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Abstract

In aircraft design, engineers need to prove the structural integrity of airframe components
and assemblies, in spite of the uncertainties associated to all the physical parameters
affecting the structural performances, and potentially affecting the safety of the aircraft.
(Classical static sizing of aeronautical structures introduces scenarios associated to low
probability events to deal with the input uncertainties: by piling-up of low probability
events, deterministic static strength assessments generally reflect scenarios beyond what
needs to be reasonably considered. Except for the loads and material properties (for
which clear guidelines are given in the regulations), for a number of parameters, these
deterministic values are defined by engineering judgment or by worst cases, and can lead
to suboptimal performances (e.g. weight, manufacturing costs).

The main goal of this PhD is to challenge the classical approaches and integrate
the uncertainties associated to material properties, manufacturing and assembly process
in the structural design and sizing of aeronautical assemblies in order to improve their
performances. A semi-probabilistic framework is proposed to extend current aeronau-
tical certification requirements (on loads and material properties) to other phenomena
affecting structural performances. The basic idea is to control the probability that repre-
sentative deterministic values (used in a deterministic design process) over-estimate the
structural performances of the real structure: this facilitates the integration of the pro-
posed semi-probabilistic co-design framework in the current way of working (specifically
in deterministic sizing). On one hand, the proposed framework can identify the struc-
tural consequences of the input variabilities, thus defining new improved deterministic
quantities to be adopted in the design phase. On the other hand, this framework can be
used to determine new constraints, called tolerances, on the geometric input variability
to ensure (in probabilistic terms) specific structural performances.

The implementation of probabilistic analyses generally involves repeated simulations
of often computationally expensive numerical models. To ease the computational burden,
a sampling strategy is proposed to better exploit the information in a given database and,
thus, reduce the number of required simulations to achieve a targeted accuracy. With the
same objective in mind, an adaptive machine learning algorithm is proposed to replace the
full model with a cheap surrogate model that is adaptively enriched: the algorithm allows
to reduce the number of the needed full model simulations by balancing the uncertainties
associated to the surrogate model and to the sampled population. Particular attention is
given to the scalability of the surrogate model for high number of inputs, which constitutes
a challenge for most of machine learning techniques.

The common application thread of the whole project is given by Airbus Hole2Hole
project, aiming at simplifying the aeronautical assembly process by using pre-drilled
components. New variabilities, associated to geometrical positioning of the manufac-



tured holes, arise from this application. Considering worst cases scenarios would make
the Hole2Hole not affordable in terms of weight. The proposed framework allows to sig-
nificantly improve the sizing assumptions and thus the structural weight, while relaxing
the tolerance plans defining the constraints on the input variability.

Keywords: codesign, semi-probabilistic framework, high-dimensional reliability, aero-
nautical assemblies, machine learning, sampling methods



Résumé

Dans la conception des avions, les ingénieurs doivent prouver I'intégrité structurale des
composants et des assemblages de la cellule, malgré les incertitudes associées a tous
les parametres physiques qui peuvent affecter les performances structurales, et poten-
tiellement nuire a la sécurité de ’avion. Dans I’approche classique de dimensionnement
statique, on introduit des scénarios associés a des événements rares pour traiter les in-
certitudes d’entrée : en cumulant ces événements rares, le dimensionnement classique
peut mener a des scénarios qui vont au dela de ce qui serait raisonnable a considérer.
A I'exception des charges et des propriétés des matériaux (pour lesquelles des direc-
tives claires sont fournies dans la réglementation), la plupart du temps, pour d’autres
parametres, ces valeurs déterministes sont définies par jugement d’ingénieur ou en con-
sidérant le pire cas, et peuvent conduire a des performances sous-optimales (par exemple,
en termes de poids et colits de fabrication).

L’objectif principal de cette these est d’aller au-dela de ces approches classiques et
d’intégrer les incertitudes liées aux propriétés des matériaux, a la fabrication et au proces-
sus d’assemblage dans la conception et le dimensionnement des assemblages aéronautiques
afin d’améliorer leurs performances. Un cadre semi-probabiliste est proposé pour étendre
les exigences actuelles de certification aéronautique (sur les charges et les propriétés des
matériaux) a d’autres phénomenes affectant les performances structurales. L’idée de base
est de controler la probabilité que les valeurs déterministes représentatives (utilisées dans
un processus de conception déterministe) surestiment les performances structurelles d'une
structure réelle donnée : cela facilite I'intégration du cadre semi-probabiliste de codesign
proposé dans la maniére actuelle de travailler dans l'industrie (en particulier en termes
de dimensionnement déterministe). D’une part, le cadre proposé permet d’identifier les
conséquences structurales des variabilités d’entrée, définissant ainsi des nouvelles quan-
tités déterministes (améliorées) a adopter en phase de conception. D’autre part, ce cadre
peut étre utilisé pour déterminer des nouvelles contraintes, dites tolérances, sur la vari-
abilité des entrées géométriques pour assurer (en termes statistiques) des performances
structurales spécifiques.

La mise en ceuvre d’analyses probabilistes implique généralement des simulations
répétées de modeles numériques, souvent cotteux du point de vue des temps de calcul.
Pour réduire ces couts numériques, une stratégie d’échantillonnage est proposée pour
réduire le nombre de simulations nécessaires pour atteindre une précision ciblée, en ex-
ploitant mieux I'information disponible. Dans le méme but, un algorithme d’apprentissage
automatique avec enrichissement adaptatif est proposé pour remplacer le modele com-
plet par un modele de substitution beaucoup moins couteux : cet algorithme permet
d’ équilibrer les incertitudes associées au modele de substitution et celles associées a 1’
échantillonnage. Une attention particuliere est accordée a la capacité du modele de sub-



stitution a gérer un nombre élevé d’entrées, ce qui constitue un défi pour la plupart des
techniques d’apprentissage automatique.

Le fil conducteur applicatif de I’ensemble de la these est donné par le projet Hole2Hole
d’Airbus, visant a simplifier le processus d’assemblage aéronautique en utilisant des com-
posants pré-percés. Des nouvelles variabilités, associées aux erreurs de positionnement
géométrique des trous fabriqués, sont introduites par cette application. Si on considérait
les scénarios des pires cas, le Hole2Hole ne serait pas abordable en termes de poids. Le
cadre méthodologique proposé permet d’améliorer significativement les hypotheses de di-
mensionnement et donc le poids structurel, tout en élargissant les plans de tolérance qui
définissent les contraintes sur la variabilité des propriétés géométriques.

Mots clés: codesign, cadre semi-probabiliste, fiabilité en hautes dimensionnes, as-
semblages aéronautiques, apprentissage automatique, méthodes d’échantillonnage
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Chapter 1

Introduction

The present dissertation covers the activities of a Cifre PhD research project, born from
the collaboration between Airbus Operations SAS and Institut Clément Ader (convention
Cifre n° 2019/1564).

1.1 General context

In aircraft design, multiple disciplines are involved, like structural mechanics, thermo-
dynamics, automatics, electronics, flight physics, material science, among others. These
are not totally detached, but can interact with each other. The focus of the entire work
presented in this manuscript is centered around the design of aeronautical structures.
This is interfaced with several other disciplines, for example:

- material science, to evaluate the resistance of structural components;

- aerodynamics and flight physics, to define the loads applied on the structure;

- manufacturing, affecting the properties of the structure;

- tolerancing activities, which manage the geometrical variability of real structural
components.

In the specific case of structural design, we need to deal with several sources of un-
certainties which may have an impact on structural performances. Typical examples
of sources of uncertainties involved in structural design can be given by the material
mechanical properties, applied loads, temperatures, geometrical variability of manufac-
tured parts, among others. In Fig. 1.1 we list other examples of possible sources of
uncertainties, reported in the work in [Larsen and Raju, 2016]. In the chart in Fig. 1.1,
the variability of input parameters can lead to a statistical dispersion of the structural
response (e.g. stress) and structural resistance (e.g. strength), associated to several phe-
nomena - known as failure modes - which can make the structure collapse. The statistical
results can lead to cases (interference region), where the applied solicitations can exceed
the structural strength. Consequently, the statistical variability of design parameters can
affect the safety of the aircraft structure.

To guarantee the safety of aecronautical structures, the manufacturers need to take into
account and demonstrate the reliability and the robustness of the engineering solutions, in
spite of the uncertainties linked to the statistical variability of the input parameters. The



20 CHAPTER 1. INTRODUCTION

A A A

Winds Model Modulus

| T A\ Reliability Analysis A

Environment Concept

namic Fatigue
oane \ /
& N &

Interference Rog on
Static Loads

. e ~  Strain
—~— -—
——— B -
n...m.. " - uwn
— P

Stress Material

- Properties
e / \ﬁﬁlﬂg
Processes
Weld Oﬂull I I I I I Welds
""0!"'“ summ, g Deflects
Bucll ng Smc Fllguc Hydr: n
Vbro Acoustic o,mm c Fracture Embrittiement
C roep
Stress
Corrosion
Figure 1.1: Example of uncertainties linked to structural design (Source:

[Larsen and Raju, 2016])

aeronautical certification authorities define standards to ensure the design of airplanes is
safe enough. In particular, the FASA specifies certification requirements that all aircrafts
intended to fly in Europe need to satisfy. Meeting such requirements is mandatory to
obtain the Certificate of Airworthiness, corresponding to the permission to operate.

When seeking to comply with these certification requirements, designers tradition-
ally cope with uncertainties of input design parameters within the deterministic design
framework itself: the statistical variability is implicitly treated via the adoption of de-
terministic quantities corresponding to detrimental low probability events. In particular,
according to the specific property, different choices of these deterministic quantities can
be done: specific quantiles of the random properties (if explicitly prescribed by the certi-
fication requirements, e.g. A-basis or B-basis values for material allowables), worst cases
or other deterministic quantities dictated by past experience. In particular, the worst
case scenario approach is common practice (though not explicitly prescribed by current
certification requirements) for a number of complex phenomena with a large variability.
The assumptions set in traditional deterministic design may lead to scenarios beyond
what is actually needed, leading to sub-optimal performances in terms of weight and/or
manufacturing costs.

The main industrial need treated in this PhD project is the formalization of a gen-
eral statistical framework to compute and justify the scenarios to adopt in the design
phase: this framework is of industrial interest because the management of the uncer-
tainties has the potential to improve the sizing assumptions typically used in classical
design approaches. From a process standpoint, this framework may allow to support the
engineering judgment choices (generally done on a case-by-case basis) of which scenario
to adopt for sizing, thus passing to a general formal process. From a performance stand-
point, the quantification and the management of the input uncertainties can allow gains
in terms of weight and reductions of manufacturing costs.

In this PhD project we propose a formal framework to establish a consistent approach
to define the scenarios used in classical design phase, by means of integrating the prob-
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abilistic description of the different sources of uncertainties in the design of aeronautical
structures. A particular attention will be given to the compliance with current certifi-
cation requirements: we will define a formal framework to take into account the input
uncertainties as an extension of the current certification requirements. The study will also
involve multiple disciplines: in particular, we will analyze the interfaces between struc-
tural analyses, manufacturing process and tolerancing activities. The common thread
of the whole manuscript will be given by the application on an actual industrial project
at Airbus. In the following sections we will provide an overview of the main topics and
challenges addressed in the present work.

1.2 Dealing with uncertainties: a general overview

The Uncertainty Quantification € Management (UQ&M) constitutes a general framework
to manage the statistical variability of system performances [De Rocquigny et al., 2008].
A simplified scheme of the UQ&M general framework is provided in Fig. 1.2. This is
based on the logical concatenation of different ingredients, which need to be defined prior
to the analysis itself:

o Input variables definition: the choice of the input involved in the design process
and affecting final performances;

e Input uncertainties description: the probabilistic modelings defining the variability
of the different inputs (e.g. the associated distributions);

o Input variables classification: the distinction between uncertain input parameters
X and deterministic inputs d, referred to as scenarios;

o Qutput identification: the key-phenomena Z representing the specific performances
which we need to monitor;

e Model: the representation of the behavior of a given system, linking all inputs X, d
to the outputs Z, via a specific function G: this can be either a physical or a
numerical model, complete or simplified or also a surrogate model (i.e. via machine
learning techniques);

e Qutput uncertainty measure: the quantity of interest which allows to evaluate the
output performances from a statistical point of view: typical examples may be given
by specific quantiles of the random outputs, mean values, probability of exceeding
deterministic values, among others;

e Decision criteria: the principle defining whether the output uncertainty measure is
acceptable or not, consistently with the precise scope of the UQ&M analysis;

e Feedback process: this consists in the redefinition of the input uncertainties descrip-
tion and/or the input variables classification, i.e. artificially fixing at deterministic
values (thus scenarios) some of the variables which would be random by nature;
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o Deterministic format: the representation of the results of the probabilistic analysis
in form of a collection of deterministic quantities, allowing the automatic man-
agement of uncertainties also in the classical deterministic design, for example via
tables of multiplicative coefficients to adjust analytical models, extreme boundaries
of the output variability, among others.

Uncertainty Propagation

Input ';A(ogﬁlcgi);t: Model Model outputs Output
Uncertainty - . G(X,d) A Uncertainty
d: scenario
Feedback Decision
process criteria

\ Deterministic
Sensitivity Analysis format

Figure 1.2: General framework for Uncertainty Quantification & Management (UQ&M):
a simplified scheme

All these ingredients are interconnected as shown in Fig. 1.2. In particular, two main
directions can be recognized:

1. Uncertainty Propagation: Starting from an input statistical dispersion, certain vari-
ables are fixed (i.e. defined as scenarios d) while others are kept free to vary (uncer-
tain variables X'). These are introduced in a model G that determines the outputs
7, the uncertainties of which are quantified in a statistical framework;

2. Sensitivity Analysis: Starting from the output uncertainties, a decision criterion is
established, so that it can allow to intervene in a feedback loop on input definitions
(i.e. their statistical distributions), on the input classification (i.e. to re-define
the distinction between random and scenario variables) and also to present results
in a deterministic format (e. g. tables providing specific quantiles or corrective
coefficients to introduce in the deterministic structural sizing).

The UQ&M framework described in this section constitutes a general process which
needs to be adapted for the specific applications. In the following we will present a general
overview of the industrial context in which this PhD is carried out, in order to illustrate
the challenges and the expected benefits of UQ&M on a concrete use case of industrial
interest.

1.3 Industrial context

The aeronautical assembly process generally involves several layers (or levels): in a top-
down decomposition, we generally recognize the aircraft level, the section, the work-
package, the assembly and the elementary parts, as illustrated in the example in Fig. 1.3.
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The single elements involved in the assembly are referred indifferently as parts, structural
components or contributors. In the general process decomposition, the assembly (in its
broadest sense) at one level becomes then a part in the superior level.

Work-package level

Elementary part level
Assembly level
>l T

Figure 1.3: Assembly levels in aircrafts (Source [Diet, 2021])

The geometrical features of the real manufactured components can differ from the
theoretical values (referred to also as nominal values), possibly leading to difficulties in
assembling the different parts together. To ensure that all pieces can be assembled also
in presence of uncertainties on the geometric features, specific requirements are defined
at the highest level (referred to as top-level requirements): these latter are then cascaded
to each interface at the lower levels, defining specific limits, called tolerances, which
constitute constraints on the variability of the geometric features of each component.
The tolerances allow to be sure that each elementary part can be connected to the other
elementary parts. The process to assign specific tolerances at component level from a
top-level requirement is generally called tolerance cascade or tolerance allocation.

The connections between structural components can be done by welding or, more
commonly, via the introduction of fasteners, including bolts and rivets. When introducing
bolts to connect two components, it is common to refer to the obtained assembly as bolted
joint assembly. Note that the connections via fasteners can be either permanent or non-
permanent: the latter category does not imply that the connections are provisional, but
that they can be disassembled without destroying them (e.g. using screws and nuts).

Current practices for aeronautical structural assemblies based on fastener connections
(which are illustrated in Fig. 1.4) prescribe a succession of precise steps which strongly
integrate manufacturing and assembly processes. In general, the holes are drilled during
the assembly phase itself. The steps generally followed can be summarized as follows:

The parts to assemble are placed in the expected final positions;
Reference holes are drilled on the superposed parts;

The parts are detached;

The reference holes are cleaned on separated elements;

The parts are re-positioned together;

Provisional fasteners are installed on the superposed structural parts;
All other holes are drilled on the superposed parts;

At this point, elements are detached, cleaned and re-positioned;
Sealant is applied between parts;

Provisional fasteners are installed on the superposed structural parts;

© 00N T W

—_
e
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11. The holes are cleaned and finished in place (reaming phase);
12. Provisional fasteners are progressively removed and replaced by final (not necessar-
ily permanent) fasteners.

Interface fittings requiring gap management (e.g. CFRP)
|

parts & drilling of
pre-holes

Figure 1.4: Current practice for aeronautical assembly routine

This complex procedure does not introduce significant geometric errors in manufactur-
ing and assembly chain: all holes from two connected parts are always perfectly aligned.
On the other hand, this process implies a significant amounts of work, time and money.
We may identify, therefore, a specific industrial need: to simplify the overall procedure
to assemble bolted joint structures. This constitutes the main purpose of the Hole2Hole
project, described in the following section.

1.4 Hole2Hole (H2H) Project

The Hole2Hole (H2H) project is an Airbus initiative aiming at simplifying the overall
assembly process. The base idea is to transfer part of the drilling process in the manu-
facturing step, in order to move it out from the assembly line. Practically speaking, it is
sought to make use of pre-drilled parts: therefore, as the holes are manufactured before
entering in the assembly line, all steps related to the drilling, cleaning and reaming on
the holes are removed from the process (in the assembly line). The simplified procedure
is illustrated in Fig. 1.5.

The H2H has the potential to significantly simplify the assembly routine. However,
it has also consequences on logistic planning, current way of working and structural
performances. In this work we will focus on structural performances which are mainly
linked to hole misalignments and hole oversize.

As the parts are produced individually and entirely out of the assembly line, the
positions of the holes can differ from the theoretical nominal locations. When superposing
the parts in the assembly line, we can have holes which are not perfectly aligned between
them. These hole misalignments can constitute already a problem for assembling the
parts, as we might not be able to insert the bolt inside the holes.

In order to ensure the capability to assemble the parts, we need to account for the
variability of the hole misalignment. Strictly speaking, we need to be sure that even in
presence of misaligned holes, the bolts can fit inside the holes so that the assembly can
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Interface fittings requiring gap management (e.g. CFRP)
A

Figure 1.5: Aeronautical assembly routine in H2H perspective

be built. In particular, it was chosen to make use of the concept of oversize, illustrated
in Fig. 1.6. Note that in classical assemblies with perfectly aligned holes, the diameter
of the hole is also slightly larger than the bolt, such to allow to insert this latter inside
the hole: this differences of diameters (between hole and bolt) is generally referred to
as fit clearance. The oversize is an extension of the concept of fit clearance, defined as
an additional increase of the hole diameter. Note that in Fig. 1.6, we represent both fit
clearance and oversize as radius to simplify the illustration: but in fact, these are defined
as additional increases of diameters.

Fit clearance
(radius)

Final hole

Qversize
(radius)

Figure 1.6: Oversize definition

In Fig. 1.7, we illustrate the effect of the oversize on the assembly capability of the
H2H assemblies. Without oversize, the hole misalignments could prevent inserting the
bolts inside the holes. Instead, thanks to the oversize, the assembly of the structure can
be carried even in presence of hole misalignments, up to a certain limit.

However, the added value of the oversize (depicted in Fig. 1.7) can be effective only
on the configurations with ”reasonable” hole misalignments (i.e. not exceeding some
threshold). In fact, the oversize itself constitutes a new top-level requirement: the hole
misalignments will then be considered as new geometric features at component level, the
variability of which must be regulated by specific tolerances. The hole misalignments
will be "reasonable” if their tolerance limits are consistent with (i.e. cascaded from)
the oversize. Note that the tolerances on hole misalignments constitute a new concept
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Figure 1.7: Role of oversize of absorbing the variability of hole misalignments on H2H
assembly (illustration not at scale)

introduced by the H2H framework.

Up to this point, it could seem that the H2H project simplifies the assembly process,
while implying only a change in tolerances activities to account for the additional toler-
ances related to hole oversize. However, we did not address, until now, the impact on the
structural performances. To explain a possible outcome on structural performances, we
consider the example illustrated in Fig. 1.8, related to a coupon with only two plates (in
blue) and two bolts (in green), subjected to a traction force (orange arrows).

The classical situation is depicted in Fig. 1.8a, where all holes are fitted (i.e. only
minimal fit clearance without additional oversize) and perfectly aligned: when pulling the
structure in traction, all bolts get in contact at the same time from the opposite sides in
the two plates (as the bolts touch the upper plate on the left and the bottom plate on the
right). Note that a bolt will contribute to support a part of the total load if it touches
the plate on the opposite side with respect to the loading direction: this means that on
the upper plate (pulled to the right), the contacts must be on the left side, while for the
bottom plate (pulled to the left) on the right side. For fitted and perfectly aligned holes,
both bolts thus contribute to support the applied loads: consequently, the loads will be
redistributed equally among the bolts (i.e. each bolt supports half of the applied load).

In the case with oversize (i.e. with classical fit clearance plus additional oversize) and
perfectly aligned holes (in Fig. 1.8b), the situation does not change. The only difference
with respect to the nominal case (in Fig. 1.8a) will be given by the fact that the plates
need to be pulled slightly more to achieve the first contact. In this case, each bolt will
also support half of the total applied load.

When we introduce both oversize and misalignments, we can obtain in a worst-case
scenario the situation depicted in Fig. 1.8c. In this case, only the bolt on the right is
in contact with the correct sides of the plates. The left bolt will not contribute to the
load transfer: therefore, the right bolt would carry the total load all alone, which would
correspond to the double of the amount it would transfer without H2H (as in Fig. 1.8a).
This condition where one bolt needs to carry the total applied load all by itself effectively
constitutes the worst case scenario.

The adoption of worst case scenarios is frequent (though not being the general rule) in
the classical deterministic sizing of aeronautical structures, to account for the variability
of a number of phenomena affecting structural performances. However, suppose that we
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Figure 1.8: Illustration of the effect of oversize and misalignments on H2H load transfer

apply this logic to the H2H framework for a coupon with two bolts, where the sizing
of the bolts is more critical than the sizing of the plates: this would imply that each
bolt should be sized to resist to a load which is the double of the load considered with a
classical assembly process. As a first approximation, this means that each bolt would be
twice as thick, thus twice as heavy. If we extend this conclusion to bolted joint assemblies
with 20 bolts, the worst-case scenario, even though unlikely, would still be that only one
bolt out of the 20 is in full contact with the two plates, thus carries the full load to be
transferred. Thus, the weight of the bolts would be increased roughly by a factor 20.
Therefore, considering only the worst case scenario for the structural sizing would make
the H2H framework totally unaffordable.

The knowledge of the uncertainties linked to the input parameters becomes funda-
mental in order to evaluate the structural performances of the assembly conceived within
the H2H framework. A new framework explicitely taking these uncertainties into account
has the potential to mitigate the potential over-conservatism of the assumptions associ-
ated with a literal application of the worst case scenario approach on the H2H example.
In the next section, we will present some challenges and investigate the expected benefits
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of introducing the UQ&M framework in the structural design, using the H2H project as
a common thread application.

1.5 Challenges of UQ&M on structural applications

In the previous sections we described the general UQ&M framework and the industrial ap-
plication which constitutes the common thread of the entire work, namely the Hole2Hole
(H2H) project. In this section, we define the expected added value of the integration of
UQ&M in the activities of the aeronautical structural team. We will continue to use as
common thread the H2H application. This will help us to illustrate the motivations and
the challenges addressed by the present work.

The main interest for considering the probabilistic description of the phenomena is
to challenge the sizing assumptions typically used in classical structural design. Indeed,
such assumptions can lead to consider scenarios which go beyond what is actually needed.
As observed in the previous section, the worst cases are far too penalizing for H2H
framework, making it unaffordable in terms of structural weight. The mitigation of the
worst case scenario approach can be achieved by integrating the statistical description
of the uncertain input parameters in the structural sizing process. The first challenge
will therefore be given by the formalization of a probabilistic framework, suitable for
applications on aeronautical structures. But what does suitable mean?

First of all, we remind that complying with certification requirements (coming from
EASA in Europe) is mandatory to prove the airworthiness of aircraft. Also in the ex-
ample of the H2H project, we need to prove a certain level of safety, to allow the H2H
framework itself to be implemented on actual flying aircrafts. However, the current cer-
tification requirements do not consider probabilistic design principles, but rather define
guidelines for the classical deterministic design of aeronautical structures: this means
that every UQ&M framework which could be proposed will not be exactly coincident
with the current certification requirements. Our first challenge will be the definition
of a general probabilistic framework which extends some of the EASA standards, in a
"non-disruptive” manner, i.e. integrating rather than totally replacing the current way
of working, based on deterministic sizing.

The challenge of formalizing a suitable probabilistic framework can be summarized in
the following question:

1. Can we conceive a general probabilistic framework able to extend current certifica-
tion requirements and which can be easily integrated in the classical deterministic
structural design?

If we think of the application on the H2H example, the proposed framework should de-
fine coefficients to adjust the nominal quantities of the loads transferred by each bolt, such
as to integrate in the classical deterministic sizing process. These coefficients, referred
to as " safety factors” (in a large sense), are generally intended in aeronautical industry
to absorb the uncertainties (mainly linked to random phenomena, lack of knowledge of
complex structural responses, modeling errors) at all level of the analysis chain and hence
on the computed nominal performances. Practically speaking, instead of considering the
amount of force which would be carried by each bolt in the classical assembly process, the



1.5. CHALLENGES OF UQ&M ON STRUCTURAL APPLICATIONS 29

designers will consider an amplified load by a ” partial safety coefficient” when passing to
the application of H2H: one main role of the proposed framework would be the definition
of this new deterministic quantity for H2H. Our purpose is to identify a general process
which provides deterministic quantities consistent with current requirements, which the
designers should use in the deterministic sizing process. Moreover, when considering in-
put geometric parameters, we will need to introduce the concept of tolerances, intended as
constraints of the variability of geometric features: therefore, the deterministic quantities
(to be used in structural sizing) will be linked to specific input variabilities and/or toler-
ance limits (when introducing geometrical variabilities), typically dealt within tolerancing
activities. Therefore, the challenge 1 also indirectly rises three other questions:

la. Which measures of the uncertainty of the output can allow to extend the current
certification requirements, for general applications on aeronautical structures?

1b. How can/should the designers use the outcomes of the proposed probabilistic frame-
work?

lc. How can we manage the interfaces between different disciplines involved in the struc-
tural design in the proposed probabilistic framework?

Once the framework is formalized, we will be able to evaluate the structural per-
formances from a statistical point of view. This framework should therefore be able to
address two other questions, following two different perspectives:

2. What is the effect of the variability of the uncertain input parameters on structural
performances of some typical aeronautical structures?

3. Which input variabilities can guarantee a specific structural performance?

In the H2H example, the first question will address the challenge of reducing the
potential over-conservatism of the worst case (i.e. the concentration of the whole applied
load on a single bolt), by considering the probabilities of occurrence of the misalignments
realizations: this will therefore lead to determine new ”partial safety coefficients”, based
on the formalized probabilistic framework. Instead, the second question will focus on re-
defining the geometric tolerances in H2H, so that the effect on the structural performances
can be taken into account. At a more general level, the industrial challenge associated
to questions 2-3 is to establish a framework to support the engineering judgment for the
definition of the assumptions to be used in the classical structural design process.

The questions 2-3 actually lead to other investigations, related to the identification
of the most influential inputs (the variability of which affect most the structural perfor-
mances), but also the design choices which allow to mitigate the effects on the structural
performances.

The last challenge addressed in the present work is given by the actual implementa-
tion of the proposed UQ&M framework. A number of approaches involved in the UQ&M
analyses make use of repeated samples, thus requiring large numbers of numerical simu-
lations. In the example of the H2H, we use finite element analyses which can take several
hours to run (on the most complex models). Making a compromise between accuracy
and computational burden becomes fundamental to deal with UQ&M analyses: on one
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hand, it can be addressed through the development of new sampling techniques able to
reduce the number of samples required to achieve a targeted accuracy; on the other hand,
the initial model can be simplified to a surrogate model, that is adaptively trained via
machine learning techniques. Both of these approaches will be explored and further de-
veloped in this work. Moreover, for complex H2H structures (with high number of bolts),
we can have a high number of inputs, related to the hole misalignments: as the input
dimensionality can constitute a non-trivial challenge for a number of machine learning
techniques, it will be necessary to develop methods which are scalable for high number
of inputs. The so-called high input dimensionality does not concern only the H2H case,
but can be found on a large number of industrial applications. This last challenge will
be summarized in the following question:

4. Which UQEM methods allow to make an acceptable compromise between computa-
tional burden and accuracy, while ensuring the scalability for high number of inputs?

1.6 Structure of the present study

In this section we present the global structuring of the manuscript allowing us to provide
some answers to the previous questions, of which the order was reorganized to better
reflect the chronological order in which they will be addressed in the manuscript chapters:

1. What s the effect of the variability of the uncertain input parameters on structural
performances of some typical aeronautical structures?

2. Can we conceive a general probabilistic framework able to extend current certifica-
tion requirements and which can be easily integrated in the classical deterministic
structural design?

3. Which UQEM methods allow to make an acceptable compromise between computa-
tional burden and accuracy, while ensuring the scalability for high number of inputs?

4. Which input variabilities can guarantee a specific structural performance?

In Chapter 2, a review of applications of probabilistic frameworks in aeronautical
engineering is presented. A continuous comparison with civil engineering is reported to
highlight similarities and differences between the two fields.

In Chapter 3, question 1 is treated from a deterministic perspective on the H2H
application, considering the input variability domain but without introducing the exact
statistical description (i.e. assuming general uniform distributions for all the inputs). In
particular, we will explore the effects of the inputs on the output response variability, in
order to simplify the interpretation of a given problem. This simplification will consist in
the reduction of the number of inputs and will be dealt with a double perspective: on one
hand, we will identify patterns of the input variables which better describe the effects on
the outputs; on the other hand, we will filter the inputs by ignoring the least influential
on the output response variability. The outcomes of this chapter on the H2H application
will be used to support the interpretation of the results of all successive chapters.
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In Chapter 4, a probabilistic approach is proposed to give a first answer to question
2. This includes a framework to determine deterministic values to adopt in design phase,
based on a probabilistic environment. The framework will be called semi-probabilistic as
it will integrate deterministic and probabilistic quantities at the same time. A double
perspective is presented to (1) define structural deterministic performances from fixed
input variability and (2) retrieve optimal input variability from a given deterministic
stress requirement. The first declination will be analyzed in detail in Chapter 4, answering
to the question 1 from a statistical point of view.

Chapters 5 and 6 focus on the reduction of the computational burden implied by relia-
bility analyses, both addressing the challenge raised in question 3. The former introduces
a sampling method to estimate a probability of exceeding a fixed threshold. In Chapter
6, the reduction of the computational burden is addressed with a scalable machine learn-
ing technique, able to estimate reliability outcomes on problems with a high number of
inputs.

In Chapter 7 we conceive a framework to optimize the input tolerances to answer
to the last question. The perspective introduced in Chapter 4 is re-adapted to develop
a dictionary to translate the stress requirements into allowed tolerances. The methods
presented and discussed in Chapter 5 (related to the sampling methods) and Chapter 6
(related to the machine learning assisted reliability algorithm) are used to evaluate the
stress reliability constraint in the associated optimization process.

Finally, we report the conclusions of the present work in Chapter 8, together with
the ways-forward for future activities in the associated academic and industrial research
areas.
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Chapter 2

State of the art on probabilistic
frameworks applications in
aeronautical and civil engineering

In the previous chapter we presented the general context of probabilistic design, high-
lighting the opportunities for aeronautical industry. The base goal of this dissertation
is to take into account the variability of input design parameters, in order to switch
from the classical worst-case scenario approach to a probabilistic framework, in an at-
tempt to extend some particular requirements of the aeronautical legislation to a more
general framework. In this chapter, we present a brief state of the art of the probabilis-
tic framework applications to structural design in the aeronautical industry, comparing
them to the ones related to civil engineering field. This study has as main objective to
retrieve the differences between those two fields, trying to identify the root reasons be-
hind these differences. Knowing the strengths and weaknesses of the methods currently
used for structural design in aeronautical industry would constitute a starting point for
us to propose and work on several improvements, which will be discussed in the following
chapters.

We will start the general discussion by classifying the different applications of the
UQ&M framework (presented in Section 1.2) according to the objectives pursued by
the analyses themselves, in Section 2.1. Then, we discuss the current legislation and
certification requirements valid in Europe, for civil and aeronautical engineering fields, in
Section 2.2: these first two sections will help us to highlight common threads to evaluate,
in a critical way, the differences between those two fields. In the successive sections, we
report a brief overview of the applications in aeronautical and civil engineering, related
to structural testing (in Section 2.3), reliability assessments (in Section 2.4) and the
determination of safety factors (in Section 2.5): in each section, we will introduce the
different topics and then compare the applications in civil and aeronautical industry,
focusing on the directions of the research at a global level. Finally, the conclusions of the
comparison between civil and aeronautical engineering are discussed in Section 2.6.
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2.1 UQ&M applications: a goal-oriented classifica-
tion

In the general framework of UQ&M, De Rocquigny et al. [De Rocquigny et al., 2008|
classified the different applications according to the objectives which are pursued. In par-
ticular, four main classes of objectives (referred in [De Rocquigny et al., 2008] as goals)
of UQ&M analyses were distinguished:

e Goal U (Understand): To understand the influence or rank importance of input
variabilities on output uncertainties. In this category we may retrieve all the anal-
yses devoted to identify the most important sources of variability, in order to sim-
plify the interpretation of a given problem (e.g. reduce the number of variables
in a model), facilitate the identification of eventual issues, conceive the best-suited
countermeasures and/or to prioritize research investigation only where needed.

e Goal A (Accredit): To give credit to a model or a method of measurement, i.e. to
reach an acceptable quality level for its use. In this category, we may include the
calibrations of sensors, the hyper-parameters tuning in numerical models, fitting
statistical distributions, or validating the degree of conservativeness of particular
assumptions.

e Goal S (Select): To evaluate different choices of maintenance policy, operation
or design of the system, in order to optimize a specific output performance. All
applications of design optimization (based on a probabilistic framework) can cover
this goal.

e Goal C (Comply): To demonstrate compliance of the system with an explicit cri-
terion imposed by current legislation, in order to guarantee at least a minimum
required level of safety. The concept of compliance with current rules plays a fun-
damental role in the product certification (when required by the law), including
all the tests and analyses devoted to evaluating the probability of exceeding safety
threshold, the occurrence of the most probable failure event, the degree of conser-
vativeness of the model used.

The choice of the goal which is addressed by a specific application of probabilistic
frameworks affects also the choice of the specific performance indicators (thus, also the
method to evaluate them) and the feedback process to re-intervene on the inputs to
guarantee or improve the output performances.

Typically the performance indicators, referred in UQ&M framework as quantities of
interest, are defined by statistical measures of the variability of the output. Typical
examples can include:

the probability of the system of exceeding a safety threshold;
the expectation (i.e. mean value) of the output;

- the coefficient of variation of the output;

specific quantiles associated to the output;

the contribution of each input to the variance of the output.
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The list is not exhaustive and must be interpreted in a critical way. The quantity of
interest is evaluated within a decision criterion, which typically states whether a design
is acceptable or not. Typical examples may include:

- ’the probability of exceeding a safety threshold must be lower than 107**%’;

- ’the coefficient of variation of the output of a structural test cannot overcome 3%’;
- "the 99th percentile should not exceed 1.3 times the mean value of the output’;

- ’to neglect a variable X, it should contribute to less than 1% of the output variance’.

Stemming from the outcomes of the decision criterion, some actions may be under-
taken to meet the requirements imposed by the decision criterion. According to the
specific goal addressed by a given UQ&M analysis, the actions to be taken (in the feed-
back process) can be different. Here we give some examples of feedback actions for each
goal:

e Goal U: fixing some uncertain input variables which have low (with respect to the
decision criterion) effect on the output variability, simplify a numerical model while
maintaining acceptable accuracy;

e Goal A: placing better the sensors to accredit an experimental procedure, use more
precise sensors, tuning hyper-parameters in a numerical model to be more consistent
with physical testing evidences;

e Goal S: switch between different design solutions to enhance performances;

e Goal C: adjusting the design choices (in input) so that the acceptance criteria (e.g.
provided by the regulations) can be satisfied.

Both output uncertainty measures and feedback process are therefore linked to each other
and to the purpose of a specific UQ&M analysis. However, they are strictly linked to the
decision criteria as well.

In the rest of this chapter, we will identify the main goal of each category of ap-
plications. Note that it is not compulsory that a given application fits only inside one
single category of goals: for example, a probabilistic-based optimization procedure - which
should fit in goal S (select) - can cover the goal C (comply) as well if a probabilistic-based
certification requirement is introduced among the constraints.

2.2 Current legislation requirements

The requirements imposed by current legislation and certification standards hugely affect
the evolution of the specific engineering fields. The central focus of this section is to briefly
present the main features of current European standards related to civil (EN Eurocodes)
and aeronautical (EASA norms) engineering.

2.2.1 Civil engineering legislation

EN Eurocodes define the standards used in civil engineering in Europe. The structure of
Eurocodes is summarized below:
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- EN 1990 Eurocode 0: Basis of structural design

- EN 1991 Eurocode 1: Actions on structures

- EN 1992 Eurocode 2: Design of concrete structures

- EN 1993 Eurocode 3: Design of steel structures

- EN 1994 Eurocode 4: Design of composite steel and concrete structures
- EN 1995 Eurocode 5: Design of timber structures

- EN 1996 Eurocode 6: Design of masonry structures

- EN 1997 Eurocode 7: Geotechnical design

- EN 1998 Eurocode 8: Design of structures for earthquake resistance

- EN 1999 Eurocode 9: Design of aluminium structures

Except EN 1990, each Eurocode is divided into several parts which treat specific aspects

of the subject. In EN Eurocodes relating to materials, a Part 1-1 reports general rules for

the design of buildings and other civil engineering structures, and a Part 1-2 covers fire

design. EN 1992, 1993, 1994, 1995 and 1998 contain a Part 2 covering design of bridges:

these must be applied in combination with the corresponding general Parts (Parts 1).
In particular, in EN 1990, some key-points can be outlined:

- partial safety factors defined on material resistance and applied loads;

- worst-case scenario considered only if statistical description of certain components
are not available;

- load combination factors specified for each load configuration;

- reliability management considered as main requirement in design;

- reliability target well specified, according to the use and risk associated to each
structure;

- different limit states (ultimate and serviceability conditions) must be verified;

- design associated with structural tests also previewed.

Generally, in EN 1991 - 1999 some freedoms are left to National Annexes, where
different calibrations of load combination factors or partial safety factors can be defined.
Moreover, if not specifically pointed out in EN 1991 - 1999 or in National Annex, the
general rules of EN 1990 must be applied.

2.2.2 Aeronautical industry regulations

EASA norms cover all requirements of aircrafts and aerodromes in Europe. A distinction
must be made on the basis of binding power and specific topics between the several rules:

- Basic Regulation: binding, collects all the mandatory requirements to certify an
aeronautical structure;

- Implementing Rules (IR): binding, adopted to specify safety level, uniform confor-
mity and compliance;

- Acceptable Means of Compliance (AMC'): non-binding, report the means to achieve
Basic Regulation and IR requirements;

- Certification Specifications (CS): non-binding, collect technical standards to meet
essential requirements;
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- Special Conditions (SC'): non-binding, adopted for cases where regulation is not
appropriate;

- Guidance Material (GM): non-binding, contain interpretation material on how to
meet all requirements in other rules.

Focusing on technical standards, CS are then divided in different categories according
to the specific subjects. The reference for our work is CS 25 Amendment 27 [Easa, 2009],
reporting the standards to follow to prove the initial airworthiness of large airplanes.
Subparts C (Structure) and D (Design) and Appendix K (Interaction of systems and
structure) are of particular interest for static strength demonstration. We report here
the main concepts of some articles of interest of the CS 25:

- From CS 25.301: Strength requirements are specified in terms of limit loads (the
maximum loads to be expected in service) and ultimate loads (limit loads multiplied
by prescribed safety factors);

- From CS 25.303: Unless otherwise specified, a factor of safety of 1.5 must be applied
to the prescribed limit load;

- From CS 25.305: The structure must be able to support ultimate loads without
failure for at least 3 seconds;

- From CS 25.307: To prove structural performances, structural analysis may be
used only if the structure conforms to that for which experience has shown this
method to be reliable;

- From C§ 25.613: Material strength properties are defined in statistical framework,
classified into two classes, namely A- basis (1st or 99th percentile with 95% con-
fidence) and B-basis (10th or 90th percentile with 95% confidence) to be adopted
respectively in non-redundant and redundant structures;

- From CS 25.619: The factor of safety prescribed in CS 25.303 must be multiplied
by the highest pertinent special factor of safety prescribed in CS 25.621 through CS
25.625 for each part of the structure whose strength is uncertain, likely to deteriorate
in service before normal replacement or subject to appreciable variability because
of uncertainties in manufacturing processes or inspection methods;

- From K 25.2: Specific safety factors are defined (cf. Fig. 2.1) for interactions of
systems and structures, both at the time of occurrence (as function of the proba-
bility of occurrence P; of the failure mode j per flight hour) and for continuation of
flight (as function of the probability @); of being in failure j, related to a duration
Tj, ie. Q; = P; x1Tj).

Apart from the interaction phenomena between structures and systems (in CS 25 Ap-
pendix K), regulations requirements provide precise guidelines on how to deal with the
input variability only for material properties and loads. Current practices in structural
sizing of aircraft components involve, however, additional safety factors for manufacturing
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Figure 2.1: Definition of general safety factors F'.S according to CS-25

uncertainties (see CS 25.619) or the adoption of quantities corresponding to low proba-
bility events (included worst case scenarios) for a number of other phenomena affecting
structural performances. This may lead to take into account scenarios beyond what needs
to be reasonably considered.

Meeting all requirements previewed by the certification is mandatory to prove the
Airworthiness, i.e. the permission for an aircraft to operate.

Overall, comparing the civil and aeronautical regulations, reliability analysis appear
not as tightly integrated as for civil engineering. Applications are restricted to a limited
number of cases. This is reflected also in aeronautical industry, still strictly linked to
legislative guidelines. Moreover, copyright-related issues make availability of industrial
data even more complicated. Finally, it is worth noting that most of the aeronautical
applications presented in this review are part of pure academic research efforts.

2.3 Structural testing

The first application example of probabilistic frameworks which will be treated in the
present review regards the use of structural tests. Generally, they are mainly used to
calibrate and validate numerical models, or, alternatively, to certify a structural design.
Using the general UQ&M classification presented in Section 2.1, the A (accredit) and C
(comply) goals constitute the main interests for structural tests.

Classifying all categories of structural tests is not an easy task, but several attempts
have been made. Rackwitz and Schrupp [Rackwitz and Schrupp, 1985] proposed a dis-
tinction between pre-investigations (providing prior informations based on observations
in past experience), prototype-testing, proof testing and statistical quality control (re-
lated to in-service failures). A wider classification was presented by Hall and Tsai
[Hall and Tsai, 1989]. In particular, eleven distinctive features were listed, based on:

- objective: strength or serviceability verification, or pure research;

- use: resistance, load effect or mixed safety;

- system level: material, element, member or system;

- sitmulation plausibility: unrealistic, actual loads or combination;

- presence of time-dependent effects

- destructivity: non-destructive, damaging or destructive;

- sample couverture: one, all or sampling;
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prior statistical knowledge: complete, partial or none;

- correlation of components

gross errors treatment: known, suspected or neglected;

measurements: test load only or completed with non-test informations.

It sounds obvious that the relation between structural tests and reliability assessment is
tightly linked.

In the following, the reader will found a list of civil and aeronautical applications. In
particular, we classified the applications in both fields per objective. This will help to
associate the different applications with a specific goal in the general UQ&M framework,
as described in Section 2.1.

2.3.1 Civil applications

The industrial applications of structural tests on civil structures can be distinguished into
two categories, with two different purposes:

- Proof load tests

The main purpose is to ascertain that a given full scale structure can sustain specific

loads [Lin and Nowak, 1984, Olaszek et al., 2016, Vavrus et al., 2019, Lantsoght et al., 2018].
As in general the civil structures are not replicated, the risk of deteriorating the
construction itself through full scale proof load tests is another issue investigated

in literature [Faber et al., 2000, Val and Stewart, 2002, Lam et al., 2003].

- Diagnostic load test

This category includes the collection of in-situ in-service measurements [Guerra-Santin and Tweed
Cantero et al., 2019] (involving traffic data, fatigue behavior and corrosion effects):

these are incorporated in a probabilistic framework to update the prior knowledge

on the structural behavior (in order to update the analytical and numerical mod-

els used in design phase) and to monitor the health of a structure [Song et al., 2017,

Fujino et al., 2019, Ostachowicz et al., 2019, Shan et al., 2020, Riggio and Dilmaghani, 2020],

in order to preview maintenance interventions. Several research works also inves-

tigate the capabilities of the health monitoring systems used in civil engineering

[Park et al., 2000, Yang et al., 2008, Li et al., 2020, Bado and Casas, 2021].

This distinction was originally provided by Lantsoght et al. [Lantsoght et al., 2017]
to classify the load tests on bridges. Here such classification is extended to general civil
structures. From the perspective of UQ&M general framework, the proof load tests cover
the goal C (comply), while the diagnostic load tests cover the goal A (accredit).

The link between current legislation and proof load testing is analyzed in [Lantsoght et al., 2018].
The authors stress out that the Eurocodes define target loads (i.e. the load that the struc-
ture should be able to withstand during the test) and analysis of measurements for the
proof load tests of buildings, but not for bridges. Some tests are even forbidden, in order
not to deteriorate the structure itself (as it is not replicated).

Note that we did not include, in the list, the use of structural tests on components
to validate (or investigate) the characteristic mechanical properties. In fact, the use,
in general, of standardized components reduces needs for huge campaigns of structural
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tests. Large scale structural tests campaigns are not even considered for complete struc-
tures, as they are not to be replicated. There are, however, some specific examples of
applications of structural tests on components available in the literature with very spe-
cific research purposes: for example, to demonstrate the conservativeness of national
standards [Burgan et al., 2000, Zhou and Young, 2005], evaluate enhancements of clas-
sical material properties [Yoo and Yoon, 2015, Zingg et al., 2016, Malecot et al., 2019,
Remennikov and Kaewunruen, 2020], investigate new materials [Song et al., 2006, Keller et al., 2008,
Abirami et al., 2019], improve the numerical modeling of complex dynamic structural
responses [Boudaud et al., 2015, Kumar et al., 2020, Alam et al., 2021 or for research
on specific corrosion phenomena [Melchers, 2005, Alfano et al., 2006, Guo et al., 2019,
Huang et al., 2020].

