
HAL Id: tel-04354324
https://theses.hal.science/tel-04354324v1

Submitted on 19 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Leveraging sequentiality in Robot Learning : Application
of the Divide & Conquer paradigm to Neuro-Evolution

and Deep Reinforcement Learning
Alexandre Chenu

To cite this version:
Alexandre Chenu. Leveraging sequentiality in Robot Learning : Application of the Divide & Con-
quer paradigm to Neuro-Evolution and Deep Reinforcement Learning. Artificial Intelligence [cs.AI].
Sorbonne Université, 2023. English. �NNT : 2023SORUS342�. �tel-04354324�

https://theses.hal.science/tel-04354324v1
https://hal.archives-ouvertes.fr

Leveraging sequentiality in Robot
Learning: Application of the Divide &

Conquer paradigm to Neuro-Evolution
and Deep Reinforcement Learning

ALEXANDRE CHENU

SORBONNE UNIVERSITÉ

Under the co-supervision of Nicolas Perrin-Gilbert and Olivier Sigaud.

In partial fulfillment of the requirements for the degree of Doctor of

Philosophy.

Board of examiners:

Jens Kober Associate Professor TU Delft Reviewer

George Konidaris Full Professor Brown University Reviewer

Aude Billard Full Professor EPFL Examinator

Olivier Pietquin Research Scientist Google Brain Examinator

Nicolas Perrin-Gilbert Researcher CNRS Supervisor

Olivier Sigaud Full Professor Sorbonne Université Director

Thesis defense date: 10/03/2023

Acknowledgements

The metaphor of a journey is often used to describe a PhD thesis. Although COVID

did everything to limit mine to my desk and my sofa, I want to thank all the people

without whom this 3-year journey would have been (way) shorter.

First and foremost, I want to thank my supervisors for their guidance, support, and

encouragement throughout those three years. Your expertise, insights, and patience

have been crucial in helping me complete this work. I can imagine how frustrating it

was when I diverged for the umpteenth time toward a scientific mirage. Thank you for

always having the patience to allow me to explore, to discuss my ideas (even the bad

ones) and, above all, for always getting me back on track. I would have liked these three

years to happen in simpler circumstances to benefit even more from our collaboration.

I want to thank my parents, for whom my love is infinite. Your benevolence has kept

me going through the ups and downs. Thank you for putting up with my moods and

stress during these three years and, above all, for believing in me even when I didn’t.

Thank you to my big brother for the same reasons but also for constantly pushing me

to work on my curiosity. Thank you for being the model you have always been and

will always be. Wherever they are, I also want to thank my grandparents for always

supporting me in everything I have undertaken since I was a child, whether it was

sports, music, or science. I wish you could have seen the result of these three years of

work.

I want to thank all my friends, those I’ve always had, those from "prépa", Brest, Lon-

don, from the lab. You can’t imagine how valuable your support has been. Thank you

for allowing me to return to the surface each time I was drowning in my work during

these three years.

Thank you to my Ph.D. mates, my "Dean Moriarty". Those long days and evenings

i

Acknowledgements

spent in the lab would have been much less enjoyable without you. In particular, I

want like to thank Olivier Serris for all the board sessions, constructive criticism and

invaluable inputs. Thank you for transforming this thesis in only a few months of

collaboration.

I would also like to thank the Open-Ended Learning research group, both for the short,

off-topic rounds that punctuated Friday afternoons and for the fascinating discussions

on this theme, which is as vast as its name implies.

I want to thank the Lycée Marie Curie, ENSTA Bretagne and Imperial College London

for preparing me for this trip during the five years of study that preceded it. In particu-

lar, I want to thank Professor Antoine Cully for sharing his passion for research with

me during the 6-month project that preceded this thesis.

I want to thank Sorbonne Université, the Ecole Doctorale Informatique Télécommu-

nications et Electronique and especially the Institut des Systèmes Intelligents et de

Robotique, for providing me with an excellent research infrastructure. Professor Cully

advised me well, it is the perfect place for a Ph.D. thesis.

I want to thank the board of examinators for this thesis. I look forward to discussing

with you at the Ph.D. defense.

I want to thank the Collège Des Ingénieurs for giving me the opportunity to follow

their Science & Management program for 2 years. These regular meetings have been

studious breaks in the thesis that have been as exciting as they will be valuable for the

rest of my career.

Finally, I would like to thank the French National Research Agency (ANR) for financing

this work through project ANR-18-CE33-0005 HUSKI.

Paris, 31/12/2022 A. C.

ii

Abstract

“To succeed, planning alone is insufficient. One must improvise as well.” This quote

from Isaac Asimov, founding father of robotics and author of the Three Laws of Robotics,

emphasizes the importance of being able to adapt and think on one’s feet to achieve

success. Although robots can nowadays resolve highly complex tasks, they still need

to gain those crucial adaptability skills to be deployed on a larger scale.

Robot Learning uses learning algorithms to tackle this lack of adaptability and to

enable robots to solve complex tasks autonomously. Two types of learning algorithms

are particularly suitable for robots to learn controllers autonomously: Deep Rein-

forcement Learning and Neuro-Evolution. However, both classes of algorithms often

cannot solve Hard Exploration Problems, that is problems with a long horizon and a

sparse reward signal, unless they are guided in their learning process.

One can consider different approaches to tackle those problems. An option is to

search for a diversity of behaviors rather than a specific one. The idea is that among

this diversity, some behaviors will be able to solve the task. We call these algorithms

Diversity Search algorithms. A second option consists in guiding the learning process

using demonstrations provided by an expert. This is called Learning from Demonstra-

tion. However, searching for diverse behaviors or learning from demonstration can

be inefficient in some contexts. Indeed, finding diverse behaviors can be tedious if

the environment is complex. On the other hand, learning from demonstration can be

very difficult if only one demonstration is available.

This thesis attempts to improve the effectiveness of Diversity Search and Learning

from Demonstration when applied to Hard Exploration Problems. To do so, we assume

that complex robotics behaviors can be decomposed into reaching simpler sub-goals.

Based on this sequential bias, we try to improve the sample efficiency of Diversity

Search and Learning from Demonstration algorithms by adopting Divide & Conquer

strategies, which are well-known for their efficiency when the problem is composable.

iii

Acknowledgements

Throughout the thesis, we propose two main strategies. First, after identifying some

limitations of Diversity Search algorithms based on Neuro-Evolution, we propose

Novelty Search Skill Chaining. This algorithm combines Diversity Search with Skill-

Chaining to efficiently navigate maze environments that are difficult to explore for

state-of-the-art Diversity Search.

In a second set of contributions, we propose the Divide & Conquer Imitation Learning

algorithms. The key intuition behind those methods is to decompose the complex task

of learning from a single demonstration into several simpler goal-reaching sub-tasks.

DCIL-II, the most advanced variant, can learn walking behaviors for under-actuated

humanoid robots with unprecedented efficiency.

Beyond underlining the effectiveness of the Divide & Conquer paradigm in Robot

Learning, this work also highlights the difficulties that can arise when composing

behaviors, even in elementary environments. One will inevitably have to address

these difficulties before applying these algorithms directly to real robots. It may be

necessary for the success of the next generations of robots, as outlined by Asimov.

Key words: Diversity Search, Learning from Demonstration, Goal-Conditioned Rein-

forcement Learning, Robot Learning

iv

Résumé
"Pour réussir, il ne suffit pas de prévoir, il faut aussi savoir improviser." Cette citation

d’Isaac Asimov, père fondateur de la robotique et auteur des Trois lois de la robo-

tique, souligne toute l’importance d’être capable de s’adapter et d’agir dans l’instant

présent pour réussir. Même si, aujourd’hui, les robots peuvent résoudre des tâches

d’une complexité qui était inimaginable il y a encore quelques années, ces capacités

d’adaptation leur font encore défaut, ce qui les empêche d’être déployé à une plus

grande échelle.

Pour remédier à ce manque d’adaptabilité, les roboticiens utilisent des algorithmes

d’apprentissage afin de permettre aux robots de résoudre des tâches complexes de

manière autonome. Deux types d’algorithmes d’apprentissage sont particulièrement

adaptés à l’apprentissage autonome de contrôleurs par les robots : l’apprentissage

profond par renforcement et la neuro-évolution. Cependant, ces deux classes d’algo-

rithmes ne sont capables de résoudre des problèmes d’exploration difficiles, c’est-à-

dire des problèmes avec un horizon long et un signal de récompense rare, que s’ils

sont guidés dans leur processus d’apprentissage. Différentes approches peuvent être

envisagées pour permettre à un robot de résoudre un tel problème sans être guidé.

Une première approche consiste à rechercher une diversité de comportements plu-

tôt qu’un comportement spécifique. L’idée étant que parmi cette diversité, certains

comportements seront probablement capables de résoudre la tâche qui nous inté-

resse. Nous les appelons les algorithmes de recherche de diversité. Une deuxième

approche consiste à guider le processus d’apprentissage en utilisant des démonstra-

tions fournies par un expert. C’est ce qu’on appelle l’apprentissage par démonstration.

Cependant, chercher des comportements divers ou apprendre par démonstration

peut être inefficace dans certains contextes. En effet, la recherche de comportements

divers peut être fastidieuse si l’environnement est complexe. D’autre part, l’apprentis-

sage à partir d’une seule et unique démonstration peut être très difficile.

Dans cette thèse, nous tentons d’améliorer l’efficacité des approches de recherche par

diversité et d’apprentissage à partir d’une seule démonstration dans des problèmes

d’exploration difficiles. Pour ce faire, nous supposons que les comportements robo-

v

Acknowledgements

tiques complexes peuvent être décomposés en sous-comportements plus simples.

Sur la base de ce biais séquentiel, nous adoptons une stratégie dite de "diviser-pour-

régner", qui est bien connue pour être efficace lorsque le problème est composable.

Nous proposons deux approches en particulier. Premièrement, après avoir identifié

certaines limites des algorithmes de recherche de diversité basés sur la l’évolution de

réseaux de neurones artificiels, nous proposons Novelty Search Skill Chaining. Cet

algorithme combine la recherche de diversité avec l’énchaînement de compétences

pour naviguer efficacement dans des labyrinthes qui sont difficiles à explorer pour

des algorithmes de l’état-de-l’art.

Dans une deuxième série de contributions, nous proposons les algorithmes Divide

& Conquer Imitation Learning. L’intuition derrière ces méthodes est de décomposer

la tâche complexe d’apprentissage à partir d’une seule démonstration en plusieurs

sous-tâches plus simples consistant à atteindre des sous-buts successifs. DCIL-II, la

variante la plus avancée, est capable d’apprendre des comportements de marche pour

des robots humanoïdes sous-actionnés avec une efficacité sans précédent.

Au-delà de souligner l’efficacité du paradigme de diviser-pour-régner dans l’appren-

tissage des robots, cette thèse met également en évidence les difficultés qui peuvent

survenir lorsqu’on compose de comportements, même dans des environnements

élémentaires. Il faudra inévitablement résoudre ces difficultés avant d’appliquer ces

algorithmes directement à des robots réels. C’est peut-être une condition nécessaire

pour le succès des prochaines générations de robots, comme le souligne Asimov.

Mots clefs : Recherche de diversité, Apprentissage par Demonstration, Apprentissage

par Renforcement conditionné par des buts, Apprentissage des robots

vi

Acronyms

• AGS Approximated Goal Switching

• BC Behavioral Cloning

• DB Demo-Buffer

• DCIL-I & DCIL-II Divide & Conquer Imitation Learning I & II

• DDPG Deep Deterministic Policy Gradient

• DoF Degree-of-Freedom

• DSC Deep Skill Chaining

• DRL Deep Reinforcement Learning

• DS Diversity Search

• EA Evolutionary Algorithm

• EST Expansive Spaces Trees

• GAN Generative Adversarial Network

• GEP Goal Exploration Process

• GC-MDP Goal-Conditioned MDP

• GCRL Goal-Conditioned Reinforcement Learning

• GGI Goal-Guided Imitation

• HEP Hard Exploration Problem

• HER Hindsight Experience Replay

vii

Acronyms

• HRL Hierarchical Reinforcement Learning

• IL Imitation Learning

• IM Intrinsic Motivation

• IRL Inverse Reinforcement Learning

• LfD Learning from Demonstration

• MDP Markov Decision Process

• MLP Multi-Layer Perceptron

• MP Motion Planning

• MSE Mean Squared Error

• MSBE Mean Squared Bellman Error

• NE Neuro-Evolution

• NS Novelty Search

• NSSC Novelty Search Skill Chaining

• PWIL Primal Wasserstein Imitation Learning

• RB Replay-Buffer

• R-DSC Robust Deep Skill Chaining

• RL Reinforcement Learning

• RLfD Reinforcement Learning from Demonstration

• RRT Rapidly-exploring Random Tree

• SAC Soft-Actor Critic

• SACBC Soft-Actor Critic Behavioral Cloning

• SACfD Soft-Actor Critic from Demonstration

• SACR2 Soft-Actor Critic Reward Relabelling

• SR-DCIL Single-Reset Divide & Conquer Imitation Learning

• TD Temporal-Difference

viii

Acronyms

• TD3 Twin Delayed Deep Deterministic Policy Gradient

• TQC Truncated Quantile Critics

• VC Value-Cloning

ix

Contents

Acknowledgements i

Abstract (English/Français) iii

Acronyms vii

1 Introduction 1
1.1 Motivation . 4

1.1.1 Research Question . 5

1.2 Outline & contributions . 5

I Background 9

2 Background in robotics 13
2.1 Representing the state of a robot . 13

2.1.1 Representing the position of a robot 13

2.1.2 Representing the motion of a robot 15

2.2 Background on Motion Planning . 15

2.2.1 Motion Planning problem definition 16

2.2.2 Sampling-based Motion Planning algorithms 16

2.2.3 Non-holonomic constraints . 17

2.3 Summary . 18

3 Background on Reinforcement Learning 21
3.1 Reinforcement Learning framework . 22

3.1.1 Markov Decision Processes . 22

3.1.2 Value and Q-value functions . 24

3.2 Paving the way to Soft-Actor-Critic . 25

3.2.1 The MDP is known: Value Iteration 25

3.2.2 The MDP is unknown: from Temporal Differences to Deep Q-

learning . 26

3.2.3 The exploration/exploitation dilemma 27

xi

CONTENTS

3.2.4 Soft Actor-Critic . 28

3.3 A well-defined reward function is crucial in RL 31

3.3.1 Reward Shaping . 32

3.3.2 Intrinsic Motivations . 32

3.4 Goal-Conditioned Reinforcement Learning 34

3.4.1 Distance-based sparse reward . 35

3.4.2 Relabelling . 36

3.4.3 Exploration in GCRL . 36

3.5 Can we use sampling-based MP algorithms to solve RL problems? . . . 37

3.5.1 High-dimensional search spaces 37

3.5.2 Constrained expansions . 38

3.5.3 Reset assumption . 39

3.6 Summary . 40

4 Background on Neuro-Evolution 41

4.1 Evolutionary Algorithms to solve RL problems 41

4.2 Evolving Neural-Networks . 43

4.3 Diversity Search . 44

4.3.1 Novelty Search . 44

4.3.2 Goal-Exploration Processes . 45

4.3.3 Is Neuro-Evolution compatible with maximum entropy? 45

4.4 Summary . 46

5 Learning from demonstrations 47

5.1 Non-Interactive Imitation Learning . 47

5.2 Interactive Imitation Learning . 48

5.3 RL-based Imitation Learning . 48

5.3.1 Offline Reinforcement Learning 49

5.3.2 Inverse Reinforcement Learning 50

5.3.3 Reinforcement Learning from demonstration 50

5.4 Summary . 51

II Contributions 53

6 Analysis of the limitations of Diversity Search Neuro-Evolution 57

6.1 Selection-Expansion: a unifying framework for Diversity Search and

sampling-based Motion-Planning algorithms 58

6.1.1 Selection-expansion algorithms 58

6.1.2 Application to Motion Planning 59

6.1.3 Application to diversity search algorithms 62

xii

CONTENTS

6.1.4 Similarities between MP and DS algorithms 67

6.1.5 Expansions in DS are often non-local 68

6.2 Experimental study . 71

6.2.1 Experimental setup . 71

6.2.2 Metrics . 72

6.2.3 Implementation details . 72

6.3 Results . 73

6.3.1 Results on 3D ballistic throw . 73

6.3.2 Coverage visualization . 74

6.3.3 Results in SimpleMaze . 74

6.4 Conclusion . 76

7 Novelty Search Skill-Chaining: adopting a Divive & Conquer strategy 79

7.1 Related Work . 80

7.1.1 Skill-chaining . 80

7.1.2 Returning to advanced states to explore 81

7.2 Background . 82

7.2.1 Invalid Exploration States . 82

7.3 Method . 82

7.3.1 Deterministic Environments . 82

7.3.2 Skill-Chaining allows expansions to be local in the outcome space 83

7.3.3 Viewing NSSC as a sampling-based MP algorithm 83

7.3.4 NSSC in non-holonomic environments 85

7.4 Experimental study . 85

7.4.1 Experimental Setup . 86

7.5 Conclusion . 89

8 Reinforcement Learning from a single demonstration with DCIL-I 91

8.1 Introduction . 91

8.2 Background . 94

8.2.1 Valid success states . 94

8.3 Related work . 95

8.3.1 IL from a single demonstration . 95

8.3.2 Sequential Goal Reaching . 96

8.3.3 Value propagation mechanisms 97

8.4 Methods . 98

8.4.1 Goal-Guided Imitation . 98

8.4.2 DCIL-I hypotheses . 98

8.4.3 The Divide & Conquer Imitation Learning I algorithm 99

8.4.4 Value Clipping & discount factor choice for stable training . . . 103

xiii

CONTENTS

8.5 Experiments . 105

8.5.1 Experimental setup . 105

8.5.2 Ablation study . 106

8.5.3 Comparison to baselines in Dubins Maze 108

8.5.4 Scaling to a complex object manipulation task 110

9 Improving the value propagation mechanism with DCIL-II 113
9.1 Introduction . 113

9.2 Methods . 114

9.2.1 Problem statement . 114

9.2.2 The DCIL-II algorithm . 119

9.3 Bridging the gap between DCIL-II and similar approaches 121

9.4 Experiments . 127

9.4.1 Environments . 127

9.4.2 Baselines . 128

9.4.3 Implementation details . 129

9.4.4 Ablation study . 129

9.4.5 Comparison to baselines . 130

9.4.6 Using DCIL-II to control a simulated Cassie bipedal platform . . 132

10 Going a step further with Single-Reset DCIL 135
10.1 Introduction . 135

10.2 Related Work . 136

10.3 Methods . 137

10.3.1 The importance of the reset hypothesis 137

10.3.2 Using DCIL in the single-reset setting 140

10.3.3 The SR-DCIL algorithm . 144

10.3.4 Comparison of hypotheses . 146

10.4 Experiments . 147

10.4.1 Experimental setup . 147

10.4.2 Baseline . 147

10.4.3 Ablation study . 147

10.4.4 Comparison to the DCIL-II baseline 150

10.5 Discussion & Conclusion . 151

11 Conclusion 153
11.1 Discussion . 153

11.2 Conclusion & Perspective . 155

Bibliography 157

xiv

1 Introduction

There are examples of mechanical machines performing simple tasks autonomously

dating back centuries, but the concept of robots has long remained almost absent

from the collective imagination. In the early twentieth century, truly autonomous

robots began to appear in literature and comic books (Baum, 1907; Collier, 1911), with

capabilities far exceeding those of their physical world counterparts. The term robot

was soon coined (Capek, 1921), and fictional robots became increasingly popular in

the following decades (Asimov, 1950). At the same time, the birth of electronics led to

more impressive autonomous machines, such as Elektro in 1939 (Marsh, 2018), and

robotics gradually became a research field in the 1950s and 1960s, with precursory

telerobotics and industrial robotics (Mason, 2012).

However, the capabilities of physical robots remained far from the unlimited possi-

bilities of fiction, which generated very high expectations. Until the beginning of the

present century, the most common robots were repeating the same standardized task

over and over again in the fully controlled environment of their factory. Advances in

robotics have been steady, but have arguably not kept pace with advances in computer

power, and despite significant improvements in the complexity of tasks that robots

can solve, we are still a long way from robots with human-like capabilities.

At the 2015 DARPA challenge, the numerous crashesI highlighted that robots were not

ready to be deployed in complex and unknown environments (Atkeson et al., 2015).

More intriguingly, the robots showcased as useful for exploration in extreme environ-

ments (Krotkov et al., 2018; Tranzatto et al., 2022) have had limited applicability in a

real-world context such as the Fukushima disaster (Tsitsimpelis et al., 2019). These

failures highlighted the limits of traditional robotics combining mechanical modeling

and optimization. They led to intensive research focused on the adaptability and

Ihttps://www.bbc.com/news/av/technology-33049253

1

Chapter 1 Introduction

robustness of robots in non-laboratory conditions, resulting in a new generation of

impressive robots. For instance, at the recent DARPA’s Subterranean Challenge 2021,

the winning robot, a quadruped ANYmal (Hutter et al., 2017) from team Cerberus

(ETH Zurich) (Tranzatto et al., 2022), was able to map and locate itself in a network of

underground tunnels while walking on rough terrain. Another example of these ad-

vances is the recent achievement of the humanoid robot Atlas from Boston Dynamics

doing parkour II.

However, although very efficient at solving these complex tasks, these robots are still

far from the robots with a wide range of skills and near-human adaptability imagined

in science fiction novels and movies. Indeed, despite significant advances, the lack

of adaptability of robots remains a major limitation. For instance, minimal changes

resulting from damages (Cully et al., 2015) or a varying coefficient of friction of the

floor (Kajita et al., 2004) are enough to prevent a robot from completing a task. To

tackle this lack of adaptability, a growing part of the robotics community is turning

to learning algorithms to avoid the burden of characterizing the infinite number of

highly complex tasks and situations a robot might face.

Learning algorithms aim to endow an artificial agent with the capability to acquire

knowledge and skills to solve a task without being explicitly programmed to do so

(Mitchell, 1997). Using such algorithms in robots has given rise to the field of Robot

Learning (Connell and Mahadevan, 2012; Peters et al., 2016). Among the different

categories of learning algorithms, Reinforcement Learning (RL) (Sutton and Barto,

1998), which consists in optimizing sequential decision-making, is very well adapted

to the context of robot control (Kober et al., 2013). On the other hand, Evolutionary

Algorithms (EAs) are also interesting because of their black-box nature and the few

assumptions required to use them (Bongard, 2013; Doncieux et al., 2015). When

these algorithms are applied to learn a control policy corresponding to an artificial

neural network (Jain et al., 1996), they are called Deep Reinforcement Learning (DRL)

(Mnih et al., 2013) and (Deep) Neuro-Evolution (NE) (Stanley and Miikkulainen, 2002)

respectively.

Most learning algorithms are based on optimizing an objective function (Alpaydin,

2020). The simplest class of learning algorithms is Supervised Learning (Hastie et al.,

2009). In a Supervised Learning task, a teacher provides the artificial agent with error

feedback proportional to the difference between the system estimate and the desired

value. For example, in image classification, the objective is to minimize the error

between the image class estimate and its true class. RL and EA methods use a slightly

more complex type of objective function. In RL, it is assumed that there is a function

IIhttps://www.bostondynamics.com/resources/blog/leaps-bounds-and-backflips

2

Introduction Chapter 1

that gives quantitative feedback on the actions that an artificial agent has performed.

This function is called the reward function (Sutton and Barto, 1998). Thus, a robot

learns by maximizing its reward over time. In EAs, an analogous function called the

fitness function is assumed to exist (Eiben, J. E. Smith, et al., 2003) and assesses the

agent’s performance.

Given the recent successes of Robot Learning methods (Cully et al., 2015; Andrychow-

icz et al., 2017; Sermanet et al., 2018; Akkaya et al., 2019; Ecoffet et al., 2021), it is

tempting to call upon these methods to solve minimally specified tasks and circum-

vent any kind of complex behavior specification. However, the less specified the

objective function is, the more difficult it is for an agent to learn. One could use a

minimal task specification to define the objective function. However, this likely results

in a sparse reward problem. For instance, let’s consider a humanoid robot learning

how to stand up using an RL algorithm. If one defines the reward function as positive

when the chest of the robot is above a certain height and null elsewhere, the reward is

sparse. Without a dense reward signal, the agent cannot benefit from any learning

curriculum and will probably learn no interesting behavior. On the other hand, a

dense but poorly defined reward causes the agent to learn a sub-optimal behavior that

is unfit to solve the task. This is called a deceptive reward. In the standup task, naive

dense feedback could correspond to a reward function proportional to the distance

between the chest and the ground. However, such a reward function gives no infor-

mation about the complex coordination of hands and feet that a humanoid needs to

have in order to stand up. At best, using such a reward may result in a sub-optimal

behavior in which the robot sits down rather than standing up. Whether the reward is

sparse or deceptive, the problem is the same: in such scenarios, the artificial agent

cannot learn by naively optimizing its objective function.

Learning from such ill-defined reward functions falls into the class of Hard-Exploration

Problems (HEP). More precisely, an HEP is an RL problem where the reward function

is either sparse or deceptive, a long control sequence is required to solve the task, and

the environment dynamics are highly non-linear or even discontinuous. A popular

toy Hard-Exploration Problem is a 2D maze navigation task where the agent has no

perception of the walls (Matheron et al., 2020; Pitis et al., 2020; Castanet et al., 2022).

To solve HEPs, several Robot Learning communities defined alternative objective

functions to solve the task indirectly. The Open-Ended Learning community (Doncieux

et al., 2018) draws on biology and developmental psychology to define objective

functions that encourage an artificial agent to find a diversity of behaviors rather than

one particular behavior. The idea is that within this diversity of behaviors, certain

behaviors will be able to solve the task. The work of this community is based on the

3

Chapter 1 Introduction

intrinsic motivation of infants and animals (Berlyne, 1950; Berlyne, 1966; Gopnik

et al., 2001; Gottlieb and Oudeyer, 2018) and includes algorithms such as Diversity

Search Evolutionary Algorithms (Lehman and Stanley, 2011a; Forestier and Oudeyer,

2016; Cully and Demiris, 2018b) or Intrinsically Motivated Reinforcement Learning

algorithms (Schmidhuber, 1991; Colas et al., 2022). In the example of the humanoid

trying to stand up, these approaches seek to move in as many different ways as possible

to eventually find a behavior that results in the robot getting up.

A second approach to tackle Hard Exploration Problems is Learning from demonstra-

tion (Schaal, 1996; Schaal, 1999). Here, the task to be solved is specified by one or

more demonstrations and the agent seeks to reproduce the demonstrated behavior to

complete the task (Ravichandar et al., 2020). This is the approach we leverage in this

work.

1.1 Motivation

Both Diversity Search (DS) and Learning from Demonstration (LfD) have been success-

fully applied to learn controllers for complex robots in minimal specification settings

(Calinon and Billard, 2007; Kober and Peters, 2011; Cully et al., 2015; Ho and Ermon,

2016b; Such et al., 2017; Dadashi et al., 2020). However, they face several limitations

in this precise context preventing them from being widely applied.

Firstly, the more complex the robot, the more interactions DS approaches require to

learn diverse behaviors. Indeed, DS algorithms often use a low-dimensional space to

characterize the behavior of controllers and to guide the search for diversity. However,

exploring this low-dimensional space may be difficult when the robot is complex. For

instance, if the robot is subject to complex non-linear dynamics, most controllers

will probably generate similar and uninteresting behavior. Therefore, finding rare

controllers yielding interesting behaviors can be very challenging.

Despite avoiding a potentially complex search for diverse behaviors, costly learning

also arises in LfD as in general many interactions with the robot are required to learn

the controller (Arora and Doshi, 2021). This latter issue is particularly important since

collecting a high number of demonstrations can be challenging in certain contexts

(Stadie et al., 2017). Because of the high cost of these learning methods, their direct

application to physical robots in real-world contexts is still limited. Therefore, it is

essential to tackle these limitations to improve their sample efficiency.

4

Introduction Chapter 1

1.1.1 Research Question

In robotics, a common approach to simplify complex problems is to exploit a sequen-

tial bias. For instance, one can assume that robotic movements are sequential and

composable. Indeed, a complex movement can often be decomposed into a sequence

of simpler movements. Based on this assumption, different robotics communities

ranging from Robot Learning (Kober et al., 2015; Yan et al., 2020; Allard et al., 2022) to

Optimal Control (Bock and Plitt, 1984; Diehl et al., 2006) have adopted Divide & Con-

quer strategies (Knuth, 1997), known to be efficient when a problem is compositional,

to decompose a complex controller into several simpler controllers.

In this work, we wonder under which conditions we can exploit a sequential bias in

robotics tasks to improve the efficiency of DS and LfD algorithms when tackling a

specific category of HEPs corresponding to continuous control problems in simulated

robotic environments without any exploitable objective function. To investigate the

question, we adopt a Divide & Conquer strategy and we show that learning a sequence

of skills into a unique neural network conditioned on a sequence of goals raises

specific issues when the system to be controlled is of higher dimension than the goals.

In more details, we focus mainly on environments with strong non-holonomic con-

straints because many difficulties arise when trying to compose successive behaviors

in the presence of such constraints. In particular, because of these constraints, it can

be difficult to successively reach two goals that are apparently very close. Therefore,

when composing two behaviors, special care must be taken to ensure that a sub-

behavior ends in precise states that allow the following sub-behavior to be completed.

This corresponds to the notion of valid states, which is crucial throughout this thesis.

1.2 Outline & contributions

The first part of the document sets out the key concepts used throughout this thesis.

Chapter 2 introduces fundamental principles in robotics. It starts by presenting a

generic characterization of the state of a robot based on the concept of configuration.

All the experiments presented in this thesis rely on this characterization. With this def-

inition in mind, Motion Planning problems are defined and sampling-based Motion

Planning algorithms are introduced. In chapters 3 and 4, an overview of RL and NE is

given. These successive presentations of RL and NE focus on the problem of learning

from poorly defined reward functions in HEPs. After explaining the problem, several

alternatives are proposed, such as Intrinsic Motivation, Diversity Search, etc. The final

chapter of this part introduces the various ways of learning from demonstrations, a

supplementary alternative to tackle HEPs when demonstrations are available.

5

Chapter 1 Introduction

The second part of the document progressively presents all the contributions of

this thesis. In Chapter 6, we assess the ability of DS algorithms to learn control

policies to solve HEPs. In other words, we want to learn diverse policies to solve a

complex robotics task without access to any informative fitness or reward function. By

drawing a parallel with sampling-based Motion Planning algorithms, we highlight the

poor sample efficiency of DS algorithms when applied to HEPs involving continuous

control. Indeed, when the environment dynamics are complex, the fragility of the

mutation operators used in NE makes the search for diverse behaviors very inefficient.

Adopting a Divide & Conquer strategy, in Chapter 7, we propose to use the concept

of skill-chaining to transform a difficult search for diverse complex behaviors into

a simpler search for locally diverse sub-behaviors. Although effective in a certain

class of HEPs, the proposed approach presents critical limitations in non-holonomic

environments. Indeed, searching for a locally diverse behavior may be inefficient

if the behavior starts from a state that is strongly constrained. We call these states

invalid exploration states.

In Chapter 8, we propose to tackle the problem of learning complex robotics policies

with LfD. To this end, we propose Divide & Conquer Imitation Learning I (DCIL-I), an

approach based on Goal-Conditioned Reinforcement Learning designed to learn a

complex behavior from a single demonstration. Once again, DCIL-I adopts a Divide &

Conquer strategy and decomposes a difficult imitation task into several simpler goal-

reaching subtasks. Given the difficulty of achieving a particular high-dimensional

desired state, DCIL-I proposes to achieve high-level low-dimensional goals (e.g. suc-

cessive positions of the torso of a humanoid in a locomotion task). However, high-level

goals do not condition the actual state of the agent when it achieves a goal, which

can be very problematic, particularly in non-holonomic environments. Therefore,

DCIL-I proposes mechanisms to encourage the agent to always achieve a goal by

reaching states compatible with the future achievement of the next goal. We call

those compatible states valid success states. DCIL-I was successfully applied to solve a

navigation task and a grasping task from a single demonstration.

Chapter 9 presents DCIL-II, a variant of DCIL-I based on an original extended Goal

Conditioned RL framework. DCIL-II benefits from improved sample efficiency and

was successfully applied to complex locomotion tasks. Finally, in Chapter 10, several

variants of DCIL are proposed to remove the limiting assumption in DCIL-I and

DCIL-II that the agent may be reset to any demonstration state.

In summary, the contribution of this thesis are the following:

• We identified some limitations of the mutation operator of NE algorithms when

6

Introduction Chapter 1

applied to DS to tackle HEP in environments with complex dynamics (Chenu

et al., 2021).

• We proposed Novelty Search Skill-Chaining, a novel approach to overcome the

identified limitations based on the idea of dividing a complex search for diverse

behaviors into several simpler searches for locally diverse behaviors. While

greatly improving the sample efficiency of DS in a certain class of environments,

limits arise in non-holonomic environments.

• We proposed DCIL-I (Chenu, Perrin-Gilbert, and Sigaud, 2022), a Goal Condi-

tioned RL approach dividing the imitation of a complex behavior specified by a

single demonstration into simpler goal-reaching subtasks. DCIL-I is specifically

designed to learn a goal-conditioned control policy to sequentially reach high-

level low-dimensional goals in a complex high-dimensional continuous state

space.

• We proposed DCIL-II (Chenu, Serris, et al., 2022) a more sample-efficient variant

of DCIL-I based on an original Goal Conditioned-RL framework that makes it

possible to deal with a sequence of goals with a goal-conditioned policy.

• We proposed SR-DCIL, an extension of DCIL-II that weakens the state resetting

assumption required by DCIL-I and DCIL-II.

7

Part IBackground

9

Chapter 1

In brief

This first part of the thesis introduces the fundamental concepts on which the contribu-

tions are built. The first chapter gives a brief introduction to fundamental concepts in

robotics. It starts by presenting a generic state representation of an articulated robot.

Then, Motion Planning problems and algorithms designed to solve them are presented.

The second and third chapters give a non-extensive overview of the field of Reinforce-

ment Learning and Neuro-evolution. Those presentations are structured around the

limits of Robot Learning in Hard Exploration Problems, i.e. in the absence of informa-

tive training signals like well-defined reward functions. Several approaches based on

Reinforcement Learning and Neuro-Evolution and designed to tackle Hard Exploration

Problems are presented in both chapters. Finally, Chapter 5 introduces the alternative

solution of learning from demonstration.

11

2 Background in robotics

2.1 Representing the state of a robot

The term state has different meanings in physics depending on the system stud-

ied. In thermodynamics, a state specifies the physical properties of a system (e.g.,

temperature, volume, pressure, etc.) (Cengel et al., 2011). In quantum physics, the

quantum state is a probability distribution over the possible outcomes of a measure-

ment (Griffiths and Schroeter, 2018). However, each of these definitions answers the

fundamental question: "what is the condition of the system of interest?"

This question, when raised in the context of robotics, can be divided into two parts.

First, one must specify the position of a robot. This involves the notion of a configura-

tion, a parameterized representation of the position of all points of the robot. Second,

by augmenting configurations with velocities, one can characterize the motion of the

robot and obtain states of a robot or an environment.

2.1.1 Representing the position of a robot

To answer the first sub-question: "what is the position of my robot?", one must start

by characterizing the robot. A robot can be described by a set of rigid bodies called

links. While more complex robot representations are used in soft robotics (Laschi

et al., 2017), all the robots considered in this thesis can be modeled as rigid bodies.

These links are connected together via two types of joints. If a force or a torque can be

applied to a joint, the joint is actuated. If not, the joint is unactuated.

The configuration of a robot offers a parameterized representation of the position of

all points of the robot.

13

Chapter 2 Background in robotics

Since a link is rigid, all its points are attached to an associated coordinate system (see

Figure 2.1). This coordinate system is described by 3 degrees of freedom (DoF) for its

position and 3 DoF for its orientation. Therefore, the configuration of a link is given

by 6 parameters.

Figure 2.1: Robot
arm example.
This robot can
be described as
9 rigid links. All
the points of a link
are attached to a
coordinate system
represented by 3
axes (red, green and
blue arrows). Figure
taken from http:
//docs.ros.org/en/
kinetic/api/moveit_
tutorials/html/.

By extrapolation, a naive representation of the configuration of

a robot with N links is given by 6N parameters corresponding

to the 6 DoF of all links. However, constraints can be applied

to the robot, reducing the number of DoF. Each independent

constraint removes one DoF from the robot. The number of

DoF of a robot can be calculated using the Chebychev-Grübler-
Kutzbach criterion (Uicker et al., 2003).

Theorem 1 (Uicker et al., 2003) Consider a robot with N links,

where the ground is also regarded as a link. Let J be the number

of joints, m be the number of DoF of a rigid body (m = 3 for pla-

nar systems and m = 6 for spatial systems), fi be the number of

freedoms provided by joint i and ci be the number of constraints

provided by joint i (fi + ci = m for all i). Then the number of

DoF NDoF of the robot is :

NDoF = m(N −1)−
J∑

i=1
ci

= m(N −1)−
J∑

i=1
(m − fi)

= m(N −1− J)+
J∑

i=1
fi

(2.1)

Therefore, by taking these constraints into account, the con-

figuration of a robot with N links with constraints can be

expressed using less than 6N parameters. Using such mini-

mal parametrization, the set of configurations of a robot with

N links corresponds to a NDoF manifold embedded in a 6N -

dimensional space called the configuration space and noted

C . For instance, the configuration space of a double pendulum

corresponds to a 2D torus embedded in R3 (see Figure 2.2).

14

http://docs.ros.org/en/kinetic/api/moveit_tutorials/html/
http://docs.ros.org/en/kinetic/api/moveit_tutorials/html/
http://docs.ros.org/en/kinetic/api/moveit_tutorials/html/
http://docs.ros.org/en/kinetic/api/moveit_tutorials/html/

Background in robotics Chapter 2

Figure 2.2: An example of a double pendulum system and its configuration space (a
2D torus embedded in R3. Figure adapted from (Awrejcewicz, 2012).

2.1.2 Representing the motion of a robot

The configuration provides information about where the robot

is at a given time. However, robots are dynamical systems. The

forces or the torques applied on its links (e.g. inertia or gravity) make the robot move

over time. To fully describe the motion of a robot, in addition to positional information,

one should take into consideration the velocity q̇ of each DoF of the robot. Therefore,

the state s of a robot can be written as a couple (q, q̇) where q corresponds to the

configuration of the robot.

In a complex environment involving several robots or objects, assuming perfect knowl-

edge of the position and velocities of each environment element, the richest state

representation corresponds to the concatenation of the state of all elements. In the

robotics environment of this thesis, we assume that such knowledge about the envi-

ronment is available.

2.2 Background on Motion Planning

One can resolve a robotic task in certain contexts without learning a control policy.

Suppose the task is to achieve a desired configuration of the robot. In addition,

suppose that the environment is not too noisy or that a low-level close-loop controller

(e.g. Proportional Derivative or Linear Quadratic Regulator controllers (Jeff B Burl and

Jeffrey B Burl, 1999)) is available to correct noise-related deviations. Then, finding a

sequence of commands to apply to the system (or a sequence of configurations to

reach) is sufficient to achieve the desired configuration reliably. One can call upon

motion planning algorithms (LaValle, 2006; Latombe, 2012) to find such a sequence of

controls or configurations and, thus, convert a human-level task into a sequence of

movements that satisfies it.

15

Chapter 2 Background in robotics

This Section formally defines a Motion Planning problem, introduces sampling-based

motion-planning algorithms, and defines the critical concept of non-holonomic

constraints.

2.2.1 Motion Planning problem definition

In Motion Planning (MP), the goal is to find the appropriate commands to control a

system from a starting configuration to a goal configuration or region. More formally,

an MP problem can be defined by a (C , q0,Ct ar g et) triplet where:

• C is the space of all possible configurations of the robot. It contains C f r ee , the

subspace of free configurations of the robot. C f r ee excludes the configurations

causing collisions with obstacles Cobs i.e. C f r ee =C \Cobs .

• q0 is a starting configuration of the robot.

• Ct ar g et is the space of target configurations.

The goal is to find a valid trajectory τ= (qi)i=0,...,n between q0 and Ct ar g et . Depending

on whether a model of the robot and the position of the obstacles are known, exploring

C f r ee to find a valid trajectory has varying difficulty.

