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Résumé (en français)

La vapeur d’eau joue un rôle important dans le bilan énergétique et le cycle hydrologique de la Terre. Avec
le réchauffement climatique, la vapeur d’eau dans l’atmosphère a tendance à augmenter, mais la répartition
géographique des tendances de la vapeur d’eau dans les modèles climatiques et dans les observations reste assez
incertaine. Les estimations de la vapeur d’eau intégrée (IWV) fournies par le système mondial de navigation
par satellite (GNSS) constituent une nouvelle source de données qui peut servir à confirmer les tendances
observées et simulées de la vapeur d’eau. Des études précédentes ont montré l’existence d’inhomogénéités dans
les enregistrements IWV du GNSS dues aux changements des instruments de mesures des stations et dans les
méthodes de traitement des données, et ont recommandé leur homogénéisation pour les applications climatiques.

Comme les approches récentes d’homogénéisation de données climatiques, cette étude utilise une méthode
statistique de segmentation pour détecter les changements abrupts appelées ruptures dans la moyenne des séries
de différences IWV entre les données GNSS et les données de réanalyse. Les séries de différences sont utilisées
pour atténuer la forte variabilité temporelle inhérente aux séries IWV, rendant difficile la détection de petits
sauts sur les séries brutes. Cette étude utilise le package R GNSSseg développé par Quarello (2020).

Le premier objectif de cette thèse était d’étudier la sensibilité des résultats de la segmentation et des estimations
de tendances aux propriétés des données d’entrée. Deux jeux de données GNSS spécifiques ont été consid-
érés (IGS repro1 et CODE REPRO2015) ainsi que deux réanalyses différentes (ERA-Interim et ERA5). Il
s’avère que seuls 45 à 50% de ruptures communes sont détectées entre les deux jeux de données GNSS. La
longueur de la série ou l’utilisation de données auxiliaires dans le traitement des données GNSS IWV a un
impact plus faible, avec 70 − 80% de détections similaires. Les résultats de la segmentation sont sensibles
au niveau de bruit et à la présence d’un biais périodique dans les données, qui sont principalement dus à
des différences de représentativité entre les observations GNSS et les réanalyses. Les données récentes de
GNSS et de réanalyses présentent des différences moins importantes et permettent la détection de sauts plus
faibles. Les estimations des tendances résultantes sont sensibles au nombre et à la position des ruptures. C’est
pourquoi la validation des ruptures détectées est une étape cruciale avant l’estimation des tendances. Il a été
constaté que les changements d’instruments GNSS disponibles sous forme de métadonnées peuvent expliquer
35% des ruptures, en laissant 65% non documentés ou correspondants à des inhomogénéités dans les réanalyses.

Le deuxième objectif de cette thèse était de développer une méthode de classification automatique de post-
détection pour distinguer les ruptures du GNSS de la réanalyse. La méthode "d’attribution" proposée combine
les données GNSS et de réanalyse d’une station principale avec des données similaires de stations voisines.
Chaque paire "station principale-station voisine" comprend quatre séries de base à partir desquelles six séries de
différences sont formées. Ensuite, pour chaque rupture détectée dans la série principale, un test de significativité
du saut de moyenne à cet instant est effectué, et une règle statistique de prédiction est construite pour attribuer
la rupture testée au GNSS ou à la réanalyse. Lorsque plusieurs stations proches sont disponibles, une solution
combinée est proposée. L’aspect original de la méthode d’attribution développée est l’utilisation d’une méthode
d’inférence généralisée des moindres carrés, pour tenir compte de l’hétéroscédasticité et de l’autocorrélation
dans les données, et d’une méthode d’apprentissage automatique. La principale nouveauté réside dans la manière
dont la règle de prédiction est construite, en utilisant les résultats des tests obtenus à partir des données réelles
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avec une procédure de rééchantillonnage. Une analyse de sensibilité montre que les prédictions dépendent
d’une manière ou d’une autre de la stratégie de rééchantillonnage, en utilisant des échantillons équilibrés ou
déséquilibrés, du niveau de significativité du test et également du niveau de bruit dans les données. Un facteur
limitant dans les réseaux éparses est le bruit élevé quand les séries sont très éloignées. Lorsque la méthode
est appliquée aux données GNSS CODE REPRO2015 et à la réanalyse ERA5, 62% des ruptures testées sont
attribuées au GNSS, 19% à la réanalyse et 10% à des changements à la fois dans le GNSS et la réanalyse.

Mots-clés :vapeur d’eau intégrée, GNSS, homogénéisation, tendance, segmentation, attribution, réanalyse,
régression linéaire généralisée, classification supervisée
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Abstract (in english)

Water vapour plays an important role in the Earth’s energy balance and hydrological cycle. As the climate
warms, water vapour in the atmosphere tends to increase, but the geographical distribution of water vapour
trends in climate model simulations and observations remains quite uncertain. Global Navigation Satellite Sys-
tem (GNSS) estimates of Integrated Water Vapor (IWV) are a new data source that may serve for the verification
of observed and simulated water vapour trends. Previous studies have reported inhomogeneities in the GNSS
IWV records due to changes in the station instrumentation and in data processing methods, and recommended
their homogenization for climate applications.

Following modern approaches to climate data homogenization, this study uses a statistical segmentation method
to detect abrupt changes, called change-points, in the mean (or jumps) of IWV differences series between GNSS
and reanalysis data. Difference series are used to mitigate the strong temporal variability inherent in the IWV
series which makes the detection of small jumps difficult on the raw series. This study employs the GNSSseg
R package developed by Quarello (2020).

The first objective of this thesis was to investigate the sensitivity of the segmentation results and trend estimates
to the input data properties. Two specific GNSS datasets were considered as inputs (IGS repro1 and CODE
REPRO2015) and two different reanalysis products (ERA-Interim and ERA5). It is found that only 45-50%
similar change-points are detected when the input data are altered. Altering the series length or the auxiliary data
used in the processing of GNSS IWV data has a smaller impact, with 70-80% similar detections. Segmentation
results are sensitive to the noise magnitude and the presence of a periodic bias in the input data, mainly due to
representativeness differences between the GNSS observations and reanalysis. More recent GNSS and reanaly-
sis products have smaller differences and allow the detection of smaller jumps. The subsequent trend estimates
are sensitive to the number and position of change-points. Therefore, validation of detected change-points is a
crucial step before trend estimation. It is found that changes in GNSS instrumentation available as metadata can
explain 35% of change-points, leaving 65% as either undocumented GNSS changes or changes in the reanalysis
data.

The second objective of this thesis was to develop an automatic classification method, operated as a post-
processing step, to distinguish GNSS and reanalysis change-points. The proposed "attribution" method combines
GNSS and reanalysis data from a main station with similar data from nearby stations. Each main-nearby pair
comprises four base series from which six series of differences are formed. Then, for each detected change-point
in the main series, a significance test is applied to the mean before and after the change-point, and a classifier
or a statistical predictive rule is constructed to attribute the tested change-point to GNSS or reanalysis. When
several nearby stations are available, a combined solution is proposed. The original aspect of the developed
attribution method is the use of a generalized least-squares inference method, to account for heteroscedasticity
and autocorrelation in the data, and a machine learning classifier. The main novelty is the way in which
the predictive rule is constructed, using test results obtained from the real data with a resampling procedure.
Sensitivity analysis shows that the prediction results depend somehow on the resampling strategy, using balanced
or imbalanced samples, on the test significance level, and also on the magnitude of the noise in the data. A
limiting factor in spare networks is the large noise with long distance between the main and nearby stations.
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When applied to the CODE REPRO2015 GNSS data and ERA5 reanalysis, 62% of the tested change-points are
attributed to GNSS, 19% to the reanalysis, and 10% to changes in both GNSS and reanalysis.

Keywords: integrated water vapor, GNSS, homogenization, trend, segmentation, attribution, reanalysis, gener-
alized least square, supervised classification
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Résumé substantiel (en français)

Introduction

La vapeur d’eau joue un rôle important dans le bilan énergétique et le cycle hydrologique de la Terre. En tant que
gaz à effet de serre, elle amplifie le réchauffement de la planète par son mécanisme de rétroaction positive. La
compréhension et la quantification de l’évolution de la vapeur d’eau dans le contexte du changement climatique
représentent un défi scientifique majeur, comme le soulignent des recherches récentes (Colman and Soden,
2021; Douville et al., 2022). À mesure que le climat se réchauffe, la vapeur d’eau dans l’atmosphère a tendance
à augmenter, mais la répartition géographique des tendances de la vapeur d’eau dans les simulations de modèles
climatiques et les observations reste assez incertaine (Hersbach et al., 2020; Flato et al., 2013). Dans ce contexte,
le système mondial de navigation par satellite (GNSS) offre des estimations de la vapeur d’eau intégrée (IWV)
avec une haute résolution temporelle disponible dans toutes les conditions météorologiques (Guerova et al.,
2016), qui peuvent servir de source indépendante de données pour la vérification des tendances de la vapeur
d’eau observées et simulées (Parracho, 2017). Néanmoins, l’homogénéité des données GNSS est sensible
à divers facteurs, y compris aux changements des instruments de mesures, des méthodes de traitement des
données, et environnementaux (Vey et al., 2009; Bock et al., 2010; Ning et al., 2016). Dans ce contexte, cette
thèse vise à contribuer à l’effort d’homogénéisation des enregistrements GNSS IWV, ce qui est essentiel pour
permettre des estimations précises des tendances de la vapeur d’eau atmosphérique.

Bilan et objectifs

L’homogénéisation fait référence au processus d’identification et de correction des inhomogénéités (artificielles)
dans des séries de données. Suivant les approches modernes de l’homogénéisation des données climatiques,
une méthode statistique de segmentation pour détecter les changements abrupts, appelées ruptures, dans la
moyenne des séries de différences IWV entre les données GNSS et les données de réanalyse (approche qualifiée
de "relative") a été utilisée. L’utilisation de séries de différences est stratégique pour atténuer la forte variabilité
temporelle inhérente aux séries IWV, rendant difficile la détection de petits sauts sur les séries brutes. La
méthode de segmentation utilisée dans cette étude a été développée par Quarello (2020) et dédiée à l’analyse de
ces séries de différences (en s’adaptant à ces caractéristiques). Elle a été validée par des études de simulations et
a été reconnue comme l’une des plus efficaces lorsqu’elle a été comparée à d’autres méthodes sur des données
benchmark dans l’étude de Van Malderen et al. (2020). Toutefois, la robustesse, la sensibilité et les limites de
cette méthode par rapport à diverses caractéristiques des données et ses effets sur l’estimation des tendances
n’avaient pas été étudiées. Il s’agit d’un aspect crucial pour son application pratique à des ensembles de données
réelles. Le premier objectif de cette thèse est donc de combler cette lacune. Le second est de déterminer les
origines des ruptures, qui peuvent provenir de données GNSS ou de données de réanalyse. Cette étape est
appelée attribution. L’attribution précise des ruptures à leur source est essentielle avant de corriger les données
IWV brutes de leurs sauts. Représentant un défi fondamental de l’approche relative, ce problème d’attribution
demeure une limite clé des méthodes d’homogénéisation existantes. En réponse, cette thèse introduit une
méthode automatique en post-traitement à la segmentation. Une étude poussée à la fois sur des simulations
mais aussi sur les vraies données est menée afin de bien comprendre les effets des différents facteurs mis en jeu
lors de cette étape d’attribution. Enfin, le dernier objectif est de corriger les séries temporelle GNSS IWV des
sauts associes aux ruptures qui leurs sont attribuées.
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Sensibilité de la méthode de segmentation aux propriétés des données et étude de l’impact de ces propriétés
sur les estimations de tendances

Une importante étude de la sensibilité de la méthode de segmentation aux propriétés des données a été réalisée,
ainsi que l’évaluation de l’impact de ces propriétés sur les estimations de tendances. Cette analyse a comparé
des paires de jeux de données selon quatre facteurs critiques: les méthodes de traitement des données GNSS
(IGSrepro1 vs. CODE REPRO2015), la longueur des séries (17 ans vs. 25 ans), les données auxiliaires utilisées
dans la conversion de la vapeur d’eau intégrée (IWV), et les sources des données de référence (ERA-Interim
et ERA5). L’accent a été mis sur des propriétés spécifiques des données, telles que les valeurs moyennes, les
niveaux de bruit et les biais périodiques, car ces propriétés ont un impact sur les résultats de la segmentation, en
particulier en termes d’influence sur le nombre et le positionnement des ruptures. Les résultats indiquent des
impacts significatifs sur les résultats de la segmentation lorsque l’on modifie le traitement GNSS et la réanalyse
de référence. Seules 45 à 49% des ruptures sont similaires dans ces cas, contre 71 à 81% pour les deux autres
facteurs (la longueur de la série et les données auxiliaires). Les changements notables dans le traitement GNSS
comprennent des changements dans la correction ZHD a priori, le modèle d’étalonnage de l’antenne/radome et
la fonction de cartographie. Les améliorations apportées au traitement CODE permettent de réduire le bruit et
le biais périodique. De même, le passage de l’ERA-Intérim à l’ERA5 en tant que référence réduit les erreurs
de représentativité, ce qui entraîne là aussi une réduction du bruit et des biais périodiques, facilitant ainsi la
détection des « petites » ruptures. Le taux de validation des ruptures détectées par les métadonnées est entre 30%
et 35% pour tous les ensembles de données, ce qui signifie que l’impact des propriétés des données sur ce taux
est faible. Ce résultat suggère 65% des ruptures détectées sont soit des changements GNSS non documentés,
soit des changements dans les données de réanalyse.

L’impact sur les estimations des tendances est étudié selon deux aspects. Premièrement, l’influence des quatre
facteurs précédents sur les estimations des tendances de l’IWV est étudiée. Il apparaît que la modification
de la longueur de la série temporelle a l’impact le plus fort, à la fois sur la moyenne et sur la dispersion des
estimations des tendances à travers le réseau. Le changement de moyenne semble indiquer l’intensification du
cycle de l’eau au cours de la décennie 2010-2020 par rapport à la décennie précédente. La dispersion réduite
de la tendance avec la période plus longue est principalement le résultat de l’erreur standard plus petite des
estimations.Deuxièmement, l’effet de la correction des inhomogénéités sur les estimations des tendances est
étudié. Cet effet est particulièrement marqué lorsque seules les ruptures validées par les métadonnées GNSS
(changements de récepteur, d’antenne, de radôme) sont corrigées. Cet impact est évident dans les tendances
moyennes globales, la dispersion et les différences RMS par rapport à ERA5. La correction utilisant toutes les
ruptures a également un impact sur les estimations des tendances, mais dans une mesure légèrement moindre.
Ceci met en exergue la nécessité d’une étape d’attribution afin de retenir uniquement les ruptures attribuables
au GNSS pour la correction. Enfin, la dispersion associée aux différentes estimations homogénéisées des
tendances peut être utilisée comme mesure de l’incertitude dans l’estimation des tendances à une seule station.
Elle s’élève à 0.1− 0.2 kg m−2 décennie−1, ou 0.5-1% décennie−1, ce qui confirme la faisabilité de la détection
des tendances climatiques mondiales et régionales pertinentes avec les données GNSS IWV.
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Développement de la méthode d’attribution

Le second objectif de la thèse porte sur le développement d’une méthode automatique d’attribution des ruptures.
Elle a pour objectif de déterminer l’origine des ruptures détectées par la segmentation, i.e. de distinguer les
ruptures du GNSS de celles de la réanalyse. Cette méthode consiste à combiner les données GNSS et de
réanalyse de la station principale avec des données similaires provenant d’une ou plusieurs stations voisines.
Chaque paire "station principale-station voisine" comprend quatre séries de base à partir desquelles six séries
de différences sont formées. On propose et développe alors la stratégie suivante: chaque rupture détectée dans
la série principale, un test de significativité d’un saut de moyenne au même instant est effectué dans les autres
séries de différences formées, puis une règle statistique de prédiction permet d’attribuer la rupture testée au
GNSS ou à la réanalyse. Lorsque plusieurs stations proches sont disponibles, une solution combinée est proposée.

Les nouveautés de notre approche résident dans (1) la prise en compte d’une dépendance temporelle évi-
dente et bien connue pour le test de significativité du saut à l’aide d’une méthode d’estimation GLS dans un
modèle de régression, et (2) du développement d’une règle de prédiction basé sur un algorithme supervisé connu.

Pour (1), la méthode consiste à caractériser dans un premier temps l’hétéroscédasticité et l’autocorrélation
présentes dans le bruit des six séries de différences. Les modèles de bruit testés sont le bruit blanc, AR(1),
MA(1) et ARMA(1,1). Il est constaté que seul un petit ensemble de séries se conforme au modèle de bruit blanc.
Par conséquent, prendre en compte cette dépendance, une approche GLS, connue pour fournir des estimateurs
statistiquement plus efficaces, est employée afin d’évaluer la signification des sauts. Le test se fait dans un
modèle de régression prenant en compte l’hétéroscédasticité et le modèle de dépendance alors identifiée du
bruit mais aussi le biais périodique dans la moyenne.

Pour (2), une règle prédictive est ensuite construite en formant un classificateur pour prédire l’origine d’une
rupture à partir des résultats des tests obtenus sur un ensemble de jeu de données réelles. Deux difficultés
principales se sont présentées: la réponse n’est pas connue sur les données réelles et le jeu de données est de
faible taille et n’est clairement pas exhaustif pour espérer construire une bonne règle de prédiction. Pour relever
ces défis, nous proposons de générer un ensemble de données synthétiques basé sur les résultats des tests des
données réelles en utilisant une technique de rééchantillonnage.

Lorsque la méthode est appliquée aux 81 stations GNSS du jeu de données CODE REPRO2015, avec la
réanalyse ERA5 utilisée comme référence et le jeu de données NGL GNSS pour les stations voisines, 62%
des ruptures testées sont attribuées au GNSS, 19% à la réanalyse et 10% à des changements à la fois dans le
GNSS et la réanalyse. La majorité des points de changement identifiés est attribuée au GNSS ; cela constitue
un résultat favorable et est conforme aux attentes. Les résultats de la prédiction sont sensibles à la stratégie de
rééchantillonnage. Nous avons testé plusieurs variantes, en utilisant différents niveaux de signification pour les
tests, des échantillons équilibrés ou déséquilibrés et différentes règles d’agrégation lorsque plusieurs stations
proches sont disponibles. Les résultats des tests varient également en fonction du niveau de bruit, qui est
corrélé à la distance spatiale entre la station principale et les stations voisines. Les niveaux de bruit augmentent
considérablement avec la distance entre la station principale et les stations voisines dans un réseau peu dense. Ce
bruit élevé peut entraver les tests de signification dans les quatre séries non colocalisées, ce qui a inévitablement



ix

un impact sur le résultat final de la prédiction.

Conclusions et perspectives

En résumé, cette thèse contribue à la résolution de deux problèmes. Premièrement, elle a permis de mieux
comprendre la sensibilité de la méthode de segmentation GNSSseg et des estimations de tendances aux pro-
priétés des données GNSS et de référence (réanalyse). Deuxièmement, une méthode innovante d’attribution
automatique a été développée, ce qui constitue une étape cruciale, avec la segmentation, au sein du processus
global d’homogénéisation.

Plusieurs éléments de notre approche d’homogénéisation pourraient être améliorés et présenter des opportunités
pour de futures recherches. Il s’agit notamment des éléments suivants:

1. L’approche d’attribution pourrait bénéficier d’un ensemble de données GNSS plus conséquent et plus
exhaustif provenant de NGL repro3. Il serait possible d’affiner les critères de sélection des stations
voisines, notamment en privilégiant des séries plus proches et avec moins de lacunes. Cela réduira sans
aucune doute l’ampleur du bruit dans les séries de différences et améliorera la puissance du test du saut
de moyenne. En outre, la taille plus importante de l’ensemble de données pourra permettre d’établir une
nouvelle règle de classification plus performante, car si le nombre de changements testés est plus élevé,
il y aura moins de répétitions dans l’ensemble de données synthétique construit par rééchantillonnage.

2. Un package R de la méthode d’attribution sera développé, permettant son accessibilité à l’ensemble de la
communauté scientifique.

3. Avec le jeu de données NGL repro3, il sera aussi possible de tester d’autres approches de la méthode
de segmentation mise en œuvre actuellement, comme l’utilisation de stations GNSS voisines comme
référence au lieu d’une réanalyse. Lorsque la station principale et les stations voisines sont traitées de
manière cohérente, les inhomogénéités restantes proviendraient principalement de changements spéci-
fiques à la station, tels que des changements instrumentaux ou des changements dans l’environnement.
Par conséquent, cette approche peut faciliter l’attribution des ruptures et conduire à des améliorations
significatives dans les séries homogénéisées.

Dans le contexte du traitement des données GNSS, la segmentation s’avère très sensible aux petites variations
dans la moyenne de la série. Cette sensibilité est influencée par plusieurs aspects clés du traitement des données
GNSS, avec un accent particulier sur des facteurs tels que: la correction ZHD a priori, le modèle d’étalonnage
de l’antenne/radome, la fonction de cartographie et l’angle de coupure de l’élévation. La cohérence et la fiabilité
des produits GNSS générés par différents logiciels et incorporant diverses caractéristiques de traitement peuvent
faire l’objet d’un examen minutieux.

Dans une perspective de recherche à long terme, la réalisation d’une analyse des tendances homogénéisées de
la valeur de référence du GNSS offre une opportunité convaincante, en particulier dans le contexte des études
sur le changement climatique. Cette analyse apporte des preuves empiriques pour répondre à une question clé:
Comment la vapeur d’eau évoluera-t-elle dans un climat plus chaud ? La rétroaction de la vapeur d’eau est
souvent estimée à l’aide d’un modèle climatique global (MCG), qui dépend fortement de la paramétrisation. Les
jeux de données GNSS homogénéisées peuvent être comparés et utilisés comme référence pour le réglage des
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paramètres dans les modèles climatiques, ce qui permet d’obtenir les "meilleures" estimations de la rétroaction
de la vapeur d’eau et de ses incertitudes.
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AR Autoregressive model
ARMA Autoregressive Moving Average model
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CMIP Coupled Model Intercomparison Project
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GNSS Global Navigation Satellite System
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IGS International GNSS Service
IPCC Intergovernmental Panel on Climate Change
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k-NN k Nearest Neighbors
LDA Linear Discriminant Analysis
MA Moving Average model
MERRA-2 Modern-Era Retrospective analysis for Research and Applications Version 2
NGL Nevada Geodetic Laboratory
PACF Partial autocorrelation function
PW Precipitable Water
RF Random Forest
ZHD Zenith Hydrostatic Delay
ZTD Zenith Tropospheric Delay
ZWD Zenith Wet Delay
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Chapter 1

Introduction

1.1 Background and context

1.1.1 The role of water vapour in a changing climate

Water vapour plays a central role in Earth’s energy and water cycle in a variety of ways. Being relatively
transparent to the (shortwave) solar radiation and mainly opaque to the (longwave) terrestrial radiation, it is
the strongest greenhouse gas in the atmosphere and contributes to nearly 75% of the total greenhouse effect
(Bengtsson, 2010). It is also a key actor of energy transport, by absorbing latent heat during evaporation over
the oceans and releasing it through condensation in clouds. This exchange of latent heat is pivotal in driving
atmospheric circulation at various scales, from moist convection in individual thunderstorm cells to the long-
range planetary circulation and moisture transport (Schneider et al., 2010; Sherwood et al., 2010). The strength
of moist processes such as convection and precipitation is tightly controlled by the amount of water vapour
in the atmosphere, where high amounts of moisture can lead to extreme events (e.g. heavy precipitation and
floods). Another fundamental property of water vapour is it short residence time in the atmosphere of about 8
days (Trenberth, 1998), which makes it extremely variable, both spatially and temporally, and thus challenging
to observe and simulate in atmospheric models.

One of the fundamental controls of water vapour in the climate system is the Clausius-Clapeyron (CC) law
which relates saturation vapour pressure 𝑒𝑠 to temperature, 𝑇 (Peixoto and Oort, 1996):

𝑑𝑒𝑠

𝑑𝑇
=
𝐿𝑒𝑠

𝑅𝑣𝑇
2 . (1.1)

where 𝑅𝑣 is the gas constant for water vapour (461 J K−1 kg−1), and 𝐿 represents the latent heat of vapourisation
(2.5 × 106 J kg−1). If we integrate (1.1) between 𝑇0 and 𝑇 , we obtain:

𝑒𝑠 (𝑇) = 𝑒0 exp{− 𝐿

𝑅𝑣
( 1
𝑇
− 1
𝑇0

)}. (1.2)

where 𝑒0 = 𝑒𝑠 (𝑇0).

Because temperature decreases at a mean rate of ∼ 6.5 K km−1 in the troposphere, the saturation vapour
pressure varies roughly by 4 orders of magnitude between the surface and the tropopause. This steep vertical

1
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gradient plays a major role in convection. Moisture in a raising air parcel, even if not initially saturated, can
thus quickly reach the saturation level above which the latent heat released by condensation will enhance its
buoyancy and may ultimately lead to deep convection. This mechanism is a major humidification process of the
upper troposphere and the lower stratosphere.

The actual amount of water vapour in the atmosphere can be quantified by different variables. Relative humidity
(RH) is the quantity most used for general applications (Peixoto and Oort, 1996). It is defined as𝑈 = 𝑒/𝑒𝑠, the
ratio of vapour pressure, 𝑒, of an individual air parcel at a temperature 𝑇 , to saturation vapour pressure of air
at the same temperature, 𝑒𝑠 (𝑇). A collection of saturation vapour pressure formula, 𝑒𝑠 as a function of 𝑇 , can
be found here (http://cires1.colorado.edu/ voemel/vp.html). Specific humidity is another widely used quantity
in meteorology which expresses the fraction of mass of water vapour in an air parcel at temperature 𝑇 and
pressure 𝑃 to its total mass: 𝑞 = 𝜌𝑣/𝜌, where 𝜌𝑣 = 𝑒/𝑅𝑣𝑇 and 𝜌 = 𝑃/𝑅𝑇 are the volumic masses (densities)
of water vapour and the mixture of dry and air and water vapour, respectively. Relative humidity differs both
qualitatively and quantitatively from other moisture variables (Peixoto and Oort, 1996). The distribution of
humidity and temperature as a function of height are fundamental for many atmospheric phenomena, e.g.
initiation of convection. They can be measured in-situ by balloon-borne sensors (radiosondes). Because it is
constrained by the Clausius-Clapeyron law, specific humidity is quickly decreasing with height, i.e. most of the
water vapour in an atmospheric column is concentrated in the lower troposphere (about 90% lies below 5 km).
For this reason, the Total Column Water Vapour (TCWV), also referred to as Integrated Water Vapor (IWV) or
Precipitable Water (PW), is another relevant variable often used to quantify the amount of water vapour in the
atmosphere. TCWV and IWV are defined as the vertical integral of water vapour density in the atmospheric
column:

IWV =

∫ ∞

0
𝜌𝑣 (𝑧)𝑑𝑧. (1.3)

where 𝑧 = 0 refers to the surface and 𝑧 = ∞ to the top of atmosphere. IWV is expressed in units of kg m−2 and
represents the total mass of water vapour in an unit-area column of atmosphere. A typical mi-latitude summer
value would be IWV = 25 kg m−2. PW is defined as the integral of 𝜌𝑣 (𝑧)/𝜌𝑙, where 𝜌𝑙=1000 kg m−3 is the den-
sity of liquid water. It is usually expressed in mm or cm and can be interpreted as the equivalent height of liquid
water if all the water vapour in an unit-area column of atmosphere would be condensed and precipitated. IWV
is a quantity that can be measured by Global Navigation Satellite System (GNSS) and microwave radiometers.

Figure 1.1, borrowed from Parracho et al. (2018), shows the geographical distribution of mean IWV in boreal
winter and summer from ERA-Interim reanalysis and GNSS stations. IWV reaches its maximum around the
equator, ranging from about 20 to 60 kg m−2, due to intense evaporation over the oceans caused by warm sea
surface temperatures and strong surface winds. At higher latitudes and over the continents, IWV decreases
because of limited moisture supply over land masses and lower water holding capacity of the cooler atmosphere.
Another noteworthy observation is that the reanalysis is able to captures strong spatial gradients in good agree-
ment with GNSS data.

In the context of climate change, water vapour plays a significant role in enhancing global warming through a
positive feedback mechanism (Bony et al., 2006; Colman and Soden, 2021). This feedback mechanism acts in
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Figure 1.1 – Mean value of IWV from ERA-Interim between 1995 and 2010 for December-January-February
(DJF) (a) and June-July-August (JJA) (b). Filled circles correspond to IWV retrieved by Global Positioning
System (Parracho et al., 2018).

response to the forcing effect of other greenhouse gases, such as CO2. Climate model simulations have shown
that, in the scenario of doubling CO2, temperature increase is amplified by a factor of 2 to 3 due to the water
vapour feedback compared to a "no-feedback" scenario (Manabe and Wetherald, 1967; Held and Soden, 2000).
The mechanism is the following: an increase in non-condensable, long-lived, greenhouse gases (e.g. CO2, CH4

or NO2), induces a rise in temperature through greenhouse radiative forcing. Guided by the Clausius-Clapeyron
(CC) law, this temperature increase results in a proportional elevation of saturation vapour pressure. Given that
water vapour itself is a greenhouse gas, an increase in atmospheric water vapour enhances the absorption of
both longwave and shortwave radiation while reducing outgoing terrestrial radiation. This, in turn, amplifies
the warming effect. Moreover, the intensification of the water cycle, including heavy precipitation and flood
events, is closely linked to the increase in low-altitude water vapour (Douville et al., 2021).

A key question is, what actual changes in humidity and temperature can we expect in a warming climate? (Col-
man and Soden, 2021) Global mean surface temperature in the first two decades of the 21st century (2001–2020)
was 0.99 [0.84 to 1.10] °C higher than 1850–1900 (Gulev et al., 2021, p. 320). Guided by the CC law, the
corresponding rate of increase in saturation vapour pressure at 𝑇=273 K is ∼ 7% K−1, but how much is the
actual water vapour changing?

Both observations and climate models have consistently supported the assumption that relative humidity remains
relatively close-to-unchanged on a global scale in response to warming (Held and Soden, 2006; Trenberth et al.,
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2013; Hartmann et al., 2013; Colman and Soden, 2021; Douville et al., 2022). Unchanged RH implies an
increase in specific humidity and in IWV, which was also confirmed in IWV observations from various data
sources (Hartmann et al., 2013; Bock et al., 2014; Wang et al., 2016; Parracho et al., 2018).

Figures 1.2 and 1.3 show the global mean (90°S-90°N) lower-tropospheric temperature (LTT) anomalies and
the near global (60°S-60°N) IWV anomalies over the past decades from observations and reanalyses (Dunn
et al., 2023). Both temperature and and IWV show a long-term tendency towards higher values, superposed to
quite large interannual to decadal variability. The linear trend estimates of the various temperature data sets of
Figure 1.2 are in the range 0.17-0.22 K decade−1 for the period 1979-2022 (Dunn et al., 2023, p. S36). The
trends from the three reanalyses (ERA5, MERRA-2, and JRA55) are in the range 0.13-0.23 K decade−1 for the
more recent period, 1995-2021. The corresponding IWV trends are ranging from 1.3 to 1.6% decade−1 and the
CC scaling factors take values from 6.9 to 7.9% K−1 [O. Bock, personal communication]. They align closely to
the 7% K−1predicted by the Clausius-Clapeyron equation at 𝑇 = 273 K, and thus confirm that the global mean
water vapour has increased at nearly constant RH over the past 2.5 decades.

Figure 1.2 – Monthly average global lower-
tropospheric temperature (LTT) anomalies (◦C;
1991–2020 base period) for (a) radiosonde, (b)
satellite, and (c) reanalysis datasets. Time series
are smoothed using a 12-month running average.
Annual averages are displayed for the Radiosonde
Atmospheric Temperature Products for Assessing
Climate (RATPAC) dataset (Fig. A2.7 from Dunn
et al., 2023).

Figure 1.3 – Global mean total column water vapour
annual anomalies (kg m −2) over (a) land and ocean,
(b) ocean only, and (c) land only from observations and
reanalyses (ERA5, MERRA-2, JRA-55). The shorter
time series from the observations have been adjusted so
that there is zero mean difference relative to the ERA5
results during their respective periods of record (Fig.
2.25 from Dunn et al., 2023).
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1.1.2 Consistency and homogeneity of observations, reanalyses and climate models

While a global upward trend in IWV has been deemed very likely, it is essential to evaluate the level of uncer-
tainty in the trend estimates and understand the origin of discrepancies between the various data sources. Figure
1.3 reveals differences between the various observational techniques, as well as between the various reanalyses.
The latter depart from each other especially in years before 1995 where the number of assimilated data is much
lower than in more recent years. Changes in the geographical distribution and instrumentation of stations over
time are a major source of spatial and temporal inhomogeneity for reanalyses (Hersbach et al., 2020) and their
capacity for estimating decadal trends has been questioned (Thorne and Vose, 2010). Nevertheless, reanalysis
data are extensively used to complement observational records for the evaluation of climate model simulations
(Boucher et al., 2020).

In the framework of the IPCC Fifth Assessment Report (AR5), a large dispersion in IWV and lower tropospheric
temperature (LTT) trends was evidenced among the Fifth Coupled Model Intercomparison Project (CMIP5)
climate model simulations in tropical regions (20°S-20°N). Although all simulated trends align well on a 5.9%
K−1 CC line (fairly consistent with CC and the assumption of constant RH), the magnitudes of their LTT and
IWV trends ranged from 0.1 to 0.5 K decade−1 and 0.5 to 2.5% decade−1, respectively (Flato et al., 2013, Fig.
9.9, p. 774). On the opposite, the trends associated with MERRA-2 and ERA-Interim reanalyses, and with
two satellite products, are relatively far from the CC line, and thus rather suggest a long-term change in relative
humidity. It is not known whether these discrepancies are due to remaining inhomogeneity in the observational
data and/or reanalysis results, or due to problems with the climate simulations. Similar discrepancies have been
reported with the more recent CMIP6 model simulations, ERA5 reanalysis, and satellite observations by Santer
et al. (2021).

In a study by Allan et al. (2022), a comparison was drawn among satellite observations, ERA5 reanalysis,
and CMIP6 climate model simulations. For the model simulations, they distinguished the historical (coupled)
simulations and amip (atmosphere-only simulation) experiments for a subset of models. They found median
IWV trend estimates of 1.9 and 1.1% decade−1 for the two types of simulations (period 1988-2014) compared
to 0.78% decade−1 for ERA5 and 1.0% decade−1 for observations which combined infrared and microwave
satellite data and ground-based humidity observations from stations. The amip simulations exhibited quite
consistent trends with the observations. In contrast, CC scaling factors of the historical simulations (5.6% K−1)
showed better agreement with observations (5.5% K−1) and ERA5 (5.8% K−1) than the amip simulations (4.8%
K−1).

More recently, Douville et al. (2022) investigated the feasibility of constraining climate model projections
of global mean IWV with the help of observations and reanalysis data using a Bayesian statistical method.
Constraining the forced response of historical CMIP model simulations with global mean surface temperature
observations since 1850 and global mean IWV data from GNSS observations and reanalyses after 1994, they
could reduce the spread in global mean IWV projected to the end of the 21st century by 39%. The 5-95%
confidence interval of the constrained CC scaling factors was also reduced (6.5 to 7.6% K−1), with a median
close to 7% K−1. The projections also indicate a strong geographical disparity in the water vapour change, with
a multi-model mean exceeding 12 kg m−2 in the tropics or 50% in desertic and polar regions, which may be
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connected to deviations from CC-scaling, especially over land where constant RH cannot be maintained due
to lack moisture supply from the surface despite the increasing evaporative demand. In a similar study using
surface RH measurements, constrained model projections show an inevitable continental drying, especially in
the northern midlatitudes (Douville and Willett, 2023).

Figure 1.4 – Absolute (top) and relative (bottom) trend of the IWV. The map shows results from ERA5 (left)
and MERRA-2 (right) reanalyses, while filled circles correspond to GNSS stations (courtesy O. Bock, 2023).

Figure 1.4 presents both absolute and relative trends of monthly IWV anomalies obtained at 240 GNSS stations
(Bock, 2020b), alongside the MERRA-2 and ERA5 reanalyses, using the same data set as for Figure 1.3. It
is important to note that, although there is a general positive trend observed across all datasets, substantial
variations in the magnitude of the trends is observed between the reanalyses in various regions , with sometimes
opposite signs, especially over the maritime continent, but also in the Atlantic Ocean, South America, South
Asia, and Antarctica. One may note that the trend expressed in kg m−2 decade−1 is very close to zero in
Antarctica because the mean IWV is usually very low there. However, the relative trend (in % decade−1)
shows both positive and negative values, but with relatively poor consensus between ERA5 and MERRA-2.
Parracho et al. (2018) also noted pronounced disparities between ERA-Interim and MERRA-2 over Antarctica,
except at the location of the GNSS stations. Although GNSS data are not assimilated in these reanalyses, these
GNSS stations are located in places where other meteorological measurements are collected and are probably
assimilated.

Discrepancies between GNSS and the ERA-Interim at a number of stations were reported by Parracho et al.
(2018). Inspection of the IWV time series for these stations revealed inhomogeneities in the GNSS data, in
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the form of jumps and drifts, which were identified as instrumentation malfunctioning and/or replacement.
Compared to Parracho et al. (2018)’s results, Figure 1.4 shows much better agreement between reanalyses
and GNSS (where reanalyses agree), suggesting that the updated GNSS product used in Figure here is more
homogeneous than the older one (this point will be confirmed in Chapter 3. However, inhomogeneities in the
reanalyses cannot be excluded. For example, (Schroeder et al., 2016) detected jumps in IWV from reanalyses
and satellite observations, and noted that several change-points in the reanalyses coincided with changes in the
observing system (e.g. start and end of assimilation of satellite data in the reanalyses).

1.1.3 Inhomogeneities in GNSS IWV time series

In the context of atmospheric water vapour monitoring, GNSS offers reliable observational data with a high
temporal resolution available under all weather conditions (Guerova et al., 2016). As long as these observations
are not assimilated in reanalyses, they remain useful independent data for evaluating the quality of the latter, as
well as climate model outputs (Parracho, 2017). Nevertheless, the homogeneity of GNSS data is susceptible to
various factors, including instrumental changes, processing variations, and environmental influences (Vey et al.,
2009; Bock et al., 2010; Ning et al., 2016). Jumps in IWV series of 1 to 2 kg m −2 have been observed which are
susceptible to obscure most of the underlying climatic trends which are in the range of -2 to +2 kg m−2 decade−1

at stations (Figure 1.4). Homogenization of GNSS IWV series appeared as a necessity for climate applications
and the first consistent effort to this end was undertaken during the COST GNSS4SWEC project (Bock O.
Pacione R. Ahmed F. Araszkiewicz A. BaŁdysz et al., 2020). Several available tools used by the climate
community for the homogenization of temperature and precipitation data were tested in a benchmarking exercise
organized in the framework of this project (Van Malderen et al., 2020). At the same time, Quarello (2020)
developed a specialized method for the detection of change-points in GNSS minus reanalysis IWV difference
series, which proved to be one of the best tested by Van Malderen et al. (2020). This thesis builds on the detec-
tion tool proposed by Quarello (2020) to include it in a full homogenization method. Before going into further
details of this method, we explain the reason why GNSS minus reanalysis difference series need to be considered.

The top plot in Figure 1.5 illustrates the daily IWV GNSS series recorded at the ALIC station in Alice Springs,
Australia. The IWV series at this station displays a pronounced temporal variation, with values ranging from
under 5 kg m −2 in austral winter to over 50 kg m −2 in summer. Such substantial seasonal variability can pose
challenges in detecting small jumps in the raw IWV time series. The same is observed with temperature time se-
ries and other climatic variables (Easterling and Peterson, 1995; Mitchell and Jones, 2005). To address this issue,
following the "relative segmentation" approach developed by climatologists, we differentiate the GNSS IWV se-
ries with respect to a reference series. The lower plot in Figure 1.5 thus shows the IWV difference series between
the GNSS and ERA5 reanalysis data extracted at the location of the station. The strong seasonal variation seen in
the raw IWV series is clearly reduced, thereby improving the detectability of small inhomogeneities. The figure
also presents the segmentation results (change-points are represented by vertical dashed lines) obtained with the
GNSSseg method developed by Quarello (2020) (the mathematical aspects of this method will be explained in
subsection 2.2.1). However, it is important to notice that, although significantly reduced, the seasonal variation
in the difference series is not entirely removed. Additionally, the day-to-day scatter the difference series also
exhibits strong seasonality. Both features are due to representativeness differences between the GNSS point
observations and the model grid cells (Bock and Parracho, 2019), and are susceptible to induce false change-
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point detections (Bock et al., 2019). In Quarello (2020)’s segmentation method, these features are included in
the mathematical model in the form of a periodic bias and a monthly variance, respectively. The estimates of
these two features are shown in Figure 1.5 as the purple line for the bias and the cyan line for the monthly variance.