The data coming from structural tests can be also exploited in the other applications
which will be presented in the following sections: we have examples of the use of struc-
tural test data for reliability assessments [Faber et al., 2000, Papadimitriou et al., 2001,
Lam et al., 2003, Venter and Scotti, 2012, Frangopol et al., 2019, Zhang et al., 2019¢| and
calibrations of safety factors [Val and Stewart, 2002]. The explanation of these notions
and the exploration of the related applications for civil engineering are reported in Sec-
tions 2.4-2.5.

2.3.2 Aeronautical applications

Structural tests play an essential role in the aeronautical industry. In Fig. 2.2 the
pyramid of structural tests is depicted. Number of tests can increase exponentially as new
designs are conceived. In some cases involving well-mastered architectures, certification
authorities allow to prove initial airworthiness requirements (i.e. the permission for the
first commercial flight) through numerical investigation.

Still, structural tests maintain a primary role in certification processes. The reason
must be searched in the customization of components: contrary to civil engineering, ad
hoc structures are continuously introduced, leading to unavoidable verification tests at
every level of the pyramid (see Fig. 2.2).

Large scale campaigns are daily routine for aeronautic components. Structural tests
generally involve the simulation of actual loads present in aircraft service life. Two load
levels are distinguished in CSs:

- Limit load: level actually reached once in aircraft lifetime (probability of occurrence
of 1075 per flight hour);

- Ultimate load: level that should never be encountered during service life (related
to previous one through a safety factor defined in CSs).

Certification tests aim at guaranteeing that the whole structure can resist to (1) limit
loads without plastic deformations - which would possibly affect airworthiness continua-
tion - and to (2) ultimate loads during 3 s before the appearance of the first fracture.

The extraction of material properties in a statistical framework (from physical testing)
is described in MIL-17 Handbook [Neal and Vangel, 1990]. It notably provides a precise
definition of material properties quantiles:
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Figure 2.2: Pyramid of tests (Source: [Rouchon, 1990])

- A-basis constitute the reference values which are outperformed by the 99% (with
the estimation associated to a confidence level of 95%) of a population;

- B-basis constitute the reference values which are outperformed by the 90% (confi-
dence level 95%) of a population.

For properties which improve the design when they exhibit high values (e.g. maximum
material resistance), respectively the 1st and 10th percentile should be considered for A
and B values. For other properties which improve the design when their value gets smaller
(e.g. material density), the 99th and 90th percentile are retained. The use of these values
are regulated, in Europe, by the CS 25.613 for static strength justification.

Overall, the applications of structural tests in aeronautical engineering cover three
main axes:

- Certification purpose

This constitutes the classical use of physical tests in aeronautical engineering. The
upper-mentioned rules to demonstrate static strength in aircraft design are generally
applied through physical testing, even though certification authorities accept more
and more frequently virtual investigations. In the general UQ&M framework, the
certification covers the goal C (comply), as it is intended to prove that the EASA
requirements are met.

- Validation purpose
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In this category we find all the tests performed to identify material properties of

structural components, which are regulated in Europe by EASA standards. More-

over, given the growing interest in virtual modeling to substitute physical tests,

there is a natural interest for the validation of complex numerical models. Common

examples are given by the validation of high-complexity phenomena, such as bird

strike [Kermanidis et al., 2005, Airoldi and Cacchione, 2006, Lavoie et al., 2007, Guida et al., 200
Heimbs, 2011, Orlando et al., 2018, Belkhelfa and Boukraa, 2020], drop impacts [Wiggenraad et &
Jackson and Fasanella, 2005, Gransden and Alderliesten, 2017, Perfetto et al., 2018],

landing phenomena [Daniels, 1996, Esposito et al., 2014], lightening [Apra et al., 2008,

Meyer et al., 2008, Muot et al., 2020], coupling effects between aerodynamics and

structure (known as aeroelasticity) [Madsen et al., 2010, Keye, 2011, Snyder et al., 2013],

among the others. In the general UQ&M framework, the validation purpose ad-

dresses the goal A (accredit).

- Health monitoring purpose

These include all tests performed during the service life of an aircraft. They

are inserted in a probabilistic framework to take into account the evolution of
existing damages [Zhang et al., 2010, Molent and Haddad, 2020], corrosion effects
[Mangalgiri, 2019, Li et al., 2021], monitor possible hazards linked to the actual use

of the aircrafts [Oehling and Barry, 2019, Zhou et al., 2020], inspections [Manco et al., 2021]
and to estimate the residual life of aircraft structures [Zhang et al., 2022b]. In this
category we retrieve essentially non-destructive testings [Towsyfyan et al., 2020,

Shao et al., 2022]. These applications mainly address goals A (accredit), intended

as the collection of the data to refine the adopted models, and C (comply), to ensure

that the aircraft is still allowed to keep flying.

Overall, structural tests in aeronautical industry assume a prominent role. Perhaps,
given the continuous customization of pieces, structural tests are unavoidable and regu-
lations intervene to manage the statistical treatment of the tests data (e.g. CS 25.613
for material properties). The growing interest towards numerical models is justified by
the need to reduce the large number of physical tests. In any case, in aeronautical in-
dustry design context, structural tests constitute - and probably will continue to be - a
fundamental piece of the whole puzzle.

2.4 Reliability assessment

The reliability assessment in a structure is another important example of applications of
UQEM framework. The concept of reliability is strictly related to the concept of failure
of a general system (which can be a structure, as in our case).

We may define the failure, in a large sense, as the condition of trespassing a safety
limit (or threshold). From a mathematical point of view, we can formalize the notion of
failure by introducing a performance function, called Limit State Function (or LSF), as
the quantity which tells us whether we are in unsafe or safe conditions (i.e. whether we
trespassed or not the given safety threshold). The LSF is generally formulated so that
the information about failure is provided through the sign of the LSF quantity itself. The
limit state function is often denoted by ¢ and, for a number of structural applications,
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can simply be described by the difference between structural capacity (or strength or
resistance R) and imposed stress S:

<0 failure

9=~ S{ >0 no failure (2.1)

The limit condition g = 0 represents the border between safe and unsafe domain: this
limit is often denoted as Limit State Surface (LSS) or simply limit state. In the simple
case of LSF described by a strength R and a stress .S, the LSS contains all conditions
with R = S.

At this point, we can formalize the reliability in two ways, linked to each other: (1)
as the probability of being in safe condition (i.e. the probability of not having failures);
(2) as the margin between the average operational condition and the most probable
condition leading to a failure. The first, very common in system reliability engineering
[Rausand and Hgyland, 2003|, will be expressed through a reliability level R = 1 — Py,
related to the failure probability Py, which represents the probability of being in an
unsafe condition. The second concept is described by a specific reliability index, denoted
in literature as 3, and represents an indicator of the position of the LSS.

Note that the reliability is not linked to the severity (i.e. the consequences) of a
failure: within this perspective, the collapse of a whole system (e.g. an aircraft engine
burning) and minor inconveniences (e.g. a light not working) would be put on the same
plan and analyzed (potentially) with the same methods. The differences in the related
reliability assessments will be given by the choice of which reliability target needs to be
ensured. Joining reliability and severity, we obtain the concept of risk: it is this latter the
principle which dictates the reliability target to be ensured. For example, considering the
resistance to fire, the demanded reliability level will not be the same for a tank of water
or for a tank for gasoline, due to the different associated risk. The concept of reliability
can be summarized, according to Lemaire [Lemaire, 2013], by the sentence: ”reliability
consists of the probabilities plus the decision”. This decision lies in the selected criteria
that lead us to say that a system fails (i.e. the failure modes), the way of measuring the
failure rates (thus, the reliability) and the associated maximum target that must not be
overcome.

Following from the definition of the limit state function in 2.1, we can also define the
probability of falling in the unsafe condition (or failure domain) as the failure probability
Py, which can be formalized as follows:

Py =P(g(X) <0) = [ 10000f,(X)aX = | s, fs KVIX(22)

where X represents a general input random vector which may affect either R, S or
both.

The other main reliability metric mentioned earlier is the reliability index 3. One of
the most common reliability indexes is the Hasofer-Lind index S, [Hasofer and Lind, 1974]:
this is defined as the minimum euclidean distance (L? norm) between the origin of a cen-
tered Gaussian normed space and the limit state surface. In Fig. 2.3, the transformation
from original space to centered Gaussian normed space is illustrated. The operator T,
responsible for this transformation, is known as iso-probabilistic transformation.
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Figure 2.3: Reliability: general illustration

By using the visual representation in Fig. 2.3, the reliability index S can be defined
as the solution of the following optimization problem:
Bur = mingVUTU (2.3)

subject to: ¢g(X)=g (T_1 (U)) =g(U)=0

Where X is the input vector variable (affecting the LSF ¢) represented in the physical
(original) space, U the same input vector but transformed on the centered Gaussian
space and § = g o T~! represents the limit state function in the centered Gaussian space
(i.e. the composition between the original limit state function g and the inverse of the
iso-probabilistic transformation 7°). The minimum value of the objective function in Eq.
2.3 represents the Hasofer-Lind reliability index Sgr. The nearest point to the origin of
the centered Gaussian normed space (the coordinates of which are individuated by the
optimal U, is known as design point or Most Probable Failure Point (MPFP).

Depending on the applications, the probability of failure P can be preferred to the
reliability index (8 to define the reliability level of a structure, or vice versa. Typically
the civil engineering domain often uses reliability indexes.

The two measures of reliability performance, Py and 3, are obviously tightly linked.
Methods such as FORM or SORM allow, based on the approximation of the shape of the
limit state surface, to estimate an approximation of P;. Otherwise, P; can be computed
by sampling based methods for example by Monte Carlo simulations [Lemaire, 2013,
Hammersley, 2013, Gogu, 2021]. A deeper analysis of the methods to evaluate Py on
structural applications is reported in Chapters 5 and 6.

Referring to the general UQE&M framework in [De Rocquigny et al., 2008], structural
reliability assessments can involve all four goals listed in Section 2.1:

- Goal U (Understand): identification of the main factors affecting the failure prob-
ability or the reliability index of a complex structure;



2.4. RELIABILITY ASSESSMENT 45

- Goal A (Accredit): evaluation of the reliability of existing designs or detection
systems (to validate the quality of measurements data);

- Goal C (Comply): verification of the compliance with current certification require-
ments provided by the law, for both existing (i.e. coupled with goal A) and new
designs;

- Goal S (Select): in design phase, reliability assessments can be introduced to verify
the compliance with current certification requirements imposed either by the law
(i.e. coupled with goal C) either by industrial needs prescribed by the customer,
stakeholders or the final user.

In the specific case of the goal S, it is common to preview an optimization framework
including the reliability assessment as a constraint. Such framework is referred in the liter-
ature as Reliability-Based Design Optimization (RBDO) [Enevoldsen and Sgrensen, 1994].
In the literature, a number of other references on methods [Whittaker and Besuner, 1969,
Alfredo and Wilson, 1975, Rackwitz and Flessler, 1978, Manohar and Gupta, 2003, Rausand and Hgy]:
Qiu et al., 2013], industrial applications [Thoft-Christensen et al., 1998, Faber, 2000, Nikolaidis et al.,
Sundararajan, 2012, Thoft-Christensen and Murotsu, 2012] and software implementations
[Pellissetti and Schuéller, 2006] of reliability concepts can be found. It is worth noticing
that such applications are not limited to civil or aeronautical engineering, but includes
also automotive and ship industry [Nikolaidis et al., 2007], among others.

2.4.1 Civil applications

In the civil engineering context, the application of reliability assessments is previewed
by the legislative requirements (specifically the Eurocodes in Europe). In this section,
we classify the civil applications according to the main categories of phenomena which
are taken into account in the literature: in particular, we focus on seismic activity, wind
effects and long-terms effects.

Seismic activity was always considered as a main actor in the reliability assessments of
every civil structure. Statistical treatment of earthquakes becomes indispensable for this
purpose. One of the first formalizations of the seismic structural reliability in a probabilis-
tic framework was provided by Esteva and Villaverde [Esteva and Villaverde, 1973] and
dates back to 1973. Current applications cover both evaluations of seismic reliability of
already existing structures [Jalayer et al., 2010, Huang et al., 2015, Tervolino et al., 2018|
and completely new designs [Cai and Lin, 1998, Mishra et al., 2013, Tuken et al., 2017,
Kolathayar et al., 2018], within an RBDO framework. All of these works are strictly
connected with the guidelines provided by national and international standards (e.g. the
Eurocodes in Europe). Moreover, given the different seismic activities in distinct regions,
most of the analyses are focused on national realities, from Canada [Ghobarah and EL-ATTAR, 1998]
to Iran [Pourzeynali and Hosseinnezhad, 2009], from Italy [Jalayer et al., 2011] to In-
donesia [Mase, 2018].

Another important phenomenon analyzed in reliability assessments is the effect of the
wind. Most applications of reliability studies on wind effects are focused on buildings
(both tall [Caracoglia, 2014, Bernardini et al., 2012, Zhang et al., 2008, Gibbons et al., |
and low buildings [Davenport, 1983, Jin et al., 1999]) and long bridges [Ge et al., 2000,
Pourzeynali and Datta, 2002, Baldomir et al., 2013, Dong et al., 2021]. For both build-
ings and bridges, the safety is the main purpose. However, for the former we may have also
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evaluations (and/or reliability constraints) on the serviceability [Rojiani and Wen, 1981,
Bashor and Kareem, 2007|, defined by EN 1990 as the requirement that ”the structure
during its intended life will remain fit for the use for which it is required, with the ap-
propriate degrees of reliability and in an economic way”. As for seismic effects, new
designs taking into account wind effects can be introduced in an RBDO framework
[Kusano et al., 2014, Spence and Gioffre, 2012].

Another topic of interest regards the guarantee of maintaining a certain level of
safety during long periods of time, thus focusing on long-term effects, mainly fatigue
[Pourzeynali and Datta, 2005, Krejsa, 2013, Heng et al., 2019, Jia et al., 2020, Fu et al., 2020,
Luo et al., 2021], corrosion [Melchers, 2005, Val, 2007, Cascini et al., 2014, Nguyen and Nguyen, 2020,
Bojérquez et al., 2021] and combination of both [Mokhtari and Melchers, 2020, Shittu et al., 2020,
Xu et al., 2022]. These applications are linked to the concept of time-dependent (or time-
variant) reliability [Wang et al., 2021a], based on the perspective that the reliability of a
given structure can change when the environmental conditions and the effect of loading
history evolve in time. The Eurocodes themselves provide different reliability targets that
constructors must demonstrate in the short- (e.g. present and 1 year) and long-terms (e.g.
25/50 years). Note that the applications on long-term effects are not totally disconnected
with seismic and wind loadings, as these latter may affect (or be affected by) the previous
history of loadings and solicitations [Fu et al., 2020, Bojérquez et al., 2021]. In the con-
ception of new designs, the applications of RBDO frameworks focus on the concept of life-
cycle cost [Frangopol and Maute, 2003, Ellingwood and Lee, 2016, Frangopol and Kim, 2019,
Xin et al., 2021, Frangopol and Kim, 2022|, intended as the cost implied by the construc-
tion and maintenance all across the targeted lifetime [Frangopol, 2011].

All the applications described in this section are in close relation with the guidelines
provided by current legislation requirements. The proper definition of target reliabilities
in national (and international) standards encourages the research to explore new methods,
tools and applications in the civil engineering field.

2.4.2 Aeronautical applications

The application of structural reliability concepts spurred a growing interest in the last two
decades in aeronautical research. The reader can find some literature reviews on methods
and applications of aircraft structural Risk and Reliability (R&R) analysis on airframe
[Tong, 2001, Long and Narciso, 1999] and aircraft gas turbine engines [Kappas, 2002], as
well as computational challenges [Ghiocel and Wang, 2005].

Research efforts mainly focused on the demonstration of the usefulness of probabilistic
methods to improve the design of aeronautical and aerospace structures [Wang et al., 2019a],
thus covering the goal A (Accredit) in the general UQ&M framework [De Rocquigny et al., 2008].
These may include the definitions of embedded statistical methods [Huang and Lin, 2005,
Pradlwarter et al., 2005, Wu et al., 2011], dedicated softwares - such as the ” Nonlinear
Fvaluation of Stochastic Structures Under Stress” (NESSUS/FEM) [Cruse et al., 1988],
dedicated routines in ASTROS [Luo and Grandhi, 1997], the ” Probabilistic Design of
Damage Tolerant Composite Structures” (ProDeCompoS) [Ushakov et al., 2002] and the
Python library OpenTURNS [Baudin et al., 2017] - and the reliability of detecting flaws
during inspection [Lincoln, 1985, Zhang et al., 2010, Ignatovich and Bouraou, 2013, Woch, 2014,
Lin et al., 2018] to properly redefine maintenance plans. The applications at academic
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research level aim at analyzing several phenomena, like fatigue [Ghiocel and Tuegel, 2004,
Huang et al., 2012, Song et al., 2021, Choi et al., 2021}, dynamic loadings [Su and Jin, 2019,
Wang and Liu, 2020], combined effects of aerodynamics and structural response [Allen and Maute, 2005
Othman et al., 2019, Wansaseub et al., 2020]. The main purpose is to push towards prob-
abilistic designs to reduce the potential over-conservatism in classical deterministic design
[Enrico et al., 2019].
The actual industrial applications of structural reliability concepts in aeronautical
context are still limited. In 2002, Zang et al. [Zang et al., 2002] tried to outline needs
and opportunities for uncertainty-based design approaches in aeronautical industry. In
particular, several barriers were highlighted:

1. industry is reluctant to abandon traditional design methods;

2. benefits of probabilistic approaches are not widely demonstrated in literature;

3. designing a structure or a system when dealing with uncertainties is a far more
complex and computationally expensive task than the deterministic counterpart;

4. statistical description of structural imperfections is economically expensive, time
consuming and highly dependent on specific configuration, material and manufac-
turing processes;

5. statistical process control activity is significantly lacking in aerodynamics;

6. there are no effective approaches for characterizing modeling uncertainties, espe-
cially for nonlinear problems;

7. current RBDO methods imply a computational burden too significant to be incor-
porated in high fidelity analysis tools;

8. researchers and analysts are not trained enough on statistics and reliability assess-
ments.

However, this report was not updated with recent advancements in probabilistic ap-
proaches and evidences of opportunities for such design methods, since it is dated from
2002. All the applications reported in the present paper demonstrate the collapse of rea-
sons 2, 5, 6, 7. Some barriers, like 3 and 4, will still be true in the short term: however,
as this research field is very active, it is reasonable to suppose that such difficulties will
be soon minimized. Large efforts are also undertaken in industrial contexts too, in order
to cope with organizational - 1 in the list - and training issues - 8 in the list.

Focusing on the last barrier in the list from [Zang et al., 2002], we need also to under-
line the fact that the reliability analyses are well integrated in the design and verification
of aircraft avionic systems [Enrico et al., 2019]. Therefore, the transition from classical
deterministic to reliability-based structural designs is not impossible from the capabilities
standpoint, as the technical skills are already there, although used, for now, in different
departments.

Another obstacle to the development at industrial scale of reliability-based design
methods and applications is currently given by the availability of data. We report the
example from Huang et al. [Huang and Lin, 2005], who aimed at creating a procedure
to systematically compute failure probability of aircraft composite structures subject
to accidental damage. A large database needed to be collected: in particular, they
sought informations about material category, damage type, aircraft location, detection
method and damage cause. Unfortunately, database construction was seen as a nontrivial
issue. The authors used two different sources to construct the database: FAA’s (Federal
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Aviation Administration) Service Difficulty Reporting System (SDRS) and data collected
in [Gary and Riskalla, 1997] via survey from a U.S. Naval Aviation depot and on-site
inspections of several commercial airline maintenance facilities. However, these were
incomplete (SDRS database in particular), since damages below maximum acceptable
limits were not usually reported, leading to representation of only large flaws, not the
overall distributions. An alternative could be found in aircraft operators loghooks of
maintenance actions, where all interventions are usually recorded: unfortunately, their
availability could not be taken for granted, for confidentiality issues.

Finally, also the FAA itself proposed a probabilistic method for the sizing of composite
aircrafts (confront the official document DOT/FAA/AR-99/2 [Long and Narciso, 1999]),
twenty years ago. This considers a separate statistical analysis of the phenomena affecting
loads and structural strength, and distinct failure modes are analyzed separately, as shown
in the flowchart in Fig. 2.4. However, there is no clear definition yet of a target reliability
that manufacturers need to demonstrate to the authorities, in order to guarantee the
initial airworthiness of new aircrafts. Moreover, the demonstration of aircrafts static
strength is still based on the certification tests and the concept of safety factors, which
will be the main focus of the next section.
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Figure 2.4: Probabilistic analysis concept from FAA (Source: [Long and Narciso, 1999])

2.5 Safety factors

In the previous sections we analyzed two main aspects (namely structural tests and
reliability assessments) of probabilistic frameworks to validate a structural design. In
this section we are going to explore how the design itself is generally done, within the
perspective of controlling the variability of the performances of a given structure.
Above all in the initial stages of design, the sizing of structural components does not
explicitly deal with the effects of the whole statistical variability of all the input random
parameters involved. The design will be focused on nominal quantities. Note that the
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concept of "nominal” is not equivalent to ” mean”: nominal values can be defined either as
specific quantiles, means or worst-case scenarios of a given quantity (e.g. load, material
property, geometric features, etc.). The uncertainties associated to these parameters
(which are apparently left behind, when considering just nominal values) are actually
implicitly considered through some other deterministic quantities, called safety factors.

From a generic point of view, the concept of safety factors is introduced to guarantee a
certain margin on the computed nominal performances, in terms of both solicitations (i.e.
applied loads) and capacity (i.e. structural strength) of a given structure. These margins
are intended to compensate eventual errors in the adopted models, lack of knowledge
on complex phenomena, under-conservative assumptions raised to simplify the structural
analyses, human errors, unanticipated operational conditions.

From a mathematical point of view, these safety factors consist usually in sets of
multiplicative coefficients v which are used to adjust the nominal loads and structural
resistance (or strength). The safety factors will lead to consider in design phase amplified
nominal loads and reduced material strengths. The simplest expression used to verify the
safety in deterministic design phase can be formulated as:

orR > 7sS with ¢p <1, 75> 1 (2.4)

Where R represents the material strength, S the load, s the safety factor related
to the load and ¢g is a safety factor related to the strength. These expressions can be
enriched with combination of multiple loads (with associated combination factors) and
multiple failure modes.

In civil engineering applications, the upper-mentioned factors in Eq. 2.4 are denoted
as partial safety factors and are always greater than unity: for the strength the reciprocal
vr = 1/¢g is adopted in Eurocodes.

In aeronautical and aerospace applications, we refer to ¢r as Knock-down Factors
(KdF, lower than unity) and to vg,7s simply as Safety Factors (SF). Note that sev-
eral distinct KdFs/SFs can be cumulated (as product of different KdFs/SFs) to take
into account the cumulative effect of, for example, manufacturing procedures, thermal
treatments of materials, errors in the installation and/or in the assembly line.

The general principle of the design via safety factors is illustrated in Fig. 2.5, where
we adopt the aeronautical notation. From the distributions of stress S and strength R,
two nominal quantities are identified, leading to the definition of respectively R, and
Snom- These are then modified via the introduction of the SF ¢ and the KdF ¢z. Finally,
a margin of safety (typically called reserve factor in aeronautics) is computed to verify
that the condition in Eq. 2.4 is actually satisfied.

Now, these safety factors are actually used in deterministic design, according to the
principle shown in Eq. 2.4 and in Fig. 2.5. So why including them among the applications
of probabilistic-based frameworks? Actually, the purpose of the introduction of safety
factors is to absorb the effects of the input variability on the structural outcomes, i.e. to
ensure that the variabilities which could prevent the safety of the structure itself are taken
into account within the deterministic design framework. This guarantee comes from how
we determine these safety factors. Therefore, the probabilistic concepts are not applied
in the final usage of the safety factors (i.e. in the deterministic design, as in Eq. 2.4), but
may rather intervene on the computation of the safety factors themselves. Note, however,
that the safety factors may not necessarily be determined via a probabilistic framework.
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Figure 2.5: Illustration of the principle of design by safety factors (aeronautical notation
is used)

In the following of this section, we deal with the modalities on how these safety factors
are determined in civil and aeronautical applications, the reason behind the different
choices and what challenges affect these two fields.

2.5.1 Civil applications

The determination of partial safety factors is often referred as ” calibration of partial safety
factors” in the civil engineering field. This concept is based on reliability evaluations and
was originally introduced in the civil domain. It is generally performed for a given class
of structures, materials or loads in such a way that the reliability index of the structure
gets as close as possible to a fixed target.

Another denomination of the ” calibration of partial safety factors” is the code cali-
bration. The reason for this naming lies in the fact that the related studies do not aim
at ensuring a fixed reliability level to a single product (e.g. a single bridge, building, silo,
etc.), but rather to propose new national standards, often called building codes (from
which the name code calibration).

Code calibration can be performed by judgment, fitting, optimization or a combination
of these [Thoft-Christensen and Baker, 1982, Madsen et al., 2006]. Focusing on the op-
timization procedure, the following steps are generally performed [Sgrensen et al., 1994,
Faber and Sgrensen, 2002]:

1. Definition of the scope of the code: the class of structures to be considered;

2. Definition of the code objective: target reliability indexes or probabilities of failure
in different failure modes;

3. Definition of code format: how many partial safety factors and load combination
factors to be used, dependencies between load partial safety factors and material or
between material partial safety factors and load type, how to use the partial safety
factors in the design equations, rules for load combinations;

4. Identification of typical failure modes and of stochastic model: limit state equa-
tions and design equations are formulated and specific stochastic models for the
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parameters in the limit state equations are selected;

5. Definition of a measure of closeness: a function describing how similar are the
obtained reliability indexes to the target values;

6. Determination of the optimal partial safety factors for the chosen code format:
optimization procedure;

7. Verification: validity of the optimal safety factors and reliability assessment of the
obtained structures.

The design method stemming from a probabilistic-based determination of partial
safety factors is often referred in the literature related to civil engineering as Load Resis-
tance Factor Design (LRFD).

The introduction of a target reliability level, typically defined through a reliability
index [, allows to impose a certain safety on the obtained design. Numerical values
can vary in function of the susceptibility of the particular structure and the eventual
consequences of the specific failure. Varying reliability targets among different failure
modes is strictly due to the interest in increasing reliability requirements of the most
catastrophic ones.

Another aspect to emphasize in the upper-described algorithm regards the definition
of a measure of closeness. It consists in a simple relation quantifying the differences
between a general vector of reliability indexes (3; with respect to target values (3;. Each
failure mode ¢ will be considered with a different relevance, by the use of appropriate
weight factors W;. Measure of closeness can be formalized in a general form as:

M (83 Bi, Wi) = 3 Wif (8 8:) (2.5)
An example of Eq. 2.5 can be given by:

M (53 W) = S Wi (6= )’

A common objective in this research field is to uniform reliability indexes for several
failure modes, hence fixing the same target 3; = 8. Already in 1971, Lind [Lind, 1971]
showed how a partial safety factor format could be calibrated to achieve nearly constant
reliability within the framework of a member-by-member design theory.
The applications in civil engineering can address critical evaluations of current na-
tional standards [Ghosn and Moses, 1986, Vrouwenvelder and Siemes, 1987, Trezos and Thomos, 2002,
Dymiotis, 2002, Beck and Souza Jr, 2010], comparisons between different national stan-
dards [Gulvanessian and Holicky, 2002, Sgrensen et al., 2005] and /or with European stan-
dards [Gulvanessian and Holicky, 2002, Beck and Souza Jr, 2010]. Furthermore, the re-
definition of safety factors through statistical-based calibration can concern all categories
of structures: from steel [Leander et al., 2014, Nadolski et al., 2019] to wood construc-
tions [Folz and Foschi, 1989, Ellingwood and Rosowsky, 1991, Ellingwood, 1997, Sgrensen et al., 2005,
from bridges [Leander, 2018] to off-shore structures [Yoon et al., 2014, Nadim et al., 2015].
The probabilistic-based calibration of safety factors is allowed, in civil engineering, by the
large amount (and the continuous update) of publicly available data: these include infor-
mations on climatic conditions, geothermic data, seismic and hydrological risks, among
others.
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We report here an example of application from Sorensen [Sgrensen, 2002, who per-
formed a calibration of partial safety factors of a number of sample structures. The list
of examined structures included: simply supported beams of reinforced concrete, steel
and glued laminated timber, short columns of concrete, steel and glued laminated tim-
ber, a central loaded footing (foundation) on sand and clay and a concrete gravity wall.
The calibration was intended to obtain the same average reliability index furnished by
Danish codes, but minimizing the scatter of the reliability levels among all the structures
considered. In particular, safety factors were determined by considering the cumulative
effect of consequences of failure, type of failure, uncertainty associated to the material
mechanical properties and in the computational models. Results confirmed a previous
study by Sorensen et al. [Sgrensen et al., 2001], and constituted a proposal for new set
of partial safety factors for the Danish National Annexe. The final distribution of the
reliability indexes is reported in Fig. 2.6.
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Figure 2.6: Distribution of reliability indexes 8 before and after code calibration (Source:
[Serensen, 2002])

Finally, the choice of a particular target reliability index, constituting one main start-
ing point in the safety factors calibration, is not trivial. The discussion is still open and
eventually will evolve with time [Faber and Sgrensen, 2003]. Looking at the outcomes
from the most recent works on the subject [Nadolski et al., 2019], a number of effects
still need to be studied and the discussion about the calibration of safety factors is all
but closed. On top of that, standard codes can still change with time, encouraging further
research efforts on this field.

2.5.2 Aeronautical applications

Actual aeronautical applications of safety factors calibrations based on a probabilistic
framework are still at birth. Traditionally, in the aeronautical field, multiple safety fac-
tors were used. They are currently partly defined by FARs and CS, respectively in US
and Europe, and partly by the manufacturers themselves depending on their experience.
Therefore, conversely to the current threads of civil engineering applications, the safety
factors in aeronautics are not entirely based on probabilistic analyses.

As an example of safety factors not based on probabilistic considerations, we report
the case of the link between limit load LL and ultimate load UL in abscence of inter-
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actions between structures and system: in fact, in presence of interactions between the
structure and systems, this safety factor is actually adjusted according to the probability
of occurrence of the system failure (see CS 25 Appendix K). As a reminder, the LL is
defined as the maximum load arriving at most once in an aircraft life (see CS 25.301).
The UL is an amplification of LL representing also the load that the structure must prove
to be able to withstand for 3 seconds in certification physical tests (see CS 25.305). These
two quantities are linked via the relation UL = 1.5 x LL (see CS 25.301-303). The first
adoption in 1934 of this classical safety factor, equal to 1.5, comes from an analogy with
the mechanical properties of aluminum [Mangurian, 1957]. In fact, the ratio between the
ultimate strength (i.e. the rupture limit) and the yield strength (i.e. the maximum solic-
itation before the appearing of plastic deformations) is around 1.5 for the aluminum. On
the other hand, each aircraft should be able to withstand limit loads without detrimental
permanent deformations (linked then to the yield strength of the structure) and sustain
ultimate load without collapsing (thus linked to the rupture limit). Given the extended
use of aluminum in aviation, it was chosen to assign a level of 1.5 for the safety factor
linking these two reference load levels [Mangurian, 1957, Wang et al., 2019a.

The first to assess the issue related to the choice of the safety factor 1.5 (traditionally
used in aeronautics) seems to be Mangurian [Mangurian, 1957]. He pointed out a list of
phenomena for which the combination of this 1.5 safety factor with the concept of limit
load led to over-conservative design. Therefore, lower safety factors would be sufficient
to guarantee a rational level of safety, allowing to reduce the over-conservativism in the
structural sizing. He raised the hypothesis that, because of the overwhelming fear of
degrading safety, it was however unrealistic to expect any incentive for change from the
military or civil authorities [Mangurian, 1957]. Note that this work dates back to 1957.

50 years later, Elishakoff and Chamis [Elishakoff and Chamis, 2001] investigated the
relation between safety factors and reliability. From their analyses, they concluded that
these two concepts could peacefully coexist, even if their nature is different: safety factors
are allocated, in aeronautical context, in an ad hoc manner, dictated by past experience
and driven by the idea that ”if nothing never happened, nothing will happen in the fu-
ture” [Elishakoff and Chamis, 2001]; on the opposite side, reliability-based approaches
can offer a unified mathematical framework for calculating safety levels and associated
safety factors. In order to link these two perspectives an ingredient was still missing:
this is, in fact, the determination of precise reliability targets that need to be ensured.
Without the general context of reliability, the safety factor will remain, according to
[Elishakoff and Chamis, 2001], as " the factor of "experience” but still the factor of “the-
oretical ignorance”” .

Several more recent research efforts aimed at concealing the safety factors with reliabil-
ity concepts [Qu and Haftka, 2004, Acar et al., 2007, Degenhardt et al., 2010, Wang et al
Schillo et al., 2017, Wang et al., 2019a]. However, for an actual application at industrial
level, it is mandatory to create a link between each proposed probabilistic framework and
the current certification requirements.

On the other hand, this link needs to be addressed also by the other protagonists, i.e.
the regulation authorities defining the certification requirements themselves. As shown
by Bristow [Bristow and Irving, 2007] in 2007, safety factors in aeronautical industry did
not change since their original adoption [Mangurian, 1957]. In [Bristow and Irving, 2007]
one can find a summary of safety factors defined in JARs (i.e. the previous certification

., 2013,
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requirements in Europe, before the EASA standards) until 2007 and applied to civil
aircraft designs: by comparison with current legislation, no substantial difference can be
outlined. The evidences on the improvements allowed by reliability-based definitions of
safety factors suggest that the conditions will be probably mature in a not-so-long term to
motivate the dialog between aeronautical industry and certification authorities to move
towards this direction.

2.6 Conclusion

In this chapter we presented a brief state of the art of the applications of probabilis-
tic frameworks in civil and aeronautical engineering fields. Throughout the chapter we
compared the directions of research and industry in these two fields, focusing on three
main classes of applications: structural tests, reliability assessments and safety factors.
The common thread of this comparison was identified in the legislative certification re-
quirements imposed by the related standards in Europe (Eurocodes for civil engineering,
EASA standards for aeronautics).

The applications of structural tests are more spread in aeronautical engineering, with
respect to civil engineering. The main reasons can be identified in the continuous cus-
tomization of components in aeronautics (compared to the wide spread use of standard-
ized components in civil engineering) and the certification constraints. Focusing on these
latter, we may observe that Certification Specification (CS) requirements properly define
load levels and standard procedures to certify aircrafts. On the other hand, Eurocodes
showed some lacks in the proper definition of proof load tests. Moreover, the fact that
full scale civil structures are often not to be replicated reduces the possibilities to perform
destructive tests, compared to the aeronautical field.

Concerning the applications of reliability assessments, we observe continuous advances
in civil engineering: these are supported by the logic defined by the national (and inter-
national) standards, which impose reliability targets to be justified on each design. Such
targets are also differentiated according to the category of structures, the main phenom-
ena affecting the safety, and separating short or long-term requirements. In parallel,
actual industrial applications of reliability-based design methods are slowed in aeronau-
tics mainly by the certification requirements, which do not fix a precise reliability target
(for structures) and still demand for a demonstration of the design via the concept of
safety factors. Several contributions in the literature aimed at moving aeronautical in-
dustry towards probabilistic design approaches. However, the missing link appears to be
a tighter interaction between industry and regulation authorities on this topic, allowing
to converge towards new standard requirements, in particular, the definition of a target
reliability level.

The last category of applications of probabilistic frameworks includes the determi-
nation of safety factors (SF). We highlighted the fact that in civil engineering the SFs
are generally determined via probabilistic analyses, while in aeronautics SFs are mainly
defined by engineering judgment and based on past experience. This difference is due,
once again, to the different requirements imposed by certification authorities. We also
put in evidence the different evolution rates of legislative standards, which evolve faster
in civil engineering.
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To summarize the outcomes of this critical review, the applications of probabilistic
frameworks in the two analyzed engineering fields (civil and aeronautics) are tightly linked
to the respective standard requirements. In order to develop new structural design meth-
ods based on probabilistic frameworks, we must conciliate the proposed approaches with
current certification requirements to make them applicable to aeronautical structures.

In the following chapters, we will propose a new sizing approach, based on a prob-
abilistic framework and capable to align with current certification requirements. The
common thread of all successive chapters will be given by the applications on Hole2Hole
project, presented in Section 1.4.

The proposed sizing approach will be presented in two different declinations in Chap-
ter 4 and 7. Before, we will explore the application problem in Chapter 3, aiming at
understanding the global relationships between the different quantities in input and the
output structural performances.
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Chapter 3

Deterministic Exploration of Input
Variability

3.1 Introduction

In the previous chapters, we highlighted the interest in recent years in the application of
probabilistic analyses in different fields, with a particular focus on the expected gains in
the design of aeronautical structures. We reported the main concepts of the Uncertainty
Quantification & Management (UQ&M) framework (in Chapter 1) and the distinction
between different objectives pursued by UQ&M (in Chapter 2). In this chapter, we focus
on the goal U (Understand) of the UQ&M framework, consisting in understanding the
influence of the variability of the inputs on the variability of the output response.

The common thread of the present dissertation, given by the Hole2Hole project (pre-
sented in Chapter 1) constitutes the main application of this chapter. As a reminder, this
project aims at simplifying the assembly routine of aeronautical structural elements by
drilling the individual parts prior to the entrance in the assembly line. This leads, on one
hand, to a dissociation between the manufacturing and the assembly routines, simplifying
this latter. On the other hand, some geometric imperfections are introduced: therefore,
the associated consequences on the load redistribution of the obtained assemblies need to
be evaluated. This chapter constitutes a first step to understand and simplify the H2H
problem, in order to facilitate the interpretation of the results issued from the analyses
of the following chapters, but also to be able to identify the relevant countermeasures to
improve the structural performances.

Most applications of UQ&M require a large number of evaluations of numerical simu-
lations. Furthermore, real-world applications make use of increasingly complex simulation
models. The open question is how to balance computational burden and results precision.
Therefore, two main challenges arise:

1. how to reduce the number of simulations required to provide sufficient accuracy;

2. how to reduce the complexity of the full model (e.g. via a surrogate model) while
minimizing the detriment in terms of precision.

Both goals are made more difficult when dealing with problems characterized by high
number of inputs: more simulations are generally required to fully explore a wider input
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domain and the construction of a surrogate model becomes more challenging as input
dimension increases. Therefore, this chapter aims at exploring various approaches to
reduce the input dimensionality of the H2H application problem.

The challenges arising from the amount of input variables on H2H numerical explo-
ration is described in Section 3.2. All successive sections present the general method and
the application of input dimensionality reduction on H2H coupons.

This input dimensionality reduction is performed by following three axes:

1. Retrieve relations between inputs that better explain the effects on the response;
2. Remove inputs which only marginally affect the response;
3. Separate effects of inputs that can be superposed.

The first axis is pursued by defining specific patterns of the input variables. In partic-
ular, this consists in the identification of the principal modes, defined as linear combina-
tions of the original inputs, which constitute the most informative features that explain
the variability of the output response. In the context of H2H framework the modal de-
scription is used to redefine the misalignments variables, with a double goal in mind: (1)
we need the fewest but more informative input variables; (2) retrieving the most impor-
tant features (which affect the output response) may facilitate the interpretation of the
statistical results presented in the following chapters. The methods used for this modal
description and the related applications to H2H constitute the main content of Section
3.3.

The second and the third purposes are pursued via screening techniques, which are
part of the larger framework of the sensitivity analysis [looss and Lemaitre, 2015]. The
methods and the applications to two coupons of H2H configurations are reported and
discussed in Section 3.4.

Finally, in Section 3.5 the conclusions of the study reported in this chapter are an-
alyzed, highlighting the main consequences of the presented results on the successive
statistical analyses of the next chapters.

3.2 Challenges arising from numerical investigations
on H2H

Within the H2H framework, the Single Lap Shear (SLS) uni-axial loaded bolted joint
assembly (illustrated in Fig. 3.1) was selected here as application problem. This is
characterized by the assembly of two plates, connected by a fixed number of bolts. In
particular, we clamp an extremity of the first plate (situated on the left in Fig. 3.1) on
the left plane perpendicular to X axis, while applying a load Fj,, parallel to X axis and
applied on the center of the right face of the second plate. We differentiate the coupons
via the bolting pattern, which represents the mapping of the bolts in a given assembly.
We denote the bolting pattern via the notation Nx X Ny: here Ny represents the number
of rows of bolts in the longitudinal axis (i.e. parallel to the direction of the applied load),
while Ny is the number of rows of bolts in the transversal axis (i.e. perpendicular to the
direction of the applied load).
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Figure 3.1: Illustration of uni-axial loaded Single Lap Shear bolted joint assembly (bolting
pattern: 2x5)

Part of the analyses can be performed via physical testing while other can rely on
simulation-assisted exploration.

The present work focuses on simulation-assisted exploration, while physical experi-
ments are used within H2H project in a statistical framework to validate and accredit
the numerical model: in the UQ&M framework described in Section 1.2, physical tests of
H2H project pursue the goal A (Accredit).

The exploration assisted by the numerical model can be associated in UQ&M frame-
work to the goal U (Understand): in fact, the main objective of this exploration is to
understand and rank the different effects on the output response issued from the different
inputs.

Focusing on the input variables of the H2H virtual model, one can retrieve:

- Elastic behavior material properties (for both plates and fasteners);

- Plastic behavior material properties (for both plates and fasteners);

- Allowable material limits (for both plates and fasteners);

- Friction (between all surfaces);

- Preload on fasteners to enforce the contacts between each fastener and each plate,
and the contact between the two plates;

- Oversize (additional clearance between hole and fastener);

- Misalignment (vector between theoretical and actual hole center positions);

- Load level,;

- Bolting pattern;

- Fastener geometry;

- Nominal hole diameter;

- Plate thickness.

We illustrate in Fig. 3.2 the mathematical definition of the misalignments: in par-
ticular, we denote by X the longitudinal component (i.e. parallel to the application of
the external load) and by Y the transversal component of the vector connecting the the-
oretical center of the hole (i.e. the nominal and ideal position) and the actual position
of the drilled hole. We also make use of the notation X;; (respectively Y;;) to denote the
longitudinal (respectively transversal) component of the misalignment vector, related to
the j-th hole on the ¢-th plate.
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Figure 3.2: lustration of geometrical misalignment definition

We can cluster the upper-mentioned variables according to their variability and their
controllability:

e Design choices: material choices, fastener geometry definition, bolting pattern,
nominal hole diameter, load level;

o Random wvariables: elastic and plastic behavior material properties, allowable ma-
terial limits, friction properties, preload, oversize, misalignments, plate thickness.

The design choices can be considered (and consequently treated) as scenarii following the
UQ&M framework presented in Section 1.2. Some of the upper-mentioned random vari-
ables actually involve small variabilities, due to the precision in manufacturing processes:

- Oversize;

- Plate thickness.

Other random variables are considered at their nominal level because of their limited
effect over the variation of the transmitted loads, assumed by engineering judgment:

- Friction between fastener head and plate;

- Friction between fastener nut and plate.
These parameters are kept in the finite element model to ensure numerical stability.
Moreover, in the present work we chose to focus on behavior of the material in the
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linear elastic domain, so the plastic behavior material properties are not included in our
analysis. This is done in order to work with models with lower computational burden.
The extension to nonlinear models of the relation between stress and strain is left as
perspective.

To sum up, the list of uncertain variables treated in the upcoming UQ&M analysis in
the context of H2H is reduced to:

- Elastic behavior material properties (for both plates and fasteners);

- Allowable material limits (for both plates and fasteners);

- Friction (between plates);

- Preload on fasteners;

- Misalignments.

The ensemble of scenarii and design choices are listed below:

- Material choices;

- Fastener geometry;

- Bolting pattern;

- Nominal hole diameter (d) and plate thickness (t), resumed in their ratio t/d;
- Oversize;

- Load level.

Summarizing these considerations, Table 3.1 provides a general overview of the evo-
lution of input dimensionality for different bolting patterns. Note that having for SLS
coupons two plates, we always have only one friction coefficient, intervening on the inter-
face between the two plates. In the table, we report ”1/2” friction coefficient per plate.
We illustrate the evolution of the total number of input variables in Fig. 3.3.

Random variable Per bolt | Per plate | 1x2 | 1x3 | 1x5 | 2x3 | 2x5 | 3x5
Misalignments 4 8 12 20 24 40 60
Friction coefficients 1/2 1 1 1 1 1 1
Preloads 1 2 3 5) 6 10 15
Plate Young moduli 1 2 2 2 2 2 2
Bolt Young moduli 1 2 3 ) 6 10 15
Plate bearing strengths 1 2 2 2 2 2 2
Bolt shear strengths 1 2 3 5 6 10 15
Total 7 5/2 19 26 40 | 47 75 110

Table 3.1: Original list of input variables on H2H problem for different bolting patterns

In UQ&M framework, the output responses to consider are chosen according to the
phenomena which better characterize the overall system performances. For SLS bolted
joint assemblies, four failure modes (illustrated in Fig. 3.4), distinguished via engineering
judgment and supported by physical testing, are often considered:

- Net section failure mode: stress in the plate section between holes exceeds plate
material limits (typically ultimate tensile strength).

- Bearing failure mode: hole stress overcomes allowable material limits, thus leading
to a failure on the plate due to excessive plastic deformation around the hole (typical
of joints with plates having low ratio thickness/diameter - namely t/d);
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Figure 3.3: Evolution of the number of input variables as function of the bolting patterns

- Bolt shear failure mode: shear stress on fastener exceeds capabilities, leading to
bolts failure (typical for high t/d);

- Mized failure mode: interaction between bearing and bolt shear failure modes (for
intermediate t/d).

In all our work we focus on titanium coupons with t/d = 0.25, where bearing failure
is the main mode of failure.

3.3 Modal description

This part describes the procedure used to deduce simplified coordinates in the input
space, able to appropriately characterize the relationship between input and output.
In many applications, it is possible to define certain linear combinations (or modes) of
input variables that can explain most of the behavior of a model. The upper-mentioned
coordinates represent in fact the principal modes of the original variables.

This approach is interesting as the number of modes can be largely inferior to the
number of original variables. This is used in the H2H framework to smartly re-define the
input misalignments, which constitute the main contribution to the increase in input di-
mensionality with the increase of bolting pattern complexity. Moreover, the identification
of the principal modes can support the engineering judgment to provide the best-suited
countermeasures to ease the consequences of the variability of the input misalignments
on the global structural performances.

