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INTRODUCTION

0.1 General context

Aviation has become an integral part of modern society, with millions of people traveling
by air every day. However, this has come at a significant environmental cost. The environmental
impacts of aviation are diverse, ranging from greenhouse gas emissions to degradation of air
quality. In fact, aviation alone is responsible for 4.8% of the estimated anthropogenic contribution
to effective radiative forcing between 2000 and 2018 [1]. Furthermore, aircraft noise pollution
is a major source of nuisance and has significant implications for human health [2].

High levels of aircraft noise have been linked to various adverse health effects, including
sleep disturbances and cardiovascular diseases. In the Paris region alone, millions of people
are affected by aircraft noise and have developed health problems leading to a reduction in life
expectancy ranging from several months to several years. This highlights the need for effective
measures to mitigate aircraft noise and its impacts on human health.

The International Civil Aviation Organization (ICAO) has established norms and standards
to regulate aircraft pollution to address this issue. In particular, it has defined the maximum noise
levels an aircraft can generate at specific certification points. This represents the disturbance
caused to airport neighbours. These norms motivate aircraft manufacturers to develop innovative
engine architectures and technologies that can reduce fuel consumption and the noise generated
by an aircraft. Among these technologies are engines with a very high bypass ratio (ratio of
the mass flow rate in the bypass stream to the mass flow rate entering the core) or semi-buried
engines, which are widely studied for their potential to reduce engine consumption.

Acousticians are continuously striving to develop new and improved models that can accu-
rately predict and quantify the noise generated by these new engine concepts. This is essential
to support the development of quieter and more environmentally friendly aircraft engines.

0.2 Acoustic certification points

Let us first recall the noise certification points that have been previously mentioned [3].
There are three of them:

1
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— Take-off sideline configuration: This condition represents the loudest noise experienced
during take-off, typically very close to the airport. It involves engines at full power.

— Take-off cutback configuration: This scenario represents the minimum noise perceived
during a take-off operation, especially close to the flight path. In this case, the aircraft is
in take-off configuration but with reduced power.

— Approach configuration: This condition represents the noise perceived during the final
approach phase. During the approach, the aircraft is in its noisiest landing configuration.
It maintains stabilized thrust on a standard glide path.

runway
approach

full power cutback thrust

cutback
certification

point
sideline certification point

approach certification point

Figure 1 – Acoustic certification points.

0.3 Aircraft noise

The noise produced by an aircraft results from two major contributors: the engine and the
airframe. The airframe noise mainly comes from the slats, flaps, and landing gears, while the
engine noise mainly arises from the jet and the fan. The relative importance of these contributors
varies depending on the aircraft type and engine configuration.

In this thesis, we focus on engine noise, which is a main contributor to noise during certifica-
tion points for long-range carriers. Jet noise is the noise generated by the high-velocity exhaust
gases exiting the engine nozzle. This noise contribution to the overall noise level is important for
the sideline certification point. Fan noise, on the other hand, is caused by complex interactions
between the engine blades, vanes and the turbulent air flow. It is an important noise source to
the sideline and cutback phases.
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)

BPF and harmonics
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Figure 2 – Example of noise spectrum from a subsonic fan.

Until recently, aircraft manufacturers have largely relied on increasing the ByPass Ratio
(BPR) of engines to reduce fuel consumption. In the same way, higher BPR decreases jet velocity,
and therefore reduces jet noise, which was the dominant noise source. This approach has been
the easiest way to comply with the noise reduction regulations set by the ICAO. However, since
the jet noise level is now equivalent to the fan contribution, further noise reduction requires all
noise sources to be addressed. Concerning the jet noise, future engine designs, such as the High
Bypass Ratio (HBR) and Ultra High Bypass Ratio (UHBR) engines, will continue to decrease it.
However, the evolution of fan noise is not straightforward. In fact, fan noise is more complicated
as it has multiple origins, making it challenging to estimate a priori [4]. To address this challenge,
it is necessary to understand the involved noise mechanisms and how they will be affected by
the new engine geometries.

0.4 Fan noise

Figure 2 shows a schematic noise spectrum generated by a fan operating at subsonic con-
ditions. The noise generated by the fan includes both tonal and broadband components [5].
The broadband noise has a continuous distribution of frequencies and is typically caused by
turbulence in the flow and its interaction with the blades and vanes. The tonal noise, on the other
hand, emerges at frequencies that are multiple of the Blade Passing Frequency (BPF). The main
mechanisms involved in tonal noise are detailed hereafter.

Rotor self-noise
Rotor Self-Noise (RSN) is generated by the steady pressure on the rotor blades as they rotate

3
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through the air. Shocks can also develop over blade suction sides at transonic speeds and also
contribute to the acoustic field because of their rotation. The rotor self-noise is characterized
by tonal components at multiples of the BPF and generates the so-called rotor-locked modes
characterized by their azimuthal order𝑚 = 𝑛𝐵, with 𝑛 the order of the considered BPF harmonic
and 𝐵 the number of rotor blades.

Rotor-stator interaction noise
Rotor-Stator Interaction (RSI) noise is generated by the interaction between the wakes of the

rotor blades and the stator blades located downstream. When the stator blades see the wakes
generated by the rotor blades, they experience unsteady flow conditions that result in periodic
variations in pressure. In ideal conditions (homogeneous rows and uniform flow), the sound field
is characterized by azimuthal Fourier components of order 𝑚 = 𝑛𝐵− 𝑘𝑉 , where 𝑘 is any integer,
and 𝑉 is the number of stator vanes. These modes are classically refered to as Tyler & Sofrin
modes. When the flow is heterogeneous, the rotor blade wakes become heterogeneous and cause
the appearance of the neighbouring modes.

Distortion-Rotor interaction noise
Distortion-Rotor Interaction (DRI) noise is generated by the interaction between the rotor

blades and the steady azimuthal heterogeneity, or distortion, of the incoming flow. This distortion
causes the flow to contain azimuthal Fourier components of order 𝑙. This interaction leads to
periodic fluctuations of the pressure distribution over the blades. The associated sound field is
then characterized by azimuthal harmonics of order 𝑚 = 𝑛𝐵 + 𝑙. In classical turbofan engines,
these modes are generally considered to be negligible [6].

0.5 Modelling challenges in modern turbofan engines

0.5.1 New acoustic sources caused by azimuthal flow distortion

In modern aero engines, the nacelle is designed so that the flow is uniform during straight
and level cruise flights (with a low angle of incidence) to maximize engine efficiency. However,
during take off, the plane is under high incidence, which means that the engine axis and
the external flow are not aligned. Consequently, the flow that enters the engine is no longer
axisymmetric [7], as illustrated in Figure 3. There is an azimuthal heterogeneity of the flow.
The air inlet reduces this inhomogeneity, and the distortion levels decrease sharply. Therefore,
this distortion can usually be considered negligible almost everywhere for long air inlets, and
the interaction of this distortion with the rotating fan can be neglected. However, the air-inlet
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length tends to be shortened for new engine geometries, and part of this effect is lost. Typically
for UHBR engines, strong azimuthal distortions are expected in the most significant part of
the air inlet [8]. Therefore, for UHBR engines, the impact of distortion on source generation is
anticipated to increase.

Figure 3 – An engine inlet with an incoming flow of incidence 𝛼.

Figure 4 provides an example of an angular mode spectra of the fan sources for such an
engine. A mode distribution at the second BPF for an UHBR engine with twenty-two fan blades
and thirty-four stator vanes is represented. In this figure, the blue modes correspond to the case
without azimuthal flow distortion, while the modes that emerge when azimuthal flow distortion
is present are shown in red. These modes will then propagate in the intake before radiating
outside the nacelle. In the intake, the duct plays a high-pass filter role on the frequency. This
means that some of the modes generated by the fan naturally vanish inside the duct and will
only weakly contribute to the radiated sound field [9]. For the sideline and cutback certification
points, the rotor-locked mode tends to be close to cut-off. As a consequence, some of the new
modes created by the distortion-rotor interaction mechanism can be cut-on. As for the approach
certification point, these modes should be cut-off.

0.5.2 On the increased importance of capturing modal transitions

Another consequence of shortening the engine intake in HBR and UHBR configurations, is
that some modes are evanescent on only a small distance. In this context, the modes that are only
weakly cut-off (cut-off but close to the cut-off limit) can impact the radiated acoustic field, and
they need to be accounted for in the predictions [10]. Note that the modes are either cut-on or
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Figure 4 – Example of the azimuthal mode distribution at BPF2, with the cut-off region associated
with each certification point.

cut-off for a constant duct with uniform flow. However, in real geometries, the situation is more
complex because the geometry varies. Because of this variation, some cut-off modes become
cut-on and vice-versa. The evolution of these modes is more difficult to predict since transitions
are highly sensitive to geometry or flow changes and are generally associated with important
reflections inside the duct [11, 12, 13] that can even cause amplification phenomena [14, 15, 16,
17] or blade vibration instabilities [18, 19]. It is worth noting that for modes that encounter a
transition, models used for predicting the sound radiated from an engine can struggle to predict
the directivity pattern accurately [20].

One of the focuses of this work is on these transition phenomena, as their contribution to the
overall radiated sound is expected to become more important. Because, at first, the distortion-
rotor interaction will generate modes close to transition during the take-off. In addition, the
appearance of Tyler & Sofrin neighbouring modes in the presence of distortion makes more
likely the appearance of modes close to their cut-off frequency (see Figure 4).

0.5.3 Azimuthal diffusion caused by propagation in a disorted flow

It has been mentioned that the flow distortion can significantly impact the acoustic sources,
with the appearance of new modes generated in the presence of distortion [21]. Moreover, it also
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has a major impact on the propagation with a strong modification of the acoustic field inside the
intake [22, 23].

Furthermore, the shortening of the air inlet reduces the available space within the duct where
acoustic treatment can be applied [24]. Consequently, acoustic liners must now be applied in
sections of the intake characterized by high distortion levels. Hence, it becomes imperative to
model the interaction between the flow distortion and the liner.

Finally, it is critical to incorporate radiation calculations for short air inlets due to the
increased occurrence of modes near transition or weakly cut-off. For such calculations, distortion
must be considered, as it significantly affects the acoustic radiation [25].

0.6 Scope and contributions of the thesis

The main focus of this thesis is to address the challenges in modelling acoustic propagation
and radiation in modern turbofan engines, with a specific emphasis on the air inlet of UHBR
designs. By considering the effects of mode transition phenomena, distortion caused by an
angle of incidence, and the reflection and attenuation caused by liners, the aim is to develop
fast and accurate models that can capture the propagation and radiation of acoustic waves in
these engines. The need for improvements in the modelling and physical comprehension can be
declined into three objectives:

— Investigating the impact of multiple acoustic transitions governed by the geometry.

— Evaluating and addressing the limitations of performing only in-duct calculations.

— Examining the consequences of flow distortion on the acoustic field and incorporating
these into the models.

Through these analyses, this thesis aims to provide insights, into the influence of modern
turbofan engine geometries on fan noise propagation and to give simplified models that enhance
its understanding.

0.7 Outline

In the first chapter, the fundamental equations of aero-acoustics are introduced, along with an
examination of the models currently used. Following this, the main chapter of the thesis delves
into the presentation of the full admittance multimodal method. Once this work is established,
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the subsequent chapters are dedicated to addressing modal transitions, radiation from the intake
and the impact of azimuthal flow distortion on the propagation.

Chapter 1 – Acoustic propagation in turbofan intakes

Chapter 1 establishes the theoretical foundation for acoustic propagation within turbofan in-
takes and introduces the notations employed throughout this thesis. In Section 1.1, the governing
equations of acoustic propagation within a turbofan intake are presented. These equations are
derived, starting from the Navier-Stokes equations, through simplifications that eventually yield
the Goldstein propagation equation. Section 1.2 provides an overview of the numerical methods
used in aero-acoustics for solving the previously discussed equations. Advancing from simpler to
more detailed models, Section 1.3 presents semi-analytical methods used in aero-acoustics. First,
it presents the analytical modes propagating in ducts characterized by constant cross-sections
and homogeneous flows. Then, it explores more elaborate mode representations that consider
non-homogeneous flows within ducts of constant cross-section. Following this, models based
on the WKB ansatz capable of computing the modal amplitude evolution in slowly varying ge-
ometries are presented. Finally, multimodal methods are introduced, enabling the consideration
of interaction between modes but in cases without flow or with constant flow only.

Chapter 2 – General multimodal method for flow and acoustic calculation

The main objective of Chapter 2 is to present the general multimodal method developed
in the thesis. This involves developing a method that accurately computes the mean flow at
a low computational cost and then computing the acoustic propagation with this base flow.
In Section 2.1, we introduce a multimodal method that computes the acoustic variables for
an already-known base flow. Outside of the extension of the initial multimodal method to
potential heterogeneous flow, two improvements are given by the thesis. The first one consists
of rewriting the Magnus–Möbius scheme to avoid conditioning issues generally observed when
using polynomial bases. The other one is the introduction of a formulation to deal with liner
discontinuities. Next, in Section 2.2, we modify this method to perform flow calculations. This
modification involves using the multimodal method at a zero frequency without convective effects
and rewriting the boundary conditions. Validations are then performed for in-duct calculations in
Section 2.3 to ensure the method’s accuracy. This validation confirms the ability of the method
to predict the flow and acoustic fields accurately.

This chapter is partly based on a paper submitted to a peer-reviewed journal [26].
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Chapter 3 – Formulation with a multiple-scale flow and the study of modal transition

Chapter 3 aims to address the challenges posed by transition phenomena as well as to
explore their effects on in-duct propagation. The impact of modal scattering near these transition
phenomena is also investigated. To tackle this problem, in the case of slowly varying geometries,
we present a modified multimodal method that uses a multiple-scale flow in Section 3.1. This
development includes the rewriting of the equations to account for the new flow. It allows
to separate the mode propagation from scattering phenomena. The validity of this method is
assessed on various academic test cases and the model is shown to behave well near transitions
phenomena. The method is then specifically used to study double transition phenomena in
Section 3.2. An improved model formulation based on the WKB ansatz that does not incorporate
scattering phenomena, is also presented to further validate the model. This study gives us
insights into phenomena such as tunnelling and trapped modes. Additionally, we investigate the
impact of neglecting the scattering, an assumption generally used for single-mode calculations.
This chapter is constructed using two peer-reviewed publications: one where the multimodal
formulation with a multiple-scale flow is presented [27] and the other where double transition
phenomena are investigated [28].

Chapter 4 – Formulation with multiple ducts and free-field acoustic radiation

The main objective of Chapter 4 is to develop a multimodal method that allows the compu-
tation of the radiated sound from an intake. In Section 4.1, the general multimodal method is
modified to perform radiation calculations. This modification involves considering an isolated
duct surrounded by a notational one with a larger radius and a perfectly matched layer on its outer
wall. This layer simulates an infinite domain by damping the waves that propagate outwards.
Validations are performed in Section 4.2 to assess the method’s accuracy. This confirm that the
method can be used to predict the external flow and the radiated field accurately. Finally, we
conduct a parametric study to analyse acoustic parameters’ impact on the radiated field and to
further validate the method.

This chapter is constructed using a conference publication [29].

Chapter 5 – Three-dimensional formulation: the impact of flow distortion

Chapter 5 aims to investigate the influence of azimuthal flow distortion caused by an angle
of incidence and its integration into the developed multimodal method. In Section 5.1, we begin
by analyzing the nature and characteristics of the flow distortion. Based on these findings, we
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propose modifying the existing multimodal method to account for the flow distortion effectively
in Section 5.2. This involves using multiple Fourier components in the basis and modifying the
flow boundary conditions. Next, in Section 5.3, we validate the modified method by examining
its performance for both flow and acoustic computations. This validation process helps us to
better understand the flow distortion’s impact on the acoustic field. Finally, in Section 5.4, we
begin by analyzing the influence of a liner on the acoustic field when distortion is present. Then,
we examine the impact of reducing the length of the intake on both in-duct propagation and
free-field radiation.

The first part of this chapter is based on a conference publication [30] where the impact of
the distortion on in-duct computations is studied.

Chapter 6 – Conclusion

The conclusions of this thesis are given in Chapter 6. This chapter also includes proposals
of future work.

0.8 Chronological sequence

This thesis has been organised for clarity but does not follow the chronological order. Initially,
the research was dedicated to the study of flow distortion, with significant efforts directed
towards creating a WKB model that could effectively compute acoustic propagation in such a
flow. However, the initial model struggled to accurately capture the main propagation effects
in distorted flows because of the strong hypothesis used to derive the analytical solution. This
prompted a shift in the study of transition phenomena. Then, a new WKB model was proposed
to investigate double transitions, demonstrating promising results. Nevertheless, discrepancies
between this model and numerical computations persisted. To better understand the model’s
limitations, an admittance multimodal method with a multiple scale flow was introduced. This
method enabled the separation of mode propagation from modal scattering phenomena and
provided favourable results. Nonetheless, it was observed that its accuracy was poor at high
velocities and frequencies. Further work was conducted to explore the potential applicability
of the admittance multimodal to perform acoustic calculation for arbitrary potential flows.
These investigations demonstrated good performances, but the computational demands for flow
calculations remained high compared to the acoustic calculation. Subsequently, some tests
showed that the method could be adapted to perform also the flow calculations. This was a
significant shift in the thesis. A complete multimodal method became available, and effective
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in studying in-duct computations. The method then continued to evolve, addressing free-field
computations, liner discontinuities, and flow distortion calculations.
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Chapter 1

ACOUSTIC PROPAGATION IN TURBOFAN

INTAKES

This chapter delves into the fundamental aspects of acoustic propagation within turbofan
intakes. We begin by examining in Section 1.1 the essential governing equations that form
the foundation for understanding how acoustics interact with fluid dynamics. Starting with
the conservation laws in fluid dynamics, we specifically present the Navier-Stokes equations in
Section 1.1.1. From there, we explore how simplifications of these equations lead to the definition
of the Euler equations. These equations are commonly employed in acoustic propagation, as
discussed in Section 1.1.2. In this section, we also introduce the concept of linearized Euler
equations, built on the assumption that acoustic waves are minor perturbations compared to
the mean flow. Additionally, as we address aero-engine intakes, the Goldstein propagation
equation is presented in Section 1.1.3. This section concludes by introducing duct acoustic
boundary conditions (Section 1.1.4) and the conservation equation related to acoustic energy
(Section 1.1.5).

Moving forward, we explore some numerical techniques employed to solve aeroacoustic
equations in Section 1.2. We look into common methods used to tackle the Helmholtz equation
in Section 1.2.1, as well as the Goldstein propagation equation in Section 1.2.2. Additionally,
we provide a brief overview of methods used to solve the non-linearized and linearized Euler
equations in Section 1.2.3.

Finally, we present in Section 1.3 semi-analytical methods that offer a computationally
efficient way of solving the propagation problem when restricting to in-duct propagation. They
are given by increasing complexity. At first, the case where the engine intake is modelled as a
constant duct is introduced. This case with uniform flow is detailed in Section 1.3.1 and allows
us to introduce the concept of modes and transitions. The extension to non-uniform flows,
with models based on eigenvalues analyses, is presented in Section 1.3.2. Then, the geometry
is allowed to vary slowly, and we present multiple-scale models in Section 1.3.3, where the
propagation of a single mode whose amplitude and axial wave number vary is solved. Lastly, we
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present in Section 1.3.4 methods where the propagation of multiple modes is solved along with
their interactions.

1.1 Governing equations

1.1.1 Conservation laws in fluid dynamics

Aeroacoustics involves the study of sound generated by a flow and is described by the equa-
tions of fluid dynamics. When the fluid is treated as a continuum, we can apply the conservation
laws of physics to an infinitesimal volume element fixed in space and time. Solving these con-
servation equations typically requires calculating how certain flow properties change within that
element. Specifically, when considering properties such as density (�̃�), momentum (�̃�ṽ), and
total energy (�̃�𝑒), we arrive to the Navier-Stokes equations in their differential form:

— the mass conservation law:
𝜕�̃�

𝜕𝑡
+ ∇ · ( �̃�ṽ) = 0, (1.1)

— the momentum conservation law:

𝜕 ( �̃�ṽ)
𝜕𝑡

+ ∇ · ( �̃�ṽ ⊗ ṽ) = −∇𝑝 + ∇ · 𝜏 + �̃�f̃, (1.2)

— the energy conservation law:

𝜕 ( �̃�𝑒)
𝜕𝑡

+ ∇ · ( �̃�𝑒ṽ) = ∇ · (𝜏 · ṽ − 𝑝ṽ + q̃) + �̃�f̃ · ṽ. (1.3)

In these equations, ṽ represents the Eulerian velocity, 𝜏 the viscous stress tensor, 𝑝 the pressure,
f̃ a force density and q̃ the heat flux, ∇ is the nabla operator and ⊗ the outer product. To complete
the system, it is necessary to describe 𝑝, 𝜏, and q̃ based on assumptions about the considered
fluid.

First, we focus on the way to find 𝑝. We start by breaking down 𝑒 into two components: the
internal energy per unit mass 𝑒𝑖 and the kinetic energy. This gives:

𝑒 = 𝑒𝑖 +
∥ṽ∥2

2
.

Next, we introduce the system’s entropy 𝑠, which depends on the internal energy and density.
These two variables are related by the fundamental thermodynamic relation, 𝑇𝑑𝑠 = 𝑑𝑒𝑖 + 𝑝𝑑�̃�−1
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with 𝑇 the temperature, assuming reversibility of the process. When neglecting heat conduction
and viscosity, the flow becomes isentropic, implying the conservation of energy law taking the
form:

𝜕𝑠

𝜕𝑡
+ ṽ · ∇𝑠 = 0. (1.4)

Then, we can express 𝑠 as a function of two other variables, which allow to write �̃� = �̃�(𝑝, 𝑠).
Consequently, we have:

𝑑�̃� =
1
𝑐2 𝑑𝑝 +

(
𝜕�̃�

𝜕𝑠

)
𝑝

𝑑𝑠, (1.5)

where:

𝑐 =

√︄(
𝜕𝑝

𝜕�̃�

)
𝑠

, (1.6)

represents the speed of sound. If we consider in addition a homentropic perfect gas (homogeneous
flow and entropy uniform) we have access to the condition on 𝑝 we wanted to close the previous
equations:

𝑝 = 𝐾�̃�𝛾, 𝑐2 =
𝛾𝑝

�̃�
, (1.7)

where 𝛾 is the ratio of specific heats and 𝐾 is a constant [31].

Using Navier-Stokes equations directly for acoustic computations offers several advantages.
It can represent the complex fluid dynamics interactions contributing to both sound generation
and sound propagation. However, solving these equations can be particularly complex and costly,
and it is interesting to introduce some simplifications when the focus is on acoustic propagation
only.

1.1.2 Euler equations

For acoustic propagation, is it reasonable to make the hypothesis that the viscosity and heat
conduction can be neglected. Then, Navier-Stokes equations can be simplified into the Euler
equation [32]. Here, we will also assume that the external force density is equal to zero, which is
a resealable hypothesis in the inlet of a turbofan when only the propagation is considered. These
assumptions give the Euler equations:

𝜕�̃�

𝜕𝑡
+ ∇ · ( �̃�ṽ) = 0,

𝜕 ( �̃�ṽ)
𝜕𝑡

+ ∇ · ( �̃�ṽ ⊗ ṽ) = −∇𝑝, (1.8)
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𝜕𝑠

𝜕𝑡
+ ṽ · ∇𝑠 = 0.

These equations can be further simplified if the acoustic perturbations are assumed to be
small compared to the mean flow variables. Any flow variables �̃� can then be decomposed as
�̃� = 𝐴 + 𝑎, with 𝑎 associated with a perturbation, 𝐴 associated with a mean flow variable and
𝑎 ≪ 𝐴 for scalar variables and |a| ≪ |A| for vector variables. The mean flow variables satisfy
the steady Euler equations when there is no perturbations, which write:

∇ · (𝐷V) = 0,

𝐷 (V · ∇)V = −∇𝑃,
V · ∇𝑆 = 0.

(1.9)

Nevertheless, when the perturbations are accounted for, the Euler equations should still
be respected. When injecting the perturbed variables in the previous equations and neglecting
second and third-order terms, the Linearized Euler Equations (LEE) are obtained:

𝜕𝜌

𝜕𝑡
+ ∇ · (𝜌V + 𝐷v) = 0,

𝐷 ( 𝜕
𝜕𝑡

+ V · ∇)v + 𝐷 (v · ∇)V + 𝜌(V · ∇)V = −∇𝑝,
𝜕𝑠

𝜕𝑡
+ V · ∇𝑠 + v · ∇𝑆 = 0.

(1.10)

With these two sets of equations, we distinguish the mean flow and the perturbation resolution,
and the mean flow is only seen as a medium through which sound can propagate. If the base
flow is known, this second set of equations is the only one to solve when only propagation is
accounted for. This simplification reduces the complexity of the problem by going from a non-
linear to a linear problem. However, these equations are only valid for small perturbations and
cannot capture non-linear effects. This makes them not applicable to scenarios where non-linear
phenomena play a significant role, as would be the case for shock waves [33].

1.1.3 Irrotational formulation

It is useful to split the perturbation velocity v into a rotational v𝑅 and an irrotational part ∇𝜙
such that v = v𝑅 +∇𝜙, with 𝜙 the velocity potential and ∇ · v𝑅 = 0 [34]. Then, by considering an
isentropic flow and by imposing that the acoustic pressure only depends on the acoustic potential
𝑝 = −𝐷 (𝜕/𝜕𝑡 + V · ∇)𝜙 (second equation of the LEE), we can dissociate the hydrodynamic
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fluctuations from the acoustic ones, which gives [9]:

∇ · (𝐷∇𝜙) − 𝐷
(
𝜕

𝜕𝑡
+ V · ∇

) [
1
𝐶2

(
𝜕

𝜕𝑡
+ V · ∇

)
𝜙

]
= −∇ · (𝐷v𝑅),(

𝜕

𝜕𝑡
+ V · ∇

)
v𝑅 + (v𝑅 · ∇)V = −𝜉 × ∇𝜙,

(1.11)

where 𝜉 = ∇ × V is the mean vorticity.

The potential part of the velocity follows a wave equation, whereas the rotational part follows
a transport equation. Therefore, the first part can be associated with acoustic propagation, when
the second can be associated with hydrodynamic convection. The two equations are coupled by
the mean vorticity 𝜉.

The intake of an aero-engine is generally designed such that the flow is as uniform as
possible to maximize engine efficency and no flow separations are to be expected. Therefore, it
is reasonable to assume that the steady flow can be approximated by a potential flow [7]. When
the flow is considered potential, the mean vorticity is equal to zero. Therefore, a clear separation
between the two equations is obtained and the acoustic problem reduces to the resolution of the
following equation for the acoustic potential:

∇ · (𝐷∇𝜙) − 𝐷
(
𝜕

𝜕𝑡
+ V · ∇

) [
1
𝐶2

(
𝜕

𝜕𝑡
+ V · ∇

)
𝜙

]
= 0. (1.12)

This equation can also be obtained in the frequency domain by rewriting each variable in
terms of a mean part and a complex perturbated part as: �̃� = 𝐴 + Re(𝑎 e𝑖𝜔𝑡), with 𝜔 the charac-
teristic pulsation of the source (the same variable name 𝑎 as used for time-depending variable is
used again in order not to introduce unecessary complex notations). The Equation (1.12) then
becomes the Goldstein propagation equation:

∇ · (𝐷∇𝜙) − 𝐷 (𝑖𝜔 + V · ∇)
[

1
𝐶2 (𝑖𝜔 + V · ∇)𝜙

]
= 0. (1.13)

This representation allows to separate the acoustic fluctuations related to the potential part,
which propagate, from other hydrodynamic perturbations that are convected with the mean flow.
When this is done, the set of equations on the perturbations variables simplifies to a single
equation on the acoustic potential. Note that even if this equation represents well the acoustic
propagation in the intake of the engine, its domain of applicability is limited. For example,
the mean vorticity cannot be neglected for the jet, with the presence of a shear layer, or in the
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interstage region, with the swirling flow behind the rotating fan.
When the medium is at rest, this equation reduces to the Helmholtz equation:

Δ𝜙 + 𝜔
2

𝐶2 𝜙 = 0, (1.14)

where Δ is the Laplacian operator.

1.1.4 Acoustic boundary condition

The previous equations are not confined solely to duct acoustics, and they hold validity
for broader problem domains. However, to provide a precise distinction for duct acoustics,
it becomes essential to introduce the pertinent boundary conditions. When the sound waves
propagate within the duct without being absorbed or attenuated, the boundary equation is
v · n = 0, where n represents the normal vector to the wall. Walls with these properties are
referred to as "hard walled".

However, when there is a wall treatment that is locally reacting, the duct walls are specified
by a complex impedance 𝑍 . These walls are referred to as "lined walls" in this manuscript. At a
point along the wall with zero mean flow, this impedance links the acoustic pressure and velocity
such that:

𝑝 = 𝑍 (v · n).

However, for models in which the boundary layer along the wall has a vanishing thickness
and the mean flow does not tend to zero (as in solvers for Euler or Goldstein’s equations), an
alternative boundary condition is required. This condition must be valid for a point near the
wall but still within the mean flow. In the case of arbitrary mean flow, Myers [35] derived the
following expression:

i𝜔(v · n) =
[

D
D𝑡

− n · (n · ∇V)
] (

1
𝑍
𝑝

)
, (1.15)

with D/D𝑡 = i𝜔 + V · ∇ the convective derivative. Note that when the impedance is infinite
(𝑍 = ∞), the previous equation simplifies to the hard walled boundary condition v · n = 0.

1.1.5 Acoustic power

With the introduction of liners, it becomes important to define the acoustic power. Indeed,
acoustic power remains constant in the context of a homentropic and irrotational flow with hard
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walled boundary conditions, while it is attenuated in the presence of a lined wall. Consequently,
it facilitates the comprehension of liner’s impact on the acoustics.

This notion has first been derived by starting from the linearized equations [36] but can also
be directly defined in a general context using the Euler equations for a homentropic flow [37]. At
first, an exact equation governing the transport of energy associated with disturbances is derived
and writes:

𝜕�̃�

𝜕𝑡
+ ∇ · Ĩ = −𝐷𝜈, (1.16)

where �̃� is the perturbation density of energy, Ĩ is the perturbation energy flux, and 𝐷𝜈 is the
perturbation dissipation. With the same linearized decomposition as the one used in Section 1.1.2,
up to the second order, these terms are written:

�̃� =
𝐶2𝜌2

2𝐷
+ 𝐷v · v

2
+ 𝜌V · v,

Ĩ = (𝐷v + 𝜌V)
(
𝐶2𝜌

𝐷
+ v · V

)
,

𝐷𝜈 = −𝐷V · (𝝎𝑟 × v) − 𝜌v · (𝝃 × V) −
(
v + 𝜌

𝐷
V
)
·
(
f + 𝜌

𝐷
F
)
,

(1.17)

where 𝝎𝑟 = ∇ × v𝑅.
In the case of a homentropic and irrotational flow, the dissipation term vanishes, and the

energy is conserved. In that case, the time-averaged value of the energy flux writes (see also [38]):

I =
1
2

Re
[( 𝑝
𝐷

+ V · ∇𝜙
)
(𝐷∇𝜙 + 𝜌 V)∗

]
, (1.18)

in which ∗ denotes the complex conjugate. We define the acoustic power for a given transverse
section 𝑆 as [36]:

P =

∫
𝑆

I · n d𝑆, (1.19)

where n represents the normal to the surface. The acoustic power quantifies the energy carried
by sound waves and its variation allows us to quantify the effect of an acoustic treatment. Finally,
as it must be conserved for a hard walled duct, evaluating this value at different positions permits
the assessment of the validity of an analytical or numerical method.
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1.2 Numerical propagation methods

The fundamental theories described above provide diverse strategies to represent acoustic
propagation inside a duct. The most direct approach involves solving the Navier-Stokes Equa-
tions (1.1)–(1.3), which govern both fluid dynamics and acoustics. However, the numerical
resolution of these equations can be computationally demanding.

An alternative method, known as the hybrid approach, is employed when source generation
and propagation can be decoupled, assuming a limited spatial extent of the source (Lighthill’s
analogy [39]). In such cases, the Euler equations (1.8) or the LEE (1.10) are typically solved.
These equations can be addressed using numerical or analytical techniques, given certain as-
sumptions. In the present study, we adopt this hybrid approach. In this case, the problem can be
splitted into three components:

1. A source model defining the modal composition of the sound field coming from the fan
module.

2. A propagation model predicting the propagation in the intake that accounts for liner
absorption.

3. A radiation model radiating acoustic disturbances to the far field.

When using an hybrid approach, various numerical method can be used. Most of the time,
they are adapted to solve one type of equations. The methods are therefore presented by increasing
the complexity of the solved equations. The following list provides an overview of some existing
methodology but is not meant to be exhaustive.

1.2.1 Helmholtz solver

When the medium is at rest, the Helmholtz equation governs sound propagation. In this case,
the three-dimensional (3D) problem, represented by volume integral equation, can be simplified
as a two-dimensional (2D) problem, into a surface integral equation, thus reducing the problem’s
dimensionality. This idea is the basis of the Boundary Element Method (BEM) [40, 41], which
stands as the method of choice for acoustic problems in the absence of flow [42].

1.2.2 Goldstein propagation solver

When there is a need to incorporate a flow, it is first of interest to limit to irrotational
flows. In this case the equation to solve is the Goldstein propagation equation (1.13). The
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potential nature of the flow allows to reduce the complexity of the problem by modelling it by a
single scalar equation. In this context, the Finite Element Method (FEM) has found substantial
application in intake propagation problems (see for example [43, 4, 24, 8]), where the Goldstein
propagation equation describes well the acoustic propagation. Based on a weak formulation
of Equations (1.13), such methods solve the acoustic propagation equation by discretizing the
complex domain into smaller sub-domains. The equation’s solution on each sub-domain is
approximated using simple basis functions. Aggregating the solutions across all sub-domains
provides an approximation of the global solution. For boundary conditions involving liners,
Eversman [44] has reformulated the weak form of Equation (1.15) to facilitate handling of
impedance step changes.

1.2.3 Linearized Euler or Euler solvers

In regions where the potential flow hypothesis does not hold, it is necessary to account for
the coupling between the hydrodynamic and acoustic modes and to solve the Euler equations.
When it is the case, no method appears to stand apart. Outside from problems associated with
instabilities [45], these methods are generally time-domain. Therefore, these methods focus
on having a numerically precise solution over extended time periods. They use high-order
spatial discretization schemes and time integration strategies that ensure accuracy over extended
temporal domains [46, 47, 48]. Some of the main existing methods are Finite Differences
Methods (FDMs), Finite Volume Methods (FVMs) and once again FEMs. More details on this
kind of methods can be found in [24].

1.3 Semi-analytical propagation methods

In many instances, aeroengine geometries undergo relatively minor variations along the axial
direction, allowing for the derivation of simplified formulations. Although these formulations
offer less precise acoustic representations, they are computationally much less expensive com-
pared to the aforementioned methods and are useful tools for optimization processes (see, for
example [49, 50]). Here, we present some of these models, gradually increasing in complexity.
Initially, the geometry is approximated as an infinite cylindrical duct with a constant and axial
cross-sectional flow. In this scenario, an analytical solution for the acoustic problem is obtained,
enabling to explain the concept of transverse acoustic modes.

Subsequently, we extend the notion of transverse modes to cases where analytical solutions
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are not easily available. To achieve this, we introduce eigenvalue methods. However, restricting
the geometry to a cylindrical duct is a limiting approximation. Hence, we explore the potential
to introduce geometric variations. When these variations occur gradually, the application of
perturbation methods becomes attractive. Multiple-Scales (MS) methods exemplify this, where
the transverse modes found earlier are considered to evolve in accordance with duct variations.
Both amplitude and wavenumbers are treated as slowly varying functions.

It is important to note that these methods do not consider any interaction between the modes.
While this approximation holds promise for low-frequency cases, its accuracy decreases for
high-frequencies. In such instances, methods that allow multiple modes to propagate within the
duct become valuable. These methods are referred to as multimodal techniques. The underlying
concept involves computing both how the mode proprieties evolve due to the duct variations and
how the modes interact while they propagate.

In this section, all the parameters are scaled to be dimensionless: the density is normalized
by a reference density 𝜌∞, velocities by a reference sound speed 𝑐∞, spatial dimensions by
the typical duct radius 𝑅∞, velocity potential by 𝑅∞𝑐∞, and pressure by 𝜌∞𝑐2

∞. We consider a
cylindrical coordinate system (𝑥, 𝑟, 𝜃), with the associated basis vectors (e𝑥 , e𝑟 , e𝜃). The hub and
tip radii of the annular cross section are written 𝑅1 and 𝑅2.

1.3.1 Analytical solution in a constant infinite duct with a uniform axial
flow

The analysis of sound propagation within a duct can be significantly facilitated by making
certain assumptions on its geometry and flow proprieties. Specifically, assuming a circular or
annular and infinite duct, represented in Figure 1.1, with constant hub and tip radii, along with
axial and uniform cross-flow V = (𝑈, 0, 0), facilitates the analysis. In that case, an analytical
solution of the modes that can propagate can be found analytically [36].

1.3.1.1 Solving the eigenmodes

In the current case, the equation to solve is the Goldstein propagation Equation (1.13). Using
the fact that the flow is uniform, this equation simplifies to the convected Helmholtz equation:

−𝑘2𝜙 + 2i𝑘𝑀
𝜕𝜙

𝜕𝑥
+ 𝑀2 𝜕

2𝜙

𝜕𝑥2 = Δ𝜙, (1.20)
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𝑈

𝜃

𝑅1
𝑅2

𝑥

𝑧

𝑦

Figure 1.1 – Representation of the engine inlet.

where 𝑘 = 𝜔/𝐶 and 𝑀 = 𝑈/𝐶. To solve the Equation (1.20), a separation of variables in
the cylindrical coordinate system (𝑥, 𝑟, 𝜃) is introduced: 𝜙 = 𝑅(𝑟)Θ(𝜃)𝑋 (𝑥). This gives the
following equations:

1
𝑋

(
𝑘2𝑋 − 2𝑖𝑘𝑀

d𝑋
d𝑥

− (𝑀2 − 1)d2𝑋

d𝑥2

)
= 𝛼2, (1.21a)

1
𝑅
𝑟

d
d𝑟

(
𝑟

d𝑅
d𝑟

)
+ 𝛼2𝑟2 = 𝑚2, (1.21b)

1
Θ

d2Θ

d𝜃2 = −𝑚2, (1.21c)

where 𝛼2 and 𝑚2 are constants. As the geometry imposes a 2𝜋-periodicity, the only way for
the previous equations to be valid is for 𝑚 to be an integer. The solutions of the previous set of
equations are written 𝑁𝑚 (J𝑚 (𝛼𝑚𝑟) + Γ𝑚Y𝑚 (𝛼𝑚𝑟)) e𝑖(−𝑚𝜃−𝜇𝑥) , where J𝑚 and Y𝑚 are the Bessel
functions of the first and second kind of order 𝑚, 𝑁𝑚 is the mode amplitude and 𝛼𝑚 is the radial
wavenumber. The axial wavenumber 𝜇 is determined from the dispersion relation:

(𝑘 − 𝜇𝑀)2 = 𝛼2 + 𝜇2. (1.22)

The possible values of 𝛼 are finally obtained using the boundary conditions. A loss of generality
is made here by imposing hard walled boundary conditions, which impose that the acoustic
radial velocity equals zero at the wall: 

𝜕𝜙

𝜕𝑟

����
𝑅1

= 0

𝜕𝜙

𝜕𝑟

����
𝑅2

= 0.

23



Chapter 1 – Acoustic propagation in turbofan intakes

For 𝑁𝑚 ≠ 0, it gives:

Γ𝑚 = −
J′𝑚 (𝛼𝑚𝑛𝑅2)
Y′
𝑚 (𝛼𝑚𝑛𝑅2)

= −
J′𝑚 (𝛼𝑚𝑛𝑅1)
Y′
𝑚 (𝛼𝑚𝑛𝑅1)

. (1.23)

This equation has an infinite number of solutions written 𝛼𝑚𝑛, with 𝑛 an integer. As they
are real, they can be sorted such as 𝛼𝑚𝑛 will corresponds to the 𝑛𝑡ℎ zero of the equation
J′𝑚 (𝛼𝑚𝑛𝑅2)Y′

𝑚 (𝛼𝑚𝑛𝑅1) − Y′
𝑚 (𝛼𝑚𝑛𝑅2)J′𝑚 (𝛼𝑚𝑛𝑅1) = 0, for Bessel functions of order 𝑚.

