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Abstract

The spread of automatic decision rules based on machine learning has raised grave ethical
concerns due to their lack of interpretability and their automatization of human discriminatory
biases. This issue sparked the research field of trustworthy artificial intelligence which
focuses on the development of fair and explainable machine-learning algorithms. This thesis
contributes to this initiative by studying fairness and explainability through the prism of
counterfactual reasoning: a modality devoted to queries such as “Had she been a man,
would have he been granted the loan?”. The first chapter serves as an introduction to
counterfactual frameworks in machine learning and clarifies common misconceptions. The
second chapter develops the theoretical foundations for implementing this reasoning using
mass-transportation methods such as optimal transport and diffeomorphic registration. In
contrast to state-of-the-art methods, this approach returns counterfactual statements that
are simultaneously computationally feasible of semantically realistic, crucially allowing a
wider deployment of counterfactual methodologies for fairness and explainability. The
third and fourth chapter are self-sufficient but motivated by the practical aspects of this
mass-transportation viewpoint to counterfactual reasoning: they address the statistical
estimation of transport models. The third chapter introduces a GAN estimator of Lipschitz
optimal transport maps along with unique statistical guarantees for such a neural-network-
based approximation. The fourth chapter deals with diffeomorphic registration, grounding
theoretically and computationally diffeomorphic mass transportation driven by Sinkhorn
divergences (entropy-regularized optimal-transport discrepancies).
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Abstract (en français)

La propagation de règles de décision automatiques basées sur l’apprentissage machine a
soulevé de graves préoccupations éthiques en raison de leur manque d’interprétabilité et
de leur automatisation des biais discriminatoires humains. Ce problème a donné naissance
à la recherche en l’intelligence artificielle digne de confiance, qui traite du développement
d’algorithmes d’apprentissage automatique équitables et explicables. Cette thèse contribue
à cette initiative en étudiant l’équité et l’explicabilité à travers le prisme du raisonnement
contrefactuel : une modalité consacrée à des requêtes telles que “Si elle avait été un homme,
lui aurait-on accordé le prêt ?”. Le premier chapitre sert d’introduction aux méthodologies
contrefactuelles dans l’apprentissage automatique et clarifie des idées reçues courantes. Le
deuxième chapitre développe les fondements théoriques de la mise en œuvre de ce raisonnement
à l’aide de méthodes de transport de masse telles que le transport optimal et l’appariemment
difféomorphique. Contrairement aux méthodes standards, cette approche renvoie des énoncés
contrefactuels qui sont à la fois implémentable d’un point de vue informatique et réalistes
d’un point de vue sémantique, ce qui permet un déploiement plus large des méthodologies
contrefactuelles pour l’équité et l’explicabilité. Les troisième et quatrième chapitres sont
autonomes mais motivés par les aspects pratiques de ce point de vue par transport de masse du
raisonnement contrefactuel : ils traitent de l’estimation statistique des modèles de transport.
Le troisième chapitre présente un estimateur GAN d’applications de transport optimales
Lipschitz accompagné de garanties statistiques uniques pour une telle approximation basée
sur des réseaux de neurones. Le quatrième chapitre traite de l’appariemment difféomorphique,
en fondant théoriquement et numériquement le transport de masse difféomorphique piloté
par les divergences de Sinkhorn (des divergences de transport optimal entropique).
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Notations

This part gathers some key notations and definitions that will be used throughout the
manuscript. We point out that this list is not exhaustive, and that each chapter brings some
specific notations.

Sets and elements. We write 2V for the power set of some set V, that is the set of all
subsets of V. Additionally, for any collection of spaces (Vi)i∈I indexed by a finite index
set I and any subset I ⊆ I we define the product space VI :=

∏
i∈I Vi. Similarly, we write

vI := (vi)i∈I for any tuple v := (vi)i∈I ∈ VI . The union of two disjoint sets V1 and V2 is
written as V1 ⊔ V2. When V is finite, we denote its cardinality by |V|.

Euclidean spaces. The absolute value of real numbers and the Euclidean norm of vectors
are respectively given by |·| and ∥·∥, while · denotes the Euclidean inner product. For an
integer d ≥ 1, the notation Br refers to the centered Euclidean ball of Rd with radius r > 0.
When V ⊆ Rd, we denote by diam(V) its diameter, that is diam(V) := maxv,v′∈V ∥v − v′∥.
The closure of V is written as V; its interior as V̊. If additionally V is closed and convex,
then ProjΩ stands for the projection onto V.

Linear algebra. We write Span(V) for the linear span of a set V ⊆ Rd, namely the set of
all linear combinations of vectors in V . If V is a linear subspace of Rd, then V⊥ denotes the
orthogonal complement of V , that is the set of all vectors in Rd that are orthogonal to every
vector in V. The set Rp×d consists of the real-valued matrices with p rows and d columns.
The transpose of a matrix M is written as MT ; if M is nonsingular, then M−1 refers to
its inverse. By convention, a vector x ∈ Rd is identified to a column matrix, so that xT y
corresponds to the Euclidean inner product between x and y ∈ Rd. The zero vector of Rd is
denoted by 0 whatever the dimension.

Probability measures. Let µ and ν be two Borel probability measures on Rd. We write
supp(µ) for the support of µ, which is defined as the largest Borel set such that every
open set it intersects has positive measure. We say that a proposition P(·) holds µ-almost
everywhere if there exists a Borel set E such that µ(E) = 1 and P(v) is true for any v ∈ E.
The relation µ ≪ ν means that µ is absolutely continuous with respect to ν, formally
(ν(E) = 0 =⇒ µ(E) = 0) for every Borel set E ⊆ Rd. The symbol ⊗ denotes the product
of measures, that is (µ ⊗ ν)(E1 × E2) = µ(E1) × ν(E2) for every Borel sets E1, E2 ⊆ Rd.
The expectation (or mean) under µ of a measurable function f : Rd → Rp for an integer
p ≥ 1 is defined as µ(f) :=

∫
fdµ. The push-forward measure of µ by f is defined by

xi
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(f♯µ)(E) := µ ◦ f−1(E) for every Borel set E ⊆ Rp. This operation enables to write changes
of variables: for any measurable function g on Rp,

∫
gd(f♯µ) =

∫
(g ◦ f)dµ. The set T (µ, ν)

refers to all measurable mappings pushing forward µ to ν, namely all mappings T : Rd → Rd
such that T♯µ = ν. The set Π(µ, ν) consists of all joint probability distributions on Rd × Rd
with µ and ν as respectively first and second marginals.

Random variables. A probability space is a triplet (Ω,Σ,P) composed of a sample space
Ω, a σ-algebra Σ ⊆ 2Ω, and a probability measure P : Σ → [0, 1]. A random variable
V : Ω → V is a measurable function from the sample space Ω to some measurable space
V ⊆ Rd equipped with the Borel σ-algebra. We denote respectively by L(V ) := V♯P and
E[V ] :=

∫
V (ω)dP(ω) the law and expectation under P of V . Whenever they are well-defined,

the law and expectation of V conditional to some event E ⊆ Σ are respectively denoted
by L(V | E) and E[V | E]. We write V1 ⊥⊥ V2 to signify that two random variables V1 and
V2 are independent under P, that is L((V1, V2)) = L(V1)⊗ L(V2). The relation V1

P−a.s.
= V2

means that V1 and V2 are almost-surely equal, formally P(V1 = V2) = 1; while V1
L
= V2 means

that they are equal in law, that is L(V1) = L(V2).



Introduction

Eighty years after the first mathematical modeling of a neural network by McCulloch and
Pitts (1943), machine learning, the research field developing and studying methods to learn
how to make new predictions from past data, has enabled artificial-intelligence systems
to solve even more complex problems, from finding correlations within high-dimensional
tabular data to processing languages and recognizing images. These advances triggered the
proliferation of machine-learning-based algorithms in countless facets of the ordinary and
professional life, such as targeted advertisement on social networks, music recommendation
on streaming applications, cancer detection in health-care, and stock prices prediction in
finance.

However, the massive reliance on such automatic decision rules has raised grave ethical
concerns due to their growing lack of interpretability and their potential harm toward
minorities. The pursuit of versatility and accuracy in supervised learning, from simple linear
regression models to convoluted deep neural networks, led to the emergence of black-box
models making decisions that neither the end users nor the designers can comprehend. Not
only this violates the legitimate right to explanation of individuals, but this prevents from
understanding whether the predictions are fair and adequate. With the prospect of artificial
intelligence being involved in critical decisions such as for self-driving cars and recruitment
processes, ensuring transparency of algorithmic rules has become indispensable.

This is all the more necessary that machine learning has demonstrated through many
incidents over the last few years that it could not be trusted on the basis of accuracy
only. Traffic-sign recognition which could be fooled by imperceptible changes,1 the IBM
facial-recognition system which proved to be racist,2 the Amazon recruitment algorithm
which discriminated against women,3 the Microsoft chatbot which became nazi in twenty-four
hours,4 are just a few striking examples epitomizing the risk of letting artificial intelligence
spread at every level of society without questioning the keystone assumptions of machine
learning itself. Machine learning is not objective; it merely finds correlations between an
outcome of interest (e.g., being hired) and some covariates (e.g., socioeconomic features, work
experience) contained in a dataset inevitably shaped by structural inequalities and human
biases. Therefore, it is bound to reproduce and make commonplace the biases reflected in the
data, for instance that racialized people are more likely to be criminals. Moreover, learning
accurate correlations does not mean learning meaningful features. Spurious or irrelevant

1https://spectrum.ieee.org/slight-street-sign-modifications-can-fool-machine-learning-algorithms
2https://www.bbc.com/news/technology-52978191
3https://www.bbc.com/news/technology-45809919
4https://www.theverge.com/2016/3/24/11297050/tay-microsoft-chatbot-racist
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correlations abound in data, creating irregularities in the predictions, as illustrated by the
notorious dog-versus-wolf classifier biased by the snow background (Ribeiro et al., 2016).
Importantly, all these algorithmic biases did not require any premeditated malice from the
designers: they are the natural consequence of the very concept of learning from past data
through the dogma of accuracy.

These major issues spurred on the emergence of trustworthy artificial intelligence: a
research initiative cross-pollinated by social sciences, mathematics and computer science,
dedicated to the development of artificial-intelligence systems that are lawful, robust, ex-
plainable and fair. In less than ten years, it has become one of the trendiest research topics
in the domain, with an exponentially growing number of scientific publications each year.
But the need for ethical machine-learning decision rules is not only morally justified, it
is also legally grounded. The European Artificial Intelligence Act5 will soon regulate all
systems deployed in the European Union by categorizing them according to their risk, their
possible prejudice on society. Should an application not satisfy the legal requirements on
fairness and transparency, it would simply be forbidden. This means that the numerous
machine-learning-driven companies are rapidly going to require a rich range of new learning
techniques and test procedures to guarantee the trustworthiness of their products.

This thesis entirely applies to this process; the research therein ambitions to contribute
to the development of fair and explainable machine-learning algorithms. The specificity of
our approach is twofold. First, we study fairness and explainablity through the prism of
counterfactual reasoning: a modality addressing queries such as “Had she been a man, would
have he been granted the loan?” that has become widely used in very recent research to
generate post-hoc explanations of automatic decision rules and to uncover biases. Second,
we implement this reasoning using transport methods such as optimal transport and diffeo-
morphic registration, which enable one to match one probability distributions to another
(e.g., women to men). Moreover, in a maths-driven approach, we mind to provide theoretical
guarantees throughout the manuscript, notably statistical consistency results.

Summary of the thesis

The overall structure of the manuscript reflects the two components of our research: a first
part addresses counterfactual reasoning in fairness and explainability, providing a
general theory for the implementation of counterfactual thinking through mass transportation;
a second part focuses on the statistical inference of transport models, which
furnishes tools to apply ideas from the first part. This summary aims at giving in less than
ten pages a general idea of our contributions contrasted with the state of the art.

Part I, Chapter 1: Counterfactuals, explainability, fairness

For starters, we introduce counterfactual reasoning and its applications through an overview of
the corresponding scientific literature. This chapter is motivated by the following observation:
while most of the researchers and practitioners from machine-learning-related fields have

5https://artificialintelligenceact.eu/the-act/

https://artificialintelligenceact.eu/the-act/
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become used to hearing expressions such as counterfactual explanations, counterfactual
outcomes, or counterfactually fair, they generally lack a global understanding of what
connects and distinguishes these notions. By unifying counterfactual frameworks, we shed a
fresh light on counterfactual reasoning in machine learning, beyond mere reviewing.

What is a counterfactual?

In a nutshell, a counterfactual is a statement of the form “Had A occurred then B would have
occurred”, for example “Had Alice been a man, he would have been granted the position”. The
treatment of such statements is obviously challenging, as we cannot observe an alternative
reality where Alice is a man. Counterfactual reasoning refers to all the theories and techniques
addressing the problem of designing such alternatives, therefore enabling the assessment of
counterfactual statements. Several frameworks coexist, leveraging different tools to compute
alternative worlds, and suggesting different choices of what must be kept equal across them.
They all stem from the seminal possible-world account of Lewis (1973b), well-known by
the logician community, which uses a general notion of closeness between worlds to define
possible alternative worlds. Throughout the chapter, we leverage this basis as a common
reading grid to provide a unified understanding of counterfactual theories.

Causal modeling

Then, we present two acclaimed causal theories allowing counterfactual reasoning, which
both leverage a terminology based on random variables.

Firstly, we detail the notorious structural account of Pearl (2009). It rests on the knowledge
of a structural causal model, specifying all cause-to-effect equations between observed random
variables (Vi)i∈I through a collection of assignments of the form,

Vi
P−a.s.
= Gi(VEndo(i), UExo(i)),

where the variables (Uj)j∈J represent latent primary causes of the model, while Endo(i) ⊆ I
and Exo(i) ⊆ J refer respectively to the so-called endogenous and exogenous parents of the
ith variable. The interest of such equations comes from the possibility of carrying out do-
interventions : forcing an endogenous variable to take a given value while keeping the rest of
the mechanism untouched. More concretely, let V := (X,S) be a random vector of observed
variables such that we would like to understand the downstream effect of S : Ω→ S onto
other features X : Ω→ Rd. Replacing the formula generating S by S = s and propagating
this change through the other equations defines altered features XS=s, representing X had S
been equal to s.

Secondly, we turn to the widely-used potential-outcome account of Rubin (1974) which
mathematically formalizes causal inference in clinical trials. Letting S denote a binary
treatment status (e.g., taking a drug or not) and Y : Ω → Y an outcome of interest (e.g.,
recovering or not), this framework postulates the existence of two potential outcomes Y0 and
Y1 such that Y = (1−S) ·Y0+S ·Y1. These variables respectively represent what the outcome
would be were S equal to 0 or 1. The fundamental problem of causal inference (Holland, 1986)
refers to the fact that in practice we cannot observe simultaneously Y0 and Y1, rendering
unidentifiable the causal effect of S onto Y . Notably, in general, correlation is not causation
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in the sense that L(Ys) ̸= L(Y | S = s) for s ∈ {0, 1}. Nevertheless, causal inference at a
global scale can still be achieved thanks to a mix of untestable assumptions and statistical
tools. Adjusting on a set of available covariates X containing all possible confounders between
the treatment and the potential outcomes, formally (Y0, Y1) ⊥⊥ S | X, enables to identify
counterfactual outcome as it entails that L(Ys | X = x) = L(Y | S = s,X = x).

Finally, as an original contribution, we superimpose these two causal models
to derive a mathematical analysis of the similarities and differences between
potential-outcome counterfactuals and structural counterfactuals by demonstrat-
ing that—in contrary to what the mainstream literature often suggests—Ys ̸= YS=s
in general. More precisely, these counterfactual outcomes differ if S encodes a nonmanipula-
ble feature that impacts the covariate X such as sex and race, but coincide if S is a treatment
that can be experimentally allocated such as a drug. This critically means that the two
causal approaches generate different counterfactual statements in classical fairness problems
where S typically encodes sex or race, hence why we must understand the distinction. The
idea is that the potential-outcome framework considers counterfactual outcomes with fixed
covariates X, while structural causal modeling alters the covariates into XS=s. We illustrate
the consequences of this difference on a concrete fairness example.

Application to explainability and fairness

Lastly, we present popular applications of counterfactual reasoning in explainable artificial
intelligence and algorithmic fairness, emphasizing its critical role for building trustworthy
systems.

In their pioneering work, Wachter et al. (2017) propose to use counterfactual statements
as a psychology-grounded approach for explaining black-box decision rules. Concretely, they
look for minimal plausible changes of an input v such that the output of the machine-learning
model h differs, generally by solving

min
v′∈V

c(v, v′) + λ
∣∣h(v)− h(v′)∣∣2,

where c is a well-chosen cost function, λ a large-enough parameter for the decision to change,
and V the set of plausible worlds. This generates counterfactual statements of the form
“Had the input been v′ (instead of v), then output would have been different”. For the
sake of clarification and unification, we show how to interface this explanation methods
to the previously detailed counterfactual-inference frameworks. This can be achieved by
parametrizing the artificial inputs v′ as the alternative worlds of v obtained after an action,
for example a do-intervention. This part notably serves to emphasize the distinction between
counterfactual counterparts (i.e., alternative worlds had a certain event occurred) and
counterfactual explanations (i.e., refined adversarial examples).

Turning to algorithmic fairness, we illustrate how counterfactuals can provide strong
and intuitive notions of fairness. For S a protected attribute (e.g, race or sex) and X the
other input features of a predictor h, fairness deals with rendering h(X,S) independent of S,
typically by enforcing h(X,S) ⊥⊥ S. However, as noted by Dwork et al. (2012), this so-called
statistical parity is a group-fairness constraint that does not control for discrimination at
the individual level. This is where counterfactual inference comes into play: by enabling
to compute alternative inputs “had the protected attribute been changed” (e.g., man to
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woman), it allows for requiring equal treatment between an individual and its counterfactual
counterparts. This idea is at the core of the definition of counterfactual fairness, proposed by
Kusner et al. (2017), which relies of Pearl’s do-calculus to ask

L
(
h(XS=s′ , s

′) | X = x, S = s
)
= L

(
h(XS=s, s) | X = x, S = s

)
,

for every observations {X = x, S = s} and any s′ ̸= s. The main drawback of this approach
comes from its dependence to a structural causal model: while appealing in theory, such
models are unknown in practice and can hardly be inferred from data, making causal-based
methods unfeasible in most real-world tasks. This limitation motivated the work presented
in the next chapter, where we introduce noncausal, transport-based counterfactual models
providing feasible notions of individual fairness, sharper than group fairness constraints.

Part I, Chapter 2: Transport-based counterfactual models

The explainability and fairness applications reviewed in the previous chapter show that the
most commonly used techniques for the computation of counterfactual counterparts (i.e.,
alternative worlds) in machine learning are the closest alternative world principle and Pearl’s
causal modeling. The first approach is straightforward, but neglects correlation between
features, leading to unfaithful, out-of-distribution counterfactuals such as “Had Bob been a
woman, she would have been 190cm tall”. The second one rigorously takes into account all
dependencies between variables, but requires a structural causal model that is unknown of
too hard to infer in practice, making it unfeasible except for toy cases. This chapter, based
on (De Lara et al., 2021a), focuses on a third way by interpreting counterfactual reasoning as
a problem of mass displacement from one probability distribution to another. It follows the
work of Black et al. (2020) who first suggested the use of optimal transport (Villani, 2003,
2008) to design feasible and realistic counterfactuals.

Mass transportation and optimal transport

First of all, let us introduce some basic knowledge on mass transportation and optimal
transport. We refer to mass transportation as the general problem of matching two probability
distributions P and Q on X ⊆ Rd. This amounts to selecting a coupling within the set
Π(P,Q) of joint probability distributions with respectively P and Q as first and second
marginals. A coupling can be seen as a random mapping, matching each instance of P to
possibly several counterparts in Q with probability weights. It is said to be deterministic if
each instance from P is matched to a unique instance from Q. In this case, the coupling is
concentrated on the graph of a (P -almost every unique) deterministic mapping T : X → X
pushing forward P to Q, that is Q(E) = P (T−1(E)) for every Borel set E ⊆ Ω. This
property, denoted by T♯P = Q, means that if a random variable X follows the distribution
P then its image T (X) follows the distribution Q.

Optimal transport theory became the most popular tool to construct such couplings when
no canonical choice is available. It dates back to Monge (1781) who defined optimal transport
maps as functions transforming P into Q with minimal effort according to a positive ground
cost function c : X × X → R+. Formally, these maps solve

min
T∈T (P,Q)

∫
X
c(x, T (x))dP (x),
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where T (P,Q) is the set of measurable maps pushing forward P to Q. In general settings
however, such a deterministic correspondence between probability distributions may not
exist, in particular if P and Q are not Lebesgue absolutely continuous. This limitation
motivates the so-called Kantorovich relaxation of Monge’s formulation of optimal transport
(Kantorovich and Rubinshtein, 1958):

min
π∈Π(P,Q)

∫
X 2

c(x, x′)dπ(x, x′).

This problem focuses on random couplings instead of deterministic mappings, and always
admits solutions referred as optimal transport plans.

Counterfactual reasoning from a mass-transportation viewpoint

Counterfactual reasoning addresses queries of the form had S been equal to s′ instead of
s, what would have been the value of X? The structural account answers this question
through do-calculus: for a given world of reference {X = x, S = s} it returns a distribution
of counterfactual counterparts given by L(XS=s′ | X = x, S = s).

In contrast, Black et al. (2020) approximated an optimal transport map T⟨s′|s⟩ from
µs := L(X | S = s) to µs′ := L(X | S = s′) and generated the counterfactual counterpart
had S been equal to s′ of an factual s-instance x by T⟨s′|s⟩(x). Although this was not
addressed in their paper, this idea can be naturally generalized to optimal transport plans
π⟨s′|s⟩ ∈ Π(µs, µs′) rather than maps. All in all, this observation-based, noncausal approach
has three critical interests. Firstly, it guarantees that the generated counterfactuals are
in-distribution, hence realistic. Secondly, it benefits from a growing repertoire of efficient
numerical schemes to estimate such couplings from data (Peyré and Cuturi, 2019), leading to
computationally feasible counterfactuals. Thirdly, on the contrary to the structural account,
it obviates any assumptions on the data generation process.

As a first contribution, we propose to unify these two frameworks under a
common mass-transportation formalism grounded by the following remark: cross-
world statements “had S been equal to s′ instead of s” using Pearl’s causal modeling are
characterized by the joint probability distribution π∗⟨s′|s⟩ := L((X,XS=s′) | S = s), matching
any factual world from µs to its counterfactual counterparts in µ⟨s′|s⟩ := L(XS=s′ | S = s).
From this perspective, structural counterfactual reasoning is, similarly to optimal transport,
a problem of mass transportation. This notably means that Black et al. (2020) were
implicitly mimicking structural counterfactuals. Extending their idea, we define transport-
based counterfactual models on X with respect to S as collections of couplings
Π := {π⟨s′|s⟩}s,s′∈S such that for every s, s′ ∈ S, π⟨s′|s⟩ ∈ Π(µs, µs′). This general
construction encompasses couplings defined through optimal transport, but also regularized
optimal transport and potentially new mass-transportation techniques. The critical interest
of the unified mass-transportation formalism lies in the possibility to replace a structural
counterfactual coupling π∗⟨s′|s⟩ by a transport-based one π⟨s′|s⟩ in any causal counterfactual
framework to generate a transport-based alternative; this will be later illustrated with
counterfactual fairness.
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When optimal transport meets causality

Interestingly, the mass-transportation formalism we introduced also enables us to
mathematically demonstrate that optimal transport recovers causal changes in
some settings, which explains why Black et al. (2020) empirically observed that structural
counterfactuals and optimal-transport counterfactuals were nearly identical. This result
holds under two typical assumptions of the causal model.

The first assumption demands the structural counterfactuals to be deterministically
implied by the causal model. This formally corresponds to L(XS=s′ | X = x, S = s)
narrowing down to a Dirac distribution, which occurs in particular when the exogenous
variables are additive terms of the structural equations. This entails that the causal coupling
π∗⟨s′|s⟩ is deterministic: it can be identified to a mapping T ∗

⟨s′|s⟩ such that T ∗
⟨s′|s⟩♯

µs = µ⟨s′|s⟩.
The second assumption requires the modified variable S to play the same role as an

exogenous variable in the structural causal model. This holds typically in fairness problem:
for example, the race is exogenous relatively to socioeconomics features. This implies that
counterfactual counterparts are observable in the sense that µ⟨s′|s⟩ = µs′ , therefore that
the structural counterfactual model Π∗ := {π∗⟨s′|s⟩}s,s′∈S is a transport-based counterfactual
model.

Under both assumptions, the structural causal model induces a deterministic transport-
based counterfactual model. As such, one may naturally wonder whether it could be recovered
by solving a deterministic optimal-transport problem. This precisely what our main theorem
states for the quadratic cost c(x, x′) := ∥x− x′∥2: if L(X) is absolutely continuous with
respect to the Lebesgue measure and have a finite second order moment, then

π∗⟨s′|s⟩ = argmin
π∈Π(µs,µs′ )

∫ ∥∥x− x′∥∥2dπ(x, x′)
if and only if T ∗

⟨s′|s⟩ is the gradient of a convex function. This condition (which probably
rings a bell to people familiar with optimal-transport theory) is notably satisfied when the
causal equations of the model are linear additive over X, namely of the form

X
P−a.s.
= MX + wS + UX ,

where M ∈ Rd×d and w ∈ R are deterministic parameters. The interest of this theorem is
twofold: it explains theoretically the empirical observations of Black et al. (2020); it further
justifies that optimal transport works as a decent—noncausal—alternative to structural
counterfactual reasoning in typical fairness scenarios.

Application to fairness

This analysis motivates the use of transport-based counterfactual models in the place of
structural counterfactual models to derive new notions of fairness, being both sharp and
feasible. We note in particular that the counterfactual fairness criterion introduced in the
previous chapter can be written as: for every s, s′ ∈ S and π∗⟨s′|s⟩-almost every (x, x′),

h(x′, s′) = h(x, s).
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Replacing the causal couplings by transport-based ones from a model Π leads
a new fairness definition that we refer as Π-counterfactual fairness. Although it
trades-off causality for sound correlations, it preserves the property of ensuring fairness at
the individual level, is stronger than statistical parity, and does not require assumptions on
the data generation process.

Next, adapting the work of Russell et al. (2017), we tackle the problem of learning
a Π-counterfactually fair predictor. This amounts to solving

min
θ∈Θ

E[ℓ(hθ(X,S), Y )] + λ
∑
s∈S

P(S = s)
∑
s′ ̸=s

E
[∣∣hθ(Xs′ , s

′)− hθ(Xs, s)
∣∣2] ,

where Y is the target variable, ℓ a data-fidelity loss function, {hθ}θ∈Θ a parametric class
of predictors, and L((Xs, Xs′)) = π⟨s′|s⟩ for every s, s′ ∈ S. Theoretically, we prove in the
case of quadratic optimal transport that the empirical solution converges almost-surely to its
population counterpart as n, the sample size, tends to infinity; experimentally, we showcase
the performances of our estimator on real datasets. To sum-up, our contribution expands
the fair-learning arsenal to stronger criteria than mere group fairness condition by relaxing
causality to transport methods.

Part II, Chapter 3: GAN estimation of Lipschitz optimal transport maps

In (Black et al., 2020), the authors employed optimal-transport counterfactuals to audit
the fairness of black-box decision rules, while we used them to learn a fair predictor in the
previous chapter. Whatever the situation, implementing transport-based counterfactual
model requires constructing transport plans or maps from data. The richer the estimation
methods at hand, the more problems we will be able to handle. This chapter, based on
(González-Sanz et al., 2022), contributes to the growing literature on approximating optimal
transport maps. It combines the generative-adversarial-network (GAN) approach of Black
et al. (2020) with Lipschitz neural networks (Anil et al., 2019; Tanielian and Biau, 2021) to
design a novel neural estimator with provable statistical guarantees.

More precisely, we consider P and Q, two Lebesgue-absolutely-continuous measures such
that the optimal transport map T0 from P to Q for the quadratic cost is smooth, in particular
Lipschitz. Then, on the basis of empirical distributions Pn and Qn respectively drawn from
P and Q, we approximate T0 by the solution to the GAN problem

inf
G∈Gn

{∫
∥I −G∥2dPn + λn sup

D∈Dn

∫
D (d(G♯Pn)− dQn)

}
,

where Dn is a class of 1-Lipschitz discriminators providing a proxy for the dual formulation
of the Wasserstein-1 distance (in the Wasserstein-GAN fashion of Arjovsky et al. (2017)),
and Gn is a class of Lipschitz generators parametrizing the space of feasible mappings. The
positive parameter λn governs the trade-off between minimizing the quadratic transportation
cost, promoting the objective of the Monge problem, and minimizing the distance between
the generated and the target distributions, enforcing the push-forward constraint.

Our objective is twofold: first, we aim at designing an expressive optimal transport
map benefiting from a neural architecture to efficiently generalize to new out-of-sample
observations; secondly, we aim at providing statistical guarantees, which was overlooked by
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most of the related papers (Leygonie et al., 2019; Black et al., 2020; Makkuva et al., 2020;
Korotin et al., 2021; Huang et al., 2021).

Multivariate GroupSort neural networks

The problem described above involves Lipschitz neural networks, be they for the discriminators
or generators. In this chapter, we leverage the recently introduced GroupSort activation
functions to impose the Lipschitz constraint (Anil et al., 2019; Tanielian and Biau, 2021),
which have proven to yield tighter estimates of 1-Lispchitz functions than previous methods
such as in (Arjovsky et al., 2017; Gulrajani et al., 2017). By definition, the GroupSort
activation function of grouping size k ≥ 2 splits the pre-activation input into groups of size k,
and then sorts each group by decreasing order. This operation is 1-Lipschitz, gradient-norm
preserving and homogeneous (Anil et al., 2019). A GroupSort neural network is a feed-forward
neural network where all activation functions (except for the first layer) are a GroupSort
activation function of fixed grouping size k; in this work we restrict to k = 2. Under a
compacity assumption on the weights, these networks are 1-Lipschitz functions.

The specificity of the improved Wasserstein-GAN problem we tackle lies in parametrizing
the multivariate generator as a 1-Lipschitz mapping; this was already addressed for the
univariate discriminator in (Anil et al., 2019; Biau et al., 2021). This requires extending to
multivariate GroupSort neural networks the theoretical results in (Tanielian and Biau, 2021),
focusing on the approximation power of univariate GroupSort neural networks. Notably,
we demonstrate that for an arbitrary output dimension, GroupSort neural
networks can approximate with given precision any bounded subclass of 1-
Lipschitz functions.

GAN estimator

On the basis of this approximation result, we define the generators Gn and discriminators
Dn as GroupSort neural networks with well-chosen n-dependent sizes. To ensure statistical
convergence, the sequence of feasible generators {Gn}n∈N must fill G sufficiently fast, while
the sequence of regularization weights {λn}n∈N must tend to infinity in order to impose the
push-forward condition at the limit. We demonstrate under these assumptions the
almost-surely uniform convergence of {Gn}n∈N to T0. The proof rests on relative-
compactness properties of Lipschitz functions along with the regularity of T0 through results
from (Hütter and Rigollet, 2021). Then, we illustrate the performances of our approximation
on synthetic datasets.

Part II, Chapter 4: Diffeomorphic registration using Sinkhorn divergences

Optimal transport theory is not the only way to match probability distributions; although
it has rarely been applied to machine-learning tasks, diffeomorphic registration enjoys well-
established theory and algorithms. This fluid-mechanics-inspired framework searches an
optimal velocity fields of the ambient space transferring one distribution to the other. This
chapter, based on De Lara et al. (2023), expends the mass-transportation toolbox by studying
theoretically and experimentally diffeomorphic registration driven by Sinkhorn divergences,
entropy-regularized optimal-transport metrics.
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Diffeomorphic mass transportation

Under regularity assumptions, a velocity field vt(x) ∈ Rd of variables t ∈ [0, 1] and x ∈ Rd
generates a family of diffeomorphisms (ϕvt )t∈[0,1] through the flow equation:

ϕvt (x) := x+

∫ t

0
vs (ϕ

v
s(x)) ds.

Diffeomorphic mass transportation focuses on velocity fields v such that ϕv1 matches an input
probability distribution α to a target β. Formally, for Λ a positive loss function between
measures, this is amounts to solve

min
v∈L2

V

Jλ(v) with Jλ(v) := Λ(ϕv1♯α, β) + λ∥v∥2L2
V
,

where L2
V is a Hilbert space of vector fields v with finite kinetic energy ∥v∥2L2

V
, and the

regularization quantified by λ > 0 ensures that the problem is well-posed.
As explained by Feydy et al. (2017), the nonconvexity of this optimization program

renders crucial the choice of the loss function to avoid poor local minima, whereas the
gold-standard squares of maximum mean discrepancies produce many. This chapter remedies
to this issue by proposing a grounded alternative.

Entropic optimal transport

For ε > 0, the entropy-regularized transportation cost with respect to the ground cost
c : Rd × Rd → R+ between probability measures α and β on X ⊆ Rd is defined as

Tc,ε(α, β) := min
π∈Π(α,β)

∫
X×X

c(x, y)dπ(x, y) + εKL(π|α⊗ β),

where KL(µ|ν) denotes the Kullback-Leibler divergence between probability measures µ and
ν given by

∫
log
(dµ
dν (z)

)
dµ(z) if µ ≪ ν, and +∞ otherwise. In (Feydy et al., 2017), the

authors leverage this cost for the loss function Λ, as it benefits from fast numerical schemes
alleviating the computational burden of nonregularized optimal transport (Cuturi, 2013), and
engenders less local minima than maximum mean discrepancies. However, this choice suffers
from the so-called entropic bias, that is Tc,ε(α, α) ̸= 0 in general, making it an unreliable loss
function. This why we propose to use Sinkhorn divergences, unbiased entropic transportation
costs, defined as,

Sc,ε(α, β) := Tc,ε(α, β)−
1

2
Tc,ε(α, α)−

1

2
Tc,ε(β, β).

Under regularity assumptions on c, α and β, this divergence satisfies several desirable
properties for a loss function: it is nonnegative, convex in both input measures, and metrizes
the convergence in law (Feydy et al., 2019).



11

Statistical convergence

As always, we do not have access to the true measures α and β in practice but to empirical
counterparts αn and βn, which raises the question of the convergence of empirical minimizers
{vn}n∈N towards a minimizer of Jλ as the sample size n tends to infinity. If Λ is the square
of a maximum mean discrepancy, then according to Glaunes et al. (2004) there exists a
minimizer of Jλ denoted by v∗ such that up to the extraction of a subsequence

∥vn − v∗∥L2
V

a.s.−−−→
n→∞

0.

We demonstrate stronger statistical guarantees when Λ is a Sinkhorn divergence
by specifying the convergence rate. Under regularity assumptions on the space L2

V , the
cost c, and the measures α and β, there exists a constant A > 0 such that

E [|Jλ(vn)− Jλ(v∗)|] ≤
A√
n
.

The proof leverages the regularity of the dual formulation of entropic optimal transport,
along with empirical-process arguments.

Numerical experiments

We conclude this chapter by benchmarking the use of Sinkhorn divergences
for diffeomorphic matching against maximum mean discrepancies and biased
transportation costs across different parameters and solving procedures. This
shows the advantages of this choice compared to previous options.

As mentioned, most of these chapters are based on research papers I have written over
the last three years. Although I have homogenized them for this manuscript, they preserve
their original structures and are therefore self-contained.
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Introduction (en français)

Quatre-vingts ans après la première modélisation mathématique d’un réseau de neurones
par McCulloch and Pitts (1943), l’apprentissage automatique, le domaine de recherche qui
développe et étudie des méthodes pour apprendre à faire de nouvelles prédictions à partir de
données antérieures, a permis aux systèmes d’intelligence artificielle de résoudre des problèmes
toujours plus complexes, allant de la recherche de corrélations dans des données tabulaires
de grande dimension jusqu’au traitement du langage et à la reconnaissance d’images. Ces
avancées ont permis la prolifération d’algorithmes basés sur l’apprentissage automatique dans
d’innombrables facettes de la vie ordinaire et professionnelle, telles que la publicité ciblée
sur les réseaux sociaux, la recommandation de musique sur les applications de streaming, la
détection du cancer en médecine, et la prédiction des cours boursiers en finance.

Toutefois, le recours massif à ces règles de décision automatiques a soulevé de graves
préoccupations éthiques en raison de leur manque croissant d’interprétabilité et de leur
préjudice potentiel pour les minorités. La quête effrénée de polyvalence et de précision
dans l’apprentissage supervisé, allant de simples modèles de régression linéaire jusqu’aux
réseaux de neurones profonds, a conduit à l’émergence de modèles “boîte noire” prenant
des décisions que ni les utilisateurs finaux ni les concepteurs ne peuvent comprendre. Non
seulement cela viole le droit légitime des individus à l’explication, mais cela empêche de
comprendre si les prédictions sont justes et adéquates. Dans la perspective de l’implication
de l’intelligence artificielle dans des décisions cruciales telles que pour les voitures autonomes
et les processus de recrutement, il est devenu indispensable de garantir la transparence des
règles algorithmiques.

C’est d’autant plus nécessaire que l’apprentissage automatique a démontré à travers de
nombreux incidents au cours des dernières années qu’on ne pouvait pas lui faire confiance
sur la base de sa seule précision. La reconnaissance des panneaux de signalisation qui peut
être trompée par des changements imperceptibles6, le système de reconnaissance faciale
d’IBM qui s’est révélé raciste7, l’algorithme de recrutement d’Amazon qui a discriminé
les femmes8, le chatbot de Microsoft qui est devenu nazi en vingt-quatre heures9, ne sont
que quelques exemples frappants illustrant le risque de laisser l’intelligence artificielle se
répandre à tous les niveaux de la société sans remettre en question les hypothèses de base
de l’apprentissage automatique lui-même. L’apprentissage automatique n’est pas objectif
; il se contente de trouver des corrélations entre un phénomène d’intérêt (par exemple,

6https://spectrum.ieee.org/slight-street-sign-modifications-can-fool-machine-learning-algorithms
7https://www.bbc.com/news/technology-52978191
8https://www.bbc.com/news/technology-45809919
9https://www.theverge.com/2016/3/24/11297050/tay-microsoft-chatbot-racist
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être embauché) et certaines covariables (comme les caractéristiques socio-économiques ou
l’expérience professionnelle) contenues dans un jeu de données inévitablement façonné par
des inégalités structurelles et des préjugés humains. Par conséquent, il ne peut que reproduire
et banaliser les biais reflétés dans les données, par exemple le fait que les personnes racisées
sont plus susceptibles d’être des criminels. En outre, l’apprentissage de corrélations précises
ne signifie pas l’apprentissage d’associations significatives. Des corrélations parasites ou non
pertinentes abondent dans les données, créant des irrégularités dans les prédictions, comme
l’illustre le célèbre classificateur “chien contre loup” biaisé par l’arrière-plan enneigé (Ribeiro
et al., 2016). Il est important de noter que tous ces biais algorithmiques ne nécessitent aucune
malveillance préméditée de la part des concepteurs : ils sont la conséquence naturelle du
concept même d’apprentissage à partir de données antérieures par le dogme de la précision.

Ces problèmes majeurs ont conduit à l’émergence du domaine de l’intelligence artifi-
cielle digne de confiance : une initiative de recherche croisée entre les sciences sociales, les
mathématiques et l’informatique, consacrée au développement de systèmes d’intelligence
artificielle légitimes, robustes, explicables et équitables. En moins de dix ans, c’est devenue
l’un des sujets de recherche les plus en vogue de l’intelligence artificielle, avec un nombre
de publications scientifiques en croissance exponentielle chaque année. Mais le besoin de
règles de décision automatiques de confiance n’est pas seulement justifié d’un point de vue
moral, il est également fondé d’un point de vue juridique. La loi européenne sur l’intelligence
artificielle10 réglementera bientôt tous les systèmes déployés dans l’Union Européenne en
les classant en fonction de leur risque, de leur préjudice éventuel pour la société. Si une
application ne satisfait pas aux exigences légales en matière d’équité et de transparence,
elle sera tout simplement interdite. Cela signifie que les nombreuses entreprises utilisant de
l’apprentissage automatique vont rapidement avoir besoin d’un large éventail de nouvelles
techniques d’apprentissage et de procédures de test pour garantir la fiabilité de leurs produits.

Cette thèse s’inscrit dans cette dynamique ; la recherche qu’elle porte a pour ambition de
contribuer au développement d’algorithmes d’apprentissage automatique justes et explica-
bles. La spécificité de notre approche est double. Premièrement, nous étudions l’équité et
l’explicabilité à travers le prisme du raisonnement contrefactuel : une modalité qui traite des
requêtes telles que “Si elle avait été un homme, lui aurait-on accordé le prêt?” qui est devenue
courante dans la récente recherche pour générer des explications post-hoc des règles de
décision automatiques et pour mettre en évidence leurs biais. Deuxièmement, nous mettons
en œuvre ce raisonnement à l’aide de méthodes de transport telles que le transport optimal
et l’appariemment difféomorphique, qui permettent de faire correspondre une distribution de
probabilités avec une autre (par exemple, les femmes aux hommes). De plus, dans le cadre
d’une approche mathématiques, nous nous efforçons de fournir des garanties théoriques tout
au long du manuscrit, notamment des résultats de convergence statistique.

Résumé de la thèse

La structure générale du manuscrit reflète les deux composantes de notre recherche : une pre-
mière partie traite du raisonnement contrefactuel dans l’équité et l’explicabilité,

10https://artificialintelligenceact.eu/the-act/

https://artificialintelligenceact.eu/the-act/
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fournissant une théorie générale pour la mise en œuvre du raisonnement contrefactuel par
transport de masse ; une deuxième partie se concentre sur l’inférence statistique
des modèles de transport, fournissant des outils pour appliquer les idées de la première
partie. Ce résumé vise à donner en moins de dix pages une idée générale de nos contributions
par rapport à l’état de l’art.

Partie I, Chaptitre 1: Contrefactuels, explicabilité, équité

Pour commencer, nous présentons le raisonnement contrefactuel et ses applications à travers
un aperçu de la littérature scientifique associée. Ce chapitre est motivé par l’observation
suivante : bien que la plupart des chercheur·euse·s et des praticien·ne·s des domaines
liés à l’apprentissage automatique ont l’habitude d’entendre des expressions telles que
explications contrefactuelles, résultats contrefactuels, ou équité contrefactuelle, iels manquent
généralement d’une compréhension globale de ce qui relie et distingue ces notions. En unifiant
les méthodologies contrefactuelles, nous apportons un éclairage nouveau sur le raisonnement
contrefactuel dans l’apprentissage automatique, au-delà de la simple revue.

Qu’est-ce qu’un contrefactuel?

En bref, un contrefactuel est un énoncé de la forme “Si A s’était produit, alors B se serait
produit”, par exemple “Si Alice avait été un homme, il aurait obtenu le poste”. La vérification
de tels énoncés est évidemment difficile, car nous ne pouvons pas observer une réalité
alternative où Alice est un homme. Le raisonnement contrefactuel fait référence à toutes
les théories et techniques qui traitent du problème de la conception de telles alternatives,
permettant ainsi l’évaluation d’énoncés contrefactuels. Plusieurs cadres coexistent, exploitant
différents outils pour calculer ces mondes alternatifs et suggérant différents choix de ce qui
doit rester égal entre eux. Ils découlent tous du principe fondateur des mondes possibles de
Lewis (1973b), bien connu de la communauté des logiciens, qui utilise une notion générale
de proximité entre mondes pour définir les mondes alternatifs possibles. Tout au long du
chapitre, nous nous appuyons sur cette base comme grille de lecture commune afin de fournir
une compréhension unifiée des théories contrefactuelles.

Modélisation causale

Nous présentons ensuite deux grandes théories de la causalité qui permettent un raisonnement
contrefactuel, s’écrivant toutes deux à l’aide de variables aléatoires.

Tout d’abord, nous détaillons le célèbre point de vue structurel de Pearl (2009). Il repose
sur la connaissance d’un modèle causal structurel, spécifiant toutes les équations de cause à
effet entre les variables aléatoires observées (Vi)i∈I par une collection d’affectations de la
forme,

Vi
P−a.s.
= Gi(VEndo(i), UExo(i)),

où les variables (Uj)j∈J représentent les causes primaires latentes du modèle, tandis que
Endo(i) ⊆ I et Exo(i) ⊆ J réfèrent respectivement aux parents dits endogènes et exogènes de
la ième variable. L’intérêt de ces équations vient de la possibilité d’effectuer des interventions
: forcer une variable endogène à prendre une valeur donnée tout en gardant le reste du
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mécanisme intact. Plus concrètement, supposons que V := (X,S) soit un vecteur aléatoire
de variables observées et que nous souhaitions comprendre l’effet en aval de S : Ω→ S sur
d’autres caractéristiques X : Ω→ Rd. Le remplacement de la formule générant S par S = s
et la propagation de ce changement à travers les autres équations définissent une variable
modifiée XS=s, représentant X si S avait été égal à s.

Deuxièmement, nous nous tournons vers le modèle couramment utilisé des résultats
potentiels de Rubin (1974), qui formalise mathématiquement l’inférence causale dans les
essais cliniques. En supposant que S représente un statut de traitement binaire (par exemple,
prise ou non d’un médicament) et Y : Ω→ Y un résultat d’intérêt (par exemple, guérison ou
non), ce cadre de pensée postule l’existence de deux résultats potentiels Y0 et Y1 tels que
Y = (1− S) · Y0 + S · Y1. Ces variables représentent respectivement ce que serait le résultat
si S était égal à 0 ou à 1. Le problème fondamental de l’inférence causale (Holland, 1986)
fait référence au fait que, dans la pratique, nous ne pouvons pas observer simultanément
Y0 et Y1, ce qui rend non identifiable l’effet causal de S sur Y . Notamment, en général,
corrélation ne veut pas dire causalité dans le sens où L(Ys) ̸= L(Y | S = s) pour s ∈ {0, 1}.
Néanmoins, l’inférence causale est encore possible grâce à un mélange d’hypothèses non
testables et d’outils statistiques. L’ajustement sur un ensemble de covariables mesurées
X contenant tous les facteurs de confusion possibles entre le traitement et les résultats
potentiels, formellement (Y0, Y1) ⊥⊥ S | X, permet d’identifier les résultats contrefactuels car
il implique que L(Ys | X = x) = L(Y | S = s,X = x).

Enfin, comme contribution originale, nous superposons ces deux modèles causaux
pour fournir une analyse mathématique des similitudes et des différences entre
les contrefactuels de résultats potentiels et les contrefactuels structurels en
démontrant que - contrairement à ce que la littérature courante suggère souvent
- Ys ̸= YS=s en général. Plus précisément, ces variables contrefactuels diffèrent si S code
une caractéristique non manipulable qui a un impact sur les covariables X, comme le sexe et
la race, mais coïncident si S est un traitement qui peut être alloué de manière expérimentale,
comme un médicament. Cela signifie de manière critique que les deux approches causales
génèrent des énoncés contrefactuels différents dans les problèmes d’équité classiques où S
code typiquement le sexe ou la race, d’où la nécessité de comprendre la distinction. L’idée
est que le cadre de Rubin considère des résultats contrefactuels avec des covariables X fixées,
alors que celui de Pearl modifie les covariables en XS=s. Nous illustrons les conséquences de
cette différence à l’aide d’un exemple concret d’équité.

Application à explicabilité et l’équité

Enfin, nous présentons des applications populaires du raisonnement contrefactuel dans
l’intelligence artificielle explicable et l’équité algorithmique, en soulignant son rôle critique
pour la construction de systèmes dignes de confiance.

Dans leur travail pionnier, Wachter et al. (2017) proposent d’utiliser les énoncés contre-
factuels comme une approche psychologiquement acceptée pour expliquer les règles de décision
boîte-noire. Concrètement, iels recherchent des changements minimaux plausibles d’une
entrée v tels que la sortie du modèle d’apprentissage automatique h diffère, généralement en
résolvant

min
v′∈V

c(v, v′) + λ
∣∣h(v)− h(v′)∣∣2,
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où c est une fonction de coût bien choisie, λ un paramètre suffisamment grand pour que
la décision change, et V l’ensemble des mondes plausibles. Cela génère des déclarations
contrefactuelles de la forme “Si l’entrée avait été v′ (au lieu de v), la sortie aurait été
différente”. Dans un souci de clarification et d’unification, nous montrons comment interfacer
ces méthodes d’explication avec les méthodes d’inférence contrefactuelle précédemment
détaillées. Ceci peut être réalisé en paramétrant les entrées artificielles v′ comme les mondes
alternatifs de v obtenus après une action, par exemple une intervention. Cette partie permet
notamment de souligner la distinction entre les alter égos contrefactuels (c’est-à-dire les
mondes alternatifs si un certain événement s’était produit) et les explications contrefactuelles
(c’est-à-dire des exemples antagonistes raffinés).

En ce qui concerne l’équité algorithmique, nous illustrons comment les contrefactuels
peuvent fournir des notions d’équité fortes et intuitives. Pour S un attribut protégé (par
exemple, la race ou le sexe) et X les autres caractéristiques d’entrée d’un prédicteur h,
l’équité consiste à rendre h(X,S) indépendant de S, généralement en imposant h(X,S) ⊥⊥ S.
Toutefois, comme le note Dwork et al. (2012), cette dite parité statistique est une contrainte
d’équité de groupe qui ne contrôle pas la discrimination au niveau individuel. C’est là que
l’inférence contrefactuelle entre en jeu : en permettant de calculer des entrées alternatives “si
l’attribut protégé avait été modifié” (par exemple, d’un homme à une femme), elle permet
d’exiger l’égalité de traitement entre un individu et ses alter égos contrefactuels. Cette idée
est au cœur de la définition de l’équité contrefactuelle, proposée par Kusner et al. (2017), qui
s’appuie sur le formalisme de Pearl pour exiger

L
(
h(XS=s′ , s

′) | X = x, S = s
)
= L

(
h(XS=s, s) | X = x, S = s

)
,

pour toute observation {X = x, S = s} et tout s′ ̸= s. Le principal inconvénient de
cette approche réside dans sa dépendance à l’égard d’un modèle causal structurel : bien
qu’attrayants en théorie, ces modèles sont inconnus en pratique et peuvent difficilement être
déduits des données, ce qui rend les méthodes fondées sur la causalité irréalisables dans la
plupart des tâches du monde réel. Cette limitation a motivé les travaux présentés dans le
chapitre suivant, où nous introduisons des modèles contrefactuels non causaux, basés sur
du transport, qui fournissent des notions réalisables d’équité individuelle, plus fortes que les
contraintes d’équité de groupe.

Partie I, Chapitre 2: Modèles contrefactuels basés sur du transport

Les applications en explicabilité et en équité examinées dans le chapitre précédent montrent
que les techniques les plus couramment utilisées pour le calcul des alter égos contrefactuels
(c’est-à-dire des mondes alternatifs) dans l’apprentissage automatique sont le principe du
monde alternatif le plus proche et la modélisation causale de Pearl. La première approche est
simple, mais néglige la corrélation entre les caractéristiques, ce qui conduit à des contrefactuels
non fiables, hors distribution, tels que “Si Bob avait été une femme, elle aurait mesuré 190
cm”. La seconde prend rigoureusement en compte toutes les dépendances entre les variables,
mais nécessite un modèle causal structurel inconnu ou trop difficile à déduire dans la pratique,
ce qui la rend infaisable, sauf pour des cas jouets. Ce chapitre, basé sur (De Lara et al.,
2021a), se concentre sur une troisième voie en interprétant le raisonnement contrefactuel
comme un problème de déplacement de masse d’une distribution de probabilité à une autre.
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Il fait suite aux travaux de Black et al. (2020) qui ont été les premiers à suggérer l’utilisation
du transport optimal (Villani, 2003, 2008) pour concevoir des contrefactuels réalisables et
réalistes.

Transport de masse et transport optimal

Tout d’abord, introduisons quelques connaissances de base sur le transport de masse et le
transport optimal. Nous appelons transport de masse le problème général de l’appariement de
deux distributions de probabilités P et Q sur X ⊆ Rd. Cela revient à sélectionner un couplage
dans l’ensemble Π(P,Q) de distributions de probabilités jointes ayant respectivement P et
Q comme première et deuxième marginales. Un couplage peut être considéré comme un
appariement aléatoire, faisant correspondre chaque instance de P à d’éventuelles alter égos
dans Q avec des pondérations de probabilité. On dit qu’il est déterministe si chaque instance
de P est associée à une unique instance de Q. Dans ce cas, le couplage se concentre sur
le graphe d’une (unique P -presque partout) application déterministe T : X → X poussant
P vers Q, c’est-à-dire Q(E) = P (T−1(E)) pour chaque ensemble borélien E ⊆ Ω. Cette
propriété, dénotée par T♯P = Q, signifie que si une variable aléatoire X suit la distribution
P , alors son image T (X) suit la distribution Q.

La théorie du transport optimal est devenue l’outil le plus populaire pour construire de
tels couplages lorsqu’il n’existe aucun choix canonique. Elle remonte à Monge (1781) qui a
défini les applications de transport optimales comme des fonctions transformant P en Q avec
un minimum d’effort selon une fonction de coût positive c : X ×X → R+. Formellement, ces
applications résolvent

min
T∈T (P,Q)

∫
X
c(x, T (x))dP (x),

où T (P,Q) est l’ensemble des applications mesurables poussant P vers Q. En général,
cependant, une telle correspondance déterministe entre les distributions de probabilité peut
ne pas exister, en particulier si P et Q ne sont pas absolument continues par rapport à la
mesure Lebesgue. Cette limitation motive ce que l’on appelle la relaxation Kantorovich de
la formulation de Monge du transport optimal (Kantorovich and Rubinshtein, 1958) :

min
π∈Π(P,Q)

∫
X 2

c(x, x′)dπ(x, x′).

Ce problème concerne des couplages aléatoires au lieu d’applications déterministes et admet
toujours des solutions appelées plans de transport optimaux.

Raisonnement contrefactuel par transport de masse

Le raisonnement contrefactuel répond à des questions de la forme : “Si S avait été égal à s′

au lieu de s, quelle aurait été la valeur de X ?” Le cadre structurel de Pearl répond à cette
question par le biais du calcul “do” : pour un monde de référence donné {X = x, S = s}, il
renvoie une distribution d’alter égos contrefactuels définie par L(XS=s′ | X = x, S = s).

De façon différente, Black et al. (2020) ont approximé une application de transport
optimale T⟨s′|s⟩ de µs := L(X | S = s) vers µs′ := L(X | S = s′) et ont généré l’alter égo
contrefactuel si S avait été égal à s′ d’une instance factuelle x du groupe s par T⟨s′|s⟩(x). Bien
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que cela n’ait pas été abordé dans leur article, cette idée peut être naturellement généralisée
aux plans de transport optimaux π⟨s′|s⟩ ∈ Π(µs, µs′) plutôt que des applications. Dans
l’ensemble, cette approche non causale basée sur l’observation présente trois intérêts cruciaux.
Premièrement, elle garantit que les contrefactuels générés sont dans la distribution des
données, et donc réalistes. Deuxièmement, elle bénéficie d’un répertoire croissant de schémas
numériques efficaces pour estimer de tels couplages à partir de données (Peyré and Cuturi,
2019), conduisant à des contrefactuels réalisables sur le plan numérique. Troisièmement,
contrairement à l’approche structurelle, elle ne requiert pas d’hypothèses sur le processus de
génération des données.