At station ALIC, the segmentation tool detected five change-points, marked by the vertical dashed lines. They
delimit changes in the mean, drawn as the broken red line, which are in the range 0.5 - 1.5 kg m−2. Since
the segmentation is conducted on the difference series, these inhomogeneities could originate from either the
GNSS or the ERA5 data. Metadata documenting instrumental changes at the GNSS station can serve as a
valuable source for validating the detected change-points. This information is reported on Figure 1.5 for the
ALIC stations. Small colored triangles indicate the time position of instrumental (receiver, antenna, and/or
radome) changes as well as the position of a change in the processing procedure (blue triangle). Among the five
detected change-points, two coincide well with equipment changes: a receiver change in 2000 and a receiver
plus antenna change in 2011. However, the other change-points are a bit far from known equipment changes to
be surely attributed to GNSS origin.

Figure 1.5 – Daily time series of IWV GNSS (top) and IWV difference between GNSS and ERA5 reanalysis
(bottom) at station ALIC (Alice Springs, Australia). The bottom plot includes segmentation results superposed
(the red line shows the mean for each segment, the vertical black dashed lines indicate the change-point
positions, the cyan and purple lines at the bottom represent the estimated monthly mean variance and the
functional modeling the periodic bias, respectively). Colored triangles on top of each plot indicate the position
of known instrumental or processing changes from the GNSS metadata.
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1.2 Review of existing homogenization methods

Homogenization refers to the process of identifying and correcting (artificial) inhomogeneities within data
series. In this study, our focus is on the detection of abrupt changes or change-points within the data, as they can
significantly impact the trend estimates. Two approaches have been commonly used for the detection step: either
directly on the raw series, known as the "absolute" approach, or on the series of differences (as mentioned in the
previous subsection), known as the "relative" approach. To mitigate the impact of large seasonal variations in
the raw signal, the absolute approach needs either to include a mathematical model for the seasonal variations
or to work on anomalies (differences with respect to the mean annual variation) instead of the raw signal. In
the relative approach, this problem is greatly reduced but the introduction a reference series also introduces
uncertainty on the origin of the detected change-points if the reference series is not perfectly homogeneous. Both
approaches have been discussed and an exhaustive number of existing software packages have been assessed in
the COST Action HOME (Venema et al., 2012). Their conclusion was unequivocal on the higher performance
of the relative approach, although the attribution step remains a limiting factor.
In the rest of this section, we describe the different steps necessary to the relative homogenization approach.

Data preparation. The first task is to compute the series of differences between the target series and a
reference series. The reference series can be taken from a single nearby station or computed as a composite
from several nearby stations. It can also be taken from a different data source, such as reanalysis, as long as it
shares a common climate signal with the target series (the goal is to suppress this signal by taking the difference
of series). This step may actually consist of several sub-steps to minimize the contribution of various error
sources present in the raw series or introduced in the series of differences, such as outliers and representativeness
differences. The representativeness differences may usually recover two types of problems. The first one was
already mentioned above for the case of the reanalysis. Indeed, reanalysis data are representative of aerial
averages on the order of (twice) the product grid spacing (e.g. about 50 km for the 0.25° grid size of ERA5),
while GNSS observations are more representative of the atmosphere in the close vicinity of the antenna, or a
few km around it. The second type arises when a nearby station is used as a reference and there is a significant
climatic difference between stations (e.g. when the distance is too far, e.g. hundreds of km, or even a shorter
distances of a few km in mountainous areas). Another important feature is to make the IWV data consistent
in the vertical dimension because water vapour density and thus IWV are quickly decreasing with altitude.
Therefore, a correction of the IWV data due to vertical distance is required (Bock et al., 2022).

Segmentation. The central step of homogenization the segmentation which aim is to detect change-points
(usually at unknown time). This can be done manually, by the visual inspection of time series, fully auto-
matically, using a statistical method, or in a hybrid way where a statistical method is used to detect potential
cnahge-points which are validated afterwards by an expert. A comprehensive review of segmentation methods
used for the homogeneization of climate data has been done in Quarello (2020). The list of the current seg-
mentation methods, along with associated software (if available), can be found in Table 2.1 of that thesis, as
well as in references therein. Most of these methods have been assessed in the COST Action HOME (Ven-
ema et al., 2012), for monthly temperature and precipitation observations, and more recently in COST Action
GNSS4WSWEC for GNSS IWV observations (Van Malderen et al., 2020). These segmentation methods are
classified based on their model type (parametric or non-parametric), approach (frequentist or Bayesian), infer-



1.2. REVIEW OF EXISTING HOMOGENIZATION METHODS 10

ence procedure (likelihood, penalized likelihood, or test), and search algorithm (optimal or sub-optimal), as
shown in Figure 2.7 in Quarello (2020). Most of these methods operate using the relative approach, which is a
common method for reducing strong seasonal variations and increasing the detection power of the segmentation.

In this study, we employ the segmentation method developed by Quarello et al. (2022) in a parametric and
frequentist framework. This method allows to detect all change-points simultaneously in an efficient manner
or using an optimal search computationally through the use of dynamic programming. This method has been
specifically developed for detecting change-points in Integrated Water Vapour (IWV) difference series between
GNSS and reanalysis data. In particular, a change-point detection in the mean model is proposed taking into
account the characteristics of the target series such as periodic bias and varying variance as shown in the
example in Figure 1.5. The inference of the model is done through a two-step strategy: first, for a given
number of change-points, the parameters of the model (the means of the segments, the variances of each
month, the periodic function and the change-points) are estimated using the classical maximum likelihood
procedure. Second, the number of change-points is estimated. This segmentation method effectively addresses
two fundamental questions in the procedure, an algorithmical and a statistical issues:

★ Estimation of change-points position: the classical dynamic programming (DP) algorithm is used to
locate change-points. This algorithm is now well known to retrieve the change-point efficiently (fastly and
exactly) computationally speaking. This algorithm can be used if and only if the quantity to be optimized
is additive with respect to the segment (see details in sub-section 2.2.1). The proposed inference method
has been developed in order to be able to use it.

★ Estimation of the number of change-points: this issue is resolved using penalized criteria, as classically
used in segmentation frameworks. A penalty term is added to the inference criterion (e.g., log-likelihood)
to account for the model’s complexity, i.e. the number parameter to be estimated.

Quarello (2020) extensively evaluated this segmentation method by comparing its performance using four
penalized criteria, in both simulation and real data scenarios. The final version was released as the R package
named "GNSSseg" and published (Quarello et al., 2022). Furthermore, this method underwent a comparison
with other segmentation methods in a benchmark exercice coordinated by Van Malderen et al. (2014) where it
demonstrates strong potential and revealed as one of the best methods.

Attribution/validation. Change-points identified through segmentation can originate from either the target
or the reference series. Therefore, attributing the detections to the right series is crucial before correcting
the raw IWV data for the jumps. There are two primary strategies to address this attribution problem. The
first approach aims to improve the homogeneity of the reference series, thus making it possible to attribute
all change-points to the target series. Typically, these reference series are generated by averaging data from
multiple nearby stations (Alexandersson, 1986; Menne and Williams, 2005; Thorne and Vose, 2010). However,
in practice, even the composited series often have non-negligible inhomogeneities. The second approach looks
for the origin of the change-point through pairwise comparisons. This can be achieved semi-automatically,
employing statistical inference and manual cross-checking with historical information (station metadata), in
an iterative way (Caussinus and Mestre, 2004). However, there could be gaps or mistakes in the available
metadata. Another method, proposed by Menne and Williams (2009), fully automates the process by assigning
change-points to the station that has the most detections, when segmenting all possible combination series of
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differences. This method therefore requires a large number of nearby stations to be effective. This approach
also leverages station metadata when available and attributes detected change-points to the closest known events
in the station’s history within specified confidence limits.

Correction. The final step involves correcting the target time series for the jumps in mean corresponding to the
attributed or validated change-points only. The traditional way of doing this is to subtract the estimated offsets
from the GNSS IWV series while leaving the most recent homogeneous segment unchanged (the rationale for
this is that the most recent data may have smaller absolute bias than the older data) (Van Malderen et al., 2020).

1.3 Objectives and outline of this thesis

The objective of this study is to establish a comprehensive homogenization procedure for the IWV time series
derived from GNSS data using the segmentation method developed by Quarello (2020). Therefore, this thesis
focuses on two major tasks:

★ The first task involves a rigorous investigation of the robustness, sensitivity, and inherent limitations of
the segmentation method. This endeavor is particularly crucial for practical real-world applications. The
scientific questioning and factors influencing this analysis encompass the quality of the GNSS data which
primarily depend on the GNSS data processing methodologies (do more recent GNSS solutions have
reduced inhomogeneties?), the length of the analysed time series (as the length is increasing with years,
what is the impact on the segmentation performance?), variations in auxiliary data employed in IWV
conversion, and the selection of the data source for the reference time series (multiple choices can be
made among various reanalysis products). Additionally, the study explores the extent to which changes
in the segmentation results impact the subsequent IWV trend estimates (is it more beneficial to detect and
correct more small jumps or fewer but larger ones?).

★ The second task centers on the development of an automatic attribution method. The method is intended
to operate as a post-processing step separate from segmentation and should be applicable even in cases of
sparse GNSS networks where only a few nearby station are within a reasonable (100-200 km) distance.

The thesis is structured as follows: Chapter 2 provides an introduction to the datasets employed and to the
fundamental mathematical concepts and tools utilized in this study. This chapter covers: i) the retrieval of IWV
from GNSS observations, including the basic principles of GNSS data processing; ii) a brief description of the
mathematics of the GNSSseg segmentation method developed by Quarello (2020); iii) fundamentals of linear
regression methods and linear stochastic model identification, with a special focus on the mixed autoregressive
- moving average (ARMA) models that will be effectively utilized for modeling the noise in the IWV difference
series; and iv) an introduction to a number of classification algorithms employed in the development of the
attribution method. Chapter 3 is dedicated to the first task. It is presented as a paper published in the Atmosphere
journal. In this paper, it is important to note that the segmentation results and trend estimates did not yet include
the attribution step which was developed afterwards. Especially, for the trend estimates, the results include
two versions: one with all detected change-points corrected (as if only GNSS data were inhomogeneous) and
one with only the change-points that could be directly validated with the help of metadata. The main caveat
with the latter is that changes due to external factors, not reported in the metadata, are not taken into account.
Some true change-points may thus remain in the corrected time series. Chapter 4 comprises two main sections.
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First is a paper, submitted to the International Journal of Climatology (presently under review) which described
and applies the developed attribution method on a real data set of 81 main stations. Second in this chapter is
additional research conducted alongside the paper’s topic. Finally, Chapter 5 summarizes the main findings
presented in this thesis and discusses future perspectives. The thesis contains also an Appendix section which
presents some preliminary results of the application of the full homogenization process to an extended GNSS
dataset comprising more than 6000 stations.



Chapter 2

Data and mathematical tools

2.1 Data

2.1.1 GNSS data

GNSS Integrated Water Vapor (IWV) derives from the propagation delay of radio waves in the atmosphere on
their path from the GNSS satellites to the ground-based receivers (Figure 2.1). Data processing with scientific
software and use of a number of auxiliary geodetic products is required to achieve estimates of propagation
delays and subsequent IWV data with accuracy compatible for meteorology and climatology. In this sub-section
we summarize the main steps and highlight the crucial aspects of data processing intervening in the elaboration
of GNSS IWV data.

2.1.1.1 GNSS observations and data processing methods

GNSS are satellite radio navigation systems providing global positioning everywhere on Earth (Hofmann-
Wellenhof et al., 2007). Their principle is based on the transmission of radio signals by satellite constellations
which allow receiver-equipped users to access precise three-dimensional positioning in real time with precision
1-10 m. The most popular GNSS is the US GPS (Global Positioning System), which is fully operational
since 1994. It has been complemented over the years by the Russian GLONASS, the European Galileo, and
the chinese Beidou, among others (Teunissen and Montenbruck, 2017a, part B). Ground segments, relying
on tracking networks and data processing facilities, are associated to the space segment to provide essential
navigation products such as satellite ephemerides, clock synchronization information, and Earth orientation
parameters (the latter are necessary to relate the the inertial reference frame, which is natural to satellite orbits,
to the Earth-fixed frame used to express the receiver coordinates). Highly accurate versions of these products
are computed in near real time by the International GNSS Service (IGS) and International Earth Rotation and
Reference Systems Service (IERS) analysis centres for scientific usage.

Some of the inhomogeneities that we are tracking in the GNSS IWV time series can be related to changes in the
observations, data processing procedure, and auxiliary products used for the processing and/or the conversion.
To understand how these features can impact the propagation delays and IWV, it is necessary to provide some
insight into the data processing procedure.

13



2.1. DATA 14

Geodetic positioning relies on the analysis of the so-called "phase observations". A single phase observation
between a receiver 𝑟 and satellite 𝑠 can be formalized by the following equation (Bock, 2012, p. 6):

𝐿𝑠𝑟 = 𝜌
𝑠
𝑟 + 𝑐(Δ𝑡𝑟 − Δ𝑡𝑠) + _𝑁𝑠𝑟 + Δ𝜌𝑟𝑒𝑙 − Δ𝜌𝑖𝑜𝑛𝑜 + Δ𝜌𝑡𝑟𝑜𝑝𝑜 + Δ𝜌𝑠𝑎𝑛𝑡 + Δ𝜌𝑎𝑛𝑡,𝑟 + 𝜖 . (2.1)

where:

★ 𝜌𝑠𝑟 is the geometric distance between the receiver’s antenna reference point (ARP) and satellite ARP,

★ 𝑐 is the speed of light in a vacuum,

★ Δ𝑡𝑟 and Δ𝑡𝑠 are the receiver and satellite clock offsets from the GNSS time reference,

★ _ is the wavelength of the radio signal,

★ 𝑁𝑠𝑟 is the integer phase ambiguity,

★ Δ𝜌𝑟𝑒𝑙 account for relativistic effects,

★ Δ𝜌𝑖𝑜𝑛𝑜 is the propagation delay in the ionopshere,

★ Δ𝜌𝑡𝑟𝑜𝑝𝑜 is the propagation delay in the troposphere,

★ Δ𝜌𝑠𝑎𝑛𝑡 and Δ𝜌𝑎𝑛𝑡,𝑟 are the phase delays in the satellite and the receiver antennas,

★ 𝜖 accounts for other minor errors.

Basically, GNSS data processing is a regression problem in which unknown parameters of the observation equa-
tion are estimated in order to minimize the errors between the observed and predicted phase measurements. The
IGS standards in "static" geodetic processing (i.e. positioning of ground-fixed antennas) consists in estimating
the parameters in (2.1) in 24 hour batches or "sessions". Observations are typically sampled at a 30-sec rate,
while the sampling of parameters is much lower (e.g. 1 set of receiver coordinates per session, 1 hour sampling
for tropospheric delay parameters, etc.). However, not all parameters can be estimated simultaneously because
of multi-colinearity. Namely, satellite positions and clock delays are usually fixed to their values computed by
the IGS (so-called IGS satellite products), and relativistic effects which can be predicted by theory with a high
degree of precision (Zhu and Groten, 1988) are corrected a priori. Receiver clock offsets can be either estimated
"by epoch" (one parameter per observation) or eliminated by combining the simultaneous observations from two
satellites and two receivers (so-called double differences) but they require that the data from multiple stations
are used once. The ionospheric delays are usually eliminated by combining instantaneous observations from 2
or 3 frequencies, thanks to the dispersive nature of the refraction index of the ionospheric plasma region at the
GNSS frequencies.

Phase delays in the satellite and receiver antennas are an important source of bias that needs be corrected
(Hofmann-Wellenhof et al., 2007). Empirical models are used therefore, comprising a constant offset compo-
nent and a variable hemispheric model which accounts for variations depending on the angle of incidence and
frequency of the radio signal with respect to the antenna’s orientation. These variations are contingent on the
specific antenna model and type in use. For the satellite, the antenna offset is expressed relative to its center of
mass and is on the order of 1 m. The offsets for the receiver antennas are given relative to the ARPs and are of
order 0.1 meter. The variations are typically one order of magnitude smaller but need also to be corrected.
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Eventually, station positions, receiver clock offsets, tropospheric delay, and ambiguity numbers are the main
parameters that are estimated.

When the observations are close to zenith, several of these parameters are tightly correlated (station height,
receiver clock offset, tropospheric delay, and ambiguity number) and biases in the a priori correction models
(e.g. antenna phase model offsets) and/or in the auxiliary products can map onto all these parameters (Teunissen
and Montenbruck, 2017b). One way to reduce this problem is to include observations at low elevation angles.

Figure 2.1 – Schematic presentation of individual slant delays (SD) from GNSS satellites and their mapping to
zenith tropospheric delay (ZTD), (Guerova et al., 2016).

Apart from the factors explicitly introduced in equation (2.1), the error term, 𝜖 , includes all other error sources,
namely the "multipath" effect, which is a spurious phase modulation induced by reflective surfaces in the vicinity
of the receiving antenna. Changes in the reflective properties of the environment around the receiver’s antenna
can modify this effect and be a source of inhomogeneities in the estimated parameters (positions, tropospheric
delays, etc.).

2.1.1.2 Modelling the tropospheric delays

GNSS signals undergo both retardation and bending as they cross the troposphere and the lower stratosphere,
because of the varying index of refraction along their propagation path. The combined effect is referred to
as the "total tropopsheric delay". It is also sometimes called "excess path length", in reference to geometrical
optics, and denoted Δ𝐿, but it is identical to the term Δ𝜌𝑡𝑟𝑜𝑝𝑜 introduced in equation (2.1). Below we use the
traditional notation, following Bevis et al. (1992), which writes:

Δ𝐿 =

∫
𝐿

𝑛(𝑠)𝑑𝑠 − 𝐺, (2.2)

where 𝑛(𝑠) corresponds to the index of refraction of the air at the position 𝑠 along the curved trajectory of the ray
path denoted as 𝐿. The parameter 𝐺 signifies the straight-line geometrical path length through the atmosphere
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assuming 𝑛 = 1. A modified form of Equation (2.2) writes:

Δ𝐿 =

∫
𝐿

[𝑛(𝑠) − 1]𝑑𝑠 + 𝑆 − 𝐺.

where, 𝑆 =
∫
𝐿
𝑑𝑠, is the curved path length along 𝐿. This equation provides a breakdown of the excess path

length, with the first term on the right side accounting for the retardation effect (reduction the wave velocity due
to 𝑛 > 1), Δ𝐿𝑟 , and the second term representing the bending effect (a purely geometrical effect). The bending
effect is much smaller than the retardation at most elevation angles above 0°. Negelecting the bending effect,
the first term is often re-expressed in terms of atmospheric refractivity 𝑁 = 106 × (𝑛−1) as follows (Bevis et al.,
1992):

Δ𝐿 = 10−6
∫
𝐿

𝑁 (𝑠)𝑑𝑠 (2.3)

The refractivity of the air can be decomposed into two basic groups of constituents, dry air and water vapor
molecules. Following (Davis et al., 1985), the tropospheric delay is reformulated to account for this distinction:

Δ𝐿 = 10−6
∫
𝐿

𝑁ℎ (𝑠)𝑑𝑠 + 10−6
∫
𝐿

𝑁𝑤 (𝑠)𝑑𝑠 = Δ𝐿ℎ + Δ𝐿𝑤 . (2.4)

where the first integral is referred to the "hydrostatic delay", primarily due to the delay induced by dry air, and
the "wet delay", due to the water molecules. Furthermore, Saastamoinen (1973) first noted that the hydrostatic
delay integral taken in the zenith direction is simply proportional to surface pressure (by use of the hydrostatic
equation in the atmospheric column). This property offers a strong constraint on the determination of the total
delay in Equation (2.1) as the Zenith Hydrostatic Delay (ZHD) can be corrected a priori from auxiliary surface
pressure data (from measurements or atmospheric model outputs), leaving only the Zenith Wet Delay (ZWD)
as unknown parameter. Because the phase observations are collected in practice from satellites in any direction
(see Figure 2.1), mapping functions are used to project the zenith delays onto the slant paths and vice versa.

Current state of the art GNSS processing software use slightly more sophisticated tropospheric models where, in
addition to the ZHD and ZWD parameters, horizontal gradients are included to describe a first order azimuthal
variation in the tropospheric refractivity field above the antenna (Davis et al., 1993):

Δ𝐿 = Δ𝐿𝑧
ℎ
× 𝑚ℎ (𝜖) + Δ𝐿𝑧𝑤 × 𝑚𝑤 (𝜖) + ( ®𝐺 · ®𝑒) × 𝑚𝐺 (𝜖) (2.5)

where Δ𝐿𝑧
ℎ

and Δ𝐿𝑧𝑤 are the zenith hydrostatic and wet delays, respectively, and ®𝐺 is the horizontal gradient
vector, ®𝑒 signifies the unit vector pointing in the direction of the observed satellite, and 𝑚ℎ, 𝑚𝑤 , and 𝑚𝐺 are the
mapping functions for the ZHD, ZWD, horizontal gradient, respectively. Here 𝜖 represents the elevation angle.

In summary, the handling of tropospheric delay in GNSS data processing consists in mainly specifying: i) the
mapping functions and the source of surface pressure or ZHD data (e.g. from an atmospheric model), ii) the
rate at which ZWD and gradient parameters should be estimated (e.g. once per hour) to account for atmospheric
variability, iii) the constraints on the temporal variation of the estimated parameters.
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2.1.1.3 Conversion of tropospheric delay to IWV

The GNSS IWV product is derived in a post-processing step which consists in extracting the ZWD part from
the Zenith Tropospheric Delay (ZTD) that is the standard output of the processing software. For this purpose,
we don’t use the ZHD that served for the a priori correction in Equation (2.1) but a more accurate estimate if
one is available. The reason is that with the current state of the art GNSS processing standards, the prior ZHD
is taken from a coarse resolution atmospheric model (e.g. 2° × 2.5°, see next sub-section), which is also used to
compute the mapping function models. A more accurate ZHD estimate can be computed from a high-resolution
version of the atmospheric model. In this work we use ERA-Interim or ERA5, which have a grid resolution of
0.75° and 0.25°, respectively, in both dimensions. Once an accurate estimate of ZHD is subtracted from the
ZTD, the ZWD component needs to be converted into IWV by application a "delay to mass" conversion factor,
denoted ^. The definition of ^ stems from the ratio of IWV defined by Equation (1.3) and ZWD defined by:

Δ𝐿𝑧𝑤 = 10−6𝑅𝑣

∫ ∞

0
𝜌𝑣 (𝑧) × (𝑘 ′2 +

𝑘3

𝑇𝑚
)𝑑𝑧 (2.6)

where 𝑘 ′2 and 𝑘3 are refractivity coefficients for the water molecule, and 𝑅𝑣 is the specific gas constant for water
vapor. Various empirical values for the refractivity coefficients are available (Bevis et al., 1994). In this work
we used the updated version proposed by Bock (2020a). Forming the ratio of Equations (1.3) and (2.6), we get:

^(𝑇𝑚) =
106

𝑅𝑣 (𝑘 ′2 +
𝑘3
𝑇𝑚

)

where 𝑇𝑚, referred to as the "weighted mean temperature", is given by:

𝑇𝑚 =

∫
𝜌𝑣 (𝑧)𝑑𝑧∫
𝜌𝑣 (𝑧)
𝑇 (𝑧) 𝑑𝑧

(2.7)

The conversion of ZWD into IWV finally writes:

𝐼𝑊𝑉 = ^(𝑇𝑚) × 𝑍𝑊𝐷. (2.8)

A rule of thumb for Equation (2.8) is 𝐼𝑊𝑉 = 155 × 𝑍𝑊𝐷 when 𝑍𝑊𝐷 is expressed in m, or 𝐼𝑊𝑉 = 𝑍𝑤𝐷/6.5
when ZWD is expressed in mm, which means that 6.5 mm of wet delay at zenith converts to 1 kg m−2 of
integrated water vapour (Bock, 2020a). This rule is useful to quickly convert delay errors into IWV errors.

For a more accurate conversion of estimated ZWD data, knowledge of the 𝑇𝑚 parameter is necessary. Exami-
nation of (2.7) reveals that, although both the vertical profile of water vapour density, 𝜌𝑣 (𝑧), and temperature,
𝑇 (𝑧), appear in the definition of 𝑇𝑚, the former is both in the numerator and denominator of the fraction,
and therefore the computed 𝑇𝑚 is only sensitive to second order to errors in 𝜌𝑣 (𝑧). This suggests that 𝑇𝑚
could be parameterized as a function of temperature. Bevis et al. (1992) showed that 𝑇𝑚 can be predicted to a
good accuracy from surface air temperature, and proposed an empirical model obtained by linear regression.
Such a model is, however, highly site dependent, and needs to be recomputed for stations in different climatic
regions. Moreover, the prediction based on surface temperature tend to map spurious diurnal variations into
𝑇𝑚. Because of these limitations, it is preferable and technically more convenient to use 𝑇𝑚 estimates based on
a high resolution atmospheric model (Bock, 2020a).
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In this work, the ZHD and 𝑇𝑚 conversion parameters were both computed from ERA-Interim or ERA5 vertical
profiles at their nominal horizontal grid resolution. The uncertainty in these parameters is assumed to be below
2.5 mm in ZHD (equivalent to an error in surface pressure of 1 hPa) and below 3 K in 𝑇𝑚. The induced IWV
equivalent uncertainty is 0.4 kg m−2 and 0.3 kg m−2, respectively, assuming a typical mid-latitude 𝑇𝑚 of 275 K
and IWV of 25 kg m−2.

2.1.1.4 Important data processing aspects

GNSS processing can be carried out using various software packages and processing options. In this subsection,
we explore the significant factors influencing the estimated ZTD accuracy, such as processing mode, tropo-
spheric modeling aspects, session duration, elevation cutoff angle, elevation-dependent observation weighting,
and correction models for antenna phase center offsets and variations.

Scientific GNSS software packages are generally based on one of two processing modes: double difference
(DD) positioning, which uses double-differenced phase observations from a network of stations, or precise
point positioning, so-called PPP, which use the undifferenced phase observations (Teunissen and Montenbruck,
2017a, p. 13). DD processing is independent of external satellite clock products, while PPP relies on the precise
satellite orbits and clocks. The increased availability of precise orbit and clock solutions in the late 1990s,
thanks to the efforts of the IGS, has been instrumental. Moreover, PPP demands precise models to correct for
systematic effects causing centimeter-level variations (e.g. the Higher-Order Ionospheric Delay Corrections,
Site Displacement Effects, etc). An overview of the various model components and corrections in PPP applica-
tions is provided in Teunissen and Montenbruck (2017a, p. 727).

Several aspects of tropospheric modelling have been implemented differently depending on the software. This
concerns especially the modelling of the temporal variations of the estimated ZWD and gradient parameters.
For example, in the Bernese software, a piece-wise linear model is fitted using the least squares method (Dach
et al., 2015). Conversely, the GIPSY software utilizes a random walk model (Zumberge et al., 1997), and the
GAMIT software relies on the Gauss-Markov model (Herring et al., 2015). While GAMIT is also based on a
least-squares estimation, the GIPSY software implements the Kalman Filtering technique. The latter approach
makes it possible to estimate tropospheric parameters at each epoch of observations (e.g. every 5 min), but this
requires to set adequate constraints in the random walk model.

Mapping functions are crucial elements of the tropospheric model as they represent the partial derivatives of
the estimated parameters in Equation (2.5). Currently, the two widely used mapping functions are the first
Vienna mapping function (VMF1) (Boehm et al., 2006b) and the Global Mapping Function (GMF) (Boehm
et al., 2006a). They are both built on the concept of the Niell Mapping Function (NMF) (Niell, 1996) and the
Isobaric mapping Function (IMF) (Niell, 2000) but use numerical weather model data which provide a more
comprehensive description of the refractive index in space and time. These mapping functions are parameterized
with a number of coefficients that need are extracted at the specific GNSS station locations by the processing
software. In the case of the VMF1, the coefficients are provided with a 6-hourly time step from the operational
ECMWF analyses on a 2° latitude by 2.5° longitude horizontal grid. This mapping function, along with its
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more recent version VMF3, are the most accurate. Currently, VMF1 is recommended by the IERS Service.

Another important feature is the correction of the antenna phase-center offsets (PCOs) and variations (PCVs),
both on the satellite and the receiving side (Teunissen and Montenbruck, 2017a, Chap. 17). The magnitude of
the PCVs depends on the elevation angle of the satellite as observed from the ground, and it can vary between
different types of antennas. These offsets and variations have a significant impact on the estimated ZTD delay.
Use of a proper correction models is essential to address this issue. Earlier models (before 2006) were based on a
relative calibration technique and introduced a systematic bias in the absolute ZTD estimates. The more recent,
absolute calibrations, have resolved this problem and have been adopted since 2006 in the IGS. However, for a
small number of old antennas, used in the IGS network and elsewhere, only relative calibration models are avail-
able. This issue is discussed in more detail in Section 2 of paper 1 for the subset of IGS stations used in our work.

ZTD and several other parameters estimated during the GNSS processing are sensitive to elevation dependent
errors. Such errors may especially arise from errors in the mapping functions which represent a smooth re-
lationship between zenith delay and slant delay, whereas the true atmosphere may be more complex in many
situations (e.g. a passing meteorological frontal system). They may also be due to the application of a wrong
or an imperfect antenna PCO/PCV model, as well as as to multipath and signal interference (Teunissen and
Montenbruck, 2017a, Chap. 15 and 16). Mapping function errors and multipath errors are typically larger
at lower elevations. One commonly used strategy to minimize their impact is to increase the elevation cutoff
angle or to down-weight low-elevation observations. However, low-elevation observations improve geometry
and reduce formal ZTD errors. Thus, an optimum combination of elevation cutoff angle and weighting strategy
needs to be adjusted to mitigate these errors.

The overall uncertainty in the ZTD and ZWD estimates resulting from the typical current state-of-the art GNSS
processing strategies is estimated to 2-5 mm (Teunissen and Montenbruck, 2017a, Chap. 38). Using the rule of
thumb introduced in previous sub-section, the ZTD uncertainty adds a further 0.3 to 0.8 kg m−2 uncertainty to
the derived IWV estimates.

2.1.1.5 GNSS tropospheric delay products used in this work

In this thesis, we used three distinct GNSS datasets, each representing a different generation of (re-)processing
products: IGS repro1 (first generation), CODE REPRO2015 (second generation), and NGL repro3 (third gen-
eration).

The IGS repro1 dataset was produced between 2010 and 2011 by JPL/NASA in the framework of the first repro-
cessing campaign organized by IGS (Byun and Bar-Sever, 2009). It marks the first comprehensive reprocessing
effort with collaborative contributions from multiple Analysis Centers. This reanalysis encompassed the entire
history of GPS data collected by the IGS global network from January 1, 1995, to December 31, 2007, employing
the best available models and methodologies at the time. JPL completed this dataset consistently by mid-2011,
providing tropospheric products (ZTD and gradients)for 460 IGS stations, for the period 1995-2010 (inclusive).
A quality-checked and IWV-converted sub-set of 120 stations with more than 15 years of measurements was
prepared by Bock (2016) and used by Parracho (2017) and Quarello (2020).
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The second dataset, CODE REPRO2015, was processed by the Center for Orbit Determination in Europe
(CODE) in 2015, using the framework settled for second IGS reprocessing campaign (Dach et al., 2015). It
includes 434 IGS stations and covers the period from January 1, 1994, to December 31, 2014. Until now,
this dataset has been extended year after year with the operational CODE product (Dach et al., 2018), and
quality-checked and IWV-converted estimates have been released by Bock (2019) .

Details of the processing methodologies for the IGS repro1 and CODE REPRO2015 datasets can be found in
section 2 of paper No. 1 where various important features described in the previous sub-section are summarized
and discussed. To mention just one, we note that IGS repro1 was produced with GIPSY OASIS II software
in PPP mode and CODE REPRO2015 with the Bernese GNSS software in a DD positioning mode. For the
purpose of paper No. 1, we selected 81 common stations, ensuring that the time series in both datasets covered
a minimum period of 15 years. The map in Figure 1 in this paper displays the available stations from both
datasets and highlights the selected stations.

Software GipsyX Version 1.0
Strategy Precise Point Positioning (PPP)

Orbits, Clocks, ERPs Daily Repro3.0 (JPL)
Reference Frame IGS14

Antenna Calibration igs14_www.atx
Window Length 30 hours

Elevation Cutoff Angle 7◦

Observations GPS
Observation Sampling Interval 5 minutes

Observation Weighting 𝜎2 = 1/𝑠𝑖𝑛(𝑒) where 𝑒 is the elevation

Tropospheric model

ZHD and ZWD a priori:
6-hourly ECMWF analysis (provided by TUV)

VMF1 mapping functions (hydrostatic and wet).
Random Walk model for ZWD and

gradient parameters with constraints:
3 mm h−1/2 (ZWD) and 0.3 mm h−1/2 (gradients)

ZWD and gradient sampling: 5 min

Tropo files
ZTD and gradient estimates provided in
SINEX files (0000, 0005, ...2345 UTC)

Coordinate estimates Estimated once per 24 h
Ambiguity resolution Fixed

Table 2.1 – Summary of GNSS data processing parameters of the NGL repro3 dataset.

The third dataset, NGL repro3, is sourced from the Nevada Geodetic Laboratory (NGL) (Blewitt et al., 2018).
It represents the latest generation of GNSS products. NGL routinely collects and processes geodetic-quality
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GPS observations from more than 20,000 stations worldwide, encompassing various regional and commercial
networks, in addition to the widely used IGS network. The dataset covers the period from 1994 to present.
Details of the processing relevant to ZTD estimation are provided in Table 2.1. One can note that NGL uses the
GipsyX version 1.0 software from JPL in PPP mode together with JPL’s repro3 final GPS orbits and clocks. The
IWV data from this dataset were derived by applying a quality-checking and conversion procedure consistent
with the other two datasets. The daily IWV estimates were used for the attribution task in the second paper
(Chapter 4). In this work, the above-mentioned 81 stations from the CODE REPRO2015 dataset were selected
as the main stations together with 628 nearby stations from the NGL dataset.

The NGL repro3 dataset uses a more modern version of JPL’s GNSS processing software, and thus shares
many similar features with the IGS repro1 dataset, including PPP mode, ZWD and gradient stochastic model,
and elevation cutoff angles, among others. Its mapping functions are more modern, and in line with CODE
REPRO2015. In contrast to IGS repro1, NGL repro3 adopted a strategy that down-weights low-elevation
observations, making it less sensitive to multipath errors. The fixed ambiguity resolution approach is also an
efficient way to reduce ZTD biases. NGL repro3 adopted also the more recent reference frame, IGS14 and
the associated igs14.atx. The latter has resulted in a significant increase, up to 90%, in the number of stations
within the IGS network that have now absolute calibrations (Rebischung and Schmid, 2016).

2.1.2 Reanalysis data

Climate reanalysis combines modern weather forecasting models with historical observations through data
assimilation to delivers a global picture of weather and climate of the past as close to the reality as possible.
This representation is known for its global coverage and temporal consistency, often described as "maps without
gaps", extending from the Earth’s surface to the top of the atmosphere (Fact Sheet: Reanalysis 2023). They
utilize realistic models to extrapolate information from locally observed parameters to nearby locations and
forward in time. Unlike operational analyses produced by Numerical Weather Prediction systems, reanalyses
are created using a consistent assimilation system and the same numerical model, making them unaffected by
changes in methods, model physics, or dynamics.

In our research, we focused on two specific reanalysis datasets produced by the European Centre for Medium-
Range Weather Forecasts (ECMWF) for climate mornitoring: ERA-Interim (Dee et al., 2011) and ERA5
(Hersbach et al., 2020). ERA-Interim is ECMWF’s previous atmospheric reanalysis, based on a 2006 version
of the Integrated Forecasting System (IFS) physical model. Its data span from 1979 until August 31, 2019,
and no further updates are available. ERA5, on the other hand, represents the latest (Fifth) generation of
ECMWF global reanalysis, based on a 2016 version of the ECMWF IFS. ERA5 offers data starting from 1959
continuously expanded in near real-time. ERA5 offers higher spatial and vertical resolutions (0.25° and 137
levels) compared to ERA-Interim (0.75° and 60 levels). Additionally, ERA5 benefits from increased satellite
observations and improvements in its operational processes. As an example, ERA5 assimilated several satellite
channels sensitive to humidity through an all-sky assimilation approach, in contrast to ERA-Interim, which
employs a clear-sky assimilation approach. Moreover, ERA5 uses a 10-member ensemble 4D-Var system,
providing estimates of uncertainties in the data, a feature not present in ERA-Interim (Hersbach, 2019). Various
enhancements are expected to yield more accurate IWV estimates, as well as improvements in surface pressure



2.2. MATHEMATICAL TOOLS 22

and air temperature, which are used as auxiliary data for IWV conversion.

We anticipate that the representativeness difference (Bock and Parracho, 2019) between GNSS and ERA5 will
be smaller compared to that between GNSS and ERA-Interim, primarily due to ERA5’s improved spatial resolu-
tion. This difference stems from the fact that the reanalysis grid-point values are representative of aerial averages
while the GNSS observations are comparatively equivalent to point observations. It is important to note that we
include ERA-Interim primarily because this work builds on the previous work by Parracho (2017) and Quarello
(2020), and we wanted to investigate the impact of using different reanalysis data in the homogenization process.

It is essential to emphasize that the homogeneity of reanalysis data is uncertain. As mentioned earlier, ERA-
Interim showed inhomogeneities when changes occurred in the observing system (Schroeder et al., 2016),
and perhaps ERA5 as well (Allan et al., 2022). For these reason, we also consider the possibility of having
change-points in the reanalysis used as a reference in forming the IWV difference series in the homogenization
process.

2.2 Mathematical tools

2.2.1 GNSSseg segmentation method

In this section we recall briefly the segmentation method developed by Quarello et al. (2022) for the change-point
detection problem in GNSS series (being the basis of the work of this thesis).

2.2.1.1 Model

Quarello et al. (2022) modeled the series of IWV difference by a Gaussian independent random process
𝒛 = {𝑧𝑡 }𝑡=1,...,𝑛, such that

𝑧𝑡 ∼ N(`𝑘 + 𝑓𝑡 , 𝜎
2
𝑚𝑜𝑛𝑡ℎ) if 𝑡 ∈ 𝐼𝑚𝑒𝑎𝑛𝑘 ∩ 𝐼𝑣𝑎𝑟𝑚𝑜𝑛𝑡ℎ for 𝑘 = 1, ...𝐾,

where

★ 𝑧𝑡 is the data at time 𝑡,

★ 𝐾 denotes the number of segments,

★ `𝑘 represents the constant mean of the kth segment 𝐼𝑚𝑒𝑎𝑛
𝑘

= [[𝑡𝑘−1 + 1, 𝑡𝑘]], with 𝑡𝑘 indicating the position
of the kth change-point with the convention 𝑡0 = 0 and 𝑡𝐾 = 𝑛,

★ 𝑓𝑡 a function of time modeled by a Fourier series of order 4 accounting for the periodic bias:

𝑓𝑡 =

4∑︁
𝑖=1

𝑎𝑖𝑐𝑜𝑠(2𝜋𝑡/𝑇) + 𝑏𝑖𝑠𝑖𝑛(2𝜋𝑡/𝑇),

with T = 365.25 (days) and the coefficients 𝑎𝑖 and 𝑏𝑖 are weights for the series representing yearly,
semiannual, ter-annual, and quarterly cycles, corresponding to 𝑖 ranging from 1 to 4 respectively,

★ 𝜎2
𝑚𝑜𝑛𝑡ℎ

stands for the monthly variance, consistent within the monthly interval 𝐼𝑣𝑎𝑟
𝑚𝑜𝑛𝑡ℎ

= {𝑡, 𝑑𝑎𝑡𝑒(𝑡) ∈
𝑚𝑜𝑛𝑡ℎ}.
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2.2.1.2 Estimation procedure

The proposed inference procedure is illustrated in Figure 2.2. This procedure consists of three main steps:

1. Estimation of the monthly variance 𝜎2
𝑚𝑜𝑛𝑡ℎ

as proposed by Bock et al. (2019).

2. For a fixed number of segments 𝐾 , the periodic bias function 𝑓𝑡 and both the change-points 𝑡𝑘 and the
segment means `𝑘 for 𝑘 = 1, ..𝐾 , are iteratively estimated by minimizing the residual sum of squares,
denoted by 𝑆𝑆𝑅𝐾 :

𝑆𝑆𝑅𝐾 =

𝐾∑︁
𝑘=1

∑︁
𝑚𝑜𝑛𝑡ℎ

∑︁
𝑡∈𝐼𝑚𝑒𝑎𝑛

𝑘
∩𝐼𝑣𝑎𝑟

𝑚𝑜𝑛𝑡ℎ

(𝑧𝑡 − 𝑓𝑡 − `𝑘)2

�̂�2
𝑚𝑜𝑛𝑡ℎ

.

This iterative procedure stops when the relative change in the estimated values is smaller than a threshold.

3. This estimation procedure is performed for different values of 𝐾 (from 1 to 𝐾max that is the maximal
considered number of segments) and thus returns 𝐾max different segmentations. The "best" one, i.e. the
"best" number of segments is determined as follows:

�̂� = 𝑎𝑟𝑔𝑚𝑖𝑛𝐾𝑆𝑆𝑅𝐾 + 𝑝𝑒𝑛(𝐾).

Different penalty functions (𝑝𝑒𝑛) have been considered and tested in Quarello et al. (2022): mBIC (Zhang
and Siegmund, 2007), Lav (Lavielle, 2005), BM1 (Birgé and Massart, 2001) and BM2 (Lebarbier, 2005).
The idea of adding a penalty to 𝑆𝑆𝑅𝐾 is to prevent overfitting, where the model attempts to have as many
change-points as possible.
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Figure 2.2 – Segmentation inference procedure (Quarello, 2020).

