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Well-posedness and long-time behaviour
of the Stokes-transport equation

Abstract

The Stokes-transport equation models an incompressible, viscous and inhomogeneous fluid, subject to
gravity. It is a reduced model for oceanography and sedimentation. The density is transported by the
velocity field, satisfying at any time the momentum balance between viscosity, pressure and gravity
effects, namely the Stokes equation. In the first part, we establish the global well-posedness of this
system in bounded domains and in the infinite channel, in the weak sense and for Lebesgue initial data.
The unbounded channel case is solved in uniformly local Sobolev spaces, with solutions having infinite
energy. These results are compared with previous works in the whole space and in the plane. In the
second part, we focus on the long-time evolution of the solutions of the Stokes-transport equation in
a periodic channel. We show that a class of monotonous stratified density profiles is stable for small
and regular enough perturbations. We consider no-slip boundary conditions on the velocity field, which
raises mathematical difficulties due to the presence of boundary effects. We obtain explicit algebraic
convergence rates and show that the density rearranges vertically and monotonously, in line with the
common intuition of sedimentation. We also give a refined description of the density profile, involving a
boundary layer expansion in the vicinity of the boundaries. Besides, we extend a previous result obtained
for a related problem, proving that any stationary profile is unstable in low regularity topologies. We
also highlight properties compatible with the conjecture that the density always stratifies. In the last
part, we undertake a numerical study of the evolution of graph density interfaces governed by the Stokes-
transport equation. Several behaviours are observed, from the convergence toward the flat rest interface
to the graph break. We compare our observations with existing theoretical results.

Keywords: incompressible viscous fluid, Stokes-transport, active scalar equation, global well-posedness,
steady Stokes equation, transport equation, long-time behaviour, stability, rearrangement, bound-
ary layers, numerical observation

Caractère bien posé et comportement en temps long de l’équation de Stokes-
transport

Résumé

L’équation de Stokes-transport modélise un fluide incompressible, visqueux et inhomogène, soumis à la
gravité. Il s’agit d’un modèle réduit d’océanographie et de sédimentation. La densité est transportée
par le champ de vitesse du fluide, satisfaisant à tout instant l’équilibre entre les effets de viscosité, de
pression et de gravité, d’après l’équation de Stokes. Dans la première partie, nous établissons le caractère
bien posé de ce système dans les domaines bornés et dans un canal infini, au sens faible et pour des
données intégrables. La cas du canal inclut des solutions d’énergie infinie, impliquant des espaces de
fonctions uniformément localement Sobolev. Ces résultats sont comparés à des travaux antérieurs, dans
l’espace et le plan. Dans la deuxième partie, nous nous concentrons sur le comportement en temps long
des solutions de l’équation de Stokes-transport dans un canal périodique. Nous montrons qu’une classe
de profils stratifiés est stable pour des perturbations assez petites et régulières. Nous supposons le fluide
non-glissant aux bords, ce qui pose des problèmes particuliers dûs aux effets de bords induits. Nous
obtenons des taux de convergence algébriques et montrons que la densité se réarrange verticalement
et de façon monotone. Nous donnons également un développement de type couche limite du profil de
densité à proximité des bords. En outre, nous prouvons, en adaptant un résultat antérieur, que tout
profil stationnaire est instable pour des perturbations peu régulières. Nous mettons enfin en évidence
des propriétés du système, compatibles avec la conjecture selon laquelle la densité tend toujours à se
réordonner. Dans la dernière partie, nous menons une analyse numérique de l’évolution d’interfaces
de densité de type graphe, gouvernée par l’équation de Stokes-transport. Plusieurs comportements sont
observés, de la convergence vers l’équilibre plat à la rupture de graphe. Nous comparons nos observations
à des résultats théoriques existants.

Mots clés : fluide visqueux incompressible, Stokes-transport, active scalar equation, caractère globale-
ment bien-posé, équation de Stokes stationnaire, équation de transport, comportement en temps
long, stabilité, réarrangement, couches limites, observation numérique

Laboratoire Jacques-Louis Lions
Sorbonne Université – Campus Pierre et Marie Curie – 4 place Jussieu – 75005 Paris – France
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Foreword

Everyone possesses the intuition that heavy fluids sink. Nevertheless, the consequences of this
rather simple principle lead to complex evolutions and behaviours. The aim of this thesis is to
study various aspect of the Stokes-transport (ST) equation, which is a reduced system modeling
this phenomenon and illustrating this complexity. The problem writes





∂tρ+ u · ∇ρ = 0
−∆u+∇p = −ρez

divu = 0
ρ|t=0 = ρ0,

(ST)

where ρ represents a fluid density, temperature or buoyancy, transported by a velocity field u
satisfying at any time the balance between the viscosity effects, the pressure gradient ∇p, and the
vertical gravity forcing −ρez. The fluid is also assumed incompressible through the divergence-
free condition on u. All the unknowns depend on time t ≥ 0 and on a space variable x ∈ Ω on
some spatial domain Ω which will be specified later. The system must also be endowed with extra
boundary conditions on u, which are specified later on, depending on the type of spatial domain
considered. This problem belongs to the class of active scalar equations, where the velocity field
depends nonlocally on the quantity advected.

This manuscript is organised as follows. Chapter 1, the introduction, specifies the problem
and its context in Section 1.1, and the three axes of our works, which are the well-posedness
of (ST) in Chapter 2, the long-time behaviour of the solutions in Chapter 3 and a numerical
study of the graph interface problem for (ST) in Chapter 3, respectively in Sections 1.2, 1.3
and 1.4. These latter sections contain summaries and states of the art of the aforementionned
subjects, whereas the corresponding chapter are devoted to the author contributions. The two
publications to which the author contributed are included, namely [Leb22] in Chapter 2 and
[DGL23] in Chapter 3.

The Stokes-transport equation is a reduced model for oceanography, in particular for the
Boussinesq approximation, adapted for fluid regims with small density variations. This system
has also been derived in several ways from microscopic formulations of sedimenting particles in
a viscous fluid. It also shares a similar active scalar equation structure with the Incompressible
Porous Medium (IPM) equation and the Fractional Stokes-transport (FST) equation, the latter
generalising the two others, see Section 1.1.

The Stokes-transport equation is globally well-posed in various frameworks, in a weak sense,
for integrable data. A precise state of the art including synthetic overviews of the existing results
is provided in Section 1.2. We establish in particular the well-posedness of this system in bounded
domains of Rd, d ∈ {1, 2} and in the infinite channel R × (0, 1) for data in L∞, see Theorem
1.2.4, which is the main result of [Leb22], see Chapter 2. As a corollary, this results also holds
in the periodic channel Ω = T× (0, 1). The unbounded channel case is solved in uniformly local
Sobolev spaces, with solutions having infinite energy. In bounded domains, refinements of this

xiii
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result for Lq data with finite Lebesgue exponent q is obtained, global well-posedness holding for
q > d and existence for q > 2d/(d + 2). We also establish the global well-posedness of (ST) for
regular data in Hm, see Theorem 1.2.5. These results and in particular the regularities at play
are consistent with previous studies carried out in the whole space R3 and plane R2. These
features are compared with those of (IPM) and (FST) in Subsection 1.2.3. We also investigate a
hydrostatic approximation of this system, consisting in neglecting the vertical velocity dissipation
and assuming that the pressure satisfies the hydrostatic balance, namely

{
−∆u1 + ∂xp = 0

∂zp = −ρ.

This assumption is classical in geophysical fluids disciplines. The associated system is locally
well-posed for regular data, see Theorem 1.2.7 and Subsection 1.2.4.

The long-time behaviour of the solutions in the periodic channel Ω = T × (0, 1) is then
investigated in Chapter 3, including the contribution [DGL23] written together with Dalibard
and Guillod. A cornerstone of this analysis is the monotonicity of the potential energy of the
system, defined as follows and which satisfies an energy balance with the viscosity dissipative
effects,

E(t) =

ˆ
Ω

zρ(t, x, z) dxdz,
d

dt
E(t) = −∥∇u∥2L2 .

The monotonicity of the potential energy suggests, according to the physical intuition of sed-
imentation, that the fluid always rearranges itself in a more stable way, with the heavy fluid
under the lighter one. We investigate this conjecture and introduce the monotonous vertical
rearrangement of functions on Ω. In particular we establish that the ω-set in H−1 of any initial
data ρ0 ∈ L∞(Ω) is never empty, and only contains stationary solutions of the problem which
are the stratified profiles, see Subsection 1.3.1 and Section 3.6. The main part of the chapter
is devoted to the demonstration of a stability result for the Stokes-transport equation for data
ρ0 ∈ H6(Ω) close enough to linear profiles, see Theorem 1.3.5 and to the formation of density
boundary layers, see Theorems 1.3.6 and 1.3.7, and Subsection 1.3.3. In this case, we prove that
the density converges toward its monotonous vertical rearrangement. The first stability result
extends previous works on asymptotic behaviour on (IPM), see Subsection 1.3.2. Some peculiar
difficulties are raised in our case of interest, due to the no-slip condition imposed to the velocity
of the fluid on the boundaries. Basically this assumption induces boundary effects, which raise
mathematical obstacles to obtain decay estimates on the the solution. These difficulties are
overcome by a thorough analysis for low order derivatives of the solutions. Moreover, properties
and eigenfunction basis of the biharmonic operator with Dirichlet boundary conditions illustrate
the reasons of these mathematical difficultes and boundary layers formation, see Section 3.8. We
provide a refined description of the density profile, involving a boundary layer expansion in the
viscinity of the boundaries. In particular, we obtain explicit decay rates on their typical size
with respect to time. Besides, we also extend to (ST) a previous instability result of Kiselev
& Yao on (IPM), and we obtain that any stationary profile for the system is unstable for some
perturbation in H2− , see Theorem 1.3.9, Subsection 1.3.4 and Section 3.7. Note that there is no
contradiction between these instability results and the previous stability statements, for which
initial data have to be small in higher Sobolev spaces.

We study in Chapter 4 the graph interface problem governed by the Stokes-transport equation
in the periodic channel Ω = T × (0, 1). In all generalities, since (ST) is well-posed for initial
data ρ0 ∈ L∞(Ω), we can consider patch solutions, namely solutions associated to the indicator
of a subdomain of Ω. These stay patches for all time, since the density is transported. For
(ST), such patches having of Hölderian regularity C1,µ, µ ∈ (0, 1) remains so, for all time, see
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Subsection 1.4.2 for further references on this matter. We focus on patches on Ω associated to
graphs η : T → (0, 1) modeling the interface between two immiscible fluids, in the following sense

ρ(x, z) = 1{z<η(x)}.

This situation is illustrated in Figure 1.1. For an initial graph η0, if the associated density
solution to (ST) remains the indicator of a hypograph, the underlying graph η(t) satisfies the
following

∂tη(t, x) + u1(t, x, η(t, x))∂xη(t, x) = u2(t, x, η(t, x)), for (t, x, z) ∈ [0, T )× Ω,

where u = (u1, u2) satisfies the Stokes equation with density source of the form above. An
overview of this problem, tackled in T × R, by Gancedo, Granero-Belinchón & Salguero is
repported in Subsection 1.4.3. They proved that this problem is globally well-posed for data close
enough in H3 to a flat interface. We supplement this overview with a summary on the related
Muskat problem. Our contribution lies in a few analytical remarks on the interface regularity
and a discussion on Lyapunov functionals for this system, see Section 4.1, and in a numerical
investigation on the evolution of the interface in T × (0, 1). We set an Arbitrary Lagrangian-
Eulerian numerical scheme, consisting in solving the Stokes equation with a finite elements
method and to move the mesh, including a discretisation of the interface, according to this
velocity, see Subsection 4.2.2. Then we investigate some quantitative and qualitative properties
of the interface evolution, including convergence rates compared to the theoretical results of
Gancedo & Granero-Belinchón in Subsection 4.2.4, boundaries effects in Subsection 4.2.5, possible
Lyapunov functionals in Subsection 4.2.7 and we observe a graph break in Subsection 4.2.8.
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Avant-Propos

Tout un chacun a bien l’intuition que deux fluides de densités différentes, une fois mélangés,
doivent se réordonner avec le plus lourd sous le plus léger. Néanmoins, ce principe relativement
simple induit des évolutions et des comportements complexes. Cette thèse étudie différents
aspects de l’équation de Stokes-transport (ST), qui est en particulier un modèle réduit pour la
sédimentation, illustrant cette complexité. Le problème s’écrit





∂tρ+ u · ∇ρ = 0
−∆u+∇p = −ρez

divu = 0
ρ|t=0 = ρ0,

(ST)

où ρ représente la densité, température ou flottabilité d’un fluide, transporté par un champ de
vitesse u satisfaisant à tout instant l’équilibre entre les effets de viscosité, le gradient de pression
∇p et les effets verticaux de la gravité −ρez. Le fluide est également supposé incompressible via
la condition de divergence nulle sur u. Toutes les inconnues dépendent du temps t ≥ 0 et d’une
variable d’espace x sur un domaine Ω précisé plus loin. Le système doit également être complété
par des conditions de bords sur u, selon le type de domaine considéré. Ce problème fait partie
d’une classe d’équations de transport pour lesquelles le champ de vitesse dépend non-localement
de la quantité advectée.

Ce manuscrit est organisé comme suit. Le Chapitre 1, introductif, précise le problème ainsi
que les trois axes principaux de ce travail portant sur le caractère bien posé de (ST), associé à
la Section 1.2 et au Chapitre 2, le comportement en temps long des solutions, traité à la Section
1.3 et au Chapitre 3, et une étude numérique de l’évolution d’un graphe d’interface pour (ST),
voir la Section 1.4 et le Chapitre 4. Les deux publications auxquelles l’auteur a contribué sont
incluses dans ce manuscrit, avec [Leb22] au Chapitre 2 et [DGL23] au Chapitre 3.

L’équation de Stokes-transport est un modèle océanographique réduit, à rapprocher du sys-
tème de Boussinesq, ce dernier étant adapté à des régimes où la densité du fluide varie peu. Ce
système a également été dérivé depuis plusieurs formulations microscopiques de particules sédi-
mentant dans un fluide visqueux. Il partage une structure commune avec l’équation des milieux
poreux (IPM) et l’équation de Stokes-transport Fractionnaire (FST), cette dernière généralisant
les deux autres, voir Section 1.1.

L’équation de Stokes-transport est globalement bien posée dans plusieurs cas, au sens faible et
pour des données intégrables. Un état de l’art est dressé et synthétise les résultats existants pour
les divers domaines et régularités, voir Section 1.2. On établit en particulier le caractère bien
posé de ce système dans les domaines bornés de Rd, d ∈ {1, 2} et dans le canal infini R× (0, 1)
pour des données L∞. Ceci constitue le Théorème 1.2.4, le résultat principal de [Leb22], voir
Chapitre 2. En corollaire, le même résultat se transpose au canal périodique Ω = T× (0, 1). Le
cas du canal non-borné est traité grâce à des fonctions localement uniformément Sobolev afin
d’inclure des solutions d’énergie infinie. Pour les domaines bornés nous précisons ce résultat

xvii
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pour des données Lq, nous montrons que l’équation est toujours globalement bien posée lorsque
q > d et qu’il existe toujours des solutions lorsque q > 2d/(d+ 2). Nous démontrons également
le caractère bien posé de (ST) pour des données Sobolev, plus régulières, voir le Théorème 1.2.5.
Ces résultats sont cohérents avec les travaux effectués pour les domaines R3 et R2, avec des
régularités comparables. Ces propriétés sont également confrontées aux résultats disponibles
pour (IPM) et (FST), voir la Sous-section 1.2.3. Nous considérons enfin une approximation
hydrostatique de l’équation de Stokes-transport, qui consiste à négliger l’accélération verticale
et à supposer que la pression satisfait l’équilibre hydrostatique à tout instant, c’est-à-dire

{
−∆u1 + ∂xp = 0

∂zp = −ρ.

Cette hypothèse est classique lorsque l’on considère des fluides géophysiques, en particulier en
météorologie et en climatologie. Nous montrons que le système associé est localement bien posé
pour des données Sobolev, voir le Théorème 1.2.7 et la Sous-section 1.2.4.

Nous étudions le comportement en temps long des solutions dans le canal périodique Ω =
T × (0, 1), Chapitre 3, incluant la contribution [DGL23] co-écrite avec Anne-Laure Dalibard et
Julien Guillod. Un point central de cette analyse est la monotonicité de l’énergie potentielle,
définie comme suit et dont la décroissance correspond à la dissipation due aux effets de viscosité,

E(t) =

ˆ
Ω

zρ(t, x, z) dxdz,
d

dt
E(t) = −∥∇u∥2L2 .

Cette monotonie suggère, conformément à l’intuition physique de la sédimentation, que le fluide
se réordonne toujours verticalement en une configuration plus stable. Nous tentons d’apporter des
réponses à cette conjecture, et pour ce faire introduisons le réarrangement vertical et monotone
des fonctions sur Ω. En particulier, on établit que l’ensemble ω-limite dans la topologie de H−1

est, pour toute donnée initiale ρ0 ∈ L∞(Ω), non-vide et ne contient que des profils de densités
stationnaires, dont on vérifie qu’il s’agit des profils stratifiés, voir la Sous-section 1.3.1 et la
Section 3.6. L’essentiel de ce chapitre est consacré à la démontration de la stabilité de l’équation
de Stokes-transport pour des données ρ0 ∈ H6(Ω) suffisamment proches de profils linéaires, voir
le Théorème 1.3.5, et de décrire la formation de couches limites, voir les Théorèmes 1.3.6 et
1.3.7, ainsi que la Sous-section 1.3.3. Dans ce cas, nous prouvons que la densité converge vers
le réarrangement vertical monotone. Le résultat de stabilité se base sur des travaux antérieurs
portant sur le comportement asymptotique des solutions de (IPM), voir la Sous-section 1.3.2. Des
difficultés particulières apparaissent dans notre cas, à cause de la condition de non-glissement
imposée pour le fluide sur les bords. Cette condition induit des effets de bords, qui posent
des problèmes pour l’obtention d’estimations de décroissance des solutions. Ces difficultés sont
surmontées par une analyse précise des dérivées d’ordre faible de ces solutions. De plus, des
propriétés de l’opérateur biharmonique sur Ω pour les conditions de Dirichlet sont données,
avec en particulier une description d’une base de fonctions propres adaptées, qui illustre les
difficultés que posent ce problème, ainsi que l’apparition des couches limites, voir la Section 3.8.
Nous donnons donc une description fine du profil de densité, impliquant un développement de
type couches limites aux bords, avec une décroissance explicite de leur taille caractéristique.
Par ailleurs, nous adaptons pour (ST) un résultat d’instabilité montré par Kiselev & Yao pour
(IPM), et montrons que tout profil stationnaire est instable pour des perturbations peu régulières,
en l’occurence dans H2−(Ω), voir le Théorème 1.3.9, la Sous-section 1.3.4 et la Section 3.7.
Notons que ce résultat n’est pas contradictoire avec la stabilité évoquée ci-avant, pour laquelle
les perturbations doivent être plus régulières et suffisamment petites.

Dans le Chapitre 4 nous rendons compte de notre étude numérique de l’évolution d’interface
de densité de type graphe, gouvernée par l’équation de Stokes-transport, dans le canal périodique
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Ω = T× (0, 1). En toute généralité, puisque (ST) est bien posée pour des données initiales ρ0 ∈
L∞(Ω), il est possible de considérer des patchs de densité, c’est à dire des profils correspondant
à des indicatrices de sous-domaines de Ω. Les solutions associées restent des patchs puisque
la densité est simplement transportée. Pour (ST), un patch dont l’interface est de régularité
Höldérienne C1,µ, µ ∈ (0, 1) préserve cette régularité pour tout temps, voir la Sous-section 1.4.2
à ce sujet. Nous nous concentrons sur les patchs associé à des graphes de fonctions η : T → (0, 1),
modélisant l’interface entre deux fluides non-miscibles, de la forme

ρ(x, z) = 1{z<η(x)}.

Cette situation est illustrée par la Figure 1.1. Pour une donnée initiale η0, tant que la solution
associée à (ST) est de la forme ci-dessus, le graphe η sous-jacent satisfait le système suivant

∂tη(t, x) + u1(t, x, η(t, x))∂xη(t, x) = u2(t, x, η(t, x)), pour (t, x, z) ∈ [0, T )× Ω,

où u = (u1, u2) satisfait l’équation de Stokes avec un terme source de la forme ci-dessus. Un
résumé de la contribution de Gancedo, Granero-Belinchón & Salguero, traitant ce problème
sur T × R, est donné à la Sous-section 1.4.3. Ils ont notamment prouvé que ce problème est
globalement bien posé pour des données suffisamment proches du graphe plat, dans H3. Nous
présentons également une synthèse de résultats associé à des problèmes d’interface voisins, no-
tamment le problème de Muskat. Notre contribution se porte sur quelques remarques théoriques
sur la régularité de l’interface, sur les possibles fonctionnelles de Lyapunov de ce système, voir
la Section 4.1, et sur une étude numérique de l’évolution des graphes d’interface. Nous avons
mis en place un schéma impliquant une méthode Lagrangienne-Eulérienne, consistant à résoudre
l’équation de Stokes grâce à des éléments finis adaptés et à transporter le maillage, incluant une
discrétisation de l’interface, par le champ de vitesse obtenu, voir la Sous-section 4.2.2. De plus,
nous observons quelques propriétés quantitatives et qualitives des interfaces simulées, en com-
parant notamment à la Sous-section 4.2.4 les taux de convergence observés à ceux, théoriques,
obtenus par Gancedo & Granero-Belinchón, ainsi que des effets dûs à la présence de bords à la
Sous-section 4.2.5, les possibles fonctionnelles de Lyapunov à la Sous-section 4.2.7, et enfin une
rupture de graphe à la Sous-section 4.2.8.
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Chapter 1

Introduction

Everyone possesses the intuition that heavy fluids sink. Nevertheless, the consequences of this
rather simple principle lead to complex evolutions and behaviours. The Stokes-transport equation
is a reduced system modeling this phenomenon, and illustrating this complexity. We present and
motivate this equation in Section 1.1. In Section 1.2, we list the well-posedness studies around
this equation, including our contributions on the subject, which are developed in Chapter 2.
Section 1.3 is devoted to long-time behaviours for this system, including stability and instability
results, developed in Chapter 3. Section 1.4, associated to Chapter 4, provides an overview of free
interface problems related to the Stokes-transport equation, lists possible theoretical approaches
to tackle this matter, and contains a numerical study of the graph interface evolution.

1.1 The Stokes-transport equation

The Stokes-transport (ST) equation writes




∂tρ+ u · ∇ρ = 0
−∆u+∇p = −ρez

divu = 0,
(ST)

where ρ represents a fluid density or temperature, (u, p) its velocity and pressure fields, and
ez a unitary upward vertical vector. All the unknowns depend on time t ≥ 0 and on a space
variable x ∈ Ω on some spatial domain Ω which will be specified later. The system must also be
endowed with extra boundary conditions on u, which are specified later on, depending on the
type of spatial domain considered. This partial differential equation is a simplified model of ideal
incompressible, viscous and inhomogeneous fluid. In Subsection 1.1.1, we explain to what extent
(ST) is a reduced model for oceanography. Subsection 1.1.2 is dedicated to works about the
derivation of (ST) from other models. In Subsection 1.1.3, we emphasise about the active scalar
class of equation to which (ST) belongs. We also introduce there the Incompressible Porous
Medium (IPM) equation and Fractional Stokes-transport (FST) equation, belonging to the same
class of equation as (ST) and whose properties and techniques of study are comparable. Most of
the previous works on (ST) were done on Ω = R3. Our contributions focus on bounded domains
of R2 and R3, on the infinite channel R× (0, 1) and the periodic channel T× (0, 1).

1



2 CHAPTER 1. Introduction

1.1.1 Reduced model for oceanography

The Stokes-transport equation is a reduced model for the Boussinesq equation. The Boussinesq
approximation for the incompressible Navier-Stokes equation with inhomogeneous density writes





ϱ0(∂tu+ (u · ∇)u)− ν∆u+∇p = −ρgez
∂tρ+ u · ∇ρ = κ∆ρ

divu = 0,

where ρ denotes either the density, buoyancy or temperature variation around a constant ϱ0, ν
the viscosity, κ the density or thermal diffusivity, g the gravitational acceleration constant. It
consists in neglecting the density variations in the inhomogeneous Navier-Stokes equation, while
keeping the gravity effect −ρgez. Moreover, the density is still assumed to be advected by the
fluid and possibly diffused when κ > 0. This system is known to be globally well-posed when at
least one of the two coefficients ν and κ. The global regularity in the case κ = ν = 0 remains
unanswered. For an exhaustive review we refer to [Hu+16].

This equation is suitable for modeling the oceanic and atmospheric fluid evolutions. To give
only one example, it is effectively used in global climate models such as the ICON-Earth System
Model [Jun+22], implemented in the German operational forecast prediction. Of course more
exhaustive systems of equations are considered, taking into account the evolution of the density,
temperature, salinity, including thermodynamical state equations, ocean-atmosphere coupling,
in different geometries, and other refinements. The interest of reduced models is to capture
thoroughly enough the behaviour of the initial model, to ease the understanding of the problem
and to reduce the simulation costs when time is an important factor, such as for weather forecast.

Let us return to the Boussinesq approximation. Depending on the parameters ratio, different
regimes can be considered, and this system can be itself approximated by reduced models. In
nondimensional form, the Boussinesq equation can be written as





1
Pr (∂tu+ (u · ∇)u)−∆u+∇p = −Raρez

∂tρ+ u · ∇ρ = ∆ρ
divu = 0,

(1.1)

where Pr = ν/κ and Ra are independent and dimensionless numbers, called after Prandtl and
Rayleigh. The Rayleigh number is the ratio of the diffusion time scale over the advection time
scale. The Prandtl number expresses the ratio between the viscosity and the diffusivity of the
system. Assuming the diffusivity to be negligible and the viscosity effects importants, we formally
consider the asymptotic Pr → ∞ and omit the self-advection term in (1.1). Neglecting accord-
ingly the diffusion in the transport equation, we obtain (ST). Basically, the Stokes-transport
equation models an inhomogeneous fluid influenced by gravity, with momentum balance between
viscosity, pressure and gravity effects satisfied instantaneously and for all time. In other words it
consist in neglecting the inertia of the system. This asymptotic regime is mentionned in [Doe+18],
where the long-time behaviour of the Boussinesq equation is studied, as a reduced model of (1.1)
for which the obtention of explicit rates for the long-time behaviour of the solutions might be
eased.

The Stokes-transport equation has also been mathematically derived from a system of particle
sedimenting in a Stokes fluid, and from a Vlasov-Stokes coupling, corresponding to the micro-
scopic formulation of the aforementionned problem. These are reported in Subsection 1.1.2.
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1.1.2 Derivation of the Stokes-transport equation

The works [Höf18a; Mec18] by Höfer and Mecherbet have been central in the development of
this thesis. In these two articles, they mathematically derive the Stokes-transport equation from
a microscopic formulation of sedimenting particles in a fluid. Since the techniques appearing in
the proof have their counterpart in the analysis of the limit system (ST), we sketch the ideas of
the demonstration below. In both works, the authors establish the well-posedness of (ST) in R3,
which is detailed in Section 1.2. Note that Höfer also derived in [Höf18b] the Stokes-transport
equation from a Vlasov–Stokes coupling, which corresponds to the kinetic formulation of the
sedimentation.

Consider N spherical and solid particles of radii R sedimenting in a fluid filling the whole
space R3. For i in J1, NK the particle i is centered at time t at position Xi(t) and occupies the
domain Bi = Bi(Xi(t), R). The fluid is assumed to satify for all time the Stokes equation in the
ambiant domain R3\ ∪N

i=1 Bi, subject to gravity with constant g > 0 and with constant fluid
density ρf , {

−∆u+∇p = −gρfez
divu = 0,

on R3\
N⋃

i=1

Bi. (1.2)

with ez the unitary vertical upward vector. For clarity we drop the time dependency of the
quantities. One has to specify boundary conditions on the spheres. The velocity of the fluid is
asked to coincide with the velocity vector Vi of the particle i at its contact, and one ignores the
possible rotation of the particle. In other words, the following is satisfied that for all time,

u|∂Bi
(t) = Vi(t).

Conversely, the particles are transported by the fluid, and their respective positions Xi satisfy
the ordinary differential equation

dXi

dt
= Vi.

The Stokes system also requires an assumption on the value of the velocity at infinity. A
natural and convenient one is to assume that the velocity vanishes at infinity, meaning that the
ambiant fluid is at rest far from the particles system,

u(x) −→
|x|→∞

0.

The inertialess assumption implies here that the gravity effect of a particle is balanced by the
stress of the ambiant fluid on it, namely

−4π

3
R3ρpgez +

ˆ
∂Bi

(D(u)− pI3)ndσ∂Bi
= 0,

where ρp is the volumic density of a particle, D(u) − pI3 the Stokes stress tensor with D(u) =
∇u + (∇u)T the symmetric gradient of u, n the unitary outward normal vector and σ∂Bi the
surfacic measure on Bi.

Höfer shows this system is well-posed in the following sense. Consider a sequence of initial
positions (X0

ε,i)
Nε
i=1 indexed by ε → 0 with Nε number of particles and their radii Rε. This

sequence has to satisfy three assumptions. The first one is related to the ratio between the
number Nε and the minimal distance between two particles at initial time. The second is about
the order of volume fraction of particles NεR

3
ε. Both assumptions are necessary to ensure that the

particles remain far away from each other to avoid possible wild solutions to the Stokes equation.
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The third assumption concerns the lengthscale (NεRε)
−1/2 which determines the prevalence of

the collective effect of the cloud of particles on one particle with respect to the self-interaction
of a particle.

Under these assumptions, a proper rescaling of the mass density of the particles at step ε,
namely

ρε(t) :=

N∑

i=1

1Bi(t),

satisfies, from the velocities compatibility assumption, the transport equation

∂tρε + uε · ∇ρε = 0 (1.3)

where uε satisfies (1.2). Höfer proved that the coupling of (1.2) and (1.3) is well-posed and that
ρε converges strongly in some suitable weighted L∞(R3) spaces toward some ρ, satisfying, with
normalised constants here,





∂tρ+ (cez + u) · ∇ρ = 0
−∆u+∇p = −ρez

divu = 0
u(x) →

|x|→∞
0,

(1.4)

with c the celerity of a free falling particle, due to gravity. Notice that considering u′ = u+ cez
would satisfy the same equation with u′ → cez since ∆(cez) = 0, and consists in following the
falling cloud of particle at its typical speed. In the following we will generically consider c = 0.

In [Mec18], Mecherbet investigates further this question, including in particular the rotation
of particles, with the torque applied by the fluid to the ith particle, which must cancel according
to Newton’s law, namely

ˆ
∂Bi

(x−Xi)× ((D(u)− pI3)n) dσ∂Bi .

Together with the classical Newton dynamics for the particles, it determines the angular and
linear velocities (Vi,Ωi) of a particle, and is posed as the continuity condition of the velocity
between the ambiant fluid and the surface of a particle

uN |∂Bi = Vi +Ωi × (x−Xi) on ∂Bi.

Mecherbet also consider smaller minimal distances between particles than in [Höf18a]. Similarily,
she shows that, regarding its scaling, the solution to the system with particles converges toward
the solution of (1.4). In this case ρε converges toward ρ in Wasserstein distance.

1.1.3 Incompressible Porous Medium equation and Fractional Stokes-
transport equation

The Stokes-transport equation belongs to the class of active scalar equations. An active scalar
equation is a transport equation

∂tf + u · ∇f = 0,
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where the velocity field is induced by some possibly non-local operator applied to f . Among
such equations, one finds the 2-dimensional Euler system in its vorticity formulation, namely

{
∂tω + u · ∇ω = 0

ω = ∇⊥u,

where the velocity field is recoverd from ω thanks to the Biot-Savart law u = ∇⊥(−∆)−1ω by
solving a Poisson problem depending on the kind of spatial domain. This system generalises as

u = ∇⊥(−∆)sω,

for a range of exponents s. The specific case s = 1/2 corresponds to the Surface Quasi-
Geostrophic equation, modelling large-scale fluid motions where the Coriolis force predominates
over inertial forces. In the following, we also refer to the Fractional Stokes-transport (FST)
equation.

In many cases, including the ones above, the operator relating the velocity field and the
transported quantity is non-local. In the whole space, the solution writes as the convolution
with a Green kernel,

u(x) =

ˆ
R3

G(x− y)f(y) dy,

and makes obvious the dependency of u regarding the source term ω on the whole space. This
explicit expression for u in terms of the advected quantity f is convenient to analyse the system,
as illustrated in the well-posedness proof for (ST) by Mecherbet, further detailed in Subsection
1.2.1.

The Stokes-transport system can be compared to the Incompressible Porous Medium equation
(IPM) and to the Fractional Stokes-transport equation (FST), since they share a similar form.
With normalised physical constants, the (IPM) system writes as follows,





∂tρ+ u · ∇ρ = 0
u+∇p = −ρez

divu = 0
ρ|t=0 = ρ0.

(IPM)

This equation modelizes an incompressible fluid, either in porous media such as sandy ground,
organic tissues or Hele-Shaw cells, a domain between two large plates separated by an infinitesi-
mally small distance. In this situation the fluid satifies for all time Darcy’s law instead of Stokes
equation. We shall compare some of its features with (ST), since some approaches are similar,
with different results. Indeed, the regularisation effect due to the Laplace operator in the Stokes
system induces a smoother velocity field in the transport equation than in the Darcy case, but
generates lower decay rates. This is detailed in Subsection 1.2.3.

In [Cob23], Cobb provides an exhaustive study of the fractional Stokes-transport system
(FST), with a viscosity law given by the fractional Laplacian,





∂tρ+ u · ∇ρ = 0
(−∆)α/2u+∇p = −ρez

divu = 0.
(FST)

In the whole space Rd, d ≥ 2, the fractional Laplacian defines thanks to its Fourier symbol, for
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instance on Sobolev functional spaces Hs, s > α,

∀f ∈ Hs(Rd),∀ξ ∈ Rd, F [(−∆)α/2f ](ξ) = |ξ|αF [f ](ξ).

In particular α = 0 and α = 2 correspond to (IPM) and (ST) respectivelly. Cobb addresses this
problem for α ∈ [0, d]. The study of this system is meant to reach a better understanding of
the classical cases mentionned above. The existence and uniqueness of solutions is reported and
compared to those of (ST) and (IPM) in Subsection 1.2.3, and summarised in Table 1.5.

1.2 Well-posedness of the Stokes-transport equation

In this Section we provide the background for the well-posedness results regarding (ST) obtained
by the author, covered in Chapter 2. The state of the art at the time of writing this manuscript
is summarised in Subsection 1.2.1, including the author’s contributions. All these regularity
results are synthesised in tables in Subsection 1.2.2, and also compared to the case of (IPM)
and fractional Stokes-transport equation in Subsection 1.2.3. A different equation, named here
hydrostatic Stokes-transport equation is also studied in the present manuscript, and its well-
posedness is discussed in Subsection 1.2.4.

1.2.1 State of the art and contributions

Let us introduce the Lq spaces with finite moments.

Definition 1.2.1. Let β ≥ 0 and 1 ≤ q ≤ ∞. Let us define Lq
β(Ω) the space of Lq functions

with finite β moment in a given domain Ω as the set of measurable maps f : Ω → R satisfying
either

∥f∥q
Lq

β
:=

ˆ
Ω

(1 + |x|β)|f(x)|q dx <∞, if 1 ≤ q <∞,

or
∥f∥L∞

β
:= supess

x∈Ω
(1 + |x|β)|f(x) <∞, if q = ∞.

Let us denote W k,q
β (Ω) the set of maps having derivatives of order less than or equal to k in

Lq
β(Ω). Observe that Lq

α ⊂ Lq
β for any 0 ≤ α ≤ β.

The Stokes-transport system in R3 with vanishing velocity at infinity (1.4) (with c = 0) was
shown to be well-posed for regular data by Höfer in [Höf18a, Theorem 9.2], in the sense reported
here.

Theorem 1.2.2 (Höfer ’18). Let ρ0 ∈ W 1,∞
β (R3) for some β > 2. Then the Stokes-transport

equation (1.4) admits a unique global solution

ρ ∈W 1,∞
loc (R+;L

∞
β (R3)).

This problem is addressed by a fixed point argument, using the method of characteristics for
the transport equation and the convolution representation of the Stokes equation solution. This
scheme of proof is also adopted by Mecherbet in [Mec20, Theorem 1.1], with relaxed assumptions
on the initial datum, requiring only integrable and bounded data with finite first moment and
without assumption on the derivatives.
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Theorem 1.2.3 (Mecherbet ’20). For any ρ0 ∈ L1
1∩L∞(R3) the Stokes-transport equation (1.4)

admits a unique and global weak solution in the following class of regularity

(ρ,u) ∈ L∞(R+;L
1 ∩ L∞(R3))× L∞(R+;W

1,1 ∩W 1,∞(R3)).

In particular, Mecherbet takes advantage of an interplay between the stability estimates in the
Wasserstein distance formalism for the transport equation, and the convolution representation
of the solution to the Stokes equation. Indeed, on the one hand, two solutions ui, i = 1, 2 of
the Stokes system with associated generic source terms f i obey, for any compact K ⊂ R3 the
following estimate

∥u1 − u2∥W 1,1(K) ≤ CKW1(f1,f2). (1.5)

Let us report one computation justifying this relation. An optimal transport result such as
[San14, Theorem 1.4] ensures in particular that for maps f i ∈ L1 ∩ L∞(R3) with identical
masses and seen as probability measures, there exists a transport map T such that one measure
is the image measure of the other, meaning

∀φ regular,
ˆ
R3

φ(y)f1(y) dy =

ˆ
R3

φ(T (y))f2(y) dy.

In this case, the Wasserstein distance between the measures computes as

W1(f1,f2) =

ˆ
R3

|T (y)− y|f1(y) dy. (1.6)

Since the solution to Stokes equation on R3 writes as the convolution of the so-called Oseen
tensor Φ, defined as

Φ(x) =
1

8π

(
I3
|x| +

x⊗ x

|x|3
)
,

the difference of solutions to Stokes equation ui with source terms f i expresses as follows, using
the aforementioned transport result

∀x, u1(x)− u2(x) =

ˆ
R3

Φ(x− y)(f1 − f2)(y) dy

=

ˆ
R3

(Φ(x− y)− Φ(x− T (y)))f1(y) dy.

Given the shape of the tensor Φ, it is possible to bound the right hand-side of the latter by (1.6)
and to obtain estimate (1.5). To obtain a fixed point inequality, one finally requires a stability
estimate on the solutions of the transport equation, measuring the distance between quantities
transported by distinct velocity fields. Schematically, in this case, the distance between two
density profiles ρi is bounded by a norm of the difference of the velocity fields, compatible with
(1.5), with a factor B(t) depending on time and such that B(t) → 0 as t→ 0,

W1(ρ1, ρ2) ≤ B(t)∥u1 − u2∥. (1.7)

Besides, since the Stokes equation and the transport equation are well-posed for given data,
Mecherbet constructed sequences of velocity fields uN , N ∈ N solving the Stokes-transport for
all time with source terms ρNez, where these ρN where obtained themselves as the solution to
the transport equation for the field uN−1. This sequence is initialised thanks to the initial data
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ρ0. Combining both estimates (1.5) and (1.7) for these sequences provide

W1(ρ
N+1, ρN )(t) ≤ B(t)W1(ρ

N , ρN−1)(t), (1.8)

whence the contraction for t small enough such that 0 ≤ B(t) < 1.
Based on this scheme of proof, combining Stokes and transport estimates in a contraction,

the author proved the well-posedness of (ST) on bounded domains of Rd for dimension d = 2
and 3, and in the infinite channel R× (0, 1). In this context, the velocity field requires boundary
conditions. We impose the homogeneous Dirichlet boundary conditions u = 0, also called no-slip
boundary conditions. The result states as follows, and the dedicated article is [Leb22].

Theorem 1.2.4 (L. ’20). Let Ω be either a bounded domain of class C2 of Rd for d = 2, 3,
or R × (0, 1). For any ρ0 ∈ L∞(Ω) there exists a unique solution (ρ,u) to the Stokes-transport
equation 




∂tρ+ u · ∇ρ = 0
−∆u+∇p = −ρez

divu = 0
u|∂Ω = 0
ρ|t=0 = ρ0,

which belongs to
L∞(R+;L

∞(Ω))× L∞(R+;W
1,∞(Ω)).

A major difference between these cases and the whole space R3 is that the Green function
associated to the Stokes equation is not explicit in general, and therefore less convenient to
handle than the tensor Φ. Therefore, the interplay with the Wasserstein distance is not that
clear. This result has been addressed by replacing estimate (1.6) by the estimate on the Stokes
equation solution, and (1.7) by stability estimates in H−1(Ω). Although the statement writes
the same in both the bounded and unbounded cases, the latter requires to deal with functional
spaces of infinite energy such as uniformly local Sobolev spaces. The article [Leb22] is included
in Chapter 2.

Let us sketch its key steps here. As in [Mec20], we consider a Picard scheme and define
sequences (ρN )N and (uN )N solving decoupled Stokes and transport equations. The goal is to
obtain a contraction inequality satisfied by these sequences in the proper functional spaces, to
obtain its convergence and provide a solution candidate. To do so, we combine two inequalities.
Considering ui, ρi, i = 1, 2 satisfying the Stokes equation, the linearity of the problem ensures
that

∥u1 − u2∥H1 ≲ ∥ρ1 − ρ2∥H−1 .

This inequality replaces (1.5) in our case. The second inequality shall replace the stability
estimate (1.7). Since we do not have explicit Green function to represent the Stokes equation
solution on bounded domains, the method performed by Mecherbet involving the Wasserstein
distance expression (1.6) becomes more complex to implement. Actually, the stability estimate
in the H−1 norm for the transport equation is a suitable substitute here, and we can obtain

∥ρ1 − ρ2∥L∞(0,T ;H−1) ≲ T∥ρ0∥L∞eC∥∇ui∥L∞(0,T ;L∞)∥u1 − u2∥L∞(0,T ;H1).

if ρi|t=0 = ρ0 is transported by ui. Applying and combining these two estimates to the sequence
(ρN )N yields the following inequality, to compare with (1.8),

∥ρN+1 − ρN∥L∞(0,T ;H−1) ≲ B(T )∥ρN − ρN−1∥L∞(0,T ;H−1),
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where B(T ) → 0 as T → 0 is linked to the exponential factor above. Up to the choice of a small
enough T > 0, we get the contraction. In the end, we get that uN converges strongly in some
Sobolev space, and that ρN converges weakly in L∞. Note that, as in Mecherbet contribution, the
Stokes-transport equation is understood in the weak sense. A couple (ρ,u) in the aforementioned
class is a weak solution on [0, T ), T > 0 if divu = 0 and the following is satisfied for any test
triplet (φ,v) ∈ C∞

c ([0, T )× Ω)1+d with div v = 0,

ˆ T

0

ˆ
Ω

ρ(t,x)(∂tφ(t,x) + u(t,x) · ∇φ(t,x)) dx dt = −
ˆ
Ω

ρ(0,x)φ(0,x) dx, (1.9)
ˆ T

0

ˆ
Ω

∇u(t,x) : ∇v(t,x) · v(t,x) dx dt = 0.

In particular, the weak versus strong convergence mentionned above is sufficient to pass to the
limit in the decoupled problems, providing a solution to the Stokes-transport equation.

In the infinite channel R × (0, 1), one can expect solutions to be horizontally periodic, for
instance. For such case, one cannot expect integrability of the data on the whole domain.
Nevertheless, it is possible to consider data belonging to uniformly local spaces. For a classical
Sobolev regularity Wm,q with m ∈ N and 1 ≤ q ≤ ∞, the associated uniformly local Sobolev
space Wm,q

uloc(Ω) is defined as the subspace of Wm,q
loc (Ω) of maps f such that

sup
k∈Z

∥f∥Wm,q((k,k+1)×(0,1)) <∞.

Basically, this norm measures the map variations in each segment (k, k+1)× (0, 1), and requires
this regularity to be uniformly bounded with respect to k. This constraint allows data with
infinite energy, such as horizontally periodic (non-trivial) maps, and to transpose results valid
in bounded domains to this unbounded case, such as functional spaces compact embeddings and
Poincaré inequality. The method here consists in using the well-posedness of the Stokes problem
on bounded domains of the form (−n, n) × (0, 1) with n ∈ N. Then, we obtain a solution
on R × (0, 1) as a limit, by compactness and diagonal extraction arguments on (n, k). These
considerations provide in the end W 2,q

uloc solutions to the Stokes problem, which is embbeded in
W 1,∞, and the characteristics method applies for the transport part. Once the well-posedness is
obtained in this channel, the case of the periodic strip T× (0, 1) stems as a corollary. This later
is extensively considered in our work, as it has a simple geometry, is compact and physically
relevant as motivated in Chapter 3.

The Stokes-transport equation is also well-posed for Sobolev data.

Theorem 1.2.5 (L. ’23). Let Ω be either T × (0, 1) or a simply connected compact subdomain
of Rd, d = 2, 3. Let m ≥ 3, ρ0 ∈ Hm(Ω) (and assume that Ω has regularity Cm+2). The Stokes-
transport equation endowed with homogeneous Dirichlet boundary conditions u = 0 on ∂Ω has a
unique global solution in the following class of regularity

(ρ,u) ∈ C(R+;H
m(Ω))× C(R+;H

m+2(Ω)).

