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Résumé

Les problèmes d’optimisation combinatoire ont été largement étudiés, notamment en rai-
son de leurs nombreuses applications (planification, logistique, distribution, investissement,
production...) et de leur complexité. Coûteux à résoudre de manière exacte, les approches
les plus populaires s’appuient sur des heuristiques pour prendre leurs décisions. Cependant,
produire des heuristiques efficaces et performantes est un exercice difficile, d’autant plus dans
des environnements réalistes avec de l’incertitude ou de la stochasticité.

Dans cette thèse de doctorat, nous étudions comment l’apprentissage par renforcement
peut être utilisé en optimisation combinatoire pour automatiser la production de telles heuris-
tiques. Après nous être intéressés à un exemple concret, l’ordonnancement de tâches, nous
isolons plusieurs caractéristiques clés de ces problèmes, rencontrées en pratique: une possible
incertitude sur les données, les décisions à prendre, voire la définition même du problème,
et une structure forte, qui a la particularité d’être souvent connue ou partiellement connue a
priori. Nous explorons différentes façons de tenir compte de ces caractéristiques dans le cadre
de l’apprentissage par renforcement pour une large gamme de problèmes, sortant parfois du
cadre strict de l’optimisation combinatoire.

Abstract

Combinatorial optimization problems have been extensively studied due to their numerous
applications (planning, logistics, distribution, investment, production...) and their complexity.
As they are expensive to solve optimally, the most popular approaches rely on heuristics to
make their decisions. However, formulating efficient and effective heuristics is challenging,
especially in realistic environments with uncertainty and stochasticity.

This Ph.D. thesis studies how reinforcement learning can be used in combinatorial optimiza-
tion to automate the production of such heuristics. After focusing on a concrete example, task
scheduling, I isolate several key features of these problems, encountered in practice: a possible
uncertainty on the data, the decisions to be taken, or even the definition of the problem itself,
and a strong structure, which has the particularity of being often known or partially known
a priori. I explore different ways to take into account these characteristics in reinforcement
learning for a wide range of problems, whilst occasionally surpassing the strict boundaries of
combinatorial optimization.
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Chapter 1

Introduction

1.1 Introductionary anecdote

A week after the beginning of the thesis, as I joined a group of people from my lab for lunch, I
had the following discussion with a professor:

professor: So you’re the guy working on reinforcement learning for combinatorial opti-
mization?

me: Hey, yes, I just arrived!
professor: It won’t work.

I think I mumbled something about chess, but I’m not sure he had the time to develop his point
of view, as it was cut off by another colleaguewho changed the subject. But this comment stayed
inmymind for a little while. That is why Iwould like to start this thesis with a few arguments for
why reinforcement learning shouldn’t be used to solve combinatorial optimization problems:

1. Combinatorial optimization has been studied for decades. A lot of powerful algorithms
have been developed to give exact or approximate solutions to important problems.

2. Combinatorial optimization problems are deterministic, while reinforcement learning is
a general framework meant to deal with stochastic problems.

3. Combinatorial optimization problems generally have a structure. It is not exactly clear
how to exploit this structure in reinforcement learning.

There are other arguments, which apply to reinforcement learning in general:
• Deep reinforcement learning suffers from poor sample efficiency.

1



Introduction

• Deep reinforcement learning algorithms can be sensitive to hyperparameters, which may
require extensive tuning for each combinatorial problem instance.

• Deep reinforcement learning is computationally expensive, whichmaymake it impractical
for large-scale combinatorial problems.

• Deep reinforcement learning may be stuck in local optima.

• The strategies found using reinforcement learning algorithms are not interpretable.
Leaving aside the last general arguments, where each bullet point is more than a thesis

subject by itself, we have tried in this thesis to give some answers to the first three arguments.
Apart from the first part of this thesis, which explores a concrete problem, the second part can
be seen as an attempt at solving the second argument, while the third part attacks the third
argument. We dive more into the details of the thesis’ structure in the next section.

1.2 Outline and contributions

The general goal of this thesis is to explore the use of reinforcement learning for combinatorial
optimization. What are the main challenges? Can they be overcome? What are the advantages
of using reinforcement learning for such problems?

Figure 1.1 – After a case study, we base the thesis around two divisions: planning vs. model-free, and
leveraging structure and priors vs. dealing with uncertainty.

Part I is devoted to a case study of the problem of scheduling a set of jobs on a set of ma-
chines, and aims at giving some intuitions on building heuristics with reinforcement learning,
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1.2 Outline and contributions

as well as some insights on the common challenges of using reinforcement learning for combi-
natorial optimization. It is divided into three chapters. Chapter 2 is a general introduction to
reinforcement learning and combinatorial optimization. It is meant to give the reader a general
idea of the field, and to provide a common vocabulary for the rest of the thesis. Moreover,
after discussing why reinforcement learning shouldn’t be used for solving combinatorial problems
we will provide some motivation for the opposite point of view, namely why is reinforcement
learning a useful tool for solving combinatorial problems?. Chapter 3 and chapter 4 study the use of
reinforcement learning for dynamic scheduling problems. Chapter 3 tackles a simple environ-
ment, while Chapter 4 extends the previous work to a richer setting (larger set of scheduling
problems, heterogeneous machines, noisy task durations, etc.)

The second part is structured around two divisions, as shown in Figure 1.1. The first one is
whether or not a model of the environment is used. The second dichotomy revolves around
the two challenges evoked in the previous section: how to leverage the structure of combinatorial
problems in reinforcement learning and how to deal with uncertainty. The first part of the thesis is
devoted to the first challenge, while the second part is devoted to the second challenge.

Part II tackles the problem of leveraging structure and priors in reinforcement learning. It
is divided into two chapters, each one focusing on a different aspect of the problem. Chapter 5
studies the structure of a particular combinatorial problem, Sokoban, and proposes to introduce
and exploit the notion of reversibility in the learning process. Chapter 6 studies how to utilize
prior structure knowledge in reinforcement learning in a way that benefits exploration. Al-
though both approaches are motivated primarily by tackling combinatorial problems, they tend
to be more generally applicable. In both chapters, we additionally illustrate their effectiveness
on a variety of non-combinatorial problems.

Part III focuses on the problem of uncertainty. It is divided into two chapters, each one
focusing on a different aspect of the problem. Chapter 7 focuses on uncertainty at the decision
level. It starts from the idea that combinatorial problems are too hard to be solved reliably
in a single shot, and thus good heuristics should maintain a level of uncertainty about their
decisions as the training progresses. This idea leads to using a population-based approach
to learn a distribution over actions, instead of a single action. We show that this approach
provides very good results on a variety of popular combinatorial problems. Chapter 8 focuses
on uncertainty at the model level. The goal is to develop a planning approach that can be
applied to fixed datasets used as an empirical model of the environment. We explore this idea
in the context of chess to find the most efficient policies against opponents of specific levels,
leveraging millions of past chess games.
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Chapter 2

Background

2.1 Reinforcement Learning

This section constitutes a brief introduction to reinforcement learning (RL), a subfield of
machine learning that focuses on sequential decision-making. For amore in-depth introduction,
we refer the reader to Sutton and Barto (2018).

2.1.1 Markov Decision Processes

Achieving a complex goal often requires making a series of thoughtful decisions that lead to
a particular outcome. This is known as sequential decision-making, and it is a fundamental
problem in many areas of artificial intelligence, including robotics, game playing, autonomous
driving, and, as we will see, combinatorial optimization. In this setting, a decision maker, or
agent, takes a sequence of decisions, actions, in an environment. To decide which action to take,
the agent can base itself on the current environment’s state, which changes each time an action
is taken according to a transition function, which can be understood as the system dynamics.
The goal of the agent is to find a strategy (policy) that maximizes some numerical reward.

We now introduce some notations. Formally, this type of problem is often formulated as a
Markov Decision Process (MDP), which adds the hypothesis that the environment isMarkovian,
meaning that the next state only depends on the current state and action, and not on the whole
history.

Definition 2.1 (Markov decision process). A Markov decision process (MDP) is a tuple
(S,A, P ,R), where S is a set of states,A is a set of actions, P is a transition function, R is a reward
function, and γ is a discount factor. At each time step t, the agent is in a state st ∈ S , and it takes an
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action at ∈ A. The environment then transitions to a new state st+1 ∈ S , drawn from a conditional
distribution P (st+1 | st, at), and receives a bounded reward R(st, at).

Remark 2.2. For deterministic environments, we modify our notations slightly and write the
transition function as st+1 = P (st, at).

A policy π maps any state s ∈ S into a probability distribution over A. It specifies the
agent’s strategy for choosing its next action, sampled from π(· | s).

2.1.2 Objective and value functions

The goal of an agent is to find a policy that maximizes the expected cumulative reward over
time, which is known as the objective function.

Definition 2.3 (Objective function). The objective function is defined as:

J(π) = E
π

(∑
t

γtR(st, at) | δ0

)
,

= E
π

(Gπ | δ0) ,

where δ0 is the initial state distribution, γ ∈ [0, 1) is the discount factor, a parameter that determines
how much importance the agent places on future rewards, and Gπ is the policy return, which is the
random variable Gπ =∆

∑∞
t=0 γ

tR(st, at). In most cases, the horizon T is considered finite, such
that Gπ =

∑T
t=0 γ

tR(st, at).

In the same way that the objective function is the expected cumulative reward, the value
function V π(s) is the expected return starting from state s and following policy π, while the
action-value (or Q-value) function Qπ(s, a) is the expected return starting from state s, taking
action a, and following policy π.

Definition 2.4 (Value functions). The value function of a policy π is defined as:

V π(s) = E
π

(∑
t

γtR(st, at) | s0 = s

)
,

= E
π

(Gπ | s0 = s) .

8



2.1 Reinforcement Learning

Similarly, the action-value function of a policy π is defined as:

Qπ(s, a) = E
π

(∑
t

γtR(st, at) | s0 = s, a0 = a

)
,

= E
π

(Gπ | s0 = s, a0 = a) .

The goal of Reinforcement Learning is to find a policy π⋆.

Definition 2.5 (Optimality). A policy π⋆ is said to be optimal if it maximizes the value functions
V π andQπ in every state and action. We call V ⋆ =∆ V π⋆ the optimal value function andQ⋆ =∆ Qπ

⋆

the optimal Q function in any state and action:

∀s ∈ S, V ⋆(s) = max
π

V π(s) = V π⋆(s),

∀(s, a) ∈ S ×A, Q⋆(s, a) = max
π

Qπ(s, a) = Qπ
⋆(s, a).

2.1.3 Learning to act

After introducing the framework of Reinforcement Learning (RL), we now turn to the problem
of learning a policy that maximizes the objective function. The first line of approach focuses on
learning a value function that approximates the optimal value functions, while the second line
of approaches directly optimizes the policy.

Value-based methods

Theorem 2.6 (Bellman Optimality Equation, Bellman, 1957). The optimal Q function Q⋆ is a
fixed point of the Bellman optimality operator T :

Q⋆(s, a) = (T Q⋆)(s, a) =∆ E
s′∼P (s′|s,a)

max
a′∈A

[
R(s, a) + γQ⋆(s′, a′)

]
.

It can also be shown that T is a γ-contraction for the ∥ · ∥∞ norm, which implies that Q⋆ is the
unique fixed point of T .
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An application of this theorem is the Q-learning algorithm (Watkins and Dayan, 1992), which
is a value-based method that learns the Q function by iteratively updating randomly initialized
values Q̂with the Bellman optimality operator.

Algorithm 2.1: Q-learning
1 Initialize Q̂(s, a) arbitrarily for all s ∈ S and a ∈ A ;
2 for i = 1 to N do
3 Sample s ∼ δ0 ;
4 for t = 1 to T do
5 Sample a ∼ π(· | s) ; /* for some policy π */
6 Sample s′ ∼ P (s′ | s, a) ;
7 Q̂(s, a)← Q̂(s, a) + α

(
R(s, a) + γmaxa′ Q̂(s′, a′)− Q̂(s, a)

)
;

8 s← s′ ;

Explicitly storing the Q function is not always possible, especially when the state space is
large. Instead, we can use a neural network to approximate the Q function. The neural network,
Q network, takes a state as input and produces a probability distribution on the set of possible
actions as output, which should reflect their expected performance when performed in the
input state. Since it is impossible to exhaustively visit all states within a reasonable amount of
time, we take advantage of the ability of a neural network to generalize from its observations.
The idea to use a neural network to approximate value function was first proposed by Tesauro
(1995) to learn to play backgammon at the level of top human players.

Two decades later, this idea resurfaces as Deep Q-Network (DQN) (Volodymyr Mnih,
Kavukcuoglu, et al., 2015) to play Atari games at a superhuman level solely from image
pixels. The architecture used in the paper is now widely adopted, with slight modifications. It
is composed of two neural networks: a target network Qθ and a behavior network Qθ′ . The
behavior network is updated at each step of the algorithmusing the Bellman optimality operator,
using the target network to compute the loss:

ℓ(st, at, st+1, θ) =
(
Qθ(st, at)−

(
rt + γmax

a′
Qθ′(st+1, a

′)
))2

.

The target network is updated periodically by copying the parameters of the behavior network.
The target network is a delayed and more stable version of the behavior network, which helps
to smooth the learning process.

During training, the replay buffer is used to sample a batch of transitions to update the
behavior network using the loss function (8). This has the advantage of making the training
process more sample-efficient since the same transition can be used for multiple updates. The
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replay buffer allows the agent to learn from past experiences and prevent it from forgetting
important information.

2.1.4 Policy-based methods

Policy gradient methods

From now on, we write πθ to denote a policy parameterized by θ. Maximizing is now equivalent
to finding θ⋆ = arg maxθ J(πθ). It turns out that the gradient of the objective function with
respect to the policy parameters θ can be estimated through Monte Carlo estimation, using the
following theorem.

Theorem 2.7 (Policy gradient theorem, Sutton, McAllester, et al., 1999). The gradient of the
expected return with respect to the policy parameters θ is proportional to:

∇θJ (πθ) ∝ E
πθ

(
T∑
t=0
∇θ log πθ(at | st)

(
T∑
t′=t

γt
′
R(st′ , at′)

))
,

This theorem gives an explicit way of computing the gradient of the objective function with
respect to the policy parameters θ and is the basis of policy gradient methods, the class of
methods that directly optimize the policy parameters θ.

This theorem can be used to derive the REINFORCE algorithm (Williams, 1992a), which is
a policy-based method that learns the policy by iteratively updating the policy parameters θ
by estimating the gradient of the expected return. It first gathers a set of trajectories using the
current policy πθ, and then updates the policy parameters θ replacing the expectancy with the
average. The algorithm is summarized in Algorithm 2.2.

Algorithm 2.2: REINFORCE
1 Initialize policy parameters θ arbitrarily ;
2 for each episode do
3 Sample a trajectory τ = (s0, a0, r0), (s1, a1, r1), . . . , (sT , aT , rT ) using πθ ;
4 for t = 0 to T do
5 Gt ←

∑T
t′=t γ

t′−tR(st′ , at′) ;
6 θ ← θ + αγtGt∇θ log πθ(at | st) ;

It is an on-policy method, which means that the policy is updated using the same policy
that is used to collect the data. It is in contrast to the previous Q learning algorithm, where any
policy can be used to collect the data, and is therefore off-policy.
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Interestingly, it is possible to add a baseline, which is a function of the state s that is subtracted
from the return∑T

t′=t γ
t′−tR(st′ , at′) in the theorem. This is done to reduce the variance of the

gradient estimator (Weaver and Tao, 2001), without changing its expectation. The intuitive
idea is that the absolute return obtained from a state should be assessed relative to the state
quality, and to the other returns obtained from the same state. The final gradient formula is
thus:

∇θJ (πθ) = E
πθ

(
T∑
t=0
∇θ log πθ(at | st)

(
T∑
t′=t

γt
′−tR(st′ , at′)− b(s)

))
.

REINFORCE with baseline is used in Chapter 7. The baseline b can be implemented in
various ways, for example as a neural network.

Actor-critic algorithm

Actor-critic methods is a general framework, first proposed in Barto, Sutton, and C. W. Anderson
(1983b) to balance a pole on a moving cart. It corresponds to replacing the previous baseline b
by an approximation of the value function, generally using a neural network Vϕ. V has indeed
been shown to be a good baseline for the policy gradient theorem (Greensmith, Bartlett, and
Baxter, 2004), although other baselines have been explored (Flet-Berliac et al., 2021b). The
neural network Vϕ is called the critic, and the policy network πθ is called the actor. This class of
algorithm is used in Chapter 3 and Chapter 4.

Trust region optimization

The actor-critic algorithm has been improved upon through various methods, including the
trust region policy optimization (TRPO) algorithm (Schulman, Levine, et al., 2015a). In TRPO,
a constraint is introduced on the policy update to prevent excessive changes to the policy
parameters θ. This constraint is imposed by limiting the Kullback-Leibler (KL) divergence
between the new policy πθ′ and the previous policy πθ, where θ′ represents the new policy
parameters. By doing so, TRPO ensures stable policy updates and prevents catastrophic changes
that may result from excessively large updates.

The Proximal Policy Optimization (PPO) algorithm (Schulman, Wolski, et al., 2017) is a
more recent algorithm that simplifies the TRPO algorithm by replacing the KL divergence
constraint with a clipped surrogate objective function. Due to its simple implementation and
high performance, it has become one of the most commonly used policy gradient methods.
This algorithm is used in Chapter 5 and Chapter 6.
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2.2 Combinatorial Optimization

2.2.1 Combinatorial optimization problems

Combinatorial Optimization (CO) is a fundamental branch of mathematics and computer
science concerned with finding the best solution from a finite set of possible options. Combina-
torial optimization problems arise in many fields, including engineering, economics, operations
research, and their applications are numerous: scheduling, routing, resource allocation, portfo-
lio optimization, logistics, etc.

The most iconic combinatorial optimization problem is probably the Travelling Salesman
Problem (TSP), which consists in finding the shortest tour that visits all the cities in a given
set, and returns to the initial point. It has found applications in several domains, like genome
sequencing, data clustering, or aiming telescopes (Applegate et al., 2006). The TSP is a well-
studied problem and has been used as a benchmark for many algorithms. There are many
popular combinatorial optimization problems, such as:

• Knapsack Problem (KP): given a set of items each characterized by its weight and its
value, the goal is to select a subset of items to maximize the total value subject to a
constraint on the total weight.

• Vehicle Routing Problem (VRP): this problem is a variation of the TSP. Given a set of
customers with demands and a fleet of vehicles, the goal is to find the optimal set of
routes for the vehicles to serve all the customers while minimizing the total distance
traveled.

• Integer Linear Programming (ILP): given a set of linear constraints and a linear objective
function, the goal is to find integer values for the variables that maximize the objective
function while satisfying the constraints.

• Boolean Satisfiability problem (SAT): the goal is to find an assignment of truth values
that satisfies a given Boolean formula.

A great variety of such problems is defined on graphs, which are a natural way to represent
many combinatorial optimization problems. As examples, let us mention:

• Graph Coloring Problem: the goal is to assign colors to the vertices such that no two
adjacent vertices have the same color, while minimizing the total number of colors used.

• Maximum Cut: Given an undirected graph, the maximum cut problem is to partition the
vertices into two sets such that the number of edges crossing the partition is maximized.
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• Minimum Vertex Cover: Given an undirected graph, the minimum vertex cover problem
is to find the smallest set of vertices such that every edge has at least one endpoint in the
set.

Throughout the thesis, wewill refer to “problem” as a general description of an optimization
problem, which includes the objective function, constraints, and input/output format, and as a
“problem instance”, on the other hand, is a specific input to the problem that includes all the
necessary data to define it.

For instance, in the case of the TSP, the problem can be described as finding the shortest
possible route that visits each city exactly once and returns to the starting city, given a set of
cities and the distances between them. On the other hand, a problem instance would be a
specific set of cities and their positions, or their distances from each other.

Natural questions arise when considering this variety of problems: “How hard are they?”.
Is it possible to solve them efficiently? Is there a way to formalize the notion of hardness? This
is the subject of the next section.

2.2.2 NP-hardness

For an optimization problem, there is an associated decision problem, which is the problem of
deciding whether a solution of some quality exists. For example, the decision problem of the
TSP is to decide whether a tour of length smaller than some constant L exists. The concept of
NP-hardness, which we are going to define, is a way to formalize the notion of intractability of a
decision problem. Throughout this thesis however, we will often use “NP-hardness” to refer to
optimization problems when the associated decision problem is NP-hard.

Historically, Edmonds (1965) was one of the first papers to hint at establishing a mathemat-
ical theory of efficient combinatorial algorithms. It contained the conjecture that no polynomial
algorithm can solve the TSP, which remains open to this day. We now define more formally
these notions.

Definition 2.8 (Class P (informal definition)). Class P is defined as the set of problems that can
be solved in polynomial time (with respect to the size of the input).

Definition 2.9 (Class NP (informal definition)). A problem is in NP if proposed solutions can
be verified in polynomial time (with respect to the size of the input).

Intuitively, problems in P should be considered easy, while problems in NP should be
considered difficult.
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As an example of a problem in NP, consider the previous decision problem of the TSP. If
a given instance admits a tour which length is smaller than L, a proof can simply consist in
exhibiting a valid tour of length smaller than L. Checking that the tour has a length smaller
than L can be done in polynomial time, and therefore the decision problem of the TSP is in NP.

To “order” the hardness of problems, we can define the notion of reduction between
problems:

Definition 2.10 (Reduction (informal)). A problem X is reducible to problem Y if given a
polynomial time algorithm that solves Y , it is possible to solve X in polynomial time. Intuitively, if
X is reducible to Y , then Y is at least as hard as X .

This allows to coin the terms “NP-complete”, and “NP-hard” (Knuth, 1974).

Definition 2.11 (NP-hard problems (informal definition)). A problem is NP-hard if every
problem in NP can be reduced to it in polynomial time (“it is at least as hard as every problem in
NP”). A problem is NP-complete if it is NP-hard and in NP. This is the hardest class of problems in
NP.

This classification has proved to be very useful in the study of combinatorial optimization
problems. A lot of important problems have turned out to be NP-complete, as first shown
by Karp (1972), who exhibited 21 NP-complete problems, spanning across a wide range of
domains. In fact, all the problems mentioned previously are NP-complete.

From the definition of NP-completeness, it is to be expected that the size of a solution
should be polynomial, which implies that the size of the search space of potential solutions is
exponential. Although it does not guarantee that NP-complete problems cannot be solved in
less than exponential time, there is currently no known polynomial time algorithm for solving
these problems. This is the famous P vs. NP problem, which is still open to this day. In what
follows, we will implicitly focus on NP-hard problems, as P problems are usually easily solvable.

In the next section, we will dive into the various approaches that have been proposed to
solve NP-complete problems.

2.2.3 Solving hard combinatorial optimization problems

Due to the practical importance of NP-hard problems, and although it is believed that no
polynomial time algorithm exists for solving NP-complete problems, many algorithms have
been developed to tackle them efficiently.
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Exact methods

Exact methods are a class of optimization algorithms that aim to find the exact optimal solution
by exploring the search space and eliminating infeasible or inferior solutions. One of the
most widely used algorithms in this class is Branch and Bound (B&B), which decomposes
Combinatorial Optimization Problems (COPs) into smaller sub-problems and prunes the
search space by using a bounding function to eliminate sub-problems that cannot contain
the optimal solution. B&B is particularly effective for solving ILPs by exploiting the fact that
dropping the integer constraint results in a well-solvable Linear Programming (LP) problem.
Sub-problems are represented as a search tree, where each node represents a relaxed LP version
of the initial problem. If the LP is impossible, that node is not processed further. Otherwise,
the LP is solved. If a variable has a fractional value, one creates two child nodes by restricting
the value of the chosen variable in each node. Interestingly, solving the LP gives an upper
bound on the quality of solutions which can be found by descending the tree from this node,
which allows pruning the search space.

This pruning mechanismmakes this approach very efficient in practice. Furthermore, many
complex problems can be formulated as ILP, including well-known problems such as the
traveling salesman problem (TSP) (Miller, Tucker, and Zemlin, 1960; Dantzig, Fulkerson, and
S. Johnson, 1954). As a result, branch and bound is a widely used and practical method for
solving a variety of COPs. In fact, many commercial optimization solvers rely on branch and
bound to solve challenging problems.

In practice, when facedwith a newCOP, one of the first approaches is to attempt to formulate
it as an ILP problem, as this approach can often yield efficient and effective solutions.

For some problems, Dynamic Programming (DP) (Bellman, 1957) can be used. It is a
method used to solve problems by breaking them down into smaller sub-problems and solving
them in a recursive manner. It works by identifying overlapping subproblems, solving each
subproblem only once, and then storing the solution for future reference. This can lead to
significant improvements in performance, as the time required to solve the same subproblem
is greatly reduced. It is often used to solve KP for example, by solving for the optimal value of
packing a subset of the items.

Heuristics

When the previous approaches are not applicable, a vast literature is devoted to the study of
heuristics. Heuristics are algorithms that do not guarantee an optimal solution, but instead
quickly generate near-optimal, or “good enough” solutions.
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Not as mathematically sound as exact methods, the field has historically suffered from
some suspicion, as illustrated by this citation from Glover (1977): “[Exact] algorithms have
long constituted the more respectable side of the family, assuring an optimal solution in a
finite number of steps. Methods that merely claim to be clever [. . . ] are accorded lower status.
[Exact] algorithms are conceived in analytic purity in the high citadels of academic research,
heuristics are midwifed by expediency in the dark corners of the practitioner’s lair.”

Although, due to their practical efficiency, heuristics have grown in popularity. They are
often used to solve large-scale problems, as they are often much faster than exact methods.

Broady speaking, heuristics can be categorized into two categories: problem-dependant
heuristics, and meta-heuristics. Problem-dependant heuristics are tailored to a specific problem,
and are often based on the structure of the problem. Meta-heuristics are a class of more general
algorithms which can be applied to a wide range of problems.

Problem-dependent heuristics are tailored to take advantage of the unique features of the
problem and can often provide high-quality solutions in a relatively short amount of time.
These algorithms are generally based on problem-specific knowledge and expertise, such as
heuristics based on the geometry of the problem domain or local searchmethods that exploit the
problem structure. Examples of problem-dependent heuristics include the greedy algorithm
for the knapsack problem, which selects items in order of decreasing value-to-weight ratios
until the knapsack is full. There are more elaborated and efficient such heuristics, like the
Lin-Kernighan-Helsgaun (LKH) algorithm for the TSP (Lin and Kernighan, 1973), which uses
the structure of TSP tours to iterate from a given proposed solution by swapping edges.

A wide range of meta-heuristics has been proposed, giving rise to a rich taxonomy (Gen-
dreau, Potvin, et al., 2010). Without getting overly specific, we can classify them into two cate-
gories: population-based and individual-based meta-heuristics. Population-based meta-heuristics
are based on the idea of maintaining a population of candidate solutions, and iteratively evolv-
ing the population to improve the quality of the solutions. Examples of population-based
meta-heuristics include genetic algorithms (M. Mitchell, 1998), particle swarm optimization
(Kennedy and Eberhart, 1995), and ant colony optimization (Dorigo, Birattari, and Stutzle,
2006). Individual-based meta-heuristics, on the opposite, maintains a single candidate solution,
which it iteratively improves, for example by applying local search operators. Examples of
individual-based meta-heuristics include simulated annealing (Pincus, 1970), tabu search
(Glover, 1986a), and iterated local search.
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2.3 Reinforcement learning for combinatorial optimization

2.3.1 Why and when to use reinforcement learning for combinatorial optimization

Given the vast literature on exact methods, heuristics, and meta-heuristics for combinatorial
optimization, it is natural to ask whether we really need to resort to yet another approach. We
have also evoked in the Chapter 1 the weaknesses of reinforcement learning in this setting. In
this section, we adopt a contrasting viewpoint and explore the contexts where reinforcement
learning can be regarded as a promising approach.

In their tour d’horizon, Bengio, Lodi, and Prouvost (2018) gives some arguments on using
machine learning for combinatorial optimization.

• It can take into account the specific (unknown) distribution of encountered problem
instances. The resulting heuristic can leverage a possible structure of instances in this
subdistribution, which would be difficult to achieve without a learning mechanism.

• A Machine Learning (ML) system can learn fast approximations of decisions that would
require expensive computations.

These naturally apply to reinforcement learning. Additionally, we can add the following
arguments, this time specific to RL.

1. It is a general framework that can be applied to any problem that can be formulated as an
MDP with minimal changes.

2. It does not require pre-solved instances to learn from, which would be the case for
supervised learning.

3. It can natively deal with uncertainty on the problem data.

4. The problem itself can be stochastic, not fully observable, or not wholly known from the
start (e.g. a VRP where a new customer can appear anywhere on the map according
to some unknown distribution, which is a more realistic setting than the classical VRP
where all customers are known in advance).

5. It can be used as a subroutine to improve the performance of an existing algorithm.

6. Given a new, complex problem, it is likely that no good ILP formulation or reduction is
known or easily findable. In this case, RL is an easy way to develop a heuristic.

7. RL can be compute-intensive, but most of the cost is paid during training. Once the agent
is trained, it can be used to solve new instances of the problem quickly. RL thus involves a
large fixed cost, but it can be amortized over the number of instances solved at inference.

18



2.3 Reinforcement learning for combinatorial optimization

8. RL can be used as a learning device: because the resulting policy is not biased toward
handcrafted solutions, it can be used to gain new insights on the problem, which in turn
can be used to develop better heuristics.

Item 5 can be seamlessly integrated with either an exact or heuristic solver. For instance,
researchers such as Etheve et al. (2020) and Parsonson, Laterre, and Barrett (2022) have
leveraged reinforcement learning to enhance branching decisions in the context of ILP, while
Zheng et al. (2021) have combined a RL agent with LKH to boost its efficiency.

2.3.2 Framing a combinatorial optimization problem as a MDP

One natural way to apply reinforcement learning to a combinatorial optimization problem is by
framing it as an MDP. This can be achieved using two different approaches. First, improvement
methods start from a feasible solution and iteratively improve it by making small modifications
(actions). Second, construction methods build a solution incrementally by selecting one element
at a time. For example, when dealing with the TSP, improvement methods would begin with a
valid tour and apply local operators, such as swapping the order of two cities in the tour. On
the other hand, construction methods would start from an empty tour and add cities one by
one until the tour is complete.

Both improvement and construction methods have their own advantages and drawbacks.
Improvement methods are generally problem-specific, and require a good understanding of
the problem to design sensible improvement operators. But they excel at quickly exploring the
solution space. On the other hand, construction methods are more general, and require only
the framing of the problem as a MDP. However, these methods struggle to explore the solution
space effectively since all solutions are derived from the same underlying policy.

Several improvement methods have been proposed to tackle combinatorial problems. As a
quick overview, O. da Costa et al. (2020) focuses on TSP and uses a policy gradient algorithm
to learn a policy selecting local operations (2-opt, which corresponds to swapping two edges)
given a current solution while Lu, X. Zhang, and S. Yang (2020) and Y. Wu et al. (2021) extends
this idea to Capacitated Vehicle Routing Problem (CVRP). X. Chen and Tian (2019), (Hottung
and Tierney, 2020) and (Lu, X. Zhang, and S. Yang, 2020) solve several combinatorial problems,
including CVRP. X. Chen and Tian (2019) learns one policy to pick a specific part of a solution
and one policy to select a modification operator to be applied to this region. (Hottung and
Tierney, 2020) propose a large neighborhood search by learning a policy to repair a damaged
solution. Hottung, Bhandari, and Tierney (2021) uses a variational auto-encoder to learn a
continuous latent space to represent solutions, which can then be searched at test-time using a
continuous optimization method.

In the same way, numerous construction methods have been developed.
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Bello et al. (2016) uses a pointer network (Vinyals, Fortunato, and Jaitly, 2015) trained
using an actor-critic framework. Graph neural networks (Dai et al., 2017), as well as attention
networks (Deudon et al., 2018), have also been used to solve TSP. A different line approach
has consisted in learning heatmaps of edges likely to belong to the optimal solution, and
using this prior together with a search method, like beam search (Joshi, Laurent, and Bresson,
2019), Monte Carlo tree search Fu, Qiu, and Zha, 2021, or dynamic programming Kool, Hoof,
Gromicho, et al., 2021.

Solving CVRP has been amore recent line of work with Nazari et al. (2018), which combines
an attention mechanism with a recurrent network trained using an actor-critic algorithm. Kool,
Hoof, and Welling (2019) proposes an attention-based encoder-decoder architecture. The
costly encoder is run once per problem instance, and the resulting embeddings are fed to a
small decoder to iteratively roll out the whole trajectory. This work was extended in Kwon et al.
(2020), which augments instances (using a different starting position, rotations...) both during
training and inference. To better the solution quality, Hottung, Kwon, and Tierney, 2022 runs
an active search for each problem instance while only updating a small portion of the networks,
speeding up the computations.

Construction methods have also been used beyond routing problems. Kwon et al. (2020)
experiments on KP, and Hottung, Kwon, and Tierney (2022) on job scheduling problems. A lot
of hard combinatorial problems arise on graphs, like minimum vertex cover (Khalil et al., 2017),
job scheduling (C. Zhang et al., 2020; Grinsztajn, Beaumont, et al., 2021a), max cut (Barrett,
Clements, et al., 2020; Barrett, Parsonson, and Laterre, 2022), maximal independent set (Z. Li,
Q. Chen, and Koltun, 2018)...

We provide a more detailed overview of RL approaches for specific combinatorial optimiza-
tion problems in the related chapters: Chapter 3 and Chapter 4 for scheduling problems, and
Chapter 7 for routing problems. For a more exhaustive overview of RL approaches for various
COP, we refer the reader to Powell (2011) and Mazyavkina et al. (2021).
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Part I

Case Study:
Dynamic DAG Scheduling





Chapter 3

Reinforcement learning for dynamic
DAG scheduling

In this chapter, we propose a reinforcement learning approach to solve a realistic
scheduling problem and apply it to an algorithm commonly executed in the high-performance
computing community, the Cholesky factorization. On the contrary to static scheduling,
where tasks are assigned to processors in a predetermined ordering before the beginning of
the parallel execution, our method is dynamic: task allocations and their execution ordering
are decided at runtime, based on the system state and unexpected events, which allows much
more flexibility. To do so, our algorithm uses graph neural networks in combination with the
Advantage Actor-Critic (A2C) to build an adaptive representation of the problem on the fly.
We show that this approach is competitive with state-of-the-art heuristics used in
high-performance computing runtime systems. Moreover, our algorithm does not require an
explicit model of the environment, but we demonstrate that extra knowledge can easily be
incorporated and improves the performance. We also exhibit key properties provided by this
RL approach, and study its transfer abilities to other instances. 1
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1This chapter is based on the paper (Grinsztajn, Beaumont, et al., 2020) published in the proceedings of the 2020
IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL).

