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RÉSUMÉ

Un mécanisme fondamental de la cognition, nécessaire à l’exécution de tâches
de raisonnement complexes, est la capacité de traiter sélectivement les informa-
tions (attention) et de les conserver dans un état accessible (mémoire). Nous
analysons systématiquement le rôle de ces deux composantes, en commençant par
l’auto-attention basée sur le modèle d’attention le plus populaire: Transformer, et
en étendant ensuite l’architecture à la mémoire. Transformer est aujourd’hui la
dernière classe d’architecture neuronale et est au coeur des demonstrations les
plus fascinante du Deep Learning, il a apporté un changement de paradigme dans
le domaine de l’intelligence artificielle. Il a remplacé les réseaux de récurrence
et de convolution par l’auto-attention comme choix architectural de facto pour la
plupart des applications de l’IA.

Nous étudions d’abord les mécanismes de calcul impliqués dans un test de
raisonnement visuel synthétique (SVRT), en analysant la capacité d’une archi-
tecture de vision par ordinateur populaire (ResNet) de différentes profondeurs et
entraînée sur des ensembles de données de différentes tailles. Cela a conduit à une
nouvelle taxonomie plus fine pour les vingt-trois tâches de SVRT, cohérente avec
les classes de tâches de raisonnement - identiques-différentes (SD) et de relations
spatiales (SR) - largement acceptées dans la littérature. Ensuite, nous étudions le
rôle de l’auto-attention incorporée à ResNet50 dans la résolution du défi SVRT.
Inspirés par les deux types de systèmes d’attention visuelle, nous avons modélisé
l’auto-attention pour qu’elle soit utilisée comme une attention basée sur les carac-
téristiques et sur une attention spatiale pour enrichir les cartes de caractéristiques
d’un réseau feedforward. Nous avons évalué la capacité de ces réseaux d’attention
à résoudre le défi SVRT et avons constaté que les architectures résultantes étaient
beaucoup plus efficaces pour résoudre la plus difficile de ces tâches de raison-
nement visuel. La nouvelle taxonomie obtenue précédemment s’explique aussi
partiellement par l’amélioration relative des deux réseaux d’attention et conduit à
des prédictions testables concernant les besoins attentionnels des tâches SVRT.

Enfin, nous développons une nouvelle architecture cognitive intégrant l’auto-
attention et la mémoire. Nous proposons GAMR (Guided Attention Model for
visual Reasoning), motivé par la théorie de la vision active. Le GAMR a des mé-
canismes de fonctionnement similaires à ceux du cerveau qui résout des tâches
complexes de raisonnement visuel par des séquences de changements d’attention
pour sélectionner et acheminer en mémoire les informations visuelles pertinentes
pour la tâche. Ce changement d’attention est mis en œuvre à l’aide d’un mod-
ule d’auto-attention guidé par une requête générée en interne. Nous démontrons
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que GAMR est efficace, robuste et compositionnel par rapport à l’une ou l’autre
des architectures basées sur le feedforward, l’attention ou la mémoire. De plus,
GAMR est capable de généraliser à des tâches de raisonnement complètement
nouvelles. Dans l’ensemble, notre travail analyse le rôle de l’auto-attention dans
l’architecture cognitive et de vision par ordinateur par leur capacité á résoudre
des tâches complexes de raisonnement visuel nécessitant de l’attention comme
élément clé pour résoudre efficacement les tâches de raisonnement.
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ABSTRACT

A fundamental mechanism of cognition needed to perform complex reasoning
tasks is the ability to selectively process information (attention) and retain infor-
mation in an accessible state (memory). We systematically analyze the role of
both these components, starting with Transformer-based self-attention as a model
of attention and later extending the architecture with memory. The Transformer
is the latest and seemingly most powerful class of neural architecture, and it has
brought a paradigm shift in the field of artificial intelligence. It has replaced re-
currence and convolution networks with self-attention as the de-facto architectural
choice for most AI applications.

We first study the computational mechanisms involved in a synthetic visual
reasoning test (SVRT) challenge, analyzing the ability of popular computer vi-
sion architecture (ResNet) of different depths trained on different dataset sizes. It
led to a novel, finer taxonomy for the twenty-three SVRT tasks consistent with
the broadly accepted same-different (SD) and spatial-relation (SR) classes of rea-
soning tasks in literature. Next, we study the role of self-attention incorporated
with ResNet50 in solving the SVRT challenge. Inspired by the two types of visual
attention systems, we modeled self-attention to be used as feature-based and spa-
tial attention to enrich the feature maps of a feedforward network. We evaluated
the ability of these attention networks to solve the SVRT challenge and found the
resulting architectures to be much more efficient at solving the hardest of these
visual reasoning tasks. The novel taxonomy obtained earlier is also partially ex-
plained by the relative improvement of the two attention networks and leads to
testable predictions regarding the attentional needs of SVRT tasks.

At last, we develop a novel cognitive architecture integrating self-attention and
memory. We propose GAMR (Guided Attention Model for visual Reasoning),
motivated by the theory of active vision. GAMR has similar working mechanisms
as that of the brain that solves complex visual reasoning tasks via sequences of
attention shifts to select and route the task-relevant visual information into mem-
ory. This shift of attention is implemented with the help of a self-attention module
guided by an internally generated query. We demonstrate that GAMR is sample-
efficient, robust, and compositional compared to either of the feedforward, atten-
tion or memory-based architectures. In addition, GAMR is shown to be capable of
zero-shot generalization on completely novel reasoning tasks. Overall, our work
analyzes the role of self-attention in cognitive and computer vision architecture
by their ability to solve complex visual reasoning tasks needing attention as a key
component to efficiently solve reasoning tasks.
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INTRODUCTION

Everyone knows what attention is.
It is the taking possession by the
mind, in clear and vivid form, of
one out of what seems several
simultaneously possible objects or
trains of thought.

– William James

Attention is a field widely discussed and studied in neuroscience, psychology,
cognitive science and machine learning [Chun et al., 2011, Cho et al., 2015]. At-
tention is the process of selectively focusing on a discrete aspect of information
while ignoring other perceivable information. A widely accepted feature of atten-
tion is that it facilitates efficient use of the available computational resources.

The cognitive science literature depicts several aspects of attention, such as
it can be concentrated, it can focus on a particular modality, it can be divided, it
can be selective, and it can have a finite capacity. However, selectivity is its most
characteristic feature. Selectivity is necessary because of the limited availability
of resources. Recently visual attention has gained tremendous attention in the
field of artificial intelligence. Visual attention [Ahmad, 1991] is the ability to
prioritize the information while neglecting the irrelevant information to overcome
the data overloading in our visual system. Visual attention helps in answering
what to look and where to look. It has been vastly studied in psychology and
neuroscience [Posner and Petersen, 1990, Bundesen, 1990, Desimone et al., 1995,
Corbetta and Shulman, 2002, Petersen and Posner, 2012]. These studies have
acted as a source of inspiration for several artificial intelligence models [Khosla
et al., 2007, Lindsay and Miller, 2018, Vaishnav et al., 2022a, Vaishnav and Serre,
2022].

There are three categories of selectivity in a visual attention system: by spatial
location (space-based) [Posner, 1980, Posner et al., 1982], by object membership
(object-based) [Duncan, 1984, Egly et al., 1994a, Vecera and Farah, 1994, Kramer
et al., 1997] and by particular features of the input (feature-based) [Harms and
Bundesen, 1983, Driver and Baylis, 1989, Kramer and Jacobson, 1991, Baylis
and Driver, 1992, Duncan and Nimmo-Smith, 1996].

3



INTRODUCTION

Visual Spatial Attention Every second, our eye makes small and rapid move-
ments several times, known as saccades. These eye movements change the locus
of attention. Visible shifts of attention, such as saccades, are known as overt vi-
sual attention. One more method used to emphasize a spatial location without any
over-the-shift of the fovea location is covert attention. An example is the sub-
ject’s fixation on a particular region throughout a task where the stimulus is likely
to appear. This region is also referred to as the “spotlight” of attention. Certain
visual patterns that involve edges, contrast, or motion automatically attract atten-
tion. These patterns are known as “salient” [Itti and Koch, 2001]. In the presence
of task-specific information, these saccadic movements are controlled in a top-
down fashion around the particular visual target instead of the salient regions.
Eye movements are one of the possible ways to control visual attention.

Visual Feature Attention When the focus of attention is on features like color,
shape or orientation instead of location, it is known as feature-based attention. It
is an example of covert visual attention. Cueing the right features enhances the
system’s performance. It is used in tasks such as visual search combining covert
feature-based attention with overt attention. Feature-based attention is global as
opposed to spatial attention, i.e., when attention is focused on a particular feature,
neurons representing that particular feature in the visual space are also modu-
lated [Saenz et al., 2002]. It is related to object attention, i.e., instead of attending
to an abstract feature, the attention is deployed at a specific object in a visual
scene [Chen, 2012]. A single feedforward pass in the visual hierarchy can segre-
gate the objects of a visual scene if there is a distinct salient difference between
them as opposed to a complex scene where recurrent and serial processing might
be required [Lamme and Roelfsema, 2000].

In addition to feature-based or spatial attention, another widely accepted clas-
sification is characterized by the type of data processing [Connor et al., 2004,
Buschman and Miller, 2007]. There are two types of data processing, bottom-up
and top-down. In a bottom-up attention process, external factors guide the at-
tentional process because of their inherent properties, like their color or sudden
motion in the scene. It is fast and primitive sensory driven. In top-down attention,
there is an internal attentional guidance mechanism based on prior knowledge and
current goals, like searching for food if one is hungry. It can ignore the salient
stimuli and focus on the target object or event.

Attention is also involved while performing tasks requiring multiple sensory
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signals. In the presence of multiple tasks or sensory signals, the central executive
controller helps to route the focus of attention. The Central executive controller is
responsible for coordinating activity with the cognitive system for directing atten-
tion, decision making and maintaining task goals. Context and history are deemed
helpful to executing tasks optimally – making it highly related to the working
memory. Attention is furthermore seen as the output of the central controller. The
controller selects the targets of attention and passes them to the system responsi-
ble for its implementation. There is a three-way relationship between executive
control, working memory and attention in such a way that the focus of attention is
selected by the executive controller based on the contents of the working memory
[Soto et al., 2008]. Although all the objects in the working memory can influ-
ence attention, the executive controller helps decide which one should affect the
most [Olivers and Eimer, 2011]. These vast and extensive cognitive studies re-
lated to attention have inspired the field of AI and helped to boost its performance
(Figure 1.1).

Figure 1.1: A summary of attention in Cognitive science and machine learning
(source)

The first attempt to adapt the attention mechanism in a neural network was
made in the 1980s when the improved version of Neocognitron [Fukushima, 1980]
incorporated selective attention [Fukushima, 1987] to decompose the image into
elementary features. Later, Fukushima and Imagawa [1993] modified the network
to recognize and segment characters in cursive handwriting. Postma et al. [1997]
proposed an attentional scanning model, SCAN, to attend to and identify object
patterns without decomposing the scene into elementary features. As an alterna-
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tive to these static neural approaches, Schmidhuber and Huber [1991] proposed a
sequential model inspired by the sequential eye movements for object detection.
In this model, a neural controller learns sequential generation of fovea trajectories
to reach the target. Furthermore, data processing types inspired the development
around the same time, thereby leading to a model extracting the region of interest
using bottom-up and top-down processing Milanese et al. [1994].

By the early 2000s, the influence of attention on the evolution of neural net-
works increased. Miau and Itti [2001] proposed a model of primate vision inte-
grating both, what and where pathways. The model has a fast visual attention-
based frontend to select the most salient image areas and a slow backend to recog-
nize objects in those selected areas. Another model based on the primate selective
mechanism is presented in Salah et al. [2002] with the idea of selectively attend-
ing to relevant parts of the input image. In this model, a neural network analyzes
the input image and generates posterior probabilities for the Markov models. At-
tention has also been used for object recognition [Walther et al., 2002] and scene
analysis [Schill et al., 2001].

The year 2015 marks the new innings of attention-based architectures with
the introduction of the attentional model for Neural Machine Translation (NMT)
[Bahdanau et al., 2014a, Luong et al., 2015] and image captioning [Xu et al.,
2015]. In NMT, the expectation is to learn continuous representations of variable-
length sequences. Recurrent neural networks (RNNs) like LSTMs [Hochreiter
and Schmidhuber, 1997a], GRUs [Cho et al., 2014a] and Quasi-RNNs [Bradbury
et al., 2017] were some of the popular sequence models for representation learning
at that time. While these RNNs’ output depends on the previous elements in a
sequence, traditional feedforward neural networks assume that inputs and outputs
are independent of each other. Nonetheless, their limitation includes their inability
to parallelize computations – making them slow during training and their fixed-
size memory – bottleneck for long-range interactions [Vaswani et al., 2017].

Models used for NMT typically consist of encoder-decoder architecture [Cho
et al., 2014b]. Typically, both encoder and decoder are RNNs, where the encoder
takes an input sequence of fixed-length vector and represents it again to another
fixed-length vector. A decoder then takes this encoded vector to generate the
output sequence token by token. However, this method has two challenges; first,
the encoder compresses the input sequence into a fixed vector length which may
lead to the loss of information [Cho et al., 2014a]. Second, the model is incapable
of aligning between input and output sequences which is essential for tasks such
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as translation or summarization [Young et al., 2018]. While generating the output
sequence, the decoder also lacked the mechanism to selectively focus on relevant
input tokens. Later, Bahdanau et al. [2014b] proposed a sequence-to-sequence
modeling task with the help of soft attention, emphasizing the parts of the sentence
relevant to predicting the target word. Bahdanau et al. [2014b] extended the basic
encoder-decoder by letting the model search a set of input words while generating
target words. It allowed the model to focus on information needed to generate the
subsequent target sequence.

In the following two years, the adoption of attentional mechanisms in neural
networks diversified. Content-based soft attention mechanism [Goodfellow et al.,
2016] is used in Neural Turing Machine (NTM) [Graves et al., 2014] with end-to-
end training. Around the same time, Cheng et al. [2016] used a form of attention
called intra-attention in the Long Short-Term Memory (LSTM) [Hochreiter and
Schmidhuber, 1997b] architecture. [Hochreiter and Schmidhuber, 1997b] embed-
ded a memory network inside the LSTM architecture to store the contextual repre-
sentation of the input. This memory network has a set of key and value vectors in
the hidden state to represent what is stored in the memory. These vectors are used
to estimate the intra-attention with the previously stored tokens in the memory
as opposed to the self-attention mechanism used by Vaswani et al. [2017] where
interaction between the whole input sequence is estimated. One of the first uses
of the self-attention mechanism in NLP is done by Parikh et al. [2016].

Since then, self-attention mechanisms have become an integral part of se-
quence modeling allowing the network to model dependencies between input and
output sequences irrespective of their distances. A self-attention layer calculates
a single-shot interaction between all pairs of words in a sequence.

