
HAL Id: tel-04354325
https://theses.hal.science/tel-04354325

Submitted on 19 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Public Domain

Algorithms for graphs on surfaces: from graph drawing
to graph encoding

Luca Castelli Aleardi

To cite this version:
Luca Castelli Aleardi. Algorithms for graphs on surfaces: from graph drawing to graph encoding.
Computational Geometry [cs.CG]. Université Paris Cité, 2022. �tel-04354325�

https://theses.hal.science/tel-04354325
https://hal.archives-ouvertes.fr

M É M O I R E D ’ H A B I L I TAT I O N À D I R I G E R D E S R E C H E R C H E S

(spécialité Informatique)
Université Paris Cité

A L G O R I T H M S F O R G R A P H S O N S U R FA C E S : F R O M G R A P H
D R AW I N G T O G R A P H E N C O D I N G

luca castelli aleardi

Soutenue publiquement le 27 juin 2022 en visio-conférence devant le jury composé de:

Nicolas bonichon MdC, HDR Université de Bordeaux

Erin wolf chambers Professeur Saint Louis University (rapporteur)

Giuseppe di battista Professeur Università Roma Tre (rapporteur)

Stefan felsner Professeur Technische Universität Berlin (rapporteur)

Claire mathieu DR CNRS Université Paris Cité

Luca Castelli Aleardi: Algorithms for graphs on surfaces: from graph drawing to
graph encoding, Mémoire d’habilitation à diriger des recherches, ©

C O M P L E T E P U B L I C AT I O N L I S T

Most results presented in this manuscript are not new and correspond to
works published after my PhD. The results obtained during my PhD are
not included in this manuscript.

publications obtained after my phd

Journals

[J6] L. Castelli Aleardi, É. Fusy and O. Devillers. Canonical ordering for graphs on the cylinder, with ap-
plications to periodic straight-line drawings on the flat cylinder and torus. J. of Computational Geometry
(JoCG), 9(1): 391-429, 2018.

Chap. 3, 5

[J5] L. Castelli Aleardi and O. Devillers. Array-based compact data structures for triangulations: Practical
solutions with theoretical guarantees. Journal of Computational Geometry (JoCG), 9(1): 247-289, 2018. Chap. 4

[J4] J. Barbay, L. Castelli Aleardi, M. He and J. I. Munro, Succinct Representation of Labeled Graphs.
Algorithmica 62(1-2): 224-257 (2012).

/

[J3] L. Castelli Aleardi, É. Fusy and T. Lewiner. Schnyder woods for higher genus triangulated surfaces,
with applications to encoding. Discrete and Computational Geometry (special issue of SoCG 2008), 32(3):
489-516, 2009.

Chap. 3, 4

Book chapters

[B1] L. Castelli Aleardi, O. Devillers, and J. Rossignac. Triangulation Data Structures. In Encyclopedia of
Algorithms 2016, Springer, p.2262-2267, 2016. Chap. 4

iii

International conferences

[C15]L. Castelli Aleardi. Balanced Schnyder woods for planar triangulations: an experimental study with
applications to graph drawing and graph separators. In Proc. of 27th Int. Symposium on Graph Drawing
and Network Visualization (GD 2019), Springer LNCS, vol. 11904, p. 114-121, 2019.

Chap. 6

[C14]L. Castelli Aleardi, S. Salihoglu, G. Singh and M. Ovsjanikov. Spectral Measures of Distortion for
Change Detection in Dynamic Graphs. In Proc. of 7th Int. Conference on Complex Networks and Their
Applications (Complex Networks 2018), Springer SCI, vol. 813, p. 54-66, 2018.

/

[C13]L. Castelli Aleardi, G. Denis and É. Fusy. Fast spherical drawing of planar triangulations: an experi-
mental study of graph drawing tools. In Proc. of 17th Int. Symposium on Experimental Algorithms (SEA
2018), LIPIcs, 24:1-24:14, 2018.

Chap. 5

[C12]L. Castelli Aleardi, A. Nolin and M. Ovsjanikov. Efficient and practical tree preconditioning for solv-
ing Laplacian systems. In Proc. of 14th Int. Symp. on Experimental Algorithms (SEA 2015), LNCS, vol.
9125, p. 219-231, 2015.

/

[C11]L. Castelli Aleardi, É. Fusy and A. Kostrygin. Periodic planar straight-frame drawings with polyno-
mial resolution. In Proc. of 11th Latin American Theoretical INformatics Symposium (LATIN 2014), LNCS,
vol. 8392, p. 168-179, 2014.

Chap. 5

[C10]L. Castelli Aleardi, O. Devillers, and É. Fusy. Canonical ordering for triangulations on the cylinder,
with applications to periodic straight-line drawings. In Proc. 20th Int Symp. on Graph Drawing (GD
2012), LNCS, vol. 7704, p. 376-387, 2012.

Chap. 5

[C9] L. Castelli Aleardi, O. Devillers, and J. Rossignac. ESQ: Editable SQuad representation for triangle
meshes. In Proc. of XXV SIBGRAPI - Conf. on Graphics, Patterns and Images (Sibgrapi 2012), IEEE Comp.
Soc., p. 110-117, 2012.

/

[C8] L. Castelli Aleardi and O. Devillers. Explicit array-based compact data structures for triangulations.
In Proc. of the 22th Int. Symp. on Algorithms and Computation (ISAAC 2011), LNCS, vol. 7074, p. 312-323. Chap. 4

[C7] L. Castelli Aleardi, É. Fusy and T. Lewiner. Optimal encoding of triangular and quadrangular meshes
with fixed topology, in Proc. of the 22nd Canadian Conf. on Comp. Geom. (CCCG 2010), p. 95-98, 2010. Chap. 4

[C6] L. Castelli Aleardi, É. Fusy and T. Lewiner. Schnyder woods for higher genus triangulated surfaces,
in Proc. of the 24th annual ACM Symp. on Computational Geometry (SoCG 2008), p. 311-319. Chap. 3, 4

[C5] J. Barbay, L. Castelli Aleardi, M. He and I. J. Munro. Succinct representations of labeled graphs, in
Proc. of the 18th Int. Sym. on Algorithms and Computation (ISAAC 2007), LNCS, vol. 4835, p. 316-328.

/

publications obtained during my phd

Journals

[J2] L. Castelli Aleardi, O. Devillers and Abdelkrim Mebarki. Catalog based repre-
sentation of 2D triangulations. Internat. J. Comput. Geom. Appl., 21(4): 393-402,
2011.

/

[J1] L. Castelli Aleardi, O. Devillers and Gilles Schaeffer. Succinct representa-
tions of planar maps, Theoretical Computer Science (special issue in honor of F.
Preparata), 408:174-187, 2008.

/

International conferences

[C4] L. Castelli Aleardi, O. Devillers and G. Schaeffer. Optimal succinct representations of planar
maps, in Proc. of the 22nd annual ACM Symposium on Computational Geometry (SoCG 2006), p.
309-318.

/

[C3] L. Castelli Aleardi, O. Devillers et A. Mebarki. 2D Triangulation representation using stable
catalogs, in Proc. of the 18th Canadian Conference on Computational Geometry (CCCG 2006), p.
71-74.

/

[C2] L. Castelli Aleardi, O. Devillers et G. Schaeffer. Succinct representation of triangulations with
a boundary, in Proc. of the 9th Workshop on Algorithms and Data Structures (WADS 2005), LNCS,
vol. 3608, p. 134-145.

/

[C1] L. Castelli Aleardi, O. Devillers and G. Schaeffer. Dynamic updates of succinct triangulations,
in Proc. of the 17th Canadian Conference on Computational Geometry (CCCG 2005), p. 135-138.

/

iv

A C K N O W L E D G E M E N T S

I extend my gratitude to my parents, Manlio Castelli and Maria Grazia
Aleardi, and my family for their unwavering love and support. Their con-
sistent encouragement bolstered me through the challenging and fulfilling
phases of my academic journey.

I would like to acknowledge that the works presented in this collection
are the result of collaborative efforts, symbolizing collective achievements.
I appreciate all my co-authors and numerous colleagues for the enriching
and enjoyable moments shared during our research endeavors and beyond.

Special thanks are due to the reviewers and the entire jury for their valu-
able constructive feedback and for generously committing their time to this
process. I am sincerely grateful for their involvement in this academic en-
deavor.

v

C O N T E N T S

1 introduction 1

1.1 Motivation . 1

1.2 My contributions . 1

1.2.1 Schnyder woods and canonical orderings in higher
genus (Chapter 3) . 2

1.2.2 Graph encoding and practical compact data structures
(Chapter 4) . 2

1.2.3 Drawing graphs on surfaces (Chapter 5) 3

1.2.4 Fast implementations and experimental results (Chap-
ter 6) . 4

1.3 Overview of the manuscript . 4

2 preliminaries 5

2.1 Graphs and maps (on surfaces) 5

2.1.1 Definitions . 5

2.1.2 Planarizing graphs on surfaces 8

2.2 Schnyder woods (and canonical orderings) 10

2.2.1 Schnyder woods and canonical orderings for plane tri-
angulations: definition 10

2.2.2 Computing Schnyder woods (and canonical orderings)
in the plane . 11

2.3 Implementations and experimental settings 14

3 schnyder woods and canonical orderings for non pla-
nar graphs 17

3.1 Dealing with higher genus graphs 17

3.2 g-Schnyder woods for triangulations of arbitrary genus 18

3.2.1 The definition . 18

3.2.2 Existence of g-Schnyder woods 19

3.2.3 Spanning properties of g-Schnyder woods 23

3.3 Canonical ordering for cylindrical simple triangulations . . . 24

3.4 Schnyder woods for toroidal triangulations 26

3.4.1 The definition of Gonçalves and Lévêque [GL14] (for
the triangulated case) 26

3.4.2 Existence of toroidal Schnyder woods 28

3.4.3 Our contribution: toroidal Schnyder woods via vertex
shellings . 29

4 graph encoding and compact data structures 31

4.1 Related works . 31

4.1.1 Tree-based encodings 31

4.1.2 Optimal encodings achieving information-theory lower
bounds . 32

4.2 Encoding triangulations in arbitrary genus 32

4.2.1 Encoding in higher genus 33

4.3 Our contribution: optimal encoding of triangulations with fixed
topology . 35

4.3.1 Encoding plane triangulations (Poulalhon and Schaef-
fer [PS06] bijection) . 36

4.3.2 Encoding planar triangulations with multiple bound-
aries . 37

4.3.3 Encoding in higher genus 38

vii

viii contents

4.4 Compact mesh data structures: related works 39

4.5 Our contribution: compact data structures for triangulations . 40

4.5.1 Our first solution: scheme description 41

4.5.2 Further reducing the space requirements 43

4.5.3 Additional features . 44

4.6 Experimental Results . 46

4.6.1 Preprocessing: construction vs. decoding. 46

4.6.2 Mesh navigation: runtime performances 46

5 drawing graphs on surfaces 49

5.1 Graph Drawing in the plane (“as I have known it”) 49

5.2 Drawings higher genus graphs: related works 51

5.2.1 Grid-drawings of toroidal graphs: combinatorial algo-
rithms . 52

5.3 Our contribution: periodic toroidal drawings 53

5.3.1 Drawing cylindrical simple triangulations (with no chord
at Γinn). 53

5.3.2 Drawing cylindrical triangulations having chords at Γinn. 57

5.3.3 Periodic drawings on the torus 59

5.4 Our contribution: periodic straight-frame drawings 62

5.4.1 Related works: description of the algorithm of Duncan
et al. [DGK11] . 62

5.4.2 Our modified version of the algorithm: aligning verti-
cal coordinates . 63

5.4.3 A new binary decomposition for 4-scheme triangulations 65

5.4.4 Final remarks . 66

5.5 Spherical Drawings of planar graphs 67

5.5.1 Related works . 67

5.6 Our contribution: a fast spherical drawing with theoretical
guarantees . 69

5.7 Experimental results . 70

5.7.1 Spherical drawings . 70

5.7.2 Spherical preprocessing for Euclidean spring embedders 72

6 some experimental results on schnyder woods 75

6.1 Experimental results on higher genus Schnyder woods 75

6.2 Balance of planar Schnyder woods 76

6.2.1 Our heuristic for well balanced Schnyder woods . . . 77

6.2.2 Experimental evaluation 79

6.3 Application I: Schnyder drawings 79

6.4 Application II: Small separators 82

7 concluding remarks and perspectives 85

7.1 Graphs on surfaces: open questions 85

7.1.1 Schnyder woods for graphs on surfaces 85

7.1.2 Drawing higher genus graphs (for g > 1) 85

7.1.3 Adaptive analysis: graph drawing and graph encoding 86

7.2 Schnyder woods for higher dimensional complexes 86

bibliography 87

index 96

1I N T R O D U C T I O N

1.1 motivation

Graphs and networks play a relevant role in modern science: graphs are
clearly fundamental in computer science and related fields (e.g. discrete
mathematics) and they provide powerful tools for abstraction in many other
research domains, as they allow us to represent a collection of entities to-
gether with their interactions, as done in social networks and biological
processes.

This manuscript focuses on the algorithmics of graphs which come with
an extra topological and combinatorial structure, given by an embedding
in the plane or on a surface of bounded genus (they are also referred to as
maps). These graphs are among the most important objects in several appli-
cation domains, as they correspond to the combinatorial structure underly-
ing 3D meshes (one of the the most used representations for describing a
discrete approximation of a surface). The wide diffusion and the increas-
ing complexity of planar and surface meshes motivated a large number
of works, in the last two decades, addressing the problems of efficiently
processing, representing and visualizing such objects. Consequently, my re-
search is at the frontier between several domains, ranging from computa-
tional geometry and geometry processing to combinatorics, graph drawing
and data structures.

Figure 1.1: A plane triangulation en-
dowed with a Schnyder wood.

combinatorial structures for planar graphs . Planar graphs
exhibit many important structural properties: one of the nicest characteriza-
tions is the one provided by Schnyder woods, a deep combinatorial structure
which is able to finely capture the notion of planarity of a graph. Schnyder
woods have been introduced by W. Schnyder to define a new planarity cri-
terion in terms of poset dimensions [Sch89], as well as a very elegant and
simple straight-line drawing algorithm [Sch90]. The most classical formula-
tion is for the family of plane triangulations, yielding the following striking
property: the internal edges of a triangulation can be partitioned into three
trees that span all inner vertices and are rooted respectively at each of the
three vertices incident to the outer face (as illustrated in Fig. 1.1). This nice
global characterization in terms of spanning trees motivated a large num-
ber of generalizations and applications in several domains such as graph
drawing, graph encoding, random sampling, succinct representations and
plane spanners [Sch90; Chu+98; HKL99; BTV99; Fel01; BGH03; PS06; FPS05;
Bon+06; Bar+12; CDS08; Bon+10b; Bon+10a; Dha10].

1.2 my contributions

Previous existing works on Schnyder woods and related structures (e.g.
canonical orderings) focused mainly on their applications to graph draw-
ing and encoding, and on their extensions [Kan96; BTV99; Fel01] to other
classes of planar graphs (e.g. 3-connected plane graphs).

In this manuscript we focus on triangulations and, more precisely, we will
consider triangulations embedded on surfaces of arbitrary genus.

1

2 introduction

1.2.1 Schnyder woods and canonical orderings in higher genus (Chapter 3)

As often occurs when dealing with combinatorial objects, the most difficult
question involving a generalization is to find the proper definitions of such
objects, and to prove their existence. In a work in collaboration with E. Fusy
and T. Lewiner [CAFL09] we proposed the first generalization of Schnyder
woods for the case of triangulations of higher arbitrary genus. One main
contribution of this work is to show how to extend the computation of a
canonical ordering (based on an incremental shelling algorithm) to the case
of triangulations of genus g. As a by-product, we define a g-Schnyder wood
which generalizes the planar well known structure preserving the global
spanning properties: roughly speaking, in the higher genus case is possible
to obtain an edge orientation where most of vertices still respect the local
original Schnyder rule, while a small set of at most 4g vertices may have
more than 3 outgoing incident edges (see Fig. 1.2 for an illustration).

7 8

1

2
0

3
5

4

6

0

5

2

4
6

Figure 1.2: Example of g-Schnyder
wood in the toroidal case.

Since then, the study of orientations for graphs on surfaces has attracted
more attention [GL14; AGK16; DGL17; KGL19; Sua21]. In particular, differ-
ent generalizations of Schnyder woods and canonical orderings have been
proposed in the toroidal case for graph drawing purposes [GL14; CDF18b].

1.2.2 Graph encoding and practical compact data structures (Chapter 4)

A general way to encode the combinatorial information of a graph embed-
ded on a surface consists in choosing a (vertex) spanning tree T and to
encode the tree T along with the set edges not lying in the tree. This ap-
proach, combined with Schnyder woods and canonical orderings, leads in
the planar case to efficient linear-time encoding schemes. For instance, for
the class of plane triangulations having n vertices, the Schnyder tree decom-
position allow us to encode a triangulation [HKL99] with at most 4n bits
using multiple parenthesis words: this encoding is very elegant and sim-
ple to implement, achieving a compression rate which is quite close to the
information theory optimal bound of 3.24n bits.

encoding higher genus triangulations . The graph encoding prob-
lem was one of the main motivations for introducing our generalization of
Schnyder woods [CAFL09]. A consequence of our definition of g-Schnyder
woods is that the global spanning condition can be preserved: the spanning
tree decomposition of Schnyder woods (of the planar case) translates into
the existence of a partition of the edges into a cut-graph (a map embedded
on a surface having one face) more two spanning maps of genus g. This
tool allowed us to obtain a new encoding of genus g triangulations of size
at most 4n + (g logn) bits, which matches the bound of the Edgebreaker
compression scheme [Ros99], being quite closed to the theoretical minimum
bound 1 of 3.24n+Ω(g logn) bits.

space-efficient data structures . We also consider the graph en-
coding problem in a different setting: in a work in collaboration with O. Dev-
illers [CD18] we address the problem of designing practical compact data
structures, allowing us to efficiently perform local navigation and answer ad-
jacency queries, while requiring a small amount of memory resources. More
precisely, we show how to exploit the spanning tree decomposition provided

1 As we have shown in [CFL10], this bound is achieved combining efficient planarizing strategies
with our optimal encoding of planar triangulations with multiple boundaries (see Section 4.3).

1.2 my contributions 3

by Schnyder woods in order to design new parsimonious data structures for
planar triangulations: when using (maximal) Schnyder woods, it is possible
to represent a triangulation of size n with at most 4n references, supporting
navigation in worst case O(1) time.

Moreover, a nice feature of our data structure is that it can be decoded in
a streamable way (without memory overhead) directly from the compressed
format for triangulations mentioned above (combining Schnyder woods and
parenthesis words): this overcomes a common limitation of previous com-
pact data structures, which require an intermediate (non-compact) mesh
representation for running the pre-processing construction phase.

I have implemented this solution and performed tests on large triangle
meshes having tens of millions of vertices, and its practical interest is con-
firmed by our experiments: it is possible to reduce considerably the amount
of memory consumption (common mesh representations requires between
13n and 19n references) while supporting fast navigation in practice.

Figure 1.3: Planar straight-line draw-
ings of a random planar trian-
gulation with 100 vertices. (top)
Tutte’s barycentric embedding. (bot-
tom) Schnyder drawing.

1.2.3 Drawing graphs on surfaces (Chapter 5)

The problem of computing crossing-free drawings of planar graphs has at-
tracted a lot of attention from both the combinatorial and algorithmic point
of views in the last four decades. Several solutions exist allowing us to
obtain pleasing layouts achieving several aesthetic criteria, that help the
readability and the exploration of the graph structure. The Koebe’s cir-
cle packing approach, Tutte’s spring embedding [Tut63], the shift-based
FPP method [FPP90] or the face-counting principle by Schnyder [Sch90]
are among the most widely studied algorithmic paradigms for computing
crossing-free layouts in the planar case (the pictures in Fig. 1.3 show the
Tutte and Schnyder drawings a of a random planar triangulation).

In this manuscript we focus on the problem of computing crossing-free
layouts of graphs embedded on surfaces, which is very challenging and has
been investigated less frequently.

periodic drawings of toroidal maps . In a work [CDF12] in collab-
oration with E. Fusy and O. Devillers we observed that the shift-based FPP

algorithm [FPP90] can be reformulated and adapted to deal with toroidal tri-
angulations. In particular, it is be possible to extend the notion of canonical
orderings to cylindrical triangulations: once a pair of parallel non-contractible
cycles is chosen (a so-called tambourine), this leads to a new linear time (pla-
nar) drawing of a toroidal simple triangulation with n vertices, on a grid of
size O(n

3
2 × n). The main advantage of our approach, compared to previ-

Γ1

Γ2

Figure 1.4: A periodic drawing of a
toroidal triangulation in the flat torus
(obtained with our modified version
of the FPP algorithm).

ous works [DGK11], is the possibility to obtain an xy-periodic drawings in
the flat torus, which leads to a periodic tiling of the plane (see Fig. 1.4 for
an illustration). This approach is also suitable to deal with the more general
case of essentially 3-connected toroidal maps [CDF18b]. To our knowledge,
our algorithms for computing periodic drawings in the flat torus achieve
the best known bounds on the grid resolution for both the triangular and
3-connected case. For instance, the face-counting principle [GL14] leads to
a periodic drawing on a grid of size O(n2)×O(n2) (in the case of simple
triangulations, without loops or multiple edges), and layouts of O(n3) area
can be obtained with a variation of the shift algorithm [DGK11] (but not
satisfying the periodicity constraints).

In another work, with E. Fusy and A. Kostrygin [CFK14], we solved an
interesting open question (mentioned in [Cha+12; DGK11]) which consists

4 introduction

in obtaining a planar grid drawing achieving simultaneously three crite-
ria: polynomial area, and a straight-frame which is xy-periodic and whose
boundary corresponds to a polygonal scheme of the graph.

spherical drawings . The problem of drawing a planar graph with a
prescribed boundary can also be applied to another important problem: the
one of computing a geodesic spherical drawings of a genus 0 graph, which
has many applications in geometric processing and computer graphics (also
known as spherical parameterization problem). More precisely, we have devised
an efficient and practical algorithm for computing a geodesic spherical draw-
ing of a planar graph with polynomial resolution (Castelli Aleardi, Denis,
and Fusy [CDF18a]). Quite interestingly, according to our experiments the
computation of a spherical drawing can prove to be useful to provide good
initial layouts for running 3D spring embedders (see Fig. 1.5): a good initial
configuration does help to better and faster untangle the graph.

Figure 1.5: (bottom) 3D layout of a
random triangulation with 5k faces.
This layout is obtained running the
FR spring embedder [FR91] using as
initial layout a spherical drawing of
the triangulation (top).

1.2.4 Fast implementations and experimental results (Chapter 6)

A significant part of some works [CD18; CDF18a; Cas19] has been devoted
to the experimental evaluation of the performances of the combinatorial
algorithms relying on Schnyder woods and canonical orderings. All exper-
imental results and graph layouts presented in this manuscript have been
obtained with my own Java implementations performing tests on several
classes of graphs (having up to several millions of vertices): our experiments
confirm the efficiency of combinatorial algorithms in terms of both running
time and memory requirements. Beside the applications to graph drawing
and graph encoding, it turns out the Schnyder woods have proven to be
useful for other algorithmic problems involving planar graphs, such as the
computation of cycle separators [Cas19].

1.3 overview of the manuscript

This document is intended to be self-contained as much as possible. The
reader who is familiar with the main concepts of topological graph theory
and combinatorics of planar maps may skip Chapter 2. Chapters 4 and 5

are independent and are conceived as short surveys providing the main re-
cent advances concerning the problems of drawing and encoding graphs
embedded on surfaces. For the sake of clarity and concision this document
provides a high level and informal presentation of my works in the domains
of graph drawing and graph encoding. I put strong emphasis on the advan-
tages of Schnyder woods as deep tool for dealing with the algorithmics of
graphs embedded on surfaces. My goal is to provide an intuition of the
proofs underlying the main results, while skipping most technical details.
Proofs are omitted or sometimes only sketched: the interested reader can
refer to the published works for the complete proofs and missing details.

disclaimer . The vast majority of results, both theoretical and experi-
mental, are not new and appeared in journal or conference publications
that I co-authored: this document reproduces large passages and some fig-
ures from these works. The only exception are the algorithmic proof for
the computation of a toroidal Schnyder wood (described in Section 3.4.3),
which can be seen as a by-product of our results on cylindrical maps, and
the experimental results on Schnyder woods in genus g ⩾ 1 (Section 6.1).

2P R E L I M I N A R I E S

2.1 graphs and maps (on surfaces)

For the sake of completeness, we provide a very brief description of the nec-
essary concepts of topological graph theory we will need in this manuscript.
The interested reader can find a more comprehensive and detailed discus-
sion of these notions in [MT01].

2.1.1 Definitions

graph embeddings and topological maps . A graph M on a surface
is a graph G = (V ,E) embedded without edge-crossings on a closed orientable
surface S (such a surface is specified by its genus g, i.e., the number of
handles). A celullar embedding of a graph G is

a crossing-free drawing of G on a
surface S or, more precisely, a
one-to-one map from G to S such that
every vertex of G is map to a point on S

and every edge (u,v) is represented as
a simple path (curve) between the
images of u and v. Moreover, the
drawing is required to be crossing-free:
the images of two distinct edges cannot
cross (they meet only at their endpoints),
and the images of edges cannot pass
through the points images of vertices.

If the components of S\G are homeomorphic to topological disks, then
M is a so-called (topological) map (in this case the underlying graph G is
necessarily connected). A subgraph G ′ = (V ′,E ′) of G is called cellular if
the components of S\G ′ are homeomorphic to topological disks, i.e., the
graph G ′ equipped with the embedding inherited from G is a map.

Note that a map has more structure than a graph, since the edges around
each vertex are in a certain cyclic order. In addition, a map has faces (the
components of M\S). By the Euler relation, the genus g of the surface on
which M is embedded satisfies

2− 2g = χ(M) = |V |− |E|+ |F|,

where χ(M) is the Euler characteristic of M, and V , E, and F are the sets of
vertices, edges, and faces in M.

From the algorithmic point of view it is convenient to view each edge
e = {u, v} ∈ E as made of two brins 1, originating respectively at u and at
v, the two brins meeting in the middle of e; the two brins of e are said to
be opposite to each other. The follower of a brin h is the next brin after h

in clockwise order (shortly cw) around the origin v of h. A facial walk is a
cyclic sequence (b1, . . . ,bk), where for i ∈ [1..k], bi+1 (with the convention
that bk+1 = b1) is the opposite brin of the follower of bi. A facial walk
corresponds to a walk along the boundary of a face f of M in ccw order (i.e.,
with the interior of f on the left).

The face incident to a brin h is defined as the face on the left of h when
one looks toward the origin of h. Note that to a brin h of M corresponds a
corner of M, which is the pair c = (h,h ′) where h ′ is the follower of h. The
vertex incident to c is defined as the common origin of h and h ′, and the
face f incident to c is defined as the face of M in the sector delimited by h

and h ′ (so f coincides with the face incident to h).

combinatorial maps . Maps can also be defined in a combinatorial
way. A combinatorial map M is a connected graph G = (V ,E) where one

1 Sometimes brins are also called darts in the literature. Brins are essentially equivalent to
half-edges, which are at the core of popular data structures for representing graph embed-
dings [Ket99]: we refer to Section 2.3 for a more detailed presentation.

5

6 preliminaries

ba
d c

k

i

j

h

g

e

f

b dc

a

k
i

jh

e
f

g

a

Figure 2.1: A cylindric triangulation with boundary faces Binn = {a,b, c,d} and
Bext = {h, i, j,k}. Left: annular representation. Right: x-periodic representation.

specifies a cyclic order for the set of brins (half-edges) around each vertex.
One defines facial walks of a combinatorial map as above (note that the
above definition of a facial walk as a certain cyclic sequence of brins does
not need an embedding, it just requires the cyclic cw order of the brins
around each vertex). One obtains from the combinatorial map a topological
map by attaching a topological disk at each facial walk; and the genus g

of the corresponding surface satisfies again 2− 2g = |V |− |E|+ |F|, with F

the number of topological disks (facial walks), which are the faces of the
obtained topological map [MT01].

A graph is planar if it admits an
embedding on the sphere S2 or,

equivalently, if it can embedded into the
plane. A plane graph is a graph

endowed with its planar embedding.

(plane) triangulations . In this document we will focus mainly on
triangulations: more precisely, a (simple) triangulation T is a map with no
loops nor multiple edges and with all faces of degree 3 (each face has 3

edges on its contour). If T is a plane triangulation the edges and vertices of
incident to the outer face are called the outer edges and outer vertices. The
other ones are called the inner edges and inner vertices. Most of times we deal
with triangulations (or maps) which are rooted, having a distinguished root
face.In our drawings of plane triangulations

the root face will coincide with the
infinite outer face.

When the outer face is polygonal (degree greater than three) and all inner
faces are triangular we have a so-called quasi-triangulation.

Through this work special attention will
be paid to graphs embedded on the

cylinder and on the torus (motivated by
visualization purposes, in Chapter 5).

cylindric and toroidal maps . A cylindric map is a planar map with
two marked faces Binn and Bext whose boundaries Γinn and Γext are simple
cycles (Γinn and Γext might share vertices and edges). The faces Binn and Bext
are respectively called the inner boundary-face and the outer boundary-face The
other faces are called inner faces. If all inner faces are triangle then we have
a so-called cylindric triangulation. Boundary vertices and edges are those be-
longing to Γinn (gray circles in Fig. 2.1) or Γext (black circles in Fig. 2.1); the
other ones are called inner vertices (white circles in Fig. 2.1) and edges. We
also define a chordal edge, or chord, at Γinn as an edge not on Γinn but with its
two ends on Γinn. Similarly a chord at Γext is an edge not on Γext but with its
two ends on Γext.

0

5

2

4

6

7

4

7

4

7

4

1

7

4

3

8

3

6

5

5

3

8

3

2

8

0
2

7

4

1

7

4

1

3

0

5
3

22

6
7

5

4

7

5

4

0

7

5

4

1

0
2

3

6
7 8

5

4

1

2

3

0 0
2

0

6

5

8
6

2

8

6

5
1

8
6

0

6

1

3

8

6

0

1

2

8

0

1

2

1

6

5

8

3

Figure 2.2: A toroidal triangulation
and its periodic representation in the
flat torus.

A toroidal triangulation is a map on the torus with only triangular faces
(the map is called simple if it has no loop nor multiple edges).

periodic representations of cylindric and toroidal maps . We
will often consider cylindric maps in the annular representation where Bext
is the outer face, as shown in Fig. 2.1(left). Sometimes we will draw cylindric
(resp. toroidal) maps using the periodic representation in the flat cylinder
(resp. torus).

For w > 0 and h > 0, the flat cylinder of width w and height h is the
rectangle [0,w]× [0,h] where the vertical sides are identified (see right pic-
ture in Fig. 2.1). A point on this cylinder is located by two coordinates

2.1 graphs and maps (on surfaces) 7

x ∈ R/wZ and y ∈ [0,h]. The flat torus of width w and height h is the
rectangle [0,w]× [0,h] where both pairs of opposite sides are identified. A
point on this torus is located by two coordinates x ∈ R/wZ and y ∈ R/hZ.
Figure 2.2 shows the drawing of a simple toroidal triangulation in the flat
torus.

non-contractible cycles , cut-graphs , polygonal schemes . A
subgraph G ′ = (V ′,E ′) is spanning if V ′ = V . A cut-graph of M is a spanning
cellular subgraph G ′ = (V ′,E ′) with a unique face, i.e., S\G ′ is homeomor-
phic to a topological disk (the example of Fig. 2.3 shows a cut-graph of
a toroidal triangulation). A non-contractible curve is a closed curve that 7 8

1

2
0

3
5

4

6

f1

f1

f1f1
f1

0
2

3

6
7 8

5

4

1

Figure 2.3: A toroidal triangulation
and a cut-graph spanning all its ver-
tices.

cannot be continuously deformed to a point. Such a curve is called proper
if it meets G only at vertices (not at edges); the length of a proper non-
contractible curve is the number of vertices it meets. A non-contractible cycle
(also called fundamental cycle) of G is a (simple) cycle of edges of G that
forms a non-contractible curve (the length of such a cycle is its number of
edges). LCA: controler fundamental cycle.

In our setting, where we deal with a graph G embedded on a surface S,
we consider a canonical polygonal scheme as a collection of 2g fundamental
cycles, with a common vertex v, such that cutting S along these cycles lead
to a topological disk.

essentially simple triangulations and 3-connected maps . A
cylindric map is called simple if it has no loops nor multiple edges, and is
called essentially simple if it has no loops nor multiple edges in the periodic
representation. Note that an essentially simple cylindric map might have 2-
cycles and 1-cycles (loops), which have to be non-contractible (they have Binn
on one side and Bext on the other side), and two loops cannot be incident to
the same vertex.

A toroidal map is called essentially simple if its periodic representation in
the plane is simple. A toroidal map is called 3-connected if it is 3-connected

Figure 2.4: An essentially 3-
connected toroidal map.

as a graph, and is called essentially 3-connected if its periodic representation2

in the plane is 3-connected (see Fig. 2.4).

edge-width and face-width . The face-width of G is the minimum of
the lengths of the proper non-contractible curves for G. The edge-width of a
toroidal map G is the minimum of the lengths of the non-contractible cycles
of G. For a cylindric map, the edge-distance d between the two boundaries
is the length of a shortest possible path starting from a vertex of Γinn and
ending at a vertex of Γext (possibly d = 0).

duality. The dual of a (topological) map M is the map M∗ on the same
surface defined as follows: M∗ has a vertex in each face of M, and each
edge e of M gives rise to a dual edge e∗ in M∗, which connects the vertices
of M∗ corresponding to the faces of M sharing e. Note that the adjacencies
between the vertices of M∗ correspond to the adjacencies between the faces
of M. Duality for edges can be refined into duality for brins: the dual of a
brin h of an edge e is the brin of e∗ originating from the face incident to h

(the face on the left of h when looking toward the origin of h). Note that the
dual of the dual of a brin h is the opposite brin of h.

2 The periodic representation (also called universal cover) is obtained by gluing an infinite num-
ber of translated copies of our drawing, assembling the right (resp. upper) side of one copy
with the left (resp. lower) side of another. Then a non contractible loop become an edge linking
two different translated copies of the same point.

8 preliminaries

2.1.2 Planarizing graphs on surfaces

A possible solution to deal with algorithmic problems involving higher
genus graphs consists in performing a planarization of the surface. Actu-
ally, given a triangulation T with n vertices on a surface S of genus g, one
can compute a cut-graph or a collection of 2g non-trivial cycles, whose re-
moval makes S a topological disk (possibly with boundaries). For example
some work makes it possible to compute polygonal schemas in time O(gn)

for a triangulated orientable manifold [Laz+01; VY90]. Nevertheless a pla-
narization approach would not be always best suited in some cases: from
the combinatorial point of view this would imply to deal with boundaries
of arbitrary size (arising from the planarization procedure), as non-trivial cy-
cles can be of size Ω(

√
n), and cut-graphs have size O(gn). Moreover, from

the algorithmic complexity point of view, the most efficient procedures for
computing small non-trivial cycles [CM07; Kut06] require more than linear
time, the best known bound being currently of O(n logn) time.

Planarizing toroidal graphs

When dealing with toroidal graphs the planarization problem become eas-
ier, especially when there no loops and mo multiple edges: depending on
the intended purpose one can cut along one or more non-contractible cy-
cles, leading for instance to cylindric maps or pairs of subgraphs which are
planar.

2
0

1

7

5
3

6
8

4

Figure 2.5: Cutting along two parallel
non-contractible cycles: the toroidal
triangulation is decomposed into a
tambourine (green faces) and a cylin-
dric map (gray faces).

tambourine . Let M be a toroidal map, and let Γ1, Γ2 be a pair of homo-
topic non-contractible cycles of M that are oriented in the same direction.
The pair Γ1, Γ2 is called a tambourine if the area A between Γ1 and Γ2 —
on the right of Γ1 and on the left of Γ2— is a “ribbon of faces", i.e., A is
face-connected and the set of edges dual to edges in A\{Γ1, Γ2} forms a non-
contractible cycle homotopic to Γ1 and Γ2. The drawing of Fig. 2.5 gives an
example of such a configuration. Note that Γ1 and Γ2 might share vertices
and edges. In its master’s thesis Arnaud Labourel (see also [BGL05]) shows
that any toroidal triangulation admits a tambourine decomposition, more
precisely

Proposition 2.1 ([BGL05]) Let T be a simple toroidal triangulation and let Γ be a
non-contractible cycle of T. Then there is a tambourine Γ1, Γ2 of T whose two cycles
are homotopic to Γ . Moreover one can compute such a tambourine in linear time.

It turns out that this statement holds more generally for essentially 3-
connected toroidal maps, as we proved in [CDF18b].

cutting a toroidal triangulation along three cycles . An-
other way of planarizing a toroidal triangulation T consists in cutting along
three non-contractible and non-homotopic cycles (whose intersection is a
single vertex), which leads to a decomposition of T into two plane quasi-
triangulations 3. See Fig. 2.6 for an example. The correctness of this approach
relies on the following fact (cited in [GL14] as unpublished result):

0

5

2

4

6

0
2

3

6
7 8

5

4

1

Figure 2.6: Three non-contractible
and non-homotopic cycles crossing at
vertex 1

3 This planarization approach has been used to prove the existence of Schnyder wood for sim-
ple toroidal triangulations: the solution proposed by Gonçalves and Lévêque [GL14] will be
sketched in Section 3.4

2.1 graphs and maps (on surfaces) 9

Proposition 2.2 (Fijavz) Any simple toroidal triangulation T contains three non-
contractible and non-homotopic cycles Γ1, Γ2 and Γ3 whose intersection is a single
vertex (they are pairwise disjoint otherwise).

10 preliminaries

V0
V1

V2(a) (b) (c)

Figure 2.7: A rooted plane triangulation with 10 vertices, with root face (V0,V1,V2)

(a), endowed with a Schnyder wood (b). Picture (c) shows the local Schnyder condi-
tion around inner vertices.

2.2 schnyder woods (and canonical orderings)

There are several equivalent formulations of Schnyder woods, either in terms
of angle labeling (Schnyder labeling) or edge coloring and orientation or in terms
of orientations with prescribed out-degrees. In this manuscript we focus on
the formulation given in terms of edge orientations for the family of plane
triangulations.

Schnyder woods, and more generally α-orientations, received a great dealAn α-orientation of a graph
G = (V ,E) (where α : V −→ N) is a

choice of a direction for each edge, such
that for each vertex v ∈ V , there are

exactly α(v) outgoing edges incident to
v.

of attention: from the combinatorial point of view, the set of Schnyder woods
of a fixed triangulation has an interesting lattice structure [Bre00; Bon02;
Fel04; DFM01; Men94], and the nice characterization in terms of spanning
trees motivated a large number of applications in graph drawing, graph cod-
ing and random sampling [Sch90; Chu+98; HKL99; BTV99; Fel01; BGH03;
Fus07; PS06; FPS05; Bon+06; Bar+12].

