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Title: A general framework for neuron instance segmentation based on Deep Learning

Keywords: Deep Learning, instance segmentation, brain, neuronal cells, microscopy

Abstract: Advances in virtual microscopy allow
scanning whole slide images, capturing details
at the cellular level and revealing the complex-
ity of brain structures. Unbiased quantification
of the distribution and features of neuronal cells
is essential for understanding the mechanisms
involved in brain development, aging, and neu-
rodegenerative diseases. A crucial prerequisite
for such studies is the identification of individ-
ual neurons.

In this thesis, we developed a deep learning-
based segmentation framework for identifying
individual neurons stained with NeuN in histo-
logical brain sections. Considering the tremen-
dous manual labeling workload at the cellu-
lar scale to build training datasets, we first
proposed a pixel-level mask synthesis pipeline
based on point annotations. The synthetic
masks contain three classes: neurons, tissue,
and inter-cell contours. They were used as the
ground truth to train and compare different net-
work architectures. EfficientUNet was chosen as
it has the best trade-off between accuracy and

efficiency. The prediction of the neural network
produced a semantic segmentation. To further
separate touching and overlapping neurons, we
developed an original post-processing scheme
based on ultimate erosion and dynamic recon-
struction. We evaluated the proposed frame-
work in a macaque brain dataset containing ma-
jor anatomical regions and demonstrated its ef-
fectiveness, with an average F1 score of 0.92.
Furthermore, we adapted the inference of the
segmentation network for processing whole slide
images using hybrid multi-CPU-GPU resources.
An entire brain section of the mouse was pro-
cessed via a user-friendly interface.

Additionally, to improve the robustness of the
segmentation framework against color inconsis-
tencies in microscopic images, we investigated
two generative adversarial networks-based color
normalization approaches to correct the color
variations between images. Evaluation results
show the superiority of these methods over con-
ventional methods.



Titre: Un cadre général pour la segmentation d’instance de neurones basé sur l’apprentissage
profond

Mots clés: Apprentissage profond, segmentation d’instance, cerveau, cellules neuronales, micro-
scopie
Résumé: Les progrès de la microscopie virtuelle
permettent de scanner des images de lames en-
tières, de capturer des détails au niveau cellu-
laire et de révéler la complexité des structures
cérébrales. La quantification non biaisée de la
distribution et des caractéristiques des cellules
neuronales est essentielle pour comprendre les
mécanismes impliqués dans le développement,
le vieillissement du cerveau ainsi que les mal-
adies neurodégénératives. Un prérequis crucial
pour de telles études est l’identification indi-
viduelle des neurones.

Dans cette thèse, nous avons développé
un environnement de segmentation basé sur
l’apprentissage profond pour identifier individu-
ellement les neurones marqués avec NeuN dans
des coupes histologiques du cerveau. Compte
tenu de la charge de travail que représente
l’étiquetage manuel des cellules pour constru-
ire un ensemble de données d’entraînement,
nous avons d’abord proposé une méthode de
synthèse de masques au niveau des neurones
basée sur des points annotés manuellement. Les
masques synthétiques contiennent trois classes
: les neurones, le tissu et les contours inter-
cellulaires. Ils ont été utilisés comme étant la
vérité terrain pour entraîner et comparer dif-
férentes architectures de réseau. EfficientUNet
a été choisi car il représente le meilleur com-

promis entre précision et efficacité. La prédic-
tion du réseau des neurones a produit une seg-
mentation sémantique. Afin de séparer les neu-
rones qui se touchent ou se chevauchent, nous
avons développé une approche originale de post-
traitement basée sur l’érosion ultime et une re-
construction dynamique. Nous avons évalué
la méthodologie proposée sur un ensemble de
données provenant d’un cerveau de macaque et
contenant les principales régions anatomiques.
L’efficacité de cette méthodologie a été démon-
trée avec un score F1 moyen de 0,92. De plus,
nous avons adapté l’inférence du réseau de seg-
mentation pour le traitement d’images entières
de lames en utilisant des ressources hybrides
multi-CPU-GPU. Une coupe entière du cerveau
d’une souris a été traitée via une interface er-
gonomique et simple d’utilisation.

Dans une optique d’amélioration de la ro-
bustesse de notre méthode de segmentation con-
tre les variations de couleur dans les images
microscopiques, nous avons étudié deux ap-
proches de normalisation des couleurs basées
sur des réseaux adverses génératifs pour cor-
riger les variations de couleur entre les images.
Les résultats de l’évaluation sont prometteurs
et montrent la supériorité de ces méthodes sur
les méthodes conventionnelles.
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Introduction

The investigation of neuron population is essential in neuroscience to study
brain function, development, aging, and neurodegeneration. A prerequisite
for quantitative analysis at the cellular scale is to identify individual neurons.
In practice, biologists mainly rely on stereology and manual segmentation to
estimate the cell population in regions of interest. However, this technique
is too cumbersome to be conducted on large-scale images and cohorts. For
decades, many researchers have attempted to tackle this task in an automatic
way. Nevertheless, these methods require specific settings adapted to the
characteristics of cells (species, sizes, stains, etc.) and are sensitive to noise
and artifacts on the image. Recently, Deep Learning (DL) based approaches
have demonstrated remarkable potential in terms of accuracy and robustness
in many computer vision fields, including cell instance segmentation. Once
the DL model is trained, it can segment cells without human intervention.
One of the main challenges is that most DL methods are supervised, and large
annotated datasets are mandatory for the training. However, performing the
annotation manually at the pixel-level can be extremely laborious and time-
consuming. Moreover, most DL-based approaches have mostly been developed
for Hematoxylin and Eosin (H&E) stained images with the cell nuclei stained
as bluish and extracellular stained as pink. The neurons are often stained
using immunohistochemical (IHC) staining with the NeuN antibody, which is
usually dark brown. In addition, segmenting neurons is challenging due to the
large variety in shape, size, and density across anatomical regions, especially
in the dentate gyrus of the hippocampus, which is composed of thousands of
highly aggregated neurons.

Although DL segmentation approaches are considered more robust than con-
ventional methods, the color variation in the histological images exists as a
supplementary critical issue. All relevant features for segmentation that the
DL model has learned come from the training images. The segmentation DL
model may underperform when applied to images with a color different from
the training data. A solution is to standardize the color of test images us-
ing the training image color as the reference prior to the inference. In fact,
the inconsistency of stain color is also problematic for the visual diagnosis of
pathologists. Several color normalization approaches (both conventional and
DL-based) have been proposed, but they are intended to correct color varia-
tions on H&E-stained images. The transfer on IHC-stained images and, more
specifically, on NeuN-stained images remains an open question, especially for
conventional approaches, which convert images to other color space from RGB
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space to match the color statistics of the source image and the reference.

The objective of this thesis is to develop a DL-based approach to automatically
individualize neuronal cells in various anatomical regions in animal models
studied in preclinical research. Accuracy, robustness, and calculation cost
are major criteria and constraints for developing this approach. The last
feature aims to evaluate the scalability of the proposed approach for large-
scale images. The robustness of the proposed segmentation method to color
variations can be further improved by applying the color normalization method
as a preprocessing step.

The work of this thesis took place in the Molecular Imaging Research Center
(MIRCen) in the neurodegenerative diseases laboratory UMR9199 (LMN), a
research unit of the French Alternative Energies and Atomic Energy Com-
mission (CEA) in association with the National Center for Scientific Research
(CNRS), the University of Paris-Saclay and in collaboration with WITSEE
company. All the data used in this study are microscopic brain images pro-
duced at the histology platform of MIRCen.

This manuscript is subdivided into seven parts.

Chapter 1 presents the biological context of this study, including the basic or-
ganization of the brain, the characteristics of neuronal cells, the mechanisms
involved in neurodegenerative diseases (e.g., Alzheimer’s Disease), and ani-
mal models studied for neurodegeneration research. A brief description of the
histology technique and image digitalization is provided. The advent of these
technologies has increased the access to vast amounts of high-resolution data,
which require adapted software solutions to be analyzed. In this context, Ma-
chine Learning (ML) algorithms, especially deep neural networks, are thought
to be among the most effective tools for the automatic analysis of massive
amounts of data. Several ML algorithms employed in this thesis study are
also covered in this chapter.

Chapter 2 starts with a comprehensive review of current approaches developed
for cell instance segmentation. Both conventional and DL-based approaches
are presented and categorized according to their principles and the nature of
ground truth, respectively. This chapter also investigates scalable strategies
for DL-based approaches to process whole-slide images since they face the
limitation of GPU memory compared to conventional methods. In addition,
commonly used approaches for color normalization are also reviewed in the
second part of this chapter, as color variation exists as a critical issue in
microscopic image analysis.

Chapter 3 describes a macaque brain dataset produced at MIRCen for inves-
tigating neuron instance segmentation. Large labeled datasets are mandatory
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for training neural networks, while manually performing the annotation at
the pixel-level is extremely labor-intensive. A strategy is developed to gener-
ate synthetic masks with minimal manual effort. This strategy is applied to
annotate a large macaque dataset. The evaluation of a state-of-the-art seg-
mentation method using the macaque dataset and synthetic annotations is
presented as a conference paper:

Wu, Huaqian, Nicolas Souedet, Zhenzhen You, Caroline Jan, Cédric Clou-
choux, and Thierry Delzescaux. “Evaluation of Deep Learning Topcoders
Method for Neuron Individualization in Histological Macaque Brain Section.”
In 2021 43rd Annual International Conference of the IEEE Engineering in
Medicine & Biology Society (EMBC), pp. 2985-2988. IEEE, 2021.

Chapter 4 presents a general framework for neuron instance segmentation.
Various neural networks are compared to identify an efficient architecture with
the optimum trade-off of accuracy and computational cost. A novel post-
processing design based on mathematical morphology is introduced to refine
the segmentation of the neural network. The work of this chapter is presented
as a journal paper:

Wu, Huaqian, Nicolas Souedet, Caroline Jan, Cédric Clouchoux, and Thierry
Delzescaux. “A general deep learning framework for neuron instance segmen-
tation based on efficient UNet and morphological post-processing.” Computers
in Biology and Medicine (2022): 106180.

Chapter 5 focuses on implementing the proposed neuron instance segmentation
framework on whole slide images. A parallel computing strategy involving
both CPU and GPU resources is established to accelerate inference processing
using a partial image reading and writing library. A new pipeline dedicated to
segmenting large images is integrated into BrainVISA software1. Additionally,
this chapter also presents a validation of the pipeline on the entire mouse brain
section.

Chapter 6 describes two attempts to correct color variations in microscopic
images. They can be used as a preprocessing step of the neuron instance
segmentation framework for test images whose colors differ from the training
set. The first method is based on generative adversarial networks (GAN), with
a generator mapping image to the color distribution of the training set. The
second is also GAN-based, but the generator is trained to recolor images using
the reference color histogram. With such flexibility, this chapter also quantifies
the impact of color variations on neuron instance segmentation. The work of
the second method is presented as a conference paper:

Wu, Huaqian, Nicolas Souedet, Camille Mabillon, Caroline Jan, Cédric Clou-
1https://brainvisa.info
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choux, and Thierry Delzescaux. “Adversarial Stain Transfer to Study the
Effect of Color Variation on Cell Instance Segmentation.” In International
Workshop on Medical Optical Imaging and Virtual Microscopy Image Analysis
(MOVI), pp. 105-114. Springer, Cham, 2022.

Finally, Chapter 7 summarizes the main contributions of the thesis. Limita-
tions of the neuron instance segmentation framework, remaining challenges for
processing whole-slide images, and issues of color normalization evaluation are
discussed. This chapter also presents future directions and perspectives of the
proposed neuron instance segmentation and color normalization approaches.
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1 - Context

1.1 . Brain anatomy

1.1.1 . Overview
The brain is the most complex organ in the body of a vertebrate, and it serves
as the core of the nervous system in all vertebrate animals, as well as the
majority of invertebrate animals. Despite sustained research for centuries,
the brain remains less understood among all the organs. Although the func-
tioning of each individual brain cell is now very well understood, the details
surrounding how millions of them work together are still unclear. With the
introduction of new technologies over the past few decades, including medi-
cal imaging techniques, computational neuroscience, and artificial intelligence,
our understanding of the brain has experienced a revolutionary change. This
section briefly presents the components of the brain that will be addressed in
this thesis work, including the basic structures, the anatomical regions, as well
as the cell types found in the brain.

1.1.2 . Main structures
The brain consists of three main structural divisions (see Figure 1.1):

1.1.2.1 . Cerebrum
The cerebrum (front of the brain) is the largest region of the brain. The outer
layer is the cerebral cortex. The cerebrum controls temperature regulation
and movement coordination. It also enables higher functions, including touch,
vision, and hearing interpretation, as well as communication, reasoning, emo-
tions, learning, and problem-solving.

The cerebrum is made up of two cerebral hemispheres, the right and left, joined
by the corpus callosum, which allows communication between the two sides of
the brain. Each hemisphere receives information from the contralateral side
of the body and controls its movement. The hemispheres are divided into four
lobes, as shown in Figure 1.1, with different colors [120, 90].

The frontal lobe, located in the front of the brain, is the largest lobe of the
brain. Reasoning, motor abilities, higher-level cognition, and linguistic ability
are all associated with it. The motor cortex is located near the central sulcus
in the back of the frontal lobe.

The parietal lobe is the middle part of the brain. It contributes not only
to spatial and visual perception but also to the processing of tactile sensory
information such as pressure, touch, and pain.
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Figure 1.1: Brain gross anatomy1.

The occipital lobe is located in the back of the brain. It is associated with
analyzing visual information (color, light, shape, and movement). The oc-
cipital lobe contains the primary visual cortex, which receives and processes
information from the retinas of the eyes [120, 90, 61].

The temporal lobe is located on the bottom side of the brain. The main
auditory cortex, which is vital for interpreting sounds and understanding lan-
guage, is also located in this lobe, as well as the hippocampus, which is highly
involved with memory [120, 90, 61].

1.1.2.2 . Cerebellum
The cerebellum (“little brain”) is located at the back of the brain, above the
brainstem and below the temporal and occipital lobes. The inner area commu-
nicates with the cerebral cortex, while the outer layer contains neurons. The
cerebellum is just about 10% of the total size of the brain, yet it contains more
than half of the total number of neurons. Recent studies estimate 101 billion
neurons in the human cerebellum [5], which is about five times the number
of neurons in the cerebral cortex [96]. It is essential for maintaining posture,
balance, and equilibrium by coordinating voluntary muscle movements.

1https://www.physio-pedia.com/Brain_Anatomy
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1.1. BRAIN ANATOMY

Figure 1.2: Regions of interest in the brain (e.g., rat brain): cortex, hippocam-
pus, striatum, pallidum, and thalamus (image from Blue Brain Cell Atlas2).
The cortex is removed in the coronal view to better visualize other regions.

1.1.2.3 . Brainstem
The brainstem (middle of the brain) connects the cerebrum and cerebellum
to the spinal cord and serves as a relay hub. The size of the brainstem is
small, accounting for only 2.6 percent of the total weight of the brain [41]. It
has a critical role in autonomic functions such as breathing, cardiac rhythms,
body temperature and sleep cycle regulation, digestion, sneezing, coughing,
vomiting, and swallowing [120, 61].

1.1.3 . Major regions of interest
Figure 1.2 shows five anatomical regions which have crucial roles in this study:
cerebral cortex, hippocampus, striatum, pallidum, and thalamus. They are
particularly important for studying neurodegenerative diseases.

1.1.3.1 . Cortex
The cerebral cortex (Figure 1.2 a) is the outer layer of neural tissue of the
cerebrum. It primarily contains gray matter (neural tissue that is mainly con-
stituted of neurons). Despite being only a few millimeters thick, the cerebral
cortex accounts for over half of the brain’s overall weight. There are 16 billion
neurons in the cerebral cortex of the human brain [47]. It is linked to our most
advanced brain capacities.

2https://bbp.epfl.ch/nexus/cell-atlas/
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1.1.3.2 . Hippocampus
The hippocampus (Figure 1.2 b) is a complex region located deep within the
temporal lobe. The hippocampus is involved in memory consolidation and
cognitive learning. It is here where short-term memories are transformed into
long-term memories. In humans, damage to the hippocampus can result in
significant problems in long-term episodic memory [10]. Hippocampal atrophy
is linked to several neurodegenerative diseases [4].

1.1.3.3 . Striatum
The striatum (Figure 1.2 c) is a crucial component of the reward and mo-
tor systems. It contains the caudate nucleus and the putamen. Multiple as-
pects of cognition are coordinated by the striatum, including motor and action
planning, decision-making, and reward perception. Atrophy of the striatum
is involved in Parkinson’s disease [97], Huntington’s disease [129], and other
movement disorders.

1.1.3.4 . Pallidum
The globus pallidus (Figure 1.2 d) is an essential part of the basal ganglia.
It receives the major afferents from the striatum, which is its principal input
station. The globus pallidus is involved in voluntary movement regulation.

1.1.3.5 . Thalamus
The thalamus (Figure 1.2 e) is a vital gray matter structure located deep
within the frontal lobe, near the brain’s center. It is associated with impor-
tant neurological and sensory functions. It serves as a relay station, receiving
sensory impulses and transmitting them to the relevant cortical areas. The
thalamus is also involved in the regulation of sleep and wakefulness states
[120, 61].

This section briefly presented the major anatomical regions in the brain. In
practice, neurobiologists often need details at the cellular level (e.g., cell pop-
ulation) of regions of interest to further study physiological or pathological
mechanisms and examine the effect of treatments.

1.1.4 . Cell types
The brain is made up of two types of cells: nerve cells (neurons) and glial
cells (astrocytes, microglia, and oligodendrocytes). The average adult male
human brain contains 86 billion neurons and about ten times more glial cells
[6]. Although neurons are the most well-known brain cells, effective brain
function requires both neurons and glial cells.
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1.1. BRAIN ANATOMY

Figure 1.3: Basic parts of the neuron3.

1.1.4.1 . Neurons
Neurons are specialized in processing and transmitting cellular signals. The
cell body, or soma, branching dendrites that receive messages from other neu-
rons, and the axon, which sends information out to other neurons through
the axon terminal, are three essential elements of the neuron (see Figure 1.3).
The neurons communicate with one another through synapses. When a neu-
ron emits an action potential, signals, partly electric and partly chemical, go
through the synapse from one neuron’s axon to the dendrites of another neu-
ron. Neurons are usually divided into three categories based on their function:
sensory, motor neurons, and interneurons.

Sensory neurons, also called afferent neurons, have their cell bodies located
in the dorsal ganglia outside of the spinal cord. They are nerve cells that
are triggered by environmental sensory information. They transmit signals
to the CNS via the receptors in response to specific types of stimuli that
affect the cells of the sensory organs, including smell, taste, vision, sound, and
temperature. This process is called sensory transduction.

Motor neurons, or efferent neurons, can be divided into upper motor neurons
and lower motor neurons. The upper motor neurons are located in the motor
cortex, with axons synapsing onto interneurons in the spinal cord and some-
times straight onto lower motor neurons. Lower motor neurons can be found
in both the brainstem and the spinal cord. The axons are efferent nerve fibers
that carry signals from the spinal cord to effector organs such as muscles and
glands.

Interneurons, or association neurons, are situated between sensory and motor
neurons. Interneurons are the core nodes of neural circuits that allow sensory
or motor neurons to communicate with the CNS. Interneurons correspond
roughly to 20-30% of neurons in the neocortex (which makes up about 80% of
the human brain) [86]. The huge number of interneurons reflects the complex-

3https://dana.org/article/cells-of-the-brain/
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Figure 1.4: Basic forms of neurons (image from healthline4).

ity of integrating the CNS’s sensory and motor parts, as well as the diversity
of functions found in the brain and spinal cord.

Neurons vary in shape and size. Based on their anatomical characteristics,
most neurons can be divided into five classes: multipolar, unipolar, bipolar,
pyramidal and purkinje neurons (see Figure 1.4).

Multipolar neurons have a single axon that is surrounded by symmetrical
dendrites. This is the most common type of neuron in the CNS. Multipolar
neurons contain motor neurons and interneurons. They can be found in the
cortex, the spinal cord, and the autonomic ganglia.

Unipolar neurons contain a single axon and are usually exclusively seen in
invertebrate animals. They are sensory neurons located in the spinal and
cranial nerve ganglia.

Bipolar neurons have two extensions from the cell body. Many bipolar cells
are sensory neurons with specialized functions in sense transmission. They can
usually be found in the eye’s retina, the vestibular nerve, the cerebral cortex,
and the spinal ganglia during embryonic development.

Pyramidal neurons have a single axon but several dendrites, forming a pyramid
shape. Most of them are located in the cerebral cortex, the hippocampus, and
the amygdala. They play a crucial role in cognitive ability and visually guided
motor function [108, 27].

4https://www.healthline.com/health/neurons#anatomy
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Purkinje neurons are some of the biggest neurons in the brain, with numerous
dendrites that branch out from the cell body. They are inhibitory neurons,
the only output of all motor coordination in the cerebellar cortex, releasing
inhibitory neurotransmitters to other neurons.
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Figure 1.5: Neurons and glial cells [103].

1.1.4.2 . Glial cells
Glial cells are non-neuronal cells that can be found in both the central and
peripheral nervous systems. They are critical in providing protection, as well
as physical and metabolic sustenance for neurons, such as neuronal insulation
and communication, as well as nutrient and waste delivery. Glial cells can
be divided into three categories: microglia, astrocytes, and oligodendrocyte
lineage cells (see Figure 1.5).

Microglia can be found throughout the CNS. They are the immunocompetent
and phagocytic cells that serve as the first and important line of active im-
mune defense in the CNS [36]. They play a crucial role in maintaining brain
homeostasis.

Astrocytes are star-shaped glial cells in the CNS. They play a vital role in
the formation of the blood–brain barrier [124], the provision of nutrients to
nervous tissue, the maintenance of extracellular ion balance, the regulation of
cerebral blood flow, and inflammatory reactivity after injury [32].

Oligodendrocytes exist exclusively in the CNS. Its principal role is to create
the myelin sheath [17], which provides support and insulation to axons in the
CNS of several vertebrates, similar to the function of Schwann cells in the
peripheral nervous system.

Studying the number, morphology, and distribution of brain cells, especially
neurons in healthy brains, is essential for learning about brain development
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and aging. It is also crucial for the study of brain dysfunction and neu-
rodegenerative diseases since neuronal degeneration is directly related to the
development of neurodegenerative diseases (e.g., Alzheimer, Parkinson, and
Huntington’s diseases).

1.1.5 . Alzheimer’s disease
Neurodegenerative diseases are a diverse group of disorders characterized by
the progressive degeneration of the structure and function in the central or
peripheral nervous system. Neurodegeneration can be found at several levels
of neuronal circuitry in the brain, from molecular to systemic. These diseases
are considered incurable since there is no known mechanism to stop this pro-
gressive neuron degeneration. Alzheimer’s disease (AD) is the most common
neurodegenerative disease and is particularly studied at MIRCen in preclinical
research.

1.1.5.1 . Signs and symptoms
Memory loss is the most common early symptom of Alzheimer’s disease. As
the disease progresses, language problems, confusion, mood swings, loss of
motivation, self-neglect, and behavioral problems are all possible symptoms.
It is associated with 60–70% of dementia cases. Studies suggested that there
were about 50 million people worldwide with AD by 2020 [13], which which
has become a heavy problem in our society.

The first symptoms of AD are memory and cognitive impairment, which are
frequently misdiagnosed as aging or stress [141]. A person in the early stage
of AD may appear healthy, but he/she may struggle with memory loss (espe-
cially short-term memory), decision-making, misplacing objects, and learning
impairment [30]. As the disease progresses, the patient in the moderate stage
may have long-term memory loss, confusion [140], difficulties with language
and logical reasoning, anxiety, and anger. At this point, more rigorous obser-
vation and care are required [30]. During the final stage, people with severe
AD are fully dependent on others. Inability to communicate [31], apathy, ex-
haustion, weight loss, seizures, skin infections, loss of mobility, and increased
sleeping are common symptoms in this stage. External factors, such as pres-
sure ulcer infection or pneumonia, are more often the cause of death rather
than the disease itself [30].
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1.1.5.2 . Causes
Although the cause of most AD cases is unclear, three main hypotheses for
AD have been proposed: cholinergic, amyloid, and tau hypotheses.

The cholinergic hypothesis is the oldest, on which most therapies are based.
It suggests that AD is caused by inadequate synthesis of the neurotransmitter
acetylcholine (Ach). Ach is essential for cognitive function, which is involved
in various physiological processes such as memory, attention, sensory infor-
mation, learning, and other vital abilities. Cholinergic neuron degeneration
has been found to occur in AD, causing an impact on cognitive function and
memory loss [42].

The amyloid hypothesis is based on a strong correlation between the abnormal
deposition of amyloid-beta peptide (Aβ) in the CNS with dementia (as shown
in Figure 1.6). Aβ is accumulated extracellularly as amyloid plaques (AP),
which causes neurotoxicity and tau pathology, which leads to neuronal cell
death and neurodegeneration. Despite the fact that AP also accumulates in
healthy brains with aging, the amyloid hypothesis is still the most widely ac-
cepted pathogenic explanation underlying inherited Alzheimer’s disease (IAD)
[95, 62].

Tau hypothesis. Recent research suggests that tau protein, instead of Aβ, is
the key factor in the development of AD. Tau proteins are essential for carrying
nutrients and other essential components within the neuron’s internal support
and transport system. The shape of tau proteins is altered and deposited into
neurofibrillary tangles. The tangles affect the transport system, triggering a
toxic cascade that eventually results in cell death and brain shrinkage [62].

Other risk factors of AD include aging, genetics, environmental and medical
factors. Old age is the primary factor for AD, and the incidence of the disease
is increasing dramatically as the population ages worldwide [149]. The ma-
jority of cases of AD are late-onset AD (LOAD), which begin beyond the age
of 65 [52]. In younger people (30-60), the disease can be classified into early-
onset AD (EOAD), with just 1-6 percent of cases and most being familial.
Genetic factors have been discovered to play an important role in the develop-
ment of the disease. 70% of AD cases are associated with genetic factors [60]:
the majority of EOAD cases are inherited in an autosomal dominant pattern,
and mutations in the dominant genes are also related to AD. However, the
aforementioned factors do explain all AD cases. Air pollution, nutrition, met-
als, infections, and a variety of other environmental risk factors may generate
oxidative stress and inflammation, raising the risk of developing AD. Cardio-
vascular disease, obesity, diabetes, and other medical disorders are common
in the elderly with AD, which are linked to an increased risk of AD as well.

The disorder is currently incurable, which increases the need to create and
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Figure 1.6: The physiological structure of the brain and neurons in (a) healthy
brain and (b) AD brain [13].
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characterize relevant animal models to aid translational research and preclin-
ical drug development. In this case, the study of cell death (neurons and glial
cells) is particularly relevant and critical due to the lack of automated meth-
ods. Many of the treatments that are now undergoing clinical trials were first
carried out in animal models, which have played a significant role in defining
important disease-related mechanisms and being at the forefront of evaluating
novel therapeutic approaches [70].

1.1.6 . Animal models
Translational research evaluates novel therapy strategies using animal models
that replicate human disease. Therapeutic tests must be successful in animal
models before being applied to humans in a clinical trial. At MIRCen, we use
mainly rodent (mouse and rat) and primate (microcebus and macaque) models
to conduct preclinical research on neurodegenerative diseases. About 90% of
human genes have an equivalent in mice [14], proving the phylogenetic prox-
imity (study of relatedness) of mice and humans. Additionally, rodent models
have the benefit of being easily available because of their high reproductive ca-
pability, size, and short lifespan, which shortens the time required for studies.
Primate models are more challenging to study due to their low rate of repro-
duction, ethical constraints, and longer lifespans, which extend the duration
of experiments. Primate models, however, provide a greater understanding of
brain functions since they are more structurally and functionally similar to
human brains. In fundamental preclinical research, studies are first conducted
in rodents, then in primates, and if the study is successful, a transition to the
clinic may further be envisioned.