Comme première contribution, nous proposons d’unifier ces deux cadres sous un
formalisme commun de transport de masse fondé sur la remarque suivante : les énoncés
contrefactuels “si S avait été égal à s′ au lieu de s” utilisant la modélisation causale de Pearl
sont caractérisés par la distribution de probabilité jointe π∗⟨s′|s⟩ := L((X,XS=s′) | S = s),
faisant correspondre tout monde factuel de µs à ses contreparties contrefactuelles dans
µ⟨s′|s⟩ := L(XS=s′ | S = s). De ce point de vue, le raisonnement contrefactuel structurel est,
à l’instar du transport optimal, un problème de transport de masse. Cela signifie notamment
que Black et al. (2020) imitait implicitement les contrefactuels structurels. En poussant
leur idée, nous définissons les modèles contrefactuels basés sur le transport pour
X par rapport à S comme des collections de couplages Π := {π⟨s′|s⟩}s,s′∈S tels
que pour chaque s, s′ ∈ S, π⟨s′|s⟩ ∈ Π(µs, µs′). Cette construction générale englobe les
couplages définis par le transport optimal, mais aussi le transport optimal régularisé et des
techniques de transport de masse potentiellement nouvelles. L’intérêt essentiel du formalisme
unifié de transport de masse réside dans la possibilité de remplacer un couplage contrefactuel
structurel π∗⟨s′|s⟩ par un couplage basé sur le transport π⟨s′|s⟩ dans n’importe quel méthode
reposant sur des contrefactuels causaux afin de générer une alternative basée sur le transport
; ceci sera illustré plus tard avec l’équité contrefactuelle.

Quand le transport optimal rencontre la causalité

De plus, le formalisme de transport de masse que nous avons introduit nous permet
également de démontrer mathématiquement que le transport optimal récupère
les changements causaux dans certains contextes, ce qui explique pourquoi Black et al.
(2020) ont observé empiriquement que les contrefactuels structurels et les contrefactuels par
transport optimal étaient presque identiques. Ce résultat est valable sous deux hypothèses
typiques du modèle causal.

La première hypothèse exige que les contrefactuels structurels soient générés de manière
déterministe par le modèle causal. Cela correspond formellement à L(XS=s′ | X = x, S = s)
se réduisant à une distribution de Dirac, ce qui se produit en particulier lorsque les variables
exogènes sont des termes additifs des équations structurelles. Cela implique que le couplage
causal π∗⟨s′|s⟩ est déterministe : il peut être identifié à une application T ∗

⟨s′|s⟩ telle que
T ∗
⟨s′|s⟩♯

µs = µ⟨s′|s⟩.
La deuxième hypothèse exige que la variable modifiée S joue le même rôle qu’une variable

exogène dans le modèle causal structurel. C’est typiquement le cas dans les problèmes d’équité
: par exemple, la race est exogène par rapport aux caractéristiques socio-économiques. Cela
implique que les alter égos contrefactuelles sont observables dans le sens où µ⟨s′|s⟩ = µs′ , et
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donc que le modèle contrefactuel structurel Π∗ := {π∗⟨s′|s⟩}s,s′∈S est un modèle contrefactuel
basé sur du transport.

Sous ces deux hypothèses, le modèle causal structurel induit un modèle contrefactuel
déterministe basé sur du transport. On peut alors naturellement se demander s’il peut être
récupéré en résolvant un problème de transport optimal déterministe. C’est précisément ce
que notre théorème principal assure pour le coût quadratique c(x, x′) := ∥x− x′∥2 : si L(X)
est absolument continu par rapport à la mesure de Lebesgue et a un moment d’ordre 2 fini,
alors

π∗⟨s′|s⟩ = argmin
π∈Π(µs,µs′ )

∫ ∥∥x− x′∥∥2dπ(x, x′)
si et seulement si T ∗

⟨s′|s⟩ est le gradient d’une fonction convexe. Cette condition (qui dit
probablement quelque chose aux personnes familières avec la théorie du transport optimal)
est notamment satisfaite lorsque les équations causales du modèle pour X sont linéaires
additives, c’est-à-dire de la forme

X
P−a.s.
= MX + wS + UX ,

où M ∈ Rd×d et w ∈ R sont des paramètres déterministes. L’intérêt de ce théorème est
double : il explique théoriquement les observations empiriques du Black et al. (2020) ; il
justifie le fait que le transport optimal fonctionne comme une alternative décente - non
causale - au raisonnement contrefactuel structurel dans les scénarios d’équité typiques.

Application à l’équité

Cette analyse motive l’utilisation de modèles contrefactuels basés sur le transport à la place
des modèles contrefactuels structurels pour dériver de nouvelles notions d’équité, à la fois
fines et réalisables. Nous notons en particulier que le critère d’équité contrefactuelle introduit
dans le chapitre précédent peut être écrit comme suit : pour tout s, s′ ∈ S et π∗⟨s′|s⟩-presque
tous les (x, x′),

h(x′, s′) = h(x, s).

Le remplacement des couplages causaux par des couplages basés sur le transport
à partir d’un modèle Π conduit à une nouvelle définition de l’équité que nous
appelons l’équité contrefactuelle Π. Bien qu’elle remplace la causalité par des corrélations
acceptables, elle préserve la propriété de garantir l’équité au niveau individuel, est plus forte
que la parité statistique et ne nécessite pas d’hypothèses sur le processus de génération des
données.

Ensuite, en adaptant les travaux de Russell et al. (2017), nous nous attaquons au
problème de l’apprentissage d’un prédicteur Π-contrefactuellement juste. Cela
revient à résoudre

min
θ∈Θ

E[ℓ(hθ(X,S), Y )] + λ
∑
s∈S

P(S = s)
∑
s′ ̸=s

E
[∣∣hθ(Xs′ , s

′)− hθ(Xs, s)
∣∣2] ,

où Y est la variable cible, ℓ une fonction de perte assurant la fidélité aux données, {hθ}θ∈Θ
une classe paramétrique de prédicteurs, et L((Xs, Xs′)) = π⟨s′|s⟩ pour chaque s, s′ ∈ S.
Théoriquement, nous prouvons dans le cas du transport optimal quadratique que la solution
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empirique converge presque sûrement vers la solution réelle lorsque n, la taille de l’échantillon,
tend vers l’infini ; expérimentalement, nous démontrons les performances de notre esti-
mateur sur des jeux de données réelles. En résumé, notre contribution étend l’arsenal de
l’apprentissage équitable à des critères plus forts que la simple condition d’équité de groupe
en relâchant la causalité par des méthodes de transport.

Partie II, Chapitre 3: Estimation par GAN de functions de transport
optimal Lipschitz

Dans (Black et al., 2020), les auteurs ont utilisé des contrefactuels par transport optimal
pour évaluer l’équité des règles de décision boîte noire, tandis que nous les avons utilisés pour
apprendre un prédicteur équitable dans le chapitre précédent. Quelle que soit la situation, la
mise en œuvre d’un modèle contrefactuel basé sur le transport nécessite la construction de
plans ou d’applications de transport à partir de données. Plus les méthodes d’estimation
disponibles seront variées, plus nous pourrons traiter de problèmes. Ce chapitre, basé sur
(González-Sanz et al., 2022), contribue à la littérature grandissante sur l’approximation des
applications de transport optimales. Il combine l’approche GAN (generative adversarial
networks) de (Black et al., 2020) avec des réseaux de neurones Lipschitz (Anil et al., 2019;
Tanielian and Biau, 2021) pour concevoir un nouvel estimateur neuronal avec des garanties
statistiques prouvables.

Plus précisément, nous considérons P et Q, deux mesures absolument continues par
rapport à Lebesgue telles que l’application de transport optimale T0 de P à Q pour le
coût quadratique est lisse, en particulier Lipschitz. Ensuite, sur la base des distributions
empiriques Pn et Qn tirées respectivement de P et Q, nous approximons T0 par la solution
du problème de GAN

inf
G∈Gn

{∫
∥I −G∥2dPn + λn sup

D∈Dn

∫
D (d(G♯Pn)− dQn)

}
,

où Dn est une classe de discriminants 1-Lipschitz fournissant un proxy pour la formulation
duale de la distance de Wasserstein-1 (à la façon Wasserstein-GAN de Arjovsky et al. (2017)),
et Gn est une classe de générateurs Lipschitz paramétrant l’espace des applications réalisables.
Le paramètre positif λn régit le compromis entre la minimisation du coût de transport
quadratique, favorisant l’objectif du problème de Monge, et la minimisation de la distance
entre les distributions générée et cible, promouvant la contrainte de poussée.

Notre objectif est double : premièrement, nous visons à concevoir une application de
transport optimale expressive bénéficiant d’une architecture neuronale pour généraliser
efficacement à de nouvelles observations hors échantillon ; deuxièmement, nous visons à
fournir des garanties statistiques, ce qui a été négligé par la plupart des articles connexes
(Leygonie et al., 2019; Black et al., 2020; Makkuva et al., 2020; Korotin et al., 2021; Huang
et al., 2021).

Réseaux de neurones GroupSort multivariées

Le problème décrit ci-dessus implique des réseaux neuronaux Lipschitz, que ce soit pour
les discriminateurs ou les générateurs. Dans ce chapitre, nous tirons parti des fonctions
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d’activation GroupSort récemment introduites pour imposer la contrainte Lipschitz (Anil
et al., 2019; Tanielian and Biau, 2021), qui se sont avérées produire des estimations plus
fines des fonctions 1-Lispchitz que les méthodes antérieures telles que dans (Arjovsky et al.,
2017; Gulrajani et al., 2017). Par définition, la fonction d’activation GroupSort de taille de
regroupement k ≥ 2 divise l’entrée de pré-activation en groupes de taille k, puis trie chaque
groupe par ordre décroissant. Cette opération est 1-Lipschitz, préserve la norme du gradient
et est homogène (Anil et al., 2019). Un réseau de neurones GroupSort est un réseau neuronal
feed-forward dans lequel toutes les fonctions d’activation (à l’exception de la première couche)
sont une fonction d’activation GroupSort de taille de groupement fixe k ; dans ce travail,
nous nous limitons à k = 2. Sous l’hypothèse de compacité des poids, ces réseaux sont des
fonctions 1-Lipschitz.

La spécificité du problème de Wasserstein-GAN amélioré auquel nous nous attaquons
réside dans la paramétrisation du générateur multivarié en tant qu’application 1-Lipschitz ;
cela a déjà été abordé pour le discriminateur univarié dans (Anil et al., 2019; Biau et al.,
2021). Il faut pour cela étendre aux réseaux neuronaux GroupSort multivariés les résultats
théoriques de (Tanielian and Biau, 2021), qui traitent uniquement du pouvoir d’approximation
des réseaux neuronaux GroupSort univariés.

Estimateur par GAN

Sur la base de ce résultat d’approximation, nous définissons les générateurs Gn et les
discriminateurs Dn comme des réseaux neuronaux GroupSort avec des tailles bien choisies
dépendant de n. Pour garantir la convergence statistique, la séquence des générateurs
réalisables {Gn}n∈N doit remplir G suffisamment rapidement, tandis que la séquence des poids
de régularisation {λn}n∈N doit tendre vers l’infini afin d’imposer la condition de poussée à la
limite. Nous démontrons sous ces hypothèses la convergence uniforme presque
sûrement de {Gn}nN vers T0. La preuve repose sur les propriétés de compacité relative
des fonctions de Lipschitz ainsi que sur la régularité de T0 grâce à des résultats de (Hütter
and Rigollet, 2021). Nous illustrons ensuite les performances de notre approximation sur des
jeux de données synthétiques.

Partie II, Chapitre 4: Appariement diffeomorphique par divergences de
Sinkhorn

La théorie du transport optimal n’est pas la seule façon de faire correspondre des distributions
de probabilité ; bien qu’elle ait rarement été appliquée à des tâches d’apprentissage automa-
tique, l’appariement difféomorphique bénéficie d’une théorie et d’algorithmes bien établis.
Ce cadre inspiré de la mécanique des fluides recherche un champ de vitesse optimal dans
l’espace ambiant pour transférer une distribution à l’autre. Ce chapitre, basé sur De Lara
et al. (2023), élargit la boîte à outils du transport de masse en étudiant théoriquement et
expérimentalement l’appariement difféomorphique piloté par les divergences de Sinkhorn,
des métriques de transport optimal entropique.
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Transport de masse difféomorphique

Sous des hypothèses de régularité, un champ de vitesse vt(x) ∈ Rd des variables t ∈ [0, 1] et
x ∈ Rd génère une famille de difféomorphismes (ϕvt )t∈[0,1] par l’équation d’écoulement :

ϕvt (x) := x+

∫ t

0
vs (ϕ

v
s(x)) ds.

Le transport de masse difféomorphique cherche des champs de vitesse v tels que ϕv1 fait
correspondre une distribution d’entrée α à une distribution cible β. Formellement, pour Λ
une fonction de perte positive entre les mesures, cela revient à résoudre

min
v∈L2

V

Jλ(v) avec Jλ(v) := λ(ϕv1♯α, β) + λ∥v∥2L2
V
,

où L2
V est un espace de Hilbert de champs de vecteurs v avec une énergie cinétique finie

∥v∥2L2
V
, et la régularisation quantifiée par λ > 0 garantit que le problème est bien posé.

Comme l’explique Feydy et al. (2017), la non-convexité de ce programme d’optimisation
rend crucial le choix de la fonction de perte afin d’éviter les minima locaux peu profonds,
alors que les carrés de maximum mean discrepancies, qui sont les métriques standard, en
produisent beaucoup. Ce chapitre remédie à ce problème en proposant une alternative fondée.

Transport optimal entropique

Pour ε > 0, le coût global de transport entropique pour la fonction de coût local c : Rd×Rd →
R+ entre les mesures de probabilité α et β sur X ⊆ Rd est défini comme suit

Tc,ε(α, β) := min
π∈Π(α,β)

∫
X×X

c(x, y)dπ(x, y) + εKL(π|α⊗ β),

où KL(µ|ν) désigne la divergence Kullback-Leibler entre les mesures de probabilité µ et
ν donnée par

∫
log
(dµ
dν (z)

)
dµ(z) si µ ≪ ν, et +∞ sinon. Dans (Feydy et al., 2017), les

auteurs utilisent ce coût pour la fonction de perte Λ, car elle bénéficie de schémas numériques
rapides qui allègent la charge de calcul du transport optimal non régularisé (Cuturi, 2013),
et engendre moins de minima locaux que les maximum mean discrepancies. Cependant, ce
choix souffre de ce que l’on appelle le biais entropique, c’est-à-dire Tc,ε(α, α) ̸= 0 en général,
ce qui en fait une fonction de perte peu fiable. C’est pourquoi nous proposons d’utiliser les
divergences de Sinkhorn, unbiased entropic transportation costs, définies comme suit,

Sc,ε(α, β) := Tc,ε(α, β)−
1

2
Tc,ε(α, α)−

1

2
Tc,ε(β, β).

Sous des hypothèses de régularité sur c, α et β, cette divergence satisfait plusieurs propriétés
souhaitables pour une fonction de perte : elle est non négative, convexe en ses deux mesures
d’entrée, et métrise la convergence en loi (Feydy et al., 2019).
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Convergence statistique

Comme à chaque fois, nous n’avons pas accès aux véritables mesures α et β dans la pratique,
mais à des versions empiriques αn et βn, ce qui soulève la question de la convergence des
minimiseurs empiriques {vn}nN vers un minimiseur de Jλ lorsque la taille de l’échantillon n
tend vers l’infini. Si Λ est le carré d’une maximum mean discrepancy, alors selon Glaunes
et al. (2004) il existe un minimiseur de Jλ noté v∗ tel que à l’extraction près d’une sous-suite

∥vn − v∗∥L2
V

a.s.−−−→
n→∞

0.

Nous démontrons des garanties statistiques plus fortes lorsque Λ est une diver-
gence de Sinkhorn en spécifiant en plus le taux de convergence. Sous des hypothèses
de régularité sur l’espace L2

V , le coût c et les mesures α et β, il existe une constante A > 0
telle que

E [|Jλ(vn)− Jλ(v∗)|] ≤
A√
n
.

La preuve s’appuie sur la régularité de la formulation duale du transport optimal entropique,
ainsi que sur des processus empiriques.

Expériences numériques

Nous concluons ce chapitre en comparant l’utilisation des divergences de Sinkhorn
pour l’appariement difféomorphique aux maximum mean discrepancies et aux
coûts de transport biaisés en fonction de différents paramètres et procédures
de résolution. Cela montre les avantages de ce choix par rapport aux options utilisées
antérieurement.

Comme indiqué, la plupart de ces chapitres sont basés sur des documents de recherche
que j’ai rédigés au cours des trois dernières années. Bien que je les aie homogénéisés pour ce
manuscrit, ils conservent leurs structures originales et sont donc autonomes.
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Chapter 1

Counterfactuals, explainability,
fairness

Counterfactual thinking is thinking “contrary to the facts”, to envision alternative realities.
This modality fuelled many frameworks in fair and explainable artificial intelligence, as it
addresses queries such as “Would have she gotten the position had she been a man?”. However,
the diversity of scientific methods and terminologies tagged “counterfactual” rendered nebulous
the scope of this reasoning. For the sake of clarification, we firstly go back to the fundamental
of counterfactuals: the possible-world account of Lewis. We explain how Lewis’ perspective
amounts to postulating a mechanism to generate alternative worlds through interventions on
factual worlds; we refer to such a mechanism as a counterfactual model. Then, we review
state-of-the-art counterfactual methodologies through this reading grid. In particular, we
study the distinct implications of evaluating counterfactual statements through Rubin’s
causal model or Pearl’s causal model. Moreover, we motivate the use of counterfactuals in
fairness and explainability, and show how counterfactual explanations and counterfactual
fairness (two acclaimed counterfactual frameworks) relate to counterfactual models. This
first chapter notably serves to fix ideas before proposing new counterfactual models in the
second chapter.

1.1 Introduction

As mentioned at the beginning of the manuscript, the goal of this thesis is to leverage a form
of counterfactual reasoning based on measure transportation theories to implement strong
notions of machine-learning fairness, and explain algorithmic decision rules. But what does
counterfactual mean? According to the Cambridge dictionary,1 the word counterfactual can
be either an adjective describing something “thinking about what did not happen but could
have happened, or relating to this kind of thinking”, or a noun defined as “something such as
piece of writing or an argument that considers what would have been the result if events
had happened in a different way to how they actually happened”. From a propositional logic
perspective, a counterfactual is a statement or assertion of the form “had event A occurred
then event B would have occurred”, such as “had it rained today, I would have stayed at

1https://dictionary.cambridge.org/fr/dictionnaire/anglais/counterfactual
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home” (Lewis, 1973b). We commonly use counterfactuals to explain why event an B did
not occurred. Critically, these statements relate to alternative realities, and are hence not
verifiable by mere observations.

The word counterfactual has also been extensively employed in scientific research, such
as in mathematics and computer science, to describe a variety of objects, techniques or
frameworks meant to understand causation. Let us mention three of the top-cited scien-
tific papers having the word “counterfactual” in their title: “Inference on Counterfactual
Distributions” (Chernozhukov et al., 2013), “Counterfactual Fairness”(Kusner et al., 2017),
“Counterfactual Visual Explanations” (Goyal et al., 2019). The first one comes from the
field of econometrics and addresses the statistical estimation of counterfactual effects in
regression models, which describe how an outcome variable of interest is affected by a change
of some covariates or a change in the relationship between the outcome and the covariates.
The second one introduces a causal notion of machine-learning fairness, requiring equal
treatment between any individual (e.g., a woman) and their counterfactual counterparts “had
they belonged to a different group” (e.g., men) generated through Pearl’s causal modeling
(Pearl, 2009). The third one focuses on explaining neural-network-based image classifiers
by uncovering counterfactual visual explanations: the pixels of an image which made the
classifier predicting a certain class instead of another. Observe that, while all these coun-
terfactual notions relate in some sense to alternative states of things—making relevant the
use of the adjective counterfactual—they differ in the type of objects they refer to, the
mathematical frameworks they are based-on, and the tasks they are meant to be applied
for, leading to misunderstanding across research fields. Should you mention that you work
on “counterfactuals” at a machine-learning conference, people would understand something
different depending on their backgrounds.

The goal of this chapter is specifically to clarify the similarities and differences between
the various state-of-the-art counterfactual frameworks that blossomed in academic research
over the past years, in order to make precise the role of the counterfactual models at the
heart of this thesis. We firstly present the main frameworks for counterfactual inference in
light of Lewis’s pioneering work (Lewis, 1973b), and then review the usage of counterfactual
techniques in explainability and fairness : the two facets of trustworthy artificial intelligence.
In passing, we introduce several key notations and definitions that will be used throughout
the manuscript.

1.2 The possible-world account

Counterfactual inference addresses the complex problem of evaluating the truth of coun-
terfactual statements. Imagine you have a headache but have no medicine left. Hence,
you complain: “Had I taken medicine I would have felt better”. While such a statement
might seem intuitively true, there is no evidence that the headache would have stopped for
sure, since we cannot observe the alternative reality where you took the pill. Lewis (1973b)
proposed a general formal framework to verify counterfactuals, which relies on the notion of
world.
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1.2.1 Worlds and counterfactuals

A world is a conjunction of statements characterizing the state of things. For the sake of
illustration, imagine a bank deciding to grant a loan or not to individuals on the basis of their
profiles (containing typically socioeconomics indicators). In this setting, a world is identified
to the conjunction of features defining the profile; each world describes a possible application
scenario. Throughout, we represent a world by a vector v := (v1, . . . , vp) ∈ Rp where each
i ∈ {1, . . . , p} represents a feature variable (e.g., yearly salary in dollars) and vi indicates
its value (e.g., 5 · 104). For simplicity, we assume that the bank follows a deterministic rule
h : Rp → {0, 1} delivering 1 if the loan is granted to the application and 0 otherwise. Now,
consider a specific world v describing someone who earns 50K per year and whose application
got rejected by the bank: this will be our world of reference. The bank could provide the
following counterfactual to explain its decision:

Had your income been 100K per year, you would have been granted the loan. (1.1)

This statement relates the antecedent A “Earning 100K per year” to the consequent B “The
loan is granted”. It is formally written as v ⊨ A □→ B. Note that counterfactuals are local : a
same antecedent can entail different outcomes depending on the world of reference. As such
it is crucial to keep track of v in the notation. Counterfactuals are also partial, because they
do not specify the minimally sufficient conditions for the outcome to be true. For example, it
could be that earning 80K per year is enough to get the loan in v. To verify a counterfactual,
Lewis proposes to use a general notion of similarity between worlds, the only requirement
being that a world be closest to itself. Then, v ⊨ A □→ B is true just in case B is true for
every possible worlds v′ satisfying A which are “similar” to v. This implies the following
abstract procedure to evaluate a given counterfactual v ⊨ A □→ B: (1) using the notion of
similarity and the antecedent A, compute the alternative worlds v′ satisfying A similar to v;
(2) check whether B holds in every v′. In what follows we detail each of these two steps.

1.2.2 Antecedents and interventions

The key step of counterfactual inference is the computation of alternative worlds; the
evaluation of the outcome generally amounts to a simple check. To properly explain this
process, we need to precise how to formally write the possible antecedents of counterfactual
statements. We emphasize that the formalism introduced in this subsection does not come
from the mainstream literature; it is an original proposition meant to provide a unified
framework for the various counterfactual approaches presented in this chapter.

For simplicity, we assume that an antecedent A can always be framed in terms of explicit
feature modification. Let I ⊆ {1, . . . , p} enumerate the feature variables that can be modified.
In particular, I is not necessarily the entire {1, . . . , p} because depending on the task one
could decide a number of features to be immutable, as we detail later in the manuscript.
Now, define the set

A :=
{
(I, ṽI) ∈ 2I × VI

}
where I ⊆ I denotes a subset of actionable features while Vi describes the possible values of
the ith feature. Any couple a = (I, ṽI) ∈ A represents the action of setting each feature i ∈ I
to the chosen value ṽi and is referred as an intervention. An intervention mathematically
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encodes an antecedent. For example, if i = 1 is the salary, then the antecedent A “Earning
100K per year” corresponds to the intervention a = ({1}, 105).

Computing the counterparts of the world of reference v had A occurred requires to
translate the effect of intervention a as a mathematical operation on v. The design of
this operation is directly related to the notion of similarity. For example, in the canonical
ceteris paribus approach, being similar signifies keeping all features identical except the ones
concerned by A. Concretely, this means that verifying (1.1) following this principle amounts
to checking whether the loan is granted for the application obtained by changing the yearly
income in the original application to 100K while keeping all other variables equal. Said
differently, it amounts to checking if h(v′) = 1 for the v′ defined by v′1 = 105 and v′i = vi for
every i ̸= 1.

Choosing a different notion of similarity would lead to different alternative worlds v′,
hence to possibly different outcomes and counterfactuals. In particular, even though the
ceteris-paribus viewpoint seems legitimate, it is often considered unfaithful as it neglects
correlations between features: a different income could indicate a different occupation or
could induce a different home location, making the ceteris-paribus counterparts of v possibly
outside the set of plausible worlds. Therefore, it can be relevant to change the notion
of similarity into one capturing the dependencies between A and the other features. The
approach consisting in including more changes than those explicitly mentioned is sometimes
referred as mutatis mutandis, which means after changing what should be changed.

We emphasize that this partly where the variety of counterfactual frameworks stems
from: there are as many ways of thinking counterfactually as there are ways of computing
alternative worlds, or equivalently, as there are notions of similarity. Defining the notion of
similarity amounts to designing a model specifying the downstream effect of any intervention
a = (I, ṽI) ∈ A onto the features not specified by I. In all generality, we propose to
define such a model by a collection of transformations {Ta}a∈A, such that Ta(v) yields the
counterparts of any world v under any action a. As an example, the ceteris paribus account
of counterfactuals induces the following deterministic transformation for a = (I, ṽI):

Ta(v) :=

{
ṽi if i ∈ I,
vi otherwise.

There are many degrees of freedom for specifying the model: Ta(v) could be always single-
valued, implying that alternative worlds are deterministically determined by v and a,2 or
could otherwise render probability distributions to include unmodeled sources of randomness.
For instance, we could consider that were Bob a woman, there is a 40% chance that she would
be writer and a 60% chance that she would be an astronaut. The literature also considers
sets of alternative worlds, which can be represented by a uniform distribution. Note that
we particularly appreciate the distribution-based mathematical representation of alternative
worlds as it encompasses all situations: a Dirac distribution for a single counterpart; a
uniform distribution for multiple counterparts; a nonuniform distribution for truly random
counterparts.

In the rest of this thesis, we call any model of interventions {Ta}a∈A for some set of
actions A a counterfactual model, and refer to the instances in Ta(v) as the counterfactual

2In logic, this corresponds to the conditional excluded middle assumption of Stalnaker (1980).
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counterparts of v had a occurred. All in all, the choice of the counterfactual model is always
arbitrary to some extent. It must reflect the implicit meaning of the counterfactual statements
(e.g., ceteris paribus or not, deterministic or not), but could also be guided by feasibility
reasons (this aspect will be discussed later).

1.2.3 Consequents and evaluations

Now that we formalized the computation of alternative worlds, we can turn to the evaluation
of a counterfactual v ⊨ A □→ B. Assume that A corresponds to an intervention a ∈ A whose
effect is given by a transformation Ta. Recall that v ⊨ A □→ B is true just in case B is true
in all worlds v′ similar to v and satisfying A. For this definition to be operational, B must be
associated to some proposition P(·) specifiable on any world. In our running example, we
would define P(v′) as “h(v′) = 1”, namely “the loan is granted”. Summing everything up,
v ⊨ A □→ B is true just in case P(Ta(v)) is true.

Moreover, for this definition to be nonambiguous, we must take into account the fact
that both Ta(v) and P can be random (i.e., defined as probability distributions or random
variables). Conceptually, this does not raise particular issues: whenever one of the two
objects is nondeterministic, we can either evaluate the truth of the counterfactual statement
for a certain realization, or give a probability of truth. In the set-valued scenario, v ⊨ A □→ B
is true just in case P(v′) is true for all v′ ∈ Ta(v). Recall that Ta(v) can be defined as a
uniform distribution in such cases, which then requires the probability of truth of P to be
100% for the counterfactual to be declared true.

1.2.4 Examples of similarity metrics

Let us conclude this section by a short illustration. As mentioned, the verification process of
counterfactuals fundamentally rests on the choice of a similarity metric only requiring a world
to be closest to itself. This makes distances on the space of worlds V natural candidates to
compute alternative worlds.

Formally, let D : V ×V → R+ be a distance. Then—for this specific notion of similarity—
the counterfactual counterparts of v had a = (I, (ṽi)i∈I) occurred are given by

Ta(v) := argmin
v′∈V

D(v, v′) s.t. v′i = ṽi for all i ∈ I. (1.2)

This definition returns the D-closest worlds satisfying A. Note that if V = Rp, it provides
ceteris paribus counterparts. In general however, the features I live in different, possibly
nonindependent ranges (Vi)i∈I . Alternatively, we could relax the notion of similarity by
defining for some radius r > 0,

Ta(v) := {v′ ∈ V | D(v, v′) ≤ r and v′i = ṽi for all i ∈ I}. (1.3)

Here, the alternative A-worlds are given by the intersection of the worlds accessible from v
(defined by a ball centered at v) and the worlds satisfying A.

Unfortunately, this simple distance-based viewpoint generally shares the drawbacks of
the ceteris paribus approach: by neglecting the latent probability distribution over worlds,
it cannot faithfully captures dependencies between variables. For example, let Bob be a
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man whose height is 190cm and whose weight is 85kg. A distance-based model renders true
the counterfactual “Had Bob been a woman, she would be 190cm tall and weigh 85kg”, as
such women exist (even though they are rarer). According to intuition, such counterfactuals
are false and rightly so because they are not representative of the underlying statistical
distributions. The sex of a person influences their physical features, as such we would expect
Bob’s height and weight to be modified after intervention. In Sections 1.3 and 1.4, we present
other perspectives leveraging more sophisticated notions of similarity.

To sum-up, counterfactual reasoning amounts to mapping a world of reference to some
alternative worlds satisfying a desired property, and then checking whether an outcome
of interest holds in these worlds. In order to properly understand a counterfactual-based
methodology, we recommend to systematically answer the following questions:

1. What is the space of considered worlds?

2. What is the studied antecedent, or equivalently the features to modify?

3. What is the proposition defining the outcome of interest?

4. How are the interventions defined, or equivalently the notion of similarity?

In the following, we unify several counterfactual frameworks from the machine-learning-related
literature through this common reading grid.

1.3 Structural causal modeling

As aforementioned, the ceteris paribus and distance-based approaches of counterfactual
reasoning generally fail to describe realistic alternative worlds, as they implicitly assume the
features to be independent. This limitation motivated the use of Pearl’s causal modeling
(Pearl, 2009) to take into account the fact that variables are not independently manipulable.

1.3.1 Causal model

Pearl’s causal modeling addresses the fundamental problem of analyzing causal relations
between variables, beyond mere correlations (Pearl, 2009). It can be regarded as a mathe-
matical formalism meant to describe associations that standard probability calculus cannot
(Pearl, 2010b). This section recalls the basic theory on this modeling, borrowing the rigorous
mathematical framework recently proposed by Bongers et al. (2021).

Causal reasoning rests on the knowledge of a structural causal model (SCM), which
represents the causal relationships between the studied variables.

Definition 1.3.1: Structural causal model

Let I and J be two disjoint finite index sets, and write V :=
∏
i∈I Vi ⊂ R|I|, U :=∏

i∈J Ui ⊂ R|J | for two measurable product spaces. A structural causal model M is a
couple ⟨U,G⟩ where:
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1. U : Ω→ U is a vector of random variables, sometimes called the random seed ;

2. G = {Gi}i∈I is a collection of measurable R-valued functions, where for every i ∈ I
there exist two subsets of indices Endo(i) ⊆ I and Exo(i) ⊆ J , respectively called
the endogenous and exogenous parents of i, such that Gi is from VEndo(i)×UExo(i)
to Vi.

A random vector V : Ω→ V is a solution ofM if for every i ∈ I

Vi
P−a.s.
= Gi(VEndo(i), UExo(i)). (1.4)

The collection of equations defined by (1.4) and characterized by G and U are called the
structural equations. By identifying G to a measurable vector function G : V × U → V,
we compactly write that V is a solution ofM if

V
P−a.s.
= G(V,U).

A structural causal model can be seen as a generative model. The variables in U are said
to be exogenous as they are imposed a priori by the model. In contrast, the variables in a
solution V are said to be endogenous as they are outputs of the model determined through
the structural equations. In practice, the endogenous variables represent observed data, while
the exogenous ones model latent background phenomenons. Note that compared to Bongers
et al. (2021), we do not assume the (Uj)j∈J to be mutually independent.

The structural equations specify the causal dependencies between all these variables and
are frequently illustrated by the directed graph defined as follows: the set of nodes is I ∪ J ,
and a directed edge points from node k to node l if and only if k ∈ Endo(l) ∪ Exo(l) (we say
that k is a parent of l). Slightly abusing notation, we often will substitute the indexes i ∈ I
or j ∈ J for the variables Vi or Uj , in particular when drawing such a graph (see Figure 1.1).
Also, similarly to Bongers et al. (2021), we will use in practice nondisjoint subsets I and
J of duplicated natural integers for the sake of clarity. The example below illustrates the
above notations and definitions.

Example 1.3.1: SCM and solution

Consider a simple SCMM := ⟨U,G⟩ where U := (U1, U2, U3) is an arbitrary random
vector, and such that G is defined by

G1(u1) := u1, G2(v1, u2) := v1 + u2, G3(v1, v2, u3) := v1 + v2 + u3.

Figure 1.1 represents the corresponding graph. By definition, finding a solution V :=
(V1, V2, V3) toM amounts to solving,

V1
P−a.s.
= U1, V2

P−a.s.
= V1 + U2, V3

P−a.s.
= V1 + V2 + U3.
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Then, we readily obtain that the almost-surely unique solution is given by

V1
P−a.s.
= U1, V2

P−a.s.
= U1 + U2, V3

P−a.s.
= 2U1 + U2 + U3.

V1

V2

V3

U1

U2

U3

Figure 1.1: Example of causal graph

Note that SCMs are not always solvable (Bongers et al., 2021, Example 2.4). For the
sake of convenience, we make in the rest of the manuscript the common assumption that the
considered models are acyclic, meaning that their graphs do not contain any cycles:

Assumption (A): Acyclicity

The structural causal modelM induces a directed acyclic graph (DAG).

Acyclicity entails unique solvability of the SCM, in the sense that Equation (1.4) admits
a unique solution up to P-negligible sets (Bongers et al., 2021, Proposition 3.4). We will
abusively refer to such a solution as the solution of the SCM. Notably, the SCM from
Example 1.3.1 satisfies (A). Besides, the absence of cycles allows for clearer interpretation of
the causal dependencies.

Essentially, causal structures capture the assumption that features are not independently
manipulable. As we detail next, they enable to understand the downstream effect of fixing
some variables to certain values onto nonintervened variables.

1.3.2 Do-intervention

The so-called do-calculus embodies mathematically the fundamental distinction between
causation and correlation. While standard probability theory can only account for correlations
through conditioning, do-calculus allows for intervening on variables through the do-operator.
Concretely, a do-intervention is an operation mapping any modelM to an alternative one
by modifying the generative process.

Definition 1.3.2: Do-intervention

Let M = ⟨U,G⟩ be an SCM, I ⊂ I a subset of endogenous variables, and vI ∈ VI a
value. The action do(I, vI) defines the modified modelMdo(I,vI) = ⟨U, G̃⟩ where G̃ is
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given by

G̃i :=

{
vi if i ∈ I,
Gi if i ∈ I \ I.

The model surgery described in Definition 1.3.2 consists in enforcing a state of things by
substituting a set of endogenous variables by fixed values while keeping all the rest of the
causal mechanism equal. By definition, do-interventions respect the exogeneity of the random
seed since U remains unchanged. This transcribes the principle that acting upon endogenous
phenomenons does not affect exogenous ones. Provided it is solvable, the modified model
Mdo(I,vI) generates a new distribution of endogenous variables, describing an alternative
world where every Vi for i ∈ I is set to value vi.

Note that do-interventions preserve acyclicity. Therefore, if an SCM M satisfies (A),
then Mdo(I,vI) also satisfies (A). Going further, if V is the solution of an acyclic M, we
can nonambiguously define (up to P-negligible sets) its intervened counterpart Vdo(I,vI)
solution to Mdo(I,vI). All in all, (A) enables to work in a convenient setting where the
output of a causal model as well as the ones of its intervened counterparts are always
well-defined. This implication enables to clarify the notations: in the sequel we write
do(VI = vI) for the operation do(I, vI), and use the subscript VI = vI to indicate results of
this operation. Crucially, intervening does not amount to conditioning in general, that is
L(V | VI = vI) ̸= L(VVI=vI ). This means that causal outcomes may not be observable and
hence require a known causal model to be inferred, as exemplified below.

Example 1.3.2: Intervening is not conditioning in general

Let M := ⟨U,G⟩ be the SCM from Example 1.3.1 and consider the do-intervention
do(V2 = 0). This defines the intervened modelMV2=0 := ⟨U, G̃⟩ where

G̃1(u1) := u1, G̃2(v1, u2) := 0, G̃3(v1, v2, u3) := v1 + v2 + u3.

Figure 1.2 represents the graph after surgery. The modified structural equations on a
solution Ṽ := (Ṽ1, Ṽ2, Ṽ3) are

Ṽ1
P−a.s.
= U1, Ṽ2

P−a.s.
= 0, Ṽ3

P−a.s.
= Ṽ1 + Ṽ2 + U3.

Then, we readily obtain that the almost-surely unique solution is given by

Ṽ1
P−a.s.
= U1, Ṽ2

P−a.s.
= 0, Ṽ3

P−a.s.
= U1 + U3.

Assuming that U1, U2, U3 are mutually independent we have L(V1 | V2 = 0) = L(U1 |
U1 + U2 = 0) = L(−U2) while L(Ṽ1) = L(U1). Therefore, L(V1 | V2 = 0) ̸= L(Ṽ1) in
general.

Working directly with Definition 1.3.2 to express variables after intervention can be
burdensome as it requires to solve a modified causal model. Throughout this manuscript, we
rely on the next proposition which provides a general expression of the solution before and
after intervention.
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Ṽ1

Ṽ2

Ṽ3

U1

U2

U3

Figure 1.2: Intervened counterpart of Figure 1.1 after do(V2 = 0)

Proposition 1.3.1: Do-calculus on variables

LetM = ⟨U,G⟩ be an SCM satisfying (A) with solution V , and consider a partition
I ⊔ J = I. There exists a deterministic measurable function FJ such that

VJ
P−a.s.
= FJ(VEndo(J)\J , UExo(J)).

Moreover, for any intervention do(VI = vI) the solution Ṽ ofMVI=vI verifies

ṼJ
P−a.s.
= FJ(vEndo(J)\J , UExo(J)),

ṼI
P−a.s.
= vI .

Importantly, this is the same deterministic function FJ that generates VJ and its intervened
counterpart ṼJ , the only change being the assignment VI = vI . Note that in our notations,
we will often artificially extend the input variables of FJ to write VJ

P−a.s.
= FJ(VI , UExo(J))

and ṼJ
P−a.s.
= FJ(vI , UExo(J)).

1.3.3 Counterfactual inference

Do-calculus provides a natural framework to address the computation of alternative worlds.
Consider for instance the event {V = v} where V is the solution to an SCM M := ⟨U,G⟩
satisfying (A), and set v′I ̸= vI . We aim at answering the counterfactual question: had VI
been equal to v′I (instead of vI), what would have been the value of V ? Pearl answers this
question using the so-called three-step procedure:

1. Abduction: Deduce the posterior distribution of U given the world of reference
{V = v};

2. Action: Carry out do-calculus on M to obtain the intervened causal mechanism
GVI=v′I ofMVI=v

′
I
;

3. Prediction: Pass the posterior distribution L(U | V = v) through GVI=v′I to generate
the distribution L(VVI=v′I | VI = vI) of alternative worlds.
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Note that when L(U | V = v) is not degenerate, this approach does not define a single
alternative world given an intervention and a factual world, but instead a set of alternatives
worlds with probability weights. This entails that in general the induced counterfactual
semantic is stochastic: a counterfactual statement evaluated through this model is not true or
false, but has a certain probability of occurrence. We refer to the values taken by L(VVI=v′I |
V = v) as the structural counterfactual counterparts of V = v under the intervention
do(VI = v′I). By construction, a factual instance v and its counterfactual counterparts share
the same possible values of exogenous variables, distributed as L(U | V = v), but differ from
the causal mechanism generating them. This implicitly defines a notion of similarity, such
that “being similar” means “can be generated by a same U value”.

Bridging this definition to the formalism introduced in Section 1.2, we define for any
intervention a = (I, v′I) and world of reference v the transformation Ta(v) as the result of
do(VI = v′I) on V conditional to {V = v}. Concretely, this leads to

Tdo(VI=v′I)(v) = L(VVI=v′I | V = v).

This model of interventions suggests that the true intrinsic features of a world, the “all other
things” that must be kept equal, are its U -value. Considering an alternative world after
intervention amounts to process the same U -value through a different generative mechanism.
Thus, cross-world counterfactual statements according to Pearl compare a same object but
through two different prisms, a same entity but within two different realities.

1.3.4 Discussion

Structural causal models are powerful tools; they enable to analyze the causal effects of
any studied variables, furnishing a reliable framework for counterfactual inference. However,
they also raise natural concern about their applicability. Beyond toy examples generating
artificial data through a fabricated mechanism, we generally do not know the SCMs governing
observed phenomena. Causal discovery (also known as structure learning) refers to the field
of research addressing this issue by investigating methods to derive causal models from
observable data. In this section, we discuss the challenges of this initiative and the limitations
of structural causal modeling for counterfactual reasoning.

Postulating the model

It might be tempting to postulate the causal relationships on the basis of intuitions and
prior knowledge. While this could be reasonable for a small number of variables regulated
by established mechanisms such as laws of physics, this is not realistic for typical machine-
learning problems dealing with a high-number of features and possibly complex structural
relations. Assuming a fully-specified causal model requires experts to reach a consensus on
the causal graph, the structural equations, the distribution of the input exogenous variables,
and to test the validity of their model on available data. Moreover, this is not practical since
a causal model must be designed and tested for each possible dataset.
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Causal discovery

As mentioned, a more straightforward approach is to directly infer the causal model from
observational data. There exist for instance sound techniques to learn the causal graph, but
they suffer from being NP-hard without restrictive assumptions, with an exponential worst-
case complexity with respect to the number of nodes (Chickering et al., 2004; Scutari et al.,
2019). In addition, the structural equations would still be lacking. To obtain these equations,
researchers often predefine the functional form of the relations between the variables on
the basis of a known graph (be it assumed or inferred) and learn them through regression
models (Kusner et al., 2017; Russell et al., 2017), or infer simultaneously the graph and
the structural equations. However, this also becomes computationally challenging as the
number of features increases. Notably, the literature mostly addresses simple linear models
(Shimizu et al., 2006) or very few variables (Hoyer et al., 2008). Finally, the approximation
error implied by the choice of the functional class can lead to unrealistic, out-of-distribution
counterfactuals, as later exemplified in this manuscript.

Apart from these computational challenges, the fundamental constraint of causal discovery
is causal uncertainty : there exist several causal models corresponding to a same data
distribution (see Bongers et al., 2021, Example 4.2). Therefore, it cannot be tested through
observations only whether the adjusted model is the “true” one. This makes the modeling
inherently uncertain not only for the relationships between variables G, but also for the law
of the exogenous variables U . A general principle to keep in mind is that causal inference
will always require untestable assumptions about the world’s functioning. Making strong
hypothesis (e.g., postulating the graph or the form of the equations) tends to facilitates
the estimation of the model and can exclude spurious possibilities, but increases the model-
approximation error. Overall, causal discovery demands a subtle mix of plausible assumptions
and efficient estimation procedures.

Existence of counterfactuals

Perhaps more surprisingly, counterfactual quantities are sometimes nonexistent in Pearl’s
causal framework. The causal modeling we introduced is very general: we do not assume
the exogenous variables to be mutually independent, and only suppose that the equations
are acyclic. Assumption (A) is very common for both practical reasons and reasons of
interpretability. In general, however, observational data can be generated through an acycli-
cal mechanism. Critically, (solvable) acyclic models do not always admit solutions under
do-interventions, implying that VVI=vI may not be defined. We refer to (Bongers et al., 2021,
Example 2.17) for an illustration. As a consequence, counterfactual quantities are ill-defined
in such settings.

Structural causal models are powerful tools; but they are expensive in assumptions and
computations, which drastically limits their applicability on real-world tasks. In the following
section, we present a lighter (but less flexible) framework for counterfactual inference.
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1.4 The potential-outcome framework

The potential-outcome framework, also known as Neyman-Rubin causal modeling (Rubin,
1974), was designed to understand the causal effect of a treatment onto an outcome of
interest, for instance when one aims at assessing the contribution of a drug to recovering
from some disease. It has become the most widely used framework for causal inference in
social sciences and medicine due to its intuitive formalism, mathematically much lighter than
structural causal models.

1.4.1 Model and motivation

Let S : Ω→ {0, 1} represent a binary treatment status, typically such that S = 0 indicates
the absence of treatment and S = 1 indicates a treatment. More generally, it can encode any
distinction between some groups (e.g., men and women). Assuming no interference between
units, this framework postulates potential outcomes Y0 : Ω→ R and Y1 : Ω→ R under each
treatment status. These potential outcomes as well as the treatment may depend on some
covariates X : Ω→ Rd such as the weight, the height, or historical data. Critically, we cannot
observe simultaneously Y0 and Y1 for a single unit: a problem referred as the fundamental
problem of causal inference (Holland, 1986). We only have access to the realized outcome
variable Y : Ω → R which is supposed to be consistent with (Y0, Y1), that is satisfying
Y = (1− S) · Y0 + S · Y1. Concretely, if S(ω) = 1 for some ω ∈ Ω, then Y (ω) = Y1(ω), and
Y0(ω) becomes unidentifiable by mere observations. In this case, Y1(ω) is called the factual
outcome while Y0(ω) is called the counterfactual outcome.

Understanding the causal relationship between the treatment and the outcome in this
framework amounts to estimating the difference Y1 − Y0 from observed data. In practice,
people commonly focus on the average treatment effect E[Y1 − Y0] or the conditional average
treatment effect E[Y1 − Y0 | X = x]. The main challenge lies in the fact that correlation
is not causation in general. In particular, the observable quantity E[Y | S = s] does not
necessarily coincide with the unobservable quantity E[Ys] for s ∈ {0, 1}. Typically, if some
medical treatment is more likely to be taken by weaker patients, we may observe a lower rate
of recovery among the treated group compared to the nontreated group due to the health
condition even though the medicine does increase recovery all other things being kept equal:
we would observe E[Y | S = 1] < E[Y | S = 0] while E[Y1] > E[Y0] (a phenomenon referred
as Simpson’s paradox ). In this case, the health condition is called a confounder : a variable
associated with both the distribution of the treatment and the outcome. However, causal
inference from observational data is still possible, as detailed next.

1.4.2 Estimation of causal effects

We say that a treatment effect is identifiable if it can be expressed with observational quantities
only, that is in terms of X, S and Y . Identifiability requires two fundamental assumptions.
The first one goes by many names through the literature: conditional ignorability, conditional
exchangeability, conditional exogeneity, and unconfoundedness. It states that the potential
outcomes are independent of the treatment conditional to the covariates, that is S ⊥⊥
(Y0, Y1) | X. Said differently, it prevents the existence of unmodeled confounders between the
treatment and the potential outcomes. Note that this assumption is untestable, as it would
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require to observe simultaneously the two potential outcomes. The second key hypothesis is
positivity, which ensures that all individual can be exposed to both treatment statuses, that
is 0 < P(S = 1 | X) < 1. It readily follows from conditional ignorability and positivity that
L(Y | X,S = s) coincides with L(Ys | X) for s ∈ {0, 1}, meaning that observable outcomes
have a causal meaning. In the following, we briefly present several methods to identify the
average causal effect which all build upon this implication.

Controlled trials

The first method is not a mathematical computation but a physical act. As previously
mentioned, causal effects cannot be estimated from the conditional distributions L(Y | S = s)
as long as there exist confounders, variables correlated with both the treatment and the
potential outcomes. In a randomized controlled trial, a practitioner supervises the treatment
allocation (the treatment status of each unit is not predetermined but decided according
to some probability law) to rule out confounder. Supposing no confounder, or ignorability,
mathematically corresponds to S ⊥⊥ (Y0, Y1). It implies that correlation is causation, that
is L(Y | S = s) = L(Ys), making the average treatment effect trivially identifiable. Note
that in general, the potential outcome framework only assumes conditional ignorability,
namely S ⊥⊥ (Y0, Y1) | X. While ignorability guarantees the complete absence of confounders,
modeled or not, conditional ignorability ensures that all possible confounders are included in
the covariates X.

The gold standard for causal inference is a completely (or fully) randomized experiment,
which assigns the treatment independently to all experimental conditions. This is canonically
achieved by tossing a same coin to decide each unit’s status. This design blinds the
treatment status to any experimental conditions (be they observed or not), thereby ensuring
(X,Y0, Y1) ⊥⊥ S without additional assumptions (Zhang and Zhao, 2023). In case the
treatment assignment is controlled but not fully randomized, practitioners can at most
ensure S ⊥⊥ X for a set of observed covariates. This condition, referred as covariates balance,
entails ignorability if conditional ignorability and positivity hold: note that S ⊥⊥ X along
with S ⊥⊥ (Y0, Y1) | X and 0 < P(S = 1 | X) < 1 implies that S ⊥⊥ (Y0, Y1). Intuitively,
making the weaker and the stronger patients evenly likely to receive treatment disentangles
the contribution of the health condition from the one of the treatment onto the recovery,
rendering causal the association between the observed outcomes and the treatment.

To sum-up, in the case of experimental studies, practitioners can ensure identifiability by
randomizing their protocol.3 Nevertheless, causal inference outside the setting of randomized
controlled trials is still needed for several reasons. Depending on the treatment, enforcing
randomization can easily become immoral: thoroughly testing the effect of parental violence
onto mental health would require asking a large number of parents to hit their children.
Additionally, organizing large-scale experiments costs time and money. This is why in practice
we frequently rely on observational studies for which randomization does not hold. Next, we
detail purely mathematical techniques to reach identifiability in this context.

3We point out that randomized controlled trials are not the panacea though, as on the contrary to
observational studies they suffer from eligibility biases. This has motivated a growing research on combining
observational and randomized data, as reviewed by Colnet et al. (2020).
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Re-weighting

A first approach to simulate the properties of randomization in nonrandomized observational
studies is to manipulate the dataset to artificially enforce covariate balance. The idea is to
modify the weights of the samples to render the treatment independent to the covariates.
For example, inverse probability weighting leverages the propensity score (Rosenbaum and
Rubin, 1983), defined as

e(x) := P(S = 1 | X = x),

to balance covariates between groups. Intuitively, dividing the weight of every unit by how
likely they were to have their actual treatment status makes every unit evenly likely to
be treated. Mathematically, this corresponds to a change of probability: we modify the
underlying P to define a new probability Q on Ω through

dQ
dP

:=
1

2

(
S

e(X)
+

1− S
1− e(X)

)
.

The probability Q is well defined under positivity, that is 0 < e(X) < 1, and satisfies S ⊥⊥ X
plus Q(S = 1) = Q(S = 0) = 1/2. Said differently, the pseudo population obtained by
re-weighting looks as if the treatment was randomly allocated by tossing an unbiased coin.
This enables to compute averaged potential outcomes under from observational quantities.
Let EQ denote the expectation under Q. Assuming conditional ignorability (under P) we
have

EQ[Y | S = 1] =
EQ[Y · S]
Q(S = 1)

= 2 · 1
2
· E
[
Y · S ·

(
S

e(X)
+

1− S
1− e(X)

)]
= E

[
S

e(X)
· Y
]
= E

[
E
[

S

e(X)
· Y | X

]]
= E

[
E[S · Y | X]

e(X)

]
= E

[
E[S · Y1 | X]

e(X)

]
= E

[
e(X) · EP[Y1 | X]

e(X)

]
= E [E[Y1 | X]]

= E[Y1].

Similarly, EQ[Y | S = 0] = E
[

1−S
1−e(X) · Y

]
= E[Y0], leading to

E[Y1 − Y0] = E
[

S

e(X)
· Y
]
− E

[
1− S

1− e(X)
· Y
]
.

This shows that the average treatment effect under P is identifiable, as it can be computed
from the observed X, S and Y . However, “there ain’t no such thing as a free lunch”; there is
a price to pay for such a trick. Notably, this approach requires estimating a functional form
of e from observable data, which is generally achieved through logistic regression. As shown
by Smith and Todd (2005) and Kang and Schafer (2007), estimands of average treatment
effects based on the propensity score are extremely sensitive to the score-estimation quality.
Moreover, the inverse probability weighting suffers from instabilities when the propensity
score approaches 0 or 1 since the weights tend to infinity. Several papers tried to mitigate
these practical issues by constructing refined estimates of the propensity score (Imai and
Ratkovic, 2014) or the treatment effects (Funk et al., 2011) that are robust to misspecification.
We do not detail these methods here for the sake of simplicity.
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Stratification

Causal inference from observational data can also be achieved via stratification. Recall that
conditional ignorability enables to identify causal effects through observable quantities within
levels of X, leading to:

E[Y1 − Y0 | X] = E[Y1 | S = 1, X]− E[Y0 | S = 0, X]

= E[Y | S = 1, X]− E[Y | S = 0, X].

Then, integrating on the covariates gives the so-called adjustment formula on the average
treatment effect:

E[Y1 − Y0] = E [E[Y | S = 1, X]− E[Y | S = 0, X]] .

In practice, stratification follows the adjustment formula by: (1) splitting the units into
groups with equal values of confounders X, (2) estimating the conditional effect E[Y | S =
1, X]− E[Y | S = 0, X] for each group, (3) marginalizing over each group. This methods
enabled to solve Simpson’s paradox in the notorious 1973 Berkeley’s admission process (Bickel
et al., 1975). At first glance, it seemed that female applicants were disadvantaged compared
to male applicants since the overall proportion of accepted women was inferior. However,
figures showed that their rate of acceptance conditional to the course choice was sometimes
higher than men. This contradiction can be clarified by adjusting the sex (playing the role of
the treatment) on the course choice (playing the role of the confounder). The analysis after
stratification did not evidence any disparate success between male and female applicants,
meaning that there was a positive correlation between being a female and being rejected but
no direct cause-to-effect relationship.

Note that stratification is better tailored to confounders with discrete values. Another
limitation comes from the fact that some adjustment groups may contain very few or even no
samples, leading to an inconsistent estimation of the conditional averaged effect. A way to
mitigate this issue is to stratify on the propensity score e(X). The propensity score works as
a confounding variable: adjusting on it makes the treatment independent to the covariates.
Additionally, it generally leads to more units within adjustment strata, hence to better
estimates of the conditional effects. Nevertheless, this would suffer from the propensity-score
estimation issue we mentioned in the paragraph on re-weighting.

Matching

The last commonly used strategy is called matching. For illustration, let {(x(i), s(i), y(i))}ni=1

be a dataset of n i.i.d. units sampled from (X,S, Y ). Each unit i represents a treatment
experiment where either y(i)0 or y(i)1 is observed. If we could fill the missing entries represented
by question marks in Table 1.1, we could compute treatment effects. An intuitive solution
for this missing-data-inputation problem would be to look for the units with the most similar
covariates belonging to a different treatment group, then to collect the outcomes of these
alternative units, and finally to fill the missing entry with a combination of these outcomes.
Matching techniques follow this principle by leveraging two ingredients: a metric quantifying
the closeness between two units; an algorithm specifying how to match units between different
treatment groups on the basis of the similarity score.
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unit i treatment S covariates X outcome Y0 outcome Y1
1 0 x(1) y

(1)
0 ?

2 1 x(2) ? y
(2)
1

. . . . . . . . . . . . . . .
n 1 x(n) ? y

(n)
1

Table 1.1: Illustration of the missing-data-inputation problem. It amounts to fill the question
marks, which represent unobserved quantities.

