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Abstract

Understanding how pollinators move across space is key to understanding plant
mating patterns. Bees are usually assumed to search for flowers randomly or using
simple movement rules so that the probability of discovering a flower depends
primarily on its distance to the nest. However, experimental work shows this is
not always the case. Until now, no one has successfully enunciated a realistic model
of bee movement that considers the fact that they are Central Place Foragers and
thus they start and end all their movements in the same place: the nest.

To further our knowledge of the exploratory movement of central place for-
aging bees, I propose a model of central place foraging that produces realistic
bee trajectories by accounting for the autocorrelation of the bee’s angular speed,
the attraction to the nest (homing), and Gaussian noise. The four parameters of
this model have been tuned based on experimental trajectories collected on bum-
blebees (Bombus terrestris) in the field. The model not only has the potential
to describe the movement patterns of bees but also those of other central place
forager animals.

The proposed model paves the way to compute theoretical predictions about
pollination in the field. Here, I explored the statistics of flower discovery, de-
pending on flower patch sizes and densities. Simulations of bumblebee trajectories
highlight two effects that were previously overlooked: a masking effect that re-
duces the detection of flowers close to another and a scale effect that modulates
this first effect as a function of the distance between flowers. At the plant level,
flowers distant from the nest were more often discovered by bees in low-density
environments. At the colony level, foragers found the most flowers when they
were small and at medium densities. These results suggest that pollination would
be optimized in a range of intermediate flower densities: when the density is too
low, few flowers are discovered (due to the central place forager effect); when the
density is too high, flowers distant from the nest become masked by closer ones
(due to the masking effect).

These results indicate that the processes of search and discovery of resources are
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potentially more complex than usually assumed, and question the importance of
resource distribution and abundance on bee foraging success and plant pollination.
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Preface

When considering a spatial arrangement of resources, including their density, size,
and location, along with the behavior of a Central Place Forager, various questions
arise. For instance, we can inquire about the accessibility of different resources,
which ones are visited first, or even determine if there exists an optimal resource
density that maximizes discovery. These questions lie at the intersection of sta-
tistical physics, which deals with the theoretical study of hitting processes, and
behavioral ecology. While some formal results are available in theoretical physics,
they cannot be readily applied to practical ecological scenarios. These results are
typically applicable only in borderline situations where theoretical derivations are
possible, such as infinite time or when the target size approaches zero. On the
other hand, significant progress has been made in the field of Behavioral Ecology
while studying Optimal Foraging. However, the focus of this research primarily
centers around exploring the strategies employed by animals, rather than consid-
ering the perspective of the resources themselves.

To address these questions, two primary components are required: a model
that represents the navigation and exploration behavior of a Central Place Forager,
and a systematic examination of the influence of resource characteristics. For the
purpose of this study, I will focus on bumblebees (Bombus terrestris) as a case
study, as I have access to experimental data that captures realistic trajectories on
an appropriate scale.

The objectives of this research are as follows:

1. Develop a comprehensive behavioural model for Central Place Foragers.

2. Calibrate the model using experimental data, specifically data obtained from
bumblebees in this case.

3. Investigate the dynamics of the discovery process by analyzing the interplay
between the properties of the behavioral model and the characteristics of
the resources.
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Develop a comprehensive behavioral model for
Central Place Foragers.
In many modeling studies, the time sampling of data is explicitly incorporated
into the random walk model. The model’s parameters are adjusted as if the an-
imal were genuinely moving in a straight line between the series of data points.
Consequently, depending on the sampling frequency, the model can vary between
studies, even when examining the same animal. In my case, the time series I have
available for acquisition are separated by a relatively large time step (3 seconds),
which significantly exceeds the characteristic timescale of bumblebee turning. If
we were to treat the data as true trajectories, it would introduce a bias when
computing discoveries. To mitigate this issue, I will adopt a model that repre-
sents the animal’s behavior itself, rather than directly modeling the data. This
approach assumes that the navigational model underlies the data series and will
be adjusted accordingly. This navigational model operates in continuous time,
free from the constraints of discrete time steps, allowing it to account for any type
of navigational behavior exhibited by the bumblebees.

Calibrate the model using experimental data
Given the frequency of data acquisition, the set of parameters can not be directly
adjusted. I will present a method to calibrate the model at continuous-time from
a time series.

Investigate the dynamics of the discovery process
by analysing the interplay between the properties
of the behavioural model and the characteristics
of the resources.
I added to the model a behavioural specific component to the decision process
when exploring resource (in particular the detection of a resource and the crop
capacity of the individual).

I’m using this comprehensive behavioural model to explore the discovery pro-
cess numerically, by varying the properties of the resource field (densities, size
etc.).
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All living organisms, from bacteria to plants and animals, move at some stage
of their life and it has consequences at the individual level, the population or even
the species. It’s an important process that allows to look for food, mating, shelter,
avoid predators, etc. It can be active like the movement of bacteria using flagella,
animals walking, or plants growing, or passive like the pollen moving in the air or
jellyfish floating in the water.

Pollinators are an example of how the movement of organisms can have a
cascading effect on the environment. For instance, the movement of pollinators
between plants not only allows for reproduction but can also influence the dis-
tribution and abundance of plant species, which in turn impacts other organisms
that rely on these plants for food or habitat.

1.1 Pollinators
Bees and other insects play a crucial role in providing pollination services that
are essential for both crops and wild plants. In fact, up to two-thirds of all crops
and one-third of global food crops depend on insect pollination. Wild bees and
other pollinators account for approximately 50% of this pollination, while managed
bees, such as honey bees, contribute the other half (Klein et al., 2007). Hence,
the decline of both managed and wild pollinators across the globe is a significant
concern. Significant scientific efforts are currently underway to comprehend the
decline of pollinators (Potts et al., 2010), with the aim of identifying effective
strategies to halt and potentially reverse it (Brown & Paxton, 2009; Winfree,
2010). Human land-use is commonly considered as a contributor to pollination
decline through the loss of habitat for pollinators or habitat fragmentation. Many
agricultural management entities aim to counteract the negative effects of land-
use by creating wild habitats within agricultural landscapes and introducing wild
pollinators. Several models of foraging bees have been proposed to help this
management strategies by providing information about the potential visiting rate
to flowers (Becher et al., 2016; MacQueen et al., 2022). However, none of these
models have considered search behavior. They either assume that insects already
know the locations of all available feeding sites in their environment or that they
discover them based on fixed probabilistic laws (e.g., the probability of finding a
flower at a given location is proportional to 1/L2, where L represents the distance
to that flower). However, a growing body of experimental evidence suggests that
this is not the case. Bees, like many pollinators, are central place foragers, which
means that every foraging trip commences and ends at the nest site. Consequently,
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their range of action is limited.
Central place foraging refers to a strategy used by certain animal species to

establish a central location, usually a nest or burrow, from which they venture
out to search for food and return to deposit it. This strategy is often observed in
social animals such as ants, bees, and certain bird species that gather food for their
offspring or the colony. It is a complex behavior that involves a series of decisions
by the foraging animals, including where to establish the central location, how to
navigate to and from it, and where to search for food.

The aim of this thesis is to propose a model of bee movement that considers the
fact that they are central place foragers and use this model to make predictions
about the probability of discovering flowers in different scenarios.

1.2 Movement Ecology
Movement ecology is a field of study that focuses on understanding the movement
of organisms, from individuals to populations and communities, and its implica-
tions for their survival, behavior, and ecological interactions. It is a multidisci-
plinary area that draws on concepts and tools from various fields, such as ecology,
physics, mathematics, and computer science, among others (Nathan et al., 2008;
Joo et al., 2022).

Studying movement ecology is crucial for several reasons. First, movement is a
fundamental aspect of life for most organisms, as it enables them to find resources,
escape from predators, explore new habitats, and mate. Understanding the drivers
and patterns of movement is therefore essential for predicting the distribution,
abundance, and persistence of species in a changing world. Second, movement
ecology provides insights into the mechanisms that shape ecological interactions,
such as competition, predation, and disease transmission, and their consequences
for ecosystem functioning and services. For instance, the movement of pollinators
is critical for maintaining plant diversity and productivity, while the dispersal of
seeds and nutrients influences the structure and function of plant communities and
ecosystems. Finally, movement ecology has numerous applications in conservation
biology and management (Allen & Singh, 2016), as it can inform the design of
effective protected areas, the management of invasive species and diseases, and
the restoration of degraded habitats. It can also help predict the impacts of
global change, such as climate change, land-use change, and urbanization, on the
movement and distribution of species and the services they provide.

Studying movement ecology is essential for understanding the fundamental
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processes that drive ecological interactions, predicting the responses of species and
ecosystems to environmental change, and informing conservation and management
strategies.

1.2.1 What do I mean by ”modeling”?

One of the aims of this thesis is to use a modeling approach to answer theoretical
ecology questions. However, this approach can be highly criticized due to a mis-
understanding of the role of models in ecology and the idea that they should be
“replicas” of reality. Here, I will explain my modeling approach and how it should
be understood in the rest of this manuscript.

Over the past few decades, the advancement in computational power and the
increased accessibility of computer languages have led to a significant rise in the
use of models in scientific research. Models have numerous applications, from ex-
plaining intricate data (like statistical models) to serving as a hypothesis (natural
selection evolution). We often think of models as mathematical representations of
systems relying on our understanding of the said system. Nonetheless, I first want
to note that I like to consider a broader definition of “model”. Experimentalists of-
ten employ the term “model organism” when referring to Drosophila melanogaster
or Mus musculus. Without being mathematical equations or verbal constructs,
these are still “models” (Zuk & Travisano, 2018). They are not used to describe
what is happening “in real life” but rather setting the limits of what can happen
and what cannot. “Any formal device that facilitates ‘what if’ reasoning can be
called a model”, as written by Seger & Adler (2002). My model will describe the
movement behavior of a pollinator model, the bumblebee Bombus terrestris. I
will create a mathematical model that accurately describes their behavior, which
will be formalized through a set of equations in continuous time. These equations
will serve as the foundation for implementing the model numerically and perform-
ing simulations using a discretized time step. Through these simulations, I will
conduct ”what if” reasoning to determine the probability of resource discovery by
the bumblebees. This approach will allow me to test different scenarios and their
potential outcomes

Several models can be proposed to describe or predict certain situations and, in
that process, models can evolve or be discarded. Similar to empirical knowledge,
theoretical knowledge is also prone to errors and is not infallible. Some may
consider that theory should not be considered a part of ecology until “validated”.
However, no aspect of knowledge (empirical or theoretical) can be fully validated.
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Experimental results can also be contradicted by later experiments. Therefore,
“to exclude fallible theories from ecology while admitting fallible experiments is
absurd” (Caswell, 1988)

Models omit certain details because they are not designed to be exact replicas
of reality. Very often in biology, the choice of a model is based on its adjustment
to experimental data. Here, the criteria I will use are based on simplicity and
parsimony. It is not assumed that by not including something on the Model
(e.g. the vision) I’m stating that it’s unimportant. The factors or parameters
included in a model are not necessarily the only important ones, similar to factors
manipulated in an experiment. Both models and experiments are part of broader
contexts, and it is unrealistic to expect a single study to fully resolve an issue.
“The failure to include a factor in a theoretical model is a legitimate criticism
only if it can be argued that its inclusion would materially affect the answer to
the question under consideration.” (Caswell, 1988)

1.3 Movement models

Researchers in behavioral ecology and physics have extensively examined animal
movement from a theoretical perspective (Codling et al., 2008). In this section, I
will discuss some of the most prevalent movement models found in the literature.

In 2D movement, steps controlled by two parameters are often used to approx-
imate the movement. These parameters are the length traveled during a step,
denoted as l(t), and the direction of movement denoted as θ(t).

1.3.1 Simple Random Walks

The simplest case of random walks assumes that individuals have no memory or
fatigue and move in a homogeneous environment. In this case, the distribution of
distances traveled before a change in direction follows an exponential distribution.
New directions are derived from the uniform law, and there is no correlation
between successive directions. This kind of random walk is also known as Brownian
motion at a macroscopic scale. This type of random walk is, for example, used to
describe bacteria movements (e.g Peterson & Noble (1972)) (Fig 1.1).

However, in many cases, trajectories are more complicated, and there is a need
to change the distributions of l or θ. One such example is Lévy Walks.
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1.3.2 Lévy Walks

Lévy Walk 1 models have been developed particularly for optimal resource explo-
ration. In this type of random walk, the distances before changing direction follow
a heavy-tailed (or sub-exponential) distribution, resulting in a series of small steps
occasionally interspersed with long ones (Fig 1.1). Although there is much debate
(Benhamou, 2007; Pyke, 2015), Lévy Walks are claimed to be more efficient during
resource exploration and seem to account for the search strategy of several animals
such as wandering albatrosses (Viswanathan et al., 1996), jackals (Atkinson et al.,
2002), reindeer (Mårell et al., 2002), dinoflagellates (Bartumeus et al., 2003), and
spider monkeys (Ramos-Fernández et al., 2004). However, it is also argued that
Lévy Walk patterns can emerge when combining two Random Walk distributions:
one for interpatch movement and another for intrapatch movement, and can thus
arise from the way an animal interacts with its environment (Benhamou, 2007).
Moreover, Lévy Walks seem ill-suited to model the movement of central place
foragers since they produce trajectories that go too far from the starting point.

1.3.3 Correlated Random Walks

Another modification that can be done of a Simple Random Walk, is the modifica-
tion of the distributions from where the new headings are drawn. In a Correlated
Random Walk, the new headings represent a small variation of the previous one.
The turning angle are drawn from a wrapped Normal Distribution or a Von Mises
distribution. The persistence in direction depends on how much the distribution
is concentrated around 0 (Fig 1.1).

This type of model is very often used for describing the movement of several
animals like ants, fish, mammals, etc (Kareiva & Shigesada, 1983; Bergman et al.,
2000; Kadota et al., 2011; Khuong et al., 2013).

1.4 Why do we need a model for bee movement?

While different types of random walks have been used to describe several types
of animal movements, no satisfying models have been proposed so far to describe
bee’s exploration patterns under the constraint that they are central place for-

1 We can often find both terms “Lévy Walk” and “Lévy Flight” used interchangeably in
the literature. However, in a Lévy Walk, the time taken to complete a given step depends
on the length of that step. In a Lévy Flight, the walker jumps between successive locations
instantaneously.
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Figure 1.1: Examples of different types of movement models

agers. While many models of bee foraging behavior have been developed to predict
population dynamics, pollination services, or route learning, none of these mod-
els incorporate the central place foraging component of their behavior (Reynolds
et al., 2013; Becher et al., 2016; Dubois et al., 2021). The omission of this critical
aspect of bee behavior can lead to unrealistic predictions, highlighting the need for
a more realistic model that complements existing foraging models. By developing
a more comprehensive model that considers central place foraging, we can gain
a better understanding of how bees explore and navigate in their environments,
which has important implications for ecosystem health and the sustainability of
agriculture.

Two main problems arise when we try to describe bee movement using typical
random walks. First, when we observe an individual flying in real life, they do
not make sudden changes in direction, making models that discretize direction
inappropriate. Secondly, as Central Place Foragers, their movements cannot be
described by diffusive models as their foraging trips always start and end at their
nest.

Two different models have been recently proposed by Lenz et al. (2013) and
Noetel et al. (2018).

Lenz et al. (2013) proposed a model for bee movement in their study, which is
based on two differential equations. The first equation describes the speed of an
individual bee, while the second equation describes the turning angle. They do
not consider the fact the bees are Central Place Foragers and the model is diffusive
in the long-time limit (Fig 1.2).

In Noetel et al. (2018), the authors propose a movement model of Central
Place Foraging. Drawing inspiration from celestial mechanics, the authors propose
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Figure 1.2: Example of a trajectory produced by the model of Lenz

a unique approach in which the movement of the particle resembles that of a
planet in orbit around a central body under the influence of an attracting potential
(analogous to gravity), with added noise (Fig 1.3)

In this manuscript, I present a novel model that offers a higher degree of
flexibility in generating trajectory shapes than the previous model proposed by
Noetel et al. (2018), because it is designed from a behavioral perspective rather
than from a ”mechanical force” perspective.

A B

−5.0 −2.5 0.0 2.5 5.0
x

−6

−4

−2

0

2

4

6

y

−5.0 −2.5 0.0 2.5 5.0
x

−6

−4

−2

0

2

4

6

Figure 1.3: Example of trajectories from Noetel et al. (2018) A. Trajectory
without noise. B. Trajectory with noise

1.4.1 The Persistent Turning Walker

I considered the Persistent Turning Walker (PTW) model which is an extension of
the Correlated Random Walker (CRW). While in a CRW a trajectory is considered
as a succession of straight moves separated by instantaneous jumps in the orien-
tation domain, in PTW a trajectory is considered as a succession of moves with
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constant curvatures, separated by instantaneous jumps in the curvature domain.
Such a description allows for a continuously defined velocity with time-correlation
of the curvature. A stochastic version has been used to model fish motion behav-
ior (Gautrais et al., 2009). The PTW model describes motion at constant speed,
where the heading is driven by an Ornstein-Uhlenbeck process (see Chapter 1)
acting on the turning speed.

1.5 Outline of the thesis
The objective of this thesis is to propose a new model that captures the explo-
ration behavior of Central Place Foraging bees. In Chapter 2, I will describe the
theoretical approach used to construct the model and outline its various character-
istics. In Chapter 3, I will demonstrate how to link the model with experimental
data by calibrating it to generate realistic trajectories. In Chapter 4, I will use
the model to predict resource discovery in both simple and ecologically relevant
scenarios. Finally, I will discuss the potential applications of the model beyond
resource exploration and its broader implications for understanding the behavior
of bees as well as their impact on the environment.
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The objective of this chapter is to introduce a model capable of replicating
realistic bee trajectories. The inspiration for this model comes from the Persistent
Turning Walker model, which was originally developed to describe the movement
of fish in a tank. By adapting this model to account for the unique behaviors
and characteristics of bees, I expect to create a simulation that accurately reflects
their movements.

2.1 The Persistent Turning Walker
Numerous theoretical and experimental studies have focused on the displacement
of fish, particularly on the dynamics of schools of fish. Many authors have tried to
understand their collective movement through a theoretical approach by propos-
ing interactions between individuals that results on their synchronization (Couzin
et al., 2005, 2002; Gautrais et al., 2008; Viscido et al., 2007). The interactions
between neighbors are often summarized by a set of rules that modify the move-
ment of each individual fish. In some studies, the null-model used to describe
these movements is a Correlated Random Walk. Here, the new heading of an in-
dividual is a small variation of the previous one. The estimation of the interaction
parameters between individuals strongly depends on the chosen movement model.

An important step before analyzing these interactions is therefore to check
whether the correlated random walk as a null-model holds. Otherwise, it is nec-
essary to develop a better-grounded model. In Gautrais et al. (2009), the authors
performed experiments where they quantified the trajectories of fish to test if a
correlated random walk could effectively describe their movements.

In their experiment, they filmed isolated individuals in a tank and tracked their
position every 1/12 s during 2 minutes (Fig 2.1).

Then, they estimated the swimming speed and the angular speed of each in-
dividual. The angular speed Wi was estimated by fitting a circle to the three
consecutive points (xi−1, xi and xi+1) as shown in figure 2.2.

They found that the swimming speed was constant for each fish (but different
among individuals) and that the angular speed had an auto-correlation time of
several seconds. Since a Correlated Random Walk model only accounts for the
autocorrelation of headings, and not angular speed, it is not an appropriate model
to describe the movements of fish.

They then defined a model that described the changes of the angular speed of
the fish through time to account for its auto-correlation.

Next, I’ll present in detail how the model presented in Gautrais et al. (2009)
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Figure 2.1: Examples of fish trajectories obtained by Gautrais et al. (2009)
The individuals where isolated in a tank and tracked their position every 1/12 s during
2 minutes. The outer circle represents the tank.

Figure 2.2: Estimation of the angular speed. The angular speed W is estimated
from the experimental data using Wi = ∆ϕ

2∆t . xi represents the position of the fish at the
time step i.

is built.

2.1.1 Building the model

2.1.1.1 State variables

The position ~x of the individual is defined by
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~x(t) =
(
x1(t)
x2(t)

)
(2.1)

and its velocity ~v by

~v(t) = v(t)
(

cos θ(t)
sin θ(t)

)
(2.2)

where v(t) is the speed of the individual and θ(t) is the heading. From now
on, it is assumed that the speed v(t) of the individual is constant and is noted v

(Fig 2.3).

0

Figure 2.3: State variables of the model. x represents the position, ~v the velocity
and θ the direction

The aim is now to model the changes of positions through the changes in
angular speed. For this, the authors use a stochastic process called an Ornstein-
Uhlenbeck (OU) process (Uhlenbeck & Ornstein, 1930).

In the next section, I will present the OU process and its properties.

2.1.2 The Ornstein-Uhlenbech process

In ecology, we often define a stochastic process as any process describing the
evolution in time of a random phenomenon. It is a variable ω that changes over
time in an ”uncertain” way. They became a very common tool used for describing
from the dynamics of a population to the movement of individuals.

2.1.2.1 Definition of the OU process

A variable ω(t) is said to follow an Ornstein-Uhlenbech stochastic process if it
satisfies:
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Figure 2.4: ω(t). Each color represents a different values of ω(0). Left: Long-expected
value µ = −2.5. Right: µ = 2.5

dω(t) = γ[µ− ω(t)]dt+ σdW (t) (2.3)

where dω(t) 1 is the increment during dt 2; µ is the long-term expected value of
ω (it is assumed to be constant), γ > 0 is the speed of the reversion of ω(t) towards
the expected value µ (it is also assumed constant and I also call it ”autocorrelation
parameter”), dW (t) is an increment during dt of a Wiener process, which is scaled
by σ > 0.

2.1.2.2 Building some intuition: The deterministic part of the OU
process

To solve equation 2.3, we can start by building some intuition by first analyzing
the deterministic part of the OU process.

