
HAL Id: tel-04353700
https://theses.hal.science/tel-04353700v2

Submitted on 19 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Privacy-preserving learning by averaging in
collaborative networks

Arijus Pleska

To cite this version:
Arijus Pleska. Privacy-preserving learning by averaging in collaborative networks. Machine Learning
[cs.LG]. Université de Lille, 2023. English. �NNT : 2023ULILB014�. �tel-04353700v2�

https://theses.hal.science/tel-04353700v2
https://hal.archives-ouvertes.fr

Centre de Recherche en Informatique,
 Signal et Automatique de Lille

École Doctorale Mathematiques, Sciences du Numérique et de leurs
Interactions (MADIS)

Thèse de Doctorat

Privacy-preserving Learning by
Averaging in Collaborative Networks

Calcul des Moyennes dans des Réseaux Collaboratifs pour
l’Apprentissage Automatique et Préservant la Confidentialité

Préparée au sein de l’équipe Magnet, du laboratoire CRIStAL
et du centre de recherche INRIA Lille par

Arijus Pleska

sous la direction de

Jan Ramon

pour obtenir le grade de

Docteur en Informatique

Soutenue à Villeneuve d’Ascq le 6 juin 2023 devant le jury composé de

Benjamin Nguyen Professeur, INSA Centre Val de Loire Rapporteur
Martine De Cock Professeur, University of Washington Tacoma Rapportrice
Sébastien Gambs Professeur, Université du Québec à Montréal Examinateur
Romain Rouvoy Professeur, Université de Lille Président du jury
Jan Ramon Directeur de Recherche, INRIA Lille Directeur

Acknowledgements

I am thankful to Jan Ramon for the guidance throughout the work on this thesis.
I am thankful to Marc Tommasi, Mikaela Keller, and Aurélien Bellet for their

comments on several extracts of this dissertation.
I am thankful to Benjamin Nguyen, Martine De Cock, Sébastien Gambs, and

Romain Rouvoy for the participation in the defense of this thesis.
Also, I am thankful to Moitree Basu for her collaboration on the project on the

tailored noise mechanism.
Likewise, I am thankful to César Sabater for the technical discussions and his

comments on the context of this dissertation.
I am thankful to Mathieu Dehouck, Paul Mangold, and Nathalie Vauquier for

their comments on several extracts of this dissertation and their help in the French
translations.

I am thankful to Antoine Boutet for his welcome in presenting the project on
distributed averaging without handshakes to the Privatics team; to the organizers
of the 4-th MaDICS symposium for the opportunity to present in their event; to
Michaël Perrot for his assistance in presenting my work to the Magnet team; and
to Sylvain Salvati for the opportunity to exchange with students during la journée
RIC (the day of research, innovation, and creativity) in 2021.

I am thankful to Mohamed Maouche, Rémi Gilleron, Pascal Denis, Damien
Sileo, Brij Mohan Lal Srivastava, Mahsa Asadi, Gaurav Maheshwari, Mariana
Vargas Vieyra, Onkar Pandit, Carlos Jorge Zubiaga Peña, William de Vazelhes,
Kamal Macwan, Vitalii Emelianov, and Batiste Le Bars for their questions and
insights.

I am thankful to Julie Jonas and Aurore Dalle for administrative assistance.
I am thankful to my dear friends for support.

2

Abstract

In recent years, due to the growing importance of network applications and the
growing concerns for privacy, there is an increasing interest in decentralized forms
of machine learning. In this dissertation, we study the setting that involves a
communication network of agents, where each agent locally privatizes (adds noise
to) its data, and where the agents aim to collaboratively learn statistical models
over their data. Such local privatization is in line with a standard of data privacy
known as local differential privacy, and local differential privacy is useful when
alternatives, such as secure multi-party computation or central differential privacy
performed by a trusted curator, are infeasible. However, local differential privacy
results, typically, in worse utility (less accurate statistical models) compared to
central differential privacy because, for the same privacy budget, local differential
privacy adds more privatization noise than central differential privacy. The principal
question of this dissertation is the following: given that local differential privacy
must be used, how could the agents maximize the utility they achieve? We study
two cases to address the stated principal question.

In the first case, we consider the problem of distributed averaging, where each
agent intends to collaboratively compute the unbiased average over the individual
values of all agents without revealing neither their sensitive attributes nor their
degree (number of neighbors). Usually, existing works solve this problem by
assuming that either (i) each agent reveals its degree to its neighbors or (ii) every
two neighboring agents can perform handshakes (requests that rely on replies) in
every exchange of information. Since such assumptions are not always desirable, we
propose an approach that is handshake-free and where the degrees are privatized. In
particular, we use a gossip algorithm that computes averages that are biased when
the graph of agents is non-regular (when the vertices have unequal degrees) and
then perform a procedure combining multiple biased averages for bias correction.
We apply the proposed approach for fitting linear regression models. We prove the
asymptotic guarantee that the mean squared error between the average of privatized
attributes computed by our approach and the average of sensitive attributes is
O
(
1
n

)
, where n is the number of agents.

In the second case, we consider a group of agents, where features (for fitting
regression models) are computed by transforming sensitive attributes, and where
the transformations have high-magnitude gradients or singularities. In such setting,
there is a risk to magnify the privatization noise if the perturbed data is in an
interval where the feature function has high-magnitude gradients. We provide a
tailored noise mechanism for privatizing features by solving a convex program in
such a way that (i) only pertinent intervals of transformations are selected, (ii) the

3

variance of privatization noise is minimized, and (iii) the biasedness of privatization
noise is minimized.

4

Résumé

Ces dernières années, les applications en ligne se sont beaucoup développées. Cela
a attiré une plus grande attention sur les problèmes de confidentialité des données
et motivé la recherche sur les formes décentralisées d’apprentissage automatique.
Dans cette thèse, nous nous intéressons à la situation où les agents d’un réseau de
communication souhaitent apprendre un modèle statistique de façon collaborative,
tout en préservant la confidentialité de leurs données personnelles. Une façon
de protéger ces données est de les obfusquer (bruiter) avant de les partager. Ce
genre d’obfuscation locale est conforme à la confidentialité différentielle locale (un
standard d’obfuscation des données), et la confidentialité différentielle locale est
utile lorsque d’autres solutions, reposant sur le calcul multipartite sécurisé ou sur la
confidentialité différentielle centrale realisée par un tiers de confiance jouant le rôle
d’orchestrateur, sont irréalisables. Cependant, la confidentialité différentielle locale
souffre généralement d’une utilité moindre (les modèles statistiques sont moins
précis) que la confidentialité différentielle centrale car, pour le même budget de
confidentialité, la confidentialité différentielle locale doit ajouter plus de bruit que
la confidentialité différentielle centrale pour obfusquer les données. La question
principale de cette thèse est la suivante : en garantissant la forme locale de la
confidentialité différentielle, comment les agents peuvent-ils maximiser l’utilité
qu’ils obtiennent ? Nous répondons à cette question dans deux cas particuliers.

Dans le premier cas, nous considérons le problème du calcul distribué, où
les agents souhaitent estimer de façon collaborative la moyenne non-biaisée de
l’ensemble des valeurs individuelles de tous les agents, sans révéler ni leurs attributs
sensibles ni leur degré (le degré d’un sommet étant le nombre de ses voisins).
Généralement, les travaux existants résolvent ce problème en supposant soit (i) que
les agents révèlent leur degré à leurs voisins respectifs, soit (ii) que toutes les paires
de voisins peuvent éffectuer des handshakes (pour s’assurer de la réponse de chacun).
Puisque de telles hypothèses ne sont pas toujours réalisables, nous proposons une
approche qui ne nécessite pas de handshakes et qui ajoute du bruit aux degrés. En
particulier, nous utilisons un algorithme de bavardage qui calcule des moyennes
biaisées quand le graphe est non-régulier (quand tous les sommets n’ont pas le
même degré), puis nous appliquons une procédure combinant les moyennes biaisées
pour en corriger le biais. Nous appliquons ensuite l’approche proposée pour estimer
des modèles de régression linéaire. Nous prouvons que, asymptotiquement, l’erreur
quadratique moyenne entre la moyenne des attributs cachés (par le bruit) calculée
par notre approche et la véritable moyenne des attributs sensibles est O

(
1
n

)
, où n

est le nombre d’agents.

Dans le second cas, nous considérons un groupe d’agents, où les features (valeurs

5

entrant dans l’estimation des modèles de régression linéaire) sont calculées par
application de fonctions sur des attributs sensibles, et ces fonctions présentent une
grande amplitude de gradient ou des singularités. Dans une telle situation, il existe
un risque d’amplifier le bruit d’obfuscation si les données perturbées se trouvent
dans un intervalle où ladite fonction a une grande amplitude de gradient. Nous
proposons un mécanisme de bruitage spécifique qui cache les features en résolvant
un problème d’optimisation de telle sorte que (i) seuls des intervalles pertinents
pour les fonctions considérées soient sélectionnés, (ii) la variance du bruit soit
minimisée et (iii) le biais du bruit soit minimisé.

6

Contents

1 Introduction 12

2 Background 16
2.1 Probability theory . 19

2.1.1 Statistics and their estimation 24
2.1.2 Common probability distributions 27
2.1.3 Statistical significance . 29

2.2 Graph theory . 30
2.2.1 Structural properties of graphs 33
2.2.2 Random graph models . 35
2.2.3 Basics of graph generation 37

2.3 Distributed systems . 39
2.3.1 Algorithms . 41
2.3.2 Basics of distributed algorithms on graphs 43

2.4 Machine learning . 45
2.4.1 Supervised learning . 48
2.4.2 Clustering . 50
2.4.3 Statistical inference . 51

2.5 Data privacy . 53
2.5.1 Differential privacy . 54

2.6 Mathematical optimization . 56
2.6.1 The cvxopt package . 57

2.7 Summary . 58

3 Bias in distributed averaging 61
3.1 Estimating empirical distributions 61

3.1.1 Approach with an overlay network 62
3.1.2 Approach with gossip algorithms 62

3.2 Averaging on ER graphs . 64
3.3 Averaging on arbitrary graphs . 69

3.3.1 Introduction . 69
3.3.2 Preliminaries . 70
3.3.3 Literature study . 72
3.3.4 Approach . 73
3.3.5 Use case on linear regression 76
3.3.6 Error analysis . 80

7

CONTENTS CONTENTS

3.3.7 Experiments . 87
3.3.8 Conclusion . 90

4 Tailored noise mechanism 92
4.1 Introduction . 93
4.2 Preliminaries . 94
4.3 Literature study . 96
4.4 Approach . 97

4.4.1 Definition of the constraints 98
4.4.2 Definition of the objective function 100
4.4.3 Discretization of domains of features 101

4.5 Implementation . 102
4.6 Experiments . 104

4.6.1 Dataset description . 104
4.6.2 Experiment setup . 107
4.6.3 Result interpretation . 108
4.6.4 Secondary experiments . 111

4.7 Conclusion . 113

5 Summary and future directions 115
5.1 Summary of contributions . 115
5.2 Future directions . 117

A Averaging on arbitrary graphs 135
A.1 Generation of graphs with power-law degree sequences 135
A.2 Variance of a bounded attribute . 136
A.3 Remainder of Experiment 3.1 . 136
A.4 Secondary experiments . 136

8

List of Figures

2.1 Illustration of two probability density functions 29
2.2 Illustration of three distinct graphs 33
2.3 Illustration of two observations of the ER random graph 36
2.4 Illustration of a distributed system without a central curator and a

distributed system with a central curator 40
2.5 Relation among the fields and the settings considered in the dissertation 59

3.1 Experiment 3.1 on the synthetic graph dataset 89
3.2 Experiment 3.2 on the synthetic dataset 89
3.3 Experiment 3.2 on the real graph datasets 90

4.1 Experiment 4.1 on ds1 . 108
4.2 Experiment 4.1 on ds2a . 109
4.3 Experiment 4.1 on ds3 . 109
4.4 Experiment 4.2 on ds2b . 110
4.5 Experiment 4.2 on misra1d . 110
4.6 Comparison between equal distance discretization and equal fre-

quency discretization on ds1 . 111
4.7 Comparison between equal distance discretization and equal fre-

quency discretization on ds2a . 111
4.8 Comparison between a finer discretization and a coarser discretiza-

tion of domains of sensitive features on ds2a (upon equal distance
discretization) . 112

4.9 Comparison between a finer discretization and a coarser discretiza-
tion of domains of sensitive features on ds2a (upon equal frequency
discretization) . 112

4.10 Comparison between a finer discretization and a coarser discretiza-
tion of domains of privatized features on ds2a (upon equal distance
discretization) . 113

A.1 Remainder of Experiment 3.1 on the synthetic dataset 136
A.2 Comparison of the MSE between true target values and predicted

target values over several choices of the shape parameter γ 137

9

List of Algorithms

1 SimpleGossip (SiGo) . 63
2 SimpleGossip for estimating a distribution 63
3 MetropolisHastingsGossip for estimating a distribution 64
4 BiasCorrectingGossip (BCGo) for privacy-preserving regression . . . 80

10

List of Tables

2.1 General notation followed throughout the dissertation 17
2.2 Introduced notation of basic concepts of probability theory 22
2.3 Introduced notation of basic concepts of graph theory 32
2.4 Introduced notation of basic concepts of machine learning 47

4.1 Notation related to sensitive features and privatized features 95
4.2 Notation related to the work on tailored privatization 96
4.3 Order and indices of constraint variables 103
4.4 Total number of constraint variables 103
4.5 Linear equality constraints . 103
4.6 Linear inequality constraints . 103
4.7 Total number of each type of constraints 104

A.1 Empirical evaluation of the convergence of SiGo 137

11

Chapter 1

Introduction

In recent years, due to the growing importance of network applications and the
growing concerns for privacy, there is an increasing interest in decentralized forms
of machine learning [NTC17; Col+16; VBT17].

On the one hand, reluctance to share sensitive data reduces the risk of unwanted
profiling which can expose to targeted advertisement or discrimination in job
applications. On the other hand, sharing such data can be useful in improving
statistical models used in healthcare [Ter+22; Lam+21] or software maintenance
[EPK14]. Data obfuscation is a computationally light approach to share data while
preserving privacy with or without centralization. Upon centralization, an authority
is entrusted to preserve privacy of each record shared with it. Upon decentralization,
software on a user’s device preserves privacy while records are shared in a network
of users. When software is respectful towards regulation enhancing privacy, such
as the General Data Protection Regulation, decentralization allows for preserving
privacy without trusting an authority [NH21]. However, decentralization requires
additional care, such as failure detection or tailored design of communication
protocols.

We do not consider cryptographic approaches, such as secure multi-party
computation [Sot+21], mainly due to additional computational cost. Also, we
aim for studying networks where information flow is characterized by absence of
handshakes (requests that rely on replies). As in such case, interaction among users
is characterized by a stronger self-management because the users are not obliged
to wait for each other.

In this dissertation, we study the setting that involves a communication network
of agents, where an agent can communicate to another agent only if there is a
communication link between them (we refer to such agents as neighboring agents),
where each agent is attributed a vector of individual values, and where each agent
intends to collaboratively compute statistics over the individual values of all agents
for fitting statistical models. Furthermore, we consider that every agent intends to
keep its individual values private (i.e., individual values are sensitive attributes).
We recall two common approaches for computing statistics over the individual
values of all agents in a privacy-preserving way:

• In the centralized approach, the community of agents chooses a trust-worthy
agent (a trusted central curator). Then, each agent shares its sensitive

12

Chapter 1. Introduction

attributes with the central curator, the central curator computes statistics
over the sensitive attributes of all agents, and the central curator privatizes
the statistics. At this point, the central curator can share the privatized
statistics with the agents.

• In the decentralized approach, each agent privatizes its sensitive attributes
locally and shares the privatized attributes with its neighboring agents.
Then, the community of agents commits to a procedure where each agent
iteratively performs computations over the received values and shares the
results with the neighbors. As the number of iterations increases, such
information dissemination can be tailored to lead to statistics of interest over
the privatized attributes.

First, we discuss the centralized approach in more detail. We assume that
a central curator is connected to every agent (otherwise, the community adds
communication links so that the central curator is connected to every agent). This
way, each agent can share its sensitive attributes with the central curator, the
central curator computes and then privatizes (adds appropriate amount of noise
to) the statistics of interest, and, finally, the central curator shares the privatized
statistics with the community.

Next, we discuss the decentralized approach in more detail. Even though no
central curator is selected, the community can compute statistics from locally
privatized attributes using a distributed algorithm. A suitable choice of such
distributed algorithm is an iterative algorithm known as a gossip algorithm. In the
initialization of a gossip algorithm, each agent shares its vector of individual values
with its neighbors. In the first step, each agent computes the average from the
receivable values. In the second step, each agent updates its shared value by the
computed average. Under conditions studied later in this dissertation, iteration
over the two steps leads to convergence, and each agent obtains the statistics of
interest over the privatized attributes.

The statistics computed by the centralized approach are more accurate (which
leads to a higher utility) than the statistics computed by the decentralized approach
because the amount of noise to guarantee differential privacy (a standard of data
privacy) is, typically, higher in a statistic computed from locally privatized attributes
as opposed to a privatized statistic computed from sensitive attributes. However,
the centralized approach relies on a central curator for privatization, whereas
the decentralized approach does not. Meanwhile, the decentralized approach is
susceptible to issues of distributed communication, e.g., inactivity of agents or the
bias due to non-regular connectivity (when the graph of agents is non-regular, i.e.,
the numbers of neighbors vary).

In this dissertation, we reuse elements from the two aforementioned approaches.
As in the centralized approach, we have a central curator. However, the role of the
central curator is other than privatizing sensitive attributes. For example, such
role can be solving mathematical optimization problems or averaging. As in the
decentralized approach, each agent privatizes its sensitive attributes locally.

We focus on statistical models which can be fitted using statistics that are
averages (later, we show that this is the case for linear regression). This way, we

13

Chapter 1. Introduction

are interested in distributed averaging of locally privatized attributes, which is
an actively studied problem [DBR18; Bel+20]. Regarding real-world applications,
distributed averaging with a minimal reliance on a central curator (which, typically,
is an entity that provides or hosts an instance of software) is an element of self-
managing distributed systems. In particular, a reduced reliance on a central curator
reduces risks associated with robustness, infrastructure for data storage, and trust.
For example, an approach relying on a central curator is susceptible to power cuts
or information leakage. However, the design of a self-managing distributed system
that functions well in practice requires consideration of numerous factors, such as
inactive or malicious agents, convergence, asynchronicity, or the aforementioned
bias due to non-regular connectivity.

We proceed by stating our principal question:

• Given that local differential privacy must be used, how could the agents
maximize the utility they achieve? More precisely, how could the agents of a
communication network maximize the accuracy of collaboratively computed
averages of locally privatized attributes?

In this dissertation, we answer the latter question by the two following contri-
butions.

In Section 3.3, we prove an asymptotic guarantee for the mean squared error
between the average of sensitive attributes and the average of locally privatized
attributes computed by a bias-correcting gossip algorithm, when the graph of agents
is modeled by a random graph model parametrized by an arbitrary degree sequence,
when the degrees (numbers of neighbors) of agents are sensitive, and when the
agents interact without handshakes. We apply the proposed approach for fitting
linear regression models while keeping the degrees private. We show on a synthetic
graph dataset and real graph datasets that, when the features are polynomials of
degrees, the regression model fitted by our approach can outperform the solution
when locally privatized attributes are averaged by centralized averaging, i.e., the
averaging function f(x) = 1

n

∑
i∈[n] xi, where x ∈ Rn.

In Chapter 4, we provide a utility-maximizing mechanism for privatizing features
that are computed by transforming sensitive attributes, when the transformations
have high-magnitude gradients or singularities. In such setting, there is a risk
of obtaining an outlier feature due to transforming a privatized attribute in an
interval where the transformation has high-magnitude gradients. We mitigate
the aforementioned risk by providing a tailored noise mechanism for privatizing
features by solving a convex program in such a way that (i) only informative
intervals of transformations are selected, (ii) the variance of privatization noise is
minimized, and (iii) the biasedness of privatization noise is minimized. We show
on synthetic datasets and a synthetically-extended real dataset that the tailored
noise mechanism results in a higher utility compared to a classic privatization
mechanism, when fitting a linear regression model where the feature function is
either the logarithm, the reciprocal, or the tangent.

Outline. In Chapter 2, we discuss the background of the fields on which
this dissertation relies. In Chapter 3, we study the bias in distributed averaging
when the graph of agents is non-regular. In Chapter 4, we study the tailored

14

Chapter 1. Introduction

noise mechanism. In Chapter 5, we summarize this dissertation and discuss future
directions.

15

Chapter 2

Background

In this chapter, we discuss the background of the fields on which this dissertation
relies (illustrated in Figure 2.5). In particular, we review definitions, provide
notation, and sometimes provide descriptions and examples.

At the beginning of this chapter, we review some basic concepts of linear algebra
and familiarize with the general notation followed throughout this dissertation. In
particular, we review the spectral norm that is used in our example of distributed
averaging on particular random graphs known as Erdős–Rényi graphs (discussed in
Section 3.2). Then, in Section 2.1, we review probability theory. In Section 2.2, we
review graph theory. In Section 2.3, we review distributed systems. Afterwards, in
Section 2.4, we review machine learning. In Section 2.5, we review data privacy.
In Section 2.6, we review mathematical optimization. Finally, in Section 2.7, we
briefly summarize how the reviewed fields relate to the settings discussed in this
dissertation.

For a review of linear algebra, we recommend and mostly follow the textbook
by Horn and Johnson [HJ12]. In this dissertation, we limit ourselves to the space
R of real numbers (as opposed to the space C of complex numbers).

We start by recalling definitions of a field and a vector space; we do so with
the intention to review the basis for definitions of vectors and matrices which are
fundamental in linear algebra.

A field (also known as a scalar field) is a set of scalars closed under addition
and multiplication; we denote a field by F . An n-dimensional vector space S (also
known as a vector space) over a field F is a set of n-tuples, where the set S meets
the following conditions:

• S is closed under vector addition (which is associative and commutative).
That is, for each u,v ∈ S, we have u + v ∈ S.

• S includes an identity which is the vector of 0’s; we denote the vector of 0’s
by 0. That is, 0 ∈ S.

• S includes the additive inverse of its each element. That is, for each u ∈ S,
we have −u ∈ S, where u + (−u) = 0.

• S is closed under scalar multiplication. That is, for each c ∈ F and for each
u ∈ S, we have cu ∈ U .

16

Chapter 2. Background

An element of a vector space over a field F is known as a vector. A finite
collection of vectors u1,u2, . . . ,uk is linearly dependent if and only if there are
scalars c1, c2, . . . , ck, not all zero, such that

c1u1 + c2u2 + . . . + ckuk = 0,

where k ∈ N1, and N1 = N \ {0}. Further, we remark that by F n we denote a
set of n-tuples whose elements are in F . Similarly, by Fm×n we denote a set of
m× n arrays whose elements are in F . An element of Fm×n is known as a matrix.
Essentially, a vector is a collection of elements over one axis (e.g., a sequence), and
a matrix is a collection elements over two axes (e.g., a table). This way, a vector
can be also interpreted as a matrix whose second axis is of length 1.

We summarize the notation of matrices, vectors, and scalars, which we have
chosen to follow throughout this dissertation. Let x ∈ Rn be a vector and let
Y ∈ Rn×n be a matrix. When we refer to a particular element of x, we use an
index in the subscript, e.g., x2 denotes the 2-nd element of x (we remark that x2

takes the italic font and x takes the roman bolded font). Similarly, y1,2 denotes the
element in the 1-st row and the 2-nd column of Y (we remark that y1,2 takes the
lower-case and Y takes the upper-case). This way, we usually denote scalars and
vectors in lower-case and matrices in upper-case. When we refer to some particular
row or column of a matrix, we use the colon symbol (i.e., “:”). For example, Y:,2

refers to the 2-nd column of Y (as an exception to the general notation conventions
followed in this dissertation, we remark that the vector Y:,2 keeps the upper-case
opposed to taking the lower-case).

In Table 2.1, we provide a summary of the general notation followed throughout
the dissertation.

Table 2.1: General notation followed throughout the dissertation

Notation Meaning

x Italic lower-case usually denotes a scalar or a map
x Roman bolded lower-case denotes a vector
X Roman bolded upper-case usually denotes a matrix
X Italic upper-case usually denotes a random variable or a set
X Italic bolded upper-case usually denotes a random matrix
N1 N \ {0}
[x] {i ≤ x : i ∈ N1} (x ∈ N1)
1 Vector of 1’s
0 Vector of 0’s
Ik k × k identity matrix (1’s in the main diagonal, 0’s elsewhere)

We proceed by recalling definitions of a square matrix and a diagonal matrix.
A square matrix is a matrix with an equal number of columns and rows. A

diagonal matrix is a square matrix where non-zero elements are only in its main
diagonal, and the main diagonal of an n× n matrix A is the diagonal (a vector)
that contains the elements a1,1, a2,2, . . . , an,n. This way, the first element of the

17

Chapter 2. Background

main diagonal is at the upper-left corner of A and the last element of the main
diagonal is at the bottom-right corner of A.

We proceed by recalling the following basic operations that can be performed
on matrices: the transpose, matrix inversion, and eigendecomposition.

Let A be an m× n matrix. The transpose is the operation that provides the
n×m matrix AT whose (i, j)-th element is aj,i, for each i ∈ [n] and j ∈ [m]. We
denote the transpose by the suffix of AT.

Let A be an n× n matrix. Matrix inversion is the operation that provides a
matrix A−1 (if it exists) so that the following equality is met:

AA−1 = In,

where In is the n× n identity matrix. We denote matrix inversion by the suffix of
A−1.

Before reviewing eigencomposition, we remark that an eigenvalue and an eigen-
vector of a matrix A are, respectively, a scalar λ and a non-zero vector u which
result in the following equality:

Au = λu.

Eigendecomposition of an n× n matrix A with n linearly independent eigenvectors
is the pair of a matrix U and a matrix Λ, where the columns of U contain the
eigenvectors of A and Λ is a diagonal matrix that contains the eigenvalues of A
in the order that is respective to the eigenvector alignment in the columns of U.
Eigendecomposition of A can be expressed in factors as follows:

A = UΛU−1.

For the previous definition, we consulted the textbook by Johnson et al. [JRA02]
Finally, we recall definitions of a vector norm, a matrix norm, an induced matrix

norm, the spectral norm, and then discuss a useful result between the spectral
norm and the largest singular value, where a singular value is the square root of an
eigenvalue.

Let S denote a vector space over R. A norm ∥ · ∥ is a function ∥ · ∥ : S → R
which, for each u,v ∈ S, meets the following conditions:

• ∥u∥ ≥ 0.

• ∥u∥ = 0 if and only if u = 0.

• ∥cu∥ = |c| ∥u∥, for each c ∈ R.

• ∥u + v∥ ≤ ∥u∥+ ∥v∥.

Essentially, a norm is a function that assigns a length to a vector. We remark that
the fourth of the previously stated conditions is known as the triangle inequality.

Common examples of norms are the l1 norm and the l2 norm.
Let u ∈ Rn. The l1 norm ∥ · ∥1 is defined as follows:

∥u∥1 =
∑
i∈[n]

|ui|.

18

Chapter 2. Background 2.1. Probability theory

In other words, the l1 norm of a vector is the sum of the absolute values of the
elements of the vector.

The l2 norm ∥ · ∥2 (also known as the Euclidean norm) is defined as follows:

∥u∥2 =

√∑
i∈[n]

u2
i .

In other words, the l2 norm of a vector is the square root of the sum of the squares
of the elements of the vector.

Let S denote a set of n× n matrices over R. A matrix norm ∥ · ∥ is a function
∥ · ∥ : S → R, which, for each A,B ∈ S, meets the following conditions:

• ∥A∥ ≥ 0.

• ∥A∥ = 0 if and only if all elements of A are 0’s.

• ∥cA∥ = |c| ∥A∥, for each c ∈ R.

• ∥A + B∥ ≤ ∥A∥+ ∥B∥.

• ∥AB∥ ≤ ∥A∥ ∥B∥.

Essentially, a matrix norm is a function that assigns a size to a matrix.
Let x ∈ Rn. Let Y ∈ Rn×n. A matrix norm ∥ · ∥ induced by a norm ∥ · ∥ on

an n-dimensional vector space over R (also known as an induced matrix norm) is
defined as follows:

∥Y∥ = max
x ̸=0

∥Yx∥
∥x∥

.

The spectral norm ∥ · ∥2 is a matrix norm induced by the l2 norm ∥ · ∥2 on an
n-dimensional vector space over R.

We recall the following result showing a connection between the spectral norm
of Y and the largest singular value of Y:

∥Y∥2 = max
x ̸=0

∥Yx∥2
∥x∥2

= σ1(Y), (2.1)

where σ1(Y) denotes the largest singular value of Y. We remark that the previous
result is proved in Horn and Johnson [HJ12].

2.1 Probability theory

In this section, we review probability theory. In particular, we review some
preliminaries of the following fields on which this dissertation relies: random graphs
(discussed in Subsection 2.2.2), machine learning (discussed in Section 2.4), and
data privacy (discussed in Section 2.5). Also, we review some techniques used in
our example of distributed averaging on particular random graphs known as Erdős–
Rényi graphs (discussed in Section 3.2) and in our contributions on distributed

19

2.1. Probability theory Chapter 2. Background

averaging on graphs with arbitrary degree sequences (discussed in Section 3.3) and
the tailored noise mechanism (discussed in Chapter 4).

At the beginning of this section, we review some basic concepts of probability
theory, such as random variables and sampling. In Subsection 2.1.1, we review
estimation of some basic types of statistics, such as the mean and the variance.
In Subsection 2.1.2, we review common probability distributions. Finally, in
Subsection 2.1.3, we review statistical significance.

For a review of probability theory, we recommend and mostly follow the textbook
by Wasserman [Was04]. For a supplementary reference to definitions of probability
theory, we recommend the dictionary by Everitt and Skrondal [ES10].

We start by recalling definitions of the following basic concepts of probability
theory: a trial, a sample space, and an event.

A trial (also known as a statistical experiment) is a procedure that provides
an outcome from a set of possible outcomes. We remark that outcomes of trials
may be used to model various real-world phenomena. The domain of outcomes of
a trial is referred to as a sample space; we denote it by Ω. An event is a subset of
a sample space Ω.

We proceed by recalling definitions of disjoint sets, a partition, a power set, and
a σ-algebra. For a review of definitions related to sets, we recommend the textbook
by Halmos [Hal60].

Disjoint sets are two distinct sets whose intersection is the empty set. In other
words, disjoint sets have no elements in common. When we have a collection of
sets, where any two sets in the collection are disjoint, then we can refer to such
collection as a collection of pairwise disjoint sets.

Let k ≥ 2. A partition of a set A is a set of pairwise disjoint sets B1, B2, . . . , Bk ⊂
A, so that B1 ∪B2 ∪ . . . ∪Bk = A. Similarly as in Szemerédi [Sze75], we refer to
the pairwise disjoint sets B1, B2, . . . , Bk as partition classes.

The power set of a set A is the set of all subsets of A; we denote it by P(A).
A σ-algebra on a set A is a non-empty set Σ ⊆ P(A) which meets the following
conditions:

• The empty set ∅ ∈ Σ.

• If B1, B2, . . . , Bk ∈ Σ, then B1 ∪B2,∪ . . . ∪Bk ∈ Σ.

• If B ∈ Σ, then the set difference A \B ∈ Σ.

We proceed by recalling definitions of a probability measure and a probability,
and then stating the addition law of probability.

Let S be a set of events, so that S is a σ-algebra on a sample space Ω.
A probability measure (also known as a probability distribution) is a function
p : S → [0, 1] that satisfies the following conditions:

• p(B) ≥ 0, for each B ∈ S.

• p(Ω) = 1.

• p(B1 ∪B2) = p(B1) + p(B2), for each two events B1, B2 ∈ S that are disjoint
sets.

20

Chapter 2. Background 2.1. Probability theory

The value p(B) is the probability of an event B ∈ S. Essentially, the higher the
probability of an event, the more likely it is that the event contains the outcome
that occurs. For example, if p(B) = 0, then we know that no outcome in B can
occur.

The addition law of probability is the theorem which states that, for two events
B1 and B2, we have

Pr(B1 ∪B2) = Pr(B1) + Pr(B2)− Pr(B1 ∩B2), (2.2)

where B1 ∪B2 denotes that an outcome occurs either in the event B1 or the event
B2, and B1∩B2 denotes that an outcome occurs in both events B1 and B2. For the
previous theorem, we consulted the textbook by DeGroot and Schervish [DS12].

We proceed by recalling definitions of a measurable space and a measurable
function. For a review of definitions related to measure theory, we recommend the
textbook by Shao [Sha03].

A measurable space is a pair (X,Σ) of a set X and a σ-algebra on X. Let
(X1,Σ1) and (X2,Σ2) be measurable spaces. A function f : (X1,Σ1)→ (X2,Σ2) is
a measurable function if and only if f−1(Σ2) ⊂ Σ1. That is, for every set X ′

2 ∈ Σ2,
we have

{x1 ∈ X1 : f(x1) ∈ X ′
2} ∈ Σ1.

Having stated previous definitions, we are ready to recall a definition of a random
variable. A random variable is a measurable function X : (Ω,S, p)→ (R,B), where
B is the smallest σ-algebra that contains all open subsets of R (B is known as a
Borel σ-algebra), S is a set of events that is a σ-algebra on Ω, the triple (Ω,S, p)
is known as a probability space, and the pairs (Ω,S) and (R,B) are measurable
spaces.

We highlight that the probability measure p assigns a measure (a scalar greater
or equal to 0 and lower or equal to 1) to every outcome in the sample space Ω. Also,
we remark that when we use the expression “an outcome of a random variable”,
we refer to “an outcome of a trial that is modeled by a random variable”. For
conciseness, we sometimes shorthand the expression “X : (Ω,S, p)→ (R,B)” by
“X : Ω→ R”.

When speaking of random variables, we either consider discrete random variables
or continuous (real-valued) random variables. We remark that we use a broader
definition of a discrete random variable mainly because later in this dissertation
we consider random graphs.

We recall a definition of a discrete random variable. A discrete random variable
is a function X : Ω → R that takes on either a finite number of values (i.e.,
x1, x2, . . . , xn ∈ Ω, where n ∈ N1) or a countably infinite number of values (i.e.,
x1, x2, . . . ∈ Ω) according to a function pX(x) : Ω→ [0, 1] known as the probability
mass function and defined by

pX(x) = Pr(X = x),

where Pr(X = x) denotes the probability that an outcome of X takes a value x,
and where the probability mass function must satisfy the following conditions:

• pX(x) ≥ 0, for each x ∈ Ω.

21

2.1. Probability theory Chapter 2. Background

•
∑

x∈Ω pX(x) = 1.

We recall a definition of a continuous (real-valued) random variable. A continu-
ous random variable is a function X : Ω→ R that takes values in Ω according to a
function pX(x) : R→ R known as the probability density function and defined by∫ b

a

pX(x)dx = Pr(a ≤ X ≤ b),

where a and b are any scalars under the condition that a ≤ b, Pr(a ≤ X ≤ b) is the
probability that an outcome of X takes a value that is in the interval [a, b], and
where the probability density function must satisfy the following conditions:

• pX(x) ≥ 0, for each x ∈ R.

•
∫∞
−∞ pX(x)dx = 1.

Essentially, probability mass functions and probability density functions can
be interpreted as probability distributions. When a random variable X follows a
probability distribution p, this is sometimes denoted as follows:

X ∼ p.

We remark that denoting the probability distribution by p (instead of pX) might
reduce ambiguity when we have several random variables that follow the same
probability distribution.

In Table 2.2, we provide a summary of the introduced notation of basic concepts
of probability theory.

Table 2.2: Introduced notation of basic concepts of probability theory

Notation Meaning

Ω Sample space
S Set of events

A,B Events
X, Y Random variables

We review some more definitions that are more closely related to random
variables: the cumulative distribution function, the quantile function, the support,
and independent random variables.

The cumulative distribution function of a (real-valued) random variable X is
the function ϕX : R→ [0, 1] defined by

ϕX(x) = Pr(X ≤ x),

where Pr(X ≤ x) is the probability that an outcome of a random variable is less
than or equal to a value x.

22

Chapter 2. Background 2.1. Probability theory

The quantile function of a (real-valued) random variable X is the function
ϕ−1
X (q) : [0, 1]→ R that is the inverse of the cumulative distribution ϕX(x) of X, it

is defined as follows:

ϕ−1
X (q) = inf{x : ϕX(x) > q}.

The support of a random variable is the subset of its sample space, where the
subset contains the elements that are mapped by the probability mass/density
function to probabilities greater than 0.

Independent random variables are two random variables where an outcome
of one random variable does not influence the outcome of the other. For the
previous definition, we consulted the textbook by Tijms [Tij07]. The independence
between random variables X and Y are denoted by X⊥Y . When we have a
collection {Xi}i∈[n] of random variables, where each two random variables X,X ′ ∈
{Xi}i∈[n] are such that X⊥X ′, then we refer to {Xi}i∈[n] as a collection of pairwise
independent random variables.

We proceed by recalling definitions of a joint probability distribution and a
marginal probability distribution; we do so with the intention to show a link and
a distinction between the two. A joint probability distribution is a probability
distribution that provides probabilities for outcomes of several random variables.
To consider a particular discrete case, the joint probability mass function of discrete
random variables X1, X2, . . . , Xn : Ω→ R is the function pX1,X2,...,Xn : Ωn → [0, 1],
defined by

pX1,X2,...,Xn(x1, x2, . . . , xn) = Pr(X1 = x1, X2 = x2, . . . , Xn = xn).

A marginal probability distribution is a probability distribution that provides
probabilities for outcomes of one or several random variables that define a joint
probability distribution pX1,X2,...,Xn(x1, x2, . . . , xn). For example, when we have a
joint probability distribution pX,Y (x, y) of random variables X and Y , then one of
its two marginal probability distributions is

pX(x) =
∑
y∈Ω

pX,Y (x, y),

and the second marginal distribution is pY (y).
We relate a conditional probability to a joint probability distribution. A

conditional probability is a probability that is parametrized by a fixed outcome
of another random variable. For random variables X and Y , the conditional
probability of an outcome x of a random variable X given an outcome y of a
random variable Y is defined as follows:

pX|Y (x | y) =
pX,Y (x, y)

pY (y)
, (2.3)

where pY (y) > 0. We remark that pX|Y is called the conditional probability
distribution of X given Y .

We recall Bayes’ theorem. Let k ≥ 2 and let events B1, B2, . . . , Bk form a
partition of a sample space Ω, where, for each i ∈ [k], we have Pr(Bi) > 0. Let

23

2.1. Probability theory Chapter 2. Background

an event A ⊆ Ω, where Pr(A) > 0. Bayes’ theorem (also known as Bayes’ rule) is
stated as follows:

Pr(Bi |A) =
Pr(A |Bi) Pr(Bi)∑

j∈[k] Pr(A |Bj) Pr(Bj)
.

Since the law of total probability states that∑
j∈[k]

Pr(A |Bj) Pr(Bj) = Pr(A),

the denominator in Bayes’ theorem can be substituted with Pr(A). In such case,
the expression of Bayes’ theorem resembles the conditional probability defined in
Equation 2.3.

Finally, we recall definitions of a statistical population, sampling, a stochastic
process, and a statistical model.

A statistical population (also known as a population) is a finite or infinite set
of elements. Sampling is a procedure that selects a subset of elements from a
statistical population. We remark that a subset obtained by sampling is referred
to as a sample, and an element of a sample is referred to as an observation
(also known as a realization or as a sample point). For example, uniformly-
random sampling is sampling that leads to every element of a population being
observed with the same probability. We remark that a statistical population can
be modeled by a collection of independent and identically distributed random
variables (by identically distributed, we mean that the random variables follow
the same probability distribution). This way, a set of outcomes of independent
and identically distributed random variables can be interpreted as a sample of a
statistical population.

A stochastic process is a finite or infinite sequence (Xt)t∈T of random variables,
where Xt is a random variable at time t, and T is a time range. Typically,
T = {0, 1, 2, . . .}.

A statistical model is a pair of a sample space and a set of probability distribu-
tions on the sample space. For the previous definition, we consulted McCullagh
[McC02]. For statistical models, it is common to assume that observations are
obtained from an underlying probability distribution. We remark that collect-
ing such observations helps in identifying probability distributions that are good
approximations of the underlying probability distribution.

2.1.1 Statistics and their estimation

In this subsection, we review some common statistics as well as estimation tech-
niques. In particular, we review Hoeffding’s inequality that is used in our example
of distributed averaging on particular random graphs known as Erdős–Rényi graphs
(discussed in Section 3.2). Also, we review U-statistics that are used in our contribu-
tions on distributed averaging on graphs with arbitrary degree sequences (discussed
in Section 3.3) and the tailored noise mechanism (discussed in Chapter 4).

To start with, we highlight that by a statistic we refer to a numerical character-
istic that is either an average (e.g., the average age of a demographic population)
or a count (e.g., the number of members in a demographic population).

24

Chapter 2. Background 2.1. Probability theory

We proceed by recalling definitions of an estimate and an estimator.
An estimate of a parameter θ is the following value:

θ̂ = f(x1, x2, . . . , xn),

where {x1, x2, . . . , xn} is a collection of observations of independent and identi-
cally distributed random variables X1, X2, . . . , Xn whose probability distribution is
parametrized by θ, and where f is a real-valued function. In other words, θ̂ is an
observation of the following random variable:

Θ = f(X1, X2, . . . , Xn),

where Θ is known as an estimator. We remark that the caret symbol (i.e., “ˆ”)
indicates that a term is an estimate, e.g., an estimate θ̂ approximates a parameter
θ. Also, we remark that a probability distribution parametrized by θ can be
unknown yet observable. In such case, we sometimes refer to θ as the true value of
a parameter of an unknown probability distribution. For the previous definitions,
we consulted the textbook by DeGroot and Schervish [DS12].

We recall definitions of some common statistics that are related to random
variables: the expected value, the variance, and the standard deviation.

