1.1 Relationship between information theory and quantum mechanics [1]. . . . . . . . . . . 1.2 (a) Superconducting qubits model. X designs Josephson junction. The capacitance C includes a contribution from the junction itself. (b)-(e) Graphs of superconducting qubits with micro meter scale. The circuits are made of Al films. The Josephson junctions consist of Al 2 O 3 tunnel barrier between two layers of Al. (b) Charge qubit, or a Cooper pair box. (c) Transmon, a derivative of charge qubit. The Josephson junction in the middle is not visible in this scale. (d) Flux qubit. (e) Phase qubit. From ref. [2] . . . . . . . . . . . . . . 1.3 Schematic of ion trap qubit. Electric potentials are applied by electrodes to confine a 1-D crystal of individual atomic ions. Laser is used to entangle the internal levels of qubit. Resonant lasers can also cause spin-dependent fluorescence for the efficient detection of the trapped ion qubit states [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4 (a) Schematic of an electrostatically confined quantum dot. (b) A self-assembled quantum dot [2].
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Trigate silicon MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor) fabricated at

Leti. SiO 2 in green, silicon is in red, the metallic gate is in gray and Hf O 2 in blue. . . . .

a)

A MOSFET transistor with long spacers that capacitively couple to the source and drain contacts while isolating a quantum dot under the gate. b) Measured Coulomb oscillations at 4.2 K and 400 mK (black curve) (blue curve). From ref [START_REF] Hofheinz | Simple and controlled single electron transistor based on doping modulation in silicon nanowires[END_REF]. . . . . . . . . . . . . . . 

3.11

Numerical simulations of the doping (left) and potential (right) along the wire. Under the spacers and the gate, the undoped regions provide a flat potential at Vg = 0V , which is decreased in its center by the gate voltage, forming a well that is isolated by two barriers.

From ref [START_REF] Hofheinz | Simple and controlled single electron transistor based on doping modulation in silicon nanowires[END_REF]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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Larmor frequencies at the two electrical polarizations V 0 and V 1 are represented by a histogram (described in Figure 3.12 b). The peak of the current I d (insert), which was measured as a function of the radio modulation frequency for a handling time of τ = 20 ns in a magnetic field B = (0, 0.216, 0.216) T, served as the source of information for 400 measurements of the Larmor frequency that were used to create this histogram. Based on ref [START_REF] Crippa | Electrical Spin Driving by g-Matrix Modulation in Spin-Orbit Qubits[END_REF]. . . . . . The g-factor computed from the reconstructed g-tensor (a). See ref [START_REF] Crippa | Electrical Spin Driving by g-Matrix Modulation in Spin-Orbit Qubits[END_REF]. . . . . . . . . . 4.1 A 10 nm thick Si nanowire channel in red sitting on top of a buried oxide (green) is seen in the schematics for the hole qubit device. Top gates (gray) partially enclose the nanowire, over 20 nm of total width of 30 nm . SiO 2 is used in the gate stack (green). The hole quantum dot is represented by CG center gate. The secondary gate addressed in this paper is called with Ev = 0, L = -5.641, M = -3.607, and N = -8.676 in units of 2/(2m 0 ) [START_REF] Niquet | Onsite matrix elements of the tight-binding Hamiltonian of a strained crystal: Application to silicon, germanium, and their alloys[END_REF]. Along this path, the two highest energy bands are twice degenerate. The states are three times degenerate at Γ (six times with spin). →X means direction to point X (same with the point L). 

3.17

Evolution of m(t)

for different fluctuator frequencies ν of the case of Trap 1, in the 2-level model. For ν < ω th = 1.963 × 10 9 s -1 , m(t) presents oscillations [START_REF] Paladino | 1 / f noise: Implications for solid-state quantum information[END_REF]. In this case, T 2 is given by the exponential decay of the envelope. . . . . . . . . . . . . . . . . . . . Green squares: T 1 calculated using χ(t). Brown triangles: T 1 calculated using χ (t). Red crosses: T 2 calculated using χ(t). Violet dots: T 2 calculated using χ (t). Solid lines depict the analytical expressions for T 1 (black) and T 2 (light blue), as given by Eq. (2.5.28) and Eq. (2.5.23), respectively, using ω th and |u ↑↓ | of Table 6. device with four gates (light blue) labelled G1, G2, G3 and G4. Gate G2 defines a quantum dot (QD2) hosting a single hole; G3 and G4 define a hole island used as reservoir and sensor for hole spin readout; G1 defines a hole island screening QD2 from dopant disorder and fluctuations in the source. Using bias tees, both static voltages (V G1 , V G2 ) and timedependent, high-frequency voltages (MW1, MW2) can be applied to G1 and G2, respectively.

The drain contact is connected to an off-chip, surface-mount inductor to enable radiofrequency reflectometry readout. The coordinate system used for the magnetic field is shown on the left side (in the crystal frame, x = [001], y = [START_REF] Venitucci | Electrical manipulation of semiconductor spin qubits within the g -matrix formalism[END_REF] and z = [START_REF] Venitucci | Electrical manipulation of semiconductor spin qubits within the g -matrix formalism[END_REF]). Taken from ref [START_REF] Piot | A single hole spin with enhanced coherence in natural silicon[END_REF]. . . . This makes it essential to study the impact of charge fluctuators on hole spin qubit. We simulate a quantum dot confining a single hole. The confinement is defined by electrostatic gates on a silicon nanowire channel. Our goal is to describe the qubit as realistically as possible compared to technologies which were recently developed and characterized. Our simulation takes into account the relaxation and the dephasing of the hole spin over time by combining Poisson and time-dependent Schrödinger equations to model a classical random telegraph signal. Our approach is able to describe the combined effects of fluctuating electric fields and spin-orbit coupling on the spin dynamics, without any free parameter.

6.26

We show that the well-known two-level model effectively describes the dephasing time T 2 over a broad range of frequencies ν of the telegraph signal. When ν is low, the decoherence is determined by the short time behavior of the spin precession List of Tables phase which is then characterized by a non-Gaussian distribution, the coherence of the phase is lost as soon as the fluctuator changes state. The Gaussian description is only accurate above a threshold frequency ω th , when the two-level system responds to the statistical distribution of the fluctuator states. The dephasing time T 2 at this threshold frequency can be significantly increased by adjusting the magnetic field orientation and gate potentials along "sweet" lines. However, we show that T 2 cannot tend to infinity for reason which are discussed. The existence of "sweet" points is now an experimentally established fact. The simulations also show that the spin relaxation time T 1 cannot be accurately described by the twolevel model as the coupling to higher-energy hole levels greatly impacts the spin dynamics.

We also study decoherence processes in the same hole spin qubit using the Bloch-Redfield theory. We show that this theory works well at high frequency ν, when the dynamics of the hole spin is slow compared to the fluctuations of its environment.

Limits of the Bloch-Redfield theory at low frequency are identified.

Résumé

Les sources de bruit sont l'un des facteurs critiques qui déterminent les performances des qubits dans les applications de calcul quantique. Les sources de bruit font référence à tous les facteurs externes qui peuvent causer des erreurs ou de la décohérence dans un qubit. Dans cette thèse, nous avons simulé ces effets dans le cas d'un qubit de spin à trous en technologie Silicon-On-Insulator (SOI). à cette fréquence seuil peut être augmenté de manière significative en ajustant l'orientation du champ magnétique et les potentiels de grille le long des lignes "douces". Cependant, nous montrons que T 2 ne peut pas tendre vers l'infini pour des raisons qui sont discutées. L'existence de points "doux" est maintenant un fait expérimentalement établi. Les simulations montrent également que le temps de relaxation du spin T 1 ne peut pas être décrit avec précision par le modèle à deux niveaux, car le couplage aux niveaux de trous de plus haute énergie a un impact important sur la dynamique du spin.

Nous étudions également les processus de décohérence dans le même qubit de spin à trous en utilisant la théorie de Bloch-Redfield. Nous montrons que cette théorie fonctionne bien à haute fréquence ν, lorsque la dynamique du spin du trou est lente par rapport aux fluctuations de son environnement. Les limites de la théorie de Bloch-Redfield à basse fréquence sont identifiées.

General Introduction

Four thousand years ago, the Chinese invented the abacus, which is considered as the first computer in history. It consisted of a wooden frame containing metal rods to which beads were attached. It is still used in some countries around the world.

A few thousand years later, from the sixteenth century to the nineteenth century, mechanical calculators evolved over time, including Pascal' calculator, the Leibnitz wheel, the Difference Engine, the Analytical Engine and the Tabulating Machine.

A breakthrough was achieved when an electronic computer was introduced in the United States in 1930 by Vannevar Bush, which relied on vacuum tubes to switch the electrical signal to perform calculations. Another turning point in the history of computing came in 1944, when the first Mark I programmable digital computer was built by a partnership between IBM and Harvard University. Over time, several generations of computers were developed.

Similarly, the development of the computer has been accompanied by the development of its processing and storage capabilities. The integration of semiconductors in the manufacture of electronic components, in particular the transistor, invented in 1947 by J. Bardeen, W.Schockley and W. H. Brattain researchers at Bell laboratories [START_REF] Riordan | The Invention of the Transistor[END_REF] and which is the basic building block of computers, has not prevented the power of computers from increasing since the 1970s. Moore's Law predicted that the number of transistors on a microprocessor chip would double every two years [START_REF] Gordon E Moore | Progress in digital integrated electronics[END_REF], and thus the computing power would also double.

In order to reduce rendering time and perform larger calculations in computing, parallelism is used since the 2000s. Roughly speaking, parallelism consists of processing data simultaneously. This is done by replacing the single processor by List of Tables multiprocessors with multicores.

The first person who introduced the concept of a quantum simulator was the physicist Richard Feynmann in the 1980s [START_REF] Richard P Feynman | Simulating physics with computers[END_REF], the principle was to find a computer that would give an approximate simulation to the classical computer, but would give an exact simulation of nature, i.e. using quantum physics to simulate a quantum system. This hypothetical computer would be more efficient than a classical computer for some very specific tasks by taking advantage of the massive parallelization allowed by the superposition principle of quantum mechanics. In 1994, Peter Shor [START_REF] Shor | Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer[END_REF] developed an algorithm for prime factoring a given number in polynomial (not exponential) time. From this date on, everything accelerated, and significant progress was made by researchers. Then, in 1996, Lov Grover [START_REF] Lov | A fast quantum mechanical algorithm for database search[END_REF], from Bell Labs, published a quantum algorithm for searching for an element in a set of n objects, and the first quantum computer with 2 qubits was announced in 1998 [START_REF] Isaac | Experimental implementation of fast quantum searching[END_REF], and now the new IBM Osprey quantum processor has reached 433 Qubits [START_REF]IBM Unveils 400 Qubit-Plus Quantum Processor and Next-Generation IBM Quantum System Two[END_REF].

The ability of quantum technology to break the level of computing speed and processing is in principle very large compared to the existing technology. Therefore France is currently developing, among other possible technologies, its own quantum informatics platform based on silicon technology. Since many of the physical aspects of this technology are still not understood, this makes the interpretation of the experimental data difficult, not to mention the optimization of the devices.

The PhD thesis that I am presenting is part of a larger project concerned with quantum bit modeling, with the aim of understanding the physics behind it. One of the main issues in this field is to understand the decoherence effects of quantum information in order to try to minimize them. The results of the research performed in this thesis will help to understand the impact of the noise sources on the information lifetime and assess their importance in comparison with other noise sources.

Chapter 1

Context of the thesis -

Introduction to quantum computing 1.1 Quantum computing

Quantum computing is a combination of quantum physics, information theory and computer science. It is obvious that the discovery of quantum mechanics changed our understanding of the laws of nature, and since then, several technologies have been born thanks to quantum physics, for example the laser which is based on the electronic spectrum in gases, and on the electronic band structure in semiconductors, as well as nuclear energy which is based on the knowledge of the nuclear structure of atoms. An information can be expressed in several ways, like by different languages or by numbers. This last choice allows us to manipulate information in an automatic way with the help of machines, especially computers. Quantum mechanics and information science can be considered as a scientific revolution of the 20th century. The Figure 1.1 shows the relation between the two. This second quantum revolution has been distinguished by the award of the Nobel prize in physics 2022 to Alain Aspect, John Clauser and Anton Zeilinger.

The first link between quantum physics and information theory was seen in Bell's inequality which showed the importance of correlations between quantum systems that interacted with each other in the past. The second link was realized by the fact that the properties of quantum systems themselves can be used in quantum cryptography [START_REF] Bennett | Logical reversibility of computation[END_REF][START_REF] Charles | The thermodynamics of computation-a review[END_REF][START_REF] Wiesner | Conjugate coding[END_REF][START_REF] Brassard | 25 years of quantum cryptography[END_REF]. Another vision was brought by Feynman [START_REF] Richard P Feynman | Simulating physics with computers[END_REF][START_REF] Richard P Feynman | Quantum mechanical computers[END_REF] who foresaw the possibility of designing a simulator based on quantum physics to simulate other quantum systems. An important step was taken by Simon (1994) [START_REF] Daniel R Simon | On the power of quantum computation[END_REF] who realized a quantum algorithm that solves a classically unsolvable problem, and in turn Simon inspired Shor to write a quantum algorithm that factors large integers.

With a simple two-state quantum system, one can in principle store a large amount of information, but how much information can one store in such a system? The answer is given by [START_REF] Jozsa | A new proof of the quantum noiseless coding theorem[END_REF] [START_REF] Jozsa | A new proof of the quantum noiseless coding theorem[END_REF] and [START_REF] Schumacher | Quantum coding[END_REF] [START_REF] Schumacher | Quantum coding[END_REF]:
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Possible technologies

There are several technologies for realizing a quantum bit, such as superconducting qubits, trapped ion qubits, quantum dot qubits, defect-based qubits, topological qubits, photonic qubits and nuclear magnetic resonance.

Superconducting qubit

At very low temperatures, on the order of a few mK, a RLC (Resistor Inductor Capacitor) superconducting circuit has negligible resistance due to the superconductivity effect, so that the circuit functions as an LC resonator, which in spite of its macroscopic size at the micrometer scale [START_REF] Neeley | Generation of three-qubit entangled states using superconducting phase qubits[END_REF][START_REF] Harris | Experimental investigation of an eight-qubit unit cell in a superconducting optimization processor[END_REF][START_REF] Aaron D Oâăźconnell | Quantum ground state and single-phonon control of a mechanical resonator[END_REF] (Figure 1.2), has quantum characteristics [START_REF] Clarke | Superconducting quantum bits[END_REF][START_REF] You | Superconducting circuits and quantum information[END_REF][START_REF] Makhlin | Quantum-state engineering with josephson-junction devices[END_REF][START_REF] You | Atomic physics and quantum optics using superconducting circuits[END_REF] and is equivalent to a quantum harmonic oscillator. The harmonic oscillator is a quantum system with equidistant energy levels, which poses the problem of how to target sepcifically the two lowest levels of the system.

The solution is to introduce a Josephson junction in the circuit, which introduces a nonlinearity effect in the system that removes the equidistance of the energy levels and facilitates the coding of information in a two-state system that constitutes the qubit [START_REF] Clarke | Superconducting quantum bits[END_REF][START_REF] You | Superconducting circuits and quantum information[END_REF].

There are 3 forms of superconducting qubit. 1) The charge qubit [START_REF] Büttiker | Zero-current persistent potential drop across small-capacitance josephson junctions[END_REF][START_REF] Shnirman | Quantum manipulations of small josephson junctions[END_REF][START_REF] Bouchiat | Quantum coherence with a single cooper pair[END_REF][START_REF] Nakamura | Coherent control of macroscopic quantum states in a single-cooper-pair box[END_REF][START_REF] Vion | Manipulating the quantum state of an electrical circuit[END_REF][START_REF] Houck | Controlling the spontaneous emission of a superconducting transmon qubit[END_REF] which is sometimes called an even Cooper box where the information is encoded by the even number of electrons in the superconductor. 2) The flux qubit [START_REF] Anthony | Macroscopic quantum systems and the quantum theory of measurement[END_REF][START_REF] Je Mooij | Josephson persistent-current qubit[END_REF][START_REF] Chiorescu | Coherent quantum dynamics of a superconducting flux qubit[END_REF] where the information is encoded by the direction of current in the circuit. 3) The phase qubit uses the difference in the phases of two superconducting wavefunctions of the Josephson junction [START_REF] John M Martinis | Rabi oscillations in a large josephson-junction qubit[END_REF]. The control of these qubits can be done by microwaves, magnetic fields or voltages. Moreover, the qubit lifetime is of the order of tens of microseconds [START_REF] Bylander | Noise spectroscopy through dynamical decoupling with a superconducting flux qubit[END_REF], and the coupling between several superconducting qubits can be managed electronically [START_REF] Hime | Solid-state qubits with current-controlled coupling[END_REF][START_REF] Ao Niskanen | Quantum coherent tunable coupling of superconducting qubits[END_REF]. 

Trapped ion qubits

Another existing qubit technology is the trapped ion qubit which is considered one of the most reliable among the existing technologies. One of the advantages offered by this qubit is the measurement efficiency provided by the state-dependent fluorescence detection technique [START_REF] Blatt | Quantum jumps in atomic systems[END_REF][START_REF] Acton | Near-perfect simultaneous measurement of a qubit register[END_REF]. However, the challenge encountered is the entanglement of several qubits together.

The architecture of the quantum computer based on trapped atomic ions is interesting since the ions can be confined in space with nanometric precision, and the neighboring ions interact with each other under the effect of the coulombic force [START_REF] David J Wineland | Experimental issues in coherent quantum-state manipulation of trapped atomic ions[END_REF][START_REF] Blatt | Entangled states of trapped atomic ions[END_REF], nearby electrodes provide electric fields that aim to create a confinement potential in the 3 dimensions of space as illustrated in Figure 1.3. A laser is used to cool the trapped ions in order to balance the system between the coulombic effect and the confinement effect. The result is a 1D linear atomic chain where its The entanglement of qubits is done via a laser that induces a coupling to the set of trapped spins, and then one can change the quantum state of the qubit by changing the motion of the set of trapped atoms, that occurs by modifying the modulation of the laser beam. This kind of qubit was proposed in 1995 [START_REF] Juan | Quantum computations with cold trapped ions[END_REF] then demonstrated later in the same year [START_REF] Monroe | Demonstration of a fundamental quantum logic gate[END_REF]. The simple model proposed by Cirac-Zoller is a qubit with internal energy levels of the trapped ion and external energy levels corresponding to the harmonic motion of the whole set of ions. The entanglement of the quantum states is clearly seen after the application of two laser pulses. Consider a pair of electrons which are in the ground state |↓ 1 |↓ 2 |0 m due to laser cooling where |0 m is the ground state of the harmonic oscillator, a laser pulse is applied which changes the state of the first pair ion by exiting it at the higher harmonic level and the spin up state. Then a second laser pulse brings the system back to its fundamental harmonic state by changing the spin state of the Chapter 1: Context of the thesis -Introduction to quantum computing second ion as shown in equation (1.2.1). And so the ions forming the qubit are entangled without changing the initial harmonic state.

|↓ 1 |↓ 2 |0 m pulse 1 ----→ |↓ 1 |↓ 2 |0 m + |↑ 1 |↓ 2 |1 m (1.2.1) pulse 2 ----→ |↓ 1 |↓ 2 |0 m + |↑ 1 |↑ 2 |0 m = (|↓ 1 |↓ 2 + |↑ 1 |↑ 2 )|0 m
The realization of trapped ion qubit becomes more difficult when the number of trapped ions increases, the laser-induced cooling becomes less efficient, the decoherence of the harmonic mode [START_REF] Leibfried | Quantum dynamics of single trapped ions[END_REF] becomes more important due to the noise induced by the electical fields. One of several approaches proposed to circumvent these difficulties is the Quantum Charge-Coupled Device (QCCD) [START_REF] Kielpinski | Architecture for a large-scale ion-trap quantum computer[END_REF], it consists in transporting individual ions thanks to electric forces in different areas of the complex trap structure. The interest of this model is to process the trapped ions in small groups, between 5 and 10 atoms, where the noise infuence will be less important.

Spin qubit

By definition, quantum dots are semiconductor-based nano-structures where 3D quantum potential wells are formed. This produces discrete and quantized energy levels that look like atomic energy orbitals, which makes them similar to the qubits of trapped ions, which is why they are called artificial atoms. They are promising candidates for a qubit application similarly to trapped ions.

There are many different ways to make a quantum dot. The principle is always the same, the confinement of charge carriers (electron, hole) in small regions in the semiconductor. The first way is to develop the quantum dots in a chemical solution and then deposit them on the substrate. The other way is via MBE (molecular beam epitaxy) where the nanocrystals that form the quantum dots are developed layer by layer and are self-assembled, which gives exellent control over tum dots are defined by small depletion zones in a 2D electron gas (2DEG). They work well at very low temperatures, lower than 1K, where the mean free path of electrons is spatially larger than the dimension of the quantum dot. These quantum dots are manipulated by the potential applied by the electrostatic gates. The self-assembled quantum dots have the ability to trap electrons that have an energy higher than the thermal energy, they can be manipulated by optical techniques.

Loss and DiVincenzo [START_REF] Loss | Quantum computation with quantum dots[END_REF] were the first to propose the use of the spin of charge carriers in electrostatically defined quantum dots for quantum computation. This is motivated by the advantages provided by this type of quantum dots, where, unlike self-assembled dots, can be geometrically placed on a chip in a well-designed manner in order to build quantum dot networks in which each dot represents a two-state quantum system providing the qubit. The information is carried by the degree of freedom of the intrinsic spin 1/2 of the electron (or hole).