2.2.1.3 Important features

Certain factors need to be considered when employing this method.

The foremost factor concerns the selection of the number of change-points, 𝐾 . Specifically, the challenge
lies in selecting the appropriate criterion. Quarello et al. (2022) tested the four different penalized criteria
through both simplified simulations and real data analysis (IGS solution). The simulation findings revealed
that Lav exhibited instability, showing a large variance in detection numbers, whereas other criteria were more
conservative. When applied to the real data, mBIC tended to over-segment compared to the other criteria.
This tendency was consistent when we applied this method to other solutions (CODE). To select the final
change-points, the authors proposed a semi-automatic approach which combines a visual inspection and the
results from criteria. This approach involved inspecting the monthly time series for each station, prioritizing
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based on known changes in GNSS metadata and information from the TEQC software. Through this validation
process, Quarello et al. (2022) concluded that BM1 had the highest acceptance rate at 57%, followed by Lav at
51% and BM2 at 45%. Consequently, in our study, we focus solely on the results derived from the BM1 criterion.

Second, an important consideration is that no dependence between the data is assumed in this segmenta-
tion model. However, we have observed a time-dependent aspect within our data, a phenomenon commonly
encountered in climate data as well (see the subsection 4.1.3.3). Neglecting this feature could lead to an over-
segmentation of the series, as discussed in Chakar et al. (2017).

We acknowledge the potential issue of confusion between the estimates of 𝑓𝑡 and `𝑘 particularly when dealing
with seasonal variations. These variations can occasionally be mistakenly attributed to the mean rather than
the periodic function, a situation that can arise with oversegmentation. Additionally, the absence of interannual
variation within the model may lead to a false change in the mean to take it into account.

Finally, the method has been implemented in a R package named GNSSseg available on the CRAN, followed
by a faster version called GNSSfast and available on github. In our study, segmentation results were obtained
using the GNSSfast version. We adhered to all default settings, which include a maximum segment number
of 𝐾max = 30 and an iterative estimation threshold set at 10−1 (the stopping rule of the iterative estimation
procedure), etc...

2.2.2 Linear Regression

In this thesis, we considered the linear regression model for various tasks, including trend estimation and
testing the significance of the offset at a given change-point. In this section, we recall the two commonly used
inference methods, namely, Ordinary Least Squares (OLS) and Generalized Least Squares (GLS) for this model.

The multiple linear model with 𝑘 explanatory numerical variables is given, for 𝑛 observations, by:

𝑧𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + .. + 𝛽𝑘𝑥𝑖𝑘 + 𝜖𝑖 for 𝑖 = 1, . . . , 𝑛.

This model can be expressed in matrix form as:

z = X𝜷 + e,

where X is the matrix of explanatory variables with size [𝑛 × (𝑘 + 1)], y is the [𝑛 × 1] vector of responses, e is
the [𝑛×1] vector of errors and 𝜷 the [(𝑘 +1) ×1] vector of coefficient regression, i.e. the unknown parameters:

X =


1 𝑥11 𝑥12 . . . 𝑥1𝑘

1 𝑥21 𝑥12 . . . 𝑥2𝑘

. . . . . .

1 𝑥𝑛1 𝑥𝑛2 . . . 𝑥𝑛𝑘


, y =


𝑦1

𝑦2

.

𝑦𝑛


, 𝒆 =


𝜖1

.

.

𝜖𝑛


, 𝜷 =

[
𝛽0 𝛽1 𝛽2 . 𝛽𝑘

]
respectively.

The least-squares method is the most popular inference method for linear regression. It consists in finding the
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value of 𝜷 that minimizes the sum of squared errors given by

𝑆(𝜷) = (z − X𝜷)𝑇 (z − X𝜷).

The solution, denoted by �̂�, is obtained by setting the (matricial) derivative of 𝑆(𝜷) with respect to 𝜷 equal to
0. This leads to the equation:

X𝑇X�̂� = X𝑇z.

When X𝑇X is invertible, we obtain the following least-square (LS) estimator

�̂� = (X𝑇X)−1X𝑇z. (2.9)

To study the properties of this estimator, let us substitute z into the previous equation. Hence:

�̂� = (X𝑇X)−1X𝑇 (X𝜷 + e)

= (X𝑇X)−1X𝑇X𝜷 + (X𝑇X)−1X𝑇e

= 𝜷 + (X𝑇X)−1X𝑇e.

We can deduce some properties of the LS estimator. First, the LS estimator is unbiased as long as the noise is
centered. Second, the uncertainty of the LS estimator depends on the variance of the noise (or equivalently of
the variance of the response):

𝑣𝑎𝑟 ( �̂�) = (X𝑇X)−1(X𝑇𝑣𝑎𝑟 (z)X) (X𝑇X)−1. (2.10)

Assuming that e ∼ N(0, 𝜎2
0 𝐼𝑛), where 𝐼𝑛 is an identity matrix with size 𝑛, or at least that the errors are

uncorrelated and equally variable, leads to the LS estimator with a reduced variance

𝑣𝑎𝑟 ( �̂�) = 𝜎2
0 (X

𝑇X)−1.

This estimator is known as the Best Linear Unbiased Estimator (BLUE) of 𝜷 (Gauss-Markov theorem). BLUE
implies that the variance of the estimator is the smallest compared to other unbiased linear estimators. This
solution is the familiar Ordinary Least Squares (OLS), often denoted �̂�

OLS.

However, the OLS is no longer the BLUE when one of the two assumptions (independence and homoscedasticity)
is violated, i.e. 𝑣𝑎𝑟 (e) = 𝑣𝑎𝑟 (z) = Σ0 ≠ 𝜎2

0 𝐼𝑛 where Σ0 is a positive semidefinite matrix. Indeed, in this case,
we get

𝐸 ( �̂�OLS) = 𝜷,

the OLS is still unbiased, but according to equation (2.10), we get

𝑣𝑎𝑟 ( �̂�OLS) = (X𝑇X)−1(X𝑇Σ0X) (X𝑇X)−1 ≠ 𝜎2
0 (X

𝑇X)−1. (2.11)

A serious consequence is that statistical inferences (as tests) based on the standard OLS estimation results
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become invalid.

The adapted framework in this case is the General Least Squares (GLS) method which aims to minimize the
following sum of squares:

(z − X𝜷)𝑇Σ−1
0 (z − X𝜷).

The solution of this minimization is called the GLS estimator given by

�̂�
GLS

= (X𝑇Σ−1
0 X)−1X𝑇Σ−1

0 z, (2.12)

with variance
𝑣𝑎𝑟 ( �̂�GLS) = (X𝑇Σ−1

0 X)−1.

Note that the GLS method is equivalent to the OLS method applied on the transformed model:

G z = GX𝜷 + Ge,

with 𝑮 = Σ
−1/2
0 . The GLS estimator is the BLUE of 𝜷.

In practice, Σ0 is unknown. Depending of the study objective, various method can be used. Two objectives can
be considered: (i) when we are interesting in the estimator itself, the popular method is the feasible generalized
least-squares (FGLS) estimator which consists in substituting a good estimator of Σ0 in the (2.12) and (ii) when
we are rather interesting in statistical inferences (as tests), the OLS estimator can be considered with a correction
of its variance. More precisely, we can estimate the term (X𝑇Σ0X) in the variance (see equation (2.11)) using
a robust covariance (HAC) estimator.

2.2.3 Linear stochastic models

2.2.3.1 Definition

In modeling time series, specific stationary stochastic processes that are valuable include the autoregres-
sive (AR), moving average (MA), and mixed autoregressive-moving average (ARMA) processes (Box et al.,
2016; Shumway and Stoffer, 2017). A generalization of the latter to autoregressive integrated moving-average
(ARIMA) models provides also a useful class of nonstationary processes. While nonstationary processes are
frequent in many application fields, in this work we are mainly concerned with stationary processes.

The autoregressive model of order 𝑝, or more succinctly, the AR(𝑝) process, is defined by the following equation
Box et al. (2016, p. 52):

𝑧𝑡 = 𝜙1𝑧𝑡−1 + ... + 𝜙𝑝𝑧𝑡−𝑝 + 𝑎𝑡 , (2.13)

where 𝑧𝑡 , assumed to be stationary and of zero mean, denotes the dependent variable at time 𝑡, 𝑧𝑡−1 to 𝑧𝑡−𝑝
represent its previous values up to lag 𝑝, and 𝜙1 to 𝜙𝑝 are the set of model parameter. The term 𝑎𝑡 represents
an independent random sequence, or white noise, also known as the innovation. The latter follows a normal
distribution with mean `𝑎 = 0 and variance 𝜎2

𝑎, i.e. 𝑎𝑡 ∼ N(0, 𝜎2
𝑎). To account for a non-zero mean, `, in 𝑧𝑡 , a

constant can be added to the right-hand side of equation (2.13), or ` can be subtracted from 𝑧𝑡 and all its lagged
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terms in the equation.

The moving average process of order 𝑞, or MA(𝑞), is defined by the following equation Shumway and Stoffer
(2011, p. 90):

𝑧𝑡 = 𝑎𝑡 + \1𝑎𝑡−1 + ... + \𝑞𝑎𝑡−𝑞, (2.14)

where 𝑎𝑡−1 to 𝑎𝑡−𝑞 represent the lagged noise terms up to lag 𝑞, and \1 to \𝑞 correspond to the model coefficients
associated with these lagged error terms. Note that in equation (2.14), we adopted a positive sign in the sum
of the right-hand side terms, following the notation of Shumway and Stoffer (2011) and the convention in R,
which is opposite to the one used in Box et al. (2016).

Finally, the definition of the ARMA(𝑝, 𝑞) process, as formulated by Shumway and Stoffer (2011, p. 92)), is:

𝑧𝑡 = 𝜙1𝑧𝑡−1 + ... + 𝜙𝑝𝑧𝑡−𝑝 + 𝑎𝑡 + \1𝑎𝑡−1 + \𝑞𝑎𝑡−𝑞 . (2.15)

This expression represents a combination of the autoregressive model of order 𝑝 and the moving average model
of order 𝑞.

The AR(𝑝) model implies that observations at time 𝑡 are influenced by 𝑝 previous observations with weights
𝜙1, 𝜙2, ..., 𝜙𝑝, in addition to an independent white noise term at time 𝑡. On the other hand, the MA(𝑞) model
suggests that observations at time 𝑡 are affected by 𝑞 previous noise terms with weights \1, \2, ..., \𝑞.

To express the time series lags in a concise mathematical form, the backward shift operator 𝐵 is utilized, which
is defined as follows:

𝐵𝑧𝑡 = 𝑧𝑡−1.

The AR(𝑝) model can thus be reformulated as:

(1 − 𝜙1𝐵 − ... − 𝜙𝑝𝐵𝑝)𝑧𝑡 = 𝑎𝑡 .

Introducing the autoregressive polynomial 𝜙(𝐵) = (1 − 𝜙1𝐵 − ... − 𝜙𝑝𝐵𝑝), we have:

𝜙(𝐵)𝑧𝑡 = 𝑎𝑡 .

Similarly, the MA(𝑞) model can be rewritten as:

𝑧𝑡 = \ (𝐵)𝑎𝑡 .

where the moving average polynomial is denoted as \ (𝐵) = (1+\1𝐵+...+\𝑞𝐵𝑞). Finally, the mixed ARMA(𝑝, 𝑞)
model is represented as:

𝜙(𝐵)𝑧𝑡 = \ (𝐵)𝑎𝑡 .
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2.2.3.2 Important features

A central feature in the development of time series models is the assumption of stationarity. Stationarity
implies that the mean, 𝐸 [𝑧𝑡 ], variance, 𝑣𝑎𝑟 [𝑧𝑡 ] = 𝐸 [(𝑧𝑡 − `)2], and autocovariance between time 𝑡 and 𝑡 − ℎ,
𝑐𝑜𝑣 [𝑧𝑡 , 𝑧𝑡−ℎ] = 𝐸 [(𝑧𝑡 − `) (𝑧𝑡−ℎ − `)], are the same for all times 𝑡 Shumway and Stoffer (2011, p. 23). For a
stationary series, we have thus:

𝐸 [𝑧𝑡 ] = `, 𝑣𝑎𝑟 [𝑧𝑡 ] = 𝜎2
𝑧 , and 𝑐𝑜𝑣 [𝑧𝑡 , 𝑧𝑡−ℎ] = 𝛾(ℎ).

Note that the autocoviance depends only on the time lag ℎ.

While the MA(𝑞) model is always stationary, the AR(𝑝) model does not always exhibit stationarity. It is
shown in Box et al. (2016, pp. 54–55) that the AR(𝑝) model achieves stationarity only when the roots of the
autoregressive polynomial lie outside the unit circle.

Another crucial property for a linear process is invertibility. It relates to the capability of representing the
error term 𝑎𝑡 as a function of 𝑧𝑡 , making it algebraically equivalent to a converging infinite order AR model.
The AR(𝑝) model is generally invertible, while the MA(𝑞) model is not always so. The invertibility of the
MA(𝑞) model is achieved on the condition that \ (𝐵)−1 ≠ 0, which implies that the roots of the moving average
polynomial lie outside the unit circle (Box et al., 2016, pp. 68–69). For an ARMA(𝑝, 𝑞) process to be stationary
and invertible, both conditions must be satisfied simultaneously.

To illustrate these concepts, the following sub-section will describe the properties of three fundamental models,
the AR(1), MA(1), and ARMA(1,1), that will be extensively used in this work. For simplicity, we will henceforth
denote 𝜙1 and \1 as 𝜙 and \, respectively, since the models are of first order.

2.2.3.3 Fundamental models

AR(1) model

The zero-mean first-order autoregressive model is expressed as:

𝑧𝑡 = 𝜙𝑧𝑡−1 + 𝑎𝑡 ,

where the stationarity condition restricts |𝜙 | < 1 and where {𝑎𝑡 }𝑡 i.i.d. ∼ N(0, 𝜎2
𝑎). When |𝜙 | = 1, it transforms

into the (non-stationary) random walk model.

We can easily verify that the mean is zero by writing:

𝐸 [𝑧𝑡 ] = 𝐸 [𝜙𝑧𝑡−1] + 𝐸 [𝑎𝑡 ] = 𝜙𝐸 [𝑧𝑡−1] = 0,

given that 𝐸 [𝑎𝑡 ] = 0 and that, due to stationarity, the mean of the process must be constant, hence 𝐸 [𝑧𝑡 ] =

𝐸 [𝑧𝑡−1].
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The variance can be expressed as:

𝑣𝑎𝑟 [𝑧𝑡 ] = 𝐸 [𝑧2𝑡 ] =
𝜎2
𝑎

1 − 𝜙2 ,

given that due to stationarity, the variance must be constant, i.e. 𝑣𝑎𝑟 [𝑧𝑡 ] = 𝜙2𝑣𝑎𝑟 [𝑧𝑡−1] + 𝜎2
𝑎 = 𝑣𝑎𝑟 [𝑧𝑡−1].

The autocovariance function (ACVF) at lag ℎ writes (Shumway and Stoffer, 2011, p. 86):

𝛾(ℎ) = 𝑐𝑜𝑣 [𝑧𝑡 , 𝑧𝑡−ℎ] =
𝜎2
𝑎𝜙

ℎ

1 − 𝜙2 , ℎ ≥ 0,

with 𝛾(ℎ) = 𝛾(−ℎ), and the Autocorrelation function (ACF) at lag ℎ is:

𝜌(ℎ) = 𝑐𝑜𝑟𝑟 [𝑧𝑡 , 𝑧𝑡−ℎ] =
𝛾(ℎ)
𝛾(0) = 𝜙ℎ, ℎ ≥ 0,

with the property 𝜌(ℎ) = 𝜌(−ℎ).

The ACF tails off exponentially and rapidly approaches 0 due to the condition |𝜙 | < 1. When 𝜙 = 0, the process
becomes white noise, whose ACF is 𝜌(ℎ) = 0 for all lags except for lag ℎ = 0 where its value is 𝜌(0) = 1.

An important property of linear processes is causality, the property by which 𝑧𝑡 depends only on past values,
𝑧𝑡−1, 𝑧𝑡−2, 𝑎𝑡 , 𝑎𝑡−1... Time series issued from the physical measurements we are concerned with in this study
are always causal.

In the case of the AR(1) process, causality is equivalent to, or follows from, stationarity. This can be seen by
arranging the recursive equation (2.13) as a function of 𝑎𝑡 , 𝑎𝑡−1..., or, equivalently, by inverting the polynomial
equation, (1 − 𝜙𝐵)𝑧𝑡 = 𝑎𝑡 , as 𝑧𝑡 = (1 − 𝜙𝐵)−1𝑎𝑡 =

∑∞
𝑗=0 𝜙

𝑗𝑎𝑡− 𝑗 . This alternative representation of the AR(1)
process is known as its "infinite MA representation", which is also basically the form of any causal linear
process. Stationarity of this process requires that the infinite sum is converging, which is obtained when |𝜙 | < 1.

MA(1) model

The zero-mean first-order moving average model is represented as:

𝑧𝑡 = \𝑎𝑡−1 + 𝑎𝑡 ,

where {𝑎𝑡 }𝑡 i.i.d. ∼ N(0, 𝜎2
𝑎). Again, we can check that the mean of this process is zero:

𝐸 [𝑧𝑡 ] = \𝐸 [𝑎𝑡−1] + 𝐸 [𝑎𝑡 ] = 0, (2.16)

and the variance is
𝑣𝑎𝑟 [𝑧𝑡 ] = \2𝑣𝑎𝑟 [𝑎𝑡−1] + 𝑣𝑎𝑟 [𝑎𝑡 ] = (1 + \2)𝜎2

𝑎 . (2.17)

by virtue of the independence and stationarity of the white noise.



2.2. MATHEMATICAL TOOLS 31

The ACVF at lag ℎ writes (Shumway and Stoffer, 2011, p. 90):

𝛾(ℎ) =


(1 + \2)𝜎2

𝑎, ℎ = 0,

\2𝜎2
𝑎, ℎ = 1,

0, ℎ > 1.

(2.18)

and the ACF is:

𝜌(ℎ) =


1, ℎ = 0,
\

1+\2 , ℎ = 1,

0, ℎ > 1.

The ACVF and ACF of the MA(1) process are equal to zero for all lags higher than 1. For the general MA(𝑞),
this holds for all lags larger than 𝑞. The MA(𝑞) process is thus always stationary.

One caveat of the MA(𝑞) model is the non-uniqueness of its ACVF and ACF. For the MA(1) model, for example,
𝜌(ℎ) is the same for \ and 1/\, and 𝛾(ℎ) is the same for the pair (\, 𝜎2

𝑎 = 1), and (1/\, 𝜎2
𝑎 = 1/\2). In prac-

tice, one chooses the model which satisfies the invertibility condition, |\ | < 1 (Shumway and Stoffer, 2011, p. 92).

In the backward operator notation, the MA(1) model can be expressed as 𝑧𝑡 = (1 + \𝐵)𝑎𝑡 . When |\ | < 1, the
inverse of the operator (1 + \𝐵) is given by:

(1 + \𝐵)−1 =

∞∑︁
𝑗=0

(−\) 𝑗𝐵 𝑗 .

This infinite sum converges for all |𝐵| ≤ 1. Consequently, the MA(1) model can be equivalently written as:

(
∞∑︁
𝑗=0

(−\) 𝑗𝐵 𝑗)𝑧𝑡 = 𝑎𝑡 .

This is the infinite AR representation of the MA(1) model, and it only exists when |\ | < 1, i.e. when the model
is invertible.

ARMA(1,1) model

The zero-mean first-order autoregressive moving average model is given by:

𝑧𝑡 = 𝜙𝑧𝑡−1 + \𝑎𝑡−1 + 𝑎𝑡 ,

where {𝑎𝑡 }𝑡 i.i.d. ∼ N(0, 𝜎2
𝑎). To be causal and unique, it necessitates both the stationarity condition of AR(1)

and the invertibility condition of MA(1). Under these conditions, the ACVF at lag ℎ writes (Shumway and
Stoffer, 2017, p. 92):

𝛾(ℎ) =

𝜎2
𝑎 (1+2\ 𝜙+\2 )

1−𝜙2 , ℎ = 0,
𝜎2
𝑎 (1+\ 𝜙) (\+𝜙)𝜙ℎ−1

1−𝜙2 , ℎ ≥ 1.
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The ACF is:

𝜌(ℎ) =


1, ℎ = 0,
(1+\ 𝜙) (\+𝜙)

1+2\ 𝜙+\2 𝜙ℎ−1, ℎ ≥ 1.

The general pattern of the ACF of the ARMA(1,1) model closely resembles that of the AR(1) model, both
exhibiting exponential decay with ℎ. Because of this similarity, relying solely on the ACF proves inadequate
for distinguishing between the two models. This consideration will lead to the use of the Partial autocorrelation
function (PACF).

Due to the properties of the AR(1) and MA(1), the ARMA(1,1) process can be represented either as an infinite
MA process or as an infinite AR process, and these properties can actually be generalized to the ARMA(𝑝, 𝑞)
model as well.

A prevalent issue of the ARMA(𝑝, 𝑞) models is the parameter redundancy, or over-parameterization. In the
case of the ARMA(1,1) model, this can be evidenced by reformulating in the backward operator form:

(1 − 𝜙𝐵)𝑧𝑡 = (1 + \𝐵)𝑎𝑡 .

It is obvious that in the scenario where 𝜙 = −\, 𝑧𝑡 = 𝑎𝑡 which is actually a white noise process. As this example
points out, we might fit an ARMA(1, 1) model to white noise data and find that the parameter estimates are
significant. If we were unaware of parameter redundancy, we might claim the data are correlated when in fact
they are not (Shumway and Stoffer, 2017, p. 84). This situation highlights a challenge involving the potential
confusion between the white noise model and the ARMA(1,1) model that may arise during the process of model
identification. This issue can be solved, in the general ARMA(𝑝, 𝑞) model, by reducing the common factors in
the 𝜙(𝐵) and \ (𝐵) polynomials (Shumway and Stoffer, 2017, p. 85).

2.2.3.4 Note on the PACF

The Partial Autocorrelation Function (PACF) is a tool that helps to identify the order of an AR(𝑝) model and, in
combination with the ACF, helps to distinguish between AR, MA, and ARMA models. The idea is to construct
a function that cuts off after lag 𝑝 for an AR(𝑝) model, like ACF cuts off after lag 𝑞 for a MA(𝑞) model. The
principle is the following (Shumway and Stoffer, 2017, p. 96):if 𝑋 , 𝑌 , and 𝑍 are random variables, then the
partial correlation between 𝑋 and 𝑌 given 𝑍 is obtained by regressing 𝑋 on 𝑍 to obtain �̂� , regressing 𝑌 on 𝑍
to obtain 𝑌 , and then calculating 𝜌𝑋𝑌 |𝑍 = 𝑐𝑜𝑟𝑟 (𝑋 − �̂�,𝑌 − 𝑌 ). The PACF of a stationary process, 𝑧𝑡 , denoted
𝜙ℎℎ, for ℎ = 1, 2, ..., is (Shumway and Stoffer, 2017, p. 97):

𝜙11 = 𝑐𝑜𝑟𝑟 (𝑧𝑡+1, 𝑧𝑡 ) = 𝜌(1);

𝜙ℎℎ = 𝑐𝑜𝑟𝑟 (𝑧𝑡+ℎ − 𝑧𝑡+ℎ, 𝑧𝑡 − 𝑧𝑡 ), ℎ ≥ 2,

where 𝑧𝑡+ℎ is the regression of 𝑧𝑡+ℎ on 𝑧𝑡+ℎ−1, 𝑧𝑡+ℎ−2, ..., 𝑧𝑡+1.
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In the case of a stationary AR(1) process of parameter 𝜙, we have:
𝜙11 = 𝜌(1) = 𝜙,

𝜙22 = 𝑐𝑜𝑟𝑟 (𝑧𝑡+2 − 𝑧𝑡+2, 𝑧𝑡 − 𝑧𝑡 ) = 𝑐𝑜𝑟𝑟 (𝑎𝑡+2, 𝑧𝑡 − 𝑧𝑡 ) = 0,

𝜙ℎℎ = 0, ℎ > 2/

This indicates that for an AR(1) model, the PACF cuts off after the first lag. The property is the same for the
AR(𝑝) models with the PACF cutting off after lag 𝑝.

For an invertible MA(1) model of parameter \ , the PACF writes (Shumway and Stoffer, 2011, p. 107):
𝜙11 = \

1+\2 ,

𝜙22 = − \2

1+\2+\4 ,

𝜙ℎℎ = − (−\ )ℎ (1−\2 )
1−\2(ℎ+1) , ℎ > 2.

From this equation, it is clear that the PACF for the MA(1) model will not cut off, contrary to its ACF, but
instead it will tail off like the ACF of an AR(1) model. This behavior can be understood by recognizing that an
invertible MA process can be represented as an infinite AR process, preventing the PACF from cutting off at any
specific lag. The PACF of a causal and invertible ARMA(1,1) model exhibits the tailing off like the MA(1) model.

Figure 2.3 – Theoretical ACF and PACF of AR(1) model with 𝜙 = 0.3, MA(1) model with \ = 0.3, and
ARMA(1,1) model with (a) 𝜙 = 0.6 and \ = −0.3, and (b) 𝜙 = 0.3 and \ = 0.2.

Figure 2.3 presents the ACF and PACF for the three model types with typical 𝜙 and \ values encountered in the
real data that are discussed in this work (see Chapter 4). The three model types can be clearly distinguished.
For the AR(1) model, the ACF tails off, while the PACF cuts off after lag 𝑝 = 1. For the MA(1) model, the ACF
cuts off after lag 𝑞 = 1, while the PACF tails off. And for the two ARMA(1,1) models, both the ACF and PACF
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tail off. However, depending on the sign of 𝜙 + \, the PACF oscillates around zero or not. All these general
behaviours are also valid for higher order models, AR(𝑝), MA(𝑞), and ARMA(𝑝, 𝑞).

2.2.3.5 Note on spectral properties of stationary models

Time series often exhibit periodic variations which suggest that they can be approximated by a limited-order
Fourier series. The concept can be generalized to non-periodic time series and linear stochastic processes by
introducing a continuous distribution of frequencies (instead of harmonics considered in the simple Fourier
Series). A fundamental tool in spectral analysis of stationary processes is the spectral density, also called power
spectral density (PSD), 𝑓 (𝜔), which is defined as the Fourier Transform of the ACVF (Shumway and Stoffer,
2017, p. 173):

𝑓 (𝜔) =
∞∑︁

ℎ=−∞
𝛾(ℎ)𝑒−2𝜋𝑖𝜔ℎ,−1/2 ≤ 𝜔 ≤ 1/2, (2.19)

where𝜔 is the continuous frequency variable (in cycles per point). Because 𝑧𝑡 is stationary, the inverse transform
of 𝑓 (𝜔) exists, and yields the ACVF:

𝛾(ℎ) =
∫ 1/2

−1/2
𝑓 (𝜔)𝑒2𝜋𝑖𝜔ℎ𝑑𝜔, ℎ = 0,±1,±2, ...

i.e. the PSD and the ACVF are Fourier Transforms pairs.

The fact that 𝛾(ℎ) is non-negative ensures that 𝑓 (𝜔) ≥ 0 for all 𝜔, and it follows also from equation (2.19) that
𝑓 (𝜔) = 𝑓 (−𝜔), and that 𝛾(0) = 𝑣𝑎𝑟 [𝑧𝑡 ] =

∫ 1/2
−1/2 𝑓 (𝜔)𝑑𝜔.

The PSD of some special cases of interest are given below (Box et al., 2016): for −1/2 ≤ 𝜔 ≤ 1/2,

— White Noise (WN): 𝑓 (𝜔) = 𝜎2
𝑎,

— AR(1): 𝑓 (𝜔) = 𝜎2
𝑎

1+𝜙2−2𝜙𝑐𝑜𝑠 (2𝜋𝜔) ,

— MA(1): 𝑓 (𝜔) = 𝜎2
𝑎 × [1 + \2 + 2\𝑐𝑜𝑠(2𝜋𝜔)],

— ARMA(1,1): 𝑓 (𝜔) = 𝜎2
𝑎 ×

(1+\2+2\𝑐𝑜𝑠 (2𝜋𝜔)
1+𝜙2−2𝜙𝑐𝑜𝑠 (2𝜋𝜔) .

Figure 2.4 displays the PSDs for the same four models previously depicted in Figure 2.3. While AR(1) and
MA(1) share similarities such as higher power in the lower frequencies and finite power at the limits 𝜔 = 0
and 𝜔 = 1/2. Note that the negative frequency range is usually not plotted due to the symmetry of the PSD
( 𝑓 (𝜔) = 𝑓 (−𝜔)). The main difference between the AR(1) and MA(1) plots is that the PSD of the MA(1) is
flatter at low frequencies and the PSD of the AR(1) decreases faster in the medium frequency range. Compara-
tively,the PSD of the first ARMA(1,1) model starts higher than the AR(1) and MA(1) and decreases faster the
former two and than the second ARMA model. These distinguishable features can help to identify the different
models from a visual inspection, as an alternative or complementary way to the ACF and PACF discussed above.

In practice, the difficulty is that real data do not necessarily follow a simple stochastic model and the usual ACF,
PACF, and PSD estimators are subject to errors, making the identification more difficult.
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Figure 2.4 – Theoretical spectral density of AR(1) model with 𝜙 = 0.3, MA(1) model with \ = 0.3, and
ARMA(1,1) model with (a) 𝜙 = 0.6 and \ = −0.3, and (b) 𝜙 = 0.3 and \ = 0.2. In all cases, the variance of the
innovation is 𝜎2

𝑎 = 1.

2.2.3.6 Combination of models

In practice, we may often consider that an observed time series is the sum of two or more independent series,
e.g. a physical signal following an AR(1) process summed with an additive white noise (WN). The properties
of the sum of ARMA-type models was first studied by Granger and Morris (1976). They showed that, if
𝑋𝑡 ∼ ARMA(𝑝, 𝑚), 𝑌𝑡 ∼ ARMA(𝑞, 𝑛), and 𝑍𝑡 = 𝑋𝑡 + 𝑌𝑡 , then 𝑍𝑡 ∼ ARMA(𝑥, 𝑦), where 𝑥 ≤ 𝑝 + 𝑞 and
𝑦 ≤ 𝑚𝑎𝑥(𝑝 + 𝑛, 𝑞 + 𝑚). The result can be generalized to the sum of 𝑁 ARMA models:

𝑁∑︁
𝑗=1

𝐴𝑅𝑀𝐴(𝑝 𝑗 , 𝑚 𝑗) = 𝐴𝑅𝑀𝐴(𝑥, 𝑦),

where

𝑥 ≤
𝑁∑︁
𝑗=1

𝑝 𝑗 ,

and
𝑦 ≤ 𝑚𝑎𝑥(𝑥 − 𝑝 𝑗 + 𝑚 𝑗 , 𝑗 = 1, ..., 𝑁).

Some specific combinations are of particular interest, namely:

1. AR(1) + WN = ARMA(1,1),

2. AR(1) + AR(1) = ARMA(2,1),

3. MA(1) + WN = MA(1),

4. MA(1) + MA(1) = MA(1),

5. ARMA(1,1) + WN = ARMA(1,1),

6. AR(1) + MA(1) = ARMA(1,2).

Hence, it is quite likely that real data resulting from a combination of processes give rise to ARMA models.

Granger and Morris (1976) also address the question whether a given specific ARMA(𝑝, 𝑞) model could have
arisen from simpler models. Of interest to us is, especially, the case whether an ARMA(1,1) results from the
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combination of an AR(1) with WN. They show that the answer is positive when a realizability condition is met
with the ARMA(1,1) model parameters, 𝜙 and \, namely, if:

1
1 − 𝜙2 >

𝜌1

𝜙
≥ 0,

where 𝜌1 = \

1+\2 is the ACF at lag ℎ = 1 of the MA(1) part of the ARMA(1,1) process, then the ARMA(1,1) =
AR(1) + WN.

2.2.3.7 Model identification

The model identification for general ARMA(𝑝, 𝑞) models aims at determinating the orders 𝑝 and 𝑞. The widely
used Box-Jenkins method relies extensively on a visual analysis of ACF and PACF plots (Box et al., 2016,
pp. 180–185). PSD plots are sometimes used as well, although these are more commonly used for building
transfer function and multivariate models (Box et al., 2016, Chap. 12).
In recent years, endeavors have been made to automate identification processes through estimation-based
methods (Hyndman and Khandakar, 2008; Koreisha and Pukkila, 1995). The underlying concept involves
fitting a range of potential ARMA models (different values of couple (𝑝, 𝑞)) and then selecting the optimal one
using a penalized version of the fitted criterion. The most common penalty criteria are the Akaike information
criterion (AIC), bias corrected AIC (AICc), and Bayesian information criterion (BIC). The AIC is defined for a
model 𝑚 as:

𝐴𝐼𝐶 (𝑚) = −2 ln( �̂� (𝑚)) + 2 𝐷 (𝑚),

and the BIC as:
𝐵𝐼𝐶 (𝑚) = −2 ln( �̂� (𝑚)) + 𝐷 (𝑚) ln(𝑛),

where �̂� (𝑚) denotes the estimated likelihood of model 𝑚, 𝐷 (𝑚) is its number of parameters to be estimated,
and 𝑛 is the sample size. Since the BIC penalty is higher than the AIC one, BIC tends to select simplest or
parsimonious models compared to AIC (i.e. small values of 𝑝 and 𝑞). Note that for ARMA framework, AIC is
known to overestimate the orders (Shibata, 1976).

In our study, we consider the BIC criterion and use the "auto.arima" function with 𝑑 = 0 of the R package
"forecast" (Hyndman et al., 2018).

2.2.3.8 Parameter estimation

To estimate the coefficient parameters in ARMA models, the well known methods proposed in the literature are
the maximum likelihood, the conditional or unconditional ones (or equivalently the conditional or unconditional
Sum of Squares), and for the specific case of AR models, the method of moments using the Yule-Walker
equations. The exact or unconditional likelihood leads to a complex optimization problem since it is non-linear
according to the parameters and thus requires the use of iterative algorithms. The conditional likelihood (con-
ditionally to the initial observations) method is a way to simplify the problem. However, even if for very large
samples, the both likelihood estimators are equivalent with the same asymptotic distribution (Hamilton 1994,
p. 126), the conditional likelihood can result in biased estimates for relatively short series (Box et al., 2016,
p. 526). Because of this, the use of the unconditional likelihood function is typically recommended for models
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with moving average terms. For a complete presentation and discussion of these inference methods, see Box
et al. (2016, Chap. 7) or Brockwell et al. (1991, Chap. 8). In our study, we consider the unconditional inference
likelihood approach and use the "arima" function in R.

The large sample variance for the maximum likelihood estimates of an AR(1), MA(1) and ARMA(1,1) models
are (Box et al., 2016, pp. 233–238):

AR(1) model:

𝑣𝑎𝑟 [𝜙] ≃ 1 − 𝜙2

𝑛
, (2.20)

MA(1) model:

𝑣𝑎𝑟 [\̂] ≃ 1 − \2

𝑛
, (2.21)

ARMA(1,1) model:

𝑣𝑎𝑟 [𝜙] ≃ (1 + 𝜙\)2(1 − 𝜙2)
𝑛(𝜙 + \)2 , (2.22)

𝑣𝑎𝑟 [\̂] ≃ (1 + 𝜙\)2(1 − \2)
𝑛(𝜙 + \)2 . (2.23)

These equations underscore the relationship between the variance of coefficient estimates, the length of series,
𝑛, and the values of the coefficient, 𝜙 and \. As one could guess, the variances are inversely proportional to 𝑛
and are decreasing when the parameters 𝜙 or \ increase.

To quantify, let’s consider an AR(1) process with a coefficient value of 𝜙 = 0.3 and a series of length 𝑛 = 1000.
According to equation (2.20), 𝑣𝑎𝑟 [𝜙] = (0.03)2, signifying a relative uncertainty in 𝜙 of 0.03/0.3=0.1, i.e. 10%.
However, if we maintain the same series length while increasing the coefficient value to 𝜙 = 0.6, the variance
reduces to (0.025)2, which corresponds to a relative uncertainty of 4%.
Now let’s consider a scenario where the model is identified as an ARMA(1,1) but the true model is AR(1), with
𝜙=0.3. In this case, 𝑣𝑎𝑟 [𝜙], as given by equation (2.22), amounts to 𝑣𝑎𝑟 [𝜙] = (0.042)2, which is 1.96 times
larger than the variance of the AR(1) model of (0.03)2. This illustrates the over-fitting caveat and emphasizes
the necessity of identifying the appropriate stochastic model rather than relying on a more general model.

2.2.4 Classification

Classification is a supervised machine learning method whose aim is to predict the membership of an individual
to a given class of the population, summarized by the class number 𝑦 called the label, from the information
available on this individual 𝑥. Solving a classification problem amounts to construct a classifier, i.e. a function
𝜓 such that 𝜓(𝑥) represents the prediction of 𝑦 given 𝑥. We naturally want to build a high-performance classifier,
whose prediction error rate is as low as possible. Assume that (𝑥, 𝑦) is a realization of the random vector (𝑋,𝑌 )
of (unknown) distribution 𝑃. The classifier makes an error when 𝜓(𝑋) ≠ 𝑌 , and the quality of the classifier 𝜓
can be measured thus by the probability of misclassification:

R𝑃 (𝜓) = 𝐸 [⊮{𝜓 (𝑋)≠𝑌 }] = 𝑃(𝜓(𝑋) ≠ 𝑌 ),
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This probability is also known as the risk of 𝜓. The ideal or optimal classifier will be the one that min-
imizes the risk R𝑃 (𝜓) denoted 𝜓★. This classifier is particular and is called the Bayes classifier (𝜓★ =

arg max𝑘 𝑃(𝑌 = 𝑘 |𝑋 = 𝑥)). However, 𝜓★ depends on the distribution 𝑃 of (𝑋,𝑌 ) which is unknown in practice.
The objective of the supervised classification is thus to construct a learning rule or classifier from a sample
𝐷𝑛 = {(𝑋1, 𝑌1), . . . , (𝑋𝑛, 𝑌𝑛)} with the same distribution as (𝑋,𝑌 ) and with performance close to 𝜓★ in terms
of risk. This classifier is denoted 𝜓(𝐷𝑛).

There are four popular learning algorithms in the literature: the Classification and Regression Tree (CART),
the Random Forest (RF), the k nearest neighbors (k-NN) and the Linear Discriminant Analysis (LDA). The first
three algorithms are non-parametric, in contrast to LDA. We describe these algorithms in subsection 2.2.4.1.
The performance of a learning algorithm is summarized by the risk of its resulting classifier, R𝑃 (𝜓(𝐷𝑛))).
However, again the distribution 𝑃 being unknown, this risk can not be calculated. We can estimate it by its
empirical version on the sample 𝐷𝑛:

R̂𝑛 (𝜓;𝐷𝑛) =
1
𝑛

𝑛∑︁
𝑖=1
⊮{𝜓 (𝑋𝑖 )≠𝑌𝑖 } , (2.24)

This is referred to as the empirical risk, representing the number of errors the classifier 𝜓 makes on the sample
𝐷𝑛. It serves as an unbiased estimator of the risk associated with 𝜓, i.e. 𝐸 [R̂𝑛 (𝜓;𝐷𝑛)] = R𝑃 (𝜓).

The quality of the classifier 𝜓(𝐷𝑛) is thus given by R̂𝑛 (𝜓(𝐷𝑛);𝐷𝑛). However, this measure of quality is
biased because it is associated to an optimistic estimation of the risk R𝑃 (𝜓(𝐷𝑛)). As clearly indicated by
these notations, the sample 𝐷𝑛 is used twice: once to construct the classifier and once for its evaluation. To
control this optimism or reduce the bias, several strategies have been proposed, including cross-validation and
bootstrapping. Their objective, in particular, is to estimate the risk without bias or with reduced bias by avoiding
using the same data to construct the classifier and to study its performance. Some versions of these resampling
methods are presented and also discussed according to the properties of the proposed risk estimators (the bias
and the variance, 𝐸 [R̂] and 𝑉 [R̂], respectively, of an estimator R̂) in subsection 2.2.4.2.

Finally in subsection 2.2.4.3, we discuss the imbalance class problems for such classification purpose.

Note that this classification framework is used in the attribution method developed in Chapter 4 of this thesis.

2.2.4.1 The popular learning algorithms

We assume that the vector 𝑋 is composed of 𝑝 variables 𝑋1, 𝑋2, . . . , 𝑋 𝑝 and recall that 𝑌 is the label, i.e. the
target variable.

Classification and Regression Trees (CART)

CART is a decision tree algorithm designed to create a tree-like structure by recursively partitioning the data.
The root node of the tree contains all the data, each internal node corresponds to a split of the data into two
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subsets and the terminal node, called leaves, is associated to a class label. The paths from root to leaf represent
classification rules. An example of a classification tree is given in Figure 2.5 with comments in the caption.

Figure 2.5 – A tree showing survival of passengers on the Titanic ("sibsp" is the number of spouses or siblings
aboard). The number in the leaves give the probability of survival and the percentage of observations. If the
passenger is a male at most 9.5 years old with strictly fewer than 3 siblings, he will be classified as a survivor
(Wikipedia contributors, 2023).