2.2.1 Schnyder woods and canonical orderings for plane triangulations: definition

In this manuscript the labels are also
referred to as colors. The edges of color

0 will be drawn as red segments or
curves, while we will use blue and black

segments for edges of color 1 and 2

respectively.

We recall here the definition of Schnyder woods for plane triangulations
given in terms of edge colorings and orientations (illustrated in Figure 2.7).

Definition 2.3 (Schnyder [Sch90]) Let T be a plane triangulation, and denote by
V0,V1,V2 the outer vertices in counterclockwise (ccw) order around the outer face.
A Schnyder wood of T is an orientation and labeling, with labels in {0, 1, 2}, of the
inner edges of T so as to satisfy the following conditions:

• root-face condition: for i ∈ {0, 1, 2}, the inner edges incident to the outer vertex
vi are all ingoing of color i.A Schnyder wood of a plane

triangulation T defines a so-called
3-orientation of T: all inner vertices

have exactly 3 outgoing edges (and
outer vertices have no outgoing edges).

• local condition for inner vertices: For each inner vertex v, the edges incident
to v in counterclockwise (ccw) order are: one outgoing edge colored 2, zero or
more incoming edges colored 1, one outgoing edge colored 0, zero or more in-
coming edges colored 2, one outgoing edge colored 1, and zero or more incoming
edges colored 0, which we write concisely as

(Seq(In1), Out0, Seq(In2), Out1, Seq(In0), Out2).

While the definition is given in terms of local conditions, the main struc-
tural property, as stated in Fact 2.4, is more global, namely a partition of the
inner edges into 3 trees (please refer [Bre00] for more details).

Fact 2.4 (Schnyder [Sch90]) Each plane triangulation T admits a Schnyder wood.
Given a Schnyder wood on T, the three directed graphs T0, T1, T2 induced by the
edges of color 0, 1, 2 are trees that span all inner vertices and are naturally rooted
at V0, V1, and V2, respectively.

2.2 schnyder woods (and canonical orderings) 11

Another important consequence of the local Schnyder condition is that
one get a partition of the inner faces of a triangulation following the three
paths in T0, T1, T2 starting at an inner vertex v. More precisely we have:

V0 V1

V2

v6

Π0(v6) = {(v6, v3), (v3, V0)}

v3

v4

v5

v7

v8

v9

Π1(v6) = {(v6, v5), (v5, V1)}
Π2(v6) = {(v6, V2)}

Figure 2.8: This picture illustrates the
partition into three regions Ri(v6)
defined by the three paths Πi(v6)
emanating from vertex v6.

Fact 2.5 (Schnyder [Sch90]) Let us consider a plane triangulation T endowed
with a Schnyder wood, and the three paths Πi(v) (for i ∈ {0, 1, 2}) in Ti from
an inner vertex v to the vertex Vi on the root face. Then the paths Π0, Π1 and Π2

are disjoint (the only share vertex v) and provide a partition of the 2n− 5 inner
faces of T into three regions R0(v), R1(v) and R2(v) (as illustrated in Fig. 2.8).

This simple fact is crucial for designing efficient grid drawing algorithms,
as sketched in Chapter 5.

canonical orderings . Another important combinatorial structure, closely
related to Schnyder woods, is given in terms of a shelling order on the ver-
tices of a graph. For the case of plane triangulations, canonical orderings can
be defined in the following way (see Fig. 2.9): V V

G3 3

0 1

V
2

V0 V
1

4

5
6

7
8

9

10

G4

G5 G6

G7 G8

G9

G10 = T

Figure 2.9: A sequence of graphs
{Gk}k⩽n corresponding to a canon-
ical ordering of a triangulation T

(n = 10).

Definition 2.6 ([FPP90]) Let T be a plane triangulation, whose vertices on the
outer (root) face are denoted V0,V1,V2. An ordering π = {v1, v2, . . . , vn} of the
n vertices of T is called a canonical ordering if the subgraphs Gk (3 ⩽ k ⩽ n)
induced by the vertices v1, . . . , vk satisfy the following conditions (where we denote
by Bk the cycle bounding the outer face of Gk):

• Gk is 2-connected and internally triangulated, and Gn = T;

• v1 and v2 belong to the outer face (V0,V1,V2);

• for each k ⩾ 3 the vertex vk is on the Bk and its neighbors in Gk−1 are
consecutive on Bk−1.

It is worth noting that canonical orderings and their generalizations are a
very versatile tool for dealing with the algorithmics of planar graphs, from
graph drawing to graph encoding, as we will in the next chapters.

2.2.2 Computing Schnyder woods (and canonical orderings) in the plane

In view of the generalization of Schnyder woods to higher genus, for the
sake of completeness we quickly review two procedures for computing
Schnyder woods (we mainly focus on the case of plane triangulations): one
approach is based on a vertex shelling procedure, while the second makes use
of edge contractions. Both approaches have been generalized independently,
leading to different definitions of Schnyder woods for higher genus sur-
faces [CAFL09; GL14]: Chapter 3 will be devoted to illustrate these results.

Vertex shelling.

We first review a well-known linear time algorithm designed for comput-
ing a Schnyder wood of a plane triangulation, following the presentation by
Brehm [Bre00]. It is convenient here to consider a plane triangulation as em-
bedded on the sphere S2, with a marked face that plays the role of the outer
face. The procedure consists in growing a region C, called the conquered re-
gion, delimited by a simple cycle B (B is considered as part of C) 4. Initially C

consists of the root-face (as well as its incident edges and vertices). A chordal

4 In the figures, the faces of T\C are shaded.

12 preliminaries

V V

V
(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

v

v

0 1

2

Figure 2.12: This figure illustrates the linear-time shelling procedure that computes
a (maximal) Schnyder wood of a plane triangulation. The algorithm consists in per-
forming n− 2 vertex conquests, while maintaining a simple boundary cycle B (or-
ange edges) enclosing the region that remains to be visited (gray faces). At the be-
ginning (a) the boundary cycle coincides with the outer cycle (V0,V1,V2). In order
to ensure that B remains always simple (and the gray region simply connected), we
avoid removing vertices on B that are incident to chordal edges (connecting two ver-
tices on B). To get the maximal Schnyder wood it suffices to perform, at each step,
the conquest of the free vertex closest to V1.

edge is defined as an edge not in C but with its two extremities on B. A free
vertex is a vertex of B \ {V0,V1} with no incident chordal edges. One defines
the conquest of such a vertex v as the operation of transferring to C all faces
incident to v, as well as the edges and vertices incident to these faces; the
boundary B of C is easily verified to remain a simple cycle. Associated with

v
vl vr

vl vr

vertex conquest

V V
0 1

+
coloring rule

Figure 2.10: Vertex conquest

a conquest is a simple rule (depicted in Figure 2.10) to color and orient the
edges incident to v in the exterior region. Let vr be the right neighbor and vl
the left neighbor of v on B, looking toward T\C (in the figures, toward the
shaded area). Orient outward of v the two edges (v, vr) and (v, vl); assign
color 0 to (v, vr) and color 1 to (v, vl). Orient toward v and color 2 all edges
exterior to C incident to v (these edges are between (v, vr) and (v, vl) in ccw
order around v).

The algorithm for computing a Schnyder wood of a plane triangulation
with n vertices is a sequence of n − 2 conquests of free vertices, together
with the operations of coloring and orienting the incident edges (the initial
conquest, always applied to the vertex V2, is a bit special: the edges going
to the right and left neighbors are not colored nor oriented, since these are
outer edges).

The correctness and termination of the traversal algorithm described above
is based on the following fundamental property illustrated in Figure 2.11. A

v0 v1

FREE

Figure 2.11: In a planar chord dia-
gram with a root-edge e = {V0,V1},
there must be a vertex v not incident
to e nor to any chord.

planar chord diagram (i.e., a topological disk with chordal edges that do not
cross each other) with root-edge {V0,V1} always has on its boundary a ver-
tex v /∈ {V0,V1} not incident to any chord, see for instance [Bre00] for a
detailed proof.

One proves that the structure computed by the traversal algorithm is a
Schnyder wood by considering some invariants (see Figure 2.13):

u

invariant

Figure 2.13: Invariant

• the edges that are already colored and directed are the inner edges of
C\B.

• for each inner vertex v of C\B, all edges incident to v are colored and
directed in such a way that the Schnyder rule (Figure 2.7(c)) is satisfied;

2.2 schnyder woods (and canonical orderings) 13

• every inner vertex v ∈ B has exactly one outgoing edge e in C\B; and this
edge has color 2. Let vr be the right neighbor and vl the left neighbor of
v on B, looking toward T\C. Then all edges strictly between (v, vr) and e

in cw order around v are ingoing of color 1 and all edges strictly between
e and (v, vl) in cw order around v are ingoing of color 0.

These invariants are easily checked to be satisfied all along the procedure
(see [Bre00] for a detailed presentation), which yields the following result:

Lemma 2.7 (Brehm [Bre00]) Let us consider a plane triangulation T with root
face (V0,V1,V2). Then the algorithm described above computes a Schnyder wood
of T and can be implemented to run in time O(n).

Finally, observe that the incremental algorithm described above actually
computes a canonical ordering of the input triangulation: it suffices to con-
sider the sequence of vertex shellings in reverse order. Among the applications of canonical

orderings we would like to mention an
elegant linear-time algorithm for
recognizing and embedding maximal
planar graphs [NSI04]: its simplicity
relies on the fact that in the triangular
case the computation of a canonical
ordering only requires the graph
structure, since prior knowledge on the
embedding is not needed. To detect free
vertices it is actually sufficient to
maintain the set SB of vertices having a
neighbor already removed, and to chose
a vertex with exactly two neighbors on
SB.

minimal (maximal) schnyder wood. Note that a triangulation T

can have many different Schnyder woods (as shown by Brehm [Bre00], the
set of Schnyder woods of T forms a distributive lattice). Furthermore, the
same Schnyder wood can be obtained from many different canonical order-
ings for the above-described traversal procedure.

As one can observe, at each step there are many choices among the pos-
sible free vertices on B, which possibly leads to many distinct Schnyder
woods. Among all Schnyder woods, the minimal (resp. maximal) one plays
an important role in many algorithmic and combinatorial problems. A fun-
damental property is that the minimal (resp. maximal) Schnyder wood has
no ccw (resp. cw) oriented cycles of directed edges. The computation of
the minimal (resp. maximal) Schnyder wood can be performed as before:
at each step just perform the conquest of the free vertex v on B that is the
closest to V0 (resp. to V1).

V V

V

v

0 1

2

v

v

v

.

contractions expansions

v

v

Figure 2.14: Computation of Schny-
der woods via edge contractions.

computing schnyder woods via edge contractions . The algo-
rithm originally proposed in [Sch90] for computing Schnyder woods was
relying on a slightly different approach based on edge contractions.

An edge (u, v) is contractible if u and v have exactly two common neigh-
bors (no separating triangle containing u and v): observe that contracting an
edge (u, v) of a plane triangulation T leads to a new smaller triangulation
T ′ (as illustrated in the sequence of left picture in Fig. 2.14).

A crucial observation is that for a plane triangulation T with root face
(V0,V1,V2) having at least 4 vertices it is possible to find a contractible
inner edge (V2, v): this leads to construct a sequence of edge contractions
that incrementally simplify the original triangulation until we are left with
3 vertices.

Then a Schnyder wood of T can be obtained by performing a sequence
of expansions, accordingly to the sequence of edge contractions (in reverse
order): the arguments underlying the validity of this procedure can be found
in [Bre00] and [NR04].

practical implementations . It is worth nothing that in the planar
case the algorithm based on vertex shellings and the procedure based on
edge contractions are essentially equivalent: for instance they both allows
us to recover all Schnyder woods of a given plane triangulation. Neverthe- As we will see in the Chapter 3 the non

planar case is much more involved: the
approach based on vertex shellings and
the one using edge contractions lead to
distinct generalizations of Schnyder
woods, each preserving some, but not all,
the structural properties of Schnyder
woods.

less, although they lead both to linear running time, there is no doubt that

14 preliminaries

the vertex shelling approach is simpler to implement and much faster in
practice. While performing vertex shellings only requires to maintain a sim-
ple boundary cycle, the computation of edge contractions requires to deal
with a dynamic data structure for triangulations or to simulate the local
updates in a non-trivial way.

Once an efficient representation of combinatorial maps is provided (we
make use of a Java implementation of the half-edge data structure, described
in next section), the computation of Schnyder woods and canonical order-
ings via vertex shellings is extremely fast. As observed in practice on large
inputs, for both real-world and random triangulations, our Java implemen-
tation allows processing between 5.95M and 8.62M vertices per second (see
Fig. 2.15).

0.5 1 1.5

0.1

0.2

0.3 Hand
Isidore

dragon

Eros
n

se
co

nd
s

(real-world graphs)

2.5 5 7.5 10

0.2

0.4

0.6

0.8

1

1.2 Random 10M

Random 5M

n

se
co

nd
s

(random triangulations)

Figure 2.15: Runtime cost of the in-
cremental shelling algorithm for the
computation of Schnyder woods and
canonical orderings. Timings are ex-
pressed in seconds as a function of
the size (millions of vertices). We plot
the average timing costs over 100 ex-
ecutions, obtained allocating 6GB of
RAM for the JVM (results are taken
from [CD18]).

2.3 implementations and experimental settings

The relevance of surface maps for application domains such as computa-
tional geometry, geometry modelling and computer graphics relies on the
fact that surface meshes are among the most common representations of
3D shapes. A polyhedral 3D mesh is a collection of polygonal faces that de-
fine a discrete approximation of a surface. Most of times 5 people focus on
manifold triangle meshes (all faces having degree 3), for which every edge
is bounding either one or two triangles, and where the faces incident to a
same vertex define a closed or open fan.

The connectivity of triangle meshes describes incident relations between
mesh elements and corresponds to the combinatorics of triangulations em-
bedded on orientable surfaces (simple maps, with no loops nor multiple
edges). Assuming that the genus and the number of boundary edges is neg-
ligible when compared to the number n of vertices, the number m of faces
is roughly equal to 2n.

common mesh representations . Most of the time mesh representa-
tions are implemented in the explicit pointer-based form, where references
(or pointers) are used to describe incidence relations between mesh elements
and navigation is performed throughout address indirection. One example
is the popular half-edge data structure that falls within this framework: its
implementation [Ket99] provides the representation of combinatorial maps
offered by the CGAL library. As illustrated by the example in Fig. 2.16 each
edge e is represented as a pair of half-edges (with opposite directions), each
associated to the two faces sharing e. In order to represent the combinatorics
of the mesh each half-edge h stores some information, namely: a reference
to the target vertex, a reference to the opposite half-edge together with two
references to the half-edges that follow and precede h in ccw order in the
face associated to h. Each vertex stores a reference to an incoming incident
edge and, when needed, faces can be represented storing a reference to an
incident half-edge.

1

class Halfedge{
Halfedge prev;
Halfedge next;
Halfedge opposite;
Vertex v;
Face f;

}

class Vertex{
Halfedge halfedge;
Point p;

}
class Face{
Halfedge e;

}

h.vertex

h

f

h.opposite

h.prev
h.next

v

Figure 2.16: Illustration of the half-
edge data structure: each half-edge
stores three references towards its
previous, next and opposite half-
edges and the target vertex, while
each vertex store a reference to an
incoming incident half-edge. If one
does not need to represent faces ex-
plicitly, this amounts to an overall
storage of 2 · 4e+n references for
encoding a polygon mesh with e

edges and n vertices. In the case
of triangulations (assuming that the
genus and the boundary size are
small when compared to n), in its
minimal form where we discard the
previous half-edge, the storage cost
of half-edge decreases to 3e + n =
18n+n.

Sometimes, when dealing with triangular meshes, an alternative solution
can be preferred. For instance, face-based representations [Boi+02] support
navigational operators equivalent to the ones offered by the half-edge data
structure while using smaller memory resources: one only stores 6 refer-
ences per triangle (3 references for incident vertices, and 3 references for the
three neighboring faces), plus one reference per vertex (describing the map

5 For instance, more than 70% of the geometric datasets made available by the aim@shape repos-
itory are 3D polygonal meshes (about 84% of which are manifold).

2.3 implementations and experimental settings 15

d3 d4 d5 d6 d7 d8 d9 d10

0.25

0.5

0.75

1

Ve
rt

ex
de

gr
ee

di
st

ri
bu

ti
on

Chinese dragon

d3 d4 d5 d6 d7 d8 d9 d10

Aphrodite

d3 d4 d5 d6 d7 d8 d9 d10

Iphigenia

d3 d4 d5 d6 d7 d8 d9 d10

Delaunay

d3 d4 d5 d6 d7 d8 d9 d10

Egea

d3 d4 d5 d6 d7 d8 d9 d10

Random

Egea

globesphere

Aphrodite

random triang.
(force-directed layout)

Real-world vertices faces d6 diam diameter

3D meshes normalized

Egea 8268 16K 0.25 59 0.64

Bunny 26002 52K 0.50 142 0.88

Aphrodite 46096 92K 0.45 229 1.06

Iphigenia 49922 99K 0.38 200 0.89

Chinese Dragon 655980 1.3M 0.824 601 0.74

Synthetic and vertices faces d6 diam diameter

random graphs normalized

Stacked 88576 177K 0.222 8 0.026

Globe 160002 320K 0.999 383 0.946

Sphere 163842 327K 0.994 400 0.999

Delaunay 100003 200K 0.294 138 0.43

Random 100002 200K 0.116 78 0.24

Table 1: The table above reports the statistics for some of the real-world and synthetic
graphs tested in this work: for large graphs (n ⩾ 50k) the values of the diameter are
approximated. Last column reports the diameter normalized with respect to the
number of vertices. The top charts report some vertex degree distributions: most
regular graphs appear leftmost.

from vertices to faces). According to Euler formula, this leads to a storage
cost of 13 references per vertex (rpv).

Both edge-based and face-based mesh data structures fully support local
navigation allowing us to efficiently implement most geometry processing
algorithms: the code provided in Fig. 2.17 illustrates how to turn around a
vertex in order to compute its degree.

1

Degree(v) {
// Enumerating edges incident to v

e = v.halfedge;

d = 0;

while (h!=e){

d = d+ 1;

}
return d+ 1;

}

h = e.next.opposite;

h = h.next.opposite;

Figure 2.17: Computation of the ver-
tex degree using the half-edge data
structure.

implementations . All experimental results (and graph layouts) pre-
sented in this manuscript are obtained with our implementations of the al-
gorithms and data structures developed in our works.6 In particular, I have
written Java implementations of mesh data structures (half-edge, winged-
edge, triangle-based) and algorithms for graph drawing and graph encod-
ing described in Chapters 4 and 5. All our tests are run on an HP EliteBook,
equipped with 8GB of RAM and an Intel Core i7 2.60GHz, running under
linux (Ubuntu 16.04) and with Java 1.8 64-bit.

datasets . We performed tests on a wide collection of graphs, whose
sizes range from a few hundreds to millions of vertices. Our tests involve
various kinds of datasets, including

6 Pure Java implementations of our algorithms and data structures, as well as input graphs, are
available at www.lix.polytechnique.fr/∼amturing/software.html.

16 preliminaries

• several real-world 3D meshes used in geometry processing: they are made
available by the aim@shape and Thingi10k [ZJ16] repositories;

• planar random triangulations 7 generated with our implementation of the
uniform random sampler by Poulalhon and Schaeffer [PS06];

• stack triangulations;

• Delaunay triangulations of random points in the plane;

• synthetic regular graphs with different shapes (sphere, cylinder, ...).

As done in geometric processing, we use the proportion of degree 6 ver-
tices, denoted by d6, to measure the regularity of a graph: d6 is close to 1 for
regular meshes, while is sometimes below 0.3 for irregular 3d models. The
proportion of degree 6 vertices can be even much smaller for some special
classes of graphs. For instance in the case of random planar triangulations
the distribution of vertex degrees follows an exponential decay: as evaluated
in [Lis99; Got03], the probability of having a vertex of degree i in a large ran-
dom planar triangulation, as n goes to infinity, is pi =

16(i−2)
i

(
2i−2
i−1

)
(3
16)

i

(as confirmed in our experiments, the proportion of degree 6 vertices in a
large random triangulation is approximately 11.6%).

7 By random planar triangulation we mean here a simple triangulated planar map randomly
chosen according to uniform distribution among all triangulations of size n. Observe that such
random triangulations only satisfy topological planarity constraints, with no consideration of
geometry: they are somehow pathological triangulations, being quite far for instance from
Delaunay triangulations of random points in a planar domain.

3S C H N Y D E R W O O D S A N D C A N O N I C A L O R D E R I N G S
F O R N O N P L A N A R G R A P H S

3.1 dealing with higher genus graphs

It is worth noting that moving from the plane to higher genus surfaces,
some of the beautiful properties of Schnyder woods might be lost. In princi-
ple a simple counting argument suggests that in genus 1 one could endow a
triangulation with a 3-orientation (each vertex having outdegree 3). But un-
fortunately the correspondence between 3-orientations and Schnyder woods
is no longer valid: the local Schnyder condition could be violated at some
vertices, as illustrated in Fig. 3.1. And even when a 3-orientation yields an

0
2

3

6
7 8

5

4

1

0
2

3

6
7 8

5

4

1

Figure 3.1: (top) A 3-orientation of a
simple toroidal triangulation T with
9 vertices. (bottom) The correspond-
ing edge coloring does not satisfy the
local Schnyder condition everywhere.
It suffices to propagate the edge col-
oration starting from vertex 0 and
check that the incoming edges at ver-
tex 1 do violate the local Schnyder
condition (all incoming edges in the
same sector should have the same
color). Among all the 9360 existing
3-orientations of T, only 2344 yield
an edge coloring which is valid every-
where.

edge coloring satisfying the Schnyder local condition everywhere, there are
examples for which the edges of the same color may form many disjoint
circuits (see Fig. 3.2).

0
2

3

6
7 8

5

4

1

Figure 3.2: A 3-orientation whose
corresponding edge coloring satisfies
the local Schnyder condition at each
vertex: the spanning condition is lost,
since black edges define three dis-
joint cycles.

So, being conscious that something could be missed, we made some com-
promises: our definition [CAFL09] was aimed to preserve the global span-
ning condition even in higher genus. While we are not able to guarantee that
the local Schnyder condition is satisfied everywhere, the number of excep-
tions is still a small constant when the genus is bounded. Our definition of
Schnyder woods relies on an algorithmic approach, namely the correspon-
dence between the computation of Schnyder woods and canonical orderings:
this makes our construction quite simple to implement having the advan-
tage to work for any genus g triangulated surface. It is worth noting that
until very recently most existing works were only dealing with the genus 1

case [GL14; DGL17].

disclaimer . The contributions of this chapter are originated from the
collaborations with O. Devillers, É. Fusy and T. Lewiner [CAFL09; CDF18b].

planarizing the graph . A possible intuitive solution to deal with
Schnyder woods in higher genus would consist in performing a planariza-
tion of the surface. Nevertheless we must pay attention on how the pla-
narization works, especially if one aims to preserve the local Schnyder con-
dition (almost) everywhere: observe that we have to deal with boundaries of
arbitrary size, since non-trivial cycles can be of size Ω(

√
n) and cut-graphs

are of size O(gn), as already mentioned in Section 2.1.2.
As far as we know the first attempt to makes use of Schnyder woods in

the non planar case is due to Bonichon, Gavoille, and Labourel [BGL05]:
their goal is to compute in linear time a partition of the edges into three
edge-disjoint spanning trees plus at most 3 edges. Their solution, working
in the genus 1 case relies on the computation of a tambourine (recall its
definition given in Section 2.1.2): cutting along two parallel non contractible
cycles we produce a tambourine plus a graph planar H that can thus be
endowed with a Schnyder wood. It thus only remains to assign colors to the
edges of the tambourine while avoiding cycles, which leads to the desired
forest decomposition. Unfortunately, as pointed out by the authors, the local
conditions of Schnyder woods are possibly not satisfied for a large number
of vertices, because the size of the tambourine might be arbitrary large. We

17

18 schnyder woods and canonical orderings for non planar graphs

7 8

1

2
0

3
5

4

6

0

5

2

4
6

Es = {(1, 3), (6, 8)}
V0 = v6, V1 = v4, V2 = v7

Figure 3.3: A toroidal triangulation endowed with a g-Schnyder wood (the root-face
is green). For g = 1 there are two special edges, each of which is doubled and
delimits a 2-sided face. In this example special edges are of same color.

point out that for toroidal graphs a different planarization approach has
been later proved to be suitable in the triangular (simple) toroidal case: the
elegant solution proposed by Gonçalves and Lévêque [GL14], satisfying the
local Schnyder condition at each vertex, will be sketched in Section 3.4.

Let us observe that, for both methods above, it is not clear how to get a
generalization to the case of genus g ⩾ 2.

3.2 g-schnyder woods for triangulations of arbitrary genus

3.2.1 The definition

Let us consider a genus g simple triangulation T with n vertices, having a
root-face f = (V0,V1,V2) (the vertices are ordered according to a walk along
f with the interior of f on the right). We propose the following definition (il-
lustrated by Figures 3.3 and 3.4) of Schnyder woods that extends to arbitrary
genus the notion known in the planar case (recall Definition 2.3):

Definition 3.1 (Castelli Aleardi, Fusy, and Lewiner [CAFL09]) Let us denote
by Ein the set of inner edges of T. A g-Schnyder wood of T is a partition of Ein

into a set of normal edges and a set Es of special edges considered as fat, i.e.,
each special edge is doubled into two edges delimiting a face of degree 2, called a
special face. In addition, each edge, a normal edge or one of the two edges of a
special edge, is directed and has a label in {0, 1, 2}, so as to satisfy the following
conditions:

• root-face condition: The outer vertex V2 is incident to no special edges. All
inner edges incident to V2 are ingoing of color 2.

Let k ⩾ 0 be the number of special edges incident to V0 (each of these special
edges is doubled), and let L = (e1, f1, e2, f2, . . . , er, fr) be the cyclic list of
edges and faces incident to V0 in ccw order (fi is the face incident to V0 between
ei and e(i+1) mod r). A sector of v is a maximal interval of L that does not
contain a special face nor the root-face. Note that there are k+ 1 sectors, which
are disjoint; the one containing the edge {V0,V1} is called the root-sector.

Then, all inner edges in the root-sector are ingoing of color 0. In all the other k

sectors, the edges in ccw order are of the form

Seq(In1), Out0, Seq(In2), Out1, Seq(In0).

The definitions of sectors and conditions are the same for V1, except that all edges
in the root-sector are ingoing of color 1.

3.2 g-schnyder woods for triangulations of arbitrary genus 19

• local condition for inner vertices: Every inner vertex v has exactly one outgo-
ing edge e of color 2. Let k be the number of special edges incident to v (each of
these edges is doubled and delimits a special face), and let us consider the cyclic
list L = (e1, f1, e2, f2, . . . , er, fr) of edges and faces incident to v in ccw order.
A sector of v is a maximal interval of L that does not contain a special face nor
the edge e. Note that there are k+ 1 sectors around v, which are disjoint (see
Fig. 3.4 for an illustration).

(b)(a)

Figure 3.4: Local condition around
special edges. (a) inner vertex inci-
dent to 2 special edges: there are 3

sectors delimited by the special edges
and the outgoing edge of color 2. (b)
inner vertex incident to one special
edge: there are two sectors delimited
by the outgoing edge of color 2.

Then, in each sector the edges in ccw order are of the form

Seq(In1), Out0, Seq(In2), Out1, Seq(In0).

• Cut-graph condition: The graph T2 formed by the edges of color 2 is a tree
spanning all vertices except V0 and V1, and rooted at V2, i.e., all edges of T2 are
directed toward V2. The embedded subgraph G2 formed by T2 plus the two edges
(V0,V2) and (V1,V2) plus the special edges (not considered as doubled here) is
a cut-graph of T, which is called the cut-graph of the Schnyder wood.

Remark: The last condition, stating
that T2 is a tree, is redundant in the
planar case (it is implied by the local
conditions) but not in higher genus: it is
possible to find examples where all local
conditions are satisfied but the edges of
color 2 form many disjoint circuits.

(Note that the cut-graph condition forces the number of special edges to be 2g.)

remarks . Note that if an inner vertex v is incident to no special edge,
then there is a unique sector around v, which is formed by all edges incident
to v except the outgoing one of color 2: the definition above implies that the
edges around v the local Schnyder condition as in the planar case. Since at
most 4g vertices are incident to special edges, our definition implies that in
fixed genus, almost all inner vertices satisfy the same local condition as in
the plane. In addition the vertices incident to special edges satisfy a local
condition similar to the one in the planar case.

3.2.2 Existence of g-Schnyder woods

The difficulty of extending combinatorial constructions to higher genus is
due the fact that some fundamental properties, such as the Jordan curve
theorem, hold only in the planar case (genus 0). Following the approach
suggested in [Lop+03; LLT03], based on Handlebody theory for surfaces, we
design a new shelling algorithm for higher genus surfaces: as in the planar
case, our strategy consists in conquering the whole graph incrementally.

We use an operator conquer similar to the conquest of a free vertex used in
the planar case (described in Section 2.2.2), as well as two new operators—
split and merge—designed to represent the handle attachments that are
necessary in higher genus. Our traversal strategy is expressed in terms of
subcomplexes: a short overview of the required terminology is provided
below (for more details we refer to [CAFL09]).

v0 v1

w
vl

vr

C

T \ C

v0 v1

u
w

C

T \ C

Figure 3.5: (top) Result of a conquer

operation on a free corner incident
to w and (bottom) a contractible
chordal edge (w,u) (illustrated in
the toroidal case).

subcomplexes . Given a map M on a surface S, with V , E, and F the
sets of vertices, edges, and faces of M, a subcomplex C = (V ′,E ′, F ′) of M is
given by subsets V ′ ⊂ V , E ′ ⊂ E, F ′ ⊂ F such that the edges around any
face of F ′ are in E ′ and the extremities of any edge in E ′ are in V ′. Note that
a connected subcomplex C of M naturally inherits from M the structure
of a combinatorial map: it is then possible to define the notions of duality,
Euler characteristic and facial walks for connected subcomplexes, as done
for maps in Section 2.1.1. Facial walks are called boundary walks for C when
they do not correspond to a facial walk of a face in F ′. A boundary brin is
a brin h in a boundary walk, and the corresponding boundary corner of C

b = (h,h ′) is the pair formed by h and the next brin h ′ in C in cw order

20 schnyder woods and canonical orderings for non planar graphs

around the origin v of h. Note that a boundary corner of C is not a corner
of M if there are brins h1, . . . ,hk of M\C in cw order strictly between h and
h ′.

The first operator, called conquer,
process free boundary corners, not

modifying the topology of C.
chordal edges and free boundary corners . A chordal edge is an
edge of T \C whose two brins h1 and h2 are exterior brins of some boundary
corners b1 and b2. A boundary corner b of C is free if no exterior edge of
b is a chordal edge. A chordal edge e for C is said to be separating if its
dual edge e∗ is a bridge of the dual complex D (a bridge is an edge whose
removal disconnects the graph). Otherwise it is called non-separating.

handle operators . Given b a free boundary corner of C, performing
conquer(b) consists in adding to C all exterior faces of T incident to b, as
well as the edges and vertices incident to these faces (the effect of conquer(b)
is illustrated in Figure 3.9). Observe that D remains connected after the
conquest and the number of boundary faces of C is unchanged, as well as
the Euler characteristic: indeed, if the number of faces transferred to C is
k, then the number of vertices transferred to C is k− 1 and the number of
edges transferred to C is 2k− 1.

u

w

C

T \ C
v0

v1

v0

v1

u

w

T \ C

C

T \ C
T \ C

C

C

Figure 3.6: The result of a split op-
eration on a split edge (w,u) (il-
lustrated in the toroidal case). The
boundary walk containing the ex-
tremities of (w,u) is split into two
boundary walks (yellow and orange
curves).

Definition 3.2 A split edge for C is a non-separating chordal edge e such that
the two brins of e are incident to boundary corners in the same boundary face of C.

Observe that given a split edge e its dual edge e∗ is not a bridge but has
the same boundary face (of D) on both sides. The second operation, called
split, is acting on a split edge e as follows: double e into two parallel edges
delimiting a face f of degree 2, and add the face f and the two edges rep-
resenting e to C. Note that D remains connected since e∗ is not a bridge.
When doing the split operation, the boundary walk at the two extremities
of e is split into two boundary walks. Therefore the number of boundary
faces of C increases by 1. Note that the Euler characteristic χ(C) decreases
by 1; indeed in C the number of vertices is unchanged, the number of edges
increases by 2 (addition of the split edge, which is doubled) and the number
of faces increases by 1 (addition of the special face). And the Euler charac-
teristic of the map M associated with C is unchanged (when including the
boundary faces, the number of faces both increases by 2, as the number of
edges), hence the genus of M is also unchanged.

Definition 3.3 A merge edge for C is a chordal edge having its two brins incident
to boundary corners in distinct boundary faces of C.

T \ C

v0

v1

C
u

w

T \ C

v0

v1

C
u

w

Figure 3.7: The result of a merge op-
eration on a merge edge (w,u) (il-
lustrated in the toroidal case). Infor-
mally a merge can be viewed as an
operation that “adds a handle” to the
subcomplex C.

Observe that given a merge edge e, the faces of D on both sides of its dual
e∗ are distinct boundary faces, hence e∗ cannot be a bridge of D, i.e., e is
non-separating. We can now define the third operation, merge, related to a
merge edge e: double e into two parallel edges delimiting a face f of degree
2, and add the face f and the two edges representing e to C. Note again
that D remains connected since e∗ is not a bridge. When doing a merge
operation, the boundary faces at the two extremities of e are merged into a
single boundary face, so that the number of boundary faces of C decreases
by 1. Similarly as for a split operation, the Euler characteristic χ(C) decreases
by 1 (addition of a doubled special edge and of one special face); and the
Euler characteristic of the map M associated with C decreases by 2 (when
including the boundary faces, the number of faces is unchanged, and the
number of edges increases by 2), hence the genus of M increases by 1.

3.2 g-schnyder woods for triangulations of arbitrary genus 21

C

C

T \ C
v0

v1

u

w

v0

v1

split(u,w) conquer(bw) + colorient conquer(bu) + colorient conquer(bu) + colorient

u

w

v0

v1

w

u
v0

v1

w

u

C

C

T \ C

C

C

T \ C

C

C

T \ C

Figure 3.9: Illustration of the colorient operations. Any split (or merge) edge (u,w)

can be directed in one or two directions, depending on the traversal order on its
extremities (we denote by bw a boundary corner incident to vertex w).

a shelling algorithm in arbitrary genus We can now describe
an algorithm for computing a g-Schnyder wood that naturally extends to
any genus the shelling procedure by Brehm and sketched in Section 2.2. Its
the pseudo-code is given in Fig. 3.8 and Fig. 3.10 shows a complete execution
of the algorithm in the toroidal case.

As in the planar case, the traversal is a greedy sequence of conquest op-
erations, with here the important difference that these operations are inter-
leaved with 2g merge/split operations. Another point is that, in higher

computeSchnyderAnyGenus(T) {

// T a simple triangulation of genus g

}

Set C as the root-face f = (V0, V1, V2);

while (C 6= T) {

If σ is a free boundary corner b

conquer(b); colorient(b);

If σ is a merge edge e = {u,w} for C

merge(u,w);

find an update-candidate σ for C;

If σ is a split edge e = {u,w} for C

split(u,w);

}

Figure 3.8: Computation of g-
Schnyder woods. An update-candidate
for C is either a free boundary
corner, or a split edge, or a merge
edge. Note that the above algo-
rithm performs conquests, merge
operations and split operations in
whichever order, i.e., with no priority
on the 3 types of operations.

genus, the region that is grown is more involved than in the planar case (re-
call that in the planar case, the grown region is delimited by a simple cycle).
It also turns out that a vertex might appear several times on the boundary
of the grown complex, therefore we have to use the refined notion of free
boundary corner, instead of free vertex in the planar case (in the planar case,
a vertex appears just once on the boundary of the grown region).

Let us now give the precise description of the traversal procedure on a
rooted triangulation of genus g. As in the planar case, we grow a “region”
C. Precisely, C is a connected subcomplex all along the traversal. Initially, C
is the root-face {V0,V1,V2}, together with the edges and vertices of that face;
at the end, C is equal to T. We make use of the operation conquer(b) (with
b a free boundary corner of C) and of the associated colorient rule, similar
to the operation for free vertices described in Section 2.2.2 (for the planar
case). More precisely, given a free boundary corner b of C, the operation
colorient(b) proceeds as follows: let v be the vertex incident to b, and let
e, e ′ be the two edges delimiting b, with e ′ after e in cw order around v.
Orient e and e ′ outward of v, giving color 1 to e and color 0 to e ′. Orient all
the exterior edges of b toward v and give color 2 to these edges (these edges
are strictly between e and e ′ in cw order around v).

The algorithm, as illustrated by the pseudo-code in Fig. 3.8, performs a se-
quence of handle operations split and merge to deal with topology changes,
interleaved with a sequence of conquer+colorient operations (correspond-
ing to a vertex shelling of the subcomplex T \C).

Observe the subtlety that, for positive genus, the vertices incident to merge
or split edges have several corners that are conquered, as illustrated in Fig-
ure 3.9. Precisely, for a vertex v incident to k ⩾ 0 merge/split edges, its
conquest occurs k+ 1 times if v is an inner vertex and k times if v ∈ {V0,V1}.

Note also that, when the algorithm terminates, the number of merge
edges must be g and the number of split edges must be g. Indeed, in the
initial step, C has k = 1 boundary face and genus g ′ = 0, while (just be-
fore) the last step C has k = 1 boundary face and genus g ′ = g. Since the
effect of each split is {k ← k+ 1,g ′ ← g ′} and the effect of each merge is
{k← k− 1,g ′ ← g ′ + 1}, there must be the same number of splits as merges

22 schnyder woods and canonical orderings for non planar graphs

5

0
2

3

8

1

7
6

4

5

0
2

3

7

4

1
5

0
2

3

7

4

1

6
8 8

6

5

0
2

1

4

3

8
6

5

0
2

7

4

8
6

3

1
5

0
2

7 8
6

1

3

4

2

7 8

3

4

6

5

0

1

7

3

4

5
1

2

6

0

8 7

3

4

5

6

0

8

2

1

7

4

5

6

0

8

2

1

3

7

4

5

6
8

1

7

2

3

0

7

4

6
8

1

2
0

5
3

7

4

8

1

2
0

5

6

3

7 8

1

2
0

3
5

4

6

0

5

2

4

6

Figure 3.10: Execution of our traversal algorithm on a toroidal triangulation with 9

vertices. (a) The traversal starts with a conquest at the outer vertex V2 = v7. The area
explored (white triangles) is homeomorphic to a disk. (b) Whenever there remain no
free corners, conquer operations cannot be performed: thus it is possible to find a
split edge (light blue edge). We then perform the conquest of a free corner (c) until
we get stuck. We look for a merge edge: after the merge operation the region T \C

becomes a topological disk (d), the traversal can be completed with a sequence of
conquer operations (e)-(m).