When we remove the stochastic component σdW (t) of equation 2.3, ω(t) follows
a deterministic process :

dω(t) = γ[µ− ω(t)]dt (2.4)

ω(t) will drift to a equilibrium towards the long-term expected value µ. This
is called a mean reversion process. This is shown in figure 2.4. γ determines the
speed of this process.

To understand why this happens, I’ll start by solving equation 2.4.

1Note that the variation of ω over time is usually noted dω
dt but since the Wiener process is

not differentiable, I’ll keep the notation dω(t) for the rest of this manuscript.
2It is important to remember that in a continuous-time series, dt represents an infinitesimal

increment of time.
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Solution
dω(t) = γ[µ− ω(t)]dt

Separation of variables:

dω(t)
ω(t)− µ = −γdt (2.5)

Integration:

∫ dω(t)
ω(t)− µ =

∫
−γdt (2.6)

dω(t) represents a variation of ω. Since µ is constant, we can state:

dω(t) = d(ω(t)− µ) (2.7)

and plug it back into equation 2.6, we get:

∫ d(ω(t)− µ)
ω(t)− µ =

∫
−γdt (2.8)

We define

Y = ω(t)− µ (2.9)

So 2.6 becomes:

∫ dY
Y

=
∫
−γdt (2.10)

Solving the two integrals, from 0 to t, we get:

∫ t

0

dY
Y

=
[
log(Y )

]t
0

= −γ.t− γ.0 (2.11)

log(Y (t))− log(Y (0)) = −γt (2.12)

so that:

Y (t) = Y (0)e−γt (2.13)

and writing back to the original variable ω(t), we finally get:

ω(t)− µ = [ω(0)− µ]e−γt (2.14)
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Figure 2.5: Representation of equation 2.14. ω(t) − µ represents the distance
between ω(t) and the expected value µ. This distance decreases exponentially with time
and the speed of the decreasing depends on γ.

= 2= 0.5 = 1

Figure 2.6: ω(t) for different values of γ. Each color represents a different value of
ω(0). Each panel represents a different speed of reversion γ towards the expected value
µ.

The left-hand side value of equation 2.14 (Fig 2.5) represents the distance
between ω and the expected value µ. This difference decreases exponentially with
time and the speed of relaxation to µ depends on γ (Fig 2.6).

Equation 2.14 can also be written as:

ω(t) = ω(0)e−γt + µ(1− e−γt) (2.15)

where, in this form, we can read directly that the initial condition ω(0) is
forgotten in exponential time, and that ω(t) tends to µ at infinite time, where
e−γt → 0. Equation 2.15 is the solution of equation 2.4.
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2.1.2.3 What happens if we model the angular speed as an OU deter-
ministic process?

Now we can define the angular speed as ω. We can model the changes of the
angular speed ω of an individual using equation 2.15.

We start by fixing ω(0) 6= 0 and µ = 0. The angular speed will approach
µ with time. This will produce trajectories that have a strong curvature at the
beginning and will become more straight with time.

Time (s)
An
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pe
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ω
(ra
d/
s-1
)

X (m)

Y
(m
)

Figure 2.7: Example of a trajectory simulated using equation 2.15 with µ = 0
and γ = 2

2.1.2.4 Adding noise

We can now continue analyzing the equation of the OU process in equation 2.3
by adding back the stochastic component σdW (t) to the deterministic process in
equation 2.4 :

dω(t) = γ[µ− ω(t)]dt+ σdW (t) (2.16)

It is not possible to solve this equation using the same method used to solve
equation 2.4 due to the presence of the Wiener process W (t).

To solve equation 2.3, we can apply another procedure called Itô’s lemma and
define the function Y (t) = ω(t)eγt, so that :

dY (t) = d[ω(t)eγt] = γµeγtdt+ σeγtdW (t) (2.17)

We can then integrate equation 2.17 from 0 to t (with t > 0), yielding:

ω(t) = ω(0)e−γt + µ[1− e−γt] +
∫ t

0
[σe−γ(t−t′)]dW (t′) (2.18)
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Figure 2.8: Examples of two time series with the same variance (Ω = 1) but
different auto-correlation time. (A) γ = 0.1, σ = 0.44. (B) γ = 1, σ = 1.41

From equation 2.18, it is possible to calculate the expected value E[ω(t)] and
the variance Var[ω(t)] of the stochastic process at any time t (Uhlenbeck & Orn-
stein, 1930):

E[ω(t)] = ω(0)e−γt + µ(1− e−γt) (2.19)

Var[ω(t)] = σ2

2γ (1− e−2γt) (2.20)

and we can derive the long-term expected value E∗ and variance Var∗ by taking
the limit when t→∞:

E∗ = µ (2.21)

Var∗ = σ2

2γ ≡ Ω (2.22)

The variance depends both on γ and σ. It is therefore possible to have two dis-
tributions of ω(t) with the same variance but with very different auto-correlation
times γ (Fig 2.8)

2.2 The Central Place Forager Model

2.2.1 Enunciation of the model

The Persistent Turning Walker (PTW) model produces trajectories that are diffu-
sive in the large time limit (Degond & Motsch, 2008; Cattiaux et al., 2010; Weber
et al., 2011; Daltorio et al., 2013; Nötel et al., 2017; Du et al., 2021). However, the
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aim of this thesis is to produce a model of bees as Central Place Foragers. They
explore their environment by performing loops around the nest. Their behavior is
thus not purely diffusive.

To take this into account, I added an attraction component to equation 2.16
that will restrain the movement around the nest and will control the return of the
bee.

I assumed that bees can locate the direction of the nest at any time and defined
a ”Homing vector” ~H(t) that points towards the position of the nest (Collett et al.,
2013). I call ϕ(t) the angle between the velocity ~v(t) and the homing vector ~H

(Fig. 2.11). In order to go towards the nest, the bee has to adopt an angular speed
that makes ϕ(t) decrease so ~v gets closer to ~H. I define this targeted angular speed
ω∗.

ω∗(t) ≡ η(t)ϕ(t) (2.23)

where η(t) ∈ R+ represents the strength of the attraction to the nest. I in-
tegrate this attraction component to the model in equation 2.16 and the model
becomes

dω(t) = −γ[ω(t)− ω∗(t)] + σdW (t). (2.24)

Now, in the absence of noise, the angular speed will tend to ω∗ following:

ω(t) = ω(0)e−γt + ω∗(t)(1− e−γt) (2.25)

The higher the strength of attraction η(t), the fastest the heading of the bee
will change to go towards the nest.

Here, I considered two different options to define the attraction component η.
It could be simply defined as a constant η = η∗. In this case, in the absence of
noise, the trajectories would resemble to satellites as shown in figure 2.9.

This does not resemble experimental trajectories that are presented in Chapter
2. This is why I chose a second option. To be able to model bees looping around
the nest, I divided the movement into two phases: an exploration phase and a
return phase. In Chapter 3, I will expose the arguments that led me to choose
this second option.

For this, η becomes a function of time and it works like a switch going from
η = 0 (no attraction) to η = η∗ (attraction). I assume that the bee changes its
behavior instantaneously between the two phases with
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Figure 2.9: Example of a trajectory simulated using equations 2.23 and 2.24
with η(t) = 0.5, γ = 1 σ = 0

η(t) =

 0 t < τ

η∗ t ≥ τ
(2.26)

where τ is the time at which the switch happens.
For this delay τ , I assumed the simplest random distribution: a memoryless

process which translates into an exponential distribution. I denote α the parameter
associated with this distribution, i.e the mean time before the switch to the return
phase. Once the bee is back at the nest, the movement switches back to the
exploration phase. This model is able to produce loops centered around the nest
(see figure 2.10).

If we now reintroduce the noise, the trajectories become less stereotypical. In
the exploration phase, η(t) = 0 so ω∗ = 0, and in consequence the movement is
diffusive. In the return phase, η(t) = η∗ so ω∗(t) continuously adapt to ϕ(t), and
the movement becomes advecto-diffusive (as illustrated in figure 2.11).

In summary, the trajectories produced by the model are conditioned by 4
components

– γ which governs the autocorrelation of the angular speed

– σ which governs the white noise

– The component attraction ruled by :

– η which governs how quickly the individual has to go back to the nest

– α which governs the average switching time between exploration and
return phases
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Figure 2.10: Example of a trajectory simulated using equations 2.23, 2.24 and
2.26 with η∗(t) = 0.5, γ = 1 and σ = 0. The bee departs from the nest in exploration
mode and with ω(0) = 0, so in absence of noise, it follows a ballistic trajectory away
from the nest. After the switch, ω(t) adapts to ϕ(t) so the bee draws a u-turn up to a
heading pointing to the nest. Then the bees keep going straight to the nest, where a
new loop can start in exploration mode. Five loops are represented (left) as well as the
corresponding evolution of ω(t) (right).
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Figure 2.11: Illustration of the model. (A) Example of theoretical trajectory. Blue
line: Trajectory during the exploration phase. Black line: Trajectory during the return
phase. Black circle: bee. Black square: nest. ~H is the homing vector pointing towards
the nest. ~v is the velocity of the bee. ϕ is the angle between ~v and ~H. (B) Evolution of
the return strength (η) over time. At time τ , η switches from 0 (no attraction) to η∗.
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Note that γ and σ both control the variance Ω = σ2

2γ (Eq. 2.22). Since Ω is a
parameter that’s easier to visualize in a time series than σ, I will refer to γ, Ω, α
and η∗ as the parameters of the model.

2.2.2 Discretization

In order to be able to simulate trajectories, I discretized the model using an explicit
forward discretization scheme over a time step ∆t.

2.2.2.1 Discretization of the Ornstein-Uhlenbeck process

In a continuous-time series, dt represents an infinitesimal interval of time. To
produce a sample of the stochastic process given by 2.18 between (t − ∆t) and
t, it is necessary to replace the integral term by a sampling of the noise over ∆t.
Equation 2.18 then yields:

ω(t) = ω(t−∆t)e−γ∆t + ω∗(t−∆t)(1− e−γ∆t) +
√
σ2

2γ (1− e−2γ∆t)εt (2.27)

where εt is sampled from a Gaussian random variable of mean 0 and variance
1.

Equation 2.27 can also be written as:

ωi∆t = ω(i−1)∆te
−γ∆t + ω∗(i−1)∆t(1− e−γ∆t) + εi (2.28)

where εi is now sampled from a Gaussian variable Ei of mean 0 and variance
s2 defined as:

s2 ≡ Var(Ei ; ∆t) = σ2

2γ (1− e−2γ∆t) (2.29)

The approximation introduced in this scheme is only due to the fact that ω∗(t)
is considered as constant between (i − 1)∆t and i∆t (in the diffusive case when
ω∗(t) = 0, the scheme is then exact).

In equation 2.28, ω(i−1)∆t is a predictor of ωi∆t and only this previous value is
used to predict ω at i∆t. In statistics of discrete-time random processes, equation
2.28 represents an auto-regressive process of order 1 (AR(1)).

We can conclude that the Auto-regressive process of order 1 is the discrete-time
approximation of the Ornstein-Uhlenbeck process (should ω∗(t) be constant over
time, that would be the discrete-time sampling equivalent).
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This AR(1) (eq.2.28) can be written as:

ωi = gωi−1 + bi−1 + εi (2.30)

where

g = e−γ∆t (2.31)

and

bi−1 = ω∗(i−1)∆t(1− e−γ∆t) (2.32)

In the case of the diffusive process (bi−1 = 0,∀i), we can then expect from
equation 2.31 to estimate γ from an estimate of g with:

γ = − log(g)
∆t (2.33)

and from equation 2.29, to estimate σ2 from an estimate of s2:

σ2 = s2 2γ
1− e−2γ∆t (2.34)

2.2.2.2 Discretization of the trajectories

The code used for the discretization is available in Appendix B.
For each loop, I draw a time τ from an exponential distribution with parameter

α. When t = τ , I switch η(t) = η∗. At the end of a loop, I reset η(t) = 0.
To start, I set the parameters of the model :

– the speed: v

– the autocorrelation parameter: γ

– the variance of the Wiener process: Ω

– the parameter governing the attraction component: α and η∗

Then, I initialize the value of the variables at t = 0

– angular speed ω(0)

– direction θ(0)

– position ~x(0)

– the force of the attraction to the nest η(0)
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I calculate the position ~x(t+∆t) using an Euler scheme, considering ~v(t) constant
over ∆t.

~x(t+ ∆t) = ~x(t) + ~v(t)∆t (2.35)

Then I calculate the direction θ(t+ ∆t) using (Fig. 2.12):

θ(t+ ∆t) = θ(t) + ω(t)∆t (2.36)

Figure 2.12: Discretization of the direction θ as in equation 2.36

The velocity ~v(t+ ∆t) is given by

~v(t+ ∆t) = v ·

 cos
(
θ(t+ ∆t)

)
sin

(
θ(t+ ∆t)

)  (2.37)

Lastly, I calculate the angular speed ω(t+ ∆t).
First, I calculate the targeted angular speed ω∗ with eq. 2.38, where ϕ is a signed
angle between ~x and the homing vector ~H

ω∗(t) = η · ϕ(t) (2.38)

Then, I compute the discrete-time equivalent of γ and σ:

g = e−γ∆t (2.39)

s2 = σ2 1− e−2γ∆t

2γ (2.40)
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Finally, I calculate the angular speed ω(t+ ∆t) using the equation 2.41 with ε
representing a realisation of a Gaussian random variable with mean 0 and variance
s2.

ω(t+ ∆t) = gω(t) + (1− g)ω∗(t) + ε (2.41)
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2.3 Properties

2.3.1 Attraction to the nest limits the exploration range
of bees

An unrealistic feature of existing diffusive models is their long-term behavior: If
given enough time, the forager reaches extremely far distances with respect to the
nest, never returning to it. To illustrate the impact of central place foraging on
the simulation of bee exploration range, I compared this model with attraction to
the nest to an alternative one in which the attraction is absent (i.e., making η∗ = 0
in eq. 2.23). I simulated 1000 trajectories with each model for different amounts
of time and studied how the distribution of bees around the nest changes over
time. As expected, attraction retains bees tightly localized around the nest (Fig.
2.13A-B, blue). More interesting, it makes the distribution of bees stationary:
In a model without attraction, bees constantly wander away from the nest, and
their distribution depends on how much time we allow for the bee to explore,
becoming wider as time goes by (Fig. 2.13B-C, orange). In contrast, the attraction
component makes the forager return to the nest periodically, so the distribution
remains stationary once the forager has had enough time to perform more than
one loop on average (Fig. 2.13D, blue).

This demonstrates the importance of taking into account the attraction com-
ponent when modeling bee movements (instead of considering a diffusive model)
to be able to reproduce realistic trajectories. To highlight the effect of behavioral
parameters upon the spatial extent covered by exploration, I present in Fig. 2.14
the marginal effect of the three main parameters (γ, η∗ and Ω ) on the range
explored by the bee, as measured by the long-time Mean Square Displacement
(MSD), i.e. the variance of the stationary distribution.

2.3.2 Effect of the parameters on the Mean Square Dis-
placement

The effect of α , the mean duration in exploration mode, appears quite linear,
which is not surprising since the time spent flying away from the nest increases
with α During the return phase, η∗ represents the intensity of the steering, since
for smaller values of η∗, the relaxation to the preferred turning speed would be
less effective. As η∗ gets smaller and smaller, the steering vanishes, so that the bee
would adopt a diffusive behavior, with no stationary distribution. On the other
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Figure 2.13: Probability of presence of a bee around the nest. (A) Overlay of
1000 trajectories with attraction to the nest (η∗ = 0.2 s−1) simulated during 900 s. (B)
Example trajectories with and without attraction, simulated during 500 s. The nest is
located at (0,0). Blue: model with attraction. Orange: model without attraction (C)
Same as A but without attraction to the nest (η = 0) (D) Probability to find a bee
below a given distance to the nest (i.e., inverse cumulative probability distribution for
the distance to the nest) after different amounts of time.
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hand, we observe a clear effect of saturation for large enough values of η∗, meaning
that the effectiveness of the steering is limited by the relaxation time γ. Finally, Ω
controls the level of noise the turning speed can undergo. For Ω = 0, the turning
speed has no noise at all, and the process becomes deterministic: the bee would fly
from the nest ballistically in the exploration phase and go back ballistically to the
nest after turning maneuver induced by the steering process (as in figure 2.10). In
this case, given the initial condition of null turning speed, the trajectories would
push bees the farthest from the nest during exploration (hence, maximal MSD),
while larger values of Ω would drive bees to meander around the nest, leading to
trajectories that remain closer to the nest.
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Figure 2.14: Sensitivity of the Mean Square Displacement (MSD) to the be-
havioral parameters. I estimated the MSD (m2) by the Monte Carlo method, varying
each parameter in turn, (A) α (s), (B) η∗(s−1) or (C) Ω = σ2/2γ (rad2.s−2), while leav-
ing the others to their default values: γ = 1.0 s−1, σ = 0.37 rad.s−1/2, α = 30 s and
η∗ = 0.2 s−1. Each MSD value was estimated using 105 simulated loops (error bars are
within the symbol size). Note that for smaller values of η∗, the distribution tends to
(non stationary) diffusion, so some loops are censored at one hour.
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2.3.3 Effect of the parameters on the shape of the trajec-
tories

This model is capable of reproducing a high variety of trajectories. I will present
how each parameter impacts the shape of the trajectories.

2.3.3.1 The autocorrelation : γ

In the model in equation 2.24, γ represents the inverse of the auto-correlation time
of the angular speed. This means that low values will translate into trajectories
with a high auto-correlation of the angular speed. In this case, ω can wander away
from 0 for large amounts of time. This will produce very circular trajectories as
in figure 2.15.A. This kind of trajectory would be impossible to obtain using a
Correlated Random Walk model in which there is no such memory of the changes
in direction.

When γ = 2, ω tends to remain close to 0, leading to minimal changes in
direction and resulting in a predominantly straight trajectory. Since there is not
a lot of autocorrelation on the direction changes, this kind of trajectory could be
produced by a Correlated Random Walk.

2.3.3.2 The Brownian noise

As the value of σ increases, the variance Ω of ω also increases. This relationship
is evident in the time series depicted in the right panels of Figure 2.16. When σ

is low, the angular speed of the trajectory remains close to 0, resulting in straight
trajectories. However, when σ is high, there are frequent deviations from 0, causing
the trajectories to become ”curly” in shape (see Figure 2.16-C).

Another scenario to consider is when the value of variance Ω is held constant
while we vary the values of σ (eq. 2.22). In this case, each variation in σ will also
cause the auto-correlation time γ to change.

When we set σ to a low value, a high auto-correlation is necessary to achieve
the fixed variance value so that jumps of the angular speed away from 0 last
enough time for the variance to increase. For σ = 0.1 (Fig 2.17A), this traps the
trajectory intro very localized spirals that last a long time. To fully visualize the
variance in the figure 2.17A, right panel, we would need to wait for a very long
time.

If we fix σ = 5 (Fig 2.17), we have the opposite case. Here, the autocorrelation
is weaker and produces more straight trajectories. These types of trajectories are
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similar to those produced by a Correlated Random Walk model.
For the intermediate case where σ = 1, we observe a pattern of localized spirals

followed by similar periods where ω remains close to 0 and produces straight
jumps. These trajectories can be compared to those generated by Lévy flight
models, which also exhibit intermittent periods of localized behavior and sudden
long-range jumps.

2.3.3.3 The attraction component: α and η∗

Two parameters control the attraction to the nest: α controlling the time spent
on the ”exploration phase” and η∗, which governs the ”return phase”. Specifically,
higher values of η∗ result in a more direct return path towards the nest, as indicated
by the colored lines in figure 2.18 A-B-C.

When α = 0, there is no exploration phase, causing the trajectory to continu-
ously orbit around the central point without any departure from the nest. When
there is no noise present and σ = 0, the resulting course will be circular (as in
figure 2.9).

The time spent in the exploration phase increases with α, this means that the
distance traveled away from the central point increases (see MSD in figure 2.14).
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Chapter 2 has demonstrated that the Model can generate a wide range of
trajectories. The purpose of this chapter is to discuss how to establish a connection
between the Model and experimental data to calibrate and produce trajectories
that closely resemble those of animal models.

Initially, I calibrated the Model analytically by excluding the attraction com-
ponent, which is equivalent to the Persistent Turning Walker model presented in
Gautrais et al. (2009) While the Persistent-Turning Walker (Chapter 2) was first
intended to simulate fish movement, I tested if it was possible to calibrate it using
data from a different species. Specifically, I sought to investigate whether this
approach could enable the capture of movement dynamics that are not replicable
using more conventional models (such as a Correlated Random Walk). This was
done using high-frequency ant trajectory data. The data set captured the ant’s
position several times per second. Subsequently, I calibrated the Model using low-
frequency bumblebee trajectory data, where the position of the bee was obtained
every few seconds. Given the low-frequency data, it was not feasible to use the
same methodology as the one employed for the ants.

3.1 Using the Persistent Turning Walker to de-
scribe ant movements

I had access to trajectory data from a dessert ant: Cataglyphis velox. The data
was collected using a track-ball system in a virtual reality environment. The
experiments were performed during the internship of Blandine Massot in the team
of Antoine Wystrach at the CRCA in 2021.

3.1.1 Animal model

Cataglyphis velox is a Mediterranean ant living in very hot and dry habitats.
Worker’s body size range from 4.5 to 12 mm. They are thermophilic diurnal scav-
engers. Their physiology, body and behavior allows them to forage under extreme
extremely high temperature conditions. They navigate through desert searching
for arthropods corpses. Since they navigate without using pheromones and rely on
visual cues, Cataphyphis sp. became a model species on insect navigation. This
species (like other insects), is known for performing right/left oscillations while
walking (Clement et al, in prep).
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A C

B

Figure 3.1: Ant experimental setup. (A-B). Photo of a Cataglyphis velox, with
colored paint and metallic paint, magnetized to the track-ball attachment system. (C).
Virtual-Reality set-up. The photos were taken by Blandine Massot.