In order to deduce such modes, two approaches are considered: Principal Components
Analysis (PCA) [Jolliffe, 2002, Abdi and Williams, 2010, Bro and Smilde, 2014] and Par-
tial Least Square (PLS) [Vinzi et al., 2010, Mehmood et al., 2012].
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Figure 3.4: Ilustration of main failure modes for bolted joint assemblies (mixed failure
mode not reported)

3.3.1 Principal Components Analysis

The Principal Components Analysis (PCA) is a common unsupervised machine learning
method used to identify patterns of original data that can explain the related variability
[Abdi and Williams, 2010, Bro and Smilde, 2014, Vidal et al., 2016]. The main focus is
the explanation of the variance of a data matrix X, the rows of which represent different
samples.

The PCA allows to transform the data from a high-dimensional original input space
to a reduced space of dimension equal to the number of components which are retained.

This transformation is done iteratively by repeated deflation steps [Vidal et al., 2016],
which correspond to iterative modifications of the original matrix X and are represented
by the notation X; (related to the i-th deflation step). The directions which induce
the upper-mentioned transformation (also referred as projection) of the space are given
by specific components w), where & = 1,..., M with M representing the number of
components.

The k-th transformation of the sample X(;) due to the k-th component w,) can be
expressed either as a score ti; = Xwr) on the transformed coordinates or as the
product ;) = (X (i)w(k)) wa) on the original coordinates. The score t;(; represents the
projection of the deflated X(;) induced by the component w). On the other hand &
represents the k-th component of the reconstruction of X(;) in the original space via PCA.

The first component is obtained as the unitary vector w maximizing the squared
covariance of the score t;, formalized as follows:

w() = argma.CEHwH:leXTXw

Which admits an analytical solution. For the successive components, we update the
data matrix by taking into account the transformations on the original input space related
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to the previously computed components as follows:

k
Xp=X =) Xwauwf
i=1
Then the successive components will be obtained by solving the following optimization
problem:

T T
W(k)y = argmaz||y||—1w" X, Xpw

This constitutes the k-th eigenvector of the matrix X7 X. The related eigenvalues are
given by [Jolliffe, 2002]:

A =Dty = 2 (Xoww)”

Note that the sum of the ) is an index measuring the variance fraction (over the
total variance of original data) which is explained by the PCA model. We iteratively add
new principal components until we have a sufficiently high level of the explained variance
ratio (e.g. typically 99%). The total number of components will be denoted as h.

The projection matrix W, defining the projection from the original coordinates (i.e.
in the original high-dimensional space) to the reduced lower-dimensional space is given
by W = [w(l), ...,UJ(h)].

At first, we use PCA to understand the relations between outputs, comparing the
outcomes with an exploratory analysis, if possible, or with engineering considerations.

In a second step, we try to adapt PCA to find a relation between inputs and outputs,
conflating both in the same data matrix X: in the H2H application, this would mean
stacking per columns both input misalignments and output bearing forces.

It is worth noticing that for PCA there is no distinction between inputs and outputs,
as they are all considered as data. In fact, PCA is an unsupervised method that cannot
be used for regression. This is the main limitation of PCA.

Another alternative use of PCA to overcome this difficulty can be given by the Prin-
cipal Component Regression (PCR) [Jolliffe, 1982, Bair et al., 2006]: this consists in ap-
plying the PCA on a matrix data X containing only the inputs and then introducing
a linear regression to understand the connection between reduced inputs and outputs.
However, being in our context all input variables considered as independent, the PCA
step would not provide useful results: in fact, the dimensionality reduction would not
take into account the relation itself between inputs and outputs, leaving all the burden of
the identification of such relation to the linear regression itself; moreover, this application
of the PCA (in the framework of the PCR) could lead to lose important features and
thus important effects of the input variables. This alternative use of the PCA can not be
pursued in the applications on the H2H problem.

3.3.2 Partial Least Squares

The Partial Least Squares (PLS) method [Vinzi et al., 2010, Mehmood et al., 2012, Benitez et al., 2020]
is a supervised learning technique which presents some similarities with PCA. The main
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purpose of PLS is to identify patterns of the input variables that best explain the rela-
tionship between inputs X and outputs y. In particular, a linear relation is sought, in
the form:

The matrix B represents the coefficient matrix of the PLS approximation, while B
constitutes the intercept. Conversely to PCA, there is a clear distinction between the
roles of inputs X and outputs y. On the other hand, the main algorithm is very close to
the one presented for PCA.

In analogy with PCA, a score t;; = X (3w on the transformed coordinates is defined
for input variables. The first component is obtained as the unitary vector w maximizing
the squared crossed covariance between the score t; and the output y, formalized as
follows:

w() = argmawaH:leXTyTwa

At this point, we update both input and output matrix by taking into account the
transformations on the original input space related to the previously computed compo-
nents on the input variables [Wang et al., 2003]. The updates of X and y will be defined
as:

X1 =X — Xw(l)p(l)

Y1 =y — ity

Where p(1) represents the local linear regression coefficients vector between X and #(y),
and c; is the scalar local linear regression coefficient between y and #(;). This procedure,
often referred as deflation step, is then extended for the successive components and up-
dates [Vinzi et al., 2010]. The components w will be obtained by solving the following
optimization problem:

Wy = argmawaH:lenggkakw
Where: .
Xp =X =) Xwuypg

=1

k
Y =Y — Z Cit()
i=1

In matrix form, we can express the score ¢(;) as function of the previous deflation steps
of X:
by = Xjwg) = Xwp,

We can define, at this point, a matrix W, representing the projection of the in-
put variables onto a reduced dimensional space. The matrix W, will be obtained by
[Manne, 1987a]:

W, =W (PTw)™!
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Where W = [wq), ..., wn)] and P = [p(y, ..., p{y)]. If we want to represent the modes,
we analyze the matrix W, i.e. the projection of the original input space onto the reduced-
order space of the principal components. In this matrix, each i-th column represents the
projection of the original space on the i-th component.

In parallel, we compute the loading matrix () = [qa), e q(j,;)], where each g;) is ob-
tained via the product g = yTtk(i). If y is 1-dimensional, each gy will be a scalar and
Q will be a vector. Finally, the coefficient matrix B and the intercept By are obtained
by: . . .

B =W.Q By = qq) —P(T1)B

These terms give the linear relation between inputs X and outputs y. The approxi-

mation via PLS 7 related to the true output y will be given by:

j=XB+ B,
For the generation of a surrogate model, it is common practice to split the data set
into two non-overlapping subsets: the model is trained on a training set, while the rest
of the dataset is used as a testing set to evaluate the performance of the approximation.

To evaluate the accuracy of the PLS model, we will make use of the R? score. This is
defined as:

A~ 2
B SN @ — i)
2
SV (v =)
Where N is the number of samples, y; represent the real outputs (which we want
to approximate), ¥ is the mean of all y;, and y; are the approximations via PLS of the
The R? score generally tends to increase, in PLS, when more components are added.

Therefore, in the following analyses, will fix the number of components as the minimum
which provides a sufficiently large R? score on the available testing dataset.

R?2=1

3.3.3 Application on H2H: coupon 1x2

We consider a Design of Experiments (DoE) of 200 points with misalignments expressed
in terms of absolute deviations from theoretical positions (as in Fig. 3.2).

The first point to analyze is the relationship between outputs. These are constituted
by the ordered vector of:

- Bearing force on the first hole of the first plate

- Bearing force on the second hole of the first plate

- Bearing force on the first hole of the second plate

- Bearing force on the second hole of the second plate

By performing a PCA on these four ordered bearing loads, we found that a single compo-
nent can explain 99.7% of the overall variance of the four ordered outputs. The component
to take into account can be represented by the vector:

way = [0.5,—0.5,—0.5,0.5]

This can be actually interpreted physically by considering two phenomena: in each
plate the sum of the transmitted loads should be equal to the total load which is applied;
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moreover, at each section, the balance of efforts should be zero to be in an equilibrium
condition.

A second step is needed to retrieve the patterns of inputs that affect the responses. In
this case, PCA with mixed inputs and outputs gives the same results than PLS regression
between inputs and outputs due to the fact that the amount of variance due to the outputs
is similar to the one due to the inputs (allowing PCA to provide an approximation as
accurate as the one provided by PLS). This is actually more an exception than a rule:
generally to find relations between inputs and outputs it is preferable to rely on supervised
techniques, such as PLS.

The outputs will be indexed as for the previous analysis, while the inputs are expressed
in cartesian coordinates: Xj;; represents the longitudinal deviation, parallel to applied
load vector, related to the j-th hole of the i-th plate; on the other hand, Y;; represent the
analogue on the transverse deviation, orthogonal to the applied load vector. The inputs
are ordered as follows:

- Deviation x of the first hole of first plate X1,

- Deviation x of the second hole of the first plate X5

- Deviation x of the first hole of second plate Xo;

- Deviation x of the second hole of the second plate Xg9
- Deviation y of the first hole of first plate Yi;

- Deviation y of the second hole of the first plate Yi,

- Deviation y of the first hole of second plate Y5,

- Deviation y of the second hole of the second plate Yo

Considering PLS notation, we found that a single component could achieve a precision
of R? =0.996. It can be represented by the vector:

w, = [0.5,-0.5,-0.5,0.5,0,0,0, 0]

Graphically, it can be illustrated on the simple plot in Fig. 3.5. The information that
we can extract is the fact that transversal misalignments have no effects on the bearing
loads at any location. On the other hand, the only important contribution is given by the
relative displacements on the longitudinal axis, with the two holes in phase opposition.

0.5
=== Theoretical
0.0 —— Plate 1
—— Plate 2
_05 .

Figure 3.5: Schematic diagram of the first component in PLS analysis on coupon 1x2

We can re-interpret these conclusions as the possibility to concentrate the whole vari-
ability on the holes of one plate: this can be done if a previous simple UQ&M analysis is
done to understand the PDF of the concentrated misalignment variable (for a difference
of two statistical variables, the resulting PDF will be simply given by the convolution of
the two original PDFs). Moreover, one can think of splitting the relative misalignment
in two halves and assigning each half deviation to the two plates.
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3.3.4 Application on H2H: coupon 1x5

In this part, we seek to determine on a coupon with bolting pattern 1x5 the patterns
of inputs allowing to explain the impact on the output responses, i.e. determining the
relevant input modes. Originally, 20 inputs related to the longitudinal and transversal
misalignments on the 10 holes are defined: consistently with the notation introduced
in Fig. 3.2, we define the X;;,Y;; related to each plate ¢ (so i = 1,2) and the hole j
(j =1,...,5). The output responses which are retained are the bearing load magnitudes
at every hole of the structure, denoted as S; ;. To improve the readability, in the following
illustrations of the present chapter we add a P before the index ¢ related to the plate and
F before the index j related to the hole (i.e. fastener) location.

During the analysis of the obtained outputs, we encountered some difficulties related to
the modal description. In particular, both PCA and PLS being linear approximations, the
points with unloaded locations can constitute a huge obstacle for the regression analysis
(as the response would go to zero on several locations at a large number of exploration
points in the DoE). Therefore, to enforce the contacts, we introduced (specifically for the
analyses of this section) an input force which was far superior to the nominal allowed
values predicted by the Airbus stress analysis tool ISAMI (Improved Structural Analysis
through Multidisciplinary Integration) [Grihon et al., 2009, Grihon, 2018] on the reference
configuration (in particular, we tripled the limit force value coming from ISAMI for
t/d = 0.25). In practice, this choice simplifies the description of the relationship between
low bearing loads and input misalignments, improving the overall knowledge of the global
behavior of the system. For linear materials, this load level would correspond in fact to the
load which would be coherent for an equivalent structure with triple ratio ¢/d: therefore,
as the t/d only affects the structural strength and the failure mechanism, the obtained
surrogate models are numerically consistent for coupons with high t/d levels. However,
the conclusions can be also applied to the assemblies with thinner plates (i.e. lower ¢/d)
if keeping the assumption of linear elastic materials.

In the analyses presented in this section, we use a DoE with 900 points.

3.3.4.1 PCA on outputs

In a first step, we apply PCA exclusively to the output bearing forces S;; of the H2H
coupon 1x5. We found that we can express the whole variability (99.8% of the whole
variance) through 4 principal components (i.e. 4 PCA modes). This can be justified
as for the coupon 1x2: in every plate, the sum of transmitted loads should be equal to
the applied load (reduced by the amount of force transmitted by friction), reducing to
4 main responses per plate; on the other hand, at every section, the free-body diagram
should give a null sum of forces, making it possible to deduce the load transmitted on the
second plate based on the load transmitted by the first one. The former is issued from
the principle of forces equilibrium at plate level, while the latter stems from the principle
of the forces equilibrium at bolt level.

In order to graphically illustrate the contributions of the different outputs on the
principal components, we make use of a representation by pixels of the components matrix
W. In particular, we build a matrix with all the retained components w), where the
rows represent the components and each column is related to a different variable (in
this case each bearing output): therefore, what will be represented is the matrix W7.
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To distinguish the relevant from secondary effects, we impose a threshold of 5% of the
maximum absolute value in the matrix W7: for the values of W7 below this limit, we
associate an adjusted value equal to 0; for the values above, we associate a 1. The
choice of the value 5% for the threshold is an assumption of our analysis. The resulting
application of this threshold onto the upper-mentioned matrix W7 will be graphically
represented via a spy matrix, i.e. a pixeled plot reporting as white pixels the zeros and as
black pixels the ones. The result will be a sort of a QR code, with the original variables
in the columns and the modes in the rows.

Results are shown in form of a spy matrix plot in Fig. 3.6, reporting in the rows the
components and in the columns the outputs. The first five outputs are the bearing forced
51,5, related to the holes of the first plate, while the last five are the S, ;, associated to
the holes of the second plate.

Figure 3.6: Spy matrix plot of the four modes obtained for all output responses through
PCA for coupon 1x5 (threshold 0.05)

The force equilibrium at bolts level can be graphically illustrated by the fact that we
can superpose the left and the right half (associated to respectively the bearing forces
By; on the first plate and By; on the second plate) of the plot in Fig. 3.6. Therefore, for
a coupon 1x5, four outputs are sufficient to describe the outcomes of the structure.

3.3.4.2 PCA on inputs-outputs

At this point, we apply PCA to the ensemble of input misalignments X;;, Y;; and output
bearing forces S;; of the H2H coupon with bolting pattern 1x5. For this application, the
data matrix is obtained by stacking horizontally the columns of inputs and outputs:

X = [Xu;, Xoj, Y1j, Yaj, S1j, Sa;]

As a reminder, before starting any PCA, scaling is needed to center and normalize
the relative dimensions between data and assign the same variance to every variable.

We applied the same PCA training procedure depicted in Section 3.3.1 and the graph-
ical representation illustrated in Section 3.3.4.1. In Fig. 3.7a we report the spy matrix
plot, where the rows represent the different components and in the columns we report
the original variables, namely the input misalignments and the output bearing forces,
stacked per columns.
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Figure 3.7: Spy matrix plots of the modes obtained for all output responses through PCA
for coupon 1x5 (threshold 0.05)

From Fig. 3.7a, we filter only the modes able to describe the relation between inputs
and outputs: therefore, we look for modes (in the rows) which have contributions from
both input misalignments and output bearing forces. In particular, a specific mode (i.e.
a specific row in the spy plot) is retained if there is at least one black pixel (i.e. a
non-null term in the matrix W7) in any column related to an output. The results of
the application of this filtering on the matrix W7 (related t the H2H coupon 1x5) are
depicted in Fig. 3.7b. From our analysis, we obtained that four modes were sufficient to
describe the relation between the two groups. However, it should be noted that these first
four components represent just 45% of the whole variance of the complete data matrix.

It is worth noticing that the threshold (and the corresponding black-white spy repre-
sentation) is only used to determine the number of components which are actually needed.
Once the selection of the modes is done, the modes themselves will be represented on
the original coordinate space to understand the relations between inputs that impact the
responses. These modes will be represented without applying any further threshold. The
related components are depicted in Fig. 3.8.
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Figure 3.8: First four modes obtained through PCA for coupon 1x5

From the plots in Fig. 3.8, we can state that the only contributions to the output
variability is due to the longitudinal deviations on both plates. Moreover, the modes
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are symmetrical with respect to the central hole: this is explained by the symmetry of
the coupon itself and the related free body diagram. It can be also observed that the
deviation coordinates on the central hole only marginally interact with the other holes in
the third mode. The lateral hole deviations interact with each other in all other modes:
these can be considered as linear combinations of the single mode retrieved for the coupon
1x2 (see Fig. 3.5).

From a qualitative point of view the results of PCA are consistent with the physical
phenomena intervening on the tested coupon 1x5. However, we need to check also the
convergence of the algorithm itself: to this aim, we consider different trainings of the PCA
model with progressively increasing sample sizes (always extracted without replacement
from the original dataset with 900 points) and we compute the associated eigenvalues
A(k) and components wyy,).

At this point, we can evaluate the evolution of the outcomes of the eigenvalues vector
A= [/\(1), ...,)\(h)] and the component matrix W = [w(l), ...,w(h)] as a function of the
sample size. In particular, we define two errors:

Ai — A

prrn — I = Al

O .
[Will2

Where ||.||2 indicates the euclidean L? norm, ); (respectively W;) represents the eigen-
value vector A (respectively the eigenvector matrix W) computed with a sample of size
1. These are compared with the reference values, namely Ay and Wy, obtained with the
complete dataset of size N = 900. We remark that, being the sign of components w)
arbitrary for PCA, the absolute values |w(y)| are considered. In Fig. 3.9, we plot the
evolution of the errors Erry and Erry (from Eq. 3.1), expressed in percentages.
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Figure 3.9: Convergence plot for the first four modes obtained through PCA for coupon
1x5

From the convergence plot in Fig. 3.9, one can notice that the eigenvalues of the modes
converge quite well with the increase in the number of samples, but the components have
a difficult convergence and present high variations also in the region between 650 and
750 points (which are relatively close to the size of the reference population with 900
samples).
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Moreover, there is an unbalance in variances given to inputs and outputs, due to
the relative numbers (20 inputs and 4 outputs). Therefore, the algorithm is capable
of individuating some relations in the first components but which are not clear, as the
main purpose of PCA is to explain the variance of the whole data. In practice, the
algorithm seeks to explain the greatest possible amount of variance: however, due to the
fact that most of the variance comes from the inputs (re-scaled in the standard space),
the outcomes cannot be considered as conclusive.

The unbalance in the variance sources and the difficult convergence are in fact con-
nected to each other. The variance unbalance causes parasite modes, leading to a slow
and irregular convergence of principal components.

3.3.4.3 PLS regression between inputs and reduced outputs

In order to seek to alleviate the issues retrieved in the previous section, we repeat a
similar analysis through PLS. In a first trial, we apply it to retrieve the link between the
input geometrical misalignments and the bearing outputs reduced via PCA. The obtained
components are depicted in Fig. 3.10. This time, it is possible to draw some conclusions
on the patterns followed by the inputs to impact the outputs. The overall score is R? =
0.97. At a first glance, it is visible that all deviations are symmetrical for the first and the
second plate, leading to the idea that relative displacements are sufficient to explain the
outcomes of the system. On top of that, there is no effect of transversal misalignments:
therefore, the only contribution is due to the relative longitudinal deviations.

Moreover, we can see that there is the combination of several couplings of mutual
displacements between all holes. It is worth noting that increasing the number of com-
ponents does not allow any further improvement in the R? score.

Looking more carefully at the modes, the contribution of every hole deviation is not
exactly the same in every mode, making appear in the principal components first and
second order contributions: from a graphical point of view this can be observed, for
example, by comparing the effect on the first mode of the misalignments of the second
hole (first order contribution) with the effect of the third hole (second order contribution).
At a global level, we can recognize a symmetric pattern (around central hole) only for
the third and the fourth components. However, the linear combination of all modes gives
symmetrical patterns around the central hole, which can be observed on the illustration
in Fig. 3.11 of the coefficient matrix B of the PLS surrogate model: these latter are very
similar to the modes retrieved via PCA in Fig. 3.8. Once again, the symmetry around
the central hole can be explained by the physical symmetry of the free-body diagram of
the structure itself.

3.3.4.4 PLS regression between inputs and original outputs

In a second investigation, we apply the PLS directly on the inputs and original outputs,
instead of the PCA outputs. The related modes, which are depicted in 3.12, are similar
to the modes observed for PCA (see Fig. 3.8) and the graphical representation of the
coefficient matrix obtained through PLS on reduced outputs 3.11. Therefore, we confirm
here that it is possible to obtain an efficient modal description by applying the PLS
procedure directly on the original sets of inputs and outputs, without passing through
output reduction via PCA.
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Figure 3.11: Graphical representation of coefficient matrix obtained through PLS on

reduced outputs (from PCA) for coupon 1x5
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Figure 3.12: First four modes obtained through PLS for coupon 1x5

Focusing on the linear coefficients matrix B retrieved for this second application of
PLS (reported in Fig. 3.13), it can be observed that the transferred bearing related
to the i-th hole and the j-th plate is principally affected by the relative longitudinal
misalignments of the same hole. A secondary effect is given by the relative longitudinal
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misalignments of the adjacent holes. Moreover, the response on the same hole must be the
same on both plates as the force equilibrium must be ensured at every location: the PLS
surrogate model identifies the same relation between inputs and outputs, attenuating the
noise in the finite element analyses.

At a global level, we may interpret the coefficients illustrated in Fig. 3.13 as lin-
ear combinations of the elementary mode retrieved on the coupon 1x2 (in Fig. 3.5):
the modes can be interpreted as the collection of all combinations of couples of relative
misalignments between the hole location where the bearing is measured (or better, com-
puted) and other distinct hole locations (i.e. applying the elementary mode associated to
the coupon 1x2 on the first and second hole, first and third hole, etc.); the coefficients of
the linear combination will rely on the concept of the distance between each pair of holes.
This explains why the most important effect on the bearing force measured at a specific
hole location is given by the misalignment on the same hole location, while the relative
magnitude effects of other holes decreases while increasing the distance. Moreover, for
the bearing on second hole (see Fig. 3.13)the effect of the nearest hole locations, i.e. the
first and the third hole, are not symmetrical as there are fewer holes on the left of the
second hole (with respect to the right side), leading to higher effects due to the first hole.
The same conclusion can be extended to the opposite case of the fourth hole. We will
make use of this interpretation also on the coupon with bolting pattern 3x5 to explain
the outcomes of the related PLS analysis.

Finally, in Fig. 3.14 the convergence plots on R? score and component matrix W,
(from Eq. 3.1) are illustrated, as function of the sample size. For both, we have a
regular convergence with the increase of number of samples. Only one convergence plot
is reported for the two applications of PLS, as results are very close. By comparing Fig.
3.14 with Fig. 3.9, we can state that we can rely more on PLS than PCA to find the
patterns defining the relationship between inputs and outputs, with a given size of the
DoE (i.e. with a given number of simulations of the complete model).

To sum-up, the results given for coupon 1x5 prove that the PLS procedure can be used
directly on the original inputs and outputs to retrieve a linear relationship between them.
Moreover, the effect of geometrical misalignments on the bearing load at every location
can be equivalently described by introducing only the relative longitudinal (i.e. parallel to
the direction of the applied load) misalignments coordinates. This transformation allows
to reduce by 75% the number of inputs in the original problem.

3.3.5 Application on H2H: coupon 3x5

In this section we present results for the largest coupon assembly considered in this work,
namely the bolting pattern 3x5, i.e. characterized by 5 rows of bolts in the longitudinal
axis (parallel to the direction of the applied load) and 3 rows of bolts in the transversal
axis (perpendicular to the direction of the applied load).

A DoE of 1000 simulations was used for this 3x5 coupon. The same difficulties con-
cerning the applied load level that were encountered in the previous case were still found,
and the same countermeasures as before were applied (the applied load level was tripled
with respect to the load level retrieved in ISAMI).

From a qualitative point of view, only relative longitudinal misalignments were nec-
essary to explain the impact on bearing response. However, the analysis did not gave
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conclusive quantitative results when training all outputs in the same multi-output PLS
surrogate model: we achieved a score R* = 0.9, but 14 components (out of 15 relative
longitudinal misalignments) were necessary. Therefore, our conclusion is that the returns
in terms of dimensionality reduction significantly diminish given the increasing compu-
tational cost for more complex bolting patterns. Still, the consideration of only adopting
relative longitudinal misalignments is always valid on the coupons loaded with uni-axial
longitudinal load and already allows to strongly reduce the input dimensionality.

Finally, we trained every output (bearing transmitted forces on every bolt location)
separately and obtained 15 surrogate models. We noticed that for all outputs only one
principal component was required to achieve a R? > 0.99 : in particular, for such re-
sponses, the most important effect was given by the relative longitudinal misalignment
at the same bolt location of the considered response, as happened for coupon 1x5 (con-
front Fig. 3.13), with secondary effects provided by the adjacent holes deviations. The
graphical illustration of the coefficient matrix B are reported in Fig. 3.15.
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At first sight, it could seem that the only relevant contribution to the bearing force
transmission on the j-th hole is given by the relative longitudinal misalignments d.X
on the j-th hole itself (i.e. dX;). However, the representation in Fig. 3.15 does not
allow to appreciate the other contributions. In fact, we must think that the sum of all
coefficients in the relation between bearing force and all dX; must be zero. The same
increase in the bearing force on the j-th hole is due to an early contact between the hole
surface and the bolt on the j-th hole itself: but this can happen either if the j-th hole is
drilled too much on the right (thus anticipating the contact on the same hole), but also
if all other holes are drilled too much on the left (thus delaying the contact on the other
holes). Therefore, we represent the coefficients of the matrix B of PLS surrogate model
in Fig. 3.16: in particular, we re-interpret the input variables by considering the relative
longitudinal misalignments d.X; associated to each hole (thus j = 1, ...,15). In the plot we
also distinguish the three rows of the bolting pattern 3x5. We obtain an extension of the
results retrieved for the coupon 1x5: the coefficients B (linking the bearing on the j-th
hole and the misalignments) are then given by the linear combination of dX; and of d.X},
(with k # j, thus 14 couples overall), where the k-th coefficients are decreasing function
of the distance between the hole locations j and k. As the dimension increases (with
respect to the coupon 1x5), we will observe also an increase in the difference between the
effects on the bearing on the j-th hole due to dX; and dXj, (with k # j), as the term d.X
appears in all of the 14 couples (compared to 4 couples in the coupon 1x5). The effects of
the k hole misalignment can be neglected when the j-th and the k-th hole locations are
not adjacent. However, being the bolting pattern constituted by several rows, we have
not only the effect of the adjacent holes on the same row (i.e. k= j 4 1), but also on the
adjacent holes on the same column (i.e. k = j +5).

The PLS metamodels retrieved in this section will be used in the next chapter for
statistical analyses.
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In future works, further investigations are previewed to find a common thread linking
all the obtained surrogate models. This can help to generalize the results for bolting
patterns which are not explored in our analyses yet.

3.3.6 Implications on further statistical analyses

Up to this point, we observed that the only factor for load re-distribution in H2H ap-
plications are the relative longitudinal misalignments d.X; of each hole j. Now we raise
the following question: should we always neglect all transversal misalignments dY; in all
successive statistical analyses?

To provide an answer, we support our reasoning through the illustrations in Fig. 3.17.

We consider a single hole, denoting with dX and dY respectively the relative longi-
tudinal and relative transversal misalignments on this hole. Let us suppose that both
dX and dY are initially described by uniform distributions on an interval &R, where 2R
represents the total clearance of the hole (i.e. the difference between the diameter of the
hole and the diameter of the bolt). We start by sampling dX and dY: in Fig. 3.17a, we
represent the samples on the dX-dY plan, while in Fig. 3.17b we extract the marginal
PDF of the dX samples.

Now, if we impose dY = 0, the samples related to the relative longitudinal variable
dX would lie on a segment delimited by &R, as in Fig. 3.17c: this would not affect the
marginal distribution of the samples dX (as shown in Fig. 3.17d).

At this point, we consider a real constraint: we need to ensure that we are capable of
inserting a bolt inside this hole. We can impose a tolerance acceptance criterion expressing
this capability: this would lead to define a requirement on the hole misalignments, of the
form dX? 4+ dY? < R If we applied this constraint, together with imposing dY = 0,
the results from Figs. 3.17c-d, would not be impacted: the samples dX would still be
described by a uniform distribution on the interval &R. In fact, the points in Fig. 3.17c
already lie on a segment delimited by 4R, so none of these samples would be excluded
from this population by the introduction of the upper-mentioned tolerance acceptance
criterion.

If we do not impose dY = 0 but we add the tolerance acceptance criterion dX?+dY? <
Ez, the samples related to the relative deviations dX and dY will cover a circular area
in the plane dX-dY of radius R: this leads to exclude some samples with high absolute
values of dX, as can be observed from Figs. 3.17e-f.

Consequently, the presence of non-zero samples dY allows, in combination with a
tolerance acceptance criterion, to exclude a portion of the samples dX which exhibit the
highest absolute values. From the PLS analysis, we saw that the output bearing forces are
only driven by the dX: therefore, the most detrimental realizations would be exactly the
ones characterized by the highest |dX|. As a final result, the variability of the transferred
bearing loads would be reduced if we reduced the variability of the |dX|: and this is
exactly what the introduction of the tolerance acceptance criterion can do, if there are
also non-zeros dY samples. Therefore, if we aim at reducing the variability of the loads,
it is in our best interest to take into account, in our upcoming statistical applications,
also the presence of transversal misalignments.

We can thus say that, even if at a stress level they do not affect directly the bear-
ing load transmission, the transversal misalignments should be considered for further



3.4. SCREENING 79

[
Q|
-R R
aX
(a) Both dY,dX free samples (b) PDF of dX samples from (a)
R _ - n M
->5 | é
—R. '
-R R -R R
aX axX
(c) Only dX free samples (dY = 0) (d) PDF of dX samples from (c)
E- ] e
5 5
R ! '
-R R
ax
(e) Added tolerance criterion dX? +dY? < R’ (f) PDF of dX samples from (e)

Figure 3.17: Illustration of the benefits of adding transversal misalignment samples in
presence of a tolerance acceptance criterion

statistical studies when a coupling with tolerancing concepts is presented.

3.4 Screening

Screening procedures are often used to define a hierarchy in the effects of input variables
on a given response, with the final goal of neglecting the inputs only marginally affecting
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the output response [Campolongo et al., 2011, Montgomery, 2017].

Screening techniques are part of a larger framework, the sensitivity analysis [Brévault et al., 2013,
Spagnol et al., 2019] [Tooss and Lemaitre, 2015, Borgonovo and Plischke, 2016]. A gen-
eral overview of the methods available in literature are depicted in Fig. 3.18 (from
[looss and Lemaitre, 2015]) and regrouped according to the number of model evaluations
and the complexity of the model itself. In the sensitivity analysis framework, we find
the screening and the variance decomposition techniques (the latter are not considered
in this work).

A number of approaches used for screening come from 2% Factorial Designs [Montgomery, 2017],
based on the assumption of monotonicity of the output with respect to input variables
and taking into account only the extreme values of inputs variabilities. Several evolutions,
named Fractional Factorial Designs [Box and Hunter, 1961, Gunst and Mason, 2009], are
based on additional simplifying assumptions on the possibility to alias (i.e. confuse the
effects in the same quantity) different interaction terms: in RIIT designs, the first-order
interactions are aliased (i.e. resumed in the same equivalent quantity) with each other; in
RIV designs, the first and second-order interaction terms are aliased; in RV, the second-
order interactions are aliased with each other.

In this work, we focus on metamodel-based screening approaches. We make the
assumption that in the region of interest the model is monotonic with respect to the
input variables and there are first-order interactions we need to identify, while second-
order interactions can be neglected.
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Figure 3.18: Graphical synthesis of sensitivity analysis methods (Source:

[looss and Lemaitre, 2015])

The input dimensionality reduction via screening typically has the following goals:
1. Delete inputs which only marginally affect the response;
2. Separate effects of inputs that can be superposed.
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The first goal is addressed in Section 3.4.1 and the second in Section 3.4.2. The
applications of both parts on two H2H coupons are reported in Sections 3.4.4 and 3.4.5.

3.4.1 Metamodel-based Screening

The main features characterizing this category of methods are highlighted in [Iooss and Lemaitre, 2015]:

- the choice of a Design of Experiments (DoE), with the specific required qualities,
like robustness, space filling property and low cost of construction;

- the choice of the surrogate model, affecting the minimum number of simulations
required for training and the choice of a specific DoE as well;

- the validation of the surrogate model.

Several methods are available in the literature to create a Design of Experiments
(DoE) to evaluate the response of a system [Ilzarbe et al., 2008, Durakovic, 2017]: from
factorial designs, to robustness tests, to space-filling DoE [Viana, 2016]. We will focus
on this latter, as it allows us to reduce the number of simulations of the virtual model to
explore the full input domain. Among the different types of space-filling DoE, we choose
an Hammersley DoE, which is provided by the Hyperstudy tool [Engineering, 2017].

After launching the analysis on the upper-mentioned DoE, we approximate the re-
sponses via a mixed effect linear model, the equation of which is given below:

N N N
Y = Qo -+ Z a;x; + Z Z bl-j:cl-:cj
=1

j=li=j+1

Where the x represent the inputs, N the number of inputs, a¢ the intercept, a; the
linear effects of the input z; and b;; the mixed effect term measuring the effect of the in-
teraction between z; and z;. The coefficients ao, a;, b;; are computed via the least square
method. Overall, N(N+1)/241 coeflicients must be trained: several regularization tech-
niques are available in the literature, such as Lasso, Ridge [Melkumova and Shatskikh, 2017]
and elastic net [Zou and Hastie, 2005], among the others. It is worth noticing the impor-
tance of scaling the input data before the regression step, so that the relative dimensions
(and absolute variabilities) do not affect the linear regression coefficients computation.

The scalability of this metamodel-based screening approach with respect to the orig-
inal input dimensionality does not lie in the training of the surrogate model itself, but
rather on the number of points in the DoE to explore the whole domain. Other tech-
niques, like the screening by groups [Watson, 1961], could be preferred when the number
of dimensions (and thus the required amount of simulations) makes classical space-filling
exploration intractable.

The validation of the obtained surrogate model is done via cross-validation, distin-
guishing a training and a testing set. In particular, we choose a split between training
and testing sets of 90/10.

The main purpose of this section is to eliminate all the inputs which have a minor
impact on the output response. To do this, we scale all estimated coefficients with respect
to the maximum absolute value (among all coefficients) and then we fix a threshold of
1%: all linear coefficients below this threshold will be neglected and approximated to 0.
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At this point, we make use of a matrix representation for the filtered coefficients. We
build a square matrix A of size N, indexed per row i=1,...,N and per column j=1,...,N.
Every term of this matrix will be defined as:

Therefore, in the main diagonal we find the linear effects and out-of-diagonal terms
will represent the interaction effects. In the i-th row we will find all coefficients related to
the i-th input, and so for the columns. This matrix will be symmetric per definition, thus
it is irrelevant whether we reason in terms of rows or columns. Once this matrix built,
we delete every row/column where there are no relevant effects in the whole row/column
(based on the 1% threshold).

A graphical representation through spy command can help identify the blanks in the
matrix, as done previously for the PCA: in fact, relevant effects would be represented as
black pixels, while neglectable effects in white (after relative scaling). We can easily visu-
alize the null effects by observing the black/white pattern. If there is a row (respectively
a column) which is completely white, we can state that the related variable has only a
minor effect on the response itself.

3.4.2 Physics separation

In this part, we focus on separating the effects of input variables which are independent
of each other. In practice, we seek groups of variables which interact with each other
within the same group but do not exhibit interaction effects with other groups. This is
an application of a clustering algorithm, i.e. the part of methods of machine learning aim-
ing at identifying groups and patterns [Garcia-Escudero et al., 2010, Saxena et al., 2017,
Ghosal et al., 2020].

To properly identify groups of variables, we seek a block structure in the coefficient
matrix retrieved in the previous section. To this purpose, we cluster at the same time
rows and columns of the upper-mentioned matrix. The chosen method to perform this
task on sparse matrices is the Spectral Co-Clustering [Dhillon, 2001, Von Luxburg, 2007,
Govaert and Nadif, 2013]: this assumes the data matrix to have an intrinsic block-diagonal
structure. The algorithm is based on singular value decomposition of the data matrix
and clustering is then performed on both rows and columns on the transformed space.
The number of clusters (i.e. the number of groups of variables) can be identified through
the number of relevant non-null eigenvalues: this implies that the separation of the effect
of variables can be done if and only if the number of non-null eigenvalues is greater or
equal than 2. Further details on the algorithm can be retrieved in Section 3.4.3.

In order to work, the eigenvectors should never be null: this implies that before start-
ing, all rows and columns with all zeros should be deleted before starting the procedure.
Therefore, the physics separation process can be started only after having performed the
screening part (described in previous section).

Thanks to this separation, different effects of variables can be studied in separated
design of experiments, leading to the decomposition of the original problem into multiple
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lower dimensional problems. When dealing with repeated statistical analyses, the outputs
of non-interacting groups of variables can be sampled separately: this allows to re-use
part of the samples (coming from a given group) if only the settings of the other groups
are modified.

3.4.3 Spectral Co-clustering

Before starting the spectral co-clustering, an input data matrix A of size Nx x Ny is
preprocessed via the row sum diagonal matrix R = R; = Y°; A;; and the column sum
diagonal matrix C' = C; = ¥, A;; as follows:

A, = RVPACT?

The preprocessed matrix A, is then decomposed through a Singular Value Decompo-
sition (SVD):
A, =UxVT

From this, only the M non-negligeable (non-null) eigenvalues in the diagonal matrix
> and related couples of eigenvectors U,V are retained. This spectral decomposition
(hence the ”"spectral” in the name) provides the partitions of rows (via the left singular
vector U) and columns (via the left singular vector V). The partition information are
reported on the following matrices:

Zy=RTVPU  Zy=CTVPV

Then the overall transformed matrix is obtained by stacking vertically the two matrices:
7 = [Zy; Zy| . Here, the first Nx rows of the matrix Z are related to the row partitioning,
while the remaining Ny rows correspond to the column partitioning. The whole Z matrix
constitutes the input data for the clustering procedure itself. Here K-Means algorithm is
used: this divides the set of N = Nx + Ny samples Z into K disjoint clusters C}, each
described by the mean (or centroid) p; of the samples in each cluster. The objective is to
minimize the inertia or ” within-cluster sum-of-squares criterion”, formalized as follows.

N
;ggg(“zi — ;%)

This criterion can be considered as a measure of how internally coherent clusters are.
Clustering the whole Z matrix leads to identify clusters for both rows and columns at the
same time (from here the appellative ”co”-clustering). For a squared symmetric matrix
where rows and columns have the same meaning, row- and column-clustering should lead
to the same result.

In Fig. 3.19, a simple application on a block-diagonal matrix (with 8 blocks) is
presented. It can be observed how the algorithm is particularly useful when the number
of involved variables is large, and the re-ordering by hand would be way too challenging.

It is worth noticing that the original (non-shuffled) matrix and the re-ordered one
are not exactly coincident, but the block structure is recovered: in fact, the algorithm
re-arranges the matrix to identify a block structure, without taking into account the
ordering inside the same cluster nor the ordering of the clusters themselves. In our
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specific application of the algorithm to retrieve groups of variables interacting with each
other (on the output response) but not interacting with variables from other groups, the
ordering is not relevant.

Finally, we can generate a cluster plot, assigning a different color to each block of the
matrix which is recognized by the co-cluster algorithm to belonging to the same cluster.
This is done to graphically illustrate the different blocks: in the generic example depicted
in Fig. 3.19, the distinction into eight blocks can be easily recognized.
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(c) Re-ordered matrix (after co-clustering) (d) Cluster plot

Figure 3.19: Example of physics separation for a 200-dimensional problem
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3.4.4 Application to H2H: coupon 1x2

In this part, we investigate the effects of the Young Moduli of plates (E_P1, E_P2 re-
lated to the two plates) and fasteners (F_F'1, E_F2 for the two fasteners), preload ratios
(PLR_1, PLR 2 associated to the two plates) and misalignments. In particular, we con-
sidered that the preload ratios and friction coefficient between plates can be aliased
(i.e. the individual effects considered as unique), as they both intervene to lower the
amount of transmitted efforts via bearing. Regarding the geometrical inputs, we retain
the conclusions drawn in the modal description analysis: we use the relative longitudinal
misalignments, concentrating all variability on the second plate (hence retaining only
X_P2F1, X_P2F2 for the two fasteners locations). By applying the procedure described
in Section 3.4.1, we investigated a DoE with 200 points and obtained a linear regression
model with R? = 0.989 and the related spy matrix plot is illustrated in Fig. 3.20.

The results indicate that, apart from misalignments, the only significant variables
intervening on the load transmission are the preload ratios of both bolts. The elastic
properties of plates and fasteners can be neglected, as they have only a minor effect on
the output response. This conclusion will be extended to further coupons. Moreover,
on this application case, the physics separation procedure is not useful as no interaction
terms are available in the global coefficient matrix.
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E Pl
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Figure 3.20: Screening spy matrix plot for H2H coupon 1x2

3.4.5 Application to H2H: coupon 1x5

In this part, we report an application to H2H on coupons with bolting pattern 1x5.

Here, we make some assumptions which come from all previous steps: from the modal
description of coupon 1x5 itself, we consider only relative longitudinal deviations, the
variability of which is concentrated on the holes of the second plate; from the screening
on coupon 1x2; we only consider misalignments, friction coefficient (denoted with p) and
preload ratios, dropping all elastic properties (i.e. the Young Moduli of plates and fasten-
ers). Moreover, to reduce the number of variables to treat and to guarantee convergence
stability to the original model, the preload ratios have been considered as equal to the
preload ratio on the first bolt (denoted with PLR).

We generated a mixed linear/interaction regression model, based on a DoE with 200
points, which gives a score R? = 0.89. In Fig. 3.21 it is reported the ordering process
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Figure 3.21: Example of physics separation on H2H coupon 1x5

allowed by the spectral co-clustering algorithm. In the obtained model, we may observe
that the friction-related variables (i.e. p, PLR) and the misalignments do not exhibit any
interaction term: as a consequence, these two categories of variables can be clustered in
two different groups and their effects are, therefore, cumulative (i.e. we can apply the
principle of superposition of effects).

Note that all misalignments have interaction terms with the other misalignments asso-
ciated to the adjacent hole locations (for example, x_P2F2 with x_P2F1 and z_P2F3).
However, we may notice that the term x_P2F3 exhibits an interaction with x_P2F5,
but not with x_P2F1, which constitutes an approximation error of the surrogate model:
given the fact that the tested system is symmetrical, it is expected that these interaction
terms are the same. However, we will not use the surrogate model trained in this sec-
tion for further statistical studies, but rather we retain the general conclusion that the
effects of friction-related and geometry-related variables can be treated separately and
then superposed.

At a global level, all input variables in the considered example are independent. If
we add the conclusion on the separability of the effects of friction-related and geometry-
related input variables, we can treat the two upper-mentioned clusters in distinct DoEs:
the lower dimensionality of each generated input space can improve the efficiency of
further explorations and/or the training of specific surrogate models.

These outcomes can be exploited also to reduce the computational burden induced by
repeated statistical analyses, as the outputs of the cumulative effects (from the two sep-
arated clusters) can be sampled separately. For example, if we perform first a sampling-
based statistical analysis and then we change only the parameters describing the friction
domain (e.g. when evaluating several surface treatments options), we can still re-use the
samples related to the effect of geometric inputs (i.e. the misalignments). The analogue
is valid when changing only the statistical setting related to the misalignments.

3.5 Conclusion

In this chapter we carried out the input dimensionality reduction on the typical H2H
coupon assemblies, with the purpose of simplifying the problem and thus reduce subse-
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quent computational costs. To achieve this, we acted on the following three axes:

1. re-definition of the input variables: on H2H problems this is done via modal de-
scription (specifically via PLS) to re-define the input geometrical misalignments;

2. removal of secondary variables: this is performed on H2H via a screening procedure
based on a linear/interaction metamodel, considering geometrical misalignments,
elastic field material properties, friction between plates and bolt preload;

3. separation of the physics effect of input variables: this is done by re-grouping the
inputs which interact with each other inside the same group, while not exhibiting
interaction effects with variables from other groups.

In Table 3.2 an overview of the final number of input variables after dimensionality
reduction is given for different bolting patterns. By comparing this with Table 3.1, a
reduction of about 60% in the number of variables is achieved. The effects of the input
dimensionality reduction are reported in the plot in Fig. 3.22 for different bolting pat-
terns: the reduction of number of inputs is more effective when increasing the complexity
of the bolting patterns. Moreover, as it was observed in the physics separation section,
the geometrical misalignments and friction-related variables (friction coefficient between
plates and bolt preload) can be treated in different input spaces. For linear materials,
a further separation is automatically allowed between the response (e.g. the transferred
bearing load) and the capacity (e.g. the material strength): this is not true when the
elasto-plastic behavior of materials is introduced in the finite element model.

Random variable Per bolt | Per plate | 1x2 | 1x3 | 1x5 | 2x3 | 2x5 | 3x5
Misalignments 1 2 3 D 6 10 15
Friction coefficients 1/2 1 1 1 1 1 1
Preloads 1 2 3 ) 6 10 15
Plate bearing strengths 1 2 2 2 2 2 2
Bolt shear strengths 1 2 3 ) 6 10 15
Total 3 3/2 9 12 18 |21 33 |48

Table 3.2: Final list (after dimensionality reduction) of input variables on H2H problem
for different bolting patterns

In the application of probabilistic frameworks, a number of dimensionally independent
sampling methods are available in the literature for different purposes, as will be shown
in the following chapters. The dimensionality reduction presented in this chapter is
primarily intended as a support to simplify the interpretation of the results (especially
for Chapters 4 and 7), driven by the modal description discussed above. Moreover, the
screening analysis leads to a simplification in the case where multiple analyses must
be performed: the deletion of elastic behavior material properties allows to avoid the
repetition of multiple statistical analyses with different material choices; the separation
between friction-related, material strength properties and misalignments allows to re-
use the samples from previous analyses where only one part of the global setting is
changed (e.g. when considering different surface treatments of parts, affecting the friction
properties).
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Figure 3.22: Effects of the dimensionality reduction on different bolting patterns

The decomposition of the input domain in multiple reduced-order spaces can also be
exploited to improve the exploration features of a DoE and to train distinct surrogate
models on each input space.

