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Abtract

Noise sources are one of the critical factors that determine the performance of

qubits in quantum computing applications. Noise sources refer to any external

factors that can cause errors or decoherence in a qubit. In this thesis, we have

simulated these effects in the case of a hole spin qubit in Silicon-On-Insulator

(SOI) technology.

Charge fluctuators are one of the major sources of noise in hole spin qubits. The

presence of moving charges can introduce fluctuations in the electric field around

the hole. Charge fluctuators may arise from impurities or defects in the oxide layers

in the vicinity of silicon regions. They can induce random changes in the energy

levels, wavefunctions and g-factors of the hole spin, causing errors or decoherence

in the qubit.

This makes it essential to study the impact of charge fluctuators on hole spin

qubit. We simulate a quantum dot confining a single hole. The confinement is

defined by electrostatic gates on a silicon nanowire channel. Our goal is to describe

the qubit as realistically as possible compared to technologies which were recently

developed and characterized. Our simulation takes into account the relaxation and

the dephasing of the hole spin over time by combining Poisson and time-dependent

Schrödinger equations to model a classical random telegraph signal. Our approach

is able to describe the combined effects of fluctuating electric fields and spin-orbit

coupling on the spin dynamics, without any free parameter.

We show that the well-known two-level model effectively describes the dephasing

time T2 over a broad range of frequencies ν of the telegraph signal. When ν is low,

the decoherence is determined by the short time behavior of the spin precession
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phase which is then characterized by a non-Gaussian distribution, the coherence

of the phase is lost as soon as the fluctuator changes state. The Gaussian descrip-

tion is only accurate above a threshold frequency ωth, when the two-level system

responds to the statistical distribution of the fluctuator states. The dephasing

time T2 at this threshold frequency can be significantly increased by adjusting the

magnetic field orientation and gate potentials along "sweet" lines. However, we

show that T2 cannot tend to infinity for reason which are discussed. The existence

of "sweet" points is now an experimentally established fact. The simulations also

show that the spin relaxation time T1 cannot be accurately described by the two-

level model as the coupling to higher-energy hole levels greatly impacts the spin

dynamics.

We also study decoherence processes in the same hole spin qubit using the Bloch-

Redfield theory. We show that this theory works well at high frequency ν, when the

dynamics of the hole spin is slow compared to the fluctuations of its environment.

Limits of the Bloch-Redfield theory at low frequency are identified.
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Résumé

Les sources de bruit sont l’un des facteurs critiques qui déterminent les perfor-

mances des qubits dans les applications de calcul quantique. Les sources de bruit

font référence à tous les facteurs externes qui peuvent causer des erreurs ou de la

décohérence dans un qubit. Dans cette thèse, nous avons simulé ces effets dans le

cas d’un qubit de spin à trous en technologie Silicon-On-Insulator (SOI).

Les fluctuations de charges sont l’une des principales sources de bruit dans les

qubits de spin à trous. La présence de charges mobiles peut introduire des fluctu-

ations dans le champ électrique autour du trou. Les fluctuateurs de charge peuvent

provenir d’impuretés ou de défauts dans les couches d’oxyde à proximité des ré-

gions de silicium. Ils peuvent induire des changements aléatoires dans les niveaux

d’énergie, les fonctions d’onde et les facteurs g du spin du trou, provoquant des

erreurs ou la décohérence du qubit.

Il est donc essentiel d’étudier l’impact des fluctuateurs de charge sur le qubit

de spin de trou. Nous simulons un point quantique confinant un seul trou. Le

confinement est défini par des grilles électrostatiques sur un nanofils de silicium.

Notre objectif est de décrire le qubit de manière aussi réaliste que possible par rap-

port aux technologies qui ont été récemment développées et caractérisées. Notre

simulation prend en compte la relaxation et le déphasage du spin du trou dans

le temps en combinant les équations de Poisson et de Schrödinger dépendant du

temps pour modéliser un signal télégraphique aléatoire classique. Notre approche

est capable de décrire les effets combinés des champs électriques fluctuants et du

couplage spin-orbite sur la dynamique du spin, sans aucun paramètre libre.

Nous montrons que le modèle à deux niveaux bien connu décrit efficacement
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le temps de déphasage T2 sur une large gamme de fréquences ν du signal télé-

graphique. Lorsque ν est faible, la décohérence est déterminée par le comporte-

ment à court terme de la phase de précession du spin qui est alors caractérisée

par une distribution non gaussienne, la cohérence de la phase est perdue dès

que le fluctuateur change d’état. La description gaussienne n’est précise qu’au-

dessus d’une fréquence seuil ωth, lorsque le système à deux niveaux répond à

la distribution statistique des états du fluctuateur. Le temps de déphasage T2

à cette fréquence seuil peut être augmenté de manière significative en ajustant

l’orientation du champ magnétique et les potentiels de grille le long des lignes

"douces". Cependant, nous montrons que T2 ne peut pas tendre vers l’infini pour

des raisons qui sont discutées. L’existence de points "doux" est maintenant un fait

expérimentalement établi. Les simulations montrent également que le temps de

relaxation du spin T1 ne peut pas être décrit avec précision par le modèle à deux

niveaux, car le couplage aux niveaux de trous de plus haute énergie a un impact

important sur la dynamique du spin.

Nous étudions également les processus de décohérence dans le même qubit de spin

à trous en utilisant la théorie de Bloch-Redfield. Nous montrons que cette théorie

fonctionne bien à haute fréquence ν, lorsque la dynamique du spin du trou est

lente par rapport aux fluctuations de son environnement. Les limites de la théorie

de Bloch-Redfield à basse fréquence sont identifiées.
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General Introduction

Four thousand years ago, the Chinese invented the abacus, which is considered as

the first computer in history. It consisted of a wooden frame containing metal rods

to which beads were attached. It is still used in some countries around the world.

A few thousand years later, from the sixteenth century to the nineteenth century,

mechanical calculators evolved over time, including Pascal’ calculator, the Leibnitz

wheel, the Difference Engine, the Analytical Engine and the Tabulating Machine.

A breakthrough was achieved when an electronic computer was introduced in the

United States in 1930 by Vannevar Bush, which relied on vacuum tubes to switch

the electrical signal to perform calculations. Another turning point in the history

of computing came in 1944, when the first Mark I programmable digital computer

was built by a partnership between IBM and Harvard University. Over time,

several generations of computers were developed.

Similarly, the development of the computer has been accompanied by the develop-

ment of its processing and storage capabilities. The integration of semiconductors

in the manufacture of electronic components, in particular the transistor, invented

in 1947 by J. Bardeen, W.Schockley and W. H. Brattain researchers at Bell labo-

ratories [21] and which is the basic building block of computers, has not prevented

the power of computers from increasing since the 1970s. Moore’s Law predicted

that the number of transistors on a microprocessor chip would double every two

years [22], and thus the computing power would also double.

In order to reduce rendering time and perform larger calculations in computing,

parallelism is used since the 2000s. Roughly speaking, parallelism consists of pro-

cessing data simultaneously. This is done by replacing the single processor by
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multiprocessors with multicores.

The first person who introduced the concept of a quantum simulator was the

physicist Richard Feynmann in the 1980s [23], the principle was to find a computer

that would give an approximate simulation to the classical computer, but would

give an exact simulation of nature, i.e. using quantum physics to simulate a

quantum system. This hypothetical computer would be more efficient than a

classical computer for some very specific tasks by taking advantage of the massive

parallelization allowed by the superposition principle of quantum mechanics. In

1994, Peter Shor [24] developed an algorithm for prime factoring a given number

in polynomial (not exponential) time. From this date on, everything accelerated,

and significant progress was made by researchers. Then, in 1996, Lov Grover [25],

from Bell Labs, published a quantum algorithm for searching for an element in

a set of n objects, and the first quantum computer with 2 qubits was announced

in 1998 [26], and now the new IBM Osprey quantum processor has reached 433

Qubits [27].

The ability of quantum technology to break the level of computing speed and pro-

cessing is in principle very large compared to the existing technology. Therefore

France is currently developing, among other possible technologies, its own quan-

tum informatics platform based on silicon technology. Since many of the physical

aspects of this technology are still not understood, this makes the interpretation

of the experimental data difficult, not to mention the optimization of the devices.

The PhD thesis that I am presenting is part of a larger project concerned with

quantum bit modeling, with the aim of understanding the physics behind it. One

of the main issues in this field is to understand the decoherence effects of quan-

tum information in order to try to minimize them. The results of the research

performed in this thesis will help to understand the impact of the noise sources

on the information lifetime and assess their importance in comparison with other

noise sources.
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Chapter 1

Context of the thesis -

Introduction to quantum

computing

1.1 Quantum computing

Quantum computing is a combination of quantum physics, information theory and

computer science. It is obvious that the discovery of quantum mechanics changed

our understanding of the laws of nature, and since then, several technologies have

been born thanks to quantum physics, for example the laser which is based on

the electronic spectrum in gases, and on the electronic band structure in semicon-

ductors, as well as nuclear energy which is based on the knowledge of the nuclear

structure of atoms. An information can be expressed in several ways, like by differ-

ent languages or by numbers. This last choice allows us to manipulate information

in an automatic way with the help of machines, especially computers. Quantum

mechanics and information science can be considered as a scientific revolution of

the 20th century. The Figure 1.1 shows the relation between the two. This second

quantum revolution has been distinguished by the award of the Nobel prize in

physics 2022 to Alain Aspect, John Clauser and Anton Zeilinger.

The first link between quantum physics and information theory was seen in Bell’s
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Figure 1.1: Relationship between information theory and quantum mechanics [1].

inequality which showed the importance of correlations between quantum systems

that interacted with each other in the past. The second link was realized by the

fact that the properties of quantum systems themselves can be used in quantum

cryptography [28–31]. Another vision was brought by Feynman [23, 32] who fore-

saw the possibility of designing a simulator based on quantum physics to simulate

other quantum systems. An important step was taken by Simon (1994) [33] who

realized a quantum algorithm that solves a classically unsolvable problem, and in

turn Simon inspired Shor to write a quantum algorithm that factors large integers.

With a simple two-state quantum system, one can in principle store a large amount

of information, but how much information can one store in such a system? The

answer is given by Jozsa and Schumacher (1994) [34] and Schumacher (1995) [35]:
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it is equal to the number of states in this system which is so-called today a quantum

bit or qubit.

1.2 Possible technologies

There are several technologies for realizing a quantum bit, such as superconducting

qubits, trapped ion qubits, quantum dot qubits, defect-based qubits, topological

qubits, photonic qubits and nuclear magnetic resonance.

1.2.1 Superconducting qubit

At very low temperatures, on the order of a few mK, a RLC (Resistor Inductor

Capacitor) superconducting circuit has negligible resistance due to the supercon-

ductivity effect, so that the circuit functions as an LC resonator, which in spite

of its macroscopic size at the micrometer scale [36–38] (Figure 1.2), has quantum

characteristics [39–42] and is equivalent to a quantum harmonic oscillator. The

harmonic oscillator is a quantum system with equidistant energy levels, which

poses the problem of how to target sepcifically the two lowest levels of the system.

The solution is to introduce a Josephson junction in the circuit, which introduces

a nonlinearity effect in the system that removes the equidistance of the energy lev-

els and facilitates the coding of information in a two-state system that constitutes

the qubit [39, 40].

There are 3 forms of superconducting qubit. 1) The charge qubit [43–48] which

is sometimes called an even Cooper box where the information is encoded by the

even number of electrons in the superconductor. 2) The flux qubit [49–51] where

the information is encoded by the direction of current in the circuit. 3) The phase

qubit uses the difference in the phases of two superconducting wavefunctions of the

Josephson junction [52]. The control of these qubits can be done by microwaves,

magnetic fields or voltages. Moreover, the qubit lifetime is of the order of tens of

microseconds [53], and the coupling between several superconducting qubits can

be managed electronically [54, 55].
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Figure 1.2: (a) Superconducting qubits model. X designs Josephson junction. The capacitance C includes

a contribution from the junction itself. (b)-(e) Graphs of superconducting qubits with micro

meter scale. The circuits are made of Al films. The Josephson junctions consist of Al2O3 tunnel

barrier between two layers of Al. (b) Charge qubit, or a Cooper pair box. (c) Transmon, a

derivative of charge qubit. The Josephson junction in the middle is not visible in this scale. (d)

Flux qubit. (e) Phase qubit. From ref. [2]

1.2.2 Trapped ion qubits

Another existing qubit technology is the trapped ion qubit which is considered

one of the most reliable among the existing technologies. One of the advantages

offered by this qubit is the measurement efficiency provided by the state-dependent

fluorescence detection technique [56, 57]. However, the challenge encountered is

the entanglement of several qubits together.

The architecture of the quantum computer based on trapped atomic ions is inter-

esting since the ions can be confined in space with nanometric precision, and the

neighboring ions interact with each other under the effect of the coulombic force

[58, 59], nearby electrodes provide electric fields that aim to create a confinement

potential in the 3 dimensions of space as illustrated in Figure 1.3. A laser is used

to cool the trapped ions in order to balance the system between the coulombic

effect and the confinement effect. The result is a 1D linear atomic chain where its
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motion is well described by quantized normal modes of harmonic oscillation.

Figure 1.3: Schematic of ion trap qubit. Electric potentials are applied by electrodes to confine a 1-D crystal

of individual atomic ions. Laser is used to entangle the internal levels of qubit. Resonant lasers

can also cause spin-dependent fluorescence for the efficient detection of the trapped ion qubit

states [2].

The entanglement of qubits is done via a laser that induces a coupling to the

set of trapped spins, and then one can change the quantum state of the qubit

by changing the motion of the set of trapped atoms, that occurs by modifying

the modulation of the laser beam. This kind of qubit was proposed in 1995 [60]

then demonstrated later in the same year [61]. The simple model proposed by

Cirac-Zoller is a qubit with internal energy levels of the trapped ion and external

energy levels corresponding to the harmonic motion of the whole set of ions. The

entanglement of the quantum states is clearly seen after the application of two laser

pulses. Consider a pair of electrons which are in the ground state |↓1〉|↓〉2|0〉m due

to laser cooling where |0〉m is the ground state of the harmonic oscillator, a laser

pulse is applied which changes the state of the first pair ion by exiting it at the

higher harmonic level and the spin up state. Then a second laser pulse brings the

system back to its fundamental harmonic state by changing the spin state of the
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second ion as shown in equation (1.2.1). And so the ions forming the qubit are

entangled without changing the initial harmonic state.

|↓1〉|↓〉2|0〉m
pulse 1−−−−→ |↓〉1|↓〉2|0〉m + |↑〉1|↓〉2|1〉m (1.2.1)
pulse 2−−−−→ |↓〉1|↓〉2|0〉m + |↑〉1|↑〉2|0〉m

= (|↓〉1|↓〉2 + |↑〉1|↑〉2)|0〉m

The realization of trapped ion qubit becomes more difficult when the number

of trapped ions increases, the laser-induced cooling becomes less efficient, the

decoherence of the harmonic mode [62] becomes more important due to the noise

induced by the electical fields. One of several approaches proposed to circumvent

these difficulties is the Quantum Charge-Coupled Device (QCCD) [63], it consists

in transporting individual ions thanks to electric forces in different areas of the

complex trap structure. The interest of this model is to process the trapped ions

in small groups, between 5 and 10 atoms, where the noise infuence will be less

important.

1.3 Spin qubit

By definition, quantum dots are semiconductor-based nano-structures where 3D

quantum potential wells are formed. This produces discrete and quantized energy

levels that look like atomic energy orbitals, which makes them similar to the qubits

of trapped ions, which is why they are called artificial atoms. They are promising

candidates for a qubit application similarly to trapped ions.

There are many different ways to make a quantum dot. The principle is always

the same, the confinement of charge carriers (electron, hole) in small regions in

the semiconductor. The first way is to develop the quantum dots in a chemical

solution and then deposit them on the substrate. The other way is via MBE

(molecular beam epitaxy) where the nanocrystals that form the quantum dots are

developed layer by layer and are self-assembled, which gives exellent control over
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the development process. Figure 1.4 presents two different types of quantum dots:

Figure 1.4 (b) shows a self-assembled quantum dots where the growth process

used results in small islands on a layer of semiconductor, these islands represent

quantum dots.

Figure 1.4: (a) Schematic of an electrostatically confined quantum dot. (b) A self-assembled quantum dot

[2].

Figure 1.4 (a) shows an electrostatically defined quantum dot where the potential

of metal gates creates the energy confinement. The electrostatically defined quan-

tum dots are defined by small depletion zones in a 2D electron gas (2DEG). They

work well at very low temperatures, lower than 1K, where the mean free path of

electrons is spatially larger than the dimension of the quantum dot. These quan-

tum dots are manipulated by the potential applied by the electrostatic gates. The

self-assembled quantum dots have the ability to trap electrons that have an energy

higher than the thermal energy, they can be manipulated by optical techniques.

Loss and DiVincenzo [64] were the first to propose the use of the spin of charge

carriers in electrostatically defined quantum dots for quantum computation.

This is motivated by the advantages provided by this type of quantum dots, where,

unlike self-assembled dots, can be geometrically placed on a chip in a well-designed

manner in order to build quantum dot networks in which each dot represents a

two-state quantum system providing the qubit. The information is carried by the

degree of freedom of the intrinsic spin 1/2 of the electron (or hole).

The entanglement of two qubits can be managed by modifying the potential ap-

plied by the electrostatic gates that control the overlap of the spin wave functions,
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the overlap creates orbitals that resemble a molecular orbital. The Loss and Di-

Vincenzo model describes a quantum logic with which the measurement of spin

state in the qubit is based on the coulomb blockade effect and the tunneling of

electron is driven electricaly. This tunneling depends on the spin state due to

the Pauli exclusion principle that prevents two electrons of the same spin from

occurring the same energy level.

1.4 Silicon spin qubit

Coulomb blockade can be observed in very small devices (or quantum dots) in

which the presence of electrons prevents other electrons to flow. The study of

Coulomb blockade [65] in 90’s was crucial to the advancement of Si-based qubit

technology. There are several forms of qubit based on silicon technologies such as

self-assembled nanocrystals, bottom-up grown nanowires, electrostatically gated

Si/SiGe quantum dots, quantum dots in planar MOS structures, quantum dots

in etched silicon nanowires, single donor impurities [66]. In this section, we will

emphasize those based on MOS structures because the device studied in my thesis

is based on this technology. Due to their relatively longer coherence time reaching

the order of milliseconds [67] which has been demonstrated in research labs, spin

qubits in silicon have attracted the attention of researchers around the world. This

is due to the technological advancement in the purification of silicon as nuclear

spins cause the fast decoherence of the qubit quantum state. Besides, the spin

qubit is manufactured in two ways. The first one is the electrostatically defined

spin qubit and the other one is the spin qubit of the impurity atoms implemented

in silicon. Another advantage of the silicon technology is the ease of production

due to the technological development already existing today coming from micro-

electronic industry, which comes from the good understanding of this material due

to the years of research on it. The first silicon qubit was proposed by the Univer-

sity of New South Wales in Australia [68], then after a few years (in 2014), a group

from the University of Delft has designed a spin qubit in Si/SiGe heterostructures,

with the spin being electrically manipulated using a micro-magnet to generate an
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electric field gradient. A little after, in 2016, the first CMOS (Complementary

Metal Oxide Semiconductor) silicon spin qubit was made by CEA-Leti [69, 70].

Figure 1.5 shows a double quantum dot defined in a silicon nanowire. Each dot is

electrostatically confined by the potential provided by a gate, in the corner of the

silicon nanowire, in which a single electron or hole or a small number of electrons

(holes) can be trapped. The qubit spin control is done via a technique called

EDSR (Electric Dipole Spin Resonance) which consists of using a variable electric

field and the spin-orbit coupling to control the qubit spin.

Figure 1.5: Schematic of a double quantum dot system, from ref.[3]. Each dot is defined in a Si nanowire

under a gate. Other configurations of double quantum dots in a Si nanowire will be presented

in chapters 3 and 4.

In this context, the Si or Ge hole qubit is of increasing interest, as the spin-orbit

coupling is much more important for holes than for electrons in these materials

[71]. So, as shown in the Figure 1.5, the qubit consists of two quantum dots, one

contains the quantum information and the other is used to measure the first one,

the qubit is formed by a source and a drain that represent two electodes, between

them are the two quantum dots located in the channel and manipulated by the

potential provided by other electrodes called the gates that ensure the coupling

between the two dots as well as the transfer of the charge carriers between them.

Their transport is done by tunneling effect from where the charge carriers are
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transferred one by one between the dots. The effect of Coulomb/Pauli blockade

can be used to measure the state of the spin according to the presence or absence

of electronic transfer by the technique of RF (Radio Frequency) reflectometry.

1.5 Experimental progress

Table 1.1: Characteristics of different spin qubits based on semiconductor technology.

f is the qubit frequency, T ∗2 the coherence time, T2 the dephasing time (spin

echo) and Q = T ∗2 /Tπ the quality factor. Reproduced from Ref [19].
Qubit Material f (MHz) T ∗2 (ns) T2 (ns) Q = T ∗2 /Tπ ref.

Single spin Si/SiGe ∼ 5 ∼ 9 x 102 3.7 x 104 ∼ 9 [72]

Single spin 28Si ∼ 0.3 ≤ 1.2 x 105 1.2 x 106 ≤ 80 [73]

Donor spin (e−) P in natSi ∼ 3 55 2 x 105 ≤ 1 [68]

Donor spin (e−) P in 28Si ∼ 0.2 ∼ 3 x 105 1 x 106 ∼ 108 [74]

Singlet-Triplet Si/SiGe ∼ 351 ∼ 1 x 103 n.a. n.a. [75]

Hybrid Si/SiGe ∼ 1 x 104 ∼ 11 ∼ 40 ∼ 250 [76]

The experimental work on silicon spin qubit is evolving more and more using var-

ious approaches. In fact, CMOS technology is the preferred one because of its

industrial developments and the role of silicon played in the development of infor-

mation society. The earliest experimental works on CMOS-based qubit technology

that is compatible with a standard manufacturing process is that reported by Leti

(France) [69, 77], and the 300 mm process line for qubit manufacturing that is

under development at INTEL [78].

In the table 1.1, there is a comparison of the characteristics of different silicon

spin qubit technologies: qubit frequency, coherence time, T ∗2 and T2 dephasing

time and quality factor. Figure 1.6 also shows some caracteristic spin lifetimes for

different types of qubits. These very important quantities will be defined later in

this document. More recent results will be discussed in Chapter 6.

Table 1.2 compares the physical qubit footprints produced by various technologies.

The number of qubits per unit area, is provided for silicon qubits (single-spin and

hybrid qubits), in comparison to the superconductive and trapped ions qubits used
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Figure 1.6: Spin lifetimes for different silicon spin qubit based on quantum dots or single donor impurities.