The construction of the tree therefore consists in providing a sequence of nodes where each node is defined by
a question, i.e. the joint choice of a variable 𝑋 𝑗 among the 𝑝 variables and a threshold 𝑑 of the quantitative
variable 𝑋 𝑗 :

{𝑋 𝑗 ≤ 𝑑} ∪ {𝑋 𝑗 > 𝑑}.

Splitting the data according to this decision rule means that the observations with a value of the 𝑗 th variable
smaller than 𝑑 go to the left child node, and all those with a value larger than 𝑑 go to the right child node (the two
branches of the node). The objective is to make the best splitting, i.e. to search the best combination variable-
threshold making the two resulting subsamples as pure/homogeneous as possible according to a criterion. The
CART algorithm thus requires:

★ a "purity" or "homogeneity" criterion. Common metrics include the Gini index, misclassification error,
and entropy. In this study, we employ the Gini index given by 𝐺𝑖𝑛𝑖 = 1−∑𝐾

𝑘=1 𝑝
2
𝑘

where 𝐾 is the number
of classes and 𝑝𝑘 corresponds to the probability of an individual being classified to class 𝑘 .

★ a stopping rule since this process only halts when further splitting of a node is no longer feasible such as
when each terminal node (leaf) contains only one observation.

★ a leaf assignment. Lastly, each terminal node is assigned to a class label.

Choosing a stopping rule a priori is a challenging task. In practice, we construct a complete tree called the
maximal tree and denoted 𝑇max, that is to say a tree large enough to classify without error all the data in
the training sample (leading inevitably to overfitting). Then we search for the best pruned subtree of 𝑇max,
i.e. from which we remove the branches that do not provide significant predictive power. An exhaustive
search (considering all the subtrees) is not possible from an algorithmic point of view since their number is
exponential. To get around this problem, Breiman et al. (1984) proposed to construct a sequence of nested



2.2. MATHEMATICAL TOOLS 40

subtrees 𝑇1 ⪯ 𝑇2 ⪯ . . . ⪯ 𝑇max and to select the one that minimizes the following penalized misclassification
error:

R̂𝑛 (𝑇𝑖) + 𝛼 |𝑇𝑖 |,

where |𝑇𝑖 | represents the size of the tree 𝑇𝑖 and R̂𝑛 (𝑇𝑖) its empirical misclassification.

In conclusion, CART is a non-parametric method that is simple to understand, interpret, and visualize. The
drawback is that it is particularly unstable, i.e. very sensitive to fluctuations in the sample (small variations in
the data might result in a completely different decision tree).

Random Forest (RF)

In order to overcome the issue of instability in CART, Breiman (1996) introduced the Random Forest (RF)
algorithm. The idea of this algorithm is to consider multiple decision trees to improve the predictive power but
at the cost of a loss of interpretability. According to the Strong Law of Large Numbers, the error rate of the
ensemble of trees converges as the number of trees increases (Breiman, 2001). This convergence effectively
mitigates the overfitting problem commonly associated with single decision trees, thereby enhancing both the
model’s accuracy and efficiency.

The underlying principle of RF can be succinctly explained by the Bagging (Bootstrap Aggregating) technique,
which is a method for generating multiple versions of a predictor on bootstrap samples and using these to get an
aggregated predictor (Breiman, 1996) (as illustrated in Figure 2.6). Further details on bootstrap sampling are
provided in subsection 2.2.4.2, and the typical approach to result aggregation is by majority vote.

Figure 2.6 – Random forest illustration (TIBCO, 2023).

In Random Forest, the decision rule (question) at each node is determined on the basis of a random subsample
of variables 𝑚 out of 𝑝 variables. This additional layer of randomness serves to further reduce the correlation
between the decision trees, reducing the variance of the aggregated predictions and thereby enhancing the
bagging. To quantify the risk of the ensemble, Breiman (2001) introduced the concept of out-of-bag (OOB)
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estimation, which is elaborated upon in subsection 2.2.4.2.

Random Forest offers several advantages, including enhanced predictive accuracy, and flexibility in ensemble
composition, as it can incorporate various types of classifiers. However, it is essential to acknowledge that
Random Forest can be computationally expensive, especially as the number of trees in the forest grows.
Additionally, the aggregation of results from multiple trees can make the interpretation of the model more
challenging compared to a single decision tree.

k Nearest Neighbors (k-NN)

Another powerful non-parametric classification algorithm is the k-NN (Fix and Hodges, 1989; Cover and Hart,
1967). The intuitive and simple idea behind k-NN is to assume that very close observations probably belong to
the same class. Figure 2.7 illustrates the k-NN procedure. Initially, we have data in classes A and B and need
to classify an unknown observation, represented by the purple circle with a question mark, into one of these
classes. The k-NN procedure involves the two following steps for classifying a new observation 𝑥:

1. Identify the 𝑘 neighbors based on their distance to 𝑥 (the distance metric can be the Euclidean distance,
the Manhattan distance, or any other suitable measure). In the right plot of Figure 2.7, 𝑘 = 3 neighbors
are chosen.

2. Determine the predicted class of 𝑥 by the majority class among the 𝑘 identified neighbors. For this
example, 𝑥 is classified into class B.

Figure 2.7 – k-NN illustration (IBM, 2023).

This algorithm is straightforward and does not require a separate training phase, making it relatively easy
to implement. However, this method becomes computationally expensive when applied to large datasets.
Computing the distance between observations becomes computationally complicated as the number of variables
increases. Additionally, it tends to exhibit poorer performance on imbalanced datasets, where certain classes
have substantially more observations than others. In such cases, k-NN may favor the majority class during
prediction, leading to biased outcomes. The choice of 𝑘 is of course crucial for the estimation quality: a small
𝑘 may result in overfitting, while a large 𝑘 may lead to underfitting. This number is classically chosen via
cross-validation.
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Linear Discriminant Analysis (LDA)

Introduced in 1936 by Fisher (1936), Linear Discriminant Analysis (LDA) was initially designed for two-class
problems. The objective of the LDA is to estimate, within a parametric framework, the Bayes classifier, 𝜓★.
More precisely, the rule of the Bayes classifier is to classify an observation 𝑥 in the most probable group, i.e.
the group that maximizes the posterior probability of group membership given by

𝑃(𝑌 = 𝑘 |𝑋 = 𝑥).

This conditional probability can be decomposed using the Bayes formula as follows:

𝑃(𝑌 = 𝑘 |𝑋 = 𝑥) = 𝜋𝑘 𝑓𝑘 (𝑥)∑
𝑙 𝜋𝑙 𝑓𝑙 (𝑥)

,

where the 𝜋𝑘 = 𝑃(𝑌 = 𝑘) are the prior probabilities of group membership and the 𝑓𝑘 are the density distributions
of 𝑋 |𝑌 = 𝑘 .

The LDA assumes that the distribution of 𝑋 in each class is gaussian

𝑋 |𝑌 = 𝑘 ∼ N(`𝑘 , Σ),

where `𝑘 ∈ R𝑝 and Σ is a definite positive matrix with size 𝑝 × 𝑝. It is straightforward to show that for two
classes 𝑘 and 𝑙,

𝐵(𝑥) = log
(
𝑃(𝑌 = 𝑘 |𝑋 = 𝑥)
𝑃(𝑌 = 𝑙 |𝑋 = 𝑥)

)
= log

(
𝑓𝑘 (𝑥)𝜋𝑘
𝑓𝑙 (𝑥)𝜋𝑙

)
= 𝒃𝑻 𝑥 + 𝑏0,

with 𝒃 = 𝚺−1(𝝁𝒌 − 𝝁𝒍) and 𝑏0 = −1
2 (𝝁

𝑻
𝒌 Σ

−1𝝁𝒌 − 𝝁𝑻𝒍 Σ
−1𝝁𝒍) + log(𝜋𝑘/𝜋𝑙). Between these two classes, an

observation will be classified to class 𝑘 if 𝐵(𝒙) > 0. The decision boundary between classes 𝑘 and 𝑙 is thus a
linear function of 𝑥.
The prior probabilities 𝜋𝑘 and the distribution parameters `𝑘 and Σ are estimated using the classical maximum
likelihood method.

LDA offers multiple advantages such as computational efficiency, simplicity, and can work well even if the
number of variables is large. Moreover, it can take into account multicollinearity (correlation between variables)
in the data. The limitations of LDA mainly relate to the normality assumptions and the greater the deviation
from this hypothesis, the less it will be possible to guarantee the performance of the chosen classifier. One can
choose to consider that the covariance matrice is class-specific. In this case, the decision boundary is rather a
quadratic function of 𝑥, called the QDA. The QDA is more flexible than the LDA but at the price of a high cost
of the estimation.

Parameters of the algorithms

All these algorithms involve parameters that the user must chosen (the penalty constant 𝛼 in CART, the number
of considered variables at each node 𝑚 for RF or the numbr of neighbors for kNN). Generally, these parameters
are calibrated via cross-validation strategy applied on a predefined grid of values for the parameter. Then the
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optimal value is the one that minimizes the estimated risk. In this thesis, we use the 𝐾 = 10-fold cross-validation
and the R package caret.

2.2.4.2 Resampling methods

As outlined in the introduction, the two most common used resampling methods to evaluate the performance of
a classifier or model are cross-validation and bootstrap.

Cross validation

The general principle of cross-validation (CV) involves dividing the sample 𝐷𝑛 into two sub-samples: a training
sample 𝐷𝐿𝑛 used to train a classifier and a testing sample 𝐷𝑇𝑛 (the remaining data, 𝐷𝑇𝑛 = (𝐷𝐿𝑛 )𝑐 with size 𝑛𝑇 )
used to measure the performance of this classifier. Due to the independence between 𝐷𝐿𝑛 and 𝐷𝑇𝑛 , we obtain a
good assessment of the risk of 𝜓(𝐷𝑛) (avoiding the over-optimism of the empirical risk) given by

R̂val(𝜓;𝐷𝑛; 𝐿) =
1
𝑛𝑇

∑︁
𝑖∈𝑇
⊮{𝜓 (𝐷𝐿

𝑛 ,𝑋𝑖 )≠𝑌𝑖 } .

Since various strategies can divide the same sample, there exists a large number of possible validation procedures.
The common ones are:

★ the "hold-out" validation or simple validation, which involves a single division of 𝐷𝑛. This procedure
can be repeated 𝐾 times, each time changing the validation sample. One limitation, however, is that this
procedure does not guarantee consistent data dependencies in the test set across iterations.

★ the "𝐾-fold" cross-validation, which consists in dividing the sample 𝐷𝑛 into 𝐾 blocks of observations
of equal size, each block serving in turn as a validation set and the remaining 𝐾 − 1 blocks composing
the training sample. Note that the known leave-one-out cross-validation (LOOCV) is a particular case
of the 𝐾-fold CV with 𝐾 = 𝑛. In practice, 𝐾 needs to be chosen (by the user) and this choice is crucial:
a smaller 𝐾 yields a higher bias of the risk estimator, but the variance is concurrently diminished. The
well-known trade-off between bias and variance is detailed in Rodriguez et al. (2010).

The risk evaluated by CV is then the average of the 𝐾 risks:

R̂CV =
1
𝐾

𝐾∑︁
𝑘=1

R̂val(𝜓;𝐷𝑛; 𝐿 (𝑘)),

where 𝐿 (𝑘) is the 𝑘th set of observations belonging to the training set 𝐷𝐿𝑛 , i.e. the training set of the 𝑘th
repetition in the repeated hold-out validation or the training set including all blocks except the 𝑘th one (on which
the constructed classifier is evaluated) in the 𝐾-fold CV.

As Arlot (2018) explains in his interesting document: "Intuitively, we can already say that𝐾-fold cross-validation
has the advantage of making a “balanced” use of the data: each observation is used exactly 𝐾 − 1 times for
training and once for learning. This is by no means guaranteed with repeated hold-out validation. On the other
hand, one can wonder about the drawbacks of always using together (either for training or for validation) the
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observations of the same block. The repeated hold-out approach, due to its random nature, makes it possible to
avoid any biases induced by this link between observations".

Bootstrap

In contrast to cross-validation procedures, which partition the original data to train and evaluate, the bootstrap
method (Efron and Tibshirani, 1993) involves random sampling with replacement from the original dataset
to create new datasets. These datasets, known as bootstrap samples of the same size, are used to construct
classifiers, and then combined to evaluate the risk.

More precisely, the ordinary bootstrap procedure consists in repeating the following steps 𝐵 times:

★ create a new dataset, denoted 𝐷𝑏𝑛, from the original one, 𝐷𝑛, by randomly sampling 𝐷𝑛 with replacement,

★ construct a classifier 𝜓𝑏 = 𝜓(𝐷𝑏𝑛),

★ calculate its risk on 𝐷𝑛: R̂𝑛 (𝜓𝑏;𝐷𝑛) (where R̂𝑛 is given by (2.24)).

Combining all the 𝐵 risks, the estimation of the risk by bootstrap is therefore:

R̂Boot =
1
𝐵

𝐵∑︁
𝑏=1

R̂𝑛 (�̂�;𝐷𝑛).

This estimator is generally biased due to optimism, but it does offer enhanced precision in the estimation of the
risk.

To counter this optimistic bias, Breiman (2001) proposed the out-of-bag (OOB) bootstrap estimator. During
sampling, certain data points are replicated within each "bag", leading to a portion of the original data being
excluded and forming the "out-of-bag" set. The classifier derived from each sample is subsequently tested on
its associated "out-of-bag" set. The risk estimator becomes:

R̂OOB-B =
1
𝑛

𝑛∑︁
𝑖=1

1
𝐵𝑖

∑︁
𝑏∈𝐾𝑖

⊮{𝜓𝑏 (𝑋𝑖 )≠𝑌𝑖 } .

where 𝐾𝑖 indicates the set of bootstrap samples that do not contain the observation 𝑖 and 𝐵𝑖 is its size 𝐵𝑖 = |𝐾𝑖 |.

Summary

Both cross-validation and bootstrap methodologies are valuable for evaluating model performance, but they
have different strengths and weaknesses. If the cross-validation is a relatively simple procedure to understand
and implement, it can be computationally demanding especially for large datasets, and of course it is sensitive
to the choice of the folds and their number. Bootstrap is a more flexible method but it is conceptually more
difficult to understand and thus less used compared to CV. Note that for equal computational effort 𝐾 = 𝐵, the
bootstrap provides an estimator with a lower variance and the cross-validation with a lower bias.
In some scenarios, a combined approach can yield more robust error estimations. For instance, the leave-one-
out bootstrap method, discussed by Efron and Tibshirani (1997) exhibits reduced variance compared to the
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traditional leave-one-out cross-validation (LOOCV) approach.
Similarly, the concept of "bootstrap cross-validation", initially introduced by Fu et al. (2005), involves employing
cross-validation within each bootstrap sample. This method offers multiple advantages, including an unbiased
estimator of cross-validation for each individual sample and the ability to effectively handle imbalanced datasets
through the utilization of the bootstrap strategy.

2.2.4.3 Imbalance class problem

One important problem in classification arises when the classes are imbalanced. The imbalance is often inherent
to the problem at hand, as for example for medical diagnosis of a rare disease. In such situation, the learning
algorithms will have difficulty to correctly identify the minority classes (the resulting classifier being strongly
biased for the minority classes).

To address this problem, a typical approach involves a resampling technique that aims to rebalance the classes.
Random oversampling of the minority class or undersampling of the majority class can be employed to modify the
data and create a more balanced data set. While resampling can be a simple and straightforward solution that can
improve classification performance, it can also introduce potential issues. Oversampling can lead to overfitting,
as duplicate data is introduced, while undersampling can cause underfitting by removing representative data.
In addition to resampling techniques, He and Garcia (2009) has reviewed other methods such as Cost-Sensitive
methods, Kernel-based methods, and Active Learning methods. Among these methods, Cost-Sensitive methods
prove to be particularly valuable as they take into account the cost of misclassifying instances in the minority
class more than those in the majority class. This approach can be more effective than sampling methods,
especially when the minority class carries greater significance. However, achieving optimal performance with
Cost-Sensitive methods requires careful tuning of the cost parameters.



Chapter 3

Sensitivity of Change-Point Detection and
Trend Estimates to GNSS IWV Time Series
Properties

3.1 Summary

This chapter is presented in the form of a published article. The objective of the study is to investigate the
sensitivity of the segmentation method to data properties and assess the consequential impact of these proper-
ties on trend estimations. We undertake this investigation by comparing pairs of datasets based on four critical
factors: GNSS data processing methods (IGSrepro1 vs. CODE REPRO2015), the temporal extent of the time
series (17 years vs. 25 years), the auxiliary data utilized in the Integrated Water Vapor (IWV) conversion,
and the sources of reference data (ERAI and ERA5). Our analysis places particular emphasis on specific data
properties, including mean values, noise levels, and periodic bias, as these properties have an impact on the
segmentation results, particularly in terms of their influence on the number and positioning of change-points.
This investigation allows us to both comprehend the segmentation results and identify important features of
GNSS that can create inhomogeneities and impact trend estimates.

Our findings indicate significant impacts on the segmentation results when altering the GNSS processing and
reference reanalysis. Only 45−49% of change-points are similar in these cases, compared to 71−81% similarity
for the other two remaining factors (temporal extent and auxiliary data). Notable changes in GNSS processing
include adjustments in the a priori ZHD correction, antenna/radome calibration model, and mapping function.
Improvements in CODE processing lead to noise reduction and decreased periodic bias. Similarly, transitioning
from ERAI to ERA5 as a reference reduces representativeness errors, resulting in noise and periodic bias
reduction, making it easier to detect smaller change-points. The validation rate of the detected change-points
with respect to metadata was found to consistently falls within the range of 30% to 35% for all datasets, i.e. the
impact of data properties on that metric is small. This result suggests that the main instrumental changes that
impact the GNSS IWV estimates were captured by the segmentation in both datasets.

The impact on trend estimations is investigated in two aspects. Firstly, we examine the influence of the four
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factors previously explored in segmentation on IWV trend estimates. We find that changing the length of
the time series has the strongest impact, both on the average and dispersion of the trend estimates across the
network. The change in mean is believed to reflect the intensification of the water cycle in the 2010-2020 decade
compared to the previous one (see the steeper global mean IWV trend in Figure 1.3). The reduced dispersion
with the longer period is mainly a result of the smaller standard error of the estimates. Secondly, we consider
the impact of inhomogeneity correction on trend estimates. We find that it is particularly pronounced when only
change-points validated with respect to GNSS metadata (receiver, antenna, radome changes) are corrected. This
impact is evident in global mean trends, dispersion, and RMS differences with respect to ERA5. Correction
using all change-points also impacts the trend estimates but to a slightly lesser extent. This underscores the
importance of addressing the attribution step, which aims at retaining only the change-points due to GNSS for
the correction. The development of this step is the topic of Chapter 4. Finally, the dispersion associated with
different homogenized trend estimates can be used as a measure of the uncertainty in the trend estimate at a
single station. It amounts to 0.1 − 0.2 kg m−2 decade−1, or 0.5-1% decade−1, which confirms the feasibility of
detecting relevant global and regional climate trends with the GNSS IWV data.

3.2 Paper No. 1
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Abstract: This study investigates the sensitivity of the GNSSseg segmentation method to change
in: GNSS data processing method, length of time series (17 to 25 years), auxiliary data used in the
integrated water vapor (IWV) conversion, and reference time series used in the segmentation (ERA-
Interim versus ERA5). Two GNSS data sets (IGS repro1 and CODE REPRO2015), representative of the
first and second IGS reprocessing, were compared. Significant differences were found in the number
and positions of detected change-points due to different a priori ZHD models, antenna/radome
calibrations, and mapping functions. The more recent models used in the CODE solution have
reduced noise and allow the segmentation to detect smaller offsets. Similarly, the more recent
reanalysis ERA5 has reduced representativeness errors, improved quality compared to ERA-Interim,
and achieves higher sensitivity of the segmentation. Only 45–50% of the detected change-points are
similar between the two GNSS data sets or between the two reanalyses, compared to 70–80% when
the length of the time series or the auxiliary data are changed. About 35% of the change-points are
validated with respect to metadata. The uncertainty in the homogenized trends is estimated to be
around 0.01–0.02 kg m−2 year−1.

Keywords: segmentation; homogenization; climate; GNSS; integrated water vapor; time series;
trend; reanalysis

1. Introduction

Long records of observational data are essential to monitoring climate change and
understanding the underlying climate processes [1,2]. However, long time series are often
affected by inhomogeneities due to changes in instrumentation, in station location, in
observation and processing methods, and/or in the measurement conditions around the
station [3]. Inhomogeneities often take the form of abrupt changes, which are detrimental to
estimating trends and multi-scale climate variability [4]. Various homogenization methods
have been developed for the detection and correction of such change-points in the context
of climate data analysis [1,2,5–9].

In this paper, we are interested in ground-based Global Navigation Satellite System
(GNSS) integrated water vapor (IWV) measurements. GNSS measurements are qualified
among the most accurate and continuous IWV measurements in all weather conditions but
have only quite recently been considered for climate analysis [10–13]. Parracho et al. [14]
was one among the first to analyze global IWV trends from more than 15 years of GNSS
data and to confront them to the ECMWF reanalysis, ERA-Interim (ERAI), [15], and to the
NASA/MERRA-2 reanalysis [16]. Significant differences were discovered in IWV trends
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between the two reanalyses and between the reanalyses and the GNSS data. On the one
hand, this study pointed to the importance of the atmospheric model, the assimilation
system, but also the quality and quantity of assimilated observations in reanalyses. On
the other hand, inhomogeneities were also suspected in the GNSS data at several sites.
Developing a homogenized GNSS IWV time series is of prime importance to estimate
regional and global IWV trends and variability but also to verify climate models and
reanalyses. This study investigates in more detail the homogeneity of the GNSS IWV data
set used by Parracho et al. [14], as well as a more recently reprocessed GNSS data set. It
also updates the previous results from Parracho et al. [14] and Bock and Parracho [17] with
the new ECMWF reanalysis, named ERA5 [18].

The main causes of inhomogeneities in GNSS IWV time series are:

• Equipment changes (antenna, radome, and receiver). Each antenna/radome pair
has a particular impact on the measurements, which is taken into account at the
processing level with a specific calibration model (see Section 2). However, model
imperfections, multipath and on-site electromagnetic coupling with the antenna’s
environment, and equipment aging are responsible for small biases which can change
over time. The quality of measurements also depends on the receivers. Modern
receivers have more stable clocks, reduced cycle slips, and noise and are capable of
observing satellites from new GNSS systems (GPS, GLONASS, etc.). Hence, changes
in data quality/properties are expected, which can introduce offsets and possibly
trends (e.g., when new satellites are introduced progressively). Changes in receiver
settings, such as cutoff angle, are also known to produce abrupt changes in the mean
IWV estimates [19].

• Changes in the environment near the receiver antenna can introduce multipath and
obstructions that alter the measurements and cause inhomogeneities.

• Processing changes. The details of the data processing are known to impact the IWV
estimates. The most important aspects and parameters are the tropospheric model
(the mapping functions, the a priori hydrostatic model, the time-dependency), the
antenna/radome calibration models, the elevation-dependent weighting, and the
cutoff angle (see Section 2).

The first cause is well documented for International GNSS Service (IGS) stations
and other scientific networks (ftp://igs.ign.fr/pub/igs/igscb/station/log/, accessed on
30 July 2021). Therefore, metadata can be used to check if change-points detected in the
IWV time series can be explained by known equipment changes. The second cause is
usually not well documented, but the analysis of the raw measurements and post-fit
residuals can help to detect changes in the environment. The third cause is of a different
nature as it depends on the analysis procedure and models, which are both the subject of
active research in order to improve the accuracy and homogeneity of the GNSS products
(see Section 2). However, not all biases and inhomogeneities can be corrected at the
processing level, and further post-processing homogenization methods are needed.

Many different homogenization methods have been developed by climatologists.
The heart of any homogenization method is the detection of change-points, the so-called
segmentation method. Some segmentation methods use statistical tests [6,7], while others
use a penalized likelihood approach [1,2,20]. The performance of both approaches are
comparable, but, in general, the results depend on the data properties (nature of the back-
ground noise, presence of a periodic bias and/or a trend), the adopted model (parametric
or non-parametric), and the search method (optimal or sub-optimal) [9,21].

Quarello [21] developed a segmentation method, called GNSSseg, especially devoted
to detect changes in the mean of time series of IWV differences between GNSS and a
reference and taking into account the presence of a periodic bias and a heterogeneous
noise with a monthly variation. The method uses a penalized likelihood approach and is
optimal in the sense that the estimation of the positions of the change-points is done using
an efficient algorithm. The method proposes several penalty criteria, which aims to choose
the number of change-points, with different sensitivities to the data properties (length of
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the time series, noise distribution, etc.). The use of several criteria can help to mitigate
their limitations but requires special post-processing to make the final decision, either
automatic or manual. The post-processing may also include outlier detection, validation
with metadata when available, and manual inspection. The automatic version of the
GNSSseg algorithm was evaluated in a benchmark exercise and compared to other existing
segmentation methods where it was found to be one of the most efficient in detecting
change-points in synthetic time series mimicking the GNSS minus ERAI IWV differences
at the moderate complexity [22].

The general objective of this paper is to evaluate the sensitivity of segmentation
results with the GNSSseg method (recently improved in terms of computational time and
so-called GNSSfast method) and the subsequent trend estimates to various qualitative
and quantitative properties of both GNSS and reference data. The study considers the
particular cases of two different GNSS data sets (IGS repro1 and CODE REPRO2015)
combined with two different reanalysis data sets, ERA-Interim [15] and ERA5 [18], which
serve as references to compute to IWV differences used in the segmentation. IGS repro1
and CODE REPRO2015 are representative of the 1st and 2nd generation of IGS reprocessing
products, and, as such, they are expected to be of different quality. They also cover different
time periods. ERAI and ERA5 are the 4th and 5th generation reanalyses produced by
ECMWF [18] and are also of different quality and spatial resolution.

The paper is organized as follows. In Section 2, we describe the characteristics of
the two GNSS IWV data sets and discuss which factors in the data processing control the
accuracy of the daily IWV estimates and their homogeneity in the long term. We also
present the global homogenization and the trend estimation methods. In Section 3.1, we
study the impact of data properties on the segmentation results. The following questions
are specifically investigated: (1) What is the impact of the different data processing between
IGS repro1 and CODE REPRO2015 on the segmentation results? (2) what is the impact of
the time length on the segmentation results? (3) What is the impact of the reference data
source (ERAI versus ERA5)? (4) What is the impact of the auxiliary data source used in the
ZTD to IWV conversion (ERAI versus ERA5)? The segmentation results will be compared
on the basis of several statistics: the number of detections before and after outlier screening,
the number of outliers, and the number of validations/attributions after screening using
metadata and nearby stations. In Section 3.2, the corrected time series are used to estimate
linear trends, and the same questions as above are investigated for the trends. Finally,
Section 4 concludes the paper and discusses the future work.

2. Materials and Methods
2.1. GNSS IWV Data

Before describing the characteristics of the two GNSS IWV data sets used in this
study, we deem it is necessary to discuss which factors in the data production control
the accuracy of the daily IWV estimates and their homogeneity in the long term. The
raw GNSS measurements consist of code and carrier phase signals transmitted by GNSS
satellites (GPS, GLONASS, etc.), which are measured by ground-based stations composed
of an antenna and a multi-channel receiver [23]. The measurements collected from a
global tracking network are analyzed in routine by several International GNSS Service
(IGS) analysis centers who compute accurate satellite orbits and clock parameters (https:
//www.igs.org/acc/, accessed on 30 July 2021). These, as well as other parameters (Earth
Rotation Parameters (ERPs) and satellite phase biases), are necessary for subsequent users
to process accurate station positions and tropospheric delays for their own applications
(e.g., geodesy, surveying, weather forecasting, etc.). Both the IGS and user data processing
procedures rely on the use of various models to account for geophysical effects (solid Earth
tides, ocean tides), atmospheric propagation effects through the ionosphere and the neutral
atmosphere, and instrumental biases and variations induced by the transmitter and receiver
antennas and electronics [24]. The propagation effect in the neutral atmosphere, so-called
tropospheric delay, is traditionally decomposed into its hydrostatic and wet components
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in the zenith direction, which are mapped into the slant observation direction which their
respective mapping functions, and a two-parameter horizontal gradient model [25]:

STD = ZHD×mh(ε) + ZWD×mw(ε) + (~G ·~e)×mG(ε), (1)

where ZHD is the Zenith Hydrostatic Delay (ZHD), mainly due to the contribution from
dry air, ZWD is the Zenith Wet Delay (ZWD), due to water vapor molecules, ~G is the
horizontal gradient vector,~e is the unit vector pointing into the direction of the observed
satellite, mh, mw, and mG are the respective mapping functions, and ε is the elevation angle.

During the GNSS data processing, ZHD is corrected a priori, while ZWD and G are
estimated. The ZWD estimates can include some residual bias from incorrect a priori
ZHD correction or a deficiency of the hydrostatic and wet mapping functions. The GNSS
software traditionally provide the total Zenith Tropospheric Delay (ZTD), which is the sum
of the a priori ZHD, ZHDap, and estimated ZWD, ZWDest:

ZTD = ZHDap + ZWDest. (2)

The main parameter of interest for climate studies is the Integrated Water Vapor (IWV),
i.e., the integral of the water vapor molecules at the zenith. The conversion of ZTD into
IWV operates, thus, in two steps [25]:

ZWD = ZTD− ZHD and IWV = κ(Tm)× ZWD. (3)

The accuracy of the IWV estimates is, thus, basically determined by the accuracy of
the ZTD parameters derived from the GNSS data processing and the quality of the ZWD to
IWV conversion procedure. For the purpose of retrieving IWV, a more accurate estimate
of ZHD is required than the one used a priori for the processing. It can be derived from
the surface air pressure data, Ps, available at the GNSS station [26]:

ZHD = 10−6k1Rd
Ps

gm
, (4)

where k1 is the dry air refractivity coefficient, Rd is the dry air specific gas constant, Ps is
the surface air pressure, and gm is the mean acceleration due to gravity. The ZWD to IWV
conversion factor κ is defined as a function of the weighted mean temperature Tm [10]:

κ(Tm) =
106

Rv(k′2 +
k3
Tm

)
,

where k′2 and k3 are refractivity coefficients for the water molecule, and Rv is the specific
gas constant for water vapor. The refractivity coefficients were taken from Bock [27]. The
weighted mean temperature is defined by Bevis et al. [10]:

Tm =

∫
ρv(z)dz

∫ ρv(z)
T(z) dz

, (5)

where ρv(z) and T(z) are the specific mass of water vapor and the air temperature, re-
spectively, at height z above the surface. The integral is from the surface to the top of
the atmosphere. It can be computed from a vertical profile of ρv(z) and T(z) given by a
radiosonde climatology or an atmospheric model.

In this study, the auxiliary data, Ps and Tm, required for the conversion of the ZTD
estimates into IWV are computed from a global atmospheric reanalysis. Using reanalysis
data has several advantages: the data are available at any position and time on the globe,
the pressure and temperature are well constrained by observations, making the reanalysis
data the best estimate of the global atmospheric state at any position and time, and the
assimilation system uses an efficient screening and bias correction procedure to reject
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suspect observational data and adjust bias changes associated to observational system
changes (e.g., between older and new satellites). In this study, we will consider two
different reanalyses: ERA-Interim [15] and ERA5 [18]. Details on the reanalyses are given
in the subsection below. The Ps and Tm data are computed from 6-hourly pressure level
data, as described in Reference [14] and the subsequent IWV estimates are aggregated into
daily estimates, as described in Reference [17]. The interest of comparing two different
reanalysis is that ERA5 is of superior quality due to the assimilation of more observations
and of higher spatial resolution, i.e., providing more accurate pressure and temperature
estimates in regions of steep topography. The accuracy of reanalysis estimates of Ps and Tm,
as compared to other data sources, is further discussed in Bock [27] and Bock et al. [28].

The main factors conditioning the accuracy of the ZTD estimates at the GNSS data
processing level are, by decreasing order, the hydrostatic and wet mapping functions,
the a priori ZHD correction data, and the antenna phase center variation (PCV) models.
Any bias in these data and models would map directly into the ZWD estimates. The
mapping functions are the most important because they determine how the signals from the
satellites at various elevations are mapped into the zenith direction (from a mathematical
point of view, they represent the partial derivatives, or regressors, of the ZHD and ZWD
parameters). Because the hydrostatic delay is corrected a priori, any bias in the a priori
ZHD, or in the hydrostatic mapping function, will also map into the estimated ZWD [29].
Receiver antenna phase center variations also highly depend on the elevation angle and, to
a lesser extent, on the azimuth angle. Before 2005, relative calibration models were used
in the IGS network, which were progressively replaced with absolute calibrations [30].
The convention at IGS is to use a type-mean calibration, i.e., a mean calibration model
determined from several calibrated antennas of the same type (producer and product)
when available, and a specific variant for each antenna/radome combination. When no
specific antenna/radome combination exists, the rule is to “adopt” the antenna calibration
without radome. In addition, when the antenna calibration does not exist, the calibration is
“copied” from a similar antenna (based on electronic and mechanic properties). The official
antenna/radome calibrations are distributed by IGS in the form of ANTEX (Antenna
Exchange Format) files, e.g., igs05.atx and igs08.atx, at the times when the IGS and CODE
data sets used in this study were produced. Absolute calibrations from “Robot” and
“Chamber” are the most accurate, while relative calibrations (type “field”) and relative
converted to absolute (type “converted”) are the less accurate [31]. The impact of satellite
and receiver antenna offsets (PCO) and PCVs on geodetic parameters have been mainly
investigated for positioning purposes. The impact on ZTD estimates has not been much
studied yet, although it is known that it would be tightly correlated with the vertical
position component. One of the goals of this paper is, thus, to examine how the change
from igs05.atx to igs08.atx impacts the accuracy and homogeneity of the GNSS IWV series
and to which extent these differences are detected by our segmentation method. In addition
to the aforementioned factors, there are other errors sources that can impact the accuracy of
the ZTD estimates, such as multipath and ambiguity fixing errors, as well as satellite orbits
and clock errors, and unmodeled and mis-modeled station displacements at sub-daily time
scales (e.g., tides). However, these are minor errors sources for the purpose of our study
here. For further details, see the study of Ning et al. [32]. Of main concern here are the
sources of bias and the mechanisms through which these biases can change with time, i.e.,
translate into inhomogeneities.

In this study, we consider two different GNSS data sets, which are representative of
two different generations of reprocessing products delivered by IGS (see Table 1). The first
one, referred to as IGS repro1, was produced by JPL/NASA in 2010–2011 in precise point
positioning (PPP) mode with GIPSY OASIS II software [33] as a special release of ZTD
estimates. This data set used the reprocessed IGS orbits, clocks, and ERPs produced by
JPL/NASA in the framework of the 1st reprocessing campaign organized by IGS. The repro-
cessed satellite products were generated for the period 1 January 1995 to 31 December 2007,
but JPL completed the series until mid-2011 in a consistent way. In this study, we use the
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ZTD estimates until 31 December 2010 to have an integer number of years. According to
the discussion above, the prominent features of the processing procedure are:

• Standard Temperature and Pressure (STP) model used for a priori ZHD correction [34],
• Global mapping function (GMF) for the hydrostatic and wet delays [35],
• IGS05 reference frame and igs05.atx absolute antenna PCO/PCV models
• 7° elevation cutoff angle, and
• uniform observation weighting.

Table 1. Processing strategies used by JPL/NASA to produce the IGS first reprocessed tropospheric data set (IGS repro1)
and by the Center for Orbit Determination in Europe (CODE) to produce the CODE REPRO2015 reprocessed data set.

IGS Repro1 CODE REPRO2015

Software GIPSY OASIS II Bernese GNSS software v5.3

Strategy PPP solution Double-difference solution of a global network

Orbits, clocks, ERPs IGS repro1 (1995.0–2008.0) + IGS final
(2008.0–2011.0)

CODE repro2 (1994.0–2015.0) + CODE final
(2015.0–2019.0)

Reference frame IGS05 IGb08

Antenna calibration igs05.atx igs08_1852.atx until 28 January 2017,
igs14.atx from 29 January 2017

Window length 24 h 72 h

Elevation cutoff angle 7° 3°

Observations GPS GPS (1994.0–2002.0), GPS+GLONASS
(2002.0–2019.0)

Observation sampling 5 min 3 min

Observation weighting uniform σ2 = 36× 10−6/cos2(Z) where Z = zenith angle

Tropospheric model

ZHD and ZWD a priori:
ZHD = 1.013 × 2.27 × exp(−0.116*ht), ZWD = 0.1 m.

GMF mapping functions (hydrostatic and wet).
Random Walk model for ZWD and

gradient parameters with constraints:
3 mm h−1/2 (ZWD) and 0.3 mm h−1/2 (gradients).

ZWD and gradient sampling: 5 min

ZHD and ZWD a priori:
6-hourly ECMWF analysis (provided by TUV).

VMF1 mapping functions (hydrostatic and wet).
Piece-wise linear model for ZWD with constraints:

5 m absolute and 5 m relative.
Sampling : 2 h (ZWD), 24 h (gradients).

Tropo files ZTD and gradient estimates provided in
SINEX files (0000, 0005, . . . 2345 UTC)

ZTD and gradient estimates provided in
SINEX files (resampled to 01, 03, . . . 23 UTC)

Coordinate estimates Estimated once per 24 h Estimated once per 24 h

Ambiguity resolution Float Fixed

It should be noted that, due to a flaw in the data file handling, the ZTD files for
a number of stations are not available on the FTP repository, and older files were used
instead, for which a major difference was the use of the older NMF hydrostatic and wet
mapping functions [36].

The second GNSS data set, referred to as CODE REPRO2015, was processed by the
Center for Orbit Determination in Europe (CODE) in 2015 [37] using the Bernese GNSS
software [38] in network mode (double-differenced observations). This data set used the
reprocessed IGS orbits, clocks, and ERPs produced by CODE in the framework of the 2nd
reprocessing campaign organized by IGS. The reprocessed products cover the period from
1 January 1994 to 31 December 2014. For the purpose of this study, we completed the
series with the operational CODE products until the end of 2018 [39]. However, the latter
underwent a switch in the reference frame to IGS14 and in the antenna cnetwork alibration
(double-differenced observations).model to igs14.atx, on 29 January 2017. This change was,
thus, included in the metadata for the CODE solution.
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The prominent features of the CODE processing procedure are:

• ECWMF grid estimates of a priori ZHD and ZWD distributed by Technical University
of Vienna [40],

• Vienna mapping function (VMF1) for the hydrostatic and wet delays [40],
• IGb08 reference frame and igs08_1852.atx absolute antenna PCO/PCV models,
• 3° elevation cutoff angle,
• 1/cos(zenith)2 observation weighting, and
• GPS observations (1994–2001) and GPS + GLONASS (2002–2014).

According to the discussion above, we see that all the main factors conditioning the
accuracy of the ZTD estimates are different between the two data sets. Not discussed above
are the elevation cutoff angle and observation weighting, which contribute significantly to
the sensitivity of ZTD estimates to the various elevation-dependent error sources (mapping
functions, antenna PCO/PCV models, and multipath). The purpose of using a lower
elevation cutoff angle in CODE is to include more observations, i.e., increase the precision
of the estimated parameters. However, multipath is generally higher at low elevations.
To mitigate it, the lower elevation observations are down-weighted. The JPL/NASA
processing strategy was different as they used a 7° cutoff angle and no down-weighting.
Possibly, this strategy might be more sensitive to multipath and anomalous propagation
effects at low elevations.

The ZTD estimates from both data sets were screened for outliers following the
methodology described in Bock [41] and Stepniak et al. [42], and converted to IWV using
either ERA-Interim or ERA5 reanalysis. The 6-hourly IWV data were compared to the
reanalysis IWV data and further screened for outliers (for each station, the IWV differences
exceeding the median ± five standard deviations were removed). Afterward, the IWV
values from GNSS and reanalysis, and the IWV differences between GNSS and reanalysis,
were aggregated into daily and monthly estimates and made publicly available on the
AERIS data center [43,44].

Figure 1 shows the location of the GNSS station available from the two data sets. In
this study, we selected 81 common stations, for which the time series in both data sets
covered a period of at least 15 years.

Figure 1. Map of the GNSS stations available from the two reprocessed data sets: IGS repro1 (empty
circles), CODE REPRO2015 (small dots), and the 81 common stations (full circles) used in this study.

2.2. Reference IWV Data

Our homogenization method operates on IWV differences between a GNSS series
and a reference series. Because the IGS network is quite sparse, we cannot use a nearby
station as is commonly done by climatologists (as in Venema et al. [9]). Instead, for every
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GNSS station, a series of IWV from each of the two reanalyses is derived, and daily IWV
differences are formed, as explained above. In earlier studies, we found that ERA-Interim
and GNSS IWV had significant representativeness differences in Antarctica and in regions
of steep topography (Andes, Himalayas, etc.) or near the oceans [17]. In this study, we
will investigate the impact of representativeness errors on the segmentation results by
comparing the results from the two reanalyses. The spatial resolution of the reanalyses
is 0.75° × 0.75° for ERA-Interim and 0.25° × 0.25° for ERA5. Reduced representativeness
errors are, thus, expected from ERA5 data. Moreover, the IWV values computed from
ERA5 are also expected to be of higher quality since this reanalysis used a more recent
model and assimilation system, and assimilated a much larger number of observations,
especially in recent years [18].