Moreover, the solution obeys the following energy estimate

∥ρ(t)∥Hm ≤ ∥ρ0∥Hm exp

(
C

ˆ t

0

(∥∇u(s)∥L∞ + ∥∇ρ(s)∥L∞) ds

)
. (1.10)

The complete demonstration of this result can be found in Section 2.6. Formally, the en-
ergy estimate (1.10) shows that the Sobolev regularity is preserved as long as ρ and u remain
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Lipschitz. Since Hm is embbeded in L∞ for m > 2 in dimension 2, and from the uniform in
time boundedness of the solution ensured by Theorem 1.2.4 for weak solutions,the Lipschitz reg-
ularity of u is ensured. This estimate is also instrumental to obtain existence of solutions by a
compacness argument. Uniqueness comes from the ulterior result for L∞ data in [Leb22].

In [HS21, Proposition 2.6] Höfer and Schubert relax the regularity assumption on the initial
density and show that for any ρ0 ∈ P ∩ L∞(R3), where P(R3) denotes the space of probability
densities, there exists a unique solution (ρ,u) ∈ L∞(R+;P ∩L∞(R3))×L∞(R+;W

2,q(R3)) for
any 3 < q <∞.

This latter result has been refined by Mecherbet & Sueur in [MS22, Theorem 2.1], where
the authors show in particular that for any q ≥ 3, for any ρ0 ∈ P ∩ Lq(R3) the (ST) system is
globally well-posed with solution satisfying (for q > 3) the following

(ρ,u) ∈ L∞ ∩ C(R+;P ∩ Lq(R3))× L∞ ∩ C(R+;W
2,q(R3)).

The proof relies on the techniques introduced in [Mec20]. The critical case q = 3 is even more
subtle and requires to deal with the log-Lipschitz character of the velocity field, see [MS22,
Remark 2.1] for further details. This paper also addresses the analycity of the flow map and
controllability aspects which are out of the scope of the present manuscript.

A natural question is whether or not the the Lq, q > 1 assumption can be lightened, and
especially if measure initial data can be considered. Inversi showed in [Inv23] that solutions exist
for ρ0 ∈ L1(R3) only, in the Lagrangian sense. This notion of solution relies on the definition of
a Lagrangian flow for a divergence-free velocity field u ∈ L1

loc([0, T ]×R3). We call such a flow
the Borel map X, when it exists, satisfying in particular for all s, t ∈ [0, T ] that x 7→ X(t; s,x)
is measure preserving and for almost every x ∈ R2,

X(t; s,x) = x+

ˆ t

s

u(τ,X(τ ; s,x)) dτ.

A map ρ ∈ L∞([0, T ];L1(R3)) is called Lagrangian solution if it satisfies for all time t ∈ [0, T ],

ρ(t,X(t; 0,x)) = ρ0(x) a.e. x ∈ R3.

In the end, Inversi states in [Inv23, Theorem 2.2] that given any ρ0 ∈ L1(R3), there exists
a Lagrangian solution ρ ∈ L∞

loc(R+;L
1(R3)) to (ST). Inversi also details the links between

the Lagrangian and weak (also called distributional) type of solutions. In particular, if ρ0 ∈
L1 ∩ Lq(R3) for q ≥ 6/5 and if an associated solution ρ satisfies an extra assumption we do not
mention here, then it is a solution in the weak sense as in (1.9).

The author refined the proof of Theorem 1.2.5 and showed that the problem is actually well-
posed for data in Lq(Ω) for q large enough, and that existence still holds for even more Lebesgue
exponents.

Theorem 1.2.6 (L. ’23). Let Ω be either T× (0, 1) or simply connected compact subdomain of
Rd, d = 2, 3 regular enough. Let q ∈ (d,∞). For any ρ0 ∈ Lq(Ω) the (ST) equation has a unique
weak solution (ρ,u) in the class

L∞(R+;L
q(Ω))× L∞(R+;W

1,∞(Ω)).

Existence still holds for q > 2d/(d+ 2).

Note that in dimension d = 2, the existence holds for any q > 1. In [MS22], Mecherbet &
Sueur wonder if, in dimension 3, their Lq, q > 3 regularity result adapts in bounded domains,
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which is the case. The criterion q > 2d/(d + 2), equal to 6/5 for d = 3, is also consistent with
the results of Inversi regarding the distributional solutions for q > 6/5. This is the minimum
regularity in order to ensure the good definition of the integrals in (1.9).

In [Gra22], Grayer II shows that (ST) is well-posed in R2 for initial data in L1∩L∞(R2) that
are compactly supported. This latter assumption is required to come around the Green function
G associated to the Stokes equation in dimension 2, since it increases logarithmically as

|G(x− y)| ≲ 1 + | ln |x− y||.

Hence since u given as the convolution G ∗ (ρez) is not well-defined a priori for general maps
ρ ∈ Lq(R2). To circumvent this obstacle, Grayer II considers initial data that are not only
L1∩L∞(R2) but also compactly supported. Its analysis relies on a Yudovich-like approach, with
Calderón–Zygmund type results on Green kernels.

During the very last days of the writing of this thesis, Grayer II kindly brought the paper
[AYM00] to the author’s attention. This paper seems to have remained unknown to all the
aforementioned references, until recently. This might be explained by the different terminologies
used to designate (ST). In this paper published in 2000, Antontsev et al. studied (ST) on C2

bounded domains in Rd for d ≥ 2. They focused on piecewise constant density profiles, with
two values, modeling two immiscible fluids. In particular, they proved that if the interface Σ0

between these two fluids is initially C2, then the interface remains C1,µ for any µ ∈ (0, 1) and
for all time, see Subsection 1.4.2 on this topic. In the mean time, they established the global
well-posedness of (ST) for piecewise constant data, relying on a fixed point argument, proving
the existence of solution for smooth data and then using compactness to show the result for low
regular data. Some of the ingredients, in particular regarding the existence of solutions, are the
same than in the proof of Theorem 1.2.4. They moreover detailed the regularity of the solution,
with, for arbitrary q > d and µ = 1− d/q,

u ∈ L∞(R+;W
2,q(Ω)) ∩ L∞(R+;C

1,µ(Ω)) ∩ C0,µ(R+;C
1,µ(Ω))

and for any T > 0,
ρ ∈ L∞(0, T ;BV (Ω)) ∩BV ((0, T )× Ω).

The Höder regularity of u is actually a direct consequence of u ∈W 2,q(Ω) and Morrey’s inequal-
ity, see Subsection 1.4.2. The bounded variations regularity of ρ means that ∇ρ and ∂tρ remain
measures for all time. The main difference with [Leb22] are the followings. We prove the global
well-posedness of (ST) for any L∞ data, we use a thorougher stability estimate in H−1 and we
extend the result to the unbounded channel R× (0, 1).

1.2.2 Overview

The aforementionned well-posedness results on the Stokes-transport equation are synthesised in
the following tables. Table 1.1 is dedicated to the results in the whole space R3, since most
of the other domain cases present coherent with it. Table 1.2 gathers the results for other
domains, especially bounded and 2-dimensional cases, including all the author contributions.
The characteristics (char.) of the solutions are specified, in particular existence (∃), uniqueness
(!) and global existence (gl.). We note Ω ⋐ Rd when Ω is a compact subdomain of Rd. Functional
spaces are essentially defined throughout Subsection 1.2.1.
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Reference ρ0 datum char. ρ
u

regularity

[Höf18a] W 1,∞
β , β > 2 ∃! gl.

L∞(R+;L
∞
β )

L∞(R+;W
1,∞)

[Mec18] L1
1 ∩ L∞ ∃! gl. L∞(R+;L

1 ∩ L∞)
L∞(R+;W

1,1 ∩W 1,∞)

[HS21] P ∩ L∞ ∃! gl. L∞(R+;L
∞)

L∞(R+;W
2,q), ∀q ∈ (3,∞)

[MS22] P ∩ Lq, q ≥ 3 ∃! gl. L∞(R+;P ∩ Lq)
L∞(R+;W

2,q)), (q > 3)

[Inv23] L1 ∃ gl. L∞(R+;L
1), (Lagrangian)

L∞
loc(R+;W

1,q +W 1,∞),∀q ∈ [1, 3/2)

Table 1.1: Synthesis of well-posedness results for (ST) in R3.

Reference Domain ρ0 datum char. ρ
u

regularity

[Leb22] Ω ⋐ Rd=2,3 L∞ ∃! gl. L∞(R+;L
∞)

L∞(R+;W
1,∞)

L. Chap 2 Ω ⋐ Rd=2,3 Lq, q > d ∃! gl. L∞(R+;L
q)

L∞(R+;W
1,∞)

L. Chap 2 Ω ⋐ Rd=2,3 Lq, d ≥ q > 2d/(d+ 2) ∃ gl. L∞(R+;L
q)

L∞(R+;W
1,q)

[Leb22] R× (0, 1) L∞ ∃! gl. L∞(R+;L
∞)

L∞(R+;W
1,∞)

L. Chap 2 Ω,T× (0, 1) Hk, k ≥ 3 ∃! gl. C(R+;H
k)

C(R+;H
k+2)

[Gra22] R2 L1 ∩ L∞
c ∃! gl.

L∞(R+;L
1 ∩ L∞)

L∞(R+; Ċ
1,µ),∀µ ∈ (0, 1)

Table 1.2: Synthesis of well-posedness results for (ST) in bounded and 2d domains.

1.2.3 Comparison between (ST), (IPM) and (FST)

The Incompressible Porous Medium (IPM) equation is introduced in Subsection 1.1.3. We pro-
vide here a concise summary of its known well- and ill-posedness results, compiled in Table 1.3.
We compare these features to those of (ST) in the synthetic Table 1.4. In addition, we com-
plete this study by citing the work of [Cob23] about the fractional Stokes-transport equation,
generalising both (IPM) and (ST), also introduced in Subsection 1.1.3.

The (IPM) equation is locally well-posed in R2 for Sobolev data, see [CGO07]. Their results
rely on a reformulation of the problem, in particular by using Green kernel representations of the
stream function and the velocity field. Indeed, considering the rotational of the Darcy equation,
and since u = ∇⊥ψ for some stream function ψ by divergence-free condtion, one gets

∆ψ = −∂xρ.



1.2. Well-posedness of the Stokes-transport equation 13

In R2, the convolution representation of the solution writes

ψ(t,x) = − 1

2π

ˆ
R2

ln |x− y|∂xρ(t,y) dy.

Considering the perpendicular gradient of the latter expression, a kernel representation stems
for the velocity field, and provides a convenient mapping to apply a Picard theorem argument,
leading to the local well-posedness of the problem.

Lack of uniqueness has been proved for this equation. In [CFG11, Theorem 5.2], Córdoba,
Faraco and Gancedo showed that (IPM) with initial datum ρ0 = 0 admits, for every T > 0
infinitely many non-trivial weak solutions in L∞(0, T ;L∞(T2)). Their demonstrations involves
De Lellis–Székelyhidi convex integration approach to construct multiple solutions. In their case,
the constructed solutions satisfy moreover the following growth, comparable to some other long-
time behaviour results discussed in Section 1.3.

∀s > 0, lim sup
t→∞

∥ρ(t)∥Hs(t) = ∞.

In [Szé12, Theorem 1.1], Székelyhidi showed a similar result with initial data of the form

(x, z) ∈ (−1, 1)2, ρ0(x, z) =

{
+1 z > 0
−1 z < 0.

However global well-posedness for general regular data remains to this day an open question,
some results have been obtained for specific initial profiles. For stationary profiles proportional
to the depth of the domain, typically as the following

Θ(x, z) = −z,

it has been shown that the (IPM) equation admits global solutions for initial small Sobolev
perturbations. This result has been first obtained in [Elg17] and refined in [CCL19a]. The
methods and mechanisms at play here are introduced in Section 1.3 and detailed in Chapter 3,
since it concerns the asymptotic behaviour of the system.

The aforementionned results are compiled in the Table 1.3. In addition to the characteristics
introduced for Figure 1.1 and 1.2, we emphasise on lack of uniqueness ( ̸ !) and local existence
(loc.). The space Xm(Ω) ⊂ Hm(Ω), motivated by Theorem 1.3.4, defines as

Xm(Ω) = {θ ∈ Hm(Ω) : ∂2nn θ|∂Ω = 0, 0 ≤ n ≤ (m− 1)/2}.

Reference Domain ρ0 datum char. ρ regularity
[CGO07] R2 Sobolev ∃! loc. Sobolev
[CFG11] T2 0 ∃ ̸ ! loc. L∞

loc(R+;L
∞)

[Szé12] (−1, 1)2 ±1{±z>0} ∃ ̸ ! loc. L∞
loc(R+;L

∞)
[Elg17] R2,T2 ∥ρ0 −Θ∥Hm < ε,m ≥ 20 ∃! gl. L∞(R+;H

3)
[CCL19a] T× (−1, 1) ∥ρ0 −Θ∥Xm < ε,m ≥ 10 ∃! gl. L∞(R+;H

3)

Table 1.3: Synthesis of well-posedness for (IPM) equation.

The a priori estimate for the (IPM) system writes just as (1.10). One key difference with
the Stokes-transport system lies in the regularisation of the velocity with respect to the density.



14 CHAPTER 1. Introduction

For Darcy equation, u has basically the same regularity as ρ, whereas Stokes equation provides
elliptic regularisation implying in particular ∥∇u∥L∞ ≲ ∥ρ∥L∞ . In this latter case, a bounded
density ensures a Lipschitz velocity field favorable to the transport, which is not the case in
(IPM).

L∞ datum Hm datum Hm,Θ pert.
(IPM) (ST) (IPM) (ST) (IPM)

Existence
√ √ √ √ √

Uniqueness × √ √ √ √

Global (
√
)

√
?

√ √

Table 1.4: Compared known well-posedness results of (IPM) and (ST) equation, overview

Regarding the fractional Stokes-transport equation, Cobb provided in [Cob23] an exhaustive
study of the its well-posedness, providing sufficient conditions for existence, uniqueness and
globality of solutions. Its study occur in the whole space Rd for d ≥ 2. Its results are consistents
with what we know about (IPM) and (ST), and the date regularity are optimized. We synthesise
its main results in Table 1.5.

[Cob23, Theorem] α ρ0 ∈ Lq ∩X char. ρ regularity
1.1 (0, d) q ∈

(
2

1+
α
d
, d
α

)
· ∃ gl. L∞(R+;L

q)

1.3 [0, d) q ∈ [1, d/α) Bs
∞,1, s ≥ 1− α ∃! loc. L∞(0, T ;Lq ∩Bs

∞,1)

1.5 (1, d) q = d/(α− 1) Lr, r ∈ (1, d/α) ∃! gl. L∞(R+;L
q ∩ Lr)

1.6 [1, d] q = d/α Ḃ0
q,1 ∩B0

r,1, r =
d

α−1 ∃! gl. L∞(R+;L
q ∩X)

Table 1.5: Synthesis of Cobb well-posedness results of F(ST) in Rd, d ≥ 2 from [Cob23]

The regularity of ρ is dictated by the fractional Stokes equation associated Green kernel,
which has a certain decay at infinity and a singularity at the origin. These two features require
ρ to belong to several Lq spaces or subspaces noted Lq ∩X in Table 1.5. It was the motive for
the assumption ρ ∈ L1 ∩L∞ in [Höf18a; Mec18]. Moreover, uniqueness of the solution stems for
Lipschitz velocity fields, which property is eventually ensured up to more regularity constraint on
ρ. Nethertheless, log-Lipschitz velocity can be dealt with, as in [MS22]. The local well-posedness
[Cob23, Theorem 1.3] is consistent with the local well-posedness of (IPM) when α = 0, with
no Sobolev assumption required on the initial data, here. The global well-posedness result from
[MS22] for data ρ0 ∈ L1 ∩ Lq(R3), q ≥ 3, addressed with different techniques, coresponds to a
critical case that [Cob23, Theorem 1.5] does not cover, with same Lebesgue exponents. [Cob23,
Theorem 1.6] does circumvent it, including the Stokes-transport case α = d. These results
confirm the intuition that the larger α is, the better the problem is posed. Cobb also captures
some optimal assumptions on the functional data spaces, with in particular some Besov regularity.
Note that another constraint comes from the non-linearity u·∇ρ, which requires ρu to be at least
integrable in space to satisfy the weak formulation (1.9) of the equation. Regarding these distinct
requirements, assuming data in L1 only is never enough to obtain the weak well-posedness of the
problem, and requires another notion of solution, which is dealt in [Inv23].

1.2.4 Hydrostatic Stokes-transport equation
When modeling an ocean motion, it is common to proceed to the hydrostatic approximation,
consisting in neglection the vertical acceleration of the fluid, inducing the hydrostatic balance
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between the pressure and the density
dp

dz
= −ρ.

More precise formal derivations are detailed in [Ped13] for instance. This approximation is called
hydrostatic in reference to the case of a fluid at rest, with velocity u = 0, where only the pressure
gradient and the external forcing remain. In the present case where the external force correspond
to the gravity effect, it provides indeed

∇p = −ρez.

This equation also allows us to identify the stationary states of the system, see Subsection 3.6.2.
This approximation is made for a wide class of problems generically called Primitive equa-

tions, modelling the ocean in various regimes, with different effects and forcings. These are
paramount for weather and climate prediction. Some seminal works on these equations are
[LTW92a; LTW92b], where the authors initiated a program in view of studying different approx-
imations and formulations including the temperature and salinity of the ocean, in addition to
the velocity, pressure and density. In works such as [Zia95; HTZ02] obtain the well-posedness
of Stokes type problems related to these primitive equations. Cao and Titi proved the global
well-posedness of various viscous primitive equations such as in [CT07] where the system includes
Coriolis forcing, anisotropic viscosity and temperature diffusivity. We also mention recent works
on this topic such as [Kor21; KT23], where Korn (resp. Korn & Titi) prove the global well-
posedness of some ocean primitive equations. The models involved are actually used to make
weather forecasts or simulate ocean circulation on the globe, are based on hydrostatic Boussinesq
equations, supplemented with more physical variable, such as salinity and temperature evolution,
and closed with some specific equation of state.

For simplicity we consider this equation in the periodic strip Ω = T × (0, 1). One major
advantage of the hydrostatic approximation is to easily compute the pressure, since it simply
requires to integrate the density vertically and to use a pressure of reference p0 = p0(x) on one
of the boundaries, generically

p(x, z) = p0(x)−
ˆ z

0

ρ(x, ζ) dζ.

This computation is less expensive than solving the nonlocal equation satisfied by the pressure
in general, such as

∆p = −∂zρ,
in our case, obtained as the divergence of the Stokes equation.

The counterpart of this assumption lies in a loss of regularity regarding the velocity. Indeed,
since the approximation consists in omitting some vertical velocity term in the considered system,
one computes it by integrating the incompressible condition, up to some boundary assumption

u2(x, z) = −
ˆ z

0

∂xu1(x, ζ) dζ.

Whence a priori the vertical velocity u2 possesses one order less of derivation than the horizontal
one u1. In the case of the Stokes equation, we consider the system





−∆u1 + ∂xp = 0
∂zp = −ρ

divu = 0,
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with no-slip boundary condition and a zero average on Ω assumption on u1, detailed in Subsection
2.7.1,

u2|∂Ω = 0, ∂zu1|∂Ω = 0, ⟨u1⟩Ω = 0. (1.11)

In this particular case, we obtain that the velocity field has essentially the same regularity as the
density field

∥u∥Hm ≲ ∥ρ∥Hm ,

which contrasts with the regularisation effect of the original Stokes equation where in general

∥u∥Hm+2 ≲ ∥ρ∥Hm .

This is an obstacle to establish the global well-posedness of the associated hydrostatic Stokes-
transport equation that we define as





∂tρ+ u · ∇ρ = 0
−∆u1 + ∂xp = 0

∂zp = −ρ
divu = 0.

(1.12)

completed with conditions (1.11). Nevertheless, we obtained the local well-posedness of this
system for regular enough data, stated here on the periodic strip Ω = T× (0, 1).

Theorem 1.2.7. Let m ≥ 3. For any ρ0 ∈ Hm(Ω) there exists a time T (∥ρ0∥H3) > 0 such that
the hydrostatic Stokes-transport system (1.12) is locally well-posed, with solution

(ρ,u) ∈ C(0, T ;Hm(Ω))× C(0, T ;Hm(Ω)),

obeying moreover

∀t ∈ [0, T ), ∥ρ(t)∥Hm ≤ ∥ρ0∥Hm

1− C∥ρ0∥H3t
.

1.3 Long-time behaviour for the Stokes-transport equation

Since the Stokes-transport is globally well-posed in the frameworks presented in Section 1.2, we
can wonder about the long-time behaviour of its solutions. As this equation involves density, it
is relevant to consider its potential energy,

E(t) :=

ˆ
Ω

zρ(t).

The natural energy estimates for the Stokes equation and the transport equation once combined
for the Stokes-transport system provide the following energy balance, for any t ≥ 0,

d

dt
E(t) = −∥∇u(t)∥2L2 . (1.13)

This observation already tells us that the potential energy is decreasing, that the evolution of the
system is monotonous and that the fluid rearranges itself. Natural questions may arise. Does the
solution converges for large time? If so, can we identify the limit state? What are the stationary
profiles of the system? If the convergence occurs, what is the decay rate? We partially answer
these questions in Chapter 3. In Subsection 1.3.1 we establish long-time properties of the Stokes-
transport equation solution for generic data in L∞. In particular, we discuss the conjecture that
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the solution always reorders itself vertically, and we use some rearrangement theory. Subsection
1.3.2 gathers the previous long-time behaviour studies for the Incompressible Porous Medium
equation. These works have been fundamental for our contribution on the asymptotic behaviour
of the Stokes-transport equation in a channel [DGL23]. In this latter article, we consider a class
of stable initial data in Sobolev spaces for which we obtained explicit convergence rates and a
description of the asymptotic state, as the vertical rearrangement of the initial data. We also
provide a description of boundary layers formation occurring due to the boundary conditions
imposed on the fluid. These works are introduced in Subsection 1.3.3. Besides, we extend a
method developed by Kiselev & Yao in [KY23] about (IPM), showing that all stationary density
profiles are unstable for low regularity perturbations, for the Stokes-transport equation. The main
difference with this previous work is that we know that (ST) is globally, and the solution grows
with rates distinct from the ones obtained for (IPM). Finally, Subsection 1.3.5 contains a selection
of long-time behaviour results for the Boussinesq equation, for initial data near stratified density
and zero velocity field stationary solutions. We compare these results with the ones obtained for
the Stokes-transport system.

1.3.1 General considerations and rearrangement
The stationary profiles for the Stokes-transport equation are exactly the stratified functions,
i.e. the functions depending only on the vertical coordinate. This is shown thanks to the mono-
tonicity of the potential energy given by (1.13). The physical intuition suggests that the fluid
should sedimentate and reorder in a monotonous way, where density should be increasing with
the depth. We recall and adapt the notion of function rearrangement, and define the vertical
rearrangement in the periodic channel Ω = T × (0, 1). For general data ρ0 ∈ L∞(Ω), we es-
tablished that its ω-set in the H−1 topology, i.e. the set of accumulation points of the density
trajectory, is never empty, and can only contain stationary solutions of the problem. We also
obtained that the density indeed converges in H−1 toward the vertical rearrangement ρ∗0 of its
initial datum ρ0 if and only if the potential energy converges toward the potential energy of ρ∗0.
Besides, the energy balance (1.13) implies that u ∈ L2(R+;H

1(Ω)). We compare this regularity
to some natural sufficient condition ensuring the strong convergence of the transport equation
solution in L2. We will see that this latter condition is satisfied for data close enough to the
hydrostatic profile Θ(z) = 1 − z, in Subsection 1.3.3, and that we can prove that the solution
indeed converges toward the rearrangement in this case.

1.3.2 Previous works about the stability for the (IPM) equation
An overview of the Incompressible Porous Medium equation well-posedness and some compar-
isons with the Stokes-transport and Fractional Stokes-transport are given in Subsection 1.2.3.
In particular, it is not known to this date whether the (IPM) equation is globally well-posed
in time, even for regular initial data. For Sobolev data, for instance, only local well-posedness
results are available, see [CGO07].

In [Elg17; CCL19a], Elgindi and Castro, Córdoba & Lear prove existence of global solu-
tions for the Incompressible Porous Medium equation for specific initial data. They consider
perturbations of the following affine stationary solution of the form

Θ(z) = 1− z.

This profile is stratified, in the sense that it depends only on the vertical coordinate. It is also
monotonous, increasing with the depth. Intuitively, we expect such a density distribution to be
stable in a system modelling sedimentation. This is proven in the aforementioned works. Let
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us define θ as the difference between the density ρ and the background profile Θ, such that it
splits as ρ = Θ+ θ. We will call θ the "perturbation" of the stationary profile Θ. Plugging this
decomposition in the transport equation and given an initial perturbation θ0, we obtain that θ
satisfies the following

∂tθ + u · ∇θ = u2, θ|t=0 = θ0, (1.14)

where u = (u1, u2). We report here the stability results obtained by Elgindi, referenced as [Elg17,
Theorems 1.3 and 1.4], and a refinement obtain by Ma in [Ma23, Theorem 1.1]. All the notations
are unified in order to ease the results comparison.

Theorem 1.3.1 (Elgindi ’18). Let us consider the domain R2. There exists ε0 > 0 such that
for any initial data ρ0 = Θ+ θ0 satisfying

∥θ0∥W 4,1 + ∥θ0∥Hs ≤ ε,

for 0 < ε ≤ ε0 and s ≥ 20, the solution to (IPM) exists globally and obeys for all t ≥ 0 the
following estimates

∥θ(t)∥H3 ≲
ε

t1/4
, ∥u1(t)∥H3 ≲

ε

t3/4
, ∥u2(t)∥H3 ≲

ε

t5/4
.

Theorem 1.3.2 (Ma ’23). Let s > 0 large enough and θ0 ∈ Hs∩W 7,1(R2). There exists ε0 > 0
such that if ∥θ0∥Hs + ∥θ0∥W 7,1 ≤ ε ≤ ε0 then the solution to (IPM) exists globally and obeys the
following estimates

∥θ(t)∥W 1,∞ ≲
ε

t1/2
, ∥u1(t)∥W 1,∞ ≲

ε

t
, ∥u2(t)∥W 1,∞ ≲

ε

t3/2
.

Theorem 1.3.3 (Elgindi ’18). Let us consider the domain T2. There exists ε0 > 0 such that for
any initial data ρ0 = Θ+ θ0 satisfying

∥θ0∥Hs ≤ ε,

for 0 < ε ≤ ε0 and s ≥ 20, the solution to (IPM) exists globally and obeys for all t ≥ 0 the
following estimates

∥θ(t)∥H20 ≤ 2ε, ∥u(t)∥H3 ≲
ε

t5/2
.

Note that these results prove that the solutions exist globally in time for such initial data.
In R2, Theorem 1.3.1 means that the background profile Θ is asymptotically stable, in the
sense that ρ(t) converges toward Θ. This latter convergence occur in H3

loc(R
2), since Θ is not

integrable on the whole space. Nevertheless, the initial perturbation θ0 belongs to Hs(R2) for
some s ≥ 20, this regularity is propagated in time, and θ decays in H3(R2) with explicit rate. In
T2, the conclusion of the Theorem 1.3.3 is slightly different. The whole perturbation, initially
small, remains small for all time, so Θ is stable in the sense that the solution remains in its
vicinity forever. Moreover, the velocity field belongs to L1(R+;H

3(T2)) which ensures that the
perturbation θ converges, see Proposition 3.6.7. Since the pure transport preserves the level sets
measures of ρ when u is divergence-free, the distribution function of ρ is constant with respect to
time. Hence if ρ0 has a different distribution function than Θ, it is not possible for ρ to converge
toward Θ, even in Lebesgue spaces.

Another similar stability result has been obtained in [CCL19a, Theorem 5.1], in a periodic
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channel (renormalised here) Ω = T× (0, 1). Let us introduce the decomposition θ = θ̄+θ′ where

θ̄(z) :=
1

2π

ˆ
T

θ(x′, z) dx′, θ′ := θ(x, z)− θ̄(z).

The term θ̄ is the horizontal average of θ. Note that θ′ has zero horizontal average for any
z ∈ (0, 1). Since we expect the density to rearrange in a stratified state, the limit should depend
only on z, and therefore θ′, capturing all the horizontal dependency of θ, should decay. Projecting
equation (1.14) provide an evolution equation for θ′ and θ̄. These are formalised in the following
result, with explicit decay rates. In particular the following holds for s ≥ 10 and a convenient
choice of γ. This makes a difference with the initial data smallness assumption in H20 required
by Elgindi.

Theorem 1.3.4 (Castro, Córdoba & Lear ’19). Let us consider the domain Ω = T × (0, 1).
There exists ε0 > 0 and γ > 4 such that for any initial data ρ0 = Θ+ θ0 satisfying

∥θ0∥Hs ≤ ε, ∂2nn θ0|∂Ω = 0, 0 ≤ n ≤ (s− 1)/2, (1.15)

where 0 < ε ≤ ε0 and s > 5 + γ, the solution to (IPM) exists globally and obeys the following
estimates

∥θ′(t)∥H3 ≲
ε

(1 + t)γ/4
, ∥θ̄(t)∥Hs ≤ 2ε.

The convergence of the density ρ(t) = Θ + θ̄(t) + θ′(t) is a consequence related to the inte-
grability in time of u, as above. Therefore, it is enough to control θ′ to bound u, since stratified
source terms do not contribute to the Darcy equation solutions,

∥u∥H3 ≲ ∥θ′∥H3 .

Since the parameter γ and the Sobolev exponent s can be arbitrary large here, the decay can be
arbitrary quick, provided the initial datum has a small Hs norm. The same conclusion holds in
for the cases handled by Elgindi, althought it does not explicitly appear in these statement.

The Theorem 1.3.4 has the same structure as Theorems 1.3.1 and 1.3.3. Assume the initial
perturbation θ0 small in some high order Sobolev spaces, then the perturbation remains small
and the density ρ converges toward some asymptotic state in lower order Sobolev spaces. In
the periodic strip, Castro, Córdoba & Lear also assumed their data to have vanishing normal
derivatives on the boundaries, which somehow imitates the periodic case T2. In the following
Subsection 1.3.3, Dalibard, Guillod & the author obtained a similar stability result as Theorem
1.3.4 for the Stokes-transport equation, in [DGL23]. When replacing Darcy equation by Stokes
equation, one extra boundary condition is required on the velocity, and we explain further why
this condition choice impacts greatly the analysis. In particular, it it not possible anymore to
obtain arbitrary large decays, due to some obstacle to the establishment of energy estimates
at arbitrary order. This is a counterpart to getting rid of the vanishing derivatives conditions
(1.15).

We sketch the main ideas of the above theorems proofs here, as they share the same core.
This main scheme is updated to establish a similar result for the Stokes-transport equation in
[DGL23].
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Essence of the stability proofs for (IPM) The background state Θ induces a stabilising
mechanism. Indeed, the energy balance in L2 on θ writes

1

2

d

dt
∥θ∥2L2 =

ˆ
Ω

u2θ = −∥∇u∥2L2 ,

where the nonlinear advection term does not contribute since u is divergence-free, and the latter
equality arises by combining transport and Darcy equation estimates, just as in the potential
energy balance (1.13). The calculations for (ST) are detailed in Subsection 3.6.2. Actually, the
potential energy appears explicitly here, since

∥θ∥2L2 = ∥ρ−Θ∥2L2 = ∥ρ∥2L2 − 2

ˆ
Ω

(1− z)ρ+ ∥Θ∥2L2 .

Because ∥ρ(t)∥L2 , ∥Θ∥L2 and
´
Ω
ρ(t) are constants, which is a major difference with ∥θ∥L2 , we

have exactly
1

2

d

dt
∥θ∥2L2 =

d

dt
E(t).

Computing thoroughly the energy estimates for higher order Sobolev norms (see [CCL19a, The-
orem 5.2]) leads to inequalities of the form

d

dt
∥θ∥2Hm ≲ ∥∇u2∥L∞∥θ∥2Hm − (1− C∥θ∥Hm)∥u∥2Hm .

Note that this estimate is valid for arbitrary large m thanks to the data vanishing normal
derivatives, cancelling all boundary integrals when performing integrations by parts. We can
read in this estimate that if ∥∇u2∥L∞ is integrable in time, and if ∥θ∥Hm is small enough, then
∥θ∥Hm remain small, by a Grönwall argument. To obtain decay rates and the convergence of
the solution toward a stratified state, one splits the modified transport equation (1.14) into two
equations on θ′ and θ̄ respectivelly. The estimates on θ′ stem,

d

dt
∥θ′∥L2 ≲ −(1− C∥∂z θ̄∥H2)∥u∥2L2 .

Once again, if θ is small enough in some appropriate Sobolev spaces, then so is θ̄, and ∥θ′∥L2 is
decreasing. To obtain algebraic decay rates, we need to relate the norms of u and θ′. A priori,u
is controlled by θ′, either for the Darcy equation or the Stokes equation, so without specifying
the functional spaces, we have in general

∥u∥ ≲ ∥θ′∥. (1.16)

Here we need the inequality in the other way. To do so, Castro, Córdoba & Lear establish
some interpolation inequality, using the Fourier decomposition of the functions and relying once
again on the vanishing normal derivatives as in (1.15). In the course of their demonstration, this
interpolation estimate takes the form

∥θ′(t)∥2L2

(1 + t)1/2
≲ ∥u(t)∥2L2 +

∥θ′(t)∥2Hα

(1 + t)(1+α)/2
. (1.17)

Here u partially controls θ′ in L2, as a reciprocal of (1.16). The weight involves in this inequality
depends here on time, and we see that higher the Sobolev regularity, higher the decay in the
right hand-side. Combining the latter estimates, and applying a Grönwall lemma, we eventually
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get

∥θ′(t)∥L2 ≲
∥θ′∥L∞(0,t;Hα)

(1 + t)α/4
. (1.18)

Such estimates also hold for the H3 norm of θ′ instead of L2. Up to prove the smallness of θ′
in Hα(Ω) for all time, we get a decay estimate on θ′. Since α is arbitrary, one choses it so that
the quantities of interest are integrable in time, ensuring the convergence of the solution. A
bootstrap argument is performed to prove that all the aforementioned assumptions are satisfied
at the same time.

1.3.3 Contribution: Stability for the Stokes-transport system in a
channel

In this subsection we consider the spatial domain Ω = T× (0, 1) and positive densities, without
loss of generality. We obtained the stability of the stationary profile Θ(z) = 1 − z for small
perturbations in Sobolev spaces.

Theorem 1.3.5 (Dalibard, Guillod & L. ’23). Let θ0 ∈ H6(Ω) such that θ0|∂Ω = ∂nθ0|∂Ω = 0,
∂2z θ̄0|∂Ω = 0, and set ρ0 = Θ+ θ0. There exists ε0 > 0 such that if ∥θ0∥H6 ≤ ε ≤ ε0 the solution
of the Stokes-transport equation with no-slip boundary condition and initial datum ρ0 satifies

∥∂3xθ′(t)∥L2 ≲
ε

1 + t
, ∥∂xθ′(t)∥H4 ≲ ε, ∥θ̄(t)∥H5 ≲ ε, ∀t > 0. (1.19)

Moreover, the density converges in Hm for m < 4 toward the vertical rearrangement of ρ0:

ρ∞(z) :=

ˆ ∞

0

10≤z≤|{ρ0>λ}| dλ.

We only required the initial perturbation θ0 to have its trace and its first normal derivative
trace vanishing, so that Θ and ρ0 share the same boundary conditions. For a linearised version of
the system, that this condition can be lifted, and give rise to boundary layers that are described
in Theorem 1.3.6. In the nonlinear setting, we provide a more complete description of the solution
involving these boundary conditions, see Theorem 1.3.7.

We provide the outlines of the proof of Theorem 1.3.5, based on the sketch for (IPM) reported
hereabove, and we emphasise on the differences induced by the boundary condition choice on
u for the Stokes-transport equation. Even though the outlines of the proof are the same for
[Elg17; CCL19a; DGL23], the framework and tools are different. In [Elg17], Elgindi relies on
the Fourier analysis on the full space R2 and Fourier series on the torus T2, in particular to
obtain interpolation estimates. In [CCL19a], Castro, Córdoba & Lear adapt the Fourier basis to
the periodic channel. In both cases, the boundaries are either non-existent or do not raise any
obstacle. In [DGL23], due to the second order operator in the Stokes equation and the Dirichlet
boundary conditions, the boundaries cannot be neglected anymore, and the Fourier approach
does not fit. Note that we have identified a basis adapted to our problem in Subsection 3.8,
whose features illustrate the difficulties raised by the boundaries. In particular, energy estimates
for arbitrary orders such as (1.18) inducing arbitrary algebraic decay rates for (IPM) solutions,
as pointed out rightafter Theorem 1.3.4, does not hold anymore because of the boundaries and
the Dirichlet boundary condition.

Specificities induced by the Dirichlet condition for (ST) We focus here on the main
differences and limitations induced by the homogeneous Dirichlet boundary condition u|∂Ω = 0.
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Let us assume the slip boundary condition on u, namely

u · n = 0, ∂nu = 0, on ∂Ω.

If one assumed the initial datum θ0 to satisfy a null normal derivatives trace condition as (1.15),
this property would be transfered to θ for all time. Therefore, all the above computations can
be performed in the same way, up to some powers adjustments, the integrations by parts do not
induce any boundary integral, and the interpolation estimate (1.17) does adapt. In the end the
same proof as [CCL19a] would provide a similar result for (ST).

With the Dirichlet boundary condition, no such null trace can be propagated, except the first
two ones

θ = 0, ∂nθ = 0, on ∂Ω.

Therefore it is only possible to rely on the energy estimates such as (1.18) for low derivative
orders, and to hope having a sufficient decay on ∥θ′∥L2 to ensure convergence of the whole
solution. In this case, the above approach provides

∥θ′∥L2 ≲
∥∂xθ′0∥H4

1 + t
. (1.20)

Note that an interplay between horizontal derivatives and the isotropic regularity occurs due to
the underlying operator, appearing in the linearised system,

∂tθ
′ = u2, −∆u+∇p = −θ′ez. (1.21)

At this point, it is convenient to express the velocity u in term of its stream function ψ, satisfying
u = ∇⊥ψ, and the Stokes equation with Dirichlet boundary conditions rewrites

∆2ψ = ∂xθ
′, ψ = ∂nψ = 0 on ∂Ω. (1.22)

Let us denote by ∆−2∂xθ
′ the solution to (1.22). Remark that ∆−2 is distinct from the iteration

of the inverse Laplace operator, namely (∆−1)2, due to the distinct boundary conditions. Then
the linearised system also writes

∂tθ
′ = ∂xψ = ∆−2∂2xθ

′.

More generally, we observe in the analysis that each elliptic regularity gain (∆−2)1/2 is paired
with one horizontal derivative.

Back to (1.20), we need to control the H4 norm of ∂xθ′ to ensure that ∥θ′∥L2 decays indeed
as (1 + t)−1, which is possible to show without integrations by parts, and by controlling that
the whole perturbation θ does not grow too fast in H6. The last step of the proof consists in
bringing the previous linear analysis into the full nonlinear system. Intuitively, the strategy
is the following: denote by (0, T ∗) the maximal time interval over which ∥θ′∥L2 ≤ B(1 + t)−1

and ∥θ′∥H4 ≤ B are valid with a constant B. In fact more estimates need to be included in
the boostrap argument for technical reasons, see (3.18). On this time interval, the quadratic
terms can be treated perturbatively, provided ∥θ0∥H4 is sufficiently small. Hence the bootstrap
estimates hold with a constant which is better than B, and thus T ∗ = ∞. It follows that θ′
converges towards zero in L2, and that the time derivative of θ̄ is integrable. Hence θ̄ has a limit
in L2 as t→ ∞. This is the main part of the proof which is detailed in Subsection 3.2.3.
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Asymptotic profile identification. Since θ′ converges to zero in any Hm for m < 4 as
t→ ∞ and θ̄ has a limit in L2 as t→ ∞, the whole density ρ = Θ+ θ = Θ+ θ̄+ θ′ converges to
some limit ρ∞ in L2 and ρ∞ depends only on z. Since θ is small compared to Θ, ∂zθ is small,
hence ρ∞ is strictly decreasing with respect to z as is Θ. The transport of the density by the
divergence-free field u ensures that the level sets of ρ are preserved by the time evolution, and by
strong convergence this is also the case for the limit ρ∞. According to rearrangement theory, ρ∞
is therefore a rearrangement of ρ0. One can show that there exists a unique decreasing vertical
rearrangement of ρ0, hence ρ∞ is uniquely determined. This part of the proof is detailed in
Subsection 3.2.4.

Biharmonic operator and adapted basis During the analysis of the stability problem, the
Stokes equation reduces to a bilaplacian equation. Depending on the boundary condition for the
velocity required in the Stokes system, the bilaplacian equation is also endowed with different
boundary conditions. It appears that considering slip boundary conditions, also called Neumann
boundary conditions, leads to similar analysis and stability result as in the work [CCL19a], with
the same proof. On the contrary, the no-slip assumption, also called Dirichlet condition, breaks
the aforementioned proof at different steps, which we detailed all along our work. We pro-
vide a selfcontained proof of the classical estimates on the solutions of the bilaplacian equation.
Moreover, it seemed convenient to study closer this bilaplacian operator endowed with Dirichlet
boundary conditions, and to obtain an explicit eigenfunction basis to adapt the Fourier analysis
of Castro, Córdoba & Lear. This basis is described in Section 3.8. The structure of the eigen-
functions, based on the Fourier basis with addititional terms rectifying the trace, is relatable to
the boundary layer formation stated in Theorems 3.1.2 and 3.1.3.

Linear asymptotic expansion for non-vanishing perturbation on ∂Ω The previous
result is only valid under the assumption that the perturbation and its normal derivative are
vanishing on ∂Ω i.e.when ρ0−Θ ∈ H2

0 (Ω). If the perturbation does not vanish on the boundary,
this question is non trivial even for the linearized equations around Θ = 1− z:





∂tθ − u · ez = 0

−∆u+∇p = −θez
divu = 0

θ|t=0 = θ0.

(1.23)

It turns out that θ vanishes as t → ∞ but with a much slower rate than in the case when
θ0 = ∂nθ0 = 0 on ∂Ω. This is due to the formation of boundary layers of typical size t−1/4 as
t → ∞, in the vicinity of z = 0 and z = 1. More precisely, we will prove the following result in
Section 3.3:

Theorem 1.3.6 (DGL. ’23). Let θ0 ∈ Hs(Ω) for some s sufficiently large. Then the solution of
(1.23) satisfies:

θ = θ̄0 + θBL +O(t−1) in L2(Ω) as t→ ∞,

where θ̄0(z) = 1
2π

´ 2π
0

θ0(x, z) dx is the horizontal average of the initial data and θBL is the
boundary layer part whose leading terms are:

θBL = Θ0
top(x, t

1/4(1− z)) + Θ0
bot(x, t

1/4z) + l.o.t
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with Θ0
top and Θ1

bot decaying exponentially as Z = t1/4z → ∞. Note that ∥θBL∥L2(Ω) ≲ (1 +

t)−1/8.

Non-linear asymptotic expansion For the nonlinear problem, more complex boundary lay-
ers seems to develop when the perturbation is non-zero on ∂Ω. To avoid such complications, we
go back to the case where ρ0 − Θ ∈ H2

0 (Ω). The previous results will then allow us to derive
uniform bounds in H8(Ω), modulo some boundary layer terms:

Theorem 1.3.7 (DGL. ’23). There exists ε0 > 0 small such that for any ρ0 ∈ H14(Ω) satisfying
∥ρ0 −Θ∥H14 ≤ ε0 and ρ0 −Θ ∈ H2

0 (Ω), then the solution ρ of (ST) satisfies:

ρ = ρ∞ + ρBL +O(t−2) in L2(Ω) as t→ ∞,

where ρBL is the boundary layer part:

ρBL =
1

t
Θtop(x, t

1/4(1− z)) +
1

t
Θbot(x, t

1/4z) + l.o.t.

with Θtop and Θbot decaying exponentially as Z = t1/4z → ∞.

We note that ∥ρBL∥L2(Ω) ≲ (1+ t)−9/8 so this result strongly suggests that the optimal decay
of ρ−ρ∞ is like t−9/8 in L2(Ω), which is close to the rate t−1 obtained in Theorem 1.3.5. Indeed,
it would be very surprising but not excluded that the non-linear dynamics drive the system to
the case where these boundary layers terms always vanish.

It seems there are no major obstacles in obtaining a similar non-linear result when the per-
turbation do not vanish on the boundary, except technicalities due to the fact that boundary
layer equations will be non-linear. The present result proved in Section 3.4 requires only linear
boundary layer and is already quite technical.

1.3.4 Low regularity instability for (IPM) and (ST)

We saw that for regular enough small initial data θ0, assumed small, (IPM) and (ST) admit
global solutions near z 7→ 1 − z. In [KY23], Kiselev & Yao show that there exist initial data
arbitrary close to any stationary profile Θ in H2−γ for any fixed 2 > γ > 0, such that the
perturbation has algebraic growths. In the periodic channel, their statement writes as follows,
with adapted notations from [KY23, Theoram 1.5, Corollary 4.2].

Theorem 1.3.8 (Kiselev & Yao ’21). Let Θ ∈ C∞(Ω) be a stationary solution of (IPM). For
any ε > 0 and 2 > γ > 0, there exists a perturbation θ0 ∈ C∞(Ω) satisfying

∥θ0∥H2−γ ≤ ε,

such that the associated solution ρ = Θ+ θ, provided it exists globally in time, obeys

lim sup
t→∞

t−s/2∥ρ(t)−Θ∥Ḣs = ∞, for all s > 0.

