-fold Cross-Validation (CV) has been applied to the training dataset. The
purpose of Cross-Validation (CV) is to detect possible over-trained models with
high internal accuracy and low external prediction power (overfitting problem).
The diagram showing how the training dataset has been split for the 10-fold CV
method is displayed in Figure 8.6. The CV divides the training data into ten
groups. The model trains on 9 sets and is evaluated on the 10th set, not used
for training, during each iteration. To decrease variability, several CV iterations
should be used (normally 10 iterations in the case of 10-fold). The model’s perfor-
mance is evaluated using the average error over all iterations.

As the k-NN method can not deal with both numerical and categorical data at
the same time, quantitative data had to be recoded to generate qualitative (cat-
egorical) data. Numerical data were obtained from environmental parameters
monitoring; in order to be transformed into categorical data, the values of each
variable were divided into 10 groups (or categories) based on their percentiles in
order to equally represent the groups. The first 10 percentiles belong to the first
group, the data of percentiles from 11 to 20 belong to the second group, and so on.
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Figure 8.5: Figure explaining how the data has been split into train-
ing and testing sets (sets of every 25 hours).

Figure 8.6: The scheme for the 10-fold cross validation method.

8.2.2 Model’s parameterizations

The Classification Learner application of Matlab® was used for the model devel-
opment. The ’OptimizeHyperparameters’ option for ’all’ the input parameters
was used to obtain the best values for the hyperparameters of the models and
to avoid overfitting. This optimization attempts to minimize the cross-validation
loss (error) by varying the parameters. The summary of the obtained values of the
different hyperparameters for the three models are presented in Table 8.3.
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Table 8.3: Summary of the different hyperparameters for the three
models.

Algorithm Hyperparameter Value
Decision Tree Maximum number of Splits 4454

Split Criterion deviance
Minimum leaf size 1

k Nearest Neighbor Number of neighbor (k) 3
Distance metric function hamming
Standardize true

Kernel Approximation Kernel function polynomial
Polynomial Order 3
Standardize true

The other general parameters of the models are listed below:

• Number of data – training set: 6980 samples (80% data of 2014)

• Number of data – testing set:

– Testing set of 2014 (which will be called ’test set 2014’): 1745 samples
(the rest of 20% data of 2014)

– Testing set of 2015 (which will be called ’test set 2015’): 4345 samples
(data from January to June 2015)

• Data type: hourly averaged data

• Validation method: 10-fold cross validation

• Initial number of input variables: 16 variables as in Table 8.4:
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8.3 Results

In this section, some results concerning the decision boundary and the rank of the
importance scores of the predictors are firstly presented. Than, the performance of
different ML prediction models is explored. Finally, several evaluation methods
are provided, completed by a discussion in the last section of the chapter.

8.3.1 Decision boundaries
Understanding decision boundaries can provide us a visualization of how the
training data we choose influence our model’s performance and capacity to gen-
eralize. By observing the decision boundaries, one can see how sensitive models
are to each dataset, which is a great technique to understand about how various
algorithms perform, and their limits for specific datasets.

Figure 8.7 illustrates an example of decision boundary for the nearest neighbor
classification on the Iris dataset (Fisher, 1936). According to this figure, three Iris
species are classified based on the value of sepal length and width. For example,
if a sample’s sepal length is less than 4.5 cm, this sample is categorized to the red
color specie. Besides, if the sample’s sepal length is in the range of 5.0 and 6.5 cm,
the assigned specie group is then determined by the sepal width of the sample.

Figure 8.7: An example of decision boundary of nearest neighbor
classification on iris dataset (scipy lectures.org, 2022).

The results of the decision boundaries of the Decision Tree and k-NN classification
models based on the values of outdoor temperature and indoor specific humidity
in our dataset are displayed in Figure 8.8.
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Figure 8.8: Decision boundary for a window status prediction model
based on outdoor temperature and indoor specific humidity when

using (a) Decision Tree model or (b) k-NN model.

It is obvious that there are differences in boundaries between these two classifi-
cation methods. While Decision Tree uses straight lines to separate the window’s
states, the k-NN algorithm categorized the samples into different ‘dot groups’.
Both methods seem to be very sensitive since they have shown some extreme
classification probabilities that are influenced by single points.

Interestingly, the color zones of these two figures are somehow similar for the
‘ALL CLOSED’ class. For example, it is ‘ALL CLOSED’ when the temperature
outdoors is smaller than 16°C and the specific humidity indoors is smaller than
8.5 (g/kg), or, when the temperature outdoors is greater than 20°C and the specific
humidity indoors is greater than 12.5 (g/kg).

In fact, determining the exact boundary line to separate the four groups is quite
difficult. The state of window opening is determined by several factors, not just
by these two features (outdoor T and indoor Hs). In addition, the features does
not have the same influence on the classification. Some can effectively separate
all classes, while others might work with only a subset, and some might not be
helpful for class separation at all. In this case, an n-dimensional hyperplan is
needed to display the decision boundary.

8.3.2 Rank of the importance scores of predictors
Because input variables have a direct influence on the model predictive perfor-
mance, it is essential to determine which variables are the most important for
the model development. The input selection is based on the relevance of the dif-
ferent predictors by evaluating the relative contribution of a given input to the
performance of a particular model. This approach is called model-dependent and
the advantage of this method is that the input selection is strongly related to the
model performance, giving useful information for building predictive models.

Tree-based models have the advantage of being able to deal with massive vol-
umes of data and a wide range of features while being simple to comprehend.
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Therefore, in this study, a decision tree model was used to assess the predictor
importance for the different factors on the window opening status. Similar results
were obtained for the other two methods (k-NN and Kernel Approximation) and
will not be presented here.

The “predictorImportance” Matlab function computes the importance measures
of the predictors (model inputs) in a tree by summing changes in the node risk
due to the splits on every predictor, and then by dividing the calculated sum by
the total number of branch nodes (MathWorks, 2021). The change in the node risk
is the difference between the risk for the parent node and the total risk for the
two children. If a tree splits a parent node (for example, node 1 as in Figure 7.6)
into two child nodes (nodes 2 and 3 in Figure 7.6), then the “predictorImportance”
increases the importance of the split predictor by

(R1 � R2 � R3)/Nbranch (8.3)

where Ri is the node risk of node i, and Nbranch is the total number of branch
nodes. A node risk is defined as a node error or node impurity weighted by the
node probability:

Ri = PiEi (8.4)

where Pi is the node probability of node i, and Ei is either the node error (for
a tree grown by minimizing a non-impurity criterion such as the Mean Squared
Error (MSE) or the Twoing criterion) or the node impurity estimated via different
criteria such as Gini Impurity or Entropy (see section 7.2 for more details) of node
i.