T1 is relaxation time and T2 is dephasing time sketched on the sphere at the right. The arrows

show how the characteristic times become larger at lower temperatures. Reproduced from Ref

[4].

Table 1.2: Number of physical qubits per unit surface Mqbph/cm
2 and area

Achip(mm2) covered by 2 billions of physical qubits. The silicon hybrid

qubit footprint refers to the 7 nm technology node. From Ref [19].
Semiconductor Semiconductor Semiconductor Superconductor Superconductor Traped ion

Single-Spin Hybrid qubit Hybrid qubit Flux qubit Trasmon qubit qubit

qubit (steane code) (Surface code) (DWave like) (IBM like)

Mqbph/cm
2 8000 830 100 x 102 8 x 10−4 10−5 2 x 10−5

Achip(mm2) 25 240 20 25 x 107 2 x 1010 1010

Reference [79] [80] [80] [37] [81, 82] [83]

in current quantum computers. Silicon qubits have a far smaller footprint than

superconductors and trapped ions qubits.

17



Chapter 1: Context of the thesis - Introduction to quantum
computing

1.6 Objectives of the thesis

This thesis was part of the ANR project "MaqSi" dealing with the modeling and

the assessment of silicon spin qubits. The objectives of the project were to under-

stand the physics of the qubits, to sort out the existing options in order to make

suggestion on the design of the qubits, and to find the strong and weak points of

the SOI (Silicon On Insulator) technology for the application of quantum comput-

ing.

The project combined theory and experiments. This work was dedicated to study

theoreticaly the decoherence and the variability of a qubit. The main objective of

my thesis was to study the sensitivity of a hole spin qubit against the existing noise

sources, especially the quasi-static charge noise found in the gate oxide layers. We

focused on the study of the influence of single charge fluctuations on the lifetime

of the quantum information in the qubit, this is called decoherence.

The thesis is divided in several chapters. Chapter 1 that you have read is an intro-

duction of the general context of the thesis in which I have introduced the history

of quantum computing with the presentation of the existing technologies in this

field. Chapter 2 presents the different sources of noise existing in the qubit. I

also discuss the telegraphic noise and decoherence phenomenon (defined by char-

acteristic times T1 and T2) which represent the essence of the thesis. Chapter

3 is dedicated to describe the device geometry, and its characteristics. Chapter

4 presents the methodologies to calculate the electronic structure and the elec-

trostatic potential in the devices. Chapter 5 describes the models developed to

calculate the characteristic coherence times. In chapter 6, the results obtained

will be discussed in order to make a general conclusion of the thesis. Chapter 7

provides additional results based on the Bloch-Redfield theory.
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Chapter 2

Decoherence and dephasing

2.1 Introduction

A qubit is usually defined as a two-level system. The qubit is always coupled to its

environment, this coupling induces a change in quantum coherence of the system

called decoherence. The decoherence was always an important topic studied by

physicists because of its impact on the qubit information lifetime. Different noise

souces exist limiting the quantum coherence of the system, and they have been an

obstacle to build a quantum computer. One of most important and not completly

understood behaviour in nano devices is the 1/f noise. Random telegraph noise

is a microscopic source of noise which is a possible origin of 1/f noise. In this

chapter, we will discuss random telegraph noise and show the models of coherence

lifetimes calculation.

2.2 Different noise sources

Silicon based qubits are always linked to undesirable interactions and disorders

that limit the lifetime of the information and cause its loss. The Figure 2.1 presents

a transistor with the different sources of existing noises (Courtesy : Y. M. Niquet).

The gate noises (GN) are the noises produced by the metal gate of the transistor

which are of magnetic and thermal fluctuation origin. The thermal noise also
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Figure 2.1: Noise sources. (SR): Surface roughness, (DT): quasi-static charge traps in the gate oxides

and embedding materials, (ST): Shallow impurities near the source and drain possibly captur-

ing/releasing charges during the operation of the qubit, (PH): Phonons, (NS): Nuclear spins,

mostly in natural Si, (GN): Gate (and magnetic field) noise.

called Johnson-Nyquist noise is generated by the thermal agitation of electrons in

an electrical resistance at equilibrium which will take place independently of any

applied voltage. PH in Figure 2.1 stands for phonons, which are quasi-particles

whose energies are quantized. They are associated with the elastic waves created

by the vibrations of the crystal lattice. The phonons responsible of the relaxation

of a qubit typically have an energy ~Ω where Ω is the Larmor angular frequency.

This frequency in a hole spin qubit is generally smaller than 40 GHz. Thus, from

the phonon band structure of silicon shown in Figure 2.2, it is clear that only the

acoustic branches contain phonons in this energy range and then are responsible

for decoherence.

One of the main sources of spin decoherence in a semiconductor-based qubit is the

hyperfine coupling of the electrons with the nuclear spins (NS) of the host ma-

terial, whose complex dynamics generate hyperfine field fluctuations that disturb

the spin precession and cause coherence loss. The advantage of using silicon for

qubit applications is manifested by the presence of a low concentration (4.7%) of

the isotropic 29Si isotrope in natural silicon, which reduces the effect of electron

coupling to the nuclear spin compared to GaAs technologies [84]. It has been
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Figure 2.2: Band structure of silicon phonons along the L→ Γ → X path in the first Brillouin zone. Solid

and dashed lines correspond to two computational methods. Circles represent experimental

data. Adapted from reference [5].

demonstrated in 2005 that the purification of bulk crystals of silicon from their

non-zero nuclear spin isotropes is possible [85]. In 2011, a high level of purification

in the framework of the Avogadro project reaching a concentration of the isotrope
29Si smaller than 5 ∗ 10−5 for 1 Kg of silicon [86] was demonstrated.

Another source of decoherence is represented by the charge traps that exist in the

oxide layers of components, especially the gate oxide, and are often described as

quasi-static noise sources. We will not describe this aspect now because it will be

discussed in detail, later in this chapter since it is the source of microscopic noise

studied in this thesis.

2.3 1/f noise

Qubits are systems that exhibit high sensitivity to fluctuations, whether extrinsic,

such as those due to the local electromagnetic environment, or intrinsic, such as

noise from material defects. Fluctuations with 1/f (f:frequency) spectral density

more generally 1/fα seem to be quite unavoidable in all nanodevices and it is

therefore clear that 1/f noise plays a major role in quantum dynamics and is

an important source of decoherence. The nanoscale size of nanodevices can be

considered as a sensitive probe to this kind of noise and can therefore provide us

with information about the microscopic origin of these noises. We could find in
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the literature many systems for which there is evidence of fluctuation properties

that have spectral densities that vary proportionally to 1/f over a wide frequency

range. Despite, a complete physical mechanism for 1/f noise has not yet been

discovered. There is no single way to explain the 1/f noise. The simplest model

to reproduce the characteristics of 1/f noise is that of a set of fluctuators that

represent a dynamic charge which fluctuates between two metastable states [87–

89]. This produces what is known as random telegraph noise "RTN".

Due to recent developments in processing technology, it is now possible to fab-

ricate devices with an active volume that is so small that it only holds a few

charge carriers, for example silicon metal-oxide-semiconductor field-effect transis-

tors (MOSFETs), where a random telegraph signal (RTS) can be seen in the drain

current of a MOSFET as a function of time [17].

2.4 Spin decoherence

Figure 2.3: The degeneracy between the highest occupied levels of |↑〉 and |↓〉 spin states is lifted by a static

magnetic field B.

A qubit is generally defined as a 2-level system where the degeneracy of the spin

state of an electron or a hole is lifted due to an external magnetic field as seen

in Figure 2.6. The electron or the hole spin undergoes a precession around the

magnetic field axis taken as the z-axis. The wavefunction of the spin can be

written as

|ψ(t)〉 = α(0)|↓〉+ β(0)e−iΩt|↑〉 (2.4.1)
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where Ω is the frequency of precession, i.e. the Larmor frequency, and |↓〉, |↑〉 are

the spin basis states of the electron or hole. Generally the decoherence of a qubit

is defined by the loss of quantum information. It results from the change in the

qubit dynamics due to various sources of noise and interactions. In this work, we

study the decoherence due to single charge fluctuators [17]. The relaxation and the

dephasing are two process defining the decoherence. The dissipative process where

the electron spin state goes from up to down is (|↑〉 → |↓〉) is called relaxation, it

is associated with the characteristic time T1. On the Bloch sphere Figure 2.4, it

corresponds to a path of the state along a z-axis, that means a change of θ. On

the other side, the dephasing corresponds to the phase shift of spin compared to

the perfect spin precession, i.e. a change in the phase ϕ on the Bloch sphere, it is

associated with the characteristic time T2.

Figure 2.4: Bloch sphere.

2.5 Classical telegraph noise

In this section we show how to calculate the coherence lifetimes in the case of a

classical telegraph noise. In the basis {|↑〉, |↓〉}, the Hamiltonian which describes

a 2-level system coupled to a charge fluctuator following a random telegraphic

signal reads:
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H(t) = H0 + χ(t)U (2.5.1)

with

H0 = ~
2

Ω 0

0 −Ω

 ; U =

u↑↑ u↑↓

u↓↑ u↓↓

 (2.5.2)

where H0 is the hamiltonian representing the spin system at the fundamental state

without any perturbation or coupling to the bath, χ(t) is the telegraphic signal

shown in Figure 2.5 and U is the coupling hamiltonian of the fluctuator to the

qubit. For reasons that will be clarified later, we define ωth = |u↑↑ − u↓↓|.

Figure 2.5: telegraphic signal.

2.5.1 Correlation function of telegraphic signal

The coherence time especially the relaxation time of a two-level system such as

a qubit may depend on the noise spectral density. It is necessary to calculate

the autocorrelation function of the telegraph noise signal. The autocorrelation

function is a statistical tool used to analyze the degree of similarity between a

time series and a shifted version of itself in order to compare the current value of

a data set to its past value.

In this paragraph we show how calculate it in a general way where the telegraphic
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signal is asymetric. Considering:

χ(t) =

 1 0 ≤ t < t1

0 t1 ≤ t < t2
(2.5.3)

is a telegraphic signal which may switch between two discrete values 0 and 1, as

seen in Figure (2.5). Let us define q1 = 〈χ(t)〉 as the average of χ(t) over time.

Then consider the telegraphic signal of general form B(t) with zero mean which

could facilitate the calculation.

B(t) =

 B1 = 1− 〈χ(t)〉 = 1− q1 = q0 0 ≤ t < t1

B0 = 0− 〈χ(t)〉 = −q1 t1 ≤ t < t2
(2.5.4)

The autocorrelation function depends on the transition probability function from

Bi → Bj, we refer to Ref [90]. We define ν0 and ν1 as the probability per time

unit of jump B1 → B0 and B0 → B1, respectively. With ν = ν0 + ν1, q0 + q1 = 1

and qj = ν1−j
ν

, we can define the transition probability function [90]

pij(τ) = Prob {B(t) = Bj|B(0) = Bi}

= qj + (δij − qj)e−νt (2.5.5)

Now we can write the autocorrelation function following Ref [90] as

Cij(t) =〈B(t)B(0)〉 =
∑
ij

qipij(t)BiBj (2.5.6)

=q0(q0 + q1e
−ντ )B2

0 + 2q0q1(1− e−ντ )B0B1 + q1(q1 + q0e
−ντ )B2

1

Calculating the limit conditions at t = 0 and t→∞, we obtain

Cij(0) =q0B
2
0 + q1B

2
1 = q0q

2
1 + q1q

2
0 = q0q1

Cij(∞) =(q0B0 + q1B1)2 = 0

Then, the autocorrelation function reads

Cij(t) = 〈B(t)B(0)〉 = Cij(∞) + [Cij(0)− Cij(∞)]e−ν|t|

= q0q1 e
−ν|t| (2.5.7)

Later we will use the autocorrelation function to calculate the noise spectrum of

the telegraphic signal. In a symmetric case q0 = q1 = 1/2.
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2.5.2 Hamiltonian in pure dephasing model

We first consider the system without spin relaxation, in a so-called pure dephasing

model [91]. Non-diagonal terms of U are neglected and the Hamiltonian becomes

according to reference [17]

H(t) = ~Ω
2 σ̂z + ~ωth

2 χ(t)σ̂z (2.5.8)

where ωth represents the change in Larmor angular frequency that fluctuates be-

tween Ω and Ω + ωth for χ(t) = 0 and 1, respectively.

~Ω is the Zeeman energy splitting between the energy levels of the qubit without

any coupling and σ̂z is the Pauli matrix which acts on the eigenstates |↑〉, |↓〉 of the

qubit. ωth
2 χ(t)σ̂z represents the hamiltonian describing the coupling of the qubit

to a charge fluctuator.

The solution ψ(t) of the time-dependent Hamiltonian equation (2.5.8) is [91]:

|ψ(t)〉 = 1√
2

(e−iΩt/2eiϕ(t)/2|↑〉+ eiΩt/2e−iϕ(t)/2|↓〉) (2.5.9)

With

ϕ(t) = −ωth
∫ t

0
dt
′
χ(t′) (2.5.10)

ψ is the superposition of |↑〉 and |↓〉 with a phase term exp(iϕ(t)/2) that describes

the fluctuations due to the coupling to the fluctuator and ϕ(t) equation (2.5.10)

represents the time evolution of the phase.

The equation (2.5.9) gives the temporal evolution of the wave function of a single

realization. Experimentally, what interests us is to make an average on several

measurements or realizations. Then, it is necessary to make the average of the

measurements with respect to ϕ as shown in the equation (2.5.11)

〈Â〉ϕ = tr[dϕp(ϕ, t)ρ̂(ϕ, t)Â] (2.5.11)

where Â is the observable, 〈..〉ϕ represents the quantum mechanical average and the

average with respect to the random phase. p(ϕ, t) is the probability distribution

function of the ϕ phase and ρ̂ represents the density matrix of the qubit.

26



Chapter 2: Decoherence and dephasing

The fact that Â is independent of the phase fluctuation allows us to write:

〈Â〉ϕ(t) = tr[ρ̂red(t)Â] (2.5.12)

where ρ̂red is the reduced density matrix [91]:

ρ̂red(t) =

 ρ↑↑(0) ρ↑↓(0)e−iΩtD(t)

ρ↓↑(0)eiΩtD∗(t) ρ↓↓(0)

 (2.5.13)

which can be easily calculated from the wave function given by equation (2.5.9).

We can clearly see that the diagonal elements ρii remain constant as a function

of time, i.e. the population of states does not change. This is due to the fact

that we only study the qubit dephasing phenomenon and that it appears in the

Hamiltonian as the diagonal term ~ωth/2σ̂z (pure dephasing). The term D(t)

which appears in the non-diagonal elements of ρ̂red(t) represents the evolution of

the phase fluctuation due to the telegraphic signal.

D(t) = 〈e−iωth
∫ t

0 dt
′
χ(t′ )〉ϕ (2.5.14)

〈...〉ϕ represents the average of phase fluctuation ϕ on several realizations.

〈...〉ϕ =
∫
dϕ(...)p(ϕ, t) (2.5.15)

p(ϕ, t) is here the phase probability distribution for telegraphic noise and D(t) is

the term describing the coherence of the system.

2.5.3 Dephasing in the Gaussian approximation

It is known that the telegraphic signal is not a Gaussian noise, but it is insight-

ful to study the coherence of the qubit by considering a Gaussian distribution

probability for q1 = 1/2. Experimentally, the measurements are done on sev-

eral realizations. According to Ref [91], we consider that the fluctuations have a

Gaussian distribution

p(ϕ, t) = 1√
2π〈δϕ2〉

e
−δϕ2

2〈δϕ2〉 (2.5.16)
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leading to

DGauss(t) = 〈eiϕ(t)〉 = ei〈ϕ(t)〉− 1
2 〈δϕ

2〉, δϕ(t) = ϕ(t)− 〈ϕ(t)〉 (2.5.17)

The mean 〈ϕ(t)〉 is equal to −ωtht/2 and the variance 〈δϕ2(t)〉 where δϕ(t) =

ϕ(t)− 〈ϕ(t)〉 is given by [91]:

〈δϕ2(t)〉 = ω2
th

∫ t

0
dt′
∫ t

0
dt′′〈δχ(t′)δχ(t′′)〉 = ω2

th

2ν [t− 1
ν

(1− e−ν|t|)] (2.5.18)

which leads to:

DGauss(t) = exp{−iωtht2 − ω2
th

4ν [t− 1
ν

(1− e−ν|t|)]} (2.5.19)

Following Ref [91], we can deduce the decoherence rate ΓGaussϕ from the visibility

|DGauss(t)| which at t→∞ is written as e−ΓGaussϕ t

ΓGaussϕ = − lim
t→∞

1
t
ln|DGauss(t)| =

ω2
th

4ν (2.5.20)

This gives the inverse of the dephasing time T ∗2 in the Gaussian approximation.

2.5.4 Exact result in pure dephasing model

In fact, the decoherence of the 2-level system due to a telegraphic noise cannot

be described by the Gaussian approximation. The reason is that the probabilty

function distribution of a telegraphic signal has not the shape of a Gaussian distri-

bution. According to References [16, 17, 91] the phase distribution for a telegraphic

signal switching between 0 and 1 as in equation (2.5.3) is given by the probability

density:

p(ϕ, t) = (2.5.21)

e−νt/2[δ(ϕ) + δ(ϕ+ ωtht)
2 + ν

ωth

I1(νt/2
√

1− (2/ωtht)2(ϕ+ ωtht)2)√
1− (2/ωtht)2(ϕ+ ωtht)2

](θ(ϕ) + θ(ϕ+ ωtht))

where θ(ϕ) is the Heaviside function and I1 is the modified Bessel function of

the first kind. The probability distribution function p(ϕ, t) versus the phase ϕ
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Figure 2.6: Plot showing the probability distribution function p(ϕ, t) as a function of phase ϕ for weak

coupling ωth/ν = 0.5. The probability distribution is cut at ϕ = ωtht/2 by the δ function,

which is indicated by the arrows, and the dashed line represents the asymptotic Gaussian

distribution.

for different values of νt is shown in Figure 2.6. We see that for short νt, p(ϕ, t)

exhibits cuts due to δ-functions and for large νt, p(ϕ, t) exhibits a Gaussian shape

which will be discussed in chapter 6.

With a non-trivial calculation detailed in Refs [17, 91], we obtain the coherence

D(t) which obeys the non-Gaussian phase probability distribution 2.5.21,

D(t) = 1
2e
−i(ωth−iν)t/2[(1 + ν

2δ )eδt + (1− ν

2δ )e−δt] (2.5.22)

with δ = 1
2

√
ν2 − ω2

th. The dephasing rate can be calculated from D(t)

Γϕ = T ∗−1
2 = − lim

t→∞

1
t
ln|D(t)| =


1
2(ν −

√
ν2 − ω2

th) ωth ≤ ν

ν
2 ωth > ν

(2.5.23)

This differs from ΓGaussϕ = ω2
th/(4ν) calculated with the Gaussian approximation

seen above. However, the Gaussian approximation becomes exact in the limit

ν >> ωth.
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2.5.5 Relaxation time T1

The spin relaxation is induced by the presence of non-diagonal terms in the matrix

U . An expression of T1 was obtained by several approaches such as the Born-

Markov master equation [92], the Bloch-Redfield theory [93, 94] (chapter 7), and

the systematic weak-damping approximation in a path-integral approach [95]. T−1
1

is proportional to the noise spectrum S(Ω) at the frequency Ω [17].

As discussed previously, we can write the hamiltonian as followed

H(t) = H0 + 〈χ(t)〉U + (χ(t)− 〈χ(t)〉)U (2.5.24)

that can be rewritten as

H(t) = Hm + V (t) (2.5.25)

where Hm which is time independent and V (t) depends on time
Hm = H0 + 〈χ(t)〉U

V (t) = B(t)U

(2.5.26)

where B(t) was defined previously. The relaxation rate is determined by the noise

spectrum at Larmor frequency Ω which is defined as (see Ref [17] and chapter 7 )

S(Ω) = 1
2π~2

∫ ∞
−∞

dτeiΩt〈B(t)B(0)〉

= q0q1ν

π~2(ν2 + Ω2) (2.5.27)

Then the relaxation time is written as

T−1
1 = 4π|u↑↓|2S(Ω) = 4∆u↑↓u↓↑ν

~2(ν2 + Ω2) (2.5.28)

with ∆ = q0q1. Another proof of this result in the limit ν << Ω is given in

Appendix D.

2.5.6 Coherence time T2 in the general case

T ∗2 was derived in the pure dephasing model, i.e. in absence of non-diagonal terms

in the matrix U . In the more general case where u↑↓ 6= 0, by referring to Bloch-
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Redfield ([93, 94] and chapter 7) and Cohen-Tannoudji [92], the exprexxion of T2

is

T−1
2 = T ∗−1

2 + (2T1)−1 (2.5.29)

2.6 Conclusion; outlook

In this chapter we discussed the different sources of decoherence, namely phonons,

Nyquist noise, nuclear magnetic, and we focused on charge fluctuator noise. We

have introduced an overview on 1/f noise and its link with the charge fluctua-

tor. Then we described mathematically the Random Telegraph Noise in order to

calculate the characteristic times of coherence in a two-level system.
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Silicon spin qubits

3.1 Introduction

In this chapter we will discuss the development of a spin qubit in silicon technology

which was done at CEA. We will see the difference between a spin electron qubit

and a spin hole qubit according to the different characteristics of the conduction

and valence bands. Then we will discuss the different electrical characteristics and

physical effects in the hole qubit, plus the effect of temperature. At the end we

will briefly present different experimental measurements made to characterize a

hole qubit.

3.2 Qubit geometry

INAC is a laboratory for condensed matter and low-temperature physics (now

included in the institute IRIG), while LETI is a microelectronics laboratory. The

CEA Grenoble (University Grenoble Alpes) comprises the two labs. With all of

the relevant experience, developing a silicon qubit component was a natural way

to address quantum computing technology.

Silicon nanowire technology has received a lot of interest in the race of Moore’s

law. The development of the so-called silicon-on-insulator (SOI) trigate transistor

has made significant advances, particularly at CEA Leti. As sketched in Figure
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Figure 3.1: Trigate silicon MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor) fabricated at

Leti. SiO2 in green, silicon is in red, the metallic gate is in gray and HfO2 in blue.