The expected value E[·] (or the mean) of a (real-valued) discrete random variable
X taking values x1, x2, . . . is defined as follows:

E[X] =
∑

i∈{1,2,...}

xipX(xi),

assuming that the sum is well-defined, and where pX is the probability mass function
of X.

Similarly, when X is a continuous random variable, the expected value is defined
as follows:

E[X] =

∫ ∞

−∞
xpX(x)dx,

assuming that the integral is well-defined, and where pX is the probability density
function of X. We remark that the mean E[X] of a continuous random variable is
well-defined when

∫∞
−∞ |x|pX(x)dx <∞. We denote the mean of a random variable

by µ.
The variance of a (real-valued) discrete random variable X taking values

x1, x2, . . . is defined as follows:

var(X) =
∑

i∈{1,2,...}

(xi − µx)2pX(xi),

assuming that the sum is well-defined, where pX is the probability mass function
of X, and where µx is the mean of X.

Similarly, when X is a continuous random variable, the variance is defined as
follows:

var(X) =

∫ ∞

−∞
(x− µx)2pX(x)dx,

25

2.1. Probability theory Chapter 2. Background

assuming that the integral is well-defined, and where pX is the probability density
function of X. We denote the variance of a random variable by σ2. The standard
deviation of a random variable is the squared root of its variance; we denote it by
σ.

Having stated the definitions of the mean and the variance, we recall a useful
tool in probability theory, which is a particular concentration inequality known
as Hoeffding’s inequality, and where a concentration inequality is a method for
obtaining a bound on how far an observation of a random variable deviates from
some fixed value, by also bounding the probability of such observation. Let t > 0.
Let X1, X2, . . . , Xn be independent random variables, each of which has the mean
and the variance that are well-defined, and where the support of each random
variable is the interval [a, b] with a ≤ b (i.e., random variables X1, X2, . . . , Xn are
bounded). Let Sn =

∑
i∈[n] Xi. Hoeffding’s inequality [Hoe63] is defined as follows:

Pr(Sn − E[Sn] ≥ t) ≤ exp

(
− 2t2∑

i∈[n] (b− a)2

)
.

In other words, Hoeffding’s inequality is a concentration inequality that bounds
the difference between the sum Sn and the expected value of Sn.

We highlight that Hoeffding’s inequality can be rearranged to bound the dif-
ference between the average of random variables and the expected value of that
average, that is

Pr

(
1

n
Sn − E

[
1

n
Sn

]
≥ t

)
≤ exp

(
− 2n2t2∑

i∈[n] (b− a)2

)
. (2.4)

We proceed by reviewing some common statistics that are computed from
samples: the sample mean and the sample variance.

The sample mean is the average computed over the elements in a sample. Let
a sample {x1, x2, . . . , xn} be a collection of observations of n independent and
identically distributed (real-valued) random variables. The sample mean is defined
as follows:

µ̄x =
1

n

∑
i∈[n]

xi.

Similarly, the unbiased sample variance is defined as follows:

σ̄2
x =

n

n− 1

1

n

∑
i∈[n]

(xi − µ̄x)2

=
1

n− 1

∑
i∈[n]

(xi − µ̄x)2.

The denominator n− 1 (as opposed to n) in the expression of the unbiased sample
variance corrects the bias due to the use of the sample mean µ̄x as opposed to the
true mean µx, where a bias (also known as an estimator bias) is defined as the
difference between the expected value of an estimator and the true value of the
parameter that is estimated by the estimator. The aforementioned bias correction

26

Chapter 2. Background 2.1. Probability theory

due to the use of the sample mean µ̄x as opposed to the true mean µx is known
as Bessel’s correction. For the previous definitions, we consulted the textbook by
Radziwill [Rad15].

We remark that the sample mean µ̄x and the unbiased sample variance σ̄2
x are

examples of unbiased estimates, where an unbiased estimate is an estimate without
the estimator bias. We remark the bar symbol (i.e., “¯”) indicates that a term is
an unbiased estimate.

We review a family of unbiased estimates known as U-statistics [Hoe48] which
are defined below.

Definition 1. Let r ∈ N1. Let n ≥ r. Let {x1, x2, . . . , xn} be a sample of
observations of n independent and identically distributed random variables. Let
ϕ : Rr → R be a symmetric function. A U-statistic with kernel ϕ of degree r is
defined as follows:

ūx =

(
n

r

)−1 ∑
i1<...<ir

ϕ(xi1 , xi2 , . . . , xir),

where the sum is over all r-combinations of the elements in the sample (xi1 , xi2 , . . . , xir

are r distinct elements in the sample).

We remark that the sample mean and the sample variance are common examples
of U-statistics. Also, we remark that the letter “U” in the term “U-statistic” abbre-
viates “unbiased”. For a more detailed description of U-statistics, we recommend
the lecture notes by Ferguson [Fer03].

2.1.2 Common probability distributions

In this subsection, we review some common probability distributions. In particular,
we review the Bernoulli distribution, the Binomial distribution, and the Poisson
distribution as preliminaries for random graphs (discussed in Subsection 2.2.2).
Then, we review the uniform distribution, mainly, as a preliminary for graph
generation (discussed in Subsection 2.2.3). We review the Laplace distribution and
the Gaussian distributions as preliminaries for data privacy (discussed in Section
2.5). Finally, we review Student’s t-distribution as a preliminary for defining a
particular confidence interval (discussed in Subsection 2.1.3). For the definitions in
this subsection, we consult the dictionary by Everitt and Skrondal [ES10].

The Bernoulli distribution is a probability distribution of a discrete random
variable X with outcomes either 1 or 0, and whose probability mass function is
defined as follows:

Pr(X = 1 | p) = p,

Pr(X = 0 | p) = 1− p,

where p is the probability of a Bernoulli trial which is commonly illustrated as a coin
toss where “heads” appear with probability p and “tails” appear with probability
1− p. In our case, we interpret “heads” as the value 1.

27

2.1. Probability theory Chapter 2. Background

The Binomial distribution is a probability distribution of a discrete random
variable X whose probability mass function is defined as follows:

pX(k |n, p) =

(
n

k

)
pk(1− p)n−k,

where p is the probability of a Bernoulli trial resulting in the value 1, n is the
number of independent Bernoulli trials, and k is the number of Bernoulli trials
that result in the value 1. We interpret the Binomial distribution as a probability
distribution modeling the number k of occurrences of “heads” (outcomes of the
value 1) in a sequence of n independent Bernoulli trials.

The Poisson distribution is a probability distribution of a discrete random
variable X whose probability mass function is defined as follows:

pX(k |λ) =
λk

k!
e−λ,

where λ > 0 is a parameter known as the rate and k ∈ N is a parameter known
as the count. We interpret the Poisson distribution as a probability distribution
modeling occurrence of k events in an interval of time, given that the events may
occur at a fixed rate λ, independently of previous occurrences.

The uniform distribution is a probability distribution of a continuous random
variable X whose probability density function is defined as follows:

pX(x | a, b) =
1

b− a
,

where a < b. The uniform distribution is characterized by all its outcomes having
the same probability. The support of a random variable that follows the uniform
distribution is the interval [a, b]. We denote the uniform distribution by uni(a, b).

The Laplace distribution is a probability distribution of a continuous random
variable X whose probability density function is defined as follows:

pX(x |µ, b) =
1

2b
e−

|x−µ|
b ,

where µ is a parameter known as the mean and b > 0. We denote the Laplace
distribution by lap(µ, b).

The Gaussian distribution (also known as the Normal distribution) is a proba-
bility distribution of a continuous random variable X whose probability density
function is defined as follows:

pX(x |µ, σ2) =
1

σ
√

2π
e−

(x−µ)2

2σ2 ,

where µ is a parameter known as the mean and σ2 > 0 is a parameter known as
the variance. We denote the Gaussian distribution by N (µ, σ2).

Student’s t-distribution is a probability distribution of a continuous random
variable X whose probability density function is defined as follows:

pX(x | ν) =
Γ
(
ν+1
2

)
√
νπΓ

(
ν
2

) (1 +
x2

ν

)− ν+1
2

,

28

Chapter 2. Background 2.1. Probability theory

where ν ∈ N1 is a parameter known as the degrees of freedom and Γ(ν) = (ν − 1)!
is the gamma function. We remind that Student’s t-distribution can be used to
define a particular confidence interval for evaluating statistical significance (we
review statistical significance in Subsection 2.1.3).

In Figure 2.1, we illustrate two probability density functions with the intention
to indicate that the flatness of probability density functions can give a comparative
indication of the variance of the corresponding probability distributions. In partic-
ular, a flatter probability density function indicates a higher variance compared to
a steeper probability density function.

Figure 2.1: Illustration of two probability density functions (expressed as a dashed
curve and a filled curve). The variance corresponding to the dashed curve is higher,
since the filled curve has a region of higher probabilities.

2.1.3 Statistical significance

In this subsection, we elaborate on statistical significance. In particular, we review a
confidence interval for a population mean, as such confidence interval is used in the
experiments of our contributions on distributed averaging on graphs with arbitrary
degree sequences (discussed in Section 3.3) and the tailored noise mechanism
(discussed in Chapter 4). For the definitions in this subsection, we consult the
textbook by Weiss [Wei12].

We start by recalling definitions of the null hypothesis, the alternative hypothesis,
statistical significance, p-value, and the significance level. The intention of this is
to discuss an interpretation of the significance level.

The null hypothesis is defined as the statement that two statistical models are
the same. In relation to that, the alternative hypothesis is defined as the statement
that the two statistical model differ significantly. One accepts the alternative
hypothesis by gathering evidence that (under statistical significance) allows for
rejecting the corresponding null hypothesis.

Statistical significance is a measure of unlikeness of an event occurring under
the assumption of the null hypothesis. The p-value is the probability of the event
occurring under the assumption that the null hypothesis is true, it is sometimes
denoted by p. The significance level is the probability of rejecting the null hypothesis
that was assumed to be true; we denote it by α. It is claimed that the event is
statistically significant if p ≤ α. When speaking of statistical significance in the
context of computer science research problems, it is common to fix the significance

29

2.2. Graph theory Chapter 2. Background

level to α = 0.05. This way, in this dissertation, we fix the significance level to
α = 0.05.

We proceed by recalling a definition of a confidence interval for the population
mean.

A (1 − α)-confidence interval (also known as a confidence interval) for the
population mean is an interval estimate which contains the mean of a statistical
population with the confidence level 1− α.

We proceed by recalling a definition of the confidence interval based on Student’s
t-distribution. We remark that, for this, we follow a particular procedure known as
the one-mean t-interval procedure.

The confidence interval that is based on Student’s t-distribution is the following
interval:

[µ̄x − l, µ̄x + l] , (2.5)

where µ̄x is the sample mean of a sample {x1, x2, . . . , xn} with n observations from
a given statistical population,

l = ϕ−1
(

1− αci

2
| ν
) σ̄x√

n

is the half-length of the confidence interval, σ̄x is the square root of the unbiased
sample variance of the sample, ν = n− 1 are the degrees of freedom, αci = 0.05 is
the significance level, and ϕ−1 is the quantile function (the inverse of the cumulative
distribution function ϕ) of Student’s t-distribution. We remark that the inversion
of ϕ can result in a complex formula or the inverse might not have a closed-form
expression. In such cases, ϕ−1 can be approximated using Taylor series, similarly
as in Giner and Smyth [GS16]. Also, we remark that the middle point of the
confidence interval in Equation 2.5 is the sample mean µ̄x.

2.2 Graph theory

In this section, we review graph theory. In particular, we review some preliminaries
related to execution of distributed algorithms on graphs (discussed in Subsection
2.3.2). Also, we review some preliminaries of random graphs models that are
discussed in our example and contribution on the bias in distributed averaging
when the graph of agents is non-regular (discussed, respectively, in Section 3.2 and
Section 3.3).

At the beginning of this section, we review some basic concepts of graph theory.
In Subsection 2.2.1, we precise to what we refer to when speaking of structural
properties related to the edges of a graph. In Subsection 2.2.2, we review some
common random graph models. In Subsection 2.2.3, we review some basics of
graph generation.

For a review of graph theory, we recommend and mostly follow the textbook by
Diestel [Die05]. For a supplementary reference to definitions of graph theory, we
recommend the textbook by van Steen [Ste10].

We start by recalling definitions of the following basic concepts of graph theory:
a graph, the order of a graph, the size of a graph, and a subgraph.

30

Chapter 2. Background 2.2. Graph theory

A graph is a pair G = (V,E) of a set V of vertices and a set E of edges, where
an element v that belongs to V is known as a vertex and an edge is a 2-element
subset of V . Given vertices v, u ∈ V , we denote an edge between them either by
{v, u} or vu. We remark that graphs can be visualized as fixed points (vertices)
that are joined by lines (edges).

The order of a graph G = (V,E) is the number |V | of vertices, and the size of
the graph is the number |E| of edges. The empty graph is the graph whose set of
vertices and whose set of edges are empty sets.

A subgraph G′ = (V ′, E ′) of a graph G = (V,E) is a graph whose vertices and
edges are, respectively, a subset of V and a subset of E. In other words, V ′ ⊆ V
and E ′ ⊆ E.

We proceed by recalling definitions of the following basic concepts that are
related to edges: adjacent vertices, the degree of a vertex, the degree sequence, the
degree distribution, an adjacency matrix, a walk, a path, a cycle, and the diameter
of a graph.

Adjacent vertices (also known as neighboring vertices) are two vertices of a
graph that have an edge in common. The neighborhood of a vertex v is the set of
all adjacent vertices of v; we denote the neighborhood of a vertex v by N(v).

The degree of a vertex is the number of edges incident with that vertex; we
denote the degree of a vertex v by dv. In other words, the degree of a vertex is
the cardinality of its neighborhood. The degree sequence of a graph is a sequence
whose elements are the degrees of all vertices on that graph; we denote a degree
sequence by d. The degree distribution of a graph is the histogram (expressed in
relative frequencies) of the degree sequence of the graph.

The adjacency matrix of a graph G = (V,E) is the square |V | × |V | matrix A
whose (i, j)-th element ai,j is defined as follows:

ai,j =

{
1 when vivj ∈ E,

0 otherwise.

This way, ai,j indicates the presence (by 1) or the absence (by 0) of the edge
between vertices vi, vj ∈ V .

A walk (of length k) in a graph G is a sequence (v0, e1, v1, e2, . . . , vk−1, ek, vk)
that alternates between a vertex and an edge in such a way that, for each i ∈ [k],
we have that the edge ei = vi−1vi. A closed walk is a walk where v0 = vk. A trail
is a walk in which all edges are distinct. A path is a trail in which all vertices are
distinct. A cycle (of length k ≥ 3) is a trail that is a closed walk and in which all
vertices except v0 and vk are distinct. An acyclic graph (also known as a forest) is
a graph without cycles. The diameter of a graph is the length of the shortest path
between two vertices in the graph, where the size of such shortest path is higher or
equal to the shortest path between any two vertices of the graph (in case a path
between some two vertices does not exist, then the diameter is ∞).

We recall a definition of the edge density of the pair of two (non-empty) disjoint
subsets of vertices on a graph G = (V,E).

Let E(V ′) denote the set of edges, where each edge in the set is incident with
at least one vertex in a subset V ′ ⊆ V . Let C,C ′ ⊆ V be (non-empty) disjoint

31

2.2. Graph theory Chapter 2. Background

subsets. We define the edge density of the pair (C,C ′) as follows:

den(C,C ′) =
|E(C ∩ C ′)|
|C| |C ′|

. (2.6)

In Table 2.3, we provide a summary of the introduced notation of basic concepts
of graph theory.

Table 2.3: Introduced notation of basic concepts of graph theory

Notation Meaning

G Graph
V Set of vertices of G
E Set of edges of G
v Vertex in V
e Edge in E
n (Commonly denotes) the order of G

deg(v), dv Degree of v
d Degree sequence (d1, d2, . . . , dn)

N(v) Neighborhood of v

We proceed by recalling definitions of a connected graph, an (un)directed graph,
a labeled graph, a weighted graph, a regular graph, a complete graph, a tree, a
spanning subgraph, and a spanning tree.

A connected graph is a (non-empty) graph whose any two vertices can be linked
by a path in the graph. A triangle graph (also known as a triangle) is a connected
graph with 3 vertices.

A directed graph is a pair G = (V,E) of disjoint sets of vertices and edges
together with two maps fbeg : E → V and fend : E → V , where, for each edge
e ∈ E, the maps assign, respectively, an initial vertex fbeg(e) ∈ e and a terminal
vertex fend(e) ∈ e. When fbeg(e) = fend(e), the edge e is known as a loop (also
known as a self-loop). We remark that an undirected graph refers to a graph as
defined at the beginning of this section.

Having the maps fbeg and fend, we can interpret a directed graph as a graph
whose edges are ordered pairs of vertices, and the direction of an edge goes from
the initial vertex to the terminal vertex. The edges of a directed graph can be
visualized by curves with an arrow at one (or both) end-points, as opposed to an
undirected graph, where curves are without added symbols at the end-points. This
way, the arrow of a curve (an edge) of a directed graph indicates the direction of
that edge (though we might also have an arrow at each end of the curve). We
remark that the direction of an edge is important when defining a walk on a graph.
When we have an edge between vertices v and u, which corresponds to an unordered
pair (v, u), then a walk on the graph can move from v to u but not from u to v.

A labeled graph is a graph where either every vertex, edge, or both are associated
with a label, where a label is an element of a finite set known as an alphabet.
A weighted graph is a labeled graph whose labels (weights) are real-valued and
assigned to edges.

32

Chapter 2. Background 2.2. Graph theory

A k-regular graph (also known as a regular graph) is a graph where all the
vertices have the same degree k. A complete graph is a graph where all the vertices
are pairwise adjacent. In other words, a complete graph is a graph where all
possible edges are present. We remark that a complete graph on n vertices is an
n-regular graph.

A tree is an acyclic graph that is connected. A spanning subgraph of a graph
G = (V,E) is a subgraph G′ = (V,E ′) of G (i.e., G and G′ have the same set
V of vertices). A spanning tree of a graph G = (V,E) is a spanning subgraph
G′ = (V,E ′) of G, where G′ a tree.

In Figure 2.2, we illustrate tree basic yet distinct graphs.

Figure 2.2: Illustration of three distinct graphs. The graph on the left is a graph
that is a tree. The graph in the center is a graph with one additional edge (the
additional edge makes the graph no longer a tree). The graph on the right is a
directed graph (the arrows indicate the direction of edges).

2.2.1 Structural properties of graphs

In this subsection, we review some graph theory concepts that are related to
structural properties of graphs, where by structural properties we mostly refer to
the edge density or to regularities of the degree distribution. In particular, we
review power-law degree sequences that are used in our contribution on distributed
averaging on graphs with arbitrary degree sequences (discussed in Section 3.3).
For the definitions in this subsection, we consult the textbook by van der Hofstad
[Hof16].

We start by recalling definitions of the following graph theory concepts that are
related to community structure: the connected component of a vertex, the largest
connected component, and a giant component.

The connected component of a vertex v ∈ V of a graph G = (V,E) is a set
G(v) ⊆ V of vertices, where G(v) includes a vertex u ∈ V if there exists a path
between v and u in G. The largest connected component Gmax of a graph G is any
connected component of a vertex v ∈ V for which the cardinality of the connected
component G(v) is maximal, i.e.,

Gmax = max
v∈V
|G(v)|.

A giant component of G is the largest connected component Gmax of G such that

lim
k→∞

inf
|Gmax|
k

> 0.

33

2.2. Graph theory Chapter 2. Background

We proceed by discussing community structure.
As indicated by Leskovec et al. [Les+08], the definition of a community structure

tends to vary from context to context. This is primarily because it is difficult to
define a community in a network, where a network is a graph which has a stronger
relation to real-world applications, and where the vertices of such graph are referred
to as nodes or agents, and the edges are referred to as links. However, as suggested
by the aforementioned authors, community detection is an actively studied area.

In this dissertation, we relate the community structure of a network to its
structural properties, where by structural properties we either consider the edge
density of two pairwise disjoint subjects of vertices, a clustering coefficient (whose
definition tends to vary also), or regularities of the degree distribution. For example,
when aiming for identifying or establishing a community structure in a network,
the set of vertices of a graph could be partitioned in such a way that every partition
class would contain the vertices of the same degree.

We recall the following definition of the clustering coefficient cG of a connected,
undirected graph G = (V,E):

cG =
1

|V |
∑
v∈V

2|M(v)|
|N(v)|(|N(v)| − 1)

,

where, for each v ∈ V , the cardinality of the neighborhood of v is |N(v)| ≥ 2, and
the set M(v) ⊆ E includes all edges whose elements are in the neighborhood N(v).
As indicated by Watts and Strogatz [WS98], the value of the clustering coefficient
cG indicates the cliquishness of a typical neighborhood in the graph G, where a
clique of a graph G is a complete subgraph G′ of at least three vertices such that
G′ is not contained in a larger complete subgraph of G.

We proceed by discussing a small-world network and a scale-free network.
A small-world network is a network whose largest connected component contains

a significant proportion of the vertices. The name of a small-world network is
related to the small-world experiment [Mil67] which was a pioneering experiment
on community structure in large real-world networks where nodes are persons, and
the presence of a link between nodes indicate that the corresponding persons know
each other. The experiment showed that the average shortest path in a network
over a set of residents in the United States was unexpectedly short as the length of
such path was estimated to be approximately 6. Furthermore, we highlight that, as
indicated by Watts and Strogatz [WS98], the average shortest path in a small-world
network is, typically, the logarithm of the number of nodes.

A scale-free network is a network whose degree distribution follows a power-
law distribution, i.e., the relative frequency of a degree d in the degree sequence
is proportional to d raised to a negative power. In other words, a power-law
distribution is a probability distribution where the probability of observing a scalar
value x is proportional to x raised to a negative power, i.e.,

p(x | a, γ) ∝ ax−γ,

where p denotes a probability density function, a > 0 and γ > 0. We recommend
the article by Barabási and Albert [BA99] for a more extensive discussion on
scale-free networks and power-law distributions.

34

Chapter 2. Background 2.2. Graph theory

Referring to the article by Boccaletti et al. [Boc+06], we recall and discuss a
complex network and a chaotic network.

A complex network is a network that is large, non-regular, and dynamically
evolves in time. Typically, a complex network models a real-world network that is
large enough so that its properties are difficult to assess by taking its individual
nodes. This way, the properties of a complex network are sometimes identified
probabilistically using random graph models (discussed in Subsection 2.2.2). We
remark that complex networks tend to have the characteristics of the aforementioned
small-world network and the scale-free network.

The dynamic evolution mentioned in the definition of a complex network has
an equilibrium state, where an equilibrium state is a state towards which the
complex network evolves and then stops changing once it is reached. Otherwise, if
an evolving network has no equilibrium state, we refer to it as a chaotic network.
An example of a chaotic network is a sequence of graphs that repeats in cycles.

2.2.2 Random graph models

In this subsection, we review some common random graph models. In particular,
we review the Erdős–Rényi model and the configuration model that are used,
respectively, in our example and contribution on distributed averaging on random
graphs (discussed, respectively, in Section 3.2 and Section 3.3).

We start by recalling definitions of a random graph model and a random graph.

A random graph model is a probability distribution over a family of random
graphs, where a random graph is defined as a graph with fixed vertices and the
presence of edges being modeled as a random variable.

A positive aspect of random graph models is that they allow for analysis of
the properties of larger graphs (e.g., complex networks), primarily due to the
applicability of techniques encountered in probability theory (as opposed to relying
on the use of techniques encountered in combinatorics, which is another common
practice in graph theory). For a review of random graph theory, we recommend
and mostly follow the textbook by van der Hofstad [Hof16]. We remark that the
textbook focuses on applications of random graph models for larger real-world
networks.

We proceed by recalling definitions of the following random graph models: the
Erdős–Rényi model, the stochastic block model, and the configuration model.

The Erdős–Rényi (ER) model [ER59] is a random graph model that is defined
below.

Definition 2. The ER model is a probability distribution over graphs, which is
parametrized by the number n of vertices and the probability p of the edge assignment
between any of its two vertices.

We denote the probability mass function of the ER model by pG(G |n, p).

A graph that is an observation of an ER random graph has an n× n adjacency
matrix with 0’s in its main diagonal and with outcomes of independent Bernoulli
trials of probability p in the remaining elements of the adjacency matrix. In an ER

35

2.2. Graph theory Chapter 2. Background

graph, the degree dv of a vertex v follows the Binomial distribution, i.e., for each
d ∈ {0, . . . , n− 1}, we have

Pr(dv = d) =

(
n− 1

d

)
pd(1− p)(n−1)−d. (2.7)

For larger ER graphs, the probability of a vertex v taking a degree d ∈ {0, . . . , n−
1} can be modeled by a Poisson distribution as follows:

lim
n→∞

Pr(dv = d) =
(np)d

d!
e−np.

We remark that the ER model was introduced at the end of the 50’s by Erdős
and Rényi [ER59]. Initially, the ER model was used to probabilistically prove the
existence of a graph that meets certain properties, where such application of a
random graph model is known as the probabilistic method [Alo+00]. In Figure
2.3, we illustrate two possible observations of an ER random graph, where the
probabilities of the two observations differ.

Figure 2.3: Illustration of two observations of the ER random graph, when n = 10
and p = 1

10
. For such ER random graph, as indicated by Equation 2.7, the

probability of observing a vertex whose degree is 9 equals
(

1
10

)9
, whereas the

probability of observing a vertex whose degree is 1 equals 1
10

(
9
10

)8
. This suggests

that an observation of a graph where all vertices have degree 1 is more likely.

The ER model has a phase transition in the presence of a giant component.
We elaborate on this based on the analysis by Bollobás [Bol84]. Let ϵ ≥ 0. If
np ≥ (1 + ϵ), then, with high probability, an ER random graph has a giant
component of order at least n2/3, and the order of any other connected component
is O(log n) (big O notation O is discussed in Subsection 2.3.1). Otherwise, if
np < (1 + ϵ), then, with high probability, there is no such giant component though
the order of any connected component remains O(log n).

The stochastic block model [HLL83] is a random graph model that is defined
below.

Definition 3. The stochastic block model is a probability distribution over graphs,
which is parametrized by the number n of vertices, the number 2 ≤ k ≤ n of com-
munities (blocks), the expected fractions n ∈ [0, 1]k of vertices in a community, and
the probabilities P ∈ [0, 1]k×k for edge assignments between every two communities.

36

Chapter 2. Background 2.2. Graph theory

We denote the probability mass function of the stochastic block model by
pG(G |n, k,n,P). For the previous definition, we consulted the textbook by van
der Hofstad [Hof22].

The stochastic block model generalizes the ER model in such way that, instead
of having a probability for edge assignments between any two vertices, we have
probabilities for edge assignments between any two communities of vertices.

The configuration model [New03] is a random graph model that is defined as
follows:

Definition 4. The configuration model is a probability distribution over graphs,
which is parametrized by a degree sequence d, so that, for each i ∈ [n − 1] and
j ∈ {i + 1, . . . , n}, we have

Pr
(
{vi, vj} ∈ E

)
=

didj(∑
i′∈[n] di′

)
− 1

.

We denote the probability mass function of the configuration model by pG(G |d).
For the previous definition, we consulted the textbook by Newman [New10].

2.2.3 Basics of graph generation

In this subsection, we review some basics of graph generation. In particular, we
review a procedure for generating graphs with power-law degree sequences, where
the procedure is used in our contribution on distributed averaging on graphs with
arbitrary degree sequences (discussed in Section 3.3).

Firstly, we review a general method for generation of mathematical objects
known as inverse transform sampling. Then, we review some methods that are
commonly encountered in graph generation.

Regarding graph generation, we mostly consider the case where the vertices of
a graph are fixed and the presence of edges is determined by a random procedure,
thus a generated graph can be interpreted as an observation of a random graph. We
highlight that graph generation can have additional constraints, e.g., a generated
graph must be connected. We remark that the additional constraints can sometimes
be met fully and sometimes only partially but at the best effort.

In some contexts, other mathematical objects have to be generated first before
generating a graph. For example, when generating a graph from the configuration
model, we might need to generate a degree sequence first because the configuration
model is parametrized by a degree sequence.

We proceed by discussing inverse transform sampling. For a review of inverse
transform sampling, we recommend the textbook by Devroye [Dev86].

Inverse transform sampling (also known as the inversion method) is a universal
strategy for generating mathematical objects (e.g., graphs or scalars) from a
probability distribution, where such strategy requires a value u that is independently
observed from the uniform distribution, and which also requires the cumulative
distribution function ϕ (for which we can compute the inverse) of the probability
distribution. In particular, the generation of a value x from the probability

37

2.2. Graph theory Chapter 2. Background

distribution of interest by inverse transform sampling is the following evaluation:

x = ϕ−1(u),

where, for each generated value, we use an independent value u.
For example, if one aims for generating a power-law degree sequence d, a

common choice for this is the Pareto distribution which is a probability distribution
with the following probability density function:

p(x |α, γ) = γαγx−(γ+1),

where α > 0 is known as a scale parameter and γ > 0 is known as a shape parameter.
For the definition of the Pareto distribution, we consulted the dictionary by Everitt
and Skrondal [ES10]. For a more extensive description of the Pareto distribution,
we recommend the article by Newman [New05].

For generating a degree sequence d of length n, we repeat inverse transform
sampling n times, thus for each i ∈ [n], we compute the following independent
value:

d′i = ϕ−1
par(ui),

where
ϕ−1
par(ui) =

α

u
1/(γ−1)
i

is the inverse of the cumulative distribution function of the Pareto distribution
and ui is the i-th observation of the uniform distribution. Since the degree is a
natural number and not a real number, we would also perform rounding: for each
i ∈ [n], we have di = ⌈d′i⌉. This way, by collecting every degree di, we arrive to
the intended generation of a power-law degree sequence d. We remark that the
generation of a graph that follows the configuration model is discussed in Chung
and Lu [CL02].

We proceed by reviewing preferential attachment process which is a generation
procedure carried iteratively along a number of parties (e.g., the parties could
be the vertices of a graph), where the parties that have more resources (e.g., a
higher degree of a vertex can be interpreted as a more numerous resource) are more
likely to have the next resource allocated to them. Graphs that are generated by
a preferential attachment process tend to have power-law degree sequences. We
remark that preferential attachment processes are discussed more extensively in
Barabási and Albert [BA99].

Finally, we review the Chinese restaurant process [ZC15] which is a particular
preferential attachment process where every party can hold a limited number of
resources. The Chinese restaurant process is commonly illustrated by an analogy
where in a restaurant each table has a limited number of seats and a new customer
can choose any table with an open seat, with a stronger preference for the tables
with more occupied seats. To relate the analogy to graph generation, new edges
are more likely to be assigned to vertices of higher degree. We remark that the
Chinese restaurant process can be applied for generating graphs with an unfixed
number of vertices. That is, in such case we allow for an event (with a certain
probability) of the appearance of a new vertex as opposed to only allowing for
events of appearances of edges. To relate to the analogy, the appearance of a new
vertex corresponds to the opening of a new table.

38

Chapter 2. Background 2.3. Distributed systems

2.3 Distributed systems

In this section, we review distributed systems. In particular, we review some
preliminaries (e.g., randomized algorithms) for differential privacy (discussed in
Subsection 2.5.1). Also, we review some preliminaries (e.g., overlay networks and
gossip algorithms) for distributed averaging, which are discussed in our examples
and contribution on the bias in distributed averaging when the graph of agents
is non-regular (discussed in Chapter 3). Furthermore, we elaborate on a central
curator which is present in our contributions on distributed averaging on graphs
with arbitrary degree sequences (discussed in Section 3.3) and the tailored noise
mechanism (discussed in Chapter 4).

At the beginning of this section, we review some basic concepts related to
distributed systems. In Subsection 2.3.1, we review some basic concepts related to
algorithms. In Subsection 2.3.2, we discuss execution of distributed algorithms on
graphs.

For a review of distributed systems, we recommend and mostly follow the
textbook by van Steen and Tanenbaum [ST17].

We start reviewing the following basic concepts of distributed systems: a
distributed system, a communication network, a communication protocol, and a
central curator.

According to van Steen and Tanenbaum [ST17], definitions of a distributed
system tend to vary from context to context. In this dissertation, we interpret a
distributed system as a collection of autonomous computing elements that appears
to its users as a single coherent system. We remark that the aforementioned
definition does not take into account Byzantine failures which is a particular
failure of distributed systems, where the cause of a failure of a single element
of a distributed system can not be identified by the remaining elements of the
distributed system.

More precisely, we interpret a distributed system as a communication network
with a number of interconnected agents (e.g., machines, processors, processes) that
store, process, and dispatch information according to a communication protocol,
where a communication network refers to a network of agents which exchange
messages, and where a communication protocol refers to a list of rules that are
intended to be followed by the agents. In real-world distributed systems, the agents
can be geographically distant, so that the communication itself is established by a
far-reaching channel such as the internet.

A distributed system might have a central curator (also known as a central
coordinator or simply a coordinator) which is an agent that has an assigned role for
granting permissions to resources requested by other agents, where the permissions
include the access to storing, processing, and forwarding of resources. Typically, a
central curator is linked to every other agent of the communication network. We
remark that Korach et al. [KKM90] provides an algorithm for choosing a central
curator in a communication network (such procedure is known as the coordinator
election problem or leader election).

In Figure 2.4, we illustrate an example of the graph of a distributed system
without a central curator and an example of the graph of a distributed system

39

2.3. Distributed systems Chapter 2. Background

which strongly relies on a central curator.

Figure 2.4: Illustration of a distributed system without a central curator (left) and
a distributed system with a central curator (right). We remark that the central
curator is the node to which every other node is connected. In the distributed
system on the left, the message of a sender can traverse several intermediate agents
until the addressee receives the message. In the distributed system on the right,
the message traverses only the central curator (the longest path that a message
can travel is of length 2).

We proceed by discussing an overlay network.
An overlay network of a communication network is a communication network

that is built “on top” or “in parallel” to the formerly mentioned communication
network. We remark that the graph of an overlay network is usually connected.
Also, we remark that overlay networks are useful for addressing robustness issues.
For example, when a communication network is susceptible to inactive agents, an
overlay network could be built in such a way that each agent would have more or at
least several neighbors. This way, if one neighbor becomes inactive, the information
can still flow along the remaining active neighbors. For a more extensive discussion
on overlay networks, we recommend the article by Sitaraman et al. [Sit+14]

We proceed by discussing some particular modes of information flow in dis-
tributed systems. This mostly concerns approaches of how and when the agents
exchange, share, or access messages.

Firstly, we highlight that we focus on distributed systems where agents col-
laboratively solve common tasks, i.e., the agents share resources with the aim of
reaching common objectives. For example, contribution and revision of Wikipedia
articles can be interpreted as an example of a distributed system characterized
by collaboration. In this dissertation, we in particular focus on the task where
each agent intends to obtain the average of values distributed over the agents of a
communication network.

Secondly, we highlight that we also focus on distributed systems with the
following characteristics of self-management: minimized reliance on a central
curator, handshake-free interaction, asynchronicity. This way, we proceed by
discussing the following concepts related to information flow in a communication
network: a handshake, synchronicity, and asynchronicity.

When speaking of handshakes, we refer to tuples of two messages, i.e., a request

40

Chapter 2. Background 2.3. Distributed systems

(of a task) together with a reply, where the request is sent from an agent i to an
agent j, and the reply (sent from the agent j to the agent i) confirms that the
task was carried successfully, which is similar to handshakes discussed in Denning
and Sacco [DS81]. For example, handshakes can be used to improve certainty
that a request was received, since the reply to the request can be a message
indicating that the request was received. However, we remark that the two generals’
problem [AEH75] is a common example of distributed systems, which illustrates
that a communication protocol which relies on handshakes is insufficient for having
complete certainty that a message from one agent was reached by another.

Synchronicity is a mode of communication where messages among participants
(e.g, agents of a distributed system) are sent at the same (or near-real) time.
Asynchronicity is a mode of communication where messages among participants
are sent at different times. For the previous definitions, we consulted Mick and
Middlebrook [MM15].

We remark that synchronous communication and asynchronous communication
can be modeled by the ticks of a clock, where the ticks indicate the instances of
time at which the communication (or processing) is performed. We can model
synchronous communication by a global clock, where every agent communicates at
the same instances of time as the other agents. Regarding asynchronous communi-
cation, we can model it by having an independent local clock for each agent, thus
the agents can communicate at distinct instances of time.

Asynchronous communication and synchronous communication may not be fully
realistic or practical. In asynchronous communication, an agent communicates to
its neighboring agents one at a time, and thus it may be unpractical to wait for the
handshakes from a neighbor that is either inactive or at that moment is executing
a significantly costly process. On the other hand, in synchronous communication,
it may happen that the interactions finished out of phase (some agents had no
more messages to send but not the others), and hence one can not trust that all
computations are complete.

2.3.1 Algorithms

In this subsection, we review some basic concepts related to algorithms. In
particular, we review some preliminaries of distributed algorithms that are used in
our example where a distributed algorithm is executed on a graph (discussed in
Subsection 2.3.2). Also, we review randomized algorithms and gossip algorithms,
which are used in our contributions on distributed averaging on graphs with arbitrary
degree sequences (discussed in Section 3.3) and the tailored noise mechanism
(discussed in Chapter 4).

For the definitions in this subsection, we consider the lecture notes by Hodkinson
and Cunninghamas [HC91]. For a supplementary reference to definitions related to
algorithms, we recommend the textbook by Cormen et al. [Cor+09]

We start by recalling a definition of a Turing machine.

A Turing machine is a 6-tuple M = (S,Σ,Σ0, s0, F, f), where

• S is a finite non-empty set, where an element of S is known as a state.

41

2.3. Distributed systems Chapter 2. Background

• Σ is a finite set of at least two elements, where Σ is known as the alphabet of
M . It is required that a particular element b ∈ Σ, where b is known as the
blank symbol.

• Σ0 ⊆ Σ \ {b} is a non-empty set, where Σ0 is known as the input alphabet of
M .

• s0 ∈ S is known as the initial state of M .

• F ⊂ S is known as the set of final states of M .

• f : (S \ F)× Σ→ S × Σ× {−1, 0, 1} is a partial function, where f is known
as the instruction table of M .

We remark that a Turing machine can be interpreted as a 1-way infinite tape, a
read/write head, and a finite set of states. A Turing machine can get its current
state, read the current state, and then write, move, and change state according to
its instruction table. The blank symbol is the only symbol in the alphabet that can
occur on the tape infinitely many times. This way, we highlight that an algorithm
is what a Turing machine implements.

In this dissertation, we sometimes simplify the interpretation of an algorithm,
and thus consider it as a sequence of instructions aimed to perform a particular task.
Sometimes, we express an algorithm as a function whose input is accessible to all
instructions of the algorithm and whose output is the result of the last instruction
of the algorithm.

We proceed by recalling definitions of the computation cost and the asymptotic
time complexity.

The computational cost (also known as the running time) of an algorithm is
the amount of time it takes to execute the algorithm. For example, let us consider
a random walk on a graph, which, referring to Lovász [Lov93], is a finite Markov
chain (discussed in Subsection 2.4.3). In other words, a random walk on a graph is
a stochastic process that describes a walk on a graph. If we interpreted a random
walk as an algorithm, the computational cost of a random walk can be considered
as the length of the walk that was taken until the random walk terminated.

When the computational cost of an algorithm is difficult to identify precisely,
sometimes it can be helpful to consider the asymptotic time complexity of an
algorithm, where the asymptotic time complexity can be expressed in big O
notation. Let functions f, g : R→ R. Big O notation O(·) is expressed as follows:

f(x) = O
(
g(x)

)
(as x→∞),

which means that there exists k > 0 and x0 ∈ R so that, for each x > x0, we have

f(x) ≤ kg(x).

In other words, big O notation is an asymptotic upper bound at the limit of
arguments of a function going to infinity. In graph problems, the asymptotic time
complexity of an algorithm is commonly expressed by an upper bound when the
number of vertices of a graph or the number of edges of a graph goes to infinity.

42

Chapter 2. Background 2.3. Distributed systems

We proceed by recalling definitions of a recursive algorithm, a randomized
algorithm, a distributed algorithm, and a gossip algorithm.

A recursive algorithm is an algorithm which has at least one instruction that
reuses the algorithm itself (such reuse is known as a nesting). This way, the
recursion depth is defined as the maximal number of nestings within nestings. The
recursion depth of an algorithm can be interpreted as a counter that decreases by 1
once the furthest nesting terminates. When the counter reaches 0, there are no
more nestings to execute.

A randomized algorithm is an algorithm which uses random variables. For the
previous definition, we consulted Motwani and Raghavan [MR96].

A distributed algorithm is an algorithm which is executed in a distributed
system. For example, a random walk on a graph is a distributed and randomized
algorithm that models the traversal of a message in a communication network. For
an elaborated discussion of distributed algorithms, we recommend the textbook by
Tel [Tel00].

We discuss an example of a distributed, recursive, randomized algorithm that
collects a sample of vertices of a graph G. Let r ∈ N1 be the recursion depth. For
each v ∈ V , let Uv ⊆ N(v) be a uniformly-random choice of a subset of vertices
from the neighborhood N(v). (We remark that Uv contains scalars and not random
variables.) Let a distributed, recursive, randomized algorithm A be defined as
follows:

A(v, r) =

{
{v} when r = 0,

∪u∈UvA(u, r − 1) ∪ {v} when r > 0,

where ∪ denotes the union of sets and ∪u∈UvA(u, r − 1) denotes the union of
A(u, r− 1) over each u ∈ Uv. In the first step, the algorithm A appends the initial
vertex v to the output set. Then, A propagates along the selected neighbors, adds
them to the output set, and calls itself again with a decreased counter. This happens
for r recursive iterations in total. If r is large enough, the output set contains all
vertices of G if G is connected. This is because the algorithm propagates along
every vertex of G.

As suggested by Jelasity [Jel11], it is difficult to capture what exactly is a gossip
algorithm. In this dissertation, we consider that a gossip algorithm is a distributed
algorithm, where each agent of the communication network can disseminate or
aggregate information along its neighboring agents. We provide a reference to
Demers et al. [Dem+87] which is known as one of the earliest formalizations of a
gossip algorithm.