The statements in R2 and T2 are essentially the same, with different growth rates and a
vertical symmetry assumption specific to the torus case. Note that this theorem relies on the
global existence of smooth solutions, which remains an open question. The growth formulated
here means that, there exists time extractions such that the norm of the perturbation grows
at least polynomially with respect to time. The proof of this result relies in particular on the
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monotonicity of the potential energy and on a geometric argument. Let us assume the density
ρ0 to be constant on a closed curve. Since the transport is pure, this density is transported
together with the curve. Under one extra assumption, it happens that the curve shall squash,
which implies the growth of the derivatives.

The result of Kiselev & Yao adapts to the Stokes-transport equation.

Theorem 1.3.9 (L.). Let Θ ∈ C∞(Ω) be a stationary solution for (ST). For any ε > 0 and
2 > γ > 0, there exists a perturbation θ0 ∈ C∞(Ω) satisfying

∥θ0∥H2−γ ≤ ε,

such that the solution associated to ρ0 = Θ+ θ0 obeys

lim sup
t→∞

t−s/4∥ρ(t)−Θ∥Ḣs = ∞, for all s > 0.

In this case, the solution exists globally since the problem is well-posed. The growth rates are
different, due to the laplacian regularization provided by the Stokes equation, which modifies the
velocity regularity. This is the main difference with the (IPM) equation, since the proof comes to
study closed curves geometry evolution under the flow, with the same transport equation in both
cases. The proof of Theorem 1.3.9 is given in Section 3.7. Note that there is no contradiction
between these instability results and the previous stability statements, for which initial data have
to be small in higher Sobolev spaces. This observations raises the question of the existence of a
Sobolev regularity threshold such that the profiles are unstable (resp. stable) when less (resp.
more) regular than this threshold.

1.3.5 Long-time behaviour for the Boussinesq equation

The goal of this section is to compare the asymptotic behaviours observed for (IPM) and (ST),
described in the present section, with the ones identified in the literature for the Boussinesq
equation. We consider the Boussinesq equation with no diffusion,





∂tu+ (u · ∇)u−∆u+∇p = −ρez
∂tρ+ u · ∇ρ = 0

divu = 0.
(1.24)

This equation is often endowed with the slip or no-slip boundary conditions, respectively
{

u · n = 0
∂nu = 0,

or u = 0 on ∂Ω.

We refer to [Hu+16] for a comprehensive review of recent results on the global existence and
persistence of regularity for the 2-dimensional Boussinesq equation, in particular with viscosity
and zero diffusivity as in (1.24). This equation is globally well-posed in Sobolev spaces, see for
instance the following result from [HKZ13, Theorem 2.1].

Theorem 1.3.10 (Hu, Kukavica & Ziane ’13). Let Ω ⊂ R2 be a smooth, bounded and connected
open set. Let u0 ∈ H2(Ω) such that divu0 = 0, and ρ0 ∈ H1(Ω). Then there exists a unique
global solution (ρ,u) for (1.24) endowed with the no-slip boundary condition, such that

(ρ,u) ∈ L∞(R+;H
1(Ω))×

(
L∞(R+;H

2(Ω)) ∩ L2
loc(R+;H

3(Ω))
)
.
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Note that the energy balance of the system for the Boussinesq equation states

d

dt

(
∥u∥2L2 + E(t)

)
= −∥∇u∥2L2 .

In particular, it is not ensured that the potential energy decays monotonously, contrary to the
Stokes-transport solutions. One can consider an initial datum with a localised density and upward
velocity, which should increase at least locally in time the potential energy, surely compensated
by a kinetic energy decay. Nevertheless, [LPZ11, Theorem 1.1] ensures that the kinectic energy
∥u∥2L2 of the system is uniformly bounded, for initial data (ρ0,u0) ∈ H3 ×H3(Ω) on bounded
2-dimensional domains.

In [Doe+18], Doering, Wu, Zhao & Zheng show that global well-posedness holds for (1.24)
endowed with slip boundary conditions, on bounded domains Ω ⊂ R2 with boundary ∂Ω in the
class C1+µ, µ ∈ (0, 1). The authors also study the evolution of density ρ near stationary profiles
Θ, with perturbation θ = ρ − Θ according to our notations. In [Doe+18, Theorem 1.2], the
authors consider perturbations (ρ0,u0) of the steady state (Θ,0) with Θ proportional to z 7→ −z
up to an additive constant. In this framework, they prove that for (θ0,u0) ∈ H1 × H2(Ω),
divergence-free and with boundary compatibility conditions, the global solution (θ,u) satisfies

∥u∥H1 → 0, ∥∂tu∥L2 → 0, ∥θ∥L2 → c∞, ∥∇p+ θez∥H−1 → 0, (1.25)

where c∞ is a constant in
(
0,
√

∥u0∥2L2 + ∥θ0∥2L2

)
. The same result has been obtained by

[Tao+20, Theorem 1.4] in T2 for data only in θ0 ∈ L∞(T2) and u0 ∈ H2(T2). These properties
are obtained for the Stokes-transport equation, and the latter convergence in H−1 has implica-
tions on the ω-set for the density, see Subsection 3.6.3. Doering et al. point out several missing
informations regarding their result. No decay rates are available. The convergence of θ and
its limit are unclear, although the authors opinion is that the vertical rearrangement of θ0 is a
privileged candidate. Also, they mention the Boussinesq equation in the infinite Prandtl number
asymptotic, corresponding to the Stokes-transport equation, as a reduced model facilitating the
obtainment of decay rates and identification of the asymptotic profile. Chapter 3 answers both
these questions. Indeed, we obtained explicit convergence rates for small enough perturbations
of the affine profile Θ(z) = 1− z, and were able to identify the asymptotic profile as the vertical
rearrangement of the initial datum.

For generic initial data, the convergence toward an asymptotic state is unclear. In particular,
[AKZ23, Theorem 2.1] states that for any (ρ0,u0) ∈ H1(Ω)×H2(Ω) with divu0 = 0, on bounded
and smooth Ω ⊂ R2, the solution satisfies in addition to (1.25) the following growth control,

∀ε > 0,∃Cε > 0, ∥ρ(t)∥H1 ≤ Cεe
εt.

This result can be compared with the instability Theorem 1.3.8 from [KY23] for (IPM) and the
stability Proposition 1.3.9 for (ST), where existence of solutions admiting some algebraic growth
of the density in Sobolev spaces, in particular in H1. Note that a growth in H1 does not exclude
a convergence in L2.

The Boussinesq equation solutions can also present algebraic growths, in Sobolev norms,
similarily to Theorem [KY23] for (IPM), for data satisfying certain geometric assumptions, see
[KPY22, Theorem 1.1] by Kiselev, Park & Yao. The growths have distinct exponent rates,
and the initial data for the Boussinesq equation are assumed smooth and compactly supported,
whereas the data were in H2−γ , 0 < γ < 2. The proof relies on similar ideas as for (IPM).

In [BFL17], Biswas, Foias & Larios describe properties of the attractor of the system (1.24),
and identify some of its steady states in T2. Let us recall that the steady states for the Stokes-
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transport equation are of the form

(ρ,u) = (Θ(z),0), Θ ∈ L∞(0, 1).

These are also steady states for the Boussinesq equation. But there exist more steady states with
nonzero velocity fields, for instance. Biswas et al. also identified steady solutions of the form

(ρ,u) = (ρ(z), (u1(z), 0)), (ρ,u) = (ρ(x), (0, u2(x))), (1.26)

which are respectively density and horizontal velocity depending only on the vertical coordinate
(shear flow), and density and vertical velocity depending only on the horizontal coordinate. These
latter solutions are admissible since the spatial domain is periodic. Also, in the Stokes-transport
case, any nonstratified state induces a nonzero horizontal velocity, and a stratified density does
not contribute to the velocity. This explains why (1.26) are not steady solutions for (ST).

More stability results around specific velocity flows are studied, but we restrain our overview
to the case u = 0, since it is the only stable one for (ST) and (IPM).

In [CCL19b], Castro, Córdoba & Lear proved the analogous stability result as Theorem 1.3.4,
for a Boussinesq equation with velocity damping, where the momentum equation is

∂tu+ (u · ∇)u+ u+∇p = −ρez.

This system corresponds to the (IPM) equation supplemented with the fluid self-advection. It
differs from the classical Boussinesq equation(1.24) by a damping term u replacing the viscosity
effect −∆u. This can be seen a limiting case of fractional dissipation on the velocity.

Theorem 1.3.11 (Castro, Córdoba & Lear ’19). Let us consider the domain Ω = T × (0, 1).
There exists ε0 > 0 and γ > 4 such that for any initial data ρ0 = Θ + θ0 and u0 having some
energy, involving the Hs+1, s ≥ 6+2γ, norm of the data, smaller than 0 < ε ≤ ε0 and satisfying

∂2nn θ0|∂Ω = 0, 0 ≤ n ≤ (s− 1)/2,

with a similar condition on u0, the solution to (IPM) exists globally and obeys

∥θ′(t)∥H4 + ∥u(t)∥H4 ≲
ε

(1 + t)γ/4
, ∥θ̄(t)∥Hs+1 ≤ 6ε2.

The proof of this results is based on the same scheme as for the (IPM) case, made more
technical due to the self-advection term.

It is natural to wonder if the Stokes-transport stability in a channel with Dirichlet boundary
conditions as stated in Theorem 1.3.5 holds for the Boussinesq equation. Let us recall some
decay rates for the Stokes-transport stability described Subsection 1.3.3,

∥θ′∥L2 ≲
1

1 + t
, ∥∇θ′∥L2 ≲

1

(1 + t)3/4
, ∥∂tθ′∥L2 ≲

1

(1 + t)2
.

The algebraic decay reduces by 1/4 for each spatial derivative order, and increases by 1 for time
derivatives. Regarding the velocity field solving the Stokes equation, the same principes hold
with a power shift due to the elliptic regularisation, as follows,

∥u∥L2 ≲
1

(1 + t)7/4
, ∥∇u∥L2 ≲

1

(1 + t)3/2
, ∥∂tu∥L2 ≲

1

(1 + t)11/4
,
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∥(u · ∇)u∥L2 ≲ ∥u∥L∞∥∇u∥L2 ≲ ∥u∥1/2L2 ∥u∥1/2H2 ∥∇u∥L2

︸ ︷︷ ︸
1
2 ·

7
4+

1
2 ·

5
4+

3
2

≲
1

(1 + t)3
.

Schematically, we can expect to absorb the self-advection term effects since it should decay faster
than the density perturbation θ′, and consider it perturbatively,

−∆u+∇p = −θ′ez − ∂tu− (u · ∇)u.

Hence, up to the technicalities inherent to the self-advection term, we expect the hydrostatic
rest state (ρ,u) = (Θ(z) = 1 − z,0) to be stable for the Boussinesq equation, in the sense of
Theorem 1.3.5.

1.4 Numerical study of the graph interface evolution

The aim of Chapter 4 is to provide a study of some graph interface evolution governed by
the Stokes-transport equation. We sketch the outlines of this problem in Subsection 1.4.1. In
Subsection 1.4.2 we briefly discuss the evolution of density patches and summarise some works
of Mecherbet and Grayer II on this matter. In Subsection 1.4.3 we summarise works on free
interfaces governed by Stokes flows, and we give some context about related free interfaces
problems. In particular we mention the Muskat problem, since it corresponds to the free interface
evolution driven by (IPM). Several usual mathematical approaches for such problems are also
described. We establish some properties for our problem of interest, summarised in Subsection
, including discussions about monotonous functionals for the interface problem. Finally, our
main contribution consists in numerical simulations and observations for the evolution of graph
interfaces in the horizontally periodic channel, also summarised in Subsection 1.4.4.

1.4.1 Outlines of the problem

We consider the evolution of a graph interface separating two subdomains on which the fluid
density is constant. Consider a generic 2-dimensional domain I×J , where I, J are some intervals,
on which we consider the Stokes equation with a source term of the form −ρ0ez. The typical
case we are looking at is the graph interface case, where the initial density is given as a patch
associated to an hypograph. In other words, consider a map η0 : x ∈ I → R where I is typically
R or T, and set the initial density profile as the indicator of the hypograph of η0, namely

ρ0 : (x, z) ∈ I × J 7−→ 1{z<η0(x)}.

Some typical domains I × J to consider are the whole space R2, the half-space R2
+, the infinite

channel R× (0, 1) and in the periodic channel T× (0, 1) and the periodic plane T×R. In the
present work, we will focus on the horizontaly periodic channel Ω = T × (0, 1). A lot of the
general considerations discussed in the following remain true in other cases. See Figure 1.1 for
an illustration of ρ0 in this case.

Let us recall that (ST) is well-posed for L∞ initial data in bounded domains, in the infinite
channel and periodic strip, and in the whole space R3 for datum ρ0 ∈ L1∩L∞(R3) and in R2 for
ρ0 ∈ L1∩L∞(R2) with compact support. In any of these frameworks, a density patch associated
to a connected subdomain P0 remains a patch for all time. Indeed, since the transport is pure and
the velocity field is divergence-free, we know that the solution of (ST) is the pushforward of the
initial datum by the flow map X as defined in Subsection 2.2.2, so ρ(t) = 1P0

◦X(t)−1 = 1X(t;P0).
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ex

ez

η0(x)

T

ρ0 = 0

ρ0 = 1

Figure 1.1: Example of a patch associated to an hypograph on T× (0, 1).

Moreover, the flow preserves the topology of the boundary ∂P0 and the area of the patch. Some
general patch problems are discussed in Subsection 1.4.2.

In the case of a graph interface, i.e. a patch corresponding to some hypograph, it is natural
to wonder if the interface remains a graph, locally or globally in time, and for which class of
regularity. Let us assume there exists a function η : (t, x) ∈ [0, T )× I 7→ η(t, x) ∈ J such that

ρ(t, x, z) = 1{z<η(t,x)}.

Then, ρ satisfies (ST) if and only if η satisfy the following system




∂tη + u1(t, x, η(t, x))∂xη(t, x) = u2(t, x, η(t, x)), on [0, T )× I,
−∆u+∇p = −1{z<η(t,x)}ez, on [0, T )× Ω,

divu = 0, on [0, T )× Ω.
(1.27)

This system is obtained in Subsection 4.1.2. The first equation is very classical in the free surface
literature, and simply means that the graph is transported by the velocity field on the interface
Σ(t) := {(x, η(t, x)) : x ∈ I}. Observe that the velocity field u is given as the solution to the
Stokes equation with a L∞ datum, whose regularity is not correlated to the graph of η, which
restricts the maximal regularity we can expect on u. This fact is precised in Subsection 1.4.2
and in Section 4.1.

1.4.2 About density patches

We1 call density patch any function ρ of the form 1P where P is a connected and non-negligible
spatial subdomain. Considering such an initial datum ρ0 = 1P0

for the Stokes-transport equation,
we know that the associated solution is the pushforward of ρ0 by the flow X associated to the
velocity field. In particular, ρ remains a patch for all time, since ρ(t) = 1X(t;P0), and we define
its support as P (t) = X(t;P0). Since u is divergence-free, the flow is measure preserving, and
we have |P (t)| = |P0| for all time t. The regularity of the interfaces of such patches is often
described thanks to Hölder spaces Ck,µ, associated to the following semi-noms and norms, for
k ∈ N, µ ∈ (0, 1),

∥γ∥Ċk,µ = sup
x̸=y

|∇kγ(x)−∇kγ(y)|
|x− y|µ , ∥γ∥Ck,µ =

k
max
ℓ=0

∥∇ℓγ∥L∞ + ∥γ∥Ċk,µ .

1Other definitions might require the subdomain P to be simply connected, which is not the case for hypograph
patches in the periodic channel Ω = T× (0, 1), for instance.
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The situation of density pockets for (ST) has been considered by Mecherbet in [Mec20] and
by Grayer II in [Gra22].

In [Mec20], Mecherbet investigates the sedimentation of a droplet in a Stokes flow in R3,
governed by (ST). She derives an interface evolution equation for patches homeomorphic to
the sphere, described thanks to a spherical parametrisation. Denoting by (θ, ϕ) 7→ r(θ, ϕ) this
parametrisation, this evolution equation shares a similar form as (1.27), with two operators Ai,

∂tr + ∂θA1[r] = A2[r], r|t=0 = r0.

Mecherbet establishes the local well-posedness of this system, with solutions in C0,1. In par-
ticular, she proves that the shape of a spherical interface is preserved. Her proof relies on the
property that the normal component of the fluid velocity is constant on the sphere, and corre-
sponds to the velocity fall. This is relatable to the modeling of the fluid-particle system from
which (ST) has been derived by Höfer and Mecherbet, where such an assumption is made at the
scale of a particle, see Subsection 1.1.2. Finally, Mecherbet performed a numerical study of this
interface evolution, and observed stationary sphere shape.

In [Gra22], Grayer II investigates the regularity of density patches in R2. He starts by proving
the well-posedness of (ST) in R2 for compactly supported initial data ρ0 ∈ L1 ∩ L∞(R2), see
[Gra22, Theorem 3]. From here, it is possible to consider initial density patches associated to
simply connected and compact subdomains P0 ⊂ R2. In [Gra22, Theorem 5], Grayer II states
that for any k ∈ {0, 1, 2} and µ ∈ (0, 1) the Hölder regularity Ck,µ of ∂P (t) is preserved for all
time.

In [AYM00], Antontsev et al. prove that the interface of a multiple patch initial data, such
that the initial interface Σ0 is C2, remain C1,µ, µ ∈ (0, 1) for all time. See the end of Subsection
1.2.1 on the belated rediscovery of this reference.

The preservation of Hölder regularity Ck,µ comes straighforwardly from the description of
the patch at time t in terms of the flow X and P0, with in particular

∂P (t) = X(t; ∂P0).

The regularity of X(t) ∈ C1,λ can be deduced from u ∈ C1,λ, for any λ ∈ (0, 1). The regularity
∂P0 ∈ C1,µ is equivalent to have existence of a parametrisation γ0 : [0, 1] 7→ ∂P0 for regularity
C1,µ of the curve ∂P0. With this description, ∂P (t) parametrises by γ(t) = X(t; γ0). Hence,
γ(t) belongs to C1,min(λ,µ), see Lemma 4.1.3, hence to C1,µ since λ is arbitrary. See Subsection
4.1.4 for further details on this matter. Here in R2, since the density belongs to L1∩L2(R2) the
velocity is Ċ1,µ, and the above argument allows to prove that C1,µ is preserved. These are also
the main arguments used in [AYM00] to prove that patch solutions for (ST) in bounded domains
remains C1,µ, µ ∈ (0, 1) for all time, if the initial Σ0 is C2. Since the regularity of the velocity
is a priori limited, we cannot expect to propagate higher regularity order with this approach.
To prove that ∂P (t) remains C2,µ, Grayer II deals with more subtle geometric properties of the
explicit formula for the velocity field u in terms of the kernel associated to the Stokes equation,
including symmetry and cancellation properties. These techniques come from the seminal work
of Yudovich [Yud63] on vorticity patches solution for the 2-dimensional Euler equation, see also
[Che93] on this topic. Besides, Grayer II runs a numerical simulation to observe the evolution of
a circle interface. He observes the formation of corner-like singularities arising from this initial
disk patch. Besides, he shows that the integral expression of the initial vorticity associated with
a disk patch initial datum is not symmetric, suggesting that the interface does indeed not remain
a circle. This result is to compare with the stationary sphere investigated by Mecherbet.
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1.4.3 Related graph interfaces problems and techniques

In the present subsection we provide a summary of some works about graph interface problems
related to the Stokes-transport equation. To our knowledge, only one contribution [GGS22]
exists about the graph interface problem (1.27), governed by (ST). They analyse the case of
the periodic domain T×R. Other problems concerning an interface evolution in a Stokes fluid
governed by capillary forces are tackled in the literature. Besides, the graph interface problem
has been extensively studied for the Incompressible Porous Medium system, better known as
the Muskat problem. These three types of problems are respectively covered in the following
paragraphs. We insist on two different techniques involved to address such matters, which are
the contour dynamic approach and the Arbitrary Lagrangian-Eulerian formulations. These could
in particular be carried out to address the evolution of interfaces for (ST) in other domains than
T×R.

Stokes-transport graph interface In [GGS22], Gancedo, Granero-Belinchón and Salguero
address the free interface problem for gravity Stokes flow, corresponding to the system (1.27)
on the 2-dimensional horizontally periodic domain T ×R. In all generalities, they express the
interface as a curve, and consider the particular case of a graph. We will stick to the graph point
of view in the following. With our notations, once the constants are renormalised, the equation
writes as follows.

∂tη = u|η · nΣ⟨∂xη⟩, on T, (1.28a)

−∆u± +∇p± = −ρ±ez, in Ω±(t), (1.28b)

divu± = 0, in Ω±(t), (1.28c)

J∇u± + (∇u±)⊥ − 2p±IKnΣ = 0, on Σ(t), (1.28d)
JuK = 0, on Σ(t), (1.28e)

η|t=0 = η0, (1.28f)

where ρ+ = 0, ρ− = 1, with Σ(t) = {(x, η(t, x)) : x ∈ T} is the interface, ⟨∂xη⟩ =
√

1 + |∂xη|2
and JfK := f+|Σ − f−|Σ denotes the jump of the quantity f at the interface. Here equation (1.28a)
corresponds to the formulation (4.9) of the graph interface evolution, presented at the end of
Subsection 4.1.2. The graph is assumed to have zero average, so η corresponds to ζ in this
case. Equations (1.28b) and (1.28c) are restrictions of the Stokes equations on the subdomains
Ω±, completed with the continuity of the stress tensor (1.28d) and velocity field (1.28e) at
the interface. These conditions are equivalent to the Stokes equation considered on the whole
domain. We know in particular that the velocity field and the Stokes stress tensor are continous
for bounded source terms. The Stokes tensor is

∇u+ (∇u)⊥

2
− pI,

such that the Stokes equation rewrites

−div

(∇u+ (∇u)⊥

2
− pI

)
= −ρez.

We report here [GGS22, Theorem 1], which contains both qualitative and quantitative results,
which we compare our numerical observations to.



32 CHAPTER 1. Introduction

Theorem 1.4.1 (Gancedo, Granero-Belinchón & Salguero, ‘22). Let ρ− > ρ+ and 3/2 < m < 2.
There exists ε0 > 0 such that for any ζ0 ∈ H3(T) satisfying

∥ζ0∥H3 < ε0,

there exists a unique global solution ζ ∈ L∞(R+;H
3(T)) to (1.28), which moreover obeys

(1 + t)m∥ζ∥L2 + ∥ζ∥H3 ≲ ∥ζ0∥H3 .

In the first place, Gancedo, Granero-Belinchón & Salguero prove that any generic curve in
C1,µ for µ ∈ (0, 1) remains a curve at least for short time, whether ρ− > ρ+ or ρ− < ρ+. The
case investigated here has the heavy fluid below the light one, which should be stable according
to the physical intuition. Then, Theorem 4.2.1 means that the flat profile is asymptotically
stable for small enough perturbations in H3. The proof of this theorem relies on a contour
dynamic formulation of this problem. We summarise the principle of this method in the following.
They also provided a second global existence theorem for solutions of (1.28) in another class of
regularity, in which the solution decays exponentially, see [GGS22, Theorems 2 and 3]. In the
unstable case ρ− < ρ+ where the heavy fluid is above, they prove that there exist graph interfaces
that grow exponentially in some analytic norm.

The contour dynamic approach The principle of this method is to express the evolution of
the interface thanks to an integral equation of the form

∂tη = I[η],

where I[η] in an integral with respect to the horizontal variable, here on T, whose integrand
involves η and possibly its derivatives. Such a formula can be obtained by tracing back to some
Green kernel for the elliptic problem satisfied by the velocity. In the present case, recall that
u = ∇⊥ψ with ψ satisfying

∆2ψ = ∇⊥ · (−ρez).
Considering the Green kernel associated to the bilaplacian, denoted here K, such that ∆2K = δ0
on T×R, the stream function expresses as

ψ(x) =

ˆ
T×R

K(x− y)∇⊥ · (−ρ(y)ez) dy.

From here and in the following, we adopt the notation x = (x, z) and y = (y1, y2). The
expression of K is obtained by a decomposition in the Fourier basis, horizontally, as follows
K(x, z) =

∑
n∈Z βn(z)e

inx, and to obtain (βn)n∈N as explicit solutions of some ordinary differ-
ential equations of order 4. See the parallel with the eigenfunctions analysis for the bilaplacian
equation, in Subsection 3.8.3. An integration by parts provides

ψ(x) =

ˆ
T×R

Ψ(x− y)ρez dy, Ψ = ∇⊥K. (1.29)

Using here that ρ is piecewise constant, we can write that ρ(y1, y2)ez = ∇(ρ±z) for (y1, y2) ∈ Ω±.
Substituting this expression in (1.29) and performing an integration by parts, we obtain that ψ
expresses as a boundary integral, since the main integrals vanish because ∇Ψ = ∇ · ∇⊥K = 0.
In the end, expliciting the boundary integral, recalling that u = ∇⊥ψ and considering its trace
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on {x = (x, η(x))}, we get

u(x, η(x)) = (ρ− − ρ+)

ˆ
T

S(x− y, η(x)− η(y)) · (−∂xη(y), 1)η(y) dy,

with an explicit matrix S of size 2× 2,

S(y) =
1

8π

(
log(2(cosh(y2)− cos(y1)))I2 −

y2
cosh(y2)− cos(y1)

(
− sinh(y2) sin(y1)
sin(y1) sinh(y2)

))
.

Using that the normal velocity of the interface corresponds to the velocity u, see (4.9), we can
relate ∂tη and the above, and obtain

∂tη(t, x) = (ρ−−ρ+)
ˆ
T

S(x−y, η(t, x)−η(t, y)) ·(−∂xη(t, y), 1)η(t, y) dy ·(−∂xη(t, x), 1). (1.30)

Of course all the above computations have to be performed carefully, and we must check that
all the integrals are properly defined. This latter integral, corresponding to the aforementioned
I[η], depends in a highly nonlinear way on η. Existence and uniqueness of a solution to (1.30) in
short time is obtained thanks to a Picard fixed-point theorem applyied to I, on a suitable Banach
space. The associated linear operator is dissipative, which is linked to the stability provided by
having ρ− > ρ+. The existence of global solutions is obtained by a bootstrap argument. The
dynamic contour method applies to a broad familly of interface problems, such as the Muskat
problem mentionned thereafter. The integral formulation varies from one problem to another
due to the different elliptic equations and spatial domains, and on the associated Green kernels.

Stokes with capillarity governed graph interface We discuss now the evolution of a
graph interface in a Stokes fluid governed by capillarity effects, without gravity. We keep the
same notations as above. In this paragraph, the spatial domain is R2. The problem formulates
similarly to (1.28), without density and gravity terms and with a different interface condition for
the tensor.

∂tη = u|η · nΣ⟨∂xη⟩, on R, (1.31a)

−ν±∆u± +∇p± = 0, in Ω±(t), (1.31b)

divu± = 0, in Ω±(t), (1.31c)

J∇u± + (∇u±)⊥ − 2p±IKnΣ = − ∂2xη

⟨∂xη⟩3
nΣ, on Σ(t), (1.31d)

JuK = 0, on Σ(t), (1.31e)
η|t=0 = η0, (1.31f)

where − ∂2
xη

⟨∂xη⟩3 is the curvature of η, which models surface tension effects on the interface between
the two fluids of respective viscosities ν± in Ω±.

The first work on this topic is [BD98], in which Badea & Duchon prove the global existence
of solutions for small data in a space of Fourier transform with bounded measures. Recently,
Matioc & Prokert proved in [MP21; MP22] that given any η0 ∈ Hm(R),m ∈

(
3
2 , 2
)
, problem

(1.31) admits a unique maximal solution η ∈ C(0, T ∗;Hm(R))∩C1(0, T ∗;Hm−1(R)). Their two
papers address respectively the cases ν− = ν+ and ν− ̸= ν+.

The approach of Matioc & Prokert meets the contour dynamic method applied above by
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Gancedo et al. It consist in expressing the data in an integral form, as in (1.30). This system
admits a regularising effect due to the surface tension, modelled thanks to the curvature, which
is not present in the gravity driven case.

Muskat problem The Muskat problem models the evolution of the interface between two
fluids satisfying Darcy’s law. It derives from the Incompressible Porous Medium equation, just
as the gravity driven Stokes interface problem derives from the Stokes-transport equation. This
problem has been extensively studied for years, long before the interface evolution for (ST),
which only begins to be tackled. We refer to [Gan17; GL20] for exhaustive reviews on this topic.
The system writes, on R2, as follows,

∂tη = u|η · nΣ⟨∂xη⟩, on R, (1.32a)

−ν±u± +∇p± = −ρ±ez in Ω±(t), (1.32b)

divu± = 0, in Ω±(t), (1.32c)
JuK = 0, on Σ(t), (1.32d)

η|t=0 = η0. (1.32e)

The difference with (1.28) is that the Stokes equation (1.28b) is replaced by Darcy’s law (1.32b),
and the Stokes tensor continuity condition (1.28d) is no longer relevant. By the same contour
dynamic approach described above, the evolution of η is given by

∂tη(t, x) =
ρ

2π

ˆ
R

(∂xη(t, x)− ∂xη(t, x− y))y

y2 + (η(t, x)− η(t, x− y))2
dy, (1.33)

where the integral is understood in the principal value sense.
In Darcy’s law, the velocity field is basically as regular as its density data, which is L∞ for

patches. From here, it is challenging to analyse the evolution of the interface under such a flow.
Regarding the Stokes driven interfaces, the velocity is more regular, basically W 2,q, which eases
the analysis. In return, the contour dynamic formulation for the Stokes case is more tedious than
for Muskat, due to the respective kernels at play.

For instance, Córdoba & Gancedo prove in [CG07] that this equation is locally well-posed for
initial data η0 ∈ L2 ∩ Ḣ3(R). Other proofs of this result have been given, see references therein
[GL20]. Besides, the system satisfies a maximum principle, in the sense that for η0 ∈ H3, either
on T or R, the unique solution to (1.32) satisfies as long as it exists,

∥η(t)∥L∞ ≤ ∥η0∥L∞ .

This has been proven by Córdoba & Gancedo in [CG09], using crucially the contour integral
formulation. Global existence of weak solutions for Lipschitz initial data satisfying ∥η0∥L∞ and
∥∂xη0∥L∞ < 1 has been established in [Con+12]. Alazard & Nguyen established in [AN21]
the first global well-posedness result for non-Lipschitz data in H3/2 with fractional logarithmic
correction.

In [GGI12], Córdoba, Granero-Belinchón & Orive-Illera compare the properties of the Muskat
problem in R2, with infinite depth, and in the confined channel R× (−1, 1). In particular, they
establish a maximum principle for η, in the sense that ∥∂xη∥L∞ ≤ ∥∂xη0∥L∞ for all time, under
a slope condition on the intial data. In particular, the proof of this principle relies strongly on
the explicit contour integral formulation, which is more complicated for the Stokes case, compare
(1.30) and (1.33). This principle is investigated for (ST) in Subsection 4.2.6. Moreover, they
obtained numerical evidences that the confined problem is more singular than the infinite depth
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one, with initial data developing singularities in the first case, whereas it becomes a graph in the
second. We can wonder to what extent such differences are transposable to the Stokes case. See
our numerical observations on the boundary influence for (ST) in Subsections 1.4.4 and 4.2.5 on
this matter.

The Arbitrary Lagrangian-Eulerian method Another possible approach for tackling such
interface problems is the so called Arbitrary Lagrangian-Eulerian method. It consists in mapping
the subdomains Ω± to R2

± := R × R± respectively, thanks to time-dependent pull-back map
designed after η, therefore depending on time, to obtain an equivalent problem with a flat
interface. The interface dependency is then moved in additional coefficients appearing in the
system due to the change of variable. This method is for instance perfomed by Cheng, Granero-
Belinchón & Shkoller in [CGS16] to prove the well-posedness of the Muskat problem with H2

initial data.

Let us sketch the main ideas here. We call harmonic extension of η on R2
+ the solution φ+

to the problem {
∆φ+ = 0, in R2

+,
φ+ = η, on {z = 0}.

Define the following function,

Φ+ : R2
+ −→ Ω+

(x, z) 7−→ (x, z + φ(x)),

which maps R2
+ to Ω+ with in particular Φ+(x, 0) = (x, η(x)). This extension is also quite

regular, as it is harmonic. Let us admit that Φ+ is a diffeomorphism under some smallness
assumption on η in suitable Sobolev spaces. Let us define (v+, q+) as the pull back of (u+, p+),
in the sense

v+ = u+ ◦ Φ+, q+ = p+ ◦ Φ+.

From the fact that (u+, p+) satisfies (1.32), we can get

∂tη = ∇Φ+((∇Φ+)−1)⊥v · ez, on {z = 0}, (1.34a)

ν+v+ + ((∇Φ+)−1)⊥∇q+ = −ρ+ez, in R2
+, (1.34b)

(∇Φ+)−1 : ∇v+ = 0, in R2
+, (1.34c)

equivalent to (1.32a), (1.32b) and (1.32c) respectively. The same operation can be performed
on R2

−. This equation has a similar structure to Darcy’s law. The idea here is to obtain a
problem equivalent to (1.32), but on the fixed domains R2

±, on which systems such as Darcy or
Stokes equations solutions can be estimated more easily and explicited thanks to kernels. The
price to pay is the introduction of variable coefficients from ∇Φ. Actually, other transforma-
tions of this kind can be considered, see [CGS16] to recover a divergence-free vector field instead
of the twisted divergence condition (1.34c), for instance, to ease computations of certain esti-
mates. Also, Φ is a priori only ensured to be a diffeomorphism for small times, according to the
aforementioned smallness assumption on η. Global existence is recovered thanks to a bootstrap
argument ensuring this condition to remain satisfied for all time.

For the Stokes equation, this method seems more intricated since the change of variable
u± ◦ Φ± = v± induces more complex coefficients, depending on derivatives of Φ±1, due to the
Laplace operator.
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1.4.4 Contribution: Analytical remarks and numerical study

In Chapter 4, we discuss a few analytical aspects of the graph interface evolution equation (1.27)
in the horizontal periodic channel T× (0, 1), and we perform a numerical study of this problem.

In Section 4.2, we derive formally (1.27) from (ST), assuming the density is of the form
ρ(t) = 1{z<η(t,x)} at least for short time. We also consider different formulations of this problem.
By an elementary geometric argument, we obtain that an initial datum ρ0 = 1{z<η0} with η0
Lipschitz remains a patch of the form ρ(t) = 1{z<η(t,x)}, at least locally in time. We also discuss
the lack of interplay between the regularity of η and u. Indeed, u is given as the solution of the
Stokes equation with the bounded datum 1{z<η}, therefore the regularity of u is only a priori
W 2,q for q ∈ (2,∞), without any link with the regularity of η as a graph. We also emphasise
that, even though the interface itself remains C1,µ, µ ∈ (0, 1), according to Subsection 1.4.2, it
does not prevent a regularity break from the graph point of view. We also discuss about the
possible Lyapunov functionals for this equation, i.e. functionals I such that any solution η of the
problem satisfies

d

dt
I(η(t)) ≤ 0.

Such functionals are usually useful to address the long-time behaviour of partial differential
equations. Formally, only η 7→ ∥η∥2L2 is proven to be a Lyapunov functional for the system, and
is related to the potential energy monotonicity, see (1.13). Other functionals are considered, and
numerical counter-example are found, see below.

In Section 4.2, we first describe the numerical scheme we set to simulate the evolution of
(1.27). Since we are interested in patch data, we chose to implement the whole density transport,
thanks to an Arbitrary Lagrangian-Eulerian method. The principle is the following: for a given
density, we solve the steady Stokes-equation thanks to a suitable finite elements method, and we
transport the density in the direction of the velocity field, for a short time step, before repeating
the process. The interface of the density is discretised in segments and completed in a mesh for
the whole domain, and the density represented as a valuation function on the cells. This way, the
patch character of the density is respected and preserved, and we can expect the scheme to be
stable for regular enough interfaces, for instance Hölderian. Also, this method does not require
the patch to be associated to an hypograph, which allows graph breaks if there were to occur.

After justifying our parameters settings for this scheme, we can plot the evolution of some
graph interfaces, such as in Figure 1.2.

We observe here that the interface converges toward the flat rest state, according to the
intuition. This convergence is also numerically verified. In particular, we compare the evolution of
several quantities such as the Ḣm norms of η for m ∈ {0, 1, 2, 3} to the rates ensured by Theorem
1.4.1 of Gancedo, Granero-Belinchón & Salguero [GGS22] for small enough and regular enough
initial data. Some of our tests clearly present faster decays, and some others are slower or even
nonmonotonous, providing counter-examples ruling out some Lyapunov functionals candidates.
The length of the curve, which is a Lyapunov functional for some interface equations, is in
particular disqualified for this problem, as we exhibit a numerical example for which this quantity
is not monotonous. For each example we considerd, we only observed decreasing entropy, defined
as η 7→

´
T
η log(η), which we therefore cannot exclude as a Lyapunov functional. The maximum

principle is also investigated in Subsection 4.2.6. We also observe that graph breaks can occur,
even for smooth initial data, see Figure 1.3.

We also highlight some boundary effects, inducing corner-like formation for graphs initially
smooth, by comparing the evolution of several data being vertical translations of each other. Such
behaviours can not occur in the unbounded domain T ×R, vertically invariant. Nethertheless,
some local singularity formation as such do not stop the interface to converge toward the flat



1.4. Numerical study of the graph interface evolution 37

0.0 0.5 1.0 1.5 2.0 2.5 3.0

x

0.0

0.2

0.4

0.6

0.8

1.0

η
1
(t
,x

)
η1

0 : x 7→ 1
2

+ 1
4

sin(2πx
3

)

t = 50

t = 0

Figure 1.2: Graph evolution for an initial sine interface.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

x

0.0

0.2

0.4

0.6

0.8

1.0

η
5
(t
,x

)

t = 0

t = 5

t = 10

t = 15

t = 20

x = 1.3

Figure 1.3: Example of a graph break.

state in L2.
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Chapter 2

Well-posedness of the
Stokes-transport equation

This chapter presents the contributions of the author regarding the well-posedness of the Stokes-
transport equation. The article [Leb22] is reproduced from Section 2.1 to 2.4, establishing the
weak and global well-posedness of the Stokes-transport equation in bounded domains in dimen-
sion 2 and 3 spaces, as in the infinite strip R × (0, 1). The Section 2.5 supplements this article
by improving these results, demonstrating the well-posedness of the problem for Lq data for q
larger than the space dimension, and showing that solutions exist for a wider range of Lebesgue
exponents. The strong well-posedness of (ST), for Sobolev data, fits in Section 2.6. A hydrostatic
version of the Stokes-transport equation is also considered in Section 2.7, shown to be locally
well-posed.

2.1 Introduction

This contribution is dedicated to the study of the following coupling between the transport
equation and the Stokes equation,





∂tρ+ u · ∇ρ = 0
−∆u+∇p = −ρez

divu = 0
ρ|t=0 = ρ0,

(1.0)

where ρ, u and p respectively stand for the density, velocity and pressure of a fluid, ρ0 is the initial
density profile and ez is the vertical upward unitary vector. This system is a model of evolution
of an incompressible and viscous fluid having an inhomogeneous density or buoyancy subject
to the gravity directed by −ez. It differs from the classical Boussinesq equation by neglecting
the velocity self-advection term and the diffusion of the density. It is especially derived as the
mesoscopic model of a cloud of inertialess particles sedimenting in a Stokes fluid, see for instance
[Höf18a; Mec18]. This system belongs to a broad family of transport equations with non-local
velocity field, the active scalar equations, meaning that u depends on ρ in a non-local way. The
vorticity equation, the surface quasi-geostrophic equation and the incompressible porous medium
equation (IPM) are examples of extensively studied systems having this structure, see [BG15] for
an overview. In particular, (IPM) is a well-known model for the evolution of an incompressible
inhomogeneous fluid inside a porous material, which writes as the system (1.0) where one replaces

39
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the Stokes equation by Darcy’s law, namely

u+∇p = −ρez.

To our knowledge, (1.0) has been shown to be well-posed in the whole space R3 by Höfer
[Höf18a] and Mecherbet [Mec20]. In particular, Mecherbet proved that for any ρ0 ∈ L1 ∩ L∞

having a finite first moment, the system (1.0) admits a unique global solution,

(ρ,u) ∈ L∞(R+;L
1(R3) ∩ L∞(R3))× L∞(R+;W

1,∞(R3)).

Later, Höfer and Schubert [HS21, Theorem 2.7] proved a similar well-posedness result on R3 for
any probability measure ρ0 being in L∞, without the first moment hypothesis. We thereafter
state the well-posedness of (1.0) for initial data ρ0 in L∞(Ω), for any regular enough bounded
subdomain Ω of R2 and R3, as well as in the infinite strip R × (0, 1). These results stand out
with the ill-posedness of IPM, for which uniqueness fails on various domains for weak solutions
associated to L∞ initial data, see [CFG11; Szé12]. Even for Sobolev data, the question of global
in time well-posedness of IPM is still open, see [KY23], although the particular case of a small
and smooth perturbation of a stationary density profile does lead to a global solution, as proved
in [CCL19a].

In both Höfer and Mecherbet works, the proof of existence of a solution relies on a fixed
point argument, respectively a contracting map and a Picard iteration. The latter consists in
solving successively the Stokes and the transport equations, providing function sequences that
appear to be convergent. This convergence is proven thanks to a stability estimate on the
solutions of the transport equation, combined with an energy estimate for the Stokes equation.
In the full space R3, one can express the solution of the Stokes equation as the convolution with
the adequate Green kernel. Thanks to this explicit formula, Mecherbet established the stability
estimate on solutions of the Stokes equation, controlled by the Wasserstein distance between their
source terms. Combined with a stability estimate for the transport equation, also expressed with
the Wasserstein distance, this provides the contraction inequality allowing to apply the Picard
argument. In particular, the Wasserstein distance allows to state the stability estimate without
any derivability assumption on the density. In the following, we will emphasize the fact that the
shape of the spatial domain on which one solves (1.0) strongly conditions the way one have to
address the Stokes part. Apart from that, the classical transport theory is not as much sensitive
to the geometry of the domain, as long as the velocity field is bounded and Lipschitz. Moreover
it appears that ρ is the push-forward of ρ0 by the flow of u. In particular, if ρ0 is a patch, the
density ρ will remain a patch at all times.

In this Chapter, we follow a strategy similar to the one adopted by Mecherbet [Mec20] in order
to prove the well-posedness of (1.0) on bounded domains of R2 and R3. Since the Green kernel
associated to the Stokes equation is no longer explicit for such domains in general, the remaining
exploitable tools are the energy estimate and the elliptic gain of regularity due to Stokes equation.
We also replaced the Wasserstein distance, which was convinient in R3 in which case there exists
an explicit Green kernel, by some negative Sobolev norms. Notice that both metrics are relatable,
see for instance [San15, Subsection 5.5.2]. We also impose the Dirichlet boundary condition on
the velocity, considering more precisely the system





∂tρ+ u · ∇ρ = 0 in R+ × Ω,
−∆u+∇p = −ρez in R+ × Ω,

divu = 0 in R+ × Ω,
u = 0 in R+ × ∂Ω,

ρ|t=0 = ρ0 in Ω.

(2.1)
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Our first result is the following well-posedness theorem for this system, which comes together
with a stability estimate left in Proposition 2.2.7.

Theorem 2.1.1. Let Ω be a bounded domain of class C2 of Rd for d = 2 or 3. For any
ρ0 ∈ L∞(Ω) there exists a unique solution (ρ,u) to (2.1) in

L∞(R+;L
∞(Ω))× L∞(R+;W

1,∞(Ω)).

We further deal with the infinite strip domain R × (0, 1). Such an unbounded domain in
the horizontal direction is mathematically convenient for modelling an oceanic profile, for which
the typical height is very small compared to its typical length. In this framework the system
is a toy model for the evolution of the density, salinity or temperature of the sea water in an
ocean. The main difference with the bounded domain case lies in the analysis of the Stokes
equation. Working with L∞ densities requires to deal with velocity fields that are not square-
integrable. To overcome this difficulty we work with Kato spaces, also called uniformly local
Sobolev spaces. Using some classical tools we provide a proof of the well-posedness of the Stokes
equation in this framework, since we could not find this result in the literature. In particular
we prove that a L∞ datum induces a W 1,∞ solution, as in the bounded domain case, which
will provide handy Lipschitz velocity fields to deal further with the transport part. The method
consists in considering an increasing covering of bounded open subsets of the strip, and to solve
the Stokes problem on each of these subdomains. This provides a sequence of functions on
R × (0, 1). By managing carefully the interior estimates of the elements of this sequence, we
prove its boundedness in the uniformly locally H1 function space, denoted H1

uloc and defined
in paragraph 2.3.1. Therefore we obtain a H1

uloc solution by a compact argument. Uniqueness
comes from the well-posedness in the classical H1 framework. Using the elliptic regularity of the
Stokes equation in bounded domains, we prove the H2

uloc regularity of the solution on the strip.
Hence we obtain a leverage to establish existence of a unique solution in W 2,q

uloc for Lq
uloc data for

exponents 2 < q < ∞, and to conclude to the well-posedness of the problem in W 1,∞ for L∞

data by Sobolev embeddings. The proof of the well-posedness of the coupling then lies in the
extension of results used in the bounded domain case to the infinite strip through the uniformly
local topology. Precisely, we consider in Ω = R× (0, 1) the system





∂tρ+ u · ∇ρ = 0 in R+ × Ω,
−∆u+∇p = −ρez in R+ × Ω,

divu = 0 in R+ × Ω,
u = 0 in R+ × ∂Ω,´

u1 dz = 0 in R+ ×R,
ρ|t=0 = ρ0 in Ω,

(2.2)

where the extra condition on the flux
´
u1 dz is introduced and discussed in paragraph 2.3.1. In

the end, the well-posedness of (2.2) almost writes as in Theorem 2.1.1, with a similar stability
result stated in Proposition 2.3.10.