3.1, it is typically formed by a nanowire of Si defined by lithography and chemical

etching on a SOI substrate to reach lower dimensions of the order of 10 nm. The

nanowire thus lies on a thick SiO2 layer called the BOX (Buried Oxide), which

seperates the backgate electrode from the nanowire. The source and drain are

formed by highly doped extremities of the nanowire. Si3N4 spacers separate the

source and drain contacts from the gate, which is placed on top of the nanowire in

order to control the density of electrons or holes in the channel. Two oxide layers

seperate the metallic gate from the Si channel, first a 1 nm thin SiO2 layer and a

second 2 nm HfO2 layer, which has a higher dielectric constant and so enables a

more efficient gate coupling. In other cases, the gate oxide is only formed of SiO2

because HfO2 is quite defective. The gate covers the sides with no contact with

the BOX, providing great electrostatic control over the channel. The SiO2 BOX

minimizes leaking current, and the backgate adds an electrostatic handle to the

system, allowing a control of the threshold voltage. Thanks to that, these devices

are good candidates for low-power applications.
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3.3 Description of the device

In order to make qubits more reproducible and efficient, the strategy was to con-

figure these SOI devices with quantum simulations which are required to explain

the physics due to the small dimensions of these devices. The geometry of device

must first be changed because it is needed to make the device work in the single-

electron or hole regime, and because there is a need of a mechanism to measure

and change the spin state locally, as well as a reliable architecture that supports

two-qubit operations. In the following, we go over each of these aspects to describe

them.

Figure 3.2: a) A MOSFET transistor with long spacers that capacitively couple to the source and drain

contacts while isolating a quantum dot under the gate. b) Measured Coulomb oscillations at

4.2 K and 400 mK (black curve) (blue curve). From ref [6].

The design of the spacers (Figure 3.2 a) between the source-drain contacts and

the gate is an important factor for single charge control [6]. The tunnel barriers

which seperate the channel and the source/drain leads, are controlled by these

spacers. They are the main reason of the creation of a quantum dot under the

gate in the Coulomb blockade regime at low temperature if they are long enough.

The number of electrons in the created quantum dot is controlled by varying the

gate potential. The observed Coulomb oscillations are shown in Figure 3.2 b.

In order to make double quantum dots, it is necessary to add another gate to the

system. In Figure 3.3, for example, two gates are connected in series to generate

one quantum dot under each gate which is coupled to the neighbor dot by tunnel

effect. Because of the Pauli spin blockade, which will be described later in this
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Figure 3.3: a) Double quantum dot (3D schematic). b) Top view of double quantum dot device. From ref

[7].

chapter, the current can only flow if the spins in the two dots are not parallel,

that makes the double qubit a perfect system to mesure qubit spin. As a result,

measuring the current yields a measure of the spin, as established for electrons

[96, 97] and holes [7, 98]. However, the method of detecting Pauli spin blockade is

incompatible with quantum processing, which necessitates a single-shot readout.

As a result, gate-reflectometry is a technique used for single-shot charge transfer

detection [99–101].

3.4 Electron and hole qubits

Figure 3.4: (a) Bulk silicon band structure. (b) Zoom on the valence band maximum and the conduction

band minimum. From ref [8].

35



Chapter 3: Silicon spin qubits

The main difference between a hole spin qubit and an electron spin qubit relates

to the different physical characteristics of silicon valence band and conduction

band. The top of the valence band for bulk silicon close to k = 0 is made up of

two bands with distinct curvatures, the heavy (HH) and light holes (LH), which

become degenerate at k = 0. The spin-orbit splitting energy separates the two

bands from a third one known as the split-off with an energy ∆SO=44 meV. The

band structure of valence band will be detailed in chapter 4. The valence band is

mostly composed of linear combinations of p atomic orbitals which have a orbital

momentum l = 1, explaining the strong spin-orbit interaction near k = 0. The

spin-orbit interaction is considerably stronger there than in the conduction band.

The degree of symmetry is reduced in a nanostructure compared to the bulk.

As a result, the degeneracy between HH and LH states at k = 0 is lifted. Then,

depending on the type of confinement and strain, the resultant states are mixtures

of heavy and light holes. The presence of spin-orbit coupling in the valence band

of Si makes a hole qubit sensitive to electrical noise. On the other hand, it can be

manipulated effectively by an electric field.

Figure 3.5: The impact of potential and confinement on the valley states in the case of an electron spin

qubit [9].

On the other hand, the electron spin qubit depends on the characteristics found in

the conduction band of silicon. The minimum of the conduction band is made of 6

times degenerate valleys: twice according to each direction of the reciprocal space

±K0x, ±K0y and ±K0z as seen Figure 3.5. This creates a problem for the encoding

of quantum information since it requires two well-defined states. This problem can

be reduced in nanostructures (e.g. quantum dots), where the confinement and
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the interface of the structure destroy the symmetry and consequently produce

a degeneracy lifting on the degenerate valleys. A confinement along z lifts the

degeneracy between the four Kx, Ky and the two Kz. On the other hand, the lift

of degeneracy between +Kz and −Kz is done by inter-valley scattering potentials

induced by the sharp interface potential. Figure 3.5 presents a view on the impacts

of confinement and sharp potentials. In a first approximation, the resultant states

ν1 and ν2 are bonding and anti-bonding combinations of the +Kz and −Kz states.

The energy known as the valley splitting ∆ separates them.

Another remarkable feature of the silicon conduction band is that, in contrast to

other III-V semiconductors, it exhibits relatively low degree of spin-orbit interac-

tion. Due to its small atomic weight (Z = 14), which results in a lower electric

field around the nucleus than for heavier atoms, silicon has a low spin-orbit effect

in conduction band. In addition, the p orbitals are separated in energy and are

unable to be linked effectively by the spin-orbit interaction because the conduction

band minima are situated at different k values. Finally, due to the crystal centro-

symmetry, Dresselhaus spin-orbit effects are negligible [102]. However, due to the

relative low degree of symmetry in quantum dots compared the bulk, it has been

demonstrated that, in some circumstances, this can result in a non-negligible spin-

orbit interaction which can be used for spin manipulation [103, 104]. It appears

that silicon could be a good choice for an electron spin qubit. The spin degree

of freedom is an excellent quantum number as far as the valley splitting is high

enough and the spin-orbit interaction is very low. Because of this, the spin qubit

is essentially insensitive to electrical noise except at certain points of operation.

Nuclear spins can be purified in silicon, therefore magnetic noises will not exist

either. As a result, very coherent electron spin qubits are possible [105–107].

3.5 Main electrical characteristics

In this section we will present the main electrical characteristics of a hole qubit.

The qubit is defined by a quantum dot in a silicon nanowire. A second quantum
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dot is dedicated to measure the spin state of this qubit by acting as a spin filter

by a spin-current conversion. For this purpose, we introduce the stability diagram

and the current triangle with the two phenomena of Coulomb blockade and Pauli

blockade in the double quantum dot device.

We take a system of two quantum dots linked in series, with two gates controlling

the electro-chemical potentials via the voltages VG1 and VG2. It is possible to apply

a voltage Vd between the drain and the source. This mechanism is shown in Figure

3.6. Between the source, the drain, and the quantum dots, one or more holes can

be transported.

Figure 3.6: Diagram showing two quantum dots linked with a source and a drain. The source is grounded,

while the voltage supplied to the drain is designated as Vd. The electro-chemical potentials of

the quantum dots are controlled by the gate voltages VG1 and VG2. The hole transport is shown

by the black arrows. Inspired from refs [10, 11].

3.5.1 Coulomb blockade

The filling of these two quantum dots, which are set up in series, is based on the

Coulomb blocking principle. For this, we first talk about filling a single quantum

dot before moving to the case of the double quantum dot. Taking into account

that to add a particle in a quantum dot of N particles, the required energy is

given by

µ(N + 1)− µ(N) = Ec + ∆E (3.5.1)

where µ(N) represents the electro-chemical potential of the dot withN carriers, Ec

represents the Coulomb interaction energy and ∆E represents the energy difference
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between the quantum states in the dot [11]. In the case of a spin degenerate state

(∆E = 0), the injection of a second electron still requires an energy Ec, which

is at the core of Coulomb blockade phenomenon. Coulomb blocking will occur

when all the states of the quantum dot below the electro-chemical potential are

completely filled. The quantum dot is linked to the source and drain in a one-

electron transistor. This quantum dot can contain an extra particle when the

gate-controlled electro-chemical potential µ(N + 1) falls below the drain or source

Fermi level at zero drain-source voltage. On the other hand, if the electro-chemical

potential µ(N) exceeds the Fermi level, the dot loses a particle. The number of

particles in the dot is constant as long as µ(N) < EF < µ(N + 1) at T = 0.

Figure 3.7: a) Diagram illustrating the Coulomb blockade. b) The filling of one of the two quantum dots,

which are coupled to a source and a drain. In both scenarios, the drain/source voltage is 0.

The mechanism of filling two dots (Figure 3.6) is identical to the scenario previ-

ously discussed in the case of one quantum dot as shown in Figure 3.7. A config-

uration of a stable charge that corresponds to the Coulomb blockade in the case

of the two quantum dots in series is shown in Figure 3.7 a. The electro-chemical

potential of dot 1 after being charged in dot 2 is too high to allow a particle from

dot 2 to be transported there. When the electro-chemical potential µ(N + 1) for

dot 2 falls below the Fermi level of the reservoirs, a particle is transferred from

the source to quantum dot 2 in Figure 3.7 b.

3.5.2 Stability diagram

The voltages of the gates VG1 and VG2 of the quantum dots, in the case of two

quantum dots connected in series, electrostatically control the electro-chemical
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potentials of these quantum dots. The behaviour is described in Figure 3.8. As a

result, the electro-chemical potentials change with varying gates voltages, allowing

to load or empty the quantum dots by playing with Coulomb blocking effect.

The stability diagram, which depicts the stable number of charge carriers present

in these quantum dots vs the gate voltages VGi may then be created. Typical

stability diagrams for the system are shown in Figure 3.8, where the pair (N1, N2)

stands for the number of charges in each dot. The lines represent the limits of

the regions with well defined number of charge carriers as function of the gate

voltages. In an ideal situation, the voltage of gate i where i ∈ {1, 2} controls

the electro-chemical potential of quantum dot i only. Such a perfect stability

diagram, as in Figure 3.8 a, would have vertical or horizontal lines dividing the

various stability regions. Cross-effects, or the voltage of one grid influencing the

Figure 3.8: Diagram of stability according to the gate voltages VG1 andVG2. A ideal case would have a gate

controlling each of the quantum box chemical potentials. b) The quantum boxes are connected

in this realistic case. Two triple points are framed by the brown square. c) Zoom of the square

showing current triangles at the limit of different regions. Inspired from refs [10, 11].

electro-chemical potential of the other quantum dot, occurs in reality. The stability

diagram then displays oblique lines instead of horizontal or vertical lines. Such a

stability diagram is shown in Figure 3.8 b. This figure illustrates certain locations

known as "triple points," where three charge configurations are degenerated. Thus,

Coulomb interactions make it possible to control the filling of double quantum dots

through gates acting on their electro-chemical potentials.
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3.5.3 Pauli blockade

The Pauli blockade is based on the principle of Pauli exlusion which says: two holes

or two electrons which have the same spin cannot be in the same state. Based on

the double quantum dot device in series, we can imagine configurations exhibiting

Pauli blockade. Figure 3.9 shows two cases that apply. First, we consider that

Figure 3.9: Chemical potentials for Pauli blocking are distributed. A spin ⇑ particle is depicted in green,

whereas a spin ⇓ particle is depicted in blue. a) Charge can be transmitted to the source since

the spin states are not blocked. b) The spin states are blocked, making it impossible for charges

to go from the drain to the source.

each dot (named dot i) is filled with Ni holes where Ni is an odd number, we study

the inter-dot transition (N1, N2) → (N1 − 1, N2 + 1). This is equivalent to the

example: the transition (1, 1) → (0, 2). So the transition or blocking in this case

depends on the hole spin of each dot. If the initial state (1, 1) was (⇑,⇑) or (⇓,⇓),

then the Pauli exclusion principle forbids the configurations (0, 2) corresponding

to (0,⇑⇑) or (0,⇓⇓)]. Then, in this case, there is a current blocking. If the initial

state (1, 1) was (⇑,⇓) or (⇓,⇑), then the configurations of the form (0,⇑⇓) or

(0,⇓⇑) are allowed. In this case, there is no current blocking: an electron can

flow from the drain to the source through dots 1 and 2 (holes flow in the reverse

direction).
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3.5.4 Current triangle

Current triangles are regions of the stability diagram that exist around the triple

point (Figure 3.8 c). This is due to the fact that the Fermi level of the source and

drain align with the electro-chemical potential of the quantum dot states, in the

presence of a small voltage Vd which allows current to flow through these regions.

Several physical characteristics can be extracted from the current triangles [108].

The energy of the quantum dot states can be studied by analyzing the intensity

and fluctuations of the observed current. Moreover, it is possible to measure the

influence of the gates on the electro-chemical potential of the quantum dots thanks

to the "size" of the triangles and the slope of their sides [108].

3.6 From room temperature to cryogenic situa-

tion

In this section, we will discuss the effect of temperature on the qubit formed in a

transistor, based on SOI technology similar to the one described at the beginning

of the chapter. A doped Si nanowire of length 200 nm, width 30 nm and height

17 nm is defined by electron beam lithography and wet etching. Silicon nitride

spacers of 50 nm are present on the two sides of the gate (Figure 3.2).

Figure 3.10: Linear drain-source conductance vs gate voltage for the device described in this section 3.6 at

various temperatures. Inset: zoom on periodic Coulomb oscillations on a linear scale. From

ref [12].

High doping of the exposed wire results in low resistance connections, and the gate
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of the MOSFET transistor permits electron accumulation in the channel formed

underneath. The low doped "access area", located between these sections under

the spacers, serve as tunnel barriers on each side of the channel. Figure 3.10 de-

picts the Id vs Vg characteristics at various temperatures. At lower temperatures,

extremely periodic oscillations that are totally repeatable replace the monotonic

curve obtained at 300 K, with the contrast increasing as the temperature drops.

Figure 3.11: Numerical simulations of the doping (left) and potential (right) along the wire. Under the

spacers and the gate, the undoped regions provide a flat potential at Vg = 0V , which is

decreased in its center by the gate voltage, forming a well that is isolated by two barriers.

From ref [12].

The potential and doping profiles along the wire are represented in Figure 3.11.

A flat potential barrier is created at zero gate voltage when the doping decreases

sharply under the spacers and gate. As this voltage increases, a well forms. At

low temperatures, this potential well is the cause of single electron effects. Con-

finement does not occur if the resistance of this region falls below a threshold. For

this reason, periodic Coulomb oscillations are not frequently observed in standard

devices. Conversely, extremely low current is produced by extremely high access

resistances. In this case, going from high to low temperature, the Coulomb oscil-

lations appear which proves that the transistor becomes a one-electron transistor

usable for quantum computing.
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3.7 Experimental measurements on Si qubits

In this paragraph, we will discuss in a general way and briefly different experi-

mental measurements performed on a hole qubit. The qubit is defined as a double

quantum dot formed by a silicon nanowire of width 25 nm and height 8 nm etched

on a silicon-on-insulator (SOI) substrate (Figure 3.12). Two metal gates are placed

in series perpendicular to the nanowire and are separated by 30 nm. Each of them

covers 35 nm of the nanowire. The 50 nm thick poly-Si and 5 nm thick TiN grids

are separated from the nanowire by a few nanometers thick SiO2 oxide layer. Sil-

icon nitride spacers cover the gaps around the gates. The drain and source are

heavily p-doped. The z=[001] axis is perpendicular to the substrate. Thanks to

the voltage applied on the gates, one can control the number of charges in the

quantum dots formed in the nanowire under each gate, to make the number of

charges as small as possible.

Figure 3.12: a) Image of the device obtained by scanning electron microscopy. b) Current triangles mea-

sured in the experimental device. The electrical polarizations V0 and V1 located out the

triangle correspond to a Coulomb blocking configuration. The electrical polarization repre-

sented by a yellow star corresponds to a possible Pauli blocking configuration. Based on ref

[13].

We first consider the measurement of the current triangle of Figure 3.12 which

exhibits a rich physics allowing to extract the energies of the quantum dot states

and to extract the values of the lever arms αi = ∂µi
∂VGi

which gives the influence

of the gate j on the electro-chemical potential of the dot i and gives information

about the position of the quantum dot created in the transistor channel with

respect to the gate positions. And we remind that the source-drain voltage Vd is

44



Chapter 3: Silicon spin qubits

Figure 3.13: Source-drain current Id is measured at the polarization point shown by a yellow star in the

voltage-current diagram of Figure 3.12 b as a function of the frequency fac of the radio-

frequency wave (Vac of Figure 3.12 a) and the amplitude of the magnetic field B in Pauli

blocking. From ref [13].

weak but not zero to insure the current flow.

Figure 3.14: A full spin reversal is shown in the initiation, handling, and reading cycle (schematic). a)

The initial state of Pauli blocking. b) Electrical control of the spin by temporary Coulomb

blockade of dot 2 with a resonant radio frequency modulation on its gate. c) Pauli blockade

reading.

By calculating the current Id flowing in the nanowire as function of the frequency

fac of the radio-frequency (RF) wave applied to G2 and B (Figure 3.12 a), we

can measure the gyromagnetic factor g of the qubit appearing in the equation

hfac = µbgB, µb is the Bohr magneton, B is the amplitude of the magnetic field.

From the light lines of the Figure 3.13, we can deduce the factor g1 and g2 of the

quantum dot 1 and 2, respectively.

Another measurement of Id (average current) but this time as a function of the

45



Chapter 3: Silicon spin qubits

Figure 3.15: Average current Id as a function of the time τ during which the RF signal applied (Figure

3.14). Drawn from ref [13].

time τ that a RF signal is aplied to quantum dot 2 allows to determine the spin

state of the qubit. The principle is to measure the average current Id over several

cycles of initialization/manipulation/reading represented in Figure 3.14. Briefly,

from the average current represented in Figure 3.15, we can conclude that Id is

maximum when the spin is unlocked, and, on the contrary, Id is minimum when

the spin is locked. Thus, by knowing the state of one dot, we can know the other

and the reading is complete. Figure 3.16 shows the aggregation of the resonance

frequency over 400 realizations and shows a Gaussian distribution from which

one can estimate the resonance frequency. One can therefore calculate the factor

g at a given potential according to the equation g(V ) = hfL/µBB for a given

magnetic field orientation. By calculating g(B, V ), we can see the anisotropy of

the g-factor, as shown in Figure 3.17. In fact there is a formalism called the

g-tensor formalism that could make the calculation of g-factor as function of the

orientation of magnetic field more easy and less costly numerically in which (g)2 =

|ĝb|2 = tb.Ĝ.b. where b = B/||B||, and Ĝ is the tensor allowing the complete

caracterisation of gyromagnetic factor g. In this case, it is not required to calculate

point by point the entire map of g-factor as in Figure 3.17 a but calculating Ĝ

which needs 6 different values of g to be constructed [109]. Then it could be used

to calculate the g-factor for any arbitrary direction of B as seen in Figure 3.17 b.
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Figure 3.16: Larmor frequencies at the two electrical polarizations V0 and V1 are represented by a histogram

(described in Figure 3.12 b). The peak of the current Id (insert), which was measured as a

function of the radio modulation frequency for a handling time of τ = 20 ns in a magnetic

field B = (0, 0.216, 0.216) T, served as the source of information for 400 measurements of the

Larmor frequency that were used to create this histogram. Based on ref [13].

3.8 Conclusion; outlook

We have seen in this chapter that a qubit must be made of two quantum dots.

The first represents the qubit itself and the other one is used to read the different

characteristics of the qubit such as the Larmor frequency and the gyromagnetic

factor. We have also seen that these measurements have been made thanks to

the different physical effects that manage the hole or electron physics such as the

Coulomb and Pauli blockades.
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Figure 3.17: (a) Directly observed g-factor anisotropy as a function of the magnetic field orientation. (b)

The g-factor computed from the reconstructed g-tensor (a). See ref [13].
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Chapter 4

Methodology

4.1 Introduction

In this chapter, we discuss the methodology followed to numerically modeling

the hole qubit. We first describe the structure and geometry of the qubit, then

we introduce the k.p method to build the valence band structure around Γ (k=0,

center of first Brillouin zone) by studying the influence of the different interactions

on the bands. We discuss how to introduce the potential applied by the device

gates described by the Poisson equation. Finally, we present the computational

infrastructure that is used to bring together all the numerical methods in order to

simulate the qubit

4.2 Device modeling

The three aligned Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFET)

shown in Figure 4.1 are formed in a Si nanowire along [110] referred to as the z

axis. It has a rectangular section with width along y of 30 nm [(110) facets] and

thickness of 10 nm along x [(001) facets]. The nanowire is laying on a 25-nm thick

SiO2 buried oxide that was formed on a doped Si substrate that may be utilized

as a back gate. Three metallic gates with length and spacing along z of 30 nm

are located on top of the channel and partially encircle it (over 20 nm). These
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Figure 4.1: A 10 nm thick Si nanowire channel in red sitting on top of a buried oxide (green) is seen in the

schematics for the hole qubit device. Top gates (gray) partially enclose the nanowire, over 20

nm of total width of 30 nm . SiO2 is used in the gate stack (green). The hole quantum dot is

represented by CG center gate. The secondary gate addressed in this paper is called SG. The

polar angle θ and azimuthal angle ϕ shown on this diagram describe the orientation of magnetic

field B.

metallic gates are separated from the nanowire by a 4-nm-thin SiO2 layer. Si3N4

is used to cover the transistor. The voltage necessary to induce the development

of a quantum dot in the nanowire corner is fixed using the central gate (CG) [110].

To the right and left of the central gate, there are two additional gates positioned

along the z axis. To contain the hole in the central quantum dot, the other gates

are grounded and the central gate is biased at VCG = −0.1 V. A static magnetic

field B is applied in the direction indicated by the azimuthal (ϕ) angles and polar

(θ) angles as seen in Figure 4.1. This device configuration was chosen because it

was already considered theoretically in Ref. [110] in which the electrical manipula-

tion of the spin is described using a g-matrix formalism. Except otherwise stated,

the Larmor frequency Ω was set to 2π × 10 rad/s.
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4.3 Electronic structure: k.p

In this section, we introduce the k.p perturbation theory in solid-state physics

which is a basically semi-empirical method for determining the band structure

of crystalline solids centered on a certain wave vector. It allows to describe the

band structure of a wide range of semiconductors. It is also used to calculate the

electronic structure of objects like quantum dots in which there are discrete energy

states like in a single atom due to confinement.

The principle of method is to expand the wave function at k (in fact periodic part)

in the basis of the wave functions at k0 supposed to be known. k0 is chosen to

correspond to an extremum of a band. When k is close to k0, perturbation theory

can be used leading to simplified equations. Here we discuss the method for k0 = 0

which is appropriate for valence bands of zinc-blende semiconductors.

