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Résumé
Dans cette thèse, nous discutons, numériquement, les problèmes d’explosions, une perte
de régularité d’une solution de certaines EDP par rapport à la donnée initiale, pour des
équations dispersives non linéaires. L’explosion est un phénomène qui peut apparaître
dans le contexte d’équations nonlinéaires d’évolution telles que l’équation de Burgers
sans viscosité, indiquant une existence finie en temps de leurs solutions ou un collapse
catastrophique du système dynamique sous-jacent dans la modélisation de situations
réalistes. C’est-à-dire qu’il existe un t∗ < ∞ tel que pour t → t∗ certaines normes de
la solution, comme les normes ‖·‖q for 1 ≤ q ≤ ∞ divergent. Comme des explosions
peuvent apparaître pour un grand nombre d’équations d’évolution, elles sont intéressantes
d’un point de vue mathématique et physique, de savoir pourquoi, de quelle manière et avec
quel profile l’explosion se produit. Quelques équations dispersives non linéaires avec une
non-linéarité polynomiale, telle que les familles d’équations de Schrödinger non-linéaires
(NLS), de Davey-Stewartson (DS), peuvent avoir des solutions avec une explosion en temps
fini.

Les équations NLS font partie des EDP dispersives non linéaires importantes dans
des applications telles que l’optique non linéaire, les ondes d’eau e.t.c. Cependant, une
explosion pour NLS peut apparaître en fonction de la puissance de la non-linéarité pour
des données initiales particulières. Il s’avère que l’étude du type de l’explosion pour
des équations NLS est difficile sans méthodes numériques robustes avec une amélioration
dynamique de la résolution proche de l’explosion. Par un changement dynamique d’échelles
des équations NLS, on étudie les propriétés d’explosion de solutions avec des simulations
numériques. La méthode de changement d’échelles dynamique nous permet de faire des
simulations numériques près d’une singularité aussi précises que possibles. L’idée de
base de ce changement d’échelles consiste à exploiter une symétrie exacte de NLS avec
un changement simultané de l’espace, du temps et de la solution, mais avec un facteur
dépendant du temps. Cela permet d’étudier une explosion auto-similaire avec un schéma
allouant automatiquement la résolution numérique si nécessaire. Pour les équations NLS,
nous présentons des résultats numériques concernant la structure de l’explosion dans
dimension deux et plus dans une situation avec symétrie radiale.

Parce que le système DS est une généralisation en deux dimensions de l’équation NLS,
des études d’explosion similaires peuvent être effectuées. Notre intérêt principal est le
soi-disant système DS I qui peut être vu comme une équation NLS non locale. Nous
présentons une approche de haute précision pour traiter numériquement les anti-dérivé
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es de cette équation. Cette approche est hybride et utilise une régularisation analytique
du symbole de Fourier singulier pour ces anti-dérivés pour des solutions de la classe de
Schwartz. Une méthode spectrale de Fourier est appliquée au résiduel menant à une
précision spectrale, c’est-à-dire une diminution exponentielle d’erreurs. Avec ce code, nous
étudions la structure d’explosion des solutions pour Davey-Stewartson (DS) I intégrable
pour des conditions aux limites triviales à l’infini avec les données initiales de la classe de
Schwartz. Les solutions stationnaires localisées sont construites et montrées d’être instables
par rapport à la dispersion et l’explosion. Une explosion en temps fini des données initiales
de la classe de Schwartz est discutée.
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Abstract
In this thesis, we discuss, numerically, the issues of blow-up, a loss of regularity of a solution
to some PDE with respect to the initial data, for non-linear dispersive equations. Blow-up
is a phenomenon that can exist in the context of non-linear evolution equations such as
the inviscid Burgers equation, indicating a finite time existence of their solutions or a
catastrophic break down of the underlying dynamical system in modeling realistic situations.
That is to say, there exists some T∗ < ∞ such that for t → T∗ certain norms of the
solution, like the norms ‖·‖q for 1 ≤ q ≤ ∞, diverge. Due to its potential to appear in
various evolution equations, it becomes an interesting phenomenon from a mathematical
and physical point of view to know why, at which rate and with which profile the blow-up
occurs. Some non-linear dispersive equations, having a power nonlinearity, such as families
of non-linear Schrödinger equations e.g. NLS equations, Davey-Stewartson systems e.t.c.,
can have solutions with a finite time blow-up.

NLS equations are among the important non-linear dispersive equations in applications
such as non-linear optics, water-waves e.t.c., however, blow-up (also referred to as
wave-collapse in the NLS context) may or can appear depending on the power of the
nonlinearity, particular initial data e.t.c. It turns out that exploring the blow-up structure
for the NLS equations seems difficult without a robust numerical method that provides an
improved refinement of the resolution near blow-up. By a dynamical rescaling approach
to the NLS equations, one studies the blow-up properties of solutions near collapse with
numerical simulations. The method of dynamic rescaling allows us to do numerical
simulations near a singularity as accurate as possible. The basic idea of the dynamic
rescaling is to exploit an exact symmetry of the NLS equations under a simultaneous
rescaling of space, time and the solution, but with a time-dependent factor. This allows
to study a self-similar blow-up with a scheme automatically allocating numerical resolution
where needed. For the NLS equations, we present numerical results regarding the structure
of blow-up in dimension two and higher in a radially symmetric setting.

Because the DS system is a generalisation of the two dimensional NLS equation, similar
blow-up studies can be carried out. Our principal interest is the so-called DS I system
which can be seen as a nonlocal NLS equation. We present a high-accuracy approach
to numerically treat the anti-derivatives in this equation. This approach is hybrid and
uses an analytic regularization of the singular Fourier symbol for these anti-derivatives for
Schwartz class solutions. A Fourier spectral method is applied to the residual leading to
spectral accuracy, i.e. an exponential decrease of errors. We generate a code and investigate
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the blow-up (singularity) structure of solutions to the integrable Davey-stewartson (DS) I
system for trivial boundary conditions at infinity with Schwartz class initial data. Localized
stationary solutions are constructed and shown to be unstable against dispersion and
blow-up. A finite-time blow-up of initial data in the Schwartz class of smooth rapidly
decreasing functions is discussed.
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Chapter 1

Introduction

1.1 Motivation & Mathematical Background

It is evident that we are all surrounded by wave phenomena since one can easily notice some
of them when a pebble is dropped onto a water surface such as a pond, a lake, the ocean,
some sort of disturbances in a form of circular ripples are formed. The created waves evolve
with time, broaden and disperse away after a while, because as the waves travel they start
losing their shapes due to the fact that different frequencies of the individual waves have
different group speeds, as obviously shown in the Figure 1.1. The medium in which such
waves travel is referred to as dispersive.

Figure 1.1: An example of two dimensional dispersive waves, [115][130].
Even though, in principle, dissipation can cause damping of the wave phenomena, we put
more emphasis on the dispersive waves since most of the waves existing in real media are
strongly dispersive in nature as stressed by V.E. Zakharov (see [96]). Therefore, we focus
on the study of dispersive equations, particularly in the presence of non-linearity.
Nonlinear dispersive equations (NDEs), in a situation where dissipation is dominated by
dispersion, are important due to their ubiquity in applications. Examples include the
prominent equations of mathematical physics: Korteweg-de-Vries (KdV) and nonlinear
Schrödinger (NLS) equations present in hydrodynamics, plasma physics, nonlinear optics,
Bose-Einstein condensates, quantum mechanics, general relativity, ... It is important to
stress that dispersive equations, as those mentioned are mostly derived as asymptotic
models, i.e. obtnained in certain limiting situations.

In the field of mathematical physics, electromagnetic waves are mostly governed by
partial differential equations (PDEs) and the nonlinear dispersive equations receive special
considerations in the theory of PDEs. Even though in the last three decades, the theory of
dispersive PDEs has seen remarkable progress, still several questions arise due to some
mathematical difficulties related to the possible existence of rapidly oscillating regimes
in their solutions. The solutions describing the relevant dynamics could exhibit different
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Chapter 1. Introduction

properties of parabolic and hyperbolic equations such as blow-ups (a loss of regularity),
stable or solitonic structure, shocks, dispersion, symmetries, . . ., for instance see [130, 49] .

This work is devoted to the study of weakly nonlinear evolutionary systems. Our
interests are families of NLS equations. We focus on the weakly nonlinear wave evolution
equations in a semi-linear form, containing the linear Lu and non-linear N[·] terms:

∂tu = Lu+ N[u] (1.1.1)

where ∂t = ∂
∂t and L are respectively the time and linear spatial derivative operators.

Let us first consider the classical wave equation in one-dimension

utt − c2uxx = 0, c > 0. (1.1.2)

Figure 1.2: Solutions to the utt = uxx for u0(x) = exp(−x2) and ut(0, x) = 0. Cf. [76, 96].

The dispersive property for linear PDEs is best analysed via Fourier transform. That
is, when the transform F [u](k, ω) =

∫
R2 u(t, x)ei(kx−ωt)dxdt is applied one gets the so-called

dispersion relation ω(k) = ±ck, describing the behaviour in which a plane-wave ei(kx−ωt)

travels in the space. An important quantity associated with the wave-frequency ω is the
group velocity vg := dω/dk, which for the wave equation (1.1.2) the vg = ±ck =const.; and
this implies that a localized initial data (say exp(−x2)) travels with-out loosing its shape
for all time. Therefore, the wave equation (1.1.2) is not dispersive. A general solution to
the equation (1.1.2) as given by d’Alembert formula (in terms of characteristics x± ct) is

u(t, x) = f(x− ct) + g(x+ ct). (1.1.3)

The arbitrary functions f and g describe travelling waves along the characteristics and can
be considered as the boundary values that are fixed for an initial value problem as shown
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1.1. Motivation & Mathematical Background

in Figure 1.7. Consequently, since the solutions are localized in space x, they are solitary
waves. Due to linearity, superposition principle holds; when two solutions are superposed
they appear as a sum (see the hump in the Figure 1.1), Cf. [96] and for details [24, 50, 110].

If instead the Airy-equation (linearized KdV)

ut + uxxx = 0, (1.1.4)

is considered, it is apparent from the dispersion relation ω(k) = −k3 that the group
velocity vg is a non-constant real function, i.e. ∇ω(k) 6= const. As shown in the Figure
1.1, the solution propagates at varying speeds and will disperse, unlike for the classical
wave-equation (1.1.2) where solutions in future look the same in the past. The effect of
dispersion can be seen in the figure 1.1 for Gaussian initial data. This is to say that
a localized initial data propagated by the Airy equation will eventually be dispersed to
infinity in the form of ripples 1.1. The dispersive properties are clear from the fundamental
solution F (x, t) of the Airy equation in terms of Airy function F (x, t) = 1

t1/3Ai(x/t1/3)
because as Ai(x) decreases exponentially on the right it oscillates rapidly on the left (see
the dispersive estimates of the Ai(x) in [96] and the references there in).
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Figure 1.3: Solutions to the Airy equation for u0(x) = exp(−x2). Cf. [96, 224].

There can be a situation where dispersion is negligible but nonlinearity is not as may
be observed from the solution behaviour of the Hopf equation

ut + 6uux = 0. (1.1.5)

Solution to this equation is obtainable via the method of characteristics and will assume
the form of d’Alembert formula u(t, x) = u0(x − u0t) except that the u plays the role of
speed. This would mean that the greater the amplitude u the faster the solution propagates.
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Chapter 1. Introduction

As a result of this, the propagated localized initial data develops a behaviour of gradient
catastrophe in finite time. More precisely, the gradient of the solution ux becomes infinite
as t → tc := −1/min

ξ∈R
u′0(ξ) where ξ := x − u0t. Consequently, solutions for t > tc become

multi-valued and thus called shock solutions. This situation is possible, especially, in the
context of water waves, where nonlinearity plays vital role over dispersion. 1

-6 -4 -2 0 2 4 6
0

0.2

0.4

0.6

0.8

1

Figure 1.4: Left: solutions to the Hopf equation for u0(x) = exp(−x2). Right: the
characteristics showing the multi-valuedness as the shock-time is reached. Cf. [96].

One may intend to obtain regular solutions to the Hopf equation (1.1.5), it turns out
that is posssible provided it is regularized by adding dissipative or dispersive terms. A term
proportional to uxxx is introduced for the latter, and uxx for the former using a constant
ε � 1. Dissipative regularisation leads to smooth solutions decaying slowly (since energy
is not conserved) with a gradient of the order 1/ε, whereas for the dispersive regularisation
solutions tend to develop rapidly amplifying oscillations, see Fig. 1.6 .

In general, the regularisation terms are introduced in the semi-classical limit of a closely
related equations thereby making solutions less singular, in the sense that regular data do
not evolve into singular quantities. The introduced dissipation term corresponds to addition
of viscousity to the system in a sense that, in certain limit, the solution behaviour of the
equation (1.1.5) near point of gradient-catastrophe can be determined. In the absence of
the dissipation (damping) term, steepening leads to shock waves and infinite steep solution
whereas the presence of dissipation would cause to have a solution of finite width. The Hopf
equation (1.1.5) is seen as dissipationless limit of the Burgers equation ut + 6uux = uxx. If
we consider slow-variable transformations t → εt, x → εx and u(t, x) → u(εt, εx)/ε of the

1It is apparent from the relevant figures that the effect of nonlinearity in the equation (1.1.5) causes
solutions beyond some tc finite, for generic initial data, become discontinuous, therefore shock waves are
formed. More precisely, u(t, x) approaches a point of gradient catastrophe, where u itself or its derivatives
may be discontinuous or unbounded as t→ tc.
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Figure 1.5: Solutions to the Burgers equation (1.1.6) for u0(x) = exp(−x2) with (ε = 10−2)
on the left and numerically computed energy E(t) =

∫
u2dx on the right, Cf. [96].

Burgers equation ut + 6uux = uxx we obtain

ut + 6uux = εuxx. (1.1.6)

Then, taking the formal limit ε to zero brings us back to the equation (1.1.5). Taking the
inverse view, the equation (1.1.6) can be seen as a dissipative regularisation of the Hopf
equation (1.1.5), a regularisation for which the point of gradient catastrophe is moved to
t = ∞. On the other hand, applying the same slow-variables transformation on the KdV
equation ut + 6uux + uxxx = 0 one gets

ut + 6uux + ε2uxxx = 0, ε� 1. (1.1.7)

Figure 1.6: For u0(x) = exp(−x2) and ε = 10−1, left: solution to the equation (1.1.7). Right:
description of rapidly modulated oscillations in the solution (left figure) at t = 0.82489.

Then, as ε → 0, the inviscid equation (1.1.5) is recovered. In turn, the equation
(1.1.7) serves as the dispersive regularizer of the Hopf equation (1.1.5). The dispersive
regularisation, as ε → 0, shows solutions are rapidly modulated and oscillate in the
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Chapter 1. Introduction

dispersive-shock regions (Fig 1.6). Moreover, shock-wave solutions can be observed in higher
dimensional version of Hopf equation. Singularity formation is also present in the solutions
of many equations of fluid dynamics; like the 3D incompressible Navier-Stokes equation,
the 2D incompressible Euler’s equation, the Einstein equation of general relativity (GR).
Loosely speaking, a singularity can be formed whenever the non-linearity overpowers the
dispersive or dissipative behaviour of the equation at hand.

We have noticed that nonlinearity tends to steepen the localized initial data while the
dispersion intends to flatten it. The situation where the steepening due to nonlinearity
gets compensated by the spreading due to dispersion we will have the so-called solitons,
the famous solitary wave solutions. This special type of solution is firstly observed in the
solutions of the celebrated Korteweg-de Vries (KdV) equation which appears in the study
of shallow-water waves:

ut + 6uux + uxxx = 0; u : (0,∞)× R→ R, t ∈ R∗. (1.1.8)

The dispersive equation (1.1.8) admits a solitary wave (1-soliton) solution for fixed speed
c > 0:

u(t, x) = f(x̃− ct) = c

2 sech 2
[√

c

2 (x̃− ct)
]
, x̃ = x− x0 (1.1.9)

with the maximum at its vanishing argument x − ct − x0 = 0. The soliton is produced as
a result of the balance between the nonlinearity and the dispersion effects. Solitons, as can
be observed in the Figure 1.7, retain their shapes after collision.

Figure 1.7: An elastic collision: 2-soliton solution of the KdV equation, [86] [240] [208].
They were firstly observed by a naval architect, John Scott Russell in 1834 and their
mathematical model was firstly introduced by Boussinesq (1877) and reformulated in
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1895 by D. Korteweg and G. de Vries [193]. The equation that extends KdV to 2D is
Kadomtsev-Petviashvili (KP) one

(ut + 6uux + uxxx)x + βuyy = 0, β = ±1. (1.1.10)

In general, the central issues in the study of nonlinear dispersive PDEs theory is that
the solution to a system describing the nonlinear wave propagation phenomena has the
tendency to cease to exist or break in a finite time. This is the effect of nonlinearity being
dominant, a behaviour known in mathematics and physics as “blow-up” or “wave-collapse”.
In other words, we say the mathematical model develops a singularity, however it is possible
that it may or may not be a good model of physical reality. Some of the consequences of
blow-up are that solutions or other quantities associated to the system, such as mass or
energy, may become unbounded. The strong influence or effect of nonlinearity is mostly
responsible for blow-up. To put things into perspectives, it is well-known that, typically, in
a physical system nothing becomes infinite. If it happens to be the case, for instance energy
goes beyond a limit, is an indication that the underlying model is either invalid, or breaks
down, or, as in the asymptotic models, more terms are need in the asymptotic expansion
in its derivation. A typical case of blow-up for asymptotic models is the NLS equation.

Another dispersive equation that is present in several physical applications is the
complex-valued nonlinear Schrödinger (NLS) equation that reads:iψt + ∆ψ = f(|ψ|2)ψ, ψ : R+ × Rd → C

ψ(0,x) = ψ0(x) ∈ Hs(Rd) ψ0 : Rd → C
(1.1.11)

where i =
√
−1 and ∆ =

∑
1≤j≤d

∂2
xj is a Laplacian in Rd. The NLS equation is a nonlinear

variant of the Schrödinger equation (SE) in quantum mechanics2

i~ψt + ~2

2m∆ψ = V ψ, ψ : R× Rd → C, ~ > 0 (1.1.12)

where, the function ψ describes the propagation of particle-wave like objects, such as
photons, electrons, protons e.t.c, at the microscopic level, V = V (x, t) is a potential function
in L2(Rd, dx) and ~ is a Planck constant. The SE (1.1.12) is of the form of the equation
iεψt + ε2∆ψ = f(|ψ|2)ψ (where ε plays the role of ~), the NLS equation (1.1.11) in its
semiclassical limit with ε → 0 corresponding to the transition from quantum to classical
mechanics in the case of the SE.

2The Schrödinger equation is a quantum counterpart of Newton’s 2nd law of motion in classical mechanics
where ψ(t,x) is a wave function assigning to every point (t,x) a complex number and V (t,x) is the potential
that signifies the environment of the existing particle.

7



Chapter 1. Introduction

Furthermore, using the general power non-linearity f(|ψ|2) = γ|ψ|2σ with non-linearity
exponent σ > 0, the focusing (γ = 1) resp. defocusing (γ = −1) NLS equation is

iψt + ∆ψ + γ|ψ|2σψ = 0, γ = ±1. (1.1.13)

It is highlighted in [11] [163] that, slowly varying wave-packet (envelope) dynamics of a wave
moving through a weakly nonlinear dispersive medium have a standard description in terms
of the quasi-monochromatic (plane) waves (in form of carrier waves), u = εψei(k·x−ωt) with
amplitude εψ and ε � 1. In the modulational regime in a situation where dissipation is
insignificant, the NLS equation can heuristically be derived by considering an expansion
of generalized weakly-nonlinear dispersion relation at the least non-trivial order of the
wave-train of the weakly-nonlinear carrier wave given in the asymptotic expansion of

u(t,x) = εψ(εx− ε2vgt)ei(k·x−ωt) + c.c, ε� 1, vg = ∇kω (1.1.14)

where ψ solves cubic NLS where σ = 1 and c.c = complex conjugate (see [235],[89],[90]
and [39], [202]). Higher order terms in ε in the expansion will lead to higher nonlinearity
exponents. Moreover, an alternative informal derivation of the NLS equation for instance
in dimension 2 can be obtained from the Maxwell’s equations using paraxial approximation,
see Chapter 1 of [51].

Figure 1.8: Dispersive wave-packet ψ of NLS at some time t0 and dimension d = 1.

The NLS equation is a universal one, in applications, that appears to describe the
propagation of nonlinear waves [222] including a laser beam in a medium with sensitive
refractive index (growing proportionately) to the amplitude of the complex-valued wave
field ψ such as optical fibers [137], gravity waves on the free surface of inviscid (ideal) fluid
(water-waves) [222] [172], plasma waves and Bose-Einstein condensates. It is viewed as
a good model for rogue-waves formations [180] [46] with solutions such as the Peregrine
breather, the Akhmediev breather, and Kuznetsov-Ma breather [172].

A special case is when d = 2, σ = 1, γ = 1 that appears in nonlinear optics. There,
the time parameter t is taken as the distance variable across the beam whereas the beams
transverse through the coordinates x = (x1, x2), see [33], [47],[207], [6], [113]. In dimension
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d = 3, using a similar setting as in dimension 2, in the context of plasmas the NLS equation
(1.1.11) is considered as the limit of Zhakarov system for Langmuir waves [232], [113], [233],
and [74], and the variable t is the usual time coordinate. Blow-up in these contexts has
physical consequences due to self-focusing where γ = 1. In the case of electromagnetic waves
in dimension d = 2, singularity corresponds to the focusing of the beam and increase in the
amplitude of the wave function ψ. For Langmuir waves, the singularity or the blow-up is
explained there to represent collapse or filamentation (self-focusing) of the wave.

The focusing NLS equation (γ = 1) in dimension d = 2 can have a global solution
whenever σ < 1 and blow-up in finite time for σ ≥ 1. In the case σ = 1, the NLS equation
is cubic and L2-critical (i.e. the mass is invariant under scaling, where the solution becomes
narrower and taller). With regards to the local existence in t, the lifespan of ψ(t, ·) (on
small neighbourhood of t), for ψ0 ∈ H1(R2), depends on the initial profile [27], [28]; this
dependence is reflected in the asymptotic profile, near blow-up, too [187]. Thus, blow-up
behaviour becomes interesting to not only the non-integrable 2D cubic NLS equation but
also to its integrable versions, the Davey-Stewartson systems (DS I and DS II).

In the lower dimension d = 1, the complex field ψ(t, x) in the cubic NLS equation

iψt + ψxx + |ψ|2ψ = 0, (1.1.15)

with the decaying boundary condition lim
x→±∞

ψ = 0 has a solution

ψ(x, t) =
√

(2γ)ei(
c
2x+(γ− c

2
4 )t+ϕ0) sech[√γ(x− x0 − ct)], (1.1.16)

a localized solitary wave solution travelling with a speed c, where γ ∈ R+. Moreover,
Zakharov and Shabat [239] solved (1.1.15) for initial data ψ0(x) decaying sufficiently fast
as |x| grows to infinity via the inverse scattering transform (IST)3, and moreover showed
that NLS is an integrable equation, which means it possesses infinitely many conservation
laws, a hierarchy of commuting flows, a Lax pair definition etc. Furthermore it is an
infinite dimensional Hamiltonian systems in which IST serves as a canonical transformation
to action-angle variables (see Section 1.6 of [4] and [5]). There are numerous examples
of 1+1 dimensional PDEs, but in higher dimensions they are much rarer and with more
complicated structure. Nevertheless, with the alternate derivation of a physical model by
Davey & Stewartson (1974) on the surface evolution of packet water waves, closely equivalent
to the NLS in dimension 2 is derived.

3Inverse scattering is a nonlinear analogue of the linear Fourier Transform.
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Figure 1.9: Peregrine breather. Cf. [172]

It is noteworthy to mention that the NLS equation is local, meaning that only
partial derivatives are involved in contrast to the case of non-local equations like
the Davey-Stewartson (DS) system, a non-local critical cubic NLS equation, where
anti-derivatives appears.

Numerical studies carried out on the semi-classical limit for one dimensional focusing
and defocusing NLS shows instability in their semi-classical asymptotics, see [60], [40] and
[92]. It is mentioned there that, solution behaviour for the latter is much like that of the
KdV equation.

The family of the dispersive DS systems, defined in R2 for x = (x, y) ∈ R2, is

iψt + α∂2
xψ + ∂2

yψ = (γ|ψ|2 + ∂xφ)ψ; ψ : R× R2 → C (1.1.17)

∂2
xϕ+ β∂2

yϕ = −ρ(|ψ|2)x; ϕ : R2 → R (1.1.18)

where the coefficients α, β, γ, ρ are real numbers. The complex-valued function ψ is
referred to as the main field, while the real field ϕ is a mean velocity potential like in
e.g. Navier-Stokes. The boundary conditions associated to the system on the main field
ψ is usually of Dirichlet type, ψ(t, x, y) → 0 as x2 + y2 → ∞, while on the mean-field ϕ

it depends on the sign of β (see Ablowitz et al. [2], Ablowitz and Clarkson [5]). There
are different cases, depending on the choice of α and β where (α, β) = (±1,±1), leading
to (+,+) elliptic-elliptic, (+,−) elliptic-hyperbolic systems, (+,−) elliptic-hyperbolic and
(−,−) hyperbolic-hyperbolic, see [41] and [71]. The DS system is integrable [56] by means
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of IST method in the cases (+,−) and (−,+) for certain values of the parameters. The
former appeared in a work by Davey and Stewartson [41] studying the evolution of surface
water-waves packet. Like the NLS equation, "the DS system provides a canonical description
of the amplitude dynamics of a weakly nonlinear two-dimensional wave packet when a mean
field is driven by modulation" [202]. We note here that there are no known examples of local
integrable systems in dimensions higher than 1+1 (except for those that are linearisable by
a direct change of variables).

The DS systems are derived from the "universal" models that provide the descriptions
of interacting long and short waves, as the singular limit of the Zakharov-Rubenchik or
Benney-Roskes systems [12, 236]. The rigorous derivation is given in [41, 10, 122] in the
context of water waves as in ([202], Ch. 11). The full description of the inverse scattering
theory for the DS systems are discussed in greater details as found in [5] (sect. 5.5) and [96]
(sect. 4.8). Several numerical studies on the DS systems were carried out, see [41], [14],[87]
for details.

The DS systems, as the 2d generalization of the integrable cubic NLS equation,
particularly the DS I and DS II, plays important role in applications [17],[124]. The two
integrable equations (DS I and DS II) describe the evolution of weakly nonlinear waves
propagating in one of the directions whose amplitude is slowly varying from the two sides
[41]. They also appear in modelling the evolution of plasma under the effect of magnetic
field [165]. In nonlinear optics, the potential ϕ is used as a rectified field [124], [56]. In
[221], DS is used to model 2D nonlinear excitations in Bose-Einstein Condensates (BEC).

Classical theory of PDEs [202] points at a mechanism for loss of regularity in 2d
NLS equation. This equation undergoes self similar blow-up, as a rescaling transformation
preserves the L2 norm. As DS has the same nonlinearity it is plausible that a similar
mechanism exists there. The DS II case is well studied [105], and there is even an exact
solution which blows up at one point in space and time given by Ozawa [173]. Extensive
numerical studies [97], [99] show that, blow-up indeed exists and [105] studies the mechanism
in detail showing that the Ozawa type blow up is generic, and the critical profile is a rescaled
lump. In several cases one can continue after the blow-up [88].

Our main goal is to study critical problems that still remain obscure for DS I. Recent
studies on the DS I suggests that blow-up exists for small Gaussian initial data but due to
the demand for high numerical resolution, the blow-up mechanism remained unknown [14].
The blow-up mechanism for its counterpart, DS II, is recently established in [105].

Due to existence of singularities in these equations it is reasonable to look for suitable
function space of solutions. In this regards, the appropriate function spaces are the Schwartz
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Chapter 1. Introduction

space S(R2) and Sobolev spaces Hs(Rd). The latter in particular, capture not only the
analytic behaviour of the function but also that of its (weaker or classical) derivatives up
to some order s. The correct s is known for a solution u if one considers symmetries of the
NLS equation such as scaling and translation.

Important desirable features describing what it means to solve a dynamical system
( or PDE) are well-posedness conditions of the (physical) problem. Roughly speaking,
wellposedness implies existence, uniqueness and continuous dependence of the solution on
the given initial data of the problem. Depending on the function space of the initial data,
there are numerous wellposedness results for the DS system. Global solutions (ψ,ϕ) to the
DS II for sufficiently small initial data ψ0 ∈ L2(R2) and unique maximal solutions for any
initial data in L2(R2) for a finite time T∗ > 0 [71]. Some regular results on ψ for ψ0 ∈ H1(R2)
are established too, see Sec. 12.3 of [202]. Fokas and Sung [59] proved the existence of unique
DS I solution C(R,S(R2)) for ψ0 in the Schwartz S(R2) and ϕ1, ϕ2 ∈ C(R,S(R2)).

It can easily be observed that the NLS equation (1.1.11) under the scaling

x→ x̃ = λ−1x, t→ t̃ = λ−2t, ψ(x, t)→ ψ̃(t̃, x̃) = λ
1
σψ(λ−1x, λ−2t)

stays invariant whereas the mass M(ψ) :=
∫
R2 |ψ|2 scales like λ

2d−σ
σd M [ψ]. Thus, NLS

equation is L2-critical when σd = 2 and blow-up may occur [202]. A special tool for
detecting blow-up is dynamic rescaling, sometimes referred to as a ’litmus test’:

x→ x′ = x
λ(t) , t→ τ =

∫ t

0

ds

λ2(s) and ψ(x, t)→ ψ′(τ,x′) = λ
1
σ (t)ψ(x′, τ) (1.1.19)

The scaling factor λ(t) depends on t instead so that λ(t) → 0, τ → ∞ as t → T∗ (the
blow-up time T∗). It plays a significant role in capturing the self-similarity behaviour of the
blow-up dynamics for the underlying dynamical equations.

Blow-up solutions, obtained from dynamic rescaling (1.1.19), are usually characterized
by the blow-up rate and blow-up profile. The former is a law, given by λ(t), obeyed by ψ
as blow-up time T∗ is approached while the latter gives the profile of ψ near T∗ and, in
general, is completely described by the ground state of the solution ψ. The blow-up profile
near blow-up time T∗ stays put and thus one keeps certain norm constant and studies
the behaviours of the scaling parameter. These two properties can signal instability of
the blow-up solution if presence of discontinuous change in any one of them occur under
a continuous perturbation (see [52]). For instance, the L2-critical focusing NLS equation
in dimension d = 2, near the blow-up time we have ‖ψ(t)‖∞ ∼

1
λ(t) = (t − t∗)−1/2 by

keeping the norm of the infinity norm of the blow-up constant (see details in chapter 3 on
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1.1. Motivation & Mathematical Background

dynamic rescaling of the NLS). Similarly, with L2-norm of the blow-up profile constant, the
‖∇ψ(t, ·)‖2 ∼ (t − t∗)−1. These signify the blow-up rates of the blow-up solutions to the
critical cubic NLS in dimension d = 2.

There are quite a number of analytic results for blow-up in both NLS equation and
DS systems involving dynamic rescaling (1.1.19). These include the work of Merle [152]
on the focusing NLS with self-similar blow-up solution (in H1). The L2-critical case is
found for (1 + 1)-dimensions in the quintic NLS equation (blow up is possible), whereas for
(2 + 1)-dimensions it is in cubic NLS equation. Hence, the DS system is L2 critical in this
sense. However, the 2 + 1 hyperbolic type NLS equation admits no blow-up, see [213]. The
DS II type does blow up, see [41]. An Ozawa type of solution (pseudo-conformal):

ψc(x, y, t) = ei
b(x2−y2)
a+bt

ψ0(x′, y′)
(a+ bt) ; ψ0(x′, y′) = 2

1 + x′2 + y′2
, x′ = x

a+ bt
, y′ = y

a+ bt

used there shows the existence of blow-up at time T∗ = −a
b , ab < 1. As a result, ψc is a

blow-up solution to the DS II preserving ‖ψc‖L2 = ‖ψ0‖ = 2
√
π. Moreover, as t→ T∗, the

‖ψc‖2 → 4πδ in S′(R2) (tempered distribution) where δ is a Dirac measure. In addition,
‖∇ψc(t, ·)‖2 ∼ (t− t∗)−2 and ‖ψc(t, ·)‖∞ ∼ (t− t∗)−1 are observed.

Questions arising in the DS systems, particularly DSI and DSII, are: the existence of a
blow-up mechanism other than Ozawa (probably the Merle-Raphael type) and the blow-up
profile or any other types. These are what we are to explore. In a situation, where analytical
results are difficult to find we resort to numerical methods. It is shown in [97] that the DS
Ozawa solution is unstable. The identification of the blow-up mechanism for DS II studied
in [105] is conclusive due to the use of sufficiently high resolutions. Also for sufficient mass
of particular Gaussian initial data, the DS II solution possesses a generic blow-up of Ozawa
type. It is unknown for the DS I whether the blow-up is of the type described for DS II .

The ubiquitous nature of the dispersive PDEs in application makes them interesting,
however, exact solutions are rare. Therefore, reliable and well-capacitated numerical
techniques are needed. In this regards, spectral methods are some of the suitable
candidates; they approximate the studied function in terms of a series of globally defined
smooth functions and then provide a rule for differentiation. For the purpose of finite
truncation of spectral series involved, in practice, we work with functions represented on
the computational domain as a finite sum of functions defined globally on the same domain.
The differentiation rule then can be represented as the action of the differentiation matrix
on the coefficients space. For example, a smooth function u(x) in one dimension can be
approximated by an N -degree interpolating polynomial uN (x) in terms of N global "basis"
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Chapter 1. Introduction

functions φn, for n = 0, · · · , N − 1

u(x) ≈ uN (x) = c0φ0(x) + c1φ1(x) + · · ·+ cN−1φN−1(x)

and the approximation to the first derivative of uN , at collocation points xm, is represented
in terms of matrix elements Dmn with m,n = 1, · · · , N − 1 and cm ≡ u(xm)

u′N (xm) =
N∑
n=0

bnφn ≡
N∑
n=0

Dmnun, m = 0, · · · , N − 1 (1.1.20)

where bn = Dmncm for m,n = 0, · · ·N − 1. In general case, cn = Jmnum, where
matrix J generates cn from the collocation points so that u′N (xm) = D̃uN (xm) where
D̃ = J−1DJ . Spectral methods (SMs) differ from the finite element methods (FEMs),
even though they are built based on the same notion. SMs use a global approach with a
set of nonzero basis functions over the whole domain while the basis functions for FEMs
are only nonzero on small domains (i.e. FMEs approximate functions locally). As a
result, SMs are important for their accuracy. Smooth functions are approximated with an
error converging "exponentially", as fast as possible. Solution to time dependent equations
preferably need global methods like SMs especially when higher resolution in space and
longer time integration are in demand. Nevertheless, implementing FEMs can be more
expensive computationally than SMs except in a case when SMs is used in the approximation
of problems having discontinuous cn or complicated underlying domains. Errors can grow
due to Gibbs phenomenon, see [208] and [20] and the Chapter on Numerical approaches.

The spectral methods are useful in approximating solutions to ODEs and PDEs. When
solving the time dependent PDEs, solutions are assumed to take the form (1.1) which
generates a system of ODEs in the coefficients cn that can be solved numerically, thus NLS
equations and DS sytems fall into the class of equations that SMs is applicable. In discrete
settings, polynomial interpolant at optimal collocation points are important, for instance
Chebyshev points xn = cos(n arccos(x)) are useful in minimizing Runge’s phenomenon effect
that might occur when equally spaces nodes are used [208],[209],[190][192]. In relation to
the higher resolution requirements, unlike the DSII where the lump (vacuum, asymptotic
profile) and also Ozawa are slowly decaying, fast Fourier Transform (FFT) for computing
spatial derivatives, requires a total resolution of the order of 230 to get sufficient resolution
[94], the dromion/vaccum solution of the DSI is exponentially decaying. Therefore, for DSI
higher resolutions are not necessarily needed to gain the desired accuracy [14].

Issues associated with the numerical studies of evolutionary dispersive PDEs apart
from computational accuracy and efficiency is stiffness for numerical time integrations.
Even though, spectral methods are popular for how accurate and efficient they can solve
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1.1. Motivation & Mathematical Background

a problem where applicable, the ODEs obtained from the PDE after spatial discretisation
are stiff thereby making them numerically challenging. Loosely speaking a system is stiff if
explicit integration schemes are inefficient due to stability requirements. Although, there is
no precise definition of stiffness we will give some description in a situation where it occurs.
Perhaps, the easiest way to describe stiffness is as follows. Consider the linear evolution
system of equations in R2:

ut = Mu with u = u(t) =

u1(t)
u2(t)

 , M =

µ 0
0 ν

 , µ, ν ∈ C (1.1.21)

whose solution is given by u(t) = (u1(0)eµt, u2(0)eνt). Assume <(µ) = −α < 0 and <(ν) =
−β < 0 for positive real numbers α, β. If either α or β is much smaller than the other, then
one of the components of u(t) would decay to zero much faster than the other. Thus, we
must deal with two different time scales, and this characterizes stiffness of the system.

The demand for suitable and powerful techniques in solving nonlinear dispersive
equations like NLS and DS cannot be underestimated. In tradition, one uses spectral
techniques for spectral differentiation in space ( for fast error convergence) and apply time
integration schemes such as the Euler, the leap-frog, the Adams, the Runge-Kutta schemes...
Nevertheless, stiffness may compromise the spectral accuracy in principle. Stiff equation is
one containing terms that could potentially incur significant variations leading to instability
of the time integration technique. Stiffness in an equation is an efficiency issue; it is an
indication of small time-step (stability) requirement for explicit numerical schemes. In
practice, one uses small time steps for they only increase the computational time not the
storage unlike when used on the space discretization. Runge-Kutta schemes (implicit for
stiff part and explicit for nonstiff terms) turn out to be a suitable candidate for the time
integration. Of course, there are several other methods for studying systems of such kind
which include: Integrating factor and deferred-correction-schemes, time-splitting schemes,
exponential time-differencing-schemes, RK sliders ...

For dispersive PDEs, stiffness comes from the dispersive terms, mostly the linear part.
The linear part associated to the DS system generating the linear stiffness, can be dealt
with using an implicit-explicit methods (IMEX-method). The idea is that, the stiffness part
(linear terms) is solved using stably-implicit scheme while the non-stiff part ( usually the
nonlinear terms) by an explicit method as proposed by Driscoll [44].
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1.2 Overview of the Thesis

The thesis is organized into five parts: the introduction, the numerical aspects, review of the
NLS equations, numerical study of blow-up in Davey-Stewartson system I and appendices.
Chapter 2 is devoted to the introduction of dispersive linear and non-linear equations,
blow-up, Hamiltonian and integrable systems. A particular case of blow-up solutions to
dissipative and dispersive PDEs with power non-linearity is discussed. In chapter 3, the
aspects of interpolations, differentiation matrices, errors and some time-integration schemes
for dispersive PDEs are explained. Chapter 4 provides a thorough review to the focusing
and defocusing Nonlinear Schrödinger equations. Specific considerations are given to the
NLS equation on the existence properties of solutions, blow-up solutions, blow-up rates and
blow-up profiles. Some concluding remarks about the results of the 2D NLS and the DS I
are revisited in the end section of the chapter. In Chapter 5, we provide a detailed numerical
study of DS I and concluding remarks are made for further studies.