(for k to be the same finally as initially) and the number of merges must be
g (for g ′ to increase from 0 to g).

The algorithm described above terminates computing an edge coloring
and orientation that satisfies almost everywhere the local Schnyder condi-
tion: observe that the 2g merge and split edges processed by our shelling
procedure are precisely the special edges involved in Definition 3.1. This
leads to our main result:

Theorem 3.4 (Castelli Aleardi, Fusy, and Lewiner [CAFL09]) Any simple tri-
angulation T of genus g with n vertices admits a g-Schnyder wood, which can be
computed in time O((n+ g)g).

The termination relies on the fact that we can always find a candidate
(a conquer or handle operation) at each step of the shelling procedure: in
particular we look at candidates incident to the boundary face f0 of C con-
taining the root edge (V0,V1). Intuitively, if the vertex shelling phase get
stuck at some step (no free boundary corners to conquer), then there exists
a split or merge chordal edge e having one of its extremities on f0, and the
algorithm can perform a split or merge operation. Observe that such an
edge e cannot be a separating chordal edge having its two extremities on
f0 otherwise it would enclose a planar region containing a free boundary
corner of C (which would lead to a contradiction).

For the analysis of the runtime complexity, let us assume that we perform
a maximal sequence of conquer operations, until the algorithm get stuck
not finding any free boundary corner (this phase can be performed in linear
time, using the suitable data structures, as in the planar case). Then we
have to look for a split edge whose dual edge e∗ is not a bridge of the dual
complex: this requires linear time as well, as detecting all bridges in the dual

3.2 g-schnyder woods for triangulations of arbitrary genus 23

7 8

1

2
0

3
5

4

6

Es = {(1, 3), (6, 8)}

7 8

1

2
0

3
5

4

6

G2 = T 2 ∪ {e1, e2}

e1

e2

7

2
0

5

4

7 8

1

2
0

5

4

6

G0 G1

f1

1

3

f1

f1

f1

f1

f1

f1

f2

8
6

f3

3

f1

f2f2

f1

f3f3

f3

f1

f1

f1f1
f1

Figure 3.11: A toroidal triangulation endowed with a g-Schnyder wood. The edges
of color 2 form a tree T2, and the addition of the two special edges and the two outer
edges incident to V2 yields a cut-graph G2. The edges of color 0 plus the two outer
edges incident to V0 form a spanning cellular subgraph G0 with 3 faces (two faces
are degenerated, having degree 2). Similarly, the edges of color 1 plus the two outer
edges incident to V1 form a spanning cellular subgraph G1 with 3 faces.

can be done in O(|E|) time using the depth-first search principles of [Tar74].
Observe that this phase needs to be performed at most O(g) times.

The validity of the edge coloring computed by our traversal relies on
some invariants on the colors and directions of the edges of a genus g trian-
gulation T that remain satisfied all along the traversal and ensure that the
computed structure is a g-Schnyder wood. The main difference between the
planar and higher genus case involves the extremities of the special edges:
observe that these edges can be considered as two parallel edges that de-
limit a face of degree 2. Special cases concern the sectors around V0 and V1

on the root face, which could be possibly be incident to some special edge
(for instance this occurs in the example of Fig. 3.11).

A detailed proof of the correctness and runtime complexity of the algo-
rithm above can be found in Sections 4.3 and 4.4 of [CAFL09].

3.2.3 Spanning properties of g-Schnyder woods

Finally, we point out that g-Schnyder woods give rise to decompositions
into 3 spanning cellular subgraphs, one with one face and the two other
ones with 1 + 2g faces. More precisely, let us consider a triangulation T

of genus g endowed with a g-Schnyder wood computed by the algorithm
ComputeSchnyderAnyGenus. Let us define G2 as the graph formed by
the edges of color 2, the two edges {V1,V2} and {V0,V2}, and the 2g special
edges (not considered as doubled). Let us define G0 (resp. G1) as the graph
formed by the edges of color 0 (resp. color 1) plus the outer edges incident
to V0 (resp. incident to V1): in this case we consider the special edges as
doubled (thus T gets 2g additional degenerated faces of degree 2).

Proposition 3.5 ([CAFL09]) The graphs G0, G1 and G2 defined above satisfy the
following properties:

• G2 is a cut-graph of T;

• G0 and G1 are spanning cellular subgraphs of T with 1+ 2g faces (where
some of the faces might be degenerated, of degree 2).

The properties of G2 (cut-graph condition), and of G0, G1 stated above
can be considered as extensions of the fundamental property of planar
Schnyder woods [Sch89; Sch90]: in the planar case, for each color i ∈ {0, 1, 2},
the graph formed by the edges in color i plus the two outer edges incident
to Vi is a spanning tree. Figure 3.11 shows an example in genus 1.

24 schnyder woods and canonical orderings for non planar graphs

3.3 canonical ordering for cylindrical simple triangula-
tions

In this section we extend the notion of canonical ordering (classically stud-
ied on plane graphs) to cylindrical simple triangulations: we will explain inWe first defined the notion of cylindrical

canonical orderings for cylindrical
triangulations in [CDF12]: a

generalization to essential 3-connected
maps is given in [CDF18b].

Section 5.3 how to make use of this tool for computing periodic drawings of
toroidal graphs. An important observation must be made: we assume that
the inner boundary Γinn of the input triangulation is chord-free.

Definition 3.6 (Castelli Aleardi, Devillers, and Fusy [CDF18b]) Let G be a
cylindrical simple triangulation with no chordal edge at Γinn. An ordering π =

{v1, . . . , vn} of the vertices of G\Γinn is called a canonical ordering if it satisfies:

• For each k ∈ [0..n] the map Gk induced by Γinn and by the vertices {v1, . . . , vk}
is a cylindrical triangulation. The boundary outer face of Gk is denoted Bk.

• For each k ∈ [1..n], the vertex vk is on Bk, and its neighbours in Gk−1 are
consecutive on Bk−1 (see Fig. 3.12).

The notion of canonical ordering makes it possible to construct a cylindri-
cal triangulation G incrementally, starting from G0 = Γinn and adding one
vertex at each step. While in the planar case, one starts with G0 being an
edge, here one starts with G0 being a cycle, seen as a cylindrical map with
no internal face. The computation of such an ordering is done by a shelling

⇒

Gk−1

Gk

vk

Figure 3.12: From Gk−1 to Gk in a
canonical ordering for a cylindrical
simple triangulation (annular repre-
sentation, only the boundaries and
next added vertex and added edges
are shown).

procedure, similar to the one considered in Section 2.2.2. At each step the
graph formed by the remaining vertices is a cylindrical triangulation, the
inner boundary remains Γinn all the way, while the outer boundary Bk (ini-
tially Γext) has its contour getting closer to Γinn. A vertex v ∈ Bk is free if v
is incident to no chord of Bk and if v /∈ Γinn. The shelling procedure goes as
follows, with n the number of vertices in G\Γinn:

for k from n to 1, choose a free vertex v on Bk, assign vk ← v, and then
delete v together with all its incident edges.

The existence of free vertices follows from the same argument as in the
planar case [Bre00]. First, since there is no chord at Γinn, then as long as
Bk ̸= Γinn there is at least one vertex on Bk\Γinn. If there is no chord for Bk,
then any vertex v ∈ Bk\Γinn is free. If there is at least one chord e = {u, v} for
Bk, let Pe be the path connecting u and v on Bk such that the cycle Pe + e

does not enclose the inner boundary-face in the annular representation, and
let de be the length of Pe (note that de ⩾ 2). Let e = {u, v} be a chord such
that de is smallest possible. Then any vertex in Pe\{u, v} is free. Since there
exists a free vertex at each step, the procedure terminates as stated below:The linear time complexity of the

shelling procedure is justified
in [CDF18b]. This algorithm is rather

simple to implement and fast in practice:
as by-product this leads to efficiently
compute toroidal Schnyder woods as

illustrated in Section 3.4.3.

Proposition 3.7 (Castelli Aleardi, Devillers, and Fusy [CDF18b]) Any cylin-
drical simple triangulation G with no chordal edge at Γinn admits a canonical order-
ing that can be computed in linear time by a shelling procedure.

underlying forest and dual forest. Given a cylindrical simple
triangulation G with no chordal edge at Γinn endowed with a canonical or-
dering π, we define the underlying forest F for π as the oriented subgraph of
G where each vertex v ∈ Γext has outdegree 0, and where each v /∈ Γext has
exactly one outgoing edge, which is connected to the adjacent vertex u of
v of largest label in π. The forest F can be computed on the fly during the

3.3 canonical ordering for cylindrical simple triangulations 25

7 7

6

7

6

5 7

6

5

4

7

6

5

4

3

7

6

5

4

3

2 7

6

5

4

3

2

1

w1

w2 w2

w2w2

edge of F

Figure 3.13: Shelling procedure to compute a canonical ordering of a cylindrical
simple triangulation (at each step the next shelled vertex is surrounded). The under-
lying forest is computed on the fly; the last drawing shows the underlying forest
superimposed with the dual forest.

shelling procedure: when processing an admissible vertex vk, for each neigh-
bour v of vk such that v /∈ Bk, add the edge {v, vk} to F, and orient it from
v to vk. Since the edges are oriented in increasing labels, F is an oriented
forest; it spans all vertices of G and has its roots on Γext. The augmented map
Ĝ (Ĝ has to be seen as a map on the sphere) is obtained from G by adding
a vertex w1 inside Binn, a vertex w2 inside Bext, and connecting all vertices
around Binn to w1 and all vertices around Bext to w2, thus triangulating the
interiors of Binn and Bext. We denote by F̂ the forest F plus all edges incident
to w1 and all edges incident to w2. The dual forest F∗ for π is defined as the
graph formed by the vertices of Ĝ∗ (the dual of Ĝ) and by the edges of Ĝ∗

that are dual to edges not in F̂. Since F̂ is a spanning connected subgraph
of Ĝ, F∗ is a spanning forest of Ĝ∗. Precisely, each of the trees (connected
components) of F∗ is rooted at a vertex “in front of” each edge of Γinn, and
the edges of the tree can be oriented toward this root-vertex, see Fig. 3.13

bottom right. Each edge e∗ of F∗ is in a certain tree-component T∗ rooted at
a vertex V0 in front of a certain edge of Γinn. Let P be the path from e∗ to V0

in T∗; P is shortly called the root-path of e∗.

from canonical orderings to edge coloring and orientations .
Once we have a notion of canonical ordering for cylindrical triangulations
we can easily get a partition of the edges (except the ones on Γinn) into three
sets of oriented and colored edges. We proceed in the usual way, already

⇒
v

Figure 3.14: Coloring rule associated
to the removal of a vertex v.

26 schnyder woods and canonical orderings for non planar graphs

described for the planar and genus g case, by defining a coloring rule that as-
sign colors and orientations to edges during the shelling process described
above. This is better described by the statement below which is a by-product
of Proposition 3.7:

Corollary 3.8 Let G be a cylindrical simple triangulation with no chordal edge at
Γinn. Then it is possible to compute in linear time an orientation and coloring of all
edges in G \ Γinn satisfying the following conditions:

• local condition for inner vertices: each inner vertex v has exactly three out-
going edges (one for each color) and the edges incident to v satisfy the local
Schnyder condition as in the planar case;

Γin

Γext

v

v vr

vl

vrvl

Figure 3.15: Local conditions for ver-
tices on Γinn (left) and vertices on Γext
(right).

• local condition for Γext (see right picture in Fig. 3.15): each vertex v ∈ Γext has
exactly two outgoing edges (of color 0 and 1); moreover, all the edges between the
right and left neighbors of v on Γext, are listed starting from (v, vr) to (v, vl) in
cw direction around v as follows:

Seq(In0), Out1, Seq(In2), Out0, Seq(In1).

• local condition for Γinn (see left picture in Fig. 3.15): each vertex v ∈ Γinn has
exactly one outgoing edge (of color 2), and all incident edges between (v, vl) and
(v, vr) are listed in cw direction as follows:

Seq(In1), Out2, Seq(In0).

Figure 3.16: A cylindrical triangula-
tion endowed with an edge color-
ing/orientation according to Corol-
lary 3.8.

Observe that the edges of color 2 define the underlying forest F described
above. Similarly, the edges of color 0 and 1 define two forests spanning all
vertices of G, whose connected components are ending at the vertices of Γinn
(as illustrated in the example of Fig. 3.16).

3.4 schnyder woods for toroidal triangulations

The first generalizations [BGL05; CAFL09] of Schnyder woods were moti-
vated by applications involving graph encoding problems, aiming to pre-
serve their global spanning properties. Since then the study of Schnyder
woods for non planar graphs have a attracted a lot of attention. This is par-
ticularly true in the toroidal case, for which some elegant generalizations led
to several applications, ranging from graph drawing to bijective encodings.

3.4.1 The definition of Gonçalves and Lévêque [GL14] (for the triangulated case)

The key idea underlying the definition proposed by Gonçalves and Lévêque
[GL14] is that Euler formula says that the number of edges is exactly m = 3n

on the torus. This means that in principle it could be possible to endow a
triangulation with an edge orientation where, hopefully, every vertex satis-
fies the local Schnyder rule. So, in the toroidal case, the hope is to get rid of
the special role of the three outer vertices lying on the root face, and to keep
the symmetry of the underlying edge partition (observe that this symmetry
is lost in the definition of g-Schnyder woods given in Section 3.2.1).

Finally, it turns out that a combinatorial structure satisfying the require-
ments above exists in the toroidal case, leading to the following definition 1

illustrated in Fig. 3.17 :

1 Observe that the definition in [GL14] is more general and extends the notion of Schnyder
woods for the 3-connected case.

3.4 schnyder woods for toroidal triangulations 27

0

6

5

4

2

0
2

3

6
7 8

5

4

1

0
2

3

6
7 8

5

4

1

Condition (T2) is satisfied Condition (T2) is not satisfied

(there are 3 disjoint mono-chromatic cycles of color 2) (one mono-chromatic cycle for each color)

Figure 3.17: Toroidal Schnyder woods for simple triangulations satisfying the local
Schnyder condition (T1) of Definition 3.9 around every vertex. (left) the edge orien-
tation and coloring satisfies the crossing condition (T2) (but there are several disjoint
mono-chromatic cycles). (right) Another edge coloring and orientation of the same
triangulation: each color defines one mono-chromatic cycle, but the crossing condi-
tion (T2) is not satisfied.

Definition 3.9 (Gonçalves and Lévêque [GL14]) Let T be a toroidal triangula-
tion. A Schnyder wood of T is an orientation and labeling, with labels in {0, 1, 2}
of the edges of T so as to satisfy the following condition:

• (T1) local Schnyder condition (for all vertices): For each vertex v, the edges
incident to v in counterclockwise (ccw) order are: one outgoing edge colored 2,
zero or more incoming edges colored 1, one outgoing edge colored 0, zero or more
incoming edges colored 2, one outgoing edge colored 1, and zero or more incoming
edges colored 0;

Here we adopt the formulation for the
triangulated case given in [DGL17]:
observe that the crossing condition is
included in the definition of toroidal
Schnyder woods originally proposed
in [GL14]

The Schnyder wood is said to be crossing if it satisfies the further condition below

• (T2) Crossing condition: Every monochromatic cycle of color i intersects at
least one monochromatic cycle of color i − 1 and at least one monochromatic
cycle of color i+ 1.

The definition above is particularly elegant since it preserves the sym-
metry of the three colors, so there is a natural correspondence between a
toroidal Schnyder wood and the underlying 3-orientation (up to a cyclic
permutation of the colors). In principle the global spanning property of
Schnyder wood is lost, since the edges of a same color could define a non
connected graph: as illustrated by left example in Fig. 3.17, the graph in-
duced by one color could consist of several disjoint connected components,
but it is possible to prove that each component contain exactly one directed
cycle. More precisely, Gonçalves and Lévêque (see Theorem 7 in [GL14])
show that in a toroidal crossing Schnyder wood all mono-chromatic cycles
of the same color are non-contractible and homotopic, and they do not in-
tersect each other; so condition (T2) becomes even stronger, since one can
show that every pair of mono-chromatic cycles Γi and Γj (for i ̸= j) are not
homotopic and must intersect.

The condition (T2) is particularly interesting, leading to several applica-
tions. For instance, this condition is crucial for obtaining a periodic grid
drawing of toroidal triangulations that extends the region counting approach
of planar Schnyder drawings [GL14]. Moreover, if one consider, for a given
triangulation, the set of 3-orientations that correspond to crossing Schnyder
woods then it is possible to define a distributive lattice structure similarly to
the planar case (we refer to [KGL19] for more details).

28 schnyder woods and canonical orderings for non planar graphs

3.4.2 Existence of toroidal Schnyder woods

As shown in [GL14] it is possible to show the existence for the general case
of essentially 3-connected toroidal maps making use of the approach based
on edge contractions. The main idea is to perform a sequence of contrac-
tions until the resulting graph has few vertices: the Schnyder wood can be
recovered by assigning colors after the edge expansions (in reverse order).
The validity of this approach relies on very involved case analysis (observeAs far as we know there are no practical

implementations of the procedure based
on edge contractions for computing

toroidal Schnyder woods, even for
triangulations, for which the case

analysis is much simpler. Observe that
obtaining a linear-time implementation

requires to choose contractible edges in a
fast way (which is possible, but not

trivial to implement).

that there are no special outer vertices in the definition of toroidal Schnyder
woods): unlike planar Schnyder woods, in the toroidal case one has to dis-
tinguish many cases of edge contractions in order to preserve the structure
of monochromatic cycles, which is a non local property. For the triangulated
(simple) case there is another simpler proof, as sketched below.

toroidal schnyder woods for simple triangulations . For the
case of simple triangulations (no loops and no multiple edges) Gonçalves
and Lévêque [GL14] propose another proof of existence of toroidal Schnyder
woods: it suffices to apply a planarization approach relying on Theorem 2.2.

The idea, illustrated in Fig. 3.18, consists to cut the input triangulation T

along three non-contractible (and non-homotopic) cycles Γ0, Γ1 and Γ2 shar-
ing a common vertex v. As result one obtains a partition of the faces of T

into two quasi-triangulations G1 and G2 which are internally 3-connected
and have 3 copies of vertex v, denoted V0, V1 and V2, on their bound-
aries. It is then possible to endow both G1 and G2 with a planar Schnyder
wood, where all inner vertices satisfy the local Schnyder condition and the
boundary edges have two opposite orientations (for more details please re-
fer to [Fel01; Fel03]). Now it suffices to assign colors and orientations to the
edges according to the following rule: assign color i to a boundary edge
appearing on the path Γi (oriented toward Vi) for i ∈ {0, 1, 2}. As observed
by Gonçalves and Lévêque [GL14], this ensures that after gluing together G1

and G2 the resulting edge coloring and orientation corresponds to a valid
toroidal crossing Schnyder wood as stated below:

0
2

3

6
7 8

5

4

1

0
2

3

7

4

1

3

7

4

8
6

0
2

1 1

1

1

1
5

6

0
2

3

7

4

1

3

7

4

6

0
2

1
1

1

1

1 5

6
8

0
2

7

4

1

7

4

0
2

1
1

1
5

6
8

3

V0

V1V2V2

V0
V1

Γ2

Γ1

Γ1

Γ0

Γ0

Figure 3.18: Existence of toroidal
Schnyder woods for simple toroidal
triangulations [GL14].

Proposition 3.10 (Gonçalves and Lévêque [GL14]) Any simple toroidal trian-
gulation T admits a toroidal crossing Schnyder wood. Moreover, such a Schnyder
wood contains three monochromatic cycles (one for each color) all intersecting at
one common vertex, while being pairwise disjoint otherwise.

Observe that the statement above does not guarantee that the edges of the
same color form a connected graph: in principle the corresponding Schnyder
wood could contain several parallel monochromatic cycles of the same color.

Unfortunately, as pointed out in [Lév16], it is not clear how to turn the
procedure above into a linear-time algorithm (the preliminary step requires
Theorem 2.2 which relies on a result involving disjoint paths by Robertson
and Seymour [RS86]).

Open questions

As far as we know there are a few interesting questions concerning toroidal
and higher genus Schnyder woods left open by [GL14; AGK16; KGL19] (see
also [Lév16] for more details).

“Does a simple toroidal triangulation admit a Schnyder wood such
that there is just one monochromatic cycle per color?”

3.4 schnyder woods for toroidal triangulations 29

ring

n = 605

Koch snowflake

n = 360

Penrose triangle

n = 120

Figure 3.19: A few triangles meshes of genus 1 endowed with toroidal Schnyder
woods satisfying condition (T1) of Definition 3.9. They have been obtained with our
implementation of the shelling procedure described by Corollary 3.11.

“Moreover, can one require that monochromatic cycles all intersect
on one vertex and they are pairwise disjoint otherwise?”

Is it possible “to generalize the shelling order method for the torus”?

A further interesting open question involves the existence of generalized
Schnyder woods for maps of arbitrary genus. A partial answer to this ques-
tion has been very recently provided by Jason Suagee [Sua21] in its PhD dis-
sertation: unfortunately the assumptions are quite strong, as the existence
of generalized Schnyder woods is guaranteed only for triangulations having
very large edge-width (refer to Section 6.1 for a few more details).

We will address some of the problems above, providing theoretical (Sec-
tion 3.4.3) and experimental (Section 6.1) partial answers to these questions.

3.4.3 Our contribution: toroidal Schnyder woods via vertex shellings

It is interesting to observe that our incremental algorithm for computing
canonical orderings of cylindrical triangulations can be turned into an effi-
cient and simple procedure for computing toroidal Schnyder woods satisfy-
ing the condition (T1) of Definition 3.9.

V0

V1

u

v

a
V2

C

C

Figure 3.20: Computation of a non-
contractible (oriented) cycle Γ with
no chordal edges on its right side.

computing a non-contractible cycle . We first compute a directed
non-contractible cycle Γ of the input (simple) toroidal triangulation T such
as there are no chordal edges on the right side of Γ (observe that we do
not care about the length of this cycle). For instance, such a cycle can be
derived by our shelling procedure described in Section 3.2.2. Just perform
a sequence of conquer operations until a split edge e = (u, v) is found.
Then we can simply consider the two paths Π1(u) = {u, . . . ,a, . . . ,V2} and
Π2(v) = {v, . . . ,a, . . . ,V2}, where a is the common ancestor of u and v in the
tree T2: because of the Schnyder local condition both paths are chord-free.

Assume that v is preceding u on the boundary of the conquered region
(which is planar), i.e., v is closer to vertex V0. The cycle Γ is obtained concate-
nating the subpath Π ′

1(u) = {u, . . . ,a} with the subpath Π ′−1
2 (v) = {a, . . . , v}

(where we reverse the direction of the edges of Π2(v)) and finally adding
the edge (v,u). As illustrated in Fig. 3.20, at the exception of u and v all
vertices of Γ are included in a planar region C (whose boundary is a simple
contractible cycle): the local Schnyder planar condition ensures that there
are no chords on the right side of Γ inside C. The only two vertices of Γ

appearing on the boundary of C are u and v: a chordal edge between them
would yield to the existence of a multiple edge (a contradiction, as by as-
sumption the input triangulation is simple). Observe that the cycle Γ we

30 schnyder woods and canonical orderings for non planar graphs

2

345 6

789

1011 121314 11

7 1

0 5

Figure 3.22: Computation of toroidal Schnyder woods via vertex shellings: the input
toroidal triangulation is cut along a non contractible cycle Γ with no chordal edges on
one side (left picture), which allows us to compute a cylindrical canonical ordering
(vertex labels reflect the shelling order). The resulting edge coloring (right picture)
does not satisfy the crossing condition (T2): for instance there are two parallel cycles
of color 0 and 2 that are not intersecting.

obtained in this way is non-contractible since it is included in the cut-graph
G2 of T defined in Section 3.2.3.

from cylindrical canonical ordering to toroidal schnyder woods .
Given a non-contractible cycle Γ (with no chords on its right side) as de-
scribed above we can planarize T cutting along Γ obtaining a cylindrical
triangulation G whose inner inner Γinn is chord-free: we can thus running
our algorithm for cylindrical canonical orderings and endow G with an edge
coloring satisfying the constraints of Corollary 3.8. Let us consider the edge
coloring and orientation of T obtained by gluing Γinn and Γext, where the
edges of Γ are naturally inheriting the edge coloring and orientation from
Γext. It is easy to see the we obtain a 3-orientation, as a simple by-product

Figure 3.21: Local condition for ver-
tices on the non-contractible cycle Γ :
every vertex has an outgoing edge of
color 2 on the right side of Γ ; the out-
going edges of color 0 and 1 are on
the left side, possibly lying on Γ .

of Corollary 3.8. Moreover for every vertex v ∈ Γ one can check that the
edge coloring satisfies condition (T1) by distinguishing a few cases, depend-
ing on the colorations of edges incident to v: as illustrated in Fig. 3.21 after
gluing the two boundary cycles Γinn and Γext the local Schnyder condition is
satisfied (all other vertices, not lying on Γ , satisfy the same condition as in
the planar case).

Corollary 3.11 Let T be a simple toroidal triangulation of size n. Then it is possible
to compute in linear-time a Schnyder wood of T satisfying the condition (T1) for all
vertices.

Unfortunately we have to point out that the edge coloring provided by
Corollary 3.11 is not guaranteed to satisfy the condition (T2). There are ex-
amples computed by our algorithm such that the resulting Schnyder wood
contains monochromatic cycles of different colors that are no intersecting: in
the example of Fig. 3.22 there is a black cycle not intersecting any monochro-
matic red (it is actually parallel to another red cycle).

As one would expect the approach sketched above leads to a simple
and very fast implementation: the pictures in Fig. 3.19 show a few trian-
gle meshes of genus 1 endowed with a toroidal Schnyder wood. Let us
mention that, to our knowledge, there are no existing implementations of
the algorithms for computing toroidal Schnyder woods and higher genus
3-orientations described in [GL14; DGL17; AGK16; KGL19; Sua21].

4G R A P H E N C O D I N G A N D C O M PA C T D ATA S T R U C T U R E S

The problem of encoding and representing graphs involves a broad spec-
trum of technics and applications, and has been addressed in the last four
decades in several distinct domains including computational geometry, ge-
ometry processing and computer graphics, enumerative combinatorics, graph
algorithms, data compression and complex networks.

The problem of encoding the combinatorics of graphs embedded on sur-
faces is part of the so-called mesh compression problem: we refer to the surveys
by Alliez and Gotsman [AG05] and by Maglo et al. [Mag+15] that provide a
comprehensive overview of the results developed in the geometry process-
ing community. For the reader who is interested in the design of compact
data structures and compression schemes dealing with more general classes
of graphs (such as complex networks) we suggest the recent survey by Besta
and Hoefler [BH18].

In this chapter we consider the problem of encoding and compactly repre-
senting graphs which are (locally) planar and we focus on works that make
use of tree-based decompositions. In particular, the use of Schnyder woods
and related combinatorial structures has led to the most efficient compres-
sion schemes and compact data structures provided with theoretical guar-
antees which are known so far.

The contributions of this chapter 1 are originated from the collaborations
with O. Devillers, É. Fusy and T. Lewiner [CAFL09; CFL10; CD18].

4.1 related works

4.1.1 Tree-based encodings

The use of spanning trees decompositions dates back to the pioneristic work
of Turan [Tur84], who proposed a general way for efficiently representing
the combinatorics of a planar graph with a linear number of bits. The idea is
very simple (and illustrated on a small example in Fig. 4.1): given a planar
graph G with n vertices one has just to chose any (arbitrary) spanning tree
T of G and to encode the edges appearing both in T and G \ T . Because

() ((()) () ()) () (()) () ()

2
3

45

6

7

8

9

10

11

[[[[]]][[[[]][]][[[[[[]][]]][[]]][]]]]G \ T

T

S(G)

10

([[[[) (] (] (][[[) [) (]][)
1 1 2 3 4 4 3 5 5

. . .

Figure 4.1: To encode a planar graph
G with n vertices the Turan encod-
ing [Tur84] makes use of an arbitrary
spanning tree T of G: both T and
G \ T can be represented with bal-
anced parenthesis words of size at
most 2n, obtained performing a ccw
traversal of the contour of T (rooted
at vertex 0).

of the planarity of G and of its dual, T and G \ T can be both represented
with two balanced parenthesis words whose size are roughly 2n. Unfortu-
nately, in order to recover from these two words the original graph G, the
two encodings of T and G \ T must be interleaved. Thus we need a multi-
ple parenthesis word (consisting of two types of open/closed parentheses)
whose length is 2e: this yields an encoding on ≈ 4e bits, since each edge
is encoded by a pair of open/closed parenthesis (or brackets), and we need
two bits to encode each of the 4 symbols. Planar triangulations can be thus
encoded with at most 12n bits.

The framework proposed by Turan is quite general and thus not really
efficient, at least when compared to the current state-of-the-art. Quite inter-
estingly, as pointed out by Isenburg [IS05], many compression schemes de-

1 This chapter does not include my works [CDS05a; CDS05b; CDS08; CDM11; Bar+12] on the
so-called succinct representations (sometimes referred to as succinct encodings or succinct data
structures), most of which have been developed during my PhD.

31

32 graph encoding and compact data structures

veloped since the early nineties in both the geometry processing and graph
algorithms communities fits into the framework above. For instance, the

0

11

6
5

10

1

9

8

seed
24

3 7

0

11

6
5

10

1

9

8

24

C
3 7

C
C

C

0

11

6
5

10

1

9

8

24

C
3 7

C
C

C

R

R

C

0

11

6
5

10

1

9

8

24

C
3 7

C
C

C

R

C

C

Figure 4.2: A few steps performed
by Edgebreaker [Ros99]. The traversal
starts from an initial seed (green) face
and performs a depth-first visit of the
dual graph (blue triangles belong to
the visited region).

popular Edgebreaker compression scheme proposed by Rossignac [Ros99] re-
lies on an incremental growing-region approach (illustrated in Fig. 4.2). The
algorithm performs an incremental traversal of the dual graph starting from
an initial seed face: Edgebreaker makes use only of five symbols in order to
encode a spanning tree of the dual graph and its complement, a spanning
tree of the primal graph (refer to Fig. 4.3): a triangulation with n vertices
can be encoded using at most 4n bits.

LE

C

R S

Figure 4.3: Edgebreaker encoding se-
quence: there are five cases to con-
sider, depending on the adjacen-
cies of each traversed (blue) trian-
gle. These cases are described by five
symbols {C,L,E,R,S}: the most fre-
quent case, encoded by the symbol
C, is when the visited triangle is inci-
dent to a new unvisited vertex, which
occurs n− 3 times. If we use 1 bit
for symbol C and 3 bits for symbols
{L,E,R,S}, the resulting encoding
sequence (whose length is m− 1 <

2n) can be compressed using at most
1 · (n− 3) + 3 · n ≈ 4n bits. Ob-
serve that in the planar case a more
sophisticated encoding of the CLERS
sequence leads to a better compres-
sion rate of 3.67 bpv [KR99].

4.1.2 Optimal encodings achieving information-theory lower bounds

planar case . The Edgebreaker encoding above is both simple and quite
compact, since its compression rate of 4 bpv (bits per vertex) is not far from
the information-theory asymptotic lower bound given by

1

n
log2 |Tn| =

1

n

2(4n− 3)!
(3n− 1)!(n)!

≈ log2

(
44/33

)
≈ 3.2451 bpv (4.1)

(where |Tn| is the number of rooted planar 3-connected triangulations
with n+ 2 vertices, found by Tutte [Tut62]).

The bound above is attained by the nice bijective construction due to
Poulalhon and Schaeffer [PS06], which relies on the correspondence be-
tween minimal Schnyder woods and a special class of spanning trees (hav-
ing two stems per node); this bijection provides a combinatorial proof of
the counting formula for |Tn|, also yielding efficient procedures for uniform
random sampling (this construction will be sketched in Section 4.3).

higher genus case . In the higher genus case there does not exist an
exact enumeration formula, nevertheless an asymptotic estimate [Gao93] of
the number of genus g rooted triangulations with n vertices leads to the
information theory lower bound of 3.245n+Ω(g logn), i.e., the exponential
growth rate is the same in every genus.

For the genus 1 case, a special class of toroidal Schnyder woods allowed De-
spré, Gonçalves, and Lévêque [DGL17] to generalize the Poulalhon and
Schaeffer bijection, in order to obtain an optimal encoder for toroidal tri-
angulations. Unfortunately, in the higher genus g case there are still several
questions that remain open involving the existence of Schnyder woods: bi-
jective constructions based on special spanning trees are still to be found.

4.2 encoding triangulations in arbitrary genus

A main application that motivated our definition of g-Schnyder woods was
to extend to higher genus the encoding procedure of [HKL99; BB07] based
on Schnyder woods: while not being asymptotically optimal, this approach
is quite simple and yields a linear-time encoding achieving the same bound
as Edgebreaker.

The encoding based on Schnyder woods turns out to be extremely useful
for dealing in practice with compact data structures: as we will illustrate in
Section 4.4. A simple adaptation leads to a very efficient way of decoding a
compact data structure from compressed format in a streamable way: this
leads to drastically reduce the memory requirements consumed in the pre-
processing constructive phase.

4.2 encoding triangulations in arbitrary genus 33

3

4

5

6

7

8

9

0 1
2

3

4

5

6

7

8

9

0 1
2

3

4

5

6

7

8

9

0 1
2

Figure 4.4: Encoding of a plane triangulation T (endowed with a Schnyder wood
orientation): T is encoded by a pair of binary words, encoding respectively the red
tree T0 and the tails of black edges (center). The information concerning blue edges
is redundant and can fully retrieved by applying the local Schnyder condition (right).

the planar case . In the planar case, Schnyder woods yield a simple
encoding procedure for triangulations, as described in [HKL99] and more
recently in [BB07]. For a triangulation with n vertices, W,W ′ have length at
most 2n, hence the coding word has total length at most 4n.

More precisely, a planar Schnyder wood with nvertices is encoded by two
parenthesis words W,W ′ of respective lengths 2n− 2 and 2n− 6. Let T0 be
the tree T0 plus the two outer edges incident to V0. Call θ the corner incident
to V0 in the outer face. The first word W is the parenthesis word (also called
Dyck word) that encodes the tree T0, that is, W is obtained from a ccw walk
(i.e., the walker has the infinite face on its right) around T0 starting at θ,
writing an opening parenthesis at the first traversal of an edge of T0 (away
from the root) and a closing parenthesis at the second traversal (toward
the root). The second word W ′ is obtained from the same walk around T0,
but W ′ encodes the edges that are not in T0, i.e., the edges of color 1 and
2. Precisely, during the traversal, write a ’0’ symbol in W ′ each time an
outgoing edge in color 1 is crossed and write a ’1’ symbol in W ′ each time
an ingoing edge of color 2 is crossed (this corresponds to a unary encoding
of the ingoing degree of edges of color 2 at each vertex v ∈ V \ {V0,V1}).

The string below corresponds to the encoding of the triangulation in
Fig. 4.4 (vertices are ordered according to the ccw-DFS traversal of T0):

() () () () ((() ())) () 00001101010111

For the sake of clarity, we can decorate this code by vertex indices:
(1)1 (2)2 (3)3 (4)4 (5 (6 (7)7 (8)8)6)5 (9)9 02 03 04 05 1106 107 108 111

In the example above the black word encodes the in-black-degrees of ver-
tices, which are respectively 0, 0, 0, 0, 0, 0, 2, 1, 1, 3.

0.5 1 1.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Hand

Isidore

dragon

Eros n

se
co

nd
s

(real-world graphs)

2.5 5 7.5 10

0.5

1

1.5

2

2.5

3
Random 10M

Random 5M

n

se
co

nd
s

(random triangulations)

Figure 4.5: Runtime cost of the algo-
rithm for encoding planar triangula-
tions (it includes the pre-processing
time, for computing the Schnyder
wood). Timings are expressed in
seconds as a function of the size
(millions of vertices). In our tests
we allocate 6GB of RAM memory
for running our Java implementa-
tion [CD18].

While not being asymptotical optimal, this encoding has the advantage
of being extremely simple to implement and fast in practice: as confirmed
by the experiments reported in Fig. 4.5 our Java implementation is able
to process between 2.2M and 3.7M vertices per second (which makes this
approach highly competitive with prior works on mesh compression).
Remark. Observe that, in the planar case, because of the symmetry of the
definition of Schnyder woods in the three colors, one could perform a con-
tour traversal of the spanning tree T1 (or T2) instead of T0, and the traversal
may be in either cw or ccw direction (similar arguments would apply).

4.2.1 Encoding in higher genus

To encode a genus g triangulation T of size n we proceed in a similar way
as in the planar case except that we endow T with a g-Schnyder wood com-

34 graph encoding and compact data structures

puted in O(n) time according to Theorem 3.4, and thus we have to deal with
the special edges involved in Definition 3.1.

Let T2 be the spanning tree of T consisting of the edges in color 2 plus
the two edges {V0,V2} and {V1,V2} (refer to Fig. 4.6). Let G2 be the graph
T2 plus the 2g special edges (according to Proposition 3.5 this is a cut-graph
of T). As in previous section we classically encode G2 as the Dyck word W

for T2, augmented by 2g memory blocks, each of size O(log(n)) bits, so as
to locate the two extremities of each special edge: in each memory block
we also store the colors and directions of the two sides of the special edge
(as depicted in the middle picture of Fig. 4.6). Hence G2 is encoded by a
word W of length 2n − 2 + O(g log(n)). The encoding of the g-Schnyder
wood is completed by a second binary word W ′ that is obtained from a
clockwise walk along the (unique) face of G2 (cw means that the face is
on the right of the walker) starting at the corner θ incident to V2 in the
root-face. Along this walk, we write a ′0 ′ bit when crossing a non-special
outgoing edge of color 0 and we write a ′1 ′ bit when crossing a non-special
ingoing edge of color 1 (this corresponds to encode the ingoing degree of
color 1 edges). Since there are 2n− 6+ 4g non-special edges of color 0 or 1,
the word W ′ has length 2n− 6+ 4g. Therefore the pair of words (W,W ′) is
of total length 4n+O(g log(n)). Observe that these words can be obtained in
time O((n+ g)g) from a g-Schnyder wood on T, and the g-Schnyder wood
itself can be computed in time O((n+ g)g).

The correctness of this procedure – the fact that the pair (W,W ′) actually
encodes the g-Schnyder wood (and in particular the triangulation) – relies
on the two lemmas below (the proofs are omitted here and can be found
in [CAFL09]). First Lemma states that the information given by non-special
edges of color 0 is redundant.