1.1 Self-attention-based Transformer architecture

In 2017 Vaswani et al. [2017] proposed a novel architecture, Transformer for NLP.
It is predominantly a self-attention network driving the waves of advances in AI.
A Transformer architecture (Figure 1.2) includes a stack of encoder and decoder
blocks. Each encoder block is identical and contains a self-attention layer and
a feedforward layer. The encoder’s input flows through the self-attention layer
helping the encoder to look at other words while encoding the current word. Its
output is then fed to the feedforward layer. The same feedforward network is
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applied independently to each word. While a decoder consists of an encoder-
decoder attention block in addition to the self-attention layer and a feedforward
layer helping the decoder to focus on relevant parts of the input sequence.

Figure 1.2: Transformer architecture proposed by Vaswani et al. [2017] (source)

In the NLP task, each word of the input sequence is first converted into an em-
bedding vector. They are provided as input to the encoder block, passing through
a self-attention layer and feedforward network. The obtained output vector is fed
to the next encoder block. Using the self-attention layer, the Transformer models
the relationship between the current word with other relevant words of a sequence.

In a self-attention layer, its input vector is transformed into a key (K), query
(Q) and value (V ) vectors of dimension dq = dk = dv = 512 using a learnable matrix
transformation. At first, the score (S) is calculated to determine the amount of
focus to place on the other words in a sequence while encoding the current word.
This score is calculated using the dot product between the query and key vectors
(S = Q . KT ). It is normalized (S = S/

√
dk) to stabilize the gradients, and

later, using a softmax, converted into probabilities. The extent of the probability
score shows the relevancy of the current word with other words in the sequence.
This score is multiplied by the value vector (V ) so that relevant words are given
additional focus while irrelevant words are neglected in the subsequent layers.
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Attention (Q, K, V ) = softmax(Q . KT

√
dk

) . V

The self-attention mechanism proposed by Vaswani et al. [2017] has an ad-
ditional feature called multi-head attention (MHA). It helps to improve the per-
formance in two ways: by augmenting the network’s ability to focus on multiple
positions and by giving distinct representational subspaces to each word. For ex-
ample, if there are eight heads, eight sets of K, Q and V matrices exist, each
representing a unique representational subspace. They are concatenated before
passing through the feedforward network (Figure 1.3).

Figure 1.3: Illustration of Multi-head attention mechanism in a Transformer net-
work (source)

The key characteristic of NLP tasks is the order of the words in a sequence.
However, the operations we have discussed till now are permutation invariant.
Positional embedding vectors are added to each input embedding vector to address
this issue. These vectors help the model estimate the position of each word in a
sequence in the projection space (i.e., K/Q/V ).

Positional encoding in the Transformer is an active and vibrant research area.
Vanilla Transformer uses absolute positional encoding; however, more recent work
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[Devlin et al., 2018a, Dosovitskiy et al., 2021] prefers a learned [Gehring et al.,
2017] or relative positional encoding [Shaw et al., 2018]. The absolute coordinate
system does not encode translational equivariance, while relative geometry could.
Ramachandran et al. [2019], Bello et al. [2019] studied different positional en-
coding techniques and established that relative positional encoding offers the best
results while providing additional advantages like encoding for an unseen length
of sequences (refer to Wu et al. [2021a] for a review). An overview of different
positional encoding strategies used in NLP is discussed by Dufter et al. [2021].

The residual connection around the self-attention layer and a feedforward net-
work is an essential module in an encoder block. It is followed by the layer nor-
malization step [Baevski and Auli, 2018, Wang et al., 2019, Dosovitskiy et al.,
2021]. A residual connection is added to each sub-layer in the encoder (and de-
coder) to strengthen the flow of information and achieve higher performance.

At the end of the encoding steps, decoding begins. The decoder uses the
key (K) and value (V ) vectors from the top-most encoder block for its encoder-
decoder attention layer. It helps to focus on the appropriate locations of the input
sequence. At each step, the decoder layer provides an element of the final output
sequence. This output vector is again fed to the subsequent decoder layer in the
next time step. This process continues till the end of the sequence. An indepen-
dent set of positional encoding is applied on the decoder side.

The encoder-decoder attention module is similar to the multi-head self-attention
mechanism described earlier. The only difference is that the key K and value V
vectors are obtained from the top-most encoder block, and the query vector Q is
derived from the previous self-attention layer of the decoder. Unlike the encoder,
self-attention layers in the decoder are only allowed to access previously obtained
output by masking the future words of a sequence. Masking future positions is
done to prevent the decoder from cheating during the training phase – otherwise,
it will already know what is coming next. The linear layer at the end of the decoder
block is a fully connected neural network. It projects the vector obtained from the
decoder layers into a logit vector. This logit vector represents the complete vocab-
ulary of the language where translation has to be performed. A softmax converts
this logit to the probabilities and represents the concerned word from the available
vocabulary.

In terms of computational complexity, for a sequence of length n and dimen-
sionality d, self-attention layers are faster than recursive or convolutional layers
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when n is smaller than d, which is typically the case.

Layer Type Complexity Sequential Maximum
per Layer operations path length

Self-Attention O(n2.d) O(1) O(1)
Recurrent O(n.d2) O(n) O(n)

Convolutional O(k.n.d2) O(1) O(logk(n))

Table 1.1: Complexity comparison of different networks for a sequence of length
n and dimensionality d [Vaswani et al., 2017]

1.2 Self attention in vision tasks

Why self-attention for vision? In a self-attention mechanism, each word of a
sequence is correlated with all the others. Thus containing information about the
rest of the sequence – increasing the receptive field size equivalent to the length
of a sequence. In some sense, images are no different from NLP sequences. Com-
puter vision can take inspiration from the NLP domain to model long-range inter-
actions between pixels with the added benefit of multi-head attention helping to
parallelize these interactions. With the help of the multi-head attention method,
different heads can focus on modeling different relations between pixels. For ex-
ample, in a visual reasoning task where the objective is to count the number of
pairs in an image, one head can focus on finding a pair while the other can fo-
cus on counting them. It helps the network to model self-similarity within an
image. Images such as natural scenes and paintings display a great amount of
self-similarity. Such non-local self similarity property was earlier explored for
applications such as texture synthesis [Efros and Leung, 1999], object detection
and segmentation [Wang et al., 2018], bilateral filtering [Tomasi and Manduchi,
1998] and image classification [Parmar et al., 2018a]. Hereafter, the main focus
of this thesis will be computer vision.

Self-attention with CNN In a computer vision task, the resolution of the im-
ages could reach around 1000×1000 px. Applying a self-attention mechanism
to all these pixels ( 106 in number) is computationally expensive because of the
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quadratic complexity associated with the length of the sequence. Convolutional
layers, on the other hand, do not have this bottleneck. However, they face trouble
capturing long-range interactions because of their inability to scale up with the
large receptive fields.

To address this problem, there are predominantly two approaches. The first is
to reduce the self-attention operation cost to a linear scale. Aligned to this line of
work, Ramachandran et al. [2019] proposed a pure stand-alone attention model for
vision tasks by replacing the convolution operations with self-attention operations.
Nonetheless, the self-attention operation used in this approach is local. Another
similar linear attention variant Halo [Vaswani et al., 2021] uses block-wise local
attention to improve speed and accuracy.

The second approach is to build hybrid CNN-Transformer architectures where
the convolutions operations are used to encode the input image, and attention is
applied to those encoded features. Srinivas et al. [2021] explored a hybrid com-
bination of CNNs and multi-head self-attention (MHSA) models and showed that
replacing the 3 × 3 kernal size convolutional layer in the bottleneck blocks of
ResNet [He et al., 2016] with MHSA layers improved several CNN baselines.
Interestingly, DETR [Carion et al., 2020] showed that concatenating the Trans-
former model at the end of the feature-extraction network is helpful for tasks like
detection, localization, and segmentation.

There are four broad categories of research to incorporate self-attention mech-
anism with CNN, which are as follows:

Inserting few attention modules in between residual blocks: Along this
line of work, Wang et al. [2018], Chen et al. [2018] proposed a non-local block
similar to Ramachandran et al. [2019] and used them for video-based applications.
In this network, features are gathered and propagated motivated by the squeeze
and excite [Hu et al., 2018] network. As mentioned earlier, these methods only
focus on the spatial dimension for calculating the non-local interaction, so Yue
et al. [2018] added a correlation factor between the channels to improve the model
effectiveness. Similarly, Shen et al. [2021] proposed a method to bring down the
quadratic complexity of the self-attention mechanism to a linear scale. A unique
way to incorporate self-attention with a feedforward network is demonstrated by
Vaishnav et al. [2022a] where the intermediate features of the network are passed
through the self-attention layer to find the global association. This attention is
applied directly over the feature space in contrast to the previously used methods
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of squeezing the feature vector dimensions to save computations.

Inserting attention modules at the end: Usually, such models have a front-
end of convolutional block acting as a feature extraction module for self-attention
block as back-end. These models are used for tasks like object detection and se-
mantic segmentation. Huang et al. [2019] designed criss-cross attention that learns
the complete image dependency recurrently for semantic segmentation tasks using
dot-product attention. Moving away from this trend of using self-attention opera-
tions, Carion et al. [2020] proposed DETR architecture by placing a Transformer
model as the back-end.

Replacing convolution layers by self-attention layers: Self-attention mech-
anism used in this line of research is primarily local in nature to decrease the
computational demand associated with the increasing sequence length in an im-
age which is directly proportional to total pixel count. Bello et al. [2019] made
a unique attempt to augment the feature maps of convolutional layers with the
self-attention modules. Feature maps obtained with the help of the self-attention
module are concatenated with the feature maps of CNNs. They discovered that
replacing all the feature maps of CNN with the feature maps of self-attention lay-
ers degrades the system’s performance. Contrary to their finding, Ramachandran
et al. [2019] came up with the architecture replacing all the convolution layers
with a local self-attention layer and achieved better performance than a fully con-
volutional network on the image classification task.

In addition to these four categories of research, where the primary focus is on
computer vision applications, cognitive studies also explore self-attention mech-
anisms. In one of the first studies by Whittington et al. [2022], neural represen-
tations of Hippocampal formation are related to the Transformer model. They
did this correspondence with the help of the Tolman-Eichenbaum Machine Whit-
tington et al. [2020], a model for hippocampal formation. This work showed that
when recurrent positional encodings are used in Transformer, they replicate spatial
representations of hippocampal formations like place cells and grid cells. To ana-
lyze from an attentional point of view, Vaishnav et al. [2022a] studied the role of
a self-attention layer of the Transformer model in understanding visual reasoning
tasks. This layer is used as a feature-based or spatial attention layer. A multi-head
self-attention layer is significantly different from the other existing self-attention
models where the span of attention in the dot-product mechanisms is local. They
proposed a self-attention mechanism that could be applied globally over a feed-
forward network’s spatial or feature space. This method gives the network higher
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representation power because of its ability to use multi-head attention. Recently,
Vaishnav and Serre [2022] built a cognitive architecture inspired by the active
vision literature relating to the shifting of the spotlight of attention. This atten-
tion routing is implemented with a controller module consisting of a self-attention
module and an LSTM layer, which generates a query to guide the shifting. More
studies in the NLP domain focus on relating language models to brain activations;
however, a similar trend is yet to be seen in the computer vision domain.

These developments exploring the self-attention mechanisms propelled toward
building a fully self-based attention architecture for computer vision applications.
Evolutions in the NLP domain were vital in inspiring the fully self-attention-based
architecture for vision tasks.

1.3 Transformer-based vision architecture

The first fully self-attention-based Transformer architecture is presented by Doso-
vitskiy et al. [2021]. It is known as Vision Transformer (ViT) (Figure 1.4). In this
architecture, an input image is divided into a sequence of image patches called
visual tokens and transforms those patches before passing them to the network.
The core idea is to treat each pixel as a token and pass it to the Transformer net-
work. However, with the increasing size of the number of pixels, attention cost
scales quadratically, so patches of 16×16 pixels are used instead. Each patch is
flattened and linearly projected to a vector of the desired dimension. As the net-
work is agnostic to the positions of these patches w.r.t. the input image, position
embeddings are added to learn the 2D structure. ViT learns this encoded structural
information while training. A learnable class embedding token is also added at the
beginning of the sequence. A class embedding token is inspired from Devlin et al.
[2018b] that is learned along with other patches while training the network. This
learnable token eventually helps to predict the classification label with the help of
a multi-layer perceptron (MLP) head.

When the ViT is trained on a mid-sized dataset like ImageNet [Deng et al.,
2009], outcomes are not impressive because of their lack of inductive biases such
as translational equivariance and locality. ViT experiences difficulty learning
image-specific inductive biases like a CNN, as the model never sees the com-
plete 2D image during training but only a sequence of transformed patches. Such
CNN-like biases are compensated by training the model with massive databases
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Figure 1.4: Vision Transformer architecture [Dosovitskiy et al., 2021]

like JFT-300M and fine-tuning it for downstream tasks. ViT learns the spatial re-
lationship from scratch, which raises its demand for extra training data and longer
training time. Touvron et al. [2021a] proposed DeIT, equalizing this pre-training-
related bottleneck using techniques like the teacher-student distillation approach
and robust augmentation methods. DeIT, when trained on ImageNet by incorpo-
rating these methods, surpasses the performance of the ViT model.

Vision transformers are a front-runner in capturing the long-range dependen-
cies in an image, yet they fail to account for local features as CNNs do. A wide
gap is perceived between ViT and CNN learnability. Wu et al. [2021b], Guo et al.
[2022], Yuan et al. [2021], Graham et al. [2021], Dai et al. [2021], Peng et al.
[2021] analysed the potential weaknesses in directly applying Transformer model
from NLP domain and proposed a combination with convolutional network. Wu
et al. [2021b] proposed a Convolutional vision Transformer (CvT) and presented
a convolutional-based patch projection of image tokens along with a hierarchi-
cal design. Another alternative, LocalViT [Li et al., 2021] proposed depthwise
convolution to capture local features. Meanwhile, LeViT Graham et al. [2021]
enhanced the inference speed of ViT by designing multistage transformer archi-
tecture and downsampling the image using attention. In yet another network pro-
posed by Zhou et al. [2021], it incorporated locality without convolutions with the
help of enhanced local self-attention using Hadamard attention and ghost head.
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Hadamard attention is more computational-friendly than dot-product attention,
while ghost heads increase the channel capacity by combining attention maps.

A striking network, ConViT, proposed by d’Ascoli et al. [2021] took a step
further to incorporate the convolutional biases into the Transformer architecture.
d’Ascoli et al. [2021] initialized self-attention layers with soft convolutions with
the help of Gated-Positional-Self-Attention (GPSA). This self-attention block is
characterized by locality strength and head-specific center of attention. The local-
ity factor determines how much the head should focus around its center of atten-
tion. For any given query patch, which head should give attention to which posi-
tion is decided by the head-specific center of attention. With suitable parameters
setting, ConViT can have ViT-like expressive power and could be trained in low-
data regimes like CNNs. Recently, Vaishnav et al. [2022b] proposed conviformer
to incorporate convolutional biases into any vision transformer with minimal ar-
chitectural change. With the conviformer architecture, the network can also attend
to higher-resolution images and provide compatibility with the base architecture
used.