Although it may seem natural to choose distances on the space of covariates for the
similarity metric, it often leads to inefficient matchings when the number of covariates
becomes high. In practice, most metrics quantify the similarity not between the covariates
but between the propensity scores to reduce the dimension of the problem. Concretely, two
units i and j from different treatment groups are deemed similar if e(x(i)) ≈ e(x(j)), that
is if they are evenly likely to be treated. The exact matching algorithm corresponds to
the ceteris paribus approach: it matches a unit i to the units j in the opposite group with
identical propensity scores. Obviously, most of the units are likely to remain unmatched. In
contrast, the nearest-neighbor matching algorithm leverages a distance to match unit i to
the units j with the closest propensity scores (up to a threshold referred as the caliper). We
also mention the kernel matching algorithm, constructing the counterfactual outcome of i
using a linear combination of every y(j) for j ̸= i weighted by the kernel value between x(i)

and x(j). We emphasize that while the propensity score may seem magical, as it reduces
a multi-dimensional matching problem on the covariates X to a uni-dimensional matching
problem on the score e(X), the curse of the dimension has simply been transferred into the
estimation (through regression) of e(X) from X. Obviously, the matching approach requires
a high-quality estimate of the propensity score to be accurate.

A second key idea behind the use of the propensity score comes from the fact that the
distribution of covariates is the same for treated and nontreated units with equal propensity
score, that is S ⊥⊥ X | e(X). As such, aligning according to this score tends to balance
covariates between groups among the matched units. Naturally, unmatched units, for which
there is no sufficiently similar unit with an alternative treatment status, are discarded from
the computation of the average treatment effect.

As a final remark, note that while both stratification and re-weighting enable to recover
causal effect even outside the randomized-control-trial setting, they are limited to the inference
of averaged effects. In contrast, matching techniques also estimate the counterfactual outcome
at the unit level.

1.4.3 Identification of the potential outcomes

At this stage, one may naturally wonder whether structural causal modeling and the potential-
outcome framework produce the same counterfactuals. We believe the literature on causal
inference to be strongly misleading on this matter. A plethora of scientific books and
papers interchangeably use Pearl’s do-notation and the potential-outcome subscript notation
to write outcomes under interventions, suggesting that the corresponding definitions of
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counterfactuals are identical and differ only from theirs perspectives (Colnet et al., 2020;
Imbens, 2020; Makhlouf et al., 2020; Neal, 2020). To justify this, they often refer to Pearl,
who claimed that “the two frameworks can be used interchangeably and symbiotically”.4

However, to our knowledge, works on equivalences between the two causal frameworks miss
the point of actually proving whether counterfactual outcomes are equal across models or
implicitly address specific cases. Notably, both (Pearl, 2009, Chapter 7) and (Richardson
and Robins, 2013)—acclaimed references on unifications of causal frameworks—consider ex
nihilo the mathematical equivalence between the two notations. In this section, we provide a
mathematical analysis of the similarities and differences between approaches by precisely
identifying the law of the potential outcomes.

Models

Let N, d, p ≥ 1 be integers, and define three random variables S : Ω→ S := {0, 1, . . . , N},
X : Ω → Rd, and Y : Ω → Rp. In order to study the consistency of counterfactual
statements between the Neyman-Rubin causal model and Pearl’s causal model, we consider a
superimposed construction where (S,X, Y ) is concurrently governed by a potential-outcome
model and a structural causal model.

On the one hand, we assume that Y is the outcome of interest, S the treatment status,
and X some covariates in a potential-outcome framework. This amounts to postulating N
random vectors (Ys)s∈S satisfying the consistency rule:

Y
P−a.s.
=

∑
s∈S

1{S=s}Ys.

Note that we address a more general framework than before, considering a nonbinary
treatment and a multivariate outcome. In this setting, the two fundamental assumptions for
causal inference can be written as:

Assumption (P): Positivity

0 < P(S = s | X) < 1, for all s ∈ S.

Assumption (CI): Conditional ignorability

(Ys)s∈S ⊥⊥ S | X.

On the other hand, we assume that these variables are generated by a latent, unknown
structural causal model: the random vector V := (S,X, Y ) is the solution to an acyclical
SCMM = ⟨U,G⟩ where US , UX and UY denote the exogenous parents of respectively S, X,
and Y . Moreover, we suppose thatM satisfies:

4http://causality.cs.ucla.edu/blog/index.php/2012/12/03/judea-pearl-on-potential-outcomes/

http://causality.cs.ucla.edu/blog/index.php/2012/12/03/judea-pearl-on-potential-outcomes/
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Assumption (O): Outcome

UY ⊥⊥ (US , UX) and YEndo(S) = YEndo(X) = ∅.

This assumption captures two major characteristics of the modeling. The random-noise
condition states that all potential confounders between S and Y are included in X; this may
seem weaker than (CI), hence redundant, but expressing it as a separate assumption on
M will simplify the demonstrations. The graphical condition formally defines the variable
Y as the outcome; it changes in response to X and S but not the contrary. Through
Proposition 1.3.1, this item permits to write

X
P−a.s.
= FX(S,UX),

S
P−a.s.
= FS(X,US),

Y
P−a.s.
= FY (S,X,UY ),

where FX , FS and FY are deterministic measurable functions derived from G. The artificial
cycle in these formulas (i.e., X and S are both functions of each other) merely serves to
consider all configurations of causal links between S and X (see Figure 1.3); strictly, M
satisfies (A). Proposition 1.3.1 also enables to define for every s ∈ S the post-intervention
outcome under do(S = s) as

YS=s
P−a.s.
= FY (s,XS=s, UY ),

where the altered covariates are XS=s
P−a.s.
= FX(s, UX).

Critically, the two considered causal models differ fundamentally in their constructions
of counterfactual outcomes. As noted by Pearl (2010a), the potential outcomes (Ys)s∈S
are “undefined primitives” of the Neyman-Rubin causal model, not related to any formal
of measurable quantities, while the intervened outcomes (YS=s)s∈S are “derivatives” of the
structural causal model by application of do-calculus. However, Pearl uses the same notation
for both constructions. Are they truly equivalent in the sense that Ys

P−a.s.
= YS=s, or at least

Ys
L
= YS=s? This is what the address next.

Identification

Let us start with a crucial remark: the potential outcomes are ill-defined in the sense that
there is no unique choice of (Ys)s∈S satisfying the consistency rule. More precisely, while
necessarily Ys

P−a.s.
= Y on {S = s} for s ∈ S, there is no restriction on Ys over Ω \ {S = s};

it could take any value on without violating the consistency rule. Consequently, it is
mathematically impossible to associate Ys—well-identifiable on the event {S = s} only—to
YS=s—defined (almost) everywhere through the structural causal modelM. Without further
assumptions, we only have identification of the observed outcomes, namely Ys

P−a.s.
= YS=s on

{S = s}, as a direct consequence of the proposition below.
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Proposition 1.4.1: Consistency of structural counterfactual outcomes

Let (S,X, Y ) be the solution of an SCMM satisfying (A) and (O). Then, (YS=s)s∈S
verifies the consistency rule,

Y
P−a.s.
=

∑
s∈S

1{S=s}YS=s.

Nevertheless, although the two fundamental assumptions of causal inference cannot fully
solve the identification of the potential outcomes, as they do not constrain the variables
almost surely, they permit to identify the law of the potential outcomes in terms of observable
quantities: they entail that L(Ys | X = x) = L(Y | X = x, S = s) for any s ∈ S. As our main
mathematical result, we propose a different kind of identification under the same assumptions.
The theorem below identifies the law of the potential outcomes through the latent SCMM,
thereby enabling us to compare (Ys)s∈S with (YS=s)s∈S .

Theorem 1.4.1: Identification of potential outcomes

Let (Ys)s∈S be random variables such that

Y
P−a.s.
=

∑
s∈S

1{S=s}Ys,

and suppose that S, X, and (Ys)s∈S verify (P) along with (CI). Additionally, assume
that V := (S,X, Y ) is the solution to an SCM M = ⟨U,G⟩ satisfying (A) and
(O). This notably entails that there exists a deterministic function FY such that
Y

P−a.s.
= FY (S,X,UY ). Then,

L((S,X(Ys)s∈S)) = L((S,X, (FY (s, x, UY ))s∈S)).

This means in particular that under the assumptions of Theorem 1.4.1, we concurrently
have

(Ys)s∈S
L
= (FY (s,X,UY ))s∈S ,

(YS=s)s∈S
P−a.s.
= (FY (s,XS=s, UY ))s∈S .

Therefore, (Ys)s∈S and (YS=s)s∈S are not necessarily equal in law since L(X) ̸= L(XS=s)
in general (we provide an example a few paragraphs below). This critically signifies that
counterfactual inference is not equivalent between frameworks since the joint probability dis-
tributions L((S,X, (YS=s)s∈S)) and L((S,X, (Ys)s∈S)) are not always equal. As consequence,
in contrast to what many papers suggest, the potential-outcome subscript notation and the
do notation are not equivalent, be they as subscripts for random variables or law-dependent
quantities.

Actually, we do have equality in law if X is not altered by do-interventions on S, that
is if S is not a parent of X inM. Notably, this configuration encompasses various typical
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X

YS

(a) Controllable treatment

Xen

Xex

YS

(b) Noncontrollable treatment

Figure 1.3: The two possible configurations of the treatment. Xex denotes the parents of S
in X while Xen are the remaining covariates. Exogenous variables are not represented. In
(a), S does not cause X; in (b), S can impact X.

causal-inference scenarios: in clinical trials, the covariates X may influence the treatment
allocation S but never the contrary. In such cases, the covariates X play the same role as
exogenous variables inM, as illustrated in Figure 1.3a. Thus, both the Neyman-Rubin causal
model and Pearl’s causal model produce the same counterfactuals in common situations.
However, people also rely on causal inference outside the scope of clinical trials, in settings
where the treatment cannot be manipulated and impacts the covariates (see Figure 1.3b).
In particular, S engenders X in emblematic causal problems such as the aforementioned
Berkeley’s admission paradox where S represented the sex. In these cases, confusion between
the two causal approaches can lead to misleading results: the Neyman-Rubin causal model
considers counterfactual outcomes at fixed X, whereas Pearl’s causal model alters the
covariates into XS=s. Note that what distinguishes the two configurations is the nature of
the so-called treatment: if the treatment is an intrinsic feature of units, such as race or sex,
then structural counterfactuals and potential-outcomes counterfactuals are not equal; if the
treatment can be assigned a posteriori to units, then the two notions of counterfactuals
coincide in law under the two fundamental assumptions of causal inference. Another way of
reconciliation comes from remarking that potential-outcome counterfactuals can be derived
from the latent SCM by intervening on both S and X instead of S only. According to the rules
of do-calculus, YS=s,X=x

P−a.s.
= FY (s, x, UY ) whose law coincides with L(Ys | X = x, S = s).

This signifies that potential outcomes implicitly intervene on X to keep it at a certain level,
hence why covariates are often referred as control variables.

Before turning to a concrete illustration, let us connect Rubin’s account for counterfactuals
to the formalism of Section 1.2. Importantly, the potential-outcome framework only authorizes
interventions of the treatment status S, hence why it only considers actions of the form
a = (S, (s)). For such an action a and a world of reference v := (s, x, y) the transformation
Ts′(s, x, y) can be defined as the random variable (s′, X, Ys′) conditional to {S = s,X =
x, Y = y}. Concretely, this leads to

Ts′(s, x, y) := L((s′, X, Ys′) | S = s,X = x, Y = y).
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This formulation clearly shows that cross-world counterfactual statements in this framework
compare two different worlds sharing the same observed features X but differing in S. In
contrast, Pearl’s account induced the transformation

TS=s′(s, x, y) := L((s′, XS=s′ , YS=s′) | S = s,X = x, Y = y).

Observe that potential-outcome counterfactuals are ceteris paribus counterfactuals with
respect to the covariates, whereas structural counterfactuals are mutatis mutandis counter-
factuals. We emphasize that both definitions are perfectly legitimate, but convey distinct
meanings. Therefore, they should not be employed for the same purpose. In the sequel, we
illustrate their implications on a concrete case.

Illustration

This example generalizes and circumstantiates the discussion from (Kusner et al., 2017,
Appendix S1). The treatment status S indicates the gender, S = 0 standing for women and
S = 1 standing for men; the covariate X quantifies the level of work experience, a higher
score encoding a richer experience; the outcome Y evaluates a candidate’s application for
some position, a better score giving a higher probability of acceptance. Suppose that these
three variables S, X and Y are ruled by the following SCM satisfying (O),

X
P−a.s.
= αS + UX ,

Y
P−a.s.
= X + βS + UY ,

where α and β are deterministic parameters quantifying the causal influence of S onto
respectively X and Y , and UX represents the hidden merit or effort of an individual.
Typically, a positive parameter α describes the societal inequalities leading women to have a
lower level of work experience than men with equal merit UX . Moreover, we suppose that
(P) holds and set two potential outcomes (Y0, Y1) verifying the consistency rule and (CI).
We consider the problem of assessing the counterfactual outcome of a woman described by
{S = 0, X = x, Y = y}, had she been a man. The potential-outcome approach evaluates the
following treatment effect :

TE1(0, x, y) := E[Y1 − Y0 | S = 0, X = x, Y = y]

= E[Y1 | S = 0, X = x, Y = y]− y
= E[X + β + UY | S = 0, X = x, Y = y]− y
= x+ β + E[UY | S = 0, X = x, Y = y]− y
= x+ β + y − x− y
= β.

Observe that this first effect completely ignores the dependence of Y on S through X, as it
involves only β. This is due to the fact that TE1 keeps the covariate X fixed, comparing two
distinct individuals with identical profiles but different genders. In contrast, Pearl’s approach
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assesses the following structural counterfactual effect,

SCE1(0, x, y) := E[YS=1 − YS=0 | S = 0, X = x, Y = y]

= E[YS=1 | S = 0, X = x, Y = y]− y
= E[XS=1 + β + UY | S = 0, X = x, Y = y]− y
= E[αS + UX | S = 0, X = x] + β + E[UY | S = 0, X = x, Y = y]− y
= α+ E[UX | S = 0, X = x] + β + y − x− y
= α+ x+ β + y − x− y
= α+ β.

Remark that this second effect takes into account the whole path of influence of S onto
Y , involving both α and β. This comes from the fact that the SCE1 fixes the random
seed U and not the covariate, comparing a same individual in two alternative realities
where the gender is switched. Most importantly, CATE ̸= SCE if α ̸= 0, and consequently
L((S,X, YS=0, YS=1)) ̸= L((S,X, Y0, Y1)).

From a fairness perspective, the treatment effect TE1 says that if β = 0, that is if S is
not a direct cause of Y , then the application process if fair; whether it is unfair towards men
or women when β ̸= 0 depends on the sign of β. In contrast, the structural counterfactual
effect SCE1 says that if β = −α, that is the decision rule Y compensates the discrepancy
of work experiences X across genders S, then the application process is fair. Each analysis
points out a different notion of fairness: considering the SCE1 as a fairness criterion suggests
that recruiters should correct societal inequalities by preferring women with potentially lower
work experience but higher merit whereas relying on the TE1 suggests it is only explicitly
including the gender in the decision-rule pipeline that is unfair.

1.4.4 Discussion and comparison of causal frameworks

We finish our analysis of the Neyman-Rubin causal model by discussing its assumptions, and
underlining other divergences with structural causal models.

Firstly, the identification we provided in Theorem 1.4.1 as well as the causal inference
techniques presented in Section 1.4.2 critically require two fundamental assumptions. While
conditional ignorability is intuitively plausible in most cases, the positivity assumption
raises more issues. It basically states that the distributions L(X | S = s) for s ∈ S share
the same support, which is violated as soon as the groups represented by S bear unique
properties. Consider for example that S encodes the gender, and that the covariates X
specifies the position (among other attributes). Positivity would forbid the computation of
the counterfactual outcome had she been a man of every woman occupying a women-only
job. In contrast, a structural causal model allows for matching individuals that would be
deem incomparable in the potential-outcome framework by making comparisons within a
latent space of exogenous features.

Secondly, we emphasize that whatever the chosen framework, causal inference will
always require untestable assumptions. As aforementioned, a structural causal model
is always at least partly a postulate, because a same observational distribution can be
generated by different models, precluding identification by mere observations. Analogously,
conditional ignorability from the potential-outcome framework cannot be experimentally
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verified. Moreover, note that while it rests on arguably lighter assumptions than a fully
specified SCM, the potential-outcome framework lacks versatility: it can only intervene on
one discrete variable, and always distinguishes invariant covariate features X from variant
outcome features Y among endogenous variables.

Thridly, to conclude on a more philosophical note, we point out that considering the
causal effect of modifying immutable features such as a person’s sex or race raises important
concerns. One cannot manipulate the world to modify such variables as they could for assign-
ing a drug. Therefore, many people consider that such causal effects are ill-defined by nature,
claiming that there is “no causation without manipulation” (Holland, 1986). This principle
goes against the whole literature on causal fairness, which typically intervenes on sex and race.

In this section, we studied the verification of counterfactual whose key challenge is the
modeling of alternative worlds, and detailed two popular frameworks to carry out this crucial
inference step. In the next section, we focus on the role of counterfactuals in explainable
artificial intelligence (XAI), underlining their importance for building trustworthy algorithms.

1.5 Counterfactual explanations in artificial intelligence

The ability of modern machine-learning algorithms, especially deep neural networks, to learn
accurate decision rules on high-dimensional data has made them widely deployed to tackle
various real-world problems, sometimes involving critical decisions for high-risk systems as
in medicine, transportation, or security. However, the complexity of these models generally
prevents from understanding how they arrive at their decisions even when their internal
structures are accessible. Moreover, several research papers demonstrated their vulnerability
to adversarial attacks (Moosavi-Dezfooli et al., 2016; Huang et al., 2017), underlining how
unreliable accuracy was to measure the trustworthiness of artificial intelligence (AI) systems.
This issue triggered the emergence of the field of explainable AI (XAI) which addresses the
problem of making AI decisions understandable by humans through post-hoc explainability
techniques for black-box models (Ribeiro et al., 2016; Lundberg and Lee, 2017; Petsiuk et al.,
2018; Fel et al., 2021) or complex ones (Zeiler and Fergus, 2014; Shrikumar et al., 2016;
Selvaraju et al., 2017; Shrikumar et al., 2017; Sundararajan et al., 2017). These feature
attribution methods aim at interpreting individual decisions in an intuitive manner, typically
by assigning an importance score to each feature (e.g., the yearly income explains the loan
refusal at 80%).

On the one hand, many of these methods provide explanations that can be regarded as
factual explanations, pointing out why the decision was made (e.g., you did not get the loan
because your salary was 50K/year). On the other hand, counterfactual explanations (e.g.,
had your income been 100K/year you would have gotten the loan) have become a cornerstone
of XAI since the seminal work of Wachter et al. (2017), looking for minimal changes in the
input’s features so that the output differs. The interest of counterfactual explanations, in
contrast to standard attribution methods, is twofold. First, they are more intuitive than
factual explanations, as evidenced by philosophical and psychological studies (Lewis, 1973b;
Byrne, 2019). This aspect is critical, as building trustworthy AI systems is contingent to
human acceptance. Second, they enable to provide algorithmic recourse, namely actionable
guidelines for an end user to change the algorithm’s decision (e.g., increasing the salary by
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50K/year). In what follows we detail the formulation of counterfactual explanations in XAI,
stress out the possible confusions with counterfactual inference, and discuss the technical
advantages and limitations.

1.5.1 Original problem formulation

The counterfactual explanation framework in XAI tackles the problem of explaining the
decision of a black-box binary classifier by looking for minimal changes in the features so
that the outcome differs. Formally, let h : Rp → [0, 1] be a predictor returning the estimated
probability of belonging to the positive class, and set a focal point v. Finding a counterfactual
explanation of h’s behaviour at v amounts to solving

min
v′∈Rp

c(v, v′) + λ ·
∣∣h(v′)− h(v)∣∣2 (1.5)

where c a positive cost function on Rp (e.g., a distance function) and λ > 0 is a large-enough
trade-off parameter forcing the output to change. The difference between the focal point
v and the returned input v′ sheds light on which features mattered in the decision making
process.

Parameter-tuning

The counterfactual explanation problem (1.5) can be tuned through the choice of the cost
function c and the trade-off parameter λ. Different choices lead to different explanations,
which raises the question of what a “good” counterfactual explanation is.

To some extent, this depends on the purpose of the explanation. For example, if we
were to provide recourse to a person who has been denied a loan, we would not furnish a
counterfactual explanation involving a change in nonactionable features such as the age, the
race, or the sex. However, this would become relevant if we were to uncover discriminatory
biases of the decision rule. This distinction between acting and understanding can be achieved
in practice by well-choosing the cost function or by adding constraints to the optimization
problem (Ustun et al., 2019).

It also became commonly agreed that counterfactual explanations should be sparse, that
is implying changes in a limited number of features. We refer to (Keane et al., 2021, Section
5) for further insights on this aspect. The intuition is that sparsity keeps explanations
simple and intelligible to humans. In their seminal work, Wachter et al. (2017) leveraged a
scaled version of Manhattan distance to ensure sparsity without, however, any control on the
sparsity level.

Lastly, many papers pointed out that Problem (1.5), by being oblivious of the underlying
probability distribution of the data, often returned out-of-distribution examples, leading
to unrealistic explanations and unfeasible recourse. This issue cannot be addressed by
simply modifying the cost function, but by more radical reformulations restricting the set
of attainable worlds. Proposed solutions include the use of generative models (Liu et al.,
2019) or high density path (Poyiadzi et al., 2020) to force minimal changes to end up within
the dataset, but also causal models (Karimi et al., 2021) to take into account dependencies
beyond mere correlations.
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As explained by Kuhl et al. (2022), refinements such as choosing a sophisticated cost
function, changing the trade-off parameter, or including a plausibility constraint are what
distinguish a counterfactual-explanation solution v′ from a mere adversarial example, defined
as imperceptible changes in the input switching the model’s output (Papernot et al., 2017).

The logic behind counterfactual explanations

Let us analyze this framework through the prism of Lewis’ original definition of counterfactuals.
For clarity, suppose that the focal point belongs to the negative class, that is h(v) < 0.5, and
consider v′ a solution to (1.5). Trivially, the following counterfactual statement holds:

Had the input been equal to v′, then the output class would have been 1. (1.6)

This justifies the name of counterfactual explanations. However, we emphasize that solving
(1.5) does not return any counterfactual explanations but specific ones. Recall that in general
the antecedent of a counterfactual does not provide minimally sufficient conditions for its
consequence to hold. Notably, any input v′ such that h(v′) > 0.5 provides a counterfactual
statement with the same consequence as (1.6). Therefore, encouraging the proximity between
v and v′ in (1.5) is critical for the explanation to be relevant as it excludes noninformative
antecedents that would be far from the decision boundary. As such, Problem (1.5) can be
seen as a process to pick out “good” counterfactual explanations. In light of this, we discuss
next two frequent confusions about this framework.

Counterfactual explanations and counterfactual counterparts

The returned input v′ is often lazily referred as the counterfactual of v. We believe this
denomination to be abusive and misleading, even for refined versions of Problem (1.5). For
given world of reference and consequent, there are never counterfactuals in themselves,
but counterfactuals had a given event occurred. However, Statement (1.6) does not specify
such an event; the antecedent “Had v been v′” does not trace back the input v′ to a
meaningful feature modification a ∈ A of the world of reference v, hence why we rather
call v′ an adversarial example or a counterfactual explanation to avoid confusion with the
counterfactual counterparts presented in Sections 1.3 and 1.4.

To further underline the distinction, let us evaluate the truthiness of Statement (1.6) in
a logician fashion. The world of reference is the focal point v, the antecedent is “The input is
equal to v′”, and the outcome is “The output class is 1”. In a first time, we must compute the
most similar worlds to v satisfying the antecedent. This operation is straightforward: v′ is the
only world being equal to v′, thereby satisfying this property. Then, because h(v′) > 0.5 by
construction, the outcome holds and the counterfactual statement is true. Observe that the
main challenge of counterfactual verification, that is applying faithful interventions to attain
the antecedent, is trivialized the context of vanilla counterfactual explanations. Naturally, v′

could be the result of some intervention Ta on v, but this hypothetical step is completely
ignored by default; we explain a few paragraphs below how to integrate interventions to
explanations. To sum-up, in the standard counterfactual-explanation framework, only the
explanation is counterfactual, not the generated input.

We emphasize that the issue we are pointing out is more about denomination than
utility, since knowing a reachable target v′ is always useful, especially in a recourse scenario.
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Nevertheless, the sole information of the target feels shallow in a fairness-auditing context,
where one would like to understand whether the change from v to v′ suggests a change in
the person’s sex or race for example.

Input modification versus output modification

Keep in mind that the computation of counterfactual explanations does not correspond to an
intervention on the classifier’s output. The counterfactual-explanation principle, looking for
the closest instances so that the output differs, inopportunely resembles Lewis’s computation
of alternatives worlds, looking for the most similar instances so that the antecedent holds.
Should we intervene on the output, the alternative example v′ would correspond to the most
similar alternative world such that h(v′) > 0.5 holds, rendering the counterfactual statement:

Had the output class been equal to 1, then the input would have been v′. (1.7)

However, since we aim at explaining the output class, it must characterize the consequent
in the counterfactual statement, not the antecedent. Moreover, this viewpoint would be
irrelevant even for explaining the features: it is the input that causes the decision, not the
contrary. Therefore, there cannot be downstream effects of the modification of the output
onto the features.

To sum-up, the standard formulation of the counterfactual explanation problem is criti-
cally not related to counterfactual inference. It simply selects the most relevant counterfactual
explanation among all possible ones. The misunderstanding in the broad area of counterfac-
tuals for machine learning largely comes from the lack of clarity on this matter. We believe
that the key for transparency lies in analyzing any counterfactual framework through the
prism of Lewis’s original formulation presented in Section 1.2. That being said, we now turn
to the limitations of (1.5) and possible solutions.

1.5.2 Intervention-based counterfactual explanations

As aforementioned, solving (1.5) with a classical distance often generates unfaithful explana-
tions or unfeasible recourse, as the adversarial examples may not be the result of a realistic
intervention. Additionally, it does not accompany by default the generated example by an
explanatory action on the focal point. A way of addressing this issue is to clearly define the
counterfactual model first, and then restrict the possible counterexamples v′ to the points
attainable by applying interventions on the focal point v.

We use the same notations as in Section 1.2 where A represents the set of possible
interventions over a list I ⊆ {1, . . . , p} of manipulable features. The choice of I heavily
depends on the considered objective. If for instance the goal is to compute algorithmic
recourse, then any interventions on immutable attributes such as the race should be excluded
from this list. In contrast, they are relevant if the goal is to uncover discriminatory biases.
Assuming for simplicity that alternative worlds are deterministically implied, we denote by
Ta(v) the unique counterpart of any factual world v ∈ V after applying a ∈ A, namely the
counterfactual counterpart of v had a occurred. Typically, for a := (I, ṽI) the transformation
Ta can be induced by the do-intervention do(I, ṽI) on a presumed causal model generating
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the data, as proposed in Karimi et al. (2021). Then, letting F(v) = {Ta(v) | a ∈ A}, we can
define the following refined counterfactual-explanation optimization problem:

min
v′∈F(v)

c(v, v′) + λ ·
∣∣h(v′)− h(v)∣∣2, (1.8)

which can be recast as

min
a∈A

c(v, Ta(v)) + λ · |h(Ta(v))− h(v)|2. (1.9)

The benefit of this last formulation is that it poses the problem in terms of finding meaningful
actions rather than finding adversarial examples. Thus, it produces statements of the form,

Had a occurred, then the output class would have been 1, (1.10)

adding a layer of information to (1.6). The pitfall comes from the set A being infinite in
general, for instance as soon as one actionable feature is continuous. In particular, this
imposes to discretize the space of feasible actions to practically solve (1.9), leading to an
approximated explanation. In addition, looking for the less-costly action within a fine-grained
space can be expensive.

In this section, we showed how to interface counterfactuals with explicability techniques
for artificial-intelligence systems. In the sequel, we focus on the interest of counterfactual
inference in algorithmic fairness.

1.6 Counterfactuals in fairness

In the introduction of this manuscript, we mentioned a number of notoriously unfair algorithms
and gave insights on the origin of such biases. We also considered fairness-inspired examples
of causal inference in Section 1.4. However, we still have not properly formalized what it
means for an algorithmic decision rule to be fair. This is the role of this section, which briefly
reviews classical fairness criteria.

1.6.1 Standard definitions of fairness

What does it mean for a decision to be fair? For example, should someone’s application
receive a negative appraisal while a very similar one gets positive evaluation, the assessment
process would be naturally deemed unfair. This intuition motivated the guiding principle
of treating similar individuals similarly formalized by Dwork et al. (2012): a decision rule
is individually fair if it renders similar outputs to similar inputs. Formally, letting l > 0, a
(deterministic) decision rule h : V → R is l-individually fair if for (almost) every (v, v′) ∈ V,
|h(v)− h(v′)| ≤ l∥v − v′∥.

In addition to this principle, we generally consider that a fair rule must not discriminate,
that is must not make distinction on the basis of so-called protected or sensitive attributes
such as race, sex, gender, sexual orientation, religious belief, political opinion and age. Many
research papers proposed formal criteria to encode different notions of “excluding” or “ignoring”
protected attributes from the decision making process. The most straightforward criteria
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called fairness through unawareness requires the decision rule not to take the protected
attribute, encoded by a variable s ∈ S, as an entry of its formula. More precisely, a
deterministic decision rule h : X × S → R satisfies fairness through unawareness if there
exists some h̃ : X → R such that for every s ∈ S, h(·, s) = h̃(·).

For example, a fair hiring process satisfying individual fairness and unawareness is
expected to give similar reviews to individuals with similar skills while ignoring the difference
in sex or race. However, even though this first notion of fairness through unawareness seems
legitimate, it does not prevent an algorithm to discriminate on the basis of a protected
attribute encoded by a random variable S : Ω→ S. This is due to the other input variables
X : Ω→ X being correlated with S (e.g., the height and salary of a person are correlated
with their sex), enabling the algorithm to infer the protected attribute through the features
to make unfair decisions. This issue led to the definition of statistical or demographic parity :
a fairness condition requiring the statistical independence between decisions and protected
attributes. In the sequel, Ŷ denotes a predictor of some target variable Y : Ω → Y ⊆ R,
defined as a deterministic function of either X and S (aware) or solely X (unaware). Then,
Ŷ satisfies statistical parity if Ŷ ⊥⊥ S.

For a binary classifier, that is when Y = {0, 1}, this simply signifies equal rates of
positive decisions across protected groups. If additionally S = {0, 1}, then statistical parity
is commonly evaluated through the disparate impact,

DI(Ŷ , S) :=
min

{
P(Ŷ = 1 | S = 1),P(Ŷ = 1 | S = 0)

}
max

{
P(Ŷ = 1 | S = 1),P(Ŷ = 1 | S = 0)

} , (1.11)

which equals 1 when fairness is perfectly achieved and approaches 0 as the predictor becomes
more unfair. Importantly, the main interest of statistical parity is to prevent the use of unfair
proxies: irrelevant variables in X for the prediction task that are correlated to the protected
attributes S. Typically, a few-month gap in the work experience likely corresponds to a
maternity leave, and could be used to unfavor women even without explicit mention of the
gender in the resumes. While this provides a well-founded notion of fairness, complying with
parity is arguably undesirable in some cases where some differences in the distributions of X
conditional on S = s are relevant for the decision-making process. In certain fields, women
tend to have less adequate profiles experience-wise than men due to societal inequalities.
Therefore, asking for parity means recruiting less-experienced women than some rejected
men, which would be deemed unfair according to individual fairness. This raises the question
of whether companies (or other institutions) should carry out affirmative actions to address
structural inequalities they are not directly responsible for. For example, a US federal law
constraints employers to have a disparate impact above 80% except if they can justify the
discrimination by economic interests (Civil Rights Act, 1964). Note that the fairness-inspired
illustration of potential-outcome counterfactuals from Section 1.4 also called attention to
this question.

Critically, statistical parity is tailored to prediction tasks where the outcomes can be
graduated into desirable ones and undesirable ones (e.g., a higher or lower salary, acceptance
of rejection) and becomes irrelevant for prediction tasks such as image labelling. Imagine a
classifier meant to automatically recognize individuals on pictures. It would not make sense
to ask the classifier to give similar outputs in average between white and black individuals.
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However, we would expect it to be equally accurate across race groups. This led to the
definition of equality of odds, the accuracy pendant of statistical parity (Hardt et al., 2016):
a predictor Ŷ satisfies equality of odds if Ŷ ⊥⊥ S | Y .

While there exist other fairness conditions with respect to sensitive attributes, such as
avoiding disparate treatment (Ŷ ⊥⊥ S | X) and predictive parity (Y ⊥⊥ S | Ŷ ), statistical
parity and equality of odds have become the gold-standard criteria in the fair learning
literature. Note in passing that these two conditions are often incompatible: no algorithm
can simultaneously satisfy statistical parity and equality of odds, except if Y is independent
of S (Kleinberg et al., 2017). Thus, in the very common situation where the outcome itself
is biased by the protected attributes, one cannot impose both fairness conditions. More
generally, tensions and incompatibilities between fairness conditions prevent practitioners
from piling-up fairness guarantees when designing predictors. In practice, trade-offs must be
made according to the prediction task, but also feasibility and legal constraints.

Regarding ethical and legal aspects, criteria such as statistical parity and equality of
odds are notoriously limited since they only provide notions of group fairness, and do not
control discrimination at a subgroup or an individual level: a conflict illustrated by Dwork
et al. (2012). In particular, the current French law only recognizes discrimination at the
individual level, making group fairness conditions nonoperational. This justifies the need for
sharper definitions, ensuring the protection of sensitive attributes at every decisions. Next,
we explain how counterfactuals provide a rigorous basis to address this problem.

1.6.2 Counterfactual-based fairness

While it is straightforward to test group fairness conditions, for instance by computing the
disparate impact on a testing set and verifying its closeness to 1, there is no natural way to
control for discrimination at the individual level. An interesting procedure is the one adopted
for human-based decisions by the Observatoire des Discriminations5 in France. When an
individual complains that they were denied a position because of their presumed origin, the
organization constructs a fake application with equal relevant skills and work experience,
but changing all origin indicators (e.g., name, residence) to white-connoted ones. Should
the company consider this application, the decision would be judged racist, hence unfair.
Observe that this test tries to answer the counterfactual query “Had the applicant been
white, would have they been accepted?” using a ceteris-paribus approach. This provides an
intuitively legitimate condition to uncover occurrences of discrimination.

However, especially in the case of machine learning, simply switching the protected
attribute while keeping the other features equal is notoriously inefficient for three reasons.
First, as mentioned before, because of strong correlations between the features, the machine
often learns a proxy instead of the explicit attribute. This is why it is hard to test their
fairness: some algorithms will appear to be fair because they pass the attribute-switch test,
all the while being discriminatory. Second, also because of statistical correlations between
features, an individual with a flipped attribute ceteris paribus can easily become an outlier
of the targeted population. For example, a tall well-paid man can be representative of the
men distribution, whereas a tall well-paid woman may not be statistically representative of
her gender group. Because the algorithm is trained on realistic data-sets, it lacks sufficient

5https://www.observatoiredesdiscriminations.fr/testing

https://www.observatoiredesdiscriminations.fr/testing
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information to make well-founded decisions on such irregularities. Third, as most of the
algorithms do not even take protected attributes as entry variables (they are fair through
unawareness), simply switching them cannot impact the decision. Yet, they can still be
discriminatory because of the aforementioned proxy problem.

Definition(s)

The above discussion contextualizes into fairness-related problems what we previously ex-
plained on the necessity for sophisticated counterfactual models taking into account depen-
dencies between features. For instance, Kusner et al. (2017) proposed to rely on SCMs
to alter the protected attribute, leading to the accepted notion of counterfactual fairness
which requires the algorithm to treat equally individuals and their structural counterfactual
counterparts. Mathematically, a predictor Ŷ := h(X,S) is counterfactually fair if for every
possible observation {X = x, S = s} and modification s′ ∈ S,

L
(
ŶS=s | X = x, S = s

)
= L

(
ŶS=s′ | X = x, S = s

)
,

where ŶS=s := h(XS=s, s). We could generalize this definition to SCM-free constructions
of counterfactual counterparts, to other counterfactual models. This idea is the crux of
Chapter 2, where we build counterfactuals using mass-transportation techniques, leading to
an original noncausal individual fairness condition (see Definition 2.5.2). In passing, note
also that adapting counterfactual fairness to ceteris-paribus counterparts recovers fairness
through unawareness.

Fairness auditing

As explained at the beginning of this discussion, whatever the considered model of inter-
ventions, counterfactual reasoning also has promising applications in fairness auditing of
classifiers. It permits to compare a factual outcome with its counterfactual outcome “had
S been flipped”, therefore to test whether S mattered in the decision-making process at
the individual scale. In (Alvarez and Ruggieri, 2023), the authors developed such a testing
procedure, making it robust to random occurrences of discrimination by studying output
variations over neighborhoods of the factual and counterfactual inputs.

But more interestingly, it permits to explain the role of S in the decision. The FlipTest
of Black et al. (2020) records the changes in X of all the counterfactual pairs “had S been
flipped” for which there is discrimination (i.e., Ŷ differs). These changes shed light on the
features tainted by the protected attribute that mattered the most in the decision making
process. Crucially, this enables experts of the prediction task to assess whether the classifier
actually relied on unfair proxies. More concretely, let S be the sex and X contain the
height among other variables. Due to the correlation between height and sex, intervening on
the sex will likely incur a height modification. However, the unfairness of using height in
the decision-making process seems to depend on the scenario. For illustration, figure out
algorithmic recruitment procedures: in the case of an office job recruitment, taking height
into account is obviously unfair; in the case of casting actors or models, not necessarily. This
emphasizes that fairness and explainability are intertwined; one cannot rigorously assess or
ensure algorithmic fairness if they cannot understand the basis on which decisions are made.
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For curious readers, we prove the statistical consistency of the FlipTest in (De Lara et al.,
2021b) (which we did not include in this manuscript for the sake of succinctness). Note also
that the FlipTest leverages optimal transport instead of SCMs to compute counterfactuals,
which greatly motivated the work presented in the next chapter.
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Appendix 1.A Proofs of Section 1.3

Proof of Proposition 1.3.1 SinceM is acyclical, there exists a topological ordering on
the indices in I, and therefore on the subset J . This means in particular that there exist
some j ∈ J such that Gj takes only variables in VI as endogenous inputs. Starting from these
indices, and recursively substituting along the topological ordering produces a measurable
FJ such that

VJ
P−a.s.
= FJ(VEndo(J)\J , UExo(J)).

Note that Endo(J) \ J ⊆ I. Carrying out the same substitution on the intervened model
MVI=vI with solution Ṽ gives

ṼJ
P−a.s.
= FJ(vEndo(J)\J , UExo(J)),

while by definition ṼI
P−a.s.
= vI .

Appendix 1.B Proofs of Section 1.4

Proof of Proposition 1.4.1 Let s ∈ S and recall that according to Proposition 1.3.1,

YS=s
P−a.s.
= FY (s,XS=s, UY )

XS=s
P−a.s.
= FX(s, UX).

This means that these identities hold on a measurable set Ω∗ ⊆ Ω such that P(Ω∗) = 1.
Next, observe that for any ω ∈ Ω∗ such that S(ω) = s, we have

X(ω) = FX(s, UX(ω)) = XS=s(ω),

therefore

YS=s(ω) = FY (s,X(ω), UY (ω)) = FY (S(ω), X(ω), UY (ω)) = Y (ω).

This concludes the proof.

Proof of Theorem 1.4.1 Let us compute the conditional joint distribution L((Ys′′)s′′∈S |
X = x, S = s) which is well-defined for all x ∈ X(Ω) and s ∈ S by positivity. The consistency
rule entails that

L((Ys′′)s′′∈S | X = x, S = s) = L((Y0, . . . , Ys−1, Y, Ys+1, . . . , YN ) | X = x, S = s).

Moreover, according toM the observed outcome can be written as Y P−a.s.
= FY (S,X,UY ),

leading to

L((Ys′′)s′′∈S | X = x, S = s) = L((Y0, . . . , Ys−1, FY (s, x, UY ), Ys+1, . . . , YN ) | X = x, S = s).
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Next, remark that Assumption (O) entails that UY ⊥⊥ (S,X). Therefore, it follows from
(Ys)s∈S ⊥⊥ X | S that for any s′ ̸= s the above equality is equivalent to

L((Ys′′)s′′∈S | X = x) = L((Y0, . . . , Ys−1, FY (s, x, UY ), Ys+1, . . . , YN ) | X = x, S = s′).

Then, using once the again the consistency rule we obtain

L((Ys′′)s′′∈S | X = x) = L((Y0, . . . , FY (s, x, UY ), . . . , Ys′−1, Y, Ys′+1, . . .) | X = x, S = s′),

and the expression of Y through FY yields

L((Ys′′)s′′∈S | X = x) = L((Y0, . . . , FY (s, x, UY ), . . . , FY (s′, x, UY ), . . .) | X = x, S = s′).

We repeat this step by conditioning on all possible values of S to finally obtain

L((Ys′′)s′′∈S | X = x, S = s) = L((FY (s′′, x, UY )s′′∈S) | X = x, S = s).

Therefore, since UY ⊥⊥ (S,X), marginalizing on (S,X) yields

L((S,X, (Ys)s∈S)) = L((S,X, (FY (s,X,UY ))s∈S)).



Chapter 2

Transport-based counterfactual models

Counterfactual frameworks have grown popular in machine learning for both explaining
algorithmic decisions but also defining individual notions of fairness, more intuitive than
typical group fairness conditions. However, state-of-the-art models to compute counterfactuals
are either unrealistic or unfeasible. In particular, while Pearl’s causal inference provides
appealing rules to calculate counterfactuals, it relies on a model that is unknown and
hard to discover in practice. We address the problem of designing realistic and feasible
counterfactuals in the absence of a causal model. We define transport-based counterfactual
models as collections of joint probability distributions between observable distributions,
and show their connection to causal counterfactuals. More specifically, we argue that
optimal-transport theory defines relevant transport-based counterfactual models, as they
are numerically feasible, statistically-faithful, and can coincide under some assumptions
with causal counterfactual models. Finally, these models make counterfactual approaches to
fairness feasible, and we illustrate their practicality and efficiency on fair learning. With this
chapter, we aim at laying out the theoretical foundations for a new, implementable approach
to counterfactual thinking.

2.1 Introduction

A counterfactual states how the world should be modified so that a given outcome occurs. For
instance, the statement had you been a woman, you would have gotten half your salary is a
counterfactual relating the intervention “had you been a woman” to the outcome “you would
have gotten half your salary”. Counterfactuals have been used to define causation (Lewis,
1973a) and hence have attracted attention in the fields of explainability and robustness
in machine learning, as such statements are tailored to explain black-box decision rules.
Applications abound, including algorithmic recourse (Joshi et al., 2019; Poyiadzi et al., 2020;
Karimi et al., 2021; Slack et al., 2021; Bajaj et al., 2021; Rasouli and Chieh Yu, 2022), defense
against adversarial attacks (Ribeiro et al., 2016; Moosavi-Dezfooli et al., 2016) and fairness
(Kusner et al., 2017; Black et al., 2020; Plecko and Meinshausen, 2020; Asher et al., 2021).

State-of-the-art models for computing meaningful counterfactuals have mostly focused on
the nearest counterfactual explanation principle (Wachter et al., 2017), according to which
one finds minimal translations, minimal changes in the features of an instance that lead
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to a desired outcome. However, as noted by Black et al. (2020) and Poyiadzi et al. (2020),
this simple distance approach generally fails to describe realistic alternative worlds, as it
implicitly assumes the features to be independent. Changing just the sex of a person in
such a translation might convert from a typical male into an untypical female, rendering
out-of-distribution counterfactuals like the following: if I were a woman I would be 190cm
tall and weigh 85 kg. According to intuition, such counterfactuals are false and rightly so
because they are not representative of the underlying statistical distributions. As a practical
consequence, such counterfactuals typically hide biases in machine learning decision rules
(Lipton et al., 2018; Besse et al., 2021).

The link between counterfactual modality and causality motivated the use of Pearl’s
causal modeling (Pearl, 2009) to address the aforementioned shortcoming (Kusner et al.,
2017; Joshi et al., 2019; Mahajan et al., 2020; Karimi et al., 2021). Pearl’s do-calculus,
by enforcing a change in a set of variables while keeping the rest of the causal mechanism
untouched, provides a rigorous basis for generating intuitively true counterfactuals. The cost
of this approach is fully specifying the causal model, namely specifying not only the Bayesian
network (or graph) capturing the causal links between variables, but also the structural
equations relating them, and the law of the latent, exogenous variables. The reliance on such
a strong prior makes the causal approach appealing in theory, but inadequate for deployment
on practical cases.

To sum-up, research has mostly focused on two divergent frameworks to compute coun-
terfactuals: one that proposes an easy-to-implement model that leads, however, to intuitively
untrue counterfactuals; another rigorously takes into account the dependencies between
variables to produce realistic counterfactuals, but at the cost of feasibility. Our contribution
addresses a third way. Extending the work of Black et al. (2020), who first suggested
substituting causality-based counterfactual reasoning with optimal transport, we define
transport-based counterfactual models. Such models, by characterizing a counterfactual opera-
tion as a coupling, a mass transportation plan between two observable distributions, ensures
that the generated counterfactuals are in-distribution, hence realistic. In addition, they
remedy to the impracticability issues of causal modeling as they can be computed through
any mass transportation techniques, for instance optimal transport. The major benefit of this
approach is that it renders doable many critical applications of counterfactual frameworks,
for example in algorithmic fairness.

2.1.1 Outline of contributions

We make both theoretical and practical contributions in the fields of counterfactual reasoning
and fair machine learning. We propose a mass-transportation framework for counterfactual
reasoning and point out its similarities to the causal approach. Additionally, we show
that counterfactual methods for fairness become feasible in this framework by introducing
and implementing transport-based counterfactual fairness criteria. More precisely, our
contributions can be outlined as follows.

1. Section 2.2 introduces the basics of mass transportation and optimal transport theory,
while we refer to Section 1.3 from Chapter 1 for the necessary background on Pearl’s
causal modeling. Both sections serve as the theoretical and notational toolbox that
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will be used throughout; they are meant to keep the chapter self-contained and can be
skipped by readers familiar with these subjects.

2. In Section 2.3, we firstly recall how to compute counterfactual quantities using causal
modeling. Then, we introduce a general causality-free framework for the computation of
counterfactuals through mass-transportation techniques, encompassing the approach of
Black et al. (2020). Essentially, we also propose a unified mass-transportation viewpoint
of counterfactuals, be them causal-based or transport-based, through the definition
counterfactual models, collections of couplings characterizing all possible counterfactual
statements for a given feature to alter (for example the gender). We provide concrete
examples of models, and discuss the limitations of the different approaches.

3. In Section 2.4, we leverage the unified formalism proposed in the previous section to
demonstrate connections between causality and optimal transport. More precisely, after
studying the implications of two general causal assumptions onto the induced counter-
factual models, we demonstrate that optimal transport maps for the quadratic cost
generates the same counterfactual instances as some specific causal models, including
the common linear additive models. We argue that this makes optimal-transport-based
counterfactual models relevant surrogates in the absence of a known causal model.

4. In Sections 2.5, 2.6 and 2.7, we illustrate the practicality of our approach for fairness
in machine learning. We apply the mass-transportation viewpoint of structural coun-
terfactuals by recasting the counterfactual fairness criterion (Kusner et al., 2017) into
a transport-like one. Then, we propose new causality-free criteria by substituting the
causal model by transport-based models in the original criterion. Finally, we address
the training of counterfactually fair classifiers, providing statistical guarantees and
numerical experiments over various datasets.

To sum-up: Sections 1.3 and 2.2 provide the prerequisites for the chapter; Sections 2.3 and 2.4
introduce the concept of counterfactual models and the corresponding theory; Sections 2.5 to 2.7
address fairness applications of these models.

2.1.2 Related work

This work follows the paper of Black et al. (2020), which focus on building sound counterfactual
quantities through optimal transport, deviating from both causal-based techniques and the
nearest-counterfactual-instance principle. Our contributions in Sections 2.3 and 2.4 can be
seen as the theoretical foundations of their approach, by shedding light on the link between
measure-preserving counterfactuals and structural counterfactuals. Also, we note that the
way we introduce the causal account for counterfactual reasoning in Section 2.3 concurs with
(Plecko and Meinshausen, 2020) and (Bongers et al., 2021). More precisely, we underline
that the objects of interest are the joint probability distributions, or couplings, generated
by manipulations of the causal model. Additionally, we propose in Section 2.5 a direct
extension of the counterfactual fairness frameworks introduced in (Kusner et al., 2017) and
(Russell et al., 2017) to transport-based counterfactual models, leading to a new method for
supervised fair learning. This relates our work to the rich literature on fair learning through
optimal transport (Gordaliza et al., 2019; Chiappa et al., 2020; Thibaut Le Gouic et al., 2020;
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Chzhen et al., 2020; Risser et al., 2022). Finally, we note that the main result of Section 2.4,
stating that optimal transport maps recover causal effects under specific assumptions, shares
similarities with the main theorem of (Torous et al., 2021). In contrast to our work, their
assumptions are motivated by the study of heterogeneous treatment effects, which concerns
counterfactual inference in the Neyman-Rubin causal framework (Rubin, 1974; Imbens and
Rubin, 2015).

2.2 Mass transportation

We firstly introduce the necessary background on mass (or measure) transportation. Then,
we detail the specific case of optimal transport.

2.2.1 Definition

In probability theory, the problem of mass transportation amounts to constructing a joint
distribution namely a coupling, between two marginal probability measures. Suppose that
each marginal distribution is a sand pile in the ambient space. A coupling is a mass
transportation plan transforming one pile into the other, by specifying how to move each
elementary sand mass from the first distribution so as to recover the second distribution.
Alternatively, we can see a coupling as a random matching which pairs start points to end
points between the respective supports with a certain weight. Formally, let P,Q be both
Borel probability measures on Rd, whose respective supports are denoted by supp(P ) and
supp(Q). We recall that the support is the set of points x ∈ Rd such that every open
neighbourhood of x has a positive probability. A coupling between P and Q is a probability
measure π on Rd × Rd admitting P as first marginal and Q as second marginal, precisely
π(E1 × Rd) = P (E1) and π(Rd × E2) = Q(E2) for all Borel sets E1, E2 ⊆ Rd. Throughout
the manuscript, we denote by Π(P,Q) the set of joint distributions over Rd × Rd whose
marginals coincide with P and Q respectively.

A coupling π ∈ Π(P,Q) is said to be deterministic if each instance from the first
marginal is paired with probability one to an instance of the second marginal. Such a
coupling can be identified with a measurable map T : Rd → Rd that pushes forward P
to Q, that is Q(E) := P (T−1(E)) for any Borel set E ⊆ Rd. This property, denoted by
T♯P = Q, means that if the law of a random variable Z is P , then the law of T (Z) is Q.
To make the relation with random couplings, we also introduce the action of couples of
functions on probability measures. For any pairs of functions T1, T2 : Rd → Rd, we define
(T1 × T2) : Rd → Rd × Rd, x 7→ (T1(x), T2(x)). As such, (T1 × T2)♯P denotes the law of(
T1(Z), T2(Z)

)
where L(Z) = P . This coupling admits T1♯P and T2♯P as first and second

marginal respectively. Thus, the deterministic coupling π between P and Q characterized
by a push-forward operator T satisfying T♯P = Q can be written as π = (I × T )♯P where
I is the identity function on Rd. This coupling matches a given instance x ∈ supp(P ) to
T (x) ∈ supp(Q) with probability 1. We write T (P,Q) for the set of measurable mappings
pushing forward P to Q.
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2.2.2 Optimal transport

We recall here some basic knowledge on optimal transport theory, which is the mass trans-
portation approach we focus on in this work, and refer to (Villani, 2003, 2008) for further
details. Optimal transport restricts the set of feasible couplings between two marginals by
isolating ones that are optimal in some sense.

Arbitrary cost

The Monge formulation of the optimal transport problem with general cost c : Rd ×Rd → R
is the optimization problem

min
T∈T (P,Q)

∫
Rd

c(x, T (x))dP (x). (2.1)

We refer to solutions to (2.1) as optimal transport maps between P and Q with respect to
c; they minimize the effort, quantified by c, of moving every elementary mass from P to Q.
One mathematical complication is that the push-forward constraint renders the problem
unfeasible in many general settings, in particular when P and Q are not absolutely continuous
with respect to the Lebesgue measure or have unbalanced numbers of atoms.

This issue motivates the following Kantorovich relaxation of the optimal transport problem
with cost c,

min
π∈Π(P,Q)

∫
Rd×Rd

c(x, x′)dπ(x, x′). (2.2)

Solutions to (2.2) are optimal transport plans (possibly non deterministic) between P and
Q with respect to c. In contrast to optimal transport maps, they exist under very mild
assumptions, like the non negativeness of the cost. Notice that, since a push-forward operator
can be identified to a coupling, the set of feasible solutions to (2.1) is included in the set of
feasible solutions to (2.2).

Quadratic cost

Optimal transport enjoys a well-established theory, in particular when the ground cost
is the squared Euclidean distance c(x, x′) := ∥x− x′∥2 on Rd × Rd. Suppose that P is
absolutely continuous with respect to the Lebesgue measure in Rd, and that both P and
Q have finite second order moments. Theorem 2.12 in Villani (2003), originally proved by
Cuesta and Matrán (1989) and then Brenier (1991), states that there exists a unique solution
to Kantorovich’s formulation of optimal transport (2.2), whose form is (I × T )♯P where
T : Rd → Rd solves the corresponding squared Monge problem,

min
T : T♯P=Q

∫
Rd

∥x− T (x)∥2dP (x). (2.3)

Although it may not be unique, this optimal transport map T is uniquely determined
P -almost everywhere, and we will abusively refer to it as the solution to Problem (2.3).
Crucially, this map coincides P -almost everywhere with the gradient of a convex function.
Moreover, according to McCann (1995), under the sole assumption that P is absolutely
continuous with respect to the Lebesgue measure, there exists only one (up to P -negligible
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sets) gradient of a convex function ∇ϕ satisfying the push-forward condition ∇ϕ♯P = Q. We
combine Brenier’s and McCann’s theorems into the following lemma, which simplifies the
search for the solutions to (2.3).

Lemma 2.2.1: “Brenier + McCann”

Assume that P is absolutely continuous with respect to the Lebesgue measure, and
that both P and Q have finite second order moments. Then, a measurable map
T : supp(P )→ supp(Q) is a solution to (2.3) if and only if it satisfies the two following
conditions:

1. T♯P = Q,

2. there exists a convex function ϕ : Rd → R such that T = ∇ϕ P -almost everywhere.

This result will play a key role in Section 2.4.2 to prove a link between optimal transport
and causality.

Implementation

In practice, we do not know the measures P and Q but have access to empirical observations.
This naturally raises the questions of building relevant data-driven approximations, or
estimators, of the optimal transport plans, and of what should be required to ensure
statistical guarantees. In this section, we briefly present the computational aspects of optimal
transport, and refer to (Peyré and Cuturi, 2019) for a complete overview.

Concretely, consider two samples of i.i.d. observations {x1, . . . , xn} and {x′1, . . . , x′m}
drawn from respectively P and Q. These samples define the empirical measures Pn =
n−1

∑n
i=1 δxi and Qm = m−1

∑m
i=1 δx′i , where δx denotes the Dirac measure at point x. Then,

the standard way to estimate an optimal transport plan between the marginals P and Q is
to solve the Kantorovich formulation (2.2) between their empirical counterparts Pn and Qm.
By identifying a discrete coupling to a matrix, we write this problem as,

min
π∈Σ(n,m)

n∑
i=1

m∑
j=1

c(xi, x
′
j)π(i, j), (2.4)

where Σ(n,m) := {π ∈ Rn×m+ |
∑m

j=1 π(i, j) = n−1 and
∑n

i=1 π(i, j) = m−1}. Note that
empirical transport plans are statistically consistent. This means that if the Kantorovich
problem (2.2) admits a unique solution π, then a sequence {πn,m}n,m∈N of solutions to
Problem (2.2) converges weakly to π as n and m increase to infinity (Villani, 2008, Theorem
5.19). This property is crucial to ensure statistical guarantees in optimal-transport frameworks.
We emphasize that even if a solution to Problem (2.4) is necessarily nondeterministic as soon
as n ̸= m, the corresponding solution to Problem (2.2) can be deterministic.