• Node error—The node error is the fraction of misclassified classes at a node.
If j is the class with the largest number of training samples at a node, the
node error is

1� pj (8.5)

where pj is the probability of picking a data point from class j.

• The Twoing rule is not a purity measure of a node, but is a different measure
for deciding how to split a node. Let L(i) denote the fraction of the members
of class i in the left child node after a split, and R(i) denote the fraction of
members of class i in the right child node after a split. Choose the split
criterion to maximize

P(L)P(R)(Â
i
|L(i)� R(i)|)2 (8.6)

where P(L) and P(R) are the fractions of observations that split to the left and to
the right respectively. If the value is large, the split made each child node purer.
Similarly, if the value is small, the split made each child node similar to each other,
and therefore similar to the parent node. The split did not increase node purity.

Figure 8.9 shows the relative importance of the factors for the window opening
status prediction by using the Decision Tree model. Similar results were obtained
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for the other two methods (k-NN and Kernel Approximation) and will not be
presented here. This figure shows the relative significance of the categorical vari-
ables (month, day of the week, hour of the day, and the previous 24th hour win-
dows state), as well as the previous 24th hour value of the prevailing mean out-
door temperature outdoors (PMA). According to this observation, these param-
eters are the most important ones for this modeling. Surprisingly, an important
influencing factor - the outdoor temperature, has a small effect on the model’s
performance. This can be explained by the substantial impact of the specific hu-
midity and PMA, which are calculated using the outside temperature value as in
the equations (2.1) and (2.3). The rain condition and the status of occupancy show
very low importance. Based on this result, we decided to implement the models
without these two parameters (Rain and Occupancy). In conclusion, 14 parame-
ters were selected as inputs for our predicting models: Month, DoW, HoD, T_out,
T_in, Hs_out, Hs_in, CO2_in, PM2.5in, PM10in, Prv_Wd, PMA, WinD, Door.
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Figure 8.9: Predictors importance for predicting window opening
status for a Decision Tree with the input containing all the available
parameters. The Month, DoW and HoD correspond to the current
moment, all the other variables correspond to the previous 24th hour

(see table 8.4).

8.3.3 Performance of the window opening state model

Data monitoring starts on the 1st of January 2014 and ends on the 30th of June 2015
(13104 samples-hours). We have decided to use 80% of the data measured during
the year 2014 for the training and validation sets (6980 samples). The remained
data was divided into 2 sets for testing: (i) the rest of 20% of the data of the year
2014 (1745 samples) and (ii) data from January 2015 - June 2015 (4345 samples),
because we want to observe the different behaviors of the built model when it has
to deal with data of the same period (the same year 2014) and with data from a
completely new period (data of 2015).
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8.3.3.1 Performance of the Decision Tree classifier

Based on the results of the hyperparameters optimization presented in the Ta-
ble 8.3, a Decision Tree of 541 nodes (Tree Depth = 16) has been obtained after
using 80% data of the year 2014 for training and validation, with accuracies of
98.09% and 89.81%, respectively. Using this trained decision tree, we predicted
the testing set containing the rest of 20% of the 2014 data and then we compared
it to the monitored values. A value of 86.36% for accuracy (% of well-classified
data) was achieved for this test.

A confusion matrix of the Decision Tree method for this testing set is displayed
in Figure 8.10. The confusion matrix, usually known as an error matrix (Stehman,
1997), is a specific table that provides visualization of the performance of an al-
gorithm, most commonly in a supervised learning algorithm (in unsupervised
learning it is usually called a matching matrix). Each row of the matrix represents
samples from an actual class, whereas each column represents samples from a
predicted class. The name of this table is derived from the fact that it is simple to
determine whether the system is confusing two classes (i.e. commonly mislabel-
ing one as another).
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Figure 8.10: Confusion matrix of the Decision Tree classification for
test set including the remaining 20% of 2014 data.

As we can see from the Figure 8.10, the model has a tendency of mislabeling
one sample as a ’neighbor label’. The explanation for this could be that the en-
vironmental factors change gradually, the ’ALL OPENED’ and ’ALL CLOSED’
states are easily identifiable, but the ’ALL CLOSED’ and ’MOSTLY CLOSED’
ones can be ambiguous. The decision tree achieves 910 correct predictions and
misses 58 (31+24+3) when the true label is ’ALL CLOSED’; 31 samples were in-
correctly predicted being labeled as ’MOSTLY CLOSED’ state, 24 samples were
wrongly labeled as ’MOSTLY OPENED,’ and 3 samples were misclassified as
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’ALL OPENED.’ Similarly, when the true label is ’MOSTLY CLOSED,’ 345 sam-
ples are properly predicted whereas 61 are incorrectly classified (33+16+12). The
labels ’MOSTLY OPENED’ and ’ALL OPENED’ are accurately predicted in 186
and 66 examples, respectively.

Using the same trained Decision Tree classifier, the window status of the first 6
months from January to June, 2015 were predicted, and compared to the moni-
tored values. A value of 84.14% for accuracy was achieved.

The confusion matrix for this testing set (data of 2015) is displayed in Figure 8.11.
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Figure 8.11: Confusion matrix of the Decision Tree classification for
the test set including data from January to June, 2015.

Similar to the test set 2014, the true label ’ALL CLOSED’ has the highest number of
right predictions; in this casen the model successfully labeled 3346 samples and
mislabeled 517. The label ’MOSTLY CLOSED’ ranks second with 234 accurate
samples from 333 samples, and ’MOSTLY OPENED’ follows in the third position
with 68 correctly classified samples from 114 samples. Specifically, the model can
properly identify only 8 samples of the ’ALL OPENED’ label and misclassifies up
to 24 samples as ’MOSTLY OPENED’.

The more detailed evaluation of these confusion matrices will be discussed in the
subsection 8.3.4.