Focusing on the validity of the PLS surrogate models retrieved in this chapter for
H2H coupons, we have clear linear relations between inputs and outputs with good R?
score results. However, this was helped by the introduction of high load levels. Therefore,
the quantitative regression results are consistent with high ratios of thickness over hole
diameter (ratio t/d).

Regarding the variables screening, more advanced techniques based on global sensi-
tivity analysis [looss and Lemaitre, 2015], using for example Sobol indices [Saltelli, 2002,
Lamboni et al., 2013, Borgonovo and Plischke, 2016, Bourinet, 2019], could be consid-
ered, especially when moving to higher bolting patterns.

Finally, for analyses assisted by machine learning techniques, the dimensionality re-
duction can be useful to support simple surrogate models generally affected by the curse
of dimensionality, as will be shown in Chapter 6. Moreover, for H2H applications, this
can help to overcome the validity limitation of PLS results for lower load levels, which
will be consistent with low ratios t/d as well.
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Chapter 4

Semi-probabilistic Approach for
Aircraft Components Design

4.1 Introduction

This chapter focuses on a key-feature of the UQ&M general framework, specifically the
choice of the decision criterion to implement in the static strength substantiation for
large airplanes. As discussed in Chapter 2, the applications of probabilistic analyses on
aeronautical engineering are strictly related to the constraints imposed by the certification
requirements.

The classical approach used for sizing aeronautical structural components is based
on the adoption of specific quantiles for material properties and specific scenarios for
the load levels, which are defined in the current certification requirements (CS 25 for
large aircrafts). For some design parameters, characterized by small variabilities and/or
justified by engineering judgment, mean values are considered (e.g. thickness of plates).
For others, the worst cases are retained: this category may include temperature scenarios,
geometrical flaws, effects of impacts, stress induced by the manufacturing process, among
others. We will refer to this methodology as fixed-case scenario approach, keeping in mind
that the worst cases are only considered for a part of the design parameters, while for
others values corresponding to low probability events are considered.

In the H2H framework the adoption of a literal worst-case scenario approach would
make the application impossible. Indeed, the worst case would always be a single bolt
supporting the totality of the applied load: this would imply safety factors equal to
the number of bolts in the bolting pattern (which can reach values of several dozens!).
A mitigation process based on a probabilistic framework becomes fundamental in this
specific case. The objective is to determine representative deterministic quantities based
on a probabilistic framework, i.e. integrating the variability of the input parameters
affecting structural performances.

On the other hand, a fully-probabilistic approach would consider the whole variabil-
ity of all input parameters used in the design phase, to deduce failure probabilities or,
alternatively, reliability indexes. However, as explained in Chapter 2, the aeronautical
certification requirements do not consider the concept of failure probability for static
strength demonstration. Therefore, the adoption of this kind of fully-probabilistic ap-
proaches would not be compatible with current certification requirements.
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Therefore, we aim at formalizing a framework able to take into account the variability
of the random inputs (instead of considering the worst cases only), but also integrating
this framework in the current European certification requirements and in the classical
deterministic design process.

In this chapter, we will propose an extension of the definitions of the deterministic
quantities prescribed by the CS 25 for load levels and material properties. The input
variables will be distinguished according to the analogies, in terms of statistical variability,
with these two base references (i.e. loads and material properties). The purpose of the
proposed approach is to compute deterministic quantities to introduce in classical design
process, based on a probabilistic framework: we will refer to our proposed framework with
the name ” semi-probabilistic approach”. We call it ” semi-probabilistic” since it does not
aim to probabilistically model all input parameters that involve significant uncertainties,
but only part of these, while for others deterministic (sometimes conservative) values are
kept.

First, we introduce the main deterministic quantity of our applications - the overload
- and define it from a mathematical and engineering point of view in Section 4.2. Then,
a classification of the random variables to extend the current certification requirements
is proposed in Section 4.3. The proposed framework is formalized in Section 4.4, where
two different declinations of the semi-probabilistic approach are presented. The first dec-
lination, intended as a point quantile estimation problem, is used to define the overloads
and is detailed in Section 4.5. The application of this first declination on the H2H prob-
lem is reported in Section 4.6. At the end of the chapter, some conclusions regarding
the proposed approach and the results of H2H application are reported in Section 4.7.
The second declination will be only introduced in Section 4.4, and it will be formalized,
analyzed and further discussed in Chapter 7.

4.2 Definition of the OverLoad (OL)

In this section, we introduce the concept of the overload, which constitutes one of the
main representative deterministic quantities for our applications of the proposed semi-
probabilistic framework.

First of all, we associate to the overloads the meaning of deterministic correction
coefficients which represent the internal redistribution of loads within a given structure,
considering the variabilities affecting it: in particular, these factors are used to guarantee
a certain margin on the computed internal loads in a given structure. The overloads
are computed at specific scenarios of the applied (i.e. external) loads. Therefore, the
determination of the overloads does not take into account the variability of the magnitude
of the applied (i.e. external) loads.

But what are the overloads in practice? To answer to this question, we refer to the
H2H example related to the coupon 1x2. In Chapter 1, we introduced this example to
explain the industrial need of challenging the worst case scenario approach. In Chapter
3, we trained a PLS surrogate model to describe the effects of the misalignments on the
redistribution of bearing forces in the coupon. In Fig. 4.1 we propose the comparison
between the diagrams of the load redistributions (Free Body Diagram, FBD) related to
the nominal configuration (i.e. fitted and perfectly aligned holes) and the worst H2H
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configuration (i.e. with holes oversized and misligned in the worst condition, consistent
with the PLS mode retrieved in Section 3.3.3), in order to physically and mathematically
define the concept of overload. We suppose that there is no friction phenomenon, and we
denote with Fy,, the applied force and with S; ; the internal bearing force acting on the
3" hole of the i*" plate, with i = 1,2 and j = 1,2: as a reminder, the equilibrium in each
bolt leads (for two plates) to Sy ; = Ss; (for j = 1,2) and the equilibrium of the plates
S+ S12 =521+ S22 = Fopp.

S0 = Fapp/z 52,2 = Fapp/z

(a) Fitted aligned holes (b) Free Body Diagram from (a)

SZ,Z = Fapp

(¢) Oversized misaligned holes (d) Free Body Diagram from (c)

Figure 4.1: Effect of oversize and misalignments on H2H load transfer

In the nominal configuration (in Fig. 4.1a) both bolts are in contact with the holes
of each plate. In the associated FBD (in Fig. 4.1b), the applied load Fy,, is equally
redistributed among the hole locations: from the equilibrium conditions on bolts and
plates, all S; ; are equal to Fy,,/2.

In the worst H2H configuration (in Fig. 4.1c), only the right bolt (j = 2) is in contact
with the plate: the first bolt will not contribute to the load transfer (i.e. S1; = Sa1 = 0),
while the second must carry the whole applied load Fy, (i.e. S12 = S22 = Fypp). With
respect to the nominal configuration, the second bolt location carries a load amplified by
a factor 2: the overload represents this amplification factor, thus OL = 2 in this case.

From an engineering perspective, we define the overload OL as the load concentration
factor in the most critical location of a given structure (e.g. the right bolt in the H2H
example in Fig. 4.1). The OL is therefore defined by four elements:

1. the locations: the load is redistributed differently in the distinct points of the
structure, so that we need to check the load amplifications in all locations (e.g. all
bolt locations in a bolted joint assembly);

2. the reference: the choice of the nominal configuration and the internal loads re-
trieved in this latter (e.g. the configuration with fitted aligned holes in H2H);
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3. the local internal loads: the redistribution of the internal loads in each location, due
to the variability of intrinsic properties (e.g. the bearing load transfer modification
due to the misalignments in H2H);

4. the extension of applicability: the choice between assigning a local overload to each
location (hence considering a different reference value for each location) or a unique
value summarizing the behavior of the whole structure (e.g. the maximum local
overload).

We apply now this generic definition to the H2H example, this time not restricted to a
worst-case scenario. We denote with S; j nom the reference internal loads (at the 4% hole
of the " plate) associated to the nominal configuration, with fitted and perfectly aligned
holes (considered in the deterministic sizing of structures assembled with the classical
procedure, i.e. without H2H). On the other side, we denote with S;; the bearing load
transferred (at the 5 hole of the i** plate) in a given H2H configuration with given hole

misalignments. We can define the local overloads as:
OL;; = Si (4.1)

Si,j,nom
To define a global measure of the overload OL for the whole assembly, we may have
two choices: (1) consider the maximum local OL, ;; (2) compute the amplification of
the maximum load 5; ;, among the ¢, j locations, with respect to the maximum internal
load in the nominal configuration, leading to define a new reference value Sgrrnom =
max; ; Si jnom- Lhese two choices lead to two different mathematical formulations of the

OL, represented by the following equations:

OL = maxOL, ; = max <S”> (4.2)
©J 7 vJ Si,j,nom
OL — max; ; Si,j . S (43)

maxi,j Si,j,nom SREF,nom

Where S = max; ; S; j represents the maximum transferred load over the different loca-
tions 7, j of the assembly where the H2H process is applied and Sggrnom = max; j Si jnom
is the equivalent on the nominal configuration (i.e. with fitted and perfectly aligned
holes). For a coupon 1x2, the two expressions in Eq. 4.2-4.3 are equivalent as the inter-
nal loads are redistributed equally in the different locations. However, for more complex
bolting patterns, the bolts placed at extreme sides of the plates generally carry a higher
amount of the total load, decreasing progressively when going towards more internal
bolts. This makes a difference in the definitions of the global measure of the overload at
assembly level provided in Eq. 4.2 and Eq. 4.3. In the following of the manuscript, we
will adopt the formulation of the overloads in Eq. 4.3.

The definition of the overload can be extended to other examples, apart from H2H:
one can think of structures with uncertain boundary conditions, randomly distributed
cracks, among others. The choices of the four upper-mentioned ingredients to formalize
the specific overloads would be done on a case-by-case basis.

We focus now on the practical use of the overloads in a deterministic structural design
context. As explained in Section 2.5, this latter is based, in aeronautical context, on
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the notion of safety factors for loads and knock-down factors for structural strength
properties. The overloads act de facto as safety factors, but on the internal loads. The
inverse of the OL can be re-interpreted as a knock-down factor, representing a reduction
of the structural strength, instead of a load amplification (as do the OL). Now, when
we determine a value of the overload OL = OL, we will consider in deterministic design
phase that the internal loads associated to the nominal configurations are amplified by a
factor OL (distinct factors is the local definition in Eq. 4.1 is retained): then, we adapt
the sizing to these new values of the internal loads, by rescaling the critical dimensions
(e.g. thickness of plates, diameters of bolts). In this process, the analysis is done only
on the nominal configuration which is normally used in the classical deterministic sizing
(e.g. the bolted joint assembly with fitted aligned holes, in H2H framework). Once
the overloads are defined, they become mere multiplicative coefficients (i.e. equivalent
to special safety factors), allowing to avoid a specific finite element simulation for the
misaligned configuration.

Furthermore, we need to highlight the consequences of the overloads on the structural
sizing criteria. We focus on the case of bolted joint assemblies, starting from a low ratio
t/d, where t is the plate thickness and d the bolt diameter: in this case, the dominant
failure mode is the bearing on the plates (cf. Section 3.2). Consequently, if the overload
is OL = OL, we must multiply by OL the thickness ¢t. But then, we would obtain a
higher ratio ¢/d, which can make bolt shear the new most critical failure mode: therefore,
we should also check if the sizing of the bolts can allow to resist to these internal loads
updated with the overloads. Therefore, the consequences on the global weight can be
somehow difficult to predict without a complete knowledge of all sizing criteria in the
structure. In the following, we assume that the only sizing criterion is the bearing on
the plates and thus we consider that only the weight of the plates will be affected by the
overloads (in particular, linearly proportional to the obtained OL). This is valid either
for very low ratios t/d or for low overloads.

The main purpose of the proposed semi-probabilistic framework is to provide a statistical-
based general process to define the deterministic quantities to be used in the deterministic
sizing. In the H2H application, we challenge the worst case scenario approach (common
practice in aeronautical industry), by defining an overload value to be used for the sizing
that is statistically representative of the variability of the input parameters and in par-
ticular of hole misalignments. By computing these representative values of the overloads
through the proposed semi-probabilistic framework we seek to reduce the potential over-
conservatism inherent to the worst case scenario. Indeed, the reduction of the overloads
can be interpreted as the improvement of the sizing assumptions adopted in structural
design, thus leading to potential mass savings.

In the next sections, we formalize the proposed semi-probabilistic approach, by starting
from the definition of the random inputs.

4.3 Classification of random inputs for aircraft com-
ponents sizing

In this section we define and classify the input properties which may affect the struc-
tural performances. The distinction constitutes an extension of the current certification
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requirements in aeronautical industry.

The approach which is currently adopted for airframe design is a fized-case scenario
approach, which is in line with the constraints introduced by regulations. We remind
that the concept of "worst case” is restricted to a part of design parameters. Satisfying
these constraints constitutes an essential requirement to be able to certify an airplane.

In particular, the Certification Specifications (namely CS 25 for large aircrafts) pre-
scribe specific deterministic quantities for load levels and material properties to demon-
strate the aircraft static strength. For the former, we retrieve the concept of the limat
loads, which are the maximum load levels which may arrive once in an aircraft lifetime,
hence linked to a probability of about 107°/FH (per Flight Hour FH). As regards the
material properties, two quantile levels are prescribed according to the redundancy level
of a given structure: for non-redundant structures, we have the A-values, which corre-
spond to the deterministic quantity such that 99% of the population has better properties
(with 95% confidence level); for redundant structures, we have B-values, which constitute
the analogue concept linked to a probability of 90% instead (with 95% confidence level).
These two last definitions, applicable to all material properties, imply that a given ma-
terial has with 95% confidence a probability of 1% to exhibit worse performances than
the upper-mentioned A-value, and a 10% probability to perform worse than the related
B-value. These can be translated into specific percentiles, with two alternative options
chosen according to whether the increase of the magnitude of a given quantity I improves
or worsens the overall performances: if increasing the value of I improves performances,
the A-value is defined as the 1st percentile of the quantity I and the B-value as the
10th percentile; on the other hand, if increasing I worsens the overall performances, the
A-value will be defined as the 99th percentile and the B-value as the 90th percentile. In
the following we refer to the former option as ”low-level quantiles” and to the latter as
" high-level quantiles”.

Specific safety factors are applied on these deterministic quantities to take into ac-
count the uncertainty associated mainly to physical phenomena, lack of knowledge on
structural behavior and modeling errors. For a number of complex phenomena, it is com-
mon practice to adopt either fixed scenarios defined by engineering judgment or the worst
cases. However, the choice of the particular scenario is generally done on a case-by-case
basis, thus lacking a general process.

In the classical sizing, the verification is often done by means of a reserve factor RF,
defined as:

RE— Rper

S REF

Where Rrpr and Sgppr refer to the reference deterministic values associated to re-
spectively strength R and stress S, related to the specific rules prescribed by the CS 25.
The design is considered as acceptable if RF' > 1. However, the assumptions posed by
the classical design approach may lead to consider scenarios beyond what is reasonably
needed.

On the other hand, fully-probabilistic approaches would consider the full variability of
all input parameters, leading to the definition of a failure probability P;. In the simple
case with only two variables R and S, the P; can be formalized as:
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Pf:P[R<S]

Currently, fully-probabilistic approaches can not be integrated in aeronautical regula-
tion as no acceptable failure probability threshold is available (only partial safety factors
related to external loads and material properties are reported in CS).

An approach to address these issues was initially proposed in the work by [Kempeneers, 2018],
aiming at integrating the UQ&M analysis in the deterministic context of aeronautical
regulations requirements. In particular, a distinction is made according to the nature of
variables:

1. Environmental variables: they are associated to a given instant of the aircraft’s life,
thus varying in time but affecting in the same way all the airplanes of the fleet;

2. Intrinsic variables: these vary among the different parts of an aircraft (and different
aircrafts of each fleet), but do not vary during the aircraft’s life.

Among environmental variables, we may find temperature, aerodynamic loads and
flight conditions for example. In the second category of the intrinsic variables, we recog-
nize material properties and geometric imperfections, among the others.

This distinction is done on the basis of the analogy in the metrics of variability be-
tween environmental variables and load levels (both varying during the aircraft’s life) and
between intrinsic variables and material properties (both varying among different parts
of an aircraft). In this way, we can extend the probabilistic concepts and constraints
prescribed in CS 25 (for loads and material properties) to all environmental and intrinsic
variables. By making this assumption, we can link the two newly-introduced categories
of variables to the classical quantiles levels prescribed in CS 25. This classification con-
stitutes the starting point to formalize our proposed semi-probabilistic approach.

4.4 Semi-probabilistic approach: a double-declination
formalization

In this section, we formalize, from a mathematical point of view, the proposed semi-
probabilistic approach.

Based on the previous distinction regarding the nature of the variables affecting
structural design, we can formulate a specific term to represent the probability of over-
estimating the performances a given structure, by means of exceeding the deterministic
values used in sizing: we will denominate this as Probability of Exceedence (PoE). For a
given performance index I (e.g. stress), we introduce a general detrimental variable K,
such that a detrimental condition can be expressed as K; < 1.

Within this perspective, a partial reliability analysis can be performed, considering
separately the variability coming from environmental and intrinsic variables. The output
will not be a failure probability (as in fully-probabilistic approach), but rather the prob-
ability that the nominal values used in deterministic sizing over-estimate the structural
performances. The upper-mentioned PoFE will denote this probability. The denomina-
tion 7 semi-probabilistic approach” is used here to formalize a comprehensive framework
to define deterministic quantities (related to structural sizing) based on a probabilistic



96 CHAPTER 4. SEMI-PROBABILISTIC APPROACH FOR AIRCRAFT
COMPONENTS DESIGN

framework, but different from the fully-probabilistic approach in that partial probabilities
are calculated, instead of the overall probability of failure.

The detrimental variable K must be defined in such a way that the condition K <
1 implies that we are over-estimating the structural performances in the deterministic
design process: this can happen, for example, either if we under-estimate the loadings
applied to the given structure, or if we over-estimate the capability.

In particular, if a high value of the random performance index I can improve overall
performances (e.g. if I represents material strength), the over-estimation can be trans-
lated into I < Igrgr, where Irpr represents the conservative quantity associated to I and
used in deterministic sizing. The detrimental variable will be expressed as:

I

K =
IrEF

(4.4)

Otherwise, if a reduction of I can improve performances (e.g. if I represents loadings,
stress, material density), the over-estimation of overall structural performances is given
by I > Izrgr, and the detrimental variable will be expressed as:

Irpr
I
The probability of exceedence PoFE will be given, for a single output performance
index, by:

K =

(4.5)

PoE =P (K <1) (4.6)

Moreover, if multiple independent phenomena affect the same failure mode and their
cumulative effect is multiplicative, the definition of the PoFE can be extended to:

PoE =P (H K; < 1) (4.7)

A number of failure modes can be represented in the form provided in Eq. 4.7. A
simple example is given by the statistical variability induced on stresses by load ampli-
fication (associated with intrinsic properties) S and strength (associated with intrinsic
properties as well) R. In the proposed semi-probabilistic approach, the sizing verification
would lead to the equation:

SREF R > (R RREF)
PoE =P (K¢Kp<1)=P <1l)|=P| =< 4.8
(KsKp <1) ( S Rupr S " Sker (4.8)

In this example, the PoF in Eq. 4.8 can be interpreted as the probability of obtaining
poorer performances (in terms of reserve factor) compared to the nominal case. The same
mathematical formulation can be retrieved in all phenomena which are typically treated
via product of separated safety factors. On the other hand, several failure modes, such
as composite rupture criteria (e.g. the Tsai-Hill criterion), can not be interpreted as the
multiplicative cumulative effect of the individual properties: for these cases, the PoFE
must be treated as in Eq. 4.6, with a single detrimental variable K taking into account
the propagation of the uncertainty related to all input variables. In the following, we
will work under the assumption of multiplicative effects and consider the Eq. 4.7 as the
general formulation which includes also the special case we just exposed (in Eq. 4.8).
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We define then the PoE limits PoE, related to the nature of variables. In particular,
we make an analogy between intrinsic variables and material properties. In CS 25.613,
two quantiles for material properties are prescribed for redundant structures (B values)
and non-redundant structures (A values). This distinction leads to a maximum allowed
PoE = 0.1 for redundant structures and PoE = 0.01 for non-redundant structures . For
environmental variables, we link the PoE limit to the probability of PoE = 107°/FH
typically retained for limit loads. This different vision allows to accept a specific sizing
if the PoF reflects the quantiles prescribed by regulations.

By denoting with X the vector of input random variables affecting the detrimental
variables K, the general constraint of the semi-probabilistic approach can be written as:

0.1 if X intrinsic, rendundant structure
PoE(X) < PoE = 0.01 if X intrinsic, non-rendundant structure (4.9)
107°/FH if X environmental

In Fig. 4.2, the three different approaches are illustrated on a purely mathematical
example, with a generic resistance (allowable or strength) in blue and a generic stress
(or, more generally, response of the system) in red:

1. Fized-case scenario approach: two quantiles related to strength and stress are com-
puted and compared through a Reserve Factor (RF); for material properties A/B
values are considered, while for loads a distinction is made between ”Limit loads”
(maximum load appearing only once in aircraft life) and ”Ultimate Loads” (limit
loads multiplied by a safety factor); for a number of complex phenomena affecting
structural performances, the worst cases are retained, while for others engineering
judgment is adopted.

2. Fully-probabilistic approach: all input variabilities are taken into account to deter-
mine the global failure probability (P).

3. Semi-probabilistic approach: the variability coming from intrinsic and environmen-
tal variables are considered separately (thus leading to a reduced variability, as
depicted by the continuous lines in Fig. 4.2¢) to compute the probability of exceed-
ing the nominal values; this value is then compared to the limit PoE.

—— S (full)
— R (full)

—— S (intrinsic)
— R (intrinsic)

—=- S (full)
——- R (full)

DI
°
S

(a) Fixed-case scenario (b) Fully probabilistic (¢) Semi-probabilistic

Figure 4.2: Schematic representation of three design approaches
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This semi-probabilistic approach constitutes a proposal to extend the requirements
defined in CS 25 for aircraft components certification. By guaranteeing the constraint in
Eq. 4.9, we satisfy the semi-probabilistic decision criterion in our UQ&M framework.

A final remark should be done on the use of Eqs. 4.6-4.7 coupled with the constraint
in Eq. 4.9. Two different directions can be given to the semi-probabilistic approach
usage:

1. starting from fixed input distributions, it is possible to determine the new nominal
values to adopt in deterministic sizing;

2. starting from fixed nominal structural performances request, it is possible to opti-
mize the parameters of the controllable input distributions.

From a mathematical point of view, the former constitutes a quantile problem, while
the latter would be treated as a reliability-based design optimization. The following of the
chapter will focus on the quantile estimation problem and the application on H2H, using
off-the-shelf methods. The second perspective will be pursued in Chapter 7, where the
methodological outcomes of the present work (a sampling method presented in Chapter 5
and a machine learning assisted reliability estimation presented in Chapter 6) are collected
and implemented in a framework allowing to optimize the parameters of the controllable
input distributions.

4.5 Quantile Analysis

The quantile ¢, of a response Y is generally defined by the inverse of the Cumulative
Distribution Function (CDF) Fy at a quantile level a:

Fy(Qa) =P [Y < Qa] =« — o = F;l(a) (4'10)

When estimating the quantile g, from sample data, we introduce an uncertainty linked
to the sampling process. Therefore, we need to evaluate the accuracy and the confidence
bounds related to the estimation, to ensure a certain robustness to the outcomes of the
estimation itself.

We focus, in particular, on the estimation of the upper bound of a quantile. This
problem can be written as:

(4.11)

{ arg min (F;(aj) > a)
qv,a,8 = *

st. P[Fy'a) <z] >p8

Where Fy(z) = P[Y < 2] is the true CDF of the output response Y, Fy represents
its empirical estimation, « is the targeted quantile level and 8 constitutes the confidence
level associated to the estimation on the quantile itself. The constraint says that the
probability of over-estimating the true a-quantile ¢, = I} '(a) should be greater than 3.

In literature, a number of methods are available to solve the quantile estimation
problem. Some of them are based purely on sampling methods, where the reference
is given by the Monte Carlo method. Based on this method, the mean value of the
estimation of ¢, is estimated from a population of N samples of the variable Y as:
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Qo = Y|[Naj+1]
Where Y[ represents the ordered sample (in ascending order) and [Na] is the integer

part of Na.
The other main quantity which is retained is the variance of the quantile estimate:

2., @ (1—a)
7T Nx (@)

Where ¢(q,) represents the Probability Density Function (PDF) of the output re-
sponse itself at the estimated quantile g,. Therefore, the minimum number of samples
required to achieve convergence (i.e. reaching a targeted coefficient of variation) is not a
priori known without access to the PDF of the response.

The mathematical problem formalized in Eq. 4.11 constitutes a point quantile esti-
mation problem, involving the estimation of a single point gy s from the random vari-
able Y. Note that this should not be confused with the conditional quantile regression
[Huang et al., 2017]: coming from econometrics [Koenker, 2017], this was based on the
prediction of a target variable conditioned to a fixed point of an input (deterministic
or random) x. However, in the quantile regression, the output also depends on other
random uncontrolled inputs X. The interest of quantile regression would be to identify
a conservative regression, guaranteeing a fixed probability of overestimating the output,
given by the quantile level itself. We can consider the point quantile estimation as a
conditional quantile regression on a single point of the input z.

Several variance-reduction techniques are available in the literature to increase the
convergence rate of classical Monte Carlo: examples are given by stratified sampling
[Samawi et al., 2019], conditional Monte Carlo [Nakayama, 2014], bootstrap [Brodin, 2006],
importance sampling [Hu and Su, 2008, Egloff and Leippold, 2010, Morio, 2012], among
others. A general resume of Monte Carlo-based approaches for point quantile estimation
is given in the review [Dong and Nakayama, 2018].

Other works make use of machine learning techniques to reduce the computational
burden of the point quantile estimation [Torossian et al., 2020]. This perspective is not
pursued in the present work.

Particular attention is given in this chapter to Wilks’ method [Wilks, 1941]. This can
be considered as a minimal Monte Carlo approach, based on order statistics [David and Nagaraja, 2004],
i.e. the part of statistics dealing with ordered samples. This technique is particularly
interesting when seeking to identify the minimum number of samples able to build a
confidence interval related to a given confidence level 5.

In this section, the central focus is given to Wilks’ method and the declination of the
semi-probabilistic approach as a point quantile estimation problem.

4.5.1 Wilks’ method

Wilks’ method [Wilks, 1941] is commonly used in the context of robust quantile determi-
nation. The main interest of this method is given by the limited number of simulations
required, which varies only as a function of the targeted quantile, the targeted confidence
level and the hyper-parameter known as order statistics rank (which is a typical index
in order statistics). In practice, in an ordered sample (sorted in ascending order) of N
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Figure 4.3: Minimum number of samples according to Wilks’ formula (confidence =
0.95)

individuals, we define the i-th rank sample as the (N — i)-th highest value: if the rank
1 = 0, we consider the highest value, with ¢ = 1 the second and so on. Therefore, Wilks’
method does not require any information about the output distribution nor the dimen-
sion (thus neither the complexity) of the problem. The minimum number N of samples
which are required by Wilks’ method to estimate a quantile g, with confidence level S
depending on the rank i, the quantile level a and the confidence level g will be given by
Wilks’” formula:

N
N; o 3 = min Ckab(1—a)VF <1 412
o,p = 1 k:%:ﬂ- Na ( ) f (4.12)

By using N > N, 3, we can ensure that the condition in Eq. 4.11 is automatically
satisfied. From an engineering perspective, this result can be interpreted as the minimum
number of samples required to guarantee that the i-th highest value is a conservative
estimation of the quantile o with confidence level 3. Therefore, the probability of under-
estimating the correct value of the targeted quantile cannot overcome 1-5. This method
allows us to estimate an upper bound of quantiles. In Fig. 4.3, the evolution of the
minimum N to compute three different quantile levels with fixed confidence level 5=0.95
as a function of the rank is illustrated.

Finally, denoting with Y{; the ordered sample (in ascending order), the estimation
via Wilks’ method of the quantile gy, g related to the response Y, quantile level o and
confidence level § is given by:

Qs = Yin—g With N > Njg (4.13)

The Wilks” method is recognized as the main nonparametric procedure to determine
material strength properties and design values in Metallic Materials Properties Develop-
ment and Standardization (MMPDS) (specifically chapter 9.5.5.3). This is referenced in
AMC related to CS 25.613, concerning material properties. In particular, the first rank
(1 = 0) related to A values (o = 0.99, 5 = 0.95) is retained in MMPDS, leading to a
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minimum number of samples equal to 299, obtained via the application of Wilks’ formula
in Eq. 4.12. Moreover, according to MMPDS, the B-values should be extracted from the
same population (with 299 samples) used for A-values, thus considering the 22nd value
(rank i = 21).

4.5.2 Declination for semi-probabilistic approach

In this subsection we explore the semi-probabilistic approach presented in Section 4.4
and re-interpret it as a quantile problem. The main purpose of this declination of the
semi-probabilistic approach is the determination of new deterministic quantities, which
resume the probabilistic nature of the structural performances: such values will be used
in the deterministic sizing process.

In the H2H framework, the distinction between environmental and intrinsic variables
is trivial as the only environmental variable is constituted by the applied loads and all
other variables can be considered as intrinsic: therefore, for H2H applications we focus
only on the intrinsic variable part, fixing the applied load as a scenario. This is justified
by the fact that the application of H2H framework only affects the production of parts
in aeronautical assemblies, without modifying the loading conditions.

Now, as the purpose of this first declination is the definition of new deterministic
values resuming the probabilistic variability, we distinguish two cases: for the determin-
istic quantities which stem from classical sizing process, we adopt the suffix "REF”;
for the unknown deterministic quantities we aim at determining in the proposed semi-
probabilistic framework, we use the suffix "det”. The formalization of the detrimental
variables K will be therefore extended, according to whether the reference of the random
performance I is known or not:

1
if increasing I improves performances, Ippr known
]’ )
REF
1
if increasing I improves performances unknown
f I f , Tger unk
K — [det
R
REF ... .
if increasing I worsens performances, Irgr known
i f I f , Irer k
Idet
if increasing I worsens performances, I;,; unknown

The requirement in terms of PoE to be able to extend current certification require-
ments (CS 25 for large airplanes) will be defined as in Eq. 4.9, according to the distinc-
tion between intrinsic and environmental properties. For intrinsic properties, the PoFE
requirement will be defined by:

PoEzP(HKi§1> <l—-a« (4.14)

Where « represents the high-level quantile equivalent to A or B values (thus respec-
tively 0.99 and 0.9).

In a number of structural applications, including the H2H framework, it is possible
to use two key performance indexes, namely the allowables R and the response S of the
structure. In the following, the response S will identify for H2H the highest transferred
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load over the different bolt locations. In the case that both references associated to R
and S are unknown, the associated detrimental variables will be formalized as:

S det
d K,=
Rdet o S

In a first case, we do not consider the variability of the allowables R. If we do not want
to consider any strength variability, K, alone is sufficient to evaluate the variability of
transmitted load on a given structure. Therefore, the PoFE requirement can be simplified
as follows:

K, =

POE:P(Sdet SS) :1_P(S§Sdet):1_FS(Sdet) <l-a (415)

The objective is actually to retrieve the unknown Sg; which should be used in further
design phases. This is equivalent to a quantile problem:

Sget = 4s,0,8 = argming (Fs(Sget) > a) (4.16)

Where ¢g 4, is the a-quantile with confidence level 8 of the output S, representing
the transmitted load. This format is convenient in Wilks’ framework as it provides robust
upper bound precision for quantile levels a > 0.5. Moreover, as it consists of a robust
approximation with a given confidence level, the minimum confidence level requirements
from certification regulations can be considered as well.

At this point, we can define the overload OL from a statistical perspective. As a
reminder, this represents an amplification factor of the nominal applied load, acting de
facto as a safety factor in the structural sizing. In the H2H framework, the overload OL
is defined (see Eq.4.3) as the ratio between the load S transferred at the most critical
bolt location (in a H2H realization) and the maximum transferred load Sgppnom in the
nominal configuration (with fitted perfectly aligned holes). Therefore, the a-quantile
related to the overload OL will be given by:

OL = 2820 (4.17)

SREF,nom

In a second case, we introduce the variability of the allowables as well. If we want to
consider strength variability, we should adopt K, as well. The PoFE requirement can be
re-written as:

PoE = P(K,K; < 1) = P(RSget < SRyet) (4.18)

We consider now two other auxiliary variable H = S/R and Hge = Sget/Raer t0
simplify the problem:

PoE =P(Hyy <H)=1—P(H<Hyy)=1—Fg(Hyet) <1 — (4.19)

The solution of the quantile problem will be given by:

Saer \* _
H;, = <RZZ) = quap = argming (Fg(Haet) > o) (4.20)

At this point, we need to pass from this quantile to an overload OL, representing the
ratio between the transfered load Sg; and the reference Sgprpnom. Note also that the
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solution of the quantile problem in Eq. 4.20 only provides a ratio between two unknown
quantities Sy and Rg;. Consequently, from a mathematical point of view, we need to
fix one of them or define at least another relation between Sy.; and Rg.;. As the objective
is two retrieve an overload OL, we choose to fix R4 = Rrer, where Rrgr represents the
(1—a)-quantile of the allowable related to the specific failure mode considered (e.g. the A
value, thus av = 0.99, of the bearing strength). The solution of Eq. 4.20 will define a ratio
Saet/ Rrpr. Therefore, to obtain the a-quantile related to the OL, we can just normalize
this solution by introducing the reserve factor RFrpr = Rrpr/SrEFnom associated to
the sizing of the structure assembled without H2H (i.e. with fitted and perfectly aligned
holes), leading to the expression:

OL = qH,0. X RFREF (421)

Note that these considerations can be extended to the cases with more than two per-
formance indexes I and thus more than two detrimental variables K;. The interpretation
of the PoFE requirement as a quantile problem leads to only one condition: therefore,
if M unknown variables I;; are introduced in the PoFE definition, we still need other
(M — 1) conditions to fully define all the unknowns. In this work, it is chosen to fix the
remaining (M — 1) unknown 4 = Igpr (with Igpp the reference used in the classical
design process), but other strategies can be implemented.

4.6 H2H application

In this section, we apply the quantile estimation process via Wilks” method to the H2H
overload analysis problem. In the first subsection, the general setting is introduced, pre-
senting the different effects which are considered. The following subsections will cover
the actual implementations on three different coupons (characterized respectively by the
bolting patterns 1x2, 1x5 and 3x5): the related computations are done with the PLS sur-
rogate models described in Chapter 3. Specifically on the H2H coupon 1x2 we evaluated
the effects of the mathematical framework, in order to draw some general conclusions
concerning the suggested sizes of Wilks” approach for the overloads analysis.

4.6.1 General setting

Before starting the analysis one needs to define the statistical distributions of the con-
sidered input variables. These depend on several prior choices:

1. Decision criterion

2. Assembly process and associated stack chain
3. Individual distribution of a single variable

4. Tolerance acceptance criterion

In our context, the choice of the specific decision criterion intervenes in the inclusion
of the variability of allowables and the dissociation between types of variables. Here we
only consider intrinsic random variables.
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The assembly process and the associated stack chain modify the meaning of the ge-
ometric input variables (i.e. the misalignments), while not interfering with other effects
(allowables, preload ratios, material elastic properties). The stack chain consists in the
succession of operations (defined in design phase) to manufacture the elementary parts
and assemble the whole structure. In Fig. 4.4, we have a schematic representation of a
stack chain: for simplicity, only longitudinal (along the applied force direction) deviations
are reported, but the sketches are valid in two dimensions (longitudinal X and transversal
Y) as well. In particular, each X;; (respectively Y;;) represents the deviation from the
theoretical perfect coordinate X (respectively Y) of the j** hole of the i'* plate, while
X¢ (respectively Y ) represents the global relative translation of the second plate with
respect to the first one. When several lines are prescribed by the specific bolting pattern,
the ordering of the holes is done per longitudinal rows.

X12 XE:X11_+AXL ‘
Xiq X11

- | -+

X21 L X |
* X22 L X=X 4K
(a) Datum plate (b) Datum first hole |

Figure 4.4: Schematic representation of stack chains associated with manufacturing pro-
cesses

We adopt in the present work, six different alternatives, based on the upper-described
scheme:

- Stack chain 1 (datum plate, cf. Fig. 4.4a): all holes are drilled individually and
the plates are perfectly placed before assembly routine (i.e. implying no global
translation errors between the borders of two plates); in this case, we consider the
nominal X and Y (which is a deterministic variable) and every X;;, Y;; is supposed
to be a random variable, independent from the others.

YR

- Stack chain 2 (datum plate): all holes are drilled individually and the plates are
placed with a random relative translation; in this case, all variables X¢, Yo, Xi;, Yi;
are treated as independent random variables.

- Stack shain 3 (ideal drilling grid): all holes in the same plate are drilled together
with a perfect drilling grid and the plates are placed with a random relative trans-
lation in both directions; in this case, all Xq, Y, X;1, Y;1 are considered as random
variables, while all successive X;;,Y;; (j > 1) are linked to the first hole of each
plate ¢ through the relations X;; = X;3 + (j — 1)AX and Y;; = Y, + (j — 1)AY,
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where AX and AY are deterministic quantities (exactly equal to the theoretical
distance between two successive holes).

- Stack chain 4 (datum first hole, cf. Fig. 4.4b): all holes are drilled using the
first hole as a reference for all successive holes, while the global translation is not
considered; the assembly is done without any specific referenced hole; all variables
Xi1, Y, AX;j, AY;; (j > 1) are treated as independent random variables.

- Stack chain 5 (datum first hole): similar to stack chain 4, but with the assembly
done with an expandable pin on the first reference hole. Therefore, we have that
the variables X1, Y;; are all deterministic and equals to zero.

- Stack chain 6 (datum first hole): similar to stack chain 4, but the assembly is done
with a reference pin. Therefore, the variability of the random variables X1, Y;;
is fixed at a minimum level, given by the sum of the nominal clearance and the
tolerance on the pin diameter.

It is worth noticing that the first two stack chains arise from the same drilling pro-
cess but they make different assumptions on the assembly process. Regarding the third
alternative, it is an idealized perfect situation when the drilling grid is absolutely perfect.

The last 3 stack chains constitute realistic compromises between the ideal perfect
drilling grid and the intuitive (but conservative) first stack chain option.

As regards to the individual input distributions, we picked three options, defined via
different PDF shapes spanning on a domain +0S5/2 (where OS indicates the oversize).
We list them in descending variability order (measured via the standard deviation o):

1. Uniform: centered with bandwidth equal to the oversize (0 = OS/v/12);
2. Triangular: centered with bandwidth equal to the oversize (o = OS/v/24);

3. Normal: centered with standard deviation o = 0S/6.

—— Uniform —— None
= Triangular Linear
Normal —— Quadratic

A TN
/A S BN ) N7/

PDF
ay

—05/2 05/2 —0S 0s
Generic misalignment variable ax
(a) Individual distributions (b) Tolerance acceptance criteria

Figure 4.5: General setting options for OL analysis on H2H

It must be noted that the normal distribution which has been taken into account was
specifically chosen to highlight this difference in terms of statistical dispersion. Actually,
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the distribution itself can be characterized by a larger variance and truncated at a fixed
limit (generally symmetrical for lower and upper bounds). Therefore, the comparison
must be interpreted not in terms of pure PDF shape but as a particular case of reduced
input variability. Moreover, it should be noted that the individual distributions are
not arbitrarily chosen but they are strictly related to the manufacturing process itself:
it is typical to consider uniform distributions when no measure on the manufacturing
statistical dispersion is available and fitted normal (or truncated normal) distributions
as data is available.

Finally, the tolerance acceptance criterion intervenes as a filter for input samples. In
fact, one can define a criterion to restrict the input domain, related to the geometric
input variables. We denote by dX;; and dY;; the relative misalignment related to the j
hole between two successive plates i,7 + 1. In the case of only two plates, we simplify
the notation to dX; and dY;. In the present work, by denoting p the maximum allowed
assembly tolerance requirement, two tolerance acceptance criteria are considered on any
hole j:

- Linear: |dX;| +|dY;| <p

- Quadratic: \/dX7 +dY7 < p

Of course, the possibility not to include any tolerance acceptance criterion is con-
sidered as well. This is only fictive, as normally a minimum criterion to consider the
assemblability of the plates should be considered: in particular, this minimal criterion
would correspond to an enlarged quadratic criterion with a top-level requirement covering
the maximum variability of the misalignments, plus the nominal clearance between hole
and pin of every bolt.

The effect of the two tolerance acceptance criteria (plus none) on a single hole (thus
two variables dX and dY') is illustrated in Fig. 4.5. The linear criterion is more conser-
vative from a tolerance perspective as it accepts fewer combinations of points, restricting
the input domain and thus, the variability of input variables.

The basic principle to compute overloads (OLs) consists in extracting a population of
N points (given by Wilks’ formula) to compute an a-level quantile at § confidence level.
Every point implies a Finite Element Analysis (FEA) or a surrogate model evaluation.
However, it is possible to use a surrogate model only if the precision is sufficiently high in
the part of the domain leading to the highest responses and/or it is possible to evaluate
the conservativeness of the metamodel itself.

In order to improve the accuracy of the estimations (i.e. reduce the variance of the
estimated quantile gy, 5), we generally need to increase the order statistics rank in Wilks’
approach, thus increasing the number of required samples. Another opportunity can be
given by the bootstrap procedure, consisting in a random sampling with replacement:
from a large population with M samples, sub-groups of N < M samples are extracted
to evaluate a specific quantity of interest (in our case, the overloads). Then a statistical
analysis is done on the outcomes related to the different sub-groups, to determine, for
example, mean and variance.

In H2H application, we use the bootstrap to exploit the fact that, for linear materials,
transmitted loads and allowables are independent. In structural analysis context, the
allowable generally does not require any numerical simulations, it is thus very cheap to
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sample. The idea which is explored in this work is to enrich the database of allowables
with a separated bootstrap procedure: in particular, for the stress part of the quantile
definition (i.e. S) we consider N samples issued from the application of Wilks’ formula;
on the other hand, we introduce a larger number M of points, related to the strength
part (i.e. R) of the quantile to determine. In every re-sampling, we extract a sub-group
of N samples related to R, while considering the whole population of N samples related
to S: the outcomes (in terms of the a-quantile estimated as in Eq. 4.13) issued from the
re-sampled sub-groups are then used to estimate the mean. Looking at the definition of
the two decision criteria described above, this bootstrap can only be applied when the
strength variability is included in the analysis. Note that the independence assumption
can only be verified for linear elastic material behavior, since for nonlinear elasto-plastic
material law the stress-strain relation is modeled as a function of the yield stress.

In Wilks’ framework, the probability of over-estimating the quantile itself is controlled
by the confidence level, but the magnitude of the overestimation changes from one esti-
mation to the other. Therefore, a statistical study over repeated analyses is needed if the
intent is to compare the performances issued from specific industrial choices (e.g. using
different stack chains).

Before diving into the numerical applications, we need to clarify the concept of con-
servativeness related to the computation of overloads OLs. The adjective conservative
can be misleading when referring either to the estimation of the OL quantile or the design
approach (i.e. the decision criterion): in the former case, being conservative implies a
confidence of a fixed probability that the real quantity (for higher values are sought) is
not under-estimated (e.g. considering the upper bound of the statistical estimation rather
than the mean); for the latter, a higher level of conservativeness would be linked to the fact
that the variability of part of phenomena affecting performance is not taken into account
and unnecessary conservativeness is artificially added (e.g. considering only the worst
case instead of the whole variability). Therefore, while conservative (or more precisely,
robust) quantile estimations constitute an added value, excessive (over-)conservativeness
in the design process can limit the potentials of the airframe performances.

4.6.2 Coupon 1x2

In this section, we focus on the determination of the overloads OLs for the H2H coupon
with bolting pattern 1x2. We will start the analysis by studying the effects of the mathe-
matical framework. In a second step, we are going to evaluate the consequences of several
industrial choices on the OL.

4.6.2.1 Effect of mathematical framework

First, we seek to investigate the effects of several choices in the mathematical framework:

- Bootstrap procedure: this consists in enriching the database with more data coming
from cheap samples (see details in previous section);

- Order statistics rank i: in the ordered response sample, this indicates which margin
we take from the highest sample to determine the robust quantile through Wilks’
method;
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- Targeted quantile level «;
- Decision criterion: a comparison between the inclusion or not of strength variability.

As a reminder, the features which significantly change the number of full stress analy-
ses (FEA or via surrogate models) are the order statistics rank and the targeted quantile.
In this section, we use the PLS surrogate model (related to the H2H coupon 1x2) ob-
tained in Chapter 3. Regarding the setting parameters, we chose for this first section
a triangular distribution for every hole deviation, associated with Stack chain 1 (imply-
ing all independent hole positions and perfect assembly process, i.e. without any added
translation between plates).

Bootstrap is intended to enrich the database by adding cheap samples, coming from
allowables of the bearing resistance of material: therefore it could only be applied to
the semi-probabilistic decision criterion including strength variability. This is applied
exclusively to the lowest quantile (90th percentile) and first four order statistics ranks.
The related results are reported in Fig. 4.6 in the form of box-plots for different order
statistics ranks: in the abscissa, we indicate by M the number of samples of the allowables
and by N the number of samples of the stress, coming from full stress analysis simulations.
Every box resumes the statistical results based on the repetition of the same procedure
1000 times. On the ordinate axis, we retrieve the estimated overloads.

We analyze three fundamental performances through these box-plots: (1) mean pre-
cision, represented by the mean level of error (orange line); (2) maximum over-estimation
error, represented by the 99th percentile of the statistical samples represented by the
upper bound of the boxes; (3) maximum under-estimation error, given by the positions
of the 1st percentile of the boxes, with respect to the reference value (provided by Monte
Carlo, coV = 0.001).

It can be observed that, compared to Wilks’ method, no substantial improvement of
the mean precision nor the maximum error of the solution is provided by the bootstrap
procedure, even at very high enrichment ratios M /N. The low improvement provided by
the bootstrap procedure can probably be explained to the low variability of allowables
with respect to stress samples. We conclude that Wilks” method can give conservative
results of quantile estimation in H2H applications with a limited number of samples.

We then use other box-plots to evaluate the effect of order statistics rank on the
quantile estimation via Wilks” method. Results are shown in Fig. 4.7 for three levels of
quantiles (90th, 95th and 99th percentiles) and the two decision criteria (i.e. the semi-
probabilistic approach with or without strength variability). It can be observed that by
increasing the order statistics rank, both mean and maximum error (of under- and over-
estimation) can be reduced, without degrading the level of conservativeness (ensured by
the theoretical Wilks” formula). We may notice, however, that beyond i = 2 the gains
in accuracy are much less significant. The same considerations are valid for all three
targeted quantile levels and both decision criteria.