Theorem 2.1.2. Let Ω = R× (0, 1). For any ρ0 ∈ L∞(Ω) there exists a unique solution (ρ,u)
to (2.2) in

L∞(R+;L
∞(Ω))× L∞(R+;W

1,∞(Ω)).

Regarding the oceanographic considerations mentioned for the infinite strip, it is rather nat-
ural to wonder if this result extends to the case of the layer domain R2 × (0, 1). It appears that
the Stokes problem in this unbounded domain raises some additional difficulties, among those
finding a functional space in which the problem admits a unique solution, in accordance with
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the handling of the interior estimates mentioned in the previous paragraph, see Remark 2.3.6 for
further details. We abstain from considering this case in the present work.

The paper splits in Section 2.2, dedicated to the bounded domain case, and Section 2.3,
dedicated to the infinite strip case. Both sections are ordered in the same way. Subsections
2.2.1 and 2.3.1 recall and prove the necessary prerequisites about the Stokes equation, including
the well-posedness complete proof in the infinite strip in Section 2.3. Subsections 2.2.2 and
2.3.2 contain preliminary results concerning the transport theory, and in particular the stability
estimates proofs. Subsections 2.2.3 and 2.3.3 are dedicated to the proofs of Theorem 2.1.1 and
Theorem 2.1.2, respectively. Ultimately, we state and prove the stability estimates of the coupling
in Subsections 2.2.4 and 2.3.4.

Definitions and notations

The dimension d is always 2 or 3. A domain Ω is a non-empty open and simply connected subset
of Rd. The Bochner spaces are denoted by Lq([0, T );B(Ω)) with 1 ≤ q ≤ ∞, T ∈ [0,∞] and
B(Ω) a Banach or a Fréchet space of functions defined in Ω. It is endowed with its classical
norm denoted here ∥ · ∥Lq(0,T ;B), the space domain being specified only when differing from the
whole domain Ω. A vector valued map is denoted by a bold symbol, implicitly of size d. We
note u|∂Ω the trace of u on the boundary of a domain Ω, when the boundary is regular enough
to define it. We sometimes write f ≡ c to signify that a function f is equal to some constant
with respect to time. We denote by C any non-negative constant that is adjusted from one line
to another, independent of the data and we specify its eventual space or exponent dependencies
when necessary. We sometimes write f ≲ g, meaning there exists such a constant C for which
f ≤ Cg, as well as f ≃ g, meaning f ≲ g and g ≲ f .

2.2 Well-posedness of the coupling in a bounded domain

In this section, and unless stated otherwise, Ω denotes a bounded domain of Rd with Lipschitz
boundary.

2.2.1 Preliminaries on the Stokes problem in a bounded domain

Let us recall the Stokes problem on Ω,




−∆u+∇p = f in Ω,
divu = g in Ω,

u = 0 on ∂Ω,
(2.3)

where f and g belong to functional spaces specified further. Notice that it is necessary for
g to satisfy the following compatibility condition due to the homogeneous boundary condition
assumption, ˆ

Ω

g =

ˆ
Ω

divu =

ˆ
∂Ω

u · n = 0. (2.4)

The well-posedness of this problem is well known for Sobolev data, see in particular [Gal11,
Theorem IV.6.1 and Exercise I.6.3], reported below. We especially use that L∞ data induce
W 1,∞ solutions, see the following corollary, which will provide velocity fields easy to deal with
in the transport part.

Theorem 2.2.1 (Galdi). Let Ω be a bounded domain of Rd of class C2 and let 1 < q <∞.
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1. For any f ∈ Lq(Ω) and g ∈W 1,q(Ω) satisfying (2.4), there exists a unique1 pair (u, p) in
W 2,q(Ω)×

(
W 1,q(Ω)/R

)
satisfying (2.3), which moreover obeys the inequality

∥u∥W 2,q + ∥p∥W 1,q ≤ C (∥f∥Lq + ∥g∥W 1,q ) ; (2.5)

2. For any f ∈W−1,q(Ω) there exists a unique pair (u, p) in W 1,q(Ω)× (Lq(Ω)/R) satisfying
(2.3) with g = 0, which moreover obeys the inequality

∥u∥W 1,q + ∥p∥Lq ≤ C∥f∥W−1,q . (2.6)

The L∞ to W 1,∞ regularity of the problem is deduced from the Sobolev embeddings of
W 2,4(Ω) in W 1,∞(Ω) and W 1,4(Ω) in L∞(Ω) for d = 2 and 3.

Corollary 2.2.2. Let Ω be a bounded domain of Rd of class C2. For any f ∈ L∞(Ω) and
g ∈W 1,∞(Ω) there exists a unique pair (u, p) in W 1,∞(Ω)× (L∞(Ω)/R) satisfying (2.3), which
moreover obeys the inequality

∥u∥W 1,∞ + ∥p∥L∞ ≤ C (∥f∥L∞ + ∥g∥W 1,∞) . (2.7)

2.2.2 Preliminaries on the transport equation and stability estimates

Let us consider the transport equation, in the weak sense, for a given vector field u ∈ L∞(R+;W
1,∞(Ω))

satisfying the homogeneous Dirichlet condition u|∂Ω ≡ 0,
{
∂tρ+ u · ∇ρ = 0 in R+ × Ω,

ρ(0, ·) = ρ0 in Ω.
(2.8)

We recall the definition of the characteristic (map) or flow X associated to the vector field u,
as the solution of

∀s, t ∈ R+,∀x ∈ Ω,

{
∂tX(t; s,x) = u(t,X(t; s,x))
X(s; s,x) = x.

The Cauchy-Lipschitz theory ensures that X is well defined, and that for any s, t ∈ R+,X(t; s, ·)
is a homeomorphism from Ω onto itself, satisfying the composition principle

∀r, s, t ∈ R+, X(t; s, ·) ◦X(s; r, ·) = X(t; r, ·).

In particular we have the relation X(t; 0, ·)−1 = X(0; t, ·). From now on, we use indifferently
the following notations

∀t ∈ R+, X(t) = X(t; ·) = X(t; 0, ·), X(−t) := X(0; t, ·).

Let us enumerate a few classical properties of the flow. These are elementary consequences of
Duhamel formula and Grönwall inequality.

Lemma 2.2.3. Let u ∈ L∞(R+;W
1,∞(Ω)) with u|∂Ω ≡ 0. The associated characteristic map

X satisfies,

∀t ∈ R,∀x,y ∈ Ω, |X(t;x)−X(t;y)| ≤ eC|t|∥∇u∥L∞(0,t;L∞) |x− y|. (2.9)
1Unless explicitly stated otherwise, the canonical representative of p considered is the one having zero average

over Ω.
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In particular X(t) is bi-Lipschitz for any t. Recall that Liouville theorem ensures that if
divu ≡ 0 the jacobian determinant of X(t) is identically equal to 1 with respect to t. Besides,
let us introduce a classical stability estimate on the characteristics.

Lemma 2.2.4. Let ui ∈ L∞(R+;W
1,∞(Ω)) with ui|∂Ω ≡ 0 and divui ≡ 0 for i = 1, 2. If Ω is

bounded, the associated characteristic maps Xi satisfy, for any 1 ≤ q ≤ ∞,

∀t ∈ R+, ∥X1(t)−X2(t)∥Lq ≤ teCt∥∇u1∥L∞(0,t;L∞)∥u1 − u2∥L∞(0,t;Lq). (2.10)

If q = ∞, the inequality holds true for unbounded Ω.

Proof. Let us consider Ω bounded. From Duhamel formula we write for any t ∈ R+ and x ∈ Ω,

X1(t,x)−X2(t,x) =

ˆ t

0

u1(τ,X1(τ ;x))− u2(τ,X2(τ ;x)) dτ

=

ˆ t

0

u1(τ,X1(τ ;x))− u1(τ,X2(τ ;x)) dτ

+

ˆ t

0

u1(τ,X2(τ ;x))− u2(τ,X2(τ ;x)) dτ.

The Lipschitz regularity of ui and the Minkowski inequality provide, for any 1 ≤ q ≤ ∞,

∥X1(t)−X2(t)∥Lq ≤ C∥∇u∥L∞(0,t;L∞)

ˆ t

0

∥X1(τ)−X2(τ)∥Lq dτ

+

ˆ t

0

∥u1(τ,X2(τ))− u2(τ,X2(τ))∥Lq dτ.

As a consequence of Liouville theorem, one has for 1 ≤ q <∞ and τ ∈ [0, t],

∥u1(τ,X2(τ))− u2(τ,X2(τ))∥Lq = ∥u1(τ, ·)− u2(τ, ·))∥Lq .

The case q = ∞ holds naturally true. Then we have

∥X1(t)−X2(t)∥Lq ≤ C∥∇u1∥L∞(0,t;L∞)

ˆ t

0

∥X1(τ)−X2(τ)∥Lq dτ + t∥u1 −u2∥L∞(0,t;Lq),

which yields (2.10) by Grönwall inequality.

The classical characteristics method provides the well-posedness of the transport equation.

Proposition 2.2.5. Let Ω be a Lipschitz domain of Rd, not necessarily bounded. Let u ∈
L∞(R+;W

1,∞(Ω)) with u|∂Ω ≡ 0, divu = 0 and let ρ0 ∈ L∞(Ω). There exists a unique ρ in
L∞(R+;L

∞(Ω)) satisfying (2.8), which is moreover the push-forward of ρ0 by the characteristic
X of u, namely

∀t ∈ R+, ρ(t) = ρ0 ◦X(−t).

In particular the Lq norm of the solution ρ is constant in time, for any 1 ≤ q ≤ ∞. Besides, we
state the following estimate for the evolution of the difference of two solutions of (2.8) associated
to distinct velocity fields.
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Proposition 2.2.6. Let ui ∈ L∞(R+;W
1,∞(Ω)), with ui|∂Ω ≡ 0 and divui ≡ 0, for i = 1, 2.

Let ρ0 ∈ L∞(Ω) and ρi be the solutions of (2.8) associated to ui with initial datum ρ0. For any
1 < q <∞ there exists T̄ (∥∇ui∥L∞) > 0 and C(Ω, q) > 0 such that for any T ∈ [0, T̄ ],

∥ρ1 − ρ2∥L∞(0,T ;W−1,q) ≤ C∥ρ0∥L∞TeCT∥∇u1∥L∞(0,T ;L∞)∥u1 − u2∥L∞(0,T ;Lq). (2.11)

Proof. Let t ∈ R+ and φ ∈ C∞
c (Ω). Since the vector fields ui are divergence-free, the Liouville

theorem ensures the following change of variable,

Iφ :=

ˆ
Ω

(
ρ1(t,x)− ρ2(t,x)

)
φ(x) dx

=

ˆ
Ω

(
ρ0(X1(−t;x))− ρ0(X2(−t;x))

)
φ(x) dx

=

ˆ
Ω

ρ0(x)
(
φ(X1(t;x))− φ(X2(t;x))

)
dx.

Since φ is smooth, we can write

Iφ =

ˆ
Ω

ρ0(x)
(
X1(t;x)−X2(t;x)

)
·
ˆ 1

0

∇φ(Xλ(t;x)) dλ dx,

where we set Xλ(t;x) := λX1(t;x) + (1− λ)X2(t;x). Then, Hölder’s inequality provides

|Iφ| ≤ ∥ρ0∥L∞∥X1(t)−X2(t)∥Lq

ˆ 1

0

∥∇φ(Xλ(t))∥Lq′ dλ. (2.12)

Let us show that Xλ(t) is bi-Lipschitz from Ω onto its range. Consider the derivative of the
Duhamel formula satisfied by Xi,

∇Xi(t, ·)− Id =

ˆ t

0

∇ui(τ,Xi(τ, ·)) · ∇Xi(τ, ·) dτ

and deduce thanks to inequality (2.9) the uniform estimate

∥∇Xi(t)− Id∥L∞ ≤ C
(
eCt∥∇ui∥L∞(0,t;L∞) − 1

)
. (2.13)

Therefore for some arbitrary constant C > 1 there exists T̄ (∥∇ui∥L∞) > 0 such that

∀t ∈ [0, T̄ ], C−1 ≤ det ∇Xi(t) ≤ C,

and such that the Lipschitz constants of Xi(t) are uniformly bounded with respect to t, by a
constant smaller than 1, as follows,

LT̄ := max
i

sup
t∈[0,T̄ ]

Lip(Xi(t)− Id) < 1.

The latter inequality ensures the injectivity of Xλ(t), since for any x,y ∈ Ω, the equality
Xλ(t;x) = Xλ(t;y) is equivalent to

x − y = λ
(
X1(t;y) − y −

(
X1(t;x) − x

))
+ (1 − λ)

(
X2(t;y) − y −

(
X2(t;x) − x

))
,
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and implies
|x− y| ≤ LT̄ |x− y|,

so that x = y since LT̄ < 1. In the end we have proved that Xλ(t) is bi-Lipschitz for any
λ ∈ [0, 1] and t ∈ [0, T̄ ], with a uniform bound on its jacobian determinant, independent of λ
and t. Therefore we have for any 1 < q <∞,

∥∇φ(Xλ(t))∥Lq′ ≤ Cq∥∇φ∥Lq′ . (2.14)

Combining (2.12) and (2.14) leads for any t ∈ [0, T̄ ] to
ˆ
Ω

(ρ1(t,x)− ρ2(t,x))φ(x) dx ≤ C∥ρ0∥L∞∥X1(t)−X2(t)∥Lq∥φ∥W 1,q′ .

Plugging the stability estimate (2.10) and taking the supremum over the test functions provides
the following bound on the negative Sobolev norm, for any t ∈ [0, T̄ ],

∥ρ1(t)− ρ2(t)∥W−1,q ≤ C∥ρ0∥L∞teCt∥∇u1∥L∞(0,t;L∞)∥u1 − u2∥L∞(0,t;Lq).

It remains to consider the supremum over t ∈ [0, T ] for any T ≤ T̄ to get the result.

2.2.3 Proof of Theorem 2.1.1

The strategy of the proof is inspired from the one adopted by Mecherbet in [mecherbet] for the
space domain R3. In this work Mecherbet solves successively Stokes and transport problems,
providing a contracting sequence of velocity fields and density profiles. Here the contracting
property is obtained by combination of the Stokes estimate from Theorem 2.2.1 and the stability
estimate for the transport from Proposition 2.2.6. Both interplay in the case of the whole space
thanks to the Green kernel, also called Oseen tensor, of the Stokes equation and the stability
estimates formulated with the Wasserstein distance. Since we work in general open bounded
domains, we do not use Green kernels but only rely on the variational estimates. We also replace
the Wasserstein distance, handled by Mecherbet, by negative Sobolev norms. Both are known
to be related, see [San15, Subsection 5.5.2], and in our case present the same asset to allow the
statement of stability estimates without any derivability assumption concerning the density.

Local existence: Set ρ0 ≡ ρ0 in L∞(R+;L
∞(Ω)). Theorem 2.2.1 and Proposition 2.2.5 allow

to define the following sequences by induction on N ∈ N,

ρN ∈ L∞(R+;L
∞(Ω)), uN ∈ L∞(R+;W

1,∞(Ω)),

satisfying for any N ∈ N the Stokes problem




−∆uN +∇pN = −ρNez in R+ × Ω,
divuN = 0 in R+ × Ω,

uN = 0 in R+ × ∂Ω,
(2.15)

and the transport equation
{
∂tρ

N+1 + uN · ∇ρN+1 = 0 in R+ × Ω,
ρN+1|t=0 = ρ0 in Ω.

(2.16)
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Let us denote B := C∥ρ0∥L∞ with adjustable constant. Since ρN is the push-forward of ρ0 by
the flow of uN−1, we have the uniform bound

∀N, ∥ρN∥L∞(R+;L∞) = ∥ρ0∥L∞ ≤ B.

Using allthemore Stokes estimate (2.7), we obtain

∀N, ∥uN∥L∞(R+;W 1,∞) ≤ C∥ρN∥L∞(R+;L∞) ≤ B.

Hence ρN ,uN and ∇uN converge in w∗−L∞(R+×Ω) up to the extraction of subsequences. Be-
sides, estimates from Proposition 2.2.6 and Theorem 2.2.1 ensure that there exists T̄ (∥ρ0∥L∞) > 0
such that

∀T ∈ [0, T̄ ], ∥ρN+1 − ρN∥L∞(0,T ;H−1) ≤ BTeBT ∥uN − uN−1∥L∞(0,T ;H1)

≤ BTeBT ∥ρN − ρN−1∥L∞(0,T ;H−1). (2.17)

We see that for T > 0 small enough we have BTeBT < 1 so that (ρN )N is a Cauchy sequence in
L∞(0, T ;H−1(Ω)). As a consequence of the Stokes estimate (2.5), we have that (uN )N is also a
Cauchy sequence, in L∞(0, T ;H1(Ω)). Its limit belongs to L∞(0, T ;W 1,∞(Ω)) since it converges
for the weak∗ topology. In particular, uN converges in L1(0, T ;W 1,1(Ω)), which together with
the weak∗ convergence of (ρN )N allows to pass to the limit in the weak formulations of both
(2.15) and (2.16). Therefore the limit (ρ,u) satisfies (2.1) on a short time, with regularity

L∞(0, T ;L∞(Ω))× L∞(0, T ;W 1,∞(Ω)).

Local uniqueness : Let (ρi,ui) be two such solutions of (2.1). The estimate (2.17) adapts in

∥ρ1 − ρ2∥L∞(0,T ;H−1) ≤ BTeBT ∥ρ1 − ρ2∥L∞(0,T ;H−1),

up to the choice of a smaller T > 0. We deduce that ρ1 = ρ2 on [0, T ], and that u1 = u2 thanks
to the Stokes estimate.

Globality: By existence and uniqueness of a solution to (2.1) locally in time, we know that
there exists a unique maximal solution (ρ,u) on some interval [0, T ∗) with T ∗ ∈ [0,∞]. Remark
that T ∗ depends only on ∥ρ0∥L∞ . Since ∥ρ∥L∞ ≡ ∥ρ0∥L∞ , a classical continuation argument
implies that T ∗ = ∞, which proves that the solution is global.

2.2.4 Stability estimate for the system in a bounded domain
We prove a stability estimate for the Stokes-transport system, inherited from Proposition 2.2.6.

Proposition 2.2.7. Let ρ0,i ∈ L∞(Ω) and set ρi the solution of (2.1) with initial datum ρ0,i for
i = 1, 2. For any 1 < q <∞ there exists C(Ω, q, ∥ρ0,i∥L∞) > 0 such that

∀T ∈ R+, ∥ρ1 − ρ2∥L∞(0,T ;W−1,q) ≤ CeCT ∥ρ0,1 − ρ0,2∥W−1,q . (2.18)

Proof. Let us set ui the velocity fields associated to ρi for i = 1, 2. Set ρ1,2 the solution of (2.8)
with initial datum ρ0,1 and vector field u2. Hence, consider the triangular inequality

∀T ∈ R+, ∥ρ1 − ρ2∥L∞(0,T ;W−1,q) ≤ ∥ρ1 − ρ1,2∥L∞(0,T ;W−1,q)︸ ︷︷ ︸
I1

+ ∥ρ1,2 − ρ2∥L∞(0,T ;W−1,q)︸ ︷︷ ︸
I2
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From Proposition 2.2.6 and estimate (2.7) we know that there exists some T̄ (∥ρ0,1∥L∞) > 0 and
C(Ω, q) > 0 such that

∀T ∈ [0, T̄ ], I1 ≤ CT∥ρ0,1∥L∞eCT∥∇u1∥L∞(0,T ;L∞)∥u1 − u2∥L∞(0,T ;Lq).

Let us denote B := Cmaxi ∥ρ0,i∥L∞ . Stokes estimates (2.6) and (2.7) respectively provide here

∥u1 − u2∥L∞(0,T ;Lq) ≤ C∥ρ1 − ρ2∥L∞(0,T ;W−1,q), ∥∇u1∥L∞(0,T ;L∞) ≤ B,

which yields
∀T ∈ [0, T̄ ], I1 ≤ BTeBT ∥ρ1 − ρ2∥L∞(0,T ;W−1,q).

To bound I2 let us apply again Liouville theorem for any t ∈ R+ and φ ∈ C∞
c (Ω), to get

ˆ
Ω

(
ρ1,2(t,x)− ρ2(t,x)

)
φ(x) dx =

ˆ
Ω

(ρ0,1(x)− ρ0,2(x))φ(X2(t;x)) dx.

Now we have, by definition of the Sobolev norm,
ˆ
Ω

(
ρ1,2(t,x)− ρ2(t,x)

)
φ(x) dx ≤ ∥ρ0,1 − ρ0,2∥W−1,q∥φ(X2(t))∥W 1,q′ .

From estimates (2.9) and (2.7) together with the bound ∥∇Xi∥L∞(0,t;L∞) ≤ CeBt provided by
Lemma 2.2.3, it follows

∥φ(X2(t))∥W 1,q′ ≤ CeBt∥φ∥W 1,q′ .

Passing to the supremum over the test functions gives

I2 ≤ CeBT ∥ρ0,1 − ρ0,2∥W−1,q .

In the end we have shown that for any T ∈ [0, T̄ ],

∥ρ1 − ρ2∥L∞(0,T ;W−1,q) ≤ BTeBT ∥ρ1 − ρ2∥L∞(0,T ;W−1,q) + CeBT ∥ρ0,1 − ρ0,2∥L∞(0,T ;W−1,q).

Up to choice of a smaller T̄ (∥ρ0,i∥L∞) > 0, now depending on both ∥ρ0,i∥L∞ , we have

∀T ∈ [0, T̄ ], ∥ρ1 − ρ2∥L∞(0,T ;W−1,q) ≤ CeBT̄

1−BT̄eBT̄︸ ︷︷ ︸
C̄

∥ρ0,1 − ρ0,2∥W−1,q ,

Notice that the choice of T̄ depends only on B, and recall that ∥ρi(t)∥L∞ = ∥ρ0,i∥L∞ for any
t ∈ R+. Therefore, one obtains by induction

∀T ∈ R+, ∥ρ1 − ρ2∥L∞(0,T ;W−1,q) ≤ C̄⌈T/T̄⌉∥ρ0,1 − ρ0,2∥W−1,q ,

which also writes (2.18).

2.3 Well-posedness of the system in the infinite strip

In this section, Ω stands for the infinite strip R × (0, 1). We denote by (ex, ez) the canonical
base of R2 in which u has coordinates (u1, u2).
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Regarding our problem, the transport theory does not depend on the nature of the domain,
and the related results presented in the previous section are still valid in the strip. The main
difference lies in the tools and methods required to solve the Stokes equation in Ω. In particular,
we state that this equation is still well-posed for L∞ data, with W 1,∞ solution. To do so, we
consider Kato spaces, also known as uniformly local Sobolev spaces. This framework allows to
consider uniformly bounded densities ρ and non globally integrable velocity fields u, having
infinite energy ∥u∥H1 , but admitting locally a finite energy, uniformly bounded with respect to
any compact stallion subdomain of the strip. We first solve Stokes equation in a L2 framework,
then recover elliptic regularity and use Sobolev injection to prove its well-posedness for bounded
data. Even if it requires known methods, we did not find the precise proof of this latter result
in the uniformly local framework.

The Subsection 2.3.1 is dedicated to the statements and proofs related to the Stokes equation.
In particular we introduce Kato spaces in paragraph 2.3.1, then discuss the flux condition in
paragraph 2.3.1 and finally prove the related well-posedness theorems in paragraph 2.3.1. The
Subsection 2.3.2 concerns the stability estimate for the transport in the strip. Subsection 2.3.3
contains the proof of the well-posedness of the Stokes-transport coupling, and we state its stability
estimate in Subsection 2.3.4.

2.3.1 The Stokes problem in the strip

The functional spaces

Let us set the following subdomains of Ω, for any k ∈ Z,

Uk = {(x, z) ∈ Ω : k < x < k + 1}, U∗
k = {(x, z) ∈ Ω : k − 1 < x < k + 2}.

Define a smooth map χ : Ω → [0, 1], depending on x only, equal to 1 in U0 and to 0 outside U∗
0 .

Set its translations χk := χ(· − kex) so that χk is equal to 1 in Uk and supported in U∗
k . For

convenience we choose χ so that
∑+∞

k=−∞ χk = 2 in Ω. Let us set for m ∈ Z and 1 ≤ q ≤ ∞ the
uniformly local norm

∀u ∈Wm,q
loc (Ω), ∥u∥Wm,q

uloc
:= sup

k∈Z
∥χku∥Wm,q ,

and define the Kato space as the set of locally Sobolev maps having a finite uniformly local norm,

Wm,q
uloc(Ω) := {u ∈Wm,q

loc (Ω) : ∥u∥Wm,q
uloc

<∞}.

This is a Banach space, that does not depend on the choice of χ, see for instance [ABZ16, §2.2].
The following result provides in particular some handy norms equivalences.

Lemma 2.3.1. For any m ∈ N and 1 < q ≤ ∞, the following quantities are equivalent,

u ∈Wm,q
loc (Ω), sup

k∈Z
∥u∥Wm,q(Uk) ≃ sup

k∈Z
∥u∥Wm,q(U∗

k )
≃ ∥u∥Wm,q

uloc
.

For any m ∈ N∗ and 1 < q <∞, the following quantities are comparable,

u ∈W−m,q
loc (Ω), sup

k∈Z
∥u∥W−m,q(Uk) ≲ sup

k∈Z
∥u∥W−m,q(U∗

k )
≃ ∥u∥W−m,q

uloc
.

Although this result presents no difficulty, we provide a short proof and a comment, about
the missing inequality for the last comparison, in appendix 2.4.1, for sake of completeness.
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Flux condition

In general, the homogeneous Stokes system as formulated in (2.3) admits non-trivial solutions in
domains with unbounded boundaries, called Poiseuille solutions, see for instance [Gal11, Section
IV]. In our case, these are described as follows

uϕ(x, z) =

(
6ϕz(1− z)

0

)
, pϕ(x, z) = 12ϕx, ϕ ∈ R.

Let us introduce the definition of the flux of u throw the section of abscissa x ∈ R of Ω,
ˆ
u1 dz :=

ˆ 1

0

u1(x, z) dz =

ˆ 1

0

u(x, z) · ex dz.

Notice that the divergence-free and the homogeneous Dirichlet condition ensure that any solution
of (2.3) on Ω has flux independent of x, which we will denote further by

´
u1 dz. Indeed,

d

dx

[ˆ 1

0

u1(x, z) dz

]
=

ˆ 1

0

∂xu1(x, z) dz = −
ˆ 1

0

∂zu2(x, z) dz = u2(x, 0)− u2(x, 1) = 0. (2.19)

For instance, the flux of the Poiseuille solution uϕ is ϕ. We will see that a choice of flux value
prescribes a unique Poiseuille solution, and provides uniqueness of a solution in Kato spaces.
Since the Stokes equation is linear, we can choose one value without loss of generality. From now
on we consider the Stokes problem with the zero flux condition,





−∆u+∇p = f in Ω,
divu = 0 in Ω,

u = 0 on ∂Ω,´
u1 dz = 0 in R.

(2.20)

Well-posedness of the Stokes problem in the strip

We show that the system (2.20) is well-posed for H−1
uloc(Ω) and L2

uloc(Ω) data f , with some
elliptic regularity gain. We then deduce that this system is also well-posed for L∞(Ω) data with
W 1,∞(Ω) solutions, by adapting the steps of the proof of the bounded domain case. The general
technique presented here is originally due to Ladyzhenskaya and Solonnikov [LS83]. A proof in
a framework closer to ours can be found in [GM10, Theorem 3]. Although these are classical
tools, we have not found the proof of this result in the literature.

Theorem 2.3.2. Let f ∈ H−1
uloc(Ω). There exists a unique u in H1

uloc(Ω) satisfying (2.20), which
moreover obeys the inequality

∥u∥H1
uloc

≤ C∥f∥H−1
uloc

. (2.21)

Let us introduce a few more notations. Set for any k ∈ Z,

Ωk := {(x, z) ∈ Ω : −k < x < k}.

Let us define for any k ∈ N∗ a smooth map ηk : Ω → [0, 1], depending on x only, equal to 1
in Ωk and supported in Ωk+1. Remark that its derivatives are supported in Ωk+1\Ωk. We can
choose ηk such that there exists a constant C > 0 independent of k and satisfying

∥η′k∥L∞ + ∥η′′k∥L∞ ≤ C.
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Finally, let us observe the following estimate linking uniformly local and classical Sobolev norms
over Ωn. We report its proof in appendix 2.4.2.

Lemma 2.3.3. Let n ∈ N∗. There exists a constant C > 0 such that for any f in L2
uloc(Ω),

resp. in H−1
uloc(Ω), one has

∥f∥L2(Ωn) ≤ Cn1/2∥f∥L2
uloc

, resp. ∥f∥H−1(Ωn) ≤ Cn1/2∥f∥H−1
uloc

.

Proof of Theorem 2.3.2. Let us set for any n ∈ N∗ the unique couple (un, pn) in H1(Ωn) ×(
L2(Ωn)/R

)
satisfying the system





−∆un +∇pn = f in Ωn,
divun = 0 in Ωn,

un = 0 on ∂Ωn,
(2.22)

existence and uniqueness of which is ensured by [BF12, Theorem IV.5.1]. Then define for any
integers 1 ≤ k ≤ n the energy of un on the subdomain Ωk,

En,k := ∥un∥2H1(Ωk)
=

ˆ k

−k

ˆ 1

0

|∇un|2 + |un|2.

By evaluating the variational formulation of (2.22) in the test function un we find
ˆ n

−n

ˆ 1

0

|∇un|2 = ⟨f ,un⟩Ωn
≤ ∥f∥H−1(Ωn)∥un∥H1(Ωn).

Using Lemma 2.3.3 and Poincaré’s inequality, for which the constant involved can be chosen
independent of n, one finds

En,n ≤ Cn∥f∥2
H−1

uloc

.

Our goal is to show that there exists C > 0 independent of n and f , such that

En,1 = ∥un∥2H1(Ω1)
≤ C∥f∥2

H−1
uloc

. (2.23)

This allows to conclude to the existence of a solution u ∈ H1
uloc(Ω) obeying the estimate (2.21),

by translation invariance of the domain and compactness considerations. To prove (2.23) we
will fix n ∈ N∗ and show by descending induction over k that there exists C > 0 and k0 ∈ N∗

independent of u, f and n such that

∀k, k0 ≤ k ≤ n, En,k ≤ Ck∥f∥2
H−1

uloc

.

Let us evaluate the variational formulation of (2.22) in the test function ηkun, which yields
ˆ
Ωn

ηk|∇un|2 = ⟨f , ηkun⟩Ωk+1
−
ˆ
Ωn

η′kun · ∂xun +

ˆ
Ωn

η′kpnun,1. (2.24)

By Poincaré’s inequality we bound from below the left hand side by En,k, up to a multiplicative
constant. Let us bound from above all the right hand side terms. Lemma 2.3.3 provides

⟨f , ηkun⟩Ωk+1
≤ C∥f∥H−1(Ωk+1)∥un∥H1(Ωk+1) ≤ C(k + 1)1/2∥f∥H−1

uloc
E

1/2
n,k+1. (2.25)
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Since η′k is supported in Ωk+1\Ωk and uniformly bounded independently of k, we have
∣∣∣∣
ˆ
Ωn

η′kun · ∂xun

∣∣∣∣ ≤ C

ˆ
Ωk+1\Ωk

|∇un|2 + |un|2 = C(En,k+1 − En,k). (2.26)

Let us split the remaining integral of (2.24) as follows,
ˆ
Ωn

η′kpnun,1 =

ˆ
Uk

η′kpnun,1 +
ˆ
−Uk

η′kpnun,1.

Remark that ˆ
Uk

η′kun,1 =

ˆ k+1

k

η′k

ˆ
un,1 dz dx = 0,

since the flux
´
un,1 dz is independent of x for the same reason as in (2.19), and equal to 0

because of the homogenous Dirichlet condition in {x = ±n}. Hence, let us denote by ⟨pn⟩Uk
the

average of pn over Uk, and find
ˆ
Uk

η′kpnun,1 =

ˆ
Uk

η′k(pn − ⟨pn⟩Uk
)un,1 ≤ C∥pn − ⟨pn⟩Uk

∥L2(Uk)∥un∥L2(Uk).

Let us apply Nečas inequality, see [BF12, Lemma IV.1.9], and get

∥pn − ⟨pn⟩Uk
∥L2(Uk) ≤ C∥∇pn∥H−1(Uk)

≤ C∥∆un + f∥H−1(Uk)

≤ C
(
∥∇un∥L2(Uk) + ∥f∥H−1(Uk)

)
.

Hence we deduce, using Lemma 2.3.1, that
∣∣∣∣
ˆ
Uk

η′kpnun,1

∣∣∣∣ ≤ C
(
(En,k+1 − En,k)

1/2 + ∥f∥H−1
uloc

)
E

1/2
n,k . (2.27)

The very same considerations hold true for the integral over −Uk. Bounding (2.24) thanks to
(2.25), (2.26) and (2.27), plus applying Young’s inequality, we obtain that for any integers k, n
such that 1 ≤ k ≤ n,

En,k ≤ C
(
En,k+1 − En,k + (k + 1)∥f∥2

H−1
uloc

)
. (2.28)

This relation implies (2.23), as stated in the following lemma, proven apart in appendix 2.4.3.

Lemma 2.3.4. Let (En,k)k,n be a non-negative family indexed by all couples (k, n) ∈ N2 satis-
fying 1 ≤ k ≤ n, non-decreasing with respect to k, obeying (2.28) and such that

∀n ∈ N∗, En,n ≤ Cn∥f∥2
H−1

uloc

.

There exists C0 > 0 and k0 ∈ N∗ independent of f such that for any k, n ∈ N satisfying
k0 ≤ k ≤ n, we have

En,k ≤ C0k∥f∥2H−1
uloc

.
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This result implies the expected inequality,

∀n ≥ k0, En,1 ≤ En,k0
≤ C0k0∥f∥2H−1

uloc

.

By extending f |Ωn
and un to Ω by 0 outside Ωn, we can perform a similar analysis and find the

same energy estimates over each subdomain Uℓ, namely,

∀n ≥ k0,∀ℓ ∈ Z, ∥un∥2H1(Uℓ)
≤ C∥f∥2

H−1
uloc

,

where C = C0k0 with C0 and k0 independent of n and ℓ. Therefore, for any n ≥ k0, un belongs
to H1

uloc(Ω) and satisfies
∥un∥H1

uloc
≤ C∥f∥H−1

uloc
.

Since bounded subsets of H1(Uℓ) are weakly relatively compact, there exists a subsequence of
(un)n converging weakly in H1

loc(Ω) toward some u ∈ H1
uloc(Ω), with u satisfying estimate (2.21).

The limit also verifies
´
u1 dz = 0 since every un has zero flux. Hence, it is a solution of (2.20).

To prove uniqueness of such an element, let us consider some u ∈ H1
uloc(Ω) satisfying (2.20)

with f = 0. Define the energy Ek := ∥u∥2H1(Ωk)
and proceed to the same computations as

previously to find
Ek ≤ C(Ek+1 − Ek + 1).

Notice that the zero flux condition is used here to bound the pressure term and obtain this
estimate. Since Ek+1 − Ek is bounded by ∥u∥2

H1
uloc

, we have

∀k ∈ Z, Ek ≤ C(∥u∥2H1
uloc

+ 1) <∞,

which means that u belongs toH1(Ω). Since the Stokes system with Dirichlet boundary condition
is well-posed in H1(Ω) in any domain Ω of R2 bounded in one direction, see for instance [Tem79,
Theorem 2.1], we necessarily have u = 0, which allows to conclude to the uniqueness and the
proof.

Remark 2.3.5. The pressure does not belong to L2
uloc(Ω) in general; observe for instance the

following triplet, satisfying (2.20),

f = ex, u = 0, p(x, z) = x.

Nevertheless, we have thanks to Nečas inequality some similar estimate as (2.21) on the pressure,

sup
k∈Z

∥p− ⟨p⟩Uk
∥L2(Uk) ≤ C∥f∥L2

uloc
.

Remark 2.3.6. This proof does not adapt straightforwardly to the case of the layer domain
R2 × (0, 1). The first issue one needs to deal with is to determine conditions on u ensuring
uniqueness of a solution. Also, the descending induction on the energy estimates no longer holds
in this form. Indeed, one needs to replace the slices [k, k + 1] × (0, 1) in R × (0, 1) by chunks
[k, k+1]× [ℓ, ℓ+1]×(0, 1) in R2×(0, 1). To bound the energy on [−k, k]2×(0, 1) by the energy on
[−(k+1), k+1]2 × (0, 1) makes appear some quadratic terms in k in (2.28) instead of the linear
ones present for the strip case, making the induction fail. Under different boundary assumptions,
it is however possible to adapt it in a non-trivial way and to conclude; see for instance [DP14,
Section 3].

Since L∞(Ω) ⊂ L2
uloc(Ω) ⊂ H−1

uloc(Ω), we already have existence of a solution to (2.20) for L∞
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data. Recall that we need to establish the W 1,∞ regularity of this solution. We first show that
the system satisfies some elliptic regularity property in the hilbertian framework.

Theorem 2.3.7. Let f ∈ L2
uloc(Ω). The associated solution u ∈ H1

uloc(Ω) of (2.20) belongs to
H2

uloc(Ω) and obeys the inequality

∥u∥H2
uloc

≤ C∥f∥L2
uloc

. (2.29)

Proof. The demonstration consists in truncating the global solution u within some bounded
subdomains, and to use the elliptic regularity in these bounded domains provided by Theorem
2.2.1. Let f ∈ L2

uloc(Ω) and set (u, p) ∈ H1
uloc(Ω) ×

(
L2
loc(Ω)/R

)
, the associated solution to

(2.20). For any k ∈ Z, set uk := χku and qk := χk(p− ⟨p⟩U∗
k
), which satisfy the system





−∆uk +∇qk = F k in Ũk,

divuk = χ′
ku1 in Ũk,

uk = 0 on ∂Ũk,

(2.30)

where we set
F k := χkf − 2χ′

k∂xu− χ′′
ku+ χ′

k

(
p− ⟨p⟩U∗

k

)
ex

for any smooth bounded subdomain Ũk of Ω containing U∗
k . Let us set (Ũk)k a family of such

domains given by the choice of a smooth Ũ0 containing U∗
0 and its translations Ũk = Ũ0+kex. The

regularity of u and p implies that F k belongs to L2(Ũk) and that χ′
ku1 satisfies the compatibility

condition (2.4). Therefore, Theorem 2.2.1 ensures that uk is the only solution of (2.30) on Ũk,
with estimate

∥uk∥H2(Ũk)
≤ C∥F k∥L2(Ũk)

, (2.31)

where the constant C > 0 can be chosen independent of k since the subdomains Ũk are transla-
tions of each other. A few computations lead to

∥F k∥L2(Ũk)
≤ C(∥u∥H1

uloc
+ ∥f∥L2

uloc
+ ∥p− ⟨p⟩U∗

k
∥L2(U∗

k )
). (2.32)

Nečas inequality and Lemma 2.3.1 provide

∥p− ⟨p⟩U∗
k
∥L2(U∗

k )
≤ C∥∇p∥H−1(U∗

k )

≤ C∥∆u+ f∥H−1(U∗
k )

≤ C(∥u∥H1
uloc

+ ∥f∥L2
uloc

).

The latter estimate combined with (2.21) and (2.32) in (2.31) leads to

∥u∥H2(Uk) ≤ ∥uk∥H2(Ũk)
≤ C∥f∥L2

uloc
,

which proves that u belongs to H2
uloc(Ω) and satisfies inequality (2.29).

From the latter result and Sobolev embeddings we obtain existence of W 1,q
uloc solutions for Lq

data. Then elliptic regularity is once again recovered and we show that these solutions are in
W 2,q

uloc. Finally Sobolev embeddings once again yield a unique solution in W 1,∞ for L∞ data.

Theorem 2.3.8. Let f ∈ L∞(Ω). There exists a unique u ∈ W 1,∞(Ω) satisfying (2.20), which
obeys

∥u∥W 1,∞ ≤ C∥f∥L∞ . (2.33)
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Proof. Let f ∈ L∞(Ω). We always have

∥f∥L2
uloc

≤ C∥f∥L∞ .

The Sobolev embeddings in bounded domains adapts into the continuous inclusion

H2
uloc(Ω) ↪→W 1,q

uloc(Ω), 2 ≤ q <∞.

Since Theorem 2.3.7 ensures the existence of a solution to (2.20) in H2
uloc(Ω), we also have

existence of a solution in W 1,q
uloc(Ω). Besides, the inclusions of Lebesgue spaces imply

W 1,q
uloc(Ω) ↪→ H1

uloc(Ω), 2 ≤ q <∞.

Hence, the uniqueness of a solution in H1
uloc, ensured by Theorem 2.3.2, implies that there

exists at most one solution of (2.20) in W 1,q
uloc(Ω). In the end, (2.20) admits a unique solution

u ∈W 1,q
uloc(Ω) for 2 ≤ q <∞, with estimate

∥u∥W 1,q
uloc

≤ Cq∥f∥L∞ .

Now the method is exactly the same as in Theorem 2.3.7 to prove that u belongs to W 2,q
uloc(Ω).

To do so, the only extra result we require is Nečas inequality in the general Lq framework, see
[Gal11, Ex. III.3.4, p. 175], which provides the very same pressure estimates as for q = 2. In
the end we obtain the well-posedness of the problem in W 2,q

uloc(Ω), with estimate

∥u∥W 2,q
uloc

≤ C∥f∥L∞ , 2 ≤ q <∞.

Now use that
W 2,4

uloc(Ω) ↪→W 1,∞(Ω) ↪→W 1,4
uloc(Ω).

As previously, the first embedding provides existence of a solution u ∈ W 1,∞(Ω), together with
estimate (2.33), and the second one ensures uniqueness.

2.3.2 Stability estimate for the transport in the strip

The transport equation (2.8) is still well-posed on Ω = R × (0, 1) and Proposition 2.2.5 still
applies. The lemmas related to the properties of the characteristics are also valid still, up to
minor adaptations mentioned when required in the following. The only adaptation demanding
particular attention is the stability estimate from Proposition 2.2.6, stated as follows.

Proposition 2.3.9. Let ui ∈ L∞(R+;W
1,∞(Ω)) with ui|∂Ω ≡ 0 and divui ≡ 0, for i = 1, 2.

Let ρ0 ∈ L∞(Ω) and set ρi the solution of (2.8) associated to ui with initial datum ρ0. There
exists T̄ (∥∇ui∥L∞) > 0 such that for any T ∈ [0, T̄ ],

∥ρ1 − ρ2∥L∞(0,T ;H−1
uloc)

≤ BT (1 +MT )1/2eCT∥∇u1∥L∞(0,T ;L∞)∥u1 − u2∥L∞(0,T ;L2
uloc)

,

where B := C∥ρ0∥L∞ and M := maxi ∥ui∥L∞ .

Proof. The goal is to bound the following quantity for any test function φ ∈ C∞
c (Ω) uniformly in

k ∈ Z and with respect to t ∈ [0, T̄ ] where T̄ is determined further. To apply Liouville theorem
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gives

Iφ,k :=

ˆ
Ω

(
ρ1(t,x)− ρ2(t,x)

)
(χkφ)(x) dx

=

ˆ
Ω

ρ0(x)
(
(χkφ)(X1(t;x))− (χkφ)(X2(t;x))

)
dx

=

ˆ
Ω

ρ0(x)(X1(t;x)−X2(t;x)) ·
ˆ 1

0

∇(χkφ)(X
λ(t;x)) dλ dx,

where Xλ(t;x) := λX1(t;x) + (1 − λ)X2(t;x). Since ρi are the push-forwards of ρ0 by Xi,
the respective transports occur at finite speed, bounded by M . Since χk is supported in U∗

k , the
support of (χkφ) ◦Xi(t) is included in

UM,t
k := {k − 1−Mt < x < k + 2 +Mt}.

Hence Hölder’s inequality applies as follows

|Iφ,k| ≤ ∥ρ0∥L∞∥X1(t)−X2(t)∥L2(UM,t
k )

ˆ 1

0

∥∇(χkφ)(X
λ(t))∥L2 dλ.

We saw in Proposition 2.2.6 that there exists T̄ (∥∇ui∥L∞) > 0 such that Xλ(t) performs a
change of variable with jacobian determinant uniformly bounded with respect to t ∈ [0, T̄ ] and
λ ∈ [0, 1], meaning there exists a constant C > 0 such that

∀t ∈ [0, T̄ ], λ ∈ [0, 1], ∥∇(χkφ)(X
λ(t))∥L2 ≤ C∥∇(χkφ)∥L2 ≤ Cχ∥φ∥H1 .

Besides, Lemma 2.2.4 applies on the bounded domain UM,t
k , providing

∥X1(t)−X2(t)∥L2(UM,t
k ) ≤ teCt∥∇u1∥L∞(0,t;L∞)∥u1 − u2∥L∞(0,t;L2(UM,t

k )).

From considerations similar to those of Lemma 2.3.3 we obtain

∥u1 − u2∥L∞(0,t;L2(UM,t
k )) ≤ C(1 +Mt)1/2∥u1 − u2∥L∞(0,t;L2

uloc)
,

with finite right hand side, since ui ∈ L∞(R+;W
1,∞(Ω)). Combining these last equalities lead

to the following estimate, for any t ∈ [0, T̄ ],

|Iφ,k| ≤ C∥ρ0∥L∞t(1 +Mt)1/2eCt∥∇u1∥L∞(R+;L∞)∥u1 − u2∥L∞(0,t;L2
uloc)

∥φ∥H1 .