8.3.3.2 Performance of the kNN classifier

Regarding the k-NN classificationmodel, k=3was obtained after the hyperparam-
eters optimization (see Table 8.3). The achieved accuracies were 99% for training
and 92.3% for validation.

The confusionmatrix obtained on the test set 2014 is displayed in Figure 8.12. This
model obtained a value of overall acurracy of 86.53%. From the figure, the highest
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number of wrong classified belongs to the "MOSTLY OPENED" label, while 40
samples are wrongly predicted as "ALL OPENED". Similar to the Decision Tree
model, ‘ALL CLOSED’ label achieved the highest performance, 96.2% samples
of this label were correctly predicted (931 correct predictions from a total of 968
samples). The ‘MOSTLY CLOSED’ label got the second rank with 84.7% correctly
predicted samples (344 correct from a total of 406 samples). Finally, the ‘MOSTLY
OPENED’ and ‘ALL OPENED’ labels rank the last as they have only 66.2% and
56.8% correct predictions, respectively.
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Figure 8.12: Confusion matrix of the k-NN classification for the test
set including the remaining 20% of 2014 data.

Similarly, the confusion matrix for the same trained k-NN model applied for the
testing set 2015 data is represented in Figure 8.13. Same as the Decision Tree
model results for the test set 2015, one can observe that a significant number of
"ALL CLOSED" labels are misclassified as "MOSTLY CLOSED" (365 samples -
9.4%). Eventhough, “ALL CLOSED” label still achieved the highest number of
correct classifications (88.4% - 3414 correct predictions out of 3863 total samples).
The "MOSTLY CLOSED" and "MOSTLY OPENED" achieved the second and third
ranks with 46.2% and 32.5%, respectively. The ‘ALL OPENED’ label, again, got
the last position with only 5 correct predictions (14.3%).

8.3.3.3 Performance of the Kernel Approximation classifier

A polynomial kernel function of order 3 has been obtained after the hyperparam-
eter optimization. In comparison with the two other classification models, when
using the Kernel Approximation classifier, the training accuracy results were even
lower: only 81.7% for training and 80.6% for validation.

The confusion matrices for Kernel Approximation classifications for the years
2014 and 2015 are displayed in Figure 8.14 and Figure 8.15, respectively. While the
accuracywas only 79.3% for the test set 2014, this method achieved up to 92.9% for
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Figure 8.13: Confusion matrix of the k-NN classification for the test
set including data from January to June, 2015.

the test set 2015. Similar to the two other models, this model also has a tendency
of mislabeling one sample as a ’neighbor label’. According to the Figure 8.14, Ker-
nel Approximation misclassified the ’MOSTLY CLOSED’ as ’MOSTLY OPENED’
quite a lot (60 samples) and vice-versa (58 samples). For the testing set of 2015, the
samemistake wasmadewhen 75 samples weremislabeled as ’MOSTLYCLOSED’
and up to 82 samples were wrongly classified as ’MOSTLY CLOSED’ instead of
’ALL CLOSED’.

It is interesting to note that the Kernel Approximation method has a different rank
of correct predictions among labels in comparison with the two other models for
the test set 2015. For the test set 2015, the true label ’ALL CLOSED’ still has the
highest number of right predictions (97.3%), however, the ’MOSTLY OPENED’
(42.9%) and ’MOSTLY CLOSED’ (36%) labels switched their ranks as second and
third, respectively. The ’ALL OPENED’ label, again, is in the last position.

Specifically, this method has the highest correct predictions for the label "ALL
OPENED" for the test set 2015 with 15 samples on a total of 35.
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Figure 8.14: Confusion matrix of the Kernel Approximation classifi-
cation for the test set including the remaining 20% of 2014 data.
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Figure 8.15: Confusion matrix of the Kernel Approximation classifi-
cation for the test set including data from January to June, 2015.

8.3.3.4 Accuracy statistics for the Decision Tree model

For a deeper analysis of the results, it is necessary to explore the detailed statistics
of the accuracy according to the day of the week, the hour of the day, and the
month. We decided to present in this subsection only the results obtained for the
Decision Tree model because for the other two models, they keep the same global
trend.
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The statistics for each month of the test set 2014 are showed in the Figure 8.16.
The highest accuracies were obtained when predicting the windows state for the
winter season (October – February, more than 90%). This is expectable because the
windows are mainly closed during this time. Besides, the lower accuracy values
correspond to the months of the summer season (June – September, around 70%,
except for August 79% - the month of vacation), which mostly contains the labels
’ALL OPENED’ and ’MOSTLY OPENED’.

Figure 8.16: The statistics for Decision Tree Models accuracy of each
month in the testing set including data of 2014.

Similarly, Figure 8.17 presents the statistics of the same classification model ac-
cording to each month for the testing set of 2015. Once again, the winter period
(January – February) has achieved the highest value of accuracy (more than 92%).
Especially, the month of May obtained a quite high accuracy with up to 95%; this
could be explained by the fact that May is the month with many holidays, thus
not many people were in the office, and the windows were mainly closed. The
lowest accuracy is obtained for the month of June (summer season) with value of
only 59%.
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Figure 8.17: The statistics for Decision Tree Models accuracy of each
month in the testing set including data from January to June, 2015.

Regarding the statistics according to the day of the week, Figure 8.18 shows the
detailed accuracy for each day of the week for the two sets of testing data. One
can notice that the overall trend of the accuracy is similar for the two datasets:
the lower accuracy values were obtained for the working days (Monday to Fri-
day) while the highest ones were achieved when predicting the windows state
for Saturday (more than 97%). Interestingly, the lowest values of accuracy (80%)
was obtained for Sunday for the data of 2014; meanwhile, for the data of 2015,
the lowest values of accuracy were obtained for Tuesday and for Thursday (only
79%).
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(a)

(b)

Figure 8.18: The statistics for the Decision Tree accuracy according to
each day of the week for the testing set including: (a) data of 2014

and (b) data from January to June, 2015.
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Figure 8.19: The statistics for Decision TreeModels accuracy for each
month in the testing set including data from Jan-June of 2015.