3.1.2 Experimental setup

Nests from Cataglyphis velox were collected in Sevilla, Spain. In the laboratory,
they were reared in a ventilated room, at 24-30C, 15-40% humidity and with a
natural day/night light cycle. The nest were carved into a cellular concrete block
and connected to two plastics bins serving as a hunting area where individuals can
drink from a sugar solution.

During the experiments, the ants were captured while they were in the hunting
area. They where then placed in an air-suspended polystyrene trackball using
micro-magnets and metallic paint applied directly on the ant’s thorax. The ball
turns from under the ant’s legs as it walks and allows it to trace the path taken.
The track-ball was then placed into a Virtual-Reality cylinder composed of panels
of LEDs. The movements of the track-ball are linked to he virtual environment
so that when the ant moves in a direction, the virtual environment reacts. The
ant was allowed to move freely in any direction, then, when it reaches a distance
of 4m away from the start point, the ant is removed from the setup ant put back
into the hunting area.

I had access to 50 trajectories of 50 different ants.

3.1.3 The trajectories

The raw data contains the position of the ant that is being tested with a frequency
of ∼100 points per second. This high frequency sampling produces trajectories
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Figure 3.2: Examples of ant’s trajectories obtained thanks to a Virtual Reality
setup. All trajectories starts at [0,0] Scale is the same for the four plots. The ants were
placed in a Virtual Reality setting described in 3.1.2

very susceptible to noise. I performed a first smoothing of the trajectories by
only keeping the points every 0.04s. Then, I performed a second smoothing by
calculating a moving average of the x and y coordinates with a window of 0.2s
(Fig 3.3).

The oscillation movements are particularly visible in figure 3.2 B

3.1.4 Quantifying the angular speed

The model of the Persistent Turning Walker describes the changes in angular speed
through time. It has 2 parameters : an autocorrelation of the angular speed γ and
the variance of the Wiener process (White noise) σ. The aim of the calibration
procedure is to estimate the values of those parameters from the observed angular
speed of the experimental data. In order to do this calibration, it was necessary
to quantify the trajectories of the ants. For this, I calculated the angular speed of
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Raw data First smoothing Second smoothing

Figure 3.3: Smoothing of the ant’s trajectories. The raw data contains a point
every 0.01s. The first smoothing was done by only keeping the coordinates every 0.04s.
The second smoothing was obtained by doing a moving average of the coordinates with
a window of 0.2s.

the individuals as a function of time.
First, I calculated the angle ∆θi between each point pi of the trajectory

∆θi = θi+1 − θi (3.1)

Then, the angular speed ω is defined by

ωi = ∆θi
∆t . (3.2)

I obtained a time series of the angular speed of each of the 50 ant’s trajectories
(Fig 3.4).

Figure 3.5 shows the relationship between the angular speed at time t and
the angular speed at time t + ∆t. This correlation suggests that the angular
speed is auto-correlated. This finding indicates that a Correlated Random Walk
model may not be the best approach for describing these trajectories, as it does not
consider the auto-correlation of the angular speed. To account for this correlation,
I fitted the Persistent Turning Walker model, which is better suited for modeling
auto-correlated angular speed.

3.1.5 Calibration

The model of the Persistent Turning Walker has 2 parameters, the autocorrelation
time of the angular speed γ and the variance of the Wiener process σ

In section, chapter 2, I demonstrated that the discrete time equivalent of γ
and σ are, respectively,
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Figure 3.4: Example of an observed and a simulated time series of the angular
speed ω of an ant. The parameters used for the simulated time series are : γ = 11,
σ = 9

γ = − logg
∆t (3.3)

and

σ2 = s2 2γ
1− e−2γ∆t (3.4)

The parameters a and g can be estimated from the time series of the angular
speed. This can be done by using a regression model and applying a least square
regression method using equations 3.5 and 3.6 (Gautrais et al., 2009). Some R
functions compute this estimation (arima function). The results are presented in
figure 3.6.

ĝ =
∑N−1
i WiWi+1∑N−1

i W 2
i

(3.5)

ŝ2 = 1
N

N−1∑
i

(Wi+1 − ĝWi)2 (3.6)

When examining the experimental data, we can observe different types of tra-
jectories. Figure 3.2 illustrates a range of trajectories, including relatively straight
paths in panels A and C, trajectories with pronounced oscillations in panel B, and
highly coiled ones in panel D.

In figure 3.7 we can observe that the calibration procedure is able to capture
most of the different characteristics of the experimental data, excluding the oscil-
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Figure 3.5: Angular speed at time t + ∆t in function of the angular speed at
time t for the four ants shown in fig 2.2.
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Figure 3.6: Results of the calibration. (A-B). Distribution of the estimation of the
auto-correlation of the angular speed γ and the variance of the Wiener process σ for all
trajectories of ants. (C). γ in function of σ
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Figure 3.7: Example of simulated trajectories during 300s using pairs of calibrated
parameters. All trajectories start at [0,0] A. γ = 24 σ = 11.2 B. γ = 15.3 σ = 9.3 C.
γ = 19.6 σ = 10.7 D. γ = 11.5 σ = 9.9
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latory behavior. It would be necessary to force a periodic value of ω∗ to be able to
reproduce the oscillations (Clement et al., 2023). This would take into account a
more long-term memory that is not taken into account in the Persistent Turning
Walker model.

3.2 Calibration with Bumblebee data

I applied the Model outlined in Chapter 2 to simulate the movement of bum-
blebees. The goal of this thesis was to create a model that could predict the
likelihood of bumblebees finding flowers in various environments. To achieve this,
I first calibrated the model using experimental data on bumblebee trajectories.
This ensured that the model generated realistic simulation results.

3.2.1 Animal model

Bumble bees are eusocial insects that start colonies in the spring with a queen
bee who lays eggs and raises the first batch of non-reproductive worker bees.
Later in the season, the colony produces males and new queens who mate and
hibernate for the winter. Bumble bee nests can range from 20 to 400 workers, and
the lifespan of a worker bee varies between species from 13 to 41 days. Bumble
bees forage for pollen and nectar, with pollen providing protein for the young
and nectar providing energy for adult bees. Bumblebees, like other social insects,
are Central Place Foragers. This means that the exploration and harvesting of
resources (food, building material, water...) is done from a fixed point: the nest.
If a resource is rich enough, Bombus terrestris can forage as far as 1 to 2 km
from the nest (Walther-Hellwig & Frankl, 2000). Unlike the honey bee (Apis
mellifera), bumblebees do not dance to pass information about food resources to
their conspecifics and recruit them. Individuals, therefore, discover flowers rather
independently, although näıve individuals may be attracted by the presence of
conspecifics on the flowers.

3.2.2 Experimental setup

The data was collected by Cristian Pasquaretta, Tamara Gómez Moracho, Thibault
Dubois and Mathieu Lihoreau before the beginning of my thesis.
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A B

Figure 3.8: Bumblebees’ Experimental setup. (A) Transponder used to track bum-
blebees (B) Harmonic radar. Photos provided by Tamara Gómez-Moracho (radar) and
Joe Woodgate (bumblebee on feeder).

3.2.2.1 Study Site

The data was collected during the spring of 2018 on a rice farm land in Sevilla
(Spain). The study site was located in a commercial area for rice production. The
site was wide, flat and had uncultivated soil with no vegetation and few visual
repairs.

3.2.2.2 Bumblebees and training

The individuals came from commercially sourced colonies of Bombus terrestris
(Biobest NV, Westerlo, Belgium). They had never previously had access to the
outside world until the training phase. Bees were marked using colour numbered
identifier and transferred into wooden boxes (dimensions). Once in the field bees
were trained to forage on three artificial flowers (i.e. blue platform with 40%
sucrose solution) positioned 2 m in front of the nest box. Once an individual
performed several foraging bouts (flights between the nest and the flowers), it was
identified as a ”regular forager”. Then, the entrance of the nest was closed and each
flower was randomly moved (a few dozen meters). The bumblbee was equipped
with a transponder (16 mm vertical dipole) when leaving the nest and tracked
with an harmonic radar until it returned to the nest. The radar was located 350
m away from the nest (Fig 3.8). This data allowed to obtain the 2D coordinates of
the bee every 3.3 s. Each bee was allowed to be tested several times. The location
of each flower was changed between each trip.

32 trajectories of 18 different bumblebees were obtained (Fig 3.9).

3.2.3 Calibration

The experimental data obtained using this setup cannot be calibrated using the
same procedure as the one used for the ants in section 2.1. This is because the
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Figure 3.9: Examples of an experimental trajectories. Each dot represents the
position of a bee recorded by a harmonic radar approximately every 3s. Different colors
represent different flight loops around the nest. The sequential order of the loops is
represented by the color gradient where the first loops have lightest colors (yellow to
purple)

47



harmonic radar used to collect the data is only able to determine the bee’s position
every ∆t = 3.3 s, at best. Considering that bumblebees fly at an average speed
of around 4 m/s (Fig 3.10), an individual could travel dozens of meters between
each sampling.

Bee ID
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pe
ed
(m
·s
-1
)

Figure 3.10: Variability of speed across individuals in the experimental
dataset. Speed (m/s) for each bee. Boxplots, show the median (middle line), 25
and 75% quantiles (box), range of data within 1.5 interquartile deviations (whiskers),
and outliers (dots).

Consequently, the trajectories obtained with this experimental setup have a
very low frequency sampling, making it impossible to fit the model analytically as
in the previous section. This is because the heading of an individual could vary
significantly between each sampled point. Therefore, it was necessary to develop
a different method to quantify the trajectories.

As Central Place Foragers (CPF), bumblebees perform loops around the nest
when exploring and foraging. I divided the trajectories into ”loops” and quantified
them.

3.2.3.1 Dividing the tracks into loops

I defined a loop as a fragment of a trajectory that starts when the bee leaves that
nest and finishes when it enters back. I considered that an individual was ”in the
nest” when it was able to detect it. The colony nest box used in the experiments
was rectangular, with a diagonal of 37 cm. Bumblebees can detect an object when
it forms an angle of 3 degrees on the retina of their compound eyes (Kapustjansky
et al., 2010). This means that the bees were able to see the nest at approximately
7m. However, in this case I set a higher threshold of 13 m to avoid including
learning flights (i.e., flights during which the bee makes characteristic loops to
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acquire visual memories of target locations such as the nest for navigation) into
the set of exploratory data.

3.2.3.2 Loops statistics

I quantified the trajectories using four different observables (Fig 3.11):

– Loop length: Total length of the trajectory for a given loop

– Loop extension: Maximum distance between the bee and the nest for a given
loop

– Number of intersections: Number of times the loop intersects with itself

– Number of re-departures, where a re-departure is defined as three consecutive
positions such that the second position is closer to the nest than the first
one, but the third is again further away than the second. These events
indicate instances in which the bee seemed to be returning towards the nest
and turned back

These observables display a large span of values which reflects a high diversity
of loops.

3.2.3.3 Fitting

The Model is an extension of the Persistent Turnin Walker used in section 2.1.
In addition to the autocorrelation parameter γ and the variance of the Wiener
process σ, it has two more parameters controlling the attraction to the nest: η∗

governing how quickly the individual has to go back to the nest and α controlling
the mean time in exploration mode before switching to ”the return to the nest”
phase

In order to fit the parameters of the model, I explored systematically all rele-
vant combinations within the relevant range for each parameter. To do this more
efficiently, I transformed one of the four parameters of the model into a more
tractable one: I substituted the variance of the noise introduced by the Wiener’s
process (σ) for the variance of the angular speed ω, which has a more direct impact
on the experimental data. These two variables are related by

Var(ω) = Ω = σ2

2γ (3.7)
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Figure 3.11: Variability of each observable across individuals in the experi-
mental dataset. (A) Loop lengths (m) for each bee, as defined in Fig. 3 in the main
text. Boxplots, show the median (middle line), 25 and 75% quantiles (box), range of
data within 1.5 interquartile deviations (whiskers), and outliers (dots). (B) Same as A
but for the loop extension (maximum distance between the nest and the individual).
(C) Same as A, but for the number of re-departures per 100m traveled. A re-departure
is defined as three consecutive positions such that the second position is closer to the
nest than the first one, but the third is again further away than the second. (D) Same
as A but for the intersections (number of times the loop intersects with itself)

I explored all 6160 different combinations resulting from the following values
of each parameter:

– γ ∈ (0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5)

– Ω ∈ (0.01, 0.03, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.125, 0.15)

– α ∈ (10, 20, 25, 30, 35, 40, 50)

– η ∈ (0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4)

For each combination of parameters, I simulated 1000 loops and computed
the distribution of each of the four observables. Then I computed the distance
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Figure 3.12: How the scores are calculated as explained in section 3.2.3.3

between the experimental distribution of each observable and the simulation re-
sults: for the two continuous observables (loop length and extension), this distance
was computed as the area between the observed cumulative distribution function
and the simulated one (Fig.3.12). For the two discrete observables (numbers of
self-intersection and re-departures), the distance was computed as the sum of the
absolute differences between all points of the two probability distributions. This
yielded four distributions of distances over the 6160 combinations. Since the four
observables are heterogeneous (two are continuous measures, two are discrete), I
had to re-normalize the distances to ensure that each observable is given the same
weight. I did this by translating the distances into scores according to their quan-
tile in their corresponding cumulative distribution (e.g., a distance translated into
0.12 means that it is within the lowest 12%). Finally, I retained the combination
that yielded the lower score averaged over the four observables.

3.2.3.4 The best fitting

The best parameters combination was found to be: γ = 1.0 s−1, Ω = 0.07 rad2,
α = 30 s and η∗ = 0.2 s−1. It corresponds to the marginal local minima for the four
observables (Fig 3.13). Simulated trajectories closely resemble data trajectories
(Fig 3.15), and the model is able to produce loops with an elongated shape, as
well as a diversity of loop lengths. Note that this calibration procedure yields a
switching time α from the “exploration phase” to the “return phase” of 30 seconds
on average. This may be an underestimation since the radar can detect targets
at a maximum distance of about 1km and bumblebees can fly beyond this limit
depending on forage availability in the landscape (Riley et al., 1996).
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This unique set of parameters assumes that all bees are identical, while in
reality, inter-individual differences exist, for example, due to differences in age,
experience, learning, or size. However, each bee can display a large diversity of
loop parameters, covering a similar range as the overall population. I, therefore,
considered that separate fits for each individual were not justified. The fact that
the model reproduces not only the mean but also the variability of the four ob-
servables supports this choice.
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Figure 3.13: Ratings for each parameter, when others are kept constant. For
each parameter, the rating is reported over the range of explored values, while the other
parameters are kept the same (α = 30, η = 0.2, γ = 1, Ω = 0.07). For each parameter,
the best rating (minimal value, dotted line) is obtained for the fitted value.

3.2.4 The effect of each parameter on loops statistics

The distributions found in the previous section allows us to better understand the
constraints of each parameter over each one of the observables.

During the fitting procedure, the simulation results were compared to the
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Figure 3.14: Distributions of the four observables, for experimental and sim-
ulated data. Black lines: experimental data. Blue lines: model predictions using the
fitted values: γ = 1.0 s−1, σ = 0.37 rad.s−1/2, α = 30 s and η∗ = 0.2 s−1. Insets:
Schematic of each observable. (A) Cumulative distribution function of loop lengths for
our full dataset. (B) Same as A, but for the loops extension. (C) Probability distribu-
tion of the number of trajectories intersects per 100m traveled. (D) Same as C, but for
the number of re-departures per 100 m traveled.

experimental distributions of each observable, resulting in four different scores.
These scores were then averaged to obtain a ”total” score, which was used to rank
the different combinations of parameters. The top and worst 1% of the scores were
selected, and their distribution is represented in figure 3.16.

The best parameters, represented by the dotted lines, were chosen based on the
best average of the ”total score.” The ”total score” distributions showed that some
parameters had worse scores that were far away from the selected parameters. For
instance, η∗ had worse scores when the values were too low, while the inverse was
the case for α. When η∗ was too low, the model approached a diffusive process, and
high values of α resulted in longer periods before the switch to the ”return phase.”
These outcomes indicate that a diffusive process is not the best descriptor for
the experimental data. Conversely, γ had a more uniform distribution, although
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Figure 3.15: Example of simulated trajectories. Different colors represent different
flight loops around the nest. The sequential order of the loops is represented by the color
gradient where the first loops have lightest colors (yellow to purple). The parameters
are: γ = 1.0 s−1, σ = 0.37 rad.s−1/2, α = 30 s and η∗ = 0.2 s−1.
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smaller values appeared to be the worst.
Looking at each observable, the loop length was heavily influenced by η∗,

which determined the strength of the attraction to the nest and indirectly affected
the time spent coming back to the nest and the length of the loops. The noise
parameter Ω chosen as the ”total best” did not capture the best one when only
looking at the length. The worst scores had a bimodal distribution, indicating
that trajectories went too far away when there was not enough noise, and too
sinuous when there was too much noise. The variance of the distributions of the
worst scores for α was high, indicating that its effect on the loop length could be
compensated for by adjusting other parameters.

For the loop extension, α and η∗ were once again the most decisive parameters.
The ”worst 1%” had a bimodal distribution, indicating that too low or too high
values resulted in the worst scores. A good pairing of αη∗ was necessary for the
best fit. The value of α determined when the switch to the return phase occurred,
while the value of η∗ determined if the trajectory went straight to the nest or
continued to drift away for a bit. The variance Ω had a similar effect as for the
loop length.

The redepartures variable was the worst-fitted, with the best value being far
away from the ”best 1%” for all four parameters. α did not have any effect, and
the distributions looked the same for both cases.

The most determining parameter for the intersects was Ω, with a bimodal dis-
tribution of the worst scores. High values of Ω resulted in too many intersections,
while too low values resulted in too few. The autocorrelation γ had a similar
effect, with too low values resulting in trajectories with many small loops that
intersected too often, and too high values resulting in trajectories that were too
straight with very few intersects.

Overall, γ had a neutral effect across all observables.

3.2.5 Calibration when the attraction to the nest is kept
constant

At the beginning of the thesis, a previous model where η is kept constant, so
η(t) = η∗, was proposed. In this case, there is not a ”switch” between the ”explo-
ration phase” and the ”return phase”. This model is presented in Chapter 2. At
first glance, this model is not able to reproduce the ”elongated” loops observed in
experimental data. It rather produce ”round” loops. I used the same calibration
procedure to calibrate this model. The combinations of parameters with the best
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Figure 3.16: Distribution of the best and the worst scores for each observable.
As commented in section 3.2.4
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fist corresponds to γ = 0.8, η∗ = 0.1, Ω = 0.07. This versions of the model, yields
an auto-correlation parameter and a force of attraction weaker than the final ver-
sion of the model (respectively γ = 1 and η∗ = 0.2) even if the variance Ω remains
the same. With the weakest attraction η∗ I am able to reproduce the loop length
(Fig 3.18.A, yellow line). If the attraction were stronger, the individual would
never be able to get away from the nest for a long enough amount of time to repli-
cate the experimental data. The value of the variance Ω allows to reproduce the
experimental distributions of the intersects and the re-departures (Fig 3.18.C-D,
yellow line). However this parameters doesn’t allow to replicate the loop exten-
sion. Here, loops are shorter (they don’t exceed 150m) (Fig 3.18.B, yellow line)
and more round (ref figure traj). The loops observed in the experimental data are
elongated (Fig 3.9). For this reason, I decided to switch to our final version of
the model where having a switch from an ”exploration phase” to a ”return phase”
allows to have loops with an elongated form.

Model
Constant η

Switch

S
co
re

Figure 3.17: Ratings for each parameter, when others are kept constant for
both versions of the Model. For each parameter, the rating is reported over the
range of explored values, while the other parameters are kept the same. For the model
with constant attraction η: η = 0.1, γ = 0.8, Ω = 0.07. For the model with the switch:
η = 0.2, γ = 1, Ω = 0.07 .For each parameter, the best rating (minimal value, dotted
line) is obtained for the fitted value.

3.3 Conclusion
In this chapter, I have demonstrated the possibility of calibrating the Model in-
troduced in Chapter 2 using experimental data from two different insects and
capturing various characteristics of their trajectories. To achieve this, I presented
two distinct calibration methods, one for high-frequency data and the other for
low-frequency data.

In the next chapter, I will utilize the parameters obtained through calibration
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Figure 3.18: Distributions of the four observables, for experimental and simu-
lated data with both versions of the model. Black lines: experimental data. Red
lines: model predictions using the optimal set: γ = 1.0 s−1, σ = 0.37 rad.s−1/2, α = 30 s
and η∗ = 0.2 s−1. Insets: Schematic of each observable. (A) Cumulative distribution
function of loop lengths for our full dataset. (B) Same as A, but for the loops extension.
(C) Probability distribution of the number of trajectories intersects per 100m traveled.
(D) Same as C, but for the number of re-departures per 100 m traveled.

to describe the trajectories of bumblebees and estimate the probabilities of finding
flowers under different scenarios.
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Figure 3.19: Example of trajectories where η is kept constant. The set of pa-
rameters of the simulation are the best ones according to the calibration procedure 3.17.
The parameters are η = 0.1, γ = 0.8 and Ω = 0.07
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Pollinators, such as bees, wasps, flies, butterflies, bats, and birds, mediate a
key ecosystemic service on which most terrestrial plants and animals, including
humans, rely. When foraging for nectar, animals transfer pollen between flowers,
which facilitates plant reproduction. Understanding how pollinators move, find
and choose flowers is thus a key challenge of pollination ecology (Mayer et al.,
2011). In particular, this may help predict and act on complex pollination pro-
cesses in a context of a looming global pollination crisis, when food demand in-
creases and populations of pollinators decline (Buchmann & Nabhan, 1996; Goul-
son et al., 2015).