2.2.2 Sampling-based Motion Planning algorithms

Sampling-based MP algorithms rely on the construction of an exploration tree to

construct paths in C f r ee (LaValle, 2006). The exploring tree is constructed from the

starting configuration of the robot. Nodes are configurations and edges represent

the fact that the system can navigate between the two linked configurations. When

the model of the system is known, one can rely on a controller to find a sequence

of controls to navigate between two nodes. Therefore, two successive nodes can

potentially be far away from each other. However, in a minimal assumption setting

where no model of the system is available, predicting the effects of a command is

difficult. In that case, one must call upon random controls for a few time steps and

rely on the fact that interesting motions may occur if many random actions are tried.

Thus, a sampling-based MP algorithm can be summarized as a two-step loop. First, a

node is selected according to a selection operator. Then, the tree is expanded from the

selected node. If a controller is available, it may direct the expansion toward a precise

configuration. Otherwise, the tree is expanded using random commands.

16

Background in robotics Chapter 2

Different selection operators have been proposed in the MP literature. Rapidly-

exploring Random Trees (RRT) (LaValle et al., 1998) randomly draws a sample in

the search space and selects the closest node in the exploration tree. Instead, Expan-

sive Spaces Trees (EST) (David Hsu et al., 1998) selects nodes that lie in a region of low

node density of the exploration tree. This difference in selection strategy results in

RRT and EST having different exploration dynamics. These selection strategies are

detailed in Chapter 6.

2.2.3 Non-holonomic constraints

Equality constraints exclusively involving the configuration q = {qi }i∈NDoF of the sys-

tems are called holonomic. More complex constraints (e.g. involving the derivative of

the configuration) that cannot be written as such equalities are called non-holonomic

(Tanedo, 2013):

f (q1, q2, ..., qNDoF , t) = 0 holonomic

f (q1, q2, ..., qNDoF , q̇1, q̇2, ..., ˙qNDoF , t) = 0 non-holonomic

f (q1, q2, ..., qNDoF , t) < 0 also non-holonomic

(2.2)

For example, the distance between two joints of a robot connected by a link cannot

change. This is a holonomic constraint. Certain holonomic constraints can also be de-

scribed on the derivative of the configuration q̇ . However, as they are integrable, they

can be integrated to recover a constraint on the configuration. A system only subject

to holonomic constraints is called a holonomic system. On the other hand, constraints

that cannot be integrated as equality constraints on configurations are non-holonomic.

A system with at least one non-holonomic constraint is non-holonomic.

For example, the Reeds-Shepp Car is a non-holonomic system (reeds and Shepp, 1990)

which includes a non-holonomic constraint that prevents the systems from sliding

sideways. The following equations define its motion:


ẋ = u1 cos(θ)

ẏ = u1 sin(θ)

θ̇ = u1u2

(2.3)

where u1 ∈ {−1,1} controls the forward/backward motion and u2 controls the orienta-

tion.

17

Chapter 2 Background in robotics

In a holonomic problem, the agent can achieve all trajectories respecting the con-

straints on the configuration (defined as (2.2)). Therefore, any trajectory on the

configuration manifold is admissible. Moreover, trajectories can be expressed directly

in the configuration space as configuration changes are independent of the velocities.

This can be seen as planning a path rather than a motion.

However, robotics systems are often non-holonomic. Indeed, the dynamics of the

robot and the gravity induce non-holonomic constraints. In this context, "close"

configurations may require an indirect trajectory in the configuration space to be con-

nected. For instance, the shortest path with a non-holonomic Reeds-Shepp Car robot

differs from the shortest path obtained if the car is allowed to slide (see Figure 2.3).

Figure 2.3: Example of the shortest path for a Reeds-Sheep Car (in blue) between two
configurations (from grey to green) and for an imaginary "car" allowed to slide (in
purple).

2.3 Summary

One can obtain a simple representation of a robot using rigid bodies and joints. In

addition, considering the constraints applied to the joint of the robot results in a

minimal specification of its position. To fully characterize the motion of a robot, the

configuration must be extended with the derivative of its elements, which results in

rich representation of the robot state. In a complex environment composed of more

than a single robot, the environment state is obtained by aggregating the individual

state of all elements.

In an MP problem, one searches for a valid trajectory in a robot’s configuration

space between a starting configuration and a set of desired ones. One can call upon

sampling-based MP algorithms to resolve an MP problem. A sampling-based MP

algorithm constructs an exploring tree from the starting configuration to find a solu-

18

Background in robotics Chapter 2

tion path for the MP problem. However, non-holonomic constraints can make an MP

problem difficult to solve, as connecting two close configurations may not be trivial.

19

3 Background on Reinforcement Learn-
ing

Reinforcement Learning has been an active research field for the past four decades

leading to impressive results in the context of Robot Learning (Kober et al., 2013;

Arulkumaran et al., 2017; Akkaya et al., 2019; Tsounis et al., 2020). While traditional RL

algorithms were designed to work with small and discrete state and actions spaces,

their recent combination with Deep Learning techniques (Goodfellow et al., 2016)

opened up the path toward Deep Reinforcement Learning (DRL) algorithms. These

algorithms have been successfully applied to problems with complex continuous and

high-dimensional state and action spaces. A recent impressive result from the Deep

Reinforcement Learning community is the application of the Dreamer algorithm to

learn a robust locomotion behavior with a physical quadruped (P. Wu et al., 2022).

Dreamer learned a policy that enables a quadruped robot to stand up and walk solely

by interacting for ∼ 1 hour with the physical system. To put this result into perspective,

one should note that newborn foals, which are among the fastest mammal to learn

walking behaviors, take approximately the same amount of time to learn how to stand

and walk (40 minutes to 1 hour) (Curcio and Nogueira, 2012).

This chapter introduces the frameworks, algorithms and concepts on which the Re-

inforcement Learning parts of this thesis are built. First, the usual framework for

Reinforcement Learning (RL) problems is presented. Based on this framework, tra-

ditional RL algorithms such as Value Iteration (Bellman, 1957), Temporal Difference

learning (Sutton, 1988) and Q-learning (Watkins and Dayan, 1992) algorithms are

introduced and used to derive the Soft Actor-Critic algorithm (Haarnoja, Zhou, Abbeel,

et al., 2018), a state-of-the-art Deep RL algorithm used throughout this thesis. In addi-

tion, the importance of the reward function is discussed and different mechanisms

allowing RL to tackle Hard Exploration Problems are presented.

Then, the RL framework is extended to Goal-Conditioned RL (GCRL). Several mecha-

nisms designed to help GCRL cope with sparse reward are also presented.

21

Chapter 3 Background on Reinforcement Learning

Finally, based on the previous Chapter 2, the application of sampling-based MP algo-

rithms to solve RL problems is discussed. The main purpose of this discussion is to

underline the limit arising when using such algorithms in non-holonomic environ-

ments with high dimensional states. Indeed, analogous limits arise in the application

of the Divide & Conquer strategy in Chapters 7,8,9 and 10.

3.1 Reinforcement Learning framework

3.1.1 Markov Decision Processes

To formalize Reinforcement Learning (RL) problems, one generally calls upon Markov

Decision Processes (MDP) (Bellman, 1966; Sutton and Barto, 1998). An MDP is defined

as a tuple M= (S ,A,R, p,γ) where

• S is the set of possible environment states. In a robotic environment, a state

may correspond to the definition given in Section 2.1.2. However, states may

have different meanings and even be discrete (e.g. the positions of each piece in

a board game (Silver et al., 2016; Silver et al., 2017; Silver et al., 2018)).

• A is the set of possible actions. In robotics, actions correspond to the control

applied to modify the state of the system. It may correspond to the torques

applied to the controllable joints. If a low-level controller (e.g. a Proportional

Derivative controller) is available, actions may also correspond to desired posi-

tions (X. B. Peng et al., 2018). Similarly to states, actions can be continuous or

discrete (Mnih et al., 2013; Salimans and R. Chen, 2018; Ecoffet et al., 2021).

• R :S×A×S → R is the unknown reward function. The reward function maps

the triplet (state, action, and next state) to a feedback signal used to train the

agent. For instance, in a robotic arm environment, a simple reward function

may be the distance between the configuration q of the robot (contained in s)

and the desired one qg oal (i.e. R(s, a, s′) = |q ′−qg oal |2).

• p :S×A×S → [0,1] is the unknown transition probability function. It returns

the probability of the environment transitioning from state s to state s′ after

applying action a. In a deterministic environment, p(s′|a, s) = 1 for any triplet

(s, a, s′) ∈S×A×S . In robotics, the stochastic nature of the transitions usually

comes from non-modeled physical noise or uncertainty in the sensors.

• γ ∈ [0,1] is the discount factor. It characterizes the importance of long-term

rewards in a sequence of interactions (Sutton and Barto, 1998).

22

Background on Reinforcement Learning Chapter 3

Figure 3.1: Simple 2D discrete and deterministic maze environment and its correspond-
ing MDP. The four states S = {s0, s1, s2, s3} correspond to the four colored squares of
the maze. In each state, the agent (represented by a chess piece) can choose between
four actions: {up, down, right, left}. When a collision with a wall occurs, the agent
remains in the same state. The reward received by the agent is zero in every state
except s3 which corresponds to the treasure. Therefore, the reward is sparse.

Figure 3.1 presents a simple 2D environment with its corresponding MDP. The state

space S = {s0, s1, s2, s3} and the action space A= {a0, a1, a2, a3} are discrete. In addi-

tion, transitions are deterministic.

In such an environment, at each step of a time sequence t = 0,1,2, ...,T , the agent

interacts with the environment. It selects an action at ∈A based on its current state

st ∈ S using a policy π(at |st). π which can have different forms. It can either be

stochastic or deterministic. If π is stochastic, it maps a state to a distribution over

actions. If π is deterministic, it directly maps a state to a unique action. Moreover, it

can correspond to a non-parametric or a parametric function. For instance, in Deep

Reinforcement Learning, policies correspond to neural networks.

After applying the selected action, the agent moves to a new state st+1 according to

p(st+1|st , at) and receives a reward R(st , at , st+1). In an MDP, given current state st

and action at , the next state does not depend on the previous states (st−1, st−2, ...).

This is a key assumption called the Markov Assumption which greatly simplifies RL

problems and is made by most RL algorithms (Sutton and Barto, 1998).

The objective in RL is to obtain a policy that maximizes the expected discounted

cumulative reward J (π) defined as

23

Chapter 3 Background on Reinforcement Learning

J (π) = E
π

[∑∞
t=0γ

t R(St , At ,St+1)
]

, (3.1)

where St and At denote the random variables modeling the state visited and the action

taken at time step t . Note that the initial state S0 is drawn according to a known or

unknown initial probability distribution ρ0.

The discount factor diminishes the importance of long-term rewards. It accounts

for the fact that long-term rewards are less desirable than short-term rewards. For

instance, if one is hungry now, they would rather have a meal sooner than later.

Practically, γ also ensures that the sum (3.1) converges to a finite return in the context

of infinite time-horizon and in the presence of infinite loops in the state transitions.

3.1.2 Value and Q-value functions

Two central tools are used by almost all RL algorithms to learn the policy that maxi-

mizes (3.1). Those tools are the Value function and the Q-value function.

Given a state s, the Value function corresponds to the expected discounted return

when following policy π from state s:

Vπ(s) = E
π

[∑∞
t=0γ

t R(St , At ,St+1)|S0 = s
]

. (3.2)

Similarly, given a state s and an action a, the Q-value is defined as the expected return

when following policy π after taking action a in state s:

Qπ(s, a) = E
π

[∑∞
t=0γ

t R(St , At ,St+1)|S0 = s, A0 = a
]

. (3.3)

Roughly speaking, the Value and Q-value functions estimate "how good" it is for an

agent following policy π to respectively be in state s and apply action a in state s.

The Bellman Equations decompose Vπ and Qπ into recursive relationships between

the immediate reward and the discounted future value:

24

Background on Reinforcement Learning Chapter 3

Vπ(s) = E
A∼π
S′∼p

[
R(S, A,S′)+γVπ(S′)|S = s

]
, (3.4)

Qπ(s, a) = E
S′∼p

[
R(S, A,S′)+γVπ(S′)|S = s, A = a

]
, (3.5)

Bellman Equations

where S, A and S′ are the random variables modeling the current state, the action

taken and the next state, respectively.

These recursive relationships are the cornerstone of the algorithms presented in the

following paragraphs.

3.2 Paving the way to Soft-Actor-Critic

In an MDP with discrete states and actions (e.g. representing a board game), the

expectation in Bellman Equations (3.4) (3.5) can be decomposed as an explicit sum

over states and actions:

Vπ(s) = E
A∼π
S′∼p

[
R(S, A,S′)+γVπ(S′)|S = s

]
,

= ∑
a∈A

π(a|s)Qπ(s, a),

= ∑
a∈A

π(a|s)
∑

s′∈S
p(s′|s, a)

(
R(s, a, s′)+γVπ(s′)

)
︸ ︷︷ ︸

Qπ(s,a)

.

(3.6)

Replacing the on-policy Value and Q-value functions in (3.6) with their optimal coun-

terparts yields the Bellman Optimality Equations:

Whether the underlying model of the MDP is known or unknown, the Bellman Opti-

mality Equations or their approximations can be used as update rules for estimating

the Value or Q-value functions in iterative methods.

3.2.1 The MDP is known: Value Iteration

Assuming that the model of the MDP is known (i.e. known transition probabilities

and a known reward function), Value Iteration (Sutton and Barto, 1998) can be used

25

Chapter 3 Background on Reinforcement Learning

V∗(s) = max
a∈A

Q∗(s, a),

Q∗(s, a) = ∑
s′∈S

p(s′|s, a)
(
R(s, a, s′)+γV∗(s′)

)
,

V∗(s) = max
a∈A

[∑
s′∈S p(s′|s, a)

(
R(s, a, s′)+γV∗(s′)

)]︸ ︷︷ ︸
Q∗(s,a)

,

Q∗(s, a) = ∑
s′∈S

p(s′|s, a)(R(s, a, s′)+γmax
a′∈A

(
Q∗(s′, a′)

)
︸ ︷︷ ︸

V∗(s′)

)

(3.7)

Bellman Optimality Equations

to approximate the Value function. Value Iteration is an iterative method that uses

the Bellman Optimality Equations (3.7) as an update rule for the value of the states.

Given the current value estimate Vn for the potential following states, the new value

estimate Vn+1 of state s is given by:

Vn+1(s) = max
a∈A

[∑
s′∈S p(s′|s, a)

(
R(s, a, s′)+γVn(s′)

)]
︸ ︷︷ ︸

Qn (s,a)

.
(3.8)

Value Iteration loops over all states of the MDP to update their values until a conver-

gence criterion is met. Once the Value function is learned, one can plan over the state

space by selecting the action that maximizes the Q-value to recover the optimal policy.

Model-based RL approaches (Polydoros and Nalpantidis, 2017) (e.g. the Dreamer

algorithm introduced in the header of this Section) assume that the MDP is unknown

and try to learn an explicit model of it to plan. In this thesis, we only focus on Model-

free RL methods which aim to learn a policy in an unknown MDP without learning

any explicit model.

3.2.2 The MDP is unknown: from Temporal Differences to Deep

Q-learning

In the context of Robot Learning, it is preferable to assume that the model is unknown.

In this case, the Value function must be learned through sequences of interactions

with the environment. These sequences of interactions are called trajectories or

rollouts.

26

Background on Reinforcement Learning Chapter 3

A seminal work in model-free RL is Temporal Differences (TD) learning. TD learning

can be used to approximate the Value function from incomplete trajectories in the

environment. The key intuition behind TD learning is to bootstrap the Value func-

tion of the current state V (s) in the trajectory from an estimate of the future return

R(s, a, s′)+γV (s′) called the TD target. Vanilla TD learning uses the following update

rule to approximate the Value function iteratively:

V (s) ←V (s)+α
[

R(s, a, s′)+γV (s′)︸ ︷︷ ︸
TD target

−V (s)
]

, (3.9)

with learning rate hyper-parameter α. Here, the optimal Value function V∗(3.7) is

approximated by the TD target.

A similar TD learning relation can be derived for the Q-value. Here, the TD-target

approximates the optimal Q-value Q∗ (3.7):

Q(s, a) ←Q(s, a)+α
[

R(s, a, s′)+γQ(s′, a′)︸ ︷︷ ︸
TD target

−Q(s, a)
]

. (3.10)

The Q-learning algorithm (Watkins and Dayan, 1992) can be derived from this last

update rule. In Q-learning, the Q-value of the current state-action pair (s, a) is updated

using a greedy version of (3.10) where the next action a′ is selected according to the

current estimate of the best action:

Q(s, a) ←Q(s, a)+α
[

R(s, a, s′)+γmaxa′∈AQ(s′, a′)−Q(s, a)
]

. (3.11)

While TD-learning and Q-learning are restricted to discrete state space, one can ap-

proximate the value of continuous states using function approximators. For instance,

in Deep Q-Network (Mnih et al., 2013), a neural network is used to approximate the

Q-value in continuous state spaces corresponding to 2D images of Atari games. How-

ever, exploring large and complex state spaces is a difficult challenge that requires a

good balance between exploration and exploitation (Amin et al., 2021).

3.2.3 The exploration/exploitation dilemma

When the agent faces an unknown environment, a greedy exploitation of a randomly

initialized Q-value is unlikely to result in a satisfying behavior. The agent must explore

by testing different state-action combinations to collect additional information about

27

Chapter 3 Background on Reinforcement Learning

the environment, iterate over the Q-value and finally approach the optimal Q∗. How-

ever, the agent should not explore endlessly. It should balance the action selection

between exploration and exploitation. This is referred to in the RL literature as the

exploration/exploitation dilemma.

In easy-to-explore problems, the simple ϵ-greedy exploration strategy used in (Watkins

and Dayan, 1992; Mnih et al., 2013) is enough to fully explore the environment. More

sophisticated action selection mechanisms like entropy maximization or regulariza-

tion (Haarnoja, Zhou, Abbeel, et al., 2018; Haarnoja, Zhou, Hartikainen, et al., 2018;

Eysenbach and Levine, 2021) are necessary to solve more complex RL problems like

robotics environments (Todorov et al., 2012) with high-dimensional continuous state

and action spaces and complex dynamics.

3.2.4 Soft Actor-Critic

With the exploration/exploitation dilemma in mind, we shall derive the Soft Actor-

Critic (SAC) algorithm, a state-of-the-art Deep RL algorithm, from the Q-learning

algorithm described in Section 3.2.2. Remember that the Q-value update rule of

Q-learning reminded below requires a "max" operation over the actions:

Q(s, a) ←Q(s, a)+α
R(s, a, s′)+γ max

a′∈A
Q(s′, a′)︸ ︷︷ ︸

tractable max required

−Q(s, a)
 . (3.12)

This operation is tractable if the action space is discrete (and finite). However, the

operation must be approximated if the action space is continuous. In SAC, a parame-

terized policy πθ(s) is used to approximate the operation argmaxa∈AQ(s, a) and select

action a′.

Using parameterized approximations of the Value and Q-value functions to cope with

continuous states and a parameterized policy to cope with continuous actions, we

obtain an Actor-Critic algorithm where:

• The Critic corresponds to the approximated Value or Q-value functions. In SAC,

the Critic includes a neural network Qω approximating the Q-value function and

another network Vψ approximating the Value function. Note that most recent

implementations get rid of the latter network and use Qω to approximate the

value function.

• The Actor corresponds to the parameterized policy πθ(a|s) that approximates

28

Background on Reinforcement Learning Chapter 3

the argmax operation over the Q-value function. In SAC, the actor is stochastic

and corresponds to a neural network returning the mean and standard deviation

of an isotropic Gaussian distribution, often augmented with a t anh squashing

function.

If the Critic and the Actor are differentiable parameterized functions (e.g. neural

networks as in SAC), they can be trained using gradient-based optimization. Thus, a

gradient step replaces the iterative update in (3.11).

The gradient can be computed using the latest collected transitions as in (Schulman

et al., 2015; Schulman et al., 2017), which results in an on-policy algorithm. Otherwise,

a Replay Buffer (noted D for dataset) can be used to memorize all the past transitions

collected by the agent. A batch of those memorized transitions can then be sampled

uniformly to perform the update in an off-policy fashion. This mechanism called

Experience Replay was introduced in Deep Q-Network (Mnih et al., 2013) and is used

in state-of-the-art Deep RL algorithms like DDPG (Lillicrap et al., 2015), TD3 (Fujimoto

et al., 2018), SAC (Haarnoja, Zhou, Abbeel, et al., 2018) and TQC (Kuznetsov et al.,

2020).

At this point, the underlying exploration mechanism is the only missing part to derive

SAC. To encourage exploration in complex environments with continuous state and

action spaces, SAC augments the usual RL objective with an entropy measure of the

stochastic policy. This entropy measure of the stochastic policy is weighted by a

parameter αent and added to the Q-value to construct the Soft Q-value.

Q(s, a) = E
S′∼p

[
R(S, A,S′)+γVπ(S′)|S = s, A = a)

]
(3.13)

= E
S′∼p

[R(S, A,S′)+γ E
A′∼π

[Q(S′, A′) −αent logπ(A′|S′)︸ ︷︷ ︸
weighted entropy measure

]

|S = s, A = a]

= E
S′∼p
A′∼π

[R(S, A,S′)+γQπ(S′, A′)−αent logπ(A′|S′)

|S = s, A = a)],

Soft Q-value

Using this augmented definition of the Q-value, regression objectives and their associ-

ated (stochastic) gradient can be derived for each of the elements of the Actor-Critic

architecture. Note that SAC being an off-policy algorithm, the state and action random

29

Chapter 3 Background on Reinforcement Learning

variables are sampled from the Replay Buffer D, which approximates the state and

state-action distributions.

• Vψ is trained to minimize the Mean Squared Error (MSE) between its current

estimate of the Value function and the expectation over actions of the soft

Q-value:

JV (ψ) = E
S∼D

[
1
2

(
Vψ(S)−EA∼π

[
Qθ(S, A)−αent logπθ(A|S)

])2]
, (3.14)

using the unbiased estimator of the associated gradient:

∇̂ψ JV (ψ) =∇ψVψ(S)−Qθ(S, A)+ logπψ(A|S). (3.15)

• Qω is trained to minimize the MSE between the TD target and the current

estimate of the Q-value, which is called the soft Bellman residual:

JQ (ω) = E
S,A∼D

[
1
2

(
Qω(S, A)−ES′∼ρπ(s)

[
R(S, A,S′)+γVψ(S′)

])2]
, (3.16)

using an unbiased estimator of the associated gradient:

∇̂ω JQ (ω) =∇Qω(S, A)
(
Qω(S, A)−R(S, A,S′)−γVψ(S′)

)
. (3.17)

• Finally, the policy is trained to minimize the KL-divergence between the current

policy and a distribution derived from the Q function.

Jπ(θ) = DK L

(
πθ(.|S) || expQω(S,.)

Zω(S)

)
, (3.18)

with Zω an intractable normalization function that does not contribute to the

stochastic gradient:

∇̂θ Jπ =∇θ logπθ(A|S)+
(
∇A logπθ(A|S)−∇AQ(S, A)

)
∇θ fθ(ϵ;S), (3.19)

where fθ(ϵ;S) is the result of the reparameterization trick applied to the policy

in order to make it differentiable (Kingma and Welling, 2013).

Therefore, an update rule of SAC corresponds to taking the gradients of these objec-

tives and performing one step of gradient descent for each.

30

Background on Reinforcement Learning Chapter 3

One should note that the implementation of SAC that we use in this thesis has a fixed

weighting parameter for the entropy αent . However, a more recent variant of SAC

includes an automatic temperature tuning mechanism not covered here (Haarnoja,

Zhou, Abbeel, et al., 2018).

The combination of the exploration mechanisms of SAC and its smartly engineered

implementation details (see (Haarnoja, Zhou, Abbeel, et al., 2018; Haarnoja, Zhou,

Hartikainen, et al., 2018)) makes it one of the most efficient out-of-the-box approaches

to solve complex RL problems involving continuous state and action space (Haarnoja,

Zhou, Abbeel, et al., 2018). However, the update rules (3.14), (3.16)(3.18) require

informative reward signals to guide the learning process. Thus SAC may still fail in the

context of an ill-defined reward function including sparse or deceptive reward signals.

3.3 A well-defined reward function is crucial in RL

Even when equipped with action exploration mechanisms like an entropy bonus

(3.13), RL algorithms still require a well-defined reward function to solve the RL prob-

lem. Indeed, even in a simple 2D maze navigation task, trajectories obtained by

uniformly sampling actions are unlikely to explore the maze entirely (Matheron, 2020).

In this context, the reward function should help the agent gradually explore the envi-

ronment and, eventually, find the desired states. In particular, the reward function

must be sufficiently dense so that an agent can find paths that yield a larger cumulative

reward only using action exploration mechanisms (e.g. maximum entropy actions).

However, such a reward function can be difficult to design even for simple tasks. For

instance, in the 2D maze presented in Figure 3.2, SAC fails to navigate toward the

middle of the maze using naive dense or sparse reward functions. Indeed, the dense

reward corresponds to the Euclidean distance to the middle of the maze and guides

the agent towards local optima along the walls. Moreover, the reward being null in the

corridors, it provides no learning signal to the agent.

Similarly, a reward function that is zero except in the desired states - a sparse reward

function - may be equally problematic (Matheron, 2020). Indeed, in this context, the

Value of each discovered state is likely to stay close to zero until the agent encounters

the rewarded states by chance. Until then, the agent benefits from no guiding signal.

Different options, requiring different levels of expert inputs, may be considered when

facing such ill-defined reward functions. These options range from the hand-designed

Reward Shaping to fully autonomous intrinsincally motivated agents.

31

Chapter 3 Background on Reinforcement Learning

Figure 3.2: Training SAC with sparse and deceptive reward functions in a simple 2D
maze where a particle-like agent moves using (∆x,∆y) actions. Two naive reward
functions are tested. Top row: the reward is zero everywhere except in the state
where the treasure is. Bottom row: the reward corresponds to the Euclidean distance
between the current state and the treasure. Blue dots represent the final state of the
training trajectories started from the pink dot. When the reward is sparse, the agent is
not guided by any learning signal and relies on the entropy bonus of SAC to explore.
When the reward is dense, the agent gets stuck in local optima against the walls. In
both cases, the agent fails to navigate the maze.

3.3.1 Reward Shaping

Reward shaping consists in augmenting the reward function with additional features

guiding the agent toward the desired states. For instance, in the navigation task in

Figure 3.2, a reward taking into account the walls and based on the shortest path

between the entrance and the middle would allow the agent to avoid local optima.

However, such reward shaping often requires non-negligible prior knowledge about

the task which is not available in fully autonomous systems. Without such prior

knowledge, an RL agent may rely on intrinsic motivations to explore the state space.

3.3.2 Intrinsic Motivations

According to psychologists and cognitive scientists from the field of Developmental

Psychology (Berlyne, 1950; Berlyne, 1966; Gopnik et al., 2001; Oudeyer and L. Smith,

2016; Gottlieb and Oudeyer, 2018), infants and animals explore their environment for

the sole purpose of experiencing something new and exciting. Inspired by this obser-

32

Background on Reinforcement Learning Chapter 3

vation, several mechanisms have been developed by the RL community to encourage

agents to perform intrinsically motivated (IM) actions i.e. actions performed to collect

additional information about the environment rather than additional reward signals.

Novelty

A first approach to encourage the agent to take IM actions is Novelty. A novel state is

a state that the agent has rarely or not visited at all. Thus, the novelty of the current

state can be used to augment the reward function in order to encourage the agent to

visit unseen states. To assess the novelty of a state, it is necessary to keep track of the

previously visited states. In finite discrete state spaces, one can count the number

of times each state has been visited (Brafman and Tennenholtz, 2002; Kearns and

Singh, 2002). The lower the number of visits, the higher the novelty reward. However,

such a counting mechanism is not compatible with continuous state spaces. A first

alternative is to discretize the continuous state space with hash functions (Tang et al.,

2017). Another is to use a density model to estimate the visitation distribution (Belle-

mare et al., 2016; Burda, Edwards, Storkey, et al., 2018). Novelty-based exploration

has been successfully applied to several Hard-Exploration RL problems, including the

challenging Atari game Montezuma’s revenge (Bellemare et al., 2016). Nevertheless,

one should note that a reward function augmented with a novelty bonus results in

a non-stationary problem which often requires accurate hyper-parameter tuning to

achieve the expected performance.

Prediction-based Intrinsic Motivations

An alternative approach to promote exploration is Prediction-based Exploration, also

called Curiosity. Here, the agent is rewarded for improving his knowledge of the

environment. A variant of this approach is inspired by the curiosity measure (Schmid-

huber, 1991). The agent is equipped with a forward dynamics model to assess its

knowledge about the environment (Stadie et al., 2015; Burda, Edwards, Pathak, et al.,

2018). Using this f : (s, a) → s model, the agent estimates the future state that should

result from the application of a given action in a given state. If the predicted next

state f (s, a) is different from the actual one s′, the agent gains knowledge about the

environment. Therefore, the error | f (s, a)− s′|2 can be used to augment the reward

similarly to novelty. Several variants of this prediction-based exploration mechanism

have been proposed. In (Pathak et al., 2017), the error is computed with respect to

an inverse forward model. In (Houthooft et al., 2016), tools from Information Theory

(Shannon, 1948) are used to estimate the gain of knowledge. Indeed, the reward is

augmented by entropy reduction in the probabilistic forward dynamics model.

33

Chapter 3 Background on Reinforcement Learning

Empowerment

Empowerment is another class of IM approaches based on Information Theory. Two

seminal works in empowerment-based RL are Variational Intrinsic Control (VIC)

(Gregor et al., 2016), and Diversity Is All You Need (DIYAN) (Eysenbach et al., 2018).

Several extensions like Explore, Direct, and Learn (EDL) and UPSIDE have been

proposed since (Hansen et al., 2019; Campos et al., 2020; Kamienny et al., 2021).

Each approach follows the same underlying strategy of encouraging exploration while

forcing controllability. On the one side, the agent maximizes the entropy of the

distribution over trajectories, which encourages exploration. On the other side, it

minimizes the entropy of the distribution over trajectories when conditioned on

distinctive inputs which can be interpreted as skills or options. Because the entropy of

the distribution over trajectory is intractable without a known transition probability

function, most empowerment-based methods rely on variational approximations.

This limits their applicability to simple environments (Aubret et al., 2019).

3.4 Goal-Conditioned Reinforcement Learning

In Goal-Conditioned Reinforcement Learning (GCRL) problems (Kaelbling, 1993;

Moore et al., 1999; Schaul et al., 2015; Nasiriany et al., 2019; Chane-Sane et al., 2021),

the agent no longer tries to solve a single problem. Instead, the agent is trained to solve

multiple problems defined by their associated goals. For instance, instead of training

to reach a single goal corresponding to a unique position in a 2D maze navigation task,

a goal-conditioned agent can be trained to reach many different goals corresponding

to every possible position.

A GCRL problem extends the MDP framework with a goal space. The reward function

is replaced by a goal-conditioned reward function R :S×A×S×G→Rwhich depends

on the considered goal. One can define a dense goal-conditioned reward e.g. a reward

function that is proportional to the distance to the goal. However, as explained in

Section 3.3, a dense reward is likely to lead the agent towards local optima. Therefore,

in most GCRL problems, the reward function is sparse and the agent only receives a

reward for achieving the desired goal or for getting close enough to it according to a

threshold ϵ.

R(s, a, s′, g) =
1 if |s′− g |2 < ϵ

0 otherwise.
(3.20)

34

Background on Reinforcement Learning Chapter 3

The discount factor is also modified in GCRL. Using the formulation of (Schaul et al.,

2015), it is replaced by a goal-conditioned discount function γ :S×G→R which sets

the discount factor to 0 when the agent reaches the goal (Schaul et al., 2015):

γ(s, g) =
0 if s = g ,

γ otherwise.
(3.21)

Therefore, the RL objective can be rewritten for GCRL as follows:

E
π

[∑∞
t=0 R(St , At ,St+1, g)

∏t
k=0γ(Sk , g)

]
. (3.22)

All the rewards received after reaching a goal are canceled. This makes transitions

to goal states equivalent to transitions to terminal states, i.e. states terminating the

agent trajectory.

3.4.1 Distance-based sparse reward

In a complex environment with a high-dimensional state space, reaching a goal

corresponding to a precise state may be prohibitively difficult, thus it is common to

consider goals that represent low-dimensional projections of states (Nachum et al.,

2018; Bagaria, Senthil, Slivinski, et al., 2021; Ecoffet et al., 2021). To achieve a goal g ,

the agent must reach any element of the success state set Sg , that is any state s ∈ S
that can be mapped to a goal gs ∈G within a distance less than ϵsuccess from g , ϵsuccess

being an environment-dependent hyper-parameter.

In practice, a state is mapped to a goal according to a projection pG :S →G associated

with the definition of the goal space. In general, the common L2-norm is used to

compute the distance between two goals. Besides, the environment-agnostic goal-

conditioned reward function is generally defined as

R(s, a, s′, g) =
1 if s′ ∈Sg

0 otherwise.
(3.23)

35

Chapter 3 Background on Reinforcement Learning

3.4.2 Relabelling

As explained in Section 3.3, learning in a sparse reward context can be challenging for

RL algorithms (Bellemare et al., 2016; Houthooft et al., 2016; Burda, Edwards, Storkey,

et al., 2018). GCRL agents often use the Hindsight Experience Replay (HER) relabelling

technique (Andrychowicz et al., 2017) to collect sparse rewards more often. During

a trajectory, if the agent fails to reach the goal it is conditioned on, HER may relabel

some transitions by replacing the initially intended goal with a goal it happened to

achieve. This way, the agent can learn from failed trajectories by receiving rewards for

accidentally achieving originally unintended goals.

3.4.3 Exploration in GCRL

While relabelling helps goal-conditioned agents learn how to reach local goals they

accidentally achieved, it does not encourage them to explore.

A class of GCRL algorithms called autotelic agents have been specifically designed

to help a goal-conditioned agent explore. An autotelic Agent in RL corresponds to

a GCRL agent that generates its own goals (Colas et al., 2022). The goal selection

procedure constitutes an automatic curriculum of goals. Easy-to-achieve goals should

be selected first followed by increasingly difficult ones.

However, identifying easy-to-achieve goals is not an easy task. In GOAL-GAN (Florensa

et al., 2018), a feasibility score is calculated for a given goal. This feasibility score

corresponds to the empirical probability of success of the agent reaching the goal.

A Generative Adversarial Network (GAN) (Goodfellow et al., 2014) is then trained to

generate goals with an intermediate feasibility score.

Other approaches use IM for goal selection. Novelty-based goal selection biases

selection toward goals considered novel. In several works (Pong et al., 2019; Pitis

et al., 2020), a density model is trained on experienced goals and approximates the

distribution of reachable goals. Using this model, one can sample goals outside the

reachable set of goals, on its edge, or of intermediate difficulty Castanet et al., 2022.

Another robust approach is the First Return, Then Explore algorithm (Ecoffet et al.,

2021), which approximates a density model using a discrete exploration grid filled

with the goals the agent achieved. Before starting a new training trajectory, the agent

selects the goal corresponding to the least visited cell. It then tries to reach it and,

eventually, explores from the advanced state resulting from the goal achievement. This

approach achieved state-of-the-art scores in the challenging Montezuma’s Revenge

Atari game.

36

Background on Reinforcement Learning Chapter 3

3.5 Can we use sampling-based MP algorithms to solve

RL problems?

Remembering what a sampling-based MP algorithm is trying to solve and how it does

it (see Chapter 2), one may wonder if these algorithms can be applied to solve an

RL problem (Matheron, 2020) and, in particular, a Hard Exploration Problem. For

instance, can one use RRT to explore the state space of an MDP and, as a consequence,

solve an RL problem without relying on any reward function?

Several limitations arise when using a sampling-based MP algorithm out of the box to

solve an RL problem. Three of them are discussed in the following paragraphs. The

first one comes from the potentially high-dimensional search space. The second one

results from the difficulty of expanding an exploration tree in a high-dimensional

non-holonomic environment. The final one comes from the potential stochastic

nature of the system.

3.5.1 High-dimensional search spaces

In an RL problem, the exploration tree must be constructed directly in the state space.

As explained in Chapter 2, the state of a robot can be represented by a vector s = (q, q̇)

where q is the configuration of the robot. Therefore, the bigger the configuration

space, the larger the dimension of the search space. For instance, in the Humanoid

Mujoco physical simulator (Todorov et al., 2012), the state space has ∼ 80 dimensions

and observations are even bigger with 376 dimensions.

Moreover, without access to any controller, a node in the exploration tree can only

be expanded using random actions which may also correspond to high-dimensional

vectors. As a result, the applicability of sampling-based MP algorithms to solve an RL

problem including high-dimensional states and actions may be limited by the curse

of dimensionality (Bellman, 1966).

To cope with this limitation, one can reduce the search space size. For instance, in

(Dalibard and Laumond, 2011), the authors use the linear dimensionality reduction

property of Principal Component Analysis (Pearson, 1901) to identify expansion direc-

tions in the free configuration space. A second example is the Go-Explore algorithm

(Ecoffet et al., 2019a; Ecoffet et al., 2021) which solves a manipulation task where the

state space is embedded in R268 and the action space in R8 using an exploration

phase which may be seen as a variant of the Ex algorithm (Matheron, 2020; Matheron

et al., 2020). To do so, the authors reduced the search space using a hand-designed

37

Chapter 3 Background on Reinforcement Learning

mapping from the state space to a 4-dimensional space. Three dimensions correspond

to the Euclidean position of the gripper, and the last indicates whether the object

is grasped. Although their approach found a valid grasping trajectory, it required

∼ 2.5 106 expansions, as most of them were constrained expansions.

3.5.2 Constrained expansions

As explained in Section 2.2.3, in a non-holonomic environment, finding a path be-

tween two close configurations may be a difficult problem as long trajectories may be

required to connect them (see Figure 2.3), or, worse, it may be impossible to connect.

Let’s imagine that one uses RRT to construct an exploration tree and solve an RL

problem in a non-holonomic environment. As the state space is too large, a mapping

to a smaller search space of interest is used as in Go-Explore to reduce the size of the

search space (Ecoffet et al., 2021). In that case, it is possible that some of the nodes

correspond to configurations that cannot be connected to any further configurations.

Indeed, in some cases, a configuration can only be connected to already explored

configurations. In other worse cases, a configuration may only be connected to itself.

Then, expanding the tree from these nodes results in no further exploration. In this

context, sampling-based MP algorithms may enter failing modes.

In fact, such failing modes may arise as soon as the search space corresponds to a sub-

space of the configuration space, even if the configuration space is a low-dimensional

space. For instance, let’s take a variant of the Reeds-Sheep car used in Figure 2.3 that

cannot move backward. This system is called the Dubins car (Dubins, 1957). Growing

an exploration tree in the X ×Y space of 2D positions instead of the X ×Y ×Θ space

which includes the orientation of the car may result in advanced (x, y) nodes that

cannot be expanded further because the car is oriented toward a wall (see Figure 3.3).

In this example, one can simply consider the whole configuration space X ×Y ×Θ
as the search space rather than X × Y to avoid these failure modes. However, a

similar solution cannot be considered in an environment with a high-dimensional

configuration space that requires a low-dimensional search space to resist the curse

of dimensionality.

This problem of being unable to expand from certain robot configurations is a central

element in the contribution part of this thesis.

38

Background on Reinforcement Learning Chapter 3

Figure 3.3: Example of a failure mode. An MP algorithm builds an exploration tree (in
grey) in the X ×Y space while the configuration space corresponds to X ×Y ×Θ. The
path to the desired configuration (in blue) requires a specific sequence of orientations
to navigate the corridor (dashed blue line). However, the most advanced node in the
corridor (dark gray) may correspond to a blocked configuration. Expanding from this
node results in no further exploration.

3.5.3 Reset assumption

To expand a node in the exploration tree, the robot must return to the corresponding

state in order to apply a random action. To reset the robot to that state, two approaches

can be considered.

In the first option, one assumes that the robot can be reinitialized in the states it has

already visited. Although this assumption is unrealistic in the context of a physical

robot, it has already been exploited in various forms in the RL literature (Salimans and

R. Chen, 2018; Ecoffet et al., 2019a).

In the second option, one assumes that the robot can return to this state by replaying

the sequence of actions used to extend the tree from this state. This would assume

that the environment is fully deterministic. However, it is well-known that robotics

environments are usually non-deterministic because of the noise of the sensors and

the actuators.

A closed-loop control is then required to effectively return to the desired position.

In a minimal context where no model of the system is available and control is more

complicated than position or velocity control, it is impossible to use a low-level

controller such as a Proportional Derivative Controller or a Linear Quadratic Regulator

to do so. In this case, RL can be used to learn primitive skills between successive nodes

(Faust et al., 2018; Bagaria, Senthil, and Konidaris, 2021) and eventually ensure such

return.