Lemma 4.1 Let T be a triangulation endowed with a g-Schnyder wood. Then the g-
Schnyder wood can be recovered after the deletion process that consists in removing
all the non-special edges of color 0.

Lemma 4.2 Let T be a triangulation endowed with a g-Schnyder wood and con-
sider the corresponding cut-graph G2. Let θ be the corner incident to V2 in the
root-face (θ is also a corner of G2). Let e be a non-special edge of color 1. Then,
during a cw walk along G2 (i.e., with the unique face of G2 on the right of the
walker) starting at θ, the outgoing brin of e is crossed before the ingoing brin of e.

7 8

1

2
0

3
5

4

6

Es = {(1, 3), (6, 8)}

7

2
0

5

4

G2 = T 2 ∪ {e1, e2}

e1

e2

3

1

6
8

7
6

2

1

4

0

5

8

3

(V0 = 6, V1 = 4, V2 = 7)

Figure 4.6: Encoding of a toroidal tri-
angulation using our scheme based
on g-Schnyder woods.

decoding . We can now describe how to reconstruct the Schnyder wood
from the two words (W,W ′). First, construct the cut-graph G2 using W.
Note that the directions of edges and colors of the two sides of each special
edge of G2 are known from W. Hence, by the local conditions of Schnyder
woods, we can already insert the outgoing brins of color 0 or 1 that are non-
special (a non-special brin is a brin of a non-special edge). The non-special
outgoing brins of color 0 are ordered as b1,b2, . . . ,bk according to the order
in which they are crossed during a cw walk along G2 (i.e., with the unique
face of G2 on the right of the walker). Next, the word W ′ indicates where
to insert the non-special ingoing brins of color 1. Precisely, factor W ′ as

W ′ = 1r101r201r3 . . . 01rk+1 ,

where the integers ri’s are allowed to be zero. Then, for each i ∈ [1..k], insert
ri ingoing brins of color 1 in the corner (bi, follower(bi)) (where the follower
of a brin b is the next brin after b in cw order around its origin). And insert

4.3 our contribution : optimal encoding of triangulations with fixed topology 35

rk+1 ingoing brins of color 1 in the corner incident to V1 delimited to the
right by {V1,V0}.

Afterwards, we use Lemma 4.2 to form the non-special edges of color 1.
Write a parenthesis word π obtained from a cw walk along G2 starting at
θ, writing an opening parenthesis each time a non-special outgoing brin of
color 1 is crossed and writing a closing parenthesis each time a nonspecial
ingoing brin of color 1 is crossed. Then, Lemma 4.2 ensures that the match-
ings of π correspond to the non-special edges of color 1 in the Schnyder
wood, so we just have to form the non-special edges of color 1 according to
the matchings of π.

Finally, since the edges of color 0 are redundant (by Lemma 4.1), there
is no ambiguity to insert the edges of color 0 at the end (i.e., complete the
already inserted outgoing half-edges of color 0 into edges).

To conclude, the non-special edges of color 0 are redundant, the cut-graph
can be encoded by a parenthesis word W of length 2n− 2 (for the tree T2)
plus O(g log(n)) bits of memory for the special edges, and the edges of
color 1 can be inserted from a word W ′ of length 2n− 6+ 4g. Clearly the
reconstruction of the Schnyder wood from (W,W ′) takes time O((n+ g)g),
since it just consists in building the cut-graph G2 and walking cw along G2.
All in all, we obtain the following result:

Theorem 4.3 (Castelli Aleardi, Fusy, and Lewiner [CAFL09]) A triangulation
of genus g with n vertices can be encoded—via a g-Schnyder wood—by a binary
word of length at most 4n+O(g log(n)). Coding and decoding can be done in time
O((n+ g)g).

concluding remarks . While not asymptotically optimal, the encod-
ing above matches the same compression rate of the Edgebreaker encoder
in the genus g case, being very close to the optimal information theory
bound. In the next section we will explain how to encode triangulations
on surfaces of arbitrary genus (possibly having boundaries) matching the
asymptotic optimal bound (Theorem 4.5). It is worth nothing that the so-
lution of Theorem 4.3 is conceptually simpler to implement and faster: the
encoding/decoding is done in O((n+ g)g) time, while the solution offered
by Theorem 4.5 requires more than linear time to be computed.

Another advantage is that the encoding of Theorem 4.3 can be combined
with other algorithmic tools to design a more sophisticated code that sup-
ports adjacency queries in O(1) time, as done in [Chu+98; Bar+12] 2, or to
obtain compact practical data structures admitting fast implementations (as
the ones described in Section 4.4).

4.3 our contribution : optimal encoding of triangulations

with fixed topology

In this section we sketch our solution 3 for optimally encoding a triangula-
tion of arbitrary topology (possible having handles and boundaries). More
precisely, we consider of class of triangulations with fixed topology, which are
simple triangulated maps (no loops, no multiple edges) of genus g possi-
bly having b ⩾ 0 boundaries: all faces are triangles, except for b marked
boundary faces (also called boundaries) which are assumed to be pairwise dis-
joint (and without self-intersections). Such maps are rooted when there is

2 The results obtained in [Bar+12], a collaboration with J. Barbay, M. He and I.Munro, pertain to
the design of succinct representations and are not included in this document.

3 The contribution of this section originates from Castelli Aleardi, Fusy, and Lewiner [CFL10].

36 graph encoding and compact data structures

a distinguished marked edge (the root) incident to a non-boundary (root)
face.

Our solution relies on the combination of previous combinatorial tools
with a planarizing strategy: the main idea consists in recursively cutting
the surface along non contractible cycles in order to reduce its genus. Thus
the problem of encoding a triangulation with fixed topology (given by the
number of its boundaries and its genus) reduces to the problem of encod-
ing a planar triangulation with boundaries, which can be solved with our
extension of the Poulalhon and Schaeffer [PS06] bijection.

It is worth noting that more recently an elegant generalization of the
Poulalhon and Schaeffer bijection to the genus 1 case has been proposed
by Despré, Gonçalves, and Lévêque [DGL17], providing an optimal encod-
ing for toroidal triangulations. Compared to the planar case with no bound-
ary, our construction is not bijective but the encoding is still asymptotically
optimal in the information theory sense, and allows us to deal with triangu-
lations of arbitrary topology (bounded number of boundaries and handles):
an advantage is that our strategy is rather simple and does not involve the
computation of special crossing toroidal Schnyder woods as in [DGL17].

orientations and canonical spanning trees . An α-orientation
of a planar map M is minimal if there is no counter-clockwise directed cycle,
and is accessible if from every vertex one can reach the root-vertex by an
oriented path. To such an orientation O is associated the so-called canonical
spanning tree for O [Ber07], which is the unique spanning tree T satisfying:

1. the edges of T are oriented toward the root-vertex,

2. every edge e ∈M\T has on its right the interior of the unique cycle of
e+ T .

The canonical spanning tree can be computed in linear time (according
to the number of edges) by a traversal algorithm [PS06; Ber07]. The fully
decorated spanning tree F for O is obtained by cutting each edge e ∈ M\T

in its middle, leaving an outgoing stem (incident to the origin of e) and an
ingoing stem (incident to the end of e), see Figure 4.7(c). Property 2 ensures
that O can be recovered from F, since the edges of M\T correspond to the
matchings of the cyclic parenthesis word formed by the stems in clockwise
order around the unique face of F (outgoing stems being seen as opening
parentheses and ingoing stems as closing parentheses).

V0 V1

V2

(a)

V2

V2

V2

(b)

(c)

(d)

Figure 4.7: A planar rooted triangu-
lation M endowed with its minimal
3-orientation (a), and the correspond-
ing spanning tree T , rooted at V2 (b).

4.3.1 Encoding plane triangulations (Poulalhon and Schaeffer [PS06] bijection)

Let T be a plane triangulation with n+ 2 vertices and root face {V0,V1,V2}.
The first step consists in computing a minimal Schnyder wood and the cor-
responding 3-orientation, denoted O, which is accessible with respect to ev-
ery outer vertex. Then consider the corresponding fully decorated spanning
tree, denoted F (see Fig. 4.7(c)). Since all faces are of degree 3, there is no
loss of information in deleting ingoing stems (because there is a unique way
to place the ingoing stems in such a way that the map obtained by match-
ing outgoing with ingoing stems is a triangulation). One can also delete the
branch (V1,V0), (V0,V2) without loss of information. The obtained tree with
only outgoing stems is called the reduced decorated spanning tree R of M (see
Fig. 4.7(d)): R is a rooted plane tree with 2 stems at each of the n nodes (the
extremity of a stem being not considered as a node). As shown in [PS06],

4.3 our contribution : optimal encoding of triangulations with fixed topology 37

(h)

V2(a)

V0 V1

(c)

3-orientation of M c

(e) (f)

M

contracted 3-orientation
made minimal

V2V2

(d)

(g) V2

(b) M c

(non minimal)
contracted 3-orientation

reduced decorated tree
with boundaries

fully decorated tree
with boundaries

fully decorated spanning tree

R

Figure 4.8: Correspondence between a triangulation M with 2 boundaries (a), and a
decorated plane tree with 2 boundaries, spanning all vertices of M \ {V0,V1} (h).

such a tree can be represented by a binary word of length 4n and weight
n, which can be compressed leading to an encoding of size ∼ log2

(
4n
n

)
,

matching the asymptotic bound given by (4.1).

4.3.2 Encoding planar triangulations with multiple boundaries

Here starts our contribution, which is to keep an optimal encoding scheme
in case of boundaries. Let M be a plane triangulation with b > 0 bound-
aries, n+ 2 non boundary vertices, and k boundary vertices. Assume with-
out loss of generality that an outer (non-boundary) face {V0,V1,V2} for M

is fixed that does not touch any of the boundaries (if no such face exists,
create it inside an arbitrary non-boundary face, this adds only 3 vertices
and will have no effect on the length of the coding word asymptotically).
Define the completed triangulation for M as the planar triangulation Mc ob-
tained by adding a star in each boundary face (see Fig. 4.8(b)); Mc is a
triangulation with n + k + b vertices and no boundary. Endow Mc with
Schnyder wood and consider the corresponding 3-orientation. Then contract
each of the b stars S1, . . . ,Sb into a single so-called special vertex s1, . . . , sb
(each contraction deletes the edges of the star and the edges on the con-
tour of the corresponding boundary face). The orientation inherited by the
3-orientation of Mc is such that every non special vertex has outdegree 3,
while every special vertex si has outdegree ki + 3, with ki the size of the
corresponding boundary. The contracted orientation is still accessible with
respect to vertices {V0,V1,V2}, but it may not be minimal, even if coming
from the minimal 3-orientation of Mc; indeed a path connecting two ver-
tices on the same boundary might become a ccw circuit after contraction
(as shown in Fig. 4.8(d)). However a procedure discussed in [BW00] allows
us to make —in linear time— the contracted orientation minimal (by suc-
cessively reversing ccw circuits) while keeping the same outdegree at each
vertex. Moreover the obtained minimal orientation is still accessible, because
returning circuits does not affect accessibility. So we can now consider the
fully decorated spanning tree for the orientation, see Fig. 4.8(f). Then we un-
contract each special vertex back into the original boundary face and obtain
a fully decorated plane tree with boundaries. Without loss of information
we can delete ingoing stems and the branch (V0,V1), (V0,V2), to obtain the

38 graph encoding and compact data structures

so-called reduced decorated plane tree with boundaries R for M. The tree R be-
longs to the family P

(b)
n,k of plane trees with b boundaries, n non-boundary

vertices, k boundary vertices, and decorated with stems as follows: 1) each
non-boundary vertex carries two stems, 2) for 1, . . . ,b, the i-th boundary, of
size called ki, carries overall ki + 2 stems 4. We obtain:

Lemma 4.4 ([CFL10]) For fixed b > 0, any tree in P
(b)
n,k can be encoded in a

number ℓ(n,k) of bits that satisfies

ℓ(n,k) ∼ 2k+ log2

(
4n+ 2k

n

)
as n+ k→∞.

The encoding of the tree is done by a contour word similarly as in [PS06].
Moreover, this encoding is asymptotically optimal with respect to n and k

(when n+ k → ∞), since it matches the lower bound that one can derive
from Brown’s counting formula [Bro64].

4.3.3 Encoding in higher genus

For dealing with the higher genus case, it suffices to make some simple ob-
servations. First, as discussed in [McD08] (Lemma 4.1), for any graph G on
a surface S of genus g > 0 with n vertices, there exists a non-contractible
cycle C on S such that C crosses G at vertices only, and |G∩C| ⩽

√
2n; C is

in fact the cycle with smallest number of intersections and can be computed
in time O(n log(n)) for fixed genus g [Kut06]. For a triangulation M on S

with b boundaries (boundaries seen as faces), C can be deformed in each tri-
angular face f to pass by one edge around f (but we do not deform C inside
the boundary faces). After this, cut S along C; this yields a triangulation M ′

of genus g− 1 with two special boundary-faces f1, f2 bounded each by C

(indeed, cutting splits C into two copies), with otherwise at most 2b bound-
aries (because each of the b boundaries of M might be crossed by C, thus
becoming two boundaries after cutting). We add a star into f1 and f2, so
the boundaries are only the ones arising from the boundaries of M (the lo-
cations of the two special stars have be stored to recover M from M ′, which
costs only O(log(n)) in memory). If M has n non-boundary vertices and k

boundary vertices, M ′ will have n ′ ⩽ n+ 2+ |C| non-boundary vertices and
k ′ ⩽ k+ 2b+ |C| boundary vertices, with |C| ⩽

√
2(n+ k). By induction on

g, M ′ can be encoded asymptotically optimally, i.e., with a word of length
ℓ(n ′,k ′) ∼ 2k ′ + log2

(
4n ′+2k ′

n ′
)
. Since ℓ(n ′,k ′) ∼ ℓ(n,k) when n+ k → ∞

and when n ′ + k ′ = n+ k+O(
√
n+ k), and since only memory O(log(n))

is necessary to recover M from M ′, the encoding in genus g is also asymp-
totically optimal.

Theorem 4.5 (Castelli Aleardi, Fusy, and Lewiner [CFL10]) Given an orientable
surface S of fixed topology τ = (g,b), it is possible to encode any triangulation on
S having n inner vertices and k boundary vertices, such that the length ℓ(n,k) of
the encoding word satisfies, as n+ k −→∞:

ℓ(n,k) ∼ log2 |T
(τ)
n,k|

where T
(τ)
n,k denotes the set of triangulations on S with n inner vertices and k

boundary vertices. Moreover, the encoding phase requires O(n+ k) time if g = 0

and O((n+ k) log(n+ k)) time if g > 0, while decoding takes O(n+ k) time.

4 R satisfies this property since, in the contracted tree, the total outdegree ki + 3 of the special
vertex si consists of one outgoing edge to the father of si plus ki + 2 outgoing stems

4.4 compact mesh data structures : related works 39

Data structure size navigation vertex vertex dynamic

(references) access adjacency updates

Edge-based data structures [GS85; Bau72; Bau75] 18n+n O(1) O(1) O(d) yes

triangle based [Boi+02]/Corner Table 12n+n O(1) O(1) O(d) yes

Directed edge [CKS98] 12n+n O(1) O(1) O(d) yes

Compact half-edge [AJ05] 12n+n O(1) O(1) O(d) yes

2D catalogs [CDM11] 7.67n O(1) O(1) O(d) yes

Star vertices [KT01] 7n O(d) O(1) O(d) no

TRIPOD [SS99] or our Thm 4.7 6n O(1) O(d) O(d) no

SOT [GR09] 6n O(1) O(d) O(d) no

ESQ [CADR12] 4.8n O(1) O(d) O(d) yes

Thm 4.8 (no vertex reordering) 5n O(1) O(d) O(d) no

Thm 4.8 (with vertex reordering) 4n O(1) O(d) O(d) no

Thm 4.9 (with vertex reordering) 5n O(1) O(1) O(1) no

Table 2: Comparison between existing data structures for triangle meshes. All stor-
age and runtime bounds hold in the worst case. The degree of the accessed vertex
is denoted d. Storage costs are expressed in terms the number of references (as a
function of the number n of vertices).

4.4 compact mesh data structures : related works

A basic requirement for mesh data structures, in addition to representing
the combinatorics and geometry of a 3D shape, is the traversability: the user
should be provided with fast navigational operators allowing to perform a
mesh traversal (such as walking around a vertex, or performing a DFS visit
of the primal or dual graph). Sometimes the user may ask for additional
functionalities such as the indexability (allowing to access in constant to each
vertex or triangle given its index) or the modifiability (the manipulation of
meshes may require to perform updates such as vertex insertions/deletions,
edge collapses and edge flips). The existing representations which are com- Compact data structures aim to reduce

the connectivity cost, since connectivity
largely exceeds the geometry cost. The
typical cost of geometric coordinates
ranges from 3× 16 = 48 to
3× 32 = 96 bits per vertex (bpv).
While storing connectivity requires
between 13× 32 = 416bpv and
19× 64 = 1216bpv (depending
whether triangle, vertex indices are
described with 32 or 64 bits per
reference) adopting standard data
structures [Bau75; Boi+02], as reported
in Table 2.

monly used in practice are easy to implement and provides fast navigational
operators and dynamic local updates. But they have a drawback: in order
to match these performances they store a lot of information, which makes
the data structures quite redundant and not really suitable for representing
very large meshes (Table 2 reports comparisons of mesh representations).

practical solutions . An effective way of for dealing with huge meshes
is to design compact data structures requiring small storage while still guar-
anteeing a fast and practical way of accessing mesh elements.

Succinct representations [CDS05a; CDS05b; CDS08], run under the word-
RAM model, provide an optimal solution but are mainly of theoretical inter-
est, since the amount of memory required in practice is quite important even
for very large meshes. Some attempts to exploit the algorithmic framework
of succinct representations in practice had lead to a space efficient dynamic
data structure [CDM11]. The main idea is to gather together neighboring
faces into small groups of triangles (called patches). While references are
still of size Θ(logn), grouping triangles allows us to save some references
(corresponding to edges internal to a given patch). In particular a triangu-
lation (possibly having handles and boundaries), can be represented using
at most 7.67 references per vertex, while supporting O(1) time navigation
and local updates in O(1) amortized time[CDM11] (a more concise solu-
tion [CADR12] requiring 4.8n references/vertex can be obtained through
face/vertex reordering, slightly increasing the cost for updates).

40 graph encoding and compact data structures

reducing redundancy through face reordering . One of the in-
gredients for reducing the storage requirements is to perform a reordering
of the faces or the edges of the input mesh. The main idea used in the

t1

t4

11

14

7

20

t1
14

9

10

5

2

15

16

12

17

3

13

t6

19

18

6

8

t4 t54

t54

tm

O
p1 = (x1, y1, z1)

p2 = (x2, y2, z2)

. . .

. . .

pn = (xn, yn, zn)

c2 . . .

c11 c161

c1

opposite(c) = O[c]
triangle(c) = c/3
corner(t) = 3 · t

. . .

t6 c3

c16

G

Figure 4.9: Illustration of the SOT data
structure [GR09].

SOT data structure [GR09], illustrated in Fig. 4.9, is to implicitly represent
the map from triangles to corners (triangle operator), and the map from
corners to vertices (vertex operator), through a face reordering. First match
each vertex to an incident triangle (in such a way a triangle is matched with
at most one vertex). Then permute triangles in such a way that the triangle
associate with the i-th vertex vi has number i (thus the first n triangles ap-
pearing in this ordering are the ones associated with a vertex). The corners
of a triangle are listed consecutively, and the first one corresponds to the
vertex matched for the triangle. The incidence relations are stored in an ar-
ray O (of size 3m) having 3 entries per triangle: O[i] stores the index of the
corner opposite to ci (which is matched to vertex vi, for i ⩽ m). Corners op-
erators are easily supported in O(1) time performing arithmetic operations.
The only operation that cannot be performed in constant time is vertex ac-
cess: retrieving vertex vi requires to walk around its incident faces until ci
is reached (vi being matched to ci).

Theorem 4.6 (Gurung and Rossignac [GR09]) Given a triangulation (possibly
having handles and boundaries), there exists a data structure using 6 rpv which
supports O(1) time navigation (retrieving a vertex of degree d requires O(d) time).

more concise heuristic solutions . Adopting some interesting heuris-
tics one may obtain even more compact solutions [Gur+11b; Gur+11a; Gur+13],
requiring better space requirements in practice, but with no theoretical guar-
antees in the worst case. For instance, the face pairing approach of the
SQUAD data structure improves the SOT bounds to about (4+ ε) references
per vertex: as shown by experiments ε is usually a small value (between
0.09 and 0.3 for the tested meshes). Another heuristic combines the face and
vertex re-ordering with computation of a nearly Hamiltonian ring spanning
almost all vertices: as reported in [Gur+11a], the LR data structure is able to
represent a triangulation using between 2.04 and 3.16 references per vertex
in the case of regular meshes (we plot in Fig. 4.10 the experimental evalua-
tion obtained with our implementation of the construction phase of the LR
data structure).

Eros d6 = 0.85 Isidore d6 = 0.81

Egea d6 = 0.25

1

3

2.5

0.5

3.5

1.5

(references per vertex)

Dragon d6 =

Iphigenia d6 = 0.38

2

Figure 4.10: We have implemented
the construction of the LR data struc-
ture [Gur+11a] and evaluated its
compression performances: results
are expressed in terms of references
per vertex. Meshes are sorted from
left to right according to d6, the pro-
portion of degree 6 vertices (regu-
lar meshes are listed leftmost). Our
tests involve real-world meshes from
the aim@shape repository and con-
firm the intuition that LR achieves
good compression rates for regular
meshes (with high value of d6).

4.5 our contribution : compact data structures for triangu-
lations

navigational interface . In order to design our compact data struc-
tures we have first to choose the right set operations that our solution will
support. For our purposes we adopt the interface of the winged-edge represen-
tation [Bau72; CKS98], which offers navigational operators which are equiv-
alent to the ones supported by the Half-edge representation. More precisely,
given an edge e = (u, v) oriented toward v, which is incident to (u, v,w)

(its left triangle) and to (v,u, z) (its right triangle), the operators defined in
Fig. 4.11 allows us to retrieve the four undirected edges {v, z}, {v,w}, {u, z}
and {v,w}, and perform full navigation in the mesh as required in geomet-
ric processing algorithms. For instance, their combination allows us to walk
around the edges incident to a given face, or to iterate on the edges incident
to a given vertex (as depicted in Figure 4.11).

4.5 our contribution : compact data structures for triangulations 41

R
i
g
h
t
F
r
o
n
t
(e
)

e

LeftFront(e)

L
e
f
t
B
a
c
k
(e
)

RightBack(e)u z

vw

Degree(u) {
// Enumerating edges incident to u

e = Edge(u);

f = e; d = 0;

if (u ==Source(f))

do{

else

f =RightFront(f) ;

d = d+ 1;

} while f 6= e;

return d;

}

f =LeftBack(f) ;

Target(e) = v

Source(e) = u

LeftBack(e) = {u,w}

LeftFront(e) = {v, w}

RightBack(e) = {u, z}

RightFront(e) = {v, z}

Edge(u) returns an edge outgoing from u

Point(u) = (ux, uy, uz)

Figure 4.11: (left) Navigational operators supported by the winged-edge representa-
tion [Bau72]: these operators can be combined to perform mesh traversal, for exam-
ple for enumerating the edges incident to a vertex (see pseudo-code on the right).

overview of our solution. In order to design new compact array-
based data structures, we make use of two ingredients. The first idea is to
exploit, as done in [SS99], the existence Schnyder woods which will allow
storing only two references per edge (namely the LeftFront and RightFront

incident edges). The second idea consists in performing, as done in [CKS98;
GR09; Gur+11b], a reordering of cells (the edges in our case) to implicitly
represent the map from vertices to edges, and the map from edges to ver-
tices. More precisely, let us consider an input plane triangulation G endowed
with a Schnyder wood (T0, T1, T2), and define the tree T0 by adding edges
(V1,V0) and (V2,V0) to T0; after adding the edge (V2,V1) to the tree T1 each
edge gets a color and an orientation, as depicted in Figure 4.13. In order to help the intuition we prefer

to replace the three indices {0,1,2}
(operations are done modulo 3) with
three labels {red,blue,black}
which are cyclically ordered using the
operator next (and prev) defined as:
next(red) = blue,
next(blue) = black,
next(black) = red.

Since the local Schnyder condition ensures exactly one outgoing edge of
each color (except for vertices V0,V1,V2) an edge (u, v) can also be identified
by its origin u and its color c. For each color c and each vertex u, we store
two vertex indices Sleftc [u] and S

right
c [u] and two booleans Cleft

c [u] and
C
right
c [u] describing the source and color of the two neighboring edges of

edge u↗
c as detailed below and one boolean Ic[u] indicating the existence of

incoming edge at u of color c.
Vertices will be identified by integers 0 ⩽ i < n; and an oriented edge

(u, v) having source u and color c will be represented by the pair (u, c) (also
denoted u↗

c).

4.5.1 Our first solution: scheme description

Combining Schnyder woods and the re-ordering of edges one can obtain an
array-based representation using only 6 references: this first representation
is still quite simple (and relatively easy to implement), so that we can shortly
provide its complete description and sketch the main arguments underlying
its correctness.

Our data structure consists of several arrays of size n:
- three arrays of booleans Ired, Iblue, and Iblack (I standing for incoming),
- six arrays of booleans Cleft

red , Cright
red , Cleft

blue, Cright
blue , Cleft

black, Cright
black (C

standing for color),
- six arrays of vertex indices Sleftred , Sright

red , Sleftblue, Sright
blue , Sleftblack, Sright

black (S
standing for source),
- an array P storing the geometric coordinates of the points.

42 graph encoding and compact data structures

3

4

5

6

7

8

9

01

2

V0 = 5, V1 = 7, V2 = 2.

C left
red [j] = true

Cright
red [j] = false

Sright
red [j]

Ired[j] = false

Sleft
red [j]

6

7

8

9

0

1

2

3

5

4 67

8

9

0

12

3

4

6

7

8

9

0

1

2

3

97

8

0

9

2

3

4

6

7

8

9

0

12

34

6 6

0

8

1

2

3

4

8

1

3

4

1

1

Figure 4.13: Illustration of the data structure described by Theorem 4.7. For each
vertex we store 6 references in table S, corresponding to the source of the front
neighbors of the 3 outgoing edges. Tables I, C, S are drawn as an array of size n

where booleans are represented by colors (green=true, pink=false).

These arrays store the following information (refer to Figure 4.13) for a
vertex u and a color c (the three vertices of the outer face do not have all
their outgoing edges and must obey special rules):

Ic[u] =

true if vertex u has at least one incoming edge of color c

false otherwise

Sleftc [u] = Source(LeftFront(u↗
c))

Sright
c [u] = Source(RightFront(u↗

c))

C left
red [8] = true

Cright
red [8] = true

Sright
red [8] = 3

Ired[j] = false

Sleft
red [8] = 9

5
1

8

3

939 3 3 3

9

Figure 4.12: In th example above ver-
tex 8 has no red incoming edges thus
Ired[8] is false (pink); the left front
edge of the red edge outgoing from
Vertex 8: 8↗

red = (8,5) is (9,5) =
9↗
red thus the first box of line 8 of the

array is green (same color) and con-
tains 9.

Using the coloring rules, these two neighboring edges have only two pos-
sible colors: c and next(c) (resp. prev(c)) for a left neighbor (resp. right
neighbor). Arrays Cc store that information (see Fig. 4.12 for an illustration):

Cleft
c [u] =

true if Color(LeftFront(u↗
c)) = c

false otherwise

Cright
c [u] =

true if Color(RightFront(u↗
c)) = c

false otherwise

Theorem 4.7 (Castelli Aleardi and Devillers [CD18]) Let T be a plane trian-
gulation with n vertices. The representation described above requires 6n references,
while allowing support of Target operator in O(d) time (when dealing with a de-
gree d vertex) and all other operators in O(1) worst case time.

proof : Let e be an edge of color c, with source u and target v, whose
incident left and right triangles are (u, v,w) and (v,u, z) respectively. The
navigational operations supported by the Winged-edge data structure can
be implemented as described below.

operators Edge(u) and Point(u) : to get the index of an edge inci-
dent to a given vertex u we simply returns the edge u↗

red. The geometric
coordinates of vertex u are naturally stored in P[u].

4.5 our contribution : compact data structures for triangulations 43

operator Source(e) : is a trivial operation since e = (u, v) is encoded
as the pair (u, c) in our representation.

operator LeftFront(e) : by definition of arrays S and C, LeftFront(e)
is the edge of source SleftColor(e)[Source(e)] and color Color(e) if the boolean

value Cleft
Color(e)[Source(e)] is true, and color next(Color(e)) otherwise.

operator LeftBack(e) : We have to distinguish three cases, depending
on the color of edges (u,w) and (v,w) (as illustrated in Figure 4.14):

Case 1: Iprev(Color(e))[Source(e)] is false. This case is easy to handle, since
(u,w) is the edge with source u and color next(Color(e)) (see Fig. 4.14(c),
there is no incoming blue edge at u: LeftBack(e) must be red and outgoing
at u).

Case 2: Iprev(Color(e))[Source(e)] is true and Cleft
Color(e)[Source(e)] is true.

Then (w, v) is of color Color(e) and (v,w) can be accessed as LeftFront(e)

and LeftBack(e) is the edge with source Source(LeftFront(e)) and color
prev(Color(e)) (there are incoming blue edge at u, thus LeftBack(e) is blue.
Since LeftFront(e) = {v,w} is black, it is oriented from w to v and its source
is also the searched source of LeftBack(e)).

zw zw

zw zw

u

v

u

v

u

v

u

v1

2 3

Figure 4.14: Case analysis of Theo-
rem 4.7: in these pictures the edge
(u,v) is assumed to be black.

Case 3: Iprev(Color(e))[Source(e)] is true and Cleft
Color(e)[Source(e)] is false,

then (v,w) is of color next(Color(e)) and LeftBack(e) is the edge given by
LeftFront(LeftFront(e)). As in Case 2 LeftBack(e) is blue, but the edge
LeftFront(e) = {v,w} is red and oriented from v to w. LeftBack(e) is then
accessible as LeftFront(LeftFront(e)).

operator Target(e) : unfortunately we have not stored enough infor-
mation to return v in O(1) time: the idea is to iteratively turn around vertex v

(running, for example, the code given in Fig. 4.11), starting from edge (u, v)
in cw direction (or ccw direction) until we get an edge e ′ = (v, x) having
v as source. Then compute Source(e ′) in O(1) time as above, which results
in the target of (u, v). This procedures ends after at most d− 3 steps (for a
vertex v of degree d), since each vertex has 3 outgoing edges.

operators RightBack(e) and RightFront(e) : observe that the traver-
sal of the right face (u, v, z) incident to (u, v) can be handled in a similar
manner as above. Operators RightBack(e) and RightFront(e) can be de-
duced by symmetry from operators LeftBack(e) and LeftFront(e), because
of the symmetry of Schnyder woods and of our use of reference.

□

4.5.2 Further reducing the space requirements

In order to save one (or two) references per vertex, we make use of max-
imal Schnyder woods and we allow to permute input vertices (reordering
the vertices according to a given permutation). One main ingredient is to
make use of a breadth-first search traversal of T0, whose corresponding ver-
tex ordering (denoted cwBFS) has the following useful property: the vertices
having the same parent vertex u in T0 will have consecutive labels, when
traversed turning cw around u from u↗

black (see Figure 4.15). We then re-
order all vertices (their associated data) according to their cwBFS label, and
we store entries in table C accordingly. This allows us to save one reference
per vertex: we do not store a reference to RightFront for edges in T0, which

44 graph encoding and compact data structures

leads us to not store tables Cright
red and S

right
red . We retrieve the corresponding

information using the ordering of vertices as explained below (it is even pos-
sible to save one more reference, but this implies to change the information
involving black edges: the details are omitted here, please refer to [CD18]).

3

4
5 6

7 8

9

0

1

2

z=u−1
w

u

v

zw

u

v

Figure 4.15: A planar triangulation
(endowed with its maximal Schnyder
wood) whose vertices are labeled ac-
cording to the cwBFS traversal of tree
T0 (top). Bottom pictures illustrate
two cases involved in the proof of
Theorem 4.8: we now store only one
reference for red edges, since most
adjacency relations between edges in
T0 are implicitly described by the
cwBFS labels.

Theorem 4.8 (Castelli Aleardi and Devillers [CD18]) Let T be a plane trian-
gulation with n vertices endowed with its maximal Schnyder wood. Then T can be
represented using 5n references, while supporting navigation as in Theorem 4.7. If
one is allowed permuting the input vertices (their associated geometric data) then T

can be represented using 4n references, with the same runtime complexity.

The proof of the result above is based on a case analysis which is much
more involved than the one of Theorem 4.8 and tedious to follow (omit-
ted here). Two interesting cases are illustrated by the pictures in Figure 4.15.
Compared to the representation of Theorem 4.7 we lose the information con-
cerning RightFront for red edges (which was previously explicitly stored in
C
right
red and S

right
red): an important remark is that, given a red edge e =

(u, v), we can still retrieve its right siblings in T0 just using its cwBFS
label. If (z, v) is oriented toward v (thus red as (u, v)), its source is sim-
ply z = u − 1. Otherwise, we exploit the assumption that the Schnyder
wood is maximal: since clockwise oriented triangles are forbidden, the edge
{z,u} = RightFront(u↗

red) must be black, and in this case we can retrieve it
with a memory access, first computing the edge (u, z), which is also black
and oriented toward z.

4.5.3 Additional features

all operations in O(1) worst case time . We can further exploit
the redundancy in our representation in order to improve the computational
cost of the navigation: all navigational operations, including checking the
adjacency between neighboring vertices, can be supported in worst case
constant time slightly increasing the space requirements as stated below
(the details are omitted here and can be found in [CD18]):

Theorem 4.9 ([CD18]) If one is allowed permuting input points, then there exists
a compact representation requiring 5n references which supports all navigation
operators (including Target and Adjacent) in worst case O(1) time.

decoding the triangulation from compressed format. A main
issue common to many compact data structures [CADR12; CDM11; Gur+11b;
GR09; Gur+11a], is that an explicit representation of the entire mesh must be
kept in main memory during the whole construction phase: this is needed,
for example, to process vertices and edges (or faces), which must be re-
numbered according to a prescribed mesh traversal. This preliminary con-
struction phase can greatly increase the overall memory requirements, espe-
cially for very huge meshes: in addition to the space storage of the compact
data structure to construct (between 4n and 8n references for most compact
representations), one has to use between 19n references for an explicit rep-
resentation (such as Winged-edge or Half-edge), and a few additional memory
references for the implementation of the mesh processing (typically, a graph
traversal). To address this issue, we can take advantage of the compressed
format for triangle meshes described in Section 4.2, which makes use of
Schnyder woods in order to reduce the storage requirements.

4.5 our contribution : compact data structures for triangulations 45

More precisely, it turns out that it is possible to save our array-based
compact representations in a compressed format so that we can reconstruct
on the fly our structure in linear time, without any extra memory cost and
in a streamable fashion.

The first construction of our representation still needs an explicit repre-
sentation, in particular for the computation of the Schnyder wood.

As shown in [CD18] the decoding procedure is in two steps and consists
in performing a linear scan of the two words W,W ′ encoding respectively
the red tree T0 and the incoming black degree of the vertices.

In a first pass, the linear scan of the W word allows the construction of
the red tree by inserting the vertices (numbered according to the ccw-depth-
traversal) into a stack: in this way we fill all red columns of array C and S. In
parallel, we can read the word W ′ which allows us to fill the black columns
of array C and S. No extra memory is required for an explicit storage of the
red stack: as the blue columns are not involved during this first step, one
blue column can be used to provide an array-based implementation of such
a stack. When considering the red and black trees together, one obtains a
planar map where only blue edges are missing.

A second pass is required for retrieving the information about blue edges.
In the case where one is provided with a complete representation of such a The strategy for retrieving blue edges is

not trivial and requires some technical
details which are omitted here
(see [CD18] for a more detailed
explanation).

map (as in [HKL99; BB09]) retrieving the location of blue edges is straightfor-
ward: the source vertex of a blue edge is known by applying the local Schny-
der rule (the coloring and orientation of edges around a vertex), and edge
destinations can be recovered by performing a facial walk of each red/black
face. In our case such this solution cannot be applied: after the first decod-
ing step the red and black trees are recovered, but only a partial knowledge
of the red/black map is available.

So we have to apply a new strategy, slightly different from the one used in
Section 4.2, which consists in iteratively discovering and visiting in cw order
the blue edges incident to a given vertex x (this procedure is performed
independently for each vertex).

streamable encoding scheme . As described above, the first decod-
ing phase (construction of red and black trees), requires a parallel reading
of the two black and red words, or to perform a linear scan of the whole
encoding in two passes: to first construct the red tree, and then to recover
black edges (with a second linear scan). In practice, this can be a limitation
in the case of streaming applications. In order to avoid this problem, and
to make our data structure fully streamable, we can slightly modify our
encoding scheme, by interleaving the symbols in the red and black words.

More precisely, the bits in the red and black words can be mixed in a sin-
gle binary word as follows. We start with the encoding of the red tree, where
(and) symbols are replaced by 0 and 1 bits respectively. Let us assume we
are visiting and encoding a vertex v: just after the 0v bit corresponding to
the first visit of v, we encode the black in-degree of v by writing a block
consisting of d 1 bits followed by a 0 bit. The mixed code corresponding to
the example of Figure 4.4 is given below

00 00 01 01 11 02 02 12 03 03 13 04 04 14 05 05 06 1106 07 107 17 08 108 18 16 15 09 1110919 10 .

where we provide colors and subscripts just to help intuition. As detailed
in [CD18], it is possible to distinguish between red and black symbols, since
during the decoding phase we perform a linear scan of this mixed word, by
taking into account the Schnyder local rule.

46 graph encoding and compact data structures

4.6 experimental results

4.6.1 Preprocessing: construction vs. decoding.

2 4 6 8 10

2

4

6

8 Random 10M

Random 5M

Hand

Isidore n

se
co

nd
s

Building Half-edge DS from OFF

2 4 6 8 10

0.2

0.4

0.6

0.8

1

1.2
Random 10M

Random 5M

Hand

Isidore n

se
co

nd
s

Decoding compressed format

Figure 4.16: Comparison of the pre-
processing runtime costs. The top
chart reports the timing cost for
building the half-edge data structure
from a binary OFF file: we allocate
6GB of RAM memory for running the
whole phase. The bottom chart corre-
sponds to the whole decoding phase
of our CDS6n data structure from the
binary compressed format described
in Section 4.2: in this case we only al-
locate 800MB of RAM for the JVM.
Timings are expressed in seconds as
a function of the size of the input
mesh (millions of vertices) and rep-
resent the average time over several
runs of our tests. All results are taken
from [CD18].