Foraging pollinators have long been assumed to move randomly (Lenz et al.,
2013; Reynolds et al., 2007a,b, 2009) or use hard-wired movement rules such as
visiting the nearest unvisited flower (Ohashi et al., 2007), exploiting flower patches
in straight line movements (Pyke & Cartar, 1992), navigating inflorescence from
bottom to top flowers (Pyke, 1978), or using win-stay lose-leave strategies (Li-
horeau et al., 2016). Pollination models relying on these observations typically
predict diffusive movements in every direction (Vallaeys et al., 2017). However,
recent behavioral research shows this is not true when animals forage across large
spatial scales (Collett et al., 2013). In particular, studies using radars to monitor
the long-distance flight paths of bees foraging in the field demonstrate that foragers
learn features of their environment to navigate across landscapes and to return
to known feeding locations (Woodgate et al., 2016; Brebner et al., 2021). This
enables them to develop shortcuts between feeding sites (Menzel et al., 2012) and
build efficient multi-location routes (traplines) minimizing overall travel distances
(Lihoreau et al., 2012b; Woodgate et al., 2017). These routes are re-adjusted each
time a feeding site is depleted and new ones are discovered (Lihoreau et al., 2010).

How bees learn such foraging routes has been modeled using algorithms im-
plementing spatial learning and memory (Lihoreau et al., 2012a; Reynolds et al.,
2013; Dubois et al., 2021). While this has greatly advanced our understanding of
bee exploitative movements patterns, none of these models have looked at search
behaviors, either assuming insects already know the locations of all available feed-
ing sites in their environment or discover them according to fixed probabilistic
laws (i.e. the probability to discover a flower at a given location is proportional
to 1/L2 where L represents the distance to that flower (Lihoreau et al., 2012a;
Reynolds et al., 2013; Dubois et al., 2021)).

However, experimental data indicate that this is not the case. Firstly, bees, like
many pollinators, are central place foragers so every foraging trip starts and ends
at the nest site (Capaldi et al., 2000). This implies that their range of action is
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limited. Recordings of bee search flights show how individuals tend to make loops
centered at the nest when exploring a new environment and looking for flowers
(Woodgate et al., 2016; Capaldi et al., 2000). These looping movements are not
compatible with the assumption that bees make diffusive random walks or Lévy
flights (Edwards et al., 2007; Benhamou, 2007). Secondly, the spatial structure of
the foraging environment itself may also greatly influence flower discovery by bees.
In particular, the probability of finding a flower heavily depends on the location
of the flower visited just before, ultimately affecting the direction and geometry
of the routes developed by individuals (Lihoreau et al., 2012b; Woodgate et al.,
2017; Lihoreau et al., 2010, 2012a; Ohashi et al., 2008; Lihoreau et al., 2011).
Since bees are more attracted to larger flowers than to smaller ones (Stout, 2000),
this suggests that small isolated flowers could be missed if they are located next
to a larger patch. Such ”masking effect ” on the probability of visiting specific
flowers depending on the presence of other flowers around could have significant
consequences for bee foraging success, for instance by precluding the discovery of
some highly rewarding flowers. This could also influence plant pollination if bees
are spatially constrained to single flower patches and plant out-crossing is limited.

Here I explored potential effects by developing a model of bee search movement
simulating the tendency of bumblebees to make loops around their nest. I used
the Model with the parameters established in the previous chapter to examine
the probability of bees discovering flowers in environments defined by resources
of various sizes and abundances. We hypothesized that looping movements char-
acteristic of bee exploratory flights combined with perceptual masking effects by
which the probability of finding given flowers is affected by the presence of others
would result in strikingly different predictions for flower discovery rates than the
typical diffusive random walk movements.

4.1 Methods

4.1.1 Simulations

I used Monte Carlo simulations to explore different scenarios. I simulated 100000
trajectories in each different scenario. Every simulation starts at the nest.

In order to simulate a flower encounter I start by defining the size of the nest,
the flowers, and their location.
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Perception range

Hit

Trajectory

Figure 4.1: Scheme of a flower discovery. The perception range is corresponds to
the distance at which the individual can see the flower. See section 4.1.2 for details

=

Figure 4.2: Scheme of a ”patch” of flowers. There is no distinction between a single
flower and a similar size patch of smaller flowers

4.1.2 Flower Detection

Bumblebees can detect an object when it forms an angle of 3◦ on the retina of
their compound eyes (Kapustjansky et al., 2010)). Therefore, for every model
simulation, I set the flowers’ size and calculated the distance at which the bees
are able to detect them. I call this the “perception distance”. I considered that a
bee discovered a flower when it was located at a distance to the bee inferior to the
perception distance. I did not take into account the olfactory perception since it
could be less reliable because of other factors like wind direction and the flower’s
species. If taken into account, this would only impact the perception distance of
the flowers and the results would not be qualitatively different.

In the simulations, there is no distinction between big individual flowers and
patches of similar size composed of several flowers. A flower with a size of, for
example, 1 meter may seem not realistic but it should be understood as a big
patch formed by smaller flowers (Fig 4.2).

4.2 Simple scenarios
First, in a setup with two flower patches present in the neighborhood of the nest,
I compared how statistics of discovery are affected by the attraction component of
the model with regard to what a pure diffusive model would yield. Next, I present
how the geometrical arrangement of the two patches affects the statistics of the
first discovery. Then, I show how those statistics are modified when in presence
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of a third patch.

4.2.1 Comparison to diffusive model

I compared the predictions by the Model using the set of parameters fitted in
Chapter 3 by the same model, except that I removed the attraction-to-nest com-
ponent. This corresponds to the Persistent Turning Walker (Gautrais et al., 2009).
In the latter case, the behavior becomes purely diffusive at large times.

I used a setup with a central nest, and two circular patches of flowers (denoted
F1 and F2) which are of the same size f and placed at equidistant locations from
the nest (at a distance l), and symmetrically around the nest exit.

I considered 3 different scenarios; illustrated in Fig 4.3:

1. Scenario ”distance scale”: I increased the distance l between patches, of
fixed diameter f = 0.5 m, scaling it according to l = 10 + 10 s with scale
s ∈ [2..9], hence from 30 m to 100 m. The value 1 is not included in the
interval because in that case, the flower is too close to the nest and can be
seen from it.

2. Scenario ”size scale”: I increased the size of patches, located at fixed
distance l = 100 m, scaling the diameter according to f = 0.1 + 0.1 s with
scale s ∈ [1..9].

3. Scenario ”distance and size scale”: I scaled simultaneously distance and
size.

I compared the statistics of either finding a patch or getting back to the nest
within a maximal amount of time and of hitting a patch before hitting back to
the nest. Overall, the two models yield widely different predictions.

We can first note that the Model ensures that the bee either finds a patch or
hits back the nest within one hour in every case. On the contrary, pure diffusive
search results in lots of censoring by the maximal amount of time, with a hit hardly
more than one every two loops. It can even be as low as one every five loops for
the smallest scales in patch size, which is the dominant factor that controls hit
probability (Fig 4.4 A,C and E).

Regarding the probability of hitting the nest before a flower, we can see that
this probability is always higher for the diffusive model (Fig 4.4 B,D and F).
The distance effect is the most prominent, as it strongly affects the probability
of hitting a flower before hitting back the nest (i.e. finding a flower within one
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Figure 4.3: Scheme of the 3 different scenarios tested. Each flower is represented
by a dot and its perception range is represented by a circle.
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loop) whereas it has only limited impact on this probability when merely diffusing
(Fig 4.4 B). Considering now flowers 100 m away from the nest (Fig 4.4 D), the
probability of finding them within a loop is quite low for the Model, because this
distance is not often reached within a loop (about only 25% loops have maximal
extensions beyond 100 m), whereas the diffusive mode can easily reach it within
the time limit. With the range of sizes that we have considered, the size itself
makes a poor difference. When combined, the distance effect dominates (Fig 4.4
F).

Overall, the model allows that patches in the vicinity to be actually discovered
while ensuring that bees regularly return to their nest.

4.2.2 Effect of scale upon the masking effect

I then tested the influence of a potential effect in which the probability of discov-
ering a flower does not only depend on its distance to the nest but can also be
influenced by the presence of other flowers around it. This dependence exists be-
cause a bee that finds a flower might not continue its trajectory, but might rather
stop to collect nectar. Once the nectar collection is over, the bee may continue
exploring, but after visiting a few flowers the bee returns to the nest to unload its
crop. For example, in a scenario where there are just 2 flowers equidistant to the
nest, both flowers should be visited equally. However, if another flower is added, it
can capture visits that would otherwise visit one of the original flowers, reducing
the probability that it’s discovered (4.5).

To quantify the effect of geometrical configurations of flowers upon the first
discovery statistics, I considered the pair of flowers of the same size and equidistant
to the nest as above. I estimated the number n1 of trajectories that hit F1 before
F2 (resp. n2), discarding loops that end in the nest before hitting any flower. We
quantify the odd hitting F2 before F1:

O(1,2) = n2

n1
(4.1)

For instance, a value O(1,2) = 2 means that F2 is hit before F1 twice as many
times as F1 is hit before F2.

Then, I added a third patch (F3) at a location equidistant between the nest
and F1, and of the same size as F1 and F2. Therefore, a fraction of paths that
would have led to F1 (resp. F2) are interrupted before reaching F1 (resp. F2)
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Figure 4.4: (A-C-E). Probability of hitting a flower or the nest within one hour. B-D-F.
Probability of hitting a flower before hitting back the nest
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Figure 4.5: Illustration of the masking effect. The probability of discovering a
flower depends on the presence of other flowers. In a scenario where there are just 2
flowers equidistant to the nest, both flowers should be visited equally (top). However,
if another flower is added, it can capture visits that would otherwise visit one of the
original flowers (bottom). Black square: nest.

by hitting F3 first. Since the geometry has become asymmetrical, the respective
fractions of paths to F1 and F2 are expected to be different. I denote O(1,2,3) the
corresponding odd, hitting F2 before F1, in presence of F3.

In order to quantify the ”masking effect” (ME), we consider the odds ratio:

ME = O(1,2)

O(1,2,3)
(4.2)

Finally, I considered all 3 scenarios in two conditions regarding the orientations
for nest exit: either symmetrical around the patches, or oriented towards F1. This
introduces a second source of geometry asymmetry.

For all scenarios with the symmetrical configuration, in the absence of F3,
patches F1 and F2 are visited equally, as expected (O(1,2) = 1). When introducing
F3, the difference between the fraction of paths to F1 which hit F3 before reaching
F1, and the fraction of paths to F2 which hit F3 before reaching F2 translates
into O(1,2,3) > 1, meaning that F2 is now more often discovered as first than F1.

For a given patches’ size (f = 0.5 m) in the scenario ”Distance scale”, the effect
is the strongest for the shortest scale, where F2 is first hit almost twice more often
than F1. This effect decreases only slightly as the configuration is extended (Fig
4.6A). This effect translates into a masking effect which is slightly lower than for
a diffusive model at a short scale, and which becomes larger for larger scales (Fig
4.6B).

When patches F1 and F2 are located 100 m away from the nest (and hence
F3 50 m away) in the scenario ”Size scale”, the effect of increasing patches size is
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the strongest for the larger size, where F2 is first hit more than twice more often
than F1 (up to O(1,2,3) ' 2.16 for s = 9). It is lower and lower as the patches’ size
decreases, becoming negligible for patches of diameter 0.2 m (Fig 4.6C).

When, in scenario ”Distance and size scale”, both patches’ size and locations
are extended simultaneously, the effect of patches’ size upon the odds appears
dominant over the distance effect (Fig 4.6E and F). While the masking effect pre-
dicted by the diffusive model becomes insensitive to the scale, it is still increasing
with scale, from negligible for scale 1 (patches of diameter 0.2 m, F1, F2 at 20 m)
to larger than 2 for scale 9 (patches of diameter 1 m, F1, F2 at 100 m) (Fig 4.6F).

I also considered an asymmetric configuration where the exit of the nest was
set in the direction of F1. This asymmetry favors the number of first discoveries of
F1 in relation to F2 even in the absence of F3. This means that O(1,2) and O(1,2,3)

will be lower than 1. For instance, in Fig 4.7E at scale 1 without F3, O(1,2) = 0.5
means that F1 is discovered first twice more often than F2, purely due to nest
exit asymmetry. The lower O(1,2) and O(1,2,3), the stronger this effect of nest exit
asymmetry. The predictions for the asymmetric effect are very different between
the two models because in the Model, the limitation of exploring around the nest
covers an area that is biased towards F1 more strongly than in the diffusive model
(Fig 4.8).

In scenario ”Distance scale”, without F3, the effect of the nest’s exit asymmetry
becomes stronger for increasing scales (decreasing O(1,2)) down to an asymptotic
value below 0.2 (F2 discovered first one every five times) (Fig 4.7A). This pattern
is opposite to the predictions from the diffusive model where the asymmetry effect
decreases for larger scales (where O1,2 increases from 0.3 to 0.6, not shown). Since
nest exit is also oriented towards F3, the presence of F3 attenuates the asymmetry
effect, especially at the smallest scale where it nearly compensates for it. Here, the
masking effect is maximal over all explored scenarios (Fig 4.7B). This attenuation
of the asymmetry effect tends to vanish for larger scales, and so does the masking
effect. Compared to the diffusive model, the masking effect is lower at small scales
but becomes higher for larger scales (F1 and F2 50 to 100m away from the nest).

With increased patches size located 100 m away from nest (Fig 4.7C), O1,2 '
0.2 for every size: the size of the patch remains too small for having a compensating
effect upon the nest exit asymmetry, and the distance effect dominates (same
odds as the largest scale of distances). Note that, in the diffusive model, this odd
decreases with scale, meaning that the increased size of F1 has an effect upon
its discovery as first (not shown). In the presence of F3, there is a little effect
with small patches (scale=1, f = 0.2m). But, while O1,2 stay constant with scale,
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Figure 4.6: Odds and masking effect in symmetrical scenarios. (A) Odd of hitting
the flower 1 (F1) before flower 2(F2), with and without flower 3 (FR3), in function of
the distance scale. (B) Masking effect in the function of the distance scale for the Model
with and without attraction. (C) Same as A but for the Size scale. (D) Same as B but
for the Size scale. (E) Same as A but for the Distance and Size Scale. (F) Same as D
but for the Distance and Size scale.
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Figure 4.7: Odds and masking effect in asymmetrical scenarios.(A) Odd of hitting
the flower 1 (F1) before flower 2(F2), with and without flower 3 (FR3), in function of
the distance scale. (B) Masking effect in the function of the distance scale for the Model
with and without attraction. (C) Same as A but for the Size scale. (D) Same as B but
for the Size scale. (E) Same as A but for the Distance and Size Scale. (F) Same as D
but for the Distance and Size scale.
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Figure 4.8: Presence map of the asymmetrical configuration. (A) Model with
the attraction component (B) Model without the attraction component. The red dots
symbolize the flowers

O1,2,3 increases (to O1,2,3 ' 0.5), as in the symmetrical scenario. Due to the
asymmetry of exploration, the masking effect increases faster than the one given
by the diffusive model as F3 size increases (Fig 4.7D).

In contrast to the symmetrical configuration, the effect of the scale in the
scenario ”Distance and size scale” is not monotonic, as it compounds both distance
and size effects (Fig 4.7E). At small scales (from F1 and F2 at 20m and f =
0.2m), the distance effect dominates, and both odds decrease with scale. For
scales beyond scale 4 (F1 and F2 at 50m and f = 0.5), the odd O1,2 ' 0.2 like
in the two previous scenarios, but O1,2,3 increases because the size effect becomes
dominant.

As far as the masking effect is concerned (Fig 4.7F), the non monotonic trend
of O1,2,3 still translates into a monotonic trend. The composition of decreasing
trend due to distance scale and increasing trend due to scale size translates into
an increasing trend, dominated by size effect, yet with a slower slope than for size
alone. In this scenario, the mixed effects of the patches’ size and distance upon
the masking effect display the largest contrast to predictions from the diffusive
model, which is dominated by the distance effect.

4.2.3 Conclusion

In both symmetrical and asymmetrical nest exit orientations, the Model’s predic-
tions are primarily influenced by the scale effect, whereas the diffusive model’s
predictions are primarily influenced by the distance effect. Consequently, the
masking effect in the Model is similar for both orientations, with parallel trends
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and a slight shift. In contrast, the diffusive model is highly sensitive to orientation
and produces opposing trends.

This analysis in very simple and theoretical scenarios shows the importance
of taking into account the attraction component (in comparison to a diffusive
model) of The Model when looking at the probability of discovering flowers. They
produce predictions that could be easily tested experimentally with the use of
artificial flowers.

4.3 Predictions at ecologically relevant scales

In this section, I will analyze the probabilities of finding flowers in more realis-
tic scenarios than the previous sections, where several flowers are randomly dis-
tributed around the nest.

4.3.1 The probability for a flower to be discovered

For a flower to be pollinated, it must first be located. I will begin by examining
the relationship between flower density and the likelihood of discovery, which is
expected to have a significant correlation with pollination probability.

I estimated these probabilities in function of the distance between the flowers
and the nest by creating environments with a uniform distribution of flowers. The
environment around the nest was divided into bins with a width of 10 meters as
in figure 4.9. I simulated trajectories starting at the nest and counted how many
encounters there were in each bin. Each probability P was calculated following :

P =
Nv

T

Nf

(4.3)

where Nv is the total number of visits in the bin, T is the total number of
simulated trajectories and Nf is the number of flowers in the bin.

I estimated the probabilities of flowers to be discovered (and thus potentially
pollinated) by bees in a simulated field characterized by a random and uniform
distribution of flowers, an average density of 1.3 10−4 flowers/m2, and a diameter
of 70 cm.

Using these conditions, I simulated 1000 foraging trips, each of them lasting
900 seconds, and for each flower, I computed the probability to be found in a given
trip (i.e., the proportion of simulations in which the trajectory overlaps with the
flower’s area of attraction). This probability rapidly falls exponentially with the
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10m

Figure 4.9: Example of how the probability of discovering a flower in the function of
their distance to the nest is calculated following equation 4.3 The color of the trajectory
represents the color of the flower that was discovered by it. Trajectories are just repre-
sented until the ”hit” of the flower. For the purple flowers: Nv = 3, T = 6, Nf = 4 and
P =

3
6
4 = 0.125

distance between the flower and the nest (Fig. 4.10A, red line).
For the sake of simplicity, I assumed that each bee returns to the nest after

discovering a single flower. The first qualitative consequence of the masking effect
is to reduce the probability that flowers distant from the nest are discovered (Fig.
4.10A, blue). The second consequence is that it can introduce a dependence on
flower density on the discovery rate. In the absence of masking, only two factors
determine the probability that a flower is discovered: its size (which determines
the distance from which it can be perceived) and its distance to the nest. In
contrast, when the masking effect is taken into account, the number of discovery
visits also depends on the overall density of flowers in the environment, falling
more sharply with distance when this density is higher (Fig. 4.10C).

This dependence on flower density implies that the area around the nest where
flowers have a high probability of being discovered depends on flower density.
To estimate the size of this area, I set a threshold at a probability of 10−2 per
trip (black dotted line in Fig. 4.10C) and computed the “discovery radius” as
the distance at which flowers’ probability of being discovered remains above this
threshold. At low flower densities, the discovery radius reaches 270 meters and is
limited by the bees’ exploration range (i.e., their tendency to return to the nest
after a certain time, even if no flowers have been found). Due to the masking

75



effect, the discovery radius decreases as flower density increases (Fig. 4.10D).

4.3.2 Flower discovery by a group of bees

I then explored the influence of the masking effect on the total number of flowers
discovered by a population of bees (i.e. a colony).

To study this effect, I computed the total number of flowers discovered by
a bee colony as a function of density and flower size. I considered a field with
flowers of a given size uniformly and randomly distributed with a given flower
density, simulated 100 exploration trips and counted the number of flowers that
were discovered at least once. When I performed this simulation neglecting the
masking effect (i.e., assuming that a bee discovers all the flowers that intersect with
its trajectory, not being affected by previous discoveries), I found that the number
of flowers discovered increased with flower density and flower size, as these factors
make flowers more plentiful and easier to find (Fig. 4.11, dashed lines). However,
the masking effect reverses this trend (Fig. 4.11, solid lines): For low densities, the
masking effect is weak and the number of discovered flowers increases with density,
but at high flower densities, bees become “trapped” around the nest by the flowers
immediately surrounding it, which accumulate most of the first visits. Therefore,
there is an optimum density that results in the highest number of different flowers
discovered. Since the masking effect is stronger for larger flowers, the effect of size
is also reversed, and the number of flowers discovered as first in a foraging loop
decreases as flower size increases (Fig. 4.11, solid lines).

4.3.3 Relaxing assumptions

These results are robust to the assumptions of the model. Firstly, they do not
depend on the precise number of flowers discovered by each bee in each exploration
flight. In many natural conditions, bees may need to discover and visit several
flowers to fill their nectar crop to capacity before deciding to return to the nest.
Taking these multiple discoveries into account (1 to 8 discoveries) leaves results
qualitatively unchanged (Fig 4.11B and Fig 4.12). These results are also robust
to nectar depletion. Once a flower is visited by a bee, its nectar load may be
partially depleted. The next bee visiting the flower may therefore be less inclined
to terminate its exploration flight and return to the nest after visiting this flower,
so the number of flowers discovered by each bee before returning to the nest may
depend on the previous exploration flights performed by other bees in the colony.
To account for flower depletion, I ran a simulation in which bees will ignore any
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Figure 4.10: Probability that flowers are discovered. (A) Probability that a flower is
found as a function of its distance to the nest. We simulated exploration trips in a field
of uniformly distributed flowers with density 1.3 10-4 flowers/m2 and flower size 70 cm.
For each flower, we computed the probability that it was found in each exploration trip,
and we show this probability as a function of the distance between the flower and the
nest. Results were computed over 6000 simulated trips of 900s in 10000 environments
for each density (negligible bar errors not reported). Red line: Probability calculated
without taking into account the masking effect. Blue line: Probability calculated taking
into account the masking effect (i.e., only counting the first flower that was discovered in
each trip). (B) Illustration of the masking effect. The probability of discovering a flower
depends on the presence of other flowers. In a scenario where there are just 2 flowers
equidistant to the nest, both flowers should be visited equally (top). However, if another
flower is added, it can capture visits that would otherwise visit one of the original flowers
(bottom). Black square: nest. (C) Same as (A), but for different flower densities. Red
dotted line: Probability calculated without taking into account the masking effect. This
probability is independent of the density of flowers. Solid lines: Probability calculated
taking the masking effect into account. Black dotted line: threshold probability at which
we consider an area that has a high probability of being pollinated. (D) Radius of the
area around the nest that has a high probability of being discovered (i.e., where the
probability that flowers are discovered is above 10-2) as a function of flower density.
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flower that has already been visited in a previous exploration flight. In this case,
the maximum at intermediate densities is lost, with higher flower density always
leading to more discovered flowers (Fig ??E). However, for large patch sizes, we
know that flower depletion is only partial, and visiting each flower has a cost in
terms of time and energy (bees must land on each flower, even if it is depleted). To
account for this cost, I limited the total number of depleted flowers a bee will visit
before returning to the nest, and in this condition, we again observe a maximum
of discovered flowers at intermediate densities (Figure 4.13 A-D).