The main challenge when working with empirical optimal-transport solutions is that
they are expensive in both computational complexity and memory: solving (2.4) typically
requires O((n+m)nm log(n+m)) computer operations, and the solution is stored as an
n×m matrix, which can limit the application on large datasets. Our implementation (see the
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experiments in Section 2.7) exploits the sparsity of the transport matrix to avoid overloading
the memory and to speed-up the evaluation of optimal-transport-based metrics. One could
also consider entropic regularization schemes to accelerate the computation of a solution
to reach O(nm) operations (Cuturi, 2013). However, the obtained approximation of the
transport matrix is typically non sparse, hence contains many nonzero coefficients, which
precludes memory-efficient implementations. This is why we address only standard optimal
transport in our numerical experiments.

2.3 Counterfactual models

We now have all the tools to focus on the main subject of this chapter: counterfactual
reasoning. As mentioned in the introduction, both causality and transport techniques have
been used for this purpose. However, a yet nonappreciated aspect is that these frameworks
can be written in a common formalism; this is what this section addresses. More precisely,
we propose the definition of counterfactual models, mathematical objects encoding the
probabilities of all counterfactual statements with respect to modifications of one variable,
and detail how to construct them with respectively causal models and mass-transportation
methods.

2.3.1 Problem setup

Set d ≥ 1, and define the random vector V := (X,S) ∈ Rd+1, where the variables X :
Ω → X ⊆ Rd represent some observed features, while the variable S : Ω → S ⊂ R can be
subjected to interventions. For simplicity, we assume that S is finite such that for every
s ∈ S, P(S = s) > 0. We consider the problem of computing the potential values of X when
changing S. Typically, S represents the sensitive, protected attribute in fairness settings, or
the treatment status in the potential-outcome framework. Suppose for instance that the event
{X = x, S = s} is observed, and set s′ ̸= s. We aim at answering the counterfactual question:
had S been equal to s′ instead of s, what would have been the value of X? Critically, because
of correlations or structural relations between the variables, computing the alternative state
does not amount to change the value of S while keeping the features X equal.

2.3.2 Structural counterfactuals

Answering the counterfactual question from Section 2.3.1 with Pearl’s framework requires to
assume causal dependencies between X and S. Formally, suppose that V = (X,S) ∈ Rd+1

is the unique solution to an SCM M = ⟨U,G⟩ satisfying the acyclicity assumption (A). We
recall that each endogenous variable Vk is then defined (up to sets of probability zero) by
the structural equation

Vk
P−a.s.
= Gk

(
VEndo(k), UExo(k)

)
,

where Gk is a real-valued measurable function, U is a vector of exogenous variables, while
VEndo(k) and UExo(k) denote respectively the endogenous and exogenous parents of Vk. In
the following, we denote by UX and US the exogenous parents of respectively X and S. We
write XS=s the intervened counterpart of X through the do-intervention do(S = s), that is
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after replacing the structural equation on S by S = s while keeping the rest of the causal
mechanism equal.

Then, we introduce the following notations to formalize the contrast between inter-
ventional, counterfactual and factual outcomes. For s, s′ ∈ S we define three probability
distributions. Firstly, µs := L(X | S = s) is the distribution of the factual s-instances. This
observable measure describes the possible values of X such that S = s, and we write Xs for
its support. Secondly, we denote by µS=s := L(XS=s) the distribution of the interventional
s-instances. It describes the alternative values of X in a world where S is forced to take
the value s. On the contrary to the factual distribution, the interventional distribution is
in general not observational, in the sense that we cannot draw empirical observations from
it. Finally, we define by µ⟨s′|s⟩ := L(XS=s′ | S = s) the distribution of the counterfactual
s′-instances given s. It describes what would have been the factual instances of µs had S been
equal to s′ instead of s. According to the consistency rule (Pearl et al., 2016), the factual
and counterfactual distributions coincide when s = s′, that is µs = µ⟨s|s⟩. However, when
s ̸= s′, the counterfactual distribution µ⟨s′|s⟩ is generally not observable.

Definition

Using the above notation, our problem can be framed as: having observed an x ∈ Xs,
determining the probability of the counterfactual outcome x′ ∈ supp(µ⟨s′|s⟩). Pearl originally
answered this question with the following three-step procedure: (1) set a prior L(U) for
the SCM, (2) compute the posterior distribution L(U | X = x, S = s), and (3) solve the
structural equations after the intervention do(S = s′) with L(U | X = x, S = s) as input.
This leads to the following formal definition of structural counterfactuals, adapted from (Pearl
et al., 2016, Chapter 4).

Definition 2.3.1: Structural counterfactuals

Let M satisfy (A). For an observed evidence {X = x, S = s} and an intervention
do(S = s′), the structural counterfactuals of X are characterized by the probability
distribution µ⟨s′|s⟩(·|x) defined as

µ⟨s′|s⟩(·|x) := L(XS=s′ | X = x, S = s).

In general, the structural counterfactuals of a single instance are not necessarily deter-
ministic, that is characterized by a degenerate distribution, but belong to a set of possible
outcomes with probability weights. This comes from the fact that several values of U can
generate a same observation {X = x, S = s}. This means that, according to Pearl’s causal
reasoning, there is not necessarily a one-to-one correspondence between factual instances
and counterfactual counterparts, but a collection of weighted correspondences described by
the distribution of structural counterfactuals.

Mass-transportation viewpoint

While the mainstream literature on causality generally operates with the definition of
structural counterfactuals given by the three-strep procedure (Kusner et al., 2017; Barocas



2.3. COUNTERFACTUAL MODELS 69

et al., 2019), we focus in this chapter on a mass-transportation viewpoint of counterfactuals,
formalized by the following definition.

Definition 2.3.2: Structural counterfactual model

LetM satisfy (A). For every s, s′ ∈ S, the structural counterfactual coupling between
µs and µ⟨s′|s⟩ is given by

π∗⟨s′|s⟩ := L
(
(X,XS=s′) | S = s

)
.

We call the collection of couplings Π∗ := {π∗⟨s′|s⟩}s,s′∈S the structural counterfactual
model on X with respect to S.

In this formalism, the quantity dπ⟨s′|s⟩(x, x
′) is the elementary probability of the counterfac-

tual statement had S been equal to s′ instead of s then X would have been equal to x′ instead
of x. As such, a counterfactual model characterizes the distribution of all the cross-world
statements on X with respect to changes of S. Note that each realization of π∗⟨s′|s⟩, that is
each pair of factual instance and counterfactual counterpart, is generated by a same possible
value of L(UX | S = s).

We point out that Definitions 2.3.1 and 2.3.2 characterize the exact same counterfactual
statements, the formal link being dπ∗⟨s′|s⟩(x, x

′) = µ⟨s′|s⟩(x
′|x)dµs(x). In particular, there is an

equivalence between µ⟨s′|s⟩(·|x) narrowing down to a single value for every x ∈ Xs and π∗⟨s′|s⟩
being a deterministic coupling. Assumptions rendering single-valued counterfactuals will be
studied in Section 2.4.1. We also note that this joint-probability-distribution perspective of
Pearl’s counterfactuals concurs with the one from (Bongers et al., 2021, Section 2.5).

2.3.3 Transport-based counterfactuals

The main issue of structural counterfactuals, which will be widely discussed in Section 2.3.5,
comes from the causal model being unknown in practice. Thus, the necessity to make
counterfactual frameworks feasible naturally raises the question of finding good surrogates to
causal counterfactuals. We have seen that the problem of assessing counterfactual statements
about X with respect to interventions on S using causal models could be reduced to knowing
a collection of random mappings from factual distributions {µs}s∈S towards counterfactual
distributions {µ⟨s′|s⟩}s,s′∈S . This perspective suggests that mass-transportation techniques
can be natural substitutes for structural counterfactual reasoning, as they remedy to the
aforementioned issues.

Definition

In (Black et al., 2020), the authors mimicked the structural account of counterfactuals by
computing alternative instances using a deterministic optimal transport map. Extending
their idea, we propose a more general framework where the counterfactual operation switching
S from s to s′ can be seen as a mass transportation plan, not necessarily optimal-transport
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based and not necessarily deterministic, between two distributions.1 In the following,
t : Rd × Rd → Rd × Rd, (x, x′) 7→ (x′, x) denotes the permutation function.

Definition 2.3.3: Transport-based counterfactual model

A transport-based counterfactual model is a collection of couplings Π :=
{
π⟨s′|s⟩

}
s,s′∈S

satisfying for every s, s′ ∈ S,

(i) π⟨s′|s⟩ ∈ Π(µs, µs′);

(ii) π⟨s|s⟩ = (I × I)♯µs;

(iii) π⟨s|s′⟩ = t♯π⟨s′|s⟩.

An element of Π is called a counterfactual coupling. We say that Π is a random
counterfactual model if at least one coupling for s ̸= s′ is not deterministic. Otherwise,
we say that Π is a deterministic counterfactual model. In the deterministic case, Π
can be identified almost everywhere to a collection T :=

{
T⟨s′|s⟩

}
s,s′∈S of measurable

mappings from X to X satisfying for every s, s′ ∈ S,

(i) T⟨s′|s⟩♯µs = µs′ ;

(ii) T⟨s|s⟩ = I;

(iii) T⟨s′|s⟩ is invertible µs-almost everywhere such that T⟨s|s′⟩ = T−1
⟨s′|s⟩.

An element of T is called a counterfactual operator.

Similarly to structural counterfactual models, these models assign a probability to all the
cross-world statements on X with respect to interventions on S. By convention, we use the
superscript ∗ to denote structural counterfactual models, and no superscript for transport-
based counterfactual models. The marginal constraint (i) in Definition 2.3.3 translates the
intuition that a realistic counterfactual operation on S should morph the nonintervened
variables X so that their values fit the targeted distribution. In this sense, transport-based
models preserve the principle that features are not independently manipulable, but without
using causal relations. The symmetry constraints (ii) and (iii) cover the reciprocity intuition
we have on counterfactuals counterparts. Remark that in the case of discrete measures, the
operation t♯ in condition (iii) simply amounts to transposing the associated coupling matrices.
Lastly, note that this definition replaces the unobservable, SCM-dependent distributions
{µ⟨s′|s⟩}s,s′∈S of structural counterfactual models by the observational {µs′}s′∈S for feasibility
reasons. In Section 2.4.1, we will see that this approximation makes sense in typical fairness
settings where µ⟨s′|s⟩ = µs′ for every s, s′ ∈ S.

The adjective deterministic refers to the fact that the model assigns to each factual
instance a unique counterfactual counterpart. Formally, the counterfactual counterpart of
some observation x ∈ Xs after changing S from s to s′ is given by x′ = T⟨s′|s⟩(x) ∈ Xs′ . In

1In (Asher et al., 2022, Section 7.2), we present this view of counterfactuals from a logic perspective.
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contrast, a random model allows possibly several counterparts with probability weights. The
first interest of considering random couplings is purely conceptual; rendering non necessarily
unique the counterfactual counterparts of a single instance has philosophical implications
(Asher et al., 2022, Section 6.3). Besides, it is consistent with the causal approach which
also authorizes nondeterministic counterfactuals. The second—and most critical benefit—is
practical. While there always exist random couplings between two distributions, deterministic
push-forward mappings (even causally-induced ones) may not exist when the marginals do not
have densities, making this relaxation crucial for dealing with noncontinuous variables. This
makes the extension to random couplings necessary to tackle concrete machine-learning tasks,
involving both continuous and discrete covariates. Notably, we rely on random couplings in
the numerical experiments from Section 2.6.

Choosing a model

One challenge for the transport-based approach is to choose the model appropriately in
order to define a relevant notion of counterpart. There possibly exists an infinite number
of admissible counterfactual models in the sense of Definition 2.3.3, many of them being
inappropriate. As an illustration, consider the family of trivial couplings, namely {µs ⊗
µs′}s,s′∈S where ⊗ denotes the factorization of measures. Though it is a well-defined transport-
based counterfactual model, it is not intuitively justifiable as it completely decorrelates factual
and counterfactual instances. To sum-up, a transport-based counterfactual model must be
both intuitively justifiable and computationally feasible.

We argue that optimal-transport solutions are tailored couplings with respect to both
criteria. Optimal transport has become the most popular tool in statistics-related fields to
define couplings between distributions when no canonical choice is available, as in generative
modeling (Balaji et al., 2020), domain adaptation (Courty et al., 2014, 2017; Redko et al.,
2019; Rakotoarison et al., 2022), and transfer learning (Gayraud et al., 2017; Peterson et al.,
2021) thanks to significant advances in computational schemes. Additionally, as argued by
Black et al. (2020), generating a counterfactual operation by solving the optimal-transport
Problem (2.1) leads to intuitively relevant counterfactuals, as they are obtained by minimizing
a metric between paired instances (transcribing the Lewisian most-similar-alternative-world
principle) while preserving the probability distributions (ensuring distributional faithfulness).
Moreover, deterministic optimal transport for the quadratic cost (see Section 2.2.2) has
remarkable properties. According to Lemma 2.2.1, solutions to Problem (2.3) are gradients of
convex functions, which extends the notion of nondecreasing function to several dimensions.
In particular, the optimal transport map in dimension one is the quantile-preservation map
between univariate distributions. This behaviour has notably inspired constructions of
multivariate notions of quantile based on optimal transport (Chernozhukov et al., 2017;
Hallin et al., 2021; Ghosal and Sen, 2022). It also makes sense in counterfactual reasoning
where, without further information on the data-generation process, preserving the quantile
from one marginal to the other is an intuitive definition of the counterfactual counterpart.
For the sake of illustration, Section 2.3.4 below provides several examples of optimal transport
applied to counterfactual reasoning.

In Section 2.4.2 we will further justify the pertinence of optimal-transport-based counter-
factual models by showing that they coincide with structural counterfactual models under
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some assumptions. However, the scope of Definition 2.3.3 goes beyond solutions to standard
optimal-transport problems, allowing other transport methods and as such more possible
counterfactual models. The purpose of this generalization is partly theoretic: in the future,
one could propose an original matching technique and justify its relevance compared to
optimal transport. In particular, the couplings mentioned in (Villani, 2008, Chapter 1) as
well as diffeomorphic registration mappings (Joshi and Miller, 2000; Beg et al., 2005) are
possible candidates we do not investigate in this chapter. Additionally, this generalization
permits the use of regularized optimal transport (Cuturi, 2013), which deviates from the
original formulation of Problem (2.2), to accelerate computations. Note in passing that
solutions to regularized optimal transport, which are non deterministic, define adequate
transport-based counterfactual models thanks to Definition 2.3.3 taking into account random
couplings. Lastly, we will see in Section 2.4.1 that structural counterfactual models are
transport-based counterfactual models—but not necessarily optimal-transport-based—under
some assumptions.

2.3.4 Examples

Now that we gave definitions and insights on counterfactual models, let us study two concrete
examples on real data.

Law dataset

We start by focusing on the Law School Admission Council dataset which gathers statistics
from 163 US law schools and more than 20,000 students, including four variables: the race S,
the entrance-exam score X1, the grade-point average before law school X2, and the first-year
average grade Y . The end goal is to predict the first-year grade Y from the other features
(X,S). Similarly to Russell et al. (2017), we consider a fairness setting where the race plays
the role of a protected, sensitive attribute which should not be discriminated against, and
we restrict to only black (S = 0) and white (S = 1) students. Counterfactual reasoning has
become popular in such algorithmic fairness tasks to either ensure or test that, for example,
had a black student been white, the output would have been the same. This requires a model
to compute the counterfactual counterparts of any students after changing their skin colors.

First, we consider a structural counterfactual model. This requires a causal model: Russell
et al. (2017) proposed the following SCM for the dataset,

X1 = b1 + w1S + U1,

X2 = b2 + w2S + U2,

S = US ,

US , U1, U2 independent,

where b := (b1, b2) and w := (w1, w2) are deterministic R2 parameters obtained by adjusting
linear-regression models component-wise. Let us now calculate the induced structural
counterfactual model by applying Definition 2.3.2. The coupling from S = 0 to S = 1 is
given by

π∗⟨1|0⟩ := L
(
(X,XS=1) | S = 0

)
= L

(
(b+ UX , b+ w + UX)

)
= L

(
(X,X + w) | S = 0

)
.
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Conversely, the structural counterfactual coupling from S = 1 to S = 0 is

π∗⟨0|1⟩ := L
(
(X,XS=0) | S = 1

)
= L

(
(b+ w + UX , b+ UX)

)
= L

(
(X,X − w) | S = 1

)
.

Figures 2.1a and 2.1b illustrate the computation of the corresponding counterfactual coun-
terparts on samples. We make two important remarks.

Firstly, generating counterfactual quantities in this case amounts to translating instances
of µ0 by the constant w or conversely translating instances of µ1 by the constant −w. Notably,
the two couplings are deterministic: π∗⟨1|0⟩ and π∗⟨0|1⟩ are respectively characterized by the
mappings T ∗

⟨1|0⟩(x) := x + w and T ∗
⟨0|1⟩(x) := x − w. Note that there is consequently no

need to specify the law of the exogenous variables to compute counterfactual quantities.
Section 2.4.1 provides a general analysis of such deterministic settings.

Secondly, the causal model implies that S ⊥⊥ UX . This critically entails that the
counterfactual distributions are observable, since µ⟨1|0⟩ = L(XS=1 | S = 0) = L(b+w+UX |
S = 0) = L(b+ w + UX | S = 1) = µ1 and µ⟨0|1⟩ = µ0 analogously. Therefore, the structural
counterfactual couplings π∗⟨1|0⟩ and π∗⟨0|1⟩ belong respectively to Π(µ0, µ1) and Π(µ1, µ0).
Additionally, they are transposed from one another, that is t♯π∗⟨1|0⟩ = π∗⟨0|1⟩. This means that
the structural counterfactual model Π∗ := {π∗⟨1|0⟩, π

∗
⟨0|1⟩} is a transport-based counterfactual

model. Mathematical justifications of these properties will be studied in Section 2.4.1.
In a second time, we turn to an optimal-transport-based counterfactual model. More

precisely, we learn the optimal transport map for the quadratic cost, denoted by T⟨1|0⟩, from
the black distribution µ0 towards the white distribution µ1. In practice, we rely on the
Python Optimal Transport (POT) library to compute an approximation of the mapping
from data (Flamary et al., 2021). Note that solving the empirical optimal-transport problem
(2.4) between samples provides a matching that cannot generalize to new, out-of-sample
observations. This is why we employ POT’s in-built nonregularized barycentric extension
of the empirical solution to obtain a mapping defined everywhere. We use 800 points from
each distribution to compute the estimator of T⟨1|0⟩ illustrated in Figure 2.1a. The converse
counterfactual operation T⟨0|1⟩ represented in Figure 2.1d is produced by inversion.

We emphasize that all the couplings in Figure 2.1, be they causal-based or optimal-
transport-based, are imperfect approximations, but for different reasons. More precisely, we
assumed that a linear causal model generated the data in order to compute the structural
counterfactual couplings. However, this model-class assumption is not a perfect fit: in
particular, some of the produced counterfactual instances are not realistic, yielding GPA
scores exceeding the upper limit of 4.0 points; more generally, while both couplings should
have µ0 and µ1 for marginals, several counterfactual counterparts do not conform to these
distributions. Besides, the translation vector w used in practice is an estimation from data,
thereby an approximation of the best linear model fitting the data. The implemented optimal-
transport mappings are also mere estimators of the “true” mappings between the continuous
distributions. Figure 2.1c notably shows poor counterfactual associations for outliers of the
red sample, likely due to weak estimation in low-density domains. Nevertheless, the marginal
constraint of optimal transport ensures that the generated counterfactuals faithfully fit the
data and are therefore plausible. Finally, despite these approximation artifacts, we remark
that the causal and optimal-transport couplings have fairly similar behaviours, siding with
the observations of Black et al. (2020). This proximity will be theoretically grounded in
Section 2.4.2.
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(a) T ∗
⟨1|0⟩ (b) T ∗

⟨0|1⟩

(c) T⟨1|0⟩ (d) T⟨0|1⟩

Figure 2.1: Counterfactual models for the Law dataset. The red sample represents 200
factual black students while the blue sample represents 200 factual white students. The green
sample depicts counterfactual instances: the first column (Figures 2.1a and 2.1c) has white
counterfactual students; the second column (Figures 2.1b and 2.1d) has black counterfactual
students. The lightgray lines describe the coupling between factual and counterfactual
instances.

Body-measurement dataset

We now further illustrate the properties of optimal-transport counterfactuals on a dataset of
body measurements from n0 = 260 females and n1 = 247 males. The features of interest
are the weight X1 and the height X2, while S encodes the sex. Suppose now that Bob is
a 80kg and 190cm male. What would have been Bob’s height and weight had he been a
female? Since we do not know the structural relationships between X, S and possibly hidden
sources of randomness U , we follow Black et al. (2020) and rely on mass-transportation
techniques to answer this counterfactual question. We proceed as before to estimate the
optimal transport map from the male distribution µ1 towards the female distribution µ0.
Applying this operator to Bob, we obtain that, had he been a female, she would have been
59kg and 177cm.

Though it does not have a canonical definition when d = 2, optimal transport seems
visually to preserve the “position” of the paired points from one marginal to another. This is
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(a) 2D optimal-transport matching. (b) 2D component-wise quantile-preservation.

Figure 2.2: Body dataset. The red dots represent a data sample of men, while the blue
dots represent a data sample of women. The green dots are the estimated counterfactual
counterparts of the male sample.

due to the optimal map being the unique gradient of a convex function between distributions
as previously explained. We underscore in Figure 2.2 that optimal transport does not amount
to feature-wise quantile-preservation, making it a relevant extension of the notion of order to
higher dimension. Notably, preserving the quantile along each coordinate does not satisfy
the marginal constraint, yielding counterfactual women not representative of their sex’s
distribution.

2.3.5 Discussion

Counterfactuals have valuable applications in fairness and explainability. One could for
example try to learn predictor h designed to make h(x, 0) as close as possible to h(x′, 1) for
every counterfactual pair (x, x′). This is what Russell et al. (2017) proposed using causal
models, and what we implement in Section 2.6 using transport-based models. Or, one
could test whether a trained predictor h is unfair by checking if h(x, 0) = h(x′, 1) for every
counterfactual pair (x, x′), which is essentially the procedure of Black et al. (2020) leveraging
optimal transport maps. However, the application of counterfactual models raises several
issues. We conclude Section 2.3 by discussing important drawbacks of the causal account to
counterfactual reasoning as well as the limitations of the transport approach.

Shortcomings of the causal approach

The main limitation of structural counterfactual reasoning, as for any causal-based framework,
is its feasibility. Notably, counterfactual inference requires a fully specified SCM. What
follows is a recap of the concluding discussion from Section 1.3, which explained the obstacles
of every specification step.

First of all, fully specifying the causal model from scratch is a too strong assumption in
practice. It would demand to agree on (1) the causal graph, (2) the structural equations, (3)
the distribution of the input exogenous variables, and (4) to check whether the model fits
the observations. This is not a realistic scenario, especially for high dimensional data with
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nonlinear correlations. Besides, this is likely not workable for businesses since this tedious
procedure would have to be repeated for each new prediction task.

Secondly, techniques to learn the causal graph from observational data are computationally
challenging (Cooper, 1990; Chickering et al., 2004; Scutari et al., 2019) and do not furnish
the structural equations, which are necessary for counterfactual inference. Estimating these
equations amounts to a complex multivariate regression problem, hence why the literature
only handles simple, low-dimensional models (Shimizu et al., 2006; Hoyer et al., 2008; Kusner
et al., 2017; Russell et al., 2017). Moreover, the approximation error implied by the choice of
simple functional forms for the structural equations can incur unrealistic, out-of-distribution
counterfactuals, as exemplified in Figure 2.1 above. To our knowledge, the literature on
causal counterfactuals has not pointed out this flaw to date.

Thirdly, an inferred causal model will always suffer from causal uncertainty: there exist
several causal models corresponding to a same data distribution (see Bongers et al., 2021,
Example 4.2), which leads in particular to possibly different counterfactual models. It cannot
be tested whether the adjusted model is the “true” one, making the modeling inherently
uncertain. Moreover, for nondeterministic structural counterfactual models, the computation
of counterfactual quantities requires to know the law of the exogenous variables, which is
not observable. While it is common to assume a prior distribution on U , this also adds
uncertainty in the causal modeling, hence on the induced counterfactuals.

Lastly, counterfactual quantities are sometimes nonexistent in Pearl’s causal framework
if Assumption (A) does not hold. We emphasize that observational data can be generated
through an acyclical mechanism. Nevertheless, (solvable) acyclic models do not always admit
solutions under do-interventions (Bongers et al., 2021, Example 2.17), implying that XS=s

and all the related counterfactual quantities may not be defined in such situations.

Applicability of the transport approach

Regarding transport-based counterfactual reasoning, the main practical limitation is also
computational. The domain S of the intervened variable S must be finite for the counterfactual
model to be tractable. Moreover, generating the model needs |S| (|S| − 1) /2 computations
of transportation plans, which can become too expensive when |S| is large. Therefore, this
approach is tailored to settings with small |S|, typically fairness problems where S represents
sex or race.

Another inconvenience comes from the fact that one must specify a family of couplings
to implement a transport-based counterfactual model. There is no quantitative rule for
this choice; it is guided by intuition and feasibility reasons, and we explained above why
optimal transport was a relevant option. Note that the causal approach has a similar flaw:
as previously explained, structural counterfactual models are subjected to misspecification
since the underlying causal model itself is uncertain. The advantage of transport methods
compared to causal modeling is that they circumvent possibly wrong assumptions on the data-
generative process. In particular, transport plans consistently adjust to the data (thanks to
the marginal constraint) regardless of the chosen family of couplings, whereas misspecification
of the SCM may lead to out-of-distribution structural counterfactuals as aforementioned.

In the following, we derive theoretical properties of the counterfactual models introduced
in this section, grounding the similarity between optimal transport and Pearl’s computation
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of counterfactuals we evidenced in Figure 2.1. Interestingly, this echoes the work of Black
et al. (2020), who also empirically observed that optimal transport maps generated nearly
identical counterfactuals to the ones based on causal models.

2.4 Theoretical results

Until now, we have recalled the basics of causality and transport in Sections 1.3 and 2.2, and
introduced counterfactual models, either causal-based or transport-based, in Section 2.3. In
what follows, we demonstrate connections between both approaches. Concretely, we firstly
explore in Section 2.4.1 the relationship between an SCM and the counterfactual model it
induces, providing justifications to what we observed in Section 2.3.4. More precisely, we
study the implications of typical causal assumptions onto the generated counterfactuals.
Then, on the basis of these assumptions and the mass-transportation formalism proposed
in Section 2.3, we demonstrate in Section 2.4.2 that optimal transport recovers structural
counterfactuals in specific cases.

2.4.1 Causal assumptions and their consequences

We analyze in detail two standard scenarios of the causal counterfactual framework: first,
when the counterfactuals are deterministic—then the computation can be written as an
explicit push-forward operation; second, when S can be considered exogenous—then the
counterfactual distribution is observable. Note that none of Section 2.4.1 involves any
specific knowledge on optimal transport theory, only on causal modeling and (general) mass
transportation.

The deterministic case

We show that when the SCM deterministically implies the counterfactual values of X,
then the counterfactual coupling is deterministic. Additionally, we provide the expression
of the corresponding push-forward operator. To reformulate structural counterfactuals in
deterministic transport terms, we first highlight the functional relation between an instance
and its intervened counterparts.

Lemma 2.4.1: Solution-map expression of the features

IfM satisfies (A), then there exists a measurable function F such thatX P−a.s.
= F (S,UX)

and XS=s
P−a.s.
= F (s, UX) for every s ∈ S.

This is a direct consequence of Proposition 1.3.1 by partitioning V into X and S. For clarity,
we wrote the proof of this specific case in the dedicated section. It leverages the acyclicity of
the structural equations, which implies that the system of structural equations defining X
and S is triangular, enabling to express X solely in terms of UX and S.

Now, let us set for every s ∈ S the function fs : u 7→ F (s, u) defined L(UX)-almost
everywhere. Using this notation, we can give a simple expression of the possible counterfactual
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counterparts of any factual instance. In what follows, E denotes the closure of any E ⊆ Rd.

Proposition 2.4.1: Set of counterfactual counterparts

LetM satisfy (A). For any s, s′ ∈ S and µs-almost every x ∈ Xs,

supp
(
µ⟨s′|s⟩(·|x)

)
⊆ fs′ ◦ f−1

s ({x}).

As a direct consequence of this proposition, all counterfactual quantities on X with respect
to S are uniquely determined when the right term of the inclusion becomes a singleton,
therefore when the following assumption holds.

Assumption (I): Invertibility of the causal generative process

The functions {fs}s∈S are injective.

While the unique solvability of acyclic models ensures that (X,S) is deterministically deter-
mined by U , (I) states that, conversely, UX is deterministically determined by {X = x, S = s}.
This assumption holds in particular for additive-noise models: classical models where the
exogenous variables are additive terms of the structural equations, such as in Example 1.3.1
and Section 2.3.4.

Example 2.4.1: Additive noise model

An SCMM = ⟨U,G⟩ is an additive-noise model if its causal mechanism G has the form

G(v, u) := ϕ(v) + u,

where ϕ : V → V is a measurable function. Under (A), therefore unique solvability,
each endogenous variable Vk is given by

Vk
P−a.s.
= ϕk

(
VEndo(k)

)
+ UExo(k),

where ϕk : VEndo(k) → Vk. Note that the random seed U is fully determined by the
value of V , meaning that for any v ∈ V the posterior distribution L(U | V = v) narrows
down to a single value. As such, whatever the do-intervention on V , the three-step
procedure can only generate a deterministic counterfactual quantity.

Note that in our setting, which addresses interventions on a single endogenous
variable S, satisfying (I) does not require a fully invertible model between V = (X,S)
and U but simply between X and UX knowing S = s. As illustration, consider a
partially-additive-noise model (over X only), namely such that X is generated through

X
P−a.s.
= φ (S,X) + UX ,
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where φ : S × X → X is a deterministic measurable function; the equation on S

does not matter. Assumption (A) entails through unique solvability that X P−a.s.
=

(I − φ(S, ·))−1(UX). After identifying fs(u) := (I − φ(s, ·))−1(u), we notice that
Assumption (I) readily holds such that f−1

s (x) = x− φ(s, x).

Remark that Assumption (I) imposes constraints on the variables and their laws to enable a
deterministic correspondence between X and UX . In particular, the two random vectors must
live in spaces with same cardinal, preventing for instance a continuous UX with a discrete X.
Note also that even though it is restrictive, the mainstream literature on causality frequently
assumes full invertibility. In particular, most of the causal-discovery frameworks which aim
at inferring the structural equations from observational data require invertible models (Zhang
and Chan, 2006; Hoyer et al., 2008) or even additive ones (Shimizu et al., 2006). Analogously,
the recent research on causal algorithmic recourse generally addresses invertible models in
both theory and practice (Karimi et al., 2021; Dominguez-Olmedo et al., 2022; von Kügelgen
et al., 2022). In Section 2.4.2, we will use the invertibility assumption as an ideal setting to
derive theoretical guarantees.

Let us finally turn to the structural counterfactual models. Assumption (I) implies that
all the couplings between the factual and counterfactual distributions are deterministic, as
written in the next proposition.

Proposition 2.4.2: Deterministic structural counterfactuals

Let M satisfy (A), suppose that (I) hold, and for any s, s′ ∈ S set the mapping
T ∗
⟨s′|s⟩ := fs′ ◦f−1

s |Xs defined µs-almost everywhere, where f−1
s |Xs denotes the restriction

of f−1
s to Xs. The following properties hold:

1. µ⟨s′|s⟩(·|x) = δT ∗
⟨s′|s⟩(x)

for µs-almost every x ∈ Xs;

2. µ⟨s′|s⟩ = T ∗
⟨s′|s⟩♯

µs;

3. π∗⟨s′|s⟩ = (I × T ∗
⟨s′|s⟩)♯µs.

We say that T ∗
⟨s′|s⟩ is a structural counterfactual operator, and identify T ∗ := {T ∗

⟨s′|s⟩}s,s′∈S
to the deterministic structural counterfactual model Π∗ = {(I × T ∗

⟨s′|s⟩)♯µs}s,s′∈S .

Similarly to the structural counterfactual couplings, the operators in T ∗ describe the
effect of causal interventions on factual distributions. We highlight that they are well-defined
without any knowledge on L(U), meaning that the exogenous variables are not necessary to
compute counterfactual quantities under (I).

Lastly, remark that we framed (I) so that it implies that all the counterfactuals instances
for any changes on S are deterministic, leading to a fully-deterministic counterfactual model.
However, according to Proposition 2.4.1, it suffices that one fs be injective for some s ∈ S
to render all the counterfactual couplings {π∗⟨s′|s⟩}s′∈S deterministic. Therefore, when (I)
does not hold, the structural counterfactual model possibly contains both random and
deterministic couplings.
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S X

UXUS

Figure 2.3: DAG of a structural causal model satisfying (RE). The nodes US , UX and X
possibly represent several variables.

The exogenous case

We now discuss the counterfactual implications of the position of S in the causal graph.
More specifically, we focus on the case where S can be considered as a root node. We will see
that this entails that the structural counterfactual model is a transport-based counterfactual
model.

Let ⊥⊥ denote the independence between random variables. The variable S is said to be
exogenous relative to X (Galles and Pearl, 1998) if the following holds:

Assumption (RE): Relative exogeneity

US ⊥⊥ UX and XEndo(S) = ∅.a

aThese conditions resemble Assumption (O) introduced for the identification of potential outcomes.
Note that (RE) interprets all nonintervened endogenous variables as outcomes of S, whereas (O)
divides the nonintervened variables into two groups: covariates and outcomes.

The first item, US ⊥⊥ UX , ensures that there is no hidden confounder between X and
S. The literature on causal modeling generally supposes a stronger condition known as
causal sufficiency, which states that all the (UExo(i))i∈I are independent (Shimizu et al., 2006;
Karimi et al., 2021; Bongers et al., 2021; Dominguez-Olmedo et al., 2022). The second item,
XEndo(S) = ∅, means that S is ancestrally closed : no variable in X is a direct cause (or parent)
of S (see Figure 2.3). This holds typically in fairness problems, such as in Section 2.3.4,
where the variable S to alter generally encodes someone’s sex, race or age, which do not
have any observable causes. As pointed out by Fawkes et al. (2022), ancestral closure is a
common hypothesis in causal-fairness research, and even a requirement for many frameworks
(Kusner et al., 2017; Russell et al., 2017; Nabi and Shpitser, 2018; Chiappa, 2019; Kilbertus
et al., 2020; Plecko and Meinshausen, 2020).

Interestingly, relative exogeneity has critical implications on the generated counterfactuals.
Assumption (RE) readily entails that S ⊥⊥ UX , which can be interpreted as blinding S to the
latent features (similarly to randomization). Then, it is easy to see that at the distributional
level, intervening on S amounts to conditioning X by a value of S.
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Proposition 2.4.3: Ignorability of structural counterfactuals

LetM satisfy (A). If (RE) holds, then for every s, s′ ∈ S we have µS=s′ = µs′ = µ⟨s′|s⟩.

Recall that the structural counterfactual coupling π∗⟨s′|s⟩ represents an intervention transform-
ing an observable distribution µs into an a priori nonobservable counterfactual distribution
µ⟨s′|s⟩. According to Proposition 2.4.3, (RE) renders the causal model otiose for the purpose
of generating the counterfactual distribution, as the latter coincides with the observable
factual distribution µs′ . This is notably what occurred in the example from Section 2.3.4.
However, we underline that the coupling is still required to determine how each instance is
matched at the individual level. As such, the causal model still carries major information on
the induced counterfactual quantities.

Besides, as remarked by Plecko and Meinshausen (2020) and Fawkes et al. (2022), a practi-
cal consequence of (RE) is that it enables to link observational and causal notions of fairness.
In Section 2.5, we will prove a similar result through the prism of counterfactual models. The
demonstration relies on the proposition below, which ensures that structural counterfactual
models are transport-based counterfactual models when S is relatively exogenous to X.

Proposition 2.4.4: Exogenously-induced structural counterfactuals

LetM satisfy (A). If (RE) holds, then for any s, s′ ∈ S,

(i) π∗⟨s′|s⟩ ∈ Π(µs, µs′);

(ii) t♯π∗⟨s′|s⟩ = π∗⟨s|s′⟩.

Suppose additionally that (I) holds. Then, for any s, s′ ∈ S,

(iii) T ∗
⟨s′|s⟩♯

µs = µs′ ;

(iv) The operator T ∗
⟨s′|s⟩ is invertible µs-almost everywhere, such that µs′-almost

everywhere T ∗−1
⟨s′|s⟩ = T ∗

⟨s|s′⟩.

Notably, this means that in classical fairness settings transport-based models can be seen
as approximations, relaxations of structural models. Another meaningful consequence of
Proposition 2.4.4 is that items (ii) and (iv) may be false when (RE) does not hold. Said
differently, in general contexts, there is no reciprocity between a factual instance and its
structural counterfactual counterparts.

The example of linear additive SCMs

We illustrate how our notation and assumptions apply to the case of linear additive structural
models, which account for many state-of-the-art models (Bentler and Weeks, 1980; Shimizu
et al., 2006; Hyttinen et al., 2012; Rothenhäusler et al., 2021).
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Example 2.4.2: Linear additive causal model

Under (RE) and (A), a linear additive SCM is characterized by the structural equations

X
P−a.s.
= MX + wS + b+ UX ,

S
P−a.s.
= US ,

where w, b ∈ Rd and M ∈ Rd×d are deterministic parameters such that I − M is
invertible, and US ⊥⊥ UX . Solving the equations we get X P−a.s.

= (I −M)−1(wS + b+
UX) =: F (S,UX). Besides, note that (I) holds such that for any s ∈ S, f−1

s (x) =
(I −M)x− ws− b. Then, for any s, s′ ∈ S, T ∗

⟨s′|s⟩(x) = x+ (I −M)−1w(s′ − s). This
general expression is consistent with the example from Section 2.3.4.

Remarkably, in the specific case of linear additive SCMs fitting (RE), computing counter-
factual quantities amounts to applying translations between factual distributions. Therefore,
should an oracle reveal that the SCM belongs to this class without providing the structural
equations, it would suffice to compute the mean translation between sampled points from
µs and µs′ to obtain an estimator of the counterfactual operator T ∗

⟨s′|s⟩. For more complex
SCMs satisfying (RE), it is presumably difficult to infer the counterfactual model from data.
We address this issue the next section. Specifically, we show that optimal transport for the
quadratic cost generates the same counterfactuals as a class of causal models including linear
additive models.

2.4.2 When optimal transport meets causality

We focus on the deterministic transport-based counterfactual model T = {T⟨s|s′⟩}s,s′∈S
defined by the solutions of Problem (2.3) between all pairs of factual distributions. That is,
for every s, s′ ∈ S,

T⟨s′|s⟩ := argmin
T∈T (µs,µs′ )

∫
Xs

∥x− T (x)∥2dµs(x). (2.5)

As explained before in Section 2.3, this model provides an elegant interpretation to the
obtained counterfactual statements, as they are defined by minimizing the squared Euclidean
distance between paired instances, and preserve the quantile between marginals when d = 1.
Moreover, as stated in the following theorem, this transport-based counterfactual model
recovers structural counterfactuals in specific cases.

Theorem 2.4.1: Optimal-transport identification of structural counterfactuals

LetM satisfy (A), (RE) and (I). Suppose that the factual distributions {µs}s∈S are
absolutely continuous with respect to the Lebesgue measure and have finite second
order moments. If for s, s′ ∈ S, the structural counterfactual operator T ∗

⟨s′|s⟩ is the
gradient of some convex function, then it is the solution to Problem (2.5).
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The mass-transportation formalism of Pearl’s counterfactual reasoning introduced in Sec-
tion 2.3.2 and developed in Section 2.4.1 renders the proof of this theorem straightforward.
The nontriviality comes precisely from the reformulation of deterministic structural coun-
terfactuals through push-forward operators. We underline that the demonstration does not
require any prior knowledge on optimal transport theory except what we summarized in
Lemma 2.2.1. Thus, for the sake of illustration and clarity, we reproduce it directly below.

Proof According to (I) and Proposition 2.4.2, the SCM defines a structural counterfactual
operator T ∗

⟨s′|s⟩ between µs and µ⟨s′|s⟩. Additionally, (RE) implies through Proposition 2.4.3
that µ⟨s′|s⟩ = µs′ . Therefore, T ∗

⟨s′|s⟩♯
µs = µs′ . Assume now that µs is absolutely continuous

with respect to the Lebesgue measure, and that both µs and µs′ have finite second order
moments. If T ∗

⟨s′|s⟩ is the gradient of some convex function, then according to Lemma 2.2.1
it is the solution to Problem (2.3) between µs and µs′ , that the solution to Problem (2.5).

Understanding the strengths and limitations of Theorem 2.4.1 requires understanding how
rich is the class of SCMs fitting its assumptions. The larger the class, the more likely optimal
transport maps for the squared Euclidean cost will provide (nearly) identical counterfactuals
to causality. Finding explicit conditions on fs and fs′ so that fs′ ◦ f−1

s is the gradient
of a convex potential requires tedious computations as soon as d > 1, which renders the
identification of the relevant SCMs difficult. Nevertheless, we can find specific sub-classes of
causal models fitting Theorem 2.4.1. For instance, as the structural counterfactual operator
from Example 2.4.2 is the gradient of a convex function, we obtain the following corollary.

Corollary 2.4.1: The case of linear models

Consider a linear additive SCM satisfying (RE) (see Example 2.4.2). If the factual dis-
tributions {µs}s∈S are absolutely continuous with respect to the Lebesgue measure and
have finite second order moments, then for any s, s′ ∈ S, the structural counterfactual
operator T ∗

⟨s′|s⟩ is the solution to (2.3) between µs and µs′ .

Therefore, up to a linear approximation of the data-generation process, employing optimal
transport maps for counterfactual reasoning in fairness contexts recovers causal changes, as
in the example from Section 2.3.4. Besides, the scope of Theorem 2.4.1 goes beyond linear
additive SCMs, as shown in the following nonlinear nonadditive example.

Example 2.4.3: Nonlinear nonadditive model

Consider the following SCM,
X1

P−a.s.
= α(S)U1 + β1(S),

X2
P−a.s.
= −α(S) ln2

(
X1−β1(S)
α(S)

)
U2 + β2(S),

S
P−a.s.
= US ,
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where α, β1, β2 are R-valued functions such that α > 0, U1 > 0, and US ⊥⊥ (U1, U2).
It satisfies (A), (I) and (RE), such that for any s, s′ ∈ S, the associated structural
counterfactual operator is given by,

T ∗
⟨s′|s⟩(x) =

α(s′)

α(s)
x+

[
β(s′)− β(s)

]
,

where β = (β1, β2) is R2-valued. This is the gradient of the convex function x 7→
α(s′)
2α(s)∥x∥

2+[β(s′)− β(s)]T x. Then, if the factual distributions are absolutely continuous
with respect to the Lebesgue measure and have finite second-order moments, T ∗

⟨s′|s⟩ is
the solution to (2.3) between µs and µs′ .

Note that the converse of the implication in Theorem 2.4.1 does not hold. This comes
from the fact that many functions (even continuous ones) cannot be written as gradients
when d > 1, as illustrated in the following example.

Example 2.4.4: Counterexample

Consider the following SCM, 
X1

P−a.s.
= U1,

X2
P−a.s.
= SX2

1 + U2,

S
P−a.s.
= US ,

where US ⊥⊥ (U1, U2). It satisfies (A), (I) and (RE), such that for any s, s′ ∈ S, the
associated structural counterfactual operator is given by,

T ∗
⟨s′|s⟩(x1, x2) =

(
x1, x2 + (s′ − s)x21

)
.

It cannot be written as the gradient of a function. Consequently, it is not a solution to
(2.3).

Through Section 2.4, we aimed notably at justifying the pertinence of optimal transport
in counterfactual frameworks on top of the insights and illustrations given in Section 2.3. To
sum-up, the main requisite for transport-based methods, typically optimal transport, to be
used as substitutes for causal counterfactual reasoning is Assumption (RE), ensuring that
structural counterfactual models are transport-based counterfactual models. As previously
explained, this condition is almost systematically verified in fairness problems, making
the proposed surrogate approach relevant in various essential tasks. The more specific
assumptions from Theorem 2.4.1, which include (I), describe an ideal setting meant to derive
theoretical guarantees; optimal transport remains an arguably relevant alternative even
outside this context. Altogether, Theorem 2.4.1 and Corollary 2.4.1 support the intuition
that computing a Π from optimal transport provides a suitable approximation of the unknown
structural Π∗. In the sequel, we apply this approach by extending causal counterfactual
frameworks for fairness to transport-based models.
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2.5 Transport-based counterfactual fairness

The strength of the unified mass-transportation viewpoint of counterfactual reasoning we
proposed in Section 2.3 and further studied in Section 2.4 lies in the fact that all definitions
and frameworks implicitly based on a structural counterfactual model have a transport-based
analogue, and can therefore be made feasible. In this section, we apply this process to fairness
in machine learning.

Suppose that the random variable S encodes a so-called sensitive or protected attribute
(for example race or sex) which divides the population into different classes in a machine-
learning prediction task. We denote by h : X × S 7→ R an arbitrary predictor defining the
random variable of predicted output Ŷ := h(X,S). Fairness addresses the question of the
dependence of Ŷ on the protected attribute S. The most classical fairness criterion is the
so-called demographic or statistical parity, which is achieved when Ŷ ⊥⊥ S.

However, this criterion is notoriously limited, as it only gives a notion of group fairness,
and does not control discrimination at a subgroup or an individual level: a conflict illustrated
by Dwork et al. (2012). The counterfactual framework, by capturing the structural or
statistical links between the features and the protected attribute, allows for sharper notions
of fairness. We first use the mass transportation formalism introduced in Section 2.3 to
reformulate the accepted counterfactual fairness condition (Kusner et al., 2017). On the
basis of the reformulation, we then propose new fairness criteria derived from transport-based
counterfactual models.

2.5.1 Causal counterfactual fairness from a mass-transportation viewpoint

Counterfactual fairness is achieved when individuals and their structural counterfactual
counterparts are treated equally.

Definition 2.5.1: Counterfactual fairness

LetM satisfy (A). A predictor Ŷ = h(X,S) is counterfactually fair if for every s, s′ ∈ S
and µs-almost every x in Xs,

L
(
ŶS=s | X = x, S = s

)
= L

(
ŶS=s′ | X = x, S = s

)
,

where ŶS=s := h(XS=s, s).

However, the above definition does not clearly emphasize the pairing between factual and
counterfactual values. Interestingly, the mass-transportation viewpoint allows for pair-wise
characterizations of counterfactual fairness.

Proposition 2.5.1: Mass-transportation viewpoint of counterfactual fairness

LetM satisfy (A).
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1. A predictor h(X,S) is counterfactually fair if and only if for every s, s′ ∈ S and
π∗⟨s′|s⟩-almost every (x, x′),

h(x, s) = h(x′, s′).

2. If (RE) holds, then a predictor h(X,S) is counterfactually fair if and only if for
every s, s′ ∈ S such that s < s′ and π∗⟨s′|s⟩-almost every (x, x′),

h(x, s) = h(x′, s′).

3. If (I) holds, then a predictor h(X,S) is counterfactually fair if and only if for
every s, s′ ∈ S and µs-almost every x,

h(x, s) = h(T ∗
⟨s′|s⟩(x), s

′).

4. If (I) and (RE) hold, then a predictor h(X,S) is counterfactually fair if and only
if for every s, s′ ∈ S such that s < s′ and µs-almost every x,

h(x, s) = h(T ∗
⟨s′|s⟩(x), s

′).

Items 2 to 4 in Proposition 2.5.1 are variations of the first item under the implications of (RE)
and (I) through respectively Propositions 2.4.4 and 2.4.2. Note that they have practical
interests. Assumption (I) highlights the deterministic relationship between factual and
counterfactual quantities and makes unnecessary the knowledge of L(U) to test counterfactual
fairness. Assumption (RE) entails by symmetry that only half of the couplings are necessary
to check the condition. Additionally, if (RE) holds, then counterfactual fairness is a stronger
criterion than the statistical parity across groups, as shown in the following proposition.

Proposition 2.5.2: Counterfactual fairness entails statistical parity

Let M satisfy (A) and suppose that (RE) holds. If the predictor h(X,S) satisfies
counterfactual fairness, then it satisfies statistical parity. The converse does not hold in
general.

2.5.2 Extending counterfactual fairness

One can think of being counterfactually fair as being invariant to counterfactual operations
with respect to the protected attribute. In order to define SCM-free criteria, we generalize
this idea to the models introduced in Section 2.3.

Definition 2.5.2: Transport-based counterfactual fairness

1. Let Π = {π⟨s′|s⟩}s,s′∈S be a (random) transport-based counterfactual model. A
predictor h(X,S) is Π-counterfactually fair if for every s, s′ ∈ S and π⟨s′|s⟩-almost
every (x, x′),

h(x, s) = h(x′, s′).
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2. Let T = {T⟨s′|s⟩}s,s′∈S be a deterministic transport-based counterfactual model.
A predictor h(X,S) is T -counterfactually fair if for every s, s′ ∈ S and µs-almost
every x,

h(x, s) = h(T⟨s′|s⟩(x), s
′).

Note that it follows from the symmetry of the transport-based counterfactual models (see
items (ii) and (iii) in Definition 2.3.3) that only half of the couplings are truly required
in the above conditions. Besides, because the proof of Proposition 2.5.2 only relies on
the assumption that the couplings have factual distributions for marginals, the following
proposition automatically holds.

Proposition 2.5.3: Π-counterfactual fairness entails statistical parity

Let Π be a transport-based counterfactual model (deterministic or not). If a predictor
h(X,S) satisfies Π-counterfactual fairness, then it satisfies statistical parity. The
converse does not hold in general.

This result has interesting consequences. Consider that, for the purpose of computing
counterfactual quantities, some practitioners designed a candidate SCM fitting the data and
satisfying (RE). Even if the SCM is misspecified, it would still characterize a transport-based
counterfactual model controlling statistical parity. The fair data-processing transformation
proposed by Plecko and Meinshausen (2020) is an illustrative example.

More generally, the conceptual interest of transport-based fairness criteria is the same
as the original counterfactual fairness criterion: they offer notions of individual fairness
while still controlling for discrimination against protected groups. The added value is their
feasibility. In contrast to Definition 2.5.1 and Proposition 2.5.1, Definition 2.5.2 relies on
computationally feasible counterfactual models that obviate any assumptions about the
data-generation process. In addition, as Definition 2.5.1 amounts to Π∗-counterfactual
fairness (when (RE) holds), one can as well think of Definition 2.5.2 as an approximation of
counterfactual fairness.

Crucially, these new criteria can naturally be applied in classical explainability and
fairness machine learning frameworks based on counterfactual reasoning. While Black et al.
(2020) focused on explaining discriminatory biases in binary decision rules, we address the
training of a Π-counterfactually fair predictor in Section 2.6.

2.5.3 Counterfactual fairness as nonarbitrary statistical parity

We conclude this section by discussing in more details the interest of counterfactual fairness
compared to statistical parity. While it was taking into account causal links rather than
correlations that mainly motivated the original definition of counterfactual fairness, a less
appreciated interest—shared with transport-based counterfactual fairness—is that it amounts
to statistical parity at the individual level.

Recall that statistical parity in binary classification consists in attributing the same
proportion of positive outputs across protected groups. However, there is no further constraint
on the allocation: statistical parity concerns only the relative proportions of individuals
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receiving a positive answer, not the total number of individuals nor which individuals. This
critically means that this fairness notion is arbitrary, thereby unfair—who would call fair
an allocation rule that can interchangeably favor or unfavor a same person? Naturally, we
should also keep in mind that “fair” predictors are built in practice by also maximizing
accuracy (fairness being either a constraint or a penalty), which restricts the set of admissible
allocations. But the issue persists even when taking accuracy into account, as recently
evidenced by Krco et al. (2023). After conducting a comparative study of state-of-the-art
bias-mitigation strategies, they observed that predictors with equal performances in accuracy
and group fairness targeted different individuals. More precisely, the impacted individuals
change according to the debiasing procedure or even the random seed.

Transport-based counterfactual fairness can remedy to this issue. To understand this,
note that the behaviour of a fair machine-learning model can be divided into two distinct
features: how the predictions are relatively distributed across groups or counterfactual
counterparts—which is a matter of fairness; what are the actual values of the predictions
at each input—which is driven by accuracy. In particular, if Ŷ is a fair binary classifier
(according to statistical parity or Π-counterfactual fairness) then 1 − Ŷ is also fair in
the same sense but with a radically different behaviour. This means that, as such, the
considered notions of fairness cannot fully rule out the overall arbitrariness of the decisions.
However, counterfactual fairness revokes all arbitrariness on the fairness side by fixing the
relative allocation of outputs at the individual scale. Let us provide a more mathematical
interpretation of this statement through the proposition below:

Proposition 2.5.4: Arbitrariness of statistical parity

If h(X,S) is a classifier satisfying statistical parity, then there exists a transport-based
counterfactual model Π such that h(X,S) satisfies Π-counterfactual fairness.

Recall that Π-counterfactual fairness implies statistical parity according to Proposition 2.5.3.
Proposition 2.5.4, states that (somehow) conversely, statistical parity in classification can
always be associated to some transport-based counterfactual model Π. Therefore, enforcing
Π-counterfactual fairness—for a chosen Π—can be viewed as specifying the counterfactual
model underlying statistical parity. This is precisely this specification that makes this notion
stronger than group fairness, and restrains the arbitrariness of fair rules. To sum-up, Π-
counterfactually fair predictors—for a same Π—can make different decisions at given inputs,
but they all make invariant decisions across the same counterfactual counterparts listed in Π.

Beware that Proposition 2.5.4 also raises an ethical issue, as practitioners could argue
that their group-fair predictors are counterfactually fair according to some Π. However, recall
that not all transport-based counterfactual models define legitimate notions of counterparts,
leading to potentially unfair decisions at the subgroup or individual level. Avoiding fair
washing hence requires practitioners to always be able to justify the counterfactual models
they employ when not imposed by legal experts of the prediction task.
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2.6 Application to counterfactually fair learning

We now address an application of transport-based counterfactual models to fairness. More
precisely, we introduce a supervised learning procedure trading-off between Π-counterfactual
fairness and accuracy, and provide statistical guarantees.

2.6.1 Learning problem

In (Russell et al., 2017), the authors considered a learning problem involving a penaliza-
tion controlling the pair-wise difference in decision between the training inputs and their
structural counterfactual counterparts. While they gave empirical evidence of the efficiency
of their training method, they had to assume a known causal model and did not provide
consistency guarantees on the estimated predictor. In this sub-section, we illustrate that this
counterfactual approach can naturally be made both feasible and statistically consistent by
replacing the structural counterparts by transport-based counterparts. Note that in contrast
to Russell et al. (2017), we do not optimize over several counterfactual models.

Let Y : Ω → Y ⊆ R denote the so-called ground-truth variable to predict, and denote
by D the law of the data (X,S, Y ). We consider a parametric class of predictors {hθ}θ∈Θ
from X × S to Y, indexed by Θ ⊆ Rp where p > 1. For a given counterfactual model
Π :=

{
π⟨s′|s⟩

}
s,s′∈S and a given weight λ > 0, we define the following expected risk on the

predictors,

RD,Π,λ(θ) := E[ℓ(hθ(X,S), Y )] + λ
∑
s∈S

P(S = s)
∑
s′ ̸=s

E[rθ(Xs, s,Xs′ , s
′)], (2.6)

where L((Xs, Xs′)) = π⟨s′|s⟩ for every s, s′ ∈ S. The application ℓ denotes a data-loss
function, continuous with respect to each of its input variables, while rθ(x, s, x′, s′) is a penalty
promoting counterfactual fairness by enforcing the difference between the outputs of the
algorithm for an individual and its counterfactual, namely |hθ(x, s)− hθ(x′, s′)|, to be small.
For instance, in (Russell et al., 2017), the authors considered the tightest convex relaxation of
ϵ-approximate counterfactual fairness, that is rθ(x, s, x′, s′) := max

{
0, |hθ(x, s)− hθ(x′, s′)|−

ϵ
}

for some ϵ > 0. In this chapter, we rather work with the penalty rθ(x, s, x
′, s′) :=

|hθ(x, s)− hθ(x′, s′)|2 which is smoother. Through λ, the risk RD,Π,λ quantifies a trade-off
between accuracy and counterfactual fairness. Importantly, when Π = Π∗, it corresponds
precisely to the expected risk of the learning problem proposed by Russell et al. (2017)
reframed using the mass-transportation viewpoint. In what follows, we will simply write
RD,Π,λ as R.