Animal models make possible the study of brain tissues post-mortem at the mi-
croscopic level, which constitutes a major asset to understanding both patho-
logical and therapeutic mechanisms. The data used in this manuscript are
microscopic images of histological sections of mouse and macaque brains since
they provide the possibility of capturing neuron information at the cellular
level. The following section describes the histology technique, biomarkers for
neuron staining, as well as virtual microscopic imaging.
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1.2 . Histology

Histology is a branch of biology that investigates post-mortem the anatomy
of biological tissues at the microscopic level. The primary aim of histology is
to figure out how tissues are organized at different levels of structure, from
cells to intercellular substances to organs. Histology has a vital role in both
our current understanding of life and medical practice. Histopathology is one
branch of histology that is extremely helpful in assessing a diagnosis as well
as the severity and progression of a disease through biopsy or postmortem
analyses.

1.2.1 . Principles of histology
After the extraction of tissues, the preparation of histological sections can be
generally conducted in the following steps: fixation, sectioning, staining, and
imaging.

1.2.1.1 . Fixation
Fixation is the preservation of biological tissues against deterioration due to
autolysis or putrefaction and is performed during the euthanasia step in an-
imal models by injection of paraformaldehyde solution. Tissue fixation is an
essential phase in the production of histological sections, intending to preserve
cells and tissue components while allowing for the preparation of stained, thin
sections.

1.2.1.2 . Sectioning
Sectioning is often performed with a coronal incidence on a microtome with a
blade, which is equipped with a cooling system that keeps the sample frozen.
This sectioning stage delivers a series of 2D sections of several micrometers in
thickness.

1.2.1.3 . Staining
Staining is used to enhance the contrast of the tissue as well as emphasize
specific areas and components of interest since biological tissues contain low
contrast naturally. Afterward, the sections are mounted on glass slides for
protection, preservation, and microscopic observation.

1.2.1.4 . Imaging
The stained histological sections can be observed directly with a microscope
but can also be digitized with a high spatial resolution scanner, making it
possible to further investigate with digital image processing.

A wide range of stains can be employed during the staining process, from dyes
and metals to tagged antibodies [115]. Hematoxylin and eosin (H&E) is one of
the most widely used stainings, especially in the medical diagnosis of cancer.
H&E is employed as a routine stain: the cell nuclei are stained a purplish blue
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by hematoxylin, while the extracellular matrix and cytoplasm are stained pink
by eosin. On the other hand, special stains or immunohistochemistry (IHC)
detection are used when biologists want to investigate specific tissue structures
or cell types. The following section will present the common stains for neuronal
cells in brain tissues.

1.2.2 . Stains for brain tissues
The routinely used methods for staining neuronal cells include Nissl and NeuN.

1.2.2.1 . Nissl
In contrast to H&E, which is a general staining, many techniques selectively
stain cells, cellular components, and specific substances. For instance, Nissl
staining (see Figure 1.7 left) is used to identify Nissl substance (clumps of
rough endoplasmic reticulum and free polyribosomes) with cresyl violet (pur-
ple). The Nissl technique allows for the identification and differentiation of all
brain cell types by staining neurons and glial cells differently within the same
nervous tissue. This characteristic makes it the most appropriate technique
for analyzing the cytoarchitecture of different structures throughout the brain.

1.2.2.2 . NeuN
Antibodies have recently been employed to identify proteins, carbohydrates,
and lipids. This approach is called Immunohistochemistry (IHC), which has
substantially improved the ability to distinguish between cell types. NeuN
(see Figure 1.7 right) is a protein, a neuronal nuclear antigen that is commonly
used as a differentiation marker for neurons. NeuN immunoreactivity has been
widely utilized to detect neurons in tissue culture and in histological sections
in order to evaluate the neuron/glial cell ratio in different brain regions and
to investigate neuron development and differentiation [48].

Other common biomarkers for brain histology contain Ionized calcium bind-
ing adaptor molecule 1 (Iba1) for microglia and Glial fibrillary acidic protein
(GFAP) for astrocytes. It is important to underline that, in addition to the
above-mentioned markers, there exists a very large diversity of markers that
allow the precise study of biological tissues. The microscope makes it possible
to observe tissue directly at the cellular level. And digitization and auto-
mated systems pave the way for many possibilities: storage, sharing and data
exchange, and access to visualization and analysis software.
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Figure 1.7: Coronal section from mouse brain stained for neurons using differ-
ent biomarkers. Left: Nissl (image from Melbourne Brain Center5) and right:
NeuN (image from Harvard Medical School6).

1.2.3 . Microscopy imaging
Biologists have long used optical microscopy to examine microscopic details
and cellular structure in histological slices, which involves magnifying a sam-
ple by passing visible light transmitted through or reflected from it through
a single lens or many lenses. In contrast to conventional transmitted light
microscopy, the sample in a fluorescence microscope is illuminated by a spe-
cific range of light wavelengths through the objective lens. The fluorophores
in the sample respond to this light by emitting longer wavelengths of light.
Advances in digitization techniques have brought innovative approaches to im-
proving histological image acquisition, such as Whole slide imaging (WSI) or
virtual microscopy. This technique involves high-speed, high-resolution digi-
tal image acquisition of whole stained tissue sections, allowing analysis using
a computer rather than a microscope. The use of WSI in digital pathology
has continuously gained in popularity because it offers a practical way to as-
sist disease diagnosis through interactive visualization and navigation of tissue
slide images [49]. There are several key steps to digitize histology slides with
WSI: scanning, storage, display, and analysis (see Figure 1.8).

With a high-resolution objective lens, tissue is scanned in a tile or linear
pattern, and the digital representations are then coordinated and stitched
together to form a seamless image of the entire slide [1]. In the tile pattern,
the section is scanned as a series of square tiles (Figure 1.9 a and b). Image
acquisition in a linear pattern is performed in long thin strips (Figure 1.9 c).
Most scanners allow users to scan at different magnifications, and the most
commonly used magnifications are 20 × (0.22 × µm2 /pixel) and 40 × (0.11
µm2 /pixel). Scanning at multiple focal planes (z-axis) is also possible and
makes it possible to improve focus through tissue section thickness.

5https://www.melbournebraincentre.edu.au/
6https://www.hms.harvard.edu/research/brain/atlas.html
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Figure 1.8: Digitalization of a histological specimen with a slide scanner for
virtual microscopy7.

The high resolutions and potential multiple z-plane acquisitions increase the
file size and acquisition duration tremendously. Image compression methods
are frequently utilized to reduce file size, but they may introduce information
loss during the conversion that cannot be recovered. Even with compression,
the compressed image of the entire slide often surpasses 1 GB, making it dif-
ficult to display, share, or process. In practice, loading images at the highest
resolution is not required to visualize the whole image. When biologists need
to examine the slide at the maximum resolution, they generally focus on a spe-
cific region of interest, which does not require the entire image to be loaded
[162]. Saving WSI data in a pyramid structure is an efficient way to store
and transmit the image (see Figure 1.10): the WSI data is made up of mul-
tiple images of various resolutions (the altitude of the pyramid corresponds
to the zoom level). The pyramid base represents the baseline image with full
resolution. The thumbnail image is a low-resolution representation of the full
image that can be displayed instantaneously. At intermediate resolutions, one
or more intermediary layers of the pyramid may be established to enable the
retrieval of image data at any resolution8.

7https://www.virtual-microscopy.net/
8https://www.dicomstandard.org/
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Figure 1.9: Tile and linear scanning patterns. (a) Tile scanning with “focus ev-
ery field”, (b) tile scanning with “focus every nth field” and (c) linear scanning.
Dots mean focus points [55].

Many WSI systems include image-viewing software that can be installed lo-
cally on computers. Annotating images, storing regions of interest, and ex-
porting images to different formats are commonly supported. In addition to
the functions mentioned above, other software solutions have been developed
which allow applying image analysis algorithms automatically to whole-slide
images, such as ImageJ [113] and QuPath [8].

CEA-MIRCen is equipped with a WSI Axio Scan Z.1 scanner9 (see Figure 1.11)
with an automated system that can scan up to 50 double or 100 single glass
slides in a single session (for primate and rodent tissue section digitization,
respectively). This system allows the scanning of the sections in both bright
field and fluorescence modes. The Zeiss ZEN software, which operates the
scanner and captures the images in CZI (Carl Zeiss Imaging) format, is a
pyramidal file containing imaging data with relevant meta information. ZEN
also supports exporting low-resolution images in other formats such as TIFF,
JPEG, PNG, and GIF formats.

A medical image is an array of picture components called pixels or voxels that
depicts the internal structure or function of an anatomical region. Medical im-
age files consist of both metadata and pixel data. Metadata is the description
of the image, which is typically saved as a header at the beginning of the file
and contains the image dimensions, the spatial resolution, the pixel depth, the
photometric interpretation, etc. The numerical values of the pixels are stored
as pixel data. Pixel data are stored as integers or floating-point numbers us-
ing the fewest number of bytes required to represent the values. Neuroimaging

9Carl Zeiss Microscopy GmbH, Germany
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Figure 1.10: WSI as a pyramid of image data [118].

Figure 1.11: Left: Axio Scan Z.1 and right: image viewing software Zen. 1.
Microscope, 2. objectives, 3. illumination, 4. cameras and 5. software.
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Informatics Technology Initiative (Nifti) and Digital Imaging and Communi-
cations in Medicine (Dicom) are two popular file formats in medical imaging.
Nifti allows the storage of the header and pixel data separately as .hdr and
.img, and they are merged and stored as a single “.nii” file. In Dicom, meta-
data and pixel data are combined into a single file, and the Dicom header also
includes details on the image matrix and the most thorough description of the
acquisition procedure and scan parameters used to generate the image [72].

At CEA, we use another in-house image format called GIS which is a sim-
plified format compared to DICOM or Nifti formats. It is used for software
development and data analysis. This format also supports 3D images. A GIS
file contains three sub-files: IMA, DIM, and MINF:

The IMA file contains the basic pixel value matrix (equivalent to a raw file).

The DIM file is a minimal header file, which includes only the main properties
of the image (size, resolution, type, etc.).

The MINF file is a header file that contains more detailed and additional
properties of the image according to modality or image information (dimen-
sion, resolution, type, value range, specific metadata, etc.).

The advent of histology and virtual microscopy have made massive, high-
resolution data available, and this has led to an explosion of methodological
developments for the quantitative analysis of histological images. Segmen-
tation of regions of interest, tumor detection and classification, and nuclei
segmentation are important topics in this area. Machine Learning (ML) algo-
rithms, and more recently, deep neural networks, are considered to be among
the most effective tools in computer vision tasks. This thesis work investi-
gates their application and performances in the context of neuron instance
segmentation. Various ML techniques used in this work are introduced in the
following section.
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Figure 1.12: Decision Tree example (image from Towards Data Science10).

1.3 . Machine Learning

As part of artificial intelligence, ML algorithms are approaches that customize
models to perform specific tasks by learning from training data. A well-trained
model is able to make predictions or decisions without human intervention.
ML methods are employed in a variety of speech recognition and computer
vision applications. In this study, we will use both classical ML algorithms and
Deep Learning (DL) methods, especially convolution neural networks (CNN).

1.3.1 . Classical Machine Learning algorithms
According to the need for labeled training data, the learning process can be
divided into supervised and unsupervised. Supervised learning is the most
widely used method: it forms the predictions via a learned mapping f(x),
which produces an output y given an input x. A variety of ML algorithms
has been proposed to estimate the mappings. Widely used ML algorithms
include K-Nearest Neighbor, Support Vector Machines, Decision Trees (DTs),
Logistic Regression, etc.

We used both Random Forest (RF) and Gradient Boosted Decision Trees
(GBDT) in this study because of their good performance in classification
and regression problems. Both of them are based on DTs. DTs are a non-
parametric supervised learning method. The objective is to learn simple de-
cision rules from data features and to build a model that predicts the value
of a target variable. Similar to the flowchart, each internal node in the DT
represents a “test” of a feature, each branch represents the result of the test,
and each leaf node represents a category label. The classification rule is repre-
sented by the path from the root to the leaves. A simple decision tree example

10https://towardsdatascience.com/
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Figure 1.13: Simplified Random Forest example.

is shown in Figure 1.12. The ideal decision tree is one that accounts for the
majority of the data while limiting the number of levels.

1.3.1.1 . Random Forest
Random Forest (RF) was first proposed in [50]. The idea is to use an ensemble
of individual DTs that operate together. Each individual tree in the RF pre-
dicts a class label and the class, with the class with the highest votes becoming
the final prediction. Figure 1.13 illustrates an example of the RF model, in
which the final prediction will be “class B” based on majority voting. The
term “random” reflects two aspects: bagging and feature randomness.

Bagging, also called bootstrap aggregating, is a technique used in RF to im-
prove stability and accuracy. Each DT in the RF model is trained on a ran-
domly selected subset of the training dataset with replacement. This pro-
cedure improves model performance since it decreases the variance without
raising the bias. In particular, a single DT can be highly sensitive to noise in
the training set, whereas the average of many trees, as long as the DTs are
not correlated, is more robust. Bootstrap sampling can effectively de-correlate
the DTs by training them with different sets.

RF also includes another type of bagging scheme called feature randomness,
or feature bagging: selecting a random subset of features at node splitting
in the learning process. A standard DT examines all possible features before
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Figure 1.14: Node splitting in a decision tree model and Random Forest model
(image from Towards Data Science11).

selecting the one that creates the greatest separation between observations in
the left and right nodes. In a RF, on the other hand, each tree can only choose
from a random features subset. This introduces even more variance among
trees, leading to lower correlation and greater diversification. The difference
in node splitting in RF and DT is shown in Figure 1.14.

1.3.1.2 . Gradient Boosted Decision Trees
Same as RF, Gradient Boosted Decision Trees (GBDT) [33, 34] is also strong
ensemble learner of many weak DTs. However, they are highly different.

The main distinction between RF and GBDT is how decision trees are inte-
grated. Unlike the bagging used in RF, GBDT uses a boosting technique to
build the ensemble model. The boosting can be considered an iterative gradi-
ent descent algorithm. Each decision tree is additively concatenated with the
goal of minimizing the error of the previous tree, as shown in Figure 1.15.

Suppose a GBDT model contains M subtrees, the output of stage m (1 <

m < M) is Fm, and the difference between the actual value and the predicted
value is y − Fm. The objective of the next model, hm + 1, is thus to fit the
residuals, which means:

Fm+1(x) = Fm(x) + hm+1(x) = y (1.1)

11https://towardsdatascience.com/
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Figure 1.15: A simple example of gradient boosting [166].
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Assume the loss function is the mean square error (MSE):

Lmse =
1

n
(y − Fm(x))2 (1.2)

where n is the number of samples. The gradient of Lmse equals:

∂Lmse

∂Fm
= − 2

n
(y − Fm(x)) = − 2

n
hm+1(x) (1.3)

Therefore, for a given model, the residuals hm+1(x) are proportional to the
negative gradients of the MSE. In GBDT, the DTs do not match the complete
data set. Instead, each tree fits the residuals of the previous tree, which
gradually increases the accuracy and robustness of the model. Since the data
used in DTs are different from one to another, all trees are uncorrelated. Both
bagging (RF) and boosting (GBDT) reduce the variance. On the other hand,
boosting keeps the focus on narrowing the gap between predicted and actual
values by lowering residuals, which also reduces the bias.

1.3.2 . Deep Learning
Recently, as part of ML based on artificial neural networks (ANN), DL ap-
proaches have made many remarkable advances in computer vision, speech
recognition, natural language processing, machine translation, etc. The term
“deep” is related to the fact that the structure of artificial neural networks con-
sists of multiple input, output, and hidden layers. DL has various advantages
compared to classical ML.

1.3.2.1 . Feature extraction
DL requires little human intervention. Unlike classical ML models, where
the features are identified manually, the multiple layers in DL models extract
progressively high-level features from the raw input in an automatic way. The
different feature extraction of classical ML and DL methods is shown in Figure
1.16.

1.3.2.2 . Accuracy
DL outperforms traditional ML when large datasets are available (e.g., a
ResNet-32 requires 20k training images to obtain an accuracy of 0.75 when
performing classification on CIFAR-10) [75]. However, traditional ML algo-
rithms are preferable for dealing with small datasets. To this end, many data
augmentation techniques have been proposed to boost the performance of DL
models [158, 87].
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Figure 1.16: Comparison of feature extraction between ML and DL. (image
from IEEE computer society12).

1.3.2.3 . Complex problem solving
When it comes to complicated issues like image classification, natural language
processing, and speech recognition, deep learning is preferable since deep ar-
chitecture can model non-linear relationships between input and output.

However, in addition to the need for large datasets, DL also faces other chal-
lenges, such as longer training time and high hardware dependencies (e.g.,
GPU).

This thesis work focuses on DL models for medical image analysis. In this
section, we will briefly introduce basic DL structures for computer vision,
including the encoder networks that gradually reduce input resolution, the
encoder-decoder networks that recover high-resolution representations, and
Generative Adversarial Networks (GAN).

1.3.2.4 . Encoder networks
Most classification networks share the same design rules of LeNet-5 [143, 74],
which we refer to here as the encoder, as shown in Figure 1.17 left. As the
network gets deeper, the size of the feature map decreases gradually, and the
depth (or the number of channels) increases, which is reflected by the thick-
ness of the block in Figure 1.17. The encoder network learns low-resolution
representations by concatenating convolutions from high resolution to low res-
olution, which can be regarded as encoding. The neural networks of this
design include AlexNet [67], VGGNet [117], GoogleNet [126], ResNet [45], etc.

12https://www.computer.org/
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Figure 1.17: The structure of an encoder and decoder network. The green (left)
represents the encoder network and the purple (right) represents the decoder
network.

Encoder networks are suitable for tasks that do not require high-resolution in-
formation, such as classification, diagnosis, etc. On the other hand, for tasks
like image detection and segmentation that require high-resolution represen-
tation, encoder architecture design is no longer applicable.

1.3.2.5 . Encoder-decoder networks
The decoder works in the opposite way to the encoder, as shown in Figure 1.17
right. It learns to read these compressed codes generated by the encoder and
recover high-resolution representations needed for location-sensitive tasks such
as object detection, semantic segmentation and instance segmentation. The
decoder branch generally consists of deconvolution layers or transposed con-
volutional layers to upsample the resolution of the feature map. The typical
networks which have the encoder-decoder structure include SegNet [7], De-
convNet [92], and Fully convolutional network (FCN) [80]. In addition, skip
connections in UNet [105] concatenate the encoder and the decoder in order
to retrieve context information at each resolution level. Most neural networks
used in this study for semantic segmentation and instance segmentation are
variants of UNet.

1.3.2.6 . Generative Adversarial Networks
Generative Adversarial Networks (GAN) was proposed by [38], consisting of
a generative network and a discriminative network which are trained in an
“adversarial” manner. Figure 1.18 illustrates classic GAN architecture. The
generative network learns to generate a data distribution of interest (e.g.,
images) from the latent space (a compressed, hidden representation of data
points) or random noise. On the other hand, the discriminative network dis-
tinguishes data synthesized by the generator from the real data distribution.
The objective of the generative network is to fool the discriminative network
by synthesizing images that are similar to the real data distribution.

The discriminative network is generally an encoder-like CNN since its job is
to distinguish the generated data from the real one, which can be seen as a
classification task. A classical generative network, such as in the first [100, 38]
has a decoder-like structure with transposed convolutional layers to generate
images from a noise distribution. Recently, GAN has been applied to solve
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Figure 1.18: General GAN architecture (image from medium13).

image-to-image translation problems, and variants of GAN with an encoder-
decoder-like generator have been developed. For example, the generators of
Pix2Pix [57] and CycleGAN [169] can be applied to learn color mapping from
input images to output images.

In this study, different GAN variants have been used to normalize the color
variation on the histological images.

13https://medium.com/
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CHAPTER 1. CONTEXT

1.4 . Motivation and challenges

The brain is a complex organ, and scientists have been investigating it for
decades to understand how it develops and ages. More recently, the rapidly
increasing number of patients suffering from neurodegenerative diseases such
as AD has prompted researchers to focus on better understanding this pathol-
ogy. However, the cause of many neurodegenerative diseases is still unclear.
One important characterization is the brain atrophy caused by the death of
neurons, which can be observed directly with Magnetic Resonance Imaging
(MRI) at advanced stages. However, the resolution of MRI images does not
allow subtle quantitative analysis. With the advances in microscopy and WSI,
we can now capture details at the cellular level.

Studies have shown that the number, distribution, and morphometric infor-
mation of neurons are all important features in studying brain aging and
neurodegeneration [131, 63, 138]. Such information cannot be obtained with-
out the individualization of neurons. In practice, biologists rely on manual
counting or segmentation to estimate neuron population in a region of interest
(ROI), for example, the stereology technique [142, 148]. Nevertheless, manual
identification of individual cells is extremely laborious and time-consuming,
making it hard to undertake on large scales or in dense regions such as the
hippocampus. Furthermore, studies based on manual segmentation are not
reproducible since the results are closely related to the human experience. As
a result, automatic segmentation methods are in high demand.

Recently, DL has shown great potential in medical image analysis. The re-
sults of nuclei segmentation competitions [16, 68] have revealed that DL-based
methods outperform traditional ML methods in terms of accuracy and ro-
bustness. Most DL approaches, on the other hand, have been developed and
validated for processing H&E-stained images, whereas the neurons are usually
stained with NeuN by using immunohistochemistry (IHC). Neuron individ-
ualization using DL is a less explored research area. One limitation of DL
methods lies in their demand for large annotated datasets, which are not
always available. In addition, the prediction of neural networks is a proba-
bility map, which needs a post-processing step to obtain the individualized
instances. Recent attention has focused on improving network architecture,
while post-processing, in contrast, has not been well investigated.

WSIs contain several resolution layers, and the data with the highest resolution
is extremely large. A macaque brain section, for example, is roughly 200,000 ×
200,000 pixels at resolution 20×, and the file size is about 150 GB. However,
because of the GPU memory constraints, DL-based methods often handle
small images (usually not larger than 1024 × 1024 pixels). But images with
this dimension represent only a small region, which is not sufficient for many
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analytic purposes. Cell segmentation on large-scale WSI images remains a
challenge.

Another issue in histological image analysis is color variation, which can be
introduced during the staining process or the digitalization. This color incon-
sistency bothers the diagnosis of pathologists, and it may degrade the perfor-
mance of Computer-Aided Diagnosis (CAD) systems. As a result, techniques
of color normalization are often applied as a preprocessing step for DL-based
methods. Nevertheless, these techniques themselves may also have an impact
on image analysis, which has not been adequately examined. Moreover, most
existing color normalization methods [132, 82] have been explicitly designed
for H&E-stained images, which differ significantly from IHC in terms of stain-
ing type. The applicability of these methods on IHC images and particularly
NeuN-stained images, remains an open question.

Considering all remaining issues, the objective of my thesis work is to develop
a framework based on DL for automatically individualizing neurons in var-
ious anatomical brain regions on a large scale with minimal manual effort.
This method will be precise, computationally affordable, and robust to color
changes.

Specifically, the thesis aims to:

1. Investigate a strategy for semi-automatically generating large amounts
of annotations to minimize manual efforts.

2. Propose a general framework consisting of a neural network and post-
processing to individualize neurons in different anatomical regions and
species.

3. Adapt the framework to process large-scale images on HPC resources.

4. Examine existing color normalization techniques on NeuN-stained im-
ages.

5. Quantify the degradation of segmentation performance due to color vari-
ation.

Related research works will be presented in the next chapters and through
several publications (two international conference papers and a journal article).
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2 - Literature review

2.1 . Automatic cell segmentation methods

Advances in microscopy, especially virtual microscopy, provide us with rich in-
formation at the cellular level. Single-cell identification on microscopic images
is a prerequisite for many quantitative studies [16]. The accuracy of segmen-
tation is critical for tracking single cells and retrieving characteristics such as
cell number, size, and morphological information. As manual segmentation
is extremely laborious, numerous automated methods have been proposed to
address this issue.

2.1.1 . Conventional methods
2.1.1.1 . Thresholding

By turning a gray-scale image into a binary image based on a threshold, thresh-
olding [94] is the simplest and fastest approach for segmenting cells from tissue.
Pixels with an intensity greater than the threshold are assigned a value of 1,
while the rest are assigned a value of 0. Only one global threshold is esti-
mated automatically over the entire image, so lightly stained cells may be
missed. Later methods have brought improvement by adding more thresholds
and browsing an image with a sliding window instead of handling the entire im-
age at once [116, 15]. However, thresholding methods only distinguish objects
from the background. They are not able to identify touching or overlapping
cells.

2.1.1.2 . Morphological operations
Several studies have investigated cell segmentation using morphological oper-
ations [112, 144]. Specifically, erosion operations are performed on a binary
image with increasing scales to obtain the markers for each cell (touching
cells are well-separated), and then the markers are labeled and expanded with
iterative dilation to restore the original cell shapes. Recently, mathematical
morphology became popular as a preprocessing step to facilitate later segmen-
tation [156]. Dorini et al. [26] use a multiscale morphological toggle operator
to regularize contours before applying image segmentation [137].
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2.1.1.3 . Watershed transform
Watershed transform [85, 104] was the most popular approach for cell in-
stance segmentation before the advent of DL segmentation methods. Wa-
tershed transforms the image into a landscape, with the intensity reflecting
elevation. The landscape is flooded with water from regional minima, which
correlate to low-elevation locations, and creates dams to prevent water from
different basins from combining. The boundaries of the dams are known as
watershed lines, and they divide the landscape into regions corresponding to
cells.

Because of intensity differences in the foreground and background, the wa-
tershed transform may be prone to over-segmentation [156]. Watershed can
significantly alleviate over-segmentation with controlled markers as regional
minima. Thus, watershed transform is often combined with automatic nuclei
detection methods [101, 164] since manual markers are not always available.
Yang et al. [157] used feature-preserving non-local means filtering to reduce
noise in gray-scale images so that the markers used to initialize the water-
shed transform could be easily detected. Another approach to address over-
segmentation is to define prior criteria to merge miss-segmented regions into
real nuclei, for example, a measurement score to compare regions before and
after merging [76, 77]. More recently, watershed transform has been applied
as a popular post-processing technique of DL-based segmentation methods
[16, 68].

2.1.1.4 . Graph-cut
Graph-cut methods address image segmentation as a graph partitioning prob-
lem that can be formulated in terms of energy minimization [153, 12, 29].
These methods represent an image as a weighted graph, with each node repre-
senting a pixel or superpixel in the image, and each edge is a weight between
two nodes representing the similarity between neighboring pixels or superpix-
els. The graph is divided into many sets, each representing an object in the
image, based on a set of criteria.

Al-Kofahi et al. [3] proposed a two-stage graph-cut method for nuclei seg-
mentation. First, the image foreground is automatically extracted using a
graph-cut-based binarization. Then, nuclei are detected using Laplacian-of-
Gaussian filtering and distance maps. A second graph cut and graph coloring
are applied to obtain the final segmentation. Lou et al. [81] demonstrated sig-
nificant quantitative improvement by integrating a “blob”-like shape prior to
the graph-cut framework. He et al. [46] proposed a normalized cut algorithm
using a weighting matrix, which is calculated based on spatial location, inter-
vening, and concave contours to separate the aggregated cells into individual
cells. However, graph-cut methods have been used only for simple cases with-
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out massive clustering of cells. In addition, these methods are not suitable for
samples with varying cell sizes, as an a priori fixed cell size is required.