Finally, in the Appendix, useful notations, definitions and proofs of some auxiliary
theorems and propositions used in the chapters of the thesis are provided in Appendix A.
An attempt is made to compute the higher derivatives of analytic functions in Appendix B.
This includes the numerical computation of Taylor’s coefficients of functions via Fonberg’s
algorithm, useful for solving PDEs. It is explained, there, the problem of the numerical
study of the DS II on a sphere; the logarithmic terms in the solution of the elliptic equation
led to a badly approximated results. Furthermore, special attention is paid on the Taylor
coefficients of the interpolation polynomials such as barycentric and Chebyshev ones. Some
useful results for NLS equations are stated and proved in appendix C. Appendix D provides
the main algorithms used in appendix B.
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Chapter 2

Concept of Dispersive Equations, Blow-up,
Hamiltonian System and Integrability
In this chapter, we give brief introduction to the concepts of dispersive PDEs with linear
and non-linear examples; and provide a few details about the dispersive nature of the NLS
equations and DS systems. We treat, with examples, few PDEs which the phenomena of
blow-up may show up. Finally, we introduce Hamiltonian systems and show the importance
of some dispersive PDEs that are Hamiltonian.

To begin, suppose we have Ω ⊂ Rd, an open subset of Rd, for fixed d ∈ N and a Hilbert
space H . Given an integer k ≥ 1, a kth-order partial differential equation (PDE) in space
is a kth degree polynomial P of partial derivatives

P : Rdk × Rdk−1 × · · · × Rd × R× Ω→H , (2.0.1)

having u : Ω ⊂ Rd →H and f : Ω→H , defined by

P

(
Dku,Dk−1u, · · · , Du, u,x

)
= f(x), (2.0.2)

or equivalently, for smooth α`(Dk−1u, · · · , u,x) ∈ C∞(Rd) and |`| ≤ k,∑
|`|≤k

α`(Dk−1u, · · · , Du, u,x, t)D`u = f(x) (2.0.3)

The notations: D` = ∂`1x1 · · · ∂
`d
xd

for ∂xj = ∂/∂xj , |`| =
∑
j `j while ` = (`1, · · · , `d). The

space variable x = (x1, · · · , xd) ∈ Rd. If we further redefine u and f each as the map
R×Ω→H for (t,x) 7→H , the general time evolution semi-linear equation (first order in
time t) is given by

∂tu+
∑
|`|=k

α`(t,x)D`u+ α0(Dk−1u, · · · , Du, u,x, t) = f(t,x) (2.0.4)

The use of u ∈H implies that for any v ∈H then 〈u, v〉 =
∫
Rd uv <∞ e.g. H = (L2, dx).

Solution of such equations depends on the specified conditions given on the boundary and
initial data on the graph of u. The reason of being called evolution is with the anticipation
that solution u(t,x) may evolve from a prescribed or supplied initial data which serves as
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Chapter 2. Dispersive Equations, Blow-up and Hamiltonian systems

the initial state of the system. Moreover, we may have higher order time derivatives, but
for the purpose of this work we restrict to the first order in time semi-linear equations.

Here, we are mainly concerned with the semi-linear equations with constant coefficients

∂tu = Lu+ N[u] (2.0.5)

where L is a linear differential operator (responsible for the dispersion) and N[u] denotes
the non-linear function in u.

2.1 Dispersive PDEs

Let us start with a linear evolution equation in a d-dimensional frame:

G(∂t,∇)u(t,x) = 0, (2.1.1)

with the operator G depending on the gradient ∇ and time derivative operators. We seek
for the plane-wave solution given in terms of wave-form Fp(k · x− ωt)

u(t,x) := Fp(k · x− ωt) = F0e
i(k·x−ωt), i =

√
−1 (2.1.2)

with constants F0, ω respectively representing the amplitude and frequency. The notation
k = (k1, · · · , kd) is the wave-vector of the wave-numbers kj , for j = 1, · · · , d with the
corresponding directions at the position x = (x1, · · · , xd). If u solves (2.1.1), then

G(−iω, ik) = 0 (2.1.3)

defines the dispersion relation to the (2.1.1), 1. From (2.1.3), one derives an expression for
the frequency ω, as a function of k, which may be complex-valued for dissipative equations.
For dispersive equations ω is a real-valued function

ω = ω(k) (2.1.4)

where the plane-wave solution (2.1.2) propagates with the phase and group velocities
respectively, where with |k|2 = k2

1 + · · ·+ k2
d and n := k/|k|,

vp(k) = ω(k)
|k| · n, vg = ∇kω(k). (2.1.5)

1The dispersion relation (2.1.3) describes the movement of the plane-wave. The number ω is also known
as the phase of wave having frequency ω/2π = 1/Tf , the temporal frequency being Tf . The wave length of
the wave is λ = 2π/|k|.
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If it happens that vp 6= vg, the evolution equation is considered to be dispersive with
a dispersive-wave solution. In other words, the evolution equation is dispersive whenever
vp depends on k as expressed in the form (2.1.4), i.e. if vg is not constant or simply
v′g = ∇2ω 6= 0. This would mean, wave-solution u evolving in time, is dispersive if different
wave-frequencies ( or equivalently wave-lengths) correspond to different phase-velocities, 2.
This does not happen to all evolution equations. For instance, let d = 1 in the classical
wave-equation:

∂2
t u− c−1∂2

xu = 0 (2.1.6)

is non-dispersive, since any solution u(x, t) of any wavelength propagates with the constant
velocity, i.e. vg = ±1/

√
c = vp for the dispersion relation w(k) = ±k/

√
c, where c is

the speed of the wave solution u. Nevertheless, the wave equation (2.1.6) becomes weakly
dispersive in higher dimensions d ≥ 2. Again, the transport equation ∂tu = α∇u for α ∈ R∗

is non-dispersive since ω(k) = −αk and or ω′′(k) 6= 0. Mathematically, a PDE in Rd is
dispersive whenever the function

vp : Rd → C defined by k 7→ ω(k)
|k| · n, for n := k/|k| a normal unit-vector,

is non-constant real-valued.

2.2 Linear Dispersive PDEs

Some of the evolution equations among linear dispersive equations include, Airy (A), Klein
Gordon (KG) and linear Schrödinger equations (LSE). For u : R× Rd → C

A : ∂tu = ∂3
xu; KG : ∂2

t u = ν∆u−µ2u, µ ∈ R+, ν ∈ R∗; LSE : ∂tu = i~∆u, ~ ∈ R+;

having respectively, the dispersion relations ωA(k) = −k3, ωK(k) = ±(ν + µ2|k|2)1/2 and
ωS(k) = ~|k|2. One easily checks that ω′′K(k) 6= 0 and ω′′S(k) 6= 0, where k = (k1, · · · , kd).

2.3 Nonlinear Dispersive PDEs

Among the nonlinear dispersive equations are the following respective equations of
Sine-Gordon (SG) and Korteweg de Vries (KdV): with u : R× R→ C,

SG : ∂2
t u = ∂2

xu− sin(u), KdV : ∂tu = −∂3
xu−

1
2∂x(u2). (2.3.1)

2In the physical context, it implies as time evolves a single wave-packet decomposes into wave-trains
(different waves) which as a result will disperse through the medium.

19



Chapter 2. Dispersive Equations, Blow-up and Hamiltonian systems

-10 0 10

-10

0

10

-10 -5 0 5 10

0

1.5

3

3.5

-10 -5 0 5 10

0

15

30

45

-10 -5 0 5 10

-2000

-1000

0

1000

2000

Figure 2.1: The dispersion relation ω(k) in dimension d = 1.

Their respective approximate dispersion relations are: ωSG(k) ≈
√
k2 + 1 and ωKdV(k) ≈

αk − βk3. The ωKdV(k) is obtained via Taylor expansion about hk = 0 up to the order
O(k5) as k → 0. This comes from the general dispersion relation ω2 = gk tanh(kh) of
surface water waves evolution model where surface tension is negligible, with gravity g and
h is the depth of the still water. The equations are dispersive according to their dispersion
property.

Dispersive equations, of special interest, include the non-linear Schrödinger (NLS):

∂tu = i(∆u+ f(|u|2)) (2.3.2)

with power non-linearity f(|u|2) = γ|u|2σ for u : R × Rd → C, 0 < σ ≤ ∞ and γ = ±1,
describing the evolution of weakly nonlinear waves and the Davey Stewartson (DS) systemsiψt + α∂2

xxψ + ∂2
yyψ = (γ|ψ|2 + ∂xφ)ψ; ψ : R× R2 → C

∂2
xxφ+ β∂2

yyφ = ρ∂x(|ψ|2), φ : R2 → R, x = (x, y) ∈ R2
(2.3.3)

where γ = ±1, ρ > 1 and, at least, in the integrable case (α, β) = (±1,±1). They are
clearly dispersive equations. For NLS equation, the dispersion relation would be

ω(k) = |k|2 + γ, k = (kx, ky) ∈ R2
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2.3. Nonlinear Dispersive PDEs

whereas that of the DS system expressed in its nonlocal form

iψt + α∂2
xxψ + ∂2

yyψ =
(
γ|ψ|2 + ρ∂x

[
(∂2
xxψ + ∂2

yy)−1∂x(|ψ|2)
])
ψ

is ω(k) = αk2
x + k2

y with k = (kx, ky). The operator ∂−1
x can be seen as an anti-derivative

operator acting like the Fourier multiplier −i/kx:

∂−1
x u(x) = 1

2

[ ∫ x

−∞
−
∫ ∞
x

]
u(x′)dx′ (2.3.4)

where (∂2
xx + β∂2

yy)1/2 ≈ ∂x + β
2∂
−1
x ∂2

yy because

(k2
x + βk2

y)1/2 = kx
(
1 + βk2

y/k
2
x

)1/2 ≈ kx + β

2 k
−1
x k2

y

for |ky/kx| � 1. In fact, if we take out the x-coordinate dependence of ψ in the DS system
an NLS equation is recovered.

2.3.1 The NLS equation

The Cauchy problem
ψt = Lψ + N[ψ] := i∆ψ + iγ|ψ|2σψ, ψ : R× Rd → C, ψ(0,x) ∈ Hs(R2) (2.3.5)

defined on the whole Rd with ψ → 0 as |x| → ±∞ and γ = ±1. The non-linearity
N : F → C defined via w ∈ C 7→ |w|2σw is smooth when σ ∈ N+, which are
the algebraic cases. The non-linearity naturally comes from the Hamiltonian potential
V (ψ) = γ

2σ+2 |ψ|
2σ+2. The Cauchy problem (2.3.5) in the cases σ = 1, 2 are mostly studied

in the physical context, usually referred to as respectively cubic and quintic NLS equations.
The γ = ±1 characterizes respectively the focusing and defocusing NLS.
In order to understand the behaviour of the solution, it is worth understanding the dispersive
nature of this equation. This can be achieved by seeking the solution of the plane-wave type
ψ(t,x) = u0e

i(k·x−ωt) = u(t)eik·x so that u(t) solves

∂tu = i(−|k|2 + γ|u|2σ)u.

Provided |u(t)| = λ constant, this yields an explicit solution to the equation (2.3.5):

ψ(t,x) = u0e
ik·x · ei(−|k|2+γ|λ|2σ)t, (2.3.6)

where obviously ψ0(x) = u0e
ik·x ∈ Hs(Rd) for any finite u0 ∈ C. The term ei(−|k|

2+γ|λ|2σ)t is
responsible for the oscillations of ψ(t,x) in time. In the defocusing case, γ = −1 allows the
dispersive effect to take place, thereby the linearity dominates. Thus the solution dies out
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to constant as t→∞. Whereas, the focusing case γ = 1 could lead to the suppression of the
contribution of the linearity term e−i|k|

2t with t→∞ thereby the non-linearity dominates,
especially with the amplitude |u0| = λ � |k|, i.e. when |u0| = λ is much greater than |k|.
Thus, the solution ψ(t,x) becomes singular or simply blow-up.

2.3.2 The Davey-Stewartson (DS I)

The Cauchy problem for the DS system (2.3.3) supplied with boundary conditions for
β = −1 < 0, α = 1 and initial data ψ0 ∈ H1(R2) defines the particular DS I system

iψt + ∂2
xxψ + ∂2

yyψ = (γ|ψ|2 + ∂xφ)ψ; ψ : R× R2 → C

∂2
xxφ− ∂2

yyφ = ρ∂x(|ψ|2), φ : R2 → R,

lim
η→−∞

φ(ξ, η) = ϕ1(ξ, t), lim
ξ→−∞

φ(ξ, η) = ϕ2(η, t), if α < 0

ψ(0, x, y) = ψ0 : R2 → R, (x, y) 7→ ψ0(x, y),

(2.3.7)

where ξ = 1√
2(x− y), η = 1√

2(x+ y) and the ϕ1 and ϕ2 can be chosen at will (Sulem [202],
Chapter 12). The case when α > 0 is used, the operator there behaves like elliptic one.
The function ψ is identified as the main-field while the forcing term φ is regarded as the
mean-field. Thus, the first equation in the system is the generalized two dimensional cubic
NLS with φ as a forcing term.

The integrable DS system appears to model the evolution of weakly non-linear surface
water-waves moving along one direction with the amplitude slowly varying in the direction
of x and y, see [[41],[43]]. The systems are also applicable in plasma physics, modelling
the evolution of plasma material with the influence of the magnetic field, for instance see
[165],[166] and the refereces therein.

2.4 Blow-up: Power Nonlinearity

We have presented several potential mechanisms that suggest certain nonlinear PDEs posses
solutions that become singular in finite time. The questions we are interested in are: how,
when, with what profile and which nonlinearity does blow-up occur. The power nonlinearity
plays role in the blow-up solutions for the semi-linear equations such as the generalised KdV
equations, NLS and related equations, see [127] for details.
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2.4. Blow-up: Power Nonlinearity

2.4.1 Dissipative type

A prototypical example of blow-up due to power nonlinearity can be observed in the 1 +
d-dimensional ordinary differential equation, the exponent σ ∈ R+ with 0 < σ <∞,:

ut = |u|2σu; u : R× Rd → C, u(0,x) = u0(x). (2.4.1)

If d = 1, the equilibrium (stationary) solution u = 0 is unique but unstable, since for u0 > 0
and u0 < 0 cases considered respectively (i.e. assuming u± = 0 ± δ for δ > 0 small) the
solution

u(t) = ±
( 1

2(T∗ − t)σ

) 1
2σ

, T∗ = (2σ)−1|u0|−2σ (2.4.2)

diverges as limt→T∗ u(t) = ±∞ respectively and faraway from converging to 0. The T∗ is
the blow-up time. In other words, the solution u(t) exists locally in the finite time T∗ and
would not extend beyond T∗. The problem is locally well-posed and T∗ has a lower bound
depending on the ‖u0‖ appropriately chosen.

Let us consider a semi-linear equation where the linear part tends to smooth out the
nonlinearity. Consider a nonlinear equation of the type

ut = ∆u+ f(uq), q > 1

where f(uq) has the tendency to diverge with u → ∞. A typical example of such in
one-dimension is the heat-diffusion equation with non-linearity f(uq) = uq for q > 1,ut = uxx + uq on Ω ⊂ R1,

u(0, x) = u0; u(t, x) = 0 on ∂Ω
(2.4.3)

for finite closed domain Ω. The solution to the nonlinear equation ut = uq, that,

u(t) = 1
(q − 1)1/(q−1)( 1

(q−1)uq−1
0
− t
)1/(q−1)

blows-up in finite time T∗(u0) = (q − 1)/|u0|q−1 for u0 > 0. Moreover, the linear equation
ut = uxx in the dimension d = 1 for Ω = [0, L] has the well-known solution

u(t, x) =
n∑
j=1

cn sin
(
πj

L
x

)
e−(πj

L
)2t

where cn are the Fourier sine series coefficients. Here, u(t, x) → 0 as t → ∞. Whereas
behaviour of u(t, x) in the equation (2.4.3) depends on whether the nonlinearity or the
diffusion term ∂2

xu overtakes the other. In a situation where nonlinearity dominates, blow-up
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is possible. With these information we may characterize blow-up to the equation (2.4.3).

If the given initial data u0 is sufficiently small in size, then the solution u(t) to the
equation (2.4.3) exists globally. Consequently, the energy dissipates to zero and after a
finite time T the u(t) will be as if controlled by the linear problem. However, for sufficiently
large u0(x) as will be clear later, the solution u(t, x∗)→∞ in the sense that

max
x∈[0,1]

u(t, x∗)→∞ as t→ T∗.

That is, u(t, x) blows-up at a finite time T∗ about a point x∗. Despite the fact that the
blow-up time T∗ and the position x∗ depend on u0, as can be seen in Figure 2.2, close
to the blow-up point (T∗, x∗) the solution is nearly independent of the initial data u0(x).
Apparently, close to T∗ the solution u(t, x) becomes singular about x∗ and grows narrowly
and focusing but maintains its profile shape (see the figure on the right of Figure 2.2).
Moreover, ‖u(t, x)‖∞ →∞ as t→ T∗ and the blow-up rate suggested by the Figure 2.3 on
the right is roughly ‖u‖2∞ ∼ (t∗ − t)−1 for α = −0.5012 and β = 0.5 and t∗ = 0.4999.

Figure 2.2: Solution to (2.4.3) with q = 2 near blow-up for u0(x) = 10.1 exp(−x2).
If the domain Ω in (2.4.3) is extended to the whole real line R, the diffusion effect

becomes stronger and u(t, x) will slowly diffuse away. This is the case even for a localized
type of initial data, e.g. exp(−x2) Fig. 2.2. Moreover, extending the equation (2.4.3) to
dimension d > 1, the behaviour of u(t, x) depends on the existing relation between the
nonlinearity exponent q and the dimension d, see [66, 219, 106]. The equation (2.4.3) in
higher dimension has a critical exponent q = qc = 1 + 2/d as shown in [66]. If 1 < qc <

1 + 2/d, any small initial data u0 would lead to global bounded solution that would exist
for all t. If, otherwise, qc ≥ 1 + 2/d, then arbitrary u0 > 0 could generate blow-up solution.
In the case d = 1 and qc = 3, however, we detected the blow-up because Ω is closed and
finite otherwise we must have q = 3 in order for us to see it.
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Figure 2.3: For u0(x) = A exp(−x2), on the left: maximum maxx∈[−10π,10π] u(t, x) starts
to blow up for any amplitude in the range 6− 10, and on the right: the blow-up rate traced
by fitting log10 ‖u(t)‖∞ according to log10 ‖u(t)‖∞ = α log10 |t∗ − t|+ β .

2.4.2 Dispersive type: gKdV

We have seen soliton as a balance of dispersion and nonlinearity effects, we may be concerned
about solution behaviour for general power nonlinearity. In this case, a typical dispersive
equation to consider is the generalized Korteweg de-Vries (gKdV) equation

ut + upux + uxxx = 0, p ∈ N (2.4.4)

It extends the classical KdV equation with general nonlinearity exponent p. The general
power nonlinearity exponent p = 1 corresponds to the KdV equation. If p < 4, solutions
are known to be global in time. For p = 4, results by Y. Martel, F. Merle and P. Raphaël
([139, 140, 141, 146] and the references therein) show that smaller perturbation of the
solitary wave solution of the KdV will lead to a dispersed solution, however, larger mass
perturbation will yield to the so-called L∞-blow-up, i.e. the norm ‖u(t)‖∞ or max(u(t))
becomes unbounded in finite time. There, the blow-up rates for both ‖u(t)‖∞ and ‖ux(t)‖2
diverge at the rate ∼ (t∗−t)−1/2 and are obtained by fitting, numerically, the norm ln ‖u(t)‖
to α ln(t − t∗) + β by finding α, β and t∗. The numerical experiment carried out in [100]
shows agreement with the analytically predicted rate [139]. The profile at which blow-up
occurs is given by the soliton solution, see [100] .

It is observed in the Fig. 2.4 there is dispersive oscilations to the left of the soliton solution
as blow-up time is approached. When the blow-up asymptotic profile, given by a soliton,
becomes concentrated and narrower to a point for the L2-critical gKdV, there are outgoing
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Figure 2.4: Solution to the gKdV, p = 4, for u0 = 1.01usol, perturbed soliton. See [96].

wave train of circular waves whose total mass is that of the conserved mass of the soliton,
[138, 140]. This is because, as the profile shrinks to a point, the support is zero.

2.4.3 Blow-up scenario

To sum up things, since it is not only divergence of u(x, t) signifies blow-up, but also,
unboundedness of the derivative of u (i.e. the gradient catastrophe) could imply singularity
as in Hopf equation with u0(x) having u′0(x) negative somewhere 3. Thus, we will consider
finite time blow-up of evolution equation to mean either u(t, x) or its gradients ux(t, x)
and ut(t, x) becomes unbounded in a certain norm within a finite time. Below we give the
blow-up structure of semilinear evolution equation.

In general, we will consider a Cauchy problem given in the form of a semi-linear
equation in Rd with x ∈ Ω ⊂ Rd, a smooth bounded domain Ω,

∂tu = Lu+ N(u), u(0,x) = u0(x) ≥ 0, t > 0 (2.4.5)

u0 ∈ Hs(Rd), having the boundary condition u(t,x) = 0 for x ∈ ∂Ω, t ≥ 0, and a unique
solution u(t, x) defined on the maximal time interval [0, T∗), for 0 ≤ T∗ < ∞. If T∗ = ∞,

3The 1d inviscid Burgers equation ut + (u2)x/2 = 0, u0(x) = ϕ(x), for t > 0 and ϕ bounded and
continuously differentiable, has solution of the form u(t, x) = ϕ(x − tu(t, x)) through which by implicit
differentiation one proves ut and ux are unbounded in finite time. In fact, T∗ = minx∈R

(
− 1/∂xϕ(x)

)
, the

characteristics shock time.
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then the solution is said to be global. It blows-up in finite time if T∗ <∞ and certain norm

lim
t→T∗

‖u(t, :)‖Wk,p(Ω) , 1 ≤ p ≤ ∞, k ∈ N+

diverges, for a Sobolev space W k,p(Ω) e.g. limt→T∗ supx∈Ω |u(x, t)| = ∞. We will use data
from the Schwartz space S(Rd) since it is a dense subset of Hk(Rd) = W k,2(Rd) for all k.
Blow-up could mean that, for a regular initial data, say u0(x) ∈ Hk(Rd), solution cease to
be in Hk(Rd) in finite time.

Furthermore, one proceeds to ask for the blow-up solution behaviour such as the
blow-up rate, the blow-up profile, stability and instability, and self-similarity or generic
type of blow-up 4. Blow-up occuring in finite time t∗ has a corresponding position in space,
say x∗. Therefore, there is blow-up at the point (t∗, x∗).

2.5 Hamiltonian systems and Integrability

A dynamical system 5, with d degrees of freedom (generalizing Newton’s equations) endowed
with the canonical coordinates q := (q1, · · · , qd) and p := (p1, · · · , pd), the position
and momentum coordinates respectively, has its evolution completely described by the
Hamilton’s equations of motion

dqj
dt

= ∂H

∂pj
,

dpj
dt

= −∂H
∂qj

, j = 1, · · · d (2.5.1)

the initial state (q0, p0) and H = H(p,q, t). The Hamilton’s equation (2.5.1) is defined on
a domain Ω ⊂ R2d of the phase space (q,p) and the smooth function H, usually referred
to as Hamiltonian, represents the total amount of mechanical energy of our dynamical
system. Let us define on the phase space, a Poisson bracket, for f, g ∈ C∞(Ω), in the local
coordinates (x1, · · · , xd) on a manifold M takes the form [182]

{f, g} =
d∑

j,k=1
ωjk(x) ∂f

∂xj

∂g

∂xk
= (∇f)Tω∇g (2.5.2)

where ∇f = (∂x1 , · · · , ∂xd) with a skew-symmetric square matrix ω = (ωjk(z))dj,k=1 which
satisfies the Jacobi-identity

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0, (2.5.3)
4Generic blow-up here means whether it is of a type for a particular class of blow-ups, e.g.

Pseudo-conformal transform type of blow-up, the loglog blow-up.
5Dynamical system can be described as a natural phenomenon that evolves in “time”.
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as well as linearity, skew-symmetry and Leibniz property respectively: for constants a, b

{af + bg, h} = a{f, h}+ b{g, h}, {f, g} = −{g, f}, {f, gh} = g{f, h}+ {f, g}h (2.5.4)

Among the set of the functions on M , a non-constant function commuting with all other
functions on M with respect to the Poisson bracket is known as Casimir, Cω. In turn, for
such function to be obtained ω has to be singular with ∇Cω contained in its null space.
According to the Darboux’theorem, for n-independent Casimirs C1, · · · , Cn (the corank of
ω) we can generate canonical coordinates introduced earlier (q1, · · · , qd, p1, · · · , pd) together
with (C1, · · · , Cn) on M in a way that

ω =

 0 1 0
−1 0 0
0 0 0


where 1 and 0 respectively identity and zero matrices in the appropriate dimensions. Thus,
the Poisson bracket (2.5.2) in these canonical coordinates becomes

{f, g} =
d∑

k=1

[
∂f

∂qk

∂g

∂pk
− ∂f

∂pk

∂g

∂qk

]
(2.5.5)

where the following relations hold {qj , pk} = δjk, {qj , qk} = {qj , qk} = 0 for j, k = 1, · · · d.
With these, the equation (2.5.1) can equivalently be expressed in the form

dqj
dt

= {qj , H},
dpj
dt

= {pj , H}, j = 1, · · · d (2.5.6)

A smooth solution u = u(p,q, t) satisfying ut = 0 (equiv. to ut = {u,H} = 0) when the
Hamilton’s equations hold is called the first integral of motion or conserved quantity or
constant of motion and therefore we say u is constant and sometimes referred to as the
Hamiltonian. Consequently, the underlying dynamical system is known as Hamiltonian
system if it is completely described by the Hamiltonian H(p,q,t) satisfying the Hamilton’s
equation defined on a 2d-dimensional phase space. It becomes completely integrable if it has
d independent integrals of motion in involution, i.e. {uj , uk} = 0 for all j, k = 1, · · · d.

Given a phase space M , let (M,u1, · · · , ud) be an integrable system with u1 = H the
Hamiltonian. Also, let M̃ = {(p,q) ∈M,uk(p, q) = ck} where ck are constants, k = 1, · · · , d
be an n-dimensional level surface in terms of the first integrals uk. Then Arnold-Liouville
theorem states that M̃ is diffeomorphic to a torus Td = S1 × · · · × S1 if M̃ is compact and
connected manifold, and action-angles coordinates

I1, · · · , Id, θ1, · · · , θd, 0 ≤ θ ≤ 2π
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can be introduced in a way that θk’s are coordinates of M̃ and Ik’s as actions Ik =
Ik(u1, · · · , ud) are integrals of motion. This theorem guarantees the existence of a canonical
transformation for integrable system in which the actions are preserved and the evolution
of angles in the time parameters (t1, · · · , td) is linear unlike in its original coordinates (p,q).

Our abstract description of Hamiltonian system shows it constitutes of finite number
of dynamical systems given by the finite number of ODES ut = {u,H}. However, PDEs
describe class of dynamical systems that directly form infinite dimensional Hamiltonian
system. The Poisson brackets in this case are extended to the infinite dimensional phase
spaces to describe dynamics that governing the PDEs. The Poisson brackets are defined
on the functional of functions F [u] =

∫
Rd f [u]dx with the infinite dimensional phase space

coordinates u(t,x) instead of on the function as given in (2.5.5) as

{F,G} =
∫
Rd

δF

δu
S
δG

δu
dx (2.5.7)

where S is a skew-adjoint differential operator chosen in a way that the Jacobi identity of
the Poisson bracket also holds, f [u] = f(u, ux, uxx, · · · ) and

δF

δu
= ∂f

∂u
− ∂

∂x

∂f

∂ux
+ ∂2

∂x2
∂f

∂uxx
− · · · (2.5.8)

Therefore, for a given functional on the phase space, say H, we can construct a Hamiltonian
dynamics on any other functional, say F , via the relations

Ft = {F,H} ⇐⇒ ut = {u,H} = S
δH

δu
. (2.5.9)

The KdV equation ut− uux− 6uxxx = 0 is Hamiltonian where S = ∂
∂x and its Hamiltonian

functional H[u] =
∫∞
−∞(u3 − u2

x/2)dx have the Poisson bracket {F,G} =
∫∞
−∞

δF
δu

∂
∂x

δG
δu dx

with only one Casimir6
∫∞
−∞ udx [69], [234].

Some of the conserved quantities associated to NLS are the mass M(ψ) =
∫
Rd |ψ|2 and

Hamiltonian H(ψ) =
∫
Rd(|∇ψ|2 −

1
σ+1 |ψ|

2σ+2) (see appendix III for the proofs). We would
verify this as follows. The focusing NLS equation and its conjugate:

ψt = i∆ψ + i|ψ|2σψ, ψ∗t = −i∆ψ∗ − i|ψ|2σψ∗ (2.5.10)

can be written in terms of Hamilton’s equations

iψt = δH

δψ∗
, iψ∗t = −δH

δψ
(2.5.11)

6Recall that here the Casimir of the Poisson bracket (2.5.7) on the manifold M here is the nonconstant
function that commutes with all other functions on M .
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where δH/δψ is the variational derivative of H := H(ψ,ψ∗) w.r.t. ψ. For suitably smooth
ψ̃ → 0 as |x| → 0 one defines∫

Rd

δH

δψ
ψ̃ = lim

ε→0

[
H(ψ + εψ̃, ψ∗)−H(ψ,ψ∗)

ε

]
.

The term in the right hand side simplifies to

lim
ε→0

H(ψ + εψ̃, ψ∗)−H(ψ,ψ∗)
ε

= lim
ε→0

1
ε

∫
Rd

[
(ε∇ψ̃)∇ψ∗ − εψ̃ψσ(ψ∗)σ+1 + o(ε2)

]
= lim

ε→0

∫
Rd

[
− (∇2ψ∗)ψ̃ − |ψ|2σψ∗ψ̃ + o(ε)

]
= −

∫
Rd

(∆ψ∗ + |ψ|2σψ∗)ψ̃ =
∫
Rd

δH

δψ
ψ̃,

where the second equality is obtained by applying integration by parts to the first term
ε∇ψ̃∇ψ∗ and dividing through with ε. One sees that

−δH
δψ

= ∆ψ∗ + |ψ|2σψ∗

and will recover the second equation of (2.5.10). Similarly, replacing ψ∗ by ψ and by using
iψt = δH

δψ∗ one gets the first equation in (2.5.10).

Given that DS system is non-local, the options we have at our disposal are either
considering it as a constrained system (where no dynamical equation for ϕ involved), or
local Hamiltonian operator with non-local density or non local Hamiltonian operator. DS
I and DS II systems are described as Hamiltonian dynamical systems by means of inverse
scattering in [5]. However, following [18] the DS I system can be shown to be Hamiltonian
system as follows. In terms of characteristic coordinates, the DS I takes the form

iψt + ψξξ + ψηη = ϕξ + ϕη − ρ|ψ|2ψ (2.5.12)

2ϕξη = ρ

(
(|ψ|2)ξ + (|ψ|2)η

)
(2.5.13)

for (complex) envelope ψ(t, ξ, η) of a free surface of the water-wave and a (real) ϕ velocity
potential of the mean motion generated by surface wave. Define new fields

A(1) = −ϕη + ρ

2 |ψ|
2, A(2) = ϕξ −

ρ

2 |ψ|
2 (2.5.14)

to rewrite DS I as iψt + ψξξ + ψηη + (A(1) −A(2))ψ = 0 (2.5.15)

A(1) = ϕ
(0)
1 (t, η)− ρ

2

∫ ξ

−∞
(|ψ|2)ηdξ′, A(2) = ϕ

(0)
2 (t, ξ) + ρ

2

∫ η

−∞
(|ψ|2)ξdη′ (2.5.16)
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for arbitrary boundaries ϕ(0)
1 (t, η) and ϕ(0)

2 (t, ξ). Another possible representation of (2.5.15)
with the A(1) and A(2) replaced with

B(1) = ϕ1(t, η)− ρ

4

(∫ ξ

−∞
−
∫ +∞

ξ

)
(|ψ|2)ηdξ′, B(2) = ϕ2(t, ξ) + ρ

2

(∫ η

−∞
−
∫ +∞

η

)
(|ψ|2)ξdη′

(2.5.17)
so that (2.5.15) becomes

iψt + ψξξ + ψηη + (B(1) −B(2))ψ = 0 (2.5.18)

where the arbitrary boundaries here are ϕ1(t, η) and ϕ2(t, ξ). The appropriate boundary
conditions are selected from the specified multi-scale limit used in the derivation of DS I.
For instance, the multi-scale limit of the Kadomtsev-Petviashvili (KP I) equation, whilst
wellposedness in time is being kept, generates the form of the equation (2.5.15).
For the sake of convenience, the 2-component form of the DS I is best expressed as

iPt + σ3(Pξξ + Pηη) + [Φ,P ] = 0 (2.5.19)

where, with Pauli matrix σ3 =

1 0
0 −1

,

P =

0 ψ

ψ̃ 0

 , Φ =

A(1) 0
0 A(2)

 or Φ =

B(1) 0
0 B(2)

 (2.5.20)

with corresponding 2-component fields for the different choices of the arbitrary boundaries

A(1) = ϕ0
1(t, η)− ρ

2

∫ ξ

−∞
(P 2)ηdξ′, A(2) = ϕ

(0)
2 (t, ξ) + ρ

2

∫ η

−∞
(P 2)ξdη′ (2.5.21)

B(1) = ϕ1(t, η)− ρ

4

(∫ ξ

−∞
−
∫ +∞

ξ

)
(P 2)ηdξ′,

B(2) = ϕ2(t, ξ) + ρ

2

(∫ η

−∞
−
∫ +∞

η

)
(P 2)ξdη′ (2.5.22)

and [·, ·] denotes a commutation relation for operators. These lead to the reduced DS
I equation to the form ψ̃ = ρψ∗. Moreover, the DS I appears to be the compatibility
condition given as the representation of the Lax pair

[L1, L2] = 0 (2.5.23)

where L1 and L2 are linear operators defined as, in terms of the coordinates u = (ξ + η)/2
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and v = (ξ − η)/2,

L1(P ) = ∂u + σ3∂v + P (2.5.24)

L2(P ) = i∂t + σ3∂
2
v + P∂v −

1
2σ3Pu + 1

2Pv + Φ. (2.5.25)

The operators L1 and L2, are known to be the Zakharov-Shabat hyperbolic spectral
operators defined on the plane and are viewed as those defining a linear spectral problem
where P serves as the data. With the boundaries given at all time in (2.5.21), one solves
the Cauchy problem for DS I by suitably defining the Spectral Transform of P . See the
details for this in section 3 of [18].
Now, utilizing the form of the boundary fields (2.5.22), let us introduce the functional

H[ψ] =
∫
R2

[
ψ̃(∂2

ξ + ∂2
η)ψ − 1

4ψψ̃
(
∂ξ∂
−1
η + ∂η∂

−1
ξ

)
ψψ̃ + (ϕ1 − ϕ2)ψψ̃

]
dξdη, (2.5.26)

i.e. the Hamiltonian for DS I, and the canonically defined Poisson bracket

{F,G} = i

∫
R2

[
δF

δψ

δG

δψ̃
− δF

δψ̃

δG

δψ

]
dξdη (2.5.27)

where ψ̃ is conjugate variable of ψ as defined earlier. Therefore, the equation governing the
motion of the dynamics described by DS I are

ψt = {ψ,H}, ψ̃t = {ψ̃,H}. (2.5.28)

These equations of motion would lead to the DS I system, and turns out the only
Hamiltonian case is when ϕ1 ≡ ϕ2 ≡ 0. When this is satisfied, it guarantees the DS I
to be a Hamiltonian system with an infinite number of independent continuous involuntary
integrals of motion, thereby making DS I a completely integrable Hamiltonian system.
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Chapter 3

Numerical Approaches
In this chapter, we consider the numerical aspects of spatial and temporal discretization of
nonlinear dispersive problems on R× Rd for d ∈ N.

3.1 Introduction

The basic idea of approximation theory is to "seek for p(x), a function from a certain class
of functions, that approximates a given (continuous) function u(x) on a domain I ⊂ Rd"
such that the maximum error

‖u(x)− p(x)‖ = max
x∈I
|u(x)− p(x)| (3.1.1)

is minimized, i.e. p(x) is close enough to u(x). If such p(x) exists then it is unique, referred
to as approximant of u(x) and the best approximation of u(x) (Rivlin [192], pg. 2),1. Our
gauge for the best approximant p(x) ∈ PN is the uniform-norm (3.1.1), where PN is a
finite dimensional subspace of some normed linear space.

If instead, a discrete data set is given, the approximation process is known as
interpolation, and the approximant is referred to as interpolant. Basically, one finds a
simple approximant p(x), e.g. polynomial, so that p(xn) matches u(xn) for each n, i.e. the
deterministic relationship p(xn) = u(xn) holds for 0 ≤ n ≤ N . In general, a finite discrete
set {u(xn)}Nn=0 is interpolated to a (continuous) function u(x) on a set of discrete points
{xn}Nn=0. For continuous u(x), the interpolant p(x) matches u(xn) at every grid point xn
as in (3.2.10), this allows us to use the type of estimate (3.1.1) that is valid for all x.

An approximant plays a crucial role in understanding the behaviour of functions that
may appear too complicated to deal with, i.e by representing them with simpler ones
such as algebraic and trigonometric polynomials, which are more convenient for function
representation. Thus, they are useful in determining, numerically, within a predetermined
precision, an unknown solution to a differential equation and numerical evaluation of
integrals that may be difficult to determine. We expect errors as one puts data into
computers with finite precision. These errors, if too large, will pollute the approximation
method making it unreliable and therefore accuracy cannot be guaranteed. Major works

1Roughly speaking, an approximant p∗(x) ∈ X, a finite dimensional normed linear subspace of Y , is best
if for any p(x) ∈ Y , the distance ‖p(x)− p∗(x)‖ is least.
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3.2. Interpolating polynomials

concerning approximation of functions include Szabados [205], Atkinson and Vertesi [9],
Gautschi [70] and Trefethen [209, 208].

Another important application of approximation is how to interpolate the derivatives
of the underlying function. Since differentiation is a linear operation, using the interpolation
process of approximate derivatives we can derive differentiation matrices thereby making
implementation easier on computational devices. See (Trefethen [209], Ch. 2) and (William
et al. [185] pg. 1091).

In this chapter we discuss the problem of interpolations of a function u(x) defined
on [−1, 1]. We consider an approximant on a set of equally and unequally distributed
grid points. As approximation is involved, the errors associated to the interpolation of a
function are discussed. Various numerical differentiation algorithms are used to investigate
the errors involved in the higher derivatives such as recursive matrix differentiation,
Clenshaw-differentiation, and Chebyshev-Fourier differentiation.

3.2 Interpolating polynomials

Given {u(xn)}Nn=0 on a discrete data set {xn}N0 , an interpolation problem of a function u(x)
on an interval [a, b] is the process of finding a function p(x) that fits u(x) at the finite set
of discrete points {xn}N0 . The approximant p(x) is said to interpolate u(x) at the discrete
points. Our concern is preferably to work with p(x) being an algebraic or trigonometric
polynomial.

Definition 3.2.1. Let {xn}N0 be N + 1 distinct (interpolating) points in the interval [a, b]
with corresponding function values u := {u(xn)} with u(xn) = un. A polynomial interpolant
pN ∈PN (a space of polynomials of degree ≤ N) of u(x), if it exists, is a unique polynomial
of degree at most N ≥ 1 satisfying

pN (xn) = u(xn) for 0 ≤ n ≤ N. (3.2.1)

By the above definition, we interpolate discrete sets of data values {u(xn)}N0 to
approximate a function u(x) ∈ C(I).

Definition 3.2.2. An interpolation problem (3.2.1) is said to be well-posed if such pN (x)
exists and is unique, moreover depends continuously on the input (initial) data.