39

Chapter 3 Background on Reinforcement Learning

3.6 Summary

Reinforcement Learning algorithms share a common foundation: the Markov Deci-

sion Process framework, the Values and Q-value functions and the Bellman equations.

Using these key concepts and a few additional mechanisms (function approxima-

tions, experience replay,...), one can derive state-of-the-art algorithms like the Soft

Actor-Critic algorithm. Despite being a robust algorithm, SAC cannot tackle Hard-

Exploration Problems on its own. Therefore, several approaches taking inspiration

from the theory of Intrinsic Motivation have been proposed to encourage the agent to

explore the environment and tackle these problems.

The framework of RL has been extended with explicit goal conditioning to address

multiple problems simultaneously. In Goal-conditioned RL (GCRL), the reward func-

tion depends on the targeted goal. As this reward function is often sparse, a vanilla

GCRL agent may struggle to explore the environment. For this reason, a GCRL agent

often uses relabelling to densify the reward signals. In addition, autotelic GCRL agents

adapt their goal selection procedure to explore.

Because of several limitations like the high dimensional search space, the constrained

expansions and the required reset assumption, it is clear that using MP algorithms to

solve an RL task is not a robust solution. In the second part of this thesis, we show that

these limitations can quickly reappear in diversity search and RL methods, particularly

those related to constrained expansions.

40

4 Background on Neuro-Evolution

Evolutionary Algorithms (EA) can be applied to a wide variety of optimization prob-

lems (Eiben and J. E. Smith, 2015) ranging from chemistry reactions (Gutierrez et al.,

2014) to complex modeling (Ashlock, 2006). The all-around nature of EAs comes

from the fact that they require minimal assumptions to be applied. In particular, they

assume no access to the inner structure of the optimization problem. For instance,

unlike gradient-based optimization methods, the assumption that the cost function

to optimize is differentiable is not necessary: EAs are black-box optimization algo-

rithms (Eiben, J. E. Smith, et al., 2003). Therefore, when cast into an MDP, EAs offer

an interesting alternative to RL algorithms (Salimans et al., 2017; Such Petroski et al.,

2018).

This chapter introduces some background on EAs, emphasizing Neuro-Evolution and

Diversity Search. While Neuro-Evolution uses Evolutionary Algorithms to optimize

the weights of parameterized policies (e.g., a neural network) (Stanley et al., 2019),

Diversity Search uses Neuro-Evolution to obtain a set of policies resulting in diverse

behaviors (Cully and Demiris, 2018b). The latter is particularly useful in the absence

of well-defined learning signals, for example, if the reward is sparse or deceptive in an

RL problem.

4.1 Evolutionary Algorithms to solve RL problems

Evolutionary Algorithms (EA) are a family of optimization algorithms inspired by the

Theory of Evolution (Darwin, 1859). The core idea behind EA is to iteratively apply the

concept of survival-of-the-fittest to generate a set of solutions called the population.

At each iteration of an EA, the solutions contained in the population are evaluated

on the problem to optimize. Based on their performance, the top-performing (or

fittest) solutions have a higher chance of being selected while poor solutions are likely

41

Chapter 4 Background on Neuro-Evolution

to be eliminated. The selected solutions are modified or combined to form a new

population eventually containing better solutions. The modification of a solution

and the combination of two solutions are respectively called mutation and cross-over

operations. These operations are inspired by the recombination and mutation of DNA

sequences during reproduction (Mendel, 1865).

This optimization loop is illustrated in a 2D search space in Figure 4.1.

Figure 4.1: Running an Evolutionary Algorithm to find the minimum of a function
in a 2D search space. At each iteration, the solutions are evaluated using the fitness
function. The fittest solutions are more likely to be selected. Once selected, a solution
is modified or combined with another one to yield a new, potentially better, solution.
After ∼ 20 iterations the population of solutions converges to the minimum of the
function.

To evaluate the solutions in the population, an EA relies on a fitness function that

indicates their performance at solving the problem. For instance, this fitness function

may correspond to the minimization of a cost function as in Figure 4.1.

To avoid early local optima in the optimization process, the selection of the fittest

elements of the population is often probabilistic. It can be performed in multiple dif-

ferent ways (Blickle and Thiele, 1996). In Roulette-Wheel selection, the probability of a

solution being sampled in the population is proportional to its fitness. In Tournament-

based selection, a subset of solutions is sampled uniformly from the population. The

fittest solution wins the tournament and is selected. Overall, the intuition behind EA

is that by selecting the fittest elements of the population, the population climbs (or

slides over) the fitness landscape toward the optimum value.

When cast into an MDP to solve an RL problem, the population of solutions often

corresponds to a set of parameterized policies (e.g. neural networks). During a policy

evaluation, a trajectory is collected in the state space of the MDP using the policy.

The fitness of the policy is then computed according to the trajectory. For instance, a

suitable fitness function may correspond to the sum of discounted rewards collected

over the trajectory (Salimans et al., 2017; Such Petroski et al., 2018).

42

Background on Neuro-Evolution Chapter 4

4.2 Evolving Neural-Networks

In Neuro-evolution, an EA is used to evolve a population of policies corresponding to

neural networks (Floreano and Mondada, 1994) (Whitley et al., 1990). While a more

complex encoding can be considered (Stanley et al., 2009; Templier et al., 2021), a

neural network is often encoded as a vector resulting from concatenating its weights

(Such Petroski et al., 2018). During a mutation operation, the values of the vector

encoding the policy are randomly perturbed. Usually, such perturbations are done

using Gaussian noise or Polynomial mutations (K. Deb et al., 2002).

When a neural network is encoded as a vector of weights, the search space size in-

creases with the size of the network. For instance, a neural network with a usual RL

architecture of two hidden layers containing 256 neurons each has more than 1e4 pa-

rameters, which results in a search space with more than 1e4 dimensions. Due to the

curse of dimensionality (Bellman, 1966), exploring a large search space using random

mutations can be extremely difficult. Different classes of methods have tackled this

problem. In Policy Manifold Search (Rakicevic et al., 2021), the authors propose to

learn a latent representation of the parameter space to reduce the dimension of the

search space. A similar approach was proposed in Data-Driven Encoding MAP-Elites

(Gaier et al., 2020). Another class of algorithms at the frontier of EA and RL exploits the

differentiable nature of neural networks. It combines NE with gradient-based policy

optimization to speed up the policy search (Pourchot and Sigaud, 2018; Nilsson and

Cully, 2021; Pierrot et al., 2022; Sigaud, 2022). Finally, NE has been conducted using

Evolution Strategies, a particular class of EAs. The resulting algorithms (Salimans

et al., 2017; Colas et al., 2020) successfully solved complex robotics tasks, including

humanoid locomotion tasks, with limited sample-inefficient.

The cross-over operation, which is fundamental to promoting diversity in the evo-

lution of a population, is often discarded in Neuro-Evolution. Indeed, because of

their non-linear nature, combining two neural networks by mixing their weights often

results in a third neural network corresponding to a non-exploitable policy. An alter-

native to the naive combination of weights is based on the imitation of the outputs of

both networks (Gangwani and J. Peng, 2017). However, the need for additional interac-

tions with the environment to perform the cross-over operation limits its applicability

when sample efficiency is required.

43

Chapter 4 Background on Neuro-Evolution

4.3 Diversity Search

Similarly to RL algorithms, EAs require that the reward function and, consequently,

the fitness function are well-defined to resolve the underlying RL problem. For in-

stance, if the reward function is sparse and trajectories resulting from the evaluation

of randomly initialized policies collect a sum of rewards equal to zero, EAs cannot

exploit any learning signal during the selection operation. EAs may also be penalized

by deceptive reward functions. Similarly, returning to the example of the 2D maze

navigation task given in Section 3.3, a fitness function based on a reward correspond-

ing to the Euclidean distance to the exit is likely to result in a population of policies

stuck in the same local optima presented in Figure 3.2.

In response to these obvious limitations of EAs when dealing with ill-defined fitness

functions, Diversity Search (DS) approaches like Novelty Search (NS) (Lehman and

Stanley, 2011a) and (Intrinsically Motivated) Goal Exploration Processes (GEP) (Be-

nureau and Oudeyer, 2016; Forestier and Oudeyer, 2016; Forestier, 2019) have been

developed by taking inspiration from the literature of Intrinsic Motivation (see Sec-

tion 3). Instead of directly searching for a high-performing policy, these approaches

search for policies with diverse behaviors, hoping that the desired behavior emerges

at some point.

4.3.1 Novelty Search

In NS, the task-related fitness is abandoned and is replaced by a novelty metric. An

Outcome Space O (also called Behavior Space) is defined to compute the novelty of

the behavior of a policy. This space, which is usually hand-designed, summarizes

the key features of a trajectory resulting from a policy evaluation. For instance, in a

navigation task, an outcome may correspond to the final positions of the robot at the

end of its trajectory (Lehman and Stanley, 2011a; Lehman and Stanley, 2011b).

An outcome is considered novel only if it differs from the previously observed be-

haviors. To assess the novelty of outcome onew ∈O, NS uses an archive Anovel t y =
{oi }i∈[0,Nsi ze] to memorize all the behaviors observed during the previous iterations.

The novelty score then corresponds to the average distance to the K-nearest neighbors

in Anovel t y in the outcome space:

N (onew) = 1

N

∑
i∈IN N

dist(onew ,oi), (4.1)

44

Background on Neuro-Evolution Chapter 4

where IN N corresponds to the indices of the K-nearest neighbors. One should note

that the outcome space is usually designed as a low-dimensional space. Therefore,

the Euclidean distance is usually the selected distance (Aggarwal et al., 2001). More-

over, the archive can be organized as a k-d tree for efficient nearest-neighbor search

(Bentley, 1975b).

In MAP-Elite (Mouret and Clune, 2015; Cully and Demiris, 2018b), the novelty evalua-

tion is simplified. The archive is organized as a grid dividing the outcome space into

cells. A surrogate novelty score then corresponds to the density of filled neighboring

cells.

4.3.2 Goal-Exploration Processes

While sharing the same objective as NS, GEP proceeds differently to obtain policies

exhibiting diverse behaviors. In GEP, the population and the archive are confounded.

The population keeps track of all evaluated policies and their outcomes. A policy

is selected as follows: an outcome is sampled in the outcome space, and the policy

in the population with the closest outcome according to a distance in the outcome

space is selected. While both NS and GEP assume that a low-dimensional outcome

space equipped with a distance is defined, an additional assumption is made in GEP

as it assumes that the outcome space can be sampled. Depending on the sampling

strategy, the population may vary differently.

4.3.3 Is Neuro-Evolution compatible with maximum entropy?

As described in Section 3.3.2, RL methods also encourage exploration by maximizing

the entropy of stochastic policies. Therefore, one could wonder if an analogous

approach could be used for NE-based DS.

Remember that the behavior of a policy is computed according to the trajectory re-

sulting from the policy evaluation. If the policy (or the environment) is stochastic,

multiple evaluations should result in different trajectories and, therefore, different

outcomes. Such non-deterministic outcomes could interfere with the selection opera-

tions. Indeed, a poor policy that gives a new outcome during a lucky trajectory will be

selected with a high probability, although it is not a promising stepping stone. Thus, a

common assumption in NE is that the policy and the environment are deterministic.

As a result, NE cannot be combined with an action entropy maximization for DS.

45

Chapter 4 Background on Neuro-Evolution

4.4 Summary

EAs are based on the elementary concept of survival of the fittest. An EA optimizes a

population of solutions by selecting and varying the best solutions.

EAs evolving a population of policies encoded by neural networks are called Neuro-

Evolution (NE) algorithms. In NE algorithms, to evaluate the performance of a policy,

the latter is used to collect a trajectory in the environment. The fitness is then com-

puted according to the trajectory. For instance, the fitness function may correspond

to the sum of rewards collected along the trajectory.

As in Reinforcement Learning, to tackle Hard Exploration Problems, NE algorithms

search for diverse behaviors using mechanisms inspired by Intrinsic Motivation. Sev-

eral Diversity Search algorithms have been proposed in the literature. Novelty Search

and Goal Exploration Processes are among the most commonly used. Both approaches

characterize the trajectory associated with a policy using low-dimensional outcomes.

In Novelty Search, a novelty score is computed for each outcome and the most novel

policies are more likely to be selected. In Goal Exploration Processes, the policy

associated with the outcome closest to a uniformly sampled one is selected.

In Chapter 6, we discuss in detail the difference between these two DS algorithms. In

particular, we show how their different selection mechanisms impact the dynamic of

the population.

46

5 Learning from demonstrations

If the exploration mechanisms introduced in Section 3 and the Diversity Search meth-

ods presented in Section 4 are insufficient to tackle a Hard Exploration Problem, one

can collect demonstrations of the desired task and learn from these demonstrations.

Thus, by providing the agent with examples of how the task should be performed,

it can leverage tools from Imitation Learning (IL) and learn more quickly and accu-

rately than it would by trial and error. In IL, a policy is not trained to maximize any

(potentially ill-defined) reward signal. Instead, the policy is trained to reproduce the

behavior of an expert, typically by learning from example data. IL can be divided

into three categories: non-interactive methods, Interactive Imitation Learning and

RL-based methods (Celemin et al., 2022).

5.1 Non-Interactive Imitation Learning

IL is non-interactive when it only requires demonstrations and no additional signal or

feedback during training. Non-interactive IL usually involves Supervised Learning.

The goal is to produce a policy that can reproduce the same outputs as the expert for

a given set of inputs. While the resulting agent does not necessarily understand the

underlying process that generates the data, IL can still be useful when it is not possible

or practical to train the agent in the environment, such as when the environment is

dangerous or when no simulator is available.

The most popular example of non-interactive IL is Behavioral Cloning (BC) (Pomer-

leau, 1991). BC uses regression to imitate demonstrated actions in demonstrated

states greedily. Although very simple, in specific contexts where the environment is

not too noisy, a large amount of near-optimal expert data is available and the planning

horizon is short, BC may be a satisfying approach (A. Kumar et al., 2021). However,

the imitation policy often suffers from poor generalization outside the training dis-

47

Chapter 5 Learning from demonstrations

tribution. Therefore, if compounding errors drive the agent into out-of-distribution

states, the latter will likely select poor actions and fail to solve the demonstrated task.

This problem is often referred to as a distribution shift problem (Ross et al., 2011).

Non-Interactive Imitation Learning also includes approaches based on Robot Pro-

gramming from Demonstration (Billard et al., 2008). In these approaches, determinis-

tic (Neumann and Steil, 2015; Perrin and Schlehuber-Caissier, 2016; S. Gupta et al.,

2022) or probabilistic (Calinon et al., 2010; Silvério et al., 2018) models of the system’s

dynamics are constructed using demonstrations. A controller is then derived from this

model. While initially restricted to low-dimensional state spaces, these approaches

have been scaled to higher dimensions using dimension reduction techniques (Cali-

non and Billard, 2007). They are very interesting as they benefit from theoretical

(global asymptotic or probabilistic) convergence guarantees (Ravichandar et al., 2020)

lacking in Deep RL.

5.2 Interactive Imitation Learning

If available, one can rely on additional expert feedback during training to limit the im-

pact of compounding errors. In Dataset Aggregation (Dagger) (Ross et al., 2011) when

compounding errors make the agent shift from the training distribution, additional

feedback is given by the expert to bring the agent back on the support of the training

distribution.

Methods like Dagger that involve the teacher in the learning loop fall within the frame-

work of Interactive Imitation Learning (Celemin et al., 2022). While their applicability

is limited by the need for an expert to supervise the entire learning process, these

approaches have been successfully applied to complex physical robotic tasks (Jauhri

et al., 2020; Mészáros et al., 2022).

Nevertheless, one should note that it may be difficult for an expert to provide feedback

on low-level actions (e.g. on precise torque control) (Ravichandar et al., 2020). There-

fore, teachable agents based on GCRL and using a high-level goal representation such

as binary predicates or natural language offer interesting possibilities for extending

interactive Imitation Learning approaches (Colas, 2021; Akakzia et al., 2022).

5.3 RL-based Imitation Learning

Imitation Learning can leverage tools from RL to efficiently learn a policy from optimal

and sub-optimal datasets of transitions.

48

Learning from demonstrations Chapter 5

RL-based Imitation Learning includes Offline RL (Prudencio et al., 2022), Inverse RL

(Arora and Doshi, 2021), and RL from demonstrations (Schaal, 1996). These different

classes of algorithms differ in their assumptions. For instance, Inverse RL algorithms

assume no access to a reward function. On the other hand, an Offline RL agent does

not interact with the environment.

5.3.1 Offline Reinforcement Learning

Similarly to BC, in Offline RL, an agent uses previously collected data to learn and

improve its behavior without direct interactions with the environment and additional

feedback from the expert. However, in offline RL, unlike IL, the data collected previ-

ously are not necessarily expert demonstrations. For instance, they can correspond

to exploration trajectories. Offline RL aims to generate new behaviors rather than

imitate the demonstrated behavior.

A seminal work in offline RL is Reward Weighted Regression (RWR) (Peters and Schaal,

2007). RWR is particularly close to BC. Indeed, the main difference is that RWR weights

the policy regression for a state action pair using the associated (transformed) reward.

Using this weighted term, RWR is able to learn from sub-optimal data.

Recent offline RL possesses additional interesting additional properties compared to

BC (A. Kumar et al., 2021; Prudencio et al., 2022). Indeed, using tools like the Value

function, Offline RL agents learn about the long-term consequences of their actions

while BC and RWR learn to mimic an action at a given time only. An example of the

effective use of the Value function is the Advantage Weighted Regression (X. B. Peng

et al., 2019), an extension of RWR that weights policy regression according to the

reward and the value. In addition, using poor data, Offline RL agents not only learn

the optimal actions but also to avoid sub-optimal actions. Thus, relying on Bellman

Equations, Offline RL can learn from optimal segments of sub-optimal trajectories

rather than from complete optimal trajectories as in BC.

However, similarly to BC, Offline RL may suffer from a distribution shift in action

selection during training. This distribution shift is caused by poor generalization

outside the training dataset, which may result in a value overestimation of out-of-

distribution state-action pairs (Prudencio et al., 2022). Most Offline RL approaches

try to limit this distribution shift either using policy constraints (Fujimoto et al., 2019;

A. Kumar et al., 2019; Fujimoto and Gu, 2021), critic regularization (Nachum et al.,

2019), or uncertainty estimation (Agarwal et al., 2020).

Moreover, one should note that large training datasets are required to perform offline

49

Chapter 5 Learning from demonstrations

reinforcement learning efficiently. Collecting such a large training dataset may be

challenging in complex robotic contexts (Ravichandar et al., 2020).

5.3.2 Inverse Reinforcement Learning

Another way to leverage demonstrations using RL is Inverse Reinforcement Learning

(IRL) (Arora and Doshi, 2021). An IRL algorithm is based on a two-step training loop.

First, a reward function is learned using demonstrated transitions along with training

transitions. Then, an agent is trained using this learned reward function and collects

additional information about the environment. Using this additional knowledge,

the two steps are repeated. In early IRL approaches, the reward was inferred by

searching for a trajectory distribution that matches the same hand-designed features

as the demonstrations (Ziebart et al., 2008). In more recent methods like Generative

Adversarial Imitation Learning (GAIL) (Ho and Ermon, 2016b), the feature matching

objective is replaced by an occupancy measure matching between the state-action

distributions of the agent and the expert. While a large number of training episodes

are required for IRL approaches to converge (Kober et al., 2013), this distribution-

matching approach has been adapted to the off-policy setting in Discriminator Actor-

Critic (DAC) (Kostrikov, Agrawal, Levine, et al., 2018), resulting in a significantly

improved sample efficiency. Note that DAC efficiently solved complex simulated

robotics tasks using a handful (∼ 10) of demonstrations.

5.3.3 Reinforcement Learning from demonstration

RL from demonstration is a set of RL-based methods that leverage demonstrations.

Unlike offline and inverse RL, they also interact with the environment and do not

attempt to learn an explicit reward function. In RL from demonstrations, the dataset

of expert interactions with the environment is continuously used to update the policy

along with training interactions. They can be used to guide action selection during

policy updates (A. Nair et al., 2018; Goecks et al., 2019), or to learn a more accurate

value function faster (Vecerik et al., 2017; Paine et al., 2019; Reddy et al., 2019). Primal

Wasserstein Imitation Learning (PWIL) (Dadashi et al., 2020) proposed to solve a distri-

bution matching problem similar to GAIL and DAC without using Inverse RL. Instead,

PWIL uses a hand-designed reward based on the Wasserstein distance between the

state-action distributions of the expert and the agent. PWIL manages to imitate a

complex locomotion behavior for an under-actuated humanoid in simulation using a

single demonstration with unprecedented sample efficiency.

50

Learning from demonstrations Chapter 5

5.4 Summary

Imitation Learning can be divided into three categories: non-interactive methods,

Interactive Imitation Learning and RL-based IL.

Non-Interactive Imitation Learning algorithms attempt to reproduce the same ac-

tions as those demonstrated by the expert without additional interaction with the

environment. They assume that the demonstrations are optimal and may suffer from

distributional mismatches.

In interactive approaches, an expert supervises the training of the agent and gives

additional feedback in case of a distribution shift. While limited by the required

availability of the expert, these approaches are able to learn complex behaviors with

unmatched efficiency.

RL-based approaches can be divided into three subclasses. First comes Offline RL.

Similarly to non-interactive methods, Offline RL does not assume access to the en-

vironment during training. In addition, by using RL tools such as reward and value

functions, Offline RL algorithms can learn from sub-optimal data. However, similarly

to Behavioral Cloning, Offline RL suffers from a distributional shift. Secondly, in

Inverse RL, a reward function is learned by solving a distribution matching problem

between the state-action distribution of the agent and the expert. The learned reward

function is then used to train an RL agent. As these approaches often rely on genera-

tive architecture, they tend to suffer from poor sample efficiency and unstable training.

Finally, in RL from demonstration, the dataset of expert demonstration is continuously

used during the training procedure and guides the agent toward interesting states and

optimal behaviors.

51

Part IIContributions

53

Chapter 5

In brief

This second part of this manuscript presents our different contributions. Chapter 6 first

analyses the difference in performance of two diversity search methods, Novelty Search

and Goal Exploration Processes. The study reveals that these methods struggle in front

of non-localities in the mapping between the parameters of the agent and its trajectories

in the environment. Chapter 7 then proposes to decompose the corresponding hard

exploration problems into simpler local exploration sub-problems. Although effective

in simple holonomic environments, limitations arise when NSSC constructs a chain of

partially characterized behaviors in an environment with more complex dynamics. In

particular, this chapter introduces the notion of invalid exploration states, which are

false stepping stones for exploration. With this limitation in mind, Chapter 8 addresses

the hard exploration problems of interest by learning from a single demonstration. It

proposes to decompose these problems into several simpler goal-reaching sub-problems.

This chapter introduces the fundamental concept of valid success states, which high-

lights that when an agent tries to reach low-dimensional goals in a high-dimensional

environment successively, it must be careful to reach each goal via states compatible

with the achievement of the next goals. We propose two mechanisms to encourage the

agent to reach these valid success states. They both lay the foundation of the DCIL-I algo-

rithm proposed in Chapter 8, which addresses the problem of achieving hard-to-reach

goals leveraging a single demonstration. In Chapter 9, the two mechanisms of DCIL-I

are integrated into an original Goal-Conditioned Reinforcement Learning framework

where states are extended to include the sequence of low-dimensional goals. Based on

this framework, we propose an evolution of DCIL-I called DCIL-II. This more efficient

variant can learn complex locomotion behaviors with unprecedented efficiency. Finally,

Chapter 10 attempts to remove the main assumption of DCIL-I and DCIL-II, which

assume that the agent can be reset in any state of the demonstration. The SR-DCIL

variant, which only assumes a reset in one state, shows moderate results depending on

the content of the demonstration. Nevertheless, it provides a solid basis for future work.

55

6 Analysis of the limitations of Diversity
Search Neuro-Evolution

An artificial agent that relies on a sparse or deceptive reward signal to solve a Rein-

forcement Learning problem lacks trustful information to steer its learning process.

This often results in complete task failure or poor performance (Matheron et al., 2019).

Diversity Search has been successfully applied to learn control policies in Hard Explo-

ration Problems (Lehman and Stanley, 2011a; Forestier and Oudeyer, 2016). To do so,

Diversity Search algorithms rely on different forms of Intrinsic Motivation, such as

novelty search or goal exploration (see Section 4). However, despite these successes,

some fundamental difficulties limit their applicability. Indeed, these methods often

require many interactions with the environment to achieve diverse behaviors. This

budget becomes even more significant if we perform Neuro-Evolution to learn neural

network policies.

In this chapter, we empirically evaluate the ability of Diversity Search algorithms to

solve Hard Exploration Reinforcement Learning Problems. In particular, we highlight

their poor sample efficiency due to the fragility of the mutation operator by drawing a

parallel with sampling-based Motion Planning algorithms.

We can distinguish two classes of algorithms to combine Neuro-Evolution and Diver-

sity Search: Goal Exploration Process (GEP) (Benureau and Oudeyer, 2016; Forestier

and Oudeyer, 2016; Forestier, 2019) and Novelty Search (NS) (Lehman and Stanley,

2011a). Both classes have been applied to solve a variety of RL problems (Salimans

et al., 2017; Such Petroski et al., 2018). The same observation was made on each

occasion: although very powerful and easily parallelizable, these approaches are very

sample-inefficient. Several methods combining them with RL algorithms have been

proposed in an attempt to increase their efficiency (Colas et al., 2018; Cideron et al.,

2020; Nilsson and Cully, 2021; Sigaud, 2022).

In this Chapter, we propose no miraculous recipe. Instead, we investigate the prop-

57

Chapter 6 Analysis of the limitations of Diversity Search Neuro-Evolution

erties of these two classes of algorithms. In the first part, based on a very general

selection-expansion framework, we reveal a similarity between these algorithms and

Motion Planning (MP) algorithms like Expansive Spaces Trees (EST) (D. Hsu et al.,

1997) and Rapidly-exploring Random Trees (RRT) (Lavalle, 1998). In the second part,

we empirically compare both algorithms in two environments where a smoothness

assumption on which MP algorithms implicitly rely either holds or not. We show

that diversity algorithms are highly dependent on the design of the outcome space

where the search for diversity is performed and that the smoothness of the mapping

between the policy parameter space and the outcome space plays a crucial role in

their search dynamics. In particular, we show that if the mapping is smooth enough,

GEP and NS inherit the exploration properties of their MP counterparts and GEP

outperforms NS. By contrast, if it is not, which is the usual case, NS and GEP perform

differently and their performance strongly depends on specific heuristics, notably

filtering mechanisms that discard some of the explored policies.

6.1 Selection-Expansion: a unifying framework for Di-

versity Search and sampling-based Motion-Planning

algorithms

In this section, we highlight that NS and GEP share properties with two well-known

MP algorithms, EST and RRT. To establish the similarity between both families of

algorithms, we start from a more general framework that we call selection-expansion

algorithms.

6.1.1 Selection-expansion algorithms

Imagine an agent searching in some space and looking for an area it knows nothing

about. What should it do? The most classical approach is to keep a memory of what

has already been explored, and to progress locally, i.e. by reconsidering previous

trajectories or behaviors, and by expanding or slightly modifying them to find new

areas of the space to explore. This is the basis of virtually all sampling-based motion

planning algorithms, and the core mechanism of Go-Explore (Ecoffet et al., 2019a).

We call this kind of algorithms selection-expansion algorithms because they share the

common structure of maintaining an archive of previous samples and iterating over a

sequence of two operators:

• the selection operator that chooses in the archive a sample from which to

58

Analysis of the limitations of Diversity Search Neuro-Evolution Chapter 6

expand;

• the expansion operator that adds one or several new samples built from the

selected sample.

Usually, selection and expansion operators are designed to efficiently expand the

frontier of explored areas towards unexplored regions of the space. To do so, there are

two popular selection strategies. One can either:

Strategy 1 rank all elements in the archive in terms of distance to their neighbors, and

preferentially select those far away from their neighbors, which suggests that they lie in

a region with a low density of exploration; or

Strategy 2 randomly draw a sample anywhere in the search space and select the closest

sample in the archive. This way, samples which are close to large unexplored regions

have a higher chance of being selected.

In the next section, we describe applications of the above selection-expansion algo-

rithms in two domains, namely Motion Planning and Diversity Search algorithms.

This reveals a striking similarity between both families of algorithms.

6.1.2 Application to Motion Planning

Figure 6.1: Expansion operators in motion planning with unknown dynamical systems.
When the dynamical system is unknown, random controls are propagated through
the system, yielding random nodes contained in a local ball.

Sampling-based MP algorithms use selection-expansion algorithms to build an ex-

ploring tree eventually containing a path from the starting configuration to the goal.

59

Chapter 6 Analysis of the limitations of Diversity Search Neuro-Evolution

In the MP context, the need for a local expansion operator comes from the fact that

the system must navigate locally from its current configuration to the next using a few

control steps only.

Thus, the expansion operators of the “model-free" MP algorithms considered here

typically perform random actions from the selected configurations to reach a new

configuration which is then added to the exploration tree.

For the selection operator, there exist MP algorithms corresponding to both strategies

described above.

Expansive Spaces Trees

The Expansive Spaces Trees (EST) algorithm corresponds to a family of algorithms

where the selection operator uses Strategy 1. These algorithms select the most isolated

nodes based on an estimate of the local density of nodes. Various approximations

of the local density can be used. For instance, a node can be selected based on

its number of neighbors within a certain range D. The nodes are selected with a

probability distribution based on the weight of nodes so that the nodes with fewer

neighbors tend to be selected with higher frequency than others.

Other estimates of the local density of nodes can also be used. In this chapter, we

consider the mean distance to the K-nearest nodes as an estimation of the local

density. Given a set of N nodes S = {si }[1,N] ∈C N
f r ee and a set of K nearest-neighbors

{µ1, ...,µk } ⊂ S associated to node sn , the latter has a weight :

wn = 1

k

k∑
i=1

di st (sn ,µi). (6.1)

The probability pn for sn to be selected is proportional to its weight:

pn = wn∑N
i=0 wi

. (6.2)

Besides, in the general case without specific knowledge on the system, a random

control input is used during one or a few steps to expand sn to a new state snew . If no

collision occurs, snew is added to the tree.

60

Analysis of the limitations of Diversity Search Neuro-Evolution Chapter 6

Rapidly-exploring Random Trees

Like EST, Rapidly-exploring Random Trees (RRT) is a sampling-based path-planning

algorithm. But, in contrast to EST, RRT performs selection according to Strategy 2. It

draws a random goal configuration ssamp and selects the closest node in the set of

already visited nodes. Note that sampling a random configuration requires determin-

ing the boundaries of the space where to sample from, a stronger prerequisite than in

EST.

Given a set of nodes {si }i∈[1,N] ∈C N
f r ee , one can define the Voronoi diagram of these

points as a set of Voronoi cells with one Voronoi cell per point, where the Voronoi cell

of each point si is the subspace of all points that are closer to si than to any other

point of the set. When selecting randomly, the probability pk for an already visited

node sk to be selected is proportional to the volume of its Voronoi cell:

pk = vol ume(V or onoi cel l sk)∑N
i=0 vol ume(V or onoi cel l si)

. (6.3)

After selection, without knowledge of the system, expansion is also performed by

applying a random control.

Algorithm 1 Rapidly-Exploring Random Trees

1: Initialize exploration tree:
2: T ← s0

3: while i ter ati on < Nsel /exp do
4: ssamp ← r andom_con f i g () ▷ selection operator
5: ssel ← near est_nei g hbor (T, ssamp)
6: ur and ← r andom_contr ol () ▷ random action
7: snew ← expand(ssel ,ur and) ▷ expansion operator
8: T ← T.upd ate((ssel , snew ,ur and)) ▷ update search tree

Algorithm 2 Expansive Spaces Trees (NS variant)

1: Initialize exploration tree:
2: T ← s0

3: while i ter ati on < Nsel /exp do
4: N ← compute_wei g ht (T) ▷ compute weights (novelty-like)
5: ssel ← sel ect (T, N) ▷ selection operator (weight proportionate)
6: ur and ← r andom_contr ol () ▷ random action
7: snew ← expand(ssel ,ur and) ▷ expansion operator
8: T ← T.upd ate((ssel , snew ,ur and)) ▷ update search tree

61

Chapter 6 Analysis of the limitations of Diversity Search Neuro-Evolution

Comparative search properties of EST and RRT

(a) EST Search tree. (b) RRT Search tree.
(c) Expansion scores.

Figure 6.2: Empirical comparison of EST and RRT. The SimpleMaze environment
is divided into a 4×4 grid to compute the expansion scores of the MP algorithms.
Search trees are shown after 1000 iterations. The means and standard deviations of
the expansion scores are computed over 30 runs.

We empirically compare the exploration properties of the selection operators of EST

and RRT in the “SimpleMaze" environment which is further described in Section 6.2.1.

The pseudo-codes of both algorithms are given in Algorithms 1 and 2.

To assess expansion, we divide the maze into a 4×4 expansion grid shown in Figure 6.2.

The expansion score is the number of zones containing at least one node over the

total number of zones, i.e. 16.

Both algorithms start with a single initial node in the middle of the left side. Fig-

ures 6.2a and 6.2b display exploration trees for both EST and RRT after 1000 iterations.

The evolution of expansion presented in Figure 6.2c shows that RRT explores the maze

faster than EST.

6.1.3 Application to diversity search algorithms

We now turn to the policy search context. In policy search, we consider a parametric

policy πθ where θ is a vector of parameters in a policy parameter space Θ.

As explained in Section 4, Diversity Search algorithms (DS) are policy search algo-

rithms dedicated to covering a space of solutions as widely as possible. In particular,

they can be used to find a target area without a reward signal. A common feature of

these algorithms is that they define an outcome spaceO as a generally low-dimensional

space that can characterize important properties of policy runs. The target area in

such policy search problems is generally defined in O. Thus it is natural to consider

62

Analysis of the limitations of Diversity Search Neuro-Evolution Chapter 6

(a) Goal-Exploration Process

(b) Novelty Search

Figure 6.3: Selection in GEP and NS. In GEP, an outcome is randomly sampled and the
policy yielding the closest outcome is selected. In NS, the novelty is computed w.r.t to
the archive. The policies yielding the most novel outcomes are selected.

that DS algorithms are performing a search in that space and to define the selection

operator in that space.

But a key issue in the policy search context is that one cannot directly sample in

O, as the mapping from outcomes to policy parameters reaching these outcomes

is generally unknown. As a consequence, search in these DS algorithms considers

the mapping between Θ and O, which we call the f :Θ→O mapping hereafter, see

Figure 6.5.

Considering these two spaces results in crucial differences between MP and DS al-

gorithms. In particular, while MP algorithms need to use a local expansion operator

because they build a path to control a system from one configuration to another, DS

algorithms rely on local expansions for different reasons.

Importantly, as it is not possible to sample directly in O, the expansion operator

must sample in Θ. Since selection operates in O and expansion in Θ but from the

selected sample, one must determine the θ ∈Θ corresponding to the selected o ∈O.

This problem is easily solved by storing in the archive a pair consisting of a θ and

the resulting outcome o for each sample. For a selected o, a common approach

for expansion is to simply apply a random mutation to the corresponding θ. For

63

Chapter 6 Analysis of the limitations of Diversity Search Neuro-Evolution

the selection operator, the NS and GEP algorithms respectively implement the two

strategies described in Section 6.1.1. Their pseudo-codes are given in Algorithms 3

and 4.

Algorithm 3 Vanilla Goal Exploration Process (Selection-Expansion variant)

1: Initialize population:
2: P ← init_population()
3: while g ener ati on < Ng ener ati on do
4: for i = 1 : Nsel ect i on do
5: og oal ← r andom_outcome() ▷ selection operator
6: (θsel ,osel) ← near est_nei g hbor (P,og oal)
7: θnew ← expand(θsel) ▷ expansion operator
8: onew ← evaluate(θnew) ▷ compute outcome
9: P ← P + [(θnew ,onew)]

Algorithm 4 Novelty Search (Selection-Expansion variant)

1: Initialize population, expanded policies & archive:
2: P ← init_population()
3: M ← []
4: A ← []
5: while g ener ati on < Ng ener ati on do
6: N ← novel t y({P +M }, A+P) ▷ compute novelty scores
7: P ′ ← []
8: for i = 1 : Nsel ect i on do ▷ population filtering
9: P ′ ← P ′+ [sel ect ({P +M }, N)] ▷ selection operator (novelty proportionate)

10: P ← P ′

11: M ← []
12: for (θi ,oi) i n P do
13: θnew ← expand({θi }) ▷ expansion operator
14: onew ← evaluate(θnew) ▷ compute outcome
15: M ← M + [(θnew ,onew)]

16: A ← A+ sample(M , N f i l ter ar chi ve) ▷ archive filtering

Selection in NS

Novelty Search considers two sets of points in O: the population and the archive. Only

the policies contained in the population may be selected. We explain later how these

sets of points are constructed.

Selection in NS can be performed using various selection operators. The uniform

selection operator, the score proportionate selection operator, and the tournament-

based operators are the most common ones (Cully and Demiris, 2018b). In this thesis,

64

Analysis of the limitations of Diversity Search Neuro-Evolution Chapter 6

we focus on the score proportionate selection operator biased toward more novel

policies.

The idea behind score proportionate selection is to construct a probability distribution

according to the novelty scores of the policies contained in the population. The

novelty score N of a point o ∈O is defined as the average distance to the k-nearest

neighbors (µ1, . . . ,µk) ∈Ok in the archive, k being a hyper-parameter:

N = 1

k

k∑
i=1

dist(o,µi). (6.4)

Given a population {(θi ,oi)}i∈{1,...,N } containing N policies, the probability pk for policy

θk to be selected is proportional to its novelty score:

pk = Nk∑N
i=0Ni

. (6.5)

This is an instance of Strategy 1 described in Section 6.1.1 where the distance to

neighbors is computed through the novelty score.

Selection in GEP

The selection operator in GEP works as follows. First, the agent draws a random

target outcome og oal . The agent would like to find a set of policy parameters θg oal

producing og oal . For that, it looks in the archive for the closest outcome osel to og oal ,

and it selects the policy parameters θsel which generated osel . This is clearly an

instance of Strategy 2.

Since the GEP selection operator draws a random outcome and selects a policy corre-

sponding to the closest outcome in the archive {(θi ,oi)}i∈{1,...,N }, the probability pk for

policy θk contained in the archive to be selected is proportional to the volume of the

Voronoi cell of its outcome ok , as explained for RRT in Section 6.1.2:

pk = vol ume(V or onoi cel l ok)∑N
i=0 vol ume(V or onoi cel l oi)

. (6.6)

One can immediately see that the selection operator is exactly the same as in RRT, but

acting in a different space.

65

Chapter 6 Analysis of the limitations of Diversity Search Neuro-Evolution

Filtering in NS

In addition to their selection operators, NS also differs from GEP by using two filtering

mechanisms.

(a) Goal-Exploration Process.

(b) Novelty Search.

Figure 6.4: Expansions in GEP and NS. In GEP, all expanded policies are added to the
population. In NS, two filtering mechanisms are applied to the population and the
archive.

Filtering the population The notion of population differs in GEP and NS. In GEP,

the population gathers all policies since the first generation (see Figure 6.4a). At each

iteration, all expanded policies are added to the population. In NS, the population is

composed of a fixed-size set of policies updated at each generation. As in GEP, it is ini-

tialized with random policies. However, after expanding the policies contained in the

population, only the most novel policies contained in the set { new population + new

offspring } are selected to construct the new population. This approach encourages

the policies to move in the outcome space from one generation to another and thus

66

Analysis of the limitations of Diversity Search Neuro-Evolution Chapter 6

promotes exploration (Doncieux et al., 2020).

Filtering the archive Beyond the population, NS uses another set called the archive

to keep track of the policies evolved in past generations. The archive is initialized

with the random policies used to initialize the population. At each generation, after

expanding the population, about 10% policies are randomly sampled among the

offspring and added to the archive, to keep the archive small. Indeed, the archive

is used to compute the novelty score. Keeping it small limits the cost of finding the

k-nearest neighbors.

The archive in NS is only used to compute the novelty score of policies contained in

the {population + offspring} set. Policies from the archive are not added to the new

population. If a policy contained in the { population + offspring } set is not selected

for expansion, it is discarded and lost for future generations.

6.1.4 Similarities between MP and DS algorithms

It should now be obvious that, if we consider their most local expansion operators, NS

shares similarities with EST and GEP with RRT. Indeed, the selection and expansion

operators of the DS algorithms are closely related to the same operators of their MP

counterparts.