2.1.1.5 . Other methods
You et al. [160] proposed a framework for individualizing size-varying and
touching neurons. First, a multi-scale series of Gaussian filters are applied
for denoising. The centroids of neurons are then identified using a min–max
filter. Finally, a competitive region-growing algorithm is used to find instance
borders, with expansion constrained by the binary segmentation of a trained
RF. The process is applied iteratively until the best filters are found.

2.1.2 . Deep learning-based methods
Recently, DL-based segmentation methods show better accuracy and robust-
ness compared to traditional methods. Table 2.1 shows a summary of current
state-of-the-art methods. According to the definition of loss function: they
can be divided into the following categories:

2.1.2.1 . Distance map regression
In literature, distance transform is a simple cell detection method that as-
signs a distance to each pixel of the cell class to the nearest feature point,
which is commonly chosen as the edge pixels in a binary image. As a result,
the local maxima of the computed distance map are usually matched to the
cell centroids [156]. More recent attention has focused on predicting distance
transform using neural networks [69]. Naylor et al. [91] addressed the cell seg-
mentation in H&E-stained images as a distance map regression task (DIST).
Given an input histological image, a fully convolutional network (FCN) is
trained to estimate the distance of each pixel of the cell class from the nearest
background pixel. The distance map is then normalized to the range [0, 1] to
handle the size differences between cells. The final instance segmentation re-
lies on two thresholds: one for classifying the foreground from the background
and the other for controlling the size of segmented objects. Liu et al. [79]
improved this method by adding a network branch to predict cell contours,
and this additional information led to more accurate boundary predictions.
Schmidt et al. presented StarDist to simulate the regular roundish cell shapes
with star-convex polygons [111]. In order to define star-convex polygons, a
neural network (UNet) is trained to predict the object probability and the
distance in 64 radial directions simultaneously. After that, duplicate shapes
are pruned using non-maximum suppression (NMS). This approach can accu-
rately identify cells, although it is not pixel-accurate. In their further study,
this issue was addressed by using stricter bounds during NMS [147].
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2.1.2.2 . Pixel-wise classification
Another popular strategy is to tackle cell segmentation as a pixel-wise classifi-
cation or semantic segmentation task, which can be extended to cell instance
segmentation with post-processing. For example, binary classification of cells
and tissue, while it is unable to separate touching cells. More recently, re-
searchers have addressed this problem by adding a third class of cell contour,
so that cell segmentation becomes a ternary classification of cell interiors,
background, and cell boundaries. Cui et al. [23] proposed a convolutional
neural network (CNN) that predicts nuclei and boundaries simultaneously, re-
sulting in prediction maps of nuclei and boundaries. The nuclei map is then
thresholded, labeled, and dilated to get the final segmented nuclei. The win-
ning method of nuclei segmentation competition Data Science Bowl 2018 [16]
showed that segmentation performance could be further improved by predict-
ing only the boundaries between cells rather than entire cell contours. Still,
the output of the network is a prediction map of three classes on which com-
plex post-processing is applied for individualizing cells. Three thresholds are
selected to generate three sets of cell instance candidates, and a GBDT model
is trained to choose the best of them.

2.1.2.3 . Forthright instance segmentation
One landmark in DL-based instance segmentation is Mask R-CNN (Region-
Based Convolutional Neural Network) [44]. The network consists of two stages.
The first stage involves a Region Proposal Network, which offers multiple ROIs
in a given image with bounding boxes. In the second stage, Mask R-CNN
predicts a binary segmentation for each ROI in addition to predicting the
class and box offset. Several studies have attempted to adapt this method for
cell segmentation and achieved state-of-the-art results [51]. One advantage of
Mask R-CNN over pixel-level classification is that it allows the segmentation of
overlapping objects since each object is processed independently. On the other
hand, Mask R-CNN is computationally more expensive for the same reason.
Stringer et al. [123] designed a multi-task strategy to perform cell instance
segmentation. A UNet is trained to predict vertical and horizontal gradients
and cell probability. Pixels that flow to the same centroid are aggregated, and
individual cell instances are defined by tracking gradient paths. Furthermore,
cell shapes are refined with the cell probability map.
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2.1.2.4 . Center detection and label extraction
The good performance of the aforementioned methods requires large datasets
and pixel-level masks for training, which is both time-consuming and labor-
intensive if carried out manually. Researchers have investigated cell segmen-
tation using only point annotations to alleviate the labeling process. These
methods can usually be divided into centroid detection and pixel-level label
extraction. Qu et al. [98] proposed a framework that consists of two train-
ing stages for detection and segmentation, respectively. Cell locations can be
detected with the trained detection model, and the voronoi diagram and k-
means clustering are applied to automatically generate coarse labels for the
segmentation network. Likewise, Chamanzar et al. [18] developed a multi-task
training scheme that simultaneously learns cell detection and instance segmen-
tation. Point annotations are fed both directly to guide the detection task and
indirectly to guide the segmentation task by combining local pixel clustering
and repel codes. You et al. [161] proposed a multiscale CNN to detect the
center of neurons with different sizes. Detected cell centers are then used as
seeds to initialize a competitive region-growing with a binary segmentation as
the mask to obtain the final instance segmentation.
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Table 2.1: Current cell segmentation methods based on Deep Learning.

Methods Type Ground Truth Network Comments
Kumar et
al. [69]

Distance
map regres-
sion

Two CNN First CNN to
detect nuclei and
second CNN to
classify patch-
wise label

DIST [91] Distance
map regres-
sion

FCN FRegression of
the distance map

MCDNet
[79]

Distance
map regres-
sion

Two
branche
UNet

Dilated convolu-
tion, residual op-
erations

StarDist
[111]

Distance
map regres-
sion

UNet Prediction of star-
convex polygons

Cui et al.
[23]

Pixel-wise
classifica-
tion

UNet Prediction of
three classes (cell,
background and
contour)

Topcoders
[16]

Pixel-wise
classifica-
tion

UNet Prediction of
three classes (cell,
background and
inter-cell contour)
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nucleAlzer
[51]

Instance
segmenta-
tion

Mask R-
CNN and
UNet

Mask R-CNN
for segmenta-
tion, UNet for
post-processing
(correction)

CellPose
[123]

Instance
segmenta-
tion

UNet Residual blocks,
prediction of ver-
tical, horizontal
gradients and cell
probability

Qu et al.
[98]

Center
detection
and label
extraction

UNet with
ResNet-34
as encoder

Two networks for
semi-supervised
nuclei detection,
followed with
a segmentation
network

Chamanzar
et al. [18]

Center
detection
and label
extraction

UNet with
ResNet-50
as encoder

Segmentation
network trained
with repel code
and local cluster
(generated from
point annota-
tions)

You et al.
[161]

Center
detection
and label
extraction

Multiscale
fully con-
volutional
regression
neural
network

Detection net-
work with
segmentation
post-processing
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2.1.3 . Whole Slide Imaging segmentation
Whole slide images (WSI) are very large images that contain a high-resolution
digitization of an entire tissue section or biopsy. Cell segmentation in whole
slide images presents a number of challenges due to the large size and high
resolution of the images. Some specific challenges of nuclei segmentation in
whole slide images include:

1. Large image size: whole slide images can be several gigapixels in size,
making them much larger than traditional microscopy images. This can
make it difficult to process the entire image in a reasonable amount of
time, especially if the method being used is computationally intensive.

2. Large number of nuclei: whole slide images often contain a large num-
ber of nuclei, with tens of thousands or even millions of cells present
in a single image. This can make it difficult to accurately segment all
cells, especially if there is overlap between cells or if the cells are ir-
regularly shaped. For methods that iteratively process each object, the
computational cost will increase exponentially.

3. Variability between regions: several anatomical regions appear in whole
slide images, while cells can vary significantly from one region to another
in appearance, with differences in size, shape, and intensity. Therefore,
a robust segmentation method that works well for cells from different
anatomical regions with different morphologies is needed.

Many segmentation methods cannot be directly applied to WSI. Deep learning-
based (DL) segmentation methods are designed to work with images that are
typically not larger than 1024 × 1024 pixels and require the use of graphics
processing units (s) to process the images efficiently. However, when it comes
to segmenting large-scale images such as whole slide images, which can be
several gigapixels in size, simply downsampling the images to a smaller size
is not always an effective approach. This is because downsampling results
in the loss of information, which can negatively impact the accuracy of the
segmentation.

One alternative approach that has been proposed for handling large-scale im-
ages is patch-based segmentation. This involves dividing the original image
into smaller patches, running the segmentation operations on each patch in-
dependently, and then stitching the patches back together to reconstruct the
original large-scale image. This allows the segmentation to be performed on
smaller, more manageable chunks of the image rather than the entire image
at once. This can be an effective approach for segmenting large-scale images,
although it may be more computationally intensive than simply downsampling
the image.

42



2.1. AUTOMATIC CELL SEGMENTATION METHODS

Another issue with DL segmentation is the inaccurate prediction of image
boundary regions. Because the predictions of the same pixel near the border
of adjacent patches are not always consistent, this problem may generate a
mosaic effect in the stitching results at the boundaries [23]. Currently, there
are two common strategies to address this: overlapping patch extraction and
decreasing the weight of boundaries.

Guo et al. [39] and Khened et al. [66] extracted image patches with an overlap
of 50% of the patch size and averaged multiple predictions in the overlapped
region after inference. Such a large overlap can effectively reduce the border
effect, but it also results in a large number of redundant computations. For
large-scale images, such as entire histological slices, this supplementary cost
may become significant. In a probability map of CNN, the closer one pixel is to
the edge, the less accurate its prediction is. Prediction weighting aims to lower
the impact of border pixels while increasing the contribution of center pixels.
Isensee et al. [56] proposed applying a Gaussian importance weight map before
the stitching process. A similar scheme can be found in [23]. Rather than
assigning equal weight to each pixel, assigning appropriate weight to each
pixel better matches the nature of the probability map. In this circumstance,
50% of overlap may no longer be necessary. Nevertheless, the method of [23]
can only segment cells on images with a resolution of 1000 × 1000 pixels,
which is insufficient for anatomical region-level analysis. The approaches of
[39, 66, 56] are designed to perform semantic segmentation at the ROI level.
So far, segmentation at the cellular level on large-scale WSI images remains a
challenge.
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2.2 . Color normalization for histological images

One challenge in histological image analysis is the undesirable variation in
color, which can affect the diagnosis of pathologists as well as the accuracy of
Computer-Aided Diagnosis (CAD) systems. A lot of factors can be associated
with this issue, including the concentration of staining solution, staining du-
ration, room temperature, sample volume, different manufacturers, etc. Thus
in practice, the standardization of staining is difficult to manage. Further-
more, variables during the digitization process, such as different scanners, set-
tings, and specifications of the scanner, may also introduce variations. Data
augmentation and color normalization are two common ways to improve the
robustness of DL methods to color variation. The former is used throughout
the training process: data with diverse color appearances is fed into the net-
work to improve its generalization capacity. Vasiljević et al. [135] proposed
an unsupervised method based on GANs to enhance the diversity of stainings
in the dataset. They demonstrated the benefit of this approach in improving
the staining invariance of a glomerular segmentation network. However, per-
formance may suffer in specific stains, and it may still fail when dealing with
colors that were not present during the training. The latter, color normaliza-
tion, is widely used as a preprocessing step in inference to ensure the model
performance: the test set is mapped into the same color space of a reference
image (generally from the training set) before applying the trained model.

2.2.1 . Conventional methods
2.2.1.1 . Color matching methods

Histogram specification, or histogram matching, is the transformation of an
image in order to match a reference histogram [40]. After this procedure, the
source image will have similar intensity and color statistics as the target im-
age. Histogram specification would produce exact results in the continuous
case, but in practice, images are usually restricted to 8-bit values, which is a
discrete case. Malandain et al. [83] normalized the intensity variations under
different acquisition settings using histogram matching. In contrast to meth-
ods based on discrete histograms, a windowing methodology is introduced that
allows matching continuous probability density functions and achieves more
robust results. Instead of blind registration between histograms, Dauguet et
al. [25] proposed to detect the range of intensities corresponding to different
tissues before matching histograms. In order to improve robustness, an it-
erative algorithm is used to update these detections until a consistent tissue
classification is achieved on consecutive slices. Exact histogram specification
[21] transforms images into K-dimensional space, a continuous-valued space,
and small random values are added to induce a strict ordering. However,
histogram matching-based methods may bring artifacts in the processed im-
age since it treats the color histogram independently from the image content.
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It may especially fail if the color distributions of the source and target are
significantly different.

Another popular strategy is the color transfer algorithm [102], which was orig-
inally proposed to alter color in natural scene images. They show that the lαβ

color space with decorrelated axes can be a powerful tool for manipulating im-
age color. The color channels are aligned to match that of the reference in this
space. More specifically, the goal is to match the color statistics (means and
standard deviations) of two images. However, in histological images, because
the transformation is applied at the image scale without separating the stain
color and the tissue color, this method may cause incorrect color mapping.

2.2.1.2 . Stain-separation methods
Several stain-separation methods have been proposed for normalizing color in
histology images, which often have multiple stains (e.g., H&E). Non-negative
matrix factorization (NMF) based algorithms address color normalization as
an optimization problem. In [99], images are factorized into color appear-
ance matrix and stain depth matrix since they are both non-negative, and
the distance between source and target is reduced for decomposed matrices
separately. Macenko et al. [82] proposed to transform images from RGB color
space to optical density (OD) space, where color vectors can be easily sepa-
rated. Each staining channel is then normalized independently using singular
value decomposition (SVD). Khan et al. [65] proposed an image-specific color
deconvolution method: a supervised classification framework is trained to label
each pixel in the image with the appropriate stain, which results in a decon-
volution stain matrix. Further, the statistics of the deconvolved source and
target are mapped nonlinearly for each stain channel. By adding a sparseness
regularization component to the stain depth matrix, the structured preserv-
ing color normalization (SPCN) with sparse NMF (SNMF) outperformed the
standard NMF and SVD methods [132]. Figure 2.1 illustrates the diagram of
SPCN. Janowczyk et al. proposed a sparse autoencoder to partition source
and target images into tissue segments. Thereafter, Histogram matching and
alignment are performed for each cluster rather than all pixels of the image.

2.2.2 . Deep learning-based methods
Recent studies have explored color normalization in histological images using
neural networks. Generally, based on generative models (GAN), color normal-
ization is addressed as an image-to-image style transfer task. Bentaieb et al.
[9] proposed combining a generative model with a downstreaming task-specific
network (classification or segmentation). The generative model is a style trans-
fer model trained to alter source images with staining properties learned from
the reference image set. The task-specific model is a discriminative model that
is trained to assess how realistic the generated image is, as well as perform
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Figure 2.1: Flow diagram of structured preserving color normalization [132].

the auxiliary work. StainGAN, proposed by Shaban et al. [114] employed
the Cycle-Consistent Adversarial Networks (CycleGAN) [169] to perform the
color transfer as an unpaired image-to-image translation. Figure 2.2 shows
the framework of StainGAN. The networks consist of two generators and two
discriminators that perform non-linear mapping in two directions (source to
target and adverse). Generator A is trained to alter the source color with
the target color, and generator B is trained to map recolor images (generated
by A) into the original color distribution. The additional task in [9] and the
second generator and discriminator in [114] both have the same purpose of en-
forcing the generative models to preserve the semantic information of source
images when altering the stain color.

Salehi et al. [107] built a stain-to-stain framework based on Pix2Pix [57], a
conditional GAN that learns to apply the desired style to input images. As
shown in Figure 2.3, the training set is the required reference template, which
is used to generate gray-scale images and is also the ground truth that guides
the generator to recolor the gray-scale images. At the same time, the dis-
criminator learns to distinguish between a real pair (gray-scale image and the
original color image) and a false pair (gray-scale image and the image recol-
ored by the generator). The fundamental distinction of this approach is that
the generative model maps from the gray-scale image rather than the source
domain to the target domain. This strategy is less computationally expen-
sive than the aforementioned GAN-based methods since it does not require
an auxiliary task network [9] nor a second generator and discriminator [114].
Another advantage is that it does not have a prerequisite of source domain:
the trained model can be applied to recolor images with different colors as they
will all be converted into gray-scale. However, on the other hand, the gray-
scale conversion may result in information loss, which has not been quantified
and can be problematic for subsequent analysis.
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Figure 2.2: StainGAN framework [114].

Figure 2.3: Pix2Pix framework [107].
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The benefit of DL-based algorithms is that they learn color information from
the entire training set rather than a single target image, resulting in more
robust results. Furthermore, they eliminate the requirement for a target image,
which is often picked manually by experts.
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2.3 . Conclusion

In this section, we first reviewed automated methods for cell instance segmen-
tation, both conventional and DL-based. Graph-cut and watershed were the
two most widely-used methods until the revolution of DL. Recent competi-
tions in cell instance segmentation [16, 68] have demonstrated the superiority
of DL-based methods in both accuracy and robustness. We classified current
DL-based methods into four groups according to the type of ground truth re-
quired for the training. Most of them are fully supervised and rely on large
annotated training datasets to achieve good performance. However, annotated
datasets in the biomedical field are rare, and manual annotation is extremely
laborious, especially at the cellular scale. Moreover, the post-processing step
in most works has not been detailed, although it plays a vital role in the final
segmentation. In addition, we also reviewed current studies on whole-slide im-
age processing. Several works have investigated the segmentation of ROIs on
whole-slide Images with a workflow based on patch extraction, DL inference,
and prediction assembling. To date, performing cell instance segmentation on
whole-slide Images is still a challenge.

Segmenting neuronal cells in large-scale microscopic images is the primary ob-
jective of this thesis. Additionally, we are also interested in the correction of
color variations in microscopic images, which can have a negative effect on seg-
mentation. The second section reviewed current color normalization methods
for microscopic images. Often used as a preprocessing step in DL-based cell
instance segmentation, color normalization aims to match test images to the
same color distribution as training images. Conventional approaches require
a reference image as the target and try to apply the same color distribution
to test images. DL-based approaches are often based on GAN. Generative
networks are trained to map one color distribution to another. One advantage
of these methods is that the target image is no longer necessary. However, one
trained generator is limited to one specific color mapping—normalizing color
to another color reference necessitates additional training time and effort.
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3 - Automatic generation of large-scale synthetic
annotations and evaluation of Topcoders

3.1 . Introduction

A challenge of DL-based methods is the demand for large annotated training
datasets, which are not always available. In practice, the annotation is of-
ten performed manually. Manual segmentation is not only tedious and time-
consuming but also requires human expertise. To this end, it is preferable to
annotate datasets in an automated manner in order to accelerate the labeling
process and minimize manual effort. This chapter presents a semi-automatic
approach developed for generating synthetic annotations for a macaque neuron
dataset, and an evaluation of a state-of-the-art segmentation method named
Topcoders using the annotated dataset.

3.2 . Biological dataset: a healthy macaque brain

The dataset of this study came from a nine-year-old macaque brain. In total,
134 histological coronal sections stained by IHC using NeuN were produced (as
shown in Figure 3.1). Due to a large amount of data, sections were divided into
two series (even and odd-numbered) and stained separately, which resulted in
a color variation between the two series: the even-numbered sections are dark,
while the odd-numbered sections are brown. Figure 3.2 illustrates the color
variation between series. And then, they were scanned by an AxioScan.Z1
(Zeiss) with the in-plane resolution of 0.22 µm/pixel (20 × magnification).
One section at this resolution is approximately 120 GB.

Most neuron instance segmentation work of this thesis (Chapter 3 and 4) was
conducted in section 91 (as shown in Figure 3.1 and Figure 3.3). This section
is a representative section that contains the major anatomical regions of the
brain. We chose to begin with this section as it presents a large diversity
in terms of population and distribution of neurons in the brain. In a pre-
vious study [160], 50 images of 5000 × 5000 pixels were extracted covering
the main anatomical regions of this part, including the cortex, hippocampus,
caudate, striatum, thalamus, claustrum, and putamen. The image locations
are presented in Figure 3.3. We retrieved 30 images out of 50 to construct our
dataset for neuron instance segmentation. Further, 24 images were selected
and cropped into 11 616 image patches of 224 × 224 pixels to build our train-
ing set. The remaining six images were utilized as the test set to evaluate the
segmentation performance.
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Figure 3.1: Illustration of extracted coronal histological section (sagittal view
of macaque brain surface).

Figure 3.2: Two section examples with color variations (90: dark and 91:
brown).
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Figure 3.3: Section 91 of macaque brain. The red squares show the images of
5000 × 5000 pixels [159].
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This study will be extended to other sections of the brain in the next step.
However, one issue that needs to be addressed first is the color variation be-
tween the two section series. Thus, the second objective of this thesis is to
normalize colors in microscopic images, which will be investigated in Chapter
6 of the thesis.

3.3 . Semi-automatic pixel-level mask synthesis

The capacity of the DL model depends on labor-intensive, time-consuming
pixel-level annotations. In order to minimize manual labeling effort, we de-
signed a semi-automatic strategy based on a competitive region-growing al-
gorithm [160] to synthesize pixel-level annotations. The only manual work
required with this approach was to locate the neuron centroids that were used
as seeds to initialize the expansion, which was constrained with a RF binary
mask. Furthermore, we applied morphological transformations to generate
pixel-level masks of three classes, including neurons, background, and inter-
cell contours. This pipeline will be briefly presented in Section 3.4 as part of
a conference paper. The following subsections present this method in greater
detail.

3.3.1 . Random Forest binary segmentation
The RF model of binary segmentation was retrieved from prior work [11]. A
hundred DTs of the RF model were trained to classify neurons from the tissue.
In contrast to DL models, which require a large dataset with annotations, the
RF model was trained on a small dataset, including 100 representative NeuN
images of 512 × 512 pixels. Additionally, a feature selection strategy was
applied to determine a small optimal feature subset (both color and texture)
from a pre-selected feature family, leading to a faster and more robust seg-
mentation.

3.3.2 . Competitive region-growing
A contour-based model was used to perform the region growth process [160].
The expansion was initialized with point annotations that were manually iden-
tified and labeled. During the process, the expanding rate was controlled by
a penalty map of intensity and contour curvature. After each iteration, an
average filter was used to smooth the contours. The expansion terminated
when the contour reached the RF segmentation border. The majority filter (3
× 3 pixels) then assigned unlabeled pixels to a neighboring label.
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3.3.3 . Three-class-mask generation
The aim of this process was to synthesize masks to train neural networks. As
mentioned in the Chapter 2, several types of ground truth exist in the litera-
ture. Inspired by the winning approach of the nucleus segmentation challenge
[16], we addressed neuron instance segmentation as a three-class semantic seg-
mentation task. In particular, the inter-cell contour class aimed to separate
touching neurons in dense regions. Each neuron in the image was given a
unique label after the region-growing process, and the non-stained tissue was
labeled as zero. The boundary between two touching neurons was defined as
the inter-cell contour class. The thickness of the inter-cell contour should be
an even number given that it was equally contributed by two touching neurons.
A thickness of four pixels (∼1 µm) was defined empirically.

The synthesized three-class masks were used to train the DL segmentation
models. We referred to the nuclei segmentation challenge of Data Science
Bowl 2018 [16], which attracted 3 891 participants as a reference. The winning
method, called Topcoders, contains eight neural networks and a GBDT model
to refine the segmentation. The following section presents the evaluation of
this method on our dataset using the synthesized masks as the ground truth.
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3.4 . Evaluation of Deep Learning Topcoders Method for Neuron
Individualization in Histological Macaque Brain Section

The remainder of this chapter comprises the following manuscript:

Wu, Huaqian, Nicolas Souedet, Zhenzhen You, Caroline Jan, Cédric Clou-
choux, and Thierry Delzescaux. “Evaluation of Deep Learning Topcoders
Method for Neuron Individualization in Histological Macaque Brain Section.”
In 2021 43rd Annual International Conference of the IEEE Engineering in
Medicine & Biology Society (EMBC), pp. 2985-2988. IEEE, 2021.

Abstract
Cell individualization has a vital role in digital pathology image analysis. Deep
Learning is considered as an efficient tool for instance segmentation tasks,
including cell individualization. However, the precision of the Deep Learning
model relies on massive unbiased dataset and manual pixel-level annotations,
which is labor intensive. Moreover, most applications of Deep Learning have
been developed for processing oncological data. To overcome these challenges,
i) we established a pipeline to synthesize pixel-level labels with only point
annotations provided; ii) we tested an ensemble Deep Learning algorithm to
perform cell individualization on neurological data. Results suggest that the
proposed method successfully segments neuronal cells in both object-level and
pixel-level, with an average detection accuracy of 0.93.

3.4.1 . Introduction
Lack of information about neuron population, distribution and morphology at
cell level has existed as a critical problem for the study of brain development
and aging for many years. Traditionally, neurobiologists estimate manually
the number of neurons in the region of interest. However, this method is
tedious and subjective because its accuracy relies on the complexity of im-
ages. Several automated cell individualization methods have been proposed
such as Watershed [22] and iCut [46]. However, these methods have several
limitations. Watershed algorithm can be easily affected by noise in the im-
ages, often resulting in over- and under-segmentations. The iCut algorithm
proposed to segment touching cells, fails in the regions where massive cells
aggregate, and does not take into account size-varying cells such as neurons.
Recently, the development of Deep Learning (DL) has revolutionized computer
vision. Integrating DL models in cell detection and cell instance segmentation
improves accuracy compared to traditional approaches [28, 23, 91, 69]. To
achieve robust and rigorous segmentation, a large training dataset is manda-
tory. However, pixel-level annotation is laborious and time-consuming. In
addition, aforementioned methods are designed mainly for analyzing oncolog-
ical data, in particular H&E staining, whereas in neuroscience, the study of
neurons usually relies on NeuN staining. Moreover, the task of neuron seg-
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mentation is extremely challenging due to the variety in neuron shape, size
and density in the brain. To the best of our knowledge, few studies have
specifically investigated cell individualization for neurons [160].

In this paper, we propose a weakly supervised DL method for neuron instance
segmentation, which requires only point annotations. The main contributions
of this work are as follows: i) inspired by [160], we developed a new strategy
to synthesize pixel-level labels using Random Forest (RF) segmentation and a
competitive Region Growing algorithm; ii) we tested different configurations of
DL networks on NeuN-stained images. The DL architecture used in this work
is Topcoders, which ranked first during the nucleus segmentation competition:
Data Science Bowl 2018 (DSB) and demonstrated promising performances on
H&E staining images and fluorescent images stained with DAPI and Hoechst
[16] and iii) by employing an overlapping patch extraction/assembling method
[23], we were able to process large high-resolution images despite the limitation
of GPU random access memory (RAM).

3.4.2 . Materials and Methods
3.4.2.1 . Dataset

Dataset was derived from a previously published study [160], a representa-
tive histological section with thickness of 40 µm was obtained from a healthy
macaque brain and scanned by an AxioScan.Z1 (Zeiss) with the resolution
of 0.22 µm/pixel (20 × magnification) (∼ 150 GB). Based on 30 images of
5000 × 5000 pixels, 24 images were chosen to create the training dataset in-
cluding 11k patches (224 × 224 pixels), 6 other images were chosen as the
test dataset. The datasets contained the main anatomical regions where the
neuron distribution is investigated including cortex, hippocampus, caudate,
etc. The datasets presented a rich diversity in terms of neuron shape and size,
with both sparse and highly aggregated neuron distributions, as illustrated in
Figure 3.4.