The entanglement of two qubits can be managed by modifying the potential applied by the electrostatic gates that control the overlap of the spin wave functions, In this context, the Si or Ge hole qubit is of increasing interest, as the spin-orbit coupling is much more important for holes than for electrons in these materials [START_REF] Crippa | Electrical spin driving by g-matrix modulation in spin-orbit qubits[END_REF]. So, as shown in the Figure 1.5, the qubit consists of two quantum dots, one contains the quantum information and the other is used to measure the first one, the qubit is formed by a source and a drain that represent two electodes, between them are the two quantum dots located in the channel and manipulated by the potential provided by other electrodes called the gates that ensure the coupling between the two dots as well as the transfer of the charge carriers between them.

Their transport is done by tunneling effect from where the charge carriers are The experimental work on silicon spin qubit is evolving more and more using various approaches. In fact, CMOS technology is the preferred one because of its industrial developments and the role of silicon played in the development of information society. The earliest experimental works on CMOS-based qubit technology that is compatible with a standard manufacturing process is that reported by Leti (France) [START_REF] Maurand | A cmos silicon spin qubit[END_REF][START_REF] Crippa | Gatereflectometry dispersive readout and coherent control of a spin qubit in silicon[END_REF], and the 300 mm process line for qubit manufacturing that is under development at INTEL [START_REF] Clarke | Spin qubits at intel[END_REF].

Experimental progress

In the table 1.1, there is a comparison of the characteristics of different silicon spin qubit technologies: qubit frequency, coherence time, T * 2 and T 2 dephasing time and quality factor. Figure 1.6 also shows some caracteristic spin lifetimes for different types of qubits. These very important quantities will be defined later in this document. More recent results will be discussed in Chapter 6.

Table 1.2 compares the physical qubit footprints produced by various technologies.

The number of qubits per unit area, is provided for silicon qubits (single-spin and hybrid qubits), in comparison to the superconductive and trapped ions qubits used Chapter 1: Context of the thesis -Introduction to quantum computing

Objectives of the thesis

This thesis was part of the ANR project "MaqSi" dealing with the modeling and the assessment of silicon spin qubits. The objectives of the project were to understand the physics of the qubits, to sort out the existing options in order to make suggestion on the design of the qubits, and to find the strong and weak points of the SOI (Silicon On Insulator) technology for the application of quantum computing.

The project combined theory and experiments. This work was dedicated to study theoreticaly the decoherence and the variability of a qubit. The main objective of my thesis was to study the sensitivity of a hole spin qubit against the existing noise sources, especially the quasi-static charge noise found in the gate oxide layers. We focused on the study of the influence of single charge fluctuations on the lifetime of the quantum information in the qubit, this is called decoherence.

The thesis is divided in several chapters. Chapter 1 that you have read is an introduction of the general context of the thesis in which I have introduced the history of quantum computing with the presentation of the existing technologies in this field. Chapter 2 presents the different sources of noise existing in the qubit. I also discuss the telegraphic noise and decoherence phenomenon (defined by characteristic times T 1 and T 2 ) which represent the essence of the thesis. Chapter 3 is dedicated to describe the device geometry, and its characteristics. Chapter 4 presents the methodologies to calculate the electronic structure and the electrostatic potential in the devices. Chapter 5 describes the models developed to calculate the characteristic coherence times. In chapter 6, the results obtained will be discussed in order to make a general conclusion of the thesis. Chapter 7

provides additional results based on the Bloch-Redfield theory.

Chapter 2

Decoherence and dephasing 2.1 Introduction

A qubit is usually defined as a two-level system. The qubit is always coupled to its environment, this coupling induces a change in quantum coherence of the system called decoherence. The decoherence was always an important topic studied by physicists because of its impact on the qubit information lifetime. Different noise souces exist limiting the quantum coherence of the system, and they have been an

obstacle to build a quantum computer. One of most important and not completly understood behaviour in nano devices is the 1/f noise. Random telegraph noise is a microscopic source of noise which is a possible origin of 1/f noise. In this chapter, we will discuss random telegraph noise and show the models of coherence lifetimes calculation.

Different noise sources

Silicon based qubits are always linked to undesirable interactions and disorders that limit the lifetime of the information and cause its loss. The This frequency in a hole spin qubit is generally smaller than 40 GHz. Thus, from the phonon band structure of silicon shown in Figure 2.2, it is clear that only the acoustic branches contain phonons in this energy range and then are responsible for decoherence.

One of the main sources of spin decoherence in a semiconductor-based qubit is the hyperfine coupling of the electrons with the nuclear spins (NS) of the host material, whose complex dynamics generate hyperfine field fluctuations that disturb the spin precession and cause coherence loss. The advantage of using silicon for qubit applications is manifested by the presence of a low concentration (4.7%) of the isotropic 29 Si isotrope in natural silicon, which reduces the effect of electron coupling to the nuclear spin compared to GaAs technologies [START_REF] Witzel | Quantum theory for electron spin decoherence induced by nuclear spin dynamics in semiconductor quantum computer architectures: Spectral diffusion of localized electron spins in the nuclear solid-state environment[END_REF]. It has been demonstrated in 2005 that the purification of bulk crystals of silicon from their non-zero nuclear spin isotropes is possible [START_REF] Ager | High-Purity, Isotopically Enriched Bulk Silicon[END_REF]. In 2011, a high level of purification in the framework of the Avogadro project reaching a concentration of the isotrope 29 Si smaller than 5 * 10 -5 for 1 Kg of silicon [START_REF] Andreas | Counting the atoms in a si crystal for a new kilogram definition[END_REF] was demonstrated.

Another source of decoherence is represented by the charge traps that exist in the oxide layers of components, especially the gate oxide, and are often described as quasi-static noise sources. We will not describe this aspect now because it will be discussed in detail, later in this chapter since it is the source of microscopic noise studied in this thesis.

1/f noise

Qubits are systems that exhibit high sensitivity to fluctuations, whether extrinsic, such as those due to the local electromagnetic environment, or intrinsic, such as noise from material defects. Fluctuations with 1/f (f:frequency) spectral density more generally 1/f α seem to be quite unavoidable in all nanodevices and it is therefore clear that 1/f noise plays a major role in quantum dynamics and is an important source of decoherence. The nanoscale size of nanodevices can be considered as a sensitive probe to this kind of noise and can therefore provide us with information about the microscopic origin of these noises. We could find in Chapter 2: Decoherence and dephasing the literature many systems for which there is evidence of fluctuation properties that have spectral densities that vary proportionally to 1/f over a wide frequency range. Despite, a complete physical mechanism for 1/f noise has not yet been discovered. There is no single way to explain the 1/f noise. The simplest model to reproduce the characteristics of 1/f noise is that of a set of fluctuators that represent a dynamic charge which fluctuates between two metastable states [START_REF] Dutta | Low-frequency fluctuations in solids: 1 f noise[END_REF][START_REF] Weissman | 1 f noise and other slow, nonexponential kinetics in condensed matter[END_REF][START_REF] Sh | Electronic Noise and Fluctuations in Solids[END_REF]. This produces what is known as random telegraph noise "RTN".

Due to recent developments in processing technology, it is now possible to fabricate devices with an active volume that is so small that it only holds a few charge carriers, for example silicon metal-oxide-semiconductor field-effect transistors (MOSFETs), where a random telegraph signal (RTS) can be seen in the drain current of a MOSFET as a function of time [START_REF] Paladino | 1 / f noise: Implications for solid-state quantum information[END_REF]. A qubit is generally defined as a 2-level system where the degeneracy of the spin state of an electron or a hole is lifted due to an external magnetic field as seen in Figure 2.6. The electron or the hole spin undergoes a precession around the magnetic field axis taken as the z-axis. The wavefunction of the spin can be written as 

Spin decoherence

|ψ(t) = α(0)|↓ + β(0)e -iΩt |↑ (2.

Classical telegraph noise

In this section we show how to calculate the coherence lifetimes in the case of a classical telegraph noise. In the basis {|↑ , |↓ }, the Hamiltonian which describes a 2-level system coupled to a charge fluctuator following a random telegraphic signal reads:
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H(t) = H 0 + χ(t)U (2.5.1)
with

H 0 = 2    Ω 0 0 -Ω    ; U =    u ↑↑ u ↑↓ u ↓↑ u ↓↓    (2.5.2)
where H 0 is the hamiltonian representing the spin system at the fundamental state without any perturbation or coupling to the bath, χ(t) is the telegraphic signal shown in Figure 2.5 and U is the coupling hamiltonian of the fluctuator to the qubit. For reasons that will be clarified later, we define ω th = |u ↑↑ -u ↓↓ |. 

Correlation function of telegraphic signal

The coherence time especially the relaxation time of a two-level system such as a qubit may depend on the noise spectral density. It is necessary to calculate the autocorrelation function of the telegraph noise signal. The autocorrelation function is a statistical tool used to analyze the degree of similarity between a time series and a shifted version of itself in order to compare the current value of a data set to its past value.

In this paragraph we show how calculate it in a general way where the telegraphic Chapter 2: Decoherence and dephasing signal is asymetric. Considering:

χ(t) =      1 0 ≤ t < t1 0 t1 ≤ t < t2 (2.5.3)
is a telegraphic signal which may switch between two discrete values 0 and 1, as seen in Figure (2.5). Let us define q 1 = χ(t) as the average of χ(t) over time.

Then consider the telegraphic signal of general form B(t) with zero mean which could facilitate the calculation.

B(t) =      B 1 = 1 -χ(t) = 1 -q 1 = q 0 0 ≤ t < t1 B 0 = 0 -χ(t) = -q 1 t1 ≤ t < t2 (2.5.4)
The autocorrelation function depends on the transition probability function from B i → B j , we refer to Ref [START_REF] Fitzhugh | Statistical properties of the asymmetric random telegraph signal, with applications to single-channel analysis[END_REF]. We define ν 0 and ν 1 as the probability per time

unit of jump B 1 → B 0 and B 0 → B 1 , respectively. With ν = ν 0 + ν 1 , q 0 + q 1 = 1
and q j = ν 1-j ν , we can define the transition probability function [START_REF] Fitzhugh | Statistical properties of the asymmetric random telegraph signal, with applications to single-channel analysis[END_REF] 

p ij (τ ) = P rob {B(t) = B j |B(0) = B i } = q j + (δ ij -q j )e -νt (2.5.5) 
Now we can write the autocorrelation function following Ref [START_REF] Fitzhugh | Statistical properties of the asymmetric random telegraph signal, with applications to single-channel analysis[END_REF] as

C ij (t) = B(t)B(0) = ij q i p ij (t)B i B j (2.5.6) =q 0 (q 0 + q 1 e -ντ )B 2 0 + 2q 0 q 1 (1 -e -ντ )B 0 B 1 + q 1 (q 1 + q 0 e -ντ )B 2 1
Calculating the limit conditions at t = 0 and t → ∞, we obtain

C ij (0) =q 0 B 2 0 + q 1 B 2 1 = q 0 q 2 1 + q 1 q 2 0 = q 0 q 1 C ij (∞) =(q 0 B 0 + q 1 B 1 ) 2 = 0
Then, the autocorrelation function reads

C ij (t) = B(t)B(0) = C ij (∞) + [C ij (0) -C ij (∞)]e -ν|t|
= q 0 q 1 e -ν|t| (2.5.7)

Later we will use the autocorrelation function to calculate the noise spectrum of the telegraphic signal. In a symmetric case q 0 = q 1 = 1/2.
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Hamiltonian in pure dephasing model

We first consider the system without spin relaxation, in a so-called pure dephasing model [START_REF] Simon | Macroscopic superposition states and decoherence by quantum telegraph noise[END_REF]. Non-diagonal terms of U are neglected and the Hamiltonian becomes according to reference [START_REF] Paladino | 1 / f noise: Implications for solid-state quantum information[END_REF] 

H(t) = Ω 2 σz + ω th 2 χ(t) σz (2.5.8)
where ω th represents the change in Larmor angular frequency that fluctuates between Ω and Ω + ω th for χ(t) = 0 and 1, respectively.

Ω is the Zeeman energy splitting between the energy levels of the qubit without any coupling and σz is the Pauli matrix which acts on the eigenstates |↑ , |↓ of the qubit. ω th 2 χ(t) σz represents the hamiltonian describing the coupling of the qubit to a charge fluctuator.

The solution ψ(t) of the time-dependent Hamiltonian equation (2.5.8) is [START_REF] Simon | Macroscopic superposition states and decoherence by quantum telegraph noise[END_REF]: 

|ψ(t) = 1 √ 2 (e -iΩt/2 e iϕ(t)/2 |↑ + e iΩt/2 e -iϕ(t)/2 |↓ ) (2.5.
 ϕ = tr[dϕp(ϕ, t)ρ(ϕ, t) Â] (2.5.11)
where  is the observable, .. ϕ represents the quantum mechanical average and the average with respect to the random phase. p(ϕ, t) is the probability distribution function of the ϕ phase and ρ represents the density matrix of the qubit.
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The fact that  is independent of the phase fluctuation allows us to write:

 ϕ (t) = tr[ρ red (t) Â] (2.5.12)
where ρred is the reduced density matrix [START_REF] Simon | Macroscopic superposition states and decoherence by quantum telegraph noise[END_REF]:

ρred (t) =    ρ ↑↑ (0) ρ ↑↓ (0)e -iΩt D(t) ρ ↓↑ (0)e iΩt D * (t) ρ ↓↓ (0)    (2.5.13)
which can be easily calculated from the wave function given by equation (2.5.9).

We can clearly see that the diagonal elements ρ ii remain constant as a function of time, i.e. the population of states does not change. This is due to the fact that we only study the qubit dephasing phenomenon and that it appears in the Hamiltonian as the diagonal term ω th /2 σz (pure dephasing). The term D(t)

which appears in the non-diagonal elements of ρred (t) represents the evolution of the phase fluctuation due to the telegraphic signal. p(ϕ, t) is here the phase probability distribution for telegraphic noise and D(t) is the term describing the coherence of the system.

D(t) = e -iω th

Dephasing in the Gaussian approximation

It is known that the telegraphic signal is not a Gaussian noise, but it is insightful to study the coherence of the qubit by considering a Gaussian distribution probability for q 1 = 1/2. Experimentally, the measurements are done on several realizations. According to Ref [START_REF] Simon | Macroscopic superposition states and decoherence by quantum telegraph noise[END_REF], we consider that the fluctuations have a Gaussian distribution

p(ϕ, t) = 1 2π δϕ 2 e -δϕ 2 2 δϕ 2
(2.5.16)
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D Gauss (t) = e iϕ(t) = e i ϕ(t) -1 2 δϕ 2 , δϕ(t) = ϕ(t) -ϕ(t) (2.5.17)
The mean ϕ(t) is equal to -ω th t/2 and the variance δϕ 2 (t) where δϕ(t) = ϕ(t) -ϕ(t) is given by [START_REF] Simon | Macroscopic superposition states and decoherence by quantum telegraph noise[END_REF]:

δϕ 2 (t) = ω 2 th t 0 dt t 0 dt δχ(t )δχ(t ) = ω 2 th 2ν [t - 1 ν (1 -e -ν|t| )] (2.5.18)
which leads to:

D Gauss (t) = exp{- iω th t 2 - ω 2 th 4ν [t - 1 ν (1 -e -ν|t| )]} (2.5.19)
Following Ref [START_REF] Simon | Macroscopic superposition states and decoherence by quantum telegraph noise[END_REF], we can deduce the decoherence rate Γ Gauss ϕ from the visibility

|D Gauss (t)| which at t → ∞ is written as e -Γ Gauss ϕ t Γ Gauss ϕ = -lim t→∞ 1 t ln|D Gauss (t)| = ω 2 th 4ν (2.5.20)
This gives the inverse of the dephasing time T * 2 in the Gaussian approximation.

Exact result in pure dephasing model

In fact, the decoherence of the 2-level system due to a telegraphic noise cannot be described by the Gaussian approximation. The reason is that the probabilty function distribution of a telegraphic signal has not the shape of a Gaussian distribution. According to References [START_REF] Bergli | Decoherence in qubits due to low-frequency noise[END_REF][START_REF] Paladino | 1 / f noise: Implications for solid-state quantum information[END_REF][START_REF] Simon | Macroscopic superposition states and decoherence by quantum telegraph noise[END_REF] the phase distribution for a telegraphic signal switching between 0 and 1 as in equation (2.5.3) is given by the probability density:

p(ϕ, t) = (2.5.21) e -νt/2 [ δ(ϕ) + δ(ϕ + ω th t) 2 + ν ω th I 1 (νt/2 1 -(2/ω th t) 2 (ϕ + ω th t) 2 ) 1 -(2/ω th t) 2 (ϕ + ω th t) 2 ](θ(ϕ) + θ(ϕ + ω th t))
where θ(ϕ) is the Heaviside function and I 1 is the modified Bessel function of the first kind. The probability distribution function p(ϕ, t) versus the phase ϕ Chapter 2: Decoherence and dephasing for different values of νt is shown in Figure 2.6. We see that for short νt, p(ϕ, t) exhibits cuts due to δ-functions and for large νt, p(ϕ, t) exhibits a Gaussian shape which will be discussed in chapter 6.

With a non-trivial calculation detailed in Refs [START_REF] Paladino | 1 / f noise: Implications for solid-state quantum information[END_REF][START_REF] Simon | Macroscopic superposition states and decoherence by quantum telegraph noise[END_REF], we obtain the coherence D(t) which obeys the non-Gaussian phase probability distribution 2.5.21,

D(t) = 1 2 e -i(ω th -iν)t/2 [(1 + ν 2δ )e δt + (1 - ν 2δ )e -δt ] (2.5.22) with δ = 1 2 ν 2 -ω 2 th .
The dephasing rate can be calculated from D(t)

Γ ϕ = T * -1 2 = -lim t→∞ 1 t ln|D(t)| =      1 2 (ν -ν 2 -ω 2 th ) ω th ≤ ν ν 2 ω th > ν (2.5.23)
This differs from Γ Gauss ϕ = ω 2 th /(4ν) calculated with the Gaussian approximation seen above. However, the Gaussian approximation becomes exact in the limit ν >> ω th .

Relaxation time T 1

The spin relaxation is induced by the presence of non-diagonal terms in the matrix U . An expression of T 1 was obtained by several approaches such as the Born-Markov master equation [START_REF] Cohen-Tannoudji | Atom-Photon Interactions: Basic Process and Appilcations[END_REF], the Bloch-Redfield theory [START_REF] Bloch | Generalized Theory of Relaxation[END_REF][START_REF] Redfield | On the Theory of Relaxation Processes[END_REF] (chapter 7), and the systematic weak-damping approximation in a path-integral approach [START_REF] Weiss | Quantum Dissipative Systems[END_REF]. T -1 1 is proportional to the noise spectrum S(Ω) at the frequency Ω [START_REF] Paladino | 1 / f noise: Implications for solid-state quantum information[END_REF].

As discussed previously, we can write the hamiltonian as followed

H(t) = H 0 + χ(t) U + (χ(t) -χ(t) )U (2.5.24)
that can be rewritten as

H(t) = H m + V (t) (2.5.25)
where H m which is time independent and V (t) depends on time

           H m = H 0 + χ(t) U V (t) = B(t)U (2.5.26)
where B(t) was defined previously. The relaxation rate is determined by the noise spectrum at Larmor frequency Ω which is defined as (see Ref [START_REF] Paladino | 1 / f noise: Implications for solid-state quantum information[END_REF] and chapter 7 )

S(Ω) = 1 2π 2 ∞ -∞ dτ e iΩt B(t)B(0) = q 0 q 1 ν π 2 (ν 2 + Ω 2 ) (2.5.27)
Then the relaxation time is written as

T -1 1 = 4π|u ↑↓ | 2 S(Ω) = 4∆u ↑↓ u ↓↑ ν 2 (ν 2 + Ω 2 ) (2.5.28)
with ∆ = q 0 q 1 . Another proof of this result in the limit ν << Ω is given in Appendix D.

Coherence time T 2 in the general case

T * 2 was derived in the pure dephasing model, i.e. in absence of non-diagonal terms in the matrix U . In the more general case where u ↑↓ = 0, by referring to Bloch-Chapter 2: Decoherence and dephasing Redfield ( [START_REF] Bloch | Generalized Theory of Relaxation[END_REF][START_REF] Redfield | On the Theory of Relaxation Processes[END_REF] and chapter 7) and Cohen-Tannoudji [START_REF] Cohen-Tannoudji | Atom-Photon Interactions: Basic Process and Appilcations[END_REF], the exprexxion of

T 2 is T -1 2 = T * -1 2 + (2T 1 ) -1
(2.5.29)

Conclusion; outlook

In this chapter we discussed the different sources of decoherence, namely phonons, Nyquist noise, nuclear magnetic, and we focused on charge fluctuator noise. We have introduced an overview on 1/f noise and its link with the charge fluctuator. Then we described mathematically the Random Telegraph Noise in order to calculate the characteristic times of coherence in a two-level system.

Chapter 3

Silicon spin qubits

Introduction

In this chapter we will discuss the development of a spin qubit in silicon technology which was done at CEA. We will see the difference between a spin electron qubit and a spin hole qubit according to the different characteristics of the conduction and valence bands. Then we will discuss the different electrical characteristics and physical effects in the hole qubit, plus the effect of temperature. At the end we will briefly present different experimental measurements made to characterize a hole qubit. minimizes leaking current, and the backgate adds an electrostatic handle to the system, allowing a control of the threshold voltage. Thanks to that, these devices are good candidates for low-power applications.

Qubit geometry
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Description of the device

In order to make qubits more reproducible and efficient, the strategy was to configure these SOI devices with quantum simulations which are required to explain the physics due to the small dimensions of these devices. The geometry of device must first be changed because it is needed to make the device work in the singleelectron or hole regime, and because there is a need of a mechanism to measure and change the spin state locally, as well as a reliable architecture that supports two-qubit operations. In the following, we go over each of these aspects to describe them. In order to make double quantum dots, it is necessary to add another gate to the system. In chapter, the current can only flow if the spins in the two dots are not parallel, that makes the double qubit a perfect system to mesure qubit spin. As a result, measuring the current yields a measure of the spin, as established for electrons [START_REF] Corna | Electrically driven electron spin resonance mediated by spin-valley-orbit coupling in a silicon quantum dot[END_REF][START_REF] Kotekar-Patil | Pauli spin blockade in CMOS double quantum dot devices: Pauli spin blockade in CMOS double quantum dot devices[END_REF] and holes [START_REF] Maurand | A CMOS silicon spin qubit[END_REF][START_REF] Bohuslavskyi | Pauli blockade in a few-hole PMOS double quantum dot limited by spin-orbit interaction[END_REF]. However, the method of detecting Pauli spin blockade is incompatible with quantum processing, which necessitates a single-shot readout.