Challenges Transformer architecture confronts a two-front challenge. It re-
quires enormous data for training to learn the right inductive bias and the com-
putational cost associated with the sequence length. Figure 1.5 compares the
computational requirement of different Transformers and CNNs models. An em-
pirical study is done by Zhai et al. [2022] on the scalability of the ViT. They report
that scaling up training samples and parameters of the model scale up the overall
performance of the model; nevertheless, this plateaus quickly for smaller models
as they cannot leverage additional data. It indicates that larger models have the
scope to improve their representation learning abilities. Training a Transformer
model requires massive data to compete with inductive biases like translation in-
variance similar to CNN. The self-attention mechanisms in a Transformer learn
such image-specific concepts during longer training times, thereby significantly
increasing the compute requirements. Strong data augmentation techniques nowa-
days compensate for the vast dataset requirement.

Transformer architecture furthermore lacks explicit mechanisms to attend to
local neighborhoods. A commonly accepted solution to this issue is to restrict
the attention mechanism to the local area Parmar et al. [2018b] or to incorporate
structural priors on attention like Sparsity [Child et al., 2019]. It makes a dense
attention matrix into a sparse matrix limiting the computations. Regardless, the
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Figure 1.5: Computational demands for training Transformers vs. CNNs. Com-
pute needed to train a Transformer network has increased by 275 times in the last
two years. (source)

approach has some limitations. Sparse matrix multiplication operations are un-
common for hardware accelerators.

An additional computational bottleneck is calculating the dot product oper-
ation in the self-attention layer. Existing techniques to handle this situation are
half-precision, gradient accumulation and gradient checkpointing. Tensor com-
putations on modern hardware architectures are effectively done with 16-bit float
tensors. Sometimes higher precision is required while calculating the loss, which
doubles the required memory. This precision handling is carried out with the
help of apex library1. On a fixed GPU/TPU machine, a large model may only
fit a single-digit batch size, ultimately leading to unstable learning. A multivari-
ate chain rule is used to incorporate the dynamics related to bigger batch sizes.
It sums the gradients for a larger batch and computes the gradient descent at the
end. For more bigger models, the trade-off is to separate the model into different
chunks and compute the gradient in a forward/backward pass for each chunk.

1https://nvidia.github.io/apex/
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Recently, Vaishnav et al. [2022b] proposed conviformer to address ViT’s in-
ability to process longer sequences which restricted ViT to smaller resolution
images. In the conviformer, the input image is passed through a convolutional
backbone, down-sampling the image to 224×224 (a commonly accepted input
resolution). With the help of a convolutional frontend, the network makes sure to
introduce the inductive biases of CNN into the network. The feature vectors ob-
tained by the CNN modules are later passed to the base architecture of the vision
transformer. This technique holds the compatibility of the network with the based
model and provides a performance boost with insignificant additional computa-
tional cost.

Finally, training a huge Transformer model has negatively impacted the envi-
ronment. Compute cost and the complexity associated with the Transformer are
directly related to environmental factors such as CO2 emission [Strubell et al.,
2020] and high energy consumption [You et al., 2020]. There is also a cost asso-
ciated with mining rare metals for manufacturing these hardware accelerators.

1.4 Original Contributions

Our contributions are as follows:

• We present a novel fine-grained taxonomy for the SVRT tasks by systemat-
ically analyzing the ability of feedforward neural networks.

• We first propose a self-attention-augmented feedforward network modeled
as spatial or feature-based attention.

• Our attentional networks analysis on SVRT tasks provides a granular com-
putational account of visual reasoning and yields testable neuroscience pre-
dictions regarding the differential need for feature-based versus spatial at-
tention depending on the type of visual reasoning problem.

• Next, we present a novel transformer-based end-to-end trainable guided-
attention module to learn to solve visual reasoning challenges in a data-
efficient manner.

• We show that our multi-head transformer-based guided-attention module
learns to shift attention to task-relevant locations and gate relevant visual
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elements into a memory bank; such a multi-head transformer is also shown
to perform significantly better than the popular self-attention mechanisms
present in state-of-the-art transformer networks [Vaswani et al., 2017].

• We show that our architecture learns compositionally and is capable of
learning efficiently by re-arranging previously-learned elementary opera-
tions stored within a reasoning module.

• Our architecture sets new benchmarks on SVRT [Fleuret et al., 2011] and
ART [Webb et al., 2021], the two main visual reasoning challenges.

The work presented in Chapter 2 and Chapter 3 are taken from our following
publication:

• Mohit Vaishnav, Remi Cadene, Andrea Alamia, Drew Linsley, Rufin Van-
Rullen, Thomas Serre; “Understanding the Computational Demands Under-
lying Visual Reasoning.” Neural Computation 2022; 34 (5): 1075–1099.
doi: https://doi.org/10.1162/neco_a_01485

The work presented in Chapter 4 is taken from our following publication:

• Mohit Vaishnav, Thomas Serre. “GAMR: A Guided Attention model for
(visual) Reasoning.” ArXiv abs/2206.04928 (2022)
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2.1 Introduction

Humans can effortlessly reason about the visual world and provide rich and de-
tailed descriptions of briefly presented real-life photographs [Fei-Fei et al., 2007],
vastly outperforming the best current computer vision systems [Geman et al.,
2015, Kreiman and Serre, 2020]. For the most part, studies of visual reasoning in
humans have sought to characterize the neural computations underlying the judg-
ment of individual relations between objects, such as their spatial relations (e.g.,
Logan [1994a]) or whether they are the same or different (up to a transformation,
e.g., Shepard and Metzler [1971]). It has also been shown that different visual
reasoning problems have different attentional and working memory demands [Lo-
gan, 1994b, Moore et al., 1994, Rosielle et al., 2002, Holcombe et al., 2011, Van
Der Ham et al., 2012, Kroger et al., 2002, Golde et al., 2010, Clevenger and Hum-
mel, 2014, Brady and Alvarez, 2015]. However, there is still little known about
the neural computations that are engaged by different types of visual reasoning
(see Ricci et al. [2021] for a recent review).

One benchmark that has been designed to probe abstract visual relational ca-
pabilities in humans and machines is the Synthetic Visual Reasoning Test (SVRT)
[Fleuret et al., 2011]. The dataset consists of twenty-three hand-designed binary
classification problems that test abstract relationships between objects posed on
images of closed-contour shapes. Observers are never explicitly given the under-
lying rule for solving any given problem. Instead, they learn it while classifying
positive and negative examples and receiving task feedback. Examples from two
representative tasks are depicted in Figure 2.1: observers must learn to recog-
nize whether two shapes are the same or different (Task 1) or whether or not the
smaller of the two shapes are near the boundary (Task 2). Additional abstract
relationships tested in the challenge include “inside", “in between”, “forming a
square”, “aligned in a row" or “finding symmetry" (see Figures A1 and A2 for
examples).

Most SVRT tasks are rapidly learned by human observers within twenty or
fewer training examples [Fleuret et al., 2011] (see Table A.1; reproduced from the
original study). On the other hand, modern deep neural network models require
several orders of magnitude more training samples for some of the more challeng-
ing tasks [Ellis et al., 2015a, Kim et al., 2018, Messina et al., 2021a, Stabinger
et al., 2021, 2016a, Puebla and Bowers, 2021] (see Ricci et al. [2021] for review;
see also Funke et al. [2021a] for an alternative perspective).
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Figure 2.1: Two SVRT sample tasks from a set of twenty-three in total. For each
task, the leftmost and rightmost two examples illustrate the two categories to be
classified. Representative samples for the complete set of twenty-three tasks can
be found in Figure A1 and A2.

It is now clear that some SVRT tasks are more difficult to learn than others.
For instance, tasks that involve spatial-relation (SR) judgments can be learned
much more easily by deep convolutional neural networks (CNNs) than tasks that
involve same-different (SD) judgments [Stabinger et al., 2016a, Kim et al., 2018,
Yihe et al., 2019a]. In contrast, a very recent study [Puebla and Bowers, 2021]
demonstrated that even when CNNs learn to detect whether objects are the same
or different, they fail to generalize over small changes in appearance, meaning that
they have only partially learned this abstract rule. The implication of the relative
difficulty of learning SR versus SD tasks is that CNNs appear to need additional
computations to solve SD tasks beyond standard filtering, non-linear rectification,
and pooling. Indeed, recent human electrophysiology work [Alamia et al., 2021a]
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has shown that SD tasks recruit cortical mechanisms associated with attention
and working memory processes to a greater extent than SR tasks. Others have
argued that SD tasks are central to human intelligence [Firestone, 2020, Forbus
and Lovett, 2021, Gentner et al., 2021a]. Beyond this basic dichotomy of SR and
SD tasks, little is known about the neural computations necessary to learn to solve
SVRT tasks as efficiently as human observers.

Here, we investigate the neural computations required for visual reasoning. In
our experiment, we extend prior studies on the learnability of individual SVRT
tasks by feedforward neural networks using a popular class of deep neural net-
works known as deep residual networks (“ResNets”) [He et al., 2016]. We sys-
tematically analyze the ability of ResNets to learn all twenty-three SVRT tasks
as a function of their expressiveness, parameterized by processing depth (number
of layers), and their efficiency in learning a particular task. Through these exper-
iments, we found that most of the performance variance in the space of SVRT
tasks could be accounted for by two principal components, which reflected both
the type of task (same-different vs. spatial-relation judgments) and the number of
relations used to compose the underlying rules.

2.2 Systematic analysis of SVRT tasks’ learnability

All experiments were carried out with the Synthetic Visual Reasoning Test (SVRT)
dataset using code provided by the authors to generate images with dimension 128
× 128 pixels (see Fleuret et al. [2011] for details). All images were normalized
and resized to 256×256 pixels for training and testing models. No image augmen-
tations were used during training. In our first experiment, we wanted to measure
how easy or difficult each task is for ResNets to learn. We did this by recording
the SVRT performance of multiple ResNets, each with different numbers of lay-
ers and trained with different numbers of examples. By varying model complexity
and the number of samples provided to a model to learn any given task, we ob-
tained complementary measures of the learnability of every SVRT task for ResNet
architectures. In total, we trained 18-, 50-, and 152-layer ResNets separately on
each of the SVRT’s twenty-three tasks. Each of these models was trained with
.5k, 1k, 5k, 10k, 15k, and 120k class-balanced samples. We also generated two
unique sets of 40k positive and negative samples for each task: one was used as a
validation set to select a stopping criterion for training the networks (if validation
accuracy reaches 100%) and one was used as a test set to report model accuracy. In
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addition, we used three independent random initializations of the training weights
for each configuration of architecture/task and selected the best model using the
validation set. Models were trained for 100 epochs using the Adam optimizer
[Kingma and Ba, 2014] with a training schedule (we used an initial learning rate
of 1e-3 and changing it to 1e-4 from the 70th epoch onward). As a control, be-
cause these tasks are quite different from each other, we also tested two additional
initial learning rates (1e-4, 1e-5).

Consistent with prior work [Kim et al., 2018, Stabinger et al., 2016a, Yihe
et al., 2019a], we found that some SVRT tasks are much easier to learn than oth-
ers for ResNets (Figure 2.2). For instance, a ResNet50 needs only 500 examples
to perform well on tasks 2, 3, 4, 8, 10, 11, 18 but the same network needs 120k
samples to perform well on task 21 (see Figures A1 and A2 for examples of these
tasks). Similarly, with 500 training examples, task 2, 3, 4 & 11 can be learned well
with only 18 layers while task 9, 12, 15 & 23 require as many as 152 layers. A
key assumption of our work is that these differences in training set sizes and depth
requirements between different SVRT tasks reflect different computational strate-
gies that need to be discovered by the neural networks during training for different
tasks. Our next goal is to characterize what these computational strategies are.

2.3 An SVRT taxonomy

To better understand the computational strategies needed to solve the SVRT, we
analyzed ResNet performance on the tasks with a multi-variate clustering analysis.
For each individual task, we created an N -dimensional vector by concatenating
the test accuracy of all ResNet architectures (N = 3 depths × 5 training set sizes
= 15), which served as a signature of each task’s computational requirements. We
then passed a matrix of these vectors to an agglomerative hierarchical clustering
analysis (Figure 2.3) using the Ward′s method.

Our clustering analysis revealed a novel taxonomy for the SVRT. At the coars-
est level, it recapitulated the dichotomy between same-different (SD; green branches)
and spatial-relation (SR; brown branches) categorization tasks originally identi-
fied by Kim et al. [2018] using shallow CNNs. Interestingly, two of the tasks
which were classified as SR by Kim et al. [2018] (tasks 6 & 17) were assigned to
the SD cluster in our analysis. We examined the descriptions of these two tasks
as given in Fleuret et al. [2011] (see also Figures A1 and A2) and found that these
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Figure 2.2: Test accuracy for each of the twenty-three SVRT tasks as a function
of the number of training samples for ResNets with depths 18, 50 and 152, resp.
The color scheme reflects the identified taxonomy of SVRT tasks (see Figure 2.3
and text for details).
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Figure 2.3: Dendrogram derived from an N-dim hierarchical clustering analysis
on the test accuracy of N=15 ResNets[18/50/152] trained to solve each task over
a range of training set sizes.

two tasks involve both SR and SD: they ask observers to tell whether shapes are
the same or different and judge the distance between the shapes. Specifically,
task 6 involves two pairs of identical shapes with one category having the same
distance in-between two identical shapes vs. not in the other. Similarly, in task
17, three of the four shapes are identical and their distance from the non-identical
one is the same in one category vs. different in the other. Thus, our data-driven
dichotomization of SR vs. SD refines the original proposal of Kim et al. [2018].
This could be due to our use of ResNets (as opposed to vanilla CNNs), deeper
networks, and a greater variety of training set sizes (including much smaller train-
ing set sizes than those used by Kim et al. [2018]). The analysis by Fleuret et al.
[2011] also revealed that several SD tasks (6, 16, 17, 21) are particularly challeng-
ing for human observers.

Our clustering analysis also revealed a finer organization than the main SR vs.
SD dichotomy. The SR cluster could be further subdivided into two sub-clusters.
The SR2 (dark-brown-coloured) branch in Figure 2.3 captures tasks that involve
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relatively simple and basic relation rules such as shapes making close contact
(3, 11), or being close to one another (2), one shape being inside the other (4)
or whether the shapes are arranged to form a symmetric pattern (8, 10, 18). In
contrast, tasks that fall in the SR1 (light-brown-colored) branch involve the com-
position of more than two rules such as comparing the size of multiple shapes to
identify a subgroup before identifying the relationship between the members of
the sub-groups. This includes tasks such as finding a larger object in between two
smaller ones (9) or three shapes of which two are small and one large with two
smaller (identification of large and small object) ones either inside or outside in
one category vs. one inside and the other outside in the second (23), or two small
shapes equally close to a bigger one (12), etc. These tasks also tend to be compar-
atively harder to learn, requiring ResNets with greater processing depth and more
training samples. For instance, tasks 9, 12, 15, 23 were harder to learn than tasks
2, 4, 11 requiring more samples and/or more depth to solve well (Figure 2.2).