In view of the periodicity of atoms in crystals, U(r), the potential created by the

nuclei in the periodic crystal is such that:

U(r + n1a1 + n2a2 + n3a3) = U(r) (4.3.1)

where r is the position vector, ni are integers and ai are the lattice vectors. The

Hamiltonian is written :

H = p2

2m0
+ U(r) (4.3.2)

where m0 is the mass of the free electron and p = −i~∇ represents the momentum

operator. Following the Bloch theorem, the wave function is written as :

Ψnk(r) = eik.runk(r) (4.3.3)

with unk is the periodic part

unk(r + ai) = unk(r), ∀i (4.3.4)

k represents the wave vector and n the band index. The Schrödinger equation[
p2

2m0
+ U(r)

]
Ψnk(r) = EnkΨnk(r) (4.3.5)
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can be rewritten in the basis of un0:

unk(r) =
∑
n′
cnn′(k)un′0(r) (4.3.6)

as

Ĥ(k)cn(k) = Enkc
n(k) (4.3.7)

where cn(k) is the column matrix of the cnn′(k) and Ĥ(k) is a square matrix of

elements

[Ĥ(k)]nn′ = {En0 + ~2k2

2m0
}δnn′ +

~k
m0

Pnn′ (4.3.8)

with Pnn′ = 〈un0|p|un′0〉

The method takes its name from the k.p frame which appears in the Hamiltonian

Ĥ(k). By diagonalizing the Hamiltonian Ĥ(k), we can then calculate the band

structure of the material for all k, by assuming that the eigenenergies of H0 and

the Bloch functions {un0} are known. Details can be found in ref [111].

4.4 Hole qubit band structure

In this thesis, we study a hole qubit, for that in this part we are interested in

describing the valence band structure in the neighborhood of the Γ point, center

of first Brillouin zone. We start with the description of the top of the valence band

structure of bulk Si at the Γ point. The approximation assumes that the valence

bands can be described as linear combinations of p orbitals. It is important to

know that the symmetry of the Bloch functions unk around k = 0 is preserved, and

then we can develop the band structure in the {ux, uy, uz} basis which corresponds

to the px py pz orbitals of the valence band and thus we can write

|unk〉 =
x,y,z∑
i

cni (k)ui0 (4.4.1)

with cni are coefficients. This is a 3-band model (spin degenerates), but the energy

bands that are further away and do not appear in the Hamiltonian have a non-

zero impact on the band structure. This is why Löwdin, in his perturbation theory

[112], introduced the impact of these distant bands, which he considered as class
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B bands, as a perturbation of the Hamiltonian developed on the basis of the so-

called class A bands {ux, uy, uz}. This leads to a renormalization of the terms of

the Hamiltonian written in class A basis:

H3kp = EvI +


Lk2

x +M(k2
y + k2

z) Nkxky Nkxkz

Nkykx Lk2
y +M(k2

z + k2
x) Nkykz

Nkzkx Nkzky Lk2
z +M(k2

x + k2
y)


(4.4.2)

where Ev is the valence band edge, I is the identity matrix. The terms L, M and

N have been defined by Dresselhaus, Kip and Kittel [113]. In practice, data of

cyclotron resonance may be used to experimentally calibrate all of these parame-

ters. Figure 4.2 exhibits the silicon band structure along the line L→ Γ→ X from

a k.p three-band description. The states are typically non-degenerate for a given

non-zero k (spin degeneracy not included). However, the states can stay degen-

erate on pathways with high symmetry. For example, along the path L→ Γ→X,

two of the three bands are degenerate.

Figure 4.2: Without spin-orbit coupling, silicon band structure along the path L→ Γ →X around Γ, with

Ev = 0, L = −5.641, M = −3.607, and N = −8.676 in units of 2/(2m0) [14]. Along this path,

the two highest energy bands are twice degenerate. The states are three times degenerate at Γ

(six times with spin). →X means direction to point X (same with the point L). Figure from ref

[15].
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4.5 Spin-orbit coupling

Figure 4.3: Band structure of silicon along the path L→ Γ→X with and without spin-orbit coupling (solid

lines and dotted lines, respectively). With spin-orbit coupling, bands at Γ are fourfold and

twofold degenerate. The first Brillouin zone is represented partially. From ref [15].

Relativistic effects cause an effective magnetic field that acts on an electron spin

as it moves in a potential U . Spin-orbit coupling gets stronger when atoms get

bigger. Incorporating the spin-orbit (SO) interaction into the Hamiltonian (4.3.2)

leads to

H = p2

2m0
+ U(r) + ~

4m2
0c

2 (σ ×∇).p (4.5.1)

where σ represents the vector of Pauli matrices. With this new interaction, the

basis must be expanded to take spin into account, and the extended basis reads

as {ux↑, uy↑, uz↑, ux↓, uy↓, uz↓}. In this basis the SO Hamitonian reads as [114]:

Hso = ∆so

3



0 −i 0 0 0 1

i 0 0 0 0 −i

0 0 0 −1 i 0

0 0 −1 0 i 0

0 0 −i −i 0 0

1 i 0 0 0 0


(4.5.2)
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where ∆so is the SO splitting at k = 0.

Figure 4.3 shows the valence band formed by the heavy hole (HH), the light hole

(LH) and the split-off band. The matrix of Hso in equation (4.5.2) is formally

the same as the matrix of SO coupling in the basis of p orbitals of an atom

(L = 1, s = 1/2). This allows to write the eigenstates of Hso as |J,M〉 with

J = 3/2 or 1/2:

|32 ,
+3
2 〉 = 1√

2
|(ux↑ + iuy↑)〉 (4.5.3)

|32 ,
+1
2 〉 = 1√

6
[|(ux↓ + iuy↓)〉 − 2|uz↑〉] (4.5.4)

|32 ,
−1
2 〉 =− 1√

6
[|(ux↑ − iuy↑)〉+ 2|uz↓〉] (4.5.5)

|32 ,
−3
2 〉 =− 1√

2
|(ux↓ − iuy↓)〉 (4.5.6)

|12 ,
+1
2 〉 = 1√

3
[|(ux↓ + iuy↓)〉+ |uz↑〉] (4.5.7)

|12 ,
−1
2 〉 = 1√

3
[|(ux↑ − iuy↑)〉 − |uz↓〉] (4.5.8)

of energies E3/2 = ∆so

3 and E1/2 = −2∆so

3 .

These are also eigenstates of Ĥ(k) for k = 0. The states which correspond to

J = 1/2 form the split-off band.

In the basis set {|32 ,+
3
2〉, |

3
2 ,+

1
2〉, |

3
2 ,−

1
2〉, |

3
2 ,−

3
2〉, |

1
2 ,+

1
2〉, |

1
2 ,−

1
2〉}, the six-band

k.p hamiltonian is given by [113, 115].

H6k.p(k) = −



P +Q −S R 0 1√
2S −

√
2R

−S∗ P −Q 0 R
√

2Q −
√

3
2S

R∗ 0 P −Q S −
√

3
2S
∗ −

√
2Q

0 R∗ S∗ P +Q
√

2R∗ 1√
2S
∗

1√
2S
∗ √

2Q −
√

3
2S

√
2R P + ∆so 0

−
√

2R∗ −
√

3
2S
∗ −

√
2Q 1√

2S 0 P + ∆so


(4.5.9)

with P , Q, R, S being functions of dimensionless Luttinger parameters which can

be expressed as functions of L, M and N .
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Table 4.1: Spin-orbit energy ∆so in the valence band, Luttinger parameters and pa-

rameter κ [20] for different semiconductors.

Si Ge InP GaAs InAs InSb

∆so (eV) 0.044 0.29 0.11 0.34 0.41 0.80

γ1 4.285 13.38 4.95 6.85 20.40 37.10

γ2 0.339 4.24 1.65 2.10 8.30 16.50

γ3 1.446 5.69 2.35 2.90 9.10 17.70

κ -0.42 3.41 0.97 1.20 7.60 15.60

P =Eν + γ1
~2

2m0
(k2
x + k2

y + k2
z) (4.5.10)

Q =γ2
~2

2m0
(k2
x + k2

y − 2k2
z)

R =
√

3 ~2

2m0
(γ3(k2

x − k2
y)− 2iγ2kxky)

S =2
√

3γ3
~2

2m0
kz(kx − iky)

The Luttinger parameters γ1, γ2, γ3 which describe the valence band are given by

following equations

~2

2m0
γ1 =− 1

3(L+ 2M) (4.5.11)

~2

2m0
γ2 =− 1

6(L−M) (4.5.12)

~2

2m0
γ3 =− 1

6(N) (4.5.13)

can be adjusted for each semiconductor and are given in the table (4.1) for Si

and different types of semiconductors, for more details see ref [115]. Figure 4.3

shows the band structure in the presence of the SO coupling compared to the one

without SO coupling, and shows a lift of degeneracy between HH, LH and split-off

bands unless at Γ where HH and LH bands are degenerate (blue line).
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4.6 Description of the magnetic field

This part is concerned with the description of the effect of the magnetic field on

the Hamiltonian.

The influence of the magnetic field is characterized by two effects. The first one

come from the vector potential A (where the magnetic field B = ∇ ×A) which

is introduced by replacing the wave vector k by i∇ + e
h
A. The term of the

Hamiltonian due to the vector potential effect is written

HA = −(3κ+ 1)µBB.L (4.6.1)

where µB is the Bohr magneton, κ can be expressed in terms of Luttinger param-

eters [eq (4.5.10)] and L is the matrix representation of the orbital momentum of

the Bloch function for l = 1.

The second effect is the Zeeman effect which is the action of the magnetic field on

the spin. The Hamitonian is written

Hz = 1
2g0µBσB (4.6.2)

where σ are the vectors of the Pauli matrix in the physical spin basis. The total

effect of the magnetic field is the sum of the two effects

HB = µBBK = µBB[−(3κ+ 1)L + g0S] (4.6.3)

where K = −(3κ + 1)L + g0S and Kx, Ky and Kz in {j,mj} basis are given in

appendix(A) and S is the spin of the hole.

4.7 Enveloppe function

In nanostructures, we decompose the whole wave function when the system is

subjected to a slowly fluctuating external potential U(r) at the atomic level [116]

as a sum of envelope functions Fn multiplied by Bloch functions un0:

ψ(r) =
∑
n

Fn(r)un0(r) (4.7.1)
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Because of the slow variation of U(r), we can decouple the action of U(r) on Fn
and un0. The wavefunction in 6-band k.p can be written as:

ψ(r) =
∑
jmj

Fjmj(r)⊗ |j,mj〉 (4.7.2)

Therefore the Schrödinger equation reads as:

[H6k.p(−i∇) + U(r).I6]F̃ = EF̃ (4.7.3)

where H6k.p is the Hamiltonian (4.5.9), I6 is the identity matrix of dimension 6, k

was replaced by the impulsion operator −i∇, and F̃ is enveloppe function vector

for HH, LH and split-off bands.

4.8 Potential: Poisson

Thanks to the Poisson equation, it is possible to calculate the potential V (r)

applied by the gates of the transistor in which there is, in each different part in

the device, a charge density ρ(r) and a material of dielectric constant ε(r):

∇[ε(r)∇V (r)] = −4πρ(r) (4.8.1)

The equation is solved by the finite difference method where the relative dielectric

permittivities of the different materials are: εSi = 11, 7, εSiO2 = 3, 9, εSi3N4 = 7, 5.

The boundary conditions are :

- Periodicity of the device along the axis of the nanowire

- The potential applied to the grids.

The method consists in discretizing the volume into small volumes of the sample

in the form of parallelepipeds defined by the nodes of the grid as seen in figure

4.4, each node is associated with its own potential Vi which corresponds to its

charge Qi and εi. We can obtain a system of linear equations (4.8.2) to calculate

the potential by writing Gauss’ theorem on each facet of the small parallelepiped

of the grid:

AV = 4π(Q+Qb) (4.8.2)
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Figure 4.4: a) Transverse section (x,y) plane at z= 0 of a device. b) Longitudinal section (xz plane) at y=0

of a device. Both figures show a non-uniform mesh which is denser in the more active region.

where Qb and Q are the vectors describing the boundary conditions, V is the

potential vector to be calculated and A is a symmetric matrix. The equation is

solved by the conjugate gradient method [117].

4.9 TB_Sim and device modeling

The simulations are performed with the TB_Sim code. The code has been de-

veloped for 15 years at CEA/INAC with contribution from other groups such as

IEMN. TB_Sim is a multi-scale and multi-physics platform for the modeling of the

structural, electronic, optical and transport properties of semiconductor nanos-

tructures. It includes various modules for the calculation and diagonalization of

arbitrary TB and k.p Hamiltonians, for the calculation of phonons and electron-

phonons interactions, for the solution of Poissons equation, etc ... In this section,

we will explain the operations of TB_Sim codes, which is illustrated in Figure 4.5.

We need to calculate the energy states of the qubit, the wave functions, the Larmor

frequency, and the potential response of the qubit. The geometry of the device in

Figure 4.1 was described in section 4.2 of this chapter. In a first step of calculation,

we mesh the device in a parallelpiped fashion. The mesh density differs between

the different parts of the device. The active parts of the device, such as the silicon

nanowire and the thin SiO2 oxide layers, have the densest meshes. The less active

parts of the device have a less dense mesh, such as the BOX, and always in a way

to ensure the convergence of the numerical calculations. Periodic conditions along
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Figure 4.5: Computational infrastructure.

the axis of the nanowire (the z-axis in our case) are applied.

The second step is the application of the potential energy U on the grids using the

electric potential obtained by solving the Poisson equation by the finite difference

method.

In the third step, we solve the Schrödinger equation in order to obtain the energy

levels and the associated wave functions. In the fourth step, we use these results to

establish the potential response due to the presence of a charge impurity in the gate

oxide. The calculation of the matrix elements of U is simply obtained by summing

its components over all elements (boxes) of the 3D grid taking into account that

the envelope functions and the electrostatic potential are slowly variable and the

Bloch functions un0 form an orthogonal basis. The fifth step aims at using the

previous results to develop a model to calculate the qubit decoherence time due

to a charge fluctuation in the oxide. This will be described in chapter 5.
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4.10 Conclusion; outlook

In this chapter, we introduced the qubit geometry and the 6-band k.p. method

for bulk semiconductor around Γ taking into account the spin-orbit coupling effect

and the external magnetic field effect on the valence band structure of silicon. We

described the methodology used to calculate the hole states of the qubit device.

We have also briefly seen how to introduce numerically the Poisson equation which

is solved by the finite difference method. Finally, we discussed the TB_Sim software

infrastructure that was used to simulate the qubit in order to obtain results that

will be interpreted and used for time-dependent simulations.
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Modelling

5.1 Introduction

In this chapter, we will model a charge fluctuator which responsible for a random

telegraphic signal which is coupled to a hole qubit. The model aims to measure

the qubit decoherence characterized by two processes: the relaxation and the de-

phasing designed by characteristic times T1 and T2, respectively. Two models have

been developed, the first one is the two-level model which aims to get numerical

results based on the solution of the time-dependent Schrödinger equation in order

to compare them with the analytical result found in the litterature (chapter 2).

The second model is the multi-level model in which we study the effect of the

coupling of the two-level system (standard qubit) to other high energy states and

investigate its influence on the qubit decoherence.

5.2 Description of the trap: potential of a point

charge

There are several models that describe a charge fluctuator. The model adopted

in this thesis consists of an impurity or a point defect in the gate oxide layer,

assuming that it is located at 0.6 nm from the gate of the transistor. This defect
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Figure 5.1: a) A diagram exhibiting localized charges traps close to a gate electrode. Local dipoles produced

by induced image charges interact with the qubit. b) A hypothetical scenario in which electrons

jump between a localized state and a typical metal. Inspired from ref [16].

induces a change in the band structure of the oxide so as to create a deep potential

well capable of trapping an electron. Due to its proximity to the gate and the fact

that its energy level is close to the Fermi level of the gate metal as shown in Figure

5.1, the transfer of an electron from the gate to the trap (potential well) and vice

versa is done by tunneling effect, resulting in a charge fluctuator. The presence of

an electron in the trap creates an additional potential in the qubit environment.

This potential would not have much influence on the qubit coherence if the electron

was permanently confined in the trap, but the fact that it is moving between the

trap and the gate makes it quasi-static due to its limited and stochastic motion

between two nearby positions in the device. Another effect that appears due to

the proximity of the trap charge to the gate is the image charge effect where an

opposite charge is created in the gate as shown in Figure 5.1 a. The electrons in

the metal react to the presence of the trapped charge. In the case of a planar

interface between two semi-infinite medium (metal plus oxide), this response can

be described by an opposite charge located in the metal [118]. We end up with

the potential of two opposite charges close to each other, thus a dipole.

The trapped charge plus its image behaves as an electrostatic dipole. Numeri-

cally, the electrostatic potential V is calculated by solving the Poisson equation
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in the system when a charge is added to the oxide under the gate. This potential

thus includes the direct potential of the charge plus the potential induced by the

dielectric response of the system including metal gate.

Figure 5.2: Probability density for the hole wavefunction [|ϕ↑1|
2] located under the central gate shown in a

longitudinal section of the device [xz plane, y = 0]. The electrostatic potential induced by a

single charge placed under the second gate is also shown.

5.3 Time-dependent Hamiltonian

We consider a charge fluctuator coupled to the hole qubit (Figure 5.1 a). The

time-dependent Hamiltonian of the system reads as

H(t) = H0 + χ(t)U (5.3.1)
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H0 represents the hamiltonian of the qubit system under a static magnetic field B

with no electrical perturbation. The charge fluctuator mathematically expressed

by perturbation U and a random telegraphic signal χ(t) which describe the filling

of a localized charge trap in the oxide layer at a distance of 0.6 nm from a metallic

gate. When a charge is on the trap, the perturbation is defined by U . For exemple

Figure 5.2 is a longitudinal section of studied device (Figure 4.1) which shows the

probability density of the hole wavefunction [|ϕ↑1|2] and the electrostatic potential

produced by a confined charge −e underneath the secondary gate. The charge

fluctuator is defined as a quasi-static noise [17], where χ(t) at instant t can take

one of two values, 0 or 1 (equation (2.5.3)), with corresponding probabilities p0

and p1. If χ(t) = 0, that means the trap is empty else if χ(t) = 1, that means

an electron of charge −e has tunneled from the gate to the trap and fills it. The

tunneling transition rate for the process 0 → 1 is ν0→1 = ν[1 − fFD(ε0)] where

the tunneling rate is ν, fFD is the Fermi-Dirac distribution function, and the

location of the trap level in comparison to the Fermi level in the reservoir (gate)

is ε0. In order to simplify the problem, we suppose that ε0 = 0, ν0→1 = ν/2,

ν1→0 = ν − ν0→1 = ν/2, p0 = p1 = 1/2 [91]. The numerical treatment of the

case of asymmetric tunneling (ν0→1 6= ν1→0) would be straighforward but does not

lead to situations with very different physics since, in particular, we will consider

a tunneling rate in a wide frequency range.

5.4 Time dependent simulations

In order to study the influence of a simple charge fluctuator on the qubit leading

to decohence, it is necessary to calculate the characteristic times T1 (designing the

relaxation process), T ′1(defined later), and T2 (dephasing process) which will be

discussed in the next sections. Then we need to calculate the time evolution of

the wavefunction |ψ(t)〉 = e
−i
~

∫ t
0 H(t′)dt′ |ψ(0)〉 which represents the solution of the

time dependent Schrödinger equation:

i~
d|ψ(t)〉
dt

= H(t)|ψ(t)〉 (5.4.1)
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|ψ(t)〉 is written as a linear combination of the hole states |ϕ↑i 〉 and |ϕ
↓
i 〉:

|ψ(t)〉 = c↑1(t)|ϕ↑1〉+ c↓1(t)|ϕ↓1〉+ c↑2(t)|ϕ↑2〉+ c↓2(t)|ϕ↓2〉+ ... (5.4.2)

Here we assumed that the states are ordered, |ϕ↑1〉 and |ϕ↓1〉 being the ground

states, i.e. on an electronic energy diagram, the highest states of the valence

band. Numerically, we used a Chebychev polynomial expansion for the resolution

of the time propagation of the wave function equation with great precision and

fidelity [119].

Chebychev polynomial expansion

The Chebychev method is a polynomial method where the propagator e−iHt/~ψ

can be expressed as a polynomial expansion as

e−iHt/~ψ =
∑
n

anPn(H)ψ (5.4.3)

where Pn(H) is a polynomial whose action on ψ can be evaluated by iteration of H

on ψ, and an are coefficients. Pn(H)ψ can be calculated for any polynomial of H

of bounded spectrum [Emin, Emax]. The method consists to expand the propagator

in terms of Chebyshev polynomials. For the exponential function, the expansion

has the form

e−iαxψ =
∑
n

an(α)Φn(−ix) (5.4.4)

where

an(α) =
∫ i

−i

e−iαxΦn(x)√
1− x2

dx = 2jn(α) (5.4.5)

and

a0(α) = j0(α) (5.4.6)

where jn(α) are Bessel functions. The Chebyshev recurrence relation is

Φn+1(x) = 2xΦn(x) + Φn−1(x) (5.4.7)

the expanded wavefunction becomes

ψ(t) = e−i(Emint/~+α)∑
n

an(α)Φn(−iHnorm)ψ(0) (5.4.8)
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where Hnorm is the renormalized Hamiltonian of bounded spectrum [−1, 1]

Hnorm = 2H − I[(Emax − Emin)/2 + Emin]
Emax − Emin

(5.4.9)

I is the identity matrix and α = (Emax−Emin)t
2~ .

The polynomials is generated by the recurrence relation

φn+1 = −2iHnormφn + φn−1 (5.4.10)

with

φn = Φn(−iHnorm)φ(0) φ(0) = ψ(0) φ1 = −iHnormψ(0) (5.4.11)

The iteratively time-ordering Chebychev propagator is efficient and accurate. The

error is distributed over the whole range of eigenvalues. For more details see ref

[120].

5.4.1 Two-level model

Relaxation process: T1

The two-level model holds when |ψ(t)〉 remains within the doublet |ϕ↑1〉 |ϕ↓1〉 during

its evolution with time. The energy difference between the two states is the Zeeman

splitting gµBB = ~Ω in absence of perturbation. The matrices (chapter 2)

H0 = ~
2

 Ω 0

0 −Ω

 U =

 u↑↑ u↑↓

u∗↑↓ u↓↓

 (5.4.12)

are calculated numerically as described in the previous chapter. The coupling

terms (the non-diagonal elements of the matrix U) and the difference u↑↑ − u↓↓

result from the spin-orbit coupling and the time reversal symmetry breaking under

the action of the magnetic field B which is detailed in the appendix B.

We define the Pauli matrices σ1 =

 0 1

1 0

, σ2 =

 0 −i

i 0

, σ3 =

 1 0

0 −1


in the basis {|ϕ↑1〉, |ϕ↓1〉} which cannot be confused with σx, σy, σz in which x, y,

z refer to the axes of the system.

67



Chapter 5: Modelling

Defining σ as the vector of Pauli operators, we calculate the observable (see also

equation (2.5.12))

〈〈σ(t)〉〉 = 〈ψ(t)|σ|ψ(t)〉{E} (5.4.13)

where ψ(t) is the wave function solution of the time dependent Schrödinger equa-

tion. The index {E} represents the average over a large number of realizations of

the telegraphic signal in order to obtain converged results. So to measure the re-

laxation, it is enough to calculate σ‖(t) = 〈〈σ3(t)〉〉 which represents the projection

of the effective spin on the magnetic field axis e‖.