23



Reinforcement learning for dynamic DAG scheduling

3.1 Introduction

As outlined in the previous chapter, COPs constitute an important family of fundamental
problems: routing problems (i.e. TSP, VRP), SAT, graph coloring, task scheduling, and many
others. There are various algorithmic approaches, ranging from (provably) exact methods (e.g.
based on tree search, linear programming, etc.) to non (provably) exact/approximate methods
(heuristics and meta-heuristics), as discussed in Chapter 2. Those methods are able to solve
large-scale COPs, but they require a careful investigation of the problem. On the other hand,
real-world applications bring another set of challenges: inherent uncertainty in the definition
of the problem and randomness in the process dynamics. For instance, considering a task
scheduling problem, task durations and communications delays between tasks are uncertain,
and even the very set of tasks to be scheduled may not be known in advance like in an operating
system. To effectively address real-world applications, it is crucial to consider COPs that account
for uncertainties in the system dynamics.

RL is designed to deal with sequential decisionmaking under uncertainty (Sutton and Barto,
2018). RL algorithms are able to adapt to their environment, adjusting their behavior in response
to changes. This property opens the door to tackle COPs which contain uncertainty, or COPs
which are not completely defined when their resolution is initiated. Another potential benefit
is the ability to generalize to unseen settings, a necessary step toward real-world applications.

In this chapter, we will investigate the potential of RL for a real application, the dynamic
scheduling of a set of tasks on a distributed computing system. Modern computer systems
contain a variety of resources, interconnected to support parallel and distributed computa-
tionally intensive applications. Efficiently executing parallel applications on such systems is
critical in many scientific domains. In a High-Performance Computing (HPC) environment, it
is very common for an application to be split into several sub-tasks which may be executed
in parallel. There usually are some dependencies between those tasks as the results provided
by some may be necessary to start others. This structure may naturally be modeled using a
Directed Acyclic Graph (DAG): nodes of the DAG are sub-tasks, and directed edges represent
dependencies. Task-based runtime systems (Cédric Augonnet et al., 2011; George Bosilca et al.,
2013) internally represent the application as a DAG to execute it on a parallel machine. In this
case, one of the main duties of such runtime systems is to schedule the different tasks of the
DAG onto the available computing resources. The DAG scheduling problem consists in finding
the best way of assigning tasks to processing units, so that the task dependencies are respected
and the total duration of execution (the makespan) is minimal.
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Scheduling a DAG on a set of resources is a combinatorial problem, known to be NP-hard
(Ullman, 1975). It is a sequential, stochastic and dynamic problem. Stochasticity intervenes at
two levels: on the one hand, the exact computation times of tasks and transfer times of data are
unknown, although we can have good prior estimates. On the other hand, the whole DAG is
not necessarily known from the start. This requires that the scheduling algorithm implemented
in the runtime system is dynamic. Moreover, to be generic, the proposed solution must be able
to schedule unknown graphs onto any number of computing resources.

In this chapter, we suppose that different types of tasks can have different durations, but we
assume that communications can be neglected (either because the target platform is a shared-
memory system or because communications and computations can be overlapped). This allows
to simplify the problem formulation while keeping its NP-hardness. Our contributions are as
follows:

1. We formalize the dynamic DAG scheduling problem as a MDP.

2. We introduce a practical deep RL algorithm able to build a graph representation sequen-
tially and on the fly.

3. In a set of experiments, we demonstrate that our RL approach obtains schedules competi-
tive with state-of-the-art heuristics, even when no explicit knowledge of the environment
is available at the cost of more computation time.

4. We further show that our RL approach can generalize, by scheduling yet unseen instances.

3.2 Additional related works

Among COPs, task scheduling has attracted a lot of research and presents a rich taxonomy (Le-
ung, 2004). Roughly, it consists in assigning a set of tasks (whose interdependency is repre-
sented by a Directed Acyclic Graph – DAG–) to a set of resources while managing different
constraints (a resource cannot execute several tasks at the same time, a task cannot start before
its predecessor(s) dependencies have been completed, etc.). In the literature, several classes of
scheduling problems have been studied (Graham et al., 1979). In static problems, the DAG is
assumed to be completely known in advance while in dynamic problems, part of the DAG is
unveiled as the scheduling algorithm progresses. In the homogeneous setting, all resources are
identical while in the heterogeneous case, resources are different and the same task can have
different durations depending on the resource it is allocated on. Depending on the input (graph
topology, number or type of resources) the problem can be either polynomial or NP-Hard.
But even simple cases (e.g. tasks with no dependencies and two resources) turn out to be
NP-Hard (Garey and D. S. Johnson, 1979).
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Few works focus on reinforcement learning for task scheduling in computational graphs.
Most of them (Mao, Alizadeh, et al., 2016a; Kumar, Bhambri, and Shambharkar, 2019) consider
tasks arriving sequentially and randomly, without a DAG structure. The two papers closest
to ours are Mirhoseini, Pham, et al. (2017) and Q. Wu et al. (2018). The first one uses a very
realistic environment (communication time, storage capacity of the nodes...), but relies on a
basic tabular Q-learning technique, which cannot scale to real-life applications, and does not
allow generalization. The second one uses Deep Reinforcement Learning (DRL), but does not
allow online scheduling. Moreover, these two papers preprocess the DAG in ways which do
not allow the agent to use its whole structure.

Recently, Paliwal et al. (2020) used reinforcement learning to guide a genetic algorithm.
However, the scheduling is static, and the environment necessarily deterministic, which are
two important limitations with regard to practical constraints.

In Mao, Alizadeh, et al. (2016b), the authors present a reinforcement learning approach
to map jobs onto a parallel machine. In contrast to our problem, there are no dependencies
between jobs and the goal is to minimize job slowdown.

In Mirhoseini, Pham, et al. (2017), the authors study the task mapping of Deep Graph
Neural Network. Their approach is based on the policy gradient algorithm. Yuanxiang Gao, L.
Chen, and B. Li (2018) tackles the same problem asMirhoseini, Pham, et al. (2017) by modeling
it as a Markov decision process and using a reinforcement learning approach called proximal
policy optimization (Schulman, Levine, et al., 2015b). However, both approaches are not suited
for transfer learning as the proposed solutions can only improve the mapping of the input
problem.

In Addanki et al. (2019), the authors provide a general approach for mapping task graph
using a graph embedding approach called Placeto. In Zhou et al. (2019), the authors introduce
GDP, which uses the same approach as Placeto but outperforms it in their experiments. These
two approaches allow transfer learning for new graphs but not for new machines (the target
platform must be the same as the training one). They also provide the mapping of all tasks at
the same time, which is not suitable in case the duration of the tasks are imperfectly known.

Overall, there is yet no generic RL approach that deals with dynamic task graphs and enable
generic transfer for both new graphs and new machines.

3.3 Task modeling

In this chapter, we focus on the Cholesky factorization problem. The Cholesky factorization
is a very common linear algebra routine along with QR and Lower Upper decomposition
(LU) (Choi et al., 1996; Buttari et al., 2009). The tiled version is used in several task-based
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runtime systems such as StarPU (Cédric Augonnet et al., 2011)or PARSEC (George Bosilca
et al., 2013). These runtime systems are in charge of scheduling the tasks onto homogeneous
or heterogeneous platforms based on the description of the application by means of a DAG
(as depicted in Fig. 3.1). Hence, being able to efficiently schedule the Cholesky DAG is of
utmost importance. It is indeed characteristic of many applications in linear algebra and
scientific computing, in the sense that Cholesky factorization involves (i) a large number of
tasks, (ii) complex but regular dependencies and (iii) a small number of different kernels 2.
It is therefore a very good benchmark for scheduling algorithms (Agullo, Beaumont, et al.,
2016; Agullo, Cédric Augonnet, Dongarra, Ltaief, et al., 2010; Jeannot, 2013) and designing a
scheduling algorithm for the dense tiled Cholesky factorization is paramount, both practically
and theoretically.

3.3.1 Tiled Cholesky factorization

In this chapter, we focus on the task graph induced by the tiled dense Cholesky factorization
depicted in Algorithm 3.1

Algorithm 3.1: Tiled version of the Cholesky factorization.
1 for k = 0...T − 1 do
2 A[k][k]← POTRF(A[k][k])
3 for m = k + 1...T − 1 do
4 A[m][k]← TRSM(A[k][k], A[m][k])
5 for n = k + 1...T − 1 do
6 A[n][n]← SYRK(A[n][k], A[n][n])
7 for m = n+ 1...T − 1 do
8 A[m][n]← GEMM(A[m][k], A[n][k], A[m][n])

For a given symmetric positive definite matrix A, the Cholesky algorithm computes a lower
triangular matrix L such that A = LLT . In the tiled version, the matrix is decomposed into
T × T square tiles. Each tile is hence a sub-matrix of the original matrix. We denote A[i][j]
the tile corresponding to row i and column j: the reader should be careful that this A[i][j] is
a N × N sub-matrix of the original matrix, made of the elements of rows and columns (i.e.
spanning rows fromN× i toN×(i+1)−1). N is usually several hundreds (typically 380×380
for standard CPUs and 960×960 for GPUs). At each step k, the algorithm performs a Cholesky
factorization of the tileA[k][k] located on the diagonal (with the POTRF kernel). Then it updates
all the tiles below it (A[k][k + 1 : T − 1]) using a triangular solve (TRSM kernel). The trailing
sub-matrix is updated using the SYRK kernel for tiles on the diagonal andmatrix multiply (GEMM
kernel) for the remaining tiles (of the lower triangular part).

2in this chapter and the following, a “kernel” is a basic operation performed on a sub-matrix. The Cholesky
factorization algorithm is expressed as a combination of 4 different kernels.
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Each kernel POTRF, TRSM, SYRK and GEMM is therefore executed several times during the
Cholesky factorization by different task instances. Each task instance requires input data pro-
duced by other tasks. This leads to a DAG in which nodes are task instances and directed edges
are (data) dependencies between two task instances. For example, for k = 0 the POTRF kernel
updates tile A[0][0]. This tile is then used by all the TRSM kernels to update tiles A[1 : T − 1][k].
Hence, in the graph, there are T − 1 edges between the task that instantiate the POTRF kernel
and T − 1 tasks that each instantiate a TRSM kernel. Fig. 3.1 illustrates graphically the Cholesky
DAG for T = 5 (i.e. 5 by 5 tiles).

The advantage of the tiled version of the Cholesky factorization is three-fold. First, by
working on tiles, the computation of the kernels is very fast and optimized using BLAS (Basic
Linear Algebra Subroutine) kernels. Second, tiles enable to deal with large size problems with
relatively small DAGs. Third, the tiled version expresses a lot of parallelism which facilitates
its execution on modern parallel systems.

POTRF(0)

TRSM(0,1)

TRSM(0,2)TRSM(0,3) TRSM(0,4)SYRK(0,1)

GEMM(0,2,1)GEMM(0,3,1) GEMM(0,4,1)

SYRK(0,2)

GEMM(0,3,2) GEMM(0,4,2)POTRF(1)

TRSM(1,2)TRSM(1,3) TRSM(1,4)SYRK(0,3)

GEMM(0,4,3)

SYRK(1,2)GEMM(1,3,2) GEMM(1,4,2)

SYRK(0,4)

SYRK(1,3) GEMM(1,4,3)

POTRF(2)

TRSM(2,3) TRSM(2,4)

SYRK(1,4)

SYRK(2,3) GEMM(2,4,3)

POTRF(3)

SYRK(2,4)

TRSM(3,4)

SYRK(3,4)

POTRF(4)

Figure 3.1 –DAGof theCholesky Factorization for T = 5. The indices of POTRF(k), TRSM(k,m), SYRK(k, n)
and GEMM(k, n,m) correspond to the loop indices of Algorithm 3.1.

3.3.2 Problem definition

Our scheduling problem can be formalized as follows. For a given value of T , the Cholesky
factorization is represented by a DAG, G = (V,E), where the set of vertices V corresponds to
the set of n tasks in the application, and E is the set of directed edges between tasks, expressing
dependencies between the result of the execution of a task, and its use by a subsequent task.
One vertex corresponds to the beginning of the factorization process, while another vertex
corresponds to its completion. Each task can be either one among the four types (of kernels)
that determine its duration. The duration of a task can be deterministic or stochastic. For
simplicity, we will consider them deterministic, although our optimization method works
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the same way for stochastic durations. We denote by d(v) the duration of the task v, and by
W =

∑
v∈V d(v) the total work needed to complete the instance. In what follows, we assume

that the communication cost due to dependencies is zero. This is justified by the two following
use cases. First, if the target machine is a multi-core system with shared memory, each core can
execute one kernel at a time and the whole matrix is stored in a memory shared by all the cores.
Hence, communication between tasks is done through memory access and such accesses are
negligible compared to kernel computation time. Second, we can notice that for a tile of size
N , the amount of data to transfer is of the order of N2 while the complexity of the different
kernels is of the order ofN3, so that one generally chooses a tile sizeN large enough to overlap
computations and communications, while allowing an efficient use of computation resources
(cache,...).

The makespan is defined as the completion time of the last task to be executed. Two notions
are of importance in what follows. The Critical Path (CP) of a DAG is the longest distance
between the start node and the end node, including all the tasks and their duration. The
total work ratio is equal to W

p (where p is the number of computing resources of the parallel
machine). CP and W

p are both lower bounds of the optimal makespan, which we want to
minimize.

3.3.3 Reinforcement learning formulation

We model the problem as a MDP (S,A, P ,R). We now define S, A, R, and the objective
function used to model the DAG scheduling problem.

State Space

The goal is to give the agent as much information about the task DAG as necessary. Computing
the optimal solution requires the whole graph, and therefore the “state” should embed the
whole graph. However, the whole DAG being potentially arbitrarily large and too cumbersome
to be handled in practice, we consider an approximate representation. Hence, we restrict the
information represented in a state to information about running tasks and available tasks, along
with their descendants: “running” tasks are those currently executed, “available” those that
may be executed but can not because of a lack of computing resources, “descendants” are all
the tasks that have to wait for running and available tasks to be completed to be run, because
they depend on their results. The depth of descendants being considered is left as a parameter
in our algorithm; it is denoted by the window w. This choice of w corresponds to a trade-off
between computational time and accuracy. It is illustrated in Fig. 3.2.

Each node is represented by a set of raw features: these features are expected to encode
and summarize the DAG information at the node level. The representation Xi of node i can be
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Window

Figure 3.2 – A state contains information about running tasks, available tasks and their descendants. This
plot illustrates these notions: nodes are tasks, edges are dependencies between tasks: and a task/node
can not start its execution before all its ancestors have run to completion. In orange: running tasks; in
green: available tasks; in blue: descendants of running or available tasks. In this example, the window
w is set to 3.

written:
Xi = [succi, predi, typei, availi, runi, cpi]

where succi is the number of successor nodes of i, predi is the number of predecessor nodes of
i, typei is the type of the task encoded as a one-hot vector, availi is a binary variable indicating
if the task is available, runi is a binary variable indicating if the task is currently running, and
cpi contains the portion of critical path ahead of the task.

To produce a good schedule for a DAG of tasks, one has to consider not only the current task
to schedule, but also the dependencies of the tasks to schedule in the (near) future. Therefore,
the state has to combine information about a set of nodes, taking into account the dependencies
between them.

For this, we use graph convolution networks (Graph Convolutional Network (GCN)) (Kipf
and Welling, 2016) which have been shown to perform well on several graph-related task
benchmarks.

Given a graph G, a GCN updates the embeddingH(l) of each node using local information,
according to the formula:

H(l+1) = σ
(
D̃− 1

2 ÃD̃− 1
2H(l)W (l)

)
.

Here, σ is an activation function, Ã = A+ IN is the adjacency matrix of the undirected graph
with added self-connections, IN is the identitymatrix, D̃i,i =

∑
j Ãi,j , andW (l) is a layer-specific

trainable weight matrix.
The raw features are used as the starting vector for each node, such thatH(0)⊤ = [X̂1, X̂2, . . . , X̂n].

Stacking such GCN layers gives rise to a richer representation of the DAG by combining the
properties of neighboring vertices (Kipf and Welling, 2016).
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Action Space

An action consists in selecting an available task or in doing nothing (pass). If a task t is selected,
it is immediately scheduled on a ready-for-use processor. If all processors are ready, it is not
possible to pass.

Reward and objective function

The reward is given when the final state is reached, or equivalently when the whole input DAG
has been computed. Indeed, there is no relevant information available before the whole DAG
has been scheduled that could be used as an immediate reward. The reward uses the final
makespan given by the whole scheduling trajectory, normalized by a baseline duration. We
use a heuristic (the As Soon As Possible (ASAP) algorithm, detailed in Section 3.5.1) to get a
baseline duration in this chapter.

Thus, the reward can be written as:

R(makespan) = makespanASAP −makespan
makespanASAP

The lower the makespan the better; therefore the reward becomes positive as soon as the
learned policy becomes more efficient than ASAP.

3.4 Algorithm

3.4.1 Actor-critic

We train an agent to schedule tasks using A2C (Volodymyr Mnih, Badia, et al., 2016). A2C is
an actor-critic algorithm that aims at maximizing the objective function directly by gradient
ascent:

J(θ) = E
τ∼πθ

(∑
t

γtr(st, at)
)

where τ is a trajectory sampled according to the policy π parametrized by θ, and γ a discount
factor.

To compute a single update, we first run the current policy up to tmax steps or until a
terminal state is reached.

As discussed in the previous chapter, A2C uses a policy network (the actor) πθ(at | st),
parameterized by θ, which computes a distribution of probability over the actions, and a value
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network (the critic) which estimates the value of a state Vθv (st | θv), and is used to lower the
variance in the computation of the advantage function.

The policy update takes the form ∇θ log πθ(at | st)A(st, at, θ, θv), where the advantage
function A(st, at, θ, θv) can be written∑k−1

i=0 γ
ir(st+i, at+i) + Vθv (st+k)− Vθv (st). k is either the

time when a terminal state is reached, or tmax. In the first case, Vθv (st+k) = 0. The critic is
simply updated in order to minimize the mean square error between the predicted value Vθv (st)
and the real return∑k−1

i=0 γ
ir(st+i, at+i) + Vθv (st+k).

Adding the entropy of the policy in the objective function has been shown to improve
exploration (Williams and Peng, 1991). We therefore add the term β∇θH(πθ(st)) to the actor
gradient, whereH is the entropy and β a hyper-parameter which controls the influence of the
entropy regularization.

In practice, many parameters of the actor and the critic are shared, as we will detail in the
next section.

3.4.2 Architecture

The network architecture is kept as simple as possible in order to minimize the scheduling
computation overhead (see Fig. 3.3).

A sub-DAG is fed to the neural network (bottom of Fig. 3.3) and goes through a series of
graph convolution layers. The number of layers is a parameter of the algorithm; it should be
related to the size of thewindoww: at leastw layers are required to let the necessary information
flow from the nodes of the sub-DAG to nodes representing ready tasks. Empirically, we found
that using exactly w iterations is enough. Between these layers, we use Rectified Linear Unit
(ReLU) functions as non-linear activations.

As already mentioned above, these stacked convolution layers produce an internal represen-
tation of the sub-DAG input. This representation is used to produce an estimation of the value
of the current state, and determine which action to take. A set of 3 1-layer Fully-Connected
layer (FC) produces these two results.

3.4.3 Scheduling

The scheduling process is done iteratively by placing the available task chosen by the agent on
an available device. Once every device has been assigned a task or the agent has decided to
pass, there is no environment-agent interaction until the next event, the moment when one or
more tasks are completed, and the corresponding computing units become available. Then
the agent can choose a new action, and the process goes on until the whole DAG has been
computed.
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feature-wise
mean pooling

source to target graph convolution
ReLU

1 2

target to source graph convolution
ReLU

FC(64, 1)

FC(64, 1) ∅ +

21

softmaxFC(64, 1)

Figure 3.3 – Overview of the agent architecture. At the bottom, a sub-DAG is input into a stack of
1 + w graph convolution layers. An internal representation of the sub-DAG is outputted in which node
information has been mixed. For this current state, an estimate of the value V and an action to perform
(either do nothing (∅) or begin the execution of one of the available tasks - in green, either 1 or 2) are
generated. FC(64, 1) is a fully connected layer with an input size of 64 and an output size of 1.

3.5 Experiments

3.5.1 Reference algorithm

In this chapter, our goal is to analyze the performance of a reinforcement learning-based
algorithm for the dynamic scheduling of Cholesky factorization tasks. The dynamic nature of
factorization is in practice imposed by the difficulty of accurately predicting computational
costs and communication durations in a HPC environment in which the various operations
unpredictably influence execution times. In practice, dynamic runtimes rely solely on the
description of the machine state and on the tasks already performed, using a task priority
system to define which tasks to perform in the event that the number of available resources is
less than the number of available tasks. In these dynamic systems, task placement decisions
are made a little in advance, taking into account the placement of input data, and this delay is
used to transfer task input data if necessary to overlap communication and computation. We
have already discussed in Section 3.3.2 how to overlap communications and computations in
both the CPU multicore and the GPU cases.
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To perform dynamic scheduling, ASAP is a strategy of choice which is the de facto standard
in most dynamic schedulers. ASAP never leaves a resource inactive if there is an executable
task and ASAP chooses among several candidate tasks the one that is the farthest from the
end of the computation (the one with the longest critical path). It has been demonstrated
in Beaumont, Langou, et al. (2020) that despite its simplicity, this strategy gives excellent results
for Cholesky factorization, especially in the case where execution times are similar to what
is observed in practice on GPUs. This is therefore the strategy that we use as a baseline to
evaluate the performance of the reinforcement learning-based algorithm that we propose: the
reader should keep in mind that it is difficult to beat ASAP, or even to perform as well as ASAP.
However, ASAP requires the whole DAG: ASAP cannot cope with a dynamic environment in
which the DAG is unknown. Our approach does not suffer from this limitation.

We add two other baselines, Random and Greedy. We call Greedy the baseline which
prioritizes the tasks which have the largest number of successors. Random consists simply in
choosing the task to schedule uniformly among the available tasks. Both baselines are very
simple, hence computed very quickly.

For reproducibility purposes, the code used to perform the experiments is available at
https://github.com/nathangrinsztajn/DAG-scheduling.

3.5.2 Simulated model

In order to be able to iterate rapidly over runs, we do not evaluate the agent performance on a
real device but on a simulated environment. We use a different mean duration for each type of
task, as shown in table 3.1, according to the data gathered in Beaumont, Langou, et al. (2020)
for GPU computations.

POTRF SYRK TRSM GEMM

11 2 8 3

Table 3.1 – Task durations used in the DAG model.

3.5.3 Results

We perform different types of simulations:

1. performance comparison of our RL approach with several baselines, using Cholesky
factorization with different numbers of tiles.

2. a closer look at the performances if we remove the critical path of the node embedding
and vary the window parameter w.
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Table 3.2 – DAG characteristics for several number of tiles T in the Cholesky factorization.
T |V | W Critical Path

4 21 116 74
8 121 536 158
16 817 3056 326

3. transfer learning: we perform different kinds of transfers:
(a) having learned to schedule the DAG of tasks of a Cholesky factorization for a given

number of tiles T , how does this transfer to other numbers of tiles?
(b) having learned to schedule the DAG of tasks of a Cholesky factorization for a

given number of computing devices p, how does this transfer to other numbers of
computing devices?

As our approach is not deterministic, we train 10 agents for each configuration with 10
different seeds. The graph neural network policy was developed using PyTorch Geometric
package (Fey and Lenssen, 2019) and trained on the 8 cores of a CPU (no GPU was used), a
run taking approximately 1 hour to complete. In the tables, we provide the results of the best
of the 10 agents.

Using the notations introduced in section 3.4.1, we set β = 0.02, tmax = 40 in all our
experiments. Each agent is trained for 10,000 steps and only the best version encountered
during the process is kept. The training was done using Adam optimizer, with a learning rate
of 0.01 and ε = 0.1. As some parameters of the actor and the critic are shared, we give the actor
update more importance by down-weighting the critic learning rate by 1/2.

Unless specified otherwise, we take w = 1 for training and testing.
We use 3 different DAG obtained for three different numbers of tiles T : 4, 8 and 16. These

graphs have very distinct characteristics, as shown in Table 3.2. |V | is the number of nodes in
the DAG. Please refer to section 3.3.2 for the definition and meaning ofW and critical path.

RL vs. ASAP: performance comparison

Table 3.3 reports the performance of the baselines and our RL approach for different numbers of
tiles T and processors p. Performance is measured as themakespan of the scheduling computed
by a given algorithm. We can see that our RL approach is very competitive with ASAP, and
outperforms consistently the other baselines. Again, the reader should keep in mind that ASAP
is a very good and hard to beat heuristic.
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T p Agent ASAP Greedy Random

4 4 74 74 74 74.8 (0.87)
8 4 163 160 173 196.5 (5.57)
16 4 792 787 814 832.9 (6.09)
8 2 280 282 286 300.2 (5.39)
8 6 158 158 174 174.2 (3.24)

Table 3.3 – Makespan comparison (lower is better). For stochastic baselines, the result is a mean over 10
trajectories, and the standard deviation is given in parentheses.

A closer look at w and our initial embedding

The length of the critical path ahead added in the initial node embeddings gives information
about all the tasks remaining at each step, and supposes an accurate model of the DAG and
of the sub-task durations. As this information is not always available, we investigate the
performance of our algorithm without such help: the results are given in Table 3.4. We choose
to compare those configurations with T = 8, p = 4 as it is one of the most difficult RL settings,
according to Table 3.3.

We observe that when the critical path is included in the embedding, there is no benefit in
enlargingw. In fact, w = 0 is already almost optimal. On the contrary, without this information,
we note that enlarging w greatly improves the performances and seems to have a stabilizing
effect on the training. When w = 4, the makespan is almost as good as those of agents trained
with the critical path. On the other hand, rising w increases the computation time, as can be
seen in Fig. 3.4. w should therefore be tuned adequately to ensure a suitable time-performance
trade-off for the current case of use. ASAP cannot be used when the critical path is not available.
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Figure 3.4 – Mean computation time per action at inference, for several w and several DAG sizes. The
computation time per action increases with the number of nodes in the graph and with w, as in both
cases there are more message-passings to compute during the updates of the node embeddings.
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CP w makespan

+ 0 163 (3.28)
+ 1 163 (4.54)
− 0 173 (40.13)
− 1 170 (16.53)
− 2 171 (0.89)
− 3 166 (0.83)
− 4 164 (10.58)

Table 3.4 – Performance comparison of several settings, for T = 8 and p = 4. The CP column contains +
if we included the critical path in the node embeddings, and − otherwise. We run each configuration 10
times and keep for each one the results of the best agent. The standard deviation of the makespans of
the 5 best agents is written in parentheses.

Experiments on transfer learning

Table 3.5 reports makespans achieved with transfer learning: we train our agent on a given
number of tiles T , and we measure the makespan achieved for two other values. When Ttrain
and Ttest are equal, the results are those reported in table 3.3. We can see that the transfer
is very effective: the makespan obtained with this 0-shot transfer is only slightly worse than
the one of a dedicated agent, and still not much worse than ASAP. We conduct the same
experiments with the number of computation units p. We notice that our agent exhibits good
transfer abilities across p, beating the Greedy baseline almost in every case. While training a
RL agent takes time, this experiment shows that once trained, the RL agent has the ability to
schedule different DAGs, something ASAP cannot do.

Chapter conclusion

In this chapter, we have investigated the use of reinforcement learning as a principled approach
to solve scheduling problems involving the need of being able to adapt to a dynamic (runtime)
environment. Solving scheduling problems is known to be NP-hard, and remains a challenge
for RL. In this chapter, we focused on dynamic scheduling on homogeneous resources without
communication costs. We conducted our experiments on a well-known, heavily used numerical
procedure, the Cholesky factorization. Experiments show that we can achieve schedules that
are as efficient as those obtained by dedicated heuristics; they also show the benefit of using a
RL approach to transfer the policy learned on a certain hardware configuration to another or to
transfer the scheduling policy learned on a certain graph of tasks to another. To the best of our
knowledge, the paper on which this chapter is based was the first to present such an adaptive
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Table 3.5 – Transfer learning experiments through T (number of tiles) and p (number of processing
units). The RL agent learns on Ttrain and ptrain and is tested at inference on Ttest and ptest.

Ttest Ttrain ptest ptrain makespan

4 74
4 8 74

16 74
4 215

8 8 4 4 163
16 175
4 911

16 8 805
16 792

2 280
2 4 285

6 296
2 172

8 8 4 4 163
6 178
2 158

6 4 159
6 158
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RL approach featuring dynamic scheduling and transfer learning, and to study the effect of the
node-level information available.

The presented approaches have several limitations. As we only considered homogeneous
computing resources, examining heterogeneous devices such as CPUs and GPUs would be
interesting. Considering other types of tasks, such as LU factorization, which is more complex
than Cholesky because of the repeated selection of a pivot, is also a path to investigate. Yet
another direction would be to study the impact of noise on task execution times. These three
extensions are considered in the following chapter.
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Chapter 4

RL for dynamic DAG scheduling:
stochasticity and heterogeneity

In this chapter, we propose READYS, a reinforcement learning algorithm for the dynamic
scheduling of computations modeled as a Directed Acyclic Graph (DAGs). As in the previous
chapter, our goal is to develop a scheduling algorithm in which allocation and scheduling
decisions are made at runtime, based on the state of the system. We go further than the
previous chapter by considering a more realistic scheduling environment, in which the exact
computation durations of tasks are not exactly known. We also consider heterogeneous
platforms made of a few CPUs and GPUs, and focus on more graphs originating from linear
algebra factorization kernels (Cholesky, LU, QR). We first propose to analyze the performance
of READYS when learning is performed on a given (platform, kernel, problem size)
combination. Using simulations, we show that the scheduling agent obtains performances
very similar or even superior to algorithms from the literature, and that it is especially
powerful when the scheduling environment contains a lot of uncertainty. We additionally
demonstrate that our agent exhibits very promising generalization capabilities. To the best of
our knowledge, this was the first work showing that reinforcement learning can be used for
dynamic DAG scheduling on heterogeneous resources. 1

Contents
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Additional related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

1This chapter is based on the paper (Grinsztajn, Beaumont, et al., 2021b) published in the proceedings of the
2021 IEEE International Conference on Cluster Computing (CLUSTER).
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4.1 Introduction

In the previous chapter, we proposed an RL approach to deal with tiled Cholesky factorization
in simple homogeneous environments; we showed that in this context an RL approach can be
competitive with the ASAP heuristic, and that it is possible to transfer the knowledge acquired
while solving a problem of size T to solving another problem of size T ′, hence saving the
learning time. In this chapter, we go further in our investigation: we apply this RL approach
to a set of factorization algorithms, namely Cholesky, LU, and QR, which are very common
in numerical linear algebra routines, and we extend our results to heterogeneous platforms
consisting of both CPUs and GPUs. In this context, we consider a scheduling problem in which
resource performances are unrelated (Lenstra, Shmoys, and Tardos, 1990), i.e. the ratio between
the processing time of a task on a GPU and on a CPU depends on the type of the task itself.

In this chapter, we also analyze the effect of noise on task durations. Indeed, while we may
have good estimates of the computation durations of tasks and communication times, the exact
durations are typically unknown and can vary due to various factors, which can make the
scheduling problem challenging. When using static task allocation and scheduling, even with
relatively well-known task and communication durations, a drift is observed when the problem
size becomes large, which is a source of load imbalance and idle time. This observation is at
the heart of the success of dynamic schedulers such as StarPU and ParSEC (Cédric Augonnet
et al., 2011; George Bosilca et al., 2013), which rely on less sophisticated scheduling algorithms
because decisions are made at runtime and must be very fast, but benefit from a more accurate
knowledge of the state of computation and communication resources at the time of making a
decision. In practice, dynamic schedulersmake task allocation decisions a little in advance of the
actual processing of the tasks, whichmakes it possible to perform the necessary communications
as soon as possible, thus ensuring a good overlap of communications with computations.

As in the previous chapter, we assume that communications can be overlapped with com-
putations and can therefore be neglected, which is a reasonable assumption at the scale of the
computing node consisting of a few CPUs and GPUs (see Section 4.3). Linear algebra kernels
offer a rich context in which the combined use of CPUs and GPUs is relevant. Indeed, the
different linear algebra kernels involved in a factorization exhibit very different acceleration
rates on the GPUs.

As before, we represent only a part of the DAG of tasks to be scheduled: this part is a
window w sliding over the DAG, so that at any time, the algorithm considers only a relevant
part of the DAG, consisting in the tasks that are ready for processing (whose all predecessors
have been processed) and their descendants at distance w, in order to efficiently schedule the
next tasks. Moreover, it is reasonable to consider that in practice, the whole DAG is not known
in advance. Indeed, numerical tests might typically modify dynamically at runtime the shape
of the DAG. Furthermore, scheduling and allocation decisions must be fast compared to the
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typical duration of tasks, so it is necessary to restrict the size of the state on which decisions
are based.

Our contributions are as follows. We model dynamic scheduling on heterogeneous plat-
forms as a reinforcement learning problem in Section 4.3 and design READYS, a suitable RL
agent in Section 4.4. Then, we perform an experimental study considering standard linear
algebra kernels in Section 4.5. We compare the performance of READYS with those of classical
heuristics in the heterogeneous case, namely the static Heterogeneous Earliest-Finish Time
(HEFT) (Topcuoglu, Hariri, and M.-y. Wu, 2002) and the dynamic Minimum Completion Time
(MCT) (Sakellariou and Zhao, 2004) heuristics. We show that READYS is competitive with
respect to HEFT even when the prediction of task lengths is accurate. When task durations are
not exactly known in advance, we show that READYS performs better.

It is worth noting that HEFT relies on complete and accurate knowledge of the DAG, unlike
READYS which grounds its decisions on much less information. In Section 4.5.6, we investigate
the possibility to transfer the knowledge acquiredwhile solving the problem on a given (matrix)
size to another size.

Overall, the paper on which this chapter is based was the first to demonstrate that reinforce-
ment learning is an interesting approach to dynamically schedule tasks when the characteristics
of the tasks and computing resources are not perfectly known or are changing over time. We
emphasize that this lack of exact knowledge, though often neglected, is actually the situation
faced on real HPC systems.

4.2 Additional related work

In Mao, Schwarzkopf, et al. (2019), a dynamic scheduling strategy is learned on top of Spark
considering online DAG job arrivals. Contrary to our approach, scheduling decisions are made
at stage level (a stage being a set of independent tasks operating on different input data), leaving
fine-grained task-level decisions to Spark. This eliminates the burden of dealing with large
DAG, but restricts the approach to jobs with high inherent parallelism.

Orhean, Pop, and Raicu (2018) tackles the problem of heterogeneous distributed systems.
But contrarily to us, it relies on a simple q-learning reinforcement algorithm with a hard-coded
pre-processing of theDAG into a look-up table, which prevents scaling to complex environments
or generalizing to unseen instances.

In the scheduling literature, a lot of work has been done to efficiently perform linear algebra
factorizations in parallel on heterogeneous platforms, because of the practical importance of
these kernels. We focus here on works using dynamic runtime scheduling strategies. For
instance, the Cholesky factorization has been implemented in DAGuE (G. Bosilca et al., 2012),
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StarPU (C. Augonnet et al., 2011; Cojean et al., 2019), OmpSs (Duran et al., 2011), and Super-
Matrix (Quintana-Ortí et al., 2009). The basic task scheduling strategy consists in (i) analyzing
the list of ready tasks (i.e. all tasks whose predecessors have already been processed), (ii)
taking the most important task (using a priority system typically based on heuristics such as
HEFT (Topcuoglu, Hariri, and M.-y. Wu, 2002)), and (iii) placing it on the resource that is
likely to complete it as early as possible using estimations as in MCT heuristic (Sakellariou
and Zhao, 2004), given the task cost models on the different resources (and the input data
transfer times). HEFT and its variants are the de facto heuristics for static scheduling, while
MCT is popular for dynamic scheduling: we will use them as reference algorithms to evaluate
the performance of READYS in Section 4.5.