We found that task 15 gets assigned to this latter sub-cluster because the task
requires finding four shapes in an image that are identical vs. not. One would
expect this task to fall in the SD cluster but we speculate that the deep networks are
actually able to leverage a shortcut [Geirhos et al., 2020] by classifying the overall
pattern as symmetric/square (when the four shapes are identical) vs. trapezoid
(when the four shapes are different; see Figure A2) – effectively turning an SD
task into an SR task.

Our clustering analysis also reveals a further subdivision of the SD cluster.
These tasks require recognizing shapes that are identical to at least one of the other
shapes in the image. The first sub-cluster SD2 (light green color branch) belongs
to tasks that require identification of simple task rules, like answering whether or
not two shapes are identical (even if it is along the perpendicular bisector) (tasks 1,
20; see Figure A1), determining if all the shapes on an image are the same (16, 22),
or detecting if two pairs of identical shapes can be translated to become identical
to each other (13). Another set of tasks within this sub-cluster includes tasks
that are defined by more complex rules that involve the composition of additional
relational judgments. Sample tasks include identifying pairs/triplets of identical
shapes and measuring the distance with the rest (6, 17), determining if an image
consists of pairs of identical shapes (5), or detecting if one of the shapes is a scaled
version of the other (19). Finally, the second sub-cluster SD1 shown in dark-green
color involves two tasks that require an understanding of shape transformations.
One task asks observers to say if one of the shapes is the scaled, translated, or
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rotated version of the other one (21). The other task test asks observers to judge
whether or not an image contains two pairs of three identical shapes or three pairs
of two identical shapes in an image (7).

To summarize this first set of experiments, we have systematically evaluated
the ability of ResNets spanning multiple depths to solve each of the twenty-three
SVRT tasks for different training set sizes. This allowed us to represent SVRT
tasks with according to their learnability by ResNets of varying depth. By clus-
tering these representations, we extracted a novel SVRT taxonomy that both re-
capitulated an already described SD-SR dichotomy [Kim et al., 2018], and also
revealed a more granular task structure corresponding to the number of rules used
to form each task. Tasks with more rules are harder for ResNets to learn. Our
taxonomy also reveals an organization of tasks where easier SR1 and SR2 sub-
clusters fall closer to each other than harder SD1 and SD2 sub-clusters.

2.4 Conclusion

The goal of the present study was to shed light on the computational mech-
anisms underlying visual reasoning using the Synthetic Visual Reasoning Test
(SVRT) [Fleuret et al., 2011]. There are twenty-three binary classification prob-
lems in this challenge, which include a variety of same-different and spatial rea-
soning tasks.

In our experiment, we systematically evaluated the ability of a battery of
N = 15 deep convolutional neural networks (ResNets) – varying in depths and
trained using different training set sizes – to solve each of the SVRT problems.
We found a range of accuracies across all twenty-three tasks. Shallower networks
easily learned some tasks, and relatively small training sets and some tasks were
hardly solved with much deeper networks and orders of magnitude more training
examples.

Under the assumption that the computational complexity of individual tasks
can be well characterized by the pattern of test accuracy across these N = 15
neural networks, we formed N-dimensional accuracy vectors for each task and
ran a hierarchical clustering algorithm. The resulting analysis suggests a tax-
onomy of visual reasoning tasks: beyond two primary clusters corresponding to
same-different (SD) vs. spatial relation (SR) judgments, we also identified a finer
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organization with sub-clusters reflecting the nature and the number of relations
used to compose the rules defining the task. Our results are consistent with previ-
ous work by Kim et al. [2018], who first identified a dichotomy between SD and
SR tasks. Our results also extend prior work [Fleuret et al., 2011, Kim et al., 2018,
Yihe et al., 2019a] in proposing a finer-level taxonomy of visual reasoning tasks.
The accuracy of neural networks is reflected in the number of relationships used
to define the basic rules, which is expected, but it deserves closer examination.

Kim et al. [2018] have previously suggested that SD tasks “strain” convolu-
tional neural networks. That is, while it is possible to find a network architecture
of sufficient depth (or the number of units) that can solve a version of the task up
to a number of stimulus configurations (e.g., by forcing all stimuli to be contained
within a ∆H×∆W window), it is relatively easy to render the same task unlearn-
able by the same network past a certain number of stimulus configurations (e.g.,
by increasing the size of the window that contains all stimuli). It is as if these
convolutional networks are capable of learning the task if the number of stimulus
configurations remains below their memory capacity, and fails beyond that. It re-
mains an open question whether non-convolution alternatives to the CNNs tested
here such as the now popular transformer networks [Dosovitskiy et al., 2021, Tou-
vron et al., 2021a, Tolstikhin et al., 2021] would learn to solve some of the harder
SVRT tasks more efficiently. As an initial experiment, we attempted to train and
test a Vision Transformer 1 (ViT) [Dosovitskiy et al., 2021] constrained to have
a similar number of parameters (21M) to the ResNet-50 used here. We were not
able to get these architectures to do well on most of the tasks that are difficult
for ResNets, even with 100k samples (also shown in Messina et al. [2021b]). It
is worth noting that even 100k samples remain a relatively small dataset size by
modern-day standards since ViT was trained from scratch.

Multi-layer perceptrons and convolutional neural networks including ResNets
and other architectures can be formally shown to be universal approximators un-
der certain architectural constraints. That is, they can learn arbitrary mappings
between images to class labels. Depending on the complexity of the mapping, one
might need an increasing number of hidden units to allow for enough expressive-
ness of the network; but provided enough units / depth and a sufficient amount of
training examples, deep CNNs can learn arbitrary visual reasoning tasks. While
we cannot make any strong claim for the specific ResNet architectures used in
this study (currently, the proof is limited to a single layer without max pooling or

1https://github.com/facebookresearch/dino
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batch normalization [Lin and Jegelka, 2018]), we have indeed found empirically
that all SVRT tasks could indeed be learned for networks of sufficient depth and
provided a sufficient amount of training examples. However, deep CNNs typi-
cally lack many of the human cognitive functions, such as attention and working
memory. Such functions are likely to provide a critical advantage for a learner to
solve some of these tasks [Marcus, 2001]. CNNs might have to rely instead on
function approximation which could lead to a less general “brute-force” solution.
Given this, an open question is whether the clustering of SVRT tasks derived from
our CNN-based analyses will indeed hold for human studies. At the same time,
the prediction by Kim et al. [2018] using CNNs that SD tasks are harder than SR
tasks and hence that they may demand additional computations (through feedback
processes) such as attention and/or working memory was successfully validated
experimentally by Alamia et al. [2021a] using EEG.

Additional evidence for the benefits of feedback mechanisms for visual rea-
soning was provided by Linsley et al. [2018a] who showed that contour tracing
tasks that can be solved efficiently with a single layer of a recurrent CNN may re-
quire several order of magnitudes more processing stages in a non-recurrent-CNN
to solve the same task. This ultimately translates into much greater sample ef-
ficiency for recurrent-CNNs on natural image segmentation tasks [Linsley et al.,
2020]. The closely related task of “insideness” was also studied by Villalobos
et al. [2021] who demonstrated the inability of CNNs to learn a general solution
for this class of problems. Universal approximators with minimal inductive biases
such as multi-layer perceptrons, CNNs and other feedforward or non-attentive ar-
chitectures can learn to solve visual reasoning tasks, but they might need a very
large number of training examples to properly fit. Hence, beyond simply measur-
ing the accuracy of very deep nets in high data regimes (such as when millions of
training examples are available), systematically assessing the performance of neu-
ral nets of varying depths and for different training regimes may provide critical
information about the complexity of different visual reasoning tasks.
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3.1 Introduction

Humans continue to outperform modern AI systems in their ability to flexibly
parse and understand complex visual relations. Prior cognitive neuroscience work
suggests that attention plays a key role in humans’ visual reasoning ability. In
the previous chapter, we discussed a benchmark used to evaluate the abilities of
machines and compare them with humans. We did this by systematically assessing
the ability of modern deep convolutional neural networks (CNNs) to learn to solve
the synthetic visual reasoning test (SVRT) challenge, a collection of 23 visual
reasoning problems. Our analysis revealed a novel taxonomy of visual reasoning
tasks, which can be primarily explained by the type of relations (same-different
(SD) versus spatial-relation (SR) judgments) and the number of relations used to
compose the underlying rules.

Consistent with the speculated role of attention in solving the binding prob-
lem when reasoning about objects [Egly et al., 1994b, Roelfsema et al., 1998],
prior work by Kim et al. [2018] has shown that combining CNNs with an oracle
model of attention and feature binding (i.e., preprocessing images so that they are
explicitly and readily organized into discrete object channels) renders SD tasks as
easy to learn by CNNs as SR tasks. Here, we build on this work and introduce
CNN extensions incorporating spatial or feature-based attention. In the first set
of experiments, we show that these attention networks learn difficult SVRT tasks
with fewer training examples than their non-attentive (CNN) counterparts but that
the different forms of attention help on different tasks.

This experiment raises the question: how do attention mechanisms help with
learning different visual reasoning problems? There are at least two possible
computational benefits: attention could improve model performance by simply
increasing its capacity, or attention could help models learn the abstract rules gov-
erning object relationships more efficiently. To adjudicate between these two pos-
sibilities, we measured the sample efficiency of ResNets pre-trained on SVRT
images so that they only had to learn the abstract rules for each SVRT task. We
found that attention ResNets and ResNets pre-trained on the SVRT were simi-
larly sample-efficient in learning new SVRT tasks, indicating that attention helps
discover abstract rules instead of merely increasing model capacity.
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3.2 Experiment 1: Self-attention with ResNet50

We sought to identify computational mechanisms that could help ResNets learn
the more challenging SVRT tasks revealed by our novel taxonomy. Attention
has classically been implicated in visual reasoning in primates and humans [Egly
et al., 1994b, Roelfsema et al., 1998]. Attentional processes can be broadly di-
vided into spatial (e.g., attending to all features in a particular image location)
vs. feature-based (e.g., attending to a particular shape or color at all spatial po-
sitions) [Desimone et al., 1995]. The importance of attention for perceiving and
reasoning about challenging visual stimuli has also been realized by the computer
vision community. There are now a number of attention modules proposed to
extend CNN’s – including spatial (e.g., Sharma et al. [2015], Chen et al. [2015],
Yang et al. [2016], Xu and Saenko [2015], Ren and Zemel [2016]), feature-based
(e.g., Stollenga et al. [2014], Chen et al. [2017], Hu et al. [2018]) and hybrid (e.g.,
Linsley et al. [2018b], Woo et al. [2018]) approaches. Here, we adapt the increas-
ingly popular Transformer architecture [Vaswani et al., 2017] to implement both
forms of attention. These networks, which were originally developed for natural
language processing, are now pushing the state of the art in computer vision [Zhu
et al., 2020, Carion et al., 2020, Dosovitskiy et al., 2021]. Recent work [Ding
et al., 2021] has also shown the benefits of such architectures and especially at-
tention mechanisms for solving higher-level reasoning problems.

Transformers are neural network modules usually consisting of at least one
“self-attention” module followed by a feedforward layer. Here, we introduced
different versions of the self-attention module into ResNets to better understand
the computational demands of each SVRT task. Transformers’ self-attention is
applied to and derived from the module’s input. By reconfiguring standard Trans-
former self-attention, we developed versions capable of allocating either spatial
or feature-based attention over the input. Specifically, we created these different
forms of attention by reshaping the convolutional feature map input to a Trans-
former. For spatial attention, we reshaped the Z ∈ RH,W,C feature maps to
Z ∈ RC,H∗W so that the Transformer’s self-attention was allocated overall spa-
tial locations. For feature-based attention, we reshaped the convolutional feature
maps to Z ∈ RH∗W,C , enforcing attention to overall features instead of spatial
locations.
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Spatial Attention Module (SAM) Our first attention module takes a features
map X ∈ RdC×dH×dW as input, where dC , dH , and dW respectively refer to the
number of channels, height and width of the map, and outputs a features map Y of
the same dimensions. We flatten the spatial dimensions to obtain X ′ ∈ RdC×dN ,
where dN = dH×dW , and we apply the original multi-head self-attention module
from Vaswani et al. [2017] as follows.

We first apply independent linear mappings of the input X ′ to obtain three
feature maps of dimensions Rd×dN for each attention head from a total of nH

heads. For the ith head, these maps are known as the query Qi, the key Ki and the
value Vi, and are obtained such as:

Qi = W Q
i .X ′

Ki = W K
i .X ′

Vi = W V
i .X ′

The mappings are parametrized by three matrices W Q
i , W K

i and W V
i of dimen-

sionsRd×dC for each head. The symbol . denotes a matrix multiplication.

Then, we apply the scaled dot-product attention [Vaswani et al., 2017] to ob-
tain nH attention heads of dimensionsRd×dN such as:

Hi = SoftMax(Qi.K
T
i√

d
)Vi (3.1)

After, we concatenate all attention heads along the first dimension and apply
a linear mapping to obtain Y ′ ∈ RdC×dN such as:

Z = W O.Concat(H1, ..., HnH
) (3.2)

The mapping is parametrized by the matrix W O ∈ RdC×d.

As commonly done, we have a residual connection before applying a layer
normalization [Ba et al., 2016] such as:

Y ′ = LayerNorm(Z + X ′) (3.3)

Finally, we unflatten Y ′ to obtain Y ∈ RdC×dH×dW .
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We obtain the best results with a representation space of 512 dimensions (d =
512) and four attention heads (nH = 4).

Features-based Attention Module (FBAM) Our second attention module is
simply obtained by transposing the channel dimension with the spatial dimensions
before applying the same transformations. In other words, we transpose the input
X ′ into RdN ×dC and transpose the output Y ′ back into RdC×dN . While SAM
models attention over the dH ∗ dW regions that compose the input features map,
FBAM models attention over the dC features channels.

We obtain the best results with a representation space of 196 dimensions (d =
196) and one attention head (nH = 1).

Figure 3.1: Location of the Transformer self-attention modules in our ResNet
extensions.

We added one spatial or feature-based attention after one of the four residual
blocks in a ResNet-50. We placed either form of attention module to a ResNet-50
by choosing the location where the addition of attention yielded the best valida-
tion accuracy across the SVRT tasks. Through this procedure, we inserted a spa-
tial attention module after the second residual block and a feature-based attention
module after the third residual block (Figure 3.1).

To measure the effectiveness of different forms of attention for solving the
SVRT, we compared the accuracy of three ResNet-50 models: one capable of
spatial attention, one capable of feature-based attention, and one that had no atten-
tion mechanisms (“vanilla”) (Figure 3.2). Spatial attention consistently improved
model accuracy on all tasks across all five dataset sizes that models we used for
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training models. The improvement in accuracy is particularly noticeable for the
SD1 cluster. Tasks in this sub-cluster are composed of two rules, which ResNets,
without attention, struggled to learn. Attention helps ResNets learn these tasks
more efficiently. The improvement is also evident for SD2 and SR1. However,
the benefit of attention for SR2 is marginal since ResNets without attention al-
ready perform well on these tasks.