Taking the supremum over the test functions φ, k ∈ Z and t ∈ [0, T ], we see that for any
T ∈ [0, T̄ ] we have

∥ρ1 − ρ2∥L∞(0,T ;H−1
uloc)

≤ BT (1 +MT )1/2eCT∥∇u1∥L∞(0,T ;L∞)∥u1 − u2∥L∞(0,T ;L2
uloc)

.

2.3.3 Proof of Theorem 2.1.2

The proof essentially follows the same path as in Theorem 2.1.1. For this reason we recall briefly
the similar steps and focus on the parts that differ from this former case.
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Local existence : Set ρ0 ≡ ρ0 in L∞(R+;L
∞(Ω)). Define, thanks to Proposition 2.2.5 and

Theorem 2.3.8, the following sequences

∀N ∈ N, ρN ∈ L∞(R+;L
∞(Ω)), uN ∈ L∞(R+,W

1,∞(Ω)),

satisfying the partial problems
{
∂tρ

N+1 + uN · ∇ρN+1 = 0 in R+ × Ω,
ρN+1(0, ·) = ρ0 in Ω,

(2.34)

and 



−∆uN +∇pN = −ρNez in R+ × Ω,
divuN = 0 in R+ × Ω,

uN = 0 in R+ × ∂Ω,´
uN1 = 0 in R+.

(2.35)

The uniform bounds, with B := C∥ρ0∥L∞ , remain true,

∥ρN∥L∞(R+,L∞) ≤ B, ∥uN∥L∞(R+;W 1,∞) ≤ B. (2.36)

Therefore we still have weak∗ convergence of ρN ,uN and ∇uN , up to the extraction of subse-
quences. Beside, Proposition 2.3.9 ensures the existence of a T̄ (∥ρ0∥L∞) > 0 such that for any
T ∈ [0, T̄ ],

∥ρN+1 − ρN∥L∞(0,T ;H−1
uloc)

≤ BT (1 +BT )1/2eBT ∥ρN − ρN−1∥L∞(0,T ;H−1
uloc)

,

where we have plugged (2.36). Therefore, up to the choice of a small enough T (∥ρ0∥L∞) > 0,
(ρN )N is a Cauchy sequence in L∞(0, T ;H−1

uloc(Ω)), which implies that (uN )N is also a Cauchy
sequence in L∞(0, T ;H1

uloc(Ω)), with limit denoted u. The weak∗ convergence of (uN )N and
(∇uN )N ensures that u also belongs to L∞(0, T ;W 1,∞(Ω)). In particular, uN and its derivatives
converge in L1

loc([0, T ] × Ω), which, together with the weak∗ convergence of (ρN )N , is enough
to pass to the limit in the weak formulation of partial problems (2.34) and (2.35). We obtain a
local in time solution (ρ,u) of (2.20), with regularity

L∞(0, T ;L∞(Ω))× L∞(0, T ;W 1,∞(Ω)).

Local uniqueness : Let (ρi,ui) be two such solutions of (2.20). The contraction adapts thanks
to Proposition 2.3.9 in

∥ρ1 − ρ2∥L∞(0,T ;H−1
uloc)

≤ BT (1 +BT )1/2eBT ∥ρ1 − ρ2∥L∞(0,T ;H−1
uloc)

,

which implies uniqueness for T (∥ρ0∥L∞) > 0 small enough.

Globality : The extension proves just as in the bounded case, see the proof of Theorem 2.1.1.

2.3.4 Stability estimate for the system in the strip

The result and the proof are identical to the ones of Proposition 2.2.7, replacing the stability
estimate (2.18) of the bounded case by the one in the strip from Proposition 2.3.9.
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Proposition 2.3.10. Let ρ0,i ∈ L∞(Ω) and ρi be the solution of (2.1) with initial datum ρ0,i,
for i = 1, 2. There exists C = C(Ω, ∥ρ0,i∥L∞) > 0 such that

∀T ∈ R+, ∥ρ1 − ρ2∥L∞(0,T ;H−1
uloc)

≤ CeCT ∥ρ0,1 − ρ0,2∥H−1
uloc

. (2.37)

2.4 Appendix

2.4.1 Proof of Lemma 2.3.1

Let m ∈ N, k ∈ Z, 1 < q <∞ and u ∈Wm,q
uloc(Ω). Since χk = 1 on Uk,

∥u∥Wm,q(Uk) ≤ ∥χku∥Wm,q .

The support of χk being U∗
k , one has

∥χku∥Wm,q ≤ Cχ,m∥u∥Wm,q(U∗
k )
.

One can split this last norm as follows

∥u∥Wm,q(U∗
k )

≤
k+1∑

ℓ=k−1

∥u∥Wm,q(Uℓ).

These three inequalities prove the first assertion,

sup
k∈Z

∥u∥Wm,q(Uk) ≃ sup
k∈Z

∥u∥Wm,q(U∗
k )

≃ ∥u∥Wm,q
uloc

.

Let m ∈ N∗ and 1 < q < ∞. For readability we adopt the following notations in the rest of
this proof. For any u ∈W−m,q(U) and φ ∈Wm,q′

0 (U) where U is a subdomain of Ω, denote

∥u∥U := ∥u∥W−m,q(U), ∥u∥uloc := ∥u∥W−m,q
uloc

, ∥φ∥0,U = ∥φ∥
Wm,q′

0 (U)

and the duality brackets
⟨u, φ⟩U = ⟨u, φ⟩

W−m,q(U),Wm,q′
0 (U)

.

The inclusion {φ ∈Wm,q
0 (Uk) : ∥φ∥0,Uk

= 1} ⊂ {φ ∈Wm,q
0 (U∗

k ) : ∥φ∥0,U∗
k
= 1} provides the first

inequality
∥u∥W−m,q(Uk) ≤ ∥u∥W−m,q(U∗

k )
.

Let us show the remaining direct inequality. We use the definition of the dual norm, and recall
that (χk)k is a partition of the unity, up to a factor 2. Also notice that a product χℓφ with
φ ∈Wm,q′

0 (U∗
k ) has possibly non-empty support only if |ℓ − k| ≤ 3. These remarks justify each
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step of the following computations, for any k ∈ Z,

∥u∥U∗
k
= sup

∥φ∥0,U∗
k
=1

⟨u, φ⟩U∗
k

≃ sup
∥φ∥0,U∗

k
=1

∑
|ℓ−k|≤3⟨u, χℓφ⟩U∗

k

≤ sup
∥φ∥0,U∗

k
=1

∑
|ℓ−k|≤3⟨χℓu, φ⟩U∗

k

≤ sup
∥φ∥0,Ω=1

∑
|ℓ−k|≤3⟨χℓu, φ⟩Ω;

≲ ∥u∥uloc.

Finally, the reciprocal inequality is proved by noticing that χkφ belongs to Wm,q′

0 (U∗
k ) for any

φ ∈Wm,q′

0 (Ω);

∥χku∥Ω = sup
∥φ∥0,Ω=1

⟨u, χkφ⟩Ω

≤ sup
∥φ∥0,Ω=1

∥u∥U∗
k
∥χkφ∥0,U∗

k

≤ C(χ,m)∥u∥U∗
k

sup
∥φ∥0,Ω=1

∥φ∥U∗
k

≤ C∥u∥U∗
k
.

□

Remark 2.4.1. For m ∈ N∗, we do not have in general

sup
k∈Z

∥u∥W−m,q(Uk) ≳ sup
k∈Z

∥u∥W−m,q(U∗
k )
.

Indeed, consider the Dirac mass δ(0,1/2) belonging to H−2(Ω) and therefore to H−2
uloc(Ω), with

∥δ∥H−2
uloc

> 0. Nevertheless, for any k ∈ Z we have

∀φ ∈ H2
0 (Uk), ⟨δ, φ⟩Uk

= 0.

The reason is that the support of an element of the negative Sobolev spaces can be included in the
complementary of ∪kUk. This does not happen when the considered subdomains family covers
the whole domain, as does (U∗

k )k.

2.4.2 Proof of Lemma 2.3.3

The case f ∈ L2
uloc(Ωn) is straightforward,

∥f∥2L2(Ωn)
=

n−1∑

k=−n

∥f∥2L2(Uk)
≤ 2n∥f∥2L2

uloc
.
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The case f ∈ H−1
uloc(Ωn) requires a little more care. We use notations from the proof of Lemma

2.3.1. Notice that
∑n

ℓ=−n−1 χℓ = 2 on Ωn, so for any φ ∈ H1
0 (Ωn) we have

⟨f, φ⟩Ωn
≃

n∑

ℓ=−n−1

⟨f, χℓφ⟩U∗
ℓ

≲
n∑

ℓ=−n−1

∥f∥H−1(U∗
ℓ )
∥χℓφ∥H1

≲ ∥f∥H−1
uloc

n∑

ℓ=−n−1

∥χℓφ∥H1

≲ ∥f∥H−1
uloc

n∑

ℓ=−n−1

∥φ∥H1(U∗
ℓ )

≲ ∥f∥H−1
uloc

(2n+ 2)1/2

(
n∑

ℓ=−n−1

∥φ∥2H1(U∗
ℓ )

)1/2

,

where we used Lemma 2.3.1. Now, bound 2n+2 by 4n and notice that the last sum is equivalent
to ∥φ∥H1 to complete the proof. □

2.4.3 Proof of Lemma 2.3.4

Set (En,k)n,k a family of positive real numbers, indexed by the couples (n, k) ∈ N2 such that
1 ≤ k ≤ n, non-decreasing according to k for a fixed n, obeying

∀1 ≤ k ≤ n, En,k ≤ C (En,k+1 − En,k + F (k + 1)) (2.38)

and satisfying
∀n, En,n ≤ CFn, (2.39)

where F is a constant playing the role of ∥f∥2
H−1

uloc

. Let us show that there exists α > 0 and
k0 ∈ N∗ such that

∀k, n, k0 ≤ k ≤ n =⇒ Ek ≤ αFk. (2.40)

By (2.39) we already know that (2.40) is satisfied for any n ∈ N∗ and k = n, with α = C. For a
fixed n, let k0 be the greatest index such that (2.40) is not satisfied, meaning

En,k0
> αFk0. (2.41)

Therefore, plugging (2.41) in (2.38) and using the definition of k0 provides

α(1 + C)Fk0 ≤ CF (α+ 1)(k0 + 1),

which is equivalent to
k0

k0 + 1
≤ C

C + 1

(
1 +

1

α

)
=: Cα.

Up to the choice of a greater α, we can assume that Cα < 1. This implies that k0 ≤ Cα

1−Cα
,

independently of n and F . Therefore, we conclude that for any k, n such that k0 ≤ k ≤ n we
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have
Ek ≤ αFk.

□

2.5 Well-posedness of the Stokes-transport equation for
Lebesgue data

2.5.1 Well-posedness in Lq for q > d

The Stokes-transport equation well-posedness result on bounded domains for ρ0 ∈ L∞ can be
adapted for Lebesgue data ρ0 ∈ Lq(Ω) with finite exponents q ∈ (d,∞), as follows.

Theorem 2.5.1. Let Ω be either T×(0, 1) or simply connected compact subdomain of Rd, d = 2, 3
of class C2. Let q ∈ (d,∞). For any ρ0 ∈ Lq(Ω) the ST equation has a unique weak solution
(ρ,u) in the class

L∞(R+;L
q(Ω))× L∞(R+;W

1,∞(Ω)). (2.42)

In [MS22] Mecherbet & Sueur show that Stokes-transport is well-posed in the whole space
R3 for data ρ0 ∈ Lq(R3) with q ≥ 3, with similar regularity than (2.42) when q > 3 (the critical
exponent q = 3 requires more attention). They raise whether this result holds in bounded
domain, which is therefore the case. Note that the critical exponent q > d is consistent whether
the domain is bounded or not.

We adjust the proof of Theorem 2.1.1. We choose q > d so that W 2,q(Ω) embeds continuously
in W 1,∞(Ω), hence for any solution u to the Stokes equation with source term ρ ∈ Lq(Ω) we
have

∥u∥W 1,∞ ≲ ∥u∥W 2,q ≲ ∥ρ∥Lq .

Since solutions to the transport equation have constant Lq norm, this inequality ensures that
the velocity fields considered are still Lipschitz and that the characteristic method applies just
as in the previous cases.

We can define a sequence (ρN )N and (uN )N as follows. Let us define ρ0 : t ∈ R+ 7→
ρ0 ∈ Lq(Ω). Now iterate as follows. If ρN ∈ L∞(R+;L

q(Ω)) there exists a unique uN ∈
L∞(R+;W

1,∞(Ω)) satisfying for all time the Stokes system (2.1). If uN ∈ L∞(R+;W
1,∞(Ω)),

the characteristics method provides a unique solution ρN+1 ∈ L∞(R+;L
q(Ω)).

Now we need to adapt the stability estimate (2.11) in order to show that the sequences are
of Cauchy type in convenient spaces. The difference lies in the treatment of a generalised Hölder
estimate considering within the proof, requiring to bound ρ0 in Lq for q finite instead of L∞,
which modify the space in which the other quantities are estimated. Then, it remains to check
thanks to the convenient embeding estimates that the stability estimate can be closed in view of
the contraction argument performed in the well-posedness proof.

Lemma 2.5.2. Let ρ0 ∈ Lq(Ω), q > d, ui ∈ L∞(R+;W
1,∞(Ω)) given and ρi ∈ L∞(R+;L

q(Ω))
the associated solutions to the transport equation with initial datum ρ0. Then for any 1 < r, s <∞
satisfying 1

q + 1
r = 1

s we have

∥ρ1 − ρ2∥L∞
T W−1,s ≲ ∥ρ0∥Lqe

CT∥∇u1∥L∞
T

W1,∞∥u1 − u2∥L∞
T Lr . (2.43)

Proof. As in Proposition 2.2.6, we get for any φ ∈ C∞
c (Ω) the following equality in view of an
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estimate in a dual Sobolev space, for any t ≥ 0,
ˆ
Ω

(ρ1(t)− ρ2(t))φ =

ˆ
Ω

ρ0(X1(t)−X2(t)) ·
ˆ 1

0

∇φ(Xλ(t)) dλ.

Now we estimate this latter expression by the generalised Hölder inequality,
ˆ
Ω

(ρ1(t)− ρ2(t))φ ≲ ∥ρ0∥Lq∥X1(t)−X2(t)∥Lr∥∇φ∥Ls′ , (2.44)

where the exponents satisfy

1 < q, r, s′ <∞,
1

q
+

1

r
+

1

s′
= 1 ⇔ 1

q
+

1

r
=

1

s
.

For any such set of exponent, we consider the supremum on the test function φ ∈W 1,s′

0 (Ω) and
get

∀T > 0, ∥ρ1 − ρ2∥L∞(0,T ;W−1,s) ≲ ∥ρ0∥Lq∥X1 −X2∥L∞(0,T ;Lr). (2.45)

Besides, let us recall that for any r ∈ (1,∞) we showed in Lemma 2.2.4 that

∀T ≥ 0, ∥X1 −X2∥L∞(0,T ;Lr) ≲ Te
CT∥∇u1∥L∞(0,T ;W1,∞)∥u1 − u2∥L∞(0,T ;Lr),

which concludes the proof.

In order to close estimate (2.45) we need the following inequality for the Stokes system,

∥u∥Lr ≲ ∥ρ∥W−1,s .

This is achieved by considering the embedding W 1,s ↪→ Lr occurring if

1− d

s
> −d

r
⇔ 1

d
+

1

r
>

1

s
.

Whence, first by embedding, then by Stokes solution estimate, we get

∥u∥Lr ≲ ∥u∥W 1,s ≲ ∥ρ∥W−1,s . (2.46)

Remark 2.5.3. If we consider s = r then q = ∞ remains the only option in (2.44), and we
would fall back in the previous proof.

It remains to check that all the exponents constraints are compatible in view of obtaining
(2.43). We need

q > d,
1

d
+

1

r
>

1

s
,

1

q
+

1

r
=

1

s
,

which is actually satisfied for any q > 2 with r ∈ (1,∞) since

1

d
>

1

q
⇒ 1

d
+

1

r
>

1

q
+

1

r
=

1

s
,

where s deduces from q, r.



2.5. Well-posedness of the Stokes-transport equation for Lebesgue data 63

Now from (2.43) and (2.46) we can deduce that for all N ∈ N density difference satisfies

∥ρN+1 − ρN∥L∞(0,T ;W−1,s) ≲ T∥ρ0∥LqeCT∥∇uN∥L∞(0,T ;L∞)∥uN − uN−1∥L∞(0,T ;Lr)

≲ T∥ρ0∥LqeCT∥ρ0∥Lq ∥ρN − ρN−1∥L∞(0,T ;W−1,s).

Hence for T (∥ρ0∥Lq ) > 0, (ρN )N is a Cauchy sequence in L∞(0, T ;W−1,s(Ω)), therefore (uN )N
is a Cauchy sequence in L∞(0, T ;W 1,s), and in particular (uN )N , (∇uN )N are of Cauchy type in
Ls((0, T )×Ω). We infer there exists some u such that u ∈ Ls((0, T )×Ω) with u ∈ Ls((0, T )×Ω))
is the limit of (uN )N in W 1,s(Ω). Besides, since ∥ρN (t)∥Lq = ∥ρ0∥Lq for all N and t, we have

∥ρN∥Lq((0,T )×Ω) ≤ T 1/q∥ρ0∥Lq .

In particular (ρN )N converges weakly in Lq, up to extractation, toward some ρ ∈ Lq((0, T )×Ω).
Hence by strong and weak convergence of (uN )N and (ρN )N respectively, we can pass to the
limit in the intermediate problem weak formulation of the transport equation, i.e. for any φ ∈
C∞

c ([0, T )× Ω),

ˆ T

0

ˆ
Ω

ρN+1(t,x)(∂tφ(t,x) + uN (t,x) · ∇φ(t,x)) dx dt = −
ˆ
Ω

ρ0(x)φ(0,x) dx.

In the same fashion the limit satisfies the Stokes weak formulation. Hence (ρ,u) is a local weak
solution. Uniqueness deduces from the stability estimate (2.43). Moreover, since the existence
time T depends only on the Lq norm of the initial datum, and since this Lq norm is preserved
along time for the density, then we can extend the solution for all time. By (2.5) the velocity
field satisfies

∥u∥L∞(R+;W 1,∞) ≲ ∥ρ0∥Lq ,

which concludes the proof of Theorem 2.5.1.

2.5.2 Existence for lower Lebesgue exponents

We obtain existence of solutions for initial data in Lebesgue spaces for a range of exponents lower
than the dimension.

Proposition 2.5.4. Let Ω ⊂ Rd, d = 2, 3 of class C2 and let q > 2d/(d + 2). Then for any
ρ0 ∈ Lq(Ω) and T > 0 there exists at least one weak solution to the Stokes-transport system
on [0, T ). Since T > 0 is arbitrary, there exists global solutions. These solutions belong to the
following functional space

(ρ,u) ∈ L∞(R+;L
q(Ω))× L∞(R+;W

2,q(Ω)).

In the former case, ρ ∈ L∞ ensured u to be Lipschitz, ensuring the proper definition of the
flow map X and in particular the uniqueness of the solution. When d ≥ q > 2d/(d + 2), the
velocity field belongs a priori to W 2,q(Ω) which does not embed in W 1,∞ anymore. Note that
for d = 2 the result holds for any q > 1. In dimension d = 3, we have a threshold q > 6/5. Note
that the present result is also consistent with [Inv23, Corollary 2.3] in which Inversi details the
nature of the renormalised solution to the Stokes-transport system in R3 for data in Lq(R3),
which are weak (or distributional) solutions if q > 6/5. Addressing the case q < 2d/(d+2) might
require an other approach to overcome this difficulty.

Proof. Let us consider a sequence of initial data ρ0,n ∈ L∞(Ω) converging in Lq toward ρ0. For
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instance, the sequence defined by ρ0,n = ρ01{|ρ0|<n} suits this property. By Theorem 2.1.1 we
know that for all n ∈ N there exists a global solution to the ST problem with initial datum ρ0,n,
such that

(ρn,un) ∈ L∞(R+;L
∞(Ω))× L∞(R+;W

1,∞(Ω)).

In particular, the sequence (ρn)n is uniformly bounded as follows

∥ρn∥Lq([0,T ]×Ω) ≤ T 1/q∥ρ0,n∥Lq ≤ T 1/q∥ρ0∥Lq .

Hence the exists an extraction such that ρn converges weakly in Lq toward some ρ ∈ Lq([0, T ]×Ω).
Now a strong convergence of (un)n would be enough to pass to the limit in the weak formulation
of the problem, in particular, for any φ ∈ C∞

c ([0, T )× Ω), the following
ˆ ˆ

[0,T )×Ω

ρn(t,x)(∂tφ(t,x) + un(t,x) · ∇φ(t,x)) dx dt = −
ˆ
Ω

ρ0(x)φ(0,x) dx.

We know that
∥un∥W 2,q ≲ ∥ρ0,n∥Lq ≤ ∥ρ0∥Lq .

An extraction provides a weak convergence of (un)n in Lq(0, T ;W 2,q(Ω)). In particular the
Kondrachov embedding theorem ensures that if

2− d

q
> − d

q′

then there is a compact embedding from W 2,q(Ω) into Lq′(Ω). Reordering the latter inequality
we get

q >
2d

d+ 2
.

This condition is sufficient to ensure the existence of an extraction such that un converges
strongly in Lq′([0, T ]×Ω) toward some limit u ∈ Lq([0, T ]×Ω). In particular by divergence free
of the velocity field, we preserve the Lq norm of the datum, and we have

(ρ,u) ∈ L∞(0, T ;Lq(Ω))× L∞(0, T ;W 2,q(Ω)).

Since T is arbitrary, and since the uniform norm of ρ is preserved along time, one can extend
such a solution for any time.

2.6 Well-posedness of the Stokes-transport equation for Sobolev
data

The aim of this section is to prove the well-posedness of the Stokes-transport on the domain
of interest of the present paper, namely Ω = T × (0, 1). The proof is also valid on any regular
enough bounded domain of Rd with d = 2 or 3. The author included this Section in [DGL23].

Theorem 2.6.1. Let Ω satisfy either

1. Ω = T× (0, 1);

2. Ω is a simply connected compact subdomain of Rd, d = 2, 3 asumed Cm+2.
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Let m > 3 and ρ0 ∈ Hm(Ω). The system




∂tρ+ u · ∇ρ = 0
−∆u+∇p = −ρez

divu = 0
u|∂Ω = 0
ρ|t=0 = 0,

(2.47)

has a unique global solution in the following class of regularity

(ρ,u) ∈ C(R+;H
m(Ω))× C(R+;H

m+2(Ω)).

Moreover, the solution obeys the following energy estimate

∥ρ(t)∥Hm ≤ ∥ρ0∥Hm exp

(
C

ˆ t

0

(∥∇u(s)∥L∞ + ∥∇ρ(s)∥L∞) ds

)
. (2.48)

This result requires rather classical techniques. It also relies on the previous Sections, con-
stituting [Leb22], including in particular the well-posedness in the weak sense of the system
(2.47).

A priori estimate. Formally, the energy estimate for any derivative of order m writes

1

2

d

dt
∥∂mρ∥2L2 = −

ˆ
Ω

[∂m,u · ∇]ρ∂mρ,

due to the divergence free condition satisfied by u. We apply the tame estimate (3.20), to-
gether with the continuous Sobolev embedding of Hm(Ω) in L∞(Ω) and the Stokes equation
regularization estimate to get

d

dt
∥∂mρ∥2L2 ≲ (∥∇u∥L∞ + ∥∇ρ∥L∞)∥ρ∥2Hm .

One therefore obtains the same inequality with the complete Hm norm on the left-hand-side,
and the estimate (2.48) follows. This energy estimate tells us that ρ remains in Hm(Ω) as long
as ∥∇u∥L∞ and ∥∇ρ∥L∞ are integrable in time. Regarding the properties we know from [Leb22]
about the solutions of this equation it is enough to prove that the solution exists globally, and
is unique. Let us recall from [Gal11, Theorem IV.6.1] and [Leb22, Section 2.1] that the source
term and the solution of the Stokes equation satisfy for all time

∥u∥Hm ≲ ∥ρ∥Hm−2 , ∥u∥W 1,∞ ≲ ∥ρ∥L∞ . (2.49)

Also, the uniform norm of ρ is constant by incompressibility condition. We also observe that

∥∇ρ∥L∞ ≤ ∥∇ρ0∥L∞ exp

(
C

ˆ t

0

∥∇u(s)∥L∞ ds

)
≤ ∥∇ρ0∥L∞ exp(C∥ρ0∥L∞t). (2.50)

All these consideration put together lead to

∥ρ∥Hm ≤ ∥ρ0∥Hm exp

(
C∥ρ0∥L∞t+

∥∇ρ0∥L∞

∥ρ0∥L∞
(exp(C∥ρ0∥L∞t)− 1)

)
.
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This suggests that it is enough for ρ0 to belong to W 1,∞(Ω) for the solution to exist globally in
time, which is satisfied here since ρ0 ∈ Hm(Ω) ↪→ W 1,∞(Ω) for m large enough to ensure this
embedding.

Proof. An iterative scheme allows to formalise the previous considerations. Let ρ0 : t 7→ ρ0
which belongs to C(R+;H

m(Ω)). If ρN belongs to C(R+;H
m(Ω)), which is true for N = 0, we

know that the Stokes system




−∆uN +∇pN = −ρNez
divuN = 0
uN |∂Ω = 0

admits for any time a unique solution uN (t) ∈ Hm+2(Ω) obeying inequalities (2.49). By linearity
of the problem, uN in Hm+2(Ω) inherits the continuity of ρN in Hm(Ω). Then since uN belongs
in particular to C(R+;H

m+2(Ω)), the transport equation
{
∂tρ

N+1 + uN · ∇ρN+1 = 0
ρN+1|t=0 = ρ0,

has a unique strong solution ρN+1 ∈ C(R+;H
k(Ω)). This concludes the definition of a sequences

(ρN )N and (uN )N . We thereafter show that for any T > 0 the sequence (ρN )N is bounded in
L∞(0, T ;Hm(Ω)) and equicontinuous in C(0, T ;Hm−1(Ω)), so it converges in C(0, T ;Hm−1(Ω)
to a solution of the original system up to an extraction. Since this is true for any T > 0 and by
uniqueness of the weak solution ensured by [Leb22, Theorem 1.1 & 1.2], we get the well-posedness
of the system and Proposition is proven.

Boundedness. Let us show that we have for any N ∈ N,

∥ρN∥Hm ≤ ∥ρ0∥Hm exp

(
C∥ρ0∥L∞t+

∥∇ρ0∥L∞

∥ρ0∥L∞
(exp(C∥ρ0∥L∞t)− 1)

)
=: Bρ0

(t). (2.51)

This inequality is immediately satisfied for N = 0 since ρ0 is constant in time and equal to ρ0.
Let N ∈ N such that (2.51) is satisfied. Then the tame estimate (3.20) provides here

d

dt
∥ρN+1(t)∥2Hm ≲ ∥∇uN∥L∞∥ρN+1∥2Hm + ∥∇ρN+1∥L∞∥uN∥Hm∥ρN+1∥Hm .

The considerations (2.49) and (2.50) applied to ρN , ρN+1 and uN conduct here to

d

dt
∥ρN+1∥Hm ≲ ∥ρ0∥L∞∥ρN+1∥Hm + ∥∇ρ0∥L∞ exp(C∥ρ0∥L∞t)∥ρN+1∥Hm .

From here, we use Grönwall lemma to estimate ∥ρN+1∥Hm ,

∥ρN+1∥Hm ≤ exp(C∥ρ0∥L∞t)

(
∥ρ0∥Hm + C∥∇ρ0∥L∞

ˆ t

0

∥ρN (s)∥Hm ds

)
, (2.52)
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then according to the assumption on ρN , observe

C∥∇ρ0∥L∞

ˆ t

0

∥ρN (s)∥Hm ds

≤ C∥ρ0∥Hm∥∇ρ0∥L∞

ˆ t

0

exp

(
C∥ρ0∥L∞s+

∥∇ρ0∥L∞

∥ρ0∥L∞

(
eC∥ρ0∥L∞s − 1

))
ds

≤ C∥ρ0∥Hm∥∇ρ0∥L∞

ˆ eC∥ρ0∥L∞ t−1

0

exp

(∥∇ρ0∥L∞

∥ρ0∥L∞
r

)
dr

C∥ρ0∥L∞

= ∥ρ0∥Hm

(
exp

(∥∇ρ0∥L∞

∥ρ0∥L∞
(exp(C∥ρ0∥L∞t)− 1)

)
− 1

)
.

The latter bound substituted in (2.52) yields exactly the result (2.51). Therefore, for any T > 0
the sequence (ρN )N is uniformly bounded in L∞(0, T ;Hm(Ω)).

Equicontinuity. We find a uniform bound on (∂tρ
N )N in Hm−1(Ω) to show the equicontinuity

of the sequence in C(0, T ;Hm−1(Ω)). This bound, uniform in N ∈ N and t ∈ [0, T ] is obtained
thanks to the tame estimate, the bounds (2.49) and the uniform bound (2.51) on ρN ,

∥∂tρN∥Hm−1 = ∥uN−1 · ∇ρN∥Hm−1

≲ ∥uN−1∥L∞∥∇ρN∥Hm−1 + ∥ρN∥L∞∥uN−1∥Hm−1

≲ ∥ρ0∥L∞∥ρN∥Hm + ∥ρ0∥L∞∥ρN−1∥Hm

≲ ∥ρ0∥L∞∥ρ0∥Hm exp

(
C∥ρ0∥L∞t+

∥∇ρ0∥L∞

∥ρ0∥L∞
(exp(Cρ0∥L∞t)− 1)

)
.

Regularity. Let us show that the limit ρ belongs to L∞(0, T ;Hm(Ω)). For any t ∈ [0, T ],
(ρN (t))N is uniformly bounded in Hm(Ω) with respect to N and t, hence according to Banach–
Alaoglu theorem, for any t the sequence is weakly compact in Hm(Ω). Hence up to an extraction,
ρN (t) converges weakly toward a ρ̄(t) ∈ Hm(Ω), and this limit satisfies

∥ρ̄(t)∥Hm ≤ lim inf
N

∥ρN (t)∥Hm , (2.53)

where the right-hand-side is uniformly bounded thanks to (2.51). As ρN already converges
weakly in Hm(Ω), we can identify ρ̄ and ρ, which then belongs to L∞(0, T ;Hm(Ω)). Finally, to
reach the regularity C(0, T ;Hm(Ω)). The [BF12, Lemma II.5.6] tells us that since in particular
ρ ∈ L∞(0, T ;Hm(Ω)) ∩ C0

w(0, T ;H
m−1(Ω)) then ρ ∈ C0

w(0, T ;H
m(Ω)). Hence it is enough to

show that t 7→ ∥ρ(t)∥Hm is continuous to prove the strong continuity of ρ in Hm(Ω). By weak
continuity, we have

∥ρ0∥Hm ≤ lim inf
t↘0

∥ρ(t)∥Hm .

Also we have by weak convergence

∥ρ(t)∥Hm ≤ lim inf
N→∞

∥ρN (t)∥Hm ≤ Bρ0
(t),

which proves by clamping that t 7→ ∥ρ(t)∥Hm is continuous at t = 0. This can be performed for
any t ∈ [0, T ], hence the continuity. Finally, u ∈ C0(0, T ;Hm+2(Ω)) by (2.49) and linearity of
the Stokes equation.
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2.7 The hydrostatic Stokes-transport equation

Let us recall that the Stokes equations models the steady state of a viscous and compressible
fluid submitted to some external persistent force, described by its velocity u and its pressure p.
When considering fluids to the scale of an ocean or of the atmosphere, is it common to perform
the following approximation, so called hydrostatic approximation, consisting in neglegting the
vertical acceleration of the fluid,

∂zp = −ρ.
The hydrostatic approximation is relevant for fluid occupying a thin domain, with typical width
smaller than typical length. For instance, an ocean has an height average of order ∼ 1 - 10 km
and horizontal scale of order ∼ 1000 - 10 000 km. This assumption in generally considered in
Boussinesq systems frameworks and more complete oceanography models, [LTW92a; LTW92b;
CT07], but Stokes equation alone has also been studied in [Zia95]. In the present Section, we
study the well-posedness of the coupling between the transport equation and this modified Stokes
system on Ω = T× (0, 1), as a reduced model of the previous systems mentionned. The equation
is 




∂tρ+ u · ∇ρ = 0
−∆u1 + ∂xp = 0

∂zp = −ρ
divu = 0

u2 = ∂zu1 = 0 on ∂Ω
⟨u1⟩Ω = 0
ρ|t=0 = ρ0.

(2.54)

The extra boundary and average conditions on u = (u1, u2) are discussed in the following Sub-
section 2.7.1, in the mean course of a self-contained study of the Stokes system with hydrostatic
approximation. We demonstrate the well-posedness of (2.54) in Subsection 2.7.2, as stated in
the following result.

Theorem 2.7.1. Let m ≥ 3. For any ρ0 ∈ Hm(Ω) there exists a time T (∥ρ0∥H3) > 0 such that
the hydrostatic Stokes-transport system (2.54) is locally well-posed, with solution

(ρ,u) ∈ C(0, T ;Hm(Ω))× C(0, T ;Hm(Ω)),

obeying moreover

∀t ∈ [0, T ), ∥ρ(t)∥Hm ≤ ∥ρ0∥Hm

1− C∥ρ0∥H3t
.

2.7.1 A hydrostatic Stokes system
We consider the Stokes system endowed with the hydrostatic approximation, on the spatial
domain Ω = T× (0, 1), 




−∆u1 + ∂xp = 0
∂zp = −ρ

divu = 0,
(2.55)

which requires extra boundary conditions on u = (u1, u2), which are given and discussed further
in (2.56). It is important to stress how the classical Stokes system (2.3) and the present one differ.
In the former, the velocity u depends globally on the forcing datum and benefits from the elliptic
regularisation effect. In the latter, only the horizontal velocity satisfies a Laplace equation, with
a datum already depending on derivatives of ρ, as we will see further. The vertical velocity is
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recovered thanks to the divergence free assumption only, which implies a loss of regularity with
respect to the horizontal one. In the end we obtain that the velocity and density have basically
the same regularity, and only local well-posedness of the system is proven here. To simplify
the analysis, we endow this system with the following slip boundary condition, together with a
condition on the average of Ω of the horizontal compound, which we justify in the course of the
proof,

u2 = 0, ∂nu1 = 0, on ∂Ω, ⟨u⟩Ω = 0. (2.56)

In view of the following result we define the following anisotropic Sobolev space having hori-
zontal derivatives of order less than k ∈ N in Hm, for given m, k ∈ N, as the subset of functions
f ∈ Hm(Ω) satisfying

∥f∥Hk
xH

m :=

k∑

ℓ=0

∥∂ℓxf∥Hm <∞.

Lemma 2.7.2. Let us set m ∈ N and ρ ∈ Hm(Ω) such that ∂2xρ ∈ Hm(Ω). Then the system
(2.55)-(2.56) has a unique solution u, which obeys

∥u∥Hm+2 ≲ ∥ρ∥H2
xH

m (2.57)

To prove this Lemma we first proceed to an a priori analysis. Let us assume having a triplet
(ρ,u, p) satisfying (2.55)-(2.56), as regular as necessary to proceed to the following computations.
Let us integrate the system (2.55) with respect to z ∈ (0, 1), to get

{
−∂2xU1(x)− [∂zu1(x, z

′)]1z′=0 + ∂xP (x) = 0

u2(x, 1)− u2(x, 0) = −∂xU1(x),
(2.58)

where we set

∀x ∈ T, U1(x) :=

ˆ 1

0

u1(x, ζ) dζ, P (x) :=

ˆ 1

0

p(x, ζ) dζ.

Due to the boundary conditions (2.56) we infer from (2.58) that

∀x ∈ T, ∂xU1(x) = ∂2xU1(x) = ∂xP (x) = 0.

In particular P does not depend on x and we deduce from the hydrostatic assumption that, up
to an additive constant,

p(x, z) = −
ˆ z

0

ρ(x, ζ) dζ.

Whence the following explicit source term for the Neumann problem satisfied by u1,




∆u1(x, z) = ∂x
´ z
0
ρ(x, ζ) dζ

∂zu1|∂Ω = 0
⟨u1⟩Ω = 0,

(2.59)

where the solution u1 is defined up to an additive constant, so we will choose the average
condition ⟨u1⟩Ω :=

´
Ω
u1 = 0. We denote H1(Ω)\R the set of H1 functions satisfying this

condition. Classically, the solution is defined as the unique element u1 ∈ H1(Ω)/R satisfying
the variational formulation of the problem, for a generic source term f ,

∀φ ∈ H1(Ω)/R,

ˆ
Ω

∇u1 · ∇φ =

ˆ
Ω

fφ,
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since Poincaré–Wirtinger inequality and the zero average condition ensure the left bilinear form
to be coercive on this functional space. Moreover we obtain the estimate

∥u1∥H1 ≲ ∥∂xρ∥H−1 ≲ ∥ρ∥L2 .

The solution also obeys the elliptic regularisation, for any m ∈ N, provided ∂xρ ∈ Hm(Ω), see
[Bré11] for classical results on this topic,

∥u1∥Hm+2 ≲ ∥∂xρ∥Hm .

Notice that the Neumann problem (2.59) is also satisfied for any horizontal derivative of the pair
(∂kxu1, ∂

k+1
x ρ). Together with the previous estimates, we have for any k,m ∈ N,

∥∂kxu1∥H1 ≲ ∥∂kxρ∥L2 , ∥∂kxu1∥Hm+2 ≲ ∥∂k+1
x ρ∥Hm .

Now, given u1, we deduce the following estimate on u2, thanks to the divergence-free condition,

∥∂zu2∥L2 = ∥∂xu1∥L2 ≲ ∥ρ∥L2

∥∂zu2∥H1 = ∥∂xu1∥H1 ≲ ∥∂xρ∥L2 .

Integrating the divergence equation with respect to z and recalling the boundary condition (2.56),
we get

u2(x, z) = −
ˆ z

0

∂xu1(x, ζ) dζ.

We observe that horizontal derivatives of u2 do not share the same regularisation effect as u1,
and require more horizontal regularity on the datum ρ to ensure

∥∂2xu2∥L2 ≲ ∥∂3xu1∥L2 ≲ ∥∂2xu1∥H1 ≲ ∥∂2xρ∥L2 .

Let us gather these estimates in order to highlight how u depends on ρ,

∥u∥L2 + ∥u1∥H1 + ∥∂zu2∥L2 ≲ ∥ρ∥L2

∥u1∥H2 + ∥u2∥H1 ≲ ∥∂xρ∥L2

∥u2∥H2 ≲ ∥∂2xρ∥L2 .

(2.60)

This observation illustrates the non-isotropy of the phenomenon, contrary to the classical Stokes
equation for which the velocity field regularity does not depend on the compounds and direc-
tions, recalling the estimate ∥u∥H2 ≲ ∥ρ∥L2 . Basically, horizontal regularity is required on ρ to
compensate the loss of derivatives on u2. These controls are consistent with the formal Fourier
relation between ρ and u, for any ξ = (ξx, ξz),

û1(ξ) =
ξx

ξz|ξ|2
ρ̂(ξ), û2(ξ) =

ξ2x
ξ2z |ξ|2

ρ̂(ξ).

The regularity of u2 is therefore limiting the regularity of u, and we have

∥u2∥Hm+2 ≲ ∥∂xu1∥Hm+2 ≲ ∥ρ∥H2
xH

m ,

which concludes the proof of Lemma 2.7.2 and the announced estimate (2.57).
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2.7.2 Well-posedness of the hydrostatic Stokes-transport equation

According to the above discussion, we will conduct our analysis using that the solution of the
hydrostatic Stokes equation satisfies

∥u∥Hm ≲ ∥ρ∥Hm . (2.61)

Although this estimate is not as optimal as (2.57), it is not clear how to use the anisotropic
regularisation highlighted in (2.61). In the same spirit as the proof of Theorem 2.6.1, we compute
the a priori estimate of ρ in Hm for any m ≥ 3,

d

dt
∥ρ∥2Hm ≲ ∥[∂m,u · ∇]ρ∥L2∥ρ∥Hm ,

where the tame estimate introduced in (3.20) and inequality (2.61) provide here

∥[∂m,u · ∇]ρ∥L2 ≲ ∥u∥Hm∥∇ρ∥L∞ + ∥∇u∥L∞∥ρ∥Hm

≲ (∥∇ρ∥L∞ + ∥∇u∥L∞)∥ρ∥Hm .

Therefore, as long as ρ lies in Hm, we have the same a priori estimate as for the regular Stokes-
transport equation, see Theorem 2.6.1:

∥ρ∥Hm ≤ ∥ρ0∥Hm exp

(
C

ˆ t

0

(∥∇u(s)∥L∞ + ∥∇ρ(s)∥L∞) dτ

)
.

The difference here lies in the fact that we do not have a uniform bound on the Lipschitz norm of
u, which ensures for the original system to have a finite growth speed, allowing global existence
of the solution. Instead, we have here, combining (2.61) and the embedding H3 ↪→W 1,∞,

∥∇u∥L∞ + ∥∇ρ∥L∞ ≲ ∥ρ∥H3 .

Therefore, if the Hm norm of the solution were to explode in finite time, there should be a
regularity break at the H3 level first. Including this latter inequality in the energy estimate, we
obtain for m ≥ 3,

d

dt
∥ρ∥Hm ≲ ∥ρ∥2Hm ,

whence Grönwall lemma ensures that, at least for 0 ≤ t < T (∥ρ0∥H3) := (C∥ρ0∥H3)−1,

∥ρ(t)∥Hm ≤ ∥ρ0∥Hm

1− C∥ρ0∥H3t
. (2.62)

Proof of Theorem 2.7.1. Existence. We follow the scheme of proof of Theorem 2.6.1 and obtain
existence of a solution by a compactness argument. Let ρN ∈ C(0, T ;Hm(Ω)) such that

∥ρN (t)∥Hm ≲
∥ρ0∥Hm

1− C∥ρ0∥H3t
, (2.63)

where we consider 0 ≤ t ≤ T∗ for some 0 < T∗ < 1/C∥ρ0∥H3 . Therefore, Lemma 2.7.2 ensures
existence and uniqueness of uN ∈ C(0, T∗;Hm(Ω)) satisfying for all 0 ≤ t ≤ T∗ the hydrostatic
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Stokes equation, 



−∆uN1 + ∂xp
N = 0

∂zp
N = −ρN

divuN = 0,

supplemented by conditions (2.56), obeying

∥uN∥Hm ≲ ∥ρN∥Hm .

In particular estimate (2.63) ensures for any 0 ≤ t ≤ T∗ that

∥uN (t)∥W 1,∞ ≲ ∥uN (t)∥H3 ≲
∥ρ0∥H3

1− C∥ρ0∥H3T∗
,

whence uN is globally Lipschitz in space uniformly in time. In particular the characteristics
associated to uN are well-defined and the transport problem

{
∂tρ

N+1 + uN · ∇ρN+1 = 0

ρN+1
|t=0 = ρ0,

has a unique solution ρN+1 ∈ C(0, T∗;Hm(Ω)). Earlier a priori energy computation yields here

d

dt
∥ρN+1∥2Hm ≲ (∥∇ρN+1∥L∞∥uN∥Hm + ∥∇uN∥L∞∥ρN+1∥Hm)∥ρN+1∥Hm

≲ (∥ρN+1∥H3∥ρN∥Hm + ∥ρN∥H3∥ρN+1∥Hm)∥ρN+1∥Hm .
(2.64)

We need to obtain estimate (2.63) for ρN+1 in H3 before concluding about Hm,m ≥ 3. This is
ensured by a Grönwall lemma after plugging assumption (2.63) in (2.64) for m = 3, which yields
the following

d

dt
∥ρN+1∥2H3 ≲ ∥ρN∥2H3∥ρN+1∥H3 + ∥ρN∥H3∥ρN+1∥2H3 .

So, for any m ≥ 3, we have

d

dt
∥ρN+1∥2Hm ≲

∥ρ∥H3

1− C∥ρ0∥H3t
∥ρN+1∥2Hm ,

implying

∥ρN+1∥Hm ≤ ∥ρ0∥Hm

1− C∥ρ0∥H3t
.

Initialising the sequence by ρ0(t) := ρ0 for all t ∈ R+, constant in time, therefore in C(0, T ;Hm(Ω))
and satisfying (2.63), we obtain sequences (ρN )N , (u

N )N uniformly bounded with respect to N .
The sequence (ρN )N is moreover equicontinuous in C(0, T∗;Hm−2(Ω)) since

∥∂tρN∥H2 = ∥uN−1 · ∇ρN∥H2

≲ ∥uN−1∥L∞∥ρN∥Hm + ∥uN−1∥Hm−1∥∇ρN∥L∞

≲ ∥ρN−1∥H3∥ρN∥Hm + ∥ρN−1∥Hm−1∥ρN∥H3

≲
∥ρ0∥H3∥ρ0∥Hm

(1− C∥ρ0∥H3T∗)2
.

From here, Aubin–Lions lemma and the same method as in the proof of Theorem 2.6.1 ensures
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existence of a solution

(ρ,u) ∈ C(0, T∗;H
m(Ω))× C(0, T∗;H

m+2(Ω)),

obeying estimate (2.62).