3.4.2.2 . Pipeline of pixel-level label synthesis
Traditionally, cell instance segmentation is addressed as a binary classifica-
tion problem, the output of the classifier contains two classes: cells and tissue
background. Recent works indicate that a more accurate segmentation can
be achieved by classifying pixels into three classes: inter-cell contours, inte-
rior of cells and background [16]. We designed an algorithm for constructing
pixel-level labels including these three classes, based on centroid point labels
provided by the expert for each neuron and binary semantic segmentation
results produced in previous works [160] (as shown in Figure 3.5. i) The bi-
nary segmentation of neurons and background was generated by applying a
RF model of 100 decision trees, which was trained and optimized with follow-
ing features: H, S, V color channels and local intensity [160]. ii) Manually

57



CHAPTER 3. SYNTHETIC ANNOTATION GENERATION

Figure 3.4: Training dataset examples: (a) caudate, (b-c) cortex, (d) hip-
pocampus, (e) subiculum and (f) thalamus.

pinpointed centroid labels were identified by an expert, a disk with a radius
of 5 pixels in the center of the neuron was marked as a point label (size
and form adapted to visual checking and region-growing initialization). iii) A
competitive region-growing process was applied to define pixel-level labels, the
expansion of sub-region was constrained using the segmentation result of RF.
Each pixel inside the neuron had the same label as its centroid. By applying
the contours generated by region-growing on raw image Figure 3.5 (d), we
visually assessed the quality of synthesized labels; iv) based on the pixel-level
labels, three-classes masks were generated using morphological operations, in-
cluding background, neurons and the border of touching neurons (thickness of
4 pixels), which is proved to enhance the segmentation result [16].

3.4.2.3 . Neural network architecture
We applied the winner algorithm of the 2018 Data Science Bowl [16], an en-
semble model of 8 UNet-like encoder-decoder architectures, with encoders pre-
trained on ImageNet database, including three ResNets (34, 101, 152) [45],
two Dual Path Networks (DPN) 92 [20], two DenseNets (121, 169) [53] and
one Inception-ResNet [125]. Such strategy also enabled us to compare the
performance of the different neural networks individually and to evaluate
the effectiveness of the entire model. Pretrained model derived from DSB
(Topcodersbowl) [16], model trained on the neuron dataset (Topcodersneuron)
and its constituents (8 models) were all tested. Training dataset was randomly
divided into two groups (34 and 1

4) for training and validation respectively. A
heavy data augmentation was applied to prevent over-fitting, including ro-
tation, flipping, channel shuffling, color inversion, etc. The training set was
expanded to 6 times compared to its original size. Once the training of DL
models was accomplished, a post-processing step aiming to optimize the seg-
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Figure 3.5: Flowchart of pixel-level label synthesis: (a) raw image, (b) RF
segmentation, (c) point labels, (d) region-growing result (red contours) and
(e) synthesized masks (black: background, blue: neurons and green: inter-cell
contours).
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mentation results was applied: a regression model (gradient-boosted trees) was
trained to predict Intersection-over-Union (IoU) for all cell candidates, can-
didates with small predicted IoU (< 0.3) were removed in order to decrease
false predictions.

3.4.2.4 . Overlapping extraction & assembling
The test dataset contained 6 large high-resolution images (5000 × 5000 pixels)
which included various anatomical regions. However, most DL based segmen-
tation algorithms cannot process such large-scale images due to GPU RAM
limitation. Moreover, one constraint of CNN is that the prediction at the bor-
der of the input image is not accurate due to the lack of context information.
To address this problem, we adopted the strategy of overlapped patch extrac-
tion and assembling proposed in [23]. The patches were extracted from raw
images by a sliding window of 1340 × 1340 pixels (determined according to the
GPU RAM resources), a stride of 1220 pixels in height and width produced
an overlap of 120 pixels. The prediction results of patches were seamlessly
stitched to reconstruct the final result (5000 × 5000 pixels) using the same
settings as well as a weight map, which was applied to each predicted patch
so that the pixels closer to the edge of the patch have lower weights. The use
of the weight map reduced the impact of inaccurate prediction of pixels at the
border of the patches.

3.4.2.5 . Evaluation metrics
To evaluate the proposed method, we computed F1 score (F) for both detection
(det-F1) and instance segmentation (seg-F1) tasks:

P =
TP

TP + FP
;R =

TP

TP + FN
;F = 2

P ×R

P +R
(3.1)

where True Positive (TP), False Positive (FP) and False Negative (FN) rep-
resent the numbers of true, false and missing detection/instance segmentation
respectively. For the detection task, a neuron detected was considered as a
true positive when it was superimposed with exactly one centroid defined by
the expert. As for the instance segmentation, the true positive was defined as
the IoU greater than 0.5 between the detected neuron and the corresponding
label.

Dice coefficient was calculated to evaluate the semantic segmentation. Another
evaluation criterion was the relative count error (RCE):

ε =
|Na −Ne|

Ne
(3.2)

Where Na, Ne are the number of neurons detected by the proposed method
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and the expert respectively.

3.4.2.6 . Training details
Models were trained using PyTorch, Keras and Tensorflow frameworks. Each
model needed different epoch number to converge (from 17 to 70 depending
on network depth), with Adam optimizer and a starting learning rate of 1e-4
which decreased during the training. DL models with ResNet101, ResNet152
and one of DPN encoders used sigmoid activation, the other models used
softmax activation. For loss calculation, the combination of soft dice and bi-
nary cross-entropy/categorical cross-entropy was chosen for sigmoid/softmax
activation respectively.

This work was conducted on a workstation equipped with bi-processors (oper-
ating system: Ubuntu 16.04 LTS 64-bits, CPU: Intel Xeon E5-2630 v3 at 2.4
GHz, RAM: 128 GB, GPU: NVIDIA GTX 1080Ti).

3.4.3 . Results
The results of Topcodersbowl, Topcodersneuron and its constitutive models
(named according to the encoder network) were evaluated on a test dataset
including ∼16k neurons. Table 3.1 reports the performance of neuron detec-
tion (det-F1), instance segmentation (seg-F1), semantic segmentation (Dice)
and neuron counting (RCE). Although the training dataset of Topcodersbowl
did not include neuron data, it was able to detect most neurons correctly
(det-F1 score of 0.83 and RCE of 0.22). Nevertheless, it performed less well
in both instance (seg-F1: 0.71) and semantic (Dice: 0.75) segmentation. A
significant improvement of 10% was obtained by training with NeuN-stained
data. Topcodersneuron achieved the highest detection accuracy (det-F1: 0.927),
it was also one of the best models for instance segmentation (seg-F1: 0.87).
Among the constitutive models, ResNet101 outperformed others in neuron
detection (det-F1: 0.926) and counting (RCE: 0.037). DPN softmax was the
best model for instance and semantic segmentation (seg-F1: 0.88 and Dice:
0.95), followed by ResNet34 (seg-F1: 0.87 and Dice: 0.93).

To better compare the performance of each model, the detection accuracy (det-
F1) distribution of the 10 models are plotted in Figure 3.6. Topcodersneuron,
which had the best average detection accuracy on the test dataset, was also
one of the most robust models, it performed well for all tested anatomical
regions. The best constitutive model, ResNet101, was also robust, whilst it
performed less well for most tested anatomical regions than Topcodersneuron.

Figure 3.7 shows cropped examples of synthesized masks and segmentation
results in three anatomical regions. Neurons are presented by colored labels.
The results are displayed according to an increasing density of neurons (first
row: caudate, sparse; second row: cortex, dense and last row: hippocampus,
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Table 3.1: Detection and segmentation performance of Topcoderbowl,
Topcoderneuron and its constitutive models. Best and second best results are
in bold with the best also underlined.

Model det-F1 seg-F1 Dice RCE

Topcoderbowl 0.825 0.705 0.751 0.219

Topcoderneuron 0.927 0.870 0.928 0.040

C
on

st
it

ue
nt

s

DenseNet121 0.910 0.783 0.830 0.063
DenseNet169 0.912 0.839 0.869 0.062
DPN sigmoid 0.869 0.803 0.885 0.130
DPN softmax 0.918 0.880 0.951 0.059
Inception-ResNet 0.901 0.848 0.910 0.116
ResNet34 0.914 0.870 0.934 0.088
ResNet101 0.926 0.868 0.921 0.037
ResNet152 0.923 0.865 0.923 0.038

Figure 3.6: Comparison of detection performance (det-F1) on the test set
(several outlier values are below the vertical scale range).
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Figure 3.7: Results of pixel-level label synthesis and segmentation in three
anatomical regions. Top row: caudate; Middle row: cortex; Bottom row: hip-
pocampus. (a) Raw images, (b) manual segmentation, (c) synthesized pixel-
level masks and (d, e) results of Topcodersbowl and Topcodersneuron respec-
tively.

very dense). For better illustrating the results, the neurons in these regions
were segmented manually, as shown in Figure 3.7 (b). Figure 3.7 (c) shows the
synthesized pixel-level masks, compared to the manual annotations, the pro-
posed method produced satisfying masks for most regions (both in distribution
and shape based on visual evaluation). Figure 3.7 (d) illustrates the results of
Topcodersbowl, the neurons were correctly detected in the sparse regions, but
the contour of neurons were often distorted. Moreover, the region of massive
touching neurons was wrongly considered as the background. Figure 3.7 (e)
presents the predictions of Topcodersneuron, it was a solid model performing
very well for all tested anatomical regions, at both object-level and pixel-level.

3.4.4 . Discussion
Topcodersbowl was believed to be a well generalized model based on DSB 2018
results. It successfully separated neurons in regions with sparse distribution
while it did not respect the neuron shape and it failed in regions where massive
neurons aggregated. This is probably due to the absence of cells with various
forms and highly clustered distribution such as neurons in the dataset of DSB.

The performance of Topcodersneuron demonstrated the superiority of the en-
semble model. Although the results of Topcodersneuron were obtained by com-
bining the predictions of the constitutive models, it achieved better results
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than most constituents for all the tasks.

Among all the constitutive models, all ResNet backbone models performed
well, including ResNet34, the best model for semantic and instance segmenta-
tion, and ResNet101, the best constitutive model for neuron detection. Gener-
ally, a deeper network can capture more complex features. While the deepest
model ResNet152 did not achieve the best performance in any task, it might
be related to the fact that deeper networks are generally more difficult to train
owning to the vanishing gradient problem [127]. Another interesting finding
is that the choice of activation had an important influence on segmentation
results. Although two DPN models had exactly the same architecture, the one
with softmax activation performed better than that with sigmoid activation.
Since most tested neural networks achieved good results, we believe that it is
feasible to apply DL techniques for neuron counting. However, compared to
stereology [148], which takes into account the thickness of tissue for possible
superimposition of cells and provides unbiased quantifications, DL methods
can only deal with 2D images and provide a valuable estimation of cell count-
ing. A specific dataset and study need to be designed to quantify discrepancies
between DL methods and stereology.

3.4.5 . Conclusion
In this work, we investigated the ability of a weakly supervised method to
specifically detect and segment neurons in NeuN-stained histology images.
By applying state-of-the-art DL architectures, this study provides the first
comprehensive assessment of different neural networks for neuron individual-
ization. An optimal model trained using neuron data was obtained, it was
able to separate size, shape and density-varying neurons successfully. Experi-
mental results in the main anatomical regions demonstrated the effectiveness
of the proposed method against the default DSB model. The current study
was carried out with the default settings, further optimization in training pa-
rameters and architecture need to be investigated. Besides, developments in
high-performance computing (HPC) are also ongoing to test the efficiency of
cross-validation. Further work is required to establish a comparative analysis
of Topcoders and other deep learning-based instance segmentation methods,
as well as stereology – the reference method used in biomedical analysis. An
exciting perspective will be to extend this study to whole sections and brains,
which will improve our understanding of brain development, aging and neu-
rodegeneration.
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4 - A General Deep Learning framework for Neu-
ron Instance Segmentation based on Efficient
UNet and Morphological Post-processing

4.1 . Introduction

In the previous chapter, we demonstrated the effectiveness of a state-of-the-art
approach called Topcoders for neuron instance segmentation. This approach
involves training an ensemble model consisting of eight U-Net-like networks,
followed by a post-processing phase using a gradient boosting decision tree
(GBDT) model to reduce segmentation errors. While the ensemble model
achieved superior detection accuracy compared to the individual networks,
it required a significant amount of computational resources and time for the
training and the inference. Additionally, some of the individual networks per-
formed similarly to the ensemble model, but the post-processing step added
additional computational overhead by requiring the prediction of the best
threshold for each cell. These factors made the Topcoders approach less suit-
able for processing large images.

To address these limitations and enable the efficient processing of large-scale
images, we present a novel end-to-end neuron instance segmentation frame-
work in this chapter. Our approach utilizes a single neural network with an
optimal balance between precision and computational efficiency, as well as an
original post-processing scheme. We demonstrate that our approach outper-
forms Topcoders and other methods with a simpler model and easier parameter
settings.

4.2 . A General Deep Learning framework for Neuron Instance Seg-
mentation based on Efficient UNet and Morphological Post-
processing

The remainder of this chapter comprises the following manuscript:

Wu, Huaqian, Nicolas Souedet, Caroline Jan, Cédric Clouchoux, and Thierry
Delzescaux. “A general deep learning framework for neuron instance segmen-
tation based on efficient UNet and morphological post-processing.” Computers
in Biology and Medicine (2022): 106180.
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Abstract
Recent studies have demonstrated the superiority of deep learning in medical
image analysis, especially in cell instance segmentation, a fundamental step
for many biological studies. However, the excellent performance of the neural
networks requires training on large, unbiased dataset and annotations, which
is labor-intensive and expertise-demanding. This paper presents an end-to-
end framework to automatically detect and segment NeuN-stained neuronal
cells on histological images using only point annotations. Unlike traditional
nuclei segmentation with point annotation, we propose using point annotation
and binary segmentation to synthesize pixel-level annotations. The synthetic
masks are used as the ground truth to train the neural network, a UNet-
like architecture with a state-of-the-art network, EfficientNet, as the encoder.
Validation results show the superiority of our model compared to other recent
methods. In addition, we investigated multiple post-processing schemes and
proposed an original strategy to convert the probability map into segmented
instances using ultimate erosion and dynamic reconstruction. This approach is
easy to configure and outperforms other classical post-processing techniques.
This work aims to develop a robust and efficient framework for analyzing neu-
rons using optical microscopic data, which can be used in preclinical biological
studies and, more specifically, in the context of neurodegenerative diseases.

keywords: Neuron instance segmentation; Deep Learning; Mathematical mor-
phology;Histological images; Optical microscopy.

4.2.1 . Introduction
Advances in microscopy allow scanning whole slide images, capturing details
at the cellular level and revealing the complexity of brain structures. It pro-
vides the opportunity to quantitatively analyze cell populations, morphology
and distribution to answer biological questions. For example, the number,
distribution [63, 54, 131] and morphometric information [138] of neurons are
important features in studying brain aging, including neurodegenerative dis-
eases. A crucial prerequisite for such studies is cell instance segmentation,
which plays a crucial role in digital pathology image analysis. Neuron seg-
mentation is exceptionally challenging because the size, density, and intensity
of neurons differ a lot from one anatomical region to another. Since man-
ual identification of single cells is extremely laborious and time-consuming,
several automatic segmentation algorithms have been proposed: thresholding
[94], graph cut [81, 46] and watershed [22, 136, 137]. These methods need to
be specifically adapted for different configurations (species, cell types, stain-
ings). Furthermore, noise or other technical artifacts can easily influence the
segmentation results. Under-segmentation and over-segmentation often occur
when they deal with touching or overlapping cells like neurons. You et al. [160]
proposed a framework based on gaussian, min-max filter and region-growing
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algorithm to deal with such data, but it is computationally expensive due to
numerous iterations and performed poorly on light-stained regions.

Recently, deep learning (DL) has achieved remarkable progress in many fields
[73], especially in medical image analysis. Neural networks have been success-
fully applied to detect abnormal signals [167], segment lesion areas [145, 128,
43, 165] for clinical diagnosis. DL-based methods have also shown superiority
in cell segmentation competitions [16, 68], achieving better segmentations with
stronger robustness than traditional algorithms. Naylor et al. [91] addressed
this problem as a regression task of estimating the nuclei distance map. A
more common strategy is to address this problem as a semantic segmenta-
tion task, such as the pixel-wise binary classification of cells and background
[119], or more recently, the ternary classification of the interior of cells, back-
ground and cell boundaries [16, 23, 19]. Most convolutional neural networks
(CNNs) such as AlexNet [67], VGGNet [117] and ResNet [45] learn represen-
tations by gradually reducing the size of feature maps, but the high-resolution
features are lost during this process. These networks are not suitable for pixel-
wise tasks like cell segmentation. Several networks add a resolution-recover
process to address segmentation problems. For example, SegNet [7] and De-
convNet [92] use unpooling and deconvolution layers to recover original reso-
lution; UNet [105], a breakthrough in the field of medical image segmentation,
with skip connections concatenate the high resolution features of the encoder
path to the upsampled output of the decoder path. Our previous work [151]
evaluated an ensemble model of eight UNet-like neural networks with differ-
ent backbone CNNs. Wang et al. proposed HRNet [143], which maintains
high-resolution representations and assembles features from multi-resolution
streams. It outperformed other state-of-the-art networks on several tasks of
semantic segmentation, object detection and instance segmentation.

The good performance of CNNs relies on large datasets and the quality of
pixel-level annotations, which are tedious and labor-intensive to be carried out
manually. To facilitate the labeling process, researchers investigated several
weakly-supervised methods using point annotations: Qu et al. [98] trained
a CNN to predict the cell center location, and generated pixel-level labels
using Voronoi transformation and k-means clustering. Based on a similar
strategy, Chamanzar et al. [18] proposed a multi-task learning integrating
repel encoding to enhance segmentation performance. However, [98, 18] are
not straightforward and involve multiple networks or branches to achieve the
final segmentation.

Moreover, CNNs without post-processing often failed to handle touching ob-
jects [91]. Researchers mainly focus on improving the performance of CNNs,
while the post-processing part is generally not explicitly described, although
it is a critical step to obtain good segmentations. Applying watershed seg-
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mentation (WS) on the cell probability map derived from DL is the most
common way [68, 154]. Graph partition [121] and distance transform [155] are
also popular techniques. The winning method of [16] proposed a more tricky
technique: a regression model was trained to predict the intersection-over-
union (IoU) for cell candidates produced by applying different thresholds on
the probability map. With this method, only the candidate with the highest
IoU was preserved for each object. One drawback of these methods is that
well-configured parameters are required to ensure the performance. Thus,
this requires redesign of the parameter settings for applications on novel data.
Generic post-processing methods for cell instance segmentation are scarce and
worth investigating.

In this paper, we propose an end-to-end framework based on CNNs for neuron
instance segmentation, with the following contributions: 1) we establish and
validate a semi-automated pixel-level-mask synthesis pipeline using only point
annotations and Random Forest (RF) binary segmentations. This approach
allows to generate a large labeled dataset with minimal manual cost, 2) in-
spired by the instance segmentation challenge [134], we integrate EfficientNet-
B5 [127] into a UNet-like encoder-decoder architecture, this new model is
spatially and semantically precise and 3) we propose a novel strategy for post-
processing probability map based on ultimate erosion, dynamic reconstruction
and WS. Our framework is generic and easy to configure: the mask synthesis
pipeline is independent of the neural network, the synthetic masks can be eas-
ily derived to validate other supervised methods. The only parameter needed
at the post-processing stage is the size of the structuring element, which equals
the size of the smallest cell in the dataset. We compared our network to vari-
ous state-of-the-art CNNs methods [160, 23, 151, 143], as well as the proposed
post-processing to other classical approaches. The findings demonstrate the
superiority of our framework in terms of accuracy and efficiency, allowing us
to develop a powerful tool for evaluating neurons in preclinical research and
neurodegenerative diseases.

4.2.2 . Material and methods
4.2.2.1 . Dataset

The data of this study are a set of two-dimensional (2D) light microscopy
images. A representative histological section with a thickness of 40 µm was
produced from a healthy 9-year-old male macaque brain, stained by immuno-
histochemistry using the neuronal nuclei (NeuN) antibody, and scanned by
an AxioScan.Z1 (Zeiss) with the in-plane resolution of 0.22 µm/pixel (×20
magnification). The animal study was reviewed and approved by the Comité
d’éthique approved by the MESR belonging to the EU: CETEA DSV – Comité
n◦44. Thirty images of 5000 × 5000 pixels were selected to represent the het-
erogeneity of neuron distribution in the central anatomical regions, including
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Figure 4.1: Dataset examples with magnifications. (a) caudate, (b,c) cortex,
(d) hippocampus, (e) subiculum and (f) thalamus.

cortex, hippocampus, thalamus, subiculum, etc (see Supplementary Figure
4.9). These images showed a large diversity in terms of neuron size, shape,
contrast and density, with both sparse (e.g., caudate and thalamus) and highly
aggregated regions (e.g., cortex and hippocampus), as illustrated in Figure 4.1.
The pie chart presents the dataset composition in terms of anatomical regions,
with about 67% of images coming from the cortex and the hippocampus since
the cortex is the largest brain structure (76%) [4] and hippocampal atrophy
is linked to several neurodegenerative diseases [133].

To verify the representativeness of our test set, we extracted features of the
dataset using a ResNet101 model [45] pre-trained on ImageNet and embed-
ded the high-dimensional features into 2D space with t-distributed stochastic
neighbor embedding (t-SNE) projection [133].

All images were divided into two subsets: 24 images for the training set and 6
images for the test set. The test set contains the following regions: caudate,
cortex (× 2), hippocampus, subiculum and thalamus. Training images were
cropped into 11k patches of 224 × 224 pixels for which ¼ of them were used
to validate our neural networks at the end of each training epoch. To prevent
overfitting and increase the robustness of the model, we applied data aug-
mentation, including random rotation, vertical and horizontal flipping, RGB
channel shuffling, color inversion, etc. The training set was expanded to 6
times the original size.

The size of images in the test set is 5000 × 5000 pixels, which requires more
memory than the GPU RAM. They were firstly cropped into smaller patches
(1344 × 1344 pixels, can be adjusted according to the GPU RAM) with an
overlap (120 pixels, ∼10%) in both vertical and horizontal directions. The size
of patches was constrained by the GPU memory (16 GB). A weighted map
[23] was applied to the probability map of each patch to reduce the impact of
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inaccurate prediction at the border area. The weighted probability maps were
then seamlessly assembled to reconstruct the probability map of the original
large-scale image.

In order to assess the generalizability of the proposed method, we added a
test set that is independent of our training set. As shown in Supplementary
Figure 4.10, this dataset contains four cortex images of 1024 × 1024 pixels
from various animal subjects, including two macaques, a microcebus [35], and
a mouse. Manual point annotation is conducted to evaluate the object-level
segmentation of the proposed method. This study focuses on the cortex, which
is not only the largest brain structure but also the region of greatest interest to
neuroscientists. Compared to the training set (see Figure 4.1), the additional
macaque images are less brown and have greater contrast, the microcebus
image is rosy brown, and the mouse image is gray with lighter stain intensity.

4.2.2.2 . Pixel-level mask synthesis
Traditional nuclei segmentation methods based on point annotations involve
center detection and pixel-level label extraction. In this study, we addressed
neuron instance segmentation as a semantic segmentation task, which is to
classify each pixel in the image into three following classes: neurons, back-
ground and contours of touching neurons. However, this strategy required in-
stance annotations at the pixel-level, which would have been extremely labor-
intensive to achieve. We designed a pipeline to synthesize pixel-level masks
to alleviate the manual labeling effort. Our strategy is shown in Figure 4.2,
which consists of two stages: the first stage is to segment neurons from the tis-
sue and perform point annotation, and the second stage is to further separate
each neuron instance under the guidance of point annotations for initialization
and the constraint of the binary segmentation. Figure 4.2 (a) shows a NeuN
image, where the neuron centroids were annotated manually by a disk with
a radius of 5 pixels, as shown in Figure 4.2 (b). Figure 4.2 (c) presents the
binary segmentation of neurons and the tissue, which is generated automati-
cally with a RF model. As described in the previous work [160], the RF model
contains 100 decision trees. It is trained using an optimized subset of automat-
ically selected features on a small binary segmentation dataset of 100 images
of 512 × 512 pixels [11]. A CNN may be less effective with a small training
dataset of this size. Figure 4.2 (d) shows the connected components of the bi-
nary segmentation superimposed with point annotations. Multiple centroids
can be found inside one component since the binary segmentation could not
identify individual neurons. Thus, the second phase involved a competitive
region-growing algorithm separating touching neurons, using centroids as the
seed to initialize the growing process, and the binary segmentation of RF to
constrain the expansion. Figure 4.2 (e) shows the results of the region grow-
ing, where neuron instances are separated and assigned with a unique label.
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Figure 4.2: Pixel-level mask synthesis. (a) original image, (b) manual point
annotations, (c) RF binary segmentation, (d) fusion of colored connected com-
ponents and (c), (e) labeled image produced by region growing and (f) final
three-class-masks, blue: neurons, green: inter-cell contours and black: tissue.

The generated annotations were used as ground truth since the process was
guided by the point annotation. Morphological operations were applied to in-
stance annotations to obtain masks of three classes: in addition to the neuron
and tissue classes, the pixels that connect different labels were automatically
identified as the third class of inter-cell contour to separate touching or over-
lapping neurons [151]. The inter-cell contour has a constant thickness of 4
pixels, which was defined empirically. Figure 4.2 (f) shows the final result of
the pipeline, which are synthetic masks of three classes that were used to train
the segmentation neural networks. Although manual efforts are still required,
such as the point annotations and the binary masks to train the RF, they are
far less time-consuming and labor-intensive than massive instance annotations
required to train a CNN for instance segmentation.

It is worth noting that the objective was to generate pixel-level annotations to
complete the dataset needed to train the segmentation neural networks. The
use of this pipeline is finished once the annotations are synthesized, but the
same strategy can be used to annotate other datasets.

To validate the synthetic mask generation process, three experts performed
manual segmentation on a small dataset containing five patches of 500 × 500
pixels, including caudate, cortex (×2), hippocampus and subiculum. The
average manual segmentation time for 5 images was 2.5 hours.
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4.2.2.3 . Neural networks
In our previous work [151], we showed the efficiency of UNet-like architec-
ture for neuron instance segmentation. Hence, we decided to keep the same
strategy with a more recent neural network as the backbone. The family of
models called EfficientNets was proposed by Tan et al. [127], which showed
superiority in accuracy and efficiency against previous CNNs. The baseline
model, EfficientNet-B0, was generated with neural architecture search [127].
Its main building block is mobile inverted bottleneck MBConv [109]. Scaling
up one network dimension of width, depth and input image resolution can
improve accuracy. In particular, compound scaling of three dimensions can
provide a significant gain [127]. This approach brought seven scaled-up ver-
sions, named EfficientNet-B1 to EfficientNet-B7. EfficientNet-B5 was chosen
in this work as the result of a trade-off between accuracy and training cost.
Figure 4.3 (a) presents the architecture of EfficientNet-B5, consisting of stem
layers, seven main building blocks of MBConv and final layers. The resolution
of the feature map was reduced five times gradually (from 224 × 224 to 7 × 7
pixels) after the stem layers, block 2, block 3, block 4 and block 6, respectively.
Based on EfficientNet-B5 as the encoder, we gradually recovered the original
high resolution through the decoder path, which consists of deconvolution and
convolution layers. Figure 4.3 (b) shows the structure of our network, named
EfficientUNet-B5, skip connections concatenate encoder and decoder at five
different resolutions.