4.3.4 Conclusion

Simulations showed the importance of taking into account the ”masking effect”
when estimating the probabilities of discovering flowers. This effect can have a
broader influence on bee foraging success and plant pollination since it can impact
site fidelity by bees and their tendency to develop traplines to regularly revisit
known feeding locations.

According to the simulations, colonies showed a greater tendency to discover
more flowers when they were small and in areas with medium flower densities.
This finding indicates that there may be an optimal flower size and density that
maximizes collective foraging efficiency.
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Figure 4.11: Number of different flowers discovered by a group of bees as a function of
flower density. (A) Number of different flowers discovered in 100 exploration trips of
900 s, in an environment with randomly distributed flowers. Results are averaged over
80 simulations, keeping the environment fixed for every simulation. Solid lines: Number
calculated taking into account the masking effect (i.e., only counting the first flower
that was discovered in each trip). Dotted lines: Results without taking into account
the masking effect. (B) Same as A but for a given flower size (50 cm), and assuming
that each bee will return to the nest only after having discovered a number of flowers
(F) (note that box A corresponds to F=1 for the simulations with masking effect, and
F=∞ for the simulations without masking effect). Line colors represent the maximum
number of flowers discovered by each bee (F).
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Figure 4.12: Number of different flowers discovered by a group of bees as a function of
flower density, when bees discover more than one flower per trip. (A) Number of different
flowers discovered in 100 exploration trips of 900 s, in an environment with randomly
distributed flowers. Results are averaged over 80 simulations, keeping the environment
fixed for every simulation. Solid lines: Number calculated taking into account the
masking effect (i.e., only counting the first flowerF=2 flowers that wereas discovered on
each trip). Dotted lines: Probability calculated without taking into account the masking
effect. (B) Same as (A), but for F=4. (C) Same as (A), but for F=8. Note the difference
of scales for the ordinates.
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Figure 4.13: Number of flowers discovered by a group of bees as a function of flower
density, when accounting for flower depletion. Here we assumed that an individual will
continue exploring after visiting an already-explored flower, and will return to the nest
only when encountering a fresh flower or after a fixed number of visits to already-visited
flowers (Fdepleted). (A) Number of different flowers discovered in 100 exploration trips
of 900 s, in an environment with randomly distributed flowers, and with Fdepleted.=1
(note that this value of Fdepleted makes the simulation identical to that in the main
text). Results are averaged over 80 simulations, keeping the environment fixed for every
simulation. Solid lines: With masking effect. Dotted lines: Without masking effect
(the bee does not react to previous flower encounters, and all discovered flowers were
counted). Colors correspond to different flower sizes. (B) Same as A but with Fdepleted
=2. (C) Same as A but with Fdepleted=4. (D) Same as A but with Fdepleted=8. (E)
Same as A but with Fdepleted=∞. (F) Same as A but for a given flower size (50 cm),
with colors representing the value of Fdepleted
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5.1 Foraging exploration

How pollinators search for flowers is of fundamental importance for behavioral
research, pollination, and conservation but remains poorly quantified. Here I
developed a realistic model of bee search movements based on their observed
tendency to make exploratory loops that start and end at their nest location. I
used a Persistent Turning Walker model which has inspired some developments
in other animals, especially fish (Gupta & Jayannavar, 2022; Kumar et al., 2020;
Evans et al., 2020) as well as in robotics (Masó-Puigdellosas et al., 2019) where
it has been proven to display better coverage properties than classical random
walks (Gupta et al., 2021). This Model, calibrated with real bee behavioral data,
produces two-dimensional trajectories with progressive changes of direction driven
by the continuous evolution of the angular velocity ω(t). Using this approach, I
documented a neglected yet potentially fundamentally important effect for flower
discovery by bees: a perceptual masking effect that influences the probability of
bees finding flowers based on not only their size and spatial location but also the
presence and characteristics of other flowers around them.

Previous models assume that bees explore their environment randomly using
Lévy flights or other diffusive processes (Vallaeys et al., 2017; Reynolds et al.,
2013; Dubois et al., 2021). In a diffusive model, individuals can wander away
from the nest indefinitely if given enough time. In contrast to these models, our
model replicates looping trajectories observed in real bees (Woodgate et al., 2016;
Osborne et al., 2013), which confines the presence of individuals around a nest.
As a consequence of the periodic returns of bees to the nest, their distribution
becomes independent of the time given to explore. This result has the important
consequence that, under the assumptions of The Model, longer simulation duration
results in a more thorough exploitation of the foraging area around the nest, but
not in a larger area.

By explicitly simulating individual trajectories in complex environments, The
Model revealed how the presence of a flower may decrease the probability of discov-
ering another, a phenomenon that I call the “perceptual masking effect”. Although
in this study I strictly focused on flower discovery during exploration flights, re-
sults suggest that the masking effect can have broader influences on exploitation
patterns, bee foraging success, and plant pollination. Indeed, at the individual
level, flower discovery can impact site fidelity by bees and their tendency to de-
velop traplines to regularly revisit known feeding locations (Lihoreau et al., 2012b).
Given the perceptual masking effect, flower patches may not be discovered with

84



the same probability or in the same order, which may impact their likelihood to be
exploited and the ability of bees to develop efficient traplines minimizing overall
travel distances (Reynolds et al., 2013). The masking effect may also influence
the global foraging success of the colony, which depends on the number of flowers
discovered collectively by all the bees of a colony because a flower discovered and
exploited by a bee will be at least partially depleted, giving marginal benefit to
later visitors. For this reason, what counts is not the total number of visits that
bees perform, but rather the total number of different flowers discovered by the
colony. In the simulations, colonies tended to find more flowers when they were
small and at medium densities. This suggests that there is an optimal flower size
and density at which collective foraging efficiency is optimized (although the effect
of size on foraging efficiency will be compounded with the greater reward provided
by bigger flowers on average).

Similar extrapolations of our results on first flower discovery can be made re-
garding pollination. At the plant level, we found that flowers distant from the nest
were more often visited in low-density environments. Since bees disseminate pollen
(and thus mediate plant reproduction) when visiting flowers, this may generate
lower probabilities of pollination at high flower densities, by which the area that
is pollinated around the nest decreases as the density of flowers increases. If this
prediction is verified in future studies, this would mean that the overall distribu-
tion of flower patches directly impacts their pollination and should be taken into
account when designing strategies for crop production and assisted pollination.

This search model is a scaffold for future quantitative characterization of the
movement of bees, or any central place forager, across time and landscapes. Al-
though I limited our study to flower discovery probability, and therefore only
provided predictions for first flower discovery, the model could be used to inves-
tigate the full foraging trips of bees, and how they change through time as bees
acquire experience with their environment and develop spatial memories (Collett
et al., 2013). It would be particularly interesting to integrate this exploration
model into existing learning exploitation models proposed to replicate route for-
mation by bees (Lihoreau et al., 2012a; Reynolds et al., 2013; Dubois et al., 2021)
and to study the dynamics of resource exploitation by populations of bees (Becher
et al., 2016). Once a flower is discovered, its location can be learned, and new ex-
ploration may start from it, ultimately allowing for the establishment of traplines.
This would be modeled via a modification of the attraction component, which can
be modified to point toward previously-discovered flowers instead of the nest. Im-
portantly, model predictions (flower discovery probability, visitation order, flight
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trajectories) can be experimentally tested and the model calibrated for specific
study species. This will facilitate the improvement and validation of potential ap-
plications. As discussed above, robust predictive models of bee movements includ-
ing both exploration and exploitation would be particularly useful for improving
precision pollination (to maximize crop pollination), pollinator conservation (to
ensure population growth and maintenance), but also in ecotoxicology (to avoid
exposure of bees to agrochemicals) and legislation (to avoid unwanted gene flow
between plants). Beyond pollinators, our minimal persistent turning walker model
could be calibrated to apply to a wide range of species, providing a data-based
quantification and predictions for further exploration of the broader interactions
between central place foraging animals and their environment.

5.2 Beyond exploration: Foraging optimization
A century ago, pioneers in animal cognition, such as Charles H. Turner and Karl
von Frisch (Von Frisch, 1965; Dona & Chittka, 2020), ignited a renewed interest
in studying the cognitive abilities of bees. Subsequent research has demonstrated
that bees possess a range of cognitive abilities, including olfactory, visual, and
tactile learning (Schubert et al., 2002), path integration (Collett & Collett, 2000),
social learning (Leadbeater & Chittka, 2007), concept learning (Avarguès-Weber
& Giurfa, 2013), numerosity (Chittka & Geiger, 1995; Dacke & Srinivasan, 2008),
and metacognition (Perry & Barron, 2013). Due to their ease of maintenance
and manipulation, abundance, adaptability to new foraging tasks, and constant
foraging behavior, honey bees and bumblebees are popular choices for studying
insect foraging behavior

Bees exhibit a foraging behavior that involves visiting a sequence of flower
patches spread out in their surroundings and collecting nectar from a certain
number of flowers during each visit. Studies have revealed that bees tend to
follow specific rules when visiting a patch of flowers. They move between flowers
by selecting the nearest unvisited flower and often maintain their direction for
several subsequent movements (Ohashi et al., 2007; Saleh & Chittka, 2007; Pyke,
1978) . Bees also decide when to leave a patch and move on to another one. These
foraging behaviors, which are guided by innate rules, represent simple cognitive
strategies for maximizing foraging efficiency.

One interesting behavior observed during the study of bee foraging behavior
is the establishment of traplines (Ohashi et al., 2007; Lihoreau et al., 2012b).
Traplines are stable routes that bees establish between the same patches of flowers,
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revisiting them in a consistent order during foraging expeditions. Recent research
has shown that bees establish traplines by minimizing the total distance traveled,
selecting the shortest path from their nest to all the flowers and back to their nest
(Lihoreau et al., 2012a,b). The process of finding the shortest path between a set
of points is analogous to the ”Traveling Salesman Problem,” a math problem that
requires testing all options to determine the optimal solution.

Only a few models have been developed to explore how foraging strategies
can arise (Reynolds et al., 2013; Dubois et al., 2021). Their models suggest that
bees compare multi-leg routes to find the shortest path. In summary, in their
models, a foraging bout for a bee comprises a sequence of movements and flower
visits starting from the moment it leaves the nest until it returns to it. In both
models, bees jump from flower to flower with a probability based on a matrix of
transition probabilities. The learning across successive bouts is made by adjusting
the transition probabilities.

In Reynolds et al. (2013), this adjustment is made at the end of each bout by
considering the total distance traveled. By contrast, in Dubois et al. (2021), the
probability to move between each flower is adjusted ”on line” during the bout and
it doesn’t depend on the distance itself but rather on the fact that a transition from
one flower to another result in the bee receiving positive or negative reinforcements
after finding a rewarding flower or an unrewarding one, respectively (note that each
flower can only be visited successfully once per bout). Figure 5.1 shows a flowchart
of their model.

Two metrics are used by Dubois et al. (2021) to compare the output of their
model with experimental data collected by Lihoreau et al. (2012b) In this study,
the authors gathered the visitation sequence of bumblebees in a pentagon array
of artificial flowers. The closest distance between flowers was 50m. (Fig 5.2).

The two metrics are the quality of the route (QL) and a similarity index (SI )
between flower visitations sequences. The quality is calculated with

QL =
F 2

d

QLopt
(5.1)

where F is the number of rewarding flowers visited during a foraging bout and
d is the net length of all transition movement traveled during the foraging bout.
This quality is standardized between 0 and 1 by the quality of the optimal route
QLopt (this is, the shortest possible route to visit all 5 flowers)

The similarity index between two consecutive foraging bouts a and b is calcu-
lated with

87



Leave the nest

Yes

No
Is the

first use
of this vector in

this bout?

Apply negative
reinforcement

Go back to the
nest

Chose a flower

Collect nectar
Is there

nectar on the
flower?

No

No

Apply positive
reinforcement

Is the
crop full?

Yes

Is the
maximum
distance
reached?

No

YesYes

Figure 5.1: Flowchart summarizing the model presented in Dubois et al.
(2021) Rectangles represent actions performed by a bee. Diamonds indicate condi-
tional statements.
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Figure 5.2: Spatial configuration of artificial flowers In Lihoreau et al. (2012b)
(big pentagone) d = 50. In Lihoreau et al. (2011) (small pentagone), d = 4.

SIab = sab
2lab

(5.2)

where sab represents the number of flowers in transitions found in both sequences
and lab the length of the longest flower visitation sequence between i and j multi-
plied by 2 to make sure that SIab = 1occurs only when two consecutive sequences
sharing the same transitions also have the same length. (see Dubois et al. (2021)
for more details)

The predictions made by their models closely resemble the experimental data
of (Lihoreau et al., 2012b) (Big pentagon, Fig 5.3). However, it doesn’t fit the ex-
perimental data of similar studies where the distance between flowers was smaller.
This is the case for data collected by (Lihoreau et al., 2011) (Small pentagon, Fig
5.4). In their study, Lihoreau et al. (2011) collected visitations sequences in a
similar pentagon flower array where the closest distance between flowers was 4m.

As I showed in Chapter 4, the probability of discovering flowers depends on
the scale of the environment and the relative position of the flowers.

In Dubois et al. (2021), the authors use an initial distance-based probability
matrix that was chosen to be inversely proportional to the square distance between
each element.

The initial matrix is obtained using the coordinates of all flowers and the nest
to compute the distance between each pair of entities. Then, the probability P to
go from a flower i to a flower j is determined by :

P (i→ j) =
1
dn

ij∑
j

1
dn

ij

(5.3)

where dij is the distance between the flower i and the flower j and n an expo-
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Figure 5.3: Comparisons of experimental and simulated route qualities. Com-
parisons of route qualities and route similarities between simulations and experimental
data

90



Foraging bout Foraging bout

Li
ho

re
au

et
al

.2
01

1
(E

xp
.d

at
a)

D
ub

oi
s

et
al

.2
02

1
(S

im
ul

at
ed

da
ta

)
Th

e
M

od
el

(S
im

ul
at

ed
da

ta
)

U
ni

fo
rm

m
at

rix
(S

im
ul

at
ed

da
ta

)

Route quality Route similarity
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Figure 5.5: Probability of visiting each flower when starting at the nest for the different
initial matrix.

nent arbitrarily chose. In their study n = 2. This design was chosen because it
approximated closely the probabilities to find the flowers using a simple random
walk (Dubois et al., 2021).

To enlighten the importance of designing the initial matrix (when the bee is
still in exploratory mode) on the learning curve, I tested two additional cases:
a uniform matrix, and the matrix predicted by the Model (with the parameters
calibrated as in Chapter 3).

To develop the latter one, I simulated 100000 trajectories from the nest and
counted how many flowers were discovered on each path. From there, I determined
the probability of encountering each flower when beginning at the nest. I then
replicated this procedure for trajectories originating at each individual flower.

First, we will take a look at how the initial matrix differs between Dubois
et al. (2021) and the Model (Fig. 5.5). At a big scale, in the big pentagon, the
initial matrix calculated from The Model is close to the one from Dubois et al.
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(2021) when starting from the nest, but the central place foraging component of
the model has a visible effect on these statistics when starting from a flower (e.g.
Flower 3) such that they become independent of the distance. At this scale, the
masking effect is not very visible because there are few and small flowers. For the
matrix calculated from The Model in the small pentagon, we can clearly see the
effect of the initial direction. It’s a ballistic regime rather than a diffusive one.

As far as the similarity is concerned, the learning algorithm of Dubois et al.
(2021) converges always to a high similarity, independently of the initial matrix.
This corresponds to the dynamics experimentally observed in the big pentagon
(Fig 5.3) but not for the smaller one (Fig 5.4).

As far as the progression of route quality is concerned, the Model matrix yields
the same results as Dubois et al. (2021) for the large pentagon (Fig 5.3), but yields
lower quality in the small one (Fig 5.4). The ballistic bias towards the farthest
flower is the worst initial condition for the learning of an optimized foraging route,
and indeed, this bias will stabilize and will lead to a sub-optimal solution.

For comparison, I tested the same learning algorithm with the uniform initial
matrix (the probability to go to each flower is the same). At the large scale,
the routes converge towards lower qualities than for Dubois et al. (2021) and the
Model. At the small scale, this uniform matrix produces routes of similarly low
quality as the Model-matrix predictions.

To sum up, in this preliminary attempt to combine the Model in the learning
context, we observe that the initial matrix with a bias toward the closest flowers (1
and 5) allows to produce visitation sequence with high quality. Without this initial
bias, the final quality is lower (Fig 5.3). To further the analysis, the comparison
between the three cases should be pursued at the detailed level of how routes
evolve with time.

5.3 Open questions
I enunciated an exploration model calibrated with one set of experimental data.
The Model could also be confronted with more experimental data, especially on
statistics of first flower discovery.

For now, the Model is only able to replicate the exploration part of the foraging
behavior. However, it should be possible to add more behavioral components to
take into account learning, motivation, or the effect of the natural landscapes on
the navigation (Menzel et al., 2019).

I propose a behavioral exploration model that is governed by a function of the
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target angular speed ω∗, which operates in an ”all or nothing” fashion. Specifically,
the model switches from 0 when homing is not activated to η∗ when it is activated,
with the homing vector ~H dictating the direction of movement. To integrate this
movement model into a learning framework, such as the one presented in Dubois
et al. (2021), a temporal sequence of targeted angular speeds is required. One
possible hypothesis is that the learning of routes involves the acquisition of a suc-
cession of visual snapshots. Accordingly, we can associate a ”direction-controlling”
vector with each snapshot and update the vector that governs ω∗ whenever a fa-
miliar snapshot is encountered. This presents an opportunity to establish links
with underlying neural structures that have been previously modeled for snapshot
learning (Ardin et al., 2016; Müller et al., 2018).

Cognitive components at larger time scales can be regulated by the parameter
α, which determines the duration before the ”return phase” in each loop. In an
exploration context, we can imagine that α starts with a low value that encour-
ages explorations around the nest. If the search is unsuccessful, α can increase
with time. Reynolds et al. (2007b) describe such a behavior and involve a ”Lévy
flight” type of movement in a context of optimizing discoveries. Since their bees
actually do loops, ”Lévy flight” is not really appropriate, but the concept of ”Lévy
loops” could emerge to denote such behaviors. On the other hand, if the search
is successful and energy is obtained, α could adopt higher values to reflect the
availability of energy. As such, α may serve as an indicator of both cognitive (i.e.,
exploring farther due to lack of findings) and physiological (i.e., energy status)
components.

The parameter η(t) representing the force of the attraction could also be gen-
eralized to produce different types of trajectories. Here, I decided to produce
elongated loops by switching the values of η(t) from 0 to η∗ but it is possible to
have a constant value that produces circular trajectories. It is also possible to
reflect a ”motivation component” in the sense that high values produce straight
movements toward the target. This could mean that we can have low values during
the exploration phases and higher ones during the exploitation of resources.
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Appendix A

Modeling bee movement shows
how a perceptual masking effect
can influence flower discovery

This appendix is published in PLOS Computational Biology.
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Abstract
Understanding how pollinators move across space is key to understanding plant mating pat-

terns. Bees are typically assumed to search for flowers randomly or using simple movement

rules, so that the probability of discovering a flower should primarily depend on its distance

to the nest. However, experimental work shows this is not always the case. Here, we

explored the influence of flower size and density on their probability of being discovered by

bees by developing a movement model of central place foraging bees, based on experimen-

tal data collected on bumblebees. Our model produces realistic bee trajectories by taking

into account the autocorrelation of the bee’s angular speed, the attraction to the nest (hom-

ing), and a gaussian noise. Simulations revealed a « masking effect » that reduces the

detection of flowers close to another, with potential far reaching consequences on plant-pol-

linator interactions. At the plant level, flowers distant to the nest were more often discovered

by bees in low density environments. At the bee colony level, foragers found more flowers

when they were small and at medium densities. Our results indicate that the processes of

search and discovery of resources are potentially more complex than usually assumed, and

question the importance of resource distribution and abundance on bee foraging success

and plant pollination.

Author summary

Understanding how pollinators move in space is key to understand plant reproduction

and its consequences on terrestrial ecosystems. Current models assume simple movement

rules that predict flowers are more likely to be visited—and hence pollinated—the closer

they are to the pollinators’ nest. Here we developed an explicit movement model that

incorporates realistic features of bumblebee behaviour, and calibrated it with experimental

data collected in naturalistic conditions. Our model shows that the probability to visit a

flower does not only depend on its position, but also on the position of other flowers

around that may mask it from the forager. This perceptual masking effect means that
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pollination efficiency depends on the density and spatial arrangement of flowers around

the pollinators’ nest, often in counter-intuitive ways. Taking these effects into account

may be key for improving practical actions in precision pollination and pollinator

conservation.

Introduction

Pollinators, such as bees, wasps, flies, butterflies, but also bats and birds, mediate a key ecosys-

temic service on which most terrestrial plants and animals, including us humans, rely on.