As a result, gate-reflectometry is a technique used for single-shot charge transfer detection [START_REF]Dispersively Detected Pauli Spin-Blockade in a Silicon Nanowire Field-Effect Transistor[END_REF][START_REF] Gonzalez-Zalba | A high-References sensitivity gate-based charge sensor in silicon[END_REF][START_REF] Crippa | Level Spectrum and Charge Relaxation in a Silicon Double Quantum Dot Probed by Dual-Gate Reflectometry[END_REF]. The degree of symmetry is reduced in a nanostructure compared to the bulk.

Electron and hole qubits

As a result, the degeneracy between HH and LH states at k = 0 is lifted. Then, depending on the type of confinement and strain, the resultant states are mixtures of heavy and light holes. The presence of spin-orbit coupling in the valence band of Si makes a hole qubit sensitive to electrical noise. On the other hand, it can be manipulated effectively by an electric field. On the other hand, the electron spin qubit depends on the characteristics found in the conduction band of silicon. The minimum of the conduction band is made of 6 times degenerate valleys: twice according to each direction of the reciprocal space ±K 0x , ±K 0y and ±K 0z as seen Figure 3.5. This creates a problem for the encoding of quantum information since it requires two well-defined states. This problem can be reduced in nanostructures (e.g. quantum dots), where the confinement and Chapter 3: Silicon spin qubits the interface of the structure destroy the symmetry and consequently produce a degeneracy lifting on the degenerate valleys. A confinement along z lifts the degeneracy between the four K x , K y and the two K z . On the other hand, the lift of degeneracy between +K z and -K z is done by inter-valley scattering potentials induced by the sharp interface potential. Figure 3.5 presents a view on the impacts of confinement and sharp potentials. In a first approximation, the resultant states ν 1 and ν 2 are bonding and anti-bonding combinations of the +K z and -K z states.

The energy known as the valley splitting ∆ separates them.

Another remarkable feature of the silicon conduction band is that, in contrast to other III-V semiconductors, it exhibits relatively low degree of spin-orbit interaction. Due to its small atomic weight (Z = 14), which results in a lower electric field around the nucleus than for heavier atoms, silicon has a low spin-orbit effect in conduction band. In addition, the p orbitals are separated in energy and are unable to be linked effectively by the spin-orbit interaction because the conduction band minima are situated at different k values. Finally, due to the crystal centrosymmetry, Dresselhaus spin-orbit effects are negligible [START_REF] Dresselhaus | Spin-Orbit Coupling Effects in Zinc Blende Structures[END_REF]. However, due to the relative low degree of symmetry in quantum dots compared the bulk, it has been demonstrated that, in some circumstances, this can result in a non-negligible spinorbit interaction which can be used for spin manipulation [START_REF] Nestoklon | Spin and valleyorbit splittings in SiGe/Si heterostructures[END_REF][START_REF] Golub | Spin splitting in symmetrical SiGe quantum wells[END_REF]. It appears that silicon could be a good choice for an electron spin qubit. The spin degree of freedom is an excellent quantum number as far as the valley splitting is high enough and the spin-orbit interaction is very low. Because of this, the spin qubit is essentially insensitive to electrical noise except at certain points of operation.

Nuclear spins can be purified in silicon, therefore magnetic noises will not exist either. As a result, very coherent electron spin qubits are possible [START_REF] John | Embracing the quantum limit in silicon computing[END_REF][START_REF] Tyryshkin | Coherence of spin qubits in silicon[END_REF][START_REF] Tyryshkin | Electron spin coherence exceeding seconds in high-purity silicon[END_REF].

Main electrical characteristics

In this section we will present the main electrical characteristics of a hole qubit.

The qubit is defined by a quantum dot in a silicon nanowire. A second quantum We take a system of two quantum dots linked in series, with two gates controlling the electro-chemical potentials via the voltages V G1 and V G2 . It is possible to apply a voltage V d between the drain and the source. This mechanism is shown in Figure 3.6. Between the source, the drain, and the quantum dots, one or more holes can be transported. 

Coulomb blockade

The filling of these two quantum dots, which are set up in series, is based on the Coulomb blocking principle. For this, we first talk about filling a single quantum dot before moving to the case of the double quantum dot. Taking into account that to add a particle in a quantum dot of N particles, the required energy is given by 

µ(N + 1) -µ(N ) = E c + ∆E (3.

Stability diagram

The voltages of the gates V G1 and V G2 of the quantum dots, in the case of two quantum dots connected in series, electrostatically control the electro-chemical 

Pauli blockade

The Pauli blockade is based on the principle of Pauli exlusion which says: two holes or two electrons which have the same spin cannot be in the same state. Based on the double quantum dot device in series, we can imagine configurations exhibiting Pauli blockade. Figure 3.9 shows two cases that apply. First, we consider that 

Current triangle

Current triangles are regions of the stability diagram that exist around the triple point (Figure 3.8 c). This is due to the fact that the Fermi level of the source and drain align with the electro-chemical potential of the quantum dot states, in the presence of a small voltage V d which allows current to flow through these regions.

Several physical characteristics can be extracted from the current triangles [START_REF] Elzerman | Few-electron quantum dot circuit with integrated charge read out[END_REF].

The energy of the quantum dot states can be studied by analyzing the intensity and fluctuations of the observed current. Moreover, it is possible to measure the influence of the gates on the electro-chemical potential of the quantum dots thanks to the "size" of the triangles and the slope of their sides [START_REF] Elzerman | Few-electron quantum dot circuit with integrated charge read out[END_REF].

From room temperature to cryogenic situation

In this section, we will discuss the effect of temperature on the qubit formed in a From ref [START_REF] Hofheinz | Simple and controlled single electron transistor based on doping modulation in silicon nanowires[END_REF].

The potential and doping profiles along the wire are represented in Figure 3.11.

A flat potential barrier is created at zero gate voltage when the doping decreases sharply under the spacers and gate. As this voltage increases, a well forms. At low temperatures, this potential well is the cause of single electron effects. Confinement does not occur if the resistance of this region falls below a threshold. For this reason, periodic Coulomb oscillations are not frequently observed in standard devices. Conversely, extremely low current is produced by extremely high access resistances. In this case, going from high to low temperature, the Coulomb oscillations appear which proves that the transistor becomes a one-electron transistor usable for quantum computing.
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Experimental measurements on Si qubits

In this paragraph, we will discuss in a general way and briefly different experimental measurements performed on a hole qubit. The qubit is defined as a double quantum dot formed by a silicon nanowire of width 25 nm and height 8 nm etched on a silicon-on-insulator (SOI) substrate (Figure 3 We first consider the measurement of the current triangle of Figure 3.12 which exhibits a rich physics allowing to extract the energies of the quantum dot states and to extract the values of the lever arms α i = ∂µ i ∂V Gi which gives the influence of the gate j on the electro-chemical potential of the dot i and gives information about the position of the quantum dot created in the transistor channel with respect to the gate positions. And we remind that the source-drain voltage V d is Chapter 3: Silicon spin qubits weak but not zero to insure the current flow. From the light lines of the Figure 3.13, we can deduce the factor g 1 and g 2 of the quantum dot 1 and 2, respectively. time τ that a RF signal is aplied to quantum dot 2 allows to determine the spin state of the qubit. The principle is to measure the average current I d over several cycles of initialization/manipulation/reading represented in Figure 3.14. Briefly, from the average current represented in Figure 3.15, we can conclude that I d is maximum when the spin is unlocked, and, on the contrary, I d is minimum when the spin is locked. Thus, by knowing the state of one dot, we can know the other and the reading is complete. Figure 3.16 shows the aggregation of the resonance frequency over 400 realizations and shows a Gaussian distribution from which one can estimate the resonance frequency. One can therefore calculate the factor g at a given potential according to the equation g(V ) = hf L /µ B B for a given magnetic field orientation. By calculating g(B, V ), we can see the anisotropy of the g-factor, as shown in Figure 3.17. In fact there is a formalism called the g-tensor formalism that could make the calculation of g-factor as function of the orientation of magnetic field more easy and less costly numerically in which (g) 2 = |ĝb| 2 = t b. Ĝ.b. where b = B/||B||, and Ĝ is the tensor allowing the complete caracterisation of gyromagnetic factor g. In this case, it is not required to calculate point by point the entire map of g-factor as in Figure 3.17 a but calculating Ĝ which needs 6 different values of g to be constructed [109]. Then it could be used to calculate the g-factor for any arbitrary direction of B as seen in Figure 3.17 b. 

Another measurement of I d (average current) but this time as a function of the

Conclusion; outlook

We have seen in this chapter that a qubit must be made of two quantum dots.

The first represents the qubit itself and the other one is used to read the different characteristics of the qubit such as the Larmor frequency and the gyromagnetic factor. We have also seen that these measurements have been made thanks to the different physical effects that manage the hole or electron physics such as the Coulomb and Pauli blockades. The g-factor computed from the reconstructed g-tensor (a). See ref [START_REF] Crippa | Electrical Spin Driving by g-Matrix Modulation in Spin-Orbit Qubits[END_REF].

Chapter 4

Methodology

Introduction

In this chapter, we discuss the methodology followed to numerically modeling the hole qubit. We first describe the structure and geometry of the qubit, then we introduce the k.p method to build the valence band structure around Γ (k=0, center of first Brillouin zone) by studying the influence of the different interactions on the bands. We discuss how to introduce the potential applied by the device gates described by the Poisson equation. Finally, we present the computational infrastructure that is used to bring together all the numerical methods in order to simulate the qubit

Device modeling

The three aligned Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFET)

shown in Figure 4.1 are formed in a Si nanowire along [START_REF] Venitucci | Electrical manipulation of semiconductor spin qubits within the g -matrix formalism[END_REF] referred to as the z axis. It has a rectangular section with width along y of 30 nm [( 110) facets] and thickness of 10 nm along x [(001) facets]. The nanowire is laying on a 25-nm thick SiO 2 buried oxide that was formed on a doped Si substrate that may be utilized as a back gate. Three metallic gates with length and spacing along z of 30 nm are located on top of the channel and partially encircle it (over 20 nm). These Chapter 4: Methodology

Electronic structure: k.p

In this section, we introduce the k.p perturbation theory in solid-state physics which is a basically semi-empirical method for determining the band structure of crystalline solids centered on a certain wave vector. It allows to describe the band structure of a wide range of semiconductors. It is also used to calculate the electronic structure of objects like quantum dots in which there are discrete energy states like in a single atom due to confinement.

The principle of method is to expand the wave function at k (in fact periodic part) in the basis of the wave functions at k 0 supposed to be known. k 0 is chosen to correspond to an extremum of a band. When k is close to k 0 , perturbation theory can be used leading to simplified equations. Here we discuss the method for k 0 = 0 which is appropriate for valence bands of zinc-blende semiconductors.

In view of the periodicity of atoms in crystals, U (r), the potential created by the nuclei in the periodic crystal is such that:

U (r + n 1 a 1 + n 2 a 2 + n 3 a 3 ) = U (r) (4.3.1)
where r is the position vector, n i are integers and a i are the lattice vectors. The Hamiltonian is written :

H = p 2 2m 0 + U (r) (4.3.2)
where m 0 is the mass of the free electron and p = -i ∇ represents the momentum operator. Following the Bloch theorem, the wave function is written as :

Ψ nk (r) = e ik.r u nk (r) (4.3.3)
with u nk is the periodic part

u nk (r + a i ) = u nk (r), ∀i (4.3.4)
k represents the wave vector and n the band index. The Schrödinger equation

p 2 2m 0 + U (r) Ψ nk (r) = E nk Ψ nk (r) (4.3.5)
Chapter 4: Methodology can be rewritten in the basis of u n0 :

u nk (r) = n c n n (k)u n 0 (r) (4.3.6) as Ĥ(k)c n (k) = E nk c n (k) (4.3.7)
where c n (k) is the column matrix of the c n n (k) and Ĥ(k) is a square matrix of elements

[ Ĥ(k)] nn = {E n0 + 2 k 2 2m 0 }δ nn + k m 0 P nn (4.3.8) with P nn = u n0 |p|u n 0
The method takes its name from the k.p frame which appears in the Hamiltonian Ĥ(k). By diagonalizing the Hamiltonian Ĥ(k), we can then calculate the band structure of the material for all k, by assuming that the eigenenergies of H 0 and the Bloch functions {u n0 } are known. Details can be found in ref [START_REF] Fishman | Semi-conducteurs: les bases de la théorie k[END_REF].

Hole qubit band structure

In this thesis, we study a hole qubit, for that in this part we are interested in describing the valence band structure in the neighborhood of the Γ point, center of first Brillouin zone. We start with the description of the top of the valence band structure of bulk Si at the Γ point. The approximation assumes that the valence bands can be described as linear combinations of p orbitals. It is important to know that the symmetry of the Bloch functions u nk around k = 0 is preserved, and then we can develop the band structure in the {u x , u y , u z } basis which corresponds to the p x p y p z orbitals of the valence band and thus we can write

|u nk = x,y,z i c n i (k)u i0 (4.4.1)
with c n i are coefficients. This is a 3-band model (spin degenerates), but the energy bands that are further away and do not appear in the Hamiltonian have a nonzero impact on the band structure. This is why Löwdin, in his perturbation theory [112], introduced the impact of these distant bands, which he considered as class Chapter 4: Methodology B bands, as a perturbation of the Hamiltonian developed on the basis of the socalled class A bands {u x , u y , u z }. This leads to a renormalization of the terms of the Hamiltonian written in class A basis:

H 3kp = E v I +       Lk 2 x + M (k 2 y + k 2 z ) N k x k y N k x k z N k y k x Lk 2 y + M (k 2 z + k 2 x ) N k y k z N k z k x N k z k y Lk 2 z + M (k 2 x + k 2 y )       (4.4.2)
where E v is the valence band edge, I is the identity matrix. The terms L, M and N have been defined by Dresselhaus, Kip and Kittel [START_REF] Dresselhaus | Cyclotron Resonance of Electrons and Holes in Silicon and Germanium Crystals[END_REF]. In practice, data of cyclotron resonance may be used to experimentally calibrate all of these parameters. leads to

Spin-orbit coupling

H = p 2 2m 0 + U (r) + 4m 2 0 c 2 (σ × ∇).p (4.5.1)
where σ represents the vector of Pauli matrices. With this new interaction, the basis must be expanded to take spin into account, and the extended basis reads as {u x↑ , u y↑ , u z↑ , u x↓ , u y↓ , u z↓ }. In this basis the SO Hamitonian reads as [START_REF] Kane | Energy band structure in p-type germanium and silicon[END_REF]:

H so = ∆ so 3                  0 -i 0 0 0 1 i 0 0 0 0 -i 0 0 0 -1 i 0 0 0 -1 0 i 0 0 0 -i -i 0 0 1 i 0 0 0 0                  (4.5.2)
Chapter 4: Methodology where ∆ so is the SO splitting at k = 0. 

| 3 2 , +3 2 = 1 √ 2 |(u x↑ + iu y↑ ) (4.5.3) | 3 2 , +1 2 = 1 √ 6 [|(u x↓ + iu y↓ ) -2|u z↑ ] (4.5.4) | 3 2 , -1 2 = - 1 √ 6 [|(u x↑ -iu y↑ ) + 2|u z↓ ] (4.5.5) | 3 2 , -3 2 = - 1 √ 2 |(u x↓ -iu y↓ ) (4.5.6) | 1 2 , +1 2 = 1 √ 3 [|(u x↓ + iu y↓ ) + |u z↑ ] (4.5.7) | 1 2 , -1 2 = 1 √ 3 [|(u x↑ -iu y↑ ) -|u z↓ ] (4.5.8) 
of energies E 3/2 = ∆so 3 and E 1/2 = -2∆so 3 .

These are also eigenstates of Ĥ(k) for k = 0. The states which correspond to J = 1/2 form the split-off band.

In the basis set

{| 3 2 , + 3 2 , | 3 2 , + 1 2 , | 3 2 , -1 2 , | 3 2 , -3 2 , | 1 2 , + 1 2 , | 1 2 , - 1 
2 }, the six-band k.p hamiltonian is given by [START_REF] Dresselhaus | Cyclotron Resonance of Electrons and Holes in Silicon and Germanium Crystals[END_REF][START_REF] Lok | The k p Method: Electronic Properties of Semiconductors[END_REF].

H 6k.p (k) = -                  P + Q -S R 0 1 √ 2 S - √ 2R -S * P -Q 0 R √ 2Q -3 2 S R * 0 P -Q S -3 2 S * - √ 2Q 0 R * S * P + Q √ 2R * 1 √ 2 S * 1 √ 2 S * √ 2Q -3 2 S √ 2R P + ∆ so 0 - √ 2R * -3 2 S * - √ 2Q 1 √ 2 S 0 P + ∆ so                  (4.5.9)
with P , Q, R, S being functions of dimensionless Luttinger parameters which can be expressed as functions of L, M and N . 

P =E ν + γ 1 2 2m 0 (k 2 x + k 2 y + k 2 z ) (4.5.10) Q =γ 2 2 2m 0 (k 2 x + k 2 y -2k 2 z ) R = √ 3 2 2m 0 (γ 3 (k 2 x -k 2 y ) -2iγ 2 k x k y ) S =2 √ 3γ 3 2 2m 0 k z (k x -ik y )
The Luttinger parameters γ 1 , γ 2 , γ 3 which describe the valence band are given by following equations

2 2m 0 γ 1 = - 1 3 (L + 2M ) (4.5.11) 2 2m 0 γ 2 = - 1 6 (L -M ) (4.5.12) 2 2m 0 γ 3 = - 1 6 (N ) (4.5.13)
can be adjusted for each semiconductor and are given in the table (4.1) for Si and different types of semiconductors, for more details see ref [START_REF] Lok | The k p Method: Electronic Properties of Semiconductors[END_REF]. Chapter 4: Methodology

Description of the magnetic field

This part is concerned with the description of the effect of the magnetic field on the Hamiltonian.

The influence of the magnetic field is characterized by two effects. The first one come from the vector potential A (where the magnetic field B = ∇ × A) which is introduced by replacing the wave vector k by i∇ + e h A. The term of the Hamiltonian due to the vector potential effect is written

H A = -(3κ + 1)µ B B.L (4.6.1)
where µ B is the Bohr magneton, κ can be expressed in terms of Luttinger parameters [eq (4.5.10)] and L is the matrix representation of the orbital momentum of the Bloch function for l = 1.

The second effect is the Zeeman effect which is the action of the magnetic field on the spin. The Hamitonian is written

H z = 1 2 g 0 µ B σB (4.6.2)
where σ are the vectors of the Pauli matrix in the physical spin basis. The total effect of the magnetic field is the sum of the two effects

H B = µ B BK = µ B B[-(3κ + 1)L + g 0 S] (4.6.3)
where K = -(3κ + 1)L + g 0 S and K x , K y and K z in {j, m j } basis are given in appendix(A) and S is the spin of the hole.

Enveloppe function

In nanostructures, we decompose the whole wave function when the system is subjected to a slowly fluctuating external potential U (r) at the atomic level [START_REF] Luttinger | Motion of Electrons and Holes in Perturbed Periodic Fields[END_REF] as a sum of envelope functions F n multiplied by Bloch functions u n0 :

ψ(r) = n F n (r)u n0 (r) (4.7.1)
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Because of the slow variation of U (r), we can decouple the action of U (r) on F n and u n0 . The wavefunction in 6-band k.p can be written as:

ψ(r) = jm j F jm j (r) ⊗ |j, m j (4.7.2)
Therefore the Schrödinger equation reads as:

[H 6k.p (-i∇) + U (r).I 6 ] F = E F (4.7.3)
where H 6k.p is the Hamiltonian (4.5.9), I 6 is the identity matrix of dimension 6, k was replaced by the impulsion operator -i∇, and F is enveloppe function vector for HH, LH and split-off bands.

Potential: Poisson

Thanks to the Poisson equation, it is possible to calculate the potential V (r)

applied by the gates of the transistor in which there is, in each different part in the device, a charge density ρ(r) and a material of dielectric constant (r):

∇[ (r)∇V (r)] = -4πρ(r) (4.8.1)
The equation is solved by the finite difference method where the relative dielectric permittivities of the different materials are: Si = 11, 7, SiO 2 = 3, 9, Si 3 N 4 = 7, 5.

The boundary conditions are :

-Periodicity of the device along the axis of the nanowire -The potential applied to the grids.

The method consists in discretizing the volume into small volumes of the sample in the form of parallelepipeds defined by the nodes of the grid as seen in figure 4.4, each node is associated with its own potential V i which corresponds to its charge Q i and i . We can obtain a system of linear equations (4.8.2) to calculate the potential by writing Gauss' theorem on each facet of the small parallelepiped of the grid: where Q b and Q are the vectors describing the boundary conditions, V is the potential vector to be calculated and A is a symmetric matrix. The equation is solved by the conjugate gradient method [START_REF] Barrett | Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods[END_REF].

AV = 4π(Q + Q b ) (4.8.2)

TB_Sim and device modeling

The simulations are performed with the TB_Sim code. The code has been de- We need to calculate the energy states of the qubit, the wave functions, the Larmor frequency, and the potential response of the qubit. The geometry of the device in the axis of the nanowire (the z-axis in our case) are applied.

The second step is the application of the potential energy U on the grids using the electric potential obtained by solving the Poisson equation by the finite difference method.