In practice, we learn a predictor by minimizing an empirical version of R. To this end, we
need an empirical counterfactual model. Concretely, consider a training set {(xi, si, yi)}ni=1

composed of n i.i.d. observations drawn from D. We divide this collection into S protected
categories by defining for any s ∈ S the index Ins := {1 ≤ i ≤ n | si = s} of length
ns := |Ins |. Then, the empirical versions of the factual distributions are for every s ∈ S, µns :=
n−1
s

∑
i∈In

s
δxi . In our case, the counterfactual pairs between µns and µns′ are estimated within

the training dataset through an empirical transport plan {πn⟨s′|s⟩(i, j)}i∈Is,j∈Is′ , typically by
solving Problem (2.4) as explained in Section 2.2.2. Then, we define the following empirical
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risk,

Rn(θ) :=
1

n

n∑
i=1

ℓ(hθ(xi, si), yi) + λnsi
∑
s′ ̸=si

∑
j∈In

s′

πn⟨s′|si⟩(i, j)rθ(xi, si, xj , s
′). (2.7)

The learning procedure amounts to carrying out a gradient-descent-based routine to
minimize Rn. We underline that this procedure, as the original one from (Russell et al.,
2017), is tailored to both regression and multi-class classification. It also works for more
than two protected groups, but requires the domain of the sensitive variable to be finite.

2.6.2 Consistency

In this part, we focus on the counterfactual model constructed with quadratic optimal
transport, and prove the statistical consistency of the learning procedure. Set a sequence
{θn}n∈N∗ defined by θn ∈ argminθ∈ΘRn(θ). The next theorem ensures the convergence to
zero of the excess risk R(θn)−minθ∈ΘR(θ) for ball-constrained linear predictions.

Theorem 2.6.1: Consistency of the regularized predictor

Suppose that for every pair of factual distributions, the Kantorovich problem (2.2) with
cost c(x, x′) := ∥x− x′∥2 admits a unique solution. Thus, we can define the counterfac-
tual model Π = {π⟨s′|s⟩}s,s′∈S and its empirical counterpart Πn = {πn⟨s′|s⟩}s,s′∈S as, for
every s, s′ ∈ S,

π⟨s′|s⟩ := argmin
π∈Π(µs,µs′ )

∫
Xs×Xs′

∥∥x− x′∥∥2dπ(x, x′), (2.8)

πn⟨s′|s⟩ ∈ argmin
π∈Σ(ns,ns′ )

∑
i∈Is

∑
j∈Is′

∥xi − xj∥2π(i, j). (2.9)

Now, let Φ : X ×S → Rp be a feature map such that for every s ∈ S and x1, x2 ∈ X ,
∥Φ(x1, s)− Φ(x2, s)∥ ≤ Ls∥x1 − x2∥ where Ls > 0. Consider for Θ ⊆ Rp the class of
linear predictors {hθ}θ∈Θ defined as hθ(x, s) := θTΦ(x, s). If the following assumptions
hold,

(i) there exists D > 0 such that Θ = {θ ∈ Rp | ∥θ∥ ≤ D},

(ii) there exists R > 0 such that X ⊆
{
x ∈ Rd | ∥x∥ ≤ R

}
,

(iii) there exists b > 0 such that Y ⊆ {y ∈ R | |y| ≤ b},

(iv) there exists L > 0 such that for any (x, s, y) ∈ X × S × Y , the function θ ∈ Θ 7→
ℓ(θTΦ(x, s), y) is L-Lipschitz,

then,
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R(θn)−min
θ∈Θ
R(θ) a.s.−−−−→

n→+∞
0.

The proof analyzes separately the accuracy term from the regularization term. The demon-
stration for the former follows classical results from the statistical-learning literature; the
demonstration for the latter is original: we firstly show that each penalty contribution can
be bounded by a distance between the empirical and the true coupling, and then invoke the
convergence in law. We gather some additional remarks below.

Remark 2.6.1: On the assumptions

1. Uniqueness of the solution (2.8) holds when the factual distributions are Lebesgue
absolutely-continuous, or uniform over a same number of atoms.

2. Typically, Φ is defined as (x, s) 7→ (x, s, 1) in order to add an intercept, or
corresponds to the feature map of a kernel when aiming for nonlinear decision
boundaries.

3. Assumptions (i) to (iv) are common for supervised learning problems. The sets X
and Y are usually bounded spaces, as well as Θ the set of parameters defining the
algorithm. The Lipschitz conditions for the loss functions and the feature map
can be directly assumed or are direct consequences of smoothness properties and
compactness assumptions of the spaces on which they are defined.

4. The assumption on the second-order moments of the factual distributions is
automatically satisfied under (ii).

5. If the risks Rn and R are strictly convex, then θn = argminθ∈ΘRn(θ) and
θ∗ = argminθ∈ΘR(θ) are well-defined, and it follows that θn

a.s.−−−−→
n→+∞

θ∗ (this

additional step is detailed in the proof of Theorem 2.6.1).

2.7 Numerical experiments

In this section, we present the implementation of our counterfactually fair learning procedure
on real data, and show that it has the expected behaviour. The code is available at
https://github.com/lucasdelara/PI-Fair.

2.7.1 Procedure

Whatever the dataset, the general procedure is the following: after dividing the studied
dataset into a training set and a testing set, we learn one empirical counterfactual model
for each set. The first one implements the penalty of the training loss function; the second
enables to evaluate the counterfactual fairness of the trained predictors. We compute the
corresponding optimal transport plans using the default (nonregularized) POT solver. Then,
we train several predictors for various values of the weight λ to study the model’s ability to

https://github.com/lucasdelara/PI-Fair
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trade-off between accuracy and fairness. Finally, we assess the performances of the learnt
algorithms according to three criteria: accuracy, group fairness and counterfactual fairness,
and we benchmark them against baselines.

Evaluation metrics

In what follows, h : X ×S → Y denotes either a binary classifier (Y = {0, 1}) or a regression
function (Y = R), and D denotes a dataset (X,S, Y ). Let us properly define the different
metrics we employ:

• To evaluate the data fidelity of a classifier, we compute the accuracy (Acc), defined as

Acc(h,D) := P(h(X,S) = Y ).

For a regression function, we compute the mean square error (MSE), defined as

MSE(h,D) := E
[
∥h(X,S)− Y ∥2

]
.

• To assess the statistical parity of a binary classifier when the protected attribute is
binary, we compute the the parity gap (PG), defined as

PG(h,D) := |P(h(X,S) = 1 | S = 0)− P(h(X,S) = 1 | S = 1)|.

It quantifies the violation to group fairness, and equals zero when statistical parity
is achieved. For a regression function, we use the Kolmogorov-Smirnov distance (KS)
between L(Ŷ | S = 0) and L(Ŷ | S = 1), defined as

KS(h,D) := sup
y∈R

∣∣E[1{h(X,S)>y} | S = 0]− E[1{h(X,S)>y} | S = 1]
∣∣.

Note that this extends the parity gap to the continuous case. The purpose of these
two group-fair indicators is to illustrate Proposition 2.5.3, stating that counterfactual
fairness implies statistical parity.

• Finally, we need a metric to evaluate counterfactual fairness. We extend the notion
of (ϵ, δ)-approximate counterfactual fairness introduced by Russell et al. (2017) to
transport-based counterfactual models. For a counterfactual model Π and a tolerance
ϵ > 0, we define the probability for the disparate treatment by h between (x, s) and its
s′-counterfactual counterpart to be lower than ϵ as

CFTϵ(h, x, s, s
′,Π) :=

∫
x′∈Xs′

1{|h(x,s)−h(x′,s′)|≤ϵ}
dπ⟨s′|s⟩

dµs
(x′|x).

Then, for a probability threshold 0 ≤ δ ≤ 1, we say that a predictor h is (ϵ, δ)-
approximately counterfactually fair if for every s ∈ S, for µs-almost every x ∈ Xs, and
for every s′ ̸= s,

CFTϵ(h, x, s, s
′,Π) ≥ 1− δ. (2.10)
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Dataset Adult COMPAS Law Crimes
Task Classification Classification Regression Regression
S : 0/1 Woman/Man Black/White Black/White Black/Nonblack
d 35 6 2 97

ntrain 32,724 4,120 13,109 1,335
ntest 16,118 2,030 6,458 659

Table 2.1: Datasets

We make two remarks: firstly, if h is a classifier, then the only relevant value for ϵ is 0;
secondly, if the counterfactual model is deterministic, then the only relevant value for δ is
0. As the empirical counterfactual models we use are nondeterministic—although their
continuous counterparts may be deterministic—we set δ = 0.1 whatever the prediction
task. In practice, we quantify counterfactual fairness through the (ϵ, δ)-counterfactual
fairness rate (CFR),

CFRϵ,δ(h,D,Π) :=
∑
s∈S

P(S = s)

∫
x∈Xs

∏
s′ ̸=s

1{CFTϵ(h,x,s,s′,Π)≥1−δ}

 dµs(x).

This corresponds to the proportion of points satisfying Condition 2.10. In the classifica-
tion setting we set ϵ = 0 while in the regression setting we work with ϵ = 1

2E [|Y − Y ′|]
where Y ′ is an independent copy of Y .

Baselines

We aim at applying our regularized approach for several values of the weight λ to study
the model’s ability to trade-off between accuracy and fairness. For classification tasks, we
consider logistic models; for regression tasks, we consider linear regression models. Theses
choices will be useful in particular to benchmark our method against the one of Zafar et al.
(2017), tailored to such models. For a given λ, we write Π-Fair(λ) for the corresponding
regularized predictor. We compare the obtained results to three baseline algorithms: the
best constant predictor Const, which achieves perfect fairness; the group-fair predictor Z
developed by Zafar et al. (2017), which is meant to maximize accuracy under an exact-fairness
constraint; the unaltered (λ = 0) predictor U, which is presumably the most accurate but
also the most unfair predictor.

2.7.2 Datasets

We carry out the experiments on four datasets: the first two for classification and the last
two for regression. Note that in all the considered settings, the sensitive variable S is binary
and relatively exogenous to X. Table 2.1 summarizes information about each dataset after
preprocessing.
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Adult

The Adult Data Set from the UCI Machine Learning Repository (Dua and Graff, 2019)
has become a gold reference dataset to evaluate and benchmark fairness frameworks. The
classification task is to predict whether the income of an individual exceeds 50K USD per
year based on census data. Concretely, the dataset contains n = 48, 842 instances with 14
attributes (numerical and categorical). The ground-truth variable Y equals 1 whenever the
incomes exceeds 50K, and 0 otherwise. In this work, we set the sensitive variable S to be
the sex : S = 0 stands for female, while S = 1 stands for male. The potential sources of
algorithmic bias against women have been widely studied by Besse et al. (2021). They mainly
amount to an under representation of women in the dataset, as well as a high correlation
between being a woman and having a lower income. Any standard algorithms, optimizing
only for accuracy, are bound to be unfair towards women. Before training any models, we
process the data using a one-hot-encoding of the categorical attributes. The processing is
the exact same as in (Besse et al., 2021). This leads to a dataset of dimension d+ 1 = 36
(without the outcome). We divide it into a training set of size ntrain = 32, 724 and a testing
set of size ntest = 16, 118.

COMPAS

The Correctional Offender Management Profiling for Alternative Sanctions (COMPAS) is an
infamous score used by US court officers to assess the risk of criminal recidivism. ProPublica
analyzed more than 10,000 of cases from Florida, and concluded that black defendants
tended to be predicted riskier than they actually were whereas white defendants were often
predicted at lower risk than they were.2 In this part, we follow Kusner et al. (2017) and try to
predict the risk of recidivism while avoiding discrimination against the race, using the same
data. Keeping only black and white defendants, we get n = 6, 150 instances with d+ 1 = 7
attributes such as the number of prior offenses and the type of crime they committed. The
ground-truth variable Y equals 1 if the individual recidivated and 0 otherwise. We set the
sensitive variable S to be the race: S = 0 stands for black, while S = 1 stands for white.
Finally, we divide the data into a training set of size ntrain = 4, 120 and a testing set of size
ntest = 2, 030.

Law School

This is the dataset used in Section 2.3.4, gathering statistics from 163 US law schools and
more than 20,000 students. Here again we follow Kusner et al. (2017), and try to predict
the first-year average grade of individuals Y on the basis of the race (black or white) S,
the entrance-exam score X1, and the grade-point average before law school X2. All in all,
we have d = 2 features excluding the outcome and the protected attributes, and work with
ntrain = 13, 109 training entries and ntest = 6, 458 testing entries.

2https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm

https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm
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Communities and crimes

The Communities and Crimes dataset can also be found in the UCI Machine Learning
Repository (Dua and Graff, 2019). It contains socioeconomics, law enforcement and crime
data from communities across the United States. Similarly to Chzhen et al. (2020), we
consider the problem of predicting the rate of violent crime per 105 of population Y with
S = 0 indicating that at least 50% of the population is black and S = 1 otherwise. After
processing the 128 numerical and categorical attributes composing the dataset, we obtain
d+1 = 98 features over ntrain = 1, 335 training instances and ntesting = 659 testing instances.

2.7.3 Results

The regularization weight λ takes successively all the values in a grid
{
10−4, 10−3.5, . . . , 101

}
.

We repeat the training and evaluation processes of our models together with the baselines
across 10 repeats for every datasets. As all learning techniques are deterministic, the
randomness of the experiments comes uniquely from the division of the dataset into a
training and testing sets. The results are reported in the figures below.

Trade-off between accuracy and fairness

Figures 2.4 to 2.7 show the evolution with respect to λ of the accuracy, the counterfactual
fairness rate, and the statistical-parity metric. The solid line represents the mean value of the
evaluation metric, while the vertical length of the shaded area corresponds to the standard
deviation.

(a) Acc (b) CFR (c) PG (d) Classifiers

Figure 2.4: Evaluation metrics on the Adult dataset.

(a) Acc (b) CFR (c) PG (d) Classifiers

Figure 2.5: Evaluation metrics on the COMPAS dataset.

We observe that our learning algorithm is able to reliably trade-off accuracy for counter-
factual fairness as λ increases, confirming the relevancy of the approach. Additionally, the
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(a) MSE (b) CFR (c) KS (d) Predictors

Figure 2.6: Evaluation metrics on the Law dataset.

(a) MSE (b) CFR (c) KS (d) Predictors

Figure 2.7: Evaluation metrics on the Crimes dataset.

evaluation metrics remain stable across the different repeats. As anticipated from Proposi-
tion 2.5.3, the regularization also tends to improve group fairness. Overall, the group-fair
learning technique of Zafar et al. (2017) sacrifices less accuracy than our method to reach the
same level of statistical parity, but our method performs better at encouraging counterfactual
fairness. We conclude that the prevailing technique depends on the specific type of fairness
one wants to achieve. Note that the group-fair predictor Z on the Law dataset (Figure 2.6)
behaves similarly to the perfectly counterfactually-fair predictor. This is likely due to the use
of simple linear models on such a low-dimensional dataset (d+ 1 = 3) limiting the space of
feasible algorithms. We leave the in-depth analysis of this phenomenon for further research.

Recovering causal effects

To conclude these numerical experiments, let us verify that our optimal-transport counter-
factual loss enforces causal counterfactual fairness in the adequate setting. We address the
Law dataset for which a plausible causal model is known (see Section 2.3.4) and satisfies the
assumptions of Corollary 2.4.1. Figure 2.8b displays the evolution of the two counterfactual
losses, one based on the structural counterfactual model and the other on the optimal-
transport counterfactual model, for predictors trained according to the optimal-transport
counterfactual model. Figure 2.8a serves as a sanity check: it plots the normalized-variance

indicator

√
E
[
(Ŷ−E[Ŷ ])

2
]

E[(Y−E[Y ])2]
to control how close a predictor is to being constant.

As anticipated by theory, the training process does promote causal counterfactual fairness:
the two curves in Figure 2.8b are almost identical. Crucially, this is not a consequence of the
predictors merely becoming constant, since the sequence of predictions in Figure 2.8a have
variations that remain significantly higher than the best constant predictor.
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(a) Standard deviation of Ŷ (b) Counterfactual fairness losses

Figure 2.8: Promotion of causal counterfactual fairness on the Law dataset.

2.7.4 Discussion

To sum-up, our learning procedure enables to increase counterfactual fairness while limiting
the loss in accuracy, and is both theoretically sound and computationally efficient. This
simple approach expands the fair learning arsenal to stronger fairness criteria than group
fairness conditions, and so without requiring any additional knowledge on the data-generation
process.

Regarding limitations, we note that the current procedure is not tailored to mini-batch
learning. Using mini-batches would require to compute a new empirical counterfactual model
for each one, which increases the computational complexity, especially since the batch-size
should be chosen large enough for the empirical transport plans to make sense. This opens
new lines of inquiry for leveraging recent advances on computational optimal transport in
order to improve counterfactual learning problems. In particular, we could take advantage
of entropic regularization schemes to speed-up the computation of optimal transport plans
(Cuturi, 2013; Peyré and Cuturi, 2019). This would make the produced counterfactual
model blurry, but still close to the desired solution, allowing a trade-off between precision
of the counterfactuals and numerical efficiency. Additionally, we could use the growing
literature on plug-in estimations of optimal transport maps (Beirlant et al., 2020; Hallin
et al., 2021; Manole et al., 2021; Pooladian and Niles-Weed, 2021), or neural-network-based
approximations (see (Leygonie et al., 2019; Black et al., 2020; Makkuva et al., 2020; Korotin
et al., 2021; Huang et al., 2021) and Chapter 3) to construct empirical counterfactual models
not as a matrices, but as a mappings able to generalize to out-of-sample observations, reusable
on new datasets and batches. We leave these directions for future work.

2.8 Perspectives of extensions

This concluding section summarizes our contributions and discusses the limitations and
potential improvements of transport-based counterfactual models and more generally of any
counterfactual approaches to fairness. The goal is to provide a better understanding of the
potential merits and drawbacks of counterfactual fairness, and open new research tracks. It
ends with a transition towards the second part of the manuscript.
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2.8.1 Summary of the contributions

We focused on the challenge of designing sound and feasible counterfactuals. Our work showed
that the causal account for counterfactual modeling can be written in a mass-transportation
formalism, where implying either deterministic or random counterfactuals has a direct
formulation in terms of the deterministic or random nature of couplings between factual
and counterfactual instances. This novel perspective enabled us to generalize sharp but
unfeasible causal criteria of fairness by actionable transport-based ones. We illustrated that
the use optimal transport was a competitive approach to implement these criteria, as it
can recover causal changes and can be computed efficiently. In particular, we proposed an
new easy-to-implement method to train accurate classifiers with a counterfactual fairness
regularization. We provided statistical guarantees, and showed empirically the relevancy of
our method. In doing this work, we hope to shed a new light on counterfactual reasoning,
and to open lines for strengthening the explainability and fair-learning arsenal in artificial
intelligence.

2.8.2 Improving transport-based counterfactual models

Definition 2.3.3 does not fully capture what could be expected of a counterfactual model. To
illustrate this, let us further study the properties of structural counterfactual models.

Recall that items (ii) and (iv) of Proposition 2.4.4 ensure the reciprocity of structural
counterfactual counterparts under (RE), which holds by construction in transport-based
counterfactual models. This signifies concretely that the male counterfactual counterpart of
Bob’s female counterpart is Bob himself. But we could ask for a more general and equally
desirable property: the commutativity of interventions, which we write as follows:

Definition 2.8.1: Commutativity of interventions

Let Π := {π⟨s′|s⟩}s,s′∈S be a transport-based counterfactual modela on X with respect
to S. We say that Π is commutative if there exists a tuple of variables (Xs)s∈S such
that for any s, s′ ∈ S, L((Xs, Xs′)) = π⟨s′|s⟩. If Π is deterministic, identifiable to a
collection of operators {T⟨s′|s⟩}s,s′∈S , this means that T ∗

⟨s′′|s⟩ = T⟨s′′|s′⟩ ◦ T⟨s′|s⟩ µs-almost
everywhere for s, s′, s′′ ∈ S.

aRecall that under (RE) a structural counterfactual model is a transport-based counterfactual
model.

Under a commutative counterfactual model, the European counterfactual counterpart of an
American person is the European counterfactual counterpart of the Asian counterfactual
counterpart of this American person. Interestingly, structural counterfactual models are
commutative under (RE), since the tuple (XS=s)s∈S satisfies Definition 2.8.1 when S ⊥⊥
UX . However, the definition of transport-based counterfactuals (Definition 2.3.3) does
not include this property. Notably, as soon as the cardinality of S exceeds 2, a family of
couplings {π⟨s′|s⟩}s,s′∈S does not necessarily verify the above definition. Moreover, typical
mass-transportation frameworks will not yield commutative couplings. In particular, the
composition of two gradients of convex functions does not always yields the gradient of a
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convex function, implying that the optimal-transport counterfactual model defined by (2.5)
does not satisfy Definition 2.8.1 in general. This means that our construction of counterfactual
models fails to capture an essential characteristic of structural ones.

This flaw motivates a new recipe for commutative transport-based counterfactuals. The
narrative thread leading to the definition of transport-based counterfactual model rested
on the observation that reasoning counterfactually with SCMs amounted to manipulating
couplings between distributions. While noteworthy, this interpretation neglects a fundamental
aspect of structural counterfactuals. In contrast to transport-based couplings, structural
counterfactual couplings are not independently generated; under (RE), they stem from the
same source UX . Using our notations, this can be written as π∗⟨s′|s⟩ = (fs × fs′)♯L(UX) for
any s, s′ ∈ S.3 This is precisely the back and forth through the common distribution of
exogenous variables that ensures the commutativity of the induced counterfactuals. Thus, we
can improve Definition 2.3.3 by constructing transport-based counterfactual models through
the following procedure:

1. Set a distribution of reference ν on Rd, absolutely continuous with respect to the
Lebesgue measure;

2. Using mass-transportation techniques, compute for any s ∈ S a function f̃s such that
f̃s♯ν = µs;

3. Define the counterfactual couplings as π⟨s′|s⟩ = (f̃s × f̃s′)♯ν for any s, s′ ∈ S.

This is a mathematically well-posed construction since one can always define a (deterministic)
mapping from a Lebesgue-absolutely-continuous measure towards another. Notably, the
continuity of ν does not restrain generality; the input measures {µs}s∈S can be continuous,
discrete, or neither of both. Whenever the mappings {f̃s}s∈S are invertible, the obtained
couplings are deterministic. Commutativity holds since (Xs)s∈S := (f̃s(ŨX))s∈S where
L(ŨX) = ν satisfies Definition 2.8.1. All in all, we end up with an arguably more adequate
model, fitting every requirement from Definition 2.3.3 plus commutativity. Moreover, any
counterfactual model constructed as such can be generated by an SCM satisfying (RE), as
stated below:

Proposition 2.8.1: Causal representation of transport

Let Π := {π⟨s′|s⟩}s,s′∈S be a transport-based counterfactual in the sense of Defini-
tion 2.3.3 with S finite and satisfying Definition 2.8.1. Then, there exists an SCM
M♭ := ⟨U ♭, G♭⟩ satisfying (A), (RE), and inducing a structural counterfactual model
Π♭ such that Π♭ = Π.

Interestingly, this result provides together with Proposition 2.4.4 a characterization of the
counterfactual models induced by SCMs verifying (RE), and a representation-like equivalence
between structural counterfactual reasoning and the augmented version of transport-based
counterfactual reasoning.

3We recall that π∗
⟨s′|s⟩ = (fs × fs′)♯L(UX | S = s) when (RE) does not hold.
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From a computational viewpoint, note that this new recipe for transport-based counterfac-
tuals requires solving only |S| transportation problems instead of |S|(|S|− 1)/2. Nonetheless,
this does not necessarily entails a lower cost overall, since obtaining accurate solutions
in this setting may demand a large sample from ν, increasing the computation time of
every mapping. From an interpretability viewpoint, although opinions may diverge, the
construction through an intermediate distribution of reference diminishes the understanding
of the produced counterfactuals. In particular, optimal transport explained the pairing of
instances between µs and µs′ by the minimization of a global effort; now, pairs simply share
an abstract ν value. Nevertheless, we can obtain meaningful interpretations by properly
choosing ν and the {f̃s}s∈S , giving them grounded significations. For example, setting
ν as the spherical uniform distribution over the unit hypersphere and f̃s as the optimal
transport map for the quadratic cost between ν and µs coincides with the construction of
multivariate center-outward quantiles proposed in (Hallin et al., 2021). This furnishes a
concrete, understandable characterization of counterfactual counterparts: they live on the
same quantile of their respective distributions.

To conclude, we underline that if |S| = 2, then transport-based counterfactual models
automatically satisfy Definition 2.8.1. Therefore, Definition 2.3.3 is adequate in many classical
fairness problems addressing binary groups such as racialized/white or female/male. However,
the new procedure to construct counterfactual models can still be useful, if for example one
would prefer an interpretation of counterparts through quantiles rather than a global cost
minimization.

2.8.3 The shape of counterfactual fairness constraints

We now turn to a detailed discussion on the mathematical (not conceptual) interest of
achieving counterfactual fairness—be it causal-based or transport-based—rather than statis-
tical parity. This question is motivated by our empirical observations in Section 2.7: the
group-fair predictor had similar performances to the counterfactually fair predictor on the
Law dataset. This subsection provides a rigorous analysis of this phenomenon by unpacking
fairness constraints for simple predictors.

Predictor setup

Investigating the interest of achieving stronger fairness than statistical parity necessitates a
class of predictive models that is: (1) simple enough to enable clear mathematical characteri-
zations of fairness, (2) large enough for the evidences to shed light on more general cases.
As in Section 2.7, we propose the class of predictors that are linear in their parameter. Let
Φ : X × S → Rp be a given mapping, and define

H := {hθ0,θ : (x, s) 7→ θTΦ(x, s) + θ0 | θ0 ∈ R, θ ∈ Rp}.

The feature map Φ allows for modelling various decision rules, and typically corresponds to
a kernel function. Of particular interest for our work are the cases of linear predictors, when
Φ(x, s) := (x, s), and of unaware predictor, when Φ(x, s) := Φ̄(x) for some Φ̄ : Rd → Rp.
The parameter θ represents the weight vector of the predictor, while θ0 models an offset.
Note that the offset could have been included in the feature map Φ, but we prefer this
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formulation to emphasize its role. This setting is tailored to both regression and binary
classification. In the case of classification, hθ0,θ represents the decision boundary of the
classifier gθ0,θ(x, s) := 1{hθ0,θ(x,s)≥0}. Importantly, be it for statistical parity or counterfactual
fairness, the fairness of the decision rule implies the one of the classifier. Note that the
converse is not true in general.

Fairness constraints

While in Section 1.6 we wrote the fairness conditions for general predictors, we now specify
them for the class H. We consider three nested fairness constraints: no correlation, statistical
parity, and counterfactual fairness. In what follows, Span(E) denotes the linear span of a
set of vectors E ⊆ Rp while F⊥ refers to the orthogonal complement of a linear subspace
F ⊆ Rp.

Recall that a predictor h(X,S) satisfies statistical parity if h(X,S) ⊥⊥ S. This requires
in particular no correlation between the predictor and the protected status. For weight-linear
predictions, the covariance between these variables can be expressed as Cov(hθ0,θ(X,S), S) =
θTE [Φ(X,S)(S − E[S])]. Therefore, by defining

vNC := E [Φ(X,S)(S − E[S])] , (2.11)

we can characterize the set of weights θ ensuring no correlation as ΘNC := Span({vNC})⊥,
which describes a hyperplane of Rp if vNC ̸= 0. Notice that this condition does not depend
on the offset θ0. The next proposition provides an alternative formulation of vNC , allowing
for better interpretation of this orthogonality condition.

Proposition 2.8.2: No-correlation constraint

Let Φ : X × S → Rp be a mapping with S finite, and define vNC as in (2.11). Then,

vNC =
∑
s>s′

P(S = s)P(S = s′)(s− s′)
(
E[Φ(X,S)|S = s]− E[Φ(X,S)|S = s′]

)
.

For simplicity, consider a case where S is binary. For instance, S = 0 stands for female while
S = 1 stands for male. Then, it follows from Proposition 2.8.2 that

vNC = P(S = 1)P(S = 0) (E[Φ(X,S)|S = 1]− E[Φ(X,S)|S = 0]) .

Up to a multiplicative constant, vNC is the mean translation vector from the female features
to the male features. Hence, being fair in the sense of no correlation means having a weight
that is orthogonal to the mean translation between protected groups. Figure 2.9 provides an
illustration in linear classification.

In the case where approximated fairness is tolerated, one can leverage the absolute value
of the covariance between the predictor and the protected attribute to measure unfairness.
This corresponds to the following score:

NC(θ) :=
∣∣θT vNC∣∣.
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Figure 2.9: Fair decisions boundaries for the synthetic dataset from Lipton et al. (2018). We
set Φ(x, s) := x so that the predictors are linear and unaware of the protected attribute. The
female population is in red while the male population is in blue. The dark lines corresponds
the boundaries of to linear decision rules satisfying the orthogonality condition. They all
satisfy no correlation but have different accuracy rates.

For the counterfactual-fairness constraint, we consider a counterfactual model Π :=
{π⟨s′|s⟩}s,s′∈S (either structural or transport-based) and define

ΠΦ := {Φ(x, s)− Φ(x′, s′) | (x, x′) ∈ supp(π∗⟨s′|s⟩), (s, s
′) ∈ S2}, (2.12)

which is the set of all possible counterfactual changes in the features when intervening on
the protected attribute. Then, we prove that the set of counterfactually fair weights θ is
ΘCF := Span(ΠΦ)⊥.

Proposition 2.8.3: Counterfactual-fairness constraint

Let Φ : X × S → Rp be a mapping such that Φ(·, s) is continuous for every s ∈ S,
(θ, θ0) ∈ Rp × R a parameter, and Π := {π⟨s′|s⟩}s,s′∈S a transport-based counterfactual
model. The predictor Ŷ := θTΦ(X,S) + θ0 is Π-counterfactually fair if and only if,

θ ∈ Span(ΠΦ)⊥,

where ΠΦ is defined as in (2.12).

Observe that this condition does not involve θ0 either.
The statistical parity constraint is more difficult to write. Nonetheless, it is easy to

see that the set of weights θ satisfying statistical parity ΘSP is a linear subspace of Rp.
In addition, because counterfactual fairness implies statistical parity and statistical parity
implies no correlation, we have ΘCF ⊆ ΘSP ⊆ ΘNC . Next, we use these inclusions along
with the introduced formulations of the fairness constraints to discuss the tensions that exist
between them.
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Consequences

For this analysis, we exclude the trivial case where vNC = 0. Remark that in contrast to
no correlation, counterfactual fairness requires orthogonality to a linear space of dimension
possibly higher than 1. The richer ΠΦ, the smaller ΘCF . In particular, if the dimension of
Span(ΠΦ) reaches p, then ΘCF = {0}, meaning that the only possible fair predictors in H
narrow down to the constant functions. Therefore, if the counterfactual model Π and the
features Φ are not well adapted to each others, counterfactual fairness ends up undesirable.
More specifically, this questions the choice of the feature map Φ: should it be chosen with
accuracy in mind and no care for the underlying counterfactual model Π, it would render
being counterfactually fair to being merely constant.

Moreover, we know from ΘCF ⊆ ΘNC that vNC ∈ Span(ΠΦ). Consequently, if
dim (Span(ΠΦ)) = 1, then ΘCF = ΘNC , and therefore, ΘCF = ΘSP . In this case, counter-
factual fairness and statistical parity are equivalent, implying that enforcing counterfactual
fairness is useless. Actually, because the codimension of ΘSP is in general larger than one,
this equivalence could be attained even with dim (Span(ΠΦ)) > 1. However, except for
specific but standard choices of Π and Φ that we exemplify below, the dimension of Span(ΠΦ)
is likely to largely exceed 1.

Example

To illustrate the above tension, we must figure out a scenario where ΠΦ can be explicitly
computed. We set Φ(x, s) := (x, s) (linear predictions) and assume that S = {0, 1}. If
the features are continuous and generated by a linear causal model M := ⟨U,G⟩ (see
Example 2.4.2) satisfying (RE), then the counterfactual counterparts of the population
S = 0 in population S = 1 are given by a mapping of the form T⟨1|0⟩(x) := x+∆⟨1|0⟩ where
∆⟨1|0⟩ is a constant depending on the parameters of G.

Then, imposing the predictor to be counterfactually fair means that for any µ0-almost
every x ∈ X0,

θT
[
(x, 0)− (T⟨1|0⟩(x), 1)

]
= 0.

As a set of probability one is necessarily nonempty, this leads to

θT (∆⟨1|0⟩, 1) = 0.

The above equation characterizes the space of counterfactually fair parameters θ. Typically,
we would look within this space for the parameters that maximizes accuracy. But more
importantly, remark that ∆⟨1|0⟩ is simply the mean translation between µ0 and µ1 by
definition of T⟨1|0⟩. Besides,

vNC : = P(S = 1)P(S = 0) (E[(X, 1) | S = 1]− E[(X, 0) | S = 0])

= P(S = 1)P(S = 0) (E[X | S = 1]− E[X | S = 0], 1− 0)

= P(S = 1)P(S = 0)(∆⟨1|0⟩, 1)

according to Proposition 2.8.2. Therefore, vCF := (∆⟨1|0⟩, 1) is colinear to vNC . This critically
implies that counterfactual fairness and statistical parity are equivalent in this scenario. We
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have just showed in this particular setting what we explained above: as the set Span(ΠΦ)
has a dimension equal to 1, ΘSP = ΘCF .

The same phenomenom occurs when thinking in terms of approximate fairness. In a
similar fashion to no correlation, counterfactual fairness in this setting can be quantified
using,

CF(θ) :=
∣∣θT vCF ∣∣.

Remark that NC(θ) = P(S = 0)P(S = 1)CF(θ) in this example. This means that, up to
a multiplicative constant, the notions are equivalent in terms of approximate fairness. In
particular, increasing the fairness with respect to one criterion necessarily increases the
fairness with respect to the other.

To sum-up—in the specific situation we considered—working with statistical parity or
counterfactual fairness is absolutely equivalent, rendering pointless the use of the causal model.
This is exactly what happened for the Law dataset: as the data fits a linear additive SCM,
the counterfactual model generated by optimal transport for the quadratic cost produces
translation mapping according to Corollary 2.4.1. In addition, we considered linear predictors,
making the perfectly group-fair predictor also counterfactually fair. Nevertheless, this does
not question the utility of counterfactual fairness in general: obviously, most of the real-world
datasets do not fit linear generative processes, and practitioners often implement nonlinear
predictive models. But this provides a better understanding of the shapes and boundaries of
counterfactual fairness.

2.8.4 Interpretation and applicability of counterfactuals for fairness

Lastly, we must mention a neglected critical limitation of structural counterfactuals recently
pointed out by Fawkes et al. (2022), which deserves a special attention from the fairness
community. As we explain below, this also concerns transport-based counterfactuals.

Consider the Law dataset for the sake of illustration. To address questions of the form
“Had they been black, would have they been predicted a lower score?” we computed the black
counterfactual counterparts of a white student. But beware: we computed the counterparts
within the dataset. This implicitly assumes that had the white student been born black, they
would have pursued law studies, getting a GPA and taking the LSAT. It is obviously false in
most scenarios, as inequalities across races induce disparate opportunities and incitations.
So, what is the problem in our model? Mathematically, we justified that counterfactual
counterparts (be them causal-based or transport-based) were observable, therefore ended up
in the dataset, by Proposition 2.4.3 which requires Assumption (RE)—namely independent
noises plus ancestral closure of the protected attribute S. There is nothing wrong in
considering race to be ancestrally closed; the issue is assuming the noises independent. More
precisely, S ⊥⊥ UX would mean that race is equally distributed over units. While this seems
valid over the whole population, this is unlikely to hold on a specific population of law
students. As formalized by Fawkes et al. (2022), the general idea is that accessing a dataset
produces a selection bias: the sensitive attribute is not guaranteed to be independent of the
random seed. In addition, because fairness problems cannot be randomized as controlled
experiments, we cannot even produce studies for which S ⊥⊥ UX by design.

This signifies that the true SCM generating the dataset—not the whole population—
includes a dependence between UX and US , which violates (RE). Computing the “correct”
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counterfactuals is still conceptually possible but requires to apply the three-step procedure
to this true causal model (should we know it). This raises two issues in practice: a mere
but consequential numerical challenge, and a more profound obstacle. First, many causal-
discovery techniques work under the independent-noise assumption, thereby are unreliable
for inferring the true SCM. This complicates even more the learning of the causal model,
making even less feasible the causal approach to counterfactual reasoning. Second, even if the
authentic generative process of the dataset is accessible, the produced counterfactuals may
be useless for the prediction task. The fact that counterparts end up outside of the dataset
not only means that µ⟨s′|s⟩ ̸= µs for every (s, s′) ∈ S2, but also that some variables could be
undefined at these instances. As mentioned, had one been born with a different race, there is
no guarantee that they would have passed the LSAT. This definition problem could perhaps be
handled by adding None to the attainable values. Nevertheless, the obtained counterfactuals
would still be inoperative in most machine-learning tasks: what would be the meaning of
predicting the grades of someone who does not attend law school? All in all, requiring equal
treatment between an instance and its true causal counterfactual counterparts seems to be an
intrinsically ill-posed query. Regarding the transport-based approach, should we care to mimic
the correct behaviour of structural counterfactual reasoning, where “had they been black”
means “had they been born black”, we would have to define counterfactual couplings as joint
distributions between observable marginals of factual instances and unobservable marginals of
counterfactual instances. This obviously cannot be achieved by a purely data-based approach;
it requires additional knowledge.

Whether this issue renders within-dataset counterfactuals, hence counterfactual reasoning
as typically applied in fairness, illegitimate is a question that must be addressed by the
community. One could still argue that doing comparisons within the dataset makes sense,
but we must crucially keep in mind that this transcribes a different principle to “had they
been born different”. Note also that if (RE) does not hold, then structural counterfactual
fairness does not imply statistical parity. Therefore, in real situations, statistical parity and
causal-based counterfactual fairness are incompatible. This means in particular that “true”
counterfactual fairness tolerates unbalanced acceptance rates across protected groups in
binary classification tasks. On the contrary, transport-based counterfactual fairness always
entails statistical parity, as it compares observable distributions. As we argued in Section 2.5.3,
having stronger notions than statistical parity is crucial to limit the arbitrariness of group
fairness; this is why we believe transport-based counterfactuals (which are necessarily within
the dataset) to still be a valuable tool for implementing fairness.

2.8.5 Transport-based counterfactuals: from theory to practice

Transport-based counterfactual models, as introduced in Definition 2.3.3, are generally
theoretical objects. In practice, one does not work with the true couplings but estimations
from data, as in Sections 2.6 and 2.7. Such estimations can take various forms. In the case
of optimal transport for instance, there exist natural empirical formulations of Monge and
Kantorovich problems which admit exact solutions, expressed as matrices (see Problem 2.4).
This is notably what we used in our numerical experiments.

However, note that these approximations of the true couplings cannot generalize to new
out-of-sample inputs; they can only match the points on which there were constructed. This
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can be limiting in practice. In particular, applying the fairness-auditing technique of Black
et al. (2020) on different samplings from a same dataset or implementing mini-batch learning
in Section 2.7 would require to recompute the couplings at each batch of observations. This
issue also concerns other optimal-transport applications such as domain adaptation and
transfer learning, which led many researchers to develop approximations of optimal transport
plans (especially maps) defined on the whole sample space. Notably, we used a solution
based on (Ferradans et al., 2014) to compute the mappings in Section 2.3.4.

Nevertheless, these approximations do not always come with statistical guarantees: on
the contrary to the empirical solutions, it is not certified that they converge to the true
couplings as the sample size tends to infinity. As explained in more details in the beginning
of Chapter 3, the literature has mostly addressed either theoretically grounded statistical
estimators of optimal transport maps, but unsuitable for large-scale implementations, or
efficient heuristic approximations, at the cost of statistical proofs. As statisticians, we believe
such guarantees to be vital.

Ideally, we would like counterfactual models that can be computed easily and efficiently,
able to generalize to unseen observations, all the while being statistically consistent. This
is precisely what motivated the work presented in the next part of this manuscript. We
made three attempts to design such models over the last three years: two dealing with
optimal transport maps (De Lara et al., 2021b; González-Sanz et al., 2022), one with
diffeomorphic registration (De Lara et al., 2023). The third and fourth chapter focus on
these works. For transparency, we must say that, even though we believe that they are
valuable contributions, none of them happened to be truly satisfactory for counterfactual
computations. Consequently, for our approach to counterfactual reasoning to be versatile, we
need to carry out further research in the statistical estimation and practical implementation
of transport models.
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Appendix 2.A Proofs of Section 2.4

Proof of Lemma 2.4.1 As a direct consequence of Assumption (A), there exists a
topological ordering on the nodes of the graph induced byM. Therefore, starting with the
components Xk for which Endo(k) = ∅ or Endo(k) = {S}, we can recursively replace the
terms XEndo(k) in the formulas Gk(XEndo(k), SEndo(k), UExo(k)) by expressions depending only

on UX and S. This yields a measurable function F such that X P−a.s.
= F (S,UX). The same

computation but changing S to s for some s ∈ S leads to XS=s
P−a.s.
= F (s, UX).

Proof of Proposition 2.4.1 Recall that X P−a.s.
= F (S,UX). This implies that, P-almost

surely, (X = x, S = s) =⇒ UX ∈ f−1
s ({x}) . Besides, XS=s′

P−a.s.
= fs′(UX) according to

Lemma 2.4.1. Then, let E ⊆ X be an arbitrary Borel set and compute:

P (XS=s′ ∈ E | X = x, S = s) = P (fs′(UX) ∈ E | X = x, S = s)

= P
(
fs′(UX) ∈ E,UX ∈ f−1

s ({x}) | X = x, S = s
)

= P
(
fs′(UX) ∈ E, fs′(UX) ∈ fs′ ◦ f−1

s ({x}) | X = x, S = s
)

= P
(
XS=s′ ∈

[
E ∩ fs′ ◦ f−1

s ({x})
]
| X = x, S = s

)
.

Therefore, L(XS=s′ | X = x, S = s) does not put mass outside fs′ ◦ f−1
s ({x}). The definition

of the support—the set of points x ∈ Rd such that every open neighborhood of x has a
positive probability—thus implies that supp(µ⟨s′|s⟩(·|x)) ⊆ fs′ ◦ f−1

s ({x}).

Proof of Proposition 2.4.2 Set s, s′ ∈ S and x ∈ Xs. Note that, according to (I),
UX

P−a.s.
= f−1

S (X). Let us address each item of the proposition separately.

• Item 1. Proposition 2.4.1 states that supp(µ⟨s′|s⟩(·|x)) ⊆ fs′ ◦ f−1
s ({x}) for µs-almost

every x ∈ Xs. This means according to (I) that supp(µ⟨s′|s⟩(·|x)) ⊆ {fs′ ◦ f−1
s (x)}. Since

the support of a probability distribution cannot be empty, we have equality. This proves the
first item.

• Item 2. By definition of the counterfactual distribution, we find that

µ⟨s′|s⟩ = L(XS=s′ | S = s)

= L (fs′(UX) | S = s)

= L
(
fs′ ◦ f−1

S (X) | S = s
)

= L
(
fs′ ◦ f−1

s (X) | S = s
)

=
(
fs′ ◦ f−1

s

)
♯
µs.

This proves the second item.
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• Item 3. Similarly, by definition of the structural counterfactual coupling we obtain

π⟨s′|s⟩ = L
(
(X,XS=s′) | S = s

)
= L ((X, fs′ (UX)) | S = s)

= L
(
(X, fs′

(
f−1
s (X))

)
| S = s

)
= L

(
(Xs, fs′ ◦ f−1

s (Xs))
)
,

where L(Xs) = µs. This completes the proof.

Proof of Proposition 2.4.3 Set s ∈ S and recall that X P−a.s.
= F (S,UX) while XS=s

P−a.s.
=

F (s, UX). Thanks to Assumption (RE), we have that S ⊥⊥ UX . Therefore,

L(X | S = s) = L (F (S,UX) | S = s) ,

= L (F (s, UX) | S = s) ,

= L (F (s, UX)) ,
= L(XS=s).

This means that µs = µS=s. Similarly, for s, s′ ∈ S the counterfactual distribution becomes

L(XS=s′ | S = s) = L
(
F (s′, UX) | S = s

)
,

= L
(
F (s′, UX)

)
,

= L
(
F (s′, UX) | S = s′

)
,

= L
(
F (S,UX) | S = s′

)
,

= L(X | S = s′).

This means that µ⟨s′|s⟩ = µs′ , which completes the proof.

Proof of Proposition 2.4.4 We address each item separately.

• Item (i). It is a direct consequence of π∗⟨s′|s⟩ ∈ Π(µs, µ⟨s′|s⟩) by definition and µ⟨s′|s⟩ = µs′

from Proposition 2.4.3.
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• Item (ii). Recall that (RE) implies that S ⊥⊥ UX . Then, by definition we have

π∗⟨s|s′⟩ = L((X,XS=s) | S = s′)

= L((fs′(UX), fs(UX)) | S = s′)

= L((fs′(UX), fs(UX)) | S = s)

= L((XS=s′ , X) | S = s)

= t♯L((X,XS=s′) | S = s)

= t♯π
∗
⟨s′|s⟩.

• Item (iii). It is a direct consequence of T ∗
⟨s′|s⟩♯

µs = µ⟨s′|s⟩ from Proposition 2.4.2 and
µ⟨s′|s⟩ = µs′ from Proposition 2.4.3.

• Item (iv). We know according to Lemma 2.4.1 that XS=s
P−a.s.
= fs(UX) and XS=s′

P−a.s.
=

fs′(UX). Furthermore, it follows from (RE) and Proposition 2.4.3 that µs = L(XS=s) and
µs′ = L(XS=s′). Wrapping this up, there exists a measurable set Ω∗ ⊆ Ω with P(Ω∗) = 1
such that for every ω ∈ Ω∗,

XS=s(ω) = fs(UX(ω)) ∈ Xs,
XS=s′(ω) = fs′(UX(ω)) ∈ Xs′ .

In the rest of the proof we implicitly work on an ω ∈ Ω∗. Assumption (I) ensures
that UX = f−1

s (XS=s) so that XS=s′ =
(
fs′ ◦ f−1

s

)
(XS=s). Noting that XS=s ∈ Xs, we

obtain XS=s′ =
(
fs′ ◦ f−1

s |Xs

)
(XS=s) = T ∗

⟨s′|s⟩(XS=s). Following the same computation after
switching s and s′, we additionally get that XS=s =

(
fs ◦ f−1

s′ |Xs′

)
(XS=s′) = T ∗

⟨s|s′⟩(XS=s′).
Therefore, T ∗

⟨s′|s⟩ is invertible on XS=s′(Ω
∗) such that T ∗−1

⟨s′|s⟩ = T ∗
⟨s|s′⟩ on XS=s(Ω

∗).
Since µs (XS=s(Ω

∗)) = P(Ω∗) = 1 and µs′ (XS=s′(Ω
∗)) = P(Ω∗) = 1, this means that T ∗

⟨s′|s⟩
is invertible µs-almost everywhere such that T ∗−1

⟨s′|s⟩ = T ∗
⟨s|s′⟩ µs′-almost everywhere. This

completes the proof.

Proof of Corollary 2.4.1 We address the structural equations

X
P−a.s.
= MX + wS + b+ UX ,

S
P−a.s.
= US ,

where w, b ∈ Rd and M ∈ Rd×d are deterministic parameters. We showed that for any
s, s′ ∈ S,

T ∗
⟨s′|s⟩(x) = x+ (I −M)−1w(s′ − s).

Notice that T ∗
⟨s′|s⟩ is the gradient of the convex function x 7→ 1

2∥x∥
2+
[
(I −M)−1w(s′ − s)

]T
x.

As (RE) holds and µs is Lebesgue-absolutely continuous with finite second order moment, it
follows from Theorem 2.4.1 that T ∗

⟨s′|s⟩ is the solution to (2.3) between µs and µs′ .
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Appendix 2.B Proofs of Section 2.5

Proof of Proposition 2.5.1 We address each item separately.

• Item 1. We claim that counterfactual fairness is equivalent to

(Goal) For every s, s′ ∈ S, there exists a Borel set E12 = E12(s, s
′) ⊆ X × X satisfying

π∗⟨s′|s⟩(E12) = 1 such that for every (x, x′) ∈ E12

h(x, s) = h(x′, s′).

Note that a direct reformulation of the original counterfactual fairness condition is

(CF) For every s, s′ ∈ S, there exists a Borel set E1 = E1(s) satisfying µs(E1) = 1, such
that for every x ∈ E1 and every Borel set E ⊆ R

P
(
ŶS=s ∈ E | X = x, S = s

)
= P

(
ŶS=s′ ∈ E | X = x, S = s

)
. (2.13)

We aim at showing that (CF) is equivalent to (Goal). To do so, we first prove that one
can rewrite (CF) into the following intermediary formulation:

(IF) For every s, s′ ∈ S, there exists a Borel set E1 = E1(s) satisfying µs(E1) = 1, such that
for every x ∈ E1 and every Borel set E ⊆ R there exists a Borel set E2 = E2(s, s

′, x, E)
satisfying µ⟨s′|s⟩(E2|x) = 1 and such that for every x′ ∈ E2,

1{h(x,s)∈E} = 1{h(x′,s′)∈E}.

▶ Proof that (CF) ⇐⇒ (IF). Set s, s′ ∈ S, x ∈ E1 and E ⊆ R measurable. According
to the consistency rule, L(X | S = s) = L(XS=s | S = s), we can rewrite the left term of
(2.13) as

P
(
ŶS=s ∈ E | X = x, S = s

)
= P (h(XS=s, s) ∈ E | X = x, S = s)

= P(h(X, s), s) ∈ E | X = x, S = s)

= P(h(x, s) ∈ E)

= 1{h(x,s)∈E}.

Then, using Definition 2.3.1, we reframe the right term of (2.13) as

P
(
ŶS=s′ ∈ E | X = x, S = s

)
= P(h(XS=s′ , s

′) ∈ E | X = x, S = s)

=

∫
1{h(x′,s′)∈E}dµ⟨s′|s⟩(x

′|x).
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Remark now that because the indicator functions take either the value 0 or 1, the condition

1{h(x,s)∈E} =

∫
1{h(x′,s′)∈E}dµ⟨s′|s⟩(x

′|x)

is equivalent to 1{h(x,s)∈E} = 1{h(x′,s′)∈E} for µ⟨s′|s⟩(·|x)-almost every x′. This means that
there exists a Borel set E2 = E2(s, s

′, x, E) such that µ⟨s′|s⟩(E2|x) = 1 and for every x′ ∈ E2,

1{h(x,s)∈E} = 1{h(x′,s′)∈E}.

This proves that (CF) is equivalent to (IF).

▶ Proof that (IF) =⇒ (Goal). As (IF) is true for any arbitrary Borel set E ⊆ R, we
can apply this result with E = {h(x, s)} to obtain a Borel set E2 = E2(s, s

′, x) such that
µ⟨s′|s⟩(E2|x) = 1 and for every x′ ∈ E2, h(x′, s′) = h(x, s). To sum-up, for every s, s′ ∈ S,
there exists a Borel set E1 = E1(s) satisfying µs(E1) = 1 such that for every x ∈ E1, there
exists a Borel set E2 = E2(s, s

′, x) satisfying µ⟨s′|s⟩(E2|x) = 1, such that for every x′ ∈ E2,
h(x′, s′) = h(x, s). Now, we must show that the latter equality holds for π∗⟨s′|s⟩-almost every
(x, x′).

To this end, set E12 = E12(s, s
′) = {(x, x′) ∈ X ×X|x ∈ E1(s), x

′ ∈ E2(s, s
′, x)}. Remark

that by definition of E1 and E2, for every (x, x′) ∈ E12, h(x, s) = h(x′, s′). To conclude, let
us prove that π∗⟨s′|s⟩(E12) = 1.

π∗⟨s′|s⟩(E12) =

∫
E1

P (XS=s′ ∈ E2 | X = x, S = s) dµs(x)

=

∫
E1

µ⟨s′|s⟩(E2|x)dµs(x)

=

∫
E1

1dµs(x)

= µs(E1)

= 1.

This proves that (IF) implies (Goal).

▶ Proof that (Goal) =⇒ (IF). Using (Goal), consider a Borel set E12 = E12(s, s
′)

satisfying π∗⟨s′|s⟩(E12) = 1 and such that for every (x, x′) ∈ E, h(x, s) = h(x′, s′). Then, define
for any x ∈ X , the Borel set E2(s, s

′, x) = {x′ ∈ X | (x, x′) ∈ E12}. We use disintegrated
formula of π∗⟨s′|s⟩ to write

1 =

∫
µ⟨s′|s⟩(E2|x)dµs(x).

Since 0 ≤ µ⟨s′|s⟩(E2|x) ≤ 1, this implies that for µs-almost every x, µ⟨s′|s⟩(E2|x) = 1.
Said differently, there exists a Borel set E1 = E1(s) satisfying µs(E1) = 1 such that for every
x ∈ E1, the Borel set E2(s, s

′, x) satisfies µ⟨s′|s⟩(E2|x) = 1. By construction of E2 and by
definition of E, for every x ∈ E1 and every x′ ∈ E2, h(x, s) = h(x′, s′). To obtain (IF),
it suffices to take any measurable E ∈ R and to note that the latter equality implies that
1{h(x,s)∈E} = 1{h(x′,s′)∈E}.
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• Item 2. Recall that π∗⟨s|s⟩ = (I × I)♯µs. Therefore, it follows from the previous item
that counterfactual fairness can be written as: for every s, s′ ∈ S such that s′ < s, and
π∗⟨s′|s⟩-almost every (x, x′)

h(x, s) = h
(
x′, s′

)
,

and for π∗⟨s|s′⟩-almost every (x, x′)

h(x, s′) = h
(
x′, s

)
.

Moreover, (RE) implies through Proposition 2.4.4 that π∗⟨s|s′⟩ = t♯π
∗
⟨s′|s⟩. Therefore, the

second condition above can be written as: for π∗⟨s′|s⟩-almost every (x, x′)

h(x′, s′) = h (x, s) ,

which is exactly the first condition. This means that only the first condition is necessary,
proving this item.

• Item 3. Consider (CF), and recall that for every s, s′ ∈ S, µs-almost every x and every
measurable E ⊆ R the left term of (2.13) is 1{h(x,s)∈E}. Let us now reframe the right-term

of (2.13). If (I) holds, using that UX
P−a.s.
= f−1

S (X) we obtain

P
(
ŶS=s′ ∈ E | X = x, S = s

)
= P

(
h
(
XS=s′ , s

′) ∈ E | X = x, S = s
)

= P
(
h
(
F (s′, UX), s

′) , s′) ∈ E | X = x, S = s
)

= P
(
h
(
fs′(f

−1
S (X)), s′

)
∈ E | X = x, S = s

)
= P

(
h
(
fs′ ◦ f−1

s (x), s′
)
∈ E

)
= P

(
h(T ∗

⟨s′|s⟩(x), s
′) ∈ E

)
= 1{

h(T ∗
⟨s′|s⟩(x),s

′)∈E
}.

Consequently, (CF) holds if and only if, for every measurable E ∈ R

1{h(x,s)∈E} = 1{
h(T ∗

⟨s′|s⟩(x),s
′)∈E

}.
Using the same reasoning as before, we take E = {h(x, s)} to prove that this condition is

equivalent to h(x, s) = h(T ∗
⟨s′|s⟩(x), s

′). This concludes the third part of the proof.