According to the Figure 8.19, the highest accuracies are achieved when predicting
the windows state for night-time periods (8 p.m. – 7 a.m., more than 88% except-
ing at 11 p.m. when maybe the guard round took place). In contrast, the lowest
accuracy values correspond to the lunch-time periods (12 a.m.– 2 p.m. around
76%) and the ‘office leaving’ hour (5 p.m. - 73%). In all these periods, there are
more changes in the status of the windows and they mostly contain the labels
‘ALL OPENED’ and ‘MOSTLY OPENED’.
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Figure 8.20: The statistics for Decision Tree Models accuracy accord-
ing to each hour of the day for the testing set of data from January to

June, 2015.

Similar to the testing set of 2014, the highest values of accuracy (around 88%) were
obtained during the night-time periods (10 p.m. – 7 a.m.). Meanwhile, the lowest
accuracy values correspond to day-time periods (9 a.m.–6 p.m.). According to the
hour of the day, the prediction accuracy at 5 p.m. is still the lowest (75%), probably
because it corresponds to the “office leaving” hour. Some people tend to close the
windows before leaving while others leave them opened.

8.3.4 Evaluation
Firstly, some definitions of ML terminology for evaluating the model’s perfor-
mance are introduced in the Figure 8.21. A true positive outcome is obtained
when the model correctly predicts the positive class (predicts 1 when the actual
class is 1). Similarly, a true negative is a result in which the model correctly pre-
dicts the negative class (predicts 0 when the actual class is 0). In contrast, a false
positive is an outcomewhere themodel incorrectly predicts the positive class (pre-
dicts 1 when the actual class is 0). Finally, a false negative is an outcome in which
the model predicts the negative class incorrectly (predicts 0 when the actual class
is 1).
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Figure 8.21: Definition of ML terms for evaluation the model’s per-
formance.

The quality of a classifier can be evaluated by equations 8.7 - 8.10, which introduce
four perfomance indicators based on the True Positive (TP), True Negative (TN),
False Positive (FP) and False Negative (FN).

While the Accuracy can be used to evaluate themodel’s percentage of well-classified
data, Recall and Precision are two other important indicators to evaluate the per-
formance of classification. The value of accuracy is calculated as given in the
equation 8.7:

Accuracy = (TP+ TN)/(TP+ FP+ TN + FN) (8.7)

Recall is also denoted as sensitivity and it is the fraction of relevant instances that
have been retrieved over the total amount of relevant instances.

Sensitivity(Recall) = TP/(TP+ FN) (8.8)

Precision is also known as positive predictive value and has been defined as the
fraction of relevant instances among the retrieved instances.

Precision(Frate) = TP/(TP+ FP) (8.9)

Equations 8.8 and 8.9 were then used to calculate both Recall and Precision in
this study. The F1-coefficient has been used for evaluating the model’s predictive
performance by combining the results from both Recall and Precision:

F1 = 2(Recall)(Precision)/(Recall + Precision) (8.10)

Table 8.5 summarises the general accuracy values of the three methods: Decision
Tree, k-NN and Kernel approximation, when predicting the test set 2014 and the
test set 2015. When using Decision Tree and k-NN almost the same performance
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has been achieved for the two testing sets, an accuracy value around 84%. A
significantly higher accuracy when predicting the data of 2015 was obtained by
means of the Kernel Approximation (around 93%). The fact that Kernel Approxi-
mation model’s accuracy when predicting the test set 2014 is lower than predict-
ing the test set 2015 (79% versus 93%) can be explained by the particular distribu-
tion of labels in 2015 and by the high perfomance of this method for separation in
the case of nonlinear problems.

Table 8.5: Overall accuracy for the three models

Algorithm Test set 2014 Test set 2015
Decision Tree 86.36% 84.14%
k-Nearest Neighbor 86.53% 83.08%
Kernel Approximation 79.30% 92.90%

Figure 8.22 presents the calculated Recall (Sensitivity) values for each state of win-
dow opening. For the test set 2014, one can notice that the three models give quite
similar results, slightly lower for the Kernel Approximation method. While the
highest Recall value is obtained when predicting the ’ALL CLOSED’ state of the
group of windows (⇡ 90%), the lowest value corresponds to the ’ALL OPENED’
label (⇡ 60%). Similarly, for the test set 2015, the highest Recall value is still ob-
tained when predicting the ’ALL CLOSED’ label (90%) while the lowest belongs
to the ’ALL OPENED’ label (excepting the Recall value obtained by the Kernel
Approximation method for test set 2015, where the lowest value corresponds to
the ’MOSTLY OPENED’ label).

Figure 8.22: Recall values of the three classificationmodels: Decision
Tree, k-NN and Kernel approximation. The Recal values correspond-
ing to the testing data from January to June 2015 are displayed on a

grey background.

Figure 8.23 and Figure 8.24 present the Precision values and the F1 scores, respec-
tively. The same situation is obtained for both testing sets. While the highest
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values are obtained when predicting the ’ALL CLOSED’ state, the lowest val-
ues correspond to the ’ALL OPENED’ label (excepting the Precision value ob-
tained by the Kernel Approximationmethod for the test set 2014, where the lowest
value correspond to the ’MOSTLY OPENED’ label). For the test set 2015, regard-
ing the Precision values, an even lower value of 5.4% is observed for the ’ALL
OPENED’ label, when using the k-NN model. The reason for which the model’s
accuracy when predicting the ’ALL OPENED’ label was much lower than for the
’ALL CLOSED’ label is the particular distribution of labels during the two years.
The windows are mainly ’ALL CLOSED’ and this label is "well learned" by the
model. Window opening models are often biased towards the over-represented
class where windows remained closed (Markovic et al., 2018).

Figure 8.23: Precision values of the three classification models: De-
cision Tree, k-NN and Kernel approximation. The Precision values
corresponding to the testing data from January to June 2015 are dis-

played on a grey background.
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Figure 8.24: F1 values of the three classification models: Decision
Tree, k-NN and Kernel approximation. The F1 values corresponding
to the testing data from January to June 2015 are displayed on a grey

background.