In the third step, we solve the Schrödinger equation in order to obtain the energy levels and the associated wave functions. In the fourth step, we use these results to establish the potential response due to the presence of a charge impurity in the gate oxide. The calculation of the matrix elements of U is simply obtained by summing its components over all elements (boxes) of the 3D grid taking into account that the envelope functions and the electrostatic potential are slowly variable and the Bloch functions u n0 form an orthogonal basis. The fifth step aims at using the previous results to develop a model to calculate the qubit decoherence time due to a charge fluctuation in the oxide. This will be described in chapter 5.

Chapter 5

Modelling

Introduction

In this chapter, we will model a charge fluctuator which responsible for a random telegraphic signal which is coupled to a hole qubit. The model aims to measure the qubit decoherence characterized by two processes: the relaxation and the dephasing designed by characteristic times T 1 and T 2 , respectively. Two models have been developed, the first one is the two-level model which aims to get numerical results based on the solution of the time-dependent Schrödinger equation in order to compare them with the analytical result found in the litterature (chapter 2).

The second model is the multi-level model in which we study the effect of the coupling of the two-level system (standard qubit) to other high energy states and investigate its influence on the qubit decoherence.

Description of the trap: potential of a point charge

There are several models that describe a charge fluctuator. The model adopted in this thesis consists of an impurity or a point defect in the gate oxide layer, assuming that it is located at 0.6 nm from the gate of the transistor. This defect induces a change in the band structure of the oxide so as to create a deep potential well capable of trapping an electron. Due to its proximity to the gate and the fact that its energy level is close to the Fermi level of the gate metal as shown in Figure 5.1, the transfer of an electron from the gate to the trap (potential well) and vice versa is done by tunneling effect, resulting in a charge fluctuator. The presence of an electron in the trap creates an additional potential in the qubit environment.

This potential would not have much influence on the qubit coherence if the electron was permanently confined in the trap, but the fact that it is moving between the trap and the gate makes it quasi-static due to its limited and stochastic motion between two nearby positions in the device. Another effect that appears due to the proximity of the trap charge to the gate is the image charge effect where an opposite charge is created in the gate as shown in Figure 5.1 a. The electrons in the metal react to the presence of the trapped charge. In the case of a planar interface between two semi-infinite medium (metal plus oxide), this response can be described by an opposite charge located in the metal [START_REF] Griffiths | Introduction to electrodynamics[END_REF]. We end up with the potential of two opposite charges close to each other, thus a dipole.

The trapped charge plus its image behaves as an electrostatic dipole. Numerically, the electrostatic potential V is calculated by solving the Poisson equation 

Time-dependent Hamiltonian

We consider a charge fluctuator coupled to the hole qubit (Figure 5.1 a). The time-dependent Hamiltonian of the system reads as

H(t) = H 0 + χ(t)U (5.3.1)
Chapter 5: Modelling H 0 represents the hamiltonian of the qubit system under a static magnetic field B with no electrical perturbation. The charge fluctuator mathematically expressed by perturbation U and a random telegraphic signal χ(t) which describe the filling of a localized charge trap in the oxide layer at a distance of 0.6 nm from a metallic gate. When a charge is on the trap, the perturbation is defined by U . For exemple ] and the electrostatic potential produced by a confined charge -e underneath the secondary gate. The charge fluctuator is defined as a quasi-static noise [START_REF] Paladino | 1 / f noise: Implications for solid-state quantum information[END_REF], where χ(t) at instant t can take one of two values, 0 or 1 (equation (2.5.3)), with corresponding probabilities p 0 and p 1 . If χ(t) = 0, that means the trap is empty else if χ(t) = 1, that means an electron of charge -e has tunneled from the gate to the trap and fills it. The tunneling transition rate for the process 0 → 1 is

ν 0→1 = ν[1 -f F D (ε 0 )]
where the tunneling rate is ν, f F D is the Fermi-Dirac distribution function, and the location of the trap level in comparison to the Fermi level in the reservoir (gate) is ε 0 . In order to simplify the problem, we suppose that [START_REF] Simon | Macroscopic superposition states and decoherence by quantum telegraph noise[END_REF]. The numerical treatment of the case of asymmetric tunneling (ν 0→1 = ν 1→0 ) would be straighforward but does not lead to situations with very different physics since, in particular, we will consider a tunneling rate in a wide frequency range.

ε 0 = 0, ν 0→1 = ν/2, ν 1→0 = ν -ν 0→1 = ν/2, p 0 = p 1 = 1/2

Time dependent simulations

In order to study the influence of a simple charge fluctuator on the qubit leading to decohence, it is necessary to calculate the characteristic times T 1 (designing the relaxation process), T 1 (defined later), and T 2 (dephasing process) which will be discussed in the next sections. 

|ψ(t) = c ↑ 1 (t)|ϕ ↑ 1 + c ↓ 1 (t)|ϕ ↓ 1 + c ↑ 2 (t)|ϕ ↑ 2 + c ↓ 2 (t)|ϕ ↓ 2 + ... (5.4.2)
Here we assumed that the states are ordered, |ϕ ↑ 1 and |ϕ ↓ 1 being the ground states, i.e. on an electronic energy diagram, the highest states of the valence band. Numerically, we used a Chebychev polynomial expansion for the resolution of the time propagation of the wave function equation with great precision and fidelity [START_REF] Leforestier | A comparison of different propagation schemes for the time dependent schrÃűdinger equation[END_REF].

Chebychev polynomial expansion

The Chebychev method is a polynomial method where the propagator e -iHt/ ψ can be expressed as a polynomial expansion as e -iHt/ ψ = where

a n (α) = i -i e -iαx Φ n (x) √ 1 -x 2 dx = 2j n (α) (5.4.5)
and

a 0 (α) = j 0 (α) (5.4.6)
where j n (α) are Bessel functions. The Chebyshev recurrence relation is

Φ n+1 (x) = 2xΦ n (x) + Φ n-1 (x) (5.4.7)
the expanded wavefunction becomes

ψ(t) = e -i(E min t/ +α) n a n (α)Φ n (-iH norm )ψ(0) (5.4.8)
where H norm is the renormalized Hamiltonian of bounded spectrum [-1, 1]

H norm = 2 H -I[(E max -E min )/2 + E min ] E max -E min (5.4.9)
I is the identity matrix and α = (Emax-E min )t 2 .

The polynomials is generated by the recurrence relation

φ n+1 = -2iH norm φ n + φ n-1 (5.4.10)
with

φ n = Φ n (-iH norm )φ(0) φ(0) = ψ(0) φ 1 = -iH norm ψ(0) (5.4.11)
The iteratively time-ordering Chebychev propagator is efficient and accurate. The error is distributed over the whole range of eigenvalues. For more details see ref [START_REF] Ndong | A Chebychev propagator with iterative time ordering for explicitly timedependent Hamiltonians[END_REF].

Two-level model

Relaxation process: T 1

The two-level model holds when |ψ(t) remains within the doublet |ϕ ↑ 1 |ϕ ↓ 1 during its evolution with time. The energy difference between the two states is the Zeeman splitting gµ B B = Ω in absence of perturbation. The matrices (chapter 2)

H 0 = 2    Ω 0 0 -Ω    U =    u ↑↑ u ↑↓ u * ↑↓ u ↓↓   
(5.4.12) are calculated numerically as described in the previous chapter. The coupling terms (the non-diagonal elements of the matrix U ) and the difference u ↑↑ -u ↓↓ result from the spin-orbit coupling and the time reversal symmetry breaking under the action of the magnetic field B which is detailed in the appendix B.

We define the Pauli matrices

σ 1 =    0 1 1 0   , σ 2 =    0 -i i 0   , σ 3 =    1 0 0 -1   
in the basis {|ϕ ↑ 1 , |ϕ ↓ 1 } which cannot be confused with σ x , σ y , σ z in which x, y, z refer to the axes of the system.

Multi-level model

A quantum dot like the one that forms our qubit is not limited to only two states.

There are many states that are more distant in energy than the doublet studied in the case of the two-level model. They are usually neglected considering that the coupling with these states is negligible and the qubit in its turn is considered as a two-state system. In this section, we take into account the coupling with these distant states in order to see their influence on the characteristic decoherence times T 1 and T 2 . We then consider that the qubit contains 2N states and we represent

H 0 and U in the basis {ϕ ↑ 1 , ϕ ↓ 1 , ϕ ↑ 2 , ϕ ↓ 2 , ..., ϕ ↑ N , ϕ ↓ N }.
T 1 and T 2 are calculated in the same way as in the two-level model but assuming non-zero terms of matrices of

σ 1 , σ 2 , σ 3 only in the subspace |ϕ ↑ 1 , |ϕ ↓ 1 .
The initial conditions are unchanged. The norm of the wave function in the two-

state model ϕ ↑ 1 |ψ(t) 2 + ϕ ↓ 1 |ψ(t)
2 remains equal to 1, whatever t. This is non longer the case in the multi-level model. This is due to the fact that all states are coupled together by the non-diagonal elements of the U -matrix and that for t → ∞ the weight of the wave function is distributed over all states, which will be discussed in chapter 6. For this purpose, we introduce a new quantity called

p 1 (t) = ϕ ↑ 1 |ψ(t) 2 + ϕ ↓ 1 |ψ(t) 2
which represents the sum of the wave function weights on the doublet states. It is clear that p 1 (t) will constrain T 1 and T 2 since they are calculated as a function of |ϕ ↑ 1 and |ϕ ↓ 1 . We then associate with p 1 (t) the characteristic time T 1 and which is calculated by fitting p 1 (t) {E} with a negative exponential as in the case of T 1 and T 2 .

Conclusion; outlook

In this chapter, we modeled a charge fluctuator coupled to a hole qubit. We used the solution of the time-dependent Schrödinger equation to compute the eigenvector ψ(t) using the Chebyshev polynomial expansion. Two models have been developed: the first one at two levels aims at verifying the analytical results of chapter 2 and the second one at several levels is used to study the influence of several states (> 2) on the decoherence. The next chapter will be devoted to the discussion of the results obtained from the simulations of the developed models and to the conclusion. device studied in this thesis. One of them is described in Figure 6.1. Table 6.1

shows the x, y and z coordinates of each trap in the device. We consider traps located in the oxide, sufficiently close to a metallic gate to allow charge tunneling between the trap and the metal. Trap 1 and Trap 2 are located in the oxide under the central gate and Trap 3 is located under the secondary gate of the device.

Each of these traps is separated from the gate by a distance of 0.6 nm. where d is the length of the dipole and r is the distance from the dipole to the hole. 

Potential

Except otherwise stated, we apply on the central gate a bias of -0.1 V, the secondary gates and the back gate are grounded. Figures 6.2 represent the potential in the transversal section (xoy plane) at z = 0 and the longitudinal section (xoz plane) at y = 0. The potential has a critical role to assure the confinement required along z to create the qubit in the nanowire under the central gate. 

Electronic structure, wavefunctions

2-level system

For the 2-level model, Figure 6.4 shows σ (t) for different frequencies ν of the fluctuator. σ (t) undergoes an exponential decay. The behaviour is different for m(t) (figure 6.5). There are coherent oscillations which have been predicted by the analytical calculations when δ = 1 2 ν 2 -ω 2 th in eq (2.5.22) becomes imaginary. They come from remanent coherent oscillations between the different realizations of the oscillators. For ν < ω th , m(t) undergoes oscillations with an envelope that decays exponentially. For ν = ω th there is only one oscillation so the decay is better described by a Gaussian function. For ν > ω th , m(t) undergoes an exponential decay, without oscillation. This type of behavior is described by the equation (2.5.22) of Chapter 2 which measures the visibility which represents m(t) in the valid when p 1 (t) ≈ 1. The results show that p 1 (t) undergoes an exponential decay but does not tend to zero contrary to σ (t) and m(t). p 1 (t) tends to 2/2N where 2N is the number of levels which is equal to 20 in this case.

In a 2-level quantum system, the relaxation should normally be the transition |↑ → |↓ , i.e. on the Bloch sphere, it is the transition along the Z axis, +1 → -1.

But as we see, σ (t) tends to 0, i.e. the final state is an equal superposition of two states. In other words, over time, if we start from ψ(t = 0) = |ϕ ↑ 1 , the final state can be written as

|ψ(t = ∞) = α|ϕ ↑ 1 + β|ϕ ↓ 1 where |α| 2 = |β| 2 = 1/2.
Then, in this case, the weight of the final wavefunction is equi-distributed on all the states of the basis taken into account and this comes from the fact that the system is studied in a semi-classical way where the spontaneous emission and dissipation are not taken into account. This explains the fact that, in the multi-level model, the weight on the first two states expressed in p 1 (t) tends to 2/2N , as the final state is equi-distributed on all states of the basis, and then σ (t) tends to 0. The mathematical demonstration of this reasoning is given in appendix (D).

Fit and determination of characteristic times

In order to extract the characteristic times corresponding to σ (t), m(t), p 1 (t), the curves are fitted with a function f (x) = e (-t/τ ) + b , where τ is the characteristic time which represents either T 1 , T 2 , T 1 , and b is a constant equal to 0 in the case σ (t) and m(t), different from 0 for p 1 (t).

Numerical limitations

We consider a magnetic field of 0.2712 T oriented along the direction characterized by θ = 90 • and ϕ = 45 • (figure 4.1) which leads to a Larmor frequency Ω/(2π) of 10 GHz. This forces us to use a time step of 10 -12 s for the numerical solution of the time-dependent Schrödinger equation for ν ≤ 2 × 10 11 s -1 , 10 -13 s for ν = 2 × 10 12 s -1 , 10 -14 s for ν = 2 × 10 13 s -1 and 10 -15 s for ν = 2 × 10 14 s -1 .

The maximum simulation time has been limited to 10 -4 s. We thus considered ν between 2 × 10 6 s -1 and 2 × 10 14 s -1 . However, the laws of variation of the characteristic times as a function of ν will allow us to extrapolate them to smaller tunneling rates ν which often characterize telegraphic noises at low temperatures [START_REF] Paladino | 1 / f noise: Implications for solid-state quantum information[END_REF].

Coherence times in 2-level model

In this section, we interpret the characteristic times in the 2-level model by comparing the numerical results obtained by time-dependent calculations with analytical ones already developed in chapter 2. The 2-level model is a special case of the Figure 6.9 shows that the results of numerical simulations are in correspondence with the analytical results. The curve of T 2 is formed by two different parts. For frequencies ν >> ω th , the number of qubit spin phase variations is large in time ≈ π/ω th . These phase variations can be described by a Gaussian distribution in this frequency range. So, in this Gaussian regime, the pure dephasing process is characterized by T * 2 = 4ν/ω 2 th [START_REF] Bergli | Decoherence in qubits due to low-frequency noise[END_REF][START_REF] Paladino | 1 / f noise: Implications for solid-state quantum information[END_REF]. T * 2 has a linear dependence on ν [START_REF] Bergli | Decoherence in qubits due to low-frequency noise[END_REF][START_REF] Paladino | 1 / f noise: Implications for solid-state quantum information[END_REF] because the 2-level system becomes more insensitive to the random disturbance once the frequency of this disturbance increases. In the low frequency range ν << ω th , the Gaussian approximation is no longer valid. The phase variation time 2π/ω th is much smaller than the switch time 1/ν and then there are not enough switches in a time equal to 2π/ω th to describe a Gaussian distribution of events. It will be clear (in the low frequency range) that the dephasing depends only on the fluctuator frequency, which is shown in Figure 6.9 where T 2 = T * 2 = 2/ν. The 2/ν line means that the qubit loses its coherence when the fluctuator undergoes its first switch.

T *

2 for any frequency in the pure dephasing model is given by equation (2.5.23) where ω th = |Ω -Ω | represents the angular frequency that separates the Gaussian and non-Gaussian regime. Figure 6.9 also shows that the dephasing time T 2 is determined by T 1 and T * 2 , as shown in equation (2.5.29), with T 1 being the characteristic time of the relaxation process. The results of the numerical calculation of T 1 correspond well with the analytical equation (2.5.28). Figure 6.9 shows that the qubit + fluctuator system enters in The dephasing time T 2 calculated by the numerical simulation corresponds well with the analytical equation. The reason is that the change in the Larmor frequency Ω → Ω is mainly determined by the diagonal term of U . In the frequency range ν < ω th , T 2 ≈ T * 2 . On the other hand, in the frequency range ν > ω th , T * 2 > T 1 . And therefore, from equation(2.5.29), we can deduce that T 2 ≈ 2T 1 . The dependence of T 2 on T 1 and T * 2 represents a coupling between the two phenomenon, the relaxation and the dephasing, which can be explained by the fact that u ij = 0 for all elements of the matrix U .

T 1 also varies as 1/ν for low tunneling rates (ν << ω th ), like T 2 , but with a prefactor In the 2-level model, the first two E ↑ 1 and E ↓ 1 levels define the qubit as a 2-level system. In the multi-level model, we consider 20 states, which corresponds to N = 10, in all our time-dependent simulations. two states 1 and 2 is the greatest as shown in figure 6.10 b.

2 Ω 2 |u ↑↓ | 2 instead of 2.

Coherence times in the multi-level model

The case of Trap 1

For ν << Ω 12 , T 1 varies as 1/ν, as in equation (2.5.28), but with a smaller factor compared to that of T 1 of the 2-level model.

The comparison of T 1 or T 1 of the multi-level model with T 1 of the 2-level model shows that the 2-level model is no longer valid to explain the qubit relaxation process.

We can conclude that the relaxation is influenced by the couplings to the higher energy levels which are stronger than the coupling between the two levels, which is clearly seen in figure 6.10 b. The relaxation of the system is globally governed by this effect. T 2 in the multi-level model in the frequency range ν < ω th coincides with T 2 of the 2-level model. For ν > ω th , T 2 approximately follows T 1 . This behavior can be explained by the fact that, in the low frequency range, the dephasing is affected by the fluctuator frequency more than the coupling strength. In the high frequency range, the dephasing will be dominated by T 1 , which is already seen in the 2-level model and remains true in the multi-level model.

Results for Trap 2 and 3

Traps 2 and 3 are configurations where the fluctuator is located at a larger distance from the qubit wavefunction than Trap 1. It is clear from Table (6.1) that ω th and u ↑↓ , and the coupling strength [figure (6.14)] decrease as a function of the distance to the qubit wavefunction. This can be seen on T 1 and T 1 of Trap 2 and 3 by the upward shift of the curve relatively to Trap 1, both for the 2-level and multi-level models. By increasing the distance (wavefunction-Trap), the coupling terms all decrease, but those with the higher energy states decrease less rapidly than those within the doublet of states then the shift between the two models increase. Thus the two-level model for T 1 becomes even less valid.

Comparing the T 2 curves of different traps, we notice the shift of ω th to lower frequency. We notice that T 2 for ν < ω th always follows the straight line 2/ν, no matter the position of the trap. This regime is already seen in the 2-level model discussed in the previous section and in ref [START_REF] Paladino | 1 / f noise: Implications for solid-state quantum information[END_REF]. This leads us to the conclusion 

Dependence on the magnetic field orientation and gate bias

In this part, we will study the influence of the magnetic field orientation and the back gate potential on the coherence time. This study allows us to optimize the effect of the charge fluctuator on the qubit decoherence.

A recent theoretical work on the same kind of hole qubit [START_REF] Venitucci | Electrical manipulation of semiconductor spin qubits within the g -matrix formalism[END_REF] has discussed the electrical manipulation of the qubit spin by radio frequency. It was found that the Rabi frequency depends on the orientation of the magnetic field and back gate voltage in a complex way, where the symmetry of the wave function in the nanowire plays an important role in understanding this dependence and is controlled by the back gate voltage. In addition, the g-matrix formalism offers a mathematical tool 

Discussion of the results

Since T 2 (ν = ω th ) = 2/ω th , it is interesting to study the cases where |u ↑↑ -u ↓↓ | = 0, where we could expect a divergence of T 2 (ν = ω th ). Figure 6.17 shows |u ↑↑ -u ↓↓ | = f (V BG , ϕ) as a function of back gate potential and ϕ for θ = π/2, i.e. the magnetic field is always in the xoy plane (figure 4.1). The modulus of the magnetic field is always fixed at 0.29T . In Figure 6.17, we see positive and negative regions, which define at their boundaries lines where u ↑↑ -u ↓↓ = 0, that we call sweet lines. Sweet lines are also visible in figure 6.18 which represents a 2D map of u ↑↑ -u ↓↓ as a function of θ and ϕ which define the orientation of the magnetic field, for V BG = 0, for the three trap. Figure 6.19 shows the evolution of T 2 for Trap 1 as a function of ν for a system placed on a sweet line. From this figure, ω th = 1.6 × 10 8 is found 10 times smaller than ω th of Trap 1 in Table (6.1) but not zero. It was expected that T 2 in this case would tend to infinity due to the fact that |u ↑↑ -u ↓↓ | = 0 but it is not the case because ω th also depends on the non diagonal elements of the potential matrix U.

In the two-level system, the Hamiltonian in state 1 is After diagonalization, the Larmor angular frequency Ω in the state 1 is defined by

H = H 0 + U =    Ω/2 + u ↑↑ u ↑↓ u * ↑↓ -Ω/2 + u ↓↓    . ( 6 
Ω = 2 Ω + u ↑↑ -u ↓↓ 2 2 + |u ↑↓ | 2 . (6.10.2)
We define the threshold angular frequency which is valid in particular when one seeks to reach a "sweet" point where u ↑↑ - It is also clear that at low frequency ν < ω th , T 2 is given by 2/ν and that is independent of the fluctuator potential conditions. This kind of behavior has already been discussed in the previous sections and proved mathematically in the appendix (C.1).

ω th = |Ω -Ω| = 2 Ω + u ↑↑ -u ↓↓ 2 2 + |u ↑↓ | 2 -
For ν such that T 1 becomes smaller then T * 2 in the 2-level model, T 2 tends to 2T 1 , and in the multi-level model, T 2 is driven by the coupling to high energy levels.