We first evaluate the runtimes of our data structures concerning the pre-
processing construction phase. The charts in Fig. 4.16 show the construc-
tion costs (expressed in seconds) of our data structure using 6n references
(referred to as CDS6n, Thm 4.7) compared to the pre-processing phase in-
volving the Half-edge data structure. The reported runtimes confirm the
asymptotic linear time behaviour of all steps of our algorithms.

constructing compact data structures from off format. The
runtimes reported in the top chart of Fig. 4.16 correspond to the construc-
tion phase of the Half-edge data structure from an input binary OFF file,
storing both the geometry (3D vertex locations) and the mesh connectivity
(the mesh is stored with a so-called shared vertex representation, where each
face is represented with the indices of the three incident vertices).

Once we have in main memory the half-edge representation of the input
mesh we can run the incremental algorithm to endow the triangulation with
a Schnyder wood orientation and build arrays underlying our compact data
structures. The overall timing cost is dominated by the construction of the
Half-edge representation in main memory: this is the unique bottleneck,
in terms of memory requirements, of our pre-processing phase (in order
to run this phase on the tested meshes we have to allocate up to 6GB of
RAM memory). It is worth noting that most compact data structures [GR09;
Gur+11b; Gur+11a; Gur+13; CADR12] have the same limitation.

more efficient construction : decoding the compressed for-
mat. One main advantage of our encoding/decoding algorithm sketched
in Section 4.5.3 is that the input mesh can be directly constructed from a
compressed input file, without using additional memory for an intermedi-
ate representation (such as the Half-edge data structure) and without com-
puting the Schnyder wood, which leads in overall to a smaller construction
cost. The bottom chart of Fig. 4.16 reports the runtimes of the decoding from
the compressed format described in Section 4.2 (the cost includes the scan
of the input file also storing the geometry information): our procedure5 is
extremely fast and can be performed using small memory resources even
for large meshes (only 800MB of RAM for the JVM are sufficient for the
tested meshes).

4.6.2 Mesh navigation: runtime performances

In order to evaluate the performance of our representations, we have imple-
mented a Java array-based version of the Winged-edge data structure (requir-
ing 19 references per vertex): the plots in Fig. 4.17 report comparisons with
our compact data representations.

As in previous works [CKS98; GR09; Gur+11b; Gur+11a; Gur+13; CADR12]
we consider two usual processing procedures: computing vertex degrees (in-
volving edge navigation) and vertex normals (involving vertex access oper-
ators and geometric calculations). In all tests we allocate enough memory
so that all representations of the tested 3d models fit in main memory; ver-
tices are accessed sequentially according to their original order in the input

5 A more detailed discussion of the implementation and performances can be found in [CD18].

4.6 experimental results 47

Egea

Ip
higen

ia
Ero

s

Dra
gon

Horse
Han

d

Ran
dom

2
.5M

Ran
dom

5
M

50

100

150

200

250

300

na
no

se
co

nd
s

Vertex degree computation

Winged-edge
CDS6n
CDS5n
CDS4n

Egea

Ip
higen

ia
Ero

s

Dra
gon

Horse
Han

d

50

100

150

200

250

300

Vertex normal computation

Figure 4.17: Comparison of runtime performances for the computation of vertex de-
grees and vertex normals. Our compact data structures are compared to our imple-
mentation of the Winged-edge data structure. All results are expressed in nanoseconds
per vertex and represent the average over hundred of executions.

mesh (except for the data structure using 4n references of Thm 4.8, where
vertices are re-ordered according to the cw-BFS traversal of the tree T0). We
have written implementations of our data structure described in Thm 4.7 (re-
ferred to as CDS6n) and of the more compact versions described in Thm 4.8
(called CDS5n and CDS4n respectively). The implementation details are omitted

here: a more comprehensive discussion
on the encoding of service bits and the
use of bit shifts and masks for
manipulating integer references can be
found in [CD18].

practical interest of compact data structures . As one could
expect, non-compact mesh representations (e.g. Winged-edge data structure)
are faster in general: refer to the runtimes plotted in Fig. 4.17. In overall,
our data structures achieve good trade-offs between space usage and run-
times. While being between 3.17 and up to 4.75 times more compact for
connectivity than Winged-edge, our structures are slightly slower: they lose
in average on the tested meshes a factor 1.33 for CDS6n, 2.65 for CDS5n and
2.31 for CDS4n, when performing vertex degree computations.

Our representations are still competitive when considering the target op-
erator, which requires O(d) time in the worst case for a vertex of degree d

for our compact data structures (observe that the target operator requires
O(1) time in the case of Winged-edge). The results reported in the right chart
of Figure 4.17 provide a comparison of the runtimes for the vertex normal
computation, and show that our representations are slower than other data
structures by a factor between 1.5 and 2.5 in average (all geometric calcula-
tions involve simple float precision). The higher cost of the target operator
for the CDS6n, CDS5n and CDS4n representations is compensated by the
cost of geometric calculations, which dominates the runtimes, and is the
same for all representations.

5D R AW I N G G R A P H S O N S U R FA C E S

Most graphs we encounter in computer science, discrete mathematics and
real-life applications are not random but exhibit some strong structural
properties and regularities. The main goal of graph drawing algorithms is to
compute a layout which is easily readable and helps the user to recover the
structure of the underlying graph. This problem is very challenging, one of
the main reasons being that real-world graphs are really big and difficult to
inspect: thus we need deep mathematical tools to provide guarantees on the
quality of the result and efficient algorithmic tools to obtain fast practical
implementations.

Most works tend to take profit of some assumptions on the input graph:
for example the graph class to which it belongs or some properties, such as
some notion of connectedness or some structural parameter. In particular
graph planarity have played a crucial role in the domain of Graph Drawing
since its early years, and led to the discover of beautiful mathematical the-
orems and deep algorithmic tools, whose interest and relevance went well
beyond the original visualization purposes.

While there is a large literature on planar drawings, the problem of draw-
ing graphs on surfaces has been addressed less frequently from both the
theoretical and algorithmic point of view. This chapter focuses on my con-
tributions 1 to the problem of efficiently drawing graphs on surfaces, and
provides a short overview of the main recent advances in this domain.

5.1 graph drawing in the plane (“as i have known it”)

When dealing with planar (or locally planar) graphs a very basic problem
addressed by the Graph Drawing community consists in mapping the ver-
tices and edges of a graph onto a region in the plane or a portion of a 3D
surface. Most of the time edges are represented as smooth curves (very of-
ten as straight-line segments), and the drawing is required to be crossing-free.
Sometimes the drawing is asked to satisfy some further aesthetic criteria, in
order to obtain a pleasing and readable result. For example, one could seek
for good vertex resolution for ensuring that vertices are not too close to one
another.

force-directed methods . In the planar case, an elegant solution to
the graph drawing problem is provided by the so-called barycentric em-
bedding, one of Tutte’s masterpieces [Tut63]. In his pioneering work Tutte
showed how to compute vertex positions by solving a system of linear equa-
tions: the method applies to a 3-connected planar graph and the resulting
drawing is guaranteed to be crossing-free, also allowing to fix the positions
of outer vertices (which are mapped to the vertices of a given convex poly-
gon). The solution can be also reformulated in terms of a system of springs
converging to an equilibrium position, and has inspired a huge number
of force-directed embedding algorithms (the interested reader can find a

1 The contributions of this chapter are originated from the collaborations with Eric Fusy and
Olivier Devillers [CDF18b], together with our students Gaspard Denis [CDF18a] and Anatolii
Kostrygin [CFK14].

49

50 drawing graphs on surfaces

Tutte barycentric layout Schnyder layout FPP layout

ra
n
d
om

tr
ia
n
g.

(n
=

10
0)

f
i
s
h
m
o
d
el

(n
=

24
1)

Figure 5.2: Comparison of planar layouts (all layouts are obtained with our Java
implementations): the Tutte embedding is compared to the FPP algorithm and the
Schnyder drawing. The pictures above show the layouts of a planar random trian-
gulation of size n = 100 and a triangle mesh (the fish graph, top pictures). For the
sake of readability the FPP layout is re-scaled (its grid size is originally 2n×n).

comprehensive survey of force-directed methods in [Kob13]). These meth-
ods allows us to obtain very nice layouts achieving several desirable aes-
thetic criteria, such as uniform edge lengths, low angle distortion or even
the preservation of symmetries (see top pictures in Fig. 5.2).

0.1 0.2 0.3 0.4 0.5 0.6

0.1

0.2

0.3

0.4

dragon

Eros

n

se
co

nd
s

Timings

FFP layout

0.1 0.2 0.3 0.4 0.5 0.6

10

20

30

40

50

60

70

dragon

Eros
n

se
co

nd
s

Tutte embedding

Figure 5.1: Comparison of runtime
performances. Timings are expressed
in seconds as a function of the size
(millions of vertices). The runtimes
for the FPP layouts are obtained with
our Java implementation where we
make use of our reformulation of the
shift principle (as described in Sec-
tion 5.3). For the solution of the linear
equations underlying the Tutte em-
bedding, we make use of the Java

implementation of the conjugate gra-
dient solver provided by the Matrix
Toolkit Java (MTJ) library.

A main common drawback is that one cannot achieve a good vertex reso-
lution, since geometric computations (involving for example linear solvers)
lead to vertex coordinates of exponential size. Moreover, they are quite ex-
pensive in terms of runtime costs, since their implementation requires iter-
ative linear solvers (for dealing with large sparse matrices) or sometimes
non-linear optimization methods, making these approaches slower and less
robust than combinatorial graph drawing tools.

combinatorial algorithms . A solution to the problems above is
provided by the so-called straight-line grid drawings [FPP90; Kan96; Sch90]:
the graph is embedded on a regular grid whose area is typically polynomial
with respect to the size of the graph. A further advantage of this approach
is that the combinatorial algorithms perform essentially arithmetic compu-
tations on integers of bounded magnitude (no roundings are needed).

For the planar case, many classes of algorithms have been proposed to
solve this task: in this document we focus on the face-counting approach
proposed by Schnyder [Sch90] (whose principle is illustrated in the bottom
pictures of Figure 5.3) and on the shift algorithm described by Fraysseix,
Pach, and Pollack [FPP90] (whose steps are sketched in the top pictures
of Figure 5.3), both achieving very good vertex resolution (quadratic area)
and time complexity (running in linear time in the worst case). Their prac-
tical performances are extremely good compared to force-directed methods:
using combinatorial algorithms one can deal in real-time with very large
graphs, being able of processing several millions of vertices per second. A
comparison between the timing costs is given in Figure 5.1.

5.2 drawings higher genus graphs : related works 51

3

4
5 6

7
8

9
34

56

78

9

z
z → (6

13,
2
13)

V0 := (0, 0)

:= (0, 1)

:= (1, 0)

v = |R0(v)|
2n−5 V0 +

|R1(v)|
2n−5 V1 +

|R2(v)|
2n−5 V2

V0 V1

V2

V1

V2

(0, 0) (1, 0)

(1, 1)

Figure 5.3: Top pictures show a planar triangulation endowed with a canonical or-
dering and the n− 2 steps of the FPP algorithm [FPP90] that embeds a graph with
n vertices on a grid of size 2n×n. This algorithm relies on a shift principle: we pro-
ceed incrementally by adding vertices according to the canonical ordering. At each
step the drawing is stretched horizontally by adding two vertical bands of width 1,
and the new vertex is placed on the outer face at the intersection of two rays having
slopes +1 and −1. A detailed description of the shift principle will be provided later
in this chapter: note that the FPP layout can be recovered as a special case using
our algorithm for cylindrical triangulations presented in Section 5.3. (Bottom) The
Schnyder drawing relies on a face-counting principle: the location of a given inner
vertex v is defined in terms of barycentric coordinates with respect to the outer ver-
tices: more precisely, v is located at the barycentric combination

∑
i∈{0,1,2}

|Ri(v)|
2n−5 Vi,

where |Ri(v)| is the number of faces belonging to the region Ri(v) (as defined in
Section 2.2.1) and 2n− 5 is the total number of inner faces.

Unfortunately, the resulting layouts are rather unpleasing and fail to achieve
some basic aesthetic criteria that help readability: they often have long edges
and large clusters of tiny triangles, as illustrated by the pictures in Fig. 5.2.

5.2 drawings higher genus graphs : related works

While there is a large literature on planar layouts, the problem of drawing
graphs on surfaces has been addressed less frequently from both the theo-
retical and algorithmic point of view.

drawings higher genus graphs : layout setting . For drawing
higher genus graphs most existing works [WKS01; GGT06; Moh96; MR98;
Cha+12; DGK11; GL14; Zit94] consider the planar (periodic) setting: for in-
stance, in the case of toroidal maps, the main goal is to obtain crossing-free
layouts on the flat torus.

Assume from now on that w and h are positive integers. For a cylin-
drical map G, a periodic straight-line drawing of G of width w and height
h is a crossing-free straight-line drawing (edges are drawn as segments,
two edges can meet only at common end-points) of G on the flat cylinder
of width w and height h, such that the vertex-coordinates are in Z/wZ×
[0..h] (i.e.coordinates are integers). Similarly, for a toroidal map G, a periodic

52 drawing graphs on surfaces

(a) (b) (c) (d)

Figure 5.4: (a) A toroidal triangulation G; (b) a periodic straight-line drawing of G
which is not straight-frame; (c) a non-periodic straight-frame drawing of G (where
G is planarly unfolded using a cut-graph); (d) a periodic straight-frame drawing of
G.

straight-line drawing of G of width w and height h is a crossing-free straight-
line drawing of G on the flat torus of width w and height h, such that the
vertex-coordinates are in Z/wZ×Z/hZ.

Sometimes the layout is required to satisfy some stronger aesthetic con-
straints: a straight-frame drawing of a toroidal graph G is a planar straight-
line drawing of G such that the outer face contour is an axis-aligned rectan-
gle, corresponding to a canonical polygonal scheme of G (the graph is cut
along fundamental cycles, whose vertices and edges are placed on horizon-
tal and vertical lines respectively).

Pictures (b) and (d) of Fig. 5.4 show two periodic straight-line drawings of
the same graph. Pictures (c) and (d) of Fig. 5.4 correspond to straight-frame
drawings: the example in (b) corresponds to a non-periodic drawing since
only the relative order of the vertices on the outer face is preserved (vertices
consecutive on a fundamental cycle are also consecutive on the boundary).

5.2.1 Grid-drawings of toroidal graphs: combinatorial algorithms

While here we focus on combinatorial
algorithms we should point out that

some of the numerical algorithms for
graph drawing can be used, or easily
extended, to deal with higher genus
graphs (for instance Kobourov and

Wampler [KW05] show how to make use
of force-directed layouts in the

non-euclidean setting).

face-counting approach . A recent and elegant method for drawing
toroidal graphs with polynomial grid size is the algorithm of Gonçalves and
Lévêque [GL14], which is an adaptation of Schnyder’s drawing principles to
the torus and relies on the properties of crossing Schnyder woods (defined
in Section 3.4). It achieves both the periodicity requirement and polynomial
grid-size: more precisely, the size of the periodic regular grid is O(n2)×
O(n2) for simple toroidal triangulations (no loops or multiple edges) and is
O(n4)×O(n4) for essentially simple (simple in the periodic representation)
toroidal triangulations. Gonçalves and Lévêque also extend these ideas to 3-
connected toroidal maps (similarly, Schnyder woods for plane triangulations
have been extended to plane 3-connected maps [Fel01]), but as opposed to
the planar case [Fel01], the periodic drawings of 3-connected toroidal maps
they obtain do not necessarily have the desired convexity property.

fpp layout of the planarized graph . Recently some methods for
the straight-line planar drawing of genus g graphs with polynomial grid
area O(n3) in the worst case have been described [Cha+12; DGK11]. Such
methods unfold the graph in the plane along a cut-graph and then apply
the incremental approach of the FPP algorithm to obtain a straight-frame
drawing of the graph. However, these methods do not yield easily periodic
representations: for example, in the case of a torus, the boundary vertices
might not be aligned, so that the drawing does not give rise to a periodic
drawing.

5.3 our contribution : periodic toroidal drawings 53

Nevertheless the decomposition underlying this approach is interesting
and inspired our works on toroidal and spherical drawings (see Sections 5.4
and 5.5), where we can overcome the alignment problem.

5.3 our contribution : periodic toroidal drawings

In order to obtain periodic drawings of toroidal maps, we first compute a
pair of parallel non-contractible cycles defined a so-called tambourine (as
described in Section 2.1.2): the removal of the tambourine leads to a cylin-
drical map with two inner and outer boundaries, denoted Γinn and Γext. The
first problem to address is thus to get a periodic straight-line drawings of a
cylindrical map: the solution for the triangulated case is detailed below.

5.3.1 Drawing cylindrical simple triangulations (with no chord at Γinn).

Here we provide a detailed description of the algorithm for dealing with a
cylindrical simple triangulation G with no chord at Γinn (the more general
case, allowing chords at Γinn, as well as multiple edges and loops will be
sketched later).

We first compute a canonical ordering of G as described in Section 3.3,
and then draw G in an incremental way. We start with a cylinder of width
2|Γinn| and height 0 (i.e., a circle of length 2|Γinn|) and draw the vertices of
Γinn equally spaced on the circle: space 2 between two consecutive vertices2.

P`
Pr

ak bk

er
e`

vk

Figure 5.5: One step of the incremen-
tal algorithm for drawing cylindrical
triangulations. Two vertical strips of
width 1 (each one along a path in the
dual forest) are inserted in order to
make the slopes of eℓ and er smaller
than 1 in absolute value. Then the
new vertex and its edges connected
to the upper boundary can be drawn
in a planar way.

Then the strategy for each k ⩾ 1 is to compute the drawing of Gk out of
the drawing of Gk−1. Note that the set of vertices on the boundary cycle
of Gk−1, denoted Bk−1, that are neighbours of vk forms a path γ on Bk−1.
Traversing γ with the outer face of Gk−1 to the left, let eℓ be the first edge
of γ and er be the last edge of γ (note that eℓ = er if vk has only two
neighbours on Bk−1). Let also ak be the starting vertex and let bk be the
ending vertex of γ. Two cases can occur.

(1) If, in the drawing of Gk−1 obtained so far, slope(eℓ) < 1 and slope(er) >
−1, then we can directly insert vk in the drawing. We place vk at the inter-
section of the ray of slope 1 starting from ak and the ray of slope −1 starting
from bk, and we connect vk to all vertices of γ by segments.

(2) If slope(eℓ) = 1 or slope(er) = −1, then we cannot directly insert
vk as done in Case (1), because the edges eℓ and {ak, vk} would overlap if
slope(eℓ) = 1, or the edges er and {bk, vk} would overlap if slope(er) =

−1. We first have to perform stretching operations (thereby increasing the
cylinder width by 2) to make the slopes of eℓ and er smaller than 1 in
absolute value. Define the x-span of an edge e in the cylindrical drawing
as the number of columns [i, i+ 1]× [0,+∞) that meet the interior of e (we
have no need for a more complicated definition since, in our drawings, a
column will never meet an edge more than once). Consider the dual forest
F∗ for the canonical ordering restricted to Gk−1 (recall the its definition
given in Section 3.3). Let Pℓ (resp. Pr) be the root-path of e∗ℓ (resp. e∗r) in
F∗. We stretch the cylinder by inserting a vertical strip of length 1 along Pℓ
and another along Pr, see Fig. 5.5. This comes down to increasing by 1 the
x-span of each edge of Gk−1 dual to an edge in Pℓ, and then increasing by
1 the x-span of each edge dual to an edge in Pr (note that Pℓ and Pr are not
necessarily disjoint, in which case the x-span of an edge dual to an edge in

2 It is also possible to start with any configuration of points on a circle such that any two consec-
utive vertices are at even distance.

54 drawing graphs on surfaces

1 1
2

1

2

3

1

2

3

4
5

4
6

2
1

3

5

4
6

2
1

3

7

5
4

2
1

3

Figure 5.6: Complete execution of the algorithm computing an x-periodic drawing of
a cylindrical simple triangulation with no chordal edge at Binn. The vertices are pro-
cessed in increasing label (the canonical ordering is the one computed in Fig. 3.13).

Pℓ ∩ Pr is increased by 2). After these stretching operations 3, whose effect
is to make the slopes of eℓ and er strictly smaller than 1 in absolute value,
we insert, as in Case (1), the vertex vk at the intersection of the ray of slope
1 starting from ak and the ray of slope −1 starting from bk, and we connect
vk to all vertices of γ by segments.

Note that in the two cases (1) and (2), the two rays from ak and bk actually
intersect at a grid point since the Manhattan distance between any two ver-
tices on Bk−1 is even. A complete execution of this algorithm is illustrated
in Fig. 5.6.

One can easily check that the drawing remains crossing-free: this relies
on the fact that all edges of the upper boundary have slope at most 1 in
absolute value, and on the following inductive property (similar to the one
used in [FPP90]), which is maintained at each step k from 1 to n:

Pl: for each edge e on Bk (the upper boundary of Gk), let Pe be the
root-path of e∗ in F∗, let Ee be the set of edges dual to edges in Pe, and
let δe be any nonnegative integer. Then the drawing remains crossing-
free after successively increasing by δe the x-span of all edges of Ee,
for all e ∈ Bk.

bounds on the grid-size . Let us denote by w the width and by h

the height of the cylinder on which G is drawn. If |Γinn| = t then the initial
cylinder is 2t× 0; and at each vertex insertion, the grid-width grows by 0

or 2. Hence w ⩽ 2n. In addition, due to the slope conditions (slopes of
boundary-edges are at most 1 in absolute value), the vertical span of every
edge e is not larger than the current width at the time when e is inserted
in the drawing. Hence, if we denote by v the vertex of Γext that is closest
(at distance d) from Γinn, then the ordinate of v is at most d · (2n). And due

3 In the FPP algorithm for planar triangulations, the step to make the (absolute value of) slopes
of eℓ and er smaller than 1 is formulated as a shift of certain subgraphs described in terms
of the underlying forest F. The extension of this formulation to the cylinder would be quite
cumbersome. We find the alternative formulation with strip insertions more convenient for the
cylinder. In addition it also gives rise to a very easy linear-time algorithm, whose practical
performances are extremely good, as confirmed by the running times reported in Fig. 5.1.
Another linear-time version of the FPP algorithm is given in [CP95]).

5.3 our contribution : periodic toroidal drawings 55

to the slope conditions, the vertical span of Γext in the drawing is at most
w/2 ⩽ n. Hence the grid-height is at most n(2d+ 1).

linear-time complexity. An important remark is that, instead of com-
puting the x-coordinates and y-coordinates of vertices in the drawing, one
can compute the y-coordinates of vertices and the x-span of edges (as well
as the knowledge of which extremity of the edge is the left-end vertex and
which extremity is the right-end vertex). In a first pass, for k from 1 to n,
one computes the y-coordinates of vertices and the x-span re of each edge
e ∈ G at the time t = k when it appears on Gk (as well one gets to know
which extremity of e is the left-end vertex). Afterwards if e /∈ F, the x-span
of e might further increase due to insertion of new vertices; let se be the
total further increase undergone by e. Note that for each edge e not in F,
if e /∈ Γext there is a certain step k such that e ∈ Bk−1 and e /∈ Bk. Let
we ∈ {0, 1, 2} be defined as the stretch (increase of x-span) that e undergoes
just before adding vk to the drawing; in case e ∈ Γext no such step k exists
and we assign we = 0. We call we the weight of e (the quantities we can
be computed in a first pass, together with the quantities re). Let P be the
root-path of e∗. When stretching e just before adding vk, all edges dual to
edges of P undergo the same stretch, by we. In other words, if we denote
by T∗

e the subtree of F∗ hanging from e∗ (including e∗), and denote by We

the total weight of the dual of the edges in T∗
e , then se = We. Hence the

total x-span of each edge e ∈ G is given by re + se, where se = 0 if e ∈ F or
e ∈ Γext, and se = We if e /∈ F and e /∈ Γext. Since all quantities se can easily
be computed in linear time from the quantities we, starting from the leaves
and going up to the roots of F∗, this gives a linear-time algorithm.

To sum up, for the case of simple cylindrical triangulations with no chord
at Γinn (and with no loops and no multiple edges) we can state the following:

Proposition 5.1 ([CDF18b]) Given a simple cylindrical triangulation G with no
chordal edge at Γinn, one can compute in linear time a crossing-free straight-line
drawing of G on an x-periodic regular grid Z/wZ× [0..h] where —with n the
number of vertices of G and d the edge-distance between the two boundaries— w ⩽
2n and h ⩽ n(2d+ 1), such that the upper boundary is a broken line monotone in x

formed by segments of slope in {+1,−1, 0} and the lower boundary is an horizontal
line.

Q

G

Figure 5.7: The FPP algorithm for
simple planar quasi-triangulations
can be recovered from our algo-
rithm. Given a simple planar quasi-
triangulation Q, we can turn it into
a cylindrical simple triangulation G

by adding a vertex of degree 2 con-
nected to the two ends of the root-
edge. Then the FPP drawing of Q is
recovered from the periodic drawing
of Q upon deleting the added vertex.

Remark 1 Note that our algorithm can be seen as an extension of the FPP algo-
rithm, which works for simple planar quasi-triangulations, i.e., simple graphs em-
bedded in the plane with triangular inner faces and a polygonal outer face (see
Fig. 5.7).

Remark 2 For each edge e of Γinn, let re be the initial horizontal stretch of e in the
drawing procedure (an even number, classically re = 2 to have a compact drawing).
And let te be the final horizontal stretch in the drawing procedure. The vectors R =

(re)e∈Γinn and T = (te)e∈Γinn are called initial-stretch and final-stretch vectors
relative to the drawing of G (endowed with a given canonical ordering). Then the
vector S := T − R is an invariant, it does not depend on R since se = te − re just
depends on the underlying forest and dual forest given by the canonical ordering.
Hence, if with R as initial stretch-vector we obtain a drawing with final-stretch
vector T , then for any vector T ′ of the form T + 2V —with V a vector of non-
negative integers— we can obtain a drawing with final-stretch vector T ′, by taking
R ′ = R+ 2V as initial-stretch vector instead of R.

56 drawing graphs on surfaces

4 4

3

4

3

2

4

3

2

1

1 1
2

2
1

3
3

2
1

4

Figure 5.9: Left-side: the shelling procedure for an essentially simple loopless cylin-
drical triangulation G with no chord at Γinn; the last drawing shows the underlying
forest and dual forest. Right-side: the incremental drawing algorithm.

allowing for non-contractible 2-cycles . Our method based on
a canonical ordering and incremental drawing algorithm can be easily ex-
tended to deal with an essentially simple cylindrical triangulation G, hav-
ing no loops but possibly with non-contractible 2-cycles. The definition of
canonical ordering for G is exactly the same as for simple cylindrical trian-
gulations, adding the possibility that Gk is obtained from Gk−1 as shown
in Fig. 5.8. Such a canonical ordering can be computed by a shelling proce-

⇒

Gk−1 Gk

vk

Figure 5.8: When 2-cycles are al-
lowed, the additional case shown
here can occur for the transition from
Gk−1 to Gk.

dure that extends the one of Section 3.3. A 2-cycle is called internal if its two
incident vertices are not both on the outer boundary. This time, a vertex on
the outer boundary and not on the inner boundary is called free if it is not
incident to a chord nor incident to an internal 2-cycle.

The shelling procedure consists in choosing a free vertex at each step, and
deleting it together with its incident edges, until there just remains the inner
boundary and the cylindrical map is reduced to a cycle. (the argument that
shows the existence of free vertices is omitted here, and a detailed presenta-
tion is given in [CDF18b]).

A linear time algorithm is also readily obtained by maintaining, for each
outer vertex, how many neighbours on Γext it has and how many internal
2-chords it is incident to. Note that such a canonical ordering also induces
an underlying forest F and the dual forest F∗. These can be computed on the
fly during the shelling procedure, in the same way as for simple cylindrical
triangulations. Finally, the incremental drawing algorithm (and linear com-
plexity using the dual forest) works exactly in the same way as for cylindri-
cal simple triangulations. An example is shown in Fig. 5.9. The grid bounds
are also the same as for simple triangulations (the arguments to obtain the
bounds in the simple case did not use the fact that there are no 2-cycles). So
this gives Proposition 5.1 for essentially simple triangulations with no loops.
Finally, note that Remark 2 still holds here (the arguments are the same).

allowing for non-contractible loops . We finally explain how to
deal with non-contractible loops. Our strategy is not to extend the notion of
canonical ordering but simply to decompose (at the loops, which are nested)
such a cylindrical map into a “tower” of components, where the only loops
in each component are at the boundary-faces. Let G be an essentially simple

5.3 our contribution : periodic toroidal drawings 57

cylindrical triangulation with n vertices and at least one loop. There are a
few cases to consider:

(a) Γinn is the unique loop of G. In that case, the algorithm of Section 3.3
(canonical ordering, shelling procedure, and incremental drawing proce-
dure) works in the same way, see Fig. 5.10 for an example. Let 2m be the
width of the drawing. By the arguments of Remark 2, for any m ′ ⩾ m, G
has a periodic drawing of width 2m ′ and height at most m ′(2d+ 1), with d

the edge-distance between the two boundaries.

2

3 1

1

4

1
2

1
2

3
2 34

1

Figure 5.10: Drawing algorithm
when the inner boundary is the
unique loop.

(b) Γext is a loop, Γinn is possibly a loop, and there are no other loops. Assume
Γext is a loop and G is not reduced to that loop (i.e., Γext ̸= Γinn). Let u

be the vertex incident to the loop (note that u is not on Γinn since there is
no chord at Γinn), and let c be the innermost 2-cycle incident to u. Cutting
along c (see Fig. 5.11), we obtain two components: a planar triangulation T

and a cylindrical essentially simple triangulation G ′ such that: G ′ has no
loop except possibly at Γinn, G ′ has outer degree 2 and u is a free vertex
for G ′. Hence there is a canonical ordering for G ′ such that u is the first
shelled vertex. Take a periodic drawing of G ′ for this canonical ordering and
take an FPP drawing of T . The widths of the respective drawings are even
numbers, denoted 2n1 and 2n2. Let m = max(n1,n2). By the arguments of
Remark 2 it is possible to redraw the graph that has the smaller grid-width
so that it gets width 2m, after which both drawings are of width 2m. Then
the drawing of T (taken upside down) fits into the upper boundary of G ′

yielding a periodic drawing of G of width 2m, see Fig. 5.11. The height of
the drawing is at most 2dm ⩽ 2dn, where d is the edge-distance between
the two boundaries (indeed, in the usual bound h ⩽ (2d+ 1)m, the +1 in the
parenthesis is due to the vertical extension of the upper boundary, which is
0 here).

(c) General case. Here we assume there is at least one loop. Let ℓ1, . . . , ℓr
be the sequence of nested loops of G, with ℓ1 the innermost loop and ℓr
the outermost loop; and let G(0), . . . ,G(r) be the r+ 1 components that re-
sult from cutting successively along all these loops. For i ∈ [0..r] let di

be the edge-distance between the two boundaries in G(i); and let d be the
edge-distance between the two boundaries of G. Note that d =

∑
i di. Each

component Gi has loops only at the boundary-face contours, hence has a
periodic drawing (according to cases (a) and (b)) such that boundaries that
are loops are drawn as horizontal lines. Let 2n1, . . . , 2nr be the widths of
the drawings of G(1), . . . ,G(r) thus obtained. Let m = max(n1, . . . ,nr). By
the arguments of Remark 2, each of the graphs G(i) can be redrawn so as to
have width 2m. Stacking up all these drawings we obtain a periodic draw-
ing of G of width 2m, see Fig. 5.12. Regarding the grid size, the width is 2m,
with clearly m ⩽ n, and the height of the drawing of Gi is at most 2mdi for
i ∈ [0..r− 1] and at most m(2dr + 1) for i = r. Hence the total height is at
most m(2d+ 1) ⩽ n(2d+ 1). This establishes Proposition 5.1.

5.3.2 Drawing cylindrical triangulations having chords at Γinn.

We finally explain how to draw a cylindrical essentially simple triangula-
tion when allowing for chords incident to Γinn. It is good to view Bext as
the top boundary-face and Binn as the bottom boundary face, and imagine
a standing cylinder. For each chord e at the cycle Γinn, the component under
e, denoted Qe, is the face-connected part of G that lies below e; such a com-
ponent is a quasi-triangulation (polygonal outer face, triangular inner faces)

58 drawing graphs on surfaces

3

21

2

1

T

G′

G′

T

u

u

Figure 5.11: Drawing algorithm when the outer face contour is a loop (and there is
no other loop except possibly at Γinn): the map is split along the innermost 2-cycle
(the initial x-span of T is taken to be 4 instead of 2 so that the drawings of Q and G ′

fit together).

Figure 5.12: Drawing an essentially simple triangulation G (no chord at Γinn); G

is first decomposed at its loops; each component is drawn so that the component-
drawings have the same width, and can be stacked up to obtain a periodic drawing
of G.

5.3 our contribution : periodic toroidal drawings 59

e

e

G′ Qe

FPP layout of Qe

Figure 5.13: Drawing a cylindrical triangulation with chords at Γinn (essentially sim-
ple with loops and 2-cycles in the annular representation). To make enough space to
place the component under e, one takes 4 (instead of 2) as the initial x-span of e.

rooted at the edge e. A chordal edge e of Γinn is maximal if the component Qe

under e is not strictly included in the component under another chord at Γinn.
The FPP-size |e| of such an edge e is defined as the width of the FPP drawing
of Qe. If we delete the component under each maximal chordal edge (i.e.,
delete everything from the component except for the chordal edge itself) we
get a new bottom cycle C ′

0 that is chordless, so we can draw the reduced
cylindrical triangulation G ′ as explained in the previous section. Let we be
the width of each edge e of C ′

0 in this drawing. According to Remark 2, we
can redraw G ′ such that each edge e ∈ C ′

0 that is chordal in G has width
ℓ(e), with ℓ(e) defined as the smallest integer that is at least max(we, |e|) and
such that ℓ(e) −we is even (note that ℓ(e) ⩽ max(we, |e|+ 1)).

Then for each maximal chord e of C0, we draw the component Qe under
e using the FPP algorithm. This drawing has width |e|, with e as horizontal
bottom edge of length |e| and with the other outer edges of slopes in ±1. We
shift the left-extremity of e to the left so that the drawing of Qe gets width
ℓ(e), then we rotate the drawing of Qe by 180 degrees and plug it into the
drawing of G ′, see Fig. 5.13. The overall drawing of G is clearly planar and
achieves good vertex resolution, as expressed by the result below, which
generalizes Proposition 5.1 (the analysis of the grid-size is omitted here;
more details can be found in [CDF18b]).

Theorem 5.2 ([CDF18b]) For each essentially simple cylindrical triangulation G,
one can compute in linear time a crossing-free straight-line drawing of G on an
x-periodic regular grid Z/wZ× [0..h] where —with n the number of vertices of G
and d the edge-distance between the two boundaries— w ⩽ 2n and h ⩽ n(2d+ 1),
such that the upper boundary is a broken line monotone in x formed by segments of
slope in {+1,−1, 0} and the lower boundary is an horizontal line.

5.3.3 Periodic drawings on the torus

Combining the results described in previous section with the computation
of a tambourine, we can obtain a linear-time algorithm for computing pe-
riodic straight-line drawings of toroidal graphs. Our main result, stated in
the triangulated case, is the following:

Theorem 5.3 For each essentially simple toroidal triangulation T, one can compute
in linear time a crossing-free straight-line drawing of T on a periodic regular grid
Z/wZ×Z/hZ, where —with n the number of vertices and ew the edge-width—
w ⩽ 2n and h ⩽ 1+ 2n(ew + 1) = O(n3/2).

60 drawing graphs on surfaces

cb da cb da

a
b

c
d a

a b c d

e

e

e

Γ1

Γ2

Γ′

Figure 5.14: The main steps for drawing of a toroidal triangulation: first remove the
edges inside a tambourine; then draw the obtained cylindrical triangulation, and
insert the edges of the tambourine back into the drawing.

The fact that the grid size is w× h = O(n5/2) relies on an upper bound
on the edge-width proved in [AH78] (namely ew ⩽

√
2n).

drawing toroidal triangulations : overview of the proof . Let
T be an essentially simple toroidal triangulation with n vertices, and let
Γ1, Γ2 be a tambourine of T (as defined in Section 2.1.2). By deleting the
edges that are strictly inside the tambourine, one obtains a cylindrical trian-
gulation G with Γ1 the outer boundary and Γ2 the inner boundary.

We can apply the drawing algorithm of Theorem 5.3 to obtain a peri-
odic drawing of G on an x-periodic grid Z/wZ× [0..h]. If we augment the
height h of the drawing to h ′ = h+w+ 1, and then wrap the x-periodic
grid Z/wZ× [0..h] into a periodic grid Z/wZ×Z/h ′Z, and finally insert
the edges inside the tambourine as segments (we insert the edges in the
tambourine T in the unique way such that, looking from bottom to top, at
least one edge in T goes strictly to the right, and all edges going strictly
to the right have x-span at most w; in this way it is easy to check that the
x-span of all edges in T is at most w). Then the slope properties —edges
on Γ1 and Γ2 have slope at most 1 in absolute value while edges inside the
tambourine have slopes greater than 1 in absolute value— ensure that the re-
sulting drawing is crossing-free. Note that it is actually enough to augment
the height by the least value such that the edges of T have slope greater than
1 in absolute value. See Fig. 5.14 for an example.

We now argue that we can find a tambourine Γ1, Γ2 so that the distance
between the two boundaries Γ1 and Γ2 (in G) is smaller than the edge-width
of T; and we can find it without having to compute a curve Γmin realizing the
edge-width (this is crucial to obtain a linear-time complexity, since it is not
known how to find such a curve Γmin in linear time). Indeed, let {Γa, Γb}
be a basis of non-contractible cycles of T (computable in linear time, using
for instance a cut-graph). Then at least one of Γa or Γb is not homotopic
(parallel) to Γmin. Let Γ be one among {Γa, Γb} that is not homotopic to Γmin,
and let Γ1, Γ2 be a (computable) tambourine parallel to Γ . Since we are on the
torus, Γmin has to cross the tambourine Γ1, Γ2. Hence, the distance between
the boundary-cycles (after deleting edges in the tambourine Γ1, Γ2) is smaller
than the edge-width. In other words, if we choose the one cycle among
{Γa, Γb} that yields the smaller distance between the two boundaries of G,
then this distance d is smaller than the edge-width ew of T. The grid-size
of the drawing of G satisfies w ⩽ 2n and h ⩽ 2n(d+ 1), and the grid-size
of the drawing of T is w,h ′ where h ′ ⩽ h+w+ 1 ⩽ 2n(d+ 1) + 2n+ 1 =

5.3 our contribution : periodic toroidal drawings 61

Figure 5.15: Drawing essentially 3-connected toroidal maps: first remove the edges
inside a tambourine, and then draw the obtained (essentially) internally 3-connected
cylindrical map; at the end insert the edges of the tambourine back into the drawing.