It is interesting to note that, the Accuracy gives an overall result without infor-
mation about a specific label. Meanwhile, in the case of the Recall and Precision
indicators, a detailed accuracy is obtained for each label, in different perspectives:
Precision - How many predicted samples of this label are correct? Recall - How
many samples of this label are correctly predicted? From the Figure 8.22, one can
observe the significant differences for the Recall values when using the Kernel
Approximation for ’ALL OPENED’ label (significantly more performant) and in
the case of the Decision Tree for the ’MOSTLY OPENED’ label, both of them on
the test set 2015. Similarly, Figure 8.23 reveals the high differences in Precision
values for the ’MOSTLY OPENED’ and ’MOSTLY CLOSED’ label for the test set
2015 when using the Kernel Approximation. However, when the F1 values were
calculated, these differences were smaller.

Overall, the Decision Treemethod appears to be the best classificationmodel, with
the best balance of Recall, Precision and F1 values regarding the four labels. Ker-
nel Approximation occasionally achieved the highest evaluation values (partic-
ularly for the test set 2015 for ’ALL CLOSED’ and ’ALL OPENED’ labels). This
can be explained by its high perfomance in separation in the case of nonlinear
problems. However, the overall accuracy for the test set 2014 of this method is
slightly lower in comparison with the two other methods. In addition, Decision
Tree also provides the list of classification rules (export in .txt file), which can eas-
ily be used to apply for new data. Regarding the k-NN model, the low values of
these evaluation indicators could be explained by the fact that this method has
been applied on categorical data for all the parameters, by contrast to the other
methods, which allow the both types of inputs (numerical and categorical). This
decoding operation probably leads to a loss of information.
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8.3.5 Conclusion and Dicussion
In conclusion, in this study, we have obtained three ML classification models to
predict the opening state for a group of windows in an open-plan office. To select
the appropriate set of features, the ACF values and predictor importance esti-
mates were calculated. In our case, the most pertinent inputs were: the previous
24th hour state of the windows (which can be related to the personal preferences
of the occupants), the day of the week, the month, the hour of the day (which can
be related to the occupancy and the personal preferences) and the previous 24th
hour of the prevailing mean outdoor air temperature (outdoor environment con-
dition). The models were then established by using these important parameters
completed with the ‘previous 24th hour’ of the following variables: the wind di-
rection, entrance door status, indoor CO2 and particle matter (PM2.5 and PM10)
concentrations, as well as both indoor and outdoor temperatures and specific hu-
midity. Validation tests have been used to compare the outputs of the models and
the measured windows states obtained in the years 2014 and 2015 in the open-
plan office. According to the different evaluation indicators, the results show that
all the three models perform well with the testing sets.

In the future, we can improve the over-represented ’ALL CLOSED’ label by re-
sampling in order to have an unbiased data set or by providing different weights
for each label to penalize misclassification. In addition, with an algorithm that
combines multiple trees and control for bias or variance, like Random Forests (Ho,
2016) or Gradient boosted trees (Natekin andKnoll, 2013), the Decision Treemodel
could have a better performance. For the k-NNmodel, an efficient method to deal
with both the numerical and categorical data in order to avoid the loss of infor-
mation needs to be further investigated. Furthemore, the high performance of the
Kernel Approximation approach - a good nonlinear separator, is also noteworthy.

We could then use one of the three developed models as a standalone, or as a part
of a real-time IAQ monitoring system, in order to optimize the action to be taken
to reduce the exposure of the occupants.
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Conclusions and Future Works

After the first chapter introducing some generalities on IAQ and the second one
presenting the case study and the database, the main results, contributions and
some corresponding possible extensions of the thesis are summarized as follows.

Conclusions
The global objective of our research was to develop a system providing infor-
mation about pollutant sources and events influencing the temporal variation of
indoor air pollutants, helping to optimize the action to be taken to reduce the ex-
posure of the occupants. The study conducted in this thesis had a dual purpose.
The first objective concerns the determination of some factors to understand and
analyze the structures of temporal variability of particle matter concentrations in
the indoor air of the studied open-plan, the variability of their sources, as well as
the source contributions. The second part of this thesis aimed to develop a pre-
dictive model for IAQ management, in particular, a model to predict the opening
state of a group of windows in the same open-plan office.

For the first objective, concerning the sources identification, a tensor decomposi-
tion method named PARAFAC has been chosen among the different BSS methods
as it can produce an unique output by contrast with the other ones and it allows
also to easily expand the complexity of the input data by using multi-dimensional
structures. In addition, the particularity of this method (PARAFAC) is that in-
door and outdoor particles of given sizes can be considered in parallel layers and
not as different variables of the same layer (matrix-based methods such as PMF),
corresponding better to the reality. By using different combinations of different
parameters, structures were generated and they allowed to determine the rela-
tive contribution of the office occupants and their activities and of the outdoor
sources to the indoor concentration of particles, which is a topic of utmost interest
in Indoor Air Quality studies nowadays.

For the purpose of prediction of the opening state for a group of windows in
an open-plan office, three machine learning classification methods permitted to
obtain good results. Validation tests have been used to compare the outputs of the
models and themeasuredwindows states obtained during 18months in the open-
plan office. According to the different evaluation indicators, the three models
performedwell with the testing sets. Thesemodels can be considered as one of the
first models to be included in more complex exploration on prediction models of
IAQ in order to improve it; meanwhile it is already possible to use them as a new
function of a sensor or for the anticipation of opening/ventilation management.
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• Source identification of indoor pollutants

This part of the thesis focuses on the identification of air pollutant sources
of an open-plan office and assessing their relative contribution. The target
pollutant studied in this work was the particulate matter, because it causes
many health effects (and because of its complicated chemical composition
makes it more difficult to estimate the concentration and contribution of
their sources). Our study chalenges to reveal the underlying factors that
affect the temporal variation of particle matter.

An important contribution of this thesis is the use of BSSmethods for search-
ing for pollution sources, where the original information does not concern a
chemical speciation, but a size-resolved information about the airborne par-
ticles. Using the PARAFACmethod has specific advantages like the unique-
ness of the solution and the possibility to create multi-dimensional data stru-
tures. For example, the same fractions of particulate matter indoors and out-
doors can be considered in parallel layers. Different strutures of variables
consisting in 3D or 4D array layers could be built and factorized in order to
obtain source profiles and their contributions.