In conclusion, the behavior of T 2 in the case where u ↑↑ -u ↓↓ ≈ 0 (sweet line) is similar to the general case (u ↑↑ -u ↓↓ = 0) but what differs is that ω th is determined by the non-diagonal elements of the potential matrix which are in principle responsible for the relaxation phenomenon. Moreover, it is clear that T 2 (ν = ω th ) has become longer on sweet lines, even though it is not infinite. V BG ≈ -0.15 V, the wave function is located at the center of the nanowire along y, the heavy hole component is maximal as it is the case in a (100) silicon film.

In this case, the in-plane g factors are almost zero, the vertical g factor (g x ) is maximum. For higher or smaller values of V BG , the wave function is pushed to one side of the nanowire. The strong lateral confinement induces a significant increase in the respective weight of the wave function on the light hole states. As shown in Ref. [START_REF] Venitucci | Electrical manipulation of semiconductor spin qubits within the g -matrix formalism[END_REF], this transfer of the respective weight between heavy and light hole states makes that (Figure 6 is stationary with respect to V BG . Using Eq. (6.10.8), we deduce that (∂ Ω)/(∂ V BG ) = 0 for g x cos 2 ϕ = g y sin 2 ϕ (6.10.9)

It is also important to remind that the dependence in V BG of the Zeeman Hamiltonian is essentially through the electric field along the y axis which is the main modulating factor of the g factors. Similar results can be obtained by playing on the potential of the other gates, only the lever arm will be different [START_REF] Piot | A single hole spin with enhanced coherence in natural silicon[END_REF]. in which, we have δg x ≈ -δg y . δH Z contains additional terms like δg xy by , δg yx bx arising from the fact that the variation (differential) of the g matrix may not be diagonal in the same basis and magnetic axes frame as ĝ [START_REF] Venitucci | Electrical manipulation of semiconductor spin qubits within the g -matrix formalism[END_REF]. However, in the present case, these terms are small and the dephasing process is determined by the diagonal matrix elements

β = b x g x + b 2 x g 2 x + b 2 y g 2 y b 2 y g 2 y + b x g x + b 2 x g 2 x + b 2 y g 2
u ↑↑ = ϕ ↑ 1 |δH 0 + δH Z |ϕ ↑ 1 and u ↓↓ = ϕ ↓ 1 |δH 0 + δH Z |ϕ ↓ 1 .
After some algebra, we obtain: u ↑↑ = u 0 + δu (6.10.17)

u ↓↓ = u 0 -δu (6.10.18) with u 0 = ϕ ↑ 1 |δH 0 |ϕ ↑ 1 = ϕ ↓ 1 |δH 0 |ϕ ↓ 1 δu = - δg x b 3 x g 2 x + δg x b 2 x g x b 2 x g 2 x + b 2 y g 2 y + δg y b x b 2 y g x g y + δg y b 2 y g y b 2 x g 2 x + b 2 y g 2 y b 2 x g 2 x + b x g x b 2 x g 2 x + b 2 y g 2 y + b 2 y g 2 y .
(6.10. [START_REF] Ferraro | Is all-electrical silicon quantum computing feasible in the long term?[END_REF] We can verify that δu and therefore u ↑↑ -u ↓↓ cancels for δg x = -δg y and g x b 2 x = g y b 2 y [Eq. (6.10.9)], i.e. when (∂ Ω)/(∂ V BG ) = 0 as shown in figure 6.17 where, we can find the quasi sweet line contours around ϕ = 90 • ± 34 • which appear also in figure 6. [START_REF] Piot | A single hole spin with enhanced coherence in natural silicon[END_REF].

In Figures 6.23, we do not have straight lines, the analytical calculations provide an approximation and an explanation of the results of the figures which show u ↑↑ -u ↓↓ as a function of θ and ϕ presenting sweet lines aproximately equal to those given in the equation (6.10.10). A large increase in the coherence durations was seen, where the Larmor frequency is least dependent on the gate voltages, demonstrating the presence of these sweet lines, in agreement with the combined experimental and theoretical study of Ref. [START_REF] Piot | A single hole spin with enhanced coherence in natural silicon[END_REF]. Comparing figures 6.17 and 6.24, we can see that for 0.1 V < V BG < -0.15 V we have almost the same color profile and sweet lines. On the other hand for -0.15 V < V BG < -0.4 V the color profile changes when changing the position of trap where we assume that the distance separating the trap's wave function and its position have more influence in this region on the difference u ↑↑ -u ↓↓ . This is shown by the small distance separating the 2 sweet lines around V BG = -0.15 V in the case of Trap 1, which widens in the case of Trap 2. This shows the influence of the position of the trap in the device and its distance from the hole wave function.

The analytical description of this situation is a more difficult since it is necessary to calculate g x and g y taking into account the Trap 2 which has a symmetry breaking effect and makes the g-matrix formalism more complicated to calculate analytically, which has not been done in this thesis. device with four gates (light blue) labelled G1, G2, G3 and G4. Gate G2 defines a quantum dot (QD2) hosting a single hole; G3 and G4 define a hole island used as reservoir and sensor for hole spin readout; G1 defines a hole island screening QD2 from dopant disorder and fluctuations in the source. Using bias tees, both static voltages (V G1 , V G2 ) and time-dependent, highfrequency voltages (MW1, MW2) can be applied to G1 and G2, respectively. The drain contact is connected to an off-chip, surface-mount inductor to enable radiofrequency reflectometry readout. The coordinate system used for the magnetic field is shown on the left side (in the crystal frame, x = [001], y = [START_REF] Venitucci | Electrical manipulation of semiconductor spin qubits within the g -matrix formalism[END_REF] and z = [START_REF] Venitucci | Electrical manipulation of semiconductor spin qubits within the g -matrix formalism[END_REF]). Taken from ref [START_REF] Piot | A single hole spin with enhanced coherence in natural silicon[END_REF].

It is now important to try to compare our simulation results with experimental data. In this section, we focus on reference [START_REF] Piot | A single hole spin with enhanced coherence in natural silicon[END_REF] which concerned a situation very close to the one considered in this thesis. Indeed, the Grenoble researchers studied a four-grid (G1-G4) device (figure above). Grids G3 and G4 define a reservoir of holes that serves as a sensor for reading the hole spin. Grid G2 is used to form the quantum dot, and G1 defines another island of holes to screen the fluctuations coming from the source. Remarkably, the authors of this work are able to confine a single hole under G2, which allows a more direct comparison to theoretical simulations.

This study shows that the effective g factor is strongly anisotropic for the reasons discussed in [109] and in the previous sections. This anisotropy is very well described by the theory presented by the authors of ref [START_REF] Piot | A single hole spin with enhanced coherence in natural silicon[END_REF]. It should be noted that it was necessary for them to introduce small shear deformations within the Si nanowire to improve the agreement with the experiment. √ f where f is the frequency. The characteristic time which is deduced, noted T E 2 , depends on the orientation of the magnetic field (measured as function of the angle θ zx in the xz plane) and reaches the remarkable value of 88 µs at its maximum. This dependence is well described from the θ zx dependence of the measured ∂f L /∂V G1 and ∂f L /∂V G2 susceptibilities, where f L is the Larmor frequency and V Gi is the electric voltage on the Gi grid (figure above). This shows that T E 2 is limited by electrical noise generating horizontal and vertical electric fields as those induced by the different gates.

The authors of [START_REF] Piot | A single hole spin with enhanced coherence in natural silicon[END_REF] present other spin coherence measurements following the Carr-Purcell-Meiboom-Gill (CPMG) protocol which consists in applying an increasing number of π pulses which progressively cancels the fastest phase shift effects.

Other measures consist in applying Ramsey sequences formed by two π/2 pulses separated by a variable delay. In contrast to the Hahn echo, the phase shift induced by low frequency noise sources is not cancelled due to the absence of a π refocusing pulse. The phase shift decreases with increasing measurement time t meas due to the Chapter 6: Results of time-dependent simulations contribution of lower and lower frequency noise components. These experiments highlight the likely influence of noise induced by hyperfine interactions because the device is fabricated in natural silicon including the 29 Si isotope with non-zero nuclear spin. The power spectrum of this noise at low frequency (10 -4 -10 -2 Hz) behaves like 1/f . Although experiments show that the high frequency noise has an electrical origin, its precise physical origin remains unknown. We can assume that it comes from a number of fluctuators like those studied in this thesis. Let us first assume that a very small number of fluctuators contribute to most of the noise. Each fluctuator n can be characterized by its threshold angular frequency ω n th and by its oscillation frequency ν n . If ν n < ω n th , each fluctuator is in the non-Gaussian regime. It is then easy to show that T * 2 is given by 2/ n ν n (Appendix C). In the probable case where one of the fluctuators is much faster than the others (of frequency ν max ), T * 2 is given by 2/ν max , i.e. the coherence is bounded by the fastest of the fluctuators, by the moment when it first changes state. In this regime, T * 2 does not depend on the magnetic field orientation and is not related to the noise spectrum S(ω)

for ω → 0. We can therefore deduce that the experimental system of [START_REF] Piot | A single hole spin with enhanced coherence in natural silicon[END_REF] does not work in a configuration dominated by a small number of fluctuators in the non-Gaussian regime.

The most likely situation is that the fluctuators involved in the measured noise are characterized by ν n > ω n th , i.e. they operate in the Gaussian regime. As the measured time T E 2 is relatively long, this means that the threshold angular frequencies ω n th are low, smaller than ≈ 10 4 Hz. Since ω th = |u ↑↑ -u ↓↓ |/ , we conclude that the fluctuators involved are characterized by weak coupling terms (U matrix), which corresponds to defects very far from the qubit, or characterized by a weak charge displacement (U ∝ d where d is the dipole), or whose dipole potential is strongly screened, for example by a gas of holes. T * 2 is then determined by the noise spectrum induced by the totality of the "far" fluctuators. This situation seems reasonable (but not guaranteed), since the component studied experimentally in [START_REF] Piot | A single hole spin with enhanced coherence in natural silicon[END_REF] has been chosen among the best of the manufactured batch. The devices are sorted by an automatic prober which measures their I(V ) characteris-Chapter 6: Results of time-dependent simulations tics at room temperature. Those selected for low temperature measurements are those with the best performances, e.g., uniformity of threshold voltages between the different gates, value and uniformity of sub-threshold slopes, absence of gate leakage currents... It could be interesting in the future to characterize noisier devices in order to see if non-Gaussian behaviors induced by a small number of "closer" telegraphic fluctuators can be highlighted. One could also imagine very low noise situations where the influence of the distant environment is reduced but remains governed by a few extremely slow fluctuators for which ν n < ω n th . In these cases, the coherence time would become independent of the magnetic field orientation.

Conclusion; outlook

The results obtained in this chapter show the impact of the distance separating the fluctuator from the hole wave functions on the coherence time. Furthermore the comparison of the 2-level model with the multi-level model shows that the 2-level model is not sufficient to describe all the existing effects that cause the decoherence and that the coupling of the fundamental doublet with the other energy states has a non negligible effect on the hole qubit relaxation. It was also found that, in the low frequency range, the dephasing time is described by 2/ν which is a physical limit attached only to the fluctuator frequency. It was also possible to find socalled sweet lines on which the effect of the fluctuator on the dephasing is reduced but not cancelled due to the influence of non-diagonal coupling matrix elements.

Chapter 7

Bloch-Redfield

Intoduction

In this chapter, we discuss the Bloch Redfield theory as an approach to calculate the characteristic relaxation and dephasing times T 1 and T 2 respectively for a twostate system. We describe the theory and the general equations. We introduce two models with which we deduce the coherence characteristic times. Then we discuss the results obtained with the two approaches compared to the results obtained in chapter 6.

Description of the theory

A method for obtaining a master equation describing the dynamics of a microscopic system in interaction with its environment is the Bloch-Redfield formalism.

Under the notion of weak system-environment coupling, it begins from a combined system-environment perspective and develops a perturbative master equation for the system alone. On the positive side, this method has the benefit of immediately obtaining the dissipation processes and rates from environmental characteristics such as correlation functions. On the negative side, it does not automatically ensure that the resultant master equation unconditionally maintains the density matrix's physical characteristics (because it is a perturbative method). Therefore, Chapter 7: Bloch-Redfield caution should be paid while using the Bloch-Redfield master equation, and the derivation's underlying assumptions must be respected. See, for instance, [START_REF] Cohen-Tannoudji | Atom-photon interactions: basic processes and applications[END_REF] or [START_REF] Breuer | The Theory of Open Quantum Systems[END_REF], for a complete derivation of the Bloch Redfield master equation. Below we provide a simplified description of the derivation.

We recall the Liouville-von Neumann equation which describes the evolution of the density matrix ρ as a function of time. 

∂ ∂t ρ(t) = [H, ρ(t)] (7.2.1)
We consider that a system Hamiltonian H S is weakly coupled to an environment of bath Hamiltonian H B . The coupling Hamiltonian V is considered separable as shown in equation (7.2.2) where S n plays on the Hilbert space of the system and B n plays on the Hilbert space of the bath.

H(t) = H 0 + V (t), H 0 = H S + H B , V = n S n ⊗ B n (7.2.2) ρ I (t) = e iH 0 t/ ρ(t)e -iH 0 t/ V I (t) = e iH 0 t/ V (t)e -iH 0 t/ (7.2.
3)

The density matrix ρ I (t) and the coupling Hamiltonian V I (t) in the interaction picture are introduced by the transformations that appear in equation (7.2.3).

The development of the equation (7.2.1) in the interaction picture reads as

i ∂ ∂t ρ I (t) = [V I (t), ρ I (t)] (7.2.4)
where H 0 disappears in this representation. Formal integration gives

ρ I (t) = ρ I (0) - i t 0 [V I (τ ), ρ I (τ )]dτ (7.2.5) wich leads to ∂ ∂t ρ I (t) = - i [V I (t), ρ I (0)] - 1 2 t 0 dτ [V I (t), [V I (τ ), ρ I (τ )]] (7.2.6)
As discussed by Breuer and Petruccine [START_REF] Breuer | The Theory of Open Quantum Systems[END_REF], all observations of interest refer to the system S and are therefore of the form A ⊗ I B where A acts on Hilbert space of the system and I B is the identity operator in the Hilbert space of the bath. 

Expectation values given by

A (t) = T r{ρ(t)
∂ ∂t (ρ SI (t)) = - 1 2 t 0 dτ T r B [V I (t), [V I (τ ), ρ SI (t) ⊗ ρ B ]] (7.2.11)
which depends on the initial state ρ SI (0) and therefore remains non-Markovian.

A Markovian quantum master equation is obtained by substituting τ by t -τ and by extending the integration to ∞ [START_REF] Breuer | The Theory of Open Quantum Systems[END_REF] :

∂ ∂t (ρ SI (t)) = - 1 2 ∞ 0 dτ T r B [V I (t), [V I (t -τ ), ρ SI (t) ⊗ ρ B ]] (7.2.12)
which is of second order in V I (weak coupling to the bath).

The next step is to write the system-bath coupling in the form

V I = n S n ⊗ B n (7.2.13)
where S n and B n are system and bath operators, respectively. This allows to rewrite the equation in terms of correlation functions B n (τ )B m (0) = T r B {B n (τ )B m (0)ρ B } using the fact that the bath is considered in a stationary state on the coarse-grain time scale on which we describe the system evolution.

General equations for classical noise 7.3.1 General case of a N-level system

A usual situation is to work is the basis of the eigenstates (of energies E α ) of the time-independent H S . In a semi-classical approach, the interaction with the bath is just described by the matrix of V (t) in this basis. Following Redfield [START_REF] Redfield | On the Theory of Relaxation Processes[END_REF], equation ( 7 with ω αβ = (E α -E β )/ and

g αβδγ (ω) = 1 2 ∞ -∞
dτ e iωτ V αβ (τ )V δγ (0) (7.3.3) In equation 7.3.1, R is the Redfield tensor derived in reference [START_REF] Redfield | On the Theory of Relaxation Processes[END_REF]. g represents the noise-power spectra of the environment. R describes the relaxation of the system due to the perturbation of the environment. The element R ααδδ is the transition rate from state δ to α.

We recall that the Bloch-Redfield equation is justified when the dynamics and relaxation of the system take place over a long time compared to the correlation times of the environment. This means that the following conditions must be verified : |R -1 αβδγ | >> τ c with V αβ (t)V δγ (0) ≈ e -τ /τc at long time.

General case of a 2-level system

We return to the particular case of the two-level system subjected to telegraph noise. H S and V are represented in the basis {↑, ↓} that we denote {0, 1} for convenience. ρ S is the density matrix of the system with ρ 00 S + ρ where B(t) was defined in eq (2.5.4) as χ(t) -χ(t) . The correlation functions are given by g αβδγ (ω) = ∆U αβ U δγ ν 2 + ω 2 (7.3.5)

where ∆ = q 0 q 1 , equal to 1/4 when q 0 = q 1 = 1/2.

The element of R and g are given in the appendix (E). This allows to write the R matrix as 

R =           R 0000 R 0001 R * 0001 -R 0000

The differential equation system

The Bloch-Redfield equations give us a system of coupled differential equations for the density matrix elements which reads as 

∂ ∂t           ρ 00 S (t) ρ 01 S (t) ρ 10 S (t) ρ 11 S (t)           =                     0 0 0 0 0 -iΩ 0 0 0 0 iΩ 0 0 0 0 0           + R                     ρ 00 S (
      = K 1 e λ 1 t       a 1 b 1 c 1       + K 2 e λ 2 t       a 2 b 2 c 2       + K 3 e λ 3 t       a 3 b 3 c 3       (7.3.10) 
we obtain 3 characteristic times T 1 = -1 Re(λ 1 ) , T 2 = -1 Re(λ 2 ) and T 3 = -1 Re(λ 3 ) . Numerical calculations show that λ 2 = λ * 3 and therefore T 2 = T 3 .

Particular case of Rotating Wave Approximation

We describe the Rotating Wave Approximation (RWA) allowing to decouple the differential equations. The density matrix can be expressed in the rotating frame as ρ SI (t) = e iH 0 t/ ρ S e -iH 0 t/ (7. as discussed in the previous section. We see that, for ν 5 × 10 

T 1 using perturbation method

The behavior of T 1 predicted by the numerical solution of the Bloch-Redfield equation (Figure 7.1), through the diagonalization of the Y matrix of the Equation (7.3.8), shows a surprising behavior, with a considerable increase at low frequencies, which corresponds to an eigenvalue λ 1 of equation (7.3.10) rapidly tending towards 0. It is therefore important to check that this is not an artifact of the numerical calculation. We show here that this is not the case by demonstrating that the same value of T 1 can be obtained analytically by a perturbation approach.

The 3 × 3 system of differential equations (7. Our goal is to compute the first order perturbation δλ 1 induced by δY . The difficulty is that Y and δY are not symmetric. Reference [START_REF] Greenbaum | First-order Perturbation Theory for Eigenvalues and Eigenvectors[END_REF] shows that we have to calculate the left eigenvector for the same eigenvalue, v|Y (0) = λ It is possible to give two first explanations for this result. First, the values of T 1 always remain much longer than the correlation time 1/ν, and thus the Gaussian approximation remains valid. Secondly, the RWA amounts to decoupling the equations for T 2 and T 1 , and thus to annihilate the effect of the terms R 0001 and R 0101 which become problematic at low frequency.

In addition, we present in Appendix D an exact calculation of T 1 in the limit where ν Ω. The obtained expression agrees with T 1 obtained by the Bloch-Redfield approach in the RWA (Equation 7.3.20).

Conclusion and outlook

In this section, we have applied the Bloch-Redfield theory to the two-level problem of a qubit perturbed by a random telegraphic noise. The results agree with exact time-dependent simulations at high frequency. This is no longer true at low frequency when the Gaussian approximation fails or when dynamical processes of the qubit spin determined by the transition rates of the Bloch-Redfield tensor become faster than the correlations of the fluctuator. However, the relaxation time T 1 is correctly given in the whole frequency range by the Bloch-Redfield theory in the RWA. These results clarify the domains of validity of the Bloch-Redfield theory for the problems of interest in this thesis.

Chapter 8

Conclusions

In this thesis, we focused on the theoretical study of the influence of quantum noise represented by a single charge fluctuator on a hole qubit in silicon technology. The background in this thesis was provided by the extensive theoretical and experimental work that was done at CEA on the development of a semiconductor quantum computer platform. Chapter 3 and 4 summarize some of this work.

This helped us to understand better the physics of these qubits. Moreover, the bibliographical study presented in chapter 2 gave us a picture of the strategy that we have to follow to model a single charge fluctuator in a real device, which was realized in chapter 5 where we did not stop to consider the qubit system as a two-state system but to go further and ask the question: do the other states of the quantum dot play a role too?

General Conclusions

Thanks to the model developed in chapter 5, we have simulated the spin decoherence in a hole qubit due to the presence of a single charge fluctuator which undergoes telegraphic electrical noise. Thanks to the results obtained and discussed in chapter 6, we found that the dephasing time T 2 in the low frequency range (ν < ω th ) is not described by the Gaussian approximation due to the fact that the phase distribution in this regime is not Gaussian as expected by the 

Perspectives

The perspectives of this thesis can be divided in two parts. The first one is to further develop the models used to better describe the decoherence of a hole qubit. In this work, we have studied the system from the semi-classical point of view where we have not taken into account the spontaneous emission and therefore it will be good to study the system from the purely quantum point of view and see the influence of the spontaneous emission on the decoherence, especially in the multi-level model whether it decreases or increases the effect of coupling to other

states. An important study would be to simulate this effect by taking into account the electron-phonon coupling that will contribute to relax the system from high energy states to low energy ones.