Selection

From the side of NS and EST, their selection operators measure how isolated a sample

is by attributing weight to each sample proportional to the inverse of the density

of the archive in its neighborhood. The variants of EST and NS considered in this

chapter use the same weight computation based on the mean distance of samples

to their k-nearest neighbor in the exploration tree (see (6.1)) or the archive (see (6.4)).

Therefore, nodes in EST and policies in NS share the same selection probability (see

(6.2) and (6.5)) in different spaces.

Similarly, GEP and RRT also use a similar selection operator based on the volume of

the Voronoi cells of the nodes/outcomes (see (6.3) and (6.6)) in their respective space.

Expansion

The expansion operator used in MP highly depends on how much we can steer a

system in the desired direction. But, in the unknown system case, a standard strategy

67

Chapter 6 Analysis of the limitations of Diversity Search Neuro-Evolution

consists in applying a single random control. This strategy relies on a strong assump-

tion about the dynamical system. To ensure that the algorithm is guaranteed to find a

path between the starting configuration and the goal configuration given an infinite

amount of selection-expansion iterations (i.e. the algorithm is probabilistic complete

(LaValle, 2006)), the system is assumed to be Lipschitz-continuous (Kleinbort et al.,

2018). This assumption means that with enough expansions from the same node, a

node should finally expand in the right direction.

In DS algorithms, the standard expansion operator applies a random perturbation to

the selected policy parameters, which has similarities with the use of random actions

for local expansions in the MP context.

However, reasons for using a local expansion operator are different in the MP and

DS contexts. In the MP context, one needs to locally control the system along a path

from the current configuration to the target configuration. In GEP, a local random

perturbation is applied to the selected policy hoping that, the corresponding outcome

being close to the sampled goal, the perturbed policy produces an outcome that is

also close (and possibly closer) to this goal. One can see that the application of this

selection-expansion strategy relies on the assumption of a smoothness property in the

f :Θ→O mapping, i.e. that similar parameters yield similar outcomes. In the case of

NS, the reason for using a local expansion operator is less straightforward. It relies

on the assumption that, if a policy resulted in an outcome in a low-density region,

a perturbed version of the policy should also result in an outcome exploring this

low-density region, and thus be potentially helpful in the search for new outcomes.

Again, this is equivalent to assuming a smoothness property in the f mapping.

6.1.5 Expansions in DS are often non-local

Even though DS have good reasons to use local expansions just like MP, expansions in

DS are often non-local. Indeed, different sources of non-locality can be identified by

dissecting the f :Θ→O mapping and considering a policy space Π and a trajectory

space T (see Figure 6.5 for the details of the sub-mappings).

The first source of non-locality originates from the mΘ mapping relating Θ to policies,

in particular when they are modeled as non-linear neural networks. Even though

Multi-Layers Perceptrons (MLPs) are continuous functions, if the magnitude of the

perturbation is too large, the expanded version of a policy may yield a very different

policy. Figure 6.6a illustrates the consequences of a random mutation.

The second source of non-locality lies in the nature of outcomes, which, as mentioned

68

Analysis of the limitations of Diversity Search Neuro-Evolution Chapter 6

Figure 6.5: Description of the different spaces and mappings composing the Θ→O
mapping in diversity search algorithms. Two intermediate spaces are considered: a
policy space Π and a trajectory space T . Three sub-mappings mΘ,mΠ and mobs are
also considered such that f = mΘ ◦mΠ ◦mobs .

in Section 6.1.3, depend on policy runs, and therefore on trajectories. After selecting

a pair (θsel ,osel) ∈Θ×O, the expansion operator in DS perturbs θsel to obtain a new

policy with parameters θnew = θsel +δθ with δθ sampled from a spherical Gaussian

distribution (Such et al., 2017) or a more complex distribution (K. Deb and D. Deb,

2014). The new policy πθnew yields trajectories defined by the equation

s(T) = s0 +
∫ T

0
Ds y s+env (s(t),πθnew (s(t))d t (6.7)

which integrates the dynamical system ṡ =Ds y s+env (s,πθnew (s)) over the time inter-

val [0,T], where Ds y s+env models the dynamics of the system in interaction with its

environment and s0 is the starting state of the rollout. Even if the magnitude of the

mutation is kept low enough for the expanded policies to be very close to the selected

one, the numerous time steps of control may result in a large deviation between the

69

Chapter 6 Analysis of the limitations of Diversity Search Neuro-Evolution

(a) (b)

Figure 6.6: (a) Lack of smoothness caused by the non-linearity of the neural network
policy. The difference between two policies πθ and πθ+ϵ is visualized as a vector field
(in red). πθ yields the red trajectory, and πθ+ϵ yields the blue trajectory. Although
the parameters are close in Θ, output differences are accumulated and lead to very
different trajectories. (b) Lack of smoothness caused by the environment. The non-
linearity or discontinuity of the environment (here at the extremity of the first wall)
can cause similar actions to have dramatically different effects. This can lead to huge
outcome differences for similar policy parameters.

trajectories obtained by the two policies via Equation (6.7) as differences accumulate

over time steps. These errors may be aggravated by discontinuous dynamical systems

or environments Ds y s+env and result in a non-smooth mapping mΠ from policies to

trajectories, and therefore from policies to outcomes. For instance, in maze environ-

ments, two close policies may yield very different trajectories if one trajectory gets

blocked by a wall, as illustrated in Figure 6.6b.

Preliminary conclusion: performance assumptions

The similarities outlined above suggest that, if the expansion operators have similar

properties, NS and GEP should share exploration abilities that are similar to those

of EST and RRT respectively. However, for common f : Θ → O mappings, small

perturbations in Θ may result in large changes in O, and this lack of smoothness can

result in a two situations.

• If the lack of smoothness of the f : Θ→O mapping is too serious, one could

hypothesize that the use of local expansions in DS should bring no advantage

compared to a random sampling of policy parameters.

• Or, the f : Θ→O mapping could be smooth enough to let NS and GEP both

70

Analysis of the limitations of Diversity Search Neuro-Evolution Chapter 6

outperform random sampling, but not smooth enough to inherit the search

properties of EST and RRT.

Below, we investigate these two possibilities experimentally.

6.2 Experimental study

In this section, we experimentally study NS, GEP and a random search baseline using

two environments with different smoothness properties to assess whether NS and

GEP inherit from the properties of EST and RRT.

6.2.1 Experimental setup

The experimental comparison is based on two environments: a ballistic task using a 4-

DOF simulated robot arm and a maze environment called SimpleMaze, see Figure 6.7.

In both environments, the state space is continuous and time is discrete.

(a) 3D ballistic throw. (b) SimpleMaze.

Figure 6.7: Studied environments. (a) In 3D ballistic throw, an agent controls the
angular speed (θ̇i)i∈[0,3] of a 4-joint 3D robot arm in order to throw a projectile. The
outcome o of the policy is the final position of the projectile. (b) In SimpleMaze, the
agents start from a fixed position (−1,0) and must reach the upper right corner.

3D ballistic throw

The planar robot arm ballistic throw environment simulates the trajectory of a pro-

jectile thrown by a 3D 4-joint robot arm inspired from (Cully, 2019a). The velocities

(θ̇i)i∈[0,3] ∈ [−1r ad .s−1,1r ad .s−1] of the joints of the robot arm are controlled by an

71

Chapter 6 Analysis of the limitations of Diversity Search Neuro-Evolution

MLP. The throw is divided into acceleration-release phases. The acceleration phase is

a single time step of control of the robot joints. After the acceleration phase, the end

effector of the robot releases the projectile which then follows a ballistic trajectory.

The outcome is the (x, y) coordinates of impact.

The expansion operator of DS algorithms truly achieves local expansions in this

environment. First, by decreasing the magnitude of the polynomial mutations with

η= 2000 (K. Deb and D. Deb, 2014), we make sure that any mutated policy is similar

to the one from which it originated. Second, by reducing the acceleration phase to a

single time step, we avoid the accumulation of differences between trajectories of the

dynamical system controlled by the mutated policy and by its parent. This ensures the

smoothness of the mΘ mapping. Moreover, without obstacles, there is no discontinuity

in the trajectory of the projectile, and the function Ds y s+env (Equation (6.7)) remains

smooth under all circumstances. Under these constraints, the f :Θ→O mapping is

such that small perturbations in Θ yield small changes in O.

SimpleMaze

We chose a Maze environment as it facilitates visualization of the exploration prop-

erties of the algorithms. A rollout lasts 50 time steps. The outcome corresponds to

the final position of the agent at the end of the rollout. The agent starts from (−1,0)

and receives at each time step the position of (x, y) ∈ [−1,1]× [−1,1] at the current

time step as input and outputs the next displacement (d x,d y) ∈ [−0.1,0.1]×[−0.1,0.1].

The agent does not perceive the walls. The magnitude of the polynomial mutations

(η = 15), the duration of a rollout as well as the discontinuities caused by the walls

result in non-local expansions (as shown in Figure 6.6), with similar policy parameters

leading possibly to very different outcomes.

6.2.2 Metrics

In order to assess the expansion of a DS algorithm, we use the previously defined

domain expansion metric. We split O into a Gexpansi on ×Gexpansi on expansion grid.

The expansion score corresponds to the number of expansion cells filled with at least

one policy over the total number of expansion cells.

6.2.3 Implementation details

In both GEP and NS, a KD-tree (Bentley, 1975a) is used to accelerate the nearest-

neighbor computations. New policies are added at each generation. NS keeps the cost

72

Analysis of the limitations of Diversity Search Neuro-Evolution Chapter 6

of reconstructing the KD-tree low via the filtering mechanism of its archive. However,

in the vanilla version of GEP, every expanded policy is added to the tree. As a result, the

size of the tree surges and reconstructing the KD-tree becomes computationally very

expensive. To avoid reconstructing the tree at each iteration, a second small KD-tree

keeps track of the most recent policies and is reconstructed at every generation. The

main KD-tree is updated only every Nupd ate after transferring the content of the small

KD-tree. The hyper-parameters are summarized in Chenu et al., 2021.

6.3 Results

(a) Concave hull 3D ballistic
throw.

(b) Expansion 3D ballistic
throw. (c) Expansion SimpleMaze.

Figure 6.8: (a) Visualisation of the concave hull of the exploration trees of NS (blue)
and GEP (pink) in 3D ballistic throw. (b) Expansion scores of GEP and NS in 3D
ballistic throw. As the expansion operator is local, GEP inherits exploration properties
from RRT and expands faster than NS. (c) Expansion scores of GEP, NS and a random
search (RS) baseline in SimpleMaze. The non-local expansions result in NS exploring
slightly faster than GEP. Both NS and GEP outperform RS.

6.3.1 Results on 3D ballistic throw

In this section, we verify that in this environment GEP and NS inherit the search

properties of RRT and EST, and that, as expected, GEP explores O faster than NS.

Figure 6.8b presents the expansion score obtained by GEP and NS after 1000 genera-

tions. It confirms that GEP expands faster across O and converges quickly towards a

maximumI that NS struggles to reach. These results are analogous to the performance

of RRT and EST described above. The similarities between the selection operator

of both DS algorithms and their MP counterpart enables similar exploration perfor-

mance in the ballistic task, an environment that preserves the locality of expansions.

IThe non-rectangular shape of O in the 3D ballistic throw environment makes some cells of the
expansion grid unreachable, which explains why GEP eventually covers only about ∼ 60% of O.

73

Chapter 6 Analysis of the limitations of Diversity Search Neuro-Evolution

6.3.2 Coverage visualization

Figure 6.8a presents the concave hull obtained by the exploration trees of GEP and NS

after 500 generations in one run. We observe that NS spends numerous generations

paving the center of the reachable outcome space (|Y | < 5) whereas GEP expands in

all directions and quickly finds the limits of the reachable search space.

6.3.3 Results in SimpleMaze

Figure 6.9: Quantitative illustration of non-local expansions. (Left) Mean distance
between the outcome of a selected policy and the outcomes of its expanded versions
depending on its position in the SimpleMaze. We observe that this distance increases
as we progress through the maze i.e. the expansion operator gets increasingly more
non-local. The mean distances are computed for 100 expansions per selected policy
and 200 selected policies per cell. Results are averaged over 10 runs of NS and 10 runs
of GEP. (Right) Markov Chain representation of the expansion in the outcome space

using four subsets of outcomes. Each subset corresponds to a corridor in the
SimpleMaze. The empirical transition probabilities are computed for 100 expansions
per selected policy and 200 selected policies per cell. We observe that most mutations

in the second, third and fourth corridors yield an outcome in the second corridor.
There is a low probability of exploring the next corridor (or the same) when

expanding a policy that reaches an advanced corridor.

We previously argued that, if the expansion operator is local, NS and GEP have search

properties that are similar to their MP counterparts. We also explained that the f :

Θ→O mapping is not smooth in SimpleMaze, which results in non-local expansions.

In this section, we assess the consequences of non-local expansions by comparing

the exploration performance of NS and GEP. We show that this non-locality results in

losing the properties inherited from RRT and EST.

74

Analysis of the limitations of Diversity Search Neuro-Evolution Chapter 6

Figure 6.8c presents the expansion and density scores obtained by NS, GEP and RS in

Simple Maze. It shows that both NS and GEP outperform RS. Therefore, the f :Θ 7→O

mapping is smooth enough for NS and GEP to benefit from their selection operator.

However, the performances of NS and GEP in SimpleMaze differ from their perfor-

mances in the ballistic throw. NS and GEP perform similarly during the first 500

generations. Then, the expansion of NS accelerates and outperforms the expansion of

GEP by achieving a full exploration of the maze after about 2500 generations while

GEP generally fails to reach the end of the maze and only reaches an expansion score

of 0.9 after the same number of generations.

The difference in expansion rates after 500 generations arises from a progressive

degradation of the locality of the expansion operator. As explained in Section 6.1.5,

because of the non-locality caused by the discontinuous environment due to walls

and the non-linear neural network policy, expanding a policy that yields an outcome

in the second corridor or beyond often results in a policy blocked by the first wall.

Figure 6.9 illustrates this degradation by underlining the increasing distance between

the outcome of a selected policy and the outcome of its expanded versions as the

selected policy progresses through the maze. We see that the further we progress

through the maze, the more distant the outcome of an expanded policy gets from the

outcome of a selected policy. In other words, the better the policy, the less local the

expansion operator becomes. In addition, the Markov Chain representation of the

expansions shows how non-local expansions for policy advanced in the maze mostly

result in perturbed policies blocked in the second corridor i.e. policies blocked by the

first and second walls.

However, these better policies constitute promising stepping stones for further ex-

ploration (Woolley and Stanley, 2012). Therefore, it is important to select the most

advanced policies to discover policies yielding outcomes further in the maze eventu-

ally. That is exactly what the filtering mechanisms of NS do. Figure 6.10 presents the

outcomes of the selected policies by NS and GEP through one run. In the left panel of

Figure 6.10, the smooth change of colors shows that the selected policies by NS at a

given generation correspond to the most advanced policies in the maze.

On the contrary, GEP does not integrate any filtering mechanisms. Therefore, GEP

keeps sampling policies blocked in the already well-explored areas of the maze (see

right panel of Figure 6.10). Thus, GEP requires more generations to deal with the

degraded expansion operator which results in a slower increase of the expansion

score.

These results show that, in an environment where the f : Θ → O mapping lacks

75

Chapter 6 Analysis of the limitations of Diversity Search Neuro-Evolution

Figure 6.10: History of the selected policies in SimpleMaze (2000 generations run).
Using its filtering mechanism, NS keeps selecting the most advanced policies in the

maze. On the contrary, GEP keeps sampling policies blocked in the already
well-explored areas of the maze.

smoothness, the properties inherited from RRT and EST are lost, which means that the

selection-expansion mechanisms do not behave as originally intended. Even though

both NS and GEP outperform random sampling of policies, additional heuristics such

as filtering mechanisms must be exploited to overcome difficult expansions with

degraded expansion operators.

6.4 Conclusion

In this Section, we presented a comparison between two diversity search algorithms:

GEP and NS. We started by presenting a unifying framework called selection-expansion

which draws a parallel between both algorithms and two Motion Planning algorithms,

EST and RRT.

An experimental study showed that in an environment like the 3D ballistic throw

where the f :Θ→O mapping is smooth enough, GEP and NS inherit the exploration

properties from their Motion Planning counterpart. In that case, GEP explores faster

the environment than NS.

By contrast, maze results show that, even though GEP and NS share common selection-

expansion properties with RRT and EST, they do not share the same exploration

abilities if the expansion operator is not local. In such situations, the experimental

study showed that NS outperforms GEP by using efficient filtering mechanisms.

This work opens up the question of restoring locality in complex environments where

76

Analysis of the limitations of Diversity Search Neuro-Evolution Chapter 6

the expansion operator is non-local.

One could consider several alternatives to restore the locality partially. In (Lehman

et al., 2018), the authors use safe mutations to constrain the perturbation of the

parameter. Mutation parameters are scaled according to their impact on the output of

the policy. The impact is computed using first-order or second-order gradient-based

information.

A different parameterization of the controllers and a better outcome space design

can also help restore locality at the cost of leaving the context of neuro-evolution

and losing representation capabilities. In (Huber et al., 2022; Morel et al., 2022), the

authors use a concatenation of waypoints corresponding to successive configuration

of the robot as the outcome space and a combination of a polynomial interpolation

and a Proportional Derivative controller to guide the robot between them. As a result,

a small change of in the waypoints should result in a small trajectory change.

However, these two alternatives only tackle one source of non-localities coming from

the non-linear nature of the controller. They are agnostic to the discontinuities and

non-linearities of the environment (e.g. the walls in SimpleMaze) which are still a

major source of non-locality in the expansion operators. In the next section, we adopt

a Divide & Conquer strategy and propose a skill-chaining based approach to bypass

this second source of non-locality.

77

7 Novelty Search Skill-Chaining: adopt-
ing a Divive & Conquer strategy

In Chapter 6, we showed that expansions in Diversity Search (DS) algorithm are likely

to be non-local because of the discontinuities and non-linearities contained in the

mapping f : θ→O between the parameter space and the outcome space (e.g. non-

linear controllers, environments with discontinuous dynamics, etc.).

In this Chapter, we tackle this issue by adopting a Divide & Conquer strategy and we

introduce Novelty Search Skill Chaining (NSSC). Unlike NS which searches for a single

policy, NSSC constructs a skill chain to restore the locality of the expansion operator

of DS algorithms in complex environments. Instead of starting to explore from the

reset state of the environment, NSSC uses a skill chain to return to an advanced state

and start exploring from there. Exploration from advanced reset states allows the

agent to avoid all the potential sources of non-locality between the reset state of the

environment and the advanced reset state (see Section 7.3.2).

In Section 7.3.3, we discuss the similarities between NSSC and sampling-based MP

algorithms. Building on this comparison, we underline the potential limits of NSSC in

non-holonomic environments (see Section 7.3.4).

In an experimental study, we first evaluate NSSC in the Simple Maze environment

to show that NSSC restores locality in the expansion operator of DS algorithms. We

then evaluate NSSC in a non-holonomic version of the Simple Maze environment

to underline the limitations of a forward construction of a skill chain guided by low-

dimensional outcomes.

79

Chapter 7 Novelty Search Skill-Chaining: adopting a Divive & Conquer strategy

7.1 Related Work

NSSC uses skill-chaining to return to advanced states in order to explore locally. In

this section, we cover the literature on Skill chaining and exploration from advanced

states.

7.1.1 Skill-chaining

Skill-chaining (Konidaris and Barto, 2009; Konidaris et al., 2010) is an example of the

application of the Divide & Conquer paradigm in RL. Instead of solving a complex RL

problem using a single policy, skill-chaining learns a set of policies on simpler tasks

and chains them together to solve the complete problem.

For example, this principle is applied in the Play-Backplay-Chain-Skill (PBCS) algo-

rithm (Matheron et al., 2020). In PBCS, the Backplay algorithm (Salimans and R.

Chen, 2018) is used to learn a set of skills backward from the final state of a single

demonstration obtained using a planning algorithm.

In (Bagaria and Konidaris, 2019; Bagaria, Senthil, Slivinski, et al., 2021), skills are

formalized using the options framework ((Sutton et al., 1999; Precup, 2000)). An

option is composed of an initial set of states in which this option can be activated, a

termination function that decides if the option should be terminated given the current

state, and the intra-option policy which controls the agent at a single time-step scale

to execute the option. After completing an option, the agent uses an inter-option

policy to decide which option should be applied depending on its current state. In

Deep Skill Chaining (DSC) (Bagaria and Konidaris, 2019), for a given goal, a first option

is learned to reach it from a nearby region reliably. Then, iteratively, a chain of options

is created to reach the goal from further states. The goal of each option is to trigger

the initiation condition of the next one, and the phase of construction of the initiation

classifiers requires various successful runs randomly obtained via exploration or RL.

Both PBCS and DSC construct the skill chain backward from the desired outcome. On

the contrary, other methods (including ours) construct the skill chain in a forward

manner.

In Hierarchical Behavioral Repertoire (HBR) (Cully and Demiris, 2018a), increasing

complexity skills are constructed sequentially to obtain complex movements with

a planar robotic arm. HBR starts by learning low-level skills corresponding to short

trajectories. Then, it chains those skills to construct more complex trajectories. There-

fore, the learned complex movement constitutes a skill chain. HBR was recently

80

Novelty Search Skill-Chaining: adopting a Divive & Conquer strategy Chapter 7

extended in the Hierarchical Trial and Error algorithm for efficient damage recovery

with a hexapod robot Allard et al., 2022.

In Deep Skill Graphs (Bagaria, Senthil, and Konidaris, 2021), the authors construct a

graph of skills using an RRT-like strategy directly in the goal space of a goal-conditioned

RL agent (see Section 3). Each branch in the graph constitutes a chain of skill and is

extended forward using a learned model and Model Predictive Control Garcia et al.,

1989.

Such a forward construction of skill chain may seem advantageous as it does not

require a demonstration, as in PBCS, or an easy-to-explore environment as in DSC.

However, depending on the properties of the environment, this strategy can have

critical limitations (see Section 7.3.4).

7.1.2 Returning to advanced states to explore

Going back to advanced states to explore the state space locally is the central idea of

several algorithms. In the Go-Explore algorithm (Ecoffet et al., 2019b), the outcome

space is divided into cells. During an iteration of the exploration phase, the agent

returns to previously visited states contained in rarely visited cells and explores locally

using random actions. In order to return to previously visited states, Go-Explore as-

sumes that the agent can be reset to a previously visited state or, that the environment

is deterministic such that the agent can return to a previously visited state using the

same sequence of actions.

In First Return, Then Explore, a more recent version of the Go-Explore algorithm

(Ecoffet et al., 2021), the agent uses a Goal-Conditioned Policy to return to previously

visited states. This version of the algorithm achieved state-of-the-art results in com-

plex Atari games that require the agent to explore extensively to master the game.

The limited application of this approach in a robotics environment is discussed in

Chapter 8.

In the UPSIDE algorithm (Kamienny et al., 2021), the agent follows a sequence of

policies to return to advanced states and then enters a diffusion phase. During the

diffusion phase, the agent explores the state space locally using intrinsic motivation

based on empowerment (see Chapter 3.3.2). More precisely, exploration is encouraged

via Mutual-Information skill discovery (Gregor et al., 2016; Eysenbach et al., 2018).

The sequence of policies used to return to advanced states can be seen as a skill chain.

81

Chapter 7 Novelty Search Skill-Chaining: adopting a Divive & Conquer strategy

7.2 Background

7.2.1 Invalid Exploration States

In a DS algorithm, the behavior of a policy is characterized by a low-dimensional

outcome. Often, this outcome corresponds to the projection of the last state of the

trajectory in a low dimensional subspace corresponding to the DoFs that the agent

must explore. (e.g. the (x, y) positions in a 2D maze of the Chapter 6). Therefore, if the

state space is high-dimensional, the same outcome may correspond to very different

final states.

This can be problematic if the agent needs to start exploring from this final state of

the trajectory. Indeed, it is possible that this final state corresponds to configurations

from which exploration is impossible, as in MP (see Section 3). Such states from

which the agent cannot explore are very common in non-holonomic environments

like complex robotics systems. Indeed, in a non-holonomic environment, connecting

two close configurations may require long trajectories in the configuration space if

the shortest path is not admissible. Even worse, connecting two close configurations

may be impossible (see Section 2).

Therefore, if the final state contains a configuration that cannot be connected to any

further configuration helping the exploration of the state space, exploring from this

state is fruitless. We refer to these states as invalid exploration states.

7.3 Method

In this Section, we introduce the Novelty Search Skill Chaining (NSSC) algorithm.

First, we present a key assumption made by most DS algorithms and which is even

more crucial in NSSC. We then explain how NSSC, by using skill-chaining, tackles

the problem of non-local expansions. Finally, we underline the limits of NSSC in

non-holonomic environments.

7.3.1 Deterministic Environments

Most DS algorithms require that the environment is deterministic (Justesen et al., 2019;

Flageat and Cully, 2020; Chalumeau et al., 2022). Indeed, as discussed in Sections 4.3.3

and 6.1.3, a policy is characterized by an outcome that depends on the trajectory

resulting from its evaluation. In a non-deterministic environment, running twice the

same policy may result in different trajectories and, therefore, different outcomes.

82

Novelty Search Skill-Chaining: adopting a Divive & Conquer strategy Chapter 7

This could interfere with the selection process. For instance, suppose a sub-optimal

policy is considered highly novel because of a noisy evaluation. In that case, this policy

has a large chance of being selected for multiple expansions that will probably result

in no additional exploration. In NSSC, the use of skill-chaining to return to advanced

states makes this assumption even more crucial.

7.3.2 Skill-Chaining allows expansions to be local in the outcome

space

In NSSC, the population is initialized with randomly initialized policies, and the

expansion operator perturbs a policy to obtain a new one, just as in NS. Assuming that

the environment is deterministic, the agent uses the original policy to return to the

final state of its evaluation trajectory. From this state, it extends the trajectory using

the new policy.

Returning to this final state allows the agent to avoid all the potential non-smooth

components of the environment dynamics that the original policy has already passed

(e.g. the first walls in the Simple Maze). Therefore, the agent can explore the state space

locally around the advanced state during the trajectory extension. The total trajectory

resulting from the return to the advanced state and the exploration corresponds to

the skill-chaining trajectory.

If the outcome resulting from the skill-chaining trajectory is novel enough, the skill-

chain, composed of the original policy and the perturbated one, is kept in the popula-

tion. Then, additional expansions of this skill chain may result in increasingly longer

chains as more policies are added. If the skill chain contains more than a single skill,

NSSC must decide from which skill the agent should explore locally. To do so, NSSC

chooses the skill resulting in the most novel outcome. Thus, NSSC constructs a tree of

skills spanning the state space rather than a single chain. The expansion step of NSSC

is detailed in Algorithm 5. Note that when a skill chain is selected to be expanded, the

expansion operator is applied to the selected skill.

7.3.3 Viewing NSSC as a sampling-based MP algorithm

Similarly to sampling-based MP algorithms (see Section 6.1.2), NSSC constructs a tree

spanning the state space. Here, a node corresponds to the final state reached by a

skill and an edge indicates that a skill connects two states. However, NSSC expands

the exploration tree using a perturbed policy. This expansion operator results in

a very different expansion dynamic of the tree, compared to sampling-based MP

83

Chapter 7 Novelty Search Skill-Chaining: adopting a Divive & Conquer strategy

Algorithm 5 Novelty Search Skill-Chaining expansion step

1: input {π j } j∈[1,Nski l l s], {o j } j∈[1,Nski l l s] ▷ Skill chain + skills outcomes
2: π′

Nski l l s
← expand(πNski l l s) ▷ Expansion in Θ

3: Lski l l s ← {π j } j∈[1,Nski l l s] + {π′
Nski l l s

} ▷ Extend skill chain
4: s,d ← env.r eset (),F al se ▷ Initialize agent to environment reset state
5: τ← [s]
6: jskill ← 1 ▷ Initialize first skill
7: while d == F al se do ▷ Return to advanced state + local exploration
8: t ← T ▷ Fixed budget for each skill
9: while t > 0 do

10: at ←π jskill (st) ▷ Select actions using current skill
11: st ,d ← env.step(at) ▷ Deterministic environment step
12: τ← τ+ [st]
13: if d == Tr ue then
14: t ← 0
15: else
16: t ← t −1
17: jskill ← jskill +1 ▷ Increment skill
18: if jskill > len(Lski l l s) then
19: d == Tr ue ▷ Local exploration finished

20: output τ

algorithms (see Section 3.5). Indeed, usually in sampling-based MP, in the absence

of a model to steer the system, a randomly sampled action is applied for a few steps

(∼ 5/10) (LaValle, 2006). On the contrary, in NSSC, a policy is applied for longer control

sequences (e.g. 50 steps in the Simple Maze) which should result in more complex

behaviors. For instance, one can expect that the perturbed policy partly conserves

knowledge about the dynamics that the parent policy captured. This conservation

should result in more interesting sequences of transitions in the state spaces than

randomly sampled actions. Ultimately, these longer control sequences should result

in edges connecting more distant states in the state space.

Note that NSSC gets very close to Expansive Search Trees (EST) (David Hsu et al.,

1998) if we reduce the number of control steps for each skill. Indeed, as discussed

in Section 6.1.4, NS and EST already share a similar selection operator. In addition,

expansions obtained using perturbated skills for a limited number of steps are very

close to expansions obtained using a few random actions as in EST. However, whether

expansions rely on long policy-based rollouts or short sequences resulting from ran-

domly sampled action, exploration may be difficult depending on the environment.

84

Novelty Search Skill-Chaining: adopting a Divive & Conquer strategy Chapter 7

7.3.4 NSSC in non-holonomic environments

The intuition behind returning to an advanced state using a skill chain is to explore

the state space locally around the end of the skill chain. However, such expansion may

be fruitless in a non-holonomic environment. Indeed, suppose the final state of the

skill-chaining trajectory corresponds to an invalid exploration state (see Section 7.2).

In that case, the agent cannot explore from this state. Returning to it to expand is

useless.

For instance, if the point-like agent in the Simple Maze is replaced by a Dubins car

(Dubins, 1957) (as in Section 7.4), a skill chain that collides with the wall cannot be

extended any further as the agent is not allowed to drift or move backward. Expanding

the exploration tree from this invalid exploration state results in the same state, i.e. no

expansion at all.

One naive solution to this problem could be to redefine the outcome space to encour-

age diversity in the full configuration. Indeed, this would result in the exploration

of different car orientations and, eventually, the discovery of valid exploration states.

While this idea seems reasonable in the context of a 3-dimensional state space, it

cannot be scaled to more complex systems with high-dimensional configuration

spaces (e.g. humanoid robots). In that case, the outcome space should remain low-

dimensional for efficient Diversity Search. However invalid exploration states may

appear.

Although highlighted here in the context of skill-chaining, invalid exploration states

may also be problematic for GCRL agents using low-dimensional goals (see Sec-

tion 3.4). For instance, in Autotelic GCRL (Pong et al., 2019; Pitis et al., 2020; Castanet

et al., 2022), if the curriculum of low-dimensional goals guides the agent towards

invalid exploration states, the exploration of the goal space may get blocked. Most

approaches are not confronted with this problem as they are evaluated in holonomic

navigation environments similar to the SimpleMaze.

7.4 Experimental study

In this Section, we evaluate NSSC in two maze environments of different natures:

the first environment is holonomic and the other is not. We show empirically that

recovering a local expansion operator can benefit or harm NSSC depending on the

environment.

85

Chapter 7 Novelty Search Skill-Chaining: adopting a Divive & Conquer strategy

7.4.1 Experimental Setup

The first environment is the Simple Maze introduced in Section 6.2.1. This environ-

ment is holonomic. Using skill-chaining, NSSC should recover a local expansion

operator and, therefore, explore the state and outcome spaces locally.

The second environment is a non-holonomic variant of the Simple Maze. In this

variant Simple Dubins Maze, the point-like agent is replaced by a Dubins Car (Dubins,

1957). The state s = (x, y,θ) includes the 2D position of the car in the maze and its

orientation. The car only moves forward at a constant speed, and the agent controls

only the change of orientation of the car.

The Simple Dubins Maze poses two main challenges. The first one is the non-holonomic

constraints induced by the Dubins Car. Unlike in the Simple Maze, even in the absence

of any wall, the agent cannot move in any direction of the state space. Indeed, the

agent cannot move backward or drift. Therefore, if the agent collides with a wall, it

gets stuck and can no longer explore. Those collision states correspond to invalid

exploration states. Expanding a skill chain from those invalid exploration states results

in no exploration.

To exacerbate this phenomenon, outcomes in the Simple Dubins Maze correspond to

the final (x, y) position of the agent at the end of the skill chain (as in the Simple Maze).

Therefore, the selection operator does not consider the orientation when selecting

policies. There is no search for orientation diversity.

As discussed in the previous paragraph, searching for orientation diversity could

eventually help bypass the non-holonomic constraints. However, although adding

the orientation in the definition of the outcomes is an efficient solution in this en-

vironment, this approach cannot be applied to more complex environments with

even higher state dimensions. For this reason, we keep the outcome space as small as

possible, even in this toy problem.

Results in the Simple Maze

In this Section, we verify that using the skill-chaining strategy, NSSC recovers a local

expansion operator.

Figure 6.9 presents the mean distance between the outcome of a policy and the

outcome resulting from an expansion depending on the (x, y) position in the maze. We

observe that, unlike with NS (see Figure 6.9) the distance is close to zero everywhere in

the environment. In addition, the associated Markov Chain shows that an expansion is

86

Novelty Search Skill-Chaining: adopting a Divive & Conquer strategy Chapter 7

Figure 7.1: Quantitative evaluation of the locality of NSSC expansions in the Simple
Maze. Left: Mean distance between the outcome of a selected policy and the

outcomes of its expanded versions depends on its position in the SimpleMaze. We
observe that this distance stays low in every area of the outcome space i.e. the

expansion operator is local. The mean distances are computed for 100 expansions per
selected policy and 200 selected policies per cell. Right: Markov Chain representation
of the expansion in the outcome space using four subsets of outcomes. Each subset
corresponds to a corridor in the SimpleMaze. The empirical transition probabilities
are computed for 100 expansions per selected policy and 200 selected policies per cell.
We observe that most expansions give a result in the same corridor. This results in a
local exploration of the outcome space and, at some point, the exploration of the next

corridor.

likely to result in another outcome contained in the same corridor. These results show

that NSSC recovers a local expansion operator. However, does this local expansion

operator allow NSSC to explore the outcome space faster?

Figure 7.2 presents the expansion score obtained by NS and NSSC after 500 iterations

in the Simple Maze. NSSC requires less than 400 iterations to cover the maze fully

while NS only covers ∼ 70% of the maze after 500 iterations. This result confirms

that NSSC benefits from the restoration of the locality of the expansion operator in a

holonomic environment.

Results in the Simple Dubins Maze

In the Simple Dubins Maze, when the agent is replaced by a Dubins Car and the

environment becomes non-holonomic, the local expansion operator penalizes NSSC.

Figure 7.2 presents the expansion score obtained by NS and NSSC after 500 iterations

in the Simple Dubins Maze. While the natural forward dynamic of the Dubins Car helps

87

Chapter 7 Novelty Search Skill-Chaining: adopting a Divive & Conquer strategy

Figure 7.2: NSSC / NS comparison in the Simple Maze and the Simple Dubins Maze.
In the Simple Maze, NSSC benefits from the skill-chaining strategy and can explore
the outcome space locally, resulting in a faster exploration. On the contrary, in the
Simple Dubins Maze, the skill-chaining often results in invalid starting states. Indeed,
the walls block many expansions in NSSC. As a result, NSSC explores slower than NS.

NS to explore the Simple Dubins Maze faster than the Simple Maze, NSSC struggles to

achieve total coverage of the maze. Indeed, after 500 generations, NSSC only covers

80% of the environment. This result illustrates how NSSC is penalized by returning to

invalid exploration state to explore locally. Indeed, each expansion from these states

Figure 7.3: Visualisation of invalid explorations states. In the Simple Maze, each state
is a valid exploration state as the agent can move in every direction. On the contrary,
in the Dubins Maze, the agent is constrained to move forward. As a result, states
colliding with the walls correspond to invalid exploration states.

88

Novelty Search Skill-Chaining: adopting a Divive & Conquer strategy Chapter 7

results in no additional exploration as the agent is often blocked by the walls. These

invalid exploration states are illustrated in Figure 7.3.

7.5 Conclusion

In this Section, we proposed NSSC, a skill-chaining-based variant of NS designed to

tackle the non-locality of the expansion operator highlighted in Chapter 6. Although

NSSC recovers a local expansion operator in a holonomic environment like the Simple

Maze, limitations arise in non-holonomic environments. In particular, if we guide the

exploration of the state space using a low-dimensional outcome space, exploration can

be slowed down by useless expansions from invalid exploration states as expansions

started from them result in no additional exploration.

We argue that invalid exploration states may block the exploration curriculum in any

GCRL approach using a low-dimensional goal space (e.g. autotelic agents). In the next

Chapters, we propose to bypass this limitation by learning from a demonstration.

89

8 Reinforcement Learning from a single
demonstration with DCIL-I

8.1 Introduction

Given the recent successes of Reinforcement Learning (RL) (Sermanet et al., 2018;

Akkaya et al., 2019) and Neuro-Evolution (NE) (Such et al., 2017; Colas et al., 2020) in

robotics, one could be tempted to call upon these methods to circumvent the heavy

burden of complex robotics behavior specification. A naive approach would consist

of defining a success criterion and considering an objective function that would be

positive when the task is achieved and null otherwise. Thus, one would let the learning

algorithm discover the so-defined successful behavior on its own. Unfortunately, RL

and NE algorithms struggle to solve precisely these Hard Exploration Problems where

the target behavior is complex and the objective function corresponding to success is

ill-defined (e.g. sparse or deceptive) (Matheron et al., 2019). For instance, an off-the-

shelf RL algorithm cannot learn a control policy for verticalizing an underactuated

humanoid robot if the reward signal is only received when the robot is standing.

As explained in Chapter 3.3.2, integrating intrinsic motivation in agents is a promising

path toward the end-to-end resolution of such problems. However, current methods

do not scale to the most complex continuous control tasks. In addition, they are often

very sample-inefficient (Aubret et al., 2019).

In this context, leveraging expert demonstrations to bootstrap the learning process

is a fruitful approach, as it efficiently guides and accelerates policy optimization (Ho

and Ermon, 2016b; Kostrikov, Agrawal, Dwibedi, et al., 2018). In Imitation Learning

(IL), the demonstrations are used to match the agent’s behavior to the expert’s one.

However, many demonstrations containing both states and actions are generally

required to perform IL (Pomerleau, 1991; Russell, 1998) successfully. Obtaining such

demonstrations can be prohibitively difficult when dealing with complex systems in

91

Chapter 8 Reinforcement Learning from a single demonstration with DCIL-I

real world environments. Moreover, actions are not always available. For instance,

when demonstrations come from motion capture (Merel et al., 2018; X. B. Peng et al.,

2018) or human guidance (Johns, 2021), only state-based trajectories are available.

Only a few IL algorithms can work with a single demonstration (Resnick et al., 2018;

Salimans and R. Chen, 2018; Dadashi et al., 2020). Even fewer, with a single state-based

demonstration.

Figure 8.1: Illustration of the sequential goal-reaching problem when using low-
dimensional projections of states as goals. In this toy 2D maze, the agent corresponds
to a Dubins car (Dubins, 1957) with (x, y,θ) states. Goals gi correspond to desired (x, y)
positions but do not condition the orientation θ of the car. In the red trajectory, the
car reaches goal g1 with an orientation that is not compatible with the achievement of
goal g2. On the contrary, in the green trajectory, the trajectory of the car is adapted to
reach the first goal with a valid orientation. The GCRL framework we present in this
chapter is designed to learn policies that ensure targeting valid states when achieving
a sequence of low-dimensional goals extracted from a demonstration.

In the following chapters, we focus on the problem of learning a control policy to solve

complex robotics tasks with a very sparse reward (or in the absence of any reward)

using a single demonstration. We tackle this problem by leveraging a sequential

inductive bias in the way we model the task. First, we convert the demonstration into

a succession of intermediate low-dimensional goals. Then, we use Goal-Conditioned

Reinforcement Learning (GCRL) (see Section 3.4) to learn a policy to control the robot

92

Reinforcement Learning from a single demonstration with DCIL-I Chapter 8

to reach the intermediate goals sequentially. For instance, when learning a control

policy to verticalize an underactuated humanoid robot, a sequence of goals may

correspond to a succession of Cartesian positions of the torso of the humanoid from

the ground to the desired height. By achieving these goals sequentially, the robot can

stand up.