• Item 4. From the previous item and Proposition 2.4.3, it follows that counterfactual
fairness can be written as: for every s, s′ ∈ S such that s′ < s, for µs-almost every x

h(x, s) = h
(
T ∗
⟨s′|s⟩(x), s

′
)
,

and for µs′-almost every x
h(x, s′) = h

(
T ∗

⟨s|s′⟩(x), s
′) .
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Set s, s′ ∈ S such that s′ < s. To prove the fourth item, we show as for item 2 that the two
above conditions are equivalent. Set E1 a measurable subset of Xs such that µs(E1) = 1, and
h(x, s) = h(T ∗

⟨s′|s⟩(x), s
′) for any x ∈ E1. Then, make the change of variable x′ = T ∗

⟨s′|s⟩(x)

so that h(T ∗−1
⟨s′|s⟩(x

′), s′) = h(x′, s′) for every x′ ∈ T ∗
⟨s′|s⟩(E1). By Propositions 2.4.2 and

2.4.3, T ∗
⟨s′|s⟩♯

µs = µs′ , which implies that µs′(T ∗
⟨s′|s⟩(E1)) = 1. Therefore, the equality

h(T ∗−1
⟨s′|s⟩(x

′), s) = h(x′, s′) holds for µs′-almost every x′. Finally, recall that according to
Proposition 2.4.4, T ∗−1

⟨s′|s⟩ = T ∗
⟨s|s′⟩ µs′-almost everywhere. As the intersection of two sets of

probability one is a set of probability one, h(T ∗
⟨s|s′⟩(x

′), s) = h(x′, s′) holds for µs′-almost
every x′. To prove the converse, we can proceed similarly by switching s to s′.

Proof of Proposition 2.5.2 According to Proposition 2.5.1, h is counterfactually fair if and
only if for any s, s′ ∈ S and for π∗⟨s′|s⟩-almost every (x, x′), h(x, s) = h(x′, s′) or equivalently
1{h(x,s)∈E} = 1{h(x′,s′)∈E} for every measurable E ∈ R. Set s, s′ ∈ S. Recall that from (RE),
π∗⟨s′|s⟩ admits µs for first marginal and µs′ for second marginal. Let us integrate this equality
with respect to π∗⟨s′|s⟩ to obtain, for every measurable E ⊆ R∫

1{h(x,s)∈E}dµs(x) =

∫
1{h(x′,s′)∈E}dµs′(x).

This can be written as,

P(h(X, s) ∈ E | S = s) = P(h(X, s′) ∈ E | S = s′),

which means that
L(h(X,S) | S = s) = L(h(X,S) | S = s′).

As this holds for any s, s′ ∈ S, we have that h(X,S) ⊥⊥ S.
One can easily convince herself that the converse is not true. As a counterexample,

consider the following causal model,

X
P−a.s.
= S · UX + (1− S) · (1− UX).

Where S follows an arbitrary law and does not depend on UX . Observe that (RE) is satisfied
so that

L(XS=0) = L(X | S = 0),

L(XS=1) = L(X | S = 1),

L(X | S = 0) = L(X | S = 1).

In particular, whatever the chosen predictor, statistical parity will hold since the observa-
tional distributions are the same. By definition of the structural counterfactual operator,
we have T ∗

⟨1|0⟩(x) = 1 − x. Now, set the unaware predictor (i.e., which does not take the
protected attribute as an input), h(X) := sign(X − 1/2). Clearly,
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h(T ∗
⟨1|0⟩(x)) = −h(x) ̸= h(x).

Proof of Proposition 2.5.4 Suppose that the classifier h(X,S) takes values in the finite
set Y ⊂ R, and define for any s ∈ S and y ∈ Y the sets H(s, y) := {x ∈ Rd | h(x, s) = y}.
Statistical parity can be written as, for any s ∈ S and any y ∈ Y,

µs (H(s, y)) = py,

where {py}y∈Y is a probability on Y that does not depend on s.
Now, set s, s′ ∈ S. We aim at constructing a coupling π⟨s′|s⟩ between µs and µs′ such

that,

π⟨s′|s⟩

({
(x, x′) ∈ Rd × Rd | h(x, s) = h(x′, s′)

})
= 1.

We define our candidate π⟨s′|s⟩ as,

dπ⟨s′|s⟩(x, x
′) :=

∑
y∈Y

1{x∈H(s,y)}1{x′∈H(s′,y)}

py
dµs(x)dµs′(x

′).

First, let’s show that it admits respectively µs and µs′ as first and second marginals. Let
E ⊆ Rd be a Borel set,

π⟨s′|s⟩

(
E × Rd

)
=
∑
y∈Y

∫
Rd

∫
E

1{x∈H(s,y)}1{x′∈H(s′,y)}

py
dµs(x)dµs′(x

′)

=
∑
y∈Y

py
py

∫
E
1{x∈H(s,y)}dµs(x)

=
∑
y∈Y

µs (E ∩H(s, y))

= µs(E).

One can follow the same computation for the second marginal. To conclude, compute
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π⟨s′|s⟩

(
{(x, x′) ∈ Rd × Rd | h(x, s) = h(x′, s′)}

)
= π⟨s′|s⟩

⊔
y∈Y
H(s, y)×H(s′, y)


=
∑
y∈Y

π⟨s′|s⟩
(
H(s, y)×H(s′, y)

)
=
∑
y∈Y

1

py

∫
1{x∈H(s,y)}dµs(x)

∫
1{x∈H(s′,y)}dµs′(x)

=
∑
y∈Y

1

py
py × py

= 1.

Appendix 2.C Proofs of Section 2.6

Proof of Theorem 2.6.1 The outline of the proof is typical for such supervised learning
problems, though some parts require basic knowledge on optimal transport. It mainly
amounts to show the uniform convergence of {Rn}n∈N∗ to R, to then use the following
classical deviation inequality,

R(θn)−min
θ∈Θ
R(θ) ≤ 2 sup

θ∈Θ
|Rn(θ)−R(θ)|. (2.14)

For any measure P and any measurable function g, we will use the notation P (g) :=
∫
gdP

throughout the proof.

• Step 1. Uniform convergence of the risk. By the triangle inequality,

sup
θ∈Θ
|Rn(θ)−R(θ)| ≤ sup

θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

ℓ(hθ(xi, si), yi)− E [ℓ(hθ(X,S), Y )]

∣∣∣∣∣
+ λ

∑
s∈S

∑
s′ ̸=s

sup
θ∈Θ

∣∣∣(ns
n
πn⟨s′|s⟩ − P(S = s)π⟨s′|s⟩

) (
rθ(·, s, ·, s′)

)∣∣∣.
The first term corresponds to the standard uniform risk deviation of supervised learning

problems for Lipschitz losses and linear predictions. Under Assumptions (i) to (iv), for
0 < δ < 1 it follows from (Shalev-Shwartz and Ben-David, 2014, Theorem 26.5) that with
probability greater than 1− δ,
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sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

ℓ(hθ(xi, si), yi)− E [ℓ(hθ(X,S), Y )]

∣∣∣∣∣ ≤ ℓ0 + LD√
n

(
2 +

√
2 log

1

δ

)
,

where ℓ0 = sup|y|≤b |ℓ(0, y)|. Then, by taking δn := 1
n2 , we apply Borel-Cantelli lemma so

that for almost every ω ∈ Ω, there exists a threshold N(ω) such that for any n ≥ N(ω),

sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

ℓ(hθ(xi, si), yi)− E [ℓ(hθ(X,S), Y )]

∣∣∣∣∣ ≤ ℓ0 + LD√
n

(
2 +

√
4 log n

)
.

The upper bound tends to zero as n tends to infinity, and consequently

sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

ℓ(hθ(xi, si), yi)− E [ℓ(hθ(X,S), Y )]

∣∣∣∣∣ a.s.−−−−→
n→+∞

0.

The critical part is dealing with the counterfactual penalization. Let s, s′ ∈ S such that
s′ ̸= s. In the following of this step, we aim at showing that,

sup
θ∈Θ

∣∣∣(ns
n
πn⟨s′|s⟩ − P(S = s)π⟨s′|s⟩

) (
rθ(·, s, ·, s′)

)∣∣∣ a.s.−−−−→
n→+∞

0.

To do so, we use the triangle inequality again, leading to,

sup
θ∈Θ

∣∣∣(ns
n
πn⟨s′|s⟩ − P(S = s)π⟨s′|s⟩)

(
rθ(·, s, ·, s′)

)∣∣∣
≤
∣∣∣ns
n
− P(S = s)

∣∣∣ sup
θ∈Θ

∫
rθ(x, s, x

′, s′)dπ⟨s′|s⟩(x, x
′) (2.15)

+ P(S = s) sup
θ∈Θ

∣∣∣∣∫ rθ(x, s, x
′, s′)

(
dπn⟨s′|s⟩(x, x

′)− dπ⟨s′|s⟩(x, x
′)
)∣∣∣∣. (2.16)

The terms (2.15) tends to zero almost surely as n increases to infinity. We now turn to the
convergence of the term (2.16).

Firstly, let us show that the functions {rθ(·, s, ·, s′)}θ∈Θ are uniformly Lipschitz on X ×X .
For any (x1, x

′
1), (x2, x

′
2) ∈ X × X , we have,∣∣rθ(x1, s, x′1, s′)− rθ(x2, s, x′2, s′)∣∣ ≤ ∣∣θT (Φ(x1, s)− Φ(x′1, s

′)− Φ(x2, s) + Φ(x′2, s
′)
)∣∣2

≤
∣∣θT (Φ(x1, s)− Φ(x2, s))

∣∣2
+
∣∣θT (Φ(x′1, s′)− Φ(x′2, s

′)
)∣∣2,

≤ ∥θ∥2∥Φ(x1, s)− Φ(x2, s)∥2

+ ∥θ∥2
∥∥Φ(x′1, s′)− Φ(x′2, s

′)
∥∥2,

≤ D2
{
L2
s∥x1 − x2∥

2 + L2
s′
∥∥x′1 − x′2∥∥2} ,

≤ D2max
s∈S

L2
s

∥∥(x1, x′1)− (x2, x
′
2)
∥∥2,

≤ 4D2max
s∈S

L2
sR

2
∥∥(x1, x′1)− (x2, x

′
2)
∥∥.
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Let us set Λ := 4D2(maxs∈S Ls)
2R2, so that the functions {rθ(·, s, ·, s′)}θ∈Θ are Λ-Lipschitz.

Secondly, we know from (Villani, 2008, Theorem 5.19) that πn⟨s′|s⟩ converges almost-surely
weakly to π⟨s′|s⟩ as ns, ns′ −→ +∞. Moreover, for any s ∈ S, we have ns

n −−−−→n→+∞
P(S = s) > 0,

hence ns −−−−→
n→+∞

+∞. As a consequence, πn⟨s′|s⟩ converges almost-surely weakly to π⟨s′|s⟩
as n −→ +∞. Additionally, since Xs × Xs′ ⊆ X × X , it follows from Assumption (ii) that
π⟨s′|s⟩ is compactly supported. According to Remark 7.13 in (Villani, 2003), this implies that
W1(π

n
⟨s′|s⟩, π⟨s′|s⟩)

a.s.−−−−→
n→+∞

0, where W1 denotes the Wasserstein-1 distance. Using the dual
formulation of the Wasserstein distance, this convergence can be written as,

W1(π
n
⟨s′|s⟩, π⟨s′|s⟩) = sup

r∈Lip1(X×X ,R)

∫
r
(
dπn⟨s′|s⟩ − dπ⟨s′|s⟩

)
a.s.−−−−→

n→+∞
0.

Noting that for any θ ∈ Θ, rθ(·, s, ·, s′)/Λ is 1-Lipschitz, we have

1

Λ
sup
θ∈Θ

∣∣∣∣∫ rθ(x, s, x
′, s′)

(
dπn⟨s′|s⟩(x, x

′)− dπ⟨s′|s⟩(x, x
′)
)∣∣∣∣ ≤W1(π

n
⟨s′|s⟩, π⟨s′|s⟩)

a.s.−−−−→
n→+∞

0.

This entails that the term (2.16) converges almost surely to 0, and completes the proof.

• Step 2. Consistency of the mimimum. For this additional step, we assume that
Rn and R have unique minimizers, and we denote θ∗ := argminθ∈ΘR(θ). Note that the
sequence {θn}n∈N∗ is bounded by D, and as such we can extract a sub-sequence {θσ(n)}n∈N∗

converging to some θσ ∈ Θ. Let us prove that θσ = θ∗ regardless of the choice of the
subsequence {σ(n)}n∈N. According to the deviation inequality (2.14) and by continuity of
R, we have at the limit,

R(θσ) ≤ R(θ∗).

This means that θσ is a minimizer of R. Therefore, by uniqueness, θσ = θ∗. This
completes the proof, as this implies that,

θn
a.s.−−−−→

n→+∞
θ∗.

Appendix 2.D Proofs of Section 2.8

Proof of Proposition 2.8.1 Without loss of generality, we can suppose that S = {1, . . . , N}
for some N ≥ 1. The proof follows two steps. Firstly, we postulate an SCMM♭ := ⟨U ♭, G♭⟩
satisfying (A) and (RE) such that its solution (X♭, S♭) generates the same distribution
as (X,S). Secondly, we show that the counterfactual model induced by M♭ is equal to
Π := {π⟨s′|s⟩}s,s′∈S .

Since by assumption the counterfactual model verifies Definition 2.8.1, there exists a
collection of random vectors (X1, . . . , XN ) ∈

(
Rd
)N such that for any s, s′ ∈ S:



118 CHAPTER 2. TRANSPORT-BASED COUNTERFACTUAL MODELS

1. L ((Xs, Xs′)) = π⟨s′|s⟩,

2. L (Xs) = µs.

On this basis, we create the structural causal model using the so-called Rosenblatt
transform: according to Rosenblatt (1952), there always exists a measurable function
RT :

(
Rd
)N → (

Rd
)N and a random vector U ♭X ∈

(
Rd
)N (following the uniform distribution

on the hypercube) such that (X1, . . . , XN ) = RT(U ♭X). Therefore, by dividing RT into N
groups of d components we can write RT = (RT1, . . . ,RTN ) so that Xs = RTs(U

♭
X) for every

s ∈ S. Lastly, we define U ♭S such that L(U ♭S) = L(S) and U ♭S ⊥⊥ U ♭X .
We now have all the ingredients to postulate an adequate structural causal model. Let

M♭ be the SCM with random seed U ♭ := (U ♭X , U
♭
S) and structural equations given by:{

X♭ P−a.s.
= G♭X(S

♭, U ♭X) := RTS♭(U ♭X),

S♭
P−a.s.
= G♭S(U

♭
S) := U ♭S .

Note thatM♭ satisfies (A) and (RE).
Next, let us verify that M♭ fits the data, that is L((X♭, S♭)) = L((X,S)). Let E be a

Borel set of Rd+1 and compute,

P((RTS♭(U ♭X), U
♭
S) ∈ E) =

∑
s∈S

P(U ♭S = s)P((RTs(U ♭X), s) ∈ E | U ♭S = s)

=
∑
s∈S

P(U ♭S = s)P((Xs, s) ∈ E)

=
∑
s∈S

P(S = s)P((Xs, s) ∈ E)

=
∑
s∈S

P(S = s)P((X,S) ∈ E | S = s)

= P((X,S) ∈ E),

using that U ♭X ⊥⊥ U ♭S , L(U ♭S) = S and L(Xs) = L(X | S).
To finish, we show that L((X♭, X♭

S♭=s′
) | S♭ = s) = π⟨s′|s⟩. Let us compute,

L((X♭, X♭
S♭=s′) | S

♭ = s) = L((RTS♭(U ♭X),RTs′(U
♭
X)) | S♭ = s)

= L((RTs(U ♭X),RTs′(U ♭X)) | S♭ = s)

= L((RTs(U ♭X),RTs′(U ♭X)))
= L ((Xs, Xs′))

= π⟨s′|s⟩.

This completes the proof.

Proof of Proposition 2.8.2 We first condition over each level of S to obtain,

vNC =
∑
s∈S

P(S = s)E[Φ(X,S)(s− E[S]) | S = s].
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Then, we write E[S] =
∑

s′∈S P(S = s′)s′ so that by linearity of the expectation

vNC =
∑
s∈S

P(S = s)
∑
s′∈S

P(S = s′)E[Φ(X,S)(s− s′) | S = s].

This can be expressed as,

vNC =
∑
s∈S

{∑
s′<s

P(S = s′)P(S = s)E[Φ(X,S)(s− s′) | S = s]

+
∑
s′>s

P(S = s′)P(S = s)E[Φ(X,S)(s− s′) | S = s]

}
.

Then, by switching s and s′ in the second sum we have

vNC =
∑
s∈S

∑
s′: s>s′

P(S = s)P(S = s′)E[Φ(X,S)(s− s′) | S = s]

−
∑
s′∈S

∑
s: s>s′

P(S = s)P(S = s′)E[Φ(X,S)(s− s′) | S = s′].

Therefore,

vNC =
∑
s>s′

P(S = s)P(S = s′)(s− s′)
(
E[Φ(X,S) | S = s]− E[Φ(X,S) | S = s′]

)
.

Proof of Proposition 2.8.3 First of all, let us unpack the definition of counterfactual
fairness for a predictor of the form Ŷ := θTΦ(X,S) + θ0. For every (s, s′) ∈ S2 and
π⟨s′|s⟩-almost every (x, x′) this requires,

θTΦ(x, s) + θ0 = θTΦ(x′, s′) + θ0,

that is,
θ ⊥ Φ(x′, s′)− Φ(x, s).

Reformulating, counterfactual fairness demands that for every (s, s′) ∈ S2 there exists a
set E⟨s′|s⟩ such that π⟨s′|s⟩

(
E⟨s′|s⟩

)
= 1 and for every (x, x′) ∈ E⟨s′|s⟩,

θ ⊥ Φ(x′, s′)− Φ(x, s).

Now, we show that θ ∈ Span(ΠΦ)⊥ entails that Ŷ is counterfactually fair. If θ ∈
Span(ΠΦ)⊥, then θ is orthogonal to all vectors in ΠΦ. This means that for every (s, s′) ∈ S2
and every (x, x′) ∈ supp(π⟨s′|s⟩),

θ ⊥ Φ(x′, s′)− Φ(x, s).

This implies counterfactual fairness since the setE⟨s′|s⟩ := supp(π⟨s′|s⟩) is such that π⟨s′|s⟩
(
E⟨s′|s⟩

)
=

1 for every (s, s′) ∈ S.
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Next, we turn to proving the converse implication. Let (s, s′) ∈ S2. and note that
it follows from π⟨s′|s⟩

(
E⟨s′|s⟩

)
= 1 that E⟨s′|s⟩ ∩ supp(π⟨s′|s⟩) = supp(π⟨s′|s⟩). Additionally,

the mapping (x, x′) 7→ Φ(x′, s′)− Φ(x, s) is continuous by continuity of Φ(·, s) and Φ(·, s′).
Therefore, the assumption that for every (x, x′) ∈ E⟨s′|s⟩ ∩ supp(π⟨s′|s⟩),

θ ⊥ Φ(x′, s′)− Φ(x, s),

extends by continuity of the scalar product to the closure E⟨s′|s⟩ ∩ supp(π⟨s′|s⟩), that is
supp(π⟨s′|s⟩). Taking the linear span of this set, which preserves the orthogonality condition,
completes the proof.
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Chapter 3

GAN estimation of Lipschitz optimal
transport maps

This chapter introduces the first statistically consistent estimator of the optimal transport
map between two probability distributions, based on neural networks. Building on theoretical
and practical advances in the field of Lipschitz neural networks, we define a Lipschitz-
constrained generative adversarial network penalized by the quadratic transportation cost.
Then, we demonstrate that, under regularity assumptions, the obtained generator converges
uniformly to the optimal transport map as the sample size increases to infinity. Furthermore,
we show through a number of numerical experiments that the learnt mapping has promising
performances. In contrast to previous work tackling either statistical guarantees or practicality,
we provide an expressive and feasible estimator which paves way for optimal transport
applications where the asymptotic behaviour must be certified.

3.1 Introduction

An optimal transport map is the fundamental object of Monge’s seminal formulation of
optimal transport (Monge, 1781). It transforms one distribution into another with minimal
effort. Formally, given two probability distributions P and Q on Ω ⊆ Rd, an optimal transport
map from P to Q is a solution to,

min
T∈T (P,Q)

∫
Ω
∥x− T (x)∥2dP (x), (3.1)

where T (P,Q) is the set of measurable maps T : Ω → Ω pushing forward P to Q, that
is Q(E) = P (T−1(E)) for every Borel set E ⊆ Ω.1 This property, denoted by T♯P = Q,
means that if a random variable X follows the distribution P then its image T (X) follows
the distribution Q. According to (Villani, 2003, Theorem 2.12), originally demonstrated in
(Cuesta and Matrán, 1989; Brenier, 1991), when P and Q admit densities with respect to
the Lebesgue measure and have finite second-order moments, then there exists a unique (up
to P -negligible sets) solution to Problem (3.1), which we denote by T0.

1In general, an optimal transport map refers to a solution of Monge’s problem for any cost function. In
this chapter, we use this term for the quadratic cost only.
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Due to their transparent mathematical formulation and well-established theory, optimal
transport maps became popular in many applications from statistics-related fields, where one
aims at modeling shifts between distributions. This includes multivariate-quantile analysis
(Beirlant et al., 2020; Hallin et al., 2021), signal analysis (Kolouri et al., 2017), domain
adaptation (Courty et al., 2014; Seguy et al., 2018; Redko et al., 2019), transfer learning
Gayraud et al. (2017), fairness in machine learning (Gordaliza et al., 2019; Black et al., 2020),
and counterfactual reasoning (De Lara et al., 2021a; Berk et al., 2021). However, in such
practical frameworks, one typically does not have access to the true distributions P and Q
but to independent samples x1, . . . , xn ∼ P and y1, . . . , yn ∼ Q. This raises the question of
constructing a tractable approximation of the solution T0 on the basis of these empirical
observations. The simplest way to compute an empirical optimal transport map from data
points is to solve Problem (3.1) between the empirical measures Pn := n−1

∑n
i=1 δxi and

Qn := n−1
∑n

i=1 δyi instead of P and Q. Implementing this solution suffers from three main
drawbacks. The first one is the computational cost, since it requires at least O(n3) operations
to compute the empirical optimal transport map (Peyré and Cuturi, 2019). The second is
the memory cost, since this map is typically stored as an n× n matrix. As a consequence of
these two issues, this approach does not scale well with the size of the dataset. The third
limitation of the empirical map is its inability to generalize to new out-of-sample observations:
by construction it is only matching the set {x1, . . . , xn} to {y1, . . . , yn}.

These practical drawbacks triggered a vast literature on continuous approximations of
optimal transport maps. The proposed mappings all come with different practical limitations,
theoretical guarantees, and experimental performances. On the one hand, a wide range of
these constructions provably converge in some sense to the true map T0 as n increases to
infinity, making them consistent estimators. The so-called plug-in estimators, such as the
ones proposed in (Beirlant et al., 2020; Hallin et al., 2021; Manole et al., 2021), extend the
empirical solution to the whole domain Ω by leveraging regularity assumptions. However,
they still bear the burdens of computing and storing the empirical transport map. The
smooth estimator introduced by Hütter and Rigollet (2021) reaches near-optimal minimax
convergence rate, but fails to be computationally tractable. In contrast, Seguy et al. (2018)
and Pooladian and Niles-Weed (2021) employed entropic regularization, a numerical scheme
based on Sinkhorn’s algorithm (Cuturi, 2013), to build an implementable and scalable
estimator. On the other hand, several papers proposed learning the optimal transport map
through neural networks, leading to expressive approximations with high generalization power.
Specifically, Leygonie et al. (2019) and Black et al. (2020) developed approximations based on
a generative-adversarial-network (GAN) objective (Goodfellow et al., 2014; Arjovsky et al.,
2017). More recently, the use of input convex neural networks, building on the convexity
of the optimal transport potential, has received a growing attention (Makkuva et al., 2020;
Korotin et al., 2021; Huang et al., 2021). However, while these neural-based mappings display
strong experimental performances, they generally lack theoretical guarantees, in particular
the statistical convergence.

To sum-up, the literature has mostly addressed either theoretically grounded statistical
estimators of optimal transport maps, but unsuitable for large-scale implementations, or
efficient heuristic approximations, at the cost of statistical guarantees. In this chapter, we
propose a novel GAN-based estimator Gn of T0 which, under some assumptions, converges
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uniformly:
∥Gn − T0∥∞

a.s.−−−−→
n→+∞

0.

Our construction takes root in the approximation from (Black et al., 2020), defined as the
generator of a penalized Wassertein-GAN (WGAN) training problem (Arjovsky et al., 2017),
and improve it by assuming a setting where the optimal transport map is Lipschitz and by
leveraging recent theoretical and practical advances on Lipschitz neural networks (Anil et al.,
2019; Tanielian and Biau, 2021; Béthune et al., 2022). Formally, Gn solves the following
adversarial training:

inf
G∈Gn

{
∥I −G∥2L2(Pn)

+ λn sup
D∈Dn

∫
D (d(G♯Pn)− dQn)

}
,

where Dn is a class of 1-Lipschitz discriminators providing a proxy for the Wasserstein-
1 distance, and Gn is a class of Lipschitz generators parametrizing the space of feasible
mappings. The positive parameter λn governs the trade-off between minimizing the quadratic
transportation cost, promoting the objective of the Monge problem (3.1), and minimizing
the distance between the generated and the target distributions, enforcing the push-forward
constraint.

The most similar papers to ours are the ones of Seguy et al. (2018) and Pooladian and
Niles-Weed (2021), as they propose feasible estimators with statistical guarantees. We note
two main differences. First, we do not rely on entropic regularization while still ensuring
scalability to large datasets. Second, our estimator innovates by being defined as a neural
network. In particular, Seguy et al. (2018) relies on a neural network in practice, but the
statistical convergence holds for a theoretical estimator. Regarding theoretical guarantees,
we lack the convergences rates provided in (Pooladian and Niles-Weed, 2021), but we prove a
stronger result than Seguy et al. (2018) by ensuring the uniform convergence of the estimator.

Outline. The rest of the chapter is organized as follows:

1. Section 3.2 introduces the necessary background on so-called GroupSort neural net-
works, which became the gold standard to parametrize Lipschiz feed-forward neural
networks. By studying the multivariate setting, we provide generalizations of the main
approximation theorem from (Tanielian and Biau, 2021).

2. Section 3.3 presents the technical assumptions of our framework, in particular the
regularity of the optimal transport map, details construction of our GAN estimator,
and states the statistical consistency theorem.

3. Section 3.4 focuses on the practical implementation of the estimator, and study its
performance through a number of numerical experiments.

Notations. The absolute value of real numbers and the Euclidean norm of vectors are
respectively given by |·| and ∥·∥. The notation Br refers to the centered Euclidean ball
of Rd with radius r > 0. We denote by diam(Ω) the diameter of a set Ω ⊆ Rd. If Ω
is a closed convex set, then ProjΩ stands for the projection onto Ω. The support of a
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Figure 3.1: Estimation of the optimal transport map on the TwoMoons dataset. (a) GAN
estimator G after 800 gradient steps on the generator, on the basis of 4, 000 points from
each distribution. The black arrows represent the transport of specific points. (b) Empirical
optimal transport map (discrete matching) between samples of size 500.

probability measure is given by supp(·). In the following Ω1 ⊆ Rd1 and Ω2 ⊆ Rd2 denote two
arbitrary subsets. For a function F : Ω1 → Ω2 and µ a probability measure on Ω1, we write
∥F∥L2(µ) :=

√∫
Ω1
∥F (x)∥2dµ(x). The supremum norm of function is given by ∥·∥∞.For

some L > 0, we write LipL(Ω1,Ω2) the set of L-Lipschitz functions from Ω1 to Ω2. For some
α > 0, we call Cα(Ω1,Ω2) the set of α-Hölder functions from Ω1 to Ω2 and write ∥·∥α,∞ for
the α-Hölder norm of functions. For a differentiable function F : Ω1 → Ω2, we call F ′ its
derivative, where for any x ∈ Ω1 the quantity F ′(x) is a d1× d2 matrix. For a real symmetric
matrix S and a real number γ, the relation γ ⪯ S indicates that all the eigenvalues of S are
greater than γ. The relation ⪰ is defined similarly.

3.2 Lipschitz neural networks

The GAN estimator defined by (3.2) and further described in Section 3.3 requires generators
and discriminators that are both Lipschitz. The question of imposing sharp Lipschitz
constraints on neural networks has attracted much attention from the field of machine learning,
especially with the popularization of WGANs which rely on 1-Lipschitz discriminators. In
particular, gradient penalization (Gulrajani et al., 2017) has proven to be more efficient than
the parameter-clipping approach originally proposed by Arjovsky et al. (2017). In this chapter,
we focus on the recently introduced GroupSort activation function to impose the Lipschitz
constraint, which have proven to yield tighter estimates of 1-Lispchitz functions (Anil et al.,
2019; Tanielian and Biau, 2021). We recall the necessary background on GroupSort-based
networks, and show that their ability to approximate any bounded classes of Lipschitz
functions holds for arbitrary output dimension.
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3.2.1 Multivariate GroupSort neural networks

We introduce GroupSort neural networks in a similar fashion to (Tanielian and Biau, 2021).
In contrast, we consider a more general setting where the output dimension p ≥ 1 is arbitrary.
This difference is motivated by the optimal transport map being a multivariate function.

We write σk for the GroupSort activation function of grouping size k ≥ 2. By definition,
it splits the pre-activation input into groups of size k, and then sorts each group by decreasing
order. This operation is 1-Lipschitz, gradient-norm preserving and homogeneous (Anil et al.,
2019). In this chapter, we only address the grouping size 2. We call a GroupSort feed-forward
neural network (with grouping size 2) any function Nθ : Rd → Rp of the form

Nθ = hl ◦ hl−1 ◦ . . . ◦ h1, (3.2)

where

h1(x) :=W1x+ b1 with W1 ∈ Rw1×d, b1 ∈ Rw1 ;

h2(x) :=W2σ2(x) + b2 with W2 ∈ Rw2×w1 , b2 ∈ Rw2 ;

. . .

hl(x) :=Wlσ2(x) + bl with Wl ∈ Rp×wl−1 , bl ∈ Rp.

The integer l ≥ 1 denotes the depth of the network while the integers {w1, . . . , wl−1} refer
to the widths of the hidden layers {h1, . . . , hl−1}. The widths are assumed to be divisible
by 2 (the grouping size). Additionally, we define s :=

∑l−1
i=1wi the size of the network.

The parameter θ := (W1, . . . ,Wl, b1, . . . , bl) ∈ Θ represents the weights matrices and offset
vectors of Nθ.

For a matrix W , let ∥W∥∞ := sup∥x∥∞=1 ∥Wx∥∞ and ∥W∥2,∞ := sup∥x∥=1 ∥Wx∥∞,
where ∥x∥∞ denotes the maximum norm of vectors. Consider the following assumption on
the parameters:

Assumption (C): Compactness

There exists a constant C > 0 such that for all (W1, . . . ,Wl, b1, . . . , bl) ∈ Θ,

∥W1∥2,∞ ≤ 1,

max(∥W2∥∞, . . . , ∥Wl∥∞) ≤ 1,

max(∥b1∥∞, . . . , ∥bl∥∞) ≤ C.

In the following, we denote by N p
C(l, s) the class of GroupSort feed-forward neural networks

with depth l, size s, output dimension p, satisfying Assumption (C) for the constant C > 0.
When the depth and size are arbitrary, we simply write N p

C . The following result is a trivial
extension to the multivariate case of (Tanielian and Biau, 2021, Lemma 1), stating that
GroupSort neural networks satisfying Assumption (C) are 1-Lipschitz.
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Lemma 3.2.1: GroupSort neural networks are 1-Lipschitz

For any C > 0, N p
C ⊂ Lip1(Rd,Rp).

Next, we study their ability to approximate Lipschitz continuous functions.

3.2.2 Approximating Lipschitz continuous functions

We now restrict the input domain to a compact subset of Rd denoted by Ω. The following
theorem states that for a well-chosen C the class N 1

C approximates with given precision any
bounded subclass of Lip1(Ω,R). It generalizes Theorem 2 in (Tanielian and Biau, 2021) by
providing the universal constant for which Assumption (C) is satisfied, and extending the
result to any compact domain Ω while it was restricted to [0, 1]d.

Theorem 3.2.1: Approximation of univariate Lipschitz functions

Let F ⊆ Lip1(Ω,R) be a class of functions such that supf∈F ∥f∥∞ ≤ KF for some
KF > 0. Set ϵ > 0 and C := KF +

√
d(supx∈Ω ∥x∥+1)+ ϵ. Then, for any f ∈ F , there

exists a neural network N ∈ N 1
C(l, s) where

l = O

(
d2 log2

(
2
√
d

ϵ

))
and s = O

(2
√
d

ϵ

)d2 ,

such that ∥N − f∥∞ ≤ ϵ.

The proof essentially follows that of Tanielian and Biau (2021). It generalizes some parts
by tracking the bound on the offset vectors of the approximating network. Interestingly,
Theorem 3.2.1 can be extended to the case where the output is of dimension p.

Theorem 3.2.2: Approximation of multivariate Lipschitz functions

Let G ⊆ Lip1(Ω,Rp) be a class of functions such that supg∈G ∥g∥∞ ≤ KG for some
KG > 0. Set ε > 0 and C = KG +

√
d(supx∈Ω ∥x∥+ 1) + ε. Then, for any g ∈ G there

exists a neural network N ∈ N p
C(l, s) where

l = O

(
d2 log2

(
2
√
d
√
p

ε

))
, and s = O

p(2
√
d
√
p

ε

)d2 ,

such that ∥N − g∥∞ ≤ ε.

The proof amounts to applying Theorem 3.2.1 to the univariate function along each
dimension. Note that Theorems 3.2.1 and 3.2.2 can be extended to approximate L-Lipschitz
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functions, for an arbitrary L > 0, by multiplicating by L the output later of 1-Lipschitz
neural networks. This remark will be useful to approximate the optimal transport map,
assumed to be L-Lipschitz.

3.3 GAN estimator

In this section, we address the construction of an estimator of the optimal transport map,
and show its uniform convergence as the sample size increases to infinity.

3.3.1 Optimal transport setup

Set P and Q two measures on Rd admitting densities with respect to the Lebesgue measure
and with finite second-order moments. We aim at estimating with a GroupSort neural
network the unique optimal transport map T0 between P and Q through the knowledge of
the empirical distributions Pn and Qn. As mentioned in the introduction, we consider a
setting where the optimal transport map T0 is Lipschitz.

As in the previous section, Ω ⊂ R is a compact set, and we denote by ΩP := supp(P )
the source domain and ΩQ := supp(Q) the target domain. Then, we let L ≥ 2 and make the
following assumptions:

Assumption (S1): Smoothness of the source domain

The source domain ΩP ⊆ BL is a bounded and connected Lipschitz domain. The measure
P admits a density ρ with respect to the Lebesgue measure such that L−1 ≤ ρ(x) ≤ L
for almost every x ∈ ΩP .

Assumption (S2): Smoothness of the optimal transport map

Let Ω̃P denote a convex set with Lipschitz boundary such that ΩP +BL−1 ⊆ Ω̃P ⊆ BL.
The optimal transport map T0 is a differentiable function from Ω̃P to Rd such that
T0 = ∇f0 where f0 : Ω̃P → Rd is a differentiable convex function. Additionally it
satisfies:

(i) T0 ∈ C2(Ω̃P ,Rd) such that ∥T0∥2,∞ ≤ L;

(ii) L−1 ⪯ T ′
0(x) ⪯ L for all x ∈ Ω̃P .

These are the same hypothesis as in (Hütter and Rigollet, 2021, Section 5), specified
with a Hölder regularity α equal to 2. This makes our setting milder, as we do not require
the optimal transport map to be highly regular. Assumptions (S1) and (S2) ensure the
existence of a near-optimal minimax estimator of T0, which play a key role in the proof
of our estimator’s consistency. Note that, without loss of generality, we can consider that
P and Q are measures on a compact set Ω ⊂ Rd sufficiently large to contain BL. Then,
Assumption (S2) implies that T0 ∈ LipL(Ω, BL).
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Now that the optimal transport problem is properly specified, we turn to the GAN
architecture through which our estimator is defined.

3.3.2 GAN setup

The optimal transport map T0 satisfies two objectives: it is constrained to pushing forward P
to Q, that is T0♯P = Q; it minimizes the quadratic transportation cost ∥I − T0∥2L2(P ). Due
to the push-forward condition, T0 can be regarded as a generative model. This observation
is the foundation of the approximation of Black et al. (2020). They proposed to regularize
the WGAN objective function, promoting only the push-forward condition, with an optimal
transport penalty on the generator. We proceed similarly, with three critical differences. First,
we penalize the quadratic transportation cost with the push-forward condition instead of the
converse. Second, we employ GroupSort neural networks to implement the discriminator and
generator. Third, because we aim at proving the statistical convergence of the generator, we
emphasize for all the objects involved in the GAN their dependence to the sample size n,
including the penalty weight.

Discriminator

In the WGAN framework, the discriminator D : Rd → R is a neural network defining a
proxy for the Wasserstein-1 distance, while the generator G : Rd → Rd is a neural network
minimizing this proxy between G♯Pn and Qn, thereby aiming at generating Q from P .

We recall that the Wasserstein-1 distance between two measures µ and ν on Ω is defined
as,

W(µ, ν) := inf
π∈Π(µ,ν)

∫
Ω×Ω
∥x− y∥dπ(x, y),

where Π(µ, ν) is the set of couplings with µ as first marginal and ν as second marginal.
Interestingly, this distance enjoys the following dual formulation, known as the Kantorovich-
Rubinstein formula (Kantorovich and Rubinshtein, 1958). According to (Villani, 2008,
Particular Case 5.15), this can be written as:

W(µ, ν) = sup
f∈Lip1(Ω,R)

∫
f(dµ− dν). (3.3)

The key idea of WGAN is to approximate this distance by computing the supremum over
a class of neural networks included in Lip1(Ω,R). The larger the class, the better the
approximation. Originally, this was done by clipping, thresholding the weights of the network,
leading to a coarse approximation of the Wasserstein distance. Later, several papers showed
that using GroupSort neural networks led to sharper approximations (Anil et al., 2019; Biau
et al., 2021).

Actually, note that if f is an optimal function in Problem (3.3), then the function f + b
for any constant b is also an optimal solution. As a consequence, we can without loss of
generality restrict the set of feasible potentials to 1-Lipschitz functions taking the value zero
at a given arbitrary anchor point x0 ∈ Ω. Formally, let’s define

F := {f ∈ Lip1(Ω,R) | f(x0) = 0}. (3.4)
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Then we can write,

W(µ, ν) = sup
f∈F

∫
f(dµ− dν).

The interest of this formulation is that the feasible potentials now belongs to a bounded
subclass of Lipschitz functions.

Lemma 3.3.1: Control on the discriminators

Let F be defined as in Equation (3.4). Then,

KF := sup
f∈F
∥f∥∞ ≤ diam(Ω).

Thus, Theorem 3.2.1 entails that they can be approximated by GroupSort neural networks
with specific depth and size. Following this remark, we define for each sample size n the
class of feasible discriminators Dn as well-chosen GroupSort neural networks. Specifically,
the discriminators are defined as in the next assumption.

Assumption (G1): Construction of the discriminators

Set a sequence of positive numbers {ϵn}n∈N such that limn→+∞ ϵn = 0, and a sequence
of constants {Cn}n∈N defined as

Cn := diam(Ω) +
√
d(sup
x∈Ω
∥x∥+ 1) + ϵn.

For every n ∈ N, define Dn := N 1
Cn

(ln, sn) where,

ln = O

(
d2 log2

(
2
√
d

ϵn

))
, and sn = O

(2
√
d

ϵn

)d2 .

Then, we approximate the Wasserstein-1 distance through the following integral proba-
bility metric:

Wn(µ, ν) := sup
D∈Dn

∫
D(dµ− dν). (3.5)

An important consequence of Assumption (G1) through Lemma 3.3.1 and Theorem 3.2.1
is that

⋃
n∈NDn is dense in F , rendering Wn asymptotically close to W as n increases

to infinity. Note that the sequence {ϵn}n∈N characterizes the rate at which the class Dn
approximates F . Now that we have properly defined the discriminators, we focus on the
generators.
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Figure 3.2: Visualisation of G♯P and Q := T0♯P with 10, 000 points. P is the uniform
distribution on [−1, 1]d. The generator is trained for 120 gradient steps. The Figures (a)-(b)
corresponds to d = 2. The Figures (c)-(d) corresponds to d = 3. In Figures (a)-(c), we
defined T0 by coordinate-wise application of x 7→ 1

1.18(expx− 1.18). In Figures (b)-(d), we
defined T0 by coordinate-wise application of x 7→ x2sign(x).

Generator

On the contrary to a standard WGAN, the generator must additionally minimize the quadratic
transportation cost in order to approach the optimal transport map T0. Let us denote by Gn
the class of feasible generators, which will be specified later. A naive formulation for our
estimator Gn ∈ Gn would be,

Gn ∈ argmin
G∈Gn s.t. G♯Pn=Qn

∥I −G∥2L2(Pn)
.

However, since the push-forward condition is intractable as such, we replace it by a penalty
term based on the neural proxy of the Wasserstein-1 distance. Formally, we set λn > 0
a regularization weight and we define the GAN estimator Gn as an optimal solution to
Problem (3.2), that is

Gn ∈ argmin
G∈Gn

Ln(G),

where
Ln(G) := ∥I −G∥2L2(Pn)

+ λnWn(G♯Pn, Qn).

We note that Problem (3.2) is well-posed under mild conditions.

Proposition 3.3.1: Existence of an optimal generator

If Dn ⊆ Lip1(Ω,R) and Gn is compact, then Problem (3.2) admits solutions.

This result is a direct consequence of the Lipschitz continuity of the loss function Ln, which
we demonstrate in the proof.

At this stage, we should make further assumptions on Gn to exploit the smoothness of
the optimal transport problem. Let us define

G := LipL(Ω, BL), (3.6)

which is a class of bounded Lipschitz functions.
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Lemma 3.3.2: Control on the generators

Let G be defined as in Equation (3.6). Then,

KG := sup
g∈G
∥g∥∞ ≤ Ldiam(Ω) + sup

x∈Ω
∥x∥.

Critically, under Assumption (S2), the solution T0 belongs to G, and as such can be
approximated by GroupSort neural networks according to Theorem 3.2.2. This motivates
the following conditions on the set of feasible generators Gn:

Assumption (G2): Construction of the generators

Set {εn}n∈N a sequence of positive numbers such that limn→+∞ εn = 0, and a sequence
of constants {Cn}n∈N defined as

Cn := Ldiam(Ω) + (
√
d+ 1) sup

x∈Ω
∥x∥+

√
d+ εn.

For every n ∈ N, we define Gn as

{x ∈ Ω 7→ ProjBL
(L×N(x)), N ∈ N d

Cn
(ln, sn)}

where,

ln = O

(
d log2

(
2d

εn

))
, and sn = O

(
d

(
2d

εn

)d2)
.

Defined as such, Gn is included in G. The idea behind Assumption (G2) is similar to that
of Assumption (G1). In particular, the condition on the depth and size of the networks
guarantees through Theorem 3.2.2 that Gn asymptotically fills G at speed εn, allowing to
recover T0 at the limit.

3.3.3 Main theorem

The convergence of {Gn}n∈N towards T0 revolves around two antagonistic conditions. Instinc-
tively, the sequence of regularization weights {λn}n∈N must tend to infinity in order to impose
the push-forward condition at the limit. Concurrently, the sequence of feasible generators
{Gn}n∈N must fill G sufficiently fast. This corresponds to the following assumptions:



134CHAPTER 3. GAN ESTIMATION OF LIPSCHITZ OPTIMAL TRANSPORT MAPS

Assumption (G3): Speed of the regularization

The sequence {λn} is such that limn→+∞ λn = +∞ and

λn =


o
(
n

1
d

)
if d > 2,

o
(
n

1
2 /log n

)
if d = 2,

o
(
n

1
2 /
√
log n

)
if d = 1.

Assumption (G4): Speed of the covering

The sequence {εn}n∈N from Assumption (G2) is such that, εn = o
(

1
λn

)
.

We are now ready to state our main theorem.

Theorem 3.3.1: Uniform convergence of the optimal generators

Let P and Q be such that the smoothness assumptions (S1) and (S2) on the optimal
transport problem hold, and denote by T0 the (almost everywhere) unique optimal
transport map between P and Q. Suppose that the GAN problem satisfies Assump-
tions (G1), (G2), (G3) and (G4). Then, for Gn defined as a solution to Problem (3.2)
we have

∥Gn − T0∥∞
a.s.−−−−→

n→+∞
0.

To the best of our knowledge, this is the first statistical consistency result for a neural-
network-based optimal transport map. We leave the analysis of consistency rates for future
work. In particular, we could obtain sharper results by imposing conditions on the parameter
ϵn which characterizes the rate at which the discriminators Dn approximate the 1-Lipschitz
potentials, and by leveraging stronger regularity assumptions on T0. The proof is quite
technical; the convergence of λn to infinity prevents from using classical empirical process
techniques. Instead, we rely on more analytical arguments based on the relative compactness
properties of Lipschitz functions. Moreover, we note that the proof still holds for more
general classes of generators as long as they maintain certain universality properties and have
a Lipschitz constant that can be controlled. This is one of the main strengths of GroupSort
neural networks: they can sharply approximate any classes of bounded Lipschitz functions
with the same Lipschitz constant.

3.4 Numerical experiments

The rest of the chapter addresses the implementation of our method, and showcases experi-
mental results. Specifically, we do not try to illustrate the convergence rate of the estimator,
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Figure 3.3: Evolution of the mean square error ∥T0 −G∥22 during the learning process
as function of the number of gradient steps on generator with batch size 512, for x 7→
1

1.18(expx− 1.18). The number of samples used is proportional to the number of steps.

which is yet to be found, but instead focus on the efficiency and practicality of our GAN-based
optimal transport map.

We would also like to emphasize in passing that while we left this short section in the
thesis for the sake of illustration and completeness, the code and figures are the work of my
colleague Louis Béthune.

3.4.1 Implementation

In the following experiments, we use (· → 80 → 80 → 80 → ·) densely connected neural
networks with GroupSort activation functions for both the generator and the discriminator.
We implement GroupSort using Deel-Lip library2. The 1-Lipschitz constraint is enforced
through projections onto a parameter space satisfying Assumption (C). The output layer
of the generator is multiplied by L to be made L-Lipschitz. Critically, since this constant
is unknown in practice, we must rely on a large-enough user-defined upper bound. We use
Adam with default parameters for the optimization. All experiments have been run on
personal workstation with 32GB RAM and NVIDIA Quadro RTX 8000 48GB GPU.

The learning procedure is detailed in Algorithm 1. In contrast to a WGAN, the generator
loss includes the quadratic transportation cost. It also differs from the procedure proposed
in (Black et al., 2020) by implementing a sharper weight projection than clipping.
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Algorithm 1: GAN learning of the optimal transport map
Input: source distribution P , target distribution Q, regularization parameter λ,
discriminator {Dψ}ψ∈Ψ, generator {Gϕ}ϕ∈Φ, respective learning rates ηD and ηG,
minibatch size m
repeat

repeat
Sample minibatchs: {xi}mi=1 ∼ P , {yi}mi=1 ∼ Q
Define cost function:

WD(ψ) :=
1

m

m∑
i=1

Dψ(Gϕ(xi))−
1

m

m∑
i=1

Dψ(yi)

Projected gradient ascent step on discriminator:

ψ ← ProjΨ (ψ + ηD∇ψWD(ψ))

until convergence of Dψ

Sample minibatch: {x′i}mi=1 ∼ P
Define cost functions:

WG(ϕ) :=
1

m

m∑
i=1

Dψ(Gϕ(x
′
i))

C(ϕ) := 1

m

m∑
i=1

∥∥x′i −Gϕ(x′i)∥∥2
Projected gradient descent step on generator:

ϕ← ProjΦ (ϕ− ηG∇ϕ(C(ϕ) + λWG(ϕ)))

until convergence of Gϕ

3.4.2 Experimental results

We evaluate how close the trained generator G is to the optimal transport map T0. Recall
that our construction, as in (Hütter and Rigollet, 2021; Pooladian and Niles-Weed, 2021), is
tailored to settings where the optimal transport map is at least Lipschitz, hence continuous.
This excludes in particular target distributions with disconnected supports. Firstly, we address
a setting where the true optimal transport map T0 in unknown. Figure 3.1 benchmarks the
GAN estimator against the empirical optimal transport map on the TwoMoons dataset. We
used the POT library to compute the discrete matching (Flamary et al., 2021). It shows that
the generator faithfully matches the two moons with respect to the quadratic transportation
cost.

2https://deel-lip.readthedocs.io

https://deel-lip.readthedocs.io
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Secondly, we consider synthetic examples for which T0 has an explicit formula. We follow
the protocol adopted in the aforementioned papers by defining P as the uniform distribution
on the hypercube [−1, 1]d and setting Q := T0♯P , where T0 : Rd → Rd is obtained by
applying a monotone scalar function coordinate-wise. The combination of McCann’s theorem
(McCann, 1995), stating that there exists a unique gradient of a convex function achieving
the push-forward between two Lebesgue-absolutely-continuous distributions, and (Villani,
2003, Theorem 2.12), stating that an optimal transport map coincide almost-everywhere
with the gradient of a convex function, ensures that T0 constructed as such is the (almost
everywhere unique) optimal transport map between P and Q. Note that for practical reasons,
we choose T0 such that Q is a distribution with zero mean and width less than 2: normalizing
the input and output distributions of a neural network ensures faster convergence. The result
are illustrated in Figure 3.2.

Additionally, we investigate in Figure 3.3 the evolution of the mean square error between
the generator G and the optimal transport map T0 as the learning process goes on. It
confirms that the optimization scheme has the expected behaviour. Furthermore, since the
mean square error is evaluated on an independent sample to the training set, it illustrates
the generalization ability of the learnt map.

3.5 Conclusion

We conclude this chapter by discussing the significance of its contributions.

3.5.1 Summary of contributions

The method we propose has the advantage of providing a theoretically sound and feasible
estimation of the optimal transport map whose statistical convergence can be mathematically
certified. Theorem 4.5.1 proves its consistency, while Section 4.6.2 illustrates its ability
to learn the underlying map. This renders this estimator potentially suitable for many
applications where guarantees of convergence are required such as FlipTest (De Lara et al.,
2021b).

Additionally, we extended in Section 3.2 the established theory on approximating Lipschitz
continuous functions by GroupSort neural networks to the multivariate case. This also opens
new lines of inquiry for further applications of these networks, such as imposing regularity
properties on generative models. Finally, our statistical framework and mathematical proofs
addressed several interesting problems at the frontier between neural network modeling and
statistics. We hope this effort will contribute to bridge the gap between deep learning and
statistical theory.

3.5.2 Limitations and further research

We believe that some contributions of this chapter deserve improvements. Notably, the
optimization step is currently too cumbersome for our estimator to be widely deployed. As
for any neural optimal-transport approximation, it depends on numerous hyper-parameters,
and additionally requires to enter an unknown Lipschitz constant. This leads to several tries
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and repeats even on low-dimensional data to reach convergence. Therefore, automatizing
hyper-parameter tuning would be a significant advance.

However, practical limitations are more radical. Similarly to (Hütter and Rigollet,
2021), our framework demands the distributions to be highly regular to render the optimal
transport map Lipschitz, which significantly restricts its validity domain. Moreover, Salmona
et al. (2022) recently pointed out that Lipschitz generative models could hardly fit complex
distributions. These are notably the reasons why we did not use the GAN estimator when
implementing transport-based counterfactuals; it always felt easier to rely on true empirical
solution or simple plug-in generalizations, as in Chapter 2. In this sense, it seems more
promising to develop more flexible approaches. In particular, Uscidda and Cuturi (2023)
introduces a regularizer to learn transport maps for general costs and arbitrary distributions.

Nevertheless, the specific Lipschitz scenario we considered enabled us to derive unique
convergence results for a neural estimators. This is according to us the greatest merit of this
work; it pioneers the study of the statistical convergence of neural-network-based optimal
transport maps.
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Appendix 3.A Proofs of Section 3.2

The demonstration of (Tanielian and Biau, 2021, Theorem 2) relies on (He et al., 2020,
Theorem 5.1), according to which any 1-Lipschitz piecewise-affine function q defined on a
compact set can be written as,

q(x) = max
1≤s≤m

min
i∈Is

(ai · x+ ci), (3.7)

where for any 1 ≤ s ≤ m, Is is a subset of {1, . . . ,m} and ∥ai∥ ≤ 1. Our proof of
Theorem 3.2.1 generalizes the one of (Tanielian and Biau, 2021, Theorem 2) by notably
involving the next lemma:

Lemma 3.A.1: Approximation of 1-Lipschitz piecewise-linear functions

Let f1 ∈ Lip1([0, 1]
d,R) and f2 be a 1-Lipschitz piecewise-linear function on [0, 1]d such

that ∥f2 − f1∥∞ < ϵ. Then, f2 can be expressed in the form (3.7) with

max
1≤i≤m

|ci| ≤ ∥f1∥∞ + ϵ+
√
d.

Proof Note that we can suppose without loss of generality that for any k ∈ {1, . . . ,m} there
exists a point xk ∈ Ω such that f2(xk) = ak · xk + ck, otherwise this index is meaningless
and we can eliminate it. Since ∥ak∥ ≤ 1, we have that |ck| ≤ ∥f2∥∞ + supx∈[0,1]d ∥x∥. We
conclude using the fact that ∥f2∥∞ ≤ ∥f1∥∞ + ϵ.

Let us now prove Theorem 3.2.1.
Proof of Theorem 3.2.1 Let f ∈ F ⊂ Lip1(Ω,R) such that supf∈F ∥f∥∞ ≤ KF . The idea
is to generalize (Tanielian and Biau, 2021, Theorem 2), restricted to 1-Lipschitz functions
on the hypercube [0, 1]d, to functions on the arbitrary compact set Ω. To this end, we first
transform f into a 1-Lipschitz function on the hypercube [0, 1]d.

Since Ω is compact then there exists some R > 0 such that Ω ⊂ [−R,R]d. Kirszbraun’s
theorem, see for instance (Heinonen, 2005, Theorem 2.5), implies that we can extend f
on [−R,R]d while preserving the 1-Lipschitz property. Concretely, there exists a function
f̃ ∈ Lip1([−R,R]d,R) such that f̃(x) = f(x) for all x ∈ Ω.

Now, we transform the extension f̃ into a 1-Lipschitz function on the hypercube [0, 1]d.
This requires to translate and scale the inputs. Set xR = R · 1 where 1 := (1, . . . , 1) ∈ Rd,
and define fR(x) := 1

2R f̃(2Rx − xR) as a function on [0, 1]d. (Tanielian and Biau, 2021,
Theorem 2) yields that, for every ϵ > 0, there exists a neural network N of the form (3.2)
satisfying Assumption (C) defined on [0, 1]d whose depth and size are respectively

l = O

(
d2 log2

(
2
√
d

ϵ

))
and s = O

(2
√
d

ϵ

)d2,
such that

sup
x∈[0,1]d

|fR(x)−N(x)| < ϵ. (3.8)



140CHAPTER 3. GAN ESTIMATION OF LIPSCHITZ OPTIMAL TRANSPORT MAPS

However, Tanielian and Biau (2021) never clearly specified a universal bound C for which
Assumption (C) was satisfied, which is necessary to conclude. To find such a bound, we
detail how they constructed the GroupSort neural network N approximating fR. First, note
that according to (He et al., 2020, Theorem 5.1), any 1-Lipschitz piecewise-affine function q
defined on a compact set can be written in (3.7). Second, following the proof of Theorem 2
in (Tanielian and Biau, 2021), one can find a 1-Lipschitz piecewise-affine function q such
that ∥q − fR∥ ≤ ϵ. Finally, (Tanielian and Biau, 2021, Theorem 1), states that q can be
represented by a neural network N of the form (3.2) with depth l and size s. Critically, the
representing N is built with weights (W1, . . . ,Wl, b1, . . . , bl) such that the offset vectors of
N are all equal to zero except b1. More precisely, the coefficients of b1 are the constants
c1, . . . , cm from the representation (3.7). This entails that max1≤i≤l ∥bi∥∞ ≤ max1≤i≤m |ci|.
Hence, bounding the constants in (3.7) will bound the offsets vectors in (3.2). To find a
bound on the constants, we rely on Lemma 3.A.1, which implies that the ϵ-approximation
q of fR is such that max1≤i≤m |ci| ≤ KF + ϵ +

√
d. Consequently, the neural network N

approximating fR belongs to N 1
C0
(l, s) with C0 = KF + ϵ+

√
d.