Let U := (U, ‖·‖U ) and V := (V, ‖·‖V ) be any two normed linear spaces with respect
to their norms. Consider a problem described by the map

u : U → V such that x ∈ U 7→ u(x) ∈ V. (3.2.2)
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For any x, x̃ ∈ U , define an absolute condition number Λabs and relative condition number
Λrel respectively, associated to the problem, by

Λabs := lim
ε→0+

sup
‖x̃−x‖U≤ε

‖u(x̃)− u(x)‖V
‖x̃− x‖U

,

Λrel := lim
ε→0+

sup
‖x̃−x‖U≤ε

[(
‖u(x̃)− u(x)‖V
‖u(x)‖V

)/(
‖x̃− x‖U
‖x‖U

)]
.

(3.2.3)

These condition numbers quantify the corresponding changes in the output space V as a
result of small perturbations that may occur in the input space U . The x̃ = x+δ(x) above is
the perturbation. We consider the problem to be "well-conditioned" if the condition number
is sufficiently small close to zero and "ill-conditioned" when large.

Definition 3.2.3. An interpolation operator is the projection: PN : C([a, b]) → PN such
that PN (u(x)) = pN (x) ∈PN

pN (x) =
N∑
n=0

cnφn(x) (3.2.4)

for some basis functions φn(x) ∈PN and unknown coefficients cn ∈ R for all n.
Let U = C([a, b]) and V = PN with their respective norms, endow the operator with

the induced norm (operator norm)

ΛN := ‖PN‖U,V := sup
0 6=u(x)∈U

‖PN (u(x))‖V
‖u(x)‖U

= sup
‖u(x)‖U=1

‖PN (u(x))‖V <∞. (3.2.5)

The bounded operator (3.2.5) is referred to as "Lebesgue constant". If it is linear and
‖PN (u)‖V ≤ ΛN ‖u‖U ∀u ∈ U , it can be verified to satisfy

‖PN (u− ũ)‖V = ‖PN (u)− PN (ũ)‖V ≤ ΛN ‖u− ũ‖U .

Here the norms are uniform norms and therefore ‖u‖U = ‖u‖∞ := max
a≤x≤b

|u(x)|.

Definition 3.2.4. An interpolation problem (3.2.1) is well-conditioned if the condition
number ΛN is relatively small close to zero, and ill-conditioned otherwise.

It is worth mentioning that ΛN = Λabs,2. Furthermore, the definition of well-posedness
comes down to the conditioning that the Lebesgue constant ΛN is very small. Moreover,
ΛN depends on the degree N of the polynomial and the choice of interpolation points as we
can see later in the case of the Lagrange interpolant. Generally, we deal with two categories
of conditioning: one for the values of interpolation points and the other for expansion
coefficients cn.

2It is preferable to use relative condition numbers since due to floating point operations the computational
devices do not produce absolute errors but relative errors.
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Definition 3.2.5. A method or algorithm that solves a given problem (3.2.1) is said to be
stable if it is both forward and backward stable.

Consider solving a problem p(x) = u numerically. If the algorithm produces solution
ũ, the forward (resp. backward) error is δ(u) = ũ− u ( resp.δx = u− x̃) for x̃− x.

Definition 3.2.6. An algorithm that solves p(x) = u is forward stable if the forward error
δ(u) is small, and backward stable if δx is small such that p(x+ δx) = ũ.

The main sources of errors in an algorithm are due to truncation and round-off. The
"smallness" for all x can imply that δx is either the same as or close enough or few orders
of magnitude larger than the machine epsilon εM . The εM may also be referred to as unit
round-off. In other words, an algorithm is stable if small perturbation δx corresponds to
the small perturbation δu. This also means an algorithm will be stable if it is backward
stable.

Suppose for simplicity that u(x) is approximated by an algebraic polynomial, where
φn(x) = xn

pN (x) =
N∑
n=0

cnx
n = c0 + c1x+ c2x

2 + · · ·+ cNx
N . (3.2.6)

Based on the interpolation condition (3.2.1), we are tasked to finding the vector c :=
[c0, . . . , cN ]. On evaluating (3.2.6) on the N + 1 grid points, a set of N + 1 linear equations
having N + 1 unknowns is generated which can be re-expressed in the matrix-vector form
Vc = u. That is, 

1 x0 x2
0 . . . xN0

1 x1 x2
1 . . . xN1

...
...

... . . .
...

1 xN x2
N . . . xNN




c0

c1
...
cN

 =


u0

u1
...
uN

 (3.2.7)

The matrix V is called Vandermonde matrix. It is not too difficult to verify that

det(V ) =
∏
n<m

(xn − xm), m, n = 0, · · · , N (3.2.8)

is non-zero since xn are distinct points for all n. This guarantees the existence of a unique
solution to the system (3.2.7). Consequently, the existence and uniqueness of pN (x) follow.

An alternative approach that produces such pN (x) is theLagrange form

LN (x) =
N∑
n=0

`n(x)u(xn), `n(x) =
N∏
m=0
m 6=n

(x− xm)
(xn − xm) (3.2.9)

satisfying the interpolation problem (3.2.1). The polynomial representation (3.2.9) must
produce the same polynomial (3.2.6) for uniqueness reason. i.e., pN (x) = LN (x). If u(x) ∈
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Ck(I) (a class of k times continuously differentiable functions in an interval I = [a, b]), for
d = N + 1, the theoretical interpolation error bounds of the interpolant pN (x) ∈PN , the
Lagrange form (3.2.9), are given by

|u(x)− pN (x)| ≤
max
ζ∈I

u(N+1)(ζ)

(N + 1)! ·max
x∈I

∣∣∣∣ N∏
n=0

(x− xn)
∣∣∣∣, ζ ∈ I. (3.2.10)

Assume we have equispaced-points: xn+1 − xn = δ = (b − a)/N and |max
ζ∈I

u(N+1)| ≤

C, for some finite constant C. The factor max
∣∣∏

n(x − xn)
∣∣ in (3.2.10), by calculating

the maximum, has an upper bound δN+1N !/4 resulting in the interpolation error bound
CδN+1/4(N+1) of (3.2.9). Apparently, the error bound suggests that CδN+1 � 1, but this
is not true in general to have δN+1 dominating C. For instance, the error grows as N gets
bigger in the interpolation of 1/(1 + x2) on [a, b]. However, if the points are asymptotically
distributed, in N , unevenly having density of the form

ρ(x) ∼ N [π2(1− x2)]−1/2, (3.2.11)

the intensity of the interpolation errors can be lessened as depicted in the Figure 3.1. Some
of these points with property (3.2.11) are the well-known Chebyshev nodes in the interval
[−1, 1]:

xn = cos(nπ/N), n = 0, 1, · · · , N. (3.2.12)

In Figure 3.1 the Lagrangian polynomial (3.2.9) is used to interpolate the functions
u(x) = sin(πx), v(x) = 1/(1 + x2) and w(x) = 2/(3 + x) on the interval [−1, 1], using
equispaced-points and Chebyshev-nodes. Almost the same maximum errors are obtained
when the algebraic polynomial (3.2.6) is used as can be found in (Trefethen [209]). It
clearly shows on equispaced points in [−1, 1], the maximum error does not converge to 0
especially for large N . The wiggling or oscillations we noticed at the boundaries ±1 for
the interpolation of each function in Figure 3.1 is known as Runge phenomena. On the
other side, using Chebyshev-nodes 3, the effect of the error has been reduced. Moreover,
this proves that there is a minimal degree for higher degree interpolating polynomials in
enhancing the approximation accuracy.
With Chebyshev nodes in [a, b], one proves

max
a≤x≤b

∣∣∣∣ N∏
n=0

(x− xn)
∣∣∣∣ = 2−(2N+1)(b− a)N+1 (3.2.13)

3Chebyshev nodes are obtained by projecting points on the semi-circle in the complex plane onto
the x-axis. See Appendix for details.
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Figure 3.1: Comparison of Lagrange polynomial interpolations using 61 equispaced-points
and 61 Chebyshev-points on [-1,1]. Left: the functions u, v, w are interpolated on equispaced
with effect of error oscillations at the boundaries. Right: the effect of oscillations is damped
out by interpolating u, v, w on Chebyshev nodes. Cf. [209]

with error bound 2−(2N+1)C/(N + 1)! if u(x) is differentiable. It is not hard to verify
that the errors in this case approach zero faster than the errors for equispaced-points.
Analogously, we can check the conditioning, using Lebesgue function, of these different

points distributions, where ΛN = max
a≤x≤b

λ(x) = max
a≤x≤b

N∑
n=0
|`n(x)| in the Figure 3.2.

3.3 Numerical Differentiation Matrices

Given the set of discrete points {xn}Nn=0 ∈ [a, b] with corresponding values u = {u(xn)}Nn=0,
we are interested in the values of the derivatives of u(x) at the discrete points, that is
d(k)(u) = {d(k)

n }Nn=0 for d(k)
n ≈ u(k)(xn), where d(k) is the discrete differential operator.

Exploiting the linearity property of differentiation, the relation between the kth derivative
and u is given by the linear transformation

d(k)
n (u) = D

(k)
N u, k = 0, 1, 2, 3, · · · (3.3.1)
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Figure 3.2: Comparison of Lebesgue functions for N + 1 equispaced-points (top) and N + 1
Chebyshev-points (bottom) on [-1,1], with N = 60 used. Cf. Trefethen [208].

where D(k)
N is an (N+1)-square matrix, which can be referred to as kth order differentiation

matrix. The order k can be generated by recursive multiplication of DN k-times or derive
them implicitly (see Gottlieb [75] and Weideman [217]).

Let pN (x) interpolate u(x) at equispaced discrete points: xn+1 − xn = δ for each n,
the first-derivative approximation to u(x), by degree m ≤ 2 Lagrange polynomial form, at
xn can be obtained via the 3-points formula

u′(xn) ' p′m(xn) =
m∑
j=0

`′j(xn)u(xj) = un+1 − un−1
2δ , 1 ≤ n ≤ N − 1, (3.3.2)

where the sample points used are {x0, x1, x2} = {x − δ, x, x + δ}, 4. Next, it remains to
impose conditions on the boundary values at n = 0, N .

4Equivalently, let I = [a, b], suppose u(x) ∈ C3(I) in a neighbourhood [x − δ0, x + δ0] of x ∈ I for
some δ0 > 0. Now, for δ ∈]0, δ0[ with some ζ ∈]x, x + δ[, the 3rd order Taylor expansion u(x + δ) =
u(x) + u′(x)δ + u′′(x) δ

2

2! + u′′′(ζ) δ
3

3! . Replacing δ by −δ, yet ζ ∈]x− δ, x[, in the expansion and subtracting
the two results leads to the second order finite difference formula, where for ζ ∈]x−δ, x+δ[: one gets p′2(x) =
ũ′(x) := u(x+δ)−u(x−δ)

2δ = u′(x) + δ2

3! u
′′′(ζ), where ũ′(x) approximates the derivative u′(x) with error term

δ2u′′′(γ)/3!. One may deduce the estimates |u′(x)− ũ′(x)| ≤ Cδ2 directly, where C = max
y∈[x−δ0,x+δ0]

|u′′′(y)|
6 .

40



3.3. Numerical Differentiation Matrices

If u(x) is periodic with un = u(xn), we impose periodic boundary conditions u0 = uN

and uN+1 = u1. Constituting the entire evaluation process of the derivative at the nodes,
in terms of matrix representation d(u) = DNu, we explicitly write



d0

d1

...

dN


= 1

2δ



0 1 0 · · · 0 −1

−1 . . . . . . . . . . . . 0

0 . . . . . . . . . . . . ...
... . . . . . . . . . . . . 0

0 . . . . . . . . . . . . 1
1 0 · · · 0 −1 0


︸ ︷︷ ︸

DN



u0

u1

...

uN


, (3.3.3)

the differentiation matrix DN is as shown in the equation (3.3.3).

For non periodic functions, we must use the right and left-sided derivatives for the
boundaries, where we take

d0 = (−3u0 + 4u1 − u2)/2δ, dN = (3uN − 4uN−1 + uN−2)/2δ, (3.3.4)

combined with (3.3.2) the differentiation matrix becomes

DN = 1
2δ



−3 4 −1 0 · · · 0
−1 0 1 0 · · · 0

0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 0
0 · · · 0 −1 0 1
0 · · · 0 1 −4 3


. (3.3.5)

As δ → 0, the approximations (3.3.2) to the derivative u′(xn) converges at the rate O(δ2).
Thus, 2nd order central finite difference approximation has an order of accuracy two, where
εN (δ) = O(δ2) ≤ Cδ2 = C · (2/N)2 = O(N−2).

As we can see, in Figure 3.3, for the functions sin(πx), 1/(1+x2) and 2/(3+x) on [−1, 1]
using equally-spaced points, the error in the first derivative dropped to 10−10 and increases
as N ≥ 106. This shows significant loss of accuracy. The point where the theoretical errors
and approximation errors disagree, the diminishing of the maximum errors ceased.

Similar behaviour is observed when a 4th order finite central scheme is implemented,
where the differentiation matrix is sparse, Toeplitz and circulant like in (3.3.3). From the
Figure 3.3 it apparently indicates that there exist some positive N0 for which the maximum
absolute error max

x∈[−1,1]
|d(u)−Du| → ∞ for N0 ≤ N .
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Figure 3.3: Convergence of the 2nd-order finite differences for an entire function sin(πx)
(shown •) and analytic functions 2/(3 + x) and 1/(1 + x2) (shown in ◦ and ∗ respectively)
defined on [-1,1]. (Cf. Trefethen [209]).

3.3.1 Chebyshev Differentiation Matrices

Construction of the Chebyshev differentiation matrices is done by simply considering the
Lagrange interpolating polynomial pN (x), in Chebyshev nodes (3.2.12). A function u(x)
defined on [−1, 1] approximated as u = {u(xn)}Nn=0 for all discrete xn ∈ [−1, 1] has its
first-derivative approximation written as p′N = DNu for a differentiation matrix DN . The
(N + 1)-square matrix DN is generated as follows (see Trefethen [209]).

Definition 3.3.1. Let N ∈ N, cn = 2 for n = 1, N and cn = 1 otherwise. The entries
(N + 1)-square first order Chebyshev differentiation matrix DN = (dnm)Nm,n=0 are

d00 = (2N2 + 1)/6, dnn = −xn
2(1− x2

n) , n = 1, · · · , N − 1

dNN = −d00, dnm = cn
cm

(−1)m+n

(xn − xm) , n6=m; n=1,··· ,N−1.

(3.3.6)

Let us denote the kth derivative of pN (x) at xn by p(k)
N and define p(k)

N := D
(k)
N u. For

the explicit formulas and the cost in computing D(k)
N see (Gottlieb [75] and Peyret [181] and

by recurrence formulas see (Weideman [217] and Welfert [220]).

In the Figure 3.4, the errors in the first two derivatives of the functions 1/(1 + x2)
and 2/(3 + x) on [−1, 1] are compared. We visualise the loss of about 3 significant digits
in the second derivatives compared to the first derivative, taking optimal degree N0 = 40.
There D(2)

N is taken as D2
N . This shows computing higher derivatives, for instance k ≥ 10,

is troublesome, as this the loss of accuracy increases with the number of derivatives.
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Figure 3.4: The Chebyshev spectral differentiations of functions defined on [-1,1]. At the
top, absolute errors in the 1st and 2nd Chebyshev spectral derivatives of 1/(1 + x2) and at
the bottom for 2/(3 + x), (cf. Trefethen[209]).

Definition 3.3.2 (Spectral accuracy in Chebyshev spectral differentiation, Trefethen [209]).
Let u(x) be analytic inside and on a Bernstein ellipse of foci ±1. With N →∞, k ≥ 1

|p(k)
N (xn)− u(k)(xn)| = O(c−N ); c = 2 exp(−Nφv) (3.3.7)

where φv is the value of the Chebyshev potential φ(z) = ln(|z −
√
z2 − 1|/2) and c is the

sum of the semi-major and semi-minor axes of the ellipse.

A "Bernstein ellipse" is an arbitrary ellipse of foci ±1 on the C-plane, which is the
largest region for which an analytic function, say u(x), remains analytic and bounded ([208],
ch. 8). The values φv of the Chebyshev potential φ(z) are level curves that generate the
ellipses on the complex plane ( see details in Trefethen [209], ch.5).

Even though one expects geometric convergence in theory but not so numerically.
Thus, if u(xn) = ũn+ εn, for 0 ≤ n ≤ N , where ũn is the true computed value of u(xn) with
an error εn for each n, the derivative u′(xn) will encounter an error of εn such that |εn| ≤ εn,
with ε = {εn}Nn=0 and ε = {εn}Nn=0. The relationship between the DN , u and the true
derivative u′ is shown in the epsilon commutative diagram, Fig. 3.3.1, where u′ and ũ′ are
respectively the exact and numerically computed derivatives. The vertical arrows pointing
down describe approximations while the horizontal ones show the differentiations. The
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u′ DNu+ε

ũ′ DNu

Figure 3.5: Epsilon commutative diagram.

diagram is commutative to a finite precision (depends on ε) that we are able to determine
in advance.

3.3.2 Numerical differentiation for pseudo-spectral series

The Lagrange interpolating polynomial (3.2.9) interpolates u(x) at xn by a series of
overlapping low-degree local polynomials φn(x) = `n(x), whereas the derivatives p′N (xn)
(correspondingly finite difference formula) interpolates, using the m + 1-points weighted
formula (3.3.2), the derivative of u(x) locally centered at xn. Instead of representing the
function by its sequence of discrete values on an interval, we might represent it in series
form with basis function φn(x) (differentiable), an n degree polynomial (a trig. or algebraic
polynomial) that evaluates globally on the whole interval, and the (pseudo) spectral
derivative comes from differentiating the higher-degree global interpolating polynomial.

Definition 3.3.3. Let u(x) be represented by an infinite series

u(x) =
∞∑
n=0

cnφn(x), x ∈ [a, b] (3.3.8)

where φn are the basis functions and cn are the expansion coefficients for n = 0, 1, · · · . The
series (3.3.8) has spectral (exponential) convergence if there exists a constant α and a rate
of convergence r > 0 such that

cn ∼ O(exp(−αnr)), n� 1. (3.3.9)

Let pN (x) be the (N+1) partial sum of the series (3.3.8). A pseudo-spectral collocation
utilizes the discrete values {u(xn)}Nn=0 on discrete points {xn}Nn=0 to determine the series
expansion coefficients cn. Then, pN (x) and its derivatives are (N+1)-point formulas unlike the
(m+1)-points formula (3.3.2). Therefore, pN (x) ' u(x) is a spectral interpolating polynomial
if the series (3.3.8) converges fast enough (exponentially) for sufficiently large N ,5. In an
m- ordered finite difference scheme, 6, the usual rate of convergence is O(N−m) for smooth

5Convergence, numerically, would mean if the required accuracy is attained.
6To balance the accuracy of an N -points (pseudo) spectral scheme for a function on [a, b], one needs an

44



3.3. Numerical Differentiation Matrices

functions whereas for analytic functions the rate of convergence for spectral method is
O(rN ) where 0 < r < 1. Spectral accuracy is termed for the latter.

In this work we employ Fourier spectral method to semi-discretize the DS system. The
method is very important especially for solving periodic problems. Recall, in one dimension,
the continuous Fourier transform of a function u(x) ∈ L2(R) and its inverse are defined by

û(k) = F [u](k) =
∫ ∞
−∞

u(x)e−ikxdx k ∈ R, (3.3.10)

u(x) = F−1(u(k)) = 1
2π

∫ ∞
−∞

û(k)eikxdk, x ∈ R (3.3.11)

have their discrete versions (for a 2π-periodic u where xj = 2πj/N and vj = u(xj) taking
x = {x1, · · · , xN}, xj+1 − xj = 2π/N) defined as

v̂k = 2π
N

N∑
j=1

e−ikxjvj , k = −N2 + 1 · · · N2 , (3.3.12)

vj = 1
2π

N
2∑

−N2 +1

eikxj v̂k, j = 1, · · · , N, (3.3.13)

and they are called the Discrete Fourier Transform (DFT) and the inverse Discrete Fourier
Transform (IDFT) respectively of the function u. See [208, 209] for more details. For the
Fourier transform, the first derivative is determined by the spectral differentiation operator
D : `2 → `2 defined as Dv = F−1(ikF(v)) ≈ u′(x), where `2 is a space of square summable
functions. The higher derivatives of order s ≥ 1 are generalized to D(s)v = F−1((ik)sF(v))
in order to approaximate u(s)(x).

In terms of interpolant of u, the basis one uses are the Fourier basis φn(x) = einx

where cn are the Fourier coefficients. Converting the x-interval into an interval [0, 2π) 3 θ
so that the interpolant pN (θ) and its derivatives evaluated at θn are

pN (θn) =
N∑

n=−N
cne

inθn , p
(k)
N (θn) =

N∑
n=−N

(in)kcneinθn , (3.3.14)

with equidistant θn ∈ [0, 2π) and cn = F−1(pN (θn)), where F−1 is the inverse Fourier
transform. The differentiation matrix in this case is dense for all the N + 1 points, the
derivative may behave like an N + 1-order finite difference scheme.

For non-periodic problem on [−1, 1], the suitable choice of basis functions are φn(x) =
cos(n arccos(x)), the Chebyshev polynomials Tn(x). Thus, the function u(x) on [−1, 1] can

N -order finite difference scheme producing an error of O(δN ) = O[(b− a)/N ]N ∼ O(N−N ).
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be represented by

u(x) ' pCN (x) :=
N∑
n=0

cnTn(x) =
N∑
n=0

cn cos(n arccos(x)), x ∈ [−1, 1] (3.3.15)

with
cn = 2

π

∫ 1

−1

u(x)Tn(x)√
1− x2

dx = 2
∫ 1

0
u(cos(πt)) cos(n cos(πt))dt

' 2
N

N∑
j=0

′′
u

(
cos jπ

N

)
cos
(
jnπ

N

) (3.3.16)

where the symbol ′′ implies the terms for j = 0, N are to be multiplied by a factor of 1/2.
The Chebyshev coefficients cn can be numerically determined using Fast cosine transform
(FCT) implemented using the FFT- algorithm since we are approximating the integral of a
periodic function via a trapezoidal rule.

With this N + 1-point formula (3.3.15) we encounter a dense matrix as in the
Vandermonde matrix (3.2.7). In fact, Tn(x) are polynomials, orthogonal too, since by using
the method of mathematical induction the sequence of n-degree Chebyshev polynomialsT0(x) = cos(0) = 1, T1(x) = x, n = 0, 1,

Tn+1(x) = 2xTn(x)− Tn−1(x), n ≥ 1
(3.3.17)

generates a polynomial of degree n. To show that let t = arccos(x) ∈ R using the identity
2 cos(nt) = eint + e−int, de Moivre’s theorem: eikθ = cos(kθ) + i sin(kθ) and the binomial
theorem, with nCm = n!/[(n−m)!m!] we have

cos(nt) = 1
2

n∑
m=0

[
nCm cosn−m(t)(i sinm(t)) + nCm cosn−m(t)(−i sinm(t))

]

= 1
2

n∑
m=0

nCm cosn−m(t) sinm(t)[in−m + (−i)n−m] =
bn/2c∑
m=0

nCm·(−1)m cosn−2m(t) sin2m(t)

=
bn/2c∑
m=0

nCm · (−1)mxn−2m(1− x2)m =
bn/2c∑
m=0

bn/2c∑
r=m

nC2m · mCr · (−1)mxn−2r,

(3.3.18)
where bkc is the greatest integer ≤ k. The result in (3.3.18) can further be simplified as
found in (Clenshaw [36] and Snyder [198]) to

Tn(x) =
bn/2c∑
m=0

α(m)
n xn−2m =


bn/2c∑
m=0

(−1)m 2n−2m−1n
(n−m) ·

n−mCmx
n−2m; m < n/2

bn/2c∑
m=0

(−1)mxn−2m; n = 2m.
(3.3.19)

An easy way to compute the kth derivative of the Chebyshev series (3.3.15) is to express it as
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a superposition of the kth derivative of the basis function Tn(x), however, bad conditioning
kicks back again and it is not possible maintaining the same accuracy described in (3.3.15).
In fact, the problem of oscillations at the boundaries ±1 would reappear in large magnitude
while the wavelength (of Tn(x)) becomes small with an increase in degree N and order of
the derivative k. This is evident, at the boundaries x = ±1, since the estimate

∣∣∣∣T (k)
N (±1)

∣∣∣∣ =
∣∣∣∣(±1)N+k

k−1∏
m=0

(N2 −m2)
(2m+ 1)

∣∣∣∣ ∼ N2k
k−1∏
m=0

1
(2m+ 1)(1 +O(N−2)) (3.3.20)

indicates that the conditioning of the kth order differentiation matrix of the Chebyshev
interpolation problem goes to ∞ at the rate N2k, because the condition number for
computing the kth derivative is O(N2k). Henrichis [83] improved the conditioning by about
the order O(Nk) by considering the "basis recombination". The modified basis used are
φn(x) = (1 − x2)Tn(x) where the error contributions at the boundaries are rid-off. For
instance, the conditioning of the 2nd derivative φ′′n(x) = −4xT ′n(x)−2Tn(x)+(1−x2)T ′′n (x)
near the boundaries grows like O(N2), same as that of 1st derivative instead of O(N4) since
T
′′
n (±1) vanishes. Nevertheless, still higher derivatives, say 4th derivatives, also become

ill-conditioned (Boyd [20], sec 7.7).

Another way to circumnavigate this issue is to compute the kth derivative of the series
(3.3.15) recursively in terms of the values of the derivatives of the Chebyshev coefficients:

p
(k)
N (x) =

N∑
n=0

c(k)
n Tn(x), c(k)

n =

0, n = N,N − 1;

(2(n+ 1)c(k−1)
n+1 + c

(k)
2n+1)/qn, n = N − 2, · · · , 0

(3.3.21)
where q0 = 2 and for n > 0, qn = 1. For the evaluation of the derivatives see Clenshaw
algorithm [36] or (William [185], sec. 5.5). Unfortunately, for higher derivatives, say 4th,
we encounter ill-conditioned problem again even though the algorithm is stable, see Breuer
and Everson [21], Merryfield and Shizgal [156].

An alternative method of differentiating (3.3.15) is via the combination Chebyshev-fast
Fourier transform (chebfft) algorithm, see (Trefethen [209], ch. 8). Using the definition of
cn in (3.3.16), the Fourier series (3.3.14) coincides with the Chebyshev series (3.3.15), for
that, given {un}Nn=0 with the Chebyshev nodes, one applies the chebfft algorithm in order
to compute the derivatives of the Chebyshev series (3.3.15). The task is accomplished by
extending the vector u := (u0, · · · , uN ) to v := (v−N+1, · · · , vN ) where v−N+m = vm with
m = 1, 2, · · · , 2N . This is equivalent to mapping the data u ∈ CN+1 to v ∈ C2N . Next, by
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the Fourier transform (equivalently the Fast-Fourier Tranform) yields

v̂n = π

N

2N∑
m=1

e−intmvm, n = −N + 1, · · · , N

and define, in the Fourier space, ŵn = inv̂n for all n 6= 0 and ŵN = 0. The inverse FFT

wm = 1
2π

N∑
n=−N+1

eintmŵn, m = 1, · · · , 2N

corresponds to the approximate derivative of a trig. interpolant on the data {vm}m

p(t) = 1
2π

N∑
n=−N+1

eintv̂n =
N∑
k=0

ckTk(x) =
N∑
k=0

ck cos(kt)

defined on equally space points tm where ck are the Chebyshev coefficients. Then, the
first derivative of the algebraic, basically Chebyshev, interpolant is pN (x) = p(t) where
x = cos(t). The derivative is therefore

p′N (x) = p′(t) · dt
dx

=
N∑
k=0

kck sin(kt)√
1− x2

(3.3.22)

which when evaluated at each xm reads

p′N (xm) = wm =



1
2π

N∑
k=0

′
k2v̂k, m = 0,

−wm/
√

1− x2
m, m = 1, · · · , N − 1

1
2π

N∑
k=0

′(−1)k+1k2v̂k, m = N,

(3.3.23)

where the sum
∑ ′ indicates the terms corresponding to the end points x0 = 1 and xN = −1

are having a factor of 1/2. The kth derivatives are obtained by successive differentiation
of the first derivative where, in the Fourier space, the term ŵn = inv̂n is replaced by
ŵ(s)
n = (in)sv̂n ∀n 6= 0 and w(s)

N = 0 for odd s (3.3.22) (see chebfft algorithm in appendix).

Figure 3.6 shows errors for the numerically computed derivatives of the function u(x) =
sin(πx) on [−1, 1]. In the first figure, Clenshaw’s algorithm is implement to compute up to
4th derivative while in the second the chebfft algorithm is applied.

Even though Chebyshev series (3.3.15) reduce the errors, however, the oscillations at
the boundaries return back whenever we try computing higher derivatives. This is equivalent
to say that the condition number of Chebyshev differentiation matrices for higher derivatives
can grow big even for not so large N and deprives us from getting required accuracy. In
short, numerical differentiation through interpolation becomes ill-conditioned as well.
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Figure 3.6: The maximum absolute error of the sth numerical derivative of the function
u(x) = sin(πx) on Chebyshev nodes in [−1, 1] for various degrees N of the polynomial
interpolant using (left) Clenshaw’s algorithm and (right) chebfft algorithm.

3.3.3 Discussion

In all the approaches we conclude that computational issues persevere and become even
more intense in approximating higher-derivatives evident from the Figures 3.3-3.6. The
errors generated while one attempts to balance the approximation errors and rounding
errors are bound to blow up as the order s of the derivative increases. Therefore, attaining
significant number of digits for the higher order derivatives s ≥ 10, becomes a difficult
task. One way around this undesirable situation is to use infinite summation formula, i.e.
integration. However, this requires extension of u(x) analytically onto the complex plane
in the neighbourhood of expansion point x0, where one writes, via Cauchy integral formula
(Gautschi [70], pg. 163-164), for the sth derivative

u(s)(x0) = s!
2πi

∮
CR

u(z)
(z − x0)s+1dz = s!

2πRs
∫ 1

0
e−2πsitu(x0 +Re2πit)dt (3.3.24)

where CR is assumed to be a closed circular contour about x0 with radius R to be chosen
in a way that z = x0 + Re2πit stays in the analytic region of u. If u(x) is real then
we replace the integrand by its real part. The integral (3.3.24) matches the definition
of the Fourier transform whose discrete counterpart, discrete Fourier transform (DFT), is
efficiently approximated using a simple numerical quadrature, e.g. the Trapezoidal rule. The
trapezoidal approximation would correspond to computing "fast Fourier transform (FFT)",
(see Davis [42] and Appendix).
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3.4 Numerical Time Integration Approaches

In this section, numerical techniques for time integrating non-linear dispersive PDEs are
discussed. They consist of the implicit and explicit schemes.

3.4.1 Stiff equations

A typical case of stiff equation in one dimension is the numerical solution to the equation

u′(t) = −50u(t), u(0) = u0 ∈ R\{0}, t ≥ 0 (3.4.1)

whose exact solution is given as u(t) = u0 exp(−50t). The reason of being stiff equation is
that numerical solution as t→∞ may diverge unlike the exact solution, where, for u0 > 0
one gets u(t) → 0 as t → ∞. For instance, numerical solutions obtained by implementing
explicit schemes, e.g. Euler’s method exhibits such behaviour due to emergence of spurious
errors, where they propagate to infinity except h is taken very small. In contrast to the
explicit Euler’s implementation, this is somewhat controlled, when the implicit one is used
e.g. implicit 2nd order Runge-Kutta (IRK2) scheme. Already, as shown in the Fig. 3.7, the
implicit RK2 does better than explicit Euler scheme for smaller time-step. It shows that
explicit methods are costly to use since it demands more points, thus for stiff equation it is
preferable to use implicit schemes with small h. However, stiffness is a subtle notion despite
the fact that it is important to be aware of stiff equations for certain numerical scheme.
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Figure 3.7: Logarithmic plots of the numerical (-◦-) and exact (-··-) solutions of the problem
(3.4.1), for y0 = 10, by explict (Euler) and implicit (RK2) schemes at time-steps h.
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The eigen-value problem (3.4.1) has the general form u′(t) = λu(t) where explicit
Euler’s scheme at each nth step with step-size h is un+1 = (1 + hλ)nu0. If λ < 0 (which
is the case in (3.4.1)) and h > 0 we will have |1 + λh| < 1, requiring |un| to decrease
monotonically, iff 0 < h < 2/|λ|. This restricts h not to exceed 2/|λ|, otherwise numerical
solution oscilates with growing amplitude u(tn)→∞ as n→∞.

Now, in more general setting of such, consider a system of in-homogeneous equation:

d

dt
u(t) = Au(t) + w(t), u,w ∈ Rd, A ∈M(Rd×d) (3.4.2)

where M is the space of d-square diagonalisable matrices in Rd. Suppose the matrix A has
eigenvalues (λj)dj=1 with corresponding eigenvectors vj ∈ Cd. Solution to the (3.4.2) is

u(t) =
d∑
j=1

aje
λjtvj + z(t), aj ∈ R (3.4.3)

where z(t) is obtained from the integration of w(t). Now, Assume <(λj) < 0 for all j, then

u(t)→ z(t) as t→∞. (3.4.4)

Moreover, provided λj ∈ R then each term |ajeλjtvj | decays monotonically and becomes
sinusoidal for λj ∈ C. On this note, it is possible to define stiffness in terms of the size
of |<(λj)|. Its small value corresponds to slow-frequency term aje

λjtvj whereas the large
value will correspond to the high-frequency term, sufficiently fast decaying.

Suppose that λ1, λ2 ∈ (λj)dj=1 have corresponding slowest and fastest frequency terms
aje

λ1tvj and ajeλ
2tvj respectively. Then, for all j we have

|<(λ1)| ≤ |<(λj)| ≤ |<(λ2)| (3.4.5)

and thus we define stiff-ratio as

Rstiff = |<(λ1)|/|<(λ2)|. (3.4.6)

The stiff-ratio measures the stiffness of a system like (3.4.2) having several components with
stiff terms. Hence, stiffness of the problem (3.4.2) is determined for large stiff-ratio.

3.4.2 Numerical Techniques for Stiff PDEs

A dynamical system put in the form of ODE system Ut = LU +N (U) can be solved using
s-stage Runge-Kutta (RK) time integration IMEX-method. The advantage of this method
is that the stiffness arising from the linear part of the ODE system is taken care of by the
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c A
bT

=

c1 a11 a21 · · · a1s
c2 a21 a22 · · · a2s
...

...
cs as1 as2 · · · ass

b1 b2 · · · bs

Table 3.1: Butcher Tableau

implicit time scheme of the Runge Kutta- methods, while, the nonlinear part is explicitly
solved. The range of applicable numerical techniques includes, Driscoll’s composite RK4,
Strang splitting, see [200] for details. One of the characteristics of stiff equations, as
discussed in the previous section, is that if the explicit scheme is used for the linear term,
stability issues set in and impose strict conditions on the time steps.

3.4.3 Runge-Kutta Method

An s-stage Runge-Kutta method for initial value problem (IVP) u̇ = F (t, u) is

un+1 = un + h
s∑
j=1

bjKj , Kj = u
(
tn + cjh, un + h

s∑
j=1

ajkKj
)

(3.4.7)

where un = u(tn) and bj , ajk ∈ R, for j, k = 1, · · · , s and ck =
∑s
j=1 ajk. These coefficients

ajk are chosen from a Butcher Tableau introduced in Figure 3.1. We are interested in
the fourth order implicit Runge-Kutta (IRK4) time integration technique. Particularly,
the coefficients used are motivated by Hammer-Hollingworth approach which in turn is a
2-stage Gauss scheme. These are,

a11 = a22 = 1
4 , a12 = 1

4 −
√

3
6 , a21 = 1

4 +
√

3
6

c1 = 1
2 −
√

3
6 , c2 = 1

2 +
√

3
6 , b1 = b2 = 1

2 .
(3.4.8)

As it is noticeable, when ajk = 0 for j < k, i.e. A is a lower triangular matrix, the
method becomes an s-stage explicit Runge-Kutta (ERKs) method.

3.5 Driscoll’s Composite Runge-Kutta Method

The DS system, in its non-local form,

iψt + 2(ψxx + ψyy) + (∂−1
x ∂y + ∂−1

y ∂x)|ψ|2ψ = 0
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0 0
c2 a21 a22
c3 a31 a32 a33
c4 a41 a42 a43 a44

b1 b2 b3 b4

=

0 0
1/2 1/6 1/3
1/2 1/2 −1 1
1 0 0 2/3 1/3

1/6 1/3 1/3 1/6

Table 3.2: Butcher tableau for Driscoll’s composite RK Scheme

is solved using an IMEX method, i.e. applying for the stiff term, the linear part, a stable
implicit method and an explicit scheme for the non-stiff term, the nonlinear part. This
requires transforming the problem into the Fourier space using discrete Fourier transform
(DFT). Then the solutions, in the Fourier space, are obtained by invoking the Driscoll’s
composite Runge-Kutta approach, [44] [92]. First, we put the equation in the form

ψt = Lψ + N[ψ] = 2i∂xxψ + 2i∂yyψ + i(∂−1
x ∂y + ∂−1

y ∂x)|ψ|2ψ. (3.5.1)

In the Fourier space,

ψ̂t = Lψ̂ + N̂[ψ̂] = −2i(k2
x + k2

y)ψ̂ + iFxy((∂−1
x ∂y + ∂−1

y ∂x)|ψ|2ψ). (3.5.2)

The nonlinear term N̂[ψ̂] = iFxy((∂−1
x ∂y + ∂−1

y ∂x)|ψ|2ψ) is evaluated by transforming ψ̂ to
the coordinate space back and forth any time the nonlinear operation is to be applied. One
writes the problem, for convenience, in the form

ut = F (u(t)) + λu(t), vt = G(u(t), v(t)) (3.5.3)

where u and v characterize the fast and slow modes respectively and λ is a constant. The
slower modes are usually subsumed in v equation. Therefore, several different RK methods
are used in treating each mode of the linear and nonlinear parts. Then, the composite
method for advancing in time from step m to m+ 1 for a step-size k and i = 1, · · · , n is an
n-stage RK method

Ui = un + k

( i−1∑
j=1

aijF (Uj , Vj) + λ
i∑

j=1
ãijVj

)
, Vi = vm + k

i−1∑
j=1

âijG(Uj , Vj) (3.5.4)

um+1 = um + k

( n∑
i=1

biF (Ui, Vi) + λ
n∑
i=1

b̃iUj

)
, vm+1 = vm + k

n∑
i=1

b̂iG(Ui, Vi) (3.5.5)

The RK method for the semi-linear problem at four stages reads
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U1 = u1, V1 = vn

U2 =
(

1− 1
3kλ

)−1(
un + 1

2kF (U1, V1) + 1
6kλU1

)
, V2 = vn + k

2G(U1, V1)

U3 =
(

1− kλ
)−1(

un + 1
2kF (U2, V2) + kλ

(1
2U1 − U2

))
, V3 = vn + k

2G(U2, V2)

U4 =
(

1− kλ

3

)−1(
un + kF (U3, V3) + 2

3kλU3

)
, V4 = vn + kG(U3, V3)

so that um and vm are updated via

um+1 = um + k

6 (F (U1, V1) + F (U4, V4) + λ(U1 + U4))

+ k

3 (F (U2, V2) + F (U3, V3) + λ(U2 + U3))
(3.5.6)

vm+1 = vm + k

6 (G(U1, V1) +G(U4, V4)) + k

3 (G(U2, V2) +G(U3, V3)) (3.5.7)

The table 3.2 is as generated in [44]. To fit the linear term into the stability region, one
chooses a slow wavenumber which satisfies

|N̂(ψ̂)| < 2.8/k. (3.5.8)

3.5.1 Split-Stepping Approach

An alternate scheme is split-stepping approach. Regarding the requirements for implicit
scheme for the linear part and explicit for the nonlinear part of the problem (4.6.3), hence the
name IMEX-method, can be solved explicitly by solving each part independently through
splitting method. That’s to seek solutions of Uτ = LU and Uτ = N(U) independently.
The idea behind the split-step approach is the solution to the problem Uτ = (A+ B)U , for
operators A,B, the numerical solution using n+ 1 time-steps takes the form

U(τn+1) =
N∏
n=1

e(cnτA) · e(dnτB)U(τn) (3.5.9)

where cn and dn, n = 1, · · · , N are real numbers representing the fractional time steps τn.
The inspiration for this formula is from the Trotter-Kato formula

lim
n→∞

[
e−τA/ne−τB/n

]n
= e−τ(A+B),

where A,B are unbounded linear operators. An example of a split-step method is given in
[230] for all any even order. One applies 4th-order splitting-step method for the nonlinear
part Uτ = N[U ], corresponding to iut + |u|2σu = 0, and IRK4 to the linear part Uτ = LU ,
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3.5. Driscoll’s Composite Runge-Kutta Method

i.e. ut = ∆u, to produce a fourth order split-step scheme. Note that, by splitting, the
independent solutions are approximations to the NLS solution in question. However, both
steps can be done explicitly for equations like (4.6.3), see ([105], pp.6) for more details.