We consider the initial condition |ψ(0)〉 = |ϕ↑1〉. It should be noted that, since

we study the system in a semi-classical way, the system reaches a situation of an

equal statistical superposition of the two states |ϕ↑1〉 and |ϕ↓1〉, σ‖(∞) = 0 (see

Appendix D).

The results of the calculations will be presented an discussed in chapter 6. σ‖(t)

shows an exponential decay from which we deduce T1.

Dephasing process: T2

The dephasing is the process coming from the change of the spin precession phase

with time designed by δΦ(t) due to the perturbation induced to the initial Hamil-

tonian of the qubit H0 by χ(t)U . In this case, the Larmor frequency Ω turns into

Ω′ where ~Ω′ represents the new Zeeman splitting energy calculated by diagonal-

ization of H0+U and which is discussed in chapter 6. The best method to measure

the dephasing is to calculate the quantity

m(t) = |〈〈σ1(t)〉〉+ i〈〈σ2(t)〉〉| (5.4.14)

which is the modulus of the mean of the spin projection in the plane perpendicular

to B and gives the evolution of the phase of the spin precession. An important

point in the calculation of T2 is to take as initial condition |ψ(0)〉 = 1√
2(|ϕ↑1〉 +

|ϕ↓1〉) corresponding to the spin in the plane. The results fitted with a negative

exponential give the decay constant T2 in this case.
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5.4.2 Multi-level model

A quantum dot like the one that forms our qubit is not limited to only two states.

There are many states that are more distant in energy than the doublet studied in

the case of the two-level model. They are usually neglected considering that the

coupling with these states is negligible and the qubit in its turn is considered as

a two-state system. In this section, we take into account the coupling with these

distant states in order to see their influence on the characteristic decoherence times

T1 and T2. We then consider that the qubit contains 2N states and we represent

H0 and U in the basis {ϕ↑1, ϕ↓1, ϕ↑2, ϕ↓2, ..., ϕ↑N , ϕ
↓
N}. T1 and T2 are calculated in the

same way as in the two-level model but assuming non-zero terms of matrices of

σ1, σ2, σ3 only in the subspace |ϕ↑1〉, |ϕ↓1〉.

The initial conditions are unchanged. The norm of the wave function in the two-

state model
∣∣∣〈ϕ↑1|ψ(t)〉

∣∣∣2 +
∣∣∣〈ϕ↓1|ψ(t)〉

∣∣∣2 remains equal to 1, whatever t. This is non

longer the case in the multi-level model. This is due to the fact that all states

are coupled together by the non-diagonal elements of the U -matrix and that for

t → ∞ the weight of the wave function is distributed over all states, which will

be discussed in chapter 6. For this purpose, we introduce a new quantity called

p1(t) =
∣∣∣〈ϕ↑1|ψ(t)〉

∣∣∣2 +
∣∣∣〈ϕ↓1|ψ(t)〉

∣∣∣2 which represents the sum of the wave function

weights on the doublet states. It is clear that p1(t) will constrain T1 and T2 since

they are calculated as a function of |ϕ↑1〉 and |ϕ↓1〉. We then associate with p1(t) the

characteristic time T ′1 and which is calculated by fitting 〈p1(t)〉{E} with a negative

exponential as in the case of T1 and T2.

5.5 Conclusion; outlook

In this chapter, we modeled a charge fluctuator coupled to a hole qubit. We

used the solution of the time-dependent Schrödinger equation to compute the

eigenvector ψ(t) using the Chebyshev polynomial expansion. Two models have

been developed: the first one at two levels aims at verifying the analytical results

of chapter 2 and the second one at several levels is used to study the influence of
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several states (> 2) on the decoherence. The next chapter will be devoted to the

discussion of the results obtained from the simulations of the developed models

and to the conclusion.

70



Chapter 6

Results of time-dependent

simulations

6.1 Introduction

In this chapter, we will discuss the results obtained from the models developed

in chapter 5. For this purpose, we will introduce different configurations of the

charges trapped in the device and the potential applied on the gates. In addition,

we will introduce the wave functions of the holes created in the device. We will

discuss the time-dependent simulations and the calculation of characteristic times

corresponding to each entity. We will discuss the results obtained by the time-

dependent simulations comparing them with the analytical model found in the

literature and then we will discuss the calculations made to optimize the effects

of the charge fluctuators on the qubit coherence time.

6.2 Description of the studied situations: posi-

tion of the traps (Trap 1, 2 and 3)

In this section, we show the different trap positions that lead to the creation of a

charge fluctuator. We assume three different electronic trap positions in the qubit
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Table 6.1: Studied charge traps. Position: The coordinates x, y and z are defined with

respect to the axes specified in figure 4.1. Characteristics deduced from the

perturbation matrix U : angular frequency ωth ≈ |u↑↑ − u↓↓|/~ and |u↑↓| is

the modulus of the non-diagonal matrix element. With Larmor frequency

Ω = 2π × 1010 rad/s.

Trap x y z Gate ωth |u↑↓|

(nm) (s−1) (µeV)

Trap 1 8.4 0.0 0.0 Central 1.063× 109 1.4594

Trap 2 8.4 4.0 14.0 Central 5.469× 108 0.4381

Trap 3 8.4 0.0 46.0 Secondary 3.039× 107 0.0248

device studied in this thesis. One of them is described in Figure 6.1. Table 6.1

shows the x, y and z coordinates of each trap in the device. We consider traps

located in the oxide, sufficiently close to a metallic gate to allow charge tunneling

between the trap and the metal. Trap 1 and Trap 2 are located in the oxide under

the central gate and Trap 3 is located under the secondary gate of the device.

Each of these traps is separated from the gate by a distance of 0.6 nm.

Figure 6.1 represents a cross section (xy plane) at z = 0 of the device in which

an electron in Trap 1 is sketched. It appears as a small blue point in the oxide

layer between the nanowire and the gate. Trap 1 induces the highest perturbation

potential, as shown by ωth and u↑↓ in table 6.1, due to its proximity to the center

of the device where the hole qubit is located. As the distance between the trap

and the hole qubit increases, perturbation potentials become lower as shown in

Table 6.1 for Traps 2 and 3. The components of U approximately behave as d/r2

where d is the length of the dipole and r is the distance from the dipole to the

hole.
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Figure 6.1: Transverse [xy plane at z = 0] cross section of the device. A single charge on Trap 1 at position

x = 8.4 nm, y = 0 and z = 0.0 nm is represented by a blue point.

6.3 Potential

Except otherwise stated, we apply on the central gate a bias of −0.1 V, the sec-

ondary gates and the back gate are grounded. Figures 6.2 represent the potential

in the transversal section (xoy plane) at z = 0 and the longitudinal section (xoz

plane) at y = 0. The potential has a critical role to assure the confinement required

along z to create the qubit in the nanowire under the central gate.

6.4 Electronic structure, wavefunctions

Figure 6.3 represents the 3D device in which the red part represents the ground

state wave function calculated by the 6-band KP model discussed in Chapter 4.

It shows that the wave function is compressed on the side of the silicon nanowire

under the central gate along y and well centered in the middle of the nanowire

along z. By varying the potential applied to the different gates, we can control

the position of the wave function inside the nanowire, which will modify the effect

of the fluctuator on the coherence time of the qubit. This will be discussed in
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Figure 6.2: Potential for a bias applied on the central gate VCG = −0.1V .

Figure 6.3: Iso-density surface of the ground-state qubit hole wave function seen according to (a) transverse

[xy plane at z = 0] and (b) longitudinal [xz plane, y = −10 nm corresponding to the center of

the hole wave function] sections.

section 6.10.

6.5 Time-dependent simulations: traces of σi

In this section, we will discuss the results obtained from time-dependent simula-

tions for σ‖(t), p1(t) and m(t) in order to derive the characteristic coherence times

T1, T
′
1 and T2.
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Figure 6.4: Evolution of σ‖(t) for different fluctuator frequencies ν in the case of Trap 1, in the 2-level

model. T1 is given by the exponential decay fitting

6.5.1 2-level system

For the 2-level model, Figure 6.4 shows σ‖(t) for different frequencies ν of the

fluctuator. σ‖(t) undergoes an exponential decay. The behaviour is different for

m(t) (figure 6.5). There are coherent oscillations which have been predicted by

the analytical calculations when δ = 1
2

√
ν2 − ω2

th in eq (2.5.22) becomes imaginary.

They come from remanent coherent oscillations between the different realizations

of the oscillators. For ν < ωth, m(t) undergoes oscillations with an envelope that

decays exponentially. For ν = ωth there is only one oscillation so the decay is better

described by a Gaussian function. For ν > ωth, m(t) undergoes an exponential

decay, without oscillation. This type of behavior is described by the equation

(2.5.22) of Chapter 2 which measures the visibility which represents m(t) in the
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case of pure dephasing.

Figure 6.5: Evolution of m(t) for different fluctuator frequencies ν of the case of Trap 1, in the 2-level

model. For ν < ωth = 1.963× 109 s−1, m(t) presents oscillations [17]. In this case, T2 is given

by the exponential decay of the envelope.

6.5.2 Multi-level system

The time-dependent simulations for Trap 1 are shown in Figures 6.6 and 6.7 where

σ‖(t) and m((t) are calculated with the method discussed in Chapter 5 for the

multi-level model.

Figure 6.8 shows calculations of p1(t) introduced in chapter 5. p1(t) represents the

weight of the wavefunction on the first two states ϕ↑1 and ϕ↓1. The 2-level model is
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valid when p1(t) ≈ 1. The results show that p1(t) undergoes an exponential decay

but does not tend to zero contrary to σ‖(t) and m(t). p1(t) tends to 2/2N where

2N is the number of levels which is equal to 20 in this case.

In a 2-level quantum system, the relaxation should normally be the transition

|↑〉 → |↓〉, i.e. on the Bloch sphere, it is the transition along the Z axis, +1→ −1.

But as we see, σ‖(t) tends to 0, i.e. the final state is an equal superposition of two

states. In other words, over time, if we start from ψ(t = 0) = |ϕ↑1〉, the final state

can be written as |ψ(t =∞)〉 = α|ϕ↑1〉 + β|ϕ↓1〉 where |α|2 = |β|2 = 1/2. Then, in

this case, the weight of the final wavefunction is equi-distributed on all the states

of the basis taken into account and this comes from the fact that the system is

studied in a semi-classical way where the spontaneous emission and dissipation

are not taken into account. This explains the fact that, in the multi-level model,

the weight on the first two states expressed in p1(t) tends to 2/2N , as the final

state is equi-distributed on all states of the basis, and then σ‖(t) tends to 0. The

mathematical demonstration of this reasoning is given in appendix (D).

6.5.3 Fit and determination of characteristic times

In order to extract the characteristic times corresponding to σ‖(t), m(t), p1(t), the

curves are fitted with a function f(x) = e(−t/τ) + b , where τ is the characteristic

time which represents either T1, T2, T
′
1, and b is a constant equal to 0 in the case

σ‖(t) and m(t), different from 0 for p1(t).

6.6 Numerical limitations

We consider a magnetic field of 0.2712 T oriented along the direction characterized

by θ = 90◦ and ϕ = 45◦ (figure 4.1) which leads to a Larmor frequency Ω/(2π)

of 10 GHz. This forces us to use a time step of 10−12 s for the numerical solution

of the time-dependent Schrödinger equation for ν ≤ 2 × 1011 s−1, 10−13 s for

ν = 2 × 1012 s−1, 10−14 s for ν = 2 × 1013 s−1 and 10−15 s for ν = 2 × 1014 s−1.

The maximum simulation time has been limited to 10−4 s. We thus considered
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Figure 6.6: Evolution of m(t) for different fluctuator frequencies ν in the case of Trap 1, in the multi-level

model. m(t) presents oscillations for ν < ωth as in figure 6.5. In this case, T2 is given by the

exponential decay of the envelope.

ν between 2 × 106 s−1 and 2 × 1014 s−1. However, the laws of variation of the

characteristic times as a function of ν will allow us to extrapolate them to smaller

tunneling rates ν which often characterize telegraphic noises at low temperatures

[17].

6.7 Coherence times in 2-level model

In this section, we interpret the characteristic times in the 2-level model by compar-

ing the numerical results obtained by time-dependent calculations with analytical

ones already developed in chapter 2. The 2-level model is a special case of the
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Figure 6.7: Evolution of σ‖(t) for different fluctuator frequencies ν in the case of Trap 1, in the multi-level

model. T1 is given by the exponential decay fitting.

multi-level model where N = 1. The results of this model will help us to better

understand the results of the multi-level model.

Equation (2.5.29) shows that T2 depends on the relaxation time T1 and the de-

phasing time T ∗2 of the pure dephasing model. From a mathematical point of

view, T ∗2 depends on the diagonal element of the perturbation matrix U (equation

5.4.12). The dephasing arises from the phase shift δϕ which represents the change

in spin precession due to the random variation of the time-dependent Hamilto-

nian described by χ(t)U . This results in the change of the Larmor frequency from

Ω→ Ω′ over time where ~Ω′ is the splitting energy obtained by the diagonalization

of H0 +U . In the section (6.10.1), we show how to calculate the angular frequency

ωth in a general way and which gives the pure dephasing case ωth = |u↑↑ − u↓↓|/~.
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Figure 6.8: Evolution of p1(t) for different fluctuator frequencies ν in the case of Trap 1, in the multi-level

model. T ′
1 is given by the exponential decay fitting.

|u↑↑−u↓↓|, written as |u↑↑1 −u↓↓1 | in the multi-level model, presented in Figure 6.10

c, represents the change of the energy splitting in the case of pure dephasing.

Figure 6.9 shows that the results of numerical simulations are in correspondence

with the analytical results. The curve of T2 is formed by two different parts. For

frequencies ν >> ωth, the number of qubit spin phase variations is large in time

≈ π/ωth. These phase variations can be described by a Gaussian distribution in

this frequency range. So, in this Gaussian regime, the pure dephasing process is

characterized by T ∗2 = 4ν/ω2
th [16, 17]. T ∗2 has a linear dependence on ν [16, 17]

because the 2-level system becomes more insensitive to the random disturbance

once the frequency of this disturbance increases. In the low frequency range ν <<

ωth, the Gaussian approximation is no longer valid. The phase variation time

2π/ωth is much smaller than the switch time 1/ν and then there are not enough

switches in a time equal to 2π/ωth to describe a Gaussian distribution of events.
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Figure 6.9: Characteristic times T1 (green squares) and T2 (red crosses) versus tunneling frequency ν calcu-

lated numerically in the 2-level model for Trap 1. Lines represent the analytical expressions for

T1 (black) given by equation (2.5.28) and T ∗2 (light blue) given by equation (2.5.23), T2 (green)

given by equation (2.5.29), with ωth and |u↑↓| of Table 6.1. The straight dashed turquoise line

shows a time varying as 2/ν. At ν � Ω, T2 ≈ 2T1.

It will be clear (in the low frequency range) that the dephasing depends only on

the fluctuator frequency, which is shown in Figure 6.9 where T2 = T ∗2 = 2/ν. The

2/ν line means that the qubit loses its coherence when the fluctuator undergoes

its first switch.

T ∗2 for any frequency in the pure dephasing model is given by equation (2.5.23)

where ωth = |Ω − Ω′| represents the angular frequency that separates the Gaus-

sian and non-Gaussian regime. Figure 6.9 also shows that the dephasing time

T2 is determined by T1 and T ∗2 , as shown in equation (2.5.29), with T1 being the

characteristic time of the relaxation process.

The results of the numerical calculation of T1 correspond well with the analytical

equation (2.5.28). Figure 6.9 shows that the qubit + fluctuator system enters in
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resonance for ν = Ω, when the fluctuator frequency and the qubit spin precession

frequency (Larmor frequency) are equal.

The dephasing time T2 calculated by the numerical simulation corresponds well

with the analytical equation. The reason is that the change in the Larmor fre-

quency Ω→ Ω′ is mainly determined by the diagonal term of U . In the frequency

range ν < ωth, T2 ≈ T ∗2 . On the other hand, in the frequency range ν > ωth,

T ∗2 > T1. And therefore, from equation(2.5.29), we can deduce that T2 ≈ 2T1.

The dependence of T2 on T1 and T ∗2 represents a coupling between the two phe-

nomenon, the relaxation and the dephasing, which can be explained by the fact

that uij 6= 0 for all elements of the matrix U .

T1 also varies as 1/ν for low tunneling rates (ν << ωth), like T2, but with a

prefactor ~2Ω2

|u↑↓|2
instead of 2. Table (6.1) indicates that |u↑↓| << ~Ω for the traps

studied here, consequently T1 > T ∗2 and T2 = T ∗2 from equation (2.5.29).

6.8 Coherence times in the multi-level model

Figure 6.10 a shows the 10 highest energy levels of the hole qubit. Each line in the

figure is formed in reality by two lines which represent two energy levels forming

a Kramers doublet split due to the presence of the external static magnetic field

B. In the 2-level model, the first two E↑1 and E↓1 levels define the qubit as a 2-level

system. In the multi-level model, we consider 20 states, which corresponds to

N = 10, in all our time-dependent simulations.

6.8.1 The case of Trap 1

Figure 6.11 shows the numerical results for T2, T1, and T
′
1 in the Trap 1 config-

uration. We can see that T1 follows T ′1 which means that T1 is influenced by the

coupling with the other states. For the same reason, T1 and T ′1 are smaller than T1

obtained in the 2-level model, especially for ν > Ω where T ′1 continues to decrease

until a frequency Ω12 = (E↑1−E↑2)/~. Indeed, the coupling strength between these
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Figure 6.10: (a) The 10 highest electronic energy levels of the hole qubit. (b) Coupling strength defined as

the ratio
∣∣〈ϕ↑1|U |ϕ↑↓n 〉∣∣ /|E↑1 − E↑↓n |. (c) δn = 〈ϕ↑n|U |ϕ↑n〉 − 〈ϕ↓n|U |ϕ↓n〉 = u↑↑n − u↓↓n versus n.

(d) Unperturbed level energies E↑↓n (green) and perturbed level energies E↑↓n + 〈ϕ↑↓n |U |ϕ↑↓n 〉

(red) presented according to the state number defined as 2n − 1 for |ϕ↑n〉 states and 2n for

|ϕ↓n〉 states. (b-d) All results are for Trap 1. (b) and (d) share the same horizontal axis.

two states 1 and 2 is the greatest as shown in figure 6.10 b.

For ν << Ω12, T
′
1 varies as 1/ν, as in equation (2.5.28), but with a smaller factor

compared to that of T1 of the 2-level model.

The comparison of T1 or T ′1 of the multi-level model with T1 of the 2-level model

shows that the 2-level model is no longer valid to explain the qubit relaxation

process.

We can conclude that the relaxation is influenced by the couplings to the higher

energy levels which are stronger than the coupling between the two levels, which

is clearly seen in figure 6.10 b. The relaxation of the system is globally governed

by this effect.
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Figure 6.11: Characteristic times T1 (green square), T ′1 (magenta lozanges) and T2 (red crosses) versus

tunneling frequency ν calculated in the multi-level model (N = 10) for Trap 1. Solid lines

represent the analytical expressions for T1 (black) and T ∗2 (light blue) of the 2-level model,

using ωth and |u↑↓| of Table 6.1. The straight dashed turquoise line shows a time varying as

2/ν.

T2 in the multi-level model in the frequency range ν < ωth coincides with T2 of

the 2-level model. For ν > ωth, T2 approximately follows T ′1. This behavior can be

explained by the fact that, in the low frequency range, the dephasing is affected by

the fluctuator frequency more than the coupling strength. In the high frequency

range, the dephasing will be dominated by T1, which is already seen in the 2-level

model and remains true in the multi-level model.

6.8.2 Results for Trap 2 and 3

Traps 2 and 3 are configurations where the fluctuator is located at a larger distance

from the qubit wavefunction than Trap 1. It is clear from Table (6.1) that ωth and

u↑↓, and the coupling strength [figure (6.14)] decrease as a function of the distance

to the qubit wavefunction. This can be seen on T1 and T ′1 of Trap 2 and 3 by the

upward shift of the curve relatively to Trap 1, both for the 2-level and multi-level
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Figure 6.12: Same as figure 6.11 for Trap 2 and Trap 3.

models. By increasing the distance (wavefunction-Trap), the coupling terms all

decrease, but those with the higher energy states decrease less rapidly than those

within the doublet of states then the shift between the two models increase. Thus

the two-level model for T1 becomes even less valid.

Comparing the T2 curves of different traps, we notice the shift of ωth to lower

frequency. We notice that T2 for ν < ωth always follows the straight line 2/ν, no

matter the position of the trap. This regime is already seen in the 2-level model

discussed in the previous section and in ref [17]. This leads us to the conclusion
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Figure 6.13: Same as figure 6.10 for Trap 2.

that the qubit loses its coherence as a function of time just when the fluctuator

undergoes its first switch and remains coherent as long as there is no change of

state.

6.9 Effect of non-instantaneous transitions

The telegraphic noise model assumes that the transitions between the two states

of the fluctuator are instantaneous. In this section, we consider a situation where

the transitions 0→ 1 and 1→ 0 are non-instantaneous.

Figure 6.15 shows the results obtained using a modified telegraphic signal χ′(t)

in which the system is assumed to vary progressively (linearly) between states 0

and 1 over a time ∆t = 7 ps. Figure 6.16 shows that the characteristic times

calulated using χ′(t) behave as a function of frequency ν in the same way as for

the original telegraph signal χ(t). At low frequencies, T2 remains given by 2/ν, the
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Figure 6.14: Same as figure 6.10 for Trap 3.

dephasing time remains limited by the average switching time of the fluctuator.

On the other hand, T1 and T ′1 reach higher values due to the fact that transitions

to higher energy hole states are less likely. However, the overall behavior remains

the same.

The question is therefore whether a value ∆t of 7 ps is realistic. This does not

appear to be the case, as tunneling times are typically in the femtosecond range

[121, 122], as can be estimated with the expression τT = d
√
m/(2Ub), in which

d is the length of the tunneling barrier (≈ 1 nm), Ub is its height (≈ 2 eV) and

m is the carrier effective mass (≈ free electron mass). The characteristic times

calculated for ∆t in the femtosecond range are those presented in figures. 6.11 and

6.12. Therefore, the instantaneous transitions model employed in this work seems

justified.
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Figure 6.15: (a) Modified telegraphic signal χ′(t) in which the transition between states 0 and 1 is linear

over a time ∆t = 7 ps (magenta dashed line), compared to the original telegraph signal χ(t)

(blue solid line). (b) p1(t) for Trap 1. (c) s‖(t) which correspond to σ‖(t) for Trap 1.