The major sources revealed by this decomposition are: (i) human presence
and the related activities indoors, contributing to about 25-30% of the global
level of indoor particles and concerning mostly coarse particles (4.5-20 µm);
(ii) outdoor air pollution coming by infiltration natural or mechanical venti-
lation, contributing to about 40% of the global level of indoor air particles,
and concerning mostly fine particles (0.35-1.3 µm), which are the product of
different combustion processes like traffic, industry, heating, etc. In order to
identify these factors, complementary statistics analysis has been performed
(e.g. PCA) or signal treatment (e.g. ACF)

One of the drawback of PARAFAC is that other sources probably with a mi-
nor effect, could not be retrieved, as in the case of the 2D-arraymethods such
as PMF, NMF, PCA, etc. A combined study using on the one hand tensors de-
composition and on the other hand matrix factorization could be conducted
in order to reveal the most robust, major sources (given by PARAFAC) and
to complete with additional, minor sources given by methods such as PMF.

Although climatic parameters indoors and outdoors were available, the re-
sults obtained including them in the analysis seemed to be, for the moment,
difficult to be interpreted. Further reflection should be considered in order
to be able to take into account the potential of the information given by all
the other factors, especially climatic.

• Window prediction for the opening state of the windows

The opening state of the windows has an important influence on IAQ, as it
can modify the air exchange rate and as such the transfer between indoor
and outdoor environments. In this second part of the thesis, we tried to
model the windows opening state in the same real open-plan office with
five windows. The three ML models: Decision Tree, k-NN and Kernel Ap-
proximation have been implemented.
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The ACF values and predictor importance estimates were calculated to se-
lect the appropriate set of input features. In our case, the most pertinent
inputs were: the previous 24th hour state of the windows (which can be re-
lated to the personal preferences of the occupants), the day of the week, the
month, the hour of the day (which can be related to the occupancy and the
personal preferences) and the previous 24th hour of the prevailing mean out-
door air temperature (outdoor environment condition). The models were
then established by using these important parameters completed with the
‘previous 24th hour’ of the following variables: the wind direction, entrance
door status, indoor CO2 and particle matter (PM2.5 and PM10) concentra-
tions, as well as both indoor and outdoor temperatures and specific humid-
ity. Validation tests have been used to compare the outputs of the models
and the measured windows states during 18 months in the open-plan of-
fice. According to the different evaluation indicators, the results show that
all three models perform well with the testing sets.

Future Works
There are still numerous unresolved difficulties and undiscovered leads that raise
fascinating research prospects and possible enhancements to source identification
techniques, their contributions, and, especially, our prediction methods. Indeed,
while this thesis aims to provide basic improvements in our knowledge of the
variability of IAQ, it is far from presenting a comprehensive solution to all diffi-
culties related to the indoor environment.

In this section, we provide some perspectives on the work have been done during
this thesis.

• The questions concerning source identification.

The source separation techniques (PARAFAC) discussed in this manuscript
have provided enriching feedback. This type of model would make it pos-
sible to answer the fundamental question about multi-exposure to microen-
vironmental contaminants of indoor air quality. From this study, several
perspectives on this work can be envisaged. On the theoretical level, an
open problem is that of estimating the number of sources. So, a fundamental
question is to study if the estimate of the source number is a "demonstrable"
problem; if yes determine an algorithm to estimate it.

Regarding the amount of information and the complexity of the data, the
active instrumentation of the open-plan office during about three years of
measurement generated a very considerable flow of information, thus ex-
ceeding 5 million (or even more) samples. This information continues to
flow into existing databases and is now very bulky. The question of the time
step plays a very important role, both at the theoretical and practical levels,
then "how far to go in the temporal scale"?

This questionmay not seem to be of prime importance. However, it remains,
in our eyes very intriguing, because it is the choice of the class of models to
use in the forecasting stage. So, the time step and the "mass" of available
data raise a question of statistical methodology.
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So, do we just have to borrow the methods already applied in the other
domains and transpose them to the current databases, or it is necessary to
build the specific models according to the characteristics of the data related
to the IAQ?

In terms of the processing of real data, an interesting study to be carried out
concerns the processing of time series resulting from the analysis of several
environments, so a spatial dimension is added to both temporal and indi-
vidual dimensions. The question of data fusion is immediate.

Finally, it would be interesting to create an automation process for sources
separation and identifications. This can be used for a real-time monitoring
system in the future.

• Prediction of forecast models.

In the future, we can improve the over-represented ’ALL CLOSED’ label by
resampling it in order to have an unbiased data set or by providing differ-
ent weights for each label to penalize misclassification. In addition, with an
algorithm that combines multiple trees and control for bias or variance, like
Random Forests or Gradient boosted trees, the Decision Tree model could
have a better performance. For the k-NN model, an efficient method to deal
with both the numerical and categorical data in order to avoid the loss of
information needs to be further investigated. Furthermore, the high perfor-
mance of Kernel Approximation approach - a good nonlinear separator, is
also noteworthy.

Regarding the study case, it would be interesting to explore other indoor
environments (dwellings, schools, private rooms, etc.). In addition, a deepen
knowledge about the temporal structure of data is need in order to help
choosing potential input parameters. For the data validation and predicting,
an automation process should be studied in the future.

We could then use one of the three developed models as a standalone, or as
a part of a real-time IAQ monitoring system, in order to optimize the action
to be taken to reduce the exposure of the occupants.
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APPENDIX

PN time profiles

This appendix present different time profiles for each size fraction monitored in-
doors. Figure A.1 illustrates the wekkly profiles for the 15 fractions measured
indoors during 2014: the yearly averaged for each day of the week (and its stan-
dard deviation).

Similarly, Figure A.2 illustrates the hourly profiles for the 15 fractions measured
indoors during 2014: the yearly averaged for each hour of the day (and its stan-
dard deviation).

The monthly profiles for the 15 fractions monitored indoors during 2014 are pre-
sented in the Figure A.3.