2.3.2 Basics of distributed algorithms on graphs

In this subsection, we discuss execution of distributed algorithms on graphs. In
particular, we briefly review distributed averaging and discuss some assumptions,
so that information at one agent of the communication network could at some point
reach any other agent of the communication network, which is used in our example
and contribution on the bias in distributed averaging when the graph of agents
is non-regular (discussed in Chapter 3) Afterwards, we discuss an example where

43

2.3. Distributed systems Chapter 2. Background

a random walk on the graph of a communication network provides a uniformly-
random sample of a vertex of that graph. We remark that the aforementioned
example illustrates the basis of the problem studied in Chapter 3.

Distributed averaging is a task where every agent of a communication network
may communicate only with its neighboring agents, while aiming to compute the
average of individual values attributed to all agents in the communication network.
One of more common methods for solving such distributed averaging problems is an
application of gossip algorithms [SHS19]. We remark that computing such averages
is a basis for numerous applications that involve decision making or personalized
modeling [AX18]. We remark that decision making in distributed systems without
a central curator is discussed in Tsitsiklis [Tsi84].

We review two common assumptions on the graph of a communication network
for executing distributed algorithms, so that information at one agent of the commu-
nication network could at some point reach any other agent of the communication
network.

The first assumption is that the graph G of a communication network is
connected. The second assumption is that G has a self-loop or a cycle of odd length.
For the source of the two assumptions, we refer to DeGroot learning [DeG74], where
DeGroot learning refers to a particular model of distributed averaging.

Referring to the article by Lovász [Lov93], we discuss an example where a
random walk samples a vertex of a graph G = (V,E). In particular, we show
that a naive application of a random walk results in a biased sample, when G is
non-regular (when the vertices have unequal degrees).

Let vbeg denote the vertex on which the random walk begins. Let vend denote
the vertex on which the random walk ends (vend is the sampled vertex). Let s ∈ N
be the number of steps the random walk takes (s is a counter). Let n = |V | denote
the number of vertices. Let T be an n × n matrix where, for each i, j ∈ [n], we
have

ti,j =

{
1/deg(vi) when vj ∈ N(vi),

0 otherwise.

In DeGroot learning [DeG74], T is known as a transition matrix, where, for each
i, j ∈ [n], the element ti,j of T is the probability of the transition from the vertex vi
to the vertex vj , where vi, vj ∈ V . When each row of a transition matrix sums to 1,
the transition matrix is a row stochastic matrix. When each row and each column
of a transition matrix sums to 1, the transition matrix is a doubly stochastic matrix.
We remark that the transition matrix T is a linear transformation from Rn to Rn.
For the definitions of stochastic matrices, we consulted the textbook by Horn and
Johnson [HJ12].

Let p(v | s, vbeg) denote the probability of sampling v ∈ V at the step s, when
the random walk begins on the vertex vbeg. Since the initial vertex vbeg is chosen
uniformly, let p(vbeg) be defined as a uniform probability mass function over the
vertices in V . We define p(v | s, vbeg) by applying the transition matrix T iteratively
as follows:

p(v | s, vbeg) = Tp(v | s− 1, vbeg)

= Tsp(vbeg).

44

Chapter 2. Background 2.4. Machine learning

This way, p(v | s, vbeg) models a random walk that samples a vertex v of a graph G.
In Levin et al. [LPW17], it is claimed that s = O(log n) is enough so that

p(v | s, vbeg) is a stationary distribution over the vertices in V , when G is connected
and has a self-loop or a cycle of odd length. For random walks, such stationary
condition is more commonly known as the mixing time. When the mixing time is
reached, we have

Pr(vend | s, vbeg) =
deg(vend)

2|E|
,

i.e., the probability of sampling vend is non-uniform when G is non-regular. In
other words, the sampling is biased when G is non-regular.

We recall how the aforementioned application of the random walk can be
improved using the Metropolis–Hastings algorithm (discussed in Subsection 2.4.3)
so that any vertex of G is sampled uniformly. The main idea behind such Metropolis–
Hastings step is that, when the random walk proposes, for example, the edge (v1, v2)
which is the transition of the random walk from a vertex v1 to a vertex v2, then
we perform a Bernoulli trial for deciding if the edge is indeed taken or another
edge proposal is drawn (and an additional check of a Bernoulli trial is made). The
probability of succeeding such Bernoulli trial is defined as follows:

min

(
1,

Pr(v1 | s, vbeg)
Pr(v2 | s, vbeg)

)
= min

(
1,

deg(v1)

deg(v2)

)
.

As discussed later, upon the Metropolis–Hastings step and upon reaching the
mixing time, the random walk provides a uniform sample of a vertex when G is
non-regular. In other words, the Metropolis–Hastings step corrects the bias when
G is non-regular.

2.4 Machine learning

In this section, we review machine learning. In particular, we review linear regression
models used in our contributions on distributed averaging on graphs with arbitrary
degree sequences (discussed in Section 3.3) and the tailored noise mechanism
(discussed in Chapter 4). Also, we review the Metropolis–Hastings algorithm
which we use in our examples on the bias of sampling a vertex of a graph using a
random walk and in distributed averaging when the graph of agents is non-regular
(discussed, respectively, in Subsection 2.3.2 and Subsection 3.1.2).

At the beginning of this section, we review definitions of basic concepts of
machine learning. In Subsection 2.4.1, we discuss supervised learning. In Subsection
2.4.2, we discuss clustering. In Subsection 2.4.3, we discuss statistical inference.

For a review of machine learning, we recommend and mostly follow the textbook
by Mohri et al. [MRT18] For a supplementary reference to definitions of machine
learning, we recommend the textbook by Mitchell [Mit97].

Mitchell [Mit97] defines machine learning as the study of algorithms that allows
for computer programs to automatically improve through experience. This way,
a learner (which is a computer program) is said to learn from experience with

45

2.4. Machine learning Chapter 2. Background

respect to some class of tasks and performance measure, if its performance at
the class of tasks, as measured by the performance measure, improves with the
experience. For example, this involves the case where the learner uses previously
acquired information and current information for an accurate modeling of certain
phenomena.

We start by discussing the following basic concepts of machine learning: an
attribute, a feature, an example, and a label.

We interpret an attribute as a base characteristic of an entity. However, we
remark that it is difficult to capture the definition of an attribute exactly, as it
tends to vary from context to context. We interpret a feature as a value describing
a characteristic of an entity, where such description is useful for tasks related to
prediction, inference, and evaluation, and where a feature is computed from other
attributes or features of an entity. We remark that we consider restrained definitions
of attributes and features in order to clarify the motivation of our contribution on
the tailored noise mechanism (discussed in Chapter 4).

An example (also known as an instance) is a representation of an entity, it may
be a feature or a feature vector. A label (also known as a target value) is a value
assigned to an example, which indicates a correspondence to a particular task. A
pair of an example and a label is known as a labeled example. For instance, if
an example contains characteristics of an email, a label could be an indicator of
whether the email is spam or not. We denote a set of (all possible) examples by X ,
and we denote a set of (all possible) labels by Y .

We proceed by recalling definitions of a concept and a hypothesis.
A concept is a function c : X → Y interpreted as an unknown function that

models a phenomenon. A concept class is a set of concepts of interest; we denote a
concept class by C. A hypothesis is a function h : X → Y interpreted as a model
of a concept. A hypothesis space is a set of hypotheses; we denote a hypothesis
space by H. For example, the set H of functions f(x) = θ0 + θ1x over parameters
θ0, θ1 ∈ R is a hypothesis space of linear functions.

Referring to the lecture notes by Rosernberg [Ros16], we discuss the evaluation
of how closely a hypothesis matches a concept. This way, we recall definitions
of a loss function, the hypothesis risk, the empirical risk, and the empirical risk
minimizer.

A loss function is a function L : Y × Y → R+ that weights the cost of a choice
of a hypothesis to model a given concept, where R+ is the space of non-negative
real numbers.

The hypothesis risk is defined as follows:

r(h, c) =

∫
X
L
(
h(x), c(x)

)
dx,

where h is a hypothesis, c is a concept, L is a loss function, and X is a set of
(all possible) examples. We remark that the hypothesis risk can not be computed
because the concept c is unknown.

The empirical risk is defined as follows:

r̂
(
h, {(xi, yi)}ni=1

)
=

1

n

∑
i∈[n]

L
(
h(xi), yi

)
,

46

Chapter 2. Background 2.4. Machine learning

where the set {(xi, yi)}ni=1 of labeled examples is a sample from a statistical popu-
lation over X × Y , and where X ,Y ⊆ R denote, respectively, a set of (all possible)
examples and a set of (all possible) labels.

An empirical risk minimizer is a hypothesis defined as follows:

ĥ ∈ arg min
h∈H

r̂
(
h, {(xi, yi)}ni=1

)
,

where H is a hypothesis space.
In Table 2.4, we provide a summary of the introduced notation of basic concepts

of machine learning.

Table 2.4: Introduced notation of basic concepts of machine learning

Notation Meaning

X Set of (all possible) examples
Y Set of (all possible) labels
L Loss function
C Concept space
H Hypothesis space
h Hypothesis

ĥ Empirical risk minimizer
r Hypothesis risk
r̂ Empirical risk

Referring to the lecture notes by Rosernberg [Ros16], we discuss the hypothesis
space error and the sampling error.

The hypothesis space error is the error due to selecting a particular hypothesis
space and is defined as follows:

r(hH, c),

where a risk minimizer hH is defined as

hH ∈ arg min
h∈H

r(h, c).

The hypothesis space error r(hH, c) can not be computed because the concept c is
unknown.

The observation error (also known as the sampling error) is the error due to
limited number of observations and is defined as follows:

r̂
(
ĥ, {(xi, yi)}ni=1

)
− r(hH, c).

The observation error can not be computed because, as discussed above, we can
not compute the hypothesis space error r(hH, c). However, we remark that the
observation error can be approximated by upper-bounding it by the empirical risk
r̂
(
ĥ, {(xi, yi)}ni=1

)
.

47

2.4. Machine learning Chapter 2. Background

2.4.1 Supervised learning

In this subsection, we discuss supervised learning. In particular, we review linear
regression which is used in our contributions on distributed averaging on graphs
with arbitrary degree sequences (discussed in Section 3.3) and the tailored noise
mechanism (discussed in Chapter 4).

We start by briefly reviewing supervised learning. Then, we discuss the fitting
of statistical models. Finally, we discuss classification and regression, which are
two common tasks related to supervised learning.

Supervised learning is a machine learning scenario where the learner has a set
of labeled examples and a set of unlabeled examples, and where the learner intends
to use the labeled examples to predict the labels for the unlabeled examples.

Referring to the textbook by Mitchell [Mit97], we discuss the fitting of statistical
models. In particular, we discuss fitting, overfitting, and underfitting.

Let us consider the case where the learner uses labeled examples to estimate
parameters of an underlying statistical model with the intention to predict the
labels for unlabeled examples with sufficient accuracy. An estimation procedure
that makes use of labeled examples to estimate model parameters is known as the
fitting of a statistical model.

Regarding the accuracy of a fitted statistical model, it is influenced by the
number of labeled examples used for fitting, the choice of a hypothesis space, and
the choice of a fitting method. We remark that having more labeled examples leads
to closer estimates of the parameters of an underlying statistical model because
the sampling error decreases when the size of a sample increases. Also, we remark
that a chosen hypothesis space intends to contain statistical models (hypotheses)
that are sufficiently close to the underlying statical model (the concept).

Given a hypothesis space H, a hypothesis h ∈ H is said to overfit a sample if
there exists some other hypothesis h′ ∈ H, such that h has a smaller error than h′

over the sample, but h′ has a smaller error over the entire underlying statistical
population. This way, overfitting is the case when the choice of a hypothesis h
poorly generalizes the underlying concept c. Otherwise, when a hypothesis h has a
smaller error over a sample than some other hypothesis h′ because h is a function
that lacks significant terms compared to the underlying concept c (e.g., h is a
polynomial of a lower order than c), then the case of choosing such h is known as
underfitting.

We proceed by discussing the evaluation of fitted statistical models.
The fit of a statistical model can be evaluated by assessing the utility (e.g.,

predictive accuracy) of the chosen hypothesis by splitting the available set of labeled
examples to two subsets known as a training set and a test set. To elaborate on
that process, we remark that, firstly, a statistical model is fitted using the training
set. Then, we can compute predicted labels of the test set. Finally, the fit can be
evaluated by, for example, summing the absolute differences between the predicted
labels of the test set and the respective true labels of the test test.

The evaluation of a fit is more reliable when performing it on several choices
of training sets and test sets, this is known as cross-validation. A common cross-
validation technique is k-fold cross-validation where the set of labeled examples
is arbitrarily partitioned in k subsets (folds) of approximately equal size and the

48

Chapter 2. Background 2.4. Machine learning

fitted statistical model is evaluated k times by taking 1 of those folds as a test set
and forming a training set from the remaining k − 1 folds.

We proceed by making a brief distinction between classification and regression.
Classification is a supervised learning task where the labels are categorical (e.g.,

binary values), whereas regression is a supervised learning task where the labels
are real-valued. We highlight that, in this dissertation, we focus on a particular
form of linear regression where a target value is expressed as a linear function of
features together with a noise term. More precisely, we consider multiple linear
regression where a target value is expressed as a linear combination of features
together with a noise term, where each feature is multiplied by a scalar parameter.

We proceed by discussing regression in more detail, for which we consult the
textbook by Yan and Su [YS09]. In particular, we start by recalling a definition of
a multiple linear regression model. Then, we discuss two classic fitting methods for
fitting a linear regression model. Finally, we discuss an example of evaluating the
fit of a linear regression model.

We recall a definition of a multiple linear regression model with m+1 regression
parameters and a scalar target value. Let n ∈ N be the number of examples. Let
m ∈ N be the number of features in an example (i.e., the size of a feature vector).
For each i ∈ [n], we have

yi = θ0 + θ1xi,1 + . . . + θmxi,m + ξregi , (2.8)

where xi,1, xi,2, . . . , xi,m are features, θ0, θ1, . . . , θm ∈ R are regression parameters,
ξregi is regression noise which is an independent observation of N (0, σ2), and σ is
the standard deviation of regression noise.

We recall ordinary least squares which is a classic fitting method of a multiple
linear regression model. Let θ̂ be the vector of parameter estimates. Let X =[
1 x1 . . . xm

]
∈ Rn×(m+1) be a matrix of features, where x1,x2, . . . ,xm are

feature vectors. Let y be a vector of target values. In ordinary least squares, the
vector θ̂ of parameter estimates can derived in the following way (the regression
error terms are absent as they can not be observed):

y = Xθ̂ ⇐⇒ XTy = XTXθ̂

⇐⇒ θ̂ = (XTX)−1XTy

⇐⇒ θ̂ =

(
1

n
XTX

)−1
1

n
XTy, (2.9)

1

n
XTX =


1 1

n

∑
i∈[n] xi,1 . . . 1

n

∑
i∈[n] xi,m

1
n

∑
i∈[n] xi,1

1
n

∑
i∈[n] x

2
i,1

. . . 1
n

∑
i∈[n] xi,1xi,m

...
.

...
1
n

∑
i∈[n] xi,m

1
n

∑
i∈[n] xi,1xi,m . . . 1

n

∑
i∈[n] x

2
i,m

 (2.10)

1

n
XTy =

[
1
n

∑
i∈[n] yi

1
n

∑
i∈[n] yixi,1 . . . 1

n

∑
i∈[n] yixi,m

]T
. (2.11)

Since the matrix inverse
(
1
n
XTX

)−1
can be numerically difficult to compute, we

recall another classic fitting method known as regularized least squares (otherwise

49

2.4. Machine learning Chapter 2. Background

known as ridge regression) where the term 1
n
XTX is substituted with the term

1

n
XTX + λIm+1 =


1 + λ . . . 1

n

∑
i∈[n] xi,m

1
n

∑
i∈[n] xi,1 . . . 1

n

∑
i∈[n] xi,1xi,m

...
. . .

...
1
n

∑
i∈[n] xi,m . . . 1

n

∑
i∈[n] x

2
i,m + λ

 , (2.12)

and where λ ∈ R is known as the regularization parameter, and Im+1 is the
(m + 1)× (m + 1) identity matrix.

We discuss an example of evaluating the fit of a linear regression model Let
{(x1, y1), (x2, y2), . . . , (xn, yn)} be a set of labeled examples (pairs of features and
target values). For each i ∈ [n], we define the following linear regression model:

yi = θ0 + θ1xi + ξregi ,

where θ0, θ1 ∈ R are regression parameters, ξregi is regression noise which is an
independent observation of N (0, σ2), and σ is the standard deviation of regression
noise. Let {(x1, y1), (x2, y2), . . . , (xk, yk)} and {(xk, yk), (xk+1, yk+1), . . . , (xn, yn)}
be, respectively, a training set and a test set, where 1 < k < n. Let θ̂0 and θ̂1 be
the parameter estimates computed from the training set by some fitting method
(e.g., ordinary least squares). This way, for each i ∈ {k, . . . , n}, we compute a
predicted target value ypredi as follows:

ypredi = θ̂0 + θ̂1xi.

Finally, we can evaluate the fit of the learned model with the parameter estimates
θ̂0 and θ̂1 by assessing its predictive accuracy. This way, for example, we can
compute the following sum over the test set:∑

i∈{k,...,n}

|ypredi − yi|.

However, we remind that evaluation of a fit is more reliable when applying the
previously discussed cross validation.

2.4.2 Clustering

In this subsection, we discuss clustering. In particular, we review k-means clustering
to which we refer in our future directions (discussed in Section 5.2).

For the definitions in this subsection, we consult the textbook by Shalev-Shwartz
and Ben-David [SB14]

We start by briefly reviewing clustering which is part of a machine learning
scenario known as unsupervised learning. We remark that in unsupervised learning,
differently than in supervised learning, we have only unlabeled examples.

Clustering is a machine learning task where we have only unlabeled examples,
where similar mathematical objects are grouped together in clusters (or partition
classes) and dissimilar objects are grouped in separate clusters (or separate partition
classes), and where distinct clusters can share the same instances (this leads to soft

50

Chapter 2. Background 2.4. Machine learning

clustering which contrasts hard clustering where distinct partition classes do not
share the same instances).

The assignment of an object to a cluster (or a partition class) can be interpreted
as the assignment of a label that indicates the index of the cluster. As a result,
in clustering, the labels simply indicate indexing, as opposed to some meaningful
classes (which is the case in the task of classification). This way, it is difficult to
apply a general technique to evaluate the success of a clustering procedure. We
remark that even though a clustering procedure can provide a set of clusters that
is informative, there might be other sets of clusters that are informative as well.

Common clustering methods include linkage-based clustering, k-means cluster-
ing, and spectral clustering:

• Linkage-based clustering methods are iterative methods where clusters merge
if their similarity is high enough.

• k-means clustering methods are iterative methods where instances are associ-
ated to one of k clusters based on cost (e.g., distance) minimization.

• Spectral clustering methods are methods that group instances based on the
eigenvalues of a similarity matrix of instances, where the (i, j)-th element of
a similarity matrix is a similarity measurement between an instance i and an
instance j.

We elaborate on k-means clustering methods because we refer to them upon
discussing our future directions (discussed in Section 5.2).

k-means clustering is an iterative clustering method which partitions instances
(with coordinates) into k partition classes based on center points (the initial
coordinates of the center points of the k partition classes can be chosen arbitrarily),
and one iteration of k-means clustering takes the following two steps:

1. Each clustered instance is assigned the label of the center point that has
the shortest distance to the instance (the distance is computed based on the
coordinates and a chosen metric).

2. The locations of the center points are updated taking the average values of
the coordinates of the instances that are assigned to the respective center
points.

2.4.3 Statistical inference

In this subsection, we discuss statistical inference. In particular, we review the
Metropolis–Hastings algorithm which we use in our examples on the bias of sampling
a vertex of a graph using a random walk and in distributed averaging when the
graph of agents is non-regular (discussed, respectively, in Subsection 2.3.2 and
Subsection 3.1.2).

For the definitions in this subsection, we consult the textbook by Hastie et al.
[HTF09]

We start by reviewing statistical inference, where statistical inference is part of
artificial intelligence which is a field that is broader than machine learning.

51

2.4. Machine learning Chapter 2. Background

Statistical inference (also known as inference) is a task where probabilistic
information is inferred from evidence. Let D = {(x1, y1), (x2, y2), . . . , (xn, yn)} be
a sample of labeled examples (also known as evidence). Let H denote a hypothesis
space. Common statistical inference methods include maximum likelihood inference
and Bayesian inference:

• Maximum likelihood inference involves methods that aim for obtaining a
hypothesis hL = arg max h∈H Pr(D |h). In other words, such methods choose
the hypothesis hL for which the likelihood (defined below) of observing the
evidence D is maximized.

• Bayesian inference involves methods that aim for obtaining a hypothesis hP =
arg max h∈H Pr(h | D). In other words, such methods choose the hypothesis
hP that maximizes the posterior (defined below) upon the evidence D.

We proceed by reviewing Bayesian inference in more detail.
Bayesian inference is a form of statistical inference characterized by an appli-

cation of Bayes’ theorem and by the treatment of the output and the parameters
of statistical models as random variables. Let random variables X and Θ be,
respectively, the output of a statistical model and the parameter of the statistical
model. In Bayesian inference, the relation between X and Θ is established by
Bayes’ theorem as follows:

pΘ(θ |x) =
pX,Θ(x, θ)

pX(x)

=
pX|Θ(x | θ)pΘ(θ)

pX(x)

=
pX|Θ(x | θ)pΘ(θ)∫
pX|Θ(x | θ)pΘ(θ)dθ

,

where pX is known as a prior probability distribution (or simply a prior), pΘ |X is
known as a posterior distribution (or simply a posterior), pX|Θ(x | θ) is known as a
likelihood, and

∫
pX|Θ(x | θ)pΘ(θ)dθ is known as a marginal likelihood.

The marginal likelihood can be difficult to compute and thus may require to
restate the Bayesian inference problem. This way, in Bayesian inference, it is
common to estimate the posterior rather than obtain it exactly. For example,
variational methods is a family of such methods, where a variation (a probability
distribution) substitutes the likelihood in such a way that the integration in the
marginal likelihood has a closed-form expression. Hence, the marginal likelihood
appears feasible to compute in practical settings.

We proceed by discussing Markov chain Monte Carlo methods which is another
method for estimating the posterior. Then, we review a definition of a particular
Markov chain Monte Carlo method known as the Metropolis–Hastings algorithm.

A Markov chain Monte Carlo (MCMC) method is an algorithm that is char-
acterized by repeated sampling and the use of Markov chains, where a Markov
chain is a stochastic process in which every state can only depend on the state
that precedes it. Let x and x′ denote outcomes that can be interpreted as states
of a Markov chain, where x′ precedes x. In MCMC methods, we use an iterative

52

Chapter 2. Background 2.5. Data privacy

procedure where we obtain x′ given x, update x by the obtained value x′, and then
repeat.

The Metropolis–Hastings (MH) algorithm [Has70] is a particular MCMC method
for obtaining a sequence of observations from a probability distribution (known
as the target distribution). We remark that the MH algorithm approximates the
target distribution without the influence of autocorrelation, where autocorrelation
refers to the case where subsequences of observations are correlated.

We proceed by describing the MH algorithm. Let x and x′ denote states which
are respective outcomes of random variables X and X ′. Let gX′ |X and gX |X′ denote
conditional probability distributions; we refer to them as proposal distributions.
Let t ∈ N be the number of iterations. In each iteration i ∈ [t], the MH algorithm
computes

pi(x) = gX′ |X(x′ |x)a(x, x′),

where

a(x, x′) = min

(
1,

pi−1(x
′)

pi−1(x)

gX |X′(x |x′)

gX′ |X(x′ |x)

)
is known as the acceptance rate and p0 is fixed in advance.

When i ∈ [t] increases, then pi approaches a stationary distribution and ap-
proximates more closely the target distribution. We remark that a stationary
distribution is the probability distribution of a random variable in a stationary
process, and a stationary process is a stochastic process where the unconditional
joint probability distribution of the random variables does not change in time when
the stochastic process is shifted in time.

2.5 Data privacy

In this section, we briefly review the field of data privacy. In particular, we
review the threat model of honest-but-curious agents and the classic privatization
mechanisms that are used in our contributions on distributed averaging on graphs
with arbitrary degree sequences (discussed in Section 3.3) and the tailored noise
mechanism (discussed in Chapter 4).

At the beginning of this section, we discuss basic concepts of data privacy. In
Subsection 2.5.1, we discuss a common measure of data privacy known as differential
privacy.

For this section, we consult the survey by Aggarwal and Yu [AY08].
When speaking of data privacy, we tend do consider real-world communication

networks of agents, where an agent is a user’s device, a remote server, a computer
cluster, etc. If the awareness of a particular attribute of an agent could lead to an
unwanted profiling of the agent, we refer to such attribute as a sensitive attribute.

We briefly elaborate on the following data privacy measures:

• In k-anonymity, each sensitive attribute of each instance of a shared dataset
has the same value as at least k − 1 respective sensitive attributes of other
instances in the dataset.

53

2.5. Data privacy Chapter 2. Background

• In l-diversity, each sensitive attribute of a shared dataset has at least l distinct
values that are present in it.

• In (ϵ, δ)-differential privacy, each sensitive attribute of a shared dataset is
hidden under noise that is calibrated in a particular way based on parameters
ϵ, δ ≥ 0.

In this dissertation, we focus on differential privacy.
We proceed by discussing a distinction between local data privacy and central

data privacy, we do so by partially consulting the tutorial slides by Nguyen [Ngu19].
In local data privacy, each agent shares its own dataset, and thus each agent is

responsible on its own to make sure that the shared dataset meets the conditions of
a selected data privacy measure. In central data privacy, each agent trusts a central
curator, and thus it is the central curator who shares a dataset which contains
instances (or statistics) of information provided by the agents. This way, it is the
central curator who makes sure that the shared dataset meets the conditions of a
selected data privacy measure.

We recall the threat model of honest-but-carious agents, where a threat model
is a model that specifies what kind of access an attacker has to a system when
attempting to disturb it or learn something that should be kept private.

Honest-but-curious agents [Gol04] is a threat model where the agents of a
communication network follow the communication protocol (honesty) but they are
also interested in discovering all available information (curiosity). We remark that
honest-but-curious agents can be seen as a realistic threat model concerning local
data privacy because, in local data privacy, the agents communicate among each
other as opposed to relying on a central curator.

2.5.1 Differential privacy

In this subsection, we discuss differential privacy which is an actively studied
measure of data privacy. In particular, we review the Gaussian mechanism and the
Laplace mechanism which are used, respectively, in our contributions on distributed
averaging on graphs with arbitrary degree sequences (discussed in Section 3.3) and
the tailored noise mechanism (discussed in Chapter 4).

For a review of differential privacy, we recommend and mostly follow the article
by Dwork and Roth [DR14].

We start this subsection by recalling the definition of (ϵ, δ)-indistinguishability
which was proposed by Dwork et al. [Dwo+06] and is commonly known as
differential privacy.

Definition 5. Let ϵ, δ ≥ 0. A randomized algorithm A is (ϵ, δ)-differentially private
if and only if, for all S ⊆ image(A) and for all tuples (D,D′) in a collection where
adjacent datasets D and D′ differ only in the attributes of one instance, we have

Pr(A(D) ∈ S) ≤ eϵ Pr(A(D′) ∈ S) + δ.

The aforementioned collection of tuples (D,D′) is a set of tuples of adjacent
datasets, where adjacent datasets are datasets that differ in one row, and where a
dataset is a table whose rows are over instances and the columns are over attributes.

54

Chapter 2. Background 2.5. Data privacy

We highlight that, in local differential privacy, each agent adds noise to its
sensitive attributes on its own, whereas, in central differential privacy, a central
curator typically adds noise to statistics computed from attributes. Thus, in central
differential privacy, it is more common to refer to sensitive statistics as opposed to
sensitive attributes. We remark that adding noise to sensitive statistics as opposed
to sensitive attributes results in a lower error between a privatized statistic and a
sensitive statistic, when such statistics are averages computed from attributes.

Regarding the motivation of central differential privacy, bounding the probability
of observing one adjacent dataset by the probability of observing another adjacent
dataset (as in Definition 5) can be interpreted as a level of privatization, which is
measured by the privacy budget (ϵ, δ), against a reconstruction attack, where by a
reconstruction attack we refer to an identification of the value of a sensitive attribute.
Referring to Garfinkel et al. [GAM19], we remark that, in a reconstruction attack,
an attacker can reconstruct sensitive attributes by making comparisons of the
following two statistics: a statistic that is computed over the sensitive attributes
and a statistic that is computed over the same sensitive attributes except some of
them being removed or modified in a particular way.

We remark that, when the privacy budget (ϵ, δ) is higher, the noisiness of
privatized statistics or privatized attributes is lower because it is easier to meet the
bound in Definition 5.

We proceed by recalling definitions of the Gaussian mechanism and the Laplace
mechanism, which are classic privatization mechanisms for adding noise to sensitive
attributes.

Firstly, we define the Gaussian mechanism.

Definition 6. Let ϵ, δ > 0. Let X ⊆ Rn, where n ∈ N. Let f : X → Rk, where
k ∈ N. The Gaussian mechanism is a mechanism that privatizes a value f(x),
where x ∈ X , by adding to it independent observations of the following Gaussian
random variable:

N
(

0,
2 log(1.25/δ)∆2

2(f)

ϵ2

)
,

where the l2 sensitivity

∆2(f) = max
adjacent x1,x2∈X

∥f(x1)− f(x2)∥2. (2.13)

We remark that generation of noisy values according to the Gaussian mechanism
is a classic strategy to guarantee (ϵ, δ)-differential privacy.

Secondly, we define the Laplace mechanism.

Definition 7. Let ϵ > 0. Let X ⊆ Rn, where n ∈ N. Let f : X → Rk, where
k ∈ N. The Laplace mechanism is a mechanism that privatizes a value f(x), where
x ∈ X , by adding to it independent observations of the following Laplace random
variable:

lap

(
0,

∆(f)

ϵ

)
,

where the l1 sensitivity

∆(f) = max
adjacent x1,x2∈X

∥f(x1)− f(x2)∥1. (2.14)

55

2.6. Mathematical optimization Chapter 2. Background

We remark that generation of noisy values according to the Laplace mechanism is
a classic strategy to guarantee (ϵ, 0)-differential privacy (also known as ϵ-differential
privacy).

Finally, we highlight that Dwork and Roth [DR14] provides a composition
theorem which states that a collection of size k of (ϵ, δ)-differentially private
randomized algorithms is (kϵ, kδ)-differentially private. In our contributions on
distributed averaging on graphs with arbitrary degree sequences (discussed in
Section 3.3) and the tailored noise mechanism (discussed in Chapter 4) we reuse
the aforementioned composition theorem. In particular, we refer to (kϵ, kδ) as the
(total) privacy budget and we refer to (ϵ, δ) as an even split (one of k parts) of the
total privacy budget.

2.6 Mathematical optimization

In this section, we briefly review mathematical optimization. In particular, we
review the standard form of a convex program, which is accepted by the cvxopt

package, and that is used in our contribution on the tailored noise mechanism
(discussed in Chapter 4).

At the beginning of this section, we discuss basic vocabulary of mathematical
optimization and convex programs. In Subsection 2.6.1, we discuss the basic
principles of implementing a convex program using the cvxopt package.

For a review of mathematical optimization, we recommend and mostly follow
the textbook by Boyd and Vandenberghe [BV14].

We start by reviewing mathematical optimization.
Mathematical optimization is a field on solving optimization problems that can

be stated in the following form: we intend to

minimize f0(w)

subject to the constraints f1(w) ≤ b1, f2(w) ≤ b2, . . . , fk(w) ≤ bk,

where w ∈ Rn are optimization variables (also known as constraint variables),
n ∈ N, f0 : Rn → R is an objective function, f1, f2, . . . , fk : Rn → R are constraint
functions, b1, b2, . . . , bk ∈ R are upper-bounds of constraint functions, and k ∈ N is
the number of constraints.

An optimization problem is feasible if there exist values of the constraint
variables so that the constraints of the optimization problem are met. Otherwise,
an optimization problem is infeasible. For example, let w1 and w2 be constraint
variables whose values are in the interval [1, 2]. If an optimization problem consists
of the equality constraint w1 + w2 ≤ 2, then the optimization problem is feasible
because w1 and w2 can take the value 1. However, upon the inequality constraint
w1 + w2 ≤ 1, the optimization problem is infeasible because w1 + w2 is at least 2.

If w results in the lowest value of the objective function of an optimization
problem such that the constraints are met, then we refer to w as a solution of the
optimization problem. We remark that a value of the objective function is referred
to as an objective value.

We briefly elaborate on some subfields of mathematical optimization:

56

Chapter 2. Background 2.6. Mathematical optimization

• In linear optimization, the objective function and the constraint functions
are linear functions.

• In non-linear optimization, the objective function and the constraint functions
are non-linear functions.

• In convex optimization, the objective function and the constraint functions
are convex functions, where a function f : Rn → R is convex if the domain
of f is a convex set S and if for each x, y ∈ S, we have f(αx + (1− α)y) ≤
αf(x) + (1− α)f(y), where n ∈ N and 0 ≤ α ≤ 1 (a set S is convex if, for
any x, y ∈ S and any 0 ≤ α ≤ 1 , we have αx + (1 − α)y ∈ S). This way,
convex optimization is a generalization of linear optimization or a special
case of non-linear optimization.

In this dissertation, we focus on convex optimization.
We highlight that optimization problems solved in convex optimization can be

stated in the following form: we intend to

minimize f0(w)

subject to the constraints f1(w) ≤ 0, f2(w) ≤ 0, . . . , fk(w) ≤ 0,

g1(w) = 0, g2(w) = 0, . . . , gl(w) = 0,

where w ∈ Rn are constraint variables, n ∈ N, f0 : Rn → R is a (convex) objective
function, f1, f2, . . . , fk : Rn → R are (convex) inequality constraint functions, k ∈ N
is the number of inequality constraints, g1, g2, . . . , gl : Rn → R are (convex) equality
constraint functions, and l ∈ N is the number of equality constraints. We refer to
an optimization problem solved in convex optimization as a convex program.

Finally, we remark that, in this dissertation, we consider algorithms that are
designed to find solutions of convex programs in an iterative manner and under the
stopping condition which is met when an infeasibility measure gets lower than a
prescribed tolerance (i.e., in such algorithms, we allow for some slack that concerns
the feasibility). We refer to such algorithms as constraint solvers. To summarize,
we consider constraint solvers that are guided by the following two factors:

• The feasibility of the constraints.

• The minimization of the objective function.

2.6.1 The cvxopt package

In this subsection, we discuss the basic principles of solving a convex program using
cvxopt [ADV20] which is a python library. We remark that cvxopt is used in our
contribution on the tailored noise mechanism (discussed in Chapter 4)

We describe the elements of a convex program, which are accepted by the
standard form of cvxopt. Let w ∈ Rn be the constraint variables of a convex
program, where n is the number of constraint variables. The arguments to the
convex constraint solver of cvxopt are data structures that represent the linear
equality constraints, the linear inequality constraints, the objective function, and
the non-linear constraints of a convex program:

57

2.7. Summary Chapter 2. Background

• The linear equality constraints. Let A ∈ Rk×n be a matrix whose elements
are the coefficients of constraint variables in the linear equality constraints,
and where k is the number of linear equality constraints. Let b ∈ Rk be a
vector whose elements are the constant terms in the linear equality constraints.
The aim of the constraint solver is to find such w that Aw = b.

• The linear inequality constraints. Let G ∈ Rl×n be a matrix whose elements
are the coefficients of constraint variables in the linear inequality constraints,
and where l is the number of linear inequality constraints. Let h ∈ Rl

be a vector whose elements are the constant terms in the linear inequality
constraints. The aim of the constraint solver is to find such w that Gw ⪯ h
(where ⪯ denotes “element-wise less than or equal”).

• The objective function. Let f cvx
0 : Rn → R+ denote a twice-differentiable

objective and convex function, where R+ is the space of non-negative real
numbers. The aim of the constraint solver is to minimize f cvx

0 (w).

• The non-linear constraints. Let f cvx
1 , f cvx

2 , . . . , f cvx
m : Rn → R denote twice-

differentiable non-linear (yet convex) constraint functions, where m is the
number of non-linear constraints. The aim of the constraint solver is to find
such w that, for each i ∈ [m], we have f cvx

i ⪯ 0.

In each iteration of the constraint solver, cvxopt requires to evaluate the first-
order partial derivatives and the second-order partial derivatives of the objective
function f cvx

0 and the non-linear constraint functions f cvx
1 , f cvx

2 , . . . , f cvx
m .

The first-order partial derivatives are stored in a matrix D ∈ R(1+m)×n whose
first row contains the first-order partial derivatives of f cvx

0 evaluated on w, and
whose subsequent rows contain the first-order partial derivatives of non-linear
constraints f cvx

1 , f cvx
2 , . . . , f cvx

m evaluated on w.
The second-order partial derivatives are stored in a matrix H ∈ Rn×n such that

H =
∑

i={0}∪[m]

zi∇2f cvx
i (w),

where ∇2f cvx
i (w) is the matrix of the second-order partial derivatives of f cvx

i

evaluated on w, and z0, z1, . . . , znm are scalars provided by the constraint solver.
We highlight that the matrix A of linear equality constraints, the matrix G of

linear inequality constraints, the matrix D of first-order partial derivatives, and the
matrix H of second-order partial derivatives can be sparse, i.e., most of their entries
equal to 0. Storing those matrices in data structures dedicated to sparse matrices
reduces the computational cost and the memory cost of the convex program.

2.7 Summary

In this section, we briefly summarize how the fields reviewed in this chapter make
part of the settings that are related to this dissertation. First, we provide a diagram
that indicates the relations among the fields and the settings. Then, we briefly

58

Chapter 2. Background 2.7. Summary

elaborate on the settings. Finally, we summarize the main reasons why the reviewed
fields are selected for this dissertation.

In Figure 2.5, we illustrate the relation among the fields and the settings that
are part of (or close to) the scope of this dissertation. We remark that we use
simplified and broadened naming of the settings because our main intention is to
highlight the boundary between the aspects that are part and outside the scope of
this dissertation.

Figure 2.5: Relation among the fields and the settings considered in the dissertation.
The arrows indicate that a field (or a setting) influences another field (or another
setting). The ovals at the bottom (pointed at by dashed arrows) are settings that
are outside (yet close to) the scope of this dissertation. The ovals at the center are
settings that are part of the scope.

We briefly elaborate on the settings (illustrated in Figure 2.5) that are part of
(or close to) the scope of this dissertation.

The setting with static, distributed models refers to the case when a commu-
nication network of agents is modeled by a fixed graph, whereas the setting with
dynamic models (outside the scope) refers to the case where the graph of the

59

2.7. Summary Chapter 2. Background

communication network changes over time.
The setting with optimized, privatized models refers to the case with utility-

maximizing privatization mechanisms, as opposed to the classic privatization
mechanisms, e.g., the Gaussian mechanism (Definition 6) and the Laplace mech-
anism (Definition 7). We remark that classic privatization mechanisms result,
typically, in more privatization noise than necessary (discussed in Chapter 4).

The setting with personalized models (outside the scope) refers to the case
where each agent (or a distinct subgroup of agents) of a communication network
aims for learning local statistical models, as opposed to the case where all the
agents aim for learning the same statistical model.

We summarize the main reasons why the reviewed fields (illustrated in Figure
2.5) are selected for this dissertation.

Regarding probability theory, we use Hoeffding’s inequality in our example of
distributed averaging on Erdős–Rényi graphs (discussed in Section 3.2) and we use
U-statistics in our contributions on distributed averaging on graphs with arbitrary
degree sequences (discussed in Section 3.3) and the tailored noise mechanism
(discussed in Chapter 4).

Regarding graph theory, we use power-law degree sequences in our contribution
on distributed averaging on graphs with arbitrary degree sequences (discussed in
Section 3.3).

Regarding random graphs, we use the Erdős–Rényi model and the configuration
model, respectively, in our example and contribution on distributed averaging on
random graphs (discussed, respectively, in Section 3.2 and Section 3.3).

Regarding distributed systems, we discuss overlay networks and gossip algo-
rithms for distributed averaging in our examples and contribution on the bias
in distributed averaging when the graph of agents is non-regular (discussed in
Chapter 3). Also, we discuss a central curator which is present in our contributions
on distributed averaging on graphs with arbitrary degree sequences (discussed in
Section 3.3) and the tailored noise mechanism (discussed in Chapter 4).

Regarding machine learning, we use linear regression models in our contributions
on distributed averaging on graphs with arbitrary degree sequences (discussed in
Section 3.3) and the tailored noise mechanism (discussed in Chapter 4).

Regarding data privacy, we use the threat model of honest-but-curious agents
and the classic privatization mechanisms in our contributions on distributed aver-
aging on graphs with arbitrary degree sequences (discussed in Section 3.3) and the
tailored noise mechanism (discussed in Chapter 4).

Finally, regarding mathematical optimization, we review the standard form of
a convex program, which is accepted by the cvxopt package, and that is used in
our contribution on the tailored noise mechanism (discussed in Chapter 4). In
particular, we use a convex program to design a utility-maximizing privatization
mechanism.

60

Chapter 3

Bias in distributed averaging

In this chapter, we study the setting of distributed averaging (discussed in Subsec-
tion 2.3.2), where each agent of a communication network is attributed a vector
of individual values, and where each agent intends to collaboratively (without a
central curator) compute the unbiased averages over all the aforementioned vectors.
In particular, we aim for performing distributed averaging while mitigating the
bias which is present when the graph of agents is non-regular (i.e., the numbers of
neighbors vary).

Usually, existing works solve this problem by assuming that either (i) each
agent reveals its degree to its neighbors or (ii) every two neighboring agents can
perform handshakes (discussed in Section 2.3) in every exchange of information.
However, the degrees reveal information about the profiles of the agents and the
handshakes are impractical upon inactive agents.