However, when dealing with a high-dimensional state space, reaching a low-dimensional

goal does not fully condition the current state of the agent. This can raise issues if

some intermediate goal reaching states are incompatible with reaching the next goal.

For instance, consider a simple non-holonomic environment similar to the Dubins

car (Dubins, 1957) navigating a maze in Chapter 6, as illustrated in Figure 8.1. In this

environment, reaching a desired (x, y) position does not condition the arrival orienta-

tion θ of the car. This partial conditioning of the success state may be problematic

when we want to reach successive (x, y) positions. Indeed, if the car reaches a goal

close to a wall and is oriented towards it, it may not escape from hitting the wall before

reaching the next goal.

Thus, when considering a sequence of goals corresponding to low-dimensional pro-

jections of high-dimensional states, it is essential to ensure that the agent achieves

each goal by reaching states compatible with the achievement of the next goal, which

we call valid success states. This is the key property ensured by the Divide & Conquer

Imitation Learning I (DCIL-I) algorithm proposed in this chapter and the variants

proposed in chapters 9 and 10.

In DCIL-I, the agent is encouraged to achieve the goals only via valid success states

using two mechanisms. First, an overshoot mechanism is used to train the agent to

reach a goal from non-demonstrated states. In addition, a chaining reward bonus

propagates the value function of a goal into the value function of the previous goals of

the sequence. We first evaluate our approach in a toy Dubins maze environment where

the dynamics of the controlled system are constrained and show that our chaining

mechanism plays a crucial role in ensuring the success of the method. Then, we

compare DCIL-I with two competing algorithms that we present below, Backplay

and PWIL, and we show that our approach is several orders of magnitude more

sample efficient than the two baselines. We then turn to a more challenging Fetch

environment where an object has to be grasped and put into a drawer with a simulated

robotic arm, and demonstrate an even greater gain in sample efficiency compared to

Backplay, the method used by Go-Explore on this benchmark.

93

Chapter 8 Reinforcement Learning from a single demonstration with DCIL-I

8.2 Background

8.2.1 Valid success states

When an agent achieves a low-dimensional goal according to a distance-based reward,

it may have reached various success states. This can be problematic if the agent needs

to reach another goal but cannot reach it from certain success states, for instance,

because of the non-holonomic constraints of the environment (see Figure 8.2). Thus,

the set of success states Sg for a given goal g can be divided into valid (noted Sval i d
g)

or invalid states for reaching the next goal.

Figure 8.2: To successively reach each goal, the agent must transit between successive
sets of valid success states. The non-terminal success states propagate the reward
from each index i to the previous ones. Top: value propagation in a simplified 2D
representation of the state space when γ= 1. In the shown environment, goals corre-
spond to successive Cartesian positions of the torso of a humanoid. Middle: trajectory
where the agent successfully transitions from one valid success state set to another.
Bottom: trajectory where the agent jumps to achieve the first goal but does it by
reaching an invalid success state which prevents it from reaching the next goal.

94

Reinforcement Learning from a single demonstration with DCIL-I Chapter 8

8.3 Related work

Our method performs imitation learning by leveraging a single demonstration, lever-

ages a sequential goal-reaching bias, and focuses on reaching valid success states only

using a value propagation mechanism. We cover the literature on these three topics

taken separately.

8.3.1 IL from a single demonstration

IL is usually transformed into an optimization problem whose objective is to re-

produce the behavior of an expert. It can be done directly in Behavioral Cloning

(Pomerleau, 1991), which relies on regression to learn a policy that mimics the expert’s

actions. A more indirect approach is Inverse Reinforcement Learning (IRL) (Russell,

1998), which consists in estimating an unknown reward function from demonstra-

tions of an expert considered optimal and training a policy using the learned reward

function.

These approaches are severely limited by the necessity to measure the expert’s actions

and their typical need for many demonstrations. Specifically, with few demonstrations,

BC tends to suffer from compounding error caused by distribution shift (Ross and

D. Bagnell, 2010). In the case of IRL, it can be difficult to extract a reward from a

unique demonstration. For instance, popular adversarial methods for IRL ((Ho and

Ermon, 2016a; Henderson et al., 2018; Kostrikov, Agrawal, Levine, et al., 2018; Ding

et al., 2019)) rely on a generator-discriminator architecture that may become unstable

if the discriminator is not trained on a sufficient number of expert trajectories.

There are contexts in which demonstrations are rare or difficult to generate, but only a

few deep learning-based methods can produce good results in this low-data regime.

In our experimental validation, we mainly consider two of them: PWIL and Backplay.

PWIL

Primal Wasserstein Imitation Learning (PWIL) (Dadashi et al., 2020) is a recent IRL

method that minimizes a greedy version of the Wasserstein distance between the

agent and expert state-action distributions. The Wasserstein distance presents several

good properties that have been proficiently used in the Deep Learning community

(Arjovsky et al., 2017). PWIL solves an occupancy matching problem between an agent

and the demonstration without relying on adversarial training, making it more stable

than adversarial methods. Specifically, it defines an episodic reward function based

95

Chapter 8 Reinforcement Learning from a single demonstration with DCIL-I

on the demonstration and performs IL by maximizing this reward without introducing

an inner minimization problem as adversarial approaches do. PWIL achieves strong

performances in complex simulated robotics tasks like humanoid locomotion using a

single demonstration.

Backplay

The Backplay algorithm ((Resnick et al., 2018), (Salimans and R. Chen, 2018)), is an

approach explicitly designed for IL from a single demonstration. It has been used

in the robustification phase of the first version of the Go-Explore algorithm (Ecoffet

et al., 2019b) to achieve state-of-the-art results on the challenging Atari benchmark

Montezuma’s revenge and in the Fetch problem that we tackle in Section 8.5.4. In

Backplay, the goal is to reach the final state of the expert demonstration. The RL

agent is initialized near the rewarding state and the starting state is gradually moved

backward along the demonstration if it is successful enough in reaching the desired

state. Backplay can be seen as a curriculum for RL approaches in the context of sparse

reward and long-horizon control (Florensa et al., 2017).

8.3.2 Sequential Goal Reaching

The imitation objective we consider is not to precisely reproduce a trajectory, but to

achieve the same goal(s) as the demonstration. We solve the single demonstration

imitation problem by transforming a demonstration into a sequence of goal-reaching

tasks. This amounts to a Divide & Conquer strategy that has similarities with the clas-

sical multiple shooting (MS) technique in Optimal Control (OC) (Bock and Plitt, 1984).

In MS, an OC problem with boundary constraints is transformed into a sequence

of simpler initial value problems over short time intervals connected by matching

conditions to ensure the continuity of the solution.

Sequential goal achievement is also the central tool of several other RL methods. In

Feudal Hierarchical Reinforcement Learning (HRL) methods (Dayan and Hinton, 1992;

Nachum et al., 2018; A. Levy et al., 2019), a high-level policy constructs a sequence

of goals on the fly by periodically assigning goals to a low-level goal-conditioned

policy over the entire episode. However, jointly training a multi-stage policy induces

training instabilities caused by non-stationary transition functions (Nachum et al.,

2018; Hutsebaut-Buysse et al., 2022).

To achieve a difficult-to-reach goal, several approaches use the goal-conditioned

value function of the agent to obtain a sequence of simpler goals (A. V. Nair et al.,

96

Reinforcement Learning from a single demonstration with DCIL-I Chapter 8

2018; Eysenbach et al., 2019; Nasiriany et al., 2019; Chane-Sane et al., 2021). However,

these methods rely on an accurate value function which is rarely available in Hard-

Exploration Problems. Their applicability either assumes that the agent can easily

explore the entire state space or that the agent can be reset in uniformly sampled

states. By contrast, we assume hard exploration environments with a sparse reward

function and do not leverage a reset-anywhere property, as DCIL-I only resets along

the demonstrated trajectory.

The policy-based version of the Go-Explore algorithm (Ecoffet et al., 2021) also guides

the agent with a sequence of goals extracted from training trajectories. These goals

are used to guide the agent back to previously visited states in order to continue

the exploration process directly from advanced states. However, the authors did not

dwell on the problem of invalid success states. In a recent extension of the algorithm

(Gallouédec and Dellandréa, 2022), the authors bypass this problem by sub-sampling

the sequence of goals.

In our method, we tackle this problem using value propagation, a mechanism also

used in Option-based HRL, as described below.

8.3.3 Value propagation mechanisms

In Option-based HRL (Sutton et al., 1999; Precup, 2000) (see Section 7.1 for more

details), when intra-option policies are conditioned on goals, HRL relies on sequential

goal-reaching. Indeed, similarly to Feudal HRL, a sequence of goals is built on-the-fly

by the policy over options. This view was adopted in Robust Deep Skill Chaining

(R-DSC) (Bagaria, Senthil, Slivinski, et al., 2021) which trains goal-conditioned intra-

option policies. In R-DSC, the value of an option is propagated to the value of the

previous option in order to select the optimal goal for chaining these two successive

options. Unlike DCIL-I, R-DSC only adapts the goal for better skill chaining and the

intra-option policy is not adapted to reach valid success states only.

Some other option-based HRL methods (K. Y. Levy and Shimkin, 2011; Bacon et al.,

2017) designed an MDP with an extended state space to facilitate switches between

options by propagating the value from one to another. However, this framework has

not yet been adapted to goal-conditioned policies. Moreover, these option-based HRL

methods as well as R-DSC do not learn from demonstrations.

The similarities and differences between these different value propagation mecha-

nisms is discussed in detail in the next chapter (see Section 9.3)

97

Chapter 8 Reinforcement Learning from a single demonstration with DCIL-I

8.4 Methods

The Divide & Conquer Imitation Learning I (DCIL-I) algorithm is designed to solve

a Goal-Guided Imitation (GGI) problem. In a GGI problem, instead of imitating the

whole expert demonstration, we rely on the Divide & Conquer paradigm and divide the

imitation problem into simpler separate goal-reaching tasks. This implies a small loss

of generality as it relies on the assumption that demonstrations can be decomposed

into a sequence of goal-conditioned tasks. Arguably, this assumption is often true in

a robotic context, and as we show in Section 8.5, the GGI approach can significantly

accelerate the IL process.

8.4.1 Goal-Guided Imitation

The Goal-Guided Imitation (GGI) framework can be formulated as a variant of GCRL.

A set of Ng oal s goals (gi)i∈[0,Nski l l s] ∈ GNski l l s is extracted from a single expert demon-

stration τdemo = {sdemo
0 , sdemo

1 , ..., sdemo
N } and the objective is to obtain a GCP that is

able to reach each goal separately. This GCP is then used to sequentially reach each

goal in order to complete the demonstrated behavior.

8.4.2 DCIL-I hypotheses

We formulate three main hypotheses in DCIL-I. We assume a weak form of reset-

anywhere, that expert actions are not provided and that a definition of the goal space

is given.

Reset

Training the GCP in DCIL-I (see Section 8.4.3) assumes that the agent can be reset in

some selected states of the expert demonstration. A similar form of reset is assumed

in Backplay which requires that the agent can be reset in each demonstrated state.

Stronger reset assumptions like reset-anywhere where the agent can be reset in uni-

formly sampled states have also been considered in the GCRL literature (Nasiriany

et al., 2019). PWIL is based on the more classical assumption of a unique reset, and

BC does not require any reset at all.

98

Reinforcement Learning from a single demonstration with DCIL-I Chapter 8

No expert actions

Similarly to Backplay, DCIL-I learns solely from an expert trajectory in the state space.

Learning from states only is crucial when the expert actions are difficult to collect

(e.g. motion capture, human guidance). On the contrary, both PWIL and BC require

state-action demonstrations.

Goal-space definition

As a GCRL-based method designed to be applied in high-dimensional state spaces,

DCIL-I requires a definition of the goal space and the corresponding mapping from

the state space to the goal space. No such assumption is made in Backplay, PWIL or

BC as none of them solve a GCRL problem.

8.4.3 The Divide & Conquer Imitation Learning I algorithm

In DCIL-I, we extract a sequence of goals and initial states from the expert trajectory.

The GCP is then trained to reach each goal using a DRL algorithm. Training for a goal

boils down to starting in the associated initial state and completing a local rollout

to reach the goal. While the agent train for a goal, it is encouraged to complete it

by reaching states that are compatible with the execution of the achievement of the

next one i.e valid success states. Finally, the agent can recover the expert behavior

by reaching the sequence of goals sequentially. These different stages of DCIL-I are

detailed in the four next sections and summarized in Algorithms 6 and 7.

Extracting goals from the expert trajectory

To extract the sequence of goals τG from the demonstration, we project the demon-

strated states in the goal space and split the demonstration into Ng oal sub-trajectories

of equal arc lengths ϵdist. For each sub-trajectory in the goal space, we extract its final

elements and concatenate them to construct τG . We also extract the states associated

with the initial elements of each sub-trajectories. Those states form a set of demon-

strated states used by DCIL-I to reset the agent in a valid success state and to train it

to reach the following goal (Hypothesis 8.4.2).

Training the GCP

To train the GCP to reach each goal in τG , DCIL-I runs a three-step loop.

99

Chapter 8 Reinforcement Learning from a single demonstration with DCIL-I

Algorithm 6 DCIL-I - GCP training

1: Input: πφ,Q,Q̄,τdemo ▷ actor/critic/target critic networks & demonstration
2: {gi }i∈[1,Ng oal s] ← extract_goals(τdemo)
3: B ← [] ▷ replay-buffer
4: R ← {i : []}i∈[1,Ng oal s] ▷ successes/failures memory
5: for n = 1 : Nepi sode do
6: (si

0, gi) ← sel ect_g oal (R) ▷ Step 1
7: s ← env.reset(si

0)
8: t ← 0
9: success,done, t i meout ← F al se,F al se,F al se

10: while not done do ▷ Step 2
11: a ∼π(a|s, gi)
12: s′ ← env.step(a)
13: r ← 0
14: if s′ ∈ Sgi then ▷ success
15: success,done ← Tr ue,Tr ue
16: R[i] ← R[i]+ [0]
17: else if t ≥ T n

max then ▷ failure
18: success, t i meout ← F al se,Tr ue
19: R[i] ← R[i]+ [0]

20: B ← B + [(s, a, s′,r, gi ,done, success, t i meout)]
21: t , s ← t +1, s′

22: if success then ▷ Step 3
23: success,done ← F al se,F al se
24: gi ← next_goal(gi) ▷ overshoot
25: t ← 0
26: SAC_update(πφ,Q,Q̄,B) ▷ Algo 7

Step 1 (line 6) DCIL-I selects a goal gi ∈ τG to train on (function select_goal in

Algorithm 6) and resets the environment in the associated demonstrated state. Note

that the selection of a goal is biased towards goals with a low ratio of success (line 6).

We implemented such distribution using a fitness proportionate selection (Blickle and

Thiele, 1996) where the fitness corresponds to the inverse of this ratio.

Step 2 (lines 10 to 21) DCIL conditions the GCP on gi and the agent performs a

rollout which is interrupted either if the agent reaches Sgi , if a time limit is reached or

if the agent reaches a terminal state.

100

Reinforcement Learning from a single demonstration with DCIL-I Chapter 8

Algorithm 7 modified SAC update (+ HER + Chaining Reward Bonus)

Input: π,Q,Q̄,B ▷ actor/critic/target critic networks
batchHER ← HER(B) ▷ HER relabelling
batch ← B ▷ no HER relabelling
for (s, a, s′, gk ,r,done, success, t i meout) in batch do

if success then ▷ Chaining reward bonus
gk+1 ← next_goal(gk)
r ← 1+Q̄(s′,π(s′, gk+1), gk+1)

batch ← batch +batchHER

for g r adi ent_step = 1 : Ng r adi ent_step do ▷ see (Haarnoja, Zhou, Abbeel, et al.,
2018)

π,Q,Q̄ ← g r adi ent_step(π,Q,Q̄,batch)

Output: π,Q,Q̄

Step 3 (lines 22 to 25) When the agent successfully reaches gi , DCIL-I applies an over-

shoot mechanism (see Section 8.4.3) and returns to Step 2. Otherwise, the complete

loop is repeated.

The rollouts are saved in a unique replay buffer. For each interaction with the en-

vironment, the saved transitions are sampled in a batch to perform a SAC update

(Haarnoja, Zhou, Abbeel, et al., 2018) of the critic and actor networks including the

chaining reward bonus (see Section 8.4.3). In a sampled batch of transitions, half

of the transitions are relabelled using HER. This three-step loop is summarized in

Algorithm 6.

Ensuring successful sequential goal reaching

To ensure successful sequential goal reaching after training for each goal indepen-

dently, DCIL-I uses an overshoot mechanism and a chaining reward bonus.

Overshoot Successfully chaining goals requires that the agent achieves any goal

by reaching states from which it is able to perform the next ones. When the agent

achieves a goal, it can reach either valid success states in Sval i d
g from which it can

achieve the next goal or invalid success states from which it cannot (see Section 8.2.1).

During a training rollout for a goal, if the agent reaches a success state, the over-

shoot mechanism immediately conditions the GCP on the next goal in τG (function

next_goal in Algorithm 6). The agent instantly starts a new rollout for this next goal

from its current state.

101

Chapter 8 Reinforcement Learning from a single demonstration with DCIL-I

With these overshoot rollouts, the agent can learn how to reach the next goal while

starting from other states than the ones extracted from the demonstration. This

is crucial for successful goal reaching as the agent is unlikely to achieve a goal by

reaching the demonstrated success states exactly. However, in complex environments

(e.g. non-holonomic environments), the pressure for fast goal achievement may force

the agent to reach invalid success states. Therefore, another mechanism is necessary

to encourage the agent to complete skills by only reaching valid success states.

Chaining reward bonus To encourage the agent to achieve goals by only reaching

valid success states for the next goal, DCIL-I adds a chaining reward bonus to the

sparse reward (3.23) received by the agent each time it successfully reaches a goal. The

chaining reward bonus is defined as the goal-conditioned value function V π(., gi+1)

of the agent, conditioned on the next goal in τG (see Algorithm 7 for additional in-

formation on goal-conditioned value computation). Therefore, the modified reward

function is defined as:

R̄(s, a, s′, gi) =
{

1+V π(s′, gi+1) if s′ ∈Sgi

0 otherwise.
(8.1)

The idea behind this bonus is that valid success states should have a higher value

than invalid ones. Indeed, by training the value function V π(., gi+1) with transitions

extracted from successful episodes and successful overshoots from valid success states,

the values V π(., gi+1),V π(., gi+2), ... are propagated backward up to valid success states.

In complex environments, if Sval i d
gi

only contains a few isolated valid success states

(or even only the demonstrated state si
0), the chaining bonus reward may be difficult

to propagate along the skills. A well-balanced entropy-regularized soft update of SAC,

using either a hand-tuned entropy coefficient, forces the agent to explore diverse

trajectories to reach Sgi (Eysenbach and Levine, 2021). It helps the agent to eventually

find a path towards a valid initial state and propagate the chaining bonus reward.

In Chapter 9, a more efficient value propagation mechanism is presented.

Retrieving the expert behavior

To reproduce the expert behavior, we reset the environment in the initial state of

the expert demonstration. We condition the GCP on the first goal g0 of τG . After

completing this first skill, the agent is conditioned on g1. This process is repeated for

every skill Ki until the final goal is reached.

102

Reinforcement Learning from a single demonstration with DCIL-I Chapter 8

8.4.4 Value Clipping & discount factor choice for stable training

In an episodic setting, the length of a training rollout is limited. When the agent hits a

time limit Tmax , the rollout is truncated and the agent is reset. For maximum sample

efficiency, one could be tempted to use a small time limit to perform short training

rollouts only. However, in this case, the critic network may poorly generalize and

impact the learning process of the goal-conditioned policy. Thus, one must take a few

precautions while setting the time limit.

Figure 8.3: Illustration of the setup for time limit tuning in a maze similar to Figure 8.2.
State sTmax is at the frontier of the reachable states (grey line) and belongs to a set of
states with overestimated values (in red). The time limit Tmax must be chosen carefully
to ensure that the Q-value Q(s0, a0) associated with an action a0 directed towards
the goal (in blue) is larger than another action a′

0 directed towards the overestimated
states.

Any state sTmax that the agent reached while hitting the time limit is not a terminal state.

Therefore, for a given transition (sTmax−1, aTmax−1, sTmax ,rTmax−1) to sTmax , the critic

network is updated to match the full TD target Vt ar g et (sTmax−1) = rTmax−1 +γV (sTmax).

However, if sTmax belongs to the frontier of the reachable set of states as in Figure 8.3,

its value is never updated and depends on the local generalization of the critic network.

As it is difficult to anticipate how the output of a neural network evolves outside the

training distribution, poor estimates of the value V (sTmax) can appear. For instance,

103

Chapter 8 Reinforcement Learning from a single demonstration with DCIL-I

V (sTmax) may be overestimated. In that case, the overestimated value may eventually

distract the agent from the goal. To limit the impact of such poor generalization, one

may use a value clipping mechanism and adjust Tmax accordingly.

Value clipping Knowing the number of goals in τG and assuming a discount factor

γ= 1, we know that Rmax = |τG | is the maximum cumulative reward that the agent

can collect. Therefore, it is an upper bound for the value of any state.

In DCIL-I, during any critic update, the value of the next state is clipped using this

upper bound in order to cap the value of potentially overestimated states at the frontier

of the subset of reachable states. Therefore, the TD target for a transition to the frontier

of the set of reachable states is defined as

Vt ar g et (sTmax−1) = rTmax−1 +γmin(V (sTmax),Rmax). (8.2)

Tuning the time limit With the upper bound of the value in mind, we can tune the

time limit to ensure that, in the presence of clipped value overestimation, optimal

actions remain those that guide the action to the goal. This boils down to respecting

the following inequality from which we can derive a condition for the minimal length

of a training rollout. The intuition behind this inequality is illustrated by Figure 8.3 in

a toy maze.

Q(s0, a0) >Q(s0, a′
0)

=⇒ γTsuccess > γTmax V (sTmax)

=⇒ γTsuccess > γTmax Rmax

=⇒ Tmax >− log(Rmax)

log(γ)
+Tsuccess .

(8.3)

For instance, for a successful trajectory length of Tsuccess = 15 steps, a maximum

clipped value of Rmax = |τG | = 5 (corresponding to a sequence of 5 goals) and a

discount factor γ= 0.90, the time limit should be at least Tmax = 30 steps.

Careful adjustment of the time limit is essential to run DCIL-I. Indeed, in practice,

if Tmax is too small, the agent may be attracted toward overestimated states and

catastrophically forget how to reach certain goals, which prevents robust sequential

goal-reaching.

104

Reinforcement Learning from a single demonstration with DCIL-I Chapter 8

8.5 Experiments

In this section, we introduce the experimental setup used to evaluate DCIL-I (Sec-

tion 8.5.1), we present an ablation study of the two main components of DCIL-I

(Section 8.5.2) and we compare DCIL-I to three baselines: BC, Backplay and PWIL

(Section 8.5.3). The code is based on Stable Baselines3 (Raffin et al., 2021) and provided

here: https://github.com/AlexandreChenu/dcil.

8.5.1 Experimental setup

We evaluate DCIL in two environments: the Dubins Maze environment that we intro-

duce and the Fetch environment presented in (Ecoffet et al., 2021).

Dubins Maze

In the Dubins Maze environment, the agent controls a Dubins car (Dubins, 1957) in

a 2D maze. The state s = (x, y,θ) ∈ X ×Y ×Θ where (x, y) are the coordinates of the

center of the Dubins car in the 2D maze and θ is its orientation. The forward speed of

the vehicle is constant with value 0.5 and the agent only controls the variation θ̇ of the

orientation of the car. The goal space associated with this environment is X ×Y . In

the absence of a desired orientation in the goal conditioning the GCP, the agent can

easily reach a success state for a goal with an orientation invalid for the next goal in

τG . Demonstrations for this environment are obtained using the Rapidly-Exploring

Random Trees algorithm (LaValle et al., 1998).

Fetch

We also evaluate DCIL-I in the simulated grasping task for an 8-DoF deterministic

robot manipulator. This environment was presented in the First Return then Explore

paper (Ecoffet et al., 2021). The objective is to grasp an object initialized in a fixed

position on a table and put it on a shelf. The state is a 604-dimensional vector and

contains the configuration and the velocities of each element in the environment

(robot, object, shelf, doors...) as well as the contact Boolean evaluated for each pair

of elements. On the opposite, the goal only corresponds to the concatenation of

the 3D coordinates of the end-effector of the manipulator with a Boolean indicating

whether the object is grasped or not. Therefore, the agent may complete a skill prior

to contact with the object with an invalid state (e.g. with an orientation or a velocity

that prevents grasping). Demonstrations are collected using the exploration phase of

the Go-Explore algorithm (Ecoffet et al., 2019b).

105

https://github.com/AlexandreChenu/dcil

Chapter 8 Reinforcement Learning from a single demonstration with DCIL-I

Figure 8.4: Ablation study of DCIL in the Dubins Maze environment. We evaluate
the success rate of four versions of DCIL-I (full, w/o overshoot, w/o chaining bonus
reward, w/o both) throughout training. Means and standard deviations range over
30 total runs (3 random seeds for 10 expert trajectories). Stars indicate significant
differences over DCIL-I (full) as reported by Welch’s t-test with α= 0.05 (Colas et al.,
2019).

Baselines

We compare DCIL-I to three IL methods. The first baseline is a naive BC method

using a single demonstration. The two others are state-of-the-art methods that are

proficient in the context of imitation from a single demonstration: Backplay ((Resnick

et al., 2018; Salimans and R. Chen, 2018)) and PWIL (Dadashi et al., 2020). A com-

parison of the different key assumptions required by each algorithm is detailed in

Section 10.3.4. For PWIL, we used the implementation provided by the authors with

the same hyperparameter. For Backplay, we re-implemented it to evaluate it in the

Dubins Maze and extracted the results obtained for the Fetch environment in (Ecoffet

et al., 2021).

8.5.2 Ablation study

Using the Dubins Maze environment, we compare the full version of DCIL-I to variants

without the chaining reward bonus, without the overshoot mechanism and without

both.

106

Reinforcement Learning from a single demonstration with DCIL-I Chapter 8

Figure 8.5: Training run of DCIL-I in the Dubins Maze. τG is represented by pink
disks and the associated initial states are represented by purple arrows. Grey lines
correspond to skills training rollouts. Blue car trajectories correspond to the agent
skill chaining every 1000 training steps.

The performance shown in Figure 8.4 is evaluated using the proportion of runs that

solved the maze depending on the number of training steps. First, we can notice that

the chaining reward bonus is critical to chain the skills and achieve a high success

rate. Indeed, the two variants of DCIL-I using the chaining reward bonus (DCIL-I

full and DCIL-I w/o overshoot) outperform the other two variants. Besides, only the

full version of DCIL-I recovers the expert behavior in 100% of trials. Finally, DCIL-I

also benefits from the overshoot mechanism as its success rate increases faster than

DCIL-I w/o overshoot during the 50.000 first training steps.

Figure 8.5 presents a training run of the full version of DCIL-I. Although the GCP is

training for each goal separately, it is able to chain them in order to recover the expert

behavior and navigate the maze. In order to visualize how the chaining reward bonus

encourages the agent to achieve goals by reaching valid success states, we evaluated

107

Chapter 8 Reinforcement Learning from a single demonstration with DCIL-I

DCIL-I and DCIL-I w/o chaining bonus reward in a simplified version of the Dubins

Maze where the agent only has two goals to reach sequentially. As Figure 8.6 shows,

the chaining reward bonus increases the value of the states with a similar orientation

to the states in the expert demonstration and results in successful chaining of the two

skills.

Figure 8.6: Learning how to achieve the first goal (reaching Sg0) without chaining
reward bonus prevents the agent from achieving it by reaching a valid initial state for
the second skill (reaching Sg1) as illustrated by the purple trajectory. The chaining
reward bonus increases the value of the states with an orientation similar to the
states of the expert demonstration (in grey) as shown by the difference between the
g0-conditioned values learned with a chaining reward bonus (V πw/bonus (., g0)) and
without (V πw/o bonus (., g0)).

8.5.3 Comparison to baselines in Dubins Maze

Figure 8.7 evaluates how DCIL-I performed when trained on 1e6 training interactions

with the Dubins Maze compared to the three selected baselines. As the three baselines

do not solve the maze after 1e6 training interactions, we measure the progression

through the maze. The maze is decomposed into 23 zones. The agent starts in zone 0

and the end of the maze is zone 22. DCIL-I is the only method to solve the maze within

the allocated budget. It requires at most 105 training interactions. This is mainly due

to the fact that DCIL-I trains on very short rollouts compared to PWIL which trains on

fixed-length episodes and Backplay which trains on increasing-length episodes.

108

Reinforcement Learning from a single demonstration with DCIL-I Chapter 8

Figure 8.7: Comparison of DCIL-I to Backplay, PWIL and BC with a single demon-
stration. We evaluate the progression through the Dubins Maze Environment (left)
using 22 zones (right). For DCIL-I, PWIL and BC, the progression corresponds to the
maximum zone reached during evaluation. For Backplay, the progression corresponds
to the difference between the highest zone number and the zone from which the agent
started. Means and standard deviations range over 3 random seeds for 10 different
expert trajectories (30 total runs for each variant) for each method.

Figure 8.8: Comparison of DCIL-I to Backplay in the Fetch environment. The results
of DCIL-I present the mean and standard deviation over 5 seeds for 5 expert demon-
strations (25 total runs). The results of Backplay are extracted from (Ecoffet et al.,
2021) and could not be reproduced despite running the author’s code with the same
hyper-parameters. For DCIL-I, in ∼ 10% of the runs, the critic networks used in SAC
diverge which results in failed runs. Diverging runs are not presented here.

109

Chapter 8 Reinforcement Learning from a single demonstration with DCIL-I

Figure 8.9: Sequential reaching of four goals learned with DCIL I to solve a simulated
transportation task. The pink sphere represents the success zones defined in the
goal space. The goal space contains the Cartesian positions of the end effector and a
Boolean indicating if the object is grasped.

8.5.4 Scaling to a complex object manipulation task

While the experiments in the Dubins Maze demonstrate the performance of DCIL-I

in a low-dimensional environment, we finally test our approach in the Fetch envi-

ronment where observations are 604-dimension vectors and the transition function

involves much more complicated dynamics.

Figure 8.8 presents the performance of DCIL-I compared to Backplay (Ecoffet et al.,

2021). As in the Dubins Maze, DCIL-I solves the Fetch task three orders of magnitude

faster than Backplay. DCIL-I learns the full behavior by training only on short rollouts.

The grasping behavior resulting from the sequence goal reaching is illustrated in

Figure 8.9.

110

Reinforcement Learning from a single demonstration with DCIL-I Chapter 8

Discussion & Conclusion

In this chapter, we have introduced Divide & Conquer Imitation Learning I (DCIL-I), an

imitation learning algorithm solving long-horizon tasks using a single demonstration.

DCIL-I relies on a sequential inductive bias and adopts a divide & conquer strategy

to learn successive goals that, chained together, solve the long-horizon task. In order

for a goal-conditioned policy to learn how to reach each goal individually and, then,

sequentially reach them to recover the expert behavior, we introduced an overshoot

mechanism and a chaining reward bonus that encourage the agent to prepare for the

rest of the sequence while reaching a goal. We highlighted the key contribution of

both mechanisms in the performance of DCIL-I by conducting an ablation study in a

maze environment with a Dubins car. Moreover, we showed the efficiency of DCIL-I

by comparing it to three IL baselines and by successfully applying it to a complex

manipulation task. Compared to the baselines, we obtain an improvement of sample

efficiency of several orders of magnitudes which will be critical when applying the

method to physical robots.

In the next chapter, we introduce an original GCRL framework where a state is aug-

mented with the index of the goal currently targeted. Using this new framework, we

propose DCIL-II, a variant of DCIL-I that better propagates the value in the sequence

of goals and achieves higher sample efficiency.

111

9 Improving the value propagation
mechanism with DCIL-II

9.1 Introduction

In this chapter, building on work done with the DCIL-I algorithm in the previous

chapter, we present a Markov Decision Process (MDP) with an extended state space

that includes the sequence of goals extracted from the demonstration. This MDP is

designed to encourage the agent to achieve the goals only via valid success states.

Our approach ensures that the reward received by the agent for reaching a goal is

propagated to the valid success states of the previous goals in order to make sure

that their value is higher than the value of invalid ones. To improve the exploration

of the state space while training, we transform our MDP into a goal-conditioned

MDP (GC-MDP) and adapt the relabelling mechanism of Hindsight Experience Replay

(HER) (Andrychowicz et al., 2017) to this context. HER relabels the transitions of an

episode by replacing the goal initially intended by the agent by the goal it accidentally

achieved.

Based on this GC-MDP framework, the DCIL-II algorithm is able to efficiently learn a

goal-conditioned policy that achieves the full sequence of intermediate goals until

task completion. The value propagation mechanism adopted in DCIL-II is much more

efficient than the bonus of reward of DCIL-I. As a result, DCIL-II outperforms DCIL-I

in a large set of robotics tasks ranging from the grasping task presented in Chapter 8

to locomotion tasks with under-actuated humanoid robots.

The chapter is organized as follows. We first present the GCRL framework and the

method in Section 8.4. In Section 9.3, we discuss the similarities between DCIL-II

and other methods relying on a value propagation mechanism, including DCIL-I. In

Section 9.4, we evaluate DCIL-II in several challenging robotic simulation scenarios

and compare it to state-of-the-art algorithms able to learn complex behaviors by

113

Chapter 9 Improving the value propagation mechanism with DCIL-II

leveraging a single demonstration.

9.2 Methods

In this section, we present a general framework where, given a sequence of low-

dimensional goals extracted from a single demonstration, as in DCIL-I, an agent

must learn to reach all goals sequentially to perform a complex task. We then derive

the Divide & Conquer Imitation Learning II (DCIL-II) algorithm which builds on the

framework to obtain such an agent.

9.2.1 Problem statement

DCIL-II is designed to solve a GCRL problem. However, in order to efficiently deal with

the sequence of goals extracted from the demonstration, we use a slightly different

framework from the one presented in Chapter 8.

An MDP with implicit sequential goals

Given an underlying MDPM= (S ,A,R, p,γ) with an uninformative reward function R

that is non-zero only when the agent reaches a hard-to-reach desired goal, we consider

a sequence of low-dimensional goals τG = {gi }i∈[0,Ng oal s] leading to the desired goal.

We extend the state space to include the index of the current goal that the agent must

reach. Thus, at step t in a trajectory, an extended state is described by a (st , it) pair

where it is the index of the current goal. We adapt the reward function, the transition

probability distribution and the discount function as follows.

The index-dependent reward function is defined as

Rseq (ZZst ,ZZat , st+1, it) =
1 if st+1 ∈Sgit

,

0 otherwise.
(9.1)

As shown with the barred st and at , this function only depends on the next underlying

state and the index of the current goal. It rewards the agent when it reaches the success

states associated with its current goal.

The agent must reach the successive goals sequentially. There might be different

approaches to deal with this sequentiality constraint, but in the implementation

114

Improving the value propagation mechanism with DCIL-II Chapter 9

presented here, the index is automatically incremented after a successful transition:

it+1 =
it +1 if st+1 ∈Sgit

,

it otherwise.
(9.2)

These automatic switches of indices are included in the joint transition probability

which is defined as

pseq (st+1, it+1|st , at , it)

= p(it+1|st+1,ZZst ,ZZat , it)p(st+1|st , at ,SSit)

= p(it+1|st+1,it)p(st+1|st , at),

(9.3)

with p(st+1|st , at), the index-independent state transition probability of the underly-

ing MDP and p(it+1|st+1, it) the index transition probability. This latter corresponds

to a deterministic distribution as the index at step t +1 is a constant random variable

when conditioned on the next state and the current index. It can be defined as follows:

p(it +1|st+1, it) = Rseq (st+1, it),

p(it |st+1, it) = 1−Rseq (st+1, it).
(9.4)

When the agent reaches the final goal of the sequence, it enters a terminal state. So we

define the discount function as

γseq (s) =
0 if s ∈SgNg oal

,

γ otherwise.
(9.5)

This function makes the success states associated with the intermediate goals in τG
non-terminal except for the final goal.

As discussed in Chapter 8, reaching a goal corresponding to a low dimensional pro-

jection of a state does not fully condition the state of the agent. In particular, if some

success states are invalid, the agent must avoid them.

The definition of the discount function in (9.5) implicitly encourages the agent to

115

Chapter 9 Improving the value propagation mechanism with DCIL-II

reach each goal by only reaching valid success states. Indeed, non-terminal success

states associated with intermediate goals in τG are used to propagate the value of the

next goal to the previous one via the value approximation Ṽ of successful transitions.

Using (9.1) and (9.5) we get

Ṽ (st , it) = Rseq (st , at , st+1, it)+γseq (st+1)V π(st+1, it +1)

= 1+γV π(st+1, it +1).
(9.6)

After enough training, the value V π(., it +1) of valid success states associated with

the next index should be larger than the value of invalid ones as the agent was only

rewarded for trajectories starting from the former and not from the latter.

Therefore, both valid and invalid success states receive the sparse reward for reaching

the current goal, but valid ones benefit from the propagation of a larger value from

the next state. This difference is illustrated in Figure 8.2.

Using the extended state space, adapted reward function, transition probability

and discount function defined above, we end up with an alternative MDP Mseq =
(Sseq ,A,Rseq , pseq ,γseq). In this MDP, we condition the policy implicitly on the goals

of the sequence by using their indices in the extended state space.

The objective in Mseq is to obtain a policy that maximizes the expected cumulative

rewards:

E
π

[
∑

t
Rseq (st+1, it)

t∏
k=0

γseq (sk)]. (9.7)

Maximizing this equation boils down to reaching each goal in τG by passing through

each set of valid success states.

Nevertheless, learning how to reach each goal using a sparse reward like Rseq can be

challenging. Moving to GCRL, we can address this issue by leveraging the relabeling

mechanism of HER.

Moving to GCRL to improve exploration

In Section 9.2.1, we defined a traditional MDP with an extended state. We now call

upon the GCRL framework. In addition to implicit goal-conditioning via the goal

116

Improving the value propagation mechanism with DCIL-II Chapter 9

indices, we now also explicitly condition the policy π(a|s, i , gi) on the current goal gi .

As a result, we can use a relabelling mechanism like HER to reward transitions towards

unintended goals and improve the exploration of the agent while it is training.

As with HER, during policy updates, a failed transition can be artificially relabeled

as successful and the missed goal can be replaced by an unintended goal achieved

later in the trajectory. However, unlike traditional GCRL, the goal changes along the

trajectory as the agent must reach each goal sequentially. To include the automatic

goal switches defined in (9.2) and (9.4) and let the value propagate between successive

goals as in (9.6), we must relabel the next goal and next index too. Thus, in a failed

transition relabeled as successful, the original next goal is replaced by the next goal in

the sequence according to the current index. Besides, the next index corresponds to

the incremented current index (see Figure 9.1).

To deal appropriately with relabelling in this context, we distinguish four different

types of transitions (st , it , g t) →at (st+1, it+1, g t+1): original failed transitions 1 , origi-

nal successful transitions 2 , transitions relabeled as failed for artificial goal ḡ t 3 or

transitions relabeled as successful for artificial goal ḡ t 4 . For each type of transition,

Figure 9.1: Automatic switches of goals and indices. When the agent reaches its
current goal gi as in the black trajectory, the current index i is incremented and the
goal is switched to the next one in the sequence 2 . When the agent fails to reach the
current goal or relabeled goal ḡi , the goal and the index keep the same 1 & 3 . For
transitions relabeled as successful as in the red trajectory with a relabeled goal ḡi , the
current and next indices and goals are relabeled to include these automatic switches
4 .

117

Chapter 9 Improving the value propagation mechanism with DCIL-II

the current and next goals and indices vary according to

(g t+1, it+1) = fnext goal & index(st+1, g t , it) (9.8)

with the fnext goal & index : S ×G ×N→G ×N function returning the next goal and index

given the current ones and the next state. This function switches to the next goal in

the sequence according to the current index when the current goal is reached:

fnext goal & index(st+1, g t , it) :=
(git+1, it +1) if st+1 ∈Sgit

(git , it) if st+1�∈Sgit
.

(9.9)

Using fnext goal & index to replace the next goal and index in both original and relabeled

transitions, one can leverage HER in sparse reward contexts.