4.2.2.4 . Loss function
Since the neuron instance segmentation was addressed as a semantic segmen-
tation of three classes, we used the compound loss of categorical cross-entropy
(CE), two soft dice losses (Dneuron and Dcontour) [151, 168] for neuron class
and inter-cell contour class respectively to train the network. The global loss
function L is defined as:

L = 0.5CE + 0.3Dneuron + 0.2Dcontour (4.1)

CE = − 1

nc

∑
i,j

c∑
k

ti,j,k log(p(i, j, k)) (4.2)

Dk = 1−
2
∑

i,j ti,j,k log(p(i, j, k)) + 1∑
i,j ti,j,k +

∑
i,j p(i, j, k) + 1

(4.3)

where k denotes one class among c classes (c = 3), ti,j,k is equal to 1 if
the pixel (i, j) belongs to class k, p(i, j, k) denotes the probability of pixel
(i, j) of being class k, n is the number of pixels in the patch. Cross-entropy
is the most popular loss function for classification tasks. Soft dice loss [88]
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Figure 4.3: Top: structure of EfficientNet-B5, it consists of 7 building MB-
Conv blocks (represented with different color) and bottom: structure of our
neural network using EfficientNet-B5 as encoder, named EfficientUNet-B5, the
encoder is concatenated with the decoder at five different resolution (Block 2,
Block 3, Block 4, Block 6 and Block 7).
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was adapted from the Dice coefficient to calculate the similarity between two
images. One was added in 4.3 to ensure that the function is not undefined
when ti,j,k = p(i, j, k) = 0 [58]. Here, we associated CE with D for neurons
and inter-cell contours to force the network to distinguish the two classes from
the tissue. The weighting factors (0.5, 0.3 and 0.2) indicate the contribution of
each item to the compound loss, were empirically defined constants and used
to deal with class imbalance: CE and the sum of D (neuron and contour) had
the same weight, while the weight of Dneuron was slightly higher than that of
Dcontour because the neuron class was the most important in our case.

4.2.2.5 . Post-processing
The most straightforward post-processing is to apply a threshold to the prob-
ability map, yet one threshold will not fit all tested neurons with varying
sizes, shapes and intensities. Better segmentation can be achieved using more
sophisticated methods such as graph partitioning or distance transform. How-
ever, these methods increase the computation cost considerably and introduce
several hyperparameters that need to be defined empirically. In this study,
we propose an efficient and generic post-processing approach, as presented in
Algorithm 1. The output of our network is a 3-channel probability map, pre-
sented with an RGB image. Each channel corresponds to one class: channel R
represents the background, channel G represents the contours between touch-
ing neurons and channel B represents neurons. First, we extracted pixels that
were most likely to be neuron class (argmax(P ) = neuron), denoting these
pixels to 1 and other pixels to 0 to create a binary image. Second, we ap-
plied the ultimate erosion on the binary image with a disk-shaped structuring
element, whose radius was equal to 10 pixels, the same as the radius of the
smallest neuron expected [93], ensuring that no more than one neuron would
be erased during erosion to prevent under-segmentation. We hypothesized that
the inter-cell class could separate entirely or partially the touching neurons.
The second case often occurs in dense regions where the inter-cell class is not
sufficient to cut touching neurons entirely. However, it could create an initial
concavity between cells, which would provide an optimal condition for per-
forming ultimate erosion to complete the separation process. We labeled the
ultimate residues, each residue representing an individualized neuron. Then,
we proposed a dynamic dilation reconstruction using the same structuring
element: each residue was dilated with the same number of erosion applied
to produce an approximation of their original size. Due to the disk-shaped
structuring element, the dilated residues might have an unnatural smooth
shape. We used WS to restore the refined morphologic information: the di-
lated residues were used as seeds to initialize the WS expansion, constrained
by a binary mask which merged neuron and inter-cell contour classes (1 if one
pixel belonged to neuron or inter-cell contour, 0 otherwise). The merging of
inter-cell contour and neuron channels aimed to restore the cell pixels lost due
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to our artificially created inter-cell class.

The only parameter of our post-processing to be set is the size of the structur-
ing element of ultimate erosion, which is equal to that of the smallest neuron in
the dataset. It is easy to configure and generic, it can be applied independently
to other DL-based nuclei segmentation methods using a similar strategy.

Algorithm 1: Post-processing using mathematical morphology
Input: A three-channel probability map
Output: Neuron instance segmentation

1 Create binary mask based on the neuron channel
2 Ultimate erosion with a disk S(r = 10pixels)
3 for each ultimate residue Ui do
4 Ni ← number of erosion before Ui being removed
5 dilation using S, Ui ← dil(Ui), Ni ← Ni − 1
6 repeat dilation until Ni = 0

7 M ← fusion of neuron channel and inter-cell channel
8 Apply WS, markers ← U , mask ← M
9 return segmented neurons
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4.2.2.6 . Evaluation metrics
We aim to establish a framework which consists of the neural network and post-
processing. We performed comprehensive comparisons for neural networks
and post-processing approaches respectively. Four tasks, including detection,
instance segmentation, semantic segmentation, and counting, were evaluated
using five metrics. They are the F1 score (F1-det) for detection, the relative
count error (RCE) for counting, the Dice score for semantic segmentation,
and the F1 score (F1-seg) and Aggregated Jaccard Index (AJI) for instance
segmentation.

The tasks of detection and counting were evaluated at the object-level by
matching the predicted neurons with the point annotation. A predicted neu-
ron was considered as a true positive (TP) when it was superimposed with
precisely one point annotation. Otherwise, it was defined as a false positive
(FP: not superimposed with any centroid) or a false negative (FN: superim-
posed with more than one centroid). FN also included the case that no neuron
was detected in the location of a centroid. With TP, FP and FN, we computed
precision (P), recall (R) and F1-det, and RCE as follows:

P =
TP

TP + FP
;R =

TP

TP + FN
;F1 = 2× P ×R

P +R
(4.4)

RCE =
|FP − FN |
TP + FN

(4.5)

RCE is the ratio of count error over the number of neurons identified with
centroids.

Furthermore, we estimated how well-segmented neurons matched synthetic
masks at the pixel-level. The IoU score |A

⋂
B|

|A
⋃

B| was computed for all pairs of
objects, where A is a predicted neuron and B is the corresponding ground
truth mask. When segmentation of a neuron covered the mask completely,
the IoU score was 1. Since it is almost impossible to perform two identical
segmentations, even for an expert, we selected 0.5 as the threshold of minimum
IoU to identify correct segmentation. In this case: the TP was defined as the
IoU greater than 0.5 between the predicted neuron and the synthetic mask.
Otherwise, it was a FP or a FN. We computed the P, R and F1 score (F1-
seg) to evaluate the segmentation performance with this new criterion. Dice
coefficient and Aggregated Jaccard Index (AJI) [69] were also calculated to
evaluate the segmentation at the pixel-level. The AJI is defined as:

AJI =

∑N
i=1 |Gi

⋂
S(Gi)|∑N

i=1 |Gi
⋃
S(Gi)|+

∑U
u=1 |Su|

(4.6)

Where Gi is one ground truth object, S(Gi) is the segmented object that
maximizes the IoU with Gi. U is the set of segmented objects that have not
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been assigned to any ground truth object. AJI is the most stringent among all
evaluation metrics. It aims to penalize errors at both object and pixel-level.
It would also help us to distinguish methods that score similarly on other
metrics.

4.2.2.7 . Implementation details
The network was implemented using Tensorflow and Keras. The encoder was
pre-trained on ImageNet. The learning rate started from 1e-4 and decreased
gradually during the training. The model was trained for 100 epochs dur-
ing 40h, with Adam optimizer. We monitored the training and validation
loss of each epoch and saved the model with the lowest validation loss (at
44th epoch). Test Time Augmentations of flipping (×2) and rotation (×4)
were applied. This work was conducted on a workstation equipped with bi-
processors (operating system: Ubuntu 16.04 LTS 64-bits, CPU: Intel Xeon
gold 5218 at 2.3 GHz, RAM: 128 GB, GPU: NVIDIA Quadro RTX 5000 with
16 GB memory).

4.2.2.8 . Compared methods and parameter settings
We performed comparisons of both neural networks and post-processing ap-
proaches. For neural network benchmarks, we compared the proposed Effi-
cientUNet with an unsupervised method proposed in [160] and the following
state-of-the-art networks, most were UNet-like: UNet [23, 105], HRNet [143],
an ensemble model [151] of eight encoder-decoder networks and each constitu-
tive network. The encoders included three ResNets (34, 101, 152), two Dual
Path Networks DPN-92 (with sigmoid and softmax activation, respectively),
two DenseNets (121, 169) and one Inception-ResNet. It is worth noting that
we named the eight encoder-decoder networks after their encoder for simplic-
ity.

The method [160] was unsupervised and did not require any additional train-
ing. All DL methods were trained on the same dataset with synthetic annota-
tions. UNet was trained from scratch with the same configuration described
in [23]. HRNet was trained from scratch, the training details were the same
as EfficientUNet, see 2.7. The eight constituents of the ensemble model were
trained separately with encoders pre-trained on ImageNet using the configura-
tion described in [16]. In this part, we applied the same post-processing [16] to
eliminate the effect of different post-processing for DL methods. It introduced
a second-stage training procedure, training a regression model with neuron
morphological information to predict the IoU. We created three groups of cell
candidates using three thresholds (0.6, 0.7, and 0.8), and only the candidate
with the highest predicted IoU was retrained for each object. The segmenta-
tion would be removed if the predicted IoU was too low, in order to reduce
the number of FPs.
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Another contribution of this work is the post-processing scheme. Ablation
experiments were carried out to demonstrate the benefits of the proposed
post-processing. We compared the proposed post-processing scheme to four
classical methods: the first, which is the most often used method, includes
applying WS to the probability map’s thresholded (≥ 0.5) cell channel, which
served as a baseline for this section. The second is the winning method of [16],
which was the same approach that we used for the comparison of networks.
Additionally, we assessed the post-processing scheme of [163], which refines the
neuron class by removing ambiguous pixels that are likely to be the contour
class, followed by a dilation process to recover the neuron form. The last
is a widely-used distance-transformation-based technique [91, 154]. Distance
transformation is applied to the neuron class to obtain the distance map. With
a minimum allowed distance being 20 pixels (minimum diameter of neurons),
the local maximums of the distance map are further used as the seeds to
initialize WS. Only the ultimate erosion and the dynamic dilation in Algorithm
1 are replaced by the distance transformation to fairly compare the separation
capacity of the two techniques. All approaches were applied on the same
probability maps, the prediction results of EfficentUNet.

4.2.3 . Results
In this section, we first show the representativeness of the test set versus the
training set, see 4.2.3.1. In 4.2.3.2, we quantitatively evaluate the quality
of the synthetic mask by comparing it with three manual segmentations. In
4.2.3.3, we present a comprehensive comparison of the proposed EfficientUNet
and several state-of-the-art methods. In 4.2.3.4, we illustrate the advantage
of our post-processing strategy in comparison with other classical techniques.

4.2.3.1 . Qualitative evaluation of datasets composition
As shown in Figure 4.4, we plotted the heatmaps (number of bins = 25)
based on the t-SNE projection of the whole dataset, the training set and the
test set, respectively. X and Y were normalized to [0,1], representing the
two dimensions of the embedded space. Since test data have similar feature
distribution (t-SNE plots of two distributions present overlap) compared to
that of training data, we can consider the test set as representative of the
whole dataset.
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Figure 4.4: Heatmaps of t-SNE projection. Left to right: all data, training
data and test data.

4.2.3.2 . Quantitative validation of synthetic masks
The objective of our mask synthesis pipeline was to minimize manual effort, the
expert labeled only the centroid of neurons instead of identifying the contour
of neurons. We considered the point annotations unbiased, and evaluated the
binary segmentation as well as the region-growing process. Table 4.1 reports
the average IoU score (mIoU) and Dice coefficient between the synthetic masks
and three manual annotations (denoted as e1, e2 and e3) respectively. We also
computed the scores between manual annotations to show the inter-expert
variability. We observed that the evaluation scores varied when we compared
the synthetic masks to different manual annotations. Overall, our synthetic
masks were of good quality, in particular, with the e1 group as the reference.
Figure 4.5 shows inconsistent manual segmentations between experts in three
of five images. On average, the scores of synthetic annotations were at the
same level of the inter-experts scores, with a tiny difference on Dice (-0.6%)
and a slight decrease (-2.4%) of mIoU. On the other hand, the experts spent
2.5 hours on annotating five small images (500 × 500 pixels). The entire
training dataset (11k images of 224 × 224 pixels) would take over two months
to annotate manually, demonstrating the need of the semi-automatic mask
synthesis pipeline.

4.2.3.3 . Comparison of segmentation methods
Table 4.2 reports the performance of the tasks of detection (F1-det), counting
(RCE), instance segmentation (F1-seg and AJI) and semantic segmentation
(Dice), as well as the computational complexity (#Params: number of train-
able parameters and number of FLOPs: Floating-Point Operations) of the
proposed EfficientUNet and other 12 methods as mentioned in Section 4.2.2.8.
We did not compute the Dice for the unsupervised method [160], because it
used the same binary RF segmentation that constrained our synthetic masks.
All DL methods except UNet had a very high F1-det (> 0.92) with low vari-
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Figure 4.5: Comparison of manual segmentations and synthetic masks. The
white squares show the inconsistencies between manual segmentations.

ance. The ensemble model outperformed the others on the tasks of detection
(F1-det: 0.931) and counting (RCE: 0.026). In contrast, the best model for
the tasks of semantic and instance segmentation was one constitutive model,
DPN-soft, with the highest scores of Dice (0.951), F1-seg (0.907) and AJI
(0.759). The proposed EfficientUNet was the second best model for segmen-
tation tasks and it also performed well on the tasks of detection and counting,
with similar scores to the best model for each metric (F1-det: -0.007, RCE:
+0.018, Dice: -0.017, F1-seg: -0.006, AJI: -0.017). Followed by two consti-
tutive ResNet backbone networks: ResNet-34 had good performance in the
tasks of detection and semantic segmentation, while the performance declined
on the task of counting. ResNet-101 was the best single model at the object-
level (F1-det and RCE), but it performed poorly on segmentation tasks. The
scores of HRNet were comparable to those of EfficientUNet, but the scores on
segmentation tasks were slightly lower (Dice, F1-seg and AJI). The scores of
UNet were the lowest in all the tasks, at both object and pixel levels. The
unsupervised method [160] achieved good results on segmentation tasks: 0.87
in F1-seg and 0.729 in AJI, while it performed worse on the tasks of detec-
tion and counting. Further considering the computational complexity of the
DL models, the proposed EfficientUNet was the best among all single models.
The FLOPs of the proposed EfficientUNet (15.13 GB) were similar to that of
the lightest model (UNet, FLOPs: 15.29 GB), regardless its model size was
six times that of UNet. By contrast, although the performance of DPN-soft
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Figure 4.6: Boxplot of F1-seg and AJI for different methods for comparative
analysis. Left panel: F1 scores of segmentation. Right panel: AJI scores
(outlier values of UNet are below the vertical scale range).

was slightly better than that of EfficientUNet, the complex structure (Params:
133.5 MB, FLOPs: 51.64 GB) makes it complicated to be trained and applied
efficiently to larger-scale images.

As shown in Table 4.2, most methods reach a high F1-det and Dice, which is
not helpful for performance comparison. On the other hand, F1-seg and AJI
provide distinct differences between methods, revealing performance at both
object and pixel levels. Figure 4.6 compares F1-seg and AJI of the unsuper-
vised method You et al. [160], the proposed EfficientUNet, UNet, HRNet,
the two best constitutive models (ResNet-34 and DPN-soft) and the ensemble
model. What stands out in the figure is that UNet performed poorly on the
task of instance segmentation. In terms of F1-seg, both the proposed Efficien-
tUNet and DPN-soft provided good and robust performance. In particular,
the difference in EfficientUNet scores across regions was less than 4%, which
indicates that it performed well on all anatomical regions tested. Although
the median score of HRNet was similar to that of ResNet-34, the interquar-
tile range was slightly lower than that of ResNet-34. The mean score of the
unsupervised method You et al. [160] was at the same level as that of the
ensemble model, but it was more robust, with the slightest variation between
regions. AJI illustrates differences between methods in a more significant way,
the scores of all the methods were decreased. DPN-soft and the proposed Ef-
ficientUNet remained the two best models. As well as HRNet and ResNet-34,
their scores were similar but slightly lower than the best models. Surprisingly,
You et al. [160] was the second-last method of F1-seg, showing better perfor-
mance than the ensemble model with AJI: it reached the same level as HRNet
and ResNet-34.
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CHAPTER 4. NEURON INSTANCE SEGMENTATION

Figure 4.7 shows comparative results of representative patches from different
anatomical regions. Besides the methods mentioned above (in Table 4.2 and
Figure 4.6), we also report the segmentation results of the complete proposed
pipeline (network and post-processing) to visualize the improvement brought
by the proposed post-processing. If the IoU between a segmented object and
the ground truth is superior to 0.5, we highlighted the contours in green. Oth-
erwise, the contours are displayed either in blue for over-segmentation or red
for under-segmentation and missing detection respectively. You et al. [160]
(column c) segmented most neurons correctly in sparse regions, while under-
segmentation often occurred when the neurons aggregate. UNet (column e)
suffered from under- and missing segmentation, but it was also ineffective in
preserving the shape of neurons. The segmentations of EfficientUNet (col-
umn d), HRNet (column f), ResNet-34 (column g) were roughly comparable,
performing well in all anatomical regions, from the thalamus (sparse) to the
hippocampus (dense). Especially EfficientUNet caused fewer segmentation er-
rors in caudate and cortex. DPN-soft (column h) and the ensemble model
(column i) caused over-segmentations in thalamus and caudate, and under-
segmentations in cortex and hippocampus. EfficientUNet with the proposed
post-processing (column j) made fewer segmentation errors than the others
in any anatomical region, suggesting that the proposed post-processing can
successfully correct segmentation errors of the neural network (see columns d
and j).

4.2.3.4 . Comparison of post-processing schemes
Table 4.3 and Table 4.4 compare the performance of the instance segmenta-
tion task (F1-seg and AJI) and the processing time of different post-processing
techniques respectively. Although the probability maps were the same (Effi-
cientUNet), the results vary considerably between the different post-processing
methods. The proposed method appeared to be the best for all anatomical
regions, with an average F1-seg of 0.917 and AJI of 0.774. The distance
transformation achieved comparable scores with slight decreases, and it was
less computationally expensive than the proposed method. However, it over-
segmented circle-shaped neurons (see Supplementary Figure 4.13). Compared
to the baseline, the regression model of Topcoders [16] brought a slight im-
provement (2% in both F1-seg and AJI), whereas it took 460.6 s to process
one image, which is 27 times that of the baseline. Zeng et al. [163] was the
fastest method, and it required only 7.88s to process one image. However, it
was also the method that performed the worst, with a decline of 9.2% and
14% in F1-seg and AJI compared to the proposed method. Among all tested
anatomical regions, higher scores were found in the region with high contrast
(subiculum) and in the region where only a few neurons were aggregated (cau-
date). In contrast, the scores dropped in the region with high neuron density
(hippocampus) and the region with low contrast with the background (thala-
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CHAPTER 4. NEURON INSTANCE SEGMENTATION

mus). By comparing the proposed method and the baseline, ours significantly
improved the instance segmentation, with an average gain of 4% and 4.6% in
F1-seg and AJI, respectively. In particular, for dense regions like the cortex
and the hippocampus, where lots of neurons aggregate, the proposed method
increased AJI by 7.7% and 6.3%, respectively.

Figure 4.8 presents the results for each intermediate step of our post-processing
scheme. The inter-cell class allowed our neural network to segment the sparse
region like caudate and most neurons in the cortex. However, our network
sometimes failed to separate touching neurons, as illustrated by the red square
in Figure 4.8 (b, c). This problem became troublesome for the hippocampus re-
gion, where many neurons aggregated, which would cause the under-estimation
in neuron population counting. In this particular case, the ultimate erosion
process in our scheme could bring a critical advantage. Although the inter-cell
class did not completely separate the touching neurons, it provided an optimal
condition to apply further erosion: an initial concavity. Figure 4.8 (d) shows
the ultimate residues computed. We observed that the neurons that the neu-
ral network had not separated were now fully individualized. By applying the
same iteration number of dilation with the same structuring element as erosion
on each ultimate residue, we restored the coarse morphological information of
neurons, as illustrated in Figure 4.8 (e). Finally, the refined segmentation
was obtained with the WS using dilated residues as seeds. A combination of
inter-cell and neuron classes was used to constrain the expansion, allowing to
eliminate the artificial gap between touching cells by reassigning the inter-cell
pixels to neurons.

4.2.3.5 . Assessment of the generalizability of the proposed method
Table 4.5 reports the object-level segmentation of the proposed method on
the supplementary test set, including cortex images of two macaques, one
microcebus and one mouse. The purpose of this experiment was to evaluate
the generalizability of the proposed method on data different from the training
set. The results on cortex images of the initial test set are illustrated as
a reference. For the task of detection, the scores decreased on other animal
subjects, but no significant differences were observed, with the largest decrease
being 2.23% that was found in the mouse. As for the task of counting, the
method made more errors on other animal subjects except for the microcebus,
which had the lowest RCE of 0.03%. The RCE of the macaques and the mouse
was approximately on the same level, with an increase of 5% compared to the
reference.
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CHAPTER 4. NEURON INSTANCE SEGMENTATION

Table 4.4: Processing time for one image of 5000 × 5000 using different post-
processing approaches.

Method baseline Topcoders Zeng et al. Dist Ours

Time(s) 17.17 460.6 7.88 28.3 118.57

Figure 4.8: Intermediate results of the proposed post-processing. Top to down:
(1) caudate, (2) cortex and (3) hippocampus. Left to right: (a) original images,
(b) ground truth, (c) probability map of deep network, (d) binary mask of
neuron channel, (e) ultimate residues, (f) reconstructed residues and (g) final
segmentation after WS. The red square highlights the neurons that the neural
network failed to separate but being fully segmented through the proposed
post-processing.

Table 4.5: Object-level segmentation performance of the proposed method on
the supplementary test set.

data supp ref macaque macaque 1 macaque 2 microcebus mouse mean

F1-det 0.93 0.918 0.927 0.921 0.908 0.918
RCE 0.02 0.075 0.073 0.003 0.071 0.056
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4.2. NEURON INSTANCE SEGMENTATION

4.2.4 . Discussion
Unbiased quantification of individualized cells is essential for many biomedi-
cal analyses. One challenging application field is counting and individualizing
the neuronal cells as their size, shape and density vary from one anatomi-
cal region to another. Recent studies demonstrated the importance of neuron
morphology and distribution in studying cerebral functions and neurodegener-
ative diseases [63, 54, 131, 138]. Therefore, an automatic neuron segmentation
method is a cornerstone for such research. In this work, we present an end-to-
end framework aiming to improve neuron detection and instance segmentation
in the major anatomical regions of the macaque brain. Our mask synthesis
pipeline based on pin-pointed centroids and RF binary segmentation allowed
us to generate large amounts of pixel-level annotations for training, which
would have been impossible to achieve with manual cell segmentation. In ad-
dition, embedding the state-of-the-art CNN (EfficientNet-B5) into a UNet-like
architecture increased segmentation accuracy. Although mathematical mor-
phology techniques such as ultimate erosion for segmenting connected compo-
nents [139] were proposed decades ago, it requires a strong concavity prerequi-
site between the connected components to obtain good results. This condition
was satisfied by adding the inter-cell class to the probability map. Further-
more, we proposed dynamic reconstruction as a complementary step with the
ultimate erosion to further improve the morphological reconstruction.

Table 4.1 and Figure 4.5 showed that pixel-level annotations produced by our
pipeline were comparable to those of experts, which confirmed the good quality
of the synthetic annotation. After an exhaustive comparison, EfficientUNet
was chosen as it was the model with the best trade-off between accuracy and
computational cost. The ensemble model was the best model for the tasks
of detection and counting, but it was difficult to train and maintain because
it consisted of eight independent networks. As for the tasks of instance and
semantic segmentation, the best model was DPN-soft. It was the heaviest
individual model, with the model size and FLOPs 3.4 times that of Efficien-
tUNet, resulting in a considerably higher inference latency. The proposed
EfficientUNet was not computationally expensive but outperformed most net-
works with a slight decrease over the best models. An efficient network is
indispensable to extend this work to a larger scale image (entire brain sec-
tion, even brains). Under this constraint, EfficientUNet seems to be the best
choice among all tested networks. ResNet-34 and HRNet also showed a good
trade-off between accuracy and efficiency, they could be potential candidates
for developing an efficient segmentation network with a slight loss of accuracy.
However, the models that reported good performance (HRNet, ResNet-34,
EfficientNet and DPN-soft) caused a gap between the touching neurons, espe-
cially in the dense regions such as the hippocampus, as shown in Figure 4.7
d, f-h. One explanation is that all three classes were generally well classified
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CHAPTER 4. NEURON INSTANCE SEGMENTATION

with these methods, including the inter-cell class. However, the applied post-
processing scheme proposed in [16] used only the probability map of neuron
class to constrain the WS expansion. Our post-processing results (last col-
umn of Figure 4.7) demonstrated that this contradiction could be eliminated
by merging the neuron and the inter-cell classes as the WS mask. The re-
sults of EfficientUNet and the constitutive models suggested the superiority
of UNet-like architecture on segmentation tasks. However, the basic UNet
performed poorly in almost all regions because the depth and width of UNet
were probably not sufficient to capture complex features of neurons.

In previous literature, researchers concentrated on enhancing network designs
to improve cell segmentation, while the post-processing phase was usually
under-investigated. This work highlights the significance of this process. De-
spite the fact that all post-processing techniques were applied to the same
probability map, the proposed method outperformed [163] by 14% in AJI (see
Table 4.3), which is more considerable than the majority of the neural net-
work performance differences in Table 4.2. Distance transformation was less
computationally expensive than ultimate erosion, and it achieved comparative
results. However, it is not suited for neurons since it cannot correctly segment
circle-shaped objects. The post-processing approach of [16] slightly improved
the segmentation by using a better threshold and reducing FP segmentations.
However, in addition to the extra training time of the regression model, it was
also computationally expensive. For each object on the image, we needed to
calculate the morphological information for three cell candidates and retain
only the candidate with the highest predicted IoU. On the contrary, the most
time-consuming step in the proposed post-processing method, the ultimate
erosion, was applied at the image scale. It considerably improved accuracy
while requiring less computing time than [16]. Moreover, it can be easily
applied to other DL based methods and other nuclei data without expertise-
demanding parameter settings. The only parameter that needs to be adjusted
is the size of the structuring element used for morphological operations, which
corresponds to the size of the smallest cell. Nevertheless, one prerequisite of
the proposed method is that the cell contours need to be roughly smooth and
without obvious concavity, as is the case with NeuN-stained neurons. Assume
the cells have complex shapes with branches (e.g., microglia with Iba1 and as-
trocytes with GFAP). In that case, in addition to retraining the deep model,
modifications in post-processing will be required to preserve the particular
morphological information.

A heavy data augmentation has been applied to increase the robustness of the
neural network. Table 4.5 illustrates the object-level segmentation results of
the proposed method on various animal subjects. Our findings suggest that
the proposed method remained effective despite the difference between sam-
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4.2. NEURON INSTANCE SEGMENTATION

ples and species. The performance of detection slightly decreased in macaque
and microcebus images which have distinct colors with the training set. On
the other hand, a significant decline was observed in the mouse image, in-
dicating that the light stain intensity may be a more crucial challenge than
the color inconsistency between the test and training images. Hence, it could
be conceivably hypothesized that stain intensity augmentation is required to
further enhance the model robustness. Nevertheless, as a preliminary study,
this dataset contained only four images of the cortex. Further work on larger
datasets with other anatomical regions needs to be investigated to confirm this
observation.

Taken together, our framework is competitive on both the tasks of detection
and instance segmentation compared to other reference approaches. From
point annotations to pixel-level neuron individualization, it performs well on
all tested anatomical regions, with efficient architecture and more accessible
parameter settings.