In the Figure A.4 - Figure A.6, the same profiles are plotted, but making the dif-
ference when the office is occupied or non-occupied, while the Figure A.7 - Fig-
ure A.9 correspond to two cases concerning the windows status.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A.1: Yearly averaged number concentration for the 15 PN
fractions monitored indoors during 2014, according to the day of the

week (to be continued).
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Figure A.1: Yearly averaged number concentration for the 15 PN
fractions monitored indoors during 2014, according to the day of the

week (continued).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A.2: Yearly averaged number concentration for the 15 PN
fractions monitored indoors during 2014, according to the hour of

the day (to be continued).
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Figure A.2: Yearly averaged number concentration for the 15 PN
fractions monitored indoors during 2014, according to the hour of

the day (continued).
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(c) (d)

(e) (f)

(g) (h)

Figure A.3: Yearly averaged number concentration for the 15 PN
fractions monitored indoors during 2014, according to the month (to

be continued).
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Figure A.3: Yearly averaged number concentration for the 15 PN
fractions monitored indoors during 2014, according to the month

(continued).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A.4: Yearly averaged number concentration for the 15 PN
fractions monitored indoors during 2014, according to the day of the
week in two cases: the office is occupied or non-occupied (to be con-

tinue).
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Figure A.4: Yearly averaged number concentration for the 15 PN
fractions monitored indoors during 2014, according to the day of the
week in two cases: the office is occupied or non-occupied (contin-

ued).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A.5: Yearly averaged number concentration for the 15 PN
fractions monitored indoors during 2014, according to the hour of
the day in two cases: the office is occupied or non-occupied (to be

continue).
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Figure A.5: Yearly averaged number concentration for the 15 PN
fractionsmonitored indoors during 2014, according to the hour of the
day in two cases: the office is occupied or non-occupied (continued).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A.6: Yearly averaged number concentration for the 15 PN
fractions monitored indoors during 2014, according to the month in
two cases: the office is occupied or non-occupied (to be continue).
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Figure A.6: Yearly averaged number concentration for the 15 PN
fractions monitored indoors during 2014, according to the month in

two cases: the office is occupied or non-occupied (continued).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A.7: Yearly averaged number concentration for the 15 PN
fractions monitored indoors during 2014, according to the day of the
week in two cases: when the windows are opened (at least 1 window

is opened) or closed (to be continue).
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Figure A.7: Yearly averaged number concentration for the 15 PN
fractions monitored indoors during 2014, according to the day of the
week in two cases: when the windows are opened (at least 1 window

is opened) or closed (continued).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A.8: Yearly averaged number concentration for the 15 PN
fractionsmonitored indoors during 2014, according to the hour of the
day in two cases: when the windows are opened (at least 1 window

is opened) or closed (to be continue).
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Figure A.8: Yearly averaged number concentration for the 15 PN
fractionsmonitored indoors during 2014, according to the hour of the
day in two cases: when the windows are opened (at least 1 window

is opened) or closed (continued).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A.9: Yearly averaged number concentration for the 15 PN
fractions monitored indoors during 2014, according to the month
in two cases: when the windows are opened (at least 1 window is

opened) or closed (to be continue).
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Figure A.9: Yearly averaged number concentration for the 15 PN
fractions monitored indoors during 2014, according to the month
in two cases: when the windows are opened (at least 1 window is

opened) or closed (continued).
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Wallace, L., H. Mitchell, G. OĆonnor, L. Neas, M. Lippmann, Meyer Kattan, Jane
Koenig, James Stout, Ben Vaughn, DennisWallace,MichelleWalter, KenAdams,
and Lee-Jane Liu (2003), “Particle Concentrations in Inner-City Homes of Chil-
dren with Asthma: The Effect of Smoking, Cooking, and Outdoor Pollution”,
Environmental health perspectives, 111 (Aug. 2003), pp. 1265-1272, DOI: 10.1289/
ehp.6135.

Wallace, L. A., S. J. Emmerich, and C. Howard-Reed (2004), “Source Strengths of
Ultrafine and Fine Particles Due to Cooking with a Gas Stove”, Environmental
Science & Technology, 38, 8, PMID: 15116834, pp. 2304-2311, DOI: 10.1021/
es0306260.

Wei, W., O. Ramalho, L. Malingre, S. Sivanantham, J. C. Little, and C. Mandin
(2019), “Machine learning and statistical models for predicting indoor air qual-
ity”, Indoor Air, 29, 5, pp. 704-726, DOI: 10.1111/ina.12580.

Welsh, M. and S. Begg (2016), “What have we learned Insights from a decade of
bias research”, The APPEA Journal, pp. 435-450.

Wensing, M, G. Pinz, M Bednarek, T. Schripp, E Uhde, and T. Salthammer (2006),
“ParticleMeasurement of HardcopyDevices”, Proc Int Conf Healthy Build, 2 (Jan.
2006), pp. 4-8.

WHO-Europe (2000), Air quality guidelines for Europe, tech. rep.
Williams, C. and M. Seeger (2001), “Using the Nystr�om method to speed up ker-
nel machines”, Advances in Neural Information Processing Systems, 682–688.

Willis, R.D. (2000), Final Report, vol. 5. Workshop on UNMIX and PMF as Applied to
PM2.5. Tech. rep., U.S EPA.

Wolff, M. (2003), “Apports de l’analyse géométrique des données pour la mod-
élisation de l’activité”, in Formalismes de modélisation pour l’analyse du travail et
l’ergonomie, Presses Universitaires de France.

Wolkoff, P. (2013), “Indoor air pollutants in office environments: Assessment of
comfort, health, and performance”, International Journal of Hygiene and Environ-
mental Health, 216 (July 2013), pp. 371-394, DOI: 10.1016/j.ijheh.2012.
08.001.

Wolkoff, P. and G. Nielsen (2010), “Non-cancer effects of formaldehyde and rel-
evance for setting an indoor air guideline”, Environment International, 36 (Oct.
2010), pp. 788-799, DOI: 10.1016/j.envint.2010.05.012.

Yakovleva, E., P. K. Hopke, and L. Wallace (1999), “Receptor Modeling Assess-
ment of Particle Total Exposure Assessment Methodology Data”, Environmental
Science & Technology, 33, 20, pp. 3645-3652, DOI: 10.1021/es981122i.

https://doi.org/10.1006/enrs.1997.3764
https://doi.org/10.1006/enrs.1997.3764
https://doi.org/10.1002/9780470060230.ch10
https://doi.org/10.1289/ehp.6135
https://doi.org/10.1289/ehp.6135
https://doi.org/10.1021/es0306260
https://doi.org/10.1021/es0306260
https://doi.org/10.1111/ina.12580
https://doi.org/10.1016/j.ijheh.2012.08.001
https://doi.org/10.1016/j.ijheh.2012.08.001
https://doi.org/10.1016/j.envint.2010.05.012
https://doi.org/10.1021/es981122i


Bibliography 209

Yao, M. and B. Zhao (2017), “Window opening behavior of occupants in residen-
tial buildings in Beijing”, Building and Environment, 124, pp. 441-449.