An interesting property of modes is that they form an orthogonal basis and each variable of
this basis is a solution of the linearized acoustic equations [9]. As a result, for a given frequency,
the acoustic potential inside the duct can be written as the sum of all the modes found above:

𝜙(𝑟, 𝜃, 𝑥, 𝑡) =
∑︁
𝑚∈Z

∑︁
𝑛∈N

𝜓𝑚𝑛 (𝑟) (𝐴𝑚𝑛 e𝑖(−𝑚𝜃−𝜇+𝑥) + 𝐵𝑚𝑛 e𝑖(−𝑚𝜃−𝜇−𝑥)), (1.24)

with 𝜓𝑚𝑛 (𝑟) = 𝑁𝑚
[
J𝑚 (𝛼𝑚,𝑛𝑟) + Γ𝑚𝑛Y𝑚 (𝛼𝑚,𝑛𝑟)

]
, 𝜇± = (−𝑘𝑀 ±

√︁
𝑘2 − (1 − 𝑀2)𝛼2)/(1 − 𝑀2)

the two solutions of the dispersion relation (1.22) and (𝐴𝑚𝑛, 𝐵𝑚𝑛) two constants defined by the
source.

Due to the formulation of the Θ function, the sound field for a given azimuthal mode 𝑚
presents 𝑚 angular lobes (periodicity of 2𝜋/𝑚). Regarding the radial direction, the fact that 𝛼𝑚𝑛
is the 𝑛𝑡ℎ zero on the real axis of the hard walled boundary condition means that 𝑛 lobes appear.
An acoustic mode (𝑚, 𝑛) = (5, 2) propagating in an axisymmetric duct is shown in Figure 1.2
over the transverse plane and over the duct walls to illustrate this. This figure shows that the
mode has five lobes in the azimuthal direction and two in the radial direction. It is important to
note that this mode can also be viewed as a helicoidal wave since it appears to be rolled along
the propagation axis when looking at a constant phase.

1.3.1.2 Focus on mode transition

Let us now focus on the two solutions of the dispersion relation (1.22):

𝜇± =
−𝑘𝑀 ±

√︁
𝑘2 − (1 − 𝑀2)𝛼2

1 − 𝑀2 . (1.25)

The wavenumber 𝑘 is imposed by the frequency and the radial wavenumber 𝛼 by the boundary
condition, so this relation gives the axial wavelength 𝜇. If the discriminant 4(𝑘2 −𝛼2 +𝛼2𝑀2) is
positive, the axial wavenumber 𝜇 is real, and the wave is propagative. Such modes are said to be
cut-on. On the contrary, when this term is negative, the wave becomes evanescent, and modes are
said to be cut-off. A transition corresponds to the case where this term is equal to zero. It can also
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Figure 1.2 – Example of an acoustic pressure field for a mode (𝑚, 𝑛) = (5, 2) : transverse slice
(left), outer duct wall (right).

be noted that this transition depends on the non-dimensionalized pulsation 𝑘 = 𝜔/𝐶 for a given
flow, geometry and mode. The acoustic waves go from purely evanescent to propagative when
the frequency increases. This means that the duct works as a high-pass filter on the frequency.
The transition also depends on the value of 𝛼. When the azimuthal wavenumber 𝑚 increases for
a given frequency, the acoustic waves go from purely propagative to evanescent. This means that
the duct works as a low-pass filter on 𝑚. Evaluating the frequency at which the transition occurs
allows for limiting the number of modes to calculate. In fact, evanescent ones will have little
influence on the acoustic field far from the source and can be ignored. This enables to truncate
the infinite basis in theory to a reduced mode basis of finite dimension, constituted by only the
cut-on modes. All the phenomena described here take place in the case of hard walled boundary
conditions. This concept breaks down in the case of a lined wall since the radial wavenumber 𝛼
becomes a complex number.

In order to illustrate these behaviours, the same acoustic mode (𝑚, 𝑛) = (5, 2), as shown in
Figure 1.2 is considered, but the frequency is decreased such that the mode becomes cut-off.
A cut at 𝜃 = 0 is shown in Figure 1.3. The exponential decrease for the cut-off mode is clearly
visible and low pressure values are obtained away from the source.

1.3.2 Semi-analytical methods in a constant duct with a non-uniform flow

1.3.2.1 Brief review

The previous model provides analytical solutions for duct modes under uniform flow con-
ditions, which helps to understand the acoustic structure in more complex duct and serve as a
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Figure 1.3 – Example of an acoustic pressure field shape, y-slice, for a mode (5, 2) with a cut-on
(left) and cut-off (right) behaviour.

basis for advanced modelling. However, real-world geometries often involve non-uniform flows
within the engine. Thus, an extension of the previous methodology is required to accommo-
date this complexity. These modes are associated with eigensolutions of a propagation equation
on a cross-sectional plane, thus the dimensionality has shifted from three dimensions to two
dimensions.

When assumptions about the shape of the mean flow are made, this problem can be solved
analytically and the mode can still be derived. This has been done for ducts with sheared
flows [51, 52] to understand hydrodynamic instability that may occur above a liner, and in cases
involving a distorted mean flow by assuming a simple cosine-shaped distortion and a thin annular
duct [53, 54].

If no assumptions, about the mean flow is made, the problem is rewritten as an eigen-
problem that needs to be solved numerically. Different methods are available, among them some
categories stand out: spectral methods [55, 56, 57] and finite-element methods [58, 59]. The
distinction between these methods comes from the selection of basis functions. Spectral methods
employ infinitely differentiable global functions as basis functions. Conversely, finite-element
methods partition the domain into smaller elements and define a trial function within each
element. As such, the trial functions adopt a local character.

1.3.2.2 Mathematical description of the problem

Here, all the variables are considered to be independent of the axial direction, and the mean
density and speed of sound are assumed constant. The base flow is taken parallel and of the form
V = (𝑈 (𝑟, 𝜃), 0, 0).
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As no hypothesis on the nature of the flow is made, it is necessary to fall back on the
linearized Euler equations (1.10). The acoustic field is written in terms of modal solutions by
assuming an expression of the form:

(𝑝, 𝑢, 𝑣, 𝑤) = (𝑝 𝑗 , 𝑢 𝑗 , 𝑣 𝑗 , 𝑤 𝑗 ) exp(−i𝜇 𝑗𝑥),

where the velocity vector (𝑢 𝑗 , 𝑣 𝑗 , 𝑤 𝑗 ) and the pressure 𝑝 𝑗 transverse modes are unknown func-
tions of the transverse coordinates. These modes represent the shape taken by these variables in
the transverse direction. The LEE can be written:

L(X𝑗 ) = 0, (1.26)

where X = (𝑝 𝑗 , 𝑢 𝑗 , 𝑣 𝑗 , 𝑤 𝑗 )𝑇 and:

L =

©«

i(𝑘 − 𝜇 𝑗𝑀) −i𝜇 𝑗
𝜕

𝜕𝑟
+ 1
𝑟

1
𝑟

𝜕

𝜕𝜃

−i𝜇 𝑗 i(𝑘 − 𝜇 𝑗𝑀) 𝜕𝑀

𝜕𝑟

1
𝑟

𝜕𝑀

𝜕𝜃
𝜕

𝜕𝑟
0 i(𝑘 − 𝜇 𝑗𝑀) 0

1
𝑟

𝜕

𝜕𝜃
0 0 i(𝑘 − 𝜇 𝑗𝑀)

ª®®®®®®®®®¬
. (1.27)

The liner boundary condition defined in Equation (1.15) becomes 𝑘𝑍𝑢 𝑗 = (𝑘 − 𝜇 𝑗𝑀)𝑝 𝑗 .
Solving the above linear problem for a known mean velocity profile and impedance involves

solving a dispersion relation. If certain hypotheses are made on the shape of the flow, this relation
can be solved analytically. However in most cases, this relation remains implicit, necessitating
numerical solution through the discretization of the problem.

1.3.3 Single mode propagation in slowly varying ducts

1.3.3.1 Brief review

The previous models give us insight into the shape that the acoustic can take over the
transverse plane. Yet, they are not able to account for the engine geometry variations.

New methodologies are needed to account for ducts with varying radii. If the acoustic
perturbations vary rapidly compared to the duct geometry and flow length scales, a leading-
order approximation of the exact solution to the propagation problem can be found using the
Wentzel–Kramers–Brillouin (WKB) method [60, 61] which is a special case of the multiple-
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scale methods. This approach has been applied by Nayfeh & Telionis [62] and Nayfeh et al. [63]
for modes propagating in lined ducts with slowly varying geometries of rectangular or circular
cross-sections. It has been afterward improved in the circular case by Rienstra, who found an
adiabatic invariant of the slowly varying mode in the case of an irrotational mean flow [64]. The
flow is given by a multiple-scale approach while the acoustic field is represented by a summation
of WKB modes, whose amplitudes vary slowly and are determined using a solvability condition.
This combined MS/WKB method has been extended to more complex flows and geometries,
for instance by taking into account swirling flows [65], arbitrary cross-sections [66], strongly
curved ducts [67] and sheared flows [68]. However, one of the drawbacks of this technique is
that it is only valid as long as there is no transition inside the duct. Where this happens, the
incident mode becomes partly transmitted and partly reflected, which is not accounted for in the
previous formulations. A composite solution that accounts for this behaviour and removes the
singularity has been proposed in the case where there is a single turning point [11, 69, 12, 13].
This solution, governed by Airy’s equation, is valid in the surrounding of the turning point and
matches the slowly varying modal solution far from it.

These models have the advantage of extending classical straight duct model to duct with
an axial variation of the geometry and their computational cost is the same as the previous
analytical models. In order to understand more precisely how this is possible, the application of
this methodology proposed by Rienstra, and its extension to the presence of a single transition,
for ducts of arbitrary cross-section [66] and for a potential flow is briefly presented here for hard
walled boundaries.

1.3.3.2 WKB solution for ducts of varying arbitrary cross-section

We begin by defining the slowly varying axial coordinate 𝑋 = 𝜖𝑥, where 𝜖 is a small
parameter. As the duct geometry is assumed to vary slowly, the hub and tip variation are written
𝑅1(𝑋, 𝜃) and 𝑅2(𝑋, 𝜃).

The objective is to find a formulation of the flow in the varying duct. The mean flow equations
are solved by assuming that the axial mean flow varies slowly with the axial coordinate 𝑋 . Noting
that 𝜕𝐴/𝜕𝑥 = 𝜖𝜕𝐴/𝜕𝑋 + 𝑂 (𝜖2) for any slowly varying variable 𝐴, a reasoning on orders of
magnitude then shows that the flow variables take the form:

V(𝑋, 𝑟, 𝜃; 𝜖) = 𝑈0(𝑋)e𝑥 + 𝜖V⊥(𝑋, 𝑟, 𝜃) +𝑂 (𝜖2),
[𝐷, 𝑃, 𝐶] (𝑋, 𝑟; 𝜖) = [𝐷0, 𝑃0, 𝐶0] (𝑋) +𝑂 (𝜖2),

(1.28)
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with V⊥ the transverse mean flow velocity. Injecting these expressions into Equation (1.9) gives:

1
2
𝑈2

0 + 1
𝛾 − 1

𝐷
𝛾−1
0 = 𝐸 +𝑂 (𝜖2),

𝑈0 =
𝐹

𝐷0𝑆
+𝑂 (𝜖2),

𝑃0 =
1
𝛾
𝐷
𝛾

0 +𝑂 (𝜖2),

𝐶0 = 𝐷
(𝛾−1)/2
0 +𝑂 (𝜖2),

(1.29)

where 𝐸 and 𝐹 are two constants (Bernoulli’s constant and cross-sectional mass flow, respec-
tively) and 𝑆 is the transverse cross-section area. Solving numerically (e.g. with a Newton
algorithm) the leading-order of the density gives access all other mean flow variables [68].

For the acoustic field, if no modal transition is present inside the duct, and if the acoustic
wavelength is of the order of the duct diameter, then the WKB approximation yields a solution
of the form:

𝜙(𝑥, 𝑟, 𝜃; 𝜖) = Φ(𝑋, 𝑟, 𝜃; 𝜖) exp
(
−i𝜖−1

∫ 𝑋

𝜇(𝜉)𝑑𝜉
)
, (1.30)

where the axial wavenumber 𝜇 varies in the axial direction.

By assumingΦ(𝑋, 𝑟, 𝜃; 𝜖) = Φ0(𝑋, 𝑟, 𝜃)+𝜖Φ1(𝑋, 𝑟, 𝜃)+𝑂 (𝜖2) and gathering the𝑂 (1) terms
of the Goldstein propagation Equation (1.13), it gives at each axial location 𝑋 an eigenvalue
problem for Φ0 of the form:

−Δ⊥Φ0 = 𝛼2Φ0, n⊥ · ∇Φ0 = 0, (1.31)

where Δ⊥ is the transverse Laplacian operator. The vector n⊥ is the component of the vector
normal to the surface in the transverse cross-section and 𝛼 =

√︁
(𝑘0 − 𝜇𝑀0)2 − 𝜇2 is defined as

the radial wavenumber with 𝑘0 = 𝜔/𝐶0 the free-field wavenumber and 𝑀0 = 𝑈0/𝐶0 the axial
Mach number.

Let us consider the 𝑛𝑡ℎ eigenvalue 𝛼𝑛 and the associated eigenmode 𝜓𝑛 of this eigenproblem,
with 𝜓𝑛 normalized such that: ∬

𝑆

𝜓2
𝑛d𝑆 = 1. (1.32)

Then, we have Φ0 = 𝑁 (𝑋)𝜓𝑛 with 𝑁 a slowly varying modal amplitude. In the following, we
drop the 𝑛 subscript for concision. The amplitude 𝑁 is obtained by a development to the second
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order (𝑜(𝜖2)) of the perturbation equations (1.13) to get a solvability condition. It yields:(
𝑄0
𝑁

)2
=
𝜔𝜎𝐷0
𝐶0

, (1.33)

with 𝜎2 = 1 − (𝐶2
0 − 𝑈2

0)𝛼
2/𝜔2 and 𝑄0 a constant associated to the source amplitude. The

term 𝜎 is the reduced axial wavenumber and is linked to the axial wavenumber by the relation
𝜇 = 𝜔(𝐶0𝜎 −𝑈0)/(𝐶2

0 −𝑈2
0).

As a result, the acoustic field associated with a single mode 𝑛 is written:

𝜙 = 𝑄0

√︄
𝐶0

𝜔𝐷0𝜎
𝜓 exp

[
i
𝜖

∫
𝑋

𝜔𝑈0

𝐶2
0 −𝑈2

0
d𝑋

]
[
D exp

[
−i
𝜖

∫
𝑋

𝜔𝐶0𝜎

𝐶2
0 −𝑈2

0
d𝑋

]
+ U exp

[
i
𝜖

∫
𝑋

𝜔𝐶0𝜎

𝐶2
0 −𝑈2

0
d𝑋

] ]
,

(1.34)

where D stands for the modal amplitude associated with the mode propagating in one direction,
while U is used for the mode going in the opposite direction.

The acoustic fluctuations are represented with a summation of slowly varying modes for
ducts with an axial geometry variation. However, near modal transition, the axial wavenumber
does not vary slowly and this formulation cannot be used [11].

1.3.3.3 Solution in the presence of a transition

When there is a modal transition, the situation is more complex than in the constant case
scenario (Section 1.3.3.2) because a cut-off mode can become cut-on and vice-versa. The
evolution of these modes is more difficult to predict because the WKB formulation is not valid
in the vicinity of a turning point as the axial wavenumber does not vary slowly. Several methods
exist to model the transition phenomenon, and both a physical explanation and a mathematical
expression for modes undergoing such transitions have been proposed [11, 12, 13]. Ovenden
dealt with this issue by introducing a uniformly valid solution that can be used both in the
neighbourhood of the transition point (inner region of size |𝑋 − 𝑋𝑡 | = 𝑂 (𝜖2/3𝜔−2/3) 1 with 𝑋𝑡
the location of the transition) and in the region far upstream and far downstream from it (outer
region of size |𝑋 − 𝑋𝑡 | = 𝑂 (1)).

The uniformly valid solution derived by Ovenden, valid for an arbitrary cross-section, is

1. In the literature, the inner boundary layer thickness is generally defined as |𝑋 − 𝑋𝑡 | = 𝑂 (𝜖2/3), but we prefer
here to highlight the frequency scaling.
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1.3. Semi-analytical propagation methods

based on Airy functions (Ai,Bi) and writes [12]:

𝜙 = 𝑄0

√︄
𝐶0
𝜔𝐷0

𝜓

[
− 3

2𝜖𝜎3

∫ 𝑋

𝑋𝑡

𝜔𝐶0𝜎

𝐶2
0 −𝑈2

0
d𝑋

]1/6

[𝑎Ai(𝑠𝑡) + 𝑏 Bi(𝑠𝑡)]

exp

[
i
𝜖

∫ 𝑋

𝑋𝑡

𝜔𝑈0

𝐶2
0 −𝑈2

0
d𝑋

]
,

with 𝑠𝑡 =

(
3i
2𝜖

∫ 𝑋

𝑋𝑡

𝜔𝐶0𝜎

𝐶2
0 −𝑈2

0
d𝑋

)2/3

,

(1.35)

where𝜓 is the normalized transverse mode shape and 𝑎 and 𝑏 are two constants to be determined.
The coefficients 𝑎 and 𝑏 are obtained by matching the asymptotic form of the previous uniformly
valid formulation (1.35) and the slowly varying WKB solution (1.34) far upstream and far
downstream of the transition. For a cut-on/cut-off transition, it yields:

𝑎 = 2
√
𝜋ei𝜋/4, 𝑏 = 0, (1.36)

and for a cut-off/cut-on transition:

𝑎 = −
√
𝜋ei𝜋/4, 𝑏 =

√
𝜋e−i𝜋/4. (1.37)

This allows to predict the transmission and reflection near transitions and is therefore of great
use. In practice, in the context of total noise prediction, it could be argued that the interest of the
study of transition is limited since only a very small number of modes will encounter a transition.
However, in some cases, the study of these modes is of major interest since they are responsible
for important reflections inside the duct which can cause blade vibration instabilities [18, 19].
Moreover, when more than one transition is present, more complex phenomena can appear, such
as amplifications [14, 15, 16, 17], and have major implication on the noise source emission.
Note that these multiple transition phenomena have been studied when the geometry present
some symmetric properties [70], but there is a lack of models to tackle these phenomena in more
complex cases.
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Chapter 1 – Acoustic propagation in turbofan intakes

1.3.4 Multiple mode propagation in varying geometries and their interac-
tion

1.3.4.1 Brief review

The WKB models previously presented are of great interest for slowly varying geometries but
are not valid when the geometry variations are not small compared to the acoustic wavelength.
When this happens, a single mode cannot accurately represent the acoustic field.

As the injected wave propagates in the presence of significant geometric variations or flow
changes, the acoustic wave is modified and more and more modes are required to represent the
acoustic field. This energy transfer from the injected mode to the neighbouring modes is referred
to as modal scattering. In order to account for this diffusion phenomenon, it is possible to use an
eigenmode decomposition in the transverse plane and to solve numerically the axial evolution
of modes and their interaction.

To do this, three types of methodology are often used:

— One-way calculations are very efficient but are grounded in the assumption that reflections
from both the geometry and the mean flow can be ignored [71, 72]. This approach enables a
direct path from the source to the exit, yet it falls short in capturing transition phenomena or
flow-induced reflections, such as those observed in scenarios involving distorted flows [20].

— Iterative Bremmer [73] or iterative one-way calculations [74, 59] involve an iterative
process to obtain the successive reflections that occur. This iterative procedure is repeated
until a converged solution is obtained. While these methods can incorporate transition
phenomena, they are not suited for addressing significant amplification phenomena com-
ing from trapped modes. Furthermore, the iterative nature of the process can introduce
computational time overhead.

— Admittance multimodal method use an admittance matrix to account for the reflection
and scattering that can occur inside the domain. A first calculation of this matrix is
performed before computing the acoustic field. This method can accommodate a great
number of reflection phenomena [75]. However, the method is limited to the solving of
the Helmholtz equation or of the convected Helmholtz equation.

The last method is particularly appealing in the scope of this thesis since one of the focuses is on
transition phenomena. However, an adaptation of the method to solve the Goldstein propagation
equation will be needed (i.e. to account for a complete potential flow). Below is a more detailed
description of the method.
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1.3. Semi-analytical propagation methods

Admittance Multimodal Methods (MM) are first based on a rewriting of the propagation
problem into initial value problems consisting of two coupled first-order equations. These
equations describe the modal evolution of an acoustic quantity (generally the pressure) and
its derivative. The approach involves projecting the acoustic problem onto an orthogonal and
complete local basis, generally the local transverse eigenmodes. This basis (Fourier Bessel
functions for the circular case) serves as a representation space for the acoustic field, enabling
decomposing the problem into modal components. However, the previous studies show that two
problems emerge when this type of method is used. First, the acoustic equation with evanescent
modes is unstable, making it particularly difficult to solve. Then, the problem is not just an
initial value problem since there is a strong coupling between the duct inlet and outlet. For two-
dimensional ducts with varying cross-section, Pagneux et al. [75] overcame these difficulties
by introducing an admittance matrix representing the medium’s refraction and reflection index
(Dirichlet-to-Neumann operator). They showed that the evolution of the admittance satisfies
a Riccati equation which can be solved using a Magnus–Möbius scheme [76]. This method
is appealing, as it does not encounter any problem even if a important number of reflections
are to be expected in the duct, however its convergence rate can be slow [77]. A new modal
expansion of pressure can be introduced to enhance the convergence regarding the number of
transverse modes. The same local transverse modes are used but a supplementary mode is added.
This mode is a chosen transverse function orthogonal to the initial modes. Incorporating this
supplementary mode significantly improves convergence, making the solution more robust and
accurate. A large amount of work has been devoted to finding these supplementary modes in
a circular case [78] and for a waveguide with varying cross-section and curvature [79, 49].
However, these solutions were limited to solving the Helmholtz equation until recently. But
studies have started to incorporate more complex phenomena, with, for example, nonlinear
sound propagation [80] or ducts with inhomogeneous sound-speed profiles [81].

In order to understand more precisely how the method works, an application of this method-
ology to compute the propagation inside a duct of axially varying annular cross-section without
flow is presented. The formulation is taken from [78].

1.3.4.2 Admittance multimodal solution for ducts of axially varying annular cross-section
without flow

The Helmholtz Equation (1.14) for the pressure writes:

(Δ + 𝑘2)𝑝 = 0 (1.38)
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Chapter 1 – Acoustic propagation in turbofan intakes

and the boundary condition is ∇𝑝 · n = 0.

Let us denote the acoustic pressure derivative 𝜕𝑝/𝜕𝑥 as 𝑞. The first step is to discretize the
acoustic field on the transverse basis function 𝜓𝑛. These basis functions are solutions at the axial
location 𝑥 of the eigenvalue problem (1.31) previously defined. As a remainder, the eigenvalue
problem writes:

(Δ⊥ + 𝛼2
𝑛)𝜓𝑛 = 0, n⊥ · ∇⊥𝜓𝑛 = 0, (1.39)

where 𝑆 is the transverse surface and
∫
𝑆
𝜓∗
𝑖
𝜓 𝑗d𝑆 = 𝛿𝑖 𝑗 .

This allows to define the acoustic pressure and its axial derivative using the basis function
amplitudes (p, q) = (𝑝𝑛, 𝑞𝑛)𝑛∈[0,𝑁] :

𝑝 =

𝑁∑︁
𝑛=0

𝑝𝑛 (𝑥)𝜓𝑛 (𝑥, 𝑟),

𝑞 =

𝑁∑︁
𝑛=0

𝑞𝑛 (𝑥)𝜓𝑛 (𝑥, 𝑟).
(1.40)

By substituting the acoustic variables with their discretized expression, and projecting the
Helmholtz equation on the 𝑁 + 1 modes 𝜓𝑛 (𝑥, 𝑟), the following coupled mode equations are
obtained:

d
d𝑥

(
p
q

)
=

(
𝑀11 𝑀12

𝑀21 𝑀22

) (
p
q

)
, (1.41)

with:

(𝑀11)𝑖 𝑗 = −
∫
𝑆

𝜙∗𝑖
𝜕𝜙 𝑗

𝜕𝑥
d𝑆, (𝑀12)𝑖 𝑗 = −𝛿𝑖 𝑗 ,

(𝑀21)𝑖 𝑗 = (𝛼2
𝑗 − 𝑘2)𝛿𝑖 𝑗 , 𝑀22 = −𝑀𝐻

11,

(1.42)

and where 𝐻 denotes the adjoint transpose.

The next step in the admittance multimodal method consists in defining an admittance matrix
𝑌 such that q = 𝑌p. This matrix is governed by the following Riccati equation:

d𝑌
d𝑥

= −𝑌𝑀11 − 𝑌𝑀12𝑌 + 𝑀21 + 𝑀22𝑌 (1.43)

which is solved using a Magnus–Möbius scheme [76, 82] and an initial value 𝑌 𝑒. For the initial
value, one possibility to define it, is to consider a constant cross-section duct termination with
only outgoing waves. Then, as in such a duct the axial wavenumber is known analytically, an
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analytical expression of the admittance is obtained 𝑌 𝑒
𝑖, 𝑗

= i
√︃
𝑘2 − 𝛼2

𝑗
𝛿𝑖 𝑗 . The admittance is then

calculated from the exit to the source by integrating Equation (1.43).
Injecting the expression of the admittance into the modal matrix equation gives the following

equation for the acoustic pressure:

d
d𝑥

(p) = (𝑀11 + 𝑀12𝑌 ) p. (1.44)

It can be integrated from the source to the exit given an initial value p𝑖 = (𝐼𝑑 + 𝑅)p+, where p+
is the incoming acoustic wave, 𝑅 is the local reflection matrix 𝑅 = (𝑌𝑖 + 𝑌 )−1(𝑌𝑖 − 𝑌 ), and 𝑌𝑖 is
the constant cross-section duct admittance at the injection plane [75].

The incorporation of an additional mode substantially enhances the convergence of the basis.
This mode is designed orthogonal to the other transverse modes, and such that n⊥ ·∇⊥𝜓−1 ≠ 0, to
better account for the non-zero derivative of the potential gradient for a curved wall that cannot
be satisfied by the local transverse modes (which satisfy n⊥ · ∇⊥𝜓𝑛 = 0 at the wall). Various
techniques exist to define this supplementary mode. Nonetheless, it’s worth noting that in the
scope of this thesis, although it has shown significant improvements when solving the Helmholtz
equation, this extension has not been implemented. Therefore, we will not go deeper into details.
The reasons behind its exclusion in this study will be detailed in subsequent manuscript sections.

1.4 Conclusion

Aeroacoustics involves the study of sound generated by fluid flows, which fluid dynamics
equations can describe. By neglecting the viscosity and heat conduction, the acoustic propaga-
tion can be described using the Euler equations. Furthermore, if the acoustic fluctuations are
considered to be orders of magnitude smaller than the aerodynamic ones, these equations can be
simplified to the linearized Euler equations. Finally, by introducing an irrotational flow hypoth-
esis, a last simplification can be made to obtain the Goldstein propagation equation. When this
equation is to be solved, only a single variable, the potential, gives access to the overall acous-
tic field. Moreover, this equation is linear, making it much easier to solve than Navier-Stokes
equations.

While source computation can be computationally expensive, propagation can be achieved
more efficiently using various methods. These methods can be broadly classified as numerical
or semi-analytical. Numerical methods, such as finite difference, boundary element, and finite
element methods, offer great versatility but come with high computational costs. When sound
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Chapter 1 – Acoustic propagation in turbofan intakes

propagation occurs within a duct, it is possible to employ faster methodologies by using some of
the acoustic properties in this region. These characteristic forms, known as modes, enable faster
calculations. In the context of evaluating various engine geometries, semi-analytical methods,
based on the concept of modes, are particularly valuable.

Nevertheless, the emergence of new engine geometries, such as those with high bypass ratios
and semi-buried engines, poses challenges to the underlying assumptions of existing models.
These modelling challenges necessitate the development of new approaches. Two important
aspects are the shorter air inlet length, requiring models to consider cut-off and transition modes,
and significant inflow distortion. To address these challenges, two promising approaches have
emerged: the WKB method and the multimodal method. The WKB method offers cost-effective
calculations and has been modified to incorporate phenomena like transitions or complex flows
such as sheared flows. However, it cannot incorporate scattering phenomena. On the other hand,
the multimodal method can accurately compute modes’ evolution and interactions within the
duct. However, it is limited to cases without or with a constant mean flow.

36



Chapter 2

GENERAL MULTIMODAL METHOD FOR

FLOW AND ACOUSTIC CALCULATION

As stressed out in Chapter 1, the admittance multimodal method is very efficient in solving
the Helmholtz equation, being both fast and accurate. The extension of this method to solve
the Goldstein propagation equation, developed during this PhD thesis, is detailed in the present
chapter.

The method, presented in Section 2.1, is initially designed to compute the acoustic field
in the presence of an already-known potential base flow. The first step is to transform the
Goldstein propagation equation into a set of coupled one-dimensional equations, with only first-
order derivatives in the axial direction, that governs the evolution of the acoustic potential and
acoustic axial velocity. Contrary to the the original multimodal method, the basis is composed of
Fourier components (in azimuthal direction) and Chebyshev polynomials (in radial direction).
This polynomial basis offers excellent convergence properties for smooth geometries. However,
with this basis, high-order modes (not well captured by the polynomial basis) are present in
the calculation and must be handled with care [59, 49]. A modification of the Magnus–Möbius
scheme [76, 82] traditionally used for the axial integration is proposed. This modification is
based on an eigendecomposition of the Magnus matrix. A procedure is also added to deal with
liner discontinuity.

This method provides fast predictions if the base flow is known. But in order to obtain fast
predictions on the whole, the multimodal method is here also used to compute the base flow by
analogy with an acoustic field at a zero frequency and without convective effects. This is done
in Section 2.2.

Finally, the developed method is validated for both flow and acoustic calculations against a
FEM code in Section 2.3, for axisymmetric cases. The focus is on the accuracy and stability of
predictions for various modes and frequencies.
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Chapter 2 – General multimodal method for flow and acoustic calculation

2.1 Acoustic multimodal formulation

2.1.1 Governing equations

In the standard multimodal formulation, the Helmholtz equation is solved using the acoustic
pressure and axial velocity as primary variables. Solving the equation for pressure can be
particularly cumbersome in cases with flow, therefore we work here with the acoustic velocity
potential 𝜙 such that v = ∇𝜙. The flow is assumed to be a potential perfect gas flow. Therefore,
the mean flow velocity also derive from a scalar potential, denoted Φ.

With these hypotheses, the steady Euler equations (1.9) simplifies to:

∇ · (𝐷∇Φ) = 0 , (2.1a)
𝐷𝛾−1

𝛾 − 1
+ 1

2
∇Φ · ∇Φ = 𝐸 , (2.1b)

with 𝐸 a Bernoulli constant. As stated in Section 1.1.3, the acoustic velocity potential is governed
by the Goldstein propagation equation:

∇ · (𝐷∇𝜙) − 𝐷 D
D𝑡

(
1
𝐶2

D𝜙
D𝑡

)
= 0 , (2.2a)

𝑝 = −𝐷D𝜙
D𝑡
. (2.2b)

The walls of the duct are considered to be impermeable to the mean flow:

V · n = 0. (2.3)

For acoustic boundary conditions, they are considered to be lined with an impedance 𝑍 . The
Ingard–Myers impedance condition (1.15) is used for this purpose:

i𝜔(v · n) =
[

D
D𝑡

− n · (n · ∇V)
] (

1
𝑍
𝑝

)
. (2.4)

To apply the multimodal method, the governing equation must be rearranged into a system
with only first-order derivatives in the axial direction 𝑥. The chosen variables are the acoustic
potential 𝜙 and its axial derivative 𝑢. The system then writes:

𝜕𝜙

𝜕𝑥
= 𝑢, (2.5a)
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𝐷
𝜕

𝜕𝑥

((
1 − 𝑀2

)
𝑢

)
= 𝐷

D
D𝑡

(
1
𝐶2

D⊥𝜙

D𝑡

)
+ 𝐷D⊥

D𝑡

(
𝑈𝑢

𝐶2

)
+ 𝐷

2𝐶2
𝜕

𝜕𝑥
(V⊥ · V⊥) 𝑢 − ∇⊥ · (𝐷∇⊥𝜙),

(2.5b)

in which 𝑀 = 𝑈/𝐶 is the axial Mach number and D⊥/D𝑡 = i𝜔 + V⊥ · ∇.

2.1.2 Variational formulation

The weak formulation of Equations (2.5) is obtained by multiplying them by a test function
𝑔∗ and by integrating over the duct cross-section, denoted 𝑆, whose boundary is the contour Λ.
After some manipulations, one can write 1:∫

𝑆

𝐷 (1 − 𝑀2) 𝜕𝜙
𝜕𝑥
𝑔∗d𝑆 =

∫
𝑆

𝐷 (1 − 𝑀2)𝑢𝑔∗d𝑆 (2.6a)

d
d𝑥

(∫
𝑆

𝐷 (1 − 𝑀2)𝑢𝑔∗ − 𝐷𝑈

𝐶2
D⊥𝜙

D𝑡
𝑔∗d𝑆

)
=

∫
𝑆

𝐷 (1 − 𝑀2)𝑢 𝜕𝑔
∗

𝜕𝑥
+ 𝐷∇⊥𝑔

∗ · ∇⊥𝜙

− 𝐷

𝐶2

(
D⊥𝜙

D𝑡

(
D⊥𝑔

D𝑡

)∗
+𝑈𝑢

(
D⊥𝑔

D𝑡

)∗
+𝑈D⊥𝜙

D𝑡
𝜕𝑔∗

𝜕𝑥

)
d𝑆 −

∫
Λ

𝐷𝑔∗∇𝜙 · ndΛ. (2.6b)

Note that, even if not necessary in theory, we multiply the first equation by 𝐷 (1 − 𝑀2) before
the integration.

For the impedance condition (1.15), and following Eversmann [83], we use Stokes’ theorem
to rewrite the last term in Equation (2.6):∫

Λ

𝐷𝑔∗∇𝜙 · n dΛ =
1
i𝜔

∫
Λ

𝐷2

𝑍

(
𝑈𝑢

(
D𝑔
D𝑡

)∗
+ D⊥𝜙

D𝑡

(
D𝑔
D𝑡

)∗)
dΛ−

1
i𝜔

d
d𝑥

[∫
Λ

𝐷2

𝑍

(
𝑈𝑢 + D⊥𝜙

D𝑡

)
𝑔∗(V · 𝜏𝜏𝜏)dΛ

]
,

(2.7)

where 𝜏𝜏𝜏 is the unit vector tangential to the duct wall. In the remaining of the manuscript, V · 𝜏𝜏𝜏
is simply denoted 𝑉𝜏.

1. This step involves an integration by parts. There are many ways to perform it. Here, it was chosen to maximize
the symmetries since this gave us the best numerical proprieties.
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2.1.3 Modal decomposition

The acoustic variables are represented using a set of linearly independent transverse cross-
section functions, denoted (𝜑 𝑗 ) 𝑗∈N. Using this basis, the acoustic potential and its axial derivative
are written:

𝜙 =
∑︁
𝑗

𝜙 𝑗 (𝑥)𝜑 𝑗 (𝑥, 𝑟, 𝜃) , and 𝑢 =
∑︁
𝑗

𝑢 𝑗 (𝑥)𝜑 𝑗 (𝑥, 𝑟, 𝜃). (2.8)

The same basis is used for the test functions associated to 𝜙 and 𝑢. The Equation (2.6) then
becomes:∫

𝑆

𝐷 (1 − 𝑀2)𝜑∗𝑖 𝜑 𝑗d𝑆
d𝜙 𝑗
d𝑥

= −
∫
𝑆

𝐷 (1 − 𝑀2)𝜑∗𝑖
𝜕𝜑 𝑗

𝜕𝑥
d𝑆𝜙 𝑗 +

∫
𝑆

𝐷 (1 − 𝑀2)𝜑∗𝑖 𝜑 𝑗d𝑆𝑢 𝑗 , (2.9)

d
d𝑥

(∫
𝑆

𝐷 (1 − 𝑀2)𝜑 𝑗𝜑∗𝑖 d𝑆𝑢 𝑗 −
∫
𝑆

𝐷𝑈

𝐶2
D⊥𝜑 𝑗

D𝑡
𝜑∗𝑖 d𝑆𝜙 𝑗

)
=

+
(∫
𝑆

𝐷∇⊥𝜑
∗
𝑖 · ∇⊥𝜑 𝑗 −

𝐷

𝐶2
D⊥𝜑 𝑗

D𝑡

(
D𝜑𝑖
D𝑡

)∗
d𝑆 − 1

i𝜔

∫
Λ

𝐷2

𝑍

D⊥𝜑 𝑗
D𝑡

(
D𝜑𝑖
D𝑡

)∗
dΛ

)
𝜙 𝑗 (2.10)

+
(∫
𝑆

𝐷 (1 − 𝑀2)𝜑 𝑗
𝜕𝜑∗

𝑖

𝜕𝑥
− 𝐷𝑈

𝐶2 𝜑 𝑗

(
D⊥𝜑𝑖
D𝑡

)∗
d𝑆 − 1

i𝜔

∫
Λ

𝐷2𝑈

𝑍
𝜑 𝑗

(
D𝜑𝑖
D𝑡

)∗
dΛ

)
𝑢 𝑗

+ 1
i𝜔

d
d𝑥

(∫
Λ

𝐷2𝑉𝜏
𝑍

D⊥𝜑 𝑗
D𝑡

𝜑∗𝑖 dΛ𝜙 𝑗 +
∫
Λ

𝐷2𝑉𝜏𝑈

𝑍
𝑈𝜑 𝑗𝜑

∗
𝑖 dΛ𝑢 𝑗

)
.

Equations (2.9) and (2.10) can be written in vector form by introducing the vectors 𝜙𝜙𝜙 and u
containing the unknowns 𝜙 𝑗 (𝑥) and 𝑢 𝑗 (𝑥). The equations governing the axial variation of these
vectors are: (

𝐴11 𝐴12

𝐴21 𝐴22

)
d
d𝑥

(
𝜙𝜙𝜙

u

)
=

(
𝑀11 𝑀12

𝑀21 𝑀22

) (
𝜙𝜙𝜙

u

)
. (2.11)

The detailed expressions for the matrices 𝐴11, 𝐴12, 𝐴21, 𝐴22, 𝑀11, 𝑀12, 𝑀21 and 𝑀22 are given
in Appendix A.

2.1.4 Overview of the calculation

Equation (2.11) is unstable and cannot be integrated directly because of the presence of
evanescent modes [82]. The multimodal method allows to solve this issue by defining an admit-
tance matrix 𝑌 that links the two vectors 𝜙𝜙𝜙(𝑥) and u(𝑥) through the relation u(𝑥) = 𝑌 (𝑥)𝜙𝜙𝜙(𝑥).
It then becomes necessary to integrate this matrix before computing the acoustic potential. But
before going deeper into the numerical details of the method, an overview of the procedure to

40



2.1. Acoustic multimodal formulation

Potential calculation

Admittance calculation𝜙
𝑠

im
po

se
d

𝑌
𝑒

im
po

se
d

𝑥

𝑟

1
3

2

4fa
n

inletspinner

nacelle

𝑅1

𝑅2

Figure 2.1 – Schematic of the calculation performed.

perform a multimodal computation is given in the following and is depicted in Figure 2.1. Let us
suppose that we want to compute the acoustic propagation inside the intake of an aero-engine.
This region is considered to be a duct whose cross-section varies axially. In the following, the
source denotes the fan plane location while the exit refers to the inlet plane. First, the admittance
𝑌𝑒 at the exit is computed (step 1). Using this initial value, the admittance𝑌 is calculated from the
exit to the source using a Magnus–Möbius scheme (step 2). Next, the potential at the source 𝜙𝜙𝜙𝑠
is calculated using the specified injected wave and the previously obtained admittance (step 3).
Finally, the Magnus–Möbius scheme is once more employed to obtain the potential throughout
the entire engine (step 4).