In addition, we also get value approximations similar to (9.6) for original successful

transitions 2 :

Ṽ (st , it , git) = 1+γV π(st+1, it +1, git+1) (9.10)

and transitions relabeled as successful for artificial goal ḡ 4 :

Ṽ (st , it , ḡ) = 1+γV π(st+1, it +1, git+1) (9.11)

Thus, both types of transitions propagate the value associated with the next goal

V (., it +1, .) in τG into the value associated with the current one V (., it , .). Therefore,

whatever the goal g conditioning the policy π(a|s, i , g), the agent is always encouraged

to prepare for the next goals in τG while reaching the current one.

Note that if we decided to remove the index in the state to recover the usual GCRL

state space (see Chapter 3.4) and to condition the policy π(a|s, g) on the explicit goal

only, we could not use a similar reward propagation mechanism.

Indeed, let’s consider two failed training trajectories where the agent aimed for two

different goals (gi , g j) in τG and transited by the same states (st , st+1). In a transi-

tion relabeled as successful for artificial goal ḡ = pG(st+1), the relabeled next goals

(gi+1, g j+1), defined according to the position of original goals in τG , are different.

However, without any index, the states and the relabeled current goals (ḡi , ḡ j) = (ḡ , ḡ)

118

Improving the value propagation mechanism with DCIL-II Chapter 9

would be the same.

In this context, the value approximation Ṽ of the same state-goal pair (st , ḡ) would be

approximated differently depending on the chosen transition as the value of the next

state would be conditioned differently.

For the transition originally aiming for gi , we would have

Ṽ (st , ḡ) = Rseq (st , at , st+1, ḡ)+γseq (st+1)V π(st+1, gi+1),

= 1+γV π(st+1, gi+1),
(9.12)

whereas for the transition originally aiming for g j , we would have

Ṽ (st , ḡ) = Rseq (st , at , st+1, ḡ)+γseq (st+1)V π(st+1, g j+1),

= 1+γV π(st+1, g j+1).
(9.13)

Therefore, using our relabelling mechanism for reward propagation between goals

in a GC-MDP without index would lead to a partially observable MDP as the agent

would not be aware of which goal in τG it is targeting, which would result in unstable

value learning (Sutton and Barto, 1998).

These properties are demonstrated experimentally in Figure 9.2 with ablations de-

scribed in Section 9.4.4.

9.2.2 The DCIL-II algorithm

The DCIL-II algorithm first extracts the sequence of goals from a single demonstration

and derives the alternative GC-MDP introduced in Section 9.2.1. By running a 2-step

loop, it then learns a policy that can be used later to reach each goal and complete the

complex demonstrated behavior sequentially. Algorithm 8 summarizes these different

steps. The main differences with the DCIL-I algorithm presented in Algorithm 6 lie in

the management of the indices and are highlighted in red.

From a single demonstration to a sequence of goals

The sequence of goals τG is extracted from the demonstration exactly as in DCIL-I. We

project the demonstrated states in the goal space and split the demonstration into

Ng oal sub-trajectories of equal arc lengths ϵdist. For each sub-trajectory in the goal

space, we extract its final elements and concatenate them to construct τG . We also

extract the states associated with the initial elements of each sub-trajectories. Those

119

Chapter 9 Improving the value propagation mechanism with DCIL-II

Algorithm 8 DCIL-II

1: Input: π,Q,Q̄,τdemo ▷ actor/critic/target critic networks & demonstration
2: {gi }i∈[1,Ng oal s] ← extract_goals(τdemo)
3: B ← [] ▷ replay-buffer
4: R ← {i : []}i∈[1,Ng oal s] ▷ successes/failures memory
5: for n = 1 : Nepi sode do
6: i ← sel ect_i ndex(R) ▷ Trajectory initialization
7: s ← env.reset(i)
8: t ← 0
9: success,done, l ast_i ndex, t i meout ← F al se,F al se,F al se,F al se

10: while not done do ▷ Trajectory rollout
11: a ∼π(a|s, i , gi)
12: s′,env_done ← env.step(a)
13: r ← 0
14: if s′ ∈Sgi then ▷ success
15: r, success ← 1,Tr ue
16: l ast_i ndex ← (i ≥ nb_ski l l s)
17: i ′ ← i +1 ▷ index shift
18: R[i] ← R[i]+ [1]
19: else if t ≥ Tmax or env_done then ▷ failure
20: success, t i meout ← F al se,Tr ue
21: i ′ ← i
22: R[i] ← R[i]+ [0]
23: else
24: success ← F al se
25: i ′ ← i
26: if env_done or l ast_i ndex then
27: done ← Tr ue
28: B ← B + (s, gi , i , a, s′, gi ′ , i ′,r,done, success)
29: s, i ← s′, i ′

30: done ← done ∨ t i meout
31: SAC_update(π,Q,Q̄,B) ▷ non-modified SAC update

states form a set of demonstrated states used by DCIL-II to reset the agent in a valid

success state and to train it to reach the following goal (Hypothesis 9.3).

Main Loop

DCIL-II runs a 2-step loop to train an agent and combines an off-policy actor-critic

algorithm (e.g. the Soft Actor-Critic (SAC) algorithm (Haarnoja, Zhou, Abbeel, et al.,

2018)) with the HER-like relabelling mechanism described in Section 9.2.1 to learn

120

Improving the value propagation mechanism with DCIL-II Chapter 9

the goal-conditioned policy.

Trajectory initialization (lines 6-9) DCIL-II selects an index i in the sequence

[1, Ng oal] and the agent is reset in the associated demonstrated state.

Trajectory rollout (lines 10-30) This reset state is extended with the selected index.

The policy is conditioned on the state, the selected index i and the associated goal gi .

The agent then starts a trajectory that is terminated either if the agent reaches each

goal successively up to the final one, if a time limit is reached or if the agent reaches a

terminal state.

This loop is repeated after the termination of each trajectory. DCIL-II keeps track

of the successes and failures for each indexed trajectory (lines 18, 22 and 27). Thus,

the index selection (line 6) can be biased towards indices corresponding to goals

with a low ratio of success using a discrete distribution over indices that is inverse

proportional to the success ratio. Such distribution is obtained using the roulette

wheel selection operator commonly used in Evolutionary Algorithms (Blickle and

Thiele, 1996).

The saved transitions are used to perform an actor-critic update after each step in the

environment (line 31). In a sampled batch of transitions, half of the transitions are

relabeled using the relabelling mechanism presented in Section 9.2.1.

9.3 Bridging the gap between DCIL-II and similar ap-

proaches

In the following paragraphs, we discuss the relations and differences between the value

propagation mechanisms used in DCIL-I (see Chapter 8), option-based Hierarchical

RL, R-DSC (see Section 8.3 for both) and ours.

Bridging the gap between DCIL-I & DCIL-II

In DCIL-I, instead of considering a single MDP with an extended state space, we rather

considered a sequence of MDPs. In this sequence of MDPs Mi = (S ,A,Ri , p,γi), only

the reward function and the discount function differed from one MDP to another.

First, the discount function made the success states associated to any goal terminal:

121

Chapter 9 Improving the value propagation mechanism with DCIL-II

Figure 9.2: Comparison of value propagation in DCIL-II, DCIL-I, DCIL-II w/o goal
and DCIL-II w/o index, using a Dubins car environment after 15.000 training steps.
Unlike when success states are terminal as in DCIL-II w/o index, the value propagation
mechanisms in DCIL-II, DCIL-I and DCIL-II w/o goal help propagate the value of
the second goal into the value of the first ((s, gi) pairs with a value ∼ 2, in dark blue).
Moreover, the relabelling mechanism of DCIL-II helps propagate the value associated
with the second goal to the value associated with any relabeled goal (relabeled (s, ḡi)
pairs with a value ∼ 2). In DCIL-I, the same value is propagated to the first goal in τG
only (relabeled (s, ḡi) pairs with a value ∼ 1, in light blue). Those differences between
value propagation mechanisms result in the larger value of valid states leading to
alternative intermediate goals in DCIL-II compared to other methods. In other words,
DCIL-II helps the agent prepare for the next goal while reaching any intermediate
goal.

γi (s) =
0 if s ∈Sgi ,

γ otherwise.
(9.14)

122

Improving the value propagation mechanism with DCIL-II Chapter 9

In addition, the sparse reward received by the agent when it reached the current goal

was augmented by a reward bonus based on the value with respect to the next MDP

Vi+1(s):

Ri (st+1) =
1+Vi+1(st+1) if st+1 ∈Sgi ,

0 otherwise.
(9.15)

This reward bonus was used to propagate the value from the next MDPs to the pre-

vious ones and was analogous to the non-terminal success states in DCIL-II (see

Section 9.2.1). Indeed, it encouraged the agent to achieve the goal of the current MDP

by reaching valid success states that were compatible with the resolution of the next

MDPs. Thus, the optimal policy for one MDP in the sequence depended on the next

MDP.

Using this sequence of MDPs instead of a single MDP, we avoided extending the state

space to include the index of the current goal. However, as illustrated in Figure 9.2,

when this framework was combined with HER, the agent only received the reward

bonus when it reached the goals of the sequence but not when it reached the artificial

goals created by the relabelling process. Thus, the agent was encouraged to prepare

for the sequence of goals only when it was conditioned on the goals of the sequence.

On the contrary, in the single MDP framework used by DCIL-II, the extended state

space combined with the modified relabelling mechanism forces the agent to prepare

for the next goals in the sequence while reaching both types of goals (goals of the

sequence or relabeled goals).

We further underline the difference between the value propagation mechanisms of

DCIL-I and DCIL-II in the ablation study conducted in Section 9.4.4.

Bridging the gap between DCIL-II & option-based HRL

We can look at the MDPMseq (Section 9.2.1) from the perspective of the Option-based

HRL framework (Precup, 2000) and see it as a semi-MDP with a hand-designed chain

of options.

Indeed, we can associate an option to each goal in τG by considering the set of success

states of these goals as termination sets and the policy conditioned on the indices

of these goals as the intra-option policies. From this perspective, we get a chain of

options by considering that the termination set associated with a goal is the initiation

set of the option associated with the next goal, as in (Bagaria and Konidaris, 2019).

123

Chapter 9 Improving the value propagation mechanism with DCIL-II

Thus, we also have a fixed and deterministic policy over options switching to the

option associated with the next goal in τG as soon as the current option is completed.

We thus see that Mseq defines a restricted semi-MDP where the structure of options

is a simple chain and an option can only trigger the next one.

Nevertheless, in this semi-MDP, values are propagated from one option in the chain

to the previous ones via non-terminal success states. A similar semi-MDP which also

propagates value between options is defined in the Option-Critic framework (Bacon

et al., 2017; Klissarov et al., 2017; Harb et al., 2018). However, the two-stage learning

of both the policy over options and the intra-option policies makes the end-to-end

training of those policies unstable (Hutsebaut-Buysse et al., 2022). Moreover, in the

absence of explicit goal-conditioning, no relabelling mechanism may be applied in

Mseq or in any method based on the Option-Critic framework. This makes exploration

difficult when learning how to reach sparsely rewarded goals.

By extending Mseq to GCRL (Section 9.2.1), DCIL-II can be seen as a modified Option-

based method which benefits from both reward propagation and exploration mecha-

nisms at the cost of hand-designing options.

Again, we underline the importance of combining the value propagation mechanism

with an exploration mechanism by considering an ablation of DCIL-II without HER

called DCIL-II w/o goal in Section 9.4.4.

Bridging the gap between DCIL-II & goal-conditionned skill-chaining

In DSC (Bagaria and Konidaris, 2019), the authors construct a chain of options back-

ward from the goal. In R-DSC (Bagaria, Senthil, Slivinski, et al., 2021) which is a refined

version of DSC, goal-conditioned policies are used as intra-option policies and HER is

used to train them. This capability to benefit from HER makes R-DSC very close to

DCIL-II. However, in R-DSC, options are not hand-designed using a sequence of goals.

Instead, a learned classifier delimits the termination set of each option and a goal is

sampled within this non-stationary set of states.

For each option, a set of states from which the agent has been able to achieve the

termination set of the next option is constructed and updated after each episode.

Within the set of goals obtained by projecting these states in the goal space, the one

with the largest value is selected to condition the intra-option policy. The values of

those goals are updated after each episode using the following relation:

124

Improving the value propagation mechanism with DCIL-II Chapter 9

Vg (pG(s),pG(s′)) =
Vo(s, pG(s′))+γmax

s′′∈ϵp

Vg (pG(s′), pG(s′′)) (9.16)

where Vg returns the value of goals at the level of options and Vo returns the value of

states at the level of control steps.

Thus, the value is only propagated from one option to the others for the selection of

goals and does not impact intra-option policies. Therefore, it is implicitly assumed

that the trained intra-option aiming for the selected goal only reaches valid success

states. However, if the intra-option policy changes and eventually leads the agent

to invalid success states, the agent is not able to complete each option successively.

Therefore, the option chain is broken until selecting another goal reached via valid

success states only.

By contrast, the DCIL-II mechanism for value propagation avoids these breaks by

increasing the value of valid success states and, therefore, encouraging the agent to

reach each goal only via these states.

As before, we underline the importance of this value propagation mechanism by

comparing DCIL-II to an ablated version which uses the same vanilla HER as R-DSC

called DCIL-II w/o index (see Section 9.4.4).

Comparison of hypotheses

The DCIL-II algorithm relies on three main hypotheses. We assume that the agent can

be reset in some states of the demonstration, that expert actions are not provided and

that a definition of the goal space is given to perform GCRL. These hypotheses are

summarized in Table 9.1.

Reset

The training procedure in DCIL-II assumes that the agent can be reset in some demon-

strated states. A similar form of reset is assumed in DCIL-I. Stronger reset assumptions

like reset-anywhere where the agent can be reset in uniformly sampled states have

also been considered in the GCRL literature (Nasiriany et al., 2019). PWIL is based on

the more classical assumption of a unique reset, and BC does not require any reset at

all.

125

Chapter 9 Improving the value propagation mechanism with DCIL-II

DCIL-
II

DCIL-
I

PWIL BC
R-

DSC
Option-
Critic

Learning from
demonstration

• • • •
Sequential

goal-reaching
bias

• • •

Relabelling
mechanism

• • •
Value

propagation
mechanism

• • • •

Extended state
space

• •
Reset hypothesis:

s0 - single state {si } {si } s0 s0 s0

{si } - states from
demo

Demonstration
type:

S × A - states and
action

S S S × A S × A

S - states only
Goal space
definition

• • • •

Table 9.1: Comparison of the problems tackled (dark grey), the mechanisms used
(white) and the hypothesis made (light grey) by DCIL-II, three methods tackling the
same problem of learning from a single demonstration (DCIL-I, PWIL (Dadashi et al.,
2020) and BC (Pomerleau, 1991)) and two methods relying on a value propagation
mechanism (R-DSC (Bagaria, Senthil, Slivinski, et al., 2021) and Option-Critic (Bacon
et al., 2017)).

State-only demonstration

Similarly to DCIL-I, DCIL-II learns the desired complex behahior by leveraging a single

state-based demonstration, without considering the actions. Learning from states

only is crucial when the actions used in the demonstration are difficult to collect

(e.g. motion capture, human guidance). On the contrary, both PWIL and BC require

state-action demonstrations.

126

Improving the value propagation mechanism with DCIL-II Chapter 9

Goal-space definition

As GCRL-based methods, DCIL-II and DCIL-I require a definition of the goal space

and the corresponding mapping from the state space to the goal space. No such

assumption is necessary in PWIL or BC as none of them are based on GCRL.

A summary of these hypotheses is included in Table 9.1.

9.4 Experiments

In this section, we first introduce the experimental setup consisting of five environ-

ments of varying complexity. We then present the implementation details of DCIL-II

and conduct an ablation study to empirically validate our design choices. Finally, we

compare our method to different baselines and apply it to a more realistic simulated

robotic environment.

9.4.1 Environments

We evaluate DCIL-II in five environments: the Dubins Maze, the Fetch environment

(both are presented in Chapter 8), two variants of the Humanoid environment from

the OpenAI Gym Mujoco suite (Todorov et al., 2012) (Brockman et al., 2016) and the

Cassie Run environment I.

Humanoid locomotion

The Humanoid locomotion environment is a variant of the Humanoid-v2 environment

(Todorov et al., 2012; Brockman et al., 2016) with two major modifications. A state

s ∈ R378 contains the positions of the different body parts as well as their velocities.

In order to define an easily interpretable goal space corresponding to the Cartesian

position of the torso, we also include the x, y position of the torso in the states, while

they are generally discarded. The point is that, in order to walk to infinity, the agent

must learn to ignore these two inputs which makes this variant much more difficult

than the original one. To compensate for this increased difficulty, the evaluation

budget is reduced to 200 control steps instead of 1000. As a result, an optimal agent

covers a forward distance of ∼ 10 meters instead of ∼ 50 meters. Demonstrations are

obtained by an agent trained with the SAC algorithm on the original dense reward

associated with the environment which is much easier than our sparse reward context.

Icode provided at https://github.com/perrin-isir/gym-cassie-run and based on the model from
(Contributors, 2022)

127

https://github.com/perrin-isir/gym-cassie-run

Chapter 9 Improving the value propagation mechanism with DCIL-II

This original reward consists of three parts: a forward reward obtained by the agent

for moving forward along the x-axis, a health reward received for each step spent by

the agent with its torso above 1 meter and a cost penalizing the controls and contacts.

These demonstrations are divided into 15 goals by DCIL-II. Besides, the DCIL-II agent

is only rewarded when the agent reaches desired goals corresponding to a desired

(x, y, z) position of the torso.

Humanoid stand-up

The Humanoid stand-up environment is similar to the Humanoid locomotion envi-

ronment. The only difference is that, instead of being initialized standing, the agent

is laying down on its back at the beginning of an episode. Demonstrations are also

obtained using SAC and the easier original dense reward function, which contains

two parts: a height reward proportional to the position of the torso of the agent along

the z-axis and a cost penalizing the controls. A demonstration corresponds to the

Humanoid lifting its torso above 1.4 meters. DCIL-II divides this demonstration into

12 goals. Similarly to the Humanoid locomotion task, DCIL-II only uses a sparse

reward received when the agent reaches the desired (x, y, z) position of the torso.

Cassie run

The Cassie run environment is a variant of the Humanoid locomotion environment

where the humanoid is replaced by a simulated Cassie robot which recently broke

a running speed recordII. In this environment, states s ∈ R67 contain the Cartesian

positions and the orientations of each part of the bipedal platform (including the x, y

position of the robot as discussed in Section 9.4.1). A goal g ∈R3 corresponds to the

Cartesian position of the pelvis. DCIL-II only uses a sparse reward received by the

agent when it reaches these low-dimensional goals. Demonstrations are obtained

after 18M training steps using the TQC algorithm (Kuznetsov et al., 2020) on a hand-

designed dense reward function (Perrin-Gilbert, 2022).

9.4.2 Baselines

We compare DCIL-II to four baselines: 1) a random initialization of the weights of the

policy, used as a lower bound on the performance of an agent in each environment;

2) a naive BC method using a single demonstration; 3) PWIL, a state-of-the-art IL

algorithm in the Humanoid environment with a single demonstration; 4) DCIL-I.

IIhttps://today.oregonstate.edu/news/bipedal-robot-developed-oregon-state-achieves-guinness-world-record-100-meters

128

https://today.oregonstate.edu/news/bipedal-robot-developed-oregon-state-achieves-guinness-world-record-100-meters

Improving the value propagation mechanism with DCIL-II Chapter 9

9.4.3 Implementation details

The hyper-parameters for each environment are presented in Table 9.2. In the three

environments, the observations are normalized with the mean and standard deviation

of the observations gathered during an initialization phase where random actions are

sampled. Moreover, during the SAC update, the target value is clipped in [0, Ng oal s].

This upper bound for the value corresponds to the maximum reward that an agent

can obtain along a trajectory with a discount factor γ= 1. We found that clipping the

value during the critic update greatly improved the stability of the agent and limited

poor generalization of the critic network. The code of DCIL-II based on the XPAG

library (Perrin-Gilbert, 2022) is provided at https://github.com/AlexandreChenu/

DCIL_XPAG.

Figure 9.3: Comparing DCIL-II to three variants: we evaluate the success rates of
DCIL-I, DCIL-II w/o index and DCIL-II w/o goal throughout training in the Dubins
Maze and in the Fetch Task. The mean and standard deviation ranges over 15 seeds.
The standard deviation is divided by four for more readability.

9.4.4 Ablation study

Using the Dubins Maze and the Fetch environments, we compare DCIL-II to three

variants inspired by the discussions in Sections 9.3, 9.3 and 9.3. The first variant

underlines the importance of combining the value propagation mechanism com-

monly used by DCIL-II and Option-Critic methods with GCRL and, in particular, a

129

https://github.com/AlexandreChenu/DCIL_XPAG
https://github.com/AlexandreChenu/DCIL_XPAG

Chapter 9 Improving the value propagation mechanism with DCIL-II

relabelling mechanism like HER (Section 9.3). In this variant called DCIL-II w/o goal,

the agent interacts directly with the MDP Mseq defined in Section 9.2.1. There is no

explicit goal-conditioning and relabelling mechanism. Therefore, the policy is only

conditioned on the index of the goals which helps propagate the value associated with

a goal into the value of the previous one. However, the lack of relabelling mechanism

results in poor exploration.

Similarly to R-DSC (as discussed in Section 9.3), in the second variant called DCIL-II

w/o index, the agent interacts with a GC-MDP using a vanilla version of HER where

success states are terminal. In this context, the agent benefits from efficient explo-

ration. However, in the absence of reward propagation between successive goals,

the agent is not encouraged to reach valid success states only, hampering sequential

goal-reaching.

The third variant is DCIL-I. As explained in Section 9.3, the main difference between

DCIL-I and DCIL-II lies in the relabelling mechanism. In DCIL-I, relabelling is as in

the original version of HER and success states are terminal. The agent only receives

the reward bonus used to propagate the value from goal gi in τG to the previous one

gi−1 when it reaches this precise goal gi , not when it reaches an artificial goal created

by HER. On the contrary, in DCIL-II, artificial successful transitions created by the

relabelling mechanism also propagate the value from the next indices to the previous

ones.

These differences in value propagation between DCIL-II w/o index, DCIL-I and DCIL-

II are illustrated in Figure 9.2. DCIL-II is able to increase the value of valid success

states for any intermediate goals (original goal from τG and relabeled goals). As a

result, an agent trained with DCIL-II learns how to navigate the entire Dubins Maze

and to solve the Fetch task faster than with any of the variants (see Figure 9.3).

9.4.5 Comparison to baselines

In this section, we compare DCIL-II to all baselines in the two humanoid environ-

ments.

Figure 9.4 presents the average maximum return gathered by an agent over evaluation

trajectories in both environments. During the evaluation trajectory, the agent is reset

in the first state of the demonstration. At each control step, actions are selected

according to the mean of the action distribution returned by the policy network. The

return is computed according to the original reward for each environment. However,

none of the methods trained directly using this dense reward.

130

Improving the value propagation mechanism with DCIL-II Chapter 9

Figure 9.4: Comparing DCIL-II to a random policy, BC, PWIL and DCIL-I. We evaluate
the maximum return obtained by the agent throughout training in the Humanoid lo-
comotion and Humanoid stand-up environments. The mean and standard deviation
ranges over 15 seeds. The standard deviation is divided by two for more readability.

In the locomotion task, DCIL-II is the only method able to reach an average maximum

return superior to 1100 within 2M training steps. This reward corresponds to an agent

walking a distance of ∼ 10m. As discussed in the presentation of the environment,

the added x, y positions of the agent forces non goal-conditioned agents (as in PWIL)

to ignore these two inputs. This results in a slower increase of the return of PWIL

compared to the results presented in the original paper (Dadashi et al., 2020).

Figure 9.5: Visualization of sequential goal reaching in the Humanoid stand-up envi-
ronment. In this environment, a sequence of 12 goals τG corresponding to successive
Cartesian positions of the torso is used by DCIL-II to learn the behavior using only
253K training steps. Only three goals are shown here.

In the stand-up task, both DCIL-I and DCIL-II manage to achieve large returns around

131

Chapter 9 Improving the value propagation mechanism with DCIL-II

Figure 9.6: Visualization of sequential goal reaching in the Cassie run environment. In
this environment, a sequence of 19 goals τG corresponding to successive Cartesian
positions of the pelvis is used by DCIL-II to learn the behavior using only 707K training
steps on average. Only five goals are shown here. One can see that, though the straight
pelvis trajectory is well reproduced, the obtained feet trajectories differ widely from
the demonstrated ones.

20.000 which correspond to an agent standing up (see Figure 9.5). Nevertheless, DCIL-

II achieves such returns much faster than DCIL-I. BC performs surprisingly well in

this task. This is mainly due to the fact that the entire trajectory of the agent is mostly

conditioned by the very first actions. Thus, the often problematic distribution shift

faced by BC (Ross and D. Bagnell, 2010) has less impact in this environment.

9.4.6 Using DCIL-II to control a simulated Cassie bipedal platform

In this environment, we want to learn a controller to make Cassie walk straight. DCIL-

II manages to learn a walking behavior using only a sequence of low-dimensional goals

corresponding to a succession of Cartesian positions of the pelvis. Only the position

of this part of the robot is constrained during locomotion, the rest of the robot is free

to follow trajectories that widely differ from the demonstration. Figure 9.6 illustrates

this property. Indeed, the trajectories of the feet deviate a lot from the demonstration.

In addition, at the beginning of the trajectory, after being initialized slightly above the

ground in a straight position, the simulated robot learns to fall on its feet by folding

and unfolding its legs. These walking and stabilization behaviors are totally different

from and more complex than the demonstrated behaviors. Nevertheless, they still

satisfy the desired successive positions of the pelvis. Thus, DCIL-II learns a control

policy to reach 19 successive goals using 707K ±144K training steps. By reaching these

goals sequentially, the system covers a forward distance of 15 meters with a stable

132

Improving the value propagation mechanism with DCIL-II Chapter 9

z-position of the pelvis.

Discussion & Conclusion

In this chapter, we leveraged a sequential inductive bias, resulting in the design

of an augmented GCRL framework where the agent must successively reach low-

dimensional goals in order to achieve a complex task. In this framework, the agent

is encouraged to achieve each goal via states that are compatible with reaching the

subsequent goals. Based on this framework, we presented the DCIL-II algorithm and

we showed that it can learn control policies significantly faster than state-of-the-art

imitation learning methods when addressing complex articulated behaviors with

simulated and underactuated robots.

One of the main limitations of DCIL-I and DCIL-II under the perspective of applying it

to a real robot is the assumption that the agent can be reset in some states selected in

the demonstrated trajectory. Rather than being reset, we would like the robot to come

back to a required state using its own control law, as in (Ecoffet et al., 2021; A. Gupta

et al., 2021).

In the next chapter, we leverage well-known mechanisms from the Learning from

Demonstration literature to propose a variant of DCIL-II called Single-Reset DCIL.

This approach requires a weaker reset hypothesis and, as the name goes, only needs

to reset the agent to a single state.

133

Chapter 9 Improving the value propagation mechanism with DCIL-II

Hyper-
parameters

Dubins
Maze

Fetch
Humanoid
locomotion

Humanoid
stand-up

Cassie run

Critic hidden size [400,300] [512,512,512] [512,512,512] [512,512,512] [512,512,512]
Policy hidden

size
[400,300] [512,512,512] [512,512,512] [512,512,512] [512,512,512]

Activation
functions

ReLU ReLU ReLU ReLU ReLU

Batch size 256 256 64 64 64
Discount factor 0.9 0.98 0.98 0.98 0.98

Entropy
coefficient

1×10−3 1×10−4 1×10−4 1×10−4 1×10−4

Critic lr 1×10−3 1×10−4 3×10−4 3×10−4 3×10−4

Policy lr 1×10−3 1×10−4 3×10−4 3×10−4 3×10−4

ϵsuccess 0.1 0.05 0.05 0.05 0.05
ϵdi st 1 0.5 0.5 0.3 0.75
τG size 22 12 15 12 19

Training rollout
budget

25 100 100 100 100

Table 9.2: Hyper-parameters used for SAC (grey) and DCIL-II (white). The Hyper-
parameters relative to SAC for Humanoid locomotion are extracted from (Raffin, 2018)
and reused for Humanoid stand-up and Cassie run.

134

10 Going a step further with Single-Reset
DCIL

10.1 Introduction

In the previous chapters, we introduced DCIL, a novel Deep Reinforcement Learning

(DRL) algorithm that leverages a sequential bias to learn a control policy for complex

robotic tasks using a single demonstration. This approach can be used to learn a

goal-conditioned policy to control the system between successive intermediate low-

dimensional goals. It is based on an extended Goal-Conditioned RL (GCRL) framework

designed to ensure that the state resulting from reaching an intermediate goal is

compatible with the achievement of the following goal. Although the approach shows

unprecedented sample efficiency when applied to complex robotics tasks such as

grasping or humanoid locomotion, it relies on a strong assumption that the system can

be reset to some states selected in the demonstrated trajectory. This assumption limits

the approach to simulated systems. Indeed, when tackling a complex robotic task

such as locomotion with an under-actuated humanoid robot, one can easily imagine

how difficult it would be to reset the robot to a demonstrated state corresponding to a

complex configuration or including precise angular and positional velocities.

In this chapter, we propose an extension of the DCIL-II algorithm called Single-Reset

DCIL (SR-DCIL). As DCIL-II, SR-DCIL learns a goal-conditioned policy to control the

system between a sequence of low-dimensional goals. However, SR-DCIL is designed

to work even when the strong reset assumption required by DCIL-II does not hold.

Instead, we only assume that the robot can be reset to a single state at the beginning

of the demonstration. To adapt DCIL-II to this more challenging setting, we call upon

mechanisms inspired by the literature on Learning from Demonstrations (Atkeson

and Schaal, 1997) that are likely to be compatible with the use of a single demonstra-

tion. From these mechanisms, we extract a Demo-Buffer (DB) and a Value Cloning

(VC) mechanism. Both are designed to guide the agent towards compatible success

135

Chapter 10 Going a step further with Single-Reset DCIL

states while sequentially reaching goals. In addition, we introduce Approximate Goal

Switching (AGS), a mechanism that helps the agent train for goals distant from the

reset state.

This chapter is organized as follows. First, in Section 10.2, we cover related work

from the RL from demonstration literature. In Section 10.3 we first highlight the

capital importance of the reset hypothesis in DCIL-II. Then, to tackle the limitations

induced by the weaker assumption of a system that can only be reset to a single

state, we present three mechanisms (DB, VC and AGS) that can be combined with

DCIL-II to yield different variants of the SR-DCIL algorithm. In Section 10.4, we

evaluate these variants in several challenging robotics tasks and compare it to DCIL-

II. In summary, our main contributions are: (1) we highlight the importance of the

strong reset assumption made by DCIL-II; (2) under the name SR-DCIL, we propose

several variants of DCIL-II capable of learning a control policy under a weaker reset

assumption.

10.2 Related Work

RL and IL can be merged in different ways: offline RL, inverse RL, RL from demonstra-

tion (RLfD) (see Chapter 5 for more details). However, only a few mechanisms inspired

by the literature of RLfD can be used in a complementary manner with another RL

algorithm. Indeed, on the one hand, offline RL learns directly from an offline dataset

of interactions and assumes no additional interaction with the environment. On the

other hand, Inverse RL uses the demonstration to learn a reward function that may

interfere with an already available one. On the contrary, in RLfD, one simply uses the

demonstration along with additional training interactions collected by any RL agent.

Using the demonstration in RLfD can help the agent to learn more quickly and effec-

tively at different levels. If both the demonstrated states and actions are available, the

latter can guide the policy in the action selection process. Alternatively, demonstra-

tions can be used to help the critic estimate the value function.

In the SACR2 paper (Martin et al., 2021), the authors list several variants of the Soft

Actor-Critic algorithm (Haarnoja, Zhou, Abbeel, et al., 2018) augmented with different

mechanisms inspired from the RLfD literature.

First, SAC Behavioral Cloning (SACBC) uses Behavioral Cloning (Pomerleau, 1991) as

a regularization mechanism for the update of the actor. This is inspired by various

other RLfD algorithms (A. Nair et al., 2018; Goecks et al., 2019; Fujimoto and Gu, 2021).

These methods all propose two main components. First, a secondary replay buffer is

136

Going a step further with Single-Reset DCIL Chapter 10

filled with transitions from demonstrations. Using these transitions, an auxiliary BC

loss is computed and added to the original policy loss. However, BC usually performs

poorly when only a single demonstration is available (Ross and D. Bagnell, 2010;

Resnick et al., 2018; Behbahani et al., 2019). Therefore, this mechanism is not relevant

to the extremely weak data regime where only a single demonstration is available.

In SAC from Demonstrations (SACfD), which is inspired by (Vecerik et al., 2017; Paine

et al., 2019), a similar secondary replay buffer is filled with transitions from demonstra-

tions. However, instead of using those transitions to compute an additional BC loss,

they are directly used as training transitions during the critic update. Similarly, Soft

Q Imitation Learning (SQIL) (Reddy et al., 2019) also uses demonstrated transitions

for both updates. However, in SQIL, in order to encourage the agent to imitate the

demonstrated behavior, the demonstrated transitions are all associated with a reward

of 1 while new transitions collected by the agent receive a reward of 0. Although both

SACfD and SQIL are designed to work with many demonstrations (>200 in SACfD),

we show that this simple mechanism is powerful enough to efficiently guide the GCP

learned by SR-DCIL.

Other approaches mixing RL with imitation-based adversarial approaches (Kang

et al., 2018) or generative models (Y. Wu et al., 2021) have also been considered

to perform RLfD, mostly to overcome exploration limits. However, even if these

approaches significantly accelerate the underlying RL algorithms, none of them are

designed to work with a single demonstration as they rely on often unstable generator-

discriminator architectures (Dadashi et al., 2020).

10.3 Methods

In this section, we start by highlighting the importance of a strong reset hypothesis

in the GCRL framework of DCIL-II. Then, we present two mechanisms, the Demo-

Buffer and Value Cloning, designed to encourage the agent to reach valid success

states only. In addition, we present a mechanism designed to help the agent to train

more efficiently with this weaker reset assumption. Finally, we present the complete

algorithm called Single-Reset DCIL (SR-DCIL).

10.3.1 The importance of the reset hypothesis

SR-DCIL is couched in the GCRL framework of DCIL-II (see Chapter 9). In this frame-

work a sequence of goals τG = {gi }[1,Ng oal] is used to guide the agent to a difficult to

achieve goal. DCIL-II learns a GCP to reach each goal in τG and uses a value propaga-

137

Chapter 10 Going a step further with Single-Reset DCIL

tion mechanism to encourage the agent to achieve each goal by reaching valid success

states for the following goal in the sequence. However, in DCIL-II, we assume that the

agent can be reset to demonstrated states to learn how to reach each goal individually.

If the reset assumption is weaker and the agent can only be reset to a single state, two

limits arise. First, it gets difficult to train for further goals in the sequence. Moreover,

the value propagation mechanism is not enough to encourage the agent to reach goals

via valid success states. Those two limits are illustrated in Figure 10.1.

Training for distant goals

In the GCRL framework of DCIL-II, the goal targeted by the agent is switched to the

next in τG and the index is incremented only if the current goal has been achieved. If

the agent is only reset to a single state, the agent must be able to sequentially reach

the i −1 previous goals in order to begin a training rollout for goal gi ∈ τG . Therefore,

the further the goal is in the sequence, the fewer training rollouts are performed by

the agent for this goal.

Moreover, using a stochastic policy in SAC makes narrow goal misses inevitable. In

the context of non-holonomic environment, an unrecoverable miss of the current

goal gi is likely to occur. After missing the goal, the agent continues to aim for gi until

it is reset to its initial state, either after a time limit or after reaching a terminal state.

In the meantime, no training transition for goal gi+1 has been collected.

On the contrary, in DCIL-II, to train for this same goal gi ∈ τG , the agent is reset to a

demonstrated state taken few steps ahead along the demonstration. Thus, the agent

needs very little exploration to learn how to reach gi as the number of control steps to

reach goal gi from the associated reset state is limited. After enough training, the agent

should be able to reach any goal in τG starting from the associated demonstrated reset

states.

Propagating the value between successive goals

If a single reset state is available, as long as the agent has not learned how to reach

goal gi , the value of the valid and invalid success states associated with gi−1 should

be similar. Indeed, both types of success states have a value close to one as the reward

received for reaching the next goal has not yet been discovered and included in the

value of valid success states. Therefore, the agent is not encouraged to achieve goal

gi−1 by reaching valid success states. This can prevent successful training.

For instance, if the agent comes across valid success states associated with gi−1 often

138

Going a step further with Single-Reset DCIL Chapter 10

Figure 10.1: Limitations caused by a reset to a single state. The agent needs to reach
g1 to train for g2 and to reach g1 and g2 to train for g3. Moreover, to successively reach
each goal, the agent must transit between successive sets of valid success states (in
pink). Until the agent learns how to reach the second goal, the values of valid and
invalid success states associated with the first goal are similar (Vθ(s, g1,1) = 1,∀s ∈Sg1

until the agent learned how to reach g2). Therefore, the agent is not encouraged to
target valid success states. This results in a large number of wasted training trajectories
(in red), as they were launched from invalid success states. When the agent mostly
reaches invalid success states (as for goal g2 here, which has a small set of valid success
states), training for the next goal can become very challenging as most training rollouts
for g3 start from incompatible states.

139

Chapter 10 Going a step further with Single-Reset DCIL

enough by chance, after sufficient training for gi , the reward received when reaching

it increases the value of these valid states and the agent is encouraged to reach them.

However, if the agent only comes across invalid success states, it is never able to reach

gi nor to propagate the value containing the associated reward. Thus the agent does

not distinguish valid and invalid success states.

On the contrary, in DCIL-II, when the agent is reset to a demonstrated state to train for

goal gi , the demonstrated state corresponds to a valid success states for previous goal

gi−1. After enough training (i.e. successful training trajectories triggering the distance-

based reward), this demonstrated valid success state should have a higher value than

invalid states. Therefore, by propagating the value between the two successive goals

via (9.6), the agent is encouraged to target this demonstrated valid success state as its

value is higher than any other success state.

10.3.2 Using DCIL in the single-reset setting

To adapt DCIL-II to the single-reset setting, we integrate different mechanisms. De-

pending on whether the expert actions are available, a Demo-Buffer or Value Cloning

can increase the value of valid success states. In addition, Approximated Goal Switch-

ing (AGS) can help the agent training for distant goals.

Increasing the value of valid success states

In this section, we present two mechanisms: the Demo-Buffer (DB) and the Value

Cloning (VC), designed to augment the value of the valid success states. In the DB

mechanism, we assume that expert actions are available, which is an additional

requirement compared to the state-based demonstration necessary in DCIL-II. On the

contrary, Value Cloning is an alternative to the DB mechanism if only a state-based

demonstration is available.

Demo-buffer The Demo-Buffer (DB) is a secondary RB used during the actor and

critic updates of SAC in the same way as SACfD (Vecerik et al., 2017; Paine et al., 2019;

Martin et al., 2021). While the RB collects the training transitions, the DB is filled with

the transitions extracted from the demonstration. During each SAC update, a batch of

transitions is partly sampled from both buffers. The batch is filled with 80% of training

transitions and 20% of transitions extracted from the demonstration. This 80−20 ratio

constitutes an additional hyper-parameter and has been chosen empirically.

The demonstration trajectory contains a successful transition to each goal leading to

140

Going a step further with Single-Reset DCIL Chapter 10

the demonstrated valid success state. Therefore, by updating the critic networks using

the Mean Squared Bellman Error (MSBE) (10.1) for these demonstrated transitions,

the value of the state-action pairs leading to the demonstrated valid success states is

increased (see Figure 10.2).

L(θ,Dtr ai n ,Ddemo) = E
(s,i ,g ,a,r,s′,i ′,g ′)∼Dtr ai n∪Ddemo[

1
2

[
Qθ(s, i , g , a)− (r +γ(s′)Qθ(s′, i ′, g ′, a))

]2]
.

(10.1)

Thus, when reaching goal gi−1 in τG , the agent is encouraged to target the associated

demonstrated valid success state. This prevents the agent from training for next goal

gi by starting from an invalid success state.

However, in order to use the DB mechanism, we make a new assumption that was not

necessary in DCIL-II: the internal actions of the demonstration should be available to

fill the DB.

Value cloning In Value Cloning (VC), we only assume access to the states of the

demonstration. Each state in the demonstration is augmented with the associated

goal and index in τG . This associated goal corresponds to the closest goal in τG
extracted from a state further along the demonstration.

Using the demonstrated trajectory, we can compute for each state the theoretical

return Vdemo received by the agent by passing through the remaining demonstrated

states. This theoretical return is computed according to the reward, the transition

and the discounted functions defined by the DCIL-II framework (see Section 9.2.1).