A convenient way of tracing accuracy of the numerical-time-integration technique is by
investigating the behaviour of the conserved quantities of the problem, e.g. mass or energy.
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Chapter 4. The NLS equations: Existence Properties and Numerical Observations of Blow-ups

Chapter 4

The NLS equations: Existence Properties
and Numerical Observations of Blow-ups
In this chapter, we review properties of solutions to the NLS equation. Further, we discuss
several cases where blow-up of solutions to the NLS equation arises. Some of the blow-up
results traced via dynamically re-scaling approach are reviewed. The NLS equation is among
nonlinear evolution equations which blow-up solution or collapse [202],[52] of the solutions
is possible. We have keen interest in the NLS equation with power nonlinearity (σ ∈ N+)
in 1 + d dimension

iψt + ∆ψ + γ|ψ|2σψ = 0; ψ : R+ × Rd → C, γ = ±1. (4.0.1)

Blow-up, in some dynamical systems, appears to be the consequence of the violent
transfer of energy from lower scales to larger ones, for instance in fibre optics and related
fields. Thus, understanding this behaviour, how, why and when it occurs, is a very
important aspect to the mathematicians and physicists. One way to understand it is by
observing the profile of its solution near the region of singularity.

When the nonlinearity is defocusing (γ = −1) the solution is known to exist for all
times t ∈ [0,∞), for instance see [202] and [206] with the references therein, where the
global well-posedness of the problem (4.1.1) for initial data ψ0 ∈ H1 in a critical dimension
d < σ/2 is proved. There the dispersion dominates the nonlinearity. However, in the
focusing nonlinearity (γ = 1) the critical and super critical dimension d ≥ 2/σ, where the
solution can blow-up even for initial data ψ0 ∈ H1 [203],[126],[118] in a finite interval of
time t ∈ [0, T ∗). This is as consequence of the interaction of the two effects, where the
dispersion becomes dominated by non-linearity thereby leading to the blow-up, [119],[202].

We will use the radial coordinates to seek for radially symmetric solutions. This
coordinate transformation allows one treats the NLS problem (4.0.1) as 1 + 1 dimensional
problem. It has been proven in [144] that, the cubic NLS (σd = 2 with σ = 1), at the
blow-up time t = t∗, has a radially symmetric self-similar solution of the kind

ψ(t, |x|) ≡ u(t, r) ∼
√
Ceiθ

(T ∗ − t)1/2α
Q

( √
rC

(T ∗ − t)1/2α

)
· e(iC/β) ln

[
C

(T∗−t)

]
, r = |x|
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where parameters θ, α, β, C are constants that depend on the choice of the initial data
and ground-state solution Q(η), η ≥ 0. This type of transformation is known as
Pseudo-conformal, a kind of self-similar blow-up solution (see the sections 4.5.1 and 4.6).

An L2 critical blow-up is possible in dimension d = 2 for σ = 1 and dimension d = 3
for σ = 2/3. The L2 critical NLS as a physical model appears in, many but we mention,
two major principle settings: non-linear optics and condensed matter physics.

In the context of non-linear optics, NLS basically describes the propagation of a light
beam in a kerr-medium in which the refractive index depends on the intensity of the beam.
In this case, the paraxial approximation is made (i.e. t = z direction) and the beam travels
along the z-direction. Moreover, the assumption being made on an electric field given in an
ansatz form ψei(k·x−ωt) in the derivation of the dynamics leads to NLS equation where the
second derivative ∂2/∂t2 is negligible; this is to say that negligence of higher order terms
∂2/∂t2 indicates the absence of back-scattering assumption. The model in this context is
focusing cubic NLS where σ = 2 and σ = 1 and γ = 1. The blow-up or the singularity in
this context corresponds to the self-focusing and narrowing of the beam.

In the context of condensed matter physics, particularly Bose-Einstein-Condensates
(BEC), the wave function ψ describes the collective or accumulation behaviour of atoms and
nano-particles. In principle we work in three-dimensions, however, the strong confinement
of the wave function ψ in one or two dimensions will effectively reduce to lower dimensions.
The quantity

∫
|ψ|2dx usually represents the probability density of the collective atoms.

The presence of a dilute gas is one of the assumptions for the BEC model. Cornelll &
Wemann in 1995 were the first to discover the BEC equation experimentally while it was
firstly developed by Einstein & Bose in the 1920s. The NLS equation can be focusing
or defocusing in this context. Despite the fact that Schrödinger equation originates from
quantum mechanics where electron/photon/whatever interaction of the active environment
is taken into account and the superposition principle holds, there is no quantum mechanic
involved for NLS equation.

The blow-up solution for NLS is not present in applications but rather an indication
that the NLS approximation breaks down as it is an asymptotic model, see [96] and
references there in. The blow-up phenomenon is recognized if the simulated solution
develops a singularity and becomes concentrated near a point as the time of the blow-up is
approached, e.g. the wave collapses that can possibly be experienced by optical turbulence
and the saturation in the NLS solution neccessitates the inclusion of some damping whenever
the amplitude gets large. Consequently, the peak forms of the solution become and remain
finite, and one observes outgoing circular wave-trains after the collapses of the NLS solution.
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Chapter 4. The NLS equations: Existence Properties and Numerical Observations of Blow-ups

4.1 Local and Global Existence Properties

The Cauchy problem for the NLS equation with power nonlinearity (σ ∈ N+) in 1 + d

dimension readsiψt + ∆ψ + γ|ψ|2σψ = 0; ψ : R+ × Rd → C, γ = ±1

ψ0(x) = ψ0 : Rd → C, ψ0 ∈ Hs(Rd)
(4.1.1)

where γ = ±1 corresponds to a focusing and defocusing nonlinearity respectively and ψ → 0
as |x| → ∞. The existence results of the solution to the NLS equation defined on the whole
space Rd are proved from the Duhamel integral formulation

ψ(t,x) = e−it∆ψ0(x) + iγ

∫ t

0
e−i(t−t

′)∆|ψ|2σψ(t′,x)dt′ (4.1.2)

where e−it∆ is a one-parameter unitary group operator. The proof that ψ(t,x) exists locally
for a small time t is established by applying the Banach fixed Point theorem. Due to
the dispersion properties of the linear operator ∆, for any ψ(x, t) taken in an appropriate
Banach space, the Duhamel formulation (4.1.2) defines a contraction map for a sufficiently
small t. If the locally existing solution ψ(t,x) can be extended for all times, then the
global existence (existence for all times) of ψ(t,x) is proved via important a priori estimates
from Sobolev inequalities and some conservation laws on the norms of ψ(t,x). There, the
asymptotic behaviour of ψ(t,x) as t→∞ becomes interesting.

Most interesting is the dynamic behaviour of the NLS equation with attracting
nonlinearity, for that we will focus on the focusing NLS equation.

4.1.1 Conservation Properties of NLS

The focusing NLS equation in (4.1.1) being a Hamiltonian system has conserved quantities
which include the mass

M [ψ] =
∫
Rd
|ψ|2dx := ‖ψ‖2

2 , (4.1.3)

the energy (also corresponding to Hamiltonian),1,

E[ψ] =
∫
Rd

(
|∇ψ|2 − 1

σ + 1 |ψ|
2σ+2

)
dx := ‖∇ψ‖2

2 −
1

σ + 1 ‖ψ‖
2(σ+1)
2(σ+1) , (4.1.4)

and the momentum
P [ψ] = =

∫
Rd

(
ψ∗∇ψ

)
dx. (4.1.5)

1The term ‖∇ψ‖2
2 is the diffraction term competing with the nonlinearity ‖ψ‖2(σ+1)

2(σ+1). The condition
E[u0] < 0 corresponds to stronger nonlinearity than the diffraction and vice-versa for E[u0] > 0. We will
see later none of them is a sharp condition and both can lead to blow-up solution.
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4.1. Local and Global Existence Properties

See appendix III for the proof. The mass and energy are in general conserved for a regular
solution ψ of (4.1.1).

There are also corresponding symmetries such as spatial translation, spatial rotation
and time-translation of ψ(t,x). The Laplacian ∆ is invariant under rotation and the
conjugate of the NLS equation will invert the time from t to −t. Among the most important
invariances, especially for blow-up tracing, is the scaling-invariance.

The minimal regularity (smoothness) index s for local existence of solution in Hs(Rd)
depends on the nonlinearity exponent σ. This defines criticality at the level of the Sobolev
space Hs(Rd). Thus, the Cauchy problem in Hs(Rd) has a critical exponent σ provided
the NLS equation (4.1.1) and the Sobolev norm ‖ψ‖Ḣ(Rd) stay invariant under scaling
transformation.

For λ > 0, one chooses a, b, c ∈ R, so that the focusing NLS equation remains invariant
under the scaling transformation 2

ψλ(t̃, x̃) := λaψ(λ−bt, λ−cx), t→ t̃ = λbt, x→ x̃ = λcx.

It is easy to check that the equation is invariant when a = 1/σ, b = −2 and c = −1.
Therefore, if ψ solves the NLS (4.1.1), then

ψλ(t̃, x̃) = λ1/σψ(λ2t, λx) (4.1.6)

solves the NLS equation (4.1.1), where t→ t̃ = t/λ2 and x→ x̃ = x/λ.
Similarly, Since Ḣs is a scale invariant, in Fourier domain, we have

‖ψ‖Ḣs =
∥∥∥|ξ|sψ̂(ξ)

∥∥∥
L2
ξ

(4.1.7)

with |ξ| =
√
ξ2

1 + · · ·+ ξ2
d, then for |α| = s, using the scaled solution ψλ (4.1.6)

‖ψλ‖2Ḣs =
∫
Rd
|Dαψλ(t̃, x̃)|2dx̃ ≡

∫
Rd
λ2/σ|Dαψ(t,x)|2λ−ddx

= λ
2
σ
−d
∫
Rd
|Dαψ(t,x)|2dx ≡ λ

2
σ
−d
∥∥∥|ξ|sψ̂(ξ)

∥∥∥2

L2
ξ

≡ λ
2
σ
−d ‖ψ‖2L2

x

(4.1.8)

and then ‖ψλ‖Ḣs = λ
d
2−

1
σ ‖ψ‖L2

x
. The last equality follows from the Plancherel identity.

With ‖ψ‖L2
x(Rd) = λ

d
2−

1
σ ‖ψλ‖Ḣs let the critical exponent be

s = σc := d

2 −
1
σ

2Using the scaling for the NLS equation to be invariant one gets b − a = 2c − a = −2σa − a yielding
b = 2c. If c = −1, then b = −2 and a = 1/σ.
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Chapter 4. The NLS equations: Existence Properties and Numerical Observations of Blow-ups

The nonlinearity exponent takes the form σ = 2/(d− 2σc).

This shows s < d/2. Furthermore, the condition on σ for local existence of solution in
Hs(Rd) is classified as subcritical if σ < 2/(d−2s), critical for σ = 2/(d−2s) and supercritical
when σ > 2/(d − 2s). Nevertheless, the local existence theorem for any ψ0 ∈ Hs(Rd) can
be employed only in the subcritical or critical case, for instance read [73] for more details.

As a result, we can classify the Cauchy problem for the focusing NLS equation at the
level of the space Hσc for each σc. Thus, σc = 0 corresponds to σd = 2 and preservation
of the L2-norm, hence the NLS equation is L2-critical or mass-critical. Moreover, if for
non-zero ψ ∈ L2(Rd) but lim

λ→0
‖ψλ‖L2(Rd) = 0 and σd < 2 then the NLS equation is

L2-subcritical and L2-supercritical when lim
λ→0
‖ψλ‖L2(Rd) = ∞ and σd > 2. Some common

values of σc, σ and d are given in the following table:

d 1 2 3 4
σ = 1 −1

2 0 1
2 1

σ = 2 σc 0 1
2 1 3

2
σ = 3 1

6
2
3

4
3

5
3


Hs-critical σ = 2/(d− 2s)

L2-critical σd = 2

H1-critical σ = 2/(d− 2)

In a similar fashion, σc = 1 corresponds to invariance of ‖ψ‖Ḣ1 and σ = 2/(d − 2).
Therefore, the NLS equation is H1-critical or energy-critical. Moreover, the NLS equation
is H1-subcritical (respectively supercritical) if σ < 2/(d − 2) (respectively σ > 2/(d − 2))
and for nonzero ψ ∈ H1 and lim

λ→0
‖ψλ‖2(Rd) = 0 (respectively =∞).

Remark 4.1.1. In the H1-subcrtical case, the condition on σ can be 0 < σ <∞ for d ≤ 2
and 0 < σ < 2/(d− 2) for d > 2.

Theorem 4.1.1 (Existence in L2 and H1). Given an initial data ψ0 = ψ(0,x)

(i) if ψ0 ∈ L2(Rd) for 0 ≤ σ < 2/d, then ∃ a unique solution

ψ ∈ C(]− T∗, T∗[, L2(Rd)) ∩ Lp(]− T∗, T∗[, L2(σ+1)(Rd))

having ‖ψ‖2L2(Rd) preserved, where p = 4(σ + 1)/dσ.

(ii) if ψ0 ∈ H1(Rd) and 0 ≤ σ < 2/(d − 2) for d > 2, ∃ a positive T∗=T∗(‖ψ0‖H1 )

monotonically decreasing in ‖ψ0‖H1 and a unique maximal solution ψ ∈ C(] −
T∗, T∗[, H1(Rd)) preserving the mass and energy. If moreover, ψ0 ∈ Σ := {u : u ∈
H1(Rd), |xu| ∈ L2(Rd)} with variance V (t) =

∫
Rd |x|2|ψ|2dx <∞ satisfying

1
8
d2V (t)
dt2

= E[ψ(t)]− dσ − 2
2(σ + 1)

∫
Rd
|ψ|2(σ+1)dx = ‖∇ψ‖22 −

σd

2(σ + 1) ‖ψ‖
2(σ+1)
2(σ+1) .
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4.1. Local and Global Existence Properties

The first part of the theorem, as proved in [211], provides the condition for local
existence of the solution in finite time T∗ by requiring the L2-norms be conserved in the
subcritical case σd < 2. While the second part, for ψ to exist in H1(Rd) satisfying the mass
and energy equations, we need σ < 2/(d − 2) for d > 2. If the virial identity holds with
variance V (t) ∈ C2(] − T∗, T∗[) then ψ exists in the space Σ. The maximal solution here
implies that ‖ψ(t)‖H1(Rd) →∞ as t→ T∗ <∞.

Existence may also depend on the size of initial data ψ0. For large initial data in
H1(Rd), both the defocusing NLS equation (with 0 ≤ σ < 2/d) and focusing NLS equation
(with 0 ≤ σ < 2/(d− 2)) admit a global solution ψ ∈ C(R, H1(Rd)), having finite mass and
energy, that depends continuously on the ψ0 ∈ H1(Rd). These conserved quantities provide
a uniform upper bound for ‖ψ‖H1(Rd), see [128] and [72]. The key tool in the proof is the
well-known "Gagliardo-Nirenberg inequality"

‖u‖2(σ+1)
2(σ+1) ≤ Cσ,d ‖∇u‖

σd
2 ‖u‖

σ(2−d)+2
2 (4.1.9)

applied on the conserved Hamiltonian (4.1.4) so that, provided the L2-norm is conserved, a
uniform upper bound for ‖∇ψ‖L2 is obtained in the subcritical case σd < 2 for the focusing
case. However, having a bound on the ‖ψ‖H1 , global existence in H1 does not directly
follow. This is because, ψ may cease to exist in H1 even though the solution ψ may be in
L2(Rd), but ψ tends to a delta function which is not in L2(Rd).

Figure 4.1: Blow-up solution to the focusing NLS equation (4.1.1) at the critical dimension
d = 1 with σ = 2 for initial data exp(−x4/4) ∈ H1(R).
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Chapter 4. The NLS equations: Existence Properties and Numerical Observations of Blow-ups

For ψ to remain in H1(Rd) for all t, we need an a priori estimate, i.e. variance identity to
be discussed later 3. Merle and Tsutsumi [155] proved that in the focusing NLS equation
if σd = 2 and lim

t→T∗
‖ψ‖H1 = ∞ then ψ has no limits in L2(Rd). According to Weinstein

[218], the sufficient condition for global existence of the focusing NLS equation is either
0 < σ < 2/d or σd = 2 and ‖ψ0‖2 <

(
Cσ,d/(σ + 1)

)−1/σ := κσ,d. The latter result is
obtained by inquiring that

(Cσ,d
σ+1

)
‖ψ‖σ(2−d)+2

2 < 1 as the sufficient condition for global
existence in the uniform upper bound of ‖∇ψ‖22 discussed earlier.

The H1(Rd) is particularly important since the NLS theory and applications heavily
rely on the mass (4.1.3) and Hamiltonian (4.1.4). For that, these conserved quantities
should be finite, and this would make it possible working in the space H1(Rd). In fact, for
NLS equation H1(Rd) is a natural choice for the study of the existence and blow-up.

4.2 Blow-up Alternative

Before we discuss about classical blow-up results, let us discuss some behaviour that can lead
to an alternative to blow-up. Consider ψ ∈ H1(Rd) and the scaling ψλ = λ1−d/2ψ(λ−1x),
one can verify that the following estimates

lim
λ(t)→0
t→T∗

‖ψλ‖22 = 0, lim
λ(t)→0
t→T∗

‖ψλ‖2H1 = ‖∇ψ‖22 , lim
λ(t)→0
t→T∗

|ψλ| = δ(x) ‖∇ψ‖22 ,

imply that even if ψ has a bounded H1(Rd) norm, ψ could exit the space H1(Rd) at some
time T∗. Therefore, in the absence of existence in H1(Rd), the NLS equation is said to be
singular since a priori estimate will reflect the nonexistence of ψ. In what follows, we will
trace the singularity by investigating if the H1 norm diverges.

Singularity (blow-up) signifying the nonexistence of ψ as a particular time T∗ is
approached has a corresponding location in space of occurrence. Assume ψ0 ∈ H1(Rd),
then according to the Theorem 4.1.1(ii) there exists a unique maximal solution ψ on the
interval ] − T∗, T∗[. We say that either T∗ = ∞ or 0 < T∗ < ∞ and lim

t→T ∗
‖ψ‖H1 = ∞. If a

singularity occurs, its corresponding position can be denoted as x∗.
To this end, we conclude that the NLS equation is singular if any norm of its solution
blows-up. Based on the Weinstein [218] results, blow-up is possible whenever σd ≥ 2 in
the focusing NLS equation and global existence for σd < 2. Thus, σ = 2/d is the critical
exponent for blow-up in the NLS equation. Therefore, the NLS equation is classified as
subcritical when 0 < σ < 2/d, critical if σd = 2 and supercritical with σd > 2. These

3An a priori estimates is the one that is derived from the given equation before we know existence of
solution, which is the variance identity in this case. It will be useful in detailing if ψ remains in the said
solution space. For ψ0 ∈ L2(Rd) and ‖ψ0‖2, of course ‖ψ0‖2 = ‖ψ‖2 that does not ensure existence for all
t ≥ 0. This clears air for blow-up existence in Theorem 4.1.1(i) when σd = 2.
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4.2. Blow-up Alternative

correspond to the classification of NLS equation at the level of L2(Rd). In the subcritical
case, the Weinstein results do not rule out existence of blow-up solution in the subcritical
NLS equation (see why in Fibich [52]) 4. For the critical case, as we will see later the
sufficient condition for blow-up is negative Hamiltonian E[0] < 0 which is opposite to the
case for global existence given by Weinstein [218] where 0 < ‖ψ0‖22 < κσ,d and E(0) > 0
or ‖ψ0‖22 ≥ κσ,d and E(0) ≤ 0 for blow-up. In fact, in the critical and supercritical case,
there exists ε > 0 such that if ‖ψ0‖H1 > ε then ψ blows up. See Theorem 6.2.1 in [32] for
details. Therefore, this motivates the use of appropriate scaling of ψ to study its blow-up
behaviour.

4.2.1 Critical NLS: Sufficient condition for global existence

So far, we only know of the consequence of the Weinstein results on the sufficient condition
of blow-up to the focusing NLS equation in the critical dimension, that is ‖ψ0‖22 ≥ κσ,d and
E(0) ≤ 0. Let us advance by exploring what the Gagliardo-Nirenberg inequality (4.1.9)
entails. Using the inequality, for any non-zero u ∈ H1(Rd), we define the functional

I[u] = ‖∇u‖
σd
2 ‖u‖

2σ−(σd−2)
2

‖u‖2(σ+1)
2(σ+1)

(4.2.1)

so that 0 < 1/Cσ,d ≤ I[u] for positive constant Cσ,d = C(σ, d), see [67, 68, 164] for instance.
If Cσ,d is large, the inequality (4.2.1) still holds but could fail for smaller Cσ,d for some u.
Searching for optimal Cσ,d in which the inequality (4.1.9) holds for all u ∈ H1(Rd) becomes
necessary. We therefore define an optimization problem on ψ:

C̃σ,d =
[

min
H13ψ 6≡0

I[ψ]
]−1

. (4.2.2)

If such a minimizer ψ̃ exists, then the inequality (4.1.9) holds for ψ̃ and we will have
C̃σ,d = 1/I[ψ̃], see [218, 159]. It turns out that, as found in the proof of existence of the
minimizer by Weinstein [218] and Nawa [159] in the H1(Rd), the minimizer takes the form
of real-valued function Q(x) up to a phase factor eiω(t):

ψ̃(t,x) = Q(x)eiω(t). (4.2.3)

See Fibich ([51], section 5.12), the Theorems, Lemmas, corollaries and the references therein.
The Function Q(x) is known as the ground state. It has the minimal mass (L2 norm) of the
non-zero solution in H1(Rd) and any solution with larger mass is considered as an excited

4Fibich [52] shows that an explicit singular solution can be constructed in which ‖ψ‖p < ∞ but
limt→T∗ ‖ψ‖p =∞ for any 2 < p <∞.
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Chapter 4. The NLS equations: Existence Properties and Numerical Observations of Blow-ups

state. Thus, the ground state Q is crucial in the blow-up study of the NLS equation since
it contains the minimal mass of ψ required for blow-up.

In the critical dimension σd = 2, as one may observe, the ground state solution Q(0)

of the equation
∆Q+ |Q|4/dQ− ωtQ = 0 (4.2.4)

attains the minimizer of the functional I[Q], i.e. I[Q(0)] = inf
H13Q6≡0

I[Q]. In fact,

I[Q(0)] = inf
H13Q 6≡0

I[Q] = 1
σ + 1

∥∥∥Q(0)
∥∥∥2σ

2

and the optimal constant C̃σ,d is

C̃σ,d = (σ + 1)/
∥∥∥Q(0)

∥∥∥2σ

2
= (d+ 2)/

(
d
∥∥∥Q(0)

∥∥∥4/d

2

)
.

These obtained results joined together with the sufficient conditions for global existence
(resp. for blow-up) in the critical case translate to sufficient conditions for global existence
(resp. blow-up) in terms of ground state Q(0)

‖ψ0‖22 <
∥∥∥Q(0)

∥∥∥2

2
resp. ‖ψ0‖22 ≥

∥∥∥Q(0)
∥∥∥2

2
. (4.2.5)

Therefore, the critical-mass for blow-up is given by norm of the ground state
∥∥∥Q(0)

∥∥∥2

2
.

4.3 Ground state

Having seen, in the previous section, the role that the ground-state plays, it is important
to know that the blow-up profile of ψ is completely described by Q. In order to study this
blow-up profile, we plug into the NLS equation, the stationary or solitary wave solution

ψ(t,x) = eiωtQ(x) (4.3.1)

in the ground-state equation (4.2.4), where ω(t) = ωt for real ω. This yields

∆Q+ |Q|4/dQ = ωQ. (4.3.2)

We are interested in the positive, smooth, radially symmetric solution in H1. However, the
necessary condition for existence 5 of ψ ∈ H1(Rd) can be shown to be ω > 0. Roughly
speaking, as |x| → ∞ the nonlinear term is negligible since lim

|x|→∞
Q = 0. Therefore we deal

5This condition may not hold for unbounded domains.
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4.3. Ground state

with only the linear eigen-value equation

∆Q = ωQ. (4.3.3)

Solutions to the linear equation oscillate for ω < 0 and may decay slowly but not sufficiently
enough to be in the space H1. For instance, in one-dimension Q = cos(

√
−ωx) oscillate as

x→∞ but the radial solution for d ≥ 1 decays to zero at a slow rate of 1/r(d−1)/2. Thus,
Qω<0 /∈ H1.

From now on, we will refer to the ground state equation as the profile equation since
it governs the profile of the solitary wave solution, it also represent the self-similar explicit
blow-up solution of the focusing NLS equation. Moreover, the minimizer of the functional
I[ψ] satisfies this profile equation.

There are infinitely many solution to the profile equation, even if we restrict ourselves
to the positive smooth ones. However, it can be proved that the profile equation admits a
unique, strictly positive, analytic, radially symmetric about a point x0 ∈ Rd solution. See
section 6.3 of [51].

Before we go further, we will discuss about important identities of Pohozaev. The
Pohozaev identities for the NLS equation firstly appeared in the work [183]. It is useful in
deducing estimates associated to the ground state Q.

4.3.1 Pohozaev Identities

Let Q(x) solves the profile equation (4.3.4)

∆Q+ |Q|2σQ− ωQ = 0 (4.3.4)

then, with ω > 0 we have

‖Q‖22 = 2σ − (σd− 2)
2ω(σ + 1) ‖Q‖2(σ+1)

2(σ+1) , ‖∇Q‖22 = σd

2σ + 2 ‖Q‖
2(σ+1)
2(σ+1) . (4.3.5)

These are called the Pohozaev identities and their proofs are provided in the appendix III
section C.0.2. Consequent to the 2nd part of this identity is the following.

If the solitary wave solution (4.3.1) satisfies the Hamiltonian (4.1.4) and the
ground-state satisfying the Pohozaev identity, it then follows that

E[Q] = σd− 2
2σ + 2 ‖Q‖

2(σ+1)
L2(σ+1) (4.3.6)

and we can easily deduce that E[Q] < 0 if σd < 2, E[Q] = 0 when σd = 2 and E[Q] > 0
when σd > 2. This implies that H[Q] is negative in the subcritical case. Relations for the
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functional I[Q] can be derived using the Pohozaev identities.

4.3.2 Critical NLS: Variational Characterization

In the critical NLS equation, σd = 2, as we know, there exist a minimal critical mass Mmin

with ‖ψ0‖22 = Mmin so that E[ψ0] ≤ 0. The critical ground state Q(0) is not only the
minimizer of the variational problem given by the functional I[Q] but also minimizes many
related variational problems, such stated as follows:

Lemma 4.3.2.1 (Variational characterization). Assume σd = 2, then the ground state Q(0)

attains the infimums

(i) inf
H13Q6≡0

{‖Q‖22 : E[Q] ≤ 0} := Mmin; (ii) inf
H13Q6≡0

{E[Q] : ‖Q‖22 = Mmin} = 0.

The first part can be proved using the assumption that such I[Q] exists and E[Q] ≤ 0.
Then ‖Q‖22 ≥ Mmin. However, this is the zero Hamiltonian case, hence E[Q(0)] ≥ 0 and∥∥∥Q(0)

∥∥∥2

2
= Mmin, but using the (4.3.6) we have E[Q(0)] = 0. The second part follows directly

from (4.3.6) when σd = 2.

To this end, the variational characterization for Q of (4.3.4) suggests that, in the
critical case, the blow-up solution ψ(t) can be constructed in terms of Q with ‖ψ0‖2 slightly
larger than ‖Q‖2. While ψ(t) has to match Q asymptotically, however, the spectral analysis
of the linearized NLS equation in the neighbourhood of Q exhibits a missing direction which
indicates the needs of Q to be extended as complex-valued function [233].

4.4 Virial theorem (Variance Identity)

A virial theorem is a useful tool that provides us with conditions that suffice to trace classical
blow-up solutions to the NLS equation (4.1.1). Suppose u(t,x) ≡ ψ(t,x) solves the NLS
equation (4.1.1) and u0 ∈ Σ = {f : f ∈ H1,xf ∈ L2}, the variance of the solution u is given
by V (t) = V [u(t,x)] =

∫
Rd |x|2|u|2dx, i.e. V (t) is a moment of inertia of u. For 0 ≤ t < T∗,

the variance identity is defined by the quantity

d2V (t)
dt2

= 8E[u]− 4
(
σd− 2
σ + 1

)∫
Rd
|u|2σ+2dx. (4.4.1)

It is particularly important in checking the finite time existence of solution to NLS equations.
The virial theorem confirms the presence of blow-up in the critical and supercritical
dimensions σd ≥ 2 even for smooth initial conditions and large class of initial data having
negative Hamiltonian. The requirement u0 ∈ Σ is to ensure that V (0) < ∞. See section
C.0.1 of Appendix III for the the derivation of virial identity for NLS equation. The variance
identity was derived in the work [215] and is also known as virial theorem .
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4.4.1 Critical NLS: sufficient conditions for blow-up

The sufficient, not necessary, conditions for collapse are stated in the theorem:

Theorem 4.4.1. Let u0 ∈ H1, and E[u0] < 0 with V (0) < ∞, in the critical and
supercritical case σd ≥ 2 satisfying any of the conditions
(i) E[u0] < 0
(ii) E[u0] = 0 and =

∫
Rd x · u∗∇udx < 0

(iii) E[u0] > 0 and =
∫
Rd x · u∗∇udx < −4

√
E[u0] ‖xu0‖2. Then, blow-up occurs in finite

time, i.e. there exists some T ∗ <∞ such that

lim
t→T ∗

‖u(t)‖∞ =∞, or lim
t→T ∗

‖∇u(t)‖2 =∞. (4.4.2)

Proof. Obviously, if σd ≥ 2, we have d2V (t)/dt2 ≤ 8E. Therefore,

V (t) ≤ P (t) := 4E[u0]t2 + C1t+ C0. (4.4.3)

If C0 = V (0) < ∞ and positive, the polynomial P (t) has at least a positive root t0, that
lim
t→t0

P (t) = 0, based on any of the conditions on its coefficients 6.
(i) That 4E[u0] < 0 or E[u0] < 0 implies V (t) < 0.
(ii)That 4E[u0] = 0 and C1 < 0 or

E[u0] = 0 and V ′(0) = 2i
∫
Rd(x · [u0∇u∗0 − u∗0∇u0])dx = 4=

∫
Rd(x · u0∇u∗0)dx < 0.

(iii) That 4E[u0] > 0 and C1 < 0 and the discriminant C2
1−4(4E[u0])C0 ≥ 0 or equivalently

E[u0] > 0 and C1 ≤ −4
√
E[u0]C0.

With C0 = V (0) = ‖xu0‖22 =
∫
Rd |xu0|2dx, we rewrite the above condition as

E[u0] > 0 and =
∫
Rd
x · u∗0∇u0dx < −4

√
E[u0] ‖xu0‖2 .

In all the cases, the quantity in the right-hand-side of variance identity (4.4.1) imposes
conditions on the variance V (t). It is the point at which the V (t) attains a local maximum
since V ′′(t) < 0, i.e. there is some t = t0 with 0 ≤ t ≤ t0, the root of the parabola P (t) such
that V (t) ≤ P (t) for all t ∈ [0, t0]. 7That is, V (t0) ≤ 0 in any of the three conditions. This
is false, because V (t) ≥ 0 and V (t) = 0 only if u ≡ 0. However, none of the three conditions
holds with u ≡ 0. Hence, we conclude that, there is some t1 ≤ t0 so that lim

t→t1
V (t) = 0.

6Use Descartes’ rule of signs applied to polynomials, to see the number of positive and negative roots of
the parabola P (t).

7By definition, V (t) should be positive, besides the roots of P (t) must be positive since t ≥ 0.
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Moreover, to emphasize the vanishing of the variance we employ the inequality due
to uncertainty principle by assuming the norm ‖u‖2 is conserved. Applying integration by
part on the L2-norm and use the identity ∇ · (ϕ−→A ) = ϕ∇ ·

−→
A +−→A · ∇ϕ:∫

Rd
|u|2dx = −1

d

∫
Rd

[
∇ · (x|u|2)− x · ∇(|u|2)

]
dx = −1

d

∫
Rd
x · ∇(|u|2)dx (4.4.4)

where x · ∇(|u|2) = 2<
(
u∗x · ∇u

)
and by Cauchy-Schwartz inequality we can derive the

uncertainty-principle applied to the solution u:

‖u‖22 ≤
2
d
‖∇u‖2 ‖xu‖2 . (4.4.5)

According to the inequality (4.4.5), if V (t) = ‖xu‖22 is to vanish, there exists some
T∗ ≤ t1 such that lim

t→T∗
‖∇u(t)‖2 = ∞, [212]. If in addition, the E[u0] is conserved, then

lim
t→T∗

‖u‖2σ+2
2σ+2 = ∞ and lim

t→T∗
‖u‖∞ = ∞ because ‖u‖22 is conserved. Thus vanishing of V (t)

yields an upper bound for the blow-up time, i.e. 0 < T∗ ≤ t0 ≤ t1. Therefore, the parabola
P (t) vanishes at t0, the variance V (t) approaches 0 at t1 while the blow-up of u is at T∗. 8

Remark 4.4.1. Blow-up to the critical NLS equation can occur without having any of the
conditions in the theorem (4.4.1) satisfied.

As mentioned in the previous section, defocusing NLS solutions still develop singularity.
Similar scenario, as above, can be followed in the verification of this 9.

The variance identity is an a priori estimate derived based on the assumption that
the NLS equation has a solution. This can best be viewed from the critical case where
the equation V ′′(t) = 8E[u0] admits a solution for all t > 0, but, imposing that V (t) ≥ 0
makes the variance identity indicates the NLS equation has blow-up at t0 where P (t)→ 0
as t→ t0 and the variance bifurcates from being that of the NLS equation when t ≥ T∗.

Variance as a global quantity is not in general a reliable measure for local phenomena
like the blow-up in the NLS equation. For instance, a solution to the NLS equation in the
cases σd ≥ 2 with the radial initial data u0(x) = ce−|x|

2 does not have a vanishing variance
at the blow-up time T∗ if slightly larger mass than critical mass is taken, i.e. ‖u0‖22 = κσ,d+ε

8Note that, the direct statement lim
t→T∗

‖∇u‖2
2 =∞ in (4.4.5) has two implications: lim

t→T∗
V (t) ≥ 0, however,

V (t) is undefined if t > T∗. Thus, if lim
t→T∗

V (t) > 0 no such t1 which yields lim
t→T∗

V (t) = 0. If it exists, it is
t1 = T∗. Hence, if t1 <∞ then T∗ = t1 and the bound on T∗ is 0 < T∗ ≤ t0.

9If σd < 2, it then implies that d2V/dt2 > 8E[u0] from virial theorem d2
dt2

V=8E[u]+ (σd−2)
(2σ+2) ‖u‖

2σ+2
2σ+2.

This leads to P (t) = 4E[u0]t2 + V ′(0)t + V (0) whose positive root is given by t =
(
− V ′(0) +√

V ′2(0)− 16E[u0]V (0)
)
/8E[u0] and holds only when V ′(0) <

√
V ′2(0)− 16E[u0]V (0). Therefore, E[0] <

0 if V (0) 6= 0 reflects the first hypothesis of Theorem 4.4.1. Hence singularity shows up because V (t) would
become negative again.
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for small ε > 0. In fact, as numerical simulation will show, limt→T∗ V (t) > 0 for σd = 2.
10 However, the only known blow-up solution whose variance vanishes at T∗ is the explicit
blow-up solution of the critical NLS equation, such as the Pseudo-conformal transform of
u(t, r). Moreover, in [160, 161], it is shown that, for beam input initial data, if V (t) vanishes
at T∗, then the solution experiences a strong or whole beam collapse and a weak or partial
beam collapse for non-vanishing variance 11.

In the supercritical case, sharper conditions than that of the Theorem 4.4.1
are obtained by using the Gagliardo-Nirenberg in equality (4.1.9) to bound the term
σd−2
2σ+2 ‖u‖

2σ+2
2σ+2, see [112, 214]. There, in terms of the ground-state, it is proved that the

conditions for the blow-up solution u at T∗ are: if Qω satisfies the profile equation (4.2.4),
then there exist unique ω such that ‖u0‖22 =

∥∥∥Q(0)
ω

∥∥∥2

2
and if ‖∇u0‖22 >

∥∥∥∇Q(0)
ω

∥∥∥2

2
then

E(u0) < E(Q(0)
ω ). Nevertheless, the latter alone is not a sufficient condition for blow-up if

σd > 2, see[202] pg. 97-98 and references therein for further results on various domains.

Further studies have shown that results can be extended to infinite variance, i.e. the
situation in which the variance V (t) is allowed pass the blow-up time T∗. Some of the results
include that of Ogawa and Tsutsumi [170, 171] in the critical and supercritical dimensions.
Read also [202] sect. 5.1.2. and the references there in.

4.5 Numerical observations of blow-up

Numerical experiments as found in [202] and [52] suggest that in the dimensions d ≥ 2 for an
initial data (symmetric or non-symmetric) the blow-up appeared to be a radial phenomenon.
Therefore, we consider in this section only the radial setting of the NLS equation. In the
critical dimension, the ground state (profile) equation (4.3.2) has a positive radial solution
[218] and a unique solution [188]. Thus, there exists a unique positive radial solution to
the focusing NLS equation (4.1.1). Setting ψ(t,x) ≡ u(t, r) where r := |x− x0|, the radial
equivalent of the NLS equation (4.1.1) in Ω ⊂ R+ with u : R× R+ → C for 0 < r <∞ is

iut + ∆u+ |u|2σu = 0, u(r, 0) = u0(r) ∈ H1(Rd) for r > 0. (4.5.1)

u(r)→ 0, as r →∞, ∂Ω =
{
u ∈ C : u(t, 0) = u′(t, 0) = 0

}
(4.5.2)

10At the point of collapse, for critical NLS equation, the mass is conserved but becomes concentrated and
focused at the position x∗. The amount of mass absorbed in the singularity at x∗ is the limiting lower bound
of the critical mass near x∗, i.e. lim

ε→0

[
lim inf
t→T∗

∫
Bε(x∗) |u|

2dx
]
over Bε(x∗)={x∈Rd:|x−x∗|=ε}.