We find that feature-based attention leads to the largest improvements for SD1,
especially when training on 5k or 10k examples (Figure 3.3). On the other hand,
spatial attention leads to the largest improvements for SD2 and SR1. This im-
provement is pronounced when training on 500 or 1000 examples. Taken together,
the differential success of spatial versus feature-based attention reveals that their
varying attentional demands can explain the task sub-clusters discovered in our
data-driven taxonomy.
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(a) Spatial attention

(b) Feature-based attention

Figure 3.2: Test accuracies for a baseline ResNet50 vs. the same architecture
endowed with the two forms of attention for each of the twenty-three SVRT tasks
when varying the number of training examples. A different axis scale is used for
SR2 to improve visibility. These curves are constructed by joining task accuracy
for five points representing dataset sizes.
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Figure 3.3: Test accuracies for 50-layer ResNets with spatial attention (orange),
feature-based attention (tan), or no attention (green). Each bar depicts perfor-
mance after training from scratch on 10k samples.

To better understand how the ResNet-derived taxonomy found in Experiment
1 can be explained by the need for spatial and feature-based attention, we mea-
sured the relative improvement of each form of attention over the vanilla ResNet.
For each attention model and task, we calculated the ratio of the test accuracies
between the model and the vanilla ResNet50. We repeated this for every training
dataset size, then fit a linear model to these ratios to calculate the slope across
dataset sizes (see Figure 3.4 for representative examples). We then repeated this
procedure for all twenty-three tasks to produce two 23-dimensional vectors con-
taining slopes for each model and every task.

We next used these slopes to understand the attentional demands of each SVRT
task. We did this through a two-step procedure. First, we applied a principal
component analysis (see Figure 3.5) to the vanilla ResNet performance feature
vectors (N = 15) derived from Experiment 1. Second, we correlated the principal
components with the slope vectors from the two attention models. We restricted
our analysis to the first two principal components, which captured ∼ 93% of the
variance in the vanilla ResNet’s performance (Figure 3.5). This analysis revealed a
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Figure 3.4: The benefit of attention in solving the SVRT is greatest in data-limited
training regimes. The x-axis depicts the number of samples for training, and the
y-axis depicts a ratio of the average performance of models with attention to mod-
els without attention. When the ratio is greater than 1, it shows that attention helps
vs. hurts when lower than 1. This gives us five ratios per task and attention pro-
cess corresponding to each dataset size. We performed a linear fitting procedure
for these points and calculated the corresponding slope. This slope characterizes
the relative benefits of attention for that particular task as the number of training
examples available increases. If the benefit of attention is most evident in lower
training regimes, one would expect a relatively small slope. If the benefit of atten-
tion is most evident in higher training regimes, one would expect a large slope.

dissociation between the two forms of attention: feature-based attention was most
correlated with the first principal component, and spatial attention with the second
principal component. Additionally, along the first principal component, we found
the broader dichotomy of these 23 tasks into SD and SR clusters, whereas the
second principal component divulges the tasks which responded better with spatial
attention from tasks requiring either no attention or feature-based attention (as
seen in dotted red line along both the axis in Figure 3.5). The corresponding
Pearson coefficient r and p values are given in Table 3.1.
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Figure 3.5: Principal component analysis of the twenty-three tasks using the 15-
dimensional feature vectors derived from Experiment 1 representing the test ac-
curacy obtained for each task for different dataset sizes and ResNets of varying
depths (18, 50 & 152). The dotted red line represents 4 different bins in which
these tasks can be clustered.

To summarize our results from Experiment 2, we have found that the task
clusters derived from ResNet test accuracies computed over a range of depth and
training set sizes can be explained in terms of attentional demands. Here, we have
shown that endowing these networks with attentional mechanisms helps them
learn some of the most challenging problems with far fewer training examples.
We also found that the relative improvements obtained over standard ResNets
with feature-based and spatial attention are consistent with the taxonomy of vi-
sual reasoning tasks found in Experiment 1. More generally, our analysis shows
how the relative need for feature vs. spatial attention seems to account for a large
fraction of the variance in computational demand required for these SVRT tasks
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Table 3.1: Pearson coefficient (r) and corresponding p values obtained by cor-
relating the slope vectors of the spatial attention and the feature-based attention
modules with the two principal components of Figure 3.5. See text for details.

Spatial Feature
r p r p

PC1 0.466 0.0249 0.649 0.0008
PC2 -0.652 0.0007 -0.491 0.0174

defined in Experiment 1 according to their learnability by ResNets.

3.3 Experiment 2: Feature vs. rule learning

The learnability of individual SVRT tasks reflects two components: the complex-
ity of the task’s visual features and, separately, the complexity of the rule needed
to solve the task. To what extent are our estimates of learnability driven by either
of these components? We tested this question by training a new set of ResNets
without attention according to the procedure laid out in Experiment 1, but with
different pre-training strategies. One of the ResNets was pre-trained to learn vi-
sual statistics (but not rules) of SVRT images, and another was pre-trained on Im-
ageNet, [a popular computer vision dataset containing natural object categories;
Deng et al., 2009].

For pre-training on SVRT, we sampled 5,000 class-balanced images from each
of the 23 tasks (5,000 × 23 = 115,000 samples in total). To ensure the networks
did not learn any of the SVRT task rules, we shuffled images and binary class
labels across all twenty-three problems while pre-training the network. We then
trained models with binary cross-entropy to detect positive examples without dis-
criminating tasks. Our assumption is that shuffling images and labels removes
any semantic information between individual images and SVRT rules. However,
a network with sufficient capacity can still learn the corresponding mapping be-
tween arbitrary images and class labels (even though it cannot generalize it to
novel samples). To learn this arbitrary mapping, the network has to be able to
encode visual features; but by construction, it cannot learn the SVRT task rule.
When training this model and the ImageNet-initialized model to solve individual
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SVRT tasks, we froze the weights of the convolutional layers and only fine-tuned
the classification layers to solve SVRT problems.

Figure 3.6 shows a comparison between the different architectures in terms
of their test accuracies according to the sub-clusters discovered in Experiment
1. These results first confirm that the SVRT pre-training approach works be-
cause it consistently outperforms pre-training on ImageNet (Figure B5) or training
from scratch. Interestingly, for the SR2 sub-cluster, we found that the benefits of
pre-training on SVRT go down very quickly as the number of training examples
grows. We interpret these results as reflecting the fact that generic visual features
are sufficient for the task and that the rule can be learned very quickly (somewhere
around 500 and 5,000 samples). For SR1 sub-cluster, the benefits of starting from
features learned from SVRT are somewhat more evident in low training regimes.
Still, these advantages quickly vanish as more training examples are available (the
task is learned by all architectures within 5,000 training samples).

For SD1 while there appears to be a noteworthy advantage of pre-training
on SVRT over ImageNet pre-training and training from scratch, the tasks never
appear to be fully learned by any of the networks even with 15,000 training ex-
amples. This demonstrates the challenge of learning the rules associated with this
sub-cluster beyond simply learning good visual representations. Finally, our re-
sults also show that the performance gap across all the architectures for SD2 vs.
SD1 increases rapidly with more training examples – demonstrating the fact that
the abstract rule for SD2 tasks are more rapidly learned than for SD1.

Finally, we carried out a similar analysis with the pre-trained network as done
in Experiment 2: We built test accuracy vectors for the SVRT pre-trained network
trained using all five dataset sizes (.5k, 1k, 5k, 10k, 15k) and searching over a
range of optimal learning rates (1e-4, 1e-5, 1e-6). This led to a five-dimensional
vector, which we normalized by dividing each entry with the corresponding test
accuracy of a baseline ResNet50 trained from scratch. Hence, the normalized
vector represents the improvement (ratio larger than 1) or reduction in accuracy
(ratio smaller than 1) that results from the pre-training on SVRT for that particular
task and training set size. We then calculated the slope vector in R(23), which we
correlated with the corresponding spatial and feature-based attention vectors from
Experiment 2.

We found that task improvements due to SVRT pre-training correlated more
strongly with task improvements due to spatial (r = 0.90, p = 4e − 9) than
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Figure 3.6: Test accuracies for a baseline ResNet50 trained from scratch (“No
initialization”) vs. the same architecture pre-trained on an auxiliary task in order
to learn visual representations that are already adapted to the SVRT stimuli for
different numbers of training examples. The format is the same as used in Figure
3.2. A different axis scale is used for SR2 to improve visibility. These curves are
constructed by joining task accuracy for five points representing dataset sizes.
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feature-based attention (r = 0.595, p = 0.002). This suggests that the observed
improvements in accuracy derived from spatial attention are more consistent with
learning better feature representations compared to feature-based attention.

To summarize, in Experiment 3, we have tried to address the question of the
learnability of SVRT features vs. rules. We found that using an auxiliary task to
pre-train the networks on the SVRT stimuli in order to learn visual representations
beforehand provides learning advantages to the network compared to a network
trained from scratch.

We also found a noteworthy correlation between the test accuracy vector of a
network pre-trained on SVRT visual statistics and a similar network endowed with
spatial attention. This suggests that spatial attention helps discover the abstract
rule more so that it helps improve learning good visual representations for the
task.

3.4 Conclusion

Earlier, Kim et al. [2018] hypothesized that such straining by convolutional net-
works is due to their lack of attention mechanisms to allow the explicit binding of
image regions to mental objects. A similar point was made by Greff et al. [2020]
in the context of the contemporary neural network failure to carve out sensory
information into discrete chunks which can then be individually analyzed and
compared (see also Tsotsos et al. [2007] for a similar point). Interestingly, this
prediction was recently tested using human EEG by Alamia et al. [2021a] who
showed that indeed the brain activity recorded during SD tasks is compatible with
greater attention and working memory demands than SR tasks. At the same time,
that CNNs can learn SR tasks more efficiently than SD tasks does not necessarily
mean that human participants can solve these tasks without attention. Indeed, [Lo-
gan, 1994b] has shown that SR tasks such as judging insideness require attention
under some circumstances.

To assess the role of attention in visual reasoning, we used Transformer mod-
ules to endow deep CNNs with spatial and feature-based attention. The rela-
tive improvements obtained by the CNNs with the two forms of attention varied
across tasks. Many tasks reflected a larger improvement for spatial attention, and a
smaller number benefited from feature-based attention. Further, we found that the
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patterns of relative improvements accounted for much of the variance in the space
of SVRT tasks derived in Experiment 1. Overall, we found that the requirement
for feature-based and spatial attention accounts well for the taxonomy of visual
reasoning tasks identified in Experiment 1. Our computational analysis also lead
to testable predictions for human experiments by suggesting tasks that either ben-
efit from spatial attention (task 22) or from feature-based attention (task 21), tasks
that benefit from either form of attention (task 19), and tasks that do not benefit
from attention (task 2).

Finally, our study has focused on the computational benefits of spatial and
feature-based attention for visual reasoning. Future work should consider the role
of other forms of attention, including object-based attention [Egly et al., 1994b]
for visual reasoning.

In our second experiment, we studied the learnability of SVRT features vs.
rules. We did this by pre-training the neural networks on auxiliary tasks in order
to learn SVRT features before training them to learn the abstract rules associated
with individual SVRT problems. Our pre-training methods led to networks that
learn to solve the SVRT problems better than networks trained from scratch as
well as networks that were pre-trained to perform image categorization on the
ImageNet dataset. We have also found that such attention processes seem to con-
tribute more to rule learning than to feature learning. For SR1 sub-cluster we find
this type of pre-training to be advantageous in lower training regimes but the ben-
efits rapidly fade away in higher training regimes. In contrast, this pre-training
does not allow the tasks from the SD1 sub-cluster to be learned even with 15k
samples – suggesting that the key challenge with these tasks is not to discover
good visual representations but rather to discover the rule. This suggests the need
for additional mechanisms beyond those implemented in ResNets. This is also
consistent with the improvements observed for these tasks with the addition of
attention mechanisms.

In summary, our study compared the computational demands of different vi-
sual reasoning tasks. While our focus has been on understanding the computa-
tional benefits of attention and feature learning mechanisms, it is clear that addi-
tional mechanisms will be required to fully solve all SVRT tasks. These mecha-
nisms are likely to include working memory which is known to play a role in SD
tasks [Alamia et al., 2021a]. Overall, this work illustrates the potential benefits
of incorporating brain-like mechanisms in modern neural networks and provides
a path forward to achieving human-level visual reasoning.

47



Chapter 4

48



CHAPTER 4

ROLE OF SELF-ATTENTION IN A COG-
NITIVE ARCHITECTURE

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . 51
4.3 Proposed approach . . . . . . . . . . . . . . . . . . . . 53
4.4 Hyperparameters . . . . . . . . . . . . . . . . . . . . . 57
4.5 Method . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.6 Benchmarking guided attention . . . . . . . . . . . . . . 61
4.7 Benchmarking the system . . . . . . . . . . . . . . . . . 63
4.8 Learning Compositionality . . . . . . . . . . . . . . . . 64
4.9 Zero-shot generalization . . . . . . . . . . . . . . . . . 65
4.10 Ablation Study . . . . . . . . . . . . . . . . . . . . . . 66
4.11 Additional Experiment . . . . . . . . . . . . . . . . . . 67
4.12 Conclusion and limitations . . . . . . . . . . . . . . . . 69

49



ROLE OF SELF-ATTENTION IN A COGNITIVE ARCHITECTURE

Intelligence is not only the ability
to reason; it is also the ability to
find relevant material in memory
and to deploy attention when
needed.

– Daniel Kahneman

4.1 Introduction

Abstract reasoning refers to our ability to analyze information and discover rules
to solve arbitrary tasks, and it is fundamental to general intelligence in human and
non-human animals [Gentner and Markman, 1997, Lovett and Forbus, 2017]. It is
considered a critical component for the development of artificial intelligence (AI)
systems and has rapidly started to gain attention. A growing body of literature
suggests that current neural architectures exhibit significant limitations in their
ability to solve relatively simple visual cognitive tasks in comparison to humans
(see Ricci et al. [2021] for review).

Given the vast superiority of animals over state-of-the-art AI systems, it makes
sense to turn to brain sciences to find inspiration to leverage brain-like mecha-
nisms to improve the ability of modern deep neural networks to solve complex
visual reasoning tasks. Indeed, a recent human EEG study has shown that atten-
tion and memory processes are needed to solve same-different visual reasoning
tasks [Alamia et al., 2021b].

It is thus not surprising that deep neural networks which lack attention and/or
memory system fail to robustly solve visual reasoning problems that involve such
same-different judgments [Kim et al., 2018]. Recent computer vision work [Messina
et al., 2021b, Vaishnav et al., 2022a] has provided further computational evidence
for the benefits of attention mechanisms in solving a variety of visual reasoning
tasks. Interestingly, in both aforementioned studies, a transformer module was
used to implement a form of attention known as self-attention [Cheng et al., 2016,
Parikh et al., 2016]. In such a static module, attention mechanisms are deployed
in parallel across an entire visual scene.
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By contrast, modern cognitive theories of active vision postulate that the visual
system explores the environment dynamically via sequences of attention shifts
to select and route task-relevant information to memory [Ullman, 1984, 1987].
Psychophysics experiments [Hayhoe, 2000] on overt visual attention have shown
that eye movement patterns are driven according to task-dependent routines.