Yi, T., B. Pratim, E. Sotiris, and J. Jin (1990), “Receptor Modeling for Contaminant
Particle Source Apportionment in Clean Rooms”, Aerosol Science and Technology,
12, 4, pp. 805-812, DOI: 10.1080/02786829008959394.

Yu, Y., K. Diamantaras, T. McKelvey, and S.Y. Kung (2018), “Chapter 6 - Ker-
nel Subspace Learning for Pattern Classification”, in Adaptive Learning Methods
for Nonlinear System Modeling, ed. by Danilo Comminiello Príncipe and Jos C.,
Butterworth-Heinemann, pp. 127-147.

Zdunek, R. and A. Cichocki (2007), “Nonnegative matrix factorization with con-
strained second-order optimization”, Signal Processing, 87 (Aug. 2007), pp. 1904-
1916, DOI: 10.1016/j.sigpro.2007.01.024.

Zeghnoun, A., F. Dor, and A. Grégoire (2010), Description du budget espace temps
et estimation de l’exposition de la population française dans son logement. Tech. rep.,
Institut de veille sanitaire, Observatoire de la qualit de l’air intrieur.

Zhang, L., R. Lunn, G. Jahnke, D. Spencer, G. S, S. Atwood, Carter G, Ewens A,
Greenwood D, Ratcliffe J, Desrosiers T, Haseman J, Jameson CW, Darden E,
Saunders T, Riojas JC, Susan Dakin, McMartin KE, Akbar-Khanzadeh F, and
Elmore SA (2010), Final Report on Carcinogens Background Document for Formalde-
hyde, tech. rep.

Zhang, M., S. Zhang, G. Feng, H. Su, F. Zhu, M.g Ren, and Z. Cai (2017), “Indoor
airborne particle sources and outdoor haze days effect in urban office areas in
Guangzhou”, Environmental Research, 154, pp. 60-65, ISSN: 0013-9351, DOI: 10.
1016/j.envres.2016.12.021.

Zhao, S., Y. Yu, D. Yin, and J. He (2017), “Effective Density of Submicron Aerosol
Particles in a Typical Valley City, Western China”, Aerosol and Air Quality Re-
search, 17 (Jan. 2017), 1–13, DOI: 10.4209/aaqr.2015.11.0641.

Zhao, W., P. K. Hopke, E. W. Gelfand, and N. Rabinovitch (2007), “Use of an ex-
panded receptor model for personal exposure analysis in schoolchildren with
asthma”, English, Atmospheric Environment, 41, 19, pp. 4084-4096, DOI: 10.101
6/j.atmosenv.2007.01.037.

Zhao, Y., R. Qiu, X. Zhao, and B. Wang (2016), “Speech enhancement method
based on low-rank approximation in a reproducing kernel Hilbert space”, Ap-
plied Acoustics, 112, pp. 79-83, ISSN: 0003-682X, DOI: 10.1016/j.apacoust.
2016.05.008.

https://doi.org/10.1080/02786829008959394
https://doi.org/10.1016/j.sigpro.2007.01.024
https://doi.org/10.1016/j.envres.2016.12.021
https://doi.org/10.1016/j.envres.2016.12.021
https://doi.org/10.4209/aaqr.2015.11.0641
https://doi.org/10.1016/j.atmosenv.2007.01.037
https://doi.org/10.1016/j.atmosenv.2007.01.037
https://doi.org/10.1016/j.apacoust.2016.05.008
https://doi.org/10.1016/j.apacoust.2016.05.008

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Abbreviations
	Indoor Air Quality
	General information on Indoor Air Quality
	Definitions related to Indor Air Quality
	Specificities of indoor environments
	Factors influencing Indoor Air Quality

	Indoor air pollution
	Significant pollutants of an indoor environment
	Indoor Particulate Matter
	Sources of particles
	Indoor particle concentrations variability

	Sources of indoor air pollution in the case of office environments
	Impact of indoor air pollution

	Modeling of Indoor Air Quality

	Study Case and Data Presentation
	The open-plan environments
	Case study database
	Pollution and climatic data
	Measurement of Particulate Matter
	Measurement of CO2

	The state of occupation and windows and door opening

	Data Description
	Simple statistics
	Pollution and climatic parameters
	The state of occupation and opening of the windows

	Autocorrelation Function
	Remarks


	I Source identification of indoor pollutants
	Blind source separation techniques
	Generalities on Blind Source Separation (BSS)
	Source separation in the environmental field
	The most common source separation models
	Principal Component Analysis
	Chemical mass balance
	Positive Matrix Factorisation
	Nonnegative Matrix Factorization
	PARAFAC

	Application of source separation methods in environmental sciences
	Outdoors
	Indoors


	Discussion

	Tensor Decomposition method – PARAFAC
	Data pre-processing for PARAFAC
	Source profiles and contributions
	PARAFAC Implementation
	Input data
	Implementation


	Different data cases: Implementation, Results and Discussion
	Indoor data
	Case 1: Only particulate matter data 
	Case 2: All indoor data

	Both Indoor and Outdoor data
	Case 3: Only particle matter data
	Case 4: All indoor and outdoor data

	Conclusion and Discussion 


	II Forecasting of the window opening state
	Modeling of the windows opening state in the literature
	Description of the selected models
	k- Nearest Neighbor Classification
	The k-NN algorithm 
	Choosing the most adapted value for k

	Decision Tree
	A tree that makes decisions 
	Decision Tree’s advantages

	Kernel Approximation
	Kernel-based method
	Kernel Approximation and its advantages


	Models Implementation, Results and Discussion
	Parameters selection
	Classification model Implementation
	Data pre-processing
	Model's parameterizations

	Results
	Decision boundaries
	Rank of the importance scores of predictors
	Performance of the window opening state model
	Performance of the Decision Tree classifier
	Performance of the kNN classifier
	Performance of the Kernel Approximation classifier 
	Accuracy statistics for the Decision Tree model

	Evaluation
	Conclusion and Dicussion


	Bibliography