4.2.5 . Conclusion
In this paper, we present an end-to-end DL framework to perform neuron de-
tection and instance segmentation. A major problem with neural networks is
the difficulty of producing precise annotations at large scales. We proposed a
mask-synthesis pipeline to generate pixel-level labels using only point anno-
tations, which considerably reduced the manual labeling effort and processing
duration. This pipeline was applied to automatically generate annotations at
large scale for the NeuN dataset, and the same strategy can be applied to
other datasets. The efficiency of UNet-like design on segmentation was proved
by a thorough comparison of networks based on the synthetic annotation. The
proposed EfficientUNet, in particular, offered the optimum trade-off between
accuracy and computation cost. It is, therefore, possible to be applied to
large-scale biological studies. Using the probability maps of EfficientUNet, we
compared various post-processing approaches and demonstrated the signifi-
cance of this step on instance segmentation. The segmentation of the neural
network was further enhanced by our post-processing method through ultimate
erosion and dynamic reconstruction. In particular, the excellent performance
in the cortex and the hippocampus enables us to envision further investiga-
tion related to brain functions and neurodegenerative diseases, for instance,
quantitative assessment of neuronal loss to characterize animal models and to
evaluate drug efficacy. More importantly, the proposed post-processing does
not require ad-hoc parameter setting, which can be of great value in prac-
tice for non-expert users. The preliminary study on other animal subjects
demonstrated the good generalizability of our framework. The decline in the
mouse image demonstrated the impact of the staining intensity on the seg-
mentation. Future work should consider integrating intensity changes during
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CHAPTER 4. NEURON INSTANCE SEGMENTATION

the data augmentation to increase the robustness of the model toward inten-
sity inconsistencies. The current evaluation focused on images of 5000 × 5000
pixels. Patch extraction, patch prediction, and stitching were all intermedi-
ate processes that caused additional memory costs. Further works on partial
image reading and writing and developments for high-performance computing
are required to expand this research to whole histological sections and poten-
tially entire brains. It would help us to better understand brain development
and aging, and would also provide efficient tools to develop and validate new
therapies.
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Figure 4.9: 24 images of the training set.
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Figure 4.10: Supplementary cortex neuron dataset for assessing the gener-
alizability of the proposed method. (a) Macaque 1. (b) Macaque 2. (c)
Microcebus. (d) Mouse.
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4.2. NEURON INSTANCE SEGMENTATION

Figure 4.11: Segmentation results of supplementary cortex neuron dataset.
Segmentation contours are shown in red and manual point annotations are
shown in white. (a) Macaque 1. (b) Macaque 2. (c) Microcebus. (d) Mouse.
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Figure 4.12: Segmentation results on three anatomical regions of a mouse brain.
From left to right: raw images, semantic segmentations of EfficientUNet, and
instance segmentations of the proposed post-processing.
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4.2. NEURON INSTANCE SEGMENTATION

Figure 4.13: Comparison of post-processing approaches based on distance
transformation and ultimate erosion. (a) raw images, (b) ground truth, (c)
probability map of EfficientUNet, (d) instance segmentation of our post-
processing, and (e) instance segmentation of post-processing based on distance
transformation.
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5 - Development of a segmentation inference pipeline
to process whole-slide images

5.1 . Introduction

Chapter 4 presented an end-to-end neuron instance segmentation framework
containing an efficient neural network with a complementary post-processing
scheme. The proposed framework has been evaluated on images of 5000 ×
5000 pixels and demonstrated a high accuracy at a relatively low computa-
tional cost, showing good scalability for application to larger images. A tool
that can handle WSI in a reasonable amount of time would be of great inter-
est for analyzing massive microscopic data in biological studies. In this chap-
ter, a software solution that enables the inference of the neuron segmentation
network across whole histological sections is proposed (mouse and macaque
brain). And it can be further implemented on high-performance computing
resources (HPC).

5.2 . Whole-slide image dataset

The test data in this chapter consists of whole-slide images of a macaque brain
and a mouse brain to test the generalizability of our segmentation method
between species. The macaque brain section came from the same dataset
presented in Chapter 3. The mouse brain section was produced with similar
settings: stained by immunohistochemistry using the neuronal nuclei (NeuN)
antibody and scanned by an AxioScan.Z1 (Zeiss) with the in-plane resolution
of 0.22 µm/pixel (20 × magnification). Several differences must be noted
between these two datasets: 1) the color representation of the mouse section
and the macaque section is different, this color variation will be investigated
in Chapter 6, and 2) the size, shape, and distribution of the neuron in the
mouse brain may be different from those in the macaque brain. The size of
the mouse brain section and the macaque brain section is about 43k × 24k
pixels and 231k × 188k pixels, respectively. To better visualize the image
details, we only illustrate the results of the mouse section since the size of the
macaque section is extremely large.
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Figure 5.1: Examples of inconsistent prediction at the boundaries. The bound-
aries and inconsistencies are highlighted with red dash lines and white squares,
respectively, for better visualization.

5.3 . Software development for whole-slide image processing

5.3.1 . Decomposition of WSI into overlapping patches and weighted
assembling

In CNNs, the convolution kernels go through the input image with a small
sliding window instead of processing the full image at once. As the segmen-
tation is a pixel-wise task, the prediction of one pixel should be the same in
a small patch as in the original WSI. Mainly constrained by the GPU mem-
ory, the size of the input image for a neural network is usually no more than
1024 × 1024 pixels. For an image larger than this size, a common strategy
is to decompose it into smaller patches before the inference. Afterward, the
prediction results of the patches are stitched together to obtain the prediction
of the whole image. However, the prediction of the patch border area may be
inaccurate due to insufficient context information. Stitching patches directly
together may result in an inconsistent prediction at the boundaries, as shown
in Figure 5.1.

This issue has been addressed in Chapters 3 and 4 by extracting patches with
an overlap and applying a weight map to patches before the assembling [23].
In order to process large images (5000 × 5000) despite the constraints of GPU
memory size, images were cropped into image patches with overlapping before
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Figure 5.2: Image patch extraction with overlap.

the inference, as shown in Figure 5.2. The whole inference process using the
weight map is illustrated in Figure 5.3. After the inference of patches, a weight
map was applied to every predicted patch. The weight map was defined as
[23]:

Wi,j = α
De

i,j

Dc
i,j +De

i,j

;α =
h× w∑h

i=1

∑w
j=1

De
i,j

Dc
i,j+De

i,j

(5.1)

where i,j is the position of one pixel in a patch, Wi,j is the distance weight
applied to the pixel, De

i,j and Dc
i,j are the distances from the nearest border

and from the center, respectively. h and w are the height and width of the
image patch. The weighted predictions were then seamlessly stitched together,
and the stitched prediction was reweighted to obtain the final prediction (see
Figure 5.3). The stitching consists of writing the patch content to its original
position in the input image and summing the adjacent patches in the overlap
area.

Figure 5.4 compares the assembled prediction without and with the weight
map. In the first case, the predictions on the overlap area were simply av-
eraged, which resulted in a mosaic effect at the border (see white squares in
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Figure 5.3: Overview of inference with overlapping extraction and assembling.
For better illustration, the size of image and patch is defined as 1344 × 1344
and 512 × 512 pixels, respectively, with an overlap of 20%.

Figure 5.4) when the prediction of the adjacent patches for the same area was
not consistent. By decreasing the weight of border pixels, using the weight
map effectively reduced the border mosaic effect. After the inference, the fi-
nal assembled prediction was fed as input to the post-processing scheme to
produce the instance segmentation. Constrained by the architecture design,
EfficientUNet requires an input image size that should be a multiple of 32.
Thus a patch size of 1344 × 1344 pixels (defined according to our GPU RAM
properties) was chosen to minimize the number of patches and to accelerate
the inference process.

5.3.2 . Development of a parallel computing pipeline involving bothGPUs
and CPUs

5.3.2.1 . BrainVISA: a parallel computing software
The inference is carried out patch-by-patch when using the patch-based strat-
egy, which can be considered as a collection of independent chain operations
that do not have to interact with one another. They can be handled in parallel
using BrainVISA and Soma-workflow to speed up the process.

BrainVISA is an open-source software platform dedicated to neuroimaging re-
search. It offers a wide range of capabilities, including toolboxes for neuroimag-
ing, visualization tools, graphical user interfaces (GUI), and optimization for
massive computation. BrainVISA is extendable and customizable, allowing
users to quickly incorporate personal processes to meet their needs, as shown
in Figure 5.5. BrainVISA automatically generates GUIs for non-expert users
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Figure 5.4: Comparison on three assembled predictions (size: 512 × 512 pixels)
without and with the weight map. From left to right: original NeuN-stained
images, synthetic ground truth, the assembled prediction without and with
using the weight map.
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Figure 5.5: Possible uses of BrainVISA software for image analysis (image
from1).

based on the parameter characteristics of processes.

Soma-workflow [71] is a library in BrainVISA software, which offers the possi-
bility to submit, control, and monitor a set of tasks (jobs) for distributed com-
puting using various computing resources, both locally and remotely (laptops,
multiple core workstations, and clusters). The Python API for Soma-workflow
can handle both independent and dependent processes. Additionally, a graph-
ical user interface is available, as seen in Figure 5.6, providing non-expert users
with a simple and quick way to track workflows.

The test dataset in previous Chapter 3 and 4 consists of 5000 × 5000 pixels
images. The patch size of 1344 × 1344 pixels and stride of 1220 pixels yielded
16 patches per image. With the same setup, one histological section of the
mouse brain (43k × 24k pixels, 2.9 GB) corresponded to 720 patches, and
that of the macaque brain (231k × 188k pixels, 118 GB) corresponded to 29
796 patches. Accordingly, there would be 720 and 29 796 inference tasks to
be processed, respectively. Such processing is extremely time-consuming with
the classical inference workflow. Fortunately, BrainVISA and Soma-workflow
provided the possibility to concurrently execute these tasks in parallel.

1https://https://brainvisa.info/
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Figure 5.6: Overview of Soma-workflow GUI [71].

5.3.2.2 . Proposed parallel computing strategy
Figure 5.7 shows our CPU-GPU parallel computing strategy: the input image
was divided into N bands, where N was the number of GPU-CPU pairs. Both
the GPU and the CPU were used to process one band. The processing of one
image band followed the sequential patch-based design (described in 5.3.1).
This strategy has the advantage of maintaining a balanced data processing
size in terms of computational resources (i.e., the size of each band is the
same except for the last band).

5.3.2.3 . Adapting the weight map to simplify the assembling
In Figure 5.3, the use of a weight map decreased the intensity of patch pre-
dictions. A reweighting process was therefore required after the stitching to
recover the original intensity for each pixel. Figure 5.8 illustrates the weight-
ing and reweighting processes for a patch located in the middle of the image.
After segmentation inference, the patch prediction was weighted by the weight
map to reduce the weight of the border area. Then, the patch prediction was
stitched back to its original position, and the boundary was merged with the
adjacent prediction. The reweighting process can be viewed as a normaliza-
tion step, where the stitched prediction is divided by the stitched weight map.
Both weighting and reweighting are pixel-level operations. The center tile
of the stitched prediction was divided (normalized) by the center tile of the
stitched weight map.

Figure 5.9 shows the stitching of nine weight map patches. The overlapping
regions, covered with diagonal lines, were contributed by two or four patches.
The center tile was the weight map applied in Figure 5.8 for normalizing
(reweighting) the tile of the weighted prediction. The four corners and the
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Figure 5.7: Overview of the proposedGPU-CPU parallel computing strategy.

Figure 5.8: Patch assembling scheme with operations on one single patch high-
lighted in blue.
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Figure 5.9: Magnified stitched weight map and the center tile.

rest of the borders were added up by four and two adjacent weight patches,
respectively.

Figure 5.10 compares the weight map and the center tile of the stitched weight
map. We can see that the two maps are identical except for the overlapping
border area. The weighting and reweighting were just two inverse operations
for most pixels in the patch. Thus, it was unnecessary to compute and apply
the weight map for the region without overlapping. Therefore, we adapted the
weight map to eliminate redundant calculations. As shown in Figure 5.10 right,
the new weight map was generated from the previous weight map normalized
(pixel-wise division) by the corresponding area of the stitched weight map.
In the normalized weight map, the pixels in the center area without overlap
have the same weight as one, and the weight of pixels in the overlap area is
inversely proportional to the distance from the border.

Figure 5.11 shows the patching assembling using the normalized weight map.
The assembling process is simplified since the reweighting step is no longer
required. Moreover, the new weight map is only used to adjust the weight of
the overlapping border; most pixels within the patch remain intact, which also
decreases the calculation. The stitching result is shown in Figure 5.11 right.
The mosaic effect in the previous stitching result is eliminated. However, the
image borders have a lower intensity since they consist only of one single patch.
In practice, this effect can be avoided by mirror padding the input image when
extracting patches: the border of the input image is mirrored and duplicated
with the size equaling that of the overlapped area; the black border of the
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Figure 5.10: The original weight map, the center tile of the stitched weight
map and the normalized weight map.

Figure 5.11: Patch assembling with the normalized weight map.

stitching result corresponds to the padding and needs to be cropped to obtain
the final result.

5.3.2.4 . Partial image reading and writing
As shown in Figure 5.3, the inference of overlap extraction involved several
intermediate steps, and each step brought intermediate results. For example,
image patches and their predictions. This could be cumbersome when process-
ing the whole slide image, not only for loading the whole image in memory
but also for storing the intermediate results. An effective way to address this
problem is to execute the entire pipeline at once using partial reading and writ-
ing. Before reading the image content, we first created a three-channel empty
image with the same dimension as the input image on the disk to reserve the
space to store the final prediction. Then, the number and position of patches
were calculated, taking into account the width and height of the stride. The
extraction of the patches was performed by loading a portion of the image
content in memory, which was fed as input to the DL model to generate the
prediction for each patch. Finally, the weighted patches were written to the
corresponding location of the output image on the disk. All operations were
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carried out in memory, and only the final prediction was saved. In order to
economize space, unnecessary intermediate results (image patches and their
prediction) were not stored on the disk by default.

5.3.2.5 . Summary
The strategy can be summed up as follows :

1. N bands’ coordinates are calculated according to the number of GPUs
and CPUs.

2. Each band is loaded to memory by a CPU using partial reading.

3. Each band is processed using a pair of CPU-GPU and the patch-based
design. Each patch of image band I is iteratively passed to GPU I, where
the model has been initialized with the trained model. The prediction
for each patch of image band I is stitched in memory using CPU I.

4. Once the whole image band is processed, the CPU I partially writes the
output result to disk. To deal with concurrent access issues in overlap
areas during parallel processing, CPU I does not write predictions to
disk in the bottom overlap area of image band I. The bottom overlap
area of image band I, which is also the top overlap area of image band
I+1, will be written to disk by CPU I+1 after the processing of image
band I+1.

5.3.2.6 . Interface of the segmentation inference pipeline for whole-
slide images

The interface of our inference pipeline is illustrated in Figure 5.12. Three
parameters are necessary, including the path of input, output image, and the
trained model weight. Prediction classes, patch size, overlap, GPU settings,
and other parameters have predefined values but can be easily modified.
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Figure 5.12: Graphic interface of the inference pipeline.

5.4 . Application of the proposed pipeline for segmenting whole-
slide images

5.4.1 . Processing time under different configurations
Table 5.1 compares the processing time on different images on a single GPU.
The processing time and the number of patches are linearly correlated to
the size of the image. With 16 patches predicted in less than a minute, the
prediction of small images (5000 × 5000 pixels) was relatively fast. Although
it took over 40 times longer, processing the complete mouse brain section was
still bearable (34 min). However, the processing time increased to 24 hours
for an entire macaque brain section, which was 41 times larger than the mouse
brain section. For the entire macaque brain, which consists of 134 sections,
it would require 134 days to process on a single GPU (NVIDIA Quadro RTX
A5000 with 24 GB memory, the following calculation is performed on the same
GPU if not specified).

We evaluated the performance of the parallel computing pipeline on a mouse
brain section with different overlap ratios and GPU settings, with the resulting
processing times shown in Table 5.2. The number of GPUs below implies the
number of GPU-CPU pairs since, in our strategy, one GPU is associated with

112



5.4. APPLICATION OF THE PIPELINE

Table 5.1: Computation details of inference for various images on 1GPU (over-
lap ratio:
sim 10%).

Image type Image size File size Number of patches Processing time

Image of test set 5000 × 5000 72 MB 16 < 1 min
Mouse brain section 43k × 43k 2.9 GB 720 34 min
Image of test set 231k × 188k 118 GB 29 796 < 24 h

Table 5.2: Time in minutes for processing one mouse brain section with differ-
ent overlap ratios andGPU resources.

Overlap ratio Number of patches Processing time (min)

1GPU 2GPUs 3GPUs
10% 720 34 18 13
50% 2 205 106 58 42

one CPU. As shown in Table 5.2, an overlap of 50% brought three times the
workload (number of patches) and processing time compared to the overlap of
10%. Theoretically, the processing time should scale linearly with the number
of GPUs because practically all operations—including partial image reading,
prediction, and partial image writing—are distributed over CPU-GPU pairs.
Figure 5.13 shows the relation between the processing time and the number
of GPUs for different overlap ratios. By using a second GPU, the inference
time was reduced by almost half, with 52.9% and 54.7% savings for overlaps of
10% and 50%, respectively. However, the benefit of additional GPUs became
less significant when we increased the number of GPUs from two to three.
Only 5 and 16 minutes were saved by the third GPU for processing the mouse
brain section with a ratio of 10% and 50%, respectively. There are a variety of
factors that might be related to this issue: technically speaking, the GPUs in
our implementation were not independent of each other. They were connected
via the same PCIe (Peripheral Component Interconnect Express) link, which
limited the bandwidth available for each card in comparison to the case of a
single GPU.
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Figure 5.13: Processing time versus the number ofGPUs for one mouse brain
section.

5.4.2 . Segmentation results of the proposed pipeline on the mouse
brain section

The tested mouse brain section is presented in Figure 5.14, as well as three
typical anatomical regions with different neuron distributions, which are the
thalamus (sparse), cortex (dense), and dentate gyrus (very dense), respec-
tively. The neurons in the mouse section are darker in color than those in the
macaque section, despite the fact that both sections were dyed and scanned
similarly. Additionally, the neurons in the three regions have different densities
They also vary significantly in size, shape, and intensity.

Due to the large size of the macaque brain, we present only the results for the
mouse section to better visualize the segmentation.

Our inference pipeline provides two types of output according to the user’s
need: the probability map and the class map. By default, the pipeline saves
the prediction of the neural network as a three-channel float image to preserve
a high level of precision rather than rounding it into a three-channel U8 image,
as in Chapter 3 and 4, as shown in Figure 5.15, Figure 5.16, and Figure
5.17. The pixel values in each channel vary between 0 and 1, representing the
probability of being tissue, inter-cell contour, and neuron class, respectively.
However, the size of three float images for the mouse brain section would have
corresponded to approximately 12 GB, which could have been cumbersome
to process or even to store on the disk. An alternative strategy to conserve
memory usage is to store the class map, as shown in Figure 5.18. First, we
created an empty U8 image with the same dimension as the input whole-slide
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Figure 5.14: A NeuN-stained mouse brain section. Below: 1. thalamus, 2.
cortex and 3. dentate gyrus.
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Figure 5.15: Neuron probability map of the mouse brain section. Below: 1.
thalamus, 2. cortex and 3. dentate gyrus.

image on the disk. The dominant class of each pixel in the class map was then
determined by comparing the three probabilities. The class map had three
values (0, 1, and 2), which stood for the tissue, intercellular contours, and
neurons, respectively. It could be stored as a single-channel U8 image. As a
result, the size of the probability maps was decreased to 1/12 of the original
three-channel float image (size of float type: 4 Bytes, number of channels: 3),
which allowed for compression without sacrificing any crucial information for
further processing.

The segmentation neural network used in the inference process was derived
from Chapter 4 and trained on macaque neuron data rather than the mouse
neuron dataset. Interestingly, the model was still robust, and segmentation re-
sults were promising, despite the fact that mouse neurons differ from macaque
neurons in size and color. In the three anatomical regions, the model per-
formed well in classifying the pixels into the corresponding class. However,
the neural network showed its limitation in regions without neurons. The
model misclassified the boundaries of the mouse brain section as the neuron
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Figure 5.16: Inter-cell contour probability map of the mouse brain section.
Below: 1. thalamus, 2. cortex and 3. dentate gyrus.
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Figure 5.17: Non-stained tissue probability map of the mouse brain section.
Below: 1. thalamus, 2. cortex and 3. dentate gyrus.
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Figure 5.18: Class map of the mouse brain section. The black, gray and white
colors represent non-stained tissue, inter-cell contours and neurons, respec-
tively. Below: 1. thalamus, 2. cortex and 3. dentate gyrus.
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class, while there was no neuron in these regions, as seen in Figure 5.18. This
may be related to the lack of such data in the training set of the neural net-
work. A possible solution is to fine-tune the network on a complementary
dataset that comprises the missing non-stained area data.

The result of our segmentation inference pipeline is the semantic segmentation
of neurons, non-stained tissue, and inter-cell contours, which requires further
processing to separate and label each neuron. We applied the post-processing
from Chapter 4 on the probability map of the entire mouse brain. The final
instance segmentation is shown in Figure 5.19. The results indicated that the
mouse brain section contained 95 765 neurons in total, which were labeled from
left to right and from top to bottom with a rainbow colormap. The neurons in
the three anatomical regions were recolored to better differentiate the touching
neurons. The wrong classification in the tissue (Figure 5.18) further impacted
the final instance segmentation: as shown in Figure 5.19, in particular in
the lower right region, the border of the mouse brain section was wrongly
considered as neuron instances. Fine-tuning the segmentation network with
the non-stained tissue data would improve the precision of the network in
these regions, but this would need new data collection and extra training. This
problem can also be solved by adding a filter to the post-processing to remove
non-disc-shaped and oversized objects. Although the intensity, density, and
morphology of neurons varied across regions, the segmentation results were
visually promising for all regions tested. However, quantitative assessments
need to be investigated to rigorously validate the use of our segmentation
model in different species.
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Figure 5.19: Instance segmentation of the mouse brain section (rainbow col-
ormap). Below: 1. thalamus, 2. cortex and 3. dentate gyrus.
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5.5 . Conclusion

This chapter presents a software solution for applying our segmentation frame-
work to whole-slide images. By integrating GPU-CPU parallel computing and
a partial image reading/writing library, the proposed process enables, for the
first time, the inference of the segmentation network on whole-slide images.
Based on the prediction of the pipeline, our post-processing scheme further
individualized neurons over an entire mouse brain section. This can be of
great value in biological research. Information about neuron number, size, and
morphology of whole brain sections would be extremely beneficial for study-
ing brain development, aging, and neuron degeneration, as well as evaluating
novel treatments. Furthermore, given that the training set only contains data
from one macaque brain section, the first segmentation results obtained on
the whole mouse brain section are promising and let us envision generalizing
our segmentation framework to other animal samples and cell types.
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6 - Color normalization in microscopic images

6.1 . Color variation in microscopic image analysis

Stain color variation in histological images, caused by a variety of factors, is
a challenge not only for the visual diagnosis of pathologists but also for cell
segmentation algorithms. Many factors in the staining procedure are related
to this issue. For example, dye type, solution concentration, staining protocol,
and even room temperature. Even if the staining procedure is strictly stan-
dardized, variations may still occur during the digitization process, such as
different scanners and scanning parameters. As mentioned earlier in Chapter
3, the macaque brain data used in this thesis work was divided into two series
for the staining due to a large number of tissues. This resulted in a color
inconsistency between the two series despite the staining and the scanning
procedures were standardized. The training dataset of the neuron instance
segmentation networks was built based on section 91 of the odd-numbered
section, which is brown. However, the neurons in even-numbered sections are
darker, as shown in Figure 6.1. Section 90 is the adjacent tissue of section
91, and similar neuron distributions can be found in the two sections. How-
ever, applying the segmentation network trained on images from section 91 to
images from section 90 may suffer from this color inconsistency.

Most conventional color normalization methods in literature were designed for
H&E-stained images and are unsuitable for images with immunohistochemical
staining, as the color statistic mapping is performed on color spaces other than
RGB. Therefore in this chapter, we focus on DL-based color normalization
approaches. Two methods are identified and tested: Pix2Pix [57, 107] and
ReHistoGAN [2]. Both of them are built on conditional GAN (cGAN). With
no restrictions on the color of the input image, the former addresses color
normalization as a problem of recoloring gray-scale images. The latter has the
flexibility of applying arbitrary target colors. The work on ReHistoGAN is
presented as a conference paper in Section 6.3.
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Figure 6.1: Image patches extracted from sections 90 and 91. From left to
right: putamen 1 (sparse), putamen 2 (dense), and cortex.

6.2 . Color normalization using Pix2Pix conditional GAN

Pix2Pix was proposed by [57] as a general solution to the image-to-image
translation problem. The networks can be trained to map input images from
one space to another target space. For instance, creating photographs from
label maps, reassembling items from edge maps, coloring gray-scale images,
etc. Inspired by the last application, Salehi et al. [107] applied the Pix2Pix
framework to normalize color variations in H&E histological images and re-
vealed promising results. This preliminary work intended to test its capacity
on NeuN-stained images of the macaque brain dataset presenting color varia-
tions.

Figure 6.2 illustrates the architecture of Pix2Pix, containing a generator and
a discriminator, which are unsupervised adversarially trained. The original
RGB images were first converted to gray scale. The objective of the generator
was to map the gray-scale images into the original color space using a UNet ar-
chitecture with skip connections. The real pair in Figure 6.2 is made of a gray
image and its original RGB image, while the fake one is the pair of the gray
image and the image recolored by the generator. At the same time, the dis-
criminator was trained to distinguish the fake pair from the real one. Pix2Pix
has an advantage over other GAN-based color normalization approaches: it
can be applied to source images no matter its original color, as input images
are converted into gray-scale prior to be recolored by the generative network.
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Figure 6.2: Architecture of Pix2Pix framework. Image modified from [107].

6.2.1 . Training and test dataset for Pix2Pix
The intention of this preliminary work was to correct the color variation be-
tween the two section series of the macaque brain in order to extend the neuron
instance segmentation network presented in Chapter 4 to the even-numbered
series. This segmentation network was trained using images from section 91.
The objective of color normalization was to recolor test images extracted from
section 90 using the color of section 91 as the reference before applying the
trained segmentation network. Therefore, we created a training set based on
section 91 to train Pix2Pix. This dataset contained 3249 images of 256 × 256
pixels, for which 1

5 of them were used for validation (same setting as in [107]).
Most images came from the cortex, as it is the anatomical region that interests
most neurobiologists. The test set contained a large cortex image of 5000 ×
5000 pixels extracted from image 90, which corresponded to 361 patches of
256 × 256 pixels.

6.2.2 . Loss function of Pix2Pix
The generator (G) and the discriminator (D) in Figure 6.2 were trained si-
multaneously. The loss function of the Pix2Pix was defined as:

LcGAN (G,D) = Ex,y[logD(x, y)] + Ex,z[log(1−D(x,G(x, z)))] (6.1)

where x is the gray-scale image, z is a random noise vector, and y is the ground
truth RGB image. The objective of the generator was to minimize 6.1, whilst
that of the discriminator was to maximize it. In addition to confusing the
discriminator, the generator was expected to generate images that were close
to the ground truth. The second objective was constrained by the L1 loss
since it encouraged less blurring than L2 [57], which was defined as:
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LL1(G) = Ex,y,z[||y −G(x, z)||1] (6.2)

Overall, the final loss function became:

L = LcGAN (G,D) + λLL1(G) (6.3)

where λ is a hyperparameter that controlled the balance between the two
objectives, which was set to 100 [107].