4.3 Models

4.3.1 Problem definition

The scheduling problem can be formalized as follows. As before, we are given a DAG that
models the set of tasks to be scheduled. Each vertex corresponds to one task, and each directed
edge expresses a dependency between the result of one task and its use by a subsequent task.
The target machine is composed of heterogeneous computing units (i.e. CPUs and GPUs).
We also focus on applications in linear algebra; in such applications, a matrix is processed
and the set of tasks to be performed is made of a small number (typically 4 in this chapter)
of kernels. One kernel corresponds to a certain processing performed on a sub-matrix/tile
of a given size. The execution time of a kernel depends on the computing unit executing it,
so that the acceleration factor on a GPU can be larger for a kernel than for another. This is
typically the case in practice, due to the suitability of a given kernel on one particular computing
unit, or another. Nevertheless, in practice, due to heating conditions or NUMA effects, the
duration of the execution of a given task on a given resource is not constant and the variability
in the processing time also depends on the resource on which they are performed(Beaumont,
Eyraud-Dubois, and Yihong Gao, 2019).

In what follows, and as in the previous chapter, we assume that it is possible to overlap
communications with computations, so that we can neglect communication costs. For a matrix
of sizeM ×M , there are T 2 tiles where T = M/N . In the numerical linear algebra applications
considered here, each tile is processed several times so that the number of tasks of the DAG is
n = O(T 3).

As before, the makespan is the quantity that we aim at minimizing in this chapter. It is
noteworthy that in the heterogeneous case there is neither a notion of a critical path (since we
do not know in advance where the different tasks will be allocated) nor of total work (since
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we do not know in advance the fraction of each task type allocated on each type of resource).
Extensions of critical path relying on probabilistic estimates have been proposed in Topcuoglu,
Hariri, andM.-y. Wu (2002) and a generalization of the overall work relying on rational number
linear programming has been proposed in Agullo, Beaumont, et al. (2016).

Furthermore, since we are interested in learning a dynamic scheduling strategy, we do not
assume that the reinforcement learning-based scheduler knows in advance the entire DAG to
be scheduled, nor that it is capable of computing global statistics such as task critical path or
overall work. The scheduler is myopic, considering only the tasks ready to be processed and
their descendants up to a certain depth.

4.3.2 Reinforcement learning formulation

A state contains the necessary information about the system to be able to decide which action
is best to perform to optimize the objective function. In our context, the state should contain
information about the status of the ready tasks and their descendants up to a certain depth in
the DAG, and the status of the computational resources so that the agent can decide which task
to schedule next on which resource. This simple formalism can be difficult to handle because a
lot of task-processor pairs can be considered. Instead, each time a decision has to be made, we
choose at random one available processor, named the “current processor”.

Regarding the DAG, computing the optimal solution requires exponential time and the
knowledge of the whole DAG. For the reasons mentioned in Chapter 3, we consider an approxi-
mate representation, where we restrict the information represented in a state to the information
about running tasks, ready tasks, and some of their descendants. The state of the resources is
represented by a vector containing the type of each computing resource (CPU or GPU) and
the estimated time at which it will be available, given the task already running on it.

Each vertex of the DAG, i.e. each task, is represented by a set of raw features: these features
are expected to encode and summarize the DAG information at this vertex level. We use
normalized quantities in order to facilitate policy transfer between graphs of different sizes.
The representation X̂i of Task i is essentially the same as in the previous chapter, with the
difference that there is no critical path anymore. It can be written as

X̂i = [|S(i)|, |P (i)|, type(i), ready(i), F (i)],

where S(i) is the set of immediate successors of vertex i (and |S(i)| is hence the number
of successors of i), P (i) is the set of immediate predecessors of i (hence |P (i)| is the number
of predecessors of i), type(i) is the type of the task encoded, ready(i) is a binary variable
indicating if the task i is ready. F (i) replaces the critical path used in the previous chapter,
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and summarizes the information about the descendants of task i: it is a vector containing the
number of descendants of each type normalized by the total number of tasks of each type.
More formally, if we denote by 0 the root of the DAG, we can define the unnormalized form F̄

of F recursively by

F̄ (i) =

type(i) +
∑
c∈S(i)

F̄ (c)
|P (c)|

 and F (i) = F̄ (i)
F̄ (0)

,

where type(i) is the one-hot vector representing the task type. To produce a good schedule
for a DAG of tasks, one has to consider not only the current task to schedule, but also the depen-
dencies of the tasks to schedule in the (near) future. Therefore, as before, this representation
X̂i is passed through several GCNs layers.

Each time a computational resource becomes available, an action consists in selecting an
available task to be run on this computational resource, or in staying idle (action ∅). This ∅
action makes it possible to implement more complex schedules than list schedules, where for
example slow processors are kept idle. The set of possible actions makes A.

The transition function P corresponds to the computer system transiting from one state
to another. Each time a task is completed, a computational resource becomes available, we
arbitrarily select an available computing unit to be the “current processor”. Whether the action
is to schedule a task on this processor or to pass, we select a new idle processor as the current
processor, and keep iterating until either all processors are executing a task or have been
skipped. We then continue the simulation until a new task finishes, and repeat this process
until every task has been scheduled.

As in the previous chapter, the reward function R is given at the end of an episode, and is
defined as the difference between the makespan of the schedule performed by the RL algorithm
and the makespan computed by a baseline algorithm. Here, we use the HEFT heuristic as
a baseline. HEFT is a scheduling strategy that assigns the highest priority task (priorities
being computed as explained in Section 4.5.3) to the next available resource. If we denote by
makespan the makespan achieved by the RL agent and by makespan(HEFT) the makespan
achieved by HEFT heuristic, the return is defined as:

R(makespan) = makespan(HEFT)−makespan
makespan(HEFT)

.

R is thus positive whenever the reinforcement algorithm is performing better than HEFT.
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4.4 Algorithm

4.4.1 Actor-critic

As before, we choose A2C (Volodymyr Mnih, Badia, et al., 2016) as our RL algorithm, and use
a neural network to represent the policy.

4.4.2 Architecture of the RL agent

In this paragraph, we very briefly outline the architecture of READYS. The neural network
architecture is kept as simple as possible in order to minimize the scheduling computation
overhead (see Fig. 4.1). The input of the neural network(s) is made of the DAG information
and the state of the computing resources. As explained earlier, a stack of graph convolution
layers mixes the information of the nodes of the DAG, up to a certain depth from the current
node. The output of the last convolution layer is used as an internal representation of the DAG.
The number of GCN layers is a parameter of the algorithm, as before related to the size of the
window w as at least w layers are needed to allow information to flow between the nodes of
the sub-DAG to the available tasks. This representation of the DAG is stacked together with the
embedding of the computing resources described in 4.3.2 and used to compute final action
probabilities. We then sample an action according to this output probability, and schedule the
corresponding task on the current processor (or do not schedule anything if it is the ∅ action).
We provide our implementation in Grinsztajn (2021).

4.5 Experiments

In this section, we report experiments in which we compare READYS with other well-known
and efficient heuristics.

4.5.1 Task graphs

We consider three types of DAGs corresponding to Cholesky (Agullo, Beaumont, et al., 2016),
LU (Agullo, Cédric Augonnet, Dongarra, Faverge, Langou, et al., 2011), and QR factoriza-
tions (Agullo, Cédric Augonnet, Dongarra, Faverge, Ltaief, et al., 2011). These applications are
used in many real-life applications and are considered as a good testbed for the evaluation of
runtime systems (Choi et al., 1996; Buttari et al., 2009). For instance in Baboulin, Giraud, and
Gratton (2005) the authors use a Cholesky factorization to solve an electromagnetic problem
; in Bientinesi et al. (2009) authors use an dense QR factorization for solving an eigenvalue
problem that can be applied in quantum chemistry, finite element modeling or multi-variate
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source to target graph convolution
ReLU

feature-wise
mean pooling FC(128, 1)

feature-wise
max pooling

21

Task graph state Processor state

current processor

FC(128, 1) softmax

∅1 2

FC(128, 1)

Figure 4.1 – Overview of the architecture of READYS. At the bottom, a sub-DAG enriched with the
computing resource state information is fed into a stack of several graph convolution layers and outputs
an internal representation. It is used to estimate the state value V via mean-pooling and one-dimensional
projection. The embeddings of available tasks (here 1 and 2 are aggregated into a batch and projected
onto a one-dimensional vector, which can be seen as the score of each task. This vector is concatenated
with a single real number, the score of the ∅ action, computed from a projection of the processor state
and the max-pooling of the internal DAG representation, and normalized with a softmax to output
probabilities π. FC(128, 1) denotes a fully connected layer with an input size of 128 and an output size
of 1. We represent each type of processor (eg CPU and GPU) by a different shape. Idle processors are in
green, running processors are in orange, and the current processor is in light green.
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statistics. From a computer-science point of view, these factorizations involve (i) a large number
of tasks, (ii) complex dependencies and (iii) a small number (4) of different kernels. Therefore
they constitute a very good benchmark for scheduling algorithms (Agullo, Cédric Augonnet,
Dongarra, Ltaief, et al., 2010; Jeannot, 2013) and designing good scheduling policies in this
context is both very meaningful theoretically and of extreme practical importance.

4.5.2 Simulation model

For a task-processor pair (i, p), we denote by E(i, p) the expected duration of task i executed
on p, and d(i, p) its actual duration. d is a stochastic variable. In the experiments, d is obtained
by adding a Gaussian noise to the expected duration E. More formally, we model d as follows:

d(i, p) = max
[
0,N

(
E
(
i, p
)
, σE

(
i, p
))]

,

where σ is a parameter of the simulated environment controlling the noise level: the greater
σ, the larger the uncertainty on the duration of each task. We are aware of the limits and
drawbacks of this duration model. There does not exist any good model in the literature that
would fit the setting under study, but the model proposed here enables us to model some
uncertainty on task duration, which is an essential feature of the systems we are considering.
We leave to future work either to come up with a good model, or to study the sensitivity of
our analysis to various noise models. In our experiments, the expected durations of each
kernel of each type of graph for each type of resources (CPU and GPU) are taken from real
measurements of the literature (Agullo, Beaumont, et al., 2016; Agullo, Cédric Augonnet,
Dongarra, Faverge, Langou, et al., 2011; Agullo, Cédric Augonnet, Dongarra, Faverge, Ltaief,
et al., 2011).

4.5.3 Baselines

Our goal is to analyze the performance of a reinforcement learning-based algorithm for the
dynamic scheduling of Cholesky, LU and QR factorizations. In practice, it is very difficult
to accurately predict the computational costs and the communication durations in an HPC
environment in which the various running processes unpredictably influence the execution
times of each other. This explains the success of dynamic schedulers (Cédric Augonnet et al.,
2011; Duran et al., 2011; George Bosilca et al., 2013). Indeed, since it is not possible to schedule
and allocate tasks long in advance, in practice, dynamic runtimes rely solely on the description
of the machine state and on the tasks already performed, using a task priority mechanism
to define which tasks to perform in the event that the number of available resources is less
than the number of available tasks. We have already discussed in Section 3.3.2 how to overlap
communications and computations in both the CPU multicore and the GPU cases.
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We have chosen HEFT (Topcuoglu, Hariri, and M.-y. Wu, 2002) as a reference static algo-
rithm. It is a static list-scheduling heuristic that contrary to READYS uses the whole DAG to
compute a schedule. This consists in never leaving a resource inactive if there exists a ready-to-
be-processed task and breaking ties among candidate tasks by choosing the one that is farthest
from the end of the computation. In the homogeneous case, it corresponds to the one with
the longest critical path. It has been demonstrated in Beaumont, Langou, et al. (2020) that
despite its simplicity, this strategy gives excellent results for Cholesky factorization, especially
when execution times are similar to what is observed in practice on GPUs. We also compare
READYS to MCT (minimum completion time). MCT is a dynamic heuristic that, similarly to
our approach, considers tasks one after the other without considering the whole DAG. Each
time a task becomes ready it is assigned to the resource where it is expected to complete the
soonest (Sakellariou and Zhao, 2004).

4.5.4 Training

We perform a grid search on several hyper-parameters of our model, notably the window
w ∈ [0, 2], and the number g ∈ [1, 3] of GCN layers. The networks are trained using the Adam
optimizer with a learning rate of 0.01, while leaving the over hyper-parameters default in
PyTorch (Paszke et al., 2019).

Regarding the actor-critic algorithm, we chose a baseline loss scaling of 0.5, and grid-
searched the unroll length in [20, 40, 60, 80] and the entropy loss ratio in [10−3, 5× 10−3, 10−2].
Informally, we noted that training an agent would take approximately 20 minutes on a standard
laptop with no GPU.

4.5.5 Results

The performance of several models trained on the three types of DAGs, for different number of
tiles, CPUs and GPUs are summarized in Figure 4.2. We recall that T is the number of tiles
in each dimension of the matrix, hence T 2 tiles in total, and that there are O(T 3) tasks in the
considered DAGs (Agullo, Beaumont, et al., 2016; Agullo, Cédric Augonnet, Dongarra, Faverge,
Langou, et al., 2011; Agullo, Cédric Augonnet, Dongarra, Faverge, Ltaief, et al., 2011). We
compute the improvement over HEFT (static heuristic) and MCT (dynamic heuristic). As
soon as σ > 0, durations are stochastic and reported figures are obtained by averaging the
performance over 5 runs/seeds. We see that when σ is small, READYS performs similarly to
HEFT (red boxes). One must keep in mind that HEFT makes use of the complete DAG to
compute a schedule whereas READYS does not as it is fully dynamic and discovers the graph
online. As soon as σ increases, READYS outperforms HEFT taking advantage of the fact that it
discovers task durations by itself. Compared to MCT (blue boxes) which is a fully dynamic
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Figure 4.2 – Makespan improvement over HEFT and MCT according to T ∈ {2, 4, 8} (rows), the noise
level σ, and for each of the 3 tasks we consider (3 columns), when the computing platform is made of 2
CPUs and 2 GPUs. The larger the bars above 1, the better READYS performs w.r.t. to competitors.
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Figure 4.3 – Transfer learning experiments: Makespan improvement over HEFT for the Cholesky task
graph for several noise levels σ. On the left, the testing DAG is the tiled Cholesky with T = 10 tiles, and
on the right the tiled Cholesky with T = 12 tiles. The computing platform is made of 4 CPUs.
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Figure 4.4 – Transfer learning experiments: Makespan improvement over HEFT for the Cholesky task
graph for several noise levels σ. On the left, the testing DAG is the tiled Cholesky with T = 10 tiles, and
on the right the tiled Cholesky with T = 12 tiles. The computing platform is made of 2 CPUs and 2
GPUs.
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Figure 4.5 – Transfer learning experiments: Makespan improvement over HEFT for the Cholesky task
graph for several noise levels σ. On the left, the testing DAG is the tiled Cholesky with T = 10 tiles, and
on the right the tiled Cholesky with T = 12 tiles. The computing platform is made of 4 GPUs.
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Figure 4.6 – Mean inference time for the Cholesky DAG with 99% confidence interval.

heuristic like READYS, we see that our approach is much more efficient even for low noise,
exhibiting more than 35% improvement in some cases. Moreover, the relative performance
of MCT compared to READYS is roughly constant when σ varies when the task graph is
sufficiently large (T = 6 or more). Indeed, they are both insensitive to uncertainty about the
duration of tasks (unlike HEFT), because they schedule tasks taking into account the actual
state of the system and the unexpected duration of the tasks. On the opposite, HEFT computes
the schedule before the execution and is less able to cope with duration variability. It also
means that in order to deal with uncertainty, as soon as the input graph is large enough, it is
better to make dynamic decisions than to have a complete view of the topology of the graph.

4.5.6 Transfer learning

Training a RL agent is well-known to be time-consuming. To overcome this difficulty, we
investigate whether an agent trained to schedule a specific DAG is able to schedule other DAGs
of different sizes, which is an example of transfer learning.

Reducing learning time is crucial to make reinforcement learning usable in practice. In
particular, it is crucial that a scheduling policy learned on a small graph may be transferred to
a larger-size graph, on which it would be too expensive to train from scratch.

We consider the Cholesky task graph and apply directly READYS trained on either T = 4, 6
or 8 tiles (that is respectively 20, 56 and 120 tasks) to DAGs of size 10 and 12 tiles (220 and 364
tasks). Results are summarized in Figure 4.3, Figure 4.4 and Figure 4.5. As previously, figures
are averaged over 5 runs/seeds when stochastic. These experiments exhibit very promising
transfer capacities for all three considered computing platform architectures. Models trained
for T = 6 and T = 8 obtain roughly similar performances when used to schedule problems
of size 10 or 12, losing by only a few percents against HEFT when σ = 0, and becoming again
competitive as soon as σ > 0.2. The results are even better when compared to MCT where the
improvement is always positive.
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We can notice that the performance of READYS varies according to computing platforms,
which is not surprising as the optimal scheduling strategy may change a lot. In the case of 4
GPUs for example, scheduling tasks on the critical path is crucial, which can be difficult for
baselines like MCT, hence the large improvements of READYS.

As expected, models trained for T = 4 obtain weaker performances: the environment
used for their training is too different from the testing environment. For instance, the ratio
between the different types of kernels is too different in this case. When dealing with large
task graphs, this may suggest an alternative strategy to a costly training from scratch: finding
an intermediate instance close enough to the initial DAG, which size is small enough so that
training time remains short; train on it, and apply the learned policy to the larger instance.

4.5.7 Inference time

We further report wall-clock inference time on standard hardware (one CPU, no GPU) in
Fig. 4.6 in order to evaluate the scheduling overhead, since scheduling decisions are made at
runtime. It increases with the number of tasks in the window (in our experiments, the average
number of tasks in the window is 45), but remains in the order of milliseconds, so that the
scheduling overhead is reasonable as in the case of tiled algorithm kernels execution time is
much larger.

Chapter Conclusion

In this chapter we address the following question: can Reinforcement Learning effectively be used
to dynamically schedule Directed Acyclic Graphs (DAGs) on heterogeneous systems? This is both a
very difficult question as scheduling is a NP-Hard combinatorial optimization problem and a
very important question as dynamic scheduling is used in many task-based runtime systems.
To the best of our knowledge, we are the first to positively answer this open question.

To do so, we consider several DAGs arising from linear algebra. We demonstrate the ability
of READYS to be competitive with state-of-the-art static scheduling algorithms such as HEFT
even when there is no noise in the task duration estimation. This is remarkable as HEFT is a
static heuristic that contrary to our approach, has full knowledge of the graph (topology and
tasks durations). As READYS makes very little use of prior knowledge about the environment,
it is particularly powerful when the uncertainty about the task duration is large or when
the environment is stochastic, improving the results obtained by HEFT by a large margin.
Compared to a dynamic approach such as MCT, the results are even better as we are able to
outperform MCT in all cases, regardless of the uncertainty of task durations.

54



4.5 Experiments

Learning scheduling algorithms for parallel heterogeneous computing platforms capable
of handling stochastic duration is a key feature of our solution, since real execution environ-
ments do not generally behave in a deterministic way (e.g. regarding resource availability,
the execution time of a given task, the communication time of a given transfer). In this case,
reinforcement learning is capable of adapting to current execution conditions, dealing with
unplanned situations. Moreover, and very importantly, we show that our proposed solution
enables transfer learning. A model trained on a specific DAG of a (small) given size is able to
efficiently apply the learned strategy to larger graphs.

This chapter opens several directions for future works. We useA2C as our reinforcement
learning algorithm. Other algorithms that have been recently introduced (e.g. (Flet-Berliac et
al., 2021c)) may improve our results still further. Future work could include generalizations of
transfer performances, using for example techniques from few-shot learning or meta-learning.
This ability to generalize and transfer knowledge is crucial: paying the full price of model
training is probably the main practical obstacle to using these techniques. More broadly,
this work opens new avenues for the use of reinforcement learning for scalable and practical
dynamic DAG scheduling.

To this end, we have established a collaboration with the Tadaam and RealOpt teams of high-
performance computing at Inria Bordeaux, which have a strong interest in dynamic scheduling
problems for HPC applications. The collaboration has been ongoing for nearly a year to
create a perfectly realistic simulation environment that is well-suited to reinforcement learning.
Through this collaboration, we aim to scale up our tests and ideas to larger environments, as
well as provide to the RL community an interesting and challenging real-world combinatorial
environment.
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Leveraging Structure and Priors





Chapter 5

Reversibility-Aware Reinforcement
Learning

In the scheduling problem discussed in Part I, incorporating task dependencies was crucial to
achieve efficient scheduling. This highlights the importance of incorporating structure, in a
broad sense, to solve complex combinatorial optimization problems. In this chapter, we focus
on a specific type of structure that arises at the trajectory level: action reversibility. This
property was initially introduced as an inductive bias to solve Sokoban, a NP-hard
combinatorial game where the agent can easily get trapped in unsolvable positions. However,
it is also shown to be effective in other environments. From theoretical considerations, we
show that approximate reversibility can be learned through a simple surrogate task: ranking
randomly sampled trajectory events in chronological order. Intuitively, pairs of events that are
always observed in the same order are likely to be separated by an irreversible sequence of
actions. Conveniently, learning the temporal order of events can be done in a fully
self-supervised way, which we use to estimate the reversibility of actions from experience,
without any priors. We propose two different strategies that incorporate reversibility in RL
agents: one for exploration (RAE), and one for control (RAC). 1
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1This chapter is based on the paper Grinsztajn, Ferret, et al. (2021a) published in the proceedings of the 34th
conference on advances in Neural Information Processing Systems (NeurIPS 2021)
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5.1 Introduction

We address the problem of estimating if and how easily actions can be reversed in the RL
context. Irreversible outcomes are often not to be taken lightly when making decisions. As
humans, we spend more time evaluating the outcomes of our actions when we know they are
irreversible (McAllister, T. R. Mitchell, and Beach, 1979). As such, irreversibility can be positive
(i.e. takes risk away for good) or negative (i.e. leads to later regret). Also, decision-makers
are more likely to anticipate regret for hard-to-reverse decisions (Zeelenberg, 1999). All in
all, irreversibility seems to be a good prior to exploit for more principled decision-making.
In this chapter, we explore the option of using irreversibility to guide decision-making and
confirm the following assertion: by estimating and factoring reversibility in the action selection
process, safer behaviors emerge in environments with intrinsic risk factors. In addition to this,
we show that exploiting reversibility leads to more efficient exploration in environments with
undesirable irreversible behaviors, including the famously difficult Sokoban puzzle game.

However, estimating the reversibility of actions is no easy feat. It seemingly requires a
combination of planning and causal reasoning in large dimensional spaces. We instead opt for
another, simpler approach (see Fig. 5.1): we propose to learn in which direction time flows
between two observations, directly from the agents’ experience, and then consider irreversible
the transitions that are assigned a temporal direction with high confidence. In fine, we reduce
reversibility to a simple classification task that consists in predicting the temporal order of
events.

Our contributions are the following: 1) we formalize the link between reversibility and
precedence estimation, and show that reversibility can be approximated via temporal order, 2)
we propose a practical algorithm to learn temporal order in a self-supervised way, through
simple binary classification using sampled pairs of observations from trajectories, 3) we propose
two novel exploration and control strategies that incorporate reversibility, and study their
practical use for directed exploration and safe RL, illustrating their relative merits in synthetic
as well as more involved tasks such as Sokoban puzzles.

5.2 Additional related work

To the best of our knowledge, this work is the first to explicitly model the reversibility of
transitions and actions in the context of RL, using temporal ordering to learn from trajectories
in a self-supervised way, in order to guide exploration and control. Yet, several aspects of the
problem we tackle were studied in different contexts, with other motivations; we review these
here.
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5.2 Additional related work

Is A → B reversible?

Yes, because 
B → A does not 

contradict the laws of 
physics!

Is A → B reversible?

Easy, since 
B → A is as likely 

as A → B!

Figure 5.1 – High-level illustration of how reversibility can be estimated. Left: from an understanding
of physics. Right: ours, from experience.

Leveraging reversibility in RL. Kruusmaa, Gavshin, and Eppendahl (2007) estimate the
reversibility of state-action couples so that robots avoid performing irreversible actions, since
they are more likely to damage the robot itself or its environment. A shortcoming of their
approach is that they need to collect explicit state-action pairs and their reversal actions, which
makes it hard to scale to large environments. Several works (Savinov et al., 2019; Badia,
Sprechmann, Vitvitskyi, D. Guo, et al., 2020; Badia, Piot, et al., 2020) use reachability as a
curiosity bonus for exploration: if the current state has a large estimated distance to previous
states, it means that it is novel and the agent should be rewarded. Reachability and reversibility
are related, in the sense that irreversible actions lead to states from which previous states
are unreachable. Nevertheless, their motivations and ours diverge, and we learn reversibility
through a less involved task than that of learning reachability. Nair et al. (2020) learn to reverse
trajectories that start from a goal state so as to generate realistic trajectories that reach similar
goals. In contrast, we use reversibility to direct exploration and/or control, not for generating
learning data. Closest to ourwork, Rahaman et al. (2020) propose to learn a potential function of
the states that increases with time, which can detect irreversibility to some extent. A drawback
of the approach is that the potential function is learned using trajectories sampled from a
random policy, which is a problem for many tasks where a random agent might fail to cover
interesting parts of the state space. In comparison, our method does not use a potential function
and learns jointly with the RL agent, which makes it a viable candidate for more complex tasks.

Safe exploration. Safe exploration aims at making sure that the actions of RL agents do
not lead to negative or unrecoverable effects that would outweigh the long-term value of
exploration (Amodei et al., 2016). Notably, previous works developed distinct approaches to
avoid irreversible behavior: by incremental updates to safe policies (Hans et al., 2008; García
and Fernández, 2012), which requires knowing such a policy in advance; by restricting policy
search to ergodic policies (Moldovan and Abbeel, 2012) (i.e. that can always come back to any
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state visited), which is costly; by active exploration (Maillard et al., 2019), where the learner
can ask for rollouts instead of exploring potentially unsafe areas of the state space itself; and by
computing regions of attraction (Berkenkamp et al., 2016) (the part of the state space where a
controller can bring the system back to an equilibrium point), which requires prior knowledge
of the environment dynamics.

Self-supervision from the arrow of time. Self-supervision has become a central component
of modern machine learning algorithms, be it for computer vision, natural language or signal
processing. In particular, using temporal consistency as a source of self-supervision is now ubiq-
uitous, be it to learn representations for downstream tasks (Goroshin et al., 2015; Ramanathan
et al., 2015; Dadashi et al., 2020), or to learn to detect temporal inconsistencies (Wei et al., 2018).
The closest analogies to this chapter are methods that specifically estimate some aspects of the
arrow of time as self-supervision. Most are to be found in the video processing literature, and
self-supervised tasks include predictingwhichway the time flows (Pickup et al., 2014; Wei et al.,
2018), verifying the temporal order of a subset of frames (Misra, Zitnick, and Hebert, 2016),
predicting which video clip has the wrong temporal order among a subset (Fernando, Bilen,
et al., 2017) as well as reordering shuffled frames or clips from the video (Fernando, Gavves,
et al., 2015; El-Nouby et al., 2019; D. Xu et al., 2019). Bai et al. (2020) notably propose to combine
several of these pretext tasks along with data augmentation for video classification. Using time
as a means of supervision was also explored for image sequencing (Basha, Moses, and Avidan,
2012), audio (Carr et al., 2021) or EEG processing (Saeed et al., 2020). In RL, self-supervision
also gained momentum in recent years (Z. D. Guo, Pires, et al., 2020; Srinivas, Laskin, and
Abbeel, 2020; Yarats et al., 2021), with temporal information being featured (Amiranashvili
et al., 2018). Notably, several works (Aytar et al., 2018; Dwibedi et al., 2018; Z. D. Guo, Azar,
Piot, et al., 2018; Sermanet et al., 2018) leverage temporal consistency to learn useful represen-
tations, effectively learning to discriminate between observations that are temporally close and
observations that are temporally distant. In comparison to all these works, we estimate the
arrow of time through temporal order prediction with the explicit goal of finding irreversible
transitions or actions.

5.3 Reversibility

Degree of reversibility. We start by introducing formally the notion of reversibility. Intuitively,
an action is reversible if it can be undone, meaning that there is a sequence of actions that can
bring us back to the original state.
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Definition 5.1. Given a state s, we call degree of reversibility withinK steps of an action a

ϕK(s, a) := sup
π
pπ(s ∈ τt+1:t+K+1 | st = s, at = a), (5.1)

and the degree of reversibility of an action is defined as

ϕ(s, a) := sup
π
pπ(s ∈ τt+1:∞ | st = s, at = a), (5.2)

with τ = {si}i=1 ... T ∼ π corresponding to a trajectory, and τt:t′ the subset of the trajectory
between the timesteps t and t′ (excluded). We omit their dependency on π for the sake of conciseness.
Given s ∈ S , the action a is reversible if and only if ϕ(s, a) = 1, and said irreversible if and only
if ϕ(s, a) = 0.

In deterministic environments, an action is either reversible or irreversible: given a state-
action couple (s, a) and the unique resulting state s′, ϕK(s, a) is equal to 1 if there is a sequence
of less thanK actions which brings the agent from s′ to s, and is otherwise equal to zero. In
stochastic environments, a given sequence of actions can only reverse a transition up to some
probability, hence the need for the notion of degree of reversibility.

Policy-dependent reversibility. In practice, it is useful to quantify the degree of reversibility
of an action as the agent acts according to a fixed policy π, for which we extend the notions
introduced above. We simply write :

ϕπ,K(s, a) := pπ(s ∈ τt+1:t+K+1 | st = s, at = a) and ϕπ(s, a) := pπ(s ∈ τt+1:∞ | st = s, at = a).
(5.3)

It immediately follows that ϕK(s, a) = supπ ϕπ,K(s, a) and ϕ(s, a) = supπ ϕπ(s, a).

5.4 Reversibility estimation via classification

Quantifying the exact degree of reversibility of actions is generally hard. In this section, we
show that reversibility can be approximated efficiently using simple binary classification.

5.4.1 Precedence estimation

Supposing that a trajectory contains the states s and s′, we want to be able to establish precedence,
that is predicting whether s or s′ comes first on average. It is a binary classification problem,
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which consists in estimating the quantity Est=s,st′ =s′
[
1t′>t

]. Accordingly, we introduce the
precedence estimator which, using a set of trajectories, learns to predict which state of an
arbitrary pair is most likely to come first.

Definition 5.2. Given a fixed policy π, we define the finite-horizon precedence estimator between
two states as follows:

ψπ,T (s, s′) = E
τ∼π

E
st=s,st′ =s′

t,t′<T

[
1t′>t

]
. (5.4)

Conceptually, given two states s and s′, the precedence estimator gives an approximate
probability of s′ being visited after s, given that both s and s′ are observed in a trajectory. The
indices are sampled uniformly within the specified horizon T ∈ N, so that this quantity is
well-defined even for infinite trajectories. Additional properties of ψ, regarding transitivity for
instance, can be found in Appx. A.1.2.

Remark 5.3. The quantity ψπ,T (s, s′) is only defined for pairs of states which can be found in the
same trajectory, and is otherwise irrelevant. In what follows, we implicitly impose this condition when
considering state pairs.

Theorem 5.4. For every policy π and s, s′ ∈ S , ψπ,T (s, s′) converges when T goes to infinity. We
refer to the limit as the precedence estimator, written ψπ(s, s′).

Proof. The proof of this theorem is developed in Appendix A.1.3.

This result is key to ground theoretically the notion of empirical reversibility ϕ̄, which we
introduce in the next definition. It simply consists in extending the notion of precedence to a
state-action pair.

Definition 5.5. We finally define the empirical reversibility using the precedence estimator:

ϕ̄π(s, a) = E
s′∼P (s,a)

[
ψπ(s′, s)

]
. (5.5)

In a nutshell, given that we start in s and take the action a, the empirical reversibility ϕ̄π(s, a)
measures the probability that we go back to s, starting from a state s′ that follows (s, a). We
now show that our empirical reversibility is linked with the notion of reversibility defined in
the previous section, and can behave as a useful proxy.
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5.4.2 Estimating reversibility from precedence

We present here our main theoretical result which relates reversibility and empirical reversibil-
ity:

Theorem 5.6. Given a policy π, a state s and an action a, we have: ϕ̄π(s, a) ≥ ϕπ(s,a)
2 .

Proof. The full proof of the theorem is given in Appendix A.1.3.

This result theoretically justifies the name of empirical reversibility. From a practical per-
spective, it provides a way of using ϕ̄ to detect actions which are irreversible or hardly reversible:
ϕ̄π(s, a) ≪ 1 implies ϕπ(s, a) ≪ 1 and thus provides a sufficient condition to detect actions
with low degrees of reversibility. This result gives a way to detect actions that are irreversible
given a specific policy followed by the agent. Nevertheless, we are generally interested in
knowing if these actions are irreversible for any policy, meaning ϕ(s, a)≪ 1 with the definition
of Section 5.3. The next proposition makes an explicit connection between ϕ̄π and ϕ, under the
assumption that the policy π is stochastic.

Proposition 5.7. We suppose that we are given a state s, an action a such that a is reversible inK
steps, and a policy π. Under the assumption that π is stochastic enough, meaning that there exists
ρ > 0 such that for every state and action s, a, π(a | s) > ρ, we have: ϕ̄π(s, a) ≥ ρK

2 . Moreover,
we have for allK ∈ N: ϕ̄π(s, a) ≥ ρK

2 ϕK(s, a).

Proof. The proof is given in Appendix A.1.4.

As before, this proposition gives a practical way of detecting irreversible moves. If for
example ϕ̄π(s, a) < ρk/2 for some k ∈ N, we can be sure that action a is not reversible in k steps.
The quantity ρ can be understood as a minimal probability of taking any action in any state.
This condition is not very restrictive: ε-greedy strategies for example satisfy this hypothesis
with ρ = ε

|A| .
In practice, it can also be useful to limit the maximum number of time steps between two

sampled states. That is why we also define the windowed precedence estimator as follows:

Definition 5.8. Given a fixed policy π, we define the windowed precedence estimator between
two states as follows:

ψπ,T,w(s, s′) = E
τ∼π

E
st=s,st′ =s′

t,t′<T
|t−t′|≤w

[
1t′>t

]
. (5.6)
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Figure 5.2 – The proposed self-supervised procedure for precedence estimation.

Intuitively, compared to previous precedence estimators, ψπ,T,w is restricted to short-term
dynamics, which is a desirable property in tasks where distinguishing the far future from the
present is either trivial or impossible.

5.5 Reversibility-aware reinforcement learning

Leveraging the theoretically-grounded bridge between precedence and reversibility established
in the previous section, we now explain how reversibility can be learned from the agent’s
experience and used in a practical setting.