2.1.5 Transverse mode basis

To overcome the limitations of standard hard walled modes which struggle to satisfy the
wall boundary conditions (see discussion in Section 1.3.4), a new type of basis function is
employed. A Fourier series still represents the acoustic field in the circumferential direction,
while a set of Chebyshev polynomials is used in the radial direction to take advantage of their
good convergence properties [55, 67, 57]. A first choice would be to take:

𝜑 𝑗 = 𝜑
𝑚
𝑝 = 𝑇𝑝

(
𝑟 − 𝑅1
𝑅2 − 𝑅1

)
𝑒−i𝑚𝜃 , (2.12)

with 𝑇𝑝 the shifted Chebyshev polynomial of the first kind of order 𝑝 ∈ N. However in the case
of circular ducts (𝑅1 = 0), some integrals are not defined when 𝑚 ≠ 0 ( lim𝛿→0

∫ 𝑅2
𝛿
𝑟−1d𝑟 = ∞).

One solution is to replace 𝑅1 by a small, non-zero value in the case of a circular duct, typically
the spacing between two central collocation points. Due to the properties of the duct modes
(behaviour as 𝑟 |𝑚 | when 𝑟 → 0, [84]) some of the previous matrices are then poorly conditioned.
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Chapter 2 – General multimodal method for flow and acoustic calculation

A better solution is to add a constraint on the coefficients of Fourier expansions to have basis
functions of the form 𝑟 𝑓 (𝑟)𝑒−i𝑚𝜃 when 𝑚 ≠ 0. We therefore choose, for all 𝑚:

𝜑𝑚𝑝 =

(
𝑟

𝑅2 − 𝑅1

)min( |𝑚 |,1)
𝑇𝑝

(
𝑟 − 𝑅1
𝑅2 − 𝑅1

)
𝑒−i𝑚𝜃 . (2.13)

With this basis, the physical behaviour is better captured in the case of circular ducts.
When the flow is axisymmetric, there is no possible coupling between different circum-

ferential Fourier modes, so that no distinction is made between 𝜑𝑚𝑝 and 𝑇𝑝. The case with
non-axisymmetric flow will be specifically studied in Chapter 5.

2.1.6 Admittance calculation

Introducing the definition of the admittance matrix in Equation (2.11), it is possible to show
that this matrix satisfies a Riccati equation of the form:

d𝑌
d𝑥

= −𝑌 𝐴−1
11𝑀11 − 𝑌 𝐴−1

11𝑀12𝑌 − 𝐴−1
22 𝐴21𝐴

−1
11 (𝑀11 + 𝑀12𝑌 ) + 𝐴−1

22𝑀21 + 𝐴−1
22𝑀22𝑌 . (2.14)

This equation is solved numerically using a Magnus–Möbius scheme [76, 82], starting from an
initial value 𝑌𝑒.

We use the same procedure as in References [80, 27] to define the matrix 𝑌𝑒. We assume
an infinite duct termination with constant cross-section, with only forward waves at the exit. To
determine the admittance there, the acoustic variables are expressed as a summation of modes.
By doing so, the problem simplifies to an eigenvalue problem where the solutions correspond to
the eigenvalues 𝜆𝑖 and eigenvectors associated with the acoustic potential w𝜙

𝑖
and axial velocity

w𝑢
𝑖

waves. These waves are separated into the forward (+) and backward (−) directions based on
the sign of Re(𝜆𝑖) − 𝜔/𝐶 𝑀/(1 − 𝑀2) for cut-on modes and Im(𝜆𝑖) for cut-off modes, where
the overline denotes the mean value of the flow variable over the cross-section. The resulting
forward admittance matrix is given by:

𝑌𝑒 = 𝑊
𝑢
+ (𝑊

𝜙
+ )−1 = 𝑊

𝜙
+Λ

𝑒
+(𝑊

𝜙
+ )−1, (2.15)

where Λ𝑒+ = diag(𝜆0, 𝜆1, 𝜆2, ...) is the matrix of eigenvalues, and 𝑊
𝜙
+ =

(
w𝜙

0 ,w
𝜙

1 , ...
)

and

𝑊𝑢
+ =

(
w𝑢

0,w
𝑢
1, ...

)
are the matrices of potential and axial velocity eigenvectors associated with

forward waves. Note that𝑊𝜙
+ represents the transfer matrix from the transverse eigenmode basis

to the polynomial basis.
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2.1. Acoustic multimodal formulation

The admittance is calculated from the exit to the source by integrating the Equation (2.14)
(details of this axial integration will be addressed in Section 2.1.8).

2.1.7 Potential calculation

Injecting the expression of the admittance into Equation (2.11) gives the following equation
for the acoustic potential:

𝐴11
d𝜙𝜙𝜙
d𝑥

= 𝑀11𝜙𝜙𝜙 + 𝑀12𝑌𝜙𝜙𝜙. (2.16)

It can then be calculated from the source to the exit given an initial value 𝜙𝜙𝜙𝑠 (more details are
given in Section 2.1.8).

Let us assume that we want to specify an incoming acoustic wave represented by its potential
distribution 𝜙𝜙𝜙+𝑠 . It is necessary to find the waves travelling in the opposite direction, noted 𝜙𝜙𝜙−𝑠 ,
that emerge due to geometrical or flow reflections, to have 𝜙𝜙𝜙𝑠 = 𝜙𝜙𝜙+𝑠 + 𝜙𝜙𝜙−𝑠 .

Let us define the reflection matrix 𝑅 such as 𝜙𝜙𝜙−𝑠 = 𝑅𝜙𝜙𝜙+𝑠 . To obtain this matrix 𝑅 from the
admittance matrix𝑌 , the acoustic potential and its axial derivative are decomposed at the source
location into right and left propagating waves as:

𝜙𝜙𝜙𝑠 = 𝜙𝜙𝜙
+
𝑠 + 𝜙𝜙𝜙−𝑠 and u𝑠 = u+

𝑠 + u−
𝑠 . (2.17)

Using the value of the admittance at the source plane and continuity conditions for the acoustic
and its axial derivative, the following relation is obtained:

𝑌 (𝜙𝜙𝜙+𝑠 + 𝜙𝜙𝜙−𝑠 ) = 𝑌+
𝑠 𝜙𝜙𝜙

+
𝑠 + 𝑌−

𝑠 𝜙𝜙𝜙
−
𝑠 , (2.18)

with 𝑌±
𝑠 the local forward/backward admittance matrix. Since the previous relation is true for

any injected field 𝜙𝜙𝜙+𝑠 , we obtain 𝑅 = (𝑌 − 𝑌−
𝑠 )−1(𝑌+

𝑠 − 𝑌 ) and the potential at the source is
𝜙𝜙𝜙𝑠 = (𝐼𝑑 + 𝑅)𝜙𝜙𝜙+𝑠 , with 𝐼𝑑 the identity matrix.

2.1.8 Modification of the Magnus–Möbius scheme

High-order modes, that are not well captured by the polynomial basis, are present in the
calculations, as reported by Wilson et al. [59] and Guennoc [49]. Their axial wavenumbers are
far from the ones associated with physical modes, and they tend to be strongly cut-off. It will be
shown later that the matrices involved in the Magnus–Möbius scheme are directly related to these
wavenumbers. While the physical eigenvalues (obtained when using the hard walled duct modes
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as an approximation basis) do not pose a problem, the non-physical eigenvalues obtained when
using a polynomial basis lead to poorly conditioned matrices due to their strongly cut-off nature.
To avoid this conditioning issue, we propose a modified formulation of the Magnus–Möbius
scheme.

Firstly, the classical Magnus–Möbius scheme is described below. We introduce the exit
location 𝑥𝑒 and the source position 𝑥𝑠. Considering an axial discretization (𝑥𝑛)𝑛∈⟦0,𝑁⟧ such that
𝑥𝑁 = 𝑥𝑠 and 𝑥0 = 𝑥𝑒 (note the decreasing evolution, as the admittance is solved from the exit
plane to the source plane), the potential and acoustic velocity at positions 𝑥𝑛 and 𝑥𝑛+1 are linked
using the following equation: (

𝜙𝜙𝜙𝑛+1

u𝑛+1

)
= eΩ𝑛

(
𝜙𝜙𝜙𝑛

u𝑛

)
, (2.19)

where the matrix Ω𝑛 is the Magnus matrix, the expression of which can be found using the
matrices defined in Section 2.1.3 [82]. After splitting the matrix exponential into four blocks:

eΩ𝑛 =

(
𝐸1 𝐸2

𝐸3 𝐸4

)
, (2.20)

the evolution of the admittance and the potential are written:

𝑌𝑛+1 = (𝐸3 + 𝐸4𝑌𝑛) (𝐸1 + 𝐸2𝑌𝑛)−1

𝜙𝜙𝜙𝑛 = (𝐸1 + 𝐸2𝑌𝑛)−1𝜙𝜙𝜙𝑛+1.
(2.21)

The difficulty is that the matrix (𝐸1 + 𝐸2𝑌𝑛) can be ill-conditioned [49], which makes the
scheme not robust for high frequencies or flow variations. We use an eigen decomposition of
the matrix Ω𝑛 to avoid using these matrices. Since the transfer matrix exp(Ω𝑛) represents the
transfer of information from the axial location 𝑥𝑛 to its neighbouring value 𝑥𝑛+1, the eigenvalues
(Λ+,Λ−) of Ω𝑛, are characteristic of the evolution of right-running (𝜙𝜙𝜙+, u+) and left-running
(𝜙𝜙𝜙−, u−) eigenvectors. The exponential matrix can be rewritten as:

eΩ𝑛 =

(
𝜙𝜙𝜙+ 𝜙𝜙𝜙−

u+ u−

) (
eΛ+ 0
0 eΛ−

) (
𝜙𝜙𝜙+ 𝜙𝜙𝜙−

u+ u−

)−1

. (2.22)

In addition, by assuming that all the sub-matrices are invertible, the last matrix can be rewritten:(
𝜙𝜙𝜙+ 𝜙𝜙𝜙−

u+ u−

)−1

=

(
(𝜙𝜙𝜙+ − 𝜙𝜙𝜙−u−1

− u+)−1 0
0 (u− − u+𝜙𝜙𝜙−1

+ 𝜙𝜙𝜙−)−1

) (
𝐼𝑑 −𝜙𝜙𝜙−u−1

−
−u+𝜙𝜙𝜙−1

+ 𝐼𝑑

)
. (2.23)
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2.1. Acoustic multimodal formulation

By noting 𝑌± = u±𝜙𝜙𝜙−1
± the admittance matrix associated to respectively right (upper sign) or

left (lower sign) running modes, the blocks of the matrix exponential can be written:

𝐸1 = 𝜙𝜙𝜙+eΛ+𝜙𝜙𝜙−1
+ (𝐼𝑑 − 𝑌−1

− 𝑌+)−1 + 𝜙𝜙𝜙−eΛ−𝜙𝜙𝜙−1
− (𝐼𝑑 − 𝑌−1

+ 𝑌−)−1,

𝐸2 = 𝜙𝜙𝜙+eΛ+𝜙𝜙𝜙−1
+ (𝑌+ − 𝑌−)−1 + 𝜙𝜙𝜙−eΛ−𝜙𝜙𝜙−1

− (𝑌− − 𝑌+)−1,

𝐸3 = u+eΛ+u−1
+ (𝑌−1

+ − 𝑌−1
− )−1 + u−eΛ−u−1

− (𝑌−1
− − 𝑌−1

+ )−1,

𝐸4 = u+eΛ+u−1
+ (𝐼𝑑 − 𝑌−𝑌−1

+ )−1 + u−eΛ−u−1
− (𝐼𝑑 − 𝑌+𝑌−1

− )−1.

(2.24)

This formulation highlights the problem that arises when high-order modes are present. As
these modes are strongly cut-off, the matrices 𝐸1, 𝐸2, 𝐸3, 𝐸4 involve adding terms in eΛ+ to
other terms in eΛ− while these two exponentials have entirely different orders of magnitudes.
Depending on the direction of the axial integration, one of those two always corresponds to
exponentially increasing terms, say here eΛ+ , while the other is linked to exponentially decreasing
terms, say here eΛ− . This means that the terms in eΛ+ are very large while the ones in eΛ− are
very small, leading to round-off errors. The goal is to reformulate this expression so as to avoid
this summation, which is difficult to compute accurately.

The previous expressions are therefore inserted into the Equation (2.21) to give:

𝑌𝑛+1 = 𝑌+ + (𝑌− − 𝑌+)𝑃−𝑅𝑃−1
+ (𝐼𝑑 + 𝑃−𝑅𝑃−1

+ )−1

𝜙𝜙𝜙𝑛 = (𝐼𝑑 + 𝑅)𝑃−1
+ (𝐼𝑑 + 𝑃−𝑅𝑃−1

+ )−1𝜙𝜙𝜙𝑛+1.
(2.25)

where 𝑃− = 𝜙𝜙𝜙−eΛ−𝜙𝜙𝜙−1
− , 𝑃−1

+ = 𝜙𝜙𝜙+e−Λ+𝜙𝜙𝜙−1
+ and 𝑅 = (𝑌𝑛 − 𝑌−)−1(𝑌+ − 𝑌𝑛).

Note that with these expressions, contrary to the ones in (2.24), there is no summation of
the term eΛ+ and eΛ− . The impact of the high-order mode interaction is included in the term
𝑃−𝑅𝑃−1

+ , with the high-order modes which are small in both e−Λ+ and eΛ− .
A quick analysis of𝑌𝑛+1 can give us a better understanding of the role of each of the previous

matrices. The terms 𝜙𝜙𝜙±eΛ±𝜙𝜙𝜙−1
± are characteristic of the propagation of the left and right running

modes between the axial position 𝑥𝑛 and 𝑥𝑛+1. By analogy to the reflection matrix found when
deriving the expression for the potential at the source, the matrix 𝑅 can be associated with
the local reflection between left- and right-running modes. When 𝑌𝑛 = 𝑌+ (constant cross-
section duct), 𝑅 = 0 and the formulation reduces to 𝑌𝑛+1 = 𝑌+. This is expected because the
admittance is constant inside a duct when there is no geometry or flow variation. In such a duct
𝜙𝜙𝜙𝑛 = 𝜙𝜙𝜙+e−Λ+𝜙𝜙𝜙−1

+ 𝜙𝜙𝜙𝑛+1 which means that there is also no possible modal scattering.
Note that the expression obtained for the potential in Equation (2.25) is similar to the ones

derived by Wilson [59] or Félix & Pagneux [77], but here we have not neglected the contribution
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of high-order modes.
Although this methodology is useful, it has two drawbacks. First, computing the eigenvalues

of the matrix Ω𝑛 can be numerically costly compared to the matrix exponential. Secondly,
as explained previously, it is necessary to distinguish between left and right-running modes.
Failing to sort these modes correctly can cause some numerical difficulties. In theory, it would
be possible to use the group velocity to differentiate between them, but evaluating this quantity
can be challenging in practice. As an alternative, the "transverse-mode criteria", defined in
Section 2.1.6, can be used to classify these modes. This method for ordering the different
categories of eigenmodes is used here and reliably distinguishes left and right-running modes
for the studied cases.

2.1.9 Impedance discontinuities

The equations previously derived are valid as long as the impedance is represented by a
differentiable function. However, in practice, the liner is only applied on a finite portion of
the duct, which induces impedance discontinuities. That results in a non-defined matrices 𝑀21

and 𝑀22, making the Magnus–Möbius scheme impossible to use. To solve this issue, several
solutions are available. The first option is to impose a continuity of the acoustic potential and
acoustic axial velocity (or the acoustic pressure and acoustic axial velocity) at both sides of a
discontinuity, which is equivalent to impose a continuity of the admittance. The second option
is to consider the duct as completely treated, but with an impedance that is smoothly varying
along the axial coordinate. The third option is to use the conservation equations of mass and
momentum to determine an admittance connection formula [85].

The first option is incomplete, as it ignores reflections that occur at the axial location of
the discontinuities [85]. The second option requires significant over-mesh of the "discontinuity"
regions in order to correctly represent the rapidly varying impedance. Here, the third option
is therefore preferred. The formula for the admittance across such a discontinuity is obtained
by deriving the admittance jump using the weak formulation of the acoustic equation over a
vanishingly small control volume.

2.1.9.1 Formulation of the problem

The case of a duct with at least one impedance discontinuity, which can be located either on
the hub or the tip, is studied. Let us consider one of these discontinuities, where the impedance
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varies from 𝑍 𝑙 to 𝑍𝑟 , by defining a thin volume𝑉𝑙 that surrounds it. We assume that the impedance
𝑍 varies continuously from 𝑍 𝑙 to 𝑍𝑟 over a transition region of size 2𝛿, as sketched in Figure 2.2.
Note that the original problem is recovered when taking the limit 𝛿 → 0. The computational do-
main𝑉𝑙 is enclosed by the surfaces 𝑆𝑤, 𝑆𝑟 , and 𝑆𝑙 . 𝑆𝑟 and 𝑆𝑙 are located respectively at 𝑥 = 𝑥𝑑 +𝛿
and 𝑥 = 𝑥𝑑 − 𝛿, where 𝑥𝑑 is the axial location of the discontinuity, and 𝑆𝑤 corresponds to the
duct wall surfaces. Finally,Λ𝑙/𝑟 denote the contours along the perimeter of the duct at 𝑥 = 𝑥𝑑±𝛿.

Figure 2.2 – Sketch of a generic liner discontinuity.

2.1.9.2 Governing equations

Let us start by recalling the continuity equation and the mass equation for the perturbation
variables:

i𝜔𝐷𝜙 + 𝐷V · ∇𝜙 + 𝑝 = 0,

∇ · (𝐷∇𝜙) − 𝐷 (i𝜔 + V · ∇)
[

1
𝐶2 (i𝜔 + V · ∇)𝜙

]
= 0.

(2.26)

The weak formulation of these equations obtained through partial integration over the domain
𝑉𝑙 writes: ∫

𝑉𝑙

i𝜔𝐷𝜙𝜑∗𝑖 + 𝐷V · ∇𝜙𝜑∗𝑖 + 𝑝𝜑∗𝑖 d𝑉𝑙 = 0,∫
𝑉𝑙

∇ · (𝐷∇𝜙)𝜑∗𝑖 − 𝐷 (i𝜔 + V · ∇)
[

1
𝐶2 (i𝜔 + V · ∇)𝜙

]
𝜑∗𝑖 d𝑉𝑙 = 0,

(2.27)

for a test function 𝜑∗
𝑖

defined on 𝑉𝑙 . The mass flow conservation, ∇ · (𝐷V) = 0, is used to write
𝐷V · ∇𝜙 = ∇ · 𝜙𝐷V. Then, by applying the divergence theorem, it is straightforward to show
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that: ∫
𝑉𝑙

i𝜔𝐷𝜙𝜑∗𝑖 − 𝐷V𝜙 · ∇𝜑∗𝑖 + 𝑝𝜑∗𝑖 d𝑉𝑙 = −
∫
𝑆

𝐷V𝜙𝜑∗𝑖 · n d𝑆,∫
𝑉𝑙

𝐷∇𝜑∗𝑖 · ∇𝜙 − 𝐷

𝐶2 (V · ∇𝜙 + i𝜔𝜙) (V · ∇𝜑∗𝑖 − i𝜔𝜑∗𝑖 ) d𝑉𝑙 =∫
𝑆

𝐷𝜑∗𝑖

(
∇𝜙 − 1

𝐶2 (V · ∇𝜙 + i𝜔𝜙) V
)
· n d𝑆,

(2.28)

with n the unit outgoing normal vector. By reminding that a hard walled boundary condition is
used for the mean flow, V · n = 0, the right-hand side of both equations can be developed as:∫

𝑆

𝐷V𝜙𝜑∗𝑖 · n d𝑆 =

∫
𝑆𝑟

𝐷𝑈𝜑∗𝑖 𝜙 d𝑆 −
∫
𝑆𝑙

𝐷𝑈𝜑∗𝑖 𝜙 d𝑆,∫
𝑆

𝐷𝜑∗𝑖

(
∇𝜙 − 1

𝐶2 (V · ∇𝜙 + i𝜔𝜙) V
)
· n d𝑆 =

∫
𝑆𝑤

𝐷𝜑∗𝑖
𝜕𝜙

𝜕𝑛
d𝑆+∫

𝑆𝑟

𝐷𝜑∗𝑖 𝑢 d𝑆 −
∫
𝑆𝑙

𝐷𝜑∗𝑖 𝑢 d𝑆 +
∫
𝑆𝑙

𝑈𝐷

𝐶2 (V · ∇𝜙 + i𝜔𝜙) 𝜑∗𝑖 d𝑆−∫
𝑆𝑟

𝑈𝐷

𝐶2 (V · ∇𝜙 + i𝜔𝜙) 𝜑∗𝑖 d𝑆.

(2.29)

Further simplification can be done using Stokes’ theorem to write (see Eversmann’s pa-
per [83] for more details):∫

𝑆𝑤

𝐷𝜑∗𝑖
𝜕𝜙

𝜕𝑛
d𝑆 =

i
𝜔

∫
𝑆𝑤

𝐷2

𝑍
(V · ∇𝜙 + i𝜔𝜙) (V · ∇𝜑∗𝑖 − i𝜔𝜑∗𝑖 ) d𝑆+

i
𝜔

∫
Λ𝑟

𝐷2

𝑍
(V · ∇𝜙 + i𝜔𝜙) 𝜑∗𝑖 (n × V) · dΛΛΛ+

i
𝜔

∫
Λ𝑙

𝐷2

𝑍
(V · ∇𝜙 + i𝜔𝜙) 𝜑∗𝑖 (n × V) · dΛΛΛ.

(2.30)

2.1.9.3 Matching procedure

To obtain a matching condition, we take the limit of the above expressions when 𝛿 → 0,
which represents a liner discontinuity. We assume that the acoustic potential axial derivative has
finite singularities (i.e., it is well-behaved and does not have infinite discontinuities), ensuring
that the volume integrals of expression (2.28) vanish when the volume vanishes. By combining
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all of the previous equations, we obtain:∫
𝑆𝑟

𝐷𝑈𝜑∗𝑖 𝜙 d𝑆 −
∫
𝑆𝑙

𝐷𝑈𝜑∗𝑖 𝜙 d𝑆 = 0.∫
𝑆𝑟

𝐷 (1 − 𝑀2)𝜑∗𝑖 𝑢 d𝑆 −
∫
𝑆𝑙

𝐷 (1 − 𝑀2)𝜑∗𝑖 𝑢 d𝑆 =
i
𝜔

∫
Λ𝑟

𝐷2

𝑍
(V · ∇𝜙 + i𝜔𝜙) 𝜑∗𝑖 (n × V) · dΛΛΛ

+ i
𝜔

∫
Λ𝑙

𝐷2

𝑍
(V · ∇𝜙 + i𝜔𝜙) 𝜑∗𝑖 (n × V) · dΛΛΛ.

(2.31)

The previous general equation shows that the acoustic potential is continuous across the
liner discontinuity by noting that the radius, the mean axial velocity, and the mean density
are continuous. When there is no mean flow, it shows that the admittance (and, therefore, the
acoustic axial velocity) is also continuous across the liner discontinuity. Otherwise, it indicates
that its axial derivative is not continuous if 𝑍 is not, which confirms that the admittance is not
continuous across the discontinuity. To find its variation across the transition region, we expand
the velocity potential and its axial derivative in terms of the basis functions (𝜑 𝑗 ) 𝑗∈N. It yields:∫
𝑆

𝐷 (1 − 𝑀2)𝜑∗𝑖 𝜑 𝑗d𝑆
[
𝑢𝑟𝑗 − 𝑢𝑙𝑗

]
=

i
𝜔

∫
Λ

𝐷2

𝑍𝑟

(
𝑈𝜑 𝑗𝑢

𝑟
𝑗 +

(
𝑉
𝜕𝜑 𝑗

𝜕𝑟
+ i𝜔𝜑 𝑗

)
𝜙𝑟𝑗

)
𝜑∗𝑖 (n × V) · dΛΛΛ

+ i
𝜔

∫
Λ

𝐷2

𝑍 𝑙

(
𝑈𝜑 𝑗𝑢

𝑙
𝑗 +

(
𝑉
𝜕𝜑 𝑗

𝜕𝑟
+ i𝜔𝜑 𝑗

)
𝜙𝑙𝑗

)
𝜑∗𝑖 (n × V) · dΛΛΛ.

(2.32)

Finally, the admittance jump across the impedance discontinuity can be found:

𝑌 𝑙 =

(
A −N 𝑙

)−1 (
P 𝑙 − P𝑟 + (A − N 𝑟)𝑌 𝑟

)
, (2.33)

with

A𝑖 𝑗 =

∫
𝑆

𝐷 (1 − 𝑀2)𝜑 𝑗𝜑∗𝑖 d𝑆,

(N 𝑟/𝑙)𝑖 𝑗 =
1
i𝜔

∫
Λ

𝐷2𝑉𝜏

𝑍𝑟/𝑙
𝑈𝜑 𝑗𝜑

∗
𝑖 dΛ,

(P𝑟/𝑙)𝑖 𝑗 =
1
i𝜔

∫
Λ

𝐷2𝑉𝜏

𝑍𝑟/𝑙

(
i𝜔𝜑 𝑗 +𝑉

𝜕𝜑 𝑗

𝜕𝑟

)
𝜑∗𝑖 dΛ,

(2.34)

and where 𝜙𝜙𝜙𝑟/𝑙 and u𝑟/𝑙 refer to the amplitudes of the acoustic potential and the acoustic axial
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velocity at 𝑥𝑑 ± 𝛿, u𝑟 = 𝑌 𝑟𝜙𝜙𝜙𝑟 and u𝑙 = 𝑌 𝑙𝜙𝜙𝜙𝑙 .

2.1.9.4 Computation

In practice, when a liner is applied from an axial position 𝑥1 to 𝑥2 three multimodal com-
putations are done for the admittance: one after the liner 𝑥 ∈ [𝑥2, 𝑥𝑒], one in the liner region
𝑥 ∈ [𝑥1, 𝑥2] and the last one before the liner 𝑥 ∈ [𝑥𝑠, 𝑥1]. The admittance jump condition of
Equation (2.33) is used between each part. Then, the potential is computed in the opposite
direction as previously.

2.2 Flow multimodal formulation

It is interesting to note that solving the acoustic propagation Equation (2.2a) for𝜔 → 0,𝑚 = 0
and V = 0 amounts to solving Equation (2.1a) for the potential mean flow, with 𝜙 replaced by Φ.
In this section, we show how to apply the multimodal method developed for acoustic propagation
to calculate the mean flow. The same procedure as for the acoustic calculation is followed, but
with two important differences, described in the next sections.

2.2.1 Iterative procedure

An iterative procedure is required because Equation (2.1a) is non-linear due to the dependence
of the mean density 𝐷 on the velocity potential Φ, as defined by (2.1b). Starting from an initial
value for the density, we solve Equation (2.2a) using the same multimodal method as above to
calculate the mean velocity potential and axial velocity. A new density field 𝐷 is then calculated
using (2.1b). This process is repeated until the change in 𝐷 between two iterations is smaller
than a chosen threshold.

2.2.2 Inflow condition

The other specificity for using the multimodal method for computing the mean flow lies
in the definition of the inflow condition. Indeed, a problem arises when we need to define an
admittance at the exit where we consider a constant cross-section duct end. The analogy with
the acoustics shows that the first eigenvalue associated with the mean flow potential and mean
flow axial velocity is 𝜆 = 0. Equation (2.15) then indicates that the mean flow potential is not
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proportional to the mean flow axial velocity. Consequently, the Equation (2.15) cannot be used
as such anymore.

To address this limitation, we propose representing the mean flow in the constant duct end
as a combination of a mean value 𝑈0 and perturbations that vary exponentially. In such a duct,
the vector of mean flow axial velocity coefficients is therefore written:

U(𝑥) = 𝑈0w𝑈
0 +

∑︁
𝑖≠0

𝛼𝑖w𝑈
𝑖 𝑒

𝜆𝑖𝑥 , (2.35)

where 𝜆𝑖 ∈ R∗. The term of w𝑈
0 associated with 𝜑0 is 1 and all the other ones are equal to zero.

This implies that Φ writes:
ΦΦΦ(𝑥) = 𝑈0wΦ

0 +
∑︁
𝑖≠0

𝛼𝑖wΦ
𝑖 𝑒

𝜆𝑖𝑥 , (2.36)

where the term of wΦ
0 associated with the mode 𝜑0 is 𝑥 + 𝑐Φ, with 𝑐Φ a constant. At the exit, this

term equals 𝑥𝑒 + 𝑐Φ.
By noting that the flow perturbations cannot increase in a constant cross-section duct, and

therefore by only selecting the eigenvalues associated with exponentially decreasing perturba-
tions, the exit boundary condition for the admittance is:

𝑌𝑒 = 𝑊
𝑈
+ (𝑊Φ

+ )−1. (2.37)

When the method is used to compute the mean flow, the admittance matrix plays a double
role at the duct exit. On the one hand, it sets the potential constant 𝑐Φ, and on the other hand, it
avoids spurious reflections.

With this value, it is possible to find the admittance everywhere inside the duct using the
standard Magnus–Möbius scheme. Unfortunately, the technique to stabilize this scheme for
high-order modes (see Section 2.1.8) cannot be used for the flow since the matrix Ω𝑛 is not
diagonalizable.

2.3 Validation for axisymmetric cases

2.3.1 Engine geometry

Within the framework of this thesis, our focus is directed towards the engine’s intake.
Initially, the plan was to adopt an UHBR engine, aligning with the thesis’s aim to develop
models applicable to this type of geometry. However, the novelty of these configurations has
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limited their availability in existing literature. As a result, an alternative choice has been made,
and a geometry that has undergone extensive study is taken: the CFM56 engine [64, 14, 83, 86,
69, 12].

Throughout the whole thesis, we consider the engine to be axisymmetric, so its geometry
is entirely defined by the spinner radius 𝑅1 and the nacelle radius 𝑅2. A representation of the
engine inlet walls variation can be found in [12]:

𝑅1(𝑥) = max
(
0, 0.64212 −

(
0.04777 + 0.98234(𝑥/𝐿)2

)0.5
)
,

𝑅2(𝑥) = 1 − 0.18453(𝑥/𝐿)2 + 0.10158
e−11(𝐿−𝑥)/𝐿 − e−11

1 − e−11 ,

0 ≤ 𝑥 ≤ 𝐿, and 𝐿 = 2.

(2.38)

The fan is located at the axial position 𝑥 = 0 and the duct exit is at 𝑥 = 𝐿. For test cases with a
liner, a constant impedance 𝑍2 = 2 − i is applied between 𝑥 = 0.2 and 𝑥 = 1.8 at the tip.

2.3.2 Two dimensional validation tool

In this thesis, we used the Python Finite Elements (PFE) [87] code developed by Gwénaël
Gabard for validation purposes. This code computes both the steady potential flow and the
acoustic field. The solver is based on a weak formulation of Equations (1.9) and (1.13) over
a volume 𝑉𝑙 bounded by a surface 𝑆. In this solver, the lined wall boundary condition is also
implemented using the Myers formulation [35]. For the injection/exit boundary conditions, a
representation over transverse hard walled modes is used, which allows to specify the incoming
mode and to avoid any spurious reflection on the source/exit plane. Quadratic elements (6-node
triangles) are used to represent the solutions.

The acoustic potential field is interpolated on an unstructured, triangular mesh generated
using Gmsh [88]. The terminal plane needs to be located far enough from regions of non-
uniformities. Therefore, the duct is extended by 0.5 to have an exit condition where the flow can
be assumed uniform. When using the FEM solver, there is also a need to refine the sharp edges
and the liner discontinuities to have an accurate solution. For all presented test cases, a mesh
convergence study is performed to evaluate if the acoustic field is accurately represented. An
example mesh is shown in Figure 2.3.
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- Acoustic injection
- Mean flow potential
value

Liner discontinuities
Sharp edge

Sharp edge

- None reflective acoustic
boundary condition
- Mass flow

Figure 2.3 – Example of mesh used for computations with the PFE solver (under-meshed for the
sake of visibility).

2.3.3 Validation methodology

2.3.3.1 Convergence computation

For a given two-dimensional variable 𝑓 (𝑥, 𝑟), we define the variable 𝑓p referring to the
approximation obtained using the multimodal method with 𝑝 polynomials. The error of the
method is defined as:

𝜖𝑝 =
©«
2𝜋

∫ 𝑅2
𝑅1

∫ 𝐿

0 | 𝑓p − 𝑓ref |2𝑟d𝑥d𝑟

2𝜋
∫ 𝑅2
𝑅1

∫ 𝐿

0 | 𝑓ref |2𝑟d𝑥d𝑟
ª®¬

1/2

, (2.39)

where 𝑓ref is the reference solution obtained using the FEM solver [87] with a fine grid and where
the integration is performed over the meridional plane (see geometry definition in Section 2.3.1).
For the flow calculations, the error is calculated for the axial velocity, and for the acoustic results,
the error is calculated for the pressure amplitude.

2.3.3.2 Axial discretization

The multimodal method involves a numerical integration along the 𝑥 axis to calculate
both the admittance matrix and the potential field. Identifying a robust criterion to define the
number of points in the axial direction is important to achieve a trade-off between accuracy and
computational efficiency. For this purpose, we define a density, 𝐷𝑒𝑥 , as the number of points
per acoustic wavelength of the highest-order cut-on mode. In the case where no cut-on mode
is present inside the duct, 𝐷𝑒𝑥 is the number of points per characteristic length of decay of the
most evanescent mode. However, we have to ignore non-physical high-order modes since they
are highly evanescent and would lead to a dramatically oversampled mesh. Therefore, we only
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consider the first two-thirds of the modes, which is considered a good criterion for physical
modes [65].

The eigenvalues computed at the duct exit are chosen to define the number of axial grid
points 𝑁𝑥:

𝑁𝑥 = 𝐷𝑒𝑥𝜆𝑐ℎ𝑜𝑠𝑒𝑛𝐿, (2.40)

where 𝜆𝑐ℎ𝑜𝑠𝑒𝑛 corresponds to the chosen eigenvalue. In the rest of this chapter, we use 𝐷𝑒𝑥 = 1
and a second order modified Magnus–Möbius scheme [76, 82].

2.3.4 Flow results

To validate the computation of the mean flow, three test cases are considered, with a low,
medium and high velocity defined at the fan face by 𝑀𝑠 = −0.2, −0.4 and −0.6, respectively. For
each of these cases, the number of Chebyshev polynomials is varied: 𝑝 = 3, 6 or 9. The results
are shown in Figure 2.4. While three polynomials are not sufficient to accurately represent the
mean flow, a good representation of the flow can already be achieved with only six polynomials.
With nine polynomials, the agreement is excellent. The areas where the accuracy is reduced are
near the sharp corners along the duct walls, which are located at the transition from the spinner
to the duct axis near (𝑥 = 1.25), and at the exit of the duct (𝑥𝑒 = 2), where a straight duct is used
for the exit condition. At these points, the flow velocity tends to zero to satisfy the wall boundary
condition, which results in strong local gradients in the solution. Yet, these localized losses of
accuracy do not impact the rest of the solution, and the method is able to compute the mean flow
accurately even with a limited number of polynomials. The results in Figure 2.4 also indicate
that the required number of polynomials does not depend on the specified Mach number value,
since there is no visible loss of accuracy when increasing it. The difference, which is not visible
in the graph, is the number of iterations required to converge to the solution of the non-linear
Equation (2.1a). For the low-velocity case, only three steps are required to reach a converged
solution (with a tolerance of 10−5), while five steps are needed for the medium-velocity case
and seven for the high-velocity case. This is expected, since compressible effects become more
significant as the Mach number increases.

Figure 2.5 presents a convergence analysis using the FEM computations as the reference
solutions. The number of polynomials used in the multimodal method is varied between 1 and
50. The results confirm the qualitative observations based on Figure 2.4. Firstly, an accurate
representation of the flow can be obtained even with a small number of polynomials. For example,
with just nine polynomials, the relative error is only 𝜖𝑝 ≃ 6×10−4. Secondly, the specified Mach
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(a) 𝑀𝑠 = −0.2 (b) 𝑀𝑠 = −0.4

(c) 𝑀𝑠 = −0.6

3 polynomials
6 polynomials
9 polynomials
Reference

Figure 2.4 – Contours of normalized axial velocity, overlaid on the reference FEM solution, for
varying numbers of polynomials.

number only has a small influence on the accuracy.
To provide an indication of the computational cost of the flow calculations with the mul-

timodal method (based on the Python implementation), we report the CPU time for a single
iteration needed to solve Equation (2.1a). With five polynomials, the time is 0.09 seconds, with
ten polynomials it is 0.25 seconds, with twenty polynomials it is 0.97 seconds, and it is 7.2
seconds with fifty polynomials. While the method is advantageous with a small number of poly-
nomials, the calculation time increases rapidly as the number of polynomials increases. Still, the
multimodal method can provide useful results with reasonably low computational times.

2.3.5 Hard walled acoustic results

For the acoustic computation, the higher the velocity, the worse the conditioning of the Mag-
nus. Therefore, the high-velocity calculation (𝑀𝑠 = −0.6) is used for the acoustic calculations.
Forty polynomials are used for the flow computations to prevent the numerical error on the
flow from affecting the acoustic calculations. Note that axial grid points used in the multimodal
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Figure 2.5 – Relative error on the axial velocity field as a function of the number of polynomials
used in the multimodal method for three specified velocities.

calculations of the mean flow might differ from those used in the multimodal calculation of the
sound field. For this purpose, it is preferable to interpolate the vectorsΦΦΦ(𝑥) and U(𝑥) introduced
in Section 2.2 for the mean flow calculation onto the axial grid points needed for the acoustic
calculation (instead of interpolating directly the flow fields such as𝑈 (𝑥, 𝑟)).

To analyse the acoustic response, we first perform a qualitative test by analyzing contour
maps of the sound pressure levels (SPL) defined as:

𝑆𝑃𝐿 = 20 log10

( 𝑝𝑅𝑀𝑆

2 × 10−5

)
, (2.41)

where 𝑝𝑅𝑀𝑆 is the root mean square pressure. In the case of a single frequency signal, 𝑝𝑅𝑀𝑆 =√
2|𝑝 |, where |𝑝 | is the pressure amplitude. This is done for a mode (𝑚, 𝑛) = (13, 1) at 𝜔 = 20

and 𝜔 = 30, and for the modes (𝑚, 𝑛) = (1, 1) and (𝑚, 𝑛) = (13, 3) at 𝜔 = 20. These modes
include a case where the injected mode encounters a transition from cut-on to cut-off inside the
duct ((𝑚, 𝑛) = (13, 3)) and cases where the injected modes are far from modal transitions (all
other modes). A unit value is specified for the outer wall pressure of the incoming wave at the
source location for all cases. The SPL contours inside the duct are calculated for each case with
the FEM, in order to have a reference solution, and with the multimodal method with various
numbers of polynomials 𝑝 = 10, 15 and 25. The results are shown in Figure 2.6.

When the mode (13, 1) is injected at 𝜔 = 20, even with 10 polynomials, the agreement is
already good for SPL between 50 and 110 dB, but the agreement remains poor for low SPL.
With 15 or 25 polynomials, the agreement is excellent for all SPL shown in the graph. It should
be noted that it is in the regions where the flow speed is higher (𝑥 ∈ [1.8, 2]) that the precision is
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(a) (𝑚, 𝑛) = (1, 1) at 𝜔 = 20

(b) (𝑚, 𝑛) = (13, 1) at 𝜔 = 20 (c) (𝑚, 𝑛) = (13, 3) at 𝜔 = 20

(d) (𝑚, 𝑛) = (13, 1) at 𝜔 = 30

10 polynomials
15 polynomials
25 polynomials
Reference

Figure 2.6 – Contours on sound pressure levels, overlaid on the reference FEM solution, for
different numbers of polynomials.

the lowest. Similar conclusions can be made for the higher radial order mode (13, 3). When the
frequency is increased for the azimuthal mode (𝑚, 𝑛) = (13, 1), the agreement is degraded. With
10 polynomials, the pressure field is inaccurate everywhere in the duct. With 15 polynomials, the
agreement improves markedly, and for high SPL values, the agreement is acceptable. With 25
polynomials, the agreement is once again excellent. As expected, more polynomials are needed
when increasing the frequency since the number of cut-on modes also increases.
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Figure 2.7 – Error of the acoustic pressure field as a function of the number of polynomials used.