2.3. Homogenization Method

Figure 2 shows the data flow chart starting with the GNSS ZTD data and ending with
the corrected IWV series. The first two steps (Conversion and Comparison) are described
in the previous sub-section.

Figure 2. Flowchart of the general homogenization procedure.

The third step is the segmentation, i.e., the detection of change-points in the mean of
the IWV difference time series. Here, we use the fast version of the GNSSfast R package
published by Quarello et al. [45]. This version is available on https://github.com/arq1
6/GNSSfast.git, accessed on 30 July 2021. The segmentation method estimates K, the
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number of segments, or the number of change-points K-1, the K means of the segments,
and the K − 1 positions of the change-points, as well as a periodic bias function f and the
monthly variance of the noise (also with annual periodicity), in a unified model for each
IWV difference time series. It has been shown in a previous paper that modeling a periodic
bias function and a heterogeneous noise helps to accommodate for the representativeness
differences between the GNSS IWV data and the reanalysis IWV data (see Quarello [21]).
The inference procedure is based on a penalized likelihood approach. Several penalty
criteria are considered, but here we will present only the results for the so-called Birgé and
Massart’s penalty based on the ‘dimension jump’ proposed by Birgé and Massart [46] and
calibrated in Lebarbier [47]. In a previous study, the GNSSseg method was compared to
other existing segmentation methods on the basis of a benchmark data set and was found
to be one of the most efficient [22].

The noise in the IWV differences is generally not perfectly Gaussian and strong peaks
can lead to spurious change-points. These false detections are checked and screened out by
a special post-processing procedure, which is symbolized in Figure 2 by the Screening step.
In this step, clusters of 2 or more nearby change-points are checked for a significant change
in the mean before and after using a weighted t-test. In this study, we consider as a cluster
all the change-points closer than 80 days (the value of 80 days was found as optimal based
on a mixture model analysis). The change-points within a cluster are flagged as “outliers”
in the following. If the change in the mean is not significant (at the level of 5%), all the
change-points in the cluster are removed. If it is significant, the group of change-points is
replaced with one change-point, and its position is taken as the mean of the positions.

With a relative segmentation approach, such as used here, climatologists often assume
that the reference is homogeneous [9]. If the reference is not homogeneous, multiple com-
parisons are necessary to determine in a statistical way to which of the series each detected
change-points belong to. This task is accomplished during the Attribution/Validation
step. The attribution of a change-point to GNSS or reference is decided based on the
comparison with nearby GNSS series, while the validation is referring to the comparison
of the detected change-points with the GNSS metadata. For the attribution step, the idea is
to use all the available stations in the GNSS data, as long as the time series covers a period
of time encompassing the tested change-point. We tested the procedure with the CODE
REPRO2015 data set, including all 434 stations, with a maximum distance of 200 km and a
time window of ±six months around the change-points. Based on the available data, about
30% of the change-points from the selected 81 stations could be checked. This number is
too small to apply this test in a systematic way to all the data sets used in this study. So, we
decided not to include it in the general discussion but only for a few cases studies. Instead,
we will only use the validation step with respect to the GNSS metadata with a window of
±62 days, as in Van Malderen et al. [22].

The last step is the correction of the GNSS time series for the changes in the mean based
on the attributed/validated change-points. Here, we follow the approach of Van Malderen
et al. [22] which consists in subtracting from the GNSS IWV series a piece-wise constant
function constructed from the change in means of the GNSS-reference series, where the
last segment is taken as a reference. The performance of the correction depends on all the
previous steps.

2.4. Trend Estimation Method

Following Weatherhead et al. [48], we use a linear trend model:

Yt = µ + ωXt + St + Nt, (6)

where Yt is the IWV time series, Xt the linear trend function, St a seasonal component
which will be represented by a fourth order Fourier Series, St = ∑4

i=1 ai cos(2πit/T) +
bi sin(2πit/T), t is time in days since some reference date, T = 365.25 days, and Nt the
noise which is assumed to be autoregressive of the order 1 (AR(1)), that is, Nt = φNt−1 + εt,
where the εt are independent random variables with zero mean and variance σ2

ε . The AR(1)
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noise is a good statistical representation of the day-to-day variability in the IWV time series
around the mean seasonal cycle. The unknown parameters of this model are: µ, the mean
IWV, ω the slope of the linear trend, the ai and bi coefficients of the Fourier Series, φ the
autocorrelation of the noise, and σ2

ε the variance of the noise. We use a Generalized Least
Squares (GLS) algorithm to estimate all the parameters and their formal errors.

3. Results
3.1. Segmentation Results

This section discusses the segmentation results and how they are impacted by four
factors: (1) the GNSS data processing (IGS versus CODE), (2) the length of time series (short
period, 1994–2010, and long period, 1994–2018), (3) the reference data set (ERAI versus
ERA5), and (4) the auxiliary data used in the ZTD to IWV conversion (ERAI versus ERA5).

Table 2 summarizes the segmentation results for all four comparisons. Statistics are
given for 81 common stations in both GNSS data sets. They include average data properties,
such as the mean of the estimated monthly variances and the standard deviation of the
estimated functional (stdf). The segmentation results are compared by means of the total
number of detected change-points, both before and after the screening, the number of
outliers, the number of metadata validations, and the number of similar detections.

Table 2. Summary of pairwise comparisons of segmentation results from various data sets used in this work. The validation
with respect to GNSS metadata and the similar detection statistics used a closeness window of ±62 days. (a) Segmentation
is run over the full time series (1994–2018), but change-points are compared for the time-limited period (1994–2010). (b) This
CODE data set uses auxiliary data from ERA5. (c) This CODE data set uses auxiliary data from ERAI.

(1) Impact of Processing (2) Impact of Time Length (3) Impact of Reference (4) Impact of Auxiliary

Data Set IGS—ERAI
Time-Matched

CODE—ERAI
Time-Matched

CODE—ERAI
Time-Limited

CODE
—ERAI

CODE (b)
—ERAI

CODE (b)
—ERA5

CODE (b)
—ERA5

CODE (c)
—ERA5

Time span 1995–2010 1995–2010 1994–2010 1994–2018
(a) 1994–2018 1994–2018 1994–2018 1994–2018

Mean of the
monthly variances

(kg m−2)
0.68 0.62 0.62 0.63 0.61 0.46 0.46 0.46

Standard deviation
of the functional

(kg m−2)
0.26 0.24 0.24 0.23 0.23 0.17 0.17 0.17

No. detections 231 257 296 249 364 398 398 392

No. outliers 36 38 73 40 60 71 71 87

No. detections after
screening 211 235 252 227 333 359 359 343

Validations after
screening 63 68 77 78 114 131 131 125

Validations after
screening (%) 29.9 28.9 30.6 34.4 34.2 36.5 36.5 36.4

Similar detections 103∼48.8% 185∼81.5% 151 ∼45.3% 243 ∼70.9%

3.1.1. Impact of GNSS Data Processing

In comparison to CODE, IGS is noisier with respect to the reanalysis with about 10%
higher monthly variances in the time-matched data on average (Table 2). Inspection of the
monthly variances by station shows that the noise is systematically larger in the IGS data
set for all stations except at USUD (Figure 3c). All the stations located in Antarctica (DAV1,
MAW1, SYOG, MCM4, MAC1, CAS1) show a significantly larger relative monthly variance
in the IGS data set, with a maximum of 43% at DAV1. We believe that the use of the VMF1
mapping function in the CODE solution makes a major difference as it accounts for the
high-resolution (6-hourly) temporal variations in the atmospheric (dry and wet) layering,
whereas the GMF used in the IGS solution only models a smooth seasonal variation. On
the other hand, the stdf, which quantifies the magnitude of the periodic bias, does not
show such a systematic difference, although CODE shows smaller values again on average.
A majority of stations in the IGS data set have slightly larger stdf (54 stations, i.e., 67%,
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larger versus 27 stations, i.e., 33%, smaller). For a few stations, the difference in stdf is
relatively big, exceeding ±50% (Figure 3d,e). The difference in stdf can be explained by the
difference in mapping functions, a priori ZHD, and elevation cutoff angle. Specific cases
are discussed below.

Figure 3. Comparison of segmentation results from two different GNSS data sets, IGS repro1 (IGS), and CODE REPRO2015
(CODE), at 81 common stations: (a) number of detected change-points, (b) mean of the monthly variance, (c) relative difference
in the mean of monthly variance (IGS − CODE), (d) standard deviation of the functional modeling the periodic bias (stdf),
(e) relative difference in the standard deviation of the functional (IGS − CODE). All the parameters are estimated from
time-matched series for the period 1995–2010. The relative differences are computed relative to the mean (IGS + CODE)/2.

The segmentation found more change-points in the CODE data set, both before and
after the screening, compared to IGS, and slightly more outliers (38 versus 36). After
screening, the validation percentages of the two data sets are very similar (28.9 and 29.9%).
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However, the number of similar change-points is relatively small (48.8%), indicating a
strong dependence of the segmentation results on the GNSS processing method. There
are several reasons that can explain the difference in the number, as well as the position,
of change-points. Firstly, the segmentation is sensitive to the magnitude and stationarity
of the noise. Since the noise is higher for the IGS data set, a number of small offsets
are not detected there. Secondly, IGS includes mapping function changes in 2008 and
2009, which are not included in CODE. They lead to 15 extra-detections in IGS. Thirdly,
the improved tropospheric model and updated antenna/radome calibrations used in the
CODE processing are likely to reduce some mean biases and seasonal variations in addition
to the reduced noise, which may lead to a difference in the number and positions of change-
points (e.g., higher periodic biases in IGS may lead to extra change-points). To summarize,
some of the data features may increase the number of change-points in IGS, while others
may increase the number in CODE. Below, we examine a few special cases.

Figure 4 shows a pathological example (station MCMC4, McMurdo, Antarctica). For
this station and all other stations in Antarctica, the difference in a priori ZHD leads to
a reduced bias (mean and seasonal) in the CODE IWV estimates with respect to ERAI.
The mean difference between CODE and IGS for MCM4 is about −0.5 kg m−2. Large
oscillations are seen in both solutions during the period 2002–2006. These oscillations are
believed to arise in the GNSS measurements due to snow intrusion between the antenna
and radome as discussed by Koulali and Clarke [49]. Most of the stations in Antarctica
show this feature for some periods. In the CODE solution, the oscillations are slightly
smaller, which may be explained by the use of a lower cutoff angle which would mitigate
the anomalous path delay variations partly. In the IGS series, these oscillations lead to
several extra change-points, although they are not due to equipment changes and, thus,
are not validated by the metadata. The mapping function change in 2008 (from GMF to
NMF) and 2009 (from NMF to GMF) in IGS also leads to 2 additional change-points. As a
consequence, the IGS series at MCM4 has 17 change-points, including 6 outliers due to high
noise, whereas the CODE solution has only 5 change-points. The number of validations
with respect to metadata are 5 and 2, for IGS and CODE, respectively, with one validated
change-point in 2006 (due to a receiver change) similar in both cases.

Next, we examine another example (station GOPE, Czech Republic), where the equip-
ment changes have a strong and different impact on the CODE and IGS solutions. Over the
study period (1995–2010), many changes occurred at this station. Figure 5 gives a visual
description of these changes based on the IGS metadata, where each color represents a
specific equipment type (producer and product), and the vertical dashed lines indicate a
sub-type change (serial number or firmware for receivers). Five different antenna/radome
types were used at this site: TRM14532.00/NONE (from 13 May 1995 to 4 November 1999
and from 24 July 2000 to 4 October 2000), ASH701073.3/SNOW (from 4 November 1999 to
24 July 2000), ASH701946.3/NONE (from 4 October 2000 to 14 July 2006), and
TPSCR3_GGD/CONE (from 14 July 2006 to 14 December 2009), TPSCR.G3/TPSH (since
14 December 2009). Three different receiver types were used: TRIMBLE_4000SSE (from
13 May 1995 to 4 November 1999, and 24 July 2000 to 4 October 2000), ASHTECH_Z18
(from 4 November 1999 to 24 July 2000, and 4 October 2000 to 14 December 2009), and
TPS_NETG3 (from 14 December 2009 to 8 August 2018). The figure shows that the same
receivers were removed and reinstalled for some periods, as well as that they got several
firmware updates (see the dashed vertical lines). The cutoff angle was also changed twice,
going from 15 degrees to 5 degrees on 4 November 1999, and from 5 degrees down to
0 degree on 14 December 2009. The impact of these equipment and setting changes on the
GPS-ERAI IWV differences is obvious from Figure 6. For example, there is a strong change
in the mean IWV difference for both solutions before and after 4 October 2000. This change
is detected (and validated) by the segmentation in both data sets. Before that date, CODE
has 2 other change-points, while IGS has only one, although IGS shows similar changes in
the mean to CODE but they are not detected. Neither of these change-points is explained by
the metadata. After 4 October 2000, CODE has 3 more change-points, while IGS has only 2.
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All 3 are validated in the case of CODE, and none is validated in the case of IGS. However,
the IGS detected change-points seem correct as they well represent the changes in the mean
of that series. The difference in the number and positions of change-points between the
IGS and CODE segmentation results is actually due to the difference in the two GNSS IWV
data, as highlighted in the lower plot of Figure 6. This difference can be explained by the
different antenna/radome calibration models used in the two GNSS processing. The most
striking bias between the two series is for the period from 14 July 2006 to 14 December 2009
where the TPSCR3_GGD/CONE antenna/radome pair is used. In the igs05.atx calibration
file used in the IGS solution, this calibration was of “Field” type (i.e., an older relative
calibration dating back to April 2005), while the CODE solution used a more recent “Robot”
type calibration (from April 2013). For all other antenna/radome types used at this station,
both GNSS solutions used similar calibration types (“Robot” or “Copied”), although the
CODE calibrations were more recent in all cases, which may explain the small residual
biases between the two solutions. Another abrupt shift in the CODE−IGS series is observed
on 1 January 2002 which coincides with the introduction of GLONASS observations in
the CODE solution. A closer look reveals that, for some reason, the shift is merely in the
IGS−ERAI series and that the CODE−ERAI series is, rather, drifting.

The GOPE example shows that antenna/radome changes at a site are likely to produce
an abrupt shift in the mean IWV, even though calibration models are used during the data
processing. Different calibration types and versions have different biases, leading to
different inhomogeneities in the two reprocessed GNSS data sets analyzed in this work and
to different segmentation results. Many such cases could be found by inspecting the time
series and segmentation results. In some cases, receiver changes and observation cutoff
angle changes also induce abrupt shifts of different amplitudes for the two data sets. This
feature might be due to the use of different processing cutoff angles (3 degrees in CODE
and 7 degrees in IGS). In other cases, we can see a small drift (below 0.5 kg m−2) between
the two solutions, which might be due to the change in the number of satellites used
in the processing, especially with the inclusion of GLONASS observations in the CODE
solution starting from 2002, although not many GNSS stations were recording GLONASS
data in the period from 2002 to 2010. Since the amplitude of such small drifts is generally
small compared to the noise, it would not induce extra change-points in the segmentation;
although this cannot be guaranteed for sure, it may impact the trend estimates.

3.1.2. Impact of the Length of Time Series

The impact of the length of time series is inspected from the comparison of CODE-
ERAI segmentation results where the segmentation was run both on the full (1994–2018)
series and on the series limited to 1994–2010. The change-points statistics (number of
detections, outliers, and validations) reported in the second section of Table 2 are given for
the common period (1994–2010).

It can be deduced from Table 2 that the estimated monthly mean variance and the
estimated stdf are nearly similar on average over all stations. However, inspecting indi-
vidual stations shows that small differences exist (Figure 7b–e). Slightly more than half
of the stations have smaller variance in the full series (57 versus 43%) and smaller stdf
(52 versus 48%). This difference can be explained by the fact that the GNSS IWV estimates
become more accurate with time; thus, the agreement with the reanalysis improves in the
more recent years included in the full series. On the other hand, the cases where the noise is
larger in the full time series may either be due to situations where the GNSS measurements
get noisier, or the ERA-Interim reanalysis becomes less accurate with time. This is, for
example, the case at station COCO where the monthly variance is 25% higher in the full
series. The same situation is observed at many tropical stations, although the quality of
the GNSS data has generally improved at these sites. We suspect that the problem is in the
quality of the ERAI reanalysis, which may indeed have degraded in recent years due to the
end of several satellite missions [18]. One obvious case is with station COCO discussed in
the next sub-section.
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Figure 4. Time series of IWV differences at station MCM4 (McMurdo, Ross Island, Antarctica). The two top plots show the
results for IGS-ERAI and CODE-ERAI, with segmentation results superposed (the red line shows the weighted mean as
estimated by the segmentation method, where the black dashed lines indicate the change-point positions, the cyan line
is the estimated monthly mean variance, and the purple line is the estimated functional modeling the periodic bias). The
validated change-points are indicated by a marker at the lower end of the black dashed line. The 3rd plot from the top
shows the two IWV difference series and detected change-points for clarity of the comparison. The lower plot shows the
difference, IGS-CODE, with change-points superposed. In all plots, the markers at the top indicate the equipment changes.
The color code is given in the lower plot. The processing changes apply only to IGS.
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Figure 5. Schematic view of the equipment changes that occurred at station GOPE (Ondrejov,
Czech Republic) during the period 1995–2010. Each color symbolizes a different equipment type
(producer and product). Vertical dashed lines show additional changes with the same type (serial
number or firmware upgrade in the case of receivers). Information extracted from the IGS site logs
(ftp://igs.ign.fr/pub/igs/igscb/station/log/, accessed on 30 July 2021).

The number of change-points detected from the long time series in the common period
is smaller than for the short time series, both before and after screening (Table 2). The
same is found for the number of outliers, while the percentage of validations is consistently
increased. These results indicate that, on average, the segmentation yields more accurate
results with the long time series. The difference in the number of change-points can be
understood from the fact that the penalty criterion is conservative and tends to choose a
small number of change-points. For instance, the total number of change-points found
from the long time series is 321 (not shown), i.e., not much larger than the total number for
the short time series (296, as reported in Table 2). Because of this conservative property,
the number and positions of the change-points in the two series cannot be expected to be
the same at most stations. Figure 7 shows that 39 stations (48%) have the same number
of change-points (although the positions may not be the same), 16 stations (20%) have a
larger number in the long series, and 26 stations (32%) have a smaller number in the long
series. Nevertheless, 80.8% of the change-points are similar (i.e., within ± 62 days).

Figure 8 shows the example of station VILL (Villafranca, Spain), where the mean noise
and stdf are very similar for the two-time series, but the segmentation results are quite
different: 6 change-points are detected in the short time series and 2 in the long time series.
Two change-points are similar in both series and are validated. The additional change-
points found in the short time series capture short but significant variations in the mean.
These change-points are not retained in the long time series because other such variations
are seen all along in the long time series. The penalty criterion avoids selecting all those
change-points, and the final optimal solution eventually has only one change-point. This
solution seems more reasonable.

3.1.3. Impact of the Reference Data Set

The third section of Table 2 summarizes the segmentation results when either ERAI or
ERA5 is used as a reference, i.e., the segmentation is run for CODE-ERAI or CODE-ERA5
IWV differences, when the same auxiliary data is used in the GNSS ZTD to IWV conversion
(here from ERA5). Globally, both the mean noise and the stdf with ERA5 are reduced by
25% compared to ERAI. Figure 9c,e show that the reduction in noise and stdf is observed
at 95% and 75% of all stations, respectively. This difference can be explained by the lower
representativeness error in ERA5 due to higher spatial resolution, as well as higher quality
of the IWV temporal variations in this reanalysis, probably due to the assimilation of
more satellite observations. Figure 10 shows the most striking case of increase in noise
with time for ERAI. The impact on the segmentation results is quite significant. Only one
change-point is detected in the more noisy series, while seven change-points are detected
in the less noisy one. At many stations, there is also an excess noise in ERAI during the
moist period of each year; see the example of station KIRU (Kiruna, Sweden) in Figure 11.
At this station, the CODE-ERAI series has much larger seasonal variations in the noise
and in the functional than CODE-ERA5. This leads to more change-points in more noisy
series (6 versus 2) because of the sharp increase in the noise during some years, which is
not well represented by the periodic bias and monthly variance. As a result, four outliers
are detected in the CODE-ERAI segmentation results. In the CODE-ERA5, the two change-
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points are validated by the metadata, which is, again, better than in the CODE-ERAI results.
Other examples with large changes in stdf are stations KIT3, POL2, and SANT (Figure 9d).
These stations were also pointed as extreme cases of representativeness errors in ERAI by
Bock and Parracho [17] due to steep orography.

Figure 6. Similar to Figure 4, but for station GOPE (Ondrejov, Czech Republic).
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Figure 7. Similar to Figure 3, but comparing segmentation results from two different lengths of the CODE data set (long
time series, from 1994 to 2018, short time series, from 1994 to 2010). The mean noise and standard deviation of the functional
(stdf) are representative of the full times series, but the number of breakpoints are counted in the common period only
(1994–2010).

From Table 2, we see that the total number of change-points is larger when ERA5 is
used as a reference. This can be understood as the consequence of the general decrease of
the noise and periodic bias with this reanalysis, as discussed in the case of station COCO
above. When the noise is decreased, it is easier to detect a small offset in the time series.
With the increase in the number of change-points, the number of outliers is increased, as
well. However, after screening, the percentage of validations is higher with ERA5 as a
reference. So, there is a clear benefit of using the more recent reanalysis as a reference.
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Figure 8. Similar to Figure 4, but for station VILL (Villafranca, Spain).

Figure 9a shows that 37 stations (46%) in CODE-ERA5 have a higher number of
change-points than CODE-ERAI, 29 stations (36%) have a smaller number, and 15 stations
have a similar number. From Figure 9c,e, we see that MKEA (Mauna Kea volcano,Mauna
Kea , USA) and USUD (Usuda, Japan) are two cases where the mean noise or stdf increased
with ERA5 as a reference by 40% and 107%, respectively. Both stations are located in
regions of steep topography where both reanalyses have significant representativeness
errors compared to the GNSS observations. In the case of MKEA, the station is located
at an altitude of 3729 m, whereas the altitudes of the surrounding grid points from both
reanalyses are much lower. In the case of USUD, the situation is opposite, with the station
is closer to the sea level than the surrounding grid points from the reanalyses.

3.1.4. Impact of the Auxiliary Data Set

The auxiliary data used in the conversion of GNSS ZTD to IWV impacts the quality
of the GNSS IWV data and may lead to different segmentation results in a similar way
as the processing and reference data sets. Table 2 shows that on average the mean noise
and stdf are the same, but the segmentation statistics are slightly different (number of
change-points, outliers, and validations). Figure 12 shows that the noise and stdf results
actually change for many stations. In general, the absolute values of the noise are very
close, but the relative differences are not that small. At 60% of the stations, ERAI induces
larger noise than ERA5, with values up to 10–20%, while, at 40% of the stations, ERA5
yields similar or higher mean noise in ERAI, but the relative increase there is small (2.5% at
maximum). These results are consistent with the representativeness differences between
the reanalyses discussed above, although the pressure and temperature data are much less
subject to small-scale variations than IWV.
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Figure 9. Similar to Figure 3 but comparing the segmentation results using two different reference data sets, ERA-Interim
(ERAI) and ERA5.

The results are similar for stdf (60% of the stations have a larger periodic bias with
ERAI), but the relative difference can be much higher (up to ±80%). This is because many
stations are located in complex regions, such as the mountains and near the oceans. In
some cases, ERA5 induces a larger periodic bias compared to the ERAI, for instance, at
CHUR (Churchill, MB, Canada), KERG (Port aux Français, French Southern Territories),
and TABL (Wrightwood, CA, USA).
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Figure 10. Similar to Figure 4, but for station COCO (Cocos (Keeling) Island, Australia).
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Figure 11. Similar to Figure 4, but for station KIRU (Kiruna, Sweden).
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Figure 12. Similar to Figure 3, but comparing segmentation results from GNSS data sets that used two different auxiliary
data, from ERA-Interim (ERAI) and ERA5.

Although the total number of change-points in the two data sets are very similar
before and after screening (see Table 2), the number of change-points can be quite different
from station to station (Figure 12a). The results with auxiliary data from ERAI show 18%
more outliers than with ERA5. From this perspective, it is better to use ERA5. However,
the percentage of similar change-points is still quite high (around 71%), which points to a
moderate impact of the auxiliary data on the segmentation results in the end.
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3.2. IWV Trend Estimates
3.2.1. Impact of GNSS and Reanalysis Data Set Properties on Trend Estimates

Table 3 summarizes the trend results obtained with the different GNSS data sets and
the two reanalyses discussed in Section 3.1. The numbers report the mean and standard
deviation of the trend estimates (in kg m−2 year−1) over the 81 stations, as well as the
number of significant trends at the 0.05 level (using a Student’s t-test), and the standard
error in the trend estimate (1− σ). Following from Section 3.1, three-time periods, with
lengths 16, 17, and 25 years, are presented, respectively.

Table 3. Summary of IWV trends from various data sets used in this work. The number of stations with significant trends
at level α = 0.05 is given in brackets. (a) GNSS data converted with auxiliary data from ERAI and segmentation applied
the CODE—ERA5 IWV difference. (b) GNSS data converted with auxiliary data from ERA5 and segmentation applied
the CODE—ERAI IWV difference. (c) GNSS data converted with auxiliary data from ERA5 and segmentation applied the
CODE—ERA5 IWV difference.

Time Span 1995–2010 1994–2010 1994–2018

Std error
(kg m−2 year−1) 0.035 0.033 0.018

ERAI
(kg m−2 year−1)

0.018 ± 0.055
(9)

0.013 ± 0.049
(10)

0.027 ± 0.034
(37)

ERA5
(kg m−2 year−1)

0.011± 0.052
(8)

0.008 ± 0.047
(8)

0.027±0.031
(35)

GPS IGS
time-matched

CODE
time-matched

CODE
time-limited CODE (a) CODE (b) CODE (c)

Raw data

IWV trend
(kg m−2 year−1)

0.024 ± 0.059
(20)

0.018 ± 0.060
(18)

0.016 ± 0.060
(23)

0.033 ± 0.032
(46)

0.030 ± 0.031
(41)

0.030±0.031
(41)

RMSE wrt ERA5
(kg m−2 year−1)

0.044 0.046 0.046 0.033 0.033 0.033

corrected IWV
by validations

IWV trend
(kg m−2 year−1)

0.015± 0.052
(12)

0.014± 0.052
(11)

0.011± 0.052
(15)

0.027 ± 0.027
(34)

0.025 ± 0.030
(34)

0.027 ± 0.026
(34)

RMSE wrt ERA5
(kg m−2 year−1)

0.038 0.039 0.040 0.019 0.022 0.019

corrected IWV by
all breakpoints

IWV trend
(kg m−2 year−1)

0.017 ± 0.053
(9)

0.016 ± 0.054
(9)

0.012 ± 0.048
(13)

0.027 ± 0.030
(33)

0.027 ± 0.032
(35)

0.027 ± 0.030
(34)

RMSE wrt ERA5
(kg m−2 year−1)

0.021 0.022 0.022 0.006 0.012 0.006

From the two reanalyses, we see that the mean trends are positive, indicating a net
moistening, globally, with slightly different values between the three periods. This reminds
us that the mean linear trends from different periods may not generally agree because they
are strongly influenced by inter-annual to inter-decadal variability. However, the decrease
in the standard deviation is noticeable from the shorter to the longer period (e.g., from
0.052 kg m−2 year−1 to 0.031 kg m−2 year−1 for the ERA5 data set), which indicates a
decreasing influence of the inter-annual variability with time, as well as more consistent
trend estimates from the global network with long time series. This decrease is also seen in
the GNSS data sets, raw and corrected. It is also consistent with a decrease in the standard
error with the longer time series, from 0.035 to 0.018 kg m−2 year−1, and the subsequent
increase in the number of significant trends, e.g., from 8 to 35 with ERA5. ERAI and ERA5
show different means and standard deviations in the short periods, which is not surprising
according to the differences in the IWV time series extracted from the two reanalyses (see
Section 3.1). The mean difference is negligible on the longer period, but the variability
is slightly smaller in ERA5. The RMS difference amounts to 0.013 kg m−2 year−1 (not
reported in Table 3), which indicates that there are substantial local differences in the
trends from the two reanalyses. Note that the mean positive (moistening) IWV trend of
0.027 kg m−2 year−1 from the reanalyses (and also from the GNSS data) is fairly consistent
with the prediction from Clausius-Clapeyron law of 7% IWV increase per 1 °C induced
by the global increase in temperature of ∼1 °C over the past four decades, given a global
mean IWV of 18 kg m−2 [50].
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Next, we examine the results for the two GNSS data sets, IGS and CODE, before
and after homogenization, and their differences with respect to ERA5. In this section, we
consider two different corrected (homogenized) data sets. In the first one, we use only
the change-points validated from the metadata, while, in the second one, we use all the
detected change-points. We will refer to these data sets as “partially corrected” and “fully
corrected” data sets, respectively. Ideally, we could also consider a third version where only
the change-points attributed to GNSS are included, but this is not possible here because
no nearby stations are available in many cases (see the discussion in Section 2). The raw
GNSS trends show quite a large difference in the mean (0.024 versus 0.018 kg m−2 year−1)
and a RMS difference of 0.016 kg m−2 year−1 (not reported Table 3). This difference is not
unexpected given the differences in the data processing (Section 2) and the inhomogeneities
they induce, as discussed from the segmentation results in Section 3.1. Especially, the
inhomogeneities in the IGS data set due to the older antenna/radome calibration models
may be a significant cause of uncertainty in the trends. The mean difference is reduced
in both corrected data sets, although the RMS difference is not reduced in the partially
corrected data set (0.019 kg m−2 year−1), contrary to what one would expect after both data
sets are homogenized. This result can be understood from the fact that the segmentation
results of the IGS and CODE data sets are sometimes very different and the validated
change-points may not coincide in both solutions (see Figures 4 and 6). On the other hand,
the IGS and CODE GNSS fully corrected data sets are much more consistent (RMS difference
of 0.006 kg m−2 year−1). The latter result gives good confidence that the segmentation
method is able to detect all the significant change-points in either data set. However, we
know that not all these change-points may come from the GNSS time series, but some
of them may be due to inhomogeneities in the reference reanalysis (in this case, ERAI).
As a consequence, the fully corrected GNSS trends will be very close to the trends from
the segmentation reference data set in the end. In Table 3, we give the RMS difference
between the GNSS data sets and ERA5 (which is taken as another reference, although
not independent from ERAI). In general, the RMS differences between the fully corrected
GNSS trends and ERA5 are significantly smaller than between the raw or the partially
corrected trends and the ERA5 trends. We note also that the number of significant trends is
drastically reduced for both corrected GNSS data sets (from 20 to 9 for IGS and from 18
to 9 for CODE). This indicates that a large portion of uncorrected stations had significant
trends because of inhomogeneities in their time series.

The results from the CODE time-limited data set are quite similar, although the change
in the mean trend is reduced between the uncorrected and the corrected series, and the
agreement with ERA5, in the end, is improved. The number of significant trends is also
higher than with the time-matched data sets. Recall that the main difference between this
data set and the CODE time-matched is only one more year and fewer gaps, but these
differences can have a sensible impact on the segmentation results and trend estimates.

The results from the long time series using either ERAI or ERA5 as auxiliary data or
reference data for the segmentation are presented in the rightmost part of Table 3. The
mean trends from the uncorrected GNSS data are slightly larger than the trends from the
reanalyses (0.030–0.033 kg m−2 year−1 for GNSS compared to 0.027 kg m−2 year−1 for ERAI
and ERA5). The corrected GNSS series achieve closer mean trends to the reanalyses, as well
as reduced RMS differences. The smallest RMS difference with respect to ERA5 is found
with the fully corrected GNSS data using ERA5 as a reference, which is to be expected
(ERA5 is not independent in this case). In terms of variability, the partially corrected
trends show slightly smaller standard deviation, i.e., smaller spatial variability, which
suggests more homogeneous and consistent trends in the global network. The slightly
higher variability in the fully corrected GNSS trends might be due to some inhomogeneities
in the reference series (ERA5 or ERAI). This point is further discussed in the next sub-
section. The impact of the segmentation reference (ERAI versus ERA5) on the corrected
GNSS trends is small in terms of mean, but the RMS difference between the GNSS trends
at individual stations amounts to 0.015 kg m−2 year−1 for the partially corrected series
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and 0.012 kg m−2 year−1 for the fully corrected series (not shown). The impact of the
auxiliary data is significantly smaller, with a RMS difference between the trends using
ERAI and ERA5 as auxiliary of 0.008 kg m−2 year−1 for the partially corrected series and
0.002 kg m−2 year−1 for the fully corrected series (not shown).

3.2.2. Impact of Homogenization on GNSS Trend Estimates

In this sub-section, we analyze in more details our ’best’ data set at hand, i.e., the
long CODE GNSS series (1994–2018) using ERA5 as auxiliary data and reference for the
segmentation. Figure 13a shows the IWV trend estimates for the GNSS data, uncorrected
and corrected, and ERA5. A majority of the GNSS stations have positive trends (89% with
the partially corrected data, 86% with the fully corrected data, versus 80% for the ERA5
data), consistent with the overall positive mean trend of 0.027 kg m−2 year−1 reported
in Table 3. Among these, only ∼ 41% of the corrected GNSS trends are significant at
p = 0.05 (or t = 1.99, see Figure 13b), versus 49% with the uncorrected GNSS data, and
41% with ERA5. The largest positive trend is found for KOUR (Kourou, French Guiana),
reaching a value of∼0.110 kg m−2 year−1 (t = 5) for the uncorrected and partially corrected
trends, and 0.150–0.153 kg m−2 year−1 (t ∼ 7) for the fully corrected GNSS data and ERA5.
This station, as well as a few others in the Tropics (KOKB, GUAM, BRMU, CRO1, etc.),
shows consistent and significant moistening over the past 2.5 decades. Strong moistening
is also found at several Mediterranean stations (MEDI, CAGL, MATE), confirming the
strong warming in this area [51]. A few stations show consistent drying from GNSS data
(uncorrected and corrected) and ERA5, mostly in arid regions, such as JPLM (Pasadena,
CA, USA), HRAO (Krugersdorp, South Africa), ALIC (Alice Springs, Australia), and SANT
(Santiago, Chile).

A striking feature in Figure 13 is that many uncorrected GNSS trends are quite
large, and significant, while the corrected trends are much smaller, and are, in some
cases, insignificant. The trends of the partially corrected series are significantly different
from the uncorrected trend (with a RMS difference of 0.022 kg m−2 year−1), although
they agree with each other better than with ERA5 (0.033 kg m−2 year−1). On the other
hand, the trends of the fully corrected GNSS data are much closer to ERA5 (with a RMS
difference of 0.006 kg m−2 year−1) than to the uncorrected trends (RMS difference of
0.031 kg m−2 year−1). The RMS difference between the partially corrected and the fully
corrected trends is 0.016 kg m−2 year−1. It is actually expected that the corrected trends
will tend to align with the reference data (in this case, ERA5). However, the partially
corrected trends are relatively independent from the reference since only about 36.5% of
the detected change-points are validated. It is also noticeable that the partial correction
has a strong impact on the trends at many sites, such as a change in the sign (e.g., GOPE,
KARR, VILL, etc.), a change from significant to insignificant (e.g., HERS, SHAO, SYOG,
WUHN, etc.), or vice versa (GOPE, KOKB, TIDB, etc.). The trends of the fully corrected
data get closer to ERA5.

Four cases will be discussed in more detail in the following, where the IWV trends
change from significant to insignificant, or vice versa. The corresponding time series and
change-points are shown in Figure 14.

Firstly, we examine the case of station WUHN (Wuhan, China), where the uncorrected
GNSS trend is positive and significant (0.115 kg m−2 year−1, t = 2.44), while the fully
corrected trend and the ERA5 trend are of opposite sign (−0.031 and−0.037 kg m−2 year−1,
respectively) but not significant (t = −0.65 and −0.79). At this site, the change in sign of the
trend is suspected to arrive from a strong downward shift in the ERA5 time series, which
was already commented by Parracho et al. [14] and attributed to a change in the radiosonde
type in Wuhan in 2006 impacting the ERA-Interim reanalysis. Parracho et al. [14] also
noticed an extended region of a negative trend in eastern China, in contradiction with
the GNSS observations and the MERRA-2 reanalysis. A similar shift is actually detected
in the nearby station SHAO (Sheshan, China), where the uncorrected GNSS trend of
0.086 kg m−2 year−1 is decreased to 0.043 kg m−2 year−1 in the fully corrected data. The
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ERA5 trend is even smaller (0.037 kg m−2 year−1), although not negative. At both WUHN
and SHAO, the GNSS trend changes from significant to insignificant after correction.

Figure 13. Comparison of: (a) trend estimates kg m−2 year−1, and (b) t-values from different uncorrected (raw) and
corrected GNSS data (CODE with auxiliary ERA5 and reference ERA5) and ERA5 at 81 common stations.

Secondly, let us examine the case of station HERS (Hailsham, UK). The segmenta-
tion detected six change-points, among which only two are validated with the metadata.
Overall, the mean shifts are going upwards, meaning that the inhomogeneities induce
a spurious positive trend in the GNSS series. The correction of the GNSS series for two
validated change-points has a strong impact on the trend, decreasing it from 0.081 to
0.024 kg m−2 year−1 and from significant to insignificant (t-value from 5.1 to 1.5). Includ-
ing the 4 additional change-points has a further, although small, effect, leading to a final
GNSS trend of 0.030 kg m−2 year−1, close to the ERA5 trend (0.031 kg m−2 year−1). Two
nearby stations (HERT and HRM1) could be used in the attribution step to confirm the
two validated change-points but not the other ones. The other change-points could not be
tested. The impact of the correction is substantial and seems justified at this station, with a
final trend reduced by −0.051 kg m−2 year−1, i.e., a factor of 2.7.
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Figure 14. Similar to the upper plot in Figure 4, but for different stations: HERS (Hailsham, United Kingdom), GOPE
(Ondrejov, Czech Republic), KOKB (Waimea, United States), and GUAM (Dededo, Guam). The IWV differences are
computed as GNSS - ERA5, where GNSS is converted using auxiliary data from ERA5, and the segmentation is run with
ERA5 as a reference.

Next, we examine station GOPE (Ondrejov, Czech Republic), which has a strong
significant trend after correction but insignificant before. GOPE is a special case, which has
a negative trend in the raw data in contradiction was many surrounding stations in Europe,
such as ZIMM (Switzerland), WTZR (Germany), and BOR1 (Poland), which have positive
trends. This feature was already noticed by Parracho et al. [14] from the uncorrected IGS
data set over the shorter period (1995–2010). Figure 14 shows that the mean shifts are going



Atmosphere 2021, 12, 1102 28 of 32

downwards, so inducing a negative trend in the GNSS series compared to ERA5. Two
change-points are validated with the metadata. After correction of these change-points, the
trend goes from a insignificant drying of −0.020 kg m−2 year−1 to a significant moistening
of 0.046 kg m−2 year−1. Three other change-points have a minor impact (the fully corrected
trend is 0.044 kg m−2 year−1) because the most important break in 2000 is validated. For
this station, we could also test the attribution with several nearby stations collocated with
station WTZR (distant by 162 km). The two validated change-points, as well as the one in
2001, could be attributed to GOPE.

The last example is station GUAM (Dededo, Guam), in the western tropical Pacific,
which has a similar large trend in ERA5 to KOKB, another station in the Pacific Ocean. The
trends are very different between the partially and fully corrected GNSS series at GUAM
because only one change-point is validated, and it is located near the beginning of the series.
The last three change-points have a strong impact on the GNSS correction, although their
origin is questionable. Indeed, they are located quite far away from any known equipment
change reported in the metadata. The last change-point (on 26 September 2017) could be
checked in the attribution step with the nearby station GUUG (Mangilao, USA), located at
a distance of 18 km from GUAM. Comparing the GNSS series at GUUG to the ERA5 series
at GUAM revealed a significant change in mean on this date. From this result, we should
attribute this change-point to the ERA5 series and not the GNSS series. At this site, thus,
we also suspect the other unvalidated change-points to be due to ERA5. This assumption
may be further checked by inspecting observation statistics from the assimilation system,
but this is left for future work.

4. Conclusions

This study investigated the sensitivity of the segmentation method and the IWV trend
estimates to different GNSS and reference data properties. It was shown that the GNSS
processing methods and the reference data (ERAI versus ERA5) have the strongest impact
on the segmentation results (i.e., number and positions of change-points), while the impact
is weaker when the length of the time series (17 versus 25 years) or the auxiliary data
(ERAI versus ERA5) are changed. Changing the latter two was shown to achieve 81% and
71% similar change-points, but only 45–49% when the GNSS data set or the reference was
changed. These discrepancies in the results indicate that the segmentation is sensitive to
small changes in the mean signal, in the noise, and in the periodic bias. These features are
determined by several aspects of the GNSS processing procedure, especially: the a priori
ZHD correction, the antenna/radome calibration model, the mapping functions, and the el-
evation cutoff angle. The more recent and more accurate ZHD correction, antenna/radome
calibration model, and mapping functions used in the CODE reprocessing achieve smaller
noise and periodic bias but, at the same time, lead to an increase in the number of detected
change-points because the segmentation is able to detect smaller changes in the mean. The
same is observed when the reference is changed from ERAI to ERA5. The reduction in the
noise and periodic bias in ERA5 is partly due to the better spatial resolution and partly to
the more recent atmospheric model and assimilation of more observations. In terms of the
percentage of validation of the detected change-points with respect to the GNSS metadata,
the length of the time series has the strongest impact. The average percentage is ∼30%
with the short time series (16 or 17 years), while it rises to 34–36% with the long time series
(25 years), for a window of±62 days. This difference might be due to the particular penalty
function that we used here [46,47]. The penalty function might be calibrated differently to
achieve a better balance between the probability of detection and the probability of false
detection to our particular data [6].