6.10 Dependence on the magnetic field orienta-

tion and gate bias

In this part, we will study the influence of the magnetic field orientation and the

back gate potential on the coherence time. This study allows us to optimize the

effect of the charge fluctuator on the qubit decoherence.

A recent theoretical work on the same kind of hole qubit [110] has discussed the

electrical manipulation of the qubit spin by radio frequency. It was found that

the Rabi frequency depends on the orientation of the magnetic field and back gate

voltage in a complex way, where the symmetry of the wave function in the nanowire

plays an important role in understanding this dependence and is controlled by the

back gate voltage. In addition, the g-matrix formalism offers a mathematical tool
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Figure 6.16: Characteristic lifetimes T1 and T2 versus switching frequency ν calculated in the multi-level

model (N = 10) for Trap 1. Green squares: T1 calculated using χ(t). Brown triangles: T1

calculated using χ′(t). Red crosses: T2 calculated using χ(t). Violet dots: T2 calculated using

χ′(t). Solid lines depict the analytical expressions for T1 (black) and T2 (light blue), as given

by Eq. (2.5.28) and Eq. (2.5.23), respectively, using ωth and |u↑↓| of Table 6.1. The straight

turquoise line shows a time varying as 2/ν. Vertical blue line is for ν = ωth and vertical black

line is for ν = Ω

to describe the qubit spin response to the magnetic field orientation.

The goal is to increase the coherence time, especially T2 which is the shortest time

among the characteristic times. T2 depends on the difference |u↑↑−u↓↓| as shown in

equations (2.5.23, 2.5.29). T2 is also defined by the frequency ωth which separates

the Gaussian regime from the non-Gaussian regime. ωth is equal to |u↑↑ − u↓↓|/~

as already discussed in the previous sections. T2(ν = ωth) represents the general

minimum of T2(ν) in the case of a 2-level model and it is a local minimum in

the case of a multi-level model. Then it is interesting to study this minimum

as a function of the back gate voltage and as a function of the magnetic field

orientation.
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Figure 6.17: 2D plots of u↑↑ − u↓↓ versus back gate bias VBG and angle ϕ of B in the xy plane (θ = 90◦),

for Trap 1. The 2D plots are made on a discrete grid of 25×40 points. The contours indicated

by black lines correspond to u↑↑ − u↓↓ = 0.

6.10.1 Discussion of the results

Since T2(ν = ωth) = 2/ωth, it is interesting to study the cases where |u↑↑−u↓↓| = 0,

where we could expect a divergence of T2(ν = ωth). Figure 6.17 shows |u↑↑−u↓↓| =

f(VBG, ϕ) as a function of back gate potential and ϕ for θ = π/2, i.e. the magnetic

field is always in the xoy plane (figure 4.1). The modulus of the magnetic field is

always fixed at 0.29T . In Figure 6.17, we see positive and negative regions, which

define at their boundaries lines where u↑↑−u↓↓ = 0, that we call sweet lines. Sweet

lines are also visible in figure 6.18 which represents a 2D map of u↑↑ − u↓↓ as a

function of θ and ϕ which define the orientation of the magnetic field, for VBG = 0,

for the three trap.

Figure 6.19 shows the evolution of T2 for Trap 1 as a function of ν for a system

placed on a sweet line. From this figure, ωth = 1.6× 108 is found 10 times smaller

than ωth of Trap 1 in Table (6.1) but not zero. It was expected that T2 in this case

would tend to infinity due to the fact that |u↑↑ − u↓↓| = 0 but it is not the case

because ωth also depends on the non diagonal elements of the potential matrix U.

In the two-level system, the Hamiltonian in state 1 is

H = H0 + U =

 ~Ω/2 + u↑↑ u↑↓

u∗↑↓ −~Ω/2 + u↓↓

 . (6.10.1)
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Chapter 6: Results of time-dependent simulations

Figure 6.18: 2D plots of the Larmor frequency Ω (a) and u↑↑ − u↓↓ (b-d) versus θ and ϕ, for Trap 1 (b),

Trap 2 (c) and Trap 3 (d), for VBG = 0 V. The contours corresponding to u↑↑ − u↓↓ = 0 are

indicated by black lines.

After diagonalization, the Larmor angular frequency Ω′ in the state 1 is defined

by

~Ω′ = 2

√√√√(~Ω + u↑↑ − u↓↓
2

)2

+ |u↑↓|2. (6.10.2)

We define the threshold angular frequency

ωth = |Ω′ − Ω| =

∣∣∣∣∣∣∣
2
~

√√√√(~Ω + u↑↑ − u↓↓
2

)2

+ |u↑↓|2 − Ω

∣∣∣∣∣∣∣ (6.10.3)

which, in the pure dephasing model |u↑↑ − u↓↓| � |u↑↓|, gives equation 2.5.23, i.e.

ωth ≈ |u↑↑ − u↓↓|/~ (because |u↑↑ − u↓↓| � ~Ω).

In the opposite case where |u↑↑ − u↓↓| � |u↑↓|, the threshold angular frequency

becomes

ωth ≈
2|u↑↓|2
~2Ω (6.10.4)

which is valid in particular when one seeks to reach a "sweet" point where u↑↑ −
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u↓↓ → 0. Remarquably, ωth in this case can be rewritten as 4/Tmin1 where Tmin1 is

the minimum value of T1 in the two-level model.

Figure 6.19: Characteristic time T2 versus tunneling frequency ν calculated in the 2-level model (blue

crosses) and multi-level (N = 10) model (red stars) for Trap 1, for VBG = 0 V, ϕ = 52.6◦,

θ = 90◦ and ~Ω = 3.88 × 10−5 eV, in a situation where u↑↑ − u↓↓ ≈ 0 eV and |u↑↓| =

1.41×10−6 eV. The black solid line show the analytical expression for T1 of the 2-level model,

as given by Eq. (2.5.28). T ∗2 (light blue) of the two-level model, as given by Eq. (2.5.23). The

straight dashed turquoise line shows a time varying as 2/ν.

It is also clear that at low frequency ν < ωth, T2 is given by 2/ν and that is

independent of the fluctuator potential conditions. This kind of behavior has

already been discussed in the previous sections and proved mathematically in the

appendix (C.1).

For ν such that T1 becomes smaller then T ∗2 in the 2-level model, T2 tends to 2T1,

and in the multi-level model, T2 is driven by the coupling to high energy levels.

In conclusion, the behavior of T2 in the case where u↑↑ − u↓↓ ≈ 0 (sweet line) is

similar to the general case (u↑↑ − u↓↓ 6= 0) but what differs is that ωth is deter-

mined by the non-diagonal elements of the potential matrix which are in principle

responsible for the relaxation phenomenon. Moreover, it is clear that T2(ν = ωth)

has become longer on sweet lines, even though it is not infinite.
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Figure 6.20: 2D plots of |u↑↓| for Trap 1 versus back gate bias VBG and angle ϕ of B in the xy plane

(θ = 90◦).

Figure 6.20 shows u↑↓ as a function of VBG and ϕ and then one can find points on

the sweet lines where T2 is larger by reducing u↑↓.

Moreover in Figure 6.17 the sweet lines appear almost as horizontal lines at VBG =

−0.15V , in a situation discussed in the reference [110] where the spin becomes

insensitive to the electrical noise applied to the central gate. Moreover in this

configuration, the wave function is located in the middle of the nanowire as shown

in Figure 6.21.

Figure 6.21: Iso-density surface of the ground-state qubit hole wavefunction in the middle of nanowire,

obtained when VBG = −0.15 V, shown in a transverse section [xy plane at z = 0].
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We also notice in Figure 6.17 two other quasi vertical lines located at ϕ = 55◦ and

ϕ = 125◦ where u↑↑ − u↓↓ = 0. These lines appear in a region where the Zeeman

splitting is approximately constant as a function of VBG as seen in Figure 6.23. In

order to explain that, we take the first-order expansion of the Hamiltonian in B

described in the appendix (B) where it can be rewritten in a general way in the

g-matrix formalism as

H0(B, VBG) = 1
2µBσ · ĝ(VBG) ·B (6.10.5)

where σ is the vector of Pauli matrices, ĝ(VBG) is a real 3 × 3 matrix. Here we

highlight the dependence of the Hamiltonian and the g-matrix on the back-gate

bias VBG. The dependence on another potential could be considered in the same

way. We have assumed that the Hamiltonian is written in the basis {|↑〉, |↓〉} in

which the vectors are orthogonal linear combinations of |ϕ↑1(0)〉 and |ϕ↓1(0)〉. The

value of the g factors is not unique, it depends on the choice of the axes and the

hole state basis.

As xy is an exact mirror symmetry plane of the device whatever VBG, as yz is

an approximate mirror symmetry plane, x, y and z can be considered as the

main magnetic axes of the system [110]. For a magnetic field in the xy plane,

B = B (cos(ϕ), sin(ϕ), 0), the Zeeman Hamiltonian can be written as

H0( ~B, VBG) = 1
2µBB

 gx cos(ϕ) −igy sin(ϕ)

+igy sin(ϕ) −gx cos(ϕ)

 (6.10.6)

in which gx and gy depend implicitely on VBG. The Zeeman splitting is equal to

~Ω = µBB
√
g2
x cos2(ϕ) + g2

y sin2(ϕ). (6.10.7)

The gx and gy factors calculated for the device studied in this work are shown

in Figure 6.22. Very similar g factors were obtained for a nearly identical device

and were discussed in Ref. [110]. The evolution of these factors with VBG reflects

the respective weight of the wave function on the heavy and light hole states. For
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Figure 6.22: gx and gy factors for the device considered in the present work.

VBG ≈ −0.15 V, the wave function is located at the center of the nanowire along

y, the heavy hole component is maximal as it is the case in a (100) silicon film.

In this case, the in-plane g factors are almost zero, the vertical g factor (gx) is

maximum. For higher or smaller values of VBG, the wave function is pushed to one

side of the nanowire. The strong lateral confinement induces a significant increase

in the respective weight of the wave function on the light hole states. As shown

in Ref. [110], this transfer of the respective weight between heavy and light hole

states makes that (Figure 6.22)

∂gx
∂VBG

≈ − ∂gy
∂VBG

. (6.10.8)

It is interesting to find the conditions for which the Zeeman splitting [Eq. (6.10.7)]

is stationary with respect to VBG. Using Eq. (6.10.8), we deduce that (∂ ~Ω)/(∂ VBG) =

0 for

gx cos2 ϕ = gy sin2 ϕ (6.10.9)

It is also important to remind that the dependence in VBG of the Zeeman Hamil-

tonian is essentially through the electric field along the y axis which is the main

modulating factor of the g factors. Similar results can be obtained by playing on

the potential of the other gates, only the lever arm will be different [18].
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Figure 6.23: 2D plots of (a) the Larmor frequency Ω for Trap 1 versus back gate bias VBG and angle ϕ of

B in the xy plane (θ = 90◦).

Figure 6.23 shows the Larmor frequency Ω as a function of VBG and ϕ. There are

vertical regions where Ω varies weakly as a function of VBG. In order to explain

this, we look for conditions where the Zeeman splitting given by equation (6.10.7)

becomes independent of VBG, when δΩ/dVBG = 0. Then we can deduce

ϕ ≈ π

2 ± arctan
√
gx
gy
. (6.10.10)

which explains the vertical contours of the figure 6.23 at ϕ = 90◦± 34◦ for a ratio
gx
gy

close to 2/3.

One can also derive the elements of the u↑↑− u↓↓ of the potential matrix from the

g-matrix formalism. The eigenstates of the Hamiltonian given by Eq. (6.10.6) are

|ϕ↑1〉 = α|⇑〉+ β|⇓〉 (6.10.11)

|ϕ↓1〉 = −β|⇑〉+ α∗|⇓〉 (6.10.12)

with

α = ibygy√
b2
yg

2
y +

(
bxgx +

√
b2
xg

2
x + b2

yg
2
y

)2
(6.10.13)

β =
bxgx +

√
b2
xg

2
x + b2

yg
2
y√

b2
yg

2
y +

(
bxgx +

√
b2
xg

2
x + b2

yg
2
y

)2
(6.10.14)
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in which we write bx = cos(ϕ) and by = sin(ϕ), for simplicity.

The effect of a fluctuating electric charge results in a perturbation Hamiltonian

U = δH0(0, VBG) + δHZ(B, VBG) (6.10.15)

with

δHZ = 1
2µBB

 δgxbx −iδgyby
+iδgyby −δgxbx

+ δH ′Z (6.10.16)

in which, we have δgx ≈ −δgy. δH ′Z contains additional terms like δgxyby , δgyxbx

arising from the fact that the variation (differential) of the g matrix may not be

diagonal in the same basis and magnetic axes frame as ĝ [110]. However, in the

present case, these terms are small and the dephasing process is determined by the

diagonal matrix elements u↑↑ = 〈ϕ↑1|δH0 + δHZ |ϕ↑1〉 and u↓↓ = 〈ϕ↓1|δH0 + δHZ |ϕ↓1〉.

After some algebra, we obtain:

u↑↑ = u0 + δu (6.10.17)

u↓↓ = u0 − δu (6.10.18)

with u0 = 〈ϕ↑1|δH0|ϕ↑1〉 = 〈ϕ↓1|δH0|ϕ↓1〉

δu = −
δgxb

3
xg

2
x + δgxb

2
xgx

√
b2
xg

2
x + b2

yg
2
y + δgybxb

2
ygxgy + δgyb

2
ygy
√
b2
xg

2
x + b2

yg
2
y

b2
xg

2
x + bxgx

√
b2
xg

2
x + b2

yg
2
y + b2

yg
2
y

.

(6.10.19)

We can verify that δu and therefore u↑↑ − u↓↓ cancels for δgx = −δgy and gxb2
x =

gyb
2
y [Eq. (6.10.9)], i.e. when (∂ ~Ω)/(∂ VBG) = 0 as shown in figure 6.17 where,

we can find the quasi sweet line contours around ϕ = 90◦± 34◦ which appear also

in figure 6.18.

In Figures 6.23, we do not have straight lines, the analytical calculations provide

an approximation and an explanation of the results of the figures which show

u↑↑ − u↓↓ as a function of θ and ϕ presenting sweet lines aproximately equal to

those given in the equation (6.10.10). A large increase in the coherence durations

was seen, where the Larmor frequency is least dependent on the gate voltages,

demonstrating the presence of these sweet lines, in agreement with the combined

experimental and theoretical study of Ref.[18].
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Figure 6.24: Same as the figure 6.17 but for Trap 2and Trap 3

Figure 6.24 shows u↑↑ − u↓↓ as a function of back gate potential VBG and ϕ for

θ = 90◦, for Trap 2 and 3. We clearly see horizontal sweet lines for VBG ≈ −0.15 V

which do not vary with the position of the trap. We also found vertical sweet lines

around ϕ = 90◦ ± 34◦. In addition the case of Trap 2 exhibits a sweet line for

VBG ≈ −0.28 V . At this back gate potential the wavefunction is not in the middle

of nanowire as for VBG ≈ −0.15 V , it is compressed on the right corner of nanowire

where it is closer to Trap 2.

Comparing figures 6.17 and 6.24, we can see that for 0.1 V < VBG < −0.15 V

we have almost the same color profile and sweet lines. On the other hand for

−0.15 V < VBG < −0.4 V the color profile changes when changing the position of

trap where we assume that the distance separating the trap’s wave function and

its position have more influence in this region on the difference u↑↑ − u↓↓. This is

shown by the small distance separating the 2 sweet lines around VBG = −0.15 V in

the case of Trap 1, which widens in the case of Trap 2. This shows the influence of

the position of the trap in the device and its distance from the hole wave function.

The analytical description of this situation is a more difficult since it is necessary

to calculate gx and gy taking into account the Trap 2 which has a symmetry

breaking effect and makes the g-matrix formalism more complicated to calculate

analytically, which has not been done in this thesis.
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6.11 Comparison with experimental results

Figure 6.25: Simplified three-dimensional representation of a silicon (yellow)-on-insulator (green) nanowire

device with four gates (light blue) labelled G1, G2, G3 and G4. Gate G2 defines a quantum dot

(QD2) hosting a single hole; G3 and G4 define a hole island used as reservoir and sensor for hole

spin readout; G1 defines a hole island screening QD2 from dopant disorder and fluctuations

in the source. Using bias tees, both static voltages (VG1, VG2) and time-dependent, high-

frequency voltages (MW1, MW2) can be applied to G1 and G2, respectively. The drain contact

is connected to an off-chip, surface-mount inductor to enable radiofrequency reflectometry

readout. The coordinate system used for the magnetic field is shown on the left side (in the

crystal frame, x = [001], y = [110] and z = [110]). Taken from ref [18].

It is now important to try to compare our simulation results with experimental

data. In this section, we focus on reference [18] which concerned a situation very

close to the one considered in this thesis. Indeed, the Grenoble researchers studied

a four-grid (G1-G4) device (figure above). Grids G3 and G4 define a reservoir of

holes that serves as a sensor for reading the hole spin. Grid G2 is used to form

the quantum dot, and G1 defines another island of holes to screen the fluctuations

coming from the source. Remarkably, the authors of this work are able to confine

a single hole under G2, which allows a more direct comparison to theoretical

simulations.

This study shows that the effective g factor is strongly anisotropic for the rea-

sons discussed in [109] and in the previous sections. This anisotropy is very well

described by the theory presented by the authors of ref [18]. It should be noted

that it was necessary for them to introduce small shear deformations within the

Si nanowire to improve the agreement with the experiment.
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Figure 6.26: Measured TE2 versus magnetic field angle θzx (symbols). The solid line is a fit. Taken from

ref [18].

The time T2 was measured by following a Hahn echo protocol [123] which gets rid

of low frequency noise sources. The echo amplitude follows a decay law in the form

of a stretched exponential as a function of the waiting time τwait (free evolution),

which is interpreted by a high frequency noise (104 − 106 Hz) of characteristic

spectrum S(f) ∝ 1/
√
f where f is the frequency. The characteristic time which is

deduced, noted TE2 , depends on the orientation of the magnetic field (measured as

function of the angle θzx in the xz plane) and reaches the remarkable value of 88

µs at its maximum. This dependence is well described from the θzx dependence

of the measured ∂fL/∂VG1 and ∂fL/∂VG2 susceptibilities, where fL is the Larmor

frequency and VGi is the electric voltage on the Gi grid (figure above). This shows

that TE2 is limited by electrical noise generating horizontal and vertical electric

fields as those induced by the different gates.

The authors of [18] present other spin coherence measurements following the Carr-

Purcell-Meiboom-Gill (CPMG) protocol which consists in applying an increasing

number of π pulses which progressively cancels the fastest phase shift effects.

Other measures consist in applying Ramsey sequences formed by two π/2 pulses

separated by a variable delay. In contrast to the Hahn echo, the phase shift induced

by low frequency noise sources is not cancelled due to the absence of a π refocusing

pulse. The phase shift decreases with increasing measurement time tmeas due to the
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contribution of lower and lower frequency noise components. These experiments

highlight the likely influence of noise induced by hyperfine interactions because

the device is fabricated in natural silicon including the 29Si isotope with non-zero

nuclear spin. The power spectrum of this noise at low frequency (10−4− 10−2 Hz)

behaves like 1/f .

Although experiments show that the high frequency noise has an electrical origin,

its precise physical origin remains unknown. We can assume that it comes from a

number of fluctuators like those studied in this thesis. Let us first assume that a

very small number of fluctuators contribute to most of the noise. Each fluctuator

n can be characterized by its threshold angular frequency ωnth and by its oscillation

frequency νn. If νn < ωnth, each fluctuator is in the non-Gaussian regime. It is

then easy to show that T ∗2 is given by 2/∑n νn (Appendix C). In the probable case

where one of the fluctuators is much faster than the others (of frequency νmax), T ∗2
is given by 2/νmax, i.e. the coherence is bounded by the fastest of the fluctuators,

by the moment when it first changes state. In this regime, T ∗2 does not depend

on the magnetic field orientation and is not related to the noise spectrum S(ω)

for ω → 0. We can therefore deduce that the experimental system of [18] does

not work in a configuration dominated by a small number of fluctuators in the

non-Gaussian regime.

The most likely situation is that the fluctuators involved in the measured noise

are characterized by νn > ωnth, i.e. they operate in the Gaussian regime. As the

measured time TE2 is relatively long, this means that the threshold angular fre-

quencies ωnth are low, smaller than ≈ 104 Hz. Since ωth = |u↑↑−u↓↓|/~, we conclude

that the fluctuators involved are characterized by weak coupling terms (U matrix),

which corresponds to defects very far from the qubit, or characterized by a weak

charge displacement (U ∝ d where d is the dipole), or whose dipole potential is

strongly screened, for example by a gas of holes. T ∗2 is then determined by the

noise spectrum induced by the totality of the "far" fluctuators. This situation

seems reasonable (but not guaranteed), since the component studied experimen-

tally in [18] has been chosen among the best of the manufactured batch. The

devices are sorted by an automatic prober which measures their I(V ) characteris-
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tics at room temperature. Those selected for low temperature measurements are

those with the best performances, e.g., uniformity of threshold voltages between

the different gates, value and uniformity of sub-threshold slopes, absence of gate

leakage currents...

It could be interesting in the future to characterize noisier devices in order to

see if non-Gaussian behaviors induced by a small number of "closer" telegraphic

fluctuators can be highlighted. One could also imagine very low noise situations

where the influence of the distant environment is reduced but remains governed by

a few extremely slow fluctuators for which νn < ωnth. In these cases, the coherence

time would become independent of the magnetic field orientation.

6.12 Conclusion; outlook

The results obtained in this chapter show the impact of the distance separating the

fluctuator from the hole wave functions on the coherence time. Furthermore the

comparison of the 2-level model with the multi-level model shows that the 2-level

model is not sufficient to describe all the existing effects that cause the decoherence

and that the coupling of the fundamental doublet with the other energy states has

a non negligible effect on the hole qubit relaxation. It was also found that, in the

low frequency range, the dephasing time is described by 2/ν which is a physical

limit attached only to the fluctuator frequency. It was also possible to find so-

called sweet lines on which the effect of the fluctuator on the dephasing is reduced

but not cancelled due to the influence of non-diagonal coupling matrix elements.
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Bloch-Redfield

7.1 Intoduction

In this chapter, we discuss the Bloch Redfield theory as an approach to calculate

the characteristic relaxation and dephasing times T1 and T2 respectively for a two-

state system. We describe the theory and the general equations. We introduce two

models with which we deduce the coherence characteristic times. Then we discuss

the results obtained with the two approaches compared to the results obtained in

chapter 6.

7.2 Description of the theory

A method for obtaining a master equation describing the dynamics of a micro-

scopic system in interaction with its environment is the Bloch-Redfield formalism.