Now, recall the the objective is to construct a neural network approximating f . Note
that, after a change of variable, (3.8) can be written as

sup
x∈[−R,R]d

∣∣∣∣f̃(x)− 2RN

(
x+ xR
2R

)∣∣∣∣ < 2Rϵ.

Since the activation functions are GroupSort, hence homogeneous, we have that 2RN
(
x+xR
2R

)
=

N(x+ xR). This leads to

∥f −NR∥∞ ≤ sup
x∈[−R,R]d

∣∣∣f̃(x)−NR(x)
∣∣∣ < 2Rϵ,

Finally, remark that the neural network NR : x 7→ N(x + xR) belongs to N 1
C(l, s) with

C =
√
dR+ C0 that is

√
d(R+ 1) +KF + ϵ. Setting R = supx∈Ω ∥x∥ completes the proof.

Proof of Theorem 3.2.2 Let g ∈ G ⊂ Lip1(Ω,Rp) such that supg∈G ∥g∥∞ = KG > 0. We
generalize Theorem 3.2.1 to Rp-valued output by approximating g along each dimension by a
GroupSort neural network. The function g can be written as (g1, . . . , gp) where gi ∈ Lip1(Ω,R)
and ∥gi∥∞ ≤ KG for every 1 ≤ i ≤ p. Then, we know from Theorem 3.2.1 that there exists a
neural network N i ∈ N 1

C where C = KG +
√
d(supx∈Ω ∥x∥+ 1) + ε, whose depth and size

are respectively

l = O

(
d2 log2

(
2
√
d

ϵ

))
and s = O

(2
√
d

ϵ

)d2,
such that, ∥∥gi −N i

∥∥
∞ ≤ ε.

We build the Rp-valued neural network N = (N1, . . . , Np). Then, for any x ∈ Ω,

∥g(x)−N(x)∥2 =
p∑
i=1

∣∣gi(x)−N i(x)
∣∣2 ≤ pε2.
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As a consequence, ∥g −N∥∞ ≤
√
pε. To conclude, note that N and has depth l and size

p× s. Moreover, it satisfies Assumption (C) for the constant C, as the weight matrices and
offset vectors of N are obtained by concatenation of the ones of the N i, which preserves the
upper-bound on the norms ∥·∥2,∞ and ∥·∥∞. Consequently, N ∈ N p

C(l, p× s).

Appendix 3.B Proofs of Section 3.3

Proof of Proposition 3.3.1 The proof amounts to showing that Ln is continuous on the
compact set Gn.

Firstly, we note that the map Lotn : T 7→ ∥I − T∥L2(Pn)
is continuous. Secondly, we prove

that Lgenn : T 7→ λnWn(T♯Pn, Qn) is Lipschitz continuous. Let T1, T2 ∈ C(Ω,Ω) and compute,

∣∣Wn(T1♯Pn, Qn)−Wn(T2♯Pn, Qn)
∣∣ ≤ ∣∣∣∣ sup

D∈Dn

{∫
D(T1(x))−D(T2(x))dPn(x)

}∣∣∣∣
≤ sup

D∈Lip1(Ω,R)

∣∣∣∣∫ D(T1(x))−D(T2(x))dPn(x)

∣∣∣∣
≤
∫
∥T1(x)− T2(x)∥dPn(x)

≤ ∥T1 − T2∥∞.

As a conclusion, Ln := Lotn + Lgenn is continuous, and as such admits a minimizer on any
compact set, in particular Gn.

Appendix 3.C Proofs of Section 3.4

The proof of Theorem 3.3.1 relies on an intermediary result on the minimax estimator
described in (Hütter and Rigollet, 2021, Section 5). Existence and statistical guarantees
follow from the smoothness assumptions (S1) and (S2).

Lemma 3.C.1: Properties of the minimax estimator

Assume that Assumptions (S1) and (S2) hold, and let TMM
n be the minimax estimator

from (Hütter and Rigollet, 2021) of the optimal transport map T0. It satisfies,∥∥TMM
n − I

∥∥2
L2(Pn)

a.s.−−−−→
n→+∞

∥T0 − I∥2L2(P ). (3.9)
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Additionally, if Assumptions (G1), (G3) and (G4) hold, then

λnWn(T
MM
n ♯Pn, Qn)

a.s.−−−−→
n→+∞

0, (3.10)

hence,
Ln(TMM

n )
a.s.−−−−→

n→+∞
∥T0 − I∥2L2(P ). (3.11)

Proof Let’s start by proving (3.9). According to the triangle inequality,∥∥TMM
n − I

∥∥
L2(Pn)

≤
∥∥TMM

n − T0
∥∥
L2(Pn)

+ ∥T0 − I∥L2(Pn)
,

≤

√∣∣∣∣∫ ∥TMM
n − T0∥2(dPn − dP )

∣∣∣∣+ ∥∥TMM
n − T0

∥∥
L2(P )

+ ∥T0 − I∥L2(Pn)
.

We address each of the three terms of the upper bound in order. For the first term,
recall that both TMM

n and T are L-Lipschitz on Ω. Let’s show that this entails that
x 7→

∥∥TMM
n (x)− T0(x)

∥∥2 is Lipschitz. For any x, y ∈ Ω,∣∣∣∥∥TMM
n (x)− T0(x)

∥∥2−∥∥TMM
n (y)− T0(y)

∥∥2∣∣∣
≤ 2 diam(Ω)

∣∣∥∥TMM
n (x)− T0(x)

∥∥− ∥∥TMM
n (y)− T0(y)

∥∥∣∣,
≤ 2 diam(Ω)

∥∥TMM
n (x)− T0(x)− TMM

n (y) + T0(y)
∥∥,

≤ 2 diam(Ω)
(∥∥TMM

n (x)− TMM
n (y)

∥∥+ ∥T0(x)− T0(y)∥) ,
≤ 2 diam(Ω) (L∥x− y∥+ L∥x− y∥) ,
≤ 4Ldiam(Ω)∥x− y∥.

Denoting L′ = 4Ldiam(Ω), we conclude that x 7→
∥∥TMM

n (x)− T0(x)
∥∥2 belongs to LipL′(Ω,R).

As a consequence,∣∣∣∣∫ ∥∥TMM
n − T0

∥∥2(dPn − dP )

∣∣∣∣ ≤ sup
f∈LipL′ (Ω,R)

∣∣∣∣∫ f(dPn − dP )

∣∣∣∣.
The upper bound is a centered empirical process indexed by LipL′(Ω,R). According to
(Van Der Vaart and Wellner, 1996, Corollary 2.7.2) and (Van Der Vaart and Wellner, 1996,
Theorem 2.4.1), it tends to zero almost surely as n increases to infinity. This shows the
convergence of the first term.

To control the second term we rely on (Hütter and Rigollet, 2021, Proposition 12). It
states that with probability at least 1− δ,

∥∥TMM
n − T0

∥∥2
L2(P )

=


O
(
n−

4
2+d (log n)2 + log δ−1

n

)
if d > 2

O
(
n−1(log n)2 + log δ−1

n

)
if d = 2

O
(
n−1 + log δ−1

n

)
if d = 1
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Hence,

∥∥TMM
n − T0

∥∥
L2(P )

=



O

(
n−

2
2+d (log n) +

√
log δ−1

n

)
if d > 2

O

(
n−

1
2 (log n) +

√
log δ−1

n

)
if d = 2

O

(
n−

1
2 +

√
log δ−1

n

)
if d = 1

(3.12)

Then, by setting δn = 1
n2 , it follows from Borel-Cantelli’s theorem that

∥∥TMM
n − T0

∥∥
L2(P )

tends almost-surely to zero. This shows the desired convergence of the second term. More-
over, as n increases to infinity, the third term of the upper bound tends almost surely to
∥T0 − I∥L2(P ), by weak convergence of Pn to P almost surely,

We now turn to the demonstration of (3.10). Let D ∈ Dn and write the following
decomposition,∫

D◦TMM
n dPn−

∫
DdQn =

∫
D◦TMM

n d(Pn−P )+
∫
(D◦TMM

n −D◦T0)dP+

∫
D◦T0dP

−
∫
DdQn ≤

∣∣∣∣∫ D ◦ TMM
n d(Pn − P )

∣∣∣∣+ ∫ ∥∥TMM
n − T0

∥∥dP +

∣∣∣∣∫ Dd(Q−Qn)
∣∣∣∣,

where we use that
∫
D ◦ T0dP =

∫
DdQ since T0♯P = Q. Noting that Dn ⊆ Lip1(Ω,R) we

obtain,

Wn(T
MM
n ♯Pn, Qn) ≤ sup

D∈Lip1(Ω,R)

∣∣∣∣∫ D ◦ TMM
n d(Pn − P )

∣∣∣∣+ ∫ ∥∥TMM
n − T0

∥∥dP
+ sup
D∈Lip1(Ω,R)

∣∣∣∣∫ Dd(Q−Qn)
∣∣∣∣.

Recall now that TMM
n is L-Lipschitz so that for any D ∈ Dn we have D ◦ TMM

n ∈ LipL(Ω,R).
As a consequence,

Wn(T
MM
n ♯Pn, Qn) ≤ sup

g∈LipL(Ω,R)

∣∣∣∣∫ gd(Pn − P )
∣∣∣∣+∫ ∥∥TMM

n − T0
∥∥dP+ sup

D∈Lip1(Ω,R)

∣∣∣∣∫ Dd(Q−Qn)
∣∣∣∣.

(3.13)
Next, we control each of the three terms of the upper bound in (3.13) with high probability.

Let us start with the first one, which is the supremum of a centered empirical process
indexed by Lipschitz functions. Recall that Pn is supported by n independent variables
x1, . . . , xn ∼ P . Set X ∼ P and define

Zn := sup
g∈LipL(Ω,R)

∣∣∣∣∣ 1n
n∑
i=1

g(xi)− Eg(X)

∣∣∣∣∣ = sup
g∈LipL(Ω,R)

∣∣∣∣∫ gd(Pn − P )
∣∣∣∣.

By L-Lipschitz continuity, changing xi by an independent duplicate x′i ∼ P changes Zn of at
most 1

nLdiam(Ω). Thus, it follows from MacDiarmid’s inequality (Boucheron et al., 2013)
that for any t > 0,

P(Zn ≤ EZn + t) ≤ 1− exp

(
− 2t2

1
nL

2 diam2(Ω)

)
.
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After a change of variable, we get for every 0 < δ < 1,

P(Zn ≤ EZn +
Ldiam(Ω)√

2n

√
log(δ−1)) ≤ 1− δ.

(Schreuder, 2020, Theorem 4) provides an upper bound on EZn. Up to logarithmic factors
we have,

EZn =


O
(
n−

1
d

)
if d > 2

O
(
n−

1
2 log n

)
if d = 2

O
(
n−

1
2

)
if d = 1

Hence, with probability at least 1− δ,

Zn =



O

(
n−

1
d +

√
log(δ−1)

n

)
if d > 2

O

(
n−

1
2 log n+

√
log(δ−1)

n

)
if d = 2

O

(
n−

1
2 +

√
log(δ−1)

n

)
if d = 1

The third term of (3.13) can be bounded similarly, as the smoothness L only affects the
hidden constant in the O. We now turn to the second term of (3.13). If follows from
Cauchy-Schwarz inequality that∫ ∥∥TMM

n − T0
∥∥dP ≤ ∥∥TMM

n − T0
∥∥
L2(P )

.

Recall that with probability at least 1− δ, the right-term of this inequality is bounded as in
(3.12).

By summing the bounds in probability holding for each of the three terms of (3.13), and
after rescaling δ by 3, we obtain that with probability at least 1− δ,

Wn(T
MM
n ♯Pn, Qn) =



O

(
n−

1
d + n−

4
2+d (log n) +

√
log δ−1

n

)
if d > 2

O

(
n−

1
2 (log n) +

√
log δ−1

n

)
if d = 2

O

(
n−

1
2 +

√
log δ−1

n

)
if d = 1

Now, we replace δ by 1
n2 and we multiply both sides of the inequality by λn so that with

probability at least 1− 1
n2 ,

λnWn(T
MM
n ♯Pn, Qn) =



λnO

(
n−

1
d + n−

4
2+d log n+

√
log(n)
n

)
if d > 2

λnO

(
n−

1
2 log n+

√
log(n)
n

)
if d = 2

λnO

(
n−

1
2 +

√
log(n)
n

)
if d = 1
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Then, Assumption (G3) on λn implies that with probability at least 1− 1
n2 ,

λnWn(T
MM
n ♯Pn, Qn) =


o(1) + o

(
n
− 3d−2

d(2+d) log n
)
+ o

(
n−

d−2
2d

√
log(n)

)
if d > 2

o(1) + o
(

1√
logn

)
if d = 2

o

(
1√

log(n)

)
+ o(1) if d = 1

We conclude, using Borel-Cantelli’s theorem, that limn→+∞ λnWn(T
MM
n ♯Pn, Qn) = 0 almost

surely.

We now turn to the proof of Theorem 3.3.1, which will be divided in three steps.
Proof of Theorem 3.3.1

Recall that for any n ∈ N, Gn ∈ Gn ⊂ G := LipL(Ω, BL) according to Assumption (G2).
Since G is a compact set, there exists a subsequence {Gφ(n)}n∈N and some Gφ ∈ G such that∥∥Gφ(n) −Gφ∥∥∞ a.s.−−−−→

n→+∞
0. The goal of the proof is to show that Gφ = T0 regardless of the

extraction φ. For the sake of clarity, we will not track φ in the notations for the rest of the
proof.

Moreover, note that since the minimax estimator TMM
n belongs to G, we know from

Assumption (G2) and Theorem 3.2.2 that there exists a GroupSort neural network GMM
n ∈ Gn

such that
∥∥GMM

n − TMM
n

∥∥
∞ ≤ εn. This neural network approximation of the minimax

estimator will play a key role throughout the proof.

Step 1. In this first part, we aim at showing that limn→+∞ λnWn(Gn♯Pn, Qn) = 0 almost
surely when λn verifies Assumption (G3). Let’s assume ad absurdum that λnWn(Gn♯Pn, Qn)
does not tend to zero. As 0 ∈ Dn, we have that Wn(Gn♯Pn, Qn) > 0 and consequently
limn→+∞ λnWn(Gn♯Pn, Qn) = +∞. We will show a contradiction to this convergence.

Recall that
∥∥GMM

n − TMM
n

∥∥
∞ ≤ εn, and that G 7→ λnWn(G♯Pn, Qn) is λn-Lipschitz

continuous. This leads to,∣∣Ln(GMM
n )− Ln(TMM

n )
∣∣ ≤ λn∣∣∣Wn(G

MM
n ♯Pn, Qn)−Wn(T

MM
n ♯Pn, Qn)

∣∣∣+∥∥I −GMM
n

∥∥2
L2(Pn)

+
∥∥I − TMM

n

∥∥2
L2(Pn)

≤ λn
∥∥GMM

n − TMM
n

∥∥
∞+diam2(Ω)+diam2(Ω) ≤ λnεn+2diam2(Ω).

As Gn minimizes Ln over Gn, and since GMM
n ∈ Gn, we additionally have,

Ln(Gn) ≤ Ln(GMM
n ) =

{
Ln(GMM

n )− Ln(TMM
n )

}
+ Ln(TMM

n ).

Hence,

λnWn(Gn♯Pn, Qn) + ∥I −Gn∥L2(Pn)
≤
{
λnεn + 2diam2(Ω)

}
+ λnWn(T

MM
n ♯Pn, Qn)

+
∥∥I − TMM

n

∥∥
L2(Pn)

,

leading to

0 ≤ λnWn(Gn♯Pn, Qn) ≤ λnεn + 3diam2(Ω) + λnWn(T
MM
n ♯Pn, Qn).
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From Lemma 3.C.1, it follows that the right term is bounded, which contradicts the fact
that λnWn(Gn♯Pn, Qn) tends to infinity. Consequently, Wn(Gn♯Pn, Qn)

a.s.−−−−→
n→+∞

0.

Step 2. Now, we prove that G♯P = Q. Note that,∣∣Wn(Gn♯Pn,Qn)−W(G♯P,Q)
∣∣

≤
∣∣∣∣ sup
D∈Dn

(∫
D ◦GndPn −

∫
DdQn

)
−
(∫

D ◦GdP −
∫
DdQ

)∣∣∣∣
+

∣∣∣∣∣ supD∈Dn

(∫
D ◦GdP −

∫
DdQ

)
− sup
D∈Lip1(Ω,R)

(∫
D ◦GdP −

∫
DdQ

)∣∣∣∣∣,
≤

∣∣∣∣∣ sup
D∈Lip1(Ω,R)

(∫
D ◦GndPn −

∫
DdQn

)
−
(∫

D ◦GdP −
∫
DdQ

)∣∣∣∣∣
+

∣∣∣∣∣ supD∈Dn

(∫
D ◦GdP −

∫
DdQ

)
− sup
D∈Lip1(Ω,R)

(∫
D ◦GdP −

∫
DdQ

)∣∣∣∣∣,
≤

∣∣∣∣∣ sup
D∈Lip1(Ω,R)

∫
D ◦GndPn −

∫
D ◦GdP

∣∣∣∣∣+
∣∣∣∣∣ sup
D∈Lip1(Ω,R)

∫
D(dPn − dP )

∣∣∣∣∣
+

∣∣∣∣∣ supD∈Dn

(∫
D ◦GdP −

∫
DdQ

)
− sup
D∈Lip1(Ω,R)

(∫
D ◦GdP −

∫
DdQ

)∣∣∣∣∣.
The second term of the upper bound is the supremum of a centered empirical process indexed
by the class of 1-Lipschitz functions, which tends to zero almost surely as n increases to
infinity. The third term tends to zero according to Assumption (G1). To address the first
term, remark that for any D ∈ Lip1(Ω,R),

D(Gn(x)) ≤ ∥Gn(x)−G(x)∥+D(G(x)).

Consequently,∣∣∣∣∣ sup
D∈Lip1(Ω,R)

∫
D ◦GndPn −

∫
D ◦GdP

∣∣∣∣∣ ≤ ∥Gn −G∥∞
+

∣∣∣∣∣ sup
D∈Lip1(Ω,R)

∫
(D ◦G)(dPn − dP )

∣∣∣∣∣ ≤ ∥Gn −G∥∞ +

∣∣∣∣∣ sup
f∈LipL(Ω,R)

∫
f(dPn − dP )

∣∣∣∣∣,
where we used the fact that D ◦G ∈ LipL(Ω,R), since D ∈ Lip1(Ω,R) and G ∈ LipL(Ω,Ω).
By definition of G, we know that ∥G−Gn∥∞

a.s.−−−−→
n→+∞

0. Moreover, the second term is here
again the supremum of a centered empirical process indexed by Lipschitz functions, which
tends to zero almost surely.

All in all,
∣∣Wn(Gn♯Pn, Qn)−W(G♯P,Q)

∣∣ a.s.−−−−→
n→+∞

0, and it follows from the first step

that W(G♯P,Q) = 0, hence G♯P = Q.
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Step 3. We know that G♯P = Q. To conclude that G is the unique optimal transport map
T0 between P and Q, we show that G minimizes the transportation cost. Firstly, we write,∣∣∣∥I −Gn∥2L2(Pn)

− ∥I −G∥2L2(P )

∣∣∣ ≤ ∣∣∣∥I −Gn∥2L2(Pn)
− ∥I −G∥2L2(Pn)

∣∣∣
+
∣∣∣∥I − T0∥2L2(Pn)

− ∥I −G∥2L2(P )

∣∣∣,
≤ 2 diam(Ω)∥Gn −G∥∞ + 2diam(Ω)

∣∣∣∣∫ ∥T0(x)−G(x)∥2(dPn(x)− dP (x))

∣∣∣∣.
Hence,

∥I −Gn∥L2(Pn)
a.s.−−−−→

n→+∞
∥I −G∥L2(P ). (3.14)

Secondly, using that Gn minimizes Ln on Gn we have

Ln(Gn) ≤ Ln(GMM
n ),

≤ λn sup
D∈Lip1(Ω,R)

{∫
(D ◦GMM

n )dPn −
∫
DdQn

}
+
∥∥I −GMM

n

∥∥2
L2(Pn)

,

≤ λn sup
D∈Lip1(Ω,R)

{∫
(D ◦GMM

n )dPn −
∫
(D ◦ TMM

n )dPn

}
+ λn sup

D∈Lip1(Ω,R)

{∫
(D ◦ TMM

n )dPn −
∫
DdQn

}
+
∥∥I −GMM

n

∥∥2
L2(Pn)

,

≤ λn
∥∥TMM

n −GMM
n

∥∥
∞ + λnWn(T

MM
n ♯Pn, Qn) +

∥∥I −GMM
n

∥∥2
L2(Pn)

,

≤ λnεn + Ln(TMM
n ) +

∥∥I −GMM
n

∥∥2
L2(Pn)

−
∥∥I − TMM

n

∥∥2
L2(Pn)

,

≤ λnεn + Ln(TMM
n ) +

∥∥I −GMM
n

∥∥2
L2(Pn)

−
∥∥I − TMM

n

∥∥2
L2(Pn)

,

≤ λnεn + Ln(TMM
n ) +

(∥∥I −GMM
n

∥∥
L2(Pn)

−
∥∥I − TMM

n

∥∥
L2(Pn)

)
×
(∥∥I −GMM

n

∥∥
L2(Pn)

+
∥∥I − TMM

n

∥∥
L2(Pn)

)
,

≤ λnεn + Ln(TMM
n ) + 2εn diam(Ω).

This inequality can be written as,

λnWn(Gn♯Pn, Qn) + ∥I −Gn∥2L2(Pn)
≤ Ln(TMM

n ) + λnεn + 2εn diam(Ω).

Then, according to the first step of the proof and the convergence (3.14), the left term tends
almost surely to ∥I −G∥2L2(P ) as n increases to infinity. Besides, according to Lemma 3.C.1
and Assumptions (G4) and (G3), the right term tends to ∥I − T0∥2L2(P ). Consequently,

∥I −G∥2L2(P ) ≤ ∥I − T0∥
2
L2(P ).

This means that G minimizes the transportation cost. By uniqueness of the optimal transport
map we conclude that G = T0. This completes the proof.
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Chapter 4

Diffeomorphic registration using
Sinkhorn divergences

The diffeomorphic registration framework enables one to define an optimal matching function
between two probability measures with respect to a data-fidelity loss function. The noncon-
vexity of the optimization problem renders the choice of this loss function crucial to avoid
poor local minima. Recent work showed experimentally the efficiency of entropy-regularized
optimal transportation costs, as they are computationally fast and differentiable while having
few minima. Following this approach, we provide in this chapter a new framework based
on Sinkhorn divergences, unbiased entropic optimal transportation costs, and prove the
statistical consistency with rate of the empirical optimal deformations.

4.1 Introduction

Diffeomorphic deformations describe a large class of computational frameworks whose goal is
to find optimal deformations of the ambient space, defined as a diffeomorphisms generated
through flow equations (Joshi and Miller, 2000; Beg et al., 2005; Younes, 2019). They amount
to solving an optimization problem involving two terms: an objective loss function character-
izing in which sense the deformation should be optimal; a penalization over the kinetic energy
spent by the transformation. The versatility of the problem formulation along with the ap-
pealing mathematical properties of diffeomorphisms made diffeomorphic deformations widely
used in various application fields. In particular, they have been popularized for diffeomorphic
registration in medical image analysis. This task consists of constructing diffeomorphic
matching functions between shapes in order to establish spatial correspondences (Sotiras
et al., 2013). More recently, Younes (2020) proposed to apply flows of diffeomorphisms in
a machine-learning context, where the optimal deformation is designed to render the data
classes linearly separable.

This chapter focuses on the diffeomorphic registration problem between two shapes. More
specifically, we address the setting where the shapes are represented by probability measures:
a formulation that has received a growing interest over the past few years to address unlabeled
landmarks (Glaunes, 2005; Bauer et al., 2015; Feydy et al., 2017; Feydy and Trouvé, 2018).
In this case, the objective loss function, referred as the data-fidelity loss, is defined as a metric

149
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between probability measures. Squares of maximum mean discrepancies (MMD), which
are well-known kernel-based distances, became the canonical choice for such settings. In
particular, their use for diffeomorphic registration enjoys a well-established theory (Glaunes
et al., 2004; Glaunes, 2005; Younes, 2019). However, they also suffer from important practical
drawbacks.

As pointed out by Feydy et al. (2017), the nonconvexity of the optimization problem on
the diffeomorphic deformation renders the choice of the loss function crucial to avoid poor
local minima, whereas an MMD possesses many. This is why they proposed to use optimal
transport metrics as an alternative. More precisely, they define the data-fidelity loss as the
entropy-regularized optimal transportation cost between unbalanced measures, which has
two critical advantages. Firstly, it benefits from the nonlocality of optimal transport metrics,
leading to few local minima. Secondly, entropic regularization alleviates the computational
burden of standard optimal transport: it allows for fast computation and differentiation of
the cost through the celebrated Sinkhorn’s algorithm (Cuturi, 2013). Nevertheless, while this
alternative loss for diffeomorphic registration performs better experimentally, it lacks the
statistical theory that was proven for squares of MMDs. Moreover, the entropic regularization
induces a well-known bias making the loss not minimal between two identical measures.
The latter issue motivates the employment of a Sinkhorn divergence: a symmetric unbiased
version of the standard entropy-regularized optimal transportation cost. In (Feydy et al.,
2019), the authors showed that Sinkhorn divergences performed significantly better than
their biased counterparts for registration purpose. However, they carried out their analysis
using flows of gradients (an approach reviewed by Santambrogio (2017)) instead of flows of
diffeomorphisms.

This chapter addresses diffeomorphic registration for Sinkhorn-divergence-based fidelity
losses from both a theoretical and practical viewpoint. By leveraging some recent advances
on these divergences (Feydy et al., 2019; Genevay et al., 2019), we show in a statistically-
driven approach that the deformation obtained by solving the optimization problem between
empirical measures converges with the parametric rate

√
n to its population counterpart,

where n is the sample size. Additionally, we illustrate the practicality of our method
through numerical experiments. This furnishes a new theoretically and practically grounded
framework for diffeomorphic matching of probability measures.

Related work Several papers bear resemblances with our work as they combine entropic
optimal transport with diffeomorphic registration at some point of their pipeline. Let us
underline the major differences with our framework. The work of Croquet et al. (2021)
leverages a Sinkhorn divergence as the data-fidelity loss of a regularized diffeomorphic-
registration engine restricted to flows induced by stationary velocity fields (SVF), which are
notoriously not tailored to match significantly different shapes (Arsigny et al., 2006). In
contrast, our approach applies to the more flexible large deformation diffeomorphic metric
mapping (LDDMM) framework where the flows are time dependent. In (Shen et al., 2021),
the authors also interface entropic optimal transport with large diffeomorphic deformations
but for a different role: optimal transport computes a prior landmark alignment instead
of acting as the data attachment term. The closest approach to ours is the one of Feydy
et al. (2017) who first suggested to use entropic optimal transport as the data-fidelity loss
for diffeomporphic registration. However, they relied on the biased transportation cost
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between unbalanced measures whereas we tackle the unbiased divergence between probability
distributions. Additionally, their work focuses on practical applications while we also
provide theoretical background. Finally, one implementation of time-variant diffeomorphic
registration driven by an unbiased Sinkhorn divergence can be found in a PhD manuscript
(Feydy, 2020, Figure 4.6). In our work, we go further by filling the theoretical gap, as well
as by proposing more comprehensive experiments illustrating the behaviour of these loss
functions.

Outline The rest of the chapter is organized as follows. In Section 4.2, we specify the basic
mathematical notations that will be used throughout the chapter. In Section 4.3, we set up
the general problem we address by introducing the diffeomorphic registration framework for
arbitrary data-fidelity losses. In Section 4.4, we present the necessary background on optimal
transport and entropic regularization, in order to properly define Sinkhorn divergences.
Additionally, we study some indispensable regularity properties of entropic optimal transport.
In Section 4.5, we state our main results, that is the existence and statistical consistency
of the optimal deformations. In Section 4.6, we recall the implementation of diffeomorphic
registration, and present the numerical experiments where we benchmark Sinkhorn divergences
with other losses. All the proofs are deferred to Appendix 4.B, while Appendix 4.A recalls
key mathematical tools from empirical process theory and Frechet differentiability.

4.2 Preliminaries and notations

In this section, we introduce the definitions and notations that will be used throughout the
chapter. The first part is dedicated to classes of smooth functions; the second one addresses
probability measures.

4.2.1 Smooth functions

Let d1 ≥ 1 and X be an arbitrary subset of Rd1 with nonempty interior denoted by X̊ . For
p ≥ 1 and d2 ≥ 1, we define Cp(X ,Rd2) as the set of p-continuously Frechet-differentiable
functions from X to Rd2 . We also define Lp(Rd1 ,Rd2) the set of symmetric p-multilinear
operators from Rd1 to Rd2 . The p-th derivative of some F ∈ Cp(X ,Rd2) is denoted by F (p).
It maps any point x ∈ X̊ to F (p)(x)[·] ∈ Lp(Rd1 ,Rd2). By convention we set F (0) = F . For
any L ∈ Lp(Rd1 ,Rd2), we define the operator norm as

∥L∥op := sup{∥L[δ1, . . . , δk]∥ | δi ∈ Rd1 , ∥δi∥ ≤ 1}

where ∥·∥ is the Euclidean norm. For example, if F ∈ C1(X ,R), then ∥F ′(x)∥op = ∥∇F (x)∥
where ∇F is the gradient of F . This enables to define, for any F ∈ Cp(X ,Rd2), the functional
norm,

∥F∥p,∞ := max
0≤k≤p

∥∥∥F (k)
∥∥∥
∞
,
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where ∥F∥∞ := supx∈X ∥F (x)∥, and
∥∥F (k)

∥∥
∞ := supx∈X̊

∥∥F (k)(x)
∥∥
op

for k ≥ 1. In addition,
for any R > 0 we denote by CpR(X ,Rd2) the class of functions F ∈ Cp(X ,Rd2) such that
∥F∥p,∞ ≤ R, and write BR for the centered Euclidean ball of radius R.

4.2.2 Actions on probability measures

We write E[X] for the expectation of any random variable X. The symbol ⊗ denotes the
product of measures. For two measures µ and ν on Rd, the relation µ≪ ν means that µ is
absolutely continuous with respect to ν, that is (ν(E) = 0 =⇒ µ(E) = 0) for every Borel
set E ⊆ Rd.

We define two kinds of actions involving probability measures. Let µ be a probability
measure on Rd and f : Rd → R be a measurable function. The action of µ on f defines the
real number:

µ(f) :=

∫
fdµ = EX∼µ[f(X)].

Now, consider a measurable function F : Rd → Rd. The action of F on µ defines a probability
measure called the push-forward measure, defined as:

F♯µ := µ ◦ F−1(·).

If a random variable X follows the law µ, then the image variable F (X) follows the law F♯µ.
The push-forward operation enables to write changes of variables. Formally,∫

fd(F♯µ) =

∫
(f ◦ F )dµ.

4.3 Diffeomorphic measure transportation

In this section we present the necessary background on diffeomorphic registration of probability
measures. We refer to (Younes, 2019) for a complete and precise treatment of this topic.
Firstly, we recall how to define diffeomorphisms through flow equations. Secondly, we
introduce the diffeomorphic measure transportation problem for arbitrary data-fidelity losses.

4.3.1 Generating diffeomorphic deformations

The diffeomorphic deformation framework can be framed as a fluid mechanics problem, where
points in Rd are transported by a vector field representing a stream varying across time in
the ambient space. We begin by reviewing the corresponding formalism and theory.

For an integer p ≥ 1 let Bp be the space of functions in Cp(Rd,Rd) whose derivatives up
to order p vanish to zero at infinity. This together with the norm ∥·∥p,∞ is a Banach space.
Next, denote by V 1 a Hilbert space with inner product ⟨·, ·⟩V and norm ∥·∥V , and assume
that V is continuously embedded in Bp. This corresponds to the hypothesis below.

1Note that we allowed ourselves to clash with Part I, where V denoted a random variable, because this
chapter is largely random-variable free.
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Assumption (CE): Continuous embedding

The space V is included in Bp, and there exists a constant cV > 0 such that for any
v ∈ V ,

∥v∥p,∞ ≤ cV ∥v∥V .

Physically, a function v ∈ V represents a stationary vector field in the ambient space,
specifying the speed vector v(x) ∈ Rd of the stream running at every position x ∈ Rd. Then,
define the class L2

V of vector fields t ∈ [0, 1] 7→ vt ∈ V indexed by time and space satisfying∫ 1
0 ∥vt∥

2
V dt <∞, which is a Hilbert space endowed with the inner product,

⟨v, u⟩L2
V
:=

∫ 1

0
⟨vt, ut⟩V dt.

We recall that a sequence {vn}n∈N in L2
V converges weakly to v if for any u ∈ L2

V ,

⟨vn, u⟩L2
V
−−−−→
n→+∞

⟨v, u⟩L2
V
. (4.1)

The associated norm in L2
V is given by

∥v∥L2
V
:=

√∫ 1

0
∥vt∥2V dt,

and we use the notation
L2
V,M := {v ∈ L2

V | ∥v∥L2
V
≤M}

for the centered ball of radius M > 0 in L2
V .

We can now turn to the definition of diffeomorphic deformations. Any vector field v ∈ L2
V

generates a deformation ϕv := (ϕvt )t∈[0,1], function of both time and space variables, defined
as the unique solution to the following flow equation,

∀x ∈ Rd, ∀t ∈ [0, 1], ϕt(x) = x+

∫ t

0
vs
(
ϕs(x)

)
ds. (4.2)

The parametric curve (ϕvt (x))t∈[0,1] represents the trajectory across time of a point initially
located at ϕ0(x) = x ∈ Rd. Remarkably, for every t ∈ [0, 1] the transformation ϕvt is a
p-continuously differentiable diffeomorphism. Moreover, as a direct consequence of (Glaunes,
2005, Theorem 5), these diffeomorphic transformations are smooth over compact sets.

Lemma 4.3.1: Smoothness of diffeomorphic deformations

Suppose that Assumption (CE) holds. Then for any radius M > 0 and any compact
set K ⊂ Rd, there exists a constant R = R((K, d); (V, p);M) > 0 such that for any
vector field v ∈ L2

V,M ,

max
0≤k≤p

{
sup

t∈[0,1],x∈K

∥∥∥(ϕvt )(k) (x)∥∥∥
op

}
≤ R.
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In particular, supx∈K ∥x∥ ≤ R.

In practice, the space of vector fields V is constructed through the choice of a kernel
function. This is enabled by Assumption (CE) which entails that V is a reproducing kernel
Hilbert space (RKHS), characterized by a unique nonnegative symmetric matrix-valued
kernel function Ker : Rd × Rd → Rd×d. In particular, the choice of the kernel function sets
the order of regularity p of the vector fields. For instance, the typical choice of a Gaussian
kernel, that is

Ker(x, y) :=
1√
2πσ2

exp

(
−∥x− y∥

2

2σ2

)
Id (4.3)

where σ > 0 is the bandwidth parameter and Id the identity matrix, leads to p = +∞.

4.3.2 Diffeomorphic matching of distributions

In general, diffeomorphic deformation frameworks amount to finding solutions to Equa-
tion (4.2) that are optimal in some sense. In this work, we focus on the diffeomorphic
measure transportation framework, which aims at matching two probability measures.

Formally, let Λ be a positive loss function between probability measures, and set α and
β two distributions on the ambient space Rd. For a given regularization weight λ > 0, an
optimal matching function between α and β is a diffeomorphism ϕv solution to (4.2) where
v minimizes

Jλ(v) := Λ(ϕv1♯α, β) + λ∥v∥2L2
V
. (4.4)

The first term of the objective function (4.4) is the data-fidelity loss, which tends to match
ϕv1♯α with β, while the second term is the regularizer, which penalizes the kinetic energy
spent by the trajectories (ϕvt )t∈[0,1], keeping them as close as possible to the identity function.
The parameter λ governs the trade-off between the two contributions. The objective Jλ
always admits minimizers provided that the term v ∈ L2

V 7→ Λ(ϕv1♯α, β) ∈ R+ is weakly
continuous. For a minimizer v∗, the function ϕv∗1 is an optimal matching between α and β,
and the family (ϕv

∗
t )t∈[0,1] provides an approximated interpolation between the two measures.

In practical settings, one typically does not have access to the full probability measures
α and β but to empirical observations. This naturally raises the question of estimating an
optimal matching function between α and β on the basis of independent samples. Concretely,
let x1, . . . , xn ∼ α and y1, . . . , yn ∼ β be independent samples, and define the empirical
probability measures αn := n−1

∑n
i=1 δxi and βn := n−1

∑n
j=1 δyj . Plugging these discrete

measures in the original objective function (4.4) leads to the following empirical objective
function:

Jλ,n(v) := Λ(ϕv1♯αn, βn) + λ∥v∥2L2
V
. (4.5)

In Theorem 4.5.1 we prove under some assumptions that if the data-fidelity loss Λ is a
Sinkhorn divergence, a divergence derived from entropic optimal transport, then any sequence
of minimizers {vn}n∈N of the empirical problem (4.5) converges up to the extraction of a
subsequence to a minimizer of the population problem (4.4) as the sample size n increases to
infinity.
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4.4 Entropic optimal transport

In this section, we first briefly present the necessary background on optimal transport and
entropic regularization, in order to properly define Sinkhorn divergences. We refer to (Villani,
2003, 2008; Peyré and Cuturi, 2019) for further insight on these topics. Then, we introduce
some properties of these divergences, which will be useful to later demonstrate the main
results of this chapter.

4.4.1 Transportation costs and Sinkhorn divergences

Let α and β be two probability measures on X a subset of Rd, and c : Rd × Rd → R+ a
positive ground cost function. Typically, c(x, y) := ∥x− y∥2. The optimal transportation
cost with respect to c between α and β is defined as,

Tc(α, β) := min
π∈Π(α,β)

∫
X×X

c(x, y)dπ(x, y), (4.6)

where Π(α, β) is the set of couplings admitting α as first marginal and β as second marginal.
In particular, for an integer k ≥ 1 and D a distance on X , the quantity (TDk)

1
k yields a

distance between measures referred as the Wasserstein distance of order k. Transportation
costs and optimal transport distances became popular in many machine-learning-related
problems for their appealing geometric properties, but suffer from being computationally
challenging in practice. This triggered a growing literature on fast approximations of (4.6),
the most popular being entropy-regularized versions, which can be computed through the
Sinkhorn algorithm (Cuturi, 2013). For ε > 0, the entropy-regularized transportation cost
w.r.t. c is defined as

Tc,ε(α, β) := min
π∈Π(α,β)

∫
X×X

c(x, y)dπ(x, y) + εKL(π|α⊗ β), (4.7)

where KL(µ|ν) denotes the Kullback-Leibler divergence between probability measures µ and
ν given by

∫
log
(dµ
dν (z)

)
dµ(z) if µ≪ ν, and +∞ otherwise.

Critically, the entropic transportation cost Tc,ε suffers from the so-called entropic bias,
that is Tc,ε(α, α) ̸= 0 in general. As illustrated in (Feydy et al., 2019), this entails that the
minimum of Tc,ε(α, ·) is not reached at α but at a shrunken version of α with smaller support,
making the entropic cost an unreliable loss function. The Sinkhorn divergence was originally
introduced to fix this undesirable effect. It is formally defined as

Sc,ε(α, β) := Tc,ε(α, β)−
1

2
Tc,ε(α, α)−

1

2
Tc,ε(β, β).

As aforementioned, using a nonlocal similarity measure such as an entropic-optimal-transport
cost instead of a local similarity measure such as a squared MMD leads to fewer local
solutions when minimizing (4.5). Moreover, it does not suffer from the computational
burden of standard optimal transport. This is why Feydy et al. (2017) advocated the use of
the entropy-regularized transportation cost (4.7) for diffeomorphic registration, providing
empirical evidences of the benefits of this approach. However, they did not rely on the
unbiased Sinkhorn divergences, for which little was known until (Feydy et al., 2019) that
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demonstrated several key properties. In particular, if c is continuous, e−
c
ε defines a positive

universal kernel, and X is compact, then Sc,ε is symmetric positive definite, smooth and
convex in each of its input distributions. Additionally, in contrast to the standard regularized
transportation cost, it metrizes the convergence in law. In particular, these properties
hold for the classical cost functions c(x, y) := ∥x− y∥ and c(x, y) := ∥x− y∥2 defined on
compact domains. The goal of this chapter is precisely to use a Sinkhorn divergence for
the data-fidelity loss, while providing statistical guarantees. The demonstrations are based
on the dual formulation of entropic optimal transport for which we derive some important
results next.

4.4.2 Regularity of the dual formulation

The minimization problem (4.7) has the following dual formulation,

Tc,ε(α, β) = sup
f,g∈C(X ,R)

∫
X
f(x)dα(x) +

∫
X
g(y)dβ(y)− ε

∫
X 2

e
f(x)+g(y)−c(x,y)

ε dα(x)dβ(y) + ε.

(4.8)
The functions f and g are referred as potentials. Note that Equation (4.8) can also be
compactly written as,

Tc,ε(α, β) = sup
f,g∈C(X ,R)

(α⊗ β)
(
hf,gc,ε

)
,

where
hf,gc,ε (x, y) := f(x) + g(y)− εe

f(x)+g(y)−c(x,y)
ε + ε. (4.9)

We call the function hf,gc,ε the global potential. It will play a key role in the proofs.
A remarkable property of entropic optimal transport, investigated in (Genevay et al.,

2019; Feydy et al., 2019), is that the potentials of the dual formulation inherit the regularity
of the ground cost function c if the measures α and β are compactly supported. This setting
will be useful to derive statistical guarantees. More specifically, it allows to restrict the set of
feasible potentials to smooth functions regardless of the involved probability measures, as
stated in the next lemma which readily follows from (Genevay et al., 2019, Proposition 1)
(see also (del Barrio et al., 2022, Lemma 4.1) for the particular case of the quadratic ground
cost).

Lemma 4.4.1: Smoothness of the optimal potentials

Let µ and ν be two measures on a compact set K ⊂ Rd, and suppose that the ground
cost function c belongs to Cq(Rd × Rd,R+) with q ≥ 1. Then, there exists a constant
m = m((K, d); (c, q); ε) > 0 such that

Tc,ε(µ, ν) = sup
f,g∈C(K,R)

(µ⊗ ν)
(
hf,gc,ε

)
= sup

f,g∈Cq
m(K,R)

(µ⊗ ν)
(
hf,gc,ε

)
.

Naturally, the smoothness of f , g and c renders the global potential hf,gc,ε smooth as
well. Combining Lemma 4.4.1 with the following result ensures the smoothness of the
optimal global potential under smooth data-processing transformations, such as diffeomorphic
transformations.
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Proposition 4.4.1: Smoothness of the optimal global potential

Let X be a compact subset of Rd, suppose that the ground cost function c belongs
to Cq(Rd × Rd,R+) with q ≥ 1, set p ≥ 1 and write κ := min{p, q}. Then for any
m > 0 and R > 0, there exists a constant H = H(m;R; (c, q); ε; p) > 0 such that for
any f, g ∈ Cqm(BR,R) and T1, T2 ∈ CpR(X ,Rd),

hf,gc,ε ◦ (T1, T2) ∈ CκH(X × X ,R).

We are now ready to state and prove our main results.

4.5 Main results

This section focuses on the main theoretical contributions of the chapter, namely the existence
and statistical consistency of the empirical optimal matching function between α and β when
using a Sinkhorn divergence.

Firstly, we show that the objective functions Jλ and Jλ,n with Λ = Sc,ε admit minimizers.
We recall that a function Ψ : L2

V → R is weakly continuous if for any sequence {vn}n∈N
weakly converging to some v ∈ L2

V (see (4.1)), we have Ψ(vn) −−−−→
n→+∞

Ψ(v). (Glaunes, 2005,

Theorem 7) states that Jλ admits a minimum if v ∈ L2
V 7→ Λ(ϕv1♯α, β) is weakly continuous

and nonnegative while (Feydy et al., 2019, Theorem 1) guarantees the nonnegativeness of
Sinkhorn divergences when e−

c
ε defines positive universal kernel. Therefore, existence of an

optimal matching directly follows from the proposition below.

Proposition 4.5.1: Existence of the optimal vector fields

Let α and β be two probability measures on X a compact subset of Rd, suppose that the
ground cost function c belongs to C1(Rd × Rd,R+), and assume that Assumption (CE)
holds. Then the function v ∈ L2

V 7→ Sc,ε(ϕ
v
1♯α, β) is weakly continuous. If additionally

e−
c
ε defines a positive universal kernel, then Jλ for Λ = Sc,ε admit minimizers.

The minimizer is not unique in general due to the nonconvexity of the data-fidelity loss with
respect to v. Uniqueness could be artificially achieved by choosing λ very large, thereby
rendering the objective function strictly convex, but this would make the purpose of the
regularization meaningless.

We now turn to our main theorem, which is divided in two items. The first one ensures
the convergences of the empirical solutions to their population counterparts; the second one
specifies the speed of this convergence.

Theorem 4.5.1: Consistency of the optimal vector fields

Let αn and βn be empirical measures corresponding respectively to α and β, two
probability measures on X a compact subset of Rd, suppose that the ground cost
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function c belongs to Cq(Rd×Rd,R+) with q ≥ 1 and induces a positive universal kernel
e−

c
ε . Finally, assume that Assumption (CE) holds. If, for any n ∈ N∗, vn denotes a

minimizer of Jλ,n for Λ = Sc,ε, then the following results hold.

(i) There exists a minimizer of Jλ denoted by v∗ such that up to the extraction of a
subsequence

∥vn − v∗∥L2
V

a.s.−−−→
n→∞

0

and
sup
t∈[0,1]

{∥∥∥ϕvnt − ϕv∗t ∥∥∥∞ +
∥∥∥(ϕvnt )−1 − (ϕv

∗
t )−1

∥∥∥
∞

}
a.s.−−−→
n→∞

0.

(ii) If κ := min{p, q} > d, then there exists a constantA = A(λ; (X , d); (c, q); ε; (V, p)) >
0 such that

E [|Jλ(vn)− Jλ(v∗)|] ≤
A√
n
.

Note that Glaunes et al. (2004) proved a similar consistency result when the data-fidelity
loss is the square of an MMD, but did not determine the speed of convergence as in (ii). The
demonstration of (i) follows the steps of their proof (see (Glaunes, 2005, Theorem 16)). The
idea is to show the convergence of supv∈L2

V,M
|Jλ,n(v)− Jλ(v)| as n increases to infinity, where

L2
V,M contains all the minimizers independently of n. The main challenge when addressing

an entropic optimal transport cost comes from the fact that it does not satisfy a triangle
inequality, nor a data-processing inequality, and is hence harder to control. We remedy to
this issue by proving and applying the following intermediary result:

Proposition 4.5.2: Consistency of entropic optimal transport

Let αn and βn be empirical measures corresponding respectively to α and β, two
probability measures on X a compact subset of Rd, and suppose that the ground cost
function c belongs to Cq(Rd × Rd,R+) with q ≥ 1. Set p ≥ 1 and write κ := min{p, q}.
Then, the following results hold:

(i) For any R > 0

sup
T1,T2∈Cp

R(X ,Rd)

|Tc,ε(T1♯αn, T2♯βn)− Tc,ε(T1♯α, T2♯β)|
a.s.−−−−→

n→+∞
0.

(ii) If κ > d, then for any R > 0 there exists a constant A = A(R; (c, q); ε; (X , d); p) >
0 such that

E

[
sup

T1,T2∈Cp
R(X ,Rd)

|Tc,ε(T1♯αn, T2♯βn)− Tc,ε(T1♯α, T2♯β)|

]
≤ A√

n
.

Notice that as a direct consequence of the triangle inequality, a similar result holds for Sc,ε.
Hence, as diffeomorphisms are smooth on compact sets according to Lemma 4.3.1, we can
apply Proposition 4.5.2 to control supv∈L2

V,M
|Jλ,n(v)− Jλ(v)|.
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Although Proposition 4.5.2 is motivated by diffeomorphic registration, we believe it
has further interest. Remark in particular that the objective (4.4) shares similarities with
generative modelling (Goodfellow et al., 2014); an input distribution α is passed through a
parametric function ϕv1 meant to generate a target distribution β by minimizing a certain
loss Λ. In particular, generative modelling using the Wasserstein-1 distance or a Sinkhorn
divergence has proved to be efficient for diverse applications (Arjovsky et al., 2017; Genevay
et al., 2018). The main difference in (4.4) comes from the parameter v being infinitely
dimensional, and characterizing a diffeomorphism instead of a neural network. However,
Proposition 4.5.2 is general enough to be applied in the context of generative modelling with
Sinkhorn divergences, in order to derive statistical guarantees for smooth generators.

Remark 4.5.1: What about the biased cost?

Proposition 4.5.1 and Theorem 4.5.1 do not hold for Tc,ε instead of Sc,ε because
v 7→ Tc,ε(ϕv1♯α, β) is not lower bounded on L2

V . We also emphasize that it is preferable
to use a Sinkhorn divergence in practice, since it does not suffer from the aforementioned
entropic bias. In particular, the experiments from the next section illustrate that
debiasing leads to more accurate registrations.

Remark 4.5.2: Similar results

Item (ii) in Proposition 4.5.2 resembles classical sampling complexity bounds of entropic
optimal transport such as (Genevay et al., 2019, Theorem 3), (Séjourné et al., 2019,
Theorem 7) and (Mena and Niles-Weed, 2019, Corollary 1). Our result differs critically by
handling a supremum over a class of smooth push-forward maps within the expectation,
which enables to prove item (ii) in Theorem 4.5.1.

4.6 Implementation

This section addresses the practical aspects of diffeomorphic registration through Sinkhorn
divergence. Firstly, we briefly recall how to compute a minimizer of Jλ,n for an arbitrary loss
Λ. Then, we illustrate the procedure for Sinkhorn divergences on numerical experiments.

4.6.1 Resolution procedure

This subsection introduces the basic knowledge for solving a diffeomorphic registration prob-
lem. It is meant to keep the manuscript as self-contained as possible. Several minimization
strategies coexist, corresponding to different parametrizations of the optimization problem
4.5. We refer to (Younes, 2019, Section 10.6) for a complete overview of the resolution
procedures.
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Gradient descent over the time-dependent momentum

To practically minimize Jλ,n, one must first write the optimal vector fields v in a finite
parametric form, and then perform a gradient descent on the coefficients of this decomposition.
Recall that Assumption (CE) implies that V is a RKHS, thereby characterized by a unique
matrix-valued symmetric positive kernel function Ker : Rd × Rd → Rd×d. For simplicity, we
address the case of the Gaussian kernel defined in 4.3. Statistically, the bandwidth parameter
σ represents the correlation between the morphed points; physically, it quantifies the fluid
viscosity. When σ is small, the points have independent trajectories; when it is large, the
points move as a whole.

The RKHS viewpoint enables to parametrize the optimal vector fields through a kernel
trick. Firstly, note that the minimization of Jλ,n can be formulated as an optimal control
problem. It amounts to solving

min
v∈L2

V

Λ(αn(1), βn) + λ∥v∥2L2
V
; subject to αn(t) = ϕvt ♯αn for any t ∈ [0, 1]. (4.10)

Then, since the constraint involves a finite number n of trajectories, the so-called reduction
principle (see (Glaunes, 2005, Theorem 14)) entails that any solution to problem 4.10, that
is any minimizer of Jλ,n, can be written as,

vnt (x) =
n∑
i=1

Ker (x, zai (t)) ai(t),

where the momentum a := (a1, . . . , an) denotes n unspecified time functions of L2([0, 1],Rd),
and the control trajectories za := (za1 , . . . , z

a
n) are defined by

zai (t) = xi +

∫ t

0

n∑
j=1

Ker(zai (s), z
a
j (s))aj(s)ds. (4.11)

This enables to recast (4.10) as minimizing,

Eλ,n(a) := Λ

(
1

n

n∑
k=1

δzak(1), β

)
+ λ

∫ 1

0

n∑
i,j=1

ai(t) ·Ker
(
zai (t), z

a
j (t)

)
aj(t)dt, (4.12)

where · denotes the Euclidean inner product. The gradient of Eλ,n was originally derived in
(Glaunes et al., 2004) for the MMD case, and re-expressed in (Glaunes, 2005; Younes, 2020)
for more general settings. It can be written as ∇Eλ,n(a) = 2λa− pa where pa := (pa1, . . . , p

a
n)

denotes n functions of L2([0, 1],Rd) satisfying for any i ∈ {1, . . . , n} and t ∈ [0, 1],

pai (t) := ∇zai (1)Λ

(
1

n

n∑
k=1

δzak(1), β

)

− 1

σ2

∫ 1

t

n∑
j=1

Ker
(
zai (t), z

a
j (t)

) [
ai(t) · paj (t) + aj(t) · pai (t)− 2λai(t) · aj(t)

] (
zai (t)− zaj (t)

)
.

(4.13)
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In order to practically track all the functions of the continuous time variable, one must
discretize the time scale [0, 1] into τ sub-intervals of equal sizes, which recasts a, za and pa

as (τ + 1)× n× d tensors. Then, equations (4.11) and (4.13) are successively solved at each
iteration of the gradient descent by solving the associated discrete dynamical systems. By
plugging the solutions za and pa into the formula of ∇Eλ,n(a) one can update the variable a
with a←− a− ξ × (2λa− pa) where ξ denotes the step size. The computational complexity
of an iteration is in O(n2dτ). However, the dynamical systems can be parallelized in the
number of points and the dimension. At the end of the process, we obtain the following
deformation,

ϕa,τt (x) := x+
1

τ

t−1∑
s=0

n∑
j=1

Ker(x, zaj (s))aj(s). (4.14)

This approach handles any data-fidelity loss Λ as long as it is differentiable with respect
to the data points of the discrete distributions. Both Sinkhorn divergences and squares of
MMDs satisfy this property.

Geodesic shooting of the initial momentum

A widely used variant of the above approach is the geodesic shooting of the initial momentum
which relies on the equations satisfied at the minimum to uniquely constrain the time-
dependent solution a(·) by its initial value, allowing for optimizing solely over a(0).

More specifically, as demonstrated in (Miller et al., 2006), the Hamiltonian viewpoint of
the control problem yields the following joint dynamic of the optimal control trajectories
and momentum:

zai (t) = xi +

∫ t

0

n∑
j=1

Ker
(
zai (s), z

a
j (s)

)
aj(s)ds,

ai(t) = a(0)− 1

2
∇zai (t)

∫ t

0

 n∑
j=1

ai(s) ·Ker
(
zai (s), z

a
j (s)

)
aj(s)

ds. (4.15)

This entails that both the control trajectories and the momentum at any instant t are fully
characterized by a(0). Slightly abusing notations we write za = za(0).

Additionally, the kinetic energy remains constant along optimal solutions, implying that∫ 1

0

n∑
i,j=1

ai(t) ·Ker
(
z
a(0)
i (t), z

a(0)
j (t)

)
aj(t)dt =

n∑
i,j=1

ai(0) ·Ker (xi, xj) aj(0). (4.16)

Therefore, (4.16) together with (4.15) enable to recast the functional (4.12) to minimize as

E0
λ,n(a(0)) := Λ

(
1

n

n∑
k=1

δ
z
a(0)
k (1)

, β

)
+ λ

n∑
i,j=1

ai(0) ·Ker (xi, xj) aj(0), (4.17)

which is a well-defined function of the time-invariant parameter a(0) ∈ Rn×d only. After
minimizing (4.17) using a gradient-descent-based method, one can shoot the obtained a(0)
along the discretized system (4.15) to generate the optimal control trajectories za(·) and
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time-dependent momentum a(·). Then, the trajectory of any new point x ∈ Rd at any time
t ∈ [0, 1] can be computed by integrating the flow equation as in (4.14).