Learning to rank events chronologically. Learning which observation comes first in a tra-
jectory is achieved by binary supervised classification, from pairs of observations sampled
uniformly in a sliding window on observed trajectories. This can be done fully offline, i.e. using
a previously collected dataset of trajectories for instance, or fully online, i.e. jointly with the
learning of the RL agent; but also anywhere on the spectrum by leveraging variable amounts
of offline and online data.

This procedure is not without caveats. In particular, we want to avoid overfitting to the
particularities of the behavior of the agent, so that we can learn meaningful, generalizable
statistics about the order of events in the task at hand. Indeed, if an agent always visits the
state sa before sb, the classifier will probably assign a close-to-one probability that sa precedes
sb. This might not be accurate with other agents equipped with different policies, unless
transitioning from sb to sa is hard due to the dynamics of the environment, which is in fact
exactly the cases we want to uncover. We make several assumptions about the agents we
apply our method to: 1) agents are learning and thus, have a policy that changes through
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Degree
of

Reversibility
. Rejection

sampling

(a) RAE penalizes irreversible transitions

Concat

Temporal 
Order 

Probability

(b)   RAC hijacks irreversible actions

Figure 5.3 – Our proposed methods for reversibility-aware RL. (a): RAE encourages reversible behavior
via auxiliary rewards. (b): RAC avoids irreversible behavior by rejecting actions whose estimated
reversibility is inferior to a threshold.

interactions in the environment, 2) agents have an incentive not to be too deterministic. For this
second assumption, we typically use an entropic regularization in the chosen RL loss, which
is a common design choice in modern RL methods. These assumptions, when put together,
alleviate the risk of overfitting to the idiosyncrasies of a single, non-representative policy.

We illustrate the precedence classification procedure in Fig. 5.2. A temporally-ordered
pair of observations, distant of no more than w timesteps, is sampled from a trajectory and
uniformly shuffled. The result of the shuffling operation is memorized and used as a target
for the binary classification task. A Siamese network creates separate embeddings for the pair
of observations, which are concatenated and fed to a separate feed-forward network, whose
output is passed through a sigmoid to obtain a probability of precedence. This probability
is updated via negative log-likelihood against the result of the shuffle, so that it matches the
actual temporal order.

Then, a transition (and its implicit sequence of actions) represented by a starting observation
x and a resulting observation x′ is deemed irreversible if the estimated precedence probability
ψ(x, x′) is superior to a chosen threshold β. Note that we do not have to take into account
the temporal proximity of these two observations here, which is a by-product of sampling
observations uniformly in a window in trajectories. Also, depending on the threshold β, we
cover a wide range of scenarios, from pure irreversibility (β close to 1) to soft irreversibility
(β > 0.5, the bigger β, the harder the transition is to reverse). This is useful because different
tasks call for different levels of tolerance for irreversible behavior: while a robot getting stuck
and leading to an early experiment failure is to be avoided when possible, tasks involving
human safety might call for absolute zero tolerance for irreversible decision-making. We
elaborate on these aspects in Sec. 5.6.

67



Reversibility-Aware Reinforcement Learning

Reversibility-aware exploration and control. We propose two different algorithms based
on reversibility estimation: Reversibility-Aware Exploration (RAE) and Reversibility-Aware
Control (RAC). We give a high-level representation of how the two methods operate in Fig. 5.3.

In a nutshell, RAE consists in using the estimated reversibility of a pair of consecutive
observations to create an auxiliary reward function. In our experiments, the reward function is
a piecewise linear function of the estimated reversibility and a fixed threshold, as in Fig. 5.3: it
grants the agent a negative reward if the transition is deemed too hard to reverse. The agent
optimizes the sum of the extrinsic and auxiliary rewards. Note that the specific function we
use penalizes irreversible transitions but could encourage such transitions instead, if the task
calls for it.

RAC can be seen as the action-conditioned counterpart of RAE. From a single observation,
RAC estimates the degree of reversibility of all available actions, and “takes control” if the
action sampled from the policy is not reversible enough (i.e. has a reversibility inferior to a
threshold β). “Taking control” can have many forms. In practice, we opt for rejection sampling:
we sample from the policy until an action that is reversible enough is sampled. This strategy
has the advantage of avoiding irreversible actions entirely, while trading-off pure reversibility
for performance when possible. RAC is more involved than RAE, since the action-conditioned
reversibility is learned from the supervision of a standard, also learned precedence estimator.
Nevertheless, our experiments show that it is possible to learn both estimators jointly, at the
cost of little overhead.

We now discuss the relative merits of the two methods. In terms of applications, we argue
that RAE is more suitable for directed exploration, as it only encourages reversible behavior.
As a result, irreversible behavior is permitted if the benefits (i.e. rewards) outweigh the costs
(i.e. irreversibility penalties). In contrast, RAC shines in safety-first, real-world scenarios,
where irreversible behavior is to be banned entirely. With an optimal precedence estimator and
task-dependent threshold, RAC will indeed hijack all irreversible sampled actions. RAC can
be especially effective when pre-trained on offline trajectories: it is then possible to generate
fully-reversible, safe behavior from the very first online interaction in the environment. We
explore these possibilities experimentally in Sec. 5.6.2.

Both algorithms can be used online or offline with small modifications to their overall logic.
The pseudo-code for the online version of RAE and RAC can be found in Appendix A.2.2.

The self-supervised precedence classification task could have applications beyond estimat-
ing the reversibility of actions: it could be used as a means of getting additional learning signal
or representational priors for the RL algorithm. Nevertheless, we opt for a clear separation be-
tween the reversibility and the RL components so that we can precisely attribute improvements
to the former, and leave aforementioned studies for future work.
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5.6 Experiments

The following experiments aim at demonstrating that the estimated precedence ψ is a good
proxy for reversibility, and at illustrating how beneficial reversibility can be in various practical
cases. We benchmark RAE and RAC on a diverse set of environments, with various types of
observations (tabular, pixel-based), using neural networks for function approximation. See
Appendix A.3 for details.

5.6.1 Reward-free reinforcement learning

We illustrate the ability of RAE to learn sensible policies without access to rewards. We use
the classic pole balancing task Cartpole (Barto, Sutton, and C. W. Anderson, 1983a), using the
OpenAI Gym (Brockman et al., 2016) implementation. In the usual setting, the agent gets a
reward of 1 at every time step, such that the total undiscounted episode reward is equal to
the episode length, and incentivizes the agent to learn a policy that stabilizes the pole. Here,
instead, we remove this reward signal and give a PPO agent (Schulman, Wolski, et al., 2017)
an intrinsic reward based on the estimated reversibility, which is learned online from agent
trajectories. The reward function penalizes irreversibility, as shown in Fig. 5.3. Note that
creating insightful rewards is quite difficult: too frequent negative rewards could lead the agent
to try and terminate the episode as soon as possible.

We display our results in Fig. 5.4. Fig. 5.4a confirms the claim that RAE can be used to
learn meaningful rewards. Looking at the intrinsic reward, we discern three phases. Initially,
both the policy and the reversibility classifier are untrained (and intrinsic rewards are 0). In
the second phase, the classifier is fully trained but the agent still explores randomly (intrinsic
rewards become negative). Finally, the agent adapts its behavior to avoid penalties (intrinsic
rewards go to 0, and the length of trajectories increases). Our reward-free agent reaches the
score of 200, which is the highest possible score.

To further assess the quality of the learned reversibility, we freeze the classifier after 300k
timesteps and display its predicted probabilities according to the relative coordinates of the
end of the pole (Fig. 5.4b) and the dynamics of the angle of the pole θ (Fig. 5.4c). In both cases,
the empirical reversibility matches our intuition: the reversibility should decrease as the angle
or angular momentum increase, since these coincide with an increasing difficulty to go back to
the equilibrium.

5.6.2 Learning reversible policies

In this section, we investigate how RAE can be used to learn reversible policies. When we train
an agent to achieve a goal, we usually want it to achieve that goal following implicit safety
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Figure 5.4 – (a): Training curves of a PPO+RAE agent in reward-free Cartpole. Blue: episode length.
Red: intrinsic reward. A 95% confidence interval over 10 random seeds is shown. (b): The x and y axes
are the coordinates of the end of the pole relatively to the cart position. The color denotes the online
reversibility estimation between two consecutive states (logit scale). (c): The representation of three
random trajectories according to θ (angle of the pole) and dθ

dt . Arrows are colored according to the
learned reversibility of the transitions they correspond to.

(a) Initial state (b) A trajectory (c) PPO (500k) (d) PPO+RAE (500k)

Figure 5.5 – (a): The Turf environment. The agent can walk on grass, but the grass then turns brown.
(b): An illustrative trajectory where the agent stepped on grass pixels. (c): State visitation heatmap for
PPO. (d): State visitation heatmap for PPO+RAE. It coincides with the stone path (red).

constraints. Handcrafting such safety constraints would be time-consuming, difficult to scale
for complex problems, and might lead to reward hacking; so a reasonable proxy consists in
limiting irreversible side-effects in the environment (Leike et al., 2017).

To quantify side-effects, we propose Turf, a new synthetic environment. As depicted in
Fig. 5.5a,5.5b, the agent (blue) is rewarded when reaching the goal (pink). Stepping on grass
(green) will spoil it, causing it to turn brown. Stepping on the stone path (grey) does not
induce any side-effect.

In Fig. 5.5c,5.5d, we compare the behaviors of a trained PPO agent with and without RAE.
The baseline agent is indifferent to the path to the goal, while the agent benefitting from RAE
learns to follow the road, avoiding irreversible consequences.
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Figure 5.6 – (a): Non-trivial reversibility: pushing the box against the wall can be reversed by pushing it
to the left, going around, pushing it down and going back to start. Aminimum of 17 moves is required to
go back to the starting state. (b): Performances of IMPALA and IMPALA+RAE on 1k levels of Sokoban
(5 seeds average). (c): Evolution of the estimated reversibility along one episode.

5.6.3 Sokoban

Sokoban is a popular puzzle game where a warehouse keeper (controlled by the player) must
move boxes around and place them in dedicated places. Each level is unique and involves
planning, since there are many ways to get stuck. For instance, pushing a box against a wall is
often un-undoable, and prevents the completion of the level unless actually required to place
the box on a specific target. Sokoban is a challenge to current model-free RL algorithms, as
advanced agents requiremillions of interactions to reliably solve a fraction of levels (Weber et al.,
2017; Guez, Mirza, Gregor, et al., 2019). One of the reasons for this is tied to exploration: since
agents learn from scratch, there is a long preliminary phase where they act randomly in order to
explore the different levels. During this phase, the agent will lock itself in unrecoverable states
many times, and further exploration is wasted. It is worth recalling that contrary to human
players, the agent does not have the option to reset the game when stuck. In these regards,
Sokoban is a great testbed for reversibility-aware approaches, as we expect them to make the
exploration phase more efficient, by incorporating the prior that irreversible transitions are to
be avoided if possible, and by providing tools to identify such transitions.

We benchmark performance on a set of 1k levels. Results are displayed in Fig. 5.6. Equipping
an IMPALA agent (Espeholt et al., 2018) with RAE leads to a visible performance increase,
and the resulting agent consistently solves all levels from the set. We take a closer look at
the reversibility estimates and show that they match the ground truth with high accuracy,
despite the high imbalance of the distribution (i.e. few irreversible transitions, see Fig. 5.6c)
and complex reversibility estim ation (see Fig. 5.6a).
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Figure 5.7 – (a): Mean score of a randompolicy augmentedwith RAC onCartpole+ for several threshold
values, with 95% confidence intervals over 10 random seeds (log scale). (b) and (c): The x and y axes
are the coordinates of the end of the pole relatively to the cart position. The color indicates the estimated
reversibility values.

5.6.4 Safe control

In this section, we put an emphasis on RAC, which is particularly suited for safety related tasks.

Cartpole+. We use the standard Cartpole environment, except that we change the maxi-
mum number of steps from 200 to 50k to study long-term policy stability. We name this new
environment Cartpole+. It is substantially more difficult than the initial setting. We learn
reversibility offline, using trajectories collected from a random policy. Fig. 5.7a shows that
a random policy augmented with RAC achieves seemingly infinite scores. For the sake of
comparison, we indicate that a DQN (Volodymyr Mnih, Kavukcuoglu, et al., 2015) and the
state-of-the-art M-DQN (Vieillard, Pietquin, and Geist, 2020) achieve a maximum score of
respectively 1152 and 2801 under a standard training procedure, described in Appendix A.3.5.
This can be surprising, since RAC was only trained on random thus short trajectories (mean
length of 20). We illustrate the predictions of our learned estimator in Fig. 5.7b,5.7c. When
the pole leans to the left (x < 0), we can see that moving the cart to the left is perceived as
more reversible than moving it to the right. This is key to the good performance of RAC and
perfectly on par with our understanding of physics: when the pole is leaning in a direction,
agents must move the cart in the same direction to stabilize it.

Turf. We now illustrate how RAC can be used for safe online learning: the implicitly safe
constraints provided by RACprevent policies from deviating from safe trajectories. This ensures
for example that agents stay in recoverable zones during exploration.

We learn the reversibility estimator offline, using the trajectories of a random policy. We
reject actions whose reversibility is deemed inferior to β = 0.2, and train a PPO agent with
RAC. As displayed in Fig. 5.8, PPO with RAC learns to reach the goal without causing any
irreversible side-effect (i.e. stepping on grass) during the whole training process.
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The threshold β is a very important parameter of the algorithm. Too low a threshold could
lead to overlooking some irreversible actions, while a high threshold could prevent the agent
from learning the new task at hand. We discuss this performance/safety trade-off in more
details in Appendix. A.3.7.

0 2 4 6 8
timesteps (1e4)

0

5

10

15

sp
oi

le
d 

gr
as

s
PPO + RAC
PPO 0.5

0.6

0.7

0.8

0.9

1.0

re
wa

rd

Figure 5.8 – PPO and RAC (solid lines) vs PPO (dashed lines). At the cost of slower learning (brown),
our approach prevents the agent from producing a single irreversible side-effect (green) during the
learning phase. Curves are averaged over 10 runs.

Chapter Conclusion

In this chapter, we formalized the link between the reversibility of transitions and their temporal
order, which inspired a self-supervised procedure to learn the reversibility of actions from
experience. In combination with two novel reversibility-aware exploration strategies, RAE for
directed exploration and RAC for directed control, we showed the empirical benefits of our
approach in various scenarios, ranging from safe RL to risk-averse exploration. Notably, and in
line with our initial goal, we demonstrated increased performance in procedurally-generated
Sokoban puzzles, which we tied to more efficient exploration. This is a first hint in the direction
that exploiting specific structures of combinatorial environments can improve the performance
of RL agents.
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Chapter 6

Better state exploration using action
sequence equivalence

After the previous chapter targeted at a particular type of trajectory structure, we consider now
a more general problem: exploiting prior information about action sequence equivalence: that
is, when different sequences of actions produce the same effect. This is something that occurs
in many combinatorial environments. In KP for example, where an action corresponds to
picking up an item, every action commutes. We propose a new local exploration strategy
calibrated to minimize collisions and maximize new state visitations. We show that this
strategy can be computed at little cost by solving a convex optimization problem. By replacing
the usual ε-greedy strategy in a DQN, we demonstrate its potential in several environments
with various dynamic structures. 1
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6.1 Introduction

Despite the rapidly improving performance of Reinforcement Learning (RL) agents on a
variety of tasks (Volodymyr Mnih, Kavukcuoglu, et al., 2015; Silver, Huang, Christopher J.

1This chapter is based on Grinsztajn, Johnstone, et al. (2022) presented at the Deep Reinforcement Learning
Worskshop at the Neurips 2022 conference
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Maddison, et al., 2016), they remain largely sample-inefficient learners compared to humans
(Toromanoff, Wirbel, and Moutarde, 2019). Contributing to this is the vast amount of prior
knowledge humans bring to the table before their first interaction with a new task, including
an understanding of physics, semantics, and affordances (Dubey et al., 2018).

The considerable quantity of data necessary to train agents is becomingmore problematic as
RL is applied to ever more challenging and complex tasks. Much research aims at tackling this
issue, for example through transfer learning (Rusu et al., 2016), meta learning, and hierarchical
learning, where agents are encouraged to use what they learn in one environment to solve a new
task more quickly. Other approaches attempt to use the structure of Markov Decision Processes
(MDP) to accelerate learning without resorting to pretraining. Mahajan and Tulabandhula
(2017) and Biza and Jr. (2019) learn simpler representations of MDPs that exhibit symmetrical
structure, while Pol et al. (2020) show that environment invariances can be hard-coded into
equivariant neural networks.

A fundamental challenge standing in the way of improved sample efficiency is exploration.
We consider a situation where the exact transition function of a Markov Decision Process is
unknown, but some knowledge of its local dynamics is available under the form of a prior
expectation that given sequences of actions have identical results. This way of encoding prior
knowledge is sufficiently flexible to describe many useful environment structures, particularly
when actions correspond to agent movement. For example, in a gridworld (called RotationGrid
hereafter) where the agent can move forward (↑) and rotate 90◦ to the left (↶) or to the right
(↷), the latter two actions are the inverse of each other, in that performing one undoes the
effect of the other. During exploration, to encourage the visitation of not yet seen states, it is
natural to simply ban sequences of actions that revert to previously visited states, following the
reasoning of Tabu search (Glover, 1986b). We observe further that ↷↷ and ↶↶ both lead to
the same state (represented as state 4 in Figure 6.1). If actions were uniformly sampled, the
chances of visiting this state would be much higher than any of the others. Based on these
observations, we introduce a new method taking advantage of Equivalent Action SEquences
for Exploration (EASEE), an overview of which can be found in Figure 6.1. EASEE looks ahead
several steps and calculates action sampling probabilities to explore as uniformly as possible
new states conditionally on the action sequence equivalences given to it. It constructs a partial
MDP which corresponds to a local representation of the true MDP around the current state.
We then formulate the problem of determining the best distribution over action sequences
as a linearly constrained convex optimization problem. Solving this optimization problem is
computationally inexpensive and can be done once and for all before learning begins, providing
a principled and tractable exploration policy that takes into account environment structure.
This policy can easily be injected into existing reinforcement learning algorithms as a substitute
for ε-greedy exploration.
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Graph Construction Action Probability InferenceInput

Figure 6.1 – Illustration of EASEE on RotationGrid environment. The input is information about the
dynamics of the environment known in advance under the form of action sequence equivalences (Λ
denotes the empty action sequence). This is used to construct a representation of all the unique states
that can be visited in 3 steps. The probabilities of sampling each action are then determined to explore
as uniformly as possible. The probabilities of visiting each unique state are displayed on the right.

Our contribution is threefold. First, we formally introduce the notion of equivalent action
sequences, a novel type of structure in Markov Decision Processes. Then, we show that priors
on this type of structure can easily be exploited during offline exploration by solving a convex
optimization problem. Finally, we provide experimental insights and show that incorporating
EASEE into a DQN (Volodymyr Mnih, Kavukcuoglu, et al., 2015) improves agent performance
in several environments with various structures.

6.2 Additional related work

Curiosity-driven exploration The problem of ensuring that agents see sufficiently diverse
states has received a lot of attention from the RL community. Many methods rely on intrinsic
rewards (Schmidhuber, 1991; Chentanez, Barto, and Singh, 2005; Şimşek and Barto, 2006;
Lopes et al., 2012; Marc G. Bellemare et al., 2016; Ostrovski et al., 2017; Pathak et al., 2017) to
entice agents to unseen or misunderstood areas. In the tabular setting, these take the form of
count-based exploration bonuses which guide the agent toward poorly visited states (e.g. Strehl
and Littman (2008)). Scaling this method requires the use of function approximators (Burda
et al., 2019; Badia, Sprechmann, Vitvitskyi, Z. D. Guo, et al., 2020; Flet-Berliac et al., 2021a).
Unlike EASEE, these methods necessitate the computation of non-stationary and vanishing
novelty estimates, which require careful tuning to balance learning stability and exploration
incentives. Moreover, because these bonuses are learned, and do not allow for the use of prior
structure knowledge, they constitute an orthogonal approach to ours.

77



Better state exploration using action sequence equivalence

Redundancies in trajectories The idea that different trajectories can overlap and induce
redundancies in state visitation is used in Leurent and Maillard (2020) and Czech, Korus, and
Kersting (2020) in the case of Monte-Carlo tree search. However, they require a generative
model, and propose a new Bellman operator to update node values according to newly un-
covered transitions rather than modifying exploration. Closer to our work, Caselles-Dupré,
Garcia-Ortiz, and Filliat (2020) study structure in action sequences, but restrict themselves to
commutative properties. Tabu search (Glover, 1986b) is a meta-heuristic which uses knowledge
of the past to escape local optima. It is popular for combinatorial optimization (Hertz and
Werra, 2005). Like our approach, it relies on a local structure: actions which are known to cancel
out recent moves are deemed tabu, and are forbidden for a short period of time. This prevents
cycling around already found solutions, and thus encourages exploration. In Abramson and
Wechsler (2003), tabu search is combined with reinforcement learning, using action priors.
However, their method cannot make use of more complex action-sequence structure.

Maximum state-visitation entropy Our goal to explore as uniformly as possible every
nearby state can be seen as a local version of the Maximum State-Visitation Entropy prob-
lem (MSVE) (Farias and Van Roy, 2003; Hazan et al., 2019; Lee et al., 2019; Z. D. Guo, Azar,
Saade, et al., 2021). MSVE formulates exploration as a policy optimization problem whose
solution maximizes the entropy of the distribution of visited states. Although some of these
works (Hazan et al., 2019; Lee et al., 2019; Z. D. Guo, Azar, Saade, et al., 2021) can make use of
priors about state similarities, they learn a global policy and cannot exploit structure in action
sequences.

Action space structure The idea of exploiting structure in action spaces is not new. Large
discrete action spaces may be embedded in continuous action spaces either by leveraging
prior information (Dulac-Arnold et al., 2016) or learning representations (Chandak et al.,
2019). Tavakoli, Pardo, and Kormushev (2018) manage high-dimensional action spaces by
assuming a degree of independence between each dimension. These methods aim to improve
the generalization of policies to unseen actions rather than enhancing exploration. Tennenholtz
and Mannor (2019) provide an understanding of actions through their context in demonstra-
tions. Farquhar et al. (2020) introduce a curriculum of progressively growing action spaces
to accelerate learning. Certain characteristics of actions, such as reversibility, can be learned
through training, as in Grinsztajn, Ferret, et al. (2021b).
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6.3 Formalism

6.3.1 Equivalence over action sequences

We consider aMarkov Decision Process (MDP) defined as a 5-tupleM = (S,A, T,R, γ), with
S the set of states, A the action set, T the transition function, R the reward function and the
discount factor γ. The set of actions is assumed to be finite |A| <∞. We restrict ourselves to
deterministic MDPs. A possible extension to MDPs with stochastic dynamics is discussed in
Appendix B.1.6.

In the following, the notations are borrowed from formal language theory. Sequences of
actions are analogous to strings over the set of symbols A (possible actions). The set of all
possible sequences of actions is denoted A⋆ =

⋃∞
k=0Ak where Ak is the set of all sequences of

length k andA0 contains as single element the empty sequenceΛ. We use . for the concatenation
operator, such that for v1 ∈ Ah1 , v2 ∈ Ah2 , v1.v2 ∈ Ah1+h2 . The transition function T : S ×A →
S gives the next state s′ when action a is taken in state s: T (s, a) = s′. We recursively extend
this operator to action sequences T : S ×A⋆ → S such that, ∀s ∈ S,∀a ∈ A, ∀w ∈ A⋆:

T (s,Λ) = s

T (s, w.a) = T (T (s, w), a)

Intuitively, this operator gives the new state of the MDP after a sequence of actions is performed
from state s.

Definition 6.1 (Equivalent sequences). We say that two action sequences a1 . . . an and
a′

1 . . . a
′
m ∈ A⋆ are equivalent at state s ∈ S if

T (s, a1 . . . an) = T (s, a′
1 . . . a

′
m) (6.1)

Two sequences of actions are equivalent overM if they are equivalent at state s for all s in S.
This is written:

a1 . . . an ∼M a′
1 . . . a

′
m (6.2)

This means that we consider two sequences of actions to be equivalent when following one
or the other will always lead to the same state. When the considered MDPM is unambiguous,
we simplify the notation by writing ∼ instead of ∼M.

We argue that some priors about the environments can be easily encoded as a small set of
action sequence equivalences. For example, we may know that going left then right is the same
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thing as going right then left, that rotating two times to the left is the same thing as rotating
two times to the right, or that opening a door twice is the same thing as opening the door once.
All these priors can be encoded as a set of equivalences:

Definition 6.2 (Equivalence set). Given a MDPM and several equivalent sequence pairs
v1 ∼ w1, v2 ∼ w2, . . . , vn ∼ wn, we say that Ω = {{v1, w1}, {v2, w2}, . . . {vn, wn}} is an
equivalence set overM.

Formally, Ω is a set of pairs of elements of A⋆, such that Ω ⊂ (A⋆)2. By abuse of notation,
we write v ∼ w ∈ Ω if {v, w} ∈ Ω.

Intuitively, it is clear that action sequence equivalences can be combined to form new, longer
equivalences. For example, knowing that going left then right is the same thing as going right
then left, we can deduce that going two times left then two times right is the same thing as
going two times right then two times left. In the same fashion, if opening a door twice produces
the same effect as opening it once, opening three times the door does the same. We formalize
these notions in what follows. First, we note that equivalent sequences can be concatenated.

Proposition 6.3. If we have two pairs of equivalent sequences overM, i.e. w1, w2, w3, w4 ∈ A⋆

such that
w1 ∼ w2

w3 ∼ w4

then the concatenation of the sequences are also equivalent sequences:

w1 · w3 ∼ w2 · w4

The proof is given in Appendix B.1.1. We are now going to define formally the fact that the
equivalence of two sequences can be deduced from an equivalence set Ω. We first consider the
previous example where an action a has the effect of opening a door, such that a.a ∼ a. We can
then write a.a.a ∼ (a.a).a ∼ (a).a ∼ a.a ∼ a by applying two times the equivalence a.a ∼ a

and rearranging the parentheses. More generally and intuitively, the equivalence of two action
sequences v and w can be deduced from Ω, which we denote v ∼Ω w, if v can be changed into
w iteratively, chaining equivalences of Ω.

More formally, we write v ∼1
Ω w if v can be changed to w in one step, meaning:
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∃u1, u2, v1, w1 ∈ A⋆such that


v = u1.v1.u2

w = u1.w1.u2

v1 ∼ w1 ∈ Ω

(6.3)

For n ≥ 2, we say that v can be changed intow in n steps if there is a sequence v1, . . . , vn ∈ A⋆

such that v ∼1
Ω v1 ∼1

Ω · · · ∼1
Ω vn = w. Finally, we say that v ∼Ω w if there is n ∈ N such that v

can be changed intow in n steps. The relation∼Ω is thus a formal way of extending equivalences
from a fixed equivalence set Ω, and at first glance not connected with ∼, which deals with the
equivalences of the MDP dynamics. We now show a connection between the two notions.

Theorem 6.4. Given an equivalence set Ω, ∼Ω is an equivalence relationship. Furthermore, for
v, w ∈ A⋆, v ∼Ω w ⇒ v ∼ w.

The proof is given in Appendix B.1.2. Given this relation between ∼ and ∼Ω, we will
simplify the notation in what follows by writing ∼ instead of ∼Ω when the equivalence set
considered is unambiguous. As ∼Ω is an equivalence relationship, it provides a partition over
action sequences: two action sequences in the same set lead to the same final state from any
given state.

6.3.2 Local-dynamics graph

We leverage the equivalences defined above to determine a model of the MDP up to a few
timesteps. As traditionally done in Monte-Carlo Tree Search (Coulom, 2007a), an MDP
(S,A, T,R, γ) with deterministic dynamics can be locally unrolled to produce a tree, where a
node of depth h represents a sequence of actions v ∈ Ah, and the edges represent transitions
between such sequences. The root of the tree corresponds to the empty action sequence Λ.
Here we adopt the same formalism, except that equivalent sequences will point to the same
node.

Given a tree T of depth d ∈ N corresponding to a partial unrolling of sequences in A⋆, and
an equivalence set Ω, we call local-dynamics graph of depth d under equivalence Ω the graph
G = (V,E) corresponding to the tree T where nodes are quotiented with the equivalence
relation ∼Ω. Intuitively, it means that nodes corresponding to equivalent action sequences are
merged. In this case, the resulting graph is not necessarily a tree. In the following, unless the
distinction is necessary, we identify action sequences with their equivalence classes.

The graph G gives rise to a new, smaller MDP resulting fromM: the state space V is the
set of action sequences smaller than d quotiented by the equivalence relation ∼Ω, the action
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space A is untouched. Given a node n corresponding to a sequence w ∈ A⋆, and an action
a ∈ A, T (n, a) is the node representing the sequence w.a ∈ A⋆. Nodes representing sequences
of length exactly d are final states. The initial state v0 is the empty sequence Λ. This MDP
represents the local dynamics induced by ∼Ω from a given root state. We detail in the next
section how to construct such graphs in practice, and how to use these sub-MDPs for a better
exploration.

6.4 Method

6.4.1 From equivalent actions to local-dynamics graph

Producing the local-dynamics graph involves considering all possible action sequences and
merging those that are equivalent. Figure 6.2 illustrates the construction of a local-dynamics
graph, given A = {a1, a2} and Ω = {a1a1 ∼ Λ, a2a1 ∼ a1a2}. Starting from the root node 0
(first step), we iteratively expand the graph by unrolling the nodes at the edges of the graph.
Steps 2 and 3 create nodes 1 and 2 corresponding to action sequences a1 and a2 respectively.
In a tree, the expansion of a node corresponding to a sequence w ∈ Ah with the action a ∈ A
always leads to the creation of a new leaf that results from the sequence of actions w.a ∈ Ah+1.
However, in a local-dynamics graph the node representing w.amight already be present, in
which case we add an edge from w without creating a new node. In Figure 6.2, this case occurs
at the 4th and the 6th construction steps. The first case corresponds to adding the action a1 to
the node 1, which represents the action sequence a1.a1. Since a1.a1 ∼ Λ ∈ Ω, we simply add an
edge from 1 to 0. The second case occurs when expanding node 2 with the action a1, leading to
the action sequence a2.a1 ∼Ω a1.a2. Since node 3 already represents a1.a2, we simply add an
edge from node 2 to node 3. As a final construction step, we prune edges which go backward
in the local-dynamics graph, like (1, 0) in Fig. 6.2, such that the resulting graph is a DAG. This
is motivated by the fact that we are interested in finding a good exploration policy: an action
which takes us back to a previously visited state should be ignored.

From a practical point of view, the graph construction algorithm takes as input the action
set A, the sequence equivalence set Ω, and the desired depth d, and outputs a DAG. Informally,
it starts from a graph G = (V,E) reduced to a root state {0} and iteratively expands G until a
distance d to the root is reached. We store in each node every action sequence which allows to
reach it from any parent nodes. For example, in Fig.6.2, the node 3 can be reached from the
node 0 with sequences {a1.a2, a2.a1}, from node 1 with sequence {a2} and from node 2 with
sequence {a1}, thus the set of sequences stored in node 3 would be {a1, a2, a1.a2, a2.a1}. When
expanding a node nwith an action a ∈ A, we check every sequence w stored in n if w.a appears
in Ω, and if a node corresponding to an equivalent sequence of w.a is already in V . If it is the
case, we simply add an edge from n to this node, otherwise we create a new node representing
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Figure 6.2 – Example of iterative graph construction with Ω = {a1a1 ∼ Λ, a2a1 ∼ a1a2} and a maximum
depth of 2. The 8th construction step corresponds to the pruning of the edge (1, 0).

w.a. In practice, this algorithm can be refined: in each node, we only store sequences which are
subsequences of sequences in Ω. We provide a more detailed implementation of this algorithm
in Appendix B.1.3.

Proposition 6.5. The complexity of this graph construction algorithm is upper bounded by
O
(
|A|2d|Ω|d

)
.

The proof is given in Appendix B.1.4. It is to be noted that this upper bound is in general
far larger than the actual number of operations. Indeed, it supposes that the number of nodes
in the graph is |A|d, although it can be much smaller thanks to the redundancies induced by Ω.
A more precise formula is O

(
|V ||A|d|Ω|

)
, where |V | is the number of nodes in the final graph

and depends on the structure of Ω. Despite this exponential theoretical complexity, the goal is
to use this algorithm locally, thus for small depths. In practice we found that local-dynamics
graphs could be computed within a few seconds on a standard laptop.

6.4.2 From local-dynamics graph to local exploration policy

Once the local-dynamics graph (V,E) has been constructed, our goal is to find a good local
exploration policy in the resulting MDP as defined in Section 6.3.2. We recall that its set of
states is V , and its actions dynamics are given by the edges E. Ideally, we would want to find a
policy π such that all nodes in the local-dynamics graph are visited equally often.

Given a policy π, a state v ∈ V and an action a ∈ A, we denote pπ,t(v) and pπ,t(v, a) the t-
steps state distribution and state-action distribution respectively. Formally, pπ,t(v) = Pπ(vt = v)
and pπ,t(v, a) = Pπ(vt = v, at = a).
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Ideally we would like each t-step state distribution to be uniform. However, depending
on the exact local-dynamics graph this may or may not be possible. Instead, following the
principle of maximum entropy (Jaynes, 1957), we frame the objective of balancing the state
distribution at step t as maximizingH([pπ,t(v0), pπ,t(v1), . . . , pπ,t(v|V |−1)] = H(pπ,t), whereH is
the Shannon entropy. For a local-dynamics graph of depth d ∈ N, we define our global objective
as maximizing J(π) = J̃(pπ,1, . . . , pπ,d) = 1

d

∑d
t=1H(pπ,t). Other global objectives are possible,

for example optimizing entropy over only the final states, or some other weighted mixture. In
practice, over simple experiments, we observed that changes in the entropy mixture hardly
induced any variation in the computed policies and agent behavior.

Informally, our objective can be understood as maximizing state diversity locally, for every
timestep smaller than d. For environments where additional priors about state interests are
available, one could adapt the quantity J to compute the entropy on a subset of the most
interesting states, therefore biasing exploration toward promising areas.

We consider K, the set of joint distributions (p0, p1, . . . pd) which verifies the following
properties:

• ∀t ≤ d, pt(v, a) ≥ 0

• ∀v ∈ V,∑a∈A p0(v, a) = p0(v) = 1v0(v)

• ∀t < d,
∑
a∈A pt+1(v, a) =

∑
v′∈V,a∈A pt(v′, a)P(v | v′, a)

We denote D(A) the set of distributions over A. From any (p0, p1, . . . , pd) ∈ K, it is pos-
sible to find a time-dependent policy π : V × {0, . . . , d} → D(A) such that p0 = pπ,0, p1 =
pπ,1, . . . , pd = pπ,d, and for any policy π we have (pπ,0, pπ,1, . . . , pπ,t) ∈ K (Puterman, 2014).