To further confirm these qualitative observations, we perform a convergence analysis by
plotting, in Figure 2.7, the relative error on the amplitude of acoustic pressure as a function
of the number of polynomials. We consider the influence of the azimuthal mode order, the
frequency, as well as the first three radial orders. It is important to note that we exclude cases in
which the mode is strongly cut-off at the source plane since their strong decay is hard to compute
accurately using the FEM. We first consider the azimuthal mode 𝑚 = 1 for a wide range of
polynomials. We observe that the convergence graphs can be divided into three parts for this
mode. First, a pre-asymptotic region where the error is almost equal to 100% and where including
further polynomials does not modify the error. Then a sharp decay region, where the convergence
is almost exponential (typical of a spectral method), is obtained. Lastly, a slower convergence
is observed. The authors assume that this last region is linked to the axial discretization, and
that the observed convergence rate is related to the order of the Magnus–Möbius scheme. Note
that for the frequency 𝜔 = 5, the pre-asymptotic behaviour is not observed mainly because very
few polynomials are necessary to accurately represent the acoustic field. For the radial order
𝑛 = 3 at the same frequency, the error decreases more sharply than for the other radial orders
for a low number of polynomials 𝑝 < 10, before converging again with the previously observed
convergence rates. One explanation for this behaviour is that the Magnus–Möbius scheme is
highly adapted to compute cut-off modes. Therefore the convergence rate at the beginning
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corresponds to the improvement in the representation of the radial mode 𝑛 = 3. After that,
the convergence is more linked to the representation of the radial modes 𝑛 = 1, 2 (which are
cut-on). In fact, the 𝑛 = 3 will create radial modes 𝑛 = 1, 2 by modal scattering. Therefore,
the convergence rate after the strong decay is the one of these newly created modes. When the
azimuthal mode order increases (𝑚 = 13 and 𝑚 = 25), all the observations made before remain
true except for the size of the pre-asymptotic region. The decrease starts further (compared to the
distance to a modal transition) in the graph since a higher azimuthal mode means that the acoustic
field is mainly concentrated near the tip wall, and higher-order polynomials are necessary to
represent it. However, the error remains small even with a limited number of polynomials. In
fact, for all frequencies and radial orders, the error is less than 0.1% with 30 polynomials.

Next, to assess the effectiveness of the stabilization proposed for the Magnus–Möbius scheme
in Section 2.1.8, we compare the conditioning of the matrices that need to be inverted for both the
standard and improved schemes: namely, (𝐸1+𝐸2𝑌 ) for the standard scheme and (𝐼𝑑 +𝑃−𝑅𝑃−1

+ )
for the improved scheme. We consider two cases: the mode (𝑚, 𝑛) = (13, 1) at 𝜔 = 20 and the
mode (𝑚, 𝑛) = (1, 1) at 𝜔 = 30 (both cases use 40 polynomials). The conditioning does not
depend on the axial discretization with the modified scheme, while it is highly sensitive to it in
the standard scheme. Therefore, to evaluate the improvement brought by the new formulation,
four axial integration steps are used with the standard scheme: 𝐷ex = 0.5, 1, 2, 10. The results
are shown in Figure 2.8. As expected, the conditioning of the improved scheme is better than the
one of the standard scheme almost everywhere. Some peaks appear in both formulations near
axial positions where modal transitions occur (cut-on to cut-off, or vice versa). The conditioning
of the matrix (𝐸1 + 𝐸2𝑌 ) is the worst near the exit region (𝑥 = 2) where the duct radius varies
rapidly. In this region, the proposed stabilized scheme improves the conditioning by several
orders of magnitudes.

Finally, we report the computational time required for each calculation. These are measured
using a Python implementation of the multimodal method running on a desktop computer. The
CPU time is not given for each calculation, but instead we provide a range of runtimes, from the
shortest to the longest runtimes for a fixed number of polynomials. With five polynomials, the
runtime ranges from 0.02 to 0.9 seconds, while with ten polynomials, it ranges from 0.09 to 3
seconds. Similarly, with twenty polynomials, the runtime ranges from 0.5 to 7 seconds, and with
forty polynomials, it ranges from 1.5 to 33 seconds. It is important to note that unlike for the flow
calculations in Section 2.3.4, the computational time for a given number of polynomials varies
significantly depending on the studied mode and frequency since they influence the number of
points in the axial direction. Note that the criterion defined for 𝐷𝑒𝑥 is rather conservative, and
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(a) 𝑚 = 1 (b) 𝑚 = 13

Figure 2.8 – Conditioning of the matrix to invert in the Magnus–Möbius scheme with the
standard and improved formulation.

sufficiently accurate results can be obtained with smaller values of 𝐷𝑒𝑥 .

2.3.6 Lined acoustic results

Test cases with a liner are now performed to validate the developed method for such cases.
The same flow is considered as for the hard walled test cases. It should be recalled that when
there is an impedance discontinuity along the wall, the jump condition derived in Section 2.1.9 is
used. For the three multimodal computations (see Section 2.1.9) the density criterion 𝐷𝑒𝑥 is used
in each region, leading to different axial discretizations. Contours of the sound pressure levels
in the duct are given in Figure 2.9. All the conclusions made for the hard walled cases remain
valid, and an additional observation can be noted. At the junctions between hard and lined walls,
the jump in surface impedance induces sharp gradients in the acoustic velocity potential, and
hence large jumps in the acoustic pressure. This type of weak singularity is difficult to capture
with a spectral method [89] such as the multimodal method. It is therefore expected that the
rate of convergence of the numerical model will be reduced when compared to the hard walled
test cases. To mitigate this, in the presence of a liner, high-order polynomials are required to
accurately represent the large pressure gradients near the end points of the liner. This effect is
relatively weak for the first liner discontinuity at 𝑥 = 0.2, but is clearly visible at 𝑥 = 1.8.

Once again, a convergence study is performed, and the same flow condition and acoustic
modes as the ones used for the hard walled validation are taken. Figure 2.10 presents the results.
As expected, achieving a precision of 10−3 requires more polynomials than for the hard walled
case, and the convergence rate is lower. This slower convergence rate makes the method less
appealing for lined wall computations. It would be necessary to add supplementary modes to
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(a) (𝑚, 𝑛) = (1, 1) at 𝜔 = 20

(b) (𝑚, 𝑛) = (13, 1) at 𝜔 = 20 (c) (𝑚, 𝑛) = (13, 3) at 𝜔 = 20

(d) (𝑚, 𝑛) = (13, 1) at 𝜔 = 30

10 polynomials
15 polynomials
25 polynomials
Reference

Figure 2.9 – Contours of the sound pressure level in the lined duct, overlaid on the reference
FEM solution, for different numbers of polynomials.

address the singularities in the pressure field and avoid this slow convergence. Another key
observation is that the liner tends to smooth the convergence plots by decreasing the size of the
pre-asymptotic region, and for the most difficult hard walled cases (𝜔 = 30), the error goes faster
to a value of 10−2. This could be due to the fact that the method captures well the attenuation
of the liner with few polynomials (𝑝 < 20), even if the prediction of the pressure singularity
is erroneous. These singularities also pose problems with finite element methods, where it is
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Chapter 2 – General multimodal method for flow and acoustic calculation

Figure 2.10 – Error on the acoustic pressure field as a function of the number of polynomials
used with a lined wall boundary condition.

necessary to refine the region around them. Note that the calculation times required by the
multimodal method are similar to the ones obtained for the hard walled test cases.

2.3.7 Criteria for defining the numerical parameters

In the previous section, we used a criteria 𝐷𝑒𝑥 = 1 for the computations. This induced
over-meshed computations, but it was taken to achieve accurate comparisons with the FEM
results. Now, the question arises as to how the multimodal parameters can be adjusted to obtain
less accurate but computationally less demanding calculations. Hence, the objective of this
section is to identify appropriate values of 𝐷𝑒𝑥 (mesh discretization) and 𝑝 (polynomial order)
for a specific geometry. By determining optimal values of these parameters, we can have a
balance between computational efficiency and acceptable accuracy in the calculations. In order
to evaluate the effect of the number of polynomials independently from the axial discretization,
the duct is intentionally over-meshed at first while the number of polynomials is varied. For this
purpose, a range of azimuthal mode orders (𝑚 = 5, 10, 20, 40, 75, 100) and frequency bands are
considered, and the evolution of the number of polynomials required to achieve a precision of
10−2 is analyzed. The evolution of the number of polynomials with respect to frequency and the
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highest cut-on radial order is plotted in Figure 2.11. It is observed that the error varies linearly
with frequency. For a given azimuthal mode order, the higher the frequency, the greater the
number of polynomials required. This is due to the fact that higher radial modes are cut-on, and
they need more polynomials to be accurately represented as they exhibit greater radial variation.
Similarly, when increasing the azimuthal order the energy is shifted towards the tip, and higher
polynomial orders are necessary for accurate representation. The second graph indicates that the
variation with the highest radial cut-on mode order 𝑛𝑚𝑎𝑥 is also linear, and seems to follow the
dashed curves defined by 𝑝𝑛𝑒𝑒𝑑𝑒𝑑 = 2 × (𝑛𝑚𝑎𝑥 + 2) + 0.1 × 𝑚.

(a) Frequency evolution (b) Radial order evolution

Figure 2.11 – Number of polynomials needed to reach an error of 1% on the pressure field.

The same procedure can be applied to the axial density parameter 𝐷𝑒𝑥 . However, since this
parameter is continuous, the error can be analyzed as a function of the axial density chosen.
For this purpose, four azimuthal modes are considered (𝑚 = 5, 40, 75, 100) over a range of
frequencies, and the axial density is varied from 10−2 to 2. The resulting evolution of the error
with respect to the axial density is shown in Figure 2.12. Unlike the number of polynomials in
the radial direction, there is little impact from the frequency or azimuthal mode order. In almost
all cases, an axial density of 𝐷𝑒𝑥 = 0.25 is sufficient to achieve an error of 1%, while an axial
density of 𝐷𝑒𝑥 = 1 is sufficient to achieve an error of 0.1%. Note that the blue curve exhibits a
different behaviour. It is due to the fact that no cut-on modes are present at this frequency, so
the mesh discretization criterion is not the same as for the other cases (see Section 2.3.3.2).

To assess the effectiveness of the Magnus scheme modification, we replicate the previous
graph using the original Magnus method instead of the proposed one. In cases where the method
failed, we assigned a value of 100% to the error. The results are presented in Figure 2.13. For
the mode 𝑚 = 5, the interest of the proposed method is not obvious since the convergence graph
exhibits almost the same behaviour as the one obtained before. Moreover, when the computation
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(a) 𝑚 = 5 (b) 𝑚 = 40

(c) 𝑚 = 75 (d) 𝑚 = 100

Figure 2.12 – Error on the pressure field as a function of the axial density using the improved
Magnus scheme.

works, the standard scheme is almost 1.5 times faster than the proposed method since it does
not require costly eigenvalue calculations. However, for the mode 𝑚 = 40, the standard scheme
fails almost everywhere, and the convergence is recovered only from 𝐷𝑒𝑥 = 2. Finally, for the
last two modes, 𝑚 = 75 and 𝑚 = 100, the standard scheme fails again everywhere for these
discretizations, and higher 𝐷𝑒𝑥 are needed to recover acceptable results. This highlights the
benefits of the proposed scheme, which had no trouble performing those calculations.

2.4 Conclusion

A novel multimodal method for computing the acoustic field in a duct with a general potential
mean flow has been formulated. The acoustic field is solved by representing the acoustic variables
onto Fourier functions and Chebyshev polynomials. However, this representation introduces non-
physical modes that can lead to stability issues. To address this, a modification of the Magnus–
Möbius scheme has been proposed. This modification successfully avoids the stability problems
associated with the non-physical modes and allows for a more relaxed axial discretization. A
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(a) 𝑚 = 5 (b) 𝑚 = 40

(c) 𝑚 = 75 (d) 𝑚 = 100

Figure 2.13 – Error on the pressure field as a function of the axial density using the standard
Magnus scheme.

procedure has also been added to deal with liner discontinuity. In addition, the method has been
adapted to compute the mean flow in the duct by modifying the multimodal boundaries and
performing an iterative process on the density. Finally, the proposed method has been compared
against a finite-element solution on a model of a turbofan inlet duct without and with lined walls
over a wide range of frequencies. The results show excellent agreement between the multimodal
method and the FEM reference solution, indicating the high efficiency of the proposed method
for in-duct flow and acoustic computations. It is worth noting that the method’s accuracy is
good even with a limited number of polynomials which makes it very fast. For example, the
computations generally take few seconds to reach an error of 1%.
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Chapter 3

FORMULATION WITH A MULTIPLE-SCALE

FLOW AND THE STUDY OF MODAL

TRANSITION

The previously introduced admittance multimodal method proves efficient for performing in-
duct flow and acoustic calculations. However, it is hard to distinguish the 1D mode propagation
from the 2D modal scattering. Making such a distinction becomes particularly attractive in
investigating transition phenomena. Transition phenomena are inherently 1D and intricately
linked to the propagation of a single mode.

Considering the computation of in-duct acoustic propagation in the presence of mean flow,
it is possible to introduce simplifications into the flow analysis, especially when dealing with
slowly varying geometries. In this context, employing multiple-scale assumptions, as done in
WKB methods [64], to establish a simplified flow can be interesting. It is shown that with
this flow, it becomes possible to separate the mode propagation effect from modal scattering
phenomena within the multimodal method. As a result, this flow appears appealing to study
transition phenomena.

Therefore, we use the previous acoustic multimodal formulation but with a multiple-scale
flow. This formulation is developed in Section 3.1. With this simplification, all the integrals
are known analytically. This method is then evaluated against WKB results and validated using
FEM computations. The model is shown to behave well near transition phenomena and is used to
study the case where the injected mode encounters multiple turning points in a duct with slowly
varying geometry and in the presence of mean flow. The case where two of such turning points
arise in the duct due to radius variations is studied in Section 3.2. In order to further validate the
model and to gain insights on the impact of neglecting modal scattering, an extension to WKB’s
approach to address acoustic propagation in ducts with multiple transitions is also presented.
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3.1 Multimodal formulation with a multiple scale potential
flow

3.1.1 Development of the formulation

The present section uses the admittance multimodal method previously developed to calculate
acoustic fields in axisymmetric ducts, considering a multiple scale flow. This extension allows
for the incorporation of first-order effects related to both convection and flow-induced scattering
mechanisms at a lower computation cost.

3.1.1.1 Multiple-scale flow

The multiple-scale flow has already been presented in the Section 1.3.3 but the main idea
to construct this flow is recalled here and adapted to the ciruclar/annular case. The objective is
to find a formulation of the flow in the slowly varying duct. We begin by defining the slowly
varying axial coordinate 𝑋 = 𝜖𝑥, where 𝜖 is a small parameter. The mean flow equations are
solved by assuming that the geometry and axial mean flow vary slowly with the axial coordinate
𝑋 . Noting that 𝜕𝐴/𝜕𝑥 = 𝜖𝜕𝐴/𝜕𝑋 + 𝑂 (𝜖2) for any slowly-varying variable 𝐴, a reasoning on
orders of magnitude then shows that the flow variables take the form [64]:

V(𝑋, 𝑟, 𝜃; 𝜖) = 𝑈0(𝑋)e𝑥 + 𝜖𝑉1(𝑋, 𝑟, 𝜃)e𝑟 +𝑂 (𝜖2),
[𝐷, 𝑃, 𝐶] (𝑋, 𝑟; 𝜖) = [𝐷0, 𝑃0, 𝐶0] (𝑋) +𝑂 (𝜖2),

(3.1)

where:

1
2

(
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2
1)

)2

+ 1
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2 − 𝑅

2
1)

+𝑂 (𝜖2),

𝑃0 =
1
𝛾
𝐷
𝛾

0 , (3.2)
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3.1. Multimodal formulation with a multiple scale potential flow

with 𝐸 and 𝐹 two constants (Bernoulli’s constant and the cross-sectional mass flow rate, respec-
tively).

3.1.1.2 Modified wave equation

The goal is here to find expressions of the matrices 𝐴11, 𝐴12, 𝐴21, 𝐴22, 𝑀11, 𝑀12, 𝑀21 and
𝑀22 of Equation (2.11) in this simplified case. A first idea would be to start from these matrices
and inject the previous flow expressions into our equations. But we prefer here to start again
from the Goldstein propagation Equation (1.13) and to use the flow expressions of Equation (3.2)
to write all the matrices in such a way that we can distinguish the modal scattering from the
mode self-propagation. Using the flow expressions and keeping only the first-order terms in the
Goldstein propagation Equation (1.13) yields 1:

𝜕

𝜕𝑥

(
(1 − 𝑀2

0 )𝑢
)
=

(
−Δ⊥ −

(
𝜔

𝐶0

)2
− 2i𝜖
𝐶3

0

d𝐶0
d𝑋

𝜔𝑈0 + 2i𝜔
𝜖𝑉1

𝐶2
0

𝜕

𝜕𝑟

)
𝜙

+
(
2i
𝜔𝑈0

𝐶2
0

+ 2
𝜖𝑈0𝑉1

𝐶2
0

𝜕

𝜕𝑟

)
𝑢 +𝑂 (𝜖2𝜔2𝑈0)

(3.3)

As for the boundary condition (1.15) it can be written:

i𝜔(∇𝜙 · n𝑖) = −
(
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𝜕
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𝑢
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0
𝜕𝑢

𝜕𝑥
+𝑂 (𝜖2𝜔2𝑈0).

(3.4)

3.1.1.3 Multimodal approach

The acoustic potential and its derivative are projected on basis functions, but they are consid-
ered to vary slowly in the duct such that 𝜙 =

∑
𝑗 𝜙 𝑗 (𝑥)𝜑 𝑗 (𝑋, 𝑟, 𝜃) and 𝑢 =

∑
𝑗 𝑢 𝑗 (𝑥)𝜑 𝑗 (𝑋, 𝑟, 𝜃)

respectively. The weak formulation of Equation (3.3) is written:∫
𝑆

𝜑∗𝑖
𝜕

𝜕𝑥

(
(1 − 𝑀2

0 )𝑢
)

d𝑆 =

1. The remaining terms are of order 𝜖2, but we want to highlight the mean flow velocity and the frequency
scaling (valid for 𝜔 > 1).

69



Chapter 3 – Formulation with a multiple-scale flow and the study of modal transition

∫
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with 𝑘0 = 𝜔/𝐶0. The equation is transformed by using the mass conservation equation and the
projection of 𝜙 and 𝑢 over the basis (𝜑 𝑗 ) 𝑗∈N and becomes:
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Then, the second Equation (2.9) of the multimodal formulation becomes:∫
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This leads to new equations governing the axial variation of the vectors (𝜙𝜙𝜙, u):(
𝐴11 0
0 𝐴22

)
d
d𝑥

(
𝜙𝜙𝜙

u

)
=

(
𝑀11 𝑀12

𝑀21 𝑀22

) (
𝜙𝜙𝜙

u

)
+𝑂 (𝜖2𝜔2𝑈0), (3.8)

with:

𝐴11 = 𝑀12 = (1 − 𝑀2
0 )𝐺0,

𝐴22 = (1 − 𝑀2
0 )𝐺0 +

i𝐷0
𝜔
𝑈2

0𝐿0,

𝑀11 = −𝜖 (1 − 𝑀2
0 )𝑆0,

𝑀21 = 𝐺1 − 𝑘2
0𝐺0 + i𝑘0𝜖

(
−𝑀0

((
1
𝑆

d𝑆
d𝑋

+ 2
𝐶0

d𝐶0
d𝑋

)
𝐺0 −

d
d𝑋

(𝐺0)
)
+ ((𝑆1 − 𝑆∗1) − 𝑀0(𝑆0 + 𝑆∗0))

)
− i𝐷0

𝜔

(
−𝜔2𝐿0 + 𝜖

(
i
𝑈0
𝐷0

d𝐷0
d𝑋

𝜔𝐿0 + i𝑈0𝜔𝐿1 + 2i𝜔𝐿2 − i𝜔𝐿3

))
, (3.9)

𝑀22 = 2i𝑘0𝑀0𝐺0 + 𝜖
(
(1 − 𝑀2

0 )𝑆
∗
0 −

d
d𝑋

(
(1 − 𝑀2

0 )𝐺0

)
+ 𝑀0(𝑆1 − 𝑆∗1) −

𝑀2
0
𝑆

d𝑆
d𝑋

𝐺0

)
70



3.1. Multimodal formulation with a multiple scale potential flow

− i𝐷0
𝜔

(
2i𝜔𝑈0𝐿0 + 𝜖

(
𝑈2

0𝐿4 −
𝑈2

0
𝑆

d(𝑆)
d𝑋

𝐿0 +𝑈2
0𝐿1 + 2𝑈0𝐿2 −𝑈0𝐿3

))
.
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∫ 2𝜋

0

(
𝑅2/𝑍2

(
𝜑∗𝑖
𝜕𝜑 𝑗

𝜕𝑋

)����
𝑟=𝑅2

+𝑅1/𝑍1

(
𝜑∗𝑖
𝜕𝜑 𝑗

𝜕𝑋

)����
𝑟=𝑅1

)
d𝜃.

The matrices (𝐿0, 𝐿1, 𝐿2, 𝐿3, 𝐿4) are associated with the radial boundary conditions and charac-
terize the attenuation due to the liner. In the case of a hard walled duct, all these matrices vanish.
It is important to note that the terms that have been neglected scale like 𝑈0𝜔

2. This means that
the higher the mean velocity and the frequency, the worse the expected results.

3.1.1.4 Multimodal calculation

For the axial integration, the classical procedure of Chapter 2 is used with our improved
Magnus–Möbius scheme. The only difference stands in the exit boundary condition where the
eigenvalue problem is simplified. It writes:

i𝜆𝑖

(
𝐴11 0
0 𝐴22

) (
w𝜙

𝑖

w𝑢
𝑖

)
=

(
0 𝑀12

𝑀21 𝑀22

) (
w𝜙

𝑖

w𝑢
𝑖

)
, (3.11)

with:

𝐴11 = 𝑀12 = (1 − 𝑀2
0 )𝐺0, 𝑀21 = 𝐺1 − 𝑘2

0𝐺0 + i𝐷0𝜔𝐿0, (3.12)
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𝐴22 = (1 − 𝑀2
0 )𝐺0 +

i𝐷0
𝜔
𝑈2

0𝐿0, 𝑀22 = 2i𝑘0𝑀0𝐺0 + 2𝐷0𝑈0𝐿0.

3.1.1.5 Transverse mode basis

If an arbitrary basis is chosen for 𝜑 𝑗 , computing the matrices in Equation (3.8) is time-
consuming and the method would not bring a significant benefit compared to the general
multimodal method of Chapter 2. Therefore, it is important to use a basis leading to analytical
expressions for integrals in Equation (3.10).

Standard hard walled modes - Fourier-Bessel basis
Most multimodal studies [75, 77, 82, 80] use standard basis functions composed of local hard

walled transverse eigenmodes. For axisymmetric ducts, if we associate a pair (𝑚, 𝑛) ∈ (Z,N) to
each index 𝑗 (such that the basis functions 𝜑 𝑗 = 𝜑𝑚𝑛), these eigenmodes write:

𝜑𝑚𝑛 = 𝑁𝑚𝑛 [J𝑚 (𝛼𝑚𝑛𝑟) + Γ𝑚𝑛Y𝑚 (𝛼𝑚𝑛𝑟)] e−i𝑚𝜃 , (3.13)

with 𝛼𝑚𝑛 and Γ𝑚𝑛 defined in Section 1.3.1.1. The normalisation factor 𝑁𝑚𝑛 is:

𝑁𝑚𝑛 =

(
2𝜋

∫ 𝑅2

𝑅1

[J𝑚 (𝛼𝑚𝑛𝑟) + Γ𝑚𝑛Y𝑚 (𝛼𝑚𝑛𝑟)]2 𝑟d𝑟
)−0.5

. (3.14)

Using the integral properties of Bessel functions, the normalization factor can be found analyti-
cally:∫ 𝑅2

𝑅1

[J𝑚 (𝛼𝑚𝑛𝑟) + ΓY𝑚 (𝛼𝑚𝑛𝑟)]2𝑟d𝑟 =
1
2

(
𝑅2

2 −
𝑚2

𝛼2
𝑚𝑛

)
[J𝑚 (𝛼𝑚𝑛𝑅2) + ΓY𝑚 (𝛼𝑚𝑛𝑅2)]2−

1
2

(
𝑅2

1 −
𝑚2

𝛼2
𝑚𝑛

)
[J𝑚 (𝛼𝑚𝑛𝑅1) + ΓY𝑚 (𝛼𝑚𝑛𝑅1)]2.

(3.15)

For a hard walled duct, this basis has four major advantages:

1. analytical expressions for both (𝐺0)𝑖 𝑗 = 𝛿𝑖 𝑗 and (𝐺1)𝑖 𝑗 = 𝛼2
𝑖
𝛿𝑖 𝑗 are available;

2. it gives an analytical solution for the acoustic field in regions without scattering;

3. it is a complete basis [9], which means that any transverse shape can be recovered if a
sufficient number of modes is used;

4. the matrix 𝑊𝜙

1 is the identity matrix and the exit admittance matrix is a diagonal matrix
with the axial wavenumbers on the diagonal.
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3.1. Multimodal formulation with a multiple scale potential flow

However, this basis presents a major weakness which leads to slow convergence for hard
walled ducts: the derivatives of all the basis functions are equal to zero at the wall, whereas
the acoustic boundary condition imposes a non-zero derivative for the potential gradient for a
curved wall. Adding a non-physical supplementary Dirichlet mode (see Section 1.3.4) inside the
modal basis [79] allows to overcome this issue, but this is case-dependent.

With such a basis, the matrices defined above have a clear physical meaning. The matrices
𝐺0 and 𝐺1 are diagonal and represent the propagation in the straight parts of the duct (isolated
mode propagation). The matrices 𝑆0 and 𝑆1 have non-diagonal terms that are equal to zero only
when there is no wall variation and can therefore be related to geometrical/flow scattering. The
modal scattering can be artificially turned off by imposing that 𝑆0 and 𝑆1 are equal to zero. In
this case, all the matrices are diagonal and the modes do not interact (the method can thus be
referred to as multimodal without scattering).

It is worth noting that the multiple-scales approximation weakly impacts the self-propagation
terms since the neglected terms (𝑂 (𝜖2𝜔2𝑈0) related to scattering, referred to as flow-scattering
terms, are only present when there is a mean flow.

Fourier-Chebyshev basis

To overcome the limitations of standard hard walled modes, we can still use the polynomial
basis of the general admittance multimodal method of Chapter 2. When this is done, the
expressions of the matrices given in Equation (3.10) can be developed (see Appendix B) such
that all the integrals that remain are independent of frequency, flow, geometry and azimuthal
order, which is a major benefit of the chosen basis. These integrals only need to be computed
once and can then be stored, thus allowing for fast computations. Note that there is again no
possible coupling between different circumferential Fourier modes. Therefore we consider that
the value of the azimuthal order 𝑚 is fixed, and no distinction is made between 𝜑𝑚𝑝 and 𝜑𝑝. For
convenience, this basis is called Chebyshev basis in the following.

3.1.1.6 Impedance discontinuities

With the same methodology as the one used in Section 2.1.9, it is possible to find the jump
in the admittance matrix:

𝑌 (𝑥𝑙𝑑) =
((

1 − 𝑀2
0

)
𝐺0 −

𝐷0𝑈
2
0

i𝜔
𝐿𝑙0

)−1 (
𝐷0𝑈0

i𝜔

(
i𝜔𝐿𝑙0 − i𝜔𝐿𝑟0 + 𝜖

(
𝐿𝑙2 − 𝐿

𝑟
2

))
(3.16)
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+
((

1 − 𝑀2
0

)
𝐺0 −

𝐷0𝑈
2
0

i𝜔
𝐿𝑟0

)
𝑌 (𝑥𝑟𝑑)

)
+𝑂 (𝜖2𝜔2𝑈0),

where 𝐺0, 𝐿0, 𝐿2 are the matrices defined in Section 3.1.1.3.

3.1.2 Comparison between the Bessel and Chebyshev bases for an infinite
uniform duct

For an infinite annular uniform duct with lined walls, the propagation problem reduces to
the eigenvalue problem given in Equation (3.11).

In order to evaluate the interest of each basis on this simplified case, this problem is solved
for parameters representative of a modern engine inlet, with a unit nacelle radius 𝑅2, a spinner
radius 𝑅1 equal to 0.3 and a wall impedance 𝑍2 equal to 2 − i. The flow is uniform, 𝐷0 and 𝐶0

equal to 1 and 𝑀0 equal to −0.5. The acoustic variables are computed at 𝜔 = 25 and for an
azimuthal mode 𝑚 = 24 [58].

At first, both the distribution of the upstream eigenvalues in the complex plane and the shape
of an upstream transverse function for the radial order 𝑛 = 5 are computed using a Chebyshev
basis. The results are plotted in Figures 3.1a and 3.1b, showing this basis’s ability to represent
the duct modes correctly. Excellent agreement is obtained when fifteen or twenty polynomials
are used. However, with fewer polynomials, the solution quickly deteriorates, and with ten
polynomials, the radial distribution of the mode is lost. When enough basis functions are used,
there are only minor differences between the eigenvalues obtained numerically and the analytical
ones.

Then, to evaluate the benefit of the Chebyshev basis over a standard hard walled transverse
basis, the reduction of the error with the increase of the number of basis functions is investigated.
The evolution of the error on the radial eigenmode is defined by:

𝜖𝑝 =

(∫
|𝜙𝑝 − 𝜙∞ |2𝑟d𝑟∫

|𝜙∞ |2𝑟d𝑟

)1/2

, (3.17)

with 𝜙𝑝 the potential obtained with 𝑝 basis functions and 𝜙∞ the reference semi-analytical
solution (computed as in [64]). The convergence of the Chebyshev and hard walled Bessel bases
is assessed in Figure 3.1c. As expected, for a lined duct, the Chebyshev basis outperforms the
Bessel basis when many polynomials are used, with an exponential convergence rate. However,
when few basis functions are used, the Bessel basis better represents the eigenmodes. These
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3.1. Multimodal formulation with a multiple scale potential flow

results confirm that the method has excellent convergence and accuracy if enough Chebyshev
polynomials are used. Note that for this case, the use of a supplementary mode for the Bessel
basis could drastically improve the convergence observed [90].

(a) Radial evolution of the eigenmode 𝑛 = 5 (real
part)

(b) First five radial computed eigenvalues in the com-
plex plane

(c) Evolution of the error with the number of basis
functions, red lines for the Chebyshev basis and black
ones for the Bessel basis

Figure 3.1 – Validation of the eigenvalue resolution inside a constant waveguide with (𝑅1, 𝑅2) =
(0.3, 1), 𝑀0 = 0.5, 𝜔 = 25, 𝑚 = 24 and 𝑍2 = 2 − i.

3.1.3 Validation for a slowly-varying duct

3.1.3.1 Validation methodology

● Numerical procedure

The CFM56 geometry defined in Section 2.3.1 is used for the validation. The small parameter
𝜖 is defined by the maximum slope of the nacelle radius, which gives 𝜖 ≈ 0.3. This can be

75



Chapter 3 – Formulation with a multiple-scale flow and the study of modal transition

considered as strong, but the radius variation is particularly important near the exit and remains
limited elsewhere.

The multiple-scale multimodal formulation is first evaluated against a method where the axial
variation of the acoustic variables is determined analytically. Here, the WKB models defined
in Section 1.3.3 are used. These first comparisons aim to evaluate the benefit from using the
present method instead of an analytical model, noting that the calculation time is similar.

Then, the validation is pursued using the FEM solver for Goldstein propagation equation
described in Section 2.3.2. When the FEM is used, two cases can be distinguished. FEM
computations are performed using the flow computed with the MS approximation (referred
to as FEM/MS) to check that our method is correctly implemented and that the 𝑂 (𝜖2𝜔2𝑈0)
terms neglected in Equation (3.3) do not impact the solution. Then, FEM solutions that use the
complete flow (referred to as FEM/CFD) are compared to the multimodal results. This allows to
assess the limitation brought by the use of a MS flow and the impact of the neglected𝑂 (𝜖2𝜔2𝑈0)
terms. It is unlikely that these terms can be neglected at high frequencies when a high-velocity
mean flow is used. Typically for frequencies 𝜔 ∼ 𝜖−1 and high velocities 𝑀0 ∼ 1, the neglected
scattering terms could be, in theory, of the same order of magnitude as one of the computed
scattering terms. Note that the error is expected to be equal to numerical precision in all the
cases without flow (𝑀0 = 0), since all the neglected terms are scaled by the velocity.

For the multimodal calculations, two different bases can be applied (see Section 3.1.1.5).
The Chebyshev one is preferred since it gives shorter calculation times than the Bessel functions.
Nevertheless, the admittance multimodal method is also used with the Bessel basis since the
modal scattering can be artificially turn-off. In that case, there is no interaction between modes
and their resolution can be separated. Therefore, the problem reduces to a scalar integration,
which drastically decreases the calculation time. This admittance multimodal method without
scattering is referred to as MMWS in the following. Comparisons with the multimodal results
(with Chebyshev basis) allow understanding the improvement brought by a formulation that
captures the scattering mechanisms.

Details about the numerical resolution are defined here and will be applied to all the test
cases. A unit value is specified for the outer wall pressure of the incoming wave at the source
location. For the multimodal method, the criterion defined in Section 2.3.7 for the number of
polynomials is used, and an axial density 𝐷𝑒𝑥 = 0.5 is chosen. Note that the discretization does
not need to be refined near a liner discontinuity since the admittance jump is given analytically
by the expression (2.33). With these criteria, all the test cases that are presented took less than
one second to run with the developed multiple-scale multimodal method.
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3.1. Multimodal formulation with a multiple scale potential flow

● Flow computation

For cases with flow, 𝑀0, 𝐶0 and 𝐷0 values are specified at the axial location of the fan (with
𝐶𝑠 = 1 and 𝐷𝑠 = 1 in all case). The steady axial velocity and the velocity streamlines obtained
with the FEM are represented in Figure 3.2a for a specified Mach number 𝑀𝑠 = −0.4. The
axial velocity averaged over successive cross-sections is also shown and is compared with the
flow computed with the multiple-scales (MS) method in Figure 3.2b. Even if the averaged axial
velocity obtained with both methods is almost identical, there are important radial variations
that are not predicted by the MS method (𝑈 = 𝑈0(𝑥) +𝑂 (𝜖2)). This is particularly true near the
exit (𝑥 = 𝐿) of the duct where the geometry is not slowly-varying (𝜖 ≈ d𝑅2/d𝑥 ≈ 0.3).

(a) Contours of normalized axial velocity, with
the streamlines plotted as dotted black lines

(b) Cross-averaged axial velocity obtained
with the FEM solver (solid line) and with
the MS approximation (dotted line)

Figure 3.2 – Flow computed for a specified Mach number 𝑀𝑠 = −0.4 at 𝑥 = 0.

3.1.3.2 Hard walled results

The intention here is to explore the model’s ability to represent the physics for cases without
wall acoustic treatment.

● Cut-on mode

First, the benefit of using the model is shown at a low frequency (𝜔 = 3) by computing the
propagation of the mode (𝑚, 𝑛) = (1, 1) for a specified Mach number 𝑀𝑠 = −0.4 at the fan
level. This is illustrated in Figure 3.3 by comparing the pressure contours over the meridional
(𝑥, 𝑟) plane given by the WKB, the multimodal, the multimodal without scattering and the FEM
results.
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(a) WKB (b) Multimodal without scattering

(c) Multimodal (d) Finite-element method with MS flow

(e) Finite-element method with CFD flow

Figure 3.3 – Pressure magnitude associated to the mode (1,1) at 𝜔 = 3 and 𝑀𝑠 = −0.4.

78



3.1. Multimodal formulation with a multiple scale potential flow

The WKB and the multimodal method without scattering results are in excellent agreement.
In cases where few reflections are expected inside the duct, the two methods give similar results.
However, the results of both methods differ from the cases where modal scattering is accounted
for. The agreement between the multimodal method and the FEM/MS is excellent, and the mi-
nor differences that can be observed come from the neglected 𝑂 (𝜖2) flow terms in the equation
governing the acoustics. The multimodal method results slightly differ from the FEM/CFD ones,
and this is due to the 𝑂 (𝜖2𝜔2𝑈0) scattering terms that have been neglected. The fact that the
CFD flow considers a constant duct at the outlet also tends to artificially reduce the radial flow
velocity near the exit, increasing the discrepancies between methods.

● Transition mode (cut-on/cut-off)

The stability close to a transition (change of mode behaviour from cut-on to cut-off or
vice-versa), which corresponds to a singularity in the admittance matrix [82], is evaluated by
performing the same analysis but at a frequency 𝜔 = 31.0 and for a mode (𝑚, 𝑛) = (20, 3).
This mode is weakly cut-on at the injection plane, it encounters a turning point at 𝑋𝑡 = 0.84
and becomes cut-off. The results are plotted in Figure 3.4. The multimodal method without
scattering and the WKB are in good agreement, the Magnus–Möbius scheme avoids numerical
instability despite the singularity of the admittance matrix and is adapted to capture total
reflection phenomena. Note that this means that any number of transition and near transition
phenomena can be captured without the need to modify the model. This makes the multimodal
method without scattering typically suited to study phenomena where multiple transitions are
present inside the duct. Once again, the FEM and multimodal are in good agreement. In this
case, the inclusion of modal scattering and of a complete flow is not significant as all the methods
give similar results.

● Frequency evolution

In order to evaluate more precisely the accuracy of all the methods, we compute the evolution
of the error as the frequency and flow velocity increase for three different modes: (𝑚, 𝑛) = (1, 1),
(𝑚, 𝑛) = (20, 1) and (𝑚, 𝑛) = (20, 3). The error is evaluated using the 𝐿2 norm:

𝜖𝑝 =
©«
∫ 𝐿

0

∫ 𝑅2
𝑅1

|𝜙 − 𝜙∞ |2𝑟d𝑟d𝑥∫ 𝐿

0

∫ 𝑅2
𝑅1

|𝜙∞ |2𝑟d𝑟d𝑥
ª®¬

1/2

, (3.18)

with 𝜙 the potential obtained with the multimodal method, the multimodal method without
scattering and the WKB method, and 𝜙∞ the reference FEM solution.
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(a) WKB (b) Multimodal without scattering

(c) Multimodal (d) Finite-element method with MS flow

(e) Finite-element method with CFD flow

Figure 3.4 – Pressure magnitude associated to the mode (20,3) at 𝜔 = 31 and 𝑀 = −0.4.
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(a) (𝑚, 𝑛) = (1, 1) (b) (𝑚, 𝑛) = (20, 1) (c) (𝑚, 𝑛) = (20, 3)

Figure 3.5 – Relative error between the FEM/MS as the reference solution and the multimodal
method method, for various flow velocities and frequencies.

The results obtained when using the FEM/MS as reference solution are given in Figure 3.5.

Given the approximations of the method, there is a good quantitative agreement between the
multimodal formulation and the FEM/MS, with discrepancies always inferior to 10% (of order
𝑂 (𝜖2)). If the expected flow is close to the multiple-scale flow, the multimodal method will give
accurate results in a calculation time almost identical to the WKB model. The modal scattering
and convection effects of this flow are captured without deteriorating the computational efficiency
of multimodal methods without flow.