Inspired by active vision theories, we describe a dynamic extension of the
self-attention mechanisms popularised by the transformer module, which we call
guided attention. Our proposed transformer-based Guided Attention Module for
(visual) Reasoning (GAMR) learns to shift attention dynamically, in a task-dependent
manner, based on queries internally generated by an LSTM executive controller.
Through extensive experiments on the two main visual reasoning challenges, the
Synthetic Visual Reasoning Test (SVRT) [Fleuret et al., 2011] and the Abstract
Reasoning Task (ART) [Webb et al., 2021], we demonstrate that our neural ar-
chitecture is capable of learning complex compositions of relational rules in a
data-efficient manner and performs better than other state-of-the-art neural archi-
tectures for visual reasoning. Using explainability methods, we further character-
ize the visual strategies leveraged by the model in order to solve representative
reasoning tasks. We demonstrate that our model is compositional – in that it is
able to generalize to novel tasks efficiently and learn novel visual routines by re-
composing previously learned elementary operations.

4.2 Related Work

Previous studies [Alamia et al., 2021b] have shown that mechanisms associated
with attention and memory are involved in solving same-different visual reason-
ing tasks. Multiple datasets have been used to assess the visual reasoning ability
of neural networks. One of the first challenges included the SVRT. Recently in-
troduced Raven’s Progressive Matrices (RPM) dataset [Barrett et al., 2018, Zhang
et al., 2019] focuses on seven unique relations to be learned. However, it was
found that the dataset was seriously flawed as it was later found that neural archi-
tectures could solve tasks by leveraging shortcuts [Hu et al., 2020, Spratley et al.,
2020]. Prior work on SVRT studies has focused on the role of attention in solving
some of these more challenging tasks. In SVRT, some of the tasks are signifi-
cantly more challenging for computer vision algorithms than others. In particu-
lar, tasks that involve same-different (SD) judgements appear to be significantly
harder for neural networks to learn compared to those involving spatial relation
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judgement (SR) [Stabinger et al., 2016b, Yihe et al., 2019b, Kim et al., 2018]
(see Ricci et al. [2021] for a recent review). Motivated by neuroscience princi-
ples, Vaishnav et al. [2022a] studied how the addition of feature-based and spatial
attention mechanisms differentially affects the learnability of the tasks. These
authors found that SVRT tasks could be further taxonomized according to their
differential demands for these two types of attention. In another attempt to lever-
age a transformer network to incorporate attention mechanisms for visual reason-
ing, Messina et al. [2021b] proposed a recurrent extension of the classic Vision
Transformer block (R-ViT). Spatial attention and feedback connections helped the
transformer to learn visual relations better. The authors compared the accuracy of
four same-different (SVRT) tasks (tasks 1,5,20,21) to demonstrate the efficacy of
their model. They also showed that, even with 400k samples available for train-
ing, neither a Relational Network [Santoro et al., 2017] nor a Vision Transformer
[Dosovitskiy et al., 2021] were capable of learning these tasks. While a recent
work Webb et al. [2021] has explored the role of memory in ART reasoning tasks.

With the introduction of transformer networks, attention mechanisms started
gaining popularity in computer vision. They can either complement [Bello et al.,
2019, Vaishnav et al., 2022a, d’Ascoli et al., 2021] or completely replace existing
CNN architectures [Ramachandran et al., 2019, Touvron et al., 2021b, Dosovit-
skiy et al., 2021]. Augmenting the attention networks with the convolution archi-
tectures helps them explore the best of both and train relatively faster. In contrast,
stand-alone attention architecture takes time to develop similar inductive biases
as CNN. As initially introduced by Vaswani et al. [2017], transformer attention
uses a key (k), query (q), and value (v) attention mechanisms for NLP. Since the
images are not like language, all the existing architectures for image recognition
explore self-attention variants in which the key, query, and values are the same
as an input image. We used a similar attentional system, but instead of using it
as a self-attention module, we called it a guided attention module. This system
internally generates a query to guide the attention module to the location essential
for the task. Since there could be more than one location where the model will
attend, we then implemented a memory bank.

We took inspiration for the memory bank from Webb et al. [2021], where
mechanisms for variable binding and indirection were introduced in architecture
for visual reasoning with the help of external memory. Variable binding is the
ability to bind two representations, and indirection is the mechanism involved in
retrieving one representation to refer to the other. These authors also introduce
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Temporal Context Normalization (TCN) [Webb et al., 2020], which is found ben-
eficial for out-of-distribution generalization for relational reasoning tasks. How-
ever, the model exhibits significant limitations: It assumes an object-centric image
representation whereby objects are presented individually in a sequence. We can-
not evaluate such an architecture on the SVRT challenge because images in each
task contain multiple objects which require individuation. There are also some re-
lations, like “touching”, which this individuation cannot represent (or any object-
centric architecture). ESBN also lacks an attentional mechanism and works best
in a scenario where hard attention at the pre-processing level helps to simplify the
tasks. We tested this template-matching behavior of the architecture by training
it in the presence of Gaussian noise. It led to a chance-level performance. Here,
we build on this work and describe an end-to-end trainable model that learns to
individuate task-relevant scenes and store their representations in memory to al-
low the judging of complex relations between these objects. Finally, our relational
mechanism is inspired by the work in Santoro et al. [2017] that introduced a plug-
and-play model for computing relations between object-like representations in a
network.

4.3 Proposed approach

Our model can be divided into three components: an encoder, a controller, and a
relational module (see Fig. 4.1 for an overview).

The encoder module includes a feature extraction block (fe) for an image
(xin) which is composed of five convolutional blocks (Figure 4.2). The output
of the module is denoted as zimg ∈ R(128,hw) (with h height and w width). We
applied Temporal Context Normalization (TCN) as done in [Webb et al., 2020].
TCN is a simple inductive bias implemented similar to batch normalization but
applied at the task-relevant temporal window. Using TCN helps to preserve the
relational information between the objects within the window, resulting in better
learnability and generalization. TCN is applied over zimg before passing it to the
controller for further processing.

After zimg is built, a guided-attention block routes visual information from
relevant image location at each time step (t). This block builds on the now classic
multi-head attention (MHA) transformer module used in Natural Language Pro-
cessing [Vaswani et al., 2017], which differs substantially from the self-attention
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Algorithm 1 Memory and Attention-based visual REasOning model (GAMR). (||)
indicates the concatenation of two vectors, forming a new vector. {, } indicates
the concatenation of a matrix and a vector, forming a matrix with one additional
row.

krt=1 ← 0
ht=1 ← 0
Mt=1 ← {}
zimg ← fe(xin)
for t in 1...T do

out, g, queryt, ht ← fs(ht−1, krt−1)
wk ← (guided attention(zimg, queryt)).sum(axis = 1)
zt ← (zimg ∗ wk).sum(axis = 1)
if t is 1 then

krt ← 0
else

wkt ← wk.sum(axis = 2)
krt ← g ∗ (Mt−1 ∗ wkt)

end if
Mt ← {Mt−1, zt}

end for
allobj ← rθ(

∑T
i,j=1(Mvi

, Mvj
))

ŷ ← fϕ(allobj || out)
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Figure 4.1: Our proposed GAMR architecture is composed of three components:
an encoder module (fe) builds a representation (zimg) of an image, a controller
guides a transformer-based multi-head attention module to dynamically shift at-
tention, and selectively route task-relevant object representations (zt) to be stored
in a memory bank (M ). The recurrent controller (fs) generates a query vector
(queryt) at each time step to guide the next shift of attention based on the current
fixation. After a few shifts of attention, a reasoning module (rθ) learns to identify
the relationships between objects stored in memory.

transformer module more commonly used in vision. An MHA block works as a
retrieval block to extract relevant information based on 3 attention variables: key
(k), query (q), and value (v). The query (q) is used to compute a similarity score
with the key (k), which is then multiplied by the values (v). In our implementation,
MHA accepts keys and values from a controller (fs) (discussed in the next para-
graph) and queries from the encoder block (fe) to generate a weight vector (wk

∈ R128) corresponding to the key (k). The vectors wk is then used to modulate the
feature vector zimg to yield a new context vector (zt ∈ R128). A similar approach
was used in Visual Question Answering (V QA) [Yu et al., 2019] to compute the

Figure 4.2: Encoder module (fe) used in GAMR. It consists of four convolutional
blocks to process input image of 128×128 resolution
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similarities between questions and images. The context vector (zt) is then stored
in the memory bank (M ) to be subsequently accessed again later by a reasoning
module. This memory bank is inspired by the differential memory used in Webb
et al. [2021].

The controller module is responsible for generating a query (queryt) in re-
sponse to a task-specific goal in order to guide attention in the transformer module.
The controller module (fs) uses a Long Short-Term Memory (LSTM) to provide a
query vector (queryt ∈ R128) as input to the guided attention module for the cur-
rent time step t. The controller also generates a gate vector (g ∈ R128) and output
vector (out ∈ R512). The gate vector g generates the next input to the controller
based on prior relevant features stored in the memory. The gate (g) is later used
to shift attention to the next task-relevant feature based on the features previously
stored in M . On the other hand, the decision layer uses the output vector (out) to
produce the system classification output (Figure 4.3).

Figure 4.3: Abstract variable: t-SNE plot of the output vector (out) obtained
from the controller (fe) for all 23 SVRT tasks independently. Each cluster can
be clearly identified from other clusters representing different relations learned.
Tasks are represented as labels with the same colored box around them placed at
the mean location of the cluster.
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The relational module is where the reasoning takes place over the context
vector (zt) stored in the memory bank (M ). This module is composed of a mul-
tilayer perceptron (MLP) layer (rθ) which produces a relational vector (allobj)
similar to the relational network [Santoro et al., 2017]. As we will show in section
4.8, rθ learns elementary operations associated with basic relational judgments
between context vectors (zt) stored in the memory (M ). It is concatenated with
the output (out) of the controller (fs) at the last time step (t=T) and passed through
decision layer (fϕ) to predict the output (ŷ) for a particular task. We have summa-
rized the steps in Algorithm 1.

4.4 Hyperparameters

Number of heads : As the key and value vector for the Transformer based
guided attention module hasR128 dimension, changing the number of heads does
not make any difference. However, we ran experiments on the same-different dif-
ferentiation task of the SVRT Dataset. We evaluated GAMR with a varied number
of heads in the multi-head attention module (no. of head = 1, 4, 8, 16). We found
that head = 4 (Fig. 4.4) works best on average, and used this value for all our
experiments. We have to investigate this further.

Figure 4.4: Ablation on Multi-Head Attention. We analyzed the average perfor-
mance on SVRT tasks by changing the number of heads (1, 2, 4, 8, 16) and 1k
images used for training. On average, this effect is distinguishable in SD tasks
while SR tasks are already at their ceiling.
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Table 4.1: ART: Number of training and test samples used for four different types
of tasks.

Tasks m=0 m=50 m=85 m=95

SD
Training 18,810 4,900 420 40

Test 990 4,900 10,000 10,000
RMTS Training 10,000 10,000 10,000 480
Dist3 Training 10,000 10,000 10,000 360

ID Training 10,000 10,000 10,000 8,640
Test 10,000 10,000 10,000 10,000

Holdout set For example, holdout 0 represents a generalization regime in which
the test sets contain the same characters as those used during training. At the other
extreme, in holdout 95, the training set contains a minimal number of characters,
most of which are actually used for tests. Hence, it is necessary to learn the
abstract rule in order to generalize to characters in this regime.

SVRT This dataset can be generated with the code1 provided by the SVRT au-
thors with images of dimension 128× 128. No augmentation technique was used
for training other than normalization and randomly flipping the image horizontally
or vertically, as is customary for this challenge [Vaishnav et al., 2022a].

We trained the model for a maximum of 100 epochs with a stopping crite-
rion of 99% accuracy on the validation set. The model was trained using Adam
[Kingma and Ba, 2014] optimizer and a binary cross-entropy loss. All the models
were trained from scratch. We used a hyperparameter optimization framework
Optuna [Akiba et al., 2019] to get the best learning rates, and weight decays for
these tasks and reports the test accuracy for the models which gave the best vali-
dation scores.

1https://fleuret.org/cgi-bin/gitweb/gitweb.cgi?p=svrt.git;a=
summary
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Table 4.2: ART: For four different tasks number of epochs and learning rates (LR)
used to train different architectures.

Tasks m=0 m=50 m=85 m=95
GAMR

Epoch LR Epoch LR Epoch LR Epoch LR
SD 50 0.0001 50 0.0005 100 0.0005 200 0.001

RMTS 50 0.00005 50 0.0001 50 0.0005 300 0.0005
Dist3 50 0.00005 50 0.0001 50 0.00005 300 0.0005

ID 50 0.00005 50 0.00005 50 0.0005 100 0.0005
Other baselines

SD 50 0.0005 50 0.0005 100 0.0005 200 0.0005
RMTS 50 0.0005 50 0.0005 50 0.0005 300 0.0005
Dist3 50 0.0005 50 0.0005 50 0.0005 300 0.0005

ID 50 0.0005 50 0.0005 50 0.0005 100 0.0005

Learning compositionality One of the triplets (21, 19, 25) involves rotation
which needed more than 1,000 samples to learn. So, we selected 5,000 samples
each from the tasks x and y to pre-train the network. This pre-training is carried
out for 100 epochs for both tasks. Once the model is trained, we fine-tune it on
the novel unseen task z. We confirmed that GAMR was able to learn the new
rule with as few as ten samples per category – hence demonstrating an ability to
harness compositionality.

4.5 Method

Datasets We used two datasets for our experiments, SVRT and ART. Experi-
ments in section 4.6, 4.7, 4.8, 4.9 is carried out with SVRT dataset and in section
4.11 with ART dataset.

The SVRT dataset is composed of 23 different binary classification challenges,
each representing either a single rule or a composition of multiple rules. A com-
plete list of tasks with sample images from each category is shown in Figures A1,
A2. We formed four different datasets with 0.5k, 1k, 5k, and 10k training samples
to train our model. We used unique sets of 4k and 40k samples for validation and
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test purposes. Classes are balanced for all the analyses.

We trained the model for a maximum of 100 epochs with a stopping crite-
rion of 99% accuracy on the validation set. The model was trained using Adam
[Kingma and Ba, 2014] optimizer and a binary cross-entropy loss. All the models
were trained from scratch. We used a hyperparameter optimization framework
Optuna [Akiba et al., 2019] to get the best learning rates, and weight decays for
these tasks and reports the test accuracy for the models which gave the best vali-
dation scores.

Webb et al. [2021] proposed four visual reasoning tasks that we will hence-
forth refer to as the Abstract Reasoning Task (ART): (1) a same-different (SD)
discrimination task, (2) a relation match to sample task (RMTS), (3) a distribu-
tion of three tasks (Dist3) and (4) an identity rule task (ID). These four tasks
utilize shapes from a set of 100 unique Unicode character images 2. They are
divided into training and test sets into four generalization regimes using different
holdout character sets (m = 0, 50, 85, and 95) from 100 characters.