It corresponds to the discounted sum of sparse rewards received for reaching each

goal sequentially. The set of demonstrated states and their associated values form the

Value Cloning dataset DV C .

During each SAC update, a batch of states is sampled partly from the training tran-

sitions and partly from DV C . The batch is filled with 80% of states coming from the

training RB and 20% coming from DV C similarly to DB. For states coming from the

training RB, their associated target value corresponds to the on-policy soft Q-value

computed with respect to the Q-value critic network Qω. This corresponds to a usual

SAC update (see Section 3.2.4). For states extracted from DV C , the associated value

corresponds to the theoretical one computed according to the demonstration.

141

Chapter 10 Going a step further with Single-Reset DCIL

The demonstrated states indicate a path towards valid success states. Therefore, by

updating the value critic using the Mean Squared Error (MSE) between the current

estimate of the value of demonstrated states and their theoretical value, their value

is increased and the agent is encouraged to pass through these demonstrated states

while reaching the goals in τG (see Figure 10.2).

LV C (θ,Dtr ai n ,DV C) = E
(s,i ,g ,Vt ar g et)∼Dtr ai n∪DV C[

1
2

[
Vψ(s, i , g)−Vt ar g et

]2]
,

(10.2)

with

Vt ar g et =
Q(s,π(s), i , g) if (s, i , g) ∈Dtr ai n

Vdemo if (s, i , g) ∈DV C

(10.3)

One should note that this mechanism requires the original Actor-Critic architecture

of SAC where the critic contains two networks estimating the value function and the

Q-value function. In recent implementations of SAC, only the Q-value critic remains

(see Section 3.2.4).

Figure 10.2: Visualising the impact of the Demo Buffer and Value Cloning after 15k
training steps. When SR-DCIL is not equipped with a DB or VC (SR-DCIL w/o DB &
VC), the agent is not guided to valid success states by an increase of the Q-value of
demonstrated state-action pairs (as in SR-DCIL w/ DB) or an increase of the value of
demonstrated states (as in SR-DCIL w/ VC). As a result, it fails to achieve g1 via valid
success states and cannot reach g2. On the contrary, SR-DCIL w/ DB and SR-DCIL w/
VC encourage the agent to achieve g1 by reaching valid success states and manage to
reach g2.

142

Going a step further with Single-Reset DCIL Chapter 10

Increasing the number of rollouts for goals of high index

Figure 10.3: Illustration of the Approximated Goal Switching concept in a toy 2D maze
where the agent corresponds to a Dubins Car (Dubins, 1957) with (x, y,θ) states and
(x, y) goals. The contours represents the maximum value function obtained in the
(x, y) position by uniformly sampling 20 orientations, after 15k SR-DCIL training steps.
In the blue trajectory, the agent triggered AGS by entering the blue zone. k-steps after,
the goal is automatically switched to the next one in τG , and the agent can continue
its progression in the maze. On the contrary, in the green trajectory w/o AGS, after
the irrecoverable narrow miss of the first goal, the agent is still conditioned on this
goal and eventually collides with the wall while trying to turn toward the goal (for
better readability, we drop the index and the goal in the Q-function entry when it is
not necessary).

To avoid wasting a training rollout where the agent narrowly missed the goal but still

managed to reach a state from which the next goal is achievable, Approximated Goal

Switching (AGS) changes the current goal automatically whether the agent reaches it

or misses it.

As soon as the agent reaches a state s close enough to the goal so that its Q-value

Q(s, a =π(s)) is large enough, whether the agent actually reaches it or narrowly misses

it a few step later, the index is automatically incremented and the current goal is

switched for the next one in τG . Therefore, the agent starts training for the next goal

in τG .

For each goal gi ∈ τG , we consider that the Q-value of a state close to gi is large enough

if it is above a threshold Qk
gi

. This threshold corresponds to the maximum Q-value

associated with a state taken k-steps ahead of the success state along a successful

training rollout reaching gi . This threshold is illustrated in Figure 10.3. In each

experiment of this Chapter, k is a hyper-parameter set to 2.

143

Chapter 10 Going a step further with Single-Reset DCIL

During the remaining k steps, the agent has enough control steps left to reach the goal.

Therefore, the successful transition required to propagate the value from the next

goal to the previous one in the GCRL framework of DCIL-II (see (9.6)) is still collected.

Moreover, if the agent narrowly misses the goal, it can still perform a training rollout

for the next goal.

The AGS mechanism avoids premature termination of training rollouts when the

agent has narrowly missed a target. Therefore, it increases the number of training

rollouts performed for remote goals in τG .

10.3.3 The SR-DCIL algorithm

Given a single demonstration, the SR-DCIL algorithm first extracts the sequence of

goals and the elements required to construct the Demo-Buffer or to perform Value

Cloning. The DCIL GC-MDP is derived by extending states with goals and indices

exactly as in DCIL-II (see Section 9.2.1). Then, SR-DCIL runs a 2-step loop to learn

a policy that can be used to reach each goal sequentially. By doing so, the agent is

able to complete the complex demonstrated behavior. Algorithm 9 summarizes these

different steps.

Processing the demonstration

The sequence of goals is extracted in the same way as in DCIL-I and DCIL-II. The

demonstrated states are projected in the goal space and the demonstration is split

into Ng oal sub-trajectories of equal arc lengths ϵdist as in Chapters 8 and 9. For each

sub-trajectory in the goal space, we extract its final elements and concatenate them to

construct τG .

If the internal actions of the demonstration are available, the DB can be constructed

using all the (state, action, next state) transitions of the demonstration. The states and

next states in each transition are augmented with their associated goal in τG and the

corresponding index.

On the contrary, if internal actions are not available, we rely on VC to increase the value

of valid success states. In that case, we construct the VC dataset DV C by collecting

all the states in the demonstration, augmenting them with their associated goal and

index and calculating their theoretical discounted return.

144

Going a step further with Single-Reset DCIL Chapter 10

Algorithm 9 SR-DCIL

1: Input: π,Q,Q̄,τdemo ▷ actor/critic/target critic networks & demonstration
2: {gi }i∈[1,Ng oal s], Ddemo/V C ← extract(τdemo)
3: B ← [] ▷ replay-buffer
4: Qmax = {0}i∈[1,Ng oal s] ▷ Q-value thresholds (AGS)
5: for n = 1 : Nepi sode do ▷ Trajectory initialization
6: i ,Tle f t , s ← 0,Tmax ,env.reset()
7: success,done, l ast_i ndex ← F al se,F al se,F al se
8: Dqueue ,bAGS ← [], False ▷ AGS memory + boolean
9: while not done do ▷ Trajectory rollout

10: a ∼π(a|s, i , gi)
11: Dqueue .i nser t ((s, a, i))
12: s′,env_done,r ← env.step(a),0
13: if s′ ∈Sgi then ▷ success
14: r, success ← 1,Tr ue
15: l ast_i ndex ← (i ≥ nb_ski l l s)
16: i ′ ← i +1 ▷ index shift
17: Qmax ← upd ate_thr eshol d(Qmax ,Dqueue ,τG)
18: else if Q̄(s, i , gi , a) ≥Qmax then
19: Tl e f t ← k ▷ AGS activation
20: bAGS ← True
21: else if Tle f t ≤ 0 or env_done then ▷ failure
22: if bAGS = True then ▷ AGS switch
23: success, t i meout ← F al se,F al se
24: i ′ ← i +1
25: else
26: success, t i meout ← F al se,Tr ue
27: i ′ ← 0
28: else
29: success, t i meout ← F al se,F al se
30: i ′ ← i
31: if env_done or l ast_i ndex then
32: done ← Tr ue
33: Tl e f t ← Tle f t −1
34: B ← B + (s, gi , i , a, s′, gi ′ , i ′,r,done, success)
35: s, i ← s′, i ′

36: done ← done ∨ t i meout
37: SAC_update(π,Q,Q̄,B ,Ddemo/V C)

Main loop

SR-DCIL repeatedly performs trajectory rollouts in the environment using Approxi-

mated Goal Switching to collect training transitions. It combines an off-policy actor-

145

Chapter 10 Going a step further with Single-Reset DCIL

critic algorithm (e.g. the Soft Actor-Critic (SAC) algorithm (Haarnoja, Zhou, Abbeel,

et al., 2018)) with the HER-like relabelling mechanism of DCIL-II and DB or VC to

learn the goal-conditioned policy.

Collecting transitions SR-DCIL resets the agent in the unique reset state at the

beginning of the demonstration. The policy is conditioned on index 1 and the first

goal g1 in τG . The agent then starts a trajectory. During this trajectory, the current

goal gi is switched to the next one gi+1 in τG if the agent reaches gi (line 13) or if it

triggered AGS (lines 19 and 22).

If the agent switches from its current goal gi to the next one by actually reaching gi ,

the associated Q-value threshold Qk
gi

used by AGS is potentially updated (line 17). The

Q-value of the state-action pair taken k-steps ahead of the success is computed. If this

value is greater than Qk
gi

, it replaces it.

If the agent reaches each goal successively up to the final one, if it reaches a terminal

state or if a time limit is reached the current trajectory is interrupted and the agent is

reset to the unique reset state.

Policy update SR-DCIL performs a SAC update after each step in the environment.

If we use a DB to increase the value of valid success states, 80% of the sampled batch

of transitions used to perform the actor-critic update are training transitions and 20%

are demonstrated transitions from the DB. In the sampled batch of transitions, half

of the transitions are relabeled using the relabelling mechanism of DCIL-II (Chenu,

Serris, et al., 2022).

If we use VC instead of DB, 20% of the training batch for the value network updates

contains demonstrated states. Their target values correspond to the theoretical value

(see Section 10.3.2). The update of the actor remains unchanged.

10.3.4 Comparison of hypotheses

The SR-DCIL algorithm relies on three main hypotheses. First it relies on a weaker

assumption compared to DCIL-II. Indeed, we assume that the agent can be reset to

(or close to) the initial state of the demonstration. On the contrary, DCIL-II requires

that the agent can be reset in some selected demonstrated states.

In addition, if we use a DB to increase the value of valid success states, we also assume

146

Going a step further with Single-Reset DCIL Chapter 10

that expert actions are provided. Instead, if we rely on VC, this hypothesis is not

formulated. Although using DB benefits from additional information and should

allow the agent to learn faster than VC, learning from states only is crucial when the

actions used in the demonstration are difficult to collect (e.g. motion capture, human

guidance).

Finally, as a GCRL-based method, SR-DCIL requires a definition of the goal space and

the corresponding mapping from the state space to the goal space.

10.4 Experiments

In this Section, we start by presenting the experimental setup. We then present an

ablation study of the mechanisms designed to increase the value of valid success states

and to facilitate training for advanced goals in the sequence. Finally, we compare our

method to DCIL-II to assess the loss of sample efficiency induced by a weaker reset

assumption.

10.4.1 Experimental setup

We evaluate SR-DCIL in three environments presented in Section 8.5.1: the Dubins

Maze environment (Chenu, Perrin-Gilbert, and Sigaud, 2022), the Fetch environment

(Ecoffet et al., 2021) and the Humanoid Locomotion environment (Todorov et al.,

2012).

10.4.2 Baseline

To evaluate the drop in efficiency induced by resetting the agent to a single state, we

compare SR-DCIL to DCIL-II. Indeed, by resetting the agent to demonstrated states,

DCIL-II not only overcomes the limits underlined in Section 10.3.1, but it also learns

a complex behavior by training on short rollouts only (see Chapter 8). Therefore,

DCIL-II should be more sample efficient than RF-DCIL at learning complex behaviors.

10.4.3 Ablation study

Using the Dubins Maze and the Fetch environments, we compare five variants of

SR-DCIL. Two variants benefit from the availability of demonstrated action and use

DB to increase the value of valid success states. Two others assume that demonstrated

actions are not available and use VC instead. In both cases, one variant (called DB

147

Chapter 10 Going a step further with Single-Reset DCIL

w/ AGS or VC w/ AGS) uses AGS which helps the agent train for the furthest goals in

the sequence. The others (called DB w/o AGS or VC w/o AGS) do not use AGS. A final

variant called vanilla corresponds to the application of DCIL-II in the context of a

reset to a single state. This variant does not benefit from any mechanism to guide

the agent toward valid success state and does not use AGS to help the agent train on

distant goals.

While the Dubins Maze validates the utility of each mechanism, conducting a similar

ablation study in Fetch is mandatory to evaluate the impact of high-dimensional states

and action spaces on them.

Figure 10.4: Ablation study. Comparing different variants of SR-DCIL in the Dubins
Maze and the Fetch environments: we evaluate the success rates of SR-DCIL with two
different mechanisms (EB and VC) to encourage the agent to reach each goal via valid
success states. Both variants are evaluated with and without AGS. In addition, we
evaluate a vanilla version of SR-DCIL without AGS, VC or DB equivalent with DCIL-II
with a reset to a single state. The mean and standard deviation are computed over 10
seeds. The standard deviation is divided by two for better visualization.

Figure 10.4 presents the proportion of runs that solved the maze depending on the

number of training steps. First, we can notice that in both environments, the variants

of SR-DCIL using the DB benefit from the additional information contained in the

demonstration and outperform the variants using VC.

In addition, we can notice that the AGS mechanism results in a significant gain of

performance in the Dubins Maze both for SR-DCIL VC and SR-DCIL DB. However, in

the Fetch environment, SR-DCIL DB w/ AGS and SR-DCIL VC w/ AGS perform worse

148

Going a step further with Single-Reset DCIL Chapter 10

than their counterpart without AGS. We believe that two elements may be responsible

for this difference in performance. On the one hand, the sequence of goals is shorter

in Fetch compared to Dubins Maze (7 goals in Fetch compared to 17 goals in Dubins

Maze). Therefore, it is easier to train for every goal in the sequence in Fetch than in

Dubins Maze. On the other hand, while the Q-value threshold generalizes well in the

low-dimensional state space of the Dubins Maze (see its intuitive form in Figure 10.3),

it is difficult to ensure that it has an analogous form in the high-dimensional state

space of Fetch. In particular, poor generalization may easily occur, resulting in an

unexploitable threshold.

Finally, one should notice that, in Fetch, SR-DCIL VC only reaches a 65% success rate

as, in 35% of the runs, the agent fails to achieve the first goals via valid success states

and to learn how to grasp the object. Indeed, as shown in Figure 10.5, even if the

Value Cloning mechanism artificially increases the value of the demonstrated states

as expected, during these failed runs, the cloned value of demonstrated states has

no impact on the Q-value and the policy. Thus, the agent is not guided toward valid

success states.

Figure 10.5: Success and failure mode of VC. In the Fetch environment, 35% of the
runs fail to learn how to grasp the object. The Value Cloning mechanism sets the value
of the demonstrated states (value of the last demonstrated state before grasping in red)
to their theoretical value (in black) as expected. During successful runs (left panel),
the agent visits states similar to the demonstrated states. Therefore, the high value is
propagated in the Q-value (on-policy Q-value of the last state before grasping in blue)
which impacts the policy and guides the agent toward valid success states. However,
during failing runs (right panel), those states are hardly visited by the agent while
training. Therefore, their high value has little to no impact on the Q-value (on-policy
Q-value of the last state before grasping in blue) and the policy. As a result, the agent
is not guided toward valid success states.

149

Chapter 10 Going a step further with Single-Reset DCIL

We believe that this absence of impact of the cloned value of demonstrated states

on the Q-value results from the fact that the agent never visits states close to the

demonstrated ones. Indeed, if no transition to these states is collected in the training

RB, no update of the Q-value involving the cloned value can be performed. The agent

is never encouraged to navigate the demonstrated states while reaching the goals.

One might think that increasing the entropy coefficient of SAC would be sufficient

to encourage the agent to explore more and eventually find the demonstrated states.

However, according to our observations, increasing this coefficient does not prevent

these failure modes from appearing as it does not allow the agent to extensively explore

the state space. For instance, the demonstrated states correspond to particularly slow

approach speeds. In contrast, the agent is encouraged by the discount factor to

reach each goal as quickly as possible. Thus, the optimal character of the training

trajectories may prevent the agent from exploring states corresponding to slower

speeds and, therefore, prevents the agent from exploring states close to those of the

demonstration.

10.4.4 Comparison to the DCIL-II baseline

Figure 10.6: Comparison to DCIL-II. Comparing SR-DCIL EB and SR-DCIL VC in
the Dubins Maze, Fetch and Humanoid Locomotion environments: we evaluate the
success rates of SR-DCIL with two different mechanisms (EB and VC) to encourage
the agent to reach each goal via valid success states and compare it to DCIL-II. The
mean and standard deviation ranges over 10 seeds. The standard deviation is divided
by two for better visualization.

150

Going a step further with Single-Reset DCIL Chapter 10

In this section, we compare the best variants in each environment according to the

ablation study, to DCIL-II in the Dubins Maze, the Fetch and the Humanoid Loco-

motion environments. Figure 10.6 presents the proportion of runs that solved each

environment according to the number of training steps. Although using a weaker reset

assumption, SR-DCIL DB benefits from demonstrated actions and learns how to reach

goals sequentially with an efficiency close to DCIL-II. It even outperforms DCIL-II in

the Fetch environment. However, the limits of VC highlighted in the ablation study are

accentuated in the locomotion task. Indeed, VC solves the task only 10% of the runs.

10.5 Discussion & Conclusion

In this chapter, we have highlighted the importance of a strong reset assumption in

the GCRL framework of DCIL-II. Indeed, if the agent cannot be reset to demonstrated

states, the propagation of the value between successive goals is difficult. As a result,

the agent cannot be guided toward valid success states and fails to learn the complex

demonstrated behavior. In addition, training for distant goals while resetting the

agent at the beginning of the demonstration is difficult.

We have proposed RF-DCIL, an extension of DCIL-II that includes two types of mech-

anisms. First, two mechanisms called Demonstration Buffer and Value Cloning are

designed to encourage the agent to reach these valid success states even when we can

only reset the agent at the beginning of the demonstration. Then, a third mechanism

called Artificial Goal Switching is designed to help the agent train for the last goals in

the sequence while always being reset at the beginning of the demonstration.

One should note that the Demonstration Buffer and the Value Cloning mechanisms

do not make the same assumptions. Indeed, when using the Demonstration Buffer,

we assume access to demonstrated actions (an assumption not made in DCIL-II). In

that case, RF-DCIL is able to learn grasping and locomotion behaviors as efficiently

as DCIL-II. On the other hand, when using Value Cloning, we suppose we do not

have access to these actions (as in DCIL-II). However, Value Cloning has limitations

in complex environments with high-dimensional state spaces. Similarly, while very

helpful in low-dimensional state spaces, there is no benefit from using Artificial Goal

Switching in high-dimensional state spaces.

RF-DCIL constitutes a first step towards applying the DCIL approach directly on

physical robots. Indeed, RF-DCIL can learn a complex behavior from a single demon-

stration without the need for the agent to be reinitialized in demonstrated states that

are potentially difficult to access (e.g. state corresponding to an unstable position of a

humanoid robot). However, for the moment, only the variant requiring the demon-

151

Chapter 10 Going a step further with Single-Reset DCIL

strated actions currently provides satisfactory results in complex environments. For

this reason, further investigation is necessary to get a Value Cloning approach that

circumvents the identified failure modes.

152

11 Conclusion

11.1 Discussion

In this thesis, we aimed at the efficient resolution of a class of Hard Explorations

Problems (HEP) corresponding to continuous control in simulated environments

without exploitable objective functions. To do so, we relied on a sequential bias that

we assume is present in robotic tasks to improve the efficiency of Diversity Search

(DS) and Learning from Demonstration (LfD) algorithms.

First, we highlighted the non-locality of the mutation operator of DS when the policy

is highly non-linear and when the environment has complex dynamics. This analysis

revealed the need for more robust mutation operators in this context. We identified

two critical sources of non-locality: the policy and the environment. These two

sources of non-locality have been tackled separately by the DS community. Indeed,

the non-locality coming from complex policies such as large neural networks has

been tackled with approaches like Safe Mutations (Lehman et al., 2018; Bodnar et al.,

2020). On the other hand, the non-locality coming from the complex dynamics of the

environment cannot be tackled in an unknown environment. Therefore, the resulting

fragility of mutations has been circumvented by the combination of DS algorithms

with a learned model of the environment dynamics (Keller et al., 2020; Lim et al.,

2022).

With the identified fragility of the mutation operator in mind, rather than tackling

the identified source of non-locality individually, we proposed Novelty Search Skill

Chaining (NSSC). With NSSC, we adopted a Divide & Conquer strategy and decom-

posed a complex search for diverse behaviors into simpler searches for locally diverse

sub-behaviors. Despite overcoming the limits induced by the fragility of the mutation

operator in holonomic environments, our experiments in a maze with non-holonomic

153

Chapter 11 Conclusion

constraints showed that NSSC is limited in this context. Indeed, when the search for

diversity is guided by low-dimensional behavior characterization, the state from which

NSSC should explore locally is not fully conditioned. In certain cases, this state may

be unfit for subsequent exploration. We called this state an invalid exploration state.

Such states make the forward construction of a skill chain difficult, which led us to

consider a different strategy to efficiently tackle HEPs.

In the second part of our contributions, we changed our approach and proposed

to build on Learning from Demonstration (LfD). In order to tackle the poor sample

efficiency of LfD approaches when a unique demonstration is available, we adopted

again a Divide & Conquer strategy. Indeed, we decomposed the challenging task of

learning a complex behavior from a single demonstration into simpler sequential

goal-reaching tasks. Unlike NSSC, this approach has the advantage of learning a single

(goal-conditioned) policy instead of a chain of policies.

Again, our experiments in a non-holonomic maze showed that learning a sequence

of goal-reaching skills raises specific issues when the environment has a higher di-

mension than the goals. To circumvent these issues, we designed mechanisms to

encourage the agent to reach each intermediate goal only through valid success states,

i.e. states that are compatible with the achievement of the next goals. Combining

the sequential goal-reaching strategy and those mechanisms resulted in the Divide

& Conquer I algorithm (DCIL-I). Then, integrating these mechanisms directly in an

original extended Goal Conditioned RL framework yielded a more efficient version

called Divide & Conquer II (DCIL-II). We demonstrated that DCIL-II could tackle a

wide class of HEPs in simulation, including complex grasping and under-actuated

locomotion tasks, with unprecedented sample efficiency while learning from a single

demonstration.

Overall, the successes of DCIL-I and DCIL-II highlighted the importance of tar-

geting valid success states when reaching successive low-dimension goals in high-

dimensional state space. We argue that this limitation should be considered by any

approach relying on sequential goal-reaching, such as RL-based Hierarchical (Nachum

et al., 2018) or Skill-Chaining methods (Bagaria, Senthil, and Konidaris, 2021; Bagaria,

Senthil, Slivinski, et al., 2021). Moreover, we believe that there are two alternative

options to take this limitation into account. Either the agent is explicitly encouraged

to reach valid success states as in DCIL-I and DCIL-II, or the goals must contain suffi-

cient information to avoid invalid success states. This latter approach is probably the

best choice in a low-dimensional state space like the non-holonomic Dubins Maze.

However, we believe this option would struggle to scale to high-dimensional state

spaces as it would require powerful dimension reduction methods to avoid unreliable

154

Conclusion Chapter 11

distance-based sparse rewards.

Finally, the limitations of the first two DCIL approaches lied in their assumptions.

Indeed, DCIL-I and DCIL-II require that the agent can be reset to any state from the

demonstration. This assumption is not compatible with the long-term objective of

applying these methods to physical robots. Aware of these limitations, we finally

proposed several extensions to DCIL-II. One of them, RF-DCIL DB, at the cost of a

stronger assumption on the content of the demonstration, presents performances

close to DCIL-II in complex high-dimensional environments. The other RF-DCIL VC,

although promising in low-dimensional environments, cannot yet efficiently scale to

complex environments.

11.2 Conclusion & Perspective

The context of Hard Exploration Problems that we considered in this thesis corre-

sponds to a difficult configuration for learning algorithms. Indeed, the lack of guidance

caused by the absence of a well-defined objective function forces the agent to use

weaker learning signals (e.g. intrinsic motivation or demonstrations). However, effi-

cient learning of complex behaviors in this precise context is a necessary milestone

in developing the future generation of robots with fast adaptive capabilities that can

be deployed in unknown environments and used at a different scale than the current

generation.

In this thesis, we have shown that exploiting a sequentiality bias in robotics tasks and

adopting Divide & Conquer strategies can improve the efficiency of Diversity Search

and Reinforcement Learning from demonstration algorithms to a certain extent.

Combining Divide & Conquer strategy with DS algorithm to construct chains of skills

in a forward manner led to rather moderate results. Indeed, the limits of NSSC in non-

holonomic environments make it unfit for Robot Learning applications. Nevertheless,

the analysis provided in this thesis and the limits highlighted pave the way toward

more robust DS algorithms based on a similar strategy. In particular, based on the

identified problem of invalid exploration states in NSSC, an exciting research direction

could be to combine the proposed skill-chaining-based approach with an automatic

characterization of behaviors (Cully, 2019b; Paolo et al., 2020). Indeed, by including

more information in a low-dimensional behavior characterization, one could boost

the diversity of advanced states and, eventually, avoid falling into invalid exploration

state traps.

The unprecedented sample efficiency of the DCIL-II approach opens up the path

155

Chapter 11 Conclusion

toward robots equipped with fast complex behavior acquisition skills from a single

demonstration. However, the strong reset assumption in DCIL-II still prevents its

application to physical robots. This makes the improvement of single reset variants

an essential future work perspective. Based on the limited but promising results

of the Single-Reset variants of DCIL-II, future research could be directed toward

developing robust variants that make weaker assumptions. Indeed, the weaker the

assumptions, the closer we get to applying these approaches directly to physical robots.

We distinguish two levels of future research objectives: short-term goals leading to a

high-level, long-term goal. The first straightforward direction for future work should

be to tackle the exploration problem limiting the performance of the Value Cloning

mechanism in RF-DCIL (Chapter 10). Another short-term goal could be to explore

the combination of DCIL-II with a state distribution matching mechanism inspired

by PWIL (Dadashi et al., 2020). These two options could eventually result in a robust

SR-DCIL variant requiring a single state reset and state-based demonstrations only.

However, reaching these goals would still result in an approach assuming that the

agent can be reset somewhere. Despite being widely adopted in the RL community

(Zhu et al., 2020), we believe this assumption is often incompatible with the concept

of adaptive and autonomous robots. For instance, a humanoid robot learning to walk

must be lifted back to a standing position when reset to a single state. This likely

requires the intervention of a human supervisor or a hand-designed tutoring system.

Therefore, the optimal approach would be to avoid any reset. To do so, we may

learn several complementary tasks instead of a single task (A. Gupta et al., 2021). For

instance, returning to the humanoid robot example, one could imagine combining

the locomotion task with a stand-up task. Thus the agent first learns how to stand

up and then trains to walk. Each time the robot would fall, the learned stand-up task

would allow it to return to a standing position autonomously. While such end-to-end

learning requires considerable training costs, the DCIL approach opens the path

towards fast acquisition of each skill, using a single demonstration for each.

156

Bibliography

Darwin, Charles (1859). On the Origin of Species by Means of Natural Selection. Or the

Preservation of Favored Races in the Struggle for Life. Murray.

Mendel, Gregor (1865). Experiments in plant hybridisation.

Pearson, Karl (1901). “LIII. On lines and planes of closest fit to systems of points in

space”. In: The London, Edinburgh, and Dublin philosophical magazine and journal

of science 2.11, pp. 559–572.

Baum, Lyman Frank (1907). Ozma of Oz: Children’s Novel. CreateSpace Independent

Publishing Platform.

Collier, K. (1911). Percy the Mechanical Man: The First Robot of Comics.

Capek, K. (1921). R.U.R. Dover Thrift Editions: Plays.

Shannon, Claude Elwood (1948). “A mathematical theory of communication”. In: The

Bell system technical journal 27.3, pp. 379–423.

Asimov, Isaac (1950). I, Robot. Doubleday&Company, Inc.

Berlyne, Daniel E (1950). “Novelty and curiosity as determinants of exploratory be-

haviour”. In: British journal of psychology 41.1, p. 68.

Bellman, Richard (1957). “A Markovian decision process”. In: Journal of mathematics

and mechanics, pp. 679–684.

Dubins, Lester E (1957). “On curves of minimal length with a constraint on average

curvature, and with prescribed initial and terminal positions and tangents”. In:

American Journal of mathematics 79.3, pp. 497–516.

Bellman, Richard (1966). “Dynamic programming”. In: Science 153.3731, pp. 34–37.

Berlyne, Daniel E (1966). “Curiosity and Exploration: Animals spend much of their

time seeking stimuli whose significance raises problems for psychology.” In: Science

153.3731, pp. 25–33.

Bentley, Jon Louis (Sept. 1975a). “Multidimensional Binary Search Trees Used for

Associative Searching”. In: Commun. ACM 18.9, pp. 509–517. ISSN: 0001-0782.

– (1975b). “Multidimensional binary search trees used for associative searching”. In:

Communications of the ACM 18.9, pp. 509–517.

157

Chapter 11 BIBLIOGRAPHY

Bock, Hans Georg and Karl-Josef Plitt (1984). “A multiple shooting algorithm for direct

solution of optimal control problems”. In: IFAC Proceedings Volumes 17.2, pp. 1603–

1608.

Sutton, Richard S (1988). “Learning to predict by the methods of temporal differences”.

In: Machine learning 3.1, pp. 9–44.

Garcia, Carlos E, David M Prett, and Manfred Morari (1989). “Model predictive control:

Theory and practice—A survey”. In: Automatica 25.3, pp. 335–348.

reeds, James and Lawrence Shepp (1990). “Optimal paths for a car that goes both

forwards and backwards”. In: Pacific journal of mathematics 145.2, pp. 367–393.

Whitley, Darrell, Timothy Starkweather, and Christopher Bogart (1990). “Genetic

algorithms and neural networks: Optimizing connections and connectivity”. In:

Parallel computing 14.3, pp. 347–361.

Pomerleau, Dean A (1991). “Efficient training of artificial neural networks for au-

tonomous navigation”. In: Neural computation 3.1, pp. 88–97.

Schmidhuber, Jürgen (1991). “Curious model-building control systems”. In: Proc.

international joint conference on neural networks, pp. 1458–1463.

Dayan, Peter and Geoffrey E Hinton (1992). “Feudal Reinforcement Learning”. In:

Advances in Neural Information Processing Systems. Ed. by S. Hanson, J. Cowan, and

C. Giles. Vol. 5. Morgan-Kaufmann.

Watkins, Christopher JCH and Peter Dayan (1992). “Q-learning”. In: Machine learning

8.3, pp. 279–292.

Kaelbling, Leslie Pack (1993). “Learning to Achieve Goals”. In: IN PrOC. OF IJCAI-93.

Morgan Kaufmann, pp. 1094–1098.

Floreano, Dario and Francesco Mondada (1994). “Automatic creation of an autonomous

agent: Genetic evolution of a neural network driven robot”. In: From Animals to Ani-

mats 3: Proceedings of the Third International Conference on Simulation of Adaptive

Behavior. The MIT Press, pp. 421–430.

Blickle, Tobias and Lothar Thiele (Dec. 1996). “A Comparison of Selection Schemes

Used in Evolutionary Algorithms”. In: Evolutionary Computation 4.4, pp. 361–394.

ISSN: 1063-6560. DOI: 10 . 1162 / evco. 1996 . 4 . 4 . 361. eprint: https : / / direct . mit .

edu/evco/article- pdf/4/4/361/1492921/evco.1996.4.4 .361.pdf. URL: https:

//doi.org/10.1162/evco.1996.4.4.361.

Jain, Anil K, Jianchang Mao, and K Moidin Mohiuddin (1996). “Artificial neural net-

works: A tutorial”. In: Computer 29.3, pp. 31–44.

Schaal, Stefan (1996). “Learning from demonstration”. In: Advances in neural infor-

mation processing systems 9.

Atkeson, Christopher G. and Stefan Schaal (1997). “robot learning from demonstra-

tion”. In: ICML. Vol. 97, pp. 12–20.

158

https://doi.org/10.1162/evco.1996.4.4.361
https://direct.mit.edu/evco/article-pdf/4/4/361/1492921/evco.1996.4.4.361.pdf
https://direct.mit.edu/evco/article-pdf/4/4/361/1492921/evco.1996.4.4.361.pdf
https://doi.org/10.1162/evco.1996.4.4.361
https://doi.org/10.1162/evco.1996.4.4.361

BIBLIOGRAPHY Chapter 11

Hsu, D., J. -. Latombe, and R. Motwani (1997). “Path planning in expansive con-

figuration spaces”. In: Proceedings of International Conference on Robotics and

Automation. Vol. 3, 2719–2726 vol.3.

Knuth, Donald Ervin (1997). The art of computer programming. Vol. 3. Pearson Educa-

tion.

Mitchell, Tom M (1997). Machine learning. Vol. 1. 9. McGraw-hill New York.

Hsu, David et al. (1998). “On Finding Narrow Passages with Probabilistic Roadmap

Planners”. In: Proceedings of the Third Workshop on the Algorithmic Foundations of

Robotics on Robotics: The Algorithmic Perspective: The Algorithmic Perspective. WAFr

98. Houston, Texas, USA: A. K. Peters, Ltd., pp. 141–153. ISBN: 1568810814.

LaValle, Steven M et al. (1998). “rapidly-exploring random trees: A new tool for path

planning”. In: The annual research report.

Lavalle, Steven M. (1998). Rapidly-Exploring Random Trees: A New Tool for Path Plan-

ning. Tech. rep. 98-11. Computer Science Department, Iowa State University.

Russell, Stuart (1998). “Learning agents for uncertain environments”. In: Proceedings

of the eleventh annual conference on Computational learning theory, pp. 101–103.

Sutton, Richard S and Andrew Barto (1998). reinforcement learning: an Introduction.

MIT press Cambridge.

Burl, Jeff B and Jeffrey B Burl (1999). Linear optimal control. Addison-Wesley [1999].

Moore, Andrew W., Leemon C. Baird, and Leslie Pack Kaelbling (1999). “Multi-Value-

Functions: Efficient Automatic Action Hierarchies for Multiple Goal MDPs”. In:

IJCAI.

Schaal, Stefan (1999). “Is imitation learning the route to humanoid robots?” In: Trends

in cognitive sciences 3.6, pp. 233–242.

Sutton, Richard S, Doina Precup, and Satinder Singh (1999). “Between MDPs and

semi-MDPs: A framework for temporal abstraction in reinforcement learning”. In:

Artificial intelligence 112.1-2, pp. 181–211.

Precup, Doina (2000). Temporal abstraction in reinforcement learning. University of

Massachusetts Amherst.

Aggarwal, Charu C, Alexander Hinneburg, and Daniel A Keim (2001). “On the sur-

prising behavior of distance metrics in high dimensional space”. In: International

conference on database theory. Springer, pp. 420–434.

Gopnik, Alison, Andrew Meltzoff, and Patricia Kuhl (Mar. 2001). The Scientist in the

Crib: Minds, Brains and How Children Learn. Vol. 189. ISBN: 0-688-17788-3. DOI:

10.1097/00005053-200103000-00011.

Brafman, Ronen I and Moshe Tennenholtz (2002). “r-max-a general polynomial time

algorithm for near-optimal reinforcement learning”. In: Journal of Machine Learning

Research 3.Oct, pp. 213–231.

159

https://doi.org/10.1097/00005053-200103000-00011

Chapter 11 BIBLIOGRAPHY

Deb, Kalyanmoy et al. (2002). “A fast and elitist multiobjective genetic algorithm:

NSGA-II”. In: IEEE transactions on evolutionary computation 6.2, pp. 182–197.

Kearns, Michael and Satinder Singh (2002). “Near-optimal reinforcement learning in

polynomial time”. In: Machine learning 49.2, pp. 209–232.

Stanley, Kenneth O and Risto Miikkulainen (2002). “Evolving neural networks through

augmenting topologies”. In: Evolutionary computation 10.2, pp. 99–127.

Eiben, Agoston E, James E Smith, et al. (2003). Introduction to evolutionary computing.

Vol. 53. Springer.

Uicker, John Joseph et al. (2003). Theory of machines and mechanisms. Vol. 768. Oxford

University Press New York.

Kajita, Shuuji et al. (2004). “Biped walking on a low friction floor”. In: 2004 IEEE/rSJ

International Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No.

04CH37566). Vol. 4. IEEE, pp. 3546–3552.

Ashlock, Daniel (2006). Evolutionary computation for modeling and optimization.

Vol. 571. Springer.

Diehl, Moritz et al. (2006). “Fast direct multiple shooting algorithms for optimal robot

control”. In: Fast motions in biomechanics and robotics. Springer, pp. 65–93.

LaValle, Steven M (2006). Planning algorithms. Cambridge university press.

Calinon, Sylvain and Aude Billard (2007). “Incremental learning of gestures by imita-

tion in a humanoid robot”. In: pp. 255–262.

Peters, Jan and Stefan Schaal (2007). “Reinforcement learning by reward-weighted

regression for operational space control”. In: Proceedings of the 24th international

conference on Machine learning, pp. 745–750.

Billard, Aude et al. (2008). “robot programming by demonstration”. In: Springer hand-

book of robotics. Springer, pp. 1371–1394.

Ziebart, Brian D et al. (2008). “Maximum entropy inverse reinforcement learning.” In:

Aaai. Vol. 8. Chicago, IL, USA, pp. 1433–1438.

Hastie, Trevor et al. (2009). The elements of statistical learning: data mining, inference,

and prediction. Vol. 2. Springer.

Konidaris, George and Andrew Barto (2009). “Skill discovery in continuous reinforce-

ment learning domains using skill chaining”. In: Advances in neural information

processing systems 22.

Stanley, Kenneth O, David B D’Ambrosio, and Jason Gauci (2009). “A hypercube-based

encoding for evolving large-scale neural networks”. In: Artificial life 15.2, pp. 185–

212.

Calinon, Sylvain et al. (2010). “Learning and reproduction of gestures by imitation”.

In: IEEE Robotics & Automation Magazine 17.2, pp. 44–54.

Konidaris, George et al. (2010). “Constructing Skill Trees for Reinforcement Learning

Agents from Demonstration Trajectories”. In: Advances in Neural Information Pro-

160

BIBLIOGRAPHY Chapter 11

cessing Systems. Ed. by J. Lafferty et al. Vol. 23. Curran Associates, Inc. URL: https:

//proceedings.neurips.cc/paper/2010/file/27ed0fb950b856b06e1273989422e7d3-

Paper.pdf.

Ross, Stéphane and Drew Bagnell (May 2010). “Efficient Reductions for Imitation

Learning”. In: Proceedings of the Thirteenth International Conference on Artificial

Intelligence and Statistics. Ed. by Yee Whye Teh and Mike Titterington. Vol. 9. Pro-

ceedings of Machine Learning Research. Chia Laguna resort, Sardinia, Italy: PMLR,

pp. 661–668. URL: https://proceedings.mlr.press/v9/ross10a.html.

Cengel, Yunus A, Michael A Boles, and Mehmet Kanoğlu (2011). Thermodynamics: an

engineering approach. Vol. 5. McGraw-hill New York.

Dalibard, Sébastien and Jean-Paul Laumond (2011). “Linear dimensionality reduction

in random motion planning”. In: The International Journal of Robotics Research

30.12, pp. 1461–1476.

Kober, Jens and Jan Peters (2011). “Policy search for motor primitives in robotics”. In:

Machine learning 84.1, pp. 171–203.

Lehman, Joel and Kenneth O Stanley (June 2011a). “Abandoning Objectives: Evolution

Through the Search for Novelty Alone”. en. In: Evolutionary Computation 19.2,

pp. 189–223. ISSN: 1063-6560, 1530-9304. (Visited on 02/18/2020).

– (2011b). “Improving evolvability through novelty search and self-adaptation”. In:

2011 IEEE congress of evolutionary computation (CEC). IEEE, pp. 2693–2700.

Levy, Kfir Y and Nahum Shimkin (2011). “Unified inter and intra options learning

using policy gradient methods”. In: European Workshop on Reinforcement Learning.

Springer, pp. 153–164.

Ross, Stéphane, Geoffrey Gordon, and Drew Bagnell (2011). “A reduction of imitation

learning and structured prediction to no-regret online learning”. In: Proceedings of

the fourteenth international conference on artificial intelligence and statistics. JMLr

Workshop and Conference Proceedings, pp. 627–635.

Awrejcewicz, Jan (2012). “Statics and Dynamics in Generalized Coordinates”. In: Clas-

sical Mechanics. Springer, pp. 107–206.

Connell, Jonathan H and Sridhar Mahadevan (2012). robot learning. Vol. 233. Springer

Science & Business Media.