Uniqueness. Let us consider two solutions (ρi,ui), i = 1, 2 to (2.54), with same initial datum
ρ0. The stability estimate for the transport equation from Proposition 2.2.6 still holds here,

∥ρ1 − ρ2∥L∞(0,T∗,H−1) ≲ ∥ρ0∥L∞eCT∗∥∇u1∥L∞ ∥u1 − u2∥L∞(0,T∗;L2),

but does not allow to ensure uniqueness of the solution, since we do not have anymore the control
∥u∥H1 ≲ ∥ρ∥H−1 on the Stokes solution to close the estimate. Bounding the density difference
in L2 instead of H−1, we obtain

d

dt
∥ρ1 − ρ2∥2L2 = −

ˆ
Ω

(u1 · ∇ρ1 − u2 · ∇ρ2)(ρ1 − ρ2)

= −
ˆ
Ω

u1 · ∇(ρ1 − ρ2)(ρ1 − ρ2) + (u1 − u2) · ∇ρ2(ρ1 − ρ2)

≤ ∥∇ρ1∥L∞∥u1 − u2∥L2∥ρ1 − ρ2∥L2 ,

where the first term of the integrale does not contribute by divergence free of u1. We know from
inequality (2.63) that ∥∇ρ1∥L∞ is bounded on [0, T ). From (2.60) we obtain at best

d

dt
∥ρ1 − ρ2∥L2 ≲

∥ρ0∥H3

1− C∥ρ0∥H3t
∥ρ1 − ρ2∥H1 ,

which still does not allow to conclude. Therefore we perform the same computations in H1. For
first order derivatives of the solutions, inserting some relevant terms, we get

d

dt
∥∂(ρ1 − ρ2)∥2L2 = −

ˆ
Ω

∂
(
u1 · ∇ρ1 − u2 · ∇ρ2

)
∂(ρ1 − ρ2)

= −
ˆ
Ω

∂
(
u1 · ∇(ρ1 − ρ2) + (u1 − u2) · ∇ρ2

)
∂(ρ1 − ρ2)

= −
ˆ
Ω

∂u1 · ∇(ρ1 − ρ2)∂(ρ1 − ρ2) + 1
2u

1 · ∇|∂(ρ1 − ρ2)|2

−
ˆ
Ω

∂(u1 − u2)∇ρ2∂(ρ1 − ρ2) + (u1 − u2)∇∂ρ2∂(ρ1 − ρ2)

≤ ∥∂u1∥L∞∥ρ1 − ρ2∥2H1 + 0

+ ∥u1 − u2∥H1∥∇ρ2∥L∞∥ρ1 − ρ2∥H1 + ∥u1 − u2∥L4∥ρ2∥W 2,4∥ρ1 − ρ2∥H1 .

Note that derivatives of order two on the difference ρ1 − ρ2 vanish due to the divergence free of
u1. Using the embeddings H1 ↪→ L4, H3 ↪→W 2,4, the estimate (2.61), and adding the previous
computation on the L2 norm, we get

d

dt
∥ρ1 − ρ2∥2H1 ≲

∥ρ0∥H3

1− C∥ρ0∥H3t
∥ρ1 − ρ2∥2H1 ,

whence ρ1 = ρ2 since ρ1|t=0 = ρ2|t=0 = ρ0.
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Chapter 3

Long-time behaviour for the
Stokes-transport equation

This chapter is dedicated to the study of the long-time behaviour of the solutions to the Stokes-
transport equation in the periodic channel T × (0, 1). The author resumes the paper [DGL23]
written together with Dalibard and Guillod, from Section 3.1 to Section 3.5. This work is
devoted to the demonstration of a stability result for the Stokes-transport equation for data
ρ0 ∈ H6(Ω) close enough to linear profiles, and to the formation of density boundary layers.
The paper introduction is reported in Section 3.1 and completed according to the supplemented
following Sections. In particular, Section 3.6 contains a study of the long-time properties of the
solutions for general data ρ0 ∈ L∞(Ω), and we discuss the natural conjecture of the density
convergence toward its vertical rearrangement. A previous work of Kiselev & Yao [KY23] on
the instability of the incompressible porous media equation for data in H2−(Ω) is adapted to
the Stokes-transport equation in Section 3.7. Finally, properties and eigenfunction basis of the
biharmonic operator with Dirichlet boundary conditions, at the heart of the long-time analysis
of [DGL23], are compiled in Section 3.8.

3.1 Introduction

The Stokes-transport equation 



∂tρ+ u · ∇ρ = 0

−∆u+∇p = −ρez
divu = 0

ρ|t=0 = ρ0

models the evolution of an incompressible inhomogeneous fluid with density ρ, velocity and
pressure fields (u, p). Since the density can be shifted by a constant, we assume for simplicity
that the initial density ρ0 is non-negative. This equation will be studied in a two-dimensional
periodic strip, namely Ω = T × (0, 1) with variables (x, z) ∈ Ω and with Dirichlet boundary
condition of the velocity field:

u = 0 on ∂Ω.

It consists in a coupling of the transport equation for the density of the fluid, with a velocity
field satisfying for all time the Stokes equation with gravity forcing −ρez where ez is the unitary

75
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vertical vector. This equation has been studied in particular in the works of [Höf18a] and [Mec20]
showing that (3.1) is a model obtained as the homogenization limit of inertialess particles in a
fluid satisfying Stokes equation. A more recent paper by [Gra22] shows that this system is
obtained as a formal limit where the Prandtl number is infinite. In this paper, the domain is
chosen as Ω = T×(0, 1) since it describe a physically meaningful situation which include Dirichlet
boundary conditions.

Well-posedness. The well-posedness of this system has been shown in [Leb22] in bounded
two-dimensional and three-dimensional domains as well as in the infinite strip R × (0, 1) with
ρ ∈ L∞(R+;L

∞) and u ∈ L∞(R+;W
1,∞); the well-posedness in Ω = T × (0, 1) being a direct

consequence. Well-posedness in Sobolev spaces are required for our results. Since this result does
not seem to appear in the literature, we provide a concise proof of the global well-posedness of
this problem in Chapter 2, Section 2.6. More precisely, for any ρ0 ∈ Hm with m ≥ 3, there exists
a unique strong solution (ρ,u) of (3.1) with ρ ∈ C(R+;H

m(Ω)) and u ∈ C(R+;H
m+2(Ω)).

Well-posedness in other domains and spaces has also been proven, see for example the recent
results [MS22; Inv23].

Steady states. Before going further let us observe that the stationary states, i.e. states such
that ∂tρ = 0, of this system are precisely the stratified density profiles, which mean in this paper
density profiles depending only on the vertical variable z. Indeed, for such a map Θ = Θ(z),

(ρ,u, p) =

(
Θ,0,−

ˆ z

Θ(z′) dz′
)
.

is a solution of (3.1). To show the converse, let us introduce the potential energy associated to
a density profile ρ,

E(ρ) :=

ˆ
Ω

zρdxdz.

so the energy balance is

d

dt
E(ρ) =

ˆ
Ω

z∂tρ = −
ˆ
Ω

zu · ∇ρ =

ˆ
Ω

u2ρ = −∥∇u∥2L2 , (3.2)

where the divergence-free and the Dirichlet boundary conditions on u are used in the integration
by parts. The last equality is simply the basic estimate of the Stokes equation. The potential
energy dissipates exactly through the viscosity effects. From this observation we see that the
whole evolution is non-reversible; the fluid only rearranges in states of lower potential energy.
Moreover, a stationary state is exactly a state for which u = 0, therefore it means that the
density ρ and the pressure p must satisfy

∇p = −ρez,

so that the pressure is independent of the x variable, implying ρ to depend only on the z variable.
These considerations are detailed in Section 3.6.2

Asymptotic properties for general initial data For initial data ρ0 belonging to L∞(Ω),
we do not know if the solution converges in general. We state the sufficient condition u ∈
L1(R+;L

2(Ω)) ensuring the strong convergence of ρ in L2(Ω), and notice that this condition is
not ensured in general since we only have a priori u ∈ L2(R+;H

1(Ω)). Nevertheless, we are
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able to ensure that the ω-set associated to ρ0, defined as the set of accumulation points of the
trajectory t 7→ ρ(t), is never empty. The solution converges if and only if this set reduces to a
singleton. We do not know in general if this is the case, or if the rearrangement ρ∗0 belongs to
the ω-set of ρ0 in general. Finally, we provide the following criterion. If the potential energy of
the system converges toward the potential energy of the initial datum E(ρ∗0), then ρ∞ is unique
and coincides with ρ∗0. These results are discussed and proved in Section 3.6.

Main stability result. The aim of the paper [DGL23], corresponding to Sections 3.1 to 3.5, is
to study the long-time asymptotic behaviour of perturbation of stratified initial data with lighted
fluid on top and lower fluid on the bottom, i.e. such that the profile Θ depends only on z and
is strictly decreasing. For simplicity and for the rest of this chapter, we consider perturbations
of the affine profile Θ(z) = 1 − z. Our main stability result for perturbations vanishing on the
boundary is the following:

Theorem 3.1.1. There exists ε0 > 0 small such that for any ρ0 ∈ H6(Ω) satisfying ∥ρ0−Θ∥H6 ≤
ε0 and ρ0 −Θ ∈ H2

0 (Ω), the solution ρ of (3.1) satisfies:

∥ρ− ρ∞∥L2(Ω) ≲
ε0

1 + t
, ∥ρ− ρ∞∥H4(Ω) ≲ ε0,

where ρ∞ is given by the decreasing vertical rearrangement of ρ0:

ρ∞(z) :=

ˆ ∞

0

10≤z≤|{ρ0>λ}| dλ.

Note that the condition on H2
0 (Ω) is equivalent to the following requirements, discussed in

the following paragraphs:

ρ0|∂Ω = Θ|∂Ω, ∂nρ0|∂Ω = ∂nΘ|∂Ω.

This theorem will be proven in Section 3.2.

Remarks on the main stability result. Since the set of steady-states is not discrete, it
is expected that Θ is not asymptotically stable, and that the long-time behaviour is given by
a slightly modified density profile. In general, this asymptotic profile is constructed thought
the entire nonlinear dynamics is a very non-explicit way. However the transport equation is
remarkable since it preserves the measure of the level sets. This property combined with the fact
that the asymptotic profile is strictly decreasing (as a perturbation of Θ) allows us to identify
the asymptotic profile as the decreasing vertical rearrangement of ρ0, which can be computed
directly from ρ0 without dependence on the full non-linear dynamics. See Subsection 3.2.4 for
details.

This result proves the stability of the particular state Θ(z) = 1 − z. The result generalizes
and our proofs adapt to the case of stratified Θ satisfying

sup
(0,1)

∂zΘ < 0, ∥∂2zΘ∥Hs ≲ − sup
(0,1)

∂zΘ,

for s large enough. This conditions mean that Θ is strictly decreasing and presents sufficiently
mild variations. This remark is detailed at the end of Subsection 3.2.2. We note that without
monotony assumption, lighter fluid might be below heavy one, and physically instabilities are
expected to develop. Some weak convergence up to extraction toward a stationary state could
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be proven, but the limit might be a non-trivial ω-limit set in general. Anyway, this is not clear
if convergence to the rearranging steady-state is expected to hold.

In [GGS22] the interface problem for (3.1) is considered also in the domain Ω = T × (0, 1).
The interface problem treats the case where the density is equal to two different constant below
and above an interface Γ(t) ⊂ Ω. The question is about the regularity of the interface, the well-
posedness for L∞ densities being established in [Leb22]. More precisely, the authors prove local
well-posedness for the interface in C1,γ for 0 < γ < 1 as well as the global well-posedness and
decay of small perturbation in H3(T) of the flat interface with lighter fluid on top. The proof
is very different than our as it uses a contour dynamics equation, but the spirit of the stability
result is pretty similar.

Finally, an interesting question is about the optimality of the (1 + t)−1 decay in (3.1). The
dynamics of the equation preserve the fact that the perturbation and its normal derivative are
vanishing on ∂Ω i.e. ρ−Θ ∈ H2

0 (Ω). For higher normal derivatives this property is not preserved,
and this is the main reason why the time-decay is limited. This is one of the main motivation
to study boundary layers formations in this system, together with the possibility to allow non-
vanishing perturbations on ∂Ω.

Nonlinear instability for low regularity perturbation The results of [KY23] about the
instability of the incompressible porous media equation being essentially geometric, they can be
adapted to the Stokes-transport system, which is done in Section 3.7. The result is the same:
there exists smooth perturbation small in H2−(Ω)-norm such that lim supt→∞ ∥ρ(t)−Θ∥Hs(Ω) =
∞ for any s > 1. Therefore, this enlightens the existence of a regularity threshold between H2(Ω)
and H6(Ω) between stability and instability.

Linear asymptotic expansion for non-vanishing perturbation on ∂Ω. The previous
result is only valid under the assumption that the perturbation and its normal derivative are
vanishing on ∂Ω i.e.when ρ0−Θ ∈ H2

0 (Ω). If the perturbation does not vanish on the boundary,
this question is non trivial even for the linearized equations around Θ = 1− z:





∂tθ − u · ez = 0

−∆u+∇p = −θez
divu = 0

θ|t=0 = θ0

(3.3)

It turns out that θ vanishes as t → ∞ but with a much slower rate than in the case when
θ0 = ∂nθ0 = 0 on ∂Ω. This is due to the formation of boundary layers of typical size t−1/4 as
t → ∞, in the vicinity of z = 0 and z = 1. More precisely, we will prove the following result in
Section 3.3:

Theorem 3.1.2. Let θ0 ∈ Hs(Ω) for some s sufficiently large. Then the solution of (3.3)
satisfies:

θ = θ̄0 + θBL +O(t−1) in L2(Ω) as t→ ∞,

where θ̄0(z) = 1
2π

´ 2π
0

θ0(x, z) dx is the horizontal average of the initial data and θBL is the
boundary layer part whose leading terms are:

θBL = Θ0
top(x, t

1/4(1− z)) + Θ0
bot(x, t

1/4z) + l.o.t
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with Θ0
top and Θ1

bot decaying exponentially as Z = t1/4z → ∞. Note that ∥θBL∥L2(Ω) ≲ (1 +

t)−1/8.

Non-linear asymptotic expansion. For the nonlinear problem, more complex boundary
layers seems to develop when the perturbation is non-zero on ∂Ω. To avoid such complications,
we go back to the case where ρ0 −Θ ∈ H2

0 (Ω). The previous results will then allow us to derive
uniform bounds in H8(Ω), modulo some boundary layer terms:

Theorem 3.1.3. There exists ε0 > 0 small such that for any ρ0 ∈ H14(Ω) satisfying ∥ρ0 −
Θ∥H14 ≤ ε0 and ρ0 −Θ ∈ H2

0 (Ω), then the solution ρ of (3.1) satisfies:

ρ = ρ∞ + ρBL +O(t−2) in L2(Ω) as t→ ∞,

where ρBL is the boundary layer part:

ρBL =
1

t
Θtop(x, t

1/4(1− z)) +
1

t
Θbot(x, t

1/4z) + l.o.t.

with Θtop and Θbot decaying exponentially as Z = t1/4z → ∞.

We note that ∥ρBL∥L2(Ω) ≲ (1+ t)−9/8 so this result strongly suggests that the optimal decay
of ρ−ρ∞ is like t−9/8 in L2(Ω), which is close to the rate t−1 obtained in Theorem 3.1.1. Indeed,
it would be very surprising but not excluded that the non-linear dynamics drive the system to
the case where these boundary layers terms always vanish.

It seems there is no major obstacles in obtaining a similar non-linear result when the per-
turbation do not vanish on the boundary, except technicalities due to the fact that boundary
layer equations will be non-linear. The present result proved in Section 3.4 requires only linear
boundary layer and is already quite technical.

Comparison with incompressible porous media. We compare the results and properties
of the Stokes-transport equation and of the incompressible porous medium equation, namely
(3.1) where the Stokes equation is replaced by Darcy law,





∂tρ+ u · ∇ρ = 0

u+∇p = −ρez
divu = 0

ρ|t=0 = ρ0.

This equation has been intensively studied and we only cite comparable results. The question of
well-posedness is way more difficult than for the Stokes-transport equation. In particular global
well-posedness in Sobolev spaces as stated in Theorem 2.6.1 seems to remain an open question.
Local in time well-posedness has been shown in [CGO07; Xue09; YH14; CVW15] whereas some
ill-posedness through non-uniqueness in some spaces has been shown in [CFG11; Shv11; IV15].

Concerning classical global solutions, the only known results has been proven for initial data
close enough in Sobolev space to the stratified initial data Θ(z) = 1 − z by [Elg17] in R2 and
T2 and later improved in [CCL19a] to the domain T× (0, 1). More precisely, these results prove
that the profile Θ(z) = 1− z is asymptotically stable under small perturbation in Hm for some
m.

In T × (0, 1), the boundary conditions used by [CCL19a] somehow ensure that everything
works more or less as in the periodic or whole space case, in particular integration by parts of
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high order derivatives are possible to obtain uniform bounds in high enough Sobolev spaces. By
using similar boundary conditions for Stokes-transport in T2× (0, 1), the results of [CCL19a] can
be adapted in a straightforward way. In our situation, the presence of the Dirichlet boundary
condition is the major obstacle, in particular because uniform bounds in high Sobolev spaces
are no more valid. This is due to the presence of boundary layers as explained above and more
details are provided below in the Scheme of the proof.

In the previous results of [Elg17; CCL19a], the existence of the limiting profile was obtained
through a fixed point argument. One contribution of the present paper is to precisely identify
the long-time asymptotic profile as the decreasing vertical rearrangement of ρ0.

Biharmonic operator and adapted basis During the analysis of the stability problem, the
Stokes equation reduces to a bilaplacian equation. Depending on the boundary condition for the
velocity required in the Stokes system, the bilaplacian equation is also endowed with different
boundary conditions. It appears that considering slip boundary conditions, also called Neumann
boundary conditions, leads to similar analysis and stability result as in the work [CCL19a], with
the same proof. On the contrary, the no-slip assumption, also called Dirichlet condition, breaks
the aforementioned proof at different steps, which we detailed all along our work. We pro-
vide a selfcontained proof of the classical estimates on the solutions of the bilaplacian equation.
Moreover, it seemed convenient to study closer this bilaplacian operator endowed with Dirichlet
boundary conditions, and to obtain an explicit eigenfunction basis to adapt the Fourier analysis
of Castro, Córdoba & Lear. This basis is described in Section 3.8. The structure of the eigen-
functions, based on the Fourier basis with addititional terms rectifying the trace, is relatable to
the boundary layer formation stated in Theorems 3.1.2 and 3.1.3.

Scheme of the proof

Here we explain the main steps and difficulties of the proof of Theorem 3.1.1. The proofs of
Theorems 3.1.2 and 3.1.3 are way more technical, but in some sense the general strategy is more
straightforward, therefore the explanations are postponed in the beginning of Sections 3.3 and
3.4 respectively.

Rewriting of the equation. Since perturbations of Θ(z) = 1− z are considered, it is natural
to introduce the perturbation θ as

ρ = Θ+ θ

with initial perturbation θ0 = ρ0 − Θ. Substituting this expression in (3.1) and recalling that
stratified states do not contribute to the velocity field in the Stokes equation, we obtain the
following equation of the perturbation θ:





∂tθ + u · ∇θ = u2

−∆u+∇p = −θez
divu = 0

θ|t=0 = θ0.

(3.4)

The Stokes equation can be simplified by introducing the stream function of the divergence-
free velocity field u through u = ∇⊥ψ = (−∂zψ, ∂xψ). Substituting it in the Stokes equation
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and considering the rotational of this equation, we get




∂tθ + u · ∇θ = u2

∆2ψ = ∂xθ

u = ∇⊥ψ

ψ|∂Ω = ∂nψ|∂Ω = 0.

Notice that this writing is consistent with the previous observation that any z dependant per-
turbation of the density does not affect the velocity field.

Once the steady states of (3.1) are identified as the stratified density profiles, i.e. functions
depending only on z, it is natural to decompose the perturbation θ(t, x, z) as its horizontal
average θ̄(t, z) and as its complementary θ′(t, x, z) with zero horizontal average, following [Elg17]
and others:

θ(t, x, z) = θ̄(t, z) + θ′(t, x, z) θ̄(t, z) =
1

2π

ˆ 2π

0

θ(t, x, z) dx.

We note that contrary to [Elg17; CCL19a], the average is denoted by θ̄ and not its complement
as this seems a more natural notation for the average.

This decomposition is actually orthogonal in any Sobolev space Hm and one can project the
transport equation onto the two appropriates complementary subspaces, leading to





∂tθ
′ + (u · ∇θ′)′ = (1− ∂z θ̄)u2 θ′|t=0 = θ′0

∂tθ̄ + u · ∇θ′ = 0 θ̄|t=0 = θ̄0

∆2ψ = ∂xθ
′ ψ|∂Ω = 0

u = ∇⊥ψ ∂nψ|∂Ω = 0.

(3.5)

Although more complicated at first sight, this equation allows us to distinguish the evolution
of θ′ and of the average perturbation θ̄; this is needed since the whole perturbation cannot be
expected to decay in Sobolev spaces due to its pure transport, only the average-free part θ′.

Toy problem on the torus. In order to intuit the decay of ∥θ′∥L2(Ω) and to highlight the
specific difficulties of our work, we will first explain the strategy in the case when the problem is
set on the torus. More precisely, we consider the following linear problem for θ′ on the torus T2:





∂tθ
′ = (1−G)∂xψ + S

∆2ψ = ∂xθ
′

θ′|t=0 = θ′0.

(3.6)

where G is a given small function of t and z, whose finality is to be replaced by ∂z θ̄. A source
term is needed but we omit it here for simplicity. Note that (3.6) differs from our original system
through the periodic boundary conditions on ψ in the vertical variable. The choice of periodic
boundary conditions simplifies the analysis in several ways, which we will detail below.

The first step is to consider (3.6) for G = 0. In this case the system has constant coefficients
and since it is set within the torus, its solution is explicit and can be represented in terms of
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Fourier modes:

θ′(t, x, z) =
∑

k∈Z2

kx ̸=0

θ̂k(0) exp

(
− k2x
|k|4 t

)
exp(ik · (x, z)),

where the summation is done on k = (kx, kz) ∈ Z2 except kx ̸= 0 since θ′ has vanishing
horizontal averages. In particular, all Hs norms of the solution of (3.6) for G = S = 0 are
decreasing (provided θ0 ∈ Hs(T2)) and furthermore, for any α ∈ N, s ∈ R, and t > 0,

∥∆s/2θ′(t)∥2L2 =
∑

k∈Z2

kx ̸=0

|k|2s exp
(
−2

k2x
|k|4 t

)
|θ̂k(0)|2

≤
∑

k∈Z2

kx ̸=0

|k|2s+4αt−α|kx|−2α|θ̂k(0)|2

≤ t−α∥∆s/2+α∂−α
x θ′0∥2L2 ,

where ∂−1
x f denotes the anti-derivative of f with null horizontal average. Hence if the initial

datum is sufficiently smooth, θ′ decays algebraically and the rate of decay can be as large as
desired, the cost being the regularity required on θ′0.

When G is nonzero and for any s ≥ 0 even, applying ∆s/2 to the first equation of (3.6) and
projecting on ∆s/2θ′, we obtain, after several integrations by parts in the right-hand side,

1

2

d

dt
∥∆s/2θ′∥2L2 = −

ˆ
T2

∆s/2((1−G)ψ)∆s/2+2ψ

= −
ˆ
T2

∆s/2+1((1−G)ψ)∆s/2+1ψ

≤ −(1− C̄∥G∥Hs+2)∥∆s/2+1ψ∥2L2 .

(3.7)

where C̄ is a universal constant. As a consequence, if C̄∥G(t)∥Hs+2 < 1, then the Hs norm of θ′
is non-increasing, and whence uniformly bounded.

Then, the decay of ∥θ′(t)∥L2 is deduced by using the following Gagliardo–Nirenberg interpo-
lation inequality:

∥∆2ψ∥2L2 ≲
1

K
∥∆ψ∥2L2 +K2∥∆4ψ∥2L2 (3.8)

which is valid for any K > 0. More precisely, combining (3.7) with s = 0 and (3.8) lead to:

d

dt
∥θ′∥2L2 ≲ −∥∆ψ∥2L2 ≲ K3∥∆4ψ∥2L2 −K∥∆2ψ∥2L2 ≲ K3∥∆2∂xθ

′∥2L2 −K∥θ′∥2L2

remaining that ∆2ψ = ∂xθ
′. Taking K ≃ (1 + t)−1 we deduce:

d

dt
∥θ′∥2L2 +

3

1 + t
∥θ′∥2L2 ≲

1

(1 + t)3
∥∆2∂xθ

′∥2L2

and since ∂xθ′ is uniformly bounded in H4(T2) by ∥∂xθ′0∥H4 , this integrate into

∥θ′∥L2 ≲
∥∂xθ′0∥H4

1 + t
. (3.9)
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Difficulties with Dirichlet boundary conditions. Let us now explain the main differences
between (3.6) on T2 and the original system (3.5) on Ω = T×(0, 1). The strategy will be identical,
the first step in to deduce uniform bound for θ′ in H4(Ω) and then use interpolation inequalities
together with the energy estimate to obtain the decay estimate (3.9), but their derivation will
be substantially more involved.

Since the equation is no longer set on the torus, but rather in the domain Ω = T × (0, 1)
endowed with boundary conditions, we can no longer perform a (discrete) Fourier transform
in the vertical variable. However it is possible to analyze explicitly the eigenfunctions of the
operator

L : θ ∈ L2 7→ ∂xψ ∈ L2, where ∆2ψ = ∂xθ, ψ|∂Ω = ∂nψ|∂Ω = 0.

and show that the eigenvalues (λk)k∈Z2 of the operator L behave asymptotically as k2x/|k|4 (see
Proposition 3.8.3), so that the estimate (3.9) remains true. Details on the spectral analysis are
presented in Section 3.8.

However, we are able to prove uniform H4(Ω) bound for θ′ directly from the equation without
spectral analysis. More precisely, the estimate (3.7) remains valid for s = 0 since ψ|∂Ω = ∂nψ|∂Ω.
Higher order uniform estimates in Hs(Ω) fails in general due to non-vanishing terms on the
boundary. The question is therefore when the integration by parts done in (3.7) can be performed.
The traces of θ′ and ∂nθ

′ being zero, the traces of ∆2ψ and ∂n∆
2ψ are also vanishing (see

Subsection 3.2.1) so integrations by parts in (3.7) can be done for s = 4 provided G = 0.
Therefore a uniform H4 bound can be deduced when G = 0. When G is nonzero, some traces
are not vanishing anymore. The strategy will be to treat them perturbativly, i.e.not performing
integration by parts on ∆2(Gψ)∆3ψ.

A similar interpolation argument in Lemma 3.2.7 allow us to then deduce the analogue of
(3.9) i.e. that ∥θ′∥L2 is bounded by (1 + t)−1.

Bootstrap. The last step of the proof consists in bringing the previous linear analysis into the
full nonlinear system. Intuitively, the strategy is the following: denote by (0, T ∗) the maximal
time interval over which ∥θ′∥L2 ≤ B(1 + t)−1 and ∥θ′∥H4 ≤ B are valid with a constant B.
In fact more estimates need to be included in the boostrap argument for technical reasons, see
(3.18). On this time interval, the quadratic terms can be treated perturbatively, provided ∥θ0∥H4

is sufficiently small. Hence the bootstrap estimates hold with a constant which is better than B,
and thus T ∗ = ∞. It follows that θ′ converges towards zero in L2, and that the time derivative
of θ̄ is integrable. Hence θ̄ has a limit in L2 as t→ ∞. This is the main part of the proof which
is detailed in Subsection 3.2.3.

Identitification of the limit. Since θ′ converges to zero in any Hm for m < 4 as t → ∞
and θ̄ has a limit in L2 as t → ∞, the whole density ρ = Θ + θ = Θ + θ̄ + θ′ converges to
some limit ρ∞ in L2 and ρ∞ depends only on z. Since θ is small compared to Θ, ∂zθ is small,
hence ρ∞ is strictly decreasing with respect to z as is Θ. The transport of the density by the
divergence-free field u ensures that the level sets of ρ are preserved by the time evolution, and by
strong convergence this is also the case for the limit ρ∞. According to rearrangement theory, ρ∞
is therefore a rearrangement of ρ0. One can show that there exists a unique decreasing vertical
rearrangement of ρ0, hence ρ∞ is uniquely determined. This part of the proof is detailed in
Subsection 3.2.4.
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3.2 Long time stability of stratified profiles: proof of Theo-
rem 3.1.1

This section is devoted to the proof of Theorem 3.1.1. The scheme of proof follows the steps
highlighted in the introduction: we decompose θ into θ = θ̄+θ′, and we prove that θ′ vanishes in
L2 with algebraic decay, while θ̄ converges in L2 towards a profile θ̄∞(z). To that end, we first
study the linearized Stokes-transport system around a solution θ close to an affine profile. Thanks
to a crucial interpolation inequality (see Lemma 3.2.7), which somehow replaces the spectral
decomposition in the periodic setting, we quantify the L2 decay of solutions of the linearized
equation with a source term (see Proposition 3.2.6). We then use a bootstrap argument to show
that the decay predicted by the linear analysis persists for the nonlinear evolution. This allows
us to prove that θ′(t) → 0 and that θ̄ → θ̄∞ in Hs(Ω) as t → ∞, for all s < 4. Eventually, we
identify the asymptotic profile θ̄∞ in terms of the initial data.

The organization of this section is the following. We start in Subsection 3.2.1 with some
preliminary remarks concerning the traces of θ and ∂nθ. We then turn towards the analysis of
the linearized system in Subsection 3.2.2. The bootstrap argument is presented in Subsection
3.2.3. Eventually, we prove in Subsection 3.2.4 that ρ∞ is the rearrangement of the initial data
ρ0.

3.2.1 Vanishing traces for θ′ and ∂nθ
′

We prove here the following preliminary result:

Lemma 3.2.1. Let θ0 ∈ Hm(Ω) with m ≥ 3, and let θ ∈ L∞
loc(R+, H

m) be the solution of (3.5).
Assume that θ0 = ∂nθ0 = 0 on ∂Ω, and that ∂2z θ̄0|Ω = 0.

Then for all t ≥ 0,
θ(t)|Ω = ∂nθ(t)|Ω = 0, ∂2z θ̄(t)|Ω = 0.

Remark 3.2.2. If ρ0 ∈ Hm
0 (Ω) then the solution ρ(t) of (3.1) belongs to Hm

0 (Ω) for all times.
Indeed, the solution of the transport equation writes

ρ(t) = ρ0(X(t)−1),

where X : R+ × Ω → Ω is the characteristic function associated to u, defined as the solution of
the ordinary differential equation





d

dt
X(t) = u(t,X(t)),

X(0) = IdΩ.

We recall that X(t) is a diffeomorphism of Ω for all time t ∈ R+. Since u(t) ∈ H1
0 (Ω) due to

the homogeneous Dirichlet condition, the boundary ∂Ω is stable for characteristic function at all
time t, namely X(t)|∂Ω = Id∂Ω, so is its inverse, X(t)−1|∂Ω. It follows that if ρ0 ∈ H1

0 (Ω),
ρ(t)|∂Ω = 0 for all t ≥ 0. The claim for higher values of m follows easily by induction.

Note that the assumptions of 3.2.1 are different since ρ0 = −z + θ0 does not vanish on the
boundary.

Proof. Formally,
∂tθ|∂Ω + u|∂Ω · ∇θ′|∂Ω = u2|∂Ω,
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where u|∂Ω = 0, hence ∂tθ|∂Ω = 0 and the trace of θ is constant it time, equal to 0. Since
horizontal derivatives preserve this property, we have even ∂ℓxθ|∂Ω = 0 for any ℓ. Now consider
one vertical derivative applied to the equation,

∂t∂zθ + ∂zu · ∇θ + u · ∇∂zθ = ∂zu2

where
∂zu|∂Ω · ∇θ|∂Ω = ∂zu1|∂Ω∂xθ|∂Ω + ∂zu2|∂Ω∂zθ|∂Ω,

and we know that ∂xθ|∂Ω = 0 and we use the divergence free condition to observe ∂zu2|∂Ω =
−∂xu1|∂Ω = 0. In the end we get ∂zθ|∂Ω = 0 for all time, hence θ ∈ H2

0 (Ω). Trying to go further,
applying the same ideas, we get

∂t∂
2
zθ|∂Ω = ∂2zu2|∂Ω,

where we cannot ensure anything on ∂2zu2. Hence we cannot suppose ∂2zθ = 0. Nevertheless, we
get

∂t∂
2
z θ̄|∂Ω =

ˆ
T
∂2zu2|∂Ω = −

ˆ
T
∂x∂zu1|∂Ω = 0.

Note that for higher orders of derivation, we cannot infer any cancellation in general.

Definition 3.2.3. In the rest of the paper, we will set

G(t, z) = ∂z θ̄(t, z).

The above Lemma ensures that if θ0 satisfies the assumptions of Lemma 3.2.1, G|∂Ω = ∂zG|∂Ω =
0.

3.2.2 Study of the linearized system

This subsection is concerned with the study of the linear system




∂tθ
′ = (1−G)∂xψ + S

∆2ψ = ∂xθ
′

ψ|∂Ω = ∂nψ|∂Ω = 0, θ′|t=0 = θ′0.

(3.10)

which is satisfied by θ′ and ψ in the first place, with G = ∂z θ̄ and S = −
(
∇⊥ψ · ∇θ′

)′. It will
also be satisfied for various derivates of θ′ and ψ with different S. The term G will always be
∂z θ̄.

Our goal is to analyze the long time behaviour of θ′, under suitable decay assumptions on
S. For later purposes, we have decomposed our results into several separate statements, whose
proof is postponed to the end of the section. The first one is a uniform L2 bound on the solutions
when the source term is time integrable:

Lemma 3.2.4 (Uniform L2 bound on solutions of the linearized system). Let G ∈ L∞(R+, H
2),

S ∈ L∞(R+, L
2), and θ′0 ∈ L2. Let θ′ ∈ L∞(R+, L

2) be the unique solution of (3.10).
Assume that S can be decomposed as S = S⊥ + S∥ satisfying for some σ, δ > 0,

ˆ
Ω

S⊥θ
′ = 0, ∥S∥∥L2 ≲

σ

(1 + t)1+δ
. (3.11)



86 CHAPTER 3. Long-time behaviour for the Stokes-transport equation

There exists a universal constant γ0 ∈ (0, 1) such that if

∥G∥H2 ≤ γ0, (3.12)

then
∥θ′∥L2 ≤ ∥θ′0∥L2 + Cδσ.

Remark 3.2.5. The term S⊥ will often have the structure S⊥ = u · ∇θ′: indeed, provided u
and θ′ have sufficient regularity, the divergence free condition and the non-penetration condition
ensure thatˆ

Ω

(u · ∇θ′)θ′ = 1

2

ˆ
Ω

u · ∇|θ′|2 = −1

2

ˆ
Ω

divu︸ ︷︷ ︸
=0

|θ′|2 + 1

2

ˆ
∂Ω

u · n︸ ︷︷ ︸
=0

|θ′|2 = 0.

Our second result, which is at the core of Theorem 3.1.1, gives a quantitative algebraic decay
on θ′:

Proposition 3.2.6. Assume that the hypotheses of Proposition 3.2.4 are satisfied. There exists
a universal constant γ0 ∈ (0, 1) such that the following result holds. Assume moreover that θ′
and ∂nθ′ vanish on the boundaries of Ω, and that S decomposes into S = S⊥ +S∥ +S∆ with for
some σ, δ > 0,

ˆ
Ω

S⊥θ
′ = 0, ∥S∥∥L2 ≤ σ

(1 + t)1+δ
, ∥S∆∥L2 ≲

γ
1/2
0 ∥∆ψ∥L2

(1 + t)1/2
. (3.13)

Assume that G satisfies (3.12), and that there exists A,α ≥ 0 such that

∥∆2∂−2
x θ′∥L2 ≤ A

(1 + t)α
. (3.14)

Then
∥θ′∥L2 ≲

∥θ′0∥L2 +A+ σ

(1 + t)min(1+α,δ)
.

In order to prove this quantitative decay, we shall need to analyze the structure of the
dissipation term

−
ˆ
Ω

∂xψθ
′ =
ˆ
Ω

(∆ψ)2.

In previous works for different but related models [CCL19a], at this stage, an explicit spectral
decomposition of the solution was used, relying on Fourier series. Note that such a spectral
decomposition is also available for the operator ∆−2∂2x (see Proposition 3.8.3). However, since
we cannot interpolate for an arbitrary regularity, we choose here to use a different approach. We
replace this spectral analysis with the following result, which can be seen as an interpolation
Lemma. It is noteworthy that in spite of its deceitfully simple form (and proof), this Lemma
provides the correct scaling for the solutions.

Lemma 3.2.7. For any α ≥ 0, and for all ψ ∈ H8+α−2(Ω) satisfying

∆2ψ|∂Ω = ∂n∆
2ψ|∂Ω = 0 ,

we have for all K > 0

∥∂α−1
x ∆2ψ∥2L2 ≲

1

K
∥∂αx∆ψ∥2L2 +K2∥∂α−3

x ∆4ψ∥2L2 .
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Proof. Since ∆2ψ and ∂n∆
2ψ vanish on the boundary ∂Ω, we have after two integrations by

parts

∥∂α−1
x ∆2ψ∥2L2 = −

ˆ
Ω

∂αx∆
2ψ∂α−2

x ∆2ψ = −
ˆ
Ω

∇∂αx∆ψ · ∇∂α−2
x ∆2ψ

=

ˆ
Ω

∂αx∆ψ∂
α−2
x ∆3ψ ≤ ∥∂αx∆ψ∥L2∥∂α−2

x ∆3ψ∥L2 .

On another hand, we have also by integrations by parts

∥∂α−2
x ∆3ψ∥2L2 = −

ˆ
Ω

∂α−1
x ∆3ψ∂α−3

x ∆3ψ = −
ˆ
Ω

∇∂α−1
x ∆2ψ · ∇∂α−3

x ∆3ψ

=

ˆ
Ω

∂α−1
x ∆2ψ∂α−3

x ∆4ψ ≤ ∥∂α−1
x ∆2ψ∥L2∥∂α−3

x ∆4ψ∥L2 ,

hence, together with the previous bound, we obtain

∥∂α−1
x ∆2ψ∥2L2 ≤ ∥∂αx∆ψ∥

4
3

L2∥∂α−3
x ∆2ψ∥

2
3

H4 ≲
1

K
∥∂αx∆ψ∥2L2 +K2∥∂α−3

x ∆4ψ∥2L2 ,

where Young’s inequality is used for the last step.

Let us now turn towards the proof of Propositions 3.2.4 and 3.2.6.

Proof of Proposition 3.2.4. The energy estimate in (3.10) writes

1

2

d

dt
∥θ′∥2L2 =

ˆ
Ω

(1−G)∂xψθ
′ +
ˆ
Ω

S∥θ
′.

A few integrations by parts provide
ˆ
Ω

(1−G)∂xψθ
′ = −

ˆ
Ω

(1−G)ψ∆2ψ

= −
ˆ
Ω

∆((1−G)ψ)∆ψ

≤ −(1− C∥G∥H2)∥∆ψ∥2L2 .

(3.15)

Since ψ belongs in particular to H2
0 (Ω), the boundary integrals vanish. At this point we have

1

2

d

dt
∥θ′∥2L2 ≤ −(1− Cγ0)∥∆ψ∥2L2 +

ˆ
Ω

S∥θ
′. (3.16)

Therefore if γ0 is small enough, in a universal way, the first right-hand side term is non-positive.
Therefore

d

dt
∥θ′∥L2 ≲ ∥S∥∥L2 ≲

σ

(1 + t)1+δ

and since δ > 0 this inequality integrates as

∥θ′∥L2 ≤ ∥θ′0∥L2 + Cδσ.
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Proof of Proposition 3.2.6. Back to (3.16) and plugging the decomposition of S we get

d

dt
∥θ′∥2L2 ≲ −(1− Cγ0)∥∆ψ∥2L2 +

(
∥S∥∥L2 + ∥S∆∥L2

)
∥θ′∥L2

≲ −(1− Cγ0)∥∆ψ∥2L2 +
σ2

(1 + t)1+2δ
+

1

1 + t
∥θ′∥2L2 ,

where Young inequality allows in particular to gather the dissipative terms γ0∥∆ψ∥2. Hence if
γ0 is small enough, we have for some c0 ∈ (0, 1),

d

dt
∥θ′∥2L2 + c0∥∆ψ∥2L2 ≤ σ2

(1 + t)1+2δ
+

1

1 + t
∥θ′∥2L2 .

The interpolation Lemma 3.2.7 yields, since ∆2ψ = ∂xθ
′ = 0 and ∂n∆

2ψ = ∂n∂xθ
′ = 0 on the

boundary, and making the choice K ≃ κ/c0(1 + t)−1 with κ > 0 arbitrary large independently
of the data,

d

dt
∥θ′∥2L2 +

κ

1 + t
∥θ′∥L2 ≲

∥∆2∂−2
x θ′∥2L2

(1 + t)3
+

σ2

(1 + t)1+2δ
.

Plugging assumption (3.14) provides

d

dt
∥θ′∥2L2 +

κ

1 + t
∥θ′∥2L2 ≲

(A+ σ)2

(1 + t)min(3+2α,1+2δ)

which integrates into

∥θ′∥L2 ≲
∥θ′0∥L2 +A+ σ

(1 + t)min(1+α,δ)
.

Stability for more general stationary profiles. This is a remark about generalising our
stability result to some other stationary profiles than 1 − z. We find sufficient conditions on
general stratified Θ ensuring so. Basically it is sufficient for Θ to be sufficiently close to an
affine function. We illustrate how the computations adapt in this case. For instance, the linear
evolution equation on θ′ for a general background profile Θ writes

∂tθ
′ = −∂zΘ∂xψ,

and the computation (3.15) writes in this case

1

2

d

dt
∥θ′∥2L2 ≤

ˆ
Ω

∂zΘ|∆ψ|2 +
ˆ
Ω

[∆, ∂zΘ]ψ∆ψ.

The approach in our work consists in obtaining a negative sign for the main dissipative term´
Ω
∂zΘ|∆ψ|2. This property is ensured for the sufficient condition

sup
(0,1)

∂zΘ < 0,
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Now, a bound on the commutator provides

1

2

d

dt
∥θ′∥2L2 ≤

(
sup
(0,1)

∂zΘ+ C∥∂2zΘ∥H1

)
∥∆ψ∥2L2 .

To stick to the proof developped in this paper, meaning to obtain a negative right handside in
the above, it is necessary to have small enough derivatives of ∂zΘ regarding the minimal slope
of Θ. For the full system we obtain, instead of (3.15), an estimate of the form

d

dt
∥θ′∥2L2 ≤

(
sup
(0,1)

∂zΘ+ C(∥G∥H2 + ∥∂2zΘ∥H1)

)
∥∆ψ∥2L2 ,

and the smallness condition (3.12) on G becomes

∥G∥H2 + ∥∂2zΘ∥H1 ≲ − sup
(0,1)

∂zΘ.

This condition might appear at different steps of our demonstration, and require having higher
order derivates of Θ small in L2. By adjusting this assumption, the system remains stable in the
sense of Theorem 3.1.1. Our demonstration only tackles the linear case for sake of simplicity.

3.2.3 Bootstrap argument
The purpose of this paragraph is to prove, thanks to a bootstrap argument, that under the
assumptions of Theorem 3.1.1, the solution θ′ of (3.5) enjoys the same decay rates as the ones
predicted by the linear analysis (see Proposition 3.2.6). More precisely, we shall prove the
following result:

Proposition 3.2.8. Let θ0 ∈ H6(Ω) such that θ0|∂Ω = ∂nθ0|∂Ω = 0, ∂2z θ̄0|∂Ω = 0.
There exists ε0 > 0 such that if ∥θ0∥H6 ≤ ε ≤ ε0 the solution of (3.5) satifies

∥∂3xθ′(t)∥L2 ≲
ε

1 + t
, ∥∂xθ′(t)∥H4 ≲ ε, ∥θ̄(t)∥H5 ≲ ε, ∀t > 0. (3.17)

Remark 3.2.9. The interplay between horizontal derivatives of θ and the considered regularities
is consistent with the operator ∆−2∂2x from the linearized system

∂tθ
′ = ∂xψ = ∆−2∂2xθ

′.

Note that ∆−2 denotes the operator solving the bilaplacian ∆2ψ = f equation endowed with the
boundary condition ψ = ∂zψ = 0 on ∂Ω.

A demonstration of the decays validity is provided in the rest of this Section. Remarks
motivating the necessity of the bootstrap hypothesis and the method in general are included
along the demonstration. We also develop our understanding of the obstacle to the iteration of
this method to higher regularity on the perturbation.

Bootstrap assumption and general argument. Let 0 < B < 1 and C0 > 1 constants
to adjust. Let θ0 ∈ H2

0 ∩ H6 such that ∥θ0∥H6 ≤ B/C0. In particular ∥∂3xθ′0∥L2 ≤ B/C0 and
∥∂xθ′0∥H4 ≤ B/C0. If C0 is large enough, independently of the data, we also have

∥ψ0∥H4 ≤ C∥∂xθ′∥L2 ≤ CB/C0,
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and therefore

∥∂t∂xθ′|t=0∥L2 ≤ ∥1− ∂z θ̄0∥L∞∥∂2xψ0∥L2 + ∥∂x(u0 · ∇θ′0)∥L2 ≤ C(B/C0)
2 ≤ B.