11The partial beam collapse, as an example, is one with delta function as a singularity, [51] pg. 163.
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where ∆u = r1−d∂r(rd−1∂r)u = (∂2
rr + ((d − 1)/r)∂r)u. By applying the solitary wave

solution ansartz u = eiωtQ(r) without loss of generality ω = 1 one gets, forQ : Ω ⊂ R+ → C,

∆Q+ |Q|2σQ−Q = 0, r > 0, Q(r) ∈ H1(Rd) (4.5.3)

Q(r)→ 0, as r →∞, ∂Ω =
{
Q ∈ C : Q(0) = Q′(0) = 0

}
. (4.5.4)

If Q and the nonlinear part are continuous, the solution to the problem (4.5.3)-(4.5.4)
is unique. See chapter 6 of [51] for the existence of Q and its asymptotic results in the
section C.1. Furthermore, in the non-radial setting, the equation (4.5.3) can have a complex
solution, for example take Q = Qne

inθ, n ∈ Z. See section 15.2 of [51].

In the dimension d = 1, the ground-state equation for Q(r) has an explicit solution

Q(r) = ±(σ + 1)1/(2σ) sech 1/(2σ)(σr). (4.5.5)

At the critical dimension σ = 2 we have Q(r) = ±31/4 sech 1/4(2r) or at the subcritical
dimension we have Q(r) = ±

√
2 sech 1/2(r) with σ = 1. In the higher dimensions d > 1, no

explicit ground-state solutions are known. Therefore, one resorts to numerical methods.

4.5.1 NLS: Self-Similarity

Self-similarity is a crucial property of the solutions to the NLS equation especially in the
study of the asymptotic behaviour of the solution u near collapse. Self-similarity for NLS
equation implies the existence of the profile U(t, r) and the scaling functions a(t), b(t) such
that, in the dimensions d > 2, solutions u takes the form

u(t, r) = 1
a(t)U

(
r

b(t)

)
(4.5.6)

with lim
t→T∗

a(t) = 0 and lim
t→T∗

b(t) = 0 where a(t) provides the blow-up rate and the b(t)
plays the role of spatial rescaling factor. However, a solution to the NLS equation in
dimension d = 2 is approximately self-similar [188], where with the incorporation of the
small correction term, quasi-self-similar solutions are given as

u(t, r) = 1
a(t)U

(
r

b(t)

)
+O(a(t)). (4.5.7)

The NLS equation is known to admit the (approximate) self-similar solutions of the form

u(t,x) = 1
tα
U

( x
tβ

)
+O(tα), α = q

2 ∈ C with <(q) = 1
σ
, β = 1

2 . (4.5.8)
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Except at the critical dimensions σd = 2, the self-similar solution (4.5.8) is a not in H1(R2)
since one requires conserved L2 norm. This follows from ‖u‖22 = t

σd−2
2σ ‖U‖22,12 and ensures

that in the super critical case (σd > 2), H1(Rd) is not suitable space for self-similar solution
(4.5.8). Thus, it caused to seek self-similar solution u having U /∈ L2(Rd) so that ‖∇U‖22 <
∞ and ‖U‖2σ+2

2σ+2 <∞. Moreover, for σd ≥ 2 the energy E[u] scales like

E[u] = ‖∇u‖2
2 −

σd− 2
2σ + 2 ‖u‖

2σ+2
2σ+2 = t−1/σ−1+d/2E[U ]. (4.5.9)

When σd = 2, the energy in (4.5.9) associated to the self-similar solution (4.5.8) scales U
by an amplitude t−1 which proves the non-existence of u in H1(Rd). 13 For the energy E[u]
to be conserved σ = 2

d−2 must be taken, hence u is confirmed to exist in H1(Rd) only in the

dimensions d > 2. Furthermore, since ‖u‖2σ+2 = t
d

4(σ+1)−
1

2σ ‖U‖2σ+2, 14, a suitable space to
study the self-similar solution of the NLS equation introduced in [25, 26] is

Wσ =
{
u ∈ L∞loc((0,∞), L2σ+2) : sup

t∈(0,∞)
t−α ‖u(t)‖L2σ+2 <∞

}
(4.5.10)

where α = d
4(σ+1) −

1
2σ , see (Sulem-Sulem [202] sect. 3.2.4 and Cazenave [25]) and details on

the condition of the existence of solutions for initial data taken from the space of tempered
distributions for both linear and nonlinear Schrödinger equations.

4.6 Critical NLS: Asymptotic Self-similar blow-up solution

In order to handle and treat fairly the numerical instability that could rise near singularity in
the blow-up numerical simulations, there is need for reliable improved adaptive refinement
of the spatial resolution near singularity. For this requirements, a theoretical understanding
given in [144] and [177] recommends that asymptotically self-similar solutions, near blow-up,
are furnished by method of dynamic rescaling. The method entails the rescaling of the
variables involved in the NLS equation by the self-consistent factors given in terms of
appropriate norms of the blow-up solution at the singularity[177]. It is expected that the
rescaled solution has a constant norm which will result to a non-singular problem and allow
numerical time integration near blow-up possible. Furthermore, due to scaling invariance
property of the NLS equation the blow-up rate and blow-up profile are consequently
captured from the obtained results of dynamically rescaled equation.

Furthermore, one constructs, as suggested by Zakharov [239], a family of solutions
blowing up via a solitary wave transform eiωtQ(r) of the dynamically rescaled equation,

12Note that |t−
q
2 |2 = |e−q ln t | = |e−a ln t−ib ln t| = e−<q ln t = t−1/σ where q = a+ bi ∈ C.

13Using the transformation (4.5.8) one gets 2α− βd+ 2β = 2α(σ+ 1)− βd or α = β/σ. If β = 1, we have
α = 1/σ. Then, the scaling factor simplifies to t 1

σ
− d2 +1.

14This is obtained by taking the 1
(2σ+2) power of the relation ‖u‖2σ+2

2σ+2 = t−1/σ−1+d/2 ‖U‖2σ+2
2σ+2.
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where Q(r) is a ground state. A pseudo-conformal transformation uc(r, t) of the standing
wave solution u(r, t) = eitQ(r) yields an explicit blow-up solution

uc(r, t) = 1
(T∗ − t)1/σ e

i
(T∗−t)Q

( |x− x∗|
(T∗ − t)

)
e
−i|x−x∗|2
(4(T∗−t)) . (4.6.1)

At the critical dimension, 1/σ = d/2 and ‖u0‖22 = ‖Q‖22. Numerical simulation can show
that solutions with critical mass behaves like u(r, t) ∼ 1

γ(t)Q
( |x|
γ2(t)

)
where γ(t) = (T∗− t)1/2.

In this regards, the mass ‖Q‖22 defines the threshold for the ‖u0‖22.

With these, we summarize the results of the self-similar solution of the critical NLS
equation. If ‖u0‖22 < ‖Q‖22, global solutions exist and decay to zero at the rate which
free Schrödinger equation will so that supt |t|d/2−d/p ‖u(t)‖p < ∞. When ‖u0‖22 = ‖Q‖22,
solutions blow-up at the rate (T∗−t)−d/2; whereas when ‖u0‖22 > ‖Q‖

2
2 the solution blows-up

with mass ‖u0‖22 concentrated near the point of singularity by an amount with lower bound
given by ‖Q‖22.

Following the analysis given in [202], [144] and [177] we study the asymptotic behaviour
of the dynamically rescaled radially symmetric NLS equation (4.5.1).

4.6.1 NLS: Dynamic rescaling

The general dynamic rescaling of the radial equation (4.5.1) takes the form

τ =
∫ t

0
λ−2(s)ds, ρ = r

λ(t) , u(t, r) = 1
λ1/σ(t)

U(τ, ρ). (4.6.2)

If λ =constant, the equation (4.5.1) is invariant 15:

iUτ + Uρρ + (d− 1)
ρ

Uρ + |U |2σU = 0, U(0, ρ) = λ1/σu0(λρ).

However, if λ = λ(τ) with dτ
dt = λ−2(τ), letting α = α(τ) = − 1

λ(τ)
dλ(τ)
dτ = −(lnλ)τ 6= 0, the

terms transform respectively as follows:

iut = i

[
− U

σ
λ−

1
σ
−1(τ)dλ(τ)

dτ

dτ

dt
+ λ−

1
σ (τ)

(
Uτ
dτ

dt
+ Uρ

dρ

dτ

dτ

dt

)]
= i

[
− U

σ
λ−

1
σ
−2(τ) 1

λ(τ)
dλ(τ)
dτ

+ λ−
1
σ
−2(τ)

(
Uτ + λ(τ)ρ ·

(
− 1
λ2(τ)

dλ(τ)
dτ

)
Uρ

)]
= iλ−

1
σ
−2
[
Uτ + α(τ)

(
U

σ
+ ρUρ

)]
;

ur
r

= λ−1/σ(τ)
ρλ(τ) Uρ ·

dρ

dr
= λ−

1
σ
−2(τ)Uρ

ρ
; urr = λ−

1
σ
−2(τ)Uρρ,

15The parameter λ = λ(τ) represents the width of the blow-up solution u(r, t).
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In this case, the equation (4.5.1) transforms to

iUτ + Uρρ + iα(τ)
(
U

σ
+ ρUρ

)
+ (d− 1)

ρ
Uρ + |U |2σU = 0, ρ > 0 (4.6.3)

U0(ρ) = U(0, ρ) = λ1/σ(0)u0(λ(0)ρ); U → U∞, τ →∞. (4.6.4)

The scaling factor λ := λ(τ) is chosen such that certain spatial norm ‖·‖p is bounded, e.g.
the ‖u‖p and ‖∇u‖p for p = 2,∞. The idea, for smooth U , is to have λ(τ)→ 0 as τ →∞
while the t→ T ∗. For instance, since u(t, r) = λ−1/σU(τ, ρ), requiring ‖U‖∞ to be constant
would mean if |U | = ‖U‖∞ = maxρ |U(τ, ρ)|, then differentiating

|u(r, t)|2 = λ−2/σ|U(τ, ρ)|2

w.r.t. time τ , one gets 0 = λ(τ)−2/σ
[

2α(τ)
σ |U(τ, ρ)|2 + (|U(τ, ρ)|2)τ

]
, where by assuming

that U satisfies (4.1.1) and its conjugate

(|U(τ, ρ)|2)τ = Uτ Ū + UŪτ = i(U∆Ū − Ū∆U) = 2=(Ū∆U)

which yields, noting the infinity norm of U(τ, 0) is constant for all τ at ρ = 0,

α(τ) = − σ

‖U0(0)‖2∞
=(Ū∆U)(τ, 0) (4.6.5)

This ensures that λ(τ) =
(
|U0(0)|/ ‖u(t, r)‖∞

)σ ∼ ‖u(t, r)‖−σ∞ is taken. This choice of
uniform norm in τ , however, allows numerical instability due to accumulation of local errors
from the local behaviour of λ(τ), see (LeMesurier et. al. [126]).

Another approach, which fixes accumulation of local errors, is by fixing ‖∇U(τ, :)‖2 to
be constant for all τ . Using the scaled solution u(t, r) = λ−1/σ(τ)U(τ, ρ), then ∇u(t, r) =
λ−(1/σ+1)∇U(τ, ρ) so that we get |∇u|2rd−1dr = λ−2/σ−2+d|∇U |2ρd−1dρ, since u ∈ H1

blows-up. On integrating over ρ ∈ [0,∞), assuming the scaling (4.6.2) holds, we get by
fixing ρ = ρ0,∫ ∞

0
|∇u|2rd−1dr = λ−q

∫ ∞
0
|∇U |2ρd−1dρ, where q = 2 + 2

σ
− d,

equivalent to ‖∇u(t, :)‖2 = λ−q ‖∇U(τ, :)‖2, and we can take for fixed ρ (say ρ equals 0):

λ(τ) =
(‖∇U(τ, 0)‖2
‖∇u(t, :)‖2

)2/q
.

At the critical dimension d = 2/σ the λ(τ) scales like ‖∇u‖−1
2 . By differentiating w.r.t. τ
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one gets, with α(τ) = −(lnλ(τ))τ and λ−q 6= 0,

0 = −qλ−q−1dλ

dτ
‖∇U‖2 + λ−q

∫ ∞
0

(∇Uτ∇Ū +∇U∇Ūτ )ρd−1dρ

= qα(τ) ‖∇U‖2 −
∫ ∞

0
(Uτ∆Ū + Ūτ∆U)ρd−1dρ

= qα(τ) ‖∇U‖2 − i
∫ ∞

0
|U |2σ(U∆Ū − Ū∆U)ρd−1dρ

= qα(τ) ‖∇U‖2 − i(2i)
∫ ∞

0
|U |2σ=(U∆Ū)ρd−1dρ.

(4.6.6)

The integral in the second equality is obtained through integration-by-parts and the third
one is from using the equation (4.1.1) and its conjugate. We, therefore, get

α(τ) = − 2
q ‖∇U(ρ, 0)‖2

∫ ∞
0
|U |2σ=(U∆Ū)ρd−1dρ. (4.6.7)

It is noted, in [202], that in the case of computing ‖∇U(τ)‖2 that we do not worry about
accumulation of numerical errors, whereas the latter is expected for ‖U‖∞ due to the
presence of instability introduced by the local behaviour of the scaling factor λ(τ) (see
[144], sec. III). Furthermore, if we differentiate ‖∇U(τ, ρ)‖22 w.r.t. τ , one obtains

d

dτ

∫ ∞
0
|∇U |2ρd−1dρ =

∫ ∞
0

(∇Uτ∇Ū +∇U∇Ūτ )ρd−1dρ+ qα(τ)
∫ ∞

0
|∇U |2ρd−1dρ

= qα(τ) ‖∇U(ρ, 0)‖2
2 − qα(τ) ‖∇U(ρ, τ)‖2

2

= qα(τ)
(
‖∇U(ρ, 0)‖2

2 − ‖∇U(ρ, τ)‖2
2

)
.

(4.6.8)

In the case of blow-up (singular) solution, the λ(τ) decreases and this requires α(τ) to
be positive. Hence, d

dt ‖∇U‖
2
2 = 0 so that ‖∇U(ρ, 0)‖22 = ‖∇U(ρ, τ)‖22 established stable

solution.

For general norms such as ‖∇U‖p for p > 2 (or even ‖∆u‖p), similar approach (also
useful in the non-radial symmetric settings) can be applied to choose λ(τ) by keeping certain
quantity Q(τ) bounded (see [202], sec. 6.1.2) defined as:

Q(τ) =
∫ ∞

0
ρ2|U |2qρd−1dρ

/∫ ∞
0
|U |2qρd−1dρ, q ≥ 2. (4.6.9)

Using the scaling (4.6.2), the mass and energy equations (4.1.3)-(4.1.4)

‖U‖2
2 =

∫
Rd
|λ1/σu(t, r)|2ρd−1dρ = λ2/σ−d

∫
Rd
|u(t, r)|2dr = λ2/σ−d(τ) ‖u‖2

2

E[U ] =
[ ∫

Rd

(
|∇U |2 − 1

σ + 1 |U |
2σ+2

)
ρd−1dρ

]
= λ2+ 2

σ−d(τ)E[u].

Therefore, the equation (4.6.3) is L2-critical if σd = 2 and supercritical for σd > 2. It is
energy-critical when d = 2 + 2/σ > 2.
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4.6. Critical NLS: Asymptotic Self-similar blow-up solution

In the case of self-similar blow-up for τ →∞, the scaling factor should approach zero
while U tends to the blow-up profile, i.e. U → U∞. The profile equation (4.6.3), with
U∞τ → 0, becomes

U∞ρρ + iα∞
(
U∞

σ
+ ρU∞ρ

)
+ (d− 1)

ρ
U∞ρ + |U∞|2σU∞ = 0 (4.6.10)

In the L2-critical case, one expects α∞ = 0. In this case the profile is just given by the
ground state. Exact solution to (4.6.10) is not known even in lower dimension d = 1.

To numerically solve the equation (4.6.3), one may choose to employ several possible
strategies. One possibility is to introduce the variable s = ρ2 and solve a less singular
equation numerically by Fourth order Runge-Kutta (Rk4) scheme on a multi-domains or
apply the RK4 scheme on the equation (4.6.10). It turns out, numerical experiments show
not much is gained as a result of (numerical) radiation coming from infinity will destroy the
accuracy of the solution. In what follows, the equation (4.6.3) is then put in the form of
semilinear equation Uτ = LU + N[U ].

In a particular domain [0, κ], for κ finite or ∞, a Chebyshev collocation method can
be applied on the spatial coordinates. The time integration is done as in [105] with a fourth
order splitting scheme. To this end equation (4.6.3) is split into two equations, first the
linear equation

Uτ = iUρρ + i
(d− 1)
ρ

Uρ, (4.6.11)

which will be numerically integrated using a 4th order implicit Runge-Kutta method.
Secondly the equation

Uτ = −α(τ)
(
ρUρ + U

σ

)
+ i|U |2σU (4.6.12)

which is equivalent to
iut + |u|2σu = 0

has the solution u(t, r) = u0(r) exp(i|u0(r)|2σt) since |u(t, r)| = const with respect to time
(u0 = u(r, 0)). Thus we get for U

U(ρ/λ(τ), τ) = U(ρ/λ(0), 0)
(
λ(τ)
λ(0)

)1/σ
exp(i|U(ρ/λ(0), 0)|2t(τ)λ(0)−2/σ). (4.6.13)

This means that the second equation can be integrated exactly up to the integration of the
scaling factor λ and the time t, both with respect to τ only.

Alternatively, one may choose to solve the profile equation (4.6.17) in terms of the
ground state as described in section 4.6.3 in terms of the blow-up profile.
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Figure 4.2: Asymptotic profile of the blow-up solution at the critical dimension, where d = 2 and
σ = 1 on the domain [0, 100] for an initial data u(0, ρ) = 5e−ρ2/d
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Figure 4.3: The behaviour of α(τ) (top panel) and λ(τ) (lower panel) for |u(τ, ρ)| as τ
approaches τmax =∞, in the critical case with d = 2 and σ = 1 on [0,∞].

4.6.2 Blow-up rate

From the motivation by the dynamic rescaling and conservation of energy, in the critical
and supercritical cases (σd ≥ 2), associated to the blow-up solution of NLS equation is its
blow-up rate property, i.e. the rate at which, as t→ T∗,

λ∗(t) := ‖∇u‖−1
2 → 0 or λ∗(t) :=

[
(σ + 1)/ ‖u‖2σ+2

2σ+2

] 1
2
→ 0 . (4.6.14)
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The latter rate comes from the conservation of energy (4.1.4) where we have the quantity
(σ + 1) ‖∇u‖22 / ‖u‖

2σ+2
2σ+2 ∼ (σ + 1)/ ‖u‖2σ+2

2σ+2 since lim
t→T∗

(σ + 1) ‖∇u‖22 / ‖u‖
2σ+2
2σ+2 = 1.

Furthermore, it is generalization of blow-up rate for blow-up solution in the space L2σ+2(Rd)
not in H1(Rd). When it is generalized to the Lq space for 2σ + 2 ≤ q ≤ ∞, there exists a
constant αq = αq(‖u‖q) such that

‖u‖q ≥ λ∗(t), λ∗(t) := αq · (T∗ − t)−(q−2)/(2σp), 0 ≤ t < T∗ (4.6.15)

where the L∞(Rd) has ‖u‖∞ ≥ α∞ · (T∗ − t)−1/(2σ) for 0 ≤ t < T∗.

Proposition 4.6.1. If the ground state Q(ρ) attains a global minimum at 0 < ρmax <∞,
then the blow-up rate is λ(t) ∼ α · (T∗ − t)1/2 as t→ T∗ with α = α(‖u0‖22) > 0.

A clear suggestion from this proposition 4.6.1 is the self-similarity of NLS as described
in (4.5.8). Moreover, for singular solution to NLS equation at T∗, there exists a constant
α = α(‖u0‖22) > 0 such that ‖∇u‖2 ≥ α/

√
T∗ − t for 0 ≤ t < T∗. See [31] for details and

the proof in [202] chp.5 and Theorem 13.1 of [51].
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Figure 4.4: Blow-up rate in the critical dimension, where d = 2 and σ = 1. The bold dashed
line represents the equation of the line y = 0.5198x− 0.04623 while the bold-line represents
the log λ(t). This is equivalent to log λ(t) ∼ 0.5198 ∗ log(T∗ − t).

According to the Chebyshev coefficients in Figure 4.6.2, the Chebyshev approximation
near infinity is less accurate compared to approximation near zero. This is a reflection of
numerical radiation as a result of error amplification in approximate u(τ, ρ) towards infinity.

The method of dynamic rescaling is used in [144] to study the solution to the NLS
equation near singularity which can attain amplitude (focusing level) up to 1015, originally
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meant to approximate boundaries [108]. Nevertheless, the loglog correction is not reachable
and one cannot show that the blow-up rate is faster than the square root, which, mostly,
is the case. Unfortunately, the loglog correction to the square root blow-up rate is not
observable numerically.
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Figure 4.5: Chebyshev coefficients of |u(1000, ρ)| on the domain [0, 100] in the critical
dimension, d = 2 and σ = 1.

4.6.3 Blow-up profile

All singular solutions to the focusing NLS equation experience quasi-self-similar blow-up
with self-similar-profile possessing mass not less than the κσ,d. A faster, than square root,
blow-up rate was proved by Merle and Raphaël stated and summarized in the Theorem
4.6.1 due to the results in [155]-[150] and [186], modified to radial form.
The blow-up profile is best described by Q by U(τ, ρ) = eiτQ(ρ) equivalent to

u(r, t) = 1
λ1/σ(τ(t))

Q

(
r

λ(t)

)
eiτ(t) (4.6.16)

with Q satisfying the profile equation

Qρρ + (d− 1)
ρ

Qρ −Q+ iα(t)
(
ρQρ +Q/σ

)
+ |Q|2σ = 0, ρ > 0 (4.6.17)

Qρ(0) = 0 Q(ρ)→ 0 as ρ→∞. (4.6.18)

where we shall assume that, for limiting profiles of blow-up solution u(t, r), an admissible
complex valued solution to the equation (4.6.17) to be one with |Q|monotonically decreasing
function with ρ and E[Q] = 0 and possibly E[Q] > 0. The α may depend on the σ or
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4.6. Critical NLS: Asymptotic Self-similar blow-up solution

dimension d. See section 4.7 for more details.

Theorem 4.6.1 ([155]-[150]). Given that 1 ≤ d ≤ 10, and u blows up at the point T∗.
Then there exists a positive 16 universal constant α∗ = α∗(d) such that for u0 ∈ {f : f ∈
H1, κσ,d ≤ ‖f‖22 ≤ κσ,d + α∗}. Suppose also

ũ(t, r) = 1
λ1/σ(t)

Q(0)
(

r

λ(t)

)
eiζ(t) (4.6.19)

then the following hold:

(i) Universal blow-up profile. There exist parameters (λ(t),x0(t), ζ(t)) ∈ R×R+×Rd

and ϕ(r) ∈ L2 and ground state Q(0) such that (4.6.19) is a universal profile for
blow-up at the critical and supercritical dimensions and

u(t, r)− ũ(t, |x− x0|)
L2
−→ ϕ(r) (4.6.20)

and the blow-up occur at the position x∗ = lim
t→T∗

x0(t) ∈ Rd.

(ii) Blow-up rate. As t→ T∗, then the blow up rate of the profile (4.6.19) is a loglog law

‖∇u‖2 ∼
(log | log(T∗ − t)|)1/2

(T∗ − t)1/2 ·

∥∥∥∇Q(0)
∥∥∥

2√
2π

(4.6.21)

or a linear rate
‖∇u‖2 ≥M · (Ec[u0])−1/2(T∗ − t)−1 (4.6.22)

where Ec[u0] = E[u0]−
(
=
∫
Rd u

∗∇u/ ‖u‖2
)2

and a universal constant M .

(iii) Sufficient condition for log log blow-up. If Ec[u0] < 0 and κσ,d ≤ ‖u0‖2L2 ≤
κσ,d + α∗, then u(r, t) has a blow-up rate (4.6.21).

This Theorem 4.6.1 describes the stable blow-up dynamics of the focusing NLS
equation and is based on the assumptions that spectral property of the Nonlinear operator
acting on the ground state holds true. The spectral property is stated in [53] and [142]
and is proved in several dimensions 1 ≤ d ≤ 10 in the non-radial setting [155]-[150] and
d = 11, 12 in the radial setting [228]. Explicit blow-up solutions by Bourgain and Wang
according to Merle [154] is known to have linear blow-up rate and singular solutions with
linear blow-up rate are in general unstable.

16Universal constant here implies α∗ is independent of the initial data u0. And experiment shows that
the constant κ is only universal in the generalized loglog law λ(t) ∼ κ · (T∗ − t)p(log | log(T∗ − t)|)q for p > 0
and q ∈ R but not true for the square root law only.
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Figure 4.6: An admissible solution to the profile equation (4.6.17) at the supercritical
dimension, where d = 1 and σ = 3.
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Figure 4.7: Convergence of the blow-up solution, at τ = 1, to the focusing NLS equation to
the self-similar blow-up profile Q with u0(ρ) = 2.2e−ρ2/d at dimensions d = 2 and σ = 1.

In the Figure 4.6.3, we can show that the ratio |u(0, τ)|/λ(τ) approaches a constant
for various times τ where λ(τ) = |u(0, τ)|/Q(0).
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4.7 Convergence of Asymptotic Profile near Blow-up Regime

As the previous experiments show at the critical dimension, the function α(t) is slowly
varying as the blow-up time is approached and does not reach a finite limit. This indicates
the presence of correction to the rate of blow-up related to the self-similar profile. This
implies that, the rescaled solution U does not quite converge uniformly to the self-similar
blow-up solution. Thus, there is need for the construction of an asymptotic solution profile
near blow-up at the critical and supercritical dimensions. Sequel to the slow variation of α(t)
it is sensible to maintain slow variation too in the self-similar profile. This is achieved by
adding a correction term to the phase of the self-similar profile u(t, r) = λ−1/σeiτQ(ρ, α).
In [126] and [119] it is shown that construction of the blow-up profile should take into
consideration the relation between α and d or σ depending on the existence of blow-up
solution of the self-similar blow-up solution. Moreover, the blow-up rate is determined as a
solvability condition in an expansion near the quasi-self-similar blow-up profile.

4.7.1 Critical and supercritical collapse

The self-similar profile equation (4.6.17), in the critical dimensions, possesses no admissible
solution if α takes values on (0,∞). More precisely, plugging into the equation (4.6.17) the
term Q = Reiθ, assuming that the amplitude R = R(ρ) is real with phase θ = θ(ρ). This
lead to real and imaginary parts

Rρρ + (d− 1)
ρ

Rρ −R− (θρ + αρ)θρR+R2σ+1 = 0 (4.7.1)(
θρρ + (d− 1)

ρ
θρ + α

σ

)
R+ 2Rρ · (θρ + αρ

2 ) = 0. (4.7.2)

The equation (4.7.2) is simplified to 17

(σd− 2)
σ

θρR
2ρ

2
σ
−2 + ∂ρ

((
θρ + α

2 ρ
)
ρ

2
σ
−1R2

)
= 0. (4.7.3)

If σd = 2, critical case, one finds the exact solution to the equation (4.7.3) leads θ to be
the quadratic phase θ(ρ) = −αρ2/4 for smooth even solution Q to (4.6.17). However, this
property is missing on Q for sufficiently large ρ, even though |Q| is monotonically decaying

17Multiplying equation (4.7.2) by R will result to

(d− 1)
ρ

θρR
2 + α

2

(
2
σ
− 1
)
R2 + ∂ρ

((
θρ + α

2 ρ
)
R2
)

= 0

suggesting to obtain an expression in terms of ∂ρ
((
θρ + α

2 ρ
)
ρ

2
σ
−1R2

)
. Thus, the equation (4.7.3).
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to zero, as some of the solutions would be non-smooth as ρ→∞, see Proposition C.1.1 in
the appendix. Consequently, in the critical case, Q has no admissible solution for α(τ) > 0.
See Sect. 8.1.1 of [202]. According to the Propositions 8.1 of [202], the conditions for
admissibility of the profile |Q| requires the values of α to be adjusted to a distance near or
closed to criticality at fixed nonlinearity. The α and d are shown to be related in the limit
d(α) ↓ 2/σ as α→ 0+.

A proposition 8.4 in [202], restated in the appendix, Proposition C.1.3, states that
such admissible |Q|, in the limit d(α) ↓ 2/σ as α → 0+ satisfies the asymptotic behaviour
of d(α) given as

σd− 2
2σ ≈ ν2

0
Mc

1
α
e−

π
α (4.7.4)

where the critical mass for blow-up is represented by Mc :=
∫
R+ R2ρd−1dρ and ν0 :=

lim
ρ→∞

ρ(d−1)/2R(ρ). If we further define ν(α) := α(σd − 2)/(2σ) as a function controlling
the distance to criticality, then in the α-limit, one gets

ν(α) ≈ ν2
0

Mc
e−

π
α (4.7.5)

Therefore, to capture closely, the blow-up rate and its profile near collapse we apply the
change of variables U(τ, ρ) = eiτe−i

a(τ)ρ2
4 V (τ, ρ) = ei(τ−

a(τ)ρ2
4 )V (τ, ρ) with the second order

correction term. As a result, this transforms (4.6.3) to

iVτ + Vρρ + (d− 1)
ρ

Vρ − V + 1
4(α2(τ) + ατ (τ))V + i

(σd− 2)
2σ α(τ)V + |V |2σV = 0. (4.7.6)

where ατ is negligible with α satisfying

ατ + α2 = −λ3λττ . (4.7.7)

Letting β = ατ + α2, it can be shown that ατ is negligible18 as α → 0 and β ≈ α2. If we
further seek for quasi-stationary solution at leading order in the limit τ →∞, one gets

V (τ, ρ) = P (β(τ), ρ) +W (τ, ρ) with W � P , (4.7.8)

where, by taking correction terms negligible [45], P satisfies the boundary valued problem

Pρρ + (d− 1)
ρ

Pρ − P + βρ2

4 P − iν(
√
β)P + |P |2σP = 0 (4.7.9)

Pρ(0) = 0, P (ρ)→ 0 as P (0) real, (4.7.10)
18Roughly, if the relation (4.7.4) is differentiated w.r.t. τ one gets (α + π)ατ ≈ 0. Since, as τ → ∞,

α+ π 6= 0 then ατ ≈ 0.
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and the zero Hamiltonian condition∫ ∞
0

(
|Pρ|2 −

1
(σ + 1) |P |

2σ+2 +
√
β=(ρP P̄ρ) + βρ2

4 |P |
2
)
ρd−1ρ = 0, (4.7.11)

with ν defined in (4.7.5) and α ≈
√
β as α→ 0. There, we have (σd− 2)/2σ = ν(

√
β)/
√
β.

Considering (4.7.8) as an asymptotic solution to the equation (4.7.6) the function β(τ) is
determined to be the solution to the equation

βτ (τ) = −2Mc

M
ν(β) ≈ −2ν2

0
M

e−π/
√
β, for M = 1

4

∫ ∞
0

R2ρ2ρ2/σ−1dρ. (4.7.12)

In the propositions C.1.4 and C.1.5 it is proved that

α(t) ≈ π/ ln τ

and by maintaining the correction terms one gets

α(t) ≈ π/(ln τ + 3 ln ln τ).

4.8 The 2D NLS and DS I
Questions related to the 2D NLS and DS I are the self-similarity, rate and profile of their
blow-up solutions. It is shown in the figure 4.6.3 that, the blow-up solution to the two
dimensional critical cubic NLS equation is quasi-self-similar. The blow-up rate for 2D
NLS is quite the loglog law (4.6.21) and the profile is modelled by the ground-state Q
[72]. Therefore, because the DS system is also a particular critical cubic NLS, we can
study its blow-up behaviour. Blow-up studies in other DS systems include blow-up in
the elliptic-elliptic type [174], blow-up mechanism for DS II [105]. For global and local
wellposed and blow-up solutions in the elliptic-elliptic and hyperbolic-elliptic (DS II),
hyperbolic-hyperbolic and DS I see [71],[82, 34, 81, 80] and the references therein. The
DS system of the type

iψt + ∂xxφ+ ∂yyψ = −2(|ψ|2 + φ)ψ (4.8.1)

∂xxφ− ∂yyφ = −2∂xx(|ψ|2) (4.8.2)

in the new coordinates ξ = x− y and η = x+ y is given in the form

iψt + 2(∂2
ξ + ∂2

η)ψ = −2(|ψ|2 + φ)ψ (4.8.3)

2φξη = −(∂ξξ + 2∂ξη + ∂ηη)|ψ|2. (4.8.4)
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The dynamical rescaling

X = ξ

L(τ) , Y = η

L(τ) , τ =
∫ t

0
L−2(s)ds, (4.8.5)

ψ(t, ξ, η) = 1
L(τ)V (τ,X, Y )ei

(
τ−α(τ)|ρ|2/4

)
, φ(t, ξ, η) = 1

L2(τ)W (τ,X, Y ) (4.8.6)

of the equation (4.8.3) yields

iVτ + 2(VXX + VY Y ) + V

4 (aτ − 2a2)(X2 + Y 2) + a2V

2 (X + Y ) = −2(V +W )|V |2 (4.8.7)

2WXY = −(∂XX + ∂XY + ∂Y Y )|V |2 (4.8.8)

where ρ = (X,Y ) and |ρ|2 = X2 + Y 2. Following similar calculations for NLS equation,
with the radial phase factor, we have instead

iVτ + ∆V − V + b(τ)
4 ρ2V = −2(|V |2 +W )V (4.8.9)

2WXY = −(∂XX + ∂XY + ∂Y Y )|V |2, (4.8.10)

where a = ∂τL, b = a2 + aτ and ν(
√
b) is as defined earlier. Since DSI can be viewed as

a perturbation of 2D NLS, according to the studies in [14] and [174], when we sought for
quasi-stationary solution to the DS I equations (4.8.1)-(4.8.2) similar to (C.1.28), (C.1.29),
(C.1.30) and (C.1.31) are obtained, see section 9.3 of [202] for details. In fact, findings, in
[14] and ([202] sect. 12.5), suggest that, the result of dynamically rescaling DSI equation
comes down to the 2D critical cubic focusing NLS equation and therefore yields the same
blow-up rate for DSI.
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Chapter 5

The DS I: Numerical Study of blow-up
In this chapter, we introduce in a nutshell the Davey-Stewartson (DS) systems and some
of associated properties of the related DS system, specifically the so-called integrable DS
I equations. Then, we present a detailed numerical study concerning the emergence of
blow-up structure of solutions to the DS I system.

5.1 Davey-Stewartson System: The general setting

DS system is a system of two PDEs that was initially derived to depict the evolution of
progressive (travelling) waves with slowly varying amplitude travelling under the influence
of gravity on the surface of water of finite depth. The general DS system is the coupled
equations

i∂tΨ + λ∂xxΨ + µ∂yyΨ = ν|Ψ|2Ψ + ν1ΨΦ
λ1∂yyΦ + µ1∂yyΦ = κ∂xx|Ψ|2

(5.1.1)

where the indices of ∂ denote partial derivatives, x = (x, y) ∈ R2, and λ, λ1, µ, µ1, ν, ν1, κ

are constants, Ψ : R×R2 → C is called the main field, and Φ : R2 → R is the mean velocity
potential field like e.g. in the Navier-Stokes. The DS system was firstly derived in the work
of Davey & Stewartson [41] using a method of multiple-scales to describe the evolution of
a 3-dimensional wave-packet with wave-number k on finite depth water. The formulation
allowed them to study the stability of uniform wave-train of Stokes wave. The system had
then received lot of attentions in the context of water waves [43, 3, 122] in particular in the
study of the modulation of plane waves.

The Davey-Stewartson systems are of importance in many other applications since
they can be seen as simplifications of the Benney-Roskes [12] and Zakharov-Rubenchik [236]
systems, ‘universal’ models for the description of the interaction of short and long waves.
DS systems also appear in ferromagnetism [123], plasma physics [158], and nonlinear optics
[162]. For more details on DS and its applications the reader is referred to [99, 98] where a
comprehensive list of references is given.

Ghidaglia and Saut [71] classified the equations (5.1.1) as a system of elliptic and
hyperbolic equations. These are elliptic-elliptic or hyperbolic-hyperbolic if the quadruple
(λ, λ1, µ, µ1) is (+1,+1,+1,+1) or (+1,+1,−1,−1) respectively and hyperbolic-elliptic or
elliptic-hyperbolic for (+1,+1,−1,+1) or (+1,+1,+1,−1) respectively.

88



5.2. Numerical Study of Davey-Stewartson I System

5.2 Numerical Study of Davey-Stewartson I System

The DS system is proved to be integrable via the method of inverse scattering [56] in the
case µ1 = −µ = 1 for λ = λ1 = 1 or λ1 = −λ = 1 for µ = µ1 = 1 . In this section, we
are concerned with the numerical study of the integrable version of the Davey-Stewartson
system, more specifically the Davey-Stewartson (DS) I system written in the form

iΨt + Ψxx + Ψyy + 2
(
Φ + |Ψ|2

)
Ψ = 0,

Φxx − Φyy + 2 |Ψ|2xx = 0,
(5.2.1)

obtained from (5.1.1) for specific choice of the constants coefficients. In the classification
of Ghidaglia and Saut [71], this is an elliptic-hyperbolic equation since the second order
operator acting on Ψ in the first equation of (5.2.1) is elliptic whereas the one acting on Φ
in the second equation of (5.2.1) is hyperbolic.

Note that DS I is also interesting from a purely mathematical point of view, since it is
a nonlinear dispersive partial differential equation, and since it is one of the few completely
integrable equations in two spatial dimensions, see [55, 57]. Local existence results for
Cauchy problems with small initial data were proven in [82, 34, 81], and without a smallness
assumption in [80].

Below we present some properties of DS I solutions:

(I) Translation invariance: with Ψ(t, ξ, η) a solution to equation (5.2.3), also Ψ(t +
t0, ξ + ξ0, η + η0) is a solution, where t0, ξ0, and η0 are real constants.

(II) Galilei invariance: with Ψ(t, ξ, η) a solution to equation (5.2.3), Ψ(t, ξ − vξt, η −
vηt) exp( i2(vξ(ξ− tvξ/2) + vη(η− tvη/2))) with vξ, vη real constants is also a solution.
Thus a stationary localized solution can be seen as a soliton to the equation after a
Galilei transformation.

(III) Scaling invariance: with Ψ(t, ξ, η) a solution to equation (5.2.3), λΨ(λ2t, λξ, λη)
with λ ∈ R/{0} is also a solution. Note that the L2 norm of Ψ is invariant under
these rescalings. Therefore these equations are called L2 critical. Note that these
properties apply both to the cubic NLS equation in 2D and to Davey-Stewartson
systems. It is known for the NLS equations in this case that there can be a blow-up
in finite time of the L∞ norm of the solution for smooth initial data with sufficiently
large L2 norm, see [152, 202]. However, there does not appear to be a theorem on
whether DS I or DS II solutions can blow up for generic initial data of sufficient mass.
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(IV) Pseudo-conformal invariance: with Ψ(t, ξ, η) a solution to (5.2.3), also

1
t
Ψ(1/t, ξ/t, η/t) exp

(
i
ξ2 + η2

t

)

is a solution. This implies together with the translation invariance of DS I that a
stationary localized DS I solution under a pseudo-conformal transformation becomes
a solution with a blow-up in finite time. This has been used in the context of DS II by
Ozawa [173] to construct an explicit blow-up solution. Note that due to the oscillatory
terms, the solution will not be inH1(R2) after a pseudo-conformal transformation even
if the original solution is in L2(R2) for all t. For standard L2 critical NLS equations,
this blow-up mechanism is unstable, see [202] for references.