Under the notion of weak system-environment coupling, it begins from a combined

system-environment perspective and develops a perturbative master equation for

the system alone. On the positive side, this method has the benefit of immediately

obtaining the dissipation processes and rates from environmental characteristics

such as correlation functions. On the negative side, it does not automatically

ensure that the resultant master equation unconditionally maintains the density

matrix’s physical characteristics (because it is a perturbative method). Therefore,
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caution should be paid while using the Bloch-Redfield master equation, and the

derivation’s underlying assumptions must be respected. See, for instance, [124] or

[125], for a complete derivation of the Bloch Redfield master equation. Below we

provide a simplified description of the derivation.

We recall the Liouville-von Neumann equation which describes the evolution of

the density matrix ρ as a function of time.

i~
∂

∂t
ρ(t) = [H, ρ(t)] (7.2.1)

We consider that a system Hamiltonian HS is weakly coupled to an environment

of bath Hamiltonian HB. The coupling Hamiltonian V is considered separable as

shown in equation (7.2.2) where Sn plays on the Hilbert space of the system and

Bn plays on the Hilbert space of the bath.

H(t) = H0 + V (t), H0 = HS +HB, V =
∑
n

Sn ⊗Bn (7.2.2)

ρI(t) = eiH0t/~ρ(t)e−iH0t/~ VI(t) = eiH0t/~V (t)e−iH0t/~ (7.2.3)

The density matrix ρI(t) and the coupling Hamiltonian VI(t) in the interaction

picture are introduced by the transformations that appear in equation (7.2.3).

The development of the equation (7.2.1) in the interaction picture reads as

i~
∂

∂t
ρI(t) = [VI(t), ρI(t)] (7.2.4)

where H0 disappears in this representation. Formal integration gives

ρI(t) = ρI(0)− i

~

∫ t

0
[VI(τ), ρI(τ)]dτ (7.2.5)

wich leads to

∂

∂t
ρI(t) = − i

~
[VI(t), ρI(0)]− 1

~2

∫ t

0
dτ [VI(t), [VI(τ), ρI(τ)]] (7.2.6)

As discussed by Breuer and Petruccine [125], all observations of interest refer to

the system S and are therefore of the form A⊗ IB where A acts on Hilbert space

of the system and IB is the identity operator in the Hilbert space of the bath.

Expectation values given by

〈A〉(t) = Tr{ρ(t)A} (7.2.7)
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can be written as

〈A〉(t) = Trs{ρS(t)A} (7.2.8)

with ρS(t) = TrB{ρ(t)} is the reduced density operator obtained by taking the

trace over the degrees of freedom of the environment. Here we use the Born

approximation which assumes that the influence of the system on the reservoir is

small (weak coupling) and therefore

ρ(t) ≈ ρs(t)⊗ ρB (7.2.9)

where ρB is equilibrium density operator in the bath. This assumes that the bath

returns instantaneously to equilibrium, i.e on a time scale much shorter than the

evaluation of ρs(t). Taking the trace over the bath of equation 7.2.6 gives

∂

∂t
(ρSI(t)) = − 1

~2

∫ t

0
dτTrB[VI(t), [VI(τ), ρSI(τ)⊗ ρB]] (7.2.10)

because it can be shown that TrB[VI(t), ρI(0)] = 0 (ρSI is ρS in the interaction

picture) [125]. Equation (7.2.10) is non-Markovian since the density at time t

depends on the history through ρSI(τ). Once again, if the time scales of the

correlations in the environment are small compared to the time scales of the system

dynamics, the neglect of memory effects is justified. This is done by replacing

ρSI(τ) by ρSI(t) is equation (7.2.10):

∂

∂t
(ρSI(t)) = − 1

~2

∫ t

0
dτTrB[VI(t), [VI(τ), ρSI(t)⊗ ρB]] (7.2.11)

which depends on the initial state ρSI(0) and therefore remains non-Markovian.

A Markovian quantum master equation is obtained by substituting τ by t− τ and

by extending the integration to ∞ [125] :

∂

∂t
(ρSI(t)) = − 1

~2

∫ ∞
0

dτTrB[VI(t), [VI(t− τ), ρSI(t)⊗ ρB]] (7.2.12)

which is of second order in VI (weak coupling to the bath).

The next step is to write the system-bath coupling in the form

VI =
∑
n

Sn ⊗Bn (7.2.13)
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where Sn and Bn are system and bath operators, respectively. This allows to

rewrite the equation in terms of correlation functions 〈Bn(τ)Bm(0)〉 = TrB{Bn(τ)Bm(0)ρB}

using the fact that the bath is considered in a stationary state on the coarse-grain

time scale on which we describe the system evolution.

7.3 General equations for classical noise

7.3.1 General case of a N-level system

A usual situation is to work is the basis of the eigenstates (of energies Eα) of

the time-independent HS. In a semi-classical approach, the interaction with the

bath is just described by the matrix of V (t) in this basis. Following Redfield [94],

equation (7.2.12) becomes in the Schrödinger picture

∂

∂t
ραβs (t) = −iωαβραβs (t) +

∑
δγ

Rαβδγρ
δγ
s (t) (7.3.1)

with ραβs is a matrix element of ρs and

~2Rαβδγ = gαδγβ(ωδα) + gαδγβ(ωβγ)

−
∑
v

gαvvδ(ωδv)δγβ −
∑
v

gγvvβ(ωvγ)δδα (7.3.2)

with ωαβ = (Eα − Eβ)/~ and

gαβδγ(ω) = 1
2

∫ ∞
−∞

dτeiωτ 〈Vαβ(τ)Vδγ(0)〉 (7.3.3)

In equation 7.3.1, R is the Redfield tensor derived in reference [94]. g represents

the noise-power spectra of the environment. R describes the relaxation of the

system due to the perturbation of the environment. The element Rααδδ is the

transition rate from state δ to α.

We recall that the Bloch-Redfield equation is justified when the dynamics and

relaxation of the system take place over a long time compared to the correlation

times of the environment. This means that the following conditions must be

verified : |R−1
αβδγ| >> τc with 〈Vαβ(t)Vδγ(0)〉 ≈ e−τ/τc at long time.
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7.3.2 General case of a 2-level system

We return to the particular case of the two-level system subjected to telegraph

noise. HS and V are represented in the basis {↑, ↓} that we denote {0, 1} for

convenience. ρS is the density matrix of the system with ρ00
S + ρ11

S = 1, ρ01
S = ρ10∗

S

and

HS = ~

Ω/2 0

0 −Ω/2

 , V (t) = B(t)U, U =

u00 u01

u10 u11

 , ρS =

ρ00
S ρ01

S

ρ10
S ρ11

S


(7.3.4)

where B(t) was defined in eq (2.5.4) as χ(t) − 〈χ(t)〉. The correlation functions

are given by

gαβδγ(ω) = ∆UαβUδγ
ν2 + ω2 (7.3.5)

where ∆ = q0q1, equal to 1/4 when q0 = q1 = 1/2.

The element of R and g are given in the appendix (E). This allows to write the R

matrix as

R =



R0000 R0001 R∗0001 −R0000

R0100 R0101 R0110 −R0100

R∗0100 R∗0110 R∗0101 −R∗0100

−R0000 −R0001 −R∗0001 R0000


(7.3.6)

The differential equation system

The Bloch-Redfield equations give us a system of coupled differential equations

for the density matrix elements which reads as

∂

∂t



ρ00
S (t)

ρ01
S (t)

ρ10
S (t)

ρ11
S (t)


=





0 0 0 0

0 −iΩ 0 0

0 0 iΩ 0

0 0 0 0


+R





ρ00
S (t)

ρ01
S (t)

ρ10
S (t)

ρ11
S (t)


(7.3.7)

We can reduce these four equations into three in which 〈σz〉(t) = tr[ρS(t)σz] =
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ρ00
S (t)− ρ11

S (t):

∂

∂t


〈σz〉(t)

〈Re(ρ01
S )〉(t)

〈Im(ρ01
S )〉(t)

 = Y


〈σz〉(t)

〈Re(ρ01
S )〉(t)

〈Im(ρ01
S )〉(t)

 (7.3.8)

with the tensor Y given by

Y =


2R0000 4Re(R0001) −4Im(R0001)

Re(R0100) Re(R0101) +Re(R0110) −Im(R0101) + Ω + Im(R0110)

Im(R0100) Im(R0101)− Ω + Im(R0110) Re(R0101)−Re(R0110)


(7.3.9)

This system of differential equations can be solved numerically, the solutions have

this form


〈σz〉(t)

〈Re(ρ01
S )〉(t)

〈Im(ρ01
S )〉(t)

 = K1e
λ1t


a1

b1

c1

+K2e
λ2t


a2

b2

c2

+K3e
λ3t


a3

b3

c3

 (7.3.10)

we obtain 3 characteristic times T1 = −1
Re(λ1) , T2 = −1

Re(λ2) and T3 = −1
Re(λ3) . Numer-

ical calculations show that λ2 = λ∗3 and therefore T2 = T3.

7.3.3 Particular case of Rotating Wave Approximation

We describe the Rotating Wave Approximation (RWA) allowing to decouple the

differential equations. The density matrix can be expressed in the rotating frame

as

ρSI(t) = eiH0t/~ρSe
−iH0t/~ (7.3.11)

which gives

ρ00
SI(t) = ρ00

S (t) ρ11
SI(t) = ρ11

S (t) (7.3.12)

ρ01
SI(t) = ρ01

S (t)eiΩt ρ10
SI(t) = ρ10

S (t)e−iΩt (7.3.13)

Then we can write the differential equation of ρ00
SI(t) and ρ01

SI(t) in the rotating

frame as
d

dt
ρ00
SI(t) = R0000(ρ00

SI − ρ11
SI) +R0001ρ

01
SIe
−iΩt +R∗0001ρ

10
SIe

iΩt (7.3.14)
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d

dt
ρ01
SI(t) = R0100(ρ00

SI − ρ11
SI)eiΩt +R0101ρ

01
SI +R∗0110ρ

10
SIe

2iΩt (7.3.15)

If we neglect the fast counter rotating terms, we have equations where ρ00
SI(t)

and ρ01
SI(t) are decoupled. Then we return to the main frame and the differential

equations read as
d

dt
ρ00
S (t) = R0000(ρ00

S − ρ11
S ) (7.3.16)

d

dt
ρ11
S (t) = − d

dt
ρ00
S (t) (7.3.17)

σz(t) is calculated as in the general case

〈σz〉(t) = Tr[ρS(t)σz] = ρ00
S (t)− ρ11

S (t) (7.3.18)

The solution of this differential equation gives us the relaxation time T1

d

dt
〈σz〉(t) =2R0000〈σz〉(t) 〈σz〉(t) = σz(0)e−t/T1 (7.3.19)

Using elements R0000 given in Appendix E, we obtain

T−1
1 = 2

~2 [−g0110(Ω)− g0110(−Ω)] = 2
~2

2ν∆U01U10

ν2 + Ω2 (7.3.20)

which agrees with equation (2.5.28) sinse U01 = u↑↓ (chapter 2).

Neglecting the counter rotating terms in equation (7.3.15) leads to :

d

dt
ρ01
SI(t) = R0101ρ

01
SI (7.3.21)

ρ01
SI(t) = ρSI(0)eR0101t (7.3.22)

ρ01
S (t) = ρS(0)e−iΩteR0101t (7.3.23)

which gives

ρ01
S (t) = ρS(0)e−iΩ

′
te−t/T2 (7.3.24)

in which T2 is the dephasing time with

T−1
2 = Re(−R0101) = −∆(2U00U11 − U2

00 − U2
11)

~2ν
+ 2ν∆U01U10

~2(ν2 + Ω2) (7.3.25)

We deduce :

T−1
2 = T ∗−1

2 + (2T1)−1 (7.3.26)
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Figure 7.1: Characteristic times T1 (green) and T2 (red) obtained with the Bloch-Redfield equations (solid

lines) and with the time-dependent simulations (squares and crosses, respectively). The blue

line represents a time varying as 2/ν.

T ∗−1
2 = −∆(2U00U11 − U2

00 − U2
11)

~2ν
= ∆(U00 − U11)2

~2ν
(7.3.27)

in which T ∗2 is the pure dephasing lifetime. Interestingly, the RWA implies that

the terms R0100 and R0001 have a negligible effect, as when the diagonal and non-

diagonal terms are uncorrelated, such as 〈V00(τ)V01(0)〉 = 0.

7.4 Comparison between Bloch-Redfield and time-

dependent simulations

In this section, we present the results obtained from the numerical solution of

equation (7.3.8) deduced from the Bloch-Redfield equation for Trap 1, in the two-

level model. We compare to the results obtained by solving the time-dependent

Schrödinger equation presented and discussed in the previous chapters. This com-

parison highlights the limitations of the Bloch-Redfield approach.

We recall that the angular frequency ωth delimits two regimes of behavior (ωth =

1.96 × 109 s−1 for Trap 1). For ν > ωth, the agreement between Bloch-Redfield

and time-dependent simulations is excellent. On the other hand, for ν < ωth,

Bloch-Redfield gives a time T2 proportional to ν whereas it should vary as 2/ν
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Figure 7.2: Absolute value of the elements of the R tensor versus frequency ν. The black dashed line

represents the limit of a transition rate equal to ν. Matrix elements of R larger in absolute

value than ν mean that the Bloch-Redfield theory is no longer in its domain of validity.

as predicted by the exact analytical calculation [Eq. (2.5.23)]. In this frequency

range, the Gaussian model is no longer valid, the dephasing time is fixed by the

average time when the fluctuator changes state for the first time. This non-

Gaussian behavior can obviously not be described by the Bloch-Redfield theory in

which the environment is described by the correlation functions of its fluctuations

whereas here a single change of state of the fluctuator determines the decoherence

of the system.

The relaxation time T1 seems to be very well described by the Bloch-Redfield

theory but this conclusion must be immediately qualified. Indeed, we are not able

to perform time-dependent simulations for frequencies lower than 107 s−1 which

would require to consider simulation times longer than one millisecond. Moving

to lower frequencies, Figure 7.1 shows that Bloch-Redfield predicts a change in the

behavior of T1 which starts to grow faster than 1/ν. We are not able to perform

time-dependent simulations in this frequency range. We will return to this point

later in the chapter.

To better understand the limitations of the Bloch-Redfield model, we plot the

matrix elements of the R tensor as a function of ν in Figure 7.2. The black

dashed line represents 1/τc = ν where τc is the correlation time of the fluctuator
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Figure 7.3: Absolute value of the elements of the matrix Y . Note that |Y23| = Ω.

as discussed in the previous section. We see that, for ν . 5× 108 s−1, |R0001| and

|R0101| become larger than ν, meaning that |R0001| � 1/τc and |R0101| � 1/τc. In

this case, the Bloch-Redfield theory is no longer justified because some elements

of the two-level system dynamics become faster than the correlation times of the

environment, which is in opposition to the assumptions that established the Bloch-

Redfield equation. For ν & 5× 108 s−1, all conditions are verified and the Bloch-

Redfield theory explains well the behavior of T1 and T2 (Figure 7.1).

7.5 T1 using perturbation method

The behavior of T1 predicted by the numerical solution of the Bloch-Redfield equa-

tion (Figure 7.1), through the diagonalization of the Y matrix of the Equation

(7.3.8), shows a surprising behavior, with a considerable increase at low frequen-

cies, which corresponds to an eigenvalue λ1 of equation (7.3.10) rapidly tending

towards 0. It is therefore important to check that this is not an artifact of the

numerical calculation. We show here that this is not the case by demonstrating

that the same value of T1 can be obtained analytically by a perturbation approach.

The 3 × 3 system of differential equations (7.3.8) involves the real matrix Y .

The plot of the matrix elements versus ν shows that Y can be rewritten as Y =
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Y (0) + δY with

Y (0) =


Y11 Y12 Y13

0 Y22 Ω

0 −Ω Y33

 (7.5.1)

in which Y22 ≈ Y33 and

δY =


0 0 0

Y21 0 0

Y31 0 0

 (7.5.2)

Figure 7.3 shows that δY can be treated in perturbation. The problem is that Y

is not symmetric.

The eigenvalues of Y (0) are Y11 and Y22± iΩ. The eigenvalue λ(0)
1 = Y11 is the one

obtained in the RWA (section 7.3.3) which gives T (0)
1 = −1/Y11 (equation 7.3.20).

The corresponding eigenvector is |u〉 =


1

0

0

, i.e. Y (0)|u〉 = Y11|u〉.

Our goal is to compute the first order perturbation δλ1 induced by δY . The

difficulty is that Y and δY are not symmetric. Reference [126] shows that we have

to calculate the left eigenvector for the same eigenvalue,

〈v|Y (0) = λ
(0)
1 〈v| (7.5.3)

in which 〈v| is the complex conjugate transpose of |v〉. In this case, the first order

perturbation correction is given by

δλ1 = 〈v|δY |u〉 (7.5.4)

In the case of the matrix Y of equation 7.5.1, the left eigenvector for the eigenvalue

λ
(0)
1 = Y11 is
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Figure 7.4: T1 versus ν obtained using numerical resolution of Equation (7.3.8) or using the perturbative

approach [Equation 7.5.6].

〈v| =
[
1 Y12(Y11−Y22)−Y13Ω

Ω2+(Y11−Y22)2
Y12Ω+Y13(Y11−Y22)

Ω2+(Y11−Y22)2

]
(7.5.5)

Injecting this into the equation 7.5.4 gives

λ
(0)
1 + δλ1 = − 1

T1
= Y11 + Y21(Y12(Y11−Y22)−Y13Ω)+Y31(Y12Ω+Y13(Y11−Y22))

Ω2+(Y11−Y22)2 (7.5.6)

Figure 7.4 shows that this equation perfectly reproduces T1 obtained by the nu-

merical solution of the Bloch-Redfield equation, proving the validity of the pertur-

bative approach. This shows that the change in behavior of T1(ν) at low frequency

is indeed a true result of the Bloch-Redfield model. It remains to be seen if it is

physically relevant.

7.6 Low-frequency behavior of T1 in the Bloch-

Redfield theory

Deciding whether the low-frequency behavior of T1 predicted by the Bloch-Redfield

theory is correct or not requires the ability to perform time-dependent simulations

over a longer period of time, which was not numerically possible. We have chosen
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Figure 7.5: Values of T1 calculated with Ω and U reduced by a factor 50 and 10, respectively. Green

squares: time-dependent simulations. Green solid line: Bloch-Redfield theory. Red dashed line:

Bloch-Redfield theory in the RWA.

another strategy. We considered a fictitious system in which the Larmor frequency

is divided by 50 and the coupling matrix is divided by 10. In this case, it is

possible to reduce the time step of the temporal simulations and consider situations

allowing us to compare with the low-frequency regime of Bloch-Redfield.

Results are presented in Figure 7.5. They show that the low frequency behav-

ior predicted by the Bloch-Redfield theory, i.e., a strong increase of T1 when ν

decreases, faster than 1/ν, is not reproduced by time-dependent simulations and

therefore is not physical. This is consistent with the fact that the Bloch-Redfield

theory is used here outside its domain of validity as shown in Figure 7.2.

7.7 Comparison with Bloch-Redfield in the RWA

We have seen in section 7.3.3 that the RWA allows us to arrive at analytical

solutions of the Bloch-Redfield equation for T1 and T2. It is interesting to compare

them with the results of time-dependent simulations (Figure 7.6). We find that for

T2 the Bloch-Redfield plus RWA predictions remains incorrect for ν < ωth, which

makes sense since the Gaussian description remains invalid in this case. On the

contrary, the predictions for T1 seem to be in excellent agreement with the time-
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Figure 7.6: Characteristic times T1 (green) and T2 (red) obtained with the Bloch-Redfield theory in the

RWA (solid lines) and with the time-dependent simulations (squares and crosses, respectively).

The blue line represents a time varying as 2/ν.

dependent simulations whatever ν. This is confirmed in the case of the fictitious

system with reduced Ω and U , Figure 7.5. This shows that the Bloch-Redfield

theory in the RWA seems to describe correctly the values of T1 of the two-level

model, whatever the frequency of the fluctuator, which may seem surprising at

first sight since it means that Bloch-Redfield theory works better with RWA than

without approximation.

It is possible to give two first explanations for this result. First, the values of

T1 always remain much longer than the correlation time 1/ν, and thus the Gaus-

sian approximation remains valid. Secondly, the RWA amounts to decoupling the

equations for T2 and T1, and thus to annihilate the effect of the terms R0001 and

R0101 which become problematic at low frequency.

In addition, we present in Appendix D an exact calculation of T1 in the limit where

ν � Ω. The obtained expression agrees with T1 obtained by the Bloch-Redfield

approach in the RWA (Equation 7.3.20).
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7.8 Conclusion and outlook

In this section, we have applied the Bloch-Redfield theory to the two-level problem

of a qubit perturbed by a random telegraphic noise. The results agree with exact

time-dependent simulations at high frequency. This is no longer true at low fre-

quency when the Gaussian approximation fails or when dynamical processes of the

qubit spin determined by the transition rates of the Bloch-Redfield tensor become

faster than the correlations of the fluctuator. However, the relaxation time T1 is

correctly given in the whole frequency range by the Bloch-Redfield theory in the

RWA. These results clarify the domains of validity of the Bloch-Redfield theory

for the problems of interest in this thesis.

117



Chapter 8

Conclusions

In this thesis, we focused on the theoretical study of the influence of quantum

noise represented by a single charge fluctuator on a hole qubit in silicon technol-

ogy. The background in this thesis was provided by the extensive theoretical and

experimental work that was done at CEA on the development of a semiconduc-

tor quantum computer platform. Chapter 3 and 4 summarize some of this work.

This helped us to understand better the physics of these qubits. Moreover, the

bibliographical study presented in chapter 2 gave us a picture of the strategy that

we have to follow to model a single charge fluctuator in a real device, which was

realized in chapter 5 where we did not stop to consider the qubit system as a

two-state system but to go further and ask the question: do the other states of

the quantum dot play a role too?

8.1 General Conclusions

Thanks to the model developed in chapter 5, we have simulated the spin deco-

herence in a hole qubit due to the presence of a single charge fluctuator which

undergoes telegraphic electrical noise. Thanks to the results obtained and dis-

cussed in chapter 6, we found that the dephasing time T2 in the low frequency

range (ν < ωth) is not described by the Gaussian approximation due to the fact

that the phase distribution in this regime is not Gaussian as expected by the
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Bloch-Redfield theory. Simulations have shown that by playing on the orienta-

tion of the magnetic field, on the back gate potential and on the position of the

fluctuator in the device, we can find points or lines called "sweet lines" on which

the threshold frequency ωth becomes smaller and consequently T2(ωth) becomes

longer and therefore the noise has a smaller influence. We also found that T2 is

dominated by the characteristic relaxation time T1 in the high frequency range

(ν � ωth). Furthermore T1 becomes shorter because of the additional coupling to

the system in the case of multi-level model which results in the 2-level model not

being sufficient in this case. Thanks to the theoretical physics, we could model

and simulate the impact of a microscopic noise source which is almost impossible

to filter and to isolate in experimental measurements, which shows the importance

of simulation.