From the computational burden point of view, it must be kept in mind, however, that
increasing the rank ¢ has significant effects on the sample size according to the targeted
quantile level «, as depicted in Fig. 4.3. If for a = 0.9 each unitary increase in i implies
to add 30 samples, for a = 0.99, an addition of 150 samples are necessary when passing
from rank ¢ to the successive one ¢ + 1. Therefore, to establish a coherent criterion to
estimate the quantile gy, g this effect must be taken into account and different ranks are
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Figure 4.6: Comparison of performances for OL quantile estimation on the H2H 1x2
coupon (via semi-probabilistic approach) with Wilks and bootstrap enrichment for dif-
ferent ranks: values of OL quantile estimation (o = 0.9)

suggested according to the category of structures retained: for redundant structures (i.e.
prescribed B values, thus o = 0.9, § = 0.95), a rank ¢ = 2, corresponding to N, , g = 61,
is suggested; for non-redundant structures (i.e. prescribed A values, thus a = 0.99,
f = 0.95), a rank ¢ = 0, corresponding to V; , g = 299, is suggested. There can be cases
where both quantile levels must be computed on the same category of structures: for
those cases, we use 299 samples, considering the ranks ¢ = 0 and ¢ = 21 respectively for
A and B values. This last consideration is in fact in line with the procedure suggested in
MMPDS.

The comparison of performances between Wilks and Monte Carlo is reported in Fig.
4.8 for both decision criteria (i.e. both including or not the strength variability). We
reported in abscissa the number of evaluations and on ordinates the relative errors of the
quantile estimations with respect to the reference given by Monte Carlo. It can be ob-
served that Wilks always guarantees a conservative estimation of quantiles, independently
of the decision criterion, the rank or the quantile level. Relative errors are somewhat lower
with the increase of targeted quantile level because of the intrinsically higher values in-
volved. With the increase of order rank, more simulations are required and the mean
error decreases. There are no differences in the relative errors of the quantiles estimated
through semi-probabilistic approaches with and without strength variability.
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To conclude the numerical investigation regarding several choices that can be made in
the mathematical quantile estimation framework, we can say that, Wilks” approach pro-
vides the necessary tools for making a compromise between precision and computational
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Figure 4.7: Box-plots of quantile estimations for two decision criteria and three quantile

burden to determine a quantile with fixed confidence level.

The convergence of the estimations as a function of the required sample sizes is re-
ported in Fig. 4.9 for Wilks” method only. It can be observed, by comparing the curves
related to the same « on the two decision criteria (i.e. with and without strength vari-
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between Wilks and Monte Carlo estimations at three different

ability), that the semi-probabilistic approach always offers improved design assumptions
when it also considers strength (allowables) variability: in fact, when ignoring the whole
variability of the strength, we need to introduce the nominal values Rrgr which, being
related to the quantile level «, prevent us from fully exploiting the potentials of airframe
sizing. Observing more closely Fig. 4.9, the difference between the two decision criteria
is constant no matter the level of precision guaranteed at the different order statistics
ranks (implying different numbers of full stress analyses) and the different targeted quan-
tile levels. Therefore, in the next section, several industrial choices affecting the overall
performances are discussed on the 90th percentile level.
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Figure 4.9: Convergence of quantile estimations for two decision criteria and three quan-
tile levels as a function of the number of simulations

4.6.2.2 Effect of industrial choices

In this section the effects of prior industrial choices are investigated on the H2H coupon
with bolting pattern 1x2. These industrial choices include:

Decision criterion (including or not the strength variability);
Input variables distributions (uniform, triangular and normal);
Assembly process and associated stack chain;

Tolerance acceptance criteria.

The effects of the definition of geometric input variability were presented in Section
4.6.1. As a reminder, the stack chain modifies the interpretation of the input variables,
the individual distributions constitute the statistical description of such variables and the
tolerance acceptance criteria can restrict (by filtering) the input domain.

At a general level, it must be noted that every misalignment generates an unbalance
in transmitted loads: therefore, the maximum bearing load can only increase with respect
to the nominal value, i.e. OL > 1. Therefore, a higher variability in inputs will certainly
lead to higher variabilities in the outputs and thus higher quantiles, for a fixed quantile
level . This means that limiting the variability in inputs can improve (i.e. reduce)
the overloads. Moreover, as in each location we cannot transfer more than the applied
load, we will have a saturation on the overloads, specifically OL < 2 for coupon 1x2.
Coupling both consideration, the support of the overload response will lie in the interval
1 < OL < 2. The output distributions of the overloads are reported in Appendix A.

At first, we can analyze the effects of industrial specifications on 90th percentile of
the output response (the maximum bearing overload) considering uniform distributions,
reported in Fig. 4.10. Note that the overloads (reported on the ordinate axis) are
normalized with respect to the largest value obtained in this analysis. The relative
reduction of the total weight is directly proportional to the relative reduction of the loads
considered in design phase, and, thus, directly proportional to the reduction of overloads
OL: passing from normalized OL = 1 to normalized OL = 0 implies a weight reduction
of about 40%. It can be observed a large reduction in terms of overloads for Stack Chain
3 with respect to the others, due to the fact that we block the main component (analyzed
in the previous chapter): by imposing a constant distance between successive holes in the
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same plate, we prevent the most detrimental configurations, based on the holes of the
first plate spaced apart and the holes of the second plate approached (and vice versa).

Switching from Stack Chain 1 to Stack Chain 3 allows to reduce by almost 40% the
total weight of the structure. However, we must keep in mind that the Stack Chain
3 implies the use of a drilling grid: this can be applied for relatively small structures
(i.e. small H2H assemblies), but can become less affordable for larger structures. If, for
example, we applied a drilling grid to the whole aircraft, this would imply to build a
"negative” of the aircraft itself, which would not be affordable from an engineering (and
costs) perspective.
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Figure 4.10: Coupon 1x2: Overload results for 90th percentile for different decision
criteria, stack chains and tolerance acceptance criteria (input distribution: uniform)

All stack chains defined with datum first hole (i.e. 4, 5, 6) have similar behaviors: in
fact, the only important contribution is given to the upper-mentioned main component;
by introducing the same distributions on the distance between first and successive holes
of the same plate, the results keep unchanged.

Comparing the stack chains defined with datum first hole (i.e. 4, 5, 6) to the ones
with datum plate (i.e. 1, 2), we see a reduction in the overload. In fact, when assigning
a specific distribution X; ~ U(—a,a) to every j hole on the plate ¢ (for stack chains
1, 2), the relative distance between two holes on the same plate ¢ will be characterized
by a statistical distribution which is the convolution of the initial distributions, giving
dX; ~ T(—2a,0,2a). On the other hand, for stack chains with datum first hole, the
relative distance between holes is already an input random variable, to which we assigned
from the very beginning the distribution dX; ~ U(—a, a). This leads to obtaining a larger
and more dispersed PDF on the relative distance with datum plate compared to the one
obtained with datum first hole.

At a general level, it is confirmed that including strength variability in the OL com-
putation process can allows to define optimized deterministic values for the overload,
independently from the other choices listed in this section.
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Without any tolerance acceptance criterion, the stack chain 2 (which adds assembly
errors with respect to the stack chain 1) takes into account a higher variability in mis-
alignments between holes due to the added global translation of the second plate with
respect to the first one: this could imply a slightly higher variability in outputs. How-
ever, Wilks’ method does not allow to compare little differences between values, as the
conservativeness is only available in probabilistic terms: strictly speaking, we know the
probability of overestimating the quantiles (through the imposed confidence level) but
not the magnitude of the overestimation itself. On the other hand, when including a
tolerance acceptance criterion, more combinations are excluded in stack chain 2 than in
stack chain 1, leading to the opposite effect of reducing the input variability and thus the
overloads.

On top of that, it can be observed that the linear tolerance acceptance criterion offers
at the same time a more conservative reduction of the input domain and lower overloads.
Still, the effect is limited for the stack chain 3 (based on perfect drilling process and
imperfect assembly routine).

In Fig. 4.11 and Fig. 4.12 we reported the results relative to, respectively, triangular
and normal individual distributions of the input variables.
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Figure 4.11: Coupon 1x2: Overload results for 90th percentile for different decision
criteria, stack chains and tolerance acceptance criteria (input distribution: triangular)

The comparisons among different choices of individual distributions follow the same
logic as the ones mentioned in the previous analysis. Reducing input variability (thus
passing from uniform to triangular to normal distributions) can lower the overloads.
On the other hand, reduced individual input variabilities attenuate the effects of the
tolerance acceptance criteria. This is due to the fact that the PDF is reduced on the
tails, reducing the amount of samples involved in the filtering induced by the tolerance
acceptance criterion: therefore, switching formulation of tolerance acceptance criterion
affects overloads results much less.
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Figure 4.12: Coupon 1x2: Overload results for 90th percentile for different decision
criteria, stack chains and tolerance acceptance criteria (input distribution: normal)

4.6.3 Coupon 1x5

We repeated the same procedure for a coupon with bolting pattern 1x5, using the PLS
surrogate model constructed in the previous chapter (cf. Section 3.3.4.4).
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Figure 4.13: Coupon 1x5: Overload results for 90th percentile for different decision
criteria, stack chains and tolerance acceptance criteria (input distribution: uniform)

Globally, similar conclusions can be drawn for the analysis on coupon 1x5. With
respect to previous results, it can be observed from Fig. 4.13, 4.14 and 4.15:

e With respect to the coupon 1x2, overloads are generally reduced;
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Figure 4.14: Coupon 1x5: Overload results for 90th percentile for different decision
criteria, stack chains and tolerance acceptance criteria (input distribution: triangular)
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Figure 4.15: Coupon 1x5: Overload results for 90th percentile for different decision
criteria, stack chains and tolerance acceptance criteria (input distribution: normal)

e Gains from stack chains with datum plate (1, 2) to datum first hole (4, 5, 6) are
less evident, but still present;

e The same conclusions on the overall rank of effects of industrial choices on coupon
1x2 can be extended to coupon 1x5, except for the differences among entry distri-
butions and the effects of stack chains, which are less evident.

The reduction in gains due to the input PDFs can be explained by the augmented
input dimensionality. In fact, it is more difficult to access the most detrimental configura-
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tions for the load redistribution. The same principle explains the reason for the decrease
in the global level of overloads.

On the other hand, the augmented dimension attenuates the differences between the
groups of stack chains with datum plate with respect to the ones with datum first hole.
Considering two-by-two couples of holes on the same plate, it is more difficult to access
the configurations on the tails distributions of relative two-by-two deviations.

Another explanation of the reduced effect of the choice of the stack chain must be
sought in the modal description offered by the PLS surrogate model. Let us focus on
the variables 0.X; explaining the relative (i.e. considering the difference between the two
plates) longitudinal misalignment on the j-th hole. On coupon 1x2 we had only one
component, fundamentally given by 6 Xy — d X, which was responsible for the variability
of the bearing response on every location. For the H2H coupon 1x5, we have 4 components
which consider different combinations of ¢, 7 for the expression 0.X; — 6X;. Now, when
we use the first hole as a datum (i.e. considering stack chains 4, 5, 6), we only reduce
the variability of the difference d.X; — §X; (with j > 1), for the reasons exposed in the
previous section. The problem is that this constitutes actually only a part of the complete
list of modes: therefore, the final outcome will be an attenuation of the overload gains
provided by the use of manufacturing processes based on datum first hole (i.e. stack
chains 4, 5, 6).

4.6.4 Coupon 3x5

A similar analysis was conducted on coupon 3x5 as well, using the PLS surrogate model
retrieved in the previous chapter (cf. Section 3.3.5) for the stress analyses. Related results
are reported in Fig. 4.16, 4.17 and 4.18.
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Figure 4.16: Coupon 3x5: Overload results for 90th percentile for different decision
criteria, stack chains and tolerance acceptance criteria (input distribution: uniform)

With respect to the previous cases, we have:
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Figure 4.17: Coupon 3x5: Overload results for 90th percentile for different decision
criteria, stack chains and tolerance acceptance criteria (input distribution: triangular)
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Figure 4.18: Coupon 3x5: Overload results for 90th percentile for different decision
criteria, stack chains and tolerance acceptance criteria (input distribution: normal)

e The difference between groups of stack with different datums (1,2 vs 4,5,6) are much
less evident than other cases;

e Overall overloads levels are higher compared to 1x5, but lower than 1x2;
e The effect of different input distributions is lower than 1x2 and higher than 1x5.

The general behavior of reduction of the effects of the choice of the stack chain which
was observed on coupon 1x5 is still valid on the coupon 3x5. In fact, even more com-
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ponents explain the general behavior of the bearing load re-distribution, reducing the
impact of the choice of different datums in the manufacturing process.

On the other hand, to explain the difference between the results related to coupons
1x5 and 3x5, we may think at the latter as a series system of the former. Practically
speaking, when disposing of multiple lines of bolts with bolting pattern 1x5, the event
related to a threshold exceedence can happen with similar probability occurrence on the
different lines. Therefore, the related quantiles of the output response of the system
will be increased. Note, however, that this simplification from a system point of view
is only qualitative and not numerically confirmed by the computations: in fact, in the
nominal configuration with fitted and perfectly aligned holes (drilled with counter-drilling
techniques), the loads transferred on the corners are higher than the ones on the edges,
so that the upper-mentioned probability of exceeding a fixed threshold is not exactly the
same in the three lines of bolts.

4.7 Conclusion

In this chapter we formalized a so called semi-probabilistic approach, capable to define
new deterministic representative values to adopt in an aircraft design phase, supported by
a probabilistic framework. This is coherent with the current certification requirements on
the static strength demonstration from CS 25 (for large airplanes). The proposed semi-
probabilistic approach can be used to define overloads (representing load concentration
factors) from fixed input distributions, or to re-define the input tolerances to guarantee
a target probability PoE of over-estimating the structural performances. The former
direction was pursued in this chapter to define the overloads on H2H coupons via Wilks’
method.

From the mathematical framework analysis, we observed that, for H2H applications,
the statistical ranks and the inclusion of strength variability allows to define optimized de-
terministic values for the overload, while no improvement was observed using a bootstrap
procedure. Generalizing this conclusion, we can state that including more contributions
to the overall variability in the semi-probabilistic approach, can allow to further improve
the associated deterministic values.

For further analyses on overload factors on H2H applications, we suggest to use for
non-redundant structures the minimum rank ¢ = 0 on the quantile level &« = 0.99, a
minimum sample size of 299. This is in line with the prescriptions from MMPDS. On the
other hand, if only redundant structures are to be analyzed (i.e. quantile level & = 0.9),
a rank ¢ = 2 is sufficient, leading instead to a minimum population, according to Wilks’
formula, with 61 samples.

Focusing on the effects of industrial choices on the numerical results of overloads,
we observed that the manufacturing process and the associated stack chain is the main
driver allowing to improve the structural performances of H2H application on aeronauti-
cal assemblies, through reduced overloads. In second place, the statistical distributions
of individual features in the tolerance mapping can also significantly affect the perfor-
mances. The tolerance acceptance criterion assumes only a marginal role in influencing
the overload outcomes.

An important point is given by the variation of overload factors as a function of
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the bolting pattern: they decrease when increasing the complexity of bolting patterns
on longitudinal direction (going from 1x2 to 1x5) but, at the same time, they slightly
increase when increasing the complexity on transversal direction (going from 1x5 to 3x5).
However, this latter effect is much less significant than the former. Nevertheless we recall
that all the conclusions related to the comparison between different bolting patterns must
be confirmed by further numerical studies involving nonlinear material models.

The numerical results presented in this chapter are related to specific surrogate models
trained in Chapter 3. Therefore, these are valid for high levels of applied load (which
would be consistent with higher ¢/d), where the linear approximation via PLS is accurate.
As it will be shown in Chapter 6, the PLS can be used to support other machine learning
techniques, overcoming this difficulty. However, in this dissertation we will focus on
this alternative use of PLS for estimating failure probabilities (or, specifically in our
framework, PoFE), leaving the application for quantile estimations as a perspective.

In the following chapters, we will analyze the second declination of the semi-probabilistic
approach, to re-define the input tolerances guaranteeing a targeted PoE. Chapter 5 and
6 focus on proposing methods for the computational burden reduction when estimating a
general failure probability: in Chapter 5 the attention is focused on the use of sampling
methods, while Chapter 6 deals with the approximation of high dimensional problems
via a Kriging-based surrogate model. Finally, in Chapter 7 the tolerance optimization
problem is formalized and the methods developed in Chapter 5 and 6 are introduced in
the optimization process.



121

Chapter 5

Sampling Methods for Reliability
Analysis

5.1 Introduction

In the previous chapters, we highlighted the important role of uncertainties in engineering
design and the impact they can have on final performances.

Uncertainties in input data can be analyzed in the general UQ&M framework (de-
scribed in Section 1.2) to measure the impact on outputs, determine the most influential
factors in output variability, accredit a model, verify the compliance of prerequisites im-
posed by legislation or select the best design [De Rocquigny et al., 2008] (cf. Section
2.1). Reliability analyses focus on ascertaining the failure risk associated to a spe-
cific engineering design [Larsson, 2015]. Over the past decades, the paradigms of this
field have been progressively formalized [Pham, 2006, Rykov et al., 2010, Birolini, 2013,
Trivedi and Bobbio, 2017]. Such concepts are applied in almost all knowledge fields, from
medicine, finance [Rykov et al., 2010], engineering systems [Rausand and Hgyland, 2003]
to automotive, aerospace and ship industry [Nikolaidis et al., 2007]. In this work, particu-
lar attention is given to structural reliability applications [Lemaire, 2013, Pellissetti and Schuéller, 2006,
Qiu et al., 2013, Gogu, 2021]. A state of the art of the applications of reliability in the
civil and aeronautical domain was presented in Section 2.4.

In Chapter 4, we introduced the semi-probabilistic approach, constituting a framework
to extend the current certification requirements for the static strength demonstration of
large aircrafts. We classified the input properties according to the metric of variability
and defined the probability PoFE of under-estimating the structural performances in the
deterministic design phase. Then, we formulated two declinations of this framework:
the first, analyzed in Chapter 4, aims at identifying new deterministic values to use in
classical deterministic design, by means of evaluating the effect of the uncertainty of the
input parameters; the second aims at determining the largest input variabilities which
can allow to satisfy a specific constraint on the PoF, defined from fixed requirements
of the structural performances. The first declination constitutes, from a mathematical
point of view, a quantile estimation problem. The second declination can be considered
as a reliability-based design optimization problem. In this chapter (and in the following
one), we focus on the methods to evaluate the reliability, proposing some enhancements
to existing methodology.
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To assess the reliability level of a designed structure, several metrics were introduced
in the literature. Among, the most common is the index [, introduced by Hasofer
and Lind [Hasofer and Lind, 1974], which is defined as the minimum euclidean distance
(L? norm) between origin of a standard normal space and the Limit State Surface (LSS)
representing a failure mode of the system. The point situated at distance gy, is known
as design point or Most Probable Failure Point (MPFP).

Another important reliability performance metric is given by the failure probability
Py, which can be associated to the PoE of the proposed semi-probabilistic approach. As a
reminder, the PoE does not constitute a probability of being in failure condition (as does
the Py), but represents the probability of over-estimating the structural performances
by using deterministic quantities in the classical (deterministic) design phase. However,
from a mathematical point of view, the methods which can be implemented to evaluate
the P; can be also used to compute the PoFE.

The classical Monte Carlo (MC) simulation method is probably among the simplest
and most popular sampling based simulation methods used in reliability applications
[Hammersley, 2013, Bourinet, 2021] to determine Py. Originally defined to compute gen-
eral integrals, it simply consists in sampling data according to the input distributions and
estimating the expectation trough an arithmetic sum. This constitutes the reference for
all successive approaches, because of its simplicity, intrinsic stability and independence
from problem dimension and complexity of the system considered in the analysis.

On the other hand, MC presents a slow convergence rate, above all for rare events
estimation. This led to the need for more agile methods, able to reduce the variance of
the Py estimation with the same number of samples.

Importance Sampling (IS), is a popular variance reduction technique [Tokdar and Kass, 2010],
based on the concentration of the sampling in specific areas defined by a support distri-
bution. While IS has been initially developed in the context of reliability several decades
ago, it continues to be a very active topic with many recent developments seeking to
further improve it [Papaioannou et al., 2019, Xiao et al., 2020b, Chaudhuri et al., 2020,
Ling and Lu, 2021, Wang et al., 2021b, Zuniga et al., 2021, Jia and Wu, 2022|, together
with industrial applications, like [Gao et al., 2020, Misraji et al., 2020, Subramanian and Mahadevan, 2
among others. One open problem is given by the most efficient construction of the sup-
port importance distribution of IS. Several advanced techniques, going by the name of
Adaptive Importance Sampling, build this importance function during the simulations
in an adaptive way [Richard and Zhang, 2007, Cappé et al., 2008, Miiller et al., 2019,
Zhang et al., 2022a]. This issue is not specifically considered in the present work, but
needs to be kept in mind.

Another variance reduction technique, Separable Monte Carlo (SMC) [Smarslok, 2009,
Smarslok et al., 2010] focuses on a particular category of limit state functions, where re-
sponse and capacity (typically stress and strength in structural analysis) present no mu-
tual dependence (or simply rely on distinct independent input variables). This assump-
tion is common in structural engineering [Smarslok, 2009]. This consists in sampling
stress and strength (or response and capacity, as denoted in [Smarslok et al., 2010]) sep-
arately and evaluate every possible combination of the two. Therefore, a larger database
could be built with fewer simulations, while also allowing the construction of unbalanced
datasets to exploit differences in computational burden of response and capacity (the
latter is usually computationally inexpensive to sample).
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Following the same idea, Importance Separable Monte Carlo (ImpSMC) was also
proposed by Chaudhuri et al. [Chaudhuri and Haftka, 2013]. This is in fact a combi-
nation of IS and SMC, benefiting from the respective advantages of both approaches.
In [Chaudhuri and Haftka, 2013], a failure probability estimator was presented, and the
resulting variance reduction was illustrated empirically. Unfortunately, to date no closed
form expression of the variance of the Ps estimated by ImpSMC is available. This short-
coming makes it difficult to optimally exploit the method in order to achieve maximum
numerical efficiency gains. Thus, the objective of this chapter is to develop a closed form
variance estimator of the Py estimated by ImpSMC and to extensively analyze situations
in which the ImpSMC procedure will be most useful.

In Section 5.2 a brief overview of MC, IS and SMC is provided. In Section 5.3,
ImpSMC approach is presented and mathematically formalized. Two numerical examples,
related to two structural reliability test cases, are presented in Section 5.4 to compare
methods enunciated in Sections 5.2 and 5.3. Then, conclusions are summarized in Section
5.6. For the interested reader, empirical variance validation and further details of the
variance estimator proof are reported in Appendix B.

5.2 Background on relevant sampling-based methods

The goal of this section is to present several approaches adopted to evaluate the failure
probability of a system. We are going to use the following notation:

- X: random design variable;

x: realization of X;

- g(X): Limit State Function (LSF), conventionally negative to indicate a failure
state;

- G(X) = 14x)<o: failure indicator.

The LSF is expressed in a way that it is negative when the system is in a failure
condition. The hypersurface described by g(X) = 0 is often referred as Limit State
Surface (LSS).

5.2.1 Monte Carlo (MC) Simulation

MC is usually considered as the reference for all sampling-based reliability approaches
[Metropolis and Ulam, 1949]. In integral form, the failure probability can be expressed
as follows:

P = /D G(2) f(x)dx (5.1)

Here f represents the Probability Density Function (PDF) of the random variable X.
Denoting by P an estimator of Py, expectation, variance and coefficient of variation coV’
of this estimator are reported in the following equations:
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o[
NE [Py]
(5.2)
Generally, coV is the performance indicator adopted to indicate the precision of the
estimation itself. It is easy to understand that MC is not affected by the curse of dimen-
sionality of the problem. Moreover, it is stable and makes no assumption on the LSS
itself. However, for rare event estimation, the convergence rate of coV' follows (P;N )12,
leading to a very high number of simulations necessary to achieve an acceptable precision.

5.2.2 Importance Sampling (IS)

Importance Sampling is a well-known approach to estimate integrals with fewer data than
MC. It stems from a very simple operation on the Py integral:

P = /D G(2) f(x)de = / Gla) f(a) D) gy = /D (G(x)f(x)> g@)de  (5.3)

D q(x) q(x)

Here g represents a generic function, which must only respect the requirement of being
equal to zero where f(x) = 0. In particular, in .S the function ¢ is a PDF constituting
the support importance function. Therefore, x realizations of the random variable X are
sampled following the PDF ¢. In a compact notation, Eq. 5.3 can be rewritten as follows:
fX)
q(X)

The quantity w is often referred in the literature as importance weight. Expectation
and variance of the corresponding P; estimator are reported in the following equation:

Pr=E,[0(X)w(X)]  w(X)= X~gq (5.4)

A 1 Y 1
B[Py~ Y Glajw(w)  Var(Pp) = 3 [Gla ~E[F] 65
=1 =1
The reader can observe that the choice of ¢ is not trivial and could even lead to non-

converging situations. On the other hand, a good choice of ¢ may significantly accelerate
convergence rate compared to MC. An abundant literature on procedures to build an opti-
mal ¢ PDF is available to the interested reader [Karamchandani et al., 1989, Zhang, 1996,
Au and Beck, 1999, Richard and Zhang, 2007, Cappé et al., 2008, Tokdar and Kass, 2010,
Miiller et al., 2019].

5.2.3 Separable Monte Carlo (SMC)

The Separable Monte Carlo (SMC) method, proposed by Smarslok et al. [Smarslok, 2009,
Smarslok et al., 2010], was initially developed in a structural reliability context but it is
generalizable to any reliability problem, under an independence assumption. In structural
reliability, the method starts from the assumption that strength R and stress S rely on
distinct independent variables. The key feature behind SMC is the possibility to sample
separately R and S, and successively compare all combinations.
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In this context the LSF is expressed as follows [Smarslok et al., 2010]:
9(X) = g(Xr, Xs) = R(Xg) — 5(Xs) (5.6)

Where Xi and Xg are partitions of the original design variable vector X affecting
either capacity R or response S respectively. Random variables X and Xg are considered
to be independent. Such an independence assumption is often verified in structural
reliability but it can, of course, be verified in a large number of other applications. The
failure indicator G is rewritten in compact notation as follows:

G(R,S) = 1pes = I(R < S) (5.7)

Here we omit the fact that response and capacity are actually functions of original
variable sets X and Xg (i.e. R = R(Xg) and S = 5(Xg)) in order not to overload the
notation. Of course, input variables Xz and Xg are sampled according to their original
distributions while R and S are computed as output. This does not affect neither results
nor the proof. It is worth noticing that the expressions in Eqgs. 5.6-5.7 are mere examples
of separation between two blocks R and S: since the proof for the SMC procedure
[Smarslok et al., 2010] does not require a particular choice on the expression of g, the
validity is actually extended to any LSF defined by any operation linking two independent
variables. Denoting by r and s realizations of respectively R and S, and by Dy and Dg
their domains, failure probability can be expressed as:

Py = /D G(r,s)frs(r,s)drds = /Ds fs(s) (/D G(r, S)fR(T)dT> ds (5.8)

R

Using a compact notation, expectation will be given by:

P; = Eg |Eg [Fr(S)]] where Fg(S) = G(R,S) (5.9)
The choice of the symbol E(S) is justified by the fact that its expectation with re-

spect to the capacity variable is the conditional CDF Fpg of the variable R at point S
[Smarslok et al., 2010]. Failure probability estimation will therefore be given by [Smarslok et al., 2010]:

E@JzﬁMZEXm%m (5.10)

A variance estimator can be expressed as follows (proof available in [Smarslok, 2009)):

— 1 M—1 — N -1 -
VWW”INM&+ MwE4Eﬂ%@Wy%MNEﬂaﬂ”mm&ﬁmH
N+M-1_,
- ——— P
NM S

(5.11)

The numerical quantities can be obtained trough the following approximations:
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(5.12)
Es [Er [Fr(S1), Fr(Ss)]] ~

The term G(r;, s2;—1)G (7}, S2;) was reported in the original work [Smarslok et al., 2010]
as G(r;, min(sg;_1, $2;)), since the main focus was on LSF expressed as in Eq. 5.6. How-
ever, the proof of the analytical variance estimator is not affected by the choice of the
shape of ¢ (and thus G) function, but only requires a separation between two indepen-
dent blocks R and S, thus we propose to use the more general notation in Eq. 5.12. A
compact form is provided as well [Smarslok et al., 2010] to better understand the effect
of number of samples of response and capacity:

Var(Py) = N1M¢1 + jifcbz + ]\][\[]\41512 (5.13)

Where:

¢1= P; — Bs | Ep [Fa(5)]’]
¢2 = Es [ER [E(S)ﬂ — P} (5.14)
&2 = Es |Ep [E(Sl)ﬁ;(sg)ﬂ — P}

Separate sampling of R and S allows to create a larger database with fewer simu-
lations of each. Moreover, when capacity and response simulations imply very different
computational burdens (often sampling S is much more costly), one can use unbalanced
datasets, reducing the overall computational efforts. On top of that, a significant variance
reduction with respect to MC was shown in [Smarslok, 2009, Smarslok et al., 2010]. In
particular, SMC proved to be increasingly beneficial when most of LSF variance came
from capacity [Smarslok, 2009].

5.3 ImpSMC approach

This section provides a full description of the method known as ImpSMC (Importance
Separable Monte Carlo), introduced by Chaudhuri [Chaudhuri and Haftka, 2013]. This
method consists of a combination of the upper-mentioned IS and SMC, and it is the
method for which we will seek to construct a variance estimator for its probability of
failure estimate.

The description of the ImpSMC approach starts from the definition of the estimation
of the failure probability P; in Section 5.3.1. Then, we define the variance estimator in
Section 5.3.2. From this, in Section 5.3.3 we propose an alternative version of the same
variance estimator, discussing their equivalence in Section 5.3.4. Then, we discuss and
prove the necessary conditions for the validity of the analytical variance estimator in
Section 5.3.5, from a theoretical point of view. Finally, we highlight the potential of the
variance estimator itself, underlining the effects on its practical implementation.
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5.3.1 Probability of failure estimation

As for SMC, R and S are functions of original variable sets Xz and Xg. To improve
readability, this dependence is omitted, while keeping in mind that the actual sampling
is performed on Xp and Xg. These are sampled according to support functions (or
importance distributions) respectively ¢(Xg) et h(Xg). In the following, response and
capacity will be treated as the sampled variables and importance distributions will be
denoted as g(R) and h(S), without this affecting results. Repeating the same processes
used for IS and SMC, one obtains:

en s

In the following, a compact notation, consistent with [Smarslok et al., 2010], is adopted:

1 M
HR MJZ:IH RJ,S
H(S)=E, [HR( )S] = E,[Hg(S)|9] (5.16)

Py = By [E,[Hr(S)|S]] = Es[H(S)] = E [P}]

Here the subscript R implies a dependence of H with respect to R variable and must
not be confused with ¢ and h representing the two importance functions used to sample R
and S variables respectively. As for SMC, when estimating P based on samples according
to Eq. 5.15, all possible combinations of R and S are compared to each other to verify
a failure condition. We take this into account by introducing N independent identically
distributed copies of S in our estimation. We make the distinction between the original
variable Hg and its estimation Hg via arithmetic mean.
The corresponding probability of failure estimator will be given by [Chaudhuri and Haftka, 2013]:

PR~y T 2 25 G ﬁiﬂfﬁif (517)

Where M represents the number of realizations of the capacity R.

5.3.2 Variance estimation on P}

The novelty proposed in this chapter consists in the determination of an analytical vari-
ance estimator. In [Chaudhuri and Haftka, 2013], variance reduction was proved empiri-
cally, but no actual theoretical estimator of the associated variance was provided.

We focus on the definition of the analytical estimator of Var(l/[’;), starting from Eq.
5.16. It is worth noticing that even though all S; are independent, the terms Hz(S;) are
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not. Therefore, a correlation in datasets is present and a covariance term will appear in
the variance of the sum over all terms defined by the copies of the variable S

. 1 [N - N N o -
Var(Py) = ~3 (Z; Var[Hg(S;)] + 2 z; 'Zl Cov[HRg(S5;), HR(SJ-)]>
1= 1=1 j=1+
Here, the variable R is unique and thus is not indexed in the sum (the notation Hg(S)
clarifies the concept). Since all S; and S; are independent identically distributed random
variables according to S, one may obtain:

Var(P;) = jlvvar[HR(S)] + NNlCov[HR(Sl), Fr(Sy)] (5.18)
It is important to underline the fact that all samples of R are combined with all
samples of S. We do not simply assign M different samples to each of the NV samples of
S: this would lead to use NM samples of R, as in conditional expectation method, and
the variance term of Eq. 5.18 would be sufficient. If we arrange the values of H (R;,S;)
in a 2D matrix, this re-use of the same samples induces a correlation between the results
in the same row (respectively column). Given the need for a covariance term describing
such correlation, we start the proof from the covariance estimation at a fixed point (which
will be necessary to easily compute both variance and covariance terms).
The determination of the variance estimator is then carried out according to the
following steps:

1. covariance estimation at a fixed point of Sy, So;

2. decomposition of the variance term in Eq. 5.18 following to the total variance law
and using the result from step 1;

3. decomposition of the covariance term in Eq. 5.18 from the total covariance law and
using the result from step 1;

4. complete assembly of previous results to analytically express the variance estimator;

5. derive the sampling based expression of this variance estimator.

The first step aims at determining the covariance between two values of Hp at two
fixed points t; and t;. After several operations (detailed in Appendix B.1) one may
obtain:

— — 1 — —
CO’Uq [HR(tl), HR(tg)] = M (Eq [HR(tl)HR(tQ)} - H(tl)H(tg)) (519)
In the second step, the total variance law allows to write:
Var(Hp(S)) = Ey [Vary(Hg(S)|S)] + Vary, [E,(Hr(S)|S)] (5.20)
The first term can be treated as the conditional covariance of Hg(S) on itself:

By, [Vary(Hg(S)|S)] = Ey, [Cov,(Hr(S)|S, Hr(S)|S)]

_ ;4 (B [E, [HX(S)]] - By [H(S)])

(5.21)
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Then the second term:

2

Var, [E((Hr(S)S)] = En | E, [Ha(9)]"| - Eu [B, [Ha(9)])" = B, [H2(S)] - P} (5.22)

Substituting Eq. 5.21 and 5.22 into 5.20:

Var (Hp(S)) = ]\14 (Bw [E, [HE(S)]] — B, [HX(S)]) + B, [HX(S)] - P} (5.23)

To determine the covariance part in Eq. 5.18, one has to start from the total covariance
theorem:

COU(Xl, Xg) = Ey [C’O’UXI’X2 (Xl, X2|Y)] -+ OOUY [EXl (X1|Y), EX2 (Xle)] (524)
In this case, the different variables in Eq. 5.24 are given by the tern:

X1 - ﬁR(Sl)a XQ - ﬁR<S2), Y - (Sl,SQ)

The term Covy in Eq. 5.24 can be neglected as S; and S, are, by definition, inde-
pendent copies of S. The only remaining part is reported here:

Cov(Hp(S1), Hr(S2)) = Es, s, |Cov Hg(S1), Hr(S2)| 51, S5)]

Hp(S1),Hr(S2) (

This can be developed by using the fixed point covariance equation (see Eq. 5.19):

COUﬁR(Sl),ﬁR(SQ) (ﬁR(Sl), ﬁR(SQ”Sl, SQ) = ]\14 (Eq [ﬁR(Sl)ER(SQ)] — H(Sl)H(SQ))

Passing to the expectation, it is worth noticing that, since H(S;) and H(Ss) are
independent (as they are functions of S; and Ss which are independent by definition), we
obtain:

By [H(S1)H(S2)] = By [H(S1)] B [H(Ss)] = sz
Therefore, one may obtain the following relation:
Cov(Hg(S), Hr(S,)) = ;4 (En [E, [Hr(S1)Hr(Ss)|] — P?) (5.25)

Now, joining together results from Eq. 5.23 and Eq. 5.25 and substituting in Eq.
5.18, the final analytical covariance estimator is obtained:

Var(Fy) = < [, [H3(8)]] + 5 B [H2(9)] + 53— 5, [, [Hn(50) Hn(55)]
N+M—1,
-~ NM

(5.26)
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Re-writing this expression in a more compact way, one may retrieve a relation formally
analogue to Eq. 5.13:

— 1 1 N -1

Where:

61 = En [Ey [HR(S)]] — By [H(S)]
0o = By, [HX(S)] — P? (5.28)
§12 = By, [Eq [ER(SI)ER(S2)H o PJ%

The numerical estimation of the variance obtained in Eq. 5.27 thus needs the following
ingredients:

fr

—~
o3
N—
-
9}
—~
&
~—

2

- |-
M= =
M=
t’ﬂ?

2

=

=<
-
M=
]

Il
—
.
Il
—

2]~
L=
(\
i=

=
Q

T =G (R}, S)

=
—~
=
.
~—
>
—~
»
<

P; = E, [E,[Hr(5)]]

.
Il
—
<.
Il
—

l

By [E, [Hr(S)?]] (5.29)

By [H*(S)] = By | E, [Ha(5))"] ~
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A particular remark needs to be done to verify that from Eqgs. 5.26 and 5.29 one can
retrieve Eqgs. 5.11 and 5.12. The two couples of systems of equations should constitute an
identity when importance sampling distributions coincide with original PDFs, hence the

ratios ff and ff are equal to one, while £}, and E, correspond to Es and Ep respectively.

In this case, the term T would be reduced to an indicator function, formally the same
as Fr: this implies that 7% = T and the first term in Eq. 5.26 is reduced to P;. On
the other hand, the cross product izl‘,li,zi could be expressed as the indicator function
]?}/g evaluated at the minimum between Sy; 1 and Sy; (if we refer to the original work
[Smarslok, 2009] focused on LSF defined as in Eq. 5.6). Thus, it is indeed possible to
obtain Eq. 5.11 from Eq. 5.26.

In order to ensure the validity of this variance estimator, all parameters in Eq. 5.28
must be non-negative. It can be demonstrated that the analytical quantities always verify
this condition (proof available in Appendix 5.3.5), but guaranteeing the same on the
numerical estimators is more challenging. Another alternative formulation of the upper-
mentioned variance estimator is introduced in next section, aimed at avoiding numerical
issues that may appear in some cases.
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5.3.3 Mirror formulation

Given the independence assumption between S and R, the separated estimators Ej and
E, can be switched.For the expectation, we obtain:

o [ fR(B) L [G(R,S9) fs5(9)
=i g e [P | | o0
A compact notation similar to Eq. 5.16 is adopted:
= o = _ fs(8) fr(R)
HAR)HG1$&$ ;m<x&5)
As(R) = AR S)
K(R) = Ey[Hs(R)|R] = E,[Hs(R)|R (5:31)

Then, the variance estimator becomes:

— ~ N -1 M -1 ~ ~

N+M-1_,
————FP
NM o

(5.32)

In compact form, it becomes:
— 1 1 M—1
Var(Py) = NiMﬁbl + M@ + NI §12 (5.33)

Where:

$1 = E, [By [H3(R)]] - E, [K*(R)]
¢2 = B, [K*(R)] — P} (5.34)
§12 = E, [Eh {ES(RI)ES(RQH o PJ?
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The numerical estimation thus needs the following ingredients
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The two formulations are analogue and lead to identical variance estimations (proof
available in Section 5.3.4). To ensure the validity of this variance estimator, the parame-
ters ¢1, ¢o and &1 must be non-negative. As stated before, it can be proved that this is
always verified on the theoretical expressions (proof available in Section 5.3.5), but can
represent a remarkable challenge regarding their numerical estimations.

In the following, the first estimator (enunciated in Eqgs. 5.27-5.29) will be referred as S-
based formulation, while the second (related to Eqgs. 5.33-5.35) will be denoted as R-based
formulation: the equivalence between these two formulations of the variance estimator
will be discussed in the next section. The usefulness of having a mirror formalization is
related to their numerical accuracy, as will be illustrated in Section 5.4.

5.3.4 On the equivalence of S-based and R-based variance esti-
mator

In this section, some observations about the theoretical equivalence between the two
upper-mentioned estimators of the variance of Py estimation via ImpSMC approach. We
start from the definition of 7, parameter related to S-based estimator.

& = En [Ey [Hr(S1)Hp(S2)|S1, So] | — PF

We start expressing the first term in integral form. We denote here with H; the domain
of h(S1), Hy the domain of h(S3), @ the domain of ¢(r). The integral formulation will
be given by:

B [Ey [Hp(S1) Hr($)|S1, 52]] =

—/ (s1 / Sz)/@g(r) J;f((jll)) fS(Z?)) ‘ZR((:; G(r, s1)G(r, s9)drdssds;
)

- /H1 /H2 /Q q(r s(51) fs(s2) [R(r)G(r, 51)G(r, s2)drdsyds:

In the following, a simplified notation will be used:
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fr(r) fs(s1)G(r, s1)
fr(r) fs(s2)G(r, 52)

91(7", 81)
92(7“, 52)

Therefore, Eq. 5.3.4 will be reduced to:

By [E, [Hr(S1)H(S5)|S1, S]] /H 1 /H 2 /Q S sl s(s2) F2(1)G(r, 51)G(r, 59)drdsads,

1
_/ / / ——0g1(r, 51)g2(7, 52)drdsyds;
H, JHy (T

By considering that s; and s, are independent, we can split the integral as follows:

By [E, [Hp(S1)Hr(S2)] 1, S]] :/ L (/H gl(r,sl)d31> (/H ga(r, 52)d32) dr

Qq(r)

The internal integrals on H; and H, will give the same result, leading to:

q(lr(/ Tsds

- /Qq(r (/ S)) G(r, s)ds)2 dr  (5.36)
= B, {Eh }

Ey [E, [Hr(S1)Hr(S2)|S1, Ss]]

(Q\

Therefore, we can write:

ff; = qb?

Where the first term is referred to the &5 parameter of S-based estimator and the
second to ¢, of R-based estimator. We can extend this to the inverse relation:

E, |E, [Hs(Ri)Hs(R2)|Ri, Ry]| = Ey, [E, [Hr(S)|S]] (5.37)
Thus, obtaining:
& =5
Till this point, the analogy between the asymptotic behaviors of both variance esti-

mators was explained. With conclusions from Eqgs. 5.36 and 5.37, we can re-write Egs.
5.26 and 5.32:
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Var(Py)® = NlMEh [E, [HA(S)]] + %;j E) [Eq [’H“R(S)ﬂ + ]\jfw_]\fl Ey, [E, [Hr(S1)Hr(S:)]]
N+M-1
— 713?
Y —, M—1 — 2] N-1 S
= WEh [E, [HR(S)]] + NI Ey, {Eq [Hr(9)] } + WEq [Eh [Hs(R)] }
N+M-1
— 713]%
a1 m —, N-1 ] M-—1 o
Var(Py)" = 577 Eq [En [HE(R)]] + s L [Eh [Hs(R)] } + v e |y [Hs(Ry)Hs(Rs)]]
N+M-1
— 713?
T -, N-1 9] M-—1 o
= B, [B [HAR)]| + 5By [ B [Hs(B))] + S B [ B, [H(S))]
N+M-1
- " p2
NMo

Finally we can state that both estimators lead to the same variance of Py estimation.

5.3.5 Necessary conditions for variance estimator validity

In this section, we define the conditions to ensure the validity of the proposed variance
estimator of ImpSMC approach.
We start from defining an useful property of the main terms of the variance estimator
described in 5.3.2, in particular in Eq. 5.29.

PROPERTY - Let ¢y, ¢o and &5 the parameters described in Eq. 5.29. The in-

equality:
o1+ g2 — &2 20 (5.38)
Is always verified.
PROOF -
G+ o — €10 = By, [E, [HE(S)]] — En [Ey [Hr(S1)Hg(Ss)]] (5.39)

Considering that H(S;) and H(Ss) follow the same distribution, one can write:

En [Ey [H()]] = Ew [By [Hz(9)]] = En [E, [HR(S2)]]
Therefore, we can re-arrange the equation:

B B, (5] = 1 (B [E, B3] + B [E, [Hy()])

By introducing this latter in Eq. 5.39:

O1+ P2 — 12 = By, {Eq ;ﬁé(&) + ;H/JQ{(SQ - ﬁR(Sl)ER(SZ)H
_ ;Eh E, |[Hr(S)) — Ha(S2)]’|] = 0
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The previous property can be also extended to the R-based estimator.

It is mandatory to verify that variance of Py estimation via ImpSMC approach does
not increase by adding new samples. This can be verified thanks to gradient computation,
with respect to N and M. As shown in Section 5.4, the extrapolation parameters ¢, ¢
and 15 do not depend on N or M. Therefore, we obtain the following derivatives:

0 —
IN [VC“”(Pf)] = —ﬁ@ - ﬁsz + ﬁfﬁ

BV {VW(E)] = —z¢1 — 5

In particular, both derivatives must always be non-positive. To achieve such condition:

{¢1+M¢2—§12 >0 (5.40)

$1+(N—=1)&22>0

Thanks to property in Eq. 5.38, condition in Eq. 5.40 can be reduced to:

(M —=1)g2 >0
¢+ (N —=1)&22>0

Finally, to ensure validity of the variance estimator in Eq. 5.27 for all values of N
and M, one needs to verify that:

¢1 20
$2 20 (5.41)
§122>0

It is possible to verify that the theoretical expressions of these parameters always
satisfy the necessary conditions in Eq. 5.41. However, this can be more challenging in
regards of their numerical estimators in Eq. 5.29. The same conclusion can be drawn for
R-based estimator.

We are then able to enunciate and prove the following theorem.

THEOREM - Let ¢y, ¢2 and &1 the parameters described in Eq. 5.29. The necessary
condition to make S-based variance estimator of Py estimation via ImpSMC approach
requires:

¢1 >0
$2 20 (5.42)
§12>0

In particular, this condition is always verified.
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5.3.5.1 First proof: ¢; >0

We should now consider:

E, [H3(S)] — E, [Ha(S)]" > 0

The expectation will verify the same relation, arriving to obtain then: ¢; > 0

|
5.3.5.2 Second proof: ¢, >0
This proof is similar to the previous one:
— 2 9
b2 = By |E, [H(S)|S]"| - P}
= B, |E, [H(S)IS]’| — En [E, [Hr(S)IS]]’
= B, [H*(S)] — E, [H(S))* > 0
[ |

5.3.5.3 Third proof: &5 >0

Given that &7, = ¢, this is a straight-forward application of the previous proof on ¢Z.