Outline. In Section 3.1, we discuss two approaches for computing an unbiased
empirical distribution of the individual values attributed to the agents: the first
approach is based on overlay networks (discussed in Section 2.3) and the second
approach is based on the simple gossip algorithm (discussed in Subsection 2.3.1).
In Section 3.2, we walk through an example of proving an asymptotic guarantee
for the spectral norm of the difference between the linear transformation 1T1

n

(centralized averaging) and the linear transformation due to the simple gossip
algorithm upon convergence, where 1 is the vector of 1’s of length n, and when
the graph of agents is modeled by the ER model (Definition 2). In Section 3.3, we
prove an asymptotic guarantee for the mean squared error between the average of
sensitive attributes and the average of locally privatized attributes computed by a
bias-correcting variant of the simple gossip algorithm, when the graph of agents is
modeled by the configuration model (Definition 4), and when the agents interact
without handshakes.

3.1 Estimating empirical distributions

At the beginning of this section, we formulate the problem of estimating a probability
distribution in a distributed manner.

Let G = (V,E, λ,Σ) be a vertex-labeled graph, where Σ is a set of (all possible)
labels (real-valued vectors) and a function λ : V → Σ assigns a label to a vertex.

61

3.1. Estimating empirical distributions Chapter 3. Bias in distributed averaging

Our communication network is on the graph G, and each agent (a vertex in V)
is assigned a label l which is drawn independently from some fixed but unknown
probability distribution on Σ.

We aim for approximating the unknown probability distribution by an empirical
distribution p̂Σ, where the probability of observing a label l is the following:

p̂Σ(l) =
|{v ∈ V |λ(v) = l}|

|V |
. (3.1)

In Subsection 3.1.1, we discuss computation of an unbiased empirical distribution
by an overlay network (discussed in Section 2.3). In Subsection 3.1.2, we discuss
computation of an unbiased empirical distribution using gossip algorithms (discussed
in Subsection 2.3.1).

3.1.1 Approach with an overlay network

The agents of a communication network can obtain the empirical distribution p̂Σ
(Equation 3.1) in a distributed manner using an overlay network which is a tree.

We summarize the application of such overlay network as follows:

1. The agents compute a spanning tree of the graph, for example, by an algorithm
discussed in Gallager et al. [GHS83]

2. The agents propagate their labels (and all the labels they receive from others
during the process) towards the root of the spanning tree. (If a smaller
sample is desired they toss a coin and only propagate their own label with
the probability equal to the size of the desired sample divided by the number
of vertices). Since the overlay network is a tree, the root receives each label
only once, and thus the computation of the empirical distribution p̂Σ at the
root is unbiased.

3. The root broadcasts the sample back through the spanning tree overlay
network, thus each agent is aware of the empirical distribution p̂Σ.

The issue with the approach of computing the empirical distribution p̂Σ by a
spanning tree overlay network is that the transmission of the final sample is not
robust upon failure or inactivity of a single agent. It is even worse when the failing
agent is closer to the root because less agents in total can receive the result.

3.1.2 Approach with gossip algorithms

The agents of a communication network can compute the empirical distribution p̂Σ
(Equation 3.1) by distributed averaging using gossip algorithms.

In this subsection, we firstly recall the simple gossip algorithm (Algorithm 1)
and illustrate an example of applying Algorithm 1 for estimating the empirical
distribution p̂Σ (we do so by defining Algorithm 2). Then, we show that we have a
bias between the empirical distribution estimated by Algorithm 2 and the empirical
distribution p̂Σ, when the graph G = (V,E, λ,Σ) of the communication network is
non-regular (when the vertices have unequal degrees). Finally, we recall how the

62

Chapter 3. Bias in distributed averaging 3.1. Estimating empirical distributions

Metropolis–Hastings step (discussed in Subsection 2.3.2) can improve Algorithm
2, so that the aforementioned bias is corrected when each agent makes use of the
degrees of its neighbors.

Simple gossip algorithm. We recall the simple gossip algorithm by defining
Algorithm 1 below, which is a special case of gossip algorithms discussed by Boyd et
al. [Boy+06] We remark that one iteration of Algorithm 1 is a linear transformation
from Rn to Rn, i.e., the transition matrix T = diag(d)−1A, where A is the adjacency
matrix of the graph G of agents and d is the degree sequence of G. In other words,
one iteration of Algorithm 1 involves each agent averaging the values revealed by
its neighbors. This way, the execution of Algorithm 2 for the number tgo of gossip
iterations results in the linear transformation Ttgo .

Algorithm 1: SimpleGossip (SiGo)

Input : A ∈ [0, 1]n×n: adjacency matrix of the graph G of agents
tgo ∈ N : number of gossip iterations
w ∈ Rn

Output : z ∈ Rn

1 d←
∑

i∈[n] A:,i

2 T← diag(d)−1A
3 z← Ttgow

We illustrate an example of applying SiGo (Algorithm 1) for computing the
order n of G, when G is a complete graph and has all self-loops. We assign a label
1 to one agent, and a label 0 to the remaining n− 1 agents. In the 1-st iteration of
SiGo, each agent computes the average 1+0+...+0

n
= 1

n
. By taking the reciprocal of

1
n
, each agent computes n.

We proceed by illustrating an example of applying Algorithm 1 for estimating
the empirical distribution p̂Σ, we do so by defining Algorithm 2 below. Firstly, for
each vertex v ∈ V with a label λ(v), let I[λ(v)] ∈ {0, 1}|Σ| be the initial estimate
of the empirical distribution p̂Σ, where the probability of the label λ(v) is 1 and
all other probabilities are 0. Then, we remark that the output of Algorithm 2
is a matrix, as opposed to a vector (as in Algorithm 1). This way, for i ∈ [n],
the i-th row of the aforementioned matrix contains an estimate of the empirical
distribution p̂Σ computed by the agent i. Also, we remark Algorithm 1 corresponds
to centralized simulation of distributed averaging, whereas Algorithm 2 corresponds
to a decentralized one.

Algorithm 2: SimpleGossip for estimating a distribution

Input : G = (V,E, λ,Σ) : labeled graph of order n
tgo ∈ N : number of gossip iterations

Output : Y(tgo) ∈ Rn×|Σ| : estimates of the empirical distribution p̂Σ
1 for v ∈ V do

2 Y
(0)
v,: ← I[λ(v)]

3 for j ← 1 to tgo do
4 for v ∈ V do

5 Y
(j)
v,: ←

∑
u∈N(v) Y

(j−1)
u,:

deg(v)

63

3.2. Averaging on ER graphs Chapter 3. Bias in distributed averaging

In Line 6 of Algorithm 2, each agent iteratively updates its estimate by averaging
the estimates computed by its neighbors. This way, when G is non-regular, there
exist such v, u ∈ V so that deg(v) ̸= deg(u). Thus, when Algorithm 2 converges,
we have a bias (also discussed in Subsection 2.3.2) between a value of the empirical
distribution estimated by Algorithm 2 and the respective value of the empirical
distribution p̂Σ, when G is non-regular.

Metropolis–Hastings gossip algorithm. Algorithm 2 can be improved
using the Metropolis–Hastings step (discussed in Subsection 2.3.2) in order to
obtain unbiased estimates of the values of the empirical distribution p̂Σ, when
G is non-regular; such improvement is defined by Algorithm 3 where for any
neighboring vertices u, v ∈ V , we have fMH(u, v) = 1 if deg(v) ≥ deg(u) and

fMH(u, v) = deg(v)
deg(u)

otherwise. We remark that the simple gossip algorithm with the

Metropolis–Hastings step (MetropolisHastingsGossip) is discussed in Kenyeres
and Kenyeres [KK20] as well as Giaretta and Girdzijauskas [GG19].

Algorithm 3: MetropolisHastingsGossip for estimating a distribution

Input : G = (V,E, λ,Σ) : labeled graph of order n
tgo ∈ N : number of gossip iterations

Output : Y(tgo) ∈ Rn×|Σ| : estimates of the empirical distribution p̂Σ
1 for v ∈ V do

2 Y
(0)
v,: ← I[λ(v)]

3 for j ← 1 to tgo do
4 for v ∈ V do

5 Y
(j)
v,: ←

∑
u∈N(v)

(
fMH(u,v)Y

(j−1)
u,: +

(
1−fMH(u,v)

)
Y

(j−1)
v,:

)
deg(v)

When Algorithm 3 converges, each value of the empirical distribution p̂Σ (present
in each row of the output) is unbiased due to the factor fMH(u, v) and the factor(
1− fMH(u, v)

)
in Line 6. We remark that, for computing fMH(u, v), each agent

has to be aware of the degree of its neighbors, while in some contexts the degree is
a sensitive attribute.

We recall that Algorithm 1, Algorithm 2, and Algorithm 3 converge when the
graph G is connected and has a self-loop or a cycle of odd length, as discussed in
Subsection 2.3.2.

3.2 Averaging on ER graphs

In this section, we continue to study the bias between the average of individual
values computed by the simple gossip algorithm (Algorithm 1) and the true average
of individual values, when the graph G = (V,E) of agents is non-regular, as initially
discussed in Subsection 3.1.2. When G is regular, the linear transformation due
to the simple gossip algorithm upon convergence equals the linear transformation
1T1
n

(centralized averaging), thus the bias is absent, where 1 is the vector of 1’s of
length n = |V |.

In particular, we walk through an example of proving an asymptotic guarantee
for the spectral norm of the difference between the linear transformation 1T1

n
and

64

Chapter 3. Bias in distributed averaging 3.2. Averaging on ER graphs

the linear transformation due to the simple gossip algorithm (Algorithm 1) upon
convergence, when the graph of agents is modeled by the ER model (Definition 2).
Instead of a scalar transition matrix T, we consider a random transition matrix
T = diag(D)−1A, where A is the random adjacency matrix of a random graph
modeled by the ER model, and D is the random degree sequence of the random
graph. We remark that the degree sequence D can be computed from the rows of
(and thus depends on) the adjacency matrix A.

We intend to quantify the difference between the linear transformation 1T1
n

(centralized averaging) and the linear transformation due to the simple gossip
algorithm (Algorithm 1) upon convergence, when the simple gossip algorithm is
executed on a graph modeled by the ER model. Thus, we intend to upper-bound

the spectral norm
∥∥∥Ttgo − 1T1

n

∥∥∥
2
, where tgo is the number of gossip iterations.

In particular, we provide Theorem 1 and walk through its proof. We remark
that some techniques used in the proof of Theorem 1 result in a suboptimal
asymptotic guarantee compared to similar works such as Lugosi et al. [LMZ18]
However, by Theorem 1, we intend to provide an upper bound for the spectral

norm
∥∥∥Ttgo − 1T1

n

∥∥∥
2

instead of the spectral norm
∥∥∥ 1
np
A− 11T

n

∥∥∥
2
, where the latter

spectral norm is found in the literature, and where, for the former spectral norm,
we have not found a reference in the literature. Also, we consider a transition
matrix T which is random as opposed to fixed, and remark that the case where
such transition matrix is fixed is discussed in the slides by Iutzeler [Iut16a].

Theorem 1. Let A be the random adjacency matrix of an ER random graph
modeled by the probability mass function pG(G |n, p), where n is the order of the
graph, p is the probability of edge assignment between any two distinct vertices of
the ER random graph, and G is an observation of the ER random graph. Let D be
the random degree sequence of the ER random graph. Let T = diag(D)−1A. Let

us assume that the 2-nd largest singular value of T is O
(

logn√
n

)
. (We support the

assumption in the proof.) With high probability, we have

lim
tgo→∞

∥∥∥∥Ttgo − 1T1

n

∥∥∥∥
2

= O
(

log n√
n

)
,

when p ∈
[
(logn)2

n
, 1− (logn)2

n

]
.

Proof. Our proof is split in five parts. In the first part, we decompose the spectral
norm in three components. From the second to the fourth part, we upper bound,
respectively, the spectral norm of each of the decomposed components. In the fifth
part, we compose the three upper bounds to obtain our result.

Decomposition. We decompose the spectral norm as follows:∥∥∥∥Ttgo − 1T1

n

∥∥∥∥
2

=

∥∥∥∥Ttgo −T + T− 1

np
A +

1

np
A− 1T1

n

∥∥∥∥
2

≤
∥∥Ttgo −T

∥∥
2

+

∥∥∥∥T− 1

np
A

∥∥∥∥
2

+

∥∥∥∥ 1

np
A− 11T

n

∥∥∥∥
2

,

65

3.2. Averaging on ER graphs Chapter 3. Bias in distributed averaging

where the second line is due to the triangle inequality.
The first component

∥∥Ttgo −T
∥∥
2
. Let U be the random matrix of eigenvectors

of the random transition matrix T, and let V be the random diagonal matrix of
eigenvalues of T, so that UVU−1 is the eigendecomposition of T.

We highlight that

Ttgo = UVU−1 . . .UVU−1

= UVtgoU−1.

This way, ∥∥Ttgo −T
∥∥
2

=
∥∥UVtgoU−1 −UVU−1

∥∥
2

=
∥∥U (Vtgo −V

)
U−1

∥∥
2
.

We recall that the spectral norm of a matrix equals the largest singular value
of the matrix (indicated by Equation 2.1), and singular values can be obtained
from respective eigenvalues. Then, we recall that the eigenvalues of the matrix
U
(
Vtgo −V

)
U−1 are in the diagonal of the matrix Vtgo −V, since the matrix

U
(
Vtgo −V

)
U−1 is the eigendecomposition of the matrix Ttgo −T.

An observation of T is a row stochastic matrix because the sum of each row of
T is constrained to equal 1. In Banerjee and Mehatari [BM16], the authors indicate
that 1 is the highest singular value of a row stochastic matrix. This way, (1, 1) is a
pair of an eigenvalue and an eigenvector of T. In Paz [Paz63], the author indicates
that limtgo→∞Ttgo exists when G is connected and has a self-loop or a cycle of odd
length. Then, in Frieze and Karoński [FK16], the authors show that G is connected,
with high probability, when n→∞ and p ∈

[
logn
n

, 1
]
. Furthermore, we remark that

a triangle graph is a cycle of odd length, and, referring to Gilmer and Kopparty
[GK16], we remark that the probability of the existence of a triangle subgraph
between three vertices of an ER graph is p3. This way, with high probability, G has
a cycle of odd length, and the only non-zero eigenvalue in limtgo→∞Vtgo is 1 (we
recall that the diagonal of limtgo→∞Vtgo contains the eigenvalues of limtgo→∞Ttgo).
As a result, the respective eigenvalue in limtgo→∞Vtgo −V is 1− 1 = 0.

We assume that the 2-nd largest singular value of T is, with high probability,

O
(

logn√
n

)
, when p ∈

[
(logn)2

n
, 1− (logn)2

n

]
. We support the assumption by firstly

indicating that Frieze and Karoński [FK16] show that, with high probability, the
2-nd largest singular value of the adjacency matrix of an ER random graph is

O(
√
n log n), when p ∈

[
(logn)2

n
, 1− (logn)2

n

]
. (We remark that we were unable to

interpret and quantify exactly the high probability of the aforementioned argument,
thus leaving it as a future direction.) Secondly, since the expected degree of a vertex
of an ER random graph is (n− 1)p, we indicate that every element of diag(D)−1 is
O(1

n
). Since diag(D)−1 is a diagonal matrix, the second largest singular value of T

is O(
√
n log n)O

(
1
n

)
= O

(
logn√

n

)
.

Hence, with high probability,

lim
tgo→∞

∥∥Ttgo −T
∥∥
2

= O
(

log n√
n

)
, (3.2)

66

Chapter 3. Bias in distributed averaging 3.2. Averaging on ER graphs

when p ∈
[
(logn)2

n
, 1− (logn)2

n

]
.

The second component
∥∥∥T− 1

np
A
∥∥∥
2
. We perform the following rearrangement:∥∥∥∥T− 1

np
A

∥∥∥∥
2

=

∥∥∥∥diag(D)−1A− 1

np
A

∥∥∥∥
2

=

∥∥∥∥diag(D)−1A− 1

np
diag(D)diag(D)−1A

∥∥∥∥
2

=

∥∥∥∥(I− diag(D)

np

)
diag(D)−1A

∥∥∥∥
2

≤
∥∥∥∥I− diag(D)

np

∥∥∥∥
2

∥T∥2

≤ max
i∈[n]

∣∣∣∣1− Di

np

∣∣∣∣ ∥T∥2 ,
where the random value Di is the i-th element of D.

We bound max
i∈[n]

∣∣∣1− Di

np

∣∣∣. Since we consider the ER model, we have∣∣∣∣1− Di

np

∣∣∣∣ =

∣∣∣∣Di

n
− p

∣∣∣∣
=

∣∣∣∣Di

n
− E

[
Di

n

]∣∣∣∣ .
Let t > 0. By Hoeffding’s inequality (Equation 2.4), for each i ∈ [n], we have

Pr

(∣∣∣∣Di

n
− E

[
Di

n

]∣∣∣∣ ≥ t

)
≤ 2e−2nt2 ,

which is a bound for
∣∣∣1− Di

np

∣∣∣. However, we aim for bounding max
i∈[n]

∣∣∣1− Di

np

∣∣∣. By the

addition law of probability (Equation 2.2), we have

Pr

(
∃i ∈ [n],

∣∣∣∣Di

n
− E

[
Di

n

]∣∣∣∣ ≥ t

)
≤
∑
i∈[n]

Pr

(∣∣∣∣Di

n
− E

[
Di

n

]∣∣∣∣ ≥ t

)
≤ 2ne−2nt2 .

Fixing 0 < δ ≪ 1 and t =
√

log(2n/δ)
2n

, we get

Pr

(
∃i ∈ [n],

∣∣∣∣Di

n
− E

[
Di

n

]∣∣∣∣ ≥
√

log(2n/δ)

2n

)
≤ 2ne− log(2n/δ)

= 2nelog(δ/2n)

= δ.

Therefore, with probability 1− δ,

max
i∈[n]

∣∣∣∣1− Di

np

∣∣∣∣ <
√

log(2n/δ)

2n
,

67

3.2. Averaging on ER graphs Chapter 3. Bias in distributed averaging

which, in terms of n, is similar to a result in the article by G. Chung and Radcliffe
[GR11].

We proceed by the expression of ∥T∥2. As discussed earlier, the largest singular
value of an observation of T is 1. Thus, by Equation 2.1, we have ∥T∥2 = 1.

Hence, with probability 1− δ,∥∥∥∥T− 1

np
A

∥∥∥∥
2

≤ max
i∈[n]

∣∣∣∣1− Di

np

∣∣∣∣ ∥T∥2
<

√
log(2n/δ)

2n
. (3.3)

The third component
∥∥∥ 1
np
A− 11T

n

∥∥∥
2
. Oliveira [Oli09] shows that for an ER

random graph, with probability 1− δ,∥∥A− p11T
∥∥
2
≤ 4
√

(n− 1)p log(n/δ)

< 4
√

np log(n/δ).

We rearrange the previous result, and thus arrive to the expression where, with
probability 1− δ, we have the following:

∥∥∥∥ 1

np
A− 11T

n

∥∥∥∥
2

< 4

√
log(n/δ)

np
. (3.4)

Composition. We recompose the three components (Equation 3.2, Equation
3.3, and Equation 3.4). Hence, with high probability,

lim
tgo→∞

∥∥∥∥Ttgo − 1T1

n

∥∥∥∥
2

< O
(

log n√
n

)
+

√
log(2n/δ)

2n
+ 4

√
log(n/δ)

np

= O
(

log n√
n

)
,

when p ∈
[
(logn)2

n
, 1− (logn)2

n

]
.

By Theorem 1, we conclude that the spectral norm of the difference between
the linear transformation due to the simple gossip algorithm (Algorithm 1) upon

convergence and the linear transformation 1T1
n

is O
(

logn√
n

)
, when the simple gossip

algorithm is executed on a graph modeled by the ER model. Also, we remark that
the aforementioned spectral norm is an asymptotic guarantee for the error between
and the true average of individual values computed by the simple gossip algorithm
(Algorithm 1) and the true average of individual values, when the graph of agents
is non-regular yet close to a regular graph (as the expected degree of each vertex
of a random graph that follows the ER model is the same).

68

Chapter 3. Bias in distributed averaging 3.3. Averaging on arbitrary graphs

3.3 Averaging on arbitrary graphs

In this section, we continue to study the bias between the average of individual
values computed by the simple gossip algorithm (Algorithm 1) and the true average
of individual values, when the graph G = (V,E) of agents is non-regular, as initially
discussed in Subsection 3.1.2 and Section 3.2.

In particular, we prove an asymptotic guarantee for the mean squared error
between the average of sensitive attributes and the average of locally privatized
attributes computed by a bias-correcting variant of the simple gossip algorithm
(Algorithm 1), when the individual values depend on the degrees of the agents, and
the degrees are sensitive attributes. Unlike in Section 3.2 where the graph of agents
is modeled by the ER model, we consider the case where the graph of agents is
modeled by the configuration model (Definition 4). This way, we consider graphs
with arbitrary degree sequences. Also, we consider handshake-free interaction
(discussed in Section 2.3).

3.3.1 Introduction

In existing works on distributed averaging, it is common to assume a form of
handshakes between every two neighboring agents in every exchange of information,
i.e., when one agent uses information of a second agent, the second agent becomes
aware of this and must actively help the process. However, there exist practical
scenarios where such interaction is time consuming due to inactivity of some agents.

To give an illustrative example on handshake-free interaction, let us consider a
group of researchers who aim at solving a particular problem. The researchers can
follow each other, and thus read each other’s currently best strategy in each other’s
most recently published paper. The researchers work on their solution strategy
individually and without necessarily directly contacting each other, attempting to
improve their current solution strategies based on their individual skills and the
ideas read in the papers of the followed colleagues. At some point, some of them
might find a fully satisfactory solution.

We proceed by elaborating on our setting. We model the network of agents by
a graph where neighboring agents are connected by edges. Each agent has sensitive
attributes, such as its degree, and each agent intends to privatize (add appropriate
noise to) its sensitive attributes on its own (without a central curator) before
sharing them with other agents. Otherwise, if the sensitive attributes are known,
they might be used to profile an agent (e.g., in social media, the connectivity of an
agent suggests its popularity).

Our approach for collaboratively computing an unbiased estimate of the average
of sensitive attributes has two parts. In the first part, the agents commit to the
simple gossip algorithm (Algorithm 1) for distributed averaging. More specifically,
each agent hides its sensitive attributes under noise of edge-differential privacy (a
standard of data privacy) and makes them visible to the neighbors. Then, each
agent repeatedly averages the values revealed by its neighbors and updates the
displayed value by the computed average. At some point this converges and the
computed averages are biased when the graph is non-regular. In the second part,

69

3.3. Averaging on arbitrary graphs Chapter 3. Bias in distributed averaging

the agents perform a procedure combining the biased averages for bias correction.
The proposed approach is decentralized, handshake-free, and privacy-preserving.

We investigate a use case for the proposed approach, namely, fitting linear
regression models while keeping the degrees private. We prove the asymptotic
guarantee that the mean squared error (MSE) between the average of privatized
attributes computed by our approach and the average of sensitive attributes is
O(1

n
), where n is the number of agents. We show on a synthetic graph dataset

that the expected error is sufficiently tight. Also, we show on the synthetic graph
dataset and real graph datasets that, when the features are polynomials of degrees,
the regression model fitted by our approach can outperform the solution when
locally privatized attributes are averaged by centralized averaging (Cen), i.e., the
averaging function f(x) = 1

n

∑
i∈[n] xi, where x ∈ Rn.

We briefly motivate several elements of our setting. Usually, there are two
common forms of information flow [Gia11]: pulling, where an agent asks its
neighboring agent for its value, and pushing, where an agent sends its value to
a neighboring agent. In this work, we study a weak form of pulling where an
agent obtains the current value of a neighbor without the neighbor being aware
of this. In particular, each agent continuously publishes its current values so
that its neighbors can obtain them, but there is no other communication (e.g.,
there is no communication process to build overlay networks [JMB09] that can
improve distributed computations). We argue that pulling results in a stronger
self-management because an agent does not have to wait until another agent
disseminates its current values. Since the agents do not exchange handshakes (like
in the Transport Layer Security protocol), information dissemination is more robust
upon inactive agents. Further, we assume that the degree is sensitive because it
can reveal information about the profile of an agent [Hay+09; Hay+10]. Finally,
we mention that our approach applies for graphs with power-law degree sequences
which, as indicated by Zipf’s law, are common in real-world (e.g., computer, social,
biological) networks.

Outline. In Subsection 3.3.2, we precise our setting. In Subsection 3.3.3,
we perform the literature study. In Subsection 3.3.4, we state our approach. In
Subsection 3.3.5, we discuss a use case on linear regression. In Subsection 3.3.6, we
prove the asymptotic guarantee that the MSE between the average of privatized
attributes computed by our approach and the average of sensitive attributes is
O(1

n
). In Subsection 3.3.7, we discuss the experiments on a synthetic graph dataset

and real graph datasets. In Subsection 3.3.8, we conclude.

3.3.2 Preliminaries

In this subsection, we precise our setting by describing the communication model
and the threat model.

Communication model. We model our network of agents by an undirected
graph G = (V,E), where V is the set of vertices and E is the set of edges. We
denote the order of the graph by n. We denote the degree of a vertex v by dv. We
denote the degree sequence of G by d = (d1, d2, . . . , dn). We denote the lowest
degree and the highest degree, respectively, by dmin and dmax. For k ∈ R and

70

Chapter 3. Bias in distributed averaging 3.3. Averaging on arbitrary graphs

x ∈ Rn, we denote the k-th raw moment 1
n

∑
i∈[n] x

k
i by µxk . Similarly, for k, l ∈ R

and x,y ∈ Rn , we denote 1
n

∑
i∈[n] x

k
i y

l
i by µxk.yl . The summaries of notation are

provided in Table 2.1 and Table 2.3.

We model G by an observation of a random graph (with fixed vertices and drawn
edges) drawn from the configuration model (Definition 4) because the configuration
model is parametrized by an arbitrary degree sequence.

We assume that G is connected and has a self-loop or a cycle of odd length
because those conditions are necessary for Algorithm 1 to converge. We remark
that the connectivity of the configuration model is discussed in Federico and van
der Hofstad [FH17]. Then, we remark that a triangle graph is a cycle of odd length,
and the count of triangle subgraphs in the configuration model is discussed in Gao
et al. [Gao+20]

Threat model. We assume that the agents are honest-but-curious [Gol04],
i.e., all agents follow the established protocols (they are honest), but they try to
use the available information to infer sensitive information of other agents (they
are curious). We remark that in our setting where agents publish information and
can see published information from others but no other communication is possible,
it is straightforward to protect against agents which are malicious in the sense they
deviate from the protocol in order to obtain more information. Protecting against
agents which deviate from the protocol to influence the result of the computation,
e.g., by publishing false information, which is also called data poisoning and studied
in Sabater et al. [SBR22], is outside the scope of this work.

We highlight that we use (ϵ, δ)-edge-differential privacy (we recall its definition
below). In particular, we use local differential privacy [Kas+11], where privatization
noise is added to attributes; we refer to such attributes as sensitive attributes.

Since we consider datasets of graphs, we remark that classic notions of differen-
tial privacy for graphs are edge-differential privacy and node-differential privacy
[Kas+13; Hay+09]. In node-differential privacy, adjacent datasets of graphs differ
in one vertex and all edges incident with that vertex. In edge-differential privacy,
adjacent datasets of graphs differ in one edge. This way, node-differential privacy
is, typically, considered as a stronger notion of privacy than edge-differential pri-
vacy [TEN22]. However, as indicated in Wang and Wu [WW13], node-differential
privacy commonly leads to privatization noise that strongly perturbs privatized
attributes. We remark that k-edge-differential privacy [Hay+09] is a notion in
between edge-differential privacy and node-differential privacy, and under such
notion adjacent datasets of graphs differ in k edges.

In this work, we chose to consider edge-differential privacy as opposed to k-
edge-differential privacy (or node differential privacy) due to the following reasons:

• We consider honest-but-curious agents as our threat model and exclude the
threat of collusion among the neighborhood of a particular agent. If the
collusion was taken into account, colluding agents would know all the edges
of the aforementioned agent and thus would be able to compute its sensitive
degree. In our case, each agent knows only one edge of its neighbor. Thus,
we consider adjacent datasets of graphs which differ in one edge as opposed
to k edges, where such k edges would be known to a set of k colluding agents.

71

3.3. Averaging on arbitrary graphs Chapter 3. Bias in distributed averaging

• We consider handshake-free interaction among agents. In such case, an ad-
versary could infer additional information about the size of the neighborhood
of a particular agent due to a delay caused to perform a handshake. Thus,
we consider adjacent dataset of graphs which differ in one edge as opposed to
k edges, where information about such k edges could be inferred if additional
k agents sent requests to the agent that is in the process of performing a
handshake with the adversary.

• We model the graph of agents by the configuration model (Definition 4)
which is parametrized by an arbitrary degree sequence. However, we are
mostly interested in graphs with power-law degree sequences, and power-law
degree sequences result, typically, in a relatively low average degree of the
graph (in our experiments, we will either consider graphs with power-law
degree sequences or graphs with a relatively low average degree). This way,
we mostly consider cases where the probability of having many subsets of
common neighbors is relatively low (i.e., the probability of having many short
cycles in a graph is relatively low). As a consequence, it is relatively unlikely
that an agent can correctly guess that its two neighbors are also neighbors
among themselves.

We recall the definition of edge-differential privacy for graphs by stating it in a
similar form as for (ϵ, δ)-differential privacy in Definition 5.

Definition 8. Let ϵ, δ ≥ 0. A randomized algorithm A is (ϵ, δ)-edge-differentially
private if and only if, for all S ⊆ image(A) and for all triples (D,D′, e) in a
collection where adjacent datasets D,D′ differ in an edge e, we have

Pr(A(D) ∈ S) ≤ exp(ϵ) Pr(A(D′) ∈ S) + δ.

A classic strategy to guarantee (ϵ, δ)-differential privacy is to generate noisy
values from the Gaussian mechanism (Definition 6). Let G = (V,E) and G′ = (V,E ′)
be graphs of adjacent datasets, where e ∈ E and e ̸∈ E ′. For each v ∈ V , let
Ev and E ′

v denote, respectively, the set of edges incident with v on G and G′.
Let f be a map from a set of all edges incident with a vertex v to its degree,
i.e., dv = |Ev| = f(Ev) and d′v = |E ′

v| = f(E ′
v). Based on the global sensitivity

discussed in Imola et al. [IMC21], we recall the l2 sensitivity of the degree of an
agent under local (ϵ, δ)-edge-differential privacy:

∆2(f) = max
v∈V
∥f(Ev)− f(E ′

v)∥2

= max
v∈V
|dv − d′v|

= |dv − dv − 1|
= 1.

3.3.3 Literature study

In this subsection, we perform the literature study.

72

Chapter 3. Bias in distributed averaging 3.3. Averaging on arbitrary graphs

We highlight that we intend to design a communication protocol for distributed
averaging, where (i) individual values that depend on the degrees are differentially
private, (ii) the averages of individual values are unbiased, (iii) the choice of the
degree sequence is arbitrary, (iv) handshakes are absent, and (v) a central curator
is absent.

We proceed by discussing some reference works with partial solutions.

If the degree was not a sensitive attribute, our problem could be solved by a
gossip algorithm that corrects the bias by an application of the Metropolis–Hastings
algorithm [Has70] (as discussed in Subsection 3.1.2). More specifically, in each
gossip iteration, an agent could make use of the degrees of its neighbors to correct
the bias from each value that is averaged.

If handshakes among agents were allowed, the community could solve the
problem by agreeing on an overlay network (a network “built” on top of the initial
one). For example, the community could agree on an overlay network that is a
regular graph [Hua+21] (as discussed in Subsection 3.1.1).

There are several gossip algorithms that solve our problem by relying on
handshakes or pushing. Boyd et al. [Boy+06] requires the agents to agree on an
independent edge set (so-called matching). Kempe et al. [KDG03] assumes that
each agent knows if a sent message failed to reach its destination. Bellet et al.
[BGH20] assumes that an agent always accepts a message sent to it. In Dellenbach
et al. [DBR18], every two neighbors initialize their communication by sharing a
value related to a positive privatization noise for one and a negative privatization
noise for other. Ridgley et al. [RFL19] explicitly mentions the use of pushing.

We remark that garbled circuits [Gas+17; Nik+13] is an alternative approach
based on secure multi-party computation. However, secure multi-party computation
results in additional computational cost and involves public-key cryptography which
relies on handshakes.

We discuss the reference works that we took as building blocks. Oliveira [Oli09]
proves an asymptotic guarantee on the matrix norm between the adjacency matrix
of an Erdős–Rényi random graph and its expectation, such guarantee has motivated
us to work on a similar idea for graphs with arbitrary degree sequences. Iutzeler et
al. [ICH13] discusses a gossip algorithm for distributed averaging on graphs with
arbitrary degree sequences. Chierichetti et al. [CLP11] considers graph models
characterized by power-law degree sequences. Lindell and Pinkas [LP09] provides a
compendium on privacy-preserving distributed averaging techniques. Aysal et al.
[Ays+09] considers a gossip algorithm that is asynchronous. Bell et al. [Bel+20]
fits a regression model using unbiased averages which are computed in a distributed
manner.

3.3.4 Approach

In this subsection, we firstly briefly discuss the simple gossip algorithm (Algorithm
1), where in later references the simple gossip algorithm is shorthanded by SiGo.
Then, we state a theorem illustrating that SiGo results in biased averages when
the graph G of agents is non-regular. Afterwards, we design a strategy for bias
correction.

73

3.3. Averaging on arbitrary graphs Chapter 3. Bias in distributed averaging

In SiGo (Algorithm 1), the transition matrix T is defined using the adjacency
matrix A, which indicates that the averaging by SiGo is synchronous. However,
Boyd et al. [Boy+06] indicates that, upon convergence, SiGo provides the same
output when executed asynchronously. Regarding the convergence of SiGo (the
elements of the output vector z become equal), Kermarrec and van Steen [KS07]
indicates that, in general, tgo = ⌈log n⌉ is sufficient when log n is approximately the
diameter of G and when the degree sequence d follows a power-law distribution.

We state a theorem for the value of each element of the output z of SiGo, when
SiGo converges:

Theorem 2. Let A be the adjacency matrix of a graph G of order n. Let d be the
degree sequence of G. Let w ∈ Rn. Let SiGo (A, tgo,w) denote any element of the
output z of Algorithm 1. We have

lim
tgo→∞

SiGo (A, tgo,w) =
1

n

1

µd

∑
i∈[n]

diwi, (3.5)

when G is connected and has a self-loop or a cycle of odd length.

In later references, SiGo (w) shorthands limtgo→∞ SiGo (A, tgo,w).

Proof. In this proof, we expand limtgo→∞Ttgow, where

T = diag(d)−1A

is the transition matrix of SiGo (Algorithm 1), and where w ∈ Rn contains the
values that are intended to be averaged.

Even though T is not symmetric (it is a row stochastic matrix), we can define
the matrix

X = diag(d)1/2Tdiag(d)−1/2,

similarly as in the article by G. Chung and Radcliffe [GR11]. This way, X is
symmetric.

Both T and X have a largest singular value 1, which has multiplicity 1 if G is
connected, and this suggests that

T1 = 1

is an eigenvector of T, which is paired with the eigenvalue 1. Similarly,

Xdiag(d)1/21 = diag(d)1/21

is an eigenvector of X, which is paired with the eigenvalue 1. We normalize the
aforementioned eigenvector so that its elements sum to 1:

v1 =
diag(d)1/21
√
nµd

.

74

Chapter 3. Bias in distributed averaging 3.3. Averaging on arbitrary graphs

Since X is symmetric, it has real eigenvalues and orthogonal eigenvectors. Let
UΛUT be the eigendecomposition of X, where Λ is a diagonal matrix of eigenvalues
in decreasing order, implying Λ1,1 = 1. This way, we have U:,1 = v1.

Let In denote the n× n identity matrix. We derive the limit when the elements
of w are iteratively averaged using T:

lim
tgo→∞

Ttgow = lim
tgo→∞

(
diag(d)−1/2Xdiag(d)1/2

)tgo
w

= lim
tgo→∞

diag(d)−1/2Xtgodiag(d)1/2w

= lim
tgo→∞

diag(d)−1/2UΛtgoUTdiag(d)1/2w

= diag(d)−1/2Udiag(1, 0, . . . , 0)UTdiag(d)1/2w

= diag(d)−1/2v1v
T
1 diag(d)1/2w

= diag(d)−1/2diag(d)1/21
√
nµd

1Tdiag(d)1/2
√
nµd

diag(d)1/2w

=
1

nµd

In11
Tdiag(d)w

=
1

nµd

11Tdiag(d)w

= 1
1

n

1

µd

∑
i∈[n]

diwi,

where limtgo→∞ Λtgo exists when the graph is connected and has a self-loop or a
cycle of odd length, as indicated by Paz [Paz63], and the second largest singular
value of Λ is lower than 1, as indicated by Banerjee and Mehatari [BM16].

Hence, when SiGo converges, every element of the output z of SiGo (Algorithm
1) is

1

n

1

µd

∑
i∈[n]

diwi.

Theorem 2 indicates that the resulting average is biased by µd and di (for each
i ∈ [n]), when di ̸= µd (i.e., G is non-regular). That is, the squared difference
between any element of the output of SiGo (w) and µw = 1

n

∑
i∈[n] wi is non-zero:

(
SiGo (w)− µw

)2
=

 1

n

1

µd

∑
i∈[n]

diwi − µw

2

(by Theorem 2)

=

(
µd.w

µd

− µw

)2

. (3.6)

Bias correction. We provide a procedure to correct the bias illustrated by
Equation 3.6. We start by an example where the community computes an unbiased

75

3.3. Averaging on arbitrary graphs Chapter 3. Bias in distributed averaging

estimate of µw from two gossiping runs. Firstly, Sigo is executed (sequentially or
in parallel) with the respective inputs (wid

−1
i)ni=1 and (d−1

i)ni=1:

SiGo
(
(wid

−1
i)ni=1

)
=

1

n

1

µd

∑
i∈[n]

wi (by Theorem 2)

=
µw

µd

,

SiGo
(
(d−1

i)ni=1

)
=

1

n

1

µd

∑
i∈[n]

1

=
1

µd

. (3.7)

Then, the community can compute

SiGo
(
(wid

−1
i)ni=1

)
SiGo

(
(d−1

i)ni=1

) = µw. (3.8)

By Theorem 2, we generalize Equation 3.8 and thus define the bias-correcting
gossip algorithm (BCGo):

SiGo
(
(wid

−1
i)ni=1

)
SiGo

(
(d−1

i)ni=1

) =

1
n

1
µd

∑
i∈[n] di(wid

−1
i)

1
n

1
µd

∑
i∈[n] di(d

−1
i)

=
1

n

∑
i∈[n]

wi

= µw. (3.9)

We illustrate an example of applying BCGo for computing the order n of a graph
G, when G is connected and has a cycle of odd length. Similarly as in the example
given after recalling SiGo (Algorithm 1), we assign a label 1 to one agent, and a
label 0 to the remaining n− 1 agents. When BCGo converges, each agent computes
the average 1+0+...+0

n
= 1

n
(Equation 3.9). By taking the reciprocal of 1

n
, each agent

computes n.
We highlight that unbiased averages can be generalized by U-statistics (Defini-

tion 1). This way, the estimates obtained by BCGo (Equation 3.9) are U-statistics
with kernel ϕ : x 7→ x of degree 1. U-statistics of degree 1 are present in machine
learning applications, for example, in classic strategies for fitting linear regression
models, as discussed in Subsection 3.3.5, bootstrap aggregation in random forests,
as discussed in Peng et al. [PCM22], and gradient descent in training artificial
neural networks, as discussed in McMahan et al. [McM+17]

3.3.5 Use case on linear regression

In this subsection, we investigate a use case for the proposed approach, namely,
fitting a linear regression model while keeping the degrees private, where each
agent is assigned one labeled example, and the features depend on the degrees.
Firstly, we define a multiple linear regression model whose features are powers of

76

Chapter 3. Bias in distributed averaging 3.3. Averaging on arbitrary graphs

the degrees. Then, we show that the regression model can be fitted from averages.
Afterwards, we discuss the privatization and the bounding of powers of the degrees.
Finally, we provide the pseudo-code for fitting the multiple linear regression model
by regularized least squares and when averaging the privatized attributes by BCGo

(Equation 3.9).
Let m ∈ N. We define a special case of a multiple linear regression model

(defined in Equation 2.8) with m + 1 regression parameters and a scalar target
value. For each i ∈ [n],

yi = θ0 + θ1d
k1
i + . . . + θmd

km
i + ξregi , (3.10)

where θ0, θ1, . . . , θm ∈ R are regression parameters, dk1i , dk2i , . . . , dkmi ∈ R are features
(k1, k2, . . . , km ∈ R \ {0}), yi is a target value, ξregi is regression noise which is an
independent observation of N (0, σ2

reg), and σ2
reg is the variance of regression noise.

We remark that, while BCGo (Equation 3.9) can compute averages for fitting
regression models with arbitrary features, we focus on the multiple linear regres-
sion model defined in Equation 3.10 because in this work we limit ourselves to
privatization noise for the features that depend on powers of the degrees.

As a consequence, we remark that polynomials of arbitrary degree can approxi-
mate other functions (e.g., the logarithm, trigonometric functions, etc.) using the
Taylor series (which are discussed in detail in Canuto and Tabacco [CT15]). This
way, our regression model can approximate linear regression models with a broad
class of features. Regarding the practical applicability of such regression models,
we provide a reference to the linear regression datasets that are part of the NIST
Standard Reference Database (accessible on itl.nist.gov/div898/strd/lls/l

ls.shtml).
Let X =

[
1 x1 . . . xm

]
∈ Rn×(m+1), where x1,x2, . . . ,xm are feature vectors.

Let y be a vector of target values. We fit the regression model defined in Equation
3.10 by regularized least squares (discussed in Subsection 2.4.1). That is, referring
to Equation 2.9, we compute the vector θ̂ of parameter estimates as follows:

θ̂ =

(
1

n
XTX + λIm+1

)−1
1

n
XTy, (3.11)

where

1

n
XTX =


1 1

n

∑
i∈[n] d

k1
i . . . 1

n

∑
i∈[n] d

km
i

1
n

∑
i∈[n] d

k1
i

1
n

∑
i∈[n] d

2k1
i

. . . 1
n

∑
i∈[n] d

k1
i dkmi

...
.