1+ 2n(d+ 2). Since d < ew we conclude that the grid-height of the drawing
of T is bounded by 1+ 2n(ew + 1), as stated in Theorem 5.3.

drawing essentially 3-connected graphs It turns out that these
kind of technics described above for triangulations are also suitable to deal
with the more general case of essentially 3-connected toroidal maps: the key
idea is to make use of our generalization of the notion of canonical order-
ings for 3-connected planar graphs and the related grid drawing algorithm
by [Kan96] (the proof is omitted here and a detailed discussion can be found
in [CDF18b]).

The validity of our construction also relies on the fact that given an es-
sentially 3-connected toroidal map M and a non-contractible cycle Γ , it is
possible to compute in linear time a tambourine Γ1, Γ2 of M whose two cy-
cles are homotopic to Γ . The proof of this fact, that extends the result for
triangulations mentioned in Section 2.1.2, can be found in [CDF18b].

Our main result, illustrated by the pictures in Fig. 5.15, is stated below: A periodic straight-line drawing on the
flat torus is said to be weakly convex if
all corners have angle at most π.Theorem 5.4 (Castelli Aleardi, Devillers, and Fusy [CDF18b]) For each essen-

tially 3-connected toroidal map M, one can compute in linear time a weakly convex
crossing-free straight-line drawing of M on a periodic regular grid Z/wZ×Z/hZ,
where —with n the number of vertices and c the face-width— w ⩽ 2n and
h ⩽ 1+ 2n(c+ 1). Since c ⩽

√
2n, the grid area is O(n5/2).

The bound on the grid-size relies on the fact that we can triangulate an
essentially simple toroidal graph M, by adding edges but not adding ver-
tices, so as to obtain an essentially simple toroidal triangulation M̃. As al-
ready mentioned (and shown in [AH78]), M̃ has a non-contractible cycle γ

of length at most
√
2n: observe that this cycle can be locally deformed into

a proper non-contractible curve meeting M at the vertices on γ.

62 drawing graphs on surfaces

5.4 our contribution : periodic straight-frame drawings

We now address the problem of computing toroidal drawings adding a fur-
ther constraint: we aim at obtaining a planar straight-frame drawing of a
toroidal triangulation, for which the edges are not allowed to cross the
boundary of the flat torus 4.

We follow the strategy adopted in [DGK11] for the toroidal case based on
the following fact: any simple toroidal triangulation T can be cut along a sub-
graph (cut-graph) such that the resulting unfolded graph G is naturally a
quasi-triangulation (referred to as 4-scheme triangulation and shortly denoted
4ST) with 4 marked outer vertices, called corners, such that each path of the
outer face contour between two consecutive corners is chordless. We will
denote by S1, . . . ,S4 these outer paths (in clockwise order around the outer
face), and denote by |Si| the length of Si. Observe that cutting a toroidal
triangulation in this way yields a balanced 4-scheme triangulation, having
the additional property that |S1| = |S3| and |S2| = |S4|.

S1

S2

S3

S4

S1

S2

S3

S4

Figure 5.16: A 4-scheme triangula-
tion G (corners are white) and a
straight-frame drawing of G (bot-
tom). G is not balanced, as |S1| ̸=
|S3|.

So, our initial problem (drawing a toroidal triangulation) translates into
the problem of computing a straight-frame periodic drawing of a (balanced)
4-scheme triangulation G (refer to Fig. 5.16 for an illustration): the abscissas
of vertices of the same rank along S1 and S3 (ordered from left to right)
should coincide, and the ordinates of vertices of the same rank along S2
and S4 (ordered from bottom to top) should also coincide. When G arises
from a toroidal triangulation T, this is exactly the condition to satisfy so that
the drawing lifts to a periodic representation of T on the flat torus.

In this section we provide a short overview of the steps leading to our
main result stated below (its validity relies on several technical lemmas
whose proofs are omitted here: more details can be found in [CFK14]):

Theorem 5.5 (Castelli Aleardi, Fusy, and Kostrygin [CFK14]) Each balanced
4-scheme-triangulation admits a periodic straight-frame drawing on a regular grid
of size O(n4 ×n4). The drawing can be computed in linear time.

Our algorithm makes use of a new decomposition strategy for 4-scheme
triangulations: we cut the triangulation into two components A,B along a
certain path “close to" S3, the “lower part” B is drawn using the algorithm
of Duncan et al. [DGK11] specially adapted for our purpose (to make the
ordinates of matching vertices in the lower parts of S2 and S4 coincide), and
then we draw the “upper part” A with a suitably fixed outer frame (this is
the most technical part, which requires a further decomposition of A into
several pieces).

5.4.1 Related works: description of the algorithm of Duncan et al. [DGK11]

Define a half-4-scheme triangulation, shortly written H4ST, as a graph H em-
bedded in the plane satisfying all conditions of a 4ST, except that the paths
S2 and S4 are allowed to be empty, and the path S3 is allowed to have chords
and to meet S1; S1 is called the bottom-path of H. Given a 4ST G, an impor-
tant ingredient in [DGK11] is the river lemma, which guarantees the existence
of a so-called river, that is, a path P in the dual graph of G, such that the first
edge of P crosses S1, the last edge of P crosses S3, and the two components

4 Observe that the Tutte’s spring embedding algorithm gives a solution, but with exponential
grid size, and the two combinatorial algorithms mentioned in this chapter [CDF18b; GL14]
yield periodic grid-drawings for toroidal triangulations having the aesthetic disadvantage that
some edges are allowed to cross the boundary of the drawing.

5.4 our contribution : periodic straight-frame drawings 63

5

6

7

8

9
10 final width= 24

S = (6, 4, 8)

0 8 14 24

the input graph H

1 2 3 4

5

67
8

910

with a canonical labeling

S1 H5 H6

H7
H8

H9 H10

(stretch vector for edges on S1)

I0 = (2, 2, 2)
(initial interspace vector for S1)

2 4 6

S1 = (1, 2, 3, 4)

F(I0) = (8, 6, 10)
(final interspace vector for S1)

Figure 5.18: Example of execution of the shift algorithm on a half-4-scheme trian-
gulation H with 10 vertices. We use I0 = (2, 2, 2) as initial interspace vector on the
bottom path S1.

H,H ′ of G separated by P are H4ST (with S2 as bottom path of the left com-
ponent and S4 as bottom-path of the right component), see Fig. 5.17(top).
A straight-line drawing of a H4ST H is called admissible if S1 is horizontal,

v0

v1

v2

v′0

v′1

v′2

v′3

Figure 5.17: Illustration of the algo-
rithm of Duncan et al. [DGK11] for
drawing a 4ST G (top). The river be-
tween S1 and S3 decomposes G into
two H4ST H,H ′ (shaded). (bottom)
The straight-frame drawing of G as
given in [DGK11], which results from
the two drawings of H,H ′ put to-
gether.

S2 and S4 are vertical, and all edges in S3 have slope in {−1, 0,+1}. By an
extension of the shift paradigm underlying the FPP algorithm, Duncan et al.
show that it is possible to obtain an admissible straight-line drawing of H on
a grid of size O(n×n2), more precisely a grid of size O(n× (d+1)n), where
n is the number of vertices of H and d is the graph-distance between S1 and
S3 (Fig. 5.18 illustrates the steps of this variation of the shift paradigm).

To obtain a straight-frame drawing of a 4ST G, decompose G along a
river between S1 and S3 into two H4ST components H and H ′, draw H and
H ′ using the shift algorithm (with S2 as the bottom-path of H and S4 as
the bottom-path of H ′), and then shift the left boundary of the component
whose drawing has the smaller width so that the widths of the drawings of
H and H ′ coincide. Then rotate the drawing of H by π/2 clockwise, rotate the
drawing of H ′ by π/2 counterclockwise, and put the two drawing in front
of each other, leaving enough horizontal space between them so that the
edges connecting H to H ′ have slope smaller than 1 in absolute value. Since
the edges on the boundaries of (the rotated copies of) H and H ′ are either
vertical or of slope in {−1,+1}, the edges between H and H ′ do not introduce
crossings, so the resulting drawing of G is planar, see Fig. 5.17(bottom).
Overall the grid-size is O(n2 × n), more precisely O(n(d + 1) × n), with
d the graph-distance between S2 and S4.

5.4.2 Our modified version of the algorithm: aligning vertical coordinates

A first simple adaptation we do is to do all (abscissa) shift operations by 2

instead of doing them by 1. Given a H4ST G, let p be the number of edges
of S1. For a vector I of p even integers, I is called the initial interspace vector,
consider the shift algorithm for G starting with S1 drawn as a horizontal
line with interspaces given by I. Let F(I) = (f1, . . . , fp) be the vector repre-
senting the interspaces between consecutive vertices on S1 at the end of the
algorithm; F(I) is called the final interspace vector. For our purpose, the advan-
tage of doing the shift operations by 2 is to guarantee that the components
of F(I) are even (see Fig. 5.18 for an example).

Lemma 5.6 Let F0 = F(I0) be the final interspace vector when using I0 = (2, 2, . . . , 2)
as initial interspace vector on S1. Then for any vector F of p even integers such that
F ⩾ F0 (component-wise), it is possible to re-execute the shift-algorithm so as to
have F as final interspace vector.

64 drawing graphs on surfaces

G

A

B

L RM(band graph)

(4-scheme triangulation)

O(n)

O(n2)

L R

B

Figure 5.20: The top pictures illustrate our binary decomposition of a 4-scheme tri-
angulation G (left), where we distinguish a chordless path P just below S3 (shown
bolder). Cutting along P yields two components: a 4-scheme triangulation B and a
band-graph A which is further decomposed into 3 pieces L,M,R.

aligning vertices on S1 and S3 . We can now give another strategy
(suited in view of showing Theorem 5.5) for drawing a 4ST G, while guaran-
teeing that some of the vertices on the opposite sides of the frame will have
the same vertical coordinates. To be more precise the resulting drawing is

v0

v1

v2

v′0

v′1

v′2

v′3

Figure 5.19: Our modified version
of the algorithm of Duncan et
al. [DGK11] (with an oblique edge on
S3). The application of Lemma 5.7
(for m = 2) ensures that the ordi-
nates of the vertices on the left ver-
tical path S2 coincide with the ordi-
nates of the corresponding vertices
on the right path S4. The input 4-
scheme triangulation corresponds to
the example given in Fig. 5.17.

not straight-frame, but is straight-frame except for an oblique edge along
S3, and is such that, with m = min(|S2|, |S4|), the m first components of the
interspace vectors along S2 and S4 (ordered from bottom to top) coincide
(as illustrated in the example of Fig. 5.19).

At first, similarly as in [DGK11] we cut G along a river (between S1 and
S3) into two components H and H ′. Then we draw independently H and
H ′ using the shift algorithm (with width 2 strip insertions). Let F0 (F ′0) be
the final interspace vector of H (resp. of H ′), starting with initial interspace
vector (2, . . . , 2). For 1 ⩽ i ⩽ m let ui be the maximum of the ith components
of F0 and F ′0. Because of the property stated in Lemma 5.6, one can redraw
H and H ′ so that the m first components of the final interspace vectors of
H and of H ′ are (u1, . . . ,um). In addition one can check that the widths
of both drawings are at most 8n, and the two widths differ by at most
4n. Similarly as in [DGK11] we rotate H (resp. H ′) by π/2 clockwise (resp.
counterclockwise) and place the drawings in front of each other, leaving
horizontal space 8n between them, enough to draw the edges between H

and H ′ crossing-free. We obtain (see Fig. 5.19):

Lemma 5.7 For any 4ST G with n vertices, and m = min(|S2|, |S4|), there is
a straight-line drawing of G, where S2 and S4 are vertical with their interspace
vectors equal at the m first components, S1 is horizontal, and S3 is horizontal
except for an oblique edge of slope in [−1/2, 1/2]. The grid size is O(n2×n), more
precisely O(n(d+ 1)× n) with d the graph-distance between S2 and S4, and the
drawing can be computed in linear time.

5.4 our contribution : periodic straight-frame drawings 65

5.4.3 A new binary decomposition for 4-scheme triangulations

We now introduce a new way to decompose a 4ST G into two components
A,B, in such a way that proving Theorem 5.5 will reduce to drawing B

using Lemma 5.7, and then drawing A using a certain fixed outer frame. A
path P is said to be just below S3 if P connects a vertex of S2 to a vertex of
S4, all non-extremal vertices of P avoid S2 ∪ S3 ∪ S4, and each vertex on P

(including the extremities) has at least one neighbour on S3.

Lemma 5.8 Each 4ST G has a chordless path just below S3.

Let P be a chordless path just below S3. Cutting G along P yields two
4ST denoted A and B, with B below P and A above P. We draw B using
Lemma 5.7. Then we have to draw A —which is called the band-graph— in
such a way that the drawing obtained by pasting the drawing of B with the
drawing of A yields a periodic drawing of G.

G

κ

(G, κ)

Figure 5.21: In order to draw a quasi-
triangulation G in a fixed frame κ

(on a grid of size 4× 2), we use a re-
finement factor 3 for the grid (hence
the factor 3 is suitable for (G,κ)).

drawing the band-graph A (on a given fixed frame). To state
the drawing result for A, we introduce the notion of fixed frame. Given a
quasi-triangulation G, with C its outer cycle, a fixed frame κ for G is a
crossing-free drawing of C on a regular grid w× h (w and h are the width
and height of the fixed frame). For γ ⩾ 1 the grid is refined by factor γ by
replacing each unit cell by a γ× γ regular grid. We say that the factor γ is
suitable for the pair (G, κ) if, after refining the grid of κ by factor γ, G admits
a straight-line drawing with κ as the outer face contour of the drawing, see
Fig. 5.21 for an example.

K

K+1

slope in [−1/2, 1/2]

K

K+1

slope in [−1/2, 1/2]

Figure 5.22: Left: frame for the band-
graph A, middle: frame for the mid-
dle piece M of A, right: frame for the
left piece L of A.

Next Lemma states that, up to increase the vertex resolution of a lin-
ear factor, we can always draw a band-graph within a prescribed fixed
frame (where the bottom path consists of horizontal segments except for
an oblique edge, as in the top picture of Figure 5.22).

Lemma 5.9 For each K ⩾ 1 and any fixed frame κ for A (A is the band-graph of
G, which has n vertices) of the form shown in the top drawing of Figure 5.22, there
is γ0 in O(n ·max(n,K)) such that any even factor γ ⩾ γ0 is suitable for (A, κ).

The validity of this statement, for drawing the band-graph A of a 4ST G

with n vertices obtained after cutting along a chordless path P, relies on a
further chordal decomposition (see right pictures in Fig. 5.20).

Let a be the extremity of P on S2 and b the extremity of P on S4. Let
ua be the leftmost neighbour of a along S3 and let ub be the rightmost
neighbour of b along S3. Then cutting A along the edges {a,ua} and {b,ub}

yields three pieces: a left-piece L, a middle piece M, and a right-piece R

(as in Fig. 5.20). Note that L (and similarly R) is either empty (if ua is the
top-left corner of G) or otherwise is naturally a 3-scheme triangulation, a
quasi-triangulation with three corners are a, ua and the topleft corner of G:
drawing L and R with a fixed frame requires a further decomposition along
the chordal edges, if any, between the bottom and vertical paths as shown
in the drawing of Fig. 5.23 (the details of the construction are omitted here
and can be found in [CFK14]). Observe that M is naturally a 4ST such that
|S2(M)| = |S4(M)| = 1 (so we can apply a variation of Lemma 5.7).

final step : computing the periodic straight-frame drawing .
We claim that Lemma 5.7 together with Lemma 5.9 imply Theorem 5.5 (at
the moment with grid-size O(n5 × n5)). Indeed, once B is drawn using
Lemma 5.7, one easily designs a fixed frame of the form of Fig. 5.22 and

66 drawing graphs on surfaces

such that pasting a drawing of A in this frame with the drawing of B yields
a periodic drawing of G (note that the lower part of κ is determined by
the property of fitting with the boundary-path S3(B), and the upper part
of κ is determined by the property of fitting with the boundary-path S1(B)

in order to get the periodicity property). Note that the parameter K equals
the width of the drawing of B, which is O(n2). Since the refinement factor
for A is in O(n ·max(n,K)), the grid-size of the resulting drawing of G is
O(K2n×K2n), which is O(n5 ×n5).

Figure 5.23: Chordal decomposition
of a 3-scheme triangulation, with
one side (hypotenuse) reduced to an
edge.

5.4.4 Final remarks

dealing with chords between boundary paths . In order to carry
out the decomposition of the input 4ST G based on the path just below S3
we have assumed that there is no chord between S1 and S3. If there is a
chord between S1 and S3 but there is no chord between S2 and S4, then we
can just rotate G by π/2 (so as to exchange S1,S3 with S2,S4). If there is
also a chord between S2 and S4 then it must be incident to a corner vertex:
this case requires a slight modification of our construction (a more detailed
discussion is provided in [CFK14]).

improving the grid size . We would like to point out that in the case
where there is no chord incident to a corner of G, then G actually admits
a periodic straight-frame drawing of grid-size O(n4 × n4). This fact relies
mainly on the following remark. Let us assume that the input 4-scheme
triangulation G has n vertices and there are no chords between boundary
paths (let dh be the graph-distance between S1 and S3, and let dv be the
graph-distance between S2 and S4). Then it follows from the Menger vertex-
disjoint theorem and the fact that G is innerly triangulated that dh×dv ⩽ n,
hence min(dh,dv) ⩽ n1/2: this implies that, up to possibly rotating G by
π/2 to ensure that dh ⩽ dv, the Duncan et al. algorithm gives a grid-size
O(n× n3/2) (instead of the worst case O(n× n2) grid-size mentioned in
Section 5.4.3). A few more technical arguments (omitted here) should be
required to deal with case where there are chords between boundary paths.

5.5 spherical drawings of planar graphs 67

5.5 spherical drawings of planar graphs

The notion of planar drawings can be naturally generalized to the spherical
case: the main difference is that edges are mapped to geodesic arcs on the unit
sphere S2, which are minor arcs of great circles (obtained as intersection of
S2 with a hyperplane passing through the origin). A geodesic drawing of a
map should preserve the cyclic order of neighbors around each vertex (such
an embedding is unique for triangulations, up to reflexions of the sphere).
As in the planar case, we would aim to obtain crossing-free geodesic draw-
ings, where geodesic arcs do not intersect (except at their extremities): these
are referred to as spherical drawings. Sometimes, the weaker notion of spher-
ical parameterization (an homeomorphism between an input mesh and S2)
is considered for dealing with applications in the geometry processing do-
main (e.g. for dealing with mesh morphing): while the bijectivity between
the mesh and S2 is guaranteed, there are no guarantees that the triangle
faces are mapped to spherical triangles with no overlaps (obviously a spher-
ical drawing leads to a spherical parameterization).

5.5.1 Related works

Spherical parameterization via Tutte barycentric method (in the plane)

A simple solution to the spherical parameterization problem consists in
planarizing the input graph and to apply the standard Tutte barycentric
method (this can be done in several ways, as illustrated below): one main ad-
vantage is that one can preserve some of the aesthetic appeal of Tutte’s pla-
nar drawings. The main drawback is that these maps are bijective but cannot
produce in general a crossing-free spherical drawing (straight-line segments
in the plane are not mapped to geodesics by inverse stereographic or polar-
to-cartesian projections). Nevertheless, the methods based on planarization

Tutte 2D layout ofseparating cycle

Spherical parameterization

the south hemisphere

inverse stereo
projection

Figure 5.24: A spherical parameteri-
zation of the gourd graph obtained
combining a Tutte’s planar parame-
terization with an inverse stereo pro-
jection.

are extremely simple to implement (and rather efficient in practice) and can
be used as initial placers for more sophisticated iterative spherical layout al-
gorithms (an experimental evaluation will be provided in Section 5.6).

inverse stereo projection layout (isp). The solution suggested
by Saba et al. [Sab+05] (see Fig. 5.24). consists in partitioning the input graph
G into two components homeomorphic to a disk: this is achieved by comput-
ing a small simple cycle separator (having O(

√
n) vertices) whose removal

produces a balanced partition (GS,GN) of the faces of G. The two graphs
GS and GN are then drawn in the plane using Tutte’s barycentric method:
boundary vertices lying on the separator are mapped on the unit disk. Com-
bining a Moebius inversion with the inverse of a stereographic projection
we obtain a spherical parameterization of the input graph.

Polar-to-cartesian mapping

Figure 5.25: A spherical parameteri-
zation of the gourd graph obtained
via Tutte’s planar parameterization.

polar-to-cartesian layout (pc). The approach adopted in Zayer,
Rössl, and Seidel [ZRS06] relies on a different planarization step (the result
is shown in Fig. 5.25): the edges along a simple path from a south pole vS to
a north pole vN. A planar rectangular layout is computed by applying Tutte
parameterization with respect to the azimuthal angle θ ∈ (0, 2π) and to the
polar angle ϕ ∈ [0,π].

68 drawing graphs on surfaces

Tutte barycentric embedding and force-directed layouts on the sphere

iterative relaxation : projected gauss-seidel . The first method
can be viewed as an adaptation of the iterative scheme solving Tutte equa-
tions. This scheme consists in moving points on the sphere in tangential
direction in order to minimize the spring energy (its pseudo-code is shown
in Fig. 5.26)

E =
1

2

n∑
i=1

∑
j∈N(i)

wij∥x(vi) − x(vj)∥2 (5.1)

with the only constraint ∥x(vi)∥ = 1 for i = 1 . . . n (in our implementations
we use uniform weights wij, as in Tutte’s work). As opposed to the pla-

Projected Gauss-Seidel(x0, λ, ε)
r = 0; // iteration counter
do {

} while (‖xr − xr−1‖ > ε))

for(i = 1; i ≤ n; i++) {
s = (1− λ)xr(vi) + λ

∑
j wijx

r(vj)
xr+1(vi) =

s
‖s‖

}
r++;

Figure 5.26: The pseudo-code of the
Projected Gauss-Seidel method.

nar case, there are no boundary constraints on the sphere, which makes
the resulting layouts collapse in many cases to degenerate solutions. As ob-
served in [GGS03; Sab+05] this method does not always converge to a valid
spherical drawing, and its practical performance strongly depends on the
geometry of the starting initial layout x0. While not having theoretical guar-
antees, this method is quite fast allowing to quickly decrease the residual
error: it thus can be used in a first phase and combined with more stable
iterative schemes leading in practice to better convergence results [Sab+05]
(still lacking of rigorous theoretical guarantees).

alexa’s method. In order to avoid the collapse of the layout, without
using artificial constraints, Alexa [Ale00] modified the iterative relaxation
above by penalizing long edges (tending to move vertices in a same hemi-
sphere). More precisely, the vertex vi is moved according to a displacement
△i = c 1

deg(vi)

∑
j(x(vi) − x(vj))∥x(vi) − x(vj)∥ and then reprojected on the

sphere. The parameter c regulates the step length, and can be chosen to be
proportional to the inverse of the longest edge incident to a vertex, improv-
ing the convergence speed.

x0 (initial layout)

x50 (after 50 iter.) x1600 (after 1600 iter.)

Figure 5.27: Using iterative solvers
the drawing can sometimes collapses
to degenerate layouts.

force-directed layouts on the sphere . While spring embedders
are originally designed to produce 2D or 3D layouts, one can adapt them
to spherical geometry. We have implemented the standard spring-electrical
model introduced in [FR91] (referred to as FR), and its spherical version 5 fol-
lowing the framework described by Kobourov and Wampler [KW05] (called
Spherical FR). As in [FR91] we compute attractive forces (between adjacent
vertices) and repulsive forces (for any pair of vertices) acting on vertex u,
defined by:

Fa(u) =
∑

(u,v)∈E

∥x(u) − x(v)∥
K

(x(u) − x(v)), Fr(u) =
∑

v∈V ,v ̸=u

−CK2(x(v) − x(u))
∥x(u) − x(v)∥2

where the values C (the strength of the forces) and K (the optimal distance)
are scale parameters. When implementing the spherical version, we must
pay attention to some details: for instance we shift the repulsive forces by a
constant term, making the force acting on pairs of antipodal vertices zero.

5.6 our contribution : a fast spherical drawing with theoretical guarantees 69

3 disjoint paths 3 rivers

Figure 5.28: Computation of a spherical drawing based on a prism layout of the
gourd graph (326 vertices). Three vertex-disjoint chord-free paths lead to the partition
of the faces of G into three narrow 4-scheme triangulations GC

0 , GC
1 and GC

2 which
are each separated by one river (green faces). Once the three planar layouts are
computed (refer to Fig. 5.29) we can glue together the identified sides and obtain a
3D prism M: its central projection on the sphere produces a spherical drawing.

5.6 our contribution : a fast spherical drawing with theo-
retical guarantees

We now provide an overview of our algorithm for computing a spherical
drawing of a planar triangulation T in linear time, called SFPP layout (see
Fig. 5.28 for an illustration). Our solution relies on the results sketched in
Section 5.4: more precisely, we apply our two-pass implementation of the
shift paradigm, described in Section 5.4.2, which allows us obtain a straight-
frame drawings with vertices aligned on opposite sides. A more detailed
presentation can be found in [CDF18a].

step 1 : mesh segmentation. Assuming that there are two non-adjacent
faces fN and fS (with no common incident vertices 6), one can compute in
linear time 7 3 disjoint and chord-free paths P0, P1 and P2 from fS to fN.
Denote by uN

0 , uN
1 and uN

2 the three vertices of fN on P0, P1 and P2 (define
similarly the three neighbors uS

0 ,uS
1 ,uS

2 of the face fS). We first compute a
partition of the faces of T into 3 4-scheme triangulations, denoted by GC

0 , GC
1

and GC
2 , cutting T along the paths above and removing fS and fN. The first

pair of opposite sides only consist of an edge (drawn as vertical segment in
Fig. 5.29), while the remaining pair of opposite sides contains vertices lying
on Pi and Pi+1 respectively (indices being modulo 3): according to these
definitions, GC

i and GC
i+1 share the vertices lying on Pi+1 (drawn as a path

of horizontal segments in Fig. 5.29).
Note that T can be seen as a prism (as illustrated in Fig. 5.28), with fN and

fS as the two triangular faces and with GC
0 ,GC

1 and GC
2 occupying the three

lateral quadrangular faces of the prism.

5 The experimental evaluation of our implementation of Spherical FR method is given in Sec-
tion 5.7

6 If this is not the case, one can force the existence of two such faces by adding a new triangle t

within a face (and adding edges so as to triangulate the area between t and the face-contour)
7 Once again Schnyder woods provide a nice and efficient way for computing paths Pi. Taking

fN as the outer face, where v0,v1,v2 are the outer vertices in clockwise (CW) order and
inserting a vertex v of degree 3 inside fS, we compute a Schnyder wood of the resulting
triangulation. Let P0,P1,P2 be the directed paths in respective colors 0,1,2 starting from
v: the well-known properties of Schnyder woods ensure that these paths are chord-free and
disjoint except at v, ending at the 3 vertices v0,v1,v2 of f. Deleting v and its 3 incident
edges, (and thus deleting the starting edge in each of P0,P1,P2) we obtain a triple of disjoint
chord-free paths from fS to fN. Let u0,u1,u2 be the vertices on fS incident to P0,P1,P2.

70 drawing graphs on surfaces

GC
0

GC
1

GC
2

Figure 5.29: Our variant of the
FPP algorithm allows to produce
straight-frame layouts of the three 4-
scheme triangulations GC

0 ,GC
1 and

GC
2 , where boundary vertex loca-

tions do match on identified horizon-
tal sides (corresponding to the com-
mon path Pi+1) shared by GC

i and
GC

i+1).

step 2 : compatible drawings of rectangular frames . We ap-
ply the strategy sketched in Section 5.4 to obtain three rectangular layouts
of GC

0 , GC
1 and GC

2 (as illustrated in Fig. 5.29): this algorithm first separates
each GC

i into two sub-graphs by removing the so-called river (an outer-
planar graph consisting of a face-connected set of triangles which corre-
sponds to a simple path in the dual graph, starting at fS and going toward
fN). The two-subgraphs of GC

i (bottom and top white regions in Fig. 5.29)
are then processed making use of the canonical labeling defined in [DGK11]:
the resulting layouts are stretched in order to fit into a rectangular frame
(observe that after this first pass the boundary vertices corresponding to the
path Pi are not aligned). Just observe that in our case a pair of opposite
sides only consists of two edges (vertical edges in Fig. 5.29), which leads to
an algorithm considerably simpler to implement in practice. Finally, before
re-inserting the set of edges in the river, we apply a two-phases adaptation
of the shift algorithm similar to the one described in Section 5.4.2 to ob-
tain a planar grid drawing of each 4-scheme triangulation GC

i , such that
the positions of vertices on the path Pi+1 in GC

i do match the positions of
corresponding vertices on Pi+1 in GC

i+1.

step 3 : spherical layout. To conclude, we glue together the draw-
ings of GC

0 , GC
1 and GC

2 computed above in order to obtain a drawing of
T on a triangular prism. By a translation within the 3D ambient space we
can make the origin coincides with the center of mass of the prism (upon
seeing it as a solid polyhedron). Then a central projection from the origin
maps each vertex on the prism to a point on the sphere: each edge (u, v)
is mapped to a geodesic arc, obtained by intersecting the sphere with the
plane passing trough the origin and the segment relying u and v on the
prism (crossings are forbidden since the map is bijective).

Note that the prism has its 3 lateral faces GC
i of area O(n)×O(n): this is

implied by the resolution achieved by the algorithm of Duncan et. al [DGK11]
and on the fact that the two opposite sides (uN

i , . . . ,uS
i) and (uN

i+1, . . . ,uS
i+1)

of GC
i are at distance 1.

Theorem 5.10 ([CDF18a]) Let T be a planar triangulation of size n, having two
non-adjacent faces f and f ′ . Then one can compute in O(n) time a spherical draw-
ing of T, where edges are drawn as (non-crossing) geodesic arcs of length Ω(1n).

It is worth noting that the algorithmic tools involved in the theorem above
are reasonable simple to combine, leading to an extremely fast implementa-
tion (see Section 5.7).

5.7 experimental results

5.7.1 Spherical drawings

Here we provide an experimental evaluation of the combinatorial tools de-
veloped in the previous section for computing spherical drawings 8.

While the resulting SFPP layouts are rather unpleasing (as for the planar
FPP algorithm), our solution is able to compute spherical drawings that are

8 The experimental results of this section are taken from [CDF18a].

5.7 experimental results 71

100 iterations 50 iterations 474 iter.

Gauss-Seidel relaxation Alexa method

50 iterations 356 iter.

ISP layout % = 0.49

SFPP layout 100 iterations

E = 61.86 el = 0.864

E = 61.85 el = 0.864

Spherical FR

Random layout 100 iterations 50 iterations 230 iterations 200 iterations

200 iterations

200 iterations

200 iterations100 iterations 50 iterationsPC layout
369 iter.

E = 61.82 el = 0.867

Figure 5.30: Spherical layouts of a random triangulation with 1K faces. While the
projected Gauss-Seidel relaxation always collapses, Alexa method is more robust,
but also fails when starting from a random initial layout. When using the ISP, PC
or our SFPP layouts Alexa method converges toward a crossing-free layout: starting
from the SFPP layout allows getting the same aesthetic criteria as the ISP or the PC

layouts (with even less iterations). Spring embedders [FK12] (Spherical FR) prevent
from reaching a degenerate configuration, but have some difficulties to unfold the
layout.

good starting points for both iterative methods and spring embedders: our
intuition is that an initial layout which is crossing-free could be of some
help to unfold the graph in order to obtain nicer spherical drawings, in a
more efficient and robust way, as confirmed empirically by the experiments
presented below.

comparison of running times . The plots of Fig. 5.31 clearly show
that our SFPP algorithm has an asymptotic linear-time behavior and in prac-
tice is much faster than the ISP and PC methods based on the resolution
of linear systems, for which we use the conjugate solver of the MTJ library.
Observe that a slightly better performance can be achieved with more so-

vertices

200k 400k 600k

vertices

1.2

1.0

0.8

0.6

0.4

0.2

SFPP layout (total cost)

80

60

40

20

se
co
n
d
s

200k 400k 600k

100

se
co
n
d
s

ISP layout
PC layout

Dragon

Dragon

Figure 5.31: (top) Runtime costs for
the computation of our SFPP layouts.
(bottom) Timing cost for solving the
linear systems for the ISP and PC lay-
outs (we use the MTJ conjugate gradi-
ent solver with a numeric tolerance
of 10−6). All results are expressed in
seconds.

phisticated schemes or tools (e.g. Matlab solvers) as done in [AL15; Sab+05].
Nevertheless the timing cost still remains much larger than ours: as reported
in [AL15] the parameterization of the Dragon graph (655k vertices) requires
19 seconds for solving the linear systems (on a 3.5GHz Intel i7 CPU), while
the computation of our SFPP layout requires less than 1.2 seconds.

quantitative evaluation of aesthetic criteria . In order to ob-
tain a quantitative evaluation of the layout quality we compute the spring

72 drawing graphs on surfaces

energy E defined by Eq. 5.1 and two metrics measuring the edge lengths
and the triangle areas (refer to the plots of Fig. 5.32). As suggested in [FK12]
we compute the average percent deviation of edge lengths, according to

el := 1 −

(
1

|E|

∑
e∈E

|lg(e) − lavg|

max(lavg, lmax − lavg)

)
(5.2)

where lg(e) denotes the geodesic distance of the edge e, and lavg (resp.
lmax) is the average geodesic edge length (resp. maximal geodesic edge
length) in the layout. Similarly we compute the average percent deviation of
triangle areas, denoted by a. The metrics el and a take values in [0 . . . 1], and
higher values indicate more uniform edge lengths and triangle areas 9.

Comparisons of layouts

ISP layout

SFPP layout
PC layout

a

el

E

iterations

iterations

iterations
0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.84
0.85
0.86
0.87
0.88
0.89
0.90
0.91
0.92

400 8001

120

100

80

60

40

20

400 8001

400 8001

Figure 5.32: Comparison of spheri-
cal layouts of a random triangula-
tion with 1K faces: we evaluate the
performances of Alexa method, start-
ing from several initial layouts. The
charts above show the plot of the en-
ergy, edge lengths and areas statistics
computed when running 800 itera-
tions of Alexa method (we compute
these statistics every 10 iterations).

We evaluate and compare the spherical layouts obtained applying iterative
schemes (Alexa’s method, projected Gauss-Seidel scheme and the Spherical
FR force-directed embedder), when starting from distinct initial layouts (ini-
tial random locations, ISP, PC and our SFPP).

All our tests confirm that starting with random vertex locations is almost
always a bad choice, since iterative methods lead in most cases to a col-
lapse before reaching a valid spherical drawing (spherical spring embedders
do not have this problem, but cannot always eliminate edge crossings, see
Fig. 5.30). Our experiments (see Fig. 5.30) also confirm a well known fact:
Alexa’s method is more robust compared to the projected Gauss-Seidel re-
laxation, leading almost always to a valid configuration without collapsing
(more tests and statistics, also including real-world 3D meshes, can be found
in [CDF18a]).

layout of random triangulations . When drawing random trian-
gulations the performances obtained starting from our SFPP layout are often
better than the ones achieved using the ISP layout (and similar to the ones
of the PC layout). As illustrated by the pictures in Fig. 5.30 and 5.34, Alexa’s
method is able to reach a non-crossing configuration requiring less itera-
tions when using our SFPP layout instead of ISP layout: this is observed in
most of our experiments, and clearly confirmed by the plots of the energy
and statistics el and a that converge faster to the values of the final layout
(see charts in Fig. 5.32).

5.7.2 Spherical preprocessing for Euclidean spring embedders

We investigate the use of spherical drawings as initial placers for spring em-
bedders in 3D space. The fact of recovering the original topological shape of
the graph, at least in the case of graphs that have a clear underlying geomet-
ric structure, is an important and well known ability of spring embedders.
This occurs for the case of regular graphs used in Geometry Processing (the
pictures in Fig. 5.33 show a few force-directed layouts of the cow graph), but
also for the case of random maps, for which spring embedding algorithms
(applied in the 3D ambient space) yield graph layouts that greatly capture
the topological and structural features of the map (the genus of the surface
is visible, the "central charge" of the model is reflected by the presence of

9 Observe that one common metric considered in the geometric processing community is the
(angle) distortion: in our case this metric cannot be taken into account since our input is a
combinatorial structure (without any geometric embedding).

5.7 experimental results 73

100 iter.

Initial random layout 20 iter. 50 iter. 150 iter.
83.20 sec

Initial spherical drawing: ISP 51.57 sec

(in unit cube)
5 iter.

20 iter. 50 iter.

Figure 5.33: Use of spherical drawings as initial placers for force-directed methods:
we compute the layouts of the cow graph (2904 vertices, 5804 faces) using our 3D
implementation of the FR spring embedder [FR91]. Starting from a good initial shape
helps to untangle faster the graph, leading very often to better local minima. A
quantitative confirmation is provided by the plots in Fig. 5.35.

Random layout 20 iter. 50 iter. 80 iter.

ISP + Alexa (2934iter.)

Spherical drawing
50 iter.

50 iter.20 iter. 40 iter.

20 iter. 40 iter.

t = 20.31 sec

t = 34.26 sec

1.27sec

t = 20.35 sec

2.98sec

E =71.671
el = 0.934

E =71.697
el = 0.934

colliding triangles=718

colliding triangles=330

colliding triangles=311

SFFP + Alexa (1024 iter.)

Spherical drawing

5 iterations

(in unit cube)

Figure 5.34: Force-directed drawings of a random planar triangulation with 5K faces:
spherical drawings are used as initial placers for the 3D version of the FR spring
embedder [FR91].

spikes, etc.) 10. While common software and libraries for graph visualization
(e.g. GraphViz [Ell+01], Gephi [BHJ09], GraphStream) provide implementa-
tions of many force-directed models, as far as we know they never try to
exploit the strong combinatorial structure of surface-like graphs.

#
co
ll
id
in
g
tr
ia
n
gl
es

#
co
ll
id
in
g
tr
ia
n
gl
es

7000

6000

5000

4000

3000

2000

1000

9060301
iterations

9060301

iterations

70

60

50

40

30

20

10

Initial random layout

Initial spherical drawing: ISP

Figure 5.35: 3D FR layout of the cow

graph (2904 vertices) obtained start-
ing from the two different initial
placements drawn in Fig. 5.33. We
plot the number of colliding 3D tri-
angles, over 100 iterations of the FR

algorithm.

discussion of experimental results . Our main goal is to show
empirically that starting from a nice initial shape that captures the topolog-
ical structure of the input graph greatly improves the convergence speed
and layout quality. In our experiments (see Figures 5.33 and 5.34) we run

10 A great variety of such representations can be seen at the very nice simulation gallery of Jérémie
Bettinelli (http://www.normalesup.org/∼bettinel/simul.html).

74 drawing graphs on surfaces

our 3D implementation of the spring electrical model FR [FR91] 11 starting
from several distinct initial layouts.