As the entropy H is concave, the function J̃ is a concave function over K. Moreover, the
constraints defining K are linear. Therefore,

max
(p1,...,pd)∈K

J̃(p1, . . . , pn) (6.4)

can be solved efficiently using any convex solver. In our implementation, we use CVXPY
(Diamond and Boyd, 2016; Agrawal et al., 2018). Once (p⋆1, . . . , p⋆d) = arg maxK J̃ is computed,
we can immediately calculate a time-dependent policy π⋆ from such a distribution (Puterman,
2014) with:

π⋆t (v, a) = p⋆t (v, a)
p⋆t (v) (6.5)

As the local-dynamics graph (V,E) is a DAG, the set of nodes V0, V1, . . . , Vd which can
be reached respectively at timesteps t = 0, t = 1, . . . , t = d are disjoint. Therefore any time-
dependent policy defined on V can be framed as a stationary policy. Considering for example π⋆,
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we can write π⋆(v, ·) = π⋆0(v, ·) if v ∈ V0, π⋆(v, ·) = π⋆1(v, ·) if v ∈ V1, . . . , and π⋆(v, ·) = π⋆d(v, ·)
if v ∈ Vd.

6.4.3 From local exploration to global policy

The optimal π⋆ determined in the previous section can then be used to guide exploration. With
an ε-greedy policy, each step has a probability ε of being an exploration step, where an action
is sampled uniformly. Instead, we keep in memory the local-dynamics graph, and initialize the
current state at v = Λ. Everytime an action a is performed, v is updated such that v ← v.a, and
reinitialized to Λ after a sequence of length d. At each exploration step, instead of sampling a
uniformly, EASEE samples a according to the distribution π⋆(v, ·). Pseudocode for this process
can be found in Appendix B.1.5.

6.5 Results

For every experiments, additional details about environments and hyperparameters are given
in Appendix B.2.

6.5.1 Pure exploration

To get a better understanding of EASEE, we consider two simple gridworld environments with
different structures: CardinalGrid and RotationGrid. These environments are both 100× 100
gridworlds, but with different action structures. In CardinalGrid, the agent can move one
square in the four cardinal directions (→,←, ↑, ↓), whereas in RotationGrid, the agent can
move either forward one square (↑), or rotate 90◦ on the spot to the left (↶) or to the right
(↷). The agent starts in the middle of the grid and can explore for 100 timesteps, after which
the environment is reset.

In CardinalGrid, we consider the 4 equivalence sets:

• {→←∼←→} (“→ and← commute ”)

• {→←∼←→, ↑↓∼↓↑} (“all actions commute”)

• {→←∼←→, ↑↓∼↓↑,→←∼ Λ} (“all actions commute and→←∼ Λ”)

• {→←∼←→, ↑↓∼↓↑,→←∼ Λ, ↑↓∼ Λ} (“ all actions commute and→←∼↑↓∼ Λ ”),

while in RotationGrid, we consider the three equivalence sets:

• {↷↶∼ Λ}
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• {↷↶∼ Λ,↶↷∼ Λ}

• {↷↶∼ Λ,↶↷∼ Λ,↷↷∼↶↶}.

Fig. 6.3 shows the benefits of exploiting the structure of the action space for exploration.
Figures 6.3a, 6.3b show the ratio of the number of unique states visited using EASEE over a
standard uniform exploration policy. For both environments, a greater equivalence set leads to
a more efficient exploration. In the environmentCardinalGrid for example, for a fixed depth of
6, adding the information that→ and← commute and that every actions commute allow to
reach respectively 10% and 60% more states in 100 episodes. Furthermore, extra equivalences
encoding that→ is the inverse of←, and ↑ the inverse of ↓ increase the number of new states
encountered threefold. It can also be seen that deeper graphs provide better exploration, which
is expected: using deeper graphs results in exploiting equivalence priors over longer action
sequences.

Figures 6.3c, 6.3d show the number of unique states visited with respect to the total number
of episodes of exploration. We see that EASEE benefits exploration in all configurations
considered: it allows the agent to visit more states within a single trajectory, and as well as
across a thousand. It gives insight about the sample-efficiency gain which can be achieved
using EASEE over a standard random policy. In the CardinalGrid setting, EASEE visits more
unique states over 100 episodes than uniform exploration over 1000.

6.5.2 Minigrid

The Minimalistic Gridworld Environment (MiniGrid) is a suite of environments that test
diverse capabilities in RL agents (Chevalier-Boisvert, Willems, and Pal, 2018). We evaluated
the influence of adding EASEE to Q-learning on the DoorKey task. The environment is a
gridworld split into two rooms separated by a locked door. The agent must collect a key to get
to the objective in the other room.The dynamics of the environment are those of RotationGrid
with two extra actions: the agent may PICKUP the key when facing it and OPEN the door when
carrying the key. The EASEE version of the Q-learning assumes the following action sequence
equivalences:

↷↶ ∼ Λ

↶↷ ∼ Λ

↶↶ ∼↷↷

OPEN ∼ OPEN · OPEN

PICKUP ∼ PICKUP · PICKUP
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Figure 6.3 – (a, b): Ratio of the number of unique visited states during 100 episodes following EASEEover
standard ε-greedy policy, for different equivalence sets and depths in the environments CardinalGrid
and RotationGrid respectively. (c, d): Number of unique visited states according to the number of
episodes for EASEE with a fixed depth of 4 compared to standard ε-greedy policy.

The reward over this training is presented in Figure 6.4a. Using a depth of 6, the EASEE
augmented version outperforms classic Q-learning.

6.5.3 Catcher

We test EASEE on a game of Catcher, where the agent must catch a ball falling vertically with a
paddle that can move left and right. It receives a reward of +1 when the ball is caught and −1
when it is missed. The prior we incorporate into the exploration is that the actions commute i.e.
←→∼→←. For faster learning we restrict each episode to a single ball drop, with the agent
starting in the middle of the environment.

We choose a depth of 30 for EASEE. This is also the length of a single episode. The mean
reward over training is plotted in Figure 6.4b.
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Figure 6.4 – Mean reward over training with 95% confidence intervals.

6.5.4 Freeway

We test our method on the Atari 2600 game Freeway (M. G. Bellemare et al., 2013). The agent
has to cross a road with multiple lanes without getting hit by the cars, and receives a reward
when it reaches safety on the other side. The action space is composed of 3 actions : moving
forward of 1 lane (↑), moving backward of 1 lane (↓), and passing (–). As cars arrive randomly,
it is not easy to find priors on action equivalences in this environment. Since passing and
moving backwards can sometimes be useful to avoid cars we cannot forbid these actions.
However, we have prior knowledge that performing these two actions does not lead to visiting
new lanes. We restrict the use of these actions with Ω = {↓∼↓↓, –↓∼↓–}, which has the effect
of removing every node which is reached by chaining two ↓ actions without moving forward,
and compute the exploration policy on the remaining nodes. Results can be seen in Fig. 6.4c.
Interestingly, incorporating such a prior does not lead to better sample-efficiency, as in the
previous environments, but to a better final policy.

Chapter Conclusion

Implementers of reinforcement learning agents can often provide insights about the environ-
ment, despite not knowing its precise dynamics or optimal policy. In this chapter, we argue
that some of these insights can be efficiently represented using the notion of action-sequence
equivalence, which we formalize. We propose a method to incorporate such priors in classic
Q-learning algorithms and demonstrate empirically its ability to improve sample efficiency and
performance. More precisely, our approach can be divided into two steps: first, the construction
of a graph representing the local dynamics, and then the resolution of a convex optimization
problem aiming to balance node visitation. We show that incorporating such prior knowl-
edge can replace standard ε-greedy and improve at little cost RL algorithms, especially in
environments with a rich combinatorial structure, like DoorKey and Catcher.
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Our results indicate that this approach may have potential beyond environments with
perfectly known structures, such as Freeway. In such cases, the exploration policy we determine
may not be optimal, but it can still bemuch closer to optimality than uniformly sampling actions.
This suggests that our approach could be useful beyond problems with a strict combinatorial
structure.
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Part III

Dealing with Uncertainty





Chapter 7

Population-Based Reinforcement
Learning for Combinatorial
Optimization

After exploring various problem structures in the previous part and venturing beyond the
boundaries of CO, we return to tackling canonical COPs with construction methods. Here, we
specifically focus on the uncertainty at the action level, where taking optimal decisions at each
step involves extensive computations that cannot be reliably solved by a neural policy. Hence,
leading approaches typically incorporate additional search strategies, ranging from stochastic
sampling and beam search to explicit fine-tuning, to address this action uncertainty. In this
chapter, we propose a novel approach that leverages the benefits of learning a population of
complementary policies, which can be simultaneously rolled out during inference. We
introduce Poppy, a simple training procedure for populations that induces an unsupervised
specialization targeted solely at maximizing the performance of the population, without
relying on predefined or hand-crafted notions of diversity. Our results demonstrate that Poppy
produces a set of complementary policies and achieves state-of-the-art RL performance on
three well-known NP-hard problems: the TSP, the capacitated vehicle routing (CVRP), and
0-1 knapsack (KP) problems. 1
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1This chapter is based on a preprint (Grinsztajn, Furelos-Blanco, and Barrett, 2022), under review at ICML 2023.
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7.1 Introduction

As the search space of feasible COP solutions typically grows exponentially with the problem
size, exact solvers can be challenging to scale; hence, CO problems are often also tackled with
handcrafted heuristics using expert knowledge. Whilst a diversity of ML-based heuristics have
been proposed, reinforcement learning (RL; Sutton and Barto, 2018) is a promising paradigm,
for reasons outlined in Chapter 2. Algorithmic improvements to RL-based CO solvers, coupled
with low inference cost, and the fact that they are by design targeted at specific problem
distributions, have progressively narrowed the gap with traditional solvers.

We recall that RL methods frame CO as sequential decision-making problems, and can be
divided into two families (Mazyavkina et al., 2021). First, improvement methods start from a
feasible solution and iteratively improve it through small modifications (actions). However,
such incremental search cannot quickly access very different solutions, and requires handcrafted
procedures to define a sensible action space. Second, construction methods incrementally build
a solution by selecting one element at a time. In practice, it is often unrealistic for a learned
heuristic to solve NP-hard problems in a single shot, therefore these methods are typically
combined with search strategies, such as stochastic sampling or beam search. However, just
as improvement methods are biased by the initial starting solution, construction methods are
biased by the single underlying policy. Thus, a balance must be struck between the exploitation
of the learned policy (which may be ill-suited for a given problem instance) and the exploration
of different solutions (where the extreme case of a purely random policy will likely be highly
inefficient).

In this work, we propose Poppy, a construction method that uses a population of agents
with suitably diverse policies to improve the exploration of the solution space of hard CO
problems. Whereas a single agent aims to perform well across the entire problem distribution,
and thus has to make compromises, a population can learn a set of heuristics such that only
one of these has to be performant on any given problem instance. However, realizing this
intuition presents several challenges: (i) naïvely training a population of agents is expensive
and challenging to scale, (ii) the trained population should have complementary policies that
propose different solutions, and (iii) the training approach should not impose any handcrafted
notion of diversity within the set of policies given the absence of clear behavioral markers
aligned with performance for typical CO problems.

Challenge (i) can be addressed by sharing a large fraction of the computations across
the population, specializing only lightweight policy heads to realize the diversity of agents.
Moreover, this can be done on top of a pre-trained model, which we clone to produce the
population. Challenges (ii) and (iii) are jointly achieved by introducing a RL objective aimed
at specializing agents on distinct subsets of the problem distribution. Concretely, we derive a
policy gradient method for the population-level objective, which corresponds to training only
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the agent which performs best on each problem. This is intuitively justified as the performance
of the population on a given problem is not improved by training an agent on an instance where
another agent already has better performance. Strikingly, we find that judicious application
of this conceptually simple objective gives rise to a population where the diversity of policies
is obtained without explicit supervision (and hence is applicable across a range of problems
without modification) and essential for strong performance.

Our contributions are summarized as follows:
1. We motivate the use of populations for CO problems as an efficient way to explore

environments that are not reliably solved by single-shot inference.

2. We derive a new training objective and present a practical training procedure that en-
courages performance-driven diversity (i.e. effective diversity without the use of explicit
behavioral markers or other external supervision).

3. We evaluate Poppy on three CO problems: TSP, CVRP, and 0-1 knapsack (KP). In these
three problems, Poppy consistently outperforms all other RL-based approaches.

7.2 Additional related work

ML for combinatorial optimization The first attempt to solve TSP with neural networks is
due to Hopfield and Tank (1985), which only scaled up to 30 cities. Recent developments
of bespoke neural architectures (Vinyals, Fortunato, and Jaitly, 2015; Vaswani et al., 2017)
and performant hardware have made ML approaches increasingly efficient. Indeed, several
architectures have been used to address CO problems, such as graph neural networks (Dai et al.,
2017), recurrent neural networks (Nazari et al., 2018), and attention mechanisms (Deudon
et al., 2018). In this chapter, we use an encoder-decoder architecture that draws from that
proposed by Kool, Hoof, and Welling (2019). The costly encoder is run once per problem
instance, and the resulting embeddings are fed to a small decoder iteratively rolled out to
get the whole trajectory, which enables efficient inference. This approach was furthered by
Kwon et al. (2020), who leveraged the underlying symmetries of typical CO problems (e.g. of
starting positions and rotations) to realize improved training and inference performance using
instance augmentations. Kim, J. Park, and j. k. j. (2021) also draw on Kool, Hoof, and Welling
and use a hierarchical strategy where a seeder proposes solution candidates, which are refined
bit-by-bit by a reviser. Closer to our work, Xin et al. (2021) trains multiple policies using a
shared encoder and separate decoders. Whilst this work (MDAM) shares our architecture and
goal of training a population, our approach for enforcing diversity differs substantially. MDAM
explicitly trades off performance with diversity by jointly optimizing policies and their KL
divergence. Moreover, as computing the KL divergence for the whole trajectory is intractable,
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MDAM is restricted to only using it to drive diversity at the first timestep. In contrast, Poppy
drives diversity bymaximizing population-level performance (i.e.without any explicit diversity
metric), uses the whole trajectory and scales better with the population size (we have used up
to 32 agents instead of only 5).

Additionally, ML approaches usually rely on mechanisms to generate multiple candidate
solutions (Mazyavkina et al., 2021). As seen in Chapter 2, one suchmechanism consists in using
improvement methods on an initial solution. However, these approaches have two limitations:
they are environment-specific, and the search procedure is inherently biased by the initial
solution.

An alternative exploration mechanism is to generate a diverse set of trajectories by stochas-
tically sampling a learned policy, potentially with additional beam search (Joshi, Laurent, and
Bresson, 2019), Monte Carlo tree search (Fu, Qiu, and Zha, 2021), dynamic programming (Kool,
Hoof, Gromicho, et al., 2021) or active search (Hottung, Kwon, and Tierney, 2022). However,
intuitively, the generated solutions tend to remain close to the underlying deterministic policy,
implying that the benefits of additional sampled candidates diminish quickly.

Population-based RL Populations have already been used in RL to learn diverse behaviors.
In a different context, Gupta et al. (2018), Eysenbach et al. (2019), Hartikainen et al. (2020) and
Pong et al. (2020) use a single policy conditioned on a set of goals as an implicit population for
unsupervised skill discovery. Closer to our approach, another line of work revolves around
explicitly storing a set of distinct policy parameters. Hong et al. (2018), Doan et al. (2020), Jung,
G. Park, and Sung (2020) and Parker-Holder et al. (2020) use a population to achieve a better
coverage of the policy space. However, they enforce explicit attraction-repulsion mechanisms,
which is a major difference with respect to our approach where diversity is a pure byproduct
of performance optimization.

Our method is also related to approaches combining RL with evolutionary algorithms (EA;
Khadka and Tumer, 2018; Khadka, Majumdar, et al., 2019; Pourchot and Sigaud, 2019), which
benefit from the sample-efficient RL policy updates while enjoying evolutionary population-
level exploration. However, the population is a means to learn a unique strong policy, whereas
Poppy learns a set of complementary strategies. More closely related, Quality-Diversity (QD;
Pugh, Soros, and Stanley, 2016; Cully and Demiris, 2018) is a popular EA framework that
maintains a portfolio of diverse policies. Pierrot et al. (2022) has recently combined RL with
a QD algorithm, Map-Elites (Mouret and Clune, 2015); unlike Poppy, QD methods rely on
handcrafted behavioral markers, which is not easily amenable to the CO context.

One of the drawbacks of population-based RL is its expensive cost. However, recent
approaches have shown that modern hardware as well as targeted frameworks enable efficient
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vectorized population training (Flajolet et al., 2022), opening the door to a wider range of
applications.

Left! Right!Up is safer...

Figure 7.1 – In this environment, the upward path always leads to a medium reward, while the left
and right paths are intricate such that either one may lead to a low reward or high reward with equal
probability. Left: An agent trained to maximize a sum of rewards converges to taking the safe upward
road since it does not have enough information to act optimally. Right: A 2-agent population can always
take the left and right paths and thus get the largest reward.

7.3 Method

7.3.1 Background and motivation

RL Formulation A CO problem instance ρ sampled from some distribution D consists of a
discrete set of N variables (e.g. city locations in TSP). We model a CO problem as a Markov
decision process (MDP) defined by a state space S , an action space A, a transition function T ,
and a reward functionR. A state is a trajectory through the problem instance τt = (x1, . . . , xt) ∈
S where xi ∈ ρ, and thus consists of an ordered list of variables (not necessarily of length
N). An action, a ∈ A ⊆ ρ, consists of choosing the next variable to add; thus, given state
τt = (x1, . . . , xt) and action a, the next state is τt+1 = T (τt, a) = (x1, . . . , xt, a). Let S∗ ⊆ S be
the set of solutions; that is, states that comply with the problem’s constraints (e.g., a sequence of
cities such that each city is visited once and ends with the starting city in TSP). The reward
function R : S∗ → R maps solutions into scalars. We assume the reward is maximized by the
optimal solution (e.g. R returns the negative tour length in TSP).

A policy πθ parameterized by θ can be used to generate solutions for any instance ρ ∼ D by
iteratively sampling the next action a ∈ A according to the probability distribution πθ( · | ρ, τt).
We learn πθ using REINFORCE (Williams, 1992b). This method aims at maximizing the RL
objective J(θ) .= Eρ∼D Eτ∼πθ,ρR(τ) by adjusting θ such that good trajectories are more likely to
be sampled in the future. Formally, the policy parameters θ are updated by gradient ascent
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using ∇θJ(θ) = Eρ∼D Eτ∼πθ,ρ(R(τ) − bρ)∇θ log(pθ(τ)), where pθ(τ) =
∏
t πθ(at+1 | ρ, τt) and

bρ is a baseline. The gradient of the objective, ∇θJ , can be estimated empirically using Monte
Carlo simulations.

Motivating example We argue for the benefits of training a population using the example
in Figure 7.1. In this environment, there are three actions: Left, Right, and Up. Up leads to a
medium reward, while Left/Right lead to low/high or high/low rewards (the configuration is
determined with equal probability at the start of each episode). Crucially, the left and right
paths are intricate, so the agent cannot easily infer from its observation which one leads to a
higher reward. Then, the best strategy for a single agent is to always go Up, as the guaranteed
medium reward (2 scoops) is higher than the expected reward of guessing left or right (1.5
scoops). In contrast, two agents in a population can go in opposite directions and always
find the maximum reward. There are two striking observations: (i) the agents do not need to
perform optimally for the population performance to be optimal (one agent gets the maximum
reward), and (ii) the average performance is worse than in the single-agent case.

Specifically, the discussed phenomenon can occur when (i) some optimal actions are too
difficult to infer from observations and (ii) choices are irreversible (i.e. it is not possible to
recover from a suboptimal decision). These conditions usually hold when solving hard CO
problems. In these situations, as shown above, maximizing the performance of a population
will require agents to specialize and likely yield better results than in the single-agent case.

7.3.2 Poppy

We present the components of Poppy: a RL objective encouraging agent specialization, and an
efficient training procedure taking advantage of a pre-trained policy.

Population-based objective At inference, reinforcement learningmethods usually sample sev-
eral candidates to find better solutions. This process, though, is not anticipated during training,
which optimizes the 1-shot performance with the usual RL objective J(θ) = Eρ∼DEτ∼πθ,ρR(τ)
previously presented in Section 7.3.1. Intuitively, given K trials, we would like to find the
best set of policies {π1, . . . , πK} to rollout once on a given problem. This gives the following
population objective:

Jpop(θ1, . . . , θK) .= Eρ∼DEτ1∼πθ1 ,...,τK∼πθK
max [R(τ1), . . . , R(τK)] ,

where each trajectory τi is sampled according to the policy πθi
. Maximizing Jpop leads to

finding the best set ofK agents which can be rolled out in parallel for any problem.
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Theorem (Policy gradient for populations). The gradient of the population objective is:

∇Jpop(θ1, θ2, . . . , θK) = Eρ∼DEτ1∼πθ1 ,...,τK∼πθK

(
R(τi∗)−R(τi∗∗)

)
∇ log pθi∗ (τi∗), (7.1)

where: i∗ = arg maxi∈{1,...,K}
[
R(τi)

]
(index of the agent that got the highest reward) and i∗∗ =

arg maxi ̸=i∗
[
R(τi)

]
(index of the agent that got the second highest reward).

The proof is provided in Appendix C.2.1. Remarkably, it corresponds to rolling out every
agent and only training the one that got the highest reward on any problem. This formulation
applies across various problems and directly optimizes for population-level performance
without explicit supervision or handcrafted behavioral markers.

Optimizing the presented objective does not provide any strict diversity guarantee. However,
note that diversity maximizes our objective in the highly probable case that, within the bounds
of finite capacity and training, a single agent does not perform optimally on all subsets of
the training distribution. Therefore, intuitively (and, as we will show, practically) diversity
emerges over training in the pursuit of maximizing the objective.

Algorithm 7.1: Poppy training
1 Inputs: problem distribution D, number of agentsK, batch size B, number of training

steps H , pre-trained parameters θ.
2 θ1, θ2, . . . , θK ← CLONE(θ);
3 /* Clone the pre-trained agent K times. */
4 for step 1 to H do
5 ρi ← Sample(D) ∀i ∈ 1, . . . , B ;
6 τki ← Rollout(ρi, θk) ∀i ∈ 1, . . . , B, ∀k ∈ 1, . . . ,K ;
7 k∗

i ← arg maxk≤K R(τki ) ∀i ∈ 1, . . . , B ;
8 /* Select the best agent for each problem ρi. */

9 ∇L(θ1, θ2, . . . , θK)← 1
B

∑
i≤B REINFORCE(τk

∗
i

i ) ;
10 /* Propagate the gradients through these only. */
11 (θ1, θ2, . . . , θK)← (θ1, θ2, . . . , θK)− α∇L(θ1, θ2, . . . , θK) ;

Training procedure The training procedure consists of two phases:
1. We train (or reuse) a single agent using an architecture suitable for solving the CO

problem at hand. Here, we adopt the training process described in Kwon et al. (2020),
which has been shown to be efficient for TSP, CVRP and KP.

2. The agent trained in Phase 1 is cloned K times to form a K-agent population. The
population is trained as described in Algorithm 7.1: only the best agent is trained on any
problem. Agents implicitly specialize in different types of problem instances during this
phase.
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Encoder Decoder Encoder Decoders

Node embeddingNode input Masked nodeOutput probability FrozenTraining 

Figure 7.2 – Phases of the training process with amodel using static instance embeddings. Left (Phase 1):
the encoder and the decoder are trained from scratch. Right (Phase 2): the decoder is clonedK times,
and the whole model is trained using the Poppy training objective (i.e. the gradient is only propagated
through the decoder that yields the highest reward).

Phase 1 enables training the model without the computational overhead of a population.
Moreover, we informally note that applying the Poppy objective directly to a population of
untrained agents can be unstable. Randomly initialized agents are often ill-distributed, hence a
single (or few) agent(s) dominate the performance across all instances. In this case, only the
initially dominating agents receive a training signal, further widening the performance gap.
Whilst directly training a population of untrained agents for population-level performance
may be achievable with suitable modifications, we instead opt for the described pre-training
approach as it is efficient and stable.

Architecture To reduce thememory footprint of the population, some of themodel parameters
can be shared. Here, the architecture for TSP, CVRP, and KP uses the attention model by Kool,
Hoof, and Welling (2019), which decomposes the policy model into two parts: (i) a large
encoder hψ that takes an instance ρ as input and outputs embeddings ω for each of the variables
in ρ, and (ii) a smaller decoder qϕ that takes the embeddings ω and a partial trajectory τt as
input and outputs the probabilities of each possible action. Figure 7.2 illustrates the training
phases of such a model.

We exploit this framework to build a population ofK agents. The encoder hψ is shared as a
common backbone for the whole population, whereas the decoders qϕ1 , qϕ2 , . . . , qϕK

are unique
to each agent. This is motivated by (i) the encoder learning general representations useful
for all agents, and (ii) reducing the overhead of training a population and keeping the total
number of parameters low. A discussion on the model sizes is provided in Appendix C.1.1.
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7.4 Experiments

We evaluate Poppy on three CO problems: TSP, CVRP, and KP. To emphasize its generality, we
use the same hyperparameters for each problem, taken from Kwon et al. (2020). We run Poppy
for populations of 4, 8, 16, or 32 agents, which exhibit various time-performance tradeoffs.

Training One training step corresponds to computing policy gradients over the same batch
of 64 randomly generated instances for each agent in the population. Training time varies with
problem complexity and training phase. For instance, in TSP with 100 cities, Phase 1 takes
4.5M steps (5 days), whereas Phase 2 takes 400k training steps and lasts 1-4 days depending
on the population size. Our JAX-based implementation uses environments from the Jumanji
suite (Bonnet et al., 2022). All experiments were run on a v3-8 TPU.

Inference We greedily roll out each agent in the population, and use the augmentations
proposed by Kwon et al. (2020) for TSP and CVRP. To give a sense of the performance of Poppy
with a larger time budget, we additionally introduce a simple sampling procedure in Appendix
C.3, which we show to be competitive with the active search method described by Hottung,
Kwon, and Tierney (2022).

Starting points Following Kwon et al. (2020), we generatemultiple solutions for each instance
ρ by considering a set of P ∈ [1, N ] starting points, where N is the number of instance variables.
For example, a starting point in a TSP instance could be any of its cities. Therefore, across the
different training phases, agents generate trajectories for (instance, starting point) pairs. The
average reward across starting points is used as the REINFORCE baseline. We consider each
(instance, starting point) pair as a separate problem and, thus, train the best agent for each of
them. We refer the reader to Appendix C.1.2 for details.

Baselines We compare Poppy against exact solvers, heuristics, and state-of-the-art ML meth-
ods. Some baseline performances taken from Fu, Qiu, and Zha (2021), Xin et al. (2021) and
Hottung, Kwon, and Tierney (2022) were obtained with different hardware (Nvidia GTX
1080 Ti, RTX 2080 Ti, and Tesla V100 GPUs, respectively) and framework (PyTorch); thus, for
fairness, we mark these times with ∗ in our tables. As a comparison guideline, we informally
note that these GPU inference times should be approximately divided by 2 to get the converted
TPU time.
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7.4.1 Traveling Salesman Problem (TSP)

Given a set of n cities, the goal in TSP is to visit every city and come back to the starting city
while minimizing the total traveled distance.

Setup We use the architecture used by Kool, Hoof, and Welling (2019) and Kwon et al.
(2020) with slight modifications (see Appendix C.4). The training is done on instances of size
n = 100. The testing instances are taken from Kool, Hoof, and Welling (2019) for n = 100,
and from Hottung, Kwon, and Tierney (2022) for n ∈ {125, 150}. We compare Poppy to
(i) the specialized supervised learning (SL) methods GCN-BS (Joshi, Laurent, and Bresson,
2019), CVAE-Opt (Hottung, Bhandari, and Tierney, 2021), and DPDP (Kool, Hoof, Gromicho,
et al., 2021); (ii) the RL methods MDAM (Xin et al., 2021) with and without beam search,
Att-GCRN+Monte-Carlo Tree Search (MCTS) (Fu, Qiu, and Zha, 2021), the improvement
methods 2-Opt-DL (O. da Costa et al., 2020), LIH (Y. Wu et al., 2021) and, finally, POMO with
greedy rollouts, POMO with 16 stochastic rollouts (to match Poppy 16 runtime), and POMO
with an ensemble of 16 decoder heads trained in parallel (i.e. using the architecture of Poppy’s
Phase 2 but trained without Jpoppy).

Results Table 7.1 displays the average tour length, the optimality gap, and the total runtime
for each test set. The best algorithm remains Concorde as it is a highly specialized TSP solver.
Remarkably, Poppy 16 with greedy rollouts reaches the best performance across every category
in just a few minutes, except for one case where DPDP performs better; however, DPDP tackles
routing problems specifically, requires pre-solved instances, andmakes use of expert knowledge.
Compared to DPDP, Poppy improves 0-shot performance, suggesting that it is more robust to
distribution shifts. Att-GCRN+MCTS is known for being scalable to larger TSP instances than
TSP100; however, it is outperformed by Poppy, showing that it trades off performance for scale.
Finally, we emphasize that specialization is crucial to achieving state-of-the-art performance:
Poppy 16 outperforms POMO 16 (ensemble), which also trains 16 agents in parallel but without
the Jpoppy objective (i.e. without specializing to serve as an ablation of our proposed objective).

Analysis Figure 7.3 helps understand the resulting behavior from using Poppy. The left
plot shows that whilst the population-level performance improves with population size, the
average performance of a random agent from the population on a random instance gets worse,
which can be interpreted as specialization. Interestingly, it shows a stronger specialization for
larger populations, which Jpoppy appears to balance. To further analyze this phenomenon, we
display in the rightmost figure the number of agents reaching the best performance among
the population. We observe that the best performance is reached by a single agent in more
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Table 7.1 – TSP results.

Inference (10k instances) 0-shot (1k instances)
n = 100 n = 125 n = 150

Method Obj. Gap Time Obj. Gap Time Obj. Gap Time
Concorde 7.765 0.000% 82M 8.583 0.000% 12M 9.346 0.000% 17M
LKH3 7.765 0.000% 8H 8.583 0.000% 73M 9.346 0.000% 99M

SL

GCN-BS
CVAE-Opt
DPDP

7.87
-

7.765

1.39%
0.343%
0.004%

40M∗

6D∗

2H∗

-
8.646
8.589

-
0.736%
0.070%

-
21H∗

31M∗

-
9.482
9.434

-
1.45%
0.94%

-
30H∗

44M∗

RL

MDAM (greedy)
MDAM (beam search)
Att-GCRN+MCTS
2-Opt-DL
LIH
POMO
POMO (16 samples)
POMO 16 (ensemble)
Poppy 4
Poppy 8
Poppy 16

7.93
7.79
-

7.83
7.87
7.774
7.770
7.773
7.767
7.766
7.765

2.19%
0.38%
0.037%
0.87%
1.42%
0.13%
0.073%
0.10%
0.029%
0.015%
0.008%

36S∗

44M∗

15M∗

41M∗

2H∗

37S
9M
9M
2M
5M
9M

-
-
-
-
-

8.605
8.597
8.603
8.590
8.587
8.585

-
-
-
-
-

0.26%
0.16%
0.23%
0.079%
0.046%
0.029%

-
-
-
-
-
6S
1M
1M
23S
45S
1M

-
-
-
-
-

9.393
9.385
9.393
9.364
9.360
9.356

-
-
-
-
-

0.50%
0.41%
0.50%
0.19%
0.14%
0.10%

-
-
-
-
-

10S
2M
2M
38S
1M
2M

than 25% of the test instances, and in almost 50% by three agents or less, which shows that they
have diverse behaviors. Additional analyses are made in Appendix C.4.1.

7.4.2 Capacitated Vehicle Routing Problem (CVRP)

Given a vehicle with limited capacity departing from a depot node and a set of n nodes with
different demands, the goal is to find an optimal set of routes such that each node (except for
the depot) is visited exactly once and has its demand covered. The vehicle’s capacity diminishes
by the demand of the visited node (which must be fully covered) and it is restored when the
depot is visited.

Setup We use the test instances used by Kwon et al. (2020) for n = 100, and the sets from
Hottung, Kwon, and Tierney (2022) to evaluate generalization to larger problems. We evaluate
Poppy with populations of 4, 8, and 32 agents. We compare Poppy to the heuristic solver LKH3
(Helsgaun, 2017), taken as a reference to compute the gaps although its performances are not
optimal. We also report results for the supervised ML methods CVAE-Opt (Hottung, Bhandari,
and Tierney, 2021) and DPDP (Kool, Hoof, Gromicho, et al., 2021), and RL methods MDAM
(Xin et al., 2021), LIH (Y. Wu et al., 2021), NeuRewriter (X. Chen and Tian, 2019), NLNS
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Figure 7.3 – Analysis of Poppy on TSP100. Left: With Jpoppy, the average performance gets worse as
the population size increases, but the population-level performance improves. Right: Proportion of
test instances where any number of Poppy 16 agents reaches the exact same best solution. The best
performance is reached by only a single agent in 26% of the cases.

(Hottung and Tierney, 2020), and POMO (Kwon et al., 2020). As for TSP, we evaluate POMO
in three settings: with greedy rollouts, 32 stochastic samples to match the runtime of our largest
population, and an ensemble of 32 decoders trained in parallel.

Results Table 7.2 shows Poppy has the best performances among RL approaches, e.g. Poppy
32 has the same runtime as POMO with 32 stochastic rollouts while dividing by 2 the optimal
gap for CVRP100.2 Interestingly, this ratio increases on the generalization instance sets with
n = 125 and n = 150, suggesting that Poppy is more robust to distributional shift. DPDP
performs best among all ML-based approaches. However, it relies on a costly problem-specific
beam search as well as pre-solved instances.

7.4.3 0-1 Knapsack (KP)

We evaluate Poppy on KP to demonstrate its applicability beyond routing problems. Given
a set of n items with specific weights and values and a bag of limited capacity, the goal is to
determine which items should be added to the bag such that the total weight does not exceed
the bag’s capacity and the value is maximal.

Setup We use the setting employed by Kwon et al. (2020): an action corresponds to putting
an item in the bag, which is filled iteratively until no more items can be added. We evaluate
Poppy on 3 population sizes (4, 8, and 16) against the optimal solution based on dynamic
programming, a greedy heuristic, and POMO with greedy rollouts, 16 stochastic samples, or
an ensemble of 16 decoders.

2A fine-grained comparison between POMO with stochastic sampling and Poppy is in Appendix C.5.
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Table 7.2 – CVRP results.

Inference (10k instances) 0-shot (1k instances) 0-shot (1k instances)
n = 100 n = 125 n = 150

Method Obj. Gap Time Obj. Gap Time Obj. Gap Time
LKH3 15.65 0.000% 6D 17.50 0.000% 19H 19.22 0.000% 20H

SL

CVAE-Opt
DPDP

-
15.63

1.36%
−0.13%

11D∗

23H∗
17.87
17.51

2.08%
0.07%

36H∗

3H∗
19.84
19.31

3.24%
0.48%

46H∗

5H∗

RL

MDAM (greedy)
MDAM (beam search)
LIH
NeuRewriter
NLNS
POMO
POMO (32 samples)
POMO 32 (ensemble)
Poppy 4
Poppy 8
Poppy 32

16.40
15.99
16.03
16.10
15.99
15.76
15.70
15.72
15.72
15.70
15.67

4.86%
2.23%
2.47%

-
2.23%
0.76%
0.32%
0.49%
0.46%
0.32%
0.13%

45S∗

53M∗

5H∗

66M∗

62M∗

2M
43M
43M
5M
11M
43M

-
-
-
-

18.07
17.68
17.59
17.63
17.62
17.59
17.55

-
-
-
-

3.23%
1.02%
0.50%
0.72%
0.64%
0.49%
0.24%

-
-
-
-

9M∗

<1M
8M
8M
2M
3M
8M

-
-
-
-

19.96
19.58
19.48
19.49
19.48
19.45
19.39

-
-
-
-

3.86%
1.85%
1.35%
1.37%
1.33%
1.19%
0.86%

-
-
-
-

12M∗

1M
12M
12M
2M
5M
12M

Results Table 7.3 shows that Poppy leads to improved performance with a population of 16
agents, dividing the optimality gap with respect to POMO by 45 and 12 on KP100 and KP200
respectively, and by 12 and 2 with respect to POMO with 16 stochastic samples for the exact
same runtime. We emphasize that although these gaps are small, these differences are still
significant: Poppy 16 is strictly better than POMO in 34.30% of the KP100 instances, and better
in 99.95%.