8.2 Perspectives

The perspectives of this thesis can be divided in two parts. The first one is

to further develop the models used to better describe the decoherence of a hole

qubit. In this work, we have studied the system from the semi-classical point of

view where we have not taken into account the spontaneous emission and therefore

it will be good to study the system from the purely quantum point of view and

see the influence of the spontaneous emission on the decoherence, especially in the

multi-level model whether it decreases or increases the effect of coupling to other

states. An important study would be to simulate this effect by taking into account

the electron-phonon coupling that will contribute to relax the system from high

energy states to low energy ones.

There are several sources of microscopic noise that are not yet studied. So the

second part of the prospects will be to study the influence of other existing noise

sources such as the charge impurities in the source and drain of the transistor

which may have a more dynamic aspect. In particular, it would be important to

understand the origin of the 1/
√
f noise that has been observed experimentally and
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that suggests the influence of very distant electric fluctuators that would operate

in a Gaussian regime because ωth is very small (weak coupling to the qubit) so the

condition ν < ωth is likely.

The combination of experimental work and simulations as close as possible to the

manufactured components remains more necessary than ever to advance in the

development of quantum technologies in Si or SiGe.
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Appendix A

The K matrices

The effect of the magnetic field on the Bloch functions and spin is described by

the following Hamiltonian [127]:

HBloch = −(3κ+ 1)µBB · L + g0µBB · S = µBB · ~K , (A.0.1)

where L is the (orbital) angular momentum of the Bloch function, S its spin, and

κ = −0.42 in silicon. We neglect the effects of the much smaller ∝ q term of

Ref. [127]. We give below the expression of the matrices Kx, Ky, Kz consistent

with our choice of phases for the Bloch functions [taking g0 = 2 in Eq. (A.0.1)]:

Kx = −



0
√

3κ 0 0 −
√

3
2κ
′ 0

√
3κ 0 2κ 0 0 − κ′√

2

0 2κ 0
√

3κ κ′√
2 0

0 0
√

3κ 0 0
√

3
2κ
′

−
√

3
2κ
′ 0 κ′√

2 0 0 κ′′

0 − κ′√
2 0

√
3
2κ
′ κ′′ 0


(A.0.2)
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Ky = i



0
√

3κ 0 0 −
√

3
2κ
′ 0

−
√

3κ 0 2κ 0 0 − κ′√
2

0 −2κ 0
√

3κ − κ′√
2 0

0 0 −
√

3κ 0 0 −
√

3
2κ
′√

3
2κ
′ 0 κ′√

2 0 0 κ′′

0 κ′√
2 0

√
3
2κ
′ −κ′′ 0


(A.0.3)

Kz = −



3κ 0 0 0 0 0

0 κ 0 0
√

2κ′ 0

0 0 −κ 0 0
√

2κ′

0 0 0 −3κ 0 0

0
√

2κ′ 0 0 κ′′ 0

0 0
√

2κ′ 0 0 −κ′′


, (A.0.4)

with κ′ = 1 + κ and κ′′ = 1 + 2κ. Note that in the J = 3/2 subspace (the top left

4× 4 sub-blocks of Kx, Ky and Kz), HBloch is formally equivalent to −2κµBB · J,

where J = L + S is the total angular momentum of the Bloch function [127]. The

eigenstates are computed with an iterative Jacobi-Davidson eigensolver [128, 129].
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Appendix B

Dependance of the perturbation

matrix elements with magnetic

field

The time-dependent Hamiltonian equation (5.3.1) of the system described in chap-

ter 5 could be is rewritten as

H(B, t) = H0(B) + χ(t)U (B.0.1)

H0 can be written explicitely as function of the static magnetic field B. |ϕ↑n(B)〉

and |ϕ↓n(B)〉 are the eigenstates of H0(B) of energy levels E↑n(B) and E↓n(B) re-

spectively. ↑ and ↓ represent a pseudo-spin since the physical spin is not a good

quantum number in presence of spin-orbit coupling. There are no dependece nei-

ther on B or on the electron (hole) spin of the electrostatic perturbation U(~r).

The matrix of U is written in the basis of the states |ϕ↑1(B)〉 and |ϕ↓1(B)〉 which is

the origin of the decoherence processes. We follow the derivation of Ref [110] to

study the evolution of the matrix U with respect to B

H0(B) can be developed in powers of B:

H0(B) ≈ H0(0)−B · ~M +O(B2) (B.0.2)
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where Mα = −∂H/∂Bα|B=0. Second and higher order terms can be safely ne-

glected [110].

B.1 Case of zero magnetic field

The levels of the doublet are Kramers degenerate for B = |B| = 0, i.e., E↑1(0) =

E↓1(0) = E1. In addition, we can choose the phase of the wavefunctions so that

|ϕ↑1(0)〉 = T |ϕ↓1(0)〉 (B.1.1)

where T is the time-reversal symmetry operator.

Writing |ϕ↓1(0)〉 = α(~r)|+〉 + β(~r)|−〉 where |+〉 and |−〉 are the physical spin

components, we obtain

|ϕ↑1(0)〉 = T |ϕ↓1(0)〉 = β∗(~r)|+〉 − α∗(~r)|−〉 (B.1.2)

from which we deduce

u0 = 〈ϕ↑1(0)|U |ϕ↑1(0)〉 = 〈ϕ↓1(0)|U |ϕ↓1(0)〉 =

=
∫ [
|α(~r)|2 + |β(~r)|2

]
U(~r)d3~r (B.1.3)

We used the fact that U(~r) does not involve the spin. Similarly, we obtain:

〈ϕ↑1(0)|U |ϕ↓1(0)〉 =
∫

[β(~r)α(~r)− α(~r)β(~r)]U(~r)d3~r = 0. (B.1.4)

In absence of magnetic field, the effect of U is just a rigid shift of the energy levels,

the states remain uncoupled. Time-reversal symmetry breaking is needed for a

non-zero coupling [110].
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B.2 Case of non-zero magnetic field

The energy splitting between the levels n = 1 and n = 2 being large compared

to the magnetic field Hamiltonian, first-order perturbation theory can be used to

derive the states for B 6= 0

|ϕ↑1(B)〉 = |ϕ↑1(0)〉 −B
∑
n>1,σ

〈ϕσn(0)|B · ~M |ϕ↑1(0)〉
E1 − En

|ϕσn(0)〉 (B.2.1)

|ϕ↓1(B)〉 = |ϕ↓1(0)〉 −B
∑
n>1,σ

〈ϕσn(0)|b · ~M |ϕ↓1(0)〉
E1 − En

|ϕσn(0)〉 (B.2.2)

where b = B/B. Here we have chosen |ϕ↑1(0)〉 and |ϕ↓1(0)〉 so that 〈ϕ↑1(0)|b ·
~M |ϕ↓1(0)〉 = 0 (by diagonalizing b · ~M in the Kramers doublet subspace). The

non-diagonal term of the matrix U can be written as

u↑↓ = 〈ϕ↑1(B)|U |ϕ↓1(B)〉 = η↑↓(b)B (B.2.3)

with

η↑↓(b) = −
∑
n>1,σ

〈ϕσn(0)|b · ~M |ϕ↓1(0)〉
E1 − En

〈ϕ↑1(0)|U |ϕσn(0)〉

−
∑
n>1,σ

〈ϕ↑1(0)|b · ~M |ϕσn(0)〉
E1 − En

〈ϕσn(0)|U |ϕ↓1(0)〉.

(B.2.4)

Similar expressions can be derived for diagonal terms:

u↑↑ = 〈ϕ↑1(B)|U |ϕ↑1(B)〉 = u0 + η↑↑(b)B

u↓↓ = 〈ϕ↓1(B)|U |ϕ↓1(B)〉 = u0 + η↓↓(b)B. (B.2.5)

Formally similar expressions can as well be obtained for the terms u↑↑n and u↓↓n

of the other states (n > 1). We deduce that the angular frequency ωth that

characterizes the analytic expression for T2 is proportional to B,

ωth = |u↑↑ − u↓↓|
~

= |η↑↑(b)− η↓↓(b)|
~

B, (B.2.6)

and therefore the dephasing time for ν = ωth varies as 1/B,

T2(ν = ωth) = 2~
|η↑↑(b)− η↓↓(b)|B. (B.2.7)
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Origin of the law in 2/ν = 1/νcl of

the dephasing time T2

C.1 General arguments

In this section, we are interested in the dephasing time T2 due to a telegraphic

signal of ”classical” frequency νcl = ν/2. In a time interval [0, t], the average

number of flips is equal to νclt. In this case, the Poisson distribution gives the

probability that the fluctuator switches exactly n times during the elapsed time t:

Pn(t) = (νclt)n
n! exp(−νclt). (C.1.1)

The probability P0(t) of not switching is therefore equal to exp(−νclt).

Consider a system characterized by the Larmor angular frequencies Ω and Ω′ in

states 0 and 1, respectively. The phase shift δφ(t) of the qubit precession thus

varies as (Ω′ − Ω)(t − t0) after the first switch from state 0 to state 1 at time t0
(δφ(t) = 0 for t < t0).

T2 characterizes the decay of the quantity 〈exp(iδφ(t))〉{E}. We can write:

〈exp(iδφ(t))〉{E} =
∑
n

Pn(t)〈exp(iδφn(t))〉{En} (C.1.2)
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where δφn(t) represents the phase shifts in all situations ∈ {En} where the fluc-

tuator has switched exactly n times during the elapsed time t.

We now consider the configuration where |Ω′ − Ω| � ν, i.e. where the dephasing

angular frequency is large compared to the frequency of the telegraph noise. In

this case, for a large number of realizations of the experiment, the phase coherence

will be lost from the moment the fluctuator has changed state. Since δφ0(t) = 0,

we obtain

〈exp(iδφ(t))〉{E} ≈ P0(t)〈exp(iδφ0(t))〉{E0} = exp(−νclt) (C.1.3)

from which we deduce T2 = 1/νcl = 2/ν.

This calculation can be easily generalized to the situation where the qubit is

influenced by M fluctuators in the case where the change of angular frequency

Ω′(j)−Ω induced by each fluctuator j is large compared to its switching frequency

ν(j). The probability that the fluctuator j does not switch is therefore P (j)
0 (t) =

exp(−ν(j)
cl t) with ν(j)

cl = ν(j)/2. We obtain

〈exp(iδφ(t))〉{E} ≈
∏
j

P
(j)
0 (t) = exp

−t∑
j

ν
(j)
cl

 (C.1.4)

from which we deduce T2 = 2/∑j ν
(j).

In the (probable) case where one of the fluctuators is much faster than the others,

T2 is well given by 2/max(ν(j)), i.e. the coherence of the qubit is limited by the

fastest of the fluctuators that perturb it.
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Long-time limit of a N-level

system perturbed by a

low-frequency telegraphic noise

We consider a system of N levels {E1 · · ·EN} and wavefunctions {|φ1〉 · · · |φN〉},

eigenvalues and eigenstates of H0. Each energy Ei is written as ~ωi. The sys-

tem is influenced by a telegraphic noise (χ(t) = 0, 1), it fluctuates between two

configurations 0 and 1 with probability q0 q1, respectively. The switch between

0 and 1 is a stochastic process characterized by a mean switching frequency ν.

The Hamiltonian is H(t) = H0 + χ(t)U in which U is the perturbation when the

system switches from 0 to 1. The eigenvalues of H0 + U are called E ′i = ~ω′i. The

system switches between the two configurations at the times t1, t2 · · · .

We must solve the time-dependent Schrödinger equation:

i~
dΨ(t)
dt

= H(t)Ψ(t) (D.0.1)

We assume that H(t) = H0 for t0 ≤ t < t1 with the initial condition Ψ(t0) = Ψ0.

The propagation of the state can be easily written. For example, since the system

is in the configuration 0 between t0 and t1 and the configuration 1 between t1 and

t2, the wavefunction at t2 is given by:
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low-frequency telegraphic noise

PT ′(∆t2)P+T (∆t1)Ψ0 (D.0.2)

in which T (∆tn) is the diagonal matrix


exp (−iω1∆tn) 0

. . .

0 exp (−iωN∆tn)

 (D.0.3)

with ∆tn = tn− tn−1. T ′(∆tn) is the same matrix in which the angular frequencies

ωi are replaced by ω′i.

P is the basis change matrix, that is, the matrix of the eigenvectors of H0 + U in

the basis of the eigenstates of H0. In Eq. (D.0.2), we used P−1 = P+.

We see that we can define a sequence of states given by recursion, i.e.,

|Ψn〉 = P+T (∆tn)|Ψn−1〉 for n odd

|Ψn〉 = PT ′(∆tn)|Ψn−1〉 for n even.
(D.0.4)

We define the density operator ρn = |Ψn〉〈Ψn| in which the overline means the

statistical average on the different random realizations of the time interval ∆tn for

the mean switching frequency ν.

Here we want to understand what happens in the long run, after a large number

of switches of the fluctuator, in the case of a low-frequency telegraphic noise. We

consider the situation where

ν � ωi,∀i. (D.0.5)

In this case, the quantities exp (iωit) present in the propagators can be written as

exp (iθ) in which θ can be seen as a random variable between 0 and 2π.

Using Eq. (D.0.4), the diagonal term (ρn)ii which gives the electronic population

on the level i after n switches is given, for odd n, by
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∑
kl

P+
ik exp (−iωk∆tn) (ρn−1)kl exp (+iωl∆tn)Pli. (D.0.6)

For k 6= l, assuming ωk 6= ωl which is likely in presence of a magnetic field that

splits the spin doublets, we have

exp (i(ωl − ωk)∆tn) = 0. (D.0.7)

We deduce that

(ρn)ii =
∑
k

|Pik|2(ρn−1)kk, (D.0.8)

which can be rewritten as

(ρn) = A(ρn−1) (D.0.9)

in which (ρn) represents the column vector composed of the diagonal matrix ele-

ments of the operator and

A =


|P11|2 · · · |P1N |2

... . . . ...

|PN1|2 · · · |PNN |2

 . (D.0.10)

A similar result is obtained for even values of n.

Let X be an eigenvector of the matrix A for the eigenvalue λ, and xi its largest

component (in modulus). We have:

∑
j

|Pij|2xj = λxi (D.0.11)

=⇒ λ =
∑
j

|Pij|2(xj/xi) (D.0.12)

=⇒ |λ| ≤
∑
j

|Pij|2|xj/xi| ≤
∑
j

|Pij|2 = 1. (D.0.13)
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This shows that the eigenvalues λi of A have a modulus smaller or equal to 1. In

addition, 1 is always a trivial eigenvalue for the eigenvector


1/
√
N

...

1/
√
N

 . (D.0.14)

Using Eq. (D.0.13) and Eq. (D.0.12), we deduce that an eigenvector X of A for

λ = 1 have components of the form xj = exp(iψj)/
√
N . Injecting this into

Eq. (D.0.12) and taking the conjugate complex, we obtain

|λ|2 =
∑
j,k

|Pij|2|Pik|2 exp [i(ψj − ψk)] (D.0.15)

=
∑
j,k

|Pij|2|Pik|2 cos(ψj − ψk) = 1. (D.0.16)

We deduce that ψj = ψk must be imposed for all j and k to verify the last

equation (for Pij and Pik nonzero, see below). Equation (D.0.14) is therefore the

only eigenvector for the eigenvalue λ = 1. In reality, there is an exception to this

rule when the Hamiltonian matrix H0 + U can be written as independent blocks

so that A is also written as a block matrix, i.e., with non diagonal blocks in which

Pij = 0. In this case, the eigenvalue λ = 1 exists for each of the blocks, and N

must be replaced by the size of the block.

From Eq. (D.0.9), we deduce the long time limit of the density:

(ρ∞) = lim
n→∞

(ρn) =
[

lim
n→∞

An
]

(ρ0) (D.0.17)

In the basis of the eigenvectors of A, putting the vector given by Eq. (D.0.14) first,

we have

A∞ =
[

lim
n→∞

An
]

=



1 0 · · · 0

0 0 · · · 0
... ... . . . ...

0 0 · · · 0


(D.0.18)
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from which we deduce using Eq. (D.0.17)

(ρ∞) = QA∞Q
−1(ρ0) (D.0.19)

where Q is the matrix of the eigenvectors of A in which Qi1 = 1/
√
N for all i

[Eq. (D.0.14)]. Similarly, we can show that the first row of the matrix Q−1 is such

that Q−1
1i = 1/

√
N for all i because of the orthogonality of the first column vector

of Q to all other column vectors. This can be deduced from Eq. (D.0.11) which

gives

∑
i,j

|Pij|2xj =
∑
j

xj = λ
∑
i

xi (D.0.20)

which implies that ∑i xi = 0 for λ 6= 1. We conclude that not only the eigenvalue

λ = 1 is nondegenerate but also the vectors associated with the other eigenvalues

form an orthogonal subspace.

Using these results and Eq. (D.0.18), we deduce finally:

(ρ∞)i =
∑
j

Qi1Q
−1
1j (ρ0)j = 1

N

∑
j

(ρ0)j = 1
N
. (D.0.21)

This shows that the system always ends up in a situation of equipartition between

all states of the basis, whatever the starting point.

In this proof, we have made the assumption that the matrix A is diagonalizable if

an eigenvalue is degenerate. If this is not the case, the result can be generalized

to the case of Jordan normal forms.

D.1 Application to the calculation of the relax-

ation lifetime T1 in the two-level model

As in the main document, the Hamiltonian is written as
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H(t) =

 −∆E 0

0 ∆E

+ χ(t)

 0 u↑↓

u∗↑↓ 0

 (D.1.1)

in which we define ∆E = ~Ω/2. Here we assume u↑↑ = u↓↓ = 0, and |u↑↓|/∆E � 1.

The matrix A defined in Eq. (D.0.10) is given by

A =


1
2

(
1 + ∆E√

∆E2+|u↑↓|2

)
1
2

(
1− ∆E√

∆E2+|u↑↓|2

)
1
2

(
1− ∆E√

∆E2+|u↑↓|2

)
1
2

(
1 + ∆E√

∆E2+|u↑↓|2

)
 . (D.1.2)

We have:

 ρn↑

ρn↓

 = A

 ρn−1
↑

ρn−1
↓

 (D.1.3)

in which ρn↑ is the population on the state ↑ after n switches.

Calling z the axis of the magnetic field B, the relaxation of the spin is described

by the decay of σnz given by ρn↑ − ρn↓ .

Using Eq. (D.1.3), we deduce

σnz = ∆E√
∆E2 + |u↑↓|2

σn−1
z . (D.1.4)

Using the initial condition σ0
z = 1, we obtain

σnz =
 ∆E√

∆E2 + |u↑↓|2

n . (D.1.5)

The average elapsed time for n steps being tn = n/νcl = 2n/ν, σnz can be rewritten

as exp(−tn/T1) with

T1 = 4∆E2

ν|u↑↓|2
= ~2Ω2

ν|u↑↓|2
. (D.1.6)

This result, obtained using |u↑↓|/∆E � 1, in the limit ν � Ω. In this case, T1

was derived from the noise spectral density at frequency Ω [17].
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Calculation of R tensor’s

components

E.1 R tensor’s components

the R tensor’s components are calculated accordint to Redfield paper [94]. The g

component can be calculated as seen

gαβδγ(ω) =
∫ ∞
−∞

dτeiωt < Vαβ(t)Vδγ(0) >

=
∫ ∞
−∞

dteiωt < B(t)UαβB(t)Uδγ >

=
∫ ∞
−∞

dteiωt < B(t)B(0) > UαβUδγ

= ∆UαβUδγ
∫ ∞
−∞

dteiωte−νt = ∆νUαβUδγ
ν2 + ω2 (E.1.1)

< Vαβ(t)Vδγ(0) > =< Vδγ(t)Vαβ(0) > (E.1.2)

gαβδγ(Ω) = gδγαβ(Ω) (E.1.3)

gαβδγ(Ω) = g∗βαγδ(−Ω) (E.1.4)

ω01 = Ω
2 (E.1.5)

ω10 = −Ω
2 (E.1.6)
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Calculation of (4× 4) R tensor elements

~2R0000 = −g0110(Ω)− g0110(−Ω)

~2R0011 = g0110(−Ω) + g0110(Ω)

~2R0001 = g0010(0) + g0010(Ω)− g1000(Ω)− g1110(0)

= g0010(0)− g1110(0)

~2R0010 = g0100(−Ω) + g0100(0)− g0001(−Ω)− g0111(0)

= g0100(0)− g0111(0)

~2R1100 = g1001(Ω) + g1001(−Ω)

~2R1111 = −g1001(−Ω)− g1001(Ω)

~2R1101 = g1011(Ω) + g1011(0)− g1000(0)− g1110(Ω)

= g1011(0)− g1000(0)

~2R1110 = g1101(0) + g1101(−Ω)− g0001(0)− g0111(−Ω)

= g1101(0)− g0001(0)

~2R0100 = g0001(−Ω)− g0111(−Ω)

~2R0111 = g0111(−Ω)− g0001(−Ω)

~2R0101 = 2g0011(0)− g0000(0)− g1111(0)− g0110(Ω)− g1001(Ω)

= 2g0011(0)− g0000(0)− g1111(0)− 2g0110(Ω)

~2R0110 = 2g0101(−Ω)

~2R1000 = g1000(Ω)− g1110(Ω)

~2R1011 = g1110(Ω)− g1000(Ω)

~2R1001 = 2g0011(0)− g0000(0)− g1111(0)− g1001(−Ω)− g0110(−Ω)

= 2g0011(0)− g0000(0)− g1111(0)− 2g1001(−Ω)

~2R1010 = 2g1010(Ω)
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therefore

R0011 = −R0000 R1111 = −R1100 R0000 = R1111

R0010 = R∗0001 R1110 = R∗1101 R1101 = −R0001

R0111 = −R0100 R1011 = −R1000 R1000 = R∗0100

R1010 = R∗0101

R1001 = R∗0110

E.2 R tensor’s elements calculation

R0000 = 1
~2 [−g0110(Ω)− g0110(−Ω)] = − 1

~2
2ν∆U01U10

ν2 + Ω2

R0100 = 1
~2 [g0001(−Ω)− g0111(−Ω)] = 1

~2
∆ν(U00U01 − U01U11)

ν2 + Ω2

R0110 = 2
~2 [g0101(−Ω)] = 1

~2
2∆νU01U01

ν2 + Ω2

R0001 = 1
~2 [g0010(0)− g1110(0)] = 1

~2
∆(U00U10 − U11U10)

ν

R0101 = 1
~2 [2g0011(0)− g0000(0)− g1111(0)− 2g0110(Ω)]

= 1
~2

∆ν(2U00U11 − U00U00 − U11U11)
ν

− 1
~2

2∆U01U10

ν2 − Ω2
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