The results obtained when the FEM/CFD is used as the reference solution and compared
to the multimodal method, the multimodal method without scattering and the WKB method
are now plotted in Figure 3.6. A key observation from the comparison between the multimodal
method without scattering and WKB results is that the methods are equivalent in both cut-off
and cut-on regions. The only region where the two methods differ is where reflection phenomena
can occur typically near transition regions [70]. When the FEM/CFD results are compared to the
multimodal results, the agreement is still excellent for low flow velocities where the multimodal
model is particularly well suited. However with high flow velocities, the agreement deteriorates,
especially for high frequencies. Even if the evolution of the errors is strongly dependent on the
mode injected, some general trends are visible for the three computed cases:

• In regions where the mode is cut-on (approximately 𝜔 > 𝑚), the error increases with the
frequency and flow velocity. The distance to the transition region is the main driver of this
error. Therefore the increase of the azimuthal mode order is favourable to the model.

• In regions where the mode is cut-off, the multimodal results perfectly fit the FEM results.
The model captures the high attenuation of the mode. For this case, there is little modal
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scattering, which explains the observed agreement.

• The results deteriorate when the mode encounters at least one transition in the duct. This
is due to a small shift in the axial wavenumber that artificially increases the error rather
than an erroneous pressure field representation. More details will be given in Section 3.2.
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(a) (𝑚, 𝑛) = (1, 1) (b) (𝑚, 𝑛) = (20, 1) (c) (𝑚, 𝑛) = (20, 3)

Figure 3.6 – Relative error between the FEM/CFD as the reference solution and the multimodal
method, the multimodal method without scattering, and the WKB method, for various flows and
frequencies.
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3.1.3.3 Lined wall results

Eight test cases are used to validate the capability of the model to predict sound attenuation
in lined turbofan inlets. Since the transverse mode differs before and after the liner, the models
that neglect the scattering cannot be used here. Therefore only the multimodal method and the
FEM can represent the propagation in such a duct.

The validation is shown in terms of the power attenuation predicted by each method, defined
by:

Δ𝑃 = 10 log10

(
𝑃𝑠𝑜𝑢𝑟𝑐𝑒

𝑃𝑒𝑥𝑖𝑡

)
, (3.19)

where 𝑃𝑠𝑜𝑢𝑟𝑐𝑒 and 𝑃𝑒𝑥𝑖𝑡 refer to the acoustic power (see Section 1.1.5) at the source plane and
the exit plane respectively.

● No-flow cases

The first test cases are done without flow where we expect the multimodal model to be
perfectly accurate. The attenuation obtained with our method and the FEM computations is
given for all the test cases in Table 3.1. Both methods agree and the model appears to be a
powerful tool to compute an estimated attenuation.

Case (𝑚, 𝑛) 𝜔 MM FEM Δ (MM - FEM)

1 (10,1) 16 44.1 dB 44.1 dB 0.0 dB
2 (12,1) 20 47.5 dB 47.5 dB 0.0 dB
3 (20,7) 44.5 24.5 dB 24.5 dB 0.0 dB
4 (30,2) 50 21.8 dB 21.8 dB 0.0 dB

Table 3.1 – Summary of the lined test case parameters and results for 𝑀𝑠 = 0.

● Flow cases

Then test cases are considered with a Mach number 𝑀𝑠 = −0.4. Here the model should
give approximate results. The attenuations obtained are summarised in table 3.2. Discrepancies
appear between all methods (even the FEM/MS and multimodal results differ) and no global
trend appears. Nevertheless, the multimodal method still estimates the expected attenuation
correctly and the prediction rarely differs by more than 1dB from the reference FEM/CFD
results.
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Case (𝑚, 𝑛) 𝜔 MM FEM/MS FEM/CFD Δ(𝑀𝑀 − 𝐹𝐸𝑀/𝐶𝐹𝐷)

1 (10,1) 16 49.7 dB 50.1 dB 49.0 dB 0.7dB
2 (12,1) 20 25.3 dB 25.1 dB 24.8 dB 0.5dB
3 (20,7) 44.5 30.7 dB 28.9 dB 31.9 dB -1.2dB
4 (30,2) 50 14.3 dB 15.5 dB 14.0 dB 0.3dB

Table 3.2 – Summary of the lined test case parameters and results for 𝑀𝑠 = −0.4.

To understand the slight difference between all the methods, pressure plots associated with
test case 4 are shown in Figure 3.7. There is a good agreement for pressure contours and that
the jump condition (3.16) proposed for the admittance gives consistent results. As expected by
the formulation derived in Section 3.1.1.6, there is a reflection at the axial location of the liner
discontinuity (visible at 𝑥 = 0.2). Even if the attenuation of the liner is overestimated with the

(a) Multimodal (b) Finite-element method with MS flow

(c) Finite-element method with CFD flow

Figure 3.7 – Pressure magnitude associated to the mode (30,2) at 𝜔 = 50 for 𝑀 = −0.4 and
𝑍2 = 2 − i.

multimodal method, no major differences are observed. The flow-induced scattering phenomena
are of an order of magnitude smaller than the impact of the liner, and the attenuation predicted
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by the proposed model is accurate.

3.1.4 Summary

The admittance multimodal method can be simplified when a multiple-scale potential mean
flow is used. This simplified formulation has been implemented using two types of approximation
bases: one is the same Chebyshev polynomials as used for the general multimodal method of
Chapter 2, and the other one is composed of Fourier-Bessel functions. The latter presents the
advantage of separating the propagation of modes from the scattering phenomenon and of
providing analytical expressions of the multimodal matrices. When a Chebyshev basis is used,
the method is very efficient because all the constitutive matrices of the multimodal formulation
are independent of the frequency, the flow, the geometry and the azimuthal order.

Comparisons with a WKB method, a finite-element method using the same approximate
flow, and one using a complete flow, have been carried out for the model of turbofan inlet
over a large range of flows and frequencies. They are made on pressure contours for the hard
walled test cases, and on power attenuation for the lined-wall ones. The agreement between the
proposed multimodal method and the FEM that uses a MS flow is excellent in most cases, but
it deteriorates for high frequencies and Mach numbers when compared to the FEM that uses
a complete flow. Therefore, when high Mach numbers are expected, the general multimodal
should be used. Still, the present simplified multimodal formulation appears very efficient for
studying first-order effects of propagation. In particular, the error made by our model is always
inferior to the one made by the WKB method which neglects the modal scattering. Note that the
method behaves particularly well near transition phenomena. This demonstrates the efficiency
of the simplified multimodal method which allows to compute acoustic propagation inside
lined ducts with simplified potential flows without additional cost when compared to no-flow
multimodal methods. Finally, it should be noted that the method applied by artificially turning
off the scattering terms is in excellent agreement with standard WKB methods, especially in
cases not involving transition phenomena.

3.2 Analysis of double transitions

The previous method effectively solves the Goldstein propagation equation with acceptable
precision near a single modal transition. Test cases where two such transitions are encountered
inside the duct will be considered here. Double transitions are of particular interest as they
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can potentially lead to resonance [16] or tunnelling [70] phenomena, which can be challenging
to compute accurately. Therefore, the focus is on cases where two turning points are present
for the injected mode within the duct. These cases are studied to further validate the method
and provide valuable insights to understand the impact of modal scattering on tunnelling and
resonance phenomena.

In order to enhance the understanding of these mechanisms, a simplified WKB model is also
developed to deal with the case where two transitions are present inside the duct. It will serve to
validate the simplified multimodal formulation without modal scattering.

3.2.1 Extension of the WKB theory to acoustic double transition in ducts
with flow

(a) Cut-off/cut-on/cut-off transition (b) Cut-on/cut-off/cut-on transition

Figure 3.8 – Representation of a double transition configuration, with 𝑋𝑡12 and 𝑋𝑡23 the location
of the two turning points. The green lines correspond to cut-on waves while the red ones
correspond to cut-off ones.

3.2.1.1 Cut-off/cut-on/cut-off transition

Derivation of the solution
Let us consider a slowly varying duct which presents two turning points, with a mode

undergoing a change from cut-off to cut-on and again to cut-off. Figure 3.8a illustrates the waves
associated with such a mode inside a geometry with a local enlargement of the tip radius. The
two turning points are denoted 12 and 23 and are seen as boundaries to distinguish the three
regions 1, 2 and 3, where the mode is respectively cut-off, cut-on and cut-off. The prime indicates
the modal amplitudes after each transition. The coefficients D and U can be used to write the
slowly varying solutions of Equation (1.34) in the three regions, provided that the two turning
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points are not in each other’s inner boundary layer in order to have a valid outer solution in
region 2 (referred to as distant turning points here). With this hypothesis, the uniformly valid
solution based on Airy functions (see Section (1.35)) is written:

𝜙 = 𝑄0

√︄
𝐶0
𝜔𝐷0

𝜓

[
− 3

2𝜖𝜎3

∫ 𝑋

𝑋𝑡𝑖

𝜔𝐶0𝜎

𝐶2
0 −𝑈2

0
d𝑋

]1/6

[𝑎𝑖 Ai(𝑠𝑡) + 𝑏𝑖 Bi(𝑠𝑡)]

exp

[
i
𝜖

∫ 𝑋

𝑋𝑡𝑖

𝜔𝑈0

𝐶2
0 −𝑈2

0
d𝑋

]
,

with 𝑠𝑡 =

(
3i
2𝜖

∫ 𝑋

𝑋𝑡𝑖

𝜔𝐶0𝜎

𝐶2
0 −𝑈2

0
d𝑋

)2/3

,

(3.20)

where (𝑎𝑖, 𝑏𝑖) are two unknown coefficients associated to the transition 𝑖. In practice, if |𝑠𝑡 | > 1
for each turning point, the hypothesis is respected and the asymptotic behaviour of Airy functions
is reasonably recovered [11].

Before a transition (𝑋 < 𝑋𝑡𝑖), the slowly varying formulation (see Equation (1.34)) writes:

𝜙 = 𝑄0

√︄
𝐶0

𝜔𝐷0𝜎
𝜓 exp

[
i
𝜖

∫ 𝑋

𝑋𝑡𝑖

𝜔𝑈0

𝐶2
0 −𝑈2

0
d𝑋

]
[
D𝑖 exp

[
−i
𝜖

∫ 𝑋

𝑋𝑡𝑖

𝜔𝐶0𝜎

𝐶2
0 −𝑈2

0
d𝑋

]
+ U𝑖 exp

[
i
𝜖

∫ 𝑋

𝑋𝑡𝑖

𝜔𝐶0𝜎

𝐶2
0 −𝑈2

0
d𝑋

] ]
,

(3.21)

and after a transition (𝑋 > 𝑋𝑡𝑖):

𝜙 = 𝑄0

√︄
𝐶0

𝜔𝐷0𝜎
𝜓 exp

[
i
𝜖

∫ 𝑋

𝑋𝑡𝑖

𝜔𝑈0

𝐶2
0 −𝑈2

0
d𝑋

]
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D′
𝑖 exp

[
− i
𝜖

∫ 𝑋

𝑋𝑡𝑖
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𝐶2
0 −𝑈2

0
d𝑋

]
+ U′

𝑖 exp

[
i
𝜖

∫ 𝑋

𝑋𝑡𝑖

𝜔𝐶0𝜎

𝐶2
0 −𝑈2

0
d𝑋

] ]
,

(3.22)

with 𝑖 ∈ [12, 23] referring to a transition. The coefficient D12 is set equal to 1 without loss of
generality, and the coefficient U′

23 is set to zero by assuming that there is no reflection at the
exit (note that a non-zero value can be prescribed to represent any other outlet condition). As for
the single transition case, the asymptotic matching between Equations (3.20) and (3.21)–(3.22)
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allows to find relations between the coefficients. Here, we obtain:

𝑎12

2
√
𝜋e−i𝜋/4 = U12,

𝑎23e−i𝜋/4 + 𝑏23ei𝜋/4

2
√
𝜋

= D23,

𝑏12√
𝜋e−i𝜋/4 = 1,

𝑎23ei𝜋/4 + 𝑏23e−i𝜋/4

2
√
𝜋

= U23,

𝑎12ei𝜋/4 + 𝑏12e−i𝜋/4

2
√
𝜋e−i𝜋/2 = D′

12,
𝑎23

2
√
𝜋ei𝜋/4 = D′

23,

𝑎12e−i𝜋/4 + 𝑏12ei𝜋/4

2
√
𝜋e−i𝜋/2 = U′

12,
𝑏23√
𝜋ei𝜋/4 = 0.

(3.23)

In the second region, Equation (3.22) applied to the first transition and Equation (3.21) applied
to the second transition give two expressions for 𝜙. Matching these gives:

D′
12 = D23ei𝜁 ,U′

12 = U23ei(𝜁−2𝜑) , (3.24)

with:
𝜑 =

1
𝜖

∫ 𝑋𝑡23

𝑋𝑡12

𝜔𝜎𝐶0

𝐶2
0 −𝑈2

0
d𝑋, 𝜁 = −1

𝜖

∫ 𝑋𝑡23

𝑋𝑡12

𝜔(𝑈0 − 𝜎𝐶0)
𝐶2

0 −𝑈2
0

d𝑋. (3.25)

The mode is cut-on in the central region so that 𝜎, 𝜑 and 𝜁 are real numbers. By combining the
previous equations, all the unknown coefficients can be determined:

𝑎12 =
√
𝜋ei𝜋/4

(
1 − 2

1 + e−i2𝜑

)
, 𝑏12 =

√
𝜋e−i𝜋/4,

𝑎23 = 2
√
𝜋ei𝜋/4 e−i𝜁

1 + e−i2𝜑 , 𝑏23 = 0,

D12 = 1, U12 =
i
2

(
1 − 2

1 + e−i2𝜑

)
,

D23 =
e−i𝜁

1 + e−i2𝜑 , U23 =
ie−i𝜁

1 + e−i2𝜑 ,

D′
23 =

e−i𝜁

1 + e−i2𝜑 , U′
23 = 0.

(3.26)

The above solution is based on asymptotic matching between two distinct solutions in the
central region. Consequently, a discontinuous potential can be obtained at the junction between
the two formulations. To obtain a continuous solution, a correction can be applied on the
coefficients (𝑎23, 𝑏23) by performing a match directly on Airy functions in the central region.
Therefore, the matching is done at the axial location 𝑋𝑐 defined such that−1/𝜖

∫ 𝑋𝑐

𝑋𝑡12
𝜔𝐶0𝜎/(𝐶2

0 −
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𝑈2
0)d𝑋 = 1/𝜖

∫ 𝑋𝑐

𝑋𝑡23
𝜔𝐶0𝜎/(𝐶2

0 −𝑈2
0)d𝑋 = 𝜑/2 and writes:

[𝑎23 Ai(𝑠𝑐) + 𝑏23 Bi(𝑠𝑐)] = i [𝑎12 Ai(𝑠𝑐) + 𝑏12 Bi(𝑠𝑐)] e−i(𝜁−𝜑) , (3.27)

where 𝑠𝑐 = 𝑠𝑡12 = 𝑠𝑡23 =

(
3i
2
𝜑/2

)2/3
. Note that this correction of the coefficient 𝑎23 (𝑏23 = 0

here) does not extend the region of validity of the method (applicable when |𝑠𝑐 | > 1), and
another equation is to be solved when the turning points are close (see for example the work of
Nielsen and Peake for symmetric turning points [70]).

Transmission and reflection coefficients
The transmission and reflection coefficients (T𝑖,R𝑖) associated with each transition 𝑖 ∈

[12, 23] are defined as follows:

T𝑖 =
D′
𝑖

D𝑖

, R𝑖 =
U𝑖

D𝑖

. (3.28)

For the second transition, the expressions of a single transition obtained by Ovenden are
recovered: T23 = 1 and R23 = i [12]. For the first transition, the following expressions are
obtained:

T12 =
1

1 + e−i2𝜑 , R12 =
i
2

(
1 − 2

1 + e−i2𝜑

)
. (3.29)

These expressions illustrate that the incident wave can be amplified during its propagation
(|T12 | ≥ 1) when 𝜑 ∈ [𝜋/3, 2𝜋/3] (mod 𝜋). A resonance phenomena can even occur (|T12 | →
+∞) when e−i2𝜑 → −1 i.e. 𝜑 → 𝜋/2 (mod 𝜋). An infinity of reflections (without energy loss)
occurs in the region between two turning points. The resonance happens when the incident and
the reflected waves overlap to form constructive interference in that region.

Acoustic power
Using the expressions given in Appendix C, the power can be evaluated inside each region

using the Equations (3.21) and (3.22). For each region, the power writes:

P1 ∝ 2Im(D12U12) = 2Im
(

sin(2𝜑)
| cos(2𝜑) + 1 + i sin(2𝜑) |2

)
= 0,

P2 ∝ |D23 |2 − |U23 |2 = 0,

P3 ∝ 2Im(D′
23U′

23) = 0.

(3.30)

The power is conserved in the model and is equal to zero everywhere inside the duct. However,
this is because no modal scattering is considered. When added, energy can leak to neighbouring
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modes, which gives a non-zero acoustic power if one of them is cut-on. This could be significant
near resonance phenomena where high amplitudes are involved.

3.2.1.2 Cut-on/cut-off/cut-on transition

Derivation of the solution
Figure 3.8b illustrates the waves associated with a double transition mode inside a geometry

with a local contraction. The regions are denoted using the same notation as in section 3.2.1.1.
With the same methodology, it is possible to find the coefficients U𝑖,D𝑖,U′

𝑖
,D′

𝑖
, 𝑎𝑖, 𝑏𝑖 for

𝑖 ∈ [12, 23] in the case of cut-on/cut-off/cut-on transition. The results are:
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𝜋ei𝜋/4

1 + e−i2𝜑/4
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√
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𝜋e−i𝜋/4 e−i𝜁

1 + e−i2𝜑/4
,

D12 = 1, U12 = i
1 − e−i2𝜑/4
1 + e−i2𝜑/4

,
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e−i𝜁

1 + e−i2𝜑/4
, U23 = − i

2
e−i𝜁

1 + e−i2𝜑/4
,

D′
23 =

e−i𝜁

1 + e−i2𝜑/4
, U′

23 = 0.

(3.31)

In the central region, the mode is cut-off so that 𝜎 and 𝜑 are imaginary numbers and 𝜁 is a
complex number.

Transmission and reflection coefficients
Here, the transmission and reflection coefficients (T ,R) associated with the entire system

are defined by:

T =
D′

23
D12

=
e−i𝜁

1 + e−i2𝜑/4
, R =

U12
D12

= i
1 − e−i2𝜑/4
1 + e−i2𝜑/4

. (3.32)

Since 𝜑 is imaginary here, e−i2𝜑 is a real number. The greater the distance between the tran-
sitions, the smaller this value becomes. Therefore, if the two transitions are infinitely far from
each other, the coefficients become: T = 0 and R = i. The behaviour of a single cut-on/cut-off
transition is recovered: the reflected wave has a phase-shift of 𝜋/2 and no energy leaks towards
the exit of the duct [12]. In the particular case of symmetric transitions, this result had already
been found by Nielsen and Peake [70].
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Power consideration
Using the expressions given in Appendix C, the power can again be evaluated inside each

region using the Equations (3.21)/(3.22) for the expression of 𝜙. For each region, the power
writes:

P1 ∝ |D12 |2 − |U12 |2 = 1 − |R|2,
P2 ∝ 2Im(D23U23) = |T |2,
P3 ∝ |D′

23 |
2 − |U′

23 |
2 = |T |2.

(3.33)

The conservation of acoustic power is correctly recovered with the present model as |T |2+|R|2 =

1. As no modal scattering is considered, |R |2 and |T |2 represent the normalized reflected and
transmitted powers respectively.

3.2.2 Cut-off/cut-on/cut-off transition

The developed multimodal model is validated against two methods for cases with cut-off/cut-
on/cut-off transitions: a finite element method to see if the hypothesis of the multiple scale flow
does not impact the overall results too much, and the WKB method presented above to validate
our multimodal model in cases without modal scattering when the transitions are far. These
analyses will also help to understand the impact of modal scattering on the pressure field.

3.2.2.1 Description of the test case

In order to evaluate the interest of the multimodal method to study double transitions, the first
series of presented test cases are for modes undergoing a cut-off/cut-on/cut-off transition inside
the duct. Therefore, a weakly cut-off mode is injected at the duct inlet. This mode encounters a
first turning point and becomes cut-on before reaching a second one and returning to its initial
state. The azimuthal mode order is chosen to be small in order to avoid that most of the acoustics
is concentrated near the tip. The radial mode order is then chosen to ensure that there is at
least one cut-on mode in the whole duct in order to evaluate the impact of the modal scattering
over these modes. A no-flow and a flow case are studied to assess the effect of the flow on the
propagation. For the flow case, the azimuthal and radial mode orders and the position of the
turning points are kept constant to isolate the impact of the flow. For this purpose, the frequency
is adjusted and therefore differs from the no-flow case.

Therefore, we consider a waveguide radius defined by 𝑅1 = 0, 𝑅2 = 0.8+0.1 cos((𝑥−2)𝜋/2)
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(a) WKB method (b) Multimodal method without scattering

(c) Multimodal method (d) Finite element method

Figure 3.9 – Maps of pressure magnitude associated to the mode (4,2) at 𝜔 = 12.94 and 𝑀𝑠 = 0.
Turning points at 𝑋𝑡12 = 0.38 and 𝑋𝑡23 = 3.62.

for 𝑥 ∈ [0, 4]. The right-running mode (𝑚, 𝑛) = (4, 2) is injected at 𝑥 = 0 for 𝜔 = 12.94 in the
zero-flow case and at𝜔 = 12.71 in the flow case. For both cases, the turning points are located at
𝑋𝑡12 = 0.38 and 𝑋𝑡23 = 3.62. The behaviour of this mode is then investigated over a wide range
of frequencies.

An estimate of the small parameter 𝜖 can be obtained based on the maximum slope of the
wall (𝑅′

2 = 𝑂 (𝜖)) and gives 𝜖 ≈ 0.16. This yields an estimate of the inner-boundary layer
thickness [13] (size of the region where the WKB ansatz is not valid) of 𝜖−1/3𝜔−2/3 ≈ 0.34 for
the single frequency cases.

3.2.2.2 Single frequency - without flow

We first consider the no-flow case for the mode (4, 2) at 𝜔 = 12.94. The pressure ampli-
tude over the meridional plane obtained using the WKB model, the mulitmodal method, the
multimodal without scattering and the FEM are plotted in Figure 3.9.

There is a good qualitative agreement between the different methods. However, a difference
is noticeable close to the wall between the models that neglect modal scattering and the other
numerical methods. The first ones give vertical pressure isolines near the wall, whereas the other
ones give wall normal isolines. This comes from the fact that the derivative of the transverse
function is set to zero, which introduces an error of order 𝜖 .
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(a) WKB method (b) Multimodal method without scattering

(c) Multimodal method (d) Finite element method

Figure 3.10 – Projection over the first four Bessel functions of pressure associated to the injected
mode (4,2) at 𝜔 = 12.94 and 𝑀𝑠 = 0. Turning points at 𝑋𝑡12 = 0.38 and 𝑋𝑡23 = 3.62.

The information brought by the pressure maps comparison is limited because the WKB
method and the multimodal method without scattering only compute the axial variation associ-
ated with the main mode in the waveguide, whereas the FEM and multimodal method codes also
compute the scattering on adjacent radial modes. A more detailed comparison is thus performed
by projecting the acoustic field over the Bessel functions to separate the amplitude variations of
the main mode from the modal scattering it produces. The results of this projection are given in
Figure 3.10. For the FEM and multimodal methods, the projection values are limited to the first
four radial modes.

There is excellent agreement between all methods for the main mode, which can be explained
by a limited modal scattering over adjacent modes in addition to few reflections apart from the
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transitions. However, the ratio of the amplitude associated with the cut-on mode 𝑛 = 1 to the one
of the injected mode increases between the inlet and the outlet, and the hypothesis made by the
models that neglect scattering that the injected mode is dominant in the duct turns out to be less
accurate near the exit. Otherwise, interaction lobes are observed for the mode 𝑛 = 1, which does
not encounter any transition. This is not an expected result since the associated maximum axial
pressure variations should be located where the geometry change is more pronounced [82, 74,
79]. This is due to the fact that both the left- and right-running main modes produce scattered
waves propagating in their direction. Therefore cut-on waves associated to the mode 𝑛 = 1
propagate in both directions in the central region.

Even if the agreement looks excellent between all methods for the main mode, small differ-
ences in the predicted reflection at the inlet are observed. These are evaluated using the reflection
coefficient defined as R2 = 𝑝−2 /𝑝

+
2 with 𝑝−2 and 𝑝+2 the modal amplitudes associated with the

left-running mode and right-running mode 𝑛 = 2 respectively. We obtain |R2 | = 0.10 with both
the WKB method and the multimodal method without scattering, and |R2 | = 0.04 with the
multimodal method and the FEM. The differences are small compared to the modal amplitude
of the injected mode. The reflection is overestimated when the scattering is not accounted for
since the modal scattering tends to extract energy from the dominant mode.

3.2.2.3 Single frequency - with flow

We now consider the same mode but with a normalized frequency of 𝜔 = 12.71 (to keep the
same position of the turning points as in the case without flow) and in the presence of a mean
flow such that 𝑀𝑠 = −0.2 at the inlet plane.

The contour maps of pressure amplitude over the meridional plane are given in Figure 3.11.
There is again a good qualitative agreement in terms of pressure magnitude with regard to the
position of the interaction lobes.

As previously, a more quantitative evaluation is obtained by projecting the acoustic field over
Bessel functions. The result is shown in Figure 3.12 and exhibits an excellent agreement. The
projection confirms that there is no significant modal scattering, making the models without
scattering particularly suitable here. The impact of the flow can be seen in the amplitudes of
the lobes in the central cut-on region. The reflection coefficient is evaluated again for a more
precise comparison. We obtain once more the same value with the WKB and the multimodal
method without scattering: |R2 | = 0.046. With the multimodal method and the FEM, we obtain
|R2 | = 0.025. Note that, once more the methods which accounts for the modal scattering agree
on the value of the reflection coefficient despite the use of a MS flow for the multimodal method
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(a) WKB method (b) Multimodal method without scattering

(c) Multimodal method (d) Finite element method

Figure 3.11 – Maps of pressure magnitude associated to the mode (4,2) at 𝜔 = 12.71 and
𝑀𝑠 = −0.2. Turning points at 𝑋𝑡12 = 0.38 and 𝑋𝑡23 = 3.62.

calculations. However, when the scattering is not accounted for, the reflection is overestimated.

3.2.2.4 Frequency variation - the case of the acoustic resonator

The case of the resonance predicted by the WKB model (see Equation (3.29) when 𝜑 → 𝜋/2
(mod 𝜋)) is now investigated by applying the methods over a wide range of frequencies for a case
with and without flow. It will serve as validation for the multimodal method without scattering
to see if it can encompass such phenomenon and it will allow us to understand the importance
of modal scattering in such cases. The amplification inside the duct (𝐴 = 𝑝max/𝑝0 with 𝑝max

the maximum pressure inside the duct and 𝑝0 the pressure at the source plane) is computed
at each frequency with the multimodal method, the multimodal method without scattering, the
FEM and the WKB method. The results are shown in Figures 3.13 and 3.14 for the case without
flow and with flow respectively. The gray area corresponds to a region where the error caused
by the matching assumptions becomes important because |𝑠𝑐 | < 1. Outside from this region, the
agreement between the multimodal method without scattering and the WKB model is excellent
for both the flow and the no flow cases. This means that the transitions are the main cause of
reflections that occur inside the duct and that the multimodal method without scattering can
capture this high amplification. However, when modal scattering is accounted for, the modal
energy transfer tends to impact the frequencies of the amplification peaks. This difference is
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(a) WKB method (b) Multimodal method without scattering

(c) Multimodal method (d) Finite element method

Figure 3.12 – Projection over the first four Bessel functions of pressure associated to the injected
mode (4,2) at 𝜔 = 12.71 and 𝑀𝑠 = −0.2. Turning points at 𝑋𝑡12 = 0.38 and 𝑋𝑡23 = 3.62.
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(a) Full frequency range (b) Zoom on the resonance phenomena

Figure 3.13 – Variation of the amplification with frequency for the mode (4,2) for the case
𝑀𝑠 = 0. The gray region correspond to a location where the WKB model errors are important.

minor and would imply only a few Hertz shift on the non-normalized frequencies. This shows
one of the drawbacks of methods that neglect the impact of the modal scattering: they can
provide an estimate of the frequency of the amplification peaks but not their exact values. On the
other hand, the agreement between the multimodal method and the FEM solution is excellent. It
shows that the simplified multimodal method can capture high amplification caused by trapped
modes without difficulty, and it confirms the guess that using a multiple-scale flow for studying
transitions is relevant. Note that the conclusions are the same for the no-flow and flow cases. In
practice, this is because the flow-induced scattering mechanisms are weak and do not impact the
overall results too much.

3.2.3 Cut-on/cut-off/cut-on transition

3.2.3.1 Description of the test case

We now consider the cut-on/cut-off/cut-on transition case. An incident cut-on mode is chosen
at the duct inlet in such a way that it will quickly transition into a cut-off mode before returning
to its initial state. In the central cut-off region, the wave decreases exponentially. Since this
region is of limited length (tunnelling distance), there is a possibility for the wave not to vanish
completely. This phenomena is referred to as tunnelling.

We consider a waveguide defined by the radii 𝑅1 = 0, 𝑅2 = 0.8 − 0.1 cos((𝑥 − 2)𝜋/2) for
𝑥 ∈ [0, 4]. The mode (𝑚, 𝑛) = (4, 2) is again injected at 𝑥 = 0 at 𝜔 = 12.94 for the no-flow case

97



Chapter 3 – Formulation with a multiple-scale flow and the study of modal transition

(a) Full frequency range (b) Zoom on the resonance phenomena

Figure 3.14 – Variation of the amplification with frequency for the mode (4,2) for the case
𝑀𝑠 = −0.2. The gray region correspond to a location where the WKB model errors are important.

and 𝜔 = 12.01 for the flow case. For both cases, the turning points are located at 𝑋𝑡12 = 1.62
and 𝑋𝑡23 = 2.38. The behaviour of this mode for a wide range of frequencies is then investigated
to study the tunnelling effect. The reasons behind these parameter choices are similar to those
detailed in Section 3.2.2.1.

As previously, an estimate of the small parameter and the turning point boundary layer
thickness can be given by 𝜖 ≈ 0.16 and 𝜖−1/3𝜔−2/3 ≈ 0.34 respectively.

3.2.3.2 Single frequency - without flow

We first consider the no-flow case for the mode (4, 2) at 𝜔 = 12.94. The pressure amplitude
over the meridional plane obtained using the WKB model, the multimodal method without
scattering, the multimodal method and the FEM is plotted in Figure 3.15.

There is a good qualitative agreement between the different methods. Most of the observations
made for a single cut-on/cut-off transition [12] remain valid: there are interference pressure lobes
before the first transition (interaction between the left- and right-running waves), and there is an
increased pressure amplitude at the location of the transition.

As previously, a more quantitative evaluation can be obtained by projecting the acoustic field
over the Bessel functions. The results are shown in Figure 3.16. For the case of a cut-on/cut-
off/cut-on transition, the agreement between the formulations that neglect scattering is excellent
and the concerned methods appear to be still accurate when compared to the multimodal method
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(a) WKB method (b) Multimodal method without scattering

(c) Multimodal method (d) Finite element method

Figure 3.15 – Maps of pressure magnitude associated to the mode (4,2) at𝜔 = 12.94 and𝑀𝑠 = 0.
Turning points at 𝑋𝑡12 = 1.62 and 𝑋𝑡23 = 2.38.

and the FEM. This is due to a limited modal scattering over the adjacent modes. The behaviour
of the cut-on mode 𝑛 = 1 in the first cut-on region is similar to what has been obtained for the
cut-off/cut-on/cut-off test cases, with interaction lobes between the upstream and downstream
scattered waves. To quantify the difference from a single transition model, the amplitude of the
reflection coefficient is again introduced as R2 = 𝑝−2 /𝑝

+
2 = R. The amplitude of this coefficient

is equal to one in the single-transition case. We obtain here with all the methods |R2 | = 0.99,
which shows that the second transition has only a little effect. Moreover, the good agreement
between all the methods means that the modal scattering phenomena are of negligible impact.
This is caused by attenuated reflected waves in the central region, which makes the first wave
the main contributor to the modal scattering.

3.2.3.3 Single frequency - with flow

We now consider the same mode but at 𝜔 = 12.01 (to keep the same position of the turning
points as in the case without flow) and in the presence of a mean flow such that 𝑀𝑠 = −0.2
at the inlet plane. The comparison is made between the WKB model, the multimodal method
without scattering, the multimodal method and FEM. The pressure amplitude over the meridional
plane obtained using the WKB model, the multimodal method, the multimodal method without
scattering and the FEM are plotted in Figure 3.17. Once more, there is a good qualitative
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(a) WKB method (b) Multimodal method without scattering

(c) Multimodal method (d) Finite element method

Figure 3.16 – Projection over the first four Bessel functions of pressure associated to the injected
mode (4,2) at 𝜔 = 12.94 and 𝑀𝑠 = 0. Turning points at 𝑋𝑡12 = 1.62 and 𝑋𝑡23 = 2.38.
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(a) WKB method (b) Multimodal method without scattering

(c) Multimodal method (d) Finite element method

Figure 3.17 – Maps of pressure magnitude associated to the mode (4,2) at 𝜔 = 12.01 and
𝑀𝑠 = −0.2. Turning points at 𝑋𝑡12 = 1.62 and 𝑋𝑡23 = 2.38

agreement regarding the shape and amplitude of the pressure magnitude, and most of the no-
flow case observations remain valid. The agreement between the multimodal method without
scattering and the WKB agreement is again excellent, which means that our multimodal method
with artificial turning off of the scattering correctly predicts the multiple reflections that occurred.

As previously, a more quantitative evaluation can be obtained by projecting the acoustic
field over Bessel’s functions. The results of these projections are shown in Figure 3.18. The
methods are in good agreement on both the shape and the amplitude of the pressure lobes. The
reason is, as previously, a limited modal scattering over adjacent modes and a few reflections
except from the ones due to transition phenomena. The comparison of the reflection coefficients
gives similar conclusions as in the no-flow case, with a perfect match between all methodologies
(|R2 | = 0.98). Small differences are observed on the higher radial orders (𝑛 > 1) between the
multimodal method and the FEM, but they are limited, and overall the two methods agree on
the shape of the acoustic field.

3.2.3.4 Frequency variation - Tunneling effect

The two previous test cases were mainly used such that the WKB model could be used to
validate the multimodal method without scattering, and therefore, the transitions were set to be
distant. They have shown the simplified multimodal method’s ability to evaluate the impact of the
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(a) WKB method (b) Multimodal method without scattering

(c) Multimodal method (d) Finite element method

Figure 3.18 – Projection over the first four Bessel functions of pressure associated to the injected
mode (4,2) at 𝜔 = 12.01 and 𝑀𝑠 = −0.2. Turning points at 𝑋𝑡12 = 1.62 and 𝑋𝑡23 = 2.38.
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3.2. Analysis of double transitions

(a) Full frequency range (b) Zoom on the collapsing transitions region

Figure 3.19 – Variation of the amplitude of the reflection (dashed line) and transmission (solid
line) coefficients with frequency for the mode (4,2) for the case 𝑀𝑠 = 0. The gray region
correspond to a location where the WKB model errors are important.

tunnelling distance on the propagation. Nevertheless, the results are close to the ones of isolated
transition, and the interest appears limited. In order to evaluate how the multimodal method
behaves for close transitions and to understand its improvement when compared to simplified
WKB models, we will perform computations outside of the area of validity of the WKB model
(|𝑠𝑐 | < 1). In particular, we will see how the different methods behave near the tunnelling
phenomenon for close transitions. For this purpose, the transmission and reflection coefficients
of a mode undergoing a double cut-on/cut-off/cut-on transition are computed over a wide range
of frequencies. The results for the case without and with flow are plotted in Figures 3.19 and 3.20
respectively.

The gray area corresponds to a region where the error caused by the matching assumptions
becomes important in the improved WKB model because |𝑠𝑐 | < 1. For the analysis, the frequency
plot is separated into three distinct regions. The main mode encounters two distant transitions
in the first frequency range (𝜔 < 12.9 for the case without flow and 𝜔 < 12.1 for the case with
flow). In the second one (12.90 < 𝜔 < 13.3 for the case without flow and 12.1 < 𝜔 < 12.3
for the case with flow), it experiences collapsing transitions. Finally, the main mode is fully
cut-on in the last frequency range (𝜔 > 13.3 for the case without flow and 𝜔 > 12.3 for the
case with flow). There is an excellent quantitative agreement between all the methods in the
first region, as expected from the single frequency cases. The modal scattering has a few impact
on the propagation. In the second region, the WKB model is outside of its area of validity, but
an analysis is still carried out. Where the two transitions merge, the coefficients |T | and |R |
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(a) Full frequency range (b) Zoom on the collapsing transitions region

Figure 3.20 – Variation of the amplitude of the reflection (dashed line) and transmission (solid
line) coefficients with frequency for the mode (4,2) for the case 𝑀𝑠 = −0.2. The gray region
correspond to a location where the WKB model errors are important.

should be equal to 1/
√

2 in theory [70]. This is the case with the FEM, the multimodal method
and the multimodal method without scattering but not with the WKB model. As observed for
the amplification phenomena, there seems to be a frequency shift near this region with the
model presented. However, this is not related here to the modal scattering, as the multimodal
method without scattering gives the right solution. In the last region, the mode is cut-on, and
no transition occurs inside the duct so that the reflection coefficient is expected to be equal to
0. It is not the case with the multimodal method and multimodal method without scattering
which means that other reflections, not caused by a change of mode behaviour, occur. To solve
this issue, the notion of complex turning points should be added to the WKB analysis [70]. It
can be noted that the relation |T |2 + |R|2 = 1 is only valid for the multimodal method without
scattering and WKB method, where the single injected mode carries out the overall energy. With
the multimodal method, energy leaks on the adjacent modes and the previous relation is lost
(|T |2 + |R|2 < 1). Despite this observation, note that as the scattering is limited, the multimodal
method without scattering gives excellent results and closely matches the multimodal results.
Finally, a reflection is observed in the last cut-on region when the FEM and multimodal method
are used ( |R| ≈ 0.1). It is linked to the scattering mechanism as it is not observed with the
multimodal method without scattering. Still, its value is low, and the transmission coefficient is
close to the one obtained with the multimodal method without scattering.

104



3.2. Analysis of double transitions

(a) WKB method (b) Multimodal method without scattering

(c) Multimodal method (d) Finite element method

Figure 3.21 – Maps of pressure magnitude for a mode (5,5) in the CFM56 geometry at 𝜔 = 19.2
and 𝑀𝑠 = −0.5. Turning points at 𝑋𝑡12 = 0.35 and 𝑋𝑡23 = 0.87.

3.2.4 Application to an engine intake

The ability of the models to capture both resonance and tunnelling phenomena inside real
engine geometries is investigated here. To this purpose, we consider the CFM56 engine geometry
described in Section 2.3.1.

3.2.4.1 Resonance phenomena

The first case considered is very close to the case 7 presented in [12], with the propagation of
a mode (𝑚, 𝑛) = (5, 5) and a Mach number at the fan location𝑀𝑠 = −0.5. As for the previous test
cases, two types of results are presented. First, the pressure maps and the associated projection
over Bessel functions for a single frequency are given. This frequency is set to have distant
transitions and to be far from an expected resonance phenomenon (which yields a boundary
layer thickness estimate of 𝜖−1/3𝜔−2/3 ≈ 0.20). This gives 𝜔 = 19.2. The associated results
are plotted in Figures 3.21 and 3.22. Then, the amplification is computed for a large frequency
spectra where double transitions occur. This is plotted in Figure 3.23.
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(a) WKB method (b) Multimodal method without scattering

(c) Multimodal method (d) Finite element method

Figure 3.22 – Projection over the first four Bessel functions of pressure associated to the injected
mode (5,5) in the CFM56 geometry at 𝜔 = 19.2 and 𝑀𝑠 = −0.5. Turning points at 𝑋𝑡12 = 0.35
and 𝑋𝑡23 = 0.87.
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Figure 3.23 – Variation of the amplification with frequency for a mode (5,5) in the CFM56
geometry, 𝑀𝑠 = −0.5.

For the single frequency, a good qualitative agreement is obtained between both the multi-
modal method without scattering and WKB and between the multimodal method and the FEM.
The differences in the axial amplitude and the position of the lobes for the injected mode between
all the models is observed. The differences between with and without scattering methods are
explained by an increase of the modal scattering, particularly visible for the radial mode 𝑛 = 4.
This was expected because the spinner variation introduces a new scattering mechanism. The
differences between the multimodal method without scattering and the WKB come from the fact
that we are at the limit of the distant transition hypothesis.