Baselines For the baselines in this dataset, we compared our architecture per-
formance to a Relational Network (RN ), a popular architecture for reasoning in
VQA. The RN uses the same CNN backbone as GAMR with feature maps of
dimension R128,hw where h = 8 and w = 8. We consider each spatial location
of the encoded feature representation as an object (i.e., N = 8 × 8 = 64 object
representations). We computed all pairwise combinations between all 64 repre-
sentations using a shared MLP between all the possible pairs (4096 pairs). These
combinations are then averaged and processed through another MLP to compute
a relational feature vector before the final prediction layer (fϕ). In a sense, GAMR
is a special case of an RN network endowed with the ability to attend to a task-
relevant subset (N = 4) of these representations with the help of a controller in-
stead of exhaustively computing all 4,096 possible relations – thus reducing the
computing and memory requirements of the architecture very significantly.

As an additional baseline model we used ResNet-50 [He et al., 2016] (ResNet)
and its transformer-based self-attention network (Attn-ResNet) introduced in Vaish-
nav et al. [2022a]. These have been previously evaluated on SVRT tasks [Funke
et al., 2021b, Vaishnav et al., 2022a, Messina et al., 2021c,b]. It serves as a power-
ful baseline because of more free parameters and a self-attention module to com-

2https://github.com/taylorwwebb/emergent_symbols
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pare the proposed active attention component of GAMR. In our proposed method,
the controller shifts attention heads sequentially to individual task-relevant loca-
tions against a standard self-attention module where all task-relevant locations
are attended to simultaneously. We also evaluated ESBN [Webb et al., 2021] in
which we used a similar encoder to that of GAMR and passed the images in se-
quential order with each shape as a single stimulus and the number of time steps
as the number of shapes present in the SVRT task. In order to train these models
we used images of dimension 128 × 128 for architectures such as RN , ESBN ,
GAMR and 256× 256 for ResNet, Attn-ResNet (consistent with previous work).

4.6 Benchmarking guided attention

Transformer [Vaswani et al., 2017] architectures used self-attention mechanisms
to draw global dependencies between input and output. In self-attention, input
interacts with itself to estimate where more attention has to be paid with the help
of key, query and value dot product. Self-attention is composed of three steps (i)
dot product similarity score, (ii) normalizing scores to obtain weights, and (iii)
re-weighting the original embeddings using weights.

self attention = Softmax(QKT

√
d

)V

where ‘d’ is the dimension of K and V . To calculate the Q, K and V from an
input X , there are trainable weight matrices Wq, Wk and Wv.

Q = XWq

K = XWk

V = XWv

However, in guided-attention, we take query as zimg, key and value vectors
as queryt from the controller without any trainable matrix. So the attention score
becomes

guided attention (GA) = softmax(zimg . queryT
t√

128
)queryt
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as the dimensionality of the vector is R128. This guided-attention (GA ∈
Rhw×128) score is summed across the spatial dimension (h × w) to re-weight the
feature channels of the zimg and form zt vector. This module acts like a feature-
based attention module because of its ability to modulate the channels and only
store the feature vector in the memory.

We evaluated our guided-attention module (GAMR) and compared it with
alternative systems with comparable base architecture but endowed with self-
attention (With-SA) or no attention and/or memory (GAMR w/o Atn (RN)) over 23
SVRT tasks. As a side note, GAMR-SA turns out to be similar to ARNe [Hahne
et al., 2019] used for solving Raven’s tasks. We found that, on average, our Guided
Attention Model’s relative performance is 11.1% better than its SA counterpart
and 35.6% than a comparable system lacking attention (or memory) for SD tasks;
similarly, relative improvements for SR tasks are 4.5% and 10.4%. It shows that
GAMR is computationally efficient as it yields a higher performance for the same
number (1k) of training samples. Results are shown in Figure 4.5.

Figure 4.5: Benchmarking Guided Attention: We compared the average ac-
curacy over two sub-clusters of SVRT obtained by GAMR with its variant when
we replaced the guided-attention module with the self-attention (GAMR-SA) and
when we completely gave away attention and made it a relational reasoning archi-
tecture (GAMR w/o Atn (RN)).
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4.7 Benchmarking the system

Figure 4.6: Bar plot analysis for the SVRT tasks grouped in same-different (SD)
and spatially related (SR) tasks. We compared the accuracies of five baseline
architectures with GAMR. ResNet-50 (ResNet) has 23M parameters, Relation
Network (RN ) has 5.1M parameters, ResNet-50 with attention (Attn-ResNet) has
24M parameters and GAMR & ESBN both have 6.6M parameters. We trained
these with .5k, 1k, 5k and 10k samples.

All twenty-three tasks in the SVRT dataset can be broadly divided into two
categories, same-different (SD) and spatial relations (SR), based on the identifica-
tion of relations. Same-different (SD) tasks (7, 21, 5, 19, 6, 17, 20, 1, 13, 22, 16)
have been found to be harder for neural networks [Ellis et al., 2015b, Kim et al.,
2018, Stabinger et al., 2016b, 2021, Puebla and Bowers, 2021, Messina et al.,
2021b, Vaishnav et al., 2022a] compared to spatial relations (SR) tasks (12, 15,
14, 9, 23, 8, 10, 18, 4, 3, 11, 2).

We analyzed an array of architectures and found that, on average, GAMR
achieves at least 15% better test accuracy score on SD tasks for 500 samples. In
contrast, for SR tasks, average accuracy has already reached perfection. We find
a similar trend for other architectures when trained with different dataset sizes.
Overall, RN (GAMR minus attention) and ESBN struggled to solve SVRT tasks
even with 10k training samples, pointing towards the lack of an essential compo-
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nent, such as attention. On the other hand, Attn-ResNet architecture demonstrated
the second-best performance, which shows its importance in visual reasoning. Re-
sults are summarized in Figure 4.6.

4.8 Learning Compositionality

Below, we provide evidence that GAMR is capable of harnessing compositionality.
We looked for triplets of tasks (x, y, z) such that z would be a composition of
tasks x and y. We systematically looked for all such available triplets in the SVRT
dataset and found three of them (15, 1, 10), (18, 16, 10) and (21, 19, 25). All these
tasks and their associated triplets are described below. We study the ability of the
network to learn to compose a new relation with very few training samples, given
that it had previously learned the individual rules. We first trained the model with
tasks x and y so that the rules are learned with the help of the reasoning module rθ.
The first layer learns the elementary operation over the context vectors stored in
the memory block (M ), and the second layer learns to combine those operations
for the tasks z. We freeze the model after training with tasks x, y and only fine-
tuned: (i) a layer to learn to combine elementary operations (rθ) and (ii) a decision
layer (fϕ) on tasks z with ten samples per category and 100 epochs total. Results
are shown in Fig. 4.7.

We selected group corresponding to each tasks (15, 18, 21) used for compo-
sition. Task 15 has four shapes forming a square and are identical. It can be
composed of task 1, helping to identify the same shapes and task 10, which helps
to learn if the four shapes are forming a square. In task 18, a rule is needed to
be learned related to symmetry along the perpendicular bisector of the image. It
can be taken as a composition of task 16 which requires learning mirror reflection
of the image along the perpendicular bisector of the image and task 10 in which
symmetry could be discovered in between 4 shapes (forming a square). At last, we
took task 21, which involves both scaling and rotation between two shapes in an
image. As its compositional elements, we designed a variant where there is only
rotation and no scaling and represented it with 25 and combined it with another
counterpart of 21 where there is scaling and no rotation, i.e., task 19.
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Figure 4.7: Compositionality test: We train the model with tasks containing
specific rules (e.g., Task 1 representing same/different discrimination & task 10
involving identification if the four shapes form a square or not). We show that
with its ability to compose already learned rules, GAMR can quickly learn with 10
samples per class to adapt to a novel scenario (e.g., 15 where the rule is to identify
if the four shapes forming a square are identical or not.)

4.9 Zero-shot generalization

We hypothesize that if a model has learned the abstract rule underlying a given
task, it should be able to re-use its knowledge of this task on other novel tasks
which share a similar rule. To verify that GAMR is indeed able to generalize across
tasks that share similar rules, we searched for pairs of tasks in SVRT which were
composed of at least one common elementary relation [Vaishnav et al., 2022a]
between them. For example, in pair (1, 22), task 1 involves the identification of
two similar shapes in category 1 and task 22 involves the identification of three
similar shapes in category 1. In the selected pair, the category that judges the
similar rule should belong to the same class (let us say category 1 in the above
example) so that we test for the right learnability. We systematically identified a
set x of tasks 1, 5, 7, 21, 23 representing elementary relations such as identify-
ing same-different (1, 5), grouping (7), learning transformation like scaling and
rotation (21) and learning insideness (23). Then we paired them with other tasks
sharing similar relations. These pairs are task 1 with each of 5, 15 and 22, task 5
with each of 1, 15 and 22. Similarly other pairs of tasks are (7, 22), (21, 15) and
(23, 8). We separately trained the model on the set x and tested the same model on
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Training Test Test Accuracy
Task Task GAMR Attn-ResNet ResNet

1
5 72.07 53.03 73.04

15 92.53 92.07 78.87
22 84.91 80.10 67.15

5
1 92.64 85.73 92.28

15 84.36 62.69 49.95
22 76.47 55.69 50.19

7 22 83.80 79.11 50.37
21 15 90.53 50.00 49.76
23 8 85.84 58.90 59.25

Table 4.3: Test accuracy to show if the model learns the correct rules when we
train it with a task and test on a different set of SVRT tasks with GAMR, Attention
with ResNet50 (Attn-ResNet) and ResNet-50 (ResNet).

their respective pairs without finetuning further with any samples from the test set
(zero-shot classification). We observed that GAMR could easily generalize from
one task to another without re-training. On the contrary, a chance level accuracy
by ResNet-50 (ResNet) shows the network’s rote memorization of task-dependent
features. In comparison, GAMR exhibits far greater abstraction abilities – demon-
strating an ability to comprehend rules in unseen tasks without any training at all.
Table 4.3 summarizes all the results.

4.10 Ablation Study

We now proceed to study what role different components of the proposed archi-
tecture play in GAMR’s ability to learn reasoning tasks. In our first set of exper-
iments, we selected essential building blocks of the model, such as the relational
vector (allobj), feature channel gate vector (g), weighing factor (wkt) at time step
t corresponding to how relevant are the elements stored in memory in order to get
the next query, the role of the controller’s output (out) in the final decision layer
(fϕ) and temporal context normalization (tcn) on the encoded representation. We
studied the effect of these components on SD and SR categories. Our lesioning
study revealed that TCN plays a vital role in the model’s reasoning capability even
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Figure 4.8: Ablation studies: We pruned separate parts of the model, one at a
time, like the weighting factor at each time step (wkt), controller output (out),
guided-attention (wk), relational vector (allobj), feature channel gain factor (g)
and temporal context normalization (tcn) and show the variation in performance
on SD and SR tasks when trained with 1k samples.

for learning simple rules, as in SR tasks. We also found that for SD tasks, exclud-
ing out from the decision-making process is detrimental. Finally, g and wkt have
their visible role for tasks containing complex rules (task 7, Figure 4.9). We have
summarized the results in Figure 4.8. We also plot the saliency maps of the model
in Figure 4.10 at each time step and show the way in which the model attends to
task-dependent features while learning the rules.

4.11 Additional Experiment

Baseline models As a baseline, we chose the ESBN [Webb et al., 2021] along
with the two other prevalent reasoning architectures, the Transformer [Vaswani
et al., 2017] and Relation Network (RN) [Santoro et al., 2017]. These three share
a similar encoder backbone as in GAMR. In order to make our baselines stronger,
we evaluated these models in their natural order, i.e., by passing a single image at
a time. We added a random translation (jittering) for the shapes in the area of ±5
pixels around the center to prevent these architectures from performing template
matching. For GAMR, we present task-relevant images together as a single stimu-
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Figure 4.9: Ablation studies for GAMR. (a) We pruned separate parts of the model,
one at a time, like the weighting factor at each time step (wkt), feature channel gain
factor (g), controller output (out), relational vector (allobj) and temporal context
normalization (tcn) and show the variation in performance on tasks 1, 5, 7 and 2
when trained with 1k samples.

lus (Fig. 4.11) while jittering each shape. We have also added ART results where
each image is centered and put together in a single stimulus in Figure 4.12. In
order to make our architecture choose one option from multiple stimuli (RMTS:
2, Dist3 or ID: 4), we concatenate the relational vector (allobj) for every stimulus
and pass them to a linear layer for final decision.

Results We observed a near-chance level accuracy for all the baseline models
and in different generalization scenarios for the SD and RMTS tasks (Figure 4.13).
Whereas, when we trained the networks like ESBN with the images centered in
the stimulus in a similar scenario, they resulted in perfect accuracy. However, our
proposed architecture is robust to handle this jittering, as shown in Figure 4.12
where we compare its performance when images are not jittered. For the other
two tasks, Dist3 and ID, baseline models performed better than the chance level
(25%). ESBN showed an increasing trend in accuracy for progressively easier
generalization conditions approaching 0 holdouts. This points toward the fact that
the first three shapes in both these tasks allow ESBN to consider a translation
factor while comparing the next three shapes, letting it choose the correct option
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Figure 4.10: Time steps: Shift of attention with each time step in a task-dependent
manner. In the first row, the task is to answer if the two shapes are touching each
other from the outside. At each time step, the network explores the area where the
shapes are touching each other. In the second row, tasks represented required to
answer if one of the smaller shapes is inside a larger shape. The controller module
for this task shifts attention across different shapes at each time step.

accordingly. RN and Transformer still struggled to generalize. ESBN (memory-
based model) performance on SD tasks in both the visual reasoning dataset shows
the importance of attention needed for reasoning.

4.12 Conclusion and limitations

In this paper, we described a novel transformer-based Guided Attention Module
for (visual) Reasoning (GAMR) to try to start bridging the gap between the reason-
ing abilities of humans and machines. Inspired by the cognitive science literature,
our module learns to dynamically allocate attention to task-relevant image loca-
tions and store relevant information in memory. Our proposed guided-attention
mechanism is shown to outperform the self-attention mechanisms commonly used
in vision transformers. Our ablation study demonstrated that an interplay between
attention and memory was critical to achieving robust abstract visual reasoning.
Furthermore, we demonstrated that the resulting systems efficiently are capable of
solving novel tasks without limited training – by simply rearranging the elemental
processing steps to learn the rules without involving any training. We demon-
strated GAMR’s versatility, robustness, and ability to generalize compositionality
through an array of experiments. We achieved state-of-the-art accuracy for the
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Figure 4.11: ART for GAMR: (a) Same/different discrimination task. (b) Rela-
tional match-to-sample task (answer is 2). (c) Distribution-of-three task (answer
is 1). (d) Identity rules task (ABA pattern, answer is 3).

two main visual reasoning challenges in the process.