The hyperbolic form of the second equation in (5.2.1) makes it convenient to introduce
characteristic coordinates

ξ = x− y, η = x+ y. (5.2.2)

In these coordinates DS I (5.2.1) takes the form of a non-local nonlinear Schrödinger (NLS)
equation,

iΨt + 2(∂2
ξ + ∂2

η)Ψ + [(∂−1
ξ ∂η + ∂−1

η ∂ξ)|Ψ|2]Ψ = 0, (5.2.3)

where we have formally inverted the d’Alembert operator in the second equation of (5.2.1).
In order to do so, one has to specify boundary conditions at infinity, a problem analytically
discussed in [2] for the multiscales approach to the Kadomtsev-Petviasvili (KP) equation
(for a numerical implementation see [102]). In [58] it was shown that radiating boundary
conditions allow for stable localized travelling waves called dromions which appear in the
long-time behaviour of the solutions to certain initial value problems for DS I. Another
possibility applied in this context are vanishing boundary conditions for Φ in (5.2.1) for
ξ, η → −∞ (or ξ, η →∞). We define the operator ∂−1

ξ (as is standard for the KP equation)
via its Fourier symbol,

∂−1
ξ = F−1

ξ

1
ikξ

= 1
2P

(∫ ξ

−∞
−
∫ ∞
ξ

)
, (5.2.4)

where P denotes the Cauchy principal value1 and Fξ the Fourier transform in ξ with kξ

being the dual Fourier variable, and likewise for ∂−1
η . Note that a consequence of this

1The Cauchy principle value approach is used for singular integrals, e.g. the integral
∫ b
a
u(x)dx with

singular value at b has its Cauchy principal value defined as lim
ε→0+

{
c−ε∫
a

u(x)dx+
b∫

c+ε
u(x)dx

}
for a < c < b.
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definition is that for f ∈ L1(R), one has

(∂−1
ξ f(ξ))(+∞) = −(∂−1

ξ f(ξ))(−∞) = 1
2

∫ ∞
−∞

f(ξ)dξ. (5.2.5)

These trivial boundary conditions2 will be the only ones studied in this work. Numerical
studies of DS I solutions have been mainly performed for radiating boundary conditions,
see [221, 167, 168, 14, 143]. In this part we will perform a similar study, but for the
trivial boundary conditions (5.2.4). Since no explicit solitons are known for this case,
we first construct localized stationary solutions numerically and show that they are also
exponentially localized. We study the stability of these solutions, which we will also call
dromions for simplicity.

In [93, 95] it is shown how to regularize terms of the type (5.2.4) arising in the context of
D-bar equations with a hybrid approach: we subtract a singular term for which the Fourier
transform can be analytically found. The term is chosen in a way that what is left is
smooth within finite numerical precision, and that its Fourier transform can be numerically
computed (we work here with double precision which is roughly of the order of 10−16). Note
that the terms treated in this way in [93, 95, 94] are less singular (they lead to cusps in the
Fourier domain, but are bounded) than the simple poles considered here. Therefore, the
regularization approach for DS I is more important than for DS II if high accuracy is to be
achieved. We show that we can reach machine precision in the studied examples. Since we
want to numerically study blow-up scenarios, an approach of high accuracy as presented
here is crucial in order to obtain reliable results.

5.2.1 Main Results: Conjectures

With this particular numerical approach, we first construct numerically localized stationary
solutions to DS I and propose

Conjecture 5.2.1 (Main Conjecture (Part I)). The DS I equation has stationary
solutions Ψ(ξ, η, t) = Qω(ξ, η)eiωt for ω > 0, where Qω can be chosen to have values in
R+. The solutions are exponentially localized.

It is unknown whether these solutions are ground states for the energy (5.2.8). Then
we study the time evolution of localized perturbations of these stationary solutions and

2The general boundary conditions are described by the arbitrary functions f(ξ) and g(η) fixable for a
boundary value problem (compare with (1.1.3) for classical wave equation in the introduction chapter and
how f and g are fixed). For ξ, η → ±∞ we have ∂−1

ξ → ∂̃−1
ξ + f(η) and ∂−1

η → ∂̃−1
ξ + g(ξ). The trivial

boundary conditions correspond to Φ(ξ = ±∞, η) = 0 and Φ(ξ, η = ±∞) = 0, i.e. ∂−1
η → 0 and ∂−1

ξ → 0
resp., while radiating (non-trivial) boundary conditions are Φ(ξ = ±∞, η) = f(η) and Φ(ξ, η = ±∞) = g(ξ),
i.e. ∂−1

ξ → f(η) and ∂−1
η → g(ξ) resp. Moreover, the main-field Ψ(t, ξ, η)→ 0 as η2 + ξ2 →∞.
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initial data from the Schwartz class S(R2) of rapidly decreasing smooth functions with a
single hump. We find

Conjecture 5.2.2 (Main Conjecture (Part II)). Initial data Ψ(ξ, η, 0) ∈ S(R2) with a
single hump lead to one of the following 3 cases:
- if Ψ(ξ, η, 0) = Qω(ξ, η), the DS I solution is stationary;
- if the mass ‖Ψ(ξ, η, 0)‖22 < mQ := ‖Q‖22 (Q := Q1), the solution is simply dispersed to
infinity;
- if the mass ‖Ψ(ξ, η, 0)‖22 > mQ, there is a blow-up of the L∞ norm of Ψ at a finite time
t∗ such that

|Ψ(ξ, η, t)| = Q(X,Y )
L(t) + P (ξ, η, t), (5.2.6)

where X, Y are defined in (5.2.12), where ‖P‖2 <∞ for all times, and where

L(t) ∝ t∗ − t. (5.2.7)

This means that as in the DS II case conjectured in [105], the blow-up is of the type
being unstable for standard NLS equations.

5.2.2 DSI: Basic Facts

In this section we collect some basic facts on the DS I equation.

We will always study the DS I equation in characteristic coordinates, i.e., in the form
(5.2.3) of a non-local NLS equation. Note that the sign of the nonlinearity is not important
as in the case of the DS II equations, where it distinguishes a focusing and defocusing
variant of the equation, see e.g., [98]. For DS I, a change of sign of the nonlinearity can be
compensated by a change of sign of either ξ or η and does not affect the behaviour of the
solutions otherwise.

The DS I equation is completely integrable and thus has an infinite number of formally
conserved quantities. In this section, we will consider the L2 norm and the energy

E =
∫
R2
dξdη

{
|Ψξ|2 + |Ψη|2 + 1

4
(
∂−1
η |Ψ|2∂ξ|Ψ|2 + ∂−1

ξ |Ψ|
2∂η|Ψ|2

)}
. (5.2.8)

This form of the energy has been chosen in accordance to the definition of the anti-derivatives
(5.2.4). It can be shown by direct computation that the energy is conserved in this case.

The DS I equation is expected to have stationary solutions of the form Ψ(ξ, η, t) =
Qω(ξ, η)eiωt, where ω ∈ R+, and where we get with (5.2.3) the following equation for Q,

− ωQ+ 2(∂2
ξ + ∂2

η)Q+ [(∂−1
ξ ∂η + ∂−1

η ∂ξ)|Q|2]Q = 0. (5.2.9)
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We are interested in localized solutions to this equation. Note that if the solution Q :=
Q1 of (5.2.9) is known for ω = 1, the solution for arbitrary ω > 0 follows from Qω =
√
ωQ(
√
ωξ,
√
ωη). For the same reasons as for the standard NLS equation, Q can be chosen

to be real for localized solutions of this equation. Note that there is an explicit solution to
(5.2.9) called dromion [109], which reads for ω = 1

Q̃ = 1
4 cosh ξ/2 cosh η/2 + e(ξ+η)/2 , (5.2.10)

if radiating boundary conditions at infinity are used, i.e., if

∂−1
ξ 7→ ∂̃−1

ξ + f(η), ∂−1
η 7→ ∂̃−1

η + f(ξ),

where
f(ξ) = 4

4(1 + eξ) + 1
4(1 + 2eξ) . (5.2.11)

Here the anti-derivatives for the radiating boundary conditions are denoted with a tilde,
the difference to the anti-derivatives for the trivial boundary conditions (without tilde) used
just being the functions f(ξ) and f(η) of (5.2.11). It is remarkable that the dromions are
exponentially decaying towards infinity in all directions in contrast to the lump solution,
the localized stationary solution to DS II which has an algebraic decrease towards infinity.
Furthermore, again in contrast to the lump, the dromion is not radially symmetric. Note
that it is unknown whether there is an exponentially localized solution to (5.2.9) for trivial
boundary conditions at infinity.

The generic blow-up mechanism for NLS solutions is self-similar, which means one uses
the above scaling invariance in λ with a time dependent factor L(t) in a dynamic rescaling,

X = ξ

L(t) , Y = η

L(t) , τ =
∫ t

0

dt′

L2(t′) , ψ(X,Y, τ) = L(t)Ψ(ξ, η, t). (5.2.12)

The dynamically rescaled DS I equation (5.2.3) then reads

iψτ + ia(X∂Xψ + Y ∂Y ψ + ψ) + 2(∂2
X + ∂2

Y )ψ + [(∂−1
X ∂Y + ∂−1

Y ∂X)|ψ|2]ψ = 0, (5.2.13)

where a = ∂τ lnL. In the case of a blow-up, the scaling factor L(t) is chosen in a way to
keep certain norms constant during the time-evolution, for instance the L∞ norm of ψ. If
the blow-up is reached for a finite time t∗, then limt→t∗ L(t) = 0 and limt→t∗ τ =∞. For L2

critical NLS equations, it is expected that limt→t∗ a(t) = 0. In this case, equation (5.2.13)
reduces to the equation for the stationary solution (5.2.9) in the limit which would indicate
that the blow-up is self-similar with Q giving the blow-up profile. Note, that the generic
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blow-up rate for L2 critical NLS is given by (see [63, 126, 152, 153])

L(t) ∝
√

t∗ − t
ln | ln(t∗ − t)| . (5.2.14)

One of the questions to be addressed in this section numerically is whether there is blow-up
in DS I solutions, and whether it follows the behaviour (5.2.14) or the pseudoconformal rate
as in DS II, see the conjecture in [105]. To this end we will trace the L∞ norm of Ψ and
the L2 norm of Ψξ. Both are proportional to 1/L(t) and can thus be used to identify the
scaling factor L(t).

Remark 5.2.1. In the numerical study in the following sections, we will always use the
not rescaled DS I system. The reason for this is that radiation leads for the equations
(5.2.13) to problems at the boundaries of the computational domain because of the terms
X∂Xψ + Y ∂Y ψ as discussed in detail in [100] for generalized Korteweg-de Vries equations;
being the reason why dynamic rescaling is not possible for the DS I. Whereas such problems
can be controlled for NLS equations, the nonlocality in DS systems is an issue in this
context. Thus we have shown for DS II in [105] that a direct integration of DS yields the
same information on a blow-up after a postprocesing of the data according to (5.2.13). The
same approach will also be applied here.

5.2.3 Numerical approach for DS I

In this section we briefly describe the numerical approach for the DS I equation, in particular
how the antiderivatives in (5.2.3) are computed. We will concentrate here on functions in
the Schwartz class S of smooth, rapidly decreasing functions.

The Fourier transform of a 1D function f(ξ) and its inverse are defined via

f̂(kξ) = Fξf :=
∫
R
e−iξkξf(ξ)dξ, (5.2.15)

f(ξ) = F−1
ξ f = 1

2π

∫
R
eiξkξ f̂(kξ)dkξ.

The 2D Fourier transform of a function Φ(ξ, η) is defined as

Φ̂(kξ, kη) = FξηΦ :=
∫
R2

Φ(ξ, η)e−i(ξkξ+ηkη)dξdη, (5.2.16)

Φ(ξ, η) = F−1
ξη Φ = 1

(2π)2

∫
R2
ei(ξkξ+ηkη)Φ̂(kξ, kη)dkξdkη.

The basic idea of the Fourier spectral method, which we are going to apply here, is
to express every function in terms of a Fourier series and approximate the latter via a
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truncated Fourier series. This is equivalent to approximating the Fourier transform (5.2.15)
via a discrete Fourier transform which can be efficiently computed via a fast Fourier
transform (FFT). It is well known that the Fourier coefficients of an analytic periodic
function decrease exponentially, and thus the numerical error due to the truncation of the
series will also decrease exponentially, see for instance the discussion in [208]. Thus Fourier
spectral methods show exponential convergence for analytic functions, sometimes called
spectral convergence. Here we only consider functions in the Schwartz class which can be
efficiently treated as smooth periodic functions on sufficiently large tori within the chosen
finite numerical precision (the function and all relevant derivatives have to vanish at the
domain boundaries to the chosen numerical precision, here 10−16).

Derivatives of a function f(ξ) ∈ S(R), i.e.,

f ′(ξ) = F−1
ξ (ikξ f̂(kξ)),

can then be approximated as mentioned above by approximating the standard Fourier
transform via a discrete Fourier transform. However, for the antiderivative

∂−1
ξ f(ξ) = F−1

ξ

(
1
ikξ

f̂(kξ)
)
,

the singular Fourier symbol will not lead to an exponentially decreasing numerical error if
the Fourier transform is approximated via an FFT (it follows from a Payley-Wiener type
argument that the singular symbol of the anti-derivative that the latter is not generically
in the Schwartz class). Thus we use a hybrid approach, a combination of numerical and
analytical techniques, similar to the approach in [94] for the DS II equation. Concretely we
write

F−1
ξ

(
1
ikξ

f̂(kξ)
)

= F−1
ξ

(
f̂(kξ)− f̂(0) exp(−k2

ξ/4)
ikξ

)
+ f̂(0)1

2erf(ξ), (5.2.17)

where the error function erf(x) is defined as

erf(x) = 2√
π

∫ x

0
exp(−y2)dy. (5.2.18)

The error function can be computed to machine precision with the techniques of [104] since
the integral is essentially a Hilbert transform in Fourier space. But for simplicity we use
the Matlab implementation of the error function here.
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The first term on the right hand side of (5.2.17) is a smooth function if the limit

lim
kξ→0

f̂(kξ)− f̂(0) exp(−k2
ξ )

ikξ
= f̂ ′(0)

i
(5.2.19)

is taken into account via de l’Hospital’s rule. Since f̂ ′(0) =
∫
T iξf(ξ)dξ, this term can be

computed again with Fourier techniques (just the sum of ξf(ξ) sampled on the collocation
points). In this way the first term on the right hand side of (5.2.17) is in the Schwartz class
if f(ξ) is. Thus it can be efficiently computed with Fourier techniques on a large enough
torus. Note that a Gaussian was introduced in (5.2.17) in order to have an integrand in
the Schwartz class to ensure the rapid convergence of the numerical approach. Thus the
first term in (5.2.17) is computed to machine precision with Fourier techniques whereas the
second is obtained with a Matlab algorithm with the same precision.

We illustrate the efficiency of the algorithm for some examples: for a Gaussian f(ξ) =
exp(−(ξ+1)2) we work withN = 29 Fourier modes on the interval 10[−π, π]. In this case the
Fourier coefficients decrease to machine precision. Note that we have considered a shifted
Gaussian here in order to have a non-vanishing derivative at the origin in (5.2.19). The
difference between the error function (times the factor

√
π/2) is of the order of 10−16. If we

consider with the same numerical parameters f(ξ) = sinh(ξ + 1)/ cosh(ξ + 1)2, the Fourier
coefficients decrease to the order of 10−14, and the difference to the exact anti-derivative
−sech(ξ + 1) is of the same order.

In the context of DS I, we are obviously mainly interested in the accurate numerical
computation of the action of the operator ∂−1

ξ ∂η+∂−1
η ∂ξ on some function in S(R2). To this

end we simply apply the above approach in both dimensions. As an example we consider
the dromion solution Q̃2 for ω = 2 in the case of radiating boundary conditions,

|Q̃2|2 = 4
(4 cosh(ξ) cosh(η) + exp(ξ + η))2 . (5.2.20)

The action of the operator ∂−1
ξ ∂η + ∂−1

η ∂ξ on the dromion can be obviously computed
explicitly. We work with Nξ = Nη = 29 Fourier modes in ξ and η respectively ∂−1

ξ ∂η+∂−1
η ∂ξ

on 10[−π, π] × 10[−π, π]. The Fourier coefficients of the function (5.2.20) can be seen on
the left of Fig. 5.1. They decrease to machine precision. The difference (denoted by err)
between the numerically computed action of the operator ∂−1

ξ ∂η + ∂−1
η ∂ξ on (5.2.20) and

the exact expression can be seen on the right of the same figure. It is as expected of the
same order (10−15) as the highest Fourier coefficients.
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Figure 5.1: The Fourier coefficients of the function (5.2.20) on the left, and the difference of
the numerically computed action of the operator ∂−1

ξ ∂η + ∂−1
η ∂ξ on (5.2.20) and the exact

expression on the right.

5.2.4 Localized stationary DS I solutions

In this section we numerically construct stationary localized solutions to DS I. This is done
with the Fourier discretisation introduced in the previous section for equation (5.2.9) with
ω = 1. The resulting algebraic equation is then iteratively solved with a Newton-Krylov
method.

The task is to find a localized solution to (5.2.9) where we restrict ourselves to ω = 1
without loss of generality. In Fourier space, equation (5.2.9) reads

(1 + 2k2
ξ + 2k2

η)Q̂ = Fξη
(
[(∂−1

ξ ∂η + ∂−1
η ∂ξ)|Q|2]Q

)
. (5.2.21)

As in the previous section, the Fourier transform is approximated via a discrete Fourier
transform. This implies that (5.2.21) leads to an NξNη dimensional nonlinear equation
system of the form F ({Q̂}) = 0 for Q̂ (in an abuse of notation, we denote the discrete
Fourier transform as the standard Fourier transform). This system is solved iteratively
with a Newton method,

Q̂(n+1) = Q̂(n) − Jac(F )−1|Q̂(n)F (Q̂(n+1)). (5.2.22)

The action of the Jacobian on F is computed with the Krylov subspace method GMRES
[194]. Note that the Jacobian has a finite dimensional kernel because of the translation
invariance of the DS I equation. But the iteration converges nonetheless, just the maximum
of the resulting solution Q will in general not be at the origin. In the plots below we have
shifted the maximum back to the origin.
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We use Nξ = Nη = 210 Fourier modes for (ξ, η) ∈ 20[−π, π] × 20[−π, π] and Q(0) =
6/(4 cosh(ξ/2) cosh(η/2) + exp((ξ + η)/2)) as the initial iterate, i.e., 6 times the dromion
(5.2.10) for radiating boundary conditions. The iteration is stopped once ‖F‖∞ < 10−10.
The resulting solution can be seen in Fig. 5.2 on the left.

Figure 5.2: Localized stationary solution to DS I (5.2.9) for ω = 1 on the left, dromion
solution (5.2.10) for radiating boundary conditions on the right.

The solution on the left of Fig 5.2 is again not radially symmetric, but has a symmetry
with respect to an exchange of ξ and η as can be clearly seen from the contour plot on the left
of Fig. 5.3. The Fourier coefficients of the solution on the right of the same figure decrease
to machine precision and thus indicate that the solutions is numerically well resolved. In
fact the numerical parameters have been chosen in a way to ensure this. Note that the

Figure 5.3: Contour plot of the solution in Fig. 5.2 on the left, and its Fourier coefficients
on the right.

solution is much more peaked than the corresponding one (5.2.10) for radiating boundary
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5.2. Numerical Study of Davey-Stewartson I System

conditions which can be seen on the left of Fig. 5.4. In the middle of the same figure, we
show the solution of Fig. 5.2 and (5.2.10) on the ξ-axis in one figure. Obviously the solution
constructed in this section has a considerably larger maximum (which is why the initial
iterate had to be chosen with a factor of 6). It is also more slowly decaying. However, it is
also exponentially decaying as can be seen from the logarithmic plot on the right of Fig. 5.4
on the ξ-axis. We only show the plot on the ξ-axis here, but the same behaviour is observed
for all values of η, and for the η-dependence for all values of ξ. Thus the stationary solutions
to DS I are exponentially localized in contrast to the lumps of DS II which are algebraically
decaying, and this not only for radiating boundary conditions. Therefore we will call this
solution also dromion in the following even though it is not identical to the classical one
in (5.2.10). Note that the numerical parameters in this section have been chosen in a way
that both the solution and its Fourier coefficients decrease to machine precision.
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Figure 5.4: The solution Q̃ of Fig. 5.2 on the right on the ξ-axis (red) together with the Q
of Fig. 5.2 (blue) on the left, and a logarithmic plot of the solution of Fig. 5.2 on the ξ-axis
on the right.

5.2.5 Time evolution

In this section we outline how the time integration of DS I is handled for the discretisation
in the spatial coordinates explained in the previous sections. We discuss how the accuracy
of the time integration is controlled and test the code for the example of the stationary
solution of the previous section.

We work on R × Tξ × Tη where Tξ = R/(2πLξZ), Tη = R/(2πLηZ). After the FFT
discretisation in ξ and η of the previous sections, the DS I equation (5.2.3) becomes an
NξNη dimensional system of ordinary differential equations of the form (in an abuse of

99



Chapter 5. The DS I: Numerical Study of blow-up

notation, we denote the Nξ ×Nη matrix obtained for Ψ(ξ, η) with the same symbol)

Ψ̂t = LΨ̂ +N (Ψ), (5.2.23)

where
L = −2i(k2

ξ + k2
η), N = iFξη

(
[(∂−1

ξ ∂η + ∂−1
η ∂ξ)|Ψ|2]Ψ

)
. (5.2.24)

The linear part proportional to L is diagonal and stiff since it is quadratic in kξ and kη,
which means that explicit time integration schemes are not efficient. For such cases there
are many efficient time integration schemes, see for instance the references in [92, 101]. Since
it was found in [101] that Driscoll’s composite Runge-Kutta method [44] is very efficient for
DS equations, we apply it also here.

We use the relative conservation of the mass to control the accuracy in the time
integration. Because of unavoidable numerical errors, the numerically computed mass will
depend on time even though it is a conserved quantity. Thus ∆ = log10 |1−m/m0|, where
m0 is the initial mass and m the computed mass can be used to control the accuracy of
the temporal discretisation. As discussed in detail in [101], ∆ overestimates the temporal
resolution by two orders of magnitude. The relative mass conservation stays well below
10−12 throughout most of the runs and sharply increases close to the time t∗ of a potential
finite time blow-up. Such a jump indicates a loss of precision, and we generally discard
results with a value of ∆ greater than −3. Note that we could also use the conserved
energy (5.2.8) to this end, but the anti-derivatives in (5.2.8) make this quantity numerically
problematic if resolution in Fourier space is lost near a blow-up. The effect is worse for the
energy than for the DS I solution since in the latter, the anti-derivative ∂−1

ξ is multiplied with
∂η which has a smoothing effect in the space of Fourier coefficients. Thus the energy would
underestimate the accuracy near a blow-up which is why we use only mass conservation in
the following, where such problems do not appear.

As an example we consider the dromion constructed in the previous section as initial
data for DS I. We use Nt = 103 time steps for t ≤ 1. The relative conservation of the mass
is always to the order of 10−15 (the relative energy conservation is of the same order since
the solution is fully resolved in Fourier space during the whole computation). Note that the
solution is not static, there is a harmonic time dependence. We show the difference between
the initial data times exp(it) and the numerical DS I solution in Fig. 5.5, on the left the
L∞ norm of the difference between both solutions in dependence of time, on the right the
modulus of the difference for t = 1 (where the difference is denoted with ‘err’).

It can be seen that the difference is during the whole computation of the order of
10−12 or better which is a remarkable result since it not only shows the accuracy of the
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Figure 5.5: Difference of the DS I solution for the initial data Ψ(ξ, η, 0) = Q(ξ, η)
and Qeit, on the left the L∞ norm of the difference in dependence of time where err=∥∥Ψ(t, ξ, η)− eitQ(ξ, η)

∥∥
∞, on the right is just the difference for t = 1.

time evolution code, but also of the dromion numerically constructed in the previous section.
It also shows that the dromion can be stably evolved in time although, as we will show in
the following section, it is unstable against perturbations.

5.2.6 Time evolution of the dromion

In this section we study localized perturbations of the dromion, mainly of the form

Ψ(ξ, η, 0) = µQ, µ > 0. (5.2.25)

It is shown that perturbations with a mass smaller than the mass of the dromion are just
dispersed, whereas perturbations with a mass larger than the dromion will have a blow-up
in finite time.

We first consider the case µ = 0.9 in (5.2.25) with Nξ = Nη = 210 Fourier modes and
(ξ, η) ∈ 20[−π, π] × 20[−π, π], and with Nt = 5000 time steps for t ≤ 5. In this case the
initial hump simply gets dispersed, it gets wider and flatter over time. The solution for
t = 5 can be seen on the left of Fig. 5.6. On the right of the same figure the L∞ norm
of the solution appears to be decreasing monotonically. Note that since we approximate a
situation on R2 with a setting on T2, radiation cannot escape to infinity and thus cannot
leave the computational domain. Thus the solution cannot tend to zero even for longer
times. However we do not find an indication of a stable structure in DS I solutions for trivial
boundary conditions, in contrast to the result in [58] for radiative boundary conditions.

Then we use the same numerical parameters for the initial data Ψ(ξ, η, 0) = Q −
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Figure 5.6: Solution to DS I for the initial data Ψ(ξ, η, 0) = 0.9Q, on the left for t = 5, on
the right the L∞ norm in dependence of time.

0.1 exp(−ξ2 − η2). Note that the mass of these data is roughly 0.96MQ where MQ is the
mass of the dromion and thus larger than the mass in Fig. 5.6. We show the solution
for t = 5 on the left of Fig. 5.7. Again the initial hump gets just dispersed. This is also
confirmed by the L∞ norm of the solution on the right of the same figure which after some
initial oscillation appears to be monotonically decreasing.

Figure 5.7: Solution to DS I for the initial data Ψ(ξ, η, 0) = Q− 0.1 exp(−ξ2 − η2), on the
left for t = 5, on the right the L∞ norm in dependence of time.

The situation changes considerably if we consider perturbations of the dromion with
larger mass. Here the L∞ norm appears to diverge in finite time which obviously cannot
be captured numerically. However we will trace certain norms in this case and fit the found
results to the self similar model (5.2.12) for blow-up. This allows us to extend data from the
region, where the numerical error is still controlled to essentially the full blow-up scenario,
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5.2. Numerical Study of Davey-Stewartson I System

i.e., to identify the blow-up time t∗ as well as the blow-up rate.

Nonetheless the numerical treatment of a blow-up is a delicate problem. In order
to capture the phenomena, we need to make sure to have enough numerical resolution to
get close enough to the blow-up in order to identify the mechanism. As before, we use
Lξ = Lη = 20, but now with Nξ = Nη = 212 Fourier collocation points in each direction.
High-index Fourier coefficients, which are used to estimate the space resolution, stay below
machine precision throughout the run. In time we use two consecutive runs, one up to
∼ 0.9t∗, and a second one, with a much finer time step that runs beyond the t∗ as estimated
from the first run.

In Fig. 5.2.6 we show on the left the L∞ norm of the solution which appears to
indicate a finite time blow-up. On the right we trace the quantity ∆ indicating the relative
conservation of the computed mass. It can be seen to be conserved to better than 10−5

during the whole computation. We show the solution close to the blow-up in Fig. 5.2.6.

Figure 5.8: DSI solution close to blow-up for initial data Ψ(ξ, η, 0) = 1.1Q. On the left
the evolution of the L∞ norm of the solution, on the right the conservation of mass ∆ =
log10(1 −m(t)/m(0)), which stays below −14 until we get close to the critical time. The
fitted blow-up time is t∗ = 5.332.

To study the mechanism of the blow-up, we trace the L∞ norm of the solution as well
as the L2 norm of the ξ derivative. The fitting of these norms is done for the last several
thousand recorded time steps before we start losing temporal resolution. Further we use
stabilization of the fit to more precisely judge the data cut off point. Concretely we fit
the logarithm of the considered norms, for instance the L∞ norm according to ln ‖Ψ‖∞ =
a ln(t∗ − t) + b (and similarly for ‖Ψξ‖2). The fitting is performed with the algorithm [162]
implemented in Matlab as the command fminsearch. For the example with the initial data
1.1Q, the results can be seen in Fig. 5.10.
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Chapter 5. The DS I: Numerical Study of blow-up

Figure 5.9: Left: DSI solution close to blow-up for initial data for Ψ(ξ, η, 0) = 1.1Q. Right:
Difference of the DS I solution close to blow-up and a scaled dromion.

Figure 5.10: Blow-up rate for initial data Ψ(ξ, η, 0) = 1.1Q. On the left ‖Ψ‖∞, the red lines
have the form a log10(t ∗ −t) + b, with values obtained by fitting the last several thousand
points before we lose precision, a∞ = 1.13, aΨx = 2.18 and b∞ = 1.2, bΨx = 10.0 and
t∗ = 0.5394.

The asymptotic profile of the solution appears to be a scaled dromion according to
(5.2.12) as can be seen from Fig. 5.2.6. The residual P is defined in (5.2.6), and the L in
the rescaled dromion there is determined via max(Q)/max(Ψ). It can be seen in Fig. 5.2.6
that P is of the order of 10% of the maximum of the fitted solution which shows that
one cannot get arbitrarily close to the blow-up numerically, but sufficiently to identify the
asymptotic profile.

Note that one can also fit a phase factor φ0 in Ψ ∼ Q(X,Y )
L(t) eiφ which can be determined

once more at the maximum of Ψ. The residual Ψ ∼ Q(X,Y )
L(t) eiφ is very similar in modulus to

the modulus of the residual in the Fig. 5.2.6 on the right.
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5.2. Numerical Study of Davey-Stewartson I System

5.2.7 Gaussian initial data

In this section, we study more examples from the Schwartz class of functions with a single
hump. Since the dromion is not radially symmetric, we concentrate here on standard
Gaussians, i.e., initial data of the form

Ψ(ξ, η, 0) = κ exp(−ξ2 − η2), κ > 0. (5.2.26)

Once more we find that initial data with a mass smaller than the dromion will be simply
dispersed, whereas initial data with a larger mass will lead to a blow-up in finite time.

First we consider the case κ = 3 in (5.2.26) with a mass of roughly 0.65MQ. We use
Nξ = Nη = 210 Fourier modes for (ξ, η) ∈ 10[−π, π]× 10[−π, π] and Nt = 103 time steps for
t ≤ 1. The solution for t = 1 is shown on the left of Fig. 5.11. The initial hump is clearly
dispersed. This is also confirmed by the L∞ norm of the solution on the right of the same
figure which after some initial growing appears to decrease monotonically.
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Figure 5.11: Solution to DS I for the initial data Ψ(ξ, η, 0) = 3 exp(−ξ2 − η2), on the left
for t = 1, on the right the L∞ norm in dependence of time.

If we take initial data with a mass larger than the dromion, say κ = 4.5 in (5.2.26)
where the mass is roughly 1.45MQ, we again seem to get a finite time blow-up. The solution
for t = 0.1570 in Fig. 5.12 is already close to the blow-up on the left.

The L∞ norm of the solution is monotonically increasing until numerical precision is
lost.

A fitting of the L∞ norm of the solution as well as the L2 norm of Ψξ as before in
Fig. 5.14 indicates that the blow-up is generic, with blow-up rates

‖Ψ‖∞ ∼ |t
∗ − t|−1, ‖Ψξ‖22 ≈ |t

∗ − t|−2.
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Figure 5.12: Left: DS I solution close to blow-up for Gaussian initial data Ψ(ξ, η, 0) =
4.5e−ξ2−η2 . Right: difference of the DS I solution and a rescaled dromion close to blow-up
for Gaussian initial data.

Figure 5.13: DS I solution close to blow-up for Gaussian initial data Ψ(ξ, η, 0) = 4.5e−ξ2−η2 .
Blow up time at t = 0.1583

The blow up is self-similar with the profile close to the blow-up being a dynamically
rescaled dromion as can be seen from the difference P in (5.2.6) between the solution at
the final recorded time and rescaled dromion (again the scaling factor L is just taken as
max(Q)/max(|ψ|) in Fig. 5.12. The residual is of the order of 10% which once more indicates
a good agreement with the model.

5.3 Conclusion and Further studies

In conclusion, the thesis provides detailed numerical study of integrable DS I equations with
trivial boundary conditions at infinity for initial data from the Schwartz class of rapidly
decreasing smooth functions. By similar approach described in [94] we have presented a
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Figure 5.14: Blow-up rate for initial data Ψ = 4.5e−ξ2−η2 . Left: ‖Ψ‖∞, the red lines have
the form a log10(t∗− t) + b, with values obtained by fitting the last several thousand points
before we lose precision, a∞ = 1.28, aΨx = 2.45 and b∞ = 0.65, bΨx = 9.08 and t∗ = 0.1583.

hybrid approach based on a Fourier spectral method with an analytic (up to the use of
the error function) regularisation of the singular Fourier symbols. With this approach,
it was possible to identify a localized stationary solution to DS I which was shown to be
exponentially localized as the analytically known dromion for radiative boundary conditions.
Strong numerical evidence has been presented that the dromion is unstable against localized
perturbations, and that perturbations leading to a smaller mass of the initial data than the
dromion mass will be simply dispersed. Perturbations with a larger mass than the dromion
will lead to blow-up in finite time. We presented numerical evidence that the blow-up is
self-similar with the dromion as the asymptotic profile. The same behaviour was observed
for initial data from the Schwartz class with a single hump.

The future studies relevant to the family of DS systems are more of two concerns. One
is the theoretical related and the second is on the numerical solution schemes.

Firstly, an interesting theoretical question to be studied in the future is whether
dromions also exist for non-integrable generalisations of DS I and DS II, and whether a
blow-up is still observed in such cases. A first study of these questions for DS II was
presented in [99] and should also be redone with the methods of [94].

Secondly and finally, concerning with numerical schemes, it would be interesting to
consider larger time-steps schemes so that solutions for longer time look the same as when
smaller time-steps are used. In addition, time steppers techniques for irregular type of
initial data, for instance characteristic function. Some possibilities include exponential-time
integration schemes for water-dam problem since DS systems appeared in the context of
water-waves.
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Appendix A

Notations and blow-up
In this section, we provide definitions and notations used in the thesis.

A.1 Function spaces: Lp, W k,p and Hk

The following function spaces are used throughout the thesis [189]. Let F be a general
function space.

Definition A.1.1 (Lp space). The Lp function u(x) is one defined by

Lp(Rd) := {u ∈ F : ‖u‖p <∞, 1 ≤ p ≤ ∞}

where

‖u‖p :=


( ∫
Rd |u|pdx

)1/p
, 1 ≤ p <∞,

sup
x∈Rd

|u(x)|, p =∞.
(A.1.1)

When the domain Ω is known we denote the norm ‖·‖Lp(Ω) by ‖·‖p.

Definition A.1.2. The Schwartz space for function on Ω ⊂ Rd is defined, for multi-indices
α and β, by

S (Ω) := {u ∈ C∞(Rd) : ‖u‖α,β <∞ ∀α, β} (A.1.2)

where ‖u‖α,β := supRd |xα∂βu| is a semi-norm.

Definition A.1.3 (homogeneous space). A normed linear space is homogeneous space if
for any u ∈ X such that ‖λu‖Ẋ = |λ| ‖u‖Ẋ for any λ ∈ C\{0}.

Definition A.1.4 (Sobolev space). A space

W k,p(Ω) :=
{
u ∈ Lp(Ω) : Dαu ∈ Lp(Ω) ∀|α| ≤ k

}
(A.1.3)

with Dαu = ∂|α|u
∂x
α1
1 ···∂x

αd
d

is a Sobolev space endowed with the norm

‖u‖p
Wk,p(Ω) :=

∑
|α|≤k

‖Dαu‖pp(Ω) =
∑
|α|≤k

∫
Ω
|Dαu|pdx, 1 ≤ p <∞. (A.1.4)

When p =∞ we have ‖u‖Wk,∞(Ω) = max
|α|≤k

‖Dαu‖∞(Ω) or its variant
∑
|α|≤k

‖Dαu‖∞(Ω). With

respect to any of these norms, the space W k,p is a Banach space. It is a common notation
to take W k,2(Ω) := Hk(Ω) as a Hilbert space, where p = 2.
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More explicitly, these norms are defined as

‖u‖2H1 := ‖u‖22 + ‖∇‖22 =
∫
Rd
|u(x)|2dx +

∫
Rd
|∇u(x)|2dx (A.1.5)

where ∇ = (∂x1 , · · · , ∂xd) and |∇u|2 = |∂x1u|2 + · · ·+ |∂xdu|2. Plus, the H2 norm of u(x) is
given by

‖u‖2H2 : = ‖u‖22 + ‖∇‖22 + ‖∆u‖22

=
∫
Rd
|u(x)|2dx +

∫
Rd
|∇u(x)|2dx +

∫
Rd
|∆u(x)|2dx.

(A.1.6)

If ‖u‖p <∞, we say that u is in Lp, similarly, the same holds for H1 and H2.

Definition A.1.5 (Homogeneous and inhomogeneous Sobolev spaces Ḣk(Ω),Hk(Ω)). For
Ω ⊂ Rd, a homogeneous Sobolev space is the completion of the compact smooth space of
functions C∞c (Ω) endowed with the norm, in the Fourier space

‖u‖Ḣk(Ω) :=
∥∥∥|ω|kû(ω)

∥∥∥
2(Ω)

, (A.1.7)

where ω = (ω1, · · · , ωd) and |ω| =
√
ω2

1 + · · ·+ ω2
d. The inhomogeneous space Hk(Ω) is the

completion of C∞c (Ω) under the norm

‖u‖Hk(Ω) :=
∥∥∥〈ω〉kû(ω)

∥∥∥
2(Ω)

, (A.1.8)

with 〈ω〉 =
√

1 + |ω|2.

Remark A.1.1. If k ∈ N, then

Ḣk(Ω) =
{
u ∈ L2(Ω) : ∂αu ∈ L2(Ω) ∀|α| = k

}
(A.1.9)

and
Hk(Ω) =

{
u ∈ L2(Ω) : ∂αu ∈ L2(Ω) ∀|α| ≤ k

}
(A.1.10)

A.2 The Laplacian

The usual Laplacian −∆ defined in Rd is denoted by

−∆ = −
d∑
j=1

∂2

∂x2
j

≡ −∇ · ∇ ≡ −∇2. (A.2.1)

In Fourier space, it is equivalent to

(−̂∆ϕ)(ξ) = |ξ|2ϕ̂(ξ) (A.2.2)
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for any function ϕ where ξ := (ξ1, · · · , ξd) and |ξ|2 := ξ2
1 + · · ·+ ξ2

d. If the function ϕ is in
the Schwartz space S(Rd), the Lp norm of the Laplacian becomes∥∥∥(−̂∆ϕ)(ξ)

∥∥∥p
p

=
∫
Rd
||ξ|2ϕ̂(ξ)|pdx (A.2.3)

A.3 Blow-up in Hopf equation

The inviscid Burgers equation (also Hopf equation) in 1d, for x ∈ R and u(t, x) ∈ R

ut + (u2/2)x = 0; u(0, x) = u0(x); (A.3.1)

admits no global solution if u′0 < 0 at any point, i.e. it has blow-up solution. Suppose
by contradiction, the equation has a solution u(t, x) that is smooth. On differentiating the
main equation in (A.3.1) w.r.t. x, one gets

utx + u2
x + uux = 0

which, when the substitution v = ux is made, becomes

vt + uvx = −v2. (A.3.2)

Along the characteristic curves associated with u let τ = t + x/u so that v(t) ≡ v(τ) and
∂τ = ∂t + u∂x. The equation (A.3.2) takes the form of Ricatti differential equation

vτ = −v2 (A.3.3)

whose solution reads
v = 1

τ + 1
v0

.

The characteristic curves blow up whenever the time τ = −1/v0 is approached. If v < 0
at τ = 0, i.e. v(0) < 0, blow-up to the equation (A.3.3) occurs at some positive τ . Hence
global solution cannot exist. Unless, u0 is a monotonically decreasing function, otherwise
solution to the Hopf equation (A.3.1) will cease to exist beyond the critical time

τc = −1/ inf
x∈R

u′0(x).