By continuity of the Sobolev norms of θ, ensured by 2.6.1, there exists a maximal time T ∗ ∈
R+ ∪ {+∞} such that the following inequalities are satisfied on [0, T ∗):

∥∂3xθ′∥L2 ≤ B

1 + t
, ∥∂xθ′∥H4 ≤ B,

∥G∥H2 ≤ B, ∥∂t∂xθ′∥L2 ≤ B

(1 + t)2
.

(3.18)

We recall that these decay rates follow the behaviour of the linearized system, see Proposition
3.2.6.

Let us assume by contradiction that T ∗ < +∞. We show below by a bootstrap argument that
hypothesis (3.18), combined with Propositions 3.2.4 and 3.2.6, actually leads to an improvement
of the inequalities, satisfied with some new constant 0 < B < B which contradicts with the
maximality of T ∗. Whence T ∗ = +∞ and inequalities (3.18) hold for all time.

Preliminary bounds. All along the proof we require estimates on θ′ and ψ derivated from
the bootstrap hypothesis (3.18). For the sake of readability, we introduce the following notation:

∥f∥∥g∥︸ ︷︷ ︸
r+r′

when ∥f∥ ≲ B

(1 + t)r
and ∥g∥ ≲ B

(1 + t)r′
.

First, from an integration by parts

∥∂2xθ′∥2H2 =

ˆ
Ω

∂2x∆θ
′∂2x∆θ

′ = −
ˆ
Ω

∂3xθ
′∂x∆

2θ′ ≤ ∥∂3xθ′∥L2∥∂xθ′∥H4 , (3.19)

we deduce, by assumption (3.18), for all t ∈ (0, T ∗)

∥∂2xθ′∥H2 ≲ ∥∂3xθ′∥1/2L2 ∥∂xθ′∥1/2H4 ≲
B

(1 + t)1/2
.

We get by interpolation for any 0 ≤ m ≤ 4, for all t ∈ (0, T ∗)

∥∂xθ′∥Hm ≲ ∥∂xθ′∥1−m/4
L2 ∥∂xθ′∥m/4

H4 ≲
B

(1 + t)1−m/4
.

We will frequently use Agmon’s inequality in dimension 2, namely

∀f ∈ H1
0 ∩H2(Ω), ∥f∥L∞ ≲ ∥f∥1/2L2 ∥f∥1/2H2 ,

together with the following direct consequence

∀f ∈ H2
0 ∩H4(Ω), ∥∇f∥L∞ ≲ ∥f∥1/2L2 ∥f∥1/2H4 .
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We infer in particular, for all t ∈ (0, T ∗)

∥∂2xθ′∥L∞ ≲ ∥∂2xθ′∥1/2L2 ∥∂2xθ′∥1/2H2 ≲
B

(1 + t)3/4
,

∥∇∂xθ′∥L∞ ≲ ∥∂xθ′∥1/2L2 ∥∂xθ′∥1/2H4 ≲
B

(1 + t)1/2
.

We also need estimates on ψ. Any Sobolev norm of order larger than 4 inheritates decays from
θ′ thanks to Proposition 3.8.1, providing, for t ∈ (0, T ∗),

∥∂2xψ∥H4 ≲ ∥∂3xθ′∥L2 ≲
B

1 + t
,

∥∂xψ∥H6 ≲ ∥∂2xθ′∥H2 ≲
B

(1 + t)1/2
.

We also need higher order decays on ∂xψ in L2(Ω). We access this quantity thanks to the control
of ∂tθ′ by rewriting

∂xψ =
∂tθ

′ + (u · ∇θ′)′
1−G

.

We know that ∥G∥L∞ ≲ ∥G∥H2 ≤ B so it is enough to ask B to be smaller than 1 to ensure that
the inverse of (1−G) is well-defined. It alows to estimate ∂xψ and ∂2xψ in L2. We illustrate the
computation for ∂xψ since the same reasoning applies for ∂2xψ with a few extra terms.

∥∂xψ∥L2 ≲ ∥∂tθ′∥L2 + ∥u · ∇θ′∥L2

≲ ∥∂tθ′∥L2 + ∥∂zψ∥L∞∥∂xθ′∥L2 + ∥∂xψ∥L2∥∂zθ′∥L∞

≲ ∥∂tθ′∥L2︸ ︷︷ ︸
2

+ ∥∂xθ′∥2L2︸ ︷︷ ︸
2×2

+∥∂xψ∥L2

B

(1 + t)1/2
.

Hence for B > 0 small enough once again we get

∥∂2xψ∥L2 ≲
B

(1 + t)2
.

By interpolation and Agmon inequalities we deduce, in the same fashion as above, the following
decay estimates, with the latest valid for 0 ≤ m ≤ 4,

∥∂2xψ∥H2 ≲
B

(1 + t)3/2
, ∥∂2xψ∥L∞ ≲

B

(1 + t)7/4
, ∥∇∂2xψ∥L∞ ≲

B

(1 + t)3/2
,

∥∇2ψ∥L∞ ≲
B

(1 + t)5/4
, ∥∂xψ∥Hm ≲ ∥∂xψ∥1−m/4

L2 ∥∂xψ∥m/4
H4 ≲

B

(1 + t)2−m/4
.

H6 bound on the solution and H4 bound on G. In our nonlinear bootstrap argument,
we shall need some high Sobolev bound on the solution. In order to lighten the proof of the
bootstrap as much as possible, we isolate in the present paragraph this technical step.

Lemma 3.2.10. Let θ0 ∈ H6(Ω) such that θ0|∂Ω = ∂nθ0|∂Ω = 0, ∂2z θ̄0|∂Ω = 0. Let T ∗ be the
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maximal time on which the assumptions (3.18) are satisfied. Then for all t ∈ (0, T ∗),

∥θ′(t)∥H6 ≲ B(1 + t)1/2, ∥G(t)∥H4 ≤ B

C0
+ CB2, ∥∂tG(t)∥L∞ ≲

B2

(1 + t)2
.

Proof. We cannot estimate θ′ in H6 directly from its evolution equation since it requires an
assumption on G = ∂z θ̄ ∈ H6(Ω), therefore on θ in H7(Ω). To get around this, we directly
perform an estimate from the whole perturbed evolution equation, namely

∂tθ + u · ∇θ = u2

for any derivative of order 6 (and less) as follows,

1

2

d

dt
∥∂6θ∥2L2 +

ˆ
Ω

[∂6,u · ∇]θ∂6θ =

ˆ
Ω

∂6∂xψ∂
6θ,

where the commutator comes from the incompressibility assumption. Hence we get

d

dt
∥θ∥H6 ≲ ∥∂xψ∥H6 + ∥[∂6,u · ∇]θ′∥L2 .

On the one hand, the first term is dealt with thanks to the bilaplacian regularization,

∥∂xψ∥H6 ≲ ∥∂2xθ′∥H2 ≲
B

(1 + t)1/2
.

Notice that this 1/2-algebraic decay, issued from the linear system, is critical to prove the 1/2-
algebraic growth control of θ in H6(Ω). Any smaller decay would not be sufficient to get so.
Since the bilaplacian regularization cannot provide better, that ∥∂3xθ′∥L2 decays as (1+ t)−1 and
∥∂xθ′∥H4 ≤ B. This can be seen by interpolation or with the computation (3.19).

Concerning the nonlinear term, we rely on the following tame estimate, valid for any m ∈ N,

∀f, g ∈ Hm ∩ L∞(Ω), ∥fg∥Hm ≲ ∥f∥L∞∥g∥Hm + ∥f∥Hm∥g∥L∞ , (3.20)

which leads to

∀f ∈ Hm ∩W 1,∞(Ω), g ∈ Hm−1 ∩ L∞(Ω), ∥[Dm, f ]g∥L2 ≲ ∥∇f∥L∞∥g∥Hm−1 + ∥f∥Hm∥g∥L∞ .
(3.21)

Hence we decompose the nonlinear commutator into

[∂6,u · ∇]θ = −[∂6, ∂zψ∂x]θ + [∂6, ∂xψ∂z]θ.

Each part estimates thanks to (3.21) as follows

∥[∂6, ∂zψ]∂xθ∥L2 ≲ ∥∇∂zψ∥L∞∥∂xθ∥H5 + ∥∂zψ∥H6∥∂xθ∥L∞

≲ ∥∇2ψ∥L∞︸ ︷︷ ︸
5/4

∥θ∥H6 + ∥∂xθ′∥H3∥∂xθ′∥L∞︸ ︷︷ ︸
1/4+3/4

≲
B

(1 + t)5/4
∥θ∥H6 +

B2

1 + t
,
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and

∥[∂6, ∂xψ]∂zθ′∥L2 ≲ ∥∇∂xψ∥L∞∥∂zθ∥H5 + ∥∂xψ∥H6∥∂zθ∥L∞

≲ ∥∇∂xψ∥L∞︸ ︷︷ ︸
3/2

∥θ∥H6 + ∥∂2xθ′∥H2︸ ︷︷ ︸
1/2

∥∇θ∥L∞

≲
B

(1 + t)7/4
∥θ∥H6 +

B2

1 + t
+

B2

(1 + t)1/2

where we observed in particular that

∥∇θ∥L∞ ≤ ∥∇θ′∥L∞ + ∥G∥L∞ ≲
B

(1 + t)1/2
+B.

In the end, gathering and summing up all these bounds provides

d

dt
∥θ∥H6 ≲

B

(1 + t)5/4
∥θ∥H6 +

B2

(1 + t)1/2
,

and we get, for some universal constant C,

∥θ∥H6 ≤ ∥θ0∥H6 + CB(1 + t)1/2 ≲ B(1 + t)1/2.

Eventually, let us prove decaying bounds on ∂tG and uniform bounds on G. We recall that
G = ∂z θ̄ depends only on the variables t and z. From the evolution equation and one integration
by parts we observe

∂tθ̄ = −u · ∇θ′ =
ˆ
T
∂zψ∂xθ

′ − ∂xψ∂zθ
′ = −∂z

ˆ
T
∂xψθ

′,

so we can write
∂tG = −∂2z

ˆ
T
∂xψθ

′.

The same arguments as above lead to

∥∂tG∥L2(0,1) ≲ ∥∂xψ∥L∞∥θ′∥H2︸ ︷︷ ︸
7/4+1/2

+ ∥∂xψ∥H2∥θ′∥L∞︸ ︷︷ ︸
3/2+3/4

≲
B2

(1 + t)2+1/4
.

Using the H6 estimate, we also have

∥∂tG∥H4(0,1) ≲ ∥∂xψ∥L∞∥θ′∥H6︸ ︷︷ ︸
7/4−1/2

+ ∥∂xψ∥H6∥θ′∥L∞︸ ︷︷ ︸
1/2+3/4

≲
B2

(1 + t)1+1/4
.

Since the right-hand side of the above inequality is time-integrable, we infer that

∥G∥H4(0,1) ≤ ∥∂zθ0∥H4 +

ˆ t

0

∥∂tG∥H4(0,1) ≤ B/C0 + CB2.



94 CHAPTER 3. Long-time behaviour for the Stokes-transport equation

Hence ∥G∥H4(0,1) is as small as necessary for B > 0 small enough. Moreover, for all t ∈ (0, T ∗),

∥∂tG∥L∞ ≲ ∥∂tG∥3/4L2 ∥∂tG∥1/4H4︸ ︷︷ ︸
3/4×9/4+1/4×5/4

≲
B2

(1 + t)2
.

Remark 3.2.11. It would be tempting to proceed to the same computations as in (3.15) in order
to get a signed term in our estimate, which would allow to simply forget about its contribution,
as for lower order derivatives. Doing so requires to control the boundary integrals, which do not
vanish a priori in this case,

ˆ
Ω

D6∂xψD
6θ = −

ˆ
Ω

D6ψ∆2D6ψ

= −∥∆D6ψ∥2L2 +

ˆ
∂Ω

(∂nD
6ψ∆D6ψ −D6ψ∂nD

6∆ψ).

For instance, trying to bound the integral comprising the higher order of z−derivatives on ψ
provides at best

∣∣∣∣
ˆ
∂Ω

D6ψ∂z∆D
6ψ

∣∣∣∣ ≲ ∥∂xψ∥H7∥∂−1
x ψ∥H10 ≲ B2(1 + t)1/4.

This estimate ensures no better growth control than ∥θ′∥H6 ≲ (1 + t)3/4, which is not enough to
close the bootstrap and get the control by (1 + t)1/2.

Improvements of the bootstrap bounds. We now improve the uniform bound on θ′ and
∂xθ

′ in H4(Ω), relying on the linear analysis from Subsection 3.2.2. Since ∥θ′∥H4 ≤ ∥∂xθ′∥H4 , it
is enough to treat ∂xθ′. Also we have according to Proposition 3.8.1 the inequality

∥∂xθ′∥H4 ≲ ∥∆2∂xθ
′∥L2

since ∂xθ′ belongs in particular to H2
0 ∩H4(Ω) as detailed in Subsection 3.2.1, so it is enough to

deal with ∂x∆2θ′ in L2(Ω).

Lemma 3.2.12. As long as the bootstrap hypothesis (3.18) holds we have

∥∂x∆2θ′∥L2 ≤ ∥∂x∆2θ′0∥L2 + CB2. (3.22)

Proof. In view of the application of Proposition 3.2.6 to ∆2∂xθ
′, we observe that its evolution is

governed by the equation

∂t∆
2∂xθ

′ = (1−G)∂x∆
2∂xψ − [∆2∂x, G]∂xψ +∆2∂x(u · ∇θ′)′,

which is of the form (3.10) with ∆2∂xψ = ∂2xθ
′ and ∂z∆2∂xψ = ∂z∂

2
xθ

′ vanishing on the boundary
∂Ω and

S = −[∆2∂x, G]∂xψ − [∆2∂x,u · ∇]θ′︸ ︷︷ ︸
S∥

+u · ∇∆2∂xθ
′

︸ ︷︷ ︸
S⊥

.

We already know that ∥G∥H2 satisfies the smallness assumption (3.18) for B > 0 small enough.
We show that S∥ presents an algebraic decay strictly larger than 1, as in (3.11). To do so we
apply the tame estimates (3.20) to the two commutator terms, using the assumption (3.18).
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Let us emphasize that we need to be thorough by substituting u = ∇⊥ψ such that the
transport operator writes

u · ∇· = −∂zψ∂x ·+∂xψ∂z · .
Hence the nonlinear term only presents formally a vertical derivative of order 1. This makes a
difference in the estimates and allows to reach more optimal decay rates.

On the one hand we get for the perturbation due to G,

∥[∆2, G]∂2xψ∥L2 ≤ ∥G∥H4 ∥∂2xψ∥L∞︸ ︷︷ ︸
7/4−3/32

+∥∇G∥L∞ ∥∂2xψ∥H3︸ ︷︷ ︸
5/4−2/32

≲
B2

(1 + t)1+1/8
,

where the algebraic decay exponent is not optimal but enough and easier to read than 1+ 5/32.
Note that we used here the uniform H4 bound on G from Lemma 3.2.10. On the other hand the
contribution of [∆2∂x,u · ∇]θ′ splits into four terms as follows

[∆2∂x,u · ∇]θ′ =−∆2(∂x∂zψ∂xθ
′) + ∆2(∂2xψ∂zθ

′)

− [∆2, ∂zψ]∂xθ
′ + [∆2, ∂xψ]∂zθ

′.

Each term estimates accordingly. The limiting decay comes from

∥∆2(∂2xψ∂zθ
′)∥L2 ≲ ∥∂2xψ∥H4∥∂zθ′∥L∞ + ∥∂2xψ∥L∞∥∂zθ′∥H4

≲ ∥∂3xθ′∥L2∥∇θ′∥L∞︸ ︷︷ ︸
1+1/2

+ ∥∂2xψ∥L∞∥θ′∥H5︸ ︷︷ ︸
7/4−1/4

≲
B2

(1 + t)1+1/4
.

The other term admit the bound B2(1 + t)−1/2, such as

∥∆2(∂x∂zψ∂xθ
′)∥L2 ≲ ∥∂x∂zψ∥H4∥∂xθ′∥L∞ + ∥∂x∂zψ∥L∞∥∂xθ′∥H4

≲ ∥∂xψ∥H5∥∂xθ′∥L∞︸ ︷︷ ︸
3/4+3/4

+ ∥∇∂xψ∥L∞∥∂xθ′∥H4︸ ︷︷ ︸
3/2+0

≲
B2

(1 + t)1+1/2
.

Gathering these estimates provides

∥S∥∥L2 ≲
B2

(1 + t)1+1/8
,

and Lemma 3.2.4 applies, ensuring

∥∆2∂xθ
′∥L2 ≤ ∥∆2∂xθ

′
0∥L2 + CB2.

Lemma 3.2.13. As long as the bootstrap hypothesis (3.18) holds, we have

∥∂3xθ′∥L2 ≲
∥θ′0∥H5 +B2

1 + t
.

Proof. Note that ∂3xθ′ satisfies (3.10) with the source term

S = S∥ = −∂3x(u · ∇θ′).
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We can bound the whole term S = S∥ as follows,

∥S∥L2 ≤ ∥∂3x(∂zψ∂xθ′)∥L2 + ∥∂3x(∂xψ∂zθ′)∥L2

≲ ∥∂3x∂zψ∥L2∥∂xθ′∥L∞ + ∥∂zψ∥L∞∥∂4xθ′∥L2

+ ∥∂4xψ∥L2∥∂zθ′∥L∞ + ∥∂xψ∥L∞∥∂3x∂zθ′∥L2

≲ ∥∂2xψ∥H2∥∂xθ′∥L∞︸ ︷︷ ︸
2+3/4>2

+ ∥∇ψ∥L∞∥∂2xθ′∥H2︸ ︷︷ ︸
3/2+1/2=2

+ ∥∂2xψ∥H2∥∇θ′∥L∞︸ ︷︷ ︸
3/2+3/4>2

+ ∥∂xψ∥L∞∥∂2xθ′∥H2︸ ︷︷ ︸
7/4+1/2>2

≲
B2

(1 + t)2
.

Assumption (3.13) is satisfied with δ = 1. Besides, the norm of (∆2∂−2
x )∂3xθ

′ = ∆2∂xθ
′ is

bounded according to (3.22), so assumption (3.14) is satisfied with A = ∥∆2∂xθ
′
0∥L2 +CB2 and

α = 0. Moreover, the traces of ∂3xθ′ and ∂n∂3xθ′ vanish as a direct consequence of 3.2.1. Therefore
min(1 + α, δ) = 1 and Proposition 3.2.6 provides

∥∂3xθ′∥L2 ≤
(
∥∂3xθ′0∥L2 + C∥∆2∂xθ

′∥L∞((0,t),L2) +B2
) 1

1 + t
.

Using (3.22), we obtain the desired estimate.

Lemma 3.2.14. Under assumptions (3.18) we have

∥∂t∂xθ′∥L2 ≤ ∥∂xθ′0∥H4 + CB2

(1 + t)2
.

Proof. Taking ∂t∂xθ′ ⇝ θ′, equation (3.10) is satisfied with

∂t∂xψ ⇝ ψ, S = −∂tG∂2xψ − ∂t∂x(u · ∇θ′).

Note that ∂t∂xθ′ and ∂n∂t∂xθ
′ vanish on the boundary, from Lemma 3.2.1. We have to bound

(∆2∂−2
x )∂t∂xθ

′ in L2(Ω). This is done by applying the convenient operator to the equation

∆2∂−1
x ∂tθ

′ = ∆2((1−G)∂−1
x ψ)−∆2∂−1

x (u · ∇θ′)),

the norm of which bounds as

∥∆2∂−1
x ∂tθ

′∥L2 ≤ (1 + ∥G∥H4)∥∆2∂−1
x ψ∥L2 + ∥∆2∂−1

x (u · ∇θ′)∥L2

since

∥u · ∇θ′∥H4 ≲ ∥u∥H4∥∇θ′∥L∞ + ∥u∥L∞∥θ′∥H5

≲ ∥ψ∥H5∥∇θ′∥L∞︸ ︷︷ ︸
3/4+1/2

+ ∥∇ψ∥L∞∥θ′∥H5︸ ︷︷ ︸
3/2−1/4

≲
B2

1 + t
.

satisfying assumption (3.14) with α = 1.
Let us set S⊥ = u · ∇∂t∂xθ′, indeed orthogonal to ∂t∂xθ

′ in L2(Ω). Therefore we have to
consider

S∥ + S∆ = −∂tG∂xψ − ∂xu · ∇∂tθ′ − ∂t∂xu · ∇θ′ − ∂tu · ∇∂xθ′,
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and find how to decompose such that

∥S∥∥L2 ≲
B2

(1 + t)3
, ∥S∆∥L2 ≲

γ
1/2
0 ∥∆∂t∂xψ∥L2

(1 + t)1/2
.

The first term bounds directly as follows,

∥∂tG∂2xψ∥L2 ≤ ∥∂tG∥L∞∥∂2xψ∥L2︸ ︷︷ ︸
2+2

≲
B2

(1 + t)4
.

The second requires for instance a bound on ∂tθ′ in H1(Ω), obtained directly from the evolution
equation,

∥∂tθ′∥H1 ≲ (1 + γ0)∥∂xψ∥H1 + ∥u · ∇θ′∥H1

≲ (1 + γ0)∥∂xψ∥H1 + ∥u∥H1∥∇θ′∥L∞ + ∥u∥L∞∥∇θ′∥H1

≲ (1 + γ0) ∥∂xψ∥H1︸ ︷︷ ︸
7/4

+ ∥ψ∥H2∥∇θ′∥L∞︸ ︷︷ ︸
3/2+1/2

+ ∥∇ψ∥L∞∥θ′∥H2︸ ︷︷ ︸
3/2+1/2

≲
B

(1 + t)7/4
.

Hence

∥∂xu · ∇∂tθ′∥L2 ≲ ∥∂xu∥L∞∥∂tθ′∥H1 ≲ ∥∇∂xψ∥L∞∥∂tθ′∥H1︸ ︷︷ ︸
3/2+7/4

≲
B2

(1 + t)3
,

and S∥ := −∂tG∂2xψ − ∂xu · ∇∂tθ′ satisfies the assumption (3.13) with σ = CB2 and δ = 2.
Pursuing our computations,

∥∂t∂xu · ∇θ′∥L2 ≲ ∥∆∂t∂xψ∥L2 ∥∇θ′∥L∞︸ ︷︷ ︸
1/2

≲
B∥∆∂t∂xψ∥L2

(1 + t)1/2
,

and the same consideration applies for

∥∂tu · ∇∂xθ′∥L2 ≲ ∥∇∂tψ∥L2 ∥∇∂xθ′∥L∞︸ ︷︷ ︸
1/2

≲
B∥∆∂t∂xψ∥L2

(1 + t)1/2
.

For B > 0 small enough we have B ≤ γ
1/2
0 , so that

S∆ = ∂t∂xu · ∇θ′ − ∂tu · ∇∂xθ′

indeed satisfies assumption (3.13). Finally Proposition 3.2.6 applies with min(1 + α, δ) = 2 and
we obtain

∥∂t∂xθ′∥L2 ≲
B/C0 + CB2

(1 + t)2
.

Conclusion. Let us close the bootstrap argument. Assuming ∥θ0∥H6 ≤ B/C0, we had, by
continuity in time of the Sobolev norms of θ ensured by Theorem 2.6.1, existence of a maximal
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time T ∗ ∈ R+ ∪ {+∞} such that (3.18) is satisfied for any t ∈ [0, T ∗), reported here

∥∂3xθ′∥L2 ≤ B

1 + t
, ∥∂xθ′∥H4 ≤ B,

∥G∥H2 ≤ B, ∥∂t∂xθ′∥L2 ≤ B

(1 + t)2
.

(3.23)

These decay estimate induces, as shown in Lemmas 3.2.10, 3.2.12, 3.2.13 and 3.2.14 that (3.23)
holds for another constant B defined as

B =
CB

C0
+ CB2,

where C > 0 is universal. By choosing B small and C0 large enough, we have B < B and
inequalities (3.23) are strictly satisfied for any t ∈ [0, T ∗). Therefore T ∗ must be +∞, otherwise
the continuity of t 7→ ∥θ(t)∥H6 would imply the existence of a larger validity time interval for
(3.23). In the end, these bounds are valid for all time, and setting ε0 = B/C0 closes demonstration
of Proposition 3.2.8 .

Remark 3.2.15 (Obstacle to a generalisation at any order). Motivated by the fact that the
following perturbated subproblem is stable under horizontal derivation





∂t∂
ℓ
xθ

′ = (1−G)∂ℓ+1
x ψ

∆2∂ℓ−1
x ψ = ∂ℓxθ

′,
∂ℓ−1
x ψ|∂Ω = ∂n∂

ℓ−1
x ψ|∂Ω = 0,

we could expect to propagate arbitrary high horizontal regularity on θ′. Nevertheless, our proof
relies on the control

∥θ∥H6 ≲ (1 + t)1/2,

that we can obtain thanks to the classical divergence free condition on u cancelling the extra-
derivative term. Trying to do the same on ∂αx θ, driven by

∂t∂
α
x θ +

α−1∑

β=0

Cα,β∂
α−β
x u · ∇∂βx θ + u · ∇∂αx θ = ∂α+1

x ψ,

so that the following estimation does not close, even though one of its term does not contribute,
just as in the initial equation

1

2

d

dt
∥∂αx θ∥2H6 +

α−1∑

β=0

Cα,β

ˆ
Ω

D6(∂α−β
x u ·∇∂βx θ)D6∂αx θ+

1

2

ˆ
Ω

u · ∇|D6∂αx θ|2
︸ ︷︷ ︸

=0

≤ ∥∂αxψ∥H6∥∂αx θ∥H6 ,

since crossed derivatives integrands do no lead to a vanishing integral, such as
ˆ
Ω

∂αxu · ∇D6θD6∂αx θ.

3.2.4 Convergence as t → ∞ and identification of the asymptotic profile
Regarding the asymptotic behaviour of the density for the Stokes-transport system without any
assumption on the type of initial data, we can only say that if ρ converges toward some ρ∞ inH−1,
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this limit profile is stratified. Indeed„ the energy balance (3.2) ensures that u ∈ L2(R+;H
1(Ω)),

and since u is also Lip(R+;H
1(Ω)) by linearity of the Stokes system, we infer that ∥u(t)∥H1 → 0

as t→ ∞, but without any information about its decay rate. At least we have

∥∇p+ ρez∥H−1 ≲ ∥u∥H1 −→
t→∞

0.

The H−1 convergence of ρ leads to the existence of p∞ such that

∇p∞ = −ρ∞ez,

so observing that ∂xp∞ = 0 ensures that p∞ and ρ∞ are both independent of the horizontal
coordinate x.

In the context of a small perturbation of the stationary profile Θ(z) = 1 − z we obtained
explicit decay rates for Sobolev norm of u. We show that these decays are enough to ensure the
strong convergence of ρ toward a limit profile ρ∞. Moreover, the smallness of the perturbation θ
does not affect the vertical monotonicity of the whole density ρ, from which we deduce that ρ∞
is exactly the vertical rearrangement of ρ0.

Proposition 3.2.16. Under the assumptions of Theorem 3.1.1, the whole density ρ converges
in Hm,m < 4, toward its vertical decreasing rearrangement.

Proof. The proof is divided in the following steps:

Convergence. It is enough to show that ∂tρ belongs to L1(R+;H
m) for m < 4, which implies

the strong convergence of ρ(t) in Hm and existence of a limit ρ∞. Let us estimate ∂tρ in Hm

for any 0 ≤ m ≤ 4, a range of indices for which the following bounds are valid,

∥∂tρ∥Hm = ∥u · ∇ρ∥Hm ≤ ∥∂zψ∂xρ∥Hm + ∥∂xψ∂zρ∥Hm

≲ ∥∇ψ∥L∞∥∂xρ∥Hm + ∥ψ∥Hm+1∥∂xρ∥L∞ + ∥∂xψ∥L∞∥ρ∥Hm+1 + ∥∂xψ∥Hm∥∂zρ∥L∞ .

Recalling that ∂zρ = −1+G+∂zθ
′ is bounded in H5(Ω), that ∂xρ = ∂xθ

′ decays as (1+ t)1−m/4

for m ≤ 4, and the previous decay estimates, we find

∥∂tρ∥Hm ≲
∥ρ0∥2H6

(1 + t)2−m/4
,

which is integrable for any m < 4, hence the convergence.

Stratified limit. Since ρ converges, so do θ′ = (ρ−Θ)′ and θ̄ = ρ−Θ. We obtained in (3.17)
that θ′ vanishes in Hm for m < 4 The limit ρ∞ is stratified since θ′ vanishes in Hm(Ω) for
m < 4. Hence ρ∞ writes as the sum of Θ and the limit θ̄∞ of θ̄. In view of (3.17) this limit
satisfies in particular ∥∂z θ̄∞∥L∞ ≤ Cε. At least for ε > 0 such that Cε < 1 = −∂zΘ, we know
that sup(0,1) ∂zρ∞ < 0, which means that ρ∞ is strictly decreasing with respect to z.

Rearrangement. The divergence free character of the velocity field u ensures that all Lq

norms and the cumulative distribution function of ρ(t) are preserved along time, in the sense

∀λ ≥ 0, |{ρ(t) > λ}| = |{ρ0 > λ}|. (3.24)

This property transfers to the limit state ρ∞ by Lq strong convergence of ρ. According to
rearrangement theory such as developed in [LL01, Chapter 3] for instance, we say that two
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maps are rearrangement of each other if they have the same level sets, in the sense of (3.24).
Adapting slightly the construction of [LL01], we know there exists a unique vertical decreasing
rearrangement of ρ0 : Ω → R+, which can be defined as

ρ∗0(z) :=
ˆ ∞

0

10≤z≤|{ρ0>λ}| dλ.

In the end, we know that ρ∞ is a decreasing rearrangement of ρ0, therefore it is ρ∗0 by uniqueness.

Notice that we actually have ∥∂zθ∥L∞ ≲ ε for all time, therefore the total density as a strictly
negative vertical derivative, for all x ∈ T and for all time t ∈ R+, since

∂zρ(t, x, ·) = −1 + ∂zθ(t, x, z),

and the density reordering is essentially horizontal. This is a rare case in which we can describe
the asymptotic profile. This intuition of having heavy fluids sinking under the lighter ones
prompts to wonder if, at least in a weak sense, the density profile should always converge toward
the vertical rearrangement of the initial datum, unless it is already stratified. This question
remains open, either for the Stokes-transport equation as for the incompressible porous media.

3.3 Formation of linear boundary layers for large times:
proof of Theorem 3.1.2

The purpose of this section is to prove Theorem 3.1.2. We consider the linear problem




∂tθ
′ = ∂xψ in (0,+∞)× Ω,

∆2ψ = ∂xθ in Ω, ψ|∂Ω = ∂nψ|∂Ω = 0,

θ′(t = 0) = θ′0,

(3.25)

with θ′0 ∈ H4(Ω) arbitrary. The difference with the linear analysis of Subsection 3.2.2, and in
particular with Proposition 3.2.6, lies in the fact that we do not assume that θ′0 and ∂nθ′0 vanish
on the boundary. As a consequence, boundary layers are created as t → ∞ close to z = 0
and z = 1, and the purpose of this section is precisely to describe the mechanism driving the
apparition of boundary layers. We will therefore decompose θ′ as the sum of an interior term
decaying like t−1 in L2, and some boundary layer terms which lift the traces of θ′ and ∂zθ

′ on
the boundary. This will lead us to Theorem 3.1.2. We will then return to our nonlinear system
(3.5) in Section 3.4.

The organization of this section is the following. We start with some preliminary observa-
tions explaining the reason why boundary layers are formed, and present our Ansatz. We then
construct the boundary layer part of the solution, denoted by θBL, and we establish some prop-
erties. Eventually, we prove that θ′ − θBL satisfies the assumptions of Proposition 3.2.6, and we
conclude.

3.3.1 Preliminary observations and Ansatz

We start with rather simple observations:
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• First, it follows from the equation that ∂tθ′|∂Ω = ∂t∂zθ
′|∂Ω = 0. Therefore, for all t ≥ 0,

θ′|∂Ω(t) = θ′0|∂Ω ∂zθ
′
|∂Ω(t) = ∂zθ

′
0|∂Ω.

• Since (bk)k∈Z×N∗ is a hilbertian basis in L2(Ω), we can always write

θ′(t) =
∑

k

θ̂′k(t)bk,

with (θ̂′k)k∈Z×N∗ ∈ ℓ2. Taking the scalar product of (3.25) with bk, we obtain, for any
k ∈ Z×N∗, t > 0,

d

dt
θ̂′k(t) = −λkθ̂′k(t),

and thus θ̂′k(t) = exp(−λkt)θ̂′k(t = 0). It then follows from Lebesgue’s dominated conver-
gence theorem that θ(t) → 0 in L2 as t→ ∞

Therefore θ(t) vanishes in L2 while keeping a constant - and non-zero - value on the boundary.
As a consequence, it is reasonable to expect that boundary layers are formed in the vicinity of
z = 0 and z = 1 as t→ ∞. Hence we take an Ansatz of the form

θ′(t) ≃ θint +Θ0
bot (x, (1 + t)αz) + Θ0

top(x, (1 + t)α(1− z))

+ (1 + t)−αΘ1
bot (x, (1 + t)αz) + (1 + t)−αΘ1

top(x, (1 + t)α(1− z)) + l.o.t.

for some α > 0 to be determined, where

θint|∂Ω = ∂zθ
int|∂Ω = 0,

Θj
bot(x, Z) → 0 and Θj

top(x, Z) → 0 as Z → ∞.

The role of Θ0
top (resp. of Θ0

bot) is to lift the trace of θ′0 at the top boundary z = 1 (resp. at the
bottom boundary z = 0). Whence we take

Θ0
top(x, Z = 0) = θ′0(x, z = 1), ∂ZΘ

0
top(x, Z = 0) = 0,

Θ0
bot(x, Z = 0) = θ′0(x, z = 0), ∂ZΘ

0
bot(x, Z = 0) = 0.

In a similar way, the next order boundary layer terms Θ1
top and Θ1

bot lift the traces of ∂nθ′0 on
∂Ω, i.e.

Θ1
top(x, Z = 0) = 0, ∂ZΘ

0
top(x, Z = 0) = −∂zθ′0(x, z = 1),

Θ0
bot(x, Z = 0) = 0, ∂ZΘ

0
bot(x, Z = 0) = ∂zθ

′
0(x, z = 0).

Similarly, we assume that

ψ(t) ≃ ψint + (1 + t)−4αΨ0
bot (x, (1 + t)αz) + (1 + t)−4αΨ0

top(x, (1 + t)α(1− z))

+ (1 + t)−5αΨ1
bot (x, (1 + t)αz) + (1 + t)−5αΨ1

bot(x, (1 + t)α(1− z)) + l.o.t.

where

∂4ZΨ
j
a = ∂xΘ

j
a, with Ψj

a = ∂ZΨ
j
a = 0 on Z = 0, and Ψj

a → 0 as Z → ∞, a ∈ {top,bot}.
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Plugging these Ansatz into equation (3.25), we find that at main order

α(1 + t)−1Z∂ZΘ
0
a = (1 + t)−4α∂xΨ

0
a.

Consequently, identifying the powers of (1 + t), we take α = 1/4. Hence the equation for Ψ0
a,

a ∈ {top,bot} becomes





1
4Z∂

5
ZΨ

0
a = ∂2xΨ

0
a in T× (0,+∞),

Ψ0
a|Z=0 = ∂ZΨ

0
a|Z=0 = 0,

∂4ZΨ
0
a|Z=0 = γ0a(x), ∂5ZΨ

0
a|Z=0 = 0,

limZ→∞ Ψ0
a(x, Z) = 0,

(3.26)

where γ0bot(x) = ∂xθ
′
0(x, z = 0), γ0top(x) = ∂xθ

′
0(x, z = 1). Note that the above boundary

conditions are redundant: indeed, if ∂ZΨ0
a|Z=0 = 0, then it follows from the equation (after one

differentiation with respect to Z) that ∂5ZΨ
0
a|Z=0 = 0. Hence in the following paragraph we will

drop the condition ∂5ZΨ
0
a|Z=0 = 0.

In a similar fashion, the equation for Ψ1
a, a ∈ {top,bot} is





−∂4ZΨ1
a + Z∂5ZΨ

1
a = 4∂2xΨ

1
a in T× (0,+∞)

Ψ1
a|Z=0 = ∂ZΨ

1
a|Z=0 = 0,

∂4ZΨ
1
a|Z=0 = 0, ∂5ZΨ

1
a|Z=0 = γ1a(x),

limZ→∞ Ψ1
a(x, Z) = 0,

(3.27)

where γ1bot(x) = ∂x∂zθ
′
0(x, z = 0), γ1top(x) = −∂x∂zθ′0(x, z = 1). Once again, the condition

∂4ZΨ
1
a|Z=0 = 0 is redundant and is automatically satisfied when one takes the trace of the equation

at Z = 0, using the other boundary conditions. We now turn towards the well-posedness of (3.26)
and (3.27).

3.3.2 Construction of the main profiles
The well-posedness of equations (3.26) and (3.27) stems from the following result:

Lemma 3.3.1. Let m ≥ m0 > 0 and let S ∈ C([0,+∞)), δ > 0 such that

∥S∥2 :=

ˆ 1

0

S(Z)2

Z2
dZ +

ˆ ∞

0

S(Z)2eδZ
4/5

dZ < +∞

Consider the ODE

ZΨ(5)(Z) = −mΨ(Z) + S(z) in (0,+∞), lim
Z→∞

Ψ(Z) = 0, (3.28)

endowed with one of the four following boundary conditions:

1. Ψ(0) = Ψ′(0) = Ψ(4)(0) = 0;

2. or Ψ(0) = Ψ(3)(0) = Ψ(4)(0) = 0;

3. or Ψ(0) = Ψ′′(0) = Ψ(3)(0) = 0;

4. or Ψ(0) = Ψ′(0) = Ψ′′(0) = 0.
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Then there exists a constant c > 0 depending only on m0 and δ such that equation (3.28) endowed
with one of the four previous conditions has a unique solution Ψ ∈ H5

loc(R+) such that for all
k ∈ {0, · · · , 5}, ˆ ∞

0

|Ψ(k)(Z)|2 exp(cZ4/5) dZ ≤ C∥S∥2 < +∞.

As a consequence, for k ≤ 4, there exists a constant C such that
∣∣∣Ψ(k)(Z)

∣∣∣ ≤ C∥S∥ exp
(
− c
4
Z4/5

)
∀Z > 0.

The proof of Lemma 3.3.1 is postponed to the Appendix, and relies on the use of the Lax-
Milgram Lemma in weighted Sobolev spaces. As a corollary, we have the following result:

Corollary 3.3.2. For all j ∈ {0, 1}, there exists a unique solution χj ∈ C∞(0,+∞) of the ODE

Zχ
(5)
j − jχ

(4)
j + 4χj = 0 on (0,+∞),

endowed with the following boundary conditions:

• χ0(0) = χ′
0(0) = 0, χ(4)

0 (0) = 1;

• χ′
1(0) = χ

(4)
1 (0) = 0, χ(5)

1 (0) = 1,

and such that for j = 0, 1, 0 ≤ k ≤ 4,
ˆ ∞

0

|χ(k)
j (Z)| exp(cZ4/5) dZ < +∞.

Furthermore, χ(5)
0 (0) = χ1(0) = 0.

Proof. Let us start with χ0. Let η ∈ C∞
c (R) such that η ≡ 1 in a neighborhood of zero.

Then χ0 − Z4η satisfies (3.28) with the boundary conditions (i) and with a C∞ and compactly
supported source term. Hence the result follows from Lemma 3.3.1. The C∞ regularity of χ0

follows easily from the ODE (3.28) and from an induction argument. Differentiating the ODE
and taking the trace at Z = 0, we obtain χ(5)

0 (0) = −4χ′
0(0) = 0.

Concerning χ1, we first consider the solution of the ODE

Zϕ(5) + 4ϕ = 0 on (0,+∞),

ϕ(0) = ϕ(3)(0) = 0, ϕ(4)(0) = 1, ϕ(+∞) = 0.

The existence, uniqueness, and exponential decay of ϕ follows from Lemma 3.3.1 and from a
lifting argument. We then set χ1(Z) = −

´∞
Z
ϕ, and we observe that ∂Z(Zχ

(5)
1 −χ(4)

1 +4χ1) = 0.
As a consequence, Zχ(5)

1 (Z) − χ
(4)
1 (Z) + 4χ1(Z) = cst. = 0 on (0,+∞), thanks to the decay

properties of ϕ at infinity. Hence the existence, uniqueness and decay of χ1 follow. Taking the
trace of the equation at Z = 0, we find that χ1(0) = 0.

Let us now explain how we construct Ψj
a for a ∈ {top,bot} and j = 0, 1. Taking the Fourier
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transform of (3.26) with respect to x and dropping the index a, we infer that Ψ̂0
k satisfies

1

4
Z∂5ZΨ̂

0
k = −k2Ψ̂0

k,

∂4ZΨ̂
0
k|Z=0 = γ̂0a,k, Ψ̂0

k|Z=0 = ∂ZΨ̂0
k|Z=0 = 0.

Considering the function χ0 defined in 3.3.2, it is then easily checked that

Ψ̂0
k = |k|−2γ̂0k χ0(|k|1/2Z)

is a solution of the problem. We infer that

Ψ0
a :=

∑

k∈Z\{0}
|k|−2γ̂0a,k χ0(|k|1/2Z)eikx (3.29)

is a solution of (3.26). In a similar way,

Ψ1
a :=

∑

k∈Z\{0}
|k|−5/2γ̂1a,k χ1(|k|1/2Z)eikx (3.30)

satisfies (3.27).
As a consequence, we have the following estimates, which follow easily from the formulas

(3.29) and (3.30):

Corollary 3.3.3. Let γ0a ∈ L2(T), γ1a ∈ L2(T). Then equation (3.26) (resp. equation (3.27))
has a unique solution Ψ0

a ∈ H
9/4
x L2

Z ∩ L2
xH

9/2
Z (resp. Ψ1

a ∈ H
11/4
x L2

Z ∩ L2
xH

11/2
Z ). Furthermore,

for all m ∈ N,

∥Ψ0
a∥Hm

x L2
z
≲ ∥γ0a∥Hm− 9

4
≲ ∥θ′0∥Hm− 1

4 (Ω)
, ∥Ψ0

a∥L2
xH

m
z
≲ ∥γ0a∥H m

2
− 9

4
≲ ∥θ′0∥H m

2
− 1

4 (Ω)
,

∥Ψ1
a∥Hm

x L2
z
≲ ∥γ1a∥Hm− 11

4
≲ ∥θ′0∥Hm+1

4 (Ω)
, ∥Ψ1

a∥L2
xH

m
z
≲ ∥γ1a∥H m

2
− 11

4
≲ ∥θ′0∥H m

2
+ 1

4 (Ω)
.

Additionally, the profiles Ψ0
a and Ψ1

a have exponential decay: for any Z0 ≥ 1, for any m ∈ N,

∥Ψ0
a∥Hm(T×(Z0,+∞)) ≲ ∥θ′0∥H1(Ω) exp(−c̄Z4/5

0 ),

∥Ψ1
a∥Hm(T×(Z0,+∞)) ≲ ∥θ′0∥H2(Ω) exp(−c̄Z4/5

0 ).

3.3.3 Construction of an approximate solution

The idea is now to find a decomposition of θ′ as θ′ = θBL + θint, where θBL is a solution of

∂tθ
BL = ∂2x∆

−2θBL + Sr,

with a source term Sr such that, for some δ > 0,

Sr(t) = O((1 + t)−2) in L2(Ω), Sr(t) = O((1 + t)−1−δ) in H4(Ω),

∂tSr(t) = O((1 + t)−3) in L2(Ω),

and a boundary layer profile θBL such that θBL|∂Ω(t = 0) = θ′0|∂Ω, ∂nθBL|∂Ω = ∂nθ
′|∂Ω. Note

that the operator ∆−2 is endowed with homogeneous conditions for the trace and the normal



3.3. Formation of linear boundary layers for large times: proof of Theorem 3.1.2 105

derivative on the boundary of ∂Ω. In the assumptions on the source term S above, we omitted
the x derivatives. Actually, we will construct a source term S such that ∂kxS satisfies the above
assumptions for some k ≥ 3. Note that in this case the assumptions of Proposition 3.2.6 are
satisfied.

As a consequence, the interior part θint satisfies

∂tθ
int = ∂2x∆

−2θint − Sr

and the trace of θint vanishes on ∂Ω, together with its normal derivative. Thus we may apply
Proposition 3.2.6, and we obtain ∥θint∥L2 = O((1 + t)−1), which will complete the proof of
Theorem 3.1.2.

The main order part of θBL will be given by the profiles Θj
a, j = 0, 1, a ∈ {top,bot} con-

structed in 3.3.3. However, a few adjustments must be made in order to have a suitable decom-
position:

• First, the profiles Θj
a must be truncated away from z = 0 and z = 1, so that their (expo-

nentially small) trace does not pollute the opposite boundary. Since Θj
a have exponential

decay, this introduces a remainder of order exp(−ct1/5), which will be included in Sr.
More precisely, the error terms generated by this truncation will be dealt with thanks to
the following Lemma, whose proof is left to the reader:

Lemma 3.3.4. Let Ψ ∈ L2(T× (0,+∞) such that there exists c, C > 0 such that
ˆ
T

ˆ ∞

0

|Ψ(x, Z)|2 exp(cZ4/5) dZ ≤ C < +∞.

Let ζ ∈ L∞(0, 1) such that Supp ζ ⊂ (1/4, 1). Then
∥∥∥Ψ(x, (1 + t)1/4z)ζ(z)

∥∥∥
L2(T)

≲ C∥ζ∥∞ exp(−c′(1 + t)1/5),

where c′ depends only on c.