This study also points to the strong impact of the inhomogeneity correction on the
estimated trends. When only the change-points validated with the metadata are used, the
impact of the correction is substantial on the global mean trend, on the dispersion, and
on the RMS difference with respect to ERA5. When all the detected change-points are
used, the mean and dispersion are again modified, but to a lesser extent, and the RMS
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difference with ERA5 is further reduced. The latter feature is expected when ERA5 or ERAI
are used as a reference in the segmentation, especially since a few change-points may be
due to the reanalyses (e.g., suspected at stations WUHN, GUAM). The uncertainty in the
estimated trends from the use of the different reprocessed GNSS data sets or reference
reanalysis in the segmentation is about 0.015–0.019 kg m−2 year−1 (RMS difference between
the tested pairs of data sets) when only the validated change-points are used and 0.002
to 0.012 kg m−2 year−1 when all the change-points are used. The auxiliary data has a
marginal impact on the trends. The longer time series (25 years) provides higher accuracy
in the trend estimates, with a mean standard error of 0.018 kg m−2 year−1 and a dispersion
of ∼0.03 kg m−2 year−1 throughout the global network. The homogenized GNSS trends
and both reanalyses agree in the global mean IWV trend estimate of 0.027 kg m−2 year−1,
which indicates a global moistening over the past 2.5 decades at a rate close to the 7% per
degree of warming predicted by Clausius Clapeyron equation [50].

The main limitation of our current homogenization method is the attribution step
(Figure 2), which could not be used to check all the change-points because of the lack of
nearby stations. In future work, we plan to include reprocessed GNSS data from additional
stations in regions where dense networks are available (e.g., Europe, USA, Japan, etc.).
Some limitations of the current segmentation method were highlighted, as well, especially
the dependence on the length of the time series, which may be mitigated by careful
calibration of the penalty function. The segmentation method is also sensitive to the long-
term variations in the noise and bias, which are not specifically modeled here (we assume
both are periodic with a fundamental period of 1 year). At some sites, strong inter-annual
or decadal variations in the noise and/or bias were captured by the segmentation. These
spurious change-points need to the detected and removed, unless the long-term variations
are reduced, e.g., from the use of a better reference data set, such as a nearby GNSS station,
rather than a reanalysis.

Finally, this study also helped to better understand the performance and limitations
of the GNSS data processing procedures. This knowledge can be helpful in the future to
reprocess the GNSS data and produce better “homogenized” daily IWV time series at the
processing level.
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Abbreviations
The following abbreviations are used in this manuscript:

CODE Center for Orbit Determination in Europe
ECMWF European Center for Medium-Range Weather Forecasts
ERP Earth Rotation Parameter
ERAI ECMWF reanalysis Interim
ERA5 ECMWF reanalysis v5
GNSS Global Navigation Satellite System
GPS Global Positioning System
GMF Global Mapping Function
IGS International GNSS Service
IWV Integrated water vapor
JPL/NASA NASA’s Jet Propulsion Laboratory
NMF Neill Mapping Function
PC0 Phase Center Offset
PCV Phase Center Variation
PWV Precipitable Water Vapor
VMF Vienna Mapping Function
ZHD Zenith Hydrostatic Delay
ZTD Zenith Tropospheric Delay
ZWD Zenith Wet Delay
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Chapter 4

Development of the attribution method

4.1 Paper No. 2: A statistical method for the attribution of change-points in
segmented IWV difference time series

This chapter comprises two main sections. The first one corresponds to a paper, submitted to the International
Journal of Climatology (presently under review) which describes the attribution method developed in this thesis
and the results on a real data set of 81 main stations. The second section presents additional research conducted
alongside the paper’s topic. It includes namely a comprehensive assessment of the noise model identification and
parameter estimation tools used in the paper, based on numerical simulations. It also explores some alternative
methodologies that may help to further increase the efficiency of several parts (regression, prediction) of the
attribution method.

4.1.1 Abstract

Many segmentation or change-point detection methods used for the homogenization of climate time series from
station data use a reference series against which the station data is compared. The main advantage of this
approach is to remove the common climate signal and thus improve the detection power. One drawback is
that it is difficult to decide whether the detected change-point is due to the main series or to the reference. A
so-called attribution procedure is typically applied in a post-processing step for each detected change-point and
each main station. This paper describes a new statistical method for the attribution of detected change-points
in GNSS minus reanalysis series of Integrated Water Vapour (IWV). It works by combining the GNSS and
reanalysis data from the main station with similar data from one or several nearby stations. The paired data
from one main station and one nearby station form a set of four base series. The six series of differences formed
from these four base series are tested for a significant jump at the time of the detected change-point in the main
station. A statistical predictive rule is used to attribute the change-points in the four base series from the six
test results. Original aspects of our method are: 1) the significance test, which is based on a generalized linear
regression approach, taking both heteroscedasticity and autocorrelation into account; 2) the predictive rule,
which uses a machine learning method and is constructed from the test results obtained with the real data by
using a resampling strategy. Four popular machine learning methods have been compared using cross-validation
and the best one was applied to a real data set (49 main stations with 114 change-points). The results depend
on the choice of the test significance level and the aggregation method combining the prediction results when
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several nearby stations are available. We find that 62% of the change-points are attributed to GNSS, 19% to the
reanalysis, and 10% are due to coincident detections.

4.1.2 Introduction

Long records of climate observations are crucial for monitoring regional and global climate change and un-
derstanding the underlying climate processes (Trenberth et al., 2013; Dunn et al., 2021). However, many
observational climate data are affected by inhomogeneities due to changes in instrumentation, in station loca-
tion, in observation and processing methods, and/or in the measurement conditions around the station (Peterson
et al., 1998a; Mitchell and Jones, 2005; Menne et al., 2009). Inhomogeneities often take the form of abrupt
changes, which are detrimental to estimating trends and multi-scale climate variability (Jones et al., 1986;
Easterling and Peterson, 1995). Various homogenization methods have been developed for the detection and the
correction of such change-points in the context of climate data analysis (Peterson et al., 1998b; Reeves et al.,
2007; Costa and Soares, 2009; Venema et al., 2012). The change-point detection step, also called segmentation,
can be performed in two classical ways, using either a statistical test (e.g. (Alexandersson, 1986; Easterling and
Peterson, 1995; Menne and Williams, 2005; Menne and Williams, 2009; Szentimrey, 2008; Wang et al., 2010))
or a penalized likelihood approach (e.g. (Caussinus and Mestre, 2004; Lu et al., 2010; Domonkos, 2011; Mestre
et al., 2013)). The former proceeds sequentially and detects one change-point at a time, which leads inevitably
to a sub-optimal solution. On the other hand, the second approach estimates all the change-points at once, and is
thus optimal or sub-optimal, depending on the search algorithm. When the whole parameter space is explored,
such as with the dynamic programming algorithm, the method is optimal. Many climate segmentation methods
are used on differenced data, where the target series is differenced with respect to a reference series. Using
differenced series helps to remove the common climate signal and improves thus the detection power of the
segmentation method. However, one drawback of this approach is that any detected change-point can be either
due to the target series or to the reference series, if the latter is not homogeneous. In this so-called relative
homogenization approach, the reference series has been traditionally constructed by compositing the series
from several nearby stations (Alexandersson, 1986; Menne and Williams, 2005; Guĳarro, 2011). Compositing
relaxes the need for homogeneous reference series thanks to the averaging from many nearby stations, such
that the detected change-points can be attributed with good confidence to the target series. Unfortunately, in
practice, composited reference series often contain non-negligible inhomogeneities. Another approach based
on the pairwise comparison of individual series has been shown to be an interesting alternative (Caussinus and
Mestre, 2004; Menne and Williams, 2009; Mestre et al., 2013; Domonkos et al., 2021). In this approach, the
change-points from the target and reference series are disentangled in a post-segmentation step, referred to as
"attribution". In Caussinus and Mestre (2004), the attribution step is done manually, by using both statistical
inference and historical information (station metadata) in an iterative way. In Menne and Williams (2009), an
automatic procedure is proposed that attributes a change-point to the station with the highest overall count of
detections. This method also uses station metadata when available. It assigns the detected change-points to
the nearest known event from the station history within some confidence limit. In Mestre et al. (2013), both
a semi-automatic method similar to Caussinus and Mestre (2004) and a fully automatic method based on the
joint detection of all series at once are implemented, but the latter is not a relative homogenization method and
is thus not recommended (Domonkos, 2021).
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The above-mentioned attribution methods generally require many nearby stations in order to find out which
station is the cause of the detected change-point. They also operate in an iterative way, alternating the segmen-
tation and attribution steps, and perform better when history information is included. In this work, we propose
a new attribution method which significantly relaxes these constraints. Firstly, it works even if only one nearby
station is available, which makes it usable in data sparse networks. Secondly, it operates in a post-processing
mode, meaning that it uses as input the results from the segmentation step and does not need to iterate, although
iterations may possibly help to make it more robust. Thirdly, it uses a predictive rule based on machine learning
to attribute the cause of change-point among the tested series. The latter is trained in a preliminary step based
on real data and is thus optimized for the specific data of interest.

The data of interest in this work is Integrated Water Vapor (IWV) derived from Global Navigation Satellite
System (GNSS) measurements (Bock, 2019) and from the fifth ECMWF reanalysis (ERA5) (Hersbach et al.,
2020). Because the global GNSS data set is relatively sparse, the reanalysis is used as a reference to form the
target minus reference difference series necessary to the segmentation step (Ning et al., 2016; Bock et al., 2019;
Van Malderen et al., 2020; Nguyen et al., 2021; Quarello et al., 2022). The primary goal of the attribution is
thus to determine whether any change-point detected by the segmentation is due to the GNSS series or to the
reanalysis series. Although the long-term stability of reanalyses is sometimes questioned (Thorne and Vose,
2010), they are rather homogeneous, especially in recent years (roughly after 2000) (Sterl, 2004; Kozubek et al.,
2020). Inhomogeneities in reanalyses are mainly suspected when changes occur in the global observing system,
e.g. the start or end of satellite missions which data are assimilated (Rienecker et al., 2011; Schroeder et al.,
2016).

In this study, the GNSS minus reanalysis data are segmented with the "GNSSseg" method developed by Quarello
(2020) which is based on a penalized likelihood approach. It detects abrupt changes in the mean in the pres-
ence of a periodic (seasonal) bias and a periodic variance (on a monthly basis) and is available on the CRAN
(https://cran.r-project.org/web/packages/GNSSseg/index.html). It has been used in a benchmark
exercise where it was ranked one of the best among 8 segmentation tools (Van Malderen et al., 2020). The
attribution step was not necessary in that simulation study because the reference series was homogeneous.

Figure 4.1 helps to explain the idea of the attribution method proposed in this paper. Let us denote by G and
E the GNSS and ERA5 reanalysis series of the main station, respectively, and G’ and E’ those from a nearby
station. We denote by 𝑡1, 𝑡2, and 𝑡3, the change-points detected by the segmentation method in the G-E series,
and by 𝑡′1 and 𝑡′2, the change-points detected in the G’-E’ series. These change-points have jumps in the mean
of +1, -1, and -0.5 signal unit for the G-E series, and +1 and -0.5 signal unit for the G’-E’ series. Note that in
this sketch, the time period of the G’-E’ series covers all the change-points of the main station, but in practice,
several nearby stations may be necessary. The positions of the change-points illustrate different typical situations
encountered in practice with our data. The first change-point in the nearby station, 𝑡′1, is quite far from all the
change-points detected in the main station. This illustrates the fact that the causes of inhomogeneities in GNSS
data are primarily station-specific, i.e. coincident change-points in G and G’ are expected to be rare. On the
other hand, 𝑡′2 is close in time to 𝑡3 which illustrates an inhomogeneity in the reanalysis data with a large spatial
extension, i.e. impacting both E and E’. Real data often contain data gaps which are due to instrumental failures
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leading eventually to an equipment change and possibly to an inhomogeneity. This situation is illustrated with
a gap after 𝑡2 in the G-E series. The likeliness of these different situations is summarized in the following
"empirical" rules which will help interpreting the features seen in the difference series:

(R1) it is unlikely that change-points in two different GNSS series (here G and G’) occur at the same time
because they are station-specific in nature (e.g. hardware failure, equipment change, local environmental
change).

(R2) on the other hand, it is likely that change-points in the reanalysis occur simultaneously at the main and
nearby sites (impacting E and E’) because they are expected to have a large spatial extent (e.g. due to a
change in assimilation of satellite measurements).

Figure 4.1 – Schematic view of three paired series of differences, G-E, G’-E’, and G-G’, where G and E are
the series from the main station, and G’ and E’ the series from the nearby station. Change-points detected by
the segmentation method in the main (nearby) station are noted 𝑡𝑘 (𝑡′𝑘) and are indicated by the vertical solid
(dotted) lines. By convention, 𝑡0 (𝑡′0) and 𝑡𝐾 (𝑡′𝐾 ′) refer to the time of the first and last observation, respectively,
in the main (nearby) station. The colored horizontal lines with arrows indicate the segments on the left and the
right of the change-points that are used to estimate the deterministic and stochastic parameters of the regression
model. This figure is discussed the Introduction.

Inspection of the first two series of differences in Figure 4.1 in the light of these rules suggests that 𝑡1 is likely
due to a +1 jump in G, 𝑡′1 is likely due to a +1 jump in G’, 𝑡2 is likely due to a -1 jump in G, and 𝑡′2 and 𝑡3 are
likely due to a -0.5 jump in both E and in E’. However, to confirm these guesses, we need to inspect additional
series of differences combining more of the four base series (G, E, G’, and E’). The lower plot in Figure 4.1
shows the G-G’ series. It is straightforward, by the same reasoning, to confirm the guessed interpretation of the
former two series. In a more general procedure, we would use all six combinations of the four base series and
by deduce which of the four base series is/are the cause of the jumps observed in the multiple differenced series.
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Table 4.1 – BS Table: Theoretical configurations of the jumps in the four base series (𝐺, 𝐸 , 𝐺′, 𝐸 ′), coded as:
0=no jump, -1=downward jump, +1=upward jump, and the associated conditional and joint probabilities. SD
Table: resulting jumps in the series of differences, coded on five levels (-2, -1, 0, 1, 2). RSD Table: similar
to SD Table, but values are restricted to three levels only (-1, 0, +1). In theory the six test results could be
searched in the RSD Table and the corresponding configuration of the jumps in the four based series attributed.
Duplicated results in the SD and RSD Tables are highlighted with colored background; the configurations of
lower joint probabilities are removed, leaving 46 cases in the SD Table and 38 cases in the RSD Table. See
Appendix B for further details.

The BS Table in Table 4.1 displays all the relevant combinations of jumps/no jumps in the four base series.
The corresponding "theoretical" test results for the series of difference are given in the SD Table. The RSD
Table shows the corresponding "practical" test results where the values are restricted to ± 1 (meaning an up-
ward/downward jump) and 0 (meaning no jump, see Appendix A for further details). The latter two tables
contain some duplicate configurations highlighted by the colored background which can be distinguished based
on the joint probabilities (see Appendix B for the computation of the probabilities). In the end, we can distin-
guish 38 configurations in the RSD Table. In theory, we could thus use this table to attribute the jumps in the
four base series based on the test results of the six series of differences. However, in practice, some of the test
results may be wrong due to false negatives and/or false positives, and the combination of the six test results
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would not be in the table. To overcome this difficulty, our attribution procedure builds on two main bricks.
First, it uses an efficient test based on the Generalized Least Squares (GLS) method. This method is known
to have higher detection power than most traditional regression methods in the presence of heteroscedastic and
autocorrelated noise as is the case with our data. Second, a predictive rule is constructed based on the tests
results from real data, using a machine learning algorithm. This is an efficient way to predict the most likely
solution when the combination of the six test results is not in the table.

In subsection 4.1.3, we describe the stochastic properties of our data set composed of IWV time series from
ground-based GNSS data and the ERA5 data. We highlight the embedded heteroscedasticity and autocorrelation
of these differenced IWV series. In subsection 4.1.4, we evaluate the power of several test methods for testing a
fixed change in mean with simulated data mimicking the heteroscedasticity and autocorrelation properties of our
real data. We show that the GLS approach is superior to the other methods. In subsection 4.1.5, we describe the
method for the construction of the predictive rule, compare the performance of four popular machine learning
methods, and present the results on a real data set. Subsection 4.1.6 discussed the results and concludes.

4.1.3 Data characterization

4.1.3.1 Data sets

In this study, we use daily IWV data from GNSS observations and from the ERA5 reanalysis which have been
segmented beforehand using the GNSSseg segmentation method (Quarello et al., 2022). Our main goal here is
to attribute each of the change-points detected with GNSSseg either to the GNSS series or to the ERA5 series.
Several past studies using similar data highlighted the presence of abrupt changes in the mean of GNSS series
(Vey et al., 2009; Bock et al., 2014; Ning et al., 2016; Parracho et al., 2018) or in the reanalysis data (Schroeder
et al., 2016; Ning et al., 2016; Parracho et al., 2018; Nguyen et al., 2021). Inhomogeneities in the GNSS data
are mainly due to equipment changes and changes in the station’s environment, but the magnitude of the jumps
may also depend on the data processing procedure (Nguyen et al., 2021). In this work, we use reprocessed
GNSS data from Center for Orbit Determination in Europe (CODE), covering the period from 1994 to 2014
(REPRO2015), extended until the end of 2018 by a consistent operational processing. Details of the processing
are described in Nguyen et al. (2021) and references therein, and the data set is available from Bock (2019).
These data are from a global network of 436 stations. Data from the ERA5 reanalysis have been extracted at the
location of each station and the difference series, G-E, have been segmented using the GNSSseg package. For
the purpose of the present study we selected 81 stations with the longest time series. These will be our "main
stations". Nearby stations were searched with a distance limit of 200 km in horizontal and 500 m in vertical,
but very few were found in the CODE data set. So we used instead the GNSS data reprocessed by the Nevada
Geodetic Laboratory (NGL) which comprises nearly 20 thousand stations (Blewitt et al., 2018). The NGL data
were converted to IWV, differenced with respect to ERA5, and passed through the GNSSseg segmentation as
well. We ended up with 114 detected change-points in 49 main stations that can be tested with respect to 312
nearby stations, resulting in a total number of 494 main/nearby pairs.
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4.1.3.2 Pre-processing

Before we form the six difference series and estimate the change in the mean, the IWV data are adjusted for
the station height difference and screened for outliers. The IWV adjustment is done following the method
described in Bock et al. (2022) with correction model coefficients estimated from ERA5 on a global grid.
This step is important when the main station and nearby station are not at the same altitude. It impacts both
the GNSS data and the ERA5 data as the latter are extracted at the height of each GNSS station, either main
or nearby. Once the G’ and E’ data are made consistent with the G and E data, the six difference series are formed.

The screening consists in two steps. The first one is a classical outlier detection procedure in which the data
points exceeding three standard deviations from the median are removed. In this procedure, the median and a
robust standard deviation estimator (Yohai and Zamar, 1988) are computed in a sliding window of length +/- 60
days around the current point. To guarantee the representativeness and accuracy of the estimates in the presence
of data gaps, a minimum number of 20 data points are required.

The second step consists in removing data in short segments (less than 80 days) pertaining to a cluster of
change-points detected in the main station (see an example in Figure 3 in Quarello (2020)). This problem occurs
occasionally in regions where the GNSS data and reanalysis data have a significant representativeness difference
(Bock and Parracho, 2019). In such situation, we keep the first change-point but remove data between the the
first and the last change-points of the cluster. Similarly, when a change-point in the nearby station is very close
(less than 10 days) to a change-point in the main station, we consider that they are both due to the same cause
(most likely a change in the reanalysis) and we remove the data points in the nearby series between the two
change-points. This case is illustrated in Figure 4.1 where the data between 𝑡3 and 𝑡′2 have been removed. In
Figure 4.1, we also illustrate the case of a gap in the G-E series just after 𝑡2 which may be due to a screened
cluster. Note that, as a result of the screening, the number of data points in a difference series combining the
main and nearby sites (e.g. G-G’) is always less or equal to that of a collocated difference series (e.g. G-E or
G’-E’). In the proposed test procedure, a minimum number of 200 consecutive points is required on each side
of the change-points.

4.1.3.3 Characterization of the data and model building

The GNSS minus reanalysis difference series show usually strong heteroscedasticity and periodic (seasonal)
biases, along with weak autocorrelation (Quarello et al., 2022). In the following, a series is modelled using the
following regression model:

𝑧𝑡 = `𝐿 + 𝛿𝑥𝑡 + 𝑠𝑡 + 𝑒𝑡 , (4.1)

where 𝑡 refers to the time, `𝐿 is the mean of the signal on the left of the change-point, 𝛿 is the amplitude of the
jump, 𝑥𝑡 is a step function (𝑥𝑡 = 0 if 𝑡 ≤ 𝑡𝑘 and 1 if 𝑡 > 𝑡𝑘 , where 𝑡𝑘 is the time of the change-point detected by
the segmentation method), 𝑠𝑡 is the Fourier series, and 𝑒𝑡 is the noise term. For ease of notation, we use 𝑡 as the
time index, with 𝑡 = 1, ..., 𝑛, but in reality the data may contain gaps and the time values are not consecutive.
To account for this, 𝑡 can be replaced by 𝑡 (𝑖), with 𝑖 = 1, ..., 𝑛. To account for both heteroscedasticity and
autocorrelation, we follow José C. Pinheiro (2000) and represent 𝑒𝑡 as the product of two factors:
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𝑒𝑡 = 𝑒
∗
𝑡𝜎𝑡 , (4.2)

where 𝑒∗𝑡 represents a stationary autocorrelated process of unit variance and 𝜎2
𝑡 is the time-varying variance

of 𝑒𝑡 , i.e. 𝑣𝑎𝑟 [𝑒𝑡 ] = 𝜎2
𝑡 . Preliminary investigation of our data showed that most of the time the noise model

is well approximated by an AR(1). Other noise models such as MA(1), ARMA(1,1), and pure white noise
occur sometimes. We tested also for higher order ARMA(p,q) models and they are very rare. We limit thus
ourselves to the four possible ARMA(𝑝,𝑞) models, with 𝑝, 𝑞 ∈ {0, 1}. Recall that an ARMA(1,1) model writes
(Shumway and Stoffer, 2017):

𝑒∗𝑡 = 𝜙𝑒
∗
𝑡−1 + \𝑤𝑡−1 + 𝑤𝑡 , (4.3)

where 𝑤𝑡 is a Gaussian white noise. The noise model identification and parameter estimation methods are
described in the next subsection. Note that other stochastic models including periodic variations in the mean,
heteroscedasticity and autocorrelation have been proposed by Lund et al. (1995).

Figure 4.2 – Top: GNSS minus ERA5 time series at station ALBH (Victoria, Canada), in gray, and estimated
Fourier series, in black, for a long, homogeneous, segment (no change-point detected by the segmentation
method). Middle: FGLS regression residuals (jagged curve) and moving median (smooth curve). Bottom:
moving standard deviation illustrating the strong heteroscedasticity in the data.
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Figure 4.2 shows an example of a time series (jagged gray curve), with the estimated Fourier series (smooth
black curve), the estimated standard deviation (SD), �̂�𝑡 (black curve at bottom), and the regression residuals
(jagged orange curve). The strong heteroscedasticity is obvious, and because it is not stationary, we used a
moving window approach (similar to the outlier screening procedure described above) to estimate it.

Table 4.2 and 4.3 summarize the characteristics of our data set in terms of heteroscedasticity and noise structure,
respectively, for all six series of difference (G-E, G-G’...), for the main and all nearby stations. The results
are sorted according to the distance between the main and the nearby stations (smaller or larger than 50 km).
Regarding the heteroscedasticity, three groups can be identified when the distance between sites is small. The
first group (G1) includes G-E and G’-E’, i.e. the series with collocated data, which have moderate mean SD
of 0.7 kg m−2. The second group (G2) includes E-E’ and G-G’, i.e. the series comparing the same technique,
which have the smallest mean SD (0.5 kg m−2). The last group (G3) involves data from non-collocated data
and mixed techniques, and gets the largest mean SD. As the distance increases, the mean SD of series involving
different sites increases, as expected from increased representativeness differences. Another striking feature is
that the half-range of the variation in SD is around 70% for all six series, indicating that heteroscedasticity is a
strong feature in our data.

Mean of SD Half-range of SD (%)
Distance < 50 km ≥ 50 km

G−E 0.7 ± 0.26 72 ± 20
G’−E’ 0.66 ± 0.24 67 ± 19
G−G’ 0.52 ± 0.17 1.31 ± 0.47 63 ± 21
E−E’ 0.41 ± 0.17 1.26 ± 0.47 73 ± 26
G−E’ 0.82 ±0.21 1.38 ± 0.46 67 ± 21
G’−E 0.83 ± 0.26 1.39 ± 0.46 66 ± 20

Table 4.2 – Characterization of the heteroskedasticity in the real data from 494 main/nearby series. The table
reports the mean and the half-range of the standard deviation for each of the six paired difference series. The
mean values are sorted by distance.

Distance < 50km ≥ 50km

series AR(1) MA(1) ARMA(1,1) AR(1) MA(1) ARMA(1,1)

Coefficients phi theta phi theta phi theta phi theta

G-E 0.30 0.00 0.57 -0.32
G’-E’ 0.31 0.22 0.59 -0.34
G-G’ 0.33 0.19 0.65 -0.31 0.30 0.22 0.11 0.12
E-E’ 0.31 0.21 0.34 0.23 0.29 0.20 0.25 0.20
G-E’ 0.33 0.24 0.59 -0.24 0.31 0.21 0.29 0.08
G’-E 0.32 0.21 0.57 -0.28 0.30 0.22 0.18 0.21

Table 4.3 – Characterization of the autoregressive noise structure of the real data. The table reports the mean
estimated coefficients of the noise model for each of the six paired difference series, sorted by distance.
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Figure 4.3 shows the distributions of the noise models and of the estimated coefficients for the six differences,
again sorted according to the distance. The AR(1) model is the dominant model, with a proportion between
50% and 80%, independently of the distance, while the white noise model is extremely rare. The proportion
of MA(1) and ARMA (1,1) depends on the distance and the series: ARMA(1,1) is dominant for the collocated
series (similar to the noise group G1), as well as for the series comparing the same technique (group G2), when
the distance is small. On the opposite, when the distance is large, MA(1) becomes more frequent, like for the
series mixing techniques and sites (group G3). The increase of the distance does thus not only increase the
variance of the noise but changes also its nature. Another interesting aspect is the values of the coefficients.
For the AR(1), they are very similar (around 0.3) for all series, regardless of the distance. Similarly, for the
MA(1), they are very similar (around 0.2). More surprisingly, the estimated coefficients of the ARMA(1,1)
model for the non-collocated series depend somewhat on the distance, with the exception of E-E’. Values of
𝜙 and \̂ are around 0.6 and -0.3, respectively, for the collocated series and when the distance is small, and
around 0.2 for both coefficients, when the distance is large. For E-E’, the values are always around 0.2. The
ARMA(1,1) models with coefficients of opposite sign found at short distance suggest that in these cases the
noise is a mixture of AR(1) and white noise (Shumway and Stoffer, 2017). When the distance increases, the
moving average part becomes more important, which may be interpreted as a spatial/temporal averaging of the
variability in the difference series. The mean values of the estimated coefficients are reported in Table 4.3.

Figure 4.3 – Results of noise model identification in the real data. (a, b) Histogram of model types (white noise,
AR(1), MA(1), ARMA(1,1)) selected with auto.arima function for each of the six series of differences (G-E,
G-E’, etc.); the bar heights show the percentage (y-axis) of cases for each series (x-axis), the number of cases
is indicated on the top of each bar. (c, d) noise model coefficients, 𝜙 and \̂, estimated with arima function,
for each model. Results are sorted according to the distance between the main and the nearby stations, (a, c)
smaller than 50 km, (b, d) larger than 50 km.
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4.1.4 Proposed tests for a fixed change-point

4.1.4.1 Regression model and different tests

In this subsection, we compare different procedures to test the significance of the jumps associated to change-
points detected by the segmentation (i.e. considered here at known position). The series modelled by Eq. (4.1),
with specifications (4.2) and (4.3), is now rewritten in matrix form:

z = 𝑋𝛽 + e, (4.4)

where 𝛽 includes the coefficients of the deterministic part of the model, 𝛽 = (`𝐿 , 𝛿, 𝑎1, ..., 𝑎4, 𝑏1, ..., 𝑏4)′, and
𝑋 includes the corresponding regressors. Here, the 𝑎𝑙 and 𝑏𝑙, 𝑙 = 1, ..., 4, are the coefficients of a Fourier series
of order 4, and the corresponding regressors are cos(2𝜋𝑙𝑡 (𝑖)/𝑇) and sin(2𝜋𝑙𝑡 (𝑖)/𝑇), with 𝑇 = 365 days, and 𝑡 (𝑖)
is the time of the 𝑖𝑡ℎ observation, 𝑧𝑖 , 𝑖 = 1, ..., 𝑛. The noise vector, e is assumed to be distributed as N(0, Σ0),
where Σ0 is the variance-covariance matrix describing the noise model. A correct specification of this matrix
is crucial for the subsequent tests of the estimated coefficients of the deterministic model.

When Σ0 is known, either Ordinary Least Squares (OLS) or Generalized Least Squares (GLS) methods can be
used, for which the solutions for 𝛽 and the corresponding variance-covariance matrices write:

𝛽𝑂𝐿𝑆 = (𝑋 ′𝑋)−1𝑋 ′z and 𝑣𝑎𝑟 [𝛽𝑂𝐿𝑆] = (𝑋 ′𝑋)−1(𝑋 ′Σ0𝑋) (𝑋 ′𝑋)−1, (4.5)

𝛽𝐺𝐿𝑆 = (𝑋 ′Σ−1
0 𝑋)−1𝑋 ′Σ−1

0 z and 𝑣𝑎𝑟 [𝛽𝐺𝐿𝑆] = (𝑋 ′Σ−1
0 𝑋)−1. (4.6)

Recall that, in the presence of heteroscedasticity and/or autocorrelation, GLS is the Best Linear Unbiased
Estimator (BLUE) while OLS solution is not, although OLS remains unbiased.

In practice, Σ0 is typically unknown and needs to be estimated. In the classical linear model (CLM) framework
it is generally assumed that the data are independent and homoscedastic, e.g. Σ0 = 𝜎2

0 𝐼𝑛, where 𝐼𝑛 is the identity
matrix. An estimator of 𝑣𝑎𝑟 [𝛽𝑂𝐿𝑆] is then simply

𝑣𝑎𝑟 [𝛽𝑂𝐿𝑆]𝐶𝐿𝑀 = �̂�2
0 (𝑋

′𝑋)−1. (4.7)

where �̂�2
0 = ê′ê/(𝑛 − 𝑘) is an unbiased estimator of the noise variance 𝜎2

0 .

The CLM assumptions are not satisfied with our data and, despite the OLS solution (4.5) remains unbiased,
the variance estimator is strongly biased and leads to significant inference errors. To solve this problem, some
methods have been proposed in the literature. The two main ones, which we considered in this work, are:

— the so-called OLS-HAC that consists in still using the OLS solution but to consider a consistent estimator
for the variance that is the Heteroscedasticity and Autocorrelation Consistent estimator (HAC) (White,
1980; Newey and West, 1986). This estimator is robust to the presence of heteroscedasticy and serial
correlations of unknown form and has good asymptotic properties. The key idea is to estimate𝑀 = 𝑋 ′Σ0𝑋

instead ofΣ0, which is difficult to estimate due to its large size (it contains nominally 𝑛(𝑛+1)/2 parameters).
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The variance estimator writes:

𝑣𝑎𝑟 [𝛽𝑂𝐿𝑆]𝐻𝐴𝐶 = (𝑋 ′𝑋)−1�̂� (𝑋 ′𝑋)−1. (4.8)

A large class of HAC estimators is the non-parametric kernel estimators. A drawback of this type of
estimator is that its performance varies with the choices of the kernel function and its bandwidth, but the
advantage is that it does not require to specify the covariance structure and is computationally very fast.
Here we consider the "Quadratic Spectral" kernel (Andrews, 1991) with its proposed optimal bandwidth
value. This method is available the R package sandwich (Zeileis, 2006).

— the Feasible GLS (FGLS) which consists in estimating Σ0, assuming it has a specific structure with a
reduced number of parameters to be estimated, in the GLS solution Eq. (6). Denoting Σ̂𝑛 the estimator
of Σ0, Eq. (6) becomes:

𝛽𝐹𝐺𝐿𝑆 = (𝑋 ′Σ̂−1
𝑛 𝑋)−1𝑋 ′Σ̂−1

𝑛 z and 𝑣𝑎𝑟 [𝛽𝐹𝐺𝐿𝑆] = (𝑋 ′Σ̂−1
𝑛 𝑋)−1. (4.9)

Following José C. Pinheiro (2000), we decompose Σ0 as Σ0 = V CV , where V = 𝑑𝑖𝑎𝑔(𝜎𝑡 ) and C is the
correlation matrix associated to the noise model (see Shumway and Stoffer (2017) for the formulation of
matrix C as a function of 𝜙 and \ for an ARMA(1,1)). With this parameterization, Σ0 is described by a
maximum of 𝑛 + 2 coefficients.

Since both 𝛽𝐹𝐺𝐿𝑆 and 𝑣𝑎𝑟 [𝛽𝐹𝐺𝐿𝑆] depend on Σ̂𝑛, an iterative procedure is implemented. In order to
stabilize the convergence and also to avoid over-fitting, we first select the best noise model among the
four possible models (ARMA(𝑝,𝑞) with 𝑝, 𝑞 ∈ {0, 1}) using the auto.arima function in the R package
forecast (Hyndman and Khandakar, 2008). The BIC criterion is used and is complemented by a test of
the significance of the final model coefficients. Next, we use the following iterative procedure:

1. fit the OLS solution (4.5);

2. compute the noise variance V̂𝑛 = 𝑑𝑖𝑎𝑔(�̂�2
𝑡 ) from the OLS residuals in a moving window (see

subsection 4.1.3.3);

3. fit a preliminary FGLS solution (4.6) where Σ0 is replaced by V̂𝑛;

4. fit the ARMA model coefficients, 𝜙 and \̂, from the FGLS residuals;

5. compute Σ̂𝑛 = V̂𝑛Ĉ𝑛V̂𝑛, where Ĉ𝑛 is the correlation matrix of the ARMA model with the fitted
coefficients;

6. fit the final FGLS solution (4.9);

7. repeat steps 3 to 6 until convergence.

In step 4, the parameters 𝜙 and \̂ of the ARMA noise structure are estimated by Maximum Likelihood
with the function arima in R. In step 7, the convergence is tested from the difference of 𝛽, 𝜙, and \̂,
of two successive iterations. The maximum number of iterations is set to 10 and is never reached. For
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the preliminary selection of the noise model, a simplified scheme including steps 1 to 4 is used, and
auto.arima is used in step 4 instead of arima. Numerical simulations showed that auto.arima is able
to select the correct model in 99 % of the cases when it is white noise, 93 % when it is MA(1), 90%
when it is AR(1), and 63 % when it is ARMA(1,1), for a sample size 𝑛 ≥ 1000 with typical values for the
coefficients (Figure 4.3).

Note that, compared to the OLS-HAC approach, the FGLS procedure, due to its iterative scheme, is computa-
tional time-demanding. However, when the noise model is correctly specified, the FGLS estimate of 𝑣𝑎𝑟 [𝛽] is
more accurate than its OLS-HAC counterpart, and the power of the test is improved.

In the following we are interested in testing the null hypothesis 𝐻0 : 𝛿 = 0. The associated test statistic is:

𝜏𝛿,OLS-HAC =
𝛿OLS

�̂�𝛿HAC

for the OLS-HAC, and 𝜏𝛿,FGLS =
𝛿FGLS

�̂�𝛿FGLS

for the FGLS, (4.10)

where �̂�𝛿• is the estimated standard error of 𝛿 which is extracted from 𝑣𝑎𝑟 [𝛽•], and • = OLS-HAC or FGLS.
For the OLS-CLM and GLS estimators considered in the simulation study, similar statistics are computed using
their respective estimators for 𝛿 and �̂�𝛿 given by Eqs. (5) and (6).

In contrast to the HAC estimator, the asymptotic properties (unbiasedness and efficiency) of the FGLS estimator
are typically not known. Numerical simulations with the FGLS procedure described above show that 𝛽𝐹𝐺𝐿𝑆 is
not biased and its variance is very close to GLS, although slightly larger, but still smaller than HAC. Finally,
the distributions of both statistics are very close to N(0, 1) under 𝐻0. The critical value, 𝜏𝛼/2, associated to a
given significance level, 𝛼, will thus be computed using the standard normal distribution.

4.1.4.2 Evaluation based on simulations

We conducted a large number of simulations, for different types of noise characteristics and sample sizes, to
assess the test methods introduced above. In these simulations, we modelled the noise heteroscedasticity by a
"raised cosine" function, 𝜎2

𝑡 = 𝜎2
𝑚 − 𝜎2

𝑣 cos 2𝜋𝑡/𝑇 , where 𝜎2
𝑚 and 𝜎2

𝑣 ≤ 𝜎2
𝑚 represent the mean and half-range

modulation of the variance over one period, 𝑇 , respectively.

The results are compared in Figure 4.4 for significance level, 𝛼 = 0.05. It is seen that the False Positive
Rate (FPR) stays generally fairly close to the nominal significance level for GLS, FGLS, and OLS-HAC, for
most autocorrelation and heteroscedasticity characteristics, except when the autocorrelation is very strong. In
contrast, the OLS-CLM method performs very badly when the data is autocorrelated or heteroscedastic, due
to the bias in its variance estimator (Eq. 4.7). The power of the test is measured by the True Positive Rate
(TPR). It depends on the jump amplitude, the sample size, and the noise characteristics, in addition to the fixed
significance level. When 𝜙 increases, it is generally observed that the TPR decreases, for all four methods. This
is due to an increase in �̂�𝛿 which is sometimes interpreted as a reduction of the "equivalent sample size" (Zwiers
and Storch, 1995). The higher TPR of OLS-CLM is actually a consequence of its higher FPR and does not
indicate a good performance per se. In contrast, when the heteroscedasticity increases at constant 𝜙, GLS and
FGLS clearly outperform OLS-HAC. For OLS-HAC the TPR remains actually constant while for GLS and, to a
lesser extent FGLS, the TPR increases with stronger heteroscedasticity. This is explained by the fact that GLS
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and FLGS take the weight of every observation into account; when heteroscedasticity is strong, observations
with small errors have high weight which leads to a decrease in �̂�𝛿 . When both heteroscedasticity and auto-
correlation are strong, the power of the test is low for all methods, but FLGS still performs better than OLS-HAC.

Figure 4.4 – False Positive Rate (FPR) and True Positive Rate (TPR) of jump detections with the regression
model (1) and four different estimation methods, for three scenarios: (a, b) AR(1) noise of unit variance with
𝜙 = 0, ..., 0.90; (c, d) heteroskedastic and AR(1) noise, with 𝜙 = 0.3 and half-range of variance from 0 to 80
%; (e, f) heteroskedastic and AR(1) noise, with 𝜙 = 0, ..., 0.90, and half-range of variance of 80 %. For TPR,
the amplitude of the jump is fixed to 0.356, which corresponds to TPR=0.95 when 𝜙 = 0. The sample size is
𝑛=400 and the number of simulated series is 𝑚=1000.

Figure 4.5 provides additional insight into the power of the FGLS test as a function of the the jump amplitude
and sample size, for a typical noise configuration. A 75 % probability of detection is expected for jumps of 0.25
or larger with a sample size of 𝑛=600. Most of the G-E, G-E’, and G-G’ series in the real data actually fulfill this
requirement (see Figure 4.6, further discussed in the next subsection). For stronger noise (usually due to larger
distance) or smaller jumps, a larger sample size would be required to maintain a high detection probability.
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Figure 4.5 – True Positive Rate (TPR) of jump detections with the FGLS method, as a function of jump amplitude
and sample size, in case of heteroskedastic and AR(1) noise with 𝜙 = 0.3, mean variance of 1, and half-range
of variance of 80%.

4.1.4.3 Application to real data

The FGLS procedure was applied to the series of differences from the 494 main/nearby pairs.

Figure 4.6 shows the distribution of estimated jump amplitudes, their standard errors, and the associated absolute
t-values computed from Eq. 4.10, where the non-collocated series (G-G’, G-E’, E-E’, and G’-E) are sorted by
distance. Notably, the three series involving G have significantly larger median jump amplitudes (around 0.3 kg
m−2) than the other three series, regardless of the distance. This result suggests that large jumps are occurring
more often in the G series than in the E, E’, or G’ series. In G’-E’ and G’-E, the median jump is small, as
expected and expressed in our first rule stating that it is unlikely to have a coincident change-point in a nearby
GNSS station when there is one detected in the main station. Additionally, a notable observation is that the
median jump in E-E’ is much larger at larger distance, which may be due to errors in the estimated jumps induced
by a increased noise at larger distance. The variation of the SD of the noise with distance directly impacts
also the jump standard error. The standard error of estimated jumps is notably smaller in collocated series,
such as G-E and G’-E’, as well as in non-collocated series at short distance. Furthermore, the standard errors
in G-E’ and G’-E (non-collocated series from different techniques) are slightly larger than in G-G’ and E-E’
(non-collocated series from the same technique) even at short distance, as also noticed in the three noise groups
discussed in subsection 4.1.3.3. Finally, the t-values can be interpreted by considering the jump magnitudes
and their standard errors. It is evident that the three series involving G yield larger t-values due to higher jump
magnitudes. In contrast, the other three series have much smaller t-values, mainly because some of the large
jumps at larger distance are damped by the larger standard errors. A common feature to all non-collocated series
is that the t-values decrease with distance.