Chapter Conclusion

Poppy is a population-based RL method for CO problems. It uses a RL objective that incurs
agent specialization with the purpose of maximizing population-level performance. Crucially,
Poppy does not rely on handcrafted notions of diversity to enforce specialization. We show
that Poppy achieves state-of-the-art performance on three popular NP-hard problems: TSP,
CVRP, and KP.

This work opens the door to several directions for further investigation. Firstly, we have
experimented on populations of atmost 32 agents; therefore, it is unclearwhat the consequences
of training larger populations are. Whilst even larger populations could reasonably be expected
to provide stronger performance, achieving this may not be straightforward. Aside from
the increased computational burden, we also hypothesize that the population performance
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Table 7.3 – KP results.

Testing (10k instances) Testing (1k instances)
n = 100 n = 200

Method Obj. Gap Time Obj. Gap Time
Optimal 40.437 - 57.729 -
Greedy 40.387 0.1250% 57.672 0.0986%

POMO
POMO (16 samples)
POMO 16 (ensemble)
Poppy 4
Poppy 8
Poppy 16

40.428
40.435
40.429
40.434
40.436
40.437

0.0224%
0.0060%
0.021%
0.0081%
0.0032%
0.0005%

8S
2M
2M
33S
1M
2M

57.718
57.727
57.719
57.723
57.726
57.728

0.0191%
0.0032%
0.0170%
0.0099%
0.0058%
0.0015%

4S
1M
1M
16S
33S
1M

could eventually collapse once no additional specialization niches can be found, leaving agents
with null contributions behind. Exploring strategies to scale and prevent such collapses is an
interesting direction for future work.

Secondly, our work has built on the current state-of-the-art RL for CO approaches in a single-
or few-shot inference setting to demonstrate the remarkable efficacy of a population-based
approach. However, there are other paradigms that we could consider. For example, active-
search methods allow an increased number of solving attempts per problem and, in principle,
such methods for inference-time adaption of the policy could be combined with an initially
diverse population to further boost performance. Indeed, we investigate the performance of
Poppy with a larger time budget in Appendix C.3 and find that Poppy combined with a simple
sampling procedure and no fine-tuning already matches, or even surpasses, the state-of-the-art
active search approach of Hottung, Kwon, and Tierney (2022). An alternative direction to active
search would be to consider an even more lightweight decoder that, whilst less expressive,
could allow for a larger population to be trained. We leave a detailed investigation of the
tradeoff between population size and the expressivity of each single agent to future work.

Finally, we recall that the motivation behind Poppy was dealing with problems where
predicting optimal actions from observations is too difficult to be solved reliably by a single
agent. We believe that such settings may not be strictly limited to canonical CO problems,
and that population-based approaches offer a promising direction for many challenging RL
applications. In this direction, we hope that approaches (such as Poppy) that alleviate the need
for handcrafted behavioral markers, whilst still realizing performant diversity, could broaden
the range of applications of population-based RL.
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Chapter 8

Efficient Search of Human Adversarial
Policies in Chess

After discussing uncertainty at the action level in the previous chapter, we now shift our focus
to planning under uncertainty. To illustrate this concept, we choose a specific combinatorial
game as a use case: chess, where uncertainty arises from the unknown opponent’s behavior.
Specifically, we approach the problem of winning against an opponent of a particular level as a
planning problem using a fixed dataset of human games. Drawing on a custom MCTS
designed for offline data, and applying it to millions of online human games, we derive
HUman-adversarial Search TaiLored at Exploiting Recurrent mistake (Hustler), a system
whose plays especially target the weaknesses of players of specific strengths. Our results reveal
that this opponent-aware mechanism significantly improves the speed at which winning
positions are attained, outperforming Stockfish, one of the strongest chess engines to date.
This finding suggests that even super-human AI game programs can benefit from the use of
data collected on human-played games, resulting in substantial benefits when assisting or
playing against human beings. 1

Contents
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

8.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

8.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

8.1 Introduction

The general goal of artificial intelligence systems designed for two-player games is to find
the optimal strategy. This optimal strategy takes the form of minimax optimum for perfect

1This chapter is based on the preprint Grinsztajn and Preux (2023), under review at IJCAI 2023.
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Figure 8.1 – Setup of the famous Scholar’s mate. Thewhite queen is threatening to go to f7 and checkmate
the black king. If Black is a beginner, this player thus risks being defeated after only 4 moves. On the
other hand, if Black plays the best response pawn to g6 to block the queen, they will enjoy a slightly
better position. That is why this opening is never played against high-level players, or by chess engines.

information games (e.g. chess, go. . . ), or Nash equilibrium in imperfect information games
(e.g. poker, diplomacy (Brown and Sandholm, 2019)). These two approaches have in common
the assumption that the opponent always plays the best possible response. They thus aim at
being robust against any possible adversarial strategy. This mechanism ensures that they are
not exploitable, and they have proven to be very efficient in practice, reaching a super-human
level in several games (Silver, Huang, Chris J. Maddison, et al., 2016; Silver, Hubert, et al., 2018;
Brown and Sandholm, 2019). Although, they may not necessarily be the most efficient means
of winning against human opponents who might be subject to bias in specific situations, and
who do not always play the best response (A. Anderson, Kleinberg, and Mullainathan, 2017).

On the other hand, in strategic games, human beings tend to adapt their play-style to match
the level of their opponents. An instance of this behavior is the classic chess opening known
as Scholar’s mate, displayed in Fig. 8.1. It is often employed by strong players against weaker
opponents, as it can lead to a quick victory in just four moves if they don’t see the threat.
Similarly, in Poker, players often attempt to identify weaknesses, patterns, and biases in their
opponents’ play as this can provide a significant advantage.

The Scholar’s mate can be seen as an adversarial strategy targeted at weak players: it is not
the optimal policy, but it is very likely to lead to a fast checkmate given the average behavior
of low-level opponents. The objective of the chapter is to automate the discovery of such
adversarial policies for a wide range of levels, from amateurs to semi-professional players.

To that goal, we introduce data Monte Carlo Tree Search (d-MCTS), a specific MCTS
designed to search a large and fixed dataset of game trajectories, and present Hustler (HUman-
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adversarial Search TaiLored at Exploiting Recurrent mistake), a system capable of playing
human-adversarial policies for a wide range of player level. The contributions of the chapter
are as follows:

1. We propose a custom MCTS for large offline datasets.

2. We use d-MCTS on a large database of online chess games to infer adversarial policies
targeted at specific Elo ranges.

3. We propose a quantitative evaluation scheme for these strategies and show that it reaches
winning positions in fewer moves than super-human chess engines in practical games.
We further analyze some concrete examples of these strategies.

8.1.1 Additional related work

Human policy in chess Chess has been widely used in academic research as a testbed of
artificial intelligence, with the current engines being far above human level (Silver, Hubert,
et al., 2018; Stockfish developers, 2022; Pascutto, Gian-Carlo, 2019).

Interestingly, the fields of economics and psychology have also employed chess as a model
task environment for studying various cognitive processes like perception, memory, and
problem-solving (Charness, 1992). Additionally, research has been conducted on understand-
ing the risk preference of human players (Holdaway and Vul, 2021), and on quantifying the
non-transitivity in chess using human game data (Sanjaya, J. Wang, and Y. Yang, 2022).

In recent years, there has been a growing interest in developing AI that can analyze and
mimic the human style in chess. In McIlroy-Young, Sen, et al. (2020), researchers introduced
Maia, an AI trained on human chess games that predicts human moves more accurately than
existing engines. Other related works include McIlroy-Young, R. Wang, et al. (2021) which
manages to identify players from their moves and style alone, McIlroy-Young, R. Wang, et al.
(2022) which develops predictive models for the behavior of individual players in chess, and
Krishnan and Martens (2022) which proposes an interpretable symbolic model of chess policy.

Adversarial attacks in reinforcement learning Adversarial attacks have been a topic of
interest, especially in computer vision (Goodfellow, Shlens, and Szegedy, 2015; Szegedy et
al., 2014). The goal is to find small perturbations to apply to an input image such that it is
consistently misclassified.

This line of research has extended toward RL, with the objective of finding an adversary
policy in the context of two-player games (Gleave et al., 2020; X. Wu et al., 2021) to attack a
RL agent. Similar approaches have been applied to board game AI, like AlphaZero (Silver,
Hubert, et al., 2018) in Go. In Timbers et al. (2022), the authors introduce a deep reinforcement
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learning algorithm for learning the best response to an agent. In Lan et al. (2022), the authors
show that adversarial states can be attained by adding meaningless moves to a position.

Understanding human errors Human-adversarial examples have been first studied in Elsayed
et al. (2018), where they show that specific image perturbations fooling multiple machine
learning models can also fool time-limited humans. In the context of chess specifically, several
research papers study chess databases to understand when and why human players commit
blunders. A. Anderson, Kleinberg, and Mullainathan (2017) takes into account the complexity
of the position at hand, fatigue, and time pressure to help to model human decision, while
T. Biswas and Kenneth W Regan (2015) and T. T. Biswas and K. W. Regan (2015) derives for
example the search-depth of human player analysis.

8.2 Method

8.2.1 Background on MCTS

MCTS is a heuristic search algorithm that has been widely used in the field of artificial intel-
ligence, particularly for game playing (Silver, Huang, Chris J. Maddison, et al., 2016; Silver,
Hubert, et al., 2018). It was first proposed in Coulom (2007b) to improve the performance of
traditional tree search algorithms for Go.

The key idea behindMCTS is to guide the search process by using simulation and evaluation
to estimate the value of each potential move. In particular, MCTS relies on the principle of
“exploration and exploitation”, where the algorithm balances the need to explore different
moves in order to gather more information with the need to exploit the best moves known so
far in order to maximize the chances of winning.

To implement a MCTS, a tree data structure is used to represent states of the game (nodes),
the possible moves (edges), and their outcomes (child node). At each step of the search, the
algorithm selects the next move to explore based on a combination of the estimated value of
the move and the amount of exploration that has been conducted on that move so far. As the
search progresses, the algorithm continually updates the estimates of the value of each move
based on the results of the simulations and the evaluations of the resulting positions.

The MCTS algorithm is typically based on four steps, applied at each iterations (Chaslot
et al., 2008):

• Selection: starting at the root node, a child selection policy is used to descend through
the tree until a leaf is reached.
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Figure 8.2 – The three phases of d-MCTS.

• Expansion: one or more child nodes are added to the selected node according to the
available moves.

• Simulation: a simulation is run from one of these new nodes according to some default
policy (e.g. choosing uniform random moves, or heuristics specific to the game. . . ) until
the game finishes.

• Backpropagation: the result of the simulation is “backed up” from leaves back to the root
through the selected nodes to update their statistics (e.g. number of games played from
this node, number of wins. . . )

The node statistics updated at each step are used to compute the child selection policy
during the selection phase.

8.2.2 MCTS using historical data

The classical MCTS method described above requires specifying the opponent policy during
the simulation phase. Usually, it is not a problem, as the same default policy can be used
for both the player and their opponent. However, in our setting, we want to find adversarial
policies against human players, for whom we only have access to a finite set of historical games.
A possible solution would be to train a model to imitate their policy. Though, it looks difficult
in practice, because any discrepancy with the real human policy could be exploited by the
MCTS and would invalidate the results. To overcome this issue, we modify the usual MCTS
algorithm and propose d-MCTS, a version which does not require a simulation phase and can
use a fixed dataset of games only.

In our situation, the two players do not have a symmetric role. In what follows, we will
write “the attacker” to refer to the side searching for an adversarial policy, and “the victim”
for its opponent, whose policy is fixed and represents the average human behavior at a given
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ranking. We adopt RL notations, considering the attacker to be the agent, and the victim’s
behavior to be part of the environment. Therefore, a state s can be any game position where it’s
the attacker’s turn to play, and an action a ∈ A(s) can be any legal move in the position.

Formally, we suppose that we have access to a (large) set of previously recorded games.
For each game state s, we have at our disposal the number of trajectories that went through it
that we denote ndata(s), the number of times that the action a ∈ A(s) was taken ndata(s, a), as
well as the win ratio of those trajectories V (s). We write π̂(a | s) = ndata(a,s)

ndata(s) the empirical action
distribution in the dataset (representing the average policy of the attacker), and p̂(s′ | s, a) the
stochasticity of the environment (representing the empirical policy of the victim).

Saturated nodes and actions Because we only have at our disposal a finite dataset, we may
have a lot of games played in certain positions, and very few from others. To avoid overfitting
to positions with a high win ratio but a very small number of games, we specify a minimum
number of trajectories Nmin under which a node is not expandable. Intuitively, it sets an
exploration frontier: positions encountered in fewer than Nmin games will not be explored
further. Formally, we write ∂T = {s ∈ T | ndata(s) < Nmin} the set of such nodes in the
partially expanded tree T . The depth of this frontier depends on the popularity of each specific
game line in our dataset: the allowed depth will be greater when playing frequent actions.

To prevent bumping against these non-expandable nodes when descending through the
tree, we call “saturated actions” the actions whose descendant leaves are all in ∂T . For s ∈ T ,
we write Asat(s)) ⊂ A(s) the subset of saturated actions. Intuitively, taking such an action is
pointless as it necessarily leads to a non-expandable leaf, and should thus be forbidden.

For each node encountered, we keep several statistics in memory:
• N(s) the number of times the node s ∈ T has been visited during the search.

• N(s, a) the number of times the action a ∈ A(s) has been chosen during the search.

• Vpolicy(s) the win rate from the position s.

• Vsearch the win rate from the position s if saturated actions are forbidden.

• The set of saturated actions in each node.
Each time a new node s is added to the tree, both Vpolicy and Vsearch and are initialized as

the empirical win ratio, that is Vpolicy(s) = Vsearch(s) = V (s). Intuitively, Vpolicy corresponds to
the win rate when playing the best adversarial policy discovered and is used at test time once
the search is over. Vsearch is the win rate when playing the best adversarial policy discovered,
but removing the part of the trees which cannot be explored further. It is used to guide the
selection phase during the search.
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Selection We start at the root node of the tree and traverse down to the leaves. Specifically, at
each visited node, we choose the action that maximizes the following expression:

a∗ = arg max
a/∈Asat(s))

E
s′∼p̂(s,a)

[
Vsearch(s′)

]
+ c× U(s, a) (8.1)

This action selection strategy aims at balancing the exploitation of the current knowledge
with the necessity of exploring new moves to be able to improve the current policy. Specif-
ically, V (s′) favors exploitation while U(s, a) is a bonus which favors exploration, and c is a
parameter that balances the two behaviors. We define the exploration term as a variation of
Upper Confidence bounds applied to Trees (UCT) (Kocsis and Szepesvári, 2006), which
we combine with the prior probability π̂, as done in Silver, Huang, Chris J. Maddison, et al.
(2016):

U(s, a) =
√
π̂(a | s) log(N(s))

N(s, a) (8.2)

Intuitively, if the value of all states is the same, this term ensures that every action is played
with the frequency π̂. This is particularly useful in our case because it makes our search policy
more likely to follow frequent moves, and thus to keep expanding nodes with a high number
of games. We continue this process until a leaf is reached.

Expansion The victim’s policy being stochastic, the situation is as if the transitions were non-
deterministic. Following the selection policy can thus lead to several possible leaves. Denoting
L(T ) the set of leaves of the tree T , the leaf sl ∈ L(T ) to expand is selected according to the
following quantity:

sl = arg max
s∈L(T )
s/∈∂T

(1− V (s)) · ps (8.3)

where V (s) is the value of the leaf s, and ps the probability of reaching s starting from the
root node and following the previous selection phase. Intuitively, it encourages the selection of
future positions which are both probable (with ps), and have room for improvement (1−V (s)).
The leaf sl is then expanded: all its children are added to T .

Backpropagation Starting with the expanded leaf and iterating through the sub-tree up to
the root, node values are updated according to the equation:

113



Efficient Search of Human Adversarial Policies in Chess

Algorithm 8.1: d-MCTS
1 Inputs: Initial state s0, budget n
2 Initialize tree: T = {s0} ;
3 while |T | < n do
4 Build subtree T̃ according to (8.1) ;
5 Select leaf sl ∈ T̃ with largest contribution with (8.3) ;
6 Expand sl ;
7 Backpropagate node statistics according to (8.4) and (8.5) ;
8 Backpropagate saturation information ;
9 Return arg max a∈A(s)

ndata(s,a)≥Nmin

Es′∼p̂(s,a)
[
Vpolicy(s′)

]
;

Vsearch(s) = max
a/∈Asat(s))

E
s′∼p̂(s,a)

[
Vsearch(s′)

] (8.4)

Vpolicy(s) = max
a∈A(s)

ndata(s,a)≥Nmin

E
s′∼p̂(s,a)

[
Vpolicy(s′)

]
(8.5)

The quantity Vsearch is only updated from non-saturated actions. This is motivated by the
fact that during the selection phase, saturated actions are unplayable, and thus should not
influence the choice of the next leaf to expand. On the other hand, Vpolicy is updated with the
full tree, provided that actions have been played sufficiently in the dataset to avoid overfitting.

Additionally to backpropagating these statistics, we also update saturated actions for each
node traversed.

8.3 Results

8.3.1 Setting

Dataset Our train dataset is composed of 165,600,218 blitz online chess games played on
the Lichess website during 6 months, from 2021-08 to 2022-01. Blitz are fast-paced games of
chess in which each player has typically between 3 and 8 minutes of time to think for the entire
game. Because of the limited time available, players must take decisions quickly and cannot
afford to spend a lot of time analyzing each potential move. The validation and test datasets
are composed of the same type of games, played respectively from 2021-05 to 2021-07 and from
2022-02 to 2022-04 and composed of 80,508,054 and 76,799,666 games. Using a time period for
the test dataset that is posterior to those of the train and validation sets ensures that there is no
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Figure 8.3 – For each Elo level and each attacker side, the mean reward obtained byHustler and Stockfish,
after 15 moves on the test dataset. Hustler consistently outperforms Stockfish in every scenario.
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Figure 8.4 – The reward obtained by Hustler and Stockfish on the test dataset depends on the number
of moves considered from the starting position. The curve displayed corresponds to the average over
each Elo category for both Black and White as the attacker.

overfitting to a specific distribution, and is aligned with how this tool could be used in practice
(using the most recent games to train and test the output policy on the next games).

Games were split into 3 categories depending on the mean Elo of the two players: amateurs
(Elo in 1800-2000), strong amateurs (Elo in 2000-2200), and very strong amateurs or semi-
professionals (2200-2500).

Baseline As a baseline, we use Stockfish version 14.1 (Stockfish developers, 2022), one of the
strongest chess engines to date. To limit the computation time, we fix a maximum depth of 20.
Ten years ago, Ferreira (2013) evaluated the far weaker Houdini 1.5 at depth 20 to be around
2894 Elo, which is already more than the human FIDE Elo record. Given the progress of chess
engines, it is fair to estimate Stockfish to be super-human in these conditions.
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Reward In chess tournaments, a win is traditionally worth 1 point, a draw 1
2 , and a loss 0. We

keep this scale to evaluate the games in our dataset, instead of the win rate. Concretely, for a
position s from which nwin games end with the player winning, ndraw with a draw and nloss
with a loss, we have:

V (s) =
nwin + 1

2ndraw
nwin + ndraw + nloss

(8.6)

This also ensures that values are always between 0 and 1.

Parameters We compute the tree T from the initial board position, with a budget of n =
100, 000 nodes. For each state s in the tree which is not a leaf, the corresponding policy consists
simply in taking the action defined as:

a = arg max
a∈A(s)

ndata(s,a)≥Nmin

E
s′∼p̂(s,a)

[
Vpolicy(s′)

]
(8.7)

We grid-search the two hyperparameters of d-MCTS c ∈ {0.1, 0.3, 0.5} and Nmin ∈ {50, 100}
on the validation dataset.

8.3.2 Quantitative evaluation

Evaluation protocol A perfect evaluation protocol for the resulting adversarial policies would
be to let players of the same level play against each other, while giving access to one of them to
the adversarial policy for the firstmmoves (a move being an action from the attacker, followed
by an action from the victim). If this attacking player wins reliably despite being of the same
strength as the victim, it would indeed mean that using the adversarial policy results in taking
a quick advantage.

We approximate this protocol with our fixed test dataset: one difficulty is that if the policy
to analyze plays rare moves, the game could end up in a position that is not in our dataset. To
evaluate the adversarial policies, we roll out trajectories from the initial board state. To keep
this practical, we use a beam search of width 100 form = 15 moves. Concretely, after every
move, we keep the 100 most likely positions, according to the test distribution of the victim’s
action. We do not expand positions which correspond to a mate, and do not take any action if
i) the position is not in T or is a leaf of T (as the policy is not defined for this position) or if ii)
the action would lead to positions met in less than 50 games in the test dataset. This second
condition ensures that the positions in the beam search contain enough games to evaluate win
rates reliably.
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Once this process is done, we are thus left with 100 positions which have high probabilities
of being reached. We then evaluate the win, draw, and loss rates of those positions using the test
dataset. Intuitively, when evaluating a specific policy π, this protocol corresponds to evaluating
a player drawing its move from π for at most 15 moves, and then playing by themselves, against
an opponent playing by themselves from the beginning.

Interestingly, this evaluation scheme is aligned with the way chess players usually train and
play. During the opening, most moves come from theoretical lines and have been memorized.
Depending on the opening and the level of the players, after 5 to 30 moves, the game reaches a
new or unknown position for one of the players, and at this point this player has to find the
correct moves without external help.

Results We use this evaluation protocol to evaluate the adversarial policies obtained for each
Elo category, both when the attacker is White and the attacker is Black. We can see in Fig. 8.3
that Hustler consistently outperforms Stockfish for every situation considered. Unsurprisingly,
scores are better for White, as they have the advantage of making the first move. The score
also decreases with the Elo range considered, which intuitively indicates that it is easier to
fool a weak opponent than a strong opponent. But interestingly, the score is still high in the
maximum Elo range tested (2200-2500), which indicates that even very high-level players can
be successfully attacked.

In Figure 8.4, we display the scores when varying the number of moves m played using
Hustler or Stockfish. As Stockfish plays (almost) optimally, the positions reached become better
and better as the number of moves played using its policy rises. Although, the score increases
very slowly, which means that these positions are still equal in practice: Stockfish’s moves are
super-human, though not very threatening for a good amateur player at this stage of the game.
On the contrary, Hustler’s score shows a sharp rise between the 2nd and 8 moves. It shows
that it reaches quickly unbalanced positions, where the attacker has grabbed an advantage.

8.3.3 Qualitative examples

Generally speaking, we observe that Hustler plays very aggressively, often gambiting pawns
or even full pieces to reach positions where the victim has a high chance of playing a blunder
(game-loosing move). These traps can be more or less subtle, depending on the victim’s level.
To give a sense of Hustler’s strategy, we display and analyze one game that could happen
against victims of each Elo category. We greedily play the best moves when it is Hustler’s turn,
and the most likely moves when it is the victim’s turn according to the test dataset.
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Figure 8.5 – Human-adversarial chess positions reached by Hustler, ordered by victim’s Elo ((a): 1800-
2000, (b): 2000-2200, (c): 2200-2500). In blue are displayed the victims’ most common moves, which
are all blunders, and are played more than 50% of the time.

Chess notations We use the algebraic chess notation system. Each piece is represented by a
unique pictogram, N for knight, B for bishop, R for rook, Q for queen, and K for king, except
for the pawn which is the default moving piece when no symbol is used. The squares on which
the pieces move are indicated by a combination of a letter and a number, with “a” through “h”
representing the columns and “1” through “8” representing the rows. Captures are indicated
by the symbol “x” between the piece symbol and the square on which it moves. For example,
dxe4 would indicate that a pawn in column “d” capture a piece on the square “e4”, and Nxg5
that a knight captures a piece on the square g5. Check is indicated by the symbol “+” after
the move. Castling is indicated by the notation “O-O” for kingside castling and “O-O-O” for
queenside castling.

In what follows, teal-colored moves are made by Hustler, while blue moves are frequent
moves at the level considered. After each victim’s move, we display its probability according
to the test dataset. We additionally write “??” after a move if it is a blunder.

Elo: 1800-2000 We display the beginning of a possible game starting with the Caro Kann
defense (1. e4 c6), where Hustler has the white pieces.

1. e4 c6 (8%) 2.Nf3 d5 (91%) 3. d3 dXe4 (71%) 4.Ng5 eXd3 (67%) 5.BXd3 Nf6?? (56%)
( 5. . . h6?? (23%))

After the initial first move, every move from the victim has a very high probability (respec-
tively 91%, 71%, and 67% for the second, third and fourth move). This gives a 43% probability
of performing the three actions in a row and obtaining the position shown in Fig. 8.5a. Once the
position is attained, the victim has a 79% chance to play a game-losing move, either by 5. . .Nf6
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or 5. . .h6. Both these plays make sense intuitively are they are ways of defending the pawn
in h7, but fall for the tactic 6.NXf7 KXf7 7.Bg6+ hXg6 8.QXd8 winning the black queen.
The best and only moves to keep a slight edge with Black according to Stockfish is 5. . .Nd7
or 5. . .Qc7. Although, they are only played respectively 3% and 0.3% of the time by players
between 1800 and 2000 Elo. In practice, this position is very likely a win for white, after only 5
moves.

Additionally, if the victim does not play 4. . . exd3, another popular line transposes toward
the same trap: 4. . . Nf6 (19%) 5.Nc3 eXd3 (55%) 6.BXd3 h6?? (37%)

Elo: 2000-2200 We give an example where Hustler has the black pieces, and the victim starts
with the common 1. e4:

1. e4 (56%) e5 2.Nf3 (66%) d5 3. eXd5 (48%) e4 4.Nd4 (30%) Bc5 5.Nb3 (89%) BXf2+

6.KXf2 (97%) Qf6+ 7.Kg1?? (52%)

White is winning according to Stockfish after the black move 6. . .Qf6+, giving the position
displayed in Fig.8.5b. However, more than half of the time, a victim between 2000 and 2200 Elo
would play the blunder 7. Kg1, leading to a forced mate after 7. . .Qb6. Although very strong,
this move is thus difficult to anticipate in practice even for strong amateurs. It is likely the case
because i) the queen is the only developed black piece, so the situation does not feel dangerous,
and ii) it is unintuitive that at this point of the game, no white piece can block the check (even
8. d4 does not work because the black pawn e4 can take en passant).

If white responds with the correct 7. Ke1 instead of 7. Kg1, Stockfish gives white a huge
advantage. However, in practice, the position is still tricky to handle: the white player only
wins 51% of the 43 games of the test set.

Elo: 2200-2500 In the following game, Hustler has the white pieces, and is against very
high-level players between 2200 and 2500 Elo playing the classical Sicilian defense (1. e4 c5).

1. e4 c5 (34%) 2.Nc3 Nc6 (43%) 3. d3 g6 (57%) 4.Be3 d6 (56%) 5. d4 cXd4 (95%) 6.BXd4
NXd4 (89%) 7.QXd4 Nf6 (95%) 8. e5 dXe5 (93%) 9.Bb5 Bd7 (97%) 10.QXe5 Bg7?? (51%)
( 10. . . BXb5?? (32%))

The critical position after 10. Qxe5 is displayed in Fig. 8.5c. The tactic after the blunder
10. . .Bg7?? is not easy to anticipate, even for skilled players:

11.O-O-O O-O 12.BXd7 NXd7 13.Qb5 and the knight in d7 cannot be defended.
The other frequent black move 10. . .Bxb5?? does not hold for long after: ( 10. . . BXb5??

(32%) 11.NXb5 Rc8(74%) 12.Rd8) and the black king is surrounded.
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The best move and the only one to keep a small advantage with black according to the
computer is ( 10. . . a6 (16%)), very rarely played. The resulting evaluation of Stockfish shows
only a small edge for Black: even in the rare case where the victim would find the best defense,
the game remains very much balanced.

These examples give a sense of Hustler’s policy. The stronger the victim, the longer and
subtler tactics tend to be.

Chapter Conclusion

We have presented a novel approach for exploiting human data in game-playing AI. Specifically,
we have designed a new MCTS capable of handling offline data and applied it to a dataset
of millions of online human chess games. The resulting policy, Hustler, successfully targets
weaknesses of players of specific strengths, and our results reveal that it reaches winning
positions against humans faster than one of the strongest super-human engines Stockfish.

We believe that this work opens several promising future directions. Professional chess
players prepare for their next games and tournaments by memorizing a lot of opening lines.
This search for new opening lines is driven by “theoretical novelty”, meaning a new move or
idea that had hardly been played and was previously unknown to chess theory. The benefit is
to surprise the opponent, who will have to deal with a completely new situation on the board.
In this sense, a major part of the preparation at the professional level is adversarial: finding
unusual moves that are likely to drive the opponent toward making mistakes. Future versions
of this work, using professional games with longer time control, possibly combined with chess
engine evaluations, could help chess players with their preparations. It could also be possible
to target specific players or groups of players, provided that enough game data is available.
Furthermore, our search method is based purely on historical data, and does not generalize to
unseen positions. It would be interesting to train a model to robustly predict human plays, and
then use an adversarial search mechanism on top.

More generally, the approach of using historic data to find the best “practical” moves,
incorporating the possible mistakes of the opponent, is a different paradigm from the usual
approach aiming at finding the absolute best play in a given position. It could be used in a
lot of games, like go, poker, and real-time strategy games. Furthermore, it may be especially
appealing in imperfect information games, where a Nash equilibrium is not necessarily the
“optimal” strategy given the specific players around the table. Finally, the MCTS for offline data
introduced in this chapter is not limited to two-player games: it is sufficiently general to be
applied more broadly to stochastic environments where a lot of data is available.
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Chapter 9

General Conclusion and Perspectives

In this thesis, we have explored the potential of reinforcement learning for combinatorial
optimization problems. We have discussed the main limitations and advantages of using this
approach, and presented several case studies to illustrate its effectiveness in various contexts.

After a general background introduction to reinforcement learning and combinatorial
optimization, we motivated the use of RL for COPs in different contexts: when the problem at
hand has not been studied before and cannot be easily reduced to a known problem, when there
is uncertainty or stochasticity on the problem (as it is often the case in real-world problems),
when the goal is to learn a heuristic on a specific sub-distribution of problems frequently
encountered in practice etc.

The first part of the thesis was devoted to a case study of the problem of dynamically
scheduling interdependent jobs on machines, which provided some insights into the common
challenges of using reinforcement learning for realistic combinatorial optimization. The sec-
ond part dealt with the study of structured problems in reinforcement learning, using two
examples: reversibility and sequence equivalence. Although initially motivated by COPs, these
two chapters are more general and can be applied to other problems. In Chapter 5, action
(ir-)reversibility was initially considered a helpful inductive bias for the combinatorial game
Sokoban, where an agent can easily get stuck in positions where the instance becomes unsolv-
able. But we showed that it can also have additional applications in other domains, such as
safety. The third part dealt with uncertainty in combinatorial problems, along two different
prisms: how to handle uncertainty at the action level, and how to handle uncertainty at the
data level. Chapter 7 outlines a population-based RL approach to explore efficiently several
heuristics, shown to be performant on a wide range of combinatorial problems. Chapter 8 uses
chess as a use case to develop a method to plan using a finite dataset.

We now provide some perspectives on possible future works, and what we believe are
important questions about the use of reinforcement learning for combinatorial optimization.
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General Conclusion and Perspectives

Combining reinforcement learning with evolutionary algorithms Combinatorial problems
are characterized by numerous local optima and a vast search space, making it challenging to
find the global optimal solution. Reinforcement learning approaches are particularly susceptible
to getting trapped quickly during training due to these issues, as observed in Chapter 3. One
promising approach to overcome this limitation is to maintain a population of solutions by
combining RL with evolutionary algorithms. This hybrid approach has been studied in other
contexts (Khadka and Tumer, 2018; Khadka, Majumdar, et al., 2019; Pourchot and Sigaud, 2019;
Pierrot et al., 2022) like continuous control, and could be a fruitful direction for CO. Poppy,
introduced in Chapter 7, can be seen as a first step in this direction, as it maintains a population
of specialized agents. Scaling such approaches to larger populations and larger instance sizes
could be interesting future work.

From canonical combinatorial problems to real-world problems One common criticism of
RL is that it tends to focus toomuch on games and synthetic benchmarks, rather than real-world
applications. Interestingly, COP can act as a first middle ground: they sharemany qualities with
games that make them amenable to RL, such as fast and perfect simulators without sim-to-real
issues, while having a wide range of applications, as outlined in Chapter 1. A venue for RL can
thus be to tackle complex and applied combinatorial problems, like chip placement and design
(Liao et al., 2019; Mirhoseini, Goldie, et al., 2020). Problems involving a large combinatorial
search, like theorem proving (Kaliszyk et al., 2018; Lample et al., 2022), or discovering faster
matrix multiplication algorithms (Fawzi et al., 2022) are also interesting venues.

Moreover, RL can also be applied to real-world combinatorial problems that involve uncer-
tainty and stochasticity. In such cases, RL allows for the learning of heuristics in an end-to-end
fashion, whereas traditional methods would first need to model the stochasticity and then
solve the problem, which can be challenging. Some examples of such problems include HPC
(Chapter 3, Chapter 4), routing in a city with stochastic demand and traffic, and inventory
management etc. However, the success of this approach depends on the available environ-
ments and the research ecosystem. To this end, recent initiatives such as the competition on
vehicle routing problems (Kool, Bliek, et al., 2022) and the Jumanji library (Bonnet et al., 2022),
which focuses on providing a library of combinatorial problems with a particular emphasis on
industrial problems, are promising developments.

Reinforcement learning from human feedback: a combinatorial problem? Reinforcement
learning from human feedbacks (Knox and Stone, 2008; Christiano et al., 2017, RLHF) consists
in learning policies using human preferences as a reward function. This approach has recently
been used in the context of large language models (Ziegler et al., 2019). Indeed, these large
models are trained to imitate large corpus of text data, which although powerful, is not perfectly
aligned with their intended use. For example, they are prone to generate untruthful, unhelpful
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or even toxic text. RLHF is an efficient way to improve the performance of these models
(Ouyang et al., 2022). RLHF features an agent which generates a sequence of discrete actions,
with a reward given at the very end of the sequence. Interestingly, this is very similar to
combinatorial problems, as studied, for example, in Chapter 3, Chapter 4, and Chapter 7. This
similarity suggests that some techniques developed for COP could be useful for RLHF. For
example, the use of a population, as discussed in Chapter 7, could be adapted for RLHF to
maintain a diversity of solutions.