In order to quantify the layout quality, we evaluate the number of self-
intersections of the resulting 3D shape during the iterative computation pro-
cess 12. To be more precise, we plot over the first 100 iterations the number of
triangle faces that have a collision with a non adjacent triangle in 3D space
(see charts of Fig. 5.35 and 5.36).

Random layout

Spherical drawing

#
co
ll
id
in
g
tr
ia
n
g
le
s

#
co
ll
id
in
g
tr
ia
n
g
le
s

#
co
ll
id
in
g
tr
ia
n
g
le
s

6000

5000

4000

3000

2000

1000

9060301
iterations

iterations
60 90301

iterations
1 30 60 90

800

600

400

200

800

600

400

200

SFFP + Alexa

Spherical drawing
ISP + Alexa

Figure 5.36: 3D layout of a random
planar triangulation with 5K faces:
spherical drawings are used as ini-
tial placers for the 3D version of the
FR spring embedder [FR91]. We plot
the number of colliding 3D triangles,
over 100 iterations of the FR algo-
rithm.

Our experiments clearly confirm the visual intuition suggested by pic-
tures: when starting from a good initial shape the force-directed layouts
seem to evolve according to an inflating process, which leads to better and
faster untangle the graph layout. This phenomenon is observed in all our
tests (on several mesh-like graphs and synthetic data): experimental evi-
dence shows that an initial spherical drawing is a good starting point help-
ing the spring embedder to reach nicer layout aesthetics and also to im-
prove the runtime performances. Finally observe that from the computa-
tional point of view the computation of a spherical drawing has a negligible
cost: iterative schemes (e.g. Alexa method) require O(n) time per iteration,
which must be compared to the complexity cost of force-directed methods,
requiring between O(n2) or O(n logn) time per iteration (depending on the
repulsive force calculation scheme).

11 In our implementation of the FR algorithm we make use of exact force computation and we
adopt the cooling system proposed in [Wal03] (with repulsive strength C = 0.1).

12 We compute the intersections between all pairs of non adjacent triangles running a brute-force
algorithm: the runtimes reported in Fig. 5.33 and 5.34 do not count the cost of computing the
triangle collisions.

6S O M E E X P E R I M E N TA L R E S U LT S O N S C H N Y D E R
W O O D S

In this section we provide some experimental results 1 involving both planar
and higher genus Schnyder woods: in particular we wrote a Java program
that performs an exhaustive generation of all possible 3-orientations and
Schnyder woods for surfaces of low genus. In the case of tiny triangulations
(having at most a few tens of vertices) our generator is fast enough to list all
distinct Schnyder woods in a reasonable amount of time (up to a few hours):
this allows us to compute some statistics and test some conjectures.

6.1 experimental results on higher genus schnyder woods

n # irreducible #triangulations

triangulations (g = 1)

7 1 1

8 4 7

9 15 112

10 1 2109

11 − 37867

n # irreducible #triangulations

triangulations (g = 2)

7 − −

8 − −

9 − −

10 865 865

11 26276 113506

Figure 6.1: Number of simple triangu-
lations of genus 1 and 2 (results are
obtained using surftri).

The results presented in this section are obtained running our Schnyder
wood generator on all simple triangulations of genus 1 and 2. All distinct
triangulations can be generated using the surftri tool developed by Thom
Sulanke [Sul17; SL09] which produces the collection of all triangulations of
a surface (up to a given size) starting from the set of irreducible triangulations
of that surface. Table 6.1 reports the enumeration of triangulations of the

A triangulation is irreducible if there is
no contractible edge.

torus and the double torus for n ⩽ 11.

monochromatic cycles in toroidal schnyder woods . For each
tiny toroidal triangulation, we have computed all distinct 3-orientations cor-
responding to toroidal Schnyder woods that satisfy the local condition (T1):
then we have checked whether there exists a Schnyder wood for which the
edges of the same color define a connected graph (having thus 3 monochro-
matic cycles, one for each color). According to our experiments, this is true
for all simple toroidal triangulations with at most 11 vertices, providing a
partial empirical confirmation to an open question stated in [GL14].

schnyder woods for the double torus . It is known that any sim-
ple triangulation of genus g ⩾ 1 admits an edge orientation such that for
every vertex the outdegree is divisible by 3 and at least 3 (this result, proved
by Albar, Gonçalves, and Knauer [AGK16], confirms a conjecture of Barát
and Thomassen [BT06]). As already mentioned, already for g = 1 there are
3-orientations that do not correspond to Schnyder woods (recall the exam-
ple of Fig. 3.1): but Theorem 3.10 ensures that any toroidal triangulation
admits a Schnyder wood (so, there is at least one 3-orientation whose cor-
responding edge coloring satisfies the (T1) condition of Definition 3.9). For

Figure 6.2: Multiple local Schnyder
condition: the outdegree of every ver-
tex is a positive multiple of 3.

g ⩾ 2 a similar question naturally arises: one could ask whether it would
be always possible to find a 3-orientation as defined above (the outdegree
is a multiple of 3 and there are no sinks) that yields an edge coloring for
which every vertex satisfies a multiple local Schnyder condition, as depicted
in Fig. 6.2. This question was open until very recently: as shown in its PhD
dissertation by Jason Suagee [Sua21], we now know that any simple trian-
gulation of genus g ⩾ 1 having edge-width at least 40(2g − 1) admits such
a kind of Schnyder wood.

1 Many experimental results presented in this chapter (Sections 6.2, 6.3 and 6.4) are taken from
[Cas19].

75

76 some experimental results on schnyder woods

our heuristic

perfectly balanced well balanced strongly unbalanced

minimal Schnyder wood

Figure 6.3: Three Schnyder woods of the same portion of a spherical grid (the whole
mesh is shown in Fig. 6.4): our heuristic leads to a majority of balanced vertices
(white circles), while the minimal Schnyder wood is strongly unbalanced.

Our experiments gives an empirical confirmation of this result and sug-
gest that the assumption on the edge-width is maybe unnecessary. We gen-Unfortunately, we cannot check the

existence of Schnyder woods for
triangulations embedded on surfaces of

genus g ⩾ 3: in order to run the
surftri tool one needs the list of all
irreducible triangulations of genus 3

and such a list is not provided with the
surftri tool.

erated all possible 3-orientations (defined as above) for all distinct simple
triangulations of genus 2 with at most 11 vertices, and checked the local
Schnyder condition at every vertex. As we observed, for any such trian-
gulation there exists a generalized Schnyder wood satisfying the multiple
Schnyder condition of Fig. 6.2, with no restriction on the edge-width.

6.2 balance of planar schnyder woods

motivation. The main idea motivating the experiments of this section
is that, in practice, most real-word graphs exhibit strong regularities which
make them far from the random and pathological cases. Based on this re-
mark, we want to explore the possibility to exploit this regularity in or-
der to obtain better results for algorithmic problems involving Schnyder
woods. As far as we know, the problem of providing an adaptive analysis

Figure 6.4: A spherical triangulation
endowed with a well balanced Schny-
der wood.

of Schnyder woods taking into account the graph regularity has not been
investigated so far: in particular our goal is to evaluate the role of balanced
Schnyder woods (where, intuitively, the number of incoming edges of each
color at inner vertices is more or less the same). Here we provide empirical
evidence about the fact that balanced Schnyder woods can lead to fast so-
lutions achieving good results in practice, especially for real-world graphs:
as test applications, we evaluate the layout quality of a Schnyder drawings
(Section 6.3) and we consider the problem of computing small separators
for planar graphs (Section 6.4).

balanced vertices

unbalanced vertices

δ(v) = 1 δ(v) = (3− 0)− 1 = 2

δ(v) = 0 δ(v) = (2− 1)− 1 = 0

Figure 6.5: Balanced vertices have de-
fect δ = 0.

measuring the balance . The first step is to provide some notion of
measure of the balance of a Schnyder wood: given an inner vertex v of
degree deg(v) having indegi(v) incoming edges of color i (for i ∈ {0, 1, 2}),
we define its defect as δ(v) = maxi indegi(v) − mini indegi(v) if deg(v) is
a multiple of 3, and δ(v) = maxi indegi(v) − mini indegi(v) − 1 otherwise
(refer to Fig. 6.5 for an illustration). We say that a vertex is balanced if δ(v) = 0

and a Schnyder wood is well balanced if a majority of vertices have a small
defect. Another interesting parameter, closely related to the defect defined
above, is the number of 3-colored faces 2. For regular graphs is possible,
in principle, to get a Schnyder wood that is perfectly balanced: δ(v) = 0

almost everywhere and most faces are 3-colored, as shown in Fig. 6.3(left).
In practice many Schnyder woods are unbalanced and we are not aware of
existing theoretical or empirical results on the balance of Schnyder woods.

2 Observe that there are a number of interesting results on Schnyder woods involving the number
of 3-colored faces (refer to [Bon02] for more details).

6.2 balance of planar schnyder woods 77

V0 V1

V2

Figure 6.6: Example of execution of our heuristic algorithm for the computation of
a well balanced Schnyder wood. The pseudo-code is given in Fig. 6.7.

6.2.1 Our heuristic for well balanced Schnyder woods

Observe that the vertex shelling procedure for computing Schnyder woods
and canonical ordering (Section 2.2) has many degrees of freedom: at each
step the choice of the vertex to be removed can possibly lead to a different
Schnyder wood. In order to get as much as possible balanced vertices, we
retard the removal of some vertices according to a balance priority (an ex-
ample of execution of our heuristic is illustrated in Fig. 6.6). At a given step
of the shelling procedure, we define the priority of a vertex v as the total
number incoming incident edges that already have been assigned a color
and orientation (toward v).

Then we make use of very simple (truncated) priority rule: among the
free vertices on the outer cycle B (the boundary of the outer face) we select
one with maximal priority to be removed. If there are several boundary free
vertices with the same priority, we remove the oldest vertex (the one that was
added first to the cycle B). Intuitively, the goal of this approach is to retard
the conquest of vertices having a small number of ingoing edges: observe
that removing a vertex v having 0 ingoing edges leads to get d− 3 edges
of color 2 ingoing at v, while the number of ingoing edges of colors 0 and
1 would remain 0 (thus v would be unbalanced when its degree is greater
than 4). From the implementation point of view, we use a collection of k

queues Q0,Q2, . . . ,Qk−1 (where k is a small constant), to store the vertices
according to their priorities (the priority of vertices is stored and maintained
using an integer array P of size n).

At the beginning of execution Q0 contains only the outer vertex V2 and
the remaining queues are empty. When performing the vertex conquest of a
free vertex v on B we add to Q0 the neighboring vertices that are discovered
(getting an outgoing black edge), while we increase the priority of vl and
vr, the two left and right neighboring vertices of v, since they receive a new
incoming edge (of color 0 and 1 respectively). We then add vl and vr at the

78 some experimental results on schnyder woods

3D hilbert curve

desk

lacetrigrid

Tiny graphs n |F| d6 dmax ts |S(T)|

globe5 27 50 0.55 6 0 5084208

random 28 52 0.17 17 7 1294

Finger 28 52 0.21 8 2 38760

delaunay 28 52 0.32 8 0 9355294

trigrid4 28 52 0.32 11 0 6953685

Hilbert 32 60 0.18 8 1 177903

Desk 34 64 0.23 8 5 199281

Lace 34 64 0.58 15 2 8843508

Figure 6.8: The table above reports some statistics for tiny triangulations: the propor-
tion of degree 6 vertices, the maximum vertex degree and the number ts of separat-
ing triangles. Last column reports the number |S(T)| of all distinct Schnyder woods
of a given rooted triangulation.

end of QP[vl] and QP[vr] respectively. We do not increase the priority of a
vertex having priority k− 1 (thus having k− 1 ingoing edges): the vertex is
added to the end of Qk−1. Observe that each vertex is added exactly once
to Q0, and can appear at most in Q0,Q1,Q2, . . . Qr, where r = min(k −

1,deg(v)−3), since we have k queues, and a vertex receives deg(v) incoming
edges. At a given iteration of the incremental conquest, in order to chose a

balancedSchnyderWood(T , (V0, V1, V2), k)

B = {V0, V1, V2} // initialization

while(|B| 6= {V0, V1}) {

}

let M be the largest index s.t. QM 6= ∅

Q0 = ∅, Q1 = ∅, . . . Qk−1 = ∅ // queue initialization

Q0.addLast(v2)

let v = QM .poll()

if(v ∈ B and v is free) {

T = new int[n] // priority array

}

let {vl, vj1 , . . . vjt , vr} be the neighbors of v on B

colorOrient(v)

conquer(v) // remove v from B

T [vl] + +, T [vr] + + // increase priority

Qmax(k−1,T [vl])
.addLast(vl)

Q0.addLast(vj1), . . . , Q0.addLast(vjt)

Qmax(k−1,T [vr]).addLast(vr)

Figure 6.7: Pseudo-code of the pro-
cedure for computing well balanced
Schnyder woods.

vertex candidate to be removed, we look for the largest index M for which
QM is not empty: we remove the first vertex u from the front of QM and we
check whether u is still on B and free (no incident chords), and we perform
a colorOrient operation if this is the case.

runtime performances . Our heuristic is very simple to implement
and its linear-time behavior is confirmed by our experiments (where we set
k = 5): the computation of balanced Schnyder woods is slightly slower than
the computation of minimal Schnyder woods, but it is still extremely fast in
practice, allowing us to process more than 3M vertices per second (on both
real-world and synthetic triangulations).

post-processing optimization : improving the balance . The
balance of the Schnyder woods obtained via our heuristic can be further
improved by performing the reversal of oriented triangles. To be more pre-
cise, one can iterate over all (cw or ccw) oriented triangle faces and check
whether the reversal of the orientation leads to increase the number of bal-
anced vertices incident to the triangle: if this occurs the reversal is performed
leading to a Schnyder wood with slightly larger number of balanced ver-
tices. As illustrated by the charts in Figures 6.9 and 6.10, the improvement
one can achieve with this post-processing phase is rather important for regu-
lar graphs: in our experiments we observed that the proportion of balanced
vertices (denoted δ0) has increased between 14% and 88% on the tested
meshes. The improvement is negligible for irregular (random) graphs. Un-
fortunately this post-processing phase is quite expensive: according to our
experiments, iterating over the faces and reversing oriented triangles can be
even 5.5 slower than running our heuristic.

6.3 application i : schnyder drawings 79

minimal Schnyder wood

balanced Schnyder wood (our heuristic)

our heuristic + optimization

ra
nd
om
28

Hi
lb
er
t

Fi
ng
er

De
sk

de
la
un
ay
28

tr
ig
ri
d
_ 4

gl
ob
e
_ 5

La
ce

0

0.2

0.4

0.6

0.8

1

δ0 (higher values are better)

ra
nd
om
28

Hi
lb
er
t

Fi
ng
er

De
sk

de
la
un
ay
28

tr
ig
ri
d
_ 4

gl
ob
e
_ 5

La
ce

0

0.2

0.4

0.6

0.8

1

∆ (higher values are better)

ra
nd
om
28

Hi
lb
er
t

Fi
ng
er

De
sk

de
la
un
ay
28

tr
ig
ri
d
_ 4

gl
ob
e
_ 5

La
ce

0.5

1

1.5

2

2.5

δavg (lower values are better)

Figure 6.9: Balance of tiny graphs. Graphs are listed from left to right according to
the increasing values of d6 (most regular graphs are listed rightmost). Whisker plots
(blue) represent the entire ranges of computed values for a given parameter over all
distinct Schnyder woods.

6.2.2 Experimental evaluation

tiny graphs . We consider tiny triangulations having less than 40 ver-
tices, including both real-world and synthetic graphs (they are listed in Ta-
ble 6.8): they are small enough so that we can generate all distinct Schnyder
woods in a reasonable amount of time (a few hours) and compute some
statistics involving their balance. More precisely, for a given rooted triangu-
lation we compute all distinct Schnyder woods and plot three parameters
(see charts in Fig. 6.9): the proportion δ0 of balanced vertices, the average ver-
tex defect δavg and the proportion ∆ of 3-colored faces. We use whisker plots
(blue) to represent the entire ranges of computed values for a given param-
eter: boxes represent the middle 50% of values (25% − 75% percentile).

large real-world graphs . To evaluate the balance quality of the
Schnyder woods we plot the value δ0 and ∆ as a function of d6: our balanced
Schnyder woods are compared to minimal ones in Fig. 6.10. Experimental
results strongly suggests that our heuristic leads to well balanced Schny-
der woods. Our heuristic performs particularly well for regular graphs, for
which a large majority of vertices are balanced (79% in average for the
sphere graph). The results are good also for irregular graphs (egea), where
about 45% of vertices are balanced. In our experiments we observed that the
choice of the initial seed has a limited effect on the balance of the resulting
Schnyder wood. Minimal Schnyder woods represent a bad case, especially
for regular graphs: most vertices have a large defect and the resulting paths
Π0(v), Π1(v) and Π2(v) resemble very long spirals.

6.3 application i : schnyder drawings

While recent works [LSW16] provide a probabilistic study of the converge
for uniformly sampled triangulations endowed with a Schnyder wood, as
far as we know there are no theoretical or empirical evaluations of the layout
quality for regular graphs.

In this section our goal is to evaluate the impact of the balance of a Schny-
der wood on the layout quality of the corresponding Schnyder drawings.

80 some experimental results on schnyder woods

0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Egea

David’s head

iphigenia

horse

bunny

dragon
Eros

hand

d6

δ
0

(h
ig

he
r

va
lu

es
ar

e
be

tt
er

)

Real-world meshes

0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

random100k

Delaunay100k

sphere163k

d6

Synthetic and random graphs

our heuristic+post-processing
our heuristic

minimal SW+post-processing
minimal Schnyder wood

0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Egea
David’s head

iphigenia

horse

bunny

dragon

Eros
hand

d6

∆
(h

ig
he

r
va

lu
es

ar
e

be
tt

er
)

0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

random100k

Delaunay100k

sphere163k

d6

Figure 6.10: Balance of Schnyder woods for large graphs. For a given fixed choice
of the initial seed we evaluate the proportion δ0 of balanced vertices (top charts)
and the proportion ∆ of 3-colored faces (bottom charts): we compare our heuristic
(red) to the balance of minimal Schnyder woods (black). Dashed charts represent the
results obtained after running the post-processing phase. The results are expressed
as functions of d6 (most regular graphs appear rightmost).

motivation. A first qualitative evaluation of the graph layouts based
on the balance Schnyder woods is provided by the pictures in Figures 6.11

and 6.13, showing the layouts corresponding to distinct Schnyder woods
of the same graph, which confirm the following intuition. In the case of
regular graphs, when starting from our well balanced Schnyder woods the
shape of triangles is much more balanced, and the resulting drawing par-
tially captures the regularity of the grid. When starting from an unbalanced
Schnyder wood the drawing exhibits many long edges and flat triangles, a
typical drawback of Schnyder drawings.

edge length metric= 0.77

aspect ratio metric= 0.84

balanced Schnyder wood

edge length metric= 0.66

aspect ratio metric= 0.80

minimal Schnyder wood

δavg = 2.25

δavg = 1.33

Figure 6.13: Schnyder drawings of
the globe_5 graph.

measuring the layout quality. As a quantitative measure of the
quality of a graph layout we consider two parameters: the edge length and
the aspect ratio of the faces. More precisely, as already done in Section 5.7 we
compute the edge lengths aesthetic metric el = 1−del, where del is the average
percent deviation of edge lengths defined by Equation 5.2 (obviously, in this
chapter we consider the euclidean edge lengths). Observe that values of el
close to 1 mean that most edges have the same length, which is a desirable
aesthetic criterion especially for regular graphs. We also use the aspect ratio
aesthetic metric, denoted by ar, which can be defined in a similar way.

6.3 application i : schnyder drawings 81

unbalancedwell balanced (our heuristic)Schnyder drawing (balanced)

Figure 6.11: (left) A sphere graph endowed with our balanced Schnyder wood and
the corresponding Schnyder drawing. The right pictures show the same portion of
the Schnyder drawing: our balanced Schnyder wood leads to a much more readable
and regular layout compared to the unbalanced case (right).

cy
lin

der
2
k

sp
her

e2
k

Egea

ra
ndom

1
2
k

dra
gon

han
d

gourd

0.6

0.7

0.8

0.9

1

ed
ge

le
ng

th
m

et
ri

c

el (higher values are better)

cy
lin

der
2
k

sp
her

e2
k

Egea

ra
ndom

1
2
k

dra
gon

han
d

gourd

0.6

0.7

0.8

0.9

1

as
pe

ct
ra

ti
o

m
et

ri
c

ar (higher values are better)

our heuristic+post-processing
our heuristic

minimal Schnyder wood

Figure 6.12: Layout quality of Schnyder drawings for medium and large graphs
(smallest graphs are listed leftmost). For a fixed choice of the root face we compute
a balanced Schnyder wood with our heuristic and the minimal one: we compare the
layout quality of the corresponding Schnyder drawings.

experimental evaluation The intuition, suggested by the layouts of
Fig. 6.11 and Fig. 6.13, that balanced Schnyder woods lead to more pleasant
and regular drawings, is also confirmed by the experiments involving sev-
eral real-world and synthetic graphs. As shown by the charts in Fig. 6.12, the
layouts corresponding to a balanced Schnyder woods always achieve better
aesthetic criteria when compared with unbalanced Schnyder woods (in our
tests we make use of the minimal one, which is strongly unbalanced).

To get a more quantitative evaluation, we consider some tiny graphs for
which we are able to generate all possible Schnyder woods and compute the
corresponding Schnyder drawings (with a fixed root face). Comparing the
layout parameters we can state some interesting remarks: a more balanced
Schnyder wood does not always necessarily guarantees to get a more pleas-
ant Schnyder drawing, but this occurs very frequently. This is confirmed
by our experiments shown in the charts of Fig. 6.14, reporting the values
of several parameters (el, ar, as well as the average edge length and aspect
ratio) as a function of the average defect (as a measure of the balance). More
precisely, we compute all distinct Schnyder woods of a rooted triangulation
and we partition them according to the parameter δavg as a measure of
their balance. For every class of Schnyder woods achieving more or less the

82 some experimental results on schnyder woods

ra
nd
om
28

Hi
lb
er
t

Fi
ng
er

De
sk

de
la
un
ay
28

tr
ig
ri
d
_ 4

gl
ob
e
_ 5

La
ce

0.6

0.8

1

H
ig

he
r

va
lu

es
ar

e
be

tt
er

el (edge length)

ra
nd
om
28

Hi
lb
er
t

Fi
ng
er

De
sk

de
la
un
ay
28

tr
ig
ri
d
_ 4

gl
ob
e
_ 5

La
ce

0.6

0.8

1

ar (aspect ratio)

our heuristic+optimization

our heuristic

minimal orientation

Figure 6.14: Comparison of layout quality: for each tiny graph we compute the
edge length and aspect ratio metrics of the Schnyder drawings corresponding to our
balanced Schnyder woods (compared to the drawing of a minimal Schnyder wood).

1.2 1.4 1.6 1.8 2 2.2
0.3

0.35

0.4

0.45

δavg

g
l
o
b
e
_
5

average edge length

1.2 1.4 1.6 1.8 2 2.2
6

8

10

12

14

δavg

average aspect ratio

1.2 1.4 1.6 1.8 2 2.2
0.65

0.7

0.75

0.8

0.85

δavg

el (higher values are better)

1.2 1.4 1.6 1.8 2 2.2

0.75

0.8

0.85

0.9

δavg

ar (higher values are better)

Figure 6.15: Layout statistics of Schnyder drawings. We generate all distinct Schny-
der woods of the globe_5 graph and we compute some statistics of the correspond-
ing Schnyder drawings, according to the following aesthetic metrics: the average
edge length (resp. aspect ratio) and the average percent deviation of edge Lent (resp.
aspect ratio). We plot these statistics as a function of the average defect δavg: bal-
anced Schnyder woods have smaller values of δavg and are listed leftmost: for the
globe_5 graph the values of δavg range in [1.25, 2.5].

same balance, we make use of bar charts in order to plot the proportion of
Schnyder drawings achieving a given value of the selected layout parame-
ter. As shown by the plots in Fig. 6.15 for the case of the globe_5 graph,
the layout quality tends to deteriorate as soon as Schnyder woods get more
unbalanced: Schnyder woods with high values of δavg are more likely to
get worst layout statistics.

6.4 application ii : small separators

small (cycle) separators . Now we consider the problem of comput-
ing small separators, which has been extensively investigated during the
last four decades, due to its relevance for many graph algorithms [LT79;
LT80; Mil86; ST96]. Given a graph G we consider small separators which are
defined by a partition (A,B,S) of all vertices such that S is a separating ver-
tex set of small size (usually |S| = O(

√
m)), and the remaining vertices in

G \ S belong to a balanced partition (A,B) satisfying |A| ⩽ αn, |B| ⩽ αn

(usually, for planar graphs, the balance ratio is α = 2
3). Here we focus on sim-Despite the large number of existing

algorithmic solutions involving graph
separators, we have not been able to find

any working (and publicly available)
implementation of planar separator

theorems.

ple cycle separators [Mil86], for which fast implementations [Hol+09; Fox+16]

6.4 application ii : small separators 83

V0 V1

V2

v6
|Π0(v6)| = 2
|Π1(v6)| = 2
|Π2(v6)| = 1

|R0(v6)| = 2
|R1(v6)| = 8
|R2(v6)| = 5

A = Int(R0(v6) ∪R2(v6)) = {v4, v5}

v3

v4

v5

v7

v8

v9

B = Int(R1(v6)) = {v7, v8, v9}
S = Π0(v6) ∪ Π1(v6) ∪ {v0}

= {v6, v3, v0, v1, v2}
v6

v3

v4

v5

v7

v8

v9

Egea

δ0 = 0.42

δavg = 1.18

|S| = 0.96
√
m

horse

δ0 = 0.485
δavg = 0.931

δ0 = 0.485
δavg = 0.921
|S| = 1.32

√
m|S| = 0.58

√
m

n = 8268

δ0 = 0.543
δavg = 1.153

|S| = 0.15
√
m

n = 2012 δ0 = 0.546
δavg = 1.148

|S| = 2.34
√
m

diam=59

diam=202

cylinder2k

n = 20000

diam=168

Figure 6.17: (top) A separator (A,B,S) obtained from a Schnyder wood. (bottom)
Example of cycles separators computed via balanced Schnyder woods: the quality of
the solution strongly depends on the choice of the initial seed (the root face).

have been recently proposed (some of them [Fox+16] are provided with a
worst-case bound of

√
8m on the cycle size).

from schnyder woods to simple cycle separators . Schnyder
woods provides a very fast procedure for partitioning, given an arbitrary
inner vertex v, the set of inner faces of a triangulation into three sets R0(v),

balanced Schnyder wood

unbalanced Schnyder wood

Figure 6.16: The separators corre-
sponding to a balanced and an unbal-
anced Schnyder woods of a regular
sphere graph.

R1(v) and R2(v) (respectively blue, red and gray triangles in Fig. 6.3(b)),
whose boundaries consist of the three disjoint paths Π0(v), Π1(v) and Π2(v)

emanating from v. The computation of simple cycle separators can be done
as follows: for each vertex v check whether the two sets A = Int(Ri(v) ∪
Ri+1(v)) and B = Int(Ri+2(v)) satisfy the prescribed balance ratio for at
least one index i ∈ {0, 1, 2} (indices are modulo 3, and Int(R) denotes the
set of inner vertices of a region R): then select the vertex for which the cor-
responding cycle length |Πi(v)|+ |Πi+1(v)|+ 1 is minimal (observe that, in
practice, most vertices could lead to unbalanced partitions whose boundary
size can be very large). All these steps can be performed almost instanta-
neously, since all the quantities above are encoded in the Schnyder drawing
itself (see [Sch90] for more details). As far as we know there are no theoreti-
cal guarantees on both the partition balance and boundary size: in general,
given an arbitrary Schnyder wood of a given triangulation, the procedure
above does not lead to a short cycle separator (as depicted in Fig. 6.16). Nev- As observed in practice [Cas19], our

Java implementation allows processing
between 1.43M and 1.92M vertices
per second. This has to be compared to
the C implementations of previous
results on cycle separators [Hol+09;
Fox+16], running on an Intel Xeon
X5650 2.67GHz (with 48.4 GB of
RAM): the fastest variant of the
procedures tested in [Fox+16] allows
processing between 0.54M and
0.62M vertices per second for the case
of square grids.

ertheless, our experiments seem to suggest that a balanced Schnyder wood
is able to obtain good separators of short size for many classes of graphs;
moreover, our approach is simple to implement and much faster than other
existing solutions [Hol+09; Fox+16].

experimental evaluation. In our experiments we look for separa-
tors with a balance ratio α = 2

3 that are short: the boundary size is at most
|S| ⩽

√
8m, as required in [Fox+16]. We plot in the charts of Fig. 6.18 the

boundary sizes and partition balances of the separators obtained from a

84 some experimental results on schnyder woods

√
n

√
m

√
8n

√
8m

Arc triomphe

Hack

Egea

Circular box

Dragon

Pierre’s hand

Eros

Iphigenia

Aphrodite

horse

Bo
un

da
ry

si
ze

Real-world graphs

stack

disk
random

Delaunay

sphere

globe

cylinder
thin cylinder

Synthetic and random graphs (n ≈ 12k)

1
3
n

1
2
n

A
rc

tr
io

m
ph

e

La
m

pa
n

H
ac

k

Eg
ea

R
ed

ci
rc

ul
ar

bo
x

D
ra

go
n

Pi
er

re
’s

ha
nd

Er
os

Ip
hi

ge
ni

a

A
ph

ro
di

te

ho
rs

e

Se
pa

ra
to

r
ba

la
nc

e

Real-world graphs

st
ac

k

di
sk

ra
nd

om

D
el

au
na

y

sp
he

re

gl
ob

e

cy
lin

de
r

th
in

cy
lin

de
r

Synthetic and random graphs (n ≈ 12k)

Figure 6.18: We evaluate the quality of the cycle separators obtained from our bal-
anced Schnyder woods (tests are repeated with 200 random seeds). The top charts
report the boundary sizes, while the bottom charts show the plots of the separator
balance (the normalized size of the smallest of the two sets A and B). Graphs are
listed from left to right according to the increasing values of their relative diameter.

Schnyder drawing as described in Section 6.2. Our tests, repeated over sev-
eral tens of graphs, confirm our intuition that balanced Schnyder woods
lead to good separators for a large majority of classes of graphs.

As one could expect, the separator size and balance strongly depend on
the balance of the underlying Schnyder wood, and their are also affected
by the choice of the seed for graphs with large diameter: a good choice of
the seed would prevent from getting too long cycles. For graphs with small
diameter (e.g. random triangulations) Schnyder woods lead to very short
separators, while the size is closed to

√
m for most real-world graphs. In

Arc
tri

om
phe

Hac
k

Egea

Circ
ular

box

dra
gon

han
d

Ero
s

Ip
higen

ia

Aphro
dite

horse

√
n

√
m

Boundary size (lower values are better)

our heuristic+post-processing
our heuristic

Figure 6.19: Separator quality: effect
of post-processing optimization. For
a fixed choice of the root face we
compare the size of the separators ob-
tained with our method, before and
after performing the post-processing
optimization.

order to be fair we have to mention that our separators are often longer
when compared with the results obtained in [Fox+16], but well below the
prescribed bound of

√
8m.

improving the separator quality via post-processing . We al-
ready mentioned that it would be possible to perform a post-processing
optimization in order to increase the balance of the Schnyder wood. As ob-
served in our experiments the separator quality of the resulting Schnyder
woods does not considerably improve after this post-processing phase: the
plots in Fig. 6.19 show that the boundary size decreases less than 7% in most
cases (on the tested meshes).

7C O N C L U D I N G R E M A R K S A N D P E R S P E C T I V E S

As shown throughout this manuscript Schnyder woods offer a very elegant
and deep tool for dealing with graphs which are planar or embedded on
surfaces, leading to extremely fast and memory efficient algorithmic solu-
tions for solving several classes of graph problems. My impression is that
Schnyder woods and related combinatorial structures have still many won-
derful surprises in store for us. I list below a few open problems and lines
of research that I find promising 1.

7.1 graphs on surfaces : open questions

7.1.1 Schnyder woods for graphs on surfaces

As already mentioned in Sections 3.4.2 and 6.1, there are many interesting
open questions in the higher genus case involving both the combinatorial
structure and the algorithmics of Schnyder woods.

For the case of simple toroidal triangulations a crucial question [Lév16] is
the existence of 3-orientations that satisfy the definition of toroidal Schnyder
woods while preserving the global spanning condition (the graphs induced
by the edges of the three colors define three connected subgraphs). To our
knowledge this question is still open.

No doubt, one very challenging question involves the existence and com-
putation of orientations satisfying the multiple Schnyder local rule for sim-
ple triangulations of genus g ⩾ 2: according to our experimental results
(Section 6.1) we conjecture the existence of such orientations even for graphs
having small edge-width.

Finally, it would be interesting to further explore the algorithmics underly-
ing the vertex shelling procedure. Can one devise a new shelling procedure
for computing toroidal Schnyder woods satisfying the crossing condition?
Is it possible to generalize the shelling procedure in order to compute 3-
orientations and Schnyder woods in the genus g ⩾ 2 case? A positive an-
swer could have a huge impact in practice from the algorithmic point of
view, since the current results [Lév16; Sua21] for toroidal and higher genus
graphs are not provided with practical implementations.

7.1.2 Drawing higher genus graphs (for g > 1)

As mentioned in Chapter 5, both the region-counting principle underlying
Schnyder drawings and the shift method of the FPP algorithm have been ex-
tended to the toroidal case leading to periodic crossing-free grid drawings.

1 Here I do not include my works involving graph encoding and visualizations problems for
other classes of graphs, for which the kind of techniques described in this manuscript is not
suitable. This occurs for instance in the case of graphs (such as complex networks) which do
not exhibit a structure coming from a planar (or locally planar) embedding, and also in the case
of graphs whose combinatorial structure can evolve over time (since the structure of Schnyder
woods can dramatically change under local updates). In both cases these graphs require other
kinds of mathematical tools and algorithmic techniques to deal with, and this goes beyond the
scope of this manuscript.

85

86 concluding remarks and perspectives

It remains open to devise efficient combinatorial algorithms for comput-
ing periodic drawings of graphs embedded on surfaces of genus g ⩾ 2. This
problem is much more challenging, since it is not known how to combine
the recent results on higher genus orientations [AGK16; Sua21] with the
algorithmic techniques mentioned above.

7.1.3 Adaptive analysis: graph drawing and graph encoding

The recent experimental results presented in Chapter 6 would suggest that
the study of regularity of Schnyder woods could be a new interesting re-
search direction.

No doubt, the dependence of the layout quality of Schnyder drawings
on the balance of the corresponding Schnyder woods has been little inves-
tigated to date. One very interesting and challenging problem would be
to provide a theoretical analysis of the behaviour observed in Section 6.3,
which seems to suggest that a much more pleasing layout could be obtained
with a balanced Schnyder wood.

A promising line of research comes from the graph encoding perspective:
motivated by some recent preliminary results 2, we aim at designing new
compression schemes and compact data structures which could be able to
take profit of the regularity of triangle meshes. Our hope is to achieve better
compression rates, while still guaranteeing rigorous upper bounds on the
encoding size in the worst case. A crucial question concerns the choice of the
size parameters (vertex degree distribution, proportion of degree 6 vertices,
number of separating triangles, number of 3-colored faces, ...) to choose for
establishing new adaptive bounds.

7.2 schnyder woods for higher dimensional complexes

The study of Schnyder woods and related combinatorial structures in the
case of higher dimensional complexes has been very little investigated so
far [Eva+14; GI20]: this problem is fascinating and extremely challenging,
mainly because the combinatorial structure of such objects is much richer
and difficult to explore, compared to the case of planar (or local planar)
graphs. One line of research could be to consider some nice classes of higher
dimensional complexes (e.g. shellable, collapsible or vertex decomposable)
which could be good candidates for generalizing some of the properties of
Schnyder woods.

2 In a ongoing and unpublished work (collaboration with Olivier Devillers) we have been able
to improve the upper bound of 4n references per vertex stated in Theorem 4.8, when the input
triangulation is regular (large majority of degree 6 vertices).

B I B L I O G R A P H Y

[AL15] Noam Aigerman and Yaron Lipman. “Orbifold Tutte embed-
dings.” In: ACM Trans. Graph. 34.6 (2015), 190:1–190:12.

[AGK16] Boris Albar, Daniel Gonçalves, and Kolja Knauer. “Orienting
Triangulations.” In: J. Graph Theory 83.4 (2016), pp. 392–405. url:
https://doi.org/10.1002/jgt.22005.

[AH78] M. O. Albertson and J. P. Hutchinson. “On the independence
ratio of a graph.” In: J. Graph. Theory 2 (1978), pp. 1–8.

[Ale00] Marc Alexa. “Merging polyhedral shapes with scattered fea-
tures.” In: The Visual Computer 16.1 (2000), pp. 26–37.

[AG05] Pierre Alliez and Craig Gotsman. “Recent Advances in Com-
pression of 3D Meshes.” In: Advances in Multiresolution for Geo-
metric Modelling. Springer, 2005, pp. 3–26. url: http://dx.doi.
org/10.1007/3-540-26808-1_1.

[AJ05] Tyler J Alumbaugh and Xiangmin Jiao. “Compact array-based
mesh data structures.” In: Proceedings of the 14th International
Meshing Roundtable. Springer. 2005, pp. 485–503. doi: 10.1007/
3-540-29090-7_29.

[BT06] János Barát and Carsten Thomassen. “Claw-decompositions and
tutte-orientations.” In: J. Graph Theory 52.2 (2006), pp. 135–146.
url: https://doi.org/10.1002/jgt.20149.

[Bar+12] Jérémy Barbay, Luca Castelli Aleardi, Meng He, and J Ian Munro.
“Succinct representation of labeled graphs.” In: Algorithmica 62.1-
2 (2012), pp. 224–257. doi: 10.1007/s00453-010-9452-7. url:
https://hal.inria.fr/hal-00712915v1.

[BHJ09] Mathieu Bastian, Sebastien Heymann, and Mathieu Jacomy. “Gephi:
An Open Source Software for Exploring and Manipulating Net-
works.” In: Proc. of the Third Int. Conf. on Weblogs and Social Me-
dia, ICWSM 2009, 2009. 2009.

[BTV99] Giuseppe Di Battista, Roberto Tamassia, and Luca Vismara. “Output-
Sensitive Reporting of Disjoint Paths.” In: Algorithmica 23.4 (1999),
pp. 302–340. url: https://doi.org/10.1007/PL00009264.

[Bau72] Bruce G Baumgart. Winged edge polyhedron representation. Tech.
rep. DTIC Document, 1972. url: http://www.dtic.mil/cgi-
bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=AD0755141.

[Bau75] Bruce G Baumgart. “A polyhedron representation for computer
vision.” In: Proceedings National Computer Conference and Exposi-
tion. ACM. 1975, pp. 589–596. doi: 10.1145/1499949.1500071.