There are several sources of microscopic noise that are not yet studied. So the second part of the prospects will be to study the influence of other existing noise sources such as the charge impurities in the source and drain of the transistor which may have a more dynamic aspect. In particular, it would be important to understand the origin of the 1/ √ f noise that has been observed experimentally and
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 33538 a) Double quantum dot (3D schematic). b) Top view of double quantum dot device. From ref [7]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4 (a) Bulk silicon band structure. (b) Zoom on the valence band maximum and the conduction band minimum. From ref [8]. . . . . . . . . . . . . . . . . . . . . . . . . . . The impact of potential and confinement on the valley states in the case of an electron spin qubit [9]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix List of Figures 3.6 Diagram showing two quantum dots linked with a source and a drain. The source is grounded, while the voltage supplied to the drain is designated as V d . The electro-chemical potentials of the quantum dots are controlled by the gate voltages V G1 and V G2 . The hole transport is shown by the black arrows. Inspired from refs [10, 11]. . . . . . . . . . . . . . . . . 3.7 a) Diagram illustrating the Coulomb blockade. b) The filling of one of the two quantum dots, which are coupled to a source and a drain. In both scenarios, the drain/source voltage is 0. . Diagram of stability according to the gate voltages V G1 andV G2 . A ideal case would have a gate controlling each of the quantum box chemical potentials. b) The quantum boxes are connected in this realistic case. Two triple points are framed by the brown square. c) Zoom of the square showing current triangles at the limit of different regions. Inspired from refs [10, 11]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.9 Chemical potentials for Pauli blocking are distributed. A spin ⇑ particle is depicted in green, whereas a spin ⇓ particle is depicted in blue. a) Charge can be transmitted to the source since the spin states are not blocked. b) The spin states are blocked, making it impossible for charges to go from the drain to the source. . . . . . . . . . . . . . . . . . . . 3.10 Linear drain-source conductance vs gate voltage for the device described in this section 3.6 at various temperatures. Inset: zoom on periodic Coulomb oscillations on a linear scale. From ref [12]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 .

 3 12 a) Image of the device obtained by scanning electron microscopy. b) Current triangles measured in the experimental device. The electrical polarizations V 0 and V 1 located out the triangle correspond to a Coulomb blocking configuration. The electrical polarization represented by a yellow star corresponds to a possible Pauli blocking configuration. Based on ref [13]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x List of Figures 3.13 Source-drain current I d is measured at the polarization point shown by a yellow star in the voltage-current diagram of Figure 3.12 b as a function of the frequency fac of the radiofrequency wave (Vac of Figure 3.12 a) and the amplitude of the magnetic field B in Pauli blocking. From ref [13]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.14 A full spin reversal is shown in the initiation, handling, and reading cycle (schematic). a) The initial state of Pauli blocking. b) Electrical control of the spin by temporary Coulomb blockade of dot 2 with a resonant radio frequency modulation on its gate. c) Pauli blockade reading. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.15 Average current I d as a function of the time τ during which the RF signal applied (Figure 3.14). Drawn from ref [13]. . . . . . . . . . . . . . . . . . . . . . . . . . . .
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 27273757611 versus magnetic field angle θzx (symbols). The solid line is a fit. Taken from ref[START_REF] Piot | A single hole spin with enhanced coherence in natural silicon[END_REF]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.1 Characteristic times T 1 (green) and T 2 (red) obtained with the Bloch-Redfield equations (solid lines) and with the time-dependent simulations (squares and crosses, respectively). The blue line represents a time varying as 2/ν. . . . . . . . . . . . . . . . . . . . Absolute value of the elements of the R tensor versus frequency ν. The black dashed line represents the limit of a transition rate equal to ν. Matrix elements of R larger in absolute value than ν mean that the Bloch-Redfield theory is no longer in its domain of validity. . . . Absolute value of the elements of the matrix Y . Note that |Y 23 | = Ω. . . . . . . . . . . 7.4 T 1 versus ν obtained using numerical resolution of Equation (7.3.8) or using the perturbative approach [Equation 7.5.6]. . . . . . . . . . . . . . . . . . . . . . . . . . . . Values of T 1 calculated with Ω and U reduced by a factor 50 and 10, respectively. Green squares: time-dependent simulations. Green solid line: Bloch-Redfield theory. Red dashed line: Bloch-Redfield theory in the RWA. . . . . . . . . . . . . . . . . . . . . . . Characteristic times T 1 (green) and T 2 (red) obtained with the Bloch-Redfield theory in the RWA (solid lines) and with the time-dependent simulations (squares and crosses, respectively). The blue line represents a time varying as 2/ν. . . . . . . . . . . . . . . . . xv List Characteristics of different spin qubits based on semiconductor technology. f is the qubit frequency, T * 2 the coherence time, T 2 the dephasing time (spin echo) and Q = T * 2 /T π the quality factor. Reproduced from Ref [19]. . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Number of physical qubits per unit surface M qb ph /cm 2 and area A chip (mm 2 ) covered by 2 billions of physical qubits. The silicon hybrid qubit footprint refers to the 7 nm technology node. From Ref [19]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1 Spin-orbit energy ∆ so in the valence band, Luttinger parameters and parameter κ [20] for different semiconductors. . . . . . . . . . . 6.1 Studied charge traps. Position: The coordinates x, y and z are defined with respect to the axes specified in figure 4.1. Characteristics deduced from the perturbation matrix U : angular frequency ω th ≈ |u ↑↑ -u ↓↓ |/ and |u ↑↓ | is the modulus of the non-diagonal matrix element. With Larmor frequency Ω = 2π × 10 10 rad/s. . . . Abtract Noise sources are one of the critical factors that determine the performance of qubits in quantum computing applications. Noise sources refer to any external factors that can cause errors or decoherence in a qubit. In this thesis, we have simulated these effects in the case of a hole spin qubit in Silicon-On-Insulator (SOI) technology. Charge fluctuators are one of the major sources of noise in hole spin qubits. The presence of moving charges can introduce fluctuations in the electric field around the hole. Charge fluctuators may arise from impurities or defects in the oxide layers in the vicinity of silicon regions. They can induce random changes in the energy levels, wavefunctions and g-factors of the hole spin, causing errors or decoherence in the qubit.

  Les fluctuations de charges sont l'une des principales sources de bruit dans les qubits de spin à trous. La présence de charges mobiles peut introduire des fluctuations dans le champ électrique autour du trou. Les fluctuateurs de charge peuvent provenir d'impuretés ou de défauts dans les couches d'oxyde à proximité des régions de silicium. Ils peuvent induire des changements aléatoires dans les niveaux d'énergie, les fonctions d'onde et les facteurs g du spin du trou, provoquant des erreurs ou la décohérence du qubit. Il est donc essentiel d'étudier l'impact des fluctuateurs de charge sur le qubit de spin de trou. Nous simulons un point quantique confinant un seul trou. Le confinement est défini par des grilles électrostatiques sur un nanofils de silicium. Notre objectif est de décrire le qubit de manière aussi réaliste que possible par rapport aux technologies qui ont été récemment développées et caractérisées. Notre simulation prend en compte la relaxation et le déphasage du spin du trou dans le temps en combinant les équations de Poisson et de Schrödinger dépendant du temps pour modéliser un signal télégraphique aléatoire classique. Notre approche est capable de décrire les effets combinés des champs électriques fluctuants et du couplage spin-orbite sur la dynamique du spin, sans aucun paramètre libre. Nous montrons que le modèle à deux niveaux bien connu décrit efficacement List of Tables le temps de déphasage T 2 sur une large gamme de fréquences ν du signal télégraphique. Lorsque ν est faible, la décohérence est déterminée par le comportement à court terme de la phase de précession du spin qui est alors caractérisée par une distribution non gaussienne, la cohérence de la phase est perdue dès que le fluctuateur change d'état. La description gaussienne n'est précise qu'audessus d'une fréquence seuil ω th , lorsque le système à deux niveaux répond à la distribution statistique des états du fluctuateur. Le temps de déphasage T 2
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 111 Figure 1.1: Relationship between information theory and quantum mechanics [1].
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 1 Context of the thesis -Introduction to quantum computing

Figure 1 . 2 :

 12 Figure 1.2: (a) Superconducting qubits model. X designs Josephson junction. The capacitance C includes a contribution from the junction itself. (b)-(e) Graphs of superconducting qubits with micro meter scale. The circuits are made of Al films. The Josephson junctions consist of Al 2 O 3 tunnel barrier between two layers of Al. (b) Charge qubit, or a Cooper pair box. (c) Transmon, a derivative of charge qubit. The Josephson junction in the middle is not visible in this scale. (d) Flux qubit. (e) Phase qubit. From ref. [2]
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 1 Context of the thesis -Introduction to quantum computing motion is well described by quantized normal modes of harmonic oscillation.
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 13 Figure 1.3: Schematic of ion trap qubit. Electric potentials are applied by electrodes to confine a 1-D crystal of individual atomic ions. Laser is used to entangle the internal levels of qubit. Resonant lasers can also cause spin-dependent fluorescence for the efficient detection of the trapped ion qubit states [2].
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 1 Context of the thesis -Introduction to quantum computing the development process. Figure 1.4 presents two different types of quantum dots:

Figure 1 .

 1 Figure 1.4 (b) shows a self-assembled quantum dots where the growth process used results in small islands on a layer of semiconductor, these islands represent quantum dots.
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 14 Figure 1.4: (a) Schematic of an electrostatically confined quantum dot. (b) A self-assembled quantum dot [2].

Figure 1 .

 1 Figure 1.4 (a) shows an electrostatically defined quantum dot where the potential of metal gates creates the energy confinement. The electrostatically defined quan-

Figure 1 .

 1 Figure 1.5 shows a double quantum dot defined in a silicon nanowire. Each dot is electrostatically confined by the potential provided by a gate, in the corner of the silicon nanowire, in which a single electron or hole or a small number of electrons (holes) can be trapped. The qubit spin control is done via a technique called EDSR (Electric Dipole Spin Resonance) which consists of using a variable electric field and the spin-orbit coupling to control the qubit spin.
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 15 Figure 1.5: Schematic of a double quantum dot system, from ref.[3]. Each dot is defined in a Si nanowire under a gate. Other configurations of double quantum dots in a Si nanowire will be presented in chapters 3 and 4.
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 1 Context of the thesis -Introduction to quantum computing transferred one by one between the dots. The effect of Coulomb/Pauli blockade can be used to measure the state of the spin according to the presence or absence of electronic transfer by the technique of RF (Radio Frequency) reflectometry.
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 116 Figure 1.6: Spin lifetimes for different silicon spin qubit based on quantum dots or single donor impurities. T 1 is relaxation time and T 2 is dephasing time sketched on the sphere at the right. The arrows show how the characteristic times become larger at lower temperatures. Reproduced from Ref [4].

Figure 2 . 1

 21 presents a transistor with the different sources of existing noises (Courtesy : Y. M. Niquet). The gate noises (GN) are the noises produced by the metal gate of the transistor which are of magnetic and thermal fluctuation origin. The thermal noise also Chapter 2: Decoherence and dephasing

Figure 2 . 1 :

 21 Figure 2.1: Noise sources. (SR): Surface roughness, (DT): quasi-static charge traps in the gate oxides and embedding materials, (ST): Shallow impurities near the source and drain possibly capturing/releasing charges during the operation of the qubit, (PH): Phonons, (NS): Nuclear spins, mostly in natural Si, (GN): Gate (and magnetic field) noise.
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 2 Decoherence and dephasing

Figure 2 . 2 :

 22 Figure 2.2: Band structure of silicon phonons along the L→ Γ → X path in the first Brillouin zone. Solid and dashed lines correspond to two computational methods. Circles represent experimental data. Adapted from reference [5].

Figure 2 . 3 :

 23 Figure 2.3: The degeneracy between the highest occupied levels of |↑ and |↓ spin states is lifted by a static magnetic field B.
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 412 Chapter Decoherence and dephasingwhere Ω is the frequency of precession, i.e. the Larmor frequency, and |↓ , |↑ are the spin basis states of the electron or hole. Generally the decoherence of a qubit is defined by the loss of quantum information. It results from the change in the qubit dynamics due to various sources of noise and interactions. In this work, we study the decoherence due to single charge fluctuators[START_REF] Paladino | 1 / f noise: Implications for solid-state quantum information[END_REF]. The relaxation and the dephasing are two process defining the decoherence. The dissipative process where the electron spin state goes from up to down is (|↑ → |↓ ) is called relaxation, it is associated with the characteristic time T 1 . On the Bloch sphere Figure 2.4, it corresponds to a path of the state along a z-axis, that means a change of θ. On the other side, the dephasing corresponds to the phase shift of spin compared to the perfect spin precession, i.e. a change in the phase ϕ on the Bloch sphere, it is associated with the characteristic time T 2 .
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 24 Figure 2.4: Bloch sphere.
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 25 Figure 2.5: telegraphic signal.

ψ

  is the superposition of |↑ and |↓ with a phase term exp(iϕ(t)/2) that describes the fluctuations due to the coupling to the fluctuator and ϕ(t) equation (2.5.10) represents the time evolution of the phase.The equation (2.5.9) gives the temporal evolution of the wave function of a single realization. Experimentally, what interests us is to make an average on several measurements or realizations. Then, it is necessary to make the average of the measurements with respect to ϕ as shown in the equation(2.5.11) 

  ϕ represents the average of phase fluctuation ϕ on several realizations. ... ϕ = dϕ(...)p(ϕ, t) (2.5.15)

Figure 2 . 6 :

 26 Figure 2.6: Plot showing the probability distribution function p(ϕ, t) as a function of phase ϕ for weak coupling ω th /ν = 0.5. The probability distribution is cut at ϕ = ω th t/2 by the δ function, which is indicated by the arrows, and the dashed line represents the asymptotic Gaussian distribution.
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 31 Figure 3.1: Trigate silicon MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor) fabricated at Leti. SiO 2 in green, silicon is in red, the metallic gate is in gray and Hf O 2 in blue.

Figure 3 . 2 :

 32 Figure 3.2: a) A MOSFET transistor with long spacers that capacitively couple to the source and drain contacts while isolating a quantum dot under the gate. b) Measured Coulomb oscillations at 4.2 K and 400 mK (black curve) (blue curve). From ref [6].
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 3333 Figure 3.3: a) Double quantum dot (3D schematic). b) Top view of double quantum dot device. From ref [7].

Figure 3 . 4 :

 34 Figure 3.4: (a) Bulk silicon band structure. (b) Zoom on the valence band maximum and the conduction band minimum. From ref [8].
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 35 Figure 3.5: The impact of potential and confinement on the valley states in the case of an electron spin qubit [9].
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 3 Silicon spin qubits dot is dedicated to measure the spin state of this qubit by acting as a spin filter by a spin-current conversion. For this purpose, we introduce the stability diagram and the current triangle with the two phenomena of Coulomb blockade and Pauli blockade in the double quantum dot device.

Figure 3 . 6 :

 36 Figure 3.6: Diagram showing two quantum dots linked with a source and a drain. The source is grounded, while the voltage supplied to the drain is designated as V d . The electro-chemical potentials of the quantum dots are controlled by the gate voltages V G1 and V G2 . The hole transport is shown by the black arrows. Inspired from refs [10, 11].
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 51 where µ(N ) represents the electro-chemical potential of the dot with N carriers, Ec represents the Coulomb interaction energy and ∆E represents the energy difference Chapter 3: Silicon spin qubits between the quantum states in the dot[START_REF] Hanson | Spins in few-electron quantum dots[END_REF]. In the case of a spin degenerate state (∆E = 0), the injection of a second electron still requires an energy E c , which is at the core of Coulomb blockade phenomenon. Coulomb blocking will occur when all the states of the quantum dot below the electro-chemical potential are completely filled. The quantum dot is linked to the source and drain in a oneelectron transistor. This quantum dot can contain an extra particle when the gate-controlled electro-chemical potential µ(N + 1) falls below the drain or source Fermi level at zero drain-source voltage. On the other hand, if the electro-chemical potential µ(N) exceeds the Fermi level, the dot loses a particle. The number of particles in the dot is constant as long as µ(N ) < E F < µ(N + 1) at T = 0.

Figure 3 . 7 :

 37 Figure 3.7: a) Diagram illustrating the Coulomb blockade. b) The filling of one of the two quantum dots, which are coupled to a source and a drain. In both scenarios, the drain/source voltage is 0.

Chapter 3 :Figure 3 . 8 :

 338 Figure 3.8: Diagram of stability according to the gate voltages V G1 andV G2 . A ideal case would have a gate controlling each of the quantum box chemical potentials. b) The quantum boxes are connected in this realistic case. Two triple points are framed by the brown square. c) Zoom of the square showing current triangles at the limit of different regions. Inspired from refs [10, 11].
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 39 Figure 3.9: Chemical potentials for Pauli blocking are distributed. A spin ⇑ particle is depicted in green, whereas a spin ⇓ particle is depicted in blue. a) Charge can be transmitted to the source since the spin states are not blocked. b) The spin states are blocked, making it impossible for charges to go from the drain to the source.

  transistor, based on SOI technology similar to the one described at the beginning of the chapter. A doped Si nanowire of length 200 nm, width 30 nm and height 17 nm is defined by electron beam lithography and wet etching. Silicon nitride spacers of 50 nm are present on the two sides of the gate (Figure 3.2).
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 310 Figure 3.10: Linear drain-source conductance vs gate voltage for the device described in this section 3.6 at various temperatures. Inset: zoom on periodic Coulomb oscillations on a linear scale. From ref [12].

Figure 3 . 11 :

 311 Figure 3.11: Numerical simulations of the doping (left) and potential (right) along the wire. Under the spacers and the gate, the undoped regions provide a flat potential at Vg = 0V , which is decreased in its center by the gate voltage, forming a well that is isolated by two barriers.

  .12). Two metal gates are placed in series perpendicular to the nanowire and are separated by 30 nm. Each of them covers 35 nm of the nanowire. The 50 nm thick poly-Si and 5 nm thick TiN grids are separated from the nanowire by a few nanometers thick SiO 2 oxide layer. Silicon nitride spacers cover the gaps around the gates. The drain and source are heavily p-doped. The z=[001] axis is perpendicular to the substrate. Thanks to the voltage applied on the gates, one can control the number of charges in the quantum dots formed in the nanowire under each gate, to make the number of charges as small as possible.

Figure 3 .

 3 Figure 3.12: a) Image of the device obtained by scanning electron microscopy. b) Current triangles measured in the experimental device. The electrical polarizations V 0 and V 1 located out the triangle correspond to a Coulomb blocking configuration. The electrical polarization represented by a yellow star corresponds to a possible Pauli blocking configuration. Based on ref [13].
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 313 Figure 3.13: Source-drain current I d is measured at the polarization point shown by a yellow star in the voltage-current diagram of Figure 3.12 b as a function of the frequency fac of the radiofrequency wave (Vac of Figure 3.12 a) and the amplitude of the magnetic field B in Pauli blocking. From ref [13].

Figure 3 . 14 :

 314 Figure 3.14: A full spin reversal is shown in the initiation, handling, and reading cycle (schematic). a) The initial state of Pauli blocking. b) Electrical control of the spin by temporary Coulomb blockade of dot 2 with a resonant radio frequency modulation on its gate. c) Pauli blockade reading.

Figure 3 . 15 :

 315 Figure 3.15: Average current I d as a function of the time τ during which the RF signal applied (Figure 3.14). Drawn from ref [13].

Figure 3 . 16 :

 316 Figure 3.16: Larmor frequencies at the two electrical polarizations V 0 and V 1 are represented by a histogram (described in Figure 3.12 b). The peak of the current I d (insert), which was measured as a function of the radio modulation frequency for a handling time of τ = 20 ns in a magnetic field B = (0, 0.216, 0.216) T, served as the source of information for 400 measurements of the Larmor frequency that were used to create this histogram. Based on ref [13].
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 317 Figure 3.17: (a) Directly observed g-factor anisotropy as a function of the magnetic field orientation. (b)

Figure 4 .

 4 2 exhibits the silicon band structure along the line L→ Γ → X from a k.p three-band description. The states are typically non-degenerate for a given non-zero k (spin degeneracy not included). However, the states can stay degenerate on pathways with high symmetry. For example, along the path L→ Γ →X, two of the three bands are degenerate.

Figure 4 . 2 :

 42 Figure 4.2: Without spin-orbit coupling, silicon band structure along the path L→ Γ →X around Γ, with Ev = 0, L = -5.641, M = -3.607, and N = -8.676 in units of 2/(2m 0 ) [14]. Along this path, the two highest energy bands are twice degenerate. The states are three times degenerate at Γ (six times with spin). →X means direction to point X (same with the point L).Figure from ref [15].
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 43 Figure 4.3: Band structure of silicon along the path L→ Γ →X with and without spin-orbit coupling (solid lines and dotted lines, respectively). With spin-orbit coupling, bands at Γ are fourfold and twofold degenerate. The first Brillouin zone is represented partially. From ref [15].

Figure 4 .

 4 Figure 4.3 shows the valence band formed by the heavy hole (HH), the light hole (LH) and the split-off band. The matrix of H so in equation (4.5.2) is formally the same as the matrix of SO coupling in the basis of p orbitals of an atom (L = 1, s = 1/2). This allows to write the eigenstates of H so as |J, M with J = 3/2 or 1/2:

Figure 4 . 3 shows

 43 the band structure in the presence of the SO coupling compared to the one without SO coupling, and shows a lift of degeneracy between HH, LH and split-off bands unless at Γ where HH and LH bands are degenerate (blue line).
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 44 Figure 4.4: a) Transverse section (x,y) plane at z= 0 of a device. b) Longitudinal section (xz plane) at y=0 of a device. Both figures show a non-uniform mesh which is denser in the more active region.

veloped for 15

 15 years at CEA/INAC with contribution from other groups such as IEMN. TB_Sim is a multi-scale and multi-physics platform for the modeling of the structural, electronic, optical and transport properties of semiconductor nanostructures. It includes various modules for the calculation and diagonalization of arbitrary TB and k.p Hamiltonians, for the calculation of phonons and electronphonons interactions, for the solution of Poissons equation, etc ... In this section, we will explain the operations of TB_Sim codes, which is illustrated in Figure 4.5.

Figure 4 .