Even though this approach seems to suggest that the life span of u is precisely τc and ux
blows up, however this does not follow directly from the proof of the above claim. This is,
of course, due to the fact that certain quantity associated to u(t, x) or u(t, x) itself may
blow up first. The only valid conclusion based on the characteristic approach is that smooth
solution to the Hopf equation exists in the interval 0 ≤ τ < τc for smooth initial data u0(x).
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Several methods exist that can be used to show that the solution stays bounded at the
point of gradient catastrophe, see section 9.4. of [49] where inequalities impose contradiction
if smooth solutions are assumed to exist for all times.

Appendix B

Taylor coefficients of analytic functions:
Numerical Computation
Recall that DS system consists of hyperbolic and elliptic equations. In order to solve the
entire system, we have to solve for DS II equations a Poisson equation in 2D for a non-zero
right-hand-side. Since it is known that the DS II lump solution has an algebraic decrease
towards infinity, it is convenient to work on the sphere instead of R2. The former can
be covered by two charts, r ∈ [0, 1] and s = 1/r ∈ [0, 1]. The points in and outside the
unit discs are respectively mapped to the points in the south and north hemispheres. The
respective end points 0 and 1 are mapped to 0,∞ and 1. The solutions on the sphere are
then obtained by gluing together the pair of discs on the boundaries.

A problem in this context is that the solution to the 2D Poisson equation will contain
logarithms for generic right hand sides. In the DS II case, the logarithms reappear in the
solutions, and numerical errors might lead to the powers in the source term leading to such
terms. However such terms are only badly approximate by the polynomial approaches we
want to apply which will have excellent approximation properties for smooth functions.
In order to filter these terms, we need to identify certain powers in these source terms.
Such terms are identifiable via the taylor series expansion of the solution approximant
or interpolant. Nevertheless, we observed in chapter 3 that the classical numerical
differentiation schemes such as finite difference method and the polynomial series expansion
for computing higher derivatives of a function (equivalently the Taylor coefficients) on the
real line R are in general badly-conditioned. High accuracy is difficult to reach in finite
precision approaches. One of the first few algorithms that existed to compute numerically
the derivatives of a function is by Abate and Dubner [1] via the inverse Laplace transform.
Lyness and Sande [135] developed an algorithm computing the Taylor coefficients of analytic
functions using Möbius numbers from number theory. An algorithm by Fornberg [62] utilizes
the fast Fourier Transform (FFT) algorithm to obtain a large number of derivatives (up to
50) of analytic functions defined on the complex plane via contour integrals.
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Stability of the numerical differentiation rules is of a great concern. Rivlin [190] and
Berman [15], provided an explicit formula for the condition number, estimating the accuracy
in the polynomial interpolation for a given set of nodes. Miel and Mooney ([157], pg.
241-251) described, using Lagrangian interpolation, the error-growth in higher derivatives of
analytic functions in the interval [−1, 1]. In Lyness and Sande [135] and Abate and Dubner
[1], it is demonstrated that the numerical differentiation of analytic functions evaluable on
the complex plane is well-conditioned.

In this part of the appendix we present the Fornberg approach to the numerical
computation of Taylor’s coefficients of analytic functions via Cauchy integral formula. We
apply this approach by interpolating the analytic function u(x) and its interpolant pN (x) on
a circle in the complex plane. We use interpolating polynomial functions such as Chebyshev
and barycentric polynomial interpolants.

B.1 Cauchy Integral via fast Fourier transform (FFT)

B.1.1 Taylor series of analytic functions

An analytic function u(x) defined on [a, b] ⊂ R can take the form of power series

u(x) =
∞∑
k=0

ak(x− x0)k, with |x− x0| = R < Rc (B.1.1)

where Rc is the radius of convergence. Our concern is to compute the entire Taylor (power)
series coefficients ak, k = 0, 1, . . . , such that for any x0 ∈]a, b[ the series (B.1.1) converges,1.
The coefficients ak, correspond to the derivatives of u(x) at a point x0.

Consider u(z) an analytic or entire function represented in the power series form (B.1.1)
which converges in some neighbourhood D ⊂ C of the complex plane. In either case, the
Taylor coefficients can be computed via the Cauchy integral formula (3.3.24) on a circle
Cr : |z − z0| = r < Rc, for k = 0, 1, · · · ,

ak = u(n)(z0)
k! = 1

2πi

∫
Cr

u(z)
(z − z0)k+1dz = 1

2πrk
∫ 1

0
e−2πiktu(z0 + re2πit)dt, (B.1.2)

where Rc =∞ when u(z) is entire and 0 < Rc <∞ if u(z) is analytic.

Any of the rectangular or trapezoidal quadratures of the integral (B.1.2) of
periodic-analytic functions converges geometrically (Davis [42]),2. An m-trapezoidal

1We throughout assume, that the interval [a, b] can be scaled to [−1, 1] via the transformation, for
x ∈ [a, b], that y = [2x− (b+ a)]/(b− a) = [−1, 1]. Without loss of generality we will often use the interval
[−1, 1].

2In fact for periodic analytic functions the trapezoidal and rectangular sums are the same and Clenshaw
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quadrature yields, with a(m)
k = ak(r,m),

a
(m)
k =


1

mrk

m−1∑
j=0

e−(2πi/m)kju(z0 + re(2πi/m)j), k = 0, 1, · · · ,m− 1

0, k = m,m+ 1, · · · .
(B.1.3)

One establishes the correspondence (Lyness [135]) induced by (B.1.3) that

u(z0 + re−(2πi/m)j)←→ rkãk, for j, k = 0, 1, . . . ,m− 1. (B.1.4)

The approximation (B.1.3) is, precisely, a discrete Fourier Transform (DFT) computable
with high accuracy and efficiency via the FFT algorithm, (see Cooley and Tukey [38], Cooley
et al. [37]).

According to Cauchy’s integral theorem, all the radii 0 < r < Rc should give
analytically equal results but not so numerically. As r → 0, the convergence rate of the
representation (B.1.3) ameliorates remarkably (especially for r small), however, results in
large amount of cancellation in (B.1.2) leading to blow-up of the relative errors (Lyness [131],
pg. 130). When r → Rc, there are stability issues in Cauchy’s integral (see Bornemann
[19] section 3.1). Thus, finding an optimal radius r∗ is of great concern, since the proper
balancing of the overall approximation errors with rounding errors may be attained thereby
minimizing the former.

Lyness and Sande [135], in their algorithm considered the absolute error of the
normalised Taylor coefficients rkãk by varying r until the absolute error

ε(m,k)
a (r) = rk|ak − a

(m)
k | (B.1.5)

is minimized. This specific choice of error provides some sort of uniform accuracy which is
convenient for their algorithm. It is cautioned there as well, accuracy is not guaranteed in
computing a large number of coefficients. Fornberg [61],[62] extended the method through
searching an optimal r by fixing a number m of points on the circle Cr, which we explain
as follows.

B.1.2 Fornberg algorithm

Step I: suppose u(z) is defined on a circle Cr : |z − z0| = r, with z = z0 + re2πit for
t ∈ [0, 1). Applying the expansion of u(z) in (B.1.1), an equivalent form of (B.1.3) using

Curtis quadrature is the better approximation of the two.
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FFT becomes

f̂k := rka
(m)
k = 1

m

m−1∑
j=0

∞∑
n=0

e−(2πi/m)kjanr
ne(2πi/m)jn = 1

m

∞∑
n=0

anr
n
m−1∑
j=0

e(2πij/m)(k−n) (B.1.6)

However,
m−1∑
j=0

e(2πij/m)(k−n) =

m,
k−n
m = ` ∈ Z

0, otherwise.

Thus, rka(m)
k =

∞∑̀
=0
rk+m`ak+m` = rkak + rk+mak+m + rk+2mak+2m + rk+3mak+3m + · · ·

yields, for m ≥ 1 (since k = n+m`, then n is swapped by k because both n, k = 0, 1, · · · ),

a
(m)
k = ak + rmak+m + r2mak+2m + r3mak+3m + · · · (B.1.7)

the terms in the summation
∞∑
`=1

rk+m`ak+m` are aliases that appear due to function

evaluation on discrete points (they are a consequence of the fact that higher modes k+ `m

results are not distinguishable from the k modes).
Step II: based on two tests say a

(m,0)
k and a

(m,1)
k , for the choices of radii r0 and r1

respectively, one tries to get rid of the aliasing terms. The Richardson extrapolation (the
truncation error elimination) reads

A
(m,0)
k := a

(m,1)
k −

(a(m,1)
k − a(m,0)

k )
1−

( r0
r1

)m = ak − (r0r1)mak+2m − (r2m
0 rm1 + rm0 r

2m
1 )ak+3m + · · ·

(B.1.8)
To eliminate the next truncation error term ak+2m a third radius r2 is chosen, the elimination
process now involves r1 and r2:

A
(m,1)
k := a

(m,2)
k −

(a(m,2)
k − a(m,1)

k )
1−

( r1
r2

)m = ak − (r1r2)mak+2m − (r2m
1 rm2 + rm1 r

2m
2 )ak+3m + · · ·

(B.1.9)
and the use of Richardson’s extrapolation on these two equations (B.1.8) and (B.1.9) gives

B
(m,0)
k : = A

(m,1)
k −

(
A

(m,1)
k −A(m,0)

k

)
1−

( r0
r2

)m
= ak + (r0r1r2)mak+3m + (r2m

0 rm1 r
m
2 + rm0 r

2m
1 rm2 + rm0 r

m
1 r

2m
2 )ak+4m + . . .

(B.1.10)

Step III: the process is repeated by choosing the next radii and elimination of truncation
errors until a required accuracy is attained.
Analogously, assume there are second order approximations in (B.1.7) such that for rmj = qj
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for each j, then for three radii we get

A0 = ak + ak+mq0 + ak+2mq
2
0 + · · ·

A1 = ak + ak+mq1 + ak+2mq
2
1 + · · ·

A2 = ak + ak+mq2 + ak+2mq
2
2 + · · ·

The Richardson extrapolation can be obtained by finding α, β, γ for which

αA0 + βA1 + γA3 = ak +O(q3) (B.1.11)

for arbitrary q depending on q0, q1, q3. This is equivalent to solving the Vandermonde system
1 q0 q2

0

1 q1 q2
1

1 q2 q2
2




ak

ak+m

ak+2m

 =


1
0
0



which has the solution (ak, ak+m, ak+2m) =
(

q1q2
(q0−q1)(q0−q1) ,

−(q1+q2)
(q0−q1)(q0−q2) ,

1
(q0−q1)(q0−q2)

)
.

Optimizing the radius of the contour integral (Fornberg [61]:) while we choose the
initial radius at random, with m fixed, two comparison tests are conducted on f̂k in (B.1.6)
and the computed a(m)

k to determine the next choice of radius:
test I: Letting ck = f̂k/bk, with b0 = 1 and bk = 10−4/(1−1/k) for 1 ≤ k ≤ m − 2 and
bm−1 = 10−4, compute

C = max
0≤k≤m−1

|ck|, (B.1.12)

where bk comes from the accuracy required in the algorithm and a power of −4 is used to
detect (or trace) the convergence of the FFT. Next we checkif C ∈ {c0, · · · , ck/2−1}, r increases

otherwise, r decreases
(B.1.13)

test II: If according to test I r should increase, another comparison test is carried out.
Let V = {z0 + zj ∈ C}3j=1 be a set of three complex numbers with each zj randomly chosen
and check if

max
z∈V

( |u(z)− uT (z)|
|u(z)|

)
< 10−3, z = z0 + rzj (B.1.14)

where uT (z) is an m-degree Taylor polynomial of u(z) obtained using the computed
coefficients a(m)

k , for k = 0, 1, . . . ,m− 1 w.r.t the chosen circle of radius r centred at z0. If
u(z) and uT (z) satisfy (B.1.14) then r should be increased and decreased otherwise. (see
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footnote 3). The second radius is given by r1 = cr0 where r0 is changed by taking either
c = 2 or c = 1/2. Subsequently, the radius is successively changed by a factor taken to be
either square root of the preceding one or reciprocal of square root.

It is noteworthy that when r is too large, i.e. r ≥ Rc radius of convergence, a singularity
is included inside the circle and therefore we will deal with Laurent series, and this converges
to a different value but not the integral (B.1.2). Thus, in that case r is always decreased.

B.1.3 Fornberg error estimates

For k = 0, 1, . . . ,m − 1, let a(m)
k be an approximation to the ak. Suppose using the

Richardson extrapolation we get

a
(m)
k (r) = ak +RT (r), (B.1.15)

where RT (r) is a Richardson extrapolation correction term. If εM is the machine accuracy
of precision p, constant×10−p, the truncation and round-off errors are estimated (Fornberg
[61, 62]) as

ε
(m)
T (r) = ε

3/p
M ×RT (r); ε

(m)
round(r) = C

rk
· εM (B.1.16)

with C the same constant defined in the equation (B.1.12). The number ε3/pM , is a scaling
factor for better accuracy of the estimate used, moreover related to bk and the choice of our
radius r in the algorithm 4.

Finally, since all inputs are close to machine precision a good accuracy is attained
if the overall error is close to the machine epsilon εM . Therefore it makes sense that the
stopping criterion could be attained whenever

max
k
|ε(m)
T (r)− ε(m)

round(r)| ≤ εM . (B.1.17)

In other words, the algorithm stops when the quantities in the equation (B.1.16) agreed.
Additional Estimates
One observes that if R < Rc, for R the lower bound of the radius of convergence, with

3Fornberg [61] suggested that any initial radius r0 chosen producing an error � 3 × 104 renders the
algorithm unreliable. This means the algorithm doesn’t work if the initial guess is too far away from the
optimal value.

4The factor ε4/p
M is to be used but for safety reason ε1/p

M is saved.
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|z − z0| = r < R, then an upper bound for ak is derived as follows 5

|rkak|2 =
∣∣∣∣rk u(k)(z0)

k!

∣∣∣∣2 =
∣∣∣∣ 1
2πi

∫
CR

rku(z)
(z − z0)k+1dz

∣∣∣∣2
=
∣∣∣∣ ∫ 1

0
u(z0 +Re2πit)

(
r

R

)k
e−2πiktdt

∣∣∣∣2 ≤ ( rR
)2k ∫ 1

0
|u(z0 +Re2πit)|2dt

≤
(
r

R

)2k
‖u‖22 = ρ2k ‖u‖22 , k = 0, 1, 2, · · · .

∴ |rkak| ≤ ρk ‖u‖2 or |ak| ≤ R−k ‖u‖2; (B.1.18)

where ρ = r/R and the weighted L2-norm, for r < R,

‖u‖22 = 1
2πi

∫
CR

|u(z)|2 dz

(z − z0) =
∫ 1

0
|u(z0 +Re2πit)|2dt, (B.1.19)

and Schwartz’s inequality is used in obtaining the estimate (B.1.18).

B.1.4 Implementing the Fornberg algorithm

Suppose an analytic function u(x) defined on [a, b] has anN -degree interpolating polynomial
pN (x). If in addition u(x) and pN (x) can be extended analytically onto the complex plane
as u(z) and pN (z) respectively, then we are interested in a relation

u(z) ' pN (z) =
N∑
n=0

ckφk(z) (B.1.20)

so that u(z) ≡
N∑
n=0

ak(z − z0)k, pN (z) ≡
N∑
k=0

ãk(z − z0)k (B.1.21)

and u(z)
∣∣
U

= u(x) ≡ pN (z)
∣∣
U

for some subset U ⊂ R. The ck are the spectral expansion
coefficients of the interpolant pN (z) with their extended basis φk(z). Our concern here is
how efficiently the coefficients ak and ãk can be computed using Fornberg’s algorithm.

B.1.5 Interpolation and the Fornberg Algorithm

Analytic function: a function of interest is u(z) = 2/(3 + z) on the interval [−1, 1] and
we assume u extends to the complex plane with Taylor expansion

u(z) =
∞∑
n=0

(−1)n

2n (z + 1)n = 1− 1
2(z + 1) + 1

4(z + 1)2 − 1
8(z + 1)3 + · · · (B.1.22)

5The R is the lower bound of the radius of convergence Rc, which is the minimum distance from z0 to
Rc in which the power series doesn’t only converge but algo agrees with the function u(z) in the particular
neighbourhood.
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where z0 = −1. The first 10 Taylor coefficients of u(z) using Fornberg algorithm are given
in table B.1.

Chebyshev Interpolant: we will call the interpolant (B.1.20) a Chebyshev
Interpolant whenever φk(z) = Tk(z) = cos(kz) such that

pCN (z) =
N∑
k=0

ckTk(z) =
N∑
k=0

aCk (z − z0)k (B.1.23)

where aCk are the Taylor coefficients of the Chebyshev interpolant pCN (z).

Barycentric Interpolant: we will consider (B.1.20)a barycentric if the interpolant
is given by

pBN (z) =
( N∑
k=0

wk
(z − xk)

uk

)/( N∑
k=0

wk
(z − xk)

)
, w(z) ∼ (1− z2)−1/2π (B.1.24)

where xk are the interpolation points xk ∈ [−1, 1] possessing the weights w(z) with
asymptotic form described in (B.1.24). We shall take aBk as the Taylor coefficients of the
barycentric interpolant (B.1.24) expressed as in equation (B.1.23).

We shall use these interpolants in order to obtain approximations of the Taylor
coefficients ak by implementing the Fornberg algorithm, utilizing the Cauchy integral
formula on a circle containing m equispaced points, on both the u(z) and pCN (z).
With the function 2/(3 + x), let x0 = −1 be the centre of the circle and with the starting
radius r0 = 0.89687655. The Fornberg algorithm produces approximations of the first 16
and 32 Taylor coefficients (for which the first 10 are shown in the Table B.1, and B.2) having
optimal radius r∗ = 0.634187.

The first 10 coefficients aCk and ãCk and k = 0, 1, . . . , 9 for u(z) = 2/(3 + z) on [−1, 1]
k ak ãk,m = 16 aCk , N = 26 ãCk , N = 26;m = 16
0 1.000000e+00 1.000000000000000e+00 1.000000000000000e+00 1.000000000000000e+00
1 -5.000000e-01 -5.000000000000000e-01 -5.000000000000800e-01 -5.000000000000800e-01
2 2.500000e-01 2.500000000000000e-01 2.500000000089916e-01 2.500000000089916e-01
3 -1.250000e-01 -1.250000000000000e-01 -1.250000003886469e-01 -1.250000003886466e-01
4 6.2500000e-02 6.249999999999956e-02 6.250000894605472e-02 6.250000894606088e-02
5 -3.125000e-02 -3.125000000000030e-02 -3.125012749347657e-02 -3.125012749348698e-02
6 1.5625000e-02 1.562500000000069e-02 1.562622642765359e-02 1.562622642766682e-02
7 -7.812500e-03 -7.812500000000189e-03 -7.820927102209612e-03 -7.820927102308015e-03
8 3.9062500e-03 3.906249999999474e-03 3.949300071788153e-03 3.949300071498432e-03
9 -1.9531250e-03 -1.953125000000955e-03 -2.121522355966273e-03 -2.121522357154145e-03

maxk |ak − ãk| 9.545315926562381e-16 1.683973559662732e-04 1.683973571541455e-04
mink |ak − ãk| 0.0000000000000e+00 0.0000000000000e+00 0.0000000000000e+00

Table B.1: The first 10 Taylor coefficients computed via Fornberg algorithm.

As one may have noticed in Figure B.1 also in Table B.2, an increase in the degree N
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of the Chebyshev pN (x) will increase the errors. This is as a result of larger N than needed
will allow rounding errors to pollute the computation process. The best degree in this case
is N = 26. The aCk are the Taylor coefficients of the actual Chebyshev interpolant pCN (x).
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Figure B.1: Close up plots of the errors Ek = ak − ãk in the first 10 Taylor coefficients of
analytic function u(x) = 2/(3 + x) on [−1, 1] obtained from Fornberg algorithm on u(x)
having m = 32 points on a circle and its N degree Chebyshev interpolant pCN (x). Left:
Errors in the Fornberg-Taylor coefficients of the u(x) (shown in blue starred-dotted lines
-*-) and Taylor-coefficients of the interpolant with N = 26 (in green triangles 4) and that
of the exact interpolant (in blue dotted-broken lines -•-). Right: Same as in the left with
m = 32 but N = 36 is used.

The first 10 coefficients aCk and ãCk and k = 0, 1, . . . , 9 for f(z) = 2/(3 + z) on [−1, 1]
k aCk , N = 36 ãCk ,N = 36,m = 32 aCk , N = 64 ãCk , N = 64;m = 32
0 9.999999999999999e-01 1.000000000000000e+00 1.000000000000000e+00 1.000000000000000e+00
1 -5.000000000001243e-01 -5.000000000001241e-01 -5.000000000004183e-01 -5.000000000000000e-01
2 2.500000000210293e-01 2.500000000210293e-01 2.500000003111467e-01 2.500000000000000e-01
3 -1.250000014549353e-01 -1.250000014549358e-01 -1.250000904830220e-01 -1.250000000000000e-01
4 6.250005568788995e-02 6.250005568789006e-02 6.251389425622879e-02 6.250000000000000e-02
5 -3.125136126077135e-02 -3.125136126078187e-02 -3.256366584188703e-02 -3.247070312500000e-02
6 1.564809736115597e-02 1.564809736115719e-02 9.959046509770061e-02 9.936523437500000e-02
7 -8.099694964408190e-03 -8.099694964162652e-03 -3.871350887586098e+00 -3.871337890625000e+00
8 6.624569638114104e-03 6.624569637524690e-03 1.338865986808244e+02 1.338867187500000e+02
9 -2.209657410772823e-02 -2.209657410879337e-02 -3.614385123890202e+03 -3.614385131835938e+03

maxk |ak − ãk| 2.014344910772823e-02 2.014344910771141e-02 3.614383170765202e+03 3.614383178710938e+03
mink |ak − ãk| 1.110223024625157e-16 2.220446049250313e-16 0.000000000000000e+00 0.000000000000000e+00

Table B.2: The first 10 Fornberg-Taylor coefficients (Chebyshev interpolant).

Note that in the stopping criterion, a tolerance of 10−14 in the maximum absolute difference
between the truncation errors and the rounding errors is used throughout the computation
for the function u(x) and its Chebyshev interpolant.

Barycentric interpolation: for comparison purpose, let us apply the Fornberg
algorithm on the barycentric-interpolant pBN (z) to seek for approximations to ak. With
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The first 10 coefficients ãBk for various N and k = 0, 1, . . . , 9 for f(z) = 2/(3 + z) on [−1, 1]
k ãBk , N = 26,m = 16 ãBk ,N = 36,m = 16 aBk , N = 64,m = 32 ãCk , N = 72;m = 32
0 9.999999999999999e-01 1.000000000000000e+00 1.000000000000004e+00 1.000000000000020e+00
1 -5.000000000000008e-01 -5.000000000000835e-01 -5.000000000004312e-01 -5.000000000008707e-01
2 2.500000000003201e-01 2.500000000140346e-01 2.499999998822331e-01 2.499999998762437e-01
3 -1.250000000180554e-01 -1.250000008792693e-01 -1.249999556712778e-01 -1.249999476291039e-01
4 6.250000138940551e-02 6.250002049618965e-02 6.249334909297012e-02 6.249144680252552e-02
5 -3.125006968430450e-02 -3.124982350664076e-02 -3.065616874499411e-02 -3.042164209840790e-02
6 1.562663292829900e-02 1.559945106124037e-02 -1.974962886475518e-02 -3.548288926877079e-02
7 -7.841430138717593e-03 -7.321792487423968e-03 1.386182701637702e+00 1.621115635064802e+00
8 4.143919944432887e-03 2.779022778973802e-02 -1.840058522184746e+01 4.377683456778311e+01
9 -8.922426052348262e-02 -2.122550101573508e+00 -2.797451543100497e+03 -7.559579171530603e+03

maxk |ak − ãk| 8.727113552348262e-02 2.120596976573508e+00 2.797449589975497e+03 7.559577218405603e+03
mink |ak − ãk| 1.110223024625157e-16 4.440892098500626e-16 3.996802888650564e-15 2.042810365310288e-14

Table B.3: The first 10 Fornberg-Taylor coefficients (barycentric-interpolant).

the different degrees N and different number of points m on circle, we plotted the absolute
errors shown in Figure B.2.

Figure B.2: Close-up view of the absolute error |an − ãBn | in the Taylor coefficients of
an N degree barycentric polynomial interpolant with m points on the circle. For m = 16,
N = 26, 32 (the blue starred-solid line -*- and the red starred-broken-line -*-) whilem = 32
then N = 64, 72 are used (broken lines with blue dots • and solid line with dots (black) •
resp.).

Using r0 = 8.9687655e-3, with the respective optimized radii in all the cases considered
in the Table B.3, the final Fornberg-Taylor coefficients are presented in the Table B.3 for
various degrees barycentric-interpolant, with N = 26, 36, 64, 72, for m = 16 or 32 points
on the circle. The ãBN are the Fornberg computed Taylor’s coefficients of the barycentric
interpolant. It has just been shown that the barycentric interpolant does not do better than
the Chebyshev interpolant with a reasonable degree N . A very small radius is used due to
the reason of the stability of barycentric method as a result of extrapolation outside of the
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interval [−1, 1] when the Chebyshev nodes are used (see details in Trefethen [208], ch. 5
and the references therein).

B.1.6 More Examples

Examples of the Chebyshev interpolants of the functions: 1/(a+ x2), sin(πx), e−1/(x−2) for
x ∈ [−1, 1]. Specifically on the interval [−1, 1] around 0,

1/(1 + x2) =
∞∑
k=0

(−1)kx2k = 1− x2 + x4 − x6 + x8 − · · ·

sin(πx) =
∞∑
k=0

(−1)kx2k+1/(2k + 1)! = πx− π3x3/3! + π5x5/5!− · · ·

Again, we use Fornberg algorithm on the Chebyshev interpolants of these functions. The
function exp(−1/(x− 2)) with the expansion around the point x0 = 0 ∈ [−1, 1]:

e−1/(x−2) =
√
e

[
1 + 1

4x+ 5
32x

2 + 37
384x

3 + 361
6144x

4 + 4361
122880x

5 + 62701
2949120x

6 + · · ·
]
.

We present the results of the Fornberg computed Taylor’s coefficients in the Table B.4 for
the functions concerned along with the absolute errors associated to each of them in Figure
B.3 and Figure B.4. Firstly, the errors in the first 16 Fornberg-Taylor coefficients ãk of
the given function u(x) are depicted together with that of its Chebyshev interpolant ãCk .
For the function 1/(1 + x2) we found, as Fornberg algorithm is applied, a 42 Chebyshev
interpolant has the best approximations compared to higher or lower degree ones. Yet, a
better accuracy is attained when applied to the function u(x). This is also applied to the
other function’s interpolant with their corresponding degrees shown in the figures and the
table. We expanded the periodic function sin(πx) about the point x = 0 and exponential
function exp(−1/(x− 2)) around x = 1.

It turns out, what one gets in the bottom figure of Figure B.4 can be part of the warning
hinted by the Fornberg that full accuracy is not guaranteed even for some entire functions
like exp(z).

Another example worth considering is exp(−1/(1 + x2)) expanded around x0 = 0:

e−1/(1+x2) =
∞∑
k=0

(
− 1
x2+1

)k
k! =

[
1 + x2 − x4

2 + x6

6 + x8

24 −
19x10

120

+ 151x12

720 − 1091x14

5040 + 7841x16

40320 − · · ·
]
e−1

(B.1.25)
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Figure B.3: Absolute errors |ak − ãCk | in the Taylor coefficients of an N degree Chebyshev
polynomial interpolant of 1/(1 + x2) with 32 points on the circle.
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Figure B.4: Absolute errors |ak − ãCk | in the Fornberg Taylor coefficients of degree N
Chebyshev polynomial interpolants of sin(πx) and e−1/(x−2) with 32 points on the circle
around x0 = 0. Top: the errors in computing the Fornberg-Taylor coefficients of the
function sin(πx) (blue starred-broken lines -*- and that of its Chebyshev interpolant (in
green circled-broken lines -◦-) are shown. Bottom: same for the function exp(−1/(x−2)).
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B.1. Cauchy Integral via fast Fourier transform (FFT)

The first 16 coefficients ãCk for various N and k = 0, 1, . . . , 9 for u(x) on [−1, 1]
k ãCk , N = 48, 1/(1 + x2) ãCk , N = 26, sin(πx) ãCk , N = 50, e−1/(x−2)

0 1.000000000000000e+00 -5.999690314728152e-16 1.648721270700128e+00
1 -4.850569910951675e-16 3.141592653589794e+00 4.121803176750716e-01
2 -1.000000000000514e+00 7.015059858882657e-14 2.576126985470080e-01
3 1.801240971173670e-13 -5.167712780050230e+00 1.588611642512140e-01
4 1.000000000094553e+00 -1.205827581828523e-12 9.687309330045955e-02
5 -1.521423274157593e-11 2.550164039886327e+00 5.852082514033915e-02
6 -1.000000006827656e+00 6.612456995920963e-12 3.513547189987509e-02
7 5.030933494069426e-10 -5.992645294495469e-01 -4.762415038782888e-01
8 1.000000260128113e+00 1.074610737480268e-11 -1.761018329157959e-01
9 -8.682225352144296e-09 8.214588761006840e-02 9.914550130207108e+03
10 -1.000006071255086e+00 -3.180725820103482e-10 1.357481391895635e+06
11 8.977461391004392e-08 -7.370435665466852e-03 -1.636948143124325e+08
12 1.000094879712246e+00 1.882010894933157e-09 -7.729441167910748e+11
13 -6.197549180731891e-07 4.663172636980721e-04 3.528748067427020e+13
14 -1.001052440995684e+00 -6.288960751626695e-09 -1.460326286936149e+16
15 3.445946974576630e-06 -2.194500467339762e-05 -1.308908407129285e+18

Table B.4: The computed Fornberg-Taylor coefficients of Chebyshev interpolants.

The absolute error plot is shown in the figure below.
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Figure B.5: Absolute errors |ak − ãCk | in the Fornberg Taylor coefficients of degree N

Chebyshev polynomial interpolants of e−1/(x2+1) with 32 points on the circle around x0 = 0.
Same description as in the Figure B.4.

A tolerance in the disparity between the truncation errors and rounding errors
estimates is throughout taken to be 1e-14. This is part of the stopping criterion. In order to
avoid an infinite loop of the algorithm, as this tolerance may not always be achieved due to
accumulation of rounding errors, we impose a condition on the maximum absolute value of
the estimated rounding errors that should not go lower than 1e-12. Therefore we adopted
any of these two conditions as our stopping criteria.
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Chapter B. Taylor coefficients of analytic functions

B.1.7 Conditioning of the Cauchy Integral for Interpolants

Since classical formulas for differentiation are generally ill-conditioned, we have to
investigate when the Cauchy formula can be well-behaved for Forneberg’s algorithm
implementation. The conditioning of the Cauchy integral of the analytic function u(x)
can be denoted by the number κ(n, r).

Let us prepare the problem for numerical approximation. The condition number κ(n, r)
of the Cauchy integral as defined in (Bornemann [19]) and references therein, is given by

κ(n, r) :=

1∫
0

∣∣u(z0 + re2πit)
∣∣dt∣∣∣∣ 1∫

0
e−2πintu(z0 + re2πit)dt

∣∣∣∣ =
‖u‖H1(Cr)∣∣rnan∣∣ ≥ 1. (B.1.26)

By definition, κ(n, r) computes the amount of cancellation occurring in the integral (B.1.26),
where we have large cancellation when κ(n, r)� 1, and virtually zero cancellation whenever
κ(n, r) ≈ 1. It is independent on how the integral is computed.

Associated to κ are the possible absolute and relative errors εa and εr respectively, when
numerical quadratures are involved in the approximation of the Cauchy integral. Since the
integrals involved in (B.1.26) are of a periodic function of period 1, it can be evaluated with
remarkable efficiency using m-point Trapezoidal rule (Lyod & Weidmann 2014). If ãn(m; r)
is the approximation of an by the m-points trapezoidal sum, then

rnãn := 1
m

m−1∑
j=0

e−(2πi/m)jnu(z0 + re(2πi/m)j). (B.1.27)

The absolute and relative errors are given by

εa(m, r) = rn|an − ãn|, εr(m, r) = rn|an − ãn|
|an|

.

If in addition, ũ(z) is the perturbation of u(z) with corresponding perturbed data ãn,
≈
an of

an and ãn respectively, then

‖u(z)− ũ(z)‖ ≤ ε, rn|an − ān| ≤ 2ε, rn|ãn −
≈
an| ≤ 2ε (B.1.28)

indicating the presence of small absolute errors ε in the function u(z) and the normalised
Taylor coefficients an and ãn. This proves the stability of the trapezoidal sums for the
Taylor coefficients of u(z) with respect to the absolute error of the normalised coefficients.
Equivalently, these coefficients are computable effectively using FFT for good choice of r.
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B.1. Cauchy Integral via fast Fourier transform (FFT)

The corresponding condition number evaluated using the m-point trapezoidal sums is

κ̃(n, r) =

m−1∑
j=0

∣∣u(z0 + re(2πi/m)j)
∣∣∣∣∣∣m−1∑

j=0
e(2πi/m)nju(z0 + re(2πi/m)j)

∣∣∣∣ ≥ 1. (B.1.29)

Using the relative error εr with perturbation ũ(z), we have ũ(z) = u(z)(1 + εr(z)), for
‖εr(z)‖Cr ≤ ε. The upper bound of the normalised Taylor coefficients of u(z) is determined
as follows

rn|an − ¯̃an| =
∣∣∣∣ ∫ 1

0
e−2πintu(z0 + re2πint)εr(z0 + re2πint)dt

∣∣∣∣ ≤ ε ∫ 1

0

∣∣u(z0 + re2πint)
∣∣dt. (B.1.30)

Consequently, one gets
|an − ãn|
|an|

≤ κ(n, r) · ε. (B.1.31)

Thus, this establishes the relation between the relative and absolute errors. A similar
relation is obtained for ≈an. Now, it is left to obtain the best r such that the required
accuracy is achieved for the computed coefficients.
Optimal radius: As mentioned earlier, the problem of finding the best radius becomes an
optimization one. The task is to find such r∗(n) and r̃(n,m) for which

r∗(n) = arg min
0<r<Rc

κ(n, r), κ∗(n) = min
0<r<Rc

κ(n, r)

r∗(n,m) = arg min
0<r<Rc

κ̃(n, r), κ̃∗(n,m) = min
0<r<Rc

κ̃(n, r).
(B.1.32)

Consider a function u(z) = 1/(z0 + z), where z0 is a complex number. The real version of
the function u(z) is u(x) = 1/(x0 + x) restricted to the interval [0, 1] in particular when
x0 = 1. Let ζ ∈ [−1, 1] and make the change of variables ζ = 2x − 1. Then f(x) has
Chebyshev coefficients given by

ck = 2
π

∫ 1

−1

f(x)Tk(x)dx√
1− x2

= 2
π

∫ 1

−1

f(x)T ∗k (x)dx√
x(1− x)

= 2
π

∫ 1

−1

f
( ζ+1

2
)
Tk(ζ)√

1− ζ2 dζ

=


√

2/2, k = 0

(−1)k
√

2(3− 2
√

2)k, k ≥ 1.

(B.1.33)

See (Snyder 1974 pg.40 and Mason and Handscomb 2003 eq. 5.21) for details of how ck

is computed by a tau method. Note that T ∗n(x) = Tn(2x − 1) is the shifted Chebyshev
polynomial when x ∈ [0, 1].
The pole at z = z0 = −1 associated to the u(z) verifies that 0 < r < |z0 +

√
z2

0 − 1| = 1 the
region Cr of analyticity of u(z) is contained in the largest ellipse of foci ±1.
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Chapter B. Taylor coefficients of analytic functions

Next, the condition number κ(n, r) associated to the Chebyshev series is

‖f‖H1(Cr)

rnaCn
= 1
rnaCn

∫ 1

0
|u(z0 + re2πit)|dt = 1

rnaCn

∞∑
k=0
|ck|

∫ 1

0
|Tk(z0 + re2πit)|dt. (B.1.34)

Viewing the Chebyshev polynomial Tk(z) on the complex plane is equivalent to representing
it on an ellipse of foci ±1, i.e. Tk(z) = 1

2(zk + z−k) is a Chebyshev polynomial defined on
C∗ where z = eiθ is a unit circle, 0 ≤ θ ≤ 2π. Restricting the function u(z) to a circle Cr
contained in the ellipse we have a Chebyshev polynomial

Tk(z), for z = z0 + reiθ, 0 ≤ θ ≤ 2π . (B.1.35)

Therefore, with u(z0 +re2πit) =
∞∑
k=0

ckz
k = c0 +c1z+c2z

2 + · · · , the equation (B.1.34) takes

the form
κC(n, r) = 1

aCn r
n

∞∑
k=0
|ck|

∫ 1

0
(r2 + z2

0 + 2rz0 cos(2πt))k/2dt. (B.1.36)

We compute the Taylor coefficients as follows

aCn = 1
2πi

∫
Cr

∞∑
k=0

ck(zk + z−k)/2

(z − z0)n+1 dz

=
∞∑
k=0

ck
rn

∫ 1

0
e−2πnit(z0 + re2πit)kdt+

∞∑
k=0

ck
rn

∫ 1

0
e−2πnit(z0 + re2πit)−kdt

=
∞∑
k=0

ck
rn

∫ 1

0
e−2πint

k∑
j=0

(
k

j

)
zk−j0 rje2πijt +

∞∑
k=0

ck
rn

∫ 1

0
e−2πint

∞∑
j=0

(
−k
j

)
z−k−j0 rje2πijt

=
∞∑
k=0

ck
rn

[ k∑
j=0

(k)Cjz
k−jrj

∫ 1

0
e2πi(j−n)tdt+

∞∑
j=0

(k)Cjz
−k−jrj

∫ 1

0
e2πi(j−n)tdt

]
(B.1.37)

where (k)Cj = (−k)(−k−1)···(−k−j+1)
j! = (−k)!

j!(−k−j)! . We therefore have, for j = n

rnaCn =
∞∑
k=0

ck

[ k∑
n=0

(k)Cnz
k−nrn +

∞∑
n=0

(k)Cnz
−k−nrn

]
. (B.1.38)

We can compute this using a fast Fourier transform of the truncated Chebyshev series with
N sample points. The associated condition number to the interpolant uN of u(x) from
(B.1.26) and (B.1.29) is

κC(n, r) ∼ κ̃C(n, r) =

m−1∑
j=0

∣∣uN (z0 + re(2πi/m)j)
∣∣∣∣∣∣m−1∑

j=0
e(2πi/m)njuN (z0 + re(2πi/m)j)

∣∣∣∣ ≥ 1. (B.1.39)

Example B.1.1. Another particular analytic function f(x) = 1/(a+x2), where a = 1, has
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B.1. Cauchy Integral via fast Fourier transform (FFT)

Chebyshev coefficients given by c0 =
√

2
2 , ck = (−1)k (3−2

√
2)k

(2k+1) , k ≥ 1, computed using
a tau method, see (Snyder, eq. (4.8) in [198]). However, based on the previous results of
Fornberg’s approach on interpolants, a satisfactory accuracy cannot be guaranteed.