[Ber07] O. Bernardi. “Bijective counting of tree-rooted maps and shuf-
fle of parenthesis systems.” In: The Electronic Journal of Combina-
torics 14 (2007).

[BB07] O. Bernardi and N. Bonichon. “Catalans intervals and realizers
of triangulations.” In: Proc. FPSAC07. 2007.

87

https://doi.org/10.1002/jgt.22005
http://dx.doi.org/10.1007/3-540-26808-1_1
http://dx.doi.org/10.1007/3-540-26808-1_1
https://doi.org/10.1007/3-540-29090-7_29
https://doi.org/10.1007/3-540-29090-7_29
https://doi.org/10.1002/jgt.20149
https://doi.org/10.1007/s00453-010-9452-7
https://hal.inria.fr/hal-00712915v1
https://doi.org/10.1007/PL00009264
http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=AD0755141
http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=AD0755141
https://doi.org/10.1145/1499949.1500071

88 bibliography

[BB09] Olivier Bernardi and Nicolas Bonichon. “Catalan’s intervals and
realizers of triangulations.” In: Journal of Combinatorial Theory,
Series A 116.1 (2009). 22 pages, pp. 55–75. url: https://hal.
archives-ouvertes.fr/hal-00143870.

[BH18] Maciej Besta and Torsten Hoefler. “Survey and Taxonomy of
Lossless Graph Compression and Space-Efficient Graph Repre-
sentations.” In: CoRR abs/1806.01799 (2018). arXiv: 1806.01799.
url: http://arxiv.org/abs/1806.01799.

[Boi+02] Jean-Daniel Boissonnat, Olivier Devillers, Sylvain Pion, Monique
Teillaud, and Mariette Yvinec. “Triangulations in CGAL.” In:
Computational Geometry: Theory & Applications 22 (2002), pp. 5–
19. doi: 10.1016/S0925-7721(01)00054-2. url: https://hal.
inria.fr/inria-00167199.

[BGH03] N. Bonichon, C. Gavoille, and N. Hanusse. “An information-
theoretic upper bound of planar graphs using triangulation.”
In: STACS. Springer, 2003, pp. 499–510.

[BGL05] N. Bonichon, C. Gavoille, and A. Labourel. “Edge partition of
toroidal graphs into forests in linear time.” In: ICGT. Vol. 22.
2005, pp. 421–425.

[Bon+06] N. Bonichon, C. Gavoille, N. Hanusse, D. Poulalhon, and G.
Schaeffer. “Planar graphs, via well-orderly maps and trees.” In:
Graphs and Combinatorics 22.2 (2006), pp. 185–202.

[Bon02] Nicolas Bonichon. “Aspects algorithmiques et combinatoires
des réaliseurs des graphes plans maximaux.” PhD thesis. Bor-
deaux I, 2002.

[Bon+10a] Nicolas Bonichon, Cyril Gavoille, Nicolas Hanusse, and David
Ilcinkas. “Connections between Theta-Graphs, Delaunay Trian-
gulations, and Orthogonal Surfaces.” In: Graph Theoretic Con-
cepts in Computer Science - 36th International Workshop, WG 2010.
2010, pp. 266–278. url: https://doi.org/10.1007/978-3-642-
16926-7_25.

[Bon+10b] Nicolas Bonichon, Cyril Gavoille, Nicolas Hanusse, and Ljubomir
Perkovic. “Plane Spanners of Maximum Degree Six.” In: Au-
tomata, Languages and Programming, 37th International Colloquium,
ICALP 2010. 2010, pp. 19–30. url: https://doi.org/10.1007/
978-3-642-14165-2_3.

[BW00] U. Brandes and D. Wagner. “A Linear Time Algorithm for the
Arc Disjoint Menger Problem in Planar Directed Graphs.” In:
Algorithmica 28.1 (2000), pp. 16–36. url: https://doi.org/10.
1007/s004530010029.

[Bre00] Enno Brehm. “3-orientations and Schnyder 3-tree-decompositions.”
In: Master’s Thesis, FB Mathematik und Informatik, Freie Univer-
sität Berlin (2000).

[Bro64] W. Brown. “Enumeration of triangulations of the disk.” In: Proc.
London Math. Soc. 3.14 (1964), pp. 515–528.

[CM07] Sergio Cabello and Bojan Mohar. “Finding Shortest Non-Separating
and Non-Contractible Cycles for Topologically Embedded Graphs.”
In: Discrete & Comp. Geometry 37.2 (2007), pp. 213–235.

https://hal.archives-ouvertes.fr/hal-00143870
https://hal.archives-ouvertes.fr/hal-00143870
https://arxiv.org/abs/1806.01799
http://arxiv.org/abs/1806.01799
https://doi.org/10.1016/S0925-7721(01)00054-2
https://hal.inria.fr/inria-00167199
https://hal.inria.fr/inria-00167199
https://doi.org/10.1007/978-3-642-16926-7_25
https://doi.org/10.1007/978-3-642-16926-7_25
https://doi.org/10.1007/978-3-642-14165-2_3
https://doi.org/10.1007/978-3-642-14165-2_3
https://doi.org/10.1007/s004530010029
https://doi.org/10.1007/s004530010029

bibliography 89

[CKS98] Swen Campagna, Leif Kobbelt, and Hans-Peter Seidel. “Directed
Edges—A Scalable Representation for Triangle Meshes.” In: Jour-
nal of Graphics Tools 3 (1998), pp. 1–11. doi: 10.1080/10867651.
1998.10487494.

[Cas19] Luca Castelli Aleardi. “Balanced Schnyder Woods for Planar
Triangulations: An Experimental Study with Applications to
Graph Drawing and Graph Separators.” In: Graph Drawing and
Network Visualization - 27th International Symposium, GD. Vol. 11904.
Lecture Notes in Computer Science. Springer, 2019, pp. 114–121.
url: https://doi.org/10.1007/978-3-030-35802-0_9.

[CDF18a] Luca Castelli Aleardi, Gaspard Denis, and Éric Fusy. “Fast Spher-
ical Drawing of Triangulations: An Experimental Study of Graph
Drawing Tools.” In: 17th International Symposium on Experimen-
tal Algorithms, SEA. Vol. 103. LIPIcs. 2018, 24:1–24:14. url: https:
//hal.archives-ouvertes.fr/hal-01761754.

[CD18] Luca Castelli Aleardi and Olivier Devillers. “Array-based com-
pact data structures for triangulations: Practical solutions with
theoretical guarantees.” In: J. Comput. Geom. 9.1 (2018), pp. 247–
289. url: https://doi.org/10.20382/jocg.v9i1a8.

[CDF12] Luca Castelli Aleardi, Olivier Devillers, and Éric Fusy. “Canon-
ical Ordering for Triangulations on the Cylinder, with Applica-
tions to Periodic Straight-Line Drawings.” In: Graph Drawing -
20th International Symposium. 2012, pp. 376–387.

[CDF18b] Luca Castelli Aleardi, Olivier Devillers, and Éric Fusy. “Canon-
ical ordering for graphs on the cylinder, with applications to
periodic straight-line drawings on the flat cyclinder and torus.”
In: J. Comput. Geom. 9.1 (2018), pp. 391–429. url: https://doi.
org/10.20382/jocg.v9i1a14.

[CDM11] Luca Castelli Aleardi, Olivier Devillers, and Abdelkrim Mebarki.
“Catalog Based Representation of 2D triangulations.” In: Inter-
national Journal of Computational Geometry & Applications 21 (2011),
pp. 393–402. doi: 10.1142/S021819591100372X. url: http://
hal.inria.fr/inria-00560400.

[CADR12] Luca Castelli Aleardi, Olivier Devillers, and Jarek Rossignac.
“ESQ: Editable SQuad Representation for Triangle Meshes.” In:
25th Conference on Graphics, Patterns and Images, SIBGRAPI 2012.
2012, pp. 110–117. url: http://dx.doi.org/10.1109/SIBGRAPI.
2012.24.

[CDS05a] Luca Castelli Aleardi, Olivier Devillers, and Gilles Schaeffer.
“Dynamic updates of succinct triangulations.” In: Proceedings
of the 17th Canadian Conference on Computational Geometry. 2005,
pp. 134–137. url: http://www.cccg.ca/proceedings/2005/45.
pdf.

[CDS05b] Luca Castelli Aleardi, Olivier Devillers, and Gilles Schaeffer.
“Succinct Representation of Triangulations with a Boundary.”
In: Algorithms and Data Structures, 9th International Workshop,
WADS. Vol. 3608. Lecture Notes in Computer Science. Springer,
2005, pp. 134–145. url: https://doi.org/10.1007/11534273\
_13.

https://doi.org/10.1080/10867651.1998.10487494
https://doi.org/10.1080/10867651.1998.10487494
https://doi.org/10.1007/978-3-030-35802-0_9
https://hal.archives-ouvertes.fr/hal-01761754
https://hal.archives-ouvertes.fr/hal-01761754
https://doi.org/10.20382/jocg.v9i1a8
https://doi.org/10.20382/jocg.v9i1a14
https://doi.org/10.20382/jocg.v9i1a14
https://doi.org/10.1142/S021819591100372X
http://hal.inria.fr/inria-00560400
http://hal.inria.fr/inria-00560400
http://dx.doi.org/10.1109/SIBGRAPI.2012.24
http://dx.doi.org/10.1109/SIBGRAPI.2012.24
http://www.cccg.ca/proceedings/2005/45.pdf
http://www.cccg.ca/proceedings/2005/45.pdf
https://doi.org/10.1007/11534273_13
https://doi.org/10.1007/11534273_13

90 bibliography

[CDS08] Luca Castelli Aleardi, Olivier Devillers, and Gilles Schaeffer.
“Succinct representations of planar maps.” In: Theor. Comput.
Sci. 408.2-3 (2008), pp. 174–187. url: https://doi.org/10.
1016/j.tcs.2008.08.016.

[CFK14] Luca Castelli Aleardi, Éric Fusy, and Anatolii Kostrygin. “Peri-
odic Planar Straight-Frame Drawings with Polynomial Resolu-
tion.” In: LATIN 2014: Theoretical Informatics - 11th Latin Ameri-
can Symposium. 2014, pp. 168–179.

[CAFL09] Luca Castelli Aleardi, Éric Fusy, and Thomas Lewiner. “Schny-
der woods for higher genus triangulated surfaces, with appli-
cations to encoding.” In: Discrete & Computational Geometry 42.3
(2009), pp. 489–516. doi: 10.1007/s00454- 009- 9169- z. url:
https://hal.inria.fr/hal-00712046v1.

[CFL10] Luca Castelli Aleardi, Éric Fusy, and Thomas Lewiner. “Op-
timal encoding of triangular and quadrangular meshes with
fixed topology.” In: Proceedings of the 22nd Annual Canadian Con-
ference on Computational Geometry. 2010, pp. 95–98. url: http:
//cccg.ca/proceedings/2010/paper27.pdf.

[Cha+12] Erin W. Chambers, David Eppstein, Michael T. Goodrich, and
Maarten Löffler. “Drawing Graphs in the Plane with a Pre-
scribed Outer Face and Polynomial Area.” In: J. Graph Algo-
rithms Appl. 16.2 (2012), pp. 243–259.

[CP95] M. Chrobak and T. H. Payne. “A Linear-Time Algorithm for
Drawing a Planar Graph on a Grid.” In: Inf. Process. Lett. 54.4
(1995), pp. 241–246.

[Chu+98] Richie Chih-Nan Chuang, Ashim Garg, Xin He, Ming-Yang Kao,
and Hsueh-I Lu. “Compact encodings of planar graphs via
canonical orderings and multiple parentheses.” In: Automata,
Languages and Programming. Springer, 1998, pp. 118–129. doi:
10.1007/BFb0055046.

[DFM01] Hubert De Fraysseix and Patrice Ossona de Mendez. “On topo-
logical aspects of orientations.” In: Discrete Mathematics 229.1
(2001), pp. 57–72. doi: 10.1016/S0012-365X(00)00201-6.

[DGL17] Vincent Despré, Daniel Gonçalves, and Benjamin Lévêque. “En-
coding Toroidal Triangulations.” In: Discrete & Computational
Geometry 57.3 (2017), pp. 507–544. url: https://doi.org/10.
1007/s00454-016-9832-0.

[Dha10] Raghavan Dhandapani. “Greedy Drawings of Triangulations.”
In: Discrete & Computational Geometry 43.2 (2010), pp. 375–392.
url: https://doi.org/10.1007/s00454-009-9235-6.

[DGK11] Christian A. Duncan, Michael T. Goodrich, and Stephen G. Kobourov.
“Planar Drawings of Higher-Genus Graphs.” In: J. Graph Algo-
rithms Appl. 15.1 (2011), pp. 7–32.

[Ell+01] John Ellson, Emden R. Gansner, Eleftherios Koutsofios, Stephen
C. North, and Gordon Woodhull. “Graphviz - Open Source
Graph Drawing Tools.” In: Proc. of Graph Drawing. 2001, pp. 483–
484.

[Eva+14] William Evans, Stefan Felsner, Stephen G. Kobourov, and Torsten
Ueckerdt. “Graphs admitting d-realizers: spanning-tree-decompositions
and box-representations.” In: Proc. of EuroCG. 2014.

https://doi.org/10.1016/j.tcs.2008.08.016
https://doi.org/10.1016/j.tcs.2008.08.016
https://doi.org/10.1007/s00454-009-9169-z
https://hal.inria.fr/hal-00712046v1
http://cccg.ca/proceedings/2010/paper27.pdf
http://cccg.ca/proceedings/2010/paper27.pdf
https://doi.org/10.1007/BFb0055046
https://doi.org/10.1016/S0012-365X(00)00201-6
https://doi.org/10.1007/s00454-016-9832-0
https://doi.org/10.1007/s00454-016-9832-0
https://doi.org/10.1007/s00454-009-9235-6

bibliography 91

[Fel04] S. Felsner. “Lattice structures from planar graphs.” In: Electronic
Journal of Combinatorics 11.15 (2004), p. 24.

[Fel01] Stefan Felsner. “Convex drawings of planar graphs and the or-
der dimension of 3-polytopes.” In: Order 18.1 (2001), pp. 19–37.

[Fel03] Stefan Felsner. “Geodesic Embeddings and Planar Graphs.” In:
Order 20.2 (2003), pp. 135–150. url: https://doi.org/10.1023/
B:ORDE.0000009251.68514.8b.

[FK12] J. Joseph Fowler and Stephen G. Kobourov. “Planar Preprocess-
ing for Spring Embedders.” In: Graph Drawing - 20th Interna-
tional Symposium. 2012, pp. 388–399.

[Fox+16] Eli Fox-Epstein, Shay Mozes, Phitchaya Mangpo Phothilimthana,
and Christian Sommer. “Short and Simple Cycle Separators in
Planar Graphs.” In: ACM Journal of Experimental Algorithmics
21.1 (2016), 2.2:1–2.2:24.

[FPP90] Hubert de Fraysseix, János Pach, and Richard Pollack. “How to
draw a planar graph on a grid.” In: Combinatorica 10.1 (1990),
pp. 41–51.

[FR91] Thomas M. J. Fruchterman and Edward M. Reingold. “Graph
Drawing by Force-directed Placement.” In: Softw., Pract. Exper.
21.11 (1991), pp. 1129–1164.

[FPS05] E. Fusy, D. Poulalhon, and G. Schaeffer. “Dissections and trees,
with applications to optimal mesh encoding and to random
sampling.” In: SODA. 2005, pp. 690–699.

[Fus07] Eric Fusy. “Combinatoire des cartes planaires et applications
algorithmiques.” PhD thesis. Ecole Polytechnique, 2007.

[Gao93] Z. Gao. “A pattern for the asymptotic number of rooted maps
on surfaces.” In: Journal of Combinatorial Theory, Series A 64 (1993),
pp. 246–264.

[GI20] Daniel Gonçalves and Lucas Isenmann. “Dushnik-Miller dimen-
sion of TD-Delaunay complexes.” In: Eur. J. Comb. 88 (2020),
p. 103110. url: https://doi.org/10.1016/j.ejc.2020.103110.

[GL14] Daniel Gonçalves and Benjamin Lévêque. “Toroidal Maps: Schny-
der Woods, Orthogonal Surfaces and Straight-Line Representa-
tions.” In: Discrete & Computational Geometry 51.1 (2014), pp. 67–
131. url: http://dx.doi.org/10.1007/s00454-013-9552-7.

[GGT06] Steven J. Gortler, Craig Gotsman, and Dylan Thurston. “Dis-
crete one-forms on meshes and applications to 3D mesh param-
eterization.” In: Comput. Aided Geom. Des. 23.2 (2006), pp. 83–
112. url: https://doi.org/10.1016/j.cagd.2005.05.002.

[Got03] Craig Gotsman. “On the Optimality of Valence-based Connec-
tivity Coding.” In: Comput. Graph. Forum 22.1 (2003), pp. 99–102.
url: https://doi.org/10.1111/1467-8659.t01-1-00649.

[GGS03] Craig Gotsman, Xianfeng Gu, and Alla Sheffer. “Fundamentals
of spherical parameterization for 3D meshes.” In: ACM Trans.
Graph. 22.3 (2003), pp. 358–363.

[GS85] Leonidas Guibas and Jorge Stolfi. “Primitives for the manipu-
lation of general subdivisions and the computation of Voronoi
diagrams.” In: ACM transactions on graphics (TOG) 4.2 (1985),
pp. 74–123. doi: 10.1145/282918.282923.

https://doi.org/10.1023/B:ORDE.0000009251.68514.8b
https://doi.org/10.1023/B:ORDE.0000009251.68514.8b
https://doi.org/10.1016/j.ejc.2020.103110
http://dx.doi.org/10.1007/s00454-013-9552-7
https://doi.org/10.1016/j.cagd.2005.05.002
https://doi.org/10.1111/1467-8659.t01-1-00649
https://doi.org/10.1145/282918.282923

92 bibliography

[GR09] Topraj Gurung and Jarek Rossignac. “SOT: compact representa-
tion for tetrahedral meshes.” In: 2009 SIAM/ACM Joint Confer-
ence on Geometric and Physical Modeling. ACM. 2009, pp. 79–88.
doi: 10.1145/1629255.1629266.

[Gur+11a] Topraj Gurung, Mark Luffel, Peter Lindstrom, and Jarek Rossignac.
“LR: compact connectivity representation for triangle meshes.”
In: ACM transactions on graphics (TOG) 30.4 (2011). doi: 10 .

1145/2010324.1964962.

[Gur+11b] Topraj Gurung, Daniel Laney, Peter Lindstrom, and Jarek Rossignac.
“SQuad: Compact representation for triangle meshes.” In: Com-
puter Graphics Forum 30.2 (2011), pp. 355–364. doi: 10.1111/j.
1467-8659.2011.01866.x.

[Gur+13] Topraj Gurung, Mark Luffel, Peter Lindstrom, and Jarek Rossignac.
“Zipper: A compact connectivity data structure for triangle meshes.”
In: Computer-Aided Design 45.2 (2013), pp. 262–269. url: http:
//dx.doi.org/10.1016/j.cad.2012.10.009.

[HKL99] Xin He, Ming-Yang Kao, and Hsueh-I Lu. “Linear-Time Suc-
cinct Encodings of Planar Graphs via Canonical Orderings.”
In: SIAM J. Discrete Math. 12.3 (1999), pp. 317–325. url: http:
//dx.doi.org/10.1137/S0895480197325031.

[Hol+09] Martin Holzer, Frank Schulz, Dorothea Wagner, Grigorios Prasi-
nos, and Christos D. Zaroliagis. “Engineering planar separa-
tor algorithms.” In: ACM Journal of Experimental Algorithmics 14

(2009). url: https://doi.org/10.1145/1498698.1571635.

[IS05] M. Isenburg and J. Snoeyink. Graph Coding and Connectivity Com-
pression. 2005. url: http : / / www . cs . unc . edu / ~isenburg /

papers/is-gccc-04.pdf.

[KT01] Marcelo Kallmann and Daniel Thalmann. “Star-vertices: a com-
pact representation for planar meshes with adjacency informa-
tion.” In: Journal of Graphics Tools 6.1 (2001), pp. 7–18. doi: 10.
1080/10867651.2001.10487533.

[Kan96] Goos Kant. “Drawing Planar Graphs Using the Canonical Or-
dering.” In: Algorithmica 16.1 (1996), pp. 4–32. url: https://
doi.org/10.1007/BF02086606.

[Ket99] Lutz Kettner. “Using generic programming for designing a data
structure for polyhedral surfaces.” In: Comput. Geom. 13.1 (1999),
pp. 65–90. url: https://doi.org/10.1016/S0925-7721(99)
00007-3.

[KR99] Davis King and Jarek Rossignac. “Guaranteed 3.67v bit encod-
ing of planar triangle graphs.” In: Proc. of the 11th Canadian Conf.
on Comp. Geom. 1999. url: http://www.cccg.ca/proceedings/
1999/c39.pdf.

[KGL19] Kolja Knauer, Daniel Gonçalves, and Benjamin Lévêque. “On
the structure of Schnyder woods on orientable surfaces.” In: J.
Comput. Geom. 10.1 (2019), pp. 127–163. url: https://doi.org/
10.20382/jocg.v10i1a5.

[Kob13] Stephen G. Kobourov. “Force-Directed Drawing Algorithms.”
In: Handbook on Graph Drawing and Visualization. 2013, pp. 383–
408.

https://doi.org/10.1145/1629255.1629266
https://doi.org/10.1145/2010324.1964962
https://doi.org/10.1145/2010324.1964962
https://doi.org/10.1111/j.1467-8659.2011.01866.x
https://doi.org/10.1111/j.1467-8659.2011.01866.x
http://dx.doi.org/10.1016/j.cad.2012.10.009
http://dx.doi.org/10.1016/j.cad.2012.10.009
http://dx.doi.org/10.1137/S0895480197325031
http://dx.doi.org/10.1137/S0895480197325031
https://doi.org/10.1145/1498698.1571635
http://www.cs.unc.edu/~isenburg/papers/is-gccc-04.pdf
http://www.cs.unc.edu/~isenburg/papers/is-gccc-04.pdf
https://doi.org/10.1080/10867651.2001.10487533
https://doi.org/10.1080/10867651.2001.10487533
https://doi.org/10.1007/BF02086606
https://doi.org/10.1007/BF02086606
https://doi.org/10.1016/S0925-7721(99)00007-3
https://doi.org/10.1016/S0925-7721(99)00007-3
http://www.cccg.ca/proceedings/1999/c39.pdf
http://www.cccg.ca/proceedings/1999/c39.pdf
https://doi.org/10.20382/jocg.v10i1a5
https://doi.org/10.20382/jocg.v10i1a5

bibliography 93

[KW05] Stephen G. Kobourov and Kevin Wampler. “Non-Euclidean Spring
Embedders.” In: IEEE Trans. Vis. Comput. Graph. 11.6 (2005),
pp. 757–767.

[Kut06] Martin Kutz. “Computing shortest non-trivial cycles on orientable
surfaces of bounded genus in almost linear time.” In: SoCG.
2006, pp. 430–438.

[Laz+01] Francis Lazarus, Michel Pocchiola, Gert Vegter, and Anne Ver-
roust. “Computing a canonical polygonal schema of an ori-
entable triangulated surface.” In: SoCG. 2001, pp. 80–89.

[Lév16] Benjamin Lévêque. Generalization of Schnyder woods to orientable
surfaces and applications. 2016. url: https : / / tel . archives -

ouvertes.fr/tel-01488943.

[LLT03] Thomas Lewiner, Hélio Lopes, and Geovan Tavares. “Optimal
discrete Morse functions for 2-manifolds.” In: Comput. Geom.
26.3 (2003), pp. 221–233. url: https : / / doi . org / 10 . 1016 /

S0925-7721(03)00014-2.

[LSW16] Yiting Li, Xin Sun, and Samuel S. Watson. Schnyder woods, SLE(16),
and Liouville quantum gravity. Tech. rep. arXiv:1705.03573v1 [math.PR].
ArXiV, 2016. url: https://arxiv.org/abs/1705.03573.

[LT79] Richard J. Lipton and Robert E Tarjan. “A Separator Theorem
for Planar Graphs.” In: SIAM J. Applied Math. 36.2 (1979), pp. 177–
189.

[LT80] Richard J. Lipton and Robert Endre Tarjan. “Applications of
a Planar Separator Theorem.” In: SIAM J. Comput. 9.3 (1980),
pp. 615–627. url: https://doi.org/10.1137/0209046.

[Lis99] Valery A. Liskovets. “A Pattern of Asymptotic Vertex Valency
Distributions in Planar Maps.” In: J. Comb. Theory, Ser. B 75.1
(1999), pp. 116–133. url: https://doi.org/10.1006/jctb.
1998.1870.

[Lop+03] Hélio Lopes, Jarek Rossignac, Alla Safonova, Andrzej Szym-
czak, and Geovan Tavares. “Edgebreaker: a simple implemen-
tation for surfaces with handles.” In: Computers & Graphics 27.4
(2003), pp. 553–567.

[Mag+15] Adrien Maglo, Guillaume Lavoué, Florent Dupont, and Céline
Hudelot. “3D Mesh Compression: Survey, Comparisons, and
Emerging Trends.” In: ACM Comput. Surv. 47.3 (2015), 7:1–7:41.
url: http://dx.doi.org/10.1145/2693443.

[McD08] Colin McDiarmid. “Random graphs on surfaces.” In: J. Comb.
Theory, Ser. B 98.4 (2008), pp. 778–797. url: https://doi.org/
10.1016/j.jctb.2007.11.006.

[Men94] Patrice Ossona de Mendez. “Orientations bipolaires.” PhD the-
sis. Paris, 1994.

[Mil86] Gary L. Miller. “Finding Small Simple Cycle Separators for 2-
Connected Planar Graphs.” In: J. Comput. Syst. Sci. 32.3 (1986),
pp. 265–279. url: https://doi.org/10.1016/0022-0000(86)
90030-9.

[Moh96] Bojan Mohar. “Straight-line representations of maps on the torus
and other flat surfaces.” In: Discret. Math. 155.1-3 (1996), pp. 173–
181. url: https://doi.org/10.1016/0012-365X(94)00381-R.

https://tel.archives-ouvertes.fr/tel-01488943
https://tel.archives-ouvertes.fr/tel-01488943
https://doi.org/10.1016/S0925-7721(03)00014-2
https://doi.org/10.1016/S0925-7721(03)00014-2
https://arxiv.org/abs/1705.03573
https://doi.org/10.1137/0209046
https://doi.org/10.1006/jctb.1998.1870
https://doi.org/10.1006/jctb.1998.1870
http://dx.doi.org/10.1145/2693443
https://doi.org/10.1016/j.jctb.2007.11.006
https://doi.org/10.1016/j.jctb.2007.11.006
https://doi.org/10.1016/0022-0000(86)90030-9
https://doi.org/10.1016/0022-0000(86)90030-9
https://doi.org/10.1016/0012-365X(94)00381-R

94 bibliography

[MR98] Bojan Mohar and Pierre Rosenstiehl. “Tessellation and Visibil-
ity Representations of Maps on the Torus.” In: Discret. Comput.
Geom. 19.2 (1998), pp. 249–263. url: https://doi.org/10.1007/
PL00009344.

[MT01] Bojan Mohar and Carsten Thomassen. Graphs on Surfaces. Johns
Hopkins, 2001.

[NSI04] Hiroshi Nagamochi, Takahisa Suzuki, and Toshimasa Ishii. “A
simple recognition of maximal planar graphs.” In: Inf. Process.
Lett. 89.5 (2004), pp. 223–226.

[NR04] Takao Nishizeki and Md. Saidur Rahman. Planar Graph Draw-
ing. Vol. 12. Lecture Notes Series on Computing. World Scien-
tific, 2004. url: https://doi.org/10.1142/5648.

[PS06] Dominique Poulalhon and Gilles Schaeffer. “Optimal coding
and sampling of triangulations.” In: Algorithmica 46.3-4 (2006),
pp. 505–527. doi: 10.1007/s00453-006-0114-8.

[RS86] Neil Robertson and Paul D. Seymour. “Graph minors. VI. Dis-
joint paths across a disc.” In: J. Comb. Theory, Ser. B 41.1 (1986),
pp. 115–138. url: https://doi.org/10.1016/0095-8956(86)
90031-6.

[Ros99] Jarek Rossignac. “Edgebreaker: Connectivity compression for
triangle meshes.” In: Visualization and Computer Graphics, IEEE
Transactions on 5.1 (1999), pp. 47–61. doi: 10.1109/2945.764870.

[Sab+05] S. Saba, I. Yavneh, C. Gotsman, and A. Sheffer. “Practical Spher-
ical Embedding of Manifold Triangle Meshes.” In: (SMI2005).
2005, pp. 258–267.

[Sch89] Walter Schnyder. “Planar graphs and poset dimension.” In: Or-
der (1989), pp. 323–343.

[Sch90] Walter Schnyder. “Embedding planar graphs on the grid.” In:
Proceedings of the Annual ACM-SIAM Symposium on Discrete Al-
gorithms. Vol. 90. 1990, pp. 138–148. url: http://departamento.
us.es/dma1euita/PAIX/Referencias/schnyder.pdf.

[SS99] Jack Snoeyink and Bettina Speckmann. “Tripod: a minimalist
data structure for embedded triangulations.” In: Workshop on
Comput. Graph Theory and Combinatorics. 1999. url: https://
www.win.tue.nl/~speckman/papers/Tripod.pdf.

[ST96] Daniel A. Spielman and Shang-Hua Teng. “Disk Packings and
Planar Separators.” In: Proc. of the Twelfth Annual Symposium on
Computational Geometry, 1996. 1996, pp. 349–358.

[Sua21] Jason Suagee. “Existence and Construction of Schnyder Orien-
tations over a Large Class of Higher Genus Surface Triangula-
tions.” PhD thesis. George Washington University, 2021.

[Sul17] Thom Sulanke. “Generating Maps on Surfaces.” In: Discret. Com-
put. Geom. 57.2 (2017), pp. 335–356. url: https://doi.org/10.
1007/s00454-016-9853-8.

[SL09] Thom Sulanke and Frank H. Lutz. “Isomorphism-free lexico-
graphic enumeration of triangulated surfaces and 3-manifolds.”
In: Eur. J. Comb. 30.8 (2009), pp. 1965–1979. url: https://doi.
org/10.1016/j.ejc.2008.12.016.

https://doi.org/10.1007/PL00009344
https://doi.org/10.1007/PL00009344
https://doi.org/10.1142/5648
https://doi.org/10.1007/s00453-006-0114-8
https://doi.org/10.1016/0095-8956(86)90031-6
https://doi.org/10.1016/0095-8956(86)90031-6
https://doi.org/10.1109/2945.764870
http://departamento.us.es/dma1euita/PAIX/Referencias/schnyder.pdf
http://departamento.us.es/dma1euita/PAIX/Referencias/schnyder.pdf
https://www.win.tue.nl/~speckman/papers/Tripod.pdf
https://www.win.tue.nl/~speckman/papers/Tripod.pdf
https://doi.org/10.1007/s00454-016-9853-8
https://doi.org/10.1007/s00454-016-9853-8
https://doi.org/10.1016/j.ejc.2008.12.016
https://doi.org/10.1016/j.ejc.2008.12.016

bibliography 95

[Tar74] R.E. Tarjan. “A note on finding the bridges of a graph.” In: Inf.
Process. Lett. 2 (1974), pp. 160–161.

[Tur84] G. Turan. “On the succinct representation of graphs.” In: Dis-
crete & Applied Mathematics 8 (1984), pp. 289–294.

[Tut62] W. Tutte. “A census of planar triangulations.” In: Canadian Jour-
nal of Mathematics 14 (1962), pp. 21–38.

[Tut63] W. Tutte. “How to draw a graph.” In: Proc. of London Math. Soc.
13 (1963), pp. 734–767.

[VY90] Gert Vegter and Chee-Keng Yap. “Computational Complexity
of Combinatorial Surfaces.” In: SoCG. 1990, pp. 102–111.

[WKS01] D. Neilson W. Kocay and R. Szypowski. “Drawing graphs on
the torus.” In: Ars Combinatoria 59 (2001), pp. 259–277.

[Wal03] Chris Walshaw. “A Multilevel Algorithm for Force-Directed Graph-
Drawing.” In: J. Graph Algorithms Appl. 7.3 (2003), pp. 253–285.

[ZRS06] Rhaleb Zayer, Christian Rössl, and Hans-Peter Seidel. “Curvi-
linear Spherical Parameterization.” In: Int. Conf. on Shape Mod-
eling and Applications (SMI 2006). 2006, p. 11.

[ZJ16] Qingnan Zhou and Alec Jacobson. “Thingi10K: A Dataset of 10,
000 3D-Printing Models.” In: CoRR abs/1605.04797 (2016). url:
http://arxiv.org/abs/1605.04797.

[Zit94] Arjana Zitnik. “Drawing Graphs on Surfaces.” In: SIAM J. Dis-
cret. Math. 7.4 (1994), pp. 593–597. url: https://doi.org/10.
1137/S0895480192242006.

http://arxiv.org/abs/1605.04797
https://doi.org/10.1137/S0895480192242006
https://doi.org/10.1137/S0895480192242006

I N D E X

3-orientation, 10, 36

4-scheme triangulation, 62

α-orientation
definition, 10

α-orientation
accessible, 36

minimal, 36

x-span, 53

annular representation, 6

barycentric embedding, 49

bridge, 20

brins, 5

canonical ordering
computation, 11

definition, 11

canonical tree, 36

chord, 6

chord diagram, 12

chordal edge, 6

combinatorial map
definition, 5

compression rate, 32

conquer operator, 20

conquest, 12

contractible edge, 13, 75

corner, 5

cut-graph, 7, 52

darts, 5

drawing
periodic, 51

straight-frame, 52

straight-line, 51

dual forest, 24, 53

edge-width, 7

Edgebreaker, 32

embedding
cellular, 5

face-width, 7, 61

facial-walk, 5

flat
cylinder, 6

torus, 7

force-directed, 49

free vertex

definition, 12

half-edge data structure, 14

half-edges, 5

information-theory bound, 32

map
cylindric, 6

dual, 7

essentially 3-connected, 7

essentially simple, 7

merge
operator, 19

planar graph, 6

polygonal scheme
canonical, 7

quasi-triangulation, 6

river, 70

Schnyder
paths, 11

regions, 11

Schnyder wood
computation, 11

definition, 10

minimal, 36

toroidal, 26

Schnyder woods
crossing, 27, 52

separating edge, 20

separating triangle, 13

shelling, 11

spanning sub-graph, 7

split
operator, 19

tambourine, 59

definition, 8

triangulation
cylindric, 6

irreducible, 75

plane, 6

simple, 6

toroidal, 6

triangulations
fixed topology, 35

weakly convex, 61

97

	Publications
	Acknowledgements
	Contents
	1 Introduction
	1.1 Motivation
	1.2 My contributions
	1.2.1 Schnyder woods and canonical orderings in higher genus (Chapter 3)
	1.2.2 Graph encoding and practical compact data structures (Chapter 4)
	1.2.3 Drawing graphs on surfaces (Chapter 5)
	1.2.4 Fast implementations and experimental results (Chapter 6)

	1.3 Overview of the manuscript

	2 Preliminaries
	2.1 Graphs and maps (on surfaces)
	2.1.1 Definitions
	2.1.2 Planarizing graphs on surfaces

	2.2 Schnyder woods (and canonical orderings)
	2.2.1 Schnyder woods and canonical orderings for plane triangulations: definition
	2.2.2 Computing Schnyder woods (and canonical orderings) in the plane

	2.3 Implementations and experimental settings

	3 Schnyder woods and canonical orderings for non planar graphs
	3.1 Dealing with higher genus graphs
	3.2 g-Schnyder woods for triangulations of arbitrary genus
	3.2.1 The definition
	3.2.2 Existence of g-Schnyder woods
	3.2.3 Spanning properties of g-Schnyder woods

	3.3 Canonical ordering for cylindrical simple triangulations
	3.4 Schnyder woods for toroidal triangulations
	3.4.1 The definition of GoncalvesL14 (for the triangulated case)
	3.4.2 Existence of toroidal Schnyder woods
	3.4.3 Our contribution: toroidal Schnyder woods via vertex shellings

	4 Graph encoding and compact data structures
	4.1 Related works
	4.1.1 Tree-based encodings
	4.1.2 Optimal encodings achieving information-theory lower bounds

	4.2 Encoding triangulations in arbitrary genus
	4.2.1 Encoding in higher genus

	4.3 Our contribution: optimal encoding of triangulations with fixed topology
	4.3.1 Encoding plane triangulations (Pou03 bijection)
	4.3.2 Encoding planar triangulations with multiple boundaries
	4.3.3 Encoding in higher genus

	4.4 Compact mesh data structures: related works
	4.5 Our contribution: compact data structures for triangulations
	4.5.1 Our first solution: scheme description
	4.5.2 Further reducing the space requirements
	4.5.3 Additional features

	4.6 Experimental Results
	4.6.1 Preprocessing: construction vs. decoding.
	4.6.2 Mesh navigation: runtime performances

	5 Drawing graphs on surfaces
	5.1 Graph Drawing in the plane (``as I have known it'')
	5.2 Drawings higher genus graphs: related works
	5.2.1 Grid-drawings of toroidal graphs: combinatorial algorithms

	5.3 Our contribution: periodic toroidal drawings
	5.3.1 Drawing cylindrical simple triangulations (with no chord at inn).
	5.3.2 Drawing cylindrical triangulations having chords at inn.
	5.3.3 Periodic drawings on the torus

	5.4 Our contribution: periodic straight-frame drawings
	5.4.1 Related works: description of the algorithm of Duncan et al. DGK11
	5.4.2 Our modified version of the algorithm: aligning vertical coordinates
	5.4.3 A new binary decomposition for 4-scheme triangulations
	5.4.4 Final remarks

	5.5 Spherical Drawings of planar graphs
	5.5.1 Related works

	5.6 Our contribution: a fast spherical drawing with theoretical guarantees
	5.7 Experimental results
	5.7.1 Spherical drawings
	5.7.2 Spherical preprocessing for Euclidean spring embedders

	6 Some experimental results on Schnyder woods
	6.1 Experimental results on higher genus Schnyder woods
	6.2 Balance of planar Schnyder woods
	6.2.1 Our heuristic for well balanced Schnyder woods
	6.2.2 Experimental evaluation

	6.3 Application I: Schnyder drawings
	6.4 Application II: Small separators

	7 Concluding remarks and perspectives
	7.1 Graphs on surfaces: open questions
	7.1.1 Schnyder woods for graphs on surfaces
	7.1.2 Drawing higher genus graphs (for g>1)
	7.1.3 Adaptive analysis: graph drawing and graph encoding

	7.2 Schnyder woods for higher dimensional complexes

	Bibliography
	Index