Tool-augmented reinforcement learning Some computations involved to find solutions to
combinatorial problems are very easy to perform, but hard to learn. In Chapter 7 for instance,
when solving the TSP, an agent must probably learn implicitly to compute distances between
cities and compare lengths of possible sub-paths. These kinds of tasks are hard for a neural
network, as it needs to be robust to every city position, and require very high precision, but
they are strikingly easy to compute with any calculator. Some difficulty of learning to solve
TSP with RL thus revolves around teaching an agent to perform high-precision arithmetics,
which seems a bit wasteful.

A promising direction for alleviating this issue could be to connect the agent to external
tools, that it can learn to use during the training process. This line of work has been explored
recently for large language models. Cobbe et al. (2021), for example, trains a language model
to make use of an external calculator which is called after the use of a special token. These
approaches, although promising, remain largely unexplored for reinforcement learning in
general and combinatorial optimization in particular.
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Appendix A

Complements on Chapter 5

We organize the supplementary material as follows: in Appendix A.1, we include the proofs
of results from the main text, as well as additional formalism; in Appendix A.2, we provide
additional details about the proposed algorithms, including pseudo-code and figures that did
not fit in the main text; and in Appendix A.3, we detail our experimental procedure, including
hyperparameters for all methods/

A.1 Mathematical elements and proofs

A.1.1 Possible definitions of reversibility

In this section, we present several intuitive definitions of reversibility in MDPs. We chose
the third definition as our reference, which we argue presents several advantages over the
others, although they can be interesting in specific contexts. Indeed, Eq. (A.5) is simpler than
Eq. (A.1), as it does not depend on the discount factor, and more general than Eq. (A.3), as it
does not enforce a fixed number of timesteps for going back to the starting state.

Discounted reward.

ϕπ,K(s, a) :=
K∑
k>t

γk−tpπ(st+k = s | st = s, at = a) , (A.1)

ϕπ(s, a) :=
∞∑
k>t

γk−tpπ(st+k = s | st = s, at = a). (A.2)
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Fixed time step.

ϕπ,K(s, a) := sup
k≤K

pπ(st+k = s | st = s, at = a) , (A.3)

ϕπ(s, a) := sup
k∈N

pπ(st+k = s | st = s, at = a). (A.4)

Undiscounted reward.

ϕπ,K(s, a) :=
K∑
k=1

pπ(st+k = s, st+k−1 ̸= s, . . . , st+1 ̸= s | st = s, at = a) ,

= pπ(s ∈ τt+1:t+K+1 | st = s, at = a) . (A.5)

ϕπ(s, a) :=
∞∑
k=1

pπ(st+k = s, st+k−1 ̸= s, . . . , st+1 ̸= s | st = s, at = a) ,

= pπ(s ∈ τt+1:∞ | st = s, at = a). (A.6)

A.1.2 Additional properties

1

2

3

0.1
0.1

0.1
0.9

0.9

0.9

Figure A.1 – Counter-example for additional property 4. The initial state is sampled uniformly amongst
{0, 1, 2}.

We write s→ s′ if ψπ(s, s′) ≥ 0.5 ("it is more likely to go from s to s′ than to go from s′ to
s") and s ⇒ s′ if ψπ(s, s′) = 1 ("it is possible to go from s to s′, but it is not possible to come
back to s from s′").

1. ψπ(s, s′) + ψπ(s′, s) = 1

2. if s0 ⇒ s1 ⇒ s2 then s0 ⇒ s2 (transitivity for⇒)

3. if s0 → s1 → · · · → si ⇒ si+1 → · · · → st then s0 ⇒ st

4. in general s1 → s2 and s2 → s3 doesn’t imply s1 → s3

Proofs:
(1) ψπ(s, s′) +ψπ(s′, s) = Eτ∼π Et̸=t′|st=s,st′ =s′

[
1t′>t +1t′<t

]
= Eτ∼π Et̸=t′|st=s,st′ =s′

[
1
]

= 1.
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(2) and (3): As (3) is stronger than (2), we only prove (3). If it is possible to have s0 after st
in a trajectory, then it is possible to have si after st. As we have a positive probability of seeing
st after si+1, we have a positive probability of seeing si after si+1, which contradicts si ⇒ si+1.

(4) A counter example can be found in Fig. A.1. In this case we clearly have s1 → s2, s2 → s3

and s3 → s1.

A.1.3 Proofs of theorem 5.4 and theorem 5.6

In the following, we prove simultaneously Theorem 5.4 and Theorem 5.6. We begin by two
lemmas.

Lemma A.1. Given a trajectory τ , we denote by #T (s → s′) the number of pairs (s, s′) in τ1:T

such that s appears before s′. We present a simple formula for ψ(s′, s) according to the structure of
the state trajectory:

ψπ,T (s, s′) =
Eτ∼π

[
#T (s→ s′)

]
Eτ∼π

[
#T (s→ s′) + #T (s′ → s)

] . (A.7)

Proof. In order to simplify the notations, we leave implicit the fact that indices are always
sampled within [0, T ].

ψπ,T (s, s′) = E
π

E
t̸=t′|st=s,st′ =s′

[
1t′>t

]
, (A.8)

=
Eπ Et̸=t′

[
1t′>t1st=s1st′ =s′

]
Eπ Et̸=t′

[
1st=s1st′ =s′

] . (A.9)

(A.10)

Similarly, we have:

E
π

E
t′>t

[
1st=s1st′ =s′

]
=

Eπ Et̸=t′
[
1t′>t1st=s1st′ =s′

]
Et̸=t′

[
1t′>t

] . (A.11)

Combining it with our previous equation:

ψπ,T (s, s′) =
Eπ Et′>t

[
1st=s1st′ =s′

]
Et̸=t′

[
1t′>t

]
Eπ Et̸=t′ ,

[
1st=s1st′ =s′

] , (A.12)
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= 1
2
Eπ Et′>t

[
1st=s1st′ =s′

]
Eπ Et̸=t′

[
1st=s1st′ =s′

] . (A.13)

(A.14)

Looking at the denominator, we can notice:

E
π

E
t̸=t′

[
1st=s1st′ =s′

]
= 1

2 E
π

E
t<t′

[
1st=s1st′ =s′

]
+ 1

2 E
π

E
t′<t

[
1st=s1st′ =s′

]
, (A.15)

= 1
2 E
π

E
t<t′

[
1st=s1st′ =s′ + 1st=s′1st′ =s

]
, (A.16)

which comes from the fact that t and t′ play a symmetrical role. Thus,

ψπ,T (s, s′) =
Eτ∼π Et Et′>t

[
1st=s1st′ =s′

]
Eτ∼π Et Et′>t

[
1st=s1st′ =s′ + 1st=s′1st′ =s

] . (A.17)

Since

E
τ∼π

[
#T (s→ s′)

]
=

∑
i<j≤T

1si=s1sj=s′ , (A.18)

=
(
T

2

) ∑
i<j≤T

1(T
2
)1si=s1sj=s′ , (A.19)

=
(
T

2

)
E
τ∼π

E
t

E
t′>t

[
1st=s1st′ =s′

]
, (A.20)

we get:

ψπ,T (s, s′) =
(T

2
)
Eτ∼π

[
#T (s→ s′)

](T
2
)
Eτ∼π

[
#T (s→ s′) + #T (s′ → s)

] , (A.21)

ψπ,T (s, s′) =
Eτ∼π

[
#T (s→ s′)

]
Eτ∼π

[
#T (s→ s′) + #T (s′ → s)

] . (A.22)

(A.23)

Lemma A.2. Assume that we are given a fixed trajectory where s appears k ∈ N times, in the form
of :
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s0 −→︸︷︷︸
n0(s′)

s −→︸︷︷︸
n1(s′)

s −→︸︷︷︸
n2(s′)

s −→︸︷︷︸
n3(s′)

. . . −→︸︷︷︸
nk−1(s′)

s −→︸︷︷︸
nk(s′)

, (A.24)

where ni(s′) denotes the number of times s′ appears between the ith and the (i+ 1)th occurrence
of s.

In this case,

#T (s→ s′) =
k∑
i=0

i× ni(s′) . (A.25)

If we suppose that n1(s′) = n2(s′) = · · · = nk−1(s′), we also have

#T (s→ s′)−#T (s′ → s) = k
(
nk(s′)− n0(s′)

)
. (A.26)

Proof. Eq. (A.25) comes directly from #T (s → s′) =
∑k
i=1

∑k
j=i nj(s′) =

∑k
i=0 i × ni(s′). To

prove Equ. (A.26), we first notice that #T (s→ s′) + #T (s′ → s) = k ×
∑k
i=0 ni(s′). Thus

#T (s→ s′)−#T (s′ → s) = 2×#T (s→ s′)−
(
#T (s→ s′) + #T (s′ → s)

)
, (A.27)

= 2
(
k nk(s′) + n1(s′)

k−1∑
i=0

i

)
−
(
k nk(s′) + k n0(s′) + k (k − 1)n1(s′)

)
,

(A.28)
= k nk(s′)− k n0(s′) . (A.29)

Theorem. For every policy π and s, s′ ∈ S, ψπ,T (s, s′) converges when T goes to infinity.

Theorem. Given a policy π, a state s, and an action a, we can link reversibility and empirical
reversibility with the inequality: ϕ̄π(s, a) ≥ ϕπ(s,a)

2 .

Proof. For a policy π and s, s′ ∈ S , we define ϕ̂π(s, s′) the quantity pπ(s ∈ τt+1:∞ | st = s′) such
that ϕπ(s, a) = Es′∼P (s,a)

[
ϕ̂π(s, s′)

]
In order to prove the theorem, we first prove that ψT (s′, s)

converges to a quantity denoted by ψ(s′, s), and that:

∀s, s′ ∈ S, ϕ̂
π(s, s′)

2 ≤ ψ(s′, s) . (A.30)
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We subdivide our problem into four cases, depending on whether s and s′ are recurrent or
transient.

Case 1: pπ(s ∈ τt+1:∞ | st = s) < 1 and pπ(s′ ∈ τt+1:∞ | st = s′) = 1 (s is transient and s′

is recurrent for the Markov chain induced by π). Informally, this means that if a trajectory
contains the state s′ we tend to see s′ an infinite number of times, and we only see s a finite
number of times in a given trajectory.

This implies ϕ̂π(s, s′) = pπ(s ∈ τt+1:∞ | st = s′) = 0, as recurrent states can only be linked
to other recurrent states (Norris, 1998). It is not possible to find trajectories where s appears
after s′, thus ψT (s′, s) = 0 = ψ(s′, s). Equ. (A.30) becomes "0 ≤ 0".

Case 2: pπ(s ∈ τt+1:∞ | st = s) = 1 and pπ(s′ ∈ τt+1:∞ | st = s′) < 1 (s is recurrent and s′ is
transient for the Markov chain induced by π).

As before, this implies ϕ̂π(s′, s) = pπ(s′ ∈ τt+1:∞ | st = s) = 0, and thus it is not possible
to see in a trajectory s after s′. It implies ψT (s′, s) = 1 = ψ(s′, s), so Equ. (A.30) is verified.

Case 3: pπ(s ∈ τt+1:∞ | st = s) = 1 and pπ(s′ ∈ τt+1:∞ | st = s′) = 1 (s is recurrent and
s′ is recurrent for the Markov chain induced by π). We denote by Tk the random variable
corresponding to the time of the kth visit to s. A trajectory can be represented as follows:

s0 −→︸︷︷︸
n1(s′)

s −→︸︷︷︸
n2(s′)

s −→︸︷︷︸
n3(s′)

s −→︸︷︷︸
n4(s′)

. . . −→︸︷︷︸
nk(s′)

s = sTk
−→︸︷︷︸

nk+1(s′)

, (A.31)

where, writing∼ the equality in distribution, n2(s′) ∼ n3(s′) ∼ · · · ∼ nk(s′) and Eτ n2(s′) =
Eτ n3(s′) = · · · = Eτ nk(s′) using the strong Markov property. From Lemma A.1 we get:

ψπ,T (s, s′) =
Eτ∼π

[
#T (s→ s′)

]
Eτ∼π

[
#T (s→ s′) + #T (s′ → s)

] , (A.32)

= 1
2
Eτ∼π

[
#T (s→ s′) + #T (s′ → s) + #T (s→ s′)−#T (s′ → s)

]
Eτ∼π

[
#T (s→ s′) + #T (s′ → s)

] , (A.33)

= 1
2 +

Eτ∼π
[
#T (s→ s′)−#T (s′ → s)

]
2 Eτ∼π

[
#T (s→ s′) + #T (s′ → s)

] . (A.34)

We can see from Lemma A.2 :

E
τ

[
#Tk

(s→ s′)−#Tk
(s′ → s)

]
= −k E

τ
n1(s′) . (A.35)
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Thus,

Eτ
[
#Tk

(s→ s′)−#Tk
(s′ → s)

]
Eτ∼π

[
#Tk

(s→ s′) + #Tk
(s′ → s)

] = −k Eτ n1(s′)
k Eτ n1(s′) + k2 Eτ n2(s′) (A.36)

−−−→
k→∞

0. (A.37)

Given t ∈ N and a trajectory τ , we denote #T (s) the random variable corresponding to the
number of times when s appear before t, such that a trajectory has the following structure :

s0 −→︸︷︷︸
n1(s′)

s −→︸︷︷︸
n2(s′)

s −→︸︷︷︸
n3(s′)

s −→︸︷︷︸
n4(s′)

. . . −→︸︷︷︸
nk(s′)

s = sT#T (s) −→ st −→︸ ︷︷ ︸
nk+1(s′)

s = sT#T (s)+1 . (A.38)

Eτ
[
#T (s→ s′)−#T (s′ → s)

]
Eτ
[
#T (s→ s′) + #T (s′ → s)

] ≤ Eτ
[
##T (s)(s→ s′)−##T (s)(s′ → s)

]
+ Eτ #T (s)nk+1(s′)

Eτ ##T (s)(s→ s′) + Eτ ##T (s)(s′ → s) ,

(A.39)
−−−−→
T→∞

0 as in Equ. (A.36). (A.40)

And,

Eτ
[
#T (s→ s′)−#T (s′ → s)

]
Eτ
[
#T (s→ s′) + #T (s′ → s)

] ≥ Eτ
[
##T (s)(s→ s′)−##T (s)(s′ → s)

]
− Eτ

∑#T (s)+1
i=1 ni(s′)

Eτ
[
##T (s)(s→ s′) + ##T (s)(s′ → s)

] ,

(A.41)
−−−−→
T→∞

0 (A.42)

Therefore,

Eτ
[
#T (s→ s′)−#T (s′ → s)

]
Eτ
[
#T (s→ s′) + #T (s′ → s)

] −−−−→
T→∞

0 , and finally, (A.43)

ψπ,T (s, s′) = 1
2 +

Eτ
[
#T (s→ s′)−#T (s′ → s)

]
2Eτ∼π

[
#T (s→ s′) + #T (s′ → s)

] −−−−→
T→∞

1
2 . (A.44)
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As ϕ̂π(s, s′) = 1 here, we immediately have ϕ̂π(s,s′)
2 = ψ(s′, s). We can notice that the

inequality is tight in this case.

Case 4: pπ(s ∈ τt+1:∞ | st = s) < 1 and pπ(s′ ∈ τt+1:∞ | st = s′) < 1 (s is transient and s′ is
transient for the Markov chain induced by π). To simplify the following formulas, we will write
α = pπ(s ∈ τt+1:∞ | st = s′). Here, we denote by #(s) the random variable corresponding to
the total number of visits of the state s, and #(s→ s′) the number of pairs such that s appears
before s′. #(s) follows the geometric distribution G (1− pπ(s ∈ τt+1:∞ | st = s)).

#T (s → s′) converges almost surely to #(s → s′), and we have #T (s → s′) ≤ #(s → s′).
Therefore, using the dominated convergence theorem, Eτ

[
#T (s→ s′)

]
−−−−→
T→∞

Eτ
[
#(s→ s′)], and thus:

ψπ,T (s′, s) =
Eτ
[
#T (s′ → s)

]
Eτ
[
#T (s→ s′) + #T (s′ → s)

] −−−−→
T→∞

Eτ #(s′ → s)
Eτ
[
#(s→ s′) + #(s′ → s)

] = ψπ(s′, s) .

(A.45)
This time, we consider a trajectory τ where s appears k times after s′, such that it is of the

form:

s′ . . . s′

n0(s′)≥0
−→ s . . . s

n1(s)>0
−→ s′ . . . s′

n1(s′)>0
−→ s . . . s

n2(s)>0
−→ · · · −→ s′ . . . s′

nk−1(s′)>0
−→ s . . . s

nk(s)>0
−→ s′ . . . s′

nk(s′)≥0
−→

(A.46)
Here, n0(s′) is the number of times when s′ appears in the trajectory before the first ap-

pearance of s′, ni(s) is the number of times when s appears between two occurrences of s′, and
nk(s′) the number of times when s′ appears after the last appearance of s. From the strong
Markov property, n1(s′) ∼ n2(s′) ∼ · · · ∼ nk−1(s′) and n1(s) ∼ n2(s) ∼ · · · ∼ nk(s). Note also
that these variables are all independent. Here k is a random variable following the geometric
distribution G(α) where α = p(s ∈ τt:∞ | st = s′). Notice that when nk(s′) > 0, we have
nk(s) ∼ n1(s) and nk(s′) ∼ n1(s′).

Using these two simplifications, one can write:

E
τ

[
#(s′ → s)−#(s→ s′)

∣∣∣k] ≥ E
τ

[
#(s′ → s)−#(s→ s′)

∣∣∣k, nk(s′) > 0
]
, (A.47)

≥ E
τ

[
n0(s′)

[
n1(s) + (k − 1)n1(s) + nk(s)

]
− n1(s)

[
kn1(s′) + nk(s′)

]
+

(A.48)
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nk(s)
[
kn1(s′)− nk(s′)

]
− nk(s′)(k − 1)n1(s)

∣∣∣k, nk(s′) > 0
]
,

(A.49)
≥ −kE

τ

[
n1(s)

∣∣∣k]E
τ

[
nk(s′)

∣∣∣k, nk(s′) > 0
]
as in Lemma A.2 ,

(A.50)
≥ −kE

τ
(n1(s))E

τ
(n1(s′)) . (A.51)

Likewise,

E
τ

[
#(s′ → s) + #(s→ s′)

∣∣ k] = E
τ

[
k n1(s)nk(s′) + k n0(s′)n1(s) + k (k − 1)n1(s)n1(s′)
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Thus,

Eτ
[
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]
Eτ
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∑∞
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1
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≥ −1− α
1 + α
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From Lemma A.1,

133



Complements on Chapter 5

ψπ(s′, s) = 1
2

(
1 +

Eτ
[
#(s′ → s)−#(s→ s′)

]
Eτ∼π

[
#(s→ s′) + #(s′ → s)

]) , (A.61)

≥ 1
2

(
1− 1− α

1 + α

)
, (A.62)

≥ α

1 + α
, (A.63)

≥ α

2 = ϕ̂π(s, s′)
2 . (A.64)

As a quick summary, we divided our problem in 4 cases, and proved that in each case, for
every pair of states s, s′, we have ψπ(s′, s) ≥ ϕ̂π(s,s′)

2 .
To end the proof, we simply take the expectation over the distribution of the next states:

E
s′∼P (s,a)

ψπ(s′, s) ≥ 1
2 E
s′∼P (s,a)

ϕ̂π(s, s′) , (A.65)

ϕ̄π(s, a) ≥ ϕπ(s, a)
2 . (A.66)

A.1.4 Proof of proposition 5.7

Proposition (Proposition 5.7). We suppose that we are given a state s, an action a such that a is
reversible inK steps, a policy π and ρ > 0. Then, ϕ̄π(s, a) ≥ ρK

2 , where A denotes the number of
actions. Moreover, we have for allK ∈ N: ϕ̄π(s, a) ≥ ρK

2 ϕK(s, a).

Proof. We first prove the second part of the proposition, which is more general. From Defini-
tion 5.1, and as the set of policies is closed, there is a policy π∗ such that ϕK(s, a) = pπ∗(s ∈
τt+1:t+K+1 | st = s, at = a). We begin by noticing that π has a probability at least equal to ρ to
copy the policy π∗ in every state.

It can be stated more formally:

∀s ∈ S, E
a∼π(s),a∗∼π∗(s)

(1a=a′) =
∑
a∈A

pπ(a | s)pπ∗(a | s) ≥ ρ
( ∑
a∈A

pπ∗(a | s)
)

= ρ . (A.67)

Then, we have:
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ϕπ,K(s, a) = pπ(s ∈ τt+1:t+K+1 | st = s, at = a) , (A.68)
= E

π
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]
, (A.69)

= E
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E
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[
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]
, (A.70)

= E
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≥ E
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≥ ρ E

st+3,...,st+K+1∼π
E

st+1,st+2∼π∗

[
1s∈τt+1:t+K+1 | st = s, at = a

] , and iterating the same process, ,
(A.74)

≥ ρK E
st+1,st+2,...,st+K+1∼π∗

[
1s∈τt+1:t+K+1 | st = s, at = a

]
, (A.75)

≥ ρKϕK(s, a) . (A.76)

We can conclude using Theorem 5.6: ϕ̄π(s, a) ≥ ϕπ(s,a)
2 ≥ ϕπ,K(s,a)

2 ≥ ρK

2 ϕK(s, a).

A.2 Additional details about reversibility-aware RL

A.2.1 Learning a reversibility estimator

We illustrate how the reversibility estimator is trained in Fig. A.2. We remind the reader that it
is a component that is specific to RAC. See Algorithm 23 for the detailed procedure of how to
train it jointly with the standard precedence estimator and the RL agent.

A.2.2 Pseudo-code for RAE and RAC

We give the pseudo-code for the online versions of RAE (Algorithm 17) and RAC (Algo-
rithm 23). The rejection sampling policy π̄ under approximate reversibility ϕ and threshold β
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Figure A.2 – The training procedure for the reversibility estimator used in RAC.

Algorithm A.1: RAE: Reversibility-Aware Exploration (online)
1 Initialize the agent weights Θ and number of RL updates per trajectory k;
2 Initialize the precedence classifier weights θ, ξ, window size w, threshold β and

learning rate η;
3 Initialize the replay buffer B;
4 for each iteration do
5 /* Collect interaction data and train the agent. */
6 Sample a trajectory τ = {xi, ai, ri}i=1...T with the current policy;
7 Incorporate irreversibility penalties τ ′ =

{
xi, ai, ri + rβ

(
ψθ,ξ(xi, xi+1)

)}
i=1...T ;

8 Store the trajectory in the replay buffer B ← B ∪ τ ;
9 Do k RL steps and update Θ;
10 /* Update the precedence classifier. */
11 for each training step do
12 Sample a minibatch Dbatch from B;
13 /* Self-supervised precedence classification, loss in Eq.(A.78).

*/
14 θ ← θ − η∇θLSSL(Dbatch);
15 ξ ← ξ − η∇ξLSSL(Dbatch);
16 end
17 end
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Algorithm A.2: RAC: Reversibility-Aware Control (online)
1 Initialize the agent weights Θ and number of RL updates per trajectory k;
2 Initialize the precedence classifier weights θ, ξ, window size w, threshold β and

learning rate η;
3 Initialize the reversibility estimator weights ζ;
4 Initialize the replay buffer B;
5 for each iteration do
6 /* Collect interaction data with the modified control policy and

train the agent. */
7 Sample a trajectory τ under the rejection sampling policy π̄ from eq.(A.77) ;
8 Store the trajectory in the replay buffer B ← B ∪ τ ;
9 Do k RL steps and update Θ;
10 /* Update the precedence classifier. */
11 for each training step do
12 Sample a minibatch Dbatch from B;
13 /* Self-supervised precedence classification, loss in Eq.(A.78).

*/
14 θ ← θ − η∇θLSSL(Dbatch);
15 ξ ← ξ − η∇ξLSSL(Dbatch);
16 end
17 /* Update the reversibility estimator, loss in Eq.(A.79). */
18 for each training step do
19 Sample a minibatch Dbatch from B;
20 /* Regression of the precedence classifier probabilities. */
21 ζ ← ζ − η∇ζLL2(Dbatch, ψθ,ξ);
22 end
23 end
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is expressed as follows:

π̄(a|x) =

 0 if ϕ(x, a) < β

π(a|x)/Z otherwise, with Z =
∑
a′∈A 1{ϕ(x, a′) ≥ β}π(a′|x)

. (A.77)

This is equivalent, on average, to sampling from the policy π until an action that is reversible
enough is found.

The loss we use to train the precedence estimator has the expression:

LSSL(Dbatch) = 1
|Dbatch|

∑
(x,x′,y)∈Dbatch

−y log
(
ψθ,ξ(x, x′)

)
+ (1− y) log

(
1− ψθ,ξ(x, x′)

)
, (A.78)

where y is the binary result of the shuffle, with value 1 if observations were not shuffled (thus
in the correct temporal order), and 0 otherwise. Pairs of observations (x, x′) can be separated
by up to w timesteps.

The loss we use to train the reversibility estimator (in RAC only) has the expression:

LL2(Dbatch, ψθ,ξ) = 1
2 |Dbatch|

∑
(x,a,x′)∈Dbatch

(
ψθ,ξ(x, x′)− ϕζ(x, a)

)2
, (A.79)

where (x, a, x′) are triples of state, action and next state sampled from the collected trajectories.
The offline versions of both RAE and RAC can be derived by separating each online algo-

rithm into two parts: 1) training the precedence classifier (and the reversibility estimator for
RAC), which is achieved by removing the data collection and RL steps and by using a fixed
replay buffer; and 2) training the RL agent, which is the standard RL procedure augmented
with modified rewards for RAE, and modified control for RAC, using the classifiers learned in
the first part without fine-tuning.

A.3 Experimental details

A.3.1 Reward-free reinforcement learning

Cartpole. The observation space is a tabular 4-dimensional vector: (cart position x, cart
velocity ẋ, pole angle θ, pole velocity θ̇). The discrete action space consists of applying a force
left or right. The episode terminates if the pole angle is more than ±12° (|θ| ≤ 0.209 radians),
if the cart position is more than ±2.4, or after 200 time-steps. It is considered solved when the
average return is greater than or equal to 195.0 over 100 consecutive trials.
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Architecture and hyperparameters. The reversibility network inputs a pair of observations
and produces an embedding by passing each one into 2 fully connected layers of size 64
followed by ReLU. The two embeddings are concatenated, and projected into a scalar followed
by a sigmoid activation. We trained this network doing 1 gradient step every 500 time steps,
using the Adam optimizer (Diederik P Kingma and Ba, 2015a) and a learning rate of 0.01.
We used batches of 128 samples, that we collected from a replay buffer of size 1 million. The
penalization threshold β was fine-tuned over the set [0.5, 0.6, 0.7, 0.8, 0.9] and eventually set
to 0.7. We notice informally that it was an important parameter. A low threshold could lead
to over penalizing the agent leading the agent to terminate the episode as soon as possible,
whereas a high threshold could slow down the learning.

Regarding PPO, both the policy network and the value network are composed of two
hidden layers of size 64. Training was done using Adam and a learning rate of 0.01. Other PPO
hyperparameters were defaults in Raffin et al. (2019), except that we add an entropy cost of
0.05.

A.3.2 Learning reversible policies

Environment. The environment consists of a 10 × 10 pixel grid. It contains an agent, repre-
sented by a single blue pixel, which can move in four directions: up, down, left, right. The pink
pixel represents the goal, green pixels grass and grey pixels a stone path. Stepping on grass
spoils it and the corresponding pixel turns brown, as shown in Fig. 5.5b. A level terminates
after getting to the goal, or after 120 timesteps. Upon reaching the goal, the agent receives a
reward of +1, every other action being associated with 0 reward.

Architecture and hyperparameters. The reversibility network takes a pair of observations
as input and produces an embedding by passing each observation through 3 identical convo-
lutional layers of kernel size 3, with respectively 32, 64 and 64 channels. The convolutional
outputs are flattened, linearly projected onto 64 dimensional vectors and concatenated. The
resulting vector is projected into a scalar, which goes through a final sigmoid activation.

As done for Cartpole, we trained this network doing 1 gradient step every 500 time steps,
using the Adam optimizer with a learning rate of 0.01. We used minibatches of 128 samples,
that we collected from a replay buffer of size 1M. The penalization threshold β was set to
0.8, and the intrinsic reward was weighted by 0.1, such that the intrinsic reward was equal to
−0.11ψ(st,st+1)>0.8 ψ(st, st+1).

For PPO, both the policy network and the value network are composed of 3 convolutional
layers of size 32, 64, 64. The output is flattened and passed through a hidden layer of size 512.
Each layers are followed by a ReLU activation. Policy logits (size 4) and baseline function (size
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1) were produced by a linear projection. Other PPO hyperparameters were defaults in Raffin
et al. (2019), except that we add an entropy cost of 0.05.

A.3.3 Sokoban

We use the Sokoban implementation from Schrader (2018). The environment is a 10x10 grid
with a unique layout for each level. The agent receives a -0.1 reward at each timestep, a +1
reward when placing a box on a target, a -1 reward when removing a box from a target, and
a +10 reward when completing a level. Observations are of size (10, 10, 3). Episodes have a
maximal length of 120, and terminate upon placing the last box on the remaining target. At
the beginning of each episode, a level is sampled uniformly from a set of 1000 levels, which
prevents agents from memorizing puzzle solutions. The set is obtained by applying random
permutations to the positions of the boxes and the position of the agent, and is pre-computed
for efficiency. All levels feature four boxes and targets.

We use the distributed IMPALA implementation from the Acme framework (Hoffman et al.,
2020) as our baseline agent in these experiments. The architecture and hyperparameters were
obtained by optimizing for sample-efficiency on a single held-out level. Specifically, the agent
network consists of three 3x3 convolutional layers with 8, 16 and 16 filters and strides 2, 1, and 1
respectively; each followed by a ReLU nonlinearity except the last one. The outputs are flattened
and fed to a 2-layer feed-forward network with 64 hidden units and ReLU nonlinearities. The
policy and the value network share all previous layers, and each have a separate final one-layer
feed-forward network with 64 hidden units and ReLU nonlinearities as well. Regarding agent
hyperparameters, we use 64 actors running in parallel, a batch size of 256, an unroll length of
20, and a maximum gradient norm of 40. The coefficient of the loss on the value is 0.5, and that
of the entropic regularization 0.01. We use the Adam optimizer with a learning rate of 0.0005,
a momentum decay of 0 and a variance decay of 0.99.

The precedence estimator network is quite similar: it consists of two 3x3 convolutional
layers with 8 filters each and strides 2 and 1 respectively; each followed by a ReLU nonlinearity
except the last one. The outputs are flattened and fed to a 3-layer feed-forward network with 64
hidden units and ReLU nonlinearities, and a final layer with a single neuron. We use dropout
in the feed-forward network, with a probability of 0.1. Precedence probabilities are obtained
by applying the sigmoid function to the outputs of the last feed-forward layer. The precedence
estimator is trained offline on 100k trajectories collected from a random agent. It is trained on a
total of 20M pairs of observations sampled with a window of size 15, although we observed
identical performance with larger sizes (up to 120, which is the maximal window size). We
use the Adam optimizer with a learning rate of 0.0005, a momentum decay of 0.9, a variance
decay of 0.999. We also use weight decay, with a coefficient of 0.0001. We use a threshold β of
0.9. We selected hyperparameters based on performance on validation data.
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A.3.4 Reversibility-aware control in cartpole+

Learning ψ. The model architecture is the same as described in Appendix A.3.1. The training
is done offline using a buffer of 100k trajectories collected using a random policy. State pairs are
fed to the classifier in batches of size 128, for a total of 3M pairs. We use the Adam optimizer
with a learning rate of 0.01. We use a window w equal to 200, which is the maximum number
of timesteps in our environment.

Learning ϕ. We use a shallow feed-forward network with a single hidden layer of size 64
followed by a ReLU activation. From the same buffer of trajectories used for ψ, we sample 100k
transitions and feed them to ϕ in batches of size 128. As before, training is done using Adam
and a learning rate of 0.01.

A.3.5 DQN and M-DQN in cartpole+

We use the same architecture for DQN and M-DQN. The network is a feed-forward network
composed of two hidden layers of size 512 followed by ReLU activation. In both cases, we
update the online network every 4 timesteps, and the target network every 400 timesteps. We
use a replay buffer of size 50k, and sample batches of size 128. We use the Adam optimizer
with a learning rate of 0.001.

We train both algorithms for 2M timesteps. We run an evaluation episode every 1000
timesteps, and report the maximum performance encountered during the training process.
We perform a grid search for the discount factor γ ∈ [0.99, 0.999, 0.9997], and for M-DQN
parameters α ∈ [0.7, 0.9, 0.99] and τ ∈ [0.008, 0.03, 0.1]. The best performances were obtained
for α = 0.9, τ = 0.03, and γ = 0.99.

A.3.6 Reversibility-aware control in Turf

Learning ψ. We use the same model architecture as in RAE (Appendix A.3.2), and the same
offline training procedure that was used for Cartpole+ (Appendix A.3.4). The window w was
set to 120, which is the maximum number of steps in Turf.

Learning ϕ. The architecture is similar to ψ, except for the last linear layers: the output of the
convolutional layers is flattened and fed to a feed-forward network with one hidden layer of
size 64 followed by a ReLU. Again, we used the exact same training procedure as in the case of
Cartpole+ (Appendix A.3.4).
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Figure A.3 – (a): Reward learning curve for PPO+RAC and several thresholds β (average over 10
random seeds). A threshold of 0 means actions are never rejected, and corresponds to the standard
PPO. (b): Number of irreversible side-effects (grass pixels stepped on). For β between 0.2 and 0.4, 0
side-effects are induced during the whole learning.

A.3.7 Safety and performance trade-off in Turf

We investigate the performance-to-safety trade-off induced by reversibility-awareness in Turf.
In Fig. A.3a, we see that the agent is not able to reach the goal when the threshold is greater
than 0.4: with too high a threshold, every action leading to the goal could be rejected. We also
see that it solves the task under lower threshold values, and that lowering β results in faster
learning. On the other hand, Fig. A.3b shows that achieving zero irreversible side-effects during
the learning is only possible when β is greater than 0.2. In this setting, the optimal thresholds
are thus between 0.2 and 0.3, allowing the agent to learn the new task while eradicating every
side-effect.

This experiment gives some insights on how to tune β in new environments. It should be
initialized at 0.5 and decreased progressively, until the desired agent behaviour is reached. This
would ensure that the chosen threshold is the maximal threshold such that the environment
can be solved, while having the greatest safety guarantees.

A.4 Stochastic MDPs

To study how reversibility-awareness helps in stochastic MDPs, we use a 2D cliff-walking
gridworld where stochasticity comes from the wind: additionally to its move, the agent is
pushed towards the cliff with a fixed probability. The agent gets a +1 reward for each timestep it
stays alive, with a maximum of 250 timesteps. A reversibility-aware agent with a well calibrated
threshold should avoid most moves that push it towards the cliff. We use a 6x8 grid, with a
maximum of 250 timesteps per episode, and report results averaged over 5000 runs. We provide
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two tables: Table A.1 with the average scores of a random policy and Table A.2 with the average
scores of a random policy equipped with RAC. Rows correspond to varying stochasticity and
columns to varying threshold values.