Still, the analysis of the resonance phenomenon displays the presence of an amplification
region for 18.8 < 𝜔 < 19.0. In this region, the match is good between the WKB method and
multimodal method without scattering, which both predict a strong amplification but with a
frequency shift between them. As for the simplified geometry presented in the Section 3.2.2,
there is again a shift between the amplification peaks obtained with the two methods that do
not encapsulate the modal scattering phenomenon and the ones obtained with the multimodal
method. But, contrarily to these previous results, the peaks appear very attenuated with the FEM
and multimodal method. However, the peak is underestimated with the multimodal method.
In order to clarify this aspect, it is necessary to recall that the turning points for both cases
where a weak amplification is observed are located before 𝑥 = 0.84. The spinner slope variation
is high between the turning points, where the multiple reflections occur, leading to important
modal scattering phenomena. Consequently, the multiple reflected waves lose significant energy
by transferring it to the neighbouring modes, which can become dominant. This prevents the
resonance from happening, the impact of double transition is only a finite amplification, and
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this strong scattering requires an accurate representation of the flow induced modal scattering.
This result is of major importance since most of the parametric studies on resonance [15, 91, 92,
16, 17] are done by neglecting the modal scattering phenomena, which may lead to erroneous
conclusions.

3.2.4.2 Tunnelling phenomena

The second case considered is very similar to the case 3 presented in [12] with the propagation
of a mode (𝑚, 𝑛) = (51, 2). As for the previous test cases made on a simplified geometry, two
types of results are presented: first, the pressure maps and the associated projection over Bessel
functions for a single frequency, then the evolution of the transmission and reflection coefficients
for a large frequency spectrum. Contrary to the resonance study, the frequency variation is not
limited to the double transition range but also includes frequencies where the mode is considered
cut-on. This is set to understand the impact of other geometric reflection phenomena in non-
symmetric geometries. For the single frequency case, 𝜔 is taken to ensure that the transitions
are at the limit of validity of the distant hypothesis of the WKB model in order to have a visible
impact of the second transition. Note that double transition phenomena is not encountered for
all the frequencies. Therefore, to apply the WKB model as if, the geometry is truncated at the
exit and 𝑥 ∈ [0, 1.8]. This gives 𝜔 = 58.3. This yields a boundary layer thickness estimate of
𝜖−1/3𝜔−2/3 ≈ 0.09. The associated results are plotted in Figures 3.24 and 3.25 for the maps of
pressure and Bessel’s projection respectively. The evolution of the reflection and transmission
coefficient with frequency is then plotted in Figure 3.26. The results show a good agreement
for the pressure plots and modal projections because the modal scattering is limited. As already
observed for the academic test cases (Section 3.2.3), the two modes adjacent to the main one show
interaction lobes. Still, there is phase shift between the reflected wave predicted by the WKB
model and multimodal method without scattering and the one obtained with the multimodal
method and FEM. As for the simplified geometry, the analysis of the tunnelling graph is divided
into three parts based on the location of turning points. In the first frequency range, where the
main mode encounters two distant turning points, there is an excellent agreement between the
multimodal method without scattering and WKB methods. However, the obtained coefficient
values are slightly different from the ones of the multimodal method and FEM, which shows a
small impact of the modal scattering. In the central region where the main mode experiences
collapsing transitions, the conclusions obtained on the simplified test case remain valid. In the
last frequency range, where the main mode is cut-on, differences that were not seen in the
simplified test case are observed between the multimodal method without scattering and the
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(a) WKB method (b) Multimodal method without scattering

(c) Multimodal method (d) Finite element method

Figure 3.24 – Maps of pressure magnitude for a mode (51,2) in the CFM56 geometry at𝜔 = 68.5
and 𝑀𝑠 = −0.5. Turning points at 𝑋𝑡12 = 1.62 and 𝑋𝑡23 = 1.90.
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(a) WKB method (b) Multimodal method without scattering

(c) Multimodal method (d) Finite element method

Figure 3.25 – Projection over the first four Bessel functions of pressure associated to the injected
mode (51,2) in the CFM56 geometry at 𝜔 = 68.5 and 𝑀𝑠 = −0.5. Turning points at 𝑋𝑡12 = 1.62
and 𝑋𝑡23 = 1.90.
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Figure 3.26 – Variation of the amplitude of the reflection (dashed line) and transmission (solid
line) coefficients with frequency for a mode (51,2) in the CFM56 geometry and for 𝑀𝑠 = −0.5.

FEM and multimodal method and highlights the increased impact of modal scattering with this
geometry.

3.3 Conclusion

A simplified multimodal formulation when considering a multiple-scale flow has been in-
troduced with the aim of reducing calculation time and isolating scattering phenomena from
self-propagation of individual modes. With this approach, all multimodal matrices are a com-
bination of variables that solely vary in the axial direction, multiplied by integrals that remain
independent of acoustic, flow, and geometry parameters when the Chebyshev basis is used. This
method exhibits particularly favorable performance in proximity to transition phenomena and
has been employed to investigate the influence of double transitions on the acoustic field. In
scenarios involving such cases, a simplified method based on the WKB ansatz has also been
proposed to enhance the analysis and to validate the multimodal method without scattering.

From a physical point of view, it was shown that double turning point can give rise to
specific phenomena such as resonance, amplification or tunnelling, that can be captured by both
developed models. In the case of a cut-on/cut-off/cut-on transition, tunnelling appears with an
attenuation of the wave between the two turning points. If the mode has a non-zero amplitude at
the axial location of the second transition, there will be a non-zero transmitted power. In the case
of a cut-off/cut-on/cut-off transition, the successive multiple reflections between the two turning
points form constructive interference for certain distances. Since the mode is cut-on in this region,
these successive reflections do not dissipate energy and can lead to resonance phenomena if no
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modal scattering is considered when the mode is trapped between the transitions.
For distant transitions, the agreement between the multimodal method without modal scatter-

ing and the WKB model is excellent for both cases. However, the comparison with the simplified
multimodal and FEM (which are is close agreement) highlights the inherent limitations of the
methods that neglect the modal scattering. For the cut-off/cut-on/cut-off double transition, this
limitation is responsible for (1) a small modification of the axial wavenumber, which causes
a shift of the amplification peak frequencies and (2) a transfer of the main mode energy over
the neighbouring modes which prevents the theoretical resonance from happening. The ampli-
fication can even become negligible if the modal scattering mechanism is strong. Then, when
one of the neighbouring modes is cut-on, it can carry a non-negligible acoustic power. As for
the cut-on/cut-off/cut-on double transition, the improvement gain by adding modal scattering is
marginal. In that case, note that even when there are no turning points inside the duct and that
the cut-off region vanishes, new geometrical reflections are shown to exist.

In conclusion, the multimodal method with a multiple-scale flow can give accurate results
and allows to separate mode propagation from modal scattering. Therefore, it enhances our
physical understanding of the phenomena inside the engine and is a valuable way to study modal
transitions. In particular, it can be used in a preliminary design of an engine to estimate the
frequencies where an amplification only controlled by the geometry occurs and thus to avoid
creating resonators that can have dire implications on the sound emission.
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Chapter 4

FORMULATION WITH MULTIPLE DUCTS

AND FREE-FIELD ACOUSTIC RADIATION

In this chapter, the focus is shifted to the computation of the free-field acoustic radiation
from an intake. To do so, we propose extending the general multimodal approach developed in
Chapter 2. This extension is based on a previous adaptation of the original multimodal method,
without flow, to compute the acoustic radiated field [93]. This original method showcased
impressive performance, making it well-suited for optimization procedures [50, 49].

This adaptation involves considering an isolated duct surrounded by a notational one with
a larger radius and a Perfectly Matched Layer (PML) on its outer boundary [93]. This PML
simulates an infinite domain by damping the waves that propagate outwards. The formulation
of this problem including the presence of a mean flow is presented in Section 4.1. First, we
rewrite the Goldstein propagation equation to account for the presence of a mean flow in a duct
when including PML on the "outer wall". Then we show you how the method is applied to
compute the mean flow, as done in Section 2.2 for in-duct domains. In Section 4.2, we validate
the developed multimodal method to perform radiation calculations against a FEM code, and
conduct a parametric study on the impact of the different acoustic parameters on the radiated
field to further validate the method.

4.1 Multimodal formulation with multiple ducts

4.1.1 Governing equations in a waveguide with PML

The goal is to simulate the propagation of acoustic waves within an isolated nacelle and their
free-field radiation. To achieve this, we use the same idea than the one presented in [93], where
the nacelle is surrounded by a duct that has a perfectly matched annular layer to model far-field
radiation conditions. The procedure is illustrated in Figure 4.1. The computational domain can
be separated into three regions A, B and 𝒞. In the waveguide A, the model is that of a standard
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in-duct acoustic propagation, while in the regions B and 𝒞, the propagation occurs in a duct
with a PML on the outer wall.

𝛿

matching
surface

duct
A

𝑅2

duct
B

duct
𝒞

PML

Figure 4.1 – Sketch of a generic turbofan inlet and the associated free-field radiation modelization
with the multimodal.

The Equation (1.13) governing the acoustic propagation inside a hard walled duct has been
given in section 1.1.3. This equation is now modified to account for a PML. The PML is
defined using the function 𝛼 which aims to modify the radial coordinate 𝑟 into a stretched radial
coordinate �̃�:

�̃� =

∫ 𝑟

0
𝛼(𝜉)d𝜉, (4.1)

to damp the acoustic waves. It is complex-valued inside the PML and equal to one (such that
�̃� = 𝑟) elsewhere [94, 95, 96]. The function 𝛼 is chosen to be:

𝛼(𝜉) = 1 + 2(𝛼 − 1) 𝜉 − (𝑅2 − 𝛿)
𝛿

, (4.2)

with 𝛿 the size of the PML, 𝑅2 the real outer radius and𝛼 a complex number. When this parameter
is used, the stretched radial derivative and the stretched radius can be rewritten: 𝜕𝑟 = 𝛼−1𝜕𝑟 and
�̃� = 𝛽𝑟, with:

𝛽 = 1 + (𝛼 − 1) (𝑟 − (𝑅2 − 𝛿))2

𝛿
. (4.3)

With PML, the Goldstein propagation equation (1.13) remains similar, except that all the
differential operators are not in the cylindrical coordinate system (𝑥, 𝑟, 𝜃), but in the modi-
fied coordinate system (𝑥, �̃�, 𝜃). With the original operators, the propagation equation to solve
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becomes:

𝛼𝛽
𝜕

𝜕𝑥

(
𝐷
𝜕𝜙

𝜕𝑥

)
+ ∇⊥ · (𝐷𝐻∇⊥𝜙)

− 𝐷𝛼𝛽
(
i𝜔 +𝑈 𝜕

𝜕𝑥
+ V⊥ · (𝐿∇⊥)

) [
1
𝐶2

(
i𝜔 +𝑈 𝜕

𝜕𝑥
+ V⊥ · (𝐿∇⊥)

)
𝜙

]
= 0,

(4.4)

where:

𝐻 =

(
𝛽/𝛼 0
0 𝛼/𝛽

)
, 𝐿 =

(
1/𝛼 0
0 1/𝛽

)
. (4.5)

As for the boundary conditions, only hard walled are considered (a liner will not bring much
since the waves will already be highly attenuated inside the PML). They write:(

𝜕𝜙

𝜕𝑥
e𝑥 + 𝐿∇⊥𝜙

)
· n = 0. (4.6)

4.1.2 Variational formulation

The in-duct general multimodal method derived in Chapter 2 can be applied in the duct A.
We aim to use the same method in the ducts B and 𝒞, but we do not yet have the multimodal
equations in the presence of a PML. Therefore, the goal is here to obtain those equations. We
begin by writing the weak formulation of the Equation (4.4) over a transverse cross section 𝑆
bounded by a contour Λ. It writes after some manipulations:

d
d𝑥

(∫
𝑆

𝐷𝛼𝛽(1 − 𝑀2)𝑢𝑔∗ − 𝐷𝑈

𝐶2 𝛼𝛽 (i𝜔 + V⊥ · (𝐿∇⊥)) 𝜙𝑔∗d𝑆
)
=

+
∫
𝑆

[
𝐷𝛼𝛽(1 − 𝑀2)𝑢 𝜕𝑔

∗

𝜕𝑥
+ 𝐷𝐻∇⊥𝑔

∗ · ∇⊥𝜙

− 𝐷

𝐶2𝛼𝛽 ((i𝜔 + V⊥ · (𝐿∇⊥)) 𝜙 (−i𝜔 + V⊥ · (𝐿∇⊥)) 𝑔∗ +𝑈𝑢 (−i𝜔 + V⊥ · (𝐿∇⊥)) 𝑔∗

+𝑈𝜕𝑔
∗

𝜕𝑥
(i𝜔 + V⊥ · (𝐿∇⊥)) 𝜙

)]
d𝑆,

(4.7)

where 𝑔 is a test function.

As in Section 2.1.3, the acoustic variables are represented using a set of linearly independent
transverse cross-section functions, denoted (𝜑 𝑗 ) 𝑗∈N. The same basis is used for the test functions
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associated to 𝜙 and 𝑢. The Equation (4.7) then becomes:

d
d𝑥

(∫
𝑆

𝐷𝛼𝛽(1 − 𝑀2)𝜑 𝑗𝜑∗𝑖 𝑢 𝑗 −
𝐷𝑈

𝐶2 𝛼𝛽 (i𝜔 + V⊥ · (𝐿∇⊥)) 𝜑 𝑗𝜑∗𝑖 𝜙 𝑗d𝑆
)
=

+
∫
𝑆

[
𝐷𝛼𝛽(1 − 𝑀2)𝜑 𝑗

𝜕𝜑∗
𝑖

𝜕𝑥
𝑢 𝑗 + 𝐷𝐻∇⊥𝜑

∗
𝑖 · ∇⊥𝜑 𝑗𝜙 𝑗

− 𝐷

𝐶2𝛼𝛽((i𝜔 + V⊥ · (𝐿∇⊥)) 𝜑 𝑗 (−i𝜔 + V⊥ · (𝐿∇⊥)) 𝜑∗𝑖 𝜙 𝑗

+𝑈𝜑 𝑗 (−i𝜔 + V⊥ · (𝐿∇⊥)) 𝜑∗𝑖 𝑢 𝑗 +𝑈 (i𝜔 + V⊥ · (𝐿∇⊥)) 𝜑 𝑗
𝜕𝜑∗

𝑖

𝜕𝑥
𝜙 𝑗 )

]
d𝑆.

(4.8)

This gives one of the new first-order equations needed for the multimodal formulation (which
replaces Equation (2.10) of the general multimodal formulation). For the second one, a similar
procedure on 𝑢 = 𝜕𝜙/𝜕𝑥 gives:∫

𝑆

𝛼𝛽𝐷 (1−𝑀2)𝜑𝑖𝜑∗𝑖 d𝑆
d𝜙 𝑗
d𝑥

= −
∫
𝑆

𝛼𝛽𝐷 (1−𝑀2)𝜑∗𝑖
𝜕𝜑 𝑗

𝜕𝑥
d𝑆𝜙 𝑗+

∫
𝑆

𝛼𝛽𝐷 (1−𝑀2)𝜑 𝑗𝜑∗𝑖 d𝑆𝑢 𝑗 .

(4.9)

As a remainder, the equations governing the axial variation the vectors 𝜙𝜙𝜙 and u can be
written: (

𝐴11 𝐴12

𝐴21 𝐴22

)
d
d𝑥

(
𝜙𝜙𝜙

u

)
=

(
𝑀11 𝑀12

𝑀21 𝑀22

) (
𝜙𝜙𝜙

u

)
. (4.10)

This gives us access to the matrices 𝐴11, 𝐴12, 𝐴21, 𝐴22, 𝑀11, 𝑀12, 𝑀21 and 𝑀22 in the case with
PML. The resulting matrices are given in Appendix D. This is the main equation of the problem
that is solved in the ducts B and 𝒞 using the multimodal method.

A procedure similar to the one done for in-duct propagation (see Sections 2.1.5 – 2.1.8) is
applied to solve this equation. This is done in ducts B and 𝒞 while the general formulation
of Section 2.1.3 is solved for duct A. The only step that remains is how the information is
exchanged between the three ducts.

4.1.3 Matching procedure

At the junction between the ducts, it is necessary to have connection formula that link the
admittance matrix𝑌 and the potential amplitudes𝜙𝜙𝜙 of each duct. For the following, the subscripts
A, B, and 𝒞 indicate that the variables are associated with the ducts A, B, and 𝒞 respectively.
In the ducts B and 𝒞 admittances 𝑌B and 𝑌𝒞 are found by applying a multimodal method
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PML

2𝛿

𝑥𝑚

𝑆A

𝑉𝑙

𝑆𝒞
𝑆B

𝑥

𝑟

𝑟𝑚

Figure 4.2 – Sketch of a generic matching region at the inlet.

from their initial value at far-field (𝑥 → ∞) to the matching region. The connection formula on
the admittance therefore writes: 𝑌A = 𝑌A (𝑌B , 𝑌𝒞). To determine the connection formula, the
acoustic potential and velocity are assumed to be continuous at these junctions.

Let us consider the exit of an intake located at (𝑥𝑚, 𝑟𝑚) such that 𝑥 = 𝑥𝑚 +𝛿 is in the free-field
(duct B) and 𝑥 = 𝑥𝑚 − 𝛿 is located inside the engine. We define a thin volume 𝑉𝑙 that goes from
𝑥 = 𝑥𝑚 − 𝛿 to 𝑥 = 𝑥𝑚 + 𝛿, as sketched in Figure 4.2. The computational domain 𝑉𝑙 is enclosed by
the surfaces 𝑆𝑤, 𝑆A , 𝑆B , and 𝑆𝒞. 𝑆A and 𝑆𝒞 are located at 𝑥 = 𝑥𝑚 − 𝛿 inside the ducts A and
𝒞 respectively, while 𝑆B is located at 𝑥 = 𝑥𝑚 + 𝛿 in the duct B.

When 𝛿 → 0, we want the following set of equations to be true in the domain 𝑉𝑙 :{
𝑢𝒞 (𝑥𝑚, 𝑟) = 𝑢B (𝑥𝑚, 𝑟) and 𝜙𝒞 (𝑥𝑚, 𝑟) = 𝜙B (𝑥𝑚, 𝑟) for 𝑟 > 𝑟𝑚,
𝑢A (𝑥𝑚, 𝑟) = 𝑢B (𝑥𝑚, 𝑟) and 𝜙A (𝑥𝑚, 𝑟) = 𝜙B (𝑥𝑚, 𝑟) for 𝑟 < 𝑟𝑚 .

(4.11)

In each duct, these acoustic variables are represented using the functions 𝜑D
𝑗

, such that:

𝑎D =
∑︁
𝑗

𝑎D𝑗 (𝑥)𝜑
D
𝑗 (𝑥, 𝑟, 𝜃),

where 𝑎D is one of the acoustic variables and D ∈ [A,B,𝒞].

Equation (4.11) can then be written with the following relations between the acoustic potential
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and velocity variables:∫
𝑆B

(
𝜑B𝑖

)∗
𝑢B𝑤B d𝑆 =

∫
𝑆A

(
𝜑B𝑖

)∗
𝑢A𝑤B d𝑆 +

∫
𝑆𝒞

(
𝜑B𝑖

)∗
𝑢𝒞𝑤B d𝑆,∫

𝑆A

(
𝜑A𝑖

)∗
𝜙A𝑤A d𝑆 =

∫
𝑆A

(
𝜑A𝑖

)∗
𝜙B𝑤A d𝑆,∫

𝑆𝒞

(
𝜑𝒞𝑖

)∗
𝜙𝒞𝑤𝒞 d𝑆 =

∫
𝑆𝒞

(
𝜑𝒞𝑖

)∗
𝜙B𝑤𝒞 d𝑆,

(4.12)

where 𝜑A
𝑖
, 𝜑B

𝑖
, 𝜑𝒞

𝑖
are orthogonal with respect to the weights functions𝑤A , 𝑤B , 𝑤𝒞 respectively.

In a matrix form, this writes:

𝜙𝜙𝜙A = 𝐹B
A𝜙𝜙𝜙B , 𝜙𝜙𝜙𝒞 = 𝐺B

𝒞
𝜙𝜙𝜙B ,

uB = 𝐹A
B uA + 𝐺𝒞

Bu𝒞,
(4.13)

where (𝐹B
A)𝑖 𝑗 =

∫
𝑆A

(𝜑A
𝑖
)∗𝜑B

𝑗
𝑤Ad𝑆 is the transfer matrix from duct B to duct A and (𝐺B

𝒞
)𝑖 𝑗 =∫

𝑆𝒞
(𝜑𝒞
𝑖
)∗𝜑B

𝑗
𝑤𝒞d𝑆 is the transfer matrix from duct B to duct 𝒞. The admittance at the exit of

the duct A is therefore:

𝑌A =

(
𝐹B
A

(
𝑌B − 𝐺𝒞

B𝑌𝒞𝐺
B
𝒞

)−1
𝐹A
B

)−1
. (4.14)

This formula gives the admittance at the exit of the duct A. This one replaces the original
boundary condition, set in Equation (2.15), and is integrated right up to the source. Then, the
potential is integrated from the source to the exit of the duct A. This potential is used to find
both the "source" potential in the ducts B and 𝒞 using the connection formula:

𝜙𝜙𝜙B =

(
𝑌B − 𝐺𝒞

B𝑌𝒞𝐺
B
𝒞

)−1
𝐹A
B 𝑌A𝜙𝜙𝜙A ,

𝜙𝜙𝜙𝒞 = 𝐺B
𝒞
𝜙𝜙𝜙B .

(4.15)

We can compute the acoustic potential in the ducts B and 𝒞 with these values for the source.

4.1.4 Adaptation for mean flow computation

It was shown that the general multimodal approach of Chapter 2 could also be used to
compute the base mean flow in section 2.2. The basic idea is that the equation that governs the
acoustic propagation without base flow and at zero frequency is equivalent to the one that governs
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the mean flow provided that the density is known. However, the acoustic computation becomes
unstable when performed at zero frequency with a complex PML. Therefore, for computing
the base flow with the multimodal, the PML is removed and a large outer radius is defined
for the surrounding duct so that the flow at its outer wall approximately matches the free-field
desired Mach number. The method of Section 2.2 is therefore used as such, except for one point
described below.

Enforcing the term (𝑥𝑒 + 𝑐Φ) (in Equation (2.37)), which can be seen as the ratio between
potential and axial velocity amplitudes associated with the "plane wave", is another issue to
consider when dealing with flow computations (see section 2.2). For a single duct, this is not
a problem as the potential is defined up to a constant. Thus, imposing this ratio only fixes the
potential constant and has no impact on the results. However, in cases where multiple ducts are
present, it becomes necessary to enforce this ratio at different axial locations. It must be done in
the ducts B and 𝒞 in our case (in order to find 𝑌B and 𝑌𝒞 at the junction location). While one
of the two values can still be freely imposed to fix the potential constant, the other enforces a
specific mass flow distribution between the three ducts. We then conduct a convergence process
to determine the value of this second potential-to-velocity ratio required to ensure the desired
mass flow distribution. One could use a random guess for the initial value, but this would be
time-consuming. A good guess for this initial value can easily be obtained because the flow
should be constant near the outer wall of the upper duct since we want to represent free-field
conditions. Indeed, in the free field, the potential can be written Φ∞ = 𝑈∞𝑥 + 𝑏∞ where 𝑈∞ is
the free-stream axial velocity (defined by the user) and 𝑏∞ a constant. If the constant is fixed by
choosing an arbitrary value for 𝑐ΦB in duct B, then the initial guess of the potential-to-velocity
ratio in duct 𝒞 is (𝑥𝒞𝑒 + 𝑐ΦB). Finally, the convergence process on this second ratio stops when
the Mach at the end of duct 𝒞 equals 𝑀∞.

4.2 Validation

4.2.1 Engine geometry

The CFM56 engine defined in Section 2.3.1 is used for the validation. However, only the
internal part of the nacelle is available, and for performing acoustic radiation calculations, the
complete geometry representation is required. This geometry cannot be described as a one-
dimensional function as previously. A fictive but realistic nacelle has been designed and is
stored on the author’s GitHub (https://github.com/brumann/CFM56-geometry). Note that the
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internal part of the nacelle respects the 1D function previously given in Equation (2.38) (for the
exit of the nacelle piecewise-cubic interpolator matching values and first derivatives were used).

A y-slice of the nacelle is given in Figure 4.3.

Figure 4.3 – Overview of the nacelle.

4.2.2 Validation methodology

The validation is again done using the FEM (defined in Section 2.3.2) which computes both
the steady potential flow and the acoustic field. Note that here, the free-field boundary condition
is defined using ray theory approximation [43]. An example of a mesh for a full intake is shown
in Figure 4.4.

Regarding the multimodal method, as the problem is axisymmetric, a single Fourier mode
in the circumferential direction is used. Chebyshev functions are used in the radial direction. In
the axial direction, an axial mesh density equal to 0.5 in the ducts A and 𝒞 is used, and 100
points (0.25 < 𝐷𝑒𝑥 < 0.5 for all cases) are used in the duct B (where the mesh criterion can be
relaxed because there are minor flow changes and no wall variation). The numerical parameters
used in all ducts for the mean flow and acoustic computations are summed up in Table 4.1. All
the following acoustic computations take between 20 and 60 seconds with these parameters.

The nacelle is placed inside a mean flow with a free-stream Mach number of 𝑀∞ = −0.2
and density 𝐷∞ = 1, while at the source plane, the Mach number is 𝑀𝑠 = −0.5. The tip radius
of the outer duct is 3 (chosen large enough to ensure that it does not affect the in-duct flow). For
all cases studied below, the incident duct mode is defined at the source plane such that the RMS
pressure at the injection equals one at the outer wall.
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- Free field
boundary
condition

- Acoustic
injection

Figure 4.4 – Example of mesh used for free-field computations with the PFE solver (under-
meshed for the sake of visibility).

Duct A Duct B Duct 𝒞 PML definition

Mean flow 25 polynomials 200 polynomials 25 polynomials —
Acoustics 50 polynomials 150 polynomials 100 polynomials 𝛿 = 0.5, 𝛼 = exp(i𝜋/4)

Table 4.1 – Summary of the multimodal computation parameters.

4.2.3 Flow results

The computation can be directly carried out using the formulation derived in the section 4.1.
However, this does not offer any significant advantage compared to finite element methods. In
particular, the flow computation would be time-consuming due to the need for many polynomials
in the duct B to represent the strong velocity gradient near the stagnation point that appears
near the nacelle lip. Therefore, the flow is assumed to be incompressible in the duct B, and
the admittance does not vary and only needs to be computed at one single axial location
(constant cross-section and no density variation). With this hypothesis, the time taken for the
flow computation is similar to the one of an in-duct computation.

Three flow computations are conducted, including one with the FEM code and two with
the multimodal code. The first multimodal computation is performed without assuming an
incompressible flow inside the duct B to demonstrate the method’s ability to compute the
precise mean flow. The second one is done with the simplification hypothesis to check its
validity. Figure 4.5 displays the axial velocity contours obtained from these three computations.

The small discrepancies between the FEM and exact multimodal computation can be at-
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tributed to different definitions of the boundary conditions. In the multimodal method, we
assume an hard walled boundary condition at the outer wall, while in the FEM, the velocity
value is fixed. The differences between the fully compressible and partially incompressible mul-
timodal computations, only visible in duct B, are minor and are not expected to affect acoustic
computations. In contrast, there are major differences regarding the calculation time, with the
partially incompressible one running in around 10 seconds while the exact one took around
400 seconds to compute the base flow. Therefore, we only use the flow field resulting from the
partially incompressible multimodal computation in the following.

(a) Finite element method (b) Multimodal

(c) Multimodal with incompressible flow in duct
B

Figure 4.5 – Contours of mean axial velocity for 𝑀𝑠 = −0.5 and 𝑀∞ = −0.2.
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4.2.4 Acoustic results

Some qualitative acoustic results are given to assess the multimodal method’s capability
with a PML to represent the radiation condition in the presence of mean flow. The simplified
flow is interpolated onto the acoustic grid for multimodal computations. As for the in-duct case
in Section 2.3, the axial grid points used in the multimodal calculations of the mean flow differ
from those used in the multimodal calculation of the sound field. So, for each duct, the vectors
ΦΦΦ(𝑥) and U(𝑥) are interpolated onto the axial grid points needed for the acoustic calculation.
For the FEM simulations which serve as a reference, the same grid is used for the flow and
acoustics to avoid errors from grid interpolation.

(a) Finite element method (b) Multimodal

Figure 4.6 – SPL pressure field for a mode (𝑚, 𝑛) = (10, 1) at 𝜔 = 15.

(a) Finite element method (b) Multimodal

Figure 4.7 – SPL pressure field for a mode (𝑚, 𝑛) = (25, 1) at 𝜔 = 30.
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(a) (𝑚, 𝑛) = (10, 1) at 𝜔 = 15 (b) (𝑚, 𝑛) = (25, 1) at 𝜔 = 30

Figure 4.8 – SPL directivity for the modes (𝑚, 𝑛) = (10, 1) at 𝜔 = 15 and (𝑚, 𝑛) = (25, 1) at
𝜔 = 30.

Figures 4.6 and 4.7 depict the sound pressure level (SPL) in dB for the injected modes
(𝑚, 𝑛) = (10, 1) at𝜔 = 15 and (𝑚, 𝑛) = (25, 1) at𝜔 = 30, obtained using the multimodal method
and FEM. The two methods yield similar results. In Figure 4.6, non-physical perturbations can
be seen at the junction level (𝑥 = −2.05). These perturbations arise due to the appearance of
high-order modes generated by the poorly conditioned junction matrices. This conditioning issue
comes from the weak singularity of the derivative of the radial acoustic velocity at the inlet.
However, these spurious fluctuations are quickly attenuated and seem not to propagate.

Figure 4.8 shows the SPL directivity for the two previously studied test cases. The directivity
is computed on an arc located at a distance of 2 from the engine exit, with 0◦ corresponding to
the forward direction. We use the term "quiet zone" to refer to the area near the engine axis where
the SPL is low (below 50 dB). Despite the flow hypothesis used in the multimodal method, the
radiation pattern given by the method is accurate for both modes, which validates the chosen
approach. Note that, as expected for modes close to the transition, the radiation pattern presents
one main lobe directed towards the forward arc with a large quiet zone (peak radiation near 60◦

and 70◦). Investigating if the method also performs well when different acoustic parameters vary
is now necessary.

4.2.5 Parametric study

Extensive work has been done to address the radiation from the engine intake, and several
analytical models allow to derive some general trends on the impact of the different acoustic
parameters on the radiated field (see for example [97] for cut-on modes and [10] for cut-off
modes). In this context, a concise parametric study is conducted to corroborate these analytical
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findings and validate the developed method.

4.2.5.1 Cut-on modes

In this section, we study the evolution of the directivity with regards to multiple parame-
ters for injected modes which remain cut-on throughout the whole duct. The parameter study
encompasses the variation of the nondimensionalized pulsation 𝜔, the circumferential mode or-
der𝑚, and the radial mode order 𝑛. FEM computations are also performed to validate the results.

● Influence of frequency

The same mode orders as studied above, (𝑚, 𝑛) = (10, 1) and (𝑚, 𝑛) = (25, 1), are taken
but the frequency is multiplied by 1.5 and 2 to evaluate the developed method for higher
frequencies. The results are shown in Figure 4.9. Both methods produce consistent results. Note
that the agreement is good for the azimuthal order 𝑚 = 10 at all frequency but some minor
differences are observed for the order𝑚 = 25 at high frequency. From a physical perspective, we
observe that the directivity patterns maintain roughly the same peak SPL levels as the pulsation𝜔
increases. But, at low frequencies, the directivity pattern is typically dominated by a single lobe,
whereas at higher frequencies, additional lobes appear. This suggests that different radial modes
contribute to the radiated field. This phenomenon can be explained by the creation of scattered
radial modes within the duct that become cut-on for higher frequencies and thus contribute to
the radiated field. Furthermore, we observe that the main radiation lobe is directed towards the
forward-arc, which is an expected behaviour given that all modes are cut-on modes. It should
also be noted that the size of the quiet zone decreases as the frequency increases, and the angle
of the main lobe moves towards the engine axis.

● Influence of radial order

We start with both modes studied in the qualitative comparison in Section 4.2.4 and increase
the radial order of the injected mode to check how the developed method reacts for high radial
orders. For the frequency, a frequency where all the modes are cut-on is kept. We chose 𝜔 = 30
for the azimuthal order 𝑚 = 10 and 𝜔 = 45 for the azimuthal order 𝑚 = 25 and look at the first
three radial orders. The results are shown in Figure 4.10. The results obtained using the proposed
method are in good agreement with those obtained using the FEM for all radial orders. The first
observation is a decrease in the number of lobes in the radiation pattern as the radial order
increases. This result may initially seem counter-intuitive, but it can be explained by considering
the distance to modal transition. For instance, for the azimuthal order 𝑚 = 10, when the radial
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(a) (𝑚, 𝑛) = (10, 1) (b) (𝑚, 𝑛) = (25, 1)

Figure 4.9 – SPL directivity evolution with the increase of the frequency.

order is 𝑛 = 3, the mode is weakly cut-on, which results in a weak modal scattering [98]. As a
result, we observe only three lobes in the directivity pattern. On the other hand, when the radial
order is 𝑛 = 1, the mode is well cut-on, and there is significant modal scattering inside the duct,
which leads to the five observed main lobes. In addition, we note that the pressure levels are
higher in the rear-arc for low radial orders. This behaviour can be attributed to the same reason.
Indeed, the high-radial order modes generated by scattering mechanisms are weakly cut-on or
cut-off, and therefore they tend to have higher levels in the rear-arc [10]. Note that the size of
the quiet zone does not vary for the different radial orders.

(a) 𝑚 = 10 at 𝜔 = 30 (b) 𝑚 = 25 at 𝜔 = 45

Figure 4.10 – SPL directivity evolution with the increase of the radial order.

● Influence of azimuthal order

The impact of the azimuthal order on how the developed method behaves is evaluated. The
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radial order is kept constant and equals one. Three azimuthal orders are considered, 𝑚 = 10, 20,
30 for the pulsation 𝜔 = 40. The results are shown in Figure 4.11. Once again, the two methods
agree on the directivity patterns. As the azimuthal wavenumber increases, the number of lobes
in the radiation pattern decreases. These observations can again be explained by the distance to
a modal transition. The further away from it, the more lobes are present in the radiation pattern
and the smaller is the angle of the quiet zone. Moreover, as the azimuthal wavenumber order
increases, the angle of the main lobe increases. Therefore, the effect of the azimuthal mode order
is at the opposite of the one of the frequency.

Figure 4.11 – SPL directivity evolution with the increase of the azimuthal order for 𝑛 = 1 at
𝜔 = 40.

4.2.5.2 Transition and cut-off modes

Since the injection is moved backward in the FEM computation, cut-off comparisons cannot
be made as such. Therefore, the source amplitude is increased in the FEM computations to
mitigate the exponential decay in this extended part. Here, various test cases where the mode
is cut-off at the injection or encounters a cut-on/cut-off transition are studied. Both radial order
and frequency evolutions are examined. The radial test cases are conducted at 𝜔 = 30 for the
azimuthal order 𝑚 = 10, and the frequency test cases are conducted for a mode (𝑚, 𝑛) = (25, 1).
First, for the azimuthal order 𝑚 = 10, the studied radial order ranges from 𝑛 = 6 to 𝑛 = 8. 𝑛 = 6
is cut-on while 𝑛 = 7 encounters a double transition (cut-on/cut-off/cut-on) and 𝑛 = 8 is cut-off
in the whole duct. Then, for the azimuthal order 𝑚 = 25, three different frequencies are tested:
𝜔 = 24.5, 24.7 and 25. At𝜔 = 24.5 the mode encounters a transition at 𝑋𝑡 = 0.59, for𝜔 = 24.7 at
𝑋𝑡 = 0.67 and at𝜔 = 24 at 𝑋𝑡 = 0.80. For these frequencies, the source amplitude is multiplied by
105 to avoid low SPL in the radiation pattern. The results are plotted in Figure 4.12. Both methods
agree on the directivity pattern for all cases except for the challenging mode (𝑚, 𝑛) = (10, 8),
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where we are close to the numerical precision. For the radial order evolution, apart from the
exponential decay, scattering phenomena cause the injected mode to have almost no impact. The
directivity pattern for the modes with radial order 𝑛 = 7 and 𝑛 = 8 is close to that of the mode
with a radial order 𝑛 = 6. This suggests that the directivity of transition and cut-off modes is not
explicitly dependent on the radial order of the injected mode but rather depends on the closest
cut-on mode. Note that this conclusion can be derived analytically for a constant cross-section
duct by using the far-field directivity formulation derived by Gabard & Astley [99]. The impact
of the frequency is not as clear. Only one lobe is observed in all cases, which comes from the
fact that the injected mode radial order is 𝑛 = 1 and that no cut-on mode that could alter the
directivity pattern can be excited.

(a) Radial order evolution for 𝑚 = 10 at 𝜔 = 30 (b) Frequency evolution for (𝑚, 𝑛) = (25, 1)

Figure 4.12 – SPL directivity of cut-off modes.

4.3 Conclusion

In this chapter, we have extend the multimodal method of Chapter 2 to compute the mean flow
around an engine intake and the acoustic radiation with flow. This was achieved by surrounding
the engine with a duct with a perfectly matched layer on the outer wall, rewriting the acoustic
propagation equation inside this duct, and using connection formulas between the inner and
outer ducts. An incompressible flow hypothesis was added in the free-field to improve the
calculation time for the flow computations. This modification reduced by a factor of around
twenty the calculation time without significantly impacting the acoustic results. With all of this,
the proposed approach enables the efficient calculation of the radiated field. The advantage of
the method, when compared to FEM, is not as important as for in-duct computations. Still, the
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formulation was validated against FEM results for various frequencies and azimuthal modes and
proved accurate in computing the mean flow and acoustic fields.
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Chapter 5

THREE-DIMENSIONAL FORMULATION:
THE IMPACT OF FLOW DISTORTION

Although the general multimodal method developed in Chapter 2 (in-duct propagation) and
Chapter 4 (free-field radiation) has previously been validated for axisymmetric flows, its applica-
bility also extends to non-axisymmetric flows. Therefore, this chapter aims to apply it to evaluate
the effect of azimuthal flow distortion generated by an angle of incidence on acoustic in-duct
propagation and free-field radiation. An analysis of the shape of the azimuthal flow distortion
impact is first performed in Section 5.1. Then, the modifications of the general multimodal
method are addressed. While for the acoustic computations, the method of Chapters 2 and 4 is
directly usable as before with the inclusion of multiple azimuthal modes in the basis functions,
adjustments are required in the admittance boundary condition for mean flow prediction. These
specificities are addressed in Section 5.2. They impose the use of the free-field radiation mul-
timodal method to correctly represent the distortion generated by an angle of incidence. The
method is then validated in Section 5.3. This validation process involves assessing the method
for the flow against a finite volume solver that solves the steady Euler equations and for the
acoustics against a finite difference solver that solves the linearized Euler equation. Further-
more, a one-dimensional model is introduced to enhance the analysis of the results. Finally, in
Section 5.4, the analysis starts by examining the influence of liner effects in a distorted flow.
Subsequently, the investigation delves into understanding how changes in engine length, as part
of the transition to UHBR engines, impact the distortion’s effects on acoustic propagation.

5.1 Description of the flow distortion

The general multimodal method developed in Chapter 2 imposes that the flow is potential.
This hypothesis implies that ∇ × V = 0, and therefore:

𝜕𝑊

𝜕𝑥
=

1
𝑟

𝜕𝑈

𝜕𝜃
,

1
𝑟

𝜕𝑟𝑊

𝜕𝑟
=

1
𝑟

𝜕𝑉

𝜕𝜃
,
𝜕𝑈

𝜕𝑟
=
𝜕𝑉

𝜕𝑥
. (5.1)
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In the presence of azimuthal distortion, the term 𝜕𝑈/𝜕𝜃 is not equal to zero and therefore the
term 𝜕𝑊/𝜕𝑥 is also non-zero. This implies that the flow needs to be three-dimensional and
to vary in the axial direction. The hypothesis of purely axial uniform flow in constant duct
formulations [53, 58] is therefore not applicable.