When foraging for nectar, animals transfer pollen between flowers, which mediates plant

reproduction. Understanding how pollinators move, find and choose flowers is thus a key

challenge of pollination ecology [1]. In particular, this may help predict and act on complex

pollination processes in a context of a looming crisis, when food demand increases and popu-

lations of pollinators decline [2,3].

Foraging pollinators have long been assumed to move randomly [4–7] or use hard wired

movement rules such as visiting the nearest unvisited flower [8], exploiting flower patches in

straight line movements [9], navigating inflorescences from bottom to top flowers [10], or

using win-stay lose-leave strategies [11]. Accordingly pollination models relying on these

observations typically predict diffusive movements in every direction [12]. However, recent

behavioural research shows this is not true when animals forage across large spatial scales [13].

In particular, studies using radars to monitor the long distance flight paths of bees foraging in

the field demonstrate that foragers learn features of their environment to navigate across land-

scapes and to return to known feeding locations [14,15]. This enables them to develop short-

cuts between feeding sites [16] and use efficient multi-destination routes (traplines)

minimizing overall travel distances [17,18]. These routes are re-adjusted each time a feeding

site is depleted and new ones are discovered [19].

How bees learn such foraging routes has been modelled using algorithms implementing

spatial learning and memory [20–22]. While this has greatly advanced our understanding of

bee exploitative movements patterns, none of these models have looked at search behaviour,

either assuming insects already know the locations of all available feeding sites in their envi-

ronment or discover them according to fixed probabilistic laws (e.g. the probability to discover

a flower at a given location is proportional to 1/L2 where L represents the distance to that

flower [20–22]).

However, an increasing number of experimental data indicates that this is not the case.

Firstly, bees, like many pollinators, are central place foragers so that every foraging trip starts

and ends at the nest site [23]. This implies that their range of action is limited. Recordings of

bee search flights show how individuals tend to make loops centered at the nest when explor-

ing a new environment and look for flowers [14,23]. These looping movements are not com-

patible with the assumption that bees make diffusive random walks or Lévy flights [24,25].

Secondly, the spatial structure of the foraging environment itself may also greatly influence

flower discovery by bees. In particular, the probability of finding a flower heavily depends on

the location of the flower visited just before, ultimately influencing the direction and geometry

of the routes developed by individuals [17–20,26,27]. Since bees are more attracted by large

flowers than by smaller ones [28], this suggests that small isolated flowers could be missed if

they are located next to a larger patch. Such « masking effect » on the probability to visit spe-

cific flowers depending on the presence of other flowers around could have important conse-

quences for bee foraging success, for instance by precluding the discovery of some highly
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rewarding flowers. This could also influence plant pollination, if bees are spatially constrained

to single flower patches and plant outcrossing is limited.

Here we explored these potential effects by developing a model of bee search movement

simulating the tendency of bumblebees to make loops around their nest. We used our model

to examine the probability for bees to discover flowers in environments defined by resources

of various sizes and abundances. We hypothesized that looping movements characteristic of

bee exploratory flights combined with perceptual masking effects by which the probability of

finding given flowers is affected by the presence of others, would result in strikingly different

predictions for flower discovery rates than the typical diffusive random walk movements.

Model background

Our model was designed to describe exploratory behaviour of bees, render realistic trajectories

with regard to their motion and account for their “central place foraging” constraints to

remain in the vicinity of their nest, with regular returns to it. We used bumblebees as model

system to calibrate our bee movement model since their flights have been best described in the

field [14,17–20,26–29] and we had access to experimental data (see below). We then needed to

compute the probability of finding a given flower, a problem that pertains to the field of First

Passage Time statistics and splitting probabilities (i.e. whether a target is hit sooner than

another one) realized by a random walker with range-limited trajectories [30]. Two main

approaches exist for rendering exploratory trajectories of animals (or any active matter): the

Active Brownian Particle [31] and the Persistent Random Walker (or run-and-tumble [32]).

Active Brownian Motion

Active Brownian Motion and its derivatives describe trajectories by a stochastic process gov-

erning the particle’s velocity [33]. These models can incorporate a central place foraging com-

ponent through two main mechanisms: harmonic potentials and stochastic resetting.

Harmonic potentials trap the particle in the vicinity of the trap center, yielding a Non Equi-

librium Stationary State (NESS) in the large-time limit [34–40] with particles orbiting around

the center [33]. Stochastic resetting forces the particle back to the origin periodically [41],

either instantaneously (1D [42], 2D [43], following a ballistic trajectory [44] or via an intermit-

tent potential [38,45,46]).

These models can provide in some cases analytical solutions for the distribution of animals

around the center, and in some cases even for the time needed to discover a target (mean first

passage time, MFPT) [47–50]. For instance, the resetting rate can be tuned in order to mini-

mize MFPT ([42,51–53], see [54] for generalization to any dimension and motion models, and

[55] for generalizations to any resetting model).

However, these results are only valid under two strong assumptions: long times so that par-

ticles are in the diffusive regime, and low target density. Both of these assumptions are broken

in realistic datasets of bumblebee exploration. Furthermore, none of these models provide tra-

jectories that resemble those measured for bumblebees during exploration flights (Fig 1C).

Persistent Turning Walker

We, therefore, considered the Persistent Turning Walker (PTW) model which is an extension

of the Persistent Random Walker (PRW [56], see [57–59] for a previous use in modeling ants

behaviour from a cognitive perspective).

While in PRW a trajectory is considered as a succession of straight moves separated by

instantaneous jumps in the orientation domain, in PTW a trajectory is considered as a
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succession of moves with constant curvatures, separated by instantaneous jumps in the curva-

ture domain.

Such a description allows for a continuously defined velocity with time-correlation of the

curvature. A stochastic version has been used to model fish motion behaviour [60,61].

The PTW model describes motion at constant speed, where the heading is driven by an

Ornstein-Uhlenbeck process acting on the turning speed. In free-range condition, it yields a

diffusion process on large time scales [62]. It has been used recently to model an active direc-

tional filament in 2D free-range conditions [63], and some large-time properties (NESS and

MFPT) have been derived when in presence of a steering potential acting upon the heading

[64].

Since it yields trajectories that are similar to our data, we used the PTW model as a basis for

our own model.

To confine trajectories around the nest, we added an intermittent steering potential acting

on the turning speed and that activates when bees decide to return to the nest. Thanks to this

steering potential, our model describes the full exploration trips of bees (starting and ending at

the nest location), which facilitates comparisons between model simulations and experimental

data.

Fig 1. Illustration of the model. (A) Example of theoretical trajectory. Blue line: Trajectory during the exploration phase. Black line: Trajectory during the

return phase. Black circle: bee. Black square: nest. H is the homing vector pointing towards the nest.~v is the velocity of the bee. φ is the angle between~v and ~H .

(B) Evolution of the return strength (η) over time. At time = τ, η switches from 0 (no attraction) to η*. (C) Example of an experimental trajectory [71]. Each dot

represents the position of a bee recorded by a harmonic radar approximately every 3s. Different colors represent different flight loops around the nest. The

sequential order of the loops is represented by the color gradient where the first loops have lightest colors (yellow to purple). (D) Same as C, but for a simulated

trajectory with parameters γ = 1.0 s−1, σ = 0.37 rad/ s1/2, preturn = 1/30 s−1 and η* = 0.2 s-1.

https://doi.org/10.1371/journal.pcbi.1010558.g001
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Results

Description of the model

For the sake of simplicity, here we modelled bee movements in 2D, neglecting altitude. We

assumed that bees fly at constant speed v and with varying angular speed, ω(t) (signed turning

rate of the heading, measured in radians per second) which is governed by

doðtÞ ¼ � g½oðtÞ � o∗ðtÞ�dt þ sdWðtÞ; ð1Þ

where γ is an auto-correlation coefficient and σdW(t) introduces a gaussian noise, governed by

a Wiener process [65]. The two terms of Eq 1 have opposing effects: The first term pushes the

angular speed towards a target angular speed, ω*(t), with a strength controlled by the auto-cor-

relation coefficient γ. The second term introduces noise in the angular speed making bees

change direction. Therefore, high values of γ and low values of σ lead to smoother and more

predictable trajectories. Setting ω*(t) = 0 leads to a trajectory with no preferred direction,

whose angular speed changes smoothly around zero. This is the simplest condition, resembling

a diffusive process in which the animal moves aimlessly and gets further and further from its

initial position as time goes by [62,63,66–69].

We modelled central place foraging by adding an attraction component to the model in

order to make bees return to the nest after a certain amount of time. To implement the return

to the nest (homing) we assumed that bees can locate the direction of their nest at any time

using path integration (i.e. navigational mechanism by which insects continuously keep track of

their current position relative to their nest position [70]), and define a homing vector, ~HðtÞ that

points towards the nest [13]. Then, we assumed that the bee tries to target the angular speed

that will align its trajectory with the homing vector, so we modeled the target angular speed as

o∗ðtÞ ¼ ZðtÞφðtÞ; ð2Þ

Where φ(t) is the angle between the bee’s velocity~vðtÞ and the homing vector ~HðtÞ (Fig 1A),

and η (t) is the attraction strength that controls a switch between the exploration and return

phases: During the initial exploration phase we make η (t) = 0, so that bees explore randomly

and distance themselves from the nest, while during the return phase we make η(t) = η*> 0, so

that the bee has a continuous tendency to turn towards the nest. We assumed that bees switch

instantaneously between the exploration and return phases, so

ZðtÞ ¼ 0 if t < t

ZðtÞ ¼ Z∗ if t � t
ð3Þ

(

where τ is the time at which the switch happens (Fig 1B). This switch may happen at any time,

with a constant probability per unit of time, preturn. This means that the switching times are

exponentially distributed, with an average time of 1/ preturn.

The model therefore has four main parameters: The auto-correlation (γ) and the random-

ness (σ) control the characteristics of the flight, while the probability per unit of time to return

(preturn) and the strength of the attraction component (η*) control the duration of each explo-

ration trip. Here we have described the continuous version of the model, but to implement it

numerically we discretized it in finite time steps (see Methods).

Calibration with experimental data

In principle, our model can describe search movements of any central place forager. Here we

explored its properties focusing on a model species for which we had access to high-quality
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experimental data: the buff-tailed bumblebee Bombus terrestris. We used the dataset of Pas-

quaretta et al. [71] in which the authors used a harmonic radar to track 2D trajectories during

exploration flights of bees in the field. Bees carrying a transponder were released from a colony

nest box located in the middle of a large and flat open field, and performed exploration flights

without any spatial limitation. The radar recorded the location of the bees every 3.3s over a dis-

tance of ca. 1km (Fig 1C). In these experiments the bees were tested until they found artificial

flowers randomly scattered in the field. We used 32 tracks from 18 bees.

To quantify the experimental trajectories, we first divided tracks into flight “loops”, each

loop being a segment of trajectory that starts and ends in the nest (Fig 1C). This extraction

yielded 207 loops. We then computed four observables for each loop (Fig 2):

• Loop length: Total length of the trajectory for a given loop (Fig 2A).

• Loop extension: Maximum distance between the bee and the nest for a given loop (Fig 2B).

• Number of intersections: Number of times the loop intersects with itself (Fig 2C).

• Number of re-departures, where a re-departure is defined as three consecutive positions

such that the second position is closer to the nest than the first one, but the third is again fur-

ther away than the second. These events indicate instances in which the bee seemed to be

returning towards the nest and turned back (Fig 2D).

We extracted these four parameters from each loop and found substantial variability in all

of them (Fig 2, black lines). We then used this information to find the optimal model parame-

ters, aiming to describe not only the average value of each observable, but also their distribu-

tions. To do so, we performed simulations covering exhaustively all relevant combinations of

Fig 2. Distributions of the four observables, for experimental and simulated data. Black lines: experimental data.

Red lines: model predictions using the optimal γ = 1.0 s−1, σ = 0.37 rad/s1/2, preturn = 1/30 s−1 and η* = 0.2 s-1. Insets:

Schematic of each observable. (A) Cumulative distribution function of loop lengths for our full dataset. (B) Same as A,

but for the loops extension. (C) Probability distribution of the number of trajectories intersects per 100m traveled. (D)

Same as C, but for the number of re-departures per 100 m traveled.

https://doi.org/10.1371/journal.pcbi.1010558.g002
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our four parameters. For each combination of parameters, we simulated 1000 loops, extracted

the distributions for the four observables, and chose the parameter combination that best

approximated the experimental distributions for the four observables (see Methods). This

procedure resulted in the optimal parameters γ = 1.0 s−1, σ = 0.37 rad/s1/2, preturn = 1/30 s−1

and η* = 0.2 s-1, which give a good approximation to the experimental distributions of observables

(Fig 2, red lines), and trajectories that qualitatively resemble the experimental ones (Fig 1D).

Note that our calibration procedure yields a switching time from the “exploration phase” to

the “return phase” of 30 seconds on average. This may be an underestimation since the radar

can detect targets at a maximum distance of about 1km [72] and bumblebees can fly beyond

this limit depending on forage availability in the landscape [73]. However, to the best of our

knowledge, these are so far the best data available.

Model predictions

Attraction to the nest limits the exploration range of bees. An unrealistic feature of

existing diffusive models is their long-term behaviour: If given enough time, the forager

reaches extremely far distances with respect to the nest, never returning to it. To illustrate the

impact of central place foraging on the simulation of bee exploration range, we compared our

model with attraction to the nest to an alternative one in which the attraction is absent (i.e.,

making η* = 0 in Eq 3). We simulated 1000 trajectories with each model for different amounts

of time, and studied how the distribution of bees around the nest changes over time. As

expected, attraction retains bees tightly localized around the nest (~250m) (Fig 3A and 3B,

blue). More interesting, it makes the distribution of bees stationary: In a model without attrac-

tion, bees constantly wander away from the nest, and their distribution depends on how much

time we allow for the bee to explore, becoming wider as time goes by (Fig 3B and 3C, orange).

In contrast, the attraction component makes the forager return to the nest periodically, so the

distribution remains stationary once the forager has had enough time to perform more than

one loop on average (Fig 3D, blue).

This demonstrates the importance of taking into account the attraction component when

modelling bee movements (instead of considering a diffusive model) to be able to reproduce

realistic trajectories.

To highlight the effect of behavioural parameters upon the spatial extent covered by explo-

ration, we present in S1 Fig the marginal effect of the three main parameters (α, η* and σ) on

the range explored by the bee, as measured by the long-time Mean Square Displacement

(MSD), i.e. the variance of the stationary distribution (also known as the Non-Equilibrium Sta-

tionary State, or NESS, of the motion process in Statistical Physics).

Distant flowers are more often discovered in low-density environments. We estimated

the probabilities of flowers to be discovered (and thus potentially pollinated) by bees in a simu-

lated field characterized by a random and uniform distribution of flowers, an average density of

1.3 10−4 flowers/m2 and a diameter of 70cm (for the sake of simplicity here a “flower” is equiva-

lent to a feeding location, which may be a single flower or a plant containing several ones). We

assumed that a flower was discovered by a bee whenever its distance to the bee’s trajectory was

below a threshold, given by the bee’s visual perception range (see Methods). We focused on

vision rather than olfaction because it is the main sense that bees use to accurately navigate the

last meters towards a particular flower, while olfaction is used at a broader spatial scale [74].

Using these conditions, we simulated 1000 foraging trips, each of them lasting 900 seconds, and

for each flower we computed the probability to be found in a given trip (i.e., the proportion of

simulations in which the trajectory overlaps with the flower’s area of attraction). This probabil-

ity falls exponentially with the distance between the flower and the nest (Fig 4A, red line).
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We then tested the influence of a potential perceptual “masking effect” in which the proba-

bility of discovering a flower does not only depend on its distance to the nest, but can also be

influenced by the presence of other flowers around it (Fig 4B). This dependence exists because

a bee that finds a flower might not continue its trajectory, but might rather stop to collect nec-

tar. Once nectar collection is over, the bee may continue exploring, but after visiting a few

flowers the bee returns to the nest to unload its crop. For example, in a scenario where there

are just two flowers equidistant to the nest, both flowers should be visited equally. However, if

another flower is added, it can capture visits that would otherwise visit one of the original flow-

ers, reducing the probability that it is discovered (Fig 4B). For the sake of simplicity, we

assumed that each bee returns to the nest after discovering a single flower. The first qualitative

Fig 3. Probability of presence of a bee around the nest. (A) Overlay of 1000 trajectories with attraction to the nest (η* = 0.2 s−1) simulated during 900 s.

(B) Example trajectories with and without attraction, simulated during 500 s. The nest is located at (0,0). Blue: model with attraction. Orange: model

without attraction. (C) Same as A but without attraction to the nest (η* = 0). (D) Probability to find a bee below a given distance to the nest (i.e., inverse

cumulative probability distribution for the distance to the nest) after different amounts of time. Blue: model with attraction (stationary distribution of bees).

Orange: model without attraction (non-stationary distribution of bees).

https://doi.org/10.1371/journal.pcbi.1010558.g003
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consequence of the masking effect is to reduce the probability that flowers distant to the nest

are discovered (Fig 4A, blue). The second consequence is that it can introduce a dependence

of flower density on discovery rate. In the absence of masking, only two factors determine the

probability that a flower is discovered: its size (which determines the distance from which it

can be perceived) and its distance to the nest. In contrast, when the masking effect is taken

into account, the number of discoveries visits also depend on the overall density of flowers in

the environment, falling more sharply with distance when this density is higher (Fig 4C).

This dependence with flower density implies that the area around the nest where flowers

have a high probability of being discovered depends on flower density. To estimate the size of

this area, we set a threshold at a probability of 10−2 per trip (black dotted line in Fig 4C), and

computed the “discovery radius” as the distance at which flowers’ probability of being

Fig 4. Probability that flowers are discovered. (A) Probability that a flower is found as a function of its distance to the nest. We simulated exploration trips in

a field of uniformly distributed flowers with density 1.3 10−4 flowers/m2 and flower size 70 cm. For each flower, we computed the probability that it was found

in each exploration trip, and we show this probability as a function of the distance between the flower and the nest. Results were computed over 6000 simulated

trips of 900s in 10000 environments for each density (negligible bar errors not reported). Red line: Probability calculated without taking into account the

masking effect. Blue line: Probability calculated taking into account the masking effect (i.e., only counting the first flower that was discovered in each trip). (B)

Illustration of the masking effect. The probability of discovering a flower depends on the presence of other flowers. In a scenario where there are just 2 flowers

equidistant to the nest, both flowers should be visited equally (top). However, if another flower is added, it can capture visits that would otherwise visit one of

the original flowers (bottom). Black square: nest. (C) Same as (A), but for different flower densities. Red dotted line: Probability calculated without taking into

account the masking effect. This probability is independent of the density of flowers. Solid lines: Probability calculated taking the masking effect into account.

Black dotted line: threshold probability at which we consider an area that has a high probability of being pollinated. (D) Radius of the area around the nest that

has a high probability of being discovered (i.e., where the probability that flowers are discovered is above 10−2) as a function of flower density.

https://doi.org/10.1371/journal.pcbi.1010558.g004
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discovered remains above this threshold. At low flower densities, the discovery radius reaches

270 meters, and is limited by the bees’ exploration range (i.e., their tendency to return to the

nest after a certain time, even if no flowers have been found; compare this radius with the dis-

tribution in Fig 3C). Due to the masking effect, the discovery radius decreases as flower density

increases (Fig 4D).

Populations of bees find more flowers at intermediate densities. We then explored the

influence of the masking effect on the total number of flowers discovered by a population of

bees (i.e. a bumblebee colony).

To study this effect, we computed the total number of flowers discovered by a bee colony as

a function of density and flower size. We considered a field with flowers of a given size uni-

formly and randomly distributed with a given flower density, simulated 100 exploration trips,

and counted the number of flowers that were discovered at least once. When we performed

this simulation neglecting the masking effect (i.e., assuming that a bee discovers all the flowers

that intersect with its trajectory, not being affected by previous discoveries), we found that the

number of flowers discovered increased with flower density and flower size, as these factors

make flowers more plentiful and easier to find (Fig 5, dashed lines). However, the masking

effect reverses this trend (Fig 5, solid lines): For low densities, the masking effect is weak and

the number of discovered flowers increases with density, but at high flower densities, bees

become “trapped” around the nest by the flowers immediately surrounding it, which accumu-

late most of the visits. Therefore, there is an optimum density that results in the highest num-

ber of different flowers discovered. Since the masking effect is stronger for larger flowers, the

effect of size also reversed, with the number of discovered flowers decreasing as flower size

increases (Fig 5, solid lines).

These results are robust to the assumptions of the model. Firstly, they do not depend on the

precise number of flowers discovered by each bee in each exploration flight. In many natural

conditions, bees may need to discover and visit several flowers to fill their nectar crop to capac-

ity before deciding to return to the nest. Taking these multiple discoveries into account (1 to 8

discoveries) leaves our results qualitatively unchanged (Figs 5B and S2).

Our results are also robust to nectar depletion. Once a flower is visited by a bee, its nectar

load may be partially depleted. The next bee visiting the flower may therefore be less inclined

to terminate its exploration flight and return to the nest after visiting this flower, so the num-

ber of flowers discovered by each bee before returning to the nest may depend on the previous

exploration flights performed by other bees in the colony. To account for flower depletion, we

ran a simulation in which bees will ignore any flower that has already visited in a previous

exploration flight. In this case, the maximum at intermediate densities is lost, with higher

flower density always leading to more discovered flowers (S3E Fig). However, for large patch

sizes, we know that flower depletion is only partial and visiting each flower has a cost in terms

of time and energy (bees must land on each flower, even if it is depleted). To account for this

cost, we limited the total number of depleted flowers a bee will visit before returning to the

nest, and in this condition we again observe a maximum of discovered flowers at intermediate

densities (S3A–S3D Fig).