During the inference, only the generator would be used to recolor the images.
Finding a generator that satisfied the following criteria was the main goal of
the entire training:

L∗ = argmin
G

max
D

LcGAN (G,D) + λLL1(G) (6.4)

6.2.3 . Evaluation metrics to evaluate color normalization of Pix2Pix
Visual evaluation is frequently used in the literature to qualitatively verify
the performance of color normalization approaches [82]. Quantitative evalua-
tions were often based on the structural similarity index measure (SSIM) [146]
between recolored and target images [132, 107, 114], which was defined as:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(6.5)

where x and y are recolored and target images. µ, σ are the average and
the variance of the intensity of the image, respectively. c1 and c2 are small
variables that are added to stabilize the division. SSIM of one color image is
calculated for all color channels and averaged. One subtle difference in the
image content can impact the value of SSIM, which limits its applicability. It
is only pertinent when the source image and the target image have the same
content. For instance, [132, 107, 114] used SSIM to evaluate color normaliza-
tion on the same images digitized using different scanners. On the other hand,
when the target and the source do not share the same image content, SSIM is
no longer relevant.

The target image and the source image in our study came from two different
histological sections. Although the two images represented the same anatom-
ical region (cortex), the image contents were similar but not identical. Thus,
we calculated the similarity of the color histogram between the recolored image
and the target to evaluate the color normalization. A color histogram repre-
sents the color distribution of an image. We measured the color histogram for
two color spaces: RGB space and log-chroma space [2]. In RGB space, the
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value of each channel represents the intensity, allowing the color histogram to
account for both color and illumination information. On the other hand, in
log-chroma space, the value of one channel is normalized by other channels,
which makes the histogram insensitive to illumination changes.

For each color space, Hellinger distance (H_dist) and Kullback-Leibler diver-
gence (KL_div), also known as relative entropy, were used to measure the
difference between color histograms. H_dist measures the square root dif-
ference of two distributions, which is then summed by the Euclidean norm.
H_dist is symmetric and bounded between [0, 1]. It is defined as:

H_dist(P,Q) =

√
1

2

∑
x∈X

(√
P (x)−

√
Q(x)

)2
(6.6)

where P and Q are color histogram distributions of target and recolored im-
ages, and X stands for the ensemble of bins of the histogram.

KL_div is asymmetric and unbounded. It is defined as:

KL_div(P ||Q) =
∑
x∈X

P (x) log
P (x)

Q(x)
(6.7)

Both H_dist and KL_div were used to quantify the similarity between the
two color histogram distributions. The similarity increased as the value ap-
proached zero.

6.2.4 . Conventional color normalization methods for comparison
We compared Pix2Pix with other conventional color normalization approaches
presented in Chapter 2, including color transfer algorithm [102], singular value
decomposition (SVD)-based normalization [82] and structure-preserving color
normalization (SPCN) [132]. These methods have been successfully applied
to H&E-stained histological images. For the first time, this study evaluated
their performance on NeuN-stained images.

6.2.5 . Evaluation of Pix2Pix and other compared methods
Figure 6.3 shows the color normalization results of Pix2Pix and other state-
of-the-art methods. As shown in Figure 6.3 (c), [102] altered the color of
entire images from dark to brown, including the tissue color, which was even
browner than the tissue in the target image. Moreover, the intensity of the
recolored results has been changed. The results of [102] were brighter than
both target and source images. [82] and [132] obtained similar recoloring
results, which were visually better than those of [102]. However, they also
encountered the issue of intensity change, especially [102]. This problem was
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Figure 6.3: Color normalization results of different methods. From left to right:
target image, source images, recoloring results of [102], [82], [132] and Pix2Pix,
respectively.

already identified in a stain separation study that was conducted to separate
the Hematoxylin (H) and DAB stain channels on an IHC image [132]. The
luminosity of the results was more intense than the input image despite the H
and DAB channels being clearly separated, and the density of the separated
DAB did not correspond to the amount of DAB that was actually present. The
authors [132] made the assumption that the RGB color space to the Optical
Density (OD) color space conversion was invalid for DAB since it was a light
scatterer rather than an absorber. Due to the fact that normalization was also
carried out in the OD space, the intensity issue of [82] might be connected
to the same cause. Taken together, all tested conventional methods were
inadequate to handle color variations in NeuN-stained images. On the other
hand, Pix2Pix demonstrated promising results, preserving both the target
color and the source content while maintaining the illumination.

Table 6.1 shows the quantitative evaluation of different methods based on
color histograms of RGB space. Pix2Pix outperformed others with the lowest
H_dist and KL_div. The KL_div indicated significant differences between
Pix2Pix and other methods, with the value of other methods being four times
superior to that of Pix2Pix, and the H_dist of Pix2Pix being approximately
half of those of other methods. The high similarity between the target his-
togram and the histogram of the recolored image is coherent with the obser-
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Table 6.1: Comparison of color transfer methods. The H_dist and KL_div
are calculated in RGB color space.

metrics Reinhard Macenko Vahadane Pix2Pix

H_dist 0.5374 0.5481 0.5491 0.2358
KL_div 0.8645 0.8605 0.8706 0.1765

Table 6.2: Comparison of color transfer methods. The H_dist and KL_div
are calculated in uv color space.

metrics Reinhard Macenko Vahadane Pix2Pix

H_dist 0.1007 0.1115 0.1381 0.1300
KL_div 0.0433 0.0485 0.0737 0.0687

vation in Figure 6.3. The recolored result of Pix2Pix presented the closest
color to the target image. However, no substantial difference was observed
among the conventional methods. [132] appeared to be the worst method in
both H_dist and KL_div. [102] had slightly lower H_dist than [82], while the
opposite was true for KL_div.

To help understand whether the poor results of the conventional methods were
associated with the unnatural brightness variations shown in Figure 6.3, we
compared the color histograms in the log-chroma space. The intensity of each
color channel was normalized and the color histogram represented the propor-
tional distribution of the R, G, and B color channels. Changes in illumination
altered the intensity of the R, G and B channels, but the proportional dis-
tribution between channels remained intact. The quantitative evaluation in
log-chroma space is illustrated in Table 6.2. The most interesting aspect of this
table is how the H_dist and KL_div of the conventional approaches dropped
once the effect of illumination was ignored. These results further supported
the idea that the poor performance reported in Table 6.1 was due to the illu-
mination issue illustrated in Figure 6.3. In this color space, all tested methods
were at the same level, and Pix2Pix was no longer the best method, with
H_dist and KL_div higher than [102] and [82]. The method which obtained
the best scores was [102], followed by [82]. The performance of [132], however,
remained the poorest.

By comparing Table 6.1 and Table 6.2, we can conclude that the poor perfor-
mance of conventional methods in Figure 6.3 was mainly due to variations in
illumination. Although these methods yielded correct proportional distribu-
tions of R, G, and B color channels, the problem of illumination may mislead
the visual diagnosis of pathologists and affect the accuracy of CAD systems.
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A process of illumination normalization would be mandatory in practice to
extend the use of these methods in IHC-stained images.

The two measurements (H_dist and KL_div) were globally consistent, as
shown by the tables above. In the cases when two color distributions were
comparable, H_dist tended to be more sensitive to variations. On the other
hand, KL_div might be a preferable option when two color distributions di-
verged significantly from one another because it showed greater sensitivity
than H_dist. Nevertheless, this study is a preliminary study, and quantita-
tive analysis in more images needs to be investigated to confirm this finding.

6.2.6 . Conclusion
This chapter aimed to find a color normalization method suited for NeuN-
stained histological images. Three conventional approaches and one condi-
tional adversarial network-based method named Pix2Pix were examined with
the goal of recoloring one image sample from section No. 90 using images
from section No. 91 as reference. Overall, Pix2Pix demonstrated better per-
formance both visually and quantitatively, with the color distributions of re-
colored images being fairly close to the reference. Contrary to expectations,
none of the conventional methods appeared to be effective at correcting color
variations on NeuN-stained images since they all resulted in an undesired
illumination change. In addition, Pix2Pix was trained to learn the color dis-
tribution over the whole training dataset. The trained model was able to
recolor test images with the color of the training data. In contrast to previous
cGAN-based methods, which mapped colors from one specific distribution to
another, Pix2Pix did not have constraints on source images. No matter the
color of the source images, they were first converted into gray-scale images be-
fore being fed into the generator, which then recolored the gray-scale images
into the desired color images. There is, however, a limitation of Pix2Pix, as
well as most GAN-based normalization approaches. The images can only be
recolored using one particular color distribution that the trained model has
learned from the training set. A new model must be trained if another refer-
ence color is required, which would take a lot of development time and effort.
Their application is thus constrained by a lack of adaptability. The following
section presents another work of the thesis for color normalization: a more
adaptable GAN-based normalization approach that can recolor images using
different target colors.
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6.3 . Adversarial Color Transfer to Study the Effect of Color Vari-
ation on Cell Instance Segmentation

The remainder of this chapter comprises the following manuscript:

Wu, Huaqian, Nicolas Souedet, Camille Mabillon, Caroline Jan, Cédric Clou-
choux, and Thierry Delzescaux. “Adversarial Stain Transfer to Study the
Effect of Color Variation on Cell Instance Segmentation.” In International
Workshop on Medical Optical Imaging and Virtual Microscopy Image Analysis
(MOVI), pp. 105-114. Springer, Cham, 2022.

Abstract
Stain color variation in histological images, caused by a variety of factors, is
a challenge not only for the visual diagnosis of pathologists but also for cell
segmentation algorithms. To eliminate the color variation, many stain nor-
malization approaches have been proposed. However, most were designed for
hematoxylin and eosin staining images and performed poorly on immunohisto-
chemical staining images. Current cell segmentation methods systematically
apply stain normalization as a preprocessing step, but the impact brought
by color variation has not been quantitatively investigated yet. In this pa-
per, we produced five groups of NeuN staining images with different colors.
We applied a deep learning image-recoloring method to perform color transfer
between histological image groups. Finally, we altered the color of a segmenta-
tion set and quantified the impact of color variation on cell segmentation. The
results demonstrated the necessity of color normalization prior to subsequent
analysis.

keywords: Histological images; Microscopy; Stain transfer; Generative Adver-
sarial Network; Cell Segmentation.

6.3.1 . Introduction
Cell segmentation is the first step of many biological applications in preclin-
ical research. For example, neuron instance segmentation is the prerequisite
for quantitative studies of neuron population, morphology and distribution to
investigate brain aging and neurodegenerative diseases. Advances in Whole
Slide Imaging (WSI) techniques allow scanning entire tissue sections at the cel-
lular level, while processing such a massive amount of data is still challenging.
To reduce the manual workload, many automatic segmentation approaches
have been proposed. In particular, Deep Learning (DL) based methods have
demonstrated higher accuracy and robustness than traditional segmentation
methods [152, 78]. Although DL methods are considered more robust, the
inconsistency of stain color in the histological images exists as a critical issue.
This problem is related to many factors in the staining procedure, such as dye
type, solution concentration, staining duration, and room temperature. Even
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if the staining procedure is strictly standardized, variation may still occur
during the digitization. The DL models often underperform when applied to
images with colors different from the training dataset [130]. To this end, most
DL-based segmentation methods systematically applied color normalization
as a preprocessing step [23, 69]. In contrast, the impact of the color variation
on the segmentation is still not fully understood and inadequately quantified.

Many stain normalization methods have been proposed, which can be divided
into two categories: conventional and deep learning-based. Histogram match-
ing [21] maps the histogram of the source image to that of the target image,
treating color distribution independently of image content. The color trans-
fer method [102] converts the image into lαβ color space and matches mean
and standard deviation of histograms. However, they perform badly when the
color of the source and target images differ significantly. The fringing method
[82] and the structure-preserving color normalization [132] normalize the stain
vectors in the optical density (OD) space separately for each staining chan-
nel. They were developed specifically for color variation in hematoxylin-eosin
(H&E) staining histological images. Neurons are often stained with NeuN,
which is a biomarker evidenced by using immunohistochemistry (IHC). Color
normalization in IHC-stained histological images is a less explored research
area. Recently, several DL-based approaches have been proposed. These ap-
proaches generally address the color normalization as a style transfer problem,
using Generative Adversarial Networks (GANs) [114, 9] to learn the color dis-
tribution of the reference stain and apply it on the source image. Nevertheless,
the trained model can only deal with the specific stain of the training set and
it is not suitable for images with multiple stains. GANs were often used as
“black boxes”, in which we had no explicit control over the image details un-
til the invention of StyleGAN [64]. By feeding the generator gradually with
latent style vectors, StyleGAN can control the style and appearance of the
generated image. Furthermore, they show that the color-related features are
mainly determined in the fine layers (superior layers). Inspired by StyleGAN,
Afifi et al. proposed HistoGAN [2], which controls the color of GAN gener-
ated images by feeding the desired color histogram in the last two blocks of
the generator. In particular, a variant of HistoGAN, named ReHistoGAN, is
designed to generate a realistic image with the color of the target image and
the content of the input source image.

In this paper, we created a dataset dedicated to exploring color transfer, con-
taining five histological image groups of a mouse brain with controlled color
variations. For the first time, we applied ReHistoGAN to recolor histologi-
cal images while keeping the image content. The trained ReHistoGAN is not
limited to a single stain target, which was the main drawback of previous
GAN-based normalization methods. We recolored a cell segmentation test
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Figure 6.4: Neuron microscopic images with five nickel concentrations. Left:
image examples of different nickel groups. Right: correlation of histogram
difference and nickel concentration (with the nickel-free group as reference).

set of a macaque brain with the trained ReHistoGAN, using images of dif-
ferent colors as references, including five from the mouse set and one from
the macaque set as a control group. To our knowledge, this is the first study
to quantify the effect of color change on cell segmentation of the DL model.
The results revealed that the segmentation degradation of the DL model was
linked to the color difference between the training and test sets. The segmen-
tation performance in groups with significant color variation was considerably
reduced. On the contrary, the control group remains at the same level as the
initial group. Thus, color normalization prior to inference is mandatory for
robust and accurate segmentation.

6.3.2 . Material and Method
6.3.2.1 . Dataset

The data used for the color transfer study are mouse neuron microscopic im-
ages. Histological sections of a mouse brain were stained using IHC: sec-
tions were incubated with NeuN antibody, then treated with Diaminobenzi-
dine (DAB) chromogen and nickel (a DAB enhancer) to develop color. DAB
staining is usually brown, and the addition of nickel helps the staining become
darker and easier to recognize. The DAB amount stayed constant throughout
the staining process, and the only variable was the nickel concentration. This
procedure yielded five section groups with different color representations, one
of which was nickel-free and the other four were enhanced with nickel concen-
trations of 0.4%, 0.8%, 1.2% and 1.6%, respectively. The nickel concentration
in this study is estimated by the proportion of nickel solution to DAB solu-
tion. Figure 6.4 left illustrates image examples from the five groups. The
higher the concentration of nickel, the darker the color of neurons. We manu-
ally extracted 10 images (3000 × 3000 pixels) of the cortex from each section
group to build our dataset, including a training set of 13k 256 × 256 images
and a test set of five 512 × 512 images, which represented five color groups.

The cell segmentation dataset and a trained DL segmentation model were
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retrieved from [150]. Microscopic images were extracted from a macaque brain
section stained with NeuN and nickel concentration of 1.6%, knowing that the
distribution and staining of neurons in mouse and macaque cortex are similar.
This dataset was independent of the mouse color transfer dataset. In this
study, we used only a subset of cortex, containing 36 1024 × 1024 images, on
which we altered the stain color to examine the effect on segmentation.

6.3.2.2 . Histogram feature
We converted images from RGB to log-chroma space and calculated the his-
tograms in this space. The intensity of each channel was normalized by the
other two channels to make the histogram differentiable and insensitive to il-
lumination changes. For example, the conversion of the R channel is defined
as [2]:

IuR = log(
IR + ϵ

IG + ϵ
), IvR = log(

IR + ϵ

IB + ϵ
) (6.8)

where IK is the intensity of the K channel of image I, ϵ is added for numeric
stability, and the u and v are the K channel normalized by the other two
channels, respectively. The G and B channels are also projected into log-
chroma space to compute IuG, IvG, IuB, IvB. Binning is performed in u and
v dimensions for each channel, resulting in a histogram with the shape of
n× n× 3, where n equals 64, is the number of bins.

The difference between the two histograms was measured using Hellinger dis-
tance (H_dist) and Kullback-Leibler divergence (KL_div) [2]. They are usu-
ally used to quantify the similarity between two probability distributions. The
more similar the distributions are, the closer the value is to 0. Previous studies
suggested that H_dist had a better sensibility to minor deviations, whereas
KL_div was more responsive to large deviations [2, 89]. In this study, they
were used to assess the color variation in different nickel groups and compare
the color transfer performance of different normalization methods. In partic-
ular, the H_dist was also employed to train the neural network as the color
matching loss.

6.3.2.3 . ReHistoGAN
The objective of ReHistoGAN was to generate a realistic image, preserving
both the content of the source image and the color information of the target
image. As shown in Figure 6.5, the network consisted of a generator to recolor
the input image and a discriminator. The generator network was modified from
a UNet-like structure with skip connections. The target histogram features
were projected into latent space and inserted in the last two blocks of the
decoder to control the color of the output image. The generator was trained
to generate an image having the same content as the source image and a
color distribution similar to the target image. It is worth noting that the
ReHistoGAN was trained in a fully unsupervised manner since the only ground
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Figure 6.5: ReHistoGAN architecture.

truth needed was the histogram features, which were computed as described in
6.3.2.2. The goal of the discriminator was to distinguish the generated image
from the real one. The loss function of the entire network is defined as [2]:

L = αLC(Ht, Hr) + βLR(Is, Ir) + γLD (6.9)

where t, s and r are target, source and recolored images respectively. H is the
histogram. LC is the color matching loss computed with Hellinger distance. I

is perceptual detail (without color information), which was obtained with the
Laplacian operator. LR is the reconstruction loss computed with the L1 norm.
The discriminator loss LD is used to measure how realistic the generated image
is. α, β and γ are hyperparameters equal to 32, 1.5 and 4, respectively, which
were defined empirically in [2] to control the weight of each term.

The ReHistoGAN model was then applied to recolor each image of the cell seg-
mentation dataset using itself and five images in the mouse color transfer test
set as targets. This procedure yielded six supplementary groups with continu-
ous color changes. The first was a control group where no color changes were
expected (same source image as target image), which was added to measure
possible artifacts brought by the GAN network during encoding and decod-
ing. The remaining five groups inherited the color distributions from the color
transfer dataset, which were different from the segmentation set. Six colors
on the same set allowed us to study the effect of color variation on cell seg-
mentation.
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6.3.2.4 . Cell segmentation
We utilized the segmentation method proposed in [150], which consisted of a
neural network to predict the cell, the inter-cell contour and the background,
followed by a post-processing scheme based on mathematical morphology to
individualize each cell instance. Color augmentation techniques were applied
during the training to improve the robustness of the model to color inconsis-
tencies. After training, we applied the network on the segmentation test set
as well as the six GAN-recolored sets to study the impact of color variation.

6.3.2.5 . Evaluation metrics
In this study, the color variation between images was assessed by the difference
between color histograms (H_dist and KL_div). A good color transfer method
should provide a recolored image with low H_dist and KL_div matching the
target.

The cell segmentation was evaluated using three metrics: F1 score, Aggregated
Jaccard Index (AJI) and Dice [150]. F1 score evaluated the cell instance seg-
mentation, a segmented cell was considered a true positive when it overlapped
the ground truth with an intersection over union greater than 0.5. AJI was a
stricter metric to evaluate the instance segmentation since it penalized false
segmentations. We also computed the Dice score to evaluate the semantic
segmentation.

6.3.3 . Results and Discussion
We measured the color histogram similarity between the nickel-free group
versus other nickel groups using H_dist and KL_div. As shown in Figure
6.4 right, color variation becomes more significant as nickel concentration gets
higher. In the tested range, the KL_div curve was roughly linear, whereas
the H_dist saturated as nickel concentration increased.

6.3.3.1 . Color transfer performance of ReHistoGAN and other meth-
ods

We compared ReHistoGAN with four state-of-the-art color transfer methods:
Macenko et al. [82], Reinhard et al. [102], Vahadane et al. [132] and histogram
matching [21]. Each image in the mouse test set was recolored using all color
groups as color references, resulting in 25 combinations in total. Figure 6.6
shows the visual comparison of two extreme cases from the nickel-free group
(brown) and the highest-nickel group (dark). Macenko et al. [82] changed the
stain color while it introduced artifacts, especially when recoloring the dark
stain to brown. Reinhard et al. [102] was unable to retain all color information
of the target image, with the stain color in the results still affected by the
source images. Vahadane et al. [132] achieved better results visually, however
both Macenko et al. [82] and Vahadane et al. [132] suffered intensity issues,
the recolored images were unnaturally too bright compared to the source and
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Figure 6.6: Stain color transfer results from different methods. The first row
presents recolored results of a 1.6% nickel image using a nickel-free image as
reference. The second row shows recolored results after switching the source
and target.

target images. The possible explanation for this might be that the IHC stain is
a scatterer of light rather than an absorber. Therefore the Beer-Lambert law
of absorption used for color space conversion is no longer applicable [132]. The
dark stain was successfully recolored into brown using the histogram matching
[21]. On the other hand, it did not perform well in converting brown stains to
dark (brown spots still exist, see Figure 6.6), and the resulting stain colors were
absent from both the source and target images. Compared to other methods,
ReHistoGAN showed better performance and robustness, and it worked well
in all cases, transferring the target color without losing the source content.

Table 6.3 reports the quantitative comparison of ReHistoGAN and other meth-
ods on mouse data. H_dist and KL_div of color histograms were measured
between the recolored images and their target images. Histogram matching
had the best average H_dist and KL_div since the objective was to produce
similar color histograms. However, the high standard deviation suggests that
this method lacks robustness. This finding is consistent with visual results in
Figure 6.6, where the method performed poorly when the source and target
images had very dissimilar statistics. On the other hand, besides comparable
quantitative results as histogram matching (same KL_div and slightly higher
H_dist), ReHistoGAN had the lowest standard deviations, which indicates
its robustness. Despite bringing illumination changes, Macenko et al. [82],
Reinhard et al. [102] and Vahadane et al. [132] were unable to correctly ad-
just color variation in IHC-stained images. Compared to Histogram matching
[21] and ReHistoGAN, these methods resulted in recolored images with more
significant color differences from the target images.
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Table 6.3: Comparison of color transfer methods. The H_dist and KL_div
are reported to show the color difference between recolored results and target
images.

Metrics Macenko Reinhard Vahadane Hist match ReHistoGAN

H_dist 0.239± 0.038 0.284± 0.223 0.383 ± 0.131 0.043± 0.031 0.052± 0.006
KL_div 0.258± 0.076 0.42± 0.458 0.557 ± 0.284 0.011± 0.012 0.011± 0.002

Figure 6.7: Macaque segmentation dataset recolored by ReHistoGAN. First
row: target images, second row: source macaque image and recolored re-
sults. From left to right: GAN-recolored images using the macaque image
(control), nickel-free (recolored-1), 0.4%, 0.8%, 1.2% and 1.6% nickel mouse
images (recolored-2-5) as targets.

6.3.3.2 . Impact of color variation on cell segmentation
We applied ReHistoGAN to recolor images of the macaque segmentation test
set, as illustrated in Figure 6.7. The second column is the control group recol-
ored using the same macaque image as the target, which allowed us to investi-
gate the possible effect of encoding and decoding. The following columns show
recolored images using five nickel mouse groups as the target, respectively. In
total, six additional sets were produced, including one set without color change
(control) and five with continuous color variations from brown to dark (recol-
ored 1-5). Surprisingly, experts estimated that the original macaque images
were closest in color to recolored-3 (0.8%), although the nickel concentration
used for macaque images was the same as recolor-5 (1.6%). This inconsistency
may be due to factors other than nickel concentration during the staining pro-
cess.

We evaluated the segmentation network on the original and six additional sets
of macaque images. Table 6.4 reports the segmentation results and the color
variation between the test sets and the training set. Despite the fact that the
model was trained using color augmentation techniques, segmentation perfor-
mance has been negatively impacted by color variations. The scores of the
original set were the best since they came from the same data as the training
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Table 6.4: Comparison of segmentation performances (F1, AJI and Dice) on
segmentation dataset without and with color variations inherited from the
different groups in the color transfer dataset. Color variations between the
two datasets are quantified using H_dist and KL_div.

Metrics original control recolored-1 recolored-2 recolored-3 recolored-4 recolored-5

H_dist - - 0.257 0.093 0.05 0.132 0.182
KL_div - - 0.27 0.035 0.01 0.075 0.135

F1 0.91 0.899 0.842 0.892 0.898 0.893 0.867
AJI 0.754 0.734 0.628 0.711 0.733 0.729 0.7
Dice 0.972 0.961 0.909 0.951 0.962 0.956 0.936

set. They were used as references to show the performance degradation due
to GAN artifacts and color variation. The scores of the control group were
comparable to the reference but slightly lower, indicating that almost all in-
formation of the original image was preserved during encoding and decoding.
The group with the most degradation in segmentation was the recolored-1 set,
which had the most significant color variation compared to the original set
(KL_div: 0.27). In particular, the AJI of this set decreased by 17% when
compared to the reference. The recolored-3 set, on the other hand, scored
similarly to the control group as it had similar color distributions both visu-
ally and quantitatively (KL_div: 0.01). It suggests that the DL segmentation
model is robust to slight color variation. Overall, the findings suggest that the
segmentation performance decreases more in test sets with higher color vari-
ation. Surprisingly, the segmentation in the recolored-4 set was better than
that in recolored-2, even though the former had a more visually distinct color
variance. This might be due to the fact that despite the color variation, the
contrast between cell and tissue is also essential for neural networks to segment
cells. In our case, the darker stained images in the recolored-4 set presented
a more significant contrast than lighter stained images in the recolored-2 set,
providing a better condition for cell segmentation.

6.3.4 . Conclusion and Perspectives
In this paper, we created an original dataset with five controlled color changes,
which is well-suited for evaluating the performance of color transfer methods.
We applied the ReHistoGAN method to perform the stain color transfer on
IHC staining histological images. The results demonstrated its superiority
and robustness compared with other state-of-the-art methods. Using ReHis-
toGAN, we intentionally altered the color of the macaque segmentation test
set, which enabled us for the first time to quantitatively investigate the impact
of color variation on IHC-stained cell segmentation (semantic and instance)
using neural networks. Experiments showed that the cell segmentation nega-
tively correlated to the color variation between the test and the training sets.
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However, for a given color variation, the segmentation was better on images
with darker stains. (see recolored-2 and recolored-4 in Table 6.4). Previous
GAN-based approaches [9, 114] have not been assessed due to their lack of
flexibility. Further studies are needed to validate the color transfer perfor-
mance of ReHistoGAN compared to these methods. As a preliminary study,
we only investigated NeuN staining images in the cortex region. Further work
is needed to establish a strategy for the automatic selection of appropriate tar-
get images in various anatomical regions, which will allow us to expand this
study to the entire brain. Moreover, additional study on images with other
stainings (e.g., H&E) would also be worthwhile.
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7 - Discussion and Conclusion

7.1 . Contributions of the thesis

The objective of this thesis was to develop an automatic method for neuron
instance segmentation in various ROIs in histological sections of brains. This
work could be split into two parts: (1) a robust neuron instance segmentation
framework based on neural networks and morphological post-processing, and
(2) GAN-based color transfer approaches to eliminate color variations between
histological sections.

In Chapter 1, we first presented a general introduction to the biological back-
ground of the central nervous system, the anatomical regions of the brain, the
neurons, and Alzheimer’s disease. Then, we described the histology technique
and the NeuN staining, which served as the foundation for the majority of the
study. A number of traditional machine learning techniques and deep neu-
ral networks applied in this study were also reported. Chapter 2 reviewed the
state-of-the-art cell instance segmentation and color normalization approaches
for histological images, including conventional and Deep Learning-based meth-
ods. The main contributions were introduced in the following chapters, from
Chapter 3 to Chapter 6.