...
1
n

∑
i∈[n] d

km
i

1
n

∑
i∈[n] d

k1
i dkmi . . . 1

n

∑
i∈[n] d

2km
i



=


1 µdk1 . . . µdkm

µdk1 µd2k1
. . . µdk1 .dkm

...
.

...
µdkm µdk1 .dkm . . . µd2km

 , (3.12)

1

n
XTy =

[
1
n

∑
i∈[n] yi

1
n

∑
i∈[n] yid

k1
i . . . 1

n

∑
i∈[n] yid

km
i

]T
=
[
µy µy.dk1 . . . µy.dkm

]T
, (3.13)

77

itl.nist.gov/div898/strd/lls/lls.shtml
itl.nist.gov/div898/strd/lls/lls.shtml

3.3. Averaging on arbitrary graphs Chapter 3. Bias in distributed averaging

and where λ ∈ R is the regularization parameter, and Im+1 is the (m+ 1)× (m+ 1)
identity matrix.

We highlight that the parameter estimates θ̂ are computed from the av-
erages µdk1 , µdk2 , . . . , µdkm , µd2k1 , µd2k2 , . . . , µd2km , µdk1 .dk2 , µdk1 .dk3 , . . . , µdkm−1 .dkm ,

µy.dk1 , µy.dk2 , . . . , µy.dkm , and µy (2m + m(m−1)
2

+ m + 1 of averages in total). By
Definition 1, the aforementioned averages are U-statistics of degree 1.

We assume that dmin and dmax are known. For k ∈ R \ {0}, we privatize dki
using the Gaussian mechanism (Definition 6) as follows:

Ddp
i,k ∼ N

(
dki , (σ

dp
k)2

)
, (3.14)

σdp
k =

√
2 log(1.25/δ′)∆2(d

k
i)

ϵ′
, (3.15)

where (ϵ′, δ′) is an even split of the total privacy budget (ϵ, δ) and, as adjacent
datasets of graphs differ in one edge (Definition 8), we have

∆2(d
k
i) = max

d∈[dmin,dmax−1]

∣∣(d + 1)k − dk
∣∣

=


dkmin − (dmin + 1)k when k < 0,

(dmin + 1)k − dkmin when 0 < k < 1,

dkmax − (dmax − 1)k when k ≥ 1.

(3.16)

We remark that we do not consider the privatization of the power 0 of a degree
because it always equals 1 and thus is non-sensitive (it no longer depends on the
degree).

Remark 1. A privatized attribute ddpi,k is an independent observation of Ddp
i,k (Equa-

tion 3.14). Upon BCGo, privatization of dk1−1
i , dk2−1

i , . . . , dkm−1
i is independent from

d−1
i , di. For clarity, privatized d−1

i , di are denoted, respectively, by ddpi,−1′ , d
dp
i,1′.

We highlight that we privatize the transformed degree dki , as opposed to priva-
tizing di and then computing (ddpi)k. This is done in order to mitigate the risk of
ddpi being too close to the singularity at the value 0 when k < 0. If ddpi is close to
0, then the feature (ddpi)k would be an outlier disturbing the prediction accuracy of
the fitted regression model.

We proceed by discussing the bounds for each privatized attribute ddpi,k so that

it stays centred at dki (preserves unbiasedness). Let

ai =

{
min(dki − dkmax, d

k
min − dki) when k < 0,

min(dki − dkmin, d
k
max − dki) when k > 0.

This way, we have the following bounds:

dki − ai ≤ ddpi,k ≤ dki + ai. (3.17)

Remark 2. If a privatized attribute ddpi,k is outside the bounds (Equation 3.17), it

is resampled uniformly in the interval [dki − ai, d
k
i + ai].

78

Chapter 3. Bias in distributed averaging 3.3. Averaging on arbitrary graphs

We highlight that, upon BCGo, the sensitive attributes of an agent i are
dk1−1
i , dk2−1

i , . . . , dkm−1
i , d−1

i , di (m + 2 in total). Similarly, upon Cen, the sensitive
attributes are dk1i , dk2i , . . . , dkmi (m in total). We leave the following remarks on the
privacy guarantees for locally privatizing and then averaging the aforementioned
powers of the degrees:

• We assume that dmin and dmax are known. This way, each agent can compute
the l2 sensitivity (Equation 3.16) for local privatization using the Gaussian
mechanism (Definition 6). We recall that the Gaussian mechanism ensures
(ϵ, δ)-differential privacy.

• We assume that each agent knows only its own edges, and not edges be-
tween other vertices. For example, such assumption mitigates the previously
discussed threat of collusion among the neighborhood of a particular agent.
Thus, the value of the degree of a particular vertex can not be deduced from
a set of edges incident to that vertex.

• We assume that the computation of the average of locally privatized attributes
is under a sufficiently low precision (i.e., some rounding happens). In other
words, the probability of observing any possible (rounded) average should
remain sufficiently high. For example, such assumption mitigates the threat
of an adversary learning additional information about the topology of the
communication network, when the adversary is connected to all the agents
and when the adversary observes subsequent averaging. This way, revealed
functions (i.e., averages) of locally privatized attributes (i.e., powers of the
degrees) remain differentially private.

• Referring to Sei and Ohsuga [SO22], we assume that target values are non-
sensitive. Even though a target value yi (Equation 3.10) is a linear combina-
tion of powers of the degree, the exact values of the regression parameters
and the regression noise remain unknown, thus the value of the degree can
not be deduced.

• Referring to the composition theorem in Dwork and Roth [DR14], privatiza-
tion of the sensitive attributes upon even splits of the total privacy budget
(ϵ, δ) lead to (ϵ, δ)-differential privacy.

• If a privatized attribute is outside the bounds (Equation 3.17), we resample
it uniformly, while uniform sampling is (0, 0)-differentially private.

In Algorithm 4, we provide the pseudo-code for fitting the multiple linear
regression model by regularized least squares (Equation 3.12 and Equation 3.13)
and when averaging the privatized attributes by BCGo (Equation 3.9).

79

3.3. Averaging on arbitrary graphs Chapter 3. Bias in distributed averaging

Algorithm 4: BiasCorrectingGossip (BCGo) for privacy-preserving re-
gression

/* Privatization (Remark 1) and bounding (Remark 2) */

1 ϵ′, δ′ ← ϵ
m+2

, δ
m+2

2 for i ∈ [n] do
3 for j ∈ [m] do

4 ddpi,kj−1 ← privatizeAndBound(d
kj−1
i , ϵ′, δ′)

5 for k ∈ {−1′, 1′} do
6 ddpi,k ← privatizeAndBound(dki , ϵ

′, δ′)

/* Averaging by BCGo (Equation 3.9) */

7 µ̂y =
SiGo((yiddpi,−1)

n
i=1)

SiGo
(
(ddp

i,−1′)
n
i=1

)
8 for j ∈ [m] do
9 µ̂dkj , µ̂d2kj , µ̂y.dkj ←

SiGo
(
(ddpi,kj−1)

n
i=1

)
SiGo

(
(ddp

i,−1′)
n
i=1

) ,
SiGo

(
((ddpi,kj−1)

2ddp
i,1′)

n
i=1

)
SiGo

(
(ddp

i,−1′)
n
i=1

) ,
SiGo

(
(yid

dp
i,kj−1)

n
i=1

)
SiGo

(
(ddp

i,−1′)
n
i=1

)
10 for j′ ∈ {j, . . . ,m− 1} do

11 µ̂
dkj .d

kj′ =
SiGo

(
(ddpi,kj−1d

dp
i,kj′−1d

dp

i,1′)
n
i=1

)
SiGo

(
(ddp

i,−1′)
n
i=1

)
/* Fitting by regularized least squares (Equation 3.11) */

12 θ̂← fit(µ̂y, µ̂dk1 , . . . , µ̂d2k1 , . . . , µ̂y.dk1 , . . . , µ̂dk1 .dk2 , . . . , λ)

The pseudo-code in Algorithm 4 consists of the following three parts. In the
first part, we privatize and bound powers of the degrees (the corresponding privacy
guarantees are discussed in the list above). In the second part, we execute SiGo

(Algorithm 1) on several functions whose arguments are locally privatized attributes
and target values; such revealed functions remain differentially private because they
do not reveal sensitive attributes. In the third part, each agent simply performs
regularized least squares (Equation 3.11), which does not reveal sensitive attributes
neither.

3.3.6 Error analysis

In this subsection, we define the expected errors between the average (e.g., µdk1

in Equation 3.12) of sensitive attributes and the average of privatized attributes
computed, respectively, by Cen and BCGo (Equation 3.9). Then, we discuss the
conditions when the average computed by BCGo results in less privatization noise
compared to the average computed by Cen. Finally, we define the respective
empirical errors for evaluating the aforementioned expected errors.

Let k ∈ R\{0}. We define the average (k-th raw moment) of sensitive attributes:

sk = µdk

=
1

n

∑
i∈[n]

dki . (3.18)

80

Chapter 3. Bias in distributed averaging 3.3. Averaging on arbitrary graphs

We define the averages of privatized attributes (Equation 3.14) computed, respec-
tively, by Cen and BCGo:

SCen
k =

1

n

∑
i∈[n]

Ddp
i,k, (3.19)

SBCGo
k =

SiGo
(

(Ddp
i,k−1)

n
i=1

)
SiGo

(
(Ddp

i,−1)
n
i=1

) . (3.20)

We highlight that our error analysis is limited to sensitive attributes that are powers
(excluding the power 0) of the degrees. Otherwise, the error analysis would be more
complex because the numerator of Equation 3.9 would include the multiplication
between the following two terms with privatization noise: the privatized wi and
the privatized d−1

i .
Expected errors. We define the expected error between the average (Equation

3.18) of sensitive attributes and the average (Equation 3.19) of privatized attributes
computed by Cen:

eCenk = E
[(
sk − SCen

k

)2]
, (3.21)

We state a theorem (a folklore result on the expected value of the squared average
of Gaussian random variables) quantifying the expected error eCenk (Equation 3.21).

Theorem 3. We have

eCenk =
1

n
(σdp

k)2, (3.22)

where σdp
k is given in Equation 3.15. This way, eCenk = O

(
1
n

)
.

Proof. We intend to expand eCenk . We start as follows:

eCenk = E
[(
sk − SCen

k

)2]
(by Eqn 3.21)

= E
[(
µdk − SCen

k

)2]
(by Eqn 3.18)

= µ2
dk − 2µdkE

[
SCen
k

]
+ E

[(
SCen
k

)2]
. (3.23)

Then, we derive

E[SCen
k] = E

 1

n

∑
i∈[n]

Ddp
i,k

 (by Eqn 3.19)

=
1

n

∑
i∈[n]

E
[
Ddp

i,k

]
=

1

n

∑
i∈[n]

dki (by Eqn 3.14)

= µdk , (3.24)

81

3.3. Averaging on arbitrary graphs Chapter 3. Bias in distributed averaging

var
(
SCen
k

)
= var

 1

n

∑
i∈[n]

Ddp
i,k

 (by Eqn 3.19)

=
1

n2
var

∑
i∈[n]

Ddp
i,k


=

1

n2

∑
i∈[n]

var
(
Ddp

i,k

)
=

1

n
(σdp

k)2. (by Eqn 3.15) (3.25)

Further, for a random variable Z, we state an identity:

E[Z2] = var (Z) + E2[Z]. (3.26)

We continue the derivation in Equation 3.23:

eCenk = µ2
dk − 2µdkE

[
SCen
k

]
+ var

(
SCen
k

)
+ E2[SCen

k] (by Eqn 3.26)

= µ2
dk − 2µ2

dk +
1

n
(σdp

k)2 + µ2
dk (by Eqn 3.25, Eqn 3.24)

=
1

n
(σdp

k)2. (3.27)

Hence, we conclude that eCenk = O(1
n
).

We define the expected error between the average (Equation 3.18) of sensitive
attributes and the average (Equation 3.20) of privatized attributes computed by
BCGo:

eBCGok = E
[(
sk − SBCGo

k

)2]
. (3.28)

We provide a theorem quantifying the expected error eBCGok (Equation 3.28) for
the non-asymptotic case.

Theorem 4. Let 1
n

µd2

µ2
d

(σdp
−1)

2 ̸= 0 and 1
µd
− 3 1√

n

√
µd2

µd
σdp
−1 > 0, where µdk and σdp

k

are given, respectively, in Equation 3.18 and Equation 3.15. With high probability,

eBCGok ≈ µ2
dk − 2

µ2
dk

µd

√
n

√
2µd

√
µd2σ

dp
−1

fdaw

(√
n

√
2µd2σ

dp
−1

)
+

(
1

n

µd2

µ2
d

(σdp
k−1)

2 +
µ2
dk

µ2
d

)

n
µ2
d

µd2(σ
dp
−1)

2

(
√
n

√
2

√
µd2σ

dp
−1

fdaw

(√
n

√
2µd2σ

dp
−1

)
− 1

)
, (3.29)

where fdaw(x) = e−x2 ∫ x

0
et

2
dt. (The approximation is due to the absence of closed-

form expressions for the mean and the variance of the reciprocal of a Gaussian
random variable, and the quantification of the approximation error is outside the
scope of this work.)

82

Chapter 3. Bias in distributed averaging 3.3. Averaging on arbitrary graphs

Proof. We intend to expand eBCGok . We start as follows:

eBCGok = E
[(
sk − SBCGo

k

)2]
(by Eqn 3.28)

= s2k + E
[(
SBCGo
k

)2]− 2skE
[
SBCGo
k

]
= s2k + E

[(
SiGo

(
(Ddp

i,k−1)
n
i=1

))2]
E

 1

SiGo
(

(Ddp
i,−1)

n
i=1

)
2

− 2skE
[
SiGo

(
(Ddp

i,k−1)
n
i=1

)]
E

 1

SiGo
(

(Ddp
i,−1)

n
i=1

)
 (by Eqn 3.20)

= s2k + E

 1

n

1

µd

∑
i∈[n]

diD
dp
i,k−1

2E

(1
1
n

1
µd

∑
i∈[n] diD

dp
i,−1

)2
 (by Thm 2)

− 2skE

 1

n

1

µd

∑
i∈[n]

diD
dp
i,k−1

E

[
1

1
n

1
µd

∑
i∈[n] diD

dp
i,−1

]
. (3.30)

Then, we express

E

 1

n

1

µd

∑
i∈[n]

diD
dp
i,k−1

 =
1

n

1

µd

∑
i∈[n]

diE
[
Ddp

i,k−1

]
=

µdk

µd

, (by Eqn 3.14) (3.31)

var

 1

n

1

µd

∑
i∈[n]

diD
dp
i,k−1

 =
1

n2

1

µ2
d

∑
i∈[n]

d2i var
(
Ddp

i,k−1

)
=

1

n

µd2

µ2
d

(σdp
k−1)

2. (by Eqn 3.15) (3.32)

Thus,

E

 1

n

1

µd

∑
i∈[n]

diD
dp
i,k−1

2 = var

 1

n

1

µd

∑
i∈[n]

diD
dp
i,k−1

+ E2

 1

n

1

µd

∑
i∈[n]

diD
dp
i,k−1


(by Eqn 3.26)

=
1

n

µd2

µ2
d

(σdp
k−1)

2 +
µ2
dk

µ2
d

. (by Eqn 3.32, Eqn 3.31)

(3.33)

We use two heuristics for a Gaussian random variable Z with mean µ and
variance σ2. That is, when µ ̸= 0, σ ̸= 0, and |µ| − 3σ > 0, with high probability,

E
[

1

Z

]
≈
√

2

σ
fdaw

(
µ√
2σ

)
, (3.34)

83

3.3. Averaging on arbitrary graphs Chapter 3. Bias in distributed averaging

E
[

1

Z2

]
≈ 1

σ2

(
µ

√
2

σ
fdaw

(
µ√
2σ

)
− 1

)
, (3.35)

where fdaw(x) = e−x2 ∫ x

0
et

2
dt is the Dawson function. Peng [Pen08] shows that

Equation 3.34 holds in the Cauchy principal value. When µ = 0.9 and σ = 0.1,
Monte Carlo simulations (with 108 instances) provided on stats stack exchange st

ats.stackexchange.com/q/535924 indicate that the approximations in Equation
3.34 and Equation 3.35 are tight, respectively, within factor 10−4 and factor 10−3.

When 1
µd
̸= 0, 1√

n

√
µd2

µd
σdp
−1 ̸= 0, 1

µd
− 3 1√

n

√
µd2

µd
σdp
−1 > 0, with high probability,

E

[
1

1
n

1
µd

∑
i∈[n] diD

dp
i,−1

]
(by Eqn 3.34, Eqn 3.31, Eqn 3.32)

≈
√

2√
1
n

µd2

µ2
d

(σdp
−1)

2
fdaw

 1
µd√

2
√

1
n

µd2

µ2
d

(σdp
−1)

2


=
√
n

√
2µd

√
µd2σ

dp
−1

fdaw

(√
n

√
2µd2σ

dp
−1

)
, (3.36)

E

(1
1
n

1
µd

∑
i∈[n] diD

dp
i,−1

)2
 (by Eqn 3.35, Eqn 3.31, Eqn 3.32)

≈ 1
1
n

µd2

µ2
d

(σdp
−1)

2

 1

µd

√
2√

1
n

µd2

µ2
d

(σdp
−1)

2
fdaw

 1
µd√

2
√

1
n

µd2

µ2
d

(σdp
−1)

2

− 1


= n

µ2
d

µd2(σ
dp
−1)

2

(
√
n

√
2

√
µd2σ

dp
−1

fdaw

(√
n

√
2µd2σ

dp
−1

)
− 1

)
. (3.37)

84

stats.stackexchange.com/q/535924
stats.stackexchange.com/q/535924

Chapter 3. Bias in distributed averaging 3.3. Averaging on arbitrary graphs

We continue the derivation in Equation 3.30:

eBCGok = s2k − 2sk
µdk

µd

E

[
1

1
n

1
µd

∑
i∈[n] diD

dp
i,−1

]
(by Eqn 3.31)

+

(
1

n

µd2

µ2
d

(σdp
k−1)

2 +
µ2
dk

µ2
d

)
E

(1
1
n

1
µd

∑
i∈[n] diD

dp
i,−1

)2
 (by Eqn 3.33)

(3.38)

≈ s2k − 2sk
µdk

µd

√
n

√
2µd

√
µd2σ

dp
−1

fdaw

(√
n

√
2µd2σ

dp
−1

)
(by Eqn 3.36, Eqn 3.37)

+

(
1

n

µd2

µ2
d

(σdp
k−1)

2 +
µ2
dk

µ2
d

)
n

µ2
d

µd2(σ
dp
−1)

2

(
√
n

√
2

√
µd2σ

dp
−1

fdaw

(√
n

√
2µd2σ

dp
−1

)
− 1

)

= µ2
dk − 2

µ2
dk

µd

√
n

√
2µd

√
µd2σ

dp
−1

fdaw

(√
n

√
2µd2σ

dp
−1

)
(by Eqn 3.18)

+

(
1

n

µd2

µ2
d

(σdp
k−1)

2 +
µ2
dk

µ2
d

)
n

µ2
d

µd2(σ
dp
−1)

2

(
√
n

√
2

√
µd2σ

dp
−1

fdaw

(√
n

√
2µd2σ

dp
−1

)
− 1

)
.

(3.39)

The quantification of the approximation error is outside the scope of this work.

We provide a theorem quantifying the expected error eBCGok (Equation 3.28) for
the asymptotic case.

Theorem 5. Let 1
n

µd2

µ2
d

(σdp
−1)

2 ̸= 0 and 1
µd
− 3 1√

n

√
µd2

µd
σdp
−1 > 0, where µdk and σdp

k

are given, respectively, in Equation 3.18 and Equation 3.15. Let us assume that

E
[

1
1
n

1
µd

∑
i∈[n] diD

dp
i,−1

]
= µd and var

(
1

1
n

∑
i∈[n] diD

dp
i,−1

)
= O(1

n
). (We support the

assumptions in the proof.) With high probability,

eBCGok =
µd2

n
(σdp

k−1)
2 +

µd2

n
(σdp

k−1)
2var

(
1

1
n

∑
i∈[n] diD

dp
i,−1

)
+ µdkvar

(
1

1
n

∑
i∈[n] diD

dp
i,−1

)
,

(3.40)

where Ddp
i,−1 is given in Equation 3.14. This way, eBCGok = O

(
1
n

)
.

Proof. When 1√
n

√
µd2

µd
σdp
−1 ̸= 0 and 1

µd
− 3 1√

n

√
µd2

µd
σdp
−1 > 0, we assume that

E

[
1

1
n

1
µd

∑
i∈[n] diD

dp
i,−1

]
= µd. (3.41)

We support the aforementioned assumption by the result that 1
1
n

1
µd

∑
i∈[n] did

−1
i

= µd

and by the evidence discussed in the proof of Theorem 4 that the approximation

85

3.3. Averaging on arbitrary graphs Chapter 3. Bias in distributed averaging

(Equation 3.34) of the reciprocal of a Gaussian random variable with mean µ and
variance σ2 is tight (when µ ̸= 0, σ ̸= 0, and |µ| − 3σ > 0). This way,

E

(1
1
n

1
µd

∑
i∈[n] diD

dp
i,−1

)2
 = µ2

d + var

(
1

1
n

1
µd

∑
i∈[n] diD

dp
i,−1

)
.

(by Eqn 3.26, Eqn 3.41) (3.42)

We continue the derivation in Equation 3.38:

eBCGok = µ2
dk − 2µ2

dk +

(
1

n

µd2

µ2
d

(σdp
k−1)

2 +
µ2
dk

µ2
d

)(
µ2
d + var

(
1

1
n

1
µd

∑
i∈[n] diD

dp
i,−1

))
(by Eqn 3.18, Eqn 3.41, Eqn 3.42)

=
µd2

n
(σdp

k−1)
2 +

µd2

n
(σdp

k−1)
2var

(
1

1
n

∑
i∈[n] diD

dp
i,−1

)

+ µdkvar

(
1

1
n

∑
i∈[n] diD

dp
i,−1

)
. (3.43)

We assume that var

(
1

1
n

∑
i∈[n] diD

dp
i,−1

)
= O

(
1
n

)
, when 1√

n

√
µd2

µd
σdp
−1 ≠ 0 and 1

µd
−

3 1√
n

√
µd2

µd
σdp
−1 > 0. We support the aforementioned assumption by the conditions for

the heuristic in Equation 3.35 and by the result that the variance of the squared
average of n independent and identically distributed random variables is n times
lower than the variance of a single such random variable (as suggested in Equation
3.25).

Hence, we conclude that eBCGok = O(1
n
).

We proceed by discussing the conditions when the average computed by BCGo

results in less privatization noise compared to the average computed by Cen. We
define the ratio between eBCGok and eCenk (given, respectively, by Equation 3.22 and
Equation 3.40):

eBCGok

eCenk

=
µd2(σ

dp
k−1)

2

(σdp
k)2

+

µd2(σ
dp
k−1)

2var

(
1

1
n

∑
i∈[n] diD

dp
i,−1

)
(σdp

k)2
+

nµdkvar

(
1

1
n

∑
i∈[n] diD

dp
i,−1

)
(σdp

k)2
.

(3.44)

We assume that var

(
1

1
n

∑
i∈[n] diD

dp
i,−1

)
= O

(
1
n

)
, when 1√

n

√
µd2

µd
σdp
−1 ≠ 0 and 1

µd
−

3 1√
n

√
µd2

µd
σdp
−1 > 0 (supported in the proof of Theorem 5). This way, the first term

and the third term in Equation 3.44 are dominant when n→∞, i.e., the first term
and the third term are O(1) whereas the second term is O(1

n
). We can expand the

86

Chapter 3. Bias in distributed averaging 3.3. Averaging on arbitrary graphs

first term in Equation 3.44:

µd2(σ
dp
k−1)

2

(σdp
k)2

= µd2

2 log
(

5(m+2)
4δ′

) (
∆2(d

k−1
i)

)2(
ϵ′/(m + 2)

)2
/

2 log
(
5m
4δ′

) (
∆2(d

k
i)
)2

(ϵ′/m)2

=

(
m

m + 2

)2 log
(

5(m+2)
4δ′

)
log
(
5m
4δ′

) µd2

(
∆2(d

k−1
i)

∆2(dki)

)2

. (3.45)

We conjecture that, in the non-asymptotic case, eBCGok < eCenk (Equation 3.44 is lower
than 1) requires the following conditions: the number m of sensitive attributes is
high (Equation 3.45 is lower), the number n of vertices is high (the second term
and the third term in Equation 3.44 are lower), the degrees d are low (µd2 and µdk

in Equation 3.44 are lower), and k ≥ 2 (but remains low due to µdk in Equation
3.44) as, in Equation 3.45, we have

∆2(d
k−1
i)

∆2(dki)
=

dk−1
max − (dmax − 1)k−1

dkmax − (dmax − 1)k
(by Equation 3.16)

< 1. (3.46)

To summarize, we highlight that
∆2(d

k−1
i)

∆2(dki)
< 1 suggests that we can have eBCGok < eCenk ,

i.e., the average computed by BCGo can have less privatization noise compared to
the average computed by Cen.

Empirical errors. We define the empirical errors that correspond to the
expected errors stated, respectively, in Theorem 3 and Theorem 4:

êCenk =

 1

n

∑
i∈[n]

dki −
1

n

∑
i∈[n]

ddpi,k

2

, (3.47)

êBCGok =

 1

n

∑
i∈[n]

dki −
SiGo

(
(ddpi,k−1)

n
i=1

)
SiGo

(
(ddpi,−1)

n
i=1

)
2

, (3.48)

where ddpi,k is given in Remark 1. We remark that the empirical errors are stated
with the intention to evaluate the corresponding expected errors, which is done
Subsection 3.3.7.

3.3.7 Experiments

In this subsection, we specify two sets of experiments and interpret the results.

Experiment 3.1. We compare the accuracy of the averages of privatized attributes
computed, respectively, by BCGo (Equation 3.9) and Cen. Secondly, we evaluate if
the expected errors (Equation 3.22 and Equation 3.29) are tight (within factor of 10
to their empirical counterparts in Equation 3.47 and Equation 3.48) when n ranges
from 102 to 104 and ϵ = 22. Thirdly, we evaluate if the expected errors decrease
linearly in n (as indicated by Theorem 5).

87

3.3. Averaging on arbitrary graphs Chapter 3. Bias in distributed averaging

Experiment 3.2. We compare the utility of the regression models (Equation 3.10)
fitted, respectively, using the averages computed by BCGo (Equation 3.9), SiGo
(Algorithm 1), and Cen. In particular, we evaluate the MSE between true target
values and predicted target values (of a test set of size 103) when ϵ ranges from 2−6

to 210. Usually, ϵ > 10 is too high for privacy in practice [Hsu+14].

We use a special case of the regression model given by Equation 3.10. That is,
for each i ∈ [n],

yi = θ0 + θ1d
−1
i + θ2d

1/2
i + θ3d

2
i + ξregi , (3.49)

where θ1 is coupled with a decreasing feature, θ2 is coupled with a slower than
linearly increasing feature, and θ3 is coupled with a quicker than linearly increasing
feature (this covers the three sensitivities in Equation 3.16), and where regression
noise ξregi is drawn independently from N (0, 1). We fix the regression parameters
to θ0 = θ1 = θ2 = θ3 = 1 to generate synthetic regression datasets. We fix the
regularization parameter to λ = 1.

Our synthetic graph dataset is created by generating a power-law degree sequence
with the shape parameter fixed to γ = 2 (discussed in Section A.1) and generating a
graph from the configuration model (Definition 4). For real graph datasets, we use
the graphs of the email-Eu-core network dataset (1005 vertices and 25571 edges)
and the autonomous systems AS-733 dataset (6474 vertices and 13895 edges), both
of which are part of SNAP [LK14]. We have processed the real graph datasets by
Step 3 of the procedure described in Section A.1 and have removed self-loops.

We precise the experiment setup:

• We fix δ = 1
n2 , where such choice is also used in Near et al. [Nea+19] We fix

the lowest degree to dmin = 3 and the highest degree to dmax = 102. We fix
the number of gossip iterations to tgo = 210.

• In Experiment 3.1, we normalize the errors dividing them by (σdp
k)2 (Equation

3.15). In Experiment 3.2, we normalize the MSE between true target values
and predicted target values dividing it by (σy)

2, where σy is the standard
deviation of true target values, similarly as in Gupta and Kling [GK11].

• We fix the number of experiment repetitions to texp = 210. For the synthetic
dataset, in each experiment repetition we generate a degree sequence and
a graph. For Experiment 3.2, in each experiment repetition we generate
privatized features and target values for fitting, and a test set of size 103

which contains target values assigned to an independently generated synthetic
graph of order 103 for evaluating the real graph datasets. In Experiment 3.1,
each privatized attribute ddpi,−1′ (Remark 1) is bounded (Equation 3.17) so that

the conditions for the expected error (Equation 3.29) hold. This way, σdp
−1

in Equation 3.29 is substituted with an approximated variance (discussed in
Section A.2) of a bounded ddpi,−1′ . In Experiment 3.2, the privatized attributes
are bounded to improve the utility of the regression models fitted, respectively,
using the averages computed by BCGo, SiGo, and Cen.

88

http://snap.stanford.edu/data/email-Eu-core.html
http://snap.stanford.edu/data/2as-733.html

Chapter 3. Bias in distributed averaging 3.3. Averaging on arbitrary graphs

• We fix the significance level αci = 0.05 (the computation of confidence intervals
is described in Equation 2.5).

In Section A.4, we discuss secondary experiments.
Results. Figure 3.1 illustrates the results of Experiment 3.1 on the synthetic

graph dataset, which indicate that BCGo results in more noisy averages than Cen

when k = 1/2, and in less noisy averages when k = 2. (The case with k = −1 is in
Section A.3.) Upon k = 2, the reason of BCGo outperforming Cen is explained by
the ratio in Equation 3.46 being sufficiently lower than 1.

Figure 3.1: Comparison of the expected errors (Equation 3.22 and Equation 3.29)
and the empirical errors (Equation 3.47 and Equation 3.48), when ϵ = 22. k = 1/2
(left) and k = 2 (right) refer, respectively, to estimation of µd1/2 and µd2 (present
in Equation 3.12).

Figure 3.2 illustrates the results of Experiment 3.2 on the synthetic dataset,
which indicate that BCGo performs better than Cen and SiGo. Essentially, BCGo
requires lower privatization noise for averaging the feature d2i (in Equation 3.49)
compared to Cen and SiGo. We remark that SiGo performs relatively well because
the elements of each average (Equation 3.12 and Equation 3.13) for regularized
least squares are scaled by the same factor di

µd
(as in Theorem 2), which leads

to relatively accurate parameter estimates. The quantification of the bias in the
parameter estimates computed by SiGo is outside the scope of this work.

Figure 3.2: Comparison of the MSE between true target values and predicted target
values (Equation 3.49), when averaging, respectively, by BCGo, SiGo, and Cen, and
when n = 103

89

3.3. Averaging on arbitrary graphs Chapter 3. Bias in distributed averaging

Figure 3.3 illustrates the results of Experiment 3.2 on the real graph datasets,
which indicate that BCGo performs better than Cen and SiGo, except on the email
network dataset upon a higher privacy budget. BCGo performs worse upon a higher
privacy budget because the estimation of µy involves privatization (unlike Cen and
SiGo) and depends on µd2 and µdk (Equation 3.44), where µd2 and µdk are higher
for the email network dataset compared to the autonomous systems dataset.

Figure 3.3: Comparison of the MSE between true target values and predicted target
values (Equation 3.49), when averaging, respectively, by BCGo, SiGo, and Cen. We
use the email network dataset (left) and the autonomous systems dataset (right).

The experiments were run on a machine with an Intel E5-2643 processor (3.30
GHz) and 192 GB of RAM; for the synthetic dataset, this took 3 hours. Similarly,
for the email network dataset this took 1 hour and for the autonomous systems
dataset this took 9 hours. The most time consuming operation is the matrix power
in Algorithm 1. The storage is mostly affected by the adjacency matrix of the graph;
we remark that in our implementation we store the adjacency matrix in a sparse
matrix. Our implementation is inappropriate when n ≥ 105 because Algorithm 1
is a centralized simulation of distributed averaging. For the study of Algorithm
1 on graphs whose order is n ≥ 105, we suggest implementing Algorithm 1 in a
distributed manner.

3.3.8 Conclusion

We have proved an asymptotic guarantee (Theorem 5) for the MSE between the
average of sensitive attributes and the average of locally privatized attributes
computed by the bias-correcting gossip algorithm (Equation 3.9), when the graph
of agents is modeled by the configuration model (Definition 4), when the degrees
of agents are sensitive, and when the agents interact without handshakes.

Equation 3.44 indicates that distributed averaging performed by the bias-
correcting gossip algorithm BCGo can result in less privatization noise in comparison
to the averaging function f(x) = 1

n

∑
i∈[n] xi (where x ∈ Rn), when we compute

U-statistics (Definition 1) of degree 1 from locally privatized degrees raised to a
power k = 2, and when the graph has low degrees (i.e., when the 2-nd raw moment
µd2 and the k-th raw moment µdk of the degrees in Equation 3.44 are low).

We remark that the privatization of degrees by the Gaussian mechanism (Defini-
tion 6) is suboptimal since degrees are natural numbers and the Gaussian mechanism

90

Chapter 3. Bias in distributed averaging 3.3. Averaging on arbitrary graphs

results in real-valued privatization noise. A more suitable privatization mechanism
could be one that results in privatization noise with a discrete support, e.g., the
discrete Gaussian mechanism [CKS20] or the tailored noise mechanism discussed
in Chapter 4.

Future work. Let x ∈ Rn. The unbiased sample variance of x is defined as
follows:

σ̄2
x =

1

n(n− 1)

∑
j>i

(xi − xj)
2

=
1

n− 1

∑
i∈[n]

(xi − µx)2. (3.50)

We highlight that BCGo can compute µx and 1
n

∑
i∈[n](xi−µx)2 which are U-statistics

of degree 1. This way, it remains to identify a strategy to obtain n − 1 so that
BCGo could be used to to compute σ̄2

x which is a U-statistic of degree 2. Taking the
example with the unbiased sample variance, we conjecture that, by mathematical
induction, it can be shown that BCGo can compute U-statistics of arbitrary degree.

91

Chapter 4

Tailored noise mechanism

In this chapter, we continue to study the setting of privacy-preserving distributed
averaging where each agent of a communication network is attributed a vector of
sensitive attributes, each agent locally privatizes each sensitive attribute, and each
agent intends to collaboratively compute the averages over the privatized attributes.
In particular, we focus on a pre-processing step that happens prior to privatization,
where the central curator solves a convex program and obtains privatization func-
tions for privatizing sensitive attributes. Essentially, such privatization functions
correspond to a utility-maximizing privatization mechanism which is shared to
each agent, so that each agent could locally privatize its sensitive attributes.

To elaborate on our setting, we consider a group of agents, where each agent
computes features (for fitting regression models) by transforming sensitive attributes,
and where the transformations have high-magnitude gradients or singularities. In
such setting, there is a risk of obtaining an outlier feature due to transforming a
privatized attribute in an interval where the transformation has high-magnitude
gradients. We mitigate the aforementioned risk by providing a tailored noise
mechanism for privatizing features by solving a convex program in such a way that
(i) only informative intervals of transformations are selected, (ii) the variance of
privatization noise is minimized, and (iii) the biasedness of privatization noise is
minimized.

We highlight that this chapter is based on a collaborative work with Moitree
Basu who at the time was a doctorate student. Our common work mainly involved
the following axes:

• Axis 1: Expression of models whose parameters can be computed from
U-statistics (provided in Equation 4.1 below)

• Axis 2: Discretization of domains of features (discussed in Subsection 4.4.3)

• Axis 3: Expression of the constraints and the objective function of the convex
program for obtaining privatization functions (discussed, respectively, in
Subsection 4.4.1 and Subsection 4.4.2)

• Axis 4: Experiment setup (discussed in Section 4.6)

Regarding our individual theses, Moitree Basu had focused on the generalized
expression of models mentioned in Axis 1 above. While for myself, I had focused on

92

Chapter 4. Tailored noise mechanism 4.1. Introduction

the comparison of the model where privatization noise is added before transforming
attributes to features and the model where attributes are transformed to features
before adding privatization noise (as such question arose while working on the
bias-correcting gossip algorithm discussed in Section 3.3).

4.1 Introduction

We consider a setting where a group of agents intends to collaboratively fit a
statistical model by sharing locally privatized features. For fitting a statistical
model, one of the objectives is to identify such features which result in an accurate
statistical model. In this work, we consider that features can be computed from
attributes or other features, and such computations can be transformations with
singularities. For example, the reciprocal function f(x) = 1

x
has a singularity at

x = 0. When privatizing features using a classic mechanism, e.g., the Gaussian
mechanism (Definition 6) or the Laplace mechanism (Definition 7), we tend to
firstly transform sensitive attributes into features, and only then add privatization
noise. Otherwise, when privatization noise is added on sensitive attributes first,
the classic mechanisms might result in a noisy value that falls too close to the
singularity of a transformation, and thus the transformation results in an outlier
feature. In other words, a privatized feature is susceptible to fall in an interval
where the transformation has high-magnitude gradients. Furthermore, the classic
mechanisms are suboptimal in terms of utility as they add, typically, more noise
than necessary, as discussed in Balle and Wang [BW18].

In this work, we provide a tailored noise mechanism for privatizing features
by solving a convex program in such a way that (i) only informative intervals of
transformations are selected, (ii) the variance of privatization noise is minimized,
and (iii) the biasedness of privatization noise is minimized. The execution of the
tailored noise mechanism (TNM) firstly requires solving a convex program. We
assume that the constraint solver is executed by a central curator, and the central
curator shares the result of the constraint solver with each agent.

Regarding the motivation of the studied problem, TNM produces discrete proba-
bility distributions (as opposed to continuous) for privatizing features (an extension
of TNM for continuous probability distributions is outside the scope of this work).
This is similar to the discrete Gaussian mechanism [CKS20] which addresses the
case when the data is discrete and spans over integers. Furthermore, certain classes
of data have a bounded domain (e.g., for count data, we have natural numbers
where the lowest value is 0), thus it might be useful to have the domain of a
privatized feature, which is bounded in the same way as the domain of a respective
sensitive feature. We remark that the Gaussian mechanism (Definition 6) and the
Laplace mechanism (Laplace) result in unbounded domains of privatized features.

Regarding the novel qualities of TNM, we apply discretization strategies that
mitigate the issue of obtaining an outlier feature due to transforming a privatized
attribute in an interval where the transformation has high-magnitude gradients
(or singularities). Also, we provide a convex program whose solution consists
of a tailored privatization function parametrized by a sensitive feature, where
the variance of the tailored privatization function is minimized and the absolute

93

4.2. Preliminaries Chapter 4. Tailored noise mechanism

difference (biasedness) between the mean of the tailored privatization function and
the sensitive feature is minimized.

We show on synthetic datasets and a synthetically-extended real dataset that
TNM results, typically, in a lower MSE between true target values and predicted
target values compared to Laplace, when fitting a linear regression model by
regularized least squares that use U-statistics (Definition 1), and when the feature
function is either the logarithm, the reciprocal, or the tangent.

Outline. In Section 4.2, we precise our setting. In Section 4.3, we perform
the literature study. In Section 4.4, we design TNM. In Section 4.5, we describe the
implementation of TNM using the cvxopt library for convex programs. In Section
4.6, we discuss the experiments. In Section 4.7, we conclude.

4.2 Preliminaries

In this section, we provide and recall the notation, and then we precise the setting.
Communication model. We have a group of agents each of which is attributed

a data tuple with a scalar target value and a sensitive feature vector from a space
X ⊆ Rm̃, where m̃ ∈ N1 is the number of sensitive features.

In this work, the term “sensitive feature” encapsulates sensitive attributes. In
particular, we consider that features can be computed from attributes or other
features, and such computations can be transformations with singularities. We refer
to the functions used to compute features from attributes as feature functions (e.g.,
we have the logarithm function, the identity function, the exponential function).

Threat model. We have a central curator who computes conditional probability
mass functions (to which we refer as privatization functions) and shares them with
the agents, so that each agent can hide its sensitive features under privatization
noise (local differential privacy). The space of a privatized feature is denoted by X̃
(we remark that X̃ ⊇ X , where X is the space of sensitive features). This way, for
each j ∈ [m̃], x ∈ Xj, x̃ ∈ X̃j, we have a privatization function with a conditional
probability pj(x̃ |x), where Xj and X̃j denote, respectively, the domain of the j-th
sensitive feature and the domain of the j-th privatized feature.

Statistical model. We assume that our statistical model is a linear function
h∗ that maps a feature vector to a scalar target value, where h∗ is parametrized
by θ∗ ∈ Rm+1, and where m ∈ N1 is the number of features. Once each agent
privatizes its features and they are shared with the central curator, then the central
curator can compute a matrix X ∈ Rn×(m+1) composed of features and target
values over all agents, where n is the number of agents. Then, the central curator
fits a statistical model h (a linear function that maps a feature vector to a target
value) using a function g : X 7→ θ̂, where h is parametrized by θ̂. In this work, we
aim for obtaining such privatization functions that minimize an objective value
L(θ̂, θ∗), where L is an objective function whose common choice is the sum of the
squared differences between the elements of the estimated parameters θ̂ (computed
from privatized features) and the true parameters θ∗. We remark that the bolded
font denotes vectors and matrices, as indicated in Table 2.1.

We consider the number l ∈ N1 of models/approaches for obtaining parameter
estimates θ̂. That is, for each k ∈ [l], we have a function gk : X 7→ θ̂ (to which we

94

Chapter 4. Tailored noise mechanism 4.2. Preliminaries

refer as Model k). We remark that distinct choices of gk include distinct fitting
methods or distinct privatization strategies. In particular, we consider regularized
least squares that uses U-statistics as indicated by Equation 2.9. This way, we have

gk

(
fk,1(X), fk,2(X), . . . , fk,qk(X)

)
, (4.1)

where qk ∈ N is the number of U-statistics (Definition 1) for fitting Model k,
gk : Rqk → Rm+1 is a function for computing model parameters from U-statistics,
and, for each s ∈ [qk], we have a function fk,s : Rn×(m+1) → R which computes a
U-statistic from X.