The mathematical framework of the analytical estimator of the variance associated to
the estimation of the failure probability Py via ImpSMC has been discussed. In the next
section, we define the potential of this variance estimator and the advantages it brings
on engineering applications.

5.3.6 Variance estimator potential

The closed form variance estimator of P; estimated by ImpSMC makes it possible to
completely exploit the ImpSMC approach, as it allows to:

evaluate variability of Py without having to reproduce the reliability analysis several
times;

stop sampling when a fixed accuracy target on P; estimation is reached;

preliminarily estimate the minimum number M of R samples (respectively N for
S) necessary to achieve the accuracy goal;

preview the number M}, of R (respectively Ny, of S) samples needed to reach targeted
variance Var, given a fixed ratio k = N/M;
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- a priori determine the ratio N/M between number of samples of S and R allowing
to minimize global computational burden.

The first two advantages of such variance estimator are straight-forward. For prelimi-
nary evaluation purposes, it is possible to exploit outcomes in Eq. 5.27 (respectively Eq.
5.33) by determining all terms in Eq. 5.29 (respectively Eq. 5.35) with few simulations,
say N = M = 100. Then, under the assumptions that those latter do not significantly
change with an increase in number of samples nor with variation in ratio k, Eq. 5.27 (re-
spectively Eq. 5.33) can be used to preview all the relations between precision and number
of samples. This can be represented on a contour plot, graphically illustrating the levels
of coV(Py) as a function of N and M, as done in [Smarslok, 2009, Smarslok et al., 2010]
for SMC. Table 5.1 summarizes the main possible evaluations for both S and R-based
formulations.

S-based R-based
min N oo/ Var &a/Var
min M &1a/Var oo/ Var
N k¢>2+£12+\/(k¢2+£12)2—4km(§12—¢1) ¢2+k£12+\/(¢>2+k§12)2—4km(€12—¢>1)
ko 2kVar 2kVar
arg ming Ny My, | ¢2/&r2 12/ 02

Table 5.1: Main outcomes of variance estimator

A particular remark can be done about the ratio £ allowing to minimize the product
NM: this does not depend on the targeted Var, but just relies on the nature of the
model and input variabilities, namely through the terms ¢, and &;5. Such ratio is not
necessarily optimal in terms of computational costs as minimizing the product NM does
not necessarily imply reducing the overall computational burden. In the following, we
are referring to it as the reference ratio, individuating the ratio which is exactly mid-way
between two asymptotic behaviors.

5.4 Numerical results

In this Section, two test cases are introduced to investigate the gain in terms of number of
simulations needed to achieve a target coV/, arbitrarily fixed (for the examples presented in
this chapter) at 0.05. In particular, in the first application a comparative analysis between
two LSF formulations is reported, while in the second use case we conducted a study on
the effects of the ratio between variances due to response and capacity components and
the effect of target P;.

In both sections, the importance function is identified as a normal distribution cen-
tered at the MPFP in Gaussian standard space. The same MPFP is adopted for IS and
ImpSMC: at the implementation level, distributions are separated in two blocks related to
Xrand Xg for ImpSMC. OpenTURNS library is used to deal with MPFP determination,
MC and IS algorithms. In-house codes were created to implement SMC and ImpSMC
approaches.



138 CHAPTER 5. SAMPLING METHODS FOR RELIABILITY ANALYSIS

5.4.1 Composite plate test case

As a first example, a cross-ply composite plate deflection problem was considered, which
was also used in [Smarslok et al., 2010, Chaudhuri and Haftka, 2013]. We focus on max-
imum deflection, at the middle point of a simply supported squared cross-ply plate,
characterized by a [90,45, —45],,,, laminate with lamina thickness of 125 pm. This test
case is illustrated in Fig. 5.1. We consider the loading condition to be a sinusoidally
varying pressure, defined as:

. (TxN . (7Y
q(z,y) = qosin <f> sin <f)
Where ¢, represents the amplitude and L the length of each side of the square plate.
The associated LSF can be expressed in the form of Eq. 5.6, as follows:

9(Wau, Xs) = way — w(Xsg) (5.43)

Where w,; is the R variable representing the allowable deflection here, Xg is the
variable set intervening on deflection output w, defined as:

L4
w = q;))* D* = 7T4 [Dll + 2 (D12 + D66) + DQQ] (544)
Here the terms D;; represent the components of the bending stiffness matrix of the
plate. Overall, 7 random variables (listed in Table 5.2) affect the LSF of Eq. 5.43.

q(x.y)
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Figure 5.1:  Cross-ply test case: illustration (Source: [Smarslok et al., 2010,
Chaudhuri and Haftka, 2013])

Variable | Unit | Distribution Mean St. Deviation

FE Pa Normal 1.5 x 101! 7.5 x 10°
E, Pa Normal 9 x 10° 4.5 x 10°
Gio Pa Normal 4.6 x 10° 2.3 x 108
V12 Normal 0.34 0.017

L m Normal 7.5 x 1072 1.5 x 1073
qo Pa Normal 1.30 x 10° 1.95 x 10*
Wy m Log-Normal 8 x 1073 2.4 x 107%

Table 5.2: Cross-ply test case: random variables



5.4. NUMERICAL RESULTS 139

This part of the analysis aims at evaluating the effect of the ratio between variances of
capacity and response variables (respectively R and S). To this purpose, in analogy with
works from [Smarslok, 2009, Smarslok et al., 2010], two different formulations of LSF are
introduced:

L4

R=wa 5= ‘JE)* (5.452)
“ L*

R= “;0” S == (5.45b)

In particular, the variable sets Xz and Xg are changed, providing a higher variance
to capacity variable R (respectively lower variance to response S) according to Eq. 5.45a
to Eq. 5.45b. To improve readability, in the following we will refer to Eq. 5.45a as Low
R-Variability Formulation (LRVF) and to Eq. 5.45b as High R-Variability Formulation
(HRVF). Outputs distributions are illustrated in Fig. 5.2 for LRVF and in Fig. 5.3 for
HRVF. The upper-mentioned differences in terms of variability repartition between R

and S are visible in the scales of these graphs. These differences are also summarized in
Table 5.3.
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Figure 5.2: Composite plate test case: outputs distributions in LRVF

The analytical variance estimators described in Section 5.3 were empirically validated
on both LSF formulations of this first test case. The empirical validation is carried
out with 10* repeated ImpSMC analyses with N = 10% response samples and M =
103,104,105 capacity samples for each one. Error is measured as follows:

Oanal ical(P ) — Oem, (P)
Err(Py) = yt . f(Pf) p\~J
emp

Where 0 4paiyticar 15 the standard deviation predicted by analytical estimators from Eqs.
5.27-5.29 (related to S-based formulation), and Eqs. 5.33-5.35 (related to R-based formu-
lation) and o,,, the empirical one estimated based on the 10* repetitions of ImpSMC.

Results are reported in form of box plots in Fig. 5.4: distinct boxes are depicted for
the two variance estimators and the two LSF formulations. The different ratios M/N
are summarized in the same box. It can be observed that errors are lower than 1%, thus
validating both analytical variance estimators introduced in Section 5.3.
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Figure 5.3: Composite plate test case: outputs distributions in HRVF

Table 5.3: Composite plate test case: output statistical parameters for LRVF and HRVF

Parameter LRVF HRVF
R 8.00 x 1072 | 6.31 x 1078
Mean S 5.35 x 1072 | 4.13 x 1078
R/S 1.50 1.53
o(R) 241 x 107" | 1.03 x 1078
IS)':’“::SZ‘:I o (9) 031 x 107 | 3.73x 107"
o(R)/o(S) 0.259 2.76
Var(R) 579 x 105 | 1.06 x 101
Variance Var(S) 8.67 x 107" [ 1.39 x 10717
Var(R)/Var(S) 0.067 7.63
Coefficient coV(R) 0.030 0.163
of oV (S) 0.174 0.090
Variation | coV(R)/coV(95) 0.172 1.81

formulations

Error on o(Py) (%)

T

Il

]

==

T T
LRVF HRVF

T T
LRVF HRVF

Figure 5.4: Composite plate test case: experimental validation of both variance estimators

Reliability simulation results are reported in Table 5.4 for LRVF and Table 5.5 for
HRVF. The first three columns in both tables represent the mean of P; estimations,
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the mean and the standard deviation of required N to achieve coV(fD}) = 0.05. The
successive ones report standard deviation and coefficient of variation of Py estimation at
fixed number N of S samples (N = 100 in 4th and 5th columns, N = 1000 in 6th and
7th columns). All values are obtained by repeating 100 times the reliability analyses.

For both formulations, ImpSMC outperforms MC, IS and SMC: both O'(ﬁ;) and N
to reach coV(fD;) = 0.05 are noticably reduced.

In the LRVF case, the introduction of a separate sampling process appears more
efficient when IS concept is applied: this can be observed by comparing gains allowed by
ImpSMC with respect to IS (IV reduced by 52%) and gains of SMC with respect to MC
(N reduced by 30%). Here the ratio M/N appears to present no substantial advantage
for neither SMC nor ImpSMC approach.

Looking at the HRVF results, improvement ratios increase for both ImpSMC and SMC
with respect to IS and MC respectively. Still, InpSMC introduces gains with respect to
IS which are superior to the ones ensured by the transition from MC to SMC. Moreover,
in this case the ratio M /N has a significant influence on reducing both variance of failure
probability and number of required samples. In particular, creating an unbalanced dataset
with more R samples, can reduce the substantial number of S samples, which usually
determine most of overall computational burden.

For both formulations, IS outperforms SMC and MC: therefore, in the following, IS
approach will be used as a reference for comparison.

Results at coV (Py) = 0.05 Results at N =100 | Results at N = 1000
Py N on (%) o(Py) coV (Py) o(FPy) coV (Py)
MC 6.23 x 1072 | 6.4 x 10* | 4.45 | 7.36 x 1073 1.18 2.17 x 1073 0.35
IS 6.22 x 1073 1159 5.18 | 1.02x 1073 0.16 2.90 x 1074 0.047
M/N=1 6.20 x 1072 | 4.5 x 10* | 3.35 | 7.21 x 1073 1.16 2.05 x 1073 0.33
SMC M/N=10 |6.20x107® | 4.4x 10* | 4.37 | 6.95x 1073 1.12 2.00 x 1073 0.32
M/N=100 | 6.20 x 1073 [ 4.4 x 10T | 2.42 | 6.41 x 1073 1.03 1.92 x 1073 0.31
M/N=1 6.26 x 1073 552 7.39 | 7.58 x 1074 0.121 2.31 x 1074 0.037
ImpSMC | M/N=10 | 6.24 x 103 549 710 [7.46x 107 0.120 |2.30 x 1077 0.037
M/N=100 | 6.23 x 1073 547 6.95 | 7.07x107*| 0113 |230x10~*| 0.037

Table 5.4: Composite plate: main results for LRVF from Eq. 5.45a (values issued from
100 repetitions of each reliability algorithm)

Results at coV (Py) = 0.05 Results at N =100 | Results at N = 1000
Pf N (TN(%) O'(Pf) COV(Pf) O’(Pf) COV(Pf)
MC 6.23x 107 | 6.4 x 10" | 445 |736x107° | 118 |217x107° | 0.35
IS 6.26 x 107 | 1143 11.5 | 1.03x107° | 0.16 | 290x10~" | 0.046
M/N=1 6.24 x 1073 | 1.4x 10" | 5.09 |268x 1072 | 043 |[801x10™*| 0.13
SMC M/N=10 |6.29 x 1073 4105 9.74 | 1.71x 1073 0.27 6.20 x 1074 0.099
M/N=100 | 6.22 x 1073 2985 202 | 1.47x 1073 0.24 5.88 x 1071 0.095
M/N=1 6.28 x 1073 178 35.7 | 3.11x 107" | 0.054 1.32 x 1071 0.021
ImpSMC | M/N=10 [6.24 x 1073 59 305 [237x107%] 0.038 [7.62x107° 0.012
M/N=100 | 6.25 x 1073 51 235 [235x 107 0.038 |6.82x107° 0.011

Table 5.5: Composite plate: main results for HRVF from Eq. 5.45b (values issued from
100 repetitions of each reliability algorithm)

Exploiting the potentialities of the variance estimator at a higher level, it is possible
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to trace the evolution of coV as a function of both N and M, thanks to the algorithm
described in Section 5.3.6. The ingredients which must be computed are ¢;, ¢, and
&12. These are evaluated through the numerical estimators presented in Eqgs. 5.28-5.29
(for S-based formulation) and Eqs. 5.34-5.35 (for R-based formulation). In this part,
we aim to analyze both magnitude and precision of the estimation provided for each
of the extrapolation parameters ¢;, ¢o and £5. Numerical estimations are performed
with 100 repetitions of the dataset containing N = 100 response (S) samples. Both LSF
formulations and three different M /N ratios are investigated. Results of such estimations
are summarized in Table 5.6 (R-based variance estimator is adopted).

Parameter | Sample size LRVF HRVEF
Mean St. Dev. (%) Mean St. Dev. (%)
M/N=1 1.12 x 107* 3.50 9.96 x 10~ 1.85
o M/N=10 1.12 x 1071 3.50 9.96 x 107> 0.66
M/N=100 1.12 x 107* 3.54 9.96 x 107° 0.34
M/N=1 2.63 x 1077 50.77 1.28 x 107° 6.64
®2 M/N=10 2.59 x 1077 49.62 1.28 x 107> 6.16
M/N=100 2.60 x 1077 48.46 1.28 x 107° 6.13
M/N=1 5.32 x 107° 4.61 4.52 x 107 44.78
&12 M/N=10 531 x 107 3.69 4.50 x 107° 14.67
M/N=100 5.31 x 107 3.63 4.51 x 107 6.44

Table 5.6: Composite plate test case: extrapolation parameters for two LSF formulations
at different M /N sample ratios (N = 100, R-based variance estimator is adopted)

From such results, it is confirmed that the estimations of the extrapolation parameters
¢1, ¢ and &2 do not depend on the sample size. For a same LSF formulation, mean
values are not affected by the ratio M/N. On the other hand, bigger dataset sizes can
improve ;5 estimation precision, as can be seen in Table 5.6. Increasing ratio M /N can be
used as an efficient procedure to enlarge the database by only enriching the population of
the cheapest variable, thus without a huge additional computational burden. Moreover,
from Table 5.6 it may be observed that the LSF formulation itself can greatly affect the
average values of ¢ and &;5: the former is increased, while 15 mean value decreases when
switching from LRVF to HRVF.

Looking at ¢, results, a negligible difference in average values is obtained in the upper-
mentioned formulations. The precision improvement provided by HRVF' is thought to be
circumstantial and just related to the adopted use case.

Estimations related to ¢, seem poor in LRVF' case: however, being on average two
orders of magnitude lower than the others, their effect is not relevant. This excessive
error is mostly due to the low magnitude of the quantity itself. The same precision issue
is also visible for 15 in HRVF, with the difference that here larger M /N ratios can reduce
the related standard deviation.

Thanks to the upper-mentioned parameters, contour plots are extrapolated and re-
ported in Fig. 5.5, where M number of R samples constitutes the abscissa, N number
of S samples is the ordinate and the curves represents the ensemble of points allowing
the same estimation precision, defined through the coefficient of variation coV (Pf). In
such graphs, it is visible that every iso-coV can be described as an hyperbole branch. As
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shown in Section 5.3.6, all points minimizing the product N M are perfectly aligned in log-
arithmic axes, as the reference ratio does not depend on the targeted variance level. It is
possible to recognize a vertical asymptote, identifying the minimum number M of R sam-
ples, and an horizontal one, related to minimum N. The reference ratio M /N described
in Section 5.3.6 represents a transition between two asymptotic behaviors. Therefore,
for ratios M /N higher than the reference one, precision will be defined essentially by N
and adding further R samples would be ineffective. The opposite considerations can be
done for ratios M /N lower than the reference one. The estimated value of such reference
ratio M /N can be seen as a decision tool to state which component (namely R or 5)
mostly contributes to variance of 73} estimation: in particular, if this is higher than 1, one
can expect to improve precision by adding more R samples, and conversely if it is lower
than 1. A sampling strategy can thus be defined from this ratio to reduce the number of
samples, but it needs to be coupled with information about the relative computational
burdens of R and S to make a more rational choice to reduce the overall analysis cost.

The effect of LSF formulation can be extrapolated from the translation towards right-
down of the contour plots when transitioning from LRVF to HRVF. This implies that the
minimum number N of response samples can be reduced, while the minimum number M
of capacity samples and the reference ratio M /N are increased. Such phenomenon can
be explained by the higher (respectively lower) variability assigned to R (respectively 5)
component in HRVF. Associating results from Table 5.1, Table 5.6 and Fig. 5.5, it can be
observed that for R-based variance estimator, ¢, translates coV’ contour plot horizontally
(towards right as it increases), &5 is responsible for vertical translation (towards up if it
increases) and ¢; has a minor effect on the contour shape. The roles of ¢y and &5 are
switched when S-based variance estimator is adopted instead. Moreover, on the same
problem, same LSF formulation and same input distributions, the orders of magnitude
of ¢y and &5 are reversed as well.

At this point, we can propose a simple guideline in order to choose whether to use R-
or S-based variance estimator. As stated in Section 5.3, all extrapolation parameters ¢,
¢ and 12 must be non-negative to ensure the variance of P estimation to decrease as V.
Looking at numerical estimators which are used to compute ¢, one can easily understand
that there is no chance that the numerical approximation could lead to a negative value
of ¢ itself. Therefore, the main concern regards numerical estimation precision of &;5:
given that the issue arises in problems with low-magnitude &5, one can switch from a
variance estimator formulation to the other, according to the relative orders of magnitude
of ¢9 and &5. A more refined analysis on this topic is presented on the second test case
and further discussed in next section.

Another aspect to take into account is the variance reduction - measured in terms
of coV (Py) ratios - provided by ImpSMC with respect to IS, used as reference. Relative
results are extrapolated from variance estimator, as done for the COV(]/D;) contour plots,
and reported in Fig. 5.6. The simple introduction of a separated sampling approach
on the same amount of data is given by the central abscissa point in every subplot
(corresponding to M/N = 1): it can be seen that in any case, substantial gains are
ensured by ImpSMC approach, without even altering the ratio M/N.

For LRVF, N number of S samples has a significant impact on variance reduction,
while little effect is observed from M number of R samples. The gains illustrated herein
are in line with the ones reported in Table 5.4. These stem directly from the coV (Py)
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Figure 5.5: Composite plate test case: coV(f’;) contour plots on two LSF formulations
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Figure 5.6: Composite plate test case: effect of LSF formulation on variance reduction
of Py estimation as a function of number of samples N of S and M of R

contour plot. In fact, as for M > 10, only horizontal lines are present in Fig. 5.5a, the
only relevant effect is provided by N. Such conclusions are confirmed when switching
from Fig. 5.6a to 5.6b or from 5.6¢ to 5.6d.

Focusing on HRVF, both N and M significantly affect precision. They both have a
nonlinear effect on variability of Py estimation for small sample sizes, reaching an asymp-
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totic behavior for bigger sizes. These observations are direct consequences of the contour
plot in Fig. 5.5b: compared to LRVF, contours of the HRVF are more balanced and
almost symmetric with respect to the first bisector of the Cartesian plane (in logarithmic
axes). However, considering the reference ratio M /N ~ 3 (individuated by the hyperbole
branch bisector), a slightly superior influence by M is expected. This is confirmed in Fig.
5.6, where a delay in transition from nonlinear to asymptotic behavior of M with respect
to N can be observed by comparing Figs. 5.6a and 5.6¢ (or alternatively Figs. 5.6b and
5.6d): this implies that the increase of M keeps affecting precision at higher samples sizes
than N does. As for LRVF, no difference is encountered in terms of variance reduction
(with respect to IS) when increasing the overall database size without altering the ratio
M/N, as it appears when comparing Fig. 5.6a with 5.6b or 5.6¢ with 5.6d.

Again, the differences between ImpSMC performances in LRVF and HRVF' directly
come from the coV (Pf) contour plots. Moreover, these do not depend on the size of
the dataset itself but just on the adopted ratio M/N and LSF formulation. Variance
reduction effects are directly reflected on the number of samples required to achieve a
target precision.

5.4.2 Truss test case

In this section, we focus on a common benchmark problem, generally adopted as medium-

complexity reliability example [Lee and Kwak, 2006, Blatman and Sudret, 2008, Blatman and Sudret, :
Lelievre, 2018], mainly due to a medium-large number of uncertain design variables. A

23-bar truss problem is considered (confront Fig. 5.7), for which the LSF is formulated

here as:

I(Vau, Xs) = Vo — Vi(Xs) (5.46)

Where X represents the whole set of variables affecting the deflection Vi, computed
through Finite Element Analysis (FEA). Maximum allowable deflection is denoted as V.
Different Young’s Modulus and cross section areas are assigned to each finite element,
with different section statistical distributions for horizontal and oblique bars. Considering
23 elements, 6 load variables and one capacity variable (the allowed V), we have overall
53 variables (52 forming Xg and one forming Xz). We use mean S = V; = 0.079 and
standard deviation o(S) = o(Vi) = 6.47 x 1073 as references to analyze results from
different configurations in following sections.

|
}m
A

Figure 5.7: Truss test case: illustration (Source: [Lelievre, 2018])
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Variable | Unit | Distribution | Mean St. Deviation
E, Ey GPa | Log-Normal 210 21

Ay m? Log-Normal 2.0x 1073 | 2.0 x 1074

Ag m? Log-Normal 1.0x 1073 [ 1.0 x 10~*

P — B N Gumbel 5.0 x 10* | 7.5 x 103

Vo m Normal 0.115 0.01

Table 5.7: Truss test case: random variables

As done previously for the composite plate test case, several configurations of the
truss example were used to experimentally validate the analytical variance estimators.
The experimental validation is reported in Appendix B.2: in all configurations analyzed,
the maximum error never exceeded 3%, while the mean value of errors was below 0.3%.

In Table 5.8, all main results related to different reliability estimators are provided, as
done for the previous test case. Note that the mean, standard deviation and coV estima-
tions of Pf and required N to achieve coV(Pf) = 0.05 come from statistical repetition of
100 reliability analysis: the analytical variance estimator was used to stop sampling when
target coV = 0.05 was obtained. Several ratios between number of sample N of S and M
of R were introduced for both SMC and ImpSMC approaches. It can be easily observed
that this latter allows to reduce both variance at fixed number N of response samples
and necessary amount of simulations to achieve a fixed coV, clearly outperforming MC,
IS and SMC. Moreover, such gains can be even improved by increasing the ratio M /N,
then reaching an asymptotic behavior at very high M /N ratios.

Results at coV (Py) = 0.05 Results at N =100 | Results at N = 1000

by N on (%) | o(Py) |coV(Py) | o(Py) | coV(Py)
MC 2.01 x 1073 2 x 10° 5.46 4.21 x 1073 2.094 1.38 x 1073 0.687
IS 1.97 x 1073 1862 21.52 | 4.01 x 10~* | 0.204 1.32 x 1074 0.067

M/N =1 1.98 x 1073 | 351 x 104 | 7.82 [213x107%| 1.077 [515x107*| 0.261
SMC |[M/N =10 |[1.96x107]1.33x107] 14.05 | 1.17x 1072 | 0.598 [3.45x10~*| 0.176
M/N =100 | 1.96 x 103 [ 1.07 x 10% | 21.25 [ 1.11x10°| 0.568 |3.41x 10~ *| 0.174

M/N =1 1.98 x 1072 190 4179 [ 1.47x 107" | 0.074 [4.49x107° | 0.023
ImpSMC [ M/N =10 | 1.96x 107° 135 39.01 [1.26x 107" | 0.064 |3.96x 10~° | 0.020
M/N = 100 | 1.96 x 1073 130 33.66 | 1.23x 10°T| 0.062 |3.90 x 107° | 0.019

Table 5.8: Truss test case: main reliability results from different simulation algorithms
(values issued from 100 repetitions of each reliability algorithm)

As done for the previous numerical example, the coV(jD;) contour plot as a function
of both N and M is plotted in Fig. 5.8, by using the algorithm described in Section 5.3.6.

In the next sections, we analyze the different effects which may drive the performances
of the ImpSMC approach: the effects of the variation of the o(R) are discussed in Section
5.4.2.1; the effects of the failure probability target are analyzed in Section 5.4.2.2.

5.4.2.1 Effect of variation of o(R)

Overall, 15 configurations are defined to take into account different variabilities of the
capacity variable R. The correspondent means are calibrated to maintain the same
failure probability target Py of the nominal case. These are listed in Table 5.9 (ID=8
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Figure 5.8: Truss nominal case: coV contour plot

corresponds to nominal case). In this Section, all statistical parameters of S are kept
constant: mean S = V; = 0.079, standard deviation ¢(S) = o(V;) = 6.47 x 1073) and
coefficient of variation coV (S) = coV (V) = 0.082. Reference results related to MC and
IS are reported in Table 5.10.

ID R o(R) | coV(R) | R/S | o(R)/a(S) | coV(R)/coV(S)
1 10.1023 | 0.001 0.01 1.29 0.16 0.12
2 10.1024 | 0.0012 | 0.012 | 1.30 0.19 0.15
3 10.1026 | 0.0016 | 0.016 | 1.30 0.25 0.20
4 10.1028 | 0.002 | 0.019 | 1.30 0.30 0.23
5 | 0.1031 | 0.0025 | 0.024 | 1.31 0.38 0.29
6 | 0.1037 | 0.0033 | 0.032 | 1.31 0.51 0.39
7 1 0.1057 | 0.005 | 0.047 | 1.34 0.77 0.57
8* 1 0.115 0.01 0.087 | 1.46 1.55 1.06
9 | 0.1405 | 0.02 0.142 1.78 3.08 1.73
10 | 0.1685 | 0.03 0.178 | 2.13 4.64 2.17
11 | 0.196 0.04 0.204 | 2.48 6.18 2.49
12 | 0.225 0.05 0.222 | 2.85 7.72 2.71
13 | 0.253 0.06 0.237 | 3.20 9.27 2.89
14 | 0.31 0.08 0.258 | 3.92 12.36 3.15
15 | 0.368 0.10 0.272 | 4.66 15.46 3.32

Table 5.9: Truss test case: configurations for study on o(R)/c(S) effect (fixed statistical
parameters of S: mean S = V; = 0.079, standard deviation o(S) = o(V;) = 6.47 x 1073
and coefficient of variation coV (S) = coV (V;) = 0.082)

A first evaluation can be done with respect to different evolutions shown in the coV’
contour plots, depicted in Fig. 5.9. The reader may observe a translation toward down-
right of the contours as the ratio o(R)/o(S) increases (Fig. 5.9b). This implies that
the necessary number of needed M samples increases, while minimum N decreases. The
reference ratio M /N will therefore increase. It is worth noticing that in this case, as
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MC IS

ID | o(R)/o(5) P; N | ox/N%) P N | on/N%)
1 0.1023 1.91 x 1072 | 2.10 x 10° 5.23 1.91 x 1072 | 3351 37.8

2 0.1024 1.90 x 1072 | 2.11 x 10° 4.45 1.95 x 1073 | 3289 49.2

3 0.10255 1.93 x 1072 | 2.08 x 10° 4.72 1.88 x 1073 | 3154 31.7

4 0.10275 1.91 x 1072 | 2.10 x 10° 4.73 1.97 x 1072 | 3376 38.2

5 0.1031 1.90 x 1072 | 2.11 x 10° 5.00 1.88 x 1072 | 3309 73.2

6 | 01037 |197x10°|203x10°| 506 |LOlx107% 2927 | 20.6

7 | 01057 |L96x 107 |204x10° | 477 | L98x10% | 2643 | 310
8* 0.115 1.98 x 1072 | 2.03 x 10° 5.27 2.08 x 1073 | 1868 20.7

9 0.1405 1.93 x 1072 | 2.08 x 10° 4.37 1.98 x 1072 | 1399 16.0
10 0.1685 1.87 x 1072 | 2.14 x 10° 5.17 1.87 x 1072 | 1353 5.2

11 0.196 2.02 x 1073 | 1.98 x 10° 4.76 2.02 x 1073 | 1298 11.3
12 0.225 1.95 x 1072 | 2.05 x 10° 5.43 1.94 x 1072 | 1317 5.1

13 0.253 2.02 x 1073 | 1.98 x 10° 4.94 2.01 x 1073 | 1282 11.4
14 0.310 2.03 x 1073 | 1.97 x 10° 5.21 2.16 x 1073 | 1275 15.2
15 0.368 2.00 x 1073 | 2.01 x 10° 5.95 2.02 x 1073 | 1286 11.6

Table 5.10: Truss test case: reference results for study on o(R)/c(S) effect (100 simula-
tions considered, targeted coV (Py) = 0.05)

N > 10, the dominant contributor to the P estimate precision will be M, as we are
already very close to the vertical asymptote. Opposite conclusions are drawn if the ratio
o(R)/o(S) is reduced (Fig. 5.9a).

These findings will allow us to illustrate again the usefulness of disposing of two
mirror formulations. Considering S-based estimator, the term ¢, (defining the horizontal
asymptote) increases while &2 (defining the vertical asymptote) decreases as the ratio
o(R)/o(S) decreases, arriving to the uncomfortable situation when &2 tends to 0. This
is consistent with the upper-mentioned translational behavior of the coV contour plot.
Numerical approximation errors could lead &2 to be negative, making the derivatives
of Var(Py) with respect to N and M positive for very low ratios M/N, where &5 is
the dominant term: this is unacceptable as it would imply that by adding new samples
we may lose precision in Pj estimation. Conversely, for R-based estimator, evolutions
of ¢ and &5 are reversed: therefore, numerical instabilities can be found for very high
ratios o(R)/o(S), where £12 can be negative, thus leading to unacceptable extrapolations
related to very high ratios M/N. In all cases considered in the present work, no evidence
of analogue numerical issues related to the term ¢5 was found.

Based on these results we can thus define an empirical rule to choose the best-suited
variance estimator formulation. In particular, extrapolations with S-based estimator are
more precise than the ones provided by R-based when most of variance contribution
comes from capacity R. On the other hand, when the response S exhibits a higher
variability, extrapolations from R-based estimator are preferred. In the intermediate
situation, when o(R) =~ o(S), the two formulations are equivalent. Given the fact that
the two contributions to the variance of LSF are not known a priori, this choice cannot
be easily done. However, during a real reliability analysis, one may evaluate the ratio
&12/ o with either S— or R—based estimator after a minimal amount of samples, then
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switch to the other alternative if such ratio is too low (say < 1).
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Figure 5.9: Truss test case: effect of o(R)/c(S) on coV contour plot

Another aspect to consider is the variance reduction allowed by ImpSMC approach
with respect to N and M. In the previous section it was already observed the potential
variance reduction (compared to other reliability simulation-base algorithms) for a nomi-
nal case and with different N and M/N ratios. In Fig. 5.10 is reported a complete study
over the effects of the ratio o(R)/o(S). Results are consistent with previous conclusions
from contour plots. All curves related to configurations with o(R) < ¢(S) show a small
sensitivity to variations of M, but a massive coV reduction can be achieved by increas-
ing N. With the increase of the ratio o(R)/c(S), impact of M over coV becomes more
visible, while the influence of NV is reduced. The turning point is given by o(R) =~ o(S),
where the effects of N and M are almost perfectly balanced. Then, for o(R) > o(S),
the only responsible for coV is the number M of R samples. Comparing ImpSMC and
IS performances, the coV reduction factor is kept constant when multiplying the avail-
able computational budget: this is visible when passing from N = 100 (respectively
M = 100) to N = 1000 (respectively M = 1000) we obtain almost identical graphs of
coVrmpsamc/coVis.

We would now like to make some comments regarding the computational cost gains.
Thanks to the variance estimator, it is in fact also possible to preview the overall number
of complete analysis without even needing to actually perform them. In Fig.5.12, the
needed N and M to achieve coV = 0.05 are compared to the ones necessary for IS.

In particular, in Fig. 5.11, the minimum values of N and M are depicted. It is easy
to verify that in presence of extreme values of the ratio o(R)/o(S), ImpSMC becomes
equivalent to IS: in fact, here we approach the limit condition where one of the two com-
ponents (either R or S) becomes deterministic, making useless the separated sampling
procedure. One might conclude that ImpSMC is more effective when the variabilities
of the two variables are balanced. However, in most of structural applications, response
sampling requires a fairly superior computational burden compared to capacity sampling,
since the former usually involves evaluations through numerical simulations (e. g. eval-
uation of stress through a finite element analysis) while the latter usually implies only
drawing from a distribution determined empirically (as in the case for failure strength):
in such cases, ImpSMC method provides superior gains with high levels of o(R)/c(S5).
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Figure 5.10: Truss test case: effect of o(R)/o(S) on variance reduction in function of
number of samples N of S and M of R (fixed o(S) = 6.47 x 1073)

In case of balanced variances the gains are somewhat lower than for high o(R)/c(.S) but
they are still significant compared to IS.
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Figure 5.11: Minimum N and M to obtain coV = 0.05 in function of o(R)/c(.S)

In Fig. 5.12, attention is focused on the balance of necessary N (as in this example,
response sampling is computationally more expensive than capacity) to achieve a target
coV = 0.05. This analysis allows to confirm what was previewed in previous sections.
In fact, when o(R) < o(S) the effect of M/N is not relevant, and ImpSMC approaches
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IS when o(R) < o(S). On the other hand, when o(R) > o(S5), low ratios M/N do
not allow to fully exploit ImpSMC potentialities, as the necessary M increases. In this
context, it is fundamental to increase the imposed ratio M/N to be able to decrease N
(here considered as the only contributor to overall computational burden).
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Figure 5.12: Truss test case: effect of o(R)/o(S) on needed number of samples N of S
and M of R to achieve cov(Py) = 0.05 at given M /N ratios

5.4.2.2 Effect of failure probability target

Four additional configurations (listed in Table 5.11) are defined by different means of
capacity variable, keeping the same nominal variance, in order to explore distinct failure
probability targets P;. The reference results for MC and IS simulations are reported in
Table 5.11 (ID=3 represents the nominal configuration). In this Section, all statistical
parameters of S are kept constant: mean S = V| = 0.079, standard deviation o(S) =
o(V1) = 6.47 x 1073) and coefficient of variation coV (S) = coV (V;) = 0.082.

Strength R MC IS
ID — — — — _
V;l” 0(‘/;1”) Pf N UN/N(%) Pf N O'N/N(%)
1 10.095 | 0.01 |9.52x1072 3825 5.99 9.82 x 1072 | 666 12.71
0.105 | 0.01 1.76 x 1072 22439 4.63 1.75 x 1072 | 1148 14.50

3* 10.115 | 0.01 1.99 x 1073 | 2.02 x 10° 5.15 1.97 x 1073 | 1862 21.52
4 10.124 | 0.01 1.93 x 107% | 2.08 x 10° 4.84 2.01 x 10~* | 3023 37.02
5 |0.132 | 0.01 1.99 x 107° | 2.13 x 107 5.15 1.89 x 107° | 4861 41.65

Table 5.11: Truss test case: configurations and reference results for study on P; effect
(100 simulations considered, targeted coV(E) = 0.05, fixed statistical parameters of S:
mean S = V] = 0.079, standard deviation o(S) = o(V;) = 6.47 x 1073 and coefficient of
variation coV (S) = coV (V) = 0.082)
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As done for the previous study on the truss test case, we report in Fig. 5.13 two
contour plots related to two extreme failure probability targets (reported in Table 5.11
as ID 1 and 5). A relatively small change can be observed: decreasing the capacity mean
(thus increasing Py) coV contour plot is translated to the down-right corner. There-
fore, we are led to think that the ratio o(R)/c(S) is not the only contributor affecting
ImpSMC performances, as was suggested till this point. Also the ratio of means R/S
apparently influences ImpSMC performances: the effect is opposite to the one observed
for o(R)/o(S): this suggests that actually the ratio coV (R)/coV (S) could be considered
instead to resume both effects.
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Figure 5.13: Truss test case: effect of Py target on coV (P f) contour plot

From contour plots, same conclusions than before can be reported for variance reduc-
tion power of ImpSMC approach (depicted in Fig. 5.14). Here the effects are less visible
when comparing Fig. 5.14 to Fig. 5.10. Since all coV contour plots are much closer one
to the other, it is easy to verify that all curves do not significantly change and follow the
same path as the nominal case. When multiplying the available computational budget
(then passing from graphs of Fig. 5.14a to 5.14b or from 5.14c¢ to 5.14d), the variance
reduction provided by ImpSMC with respect to IS, is kept constant.

When dealing with the number of necessary samples (depicted in Fig. 5.15), the
reader may observe that the minimum amounts of N and M follow the same evolution
(but less accentuated) with increases in Py target (i.e. when mean R is decreased)
than the one previewed with augmentation of o(R). This confirms, once again, the
hypothesis that the bisector (individuated by argmin[NyMy]) is somehow guided by the
ratio coV (R)/coV (S).

Finally, we focus on the needed amount N of response samples (illustrated in Fig.
5.16). We may notice that the ratio M /N can somewhat reduce the overall N for high
levels of Py. However, gains of ImpSMC with respect to IS, in terms of needed samples,
are quite relevant and almost identical for all configurations considered in this section.

5.5 Discussion of results

From the analysis conducted in the two test cases some general conclusions can be drawn.
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Figure 5.14: Truss test case: effect of P on variance reduction in function of number of

samples N of S and M of R
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Figure 5.15: Minimum N and M to obtain coV = 0.05 in function of P; target
First, the only assumption for the formalization of the ImpSMC approach relies on

the possibility of separating LSF in two independent variables R and S: therefore, no
further assumption on the shape of LSF nor the operation linking R and S is needed.
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Figure 5.16: Truss test case: effect of Py target on needed number of samples N of S and
M of R to achieve cov(Pf) = 0.05 at given M /N ratios

In the examples considered in this chapter, two LSFs are described as difference between
two components R (expressing the strength of a structure or more generally the capacity
of a system) and S (expressing the stress on a structure or more generally the response of
a system). But one is allowed to consider either sums, products or other operations: the
only requirement is the clear distinction between two independent components. Moreover,
even if only two displacement limit states are treated in the present work, the method can
be applied to any kind of system where the response is compared to an allowable value,
as long as the two can be considered as independent. In structural applications, one may
think to static strength demonstration, frequency responses, among the others. Addition-
ally, ImpSMC approach can be applied to any engineering field and extended to system
reliability applications, aerodynamic studies, power engineering or even fields outside of
engineering requiring the determination of a reliability, like pharmaceutic industry.

Looking at the two mirror formulations of the analytical variance estimator, it has
been stated that the S-based formulation can lead to numerical estimation errors when
o(R) < o(S) for very low ratios M /N (between the number of R samples and number
of S samples) and conversely for R-based. Actually, the maximum errors found in these
examples on variance estimation never surpass 3%. Some relevant errors can be found
only in an extrapolation phase and are restricted to zones of the coV (Py) contour plot
which are not of practical interest, as they covers number of samples inferior to 10. On the
other hand, disposing of two mirror formulations can give us the opportunity of reducing
such errors in the related zones. The same opposite reasoning is valid for R-based variance
estimator. The criterion to follow to establish which formulation better suites a given
problem relies on the evaluation of the extrapolation parameters ¢, ¢, &2 (used to
extrapolate the analytical variance prediction on P; estimation), and in particular the
ratio ¢o/&12, which individuates the bisector of coV(I/D;) contour plot.

One possible reason for such errors can be found in the estimation of &5 term for
both formulations. In fact, one should consider all possible combinations between two
distinct values of S (in S-based formulation) or R (in R-based formulation). But here
we consider only couples of consecutive values of the response of interest. This could be
critical when the real value of &5 is very small, compared to ¢5. It can be analytically
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proven that all three terms (¢1, ¢2 and &15) are always positive: therefore, we make the
conjecture that the eventual errors come from numerical approximations.

From the study on the composite plate, it can be observed that slight changes in LSF
formulation can lead to substantial gains. The key bias in transferring - whenever possible
- variability on the computationally cheapest component (between response and capac-
ity) can allow to reduce the needed amount of samples required to achieve a prescribed
precision target, above all when making use of unbalanced datasets.

From both test cases, we observed that the efficiency of increasing ratio M /N is more
relevant with high levels of the ratio coV(R)/coV (S). This is valid for all situations where
response sampling implies a fairly superior computational burden, compared to capacity
sampling. This means that in such cases, if the variability of the capacity R is greater
than that of response S, more capacity samples (M) can be very efficiently generated and
allow to significantly decrease the variability of the P; estimate. The reverse reasoning
must be done in the opposite situation, where most of computational efforts comes from
resistance model.

Finally, the ratio coV(R)/coV (S) can justify the evolution of gains of ImpSMC over
other approaches, but is not sufficient to explain the exact position of the bisector (in
blue) in the coV(l/D;) contour plot. One would expect such plot to be perfectly symmetric
around N = M when the ratio coV(R)/coV (S) gets near to 1: but for the nominal
case this ratio is equal to 1.06 and correspondent bisector is situated at M/N = 0.3.
Therefore, one cannot simply use information on coV (R)/coV (S) to explain translations
in the coV (P f) contour plot, making it necessary to actually evaluate ¢o and &5 to draw
conclusions on the contour plot itself. The reason probably lies in the asymmetric PDF
of the response considered in the example, which cannot be described only through mean
and standard deviation.

5.6 Conclusion

In this chapter, an analytical variance estimator related to ImpSMC approach is proposed
and numerical studies are conducted on two test cases. This method can be used to
estimate failure probability in reliability applications where it is possible to identify two
separated independent components in the Limit State Function (LSF). Generally, we
could think of response and capacity of a system. In structural applications, we refer
respectively to stress and strength.

The basic idea of ImpSMC is to separately sample these two components and concen-
trate them around failure zones. Thanks to the variance estimator, it is possible to show
without large number of simulations how such an approach outperforms other simulation
methods like MC, IS and SMC. Variance of the Py estimator is significantly reduced
as well as the number of required samples to achieve a good precision target. Separate
sampling allows also to deal with very unbalanced datasets, leading to even higher gains.
Results show that ImpSMC approaches IS when all variability in LSF comes from the
most expensive component. In all other cases, precision improvements with respect to IS
are significant, above all in the opposite situation of variability mostly due to the cheap-
est component of LSF. Overall, gains of using ImpSMC instead of IS are not sensible
to failure probability target. On the other hand, compared to MC, the added value of
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ImpSMC grows significantly.

The two test cases presented in this chapter, despite their simplicity, allow to highlight
the potential of disposing of a variance estimator for ImpSMC. In particular, the first use
case shows that it is not an obligation to distinguish a stress and a strength component,
but LSF can be re-adapted (if possible) to any form containing two separated independent
terms. A key to increase gains in term of computational burden is to work towards
unbalanced datasets and assigning (where possible) most of variability to the component
which is cheaper to sample.

Focusing on the practical use of ImpSMC approach, the allowance of unbalanced
datasets is of utmost importance. Generally, the response S of a system is often much
more expensive to sample than the capacity R: for example, in structural applications, the
response will be provided by finite element model simulations, while the capacity is often
given by a random variable which is cheap to sample. Allowing unbalanced datasets,
one can focus on maximizing the ratio between the number M of R samples and the
number N of S samples to reduce the overall computational burden, while improving the
precision of the estimation of the failure probability P.

In industrial engineering applications, such an analytical variance estimator can pre-
dict the precision of failure probability estimation and the required amount of simulations
to achieve a good precision target without being forced to replicate empirically the entire
procedure for a statistical analysis. Moreover, the bisector of the coV (P) plot (which
can be estimated from a low number of samples) may give an idea of a good ratio M /N
between number of capacity and response samples to guarantee a good compromise be-
tween precision and computational burden. However, as this just minimizes the product
N M, engineering judgment is needed to refine it: if sampling the response S is more ex-
pensive than sampling capacity R, this ratio can be multiplied - or divided, if the reverse
consideration is valid - up to 10 (no more than this as an asymptotic behavior would
be reached). The fact that this does not change according to the targeted precision of
failure probability estimation, makes it possible to validate such ratio for a given problem
and given input distributions. These advantages can be very convenient in real industrial
applications, when minimizing the computational effort is of utmost relevance.

Further investigations on the phenomena determining the exact position of the ref-
erence ratio for unbalanced datasets could constitute an interesting topic for further re-
search on this subject. Explicitly introducing computational costs associated to response
and capacity sampling and minimizing overall computational burden would be another
interesting future research work.

Moreover, coupling our method to Adaptive Importance Sampling algorithm could
extend its application to any reliability problem with unknown importance function. On
the other hand, the introduction of ImpSMC in machine learning techniques would make
it possible to cheaply evaluate failure probability in real-life applications where response
is so expensive to evaluate that it must be approximated by a surrogate model.

In the next chapters, we use SMC as a special case of ImpSMC to improve the per-
formances of the classical Monte Carlo approach. In Chapter 6, SMC is introduced in an
adaptive learning framework for reliability assessment applications, to further reduce the
computational burden. In Chapter 7, it is used as the default sampling method for PoFE
estimations. The interest in H2H application is devoted to intrinsic variables only, in the
semi-probabilistic framework described in Chapter 4: therefore the targeted quantile lev-
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els correspond to the ones related to material properties in CS 25.613, thus characterized
by PoE = 0.1 for redundant structures and PoFE = 0.01 for non-redundant structures.
In the semi-probabilistic framework, the application of ImpSMC becomes actually fun-
damental when dealing with environmental variables, linked to lower target probabilities
(i.e. PoE =107°/FH per flight hour): this use of ImpSMC is left as a perspective.
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Chapter 6

High-dimensional Adaptive Learning
for Reliability Analysis

6.1 Introduction

In the previous chapters, we highlighted the interest of managing the uncertainties of
input parameters in engineering design. We presented several applications of probabilistic
frameworks in Chapter 2, focusing on aeronautical and civil engineering field. Among
these, we introduced the concept of reliability analysis, which focuses on determining the
failure probability associated to a specific design with non-deterministic input variables
[Larsson, 2015]. In Chapter 4, we proposed a semi-probabilistic approach to integrate
the uncertainties of the design parameters affecting the performances of aeronautical
structures. Two declinations were presented: the first, formalized as a quantile estimation
problem (analyzed in Chapter 4), aims at determining new deterministic quantities to
integrate in the classical design process; the second declination, presented as a reliability-
based design optimization problem (which will be formalized and investigated in Chapter
7), tries to optimize the input variabilities while limiting the probability that the real
structure under-performs with respect to fixed structural requirements. In the previous
and in the present chapter, we aim at developing methods to improve the compromise
between accuracy and computational burden of the evaluation of a failure probability P,
defined as the probability that a given system of exceeding nominal values (in the context
of our work referred as Probability of Exceedance PoE [Kempeneers, 2018]) or leading
to unsafe conditions.