To have a first idea of the axial evolution of such a flow, a simplified flow distortion model
is derived hereafter by considering the case of a constant narrow annular duct of radius 𝑅. The
narrow duct imposes no radial variation of the flow so that the velocity can be simplified to
U = (𝑈 (𝑥, 𝜃),𝑊 (𝑥, 𝜃)). Let us assume that any mean flow variables 𝐴 can be written in the form
𝐴 = 𝐴0 + 𝐴1(𝑥) cos(𝜃) with 𝐴1 ≪ 𝐴0. The mass conservation equation and the Equation (5.1)
are used to write:

𝜕𝐷𝑈

𝜕𝑥
+ 1
𝑅

𝜕𝐷𝑊

𝜕𝜃
= 0 and

1
𝑅

𝜕𝑈

𝜕𝜃
=
𝜕𝑊

𝜕𝑥
. (5.2)

Combining both equations gives:(
1 −

𝑈2
0

𝐶2
0

)
𝜕2𝑈1

𝜕𝑥2 − 1
𝑅2𝑈1 = 0. (5.3)

The solutions to this equation are given by:

𝑈1 = 𝜅e−𝑘𝑥 , (5.4)

where 𝑘−1 =
√︁

1 − (𝑈0/𝐶0)2𝑅, and 𝜅 is a constant. This means that the distortion decreases
exponentially inside such a duct under the potential flow restriction. Note that the same solution
had already been given by Guérin [7] but no details on the derivation were given.

The transpositions of these observations to a realistic engine geometry are investigated using
available RANS simulations of an UHBR engine. The details of this analysis are provided in
Appendix E. The numerical simulations demonstrated that the flow rotational is indeed equal to
zero outside the boundary layers, which validates the potential flow hypothesis. Moreover, two
key findings emerge from this analysis:

— the distortion levels decrease sharply inside the engine (almost exponentially), which is in
agreement with the evolution predicted by Equation (5.4);

— the mean flow can be decomposed into a limited number of azimuthal components.

These observations demonstrate that the slowly varying hypothesis for the mean flow of multiple-
scale methods is not met and explain why directly applying the general formulation of [66] cannot
work.
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5.2 Accounting for azimuthal flow distortion in the multi-
modal method

5.2.1 Specifities for mean flow computation

It has been shown above that the flow distortion varies axially by using both mathematical
and empirical analyses. Therefore, for computing the mean flow with the multimodal method,
it is not possible to use the classical hypothesis of infinite duct termination with uniform flow
by simply imposing a constant 𝑐Φ in the term wΦ

0 (see Section 2.2.2). Two solutions arise to
address this issue for in-duct computations.

The first one uses the fact that the distortion decreases exponentially inside the air inlet.
Therefore, it can be assumed that the flow becomes 2D at the fan position if the intake is
sufficiently long. In that case, the resolution of the flow can be reverted, with the standard
admittance condition imposed at the fan plane (step 1 of Figure 2.1). However, as the potential
distribution (step 3 of Figure 2.1) has to be specified at the engine exit, a prior knowledge
of the distortion shape is required. In addition, this approach can hardly be used for radiation
calculation where two potential-to-velocity ratios must be enforced.

For the second solution, adopted in this thesis, a sketch of a generic turbofan and the
associated wave-guide problem when there is an incoming flow with incidence is first depicted
in Figure 5.1. This solution involves modifying the radial boundary condition of the outer duct
to mimic a duct where the flow is under incidence but does not vary axially. To do so, instead of
imposing ∇Φ = 𝜕Φ/𝜕𝑟 = 0 at the outer wall, the condition 𝜕Φ/𝜕𝑟 = tan(𝛼𝐴𝑜𝐴) sin(𝜃)𝜕Φ/𝜕𝑥
is applied, where 𝛼𝐴𝑜𝐴 is the angle of attack of the flow. In such a duct D, the potential can be
found analytically and is given by:

ΦD (𝑥, 𝑟, 𝜃) = 𝑈∞𝑥 +
(
𝑟 +

𝑅2
1
𝑟

)
𝑅2

2

𝑅2
2 − 𝑅

2
1
𝑈∞ tan(𝛼𝐴𝑜𝐴) sin(𝜃) + 𝑐ΦD . (5.5)

By projecting this expression onto the Fourier-Chebyshev basis, we obtain the term wΦ
0 of the

admittance at the exit of the duct. This can be performed in both ducts B and 𝒞 with the
procedure detailed in Section 4.1.4 to determine the two associated constants 𝑐ΦB and 𝑐Φ

𝒞
.
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𝛼𝐴𝑜𝐴

𝑌𝒞

𝑒

𝑌B
𝑒

Φ𝑠

𝑀∞

𝑥

𝑧 isoline of the
potential
imposed

Figure 5.1 – Schematic of the computational domain in a case with distortion.

5.2.2 Coupling between the azimuthal orders

When the general multimodal method was introduced earlier in Chapter 2, the multimodal
matrices were derived in a general context (these matrices can be found in Appendix A). A quick
focus is made here to understand how they are modified in the presence of distortion, and to
see how different azimuthal orders are coupled. Consider for instance the matrix 𝐴11, which is
expressed as follows:

(𝐴11)𝑖 𝑗 =
∫
𝑆

𝐷 (1 − 𝑀2)𝜑 𝑗𝜑∗𝑖 d𝑆. (5.6)

For the variables 𝑖 and 𝑗 , we associate two sets of variables (𝑚𝑖, 𝑝𝑖) and (𝑚 𝑗 , 𝑝 𝑗 ) respectively
such that:

𝜑𝑖 = 𝑓𝑝𝑖 (𝑟)𝑒−i𝑚𝑖𝜃 and 𝜑 𝑗 = 𝑓𝑝 𝑗
(𝑟)𝑒−i𝑚 𝑗𝜃 , (5.7)

where 𝑓𝑝 (𝑟) =

(
𝑟

𝑅2 − 𝑅1

)min( |𝑚 |,1)
𝑇𝑝

(
𝑟 − 𝑅1
𝑅2 − 𝑅1

)
. The hypothesis that the mean flow can be

decomposed into a limited number of azimuthal components is used to express 𝐷 (1 − 𝑀2) as
powers of 𝑒i𝜃 , such that:

𝐷

(
1 − 𝑀2

)
=

[
𝐷

(
1 − 𝑀2

)]
−1

(𝑥, 𝑟)𝑒i𝜃 +
[
𝐷

(
1 − 𝑀2

)]
0
(𝑥, 𝑟) +

[
𝐷

(
1 − 𝑀2

)]
1
(𝑥, 𝑟)𝑒−i𝜃 ,

(5.8)
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where
[
𝐷

(
1 − 𝑀2) ]

𝑙∈⟦−1,1⟧ are the coefficients of the Fourier expansion. Then, Equation (5.6)
transforms into:

(𝐴11)𝑖 𝑗 =
∫ 𝑅2

𝑟=𝑅1

∫ 2𝜋

𝜃=0

[
𝐷

(
1 − 𝑀2

)]
−1

(𝑥, 𝑟) 𝑓𝑝 𝑗
(𝑟) 𝑓𝑝𝑖 (𝑟)𝑒i(𝑚𝑖+1−𝑚 𝑗 )𝜃d𝑆

+
∫ 𝑅2

𝑟=𝑅1

∫ 2𝜋

𝜃=0

[
𝐷

(
1 − 𝑀2

)]
0
(𝑥, 𝑟) 𝑓𝑝 𝑗

(𝑟) 𝑓𝑝𝑖 (𝑟)𝑒i(𝑚𝑖−𝑚 𝑗 )𝜃d𝑆

+
∫ 𝑅2

𝑟=𝑅1

∫ 2𝜋

𝜃=0

[
𝐷

(
1 − 𝑀2

)]
1
(𝑥, 𝑟) 𝑓𝑝 𝑗

(𝑟) 𝑓𝑝𝑖 (𝑟)𝑒i(𝑚𝑖−𝑚 𝑗−1)𝜃d𝑆.

(5.9)

This can then be simplified as:

(𝐴11)𝑖 𝑗 =D−1𝛿𝑚𝑖𝑚 𝑗−1 + D0𝛿𝑚𝑖𝑚 𝑗
+ D1𝛿𝑚𝑖𝑚 𝑗+1, (5.10)

where D𝑙 = 2𝜋
∫ 𝑅2
𝑟=𝑅1

[
𝐷

(
1 − 𝑀2) ]

𝑙
(𝑥, 𝑟) 𝑓𝑝 𝑗

(𝑟) 𝑓𝑝𝑖 (𝑟)𝑟d𝑟 and 𝑙 ∈ ⟦−1, 1⟧. This implies that
𝐴11 is a block tridiagonal matrix. The off-diagonal terms relate to transfer on adjacent Fourier
functions, while the diagonal terms relate to the propagation of a single azimuthal Fourier
component. It’s worth noting that when D−1 = D1 = 0, there is no azimuthal transfer and a 2D
formualtion is recovered.

5.3 Validation in the presence of azimuthal flow distortion

5.3.1 Engine geometry

The CFM56 engine defined in Section 4.2.1 is used again to validate the mean flow prediction
of the multimodal method in the presence of distortion. The same test cases as the ones performed
in Section 4.2 are run, but the nacelle is now assumed to be under an incidence of 5◦ or 10◦.

5.3.2 Validation methodology for the mean flow calculations

The FEM solver used up to now is limited to 2D cases. In this chapter, the mean flow is
therefore computed using Onera’s Computational Fluid Dynamics (CFD) solver elsA, which
employs a cell-centered finite volume approach on multi-block structured meshes [100]. The
solver, operated in Euler mode, solves the steady Euler equations. The fan is not simulated,
and the flow is driven by all external boundaries, including total pressure and temperature in
the far-field, along with static pressure at the fan plane. A flow angle is also imposed on the
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far-field boundary condition. The domain consists of approximately 22 million grid points, and
the simulations are run using 200 cores and last for approximately five hours.

For the multimodal solver, the same number of Chebyshev polynomials as for the 2D case is
used for the radial discretization (see Table 4.1). In the azimuthal direction, the hypothesis that
the mean flow can be decomposed into a limited number of azimuthal components is used such
that only the first azimuthal orders (𝑚 = ⟦−1, 1⟧) are employed. Note that the incompressible
flow hypothesis inside duct B is retained. With these parameters, the flow computations took
approximately 150 seconds for each angle.

5.3.3 Mean flow results

Slices of the flow axial velocity predicted by the multimodal method and the CFD solver
are illustrated in Figure 5.2 for the large angle of incidence 𝛼𝐴𝑜𝐴 = 10◦. The results obtained
from both methods exhibit a good similarity, particularly within the duct. The velocity levels
and the suction effect of the fan boundary condition are comparable. Furthermore, the incidence
of 10◦ is observed outside the nacelle in both simulations, indicating that the multimodal solver
can accurately recover the imposed angle of attack. In terms of flow characteristics, the vertical
plane displays a lack of symmetry with regard to the central axis due to the angle of incidence.
On the other hand, the symmetry of the flow is successfully recovered in the horizontal plane.
However, it is important to note that the agreement between the solvers deteriorates outside the
nacelle, as already observed for axisymmetric flow cases (Section 4.2.3). This discrepancy can
be attributed to the incompressible flow assumption imposed in duct B.

A more quantitative evaluation of azimuthal flow distortion is performed by computing the
axial evolution of the Circumferential Distortion Coefficient (CDC) at different channel heights.
This coefficient is defined as:

𝐶𝐶𝐷𝐶 (𝑥, 𝑟) =
max𝜃 (𝑈 (𝑥, 𝑟, 𝜃)) − min𝜃 (𝑈 (𝑥, 𝑟, 𝜃))

2 × mean𝜃 (𝑈 (𝑥, 𝑟, 𝜃)) . (5.11)

The associated values are given in Figure 5.3, along with those of the 1D model of Equation (5.4)
evaluated with 𝑅, 𝑈0 and 𝐶0 the radius and azimuthally-averaged flow values along a line at
95% of channel height. The angle of attack 𝛼𝐴𝑜𝐴 = 5◦ case is added to strengthen the analysis.
An excellent agreement is observed between the multimodal and the CFD simulations. The
distortion inside the duct is accurately captured, including its strong variations in the axial
direction. It is noteworthy that the exponential decrease is effectively observed. In addition, the
1D model captures the overall decrease of the distortion intensity but tends to overestimate it
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(a) Vertical plane – Multimodal (b) Vertical plane – CFD

(c) Horizontal plane – Multimodal (d) Horizontal – CFD

Figure 5.2 – Contour maps of mean axial velocity.

near the exit. In this region, strong flow gradients in the radial direction are present and make
the thin annular duct formulation less accurate.
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(a) 𝛼𝐴𝑜𝐴 = 5◦ (b) 𝛼𝐴𝑜𝐴 = 10◦

Figure 5.3 – CDC associated to the axial velocity in the duct intake.

5.3.4 Derivation of distorted mode shapes for low levels of distortion

In order to support the discussion of the acoustic results that will be presented later, we
propose an analytical model for predicting the shape of modes in a duct with low levels of
distortion.

This extension is based on the analytical solution introduced by Sofrin [53, 54], which
examines mode shapes in a thin annular duct with flow distortion. In this model, the distortion
does not vary axially, the axial velocity is written𝑈 = 𝑈0+𝑈1 cos(𝜃) and the density and speed of
sound are uniform. The flow is not potential so that Equation (1.11) should be solved. However,
as ∇ · (𝐷v𝑟) = 0, the perturbation velocity potential and vortical parts remain uncoupled and
the Goldstein propagation Equation (1.13) can be solved. With the previous formulation of𝑈 it
writes:

−𝑘2𝜙 + 2i𝑘𝑀
𝜕𝜙

𝜕𝑥
+ 𝑀2 𝜕

2𝜙

𝜕𝑥2 = Δ𝜙. (5.12)

Using an eigenvalue decomposition, Sofrin demonstrated that the transverse distorted modes
can be represented using periodic Mathieu’s functions ce2𝑚 (𝑞, 𝜃/2) and se2𝑚 (𝑞, 𝜃/2), with ce2𝑚

and se2𝑚 are the even and odd Mathieu’s functions of order 𝑚 respectively, and 𝑞 = 4𝜇𝑀1Ω0𝑅
2
2,

where Ω0 = 𝑘 − 𝜇𝑀0, 𝑀0 = 𝑈0/𝐶0, 𝑀1 = 𝑈1/𝐶0, and 𝜇 corresponds to the axial wavenumber in
the absence of distortion. This is consistent with the observation made by Astley et al. [58] that
the axial wavenumber of modes, modified theoretically by inflow distortion, appears to remain
largely unchanged.

In the present work, we propose to reformulate the solution to Goldstein propagation equation

138



5.3. Validation in the presence of azimuthal flow distortion

for an annular duct, by considering radial variations in addition to Sofrin’s results. We express
the acoustic potential as:

𝜙 = 𝑇 (𝑟, 𝜃) e−i𝜇𝑥 , (5.13)

where 𝑇 is the transverse mode shape. Equation (5.12) is rewritten with the same distorted flow
using the cylindrical coordinate as:

1
𝐶2

(
i𝜔 +𝑈 𝜕

𝜕𝑥

)2
𝜙 =

1
𝑟

𝜕𝜙

𝜕𝑟
+ 𝜕

2𝜙

𝜕𝑟2 + 1
𝑟2
𝜕2𝜙

𝜕𝜃2 + 𝜕
2𝜙

𝜕𝑥2 , (5.14)

which can be written:
L(𝑇) = 0, (5.15)

where the operator L is defined by L =
(
Ω2 − 𝜇2) + 1

𝑟

𝜕

𝜕𝑟
+ 𝜕2

𝜕𝑟2 + 1
𝑟2

𝜕2

𝜕𝜃2 and Ω = 𝑘 − 𝜇𝑀 .
Since no obvious solution is available, the shape found in the azimuthal direction by Sofrin is
used such that acoustic modes can be expressed as:

𝑇𝑚 = ce2𝑚 (𝜃/2, 𝑞𝑟2)𝐴𝑚 (𝑟), (5.16)

where 𝑞 = 4𝜇𝑀1Ω0 and 𝐴𝑚 (𝑟) is the radial shape to be determined. We also assume that
the distorsion amplitude is low (𝐶𝐶𝐷𝐶 ≪ 1). With these assumptions, we insert the mode
shapes (5.16) into Equation (5.15) and expand the terms up to order 𝑂 (𝐶2

𝐶𝐷𝐶
), resulting in:(

Ω2
0 − 𝜇

2
)

ce2𝑚𝐴𝑚+
1
𝑟

𝜕

𝜕𝑟

(
𝜕𝐴𝑚

𝜕𝑟
𝑟

)
ce2𝑚+4𝑞

𝜕𝐴𝑚𝑟

𝜕𝑟

𝜕ce2𝑚
𝜕𝑥2

− (2𝑚)2

4𝑟2 ce2𝑚𝐴𝑚 = 𝑂 (𝐶2
𝐶𝐷𝐶). (5.17)

When 𝑚 ≫ 1,
𝜕ce2𝑚
𝜕𝑥2

/ce2𝑚 ≪ 1 [101] and the equation for 𝐴𝑚 simplifies into a Bessel’s
equation. The same procedure can be applied to the odd Mathieu’s function se2𝑚, which yields:

𝑇𝑚𝑛 = 𝑁𝑚 (J𝑚 (𝛼𝑚𝑛𝑟) + Γ𝑚𝑛Y𝑚 (𝛼𝑚𝑛𝑟)) (ce2𝑚 (𝜃/2, 𝑞𝑟2) + ise2𝑚 (𝜃/2, 𝑞𝑟2)), (5.18)

with 𝛼𝑚𝑛 and Γ𝑚𝑛 defined in Section 1.3.1.1.

For low levels of distortion and high azimuthal orders, this approximation can be used to
estimate the shape of acoustic modes without the need for computationally expensive simulations.
However it cannot include axial variations of the geometry nor the flow.
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5.3.5 Validation methodology for the acoustic calculations

The only 3D solver able to perform acoustic validations during the thesis is the Onera’s
in-house code sAbrinA [102, 103, 48]. It solves, through finite differences, the linearized Euler
equations (1.10) in the time domain on a structured multi-block grid. The modes are injected
in the source plane using a source model that allows reflected waves to cross the source [104].
Note that the results from this solver and the ones of the multimodal method are not expected to
be in perfect agreement because different equations are solved.

In addition, great care needs to be taken for these time domain simulations, for three general
reasons, detailed in [105]. First, when the injected mode at the source plane is close to a cut-
off frequency, the response of the overall system is very sensitive to parameter changes. As a
consequence, even small numerical errors can have a significant impact on the results, so the
mesh needs to be sufficiently refined. Then, when the injected mode encounters a transition
inside the intake, the particularly low group velocity of the mode close to its cut-off frequency
makes the convergence time very long. Finally, in cases where trapped modes are present, an
infinite number of reflections can arise, and the time necessary to get a balance between the
right- and left-travelling waves can be huge. For all these reasons, at least 100 periods associated
to the source frequency are simulated before extracting the results.

The mesh is designed such that they are at least 15 points per acoustic wavelength in the
axial direction. In the azimuthal direction, a minimum of 20 × 𝑚 points, with 𝑚 representing
the highest anticipated azimuthal order in the calculation, is ensured. To numerically dissipate
acoustic waves far from the nacelle, a geometrical progression with a factor of 1.03 is applied
on grid size in both the axial and radial directions. In practice, only one mesh is designed that
satisfies the most restrictive test case. The number of points is about 140 million cells, and
each simulation is run using 800 cores and last several days. For illustration, Figure 5.4 shows
longitudinal cuts of this mesh in a mid-nacelle plane. Notably, the figure highlights the local
mesh refinements near the nacelle wall.

For the multimodal method, as in Section 4.2.2, an axial mesh density 𝐷𝑒𝑥 = 0.5 in ducts A
and 𝒞 is prescribed, while 100 points are used in duct B. In the duct B and 𝒞, 60 polynomials
are used in the radial direction, and 20 for the duct A. In the three ducts, 25 Fourier components
are used. These parameters are summed up in Table 5.1.
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Figure 5.4 – Cuts of the mesh used for the acoustic computations with the sAbrinA solver: full
mesh on the left, focus around the intake lip on the right.

Duct A Duct B Duct 𝒞

Number of polynomials 20 60 60
Number of Fourier components 25 25 25

Table 5.1 – Summary of the multimodal computation parameters for the distortion case.

5.3.6 Acoustic results

The impact of flow distortion on acoustic radiation is only assessed on the lower incidence
case (𝛼𝐴𝑜𝐴 = 5◦). The same test cases as the ones with axisymmetric flow are investigated (refer
to Section 4.2).

5.3.6.1 First qualitative observations

Figures 5.5 and 5.6 depict the SPL in dB for the injected modes (𝑚, 𝑛) = (10, 1) at𝜔 = 15 and
(𝑚, 𝑛) = (25, 1) at 𝜔 = 30, obtained in the horizontal and vertical planes using the multimodal
and the finite difference methods. The overall results are similar and agree on the overall impact
of the distortion. The radiation appears to exhibit near-y-symmetry, which can be attributed to
the symmetry of the flow over the horizontal plane. However, as the mode rotates, the symmetry
is altered, and this is particularly visible for the mode 𝑚 = 25. Conversely, the field is far from
z-symmetry because of flow distortion, as the pressure radiation is shifted toward the ground.
Discrepancies between the two solvers are observed. Particularly, near the exit of the nacelle, the
two solvers exhibit different SPL values. Additionally, in the duct, the FDM solver shows some
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high SPL values near the central axis, which are considered numerical errors that the solver
fails to dissipate. Regarding the directivity, it appears to be accurate for the case 𝑚 = 10, but
significant discrepancies are observed for the case 𝑚 = 25. The main lobe’s direction in each
slice is identical for the latter, but the lobes appear flattened in the FDM. Two main reasons can
explain these differences. Firstly, these modes are close to the transition (radiation towards 90◦),
which is particularly challenging to compute for the FDM code as mentioned in Section 5.3.5.
Then, it should be recalled that the two methods solve different equations (Goldstein propagation
equation for the multimodal method, linearized Euler equation for the finite-difference method).

5.3.6.2 Free-field comparisons

More quantitative comparisons are made in Figure 5.7 where SPL directivities of the two
modes are plotted. Note that the directivites are provided in both the vertical and the horizontal
planes as the axisymmetry is lost. The results in cases where the angle of attack is set to
0◦ (referred to as multimodal 2D) are also included. Both methods provide consistent results
regarding the effects of distortion. First, a change in the angle of the main radiation lobes is
observed. This distortion effect is particularly visible on the vertical plane for both cases where
the radiation is moved downward with a shift of approximately 10◦. Interestingly, a shift is also
visible in the horizontal plane for 𝑚 = 25. Despite this, it is observed that the amplitudes of the
radiation lobes are close to those of the axisymmetric case over both the horizontal and vertical
planes. It is also worth noting that there are more lobes in the upper part, while the lower part
tends to have one single lobe.

Two main mechanims explain the tendency of a mode to radiate to one direction or another:
diffraction and refraction [32]. A representation of these effects is given in Figure 5.8. Diffraction
represents the tendency of an acoustic mode to stick to a solid surface. Refraction denotes the
modification of the propagation direction of an acoustic mode caused by mean flow gradients.
The modification of the radiation angle in cases with distortion can be easily explained by this
flow refraction effect. On the lower part of the nacelle, the intense flow distortion causes higher
velocity gradients near the wall. As a result, the propagation speed, which can be approximated
by the speed of sound minus the flow velocity, is significantly reduced near the wall. This leads
the wavefront to rotate away from the engine axis, causing the radiation to move toward the
ground. In the upper part, as the distortion is anti-symmetric, the impact is the opposite and
the radiation moves toward the engine axis, which again causes the overall radiation to move
toward the ground. This explains the radiation pattern in the vertical plane but ignores that the
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5.3. Validation in the presence of azimuthal flow distortion

(a) Horizontal plane – Multimodal (b) Horizontal plane – Finite difference method

(c) Vertical plane – Multimodal (d) Vertical plane – Finite difference method

Figure 5.5 – SPL for the mode 𝑚 = 10 for the case 𝛼𝐴𝑜𝐴 = 5◦.
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(a) Horizontal – Multimodal (b) Horizontal – Finite difference method

(c) Vertical plane – Multimodal (d) Vertical plane – Finite difference method

Figure 5.6 – SPL for the mode 𝑚 = 25 for the case 𝛼𝐴𝑜𝐴 = 5◦.
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(a) Horizontal – Injected mode
(𝑚, 𝑛) = (10, 1) at 𝜔 = 15

(b) Vertical plane – Injected mode
(𝑚, 𝑛) = (10, 1) at 𝜔 = 15

(c) Horizontal – Injected mode
(𝑚, 𝑛) = (25, 1) at 𝜔 = 30

(d) Vertical plane – Injected mode
(𝑚, 𝑛) = (25, 1) at 𝜔 = 30

Figure 5.7 – SPL directivity for the case with 𝛼𝐴𝑜𝐴 = 5◦.

tridimensionality of the flow and the rotation of acoustic modes. Indeed, when accounting for,
the refraction effect remains valid beyond the vertical plane. If the acoustic mode propagates
through a region with higher velocity (lower part of the engine) before radiating outside the
nacelle, its directivity therefore shifts away from the engine axis. Conversely, if it propagates
in a region with lower velocity (upper part of the engine), the radiation is directed towards the
engine axis. This explains the heterogeneous directivity in the horizontal plane. The pressure
field in an x-plane near the exit level (𝑥 = 2) for both modes is depicted in Figure 5.9 to give
a more visual understanding of this effect. Outside from the nacelle, the higher pressure values
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refraction effect

diffraction effect

diffraction effect

lower flow values

higher flow values

wavefront

refraction effect

𝑋

𝑍

Figure 5.8 – Schematic of the effect of the flow distortion on the radiation pattern.

are observed for negative z- and y-values (yellow rectangles on the figures), which is consistent
with the fact that the mode rotates in the counterclockwise direction.

(a) Injected mode (𝑚, 𝑛) = (10, 1) at 𝜔 = 15 (b) Injected mode (𝑚, 𝑛) = (25, 1) at 𝜔 = 30

Figure 5.9 – Real part of pressure map at 𝑥 = 2 for the case 𝛼𝐴𝑜𝐴 = 5◦. The yellow squares
represent the region with the highest pressure levels in the radiated field.

However, while the agreement is satisfactory for the case 𝑚 = 10, significant differences
can be found between the finite difference method and the multimodal method for 𝑚 = 25. This
is particularly true in the vertical plane near 270◦. This suggests a difference in the pressure
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5.3. Validation in the presence of azimuthal flow distortion

distribution inside the duct that needs to be investigated in more detail.

5.3.6.3 In-duct comparisons

To this end, the axial evolution of the Fourier components close to the injected one (𝑚 ± 2)
at 95% of channel height is presented in Figure 5.10. Overall, the agreement between the
multimodal method and the reference method is relatively good . However, slight differences
are localized near the exit of the duct. The multimodal method accurately captures the order of
magnitude of the transfer on the nearest Fourier components and the reflection on the injected
mode. The amplitude of the injected Fourier component decreases as it propagates inside the
duct. Additionally, the impact of the distortion is primarily detected on the direct azimuthal
neighbours of the injected mode, leading to a transfer happening in cascade: the components
𝑚 ± 1 appear near 𝑥 = 1.5, then the components 𝑚 ± 2 appear near 𝑥 = 1.75. Interestingly,
the transfer exhibits a close-to-symmetrical pattern on the Fourier components with azimuthal
indices of 𝑚 ± 𝑘 , where 𝑘 is a positive integer.

To delve deeper into the cascade transfer of energy onto other azimuthal components, an
azimuthal Fourier decomposition on a higher number of modes at 95% of the nacelle height
for two axial locations is performed. Specifically, a focus on the axial locations 𝑥 = [0, 2] is
made to capture the significant transfer near the duct exit and the impact of the distortion on
the Fourier distribution at the injection position. In addition to comparing the multimodal solver
results with the reference solution, the azimuthal decomposition obtained using the analytical
solution given by Equation (5.18) with the use of the local flow values is included. Note
that the latter cannot predict the absolute amplitude, so the results are adjusted such that the
amplitudes of the main azimuthal components (𝑚 = 10 and 𝑚 = 25) match the ones of the
multimodal method. The results are shown in Figures 5.11 and 5.12 for the modes 𝑚 = 10 and
𝑚 = 25 respectively. These figures clearly show the energy transfer across various azimuthal
components, highlighting the cascade effect resulting from the distortion in the base flow. For
the case 𝑚 = 10, as anticipated based on the preceding results, the multimodal solver accurately
captures this transfer phenomenon and shows a close agreement with the FDM solution. The
analytical solution also proves to be an excellent estimator of the expected azimuthal distribution.
Despite the strong variations in the wall and flow conditions, it provides a reliable estimation
of the relative neighbouring mode amplitudes, capturing the correct orders of magnitude. This
means that the local level of distortion almost entirely drives the azimuthal shape of the acoustic
field, which could be approximated by a single distorted mode. This also suggests that the
azimuthal modal scattering is not predominant in this case.
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(a) Injected mode (𝑚, 𝑛) = (10, 1) at 𝜔 = 15

(b) Injected mode (𝑚, 𝑛) = (25, 1) at 𝜔 = 30

Figure 5.10 – Axial evolution of the azimuthal decomposition of the pressure field at 95% of
channel height for the Fourier components neighbouring the injected one.
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In the case 𝑚 = 25, both multimodal and FDM agree on the amplitudes of modes for
azimuthal orders 20 < 𝑚 < 30. However, for higher azimuthal components, the agreement
deteriorates, which highlights a significant azimuthal modal scattering. The excellent agreement
with the analytical solution in the region 20 < 𝑚 < 27 suggests that this scattering has generated
a higher-order distorted mode (centered on 𝑚 = 31). Moreover, this mode is not only created,
but it also exhibits an amplitude similar to the injected mode, which seems to indicate an
amplification mechanism. The privileged explanation of this behaviour is that the newly created
mode is trapped.

5.3.6.4 Investigating the presence of trapped mode

The notion of trapped modes has been introduced in Section 3.2 where double transition have
been studied using a multiple-scale formulation of the flow. A similar analysis is intended here by
examining an equivalent cut-off frequency 𝜔𝑐 that we would have without distortion. It is given
by 𝜔𝑐 =

√︃
|𝐶2

0 −𝑈2
0 |𝛼, where 𝑈0 and 𝐶0 are the average value of the mean flow axial velocity

and speed of sound at 95% of channel height and 𝛼 is the radial eigenvalue computed as in the
slowly varying formulation (see Section 1.3.3). To consider first-order effects of flow distortion,
this equivalent cut-off frequency is also computed using 𝑈 (𝑥) = 𝑈0(𝑥) (1 ± 𝐶𝐶𝐷𝐶 (𝑥, 0.95𝑅2)).
The results for modes with an azimuthal order 𝑚 = ⟦27, 31⟧ and a radial order 𝑛 = 1 are plotted
in Figure 5.13. We observe that the mode 𝑚 = 31 exhibits a trapped zone within the range
𝑥 ∈ [1.6, 1.9]. This mode coincides with the one amplified in Figure 5.12.

To confirm this observation, it is useful to check whether the reflection phenomena observed
in 1D transitions are still present when the flow is distorted. This is achieved by plotting contour
maps of acoustic pressure obtained with and without distortion at a modified frequency𝜔 = 25.6
where the injected mode encounters a transition in the case without distortion. Results at 95% of
channel height are given in Figure 5.14. In the case without distortion, destructive interference
regions with low-pressure values are observed. This is due to a reflected wave caused by the
transition (as seen in Chapter 3). In this case, these zones are located at constant x values. In the
case with distortion, these attenuation zones are still observed, but they are now curved due to
the inhomogeneity of the flow. This suggests that reflections also occurred in this case, rendering
mode trapped by "transitions" still possible.

The emergence of this so-called trapped mode in the multimodal method is investigated more
precisely by varying the number of Fourier functions considered in the basis. Computations using
𝑁𝑚 = 𝑚 ± 𝑘 Fourier functions, where k ranges from one to ten, are therefore performed. Then,
an azimuthal decomposition of the pressure field at 95% of the channel height and at the duct
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(a) 𝑥 = 0

(b) 𝑥 = 2

Figure 5.11 – Azimuthal decomposition of the pressure field at 95% of the channel height, for
the injected mode (𝑚, 𝑛) = (10, 1) at 𝜔 = 15.

150



5.3. Validation in the presence of azimuthal flow distortion

(a) 𝑥 = 0

(b) 𝑥 = 2

Figure 5.12 – Azimuthal decomposition of the pressure field at 95% of the channel height, for
the injected mode (𝑚, 𝑛) = (25, 1) at 𝜔 = 30.
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Figure 5.13 – Evolution of the cut-off frequencies for azimuthal modes 𝑚 = ⟦27, 31⟧. The black
line at 𝜔 = 30 corresponds to the angular frequency used for this test case.

(a) Without distortion (b) 𝛼𝐴𝑜𝐴 = 5◦

Figure 5.14 – Real part of pressure at 95% of the channel height, for the injected mode (𝑚, 𝑛) =
(25, 1) at 𝜔 = 25.6.
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exit is repeated for each calculation. The procedure is applied on both 𝑚 = 10 and 𝑚 = 25 cases.
The results are presented in Figure 5.15. For the case of 𝑚 = 10, where the comparison with the
FDM is better, we can see that when considering𝑚± 𝑘 modes, the transfer is accurately captured
up to 𝑚 ± (𝑘 − 1). Furthermore, with 𝑘 = 4, the results are already excellent, and adding more
modes does not significantly improves the precision. This suggests that a single distorted mode
represents the overall field correctly. This showcases the method’s effectiveness, as it allows
for good results at a low computational cost by relaxing the azimuthal discretization. Here, the
calculation with 𝑘 = 4 lasted around 100 seconds. In the case 𝑚 = 25, where a trapped mode is
suspected, the convergence takes longer. The graph can be divided into two parts. For azimuthal
wavenumbers lower than 𝑚 = 25, a good agreement is quickly achieved with a small number of
Fourier functions. However, for higher 𝑚 values, the number of Fourier functions required for
getting an accurate solution drastically increases. This confirms the particularity of the Fourier
component 𝑚 = 31.

Note that the presence of this trapped mode explains why the comparison with the FDM is
degraded as it is associated with many reflections that are difficult to capture accurately with
a temporal solver. It also render the multimodal calculation more computationally demanding
because of the higher number of required Fourier components (1500 seconds with 𝑘 = 10 in
this case).

When the angle of incidence increases, the higher levels of distortion induce a more pro-
nounced cascade transfer on the nearest azimuthal Fourier components and significantly increase
the risk of trapped modes. Given the difficulty of accurately validating the developed method with
the time-domain FDM in the 𝛼𝐴𝑜𝐴 = 5◦ case in the presence of trapped modes, the 𝛼𝐴𝑜𝐴 = 10◦

case is not used for validation. Still, first comparisons were performed with 𝛼𝐴𝑜𝐴 = 10◦ and can
be found in Appendix F.

5.4 Effects of azimuthal flow distortion on acoustic propaga-
tion using the multimodal method

During the validation process, initial observations were made regarding the influence of dis-
tortion on sound propagation. These observations, which were largely consistent with existing
findings, affirmed the model’s ability to accurately compute acoustics in the presence of distor-
tion. However, in order to gain a more comprehensive understanding of the effects of distortion
on acoustic propagation, additional test cases are being addressed. Specifically, our focus will
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(a) Injected mode (𝑚, 𝑛) = (10, 1) at 𝜔 = 15

(b) Injected mode (𝑚, 𝑛) = (25, 1) at 𝜔 = 30

Figure 5.15 – Convergence analysis of the number of azimuthal components based on the
azimuthal decomposition of the pressure field at the exit.
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initially be on examining the impact of liners in the cases with an azimuthal distortion of the
flow. Then, the effect of nacelle shortening on the propagation in the presence of flow distortion
is evaluated.

5.4.1 Lined duct with distortion

The same modes as those studied in Section 5.3.6 are considered, but an impedance 𝑍2 = 2−i
is applied between 𝑥 ∈ [0.2, 1.8] to investigate the effects of liners in the presence of flow
distortion. Convergence for the azimuthal number of Fourier components needed is performed
for each test case. For the radial discretization, the same number of polynomials as before is
used (see Table 5.1). For the two studied modes, the computations are performed with three base
flows: one without incidence (referred to as the baseline case), one with a 5◦ angle of incidence
and one with the 10◦ angle of incidence.

At first, the power attenuation Δ𝑃 (see Equation (3.19)) obtained for each calculation is given
in Table 5.2. The distortion’s impact on the power attenuation is minor for the computed test
cases, and it appears that considering the distortion is not necessary to assess acoustic power
levels.

Mode (10,1) (25,1)
Angle of incidence 0◦ 5◦ 10◦ 0◦ 5◦ 10◦

Δ𝑃 41.0 dB 41.1 dB 41.2 dB 64.0 dB 63.8 dB 64.0 dB

Table 5.2 – Summary of the lined test case parameters and associated power attenuations.

The impact of the liner on the radiated field is then investigated by showing in Figure 5.16
SPL directivities over the vertical plane (where significant effect of the flow distortion are
observed). The liner strongly modifies the impact of flow distortion on the acoustic field radiated
outside the engine. In particular, we observe that the radiated waves going toward the ground
are strongly attenuated for both modes in the case 𝛼𝐴𝑜𝐴 = 10◦. Note that the downward rotation
of the lobes is amplified in the presence of liner. For the mode 𝑚 = 10, a shift of 10◦ and 20◦

are observed for the 5◦ and 10◦ cases respectively.
To understand these observations, contour maps of acoustic pressure obtained with distortion

(𝛼𝐴𝑜𝐴 = 10◦ case) and without distortion are proposed in Figure 5.17 for the mode 𝑚 = 10.
When the flow is axisymmetric, the liner is shown to rotate the wavefronts toward the wall. As
the distortion levels are higher in this region in cases with incidence, the flow’s refraction effect
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(a) Injected mode (𝑚, 𝑛) = (10, 1) at 𝜔 = 15 (b) Injected mode (𝑚, 𝑛) = (25, 1) at 𝜔 = 30

Figure 5.16 – SPL directivity in the vertical plane when a liner 𝑍2 = 2 − i is applied between
𝑥 ∈ [0.2, 1.8].

(a) Baseline (b) 𝛼𝐴𝑜𝐴 = 10◦

Figure 5.17 – Contours maps of pressure real part over an y-slice, for the injected mode (𝑚, 𝑛) =
(10, 1) at 𝜔 = 15 with a liner 𝑍2 = 2 − i applied between 𝑥 ∈ [0.2, 1.8].
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caused by distortion, described in Section 5.3.6.2, is amplified. The impact of flow distortion on
acoustic radiation is higher, thus explaining the increased downward rotation. In addition, the
flow’s refraction effect caused by distortion in turn cause the wavefronts to rotate downward.
As a result, the liner efficiency is increased in the lower part of the nacelle and decreased in its
upper part.

These results show the importance of including distortion when evaluating the impact of a
liner on the radiated field.

5.4.2 Effect of short intakes

5.4.2.1 Definition of the test cases

Finally, three engine configurations are considered to evaluate the impact of short intakes
on noise radiation. These geometries are derived from the original CFM56 geometry described
in Section 4.2.1 by considering the evolution of current engines, characterized by a shortening
of the inlet. This shortening is characterized by the 𝐿/𝐷 coefficient, representing the inlet duct
length 𝐿 over the duct diameter 𝐷. This coefficient decreases as the architectures evolve from
HBR to UHBR.

Some hypotheses are introduced for the design of the three geometries:

— the same section and mass flow at the fan plane are used to have similar flow without
distortion;

— the shape for the lip of the nacelle is identical to have similar flow distortions;

— the same hub radius is kept to avoid affecting the radiation pattern.