The main topic of the first part of the manuscript (from Chapter 3 to Chapter
5) consisted of the development of neuron instance segmentation for macaque
brain sections based on DL techniques. In Chapter 3, based on manual point
annotations and a RF model trained for segmenting neuron class from the
tissue, we proposed a mask synthesis pipeline to generate pixel-level annota-
tions automatically in order to reduce the manual labeling workload. This
strategy allowed us to annotate a large dataset of macaque neurons contain-
ing 11k patches of 224 × 224 pixels (about 100,000 neurons in total). Based
on this dataset, we assessed the winning method of the nuclei segmentation
challenge Data Bowm Science 2018 [16], Topcoders, an ensemble model of
eight UNet-like neural networks and a post-processing scheme to remove in-
correct segmentations. This method demonstrated the excellent performance
of UNet-like architecture on cell segmentation tasks. However, it is challenging
to implement this strategy in practice because it requires inferring eight neural
networks and applying post-processing iteratively to each predicted object.

Chapter 4 further explored the capacity of this architecture: we compared
in total 13 segmentation approaches, 11 of which were UNet-like encoder-
decoder networks, including the UNet, eight constituent models, and the en-
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semble model from Chapter 3, and EfficientUNet, a UNet-like network with
EfficientNet as the encoder. We also evaluate HRNet, which does not follow
the encoder-decoder design and maintains high resolution throughout the con-
volutional layers. A conventional method previously developed in our lab to
deal with neuron segmentation was tested as well. Heavy data augmentation
was applied during the training to increase the robustness of the neural net-
works, including rotation, flipping, random cropping, RGB channel shuffling,
color inversion, etc. Various aspects were considered for the evaluation, such
as the accuracy in instance segmentation, semantic segmentation, detection,
and counting, as well as the model weight and computational complexity for
DL models. After a thorough comparison, EfficientUNet was identified as
the model with the best trade-off between latency and accuracy: it was the
second-best model for segmentation with model size and FLOPs three times
lighter than the best model. Thus, subsequent developments were mainly
based on this model. The proposed approach integrating the ultimate ero-
sion and a dynamic dilation, as well as four other widely used post-processing
techniques from the literature, were all applied to the probability maps of Ef-
ficientUNet. The proposed approach produced the best segmentation results.
The proposed method was also evaluated in a pilot study with a supplemen-
tary cortex dataset from other animal brains, including two other macaques,
a microcebus, and a mouse. The proposed framework remained effective de-
spite the difference between samples and species, indicating the robustness
and generalizability of the proposed framework. A performance decrease is
observed in images with color variations and a light stain intensity. It implies
that stain color and intensity normalization can be an effective tool to further
improve the robustness of the framework and to extend the application of the
framework to other animal samples and other cell types. Furthermore, the
combination of EfficientUNet and the proposed post-processing allowed us to
segment neurons accurately and efficiently, enabling us to envision the pro-
cessing of larger-scale images. An extension of this work, an application for
segmenting whole-slide images, has been subsequently carried out.

In Chapter 5, we have described our parallel mechanism that combines the
CPU and GPU hardware resources to speed up the inference over whole-slide
images. Thanks to the partial reading and writing library that was previously
developed in our lab, our pipeline could load a part of an image in memory
instead of the whole image content. Given an input image, each CPU-GPU
pair was distributed with one image band. Up to 3 GPUs were successfully
tested simultaneously, and this protocol could be extended to a larger num-
ber of GPUs. The GPU processed the patch content that was read by the
CPU through a sliding window. An overlap between neighbor patches was
considered to take into account possible border effects. Contrary to previous
methods [23, 56], which require an additional reweighting process to normalize
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the contribution of each pixel in the assembled prediction, the proposed novel
weight map simplifies the process by directly computing the contribution of
the processed patch in the final image. Throughout the entire process, only
the final prediction was written to the disk. This work was integrated into
BrainVISA software as a program with a user-friendly interface, making it
easier to be used by biologists. The prediction result of the inference pipeline
is a probability map. By combining our post-processing scheme described in
Chapter 4, we successfully individualized neurons in an entire mouse brain
section. The information about neuron number, distribution, and morphol-
ogy in various anatomical regions, which can be potentially extracted from
segmented sections, could be particularly beneficial for the neuroscience com-
munity to study cytoarchitecture in control brain or to quantify cell death in
neurodegenerative animal models (decipher pathological mechanisms or test
drug efficacy).

Before applying the segmentation pipeline to the whole brain, one issue that
needs to be addressed is the correction of color inconsistency between sections.
The second part of the manuscript (Chapter 6) attempted to correct the color
variation with two approaches based on conditional GANs. Most widely used
color normalization methods were developed specifically for H&E-stained im-
ages, but they were not well suited for IHC images. The first section of Chapter
6 tackled color normalization as a recoloring task of gray-scale images [107].
The training data were extracted from section 91 of the macaque brain, and
the trained model was evaluated on images from section 90, where the neu-
rons are darker than the training data. A further benefit is that, unlike earlier
GAN-based methods [114, 9], which were trained to transfer one specific color
distribution to another, the trained generator was able to apply the color of
the training dataset to test images regardless of their original colors. More
importantly, because the generator learns color characteristics from the entire
training dataset, there is no need to select a target image as the color reference,
a task that is frequently carried out manually by an expert for conventional
approaches. On the other hand, a trained Pix2Pix network can only recolor
test images with one specific target color, which is that of the training data.
Extra training is necessary for other target colors.

The second section of Chapter 6 presented another strategy for color transfer
between images. A variant of StyleGAN [64] called ReHistoGAN [2] was em-
ployed to recolor the input image using a target color histogram injected in
the generator as the reference. Changing image color by modifying the color
histogram is not novel in the literature. Traditionally, histogram specifica-
tion [21, 59] alters the color histogram independently from the image content,
which is, therefore, suboptimal for normalizing colors in images with different
scenes. This issue was addressed in ReHistoGAN by training the generator
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to apply the color target histogram while preserving the source image con-
tent. ReHistoGAN has the advantage of being flexible. In contrast to earlier
GAN-based methods, which were restricted to one specific color of the training
set, ReHistoGAN can be used to normalize images to various target colors,
even colors that are different from the training data. Such design may be of
great practical value for saving development time and effort. The evaluation
was performed on an original dataset with five continuous controlled color
variations produced from a mouse brain. The accuracy of this method was
demonstrated with a detailed quantitative assessment of a total of 25 pairs of
source and target combinations. Furthermore, the trained generator allowed
us to investigate the effects of color variations on neuron instance segmenta-
tion by recoloring the test set of Chapter 4. This study demonstrated that the
segmentation performance was directly related to the color difference between
test and training images, which suggests the necessity of color normalization
prior to the segmentation inference.
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7.2 . Limitations of the thesis

Despite how well the results of the proposed segmentation framework aligned
with the ground truth, the synthetic annotations were limited by the binary
segmentation of the RF model, which was not perfect. Manual annotations
are scarce and extremely time-consuming. It is, therefore, not feasible to
annotate neuron instances manually in all 11k images of the training set.
One possible way to improve the quality of synthetic annotations will be to
enlarge the original binary segmentation dataset, which will allow employing a
neural network rather than the RF model to further improve the segmentation
accuracy and robustness.

The proposed post-processing scheme has one hypothesis, which is that most
neurons are disk-shaped. The separation of touching and overlapping neurons
by ultimate erosion relies on the concave point that exists exclusively between
neurons. Its use is particularly adapted as the DL method has efficiently ini-
tiated full or partial cell splitting. For cells with irregular or branched shapes,
such as astrocytes and microglia, which may have concave points within a sin-
gle cell, our method could be adapted by extending the number of classes by
including a branch class. In addition to extra training, it is critical to carefully
specify the size of the structuring element for erosion to prevent cells from be-
ing divided into segments. Nonetheless, most parts of our pipeline could be
easily reused.

Although the quantitative evaluation of the proposed segmentation framework
in the cortex region of other species produced promising results, rigorous vali-
dation in other regions, especially in the hippocampus, is required before being
applied to biological studies.

The post-processing part of the segmentation of the whole-slide image presents
a challenge that has not yet been fully solved. Currently, only the inference
phase has been parallelized, allowing the processing of a whole macaque brain
section (118 GB). Post-processing still relies on a single CPU to load and
process the entire image in memory. However, the post-processing of images
of this size cannot be realized in a local workstation without partial reading
and writing mechanisms. For post-processing, a different extraction and as-
sembling technique is required. Without overlapping, a neuron that crosses
multiple patches will be treated as separate small neurons, not as a single large
neuron. Extra developments for processing neurons at the border are ongoing
to further parallelize the entire process.

As for the color normalization part, it is essential that the content of the input
image remains intact. However, due to the lack of color-invariant structural
similarity measurements, the validation of this aspect relied on the visual as-
sessment and the indirect evaluation by a downstream instance segmentation
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task. Direct measurements of the structural change due to encoding and de-
coding need to be conducted, which requires examining color normalization
approaches with datasets where the source and target images share the same
image content, such as images digitized with different scanner devices. In addi-
tion, the target image for ReHistoGAN depends on manual identification, and
the color histogram of an image from a sparse region may differ significantly
from that of an image from a dense region. This constraint limits its applica-
tion on a large scale, for example, an entire section, where it is mandatory to
manually specify a target image for each possible distribution of neurons.
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7.3 . Future directions

Notwithstanding these limitations, this study offers valuable insights into neu-
ron distribution in the brain. Although this thesis work focused mainly on
healthy animal samples, the proposed approach can be easily applied to pre-
clinical data with pathological cases. In practice, in order to observe neuron
changes under different conditions, biologists still rely on visually assessing
MRI images or performing stereology in a region of interest to observe neuron
changes in various situations. The former limits the observation at the macro-
scopic scale, and it only reveals the brain atrophy when it becomes significant.
The latter provides details at the microscopic scale, but it is extremely la-
borious and time-consuming. Therefore, applying the proposed segmentation
framework to pathological sections will be of great interest to precisely track
the effect of novel therapies on specific anatomical regions and entire brain
sections, which will be particularly beneficial to the neuroscience community.
Moreover, assessing neuron morphology and distribution at a large scale could
enable us to detect slight early changes due to pathologies that are extremely
difficult to identify.

It is exciting to see how well the evaluation of the proposed segmentation
framework is on primate (macaque and microcebus) and rodent (mouse) an-
imal models. A transition of our approach to human brain samples provided
through donation programs may further be envisioned. The ANR-funded
SUMMIT (Small vessel diseases: Ultrastructure & Microvasculature compu-
tational Model to refine Individual Treatment) research project began in early
2022 to study human brain samples using advanced high-field MRI techniques
and histology. This project is led by the CEA Neurospin imaging center, and
the samples are collected and made available by the laboratory of anatomy of
Tours. The objective of this project is to decode the cytoarchitecture of the
human brain by MRI. The creation of this decoder is based on the MEDUSA
cytoarchitecture simulator [37] developed at Neurospin, which allows the pro-
duction of the corresponding theoretical MRI data with HPC. On the other
hand, the production and analysis of histological samples (multiple stains pro-
duced from real human brain samples) will be performed at MIRCen and will
provide gold standard information to interpret the MRI images that will have
been produced on these real samples but also realistic quantified cell features
to adjust the simulator parameters. For this, the method developed during
this thesis will be exploited and extended to the different cellular elements of
the brain.

An unbiased neuron counting across all sections of the brain is not possible
because we are not sure to see all the neurons present in the slice under the
focus of the microscope. The comparison between individuals is nevertheless
possible and relies on relative count since we introduce the same measurement
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bias. Compared to the stereological approach, our method allows us to process
data massively and provide additional spatial information. The current work
was conducted on two-dimensional (2D) microscopic images produced with
histology, which resulted in the loss of the three-dimensional (3D) coherence
of the brain. Several studies have attempted to restore this coherence through
the 3D reconstruction of 2D sections. Malandain et al. [84] reconstructed a
3D volume with consistent geometry and intensity from 2D autoradiographic
sections. The fusion of the 3D volume and MRI images ensured that the
reconstructed volume could be superimposed on the reference anatomy. Dau-
guet et al. [24] suggested aligning histological sections of the baboon brain
with the anatomical MRI images using an intermediate 3D consistent volume
of “blockface” photographs generated during sectioning. A “semi-rigid” trans-
formation was applied to each 2D section, and a 3D elastic transformation was
subsequently applied to complete the registration of histological sections with
the MRI data. The 3D reconstruction of 2D segmented sections is necessary
for an accurate estimation. Recently, several 3D reconstruction techniques
have been proposed, such as comparing the similarity of segments across 2D
images to extract 3D cell shapes [122], continuous boundary tracing criterion
to reconstruct 3D object surface [106] and graph-theoretic network-flow based
association of 2D objects along the axial direction [110], etc. These works
may give us insights to expand this study into samples or whole brains in 3D,
which will deepen our understanding of brain anatomy at the cellular scale and
provide a gold standard to evaluate the digital simulation of brain structures.

The color inconsistency between images troubles not only the performance of
CAD systems but also the diagnosis of pathologists. ReHistoGAN has superi-
ority in terms of flexibility and accuracy against the conventional approaches
as well as Pix2Pix (see Chapter 6). Applying ReHistoGAN as a universal
tool for biomedical image analysis will be of significant interest. The major
limitation of this approach is that the recoloring performance directly relates
to the reference color histogram provided, which is specified by experts. Fu-
ture work will involve developing an automatic selection of reference images
to alleviate manual effort, process large samples and make it more accessible
for non-experts users.
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Les neurones sont des cellules clés du système nerveux qui sont respons-
ables de la transmission de l’information sensorielle et de la communication
entre les différentes régions du cerveau. Ils sont impliqués dans de nom-
breuses fonctions importantes du cerveau, telles que la perception, la cog-
nition, l’apprentissage et la mémoire, ainsi que le contrôle des mouvements et
des comportements. La quantification du nombre, de la distribution et des
caractéristiques des neurones est cruciale pour comprendre les mécanismes
impliqués dans le développement du cerveau, le vieillissement et les maladies
neurodégénératives. Une technique de référence couramment utilisée pour
étudier les neurones est l’immunohistochimie (IHC), qui permet de marquer
les neurones avec un anticorps spécifique appelé NeuN (neuronal nuclei) et de
les observer à haute résolution grâce à un microscope.

En pratique, les biologistes utilisent des techniques manuelles telles que la
stéréologie pour quantifier sans biais le nombre de neurones dans de petites
régions d’intérêt, mais cette méthode est chronophage et nécessite une inter-
vention manuelle très fastidieuse. Ainsi, elle n’est pas pratique pour mener des
études à grande échelle. Pour réduire l’effort humain, de nombreuses méthodes
de segmentation automatique ont été proposées, notamment celles basées sur
l’intelligence artificielle et l’apprentissage profond (deep learning -DL-). Ces
approches utilisent des algorithmes entraînés sur de grandes bases de données
annotées pour identifier les cellules automatiquement dans de nouvelles images.
Cependant, l’apprentissage supervisé nécessite de nombreuses annotations de
neurones à l’échelle cellulaire. Cette tâche est difficile à réaliser manuelle-
ment, surtout pour l’ensemble de données d’entraînement et correspondent à
une quantité importante de travail.

Il convient de noter que les approches basées sur DL ont principalement
été développées et validées pour les images colorées avec l’hématoxyline et
à l’éosine (H&E) en oncologie, tandis que les neurones sont souvent colorés
avec le marquage NeuN qui est très différent. De plus, la forme, la taille et la
densité des neurones peuvent varier de façon importante d’une région à l’autre
du cerveau, ce qui rend leur segmentation précise et robuste difficile dans cer-
taines régions, en particulier le gyrus denté de l’hippocampe qui est une zone
particulièrement dense.

En comparaison avec les méthodes conventionnelles, les approches basées sur
DL pour la segmentation de cellules sont considérées comme plus précises et
robustes. Cependant, la variation de couleur présente dans les images his-
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tologiques peut avoir un impact sur la performance des modèles DL de seg-
mentation. Même si les protocoles et les moyens de production des coupes
histologiques sont standardisés, il est fréquent d’observer des de couleur entre
les coupes histologiques produites. Cette variation peut affecter le modèle de
segmentation, car il est entraîné à apprendre des caractéristiques à partir d’une
base d’entraînement spécifique qui peut ne pas intégrer toutes les variations
de couleur existantes. Si la couleur des images de test est significativement
différente de celle des images d’entraînement, le modèle peut ne pas être aussi
performant. Pour résoudre ce problème, une solution est de normaliser la
couleur des images de test en les modifiant pour qu’elles correspondent à la
couleur des images du jeu d’entraînement.

La variation de couleur peut également poser problème pour les pathologistes
qui réalisent leur diagnostic visuellement à partir des tissus en se basant sur les
couleurs des cellules et d’autres caractéristiques des images. Pour y remédier,
plusieurs approches de normalisation de couleurs ont été développées, incluant
des méthodes conventionnelles et des approches basées sur DL. Les méthodes
conventionnelles impliquent souvent la conversion des images dans d’autres
espaces de couleurs afin de faire correspondre les statistiques des couleurs de
l’image de source à celles de l’image de référence. Cependant, la plupart de
ces approches ont été conçues pour corriger la couleur des images colorées
avec H&E. Le transfert de ces approches aux images colorées par IHC, et
spécifiquement aux images colorées par le NeuN, reste une question ouverte.

Dans ce manuscrit de thèse, nous présentons une méthode basée sur DL pour
segmenter automatiquement les neurones dans différentes régions anatomiques
de modèles animaux utilisés en recherche préclinique. Nous avons étudié les
performances de la méthode proposée en termes de précision, de robustesse
et de coût de calcul, nous avons évalué notre capacité à étendre l’analyse à
des images de grandes dimensions et à plus grande échelle. Nous avons util-
isé la normalisation de couleur comme une étape préliminaire pour améliorer
la robustesse de la méthode face aux variations de couleur qui peuvent être
présentes dans les images à traiter.

Les travaux de cette thèse ont été réalisés au Centre de Recherche en Im-
agerie Moléculaire (Molecular Imaging Research Center -MIRCen-) dans le
laboratoire des maladies neurodégénératives (UMR9199 LMN), une unité de
recherche du Commissariat à l’Energie Atomique et aux Energies Alternatives
(CEA) en collaboration avec le Centre National de la Recherche Scientifique
(CNRS) et l’Université Paris-Saclay. Toutes les données utilisées dans cette
étude proviennent d’images cérébrales microscopiques réalisées au sein de la
plateforme d’histologie de MIRCen.

Ce manuscrit est subdivisé en sept parties.
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Dans le premier chapitre de cette étude, nous décrivons le contexte biologique
dans lequel notre recherche s’inscrit. Nous fournissons une description détaillée
de la structure et de l’organisation de base du cerveau, les caractéristiques des
neurones ainsi que les mécanismes impliqués dans les maladies neurodégénéra-
tives comme la maladie d’Alzheimer. Nous abordons également l’utilisation
des modèles animaux pour la recherche sur la neurodégénérescence et décrivons
brièvement les techniques d’histologie et de numérisation des images.

Avec l’émergence de technologies avancées permettant de produire de grandes
quantités de données à haute résolution (scanner de lames virtuelles entières,
whole slide imaging -WSI-), il y a un besoin grandissant de solutions logi-
cielles capables d’analyser efficacement ce type de données massives. Pour ce
faire, les algorithmes d’apprentissage automatique (machine learning -ML-),
en particulier les réseaux de neurones profonds, sont considérés comme l’un
des outils les plus efficaces pour l’analyse automatique de grandes quantités
de données. Nous décrivons également dans notre manuscrit les différents
algorithmes MLde référence utilisés dans cette étude.

Le chapitre 2 de ce manuscrit décrit les différentes approches développées pour
la segmentation des cellules individuelles, comprenant les méthodes conven-
tionnelles et les méthodes basées sur DL. Ces méthodes sont classifiées en
fonction de leurs principes de fonctionnement et de la nature de l’annotation
des données. Nous explorons également les stratégies pour rendre les ap-
proches basées sur DL évolutives et capables de traiter des images de coupes
de cerveaux entières, étant donné que ces approches sont limitées par la mé-
moire de la carte graphique (GPU) par rapport aux méthodes conventionnelles.
Le chapitre présente également les approches couramment utilisées (conven-
tionnelles et DL) pour normaliser la couleur des images microscopiques, car
les variations de couleur se produisent fréquemment et elles représentent un
défi important dans l’analyse d’images.

Le chapitre 3 de cette étude décrit une méthode pour générer des masques de
segmentation synthétiques pour entraîner des réseaux de neurones profonds.
Les données utilisées dans cette étude proviennent des images de cerveaux
de macaques sains produites à MIRCen. Une grande quantité de données
annotées est nécessaire pour entraîner les réseaux de neurones. Cependant,
l’annotation manuelle au niveau cellulaire est un processus fastidieux. Pour
résoudre ce défi, ce chapitre présente une stratégie pour générer des masques
synthétiques avec un minimum d’intervention manuelle. Cette stratégie a per-
mis d’annoter un grand nombre de neurones de macaque contenant 11 milles
imagettes de 224 × 224 pixels (soit environ 100 000 neurones au total). En
utilisant cet ensemble de données annoté, nous avons évalué la méthode gag-
nante de la compétition de segmentation de cellules Data Bowm Science 2018,
Topcoders, un modèle d’ensemble de huit réseaux neuronaux de type U-Net en
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utilisant son schéma de post-traitement pour raffiner les segmentations. Les
résultats de cette étude ont été publiés sous la forme d’un article de conférence
internationale avec acte :

Wu, Huaqian, Nicolas Souedet, Zhenzhen You, Caroline Jan, Cédric Clou-
choux, and Thierry Delzescaux. “Evaluation of Deep Learning Topcoders
Method for Neuron Individualization in Histological Macaque Brain Section.”
In 2021 43rd Annual International Conference of the IEEE Engineering in
Medicine & Biology Society (EMBC), pp. 2985-2988. IEEE, 2021.

Bien que la méthode présentée dans le chapitre 3 ait montré des résultats
prometteurs pour la segmentation des neurones, son application à grande
échelle est difficile en raison de sa complexité de mise en œuvre nécessitant
l’inférence de huit réseaux de neurones et une phase de post-traitement qui
prédit la meilleur segmentation pour chaque cellule. Ces contraintes rendent
cette approche inadaptée pour le traitement d’images de grande taille. En
conséquence, le chapitre 4 vise à surmonter ces limitations en proposant un
nouveau cadre efficace pour la segmentation de neurones à grande échelle.
En utilisant la base de données annotées produite dans le chapitre 3, nous
avons comparé les principaux modèles de réseaux de neurones pour identifier
un modèle (EfficientUNet) qui présente le meilleur compromis en termes de
précision et de coût de calcul. Nous présentons également une méthode de
post-traitement originale basée sur l’érosion ultime et la reconstruction dy-
namique pour finaliser l’individualisation des neurones qui se touchent ou se
chevauchent à partir des cartes de probabilités produites. Les résultats de cette
étude ont été publiés sous la forme d’un article dans une revue internationale
:

Wu, Huaqian, Nicolas Souedet, Caroline Jan, Cédric Clouchoux, and Thierry
Delzescaux. “A general deep learning framework for neuron instance segmen-
tation based on efficient UNet and morphological post-processing.” Computers
in Biology and Medicine (2022): 106180.

Les images de lames entières (WSI) sont des images de très grande taille qui
contiennent une numérisation à très haute résolution (x20, 0.22 µm de réso-
lution spatiale) d’une section de tissu ou d’une biopsie entière. Ces images
peuvent atteindre des tailles de plusieurs gigapixels, ce qui fait de la segmen-
tation de ces images un défi. Le chapitre 5 de ce manuscrit de thèse présente
une approche pour implémenter la méthode de segmentation de neurones pro-
posée sur des données WSI. Afin de rendre possible et d’accélérer la vitesse de
l’inférence, une stratégie de calcul parallèle est mise en place en utilisant des
ressources computationnelles hybrides multi-CPU-GPU avec une bibliothèque
pour la lecture et l’écriture partielles d’images. Nous avons conçu une chaîne
de traitement pour la segmentation de grandes images qui a été intégrée au
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logiciel BrainVISA avec une interface graphique pour en faciliter l’utilisation.
Enfin, nous avons validé ce pipeline sur des coupes entières de cerveau de
souris ( 5 Go) et de macaque ( 120 Go).

Dans le chapitre 6 de ce manuscrit, nous présentons deux approches pour cor-
riger les variations de couleur dans les images microscopiques de cerveaux en
utilisant des réseaux adversaires génératifs (Generative Adversarial Network
-GAN-). Ces méthodes peuvent être utilisées comme une étape de prétraite-
ment dans le cadre de la segmentation d’instances de neurones, en particulier
lorsque les images de test présentent des variations de couleur par rapport
aux données d’entraînement. La première approche, appelée Pix2Pix, utilise
un générateur pour recolorer une image en niveau de gris avec la couleur de
l’image de référence, cependant un modèle de Pix2Pix entraîné est limité à
une seule coloration cible. Une deuxième approche, inspirée de StyleGAN, ap-
pelée ReHistoGAN a été proposée. Dans ce cas, des histogrammes de couleurs
de référence de plusieurs colorimétries produites artificiellement sur des don-
nées par la plateforme d’histologie de MIRCen (cinq niveaux de couleurs de
référence différentes modulées par la concentration de nickel utilisée) peuvent
être injectés dans le générateur, permettant ainsi une normalisation couleur
des données. Enfin, nous avons évalué l’impact des variations de couleur sur
la segmentation d’instance de neurones. Les résultats de cette deuxième ap-
proche sont présentés sous la forme d’un article de conférence :

Wu, Huaqian, Nicolas Souedet, Camille Mabillon, Caroline Jan, Cédric Clou-
choux, and Thierry Delzescaux. “Adversarial Stain Transfer to Study the
Effect of Color Variation on Cell Instance Segmentation.” In International
Workshop on Medical Optical Imaging and Virtual Microscopy Image Analysis
(MOVI), pp. 105-114. Springer, Cham, 2022.

Le chapitre 7 du manuscrit présente les principales contributions de cette
étude. Il résume les limites de la méthode de segmentation des neurones
et les défis persistants dans le traitement des WSI. Il aborde également les
questions liées à l’évaluation de la normalisation des couleurs. Ce chapitre
présente également les orientations futures et les applications potentielles des
approches proposées pour la segmentation des neurones et la normalisation
des couleurs.

En conclusion, ce travail de thèse propose dans une première partie un cadre
complet pour la segmentation d’instance de neurones dans les images micro-
scopiques ainsi qu’une stratégie de calcul intensif pour traiter des images de
très grandes dimensions. Une deuxième partie décrit des approches de trans-
fert de couleur basées sur les GAN pour corriger les variations de couleur
pouvant exister entre des coupes histologiques.

Notre étude a montré un grand potentiel sur des données provenant de modèles
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animaux primates (macaques et microcèbes) et rongeurs (souris). Bien que ce
travail se soit concentré dans un premier temps sur des échantillons d’animaux
sains, les méthodes développées peuvent être appliquées à des données préclin-
iques dans des cas pathologiques avec des premières études initiées. Il serait
aussi intéressant d’explorer les applications possibles de notre approche sur
des échantillons de cerveaux humains recueillis via des programmes de dons
de corps pour une analyse plus précise du cerveau humain ainsi que pour
mieux interpréter les signaux produits par des systèmes d’imagerie telle que
l’imagerie par résonance magnétique (Magnetic Resonance Imaging, -MRI-).
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