Classical sampling-based approaches typically involve repeated sampling of input ran-
dom variables to estimate a failure probability Py. The Monte Carlo (MC) method
[Hammersley, 2013], generally considered as reference, gives an estimate of Py , asso-
ciates a statistical characterization of the estimation itself and is not sensitive to problem
input dimensionality. On the other hand, it exhibits a slow convergence rate, requiring a
large number of simulations to achieve a given coefficient of variation on the Py estimate,
roughly proportional to 1/P;. As numerical models adopted in current industrial appli-
cations often imply huge computational burdens, classical MC can become of impractical
use, above all for low P; targets. Lots of research efforts have been done to reduce MC
costs, following, in particular, three main paths: (1) modifying the sampling strategy
to reduce the number of needed samples [Au and Beck, 2001, Tokdar and Kass, 2010)
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to achieve a fixed targeted accuracy level; (2) replacing the full numerical model with
a cheaper surrogate model [Alsina et al., 2018, Xu and Saleh, 2021]; (3) combining the
first two approaches [Dubourg et al., 2011, Bourinet et al., 2011]. We already analyzed
the first perspective in Chapter 5, introducing the ImpSMC approach and the analytical
estimator of the variance of the Py estimation. The second and the third perspective are
pursued in the present chapter.

In the literature, multiple works pursued adaptive surrogate learning approaches,
which iteratively enrich the database of the evaluations of the full model (which constitute
the training set of the surrogate model) to progressively improve the approximation of
the LSS and use it to sort a large MC population. Five key features fully define this
category of algorithms: (1) the surrogate model choice; (2) the training set enrichment
criterion; (3) the learning-phase stopping criterion; (4) the sampling strategy; (5) the
overall procedure convergence criterion.

Among the most popular Machine Learning (ML) approaches adopted to reproduce an
expensive model in reliability context [Alsina et al., 2018, Xu and Saleh, 2021}, we find
in literature Kriging [Lelievre, 2018, Zhang et al., 2019a, Wang and Shafieezadeh, 2019b,
Chen et al., 2019, Xiao et al., 2020a, Jiang et al., 2020, Wang et al., 2022], Support Vec-
tor Machine (SVM) [Bourinet et al., 2011, Pan and Dias, 2017, Hariri-Ardebili and Pourkamali-Anarak
Zhang et al., 2019b, Bourinet, 2021] and Neural Networks (NN) [Elhewy et al., 2006, Ferrero Bermejo e
Xiang et al., 2020]. In particular Kriging, thanks to its inherent uncertainty structure, ex-
hibits useful exploration features, making it particularly well suited for efficient adaptive
reliability analyses assisted by ML. However - unlike MC, SVM and NN - Kriging suffers
from the curse of dimensionality, making it challenging to deal with high input dimen-
sionality. In the present article, we introduce an adaptive ML algorithm based on KPLS
[Bouhlel et al., 2016b], which addresses this issue by using the Partial Least Square (PLS)
method [Vinzi et al., 2010] to project the input space onto a lower-dimensional space.

Focusing on Kriging-based approaches, a number of training set enrichment criteria
can be found in the literature, e.g. U [Echard et al., 2011], Expected Feasibility Function
(EFF) [Bichon et al., 2008], REIF [Zhang et al., 2019d] among the others. A first ap-
plication of KPLS in a reliability assessment problem can be found in [Zuhal et al., 2021],
which highlighted the gains in terms of computational burden provided by KPLS with
respect to Ordinary Kriging. In our work, we propose a novel enrichment strategy using
the KPLS model and the U and FF'F criteria.

Inspired from [Menz et al., 2021], the proposed method introduces a two-phases al-
gorithm, alternating between a learning phase and an MC population enrichment phase.
The transition from one phase to the other (i.e. the learning stopping criterion) is based
on the variance decomposition of two sources of uncertainty, namely the metamodel
and the MC population. This is in contrast to traditional stopping criteria which usu-
ally compare the values of the learning function [Bichon et al., 2008, Echard et al., 2011,
Zhang et al., 2019d] or the changes in Py estimates at successive iterations [Gaspar et al., 2015,
Schébi et al., 2017, Lelievre, 2018, Wang and Shafieezadeh, 2019a] to sometimes arbitrary
limits. In the proposed approach, the overall convergence criterion is based on the total
variance which takes into account the errors stemming from both the surrogate model
and the MC population, allowing to give a global measure of the uncertainty associated
to the Py estimate. Our method thus provides a sound basis for balancing the effect of
surrogate model accuracy and the effect of the MC sampling density on the estimation
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of the probability of failure in problems that have high-dimensional uncertain inputs.

In Section 6.2, the main elements of the mathematical framework are provided. Then,
the novel approach is presented in Section 6.3. In Section 6.4 the performances of the
proposed method are compared to other reference methods on four high-dimensional
problems. We couple the Separable Monte Carlo sampling technique with the proposed
variance-based framework in Section 6.5, comparing the performances on an academic
test case and on the application to the Hole2Hole problem. A discussion on the obtained
results is reported in Section 6.6. Finally, Section 6.7 provides some concluding remarks
and perspectives for future work.

6.2 Mathematical Framework

In this section, the mathematical framework of the proposed approach is presented. As
typical for surrogate modelling, the metamodel is trained on a limited set of points (named
training set or Design of Ezperiments DoE) and the predictions are made in our case on
a large dataset constituting the samples population used for reliability assessment.

We start in Section 6.2.1 with a reminder from Chapter 5 on Monte Carlo sampling
method. We will introduce the machine learning techniques which constitutes the focus of
the present work, in Section 6.2.2. A general overview of the adaptive learning techniques
used for reliability estimations is reported in Section 6.2.3. The main principle on which
the proposed algorithm is based will be presented in Section 6.2.4.

6.2.1 Monte Carlo (MC) Simulation

As a reminder from Section 5.2, MC is usually considered as the reference for all sampling-
based reliability approaches [Hammersley, 2013]. In integral form, the expectation of the
failure probability P; can be presented as follows:

Py = [ Ilg@) < 0] f(@)de (6.1)

Where [ is an indicator function, g represents the Limit State Function (LSF) and f
is the Probability Density Function (PDF) of the random variable X. Denoting by E
an estimator of Py, expectation and variance of this estimator can be computed through
the following equations:

— =2
Py — Py

. (6.2)

Pr= gL 1lX) <0 Var(F) =

The coefficient of variation of the P; estimation is often used as stopping criterion for
reliability analyses.

6.2.2 Kriging - Partial Least Square (KPLS)

The Kriging - Partial Least Square (KPLS) method was firstly introduced in [Bouhlel et al., 2016b].
This is based on the union of two separated approaches: Kriging and Partial Least Square.
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The main purpose is to extend Kriging advantages to high-dimensional problems. In the
present work, KPLS is used to approximate a computationally expensive model M:

M:B—=Y

X — g(x)

(6.3)

Where B C R? denotes the domain of the input variable x, with d representing the
original dimension.

6.2.2.1 Kriging

Kriging is a well-known method to approximate a black-box function, which perfectly
interpolates training data and provides a proper error structure of the prediction itself.
This feature makes the approach attractive in an adaptive learning context: in fact, the
training dataset can be enriched in a rational way, by selecting the best-suited evaluation
points in the domain, and thus leading to more and more accurate prediction models
across iterations. On the other hand, Kriging’s performances worsen for high input
dimensionality.
Suppose we have a training set of n points defined by the coordinates:

x0) = [xgi), ...,X((ii) YW =M (X(i)) Vi=1,...,n (6.4)

In the following, we will denote by X the matrix [X(l)t7 o x(”)t]t and by y the column

array [y(l), s y(”)]t. Kriging offers a prediction g(x) of the supposedly expensive model
y = M (x), considered as a realization of the stochastic process:

Y(x) = i B,1,(%) + Z(x)

Where ; are unknown coefficients to train, f; are known basis functions and Z is
a Gaussian process defined as Z ~ N(0, k), where k represents a stationary covariance
function, referred as covariance kernel. The kernel k can be written as:

2 2

k(x,x’) = 0°r(x,X’) = 0 ryx Vx,x’€B

With o? representing the process variance and 7y, the correlation function between
points x and x’. The correlation function 7y is fully defined by a set of hyper-parameters
0 . In the present work, the isotropic Gaussian kernel function is considered:

d
T’(X, X,) = H exp (—91 (Xz‘ - X,i)Q) with 02 c ]RJF (65)
i=1
From this, we may define the vector ryx = [ryx), .- Txx(m| and the matrix R =

[TxWx; s Tl
The best linear unbiased estimator of the quantity y(x) will be:

J(x) =f(x)' B +rixR" (y — FB) (6.6)
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Where F = [f(x1), ...,f(x(”))r and f(x) = [f1(x), ..., fm(x)]". The Kriging model
provides a proper error structure of the prediction itself as well, given by estimation of
the variance, defined as follows:

s*(x) = 6° (1 — rix R 'rxx) (6.7)

The parameters 3 and o2 can be estimated via least squares method, leading to the
expressions:

B=(FR'F) FRy
7= (vy-F3) R (y—FD)

The most challenging part in Kriging training is given by the estimation of the hyper-
parameters 6 . These are generally determined by Maximum Likelihood (ML), which
aims at maximizing the expression:

(6.8)

log-ML(6) = —; nln (2r0?) + In (det R(6)) + 012 (v - FB)t R (y-— FB)} (6.9)

By introducing the expressions of the estimations of 3 and ¢? from Eq. 6.8 into 6.9,
the only dependence from @ lies in the matrix R(which is omitted in the following to
improve readability), obtaining the contracted ML:

1
log-ML(#) = — 5

nn (iCtRC) +In (det R)} (6.10)

Where .
C=y-F(FR'F) FR'y

For high dimensional inputs and large number of samples in the training set, maxi-
mizing Eq. 6.10 can be computationally expensive, as it implies a wider domain search
for the optimization procedure and requires multiple inversions of the matrix R, of size
n X n, to evaluate the objective function (log-ML).

The challenge of extending Kriging advantages for high-dimensional problems is achieved,
in the KPLS approach, via the Partial Least Square regression. This will be the main
subject of the next section.

6.2.2.2 Partial Least Square

The most common methods currently adopted to reduce dimensionality of a complex
dataset are Principal Components Analysis (PCA) and Partial Least Square (PLS), al-
ready discussed in Chapter 3 and recalled here for the sake of completeness. The re-
spective algorithm are quite similar but the nature is different: the former constitutes
an unsupervised approach, used to describe the general behavior of data; the latter is
a supervised method which identifies a linear relationship between inputs and outputs.
To extend Kriging usage to high-dimensional problems, PLS is adopted to reduce the
number of inputs involved in the hyper-parameters training by projecting them on a
reduced-order space. This is achieved by the introduction of virtual variables, called
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principal components, which are linear combinations of the original input variables. The
number of components (or modes) h are defined a priori, before initializing the regression
procedure.

Starting from X = X and y® =y, the principal directions w(® (l=1,...,h) are
sequentially determined by maximizing the squared covariance between projected inputs
and outputs:

w) = arg max wt (X(H))t (=1 (y(H))t X =1 (6.11)

The successive terms of X and y®) (for [ = 1,...,h) are computed as the residual
matrix from the local regression of X~ and y(~b respectively:

xO — x(=1) _ t(l)p(l)

) (6.12)
g =y 4 ®

Where p) is the regression vector of the local regression of X onto t) and ¢; represents
the regression coefficient of the local regression of y onto t). The principal components
t® can be obtained for [ = 1, ..., h as follows:

t0 = X Dw? = Xw) (6.13)

Where w') constitute the columns of the matrix W,, determined by [Manne, 1987b]:
W, =W (P'W)

Where W = [w(®, .. w®] and P = |p®’ . p®’|.

PLS is used inside KPLS to define a linear projection of input onto a reduced-order
space, so to reduce the number of hyper-parameters to optimize to construct the Kriging
model.

6.2.2.3 KPLS

KPLS method was proved to extend the use of Kriging technique by exploiting the dimen-
sionality reduction offered by PLS [Bouhlel et al., 2016b]. As stated before, this allows
to reduce the number of hyper-parameters # that need to be evaluated to train Kriging
model [Bouhlel et al., 2016b].

In particular, the method is based on a linear transformation of the input variables:

F:B— B
X — |aiXq, ..., OédXd}t
With oy, ...,aq € R and B’ € R?. Of all possible linear mappings, the coefficients o

are chosen from PLS decomposition results, generating h linear functions F; (I = 1, ..., h),
defined as [Bouhlel et al., 2016b]:

F,:B— B

X — [Will)xl, e wigxdr

(6.14)
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This relation is the same for all [ = 1, ..., h. In [Bouhlel et al., 2016b], the new covari-
ance kernel is defined as the tensor product of all stationary kernels k;: B x B — R:

h
=1k (Fx), F(x)) (6.15)
=1

If the chosen k; is a Gaussian kernel, then the following kernel function will be obtained
for KPLS:

=0 H H exp { 0, (W Dy, — wlx, ) } V6 € RT (6.16)
I=1i=1

The proof of the equivalence between Kriging and KPLS kernels is available in [Bouhlel et al., 2016b].
It is possible to observe, by comparing Eq. 6.5 and Eq. 6.16, that for h < d fewer hyper-
parameters # must be determined in order to train the Kriging-based metamodel. In
terms of computational burden, this step constitutes the most challenging part of the
whole training: therefore, KPLS construction tends to be more advantageous compared
to Kriging. This feature makes KPLS very well-suited to manage problems with high
number of input variables.

Note also that all results recalled in the previous section are still valid for KPLS, with
the only difference lying in the covariance kernel definition, as in Eq. 6.16 rather than
Eq. 6.5.

On the other hand, a lower precision may be expected with respect to Ordinary
Kriging, due to the reduced flexibility conferred to the surrogate model. However, it
should be noted that the PLS dimensionality reduction is not directly applied as an
input transformation (with consequent loss of information) but rather as a regularization
technique for the Kriging model training. Work in [Bouhlel et al., 2016a] presented an
improved version of KPLS, called KPLSK, where a new Kriging model is trained by
using KPLS hyper-parameters as starting points. However, in this chapter we show that
a satisfying accuracy of the approximation of the LSF can be reached with KPLS in an
adaptive learning framework.

The KPLS is used in the present work to approximate the LSF ¢g. By denoting the
approximation via KPLS of g with g, we can estimate the failure probability P; by
applying the MC method on the samples of g(X):

= 3T <0 (6.17)

The KPLS is trained on a given training set, which is built iteratively in adaptive
learning frameworks. In the next section, we report an overview of the kriging-based
adaptive learning approaches used for reliability assessment.

6.2.3 Kriging-based adaptive learning techniques for reliability

In this section, we present an overview of the main features defining the adaptive learning
techniques used to estimate a failure probability P in time consuming numerical models.
In particular, the attention is focused on the Kriging-based approaches.
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The general idea of adaptive learning techniques is to iteratively enrich the training
dataset to progressively improve the approximation of the limit state function (LSF) g, es-
pecially around the limit state surface (LSS) which defines the border between failure and
non-failure regions (i.e. around g = 0). Overall, five main general features characterize
the adaptive learning approaches:

- choice of the surrogate model: in the literature, the use of Kriging, SVM and NN
are common for reliability problems; focusing on Kriging, we also need to define
the kernel formulation.

- training set enrichment criterion: this constitutes the choice of the mathemati-
cal expression to identify the best candidate point to enrich the training set (or
DoE) [Echard et al., 2011, Bichon et al., 2008, Zhang et al., 2019d]; moreover, it
includes the choice of how we select such point, based on optimization process

[Bichon et al., 2008] or enumeration over a given sample population [Echard et al., 2011].

- learning-phase stopping criterion: this establishes the criterion to stop the enrich-
ment of the training set, often based either on the values of the enrichment function
[Echard et al., 2011, Lelievre et al., 2018] or the convergence of the estimated Py
[Gaspar et al., 2015, Schébi et al., 2017].

- sampling strategy: this constitutes the choice of how to sample the inputs for
the predictions of the surrogate model, in order to estimate the P;. This fea-
ture includes also the choice of whether progressively increasing the sample size
[Echard et al., 2011] or using a fixed large sample population from the beginning of
the process [Zuhal et al., 2021].

- owerall convergence criterion: this constitutes the choice of when to stop the overall
procedure, typically based either on the uncertainty of the estimation of the failure
probability Py [Bichon et al., 2008, Echard et al., 2011], the convergence of the es-
timated Py [Gaspar et al., 2015, Schobi et al., 2017], or the number of points added
to the training set [Zuhal et al., 2021].

The final outcome of the adaptive learning approaches provides an estimation of the
failure probability Pf. Therefore, we need to evaluate the associated uncertainty. In the
upper-mentioned references, the uncertainty is associated to the variance of the Py esti-
mate due to the application of sampling techniques on the Kriging-based approximation
of the LSF. In particular, the contribution to the overall variance due to the surrogate
model is not generally taken into account (especially in the learning-phase stopping cri-
terion, the sampling strategy and overall stopping criterion). In the next section, we
present a method to evaluate the variance associated to the estimation of Py, considering
all sources of uncertainty.

6.2.4 Variance decomposition

As for many sampling-based reliability methods, ﬁ; is a numerical estimate of the prob-
ability of failure. It is fundamental to take into account the uncertainty involved in its
estimation and it can in particular serve as a convergence measure. Generally, a reliability



6.2. MATHEMATICAL FRAMEWORK 167

analysis is stopped when a targeted level of accuracy of 73} is reached, which is usually
measured through the coefficient of variation of the P estimation. Following the work
in [Menz et al., 2021], we decompose the total variance of l/D; according to the sources of
uncertainty affecting it:

Viror = Vx + Vg + Vax (6.18)

Where Vy represents the contribution to total variance due to Monte Carlo (MC) pop-
ulation, Vi constitutes the amount of variance due to the KPLS surrogate model and Vi x
is the covariance term (between MC and KPLS). Moreover, as done in [Menz et al., 2021],
we suppose that Vg x can be neglected: this is justified by the fact that the number of
training points of the surrogate model (i.e. the number of simulations of the full model)
is typically much lower than the number of samples in the MC population.

The contribution Vx can be determined by adopting the mean trajectory of KPLS
(see Eq. 6.6) to approximate the LSF. In particular, the random variable Y = I (§(X)) is
a Bernoulli random variable B (p(X)) with parameter p(X) = ® (—%) The variance
Vx will be therefore defined as:

1 N

Vx = m ; <p(Xz) - ;;MXQ) (6.19)

In the case without any uncertainty due to the MC population, the variance term
Ve, due to KPLS, could be analytically computed from the samples Y; of the Bernoulli
random variable Y = I (y(X)):

Ve = Varg [P;(9)| = Varg UV ; y;] = ;2 3 (vm Vi) + 3 Cov v, Yj]) (6.20)

i=1 j#i

With:

Var[Yi] = p(X;) (1 — p(Xy)) (6.21)

Cov[Y;, Yj] = ®5,¢(0,0) — p(Xi)p(X;) (6.22)

Where @, ¢ represents the cumulative distribution function of the 2-dimensional Gaus-
sian variable of mean (7(X;),y(X,)) and covariance matrix C evaluated at the points X;
and X;. The contribution of the covariance term in Eq. 6.22 can imply a large computa-
tional effort on an MC population. The work in [El Haj and Soubra, 2021] adopts these
expressions to propose an exploration criterion based on the contributions in Eq. 6.20 of
a restricted number of samples. However, if the objective is to compute the variance Vg
due to KPLS, such an approach to reduce the computational burden is not possible.

To compute the variance term Vg, due to KPLS, we adopt in this work the methodol-
ogy introduced in [Menz et al., 2021]. In particular, Vi can be evaluated as the variance
of the Py estimation on a fixed number n; of random trajectories G; induced by the KPLS

model. Denoting by E(QZ) the estimation of P via the application of the i*" trajectory
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realization of the KPLS model on the MC population, the term Vg can be computed
[Menz et al., 2021] as:

1 &

Vo = 3 <13}(gi> - ;i?}(gjo (6.23)

ny — 175

For sake of clarity, we add in the following the index n to refer to all quantities
related to the metamodel conditioned to the training set (X,y). Generally, to generate
n; trajectories G,, on N points X, the following expression can be used:

Gn(X) = ¥, (%) + Lag (6.24)

Where y, constitutes the prediction provided by the Kriging-based surrogate model,
L,, € RY represents the Cholesky decomposition matrix of the covariance matrix C,,(x) =
(kn(xi,%;))i; of size N x N and & ~ N(Oy,Iyy). Unfortunately, the covariance ma-
trix C,, can be ill-conditioned, as variance drops to zero at points nearby the training
dataset X. Moreover, given the high number N of MC points to simulate, the overall
computational effort can rapidly become intractable. The importance of the last problem
significantly grows for lower probability estimations, as the size of MC is inverse propor-
tional to the square of P;. The first issue is addressed by simulating a non-conditioned
Gaussian Process, while the second is managed by Karhunen-Loeve expansion. In the
following, the two methods adopted in the present work to overcome these difficulties are
briefly illustrated. The implementations of both approaches are similar to the analogues
for Kriging models [Menz et al., 2021], as all Kriging results can be extended to KPLS
as well.

6.2.4.1 Ill-conditioned covariance matrix

To solve the issue related to the ill-conditioning of the covariance matrix, we approximate,
following [Menz et al., 2021], the initial KPLS model via a non-conditioned Gaussian
process. We denote by G, the initial Gaussian process, conditioned to the training set
(X,y), described by the covariance kernel k, defined by the hyper-parameters 8,, and
on. We introduce a centered Gaussian process G defined by the same kernel k,, of G,,:

G(x) ~ N (0, kn(x,%")) (6.25)

Then, the parameter @ related to G is estimated as in Eq. 6.8, but conditioned on the
new training points (X, G(X)):

1

f=(FR'F) FR'G(X) (6.26)

Thanks to this, the mean § of the unconditioned Gaussian process G can be predicted:

§(x) = £(x)' B+ rlxR " (G(X) — Ff) (6.27)

Finally, introducing g, from Eq. 6.6, we can approximate the original Gaussian pro-
cess G, through the non-conditioned analogue Gaussian process G,, by correcting the
mean of G:
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Gn(x) = Fn(x) — §(x) + G(x) (6.28)

This follows the same statistic properties of the original G,, and does not exhibit zero
variance near the points of the training set X. Therefore, it can be used to simulate
trajectories and without any ill-conditioned covariance matrix.

6.2.4.2 Simulate large amounts of data

The second key-problem related to the simulation of trajectories refers to the huge amount
of data to generate. Even if disposing of a well-conditioned covariance matrix, the
Cholesky decomposition can imply a huge computational effort that could become in-
tractable with very high number N of points (namely all samples in MC population) to
simulate. To this purpose, the Karhunen-Loeve (KL) expansion, based on the spectral
decomposition of the covariance kernel, is adopted. In particular, the KL expansion of a
Gaussian Process G ~ GP(u(.), k(.,.)) can be written as:

G(x,w) = p(x) + D VAdi(x)&(w) (6.29)

i=1
Where \; are the eigenvalues of the kernel k(.,.), ¢; : B — R constitutes the
related eigenfunctions, and &; represent mutually independent centered normal random

variables. After sorting the eigenvalues in decreasing order, the expression in Eq. 6.29
can be truncated at the M-th term, leading to:

M
G(x,w) & p(x) + >V idi(x)6 () (6.30)
i=1
Determining all A\; and ¢; implies solving the integral equations (for i =1, ..., M):

i (%) :/Bk(x,x’)gbi(x’)dx’ (6.31)

Here, the eigenvalues and the eigenvectors are estimated via the Nystrom method on
N, integration points:

K%)= 3 ko, 3,) 0, (6.32)

Denoting with C, the covariance matrix computed at integration points (thus of
size Ny x Ng), the weight matrix Wy = Diag(w,, ...,wy,) and the eigenfunction vector

P, = [@ (x1), ,@ (qu)}, the Eq. 6.32 can be written in matrix form:

C,W,®; = \;®; (6.33)

By introducing the base change induced by W;/ ? (which is symmetrical), we can
simplify the eigenvalue problem:



170 CHAPTER 6. HIGH-DIMENSIONAL ADAPTIVE LEARNING FOR
RELIABILITY ANALYSIS

Where B, = W}/ QCqW;/ 2 and %, = W;l/ 23,. Once the eigenvalue problem in Eq.
6.34 to determine )\; and all related elements q/ﬁj\J of the vector &;*i, the eigenfunctions
can be approximated by:

Z\/_gzﬁ” (x,x;) Vi=1,...,M (6.35)

7,]1

The Gaussian process can be finally approximated by introducing the results of Eq.
6.35 into Eq. 6.30, leading to the expression:

G(x, ) + Z flf Z V0T (%, %) (6.36)

7j=1

In the context of this work, the integration point are randomly generated from a
uniform distribution covering the whole input domain B. The associated weights w; are
all equal to w; = |B|/N, = w for j =1,...,N,, where |B| = [z dx. The KL expansion
is used to approximate the non-conditioned Gaussian process defined in Eq. 6.25. The
quantities in Eq. 6.26-6.27 are computed with:

M

G(X) ~ 01 k(X x; 6.37
(X) ﬁZW ) (6.37)

For further details on the application of these methods on adaptive Kriging, the reader
is referred to [Menz et al., 2021]. As stated before, once the kernel is modified as in Eq.
6.16, the extension to KPLS is straight-forward.

6.3 Adaptive Variance-based Kriging Partial Least
Square (Vb-KPLS)

In this section, we describe the proposed method. In the first subsection, the criterion
allowing to select the most promising input points is presented. Secondly, the stopping
criteria of the learning phase are provided. In the last subsection, we describe the overall
proposed algorithm.

6.3.1 Exploration criteria

As for all adaptive learning frameworks, a fundamental ingredient is given by the criterion
to select the best-suited point to enrich the training set. In the present work, we will con-
sider two exploration criteria: the Expected Feasibility Function (EFF) [Bichon et al., 2008]
and the U enrichment function [Echard et al., 2011]. In the different examples, we will
use one or the other on a case-by-case basis.

The EFF can be expressed in an analytical closed-form expression:
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Where ® and ¢ are respectively the cumulative distribution function and the probabil-
ity density function of a Standard Normal distribution. Typically the function e represents
a band around LSS in which exploration is privileged and is fixed to €(x) = 2s(x). The
best-suited point to enrich the training set is the point maximizing the E'F'F' criterion.

This criterion makes it possible to make a compromise between improving the approx-
imation around the already known limit state surface portions and discovering unexplored
failure regions. In the present work, this criterion is adapted to KPLS model and imple-
mented after modification of the covariance kernel. This constitute the default enrichment
criterion in our framework.

The U function [Echard et al., 2011, Zuhal et al., 2021] is the second retained enrich-
ment criterion. Unlike £ F'F| this must be minimized and can be written as:

(6.39)

This is related to the misclassification error probability of the Kriging-based surrogate
model on the point x.

As a final remark, to individuate the best-suited new point to enrich the DoE, we select
the MC candidate sample maximizing the FFF' (respectively minimizing the U) criterion
(as in [Echard et al., 2011, Zuhal et al., 2021]), instead of solving an actual optimization
problem (as done in [Bichon et al., 2008]).

6.3.2 Stopping criteria

After a certain number of Kriging enrichments, we need to decide when to stop the
enrichment phase. All stopping criteria are evaluated by enumeration on a given MC
population. It should be noted that, as the final P is not a priori known, the required
number of MC samples is not known either. To this extent, once a learning phase is
stopped we enrich the MC population if a sufficient level of global accuracy, measured in
terms of coV of the Py estimate, is yet not reached: the targeted variance level, denoted
as V, is defined by the desired target coV and the estimation 1/3; at a given iteration. This
implies that the final variance target V' will evolve across iterations, as the Pj estimate
is updated iteratively.

In this work, two classical learning stopping criteria related to measure of the upper-
mentioned enrichment functions are adopted as references for the comparison with our
approach:

- U stopping criterion [Echard et al., 2011], referring to the maximum classification
error probability over the given MC population:

min U(x)>2 (6.40)
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- EFF stopping criterion [Bichon et al., 2008], constituting an index of the possibil-
ity to extract further information from the current MC population to improve the
description of the LSS:

max EFF(x) < 0.001 (6.41)

When U or EFF' stopping criterion is adopted in existing approaches in the literature,
the computation of coV(Py) takes into account only the variance accounting for the
limited MC population. This is however only one of the sources of variance in the Py
estimate, the other source being that accounting for the prediction uncertainty of the
Kriging surrogate model. Not explicitly accounting for those two sources of variance may
lead to numerical inefficiencies.

Our proposed method is based on the upper-mentioned variance decomposition, from
which the name Variance-based (Vb). It addresses the need to take into account both
sources of uncertainty affecting the estimation of the failure probability Pf. In particular,
two Variance-based (V'b) variants, which are distinguished by the learning phase stopping
criterion, are presented:

- Local Variance-based stopping criterion (LV'b) [Menz et al., 2021], identifies the
most important source of uncertainty and stops learning phase when most of vari-
ance comes from MC sampling and not from the surrogate model:

Ve < Vx (6.42)

- Global Variance-based stopping criterion (GV'0), comparing the variance due to the
surrogate model to a global variance target V:

Ve <V/2 (6.43)

The main objective of these proposed stopping criteria is to balance the two sources
of uncertainty in the machine learning assisted reliability algorithm, namely the MC
population and the KPLS model. Conversely to the reference U and E'F'F based stopping
criteria, for LVb and GV'b, the overall algorithm is stopped when the total variance (thus
including the contributions from MC and KPLS) is lower than a global target V.

The LVb criterion can be interpreted as a local measure of the variance balance as it
compares the uncertainties of MC and KPLS at a given iteration. This allows to compare
when the variance due to the Kriging surrogate model is lower than the one due to the
limited MC samples and thus decide to enrich the MC population instead of continuing
enriching the surrogate model. On the other hand, GV'b can be seen as a comparison
between the variance Vi due to the KPLS model and the global variance target V: as the
overall algorithm is stopped when a global measure of variance is achieved, the right term
is divided by a factor 2 to guarantee, at the last iteration, that the sum of Vx and V is
lower than the target V and the contribution of KPLS is lower than the one corresponding
to the MC population. Therefore, the two variants of variance-based stopping criterion
have the same meaning at the last iteration, but the evolution all across the intermediate
iterations will be different.
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Algorithm 1: Variance-based proposed algorithm
Input: distributions, DoE, MC initialization
repeat

learn, M Cenrich < False

KPLS+ training on DoE

Py < prediction on MC via KPLS

Ve, Vx < sensitivity analysis

if not Vb stopping criterion then
| learn < True

else if Vs + Vx >V then
| MCenrich < True

else
Py, Vror < bootstrap analysis
if VTOT > V then

if not Vb stopping criterion then
| learn < True

else

| MCenrich + True
if learn then

| add point to DoE < max EFF (X c)

else if MCenrich then
| enrich MC population
until learn vV M Cenrich;

Output: Py, Vror

6.3.3 Proposed Variance-based (V'b) algorithm

The proposed algorithm is illustrated in Figure 6.1 and in Algorithm 1.

In our approach, we consider a fully variance-based adaptive learning process, specif-
ically suited for reliability assessment problems. The variance decomposition and, thus,
the distinction between the two sources of uncertainty of the Py estimate (i.e. the KPLS
model and the MC population), is taken into account in the whole algorithm. The MC
population and the surrogate model training set are gradually enriched, based on the
variance decomposition results. The overall procedure is stopped as well when the total
variance Vror from both sources reaches an acceptable level, determined by a target coV’
of the Py estimate itself. The overall stopping criterion will be then formalized as:

Vior <V =coV Py (6.44)

Thanks to the Vb approach, we are able to provide a sufficiently accurate estimation
of the failure probability, together with a global measure of the total variance. Moreover,
the balance between the variance levels stemming from the different sources of uncertainty
allows to improve the efficiency of the overall learning algorithm, leading to a reduction
in the number of evaluations of a computationally expensive numerical model.

To enrich the DoE (” Enrich DoE” box in the flowchart of Fig. 6.1), we select a point
from the MC population according to a learning criterion, typically FF'F or U criterion.

A fundamental aspect of the presented approach is the principle of enriching not only
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Figure 6.1: Proposed algorithm flowchart

the training set, via new simulations of the complete model, but also the MC population
itself. This becomes necessary when a balance between variances of different sources
is sought: in fact, introducing from the very beginning a very large MC population
(oversized with respect to the targeted coV and the magnitude of P;) would imply an
excessive accuracy requirement to the metamodel, thus deteriorating the overall efficiency
of the algorithm. The MC population is then initialized with N samples and it is enriched
in specific steps (” Enrich MC” box in the flowchart of Fig. 6.1) adding P new samples.
The implementation of the MC sampling and enriching is implemented in this work with
the Python library OpenTURNS [Baudin et al., 2016].

It is important to underline the introduction of an additional bootstrap analysis at
the last step to also verify the assumption we made on the possibility to neglect the
covariance term Vgx in Eq. 6.18.

The adoption of KPLS as surrogate model makes the algorithm scalable for reliability
problems with black-box functions with high number of inputs.
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6.4 Numerical results

In this section, four reliability problems with high number of uncertain inputs are pre-
sented. We implemented four methods for the comparative study: two reference ap-

proaches stem from AK-MCS+U [Echard et al., 2011] and AK-MCS+EFF [Bichon et al.

where the Kriging model is substituted with KPLS; the other two cover the two variants
GVDh and LVb of the presented Vb framework. These are named, for readability, after
the corresponding learning stopping criteria, respectively U, EFF, LVb and GVb.

The results are compared in terms of the accuracy of the P final estimate, the number
of enrichments of the training set, the final ratios between the variance terms V; and Vx
and the number of failed simulations Ny,; (exhibiting a relative error above 15%). These
are issued from the statistical analysis over 11 repetitions of every algorithm.

The comparison also covers different numbers of PLS components adopted in the
KPLS kernel definition: coherently with [Bouhlel et al., 2016b], we name these by KPLS¢
where 7 is the number of PLS components.

6.4.1 40-dimensional linear problem

The first numerical example involves a linear LSF, given by the expression:

9(X) = (m + 30+/m) — fj X, (6.45)

In particular, we adopt m = 40 (40-dimensional problem) and ¢ = 0.2. Note that
in the next subsection we will also consider m = 100. The variables X; follow a log-
normal distribution with unitary mean and standard deviation equals to o. The initial
DoE contains 20 points and the enrichment criterion adopted for Vb framework is the
EFF function. The MC population is initialized with N = 10000 points, while other
P = 10000 samples are added in each MC enrichment step.

The numerical results, grouped per learning algorithm and number of PLS components
in the KPLS kernel definition, are reported in Table 6.1.

All approaches considered in this study lead to a correct estimation of failure prob-
ability Py, as can be observed in Table 6.1. The variabilities of the Py estimations are
in line with the analysis of the predicted variance, consistent with the imposed limit of
coV = 5%. As anticipated in previous sections, both Vb variants lead to higher ratios
Ve /Vx with respect to U and EFF'| as the focus is to balance the sources of uncertainties.

Focusing on the number of DoE updates, it can be observed that for any number of
PLS components, the Vb approaches (both variants LVb and GV'b) clearly outperform
both U and FFF.

Comparing the results at different number of PLS components, we may observe that
both EFF and U approaches exhibit a minimum number of DoE updates for KPLS2,
increasing when more components are added. For LV'b and GV'b a more regular behavior
is observed, with a number of DoE updates essentially decreasing with the increase in
the complexity of the KPLS kernel definition. The gains tend to stabilize for the highest
numbers of components considered herein.

We analyze in this section the evolution of the variance decomposition across itera-
tions, issued from the application of different approaches on this first numerical example.

, 2008),
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Method | N. components | N. DoE updates | P Va/Vx Ntair

KPLS1 134 (18.9%) 1.99e-03 (4.28%) | 2.37e-02 | 0
U KPLS2 61.9 (8.25%) 1.99e-03 (4.84%) | <le-15 |1
KPLS3 71.4 (7.87%) 1.98e-03 (5.83%) | <le-15 | 0
KPLS4 93.2 (10.5%) 1.99¢-03 (5.28%) | <le-15 | 0
KPLS1 157 (21.2%) 2.00e-03 (4.63%) | <le-15 |0
EFF KPLS2 61.9 (9.69%) 1.98e-03 (5.98%) | <le-15 |0
KPLS3 78.1 (11.4%) 1.98e-03 (5.88%) | <le-15 | 0
KPLS4 99.3 (10.6%) 1.96e-03 (5.34%) | 1.06e-07 | O
KPLS1 55.5 (19.3%) 1.95e-03 (2.61%) | 3.56e-01 | O
Vb KPLS2 39.0 (13.8%) 1.98e-03 (5.01%) | 2.49e-01 | 0
KPLS3 34.7 (8.46%) 2.00e-03 (3.57%) | 2.76e-01 | 0
KPLS4 32.2 (7.13%) 1.96e-03 (2.45%) | 4.77e-01 | O
KPLS1 58.2 (15.0%) 1.98e-03 (4.38%) | 1.96e-01 | O
GV KPLS2 36.6 (11.0%) 2.01e-03 (4.90%) | 2.38e-02 | 0
KPLS3 36.9 (9.80%) 1.97e-03 (4.06%) | 1.54e-01 | O
KPLS4 36.9 (8.70%) 1.98e-03 (4.10%) | 1.23e-01 | O

Table 6.1: Main results for 40-dimensional linear problem (reference MC: Py = 2.00 x
1073). Note that the number in parentheses provide the coV of the values provided in
the respective cells.

This allows to illustrate the interest of explicitly considering the variance decomposition
in the adaptive learning approach. These conclusions are analogue for all the test cases
studied in this chapter.

In Fig. 6.2, we report in the same plot the curves related to Vx (i.e. the variance due
to the MC population), Vi (i.e. the variance due to KPLS), Vror (i.e. the total variance)
and the moving variance target V (defined by a fixed target on coV and the P estimate
at a given iteration). For GV'b case, we also report the curve related to the evolution of
V /2 to highlight the alternation between learning and MC enrichment phases.

In general, the term Vx stems from the evolution of the estimation of Py with varying
size of the MC population: in particular, it is expected to increase when new failure
regions are discovered (i.e. the estimated P; increases) or decrease when the size of
the MC population increases. Moreover, Vx can slightly be affected by updates in the
approximation of the LSS, as it would impact the P; estimate. The variance target V'
is deduced from the imposed coV and is only affected by the updates of the estimations
of Ps: in early stages, when few region are known, this can go beyond the machine
precision; later on, this evolves as a quadratic function of P, reaching several plateaus
corresponding to stagnations of the failure probability estimations.

The variance Vi due to the KPLS model generally decreases when new points are
added to enrich the training set. However, this is not a general rule as the function used
to select a new exploration point (either U or EF'F learning function) makes no reference
to the effect of the variance induced by the candidate points: therefore, the term Vg can,
in some cases, increase with new enrichments, above all in the initial phase.

A different effect on variance decomposition stems from the enrichments of the MC
population. In early stages of the algorithm, increasing the MC sample size can lead to
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Figure 6.2: 40-dimensional linear problem: variance decomposition results across itera-
tions with different adaptive approaches (4 components in KPLS setting)

no difference or even increase the variability of the P; estimated via different trajectories
of the KPLS model: in fact in initial stages the surrogate model is not mature yet and
the MC population is relatively small; as a consequence, adding MC samples may lead
to large variations of the predicted Py, so that the behavior of Vi; is unpredictable.

It can be observed from Fig. 6.2a-b, that the classical approaches based solely on U
and FF'F lead to very unbalanced variance sources, with most of uncertainty stems from
the MC population. For the EFF approach, the term Vi can even reach values which
are comparable to the machine precision.

On the other hand, both variants LVb and GV'b of the presented Vb approach can
allow to balance the sources of variance Vy and V. The former continuously compares
the two terms at every iteration, leading globally to a stair-like evolution for both Vy
and Vg: therefore, learning and MC enrichment phases alternates until the end of the
algorithm and both Vx and Vg converge to roughly V' /2: this alternation is visible in
Fig.6.2c through the intersections between the curves of Vx and Vg. This continuous
balance of these two sources of uncertainty generally leads to improved efficiency of the
variance based approaches for a given accuracy target (in terms of coV’) on the final
probability of failure.

For the GV'b variant, the updates of the DoE continue until a satisfying level of vari-
ability (compared to a global target) in Py estimates from different realizations of KPLS
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is achieved (i.e. until Vg < V/2): in this case, the Kriging learning phase generally covers
a large portion of the first iterations, until the Vb stopping criterion is satisfied, while
the MC enrichment phase covers the final stages of the algorithm. As a consequence, the
alternation between the two phases - which is typical for the LV'b variant - is reduced:
this can be observed in Fig.6.2d on the intersections between the curves of Vi and V /2.
The evolution depicted in Fig. 6.2d constitutes an extreme example, as at a iteration 31
the term Vi reaches the machine precision and the two phases are totally decoupled; in
certain cases, the alternation between the learning and MC enrichment is more contin-
uous, but the initial learning phase lasts for more iterations than the analogue analysis
conducted with the LV'b variant. Moreover, as the level of Vi should just be lower than
the global target, the convergence of Vx and Vi to exactly V/2 is not guaranteed, making
Vi slightly lower than the former.

Overall, the GV'b variant of the Vb approach proposed herein provides a more conser-
vative criterion than LV'b in the early stages of the algorithm, where the MC population
is still relatively small (and thus Vx > V/2). However, this does not necessarily imply a
reduction in the overall efficiency of the algorithm, measured in terms of the total number
of evaluations of the full computationally expensive model. The evolutions of the variance
decomposition across iterations reported in Fig. 6.2 generally present the same features,
with very few differences between the results coming from different reliability problems
and different numbers of PLS components adopted in the KPLS framework.

6.4.2 100-dimensional linear problem

In this second test case, we propose the same LSF defined in Eq. 6.45, but considering
a 100-dimensional problem (hence m = 100) with an initial DoE of 50 points.The MC
population is initialized with N = 10000 points, while other P = 10000 samples are added
in each MC enrichment step. The other parameters, enrichment criterion and probability
distribution functions are unchanged.

The numerical results related to the 100-dimensional linear problem are reported in
Table 6.2, grouped per learning algorithm and number of PLS components in the KPLS
kernel definition.

The obtained estimations of Pj are acceptable on all algorithms. The conclusions
on Py variability and the ratio V;/Vx are analogue to the ones drawn for the previous
example. Analogue conclusions can be drawn also on the variation of performances with
respect to the number of PLS components in KPLS kernel definition.

Looking at the efficiency of both Vb variants, the overall number of full simulations
required to estimate Py is again lower than K F'F and U applications.

The gains of our approach with respect to EFF in terms of full model simulations
vary in a range between 1.5 (for KPLS2) and 2.8 (for KPLS4). When comparing U and
Vb variants, the gain is slightly reduced but still evident, with a range between 1.4 (for
KPLS2)and 2.5 (for KPLS4).

Note that on these first two application examples the LSF was linear. Higher efficiency
of the variance based framework is expected on the non-linear problems and this will be
investigated in the next two applications.
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Adaptive method | N. components | N. DoE updates | Ps Va/Vx Nt
KPLS1 271 (10.5%) 1.68e-03 (4.48%) | <le-15 |0
U KPLS2 123 (6.48%) 1.70e-03 (4.31%) | <le-15 |0
KPLS3 143 (9.99%) 1.70e-03 (4.49%) | <le-15 |0
KPLS4 183 (8.72%) 1.66e-03 (4.51%) | <le-15 |0
KPLS1 312.7 (14.05%) 1.66e-03 (3.43%) | <le-15 |0
EFF KPLS2 128.9 (8.13%) 1.66e-03 (3.53%) | <le-15 |0
KPLS3 160.0 (12.19%) 1.66e-03 (3.50%) | <le-15 |0
KPLS4 202.5 (10.21%) 1.65e-03 (3.86%) | <le-15 |0
KPLS1 139.8 (9.68%) 1.65e-03 (2.34%) | 1.87e-02 | 0
Vb KPLS2 84.64 (7.69%) 1.65e-03 (4.50%) | 4.24e-01 | 0
KPLS3 74.7 (2.81%) 1.63e-03 (4.89%) | 5.41e-01 | O
KPLS4 71.9 (4.67%) 1.65e-03 (5.26%) | 4.29e-01 | 0
KPLS1 153.2 (7.10%) 1.65e-03 (5.21%) | 2.31e-02 | O
GVb KPLS2 87.2 (7.66%) 1.65e-03 (4.05%) | 1.45e-01 | O
KPLS3 72.5 (4.31%) 1.66e-03 (4.03%) | 1.62e-01 | 0
KPLS4 71.9 (7.45%) 1.66e-03 (4.48%) | 2.03e-01 | O

Table 6.2: Main results for 100-dimensional linear problem (reference MC: Py = 1.66 x
1073). Note that the number in parentheses provide the coV of the values provided in
the respective cells.

6.4.3 53-dimensional truss example

In this section, we re-propose the truss example used in Chapter 5. A 23-bar truss
problem is considered (confront Fig. 6.3), for which the LSF is formulated here as:

9(Vau, Xs) = Vo — Vi(Xs) (6.46)

Where X represents the whole set of variables affecting the deflection V;, computed
through Finite Element Analysis (FEA). The maximum allowable deflection is denoted
as V. Different Young’s Modulus and section areas are assigned to each finite element,
with different section statistical distributions for horizontal and oblique bars. Considering
23 elements, 6 load variables and the allowable deflection V,;, overall 53 input variables
are introduced. The initial DoE dataset contains 30 points and the enrichment criterion
adopted for Vb framework is the EFF function. The MC population is initialized with
N = 10000 points, while other P = 10000 samples are added in each MC enrichment
step.

Variable | Unit | Distribution | Mean St. Deviation
E, Ey GPa | Log-Normal 210 21

Ay m? Log-Normal 2.0x 1072 [ 2.0 x 107

As m? Log-Normal 1.0x 1073 [ 1.0 x 10~*

P — P N Gumbel 5.0 x 10* | 7.5 x 10°

Vi m Normal 0.115 0.01

Table 6.3: Truss test case: random variables

All numerical results related to this example are reported in Table 6.4. Compared to
the outcomes of the previous two test cases, the number of required simulations are less
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Figure 6.3: Truss test case: illustration (Source: [Lelievre, 2018])

clear cut for different numbers of PLS components in the KPLS kernel definition. More-
over, the U approach, conversely to the previous outcomes, proves to be less performing
than all other approaches, being outperformed also by the FFF approach.