One limitation of the current approach is that it currently only deals with a
fixed number of time steps (t=4). Training the model with four time-steps was
sufficient to solve all SVRT and ART tasks efficiently. However, a more flexible
approach is needed to allow the model to automatically allocate a number of time
steps according to the computational demand of the task.
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Figure 4.12: Test accuracy on ART with different holdout sets when the images
are centered and compare the accuracy when shapes are jittered in every image.
We find that unlike other baselines experiencing a huge drop in performance when
shapes are jittered, GAMR is stable. We plot the average accuracy over ten runs
on the dataset. x axis corresponds to the four types of tasks, and y represents
the average accuracy score. These tasks are as follows: (a) same-different (SD)
discrimination task, (b) Relation match to sample task (RMTS); (c) Distribution
of three tasks (Dist3); and (d) Identity rule task (ID).
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Figure 4.13: ART: Comparing the average performance of GAMR with other
baselines over 10 runs for different holdout values (m = 0, 50, 85, 95). These
models are evaluated on four types of tasks, i.e., Same-Different (SD), Relation
match to sample (RMTS), Distribution of 3 (Dist3) and Identity rules (ID).
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CHAPTER 5

DISCUSSION AND FUTURE WORK

Attention is widely studied across several domains, including cognitive science
and machine learning. It has deeply penetrated the field of computer vision and
NLP, which has experienced a surge of self-attention-based architectures achiev-
ing state-of-the-art performance on numerous benchmarks. Furthermore, attention
is a cognitive process providing the ability to concentrate on a relevant stimulus.
This characteristic feature plays a vital role in enriching humans’ reasoning abil-
ity. To better understand the self-attention mechanism, this thesis studied its role
in cognitive and computer vision architectures under the purview of visual rea-
soning.

Visual reasoning is the process of analyzing the provided visual information
in order to solve a task. It is considered an important part of fluid intelligence,
which involves thinking and reasoning independent of learning, education, and
experience. This ability has not only been shown in primates [Gentner et al.,
2021b] but also in bees [Giurfa et al., 2001] and in newborn ducklings [Mart-
inho and Kacelnik, 2016]. On the contrary, prior studies [Puebla and Bowers,
2021, Kim et al., 2018, Ricci et al., 2021, Messina et al., 2021c] (including our
own work) have shown that modern-day neural networks struggle to solve sim-
ple visual reasoning tasks when tested on a popular benchmark called synthetic
visual reasoning test (SVRT) by Fleuret et al. [2011] otherwise simple for hu-
mans. We found a similar trend when we tested popular reasoning architectures
like Relational Network [Santoro et al., 2017], Transformer [Vaswani et al., 2017],
ESBN [Webb et al., 2021] on Abstract Reasoning Task (ART) where the stimulus
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contains a simple Unicode character. As a result, visual reasoning has become
an increasingly popular topic of research in recent years with the emergence of
numerous fluid intelligence tests for AI algorithms, including tests for Composi-
tional Visual Reasoning (CVR) [Zerroug et al., 2022], Ravens’ (RPM) [Barrett
et al., 2018, Zhang et al., 2019] and visual progressive matrices (V-PROM) [Bar-
rett et al., 2018, Teney et al., 2020] as well as an Abstract Reasoning Corpus
(ARC) [Chollet, 2019].

We began this thesis by studying the computational mechanisms involved in
solving the Synthetic Visual Reasoning Test (SVRT) challenge [Fleuret et al.,
2011]. This challenge consists of twenty-three binary classification tasks, each
involving unique abstract relations in their formulation. Previous studies have
identified two broad categories of SVRT tasks [Stabinger et al., 2016a, Kim et al.,
2018, Yihe et al., 2019a] – tasks involving spatial-relation (SR) judgment and tasks
involving same-different (SD) judgment. The same-different tasks are found to be
harder for the neural networks compared to the spatial relation tasks [Ellis et al.,
2015b, Kim et al., 2018, Stabinger et al., 2016b, 2021, Puebla and Bowers, 2021,
Messina et al., 2021b, Vaishnav et al., 2022a]. Consistent with this work, we pro-
posed a novel taxonomy beyond the two primary clusters, reflecting the number
of relationships used to define a particular task. A closer examination is needed
to better understand the trend reflected by the neural networks in terms of accu-
racy and the number of relations involved in defining a particular task. An earlier
study by Kim et al. [2018] has also reported that feedforward neural networks
demonstrate a ‘straining’ effect in solving tasks involving same-different relations
and hypothesized that the straining effect might be because of the lack of atten-
tion. The same was also shown with a human EEG experiment by Alamia et al.
[2021b] where higher activity is recorded in the lower β band while solving the
same-different judgment when compared to spatial relation judgment indicating
higher demands for attention and/or working memory. To test the same, in the
next chapter, we focused on understanding the role of attention in solving visual
reasoning tasks.

Inspired by the two types of visual attention, we proposed a self-attention
module that can be used as a feature-based or spatial attention to augment the
features of a feedforward network (ResNet50 [He et al., 2016]). We evaluated
both types of attention-augmented neural networks on SVRT tasks and found that
our proposed attentional models could solve the most challenging SVRT tasks ef-
ficiently. The relative improvements obtained by feedforward networks endowed
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with the two different forms of attention varied across SVRT tasks. We observed
that many tasks benefited from spatial attention mechanisms, whereas a few tasks
from feature-based attention and showed a significant improvement. Our com-
putational analysis also leads to testable predictions for human experiments by
suggesting tasks that benefit from spatial attention (task 22) or feature-based at-
tention (task 21), tasks that benefit from either form of attention (task 19), and
tasks that do not benefit from attention (task 2). While we evaluated two types of
attention systems, there is a future possibility to add experiments with the third
type of attention – object-based attention [Duncan, 1984, Egly et al., 1994a, Ve-
cera and Farah, 1994, Kramer et al., 1997]. Object-based attention focuses on the
particular object rather than its spatial location or corresponding features.

In the last part of the thesis, we proposed a novel architecture, the Guided
Attention Model for (visual) Reasoning (GAMR). We integrated both cognitive
abilities humans use – attention and memory in solving reasoning tasks. It draws
inspiration from the cognitive science literature on active vision, where the spot-
light of attention is routed in the visual system to gather task-relevant information.
According to the theory of active vision, the visual world is explored using rapid
eye movements guided by shifts of visual attention. We designed a controller akin
to the mechanisms involved in the active vision framework to route the spotlight of
attention and send the task-relevant representations in the memory block later used
for reasoning. In GAMR, the controller is implemented with the key/query/value-
based self-attention layer. Contrary to the existing method where key, query and
value vectors all correspond to the same vector, the query is internally generated
at each time step in our model. It helps the controller to shift the spotlight of at-
tention. One of the limitations of the current approach is the fixed number of time
steps. I believe that a future continuation of this work could be to incorporate a
mechanism to adapt the number of time steps based on the complexity of the task.
For now, we have set the number of time steps as four for all the tasks; however,
a simple task might require fewer time steps to arrive at a decision with high con-
fidence. To make the model adaptive to the situation, one possibility could be to
train it with a confidence variable as a stopping criterion.

While we have limited our analysis to synthetic visual reasoning datasets, a
future possibility exists to test the models on a real-world dataset like V-PROM.
It consists of images organized in a Ravens’ style of reasoning with some context
images and some choice images from which the correct answer is selected. An-
other possible direction is to think of an architecture that considers two important
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traits – efficient use of data and efficient use of the computational resource. One
way to design this architecture is by incorporating a read-and-write mechanism
similar to a Neural Turing Machine [Graves et al., 2014]. Both these mechanisms
will help the network read the already stored relations from memory and write
them into the memory if they are novel. We expect such cognitive architecture to
demonstrate higher-order reasoning ability, continual learning, compositionally,
and meta-learnability.

We also evaluated ViT [Dosovitskiy et al., 2021] – a full self-attention archi-
tecture on SVRT tasks and found that it struggles to learn the simplest of the
SVRT tasks; however, Messina et al. [2021b] conducted a similar study on a
smaller subset of four SVRT tasks trained on 28k samples and found that a re-
current version of ViT – an attentional network with a convolutional backbone
can learn those tasks. Adding convolutions in the early layers of ViT is found to
help obtain better accuracy and improve sensitivity to the optimization settings
[Xiao et al., 2021]. This observation motivated us to propose Conviformer [Vaish-
nav et al., 2022b] for another collaborative project on leaf-fossil classification.
We propose a network to incorporate a convolutional network as the front end
for a full self-attention-based vision transformer network enhancing its ability to
process higher-resolution images. While bigger images hold great importance in
computer vision applications like object detection, segmentation and fine-grained
classification, they cannot be used with vision transformers because of the associ-
ated computational memory demand. Conviformer improves the performance of
vision transformers by incorporating local features and infusing convolutional pri-
ors in a transformer architecture. We would like to see how convolution-induced
vision transformers perform on SVRT tasks.

Concept learning is yet another exciting direction of research. One of the key
features of human intelligence is the ability to quickly learn new concepts and use
them to generalize to a novel scenario. A concept can be an idea representing a
class of events (e.g., walking), objects (e.g., cats), or their properties (e.g., blue
color). To test the concept learning ability of neural networks in a few-shot man-
ner, we recently introduced a novel visual reasoning dataset, Compositional Visual
Reasoning (CVR) [Zerroug et al., 2022]. This dataset is based on the principle of
odd-one-out reasoning. In this form of reasoning task, three out of four samples
follow a similar concept (rule) in their formulation, while the fourth does not.
Each sample contains shapes similar to the shapes used in the SVRT challenge.
It extends the variety of relations used in the formulation compared to previously
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defined datasets like SVRT or RPM. We have also included compositionality prior
in the dataset, where some elementary relations are used to compose the several
tasks. The motivation is to push the community to build a compositional and
sample-efficient network.

In this thesis, we made one of the very first attempts to explore self-attention
from a visual reasoning perspective. Attention plays a crucial role in demon-
strating visual reasoning abilities, and a better attentional model is expected to
be better at reasoning. We showed how self-attention operations could be used
as a computational model of a visual attention system representing spatial and
feature-based attention and also as a model for active vision. While we found that
self-attention is as effective in solving reasoning tasks as in other vision-related
challenges, there is a need for additional analysis to figure out the fundamental
mechanisms in a full self-attention model that restricts its sample-efficient learn-
ability for reasoning tasks. Overall this work demonstrates the potential benefits
of adding self-attention mechanisms in cognitive and computer vision architecture
for solving visual reasoning tasks.
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SYNTHETIC VISUAL REASONING TASK

Table A.1: Each cell represents attempts participants took to solve seven consec-
utive correct categorizations. Here, row and column represents task number and
participant number. Entries containing "X" indicate that the participant failed to
solve the problem, and those cells are not included in the marginal means. [Fleuret
et al., 2011]

Participant No.
Task No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Mean Fail

1 1 12 1 2 8 8 1 1 X 1 14 1 4 1 1 1 2 1 1 1 3.26 1
2 3 1 2 2 10 19 4 4 14 3 2 3 21 1 1 5 3 2 22 9 6.55 0
3 7 1 3 1 4 3 1 1 7 1 6 1 1 1 4 1 1 1 4 2 2.55 0
4 1 6 7 1 1 3 1 1 1 1 3 1 1 2 1 1 7 5 7 1 2.6 0
5 7 X 1 21 8 3 1 5 X 1 X 9 13 1 6 2 X 8 1 7 5.88 4
6 X 20 X X 27 25 12 26 X X 3 X X X 4 16 X X X X 16.63 12
7 1 X 1 X 13 8 4 14 X 3 8 12 7 X 1 6 1 1 14 9 6.44 4
8 7 6 1 14 4 14 1 5 1 4 8 1 1 1 13 5 3 7 4 1 5.05 0
9 4 24 1 16 3 1 1 13 X X 4 6 X 2 7 1 3 1 5 1 5.47 3
10 1 8 2 2 4 1 3 5 X 4 1 2 16 4 4 2 1 1 4 3 3.58 1
11 4 2 3 1 3 1 4 8 1 2 1 1 1 1 1 5 2 1 1 1 2.2 0
12 1 2 8 1 9 4 8 4 1 7 25 2 5 2 X 2 5 X 4 1 5.06 2
13 1 20 5 14 X 3 1 13 7 10 1 13 9 5 X 3 3 2 X 1 6.53 3
14 4 4 1 1 3 10 2 X 12 14 1 19 1 3 1 1 4 8 1 2 4.84 1
15 1 X 1 2 2 1 1 1 X 5 1 2 4 1 1 18 10 3 2 1 3.17 2
16 12 18 7 X X 2 2 14 X X 28 9 13 X 22 10 X X X X 12.45 9
17 14 X 6 5 2 X 21 X X 22 X 14 X X X X 13 8 28 1 12.18 9
18 5 17 2 X 27 5 5 1 X 2 X 7 19 4 1 1 5 1 1 2 6.18 3
19 2 10 1 11 1 3 5 11 8 2 4 2 17 1 4 4 1 6 1 X 4.95 1
20 14 7 4 5 1 8 3 1 X 18 9 16 3 1 6 1 2 1 15 1 6.11 1
21 6 X 1 X 1 X 23 X X 21 28 7 26 7 15 2 17 X 16 X 13.08 7
22 1 9 14 1 1 4 1 5 21 2 1 2 5 1 6 1 4 1 1 6 4.35 0
23 1 1 7 22 1 1 2 1 6 21 2 5 4 6 4 3 1 1 6 8 5.15 0

Mean 4.45 9.33 3.59 6.78 6.33 6.05 4.65 6.7 7.18 7.2 7.5 6.14 8.55 2.37 5.15 4.14 4.4 3.11 6.9 3.05
No of Fails 1 5 1 5 2 2 0 3 12 3 3 1 3 4 3 1 3 4 3 4
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Figure A1: Sample images for Same Different (SD) tasks
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Figure A2: Sample images for Spatial Relation (SR) tasks
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COMPUTATIONAL DEMANDS OF VISUAL REASONING

Figure B1: Slope attained by linear fitting of points obtained after taking the ratio
of each of the network with spatial attention module and the test accuracy of a
ResNet50 for each task and training condition for Same Different (SD) tasks
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COMPUTATIONAL DEMANDS OF VISUAL REASONING

Figure B2: Slope attained by linear fitting of points obtained after taking the ratio
of each of the network with spatial attention module and the test accuracy of a
ResNet50 for each task and training condition for Spatial Relation (SR) tasks
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COMPUTATIONAL DEMANDS OF VISUAL REASONING

Figure B3: Slope attained by linear fitting of points obtained after taking the ratio
of each of the network with feature-based attention module and the test accuracy
of a ResNet50 for each task and training condition for Same Different (SD) tasks
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COMPUTATIONAL DEMANDS OF VISUAL REASONING

Figure B4: Slope attained by linear fitting of points obtained after taking the ratio
of each of the network with feature-based attention module and the test accuracy
of a ResNet50 for each task and training condition for Spatial Relation (SR) tasks
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COMPUTATIONAL DEMANDS OF VISUAL REASONING

Figure B5: Test accuracies for a baseline ResNet50 trained from scratch (“No
initialization”) vs. the same architecture pre-trained on Imagenet data for different
number of training examples. Also note that a different axis scale is used for SR2
to improve visibility.
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