Discussion

How pollinators search for flowers is of fundamental importance for behavioural research, pol-

lination and conservation but remains poorly quantified. Here we developed a realistic model

of bee search movements based on their observed tendency to make exploratory loops that

start and end at their nest location. We used a Persistent Turning Walker model which has

inspired some developments in other animals, especially fish [41–43] as well as in robotics [44]
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where it has been proven to display better coverage properties than classical random walks

[45]. Our model, calibrated with real bee behavioural data (i.e. bumblebee radar tracks), pro-

duces two-dimensional trajectories with progressive changes of direction driven by the contin-

uous evolution of the angular velocity ω(t). Using this approach, we documented a neglected

yet potentially fundamentally important effect for flower discovery by bees: a perceptual

Fig 5. Number of different flowers discovered by a group of bees as a function of flower density. (A) Number of

different flowers discovered in 100 exploration trips of 900 s, in an environment with randomly distributed flowers.

Results are averaged over 80 simulations, keeping the environment stable for every simulation. Solid lines: Number

calculated taking into account the masking effect (i.e., only counting the first flower that was discovered in each trip).

Dotted lines: Results without taking into account the masking effect. (B) Same as A but for a given flower size (50 cm),

and assuming that each bee will return to the nest only after having discovered a number of flowers (F) (note that

box A corresponds to F = 1 for the simulations with masking effect, and F =1 for the simulations without masking

effect). Line colors represent the maximum number of flowers discovered by each bee (F).

https://doi.org/10.1371/journal.pcbi.1010558.g005
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masking effect that influences the probability of bees to find flowers not only based on their

size and spatial location, but also on the presence and characteristics of other flowers around

them.

Previous models assume that bees explore their environment randomly using Lévy flights

or other diffusive processes [12,21,22]. In a diffusive model, individuals are able to wander

away from the nest indefinitely if given enough time. In contrast to these models, our model

replicates looping trajectories observed in real bees [14,29], which confines the presence of

individuals around a nest (Fig 3). As a consequence of the periodic returns of bees to the nest,

their distribution becomes independent of the time given to explore. This result has the impor-

tant consequence that, under the assumptions of our model, longer simulation durations result

in a more thorough exploitation of the foraging area around the nest, but not in a larger area.

By explicitly simulating individual trajectories in complex environments, our model

revealed how the presence of a flower may decrease the probability of discovering another, a

phenomenon that we call “perceptual masking effect”. Although in this study we strictly

focused on flower discovery during exploration flights, our results suggest that the masking

effect can have broader influences on exploitation patterns, bee foraging success and plant pol-

lination. Indeed, at the level of individual bees, flower discovery can impact site fidelity by for-

agers and their tendency to develop traplines to regularly revisit known feeding locations [17].

Given the perceptual masking effect, flower patches may not be discovered with the same

probability or in the same order, which may impact their likelihood to be exploited and the

ability for bees to develop efficient routes minimizing overall travel distances between different

flowers [21]. The masking effect may also influence the global foraging success of the colony,

which depends on the number of flowers discovered collectively by all the bees of a colony,

because a flower discovered and exploited by a bee will be at least partially depleted, giving

marginal benefit to later visitors. For this reason, what counts is not the total number of visits

that bees perform, but rather the total number of different flowers discovered by the colony. In

our simulations, colonies tended to find more flowers when they were small and at medium

densities (Fig 5). This suggests that there is an optimal flower size and density at which collec-

tive foraging efficiency is optimized (although the effect of size on foraging efficiency will be

compounded with the greater reward provided by bigger flowers on average).

Similar extrapolations of our results on first flower discovery can be made regarding polli-

nation. At the plant level, we found that flowers distant to the nest were more often visited in

low density environments (Fig 4). Since bees disseminate pollen (and thus mediate plant sexual

reproduction) when visiting flowers, this may generate lower probabilities of pollination at

high flower densities, by which the area that is pollinated around the nest decreases as the den-

sity of flower increases. If this prediction is verified in future studies, this would mean that the

overall distribution of flower patches directly impacts their pollination and should be taken

into account when designing strategies for crop production and assisted pollination.

Our search model is a scaffold for future quantitative characterization of the movement of

bees, or any central place forager, across time and landscapes. Although we limited our study

to flower discovery probability, and therefore only provided predictions for first flower discov-

ery, the model could be used to investigate the full foraging trips of bees, and how they change

through time as bees acquire experience with their environment and develop spatial memories

[13]. It would be particularly interesting to integrate this exploration model into existing learn-

ing exploitation models proposed to replicate route formation by bees [20–22] and to study

dynamics of resource exploitation by populations of bees [22,75]. Once a flower is discovered,

its location can be learned, and new exploration may start from it, ultimately allowing for the

establishment of traplines. This would be modelled via a modification of the attraction compo-

nent, which can be modified to point towards previously-discovered flowers instead of the
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nest. Importantly, such model predictions (flower discovery probability, visitation order, flight

trajectories) can be experimentally tested and the model calibrated for specific study species.

This will greatly facilitate improvement and validation for potential applications. As discussed

above, robust predictive models of bee movements including both exploration and exploita-

tion would be particularly useful for improving precision pollination (to maximize crop polli-

nation), pollinator conservation (to ensure correct population growth and maintenance), but

also in ecotoxicology (to avoid exposure of bees to harmful agrochemicals) and legislation (to

avoid unwanted gene flow between plants). Beyond pollinators, our minimal persistent turn-

ing walker model could be calibrated to apply to a wide range of species, providing a data-

based quantification and predictions for further exploration of the broader interactions

between central place foraging animals and their environment.

Methods

The codes used to perform all the simulations, data analyses and figures are available in the S1

Data.

Modeling nest and flower detection

Bumblebees can detect an object when it forms an angle of 3˚ on the retina of their compound

eyes [76]. Therefore, for every model simulation, we set the flowers’ size and calculated the dis-

tance at which the bees are able to detect them. We call this the “perception distance”. We con-

sidered that a bee discovered a flower when it was located at a distance to the bee inferior to

the perception distance. We did not take into account the olfactory perception since it could

be less reliable because of other factors like wind direction and the flower’s species. If taken

into account, this would only impact the perception distance of the flowers and the results

would not be qualitatively different.

Analysis of experimental data

We used the dataset of Pasquaretta et al. [71] in which the authors tracked exploratory flight

trajectories of bumblebees in the field with a harmonic radar. Bees carrying a transponder

were released from a colony nest box located in the middle of a large and flat open field, and

performed exploration flights without any spatial limitation. The radar recorded the location

of the bees every 3.3s over a distance of ca. 800 m, and with an accuracy of approximately 2 m

[14]. The bees were tested until they found one of three 20-cm artificial flowers randomly scat-

tered in the field. The position of these flowers was changed whenever one of them was found

to prevent the bees from learning their location, but their presence may still affect the bees’ tra-

jectories. We first attempted to control for this factor by removing all trajectories where bees

passed near an artificial flower, but this introduced a significant bias towards short trajectories,

because bees are less likely to find a flower when they stay near the nest. Therefore, we used

the full dataset, and in order to remove the effect of the bees hovering around and exploiting

the artificial flowers, we summarized all the points detected in an area within 6 m of an artifi-

cial flower as a single point at the location of the flower. This threshold of 6 m was derived

from a 4 m perception distance corresponding to 20 cm flowers, plus 2 m to account for the

experimental noise. All trajectories are given in S2-section V.

Dividing trajectories into loops

In order to quantify the trajectories, we divided the tracks into “loops”. We defined a loop as a

fragment of a trajectory that starts when the bee leaves that nest and finishes when it enters
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back. The colony nest box used in the experiments was rectangular, with a diagonal of 37 cm,

meaning that the bees were able to see it at approximately 7m. However, in this case we set a

higher threshold of 13 m to avoid including learning flights (i.e., flights during which the bee

makes characteristic loops to acquire visual memories of target locations such as the nest for

navigation [70]) into the set of exploratory data. While our model does not produce learning

flights, for consistency we also used the 13-m radius around the nest in our simulations.

Model simulations

All simulations start at the nest (which is located at position 0,0), with a random initial head-

ing, and with zero angular velocity. To simulate the trajectories, we discretized the model

using a time step Δt = 0.01. Therefore, at every step we calculated position~xðt þ DtÞ with:

~xðt þ DtÞ ¼~xðtÞ þ~vðtÞDt: ðM1Þ

Then, the direction θ(t + Δt) was calculated using

yðt þ DtÞ ¼ yðtÞ þ oðtÞDt: ðM2Þ

The velocity v(t + Δt) was calculated with

~vðt þ DtÞ ¼ v
cosðyðt þ DtÞÞ

sinðyðt þ DtÞÞ

 !

; ðM3Þ

where v is the speed, which is a constant in our model.

Lastly, we calculated the angular speed ω(t + Δt). For this, we used the Green function for

Ornstein-Uhlenbeck processes over Δt (see [60] for details), obtaining

oðt þ DtÞ ¼ oðtÞe� gDt þ o∗ð1 � e� gDtÞ þ ε; ðM4Þ

where ω* is the target angular speed (governed by Eqs 2 and 3), and ε is a random number

governed by a Gaussian distribution with mean 0 and variance

s2 ¼ s2 1þ e� 2gDt

2g
: ðM5Þ

Flower discovery models

Our basic model with masking effects assumes that a bee returns to the nest after discovering

one flower and will ignore any flowers encountered on its way back. We implemented this by

simply stopping our simulation when the bee discovers the first flower (if no flowers are dis-

covered, the simulation continues until the central-place-foraging component makes the bee

return to the nest).

Our multiple-discovery model (Figs 5B and S3) assumes that a bee will continue its original

trajectory after each discovery (i.e. for simplicity we do not include the landing on the discov-

ered flowers), and will return to the nest after discovering F flowers (so we stop the simulation

when the bee discovers the F-th flower).

Our model with flower depletion (S4 Fig) takes into account the order in which bees make

their exploration trips. If a flower has been discovered by a bee in a previous trip, it’s marked

as depleted. We stop the simulation when a bee discovers a non-depleted flower, or after dis-

covering a maximum number Fdepleted of depleted flowers.
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Parameter fitting

In order to fit the parameters of the model, we explored systematically all relevant combina-

tions within the relevant range for each parameter. To do this more efficiently, we transformed

one of the four parameters of the model into a more tractable one: We substituted the variance

of the noise introduced by the Wiener’s process (σ) for the variance of the angular speed ω,

which has a more direct impact on the experimental data. These two variables are related by

[60]:

Var oð Þ ¼ O ¼
s2

2g
:

We also defined

a ¼
1

preturn
:

After these transformations, our model is defined by the four parameters (γ, O, α, η*). To

find the optimal values of these parameters, we exhaustively explored the 4-dimensional

parameter space in the relevant range of each parameter: We explored all 6160 different com-

binations resulting from the following values of each parameter:

• γ 2 (0.5,0.6,0.7,0.8,0.9,1.0,1.1,1.2,1.3,1.4,1.5)

• O 2 (0.01,0.03,0.05,0.06,0.07,0.08,0.09,0.1,0.125,0.15)

• α 2 (10,20,25,30,35,40,50)

• η* 2 (0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4)

For each combination of parameters, we simulated 103 loops and computed the distribution

of each of the four observables defined in Fig 2. Then we computed the distance between the

experimental distribution of each observable and the simulation results: for the two continuous

observables (loop length and extension), this distance was computed as the area between the

observed cumulative distribution function and the simulated one. For the two discrete observ-

ables (numbers of self-intersection and re-departures), the distance was computed as the sum of

the absolute differences between all points of the two probability distributions. This yielded four

distributions of distances over the 6160 combinations. Since the four observables are heteroge-

neous (two are continuous measures, two are discrete), we had to re-normalize the distances to

ensure that each observable is given the same weight. We did this by translating the distances

into their quantile in their corresponding cumulative distribution (e.g., a distance translated

into 0.12 means that it is within the lowest 12%). Finally, we retained the combination that

yielded the lower quantile averaged over the four observables (see S1 Text, section 2).

The best parameters combination was found to be: γ = 1.0 s−1, O = 0.07 rad2/s-2, α = 30 s
and η* = 0.2 s−1. It corresponds to the marginal local minima for the four observables (see S1

Text, section 2). Simulated trajectories closely resemble data trajectories (Fig 1B), and the

model is able to produce loops with an elongated shape, as well as a diversity of loop lengths.

This unique set of parameters assumes that all bees are identical, while in reality inter-indi-

vidual differences exist (S2 Fig), for example due to differences in age, experience, learning or

size [77,78]. However, each bee can display a large diversity of loop parameters, covering a

similar range as the overall population (S1 Fig). We therefore considered that separate fits for

each individual were not justified. The fact that our model reproduces not only the mean but

also the variability of the four observables we defined (Fig 3) supports this choice.
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Supporting information

S1 Fig. Sensitivty of the Mean Square Displacement (MSD) to the behavioural parameters.

We numerically computed the MSD (m2), varying each parameter in turn, leaving the others

unchanged (keeping their values fitted from the dataset). The MSD was estimated using 10^5

simulated loops for each point, using the default parameters γ = 1.0 s−1, σ = 0.37 rad/ s1/2, pre-

turn = 1/30 s−1 and η* = 0.2 s-1 and varying (A) α (s), (B) η* (s−1) or (C) O ¼ s2

2g
(rad2/s-2) while

leaving the other parameters unchanged. Note that for smaller values of η*, the distribution

tends to (non stationary) diffusion, so, some loops are censored at one hour. The effect of

a ¼ 1

pturn
, the mean duration in exploration mode, appears quite linear, which is not surprising

but would call for an analytical demonstration. During the return phase, η* represents the

intensity of the steering (the potential stiffness), since for smaller values of η*, the relaxation to

the preferred turning speed would be less effective. As η* gets smaller and smaller values, the

steering vanishes, so that the bee would adopts a diffusive behavior, with no Non Equilibrium

Stationary State (NESS). On the other hand, we observe a clear effect of saturation for large

enough values of η*, meaning that the effectiveness of the steering is limited by the relaxation

time gamma. Finally, O controls the level of noise the turning speed can undergo. For O = 0,

the turning speed has no noise at all, and the process becomes deterministic: bee would fly

from the nest ballistically in the exploration phase and go back ballistically to the nest after

turning maneuver induced by the steering process. In this case, given the initial condition of

null turning speed, the trajectories would push bees the farthest from the nest during explora-

tion (hence, maximal MSD), while larger values of O would drive bees to meander around the

nest, leading to trajectories that remain closer to the nest.

(TIFF)

S2 Fig. Variability of each observable across individuals in the experimental dataset. (A)

Loop lengths (m) for each bee, as defined in Fig 3 in the main text. Boxplots, show the median

(middle line), 25 and 75% quantiles (box), range of data within 1.5 interquartile deviations

(whiskers), and outliers (dots). (B) Same as A but for the loop extension (maximum distance

between the nest and the individual). (C) Same as A, but for the number of re-departures per

100m traveled. A re-departure is defined as three consecutive positions such that the second

position is closer to the nest than the first one, but the third is again further away than the sec-

ond. (D) Same as A but for the intersections (number of times the loop intersects with itself).

(TIFF)

S3 Fig. Number of different flowers discovered by a group of bees as a function of flower

density, when bees discover more than one flower per trip. (A) Number of different flowers

discovered in 100 exploration trips of 900 s, in an environment with randomly distributed

flowers. Results are averaged over 80 simulations, keeping the environment fixed for every

simulation. Solid lines: Number calculated taking into account the masking effect (i.e., only

counting the first flowerF = 2 flowers that wereas discovered on each trip). Dotted lines: Proba-

bility calculated without taking into account the masking effect. (B) Same as (A), but for F = 4.

(C) Same as (A), but for F = 8. Note the difference of scales for the ordinates.

(TIFF)

S4 Fig. Number of flowers discovered by a group of bees as a function of flower density,

when accounting for flower depletion. Here we assumed that an individual will continue

exploring after visiting an already-explored flower, and will return to the nest only when

encountering a fresh flower or after a fixed number of visits to already-visited flowers (Fde-

pleted). (A) Number of different flowers discovered in 100 exploration trips of 900 s, in an
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environment with randomly distributed flowers, and with Fdepleted. = 1 (note that this value of

Fdepleted makes the simulation identical to that in the main text). Results are averaged over 80

simulations, keeping the environment fixed for every simulation. Solid lines: With masking

effect. Dotted lines: Without masking effect (the bee does not react to previous flower encoun-

ters, and all discovered flowers were counted). Colors correspond to different flower sizes. (B)

Same as A but with Fdepleted = 2. (C) Same as A but with Fdepleted = 4. (D) Same as A but with

Fdepleted = 8. (E) Same as A but with Fdepleted =1. (F) Same as A but for a given flower size (50

cm), with colors representing the value of Fdepleted.

(TIFF)

S1 Text. Raw results and figures.

(PDF)

S1 Data. Data and code sources for analysis and simulations.

(ZIP)
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Simulation code
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UnNid.h

1 # ifndef Un_Nid
2 # define Un_Nid
3
4 # include " Geometrie .h"
5
6 /* Definition types */
7
8 typedef struct {
9 /*/ Description du nid/*/

10 UneCoordonnee position ;
11 double orientationSortie ;
12
13 double taille ;
14 double distancePerception ;
15
16 } UnNid ;
17
18 /* Methodes */
19
20 void UnNid_setPosition (UnNid *ceNid , UneCoordonnee cettePosition );
21 UneCoordonnee UnNid_getPosition (UnNid *ceNid);
22
23 void UnNid_setOrientationSortie (UnNid *ceNid , double cetteDirection );
24 double UnNid_getOrientationSortie (UnNid *ceNid);
25
26 void UnNid_setTaille (UnNid *ceNid , double cetteTaille , double

cetteAcuiteVisuelle );
27 double UnNid_getTaille (UnNid * ceNid);
28
29 double UnNid_getDistancePerception (UnNid *ceNid);
30
31 void UnNid_setLeNid (UnNid *ceNid , UneCoordonnee cettePosition , double

cetteTaille , double cetteDirection , double cetteAcuiteVisuelle );
32
33
34 # endif

UnNid.c

1 /* implementations des fonctions */
2 # include <stdio.h>
3 # include <math.h>
4 # include <stdlib .h>
5 # include <gsl/ gsl_randist .h>
6
7 # include "UnNid.h"
8 # define anglePerception (3.0* M_PI /180.0)
9

10
11 // La position

1



12 void UnNid_setPosition (UnNid *ceNid , UneCoordonnee cettePosition )
13 {
14 ceNid -> position = cettePosition ;
15 }
16
17 UneCoordonnee UnNid_getPosition (UnNid *ceNid)
18 {
19 return ceNid -> position ;
20 }
21
22 //L’orientation
23 void UnNid_setOrientationSortie (UnNid *ceNid , double cetteDirection )
24 {
25 ceNid -> orientationSortie = cetteDirection ;
26 }
27
28 double UnNid_getOrientationSortie (UnNid *ceNid)
29 {
30 return ceNid -> orientationSortie ;
31 }
32
33 // Taille
34 void UnNid_setTaille (UnNid *ceNid , double cetteTaille , double

cetteAcuiteVisuelle )
35 {
36 ceNid -> taille = cetteTaille ;
37 ceNid -> distancePerception = (ceNid -> taille /2)/tan( cetteAcuiteVisuelle

/2);
38 }
39
40 double UnNid_getTaille (UnNid * ceNid)
41 {
42 return (ceNid -> taille );
43 }
44
45 // Distance de perception
46 double UnNid_getDistancePerception (UnNid *ceNid)
47 {
48 return (ceNid -> distancePerception );
49 }
50
51 // Initialisation Fleur
52 void UnNid_setLeNid (UnNid *ceNid , UneCoordonnee cettePosition , double

cetteTaille , double cetteDirection , double cetteAcuiteVisuelle )
53 {
54 UnNid_setPosition (ceNid , cettePosition );
55 UnNid_setOrientationSortie (ceNid , cetteDirection );
56 UnNid_setTaille (ceNid , cetteTaille , cetteAcuiteVisuelle );
57 }

UneFleur.h
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1 # ifndef Une_Fleur
2 # define Une_Fleur
3
4 # include " Geometrie .h"
5
6 typedef struct {
7 /*/ Description de la fleur/*/
8 UneCoordonnee position ;
9 double taille ;

10 double distancePerception ;
11
12 } UneFleur ;
13
14 /* Methodes */
15
16 void UneFleur_setPosition ( UneFleur *cetteFleur , UneCoordonnee

cettePosition );
17 UneCoordonnee UneFleur_getPosition ( UneFleur * cetteFleur );
18
19 void UneFleur_setTaille ( UneFleur *cetteFleur , double cetteTaille );
20 double UneFleur_getTaille ( UneFleur * cetteFleur );
21
22 void UneFleur_setDistancePerception ( UneFleur *cetteFleur , double

visualAcuity );
23 double UneFleur_getDistancePerception ( UneFleur * cetteFleur );
24
25 void UneFleur_setLaFleur ( UneFleur *cetteFleur , UneCoordonnee

cettePosition , double cetteTaille , double visualAcuity );
26
27 #endif

UneFleur.c

1 /* implementations des fonctions */
2 # include <stdio.h>
3 # include <math.h>
4 # include <stdlib .h>
5 # include <gsl/ gsl_randist .h>
6
7 # include " UneFleur .h"
8
9 // Position

10 void UneFleur_setPosition ( UneFleur *cetteFleur , UneCoordonnee
cettePosition )

11 {
12 cetteFleur -> position = cettePosition ;
13 }
14
15 UneCoordonnee UneFleur_getPosition ( UneFleur * cetteFleur )
16 {
17 return (cetteFleur -> position );
18 }
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19
20 // Taille
21 void UneFleur_setTaille ( UneFleur *cetteFleur , double cetteTaille )
22 {
23 cetteFleur -> taille = cetteTaille ;
24 }
25 double UneFleur_getTaille ( UneFleur * cetteFleur )
26 {
27 return (cetteFleur -> taille );
28 }
29
30 // Distance de perception
31 void UneFleur_setDistancePerception ( UneFleur *cetteFleur , double

visualAcuity )
32 {
33 cetteFleur -> distancePerception = (cetteFleur -> taille /2)/tan(

visualAcuity /2);
34 }
35
36 double UneFleur_getDistancePerception ( UneFleur * cetteFleur )
37 {
38 return ( cetteFleur -> distancePerception );
39 }
40
41 // Initialisation Fleur
42 void UneFleur_setLaFleur ( UneFleur *cetteFleur , UneCoordonnee

cettePosition , double cetteTaille , double visualAcuity )
43 {
44 UneFleur_setPosition (cetteFleur , cettePosition );
45 UneFleur_setTaille (cetteFleur , cetteTaille );
46 UneFleur_setDistancePerception (cetteFleur , visualAcuity );
47 }