Both variants of Vb framework provide good estimations of the P value, gaining a
factor 2 in terms of efficiency with respect to FFF and about 6 compared to the U
approach.

At a general level, the regularity of the behavior of different approaches with increas-
ing number of PLS components is observed for EFF and Vb approaches, providing a
decreasing number of training points when increasing the complexity of the KPLS kernel.

Adaptive method | N. components | N. DoE updates | P Vo /Vx Nyail
KPLS1 344 (3.58%) 1.98e-03 (4.29%) | <le-15 |1
U KPLS2 310 (7.86%) 1.99¢-03 (5.13%) | <le-15 |0
KPLS3 304 (7.78%) 1.99¢-03 (5.16%) | <le-15 |0
KPLS4 323 (4.08%) 1.98e-03 (5.18%) | <le-15 |0
KPLS1 125.8 (14.1%) 2.05e-03 (5.88%) | 1.07e-01 | 0
EFF KPLS2 122.9 (16.9%) 1.99e-03 (4.56%) | 8.00e-02 | 0
KPLS3 121.1 (12.2%) 1.97 (4.31%) 7.63¢-02 | 0
KPLS4 116.0 (18.8%) 2.05e-03 (4.58%) | 7.81e-02 | 0
KPLS1 63.43 (20.6%) 1.98e-03 (4.29%) | 7.85e-01 | 0
Vb KPLS2 57.94 (22.6%) 2.03e-03 (3.01%) | 8.70e-01 | 0
KPLS3 47.48 (24.2%) 1.98e-03 (3.64%) | 8.73e-01 | 0
KPLS4 50.65 (19.9%) 2.05e-03 (3.65%) | 8.92e-01 | 0
KPLS1 64.4 (15.36%) 1.98e-03 (4.29%) | 5.71e-01 | 0
GVb KPLS2 54.5 (12.0%) 1.98e-03 (2.52%) | 5.74e-01 | 0
KPLS3 59.5 (10.3%) 1.98e-03 (5.72%) | 6.78¢-01 | 0
KPLS4 51.1 (14.6%) 2.01e-03 (5.32%) | 6.53e-01 | O

Table 6.4: Main results for 53-dimensional truss problem (reference MC: Py = 2.00 x
1073). Note that the number in parentheses provide the coV of the values provided in
the respective cells.

6.4.4 53-dimensional heat conduction problem

The last test case involves a heat conduction problem introduced in [Konakli and Sudret, 2016]

and analyzed in a KPLS-based framework in [Zuhal et al., 2021]. The computational do-
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main is the square D = (—0.5,0.5)m x (—0.5,0.5)m. The partial differential equation
(PDE) that describes the temperature field T'(z), (2 € D):

=V (k(z)V(T(2)) = QLa(2)

Where £(z) is the variable diffusion coefficient, Q@ = 2KW/m?, A is the square region
A = (0.2,0.3)m x (0.2,0.3)m where the heat source is applied and I4 represents the
indicator function, equals to 1 if 2 € A and 0 otherwise. The boundary conditions are
defined as T" = 0 on the top and VT - n = 0 on the other boundaries. The output is
defined as the mean temperature on the region B = (—0.3, —0.2)m x (—0.3, —0.2)m. The
domain definition is illustrated in Fig. 6.4a.

We define the term x(z) as in [Konakli and Sudret, 2016, Zuhal et al., 2021], as a
lognormal random field x(z) = expla+bg(z)] with g(z) representing a standard Gaussian
random field with autocorrelation function p(z,2’) = exp[—(z — 2’)?/I?] and correlation
length [ = 0.2 m. The parameters a, b are set so that mean and standard deviation of
equal respectively p, = 1 Wm/°C and o, = 0.3 Wm/°C. The discretization of g(z) is
performed via the Expansion Optimal Linear Estimation (EOLE):

TCZC

Z

Where &; are standard normal variables, C is a vector with elements ng) = p(z, () Vk =
1,...,p, while [; and ¢; represent respectively the eigenvalues and the associated eigen-
vectors of the i* mode. As done in [Konakli and Sudret, 2016], we use an EOLE grid
with element width equals to 0.1 m, thus p = 121 points overall. We retain only the
first 53 modes, as their cumulative sum is greater than 99% of the sum of all eigenvalues
[Zuhal et al., 2021]. The problem is therefore 53-dimensional.
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Figure 6.4: Heat conduction problem: domain definition and output sample distribution

The heat conduction simulations are performed on an in-house explicit code with a
domain discretized via 100 x 100 elements. We extracted the mean temperature tg of
the sub-domain B on a MC population of 20000 samples. The distribution, reported in
Fig. 6.4b, is very close to the one presented in [Konakli and Sudret, 2016]. We used this
population to calibrate the target temperature on a target Py around 5%. In particular,
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we defined the limit temperature at 6°C, corresponding to a Py = 4,75 x 1072, This
result is slightly different from the one in [Zuhal et al., 2021], which reported P(tp >
3°C) = 4.1 x 1072, most likely due to the different numerical solvers used.

The LSF therefore is defined as:

9(X)=6—1p

The analyses are carried out with 30 starting points in the initial DoE and the en-
richment criterion adopted for Vb framework is the U function. The MC population is
initialized with N = 10000 points, while other P = 1000 samples are added in each MC
enrichment step.

Numerical results are reported in Table 6.5. Note that we excluded the FF'F' ap-
proach, as it was observed to be very far from convergence until iteration 300. On the
other hand, the higher P; target of this test case would make the stopping criterion
related to GV'b unsuited all alone: in fact, the MC population can be easily oversized
with Py > 1072, leading to possible scenarios where both Vy, Vg are lower than half of
the target, but with Vx > V5. As the main purpose of the Vb framework is to balance
the sources of uncertainties, in the GV'b variant we couple the stopping criteria of GV'b
variant (see Eq. 6.43) with the one of LVb (see Eq. 6.42), for relatively high P; targets.

Method | N. components | N. DoE updates | P Va/Vx Ntqir
KPLS1 331.2 (8.09%) 4.79e-02 (5.21%) | 3.54e-02 | 1
U KPLS2 279 (7.46%) 4.75e-02 (3.87%) | 4.05e-02 | 0
KPLS3 282.5 (7.67%) 4.72e-02 (4.19%) | 4.45e-02 | 0
KPLS4 273.2 (7.56%) 4.73e-02 (4.53%) | 4.66e-02 | 0
KPLS1 62.8 (14.6%) 4.69e-02 (4.33%) | 9.10e-01 | O
Vb KPLS2 60.8 (8.67%) 4.75e-02 (3.78%) | 9.41e-01 | O
KPLS3 57.6 (11.2%) 4.78e-02 (4.42%) | 9.66e-01 | 0
KPLS4 57.0 (11.5%) 4.76e-02 (4.49%) | 9.71e-01 | 0
KPLS1 69.5 (12.2%) 4.74e-02 (2.77%) | 8.96e-01 | 0
GV KPLS2 67.2 (17.6%) 4.74e-02 (3.43%) | 9.20e-01 | O
KPLS3 63.5 (6.35%) 4.73e-02 (2.65%) | 9.09¢-01 | 0
KPLS4 58.7 (9.58%) 4.72e-02 (3.94%) | 9.40e-01 | 0

Table 6.5: Main results for 53-dimensional heat conduction problem (reference MC: Py =
4.75x1072). Note that the number in parentheses provide the coV of the values provided
in the respective cells.

From results in Table 6.5, we may observe a reduction of the number of DoE updates
of a factor close to 4.7 when passing from U to GVb and up to 5.5 when considering
LVb. The progression of the efficiencies with respect to the number of components in
KPLS kernel definition can be observed via the continuous decrease in the number of DoE
updates for all algorithms. However, for U, there is a large improvement in performances
from KPLS1 to KPLS2, while for Vb the evolution of the gains is much smoother. Overall,
the highest gains of Vb framework are related to the KPLS1 implementation.

In this test case, the stopping criterion related to the U approach proved to be over-
conservative, as visible in the results of the ratio Vi /Vy. The only failed simulation on
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U+ KPLS1 led to aratio Vi /Vx = 46: this can suggest that such ratio can be a reliable

index of accuracy of the final estimation, confirming the findings of the truss test case.
When comparing the Vb variants, the obtained accuracies are similar, but the com-

putational effort implied by LV'b is slightly lower than the one linked to GVb.

6.5 Improvement with SMC

In this section we propose an improvement of the Vb-KPLS algorithm, linked to the
introduction of Separable Monte Carlo (SMC) sampling method. As a reminder, the main
principle of SMC is to sample separately two independent blocks R and S (representing
respectively strength and stress in structural problems) and then couple each combination
of each sample R; and S; of the populations of R (of size M) and S (of size N). The
result is an augmented population of size N M, where the M samples of R are replicated
N times (for each sample of S), and the N samples of S are replicated M times (for
each sample of R). However, if we posed N = M, due to the fact that the samples are
replicated, the SMC population with N? samples combinations will lead to an accuracy
which is higher than the one obtained with N MC samples, but also lower than the one
we would obtain with a MC population with N? elements.

In the application of SMC to the KPLS surrogate model approximating the LSF g¢
as g, we could denote the estimation of the failure probability P, via the simultaneous
application of KPLS and SMC as:

— 1 XXM
Pt sne = NI - G(rj, si) (6.47)

i=1j=1

Where G = I(§ < 0) is the indicator function associated to the approximation (via
KPLS) g of g, and r; (respectively s;) represent sampled realizations of the random
variable R (respectively S). In the following, we use the compact notation g;; = r; — s;.

Now, we focus on the integration of SMC in the variance decomposition. As a re-
minder, the analytical estimator of the variance associated to the P; estimate via SMC
can be expressed as:

— 1 M -1 —
Var(PﬂSMC) = NMPf + NI Eg [ER [FR(S)]T
N e 1B, [Fmin(s,, S N+ M =15 (0:45)
—i—m S[ R[ (mln( 15 2>)H_W t

The analytical quantities in Eq. 6.48 can be obtained trough the following numerical
approximations:

(6.49)
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From Eqs. 6.48-6.49, it can be observed that we need to separate the contributions
from R and S. In the applications presented in this work, we actually know the contri-
bution of R and the analytical relation between the LSF g, R and S. In particular, we
will pose LSF's of the simple form:

g=R-S (6.50)

Therefore, in these cases, we might re-extract the approximation (via KPLS) S; of
S; from the approximation g;; of the LSF g and the realization R;, from the expression
S, = R;—g;;. Note that if we have a bijective relation between g, R and S it is possible to
re-extract the contribution of S from the known R and the approximation of g. Otherwise,
if the contribution of R is known and the relation (between g, R and S) is also known but
is not bijective, it would be convenient to approximate via KPLS the response S instead
of the LSF g¢.

In this work we choose the first option, thus approximating via the KPLS surrogate
model the LSF ¢ of the full model: we will then obtain the approximation g of the limit
state function, training the KPLS model on the available DoE. To incorporate the SMC
sampling method in the estimation of the failure probability P assisted by KPLS, we
will proceed as follows:

1. MC prediction step: we predict the outcomes g; = g(X;) on the full MC population;
2. response reconstruction step: we obtain the approximated outcomes /S: =R, —7g;;

3. capacity re-sampling step: as the SMC allows unbalanced datasets with different
number M of samples of R and N samples of S, we can optionally add more samples
of R;

4. SMC prediction step: we retrieve the augmented SMC population of the LSF sam-
ples g;; = R; — 5.

To highlight the different way of sampling the LSF, we formalize the estimation of
the Py via the application of KPLS and SMC as:

M

1 XX
Py onio = Vi 2 2 G, 5) (6.51)

i=1j=1

Where G = [ (g < 0) represents the indicator function applied on the approximated
LSF g. Note that the roles of R and S in this process can be reversed if sampling R is
more expensive than sampling S.

Then, we can also formalize the contribution Vx of the variance, due to the SMC
population, via the expression:

1 M—1
VENC = Var(Py gye) = 17 Pr + g Bs Ex [Fa(9)]]

Aj/;ﬁleS [Er [F(min(Sy, 52))]] -

N+M-1 (6.52)

NM

2
+ P
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Then, by denoting with ]/3;(91) the estimation of P; via the application of the 7"
trajectory realization of the KPLS model G on the SMC population, the term Vi can be
computed [Menz et al., 2021] as:

2
1 &= 1 &~
VgMC = Z (Pf,SMc(gi) o Z Pf,SMc(gj)> (6.53)

ne—1iH tj=1

Note that each estimation EﬁMc(gi) associated to the i-th trajectory requires to
build a matrix N x M, leading to overall a complexity of the Vg estimation of the
order n,NM (as there are n, matrices N X M to be built). The analogue estimation
through MC sampling implies only n, vectors of size N, thus overall complexity n,N. As
reminded before in this section, if we imposed N = M, with SMC we would obtain an
augmented population of N? samples with a lower accuracy than the one expected from
a MC population with N2 samples. Now the number N of samples of S required by SMC
will be significantly reduced but the reduction will not be as large as v/N. Therefore,
the coupling between Vb-KPLS and SMC implies a computational cost associated to
the estimation of the variance Vi due to the KPLS model which is higher than the cost
associated to the Vg estimation in Vb-KPLS coupled with MC sampling. Consequently,
we limit the application of Vb-KPLS + SMC to relatively high failure probability target,
generally P; > 1072, where the number of MC samples is known to be relatively small.

Given the relatively high Py targets, we couple the stopping criteria associated to the
LVb and the GVb variants. In fact, using the GVb alone can ensure that Vg < V/2:
however, with the relatively high P the added samples can largely reduce the Vy, leading
perhaps to situations where Vx < Vi, i.e. where most of the uncertainty comes from the
surrogate model. This effect was highlighted already in the application of Vb-KPLS on
the heat conduction problem (in Section 6.4.4). For the application of Vb-KPLS 4+ SMC,
we systematically couple LVb and GVb, as the targeted failure probabilities will always
be higher than 1072. We will refer to the coupled framework simply as Vb. With respect
to the algorithm presented in Section 6.3, the main difference is given by the learning
stopping criterion, which will be formalized as:

VGSMC < min (V;MC, ‘2/>
When we apply the SMC principle to the enrichment functions U and FFF, we
augment the original MC dataset by considering all the combinations of the samples
generated separately of the blocks R and S. The identification of the next point to enrich
the DoE will be therefore done on this augmented dataset: the U exploration criterion
will seek the SMC sample minimizing the U function, while the EFFF' will look for the
SMC sample maximizing the EFF' function.
In the next sections, we apply the coupling between Vb-KPLS and SMC depicted in
this section on two numerical examples.

6.5.1 Application to the truss example

In this section we re-propose the example related to the 53-dimensional truss from Section
6.4.3. We modify the settings of the problem by proposing two different values of the
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mean R of the random strength R: in the first setting, we consider R = 0.105 (reference
P; = 1.76 x 1072 estimated via MC), while in the second we fix R = 0.105 (reference
Py =9.70 x 1072 estimated via MC). The initial DoE contains 20 points. In the initial
(S)MC population we have 5000 points and 1000 new samples are added in each (S)MC
enrichment step. For the SMC we consider the same number of samples for S and R
components. We use for this section KPLS surrogate models with 4 PLS components
in the kernel definition. In the proposed Vb-KPLS framework, we choose the EFF
enrichment function as exploration criterion to select the new points to add to the DoE.

The numerical results for these two different settings are reported respectively in Table
6.6 and Table 6.7, differentiating the results according to the method (U, EFF or Vb)
and the sampling technique (MC or SMC).

Method | Sampling | N. DoE updates | P Va/Vx | Ntai
U MC 257 (5.11%) 1.75e-02 (3.06%) | <le-15 1
SMC 140 (6.87%) 1.84e-02 (4.67%) | <le-15 | 0
— MC 106 (4.74%) 1.83¢-02 (4.87%) | 6.83¢-02 | 0
SMC 87.2 (3.91%) 1.766-02 (5.30%) | 3.02¢-02 | 0
Vi MC 47.0 (6.35%) 1.820-02 (5.11%) | 9.64e-01 | 0
SMC 22.7 (8.41%) 1.776-02 (4.20%) | 9.81c-01 | 0

Table 6.6: Main results for 53-dimensional truss problem with R = 0.105 (reference MC:
Py =1.76 x 1072). Note that the number in parentheses provide the coV of the values
provided in the respective cells.

Method | Sampling | N. DoE updates | P Va/Vx | Ntai
U MC 201 (6.75%) 0.61e-02 (3.62%) | <le-15 | 0
SMC 150 (6.68%) 0.846-02 (4.31%) | <le-15 | 0
— MC 109 (6.23%) 0.81-02 (4.02%) | 1.10e-01 | 0
SMC 58.6 (3.19%) 9.82e-02 (2.69%) | 5.47e-02 | 0
Vi MC 27.0 (10.23%) 9.69¢-02 (4.28%) | 9.80e-01 | 0
SMC 20.7 (6.85%) 0.630-01 (4.53%) | 9.41e-01 | 0

Table 6.7: Main results for 53-dimensional truss problem with R = 0.095 (reference MC:
Py =9.70 x 1072). Note that the number in parentheses provide the coV of the values
provided in the respective cells.

Consistently with the results shown in the previous sections, the U method provides
good estimations of the P but leads to the highest number of evaluations of the full
model. The result is an excessive reduction of the variance V5 due to the metamodel.
Fewer simulations are required for EF'F approach, without significant detriment to the
accuracy of the Py estimations.

The proposed Vb framework allows to reduce the number of simulations of the full
model required to achieve a good accuracy target. When coupling the Vb framework with
MC, compared to EF'F, we have a reduction of number of DoE updates of a factor 2.3
in the first example and 4 in the second. When introducing SMC, these gains become
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respectively 4 and 3, so that we cannot give a general rule on the gains even for the
same problems. In the comparison between Vb and U approach, these gains are further
enhanced, leading to reductions of the number of required simulations of factors up to
7.5 (in the second test case). Moreover, we manage to balance the sources of uncertainty,
i.e. the contributions to the overall variance of the Py estimate, namely the Vi; due to
the KPLS and Vx due to the sampled population: all ratios V;/Vy are close to the unit,
for both MC and SMC sampling techniques.

Globally, the introduction of the SMC allows to reduce the number of required simu-
lations of the complete model in all tested approaches. This reduction can reach a value
of around 2, as shown in the Vb application in the first example (cf. Table 6.6).

6.5.2 Application to Hole2Hole

In this section, we apply the Vb-KPLS framework to three H2H coupons we already
analyzed in Chapters 3 and 4, namely characterized by bolting patterns 1x2, 1x5 and
3x5. We consider here the effects of the misalignments (affecting the transferred bearing
loads S on each hole k) and the material strength (defined by the random variable R).
All coupons analyzed in this section are characterized by the same (low) ratio between
plate thickness and hole diameter: therefore, the associated failure mode is the bearing
of the plate.

We define the LSF of the Hole2Hole example from the definition of the semi-probabilistic
framework introduced in the Chapter 4. The adaptive Vb-KPLS procedure (coupled with
SMC) is used to train a surrogate model approximating the limit state functions Gy as-
sociated to the transferred bearing loads Sj on each hole location k. The obtained KPLS
models will be later used in the second declination of the semi-probabilistic framework,
which will be formalized and applied in Chapter 7.

Now, we remind that the general scope of the semi-probabilistic approach is to control
the probability PoFE that the real structure under-performs with respect to the reference
performance quantities used in the deterministic design. For more in depth explanations
the reader is referred to Section 4.4. For each performance index, we introduce one
detrimental variable K; which tells us whether we overcome or not the prescribed limits:

<1 orse than in deterministic design
@- {— v s (6.54)

> 1 better than in deterministic design

In presence of multiple effects which affect in multiplicative way the same failure
mode, the conditions K; < 1 are replaced by []; K; < 1:

H i <1 worse than in deterministic design (6.55)
27" >1 better than in deterministic design '
In the H2H example, we define two detrimental variables, Kr and Kg:
R SRrEF
Kp = = 6.56
"™ Rppr > Sk (6.56)

Where R represents the bearing material strength (of the plate), Sy the transferred
load on the k-th hole location, Rrpp (respectively Sgrpr) the reference value of R (respec-
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tively of Si) used in deterministic design. Note that a distinct K is defined for each hole
k. In principle, we should consider, for an assembly of two plates with bolting pattern
Nx x Ny, overall 2Nx Ny loads Si: however, given the load equilibrium at bolt level, we
only consider the loads on the first plate, thus H = Nx Ny loads overall. Furthermore,
we define the reference value of transferred loads Sgrgp from the nominal load Srermnem
on the nominal misalignment configuration (i.e. with fitted and perfectly aligned holes),
and the overload OL:

SrEF = SREFnom X OL (6.57)

The LSF associated to the exceedance of the transferred bearing load Sy on a single
hole location k will be formalized by introducing Eqs. 6.56-6.57 in Eq. 6.55:

Gr = KnKsp—1— R SrEFnom OL—1 {§ 0 worse than in deterministic design

Rrer Sk > (0 better than in deterministic design
(6.58)
The probability that the deterministic quantities used in the deterministic sizing ac-
tually over-estimate the real structural performances given the considered variabilities (in
terms of stress Sy and strength R) will be defined as individual Probability of Ezceedance

PoFE}, and is formalized as follows:

R SREFm,om
RREF Sk:

We apply the Vb-KPLS + SMC framework to train the limit state functions Gy,
and estimate the individual PoFE}): this means that we train a different KPLS surrogate
model for each £ failure mode (associated to each k bolt location). All kernels of the
KPLS surrogate models are defined from 4 PLS components (i.e. KPLS4 are used). The
variance decomposition is done at k failure mode level: from a mathematical point of
view, we aim at determining the different sources of uncertainties (in terms of variance)
of the estimation of each PoEj,. We define therefore the total variance Vyor, associated
to the estimation of each PoFEy. We will then distinguish, for each k failure mode, the
variance component V@3¢ (representing the variance due to the SMC population) and
the Vstyc (representing the variance due to the KPLS model approximating the LSF
Gy). The learning stopping criterion associated to each KPLS surrogate model will be
defined as:

OL<1 (6.59)

VG,k < min <‘2/, VX,Ic)

The global structure performs worse than expected in deterministic design (using
Rrer, SREFnom and OL) if in at least one hole location k (out of overall H = Nx x Ny
hole locations) we have G < 0. The probability that this happens will be defined as the
(global) Probability of Exceedance PoE and formalized as:

PoE:P{ min G go} :P{ min ( d SREF’”"’”OL) < 1} (6.60)
k=1,..H k=1,..H \ Rrpr Sk
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To simplify this calculation, we implemented the estimation of the global PoE as a
final step, after the convergence of all the adaptive learning processes (based on Vb-KPLS
+ SMC algorithm) associated to the different individual LSFs Gj: therefore, we do not
include the "min” directly in the definition of the full model to be approximated via
KPLS, as it would induce large nonlinearities. We use the KPLS surrogate models to
reproduce the samples of the limit state functions Gy, and the minimum will be extracted
numerically from the obtained samples.

Regarding the inputs of the responses Sk, we use all the geometrical hole misalign-
ments, both in longitudinal and transverse direction: in order to ensure feasible assemblies
(i.e. with all bolts fitting inside the holes), we filter the samples (and thus the candidate
points to enrich the DoE) by considering only the misalignments realizations that lead
to a relative distance between two superposed hole centers in the two plates which is
lower than the oversize. Only for the coupon characterized by bolting pattern 3x5 we
also introduce, for comparison, a different setting, considering only relative longitudinal
misalignments (reducing by a factor 4 the number of geometrical inputs affecting Sy).

The input misalignments are all described by normal variables with zero mean and
standard deviation equal to 1/6 of the maximum oversize: the samples are then filtered
to ensure that all bolts fit inside the holes. Then, by assuming that the bearing material
resistance does not change in the different locations, the strength R is described by a
single random variable.

In order to exploit the parallel computing power, we add multiple points at each DoE
enrichment step. In particular, we select the points maximizing the EFF'F' enrichment
criterion on each LSF where the associated KPLS model does not satisfy the learning
stopping criteria in the Vb framework (i.e. Vgy < min(Vyy,V/2)). But then, the
information coming from each finite element analysis are shared among all surrogate
models. For example, if the KPLS metamodel associated to the mode k = 1 satisfies
the stopping learning criterion, but the one related to £ = 2 does not, we only consider
the best candidate for DoE enrichment associated to the latter, hence determining via
finite element analysis the bearing load S5 (associated to the mode k = 2, i.e. to the hole
k = 2): however, as the finite element analysis will give both S; and S,, we do not waste
this information and assign the calculated S; to the training set of the K PLS associated
to k= 1.

In all the presented applications, we start from SMC populations with N = M = 5000
samples and we add 1000 further samples in each (S)MC enrichment step. The Vb-KPLS
+ SMC algorithm is stopped when we reach coV < 5% on all the estimations of PoFE, of
all distinct LSFs. We consider four scenarios of the overloads OL: starting from a fixed
initial DoE, we firstly apply the Vb-KPLS + SMC framework on the lowest O L scenario;
then, for the successive OL scenario, we initiate the DoE by using the final DoE obtained
in the previous scenario; then we repeat this procedure until we reach the highest OL
scenario.

We report the numerical results in Table 6.8, specifying the H2H coupon (distinguished
according to the bolting patterns), the number of inputs (misalignments and material
strength), the OL scenarios (normalized with respect to the maximum OL retrieved
in Chapter 4), the number of points in the initial DoE, the number of updates of the
DoE in each application, the overall probability PoE and the average Vi i /Vx i (over all
applications of Vb-KPLS + SMC algorithm on all k£ limit states in the same coupon).
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Coupon | N. Inputs | OL (normalized) | N DoE (start) | N DoE (updates) | PoE | Vor/Vxi
0.05 9 5 0.66 | 0.368
0.1 14 0 05 | 0.321

Ix2 ) 0.15 14 0 0.36 | 0.24
0.2 14 0 0.25 | 0.217
0.05 20 46 0.41 | 0.789
0.1 66 0 0.34 | 0.786

Ix5 21 0.15 66 0 0.27 | 0.78
0.2 66 0 0.21 | 0.779
0.05 20 61 0.64 | 0.832
0.1 81 0 058 | 0.85

*

x5 (f) | 16 0.15 81 2 0.51 | 0.822
0.2 83 i 0.44 | 0.821
0.05 30 99 0.62 | 0.863
0.1 129 0 0.56 | 0.861

35 61 0.15 129 0 0.48 | 0.866
0.2 129 0 0.41 | 0.863

Table 6.8: Application of Vb-KPLS+SMC on H2H coupons (*: only relative longitudinal
misalignments are considered)

First of all, we may notice that the average Vi /Vx are all lower than 1. For the
simplest coupon with bolting pattern 1x2, this is due to the fact that the last DoE
enrichment step allows to significantly reduce the variance due to the KPLS, given the
simplicity of the problem treated herein. On the other coupons, the reason lies in the
fact that before completing the whole procedure we need to control the Vi, of all k limit
states: therefore, some of the KPLS metamodels will reach convergence before the others.
We remind that the information of each finite element analyses are shared on all training
sets, even if part of them already converged: adding new samples to these latter leads to
further reduce the variance Vg (due to the surrogate model), thus decreasing the final
ratio VG,k/VXJg.

Looking at the number of DoE enrichments, we notice that for all coupons where
we consider both longitudinal and transversal misalignments, the DoE obtained for the
lowest OL scenario are sufficient to achieve a good accuracy also for the higher levels
of OL. Overall, the number of simulations required to achieve the targeted accuracy
increases with the complexity of the bolting pattern, i.e. going from 1x2 to 1x5 to 3x5.
It is also worth noting that using only the relative longitudinal misalignments in the
coupon 3x5 can reduce the number of required simulations: however, the DoE trained on
the lowest OL scenario is not sufficient to guarantee the same accuracy on the superior
OL scenarios (thus other points are required in the progression towards the highest OL
scenario values).

Focusing on the probability PoFE, we have higher values at the lowest OL, and the
PoF progressively decreases when going towards higher overload scenarios OL. This is
due to the fact that by increasing the O L, we indirectly increase the reference value Sggp
associated to the responses S in the assembly: consequently, if we keep the same input
distributions (in the same coupon) we are systematically increasing (i.e. we multiply
by a fixed factor) the random detrimental variable Kgj, thus decreasing the probability
PoE. We notice that this effect is progressively less evident when the complexity of
the H2H coupon increases. This is explained by the fact that increasing the number
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of failure modes (i.e. the bearing LSFs associated to each bolt location), we flatten the
distribution of the maximum of the outputs Sk, leading to smaller differences of the global
PoFE between distinct scenarios of the imposed overload OL.

Finally, if we compare the number of samples required by the Vb-KPLS + SMC frame-
work with the population sizes we used to determine the PLS components in Chapter
3 (200 for 1x2, 900 for 1x5 and 1000 for 3x5), we may notice a significant reduction.
Moreover, we did not need to triplicate the load level issued from ISAMI computations
to achieve a good accuracy of the approximation of the model. Overall, the proposed Vb
approach allows to minimize the number of samples required to have a good estimation
of the response of the model: this is achieved by focusing on the zones of interest, in the
neighbor of the limit state surface determining the border between critical (where the
deterministic quantities used in design phase over-estimate the structural performances)
and non-critical regions.

6.6 Discussion of results

In this Section we analyze the obtained numerical results at a global level.

In all test cases, the presented framework provided accurate estimations of failure
probabilities, while this was not the case for the U or FF'F based approaches. The GV
variant can be slightly more conservative than the LV'b variant at the first stages of the
algorithm, involving more learning steps and less MC enrichment phases. However, on
final stages, both converge with similar behavior.

Focusing on the performances of the algorithms in terms of number of simulations of
the original model, we found that on average both variants of our proposed Vb algorithm
- coupled with MC sampling - allow to perform significantly better than the classical
approaches tested in this chapter, depending on the test case and used parameters. The
differences between performances of both proposed approaches are not significant on the
examples presented in this work. In all the investigated cases we found that the proposed
approaches led to a reduction in the number of required simulations compared to both
the EFF and U approach. Furthermore, we observed that these gains increased when
increasing the complexity of the LSF's, for which adaptive learning approaches are most
relevant, where the number of required simulations can be reduced by up to a factor
7.5. The introduction of Separable Monte Carlo (SMC) sampling method in Vb-KPLS
framework allows to further reduce by half (with respect to the analogue Vb-KPLS with
MC sampling) the number of simulations of the full model required to achieve the same
accuracy targets on the considered applications.

Note also that the algorithm presented in this work aims at reducing the arbitrary
choices over the hyper-parameters of the classical stopping criteria. We implement a
rational framework dealing with the distinction of the different sources of uncertainties.
The proposed method constitutes therefore a good compromise between accuracy and
computational burden, providing also an overall measure of the global uncertainty of
the resulting Py estimation, while taking into account the main sources of uncertainty:
the uncertainty due to the surrogate model, and the uncertainty due to limited (S)MC
samples.

Another consideration should be made on the scalability of the proposed method, in
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terms of number of inputs and failure probability target. From an input dimensionality
point of view, the extension of Kriging advantages to high number of input variables is
allowed by the introduction of KPLS, which depending on the complexity of the problem,
can deal with input dimensionality reduction of the order of 10? or more. On the other
hand, when focusing on lower orders of magnitude of Py (roughly below 10~*), the number
of data to reproduce could make the presented approach intractable as it is. This effect
is evident also at Py ~ 107® when the Vb framework is coupled with SMC. Variance-
reduction sampling techniques (Importance Sampling for example) should replace the
classical MC method to reduce the number of samples required to achieve a satisfying
level of overall variance of Py estimate.

In the application on the H2H problem, we dealt with multiple limit state functions
by iteratively training separated KPLS models, each associated to the LSF describing
the exceedance of the transferred bearing load Sj on the corresponding £ hole location.
However, we took into account all LSF's, independently from the magnitude of the proba-
bilities PoEj,. Further works may investigate the integration of a framework to prioritize
the refinement of the LSF's which most affect the global PoFE, hence neglecting the least
informative LSFs (leading to lower PoFE}) in the adaptive training process.

Finally, the proposed algorithm can still be customized and improved in different
features: the choice of the learning function, the possibility to including an active learning
procedure capable to determine the optimal number of PLS components in KPLS kernel
definition, the reproduction of multiple trajectories of the Gaussian Process, and finally
the sampling method.

6.7 Conclusion

In this chapter we presented a variance-based algorithm to estimate, with the aid of
machine learning, the failure probability in reliability problems with high number of input
variables. In particular, a KPLS surrogate model was used to approximate the limit state
function: this allowed to extend the advantages of Kriging to high-dimensional problems
via the Partial Least Square transformation. A new framework, combining KPLS with
a variance-based adaptive enrichment approach was then proposed. Four test cases were
analyzed to evaluate the accuracy and computational burden, measured via the number
of needed simulations of the full model.

The numerical examples showed that our variance-based approach could lead to good
accuracy over the final estimation of the failure probability. Compared to other reference
methods, the proposed approach allowed to reduce by up to a factor 7.5 the number of
added simulations. This gain increases when increasing the complexity of the problem
(i.e. the limit state function) and when introducing the Separable Monte Carlo sampling
method.

Two variants of the presented algorithm (namely LVb and GV'b) were introduced
and discussed: while generally giving similar performances, the latter allowed to improve
the convergence of the algorithm. These variants are coupled together for high failure
probability targets, to improve the compromise between accuracy and computational
burden.

We applied this framework to the main industrial test case of this manuscript, namely
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the Hole2Hole project, where the main interest of the proposed method lies. The formula-
tion of the associated reliability problem stems from the semi-probabilistic framework we
proposed in Chapter 4: this is based on the probability PoFE that the deterministic quan-
tities used in the classical (deterministic) design process over-estimate the performances
of the real structures. In particular, the estimation of the PoF is part of the second
declination of the proposed semi-probabilistic framework: this addresses the challenge of
optimizing the input variability, such as to satisfy specific structural requirements, de-
fined from a (semi-)probabilistic perspective. The Vb-KPLS+SMC framework allowed
to minimize the computational burden required to achieve a target accuracy of the esti-
mation of the PoFE, by means of reducing the number of required simulations of the full
finite elements models.

From a methodological perspective, several ingredients of the proposed variance-based
framework could be customized. One of the most important improvements would be given
by the definition of different sampling techniques, other than the classical Monte Carlo
and Separable Monte Carlo used in this chapter, to allow the scalability of the algorithm
to very low failure probability target (below 107%). In this context, the introduction of
adaptive Importance Sampling techniques can support this challenge, focusing also on
the scalability of these latter for real engineering problems with high number of inputs.

Moreover, different analytical approximations of the contribution of the variance in-
duced by the KPLS surrogate model can help to reduce the computational burden associ-
ated to its estimation. Different decomposition techniques, other than the KL expansion
used in this chapter, can be introduced in the proposed framework. With the same objec-
tive in mind, embedded implementations exploiting parallel computing can be beneficial
to reduce the computational time of the variance estimation, above all when dealing with
SMC or ImpSMC sampling approaches.

Furthermore, the key concept of the proposed method, consisting in equilibrating
the uncertainty associated to the surrogate model and the sampled population, can be
extended to other machine learning techniques.

In the global picture of the whole manuscript, the previous and the present chapter
dealt with the estimation of the probability of trespassing a given threshold, focusing
more on structural reliability applications. The methods provided in Chapters 5 and
6 constitute two main ingredients to evaluate the reliability constraints in a Reliability-
Based Design Optimization (RBDO) framework. The final step in this work will assemble
all the pieces (collected in the previous chapters) in a comprehensive codesign RBDO
framework, in order to establish a translator for the compromises between tolerancing,
manufacturing and stress analysis.
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Chapter 7

Codesign Framework for Aircraft
Assembly Design

7.1 Introduction

In the previous chapters we evaluated how the variability of input parameters can affect
the overall structural performances of a given assembly. In particular, in Chapter 4, we
introduced a semi-probabilistic approach to evaluate the propagation of uncertainties of
input parameters on the structural outcomes.

In this chapter, particular attention is given to the control of the variability of geo-
metrical features of individual components in the manufacturing and assembly processes.
The bounds of the variability of geometric inputs are generally described by the definition
of specific tolerances. This chapter seeks to provide some answers to the questions:

- 7 Can we conceive a general probabilistic framework able to extend current certifica-
tion requirements and which can be easily integrated in the classical deterministic
structural design?”

- 7 Which input variabilities can guarantee a specific structural performance (in prob-
abilistic terms)?”

The tolerancing activities, concerning the definitions of tolerances, are collocated
in a general framework internally known as Geometric Dimensioning and Tolerancing
(GD&T). A common distinction is done between geometric and dimensional tolerancing:
the former is related to the limitations in terms of shape (e.g. flatness) and position (e.g.
inclination, parallelism, localization) of the geometric features (e.g. planes, hole centers),
with respect to specific references, called datums; the latter, dimensional tolerancing,
concerns the limitations in the size of features of elementary parts. The geometric toler-
ancing, referred to as Geometrical Product Specifications (GPS), is regulated via specific
standards reported in ISO 1101, [iso, 2006], ISO 14405 [iso, 2010}, ISO 5459 [iso, 2011b],
ISO 17450 [iso, 2011a], EN 9100 [Hinsch, 2020].

In an aircraft, different assembly levels can be distinguished: in a top-down decom-
position, we generally recognize the aircraft level, the section, the work-package, the
assembly and the elementary parts. In Fig. 7.1 we illustrate an example of the partition
from the aircraft, to the fuselage (section level), to a frame (work-package level), to the
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assembly of plates (assembly level), to an individual plate (elementary part level). Each
level must be designed to satisfy specific requirements from the superior level (generally
referred as top-level requirements), coming from a variety of considerations on the process,
kinematic, structural or aerodynamic constraints. The top-down definition of tolerances
requirements is often referred as tolerance cascade. On the other hand, the tolerance
allocation problem refers to the re-distribution of tolerances on different contributors at
the same level in the cascade.

Work-package level

Elementary part level
Assembly level
ml é}! {

Figure 7.1: Assembly levels in aircrafts (Source [Diet, 2021])

In the literature, the tolerancing analysis constitutes a very active research field. A re-
cent review of methods and applications is available in [Hallmann et al., 2020], where ap-
proximately 300 papers are analyzed. The efforts of the research community are mainly fo-
cused on the propagation of uncertainties due to geometric imperfections [Wang et al., 2006,
Dantan and Qureshi, 2009, Mansuy et al., 2011, Beaucaire et al., 2013, Morse et al., 2018]
or tolerance allocation [Kim et al., 1999, Qureshi et al., 2010, Geetha et al., 2013, Andolfatto et al., 201
Zong and Mao, 2015, Wang et al., 2019b]. Recent works involve applications in aero-
nautical industry as well [Jing et al., 2020, Miah et al., 2021, Han and Ouyang, 2021,
Diet, 2021]. Most of the studies available in the literature are based on a statistical
framework [Hallmann et al., 2020].

A number of definitions of tolerance costs have been defined during the years, lead-
ing to a variety of objectives pursued in the studies available in literature. The final
goals may include product degradation and time value of money [Chou and Chang, 2001],
quality verification costs [Moroni et al., 2011], economic and ecological sustainability
[Hoffenson et al., 2013], scheduling management [Geetha et al., 2015], risk of delivering
non-compliant assemblies [Diet, 2021], selection of machining techniques [Hallmann et al., 2022,
among others. In general practice, the formalization of a single objective function in a
tolerance optimization problem can be troublesome, because of the different sources of
costs. In Fig. 7.2, an example of conflict of costs [Cheikh and McGoldrick, 1988] is il-
lustrated: with the increase on tolerances of elementary features, we may decrease the
manufacturing cost, as the quality demand in this first step is reduced; on the other hand,
at assembly level we may need to intervene to adjust the geometrical global outcomes
to a fixed top-level requirement. When taking into account different sources of cost,
multi-objective optimization problems can be formalized [Hallmann et al., 2020].

In the context of the optimization of the tolerance allocation, a single representative
objective can be defined when having a specific model for the financial impact of each
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Figure 7.2: Example of conflict of costs in tolerance allocation (Source
[Cheikh and McGoldrick, 1988])

source [Cheikh and McGoldrick, 1988, Bhachu et al., 2015]. However, it is common to
aggregate all objectives in a weighted sum [Hallmann et al., 2020].

Focusing on the coupling between tolerances and the uncertainty propagation on struc-
tural performances, some examples are available in the literature [Dahlstrém and Lindkvist, 2007,
Le Riche et al., ;, Guo et al., 2016, Govindarajalu et al., 2012, Gouyou et al., 2018, Askri et al., 2018,
Beaurepaire et al., 2018]. In the aeronautical industry, the activities of tolerancing and
stress design are generally treated separately. The interface between these two domains
is generally provided by the definition of some top-level requirements by structural team,
often (choices are defined on a case-by-case basis) following a worst-case scenario strat-
egy. Separating stress and tolerancing activities generally simplifies the way of working,
but it can also lead to assumptions which are more conservative than the ones which are
realistically needed.

In Chapter 4 we proposed a semi-probabilistic approach in line with current certifica-
tion requirements for large aircrafts (namely CS 25 in Europe), while taking into account
the variability of the input parameters involved in design and sizing process. The main
purpose of the work presented in this chapter is to propose a comprehensive codesign
framework to deal with tolerance-cost optimization and comply with stress aeronauti-
cal certification requirements within this semi-probabilistic framework. Compared to
Chapter 4, a different declination of the semi-probabilistic approach is considered in this
chapter: in particular, the formulation is transposed into a reliability constraint.

In this work we focus on the coupling between tolerance-cost optimization and the
semi-probabilistic approach, to conceive a codesign perspective involving manufacturing,
tolerancing and stress analysis. The goal is to redefine at the same time the top-level re-
quirements and the tolerances at elements level, in order to make a compromise between
different sources of out-of-quality costs coming from different steps of the assembly pro-
cess, while guaranteeing the static stress requirements redefined in the semi-probabilistic
framework. As this latter is formulated as a reliability constraint, the optimization prob-
lem is therefore a multi-objective reliability based optimization. The numerical methods
introduced in Chapters 5-6 are used to evaluate the semi-probabilistic constraint, declined
in form of reliability problem.

In Section 7.2 we provide a brief overview of the adopted problems formulation. Then,
we define, formalize and discuss the proposed semi-probabilistic codesign framework in
Section 7.3. In Section 7.4 we report the application on two representative use cases,
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related to the problem of built-in stresses induced by the fastener installation in assemblies
due to the presence of initial gaps. The application of the proposed framework on the
H2H problem is detailed and discussed in Section 7.5. An extensive discussion of the
obtained results and the interpretation of some consequences is reported in Section 7.6.
Finally, in Section 7.7 we delineate the overall conclusions of the proposed framework
and way-forwards for future extensions and further applications.

7.2 Formulations background

In this section we report a brief overview of the adopted formulations for Reliability-
Based Design Optimization (RBDO) and multi-objective optimization. In the following,
we restrict, without loss of generality, to the case of minimization problems.

7.2.1 Reliability-Based Design Optimization

A generic formulation for a deterministic optimization problem under inequality and
bound constraints is provided in Eq. 7.1 below:

min f(x)
st gi(x)<0 j=1,.,N, (7.1)

Ty < ¥y <ayp; 1=1,..,N

Where x = [z1, ..., xy] is the vector of N decision or design variables, f is the objective
(or cost) function, g; represents the j-th inequality constraint (N, constraints overall)
and the last line constitutes bounds constraints (linked to the search domain of the
design variables). In particular, for classical deterministic optimization, all f,g; are
deterministic.

The transition from deterministic to Reliability-Based Design Optimization (RBDO)
is typically done by formulating all or some of the constraints g; in probabilistic terms
[Enevoldsen and Sgrensen, 1994, Paiva et al., 2014]. We introduce other random vari-
ables r, which are not included among design variables. Note however that, in some
applications, the statistical description of r can be affected by the design variables x.
Considering a deterministic objective and the introduction of reliability constraints we
can express the RBDO problem as follows:

min f(x)
s.t. gfc(x, r)<0 j=1,..,Ny
9P (x)<0 j=1,..,Np

vy <z <awyp; 1=1,...,N

(7.2)

Where the constraints are distinguished into Ng reliability constraints g]RC and Np
design constraints (which are deterministic) gJD. Note that the random variables r will
only intervene on the ¢fi®. The reliability constraints ¢gi*“ can be expressed in terms of
failure probability Py or alternatively in terms of reliability index, such as the Hasofer-
Lindt index Bp; [Hasofer and Lind, 1974]. These must be kept within certain limits:
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considering the probability of failure Py, we seek to impose an upper acceptable bound
Py (i.e. in the form Py < Py); otherwise, for reliability indexes, we may need the opposite
(e.g. for the Hasofer-Lindt reliability index gy > (). For the former case, we would
have:

g = Plgj(x,r) 2 0] - Py

Moreover, we can have problems where certain random design parameters r affect
the reliability constraints or the objective function f, but they are not included among
design variables. Such cases would require the introduction of a probabilistic metric
on the objective function (such as expected value or a robustness metric) thus further
complexifying the problem formulation. Here in this work we will only consider RBDO
problems according to Eq. 7.2, thus without probabilistic functions.

A survey of the methods available in literature to solve RBDO problems can be found
in [Moustapha and Sudret, 2019], with a particular focus on RBDO approaches assisted
by surrogate models [Dubourg et al., 2011]. According to [Moustapha and Sudret, 2019],
a number of current approaches follow a framework based on the decomposition of the
modules devoted to the metamodel training, reliability analysis and optimization process.
In this work we propose a strategy based on the use of KPLS surrogate models (trained
prior to optimization via the algorithm described in Chapter 6), coupled with Separable
Monte Carlo (SMC) sampling for the reliability analysis.

7.2.2 Multi-objective optimization

The general formulation of a multi-objective optimization (specifically minimization)
problem can be formalized as follows [Jaimes et al., 2009]:

min = [fi(x), . fy(0)]

7.3
st. xe X (7:3)

Where x = [z1, ..., zy] represents the vector of the N design variables, X' represents
the feasible set (implicitly determined by a set of equality and inequality constraints)
and the vector function f: RY — R” is defined by a set of k scalar objective functions
fi : RN 5 R.

In the case k = 1, we retrieve a single-objective optimization problem. We say that a
candidate x(") dominates (in a weak sense) another x(? according to the (single-)objective

f,if:
f (X(l)) <f (X(2)>

Conversely to single-objective optimization problems, the solution of a multi-objective
optimization is not unique. In fact, as multiple criteria are established to define a hi-
erarchy of candidate solutions, a further mathematical formalization of the concept of
dominance is required. We say that a vector z1) = [f(x™), ..., fi(xV))] Pareto domi-

nates z(?) = [fl(x(2)), e fk(x(2))] if and only if:

vie{l,. k} 2V <®
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