So, the first engine, referred to as HBR or reference in the following, is very close to the
CFM56 defined in Section 4.2.1, but the hub length is slightly reduced. Then, two UHBR
engines are designed. The first has an 𝐿/𝐷 of 0.75, while the second has an 𝐿/𝐷 of 0.5. The
three resulting geometries are shown in Figure 5.18.

5.4.2.2 Flow comparison

The shape of the flow distortion is assessed. This serves a dual purpose: first to ensure similar
flow distortion levels at the engine exit; second to determine whether high distortion levels persist
at the source’s axial location. The latter point is of importance since residual distortion at fan
position will generate new acoustic sources (see Section 0.4). These new sources, not considered
here, can directly impact the acoustic power and radiation even without considering the impact
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Figure 5.18 – Evolution toward an UHBR geometry.

(a) 𝛼𝐴𝑜𝐴 = 5◦ (b) 𝛼𝐴𝑜𝐴 = 10◦

Figure 5.19 – CDC associated to the axial velocity in the duct inlet for different engine geometries.

of the distortion on the propagation [25]. To this end, the evolution of the distortion coefficient
at 95% of the channel height defined in Equation (5.11) is plotted in Figure 5.19 for the three
configurations. As expected, the level of distortion at the fan position is higher in the 𝐿/𝐷 = 0.5
and 0.75 configurations than in the reference configuration. However, the exponential decrease
of the flow distortion implies that the level of distortion at the fan plane is low so that the impact
of the distortion on the acoustic sources can be neglected in this case. Additionally, it is observed
that the distortion levels near the inlet are similar. This comes from the tip’s shape being the
same for the three geometries considered at this axial location.
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5.4.2.3 Acoustic comparison

The focus in this section centers on the mode with an azimuthal order 𝑚 = 10. This choice is
made to avoid the complications related to the so-called trapped mode observed in the baseline
𝑚 = 25 case. Transition is indeed highly sensitive to variations in both flow and geometry,
rendering its inclusion in the analysis quite risky.

In order to check that the geometry modification does not significantly affect the radiation in
a case without incidence, the SPL directivity is plotted for all three geometries in Figure 5.20a.
As anticipated, the impact of the modification is minor. All three configurations yield the same
directivity pattern, with one single lobe radiating around 70◦.

With all confounding factors eliminated, the effects of mean flow distortion on acoustic
radiation can now be evaluated. Moving forward, we present the directivity pattern obtained with
an angle of incidence 𝛼𝐴𝑜𝐴 = 5◦ in Figure 5.20b. The impact of the length of the nacelle does
not appear to be significant. Still, the longer the intake, the more pronounced is the downward
rotation generated by the distortion, and the 𝐿/𝐷 = 0.5 geometry pattern is the closest to
axisymmetry. The directivity pattern obtained with a higher angle of incidence 𝛼𝐴𝑜𝐴 = 10◦

is shown in Figure 5.20c to have a more pronounced effect of distortion. Indeed, the engine
length is here significant. Two main impacts are observed. First, a downward radiation is visible
with an approximate 10-degree rotation of the directivity pattern. Then, a decrease in pressure
amplitude in the lower part and an increase in the number of lobes in the upper direction are also
noticeable. Interestingly, the case with the shortest duct length again exhibits the least distortion
impact. This might be counter intuitive but can be explained by the fact that the distance over
which the mode propagates in a distorted flow is reduced when the inlet length is shortened.
However, this conclusion should be taken with a pint of salt because only propagation effects
have been considered. Indeed, the modification of the source due to residual levels of distortion
at fan position should also play a significant role.

5.5 Conclusion

The multimodal method has been applied to compute the flow and acoustic fields in the
presence of azimuthal flow distortion by considering several Fourier azimuthal components.
Only the determination of the initial admittance for computing the mean flow had to be modified
to account for the angle of attack of the flow.

The method appears to be well-suited for flow computations. The multimodal method accu-
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(a) Without distortion (b) 𝛼𝐴𝑜𝐴 = 5◦

(c) 𝛼𝐴𝑜𝐴 = 10◦

Figure 5.20 – SPL directivity in the vertical plane for the injected mode 𝑚 = 10 at 𝜔 = 15, for
the three engine geometries.

rately captures the exponential decrease in flow distortion inside the intake and compares well
against a solver that solves the steady Euler equations. Moreover, the calculation time remained
relatively short, typically taking around 100 to 200 seconds, with the hypothesis that the flow in
the free-field remains incompressible.

Comparisons with a time-domain solver of linearized Euler equations have been then per-
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formed to validate the calculated acoustic field. While the dominant effects were correctly
captured, unexplained small differences persisted between the developed admittance multi-
modal method and the time-domain solver. These errors are believed to arise because different
governing equations are considered and because trapped modes have been observed. The latter
are particularly challenging for a time-domain solver. Note that these trapping phenomena also
increase the computation cost of the multimodal method which then requires more azimuthal
Fourier components in the basis. The computation generally took some minutes for weak distor-
tion levels and no trapping. However, when trapped modes appear and the distortion levels are
high, the method can take up to an hour to give a result.

The azimuthal flow distortion is found to have two main impacts on the acoustic field. First,
the radiation pattern is rotated downward, and then, the number of azimuthal Fourier functions
contributing to the acoustic field increases. The shape of the distortion at the end of the nacelle
lip is responsible for a rotation of the radiated waves of almost twice the angle of incidence.
When the mode propagates over a longer distance in a distorted flow, it becomes more distorted
with a cascade transfer on the nearest azimuthal Fourier components. The latter effect is found
to significantly increase the risk of trapped modes inside the engine.

Specific investigations on the effect of distortion have then been conducted using only the
multimodal method. First, it is found that power attenuation by a liner is not impacted by the
flow distortion. However, the attenuation appears to be reduced in the upper part of the engine
and increased in its lower part. In addition, including a liner increases the effects of distortion on
the radiation field with a greater downward rotation. Finally, the nacelle was shortened to study
the influence of short intakes on the radiated field. This leads to higher levels of distortion at
the fan position as expected. This would likely impact the acoustic sources, although the thesis
did not evaluate this aspect. Surprisingly, with shorter air inlets, the distortion had slightly less
impact on the acoustic propagation of a given mode. This is explained by a reduced cascade
transfer over neighbouring Fourier components because of the reduced length of the intake.
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Chapter 6

CONCLUSION

6.1 Thesis objectives

This thesis focused on developing improved models to study the noise propagation in modern
turbofan engine intakes and on gaining a better understanding of the effects of modal transition
and flow distortion on acoustic propagation. Modal transitions are generally ignored because only
a few number of modes are concerned in standard geometries. Similarly, flow distortion levels are
often assumed to be negligible throughout most of the intake and are, therefore, expected to have
a limited impact on the propagation. However, the recent evolution of engines toward ultra-high
bypass ratio geometries, particularly the shortening of the nacelle, challenges these assumptions.
Concerning modal transition, the nacelle’s shortening necessitates the consideration of modes
near the cut-off frequency because their attenuation occurs over a limited distance. Being close
to their cut-off frequencies, these modes have more chances of facing a modal transition. As
for flow distortion, the reduction in nacelle length leads to significant levels of azimuthal flow
distortion in the most significant part of the intake. The impact of this evolution on acoustic
propagation must be assessed.

6.2 Modelling of acoustic propagation

The primary objective of the thesis work was to develop models for the propagation of
noise in modern engine intakes. After briefly describing the equations associated with noise
propagation, the first chapter addressed the principles and assumptions necessary for developing
duct propagation models. A literature review was conducted, and it was decided to extend the
models based on modal approaches that solve the Goldstein propagation equation. In particular,
a more in-depth study was conducted on models based on the WKB ansatz and on admittance
multimodal formulations.

Throughout the manuscript, the focus was on multimodal methods, and the development of a
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general admittance multimodal method formed the core of this work. Since the initial multimodal
method was limited to cases without flow or with uniform flow, the development consisted in
including a known potential flow in the acoustic propagation equation. The sound field is solved
by representing the acoustic variables onto Fourier components and Chebyshev polynomials.
This basis proved effective for solving the wall boundary condition problem observed in most
multimodal methods and allowed for fast calculations. The polynomial basis exhibits excellent
convergence properties for smooth geometries. However, since this basis is not physical, high-
order modes are present in the calculation. These modes require increased axial resolution to
avoid stability problems. This issue was addressed by modifying the commonly used Magnus–
Möbius scheme. This modification is based on a decomposition of the Magnus matrix, to
avoid the summation of high and low values associated with non-physical eigenmodes. The
formulation avoids the conditioning problems typically observed when using polynomial bases
without significantly increasing computational costs and represents one of the major results of
the thesis. A formulation was also added to handle liner discontinuities.

Still, there is also a need to access to the potential base flow. In this context, two solutions have
been considered. The first one involves using a multiple-scale flow. This allows to distinguish
the mode self-propagation from modal scattering and provides a better understanding of the
phenomena which are inherently one-dimensional, such as transitions. Still, this method tends
to behave poorly far from transitions for high-velocity flows. Then, it was observed that the
multimodal method could also compute the mean flow if some adjustments were made. The idea
is to do an acoustic calculation at zero frequency and without mean flow. Then, modifying the
admittance exit boundary condition and using an iterative procedure on the density allows for
the flow field computation. This procedure allowed for flow calculations at a very low cost.

Once these improvements were implemented, the problem of free-field radiation was ad-
dressed. The admittance method was adapted to perform such calculation by surrounding the
engine with a duct with a perfectly matched layer on the outer wall, rewriting the acoustic prop-
agation equation inside this duct, and deriving formulas relating the admittance and the solution
between the inner and outer ducts. Once again, the method can also perform flow computations,
but particular care is required for the boundary conditions. All the mentioned developments
were validated through comparisons with a finite element solver for the Goldstein propagation
equation. It was shown that the developed multimodal method is well-suited for in-duct prop-
agation and free field radiation of acoustic waves. For axisymmetric cases, the method is both
fast and accurate.

Finally, the problem of flow distortion was addressed. Generally, the nacelle is designed to
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have a uniform flow in front of the fan to maximise engine efficiency. However, during landing or
takeoff operations, the aircraft experiences high angles of attack. Consequently, the flow entering
the engine is no longer axisymmetric. The developed multimodal method has been applied to
compute the flow and acoustic fields in such flows by considering several Fourier azimuthal
components in the basis, and by adapting the flow boundary conditions. The flow results were
compared against a solver for the steady Euler equations and the method is shown to be fast
and accurate. The method was then applied to perform acoustic calculations. The method’s
validity was initially established for cases with low incidence angles through comparisons with
a time-domain solver of the linearized Euler equations. A reasonable but not perfect agreement
between the two methods was obtained. The main explanation of these discrepancies is the
appearance of trapped modes in the intake, which are challenging to capture with time-domain
solvers. Nonetheless, it is worth noting that the primary effects of flow distortion were consistent
between the two methods, showing that the multimodal method can describe the impact of
azimuthal flow distortion on acoustic propagation.

6.3 Physical insight

Part of this thesis also aimed at improving our understanding of the impact of both modal
transitions and azimuthal flow distortion on the acoustic propagation.

A modal transition is inherently one-dimensional and linked to the propagation of a single
mode. Therefore, the multimodal method with a multiple-scale flow was used to study the
propagation of modes that encounter a double transition phenomenon inside the duct. It was
shown that a double turning point can give rise to resonance, amplification or tunnelling. In
the case of a cut-on/cut-off/cut-on transition, tunnelling appears with an attenuation of the wave
between the two turning points. If the mode has a non-zero amplitude at the axial location of
the second transition, there will be a non-zero transmitted power. In the case of a cut-off/cut-
on/cut-off transition, the successive multiple reflections between the two turning points form
constructive interference for certain distances. Since the mode is cut-on in this region, these
successive reflections do not dissipate energy. They can lead to resonance phenomena if no
modal scattering is considered. The method also highlights the inherent flaws of models that
neglect modal scattering. In particular, it is responsible for a modification of the resonance
frequencies and can even prevent the resonances from happening. The amplification can become
negligible if the modal scattering mechanisms are strong.

The main effect of the azimuthal distortion inside the duct is an azimuthal transfer on Fourier
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components neighbouring the one of the injected mode. When no modes are trapped, this transfer
is almost symmetric and happens in cascade. However, even if the shape of the acoustic field is
highly modified in the transverse shape, no significant impact on the acoustic power was found.
In the free field, two main effects were observed. The refraction effect of the flow distortion tends
to rotate the directivity downward of almost the angle of incidence of the engine. On the other
hand, the pressure levels radiated toward the ground tend to decrease. Moreover, it is shown
that including a liner increases the effect of flow distortion on the propagation. The distortion
does not impact the power attenuation by the liner but increases its efficiency in the lower part
of the engine and decreases it in the upper part. Finally, the influence of the intake length on
the radiated field was assessed. When reducing the inlet length, even if higher distortion levels
were observed at the fan plane as expected, the effect of flow distortion on the acoustic field is
found to be less pronounced. This can be explained by the shorter distance over which the mode
propagates in a distorted flow.

6.4 Future work

Building upon the progress made in this thesis, several avenues for future research have
emerged.

The primary challenges remaining are linked to the trapped modes in a flow with an azimuthal
distortion. The presence of these modes is difficult to anticipate, and establishing a criterion
for detecting their emergence is important. Although the WKB model introduced in the thesis
can be used initially, its reliability is not sufficient. Consequently, when using the multimodal
method, it is required to manually verify convergence regarding the number of azimuthal Fourier
components, which can be time demanding. Furthermore, the code then becomes demanding in
terms of memory. Sparse matrix techniques could be used, and some sections of the code should
be rewritten to avoid the storage of unnecessary variables, to overcome this limitation. From
a physical perspective, the emergence of these trapped modes can strongly alter the directivity
pattern in a way not explained by the refraction effect presented in the thesis. No global trends
appear for these modes, and improving the understanding of the underlying physical phenomena
is necessary.

Another avenue to explore is the improvement of flow computations. While the method
developed in the thesis is fast and accurate to compute the mean flow, it relies on assuming an
incompressible flow in the free-field. A more accurate flow representation requires removing
this assumption. The actual method is computationally too demanding because the improved
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Magnus–Möbius scheme developed in the thesis cannot be used to perform the axial integration.
It seems that it could be possible to determine the axial evolution of the admittance in the duct B
analytically. This would be the best option since it would mean that the method’s computational
cost would not be increased, but this analytical formulation is not straightforward.

Then, while this research has improved our understanding of modal transition and flow-
induced distortion phenomena in axisymmetric ducts, these models need to be adapted to
non-axisymmetric engine configurations. Initial effort can focus on engines with scarfed inlets,
followed, if possible, by more complex cases like buried nozzles. Investigating how modal tran-
sition and flow distortion are modified in non-axisymmetric ducts would be of interest. Then, the
work of this thesis has been restricted to isolated engine configurations. As highly heterogeneous
directivities were observed in the presence of flow distortion, including installation effects in the
radiation (from the fuselage or wing) is important.

The last study of the thesis has shown a limited impact of the shortening of the intake when
only considering the propagation of an individual mode. However residual distortion levels are
still visible at the source plane for the shortest configuration. This flow distortion will lead to the
appearance of new acoustic sources that have been neglected in this work. Therefore, it would be
necessary to complement the thesis propagation model with a model of sources in the presence
of distortion thus allowing for a complete analysis of the impact of flow distortion on fan noise.

Finally, this work also demonstrated the capacity of analytical models to capture first order-
effects of flow distortion. In particular, when limited modal scattering is present, the analytical
model based on Mathieu’s functions has shown to accurately recover the azimuthal transfer over
the neighbouring Fourier components due to distortion. An analytical formulation of the whole
propagation problem seems to be possible. Having such a model would certainly be beneficial
as the developed multimodal method can be computationally costly in such cases.
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Appendix A

GENERAL MULTIMODAL MATRICES

FORMULATION

In this Appendix, the matrices defined in Equation (2.11) are detailed:

(𝐴11)𝑖 𝑗 = (𝑀12)𝑖 𝑗 =
∫
𝑆

𝐷 (1 − 𝑀2
𝑥 )𝜑 𝑗𝜑∗𝑖 d𝑆,

(𝑀11)𝑖 𝑗 = −
∫
𝑆

𝐷 (1 − 𝑀2
𝑥 )
𝜕𝜑 𝑗

𝜕𝑥
𝜑∗𝑖 d𝑆,

(𝐴12)𝑖 𝑗 = 0,

(𝐴21)𝑖 𝑗 = −
∫
𝑆

𝐷𝑈

𝐶2
D⊥𝜑 𝑗

D𝑡
𝜑∗𝑖 d𝑆 −

1
i𝜔

∫
Λ

𝐷2𝑉𝜏
𝑍

D⊥𝜑 𝑗
D𝑡

𝜑∗𝑖 dΛ,

(𝐴22)𝑖 𝑗 =
∫
𝑆

𝐷 (1 − 𝑀2
𝑥 )𝜑 𝑗𝜑∗𝑖 d𝑆 −

1
i𝜔

∫
Λ

𝐷2𝑉𝜏𝑈

𝑍
𝜑 𝑗𝜑

∗
𝑖 dΛ,

(𝑀21)𝑖 𝑗 =
d
d𝑥

(∫
𝑆

𝐷𝑈

𝐶2
D⊥𝜑 𝑗

D𝑡
𝜑∗𝑖 d𝑆

)
+

∫
𝑆

𝐷∇⊥𝜑
∗
𝑖 · ∇⊥𝜑 𝑗d𝑆

−
∫
𝑆

𝐷

𝐶2

(D⊥𝜑 𝑗
D𝑡

(
D⊥𝜑𝑖
D𝑡

)∗
+𝑈

D⊥𝜑 𝑗
D𝑡

𝜕𝜑∗
𝑖

𝜕𝑥

)
d𝑆

− 1
i𝜔

∫
Λ

𝐷2

𝑍

D⊥𝜑 𝑗
D𝑡

(
D𝜑𝑖
D𝑡

)∗
dΛ + 1

i𝜔
d
d𝑥

(∫
Λ

𝐷2𝑉𝜏
𝑍

D⊥𝜑 𝑗
D𝑡

𝜑∗𝑖 dΛ
)
,

(𝑀22)𝑖 𝑗 = − d
d𝑥

(∫
𝑆

𝐷 (1 − 𝑀2
𝑥 )𝜑 𝑗𝜑∗𝑖 d𝑆

)
+

∫
𝑆

𝐷 (1 − 𝑀2
𝑥 )𝜑 𝑗

𝜕𝜑∗
𝑖

𝜕𝑥
d𝑆 −

∫
𝑆

𝐷𝑈

𝐶2 𝜑 𝑗

(
D⊥𝜑𝑖
D𝑡

)∗
d𝑆

− 1
i𝜔

∫
Λ

𝐷2

𝑍
𝑈𝜑 𝑗

(
D𝜑𝑖
D𝑡

)∗
dΛ + 1

i𝜔
d
d𝑥

(∫
Λ

𝐷2𝑉𝜏𝑈

𝑍
𝜑 𝑗𝜑

∗
𝑖 dΛ

)
.
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Appendix B

1D MULTIMODAL MATRICES

FORMULATION WITH THE

FOURIER-CHEBYSHEV BASIS

In this Appendix, the matrices defined in Equation (3.9) are detailed when a Chebyshev basis
is used.

By introducing:

𝐼𝑘 ( 𝑓 , 𝑔) =
∫ 1

0
𝑓 (𝑟)𝑔(𝑟)𝑟 𝑘d𝑟, (B.1)

and the symbol ′ to represent the first derivative of the Chebyshev polynomial, the matrices
write:

(𝐺0)𝑖 𝑗 = 2𝜋

(
(𝑅2 − 𝑅1)2𝐼3(𝑇𝑖, 𝑇𝑗 ) + 3(𝑅2 − 𝑅1)𝑅1𝐼2(𝑇𝑖, 𝑇𝑗 ) + 3𝑅2

1 𝐼1(𝑇𝑖, 𝑇𝑗 ) +
𝑅3

1
𝑅2 − 𝑅1

𝐼0(𝑇𝑖, 𝑇𝑗 )
)
,

(𝑆0)𝑖 𝑗 = 2𝜋
(
− 1
𝑅2 − 𝑅1

d(𝑅2 − 𝑅1)
d𝑋

A𝑖 𝑗 − (𝑅2 − 𝑅1)
d(𝑅2 − 𝑅1)

d𝑋
𝐼4(𝑇𝑖, 𝑇 ′

𝑗 )+(
4𝑅1

d𝑅1
d𝑋

− 3
d𝑅2
d𝑋

𝑅1 − 𝑅2
d𝑅1
d𝑋

)
𝐼3(𝑇𝑖, 𝑇 ′

𝑗 ) −
(

3𝑅2
1

𝑅2 − 𝑅1
d(𝑅2 − 𝑅1)

d𝑋
+ 3𝑅1

d𝑅1
d𝑋

)
𝐼2(𝑇𝑖, 𝑇 ′

𝑗 )

−
(

𝑅3
1

(𝑅2 − 𝑅1)2
d(𝑅2 − 𝑅1)

d𝑋
+

3𝑅2
1

𝑅2 − 𝑅1
d𝑅1
d𝑋

)
𝐼1(𝑇𝑖, 𝑇 ′

𝑗 ) −
𝑅3

1
(𝑅2 − 𝑅1)2

d𝑅1
d𝑋

𝐼0(𝑇𝑖, 𝑇 ′
𝑗 )
)
,

(𝑆1)𝑖 𝑗 = 2𝜋
𝑉𝑎

𝐶

(
A𝑖 𝑗 + (𝑅2 − 𝑅1)2𝐼4(𝑇𝑖, 𝑇 ′

𝑗 ) + 4(𝑅2 − 𝑅1)𝑅1𝐼3(𝑇𝑖, 𝑇 ′
𝑗 ) + 6𝑅2

1 𝐼2(𝑇𝑖, 𝑇
′
𝑗 )

+
4𝑅3

1
𝑅2 − 𝑅1

𝐼1(𝑇𝑖, 𝑇 ′
𝑗 ) +

𝑅4
1

(𝑅2 − 𝑅1)2 𝐼0(𝑇𝑖, 𝑇
′
𝑗 )
)
+
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2𝜋
𝑉 𝑏

𝐶

(
𝐼1(𝑇𝑖, 𝑇𝑗 ) +

𝑅1
𝑅2 − 𝑅1

𝐼0(𝑇𝑖, 𝑇𝑗 ) + 𝐼2(𝑇𝑖, 𝑇 ′
𝑗 ) +

2𝑅1
𝑅2 − 𝑅1

𝐼1(𝑇𝑖, 𝑇 ′
𝑗 ) +

𝑅2
1

(𝑅2 − 𝑅1)2 𝐼0(𝑇𝑖, 𝑇
′
𝑗 )
)
,

(𝐺1)𝑖 𝑗 =
2𝜋

𝑅2 − 𝑅1

(
(𝑅2 − 𝑅1) (1 + 𝑚2)𝐼1(𝑇𝑖, 𝑇𝑗 ) + 𝑅1(1 + 𝑚2)𝐼0(𝑇𝑖, 𝑇𝑗 )+

(𝑅2 − 𝑅1) (𝐼2(𝑇𝑖, 𝑇 ′
𝑗 ) + 𝐼2(𝑇𝑖, 𝑇 ′

𝑗 )∗) + 2𝑅1(𝐼1(𝑇𝑖, 𝑇 ′
𝑗 ) + 𝐼1(𝑇𝑖, 𝑇 ′

𝑗 )∗)+
𝑅2

1
𝑅2 − 𝑅1

(𝐼0(𝑇𝑖, 𝑇 ′
𝑗 ) + 𝐼0(𝑇𝑖, 𝑇 ′

𝑗 )∗) + (𝑅2 − 𝑅1)𝐼3(𝑇 ′
𝑖 , 𝑇

′
𝑗 ) + 3𝑅1𝐼2(𝑇 ′

𝑖 , 𝑇
′
𝑗 )+

3𝑅2
1

𝑅2 − 𝑅1
𝐼1(𝑇 ′

𝑖 , 𝑇
′
𝑗 ) +

𝑅3
1

(𝑅2 − 𝑅1)2 𝐼0(𝑇
′
𝑖 , 𝑇

′
𝑗 )
)
,

when 𝑚 ≠ 0 and:

(𝐺0)𝑖 𝑗 = 2𝜋
(
(𝑅2 − 𝑅1)2𝐼1(𝑇𝑖, 𝑇𝑗 ) + 𝑅1(𝑅2 − 𝑅1)𝐼0(𝑇𝑖, 𝑇𝑗 )

)
,

(𝑆0)𝑖 𝑗 = 2𝜋

(
−(𝑅2 − 𝑅1)

d(𝑅2 − 𝑅1)
d𝑋

𝐼2(𝑇𝑖, 𝑇 ′
𝑗 ) +

d
(
𝑅2

1 − 𝑅2𝑅1
)

d𝑋
𝐼1(𝑇𝑖, 𝑇 ′

𝑗 ) − 𝑅1
d𝑅1
d𝑋

𝐼0(𝑇𝑖, 𝑇 ′
𝑗 )
)
,

(𝑆1)𝑖 𝑗 = 2𝜋
𝑉𝑎

𝐶

(
(𝑅2 − 𝑅1)2𝐼2(𝑇𝑖, 𝑇 ′

𝑗 ) + 2𝑅1(𝑅2 − 𝑅1)𝐼1(𝑇𝑖, 𝑇 ′
𝑗 ) + 𝑅2

1 𝐼0(𝑇𝑖, 𝑇
′
𝑗 )
)

+ 2𝜋
𝑉 𝑏

𝐶
𝐼0(𝑇𝑖, 𝑇 ′

𝑗 ),

(𝐺1)𝑖 𝑗 = 2𝜋
(
𝐼1(𝑇 ′

𝑖 , 𝑇
′
𝑗 ) +

𝑅1
𝑅2 − 𝑅1

𝐼0(𝑇 ′
𝑖 , 𝑇

′
𝑗 )
)
,

when 𝑚 = 0.
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Appendix C

ACOUSTIC POWER FOR A SINGLE MODE

PROPAGATION

In this Appendix, we derive an expression of the acoustic power depending only on acoustic
potential terms. The velocity potential 𝜙 is written for a single mode (𝑚, 𝑛) composed of a left
and right running wave:

𝜙 = 𝑄0

√︄
𝐶0

𝜔𝐷0𝜎
𝜓 exp

[
i
𝜖

∫ 𝑋 𝜔𝑈0

𝐶2
0 −𝑈2

0
d𝑋

]
[
D exp

[
−i
𝜖

∫ 𝑋 𝜔𝐶0𝜎

𝐶2
0 −𝑈2

0
d𝑋

]
+ U exp

[
i
𝜖

∫ 𝑋 𝜔𝐶0𝜎

𝐶2
0 −𝑈2

0
d𝑋

] ]
,

(C.1)

where the notation of section 1.3.3 are used.

Developing the expression of the axial component of the time-averaged energy flux (see
Equation (1.18)) to the order 𝜖 gives:

I · e𝑥 =
𝐷0𝜔

2
Re

(
𝜔𝑈0

𝐶2
0
𝜙𝜙∗ − i

(
1 −

𝑈2
0

𝐶2
0

)
𝜙
𝜕𝜙∗

𝜕𝑥

)
. (C.2)

This yields for the acoustic power:

P =
𝑄2

0𝜔

2
Re

[
𝜎∗

|𝜎 |

(
|D|2 exp

[
2
𝜖

∫ 𝑋 𝜔𝐶0Im(𝜎)
𝐶2

0 −𝑈2
0

d𝑋

]
− |U|2 exp

[
−2
𝜖

∫ 𝑋 𝜔𝐶0Im(𝜎)
𝐶2

0 −𝑈2
0

d𝑋

]
−2i Im

(
DU∗ exp

[
−2

i
𝜖

∫ 𝑋 𝜔𝐶0Re(𝜎)
𝐶2

0 −𝑈2
0

d𝑋

]))]
.

(C.3)
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For a cut-on mode, 𝜎 is real, therefore:

P ∝ |D|2 − |U|2. (C.4)

As for a cut-off mode, 𝜎 is imaginary, and we get:

P ∝ 2 Im (DU∗) . (C.5)
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Appendix D

MULTIMODAL MATRICES IN A DUCT WITH

PML

In this Appendix, the matrices defined in Equation (4.10) are detailed:

(𝐴11)𝑖 𝑗 = (𝑀12)𝑖 𝑗 =
∫
𝑆

𝐷𝛼𝛽(1 − 𝑀2
𝑥 )𝜑 𝑗𝜑∗𝑖 d𝑆,

(𝑀11)𝑖 𝑗 = −
∫
𝑆

𝐷𝛼𝛽(1 − 𝑀2
𝑥 )
𝜕𝜑 𝑗

𝜕𝑥
𝜑∗𝑖 d𝑆,

(𝐴21)𝑖 𝑗 = −
∫
𝑆

𝐷𝑈

𝐶2 𝛼𝛽 (i𝜔 + V⊥ · (𝐿∇⊥)) 𝜑 𝑗𝜑∗𝑖 d𝑆,

(𝐴22)𝑖 𝑗 =
∫
𝑆

𝐷𝛼𝛽(1 − 𝑀2
𝑥 )𝜑 𝑗𝜑∗𝑖 d𝑆,

(𝑀21)𝑖 𝑗 =
d
d𝑥

(∫
𝑆

𝐷𝑈

𝐶2 𝛼𝛽 (i𝜔 + V⊥ · (𝐿∇⊥)) 𝜑 𝑗𝜑∗𝑖 d𝑆
)
+

∫
𝑆

𝐷𝐻∇⊥𝜑
∗
𝑖 · ∇⊥𝜑 𝑗d𝑆

−
∫
𝑆

𝐷

𝐶2𝛼𝛽
(
(i𝜔 + V⊥ · (𝐿∇⊥)) 𝜑 𝑗 (−i𝜔 + V⊥ · (𝐿∇⊥)) 𝜑∗𝑖 +

𝑈 (i𝜔 + V⊥ · (𝐿∇⊥)) 𝜑 𝑗
𝜕𝜑∗

𝑖

𝜕𝑥

)
d𝑆,

(𝑀22)𝑖 𝑗 = − d
d𝑥

(∫
𝑆

𝐷𝛼𝛽(1 − 𝑀2
𝑥 )𝜑 𝑗𝜑∗𝑖 d𝑆

)
+

∫
𝑆

𝐷𝛼𝛽(1 − 𝑀2
𝑥 )𝜑 𝑗

𝜕𝜑∗
𝑖

𝜕𝑥
d𝑆 −

∫
𝑆

𝐷𝑈

𝐶2 𝛼𝛽𝜑 𝑗 (−i𝜔 + V⊥ · (𝐿∇⊥)) 𝜑∗𝑖 d𝑆.
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Appendix E

VALIDATION OF THE POTENTIAL FLOW

HYPOTHESIS ON AN UHBR ENGINE

In this appendix, the RANS computations analyses done to validate the potential flow
hypothesis are presented.

E.1 Definition of test cases

The computations are done with the nacelle of the NOVA Onera airplane (side nacelle
configuration) [106]. For confidentiality reasons, the spatial dimensions are normalized by the
fan radius and velocities by the free-stream velocity. This nacelle is placed inside a mean flow
with varying free-stream velocities and an extreme angle of attack of 15◦ to study the impact
of distortion. The scope is here to validate that the potential flow hypothesis is met and that
it is reasonable to neglect the vorticity. Note: The CFM56 geometry is not used here since we
analyse already performed calculations that had been done previosuly on the NOVA engine.

E.2 Mean flow computations

In this study, the mean flow has been computed using Onera’s CFD solver elsA turned into
a RANS mode. The domain comprises around 25 million points, and the simulations are run
over 84 processors and last approximately ten hours. Three cases are performed with the nacelle
under an incidence of 15◦ at different free stream Mach number values 𝑀∞.

E.3 Flow analysis

A quick overview of computed mean axial velocity contours provided by the CFD solver
at the inlet of the duct is given in Figure E.1. The azimuthal inhomogeneity is visible in all
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cases. We observe that the nacelle behaves like an airfoil under incidence, accelerating the flow
over the upper lip of the bottom part of the nacelle and decelerating it over the lower lip of the
upper part. This causes a difference in velocity between the upper and lower parts of the nacelle,
which is responsible for the inflow distortion. Note that the flow is not completely realistic here
since no fan was placed in the nacelle. In particular, the two main consequences are that the
flow velocities inside the nacelle are moderated, and extremely high inflow distortion levels are
obtained.

(a) 𝑀∞ = −0.2 (b) 𝑀∞ = −0.4

(c) 𝑀∞ = −0.6

Figure E.1 – Normalized axial velocity contours at the duct inlet.
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For the three cases, an angular Fourier transform is performed from the axial velocity maps to
get the amplitude of the distortion harmonics. The inflow distortion is also analyzed by computing
the axial evolution of the CDC applied to the axial velocity at different channel heights. The
associated results are plotted in Figure E.2. It can be seen that the distortion decreases along
the duct and that the CDC tends to be independent of the free stream Mach number. However,
this decrease depends on the channel height, and the closer to the tip, the higher the attenuation.
Near the tip, an exponential decrease is obtained. It also appears that a Fourier superposition of
low-order azimuthal components can represent the flow. Considering, only the first two Fourier
components for most test cases should be enough to represent the flow correctly. However, this
tends to be less true as the Mach number increases.

(a) Axial evolution of CDC (b) Azimuthal Fourier transform harmonics of axial
velocity at 95% of channel height

Figure E.2 – Evolution of the azimuthal distortion inside the duct.

Now that the main characteristics of the flow have been presented, let us check that the
potential flow hypothesis is realistic. The vorticity magnitude computed by the CFD solver is
given at the fan and exit planes for all cases in Figure E.3. The vorticity magnitude is small
almost everywhere compared to the distortion levels, and the potential hypothesis is reasonably
respected. This hypothesis is not met inside boundary layers. However, their effect on the duct
mode propagation is expected to be small (as long as the ratio of the boundary layer thickness
is negligible in front of the duct mode wavelength [32]). Note that some non-physical vorticity
appears on the mesh junctions (plotted in black) and is caused by numerical interpolations.
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(a) Fan plane. 𝑀∞ = −0.2. (b) Exit plane. 𝑀∞ = −0.2.

(c) Fan plane. 𝑀∞ = −0.4. (d) Exit plane. 𝑀∞ = −0.4.

(e) Fan plane. 𝑀∞ = −0.6. (f) Exit plane. 𝑀∞ = −0.6.

Figure E.3 – Normalized vorticity magnitude contours.
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Appendix F

FIRST ACOUSTIC VALIDATIONS

PERFORMED FOR THE COMPUTATIONS

WITH HIGH LEVELS OF FLOW DISTORTION

In this appendix, the comparisons between the multimodal method and the FDM for the case
𝛼𝐴𝑜𝐴 = 10◦ are presented.

The analysis is limited to the injected mode 𝑚 = 10 to avoid requiring huge computational
resources for the mode 𝑚 = 25. Figures F.1 present the SPL in dB obtained in the vertical and
horizontal planes for this case with the multimodal and the FDM. The two methods agreement is
relatively good but some differences are observed between the two methods. Most of the obser-
vations made for the case with an angle of incidence of 5◦ remain applicable (see Section 5.3.6),
with a downward rotation of the radiated lobes and an increase in the number of lobes pointing
skyward. To assess the validity of the in-duct distribution, we perform a Fourier decomposition
at 95% of the channel height and examine the evolution in the axial direction of the azimuthal
Fourier components close to the injected one (𝑚 ± 2) in Figure F.2. Additionally, we analyze the
azimuthal distribution at the exit of the duct, as shown in Figure F.3. Despite the discrepancies
observed in the radiated field, the in-duct results match quite well. The cascade diffusion effect
remains observable. Due to the higher levels of distortion within the duct, the direct azimuthal
neighbors of the injected mode appear sooner inside the duct with respect to the 5◦ case, with the
modes 𝑚 ± 1 emerging near 𝑥 = 1.25, and the modes 𝑚 ± 2 appearing near 𝑥 = 1.5. Regarding
the azimuthal distribution at the exit, the match is quite good up to 𝑚 = 16 but deteriorates
further.
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(a) Horizontal plane – Multimodal (b) Horizontal plane – Finite difference method

(c) Vertical plane – Multimodal (d) Vertical plane – Finite difference method

Figure F.1 – Contour map associated to the SPL pressure for the mode 𝑚 = 10 for the case
𝐴𝑜𝐴 = 10◦.
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Figure F.2 – Axial evolution of the azimuthal decomposition of the pressure field for the injected
mode 𝑚 = 10 at 95% of channel height for the Fourier components neighbouring the injected
one.

Figure F.3 – Azimuthal decomposition of the pressure field at the outer wall at 𝑥 = 2 for the case
𝐴𝑜𝐴 = 10◦.
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Titre : Modélisation de la propagation acoustique dans l’entrée d’air d’un turboréacteur à l’aide
d’une méthode multimodales

Mot clés : Propagation acoustique, Multimodale, WKB, Bruit de soufflante, Transition modale,

Distorsion de l’écoulement

Résumé : L’analyse du bruit émis par les par-
ties tournantes des moteurs d’avions com-
porte trois aspects : la génération des sources
acoustiques, leur propagation dans la partie
carénée et leur rayonnement en champ loin-
tain. La génération des sources est complexe
à estimer, et des calculs coûteux sont géné-
ralement effectués. Pour les deux autres as-
pects, un plus large panel de choix est à dis-
position. L’accent est mis, dans le cadre de
la thèse, sur la propagation à l’intérieur du
conduit secondaire d’un turboréacteur et le
rayonnement acoustique en champ libre as-
socié. En introduisant quelques simplifications
sur la géométrie et l’écoulement, le problème
acoustique peut être résolu analytiquement
(au moins partiellement), ce qui permet des
prévisions très rapides. Ces solutions, semi-
analytiques, présentent donc un grand intérêt
mais sont naturellement limitées en termes de
représentation de la géométrie et de l’écoule-

ment. L’évolution des moteurs vers des géo-
métries à très grand taux de dilution met à
mal les hypothèses de ces modèles et in-
troduit des nouveaux défis en terme de mo-
délisation. En particulier, dans ces architec-
tures, le raccourcissement de la nacelle cause
une augmentation du nombre de transitions
de modes et une distorsion accrue de l’écou-
lement dans l’entrée d’air qui rendent la pro-
pagation particulièrement complexe à calcu-
ler. L’objectif principal de cette thèse est de dé-
velopper des modèles rapides de propagation
qui sont capables de prendre en compte ces
deux phénomènes. Ceci est réalisé en implé-
mentant une méthode multimodale qui permet
de calculer l’écoulement porteur et le champ
acoustique sous l’hypothèse d’un écoulement
potentiel. Cette méthode est ensuite utilisée
pour étudier l’impact de double transitions et
de la distorsion azimutale de l’écoulement sur
la propagation et le rayonnement acoustique.

Title: Modelling acoustic propagation in modern turbofan intakes using a multimodal method

Keywords: Acoustic propagation, Multimodal, WKB, Fan noise, Modal transition, Flow distor-

tion

Abstract: The analysis of noise generated by
the rotating blades of turbofan engines en-
compasses three aspects: the generation of
acoustic sources, their propagation in the in-
take, and their radiation in the far-field. The
generation of these sources is complex to es-
timate and often requires costly calculations.

However, a wider range of options is available
for the latter two aspects. In the scope of this
thesis, the emphasis is placed on the propaga-
tion within the intake of a turbofan engine and
the associated free-field acoustic radiation. By
introducing some geometry and flow simplifi-
cations, the acoustic problem can be solved



analytically. These solutions, known as semi-
analytical, hold great interest but are naturally
limited in terms of geometry and flow repre-
sentation. However, the evolution of engines
towards configurations with very high bypass
ratios challenges the assumptions of these
models and introduces new modelling diffi-
culties. Particularly in these architectures, the
shortening of the nacelle leads to an increase
in the number of modal transitions and to high
flow distortion levels in the intake, rendering

propagation particularly complex to compute.
The main objective of this thesis is to de-
velop propagation models capable of account-
ing for both phenomena at a low computa-
tional cost. This is achieved by implementing a
general multimodal method that can compute
the mean flow and the acoustic field under the
potential flow assumption. This method is then
employed to investigate the impact of dou-
ble transitions and azimuthal flow distortion on
acoustic propagation and radiation.
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