In this work, the central curator computes the privatization functions by solving
a convex program. Since convex programs are solved quicker (and require less
memory) upon less constraint variables and constraints, the sensitive features of
the agents are discretized. That is, the discretization is performed using thresholds,
where, for every two adjacent thresholds, we attribute a representative value to
which a sensitive feature is mapped to if the sensitive feature is in between those
two adjacent thresholds (we perform binning, where the bins are the same for each
feature vector of each agent). This way, a discretized domain Xk,j includes the
values of a sensitive feature j and Model k, and a discretized domain X̃k,j ⊇ Xk,j

includes the values of a privatized feature j and Model k.

In summary, for computing privatization functions, the central curator solves a
convex program to obtain a privatization function with a conditional probability
pk,j(x̃ |x), for each k ∈ [l], j ∈ [m̃k], x ∈ Xk,j, x̃ ∈ X̃k,j, where m̃k is the number of
sensitive features used for fitting Model k.

In Table 4.1, we summarize the notation related to sensitive features and
privatized features.

Table 4.1: Notation related to sensitive features and privatized features

Notation Meaning

Xk,j Discretized domain of a sensitive feature j for Model k

X̃k,j Discretized domain of a privatized feature j for Model k
x Value of a sensitive feature
x̃ Value of a privatized feature

We briefly expand on the notation. We use the acronym dp to refer to the
application of a privatization function for differential privacy noise. We use the
acronym tns to refer to the feature function that transforms attributes into features.
We use the symbol “◦” to denote the function composition. For example, for
functions f, g, h, one of their compositions is expressed as h ◦ g ◦ f , which
corresponds to firstly applying f , then g, and finally h.

In Table 4.2, we summarize the notation related to the work on tailored
privatization.

95

4.3. Literature study Chapter 4. Tailored noise mechanism

Table 4.2: Notation related to the work on tailored privatization

Notation Meaning

n Number of agents
m Number of features
m′ Number of attributes (m′ ≤ m)
X Matrix of features and target values
θ∗ True parameters of a statistical model

θ̂ Estimated parameters of a statistical model
l Number of models for estimating parameters of a statistical model
m̃k Number of sensitive features for Model k
qk Number of U-statistics for Model k
gk Function computing parameters of Model k from U-statistics
fk,s Function computing a U-statistic s for Model k from X
L Objective function

Finally, we remark that we particularly focus on the following two privatization
strategies (which are models/approaches for obtaining parameter estimates θ̂):

• Model tns ◦ dp. In this model, differential privacy noise is added to at-
tributes first, and only then the attributes are transformed into features.

• Model dp ◦ tns. In this model, attributes are transformed into features first,
and only then differential privacy noise is added to the features.

4.3 Literature study

In this section, we perform the literature study.
We highlight that this work has been mainly inspired by the utility-maximizing

privatization mechanisms proposed by Ghosh et al. [GRS12] and Cormode et
al. [CKS17; CKS21] (the works are similar though Cormode et al. [CKS17;
CKS21] have added additional constraints to resolve some anomalies in the work of
Ghosh et al. [GRS12]). The two utility-maximizing privatization mechanisms are
characterized by solving a convex program to obtain a privatization function for
count data. On one hand, our work is similar to the two mechanisms in the sense
that we also define a convex program. On the other hand, our work is different in
the sense that we consider a broader class of data than counts. Also, we have an
additional constraint for unbiasedness. Furthermore, we take additional care of the
singularities upon the computation of features.

Brenner and Nissim [BN10] indicates that it is easier to provide stronger
theoretical guarantees for maximizing the utility of privatized counts than for
maximizing the utility of privatized sums. However, in our work, we focus on utility
in practice as opposed to theoretical guarantees.

The issue with the privatization mechanisms that do not rely on convex programs
(e.g., the Gaussian mechanism, Laplace or the discrete Gaussian mechanism

96

Chapter 4. Tailored noise mechanism 4.4. Approach

[CKS20]) is that they result in suboptimal utility in exchange for simplicity of
implementation and application. We remark that, upon defining a convex program,
we have a discrete privatization function where we can explicitly specify the
differential privacy requirement between every two of its probabilities (similarly
as in Definition 5). Further, there exist approaches where privatization functions
are obtained using generative adversarial networks [RCP20] or stochastic gradient
descent [Wan+21]. However, those techniques require a training set whereas in our
approach we avoid such dependency.

We discuss several other mechanisms that are based on convex programs. Gupte
and Sundararajan [GS10] is similar to Ghosh et al. [GRS12] in the sense that
the authors consider count data though they use a different objective function.
Geng and Viswanath [GV16] considers central differential privacy (where we trust
a central curator and share with it the true values of sensitive features). Shokri
[Sho15] considers local differential privacy, however the work does not consider
unbiasedness.

We remark that blowfish privacy [HMD14] is a generalization of differential
privacy and is appropriate for cases when the trade-off between privacy and utility
is of interest. However, such framework requires background knowledge on the
graph of agents.

Finally, we remark that Mironov et al. [Mir12] discusses a privatization issue
of Laplace due to the least significant bits. In our case, such issue is avoided by
discretizing the features to the bins that do not rely on the least significant bits
(e.g., the representative values of the bins can be rounded to a higher significant
bit).

4.4 Approach

In this section, we intend to define a convex program for computing the conditional
probabilities of a privatization function which is tailored for the following conditions:

1. Sampling from the privatization function guarantees (ϵ, 0)-differential privacy
(Definition 5).

2. The biasedness of the privatization function is minimized, i.e., the absolute
difference between the mean of the privatization function and the sensitive
feature parametrizing the privatization function is minimized.

3. The variance of the privatization function is minimized.

4. Each conditional probability pk,j(x̃ |x) of the privatization function must sum
to 1, while each such probability must be greater or equal to 0 and less than
or equal to 1.

We remark that a successful solution of the aforementioned convex program is
interpreted as TNM because the solution includes the privatization functions for
privatizing features.

In the subsections that follow, we elaborate how TNM integrates the four re-
quirements stated in the aforementioned list. In Subsection 4.4.1, we define the

97

4.4. Approach Chapter 4. Tailored noise mechanism

constraints. In Subsection 4.4.2, we define the objective function. In Subsection
4.4.3, we review some strategies for discretization of domains of sensitive features
and domains of privatized features.

4.4.1 Definition of the constraints

In this subsection, we define the constraints to cover Requirement 1 (for ensuring
differential privacy) and Requirement 4 (for ensuring valid probability mass func-
tions), and to partially cover Requirement 2 (for ensuring bias minimization). The
complete coverage of Requirement 2 is achieved in conjunction with the objective
function discussed later in Subsection 4.4.2.

Differential privacy constraint. Since, for Model k, we have m̃k sensitive
features, we split the total privacy budget ϵ evenly for each sensitive feature. That
is, for Model k, an even split of the total privacy budget ϵ is the following:

ϵk =
ϵ

m̃k

.

Let ϵ ≥ 0. For local ϵ-differential privacy (similarly as in Definition 5), it is
requires that, for each k ∈ [l], j ∈ [m̃k], x1, x2 ∈ Xk,j, T ⊆ X̃k,j, we have∑

x̃∈T

pk,j(x̃ |x1) ≤ eϵk
∑
x̃∈T

pk,j(x̃ |x2), (4.2)

which is a linear inequality constraint with the constraint variables pk,j(x̃ |x1) and
pk,j(x̃ |x2). We remark that x1 and x2 in Equation 4.2 are adjacent values under
the notion of local differential privacy, where in local differential privacy we add
noise, typically, directly to sensitive attributes as opposed to statistics computed
from them. Also, we remark that the sums in Equation 4.2 are due to the addition
law of probability, as we intend to privatize a discrete class of data.

Since the number of subsets T ⊆ X̃k,j is exponential in |X̃k,j| (results in a
large number of constraints), we reformulate Equation 4.2. That is, for each
k ∈ [l], j ∈ [m̃k], x1, x2 ∈ Xk,j, x̃ ∈ X̃k,j, we have

pk,j(x̃ |x1) ≤ eϵkpk,j(x̃ |x2). (4.3)

We can further reduce the number of constraints by reformulating Equation
4.3. That is, for each k ∈ [l], j ∈ [m̃k], x ∈ Xk,j, x̃ ∈ X̃k,j, we have

pk,j(x̃ |x) ≤ eϵkpmax
k,j (x̃), (4.4)

pmax
k,j (x̃) ≤ eϵkpk,j(x̃ |x), (4.5)

where pmax
k,j (x̃) is a constraint variable for the highest value in {pk,j(x̃ |x) : x ∈ Xk,j}.

Finally, we rewrite Equation 4.4 and Equation 4.5 to the normal form of
constraints (i.e., the terms with constraint variables are moved to the left hand
side of the “less than or equal” symbol). That is, for each k ∈ [l], j ∈ [m̃k], x ∈
Xk,j, x̃ ∈ X̃k,j, we have

pk,j(x̃ |x)− eϵkpmax
k,j (x̃) ≤ 0, (4.6)

pmax
k,j (x̃)− eϵkpk,j(x̃ |x) ≤ 0. (4.7)

98

Chapter 4. Tailored noise mechanism 4.4. Approach

We remark that a constraint solver might encounter numerical difficulties when
the coefficients of constraint variables are high. This way, we scale Equation 4.6
and Equation 4.7. That is, for each k ∈ [l], j ∈ [m̃k], x ∈ Xk,j, x̃ ∈ X̃k,j, we have

1

eϵk
pk,j(x̃ |x)− pmax

k,j (x̃) ≤ 0, (4.8)

1

eϵk
pmax
k,j (x̃)− pk,j(x̃ |x) ≤ 0. (4.9)

Hence, for ensuring local ϵ-differential privacy, we have two distinct linear inequality
constraints.

Bias minimization constraint. We design the bias minimization of the
privatization functions by firstly defining a linear inequality constraint. That is,
for each k ∈ [l], j ∈ [m̃k], x ∈ Xk,j, we have∑

x̃∈X̃k,j

x̃pk,j(x̃ | x) ≤ x + ck,j,x, (4.10)

where ck,j,x is a constraint variable that quantifies the bias (ideally equals 0). We
remark that we use the “less than or equal” symbol as opposed to equality because
we aim for a larger solution space.

We rewrite Equation 4.10 in the normal form. That is, for each k ∈ [l], j ∈
[m̃k], x ∈ Xk,j, we have ∑

x̃∈X̃k,j

x̃pk,j(x̃ | x)− ck,j,x ≤ x. (4.11)

Finally, we scale Equation 4.11. That is, for each k ∈ [l], j ∈ [m̃k], x ∈ Xk,j, we
have

1

maxx̃∈X̃k,j
|x̃|

 ∑
x̃∈X̃k,j

x̃pk,j(x̃ | x)− ck,j,x

 ≤ x

maxx̃∈X̃k,j
|x̃|

. (4.12)

Hence, for ensuring bias minimization, we have one linear inequality constraint.
However, we remind that up until now we have discussed only the first part of
the bias minimization, as the second part of the bias minimization is part of the
objective function (discussed later in Subsection 4.4.2).

Constraints of probability mass functions. The probabilities of a proba-
bility mass function must sum to 1, while each such probability is greater or equal
to 0 and less than or equal to 1.

We define the constraint for the probabilities of a probability mass function
summing to 1. That is, for each k ∈ [l], j ∈ [m̃k], x ∈ Xk,j, we have∑

x̃∈X̃k,j

pk,j(x̃ | x) = 1, (4.13)

which is a linear equality constraint in its normal form.

99

4.4. Approach Chapter 4. Tailored noise mechanism

We define the constraint so that each probability is higher or equal to 0 (Equation
4.13 already implies that no probability is higher than 1 because their sum equals
to 1). That is, for each k ∈ [l], j ∈ [m̃k], x ∈ Xk,j, x̃ ∈ X̃k,j, we have

pk,j(x̃ | x) ≥ 0, (4.14)

which is a linear inequality constraint.
We rewrite Equation 4.14 in the normal form. That is, for each k ∈ [l], j ∈

[m̃k], x ∈ Xk,j, x̃ ∈ X̃k,j, we have

−pk,j(x̃ | x) ≤ 0. (4.15)

We require that the constraint variable pmax
k,j (x̃) is less than or equal to 1. That

is, for each k ∈ [l], j ∈ [m̃k], x̃ ∈ X̃k,j, we have

pmax
k,j (x̃) ≤ 1, (4.16)

which is a linear inequality constraint in its normal form.
Further, we require that the constraint variable pmax

k,j (x̃) is greater or equal to
the probabilities in {pk,j(x̃ |x) : x ∈ Xk,j}. That is, for each k ∈ [l], j ∈ [m̃k], x ∈
Xk,j, x̃ ∈ X̃k,j, we have

pk,j(x̃ |x) ≤ pmax
k,j (x̃), (4.17)

which is a linear inequality constraint.
We rewrite Equation 4.17 in its normal form. That is, for each k ∈ [l], j ∈

[m̃k], x ∈ Xk,j, x̃ ∈ X̃k,j, we have

pk,j(x̃ |x)− pmax
k,j (x̃) ≤ 0. (4.18)

We remark that if the constraint in Equation 4.18 is met, it guarantees that the
constraint in Equation 4.8 is met also.

Hence, for valid probability mass functions, we have one linear equality constraint
and three linear inequality constraints.

4.4.2 Definition of the objective function

In this subsection, we define the objective function so that it covers Requirement
3 (for ensuring variance minimization). We highlight that the objective function
completes the coverage of Requirement 2 (for ensuring bias minimization) whose
initial part is covered in Subsection 4.4.1 above.

Our intention is to minimize the total objective function L by minimizing the
objective function Lk of Model k, for each k ∈ [l], i.e., we minimize

L =
∑
k∈[l]

Lk. (4.19)

We define the objective function of Model k as

Lk = Lvce
k + Lbias

k , (4.20)

100

Chapter 4. Tailored noise mechanism 4.4. Approach

where Lvce
k is the objective value for minimizing variance and Lbias

k is the objective
value for minimizing bias.

Variance minimization. In Model tns ◦ dp, we firstly privatize attributes
and then transform them into features for computing U-statistics. For this reason,
in the objective function, we have the variance of attributes and the variance of
features. Thus, for each j ∈ [m̃k], let rj ∈ N1 denote the number of features
computed from an attribute j. Then, for each t ∈ [rj], let f ′

k,j,t denote the t-th
feature function.

We define the objective function for variance minimization as follows:

Lvce
k =

∑
j∈[m̃k],t∈[rj],x∈Xk,j ,x̃∈X̃k,j

ρvcek,j,tpk,j(x̃ | x)
(
f ′
k,j,t(x̃)− f ′

k,j,t(x)
)2

, (4.21)

where

ρvcek,j,t = 10−2 min

(
1,

1

maxx∈Xk,j ,x̃∈X̃k,j

(
f ′
k,j,t(x̃)− f ′

k,j,t(x)
)2
)

(4.22)

is the scaling term of the objective function for variance minimization. We remark
that the term 10−2 is there due to the constraint variable pk,j(x̃ | x) belonging to
an interval of length 1 (thus the partial derivatives of the objective function for
variable minimization should not be too high to avoid proposals that are outside
that interval).

We conclude that the objective function for variance minimization is linear with
respect to the constraint variables.

Bias minimization. We define the objective function for bias minimization as
follows:

Lbias
k =

∑
j∈[m̃k],x∈Xk,j

ρbiask,j c
2
k,j,x, (4.23)

where

ρbiask,j = 10−2 1

maxx̃∈X̃k,j
x̃2

(4.24)

is the scaling term of the objective function for bias minimization. We remark that
the term 10−2 is there so that the objective function for bias minimization has a
lower influence on the total objective function.

We conclude that the objective function for bias minimization is convex since
the constraint variable ck,j,x is squared.

4.4.3 Discretization of domains of features

In this subsection, we describe some strategies for discretization of domains of
sensitive features and domains of privatized features, which are based on thresholds
and representative values. That is, for every two adjacent thresholds, we attribute
a representative value to which a sensitive feature is mapped to if the sensitive
feature is in between those two adjacent thresholds.

101

4.5. Implementation Chapter 4. Tailored noise mechanism

We recall two classic discretization strategies: equal distance discretization and
equal frequency discretization, which are discussed in Zheng and Casari [ZC18].

In equal distance discretization, we choose the number of thresholds, compute
the difference between the highest and the lowest value, and determine the length
of a discretization subinterval (we refer to it by a bin) by dividing the previously
computed difference by the number of thresholds. Finally, we place thresholds at
the boundaries of each bin and fix the representative value in the middle of two
adjacent thresholds.

Equal distance discretization can be also used in the sense of mapping features
to the transformation scale (e.g., the natural logarithm scale), then computing
the thresholds and the representative values, and finally remapping them to the
original scale (for the natural logarithm scale, such remapping is ex). This results
in more (or less) bins in the intervals where the gradient of the transformation of
features has a higher (or lower) magnitude. We remark that the magnitude of a
gradient can get high when the transformation has singularities. For example, the
singularity in f(x) = 1

x
is at x = 0.

In equal frequency discretization, we determine the locations of the thresholds
in such a way that there would be an approximately equal number of features
falling in between every two adjacent thresholds. We fix each representative value
in the middle of two adjacent thresholds.

4.5 Implementation

In this section, we relate our constraint problem (discussed in Section 4.4) to the
standard form accepted by the cvxopt package (discussed in Subsection 2.6.1).
Firstly, we precise the order and counts of the constraint variables in our convex
program Then, we precise the order and counts of the constraints. Finally, we
elaborate on the implementation details of the objective function.

Even though the convex program in Section 4.4 is quadratic (it has a quadratic
objective function and linear constraints), we formulate it as a more general convex
program. This way, future extensions that result in convex constraints or a convex
objective function would be more straightforward to integrate. We remark that,
in this work, we already discuss the scaling of constraints and the scaling of the
objective function, which are typical practices to reduce the numerical difficulty
for solving convex programs.

We remark that, in this work, we have used the default constraint solver of
cvxopt, which is based on Cholesky decomposition. This choice is faster compared
to an alternative that is based on the LDL decomposition, which is more suitable
for convex programs that are numerically difficult, e.g., when it is difficult to
appropriately scale the constraints or the objective function.

Order of constraint variables. Let idx(·) denote a map from a value to its
index in its discrete domain. In Table 4.3, we list the constraint variables according
to their order in the convex program and we also provide a formula for the index
of a particular constraint variable.

102

Chapter 4. Tailored noise mechanism 4.5. Implementation

Table 4.3: Order and indices of constraint variables in the convex program

Order Variable Index

1 pk,j(x̃ | x)
∑

k′∈[k]
∑

j′∈[m̃k′]
|Xk′,j′ ||X̃k′,j′ |+

∑
j′∈[j] |Xk,j′||X̃k,j′|

+idx(x)|X̃k,j|+ idx(x̃)

2 pmax
k,j (x̃)

∑
k′∈[k]

∑
j′∈[m̃k′]

|X̃k′,j′ |+
∑

j′∈[j] |X̃k,j′ |+ idx(x̃)

3 ck,j,x
∑

k′∈[k]
∑

j′∈[m̃k′]
|Xk′,j′ |+

∑
j′∈[j] |Xk,j′ |+ idx(x)

In Table 4.4, we provide a formula for the total number of constraint variables.

Table 4.4: Total number of constraint variables.

Variable Total number Total number (in experiments)

pk,j(x̃ | x)
∑

k∈[l],j∈[m̃k]
|Xk,j||X̃k,j| (m′ + m)|X ||X̃ |

pmax
k,j (x̃)

∑
k∈[l],j∈[m̃k]

|X̃k,j| (m′ + m)|X̃ |
ck,j,x

∑
k∈[l],j∈[m̃k]

|Xk,j| (m′ + m)|X |

Order of constraints. In Table 4.5 and Table 4.6 below, we list, respectively,
the order of linear equality constraints and the order of linear inequality constraints
in the convex program.

Table 4.5: Order of linear equality constraints

Order Description Reference

1 Probabilities sum to 1 Equation 4.13

Table 4.6: Order of linear inequality constraints

Order Description Reference

1 Differential privacy Equation 4.8

2 Probabilities are greater than 0 Equation 4.15

3 Highest probabilities are less than or equal to 1 Equation 4.18

We remind that Equation 4.18 implies Equation 4.9, where the latter equation
is the remaining constraint for differential privacy.

In Table 4.7, we provide a formula for the total number of each type of con-
straints.

103

4.6. Experiments Chapter 4. Tailored noise mechanism

Table 4.7: Total number of constraints. In our experiments, we use discretized
domains of equal size.

Reference Total number Total number (experiments)

Equation 4.13
∑

k∈[l],j∈[m̃k]
|Xk,j| (m′ + m)|X |

Equation 4.8
∑

k∈[l],j∈[m̃k]
|Xk,j||X̃k,j| (m′ + m)|X ||X̃ |

Equation 4.15
∑

k∈[l],j∈[m̃k]
|Xk,j||X̃k,j| (m′ + m)|X ||X̃ |

Equation 4.18
∑

k∈[l],j∈[m̃k]
|Xk,j||X̃k,j| (m′ + m)|X ||X̃ |

Implementation of the objective function. Regarding our objective func-
tion L (defined in Equation 4.19), we remind that it is composed of the objective
function Lvce

k (Equation 4.21) for minimizing variance and the objective function
Lbias

k (Equation 4.23) for minimizing bias. This way, in each iteration, the constraint
solver evaluates the objective function using the values of the constraint variables
with probabilities of privatization functions, i.e., pk,j(x̃ | x), and the values of the
constraint variables indicating the amount of biasedness, i.e., ck,j,x.

Regarding the initial proposal of the solution of the constraint solver, we fix the
constraint variables related to probabilities, i.e., pk,j(x̃ | x) and pmax

k,j (x̃), so that
they correspond to uniform distributions. Then, we fix the constraint variables
ck,j,x so that the bias minimization constraints result in equalities.

4.6 Experiments

In this section, we discuss the experiments.
In Subsection 4.6.1, we describe datasets. In Subsection 4.6.2, we precise the

experiment setup. In Subsection 4.6.3, we discuss the results of the experiments.
In Subsection 4.6.4, we discuss secondary experiments.

4.6.1 Dataset description

In this subsection, we define the linear regression model and describe our datasets.
Linear regression model. Let m ∈ N1. For our experiments, we define a

multiple linear regression model with m + 1 regression parameters and a scalar
target value. For each i ∈ [n], we have

yi = θ0 + θ1xi,1 + . . . + θmxi,m + ξregi , (4.25)

where xi,1, xi,2, . . . , xi,m are (sensitive) features, θ0, θ1, . . . , θm ∈ R are regression
parameters, ξregi is regression noise which is an independent observation of N (0, σ2),
and σ is the standard deviation of regression noise.

We leave the following remarks on the privacy guarantees for locally privatizing
the aforementioned sensitive features xi,1, xi,2, . . . , xi,m:

• Upon Laplace (Definition 7), we assume that the lowest value of each sensitive
feature and the highest value of each sensitive feature are known. This way,

104

Chapter 4. Tailored noise mechanism 4.6. Experiments

each agent can compute the l1 sensitivity (Equation 2.14) of Laplace. We
recall that Laplace ensures ϵ-differential privacy.

• Upon TNM, we assume that the lowest value of each sensitive feature and the
highest value of each sensitive feature are known. This way, equal distance
discretization (which is required for obtaining privatization functions and
is discussed in Subsection 4.4.3) allows for each agent to keep each of its
sensitive feature hidden because upon the aforementioned assumption the
central curator can perform equal distance discretization without knowing
any of the sensitive features. However, for equal frequency discretization, the
central curator would need to know each sensitive feature.

• Upon TNM, local privatization of sensitive features is ϵ-differentially private
due to Equation 4.6 and Equation 4.7, which are derived from Equation
4.2. For privatizing its sensitive feature, each agent would firstly discretize
it using the same discretization strategy as the central curator. We argue
that the privacy guarantees of TNM (upon equal distance discretization) and
Laplace are comparable because we rely on the same assumptions. Yet,
the discretization in TNM results in a loss of utility due to the presence of
granularity.

• Referring to Sei and Ohsuga [SO22], we assume that target values are non-
sensitive. Even though a target value yi (Equation 4.25) is a linear combina-
tion of sensitive features, the exact values of the regression parameters and
the regression noise remain unknown, thus the values of the sensitive features
can not be deduced.

• Referring to the composition theorem in Dwork and Roth [DR14], privatiza-
tion of the sensitive features upon even splits of the total privacy budget ϵ
lead to ϵ-differential privacy.

We fit the regression model defined in Equation 4.25 by regularized least squares
(discussed in Subsection 2.4.1). That is, referring to Equation 2.9, we compute the
vector θ̂ of parameter estimates as follows:

θ̂ =

(
1

n
XTX + λIm+1

)−1
1

n
XTy, (4.26)

where

1

n
XTX =


1 1

n

∑
i∈[n] xi,1 . . . 1

n

∑
i∈[n] xi,m

1
n

∑
i∈[n] xi,1

1
n

∑
i∈[n] x

2
i,1

. . . 1
n

∑
i∈[n] xi,1xi,m

...
.

...
1
n

∑
i∈[n] xi,m

1
n

∑
i∈[n] xi,1xi,m . . . 1

n

∑
i∈[n] x

2
i,m


1

n
XTy =

[
1
n

∑
i∈[n] yi

1
n

∑
i∈[n] yixi,1 . . . 1

n

∑
i∈[n] yixi,m

]T
,

and where λ ∈ R is the regularization parameter and I is the (m + 1)× (m + 1)
identity matrix.

105

4.6. Experiments Chapter 4. Tailored noise mechanism

Datasets. We describe four synthetic datasets ds1, ds2a, ds2b, ds3, and
a synthetically-extended real dataset misra1d (the size of the real dataset was
extremely small, thus we generated additional instances). Let ϵ∗ = 10−2 be the
closest distance to which an attribute can reach the singularity when transforming
the attribute into a feature. We list the descriptions of the datasets:

• ds1. We have the regression model so that, for each i ∈ [n], a target value
yi = θ0 + θ1 log(ai) + ξregi , where an attribute ai is drawn independently from
uni(ϵ∗, 1), regression noise ξregi is drawn independently from N (0, 1), true
regression parameters θ0 = θ1 = 1. We intend to obtain regression parameter
estimates θ̂0 and θ̂1 so that a predicted target value ypredi = θ̂0 + θ̂1 log(ai).

• ds2a. We have the regression model so that, for each i ∈ [n], a target value
yi = θ0 + θ1

1
ai

+ ξregi , where an attribute ai is drawn independently from
uni(ϵ∗, 1), regression noise ξregi is drawn independently from N (0, 1), true
regression parameters θ0 = θ1 = 1. We intend to obtain regression parameter
estimates θ̂0 and θ̂1 so that a predicted target value ypredi = θ̂0 + θ̂1

1
ai

.

• ds2b. We have the regression model so that, for each i ∈ [n], a target value
yi = θ0 + θ1ai + θ2

1
ai

+ ξregi , where an attribute ai is drawn independently
from uni(ϵ∗, 1), regression noise ξregi is drawn independently from N (0, 1),
true regression parameters θ0 = θ1 = θ2 = 1. We intend to obtain regression
parameter estimates θ̂0, θ̂1, and θ̂2 so that a predicted target value ypredi =

θ̂0 + θ̂1ai + θ̂2
1
ai

.

• ds3. We have the regression model so that, for each i ∈ [n], a target value
yi = θ0 + θ1 tan(ai) + ξregi , where an attribute ai is drawn independently
from uni(−π

2
+ ϵ∗, π

2
− ϵ∗), regression noise ξregi is drawn independently from

N (0, 1), true regression parameters θ0 = θ1 = 1. We intend to obtain
regression parameter estimates θ̂0 and θ̂1 so that a predicted target value
ypredi = θ̂0 + θ̂1 tan(ai).

• misra1d. We have the regression model so that, for each i ∈ [n], a target value

yi =
θ̂µ1 θ̂

µ
2 ai

1+θ̂µ2 ai
+ ξregi , where an attribute ai = 103× a′i, a

′
i is drawn independently

from uni(0, 1), regression noise ξregi = 6.85 × 10−2 × ξregi
′, ξregi

′ is drawn

independently from N (0, 1), regression parameters θ̂µ1 = 4.37 × 102 and
θ̂µ2 = 3.02 × 10−4. We intend to obtain regression parameter estimates θ̂0,
θ̂1, and θ̂2 so that a predicted target value ypredi = θ̂0 + θ̂1

1
1+c1ai

+ θ̂2
1

1+c2ai
,

where c1 = θ̂µ2 + θ̂σ2 , c2 = θ̂µ2 + 1.1× θ̂σ2 , and the sample standard deviation (of
θ̂µ2) θ̂σ2 = 2.93× 10−6. We remark that the coefficient 6.85× 10−2 of ξregi and

values θ̂µ1 , θ̂µ2 , θ̂σ2 are taken from itl.nist.gov/div898/strd/nls/data/LINKS/v-
misra1d.shtml, whereas the coefficient 103 of ai is the order of magnitude of
the distance between the lowest and the highest target values in the original
dataset.

Regarding the misra1d dataset, we have approximated its non-linear regression

model, i.e., yi =
θ̂µ1 θ̂

µ
2 ai

1+θ̂µ2 ai
+ ξregi by a linear one, i.e., yi ≈ θ̂0 + θ̂1

1
1+c1ai

+ θ̂2
1

1+c2ai
.

106

https://www.itl.nist.gov/div898/strd/nls/data/LINKS/v-misra1d.shtml
https://www.itl.nist.gov/div898/strd/nls/data/LINKS/v-misra1d.shtml

Chapter 4. Tailored noise mechanism 4.6. Experiments

That is, for α1, α2 ∈ R, we have

θ̂µ1 θ̂
µ
2ai

1 + θ̂µ2ai
= θ̂µ1

(
1− 1

1 + θ̂µ2ai

)

≈ θ̂µ1

1−
∑
i∈[2]

αi

1 + ciai


= θ̂0 + θ̂1

1

1 + c1ai
+ θ̂2

1

1 + c2ai
. (4.27)

For a closer approximation of the non-linear regression model, the sum should be
over more than two values (contrary to the case in Equation 4.27).

In Section 3.3 on averaging on arbitrary graphs, we have a regression model
(Equation 3.10) with multiple features that can involve the reciprocal transformation.
We remark that this motivates the applicability of the aforementioned dataset ds2b.

4.6.2 Experiment setup

In this subsection, we specify two sets of experiments.

Experiment 4.1. We compare the utility (MSE between true target values and
predicted target values) of the regression models (Equation 4.25) fitted, respectively,
by non-privatized features, features privatized by Laplace, and features privatized
by TNM, when there is one feature computed from one attribute.

Experiment 4.2. We compare the utility (MSE between true target values and
predicted target values) of the regression models (Equation 4.25) fitted, respectively,
by non-privatized features, features privatized by Laplace, and features privatized
by TNM, when there are two features computed from one attribute.

In both experiments, we compare Model tns ◦ dp (where attributes are privatized
first and then the privatized attributes are transformed into features) to Model
dp ◦ tns (where attributes are transformed into features first and then the features
are privatized).

We precise the experiment setup:

• We discretize domains of sensitive features and domains of privatized features
in equal distance and 20 bins (respectively, |X| = 20 and |X̃| = 20).

• We use ϵ ∈ {2−1, 20, 21/2, 21, 23/2, 22, 25/2, 23, 27/2, 24, 25, 26} for evaluating the
privacy budget. We recall that, usually, ϵ > 10 is too high for privacy in
practice [Hsu+14]. We fix the number of agents to n = 104.

• We fix the tolerance of the constraint solver to 10−7. The solution of constraint
solver is successful when primal infeasibility (pres), dual infeasibility (dres),
and gap are lower than the fixed tolerance. For more details, we refer to
cvxopt.org/userguide/solvers. (In experiment results, we indicate pres, dres,
and gap which are the highest over the evaluated privacy budget). We fix
the maximal number of iterations of the constraint solver to 27.

107

https://cvxopt.org/userguide/solvers

4.6. Experiments Chapter 4. Tailored noise mechanism

• We normalize the MSE between true target values and predicted target values
dividing it by (σy)

2, where σy is the standard deviation of true target values.
(We remark that such normalization is discussed in more detail in Gupta
and Kling [GK11].) We perform cross-validation with 10 folds. We fix the
regularization parameter to λ = 103.

• We fix the number of experiment repetitions to texp = 27. In each experiment
repetition, we privatize features. Each synthetic dataset is generated once for
all experiment repetitions.

• We fix the significance level to αci = 0.05 (the computation of confidence
intervals is described in Equation 2.5).

4.6.3 Result interpretation

In this subsection, we discuss the results of the two sets of experiments.

Figure 4.1 illustrates the results of Experiment 4.1 on ds1. Due to sufficiently
fine discretization, TNM performs better than Laplace. In Laplace, Model tns ◦ dp
performs slightly better than Model dp ◦ tns upon a lower privacy budget and
slightly worse upon a higher privacy budget. We conclude that the two models
perform similarly because the log transformation approaches its singularity relatively
slowly. Similarly, in TNM, Model tns ◦ dp performs similar to Model dp ◦ tns.

Figure 4.1: Experiment 4.1 on ds1. (In the convex program, the discretized domain
for Model tns ◦ dp of TNM is in the logarithm scale.)

Figure 4.2 illustrates the results of Experiment 4.1 on ds2a. Due to sufficiently
fine discretization, TNM performs better than Laplace. In Laplace, Model dp ◦
tns performs better than Model tns ◦ dp because the reciprocal transformation
approaches its singularity relatively quickly, which results in a higher risk of
privatized attributes falling into an interval close to the singularity. Similarly, in
TNM, Model dp ◦ tns performs better than Model tns ◦ dp.

108

Chapter 4. Tailored noise mechanism 4.6. Experiments

Figure 4.2: Experiment 4.1 on ds2a. (In the convex program, the discretized
domain for Model tns ◦ dp of TNM is in the reciprocal scale.)

Figure 4.3 illustrates the results of Experiment 4.1 on ds3. Due to sufficiently
fine discretization, TNM performs better than Laplace. In Laplace, Model dp ◦ tns
performs better than Model tns ◦ dp because the tangent transformation approaches
its singularity relatively quickly. In TNM, Model tns ◦ dp performs slightly worse
than Model dp ◦ tns upon a lower privacy budget.

Figure 4.3: Experiment 4.1 on ds3. (In the convex program, the discretized domain
for Model tns ◦ dp of TNM is in the tangent scale.)

Figure 4.4 illustrates the results of Experiment 4.2 on ds2b. Due to sufficiently
fine discretization, TNM performs better than Laplace. In Laplace, Model dp ◦
tns performs better than Model tns ◦ dp because the reciprocal transformation
approaches its singularity relatively quickly. However, in TNM, a higher privacy
budget for one feature was enough for Model tns ◦ dp to outperform Model dp ◦ tns
(contrary to Figure 4.2, where the privacy budget is same for both models).

109

4.6. Experiments Chapter 4. Tailored noise mechanism

Figure 4.4: Experiment 4.2 on ds2b. (In the convex program, the discretized
domain for Model tns ◦ dp of TNM is in the reciprocal scale.)

Figure 4.5 illustrates the results of Experiment 4.2 on misra1d. Due to splitting
the privacy budget in Model dp ◦ tns and the transformations in Equation 4.27
staying relatively far from their singularities, TNM performs better than Laplace

only for Model tns ◦ dp. In Laplace, Model tns ◦ dp performs better than Model
dp ◦ tns upon a higher privacy budget and performs worse upon a lower privacy
budget. In TNM, Model tns ◦ dp performs better than Model dp ◦ tns because, in
Model tns ◦ dp, the privacy budget remains unsplit.

Figure 4.5: Experiment 4.2 on misra1d

The experiments were run on a machine with an Intel E5-2643 processor
(3.30 GHz) and 192 GB of RAM; this took 15 minutes. For ds1, ds2a, and ds3,
we had 880 constraint variables (Table 4.4) and 2440 constraints (Table 4.7).
For ds2b and misra1d, we had 1320 constraint variables and 3660 constraints.
For ds1, the memory requirement excessed our resources when the discretization
granularity reached 100 bins (the implementation attempted to allocate space for
20400 constraint variables and 60200 constraints).

110

Chapter 4. Tailored noise mechanism 4.6. Experiments

4.6.4 Secondary experiments

In this subsection, we discuss secondary experiments. In particular, we compare
equal distance discretization with equal frequency discretization. Also, we compare
coarser and finer domains of sensitive features and domains of privatized features.

Figure 4.6 illustrates a comparison between equal distance discretization and
equal frequency discretization on ds1. The two discretization strategies result in
similar utility because the two discretization strategies result in similar threshhold
placements (the logarithm transformation approaches its singularity relatively
slowly).

Figure 4.6: Comparison between equal distance discretization and equal frequency
discretization on ds1

Figure 4.7 illustrates a comparison between equal distance discretization and
equal frequency discretization on ds2a. Equal frequency discretization fails to result
in gradual improvement of utility over the evaluated privacy budget because it
is not fine enough in the interval with high-magnitude gradients (the reciprocal
transformation approaches its singularity relatively quickly).

Figure 4.7: Comparison between equal distance discretization and equal frequency
discretization on ds2a

111

4.6. Experiments Chapter 4. Tailored noise mechanism

Figure 4.8 illustrates a comparison between a finer discretization and a coarser
discretization of domains of sensitive features on ds2a upon equal distance dis-
cretization. We observe that a finer discretization of sensitive features results in an
improvement in utility for both Model tns ◦ dp and Model dp ◦ tns.

Figure 4.8: Comparison between a finer discretization and a coarser discretization
of domains of sensitive features on ds2a (upon equal distance discretization)

Figure 4.9 illustrates a comparison between a finer discretization and a coarser
discretization of domains of sensitive features on ds2a upon equal frequency dis-
cretization. We observe that a finer discretization of sensitive features results in an
improvement in utility for both Model tns ◦ dp and Model dp ◦ tns. However, we
remark that 40 bins were not enough for equal frequency discretization to result in
gradual improvement of utility for a higher privacy budget.

Figure 4.9: Comparison between a finer discretization and a coarser discretization
of domains of sensitive features on ds2a (upon equal frequency discretization)

Figure 4.10 illustrates a comparison between a finer discretization and a coarser
discretization of domains of privatized features on ds2a upon equal distance dis-
cretization, when there is one additional bin between every two bins of sensitive
features (interpolation) and there are two additional bins one of which is lower
and the other is higher than any other bin of sensitive features (extrapolation).

112

Chapter 4. Tailored noise mechanism 4.7. Conclusion

We observe that a finer discretization of privatized features does not result in
a utility improvement upon a higher privacy budget. This is because, due the
combination of the objective function for minimizing variance (Equation 4.21)
and the differential privacy constraint (Equation 4.8), the obtained privatization
functions have probabilities of 0 for sampling interpolated or extrapolated values.

Figure 4.10: Comparison between a finer discretization and a coarser discretization
of domains of privatized features on ds2a (upon equal distance discretization)

We remark that, in our experiments, the utility sometimes stagnates upon a
higher privacy budget, e.g., this is the case in Figure 4.2. The cause of this is
the regularization of the diagonal of the matrix 1

n
XTX in Equation 2.12, which

mitigates the numerical difficulty of taking its matrix inverse (Equation 4.26) in
exchange for lower accuracy.

4.7 Conclusion

We have provided a utility-maximizing mechanism for privatizing features that
are computed by transforming sensitive attributes, when the transformations have
high-magnitude gradients or singularities. In particular, we have provided the
tailored noise mechanism (TNM) for privatizing features by solving a convex program
in such a way that (i) only informative intervals of transformations are selected,
(ii) the variance of privatization noise is minimized, and (iii) the biasedness of
privatization noise is minimized.

In our experiments results on synthetic datasets and a synthetically-extended
real dataset, we have observed that TNM results, typically, in a lower MSE between
true target values and predicted target values compared to the Laplace mechanism
(Definition 7), when fitting a linear regression model by regularized least squares
(Equation 2.12) that use U-statistics, and when the feature function is either the
logarithm, the reciprocal, or the tangent.

Also, in our experiment results (illustrated in Figure 4.2), we have observed
that, in TNM and for the linear regression model of the ds2a dataset, Model dp ◦ tns
(where attributes are transformed into features first, and only then differential
privacy noise is added to the features) performs better than Model tns ◦ dp (where

113

4.7. Conclusion Chapter 4. Tailored noise mechanism

differential privacy noise is added to attributes first, and only then the attributes are
transformed into features) because the reciprocal transformation in ds2a approaches
its singularity relatively quickly, thus the risk of obtaining outlier features is higher.

Future directions. Firstly, we remark that our approach of solving a convex
program for obtaining the conditional probabilities of privatization functions is
appropriate only for discrete privatization functions. To extend our approach
for continuous privatization functions, we could attempt to identify a family of
privatization functions with shape parameters, so that the convex program would
remain tractable and intend to identify optimal shape parameters as opposed to
conditional probabilities.

Secondly, we could attempt to identify a discretization strategy dedicated for
models where attributes are transformed to several distinct features, and where the
discretization strategy takes into account the influence of a weighted combination
of distinct transformations. This way, we could determine the locations of the bins,
which are informative over all distinct transformations.

114

Chapter 5

Summary and future directions

In Chapter 1, we have stated our principal question, which goes as follows: how could
the agents of a communication network maximize the accuracy of collaboratively
computed averages of locally privatized attributes? To answer this question, we
have discussed two contributions, respectively, in Section 3.3 and Chapter 4. In the
first work, we have discussed distributed averaging on graphs with arbitrary degree
sequences, when the computed averages are unbiased, when the degrees of the agents
are sensitive, and when the agents interact without handshakes. In the second
work, we have discussed a utility-maximizing mechanism for privatizing features
that are computed by transforming sensitive attributes, when the transformations
have high-magnitude gradients or singularities.

In Section 5.1, we summarize the contributions by enumerating their advantages
and disadvantages. In Section 5.2, we discuss future directions.

5.1 Summary of contributions

In this section, we summarize the two aforementioned contributions by enumerating
their advantages and disadvantages, where the first contribution is the work on
distributed averaging on graphs with arbitrary degree sequences, which is discussed
in Section 3.3, and the second contribution is the work on tailored privatization,
which is discussed in Chapter 4. For the work on tailored privatization, we also
enumerate some remarks.