Figure 4.7 shows the corresponding test results with a significance level 𝛼=0.05. At short distance, the three
series involving G are almost all significant. Especially, all the G-E jumps are significant, which demonstrates
a high consistency between our FGLS tests and the segmentation results. Almost all G-E’ jumps are significant
as well, while almost all E-E’ are not significant. This latter result confirms our second rule (E and E’ are
expected to be consistent, i.e. either no jump or a jump in both, simultaneously). Most G-G’ jumps are also
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Figure 4.6 – Distribution of absolute jump amplitudes and their standard errors, and the associated t-values
computed from the FGLS estimates of the real data (494 main/nearby pairs). The results are sorted based on
the main/nearby distance (< 50 km and ≥ 50 km).

significant, which confirms the idea that most jumps are in G. Finally, the G’-E’ and G’-E jumps are most of
the time insignificant, which again supports of our first rule (G and G’ are unlikely to change simultaneously).
As the distance increases, the proportion of insignificant jumps also increases due to higher standard errors.

Figure 4.7 – Distribution of test results associated to the estimated amplitudes of jumps shown in Figure 4.6,
sorted by distance: (a) < 50 km, (b) ≥ 50 km. Test results are color coded as: green for insignificant and
red/blue for significant downward/upward jump.

4.1.5 Predictive rule

The objective is to build a classifier 𝜓(𝑥) representing the prediction of the configuration 𝑦, i.e. the quadruplet
composed of G, E, G’, and E’, given 𝑥, the vector composed of the test statistics from the series of differences. In
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the development of this classifier, we are confronted with two principal challenges. First, the true configurations
are unknown, resulting in the unavailability of 𝑦 for training, evaluation and prediction. Second, the presence
of all configurations in the data is nearly improbable. This is due to the rarity of occurrence for certain
configurations according to the probabilities indicated in Table 4.1. To address these challenges, we propose to
generate a synthetic dataset based on the 𝑁 = 494 test results of the real data using a bootstrapping technique as
introduced by (Efron and Tibshirani, 1993). This dataset would ensure each configuration is represented through
a set of (𝑥, 𝑦) pairs. We then compare the performance of four popular classifiers for the prediction objective.
The reader can refer to subsection 2.2.4 of Chapter 2 for more details about the supervised classification, two
resampling methods and a presentation of the four algorithms we considered here.

4.1.5.1 Preliminary considerations

Considered test results. In this task, we employed the test statistics from five series: G-G’, G-E’, E-E’, G’-E’,
and G’-E’, given that the considered cases pertain exclusively to situations where the G-E test holds significance.
Denote by 𝑧ℓ = (𝑧ℓ1, . . . , 𝑧ℓ5) the vector of the five test statistics for the ℓth test in the five series of difference
and by 𝑍 = (𝑧ℓ)ℓ=1,...,𝑁 the formed data set of size 𝑁 × 5, with 𝑁 = 494, which will be called the original data
set in the sequel. Note that the results of all the nearby stations for a given change-point in a given main station
can be viewed as replicates reducing the real information to 114, i.e. the number of couples of (main station,
change-point); the available information is thus quite small.

Considered configurations. In Table 4.1, among the 38 configurations of the RSD Table, there are two doubles
of the five coded test results with same prior probabilities: configurations (7,28) and (12,19). We decide to keep
the configurations 7 and 19 which contains a change-point in G. This reduces the total number of configurations
to 𝐶 = 36.

The four considered learning algorithms are: the linear discriminant analysis (LDA) (Fisher, 1936), the
classification and regression trees (CART) (Breiman et al., 1984), the Random Forest (RF) (Ho, 1995) and the
𝑘 Nearest Neighbors (k-NN) (Fix and Hodges, 1989; Cover and Hart, 1967). The latter three involve parameters
that need to be tuned. They are here automatically optimized by 𝐾-fold cross-validation with 𝐾 = 10 using the
generic function ’train’ of the R package caret.

Building of the complete synthetic data set. As mentioned earlier, the bootstrapping technique has been
employed to construct the synthetic dataset, operating on the principle of random sampling with replacement
from the original data. More precisely, for each configuration 𝑦 and each series of difference 𝑗 , we create 𝑁𝑦
vectors of the five test statistics or t-values (the sample 𝑥) by resampling among the test statistic values (𝑧ℓ 𝑗)ℓ
that lead to the test conclusion of 𝑦. The correspondence is made with respect to the test outcome (−1, 0 or 1)
for a given significance level 𝛼. As an example, let’s consider the configuration 1 in Table 4.1. Each test statistic
(t-value) is randomly selected from the respective series of difference, ensuring that the significance levels of
these five t-values are (1, 1, 0, 0, 0). The constructed data set is noted 𝐷 = {(𝑦ℓ , 𝑥ℓ)ℓ}ℓ=1,...,𝑛 of size 𝑛 =

∑
𝑦 𝑁𝑦 .

A notable consideration is the potential severe imbalance in the configurations within the data, as discussed
in subsection 2.2.4.3 of Chapter 2. This feature is well-known to produce biased classifiers for the minor
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configurations. Two options can be considered: if we consider the imbalanced aspect as a problem, we can use
the same number of replicates 𝑁𝑦 = 𝑅 for each configuration 𝑦. This case is called the ’balanced sample case’.
On the contrary, if we want to take into account this reality, we can take a number of replicates proportional to
the prior probability of each configuration given in Table 4.1, i.e. 𝑁𝑦 = 𝑛𝑝𝑦 if 𝑛 is the total number of data.
This case is called the ’imbalanced sample case’.

4.1.5.2 The proposed Cross-Validation Bootstrap (CVB) procedure

Cross-validation is a popular statistical technique to test a classifier. It involves splitting the data into two subsets:
the learning set, on which the classifier is constructed, and a test set, on which the classifier is tested. Since
observations of the complete data set 𝐷 are replicated from the original data set 𝑍 , which is small and repeated,
there is a risk of overlap between the learning and test data set, inducing inevitably a bias and leading to an
underestimation of misclassification error. This is why, we propose here a so-called cross-validation bootstrap
(CVB) strategy which consists in first splitting the original data set 𝑍 into the learning and test subsets before
constructing the complete data set 𝐷. The proposed CVB procedure is described in Algorithm 1.

Data: the original data 𝑍
for 𝑏 = 1 to 𝐵 do

1. sample a learning data set 𝑍𝑏,𝐿 from 𝑍 with probability 0.8, and form the test data set 𝑍𝑏,𝑇

with the remaining 20% of data. The random sampling is performed on the rows of 𝑍 , i.e. on
each test;

2. form the two associated complete data sets 𝐷𝑏,𝐿 and 𝐷𝑏,𝑇 from 𝑍𝑏,𝐿 and 𝑍𝑏,𝑇 by preserving
the learn/test proportion of 80%/20%, i.e. for each configuration 𝑦, 𝐷𝑏,𝐿 contains 0.8𝑁𝑦
samples, and 𝐷𝑏,𝑇 0.2𝑁𝑦 . In the ’balanced sample case’, we chose 𝑁𝑦 = 𝑅 = 100 and in the
’imbalanced sample case’, the smallest value 𝑁𝑦 is chosen to 5, leading to a learn sample
containing 4 data and a test sample containing only one data;

3. construct the four classifiers on the learning data set 𝐷𝑏,𝐿: 𝜓𝑏,𝑘 , 𝑘 ∈ LDA,CART,RF,k-NN;

4. compute the misclassification error of the classifiers on the test data set 𝐷𝑏,𝑇 with 𝑛𝑇 rows:

err𝑏,𝑘 =
𝑛𝑇∑︁
ℓ=1
⊮{𝜓𝑘,𝑐 (𝑥𝑏,𝑇

ℓ
)≠𝑦𝑏,𝑇

ℓ
} for 𝑘 ∈ LDA, CART, RF, k-NN

end
Evaluation: compute the mean and the standard deviation of misclassification error for
each classifier, e.g. the mean is given by:

err𝑘 =
1
𝐵

𝐵∑︁
𝑏=1

err𝑏,𝑘 for 𝑘 ∈ LDA, CART, RF, k-NN

Algorithm 1: The CVB procedure.

Table 4.4 gives the mean and the standard deviation of misclassification error for the four considered classifiers
with 𝐵 = 20. The table presents results for three scenarios: the first and second one involve constructing the
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complete dataset using different sampling (balanced vs. imbalanced), both with 𝛼 = 5%, while the last one
employs a balanced sampling with 𝛼 = 1%. Compared to the balanced sample, the misclassification error is
lower for the imbalanced sample in the case of LDA and k-NN, but slightly higher for CART and RF. Similar
behavior is observed when comparing learning with 𝛼 = 5% and 𝛼 = 1% for the balanced sample. Overall,
the Random Forest algorithm outperforms the other classifiers in all three scenarios, with the best performance
achieved when trained with a balanced sample with 𝛼 = 5%. We thus choose the Random Forest algorithm and
select as the final predictive rule, 𝜓, the one with smallest error among the 𝐵 classifiers. The predictive power
of the five series of difference based on the accuracy criterion (the percentage of correct predictions) are in the
decreasing order: E-E’, G-G’, G-E’, G’-E and G’-E’.

c test level sample case LDA CART KNN RF

err𝑐
0.05 balanced 0.1463 ± 0.021 0.0142 ± 0.011 0.1412 ± 0.018 0.0049 ± 0.003
0.05 imbalanced 0.1108 ± 0.004 0.0165 ± 0.010 0.0351 ± 0.004 0.0054 ± 0.004
0.01 balanced 0.1424 ± 0.029 0.0210 ± 0.0417 0.1301 ± 0.022 0.0106 ± 0.033

Table 4.4 – Mean misclassification error ± one standard deviation, for the four classifiers in three scenarios:
’balanced sample’ with 𝑁𝑦 = 𝑅 = 100 and 𝛼 = 0.05, ’balanced sample’ and 𝛼 = 0.01, ’imbalanced sample’
with 𝑁𝑦 = 𝑛𝑝𝑦 and 𝛼 = 0.05.

4.1.5.3 Application to the real data set

The objective is to predict the configuration for each change-point of each main station. When several nearby
stations are available for a given change-point the results are aggregated using a weighted prediction score. For
a configuration 𝑐, the prediction score writes:

�̂�(𝑦 (main,change-point) = 𝑐 |nearby station(𝑛𝑠)) =
∑
𝑛𝑠 𝑤𝑛𝑠⊮{𝜓 (𝑥𝑛𝑠 )=𝑐}∑

𝑛𝑠 𝑤𝑛𝑠

where 𝑤𝑛𝑠 denotes the weight of the nearby station 𝑛𝑠, and the final configuration is the one with the highest
score

�̂� (main,change-point) = arg max
𝑐
�̂�(𝑦(main, change-point) = 𝑐 |nearby station)

We compared two different weightings:

— inverse distance weighting: 𝑤𝑛𝑠 = 1/𝑑𝑛𝑠, where 𝑑𝑛𝑠 is the distance between the nearby 𝑛𝑠 and the main
station,

— weighting proportional to the joint probability given in Table 4.1: 𝑤𝑛𝑠 = 𝑝𝑐.

In the probability-based weighting, when the highest score is reached by two different configurations (e.g. 𝑐 = 1
and 10), the one with the shortest distance is selected.

Figure 4.8 presents the distribution of predicted configurations, after aggregation, for four variants: (a) balanced
sampling with 𝛼 = 5%, aggregated with distance; (b) balanced sampling with 𝛼 = 1%, aggregated with distance;
(c) imbalanced sampling with 𝛼 = 5%, aggregated with distance; and (d) balanced sampling with 𝛼 = 5%,
aggregated according to prior probability. Across all figures, four predominant groups emerge consistently: G



4.1. PAPER NO. 2: A STATISTICAL METHOD FOR THE ATTRIBUTION OF CHANGE-POINTS IN
SEGMENTED IWV DIFFERENCE TIME SERIES 99

(𝑐=1 and 15), (G, E, E’) (𝑐=31 and 35), (E, E’) (𝑐 = 10 and 23), and E (𝑐 = 8 and 22). Remarkably, these
configurations correspond to the highest joint probabilities, 𝑝, as indicated in Table 4.1: G and (E, E’) with
𝑝 = 0.18, (G, E, E’) with 𝑝 = 0.04, and E with 𝑝 = 0.01. This demonstrates that the classifier actually predicts
the configurations which we believe are the most likely in the real data, even when these probabilities are not
directly used in the procedure such as in variants (a) and (b).

Figure 4.8 – Distribution of the final predicted configurations, after aggregation, from the real data with the
Random Forest method. The numbers in color bars refer to the configuration number 𝑐 among the 38 cases
displayed in RSD Table (Table 4.1). Results are plotted for four cases: a) balanced sample learning with 𝛼 = 0.05
and aggregated by distance, b) balanced sample with 𝛼 = 0.01 and aggregated by distance, c) imbalanced sample
with 𝛼 = 0.05 and aggregated by distance, and d) balanced sample with 𝛼 = 0.05 and aggregated by prior
probability.

In variant (a), 47 of the change-points (i.e. 41%) are attributed to group G and 29 (i.e. 25%) to group (G, E,
E’), after the aggregation. Analysis of the six test results before and after the prediction helps to understand
the relatively high frequency of these two groups. In general, the test results can be of two sorts: either the
six results correspond to a configuration in the Table 4.1, and in this case the predictive rule predicts the same
result (as expected), or the result is initially not in the Table, and the predictive rule will select a configuration
that is "close" to the initial configuration. Among all the test results going to group G, i.e. (1,1,1,0,0,0) for
𝑐 = 1 and (-1,-1,-1,0,0,0) for 𝑐=15, about 75% are initially in the Table. This high percentage is consistent with
the observation that many jumps are significant in the first three tests and insignificant in the last three, as seen
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in Figures 4.6 and 4.7. The 25% of cases which are not initially in the Table differ from these configurations by
one or two elements, e.g. case (1,0,1,0,0,0) differs from 𝑐=1 by only the 2nd element (the G-G’ test). This case
is then attributed to 𝑐=1 by the predictive rule when the absolute value of the t-value of the estimated jump in
the G-G’ series is close to the critical value, 𝜏𝛼/2=1.96, in combination with smaller t-values in E-E’, G’-E’, and
G’-E. For group (G, E, E’), the percentage of cases that are not in the Table is slightly more than 50%. Almost
all these cases are either (1,1,1,0,1,0) or (-1,-1,-1,0,-1,0), which differ only by the 6th element (the G’-E test)
from the final configurations 𝑐=31 (1,1,1,0,1,1) or 𝑐=35 (-1,-1,-1,0,-1,-1), respectively. Contrary to the G-G’
series, the G’-E series has smaller t-values on average, hence the frequent 0 in the initial test results. The fact
that almost all these cases are finally predicted as 𝑐=31 or 35 can be explained by the simultaneous occurrence
of: high t-values in G-G’ and G-E’, a small t-values in E-E’, a high t-values in G’-E’, and a value close to the
critical value for G’-E. An example is provided in Figure 4.9. In this example, one may also suspect that the
t-value of G’-E’ is excessively large, given the small value of the corresponding jump (-0.12) compared to the
jumps in G-E, G-G’, and G-E’. One way to reduce the occurrence of excessively high t-values in G’-E’ is to
increase the critical value of the test. For example if we set 𝜏𝛼/2=2.58 (𝛼 = 0.01), the test result here becomes 0
and the initial configuration becomes 𝑐 = 15, which has a higher probability in Table 4.1 and is thus preferred.

Figure 4.9 – Example of test result for station FAIR (Fairbanks, Alaska) with nearby station CLGO at a distance
of 21 km. The series of IWV differences are shown in gray. The black vertical solid line shows the change-point
detected in G-E by the segmentation (04 October 2017). The blue triangles indicate known equipment changes
in the main station from the GNSS metadata. The horizontal red lines show the means estimated by the FGLS
regression on the left and the right of the change-point in each series.

The impact of using 𝛼 = 0.01 is further illustrated on all tests with Figure 4.8b. Only 9 change-points are now
assigned to group (G, E, E’), which is considerably smaller than with 𝛼 = 0.05. Actually, 10 change-points
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moved to group G and 9 to group (E, E’). This difference can be understood by inspecting the distribution of
t-values with respect to the corresponding critical values (2.58 vs. 1.96). Figure 4.6 shows that many t-values for
E-E’, G’-E, and G’-E’ are smaller than 2.58 in absolute value. When these tests become insignificant, while the
other three stay significant, the predicted configuration becomes 𝑐=1 or 15, and when G’-E’ remains significant
or close to 2.58, the predicted configuration becomes 𝑐=31 or 35. Additionally, many configurations with low
probabilities (𝑐=3, 7, 17, 18, 32, 33) have also disappeared.

Figure 4.8c shows the impact of the (probability-based) imbalanced sampling in the learning procedure. Over-
all, the results for the main groups are not much different compared to the balanced sampling. Two noticeable
differences emerge, however. Firstly, group (G, E, E’) reduces only slightly in size, from 29 to 20. The smallness
of the impact is explained by the fact almost half of test results are initially in the Table 4.1 and are not changed
by the prediction. Secondly, almost all the configurations with the lowest probabilities, such as 𝑐 = 7, 21, 32,
33, 38, with 𝑝 ≤ 5.6× 10−4, are removed. Other configurations, with slightly higher probabilities, but still with
𝑝 ≤ 0.01, such as 𝑐 = 3, 16, 17 (G, E’) and 𝑐 = 29 and 34 (G, E), emerge or are reinforced, which is not wanted.

Figure 4.8d shows the variant (d) where the aggregation is based on the prior probabilities. The distribution
is quite different from that based on distance (Figure 4.8a): more change-points are attributed to the preferred
groups, 62% in G and 19% in (E, E’), fewer to other groups such as (G, E, E’) and E, and many configurations
of low probability disappear. The distribution is actually quite similar to that of variant (b), but in contrast to
the latter, this variant keeps a high power in the test (thanks to 𝛼=0.05). As a result, with variant (d), group E
is much smaller than with variant (b). In this respect, variant (d) is preferred among all four variants. Note,
however, that there is a limitation in the usage of the aggregation procedure which holds for all variants: when
there is only one nearby station (30 % of the cases), the aggregation has no impact and the final result is the
one selected by the prediction rule. In variant (d), this explains why there are still configurations with a low
probability (𝑐=8/22, 3, 31/35, 21, 38).

4.1.6 Conclusions and perspectives

We proposed a post-processing method for the attribution of change-points detected by a segmentation scheme
involving multiple series of differences (target minus reference). In our application, the each of the stations
provides a GNSS series (G) and a reanalysis series (E). The segmentation is run on the G-E series and the
goal of the attribution method is to predict if the inhomogeneity (jump in the mean) is in G or E. The method
proceeds along the following steps:

1. Data selection and pre-processing. For each detected change-point in a main station (hereafter, the
"main change-point"): (a) select nearby stations with a horizontal distance smaller than 200 km and
height difference smaller than 500 m; (b) run the segmentation method on the G’-E’ for each nearby data
and select only homogeneous segments from the nearby to compare with the main; (c) correct the nearby
series, G’ and E’, for the height difference with respect to the main station, so that all four series (G, E,
G’, and E’) are representative of the same height; (d) form the six series of differences (G-E, G-G’, etc.)
and remove the outliers.

2. Test the significance of the jumps. For each main change-point and each of the six series: (a) identify
the noise model; (b) fit a regression model including a jump at the position of the main change-point
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when at least 𝑛 = 200 consecutive points are available on the left and right of the change-point, using an
iterative FGLS procedure; (c) test the significance of the jump at the significance level 𝛼 = 0.05.

3. Use a predictive rule to predict the configuration. For each nearby, the learned classifier will predict
the configuration (i.e. which of the G, E, G’, and E’ series have a significant jump) corresponding to the
six test results. When several nearby series are used, a weighted prediction score is computed to select
the final configuration.

The method has been applied to a real data set of 494 cases (114 change-points from 49 main stations compared
with 312 nearby stations). The data characterization showed that the data have a strong heteroscedasticity, with
mean annual seasonal variation in the standard deviation around 70% (half-range), and a moderate autocorre-
lation, with a typical lag-1 correlation coefficient of 0.3. A FGLS test procedure was implemented to ensure an
accurate inference. The predictive rule has been trained on the real data. Several classifiers have been compared
for the predictive rule and the Random Forest was selected.

To our knowledge, both the FGLS regression test approach and the Random Forest classifier have never been
used in the context of climate series homogenization.

The FGLS tests and the classification results of the studied data set have been assessed using i) our expertise
of the data set (formulated out in two probabilistic rules) and ii) metadata informing about known equipment
changes at the GNSS sites. Very consistent and plausible results were found from both the FGLS tests and
the classification. With a significance level of 5% and employing a balanced sample for the learning step in
the predictive rule, as well as aggregating results from nearby sources based on prior probability, the findings
clearly indicate predominance of significant jumps in the series involving G (62%), (E, E’) (19%), and (G, E,
E’) (10%) as expected. The remaining 9% of unexpected results are thought be linked with low detection power
of the FGLS test when the noise is large (e.g. due to large distance between the main station and the nearby)
and possibly random errors in the classification due to the smallness of the learning sample.

Some possibilities to further improve the method are: i) to use a bigger data set to improve the predictive
method, ii) to refine the nearby selection rules to improve the robustness and the power of the test procedure
(e.g., select nearby series with smaller percentage of gaps, shorten the distance between the main station and
nearby), iii) compute the critical value used in the FGLS test from a more realistic empirical distribution. These
options will be tested in a future work.

4.1.7 Appendix

4.1.7.1 Test table

Table 4.1 shows the theoretical test results one would obtain for the six paired difference series (G-E, G’-E’,
G-G’, G-E’, G’-E, E-E’) with a perfect test method, for 54 different combinations of jumps in the four base
series (G, E, G’, E’). The jumps in the base series are coded on three values: 0 (no jump), +1 (upward jump),
and -1 (downward jump). Here, only cases where either G or E, or both, have a jump are considered, because
we always start we a change-point detected by the segmentation method in the G-E series (so either in G, in E,
or in both). The corresponding results in the SD Table are thus theoretically coded on five different values (0,
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1, 2, -1, and -2). However, in practice, a test result will be either reject (-1 or +1, where the sign indicates if the
jump is upward or downward) or fail to reject (0) the null hypothesis of no jump. The RSD Table shows the
corresponding practical results where the results are coded on three values only. The SD Table contains actually
46 unique combinations of the six test results and 8 duplicates highlighted by a colored background, while the
RSD Table contains only 38 unique combinations. The duplicates are sorted out depending on probabilities
(see Appendix B), i.e. those with lower probabilities are not counted.

4.1.7.2 Computation of prior probabilities

This section explains how we compute the conditional and joint probabilities reported in the Table 4.1. The
notation hereafter is 𝐴 (italics) for events and A (straight) for time series.
Let 𝐺, 𝐸 , 𝐺′, and 𝐸 ′ represent the event "there is a jump" in each of the four base series, with the possible
outcomes: 0=no jump, -1=the jump is downward, +1=the jump is upward. Let 𝑃(𝐴|𝐵) represent the conditional
probability of 𝐴 given 𝐵. Let us assume that the events 𝐺 and 𝐸 are independent, and that 𝐺′ and 𝐸 ′ are
independent. Now we reformulate the two rules that we stated in the Introduction and associate them with
probabilities:

(R1) 𝑃(𝐺′ ≠ 0|𝐺 ≠ 0 ∪ 𝐸 ≠ 0) = 0.1.

(R2) 𝑃(𝐸 = 𝐸 ′) = 0.9.

The values of 0.1 and 0.9 are chosen in a way to reflect the contrast between the corresponding events. Note
that the first rule is stated more generally than in the Introduction as here it is now also conditional on a
jump in series E. Indeed, in practice, it is unlikely that a jump in series G’ occurs at the same time as in any
other series. The first probability accounts thus for two incompatible events: (𝐺′ ≠ 0|𝐺 ≠ 0, 𝐸 = 0) and
(𝐺′ ≠ 0|𝐺 = 0, 𝐸 ≠ 0), which we can suppose to be of similar probability 𝑝1 = 0.05. It follows from the first
rule that 𝑃(𝐺′ = 0|𝐺 ≠ 0 ∪ 𝐸 ≠ 0) = 0.9. It follows from the second rule that 𝑃(𝐸 ′ ≠ 𝐸) = 0.1, which also
corresponds to two incompatible events (𝐸 ′ = 0|𝐸 = −1) and (𝐸 ′ = 0|𝐸 = +1), the probability of which we
will also assume to be equal to 𝑝2 = 0.05.
The conditional probabilities 𝑃(𝐺′, 𝐸 ′ |𝐺, 𝐸) are obtained from the products of the individual probabilities
𝑃(𝐺′, 𝐸 ′ |𝐺, 𝐸) = 𝑃(𝐺′ |𝐺, 𝐸) × 𝑃(𝐸 ′ |𝐺, 𝐸). These probabilities are sufficient to distinguish the duplicates
in the first 36 rows of the SD Table and the RSD Table (e.g. rows 1 and 18, in the numbering going from
1 to 54, have the same 6 values but are associated with different conditional probabilities). However, more
duplicates appear in the RSD Table in the last 18 rows (row numbers 37 to 54). In order to distinguish
them, we introduce prior probabilities associated to the events 𝐺 and 𝐸 . There are six different combinations:
(𝐺, 𝐸) ∈ {(+1, 0), (0,−1), (−1, 0), (0,−1), (+1,−1), (−1, +1)}. In the first 4 combinations, a single change
occurs in either 𝐺 or 𝐸 , while in the latter 2, two changes occur simultaneously. The former is more likely, so
we attribute it a probability of 𝑝3 = 0.225, from which it results that the latter has a probability of 𝑝4 = 0.05
which is deduced from the equation 4 × 𝑝3 + 2 × 𝑝4 = 1.
Finally, the joint probabilities reported in Table 4.1 are obtained from the product of the conditional and the
prior probabilities: 𝑃(𝐺, 𝐸, 𝐺′, 𝐸 ′) = 𝑃(𝐺′, 𝐸 ′ |𝐺, 𝐸) × 𝑃(𝐺, 𝐸).
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4.2 Additional studies

4.2.1 Assessment of the stochastic model identification and parameter estimation

In the work presented in the previous section, we used the auto.arima function of the R package forecast
(Hyndman and Khandakar, 2008) to identify the noise model in the time series of IWV differences and the
arima function to estimate the model parameters. Results are presented in Figure 4.3 of the paper, for all the
change-points tested from the main-nearby pairs, for each of the six series of differences.

The utilization of auto.arima in time series forecasting is widely acknowledged in the literature (Shaub,
2020; Yan et al., 2022; Radke et al., 2020; Lai and Dzombak, 2020). However, its skill for model identification
has not been extensively discussed. In this subsection, we specifically evaluate its effectiveness within our
application framework, i.e. the identification of four particular stochastic models: white noise (WN), AR(1),
MA(1), and ARMA(1,1). We recall that, in a preliminary investigation, we tested ARMA(𝑝, 𝑞) models up to
order 𝑝, 𝑞 = 2, but we found that only a negligible proportion of the time series were identified with order 2
and few of them had actually significant coefficients (𝛼 = 0.05), so we limited ourselves to order 𝑝 = 1 and 𝑞 = 1.

Our examination below investigates the impact of the length of the series, 𝑁 , and the coefficient values, 𝜙 and \,
on the variance of the coefficient estimates. We have seen from equations (2.20 to 2.23), introduced in subsection
2.2.3.8, that the variance of the coefficient estimates increases when the coefficients values decrease. To which
extent the coefficient values impact the model identification performance is, however, not well known. The
subsections below first assess the model identification performance of auto.arima in terms of the probability
of identifying the true model. Then, the uncertainty of the coefficients estimated with the arima function is
examined assuming the model identified is correct. We also investigate the influence of gaps in the time series
on both model identification and parameter estimation quality. This is a situation frequently encountered with
real data. Finally, we discuss the possible impact of the uncertainty in the model identification and parameter
estimation in the case of the real data presented in the paper.

4.2.1.1 Simulation set-up

The simulations involve varying the length of time series, ranging from 𝑁 = 200 to 2000 data points. Coefficients
for the AR(1) and MA(1) models are chosen from the range of 0.1 to 0.6, covering typical values encountered
in real data. For the ARMA(1,1) model, the study examines six cases where the sum 𝑠 = 𝜙 + \ goes from 0.1
to 0.6, where 𝜙 is varied from 0.8 to -0.8 and \ is adjusted accordingly. Importantly, cases where 𝜙 = 0 or
\ = 0, representing a MA(1) or an AR(1) model, respectively, are excluded from the ARMA(1,1) discussion.
The analysis comprises 1000 simulation runs and the variance of the white noise (or innovation) is set to 1.

4.2.1.2 Noise model identification results

The relationship between series length and the efficiency of model identification is presented in Figure 4.10
and Figure 4.11. All the plots demonstrate a consistent trend: the True Positive Rate (TPR), which quantifies
the fraction of time series for which the true model is correctly identified, improves as the series length
increases. However, the slope of the TPR curves varies depending on the model type and coefficient values.
Three interesting features can be mentioned. Firstly, the dependency of TPR on series length for the AR(1)
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and MA(1) models appears to be strongly resembling for similar coefficient values. The slope of the TPR
curves is gentler for larger coefficient values and becomes steeper as the coefficient magnitude reduces. This
behavior is certainly in connection with the impact of coefficient values on estimation uncertainty (smaller
coefficients leading to larger uncertainty, discussed in Chapter 2.2.3). Notably, for coefficient values of 0.3 or
larger, the TPR exceeds 70% when 𝑁 = 200 and 95% when 𝑁 = 1400, for both models. However, with smaller
coefficients, a TPR value of 95% is never reached, even for a series length of up to 2000. Secondly, for the
ARMA(1,1) model, the shape of the TPR curve is clearly dependent on the sum of the coefficients, 𝑠 = 𝜙 + \,
where inverting the values of 𝜙 and \ yields similar TPR results. It is also seen that the slope of the TPR curves
if steeper when either the absolute values of coefficients are larger or when the sum is larger. For example, for
a scenario wherein the sum of the two coefficients is 𝑠 = 0.3, the TPR goes from roughly 40% for 𝑁 = 200 to
95% for 𝑁 = 800 when 𝜙 = 0.7 and \ = −0.4 (and similarly when 𝜙 = −0.4 and \ = 0.7). However, with the
combination 𝜙 = 0.6 and \ = −0.3, the TPR of 95% is only achieved for a longer series 𝑁 = 1800. Lastly,
several cases exist where the TPR remains notably low even with extended series lengths, suggesting inherent
challenges in model identification. For example, when the sum of the coefficient values is 0.3, coefficient pairs
such as (0.1, 0.2), (0.2, 0.1), (−0.1, 0.4), and (0.4,−0.1) result in TPRs below 10%, even when 𝑁 reaches 2000.

In Figures 4.12 and 4.13, the same results are plotted in an alternative way to enhance the influence of model
coefficients on the efficiency of the model identification.

For the AR(1) and MA(1) models shown in Figure 4.12, the TPR ascends as coefficients increase, reaching a
value near 1 for 𝜙 or \ values of approximately 0.6 for all series lengths. For smaller coefficients, the TPR
displays greater dispersion across series lengths. It is interesting to examine which alternative model is actually
identified when TPR is smaller than 100%. Figure 4.14 shows that a negligible fraction of cases are identified
as ARMA(1,1) when the true series is AR(1) or MA(1). This can be easily understood by the parsimony effect
embedded in the BIC model selection. However, when the coefficient of the AR(1) model becomes small, a non
negligible fraction of cases are identified as MA(1) and vice-versa. In the extreme case when the coefficients
are close to zero, they may be identified as WN (e.g., about 30% when 𝜙 or \=0.1).

For the ARMA(1,1) model (Figure 4.13), the TPR behavior is very different depending on whether the sum
of 𝜙 and \ is smaller or larger than 0.3, showing either single or dual dips in the TPR curve respectively. It
is noteworthy that these dips consistently appear when one of the coefficients nears zero. For example, with
𝑠 = 0.3, when either 𝜙 = 0.1 and \ = 0.2 or its converse, the TPR goes to zero. Conversely, for 𝑠 > 0.3, e.g.
when 𝑠 = 0.5, dual dips emerge for combinations 𝜙 = 0.4 and \ = 0.1, and 𝜙 = 0.1 and \ = 0.4. The reason why
the TPR is so low in this case can be understood by examining the details of the model identification outcomes
shown in Figure 4.15. Indeed, in situations where one parameter is small and one is large, it is logical that a
simpler model is preferred, i.e. a AR(1) or a MA(1). This is clearly observed on this Figure: an ARMA(1,1) is
correctly identified only when both 𝜙 and \ are not close to 0, whereas it is predominantly identified as AR(1)
when \ is small and as MA(1) when 𝜙 is small. Moreover, the fraction of correct identification not only depends
on the values of 𝜙 and \ but also on their sum, 𝑠 = 𝜙 + \. Notably, Figure 4.15e shows that for the latter
example with 𝑠 = 0.5, over 85% of the series are classified under the AR(1) model (note that this simulation is
specific to the case 𝑁 = 1000). However, a special situation is observed in Figure 4.15a for 𝑠 = 0.1, where a
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significant fraction of cases are identified as WN even when 𝜙 and \ get large. Indeed, when 𝑠 is close to zero,
the values of 𝜙 and \ are nearly opposite and the stochastic process is actually close to a white noise process.
Identifying an ARMA model when 𝜙 = −\ is an ill-posed problem which leads to infinite variance in both
estimated parameters as reflected from Eqs. (2.22 and 2.23). This issue is referred to as parameter redundancy
or over-parameterization (Shumway and Stoffer, 2011).

(a) AR(1) (b) MA(1)

Figure 4.10 – True Positive Rate (TPR) against series length for AR(1) model (left) and MA(1) model (right).
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(a) s = 0.1 (b) s = 0.2

(c) s = 0.3 (d) s = 0.4

(e) s = 0.5 (f) s = 0.6

Figure 4.11 – True Positive Rate (TPR) against series length for ARMA(1,1) model. Plots (a) to (g) depict the
results for six variations, with coefficient sums 𝑠 = 𝜙 + \ ranging from 0.1 to 0.6.
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(a) AR(1) (b) MA(1)

Figure 4.12 – True Positive Rate (TPR) as a function of the coefficient value for the AR(1) model (left) and the
MA(1) model (right).
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(a) s = 0.1 (b) s = 0.2

(c) s = 0.3 (d) s = 0.4

(e) s = 0.5 (f) s = 0.6

Figure 4.13 – True Positive Rate (TPR) as a function of the coefficient values for ARMA(1,1) model. Plots (a)
to (f) depict the results for six variations, with coefficient sums 𝑠 = 𝜙 + \ ranging from 0.1 to 0.6.



4.2. ADDITIONAL STUDIES 110

(a) AR(1) (b) MA(1)

Figure 4.14 – Outcomes from the model identification for AR(1) (left) and MA(1) (right) as a function of
coefficient values, specifically for series lengths of 1000.
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(a) s = 0.1

(b) s = 0.2

(c) s = 0.3

(d) s = 0.4



4.2. ADDITIONAL STUDIES 112

(e) s = 0.5

(f) s = 0.6

Figure 4.15 – Outcomes from the model identification of ARMA(1,1) as a function of coefficient values,
specifically for series lengths of 1000. Plots (a) to (f) depict the results for six variations, with coefficient sums
𝑠 = 𝜙 + \ ranging from 0.1 to 0.6.

4.2.1.3 Parameter estimation results

Figures 4.16 and 4.17 display the mean standard error of the estimated coefficients for AR(1), MA(1), and
ARMA(1,1) models obtained from the simulations. These values are in good agreement with the estimates
computed from equations (2.20) to (2.23) presented in subsection 2.2.3. From these plots, it is convenient to
predict the uncertainty in the estimated parameters when designing an experiment or analysis with real data. For
example, for an assumed ARMA(1,1) process with 𝜙 = 0.6 and \ = −0.3, as reported in the paper, a standard
error close to 0.21 is expected on both 𝜙 and \̂ when 𝑁 = 200, which can be decreased to 0.08 for both estimates
when 𝑁 = 1000.
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(a) AR(1) (b) MA(1)

Figure 4.16 – Mean coefficient standard error as a function of time series length for models: AR(1) with 𝜙 = 0.3
on the left, MA(1) with \ = 0.3 on the right.

(a) phi (b) theta

Figure 4.17 – Mean coefficient standard error as a function of time series length for the ARMA(1,1) model with
𝑠 = 𝜙 + \ = 0.3.

(a) phi (b) theta

Figure 4.18 – Mean coefficient standard error as a function of time series length for the ARMA(1,1) model with
𝑠 = 𝜙 + \ = 0.5.

4.2.1.4 Impact of gaps in the time series

In practice, observational data series frequently exhibit measurement gaps. While some studies have
investigated the impact of gaps on stochastic model parameter estimations, and have proposed modified
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estimation procedures assuming a known model, the impact of gaps on model identification has not been
much studied. Intuitively, one can expect that missing data will weaken the correlation structure, making it
more challenging to correctly identify the model. The simulations below investigate the performance of the
auto.arima function in the presence of gaps for the special case of an AR(1) process with a value of 𝜙 = 0.3.
In this simulation setup, the length of the time series remained constant, while a fraction of data points were
replaced with NA values.

Figure 4.19 shows the percentage of identified models when the true model is an AR(1) (left) and the
corresponding coefficient estimates (right) when the fraction of missing data varies between 0% and 50%.

The model identification results show that the AR(1) process is generally well identified, with a small fraction
being MA(1). The TPR of the AR(1) drops from 91% to 76% when the fraction of gaps rises from 0 to 50%.
Interestingly, even with half the data missing, the ability to detect a serial correlation in the series (either as
AR(1), MA(1) or ARMA(1,1)) remains high at around 99%, while the rate of misclassifying AR(1) as white
noise is under 1% (when 𝜙 = 0.3).

Figure 4.19b presents the coefficient estimates obtained with the arima function, which takes missing data (in the
form of NA values) into account. The plot displays the distribution of 𝜙 and \̂ when either an AR(1) or a MA(1)
model is identified while the data are simulated from an AR(1) with 𝜙=0.3. Firstly, for the correctly identified
AR(1) cases, the estimates average consistently around 0.3; however, the scatter increases with increasing data
gaps. Secondly, in cases where MA(1) is identified, the median of coefficients is about 0.33. The slightly larger
coefficient value of the MA(1) process compared to the AR(1) process is easily explained by the fact that these
processes have a similar value of the autocorrelation function (ACF) at lag 1 for these specific coefficient values.

(a) Model identification (b) Coefficient estimates

Figure 4.19 – Percentage of identified models and the associated coefficient estimate against the percentage of
missing data when simulating the AR(1) model with 𝜙 = 0.3.

4.2.1.5 Interpretation of results from real data

The simulation results presented in the previous subsection can help to assess the reliability of the data
characterization and to interpret the results presented in the paper.
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First, we examine the uncertainty in the identification of the three main stochastic models with their typical
(average) coefficients found in the paper. Recall that the minimum series length considered in the paper is
𝑁=400, composed of 200 points on each side of the change-point, and in practice, it often exceeds 𝑁=1000.
Beginning with the AR(1) model with 𝜙 = 0.3, we expect a correct identification of this model with a TPR=80%
for a sample size of 𝑁 = 400, and a TPR exceeding 90% when 𝑁 > 1000 (green line in Figure 4.10a). For the
MA(1) model with \ = 0.2, TPR is about 60% for 𝑁=400 and rises to 83% for 𝑁 = 2000 (olive line in Figure
4.10b). For the ARMA(1,1) model, we consider two coefficient combinations: (a) 𝜙 = 0.6 and \ = −0.3, and
(b) 𝜙 = 0.3 and \ = 0.2. For the former, we expect a TPR of 40% at 𝑁=400 which rises to 95% by 𝑁=1800
(purple line in Figure 4.11c). For the latter, TPR initially lingers 10% when 𝑁 = 400 but approaches 95%
only at 𝑁 = 2000 (cyan-green line in Figure 4.11e). The standard errors for these two ARMA(1,1) cases are
std[𝜙]=0.069 and std[\̂]=0.082 in case (a), and std[𝜙] ∼ std[\̂] ∼ 0.065 in case (b), according to Equations
(2.22) and (2.23).

Figure 4.20 – Coefficient estimates, \̂ vs. 𝜙, for all six series of IWV differences and all (494) main-nearby
pairs in the real dataset, with series length 𝑁 ≥ 1000. The colors correspond to different models (WN in blue,
AR(1) in orange, MA(1) in yellow, and ARMA(1,1) in purple).