 4 Figure 4.1 was described in section 4.2 of this chapter. In a first step of calculation, we mesh the device in a parallelpiped fashion. The mesh density differs between the different parts of the device. The active parts of the device, such as the silicon nanowire and the thin SiO 2 oxide layers, have the densest meshes. The less active parts of the device have a less dense mesh, such as the BOX, and always in a way to ensure the convergence of the numerical calculations. Periodic conditions along

Figure 4 . 5 :

 45 Figure 4.5: Computational infrastructure.

Figure 5 . 1 :

 51 Figure 5.1: a) A diagram exhibiting localized charges traps close to a gate electrode. Local dipoles produced by induced image charges interact with the qubit. b) A hypothetical scenario in which electrons jump between a localized state and a typical metal. Inspired from ref [16].

Chapter 5 :

 5 Modellingin the system when a charge is added to the oxide under the gate. This potential thus includes the direct potential of the charge plus the potential induced by the dielectric response of the system including metal gate.

Figure 5 . 2 :

 52 Figure 5.2: Probability density for the hole wavefunction [|ϕ ↑ 1 | 2 ] located under the central gate shown in a longitudinal section of the device [xz plane, y = 0]. The electrostatic potential induced by a single charge placed under the second gate is also shown.

Figure 5 .

 5 Figure 5.2 is a longitudinal section of studied device (Figure 4.1) which shows the probability density of the hole wavefunction [|ϕ ↑ 1 | 2 ] and the electrostatic potential produced by a confined charge -e underneath the secondary gate. The charge

n

  a n P n (H)ψ (5.4.3) where P n (H) is a polynomial whose action on ψ can be evaluated by iteration of H on ψ, and a n are coefficients. P n (H)ψ can be calculated for any polynomial of H of bounded spectrum [E min , E max ]. The method consists to expand the propagator in terms of Chebyshev polynomials. For the exponential function, the expansion has the form e -iαx ψ = n a n (α)Φ n (-ix) (5.4.4)

Chapter 6 : 6 . 1 :

 661 Results of time-dependent simulationsTable Studied charge traps. Position: The coordinates x, y and z are defined with respect to the axes specified in figure 4.1. Characteristics deduced from the perturbation matrix U : angular frequency ω th ≈ |u ↑↑ -u ↓↓ |/ and |u ↑↓ | is the modulus of the non-diagonal matrix element. With Larmor frequency Ω = 2π × 10 10 rad/s. Secondary 3.039 × 10 7 0.0248

Figure 6 .

 6 Figure 6.1 represents a cross section (xy plane) at z = 0 of the device in which an electron in Trap 1 is sketched. It appears as a small blue point in the oxide layer between the nanowire and the gate. Trap 1 induces the highest perturbation potential, as shown by ω th and u ↑↓ in table 6.1, due to its proximity to the center of the device where the hole qubit is located. As the distance between the trap and the hole qubit increases, perturbation potentials become lower as shown in Table 6.1 for Traps 2 and 3. The components of U approximately behave as d/r 2

Figure 6 . 1 :

 61 Figure 6.1: Transverse [xy plane at z = 0] cross section of the device. A single charge on Trap 1 at position x = 8.4 nm, y = 0 and z = 0.0 nm is represented by a blue point.

Figure 6 .

 6 Figure 6.3 represents the 3D device in which the red part represents the ground state wave function calculated by the 6-band KP model discussed in Chapter 4.It shows that the wave function is compressed on the side of the silicon nanowire under the central gate along y and well centered in the middle of the nanowire along z. By varying the potential applied to the different gates, we can control the position of the wave function inside the nanowire, which will modify the effect of the fluctuator on the coherence time of the qubit. This will be discussed in

Figure 6 . 4 :

 64 Figure 6.4: Evolution of σ (t) for different fluctuator frequencies ν in the case of Trap 1, in the 2-level model. T 1 is given by the exponential decay fitting

Figure 6 . 6 :

 66 Figure 6.6: Evolution of m(t) for different fluctuator frequencies ν in the case of Trap 1, in the multi-level model. m(t) presents oscillations for ν < ω th as in figure 6.5. In this case, T 2 is given by the exponential decay of the envelope.

Figure 6 . 7 :

 67 Figure 6.7: Evolution of σ (t) for different fluctuator frequencies ν in the case of Trap 1, in the multi-level model. T 1 is given by the exponential decay fitting.

Figure 6 . 8 :

 68 Figure 6.8: Evolution of p 1 (t) for different fluctuator frequencies ν in the case of Trap 1, in the multi-level model. T 1 is given by the exponential decay fitting.

  |u ↑↑ -u ↓↓ |, written as |u ↑↑ 1 -u ↓↓ 1 | in the multi-level model, presented in Figure 6.10 c, represents the change of the energy splitting in the case of pure dephasing.

Figure 6 . 9 :

 69 Figure 6.9: Characteristic times T 1 (green squares) and T 2 (red crosses) versus tunneling frequency ν calculated numerically in the 2-level model for Trap 1. Lines represent the analytical expressions for T 1 (black) given by equation (2.5.28) and T * 2 (light blue) given by equation (2.5.23), T 2 (green) given by equation (2.5.29), with ω th and |u ↑↓ | of Table 6.1. The straight dashed turquoise line shows a time varying as 2/ν. At ν Ω, T 2 ≈ 2T 1 .

Chapter 6 :

 6 Results of time-dependent simulations resonance for ν = Ω, when the fluctuator frequency and the qubit spin precession frequency (Larmor frequency) are equal.

Figure 6 .

 6 Figure 6.10 a shows the 10 highest energy levels of the hole qubit. Each line in the figure is formed in reality by two lines which represent two energy levels forming a Kramers doublet split due to the presence of the external static magnetic field B. In the 2-level model, the first two E ↑1 and E ↓ 1 levels define the qubit as a 2-level system. In the multi-level model, we consider 20 states, which corresponds to

Figure 6 .

 6 Figure 6.11 shows the numerical results for T 2 , T 1 , and T 1 in the Trap 1 configuration. We can see that T 1 follows T 1 which means that T 1 is influenced by the coupling with the other states. For the same reason, T 1 and T 1 are smaller than T 1 obtained in the 2-level model, especially for ν > Ω where T 1 continues to decrease until a frequency Ω 12 = (E ↑1 -E ↑ 2 )/ . Indeed, the coupling strength between these

Figure 6 . 10 :

 610 Figure 6.10: (a) The 10 highest electronic energy levels of the hole qubit. (b) Coupling strength defined as the ratio ϕ ↑ 1 |U |ϕ ↑↓ n /|E ↑ 1 -E ↑↓ n |. (c) δn = ϕ ↑ n |U |ϕ ↑ n -ϕ ↓ n |U |ϕ ↓ n = u ↑↑ n -u ↓↓ n versus n. (d) Unperturbed level energies E ↑↓ n (green) and perturbed level energies E ↑↓ n + ϕ ↑↓ n |U |ϕ ↑↓ n (red) presented according to the state number defined as 2n -1 for |ϕ ↑ n states and 2n for |ϕ ↓ n states. (b-d) All results are for Trap 1. (b) and (d) share the same horizontal axis.

Figure 6 . 11 :

 611 Figure 6.11: Characteristic times T 1 (green square), T 1 (magenta lozanges) and T 2 (red crosses) versus tunneling frequency ν calculated in the multi-level model (N = 10) for Trap 1. Solid lines represent the analytical expressions for T 1 (black) and T * 2 (light blue) of the 2-level model, using ω th and |u ↑↓ | of Table 6.1. The straight dashed turquoise line shows a time varying as 2/ν.

Figure 6 . 12 :

 612 Figure 6.12: Same as figure 6.11 for Trap 2 and Trap 3.
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Figure 6 . 15 :

 615 Figure 6.15: (a) Modified telegraphic signal χ (t) in which the transition between states 0 and 1 is linear over a time ∆t = 7 ps (magenta dashed line), compared to the original telegraph signal χ(t) (blue solid line). (b) p 1 (t) for Trap 1. (c) s (t) which correspond to σ (t) for Trap 1.

Figure 6 . 17 :

 617 Figure 6.17: 2D plots of u ↑↑ -u ↓↓ versus back gate bias V BG and angle ϕ of B in the xy plane (θ = 90 • ), for Trap 1. The 2D plots are made on a discrete grid of 25 × 40 points. The contours indicated by black lines correspond to u ↑↑ -u ↓↓ = 0.

.10. 1 ) 6 :Figure 6 . 18 :

 16618 Figure 6.18: 2D plots of the Larmor frequency Ω (a) and u ↑↑ -u ↓↓ (b-d) versus θ and ϕ, for Trap 1 (b), Trap 2 (c) and Trap 3 (d), for V BG = 0 V. The contours corresponding to u ↑↑ -u ↓↓ = 0 are indicated by black lines.

Chapter 6 : 1 where T min 1 is

 611 Results of time-dependent simulations u ↓↓ → 0. Remarquably, ω th in this case can be rewritten as 4/T min the minimum value of T 1 in the two-level model.

Figure 6 . 19 :

 619 Figure 6.19: Characteristic time T 2 versus tunneling frequency ν calculated in the 2-level model (blue crosses) and multi-level (N = 10) model (red stars) for Trap 1, for V BG = 0 V, ϕ = 52.6 • , θ = 90 • and Ω = 3.88 × 10 -5 eV, in a situation where u ↑↑ -u ↓↓ ≈ 0 eV and |u ↑↓ | = 1.41 × 10 -6 eV. The black solid line show the analytical expression for T 1 of the 2-level model, as given by Eq. (2.5.28). T * 2 (light blue) of the two-level model, as given by Eq. (2.5.23). The straight dashed turquoise line shows a time varying as 2/ν.
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Figure 6 . 22 :

 622 Figure 6.22: g x and g y factors for the device considered in the present work.

Chapter 6 :Figure 6 . 23 :

 6623 Figure 6.23: 2D plots of (a) the Larmor frequency Ω for Trap 1 versus back gate bias V BG and angle ϕ of B in the xy plane (θ = 90 • ).
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 612226 Figure 6.23 shows the Larmor frequency Ω as a function of V BG and ϕ. There are vertical regions where Ω varies weakly as a function of V BG . In order to explain this, we look for conditions where the Zeeman splitting given by equation (6.10.7) becomes independent of V BG , when δΩ/dV BG = 0. Then we can deduce ϕ ≈ π 2 ± arctan g x g y . (6.10.10) which explains the vertical contours of the figure 6.23 at ϕ = 90 • ± 34 • for a ratio gx gy close to 2/3.One can also derive the elements of the u ↑↑ -u ↓↓ of the potential matrix from the g-matrix formalism. The eigenstates of the Hamiltonian given by Eq. (6.10.6) are

y 2 ( 6 . 10 . 14 ) 6 :

 2610146 Chapter Results of time-dependent simulations in which we write b x = cos(ϕ) and b y = sin(ϕ), for simplicity.The effect of a fluctuating electric charge results in a perturbation HamiltonianU = δH 0 (0, V BG ) + δH Z (B, V BG ) x b x -iδg y b y +iδg y b y -δg x b x

Figure 6 . 24 :Figure 6 .

 6246 Figure 6.24: Same as the figure 6.17 but for Trap 2and Trap 3
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 6625 Figure 6.25: Simplified three-dimensional representation of a silicon (yellow)-on-insulator (green) nanowire
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 6 Results of time-dependent simulations

Figure 6 . 26 :

 626 Figure 6.26: Measured T E 2 versus magnetic field angle θzx (symbols). The solid line is a fit. Taken from ref [18].
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Figure 7 . 3 :

 73 Figure 7.3: Absolute value of the elements of the matrix Y . Note that |Y 23 | = Ω.

  8 s -1 , |R 0001 | and |R 0101 | become larger than ν, meaning that |R 0001 | 1/τ c and |R 0101 | 1/τ c . In this case, the Bloch-Redfield theory is no longer justified because some elements of the two-level system dynamics become faster than the correlation times of the environment, which is in opposition to the assumptions that established the Bloch-Redfield equation. For ν 5 × 10 8 s -1 , all conditions are verified and the Bloch-Redfield theory explains well the behavior of T 1 and T 2 (Figure 7.1).

3 . 8 )Figure 7 .) 1 =

 3871 Figure 7.3 shows that δY can be treated in perturbation. The problem is that Y is not symmetric. The eigenvalues of Y (0) are Y 11 and Y 22 ± iΩ. The eigenvalue λ (0) 1 = Y 11 is the one obtained in the RWA (section 7.3.3) which gives T (0) 1 = -1/Y 11 (equation 7.3.20).

  v| is the complex conjugate transpose of |v . In this case, the first order perturbation correction is given byδλ 1 = v|δY |u (7.5.4)In the case of the matrix Y of equation 7.5.1, the left eigenvector for the eigenvalueλ (0) 1 = Y 11 is

Figure 7 . 6 :

 76 Figure 7.6: Characteristic times T 1 (green) and T 2 (red) obtained with the Bloch-Redfield theory in the RWA (solid lines) and with the time-dependent simulations (squares and crosses, respectively). The blue line represents a time varying as 2/ν.

Chapter 8 :

 8 ConclusionsBloch-Redfield theory. Simulations have shown that by playing on the orientation of the magnetic field, on the back gate potential and on the position of the fluctuator in the device, we can find points or lines called "sweet lines" on which the threshold frequency ω th becomes smaller and consequently T 2 (ω th ) becomes longer and therefore the noise has a smaller influence. We also found that T 2 is dominated by the characteristic relaxation time T 1 in the high frequency range (ν ω th ). Furthermore T 1 becomes shorter because of the additional coupling to the system in the case of multi-level model which results in the 2-level model not being sufficient in this case. Thanks to the theoretical physics, we could model and simulate the impact of a microscopic noise source which is almost impossible to filter and to isolate in experimental measurements, which shows the importance of simulation.

  

  

  

  

  

  

  

  

  

  

Table 1 .1: Characteristics

 1 of different spin qubits based on semiconductor technology.

	f is the qubit frequency, T * 2 the coherence time, T 2 the dephasing time (spin
	echo) and Q = T * 2 /T π the quality factor. Reproduced from Ref [19].
	Qubit	Material	f (MHz)	T * 2 (ns)	T 2 (ns)	Q = T * 2 /Tπ	ref.
	Single spin	Si/SiGe	∼ 5	∼ 9 x 10 2	3.7 x 10 4	∼ 9	[72]
	Single spin	28 Si	∼ 0.3	≤ 1.2 x 10 5	1.2 x 10 6	≤ 80	[73]
	Donor spin (e -) P in nat Si	∼ 3	55	2 x 10 5	≤ 1	[68]
	Donor spin (e -) P in 28 Si	∼ 0.2	∼ 3 x 10 5	1 x 10 6	∼ 108	[74]
	Singlet-Triplet	Si/SiGe	∼ 351	∼ 1 x 10 3	n.a.	n.a.	[75]
	Hybrid	Si/SiGe	∼ 1 x 10 4	∼ 11	∼ 40	∼ 250	[76]

Table 1 . 2 :

 12 Number of physical qubits per unit surface M qb ph /cm 2 and area A chip (mm 2 ) covered by 2 billions of physical qubits. The silicon hybrid qubit footprint refers to the 7 nm technology node. From Ref[START_REF] Ferraro | Is all-electrical silicon quantum computing feasible in the long term?[END_REF].

		Semiconductor Semiconductor Semiconductor Superconductor Superconductor Traped ion
		Single-Spin	Hybrid qubit	Hybrid qubit	Flux qubit	Trasmon qubit	qubit
		qubit	(steane code)	(Surface code)	(DWave like)	(IBM like)	
	M qb ph /cm 2	8000	830	100 x 10 2	8 x 10 -4	10 -5	2 x 10 -5
	A chip (mm 2 )	25	240	20	25 x 10 7	2 x 10 10	10 10

Table 4 . 1 :

 41 Spin-orbit energy ∆ so in the valence band, Luttinger parameters and parameter κ[START_REF]Spin-orbit Coupling Effects in Two-Dimensional Electron and Hole Systems[END_REF] for different semiconductors.

		Si	Ge	InP GaAs InAs InSb
	∆ so (eV) 0.044 0.29 0.11 0.34	0.41	0.80
	γ 1	4.285 13.38 4.95 6.85 20.40 37.10
	γ 2	0.339 4.24 1.65 2.10	8.30 16.50
	γ 3	1.446 5.69 2.35 2.90	9.10 17.70
	κ	-0.42 3.41 0.97 1.20	7.60 15.60

  Then we need to calculate the time evolution of the wavefunction |ψ(t) = e

	Chapter 5: Modelling			
	|ψ(t) is written as a linear combination of the hole states |ϕ ↑ i and |ϕ ↓ i :
	-i	t 0	H(t )dt |ψ(0) which represents the solution of the
	time dependent Schrödinger equation:	
	i	d|ψ(t) dt	= H(t)|ψ(t)	(5.4.1)

  Table (6.1) indicates that |u ↑↓ | << Ω for the traps studied here, consequently T 1 > T * 2 and T 2 = T * 2 from equation (2.5.29).

  Ω (6.10.3) which, in the pure dephasing model |u ↑↑ -u ↓↓ | |u ↑↓ |, gives equation 2.5.23, i.e. ω th ≈ |u ↑↑ -u ↓↓ |/ (because |u ↑↑ -u ↓↓ | Ω).

	In the opposite case where |u ↑↑ -u ↓↓ |	|u ↑↓ |, the threshold angular frequency
	becomes		
	ω th ≈	2|u ↑↓ | 2 2 Ω	(6.10.4)

  .2.12) becomes in the Schrödinger picture

	∂ ∂t	ρ αβ

s (t) = -iω αβ ρ αβ s (t) + δγ R αβδγ ρ δγ s (t) (7.3.1) with ρ αβ s is a matrix element of ρ s and 2 R αβδγ = g αδγβ (ω δα ) + g αδγβ (ω βγ ) v g αvvδ (ω δv )δ γβv g γvvβ (ω vγ )δ δα (7.3.2)

  We can reduce these four equations into three in whichσ z (t) = tr[ρ S (t)σ z ] = Re(R 0101 ) + Re(R 0110 ) -Im(R 0101 ) + Ω + Im(R 0110 ) Im(R 0100 ) Im(R 0101 ) -Ω + Im(R 0110 ) Re(R 0101 ) -Re(R 0110 )

	Chapter 7: Bloch-Redfield		
	ρ 00 S (t) -ρ 11 S (t):				
						σ z (t)				σ z (t)	
				∂ ∂t	    	Re(ρ 01 S ) (t) Im(ρ 01 S ) (t)	    	= Y	    	Re(ρ 01 S ) (t) Im(ρ 01 S ) (t)     	(7.3.8)
	with the tensor Y given by		
				2R 0000		4Re(R 0001 )		-4Im(R 0001 )	
	Y =	    	Re(R 0100 )					    
									(7.3.9)
	This system of differential equations can be solved numerically, the solutions have
	this form				
			σ z (t)				
		   	Re(ρ 01 S ) (t)				
			Im(ρ 01 S ) (t)				
									t) 
									ρ 01 S (t) ρ 10 S (t) ρ 11 S (t)         	(7.3.7)

  R 0100 (ρ 00 SI -ρ 11 SI )e iΩt + R 0101 ρ 01 SI + R * 0110 ρ 10 SI e 2iΩt (7.3.15) If we neglect the fast counter rotating terms, we have equations where ρ 00 SI (t) and ρ 01 SI (t) are decoupled. Then we return to the main frame and the differential z (t) is calculated as in the general case σ z (t) = T r[ρ S (t)σ z ] = ρ 00 S (t) -ρ 11 S (t) (7.3.18) The solution of this differential equation gives us the relaxation time T 1 d dt σ z (t) =2R 0000 σ z (t) σ z (t) = σ z (0)e -t/T 1 (7.3.19) Using elements R 0000 given in Appendix E, we obtain

	Chapter 7: Bloch-Redfield
	d dt SI (t) = equations read as ρ 01				
				d dt	ρ 00 S (t) = R 0000 (ρ 00 S -ρ 11 S )	(7.3.16)
					d dt	ρ 11 S (t) = -	d dt	ρ 00 S (t)	(7.3.17)
		T -1 1	=	2 2 [-g 0110 (Ω) -g 0110 (-Ω)] =	2 2	2ν∆U 01 U 10 ν 2 + Ω 2	(7.3.20)
	which agrees with equation (2.5.28) sinse U 01 = u ↑↓ (chapter 2).
	Neglecting the counter rotating terms in equation (7.3.15) leads to :
					d dt	ρ 01 SI (t) = R 0101 ρ 01 SI	(7.3.21)
					ρ 01 SI (t) = ρ SI (0)e R 0101 t	(7.3.22)
				ρ 01 S (t) = ρ S (0)e -iΩt e R 0101 t	(7.3.23)
	which gives					3.11)
	which gives		ρ 01 S (t) = ρ S (0)e -iΩ t e -t/T 2	(7.3.24)
	ρ 00 SI (t) = ρ 00 S (t) in which T 2 is the dephasing time with ρ 11 SI (t) = ρ 11 S (t)	(7.3.12)
	ρ 01 SI (t) = ρ 01 S (t)e iΩt Then we can write the differential equation of ρ 00 ρ 10 SI (t) = ρ 10 S (t)e -iΩt T -1 2 = Re(-R 0101 ) = -∆(2U 00 U 11 -U 2 00 -U 2 11 ) 2 ν + 2ν∆U 01 U 10 2 (ν 2 + Ω 2 ) SI (t) and ρ 01 SI (t) in the rotating (7.3.13) (7.3.25) frame as We deduce :
	d dt	ρ 00			T -1 2	= T * -1 2	+ (2T 1 ) -1	(7.3.26)

SI (t) = R 0000 (ρ 00 SI -ρ 11 SI ) + R 0001 ρ 01 SI e -iΩt + R * 0001 ρ 10 SI e iΩt (7.3.14) σ
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metallic gates are separated from the nanowire by a 4-nm-thin SiO 2 layer. Si 3 N 4 is used to cover the transistor. The voltage necessary to induce the development of a quantum dot in the nanowire corner is fixed using the central gate (CG) [START_REF] Venitucci | Electrical manipulation of semiconductor spin qubits within the g -matrix formalism[END_REF].