UnBourdon.h

1 # ifndef Un_Bourdon
2 # define Un_Bourdon
3
4 # include " Geometrie .h"
5 // # include " UnBourdonInit .h"
6
7
8 /* Definition types */
9 typedef struct struct_bb_init

10 {
11 // sims params
12 double speed;
13 double deltaT ;
14 double visualAcuity ;
15
16 // state variables
17 double X, Y;
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18 double theta;
19 double omega;
20
21 // behav parms
22 double varianceOmega ;
23 double alpha;
24 double gamma;
25 double eta;
26
27 } UnBourdonInit ;
28
29
30 typedef struct {
31
32 // sims params
33 double speed;
34 double deltaT ;
35 double acuiteVisuelle ;
36
37 // state variables
38 UneCoordonnee position ;
39 double theta;
40 double omega;
41
42 // behav parms
43 double varianceOmega ;
44 double alpha;
45 double gamma;
46 double eta;
47
48 /* accessory variable */
49 double sepsilon ;
50 double expGammaDt ;
51 double phi;
52 double wStar;
53
54 } UnBourdon ;
55
56
57 /* Methodes */
58
59 void UnBourdon_Init ( UnBourdon *ceBourdon , UnBourdonInit cetInit );
60 void UnBourdon_setBehav ( UnBourdon *ceBourdon , double ceAlpha , double

ceOmega , double ceGamma );
61 void UnBourdon_Reset ( UnBourdon *ceBourdon , UneCoordonnee cettePosition ,

double ceTheta , double ceOmega );
62 void UnBourdon_setEta ( UnBourdon *ceBourdon , double ceEta);
63
64
65 void UnBourdon_NextPosition ( UnBourdon *leBourdon , UneCoordonnee *

cetEndroitCible , gsl_rng *rng);
66
67
68 // access
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69 UneCoordonnee UnBourdon_getPosition ( UnBourdon * ceBourdon );
70 void UnBourdon_setPosition ( UnBourdon *ceBourdon , UneCoordonnee

cetttePosition );
71
72 double UnBourdon_getOmega ( UnBourdon * ceBourdon );
73 double UnBourdon_getEta ( UnBourdon * ceBourdon );
74 double UnBourdon_getTheta ( UnBourdon * ceBourdon );
75 void UnBourdon_setTheta ( UnBourdon *ceBourdon , double ceTheta );
76
77 void UnBourdon_echo ( UnBourdon * ceBourdon );
78
79 # endif

UnBourdon.c

1 # include <stdio.h>
2 # include <math.h>
3 # include <stdlib .h>
4 # include <gsl/ gsl_randist .h>
5
6 # include " UnBourdon .h"
7
8
9 // //////////////////////////////

10 /* Fonctions d’initialisation */
11 // //////////////////////////////
12
13 void UnBourdon_updateAccessoryVariables ( UnBourdon * ceBourdon )
14 {
15 ceBourdon -> sepsilon = sqrt( ceBourdon -> varianceOmega * (1- exp (-2*

ceBourdon ->gamma * ceBourdon -> deltaT )) );
16 ceBourdon -> expGammaDt = exp(-ceBourdon ->gamma*ceBourdon -> deltaT );
17 }
18
19 void UnBourdon_setDeltaT ( UnBourdon *ceBourdon , double ceDeltaT )
20 {
21 ceBourdon -> deltaT = ceDeltaT ;
22 UnBourdon_updateAccessoryVariables ( ceBourdon );
23 }
24
25 void UnBourdon_Init ( UnBourdon *ceBourdon , UnBourdonInit cetInit )
26 {
27 // sims params
28 ceBourdon ->speed = cetInit .speed;
29 ceBourdon -> acuiteVisuelle = cetInit . visualAcuity ;
30
31 // state variables
32 UneCoordonnee posInit = { cetInit .X, cetInit .Y};
33 UnBourdon_setPosition (ceBourdon , posInit );
34 ceBourdon ->theta = cetInit .theta;
35 ceBourdon ->omega = cetInit .omega;
36
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37 // behav parms
38 UnBourdon_setEta (ceBourdon , cetInit .eta);
39 UnBourdon_setBehav (ceBourdon , cetInit .alpha , cetInit . varianceOmega ,

cetInit .gamma);
40
41 // accessory variable
42 UnBourdon_setDeltaT (ceBourdon , cetInit . deltaT );
43 ceBourdon ->phi = 0;
44 ceBourdon ->wStar = 0;
45 }
46
47 void UnBourdon_setBehav ( UnBourdon *ceBourdon , double ceAlpha , double

ceOmega , double ceGamma )
48 {
49 ceBourdon ->alpha = ceAlpha ;
50 ceBourdon -> varianceOmega = ceOmega ;
51 ceBourdon ->gamma = ceGamma ;
52 UnBourdon_updateAccessoryVariables ( ceBourdon );
53 }
54
55 void UnBourdon_Reset ( UnBourdon *ceBourdon , UneCoordonnee cettePosition ,

double ceTheta , double ceOmega )
56 {
57 // state variables
58 ceBourdon -> position = cettePosition ;
59 ceBourdon ->theta = ceTheta ;
60 ceBourdon ->omega = ceOmega ;
61 // accessory variables
62 ceBourdon ->phi = 0;
63 ceBourdon ->wStar = 0;
64 }
65
66 void UnBourdon_setEta ( UnBourdon *ceBourdon , double ceEta)
67 {
68 ceBourdon ->eta = ceEta;
69 }
70
71 // ////////////////////////////////////////////////
72 /* Fonctions pour calculer les variables d’etat */
73 // ////////////////////////////////////////////////
74
75 void CalculPhi ( UnBourdon *leBourdon , UneCoordonnee * targetPos )
76 {
77 double cosPhi ;
78 double sinPhi ;
79 int signPhi ;
80 double phi;
81
82 double costheta = cos(leBourdon ->theta);
83 double sintheta = sin(leBourdon ->theta);
84 double targetHeading = atan2(targetPos ->y-leBourdon -> position .y,

targetPos ->x-leBourdon -> position .x);
85 double cosHeading = cos( targetHeading );
86 double sinHeading = sin( targetHeading );
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87
88 cosPhi = costheta * cosHeading + sintheta * sinHeading ;
89 if ( cosPhi < -1.0) cosPhi = -1.0;
90 if ( cosPhi > 1.0) cosPhi = 1.0;
91
92 sinPhi = costheta * sinHeading - sintheta * cosHeading ;
93 signPhi = copysign (1, sinPhi );
94
95 leBourdon ->phi = signPhi * acos( cosPhi );
96 }
97
98 void CalculOmega ( UnBourdon *leBourdon , UneCoordonnee *cetEndroit , gsl_rng *

rng)
99 {

100 CalculPhi (leBourdon , cetEndroit );
101 leBourdon ->wStar = leBourdon ->phi * leBourdon ->eta;
102 leBourdon ->omega = leBourdon ->omega * leBourdon -> expGammaDt +

leBourdon ->wStar * (1- leBourdon -> expGammaDt ) + gsl_ran_gaussian (rng
, leBourdon -> sepsilon );

103 }
104
105 // //////////////////////////
106 /* Fonctions pour avancer */
107 // //////////////////////////
108
109 void UnBourdon_NextPosition ( UnBourdon *leBourdon , UneCoordonnee *

cetEndroitCible , gsl_rng *rng)
110 {
111 leBourdon -> position .x = leBourdon -> position .x + leBourdon ->speed * cos

(leBourdon ->theta) * leBourdon -> deltaT ;
112 leBourdon -> position .y = leBourdon -> position .y + leBourdon ->speed * sin

(leBourdon ->theta) * leBourdon -> deltaT ;
113 CalculOmega (leBourdon , cetEndroitCible , rng);
114 leBourdon ->theta = leBourdon ->theta + leBourdon ->omega * leBourdon ->

deltaT ;
115 }
116
117 // //////////////////////////////////////
118 /* Fonctions pour retourner des infos */
119 // //////////////////////////////////////
120
121 UneCoordonnee UnBourdon_getPosition ( UnBourdon * ceBourdon )
122 {
123 return (ceBourdon -> position );
124 }
125
126 void UnBourdon_setPosition ( UnBourdon *ceBourdon , UneCoordonnee

cetttePosition )
127 {
128 ceBourdon -> position .x = cetttePosition .x;
129 ceBourdon -> position .y = cetttePosition .y;
130 }
131
132 double UnBourdon_getOmega ( UnBourdon * ceBourdon )
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133 {
134 return (ceBourdon ->omega);
135 }
136
137 double UnBourdon_getEta ( UnBourdon * ceBourdon )
138 {
139 return (ceBourdon ->eta);
140 }
141
142 double UnBourdon_getTheta ( UnBourdon * ceBourdon )
143 {
144 return (ceBourdon ->theta);
145 }
146
147 void UnBourdon_setTheta ( UnBourdon *ceBourdon , double ceTheta )
148 {
149 ceBourdon ->theta = ceTheta ;
150 }
151
152 // ////////
153 /* Echo */
154 // ////////
155 void UnBourdon_echo ( UnBourdon * ceBourdon )
156 {
157 fprintf (stderr ,"\n Bourdon :\n\n");
158 fprintf (stderr ," Speed : %g \n", ceBourdon ->speed);
159 fprintf (stderr ," Variance de omega : %g \n\n", ceBourdon ->

varianceOmega );
160 fprintf (stderr ," Alpha : %g \n\n", ceBourdon ->alpha);
161 fprintf (stderr ," Position : x: %g y: %g \n", ceBourdon -> position .x,

ceBourdon -> position .y);
162 fprintf (stderr ," Eta : %g \n", ceBourdon ->eta);
163 fprintf (stderr ," Theta : %g \n", ceBourdon ->theta);
164 fprintf (stderr ," Omega : %g \n", ceBourdon ->omega);
165 fprintf (stderr ," ------------------\n");
166
167 }

UnEnvironnement.h

1 # ifndef Un_Environnement
2 # define Un_Environnement
3
4 # include "UnNid.h"
5 # include " UneFleur .h"
6 # include " UnBourdon .h"
7 # define MaxNbDeFleurs 4096
8
9 /* Definition types */

10
11 typedef struct {
12 /*/ Le nid /*/
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13 UnNid leNid;
14
15 /*/ Les fleurs /*/
16 int nombreFleurs ;
17 UneFleur laFleur [ MaxNbDeFleurs ];
18
19 } UnEnvironnement ;
20
21
22 /* Methodes */
23 void UnEnv_setPositionNid ( UnEnvironnement *cetEnv , UneCoordonnee

cettePosition );
24 UneCoordonnee UnEnv_getPositionNid ( UnEnvironnement * cetEnv );
25
26 void UnEnv_setOrientationNid ( UnEnvironnement *cetEnv , double

cetteDirection );
27 double UnEnv_getOrientationNid ( UnEnvironnement * cetEnv );
28
29 void UnEnv_setNid ( UnEnvironnement *cetEnv , double cetteTaille ,

UneCoordonnee cettePosition , double cetteDirection , double
cetteAcuiteVisuelle );

30
31 void UnEnv_ajouterLaFleur ( UnEnvironnement *cetEnv , UneCoordonnee

cettePosition , double cetteTaille , double visualAcuity );
32 int UnEnv_getNombreDeFleurs ( UnEnvironnement * cetEnv );
33
34 void UnEnv_setDefault ( UnEnvironnement * cetEnv );
35
36 void UnEnv_echo ( UnEnvironnement * cetEnv );
37
38 double UnEnv_distanceFleur ( UneFleur laFleur , UnBourdon * ceBourdon );
39 int UnEnv_collisionFleur ( UnEnvironnement *cetEnv , UnBourdon * ceBourdon );

// -1 si pas de collision , n si collision avec fleur n
40
41 double UnEnv_distanceNid (UnNid leNid , UnBourdon * ceBourdon );
42 int UnEnv_collisionNid ( UnEnvironnement *cetEnv , UnBourdon * ceBourdon ); //

0 si pas de collision , 1 si collision avec nid. collision = le bourdon
voit le nid

43 int UnEnv_rentrerDansNid ( UnEnvironnement *cetEnv , UnBourdon * ceBourdon );
// 0 si le bourdon n’est pas dans le nid , 1 si il est dedans

44
45 #endif

UnEnvironnement.c

1 /* implementations des fonctions */
2 # include <stdio.h>
3 # include <math.h>
4 # include <stdlib .h>
5 # include <gsl/ gsl_randist .h>
6
7 # include " UnEnvironnement .h"
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8 # include " Geometrie .h"
9 # include " UnBourdon .h"

10
11 /* Ajouter un nid */
12 // position
13 void UnEnv_setPositionNid ( UnEnvironnement *cetEnv , UneCoordonnee

cettePosition )
14 {
15 UnNid_setPosition (&( cetEnv ->leNid), cettePosition );
16 }
17
18 UneCoordonnee UnEnv_getPositionNid ( UnEnvironnement * cetEnv )
19 {
20 return UnNid_getPosition (&( cetEnv ->leNid));
21 }
22
23 // direction
24 void UnEnv_setOrientationNid ( UnEnvironnement *cetEnv , double

cetteDirection )
25 {
26 UnNid_setOrientationSortie (&( cetEnv ->leNid), cetteDirection );
27 }
28
29 double UnEnv_getOrientationNid ( UnEnvironnement * cetEnv )
30 {
31 return UnNid_getOrientationSortie (&( cetEnv ->leNid));
32 }
33
34 // taille
35 void UnEnv_setNid ( UnEnvironnement *cetEnv , double cetteTaille ,

UneCoordonnee cettePosition , double cetteDirection , double
cetteAcuiteVisuelle )

36 {
37 UnNid_setLeNid (&( cetEnv ->leNid), cettePosition , cetteTaille ,

cetteDirection , cetteAcuiteVisuelle );
38 }
39
40 /* Ajouter des fleurs */
41 void UnEnv_ajouterLaFleur ( UnEnvironnement *cetEnv , UneCoordonnee

cettePosition , double cetteTaille , double visualAcuity )
42 {
43 if (cetEnv -> nombreFleurs == MaxNbDeFleurs )
44 {
45 fprintf (stderr ,"\n\ nERROR : Nb de Fleurs Trop Grand : changer dans

UnEnvironnement .h\n\n");
46 exit (-1);
47 }
48 UneFleur_setLaFleur (&( cetEnv -> laFleur [cetEnv -> nombreFleurs ]),

cettePosition , cetteTaille , visualAcuity );
49 cetEnv -> nombreFleurs ++;
50 }
51
52 int UnEnv_getNombreDeFleurs ( UnEnvironnement * cetEnv )
53 {
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54 return cetEnv -> nombreFleurs ;
55 }
56
57 /* Environnement par defaut */
58 void UnEnv_setDefault ( UnEnvironnement * cetEnv )
59 {
60 UnEnv_setPositionNid (cetEnv , LeCentreDuRepere );
61 cetEnv -> nombreFleurs = 0;
62 }
63
64 /* Pour connaitre ce qu’il y a dans l’environnement */
65 void UnEnv_echo ( UnEnvironnement * cetEnv )
66 {
67
68 fprintf (stderr ,"\n Environnement :\n\n");
69 fprintf (stderr ," Nid : x: %g y: %g\n", cetEnv ->leNid. position .x,

cetEnv ->leNid. position .y);
70 fprintf (stderr ," Nombre de fleurs : %d\n", cetEnv -> nombreFleurs );
71 fprintf (stderr ," Position et taille des fleurs : \n");
72 for (int f=0; f<cetEnv -> nombreFleurs ; f++)
73 {
74 fprintf (stderr ,"\t %d: x: %g y: %g taille : %g\n", f, cetEnv ->

laFleur [f]. position .x, cetEnv -> laFleur [f]. position .y,cetEnv ->
laFleur [f]. taille );

75 }
76 fprintf (stderr ," ------------------\n");
77 }
78
79 /* Interactions Environnement - Bourdon */
80 double UnEnv_distanceFleur ( UneFleur laFleur , UnBourdon * ceBourdon )
81 {
82 double distanceFleur ;
83
84 distanceFleur = sqrt(pow( laFleur . position .x - ceBourdon -> position .x ,2)

+ pow( laFleur . position .y - ceBourdon -> position .y ,2));
85
86 return ( distanceFleur );
87 }
88
89 double UnEnv_distanceFleur2 ( UneFleur laFleur , UnBourdon * ceBourdon )
90 {
91 double dx , dy;
92
93 dx = laFleur . position .x - ceBourdon -> position .x;
94 dy = laFleur . position .y - ceBourdon -> position .y;
95 dx *= dx ; dy *= dy ;
96 return (dx+dy);
97 }
98
99 int UnEnv_collisionFleur ( UnEnvironnement *cetEnv , UnBourdon * ceBourdon )

100 {
101 int i;
102 for(i=0;i<cetEnv -> nombreFleurs ;i++)
103 {
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104 if ( UnEnv_distanceFleur2 (cetEnv -> laFleur [i], ceBourdon ) < cetEnv ->
laFleur [i]. distancePerception *cetEnv -> laFleur [i].
distancePerception )

105 return i;
106 }
107 return -1;
108 }
109
110 double UnEnv_distanceNid (UnNid leNid , UnBourdon * ceBourdon )
111 {
112 double distanceNid ;
113
114 distanceNid = sqrt(pow(leNid. position .x - ceBourdon -> position .x ,2) +

pow(leNid. position .y - ceBourdon -> position .y ,2));
115
116 return ( distanceNid );
117 }
118
119 double UnEnv_distanceNid2 (UnNid leNid , UnBourdon * ceBourdon )
120 {
121 double dx ,dy;
122 dx = leNid. position .x - ceBourdon -> position .x;
123 dy = leNid. position .y - ceBourdon -> position .y;
124 dx *= dx ; dy *= dy;
125 return (dx+dy);
126 }
127
128 int UnEnv_collisionNid ( UnEnvironnement *cetEnv , UnBourdon * ceBourdon )
129 {
130 if ( UnEnv_distanceNid2 (cetEnv ->leNid , ceBourdon ) < cetEnv ->leNid.

distancePerception *cetEnv ->leNid. distancePerception )
131 {
132 return 1;
133 } else {
134 return 0;
135 }
136 }
137
138 int UnEnv_rentrerDansNid ( UnEnvironnement *cetEnv , UnBourdon * ceBourdon )
139 {
140 if ( UnEnv_distanceNid (cetEnv ->leNid , ceBourdon ) < cetEnv ->leNid. taille

)
141 {
142 return 1;
143 } else {
144 return 0;
145 }
146 }

main.c

1 # include <stdio.h>
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2 # include <math.h>
3 # include <stdlib .h>
4 # include <gsl/ gsl_randist .h>
5
6 # include " UnBourdon .h"
7 # include " UnEnvironnement .h"
8
9

10 gsl_rng *rng;
11
12 /* les objets */
13 UnEnvironnement lEnviron ;
14 UnBourdon leBourdon ;
15 unsigned int maxTimeStep ;
16 unsigned int modulo3sec ;
17
18 # include " params .h"
19
20 /* pour l’output */
21 unsigned int returnToNest , outOfTime ;
22
23
24 void init ()
25 {
26 fprintf (stderr , " ********* Init ********* \n");
27
28 // ///// Initialisation du rng
29 gsl_rng_env_setup ();
30 rng = gsl_rng_alloc ( gsl_rng_knuthran2 ); // Creer le random number

generator
31
32 UnBourdon_Init (& leBourdon , leBourdonInit );
33
34 UnEnv_setDefault (& lEnviron );
35 UnEnv_setNid (& lEnviron , NestSize , Coordonnee (0 ,0) , NestOrientation ,

leBourdon . acuiteVisuelle );
36
37 maxTimeStep = ( unsigned int)ceil( TmaxLoop / leBourdon . deltaT ) + 1;
38 modulo3sec = ( unsigned int)floor (3/ leBourdon . deltaT );
39
40 // output in tsv
41 printf ("X\tY\n");
42 }
43
44 void run ()
45 {
46 fprintf (stderr , " ********* RUN! ********* \n");
47
48 UneCoordonnee laPositionCible = UnEnv_getPositionNid (& lEnviron );
49
50 unsigned int timeStep , timeToGoNest , timeout ;
51 UneCoordonnee currentPos ;
52
53 for (int laBoucle = 0 ; laBoucle < sampleLoops ; laBoucle ++ )
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54 {
55
56 UnBourdon_Init (& leBourdon , leBourdonInit );
57 UnBourdon_setTheta (& leBourdon , gsl_ran_flat (rng , 0.0, M_PI));
58 timeToGoNest = ( unsigned int) floor( gsl_ran_exponential (rng , leBourdon

. alpha)/ leBourdon . deltaT );
59
60
61 timeStep =0; timeout =0;
62 while ( UnEnv_collisionNid (& lEnviron , & leBourdon ) == 0)
63 {
64 if ( timeStep % modulo3sec == 0 )
65 {
66 currentPos = UnBourdon_getPosition (& leBourdon );
67 printf ("%f\t%f\n",currentPos .x, currentPos .y);
68 }
69 if (timeStep > maxTimeStep -1)
70 {
71 timeout =1;
72 break;
73 }
74 if ( timeStep == timeToGoNest +1) UnBourdon_setEta (& leBourdon , SwitchEta )

;
75 UnBourdon_NextPosition (& leBourdon , & laPositionCible , rng);
76
77 timeStep ++;
78 } // while
79 } // for laBoucle
80 }
81
82 void end ()
83 {
84 }
85
86
87 int main(int argc , char *argv [])
88 {
89 init ();
90 run ();
91 end ();
92 }
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