Table A.1 – Scores for a random policy in the 2D cliff-walking gridworld, where p is the probability of
being pushed by the wind. Higher is better.

p \ Threshold 0. 0.1 0.2 0.3 0.4
0. 57.5 57.7 61.2 58.2 57.7
0.1 29.8 28.8 29.5 30.2 29.6
0.2 18.6 18.5 19.3 18.9 18.8
0.3 13.4 13.3 13.9 13.6 13.4
0.4 10.5 10.7 10.4 10.2 10.2

Table A.2 – Scores for a random policy with RAC in the 2D cliff-walking gridworld, where p is the
probability of being pushed by the wind. Higher is better.

p \ Threshold 0. 0.1 0.2 0.3 0.4
0. 59.1 250.0 250.0 250.0 250.0
0.1 29.2 56.0 56.3 80.2 248.5
0.2 18.7 26.7 29.2 85.8 238.6
0.3 13.2 16.8 19.6 77.6 250.0
0.4 10.4 12.5 24.9 152.2 250.0

We can notice that:
• RAC significantly improves performance (reaching maximum or near-maximum score),

• a well-tuned threshold value is crucial to get decent performance with RAC,

• the optimal threshold increases with the stochasticity of the environment (but seems to
quickly converge).
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We organize the supplementary material as follows. In Appendix B.1 we include the proofs
of results from the main text, as well as additional details about the proposed algorithms,
including pseudo-code. In Appendix B.2 we detail our experimental procedure, including
hyperparameters for all methods used.

B.1 Technical elements and proofs

B.1.1 Proof of Proposition 6.3

Proposition (Proposition 6.3). If we have two pairs of equivalent sequences overM, i.e. w1, w2,
w3, w4 ∈ A⋆ such that

w1 ∼ w2

w3 ∼ w4

then the concatenation of the sequences are also equivalent sequences:

w1 · w3 ∼ w2 · w4

Proof. For any s ∈ S , we have T (s, w1) = T (s, w2) as w1 ∼ w2. We apply the same property for
w3 and w4 on the state T (s, w1):

T (T (s, w1), w3) = T (T (s, w2), w4)

T (s, w1.w3) = T (s, w2.w4)
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Therefore w1.w3 ∼ w2.w4.

B.1.2 Proof of theorem 6.4

Theorem. Given an equivalence set Ω, ∼Ω is an equivalence relationship. Furthermore, for v, w ∈
A⋆, v ∼Ω w ⇒ v ∼ w.

∼Ω is an equivalence relation Let u, v, w ∈ A⋆.

Proof.

• We immediately have v ∼1
Ω v by choosing v1 = Λ in (6.3), and therefore v ∼Ω v, thus ∼Ω

is reflexive.

• It is clear from its definition that ∼1
Ω is symmetric, as ∼ is symmetric. Then, we suppose

that v ∼Ω w. We have n ∈ N and v1, . . . , vn ∈ A⋆ such that v ∼1
Ω v1 ∼1

Ω · · · ∼1
Ω vn ∼1

Ω w,
therefore w ∼1

Ω vn ∼1
Ω · · · ∼1

Ω v1 ∼1
Ω v, thus w ∼Ω v. Hence ∼Ω is symmetric.

• If u ∼Ω v and v ∼Ω w, we have n1, n2 ∈ N, and u1, . . . , un1 ∈ A⋆, v1, . . . , vn2 ∈ A⋆, such
that u ∼1

Ω u1 ∼1
Ω · · · ∼1

Ω un1 ∼1
Ω v and v ∼1

Ω v1 ∼1
Ω · · · ∼1

Ω vn2 ∼1
Ω w. It is then clear that

u ∼1
Ω u1 ∼1

Ω · · · ∼1
Ω un1 ∼1

Ω v ∼1
Ω v1 ∼1

Ω · · · ∼1
Ω vn2 ∼1

Ω w, and thus u ∼Ω w. Therefore
∼Ω is transitive.

The relation ∼Ω is reflexive, symmetric and transitive. Therefore it is an equivalence
relation.

∼Ω implies ∼

Proof. Let v, w ∈ A⋆. From Proposition 6.3, we immediately get v ∼1
Ω w ⇒ v ∼M w. Then we

can prove by immediate induction that ∀n ∈ N, v1, . . . , vn ∈ A⋆, v ∼1
Ω v1 ∼1

Ω · · · ∼1
Ω vn ∼1

Ω w ⇒
v ∼ w, from which we deduce v ∼Ω w implies v ∼ w.

B.1.3 Graph construction algorithm

We present in Algorithm 1 an overview of the graph construction algorithm. It takes as input
the action set A, the sequence equivalence set Ω, and the desired depth d, and outputs a DAG.
Informally, it starts from a graph G = (V,E) reduced to a root state {0} and iteratively expands
G until a distance L to the root is reached. For a node n ∈ V we store in E(v) sequences which
reach v, and are prefixes of sequences of Ω. When expanding a state v ∈ V using an action
a ∈ A (Line. 13), we look at every partial sequence s ∈ E(v). If s.a is in Ω, it means that we
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Algorithm B.1: Graph Construction
1 Input Action set A;
2 Input Equivalence set Ω;
3 Input Maximum tree depth d;
4 Initialize the graph G = (V,E) with V = {0} and V = ∅ ;
5 Initialize the set of states to expand S = {0} ;
6 Initialize the current tree depth l = 0;
7 Initialize a dictionary E which stores partial sequences of Ω for each state of V ;
8 while l < d and S ≠ ∅ do
9 newStates = {} ;
10 for each state in S do
11 for each action in A do
12 /* create a node corresponding to T (state, action) */
1313 newState = expandNode(state, action, Ω, E) ;
14 if newState not in V then
15 /* Because of sequence redundancies, the state may already

appear in the graph. */
16 V ← V ∪ {newState} ;
17 newStates← newStates ∪{newState} ;
18 end
19 E ← E ∪ {(state, newState)} ;
20 /* Update the equivalences E(newState) to account for the new

ways of reaching newState */
2121 E ← UpdateDic(newState, E , Ω) ;
22 end
23 end
24 l← l + 1;
25 S ← newStates ;
26 end
27 /* Prune edges such that the resulting graph is a DAG. */
28 T = GraphToDAG(G) ;
29 Output DAG G;
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have found a redundant sequence. If the equivalent sequence has already been computed, it
means that a node u representing T (v, s.a) has previously been added in G. Otherwise, we add
a new node u. In both case, we update the equivalences E(u) to account for the new ways of
reaching u (Line. 21).

B.1.4 Graph construction complexity

As shown in Section 6.3.2, constructing the graph necessitates three intricate loops: The first
one goes over every internal node n ∈ V , the second one loops over the set of actions A, and
the last one loops over every partial sequence which allows to reach v from a parent node.
Inside these three loops, one has to compare the partial sequence with every sequence of Ω. As
sequence length in Ω can be bounded by d, the complexity cost inside the tree loops is bounded
byO(|Ω|d). The total complexity is therefore lower thanO(|V ||A||A|d−1|Ω|d) = O(|V ||A|d|Ω|d).
As |V | ≤ |A|d, the complexity can also be bounded by O(|A|2d|Ω|d).

B.1.5 Modified DQN

Our modified version of the DQN algorithm can be found at Algorithm 20.

Algorithm B.2:Modified DQN
1 Initialize replay memory D and Q-networks Qθ and Qθ′ ;
2 Determine local-dynamics graph G and the associated optimal exploration policy π⋆;
3 for episode = 1 to M do
4 Initialize new episode;
5 for t = 1 to T do
6 ε← set new ε value with ε-decay (ε usually anneals linearly or is constant);
7 Initialize at empty sequence v ← Λ;
8 if U([0, 1]) < ε then
9 Sample exploring action at ∼ π⋆(v, ·);

10 else
11 Select greedy action at;
12 end
13 v ← v.at (append at to the end of sequence v);
14 Execute at and observe next state st+1 and reward rt ;
15 Store (st, at, rt, st+1) in replay buffer D Update θ and θ′ normally with

minibatches from replay buffer D;
16 if Length(v)=d then
17 Reset v ← Λ;
18 end
19 end
20 end
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B.1.6 Possible extension to the stochastic case

In this sectionwe discuss the possibility of extending EASEE to the case ofMDPswith stochastic
transitions. EASEE relies on three components: the formalization of action sequence equiva-
lences (Def. 6.1), the construction of a local-dynamics graph (Section 6.3.2), and the construction
of a local exploration policy by solving a convex problem (Section 6.4.2). We now detail for
each step the necessary changes to adapt EASEE toM = (S,A, T,R, γ), a MDP with stochastic
dynamics.

• Action Sequence equivalences: the difference with the deterministic case here is that
given an action a ∈ A and a state s ∈ S , T (s, a) is not a state but a distribution over the set
of states S . Therefore every equality considered in Section 6.3.1 has now to be understood
not as an equality between two states but between two distributions. Other than this the
formalism can be kept identical. Intuitively, two sequences of actions are equivalent if
they lead to the same state distribution from any given state, i.e. if they produce the same
effect everywhere.

• Local-Dynamics Graph: Here, the formalism can again be kept identical. A node in the
local-dynamics graph will not represent a state anymore, but rather a distribution over S .

• Local Exploration Policy: Solving directly the objective given in (6.4) would lead to
maximize the diversity among state distributions encountered. As is, it would not neces-
sarily lead to a better diversity among states, as two different distributions can have an
almost similar support. Therefore, adapting EASEE to a stochastic setting would require
encoding additional priors about the distributions represented by the nodes of the local-
dynamics graph, which we leave for future work. If we suppose that the distributions
encountered have disjoint supports, and that their entropy is the same, EASEE can be
applied without modification.

B.2 Experimental details

B.2.1 Gridworlds

We tested EASEE on the DoorKey task. An illustration of the initial state is given in Fig. B.1.
The agent is represented by the red triangle. The yellow key is necessary to open the yellow
door. The two room are respectively 12× 17 and 4× 17 grids. The agent has 3249 timesteps to
reach the goal and receive a reward of 1 before the environment is reset.
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Figure B.1 – Example of initial state of DoorKey environment.

B.2.2 Catcher

The paddle is 1 block wide. The environment is 60 blocks wide and 30 blocks high. The ball
and the paddle both move at a rate of 1 block per timestep, so each episode lasts 30 timesteps.

We use the same architecture for the DQN with and without EASEE. Each observation is a
60× 30 image. The feature extractor network is a CNN composed of 3 convolution layers with
kernel size 3 followed by ReLU activation. In both cases, we update the online network every 4
timesteps, and the target network every 103 timesteps. We use a replay buffer of size 104, and
sample batches of size 32. We use the Adam optimizer with a learning rate of 10−4.

We train for 3.105 timesteps. The exploration parameter ε is linearly annealed from 1 down
to 0.05 over 20% of the training period. Other DQN hyperparameters were defaults in Raffin
et al. (2019).

B.2.3 Freeway

Environment In Freeway, the agent has to cross a road with multiple lanes without getting
hit by the cars. It only receives a reward when it safely reaches the other side of the road. An
illustration is given in Fig. B.2. The agent is represented by the yellow chicken.

We use the default preprocessing in Raffin et al. (2019), which follows guidelines of M. G.
Bellemare et al. (2013). More precisely, the environment is initialized with a random number
of up to 30 no-op actions. The frame is recast as a 84× 84× 3 image, and the number of frames
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Figure B.2 – The Freeway environment from Atari 2600.

to skip between each observation is set to 4. The reward is scaled to [-1, 1]. An observation
corresponds to 4 stacked game frames.

Architecture and hyperparameters We use the same architecture for the DQN with and
without EASEE. Input images first go through a convolutional neural network, with the same
architecture as in Volodymyr Mnih, Kavukcuoglu, et al. (2015). We update the online network
every 4 timesteps, and the target network every 103 timesteps. We use a replay buffer of size
105, and sample batches of size 32. We use the Adam optimizer with a learning rate of 10−4.

We train for 107 timesteps. The exploration parameter ε is linearly annealed from 1 down
to 0.01 over 10% of the training period, which are the default in Raffin (2018) for Atari games.
Other DQN hyperparameters were defaults in Raffin et al. (2019).

B.2.4 Additional experiments

Environments We experimented EASEE on two other Atari environments, where the action
sequence structures are less straight-forward. The three environments are preprocessed as
explained in AppendixB.2.3.

• Boxing: This game shows a top-down view of two boxers. The player can move in all four
directions, and punch his opponent (pressing the “FIRE” button). The action space is
composed of 18 actions : NOOP, FIRE, UP, RIGHT, LEFT, DOWN, UPRIGHT, UPLEFT, DOWNRIGHT,
DOWNLEFT, UPFIRE, RIGHTFIRE, LEFTFIRE, DOWNFIRE, UPRIGHTFIRE, UPLEFTFIRE, DOWNRIGHTFIRE,
DOWNLEFTFIRE. We incorporated priors by decomposing actions, in the form of UPRIGHT
∼ UP.RIGHT, UPLEFT ∼ UP.LEFT, UPRIGHTFIRE ∼ UPRIGHT . FIRE, UPLEFTFIRE ∼ UPLEFT .
FIRE, etc.
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Figure B.3 – Performances of DQN and DQN + EASEE on the Atari 2600 games Boxing, Carnival. A
95% confidence interval over 10 random seeds is shown.

• Carnival: The goal of the game is to shoot at targets, which include rabbits, ducks, owls,
scroll across the screen in alternating directions, and sometimes come at the player. The
player can only move in 1 direction, such that the action space is composed of 6 actions:
[NOOP, FIRE, RIGHT, LEFT, RIGHTFIRE, LEFTFIRE]. As NOOP is not an useful action, EASEE
could get an edge simply by adding the equivalence NOOP ∼ Λ. For a fair comparison,
we restricted the action space to meaningful actions by removing NOOP for both EASEE
and the baseline. We limited ourselves to the commutative property of RIGHT and LEFT:
RIGHT . LEFT ∼ LEFT . RIGHT.

Architecture and hyperparameters We use the same architecture and the exact same DQN
parameters as in AppendixB.2.3. In all three environments, EASEE is used with a depth of 4.

Results We can see the results on Fig.B.3. We can see a slight gain for Boxing, and a marginal
improvement for Carnival. This can come from various factors:

• When the number of action sequence equivalences considered is small compared to the
number of actions, as it is the case for Carnival, the exploration policy computed with
EASEE is very much like a uniform policy. It logically makes its performances converge
toward those of a standard DQN.

• The action sequence equivalences considered here are only approximately true. In boxing,
it is only approximately true that UPRIGHT ∼ UP.RIGHT for example. In Carnival, RIGHT
and LEFT commute as long as the player is not at the edges of the screen, in which case
RIGHT or LEFT could have no effect. In both cases, this induces a bias that may harm
performance.
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C.1 Additional details on Poppy

C.1.1 Number of parameters

Table C.1 shows the total number of parameters of our models as a function of the population
size. Since the decoder represents less than 10% of the parameters, scaling the population size
can be done efficiently. For instance, a population of 16 agents roughly doubles the model size.

Table C.1 – Number of model parameters for different population sizes.

Population size
Encoder Decoder 1 4 8 16 32

Parameters 1,190,016 98,816 1,288,832 1,585,280 1,980,544 2,771,072 4,352,128
Extra parameters - - 0% 23% 54% 115% 238%

C.1.2 Training details

In Section 7.3.2 (see “Training Procedure”), we described that Poppy consists of two phases.
In a nutshell, the first phase consists of training our model in a single-agent setting (i.e., an
encoder-decoder model with a single decoder head), whereas the second phase consists of
keeping the encoder and cloning the previously trained decoder K times (where K is the
number of agents) and specialize them using the Jpoppy objective. Algorithm C.1 shows the
low-level implementation details of the training of the population (i.e., Phase 2) omitted in
Algorithm 7.1 for simplicity; namely, givenK agents and P starting points, P ×K trajectories
are rolled out for each instance, among which only P are effectively used for training.
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Algorithm C.1: Poppy training with starting points
1 Inputs: problem distribution D, number of starting points per instance P , number of

agentsK, batch size B, number of training steps H , a pretrained encoder hψ
and a set ofK decoders qϕ1 , qϕ2 , . . . , qϕK

2 for step 1 to H do
3 ρi ← Sample(D) ∀i ∈ 1, . . . , B ;
4 αi,1, . . . , αi,P ← SelectStartPoints(ρi, P ) ∀i ∈ 1, . . . , B ;
5 τki,p ← Rollout(ρi, αi,p, hψ, qϕk

) ∀i ∈ 1, . . . , B, ∀p ∈ 1, . . . , P , ∀k ∈ 1, . . . ,K ;
6 bki ← 1

P

∑
pR(τki,p) ;

7 k∗
i,p ← arg maxk≤K R(τki,p) ∀i ∈ 1, . . . , B, ∀p ∈ 1, . . . , P ;

8 /* Select the best agent per (instance, starting point). */

9 ∇L(hψ, qϕ1 , qϕ2 , . . . , qϕK
)← − 1

BP

∑
i,p(R(τ

k∗
i,p

i,p )− b
k∗

i,p

i )∇ log pψ,ϕk∗
i,p

(τ
k∗

i,p

i,p ) ;
10 /* Propagate gradients through these only. */
11 (hψ, qϕ1 , qϕ2 , . . . , qϕK

)← (hψ, qϕ1 , qϕ2 , . . . , qϕK
)− α∇L(hψ, qϕ1 , qϕ2 , . . . , qϕK

) ;

C.2 Mathematical Elements

C.2.1 Gradient derivation

We recall that the population objective forK is defined as:

Jpop(θ1, θ2, . . . , θn) .= Eρ∼DEτ1∼πθ1 ,...,τK∼πθK
max [R(τ1), . . . , R(τK)] .

Theorem (Policy gradient for the population objective). The gradient of the population objective is
given by:

∇Jpop(θ1, θ2, . . . , θn) = Eρ∼DEτ1∼πθ1 ,...,τK∼πθK

(
R(τi∗)−R(τi∗∗)

)
∇ log pθi∗ (τi∗), (C.1)

where:

i∗ = arg max
[
R(τ1), . . . , R(τK)

]
, (index of the best trajectory)

i∗∗ = arg second max
[
R(τ1), . . . , R(τK)

]
, (index of the second best trajectory)

Proof. We first derive the gradient with respect to θ1 for convenience. As all the agents play a
symmetrical role in the objective, the same procedure can be applied to any index.

∇θ1Jpop(θ1, θ2, . . . , θK) = ∇θ1Eρ∼DEτ1∼πθ1 ,...,τK∼πθK
max

i∈{1,2,...,K}

[
R(τi)

] (C.2)

= Eρ∼DEτ1,...,τK max
i∈{1,2,...,K}

[
R(τi)

]
∇θ1 log p(τ1, . . . , τK) (C.3)

= Eρ∼DEτ1,...,τK max
i∈{1,2,...,K}

[
R(τi)

]
∇θ1 log(πθ1(τ1) . . . πθK

(τK)) (C.4)
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= Eρ∼DEτ1,...,τK max
i∈{1,2,...,K}

[
R(τi)

]
∇θ1(log πθ1(τ1) + · · ·+ log πθK

(τK))

(C.5)
= Eρ∼DEτ1,...,τK max

i∈{1,2,...,K}

[
R(τi)

]
∇θ1 log πθ1(τ1), (C.6)

We also have for any problem instance ρ and any trajectories τ2, . . . , τK :

Eτ1∼πθ1
max

i∈{2,...,K}

[
R(τi)

]
∇θ1 log πθ1(τ1) = max

i∈{2,...,K}

[
R(τi)

]
Eτ1∼πθ1

∇θ1 log πθ1(τ1) (C.7)

= max
i∈{2,...,K}

[
R(τi)

]
Eτ1∼πθ1

∇θ1πθ1(τ1)
πθ1(τ1) (C.8)

= max
i∈{2,...,K}

[
R(τi)

]∑
τ1

∇θ1πθ1(τ1) (C.9)

= max
i∈{2,...,K}

[
R(τi)

]
∇θ1

∑
τ1

πθ1(τ1) (C.10)

= max
i∈{2,...,K}

[
R(τi)

]
∇θ11 = 0 (C.11)

(C.12)

Intuitively, maxi∈{2,...,K}
[
R(τi)

] does not depend on the first agent, so this derivation simply
shows that maxi∈{2,...,K}

[
R(τi)

] can be used as a baseline for training θ1.
Subtracting this to the quantity obtained in Equation C.6, we have:

∇θ1Jpop(θ1, θ2, . . . , θK) = Eρ∼DEτ1,...,τK max
i∈{1,2,...,K}

[
R(τi)

]
∇θ1 log πθ1(τ1), (C.13)

= Eρ∼DEτ2,...,τKEτ1 max
i∈{1,2,...,K}

[
R(τi)

]
∇θ1 log πθ1(τ1), (C.14)

= Eρ∼DEτ2,...,τKEτ1

(
max

i∈{1,2,...,K}

[
R(τi)

]
− max
i∈{2,...,K}

[
R(τi)

])
∇θ1 log πθ1(τ1),

(C.15)
= Eρ∼DEτ2,...,τKEτ11i∗=1

(
R(τ1)−R(τi∗∗)

)
∇θ1 log πθ1(τ1), (C.16)

= Eρ∼DEτ1,...,τK1i∗=1
(
R(τi∗)−R(τi∗∗)

)
∇θ1 log πθ1(τ1). (C.17)

(C.18)

Equation (C.16) comes from the fact that
(
maxi∈{1,2,...,K}

[
R(τi)

]
−maxi∈{2,...,K}

[
R(τi)

]) is
0 if the best trajectory is not τ1, and R(τ1)−maxi∈{2,...,K}

[
R(τi)

]
= R(τ1)−R(τi∗∗) otherwise.
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Finally, for any j ∈ {1, . . . ,K}, the same derivation gives:

∇θj
Jpop(θ1, θ2, . . . , θK) = Eρ∼DEτ1,...,τK1i∗=j

(
R(τi∗)−R(τi∗∗)

)
∇θj

log πθj
(τj). (C.19)

Therefore, we have:

∇θ =
n∑
j=1

Eρ∼DEτ1,...,τK1i∗=j
(
R(τi∗)−R(τi∗∗)

)
∇θj

log πθj
(τj), (C.20)

∇θ = Eρ∼DEτ1,...,τK

(
R(τi∗)−R(τi∗∗)

)
∇θi∗ log πθi∗ (τi∗), (C.21)

(C.22)

which concludes the proof.

C.3 Comparison to active search

To give a sense of the performance of Poppy with a larger time budget, we implement a simple
sampling strategy. Given a population ofK agents, we first greedily rollout each of them on
every starting point, and evenly distribute any remaining sampling budget across the most
promisingK (agent, starting point) pairs for each instance with stochastic rollouts. This two-
step process is motivated by the idea that is not useful to sample several times an agent on an
instance where it is outperformed by another one.

Setup For both TSP and CVRP, we use the same test instances as in Tables 7.1 and 7.2. We
generate a total of 200 × 8 × N candidate solutions per instance (where 8 corresponds to
the augmentation strategy by Kwon et al. (2020) and N is the number of starting points),
accounting for both the first and second phases. We evaluate our approach against POMO
(Kwon et al., 2020) and EAS (Hottung, Kwon, and Tierney, 2022) with the same budget. As
EAS has three different variants, we compare against EAS-Tab since it is the only one that does
not backpropagate gradients through the network, similarly to our approach; thus, it should
match Poppy’s compute time on the same hardware.

Results Tables C.2 and C.3 show the results for TSP and CVRP, respectively. With extra
sampling, Poppy reaches a performance gap of 0.002% on TSP100, and establishes a state-of-
the-art for general ML-based approaches, even when compared to supervised methods. For
CVRP, adding sampling to Poppy makes it on par with DPDP and EAS, depending on the
problem size, and it is only outperformed by the active search approach EAS, which gives large
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improvements on CVRP. As the two-step sampling process used for Poppy is very rudimentary
compared to the active search method described in Hottung, Kwon, and Tierney (2022), it is
likely that combining the two approaches could further boost performance, which we leave for
future work.

Table C.2 – TSP results (active search).

Inference (10k instances) 0-shot (1k instances)
n = 100 n = 125 n = 150

Method Obj. Gap Time Obj. Gap Time Obj. Gap Time
Concorde 7.765 0.000% 82M 8.583 0.000% 12M 9.346 0.000% 17M
LKH3 7.765 0.000% 8H 8.583 0.000% 73M 9.346 0.000% 99M

SL

GCN-BS
CVAE-Opt
DPDP

7.87
-

7.765

1.39%
0.343%
0.004%

40M∗

6D∗

2H∗

-
8.646
8.589

-
0.736%
0.070%

-
21H∗

31M∗

-
9.482
9.434

-
1.45%
0.94%

-
30H∗

44M∗

RL

POMO (200 samples)
EAS
Poppy 16 (200 samples)

7.769
7.768
7.765

0.056%
0.048%
0.002%

2H
5H∗

2H

8.594
8.591
8.584

0.13%
0.091%
0.009%

20M
49M∗

20M

9.376
9.365
9.351

0.31%
0.20%
0.05%

32M
1H∗

32M

Table C.3 – CVRP results (active search).

Inference (10k instances) 0-shot (1k instances) 0-shot (1k instances)
n = 100 n = 125 n = 150

Method Obj. Gap Time Obj. Gap Time Obj. Gap Time
LKH3 15.65 0.000% 6D 17.50 0.000% 19H 19.22 0.000% 20H

SL

CVAE-Opt
DPDP

-
15.63

1.36%
−0.13%

11D∗

23H∗
17.87
17.51

2.08%
0.07%

36H∗

3H∗
19.84
19.31

3.24%
0.48%

46H∗

5H∗

RL

POMO (200 samples)
EAS
Poppy 32 (200 samples)

15.67
15.62
15.62

0.18%
-0.14%
-0.14%

4H
8H∗

4H

17.56
17.49
17.49

0.33%
0.00%
-0.10%

43M
80M∗

42M

19.43
19.36
19.32

1.08%
0.72%
0.50%

1H
2H∗

1H

C.4 Problems

We here describe the details of the CO problems we have used to evaluate Poppy, including
instance generation and training details (e.g. architecture, hyperparameters). In the case of
TSP and CVRP, we show some example solutions obtained by a population of agents. Besides,
we thoroughly analyze the performance of the populations in TSP.

C.4.1 Traveling Salesman Problem (TSP)

Instance generation

The n cities that constitute each problem’s instance are uniformly sampled from [0, 1]2.
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Training details

Architecture Weuse the samemodel as Kool, Hoof, andWelling (2019) andKwon et al. (2020)
except for the batch-normalization layers, which are replaced by layer-normalization to ease
parallel batch processing. We invert the mask used in the decoder computations (i.e., masking
the available cities instead of the unavailable ones) after experimentally observing faster
convergence rates. The results reported for POMOwere obtainedwith the same implementation
changes to keep the comparison fair. These results are on par with those reported in the original
POMO paper (Kwon et al., 2020).

Hyperparameters Tomatch the setting used byKwon et al. (2020), we use theAdamoptimizer
(Diederik P. Kingma and Ba, 2015b)with a learning rate µ = 10−4, and aL2 penalization of 10−6.
The encoder is composed of 6 multi-head attention layers with 8 heads each. The dimension of
the keys, queries and values is 16. Each attention layer is composed of a feed-forward layer of
size 512, and the final node embeddings have 128 dimensions. The decoders are composed of 1
multi-head attention layer with 8 heads and 16-dimensional key, query and value.

The number of starting points P is 50 for each instance. We determined this value after
performing a grid-search based on the first training steps with P ∈ {20, 50, 100}.

Example solutions

Figure C.2 shows some trajectories obtained from a 16-agent population on TSP100. Even
though they look similar, small decisions differ between agents, thus frequently leading to
different solutions. Interestingly, some agents (especially 6 and 11) give very poor trajectories.
We hypothesize that it is a consequence of specializing since agents have no incentive to provide
a good solution if another agent is already better on this instance.

Population analysis

Figure C.1 shows some additional information about individual agent performances. In the left
figure, we observe that each agent gives on average the best solution for 35% of the instances, and
that for around 2.5% it gives the unique best solution across the population. These numbers
are evenly distributed, which shows that every agent contributes to the whole population
performance. Furthermore, we observe the performance is quite evenly distributed across
the population of Poppy 16; hence, showing that the population has not collapsed to a few
high-performing agents, and that Poppy benefits from the population size, as shown in the
bottom figure. On the right is displayed the performance of several sub-populations of agents
for Poppy 4, 8 and 16. Unsurprisingly, any fixed size sub-population is better when sampled
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Figure C.1 – Left: Proportion of instances that each agent solves best among the population for Poppy 16
on TSP100. Colors indicate the number of agents in the population giving the same solution for these
sets of instances. Right: The mean performance of 1,000 randomly drawn sub-populations for Poppy 1,
4, 8 and 16. Bottom: Optimality gap loss suffered when removing any agent from the population using
Poppy 16. Although some agents contribute more (e.g. 2, 7) and some less (e.g. 15, 16), the distribution
is relatively even with all agents contributing, even though no explicit mechanism enforces this behavior

from smaller populations: Poppy 16 needs 4 agents to recover the performance of Poppy 4,
and 8 agents to recover the performance of Poppy 8 for example. This highlights the fact that
agents have learned complementary behaviors which might be sub-optimal if part of the total
population is missing.

C.4.2 Capacitated Vehicle Routing Problem (CVRP)

Instance generation

The locations of the n customer nodes and the depot are uniformly sampled in [0, 1]2. The de-
mands are uniformly sampled from the discrete set { 1

D ,
2
D , . . . ,

9
D}whereD = 50 for CVRP100,

D = 55 for CVRP125, and D = 60 for CVRP150. The maximum vehicle capacity is 1. The
deliveries cannot be split: each customer node is visited once, and its whole demand is taken
off the vehicle’s remaining capacity.
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Training details

Architecture We use the samemodel as in TSP. However, unlike TSP, the mask is not inverted;
besides, it does not only prevent the agent from revisiting previous customer nodes, but also
from visiting the depot if it is the current location, and any customer node whose demand is
higher than the current capacity.

Hyperparameters We use the same hyperparameters as in TSP except for the number of
starting points P per instance used during training, which we set to 100 after performing a
grid-search with P ∈ {20, 50, 100}.

Example solutions

Figure C.3 shows some trajectories obtained by 16 agents from a 32-agent population on
CVRP100. Unlike TSP, the agent/vehicle performs several tours starting and finishing in the
depot.

C.4.3 0-1 Knapsack (KP)

Instance generation

Item values and weights are uniformly sampled in [0, 1]. The bag capacity is fixed to 25.

C.4.4 Training details

Training For this environment, and contrary to TSP and CVRP, training an agent is lightning-
fast as it takes only a few minutes. In this specific case, we noticed it was not necessary to train
a single decoder first. Instead, (i) we directly train a population in parallel from scratch, and
(ii) specialize the population exactly as done in the other environments.

Architecture We use the same model as in TSP. However, the mask used when decoding is
not inverted, and the items that do not fit in the bag are masked together with the items taken
so far.

Hyperparameters We use the same hyperparameters as in TSP except for the number of
starting points P used during training, which we set to 100 after performing a grid-search with
P ∈ {20, 50, 100}.
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C.5 Time-performance tradeoff

We present on Figure C.4 a comparison of the time-performance Pareto front between Poppy
and POMO as we vary respectively the population size and the amount of stochastic sampling.
Poppy consistently provides better performance for a fixed number of trajectories. Strikingly,
in almost every setting, matching Poppy’s performance by increasing the number of stochastic
samples does not appear tractable.
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Figure C.2 – Example TSP trajectories given by Poppy for a 16-agent population from one starting point
(red).
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12 routes, distance 16.04 12 routes, distance 16.16 13 routes, distance 16.23 12 routes, distance 16.20

12 routes, distance 16.05 12 routes, distance 16.63 12 routes, distance 15.86 12 routes, distance 16.16

12 routes, distance 16.24 12 routes, distance 16.56 13 routes, distance 16.17 12 routes, distance 16.24

12 routes, distance 16.02 13 routes, distance 16.16 12 routes, distance 15.93 12 routes, distance 16.08

Figure C.3 – Example CVRP trajectories given by Poppy for 16 agents from a 32-agent population. The
depot is displayed as a black square. The edges from/to the depot are omitted for clarity.
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Figure C.4 – Comparison of the time-performance Pareto front of Poppy and POMO, for each problem
used in the chapter. The x-axis is the number of trajectories sampled per test instance, while the y-axis is
the gap with the optimal solution for TSP and KP, and the gap with LKH3 for CVRP.
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D.1 Additional details

D.1.1 Hyperparameter selection

We provide in Table D.1 the hyperparameters selected on the validation dataset and used for
our experiments.

Elo Attacker side Nmin c

1800 White 100 0.1
Black 100 0.1

2000 White 50 0.1
Black 100 0.1

2200 Black 100 0.1
White 100 0.1

Table D.1 – Hyperparameters selected on the validation dataset.

D.1.2 Quantitative evaluation: number of moves

In our quantitative evaluation setting, the number of moves actually performed by Hustler
of Stockfish depends on the test data available. We provide in Table D.2 the average number
of moves for each approach in each setting. Because Hustler’s policy is not defined for every
position, it plays less than Stockfish in every case, despite showing better performances.
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Elo Attacker Method Average move number

1800
White Hustler 8.33

stockfish 8.84

Black Hustler 6.87
stockfish 8.05

2000
White Hustler 7.18

stockfish 9.52

Black Hustler 6.44
stockfish 7.98

2200
White Hustler 7.68

stockfish 9.72

Black Hustler 6.28
stockfish 7.54

Table D.2 – Average number of moves for each approach in each setting.

D.2 Additional results

D.2.1 Effect of Nmin
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Figure D.1 – Sensitivity analysis of Nmin. Nmin empirically controls the degree of exploitation of the
training set: the smaller Nmin, the higher the score on the training set, but at the risk of overfitting. The
scores are averaged over each Elo category and attacker side.

Intuitively, Nmin controls the trade-off between over-fitting (when Nmin is too small), and
under-fitting (whenNmin is too large). Fig. D.1 shows this empirically: although the train score
decreases as Nmin increases, the best test score is attained for Nmin = 100.

D.2.2 Ablation study: Vsearch

We provide an ablation study over the use of Vsearch in Fig. D.2. We can see that using Vsearch in
addition to Vpolicy improves performance both at train and test time, outlining its positive effect
on the search procedure.
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Figure D.2 – We evaluate d-MCTS without Vsearch, as an ablation study, thus keeping only one value for
each node as done traditionally. The scores are averaged over each Elo category and attacker side. Using
Vsearch improves both train and test performance, which outlines that it makes the search more efficient.
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Figure D.3 – Stockfish evaluation (centipawn).

D.2.3 Centipawn evaluation

We display in Fig. D.3 Stockfish evaluation of the 100 positions reached at the end of the beam
search during the quantitative evaluation phase. Even using Stockfish’s evaluation, Hustler
outperforms Stockfish in every situation.
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