We remark that, in Section 3.2, we have provided an example of distributed
averaging on ER graphs. However, ER graphs are not as general as graphs with
arbitrary degree sequences because, in expectation, every vertex of an ER random
graph has the degree np, where n is the order of the graph and p is the probability
of edge assignment between any two distinct vertices of the ER random graph.

In the work on distributed averaging on graphs with arbitrary degree sequences,
we have proved an asymptotic guarantee (Theorem 5) for the MSE between the
average of sensitive attributes and the average of locally privatized attributes
computed by the bias-correcting gossip algorithm (Equation 3.9), when the graph
of agents is modeled by the configuration model (Definition 4), when the degrees
of agents are sensitive, and when the agents interact without handshakes.

115

5.1. Summary of contributions Chapter 5. Summary and future directions

We enumerate the advantages of the work on distributed averaging on graphs
with arbitrary degree sequences:

1. Equation 3.44 and Equation 3.45 indicate that distributed averaging per-
formed by the bias-correcting gossip algorithm (BCGo) can result in less
privatization noise in comparison to the averaging function f(x) = 1

n

∑
i∈[n] xi

(where x ∈ Rn), when we compute U-statistics (Definition 1) of degree 1 from
locally privatized degrees raised to a power k = 2, and when the graph has
low degrees (i.e., when the 2-nd raw moment µd2 and the k-th raw moment
µdk of the degrees in Equation 3.44 are low).

2. Handshake-free interaction is a characteristic of a communication model with
a stronger self-management. As a consequence, information dissemination
among the agents is more robust upon inactive agents.

We enumerate the disadvantages of the work on distributed averaging on graphs
with arbitrary degree sequences:

1. Equation 3.45 indicates that distributed averaging of locally privatized at-
tributes performed by BCGo requires to split the privacy budget in m+2 parts
and centralized averaging of locally privatized attributes requires to split the
privacy budget in m parts, where m is the number of sensitive attributes.
This way, the use of BCGo requires to split the privacy budget in 2 additional
parts.

2. The heuristic (Equation 3.35) for the expected value of the reciprocal of
the square of a Gaussian random variable, to our knowledge, has no closed-
form expression. This way, the approximation error in Equation 3.29 is left
unquantified.

In the work on tailored privatization, we have provided a utility-maximizing
mechanism for privatizing features that are computed by transforming sensitive
attributes, when the transformations have high-magnitude gradients or singularities.
In particular, we have provided the tailored noise mechanism (TNM) for privatizing
features by solving a convex program in such a way that (i) only informative
intervals of transformations are selected, (ii) the variance of privatization noise is
minimized, and (iii) the biasedness of privatization noise is minimized.

We enumerate the advantages of the work on tailored privatization:

1. In our experiment results on synthetic datasets and a synthetically-extended
real dataset, we have observed that TNM results, typically, in a lower MSE
between true target values and predicted target values compared to the
Laplace mechanism (Definition 7), when fitting a linear regression model by
regularized least squares that use U-statistics (Definition 1), and when the
feature function is either the logarithm, the reciprocal, or the tangent.

2. In our experiment results (illustrated in Figure 4.2), we have observed that, in
TNM and for the linear regression model of the ds2a dataset, Model dp ◦ tns
(where attributes are transformed into features first, and only then differential

116

Chapter 5. Summary and future directions 5.2. Future directions

privacy noise is added to the features) performs better than Model tns ◦ dp
(where differential privacy noise is added to attributes first, and only then
the attributes are transformed into features) because ds2a has the reciprocal
transformation which approaches its singularity relatively quickly, and the
risk of obtaining outlier features is higher.

3. In our experiment results (illustrated in Figure 4.4 and Figure 4.5), we have
observed that, in TNM and for the linear regression models of the ds2b dataset
and the misra1d dataset, where two features are computed from distinct
transformations of one attribute, Model tns ◦ dp performs better than Model
dp ◦ tns because, for Model dp ◦ tns, the privacy budget was split in 2 parts
and, for Model tns ◦ dp, the privacy budget remained unsplit.

4. The strategy of transforming the non-linear regression model of the original
misra1d dataset to a linear one (Equation 4.27) can be generalized to other
non-linear datasets.

We enumerate the disadvantages of the work on tailored privatization:

1. A utility-maximizing mechanism obtained by solving a convex program
requires discretization of domains of privatization functions, and the presence
of granularity results in utility loss.

2. We have found only one relevant real dataset (misra1d) where features
are obtained from a transformation with a singularity, while misra1d is an
extremely small dataset.

We enumerate some remarks of the work on tailored privatization:

1. In our experiment results (illustrated in Figure 4.6), we have observed that
equal frequency discretisation performs better than equal distance discretiza-
tion upon a transformation that approaches its singularity relatively slowly
(for the discretization granularity that was handled by our machine).

2. In our experiment results (illustrated in Figure 4.7), we have observed that
equal distance discretisation performs better than equal frequency discretiza-
tion upon a transformations that approaches its singularity relatively quickly
(for the discretization granularity that was handled by our machine).

5.2 Future directions

In this section, we firstly summarize more straightforward future directions of the
work on distributed averaging on graphs with arbitrary degree sequences, which is
discussed in Section 3.3, and the work on tailored privatization, which is discussed
in Chapter 4. Then, we discuss future direction in a broader sense by considering
the settings that are close to (yet outside of) the scope of this dissertation, as
illustrated in Figure 2.5.

We discuss future directions of the work on distributed averaging on graphs
with arbitrary degree sequences:

117

5.2. Future directions Chapter 5. Summary and future directions

1. By identifying a strategy to obtain the number n of neighbors, BCGo could
be used to compute the unbiased sample variance which is a U-statistic of
degree 2 (indicated by Equation 3.50). This way, we conjecture that, by
mathematical induction, it can be shown that BCGo can compute U-statistics
of arbitrary degree.

2. We conjecture that the convergence rate of BCGo executed on graphs with
arbitrary degree sequences could be obtained from the transition matrix
of the simple gossip algorithm (Algorithm 1), as BCGo is a combination of
two distinct executions of the simple gossip algorithm (SiGo). Boyd et al.
[Boy+06] indicates that the convergence rate of a gossip algorithm can be
determined from the second largest singular value of the transition matrix.
In such case, the convergence rate can be obtained from the spectral gap,
which is discussed in more detail in the slides by Iutzeler [Iut16a; Iut16b].

3. For privatizing the degrees of agents, we have used the Gaussian mechanism
(Definition 6). However, the degrees are always non-negative, thus their
domain is bounded from below. A more suitable privatization mechanism
could be one that results in privatization noise with a discrete support, e.g.,
the discrete Gaussian mechanism [CKS20] or TNM.

We discuss future directions of the work on tailored privatization:

1. Our approach of solving a convex program for obtaining the conditional
probabilities of privatization functions is appropriate only for discrete pri-
vatization functions. To extend our approach for continuous privatization
functions, we could attempt to identify a family of privatization functions
with shape parameters, so that the convex program would remain tractable
and intend to identify optimal shape parameters as opposed to conditional
probabilities.

2. We could attempt to identify a discretization strategy dedicated for models
where attributes are transformed to several distinct features, and where
the discretization strategy takes into account the influence of a weighted
combination of distinct transformations. This way, we could determine the
locations of the bins, which are informative over all distinct transformations.

Broader future directions. We elaborate on the future directions in a
broader sense. In Figure 2.5, we have illustrated two settings that are close to (yet
outside of) the scope of this dissertation. One of such settings is related to dynamic
communication models, and the other is related to personalized statistical models.

We start by discussing future directions towards dynamic communication mod-
els.

Firstly, we remark that communication models with a notion of time can be
interpreted as complex networks (discussed in Subsection 2.2.1). Then, we highlight
that the evolution of a complex network can be represented by its equilibrium state
(a graph G) or by a sequence of graphs (Gk)k≥1 of length k, where each graph in
the sequence represents a state upon a particular instance of time.

118

Chapter 5. Summary and future directions 5.2. Future directions

We envision a future direction where the representation of a complex network
by a graph G could have an advantage over the representation of a complex
network by a sequence (Gk)k≥1. For example, if a graph G was generated by
adding vertices (and their edges) one by one (an example of such generation is
the Chinese restaurant process discussed in Subsection 2.2.3), it might suffice to
identify emergent properties (e.g., the presence of a giant component discussed in
Subsection 2.2.1) by taking at G rather than taking every element in the sequence
(Gk)k≥1 that led to G. This way, the computation cost of the identification of
emergent properties of a dynamic communication model would be kept low.

We proceed by discussing future directions towards personalized statistical
models.

Firstly, we remind that the bias between the average of locally privatized
attributes computed by SiGo and the true average of individual values is present
when the graph of agents is non-regular (as mentioned in Chapter 3). As indicated
by Equation 3.45, BCGo can result in privatization noise that is higher than the
corrected bias, when the bias is low and due to the additional splits of the privacy
budget in BCGo. This way, we conjecture that there exist graphs on which SiGo

can outperform BCGo, especially when the average degree is low.
We envision a future direction where SiGo is executed separately in clusters of

agents, where each cluster is formed of agents who have similar degrees, as in such
case the aforementioned bias would get low. This way, the future direction would
involve a search of a convenient approach for clustering agents that have similar
degrees.

One possible approach could be an application of a clustering algorithm based
on ϵ-regular pairs defined as follows. Let ϵ ∈ (0, 1). Let C,C ′ ⊆ V be pairwise
disjoint subsets of vertices of a graph. The pair (C,C ′) is ϵ-regular if for all X ⊆ C
and Y ⊆ C ′, such that |X| ≥ ϵ|C| and |Y | ≥ ϵ|C ′|, we have

|den(X, Y)− den(C,C ′)| ≤ ϵ,

where den(X, Y) and den(C,C ′) are defined in Equation 2.6. As proven by Sze-
merédi’s regularity lemma [Sze75], there exist such graphs for which it is possible
to find a partition of vertices, where the partition includes pairwise disjoint subsets
of vertices, and where each pair of subsets is ϵ-regular. However, as indicated by
Gowers [Gow97] and Moshkovitz and Shapira [MS16], such graphs are usually too
large for tractability. We remark that the stochastic block model (Definition 3) is
a convenient choice for modeling ϵ-regular pairs because it is parametrized by the
probabilities for edge assignments between every two communities.

We conjecture that a variant of a simple clustering algorithm (e.g., k-means
clustering) could be designed in such a way that ϵ-regularity would be used as an
index and lead to almost ϵ-regular pairs. If SiGo propagated only among vertices
that belong to distinct sets of (almost) ϵ-regular pairs, the propagation would
happen among vertices that have similar degrees. This way, we would reduce the
bias between the average of individual values computed by SiGo and the true
average of individual values, when the graph is non-regular.

119

Bibliography

[ADV20] Martin Andersen, Joachim Dahl, and Lieven Vandenberghe. “CVX-
OPT: Convex Optimization”. In: Astrophysics Source Code Library
(2020), ascl–2008. url: https://ascl.net/2008.017.

[AEH75] E.A. Akkoyunlu, K. Ekanandham, and R.V. Huber. “Some Constraints
and Tradeoffs in the Design of Network Communications”. In: Pro-
ceedings of the Fifth Symposium on Operating System Principles,
SOSP 1975, The University of Texas at Austin, Austin, Texas, USA,
November 19-21, 1975. Ed. by James C. Browne and Juan Rodriguez-
Rosell. ACM, 1975, pp. 67–74. doi: 10.1145/800213.806523. url:
https://doi.org/10.1145/800213.806523.

[Alo+00] Noga Alon, Eldar Fischer, Michael Krivelevich, and Mario Szegedy.
“Efficient Testing of Large Graphs”. In: Comb. 20.4 (2000), pp. 451–476.
doi: 10.1007/s004930070001. url: https://doi.org/10.1007/s0
04930070001.

[AX18] Inês Almeida and João Xavier. “DJAM: Distributed Jacobi Asyn-
chronous Method for Learning Personal Models”. In: IEEE Signal
Process. Lett. 25.9 (2018), pp. 1389–1392. doi: 10.1109/LSP.2018.2
859596. url: https://doi.org/10.1109/LSP.2018.2859596.

[AY08] Charu C. Aggarwal and Philip S. Yu. “On static and dynamic methods
for condensation-based privacy-preserving data mining”. In: ACM
Trans. Database Syst. 33.1 (2008), 2:1–2:39. doi: 10.1145/1331904.1
331906. url: https://doi.org/10.1145/1331904.1331906.

[Ays+09] Tuncer C. Aysal, Mehmet E. Yildiz, Anand D. Sarwate, and Anna
Scaglione. “Broadcast gossip algorithms for consensus”. In: IEEE
Trans. Signal Process. 57.7 (2009), pp. 2748–2761. doi: 10.1109

/TSP.2009.2016247. url: https://doi.org/10.1109/TSP.2009.2
016247.

[BA99] Albert-László Barabási and Réka Albert. “Emergence of Scaling in
Random Networks”. In: Science 286.5439 (Oct. 1999), pp. 509–512.
issn: 1095-9203. doi: 10.1126/science.286.5439.509. url: http:
//dx.doi.org/10.1126/science.286.5439.509.

120

https://ascl.net/2008.017
https://doi.org/10.1145/800213.806523
https://doi.org/10.1145/800213.806523
https://doi.org/10.1007/s004930070001
https://doi.org/10.1007/s004930070001
https://doi.org/10.1007/s004930070001
https://doi.org/10.1109/LSP.2018.2859596
https://doi.org/10.1109/LSP.2018.2859596
https://doi.org/10.1109/LSP.2018.2859596
https://doi.org/10.1145/1331904.1331906
https://doi.org/10.1145/1331904.1331906
https://doi.org/10.1145/1331904.1331906
https://doi.org/10.1109/TSP.2009.2016247
https://doi.org/10.1109/TSP.2009.2016247
https://doi.org/10.1109/TSP.2009.2016247
https://doi.org/10.1109/TSP.2009.2016247
https://doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.1126/science.286.5439.509

BIBLIOGRAPHY BIBLIOGRAPHY

[Bel+20] James Bell, Aurélien Bellet, Adrià Gascón, and Tejas Kulkarni. “Pri-
vate Protocols for U-Statistics in the Local Model and Beyond”. In:
AISTATS 2020 - 23rd International Conference on Artificial Intelli-
gence and Statistics. Palermo, Italy, Aug. 2020. url: https://hal.i
nria.fr/hal-02310236.

[BGH20] Aurélien Bellet, Rachid Guerraoui, and Hadrien Hendrikx. “Who
Started This Rumor? Quantifying the Natural Differential Privacy
of Gossip Protocols”. In: LIPIcs 179 (2020). Ed. by Hagit Attiya,
8:1–8:18. doi: 10.4230/LIPIcs.DISC.2020.8. url: https://doi.o
rg/10.4230/LIPIcs.DISC.2020.8.

[BM16] Anirban Banerjee and Ranjit Mehatari. “An eigenvalue localization
theorem for stochastic matrices and its application to Randić matrices”.
In: Linear Algebra and its Applications 505 (2016), pp. 85–96.

[BN10] Hai Brenner and Kobbi Nissim. “Impossibility of Differentially Private
Universally Optimal Mechanisms”. In: 51th Annual IEEE Symposium
on Foundations of Computer Science, FOCS 2010, October 23-26,
2010, Las Vegas, Nevada, USA. IEEE Computer Society, 2010, pp. 71–
80. doi: 10.1109/FOCS.2010.13. url: https://doi.org/10.1109
/FOCS.2010.13.

[Boc+06] Stefano Boccaletti, Vito Latora, Yamir Moreno, Martin Chavez, and
Dong-Uk Hwang. “Complex networks: Structure and dynamics”. In:
Physics reports 424.4-5 (2006), pp. 175–308.

[Bol84] Béla Bollobás. “The evolution of random graphs”. In: Transactions of
the American Mathematical Society 286.1 (1984), pp. 257–274.

[Boy+06] Stephen P. Boyd, Arpita Ghosh, Balaji Prabhakar, and Devavrat
Shah. “Randomized gossip algorithms”. In: IEEE Trans. Inf. Theory
52.6 (2006), pp. 2508–2530. doi: 10.1109/TIT.2006.874516. url:
https://doi.org/10.1109/TIT.2006.874516.

[BV14] Stephen P. Boyd and Lieven Vandenberghe. Convex Optimization.
Cambridge University Press, 2014. isbn: 978-0-521-83378-3. doi: 1
0.1017/CBO9780511804441. url: https://web.stanford.edu/%5
C%7Eboyd/cvxbook/.

[BW18] Borja Balle and Yu-Xiang Wang. “Improving the gaussian mechanism
for differential privacy: Analytical calibration and optimal denoising”.
In: International Conference on Machine Learning. PMLR. 2018,
pp. 394–403.

[CKS17] Graham Cormode, Tejas Kulkarni, and Divesh Srivastava. “Con-
strained Differential Privacy for Count Data”. In: CoRR
abs/1710.00608 (2017). arXiv: 1710.00608. url: http://arxiv

.org/abs/1710.00608.

121

https://hal.inria.fr/hal-02310236
https://hal.inria.fr/hal-02310236
https://doi.org/10.4230/LIPIcs.DISC.2020.8
https://doi.org/10.4230/LIPIcs.DISC.2020.8
https://doi.org/10.4230/LIPIcs.DISC.2020.8
https://doi.org/10.1109/FOCS.2010.13
https://doi.org/10.1109/FOCS.2010.13
https://doi.org/10.1109/FOCS.2010.13
https://doi.org/10.1109/TIT.2006.874516
https://doi.org/10.1109/TIT.2006.874516
https://doi.org/10.1017/CBO9780511804441
https://doi.org/10.1017/CBO9780511804441
https://web.stanford.edu/%5C%7Eboyd/cvxbook/
https://web.stanford.edu/%5C%7Eboyd/cvxbook/
https://arxiv.org/abs/1710.00608
http://arxiv.org/abs/1710.00608
http://arxiv.org/abs/1710.00608

BIBLIOGRAPHY BIBLIOGRAPHY

[CKS20] Clément L. Canonne, Gautam Kamath, and Thomas Steinke. “The
Discrete Gaussian for Differential Privacy”. In: Advances in Neural
Information Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020, December 6-
12, 2020, virtual. Ed. by Hugo Larochelle, Marc’Aurelio Ranzato,
Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin. 2020. url:
https://proceedings.neurips.cc/paper/2020/hash/b53b3a3d6a

b90ce0268229151c9bde11-Abstract.html.

[CKS21] Graham Cormode, Tejas Kulkarni, and Divesh Srivastava. “Con-
strained Private Mechanisms for Count Data”. In: IEEE Trans. Knowl.
Data Eng. 33.2 (2021), pp. 415–430. doi: 10.1109/TKDE.2019.29121
79. url: https://doi.org/10.1109/TKDE.2019.2912179.

[CL02] Fan Chung and Linyuan Lu. “Connected components in random graphs
with given expected degree sequences”. In: Annals of combinatorics
6.2 (2002), pp. 125–145.

[CLP11] Flavio Chierichetti, Silvio Lattanzi, and Alessandro Panconesi. “Rumor
spreading in social networks”. In: Theor. Comput. Sci. 412.24 (2011),
pp. 2602–2610. doi: 10.1016/j.tcs.2010.11.001. url: https://d
oi.org/10.1016/j.tcs.2010.11.001.

[Col+16] Igor Colin, Aurélien Bellet, Joseph Salmon, and Stéphan Clémençon.
“Gossip Dual Averaging for Decentralized Optimization of Pairwise
Functions”. In: Proceedings of the 33nd International Conference on
Machine Learning, ICML 2016, New York City, NY, USA, June 19-24,
2016. 2016, pp. 1388–1396. url: http://proceedings.mlr.press/v
48/colin16.html.

[Cor+09] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction
to Algorithms, third edition. Computer science. MIT Press, 2009. isbn:
9780262033848. url: https://books.google.fr/books?id=i-b
UBQAAQBAJ.

[CT15] C. Canuto and A. Tabacco. Mathematical Analysis I. Vol. 84. Springer
International Publishing, 2015. isbn: 9783319127729. url: https://b
ooks.google.fr/books?id=wtr5BwAAQBAJ.

[DBR18] Pierre Dellenbach, Aurélien Bellet, and Jan Ramon. “Hiding in the
Crowd: A Massively Distributed Algorithm for Private Averaging
with Malicious Adversaries”. In: CoRR abs/1803.09984 (2018). arXiv:
1803.09984. url: http://arxiv.org/abs/1803.09984.

[DeG74] Morris H. DeGroot. “Reaching a consensus”. In: Journal of the Amer-
ican Statistical Association 69.345 (1974), pp. 118–121.

[Dem+87] Alan J. Demers, Daniel H. Greene, Carl Hauser, Wes Irish, John
Larson, Scott Shenker, Howard E. Sturgis, Daniel C. Swinehart, and
Douglas B. Terry. “Epidemic Algorithms for Replicated Database
Maintenance”. In: Proceedings of the Sixth Annual ACM Symposium
on Principles of Distributed Computing, Vancouver, British Columbia,

122

https://proceedings.neurips.cc/paper/2020/hash/b53b3a3d6ab90ce0268229151c9bde11-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/b53b3a3d6ab90ce0268229151c9bde11-Abstract.html
https://doi.org/10.1109/TKDE.2019.2912179
https://doi.org/10.1109/TKDE.2019.2912179
https://doi.org/10.1109/TKDE.2019.2912179
https://doi.org/10.1016/j.tcs.2010.11.001
https://doi.org/10.1016/j.tcs.2010.11.001
https://doi.org/10.1016/j.tcs.2010.11.001
http://proceedings.mlr.press/v48/colin16.html
http://proceedings.mlr.press/v48/colin16.html
https://books.google.fr/books?id=i-bUBQAAQBAJ
https://books.google.fr/books?id=i-bUBQAAQBAJ
https://books.google.fr/books?id=wtr5BwAAQBAJ
https://books.google.fr/books?id=wtr5BwAAQBAJ
https://arxiv.org/abs/1803.09984
http://arxiv.org/abs/1803.09984

BIBLIOGRAPHY BIBLIOGRAPHY

Canada, August 10-12, 1987. Ed. by Fred B. Schneider. ACM, 1987,
pp. 1–12. doi: 10.1145/41840.41841. url: https://doi.org/10.1
145/41840.41841.

[Dev86] L. Devroye. “Non-Uniform Random Variate Generation”. In: Springer
New York, 1986. isbn: 9783540963059. url: https://books.google
.fr/books?id=mEw%5C_AQAAIAAJ.

[Die05] R. Diestel. Graph Theory. Graduate Texts in Mathematics. Springer
Berlin Heidelberg, 2005. isbn: 9783540261827. url: https://books
.google.fr/books?id=uTw0zgEACAAJ.

[DR14] Cynthia Dwork and Aaron Roth. “The Algorithmic Foundations of
Differential Privacy”. In: Found. Trends Theor. Comput. Sci. 9.3-4
(2014), pp. 211–407. doi: 10.1561/0400000042. url: https://doi
.org/10.1561/0400000042.

[DS12] M.H. DeGroot and M.J. Schervish. Probability and Statistics. Addison-
Wesley, 2012. isbn: 9780321500465. url: https://books.google.fr
/books?id=4TlEPgAACAAJ.

[DS81] Dorothy E. Denning and Giovanni Maria Sacco. “Timestamps in key
distribution protocols”. In: Communications of the ACM 24.8 (1981),
pp. 533–536.

[Dwo+06] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya
Mironov, and Moni Naor. “Our Data, Ourselves: Privacy Via Dis-
tributed Noise Generation”. In: Advances in Cryptology - EURO-
CRYPT 2006, 25th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, St. Petersburg, Russia,
May 28 - June 1, 2006, Proceedings. 2006, pp. 486–503. doi: 10.1007
/11761679_29. url: https://doi.org/10.1007/11761679%5C_29.

[EPK14] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. “RAPPOR:
Randomized Aggregatable Privacy-Preserving Ordinal Response”. In:
Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, Scottsdale, AZ, USA, November 3-7, 2014.
Ed. by Gail-Joon Ahn, Moti Yung, and Ninghui Li. ACM, 2014,
pp. 1054–1067. doi: 10.1145/2660267.2660348. url: https://doi
.org/10.1145/2660267.2660348.

[ER59] P. Erdős and A. Rényi. “On Random Graphs I”. In: Publicationes
Mathematicae Debrecen 6 (1959), p. 290.

[ES10] B.S. Everitt and A. Skrondal. The Cambridge Dictionary of Statistics.
Cambridge University Press, 2010. isbn: 9780521766999. url: https:
//books.google.fr/books?id=C98wSQAACAAJ.

[Fer03] Thomas S. Ferguson. “U-statistics”. In: Notes for Statistics (2003).

[FH17] Lorenzo Federico and Remco van der Hofstad. “Critical Window for
Connectivity in the Configuration Model”. In: Comb. Probab. Comput.
26.5 (2017), pp. 660–680. doi: 10.1017/S0963548317000177. url:
https://doi.org/10.1017/S0963548317000177.

123

https://doi.org/10.1145/41840.41841
https://doi.org/10.1145/41840.41841
https://doi.org/10.1145/41840.41841
https://books.google.fr/books?id=mEw%5C_AQAAIAAJ
https://books.google.fr/books?id=mEw%5C_AQAAIAAJ
https://books.google.fr/books?id=uTw0zgEACAAJ
https://books.google.fr/books?id=uTw0zgEACAAJ
https://doi.org/10.1561/0400000042
https://doi.org/10.1561/0400000042
https://doi.org/10.1561/0400000042
https://books.google.fr/books?id=4TlEPgAACAAJ
https://books.google.fr/books?id=4TlEPgAACAAJ
https://doi.org/10.1007/11761679_29
https://doi.org/10.1007/11761679_29
https://doi.org/10.1007/11761679%5C_29
https://doi.org/10.1145/2660267.2660348
https://doi.org/10.1145/2660267.2660348
https://doi.org/10.1145/2660267.2660348
https://books.google.fr/books?id=C98wSQAACAAJ
https://books.google.fr/books?id=C98wSQAACAAJ
https://doi.org/10.1017/S0963548317000177
https://doi.org/10.1017/S0963548317000177

BIBLIOGRAPHY BIBLIOGRAPHY

[FK16] Alan Frieze and Micha l Karoński. Introduction to random graphs.
Cambridge University Press, 2016.

[GAM19] Simson L. Garfinkel, John M. Abowd, and Christian Martindale.
“Understanding database reconstruction attacks on public data”. In:
Commun. ACM 62.3 (2019), pp. 46–53. doi: 10.1145/3287287. url:
https://doi.org/10.1145/3287287.

[Gao+20] Pu Gao, Remco van der Hofstad, Angus Southwell, and Clara Stege-
huis. “Counting Triangles in Power-Law Uniform Random Graphs”.
In: Electron. J. Comb. 27.3 (2020), p. 3. doi: 10.37236/9239. url:
https://doi.org/10.37236/9239.

[Gas+17] Adrià Gascón, Phillipp Schoppmann, Borja Balle, Mariana Raykova,
Jack Doerner, Samee Zahur, and David Evans. “Privacy-Preserving Dis-
tributed Linear Regression on High-Dimensional Data”. In: PoPETs
2017.4 (2017), pp. 345–364. doi: 10.1515/popets-2017-0053. url:
https://doi.org/10.1515/popets-2017-0053.

[GG19] Lodovico Giaretta and Sarunas Girdzijauskas. “Gossip Learning: Off
the Beaten Path”. In: 2019 IEEE International Conference on Big
Data (IEEE BigData), Los Angeles, CA, USA, December 9-12, 2019.
Ed. by Chaitanya K. Baru, Jun Huan, Latifur Khan, Xiaohua Hu,
Ronay Ak, Yuanyuan Tian, Roger S. Barga, Carlo Zaniolo, Kisung
Lee, and Yanfang (Fanny) Ye. IEEE, 2019, pp. 1117–1124. doi: 10.1
109/BigData47090.2019.9006216. url: https://doi.org/10.110
9/BigData47090.2019.9006216.

[GHS83] Robert G. Gallager, Pierre A. Humblet, and Philip M. Spira. “A
Distributed Algorithm for Minimum-Weight Spanning Trees”. In:
ACM Trans. Program. Lang. Syst. 5.1 (1983), pp. 66–77. doi: 10.114
5/357195.357200. url: https://doi.org/10.1145/357195.35720
0.

[Gia11] George Giakkoupis. “Tight bounds for rumor spreading in graphs of a
given conductance”. In: 28th International Symposium on Theoretical
Aspects of Computer Science, STACS 2011, March 10-12, 2011, Dort-
mund, Germany. 2011, pp. 57–68. doi: 10.4230/LIPIcs.STACS.201
1.57. url: https://doi.org/10.4230/LIPIcs.STACS.2011.57.

[GK11] Hoshin Vijai Gupta and Harald Kling. “On typical range, sensitivity,
and normalization of Mean Squared Error and Nash-Sutcliffe Efficiency
type metrics”. In: Water Resources Research 47.10 (2011).

[GK16] Justin Gilmer and Swastik Kopparty. “A local central limit theorem
for triangles in a random graph”. In: Random Struct. Algorithms 48.4
(2016), pp. 732–750. doi: 10.1002/rsa.20604. url: https://doi.o
rg/10.1002/rsa.20604.

[Gol04] Oded Goldreich. The Foundations of Cryptography - Volume 2: Basic
Applications. Cambridge University Press, 2004. isbn: 0-521-83084-2.
doi: 10.1017/CBO9780511721656. url: http://www.wisdom.weizm
ann.ac.il/%5C%7Eoded/foc-vol2.html.

124

https://doi.org/10.1145/3287287
https://doi.org/10.1145/3287287
https://doi.org/10.37236/9239
https://doi.org/10.37236/9239
https://doi.org/10.1515/popets-2017-0053
https://doi.org/10.1515/popets-2017-0053
https://doi.org/10.1109/BigData47090.2019.9006216
https://doi.org/10.1109/BigData47090.2019.9006216
https://doi.org/10.1109/BigData47090.2019.9006216
https://doi.org/10.1109/BigData47090.2019.9006216
https://doi.org/10.1145/357195.357200
https://doi.org/10.1145/357195.357200
https://doi.org/10.1145/357195.357200
https://doi.org/10.1145/357195.357200
https://doi.org/10.4230/LIPIcs.STACS.2011.57
https://doi.org/10.4230/LIPIcs.STACS.2011.57
https://doi.org/10.4230/LIPIcs.STACS.2011.57
https://doi.org/10.1002/rsa.20604
https://doi.org/10.1002/rsa.20604
https://doi.org/10.1002/rsa.20604
https://doi.org/10.1017/CBO9780511721656
http://www.wisdom.weizmann.ac.il/%5C%7Eoded/foc-vol2.html
http://www.wisdom.weizmann.ac.il/%5C%7Eoded/foc-vol2.html

BIBLIOGRAPHY BIBLIOGRAPHY

[Gow97] W.T. Gowers. “Lower bounds of tower type for Szemerédi’s uniformity
lemma”. In: Geometric & Functional Analysis GAFA 7.2 (May 1997),
pp. 322–337. issn: 1420-8970. doi: 10.1007/PL00001621. url: http
s://doi.org/10.1007/PL00001621.

[GR11] Fan Chung Graham and Mary Radcliffe. “On the Spectra of General
Random Graphs”. In: Electron. J. Comb. 18.1 (2011). doi: 10.37236
/702. url: https://doi.org/10.37236/702.

[GRS12] Arpita Ghosh, Tim Roughgarden, and Mukund Sundararajan. “Univer-
sally Utility-maximizing Privacy Mechanisms”. In: SIAM J. Comput.
41.6 (2012), pp. 1673–1693. doi: 10.1137/09076828X. url: https:
//doi.org/10.1137/09076828X.

[GS10] Mangesh Gupte and Mukund Sundararajan. “Universally optimal pri-
vacy mechanisms for minimax agents”. In: Proceedings of the Twenty-
Ninth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, PODS 2010, June 6-11, 2010, Indianapolis, Indi-
ana, USA. Ed. by Jan Paredaens and Dirk Van Gucht. ACM, 2010,
pp. 135–146. doi: 10.1145/1807085.1807105. url: https://doi.o
rg/10.1145/1807085.1807105.

[GS16] Göknur Giner and Gordon K. Smyth. “statmod: Probability Calcu-
lations for the Inverse Gaussian Distribution”. In: R J. 8.1 (2016),
p. 339. doi: 10.32614/rj-2016-024. url: https://doi.org/10.32
614/rj-2016-024.

[GV16] Quan Geng and Pramod Viswanath. “The Optimal Noise-Adding
Mechanism in Differential Privacy”. In: IEEE Trans. Inf. Theory
62.2 (2016), pp. 925–951. doi: 10.1109/TIT.2015.2504967. url:
https://doi.org/10.1109/TIT.2015.2504967.

[Hal60] P.R. Halmos. Naive Set Theory. Undergraduate texts in mathematics.
Van Nostrand, 1960. isbn: 9783540900924. url: https://books.goo
gle.fr/books?id=-e1LAAAAMAAJ.

[Has70] W.K. Hastings. “Monte Carlo sampling methods using Markov chains
and their applications”. In: Biometrika 57.1 (Apr. 1970), pp. 97–109.
issn: 0006-3444. doi: 10.1093/biomet/57.1.97. eprint: https://a
cademic.oup.com/biomet/article-pdf/57/1/97/23940249/57-1-

97.pdf. url: https://doi.org/10.1093/biomet/57.1.97.

[Hay+09] Michael Hay, Chao Li, Gerome Miklau, and David D. Jensen. “Ac-
curate Estimation of the Degree Distribution of Private Networks”.
In: ICDM 2009, The Ninth IEEE International Conference on Data
Mining, Miami, Florida, USA, 6-9 December 2009. Ed. by Wei Wang,
Hillol Kargupta, Sanjay Ranka, Philip S. Yu, and Xindong Wu. IEEE
Computer Society, 2009, pp. 169–178. doi: 10.1109/ICDM.2009.11.
url: https://doi.org/10.1109/ICDM.2009.11.

125

https://doi.org/10.1007/PL00001621
https://doi.org/10.1007/PL00001621
https://doi.org/10.1007/PL00001621
https://doi.org/10.37236/702
https://doi.org/10.37236/702
https://doi.org/10.37236/702
https://doi.org/10.1137/09076828X
https://doi.org/10.1137/09076828X
https://doi.org/10.1137/09076828X
https://doi.org/10.1145/1807085.1807105
https://doi.org/10.1145/1807085.1807105
https://doi.org/10.1145/1807085.1807105
https://doi.org/10.32614/rj-2016-024
https://doi.org/10.32614/rj-2016-024
https://doi.org/10.32614/rj-2016-024
https://doi.org/10.1109/TIT.2015.2504967
https://doi.org/10.1109/TIT.2015.2504967
https://books.google.fr/books?id=-e1LAAAAMAAJ
https://books.google.fr/books?id=-e1LAAAAMAAJ
https://doi.org/10.1093/biomet/57.1.97
https://academic.oup.com/biomet/article-pdf/57/1/97/23940249/57-1-97.pdf
https://academic.oup.com/biomet/article-pdf/57/1/97/23940249/57-1-97.pdf
https://academic.oup.com/biomet/article-pdf/57/1/97/23940249/57-1-97.pdf
https://doi.org/10.1093/biomet/57.1.97
https://doi.org/10.1109/ICDM.2009.11
https://doi.org/10.1109/ICDM.2009.11

BIBLIOGRAPHY BIBLIOGRAPHY

[Hay+10] Michael Hay, Vibhor Rastogi, Gerome Miklau, and Dan Suciu. “Boost-
ing the Accuracy of Differentially Private Histograms Through Con-
sistency”. In: Proc. VLDB Endow. 3.1 (2010), pp. 1021–1032. doi:
10.14778/1920841.1920970. url: http://www.vldb.org/pvldb/v
ldb2010/pvldb%5C_vol3/R91.pdf.

[HC91] Ian Hodkinson and Margaret Cunninghamas. Computability, Algo-
rithms, and Complexity. 1991.

[HJ12] Roger A. Horn and Charles R. Johnson. Matrix Analysis, 2nd Ed.
Cambridge University Press, 2012. isbn: 9780521548236. doi: 10.101
7/CBO9781139020411. url: https://doi.org/10.1017/CBO978113
9020411.

[HLL83] Paul W. Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt.
“Stochastic blockmodels: First steps”. In: Social networks 5.2 (1983),
pp. 109–137.

[HMD14] Xi He, Ashwin Machanavajjhala, and Bolin Ding. “Blowfish privacy:
tuning privacy-utility trade-offs using policies”. In: International Con-
ference on Management of Data, SIGMOD 2014, Snowbird, UT, USA,
June 22-27, 2014. Ed. by Curtis E. Dyreson, Feifei Li, and M. Tamer
Özsu. ACM, 2014, pp. 1447–1458. doi: 10.1145/2588555.2588581.
url: https://doi.org/10.1145/2588555.2588581.

[Hoe48] Wassily Hoeffding. “A Class of Statistics with Asymptotically Normal
Distribution”. In: The Annals of Mathematical Statistics 19.3 (1948),
pp. 293–325. doi: 10.1214/aoms/1177730196. url: https://doi.o
rg/10.1214/aoms/1177730196.

[Hoe63] Wassily Hoeffding. “Probability Inequalities for Sums of Bounded
Random Variables”. In: Journal of the American Statistical Association
58.301 (1963), pp. 13–30.

[Hof16] Remco van der Hofstad. Random Graphs and Complex Networks.
Vol. 43. Cambridge Series in Statistical and Probabilistic Mathematics.
Cambridge University Press, 2016. isbn: 9781316779422. doi: 10.1017
/9781316779422. url: https://doi.org/10.1017/9781316779422.

[Hof22] Remco van der Hofstad. Random Graphs and Complex Networks.
Vol. 2. 2022. url: https://www.win.tue.nl/~rhofstad/Notes
RGCNII_colleagues_25_04_2022.pdf.

[Hsu+14] Justin Hsu, Marco Gaboardi, Andreas Haeberlen, Sanjeev Khanna,
Arjun Narayan, Benjamin C. Pierce, and Aaron Roth. “Differential
Privacy: An Economic Method for Choosing Epsilon”. In: IEEE 27th
Computer Security Foundations Symposium, CSF 2014, Vienna, Aus-
tria, 19-22 July, 2014. IEEE Computer Society, 2014, pp. 398–410. doi:
10.1109/CSF.2014.35. url: https://doi.org/10.1109/CSF.2014
.35.

126

https://doi.org/10.14778/1920841.1920970
http://www.vldb.org/pvldb/vldb2010/pvldb%5C_vol3/R91.pdf
http://www.vldb.org/pvldb/vldb2010/pvldb%5C_vol3/R91.pdf
https://doi.org/10.1017/CBO9781139020411
https://doi.org/10.1017/CBO9781139020411
https://doi.org/10.1017/CBO9781139020411
https://doi.org/10.1017/CBO9781139020411
https://doi.org/10.1145/2588555.2588581
https://doi.org/10.1145/2588555.2588581
https://doi.org/10.1214/aoms/1177730196
https://doi.org/10.1214/aoms/1177730196
https://doi.org/10.1214/aoms/1177730196
https://doi.org/10.1017/9781316779422
https://doi.org/10.1017/9781316779422
https://doi.org/10.1017/9781316779422
https://www.win.tue.nl/~rhofstad/NotesRGCNII_colleagues_25_04_2022.pdf
https://www.win.tue.nl/~rhofstad/NotesRGCNII_colleagues_25_04_2022.pdf
https://doi.org/10.1109/CSF.2014.35
https://doi.org/10.1109/CSF.2014.35
https://doi.org/10.1109/CSF.2014.35

BIBLIOGRAPHY BIBLIOGRAPHY

[HTF09] Trevor Hastie, Robert Tibshirani, and Jerome H. Friedman. The
Elements of Statistical Learning: Data Mining, Inference, and Pre-
diction, 2nd Edition. Springer Series in Statistics. Springer, 2009.
isbn: 9780387848570. doi: 10.1007/978- 0- 387- 84858- 7. url:
https://doi.org/10.1007/978-0-387-84858-7.

[Hua+21] Yifan Hua, Kevin Miller, Andrea L. Bertozzi, Chen Qian, and Bao
Wang. “Efficient and Reliable Overlay Networks for Decentralized
Federated Learning”. In: CoRR abs/2112.15486 (2021). arXiv: 2112
.15486. url: https://arxiv.org/abs/2112.15486.

[ICH13] Franck Iutzeler, Philippe Ciblat, and Walid Hachem. “Analysis of Sum-
Weight-Like Algorithms for Averaging in Wireless Sensor Networks”.
In: IEEE Trans. Signal Process. 61.11 (2013), pp. 2802–2814. doi:
10.1109/TSP.2013.2256904. url: https://doi.org/10.1109

/TSP.2013.2256904.

[IMC21] Jacob Imola, Takao Murakami, and Kamalika Chaudhuri. “Locally
Differentially Private Analysis of Graph Statistics”. In: 30th USENIX
Security Symposium, USENIX Security 2021, August 11-13, 2021.
Ed. by Michael Bailey and Rachel Greenstadt. USENIX Association,
2021, pp. 983–1000. url: https://www.usenix.org/conference/us
enixsecurity21/presentation/imola.

[Iut16a] Franck Iutzeler. Gossip algorithms: Tutorial and Recent advances (part
1). 2016. url: https://www.iutzeler.org/assets/presentations
/smile_iutzeler_part1.pdf.

[Iut16b] Franck Iutzeler. Gossip algorithms: Tutorial and Recent advances (part
2). 2016. url: https://www.iutzeler.org/assets/presentations
/smile_iutzeler_part2.pdf.

[Jel11] Márk Jelasity. “Gossip”. In: Self-organising Software - From Natural
to Artificial Adaptation. Ed. by Giovanna Di Marzo Serugendo, Marie-
Pierre Gleizes, and Anthony Karageorgos. Natural Computing Series.
Springer, 2011, pp. 139–162. doi: 10.1007/978-3-642-17348-6_7.
url: https://doi.org/10.1007/978-3-642-17348-6%5C_7.