Next, we examine the dispersion of the estimated coefficients in the real data. Figure 4.20 shows the coefficient
estimates, 𝜙 and \̂, from the data analysed in the paper, restricted to series with 𝑁>1000 data. This plot
complements Figure 4.3 of the paper, but without separating the results for the data combinations. The
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representation of the results in the (\̂, 𝜙) plane gives a special insight into the characteristics of the identified
ARMA(1,1) models.

The distribution of the 𝜙 and \̂ coefficients for MA(1) and AR(1) models show values extending over a quite
large range, from about 0.05 (for both coefficients) to 0.45 for \̂ and 0.9 for 𝜙. The TPR for the coefficient
values below 0.1 is smaller than 40% (green curves in Figure 4.12a and b), i.e. more than 60% of these
time series could be mis-identified as white noise (30%) or MA(1) instead of AR(1) and vice-versa (30%) as
revealed by Figure 4.14a and b. For coefficient values above 0.3, the TPR exceeds 90%, so these case are
correctly identified and estimated. The uncertainty in the coefficient estimates (∼ 0.03, Figure 4.16) certainly
adds to the scatter in the observed range of values.

As for the identified ARMA(1,1) models, the estimated coefficients exhibit a very large scatter, covering
almost all possible values, from -1 to +1, except around zero. The (𝜙, \̂) points appear actually to fall
into two major and one minor groups, depending primarily on 𝑠 = 𝜙 + \̂. the first major group aligns
more or less on the 𝑠 = 0.2 line and includes 𝜙 values in the range 0.4 to 0.99. Referring to Figure
4.15b for the case 𝑠 = 0.2, the values of 𝜙 at the lower end have very low probability to be identified as
ARMA(1,1), which means that this class may be under-represented in our analysis. At the higher end, the
values align more on the 𝑠 < 0.1 line, and these series, although identified as ARMA(1,1), are in reality
close to a white noise. The standard error of the coefficients for the latter cases becomes very large, with
makes their interpretation difficult. The few cases in the minor group where 𝜙 takes negative values and \̂
positive values are close to 𝑠 ∼ 0.1, and may just be some examples of biased estimates from the first major group.

The second major group of the ARMA(1,1) results is centred on (𝜙, \̂) = (0.3, 0.2). As was shown in Figure
4.3 of the paper, these cases correspond to all the E-E’ series plus some other series when the distance between
main and nearby is larger than 50 km. The scatter in this group is relatively small, which can be explained by
the higher accuracy of the 𝜙 and \̂ estimates in this group compared to the previous (see 4.18). However, the
probability of correct identification for this group remains only around 60% (Figure 4.15e), with almost 40%
going to the AR(1) group. It is thus probable that the ARMA(1,1) cases from both groups are under-represented
in our results, and that the observed AR(1) and MA(1) groups include the latter.

4.2.2 Understanding of test and prediction results

In this subsection, we complement the discussion on the test and prediction results given in Section 4.1.4.3 of
the paper. First, our attention is on the results of the balanced sample learning (variant (a) of Figure 4.26. We
will focus on cases where combinations of the six tests initially not in the Test Table (Table 4.1 presented in the
paper). Second, we discuss the impact of the distance on the test results. Next, we analyse the distribution of
the predicted configurations before aggregation and, last, we discuss the uncertainty in the final classifier.

Further discussion of the results of variant (a). Among the 494 tested cases, 225 correspond to configu-
rations that are not in the Test Table. These cases can be assembled in different groups, of which the 3 main
are presented in Table 4.5. Group 1 contains 52 cases, of which 32 correspond to test results of (-1,-1,-1,0,-1,0)
and 20 of (1,1,1,0,1,0). Group 2 contains 37 cases, among which 22 correspond to test results of (-1,0,0,0,0,0)
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and 15 of (1,0,0,0,0,0). Group 3 contains 14, where 10 cases correspond to test results of (-1,0,-1,0,0,0) and 4
of (1,0,1,0,0,0).

For the cases in group 1, the initial three tests have usually large t-values, while the subsequent three tests
present lower, frequently insignificant t-values (which is a characteristic of configuration 𝑐=1). However, the
cases in group 1 have a significant G’-E’ test (this configuration is not in Table 4.5). This is due to the fact that
the G’ and E’ series are co-located, resulting in a lower noise level compared to the other two series (E-E’ and
G’-E), which remain influenced by the distance (larger noise at larger distance). The reason why these cases
are predicted into different configuration is discussed below.

The groups 2 and 3 are most frequently observed at greater distances, averaging around 114 km and 126 km,
respectively. Group 2 becomes more prominent when the t-values in G-E’ are insignificant, while Group 3
corresponds to cases when the t-values in G-E’ are only slightly larger than the critical value (the average values
of these t-values is 2.24 for the upward shift and -2.33 for the downward shift).

Examining the prediction outcomes for these three groups reveals two points. First, a general observation is
that predictions typically adjust only one or two elements among the six. Second, the way the six tests relate
to each other and to the critical value, determines which elements are adjusted. These underlying rationales is
evident across all groups.

In the first group, with test results such as (-1,-1,-1,0,-1,0), configurations are predicted such as 𝑐 =15 (where
G’-E’ goes from −1 to 0), 𝑐 =16 (E-E’ goes from 0 to −1), and 𝑐 =35 (G’-E goes from 0 to −1). The
clear predominance of prediction configuration 𝑐 = 35 is further discussed in the subsection 4.1.5.3 of the
paper. Analyzing further, the configuration predicted as 𝑐 =15 has the following t-values for the 6 series:
(−7.5,−4.9,−7.5,−1.4,−2,−0.6). Here, the G’-E’ is close to the critical value (1.96) but considerably lower
than the first two tests (G-G’ and G-E’), while G’-E is far to the critical value. Consequently, it is intuitive to
shift G’-E’ to being insignificant and predicting 𝑐 = 15 instead of 35.

In group 2, five test results are insignificant. The classifier adjusts either the G-E’ and G-G’ result or the E-E’
and G’-E’ result. This leads to the predicted configurations 1, 15, 8, or 22, mainly because they are the only
configurations with three zeros in the Test Table (Table 4.1).

Finally, the classifier predicts the cases of the group 3 to configurations 1 and 15, which differ from the test
results only by the G-G’ result. The average absolute t-values for G-G’ in this group stands at 1.6, nearing the
critical value (1.96) more than the G-E’, E-E’, and G’-E results which have average absolute t-values of 0.4,
0.7, and 0.8, respectively.
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Group Test results Predicted Count

G-E G-G’ G-E’ E-E’ G’-E’ G’-E Config G-E G-G’ G-E’ E-E’ G’-E’ G’-E

1
-1 -1 -1 0 -1 0

15 -1 -1 -1 0 0 0 1
16 -1 -1 -1 -1 -1 0 1
35 -1 -1 -1 0 -1 -1 30

1 1 1 0 1 0 1 1 1 1 0 0 0 2
31 1 1 1 0 1 1 18

2
-1 0 0 0 0 0 15 -1 -1 -1 0 0 0 17

22 -1 0 0 1 0 -1 5

1 0 0 0 0 0 1 1 1 1 0 0 0 2
8 1 0 0 -1 0 1 13

3 -1 0 -1 0 0 0 15 -1 -1 -1 0 0 0 10
1 0 1 0 0 0 1 1 1 1 0 0 0 4

Table 4.5 – (left part) Three main groups of test results which are not in the Table 4.1; (right part) configurations
predicted by the classifier and number of cases (rightmost column).

Figure 4.21 – Example of test results for station POTS (Postdam, Germany) with nearby station LDB at a
distance of 74 km. The series of IWV differences are shown in gray. The black vertical solid line shows the
change-point detected in G-E by the segmentation (19 June 2009).

Impact of distance on test results. In the subsection 4.1.4.3 of the paper, we have observed that the
distance between the main and nearby stations has an impact on the standard error of the jump, and
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therefore on the t-value. In particular, the standard error of estimated jumps is clearly smaller for short
distance (lower than 50 km). Here, we discuss in more details this point according to the noise level of the series.

First, recall that the variance of the GLS jump estimator, 𝛿𝐺𝐿𝑆 , is given by Equation (4.6): 𝑣𝑎𝑟 [𝛽𝐺𝐿𝑆] =

(𝑋 ′Σ−1
0 𝑋)−1, where Σ0 is the variance-covariance matrix of the noise. In the simplest scenario of independent

and identically distributed (IID) noise with variance 𝜎2
0 , we have Σ0 = 𝜎2

0 𝐼𝑛, and it can be shown that, for a
simple model with no coefficients for the Fourier series, when the change-point is located in the middle of a
series of total length 𝑛, the variance of the estimator of the jump then writes:

𝑣𝑎𝑟 [𝛿𝐺𝐿𝑆] =
4
𝑛2𝜎

2
0 (4.11)

In the case when the noise is autocorrelated but remains homoscedastic, then Σ0 = V CV = C𝜎2
0 , and

𝑣𝑎𝑟 [𝛿𝐺𝐿𝑆] is still proportional to 𝜎2
0 . Finally, when the noise is autocorrelated and heteroscedastic, it can

be shown that 𝑣𝑎𝑟 [𝛿𝐺𝐿𝑆] is proportional to the time-mean variance < 𝜎2
𝑡 >. In the real data, this variance

increases with the distance.

Figure 4.22 presents the graph of the estimated standard error of the jump estimator as a function of the
time mean of the moving standard deviation for each series of difference. The relationship between the
two variables is almost linear, as expected. The (positive) correlation between these two variables ranges
from 𝑟 = 0.76 to 0.84. For non-collocated series, the range of values is larger, where the larger values
correspond to larger distances (distinguished by red and blue points). The collocated series, G-E and G’-
E’, have a maximum standard deviation of about 1.6 , whereas for non-collocated series, it lies between 3 and 3.5.

Figure 4.23 plots the noise level of the four non-collocated series as a function of the distance. As expected, the
further away the nearby station is, more noise is introduced into the difference series. Consequently, a strong
dependence of the uncertainty in the jump estimates on the distance becomes evident as depicted in Figure 4.24.

Figure 4.25 presents the t-values of the four non-collocatedseries plotted against distance.
Among these, G-G’ and G-E’ display a declining trend in t-values as distance increases. In contrast, G’-E
and E-E’ show a near uniform t-value distribution. This pattern is consistent with the findings observed in the
t-values box plot presented in the paper. The decreasing trend in G-G’ and G-E’ is attributed to the rise in
standard error with increased distance, while the uniform distribution in G’-E and E-E’ is due to their relatively
smaller jump amplitudes compared to the others.
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Figure 4.22 – Estimated standard error of the jump estimator as a function of the moving standard deviation
for the four non-collocated series. The value 𝑟 is the correlation coefficient between the two variables and the
points are colored according to whether the distance between the series is less (red) or more (blue) than 50 km.
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Figure 4.23 – Mean of the moving variance as a function of the distance in four non-collocated series.

Figure 4.24 – Estimated standard error of the jump estimator as a function of the distance in four non-collocated
series.
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Figure 4.25 – T-value as a function of the distance in four non-collocated series.

Predictive rule. Further insight into the attribution results presented in the subsection 4.1.5.3 of the paper
can be gained by looking into the distribution of predicted configurations of the whole 494 cases before
aggregation. Here we analyse three of the variants presented in the paper: (a) balanced and (c) imbalanced
sampling with 𝛼 = 0.05, and (b) balanced sampling with 𝛼 = 0.01. The results are presented in Figure 4.26.
For each configuration, we distinguish whether the test results from 6 series of differences corresponded to a
configuration in the table or not.

At a significance level of 𝛼 = 0.05, 269 cases correspond to configurations in Table 4.1 (yellow bars in
Figure 4.26a), predominantly in configurations 𝑐=15, 1, 31, 35, 23, and 10, which hold the highest conditional
probabilities in the Test Table (Table 4.1). The green bars in the figure highlight cases that are not in the table
and are predicted, for variant (a), as 𝑐 = 35 (41 cases), 𝑐 = 15 (37 cases), 𝑐 = 23 (27 cases), 𝑐 = 8 (21 cases),
𝑐 = 10 (19 cases), 𝑐 = 31 (18 cases), etc. The dominance of those configurations was previously explained
through the three main groups in Table 4.5.

Modifying the significance level from 0.05 to 0.01 has a pronounced effect on the prediction results. We
observe an increase in the cases predicted under configurations 𝑐 = 1, 15, 8 and 22, while predictions for
configurations 𝑐 = 31 and 𝑐 = 35 show a decline. This is consistent to changes observed in the final results in
paragraph 4.1.5.3.

The final variant (c) is obtained by training with an imbalanced sample. To discern the influence of this
imbalance consideration, we contrasted them with results from balanced sample. The results of both are given
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in Figure 4.26c and 4.26a respectively. While the count of the test results corresponding to a configuration,
represented by orange bars, remains unchanged (since the significance level is consistent), the effects of sample
balance manifest in three distinct points showed by green bars. Firstly, the G group (𝑐 = 1, 15) and E&E’
group (𝑐 = 10, 23) maintain their values with only slight change. Secondly, configurations with simultaneous
change-points at G and E possessing small marginal probabilities (e.g., configurations 31, 33 and 37) are absent
in predictions, as expected by using imbalanced sample (see the discussion in the subsection 2.2.4.3). Thirdly,
specific configurations, such as 𝑐 = 3 and 𝑐 = 16 (with test configurations (1,1,1,0,1,1) for 3 and (-1,-1,-
1,-1,-1,0) for 16), show unexpectedly high prediction rates. These predictions arise from test combinations
(-1,-1,-1,0,-1,0) and (1,1,1,0,1,0), which were predicted to configurations 35 and 31 in balanced sample training
respectively (with test configurations (-1,-1,-1,0,-1,-1) for 35 and (1,1,1,0,1,1) for 31). The predictive rule of
this variant modifies the E-E’ from 0 to ± 1 diverging from the variant (a) that adjusted the G’-E from 0 to ± 1.
This phenomenon arises due to the higher probability of the 𝑐 = 31, 35 configurations.
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(a) Training with balanced sample and 𝛼 = 0.05

(b) Training with balanced sample and 𝛼 = 0.01

(c) Training with imbalanced sample and 𝛼 = 0.05

Figure 4.26 – Distribution of the predicted configuration for each of the 496 cases. Colors distinguish between
test results aligning with table configurations (Yes in yellow) and those that do not (No in green).

Discussion on the choice of the final classifier. The training process is applied 𝐵 = 20 times (see subsection
4.1.5 of the paper) and the final classifier is chosen as the one with the best predictive power among the 20
classifiers. It is noteworthy that our dataset’s limited size, with a lot of sparsity in terms of configurations, can
lead to strong replication during the formation of the completed dataset, potentially causing overfitting issues
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in the construction of the classifier. Consequently, 2 different classifiers among the 20 can both show similar
good performance in term of mean misclassification error, but they may predict exactly the same results. The
question here is to assess to which extent choosing one classifier instead of another impacts the prediction results.

Figure 4.27 illustrates the outcomes from two distinct Random Forest classifiers (for the repetitions 𝑏 = 3 and
𝑏 = 4) on the real dataset, both achieving an identical mean error of 0. These classifiers were trained with an
equal sample size of 𝑅 = 100 for each configuration, at a significance level of 𝛼 = 0.01. We observed some
difference: configurations 1, 8, 15, and 23 exhibit varying numbers of cases, and some other configurations,
such as 26, 33, and 37, appear or disappear after the classification obtained in 𝑏 = 4. This highlights how
sensitive the results are to the sampling process, especially in our case where dataset is of small size.

(a) Repetition b=3

(b) Repetition b=4

Figure 4.27 – Distribution of the predicted configuration for each of the 496 cases for two predictors constructed
during two repetitions 𝑏 of the algorithm in the case of an equal training sample size of 𝑅 = 100 and with a
significance level of 𝛼 = 0.01 for the test results. Colors distinguish between test results aligning with the Test
Table (Table 4.1) (Yes in yellow) and those that do not (No in green).
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4.2.3 Strategies for further improving the prediction results

4.2.3.1 Correction of distance bias

As highlighted in the previous subsection, the distance strongly influences the noise level in difference series and
consequently the jump uncertainty. We propose a method to correct biases in the t-values of the non-collocated
E-E’ series. According to the rule n°2 presented in the paper, the series E and E’ should be the same due to the
large spatial correlation in the reanalysis. Any jump observed in E-E’ is a manifestation of climatic differences
between the locations of the two stations which may induce false detections in the non-collocated series. The
idea is to estimate this bias from the E’E’ series and correct the other series for it. This correction can potentially
change the outcome of the significance test. If effective, we would expect an increase in significant jumps in
G-E’ and a decrease in G’-E, assuming that the change-point actually comes from G. Figure 4.28 shows the
evolution of significance levels in three tests: after correction, G-E’ sees an increase in significant tests, while
on the contrary G’-E has more insignificant tests. These are slight changes but coincide with our expectations.

Figure 4.28 – Test count in three groups: 0 indicates no jump, 1 signifies a significant upward jump, and -1
represents a significant downward jump, from original results and after bias correction.

Using this strategy reduces drastically the number of initial possible configurations from 36 to 10 because the E-
E’ test is now removed. The remaining configurations are: 1, 5, 10, 13, 15, 18, 23, 27, 31 and 35 (configurations
containing a 0 for E-E’). This modification has a small positive effect on the test results. Figure 4.29 presents
the configurations from the test results before and after this correction. The number of cases where the test
results correspond to a configuration in the table increases despite the substantial reduction in rows. Number of
cases initially match to configuration 1 and 15 increase. This shift can be attributed to the previously mentioned
increase in significant tests in G-E’ and a decrease in significant tests in G’-E.
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Figure 4.29 – Configuration count before prediction: when considering the series E-E’ and when ignoring it. A
value of 0 signifies test results not present in the table.

4.2.3.2 Multiple testing correction

The attribution method is based on the on simultaneous testing results from six series, which poses a multiple
testing problem. This well-known issue posits that an increase in the number of tests made leads to a higher
probability of erroneous conclusions. Simply, under the null hypothesis, the probability of a false rejection
is denoted as 𝛼 and thus, the probability of a true detection is 1 − 𝛼. For 𝑘 independent tests, the rate of
correctly retaining the null hypothesis is (1 − 𝛼)𝑘 . Consequently, the probability of rejecting at least one test
when all null hypotheses are true is expressed as 1− (1−𝛼)𝑘 , which called family wise error rate (FWER). The
commonly used Bonferroni correction controls the FWER. If we test each hypothesis at a significance level of
𝛼, we guarantee that the probability of having one or more false positives is less than 𝛼. However, this control
is often too strict. An other less restrictive measure is the False Discovery Rate (FDR) proposed by Benjamini
and Hochberg (1995). It is defined as the proportion of false discoveries:

𝐹𝐷𝑅 = 𝐸 [𝑉/𝑅], (4.12)

where 𝑅 represents the total number of rejected null hypotheses or positive and 𝑉 represents the number of
erroneously rejected null hypotheses or false positive. When 𝑅 is equal to 𝑉 , FDR becomes FWER. Control
for FDR at level 𝛼 consists in: (1) calculating the p-values obtained from the 𝑘 tests ordered from smallest to
largest (𝑝 (1) ≤ 𝑝 (2) .. ≤ 𝑝 (𝑘 ) ), (2) finding the test with the highest rank 𝑗 for which 𝑝 ( 𝑗 ) ≤ 𝑗

𝑘
𝛼 and (3) declaring

the tests of rank 1, 2, . . . , 𝑗 as significant.

Figure 4.30 compares the significance of the tests for each series of difference before and after the FDR
correction. As expected, we observe an increase, but a slight one, of the insignificant test, except obviously for
G-E. The effect is minor, but it can have a positive impact on the configuration obtained from the test results.
These configuration numbers are given in Figure 4.31. Firstly, after the correction, there is a slight increase
in the number of cases falling into configurations 1 and 15, while configurations 8, 22, and 31 show a slight
decrease. An advantageous feature of FDR is its consideration of G’-E’, which exhibits more significant jumps
due to lower noise in comparison to other non-collocated series (depicted in Figure 4.22). Secondly, subsequent
to the correction, there is a rise in the count of cases where the six tests align with a configuration in the table.
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Figure 4.30 – Test count in three groups: 0 indicates no jump, 1 signifies a significant upward jump, and -1
represents a significant downward jump, from original results and after FDR correction.

Figure 4.31 – Configuration count before prediction from original results and after FDR correction. A value of
0 signifies test results not present in the table.

4.2.4 Conclusions

In this section, we have carried out additional analyzes in order to detail and discuss in more depth some of the
results of the article (in particular on the identification of models and on the different stages of attribution, i.e.
on the tests and the predictive rule).

Firstly, we detailed the results for studying the performance of the method used to characterize the data through
simulations. The results revealed a relationship between the accurate identification of the noise model and the
length of the series or the parameter values. Specifically, the ARMA(1,1) noise model requires a longer series
for accurate identification compared to AR(1) and MA(1) models. Additionally, when the parameter is small
(<0.3), there is a higher likelihood of misidentifying the AR(1) model as MA(1) or vice versa.Furthermore, the
presence of data gaps can intensify model identification confusion and parameter estimate dispersion, but it has
been shown that the impact remains small for reasonable fraction of gaps (e.g. < 20%, see 4.19).

Secondly, we analyzed in more details the prediction results from the significance tests, categorizing them
based on their presence in the Test Table (Table 4.1 of the paper). Notably, the standard error of the jump
estimates, and thus the test result, strongly depends on the data noise, which is influenced by the distance
between the two series involved in the test. This relationship is linear for the G-E, G-G’, and G-E’ but not for
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the E-E’, G’-E, and G’-E’ series. This is simply because jumps are more likely to be due to G rather than E,
G’, and E’, as previously mentioned in the paper result.

Finally, we tested potential improvements to the prediction step by making bias correction and applying multiple
testing correction. Both proposed modification yield positive, although, marginal improvements, such as a
slight increase in the number of high probability configurations and a slight decrease in some low probability
configurations. Because the improvements are only marginal, they are not further considered.



Chapter 5

Conclusions and perspectives

5.1 Conclusions

Water vapor plays a pivotal role in climate change due to its powerful feedback mechanism. Understanding
and quantifying the change in water vapor within the context of climate change represent a prominent scientific
challenge, as emphasized in recent research (Colman and Soden, 2021; Douville et al., 2022). While there
is a global consensus regarding an upward trend in water vapor, several studies have noted discrepancies in
trend estimates, particularly at the regional level, when comparing data from climate models, reanalyses, and
observational sources (Parracho et al., 2018; Santer et al., 2021; Allan et al., 2022).

In this context, GNSS provides reliable long-term IWV data that are available under all weather conditions
and independent from the reanalyses, which are useful to assess and validate the accuracy of reanalyses and
climate models, thereby facilitating enhancements in these models. However, the presence of abrupt offsets in
the GNSS data is problematic since trend estimates are sensitive to such inhomogeneities.

Within the overarching goal of providing a homogenized long term record of IWV data from GNSS, this
study utilized a relative homogenization approach. The comprehensive homogenization process comprises four
fundamental steps:

• firstly, generating the differences in IWV between GNSS and reanalysis data (used as a reference);

• secondly, segmenting this series;

• thirdly, attributing the identified change-points to either GNSS or reanalysis series;

• finally, correcting the IWV GNSS time series.

For the second step of detecting change-point, we applied the GNSSseg segmentation method developed by
Quarello (2020) specifically for these data.

This thesis made contributions in two key areas. First, it provided enhanced insight on the sensitivity of the
GNSSseg segmentation method and trend estimates to the GNSS and reference (reanalysis) data properties.
Second, an innovative automatic attribution method that was developed, which is a crucial step, with the
segmentation, in the global homogenization process.
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Sensitivity of the segmentation method and trend estimates to data properties. This study was presented
in the first paper (Chapter 3). The comparison of segmentation results of 81 common stations in two
GNSS datasets (IGS repro1 and CODE REPRO2015) and two reanalyses (ERA Interim and ERA5) revealed
the sensitivity of the segmentation method to different data properties. In particular, the segmentation
method was found to be sensitive to variations in noise magnitude (heteroscedasticity) and the presence
of periodic bias in the data. When we exchanged either the GNSS IWV dataset or the reference dataset,
it was observed that only about half of the detected change-points remained similar. These sensitivities
are mainly explained by the differences in the heteroscedasticity and biases in the GNSS and reanalysis
data. Especially, it was shown that more recent GNSS processing or reanalysis data exhibit reduced noise
and biases, and thus smaller representativeness differences between them. This consequently enabled the
segmentation method to identify smaller jumps in the IWV difference series. Modification in the series
length or auxiliary data, which includes surface pressure and the weighted mean temperature used in the
conversion from ZTD to IWV, resulted in a much more substantial similarity of 70 − 80% in change-point de-
tection. These factors subsequently influenced trend estimates, as evidenced by the mean trend and its dispersion.

We also observed a substantial impact of jump corrections on estimated trends. Notably, the uncertainty in the
estimated trends resulting from the use of different reprocessed GNSS datasets or reference reanalyses in the
segmentation ranged from 0.015-0.019 kg m−2 year−1 (RMS difference between the tested pairs of data sets)
when only the validated change-points were used and 0.002 to 0.012 kg m−2 year−1 when all the change-points
were used. However, on a global scale, homogenized GNSS data (corrected using either validated or all
change-points) and both reanalyses agreed on a global mean IWV trend estimate of 0.027-0.030 kg m−2 year−1

, indicating a global moistening trend close to 7% K−1 over the past 2.5 decades. The longer time series (25
years) provided higher accuracy in trend estimates, with a mean standard error of 0.018 kg m−2 year−1 and a
dispersion of approximately 0.03 kg m−2 year−1 across the global network.

This study also addresses two main limitations in the homogenization process. First, regarding the segmentation
method, we observed that some stations exhibit interannual and longer-term variations in the noise and bias
characteristics which are not currently modeled in the segmentation method (both the noise variance and the
bias are assumed periodic with a fundamental period of 1 year). At those sites, interannual and/or decadal
variations in bias especially were captured by the segmentation. The long-term variations could be reduced,
for example, through the use of a better reference reanalysis or a nearby GNSS station, rather than a reanalysis.
Second, only about 35% of change-points are validated by metadata, meaning that 65% of the detections can be
undocumented changes in GNSS or changes in reanalysis data. This highlights the critical role of the attribution
step, which aims at determining the origins of identified change-points.

Development of an automatic attribution method. The method developed in this thesis relies on a the
combination of GNSS and reanalysis data from a main station with similar data from nearby stations. For each
detected jump in the main series, and each associated nearby station, six series of differences are formed from
the four base series and a test of significance is performed on the jump. The development of the proposed
method involves several meticulous steps. Firstly, we characterize the heteroscedasticity and autocorrelation
structure in the six series of differences. The considered noise models are white noise, AR(1), MA(1), and
ARMA(1,1). Notably, we show that only a tiny number of series are identified as white noise. Secondly,



5.2. PERSPECTIVES 132

we evaluate the significance of jumps in each individual series using the generalized least squares (GLS)
approach, with the identified noise model, which provides statistically more efficient error estimators. Finally,
we construct a predictive rule to make the attribution decision. The novelties of our approach lie in the use
of the GLS estimation in this context, and in the construction of a predictive rule, using test results obtained
from real data with a resampling procedure taking into account the small samples of our dataset (here limited
to 494 cases). The method is described in detail in Chapter 4. When applied to the set of 81 GNSS stations
from the CODE REPRO2015 dataset, with ERA5 reanalysis used as reference and the NGL GNSS dataset for
the nearby stations, 62% of the tested change-points were attributed to GNSS, 19% to the reanalysis, and 10%
to changes in both GNSS and reanalysis. Detailed analysis of the GLS test results input to the prediction rule
helped us to understand the sensitivity of the attribution method and interpret the final result after aggregation
(i.e. when predicted results from several nearby stations are combined). Indeed, the prediction results are
sensitive to the resampling strategy used for the construction of the predictive rule. We tested several variants,
using different significance levels for the tests, balanced or imbalanced samples and different aggregation rules
(based on case-specific prior probabilities from the Test Table, Table 4.1, or using the distance to the nearby
station). The imbalance of configurations observed or assumed in reality seems better taken into account with
a balanced resampling strategy combined with a aggregated rule based on the prior probabilities. Test results
are also sensitive to the magnitude of noise in the data which depends on the distance between the main and
nearby stations. The noise levels increase substantially with the distance between the main and nearby stations
in a sparse network. This high noise can hinder the significance tests in the four non-collocated series, thus
impacting the final prediction result. This challenge can be addressed by applying our method within denser
networks, such as provided in NGL dataset. The potential of this dataset will be explored in the near future.
Some preliminary results are already presented in the Appendix.

5.2 Perspectives

This study raises certain questions that could serve as potential avenues for future work aimed at enhancing
GNSS data processing and climatic homogenization.

a) In the context of GNSS data processing, segmentation proves to be highly sensitive to small changes in
mean of the series. These characteristics are influenced by several key aspects of GNSS data processing,
with particular emphasis on factors such as: the a priori ZHD correction, the antena/radome calibration
model, the mapping function and the elevation cutoff angle. The consistency and reliability of GNSS products
generated through different software packages and incorporating varying processing features can be a subject of
scrutiny. This can be addressed by conducting comparative analyses of different GNSS tropospheric products,
especially focusing on noise, bias and homogeneity. The assessment of data homogeneity can be accomplished
through segmentation (to detect changes in the mean) and attribution methods (to identify unambiguously
those of GNSS origin). Afterwards, it may be tempted to optimize the GNSS processing in order to make
the products intrinsically more homogeneous. The homogenization tool can thus serve to assess the progress
accomplished at the processing level, in addition to completing the final homogenization of the reprocessed data.

b) In the following, we outline ideas to enhance our homogenization method, with a particular emphasis on
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improving both the segmentation and the attribution methods.

The first goal in the short term is to test the current attribution method with an extended GNSS dataset from the
NGL repro3. With this dataset, we can strengthen the nearby selection rules by selecting nearby series with a
smaller percentage of gaps and shortening the distance between the main station and nearby stations. This will
reduce the magnitude of the noise in the difference series and improve the power of the test procedure.
Furthermore, as mentioned in section 4.1.5, the synthetic dataset is generated from the test results of real
data. With the NGL repro3 dataset, in particular, the larger size of the dataset can improve the prediction rule.
Firstly, it can improve the performance of the current decision rule proposed in chapter 4 because with more
tested changes there will be fewer repetitions in the synthetic dataset constructed by resampling. Secondly, we
could consider a new method to construct this decision rule. For example, rather than doing resampling series
by series, we could consider doing resampling test by test (on all the results at the same time), which would be
fairer to take into account the dependence between the tests.

However, one critical issue arises with the NGL data regarding the validation of the final results with metadata.
The preliminary results presented in A show a drop in the percentage of validated change-points which is
explained by the fact that only one half of the analysed stations have metadata reported in the NGL data holding.
This could be partly improved by running additional quality control procedures based on the RINEX files as
was done by Quarello et al. (2022).

Second, a R package of the attribution method will be made available, enhancing its accessibility to the
scientific community.

Other approaches to the segmentation method implemented currently could be tested, such as using nearby
GNSS stations as references instead of a reanalysis. When both the main and nearby stations are processed in a
consistent manner, the remaining inhomogeneities would mainly originate from station-specific changes, such
as instrumental changes or changes in the surrounding environment. Consequently, this approach can facilitate
the attribution of change-points and lead to significant improvements in the homogenized series.

The results of heteroscedasticity and autocorrelation in the difference series, as demonstrated in Chapter 4,
underscores the need for two primary enhancements to the segmentation method. Firstly, the current practice
of modeling heteroscedasticity on a monthly basis within the segmentation method may benefit from being
replaced by a more comprehensive continuous function, as exemplified in Figure 4.2. Secondly, the current use
of white noise does not take into account the underlying autocorrelation patterns present in the data. A more
appropriate model for data autocorrelation (e.g., AR(1), MA(1), or ARMA(1,1)) should be used to improve the
segmentation method. Finally, using an appropriate loss function for segmentation inference like Hubert or
Biweight loss (instead of log-likelihood) could avoid data pre-processing with respect to outliers.

In the long-term exploration of this topic, conducting an analysis of homogenized GNSS IWV trends presents
a compelling opportunity, especially within the context of climate change studies. This analysis provides
empirical evidence to address a key question: How will water vapor change in a warmer climate? The
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water vapor feedback is frequently estimated using a global climate model (GCM), which strongly depends on
parameterization. Homogenized GNSS datasets can be compared and used as a reference for tuning parameters
in climate models, aiding in obtaining the "best" estimates of water vapor feedback and its uncertainties.



Appendix A

Appendix: Preliminary results with an
extended dataset

This appendix presents some preliminary results of the application of the full homogenization process to an
extended GNSS dataset of more than 6000 stations extracted from the NGL data holding. At the time of
writing, several steps are already completed, including station selection, ZTD data conversion and screening,
segmentation, and validation with respect to the NGL metadata. The attribution step is currently pending. After
the attribution, the correction of jumps in the GNSS series will be carried out and trends will be estimated. The
IWV data before homogenization is already available publicly here https://doi.org/10.25326/518. The
homogenized version will be added later.

★ Station selection

The NGL repro3 data holding contained 20,747 stations, as of 13 April, 2023. It is updated on a daily basis.
Data products are available in the form of time series of daily station coordinates and daily SINEX tropospheric
(tropo) files containing the estimated ZTD and gradients parameters with 5-min sampling. Station metadata is
provided in the form of a station list, including a 4-character station ID (renamed from their original names
when they are already registred from a previous data network/provider), a priori station coordinates, dates of
start and end, and number of computed days.

For the purpose of climate trend estimation, a sub-set of stations with more than 10 years of observations and
less than 10% of gaps (at the daily sampling rate) was selected. This selection came up with 6197 stations.
After checking the station position stability from the coordinate time series, with thresholds 0.001° in latitude
and longitude, and 1 m in height, the number is decreased to 6058 stations. The 5-min resolution tropo files
have been downloaded for this subset of stations, and ZTD estimates and their formal errors have been extracted
are averaged into daily values.

★ Data screening

Daily ZTD values were screened for outliers using a new procedure compared to the earlier procedure used with
IGS repro1 and CODE REPRO2015. Firstly, the formal errors have been passed through a segmentation algo-
rithm and a post-processing was developed to detect both singular outliers (e.g. one day with a high formal error)
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and extended periods (weeks to months) of high formal errors which are symptomatic of degradation of GNSS
instrumentation or measurement conditions. In some occasions, long-term drifts (over several years) of formal
errors were also discovered and four stations were blacklisted for this reason. This post-processing relies on
several conditional tests and thresholds which required some tuning before being applied to the data set. 0.62%
of the ZTD values and 6 stations were rejected based on this screening procedure based on the formal errors only.

Secondly, a complementary screening step was applied based on the GNSS - ERA5 IWV difference. The
ZTD values were beforehand converted to IWV using the same procedure as for the IGS repro1 and CODE
REPRO2015 data sets, except that here ZHD and 𝑇𝑚 values computed from the model were first averaged
into daily values and applied to the daily GNSS ZTD estimates. The screening method used for the IWV
differences also differs from previous procedures in the sense that it is applied on the full time series (instead of
yearly segments) which allows to implement a sliding window approach where the individual daily values are
compared to a moving median and tested with respect to a robust scale estimator (MAD). This procedure also
relies on some parameterization (e.g. window size and test thresholds) that had to be tuned. With the current
settings, it rejects an additional 0.89% of daily values and 2 additional stations, leaving 6048 stations available
for the application.

★ Segmentation

The quality-checked IWV differences were passed through the GNSSseg segmentation method with standard
settings (as in Quarello (2020) and Nguyen et al. (2021)). The segmentation detected 15680 change-points
in 6048 stations, which represents an average of 2.6 change-points per station. Among these, 611 stations
(10.1%) were considered homogeneous (no change-point detected), and 5437 stations (89.9%) had at least one
change-point. The maximum number of detected change-points in one series was 16 (station J137).

The post-processing analysis described in Quarello (2020) was applied to detect "clusters" (groups of
consecutive segments with significantly higher means than their adjacent segments) using the standard settings
(distance between change-points of 80 days and significance level of 0.05). It detected 1427 clusters among
which 1005 deemed significant. For each significant cluster, all the change-points pertaining this cluster were
replaced by one single change-point. For the non-significant clusters, all the change-points were eliminated.
After this step, 13923 change-points were remaining.

★ Validation with respect to metadata

The metadata provided by NGL (named "steps" file) contains information on changes in station instrumentation
(antenna, receiver, radome) and other notable information (site change, monument change, volcanic eruption)
as well as events flagged as "unknown". In total, we regrouped the different types of changes into 11 categories.
However, we must emphasize that information is registered by NGL only for 6283 stations out of 20747.
Among the 6048 stations that were analysed, only 3309 (49.6%) have metadata reported. The most frequent
changes involve antennas, receivers, cutoff changes, and radomes, in decreasing order, which altogether count
for 98% of the registered changes.
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Among the 13923 detected change-points, 6921 change-points could be confronted to metadata and 1228
(8.8%) were coincident or "validated" with respect to known changes within +/- 62 days (this is the same
window as used in Quarello et al. (2022) and Nguyen et al. (2021)). The proportion of validated antenna,
receiver, cutoff, and radome changes is 71.7%, 35.7%, 20.4%, and 34.7%, respectively (some changes involve
more than one type, so the sum exceeds 100%), which represent again 98% of all validated changes. We note
that the percentage of validated changes (8.8%) of all detected change-points is significantly lower than what
was found with the IGS repro1 and CODE REPRO2015 data reported in paper No. 1. The reason is that the
metadata provided by NGL are available for only one half (49.6%) of the analysed stations. This points to a
severe lack of essential information necessary to control the quality and validate the segmentation results of this
dataset. Hopefully, the attribution method will be able to achieve more robust conclusions on the significance
and origin of the detected change-points.

★ Attribution

At the time of writing, the attribution of the NGL dataset was not yet completed. Several preliminary steps are
currently being performed. The first one concerns the selection of the main and nearby stations. Because the
ultimate goal is to estimate climatic trends, we decided to select as main stations all those having at least 20
years of IWV data. This selection retains 718 candidate main stations, among which 20 are homogeneous and
698 have at least one change-point.

Then we select for each main station all possible nearby stations within a maximum horizontal distance of 200,
100, or 50 km, and a vertical distance smaller than 500 m. With these distance limits, some of the main stations
have no nearby station and their change-points cannot be tested with the attribution method. The number of
main stations having at least one nearby stations decreases from 698 to 673, 631, and 567, respectively, for the
three maximum distances. Next we checked more precisely how many of the detected change-points in the main
stations can actually be tested based on the matching of the time periods with the nearby stations. Therefore,
we pre-select the change-points, for each main station, which do not have another change-point closer than 250
"effective" days (by "effective" we mean that only days with data are counted here, i.e. days with missing data
are not counted), either within the time series of the main station itself or in the considered nearby station.
This step rejects some of the main change-points and rejects also some of the candidate nearby stations when
they have (nearly) coincident change-points. This pre-selection gives the following results (this is only for main
stations which have at least one change-point):

• With the 200 km distance limit: 632 main stations and 1708 change-points can be tested with the help
of 3960 nearby stations (total 44474 main-break-nearby triplets). Among them, 407 main stations can
be tested for all their change-points (i.e., can be fully homogenized). The number of nearby stations per
change-points is: mean = 26.0, min = 1, max = 152.

• With the 100 km distance limit: 581 main stations and 1455 change-points can be tested with the help
of 2467 nearby stations (total 17208 main-break-nearby triplets). Among them, 317 main stations can
be tested for all their change-points (i.e., can be fully homogenized). The number of nearby stations per
change-points is: mean = 11.8, min = 1, max = 79.

• With the 50 km distance limit: 499 main stations and 1115 change-points can be tested with the help
of 1302 nearby stations (total 6722 main-break-nearby triplets). Among them, 202 main stations can be
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tested for all their change-points (i.e., can be fully homogenized). The number of nearby stations per
change-points is: mean = 6.0, min = 1, max = 50.

These statistics indicate that on average between 6 and 26 nearby stations can be used to test change-points
in the main stations, depending on the distance limit, and that a good fraction of the main stations (between
40 and 64%) can be fully homogenized. For those change-points that cannot be tested, a manual validation
remains necessary, which can be assisted by the use of metadata when available.

The issue of lacking metadata in the NGL data holding can be partly improved by running additional quality
control procedures based on the RINEX files as was done by Quarello et al. (2022). Fortunately, the NGL data
holding contains Quality Assurance (QA) files which contain statistics computed from the GipsyX processing
outputs, for each station, daily. The analysis of these statistics may be of some utility to complement the
existing metadata for the validation. For example, if a change-point detected by the segmentation of the IWV
difference series coincides with a shift in one of the data quality metrics provided in the QA files, this may give
some credit to consider the change-point are originating the GNSS series. Note that the segmentation of formal
errors implemented in the new screening method described above also follows this idea and these results may
be used as well, as are change-points detected in the GNSS position time series.

The next step before the attribution is the vertical correction of all main-nearby couples. This accuracy of this
correction is also in the process of being improved compared to the version that was used in paper No. 2. The
procedure will be the similar and apply a 2-parameter correction model as proposed by Bock 2022, but the
coefficients will be computed from ERA5 reanalysis on the native 0.25° grid from the four surrounding columns
for each station (as opposed to the use of a global 2.5° grid in paper No. 2). Another improvement will be the
use of a sliding window regression with a 1-day increment (i.e. the coefficient will be regressed from ERA5
data in a window for each central day) instead of a monthly regression time step.
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