Naturally, for a nonconvex program such as (4.5) the quality of the output solution may
heavily depend on the chosen resolution procedure. In the coming experiments, we compare
the deformations obtained with both solving strategies.

4.6.2 Numerical experiments

We present a series of numerical experiments on synthetic and real 2-D and 3-D shapes.
The objective is to illustrate the practical benefits of using a Sinkhorn divergence as the
data-fidelity loss. Our Python code2 operates with the GeomLoss package (Feydy et al.,
2019) to compute the losses and their gradients by automatic differentiation, and the KeOps
package (Charlier et al., 2021) to handle kernel-reduction operations. It is largely inspired
by the example codes from these librairies’ websites.3

2-D dataset

In (Feydy et al., 2019), the authors proposed an alternative measure registration framework
based on the gradient flow of the data-fidelity loss. It amounts to updating the source
distribution αn := n−1

∑n
i=1 δxi by carrying out a gradient descent on Λ(αn, βn) with

respect to the positions x1, . . . , xn. This model-free method enables to faithfully match one
distribution to another, even when the supports have irregularities such as holes. In this
section, we firstly adapt their experiments, more precisely the ones from the example section
of the GeomLoss package website, by using diffeomorphic deformations instead of gradient
flows.

The objective is matching two blob-like point clouds in dimension 2. We proceed as
follows. Firstly, we learn the optimal matching between two samples of size n = 1, 000
using each of the two previously described procedures. Secondly, we display the obtained
time interpolation between two new independent samples of size m = 2, 000. In order to
benchmark the influence of the data-fidelity loss, we consider a fixed setting where V is
defined through a Gaussian kernel with bandwidth σ = 0.175, the regularization has weight
λ = 10−8, and the time scale is uniformly divided into τ = 16 intervals. Then, we compare the
results for different losses: (unbiased) Sinkhorn divergences, biased entropic transportation
costs, and squared Gaussian maximum mean discrepancies. Recall that the squared Gaussian
MMD with bandwidth parameter θ > 0 is defined as,

MMD2
θ(µ, ν) :=

∫
Rd×Rd

exp

(
−∥x− y∥

2

2θ2

)
d(µ− ν)(x)d(µ− ν)(y).

The ground cost function for the Sinkhorn divergences is always c(x, y) := ∥x− y∥2 through-
out the experiments. Figures 4.1 to 4.3 compare the optimal matchings obtained with
respectively the gradient descent on the momentum (GDM) and geodesic shooting (GS) for
different values of the relevant parameters ε and θ. Note that whatever the minimization

2https://github.com/lucasdelara/lddmm-sinkhorn/
3https://www.kernel-operations.io/geomloss/ and https://www.kernel-operations.io/keops/

https://github.com/lucasdelara/lddmm-sinkhorn/
https://www.kernel-operations.io/geomloss/
https://www.kernel-operations.io/keops/
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Figure 4.1: Optimal-transport-driven 2-D diffeomorphic registration optimized by GDM.
The colored distribution is αm(t), while the blue distribution is βm.

strategy, we used a fixed number of iterations with a constant learning rate, and initialized
the momentum with the zero tensor. Also, while we programmed a standard gradient descent
for GDM, we relied on the PyTorch (Paszke et al., 2019) in-built L-BFGS solver for the
geodesic shooting. The results are arranged as follows: Figure 4.1 shows the deformations for
both Sinkhorn divergences and (biased) entropic transportation costs optimized with GDM;
Figure 4.2 is the counterpart of Figure 4.1 for GS; Figure 4.3 displays the deformations
generated by Gaussian maximum mean discrepancies for both resolution procedures.
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Figure 4.2: Optimal-transport-driven 2-D diffeomorphic registration optimized by GS. The
colored distribution is αm(t), while the blue distribution is βm.

Firstly, we observe from Figures 4.1 and 4.2 that entropic optimal-transport metrics yield
consistent results across minimization strategies. In contrast, the registration for maximum
mean discrepancies depicted in Figure 4.3 varies with the chosen method. This instability of
the optimization problem underlines that MMDs give more local minima.

Secondly, Figures 4.1 and 4.2 clearly exhibit the entropic bias: in contrast to Sinkhorn
divergences, standard entropic transportation costs shrink the morphed distribution for large
values of the regularization parameter ε, leading to unacceptable registrations. However,
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Figure 4.3: 2-D diffeomorphic registration driven by MMD2
θ. The colored distribution is

αm(t), while the blue distribution is βm.

choosing a too large ε for the unbiased divergence yields a blurry, poorly accurate solution. As
expected, debiasing becomes less critical as the regularization diminishes, and both entropic
losses provide sharp matchings for small values of ε. Note also that there is no need to
decrease ε below a certain threshold to ensure accurate deformations.

Finally, Figure 4.3 indicates that the consistency of the results between resolution
procedures weakens as the bandwidth of the Gaussian kernel decreases. This is due to
Gaussian maximum mean discrepancies ignoring disparities smaller than θ. As such, setting
a large bandwidth facilitates the registration but degrades the quality of the matching. In
contrast, a small bandwidth allows for sharper registration but induces more local minima.
This aspect is epitomized for θ = 0.1 in the experiments: with the gradient descent on the
time-dependent momentum, the morphed points end up diverging, trapped into minimizing
the auto-correlation contribution of the MMD, while geodesic shooting produces a fine
matching.
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All in all, our experimental observations about the role of the losses are similar to the
ones made by Feydy et al. (2019) in the context of gradient flows. Critically, compared to
their approach, we work with a transformation that is smooth at any time. This regularity
constraint reduces the flexibility of the matching, which leads to a less accurate fitting than
gradient flows. This affects particularly the anomalous parts of the targeted support, namely
the holes and the tail. In contrast, regularity enables the deformation to generalize to any
new out-of-sample observations. Additionally, it prevents from tearing the mass apart. The
color map on the distribution αm(t) enables to track the location of the moved points through
time. Notice that, as a direct consequence of the smoothness, the chromatic continuity
between morphed points is preserved throughout the process.

Before turning to more complex 3-D shapes, let us push further the quality analysis
of local minima on this illustrative dataset. In the sequel, we consider the same setting
as before, and focus on the optimal matchings obtained by geodesic shooting for Sinkhorn
divergences and Gaussian maximum mean discrepancies with different parameter values.
However, instead of initializing the optimized variable a(0) to zero, we now study the stability
and accuracy of the solutions over various initial values. More specifically, we rely on a
warm-start strategy: solutions from the above experiments are reused as starting points in
the solver. The results are gathered in Figure 4.4, which reports the final matchings obtained
with different initializations along with their associated loss values.

Let us firstly analyze the results for the losses that previously gave the finest registrations:
the Sinkhorn divergence with ε = 10−4 (rows 1 and 5) and the Gaussian MMD with θ = 0.1
(rows 3 and 7). As anticipated, the matchings vary with the initialization. Visually, this
phenomenon is stronger for the MMD than for the Sinkhorn divergence and the quality of
the final matchings remains quite accurate for the optimal-transport loss. By checking the
loss values, we note that the warm start downgrades the solutions for both losses, except
for the MMD using initialization via Sc,ε with ε = 10−4 which gets significantly closer to
the global minimum. In sum, it seems that the entropic divergence induces fewer or better
local minima. Regarding the Sinkhorn divergence with ε = 1 (rows 2 and 6) and and the
MMD with θ = 0.5 (rows 4 and 8), which previously yielded imprecise matchings, they have
analogous behaviours with respect to warm start. We observe that the results are less robust
to initialization and can be significantly improved by using already accurate solutions as
starting points, underlining that the registrations obtained with the initialization to zero
corresponded to bad local minima.

3-D surfaces

Next, we implement the diffeomorphic matching of two shapes embedded in R3: the source
is the unit sphere while the target is the centered scaled Stanford bunny,4 both encoded
through the associated uniform distributions. Similarly to the above experiments, we firstly
learn the diffeomorphism on a training set of size n = 5, 000 using geodesic shooting for
various losses, and then display the final matching on a testing set of size m = 10, 000. The
setup is characterized by σ = 0.05, λ = 10−8, and τ = 16. The results can be found in
Figure 4.5. We make comparable observations to before. Powering diffeomorphic registration
with a Sinkhorn divergence instead of the biased regularized cost avoids the shrinkage effect

4http://graphics.stanford.edu/data/3Dscanrep/

http://graphics.stanford.edu/data/3Dscanrep/
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Figure 4.4: 2-D diffeomorphic matching optimized by GS with warm start. A row specifies
the studied loss while each column refers to an initialization. Except for the first column
which indicates the initialization to zero, the columns correspond to a solution from the
previous experiments. The first four rows show the final matchings while the last four rows
give the associated loss values with their growth rates compared to the initialization via zero;
row-wise-minimal loss values are written in bold.

of the entropic bias for large values of ε, and the matchings are accurate for both losses
when ε is small. The Gaussian MMD requires a small bandwidth θ to potentially fit the
bunny, but the solution falls into a poor local minima where several morphed points are not
attracted by the target. Note also that, due to their regularity, the deformations tend to
smooth the sharpest edges of the target bunny.
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Figure 4.5: 3-D diffeomorphic matchings. Both shapes (a) and (b) are centered scaled.
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4.7 Final remarks

Similarly to the previous chapters, we conclude by discussing the interests of our contributions
and proposing lines of further research.

4.7.1 Application to counterfactual reasoning

As mentioned in Chapter 2, diffeomorphic registration could serve as a transport-based
counterfactual model. Let us comment on this idea.

First of all, note that diffeomorphic registration can only define approximate counterfactual
models in contrast to optimal transport, as the generated matching never perfectly fits the
target distribution (i.e., ϕv1♯α ≈ β). Nevertheless, by relaxing the push-forward constraint, it
can furnish deterministic matching functions whatever the probability distributions. Moreover,
the optimization procedure has a O

(
n2
)

complexity instead of the O
(
n3 log(n)

)
of optimal

transport.
Besides a computational comparison, diffeomorphic registration does not interpret coun-

terfactual counterparts by the minimization of a cost, but through the choice of a space of
vector fields—or equivalently a kernel function. The kernel function can be seen as a local
similarity measure regulating the interactions between the counterfactual correspondences.
This could open interesting debates on the semantics carried by such counterfactual models.
However, the choice of the kernel function is what ensures an accurate registration in practice.
Therefore, adding constraints of interpretation on this choice would make the matching
process too complicated.

Another issue that we faced when trying to use diffeomorphisms as structural counterfac-
tual operators comes from the impossibility to visualize the matching when the dimension
of the data exceeds 3. Even though the data-fidelity loss gives an idea of how close the
morphed and target distributions are, this only makes sense relatively to another value.
Classical applications of diffeomorphic registration deals with 2-D or 3-D shapes, for which
one can visually assess the quality of the matching. This cannot be achieved in typical
fairness tasks. To sum-up, it did not feel reliable to use diffeomorphic registration as a
matching process from one world to another. For all these reasons, we leave the application
of diffeomorphic mappings to counterfactual reasoning, and more generally to algorithmic
fairness and explainability, for further research.

4.7.2 Conclusion

We proposed to use Sinkhorn divergences as the fidelity loss in diffeomorphic registration
problems. We derived the statistical theory, and illustrated the efficiency of this method
compared to past approaches based on MMDs or biased entropic transportation costs. As
such, this chapter paves way for accurate and smooth measure registration with certifiable
asymptotic guarantees. Moreover, carrying out this work led us to further investigate the
dual formulation of entropic optimal transport, complementing recent papers on the subject.
A first avenue for extension could be to consider the registration of unbalanced measures
using Sinkhorn divergences, which would align with the work of Feydy et al. (2017). A second
one could be to derive sharper rates of convergences. Notably, (del Barrio et al., 2022) which
demonstrates faster convergence rates for the empirical entropic transportation potentials
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and (Chizat et al., 2020) which shows that debiasing decreases the approximation error of
optimal transport induced by entropic regularization could serve as inspirations.
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Appendix 4.A Preliminary results

This section recalls some useful results. Section 4.A.1 contains a brief reminder on entropy
numbers of classes of functions, in order to derive an upper bound on empirical processes;
Section 4.A.2 focuses on the chain rule for composite Frechet derivatives up to arbitrary high
orders.

4.A.1 Empirical processes

In the proof of Proposition 4.5.2, we will bound the sampling error between the empirical
entropic transportation cost and its population counterpart by a centered empirical process
indexed by a class of smooth functions. Recalling the theory introduced in (Van Der Vaart
and Wellner, 1996; Koltchinskii, 2011), we present in this subsection intermediary results on
such processes.

Let X be a compact convex subset of Rd. For any probability measure µ on X and
r ≥ 1, we define the Lr(µ)-norm on C(X ,R) as ∥h∥r,µ :=

( ∫
|h|rdµ

)1/r. In empirical process
theory, the complexity of classes of functions is commonly evaluated through the so-called
covering and bracketing numbers. Let H be a class of function included in C(X ,R), and
ϵ > 0 a constant. The covering number N(ϵ,H, Lr(µ)) is defined as the minimal number
of Lr(µ)-balls of radius ϵ needed to cover the class of functions H. The center of the balls
need not belong to H, but must have finite norm. Additionally, given two functions l and u
with finite norm but not necessarily in H, the bracket [l, u] is the set of all functions h such
that l ≤ h ≤ u. An (ϵ, Lr(µ))-bracket is a bracket [l, u] such that ∥l − u∥r,µ ≤ ϵ. Then, the
bracketing number N[ ](ϵ,H, Lr(µ)) is the minimal number of (ϵ, Lr(µ))-bracket needed to
cover H.

These numbers have essential applications in statistics. The supremum of a centered
empirical process indexed by a class of functions with a finite bracketing number converges
uniformly almost-surely to zero. Moreover, with a sharper control on the bracketing number,
one can derive the following convergence rate:

Proposition 4.A.1: Empirical processes indexed by smooth functions

Let µn be an empirical version of a probability measure µ on a compact convex subset
X of Rd, and set H > 0 a constant. Consider the class of functions H := CκH(X ,R) for
some integer κ ≥ 0. If κ > d/2, then there exists a constant A = A((H,κ); (X , d)) such
that,

E
[
sup
h∈H
|µn(h)− µ(h)|

]
≤ A√

n
.

Proof Combining (Koltchinskii, 2011, Theorem 2.1) with (Koltchinskii, 2011, Theorem
3.11), we directly have that,

E
[
sup
h∈H
|µn(h)− µ(h)|

]
≤ 2× b√

n
E
∫ 2σn

0

√
logN(ϵ,H, L2(µn))dϵ,

where b > 0 is some constant and σn := suph∈H µn(h
2). By definition of H, it follows that

σn ≤ H2. Besides, we can upper bound the covering number in the right term by the
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bracketing number N[ ](2ϵ,H, L2(µn)) (see (Van Der Vaart and Wellner, 1996, page 84)). In
addition, according to (Van Der Vaart and Wellner, 1996, Corollary 2.7.2), there exists a
constant ρ = ρ((H,κ); (X , d)) > 0 such that,

logN[ ](2ϵ,H, L2(µn)) ≤ ρ(2ϵ)−d/κ.

Note that the right term does not depend on µn. All in all,

E
[
sup
h∈H
|µn(h)− µ(h)|

]
≤ 2c√

n
E
∫ 2H2

0

√
ρ(2ϵ)−d/κdϵ.

The integral is finite as κ > d/2. Consequently, the upper bound defines a constant
A = A((H,κ); (X , d)). This concludes the proof.

Remark that the convexity assumption on the compact domain X is not restrictive, as it
suffices to extend the probability measure µ on the convex hull of X .

4.A.2 Frechet derivative

The proof of Proposition 4.4.1 requires bounding the Frechet derivatives of arbitrary high
orders of composite functions. We rely on the generalization of Faà di Bruno’s formula
proposed by Clark and Houssineau (2013) to carry out the computation.

Let F : Rd2 → Rd3 and G : Rd1 → Rd2 be two differentiable functions up to order
k ≥ 1. Denote by Ω(k) the set of partitions of {1, . . . , k}, and write |·| for the cardinality
of a set. For any δ := (δ1, . . . , δk) ∈ (Rd1)k, x ∈ Rd1 , and ω := {ω1, . . . , ω|ω|} ∈ Ω(k), we
define δGωi

(x) := G(|ωi|)(x) [(δj)j∈ωi ] for every 1 ≤ i ≤ |ω|. Then, according to (Clark and
Houssineau, 2013, Theorem 2.1),

(F ◦G)(k)(x)[δ1, . . . , δk] =
∑

ω∈Ω(k)

F (|ω|)(G(x))
[
δGω1

(x), . . . , δGω|ω|
(x)
]
. (4.18)

This results implies a chain rule on the operator norms of derivatives of composite functions,
which will greatly simplify the computations of later proofs.

Proposition 4.A.2: Control of high-order composite derivatives

Let F : Rd2 → Rd3 and G : Rd1 → Rd2 be two differentiable functions up to order k ≥ 1.
Then, for any x ∈ Rd1 ,∥∥∥(F ◦G)(k)(x)∥∥∥

op
≤

∑
ω∈Ω(k)

∥∥∥F (|ω|)(G(x))∥∥∥
op
×

∏
1≤i≤|ω|

∥∥∥G(|ωi|)(x)
∥∥∥
op
.

Proof According to the triangle inequality and (4.18)∥∥∥(F ◦G)(k)(x)∥∥∥
op
≤

∑
ω∈Ω(k)

sup
∥δ1∥,...,∥δk∥≤1

∥∥∥F (|ω|)(G(x))
[
δGω1

(x), . . . , δGω|ω|
(x)
]∥∥∥.
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Then, we can bound the right term of this inequality by,∑
ω∈Ω(k)

∥∥∥F (|ω|)(G(x))
∥∥∥
op
×

∏
1≤i≤|ω|

sup
∥δ1∥,...,∥δk∥≤1

∥∥δGωi
(x)
∥∥
op
.

In addition, note that for any x ∈ Rd1 ,

sup
∥δ1∥,...,∥δk∥≤1

∥∥δGωi
(x)
∥∥ ≤ ∥∥∥G(|ωi|)(x)

∥∥∥
op
.

Therefore, ∥∥∥(F ◦G)(k)(x)∥∥∥
op
≤

∑
ω∈Ω(k)

∥∥∥F (|ω|)(G(x))∥∥∥
op
×

∏
1≤i≤|ω|

∥∥∥G(|ωi|)(x)
∥∥∥
op
.

Appendix 4.B Proofs of Chapter 4

This sections details all the mathematical proofs of the chapter.
Proof of Lemma 3.2 Let us start with a preliminary remark. For any v ∈ L2

V , it follows
from Assumption (CE) that

∫ 1
0 ∥vt∥p,∞dt ≤ cV

∫ 1
0 ∥vt∥V dt. Besides, by Cauchy-Schwarz

inequality
∫ 1
0 ∥vt∥V dt ≤ ∥v∥L2

V
, leading to

∫ 1
0 ∥vt∥p,∞dt ≤ cV ∥v∥L2

V
.

We now turn to the proof. Recall that by definition ϕvt (x) = x +
∫ t
0 vs ◦ ϕ

v
s(x)ds.

Consequently, by the triangle inequality we have for any compact set K ⊂ Rd that

sup
t∈[0,1],x∈K

∥ϕvt (x)∥ ≤ sup
x∈K
∥x∥+

∫ 1

0
∥vs∥∞ds ≤ sup

x∈K
∥x∥+ cV ∥v∥L2

V
.

Therefore,
sup

v∈L2
V,M ,t∈[0,1],x∈K

∥ϕvt (x)∥ ≤ sup
x∈K
∥x∥+ cVM.

Moreover, combining (Glaunes, 2005, Theorem 5) with the preliminary remark, we know that
for any 1 ≤ k ≤ p, there exist two positive constants ck and c′k such that for any v ∈ L2

V ,

sup
t∈[0,1]

∥∥∥(ϕvt )(k)∥∥∥∞ ≤ ck exp(c′k∥v∥L2
V

)
.

Hence,
sup

v∈L2
V,M ,t∈[0,1]

∥∥∥(ϕvt )(k)∥∥∥∞ ≤ ck exp (c′kM) .
Then, setting

R((K, d); (V, p);M) := max

{
max
1≤k≤p

{ck exp(c′kM)}, sup
x∈K
∥x∥+ cVM

}
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concludes the proof.

Proof of Lemma 4.1 Let µ and ν be probability measures on a compact set K ⊂ Rd.
In a first time, let us show that optimal potentials (f, g) ∈ C(K,R)× C(K,R) for Tc,ε(µ, ν)
can be chosen as universally-bounded Lipschitz functions. The optimality condition on the
potentials (see for instance (Genevay, 2019)) can be written as,

exp

(
−f(x)

ε

)
=

∫
K
exp

(
g(y)− c(x, y)

ε

)
dν(y).

Remark that since c is continuously differentiable, f is therefore continuously differentiable.
Differentiating both sides of this expression leads to,

∇f(x) =
∫
K
∇1c(x, y) exp

(
f(x) + g(y)− c(x, y)

ε

)
dν(y),

where ∇1 denotes the gradient with respect to x, the first variable of c. Let us define
Γf,gc,ε (x, y) := exp

(
f(x)+g(y)−c(x,y)

ε

)
. According to the primal-dual relationship (Genevay,

2019, Proposition 7), an optimal solution π to the primal problem has the expression,

dπ(x, y) = Γf,gc,ε (x, y)dµ(x)dν(y).

Since by definition π ∈ Π(µ, ν), we consequently obtain that
∫
K Γf,gc,ε (x, y)dν(y) = 1. There-

fore,
∥∇f∥∞ ≤ sup

x,y∈K
∥∇1c(x, y)∥.

A similar argument can be made for g. This shows that f and g are ℓ-Lipschitz with
ℓ = ℓ((K, d); c) > 0. Now, note that for any constant b ∈ R, the pair (f + b, g − b) is
still a pair of optimal potentials. As a consequence, they can be chosen without loss of
generality such that f(x0) = 0 for a given x0 ∈ K. Thus, using the Lipschitz property we
get f(x) ≤ ℓ∥x− x0∥, hence ∥f∥∞ ≤ ℓdiam(K). To bound g, we use (Genevay et al., 2019,
Proposition 1) which states that infx∈K{f(x) − c(x, y)} ≤ g(y) ≤ supx∈K{f(x) − c(x, y)}.
This entails that ∥g∥∞ ≤ ∥f∥∞+supx,y∈K |c(x, y)|≤ ℓdiam(K)+supx,y∈K |c(x, y)|. All in all,
there exists a constant ℓ1 = ℓ1((K, d); c) such that f and g are ℓ1-bounded and ℓ1-Lipschitz
continuous.

Analogously, one can bound the successive derivatives of f and g up to order q, the
maximum order or differentiability of c, using (Genevay et al., 2019, Proposition 1). In
particular, this result ensures that for any 1 ≤ k ≤ q, both

∥∥f (k)∥∥∞ and
∥∥g(k)∥∥∞ are bounded

by a polynomial in ε−1 whose coefficients depend only on c and K. This implies that there
exists a constant m = m((K, d); (c, q); ε) > 0 such that f and g belong to Cqm(K,R).

Proof of Proposition 4.2
Let m > 0 and R > 0. Set f, g ∈ Cqm(BR,R). Note that the function hf,gc,ε belongs to

Cq(BR × BR,R). In a first time, we do not focus on any data processing operations, and
show that hf,gc,ε and its derivatives up to order q are uniformly bounded. By definition,
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hf,gc,ε (x, y) = f(x) + g(y)− ε exp

(
f(x) + g(y)− c

(
x, y
)

ε

)
+ ε.

Before going further, we define the constant

C∞(R) := max
0≤k≤q

{
sup

(x,y)∈BR×BR

∥∥∥c(k)(x, y)∥∥∥
op

}
(4.19)

Then, using the triangle inequality and the bounds on f, g and c we obtain,∥∥∥hf,gc,ε∥∥∥∞ ≤ ∥f∥∞+∥g∥∞+ε exp

(
∥f∥∞ + ∥g∥∞ + C∞

ε

)
+ε ≤ 2m+ε exp

(
2m+ C∞

ε

)
+ε.

Notice that the upper bound does not depend on the choice of f and g. We prove similar
bounds for arbitrary high orders of derivatives using the chain rule. We divide the problem
by studying the function,

Γf,gc,ε : (x, y) ∈ BR ×BR 7→ exp
f(x) + g(y)− c(x, y)

ε
,

which is κ-continuously differentiable. Using Proposition 4.A.2 with F = exp, we obtain for
any 1 ≤ k ≤ q,∥∥∥(Γf,gc,ε )(k)(x, y)∥∥∥

op
≤
∣∣∣Γf,gc,ε (x, y)∣∣∣ ∑

ω∈Ω(k)

∏
1≤i≤|ω|

ε−1
∥∥∥f (|ωi|)(x) + g(|ωi|)(y)− c(|ωi|)(x, y)

∥∥∥
op
,

Then, ∥∥∥∥(Γf,gc,ε)(k)∥∥∥∥
∞
≤ exp

(
2m+ C∞(R)

ε

) ∑
ω∈Ω(k)

ε−|ω|(2m+ C∞(R))|ω|. (4.20)

We now turn back to hf,gc,ε . Since
(
hf,gc,ε

)(k)
= f (k) + g(k) − ε

(
Γf,gc,ε

)(k)
we finally have

∥∥∥(hf,gc,ε )(k)∥∥∥∞ ≤ 2m+ exp

(
2m+ C∞(R)

ε

) ∑
ω∈Ω(k)

ε−|ω|+1(2m+ C∞(R))|ω|.

By defining,

H0(m;R; (c, q); ε) := (2m+ε)+ε exp

(
2m+ C∞(R)

ε

)
× max

0≤k≤q

 ∑
ω∈Ω(k)

ε−|ω|(2m+ C∞(R))|ω|

 ,

we conclude that ∥∥∥∥(hf,gc,ε)(k)∥∥∥∥
q,∞
≤ H0.

We now include data processing transformations. Set T1, T2 ∈ CpR(X ,Rd). It follows
from the regularity of hf,gc,ε that hf,gc,ε ◦ (T1, T2) ∈ Cκ(X × X ,R). Since T1(x), T2(y) ∈ BR,
and because hf,gc,ε is bounded by H0 on BR ×BR, the function hf,gc,ε ◦ (T1, T2) is bounded on
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X × X regardless of the choice of f, g, T1 and T2. Here again, we use the chain rule to build
higher-order bounds. From Proposition 4.A.2 applied with F = hf,gc,ε and G = (T1, T2) it
follows that for any 1 ≤ k ≤ κ,∥∥∥(hf,gc,ε ◦ (T1, T2))(k)(x, y)∥∥∥

op
≤

∑
ω∈Ω(k)

∥∥∥(hf,gc,ε )(|ω|) ◦ (T1, T2)(x, y)∥∥∥
op
×
∏

1≤i≤|ω|

∥∥∥(T1, T2)(|ωi|)(x, y)
∥∥∥
op
.

(4.21)
Then, remark that for any 1 ≤ k ≤ κ,∥∥∥(T1, T2)(k)(x, y)∥∥∥2

op
= sup

∥δi∥≤1

∥∥∥(T1, T2)(k)(x, y)(δ1, . . . , δk))∥∥∥2
≤ sup

∥δi∥≤1

∥∥∥T (k)
1 (x)(δ1, . . . , δk)

∥∥∥2 + sup
∥δi∥≤1

∥∥∥T (k)
2 (y)(δ1, . . . , δk)

∥∥∥2
=
∥∥∥T (k)

1 (x)
∥∥∥2
op

+
∥∥∥T (k)

2 (y)
∥∥∥2
op

≤ 2R2.

We can therefore bound the right term of (4.21), leading to∥∥∥(hf,gc,ε ◦ (T1, T2))(k)∥∥∥∞ ≤ ∑
ω∈Ω(k)

H0 ×
∏

1≤i≤|ω|

√
2R = H0

∑
ω∈Ω(k)

(
√
2R)|ω|.

We conclude by defining

H(m;R; (c, q); ε, p) := H0(m;R; (c, q); ε)× max
0≤k≤κ

 ∑
ω∈Ω(k)

(
√
2R)|ω|

 ,

which leads to, ∥∥∥hf,gc,ε ◦ (T1, T2)∥∥∥
κ,∞
≤ H.

Proof of Proposition 5.1 Let {vn}n∈N be a sequence of vector fields in L2
V weakly

converging to some v ∈ L2
V . (Glaunes, 2005, Proposition 4) implies that for every x ∈ X ,∣∣ϕvn1 (x)− ϕv1(x)

∣∣ −−−−→
n→+∞

0. (4.22)

Next, we aim at showing that this entails ϕvn1 ♯α
w−−−−→

n→+∞
ϕv1♯α, where w denotes the weak*

convergence of probability measures. Firstly, note that as a consequence of the uniform-
boundedness principle (Rudin, 1991, Theorem 2.5), the weak convergence of {vn}n∈N to
v implies that there exists M > 0 such that {vn}n∈N ∪ {v} ⊂ L2

V,M . Hence, according
Lemma 4.3.1, there exists some R = R((X , d); (V, p);M) > 0 such that the measures
{ϕvn1 ♯α}n∈N, ϕv1♯α, and β are all probability distributions on BR. Secondly, recall that showing
the weak* convergence amounts to check that for any bounded test functions h ∈ C(BR,R)
we have that

∫
hd(ϕv

n

1 ♯α) −−−−→n→+∞

∫
hd(ϕv1♯α). Let h ∈ C(BR,R) be a bounded function and
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use the push-forward change-of-variable formula to write
∫
hd(ϕv

n

1 ♯α) =
∫
(h ◦ ϕvn1 )dα. By

continuity of h and according to (4.22), the sequence of functions {h◦ϕvn1 }n∈N converges point-
wise to h ◦ ϕv1. In addition, as h is bounded, this sequence is dominated by a constant. We
can therefore apply the dominated convergence theorem to obtain that ϕvn1 ♯α

w−−−−→
n→+∞

ϕv1♯α.

We conclude the proof using (Feydy et al., 2019, Proposition 13), which states that Tc,ε
(and consequently Sc,ε) is weak* continuous w.r.t. each of its input measures, provided that
the ground cost function c is Lipschitz on their compact domains. This condition readily
follows from the continuity of the derivative of c on the compact set BR ×BR. Therefore,
v 7→ Sc,ε(ϕ

v
1♯α, β) is weakly continuous on L2

V . If additionally e−
c
ε defines a positive universal

kernel, then v 7→ Sc,ε(ϕ
v
1♯α, β) is non negative according to (Feydy et al., 2019, Theorem 1),

which implies through (Glaunes, 2005, Theorem 7) that Jλ for Λ = Sc,ε admits minimizers.

Proof of Proposition 5.3
Let R > 0. In a first time, we demonstrate the following Glivenko-Cantelli theorem (i):

sup
T1,T2∈Cp

R(X ,Rd)

∣∣Tc,ε(T1♯αn, T2♯βn)− Tc,ε(T1♯α, T2♯β)∣∣ a.s.−−−−→
n→+∞

0.

In a second time, when κ = min{p, q} ≥ d, we show the following rate of convergence (ii):

E sup
T1,T2∈Cp

R(X ,Rd)

∣∣Tc,ε(T1♯αn, T2♯βn)− Tc,ε(T1♯α, T2♯β)∣∣ ≤ A√
n
,

where A > 0 is a constant. In both cases, the key idea of the proof is to note that the
quantity

sup
T1,T2∈Cp

R(X ,Rd)

∣∣Tc,ε(T1♯αn, T2♯βn)− Tc,ε(T1♯α, T2♯β)∣∣
is the supremum of a centered empirical process indexed by a class of smooth functions, and as
such can be controlled via classical results from empirical process theory (see Section 4.A.1).

Let T1 and T2 be two arbitrary functions in CpR(X ,Rd). By definition, the image sets
T1(X ) and T2(X ) are contained in BR. Thus, using the dual formulation, the entropic
transportation costs can be written as,

Tc,ε(T1♯αn, T2♯βn) = sup
f,g∈C(BR,R)

(T1♯αn ⊗ T2♯βn)(hf,gc,ε ),

Tc,ε(T1♯α, T2♯β) = sup
f,g∈C(BR,R)

(T1♯α⊗ T2♯β)(hf,gc,ε ).

We apply Lemma 4.4.1 with µ = T1♯α and ν = T2♯β which are probability measures on BR.
This implies that there exists a constant m = m(BR; (c, q), ε) > 0 such that

Tc,ε(T1♯αn, T2♯βn) = sup
f,g∈Cq

m(BR,R)
(T1♯αn ⊗ T2♯βn)(hf,gc,ε )

= sup
f,g∈Cq

m(BR,R)
(αn ⊗ βn)(hf,gc,ε ◦ (T1, T2)),



178CHAPTER 4. DIFFEOMORPHIC REGISTRATION USING SINKHORN DIVERGENCES

where we used the push-forward change-of-variable formula. Proceeding similarly with the
empirical measures we get,

Tc,ε(T1♯α, T2♯β) = sup
f,g∈Cq

m(BR,R)
(T1♯α⊗ T2♯β)(hf,gc,ε )

= sup
f,g∈Cq

m(BR,R)
(α⊗ β)(hf,gc,ε ◦ (T1, T2)),

Then, by using a classical error decomposition, we can control the difference between these
two terms as follows,

|Tc,ε(T1♯αn, T2♯βn)− Tc,ε(T1♯α, T2♯β)|≤
sup

f,g∈Cq
m(BR,R)

|(αn ⊗ βn)(hf,gc,ε ◦ (T1, T2))− (α⊗ β)(hf,gc,ε ◦ (T1, T2))|.

After taking the supremum in CpR(X ,Rd) on both sides of this inequality we get,

sup
T1,T2∈Cp

R(X ,Rd)

∣∣Tc,ε(T1♯αn, T2♯βn)− Tc,ε(T1♯α, T2♯β)∣∣ ≤
sup

T1,T2∈Cp
R(X ,Rd);f,g∈Cq

m(BR,R)

∣∣∣(αn ⊗ βn)(hf,gc,ε ◦ (T1, T2))− (α⊗ β)(hf,gc,ε ◦ (T1, T2))
∣∣∣.

The right term of this inequality can be seen as a centered empirical process indexed by the
class of functions {hf,gc,ε ◦ (T1, T2) | T1, T2 ∈ CpR(X ,Rd); f, g ∈ C

q
m(BR,R)}. Empirical process

theory provides convergence guarantees when the index class is regular enough. Besides, we
know from Proposition 4.4.1 that there exists a constant H := H(R; (c, q); ε, p) > 0 such
that this class is included in CκH(X × X ,R). Therefore,

sup
T1,T2∈Cp

R(X ,Rd)

|Tc,ε(T1♯αn, T2♯βn)−Tc,ε(T1♯α, T2♯β)|≤ sup
h∈Cκ

H(X×X ,R)
|(αn⊗βn)(h)−(α⊗β)(h)|.

Let us set H := CκH(X × X ,R). According to (Van Der Vaart and Wellner, 1996,
Corollary 2.7.2) and (Van Der Vaart and Wellner, 1996, Theorem 2.4.1), H is a so-called
(α⊗ β)-Glivenko-Cantelli class of functions, meaning that

sup
h∈H
|(αn ⊗ βn)(h)− (α⊗ β)(h)| a.s.−−−−→

n→+∞
0.

This implies (i). In addition, by Proposition 4.A.1, if κ ≥ (2d)/2 then there exists a positive
constant A := A(R; (c, q); ε; (X , d); p) such that,

E
[
sup
h∈H
|(αn ⊗ βn)(h)− (α⊗ β)(h)|

]
≤ A√

n
.

This proves (ii).

Before proving Theorem 4.5.1, we need the next intermediary result:
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Lemma 4.B.1: Universal boundedness of the minimizers

Under the assumptions of Theorem 4.5.1, there exists a positive constant M =
M(λ; (X , d); (c, q); ε) such that{⋃

n∈N
argmin
v∈L2

V

Jλ,n(v)

}
∪ argmin

v∈L2
V

Jλ(v) ⊆ L2
V,M .

Proof The proof generalizes an argument made for a squared MMD in (Glaunes, 2005,
Theorem 16) to a Sinkhorn divergence. Let n ∈ N and set vn a minimizer of Jλ,n. Notice
that the vector flow uniformly equal to zero generates the identity function, that is ϕ0t = I
for any t ∈ [0, 1]. Thus, by definition of a minimizer and by non negativity of the Sinkhorn
divergence, we readily have that

λ∥vn∥2L2
V
≤ Jλ,n(vn) ≤ Jλ,n(0) = Sc,ε(αn, βn).

Therefore, ∥vn∥2L2
V
≤ λ−1Sc,ε(αn, βn). To conclude, let us bound uniformly the right-term of

this inequality. According to Lemma 4.4.1 applied with αn and βn there exists a constant
m = m((X , d); (c, q); ε) such that,

Tc,ε(αn, βn) = sup
f,g∈Cq

m(X ,R)

(αn ⊗ βn)
(
hf,gc,ε

)
.

Moreover, for any x, y ∈ X ,

hf,gc,ε (x, y) = f(x) + g(x)− εe
f(x)+g(y)−c(x,y)

ε + ε ≤ m+m+ 0 + ε.

Thus,
Tc,ε(αn, βn) ≤ 2m+ ε.

The same bound holds for the two auto-correlation terms of the Sinkhorn divergence, namely
Tc,ε(αn, αn) and Tc,ε(βn, βn). Therefore, the triangle inequality leads to

Sc,ε(αn, βn) ≤ 4m+ 2ε.

Consequently,

∥vn∥2L2
V
≤ 4m+ 2ε

λ
.

To conclude, we set M(λ; (X , d); (c, q); ε) :=
√

4m+2ε
λ . Note that this bound does not depend

on n. As such, the minima {vn}n∈N all belong to L2
V,M . A similar reasoning for v∗ a minimizer

of Jλ shows that all the minimizers of Jλ also belong to L2
V,M .

Proof of Theorem 5.2 Let M > 0 be arbitrary (for now). Set v ∈ L2
V,M and compute

|Jλ,n(v)− Jλ(v)|= |Sc,ε(ϕv1♯αn, βn)− Sc,ε(ϕ
v
1♯α, β)|.
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According to Lemma 4.3.1, there exists a constant R = R((X , d); (V, p);M) such that for any
ϕ ∈ {ϕvt | t ∈ [0, 1], v ∈ L2

V,M}, the restriction ϕ|X and the identity function I both belong to
CpR(X ,Rd). This leads to

sup
v∈L2

V,M

|Jλ,n(v)− Jλ(v)|≤ sup
T1,T2∈Cp

R(X ,Rd)

|Sc,ε(T1♯αn, T2♯βn)− Sc,ε(T1♯α, T2♯β)|. (4.23)

From here, let us demonstrate the convergence of the minima, that is item (i). According
to Lemma 4.B.1, there exists M =M(λ; (X , d); (c, q); ε) > 0 such that all the minimizers of
Jλ,n belong to L2

V,M . Next, we show that any weakly-converging subsequences of {vn}n∈N
tend to a minimizer of Jλ. Set v∗ a minimizer of Jλ, and let {un}n∈N be a subsequence
with limit u. First, let’s show that limn→+∞ Jλ,n(u

n) = Jλ(u). By the triangle inequality,
|Jλ,n(un)− Jλ(u)| ≤ |Jλ,n(un)− Jλ(un)| + |Jλ(un)− Jλ(u)|. The first term tends to zero
by Proposition 4.5.2 and (4.23) specified with M(λ; (X , d); (c, q); ε), while the second term
tends to zero according to Proposition 4.5.1 which ensures the weak continuity of Jλ.
Second, note that the optimality condition entails that Jλ,n(un) ≤ Jλ,n(v

∗), and that
limn→+∞ Jλ,n(v

∗) = Jλ(v
∗). Then, at the limit Jλ(u) ≤ Jλ(v

∗), meaning that u is a
minimizer of Jλ. Therefore, any weakly-converging subsequence {un}n∈N of {vn}n∈N tends
to a minimizer u of Jλ.

To conclude on the convergence of the generated diffeomorphisms, we rely on (Glaunes,
2005, Remark 1), stating that

sup
t∈[0,1]

{∥∥ϕunt − ϕut ∥∥∞ +
∥∥(ϕunt )−1 − (ϕut )

−1
∥∥
∞
}
≤ 2cV ∥un − u∥L2

V
exp

(
cV ∥u∥L2

V

)
.

We showed that ∥un − u∥L2
V
−−−→
n→∞

0. Consequently, the upper bound tends to zero as n
increases to infinity. This completes the proof of (i).

Item (ii) readily follows from Proposition 4.5.2 stating that if κ ≥ d, then there exists for
any M > 0 a constant A = A(λ; (X , d); (c, q); ε; (V, p);M) > 0 such that

E

 sup
v∈L2

V,M

|Jλ,n(v)− Jλ(v)|

 ≤ A√
n
.

To conclude, recall that both {vn}n∈N and v∗ belong to L2
V,M for the constant M from

Lemma 4.B.1, and apply the classical deviation inequality

Jλ(v
n)− Jλ(v∗) ≤ 2 sup

v∈L2
V,M

|Jλ,n(v)− Jλ(v)|.



Conclusion

The work presented in this thesis spans counterfactual reasoning, by clarifying misconcep-
tions in Chapter 1 and introducing a sound mass-transportation approach in Chapter 2; to
machine-learning fairness, by implementing new individual notions in Chapter 2; to opti-
mal transport, by designing a novel neural mapping estimator with pioneering statistical
guarantees in Chapter 3 and further studying the consistency of entropic-optimal-transport
losses in Chapter 4; to diffeomorphic registration, by furnishing a theoretical and com-
putational framework for Sinkhorn-divergence-based diffeomorphic mass transportation in
Chapter 4. Although they can be considered independent, these contributions transcribe a
common objective, as the development of efficient mass-transportation estimators serves to
the implementation of transport-based counterfactual models, therefore provides more tools
to build trustworthy AI systems. They also raise several open questions and further research
directions, as summarized below:

• Counterfactual reasoning in fairness deserves a more thorough investigation.
Ethical obligations and future legal constraints unquestionably demands agreeable
notions of individual fairness. Although counterfactual fairness as introduced by
Kusner et al. (2017) is an intuitive proposition in theory, its dependence to a structural
causal model makes it hardly viable for large-scale deployment. Transport-based
counterfactual fairness from Chapter 2 builds upon the same counterfactual-invariance
principle while deviating from causality to retrieve feasibility. As such, it does not
replace causal inference by any mean, but still preserves the discrimination control
at the individual level. Nevertheless, be it causal or transport-based, counterfactual
fairness faces a critical challenge: it manipulates counterfactuals that generally do not
have a natural interpretation since they are computed under the implicit assumption
that they are eligible to the dataset, as explained by Fawkes et al. (2022). This calls
for a philosophical and legal debate on the scope of such counterfactuals to uncover
discriminations. We believe that the merit of within-dataset counterfactuals is that they
furnish individual fairness conditions, stronger that common group-fairness ones—which
is not the case of outside-dataset counterfactuals. So, as long as algorithmic decision
rules must conform to statistical parity, these counterfactuals will be useful. Specifically,
transport-based counterfactual fairness enables one to control how statistical parity
is achieved at the individual scale, considerably narrowing the arbitrariness of mere
group-fair decision rules. Moreover, the mathematical analysis of the counterfactual
fairness constraints in learning problems has been neglected by the community and
should therefore be further studied, as initiated in Section 2.8. Specifically, we need to
understand what counterfactual fairness incurs on the price in accuracy and on the
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number of admissible models in order to know when it is recommended or not to use
it. Lastly, one must crucially keep in mind that transport models and causal models
are always estimated from data in practice, bringing statistical uncertainty to the
assessment of counterfactual queries. This crucially raises the question of bridging the
gap between counterfactual reasoning and statistics, by exploring how the statistical
consistency of the estimated counterfactual model reverberates on the confidence of
counterfactual notions. Note that our work in (De Lara et al., 2021b) follows this track
by specifying conditions of statistical convergence for counterfactual fairness, but lacks
confidence intervals.

• Estimation of optimal transport maps is a field that advances at a very fast
pace, with a strong focus on computational performances. In particular, the neural
approximation of Uscidda and Cuturi (2023) seems to attain an unprecedented level of
flexibility. However, little is known about its statistical convergence, as for the other
most expressive approximations of optimal transport. In contrast, our estimator from
Chapter 3 has practical limitations, but comes with unique theoretical guarantees. This
underlines a trade-off between statistical consistency and utility for neural-network-
based approximations of optimal transport. Because trustworthiness in machine
learning—as in any scientific field—needs statistical significance, we believe that
proving such guarantees for any constructions represents a critical line of research.
Moreover, as a direct improvement of our work, we could also precise the convergence
rate of our estimator; we point out that our proof does not naturally extend to such a
result.

• Diffeomorphic registration, tailored to shape analysis, has demonstrated its potential
for machine learning applications in (Younes, 2020). We mentioned in Chapter 2 that
diffeomorphic matching could possibly be applied to counterfactual reasoning, which
is what originally motivated Chapter 4. In this work, we introduced a functional and
statistically sound diffeomorphic-mass-transportation engine. Although this contributes
to diffeomorphic registration in general, we came to the conclusion that the application
of such a tool to counterfactual reasoning deserves further thinking. Diffeomorphisms
could definitely bring promising properties to counterfactual association: they generate
continuous paths between paired instances, they preserve topology, they work on
(almost) any kind of distributions. Nevertheless, they do not come with an explicit
counterfactual interpretation on the contrary to causal models and optimal transport.
More precisely, while the kernel similarity function could inspire a notion of closeness
between worlds, it already bears the responsibility of ensuring the distribution fitting and
consequently cannot be forged for a different purpose. As such, applying diffeomorphic
registration to fairness remains an open question worth exploring.

Lastly, I would like to conclude this manuscript on a more holistic remark. On the 22nd of
June 2020, more than twenty scholars from the fields of machine learning and social sciences
sent an open letter to the Springer Editorial Committee,5 sharing their consternation on the
forthcoming publication of a scientific paper claiming to predict criminality from images of
human faces. Gathered under the name of the Coalition for Critical Technology, they urged

5https://medium.com/@CoalitionForCriticalTechnology/abolish-the-techtoprisonpipeline-9b5b14366b16

https://medium.com/@CoalitionForCriticalTechnology/abolish-the-techtoprisonpipeline-9b5b14366b16
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Springer to publicly retract the publication and to explain how this study was reviewed. More
than targeting a specific paper, their call denounces the general academic trend of relying on
justice statistics to predict criminality as well as the resurgence of phrenological research
through data science. On the basis of numerous past studies, they recalled that such research
is unfair by design: since predictions rely on racially biased data from the justice system, they
reproduce and amplify biases across class and race. To this day, the public letter accounts
more than 2,400 signatures from researchers, practitioners and students, and the announced
paper has not been released. However, the fact that such research has even been conducted
and seriously considered for publication by a notorious scientific journal epitomizes the lack
of critical insight blighting the spread of artificial intelligence. Naturally, this justifies more
than ever the need to polarize machine-learning research towards improving fairness and
explainability rather than accuracy. But more importantly, this case stresses out the priority
of better educating researchers, practitioners and students on the risks and limitations of
machine learning. There cannot not be trustworthy artificial intelligence systems without
a trustworthy community developing them. In my opinion, this takes precedence over any
groundbreaking fairness definition or explainability framework.
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Les travaux présentés dans cette thèse s’étendent du raisonnement contrefactuel, en
clarifiant des idées reçues dans le Chapitre 1 et en introduisant une approche de transport
de masse étayée dans le Chapitre 2 ; à l’équité de l’apprentissage machine, en mettant
en œuvre de nouvelles notions individuelles dans le Chapitre 2 ; au transport optimal, en
concevant un nouvel estimateur “neuronal” avec des garanties statistiques pionnières dans le
Chapitre 3 et en étudiant davantage la convergence statistique des coûts de transport optimaux
entropiques dans le Chapitre 4 ; à l’appariement difféomorphique, en fournissant un cadre
théorique et numérique pour le transport de masse difféomorphique basé sur les divergences
de Sinkhorn dans le Chapitre 4. Bien qu’elles puissent être considérées comme indépendantes,
ces contributions transcrivent un objectif commun, puisque le développement d’estimateurs
de transport de masse efficaces sert à la mise en œuvre de modèles contrefactuels basés sur le
transport, et fournit donc plus d’outils pour construire des systèmes d’IA dignes de confiance.
Elles soulèvent également plusieurs questions ouvertes et de nouvelles directions de recherche,
résumées ci-dessous :

• Le raisonnement contrefactuel pour l’équité mérite une étude plus approfondie.
Les obligations éthiques et les contraintes juridiques futures exigent incontestablement
des notions consensuelles d’équité individuelle. Bien que l’équité contrefactuelle telle
qu’introduite par Kusner et al. (2017) soit une proposition intuitive en théorie, sa dépen-
dance à un modèle causal structurel la rend difficilement viable pour un déploiement à
grande échelle. L’équité contrefactuelle basée sur le transport du Chapitre 2 repose sur
le même principe d’invariance contrefactuelle tout en s’écartant de la causalité pour
retrouver la faisabilité. En tant que telle, elle ne remplace en aucun cas l’inférence
causale, mais préserve toujours le contrôle de la discrimination au niveau individuel.
Néanmoins, qu’elle soit causale ou basée sur le transport, l’équité contrefactuelle est
confrontée à un défi majeur : elle manipule des contrefactuels qui n’ont généralement
pas d’interprétation naturelle puisqu’ils sont calculés en partant de l’hypothèse implicite
qu’ils sont éligibles au jeu de données, comme l’explique Fawkes et al. (2022). Cela
appelle un débat philosophique et juridique sur la portée de ces contrefactuels dans la
découverte de discriminations. Nous pensons que le mérite des contrefactuels “dans les
données” est qu’ils fournissent des conditions d’équité individuelles, plus fortes que les
conditions courantes d’équité de groupe, ce qui n’est pas le cas des contrefactuels “hors
données”. Ainsi, tant que les règles de décision algorithmiques doivent se conformer à
la parité statistique, ces contrefactuels seront utiles. Plus précisément, l’équité contre-
factuelle basée sur le transport permet de contrôler la manière dont la parité statistique
est atteinte à l’échelle individuelle, ce qui réduit considérablement l’arbitraire des
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règles de décision équitables à l’échelle globale. De plus, l’analyse mathématique des
contraintes d’équité contrefactuelle dans les problèmes d’apprentissage a été négligée
par la communauté et devrait donc être plus étudiée, comme initié dans la Section 2.8.
Plus précisément, nous devons comprendre ce que l’équité contrefactuelle implique
pour le coût en précision et le nombre de modèles admissibles afin de savoir quand il
est recommandé ou non de l’utiliser. Enfin, il est essentiel de garder à l’esprit que les
modèles de transport et les modèles causaux sont toujours estimés à partir de données
dans la pratique, ce qui introduit une incertitude statistique dans l’évaluation des
requêtes contrefactuelles. Cela soulève la question cruciale de combler le fossé entre
le raisonnement contrefactuel et les statistiques, en explorant comment la cohérence
statistique du modèle contrefactuel estimé se répercute sur la confiance des notions
contrefactuelles. Notez que notre travail dans (De Lara et al., 2021b) suit cette voie en
spécifiant des conditions de convergence statistique pour l’équité contrefactuelle, mais
manque d’intervalles de confiance.

• L’estimation des applications de transport optimales est un domaine qui pro-
gresse à un rythme très rapide, avec un fort accent sur les performances numériques.
En particulier, l’approximation neuronale de Uscidda and Cuturi (2023) semble attein-
dre un niveau de flexibilité sans précédent. Cependant, on sait peu de choses sur sa
convergence statistique, comme pour les autres approximations les plus expressives du
transport optimal. En revanche, notre estimateur du Chapitre 3 présente des limites
pratiques, mais s’accompagne de garanties théoriques uniques. Cela met en évidence un
compromis entre la cohérence statistique et l’utilité des approximations du transport
optimal basées sur des réseaux de neurones. Parce que la confiance dans l’apprentissage
automatique - comme dans tout domaine scientifique - nécessite une signification statis-
tique, nous pensons que prouver de telles garanties pour n’importe quelle construction
représente une ligne de recherche critique. De plus, comme amélioration directe de
notre travail, nous pourrions également préciser la vitesse de convergence de notre
estimateur ; nous soulignons que notre preuve ne s’étend pas naturellement à un tel
résultat.

• L’appariement difféomorphique, adapté à l’analyse de forme, a démontré son poten-
tiel pour les applications d’apprentissage automatique dans (Younes, 2020). Nous avons
mentionné dans le Chapitre 2 que l’appariement difféomorphique pourrait éventuelle-
ment être appliqué au raisonnement contrefactuel, ce qui a originellement motivé le
Chapitre 4. Dans ce travail, nous avons introduit un mécanisme de transport de
masse difféomorphique fonctionnel et statistiquement solide. Bien que cela contribue
à l’appariement difféomorphique en général, nous sommes arrivés à la conclusion que
l’application d’un tel outil au raisonnement contrefactuel mérite une réflexion plus
approfondie. Les difféomorphismes pourraient certainement apporter des propriétés
prometteuses à l’association contrefactuelle : ils génèrent des chemins continus entre les
instances appariées, ils préservent la topologie, ils fonctionnent sur (presque) n’importe
quel type de distribution. Néanmoins, ils ne s’accompagnent pas d’une interprétation
contrefactuelle explicite, contrairement aux modèles causaux et au transport optimal.
Plus précisément, alors que la fonction noyau de similarité pourrait inspirer une notion
de proximité entre les mondes, elle porte déjà la responsabilité d’assurer l’appariement
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des distributions et ne peut donc pas être utilisée à d’autres fins. Ainsi, l’application de
l’appariement difféomorphique à l’équité reste une question ouverte qui mérite d’être
explorée.

Enfin, j’aimerais conclure ce manuscrit par une remarque plus holistique. Le 22 juin
2020, plus de vingt chercheur·euse·s des domaines de l’apprentissage automatique et des
sciences sociales ont envoyé une lettre ouverte au comité éditorial de Springer,6 pour lui
faire part de leur consternation face à la publication prochaine d’un article scientifique
prétendant prédire la criminalité à partir d’images de visages humains. Réuni·e·s sous le nom
de Coalition for Critical Technology, iels ont exhorté Springer à le rétracter publiquement et à
expliquer comment cette étude a été évaluée. Plus que de viser un article en particulier, leur
appel dénonce la tendance académique générale à s’appuyer sur les statistiques judiciaires
pour prédire la criminalité, ainsi que la résurgence de la recherche phrénologique à travers
la science des données. Sur la base de nombreuses études antérieures, iels rappellent que
ces recherches sont injustes de par leur conception : puisque les prédictions s’appuient sur
des données racialement biaisées du système judiciaire, elles reproduisent et amplifient les
préjugés de classe et de race. À ce jour, la lettre publique compte plus de 2400 signatures de
chercheur·euse·s, de praticien·ne·s et d’étudiant·e·s, et l’article annoncé n’a pas été publié.
Cependant, le fait qu’une telle recherche ait été menée et même sérieusement envisagée pour
publication par une revue scientifique de renom illustre le manque de vision critique qui
gangrène la diffusion de l’intelligence artificielle. Naturellement, cela justifie plus que jamais
la nécessité de polariser la recherche sur l’apprentissage automatique vers l’amélioration
de l’équité et de l’explicabilité plutôt que la précision. Mais surtout, cette affaire souligne
la priorité d’assurer une meilleure formation des chercheur·euse·s, des praticien·ne·s et des
étudiant·e·s sur les risques et les limites de l’apprentissage automatique. Il ne peut y avoir
de systèmes d’intelligence artificielle dignes de confiance sans une communauté digne de
confiance pour les développer. À mon avis, cela prime sur tout critère d’équité ou toute
méthode d’explicabilité révolutionnaires.

6https://medium.com/@CoalitionForCriticalTechnology/abolish-the-techtoprisonpipeline-9b5b14366b16
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