[JMB09] Márk Jelasity, Alberto Montresor, and Özalp Babaoglu. “T-Man:
Gossip-based fast overlay topology construction”. In: Computer Net-
works 53.13 (2009), pp. 2321–2339. doi: 10.1016/j.comnet.2009.0
3.013. url: https://doi.org/10.1016/j.comnet.2009.03.013.

[JRA02] Lee W. Johnson, R. Dean Riess, and Jimmy T. Arnold. Introduction
to Linear Algebra. Addison-Wesley, 2002. isbn: 9780321190437.

[Kas+11] Shiva Prasad Kasiviswanathan, Homin K. Lee, Kobbi Nissim, Sofya
Raskhodnikova, and Adam D. Smith. “What Can We Learn Privately?”
In: SIAM J. Comput. 40.3 (2011), pp. 793–826. doi: 10.1137/09075
6090. url: https://doi.org/10.1137/090756090.

127

https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1007/978-0-387-84858-7
https://arxiv.org/abs/2112.15486
https://arxiv.org/abs/2112.15486
https://arxiv.org/abs/2112.15486
https://doi.org/10.1109/TSP.2013.2256904
https://doi.org/10.1109/TSP.2013.2256904
https://doi.org/10.1109/TSP.2013.2256904
https://www.usenix.org/conference/usenixsecurity21/presentation/imola
https://www.usenix.org/conference/usenixsecurity21/presentation/imola
https://www.iutzeler.org/assets/presentations/smile_iutzeler_part1.pdf
https://www.iutzeler.org/assets/presentations/smile_iutzeler_part1.pdf
https://www.iutzeler.org/assets/presentations/smile_iutzeler_part2.pdf
https://www.iutzeler.org/assets/presentations/smile_iutzeler_part2.pdf
https://doi.org/10.1007/978-3-642-17348-6_7
https://doi.org/10.1007/978-3-642-17348-6%5C_7
https://doi.org/10.1016/j.comnet.2009.03.013
https://doi.org/10.1016/j.comnet.2009.03.013
https://doi.org/10.1016/j.comnet.2009.03.013
https://doi.org/10.1137/090756090
https://doi.org/10.1137/090756090
https://doi.org/10.1137/090756090

BIBLIOGRAPHY BIBLIOGRAPHY

[Kas+13] Shiva Prasad Kasiviswanathan, Kobbi Nissim, Sofya Raskhodnikova,
and Adam D. Smith. “Analyzing Graphs with Node Differential Pri-
vacy”. In: Theory of Cryptography - 10th Theory of Cryptography
Conference, TCC 2013, Tokyo, Japan, March 3-6, 2013. Proceedings.
Ed. by Amit Sahai. Vol. 7785. Lecture Notes in Computer Science.
Springer, 2013, pp. 457–476. doi: 10.1007/978-3-642-36594-2_26.
url: https://doi.org/10.1007/978-3-642-36594-2%5C_26.

[KDG03] David Kempe, Alin Dobra, and Johannes Gehrke. “Gossip-Based
Computation of Aggregate Information”. In: 44th Symposium on
Foundations of Computer Science (FOCS 2003), 11-14 October 2003,
Cambridge, MA, USA, Proceedings. 2003, pp. 482–491. doi: 10.1109
/SFCS.2003.1238221. url: https://doi.org/10.1109/SFCS.2003
.1238221.

[KK20] Martin Kenyeres and Jozef Kenyeres. “Applicability of Generalized
Metropolis-Hastings Algorithm to Estimating Aggregate Functions in
Wireless Sensor Networks”. In: Advances in Science, Technology and
Engineering Systems Journal 5.5 (2020), pp. 224–236. doi: 10.25046
/aj050528.

[KKM90] Ephraim Korach, Shay Kutten, and Shlomo Moran. “A Modular
Technique for the Design of Efficient Distributed Leader Finding
Algorithms”. In: ACM Trans. Program. Lang. Syst. 12.1 (1990), pp. 84–
101. doi: 10.1145/77606.77610. url: https://doi.org/10.1145
/77606.77610.

[KS07] Anne-Marie Kermarrec and Maarten van Steen. “Gossiping in dis-
tributed systems”. In: Operating Systems Review 41.5 (2007), pp. 2–7.
doi: 10.1145/1317379.1317381. url: https://doi.org/10.1145
/1317379.1317381.

[Lam+21] Antoine Lamer, Alexandre Filiot, Yannick Bouillard, Paul Mangold,
Paul Andrey, and Jessica Schiro. “Specifications for the Routine Im-
plementation of Federated Learning in Hospitals Networks”. In: Public
Health and Informatics - Proceedings of MIE 2021, Medical Informat-
ics Europe, Virtual Event, May 29-31, 2021. Ed. by John Mantas,
Lacramioara Stoicu-Tivadar, Catherine E. Chronaki, Arie Hasman,
Patrick Weber, Parisis Gallos, Mihaela Marcella Vida, Emmanouil
Zoulias, and Oana Sorina Chirila. Vol. 281. Studies in Health Tech-
nology and Informatics. IOS Press, 2021, pp. 128–132. doi: 10.3233
/SHTI210134. url: https://doi.org/10.3233/SHTI210134.

[Les+08] Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W.
Mahoney. “Statistical properties of community structure in large social
and information networks”. In: Proceedings of the 17th International
Conference on World Wide Web, WWW 2008, Beijing, China, April
21-25, 2008. Ed. by Jinpeng Huai, Robin Chen, Hsiao-Wuen Hon,
Yunhao Liu, Wei-Ying Ma, Andrew Tomkins, and Xiaodong Zhang.
ACM, 2008, pp. 695–704. doi: 10.1145/1367497.1367591. url:
https://doi.org/10.1145/1367497.1367591.

128

https://doi.org/10.1007/978-3-642-36594-2_26
https://doi.org/10.1007/978-3-642-36594-2%5C_26
https://doi.org/10.1109/SFCS.2003.1238221
https://doi.org/10.1109/SFCS.2003.1238221
https://doi.org/10.1109/SFCS.2003.1238221
https://doi.org/10.1109/SFCS.2003.1238221
https://doi.org/10.25046/aj050528
https://doi.org/10.25046/aj050528
https://doi.org/10.1145/77606.77610
https://doi.org/10.1145/77606.77610
https://doi.org/10.1145/77606.77610
https://doi.org/10.1145/1317379.1317381
https://doi.org/10.1145/1317379.1317381
https://doi.org/10.1145/1317379.1317381
https://doi.org/10.3233/SHTI210134
https://doi.org/10.3233/SHTI210134
https://doi.org/10.3233/SHTI210134
https://doi.org/10.1145/1367497.1367591
https://doi.org/10.1145/1367497.1367591

BIBLIOGRAPHY BIBLIOGRAPHY

[LK14] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford Large
Network Dataset Collection. http://snap.stanford.edu/data. June
2014.

[LMZ18] Gábor Lugosi, Shahar Mendelson, and Nikita Zhivotovskiy. “Con-
centration of the spectral norm of Erdős-Rényi random graphs”. In:
arXiv e-prints (2018). doi: 10.48550/ARXIV.1801.02157. url:
https://arxiv.org/abs/1801.02157.

[Lov93] László Lovász. “Random walks on graphs”. In: Combinatorics, Paul
Erdős is eighty 2.1-46 (1993), p. 4.

[LP09] Yehuda Lindell and Benny Pinkas. “Secure Multiparty Computation
for Privacy-Preserving Data Mining”. In: J. Priv. Confidentiality 1.1
(2009). doi: 10.29012/jpc.v1i1.566. url: https://doi.org/10.2
9012/jpc.v1i1.566.

[LPW17] D.A. Levin, Y. Peres, and E.L. Wilmer. Markov Chains and Mix-
ing Times. MBK. American Mathematical Society, 2017. isbn:
9781470429621. url: https://books.google.fr/books?id=f20
8DwAAQBAJ.

[McC02] Peter McCullagh. “What is a statistical model?” In: The Annals of
Statistics 30.5 (2002), pp. 1225–1310. doi: 10.1214/aos/1035844977.
url: https://doi.org/10.1214/aos/1035844977.

[McM+17] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Agüera y Arcas. “Communication-Efficient Learning of Deep
Networks from Decentralized Data”. In: Proceedings of the 20th Inter-
national Conference on Artificial Intelligence and Statistics, AISTATS
2017, 20-22 April 2017, Fort Lauderdale, FL, USA. Ed. by Aarti Singh
and Xiaojin (Jerry) Zhu. Vol. 54. Proceedings of Machine Learning
Research. PMLR, 2017, pp. 1273–1282. url: http://proceedings.m
lr.press/v54/mcmahan17a.html.

[Mil67] Stanley Milgram. “The Small-World Problem”. In: Psychology Today
1.1 (1967), pp. 61–67.

[Mir12] Ilya Mironov. “On significance of the least significant bits for differ-
ential privacy”. In: the ACM Conference on Computer and Commu-
nications Security, CCS’12, Raleigh, NC, USA, October 16-18, 2012.
Ed. by Ting Yu, George Danezis, and Virgil D. Gligor. ACM, 2012,
pp. 650–661. doi: 10.1145/2382196.2382264. url: https://doi.o
rg/10.1145/2382196.2382264.

[Mit97] Tom M. Mitchell. Machine learning, International Edition. McGraw-
Hill Series in Computer Science. McGraw-Hill, 1997. isbn: 978-0-07-
042807-2. url: https://www.worldcat.org/oclc/61321007.

[MM15] Connie Snyder Mick and Geoffrey Middlebrook. “Asynchronous and
synchronous modalities”. In: Foundational practices of online writing
instruction (2015), pp. 129–148.

129

http://snap.stanford.edu/data
https://doi.org/10.48550/ARXIV.1801.02157
https://arxiv.org/abs/1801.02157
https://doi.org/10.29012/jpc.v1i1.566
https://doi.org/10.29012/jpc.v1i1.566
https://doi.org/10.29012/jpc.v1i1.566
https://books.google.fr/books?id=f208DwAAQBAJ
https://books.google.fr/books?id=f208DwAAQBAJ
https://doi.org/10.1214/aos/1035844977
https://doi.org/10.1214/aos/1035844977
http://proceedings.mlr.press/v54/mcmahan17a.html
http://proceedings.mlr.press/v54/mcmahan17a.html
https://doi.org/10.1145/2382196.2382264
https://doi.org/10.1145/2382196.2382264
https://doi.org/10.1145/2382196.2382264
https://www.worldcat.org/oclc/61321007

BIBLIOGRAPHY BIBLIOGRAPHY

[MR96] Rajeev Motwani and Prabhakar Raghavan. “Randomized Algorithms”.
In: ACM Comput. Surv. 28.1 (1996), pp. 33–37. doi: 10.1145/23431
3.234327. url: https://doi.org/10.1145/234313.234327.

[MRT18] M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of Ma-
chine Learning, second edition. Adaptive Computation and Machine
Learning series. MIT Press, 2018. isbn: 9780262039406. url: https:
//books.google.fr/books?id=V2B9DwAAQBAJ.

[MS16] Guy Moshkovitz and Asaf Shapira. “A short proof of Gowers’ lower
bound for the regularity lemma”. In: Combinatorica 36.2 (Apr. 2016),
pp. 187–194. issn: 1439-6912. doi: 10.1007/s00493-014-3166-4.
url: https://doi.org/10.1007/s00493-014-3166-4.

[Nea+19] Joseph P. Near et al. “Duet: an expressive higher-order language and
linear type system for statically enforcing differential privacy”. In:
Proc. ACM Program. Lang. 3.OOPSLA (2019), 172:1–172:30. doi:
10.1145/3360598. url: https://doi.org/10.1145/3360598.

[New03] Mark E.J. Newman. “The Structure and Function of Complex Net-
works”. In: SIAM Rev. 45.2 (2003), pp. 167–256. doi: 10.1137/S0036
14450342480. url: https://doi.org/10.1137/S003614450342480.

[New05] Mark E.J. Newman. “Power laws, Pareto distributions and Zipf’s law”.
In: Contemporary physics 46.5 (2005), pp. 323–351.

[New10] Mark E.J. Newman. Networks: An Introduction. Oxford University
Press, 2010. isbn: 978-0-19920665-0. doi: 10.1093/ACPROF:OSO/97
80199206650.001.0001. url: https://doi.org/10.1093/ACPROF:
OSO/9780199206650.001.0001.

[Ngu19] Benjamin Nguyen. “Tutoriel: Anonymization Techniques: Theory and
Practice”. In: Ecole d’été EGC. 2019. url: http://benjamin-nguye
n.fr/EGC/Anonymisation-EGC-FINAL.pptx.

[NH21] Joseph P. Near and Xi He. “Differential Privacy for Databases”. In:
Found. Trends Databases 11.2 (2021), pp. 109–225. doi: 10.1561/19
00000066. url: https://doi.org/10.1561/1900000066.

[Nik+13] Valeria Nikolaenko, Udi Weinsberg, Stratis Ioannidis, Marc Joye,
Dan Boneh, and Nina Taft. “Privacy-Preserving Ridge Regression
on Hundreds of Millions of Records”. In: 2013 IEEE Symposium on
Security and Privacy, SP 2013, Berkeley, CA, USA, May 19-22, 2013.
IEEE Computer Society, 2013, pp. 334–348. doi: 10.1109/SP.2013
.30. url: https://doi.org/10.1109/SP.2013.30.

[NTC17] Erfan Nozari, Pavankumar Tallapragada, and Jorge Cortés. “Dif-
ferentially private average consensus: Obstructions, trade-offs, and
optimal algorithm design”. In: Autom. 81 (2017), pp. 221–231. doi:
10.1016/j.automatica.2017.03.016. url: https://doi.org/10
.1016/j.automatica.2017.03.016.

130

https://doi.org/10.1145/234313.234327
https://doi.org/10.1145/234313.234327
https://doi.org/10.1145/234313.234327
https://books.google.fr/books?id=V2B9DwAAQBAJ
https://books.google.fr/books?id=V2B9DwAAQBAJ
https://doi.org/10.1007/s00493-014-3166-4
https://doi.org/10.1007/s00493-014-3166-4
https://doi.org/10.1145/3360598
https://doi.org/10.1145/3360598
https://doi.org/10.1137/S003614450342480
https://doi.org/10.1137/S003614450342480
https://doi.org/10.1137/S003614450342480
https://doi.org/10.1093/ACPROF:OSO/9780199206650.001.0001
https://doi.org/10.1093/ACPROF:OSO/9780199206650.001.0001
https://doi.org/10.1093/ACPROF:OSO/9780199206650.001.0001
https://doi.org/10.1093/ACPROF:OSO/9780199206650.001.0001
http://benjamin-nguyen.fr/EGC/Anonymisation-EGC-FINAL.pptx
http://benjamin-nguyen.fr/EGC/Anonymisation-EGC-FINAL.pptx
https://doi.org/10.1561/1900000066
https://doi.org/10.1561/1900000066
https://doi.org/10.1561/1900000066
https://doi.org/10.1109/SP.2013.30
https://doi.org/10.1109/SP.2013.30
https://doi.org/10.1109/SP.2013.30
https://doi.org/10.1016/j.automatica.2017.03.016
https://doi.org/10.1016/j.automatica.2017.03.016
https://doi.org/10.1016/j.automatica.2017.03.016

BIBLIOGRAPHY BIBLIOGRAPHY

[Oli09] Roberto Imbuzeiro Oliveira. “Concentration of the adjacency matrix
and of the Laplacian in random graphs with independent edges”. In:
arXiv preprint arXiv:0911.0600 (2009).

[Paz63] A. Paz. “Graph-theoretic and algebraic characterizations of some
Markov processes”. In: Israel Journal of Mathematics 1.3 (1963),
pp. 169–180.

[PCM22] Wei Peng, Tim Coleman, and Lucas Mentch. “Rates of convergence
for random forests via generalized U-statistics”. In: Electronic Journal
of Statistics 16.1 (2022), pp. 232–292.

[Pen08] Chien-Yu Peng. “The first negative moment in the sense of the Cauchy
principal value”. In: Statistics & Probability Letters 78.13 (2008),
pp. 1765–1774.

[Rad15] N.M. Radziwill. Statistics with R: (the Easier Way). Lapis Lucera,
2015. isbn: 9780692339428. url: https://books.google.fr/books
?id=QALGrQEACAAJ.

[RCP20] Marco Romanelli, Konstantinos Chatzikokolakis, and Catuscia
Palamidessi. “Optimal Obfuscation Mechanisms via Machine Learn-
ing”. In: 33rd IEEE Computer Security Foundations Symposium, CSF
2020, Boston, MA, USA, June 22-26, 2020. IEEE, 2020, pp. 153–168.
doi: 10.1109/CSF49147.2020.00019. url: https://doi.org/10.1
109/CSF49147.2020.00019.

[RFL19] Israel Donato Ridgley, Randy A. Freeman, and Kevin M. Lynch.
“Simple, Private, and Accurate Distributed Averaging”. In: 57th Annual
Allerton Conference on Communication, Control, and Computing,
Allerton 2019, Monticello, IL, USA, September 24-27, 2019. IEEE,
2019, pp. 446–452. doi: 10.1109/ALLERTON.2019.8919736. url:
https://doi.org/10.1109/ALLERTON.2019.8919736.

[Ros16] David Rosenberg. Excess Risk Decomposition. 2016. url: https://w
ww.coursehero.com/file/13869964/2aexcess-risk-decomposit

ion/.

[SB14] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine
Learning - From Theory to Algorithms. Cambridge University Press,
2014. isbn: 978-1-10-705713-5. url: http://www.cambridge.org/d
e/academic/subjects/computer-science/pattern-recognition-

and-machine-learning/understanding-machine-learning-theo

ry-algorithms.

[SBR22] César Sabater, Aurélien Bellet, and Jan Ramon. “An accurate, scalable
and verifiable protocol for federated differentially private averaging”.
In: Mach. Learn. 111.11 (2022), pp. 4249–4293. doi: 10.1007/s1099
4-022-06267-9. url: https://doi.org/10.1007/s10994-022-062
67-9.

131

https://books.google.fr/books?id=QALGrQEACAAJ
https://books.google.fr/books?id=QALGrQEACAAJ
https://doi.org/10.1109/CSF49147.2020.00019
https://doi.org/10.1109/CSF49147.2020.00019
https://doi.org/10.1109/CSF49147.2020.00019
https://doi.org/10.1109/ALLERTON.2019.8919736
https://doi.org/10.1109/ALLERTON.2019.8919736
https://www.coursehero.com/file/13869964/2aexcess-risk-decomposition/
https://www.coursehero.com/file/13869964/2aexcess-risk-decomposition/
https://www.coursehero.com/file/13869964/2aexcess-risk-decomposition/
http://www.cambridge.org/de/academic/subjects/computer-science/pattern-recognition-and-machine-learning/understanding-machine-learning-theory-algorithms
http://www.cambridge.org/de/academic/subjects/computer-science/pattern-recognition-and-machine-learning/understanding-machine-learning-theory-algorithms
http://www.cambridge.org/de/academic/subjects/computer-science/pattern-recognition-and-machine-learning/understanding-machine-learning-theory-algorithms
http://www.cambridge.org/de/academic/subjects/computer-science/pattern-recognition-and-machine-learning/understanding-machine-learning-theory-algorithms
https://doi.org/10.1007/s10994-022-06267-9
https://doi.org/10.1007/s10994-022-06267-9
https://doi.org/10.1007/s10994-022-06267-9
https://doi.org/10.1007/s10994-022-06267-9

BIBLIOGRAPHY BIBLIOGRAPHY

[Sha03] J. Shao. Mathematical Statistics. Springer Texts in Statistics. Springer,
2003. isbn: 9780387953823. url: https://books.google.fr/books
?id=cyqTPotl7QcC.

[Sho15] Reza Shokri. “Privacy Games: Optimal User-Centric Data Obfusca-
tion”. In: Proc. Priv. Enhancing Technol. 2015.2 (2015), pp. 299–315.
doi: 10.1515/popets-2015-0024. url: https://doi.org/10.1515
/popets-2015-0024.

[SHS19] Daniel Silvestre, João Pedro Hespanha, and Carlos Silvestre. “Broad-
cast and Gossip Stochastic Average Consensus Algorithms in Directed
Topologies”. In: IEEE Trans. Control of Network Systems 6.2 (2019),
pp. 474–486. doi: 10.1109/TCNS.2018.2839341. url: https://doi
.org/10.1109/TCNS.2018.2839341.

[Sit+14] Ramesh K. Sitaraman, Mangesh Kasbekar, Woody Lichtenstein, and
Manish Jain. “Overlay networks: An akamai perspective”. In: Advanced
Content Delivery, Streaming, and Cloud Services 51.4 (2014), pp. 305–
328.

[SO22] Yuichi Sei and Akihiko Ohsuga. “Private True Data Mining: Differen-
tial Privacy Featuring Errors to Manage Internet-of-Things Data”. In:
IEEE Access 10 (2022), pp. 8738–8757. doi: 10.1109/ACCESS.2022
.3143813. url: https://doi.org/10.1109/ACCESS.2022.3143813.

[Sot+21] Ekanut Sotthiwat, Liangli Zhen, Zengxiang Li, and Chi Zhang. “Par-
tially Encrypted Multi-Party Computation for Federated Learning”.
In: 21st IEEE/ACM International Symposium on Cluster, Cloud and
Internet Computing, CCGrid 2021, Melbourne, Australia, May 10-13,
2021. Ed. by Laurent Lefèvre, Stacy Patterson, Young Choon Lee,
Haiying Shen, Shashikant Ilager, Mohammad Goudarzi, Adel Nad-
jaran Toosi, and Rajkumar Buyya. IEEE, 2021, pp. 828–835. doi:
10.1109/CCGrid51090.2021.00101. url: https://doi.org/10.11
09/CCGrid51090.2021.00101.

[ST17] M. van Steen and A.S. Tanenbaum. Distributed Systems. CreateSpace
Independent Publishing Platform, 2017. isbn: 9781543057386. url:
https://books.google.fr/books?id=c77GAQAACAAJ.

[Ste10] M. van Steen. Graph Theory and Complex Networks: An Introduction.
Maarten van Steen, 2010. isbn: 9789081540612. url: https://books
.google.fr/books?id=V7bMbwAACAAJ.

[Sze75] E. Szemerédi. “On sets of integers containing k elements in arithmetic
progression”. eng. In: Acta Arithmetica 27.1 (1975), pp. 199–245. url:
http://eudml.org/doc/205339.

[Tel00] G. Tel. Introduction to Distributed Algorithms. Cambridge University
Press, 2000. isbn: 9780521794831. url: https://books.google.fr
/books?id=vlpnS25qAJQC.

132

https://books.google.fr/books?id=cyqTPotl7QcC
https://books.google.fr/books?id=cyqTPotl7QcC
https://doi.org/10.1515/popets-2015-0024
https://doi.org/10.1515/popets-2015-0024
https://doi.org/10.1515/popets-2015-0024
https://doi.org/10.1109/TCNS.2018.2839341
https://doi.org/10.1109/TCNS.2018.2839341
https://doi.org/10.1109/TCNS.2018.2839341
https://doi.org/10.1109/ACCESS.2022.3143813
https://doi.org/10.1109/ACCESS.2022.3143813
https://doi.org/10.1109/ACCESS.2022.3143813
https://doi.org/10.1109/CCGrid51090.2021.00101
https://doi.org/10.1109/CCGrid51090.2021.00101
https://doi.org/10.1109/CCGrid51090.2021.00101
https://books.google.fr/books?id=c77GAQAACAAJ
https://books.google.fr/books?id=V7bMbwAACAAJ
https://books.google.fr/books?id=V7bMbwAACAAJ
http://eudml.org/doc/205339
https://books.google.fr/books?id=vlpnS25qAJQC
https://books.google.fr/books?id=vlpnS25qAJQC

BIBLIOGRAPHY BIBLIOGRAPHY

[TEN22] Sara Taki, Cédric Eichler, and Benjamin Nguyen. “It’s Too Noisy
in Here: Using Projection to Improve Differential Privacy on RDF
Graphs”. In: ADBIS 2022-26th European Conference on Advances in
Databases and Information Systems. Vol. 1652. Springer International
Publishing. 2022, pp. 212–221.

[Ter+22] Jean Ogier Du Terrail et al. “FLamby: Datasets and Benchmarks
for Cross-Silo Federated Learning in Realistic Healthcare Settings”.
In: NeurIPS 2022 - Thirty-sixth Conference on Neural Information
Processing Systems. Proceedings of NeurIPS. New Orleans, United
States, Nov. 2022. url: https://hal.science/hal-03900026.

[Tij07] H. Tijms. Understanding Probability: Chance Rules in Everyday Life.
Cambridge University Press, 2007. isbn: 9781139465458. url: https:
//books.google.fr/books?id=Ua-%5C_5Ga4QF8C.

[Tsi84] John N. Tsitsiklis. “Problems in decentralized decision making and
computation”. PhD thesis. Massachusetts Institute of Technology,
Cambridge, MA, USA, 1984. url: http://hdl.handle.net/1721.1
/15254.

[VBT17] Paul Vanhaesebrouck, Aurélien Bellet, and Marc Tommasi. “Decentral-
ized Collaborative Learning of Personalized Models over Networks”.
In: Proceedings of the 20th International Conference on Artificial
Intelligence and Statistics, AISTATS 2017, 20-22 April 2017, Fort
Lauderdale, FL, USA. 2017, pp. 509–517. url: http://proceedings
.mlr.press/v54/vanhaesebrouck17a.html.

[Wan+21] Teng Wang, Jun Zhao, Zhi Hu, Xinyu Yang, Xuebin Ren, and Kwok-
Yan Lam. “Local Differential Privacy for data collection and analysis”.
In: Neurocomputing 426 (2021), pp. 114–133. doi: 10.1016/j.neuco
m.2020.09.073. url: https://doi.org/10.1016/j.neucom.2020
.09.073.

[Was04] Larry Wasserman. All of Statistics: A Concise Course in Statistical
Inference. Springer Texts in Statistics. New York: Springer, 2004. isbn:
978-1-4419-2322-6. doi: 10.1007/978-0-387-21736-9.

[Wei12] N.A. Weiss. Introductory Statistics. Pearson Education, 2012. isbn:
9780321691224. url: https://books.google.fr/books?id=%5C_r5
ucgAACAAJ.

[WS98] Duncan J. Watts and Steven H. Strogatz. “Collective dynamics of
‘small-world’ networks”. In: Nature 393.6684 (1998), pp. 440–442. doi:
10.1038/30918.

[WW13] Yue Wang and Xintao Wu. “Preserving Differential Privacy in Degree-
Correlation based Graph Generation”. In: Trans. Data Priv. 6.2 (2013),
pp. 127–145. url: http://www.tdp.cat/issues11/abs.a113a12.p
hp.

133

https://hal.science/hal-03900026
https://books.google.fr/books?id=Ua-%5C_5Ga4QF8C
https://books.google.fr/books?id=Ua-%5C_5Ga4QF8C
http://hdl.handle.net/1721.1/15254
http://hdl.handle.net/1721.1/15254
http://proceedings.mlr.press/v54/vanhaesebrouck17a.html
http://proceedings.mlr.press/v54/vanhaesebrouck17a.html
https://doi.org/10.1016/j.neucom.2020.09.073
https://doi.org/10.1016/j.neucom.2020.09.073
https://doi.org/10.1016/j.neucom.2020.09.073
https://doi.org/10.1016/j.neucom.2020.09.073
https://doi.org/10.1007/978-0-387-21736-9
https://books.google.fr/books?id=%5C_r5ucgAACAAJ
https://books.google.fr/books?id=%5C_r5ucgAACAAJ
https://doi.org/10.1038/30918
http://www.tdp.cat/issues11/abs.a113a12.php
http://www.tdp.cat/issues11/abs.a113a12.php

BIBLIOGRAPHY BIBLIOGRAPHY

[YS09] Xin Yan and Xiaogang Su. Linear regression analysis: theory and
computing. World Scientific, 2009. doi: 10.1142/6986. url: https:
//www.worldscientific.com/doi/abs/10.1142/6986.

[ZC15] Mingyuan Zhou and Lawrence Carin. “Negative Binomial Process
Count and Mixture Modeling”. In: IEEE Trans. Pattern Anal. Mach.
Intell. 37.2 (2015), pp. 307–320. doi: 10.1109/TPAMI.2013.211. url:
https://doi.org/10.1109/TPAMI.2013.211.

[ZC18] Alice Zheng and Amanda Casari. Feature engineering for machine
learning: principles and techniques for data scientists. ” O’Reilly Media,
Inc.”, 2018.

134

https://doi.org/10.1142/6986
https://www.worldscientific.com/doi/abs/10.1142/6986
https://www.worldscientific.com/doi/abs/10.1142/6986
https://doi.org/10.1109/TPAMI.2013.211
https://doi.org/10.1109/TPAMI.2013.211

Appendix A

Averaging on arbitrary graphs

A.1 Generation of graphs with power-law degree

sequences

We describe a procedure for generating graphs with power-law degree sequences
with the lowest degree dmin = 3 and the highest degree dmax = 102:

1. We generate a power-law degree sequence d′′ = (d′′1, d
′′
2, . . . , d

′′
n) whose ele-

ments d′′1, d
′′
2, . . . , d

′′
n are generated (drawn independently) from a probability

distribution where a value d′′ takes the following probability:

fpow (d′′ | γ) =
(d′′)−γ∑

d∈[dmax−3] d
−γ

,

where γ > 1 and the support of the probability distribution is the set
{1, 2, . . . , dmax − 3}. We remark that a power-law degree sequence is charac-
terized by a higher proportion of vertices being attributed with lower degrees
and a lower proportion of vertices being attributed with higher degrees.

2. We generate a graph G′ using the configuration model (Definition 4), where
the configuration model is parametrized by the power-law degree sequence
d′′. We denote the degree sequence of G′ by d′.

3. For each i ∈ [n], we check if d′i > dmax− 3 and if so we remove arbitrary edges
that involve vertex vi until d′i = dmax − 3. Then, for each i ∈ [n− 1], we add
the edge {vi, vi+1}; and, for i = n, we add the edge {vn, v1} which guarantees
that the graph is connected. If, for example, the edge {vi, vi+1} was already
present, we would try to add a subsequent edge that is absent, i.e., we would
check the edges {vi, vi+2}, {vi, vi+3}, . . ., {vi, vi−1}. This guarantees that the
degree of each vertex increases by 2. Further, if the edge {v1, v3} is absent,
we add it also because this guarantees that there is at least one cycle of
odd length in the graph, as the presence of the edges {v1, v2} and {v2, v3} is
assured by the aforementioned procedure that connects the graph. Finally, if
the degree of some vertices is still lower than 3, we add some arbitrary edges
so that the degree of each vertex is at least 3. We denote the resulting graph
by G and its degree sequence by d.

135

A.2. Variance of a bounded attribute Chapter A. Averaging on arbitrary graphs

Since the graph G is connected and has at least one cycle of odd length, the
principles of DeGroot learning indicate that the averages computed by Algorithm 1
involve the values of all agents in the communication network and that Algorithm
1 converges.

A.2 Variance of a bounded attribute

We approximate the variance of a bounded (privatized) attribute by averaging the
variances of truncated Gaussian random variables as follows:

(σ̃dp
k)2 ≈ 1

n

∑
i∈[n]

(σdp
k)2

(
1 +

αiϕ(αi)− βiϕ(βi)

ω(βi)− ω(αi)
−
(
ϕ(αi)− ϕ(βi)

ω(βi)− ω(αi)

)2
)
,

where αi =
dki −ai−ddpi,k

σdp
k

, βi =
dki +ai−ddpi,k

σdp
k

, ϕ is the probability density function of the

standard Gaussian distribution, ω is the cumulative distribution of the standard
Gaussian distribution, σdp

k is given in Equation 3.15, and ddpi,k is described in Remark
1. The approximation is due the summation of truncated Gaussian random variables.
(The quantification of the approximation error is outside the scope of this work.)

A.3 Remainder of Experiment 3.1

In Figure A.1, we illustrate the remaining result of Experiment 3.1 on the synthetic
graph dataset. The interpretation of the result matches the case when k = 1/2,
which is illustrated in Figure 3.1.

Figure A.1: Comparison of the expected errors (Equation 3.22 and Equation 3.29)
and the empirical errors (Equation 3.47 and Equation 3.48), when ϵ = 22. k = −1
refers to estimation of µd−1 (present in Equation 3.12).

A.4 Secondary experiments

We have performed two sets of secondary experiments.

Experiment A.1. Similarly as in Experiment 3.2, we compare the utility of the
regression model fitted using the averages computed by BCGo, when degree sequences
are generated, respectively, from the following shape parameters: γ ∈ {2, 3, 4}.

136

Chapter A. Averaging on arbitrary graphs A.4. Secondary experiments

Experiment A.2. We evaluate the convergence of SiGo by comparing the variance
of estimates of µd−1 over all agents, respectively, when the number of gossip iterations
is the following: tgo ∈ {24, 210, 211}. We consider the convergence sufficient if the
variance is below 10−10.

In Figure A.2 illustrates the results of Experiment A.1 on the synthetic graph
dataset, which indicate that the MSE is lower when the shape parameter γ is lower.
For a higher γ, most of the vertices are of the lowest degree, and the variance due
to privatization is low due to bounding indicated by Equation 3.17. Such case is
more strongly susceptible to underfitting because the regression model is fitted
mostly with features of lower variance.

Figure A.2: Comparison of the MSE between true target values and predicted
target values over several choices of the shape parameter γ

In Table A.1, the results of Experiment A.2 indicate that the variance of
estimates of µd−1 (over all agents) gets significantly low when the number tgo of
gossip iterations reaches 210. This way, we conclude that 210 are enough of gossip
iterations for each of the evaluated datasets. The variance gets lower for the email
network dataset sooner because its diameter is lower.

Table A.1: Empirical evaluation of the convergence of SiGo. We compare of the
variance of estimates of µd−1 (over all agents) over several choices of the number
tgo of gossip iterations

tgo email network autonomous systems synthetic graph (n = 103)
24 ≈ 10−7 ≈ 10−3 ≈ 10−5

210 ≈ 10−33 ≈ 10−17 ≈ 10−33

211 ≈ 10−33 ≈ 10−30 ≈ 10−33

137

Index

(ϵ, δ)-differential privacy, 54
(ϵ, δ)-edge-differential privacy, 72
ϵ-regular pair, 119
σ-algebra, 20
k-fold cross-validation, 48
k-means clustering, 51
k-regular graph, 33
l1 norm ∥·∥1, 18
l1 sensitivity, 55
l2 norm (Euclidean norm) ∥·∥2, 19
l2 sensitivity, 55
n-dimensional vector space, 16
p-value, 29

k × k identity matrix Ik, 17

Acceptance rate, 53
Acyclic graph, 31
Addition law of probability, 21
Adjacency matrix, 31
Adjacent datasets, 54
Adjacent vertices, 31
Agent, 34
Algorithm, 42
Alternative hypothesis, 29
Asynchronicity, 41
Attribute, 46
Autocorrelation, 53

Bayes’ rule, 24
Bayes’ theorem, 24
Bayesian inference, 52
Bernoulli distribution, 27
Bernoulli trial, 27
Bessel’s correction, 27
Bias, 26
Big O notation O(·), 42

Binomial distribution, 28
Borel σ-algebra, 21

Central coordinator, 39
Central curator, 39
Chaotic network, 35
Chinese restaurant process, 38
Classification, 49
Clique, 34
Closed walk, 31
Clustering, 50
Clustering coefficient, 34
Communication network, 39
Communication protocol, 39
Complete graph, 33
Complex network, 35
Computational cost, 42
Concentration inequality, 26
Concept, 46
Concept class, 46
Conditional probability, 23
Conditional probability distribution,

23
Confidence interval, 30
Configuration model, 37
Connected component, 33
Connected graph, 32
Constraint, 56
Constraint function, 56
Constraint solver, 57
Constraint variable, 56
Continuous random variable, 22
Convex function, 57
Convex program, 57
Convex set, 57
Coordinator, 39
Cross-validation, 48

138

INDEX INDEX

Cumulative distribution function, 22
Cycle, 31

Dataset, 54
Degree, 31
Degree distribution, 31
Degree sequence, 31
Degrees of freedom, 29
Diagonal matrix, 17
Diameter, 31
Directed graph, 32
Discrete random variable, 21
Disjoint sets, 20
Distributed algorithm, 43
Distributed averaging, 44
Distributed system, 39
Doubly stochastic matrix, 44

Edge, 31
Edge density, 32
Eigendecomposition, 18
Eigenvalue, 18
Eigenvector, 18
Empirical risk, 46
Empirical risk minimizer, 47
Empty graph, 31
Equality constraint function, 57
Equilibrium state, 35
Erdős–Rényi (ER) model, 35
Estimate, 25
Estimator, 25
Estimator bias, 26
Event, 20
Example, 46
Expected value E[·], 25

Feasibility, 56
Feature, 46
Field, 16
Fitting, 48
Forest, 31
Function composition · ◦ ·, 95

Gamma function, 29
Gaussian distribution, 28
Gaussian mechanism, 55
Giant component, 33
Gossip algorithm, 43

Graph, 31

Handshake, 40
Hoeffding’s inequality, 26
Honest-but-curious agent, 54
Hypothesis, 46
Hypothesis risk, 46
Hypothesis space, 46
Hypothesis space error, 47

Independent random variables ·⊥·, 23
Induced matrix norm, 19
Inequality constraint, 57
Inequality constraint function, 57
Inference, 52
Initial vertex, 32
Instance, 46
Inverse transform sampling, 37

Joint probability distribution, 23
Joint probability mass function, 23

Label, 46
Labeled example, 46
Labeled graph, 32
Laplace distribution, 28
Laplace mechanism, 55
Largest connected component, 33
Law of total probability, 24
Likelihood, 52
Linear dependent collection of

vectors, 17
Linear regression, 49
Link, 34
Loop, 32
Loss function, 46

Main diagonal, 17
Marginal likelihood, 52
Marginal probability distribution, 23
Markov chain, 52
Markov chain Monte Carlo (MCMC)

method, 52
Matrix, 17
Matrix inversion ·−1, 18
Mean, 25
Measurable function, 21
Measurable space, 21

139

INDEX INDEX

Metropolis–Hastings (MH) algorithm,
53

Mixing time, 45
Multiple linear regression, 49

Neighborhood, 31
Neighboring vertices, 31
Nesting, 43
Network, 34
Node, 34
Norm ∥·∥, 18
Normal distribution, 28
Null hypothesis, 29

Objective function, 56
Objective value, 56
Observation, 24
Observation error, 47
Optimization problem, 56
Optimization variable, 56
Order, 31
Ordinary least squares, 49
Outcome, 20
Overfitting, 48
Overlay network, 40

Pairwise disjoint sets, 20
Pairwise independent random

variables, 23
Pareto distribution, 38
Partition, 20
Partition class, 20
Path, 31
Poisson distribution, 28
Population, 24
Posterior, 52
Posterior distribution, 52
Power set, 20
Power-law distribution, 34
Preferential attachment process, 38
Prior, 52
Prior probability distribution, 52
Probabilistic method, 36
Probability, 21
Probability density function, 22
Probability distribution, 20
Probability mass function, 21

Probability measure, 20
Probability space, 21
Proposal distribution, 53

Quantile function, 23

Random graph, 35
Random graph model, 35
Random variable, 21
Random walk, 42
Randomized algorithm, 43
Realization, 24
Recursion depth, 43
Recursive algorithm, 43
Regression, 49
Regression noise, 49
Regression parameter, 49
Regular graph, 33
Regularized least squares, 49
Ridge regression, 50
Risk minimizer, 47
Row stochastic matrix, 44
Running time, 42

Sample, 24
Sample mean, 26
Sample point, 24
Sample space, 20
Sampling, 24
Sampling error, 47
Scalar field, 16
Scale-free network, 34
Self-loop, 32
Sensitive attribute, 53
Sensitive statistic, 55
Significance level, 29
Singular value, 18
Size, 31
Small-world network, 34
Solution, 56
Spanning subgraph, 33
Spanning tree, 33
Square brackets [·], 17
Square matrix, 17
Standard deviation, 26
State, 52
Stationary distribution, 53

140

INDEX INDEX

Stationary process, 53
Statistical experiment, 20
Statistical inference, 52
Statistical model, 24
Statistical population, 24
Stochastic block model, 36
Stochastic process, 24
Student’s t-distribution, 28
Subgraph, 31
Supervised learning, 48
Support, 23
Synchronicity, 41

Target distribution, 53
Target value, 46
Terminal vertex, 32
Threat model, 54
Trail, 31
Transition matrix, 44

Transpose ·T, 18
Tree, 33
Trial, 20
Triangle graph, 32
Triangle inequality, 18

Unbiased estimate, 27
Underfitting, 48
Undirected graph, 32
Uniform distribution, 28
Uniformly-random sampling, 24

Vector, 17
Vector of 0’s 0, 17
Vector of 1’s 1, 17
Vector space, 16
Vertex, 31

Walk, 31
Weighted graph, 32

141

	Introduction
	Background
	Probability theory
	Statistics and their estimation
	Common probability distributions
	Statistical significance

	Graph theory
	Structural properties of graphs
	Random graph models
	Basics of graph generation

	Distributed systems
	Algorithms
	Basics of distributed algorithms on graphs

	Machine learning
	Supervised learning
	Clustering
	Statistical inference

	Data privacy
	Differential privacy

	Mathematical optimization
	The cvxopt package

	Summary

	Bias in distributed averaging
	Estimating empirical distributions
	Approach with an overlay network
	Approach with gossip algorithms

	Averaging on ER graphs
	Averaging on arbitrary graphs
	Introduction
	Preliminaries
	Literature study
	Approach
	Use case on linear regression
	Error analysis
	Experiments
	Conclusion

	Tailored noise mechanism
	Introduction
	Preliminaries
	Literature study
	Approach
	Definition of the constraints
	Definition of the objective function
	Discretization of domains of features

	Implementation
	Experiments
	Dataset description
	Experiment setup
	Result interpretation
	Secondary experiments

	Conclusion

	Summary and future directions
	Summary of contributions
	Future directions

	Averaging on arbitrary graphs
	Generation of graphs with power-law degree sequences
	Variance of a bounded attribute
	Remainder of Experiment 3.1
	Secondary experiments