Curcio, Bruna Da Rosa and Carmo Nogueira (2012). “Newborn adaptations and health-

care throughout the first age of the foal”. In: Animal Reproduction 9, pp. 182–187.

Latombe, Jean-Claude (2012). robot motion planning. Vol. 124. Springer Science &

Business Media.

Mason, Matthew T (2012). “Creation myths: The beginnings of robotics research”. In:

IEEE robotics & automation magazine 19.2, pp. 72–77.

161

https://proceedings.neurips.cc/paper/2010/file/27ed0fb950b856b06e1273989422e7d3-Paper.pdf
https://proceedings.neurips.cc/paper/2010/file/27ed0fb950b856b06e1273989422e7d3-Paper.pdf
https://proceedings.neurips.cc/paper/2010/file/27ed0fb950b856b06e1273989422e7d3-Paper.pdf
https://proceedings.mlr.press/v9/ross10a.html

Chapter 11 BIBLIOGRAPHY

Todorov, Emanuel, Tom Erez, and Yuval Tassa (2012). “MuJoCo: A physics engine

for model-based control”. In: 2012 IEEE/rSJ International Conference on Intelligent

Robots and Systems, pp. 5026–5033. DOI: 10.1109/IROS.2012.6386109.

Woolley, Brian G and Kenneth O Stanley (2012). “Exploring Promising Stepping Stones

by Combining Novelty Search with Interactive Evolution”. In: Corr abs/1207.6682.

arXiv: 1207.6682.

Bongard, Josh C (2013). “Evolutionary Robotics”. In: Communications of the ACM 56.8,

pp. 74–83.

Kingma, Diederik P and Max Welling (2013). “Auto-encoding variational bayes”. In:

arXiv preprint arXiv:1312.6114.

Kober, Jens, J Andrew Bagnell, and Jan Peters (2013). “reinforcement learning in

robotics: A survey”. In: The International Journal of Robotics Research 32.11, pp. 1238–

1274.

Mnih, Volodymyr et al. (2013). “Playing atari with deep reinforcement learning”. In:

arXiv preprint arXiv:1312.5602.

Tanedo, Flip (2013). “Notes on non-holonomic constraints”. In: P3318: Analytical

Mechanics.

Deb, Kalyanmoy and Debayan Deb (Feb. 2014). “Analysing mutation schemes for real-

parameter genetic algorithms”. In: International Journal of Artificial Intelligence

and Soft Computing 4, pp. 1–28.

Goodfellow, Ian J. et al. (2014). Generative Adversarial Networks. arXiv: 1406.2661

[stat.ML].

Gutierrez, Juan Manuel Parrilla et al. (2014). “Evolution of oil droplets in a chemorobotic

platform”. In: Nature communications 5.1, pp. 1–8.

Atkeson, Christopher G. et al. (2015). “No falls, no resets: reliable humanoid behavior

in the DARPA robotics challenge”. In: 2015 IEEE-RAS 15th International Conference

on Humanoid Robots (Humanoids), pp. 623–630. DOI: 10.1109/HUMANOIDS.2015.

7363436.

Cully, Antoine et al. (2015). “robots that can adapt like animals”. In: Nature 521.7553,

pp. 503–507.

Doncieux, Stephane et al. (2015). “Evolutionary Robotics: What, Why, and Where to”.

In: Frontiers in Robotics and AI 2. ISSN: 2296-9144. DOI: 10.3389/frobt.2015.00004.

URL: https://www.frontiersin.org/articles/10.3389/frobt.2015.00004.

Eiben, Agoston E and James E Smith (2015). “From evolutionary computation to the

evolution of things”. In: Nature 521.7553, pp. 476–482.

Kober, Jens, Michael Gienger, and Jochen J Steil (2015). “Learning movement primi-

tives for force interaction tasks”. In: 2015 IEEE International Conference on Robotics

and Automation (ICRA). IEEE, pp. 3192–3199.

162

https://doi.org/10.1109/IROS.2012.6386109
https://arxiv.org/abs/1207.6682
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://doi.org/10.1109/HUMANOIDS.2015.7363436
https://doi.org/10.1109/HUMANOIDS.2015.7363436
https://doi.org/10.3389/frobt.2015.00004
https://www.frontiersin.org/articles/10.3389/frobt.2015.00004

BIBLIOGRAPHY Chapter 11

Lillicrap, Timothy P et al. (2015). “Continuous control with deep reinforcement learn-

ing”. In: arXiv preprint arXiv:1509.02971.

Mouret, Jean-Baptiste and Jeff Clune (2015). “Illuminating search spaces by mapping

elites”. In: arXiv preprint arXiv:1504.04909.

Neumann, Klaus and Jochen J Steil (2015). “Learning robot motions with stable dynam-

ical systems under diffeomorphic transformations”. In: robotics and Autonomous

Systems 70, pp. 1–15.

Schaul, Tom et al. (2015). “Universal value function approximators”. In: International

conference on machine learning. PMLR, pp. 1312–1320.

Schulman, John et al. (2015). “Trust region policy optimization”. In: International

conference on machine learning. PMLR, pp. 1889–1897.

Stadie, Bradly C, Sergey Levine, and Pieter Abbeel (2015). “Incentivizing exploration in

reinforcement learning with deep predictive models”. In: arXiv preprint arXiv:1507.00814.

Bellemare, Marc et al. (2016). “Unifying count-based exploration and intrinsic motiva-

tion”. In: Advances in neural information processing systems 29.

Benureau, Fabien and Pierre-Yves Oudeyer (Mar. 2016). “Behavioral Diversity Genera-

tion in Autonomous Exploration through reuse of Past Experience”. en. In: Frontiers

in Robotics and AI 3, pp. 1–2. ISSN: 2296-9144. (Visited on 02/18/2020).

Brockman, Greg et al. (2016). “Openai gym”. In: arXiv preprint arXiv:1606.01540.

Forestier, Sebastien and Pierre-Yves Oudeyer (Oct. 2016). “Modular active curiosity-

driven discovery of tool use”. en. In: 2016 IEEE/rSJ International Conference on

Intelligent robots and Systems (IROS). Daejeon, South Korea: IEEE, pp. 3965–3972.

ISBN: 978-1-5090-3762-9. (Visited on 02/18/2020).

Goodfellow, Ian J., Yoshua Bengio, and Aaron Courville (2016). Deep learning. MIT

press.

Gregor, Karol, Danilo Jimenez Rezende, and Daan Wierstra (2016). “Variational intrin-

sic control”. In: arXiv preprint arXiv:1611.07507.

Ho, Jonathan and Stefano Ermon (2016a). “Generative Adversarial Imitation Learning”.

In: Corr abs/1606.03476. arXiv: 1606.03476. URL: http://arxiv.org/abs/1606.03476.

– (2016b). “Generative adversarial imitation learning”. In: Advances in neural infor-

mation processing systems 29.

Houthooft, Rein et al. (2016). “Vime: Variational information maximizing exploration”.

In: Advances in neural information processing systems 29.

Oudeyer, Pierre-Yves and Linda Smith (Mar. 2016). “How Evolution May Work Through

Curiosity-Driven Developmental Process”. In: Topics in cognitive science 8. DOI:

10.1111/tops.12196.

Perrin, Nicolas and Philipp Schlehuber-Caissier (2016). “Fast diffeomorphic matching

to learn globally asymptotically stable nonlinear dynamical systems”. In: Systems &

Control Letters 96, pp. 51–59.

163

https://arxiv.org/abs/1606.03476
http://arxiv.org/abs/1606.03476
https://doi.org/10.1111/tops.12196

Chapter 11 BIBLIOGRAPHY

Peters, Jan et al. (2016). “robot learning”. In: Springer Handbook of Robotics. Springer,

pp. 357–398.

Silver, David et al. (2016). “Mastering the game of Go with deep neural networks and

tree search”. In: nature 529.7587, pp. 484–489.

Andrychowicz, Marcin et al. (2017). “Hindsight experience replay”. In: arXiv preprint

arXiv:1707.01495.

Arjovsky, Martin, Soumith Chintala, and Léon Bottou (2017). “Wasserstein generative

adversarial networks”. In: International conference on machine learning. PMLR,

pp. 214–223.

Arulkumaran, Kai et al. (2017). “Deep reinforcement learning: A brief survey”. In: IEEE

Signal Processing Magazine 34.6, pp. 26–38.

Bacon, Pierre-Luc, Jean Harb, and Doina Precup (2017). “The option-critic archi-

tecture”. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 31.

1.

Florensa, Carlos et al. (2017). “reverse curriculum generation for reinforcement learn-

ing”. In: Conference on robot learning. PMLR, pp. 482–495.

Gangwani, Tanmay and Jian Peng (2017). “Policy optimization by genetic distillation”.

In: arXiv preprint arXiv:1711.01012.

Hutter, Marco et al. (2017). “Anymal-toward legged robots for harsh environments”.

In: Advanced Robotics 31.17, pp. 918–931.

Klissarov, Martin et al. (2017). “Learnings options end-to-end for continuous action

tasks”. In: arXiv preprint arXiv:1712.00004.

Laschi, Cecilia et al. (2017). Soft Robotics: Trends, Applications and Challenges. Vol. 17.

Springer.

Pathak, Deepak et al. (2017). “Curiosity-driven exploration by self-supervised predic-

tion”. In: International conference on machine learning. PMLR, pp. 2778–2787.

Polydoros, Athanasios S and Lazaros Nalpantidis (2017). “Survey of model-based rein-

forcement learning: Applications on robotics”. In: Journal of Intelligent & Robotic

Systems 86.2, pp. 153–173.

Salimans, Tim et al. (2017). “Evolution strategies as a scalable alternative to reinforce-

ment learning”. In: arXiv preprint arXiv:1703.03864.

Schulman, John et al. (2017). “Proximal policy optimization algorithms”. In: arXiv

preprint arXiv:1707.06347.

Silver, David et al. (2017). “Mastering the game of Go without human knowledge”. In:

Nature 550.7676, pp. 354–359.

Stadie, Bradly C, Pieter Abbeel, and Ilya Sutskever (2017). “Third-person imitation

learning”. In: arXiv preprint arXiv:1703.01703.

164

BIBLIOGRAPHY Chapter 11

Such, Felipe Petroski et al. (2017). “Deep Neuroevolution: Genetic Algorithms Are

a Competitive Alternative for Training Deep Neural Networks for Reinforcement

Learning”. In: Corr abs/1712.06567, pp. 1–2. arXiv: 1712.06567.

Tang, Haoran et al. (2017). “# exploration: A study of count-based exploration for deep

reinforcement learning”. In: Advances in neural information processing systems 30.

Vecerik, Mel et al. (2017). “Leveraging demonstrations for deep reinforcement learning

on robotics problems with sparse rewards”. In: arXiv preprint arXiv:1707.08817.

Burda, Yuri, Harrison Edwards, Deepak Pathak, et al. (2018). “Large-scale study of

curiosity-driven learning”. In: arXiv preprint arXiv:1808.04355.

Burda, Yuri, Harrison Edwards, Amos Storkey, et al. (2018). “Exploration by random

network distillation”. In: arXiv preprint arXiv:1810.12894.

Colas, Cédric, Olivier Sigaud, and Pierre-Yves Oudeyer (2018). “GEP-PG: Decoupling

Exploration and Exploitation in Deep Reinforcement Learning Algorithms”. In: Corr

abs/1802.05054. arXiv: 1802.05054.

Cully, Antoine and Yiannis Demiris (2018a). “Hierarchical behavioral repertoires with

unsupervised descriptors”. In: Proceedings of the Genetic and Evolutionary Compu-

tation Conference, pp. 69–76.

– (2018b). “Quality and Diversity Optimization: A Unifying Modular Framework”. In:

IEEE Transactions on Evolutionary Computation 22.2, pp. 245–259.

Doncieux, Stephane et al. (2018). “Open-ended learning: a conceptual framework

based on representational redescription”. In: Frontiers in neurorobotics 12, p. 59.

Eysenbach, Benjamin et al. (2018). “Diversity is all you need: Learning skills without a

reward function”. In: arXiv preprint arXiv:1802.06070.

Faust, Aleksandra et al. (2018). “Prm-rl: Long-range robotic navigation tasks by com-

bining reinforcement learning and sampling-based planning”. In: 2018 IEEE Inter-

national Conference on Robotics and Automation (ICRA). IEEE, pp. 5113–5120.

Florensa, Carlos et al. (2018). “Automatic goal generation for reinforcement learning

agents”. In: International conference on machine learning. PMLR, pp. 1515–1528.

Fujimoto, Scott, Herke Hoof, and David Meger (2018). “Addressing function approx-

imation error in actor-critic methods”. In: International Conference on Machine

Learning. PMLR, pp. 1587–1596.

Gottlieb, Jacqueline and Pierre-Yves Oudeyer (2018). “Towards a neuroscience of

active sampling and curiosity”. In: Nature Reviews Neuroscience 19.12, pp. 758–770.

Griffiths, David J and Darrell F Schroeter (2018). Introduction to quantum mechanics.

Cambridge university press.

Haarnoja, Tuomas, Aurick Zhou, Pieter Abbeel, et al. (2018). “Soft actor-critic: Off-

policy maximum entropy deep reinforcement learning with a stochastic actor”. In:

International conference on machine learning. PMLR, pp. 1861–1870.

165

https://arxiv.org/abs/1712.06567
https://arxiv.org/abs/1802.05054

Chapter 11 BIBLIOGRAPHY

Haarnoja, Tuomas, Aurick Zhou, Kristian Hartikainen, et al. (2018). “Soft actor-critic

algorithms and applications”. In: arXiv preprint arXiv:1812.05905.

Harb, Jean et al. (2018). “When waiting is not an option: Learning options with a

deliberation cost”. In: Proceedings of the AAAI Conference on Artificial Intelligence.

Vol. 32. 1.

Henderson, Peter et al. (2018). “OptionGAN: Learning joint reward-policy options

using generative adversarial inverse reinforcement learning”. In: Proceedings of the

AAAI conference on artificial intelligence. Vol. 32.

Kang, Bingyi, Zequn Jie, and Jiashi Feng (2018). “Policy optimization with demonstra-

tions”. In: International conference on machine learning. PMLR, pp. 2469–2478.

Kleinbort, Michal et al. (Sept. 2018). “Probabilistic completeness of RRT for geometric

and kinodynamic planning with forward propagation”. en. In: arXiv:1809.07051 [cs].

arXiv: 1809.07051. (Visited on 02/20/2020).

Kostrikov, Ilya, Kumar Krishna Agrawal, Debidatta Dwibedi, et al. (2018). “Discriminator-

actor-critic: Addressing sample inefficiency and reward bias in adversarial imitation

learning”. In: arXiv preprint arXiv:1809.02925.

Kostrikov, Ilya, Kumar Krishna Agrawal, Sergey Levine, et al. (2018). “Addressing Sam-

ple Inefficiency and Reward Bias in Inverse Reinforcement Learning”. In: Corr

abs/1809.02925. arXiv: 1809.02925. URL: http://arxiv.org/abs/1809.02925.

Krotkov, Eric et al. (2018). “The DARPA Robotics Challenge Finals: Results and Perspec-

tives”. In: The DARPA Robotics Challenge Finals: Humanoid Robots To The Rescue.

Ed. by Matthew Spenko, Stephen Buerger, and Karl Iagnemma. Cham: Springer

International Publishing, pp. 1–26. ISBN: 978-3-319-74666-1. DOI: 10.1007/978-3-

319-74666-1_1. URL: https://doi.org/10.1007/978-3-319-74666-1_1.

Lehman, Joel et al. (May 2018). “Safe Mutations for Deep and recurrent Neural Net-

works through Output Gradients”. en. In: arXiv:1712.06563 [cs]. arXiv: 1712.06563.

(Visited on 03/09/2021).

Marsh, Allison (2018). Elektro the Moto-Man Had the Biggest Brain at the 1939 World’s

Fair. URL: https://spectrum.ieee.org/amp/elektro-the-motoman-had-the-biggest-

brain-at-the-1939-worlds-fair-2650277507.

Merel, Josh et al. (2018). “Hierarchical visuomotor control of humanoids”. In: arXiv

preprint arXiv:1811.09656.

Nachum, Ofir et al. (2018). “Data-efficient hierarchical Reinforcement learning”. In:

Advances in neural information processing systems 31.

Nair, Ashvin et al. (2018). “Overcoming exploration in reinforcement learning with

demonstrations”. In: 2018 IEEE international conference on robotics and automation

(ICRA). IEEE, pp. 6292–6299.

Nair, Ashvin V et al. (2018). “Visual reinforcement learning with imagined goals”. In:

Advances in neural information processing systems 31.

166

https://arxiv.org/abs/1809.02925
http://arxiv.org/abs/1809.02925
https://doi.org/10.1007/978-3-319-74666-1_1
https://doi.org/10.1007/978-3-319-74666-1_1
https://doi.org/10.1007/978-3-319-74666-1_1
https://spectrum.ieee.org/amp/elektro-the-motoman-had-the-biggest-brain-at-the-1939-worlds-fair-2650277507
https://spectrum.ieee.org/amp/elektro-the-motoman-had-the-biggest-brain-at-the-1939-worlds-fair-2650277507

BIBLIOGRAPHY Chapter 11

Peng, Xue Bin et al. (2018). “Deepmimic: Example-guided deep reinforcement learning

of physics-based character skills”. In: ACM Transactions On Graphics (TOG) 37.4,

pp. 1–14.

Pourchot, Aloïs and Olivier Sigaud (2018). “CEM-rL: Combining evolutionary and

gradient-based methods for policy search”. In: Corr abs/1810.01222. arXiv: 1810.

01222.

Raffin, Antonin (2018). rL Baselines Zoo. https://github.com/araffin/rl-baselines-zoo.

Resnick, Cinjon et al. (2018). “Backplay:" Man muss immer umkehren"”. In: arXiv

preprint arXiv:1807.06919.

Salimans, Tim and Richard Chen (2018). “Learning montezuma’s revenge from a single

demonstration”. In: arXiv preprint arXiv:1812.03381.

Sermanet, Pierre et al. (2018). “Time-contrastive networks: Self-supervised learning

from video”. In: 2018 IEEE international conference on robotics and automation

(ICRA). IEEE, pp. 1134–1141.

Silver, David et al. (2018). “A general reinforcement learning algorithm that masters

chess, shogi, and Go through self-play”. In: Science 362.6419, pp. 1140–1144.

Silvério, Joao et al. (2018). “Probabilistic learning of torque controllers from kinematic

and force constraints”. In: 2018 IEEE/rSJ International Conference on Intelligent

Robots and Systems (IROS). IEEE, pp. 1–8.

Such Petroski, Felipe et al. (Apr. 2018). “Deep Neuroevolution: Genetic Algorithms

Are a Competitive Alternative for Training Deep Neural Networks for reinforcement

Learning”. en. In: arXiv:1712.06567 [cs]. arXiv: 1712.06567. (Visited on 02/25/2020).

Akkaya, Ilge et al. (2019). “Solving rubik’s cube with a robot hand”. In: arXiv preprint

arXiv:1910.07113.

Aubret, Arthur, Laetitia Matignon, and Salima Hassas (2019). “A survey on intrinsic

motivation in reinforcement learning”. In: arXiv preprint arXiv:1908.06976.

Bagaria, Akhil and George Konidaris (2019). “Option discovery using deep skill chain-

ing”. In: International Conference on Learning Representations.

Behbahani, Feryal et al. (2019). “Learning from demonstration in the wild”. In: 2019

International Conference on Robotics and Automation (ICRA). IEEE, pp. 775–781.

Colas, Cédric, Olivier Sigaud, and Pierre-Yves Oudeyer (2019). “A Hitchhiker’s Guide to

Statistical Comparisons of Reinforcement Learning Algorithms”. In: arXiv preprint

arXiv:1904.06979.

Cully, Antoine (2019a). “Autonomous skill discovery with Quality-Diversity and Unsu-

pervised Descriptors”. In: Corr abs/1905.11874. arXiv: 1905.11874.

– (2019b). “Autonomous skill discovery with quality-diversity and unsupervised de-

scriptors”. In: Proceedings of the Genetic and Evolutionary Computation Conference,

pp. 81–89.

167

https://arxiv.org/abs/1810.01222
https://arxiv.org/abs/1810.01222
https://github.com/araffin/rl-baselines-zoo
https://arxiv.org/abs/1905.11874

Chapter 11 BIBLIOGRAPHY

Ding, Yiming et al. (2019). “Goal-conditioned Imitation Learning”. In: Corr abs/1906.05838.

arXiv: 1906.05838. URL: http://arxiv.org/abs/1906.05838.

Ecoffet, Adrien et al. (2019a). Go-Explore: a New Approach for Hard-Exploration Prob-

lems. arXiv: 1901.10995 [cs.LG].

– (2019b). “Go-explore: a new approach for hard-exploration problems”. In: arXiv

preprint arXiv:1901.10995.

Eysenbach, Benjamin, Russ R Salakhutdinov, and Sergey Levine (2019). “Search on

the replay buffer: Bridging planning and reinforcement learning”. In: Advances in

Neural Information Processing Systems 32.

Forestier, Sebastien (2019). “Intrinsically Motivated Goal Exploration in Child Devel-

opment and Artificial Intelligence: Learning and Development of Speech and Tool

Use”. PhD thesis. U. Bordeaux.

Fujimoto, Scott, David Meger, and Doina Precup (2019). “Off-policy deep reinforce-

ment learning without exploration”. In: International conference on machine learn-

ing. PMLR, pp. 2052–2062.

Goecks, Vinicius G et al. (2019). “Integrating behavior cloning and reinforcement

learning for improved performance in dense and sparse reward environments”. In:

arXiv preprint arXiv:1910.04281.

Hansen, Steven et al. (2019). “Fast task inference with variational intrinsic successor

features”. In: arXiv preprint arXiv:1906.05030.

Justesen, Niels, Sebastian Risi, and Jean-Baptiste Mouret (2019). “Map-elites for noisy

domains by adaptive sampling”. In: Proceedings of the Genetic and Evolutionary

Computation Conference Companion, pp. 121–122.

Kumar, Aviral et al. (2019). “Stabilizing off-policy q-learning via bootstrapping error

reduction”. In: Advances in Neural Information Processing Systems 32.

Levy, Andrew et al. (2019). “Learning Multi-Level Hierarchies with Hindsight”. In:

ICLR.

Matheron, Guillaume, Nicolas Perrin, and Olivier Sigaud (2019). “The problem with

DDPG: understanding failures in deterministic environments with sparse rewards”.

In: arXiv preprint arXiv:1911.11679.

Nachum, Ofir et al. (2019). “Algaedice: Policy gradient from arbitrary experience”. In:

arXiv preprint arXiv:1912.02074.

Nasiriany, Soroush et al. (2019). “Planning with goal-conditioned policies”. In: Ad-

vances in Neural Information Processing Systems 32.

Paine, Tom Le et al. (2019). “Making efficient use of demonstrations to solve hard

exploration problems”. In: arXiv preprint arXiv:1909.01387.

Peng, Xue Bin et al. (2019). “Advantage-weighted regression: Simple and scalable

off-policy reinforcement learning”. In: arXiv preprint arXiv:1910.00177.

168

https://arxiv.org/abs/1906.05838
http://arxiv.org/abs/1906.05838
https://arxiv.org/abs/1901.10995

BIBLIOGRAPHY Chapter 11

Pong, Vitchyr H et al. (2019). “Skew-fit: State-covering self-supervised reinforcement

learning”. In: arXiv preprint arXiv:1903.03698.

Reddy, Siddharth, Anca D. Dragan, and Sergey Levine (2019). “Sqil: Imitation learning

via reinforcement learning with sparse rewards”. In: arXiv preprint arXiv:1905.11108.

Stanley, Kenneth O et al. (2019). “Designing neural networks through neuroevolution”.

In: Nature Machine Intelligence 1.1, pp. 24–35.

Tsitsimpelis, Ioannis et al. (2019). “A review of ground-based robotic systems for

the characterization of nuclear environments”. In: Progress in Nuclear Energy 111,

pp. 109–124. ISSN: 0149-1970. DOI: https://doi.org/10.1016/j.pnucene.2018.10.023.

URL: https://www.sciencedirect.com/science/article/pii/S0149197018302750.

Agarwal, Rishabh, Dale Schuurmans, and Mohammad Norouzi (2020). “An optimistic

perspective on offline reinforcement learning”. In: International Conference on

Machine Learning. PMLR, pp. 104–114.

Alpaydin, Ethem (2020). Introduction to machine learning. MIT press.

Bodnar, Cristian, Ben Day, and Pietro Lió (2020). “Proximal distilled evolutionary rein-

forcement learning”. In: Proceedings of the AAAI Conference on Artificial Intelligence.

Vol. 34. 04, pp. 3283–3290.

Campos, Víctor et al. (2020). “Explore, discover and learn: Unsupervised discovery

of state-covering skills”. In: International Conference on Machine Learning. PMLR,

pp. 1317–1327.

Cideron, Geoffrey et al. (2020). QD-RL: Efficient Mixing of Quality and Diversity in

Reinforcement Learning. arXiv: 2006.08505 [cs.AI].

Colas, Cédric et al. (2020). “Scaling map-elites to deep neuroevolution”. In: Proceedings

of the 2020 Genetic and Evolutionary Computation Conference, pp. 67–75.

Dadashi, Robert et al. (2020). “Primal wasserstein imitation learning”. In: arXiv preprint

arXiv:2006.04678.

Doncieux, Stephane et al. (2020). “Novelty Search Makes Evolvability Inevitable”.

In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference.

GECCO ’20. Cancún, Mexico: Association for Computing Machinery, pp. 85–93.

ISBN: 9781450371285.

Flageat, Manon and Antoine Cully (2020). “Fast and stable MAP-Elites in noisy do-

mains using deep grids”. In: arXiv preprint arXiv:2006.14253.

Gaier, Adam, Alexander Asteroth, and Jean-Baptiste Mouret (2020). “Discovering

representations for black-box optimization”. In: Proceedings of the 2020 Genetic and

Evolutionary Computation Conference, pp. 103–111.

Jauhri, Snehal, Carlos Celemin, and Jens Kober (2020). “Interactive imitation learning

in state-space”. In: arXiv preprint arXiv:2008.00524.

169

https://doi.org/https://doi.org/10.1016/j.pnucene.2018.10.023
https://www.sciencedirect.com/science/article/pii/S0149197018302750
https://arxiv.org/abs/2006.08505

Chapter 11 BIBLIOGRAPHY

Keller, Leon et al. (2020). “Model-based quality-diversity search for efficient robot

learning”. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS). IEEE, pp. 9675–9680.

Kuznetsov, Arsenii et al. (2020). “Controlling overestimation bias with truncated mix-

ture of continuous distributional quantile critics”. In: International Conference on

Machine Learning. PMLR, pp. 5556–5566.

Matheron, Guillaume (2020). “Integrating motion planning into reinforcement learn-

ing to solve hard exploration problems”. PhD thesis. Sorbonne Université.

Matheron, Guillaume, Nicolas Perrin, and Olivier Sigaud (2020). “PBCS: Efficient explo-

ration and exploitation using a synergy between reinforcement learning and motion

planning”. In: International Conference on Artificial Neural Networks. Springer,

pp. 295–307.

Paolo, Giuseppe et al. (2020). “Unsupervised learning and exploration of reachable

outcome space”. In: 2020 IEEE International Conference on Robotics and Automation

(ICRA). IEEE, pp. 2379–2385.

Pitis, Silviu et al. (2020). “Maximum entropy gain exploration for long horizon multi-

goal reinforcement learning”. In: International Conference on Machine Learning.

PMLR, pp. 7750–7761.

Ravichandar, Harish et al. (2020). “recent advances in robot learning from demon-

stration”. In: Annual review of control, robotics, and autonomous systems 3, pp. 297–

330.

Tsounis, Vassilios et al. (2020). “Deepgait: Planning and control of quadrupedal gaits

using deep reinforcement learning”. In: IEEE Robotics and Automation Letters 5.2,

pp. 3699–3706.

Yan, Mengyuan et al. (2020). “Learning topological motion primitives for knot plan-

ning”. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS). IEEE, pp. 9457–9464.

Zhu, Henry et al. (2020). “The ingredients of real-world robotic reinforcement learn-

ing”. In: arXiv preprint arXiv:2004.12570.

Amin, Susan et al. (2021). “A survey of exploration methods in reinforcement learning”.

In: arXiv preprint arXiv:2109.00157.

Arora, Saurabh and Prashant Doshi (2021). “A survey of inverse reinforcement learning:

Challenges, methods and progress”. In: Artificial Intelligence 297, p. 103500.

Bagaria, Akhil, Jason K Senthil, and George Konidaris (2021). “Skill discovery for ex-

ploration and planning using deep skill graphs”. In: International Conference on

Machine Learning. PMLR, pp. 521–531.

Bagaria, Akhil, Jason K Senthil, Matthew Slivinski, et al. (2021). “robustly Learning

Composable Options in Deep Reinforcement Learning”. In: Proceedings of the 30th

International Joint Conference on Artificial Intelligence.

170

BIBLIOGRAPHY Chapter 11

Chane-Sane, Elliot, Cordelia Schmid, and Ivan Laptev (2021). “Goal-conditioned

reinforcement learning with imagined subgoals”. In: International Conference on

Machine Learning. PMLR, pp. 1430–1440.

Chenu, Alexandre et al. (2021). “Selection-Expansion: A Unifying Framework for

Motion-Planning and Diversity Search Algorithms”. In: International Conference on

Artificial Neural Networks. Springer, pp. 568–579.

Colas, Cédric (June 2021). “Towards Vygotskian Autotelic Agents : Learning Skills with

Goals, Language and Intrinsically Motivated Deep Reinforcement Learning”. Theses.

Université de Bordeaux. URL: https://theses.hal.science/tel-03337625.

Ecoffet, Adrien et al. (2021). “First return, then explore”. In: Nature 590.7847, pp. 580–

586.

Eysenbach, Benjamin and Sergey Levine (2021). “Maximum entropy RL (provably)

solves some robust RL problems”. In: arXiv preprint arXiv:2103.06257.

Fujimoto, Scott and Shixiang Shane Gu (2021). “A minimalist approach to offline

reinforcement learning”. In: Advances in neural information processing systems 34,

pp. 20132–20145.

Gupta, Abhishek et al. (2021). “Reset-free reinforcement learning via multi-task learn-

ing: Learning dexterous manipulation behaviors without human intervention”.

In: 2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE,

pp. 6664–6671.

Johns, Edward (2021). “Coarse-to-fine imitation learning: robot manipulation from

a single demonstration”. In: 2021 IEEE International Conference on Robotics and

Automation (ICRA). IEEE, pp. 4613–4619.

Kamienny, Pierre-Alexandre et al. (2021). “Direct then Diffuse: Incremental Unsu-

pervised Skill Discovery for State Covering and Goal Reaching”. In: arXiv preprint

arXiv:2110.14457.

Kumar, Aviral et al. (2021). “Should I Run Offline Reinforcement Learning or Behavioral

Cloning?” In: Deep RL Workshop NeurIPS 2021.

Martin, Jesus Bujalance, Raphaël Chekroun, and Fabien Moutarde (2021). “Learning

from demonstrations with SACr2: Soft Actor-Critic with reward relabeling”. In: arXiv

preprint arXiv:2110.14464.

Nilsson, Olle and Antoine Cully (2021). “Policy Gradient Assisted MAP-Elites”. In:

Genetic and Evolutionary Computation Conference.

Raffin, Antonin et al. (2021). “Stable-Baselines3: reliable reinforcement Learning Im-

plementations”. In: Journal of Machine Learning Research.

Rakicevic, Nemanja, Antoine Cully, and Petar Kormushev (2021). “Policy Manifold

Search: Exploring the Manifold Hypothesis for Diversity-based Neuroevolution”. In:

Genetic and Evolutionary Computation Conference.

171

https://theses.hal.science/tel-03337625

Chapter 11 BIBLIOGRAPHY

Templier, Paul, Emmanuel Rachelson, and Dennis G Wilson (2021). “A geometric

encoding for neural network evolution”. In: Proceedings of the Genetic and Evolu-

tionary Computation Conference, pp. 919–927.

Wu, Yuchen, Melissa Mozifian, and Florian Shkurti (2021). “Shaping rewards for re-

inforcement learning with imperfect demonstrations using generative models”.

In: 2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE,

pp. 6628–6634.

Akakzia, Ahmed et al. (2022). “Help Me Explore: Minimal Social Interventions for

Graph-Based Autotelic Agents”. In: arXiv preprint arXiv:2202.05129.

Allard, Maxime et al. (2022). “Hierarchical Quality-Diversity for Online Damage Recov-

ery”. In: arXiv preprint arXiv:2204.05726.

Castanet, Nicolas, Sylvain Lamprier, and Olivier Sigaud (2022). “Stein Variational Goal

Generation For Reinforcement Learning in Hard Exploration Problems”. In: arXiv

preprint arXiv:2206.06719.

Celemin, Carlos et al. (2022). “Interactive imitation learning in robotics: A survey”. In:

Foundations and Trends® in Robotics 10.1-2, pp. 1–197.

Chalumeau, Felix et al. (2022). “Assessing Quality-Diversity Neuro-Evolution Algo-

rithms Performance in Hard Exploration Problems”. In: arXiv preprint arXiv:2211.13742.

Chenu, Alexandre, Nicolas Perrin-Gilbert, and Olivier Sigaud (2022). “Divide & Con-

quer Imitation Learning”. In: arXiv preprint arXiv:2204.07404.

Chenu, Alexandre, Olivier Serris, et al. (2022). “Leveraging Sequentiality in Reinforce-

ment Learning from a Single Demonstration”. In: arXiv preprint arXiv:2211.04786.

Colas, Cédric et al. (2022). “Autotelic agents with intrinsically motivated goal-conditioned

reinforcement learning: a short survey”. In: Journal of Artificial Intelligence Research

74, pp. 1159–1199.

Contributors, MuJoCo Menagerie (2022). MuJoCo Menagerie: A collection of high-

quality simulation models for MuJoCo. URL: http://github.com/deepmind/mujoco_

menagerie.

Gallouédec, Quentin and Emmanuel Dellandréa (2022). “Cell-Free Latent Go-Explore”.

In: arXiv preprint arXiv:2208.14928.

Gupta, Sthithpragya, Aradhana Nayak, and Aude Billard (2022). “Learning High Dimen-

sional Demonstrations Using Laplacian Eigenmaps”. In: arXiv preprint arXiv:2207.08714.

Huber, Johann et al. (2022). “E2r: a Hierarchical-Learning inspired Novelty-Search

method to generate diverse repertoires of grasping trajectories”. In: arXiv preprint

arXiv:2210.07887.

Hutsebaut-Buysse, Matthias, Kevin Mets, and Steven Latré (2022). “Hierarchical Rein-

forcement Learning: A Survey and Open Research Challenges”. In: Machine Learning

and Knowledge Extraction 4.1, pp. 172–221.

172

http://github.com/deepmind/mujoco_menagerie
http://github.com/deepmind/mujoco_menagerie

BIBLIOGRAPHY Chapter 11

Lim, Bryan et al. (2022). “Dynamics-aware quality-diversity for efficient learning of

skill repertoires”. In: 2022 International Conference on Robotics and Automation

(ICRA). IEEE, pp. 5360–5366.

Mészáros, Anna, Giovanni Franzese, and Jens Kober (2022). “Learning to Pick at Non-

Zero-Velocity From Interactive Demonstrations”. In: IEEE Robotics and Automation

Letters 7.3, pp. 6052–6059.

Morel, Aurélien et al. (2022). “Automatic Acquisition of a Repertoire of Diverse Grasp-

ing Trajectories through Behavior Shaping and Novelty Search”. In: arXiv preprint

arXiv:2205.08189.

Perrin-Gilbert, Nicolas (2022). xpag: a modular reinforcement learning library with

JAX agents. URL: https://github.com/perrin-isir/xpag.

Pierrot, Thomas et al. (2022). “Diversity Policy Gradient for Sample Efficient Quality-

Diversity Optimization”. In: ICLR Workshop on Agent Learning in Open-Endedness.

Prudencio, Rafael Figueiredo, Marcos Roa Maximo, and Esther Luna Colombini (2022).

“A Survey on Offline reinforcement Learning: Taxonomy, Review, and Open Prob-

lems”. In: arXiv preprint arXiv:2203.01387.

Sigaud, Olivier (2022). “Combining Evolution and Deep Reinforcement Learning for

Policy Search: a Survey”. In: arXiv preprint arXiv:2203.14009.

Tranzatto, Marco et al. (2022). “Cerberus: Autonomous legged and aerial robotic

exploration in the tunnel and urban circuits of the darpa subterranean challenge”.

In: arXiv preprint arXiv:2201.07067.

Wu, Philipp et al. (2022). “Daydreamer: World models for physical robot learning”. In:

arXiv preprint arXiv:2206.14176.

173

https://github.com/perrin-isir/xpag

	Acknowledgements
	Abstract (English/Français)
	Acronyms
	Introduction
	Motivation
	Research Question

	Outline & contributions

	I Background
	Background in robotics
	Representing the state of a robot
	Representing the position of a robot
	Representing the motion of a robot

	Background on Motion Planning
	Motion Planning problem definition
	Sampling-based Motion Planning algorithms
	Non-holonomic constraints

	Summary

	Background on Reinforcement Learning
	Reinforcement Learning framework
	Markov Decision Processes
	Value and Q-value functions

	Paving the way to Soft-Actor-Critic
	The MDP is known: Value Iteration
	The MDP is unknown: from Temporal Differences to Deep Q-learning
	The exploration/exploitation dilemma
	Soft Actor-Critic

	A well-defined reward function is crucial in RL
	Reward Shaping
	Intrinsic Motivations

	Goal-Conditioned Reinforcement Learning
	Distance-based sparse reward
	Relabelling
	Exploration in GCRL

	Can we use sampling-based MP algorithms to solve RL problems?
	High-dimensional search spaces
	Constrained expansions
	Reset assumption

	Summary

	Background on Neuro-Evolution
	Evolutionary Algorithms to solve RL problems
	Evolving Neural-Networks
	Diversity Search
	Novelty Search
	Goal-Exploration Processes
	Is Neuro-Evolution compatible with maximum entropy?

	Summary

	Learning from demonstrations
	Non-Interactive Imitation Learning
	Interactive Imitation Learning
	RL-based Imitation Learning
	Offline Reinforcement Learning
	Inverse Reinforcement Learning
	Reinforcement Learning from demonstration

	Summary

	II Contributions
	Analysis of the limitations of Diversity Search Neuro-Evolution
	Selection-Expansion: a unifying framework for Diversity Search and sampling-based Motion-Planning algorithms
	Selection-expansion algorithms
	Application to Motion Planning
	Application to diversity search algorithms
	Similarities between MP and DS algorithms
	Expansions in DS are often non-local

	Experimental study
	Experimental setup
	Metrics
	Implementation details

	Results
	Results on 3D ballistic throw
	Coverage visualization
	Results in SimpleMaze

	Conclusion

	Novelty Search Skill-Chaining: adopting a Divive & Conquer strategy
	Related Work
	Skill-chaining
	Returning to advanced states to explore

	Background
	Invalid Exploration States

	Method
	Deterministic Environments
	Skill-Chaining allows expansions to be local in the outcome space
	Viewing NSSC as a sampling-based MP algorithm
	NSSC in non-holonomic environments

	Experimental study
	Experimental Setup

	Conclusion

	Reinforcement Learning from a single demonstration with DCIL-I
	Introduction
	Background
	Valid success states

	Related work
	IL from a single demonstration
	Sequential Goal Reaching
	Value propagation mechanisms

	Methods
	Goal-Guided Imitation
	DCIL-I hypotheses
	The Divide & Conquer Imitation Learning I algorithm
	Value Clipping & discount factor choice for stable training

	Experiments
	Experimental setup
	Ablation study
	Comparison to baselines in Dubins Maze
	Scaling to a complex object manipulation task

	Improving the value propagation mechanism with DCIL-II
	Introduction
	Methods
	Problem statement
	The DCIL-II algorithm

	Bridging the gap between DCIL-II and similar approaches
	Experiments
	Environments
	Baselines
	Implementation details
	Ablation study
	Comparison to baselines
	Using DCIL-II to control a simulated Cassie bipedal platform

	Going a step further with Single-Reset DCIL
	Introduction
	Related Work
	Methods
	The importance of the reset hypothesis
	Using DCIL in the single-reset setting
	The SR-DCIL algorithm
	Comparison of hypotheses

	Experiments
	Experimental setup
	Baseline
	Ablation study
	Comparison to the DCIL-II baseline

	Discussion & Conclusion

	Conclusion
	Discussion
	Conclusion & Perspective

	Bibliography