To the right and left of the central gate, there are two additional gates positioned along the z axis. To contain the hole in the central quantum dot, the other gates are grounded and the central gate is biased at V CG = -0.1 V. A static magnetic field B is applied in the direction indicated by the azimuthal (ϕ) angles and polar (θ) angles as seen in Figure 4.1. This device configuration was chosen because it was already considered theoretically in Ref. [START_REF] Venitucci | Electrical manipulation of semiconductor spin qubits within the g -matrix formalism[END_REF] in which the electrical manipulation of the spin is described using a g-matrix formalism. Except otherwise stated, the Larmor frequency Ω was set to 2π × 10 rad/s.

Conclusion; outlook

In this chapter, we introduced the qubit geometry and the 6-band k.p. method for bulk semiconductor around Γ taking into account the spin-orbit coupling effect and the external magnetic field effect on the valence band structure of silicon. We described the methodology used to calculate the hole states of the qubit device.

We have also briefly seen how to introduce numerically the Poisson equation which is solved by the finite difference method. Finally, we discussed the TB_Sim software infrastructure that was used to simulate the qubit in order to obtain results that will be interpreted and used for time-dependent simulations.

Chapter 5: Modelling Defining σ as the vector of Pauli operators, we calculate the observable (see also equation (2.5.12)) σ(t) = ψ(t)|σ|ψ(t) {E} (5.4.13) where ψ(t) is the wave function solution of the time dependent Schrödinger equation. The index {E} represents the average over a large number of realizations of the telegraphic signal in order to obtain converged results. So to measure the relaxation, it is enough to calculate σ (t) = σ 3 (t) which represents the projection of the effective spin on the magnetic field axis e .

We consider the initial condition |ψ(0) = |ϕ ↑ 1 . It should be noted that, since we study the system in a semi-classical way, the system reaches a situation of an equal statistical superposition of the two states |ϕ ↑ 1 and |ϕ ↓ 1 , σ (∞) = 0 (see Appendix D).

The results of the calculations will be presented an discussed in chapter 6. σ (t) shows an exponential decay from which we deduce T 1 .

Dephasing process: T 2

The dephasing is the process coming from the change of the spin precession phase with time designed by δΦ(t) due to the perturbation induced to the initial Hamiltonian of the qubit H 0 by χ(t)U . In this case, the Larmor frequency Ω turns into Ω where Ω represents the new Zeeman splitting energy calculated by diagonalization of H 0 +U and which is discussed in chapter 6. The best method to measure the dephasing is to calculate the quantity

which is the modulus of the mean of the spin projection in the plane perpendicular to B and gives the evolution of the phase of the spin precession. An important point in the calculation of T 2 is to take as initial condition |ψ(0

1 ) corresponding to the spin in the plane. The results fitted with a negative exponential give the decay constant T 2 in this case.

Chapter 6

Results of time-dependent simulations

Introduction

In this chapter, we will discuss the results obtained from the models developed in chapter 5. For this purpose, we will introduce different configurations of the charges trapped in the device and the potential applied on the gates. In addition, we will introduce the wave functions of the holes created in the device. We will discuss the time-dependent simulations and the calculation of characteristic times corresponding to each entity. We will discuss the results obtained by the timedependent simulations comparing them with the analytical model found in the literature and then we will discuss the calculations made to optimize the effects of the charge fluctuators on the qubit coherence time.

Description of the studied situations: position of the traps (Trap 1, 2 and 3)

In this section, we show the different trap positions that lead to the creation of a charge fluctuator. We assume three different electronic trap positions in the qubit 

Time-dependent simulations: traces of σ i

In this section, we will discuss the results obtained from time-dependent simulations for σ (t), p 1 (t) and m(t) in order to derive the characteristic coherence times , m(t) presents oscillations [START_REF] Paladino | 1 / f noise: Implications for solid-state quantum information[END_REF]. In this case, T 2 is given by the exponential decay of the envelope.

Multi-level system

The time-dependent simulations for Trap 1 are shown in Figures 6.6 and 6.7 where σ (t) and m((t) are calculated with the method discussed in Chapter 5 for the multi-level model. that the qubit loses its coherence as a function of time just when the fluctuator undergoes its first switch and remains coherent as long as there is no change of state.

Effect of non-instantaneous transitions

The telegraphic noise model assumes that the transitions between the two states of the fluctuator are instantaneous. In this section, we consider a situation where the transitions 0 → 1 and 1 → 0 are non-instantaneous. Figure 6.15 shows the results obtained using a modified telegraphic signal χ (t) in which the system is assumed to vary progressively (linearly) between states 0 and 1 over a time ∆t = 7 ps. Figure 6.16 shows that the characteristic times calulated using χ (t) behave as a function of frequency ν in the same way as for the original telegraph signal χ(t). At low frequencies, T 2 remains given by 2/ν, the Chapter 6: Results of time-dependent simulations dephasing time remains limited by the average switching time of the fluctuator.

On the other hand, T 1 and T 1 reach higher values due to the fact that transitions to higher energy hole states are less likely. However, the overall behavior remains the same.

The question is therefore whether a value ∆t of 7 ps is realistic. This does not appear to be the case, as tunneling times are typically in the femtosecond range [START_REF] Landauer | Barrier interaction time in tunneling[END_REF][START_REF] Fãľvrier | Tunneling time probed by quantum shot noise[END_REF], as can be estimated with the expression τ T = d m/(2U b ), in which d is the length of the tunneling barrier (≈ 1 nm), U b is its height (≈ 2 eV) and m is the carrier effective mass (≈ free electron mass). The characteristic times calculated for ∆t in the femtosecond range are those presented in figures. 6.11 and 6.12. Therefore, the instantaneous transitions model employed in this work seems justified.

Chapter 6: Results of time-dependent simulations We also notice in Figure 6.17 two other quasi vertical lines located at ϕ = 55 • and ϕ = 125 • where u ↑↑ -u ↓↓ = 0. These lines appear in a region where the Zeeman splitting is approximately constant as a function of V BG as seen in Figure 6.23. In order to explain that, we take the first-order expansion of the Hamiltonian in B described in the appendix (B) where it can be rewritten in a general way in the g-matrix formalism as

where σ is the vector of Pauli matrices, ĝ(V BG ) is a real 3 × 3 matrix. Here we highlight the dependence of the Hamiltonian and the g-matrix on the back-gate bias V BG . The dependence on another potential could be considered in the same way. We have assumed that the Hamiltonian is written in the basis {|↑ , |↓ } in which the vectors are orthogonal linear combinations of |ϕ ↑ 1 (0) and |ϕ ↓ 1 (0) . The value of the g factors is not unique, it depends on the choice of the axes and the hole state basis.

As xy is an exact mirror symmetry plane of the device whatever V BG , as yz is an approximate mirror symmetry plane, x, y and z can be considered as the main magnetic axes of the system [START_REF] Venitucci | Electrical manipulation of semiconductor spin qubits within the g -matrix formalism[END_REF]. For a magnetic field in the xy plane, B = B (cos(ϕ), sin(ϕ), 0), the Zeeman Hamiltonian can be written as

in which g x and g y depend implicitely on V BG . The Zeeman splitting is equal to

The g x and g y factors calculated for the device studied in this work are shown in Figure 6.22. Very similar g factors were obtained for a nearly identical device and were discussed in Ref. [START_REF] Venitucci | Electrical manipulation of semiconductor spin qubits within the g -matrix formalism[END_REF]. The evolution of these factors with V BG reflects the respective weight of the wave function on the heavy and light hole states. For 

in which T * 2 is the pure dephasing lifetime. Interestingly, the RWA implies that the terms R 0100 and R 0001 have a negligible effect, as when the diagonal and nondiagonal terms are uncorrelated, such as V 00 (τ )V 01 (0) = 0.

Comparison between Bloch-Redfield and timedependent simulations

In this section, we present the results obtained from the numerical solution of equation ( 7 We recall that the angular frequency ω th delimits two regimes of behavior (ω th = 1.96 × 10 9 s -1 for Trap 1). For ν > ω th , the agreement between Bloch-Redfield and time-dependent simulations is excellent. On the other hand, for ν < ω th , Bloch-Redfield gives a time T 2 proportional to ν whereas it should vary as 2/ν Chapter 7: Bloch-Redfield The relaxation time T 1 seems to be very well described by the Bloch-Redfield theory but this conclusion must be immediately qualified. Indeed, we are not able to perform time-dependent simulations for frequencies lower than 10 7 s -1 which would require to consider simulation times longer than one millisecond. Moving to lower frequencies, Figure 7.1 shows that Bloch-Redfield predicts a change in the behavior of T 1 which starts to grow faster than 1/ν. We are not able to perform time-dependent simulations in this frequency range. We will return to this point later in the chapter.

To better understand the limitations of the Bloch-Redfield model, we plot the matrix elements of the R tensor as a function of ν in Figure 7. 

Low-frequency behavior of T 1 in the Bloch-

Redfield theory

Deciding whether the low-frequency behavior of T 1 predicted by the Bloch-Redfield theory is correct or not requires the ability to perform time-dependent simulations over a longer period of time, which was not numerically possible. We have chosen another strategy. We considered a fictitious system in which the Larmor frequency is divided by 50 and the coupling matrix is divided by 10. In this case, it is possible to reduce the time step of the temporal simulations and consider situations allowing us to compare with the low-frequency regime of Bloch-Redfield.

Results are presented in Figure 7.5. They show that the low frequency behavior predicted by the Bloch-Redfield theory, i.e., a strong increase of T 1 when ν decreases, faster than 1/ν, is not reproduced by time-dependent simulations and therefore is not physical. This is consistent with the fact that the Bloch-Redfield theory is used here outside its domain of validity as shown in Figure 7.2.

Comparison with Bloch-Redfield in the RWA

We have seen in section 7.3.3 that the RWA allows us to arrive at analytical solutions of the Bloch-Redfield equation for T 1 and T 2 . It is interesting to compare them with the results of time-dependent simulations (Figure 7.6). We find that for T 2 the Bloch-Redfield plus RWA predictions remains incorrect for ν < ω th , which makes sense since the Gaussian description remains invalid in this case. On the contrary, the predictions for T 1 seem to be in excellent agreement with the time-Chapter 8: Conclusions that suggests the influence of very distant electric fluctuators that would operate in a Gaussian regime because ω th is very small (weak coupling to the qubit) so the condition ν < ω th is likely.

The combination of experimental work and simulations as close as possible to the manufactured components remains more necessary than ever to advance in the development of quantum technologies in Si or SiGe.

Appendix A

The K matrices

The effect of the magnetic field on the Bloch functions and spin is described by the following Hamiltonian [START_REF] Luttinger | Quantum Theory of Cyclotron Resonance in Semiconductors: General Theory[END_REF]:

where L is the (orbital) angular momentum of the Bloch function, S its spin, and κ = -0.42 in silicon. We neglect the effects of the much smaller ∝ q term of Ref. [START_REF] Luttinger | Quantum Theory of Cyclotron Resonance in Semiconductors: General Theory[END_REF]. We give below the expression of the matrices K x , K y , K z consistent with our choice of phases for the Bloch functions [taking g 0 = 2 in Eq. (A.0.1)]:
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with κ = 1 + κ and κ = 1 + 2κ. Note that in the J = 3/2 subspace (the top left

where J = L + S is the total angular momentum of the Bloch function [START_REF] Luttinger | Quantum Theory of Cyclotron Resonance in Semiconductors: General Theory[END_REF]. The eigenstates are computed with an iterative Jacobi-Davidson eigensolver [START_REF] Gerard | A jacobi-davidson iteration method for linear eigenvalue problems[END_REF][START_REF] Bai | Templates for the Solution of Algebraic Eigenvalue Problems[END_REF].

Appendix B

Dependance of the perturbation matrix elements with magnetic field

The time-dependent Hamiltonian equation (5.3.1) of the system described in chapter 5 could be is rewritten as

H 0 can be written explicitely as function of the static magnetic field B. |ϕ ↑ n (B) and |ϕ ↓ n (B) are the eigenstates of H 0 (B) of energy levels E ↑ n (B) and E ↓ n (B) respectively. ↑ and ↓ represent a pseudo-spin since the physical spin is not a good quantum number in presence of spin-orbit coupling. There are no dependece neither on B or on the electron (hole) spin of the electrostatic perturbation U ( r).

The matrix of U is written in the basis of the states |ϕ ↑ 1 (B) and |ϕ ↓ 1 (B) which is the origin of the decoherence processes. We follow the derivation of Ref [START_REF] Venitucci | Electrical manipulation of semiconductor spin qubits within the g -matrix formalism[END_REF] to study the evolution of the matrix U with respect to B H 0 (B) can be developed in powers of B:
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where M α = -∂H/∂B α | B=0 . Second and higher order terms can be safely neglected [START_REF] Venitucci | Electrical manipulation of semiconductor spin qubits within the g -matrix formalism[END_REF].

B.1 Case of zero magnetic field

The levels of the doublet are Kramers degenerate for

In addition, we can choose the phase of the wavefunctions so that

where T is the time-reversal symmetry operator.

Writing |ϕ ↓ 1 (0) = α( r)|+ + β( r)|-where |+ and |-are the physical spin components, we obtain

from which we deduce

We used the fact that U ( r) does not involve the spin. Similarly, we obtain:

In absence of magnetic field, the effect of U is just a rigid shift of the energy levels, the states remain uncoupled. Time-reversal symmetry breaking is needed for a non-zero coupling [START_REF] Venitucci | Electrical manipulation of semiconductor spin qubits within the g -matrix formalism[END_REF].

Appendix B: Dependance of the perturbation matrix elements with magnetic field

B.2 Case of non-zero magnetic field

The energy splitting between the levels n = 1 and n = 2 being large compared to the magnetic field Hamiltonian, first-order perturbation theory can be used to derive the states for B = 0

where b = B/B. Here we have chosen |ϕ ↑ 1 (0) and |ϕ ↓ 1 (0) so that ϕ ↑ 1 (0)|b • M |ϕ ↓ 1 (0) = 0 (by diagonalizing b • M in the Kramers doublet subspace). The non-diagonal term of the matrix U can be written as

Similar expressions can be derived for diagonal terms:

Formally similar expressions can as well be obtained for the terms u ↑↑ n and u ↓↓ n of the other states (n > 1). We deduce that the angular frequency ω th that characterizes the analytic expression for T 2 is proportional to B,

and therefore the dephasing time for ν = ω th varies as 1/B,

Appendix C

Origin of the law in 2/ν = 1/ν cl of the dephasing time T 2

C.1 General arguments

In this section, we are interested in the dephasing time T 2 due to a telegraphic signal of "classical" frequency ν cl = ν/2. In a time interval [0, t], the average number of flips is equal to ν cl t. In this case, the Poisson distribution gives the probability that the fluctuator switches exactly n times during the elapsed time t:

The probability P 0 (t) of not switching is therefore equal to exp(-ν cl t).

Consider a system characterized by the Larmor angular frequencies Ω and Ω in states 0 and 1, respectively. The phase shift δφ(t) of the qubit precession thus varies as (Ω -Ω)(t -t 0 ) after the first switch from state 0 to state 1 at time t 0 (δφ(t) = 0 for t < t 0 ).

T 2 characterizes the decay of the quantity exp(iδφ(t)) {E} . We can write:
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where δφ n (t) represents the phase shifts in all situations ∈ {E n } where the fluctuator has switched exactly n times during the elapsed time t.

We now consider the configuration where |Ω -Ω| ν, i.e. where the dephasing angular frequency is large compared to the frequency of the telegraph noise. In this case, for a large number of realizations of the experiment, the phase coherence will be lost from the moment the fluctuator has changed state. Since δφ 0 (t) = 0, we obtain exp(iδφ(t)) {E} ≈ P 0 (t) exp(iδφ 0 (t)

This calculation can be easily generalized to the situation where the qubit is influenced by M fluctuators in the case where the change of angular frequency Ω (j) -Ω induced by each fluctuator j is large compared to its switching frequency ν (j) . The probability that the fluctuator j does not switch is therefore P

from which we deduce T 2 = 2/ j ν (j) .

In the (probable) case where one of the fluctuators is much faster than the others, T 2 is well given by 2/ max(ν (j) ), i.e. the coherence of the qubit is limited by the fastest of the fluctuators that perturb it.

Appendix D

Long-time limit of a N -level system perturbed by a low-frequency telegraphic noise

We consider a system of N levels

eigenvalues and eigenstates of H 0 . Each energy E i is written as ω i . The system is influenced by a telegraphic noise (χ(t) = 0, 1), it fluctuates between two configurations 0 and 1 with probability q 0 q 1 , respectively. The switch between 0 and 1 is a stochastic process characterized by a mean switching frequency ν.

The Hamiltonian is H(t) = H 0 + χ(t)U in which U is the perturbation when the system switches from 0 to 1. The eigenvalues of H 0 + U are called E i = ω i . The system switches between the two configurations at the times t 1 , t 2 • • • .

We must solve the time-dependent Schrödinger equation:

We assume that H(t) = H 0 for t 0 ≤ t < t 1 with the initial condition Ψ(t 0 ) = Ψ 0 .

The propagation of the state can be easily written. For example, since the system is in the configuration 0 between t 0 and t 1 and the configuration 1 between t 1 and t 2 , the wavefunction at t 2 is given by: Appendix D: Long-time limit of a N -level system perturbed by a low-frequency telegraphic noise P T (∆t 2 )P + T (∆t 1 )Ψ 0 (D.0.2) in which T (∆t n ) is the diagonal matrix

with ∆t n = t n -t n-1 . T (∆t n ) is the same matrix in which the angular frequencies ω i are replaced by ω i .

P is the basis change matrix, that is, the matrix of the eigenvectors of H 0 + U in the basis of the eigenstates of H 0 . In Eq. (D.0.2), we used P -1 = P + .

We see that we can define a sequence of states given by recursion, i.e., In this case, the quantities exp (iω i t) present in the propagators can be written as exp (iθ) in which θ can be seen as a random variable between 0 and 2π.

Using Eq. (D.0.4), the diagonal term (ρ n ) ii which gives the electronic population on the level i after n switches is given, for odd n, by Appendix D: Long-time limit of a N -level system perturbed by a low-frequency telegraphic noise kl P + ik exp (-iω k ∆t n ) (ρ n-1 ) kl exp (+iω l ∆t n ) P li . (D.0.6)

For k = l, assuming ω k = ω l which is likely in presence of a magnetic field that splits the spin doublets, we have

We deduce that

which can be rewritten as

in which (ρ n ) represents the column vector composed of the diagonal matrix elements of the operator and

A similar result is obtained for even values of n.

Let X be an eigenvector of the matrix A for the eigenvalue λ, and x i its largest component (in modulus). We have:

(D.0.13) low-frequency telegraphic noise

This shows that the eigenvalues λ i of A have a modulus smaller or equal to 1. In addition, 1 is always a trivial eigenvalue for the eigenvector

Using Eq. (D.0.13) and Eq. (D.0.12), we deduce that an eigenvector X of A for λ = 1 have components of the form x j = exp(iψ j )/ √ N . Injecting this into Eq. (D.0.12) and taking the conjugate complex, we obtain

We deduce that ψ j = ψ k must be imposed for all j and k to verify the last equation (for P ij and P ik nonzero, see below). Equation (D.0.14) is therefore the only eigenvector for the eigenvalue λ = 1. In reality, there is an exception to this rule when the Hamiltonian matrix H 0 + U can be written as independent blocks so that A is also written as a block matrix, i.e., with non diagonal blocks in which P ij = 0. In this case, the eigenvalue λ = 1 exists for each of the blocks, and N must be replaced by the size of the block.

From Eq. (D.0.9), we deduce the long time limit of the density:

In the basis of the eigenvectors of A, putting the vector given by Eq. (D.0.14) first, we have

Appendix D: Long-time limit of a N -level system perturbed by a low-frequency telegraphic noise from which we deduce using Eq. (D.0.17)

where Q is the matrix of the eigenvectors of A in which Q i1 = 1/ √ N for all i [Eq. (D.0.14)]. Similarly, we can show that the first row of the matrix

√ N for all i because of the orthogonality of the first column vector of Q to all other column vectors. This can be deduced from Eq. (D.0.11) which gives i,j

which implies that i x i = 0 for λ = 1. We conclude that not only the eigenvalue λ = 1 is nondegenerate but also the vectors associated with the other eigenvalues form an orthogonal subspace.

Using these results and Eq. (D.0.18), we deduce finally:

This shows that the system always ends up in a situation of equipartition between all states of the basis, whatever the starting point.

In this proof, we have made the assumption that the matrix A is diagonalizable if an eigenvalue is degenerate. If this is not the case, the result can be generalized to the case of Jordan normal forms.

D.1 Application to the calculation of the relaxation lifetime T 1 in the two-level model

As in the main document, the Hamiltonian is written as Appendix D: Long-time limit of a N -level system perturbed by a low-frequency telegraphic noise

in which we define ∆E = Ω/2. Here we assume u ↑↑ = u ↓↓ = 0, and |u ↑↓ |/∆E 1.

The matrix A defined in Eq. (D.0.10) is given by

We have:

in which ρ n ↑ is the population on the state ↑ after n switches.

Calling z the axis of the magnetic field B, the relaxation of the spin is described by the decay of σ n z given by ρ n ↑ -ρ n ↓ .

Using Eq. (D.1.3), we deduce The average elapsed time for n steps being t n = n/ν cl = 2n/ν, σ n z can be rewritten as exp(-t n /T 1 ) with

This result, obtained using |u ↑↓ |/∆E 1, in the limit ν Ω. In this case, T 1 was derived from the noise spectral density at frequency Ω [START_REF] Paladino | 1 / f noise: Implications for solid-state quantum information[END_REF].