B.1.8 Discussion
Fornberg’s method is (can be) used to approximate the Taylor coefficients of a given analytic
function as accurate as possible. Thus, Fornberg’s algorithm on an interpolant approximates
the coefficients ak (equivalently the derivatives of pN (z)) as shown in the various tables
for various degrees of the Chebyshev interpolant. As the analysis suggests, the Fornberg
algorithm is preferably applied to the function (analytic), if known, in order to compute
numerically the approximate derivative of the function u(x). It produces better accuracy
for about half the number of the points m on the circle used on the function itself but about
m/4 terms are accurate if the polynomial interpolant pN (x) replaces u(x). Nevertheless,
for some entire functions such as exp(z) the computed errors using the algorithm on u(x)
behave just like its interpolant pCN (x). Larger m is not required if a smaller one yields
the number of coefficients needed for the interpolant as it is holds in for known analytic
functions ( see Fornberg [61]). In other words, if the maximum error attained approaches
machine precision εM for smaller m < m′ there is no need for larger m.
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Chapter C. The NLS equation

Appendix C

The NLS equation
Consider the NLS equation in R+ × Rd with general power non-linearity:

iut + ∆u = f(|u|2)u, u = u(t,x) : [0,∞)× Rd → C

u(x, 0) = u0(x) u0 : Rd → C
(C.0.1)

Assume the solution u = u(x, t) is smooth and decays rapidly along with its derivatives, as
|x| → ∞, i.e. assume u ∈ S(Rd × R) a Schwartz space.

The Lagrangian density of the power nonlinearity NLS (C.0.1) can be derived to take
the form ( taking ū as a complex conjugate of u):

L(u, ū,∇u,∇ū) = i

2(ūut − uuūt)− |∇u|2 − F (|u|2) (C.0.2)

and the energy (Hamiltonian) density can be written in the form

E(u, ū,∇u,∇ū) =
n∑
k=1

q̇k
∂L
∂q̇k
− L = i

2(ūut − uūt)− L

= |∇u|2 + F (|u|2).
(C.0.3)

The energy functional E[u] will be the integral

E[u] =
∫
Rd
E(u, ū,∇u,∇ū)dx =

∫
Rd

(
|∇u|2 + F (|u|2)

)
dx. (C.0.4)

The variational structure of the equation, due to the Noether theorem for dynamical
systems, leads to the corresponding conserved quantities associated to the invariances. Few
among the most important invariances include: mass or wave energy M [u] due to phase-shift
(also called gauge invariance), energy or Hamiltonian E[u] due to time translation and
momentum P [u] as a result of space translation. These associated quantities of the equation
(C.0.1) defined below can be proven to be conserved: with F ′ = f

M [u] = ‖u‖22 =
∫
Rd
|u(x, t)|2dx; (C.0.5)

E[u] =
∫
Rd

(
|∇u(x, t)|2 + F (|u(x, t)|2)

)
dx; (C.0.6)

P [u] = 1
2i

∫
Rd

(u∇ū− ū∇u)dx = =
∫
Rd
u∇ūdx; (C.0.7)
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These quantities, respectively, describe the conservation of mass, energy and momentum.

Proposition C.0.1. The quantities (C.0.5)-(C.0.7) are conserved.

Proof. Let’s use the complex conjugate of the given equationiut + ∆u = f(|u|2)u

−iūt + ∆ū = f(|u|2)ū
(C.0.8)

We first show conservation of mass, therefore we need to verify that d
dt

∫
Rd |u(x, t)|2dx = 0.

d

dt

∫
Rd
|u(x, t)|2dx = d

dt

∫
Rd
uūdx =

∫
Rd

(utū+ uūt)dx = 1
i

∫
Rd

(iutū+ u(iūt))dx

= 1
i

∫
Rd

(
(f(|u|2)u−∆u)ū+ u(∆ū− f(|u|2)ū)

)
dx

= 1
i

∫
Rd

(
− (∆u)ū+ u∆ū

)
dx, use ∆u = ∇ · ∇(u)

= −i
∫
Rd

(
∇ ·

[
u∇ū−

(
∇u
)
ū
])
dx = 0.

The last integral vanishes due to the divergence theorem. The expression there is obtained
by using ∇ ·

(
φ∇ψ

)
= φ∇2ψ +∇φ · ∇ψ for scalar functions φ, ψ, such that

∇ ·
((
−∇u

)
ū

)
= ∇ · (−∇u)ū+

(
−∇u

)
·
(
∇ū
)

= −(∇u)ū−
(
∇u
)
·
(
∇ū
)
;

∇ ·
(
u∇ū

)
= u∇2ū+

(
∇u
)
·
(
∇ū
)

= u∆ū+
(
∇u
)
·
(
∇ū
)
.

For the energy, we need the time derivative of the quantity (C.0.6) to vanish. We
therefore use similar approach. First we multiply the first equation in (C.0.8) by ūt, the
second one by ut and taking the sum will give us the equation

(∆u)ūt + (∆ū)ut = f(|u|2)uūt + f(|u|2)ūut.

Using the divergence identities, this equation is equivalent to

∇ ·
(

(∇u)ūt
)
−
(
∇u
)
·
(
∇ūt

)
+∇ ·

(
(∇ū)ut

)
−
(
∇ū
)
·
(
∇ut

)
= f(|u|2)(|u|2)t;

and therefore, with F ′ = f , we get

∇ ·
[
∇(u)ūt +∇(ū)ut

]
= (F (|u|2))t + (|∇u|2)t = d

dt

[
|∇u|2 + F (|u|2)

]
.
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Chapter C. The NLS equation

Consequently,

d

dt

∫
Rd

(
|∇u|2 + F (|u|2)

)
dx =

∫
Rd
∇ ·

[
∇(u)ūt +∇(ū)ut

]
dx = 0,

by divergence theorem. It is left to prove the conservation of the momentum.

We compute the time derivative of the momentum as follows

d

dt

[ 1
2i

∫
Rd

(ū∇u−u∇ū)dx
]

= 1
2i

∫
Rd

(ūt∇u+ ū∇ut − ut∇ū− u∇ūt)dx

= 1
2

∫
Rd

[
(−iūt)∇u− ū∇(iut) + (iut)∇ū− u∇(−iūt)

]
dx

(C.0.9)

Let W := (−iūt)∇u− ū∇(iut) + (iut)∇ū− u∇(−iūt). Simplifying the integrand to have

W =
(
−∆ū+ f(|u|2)ū

)
∇u− ū∇

(
−∆u+ f(|u|2)u

)
+
(
f(|u|2)u−∆u

)
∇ū− u∇

(
f(|u|2)ū−∆ū

)
= (−∆ū)∇u+ f(|u|2)ū∇u+ ū∇(∆u)− ū∇

(
f(|u|2)u

)
+ f(|u|2)u∇ū−

(
∆u
)(
∇ū
)
−

u∇
(
f(|u|2)ū

)
+ u∇(∆ū)

= (−∆ū)∇u+ f(|u|2) · ∇(|u|2) +∇(ū∆u)−
(
∇ū
)
(∆u)−∇

(
ūf(|u|2)u

)
+ (∇ū)f(|u|2)u− (∆u)(∇ū)

−∇
(
uf(|u|2)ū

)
+ (∇u)f(|u|2)ū+∇

(
u∆ū

)
−
(
∇u
)(

∆ū
)

= −2(∆ū)∇u− 2(∆u)(∇ū) +∇
[
2F (|u|2)

]
+∇

[
ū∆u− ūf(|u|2)u− uf(|u|2) + u∆ū

]
= ∇ ·

[
(∇ū)(∇u) + 2F (|u|2) + ū∆u− 2f(|u|2)|u|2 + u∆ū

]
.

The last equality is found by divergence identity. Then, this proves that

d

dt

[ 1
2i

∫
Rd

(ū∇u− u∇ū)dx
]

= d

dt

[
=
∫
Rd
ū∇udx

]
= 0.

C.0.1 Virial identity

Proposition C.0.2. By the hypothesis of proposition C.0.1, the following identity

d2

dt2

∫
Rd
|x|2|u|2dx =

∫
Rd

[
8|∇u|2 + 4d(f(|u|2)|u|2)− F (|u|2)

]
dx (C.0.10)

holds from equation (C.0.6) and that there doesn’t exist a solution of the (super)critical
(cubic) NLS equation iut + ∆u+ |u|2u = 0 in Rd × (0,∞) for all t ≥ 0 if d ≥ 2 and

E[u(0)] =
∫
Rd

[
|∇u(·, 0)|2 − |u(·, 0)|4

2

]
dx < 0. (C.0.11)

The identity (C.0.10) is known as variance identity or virial theorem.
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Proof. Taking the first derivative w.r.t. t

d

dt

∫
Rd
|x|2|u|2dx =

∫
Rd
|x|2(utū+ uūt)dx = 1

i

∫
Rd
|x|2

[
− (∆u)ū+ u(∇ū)

]
dx

= 1
i

∫
Rd
|x|2

[
− (∇u)ū+ u∇ū

]
dx

= −i
∫
Rd

{
∇ ·
[
|x|2

(
− (∇u)ū+ u∇ū

)]
− 2x ·

(
− (∇u)ū+ u∇ū

)}
dx

= 2i
∫
Rd
x ·
(
− (∇u)ū+ u∇ū

)
dx.

Taking the second derivative w.r.t t

d2

dt2

∫
Rd
|x|2|u|2dx = d

dt

[
2i
∫
Rd
x ·
(
− (∇u)ū+ u∇ū

)
dx
]

= 2
∫
Rd
x ·
[
− (∇(iut))(ū)− (∇u)(iūt) + iut(∇ū) + u(∇iūt)

]
dx

= 2
∫
Rd
x ·
[
− (∇(f(|u|2))u−∆u)ū+ (∇u)(f(|u|2)ū−∇ū)

+ (f(|u|2)u−∆u)(∇ū) + u

(
∇(∆ū− f(|u|2)ū)

)]
dx

= 2
∫
Rd
x ·
[
−∇(f(|u|2)uū) + f(|u|2)u∇ū+∇((∆u)ū)− (∆u)(∇ū)

+ (∇u)(f(|u|2)ū)− (∇u)(∆ū) + f(|u|2)ū(∆ū)− (∆u)(∇ū)

+∇
(
u(∇ū− f(|u|2)ū)

)
− (∇u)

(
∆ū− f(|u|2)ū

)]
dx

The integrand simplifies to

x ·
(
− 2(∆u)(∇ū)− 2(∆ū)(∇u)

)
= −2x · (∆u)(∇ū)− 2x · (∆ū)(∇u)

Using the identity that

x · (∆u)(∇ū) =
( n∑
j=1

xj
∂ū

∂xj

)( d∑
k=0

∂2u

∂x2
k

)
=

d∑
k=1

[ d∑
j=1

xj
∂ū

∂xj

]
∂2u

∂x2
k

=
d∑
k=1

∂

∂xk

[( d∑
j=1

xj
∂ū

∂xj

)
∂u

∂xk

]
−

d∑
k=1

∂ū

∂xk

∂u

∂xk
−

d∑
k=1

[ d∑
j=1

xj
∂2ū

∂xk∂xj

]
∂u

∂xk

= ∇ ·
(

(x · ∇ū)∇u
)
− |∇u|2 −

d∑
k=1

[ d∑
j=1

xj
∂2ū

∂xk∂xj

]
∂u

∂xk

similarly,

x · (∆ū)(∇u) = ∇ ·
(

(x · ∇u)∇ū
)
− |∇u|2 −

d∑
k=1

[ d∑
j=1

xj
∂2u

∂xk∂xj

]
∂ū

∂xk
.
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then

−2x · (∆u)(∇ū)− 2x · (∆ū)(∇u) = ∇ ·
[
− 2x · (∆u)(∇ū)− 2x · (∆ū)(∇u)

]
+ 4|∇u|2

+ 2
d∑
k=1

[ d∑
j=1

xj
∂2u

∂xk∂xj

]
∂ū

∂xk
+ 2

d∑
k=1

[ d∑
j=1

xj
∂2ū

∂xk∂xj

]
∂u

∂xk

= ∇ ·
[
− 2x · (∆u)(∇ū)− 2x · (∆ū)(∇u)

]
+ 4|∇u|2

+ 2
d∑
j=1

xj
(
|∇u|2

)
xj

= ∇ ·
[
− 2x · (∆u)(∇ū)− 2x · (∆ū)(∇u)

]
+ 4|∇u|2

+ 2
d∑
j=1

(
xj |∇u|2

)
xj
− 2

d∑
j=1
|∇u|2

= ∇ ·
[
− 2(x · ∇ū)∇u− 2(x · ∇u)∇ū+ 2x|∇u|2

]
+ (4− 2d)|∇u|2

(C.0.12)
Substituting back into the main integral we get

d2

dt2

∫
Rd
|x|2|u|2dx = 2

∫
Rd

{
x · ∇

[
− f(|u|2)|u|2 + 2F (|u|2) + (∇u)ū+ u∇ū− f(|u|2)|u|2

]
− 2∇ ·

[
(∇u)(x · (∇ū) + (∇ū)(x · ∇u) + 2x|∇u|2

]
+ (4− 2d)|∇u|2

}
dx

= 2
∫
Rd

{
∇ ·
[
x · (−2f(|u|2)|u|2 + 2F (|u|2)) + (∇u)ū+ u(∆ū)

]
+ 2df(|u|2)|u|2 − 2dF (|u|2)− d(∆u)ū− du(∆ū) + (4− 2d)|∇u|2

}
dx

= 2
∫
Rd

{
2df(|u|2)|u|2 − 2dF (|u|2) + 2d|∇u|2 + 2d|∇u|2

}
dx

= 8
∫
Rd
|∇u|2dx + 4d

∫
Rd

(f(|u|2)|u|2 − F (|u|2))dx

= 8
∫
Rd

(
|∇u|2 + |F (|u|2)|

)
dx + 4

∫
Rd

(
f(|u|2)|u|2 − (d+ 2)F (|u|2)

)
dx

= 8E[u] + 4
∫
Rd

[
(|u|2)|u|2fd− (d+ 2)F (|u|2)

]
dx.

(C.0.13)
This proves the virial formula. In the case of power non-linearity f(|u|2) = γ|u|2σ, for
γ = ±1, then F (|u|2) = γ

σ+1 |u|
2σ+2 and f(|u|2)|u|2 − F (|u|2) = γ σ

σ+1 |u|
2σ+2. Thus the

integral (C.0.13) becomes

d2

dt2

∫
Rd
|x|2|u|2dx = 8E[u] + 4γ (σd− 2)

(σ + 1)

∫
Rd
|u|2σ+2dx

= 8E[u] + 4γ (σd− 2)
(σ + 1) ‖u‖

2σ+1
2σ+2 .

(C.0.14)
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Next, we check the existence of solution when E[u(0)] < 0 for d ≥ 2. If γ = −1 and
E[u(0)] < 0, then we get at the critical dimension σd = 2 with σ = 1 the energy function

E[u(t)] =
∫
Rd

(|∇u|2 + F (|u|2))dx =
∫
Rd

(
|∇u|2 + γ

1
σ + 1 |u|

2σ+2
)
dx

=
∫
Rd

(|∇u|2 − 1
2 |u|

4)dx = E[u(0)] < 0.

Therefore, on integrating the terms

d2

dt2

∫
Rd
|x|2|u|2dx = 4

[ ∫
Rd
|∇u|2 − d

2 |u|
4
]
dx = 4E[u(0)] < 4E[u(0)] (C.0.15)

twice w.r.t. t we get

d2

dt2

∫
Rd
|x|2|u|2dx <

∫
(4E(0)t+ c0)dt = 2E(0)t2 + c0t+ c1.

However, the RHS will be negative if t is large enough. But the LHS is non-negative.
This is a contradiction. Thus, u cannot exist for all t ≥ 0. Hence, QED.

C.0.2 Proof of Pohozaev Identities

Assume Q > 0. Using the profile equation (4.3.4), we multiply by Q and integrate by part
the term

∫
Rd Q∆Q to get −

∫
Rd |∇Q|2 +

∫
Rd |Q|2σ+2 − ω

∫
Rd |Q|2 = 0. This is equivalent to

‖∇Q‖22 + ω ‖Q‖22 = ‖Q‖2σ+2
2σ+2 . (C.0.16)

Similarly, multiplying (4.3.4) by x · ∇Q and integrate by part for the first integral

0 =
∫
Rd

(x · ∇Q)∆Q+
∫
Rd

(x · ∇Q)(|Q|2σQ− ωQ)

=−
∫
Rd
∇(x · ∇Q) · ∇Q+

∫
Rd
x ·
[ 1

2σ + 2∇(|Q|2σ+2)− ω

2∇Q
2
]

where the (x · ∇u)f = x1
∂u
∂x1

u+ · · ·+ xd
∂u
∂xd

u = x · ∇(u2/2) is used for the second integral.
Since ∂xj (x · ∇Q) = ∂xjQ+ x · ∇∂xjQ then ∇(x · ∇Q) = ∇Q+ (x · ∇)∇Q. We proceed as
follows

0 = −
∫
Rd

(∇Q+ (x · ∇)∇Q) · ∇Q−
∫
Rd

( 1
2σ + 2 |Q|

2σ+2 − ω

2Q
2
)
∇x

= −
∫
Rd
|∇Q|2 − 1

2

∫
Rd
x · ∇(|∇Q|2)− d

∫
Rd

( 1
2σ + 2 |Q|

2σ+2 − ω

2Q
2
)

=
(
− 1 + d

2

)∫
Rd
|∇Q|2 − d

2σ + 2

∫
Rd
|Q|2σ+2 + ωd

2

∫
Rd
|Q|2.
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Chapter C. The NLS equation

Therefore, we have

(d− 2) ‖∇Q‖22 + ωd ‖Q‖22 = d

σ + 1 ‖Q‖
2σ+2
2σ+2 . (C.0.17)

Putting together the equations (C.0.16) and (C.0.16) will lead to the two identities. The
first one is obtained by eliminating ‖Q‖22 and second one by eliminating

∥∥∇Q2∥∥
2. Hence,

proved.

C.1 Asymptotic profile of the ground state Q for NLS

Some of the asymptotic behaviour of Q for r � 1 and 0 ≤ r � 1 are as follows. If we take
Q ∈ H1(Rd) and r � 1 and

lim
r→∞

Q(r) = 0, and lim
r→∞

Q′(r) = 0

then a nontrivial solution Q behaves like

Q(r) ∼ Ce(1−d)/2e−r, r � 1, where C =constant. (C.1.1)

This is proved to hold based on the assumption that lim
r→∞

|Q|2σQ = 0 and the solution to
the linear problem, at infinity, will lead to the asymptotic result (C.1.1).

If, moreover, 0 ≤ r � 1, applying l’Hopital rule gives the asymptotic result for Q(r).
Provided Q(0) is positive and since |Q(0)|2σ > σ + 1 > 1 then Q′′(0) < 0. This goes with
the results found in the Lemma C.1.0.1 about the global maximum of |Q| is attained at the
origin. The l’hopital rule on the main equation (4.5.3) yields

Q′′(0) = 1
d

lim
r→0

∆Q(r) = 1
d

[
Q(0)− |Q(0)|2σ+1

]
. (C.1.2)

Using the Taylor series expansion of Q(r) about the origin and the equation (C.1.2) we have
that asymptotically Q behaves like

Q(r) = Q(0) + 1
2d

[
Q(0)− |Q(0)|2σ+1

]
r2 +O(r4). (C.1.3)

Lemma C.1.0.1 (Fibich [54]). If Q(n)(r) is a nontrivial solution of the problem (4.5.3)
in H1(Rd) and d > 1, then for any two extremum points 0 ≤ rmin < rmax satisfying
dQ(n)(rmin)/dr = dQ(n)(rmax)/dr = 0, we have |Q(n)(rmax)| < |Q(n)(rmin)|. In particular,
this implies that the global maximum of the Q(n)(r) is reached at the origin r = 0.

The Q(n)(r) are the excited states for n > 1, with the ground state given by n = 0.
See the proof of this lemma in Fibich ([51], pg. 144).
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C.1. Asymptotic profile of the ground state Q for NLS

Proposition C.1.1 (The Asymptotic profile for Q). The asymptotic solution of (4.6.17)
as ρ→∞ decomposes to

Q ∼ c1Q1 + c2Q2 = c1|ρ|−
i
α
− 1
σ + c2|ρ|

i
α

+ 1
σ
−de−iαρ

2/2, a, b ∈ C. (C.1.4)

Proof. Let us write Q(ρ) = X(ρ)Y (ρ). Next, we choose X in such away that Yρ disappeared
from the obtained equation. Therefore, we get

XρρY +2XρYρ+XYρρ+ (d− 1)
ρ

(XρY +XYρ)+iα
(
XY

σ
+ρXρY +ρXYρ

)
+ |XY |2σXY = 0.

(C.1.5)
This is equivalent to requiring(

2Xρ + (d− 1)
ρ

X + iαXρ

)
Y = 0, (C.1.6)

which has the solution
X(ρ) = ρ−

(d−1)
2 e−iα

ρ2
4 . (C.1.7)

Therefore, equation (C.1.5) becomes

Y ′′ +
(1

4ρ
2α2 + iα

(
d

2 −
1
σ

)
− 1 + ρσ(1−d)|Y |2σ − 1

4ρ2 (d− 1)(d− 3)
)
Y = 0. (C.1.8)

Again, letting Y (ρ) = eZ(ρ) transformed (C.1.8) to

Z ′′ + Z ′
2 + 1

4ρ
2α2 + iα

(
σd− 2

2σ

)
− 1− 1

4ρ2 (d− 1)(d− 3) = o(ρσ(1−d)e2wσ). (C.1.9)

As ρ→∞, solution to the equation (C.1.9) becomes

Z1,2 ≈ ±iα
ρ2

4 ∓
(
i

α
± (σ ∓ (σd− 2))

2σ

)
ln |ρ|. (C.1.10)

Combining the results of (C.1.7) and (C.1.10), the solution as proposed reads

Q ≈ c1ρ
− (d−1)

2 |ρ|−
i
α
− (σ−(σd−2))

2σ + c2ρ
− (d−1)

2 e−iα
ρ2
2 |ρ|

i
α
− (σ+(σd−2))

2σ

≈ ρ−
(d−1)

2 |ρ|
(d−1)

2

(
c1|ρ|−

i
α
− 1
σ + c2e

−iα ρ
2
4 |ρ|

i
α
− 1
σ
−d
)

≈ c1|ρ|−
i
α
− 1
σ + c2e

−iα ρ
2
4 |ρ|

i
α
− 1
σ
−d, ρ > 0.

Note however, that for the components Q(k)(ρ) = X(ρ)eZk , the Q(1), Q
(2)
ρ /∈ L2(Rd) but

Q(2), Q
(1)
ρ ∈ L2(Rd).
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Proposition C.1.2 ([202]). Suppose Q solves (4.6.17),

(i) with Qρ ∈ L2(Rd) and Q ∈ L2σ+2(Rd) and d 6= 2 + 2/σ, then the Hamiltonian∫
R

(|Qρ|2 −
1

σ + 1 |Q|
2σ+2)ρd−1dρ = 0, (C.1.11)

moreover, if Q(ρ) = e−iα
ρ2
4 S(ρ), i.e. a correction term is involved,∫

R

(
|Sρ|2 −

1
σ + 1 |S|

2σ+2 + α=(ρSS∗ρ) + α2ρ2

4 |S|2
)
ρd−1dρ = 0. (C.1.12)

(ii) with Q ∈ H1(Rd) ∩ L2σ+2(Rd) and provided σd > 2, then Q ≡ 0.

Proof. (i) Multiplying the equation (4.6.17) with ∆Q∗ and integrate the imaginary part to
get

α<
∫
R

(
Q

σ
+ ρQρ

)
∆Q∗ρd−1dρ+ =

∫
R
|Q|2σQ∆Q∗ρd−1dρ = 0. (C.1.13)

The first integral yields

α<
∫
R

(
Q

σ
+ ρQρ

)
∆Q∗ρd−1dρ = −

( 1
σ

+ 1
)
α<

∫
R

(
|Qρ|2 − ρQρ

)
ρd−1dρ,

= −α
( 1
σ

+ 1− d

2

)∫
R
|Qρ|2ρd−1dρ.

(C.1.14)

Similarly, the second integral becomes

=
∫
R
|Q|2σQ∆Q∗ρd−1dρ = =

∫
R
Qσ+1(Q∗)σ∆Q∗ρd−1dρ,

= α

σ + 1

( 1
σ

+ 1− d

2

)∫
R
|Qρ|2σ+2ρd−1dρ.

(C.1.15)

Combining these results lead to the result (C.1.11) since d 6= 2 + σ/2. The equivalent form
(C.1.12) is equally obtainable.

(ii) Multiply (4.6.17) by Q∗ and integrate over Rd the imaginary part to have∫
R
=
[
Q∗∆Q+ iα

(
Q

σ
+ ρQρ

)
Q∗ + |Q|2σQQ∗

]
ρd−1dρ = 0

136



C.1. Asymptotic profile of the ground state Q for NLS

simplified to, where with ∂ρ(|Q|2) = QρQ
∗ +QQ∗ρ = 2<(QρQ∗),

α

∫
R

( |Q|2
σ

+ ρQρQ
∗
)
ρd−1dρ = α

[ 1
σ

∫
R
|Q|2ρd−1dρ+ <

∫
R

1
2∂ρ(|Q|

2)ρddρ
]

= α

[ 1
σ

∫
R
|Q|2ρd−1dρ+ 1

2ρ
d|Q|2

∣∣∣∣
R
−
∫
R
|Q|2 · d2 · ρ

d−1dρ
]

= α

( 1
σ
− d

2

)∫
R
|Q|2ρd−1dρ.

Unless σd = 2, but Q is identically zero when σd > 2 and α > 0.

Proposition C.1.3. Assume α → 0+, d(α) ↓ 2/σ,then an admissible Q satisfies the
following.

(i) If α � ρ−1, then Q(ρ) ≈ R(ρ)e−iαρ2/4. Or equivalently, if Q(ρ) = P (ρ)e−iαρ2/4, the
function P , satisfying

Pρρ + (d− 1)
ρ

Pρ − P + α2ρ2

4 P − iα(σd− 2)
2σ P + |P |2σP = 0, ρ ∈ R+, (C.1.16)

subject to Pρ(0) = 0, P → 0 as ρ→∞, with P (0) real, (C.1.17)

approaches the ground state R(ρ).

(ii) If α� ρ−1, then Q ≈ ρ−i/α−1/σ with σµ2 = (σd− 2)Mc

(iii) The asymptotic behaviour of d(α) is determined by

ν(α) := α(σd− 2)
2σ ≈ ν2

0
Mc

e−π/α, (C.1.18)

where Mc :=
∫
R+ R2ρd−1dρ defines the critical mass and ν0 := lim

ρ→∞
ρ(d−1)/2R(ρ).

Proof. For the purpose of the second part of the proof (ii) and the rest, it is useful to obtain
equation of Q in terms of amplitude R and phase θ. This is achieved by integrating (4.7.3)
over [0, ρ] to have

θρ + α

2 ρ = − (σd− 2)
σρσd−1R2

∫ ρ

0
θρR

2ρ̃2/σ−2dρ̃. (C.1.19)

(i) With ρ fixed, α� ρ−1, in the equation (C.1.19), as d→ 2/σ while α→ 0, and R tends
to a real positive solution of the ground state equation

Rρρ + (d− 1)
ρ

Rρ −R+R2σ+1 = 0 (C.1.20)

then we have θρ+αρ/2 ≈ 0 leading to the solution θ ≈ −αρ2/4. Thus, Q(ρ) ≈ R(ρ)e−iαρ2/4.
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Chapter C. The NLS equation

The results of the alternate form (C.1.16) will directly follows.
(ii) Fixing ρ and α � ρ−1 , for large ρ, the right-hand-side of the equation (C.1.19) is not
negligible. Recall that the asymptotic behaviour of Q reads, for c1, c2 ∈ C

Q(ρ) ≈ e−iαρ2/4ρ(1−d)/2
[
c1e

iαρ2/4ρ−
i
α
− (σ−(σd−2))

2σ + c2e
−iαρ2/4ρ

i
α
− (σ+(σd−2))

2σ

]
σd=2≈ ρ−

1
σ

[
c1ρ
− i
α + c2e

−iαρ2/2ρ
i
α

]
.

(C.1.21)

As ρ → ∞, asymptotically Q(ρ) ≈ eiθ̃R(ρ) ≈ µρ−
1
σ
− i
σ = µρ−

1
σ e−i

1
α

ln |ρ| where µ = c1. By
comparison, one has θ̃(ρ) = − 1

α ln |ρ| and

R(ρ) ≈ µρ−
1
σ and θ̃ρ ≈ −

1
αρ
. (C.1.22)

This equation (C.1.22) indicates the convergence of the integral in the right-hand-side of
(C.1.19). However, the main contribution to this integral comes from α � ρ̃−1, therefore
this results to ∫ ρ

0
θρ̃R

2ρ̃2/σ−2dρ̃ ≈ −α2

∫ ρ

0
R2ρ̃2/σ−1dρ̃ = −α2Mc. (C.1.23)

Using θρ ≈ −1/(αρ) for α� ρ−1 in the equation (C.1.19), as ρ→∞, equate the unbounded
terms αρ/2 and αρ(σd−2)

2σµ2 Mc will lead to the required result.
(iii) This is proved via WKB approximation, by matching the solution for ρα � 2 to the
ground state R which for sufficiently large ρ, behaves like R(ρ) ≈ ν0ρ

(1−d)/2e−ρ.

Defining Y (ρ) so that Q(ρ) = e−iαρ
2/4ρ−(d−1)/2Y (ρ) satisfies the equation (C.1.8). As

seen earlier in (i), the form Q(ρ) ≈ R(ρ)e−iαρ2/4 = ρ(d−1)/2e−iαρ
2/4 is valid for moderately

small ρ when d ≈ 2/σ. However, the assumption ρ� 1 reduces (C.1.8) to the equation

Y ′′ −
(

1− α2ρ2

4

)
Y = 0. (C.1.24)

Noting that, the effect of nonlinearity of Q in (4.6.17) is only relevant for ρ� 1, up to the
quadratic phase factor e−iαρ2/4 when the Q is approximated by the ground-state R. That
is, at large ρ the equation for Q is considered as linear one.

The equation (C.1.24) is solvable via WKB approximation [202]. Letting x = αρ2/2
and p(x) = 1− x2, the equation (C.1.24) becomes

Yxx = 4
α2 p(x)Y (C.1.25)

Details on the WKB approximation to this equation is discussed in [203] for x � 1 and
x � 1. Moreover, exact solution can be obtained as a superposition of Weber parabolic
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C.1. Asymptotic profile of the ground state Q for NLS

functions [107]. For the completion of this proof see [202] Section 8.1.3.

Proposition C.1.4. The asymptotic form of the collapsing solution to the focusing NLS
equation at the critical dimensions σd = 2 near singularity is

ψ(t,x) ≈ 1
λ(t)e

i

(
τ(t)−α(t) |x|

2

4λ2(t)

)
P

(
β(t), x

λ(t)

)
(C.1.26)

where τt = λ−2, α = −λtλ, β = −λ3λtt and β = α2 + ατ ≈ α2. The β obeys

βτ (τ) = −2Mc

M
ν(β) ≈ −2ν2

0
M

e−π/
√
β, (C.1.27)

where M = 1
4
∫∞

0 R2ρ2ρ2/σ−1dρ and Mc =
∫∞

0 R2ρ2/σ−1dρ.

Proof. One plugs V (τ, ρ) = P (β, ρ) + W (τ, ρ) into (4.7.6). Following the simplification of
the nonlinear term

|V |2σV = |(P +W )|2σ(P +W ) = (P ∗ +W ∗)σ(P +W )σ+1

= P ∗σ(1 + P ∗−1W ∗)σP σ+1(1 + P−1W )σ+1

= P ∗σP σ+1(1 + σP ∗−1W ∗ + o(W ))(1 + (σ + 1)P−1W + o(W ))

= P ∗σP σ+1(1 + (σ + 1)P−1W + σP ∗−1W ∗ + σ(σ + 1)P ∗−1P−1|W |2 + o(W 3))

= |P |2σP + (σ + 1)|P |2σW + σP ∗σ−1P σ+1W + o(W )

to get

i

(
Pβ
∂β

∂τ
+Wτ

)
+ Pρρ +Wρρ + d− 1

ρ
(Pρ +Wρ)−W − P + 1

4β(τ)ρ2(P +W )

+ |P |2σP + (σ + 1)|P |2σW + σP ∗σ−1P σ+1W + o(W ) = 0.

Applying the condition (4.7.9) on P , the above equation reduces to

Wρρ + (d− 1)
ρ

Wρ −W + 1
4β(τ)ρ2W − iν(

√
β)W + (σ + 1)|P |2σW + σP ∗σ−1P σ+1

= −i
(
∂P

∂β
βτ + ν(

√
β)P

)
+ ν(

√
β)

2
√
β

1
ρ

(Pρ +Wρ)− iν(
√
β)(P +W ) + o(W )

u
β(τ)→0

−i
(
∂P

∂β
βτ + ν(

√
β)P

)
+ ν(

√
β)

2
√
β

1
ρ
Pρ.

Furthermore, ∂P/∂β
∣∣
β=0 = ζ, where ζ satisfies

ζρρ + (d− 1)
ρ

ζρ − ζ + (2σ + 1)R2σζ − ρ2

4 R = 0 (C.1.28)
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Chapter C. The NLS equation

for ground state solution R. Letting W = S + iT and separating the real and imaginary
parts yield

Sρρ + (d− 1)
ρ

Sρ − S + (2σ + 1)R2σS = ν(
√
β)

2
√
β

1
ρ
Rρ, (C.1.29)

Tρρ + (d− 1)
ρ

Tρ − T +R2σT = −βτζ − ν(
√
β)R. (C.1.30)

The equation (C.1.29) is solved [45] by neglecting the right-hand-side. On the other hand,
solution to the equation (C.1.30) needs the solvability condition∫ ∞

0
(βτζ + ν(

√
β)R)Rρd−1dρ = 0, (C.1.31)

because R is in the null space of the operator in the left-hand-side of (C.1.30) acting on T .
This leads to

βτ = −2Mc

M
ν(
√
β) (C.1.32)

where Mc and M are as defined in the equation (C.1.27). However, a little bit of work is
needed to get M . Using the equations (C.1.28), (C.1.20) together with∫ ∞

0

(
|Rρ|2 −

1
1 + σ

|R|2σ+1
)
ρd−1dρ = 0, (C.1.33)

we get
M = 2

∫ ∞
0

Rζρd−1dρ = 1
4

∫ ∞
0

ρ2R2ρd−1dρ.

Therefore, as τ →∞, the asymptotic solution V takes the form

V (τ, ρ) = P (β(τ), ρ)− ν(
√
β)

2
√
β

(
g(ρ)− 2i

√
βh(ρ)

)
, (C.1.34)

where g and h respectively satisfy

∆g − g + (2σ + 1)R2σg = −Rρ
ρ
, (C.1.35)

hρρ + (d− 1)
ρ

hρ − h+R2σh = 2Mc

M
ζ(ρ)−R. (C.1.36)

Proposition C.1.5. At leading order, as τ →∞,

α(t) ≈
√
β ≈ π/ ln(τ) (C.1.37)
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and the corresponding scale factor λ(t) in terms of t has the asymptotic form

λ(t) ≈
√( 2π(T∗ − t)

ln ln
(
1/(T∗ − t)

)). (C.1.38)

Moreover,

τ(t) ≈ 1
2π ln

( 1
T∗ − t

)
ln
[

ln
( 1
T∗ − t

)]
(C.1.39)

and R is the ground state satisfying (C.1.20).

Proof. Assuming β = α2 and the relation (C.1.18) holds. In the limit α(τ)→ 0 as τ →∞,
one gets

ατ ≈ −
ν2

0
M

1
α
e−1/α. (C.1.40)

Taking τ →∞, at the leading order the equation (C.1.40) is solved as

α(τ) ≈ π/ ln(τ). (C.1.41)

This equation (C.1.41) clearly confirms the assumption that ατ � α2. Moreover, retaining
the correction terms will lead an equivalent equation to (C.1.40) to have the solution

α(τ) ≈ π/(ln(τ) + 3 ln ln(τ)). (C.1.42)

The scaling factor λ in the limit t→ T∗ is estimated by choosing a slowly varying function
q(t), a correction factor, such that λ(t) = (

√
T∗ − t)q(t). Using the relation τt = λ−2. to

leading order, we obtain

τ(t) ≈ 1
q2(τ) ln

( 1
T∗ − t

)
provided that compared to ln

( 1
T∗−t

)
the q(t) varies more slowly. Using the equation (C.1.41)

will yield α(τ) ≈ π/ ln ln(1/(T∗ − t)). Furthermore, with α = −λλt and maintaining the
leading order the factor q(t) is asymptotically written as

q(t) ≈
( 2π

ln ln
(
1/(T∗ − t)

))1/2
. (C.1.43)

This leads to the required result. Moreover, if the next order term is included [7], the
asymptotic form of τ is

τ(t) ≈ 1
2π | ln(T∗ − t)|(ln | ln(T∗ − t)|+ 4 ln ln | ln(T∗ − t)|). (C.1.44)
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Chapter D. Algorithms

Appendix D

Algorithms
Here, we provide few of the main algorithms used in the chapter 3. See [185] for more
details and some of the relevant algorithms.

D.1 Function evaluation and differentiation algorithms

Given a truncated Chebyshev series pN (x) =
N∑
n=0

cnTn(x) that approximates certain

function, the derivative of the pN (x) is computed by the Clenshaw algorithm as:

Clenshaw-Curtis integration: chebeval(N ,c,x,d)
Given the Chebyshev interpolant pN (x);
c : (c0, c1, · · · , cN ) vector of coefficients of the Chebyshev series on [−1, 1];
x : (x0, · · · , xN ) the evaluation points;
d : (d1, · · · , dN+1) initialized vector with dN+1 = 0, dN = 0, then
dn = cn − dn+2 + 2xdn+1 for n = N − 1, N − 2, · · · , 1 ;
pN (x) ≡ d0 = c0/2− d2 + xd1 the required evaluated function.

Chebyshev differentiation matrices: chebderiv(N ,c,a,b)
Given the Chebyshev interpolant pN (x);
c : (c0, c1, · · · , cN ) vector of coefficients of the Chebyshev series;
c′ : (c1, · · · , cN+1) initialized vector with c′N = 0, c′N−1 = 0, c′N−2 = 2(N − 1)cN−1
c′n−1 = 2ncn + c′n+1 for n = N − 1, N − 2, · · · , 1 .
c′n = 2

(b−a) · c
′
n, n = 0, 1, · · · , n normalization;

p′N (x) :=chebeval(N, c, x, d) is the required derivative.

Chebfft algorithm for differentiation: chebfft(v)
Given the Chebyshev interpolant pN (x);
d : (dn)Nn=0 initial the vector of the derivatives with v : (un = u(xn))Nn=0.
Let m = N − 1; for N > 0 else stop and return d = 0.
x = cos(πn/m), n = 0, 1, · · · ,m the Chebyshev nodes.
w = (uj)mj=1 with uj = u−m+j to transform x to θ ∈ [0, 2π) for an FFT F .
V=F(w) for real v replace V with real part of FFT(w).
W= inF−1(V ), k = 0, · · · ,m− 1 where F−1 is an iFFT;
Then p′N (x) is then given by the equation (3.3.23).

The chebfft approximates the derivative of u(x) as p′N (x).

D.2 Numerical stability of algorithm

A numerical method of solving a mathematical problem is considered stable if the sensitivity
of the numerical answer to the data is not greater than in the original problem.
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D.2. Numerical stability of algorithm

Given a problem p with exact solution u. If the perturbed problem p̃ has a solution ũ by
an algorithm, the algorithm is said to be backward (resp. backward) stable provided there
exist some constant α (resp. β) not too large such that, respectively, ‖p− p̃‖ / ‖p‖ ≤ αεM

and ‖u− ũ‖ / ‖u‖ ≤ βεM , with machine epsilon εM . The constants α, β, known as condition
numbers, are expected to be sufficiently small enough so that the computed solution ũ is
near the exact one u, and then call the algorithm (or the method) stable.
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