• More importantly, the main order profiles (Θj
a,Ψ

j
a) do not satisfy exactly

∆2
(
(1 + t)−1Ψj

bot(x, (1 + t)1/4z)
)
= Θj

bot(x, (1 + t)1/4z).

Indeed, when constructing Ψ0
a, we only kept the main order terms in ∆2, i.e. the z deriva-

tives. It turns out that the term 2∂2x∂
2
z in the bilaplacian generates an error term in the

equation which is not O((1+ t)−2). As a consequence, we introduce lower order correctors,
whose purpose is precisely to cancel this error term. We emphasize that the construction
of such additional correctors is quite classical in multiscale problems. In order to determine
the order at which the expansion can be stopped, we will rely on the following Lemma,
whose proof is postponed to the end of this section:

Lemma 3.3.5. Let f ∈ H4(T, L2(R+)) such that there exist constants c, C > 0 such that

|∂kxf(x, Z)| ≤ C exp(−cZ4/5) ∀k ∈ {0, · · · , 4}, ∀(x, Z) ∈ T×R+.

Then ∥∥∥∆−2
(
f(x, (1 + t)1/4z)χ(z)

)∥∥∥
L2
≲

1

(1 + t)3/4
.
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Furthermore, if
ˆ ∞

0

Z2f(x, Z) dZ =

ˆ ∞

0

Z3f(x, Z) dZ = 0 ∀x ∈ T,

this estimate becomes
∥∥∥∆−2

(
f(x, (1 + t)1/4z)χ(z)

)∥∥∥
L2
≲

1

1 + t
.

With the two above Lemmas in mind, we define θBL in the following way. Let χ ∈ C∞
c (R)

be a cut-off function such that χ ≡ 1 on (−1/4, 1/4), and Supp χ ⊂ (−1/2, 1/2). We look for
θBL in the form

θBL(t, x, z) :=

4∑

j=0

(1 + t)−j/4Θj
bot(x, (1 + t)1/4z)χ(z)

+

4∑

j=0

(1 + t)−j/4Θj
top(x, (1 + t)1/4(1− z))χ(z − 1)

=: θBL
bot + θBL

top

and

ψBL(t, x, z) :=

4∑

j=0

(1 + t)−1− j
4Ψj

bot(x, (1 + t)1/4z)χ(z)

+

4∑

j=0

(1 + t)−1− j
4Ψj

top(x, (1 + t)1/4(1− z))χ(z − 1)

=: ψBL
bot + ψBL

top.

The profiles Θj
a,Ψ

j
a for j = 0, 1 and a ∈ {bot, top} were defined in the previous paragraph, and

we now proceed to define Θj
a,Ψ

j
a for j ≥ 2. The reason why we stop the expansion at j = 4

follows from Lemma 3.3.5, as we will see shortly.
We focus on the part near z = 0, since the part near z = 1 works identically. Setting

Z = (1 + t)1/4z, we have

∂

∂t
θBL
bot = (1 + t)−1

4∑

j=0

(1 + t)−j/4

[
− j
4
Θj

bot(x, Z) +
1

4
Z∂ZΘ

j
bot(x, Z)

]
χ(z)

For j = 0, 1, the bracketed term in the right-hand side is simply ∂xΨ
j
bot(x, (1+ t)

1/4z). Similarly,
we choose Ψj

a for j = 2, 3, 4 and a ∈ {bot, top} so that

∂xΨ
j
a = − j

4
Θj

a +
1

4
Z∂ZΘ

j
a. (3.31)

With this choice, we have
∂tθ

BL = ∂xψ
BL.

There remains to choose Θj
a so that ∂xψBL = ∆−2∂2xθ

BL +O((1 + t)−2) in L2. To that end, we



3.3. Formation of linear boundary layers for large times: proof of Theorem 3.1.2 107

observe that

∆2ψBL
bot =

4∑

j=0

(1 + t)−
j
4 ∂4ZΨ

j
bot(x, Z)χ(z) + 2

4∑

j=0

(1 + t)−
1
2−

j
4 ∂2x∂

2
ZΨ

j
bot(x, Z)χ(z)

+

4∑

j=0

(1 + t)−1− j
4 ∂4xΨ

j
bot(x, Z)χ(z)

+

4∑

j=0

3∑

k=0

(
k
4

)
(1 + t)−1+ k−j

4 ∂kZΨ
j
bot(x, Z)χ

(4−k)(z)

+2

4∑

j=0

1∑

k=0

(
k
2

)
(1 + t)−1+ k−j

4 ∂2x∂
k
ZΨ

j
bot(x, Z)χ

(2−k)(z).

The last two terms are handled by Lemma 3.3.4 (anticipating that Ψj
a will have exponential

decay for j = 2, 3, 4).

We obtain

∆2ψBL
bot = ∂xθ

BL
bot +O(exp(−c(1 + t)1/5))

+(1 + t)−1/2
[
−∂xΘ2

bot + ∂4ZΨ
2
bot + 2∂2x∂

2
ZΨ

0
bot
]
(x, Z)χ(z)

+(1 + t)−3/4
[
−∂xΘ3

bot + ∂4ZΨ
3
bot + 2∂2x∂

2
ZΨ

1
bot
]
(x, Z)χ(z)

+(1 + t)−1
[
−∂xΘ4

bot + ∂4ZΨ
4
bot + 2∂2x∂

2
ZΨ

2
bot + ∂4xΨ

0
]
(x, Z)χ(z)

+
∑

j≥5

(1 + t)−j/4Φj
bot(x, Z)χ(z),

for some functions Φj
bot depending on the profiles Ψj

bot (for instance Φ5 = 2∂2x∂
2
ZΨ

3
bot + ∂4xΨ

1
bot).

Thanks to Lemma 3.3.5, the inverse bilaplacian of the last term has a size of order (1 + t)−2 in
L2. Hence it will be included in the remainder Sr. Note that the reason why we need to stop
the expansion in θBL at j = 4 is dictated by the above formula and by Lemma 3.3.5. If we stop
the expansion for a lower j, then the remainder may be greater than (1 + t)−2 in L2.

Therefore we focus on the terms of order (1+ t)−j/4 with j = 2, 3, 4. We treat the cases j = 2
and j = 3 simultaneously, and we will focus on the case j = 4 later.

• Construction of Ψj
a for j = 2, 3:

Remembering (3.31), we choose Θj
a and Ψj

a for a ∈ {bot, top} and j = 2, 3 so that

∂xΨ
j
a = − j

4
Θj

a +
1

4
Z∂ZΘ

j
a,

−∂xΘj
a + ∂4ZΨ

j
a + 2∂2x∂

2
ZΨ

j−2
a = 0,

lim
Z→∞

Ψj
a = 0,

Ψj
a(Z = 0) = ∂ZΨ

j
a(Z = 0) = 0,

Θj
a(Z = 0) = ∂ZΘ

j
a(Z = 0) = 0.

As before, we note that the boundary conditions at Z = 0 are redundant. Eliminating Θj
a from
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the equation, we find that Ψj
a satisfies

Z∂5ZΨ
j
a − j∂4ZΨ

j
a = 4∂2xΨ

j
a + Sj

a,

Ψj
a(Z = 0) = ∂ZΨ

j
a(Z = 0) = 0,

∂4ZΨ
j
a = −2∂2x∂

2
ZΨ

j−2
a = −1

j
Sj
a at Z = 0,

∂5ZΨ
j
a = −2∂2x∂

3
ZΨ

j−2
a = − 1

j − 1
∂ZS

j
a at Z = 0,

lim
Z→∞

Ψj
a = 0,

(3.32)

where Sj
a = −2(Z∂Z − j)∂2x∂

2
ZΨ

j−2
a . Therefore ∂jZS

j
a = −2Z∂j+3

Z ∂2xΨ
j−2
a = −8∂4x∂

j−2
Z Ψj−2

a .

As a consequence, we find that ∂jZΨ
j
a satisfies

Z∂5Z∂
j
ZΨa = 4∂2x∂

j
ZΨa − 8∂4x∂

j−2
Z Ψj−2

a ,

∂jZΨa = 0 at Z = 0,

∂4ZΨ
j
a = −1

j
Sj
a, ∂5ZΨ

j
a = − 1

j − 1
∂ZS

j
a at Z = 0,

lim
Z→∞

∂jZΨ
j
a = 0,

Note that the boundary condition ∂jZΨ̃
j
a(Z = 0) = 0 follows from the identity

∂x∂
j
ZΨ

j
a =

1

4
Z∂j+1

Z Θj
a.

Taking the Fourier transform with respect to x, we observe that ∂̂jZΨa(k) satisfies (3.28) with
nonhomogeneous boundary conditions of type (iii) (for j = 2) or (iv) (for j = 3). Using the
Fourier representations (3.29) and (3.30) for Ψ0 and Ψ1, we anticipate that Ψ2

a and Ψ3
a can be

written as
Ψ2

a(x, Z) =
∑

k∈Z\{0}
|k|−1γ̂0a,k χ2(|k|1/2Z)eikx,

Ψ3
a(x, Z) =

∑

k∈Z\{0}
|k|−3/2γ̂1a,k χ3(|k|1/2Z)eikx.

(3.33)

with χ2, χ3 ∈ C∞((0,+∞)) decaying like exp(−c̄Z4/5). The precise construction of χ2 and χ3

will be performed below. We obtain the following result:

Lemma 3.3.6. Let a ∈ {top,bot} and γ0a, γ1a ∈ L2(T). Consider the solutions Ψ0
a,Ψ

1
a of (3.26),

(3.27) given by Corollary 3.3.3.

Then there exist unique solutions Ψ2
a ∈ H

5/4
x L2

Z ∩L2
xH

5/2
Z , Ψ3

a ∈ H
7/4
x L2

Z ∩L2
xH

7/2
Z of (3.32).

Furthermore, for any m ∈ N,

∥Ψ2
a∥Hm

x L2
z
≲ ∥θ′0∥Hm+3

4 (Ω)
, ∥Ψ2

a∥L2
xH

m
z
≲ ∥θ′0∥H m

2
+ 3

4 (Ω)
,

∥Ψ1
a∥Hm

x L2
z
≲ ∥θ′0∥Hm+5

4 (Ω)
, ∥Ψ1

a∥L2
xH

m
z
≲ ∥θ′0∥H m

2
+ 5

4 (Ω)
.
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Additionally, the profiles Ψ2
a and Ψ3

a have exponential decay: for any Z0 ≥ 1, for any m ∈ N,

∥Ψ2
a∥Hm(T×(Z0,+∞)) ≲ ∥θ′0∥H1(Ω) exp(−c̄Z4/5

0 ),

∥Ψ3
a∥Hm(T×(Z0,+∞)) ≲ ∥θ′0∥H2(Ω) exp(−c̄Z4/5

0 ).

Proof. In view of (3.33), it is sufficient to construct χ2 and χ3. We first construct the solution
of

Z∂5Zϕj(Z) = −4ϕj(Z)− 8∂j−2
Z χj−2,

ϕj(0) = 0, ∂4−j
Z ϕj(0) = −2χ′′

j−2(0), ∂5−j
Z ϕj(0) = −2χ

(3)
j−2(0),

lim
Z→∞

ϕj(Z) = 0.

Note that after a suitable lifting, ϕj satisfies (3.28) with the boundary conditions (iii) from
Lemma 3.3.1 (for j = 2) or (iv) (for j = 3). Hence the existence and uniqueness of ϕj (and its
exponential decay) follow from Lemma 3.3.1. Now, define χj as

∂jZχj = ϕj , ∂kZχj(+∞) = 0 for 0 ≤ k ≤ j − 1.

It follows that χj decays like exp(−c̄Z4/5). Furthermore, by construction

∂jZ
[
Z∂5Zχj − j∂4Zχj + 4χj + 2(Z∂Z − j)χ′′

j−2

]
= 0.

It follows that Z∂5Zχj − j∂4Zχj + 4χj + 2(Z∂Z − j)χ′′
j−2 is a polynomial of order at most j − 1,

which has exponential decay at infinity. We infer that

Z∂5Zχj − j∂4Zχj + 4χj + 2(Z∂Z − j)χ′′
j−2 = 0.

Taking the trace of the above identity at Z = 0, we infer that χj(0) = 0. In a similar way, we
also find that χ′

j(0) = 0. Now, defining Ψj
a by (3.33), we obtain that Ψj

a satisfies (3.32). The
Sobolev estimates are then a consequence of the Fourier representation formula.

• Construction of Ψ4
a:

The definition of Ψ4
a and Θ4

a is similar. We have

Z∂5ZΨ
4
a − 4∂4ZΨ

4
a = 4∂2xΨ

4
a + S4

a,

Ψ4
a(Z = 0) = ∂ZΨ

4
a(Z = 0) = 0,

∂4ZΨ
4
a = −1

4
S4
a at Z = 0,

∂5ZΨ
4
a = −1

3
∂ZS

4
a at Z = 0,

lim
Z→∞

Ψ4
a = 0,

where
S4
a = −(Z∂Z − 4)(2∂2x∂

2
ZΨ

2
a + ∂4xΨ

0
a).

Therefore the Fourier transform of ∂4zΨ4
a, after a suitable lifting, is a solution of (3.28). The main

difference with the construction of Ψj
a for j ≤ 3 lies in the fact that ∂4ZΨ

4
a is not fully determined.

Indeed, we lack a boundary condition on ∂kZΨ
4
a for some k ≥ 6. Once again, this phenomenon

(a high order corrector is under-determined) is quite common in multiscale problems. In fact it
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turns out that Ψ4
a could be determined in a unique fashion if we were looking for a higher order

expansion (see Remark 3.3.7). In this case, we should choose Ψ4
bot so that ∂4ZΘ

4
bot|Z=0 lifts the

trace of ∆2θ′|z=0. In the present case, since we merely wish to close the first order expansion, we
simply further require that ∂8ZΨ

4
a|Z=0 = 0, so that the lifted Fourier transform of ∂4ZΨ

4
a satisfies

the boundary conditions (i) of Lemma 3.3.1. We conclude that Ψ4
a is well-defined and satisfies

the same estimates as Ψj
a for j ≤ 3. The details of the proof are left to the reader.

3.3.4 Estimate of the remainder and conclusion

At this stage, we have constructed θBL such that

θBL|∂Ω = θ′∂Ω = θ′0|∂Ω,

∂nθ
BL|∂Ω = ∂nθ

′
∂Ω = ∂nθ

′
0|∂Ω,

and
∂tθ

BL = ∆−2∂2xθ
BL +∆−2∂xTr +O(exp(−c(1 + t)1/5) in L2,

where Tr = Ttop + Tbot and

Tbot :=


∑

j≥5

(1 + t)−j/4Φj
bot(x, (1 + t)1/4z)χ(z)


 ,

with a similar expression for Ttop. According to Lemma 3.3.5,

∥∆−2∂xTr∥L2 ≲ ∥θ′0∥Hs(1 + t)−2, ∥∂t∆−2∂xTr∥L2 ≲ ∥θ′0∥Hs(1 + t)−3.

Furthermore,
∥∆−2∂xTr∥H4 = ∥∂xTr∥L2 ≲ ∥θ′0∥Hs(1 + t)−5/4.

Therefore θint = θ′ − θBL solves

∂tθ
int = ∂2x∆

−2θint −∆−2∂xTr +O(exp(−c(1 + t)1/5),

and θint = ∂nθ
int = 0 on ∂Ω. According to Proposition 3.2.6, ∥θint∥L2 = O((1 + t)−1), which

completes the proof of Theorem 3.1.2.

Remark 3.3.7 (Construction of an approximation at any order). Since ∆2θ′ solves the same
equation as θ′, one can easily iterate this construction. More precisely, if θ′0 ∈ H4k it can be
proved that there exist sequences of profiles (Θj

bot,Θ
j
top)0≤j≤4k such that the following result holds:

θ′(t, x) =
4k∑

j=1

(1 + t)−j/4
[
Θj

bot(x, (1 + t)1/4z)χ(z) + Θj
top(x, (1 + t)1/4(1− z))χ(z − 1)

]
+ θjrem(t),

and
∥θjrem(t)∥L2 ≲

1

(1 + t)k
, ∥θjrem(t)∥H4k ≲ 1.

For instance, the role of Θ4j
bot is to lift the trace of ∆2jθ′ at z = 0, the one of Θ4j+1

top to lift the
one of ∂z∆2jθ′ at z = 1, etc.

The details of the construction are very similar to the ones of the profiles Θj
a for 0 ≤ j ≤ 3
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above and are left to the reader.

Proof of Lemma 3.3.5. We first define a function f1 such that

∂4Zf1 = f,

and ∂kZf1(+∞) = 0 for 0 ≤ k ≤ 3. Note that the exponential decay assumption on f ensures
that f1 exists, and f1 ∈W 4,∞ ∩H4. Moreover, for 0 ≤ m1,m2 ≤ 4,

|∂m1
x ∂m2

Z f1(x, Z)| ≤ C exp(−cZ1/5),

with possibly different constants C and c. Setting Z = (1 + t)1/4z, we infer that

∆2
(
(1 + t)−1f1(x, Z)χ(z)

)
= f(x, Z)χ(z)

+2(1 + t)−1/2∂2x∂
2
Zf1(x, Z)χ(z)

+(1 + t)−1∂4xf1(x, Z)χ(z) +O(e−ct1/5) in L2,

where the term O(e−ct1/5) stems from the commutator involving derivatives of χ. Note that
∂2x∂

2
Zf1 satisfies the same decay assumptions as f , and therefore we can lift it by another corrector

f2 such that
∂4Zf2 = −2∂2x∂

2
Zf1,

i.e. ∂2Zf2 = −2∂2xf1. Therefore

∆2
((

(1 + t)−1f1(x, Z) + (1 + t)−3/2f2(x, Z)
)
χ(z)

)
= f(x, Z)χ(z) +O((1 + t)−1) in H−2.

The only remaining issue lies in the fact that f1, f2 and their normal derivatives do not vanish
on the boundary. Hence we set ai(x) = fi(x, 0), bi(x) = ∂Zfi(x, 0), and we add a corrector

f3(t, x, z) := −
∑

i=1,2

(1 + t)−
i−1
2 (ai(x) + z(1 + t)1/4bi(x))χ(z).

Now

∆2
((

(1 + t)−1f1(x, Z) + (1 + t)−3/2f2(x, Z)
)
χ(z) + (1 + t)−1f3

)

= f(x, Z)χ(z) +O((1 + t)−3/4) in H−2,

and for k = 0, 1

∂kz

((
(1 + t)−1f1(x, Z) + (1 + t)−3/2f2(x, Z)

)
χ(z) + (1 + t)−1f3

)
|∂Ω = 0.

It follows that
(
(1 + t)−1f1(x, Z) + (1 + t)−3/2f2(x, Z)

)
χ(z) + (1 + t)−1f3

= ∆−2(f(x, Z)χ(z)) +O((1 + t)−3/4) in H2.

Let us now prove that when
´∞
0
Z2f(·, Z) dZ =

´∞
0
Z3f(·, Z) dZ = 0, we gain an additional
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factor (1 + t)−1/4. It can be easily checked that

f1|Z=0 =
1

6

ˆ ∞

0

Z3f(·, Z) dZ = 0, ∂Zf1|Z=0 = −1

2

ˆ ∞

0

Z2f(·, Z) dZ = 0.

Hence, with the notation above, a1 = b1 = 0 and therefore f3 = O((1 + t)−1/4). With the
same arguments, we infer that

(
(1 + t)−1f1(x, Z) + (1 + t)−3/2f2(x, Z)

)
χ(z) + (1 + t)−1f3

= ∆−2(f(x, Z)χ(z)) +O((1 + t)−1) in H2.

3.4 Nonlinear boundary layers: proof of Theorem 3.1.3

We now go back to the long time analysis of (3.5) when θ′0 = ∂nθ
′
0 = 0 on ∂Ω. We recall (see

Theorem 3.1.1) that in this case, θ′(t) converges towards zero in Hs for all s < 4 as t→ ∞. This
result follows from a uniform bound on the H4 norm of the solution and from an interpolation
inequality applied to the dissipation term.

A natural question is to investigate whether the algebraic decay rate provided by 3.1.1 can be
improved, possibly at the cost of a stronger regularity requirement on the initial data. In other
words, if we assume that θ′0 ∈ Hs with s large, can we prove a uniform Hs bound on a solution,
and thereby a higher decay estimate on θ′?

As explained in the Introduction, such a result does not follow immediately from an induction
argument. Indeed, the traces of ∆2θ′ and of ∂z∆2θ′ do not vanish on the boundary (even when
the traces of ∆2θ′0 and of ∂z∆2θ′0 do), and therefore we cannot apply Proposition 3.2.6 to ∆2θ′.

However, it turns out that we can use (a variant of) the linear analysis of Section 3.3 to
analyze the long time behaviour of ∆2θ′, and more generally, of ∆2kθ′ for k ≥ 1. In other words,
in this case, there are boundary layers in the vicinity of the boundary, but they are driven by a
linear mechanism. Theorem 3.1.3 will follow.

To that end, the strategy is to consider the equation satisfied by ∆2θ′. As we have seen
previously, the structure of the equation is overall the same. The main difference lies in the
fact that the traces of ∆2θ′ and ∂z∆

2θ′ do not vanish on the boundary. However, following
the methodology of the previous section, we may lift them thanks to a corrector which remains
linear at main order. Modifying slightly our bootstrap argument in order to account for these
boundary layers, we eventually prove Theorem 3.1.3.

3.4.1 General strategy

Following the same strategy as in Section 3.3, we look for an Ansatz for θ′ as a sum of a boundary
layer part θBL, whose role is to lift the trace of ∆2θ′ and ∂z∆2θ′ on the boundary, and an interior
part θint, which vanishes at a high order on the boundary, and for which we will therefore be
able to prove better decay estimates. Let us give a few additional details on these two parts:

• As in the previous secion, the boundary layer term will be defined as an asymptotic expan-
sion in powers of (1+ t)−1/4, and the size of the boundary layers will also be (1+ t)1/4. The
different terms of the expansion will be constructed recursively: the main order terms will
lift the traces of ∆2θ′ and ∂z∆

2θ′ (or rather, their limits as t → ∞), and the next order
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terms will correct error terms generated by the first order ones. The precise construction
of the boundary layer is the purpose of Subsection 3.4.4 below.

• Thanks to the design of the boundary layer, the remaining part θint is such that

θint = ∂zθ
int = ∆2θint = ∂z∆

2θint = 0 on ∂Ω.

As a consequence, ∆2θint satisfies assumptions that are similar to those of Proposition 3.2.6,
and it is reasonable to expect that ∥∆2θint∥L2 = O((1+t)−1). Using once again Proposition
3.2.6, we then infer that ∥θint∥L2 = O((1 + t)2). We will use a bootstrap argument to
propagate these bounds; the corresponding argument is described in Subsection 3.4.5.

Before constructing θBL and proving the decay estimates on θint, some preliminary (and
somewhat technical) steps are in order. The traces of ∆2θ′ and ∂z∆

2θ′ need to be decomposed
as an asymptotic expansion in powers of (1 + t)−1/4, in order to identify the relevant boundary
conditions for the terms in the expansion of θBL. This is performed in 3.4.5 below, whose proof
involves some high regularity bounds on θ. As a consequence, the organisation of the rest of this
section is the following. In 3.4.2, we prove some quantitative H10 and H12 bounds on θ′ under
our bootstrap assumption. In Subsection 3.4.3, we provide a decomposition of ∆2θ′ and ∂z∆2θ′

under the bootstrap assumption. The main results of each section are given in the beginning
of the section. The reader wishing to avoid the technicalities may jump to Subsection 3.4.4, in
which we construct the boundary layer, using the decomposition of Subsection 3.4.3. Eventually,
we close the bootstrap argument in Subsection 3.4.5.

Let us now introduce the bootstrap assumption that will be used throughout this section. As
mentioned before, we shall decompose θ′ as θ′ = θBL + θint. The term θBL will take the form

θBL =
1

1 + t
Θtop(x, (1 + t)1/4(1− z)) +

1

1 + t
Θbot(x, (1 + t)1/4z) + l.o.t.

with boundary layer profiles Θtop,Θbot such that

∥Θa∥H9(T×R+) ≤ B

for some constant B > 0, while

sup
t∈[0,T ]

(1 + t)2∥∂4xθint(t)∥L2 + ∥∆4θint(t)∥L2 ≤ B,

sup
t∈[0,T ]

(1 + t)3∥∂t∂4xθint(t)∥L2 + (1 + t)3∥∂5xψint∥L2 ≤ B,
(3.34)

where ψint = ∆−2∂xθ
int.

As a consequence, our bootstrap assumptions on θ′ read as follows:

∀t ∈ (0, T ), ∀k ∈ {4, · · · , 8}, ∥∂kxθ′∥L2 ≤ B(1 + t)−9/8 +B(1 + t)
k−8
2 ,

∀t ∈ (0, T ), ∀k ∈ {0, · · · , 8}, ∥∂kz θ′∥L2 ≤ B(1 + t)−
9
8+

k
4 ,

∀t ∈ (0, T ), ∥∂5xψ(t)∥L2 ≤ B(1 + t)−17/8.

(3.35)

Note that these assumptions imply in particular that

∥ψ∥W 3,∞ ≲ B(1 + t)−9/8 ∀t ∈ [0, T ]. (3.36)
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Indeed, by the Agmon inequality,

∥ψ∥W 3,∞ ≲ ∥ψ∥1/2H3 ∥ψ∥1/2H5 ≲ ∥ψ∥1/5L2 ∥ψ∥4/5H5 .

By (3.35), ∥ψ∥L2 ≲ ∥∂5xψ∥L2 ≲ B(1 + t)−17/8, while

∥∂5zψ∥L2 ≲ ∥∂z∂xθ′∥L2 ≲ ∥∂2xθ′∥1/2L2 ∥∂2zθ′∥1/2L2 ≲ B(1 + t)−7/8.

Estimate (3.36) follows.

3.4.2 High regularity bounds under the bootstrap assumption

The purpose of this subsection is to prove the following bounds:

Lemma 3.4.1. Let θ = θ′ + θ̄ be a solution of (3.5), and assume that θ0 ∈ H14. Let T > 0 be
such that the bounds (3.35) hold on (0, T ) for some constant B ∈ (0, 1). Assume furthermore
that ∥θ0∥H14 ≤ B. Then for all t ∈ [0, T ],

∥θ̄(t)∥H6 ≲ B, ∥θ∥H14 ≲ B(1 + t)5/2, ∥∂8x∆2θ′∥L2 ≲ B,

∥∂10x θ′∥L2 ≲ B(1 + t)−1, ∥∂10x ψ∥L2 ≲ B(1 + t)−2.

Proof. First, recalling that
∂tθ̄ = −∇⊥ψ · ∇θ′

and using the bootstrap assumptions (3.35), we infer that

∥∂t∂6z θ̄∥L2 ≲ B2(1 + t)−5/4,

and thus ∥θ̄(t)∥H6 ≲ ∥θ0∥H6 + B2 ≲ B. A similar argument also shows that ∥θ̄(t)∥H7 ≲
B +B2 ln(1 + t).

Let us then compute the equation satisfied by D10θ, where D = ∂x or ∂z. We have

∂tD
10θ + u · ∇D10θ = D10∂xψ −

[
D10, u · ∇

]
θ.

Mutliplying by D10θ and integrating by parts, we obtain

d

dt
∥D10θ∥L2 ≤ 2∥D10∂xψ∥L2 + 2

∥∥[D10, u · ∇
]
θ
∥∥
L2 .

Using the bootstrap assumptions (3.35), we have

∥D10∂xψ∥L2 ≲ B(1 + t)3/8 ∀t ∈ [0, T ].

As for the commutator term, using the Leibniz formula, we write

[
D10, u · ∇

]
θ =

9∑

k=0

(
10
k

)
∇⊥D10−kψ · ∇Dkθ.

For k ≥ 8, we simply write
∥∥∇⊥D10−kψ · ∇Dkθ

∥∥
L2 ≲ ∥ψ∥W 3,∞∥θ∥H10 ≲ B(1 + t)−9/8∥θ∥H10 .
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For k ≤ 7, the bootstrap assumptions together with the preliminary bounds on θ̄ ensure that
∥∥∇⊥D10−kψ · ∇Dkθ

∥∥
L2 ≲ B

2(1 + t)3/8 +B(1 + t)−9/8∥θ∥H10 .

Therefore, assuming that B < 1, we obtain

d

dt
∥D10θ∥L2 ≲ B(1 + t)3/8 +B(1 + t)−9/8∥θ∥H10 .

Of course the same computation can be performed for any derivative of the type ∂kx∂10−k
z θ, and

we infer
d

dt
∥θ∥H10 ≲ B(1 + t)3/8 +B(1 + t)−9/8∥θ∥H10 .

The Gronwall Lemma then ensures that

∥θ(t)∥H10 ≲ ∥θ0∥H10 +B(1 + t)11/8 ≲ B(1 + t)11/8.

We then use the same strategy to estimate ∥∂2x∆4θ∥L2 . The linear term in the right-hand side
is now

∂3x∆
4ψ = ∂4x∆

2θ′ = O(1) in L2.

The only difference in the treatment of the commutator term lies in the bound of terms of the
form ∂2zψ∂

3
x∂

7
zθ

′. For those, we use our first estimate on ∥θ∥H10 together with the bootstrap
assumptions, and we obtain

∥∂2zψ∂3x∂7zθ′∥L2 ≲ ∥∂2zψ∥∞∥θ′∥H10 ≲ B2(1 + t)−
11
8 + 11

8 ≲ B2.

It follows that
d

dt
∥∂2x∆4θ∥L2 ≲ B +B(1 + t)−9/8∥∂2x∆4θ∥L2 ,

and therefore ∥∂2x∆4θ∥L2 ≲ B(1 + t). The next step is to prove that supt∈[0,T ] ∥∂6x∆2θ′∥L2 ≲ B.
To that end, we check that ∂6x∆2θ′ satisfies the assumptions of Proposition 3.2.4. The source term
is S = u ·∇∂6x∆2θ′+

[
∂6x∆

2, u · ∇
]
θ. Classically, the first term is orthogonal to θ′. It is therefore

sufficient to bound the commutator. The terms involving θ̄ can be treated as perturbations of
the dissipation term ∥∂7x∆θ′∥2L2 , and therefore we focus on

[
∂6x∆

2, u · ∇
]
θ′. First, note that

∥∥(∇⊥∂6x∆
2ψ) · ∇θ′

∥∥
L2 ≤ ∥∇θ′∥∞∥∇∂7xθ′∥L2 ≲ B(1 + t)−3/4∥∂7x∆θ′∥L2

The other terms can be estimated thanks to the bootstrap assumptions together with the pre-
liminary bounds on ∥θ∥H10 and ∥∂2x∆4θ∥L2 . We obtain
∥∥[∂6x∆2, u · ∇

]
θ
∥∥
L2 ≲ B(1 + t)−1−δ∥∂6x∆2θ′∥L2 +B2(1 + t)−1−δ +B(1 + t)−

1
2−δ∥∂7x∆θ′∥L2

for some δ > 0. The details are left to the reader. Using a Cauchy-Schwarz intequality, it follows
that

d

dt
∥∂6x∆2θ′∥2L2 + c∥∂7x∆θ′∥2L2 ≲ B2(1 + t)−1−δ +B(1 + t)−1−δ∥∂6x∆2θ′∥2L2 .

The Gronwall Lemma then implies that supt∈[0,T ] ∥∂6x∆2θ′∥L2 ≲ ∥θ0∥H10 +B2 ≲ B.

We then follow the same strategy to obtain bounds on ∥θ∥H12 , ∥∂4x∆4θ∥L2 and ∥∂8x∆2θ∥L2 .
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We have
∂t∥θ∥H12 ≲ ∥∂2xθ′∥H8 +

∑

k≤11,D∈{∂x,∂z}

∥∥∇12−kψ · ∇D12θ
∥∥
L2 .

The first term in the right-hand side is bounded by B(1 + t). We estimate the quadratic term
thanks to the bootstrap assumptions and our prelimilary bounds on derivatives up to order 10.
We obtain ∥θ(t)∥H12 ≲ B(1 + t)2. We then write

∂t∂
4
x∆

4θ′ + u · ∇∂4x∆4θ′ = ∂6x∆
2θ′ −

[
∂4x∆

4, u · ∇
]
θ.

The first term in the right-hand side is bounded by CB. We then check that the nonlinear
term can be treated perturbatively, using the bounds on θ′ obtained so far, and we infer that
∥∂4x∆4θ′(t)∥L2 ≲ B(1 + t). Once again, we then use Proposition 3.2.4 in order to prove that
∥∂8x∆2θ′(t)∥L2 ≲ B, and that

d

dt
∥θ(t)∥H14 ≲ B(1 + t)−1−δ∥θ(t)∥H14 +B(1 + t)3/2.

The computations are very similar to the ones above and left to the reader, and lead to the
estimate of ∥θ(t)∥H14 .

The last step is to prove additional decay on ∥∂10x θ′∥L2 and ∥∂11x ψ∥L2 . Setting S = −∂10x (u ·
∇θ′), we can decompose S into S = S∥ + S⊥ + S∆, with S⊥ = u · ∇∂10x θ′, and

∥S∥∥L2 ≲ B2(1 + t)−2, ∥S∆∥L2 ≲ B(1 + t)−1/2∥∂10x ∆ψ∥L2 .

Hence for B sufficiently small, S satisfies the assumptions of 3.2.6, and we obtain

∥∂10x θ′(t)∥L2 ≲ B(1 + t)−1.

Differentiating the equation on ∂9xθ with respect to time, we get

∂t∂t∂
9
xθ

′ = (1−G)∂t∂
10
x ψ − ∂t∂

9
x(u · ∇)θ′ − ∂tG∂

10
x ψ.

Estimating the norm of each term in the right-hand side and using Proposition 3.2.6, we obtain,
for some large fixed constant κ,

d

dt
∥∂t∂9xθ′∥2L2 +

κ

1 + t
∥∂t∂9xθ′∥2L2 ≲

∥∂t∂7x∆2θ′∥2L2

(1 + t)3
+B2 1

(1 + t)5
.

Writing
∂t∂

7
x∆

2θ′ = ∂9xθ
′ − ∂7x∆

2(u · ∇θ),
we find that ∥∂t∂7x∆2θ′∥L2 ≲ B(1 + t)−1, and thus ∥∂t∂9xθ′∥L2 ≲ B(1 + t)−2. Going back to the
equation on ∂9xθ′, we find eventually that

∂10x ψ = ∂t∂
9
xθ

′ + ∂9x(∇⊥ψ · ∇θ) = O((1 + t)−2) in L2.

This concludes the proof of the Lemma.

Let us now prove a useful result concerning the trace of ∂3zθ′:
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Corollary 3.4.2. Under the assumptions of Lemma 3.4.1,

∥∂3zθ′|z=0∥H33/4(T) ≲ B(1 + t)−1/8.

Proof. Using Theorem 3.1 in [LM12, Chapter 1],

∥∂3zθ′|z=0∥Hs(T) ≲ ∥θ′∥1/8
Hβ

xL2
z

∥∂4zθ′∥7/8Hγ
xL2

z
,

where 1
8β + 7

8γ = s. Taking β = 10 and γ = 8 and using the bounds of Lemma 3.4.1, we obtain
the desired result.

3.4.3 Decomposition of the traces of ∆2θ′ and ∂z∆
2θ′

The first result of this section concerns the long time behaviour of ∆2θ′|∂Ω and ∂z∆2θ′|∂Ω :

Lemma 3.4.3 (Long-time behaviour of ∂kz∆2θ′|∂Ω and of ∂2+k
z G(t)|∂Ω, k = 0, 1). For k = 0, 1,

let
γktop(t, x) := ∂kz∆

2θ′(t, x, z = 1), γkbot(t, x) := ∂kz∆
2θ′(t, x, z = 0).

Assume that θ0 ∈ H14(Ω) and θ′0 = ∂zθ
′
0 = 0 on ∂Ω. Let T > 0, B ∈ (0, 1) such that the

bootstrap assumptions (3.35) hold on [0, T ]. Assume furthermore that ∥θ0∥H14 ≤ B. Then there
exists universal constant B0, δ > 0 and functions γ0a,T ∈ Hs(T), γ1a,T ∈ Hs−1 for all s < 8 + 5

8 ,
such that if B ≤ B0,

∥γ0a,T ∥Hs(T) ≲s ∥θ0∥H14 +B2 and ∥γ0a(t)− γ0a,T ∥Hs(T) ≲s B
2 1

(1 + t)δ
∀t ∈ [0, T ],

∥γ1a,T ∥Hs−1(T) ≲s ∥θ0∥H14 +B2 and ∥γ0a(t)− γ0a,T ∥Hs−1(T) ≲s B
2 1

(1 + t)δ
∀t ∈ [0, T ].

In a similar fashion, for k = 2, 3

∣∣∂t∂kzG(t)|∂Ω
∣∣ ≲ B2(1 + t)−3+ k+3

4 ,

and therefore there exists gka,∞ ∈ R such that, for k = 2, 3,

|gka,∞| ≲ ∥θ0∥H14 +B2,

∂kzG(t, 0) → gkbot,∞, ∂kzG(t, 1) → gktop,∞ as t→ ∞.

The proof of Lemma 3.4.3 is postponed to the end of this section.
The second intermediate result of this section pushes further the decomposition of γka(t). It

holds under additional structural assumptions on θBL and θrem = θ′ − θBL. More precisely, let
us assume that

θBL(t, x, z) =

4∑

j=0

(1 + t)−1− j
4

(
Θj

bot(x, (1 + t)1/4z) + Θj
top(x, (1 + t)1/4(1− z))

)
+ θc,

ψBL(t, x, z) =

4∑

j=0

(1 + t)−2− j
4

(
Ψj

bot(x, (1 + t)1/4z) + Ψj
top(x, (1 + t)1/4(1− z))

)
+ ψc

(3.37)
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where
∥Θj

a∥H8(T×R+) ≲ ∥θ0∥H14 +B2, ∥Ψj
a∥H11(T×R+) ≲ ∥θ0∥H14 +B2,

∥θc∥Hm
x Hk

z
≲ (∥θ0∥H14 +B2)(1 + t)−2− 1

8+
k
4 for 0 ≤ k +m ≤ 8,

∥ψc∥Hm
x Hk

z
≲ (∥θ0∥H14 +B2)(1 + t)−3− 1

8+
k
4 for 0 ≤ k +m ≤ 11.

(3.38)

In the course of the proof, we shall also need the following assumption:

∂2ZΘ
j
a|Z=0 ∈ H7(T), ∂3ZΘ

j
a|Z=0 ∈ H15/2(T). (3.39)

Remark 3.4.4. Note that we have slightly changed our notation: we now set θrem = θ′ −
θBL. This is linked to our bootstrap assumptions, and to the fact that the traces of ∆2θrem and
∂z∆

2θrem do not vanish. We refer to the next subsection (see Lemma 3.4.10) for more details.

Lemma 3.4.5 (Decomposition of γka). Assume that θ0 ∈ H14(Ω) and θ′0 = ∂zθ
′
0 = 0 on ∂Ω. Let

T > 0, ∥θ0∥H14(Ω) < B < 1 such that the bootstrap assumptions (3.35) hold on [0, T ]. Assume
furthermore that θBL, ψBL can be decomposed as (3.37), where the profiles Θj

a,Ψ
j
a and θc, ψc

satisfy (3.38) and (3.39), and that θrem = θ′ − θBL satisfies (3.34).
Then for j = 0, 1, a ∈ {top,bot}, there exists γja,k ∈ L2(T), Γj

a,T ∈W 1,∞((0, T );L2(T)) such
that for all t ∈ [0, T ],

γ0a(t) =γ
0
a,T + γ0a,2(1 + t)−1/2 + γ0a,3(1 + t)−3/4

+ Γ0
a,T (t)− γ0a,2(1 + T )−1/2 − γ0a,3(1 + T )−3/4,

γ1a(t) =γ
1
a,T + γ1a,1(1 + t)−1/4 + γ1a,2(1 + t)−1/2

+ Γ1
a,T (t)− γ1a,1(1 + T )−1/4 + γ1a,2(1 + T )−1/2,

where ∥γja,k∥L2(T) ≲ B2 and for all t ∈ [0, T ], for j = 0, 1, l = 0, 1, 2,
∥∥∥∂ltΓj

a,T (t)
∥∥∥
L2(T)

≲ B2(1 + t)−1−l+ j
4 ,
∥∥∥Γj

a,T (t)
∥∥∥
H4(T)

≲ B2(1 + t)−
23
24+

j
4 .

Furthermore, γja,k can be written explicitely in terms of Ψ0
a,Ψ

1
a and Θ0

a.

Remark 3.4.6. Note that in the above decomposition, the coefficients γja,k do not depend on
time.

Remark 3.4.7. As mentioned in Lemma 3.4.5, γja,k can be written explicitely in terms of the
main order boundary layer profiles. More precisely, taking ηbot = 1 and ηtop = −1,

γ0a,2 = 12g2a,∞∂x∂
2
ZΨ

0
a|Z=0,

γ0a,3 = 8g2a,∞∂x∂
2
ZΨ

1
a|Z=0 −

4ηa
3

[
∂4Z
{
Ψ0

a,Θ
0
a

}
x,Z

]′
|z=0,

γ1a,1 = 40ηag
2
a,∞∂x∂

3
ZΨ

0
a|Z=0

γ1a,2 = 20
(
ηag

2
a,∞∂x∂

3
ZΨ

1
a|Z=0 + g3a,∞∂x∂

2
ZΨ

0
a|Z=0

)

+ 2
[
∂5Z
{
Ψ0

a,Θ
0
a

}
x,Z

]′
|z=0.

(3.40)

where {·, ·}x,Z denotes the Poisson bracket

{f, g}x,Z = ∂xf∂ZG− ∂Zf∂xg.
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Let us now prove the two previous Lemmas:

Proof of Lemma 3.4.3. We have

∂

∂t
∆2θ′ = (1−G)∂2xθ

′ − 4∂zG∂z∂
3
xψ − 2∂2zG∂

3
xψ −

4∑

k=1

(
4
k

)
∂kzG∂x∂

4−k
z ψ (3.41)

+∆2(∂zψ∂xθ
′)′ −∆2(∂xψ∂zθ

′)′.

We now take the trace of the above equation at z = 0, recalling that G(z = 0) = ∂zG(z = 0) = 0,
ψ|z=0 = ∂zψ|z=0 = 0, and θ′|z=0 = ∂zθ

′|z=0 = 0. We obtain

d

dt
γ0bot =− 6∂2zG|z=0∂x∂

2
zψ|z=0

+ 6
(
∂3zψ|z=0∂x∂

2
zθ

′|z=0

)′
+ 4

(
∂2zψ|z=0∂x∂

3
zθ

′|z=0

)′

− 6
(
∂x∂

2
zψ|z=0∂

3
zθ

′|z=0

)′ − 4
(
∂x∂

3
zψ|z=0∂

2
zθ

′|z=0

)′
.

(3.42)

We then estimate each term in the right-hand side using Lemma 3.4.1. Note that ∂2zG|z=0 is
bounded in L∞(R+ × (0, 1)). We focus on the first term, which has the smallest decay. Using
Theorem 3.1 in Chapter 1 of [LM12], we infer that for any s > 0,

∥∂x∂2zψ|z=0∥Hs ≤ ∥∂2zψ|z=0∥Hs+1 ≲ ∥ψ∥3/8
L2

zH
β
x
∥∂4zψ∥5/8L2

xH
γ
x
,

where β, γ are such that 3
8β + 5

8γ = s+ 1. In view of Lemma 3.4.1, we take β = 10. As for the
other term, we have, if γ ∈ (9, 11)

∥∂4zψ∥L2
xH

γ
x
≲ ∥θ∥Hγ+1

x L2
z
≲ ∥∂10x θ∥

11−γ
2

L2 ∥∂12x θ∥
γ−9
2

L2 ≲ B(1 + t)−
11−γ

2 +2 γ−9
2 ≲ B(1 + t)

3γ−29
2 .

We infer that
∥∂x∂2zψ|z=0∥Hs ≲ B(1 + t)−

3
4+

5
16 (3γ−29).

We then choose s so that the exponent of (1 + t) in the right-hand side is strictly less than −1,
which leads to γ < 47/5, and thus s < 69/8.

The quadratic terms, involving traces of derivatives of ψ and of θ′, have a higher decay. Let
us estimate for instance ∂3zψ∂x∂2zθ′ at z = 0. We have, for any s > 1/2,

∥∂3zψ|z=0∂x∂
2
zθ

′|z=0∥Hs(T) ≲∥∂3zψ|z=0∥L∞(T)∥∂x∂2zθ′|z=0∥Hs(T)

+ ∥∂3zψ|z=0∥Hs(T)∥∂x∂2zθ′|z=0∥L∞(T).

It follows from the bootstrap assumptions (3.35) that

∥∂3zψ∥∞ ≲ ∥∂4z∂xψ∥L2 ≲ ∥∂2xθ′∥L2 ≲ B(1 + t)−9/8,

∥∂x∂2zθ′∥L∞(T) ≲ B(1 + t)−1/2.
(3.43)

Using once again Theorem 3.1 in Chapter 1 of [LM12], we have

∥∂x∂2zθ′|z=0∥H19/2(T) ≲ ∥θ′∥3/8H12
x L2

z
∥∂4zθ′∥5/8H8

xL
2
z

≲ ∥∂8x∆2θ′∥L2 ≲ B,
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while
∥∂3zψ|z=0∥Hs(T) ≲ ∥ψ∥1/8

L2
zH

β
x
∥∂4zψ∥7/8L2

zH
γ
x
≲ ∥ψ∥1/8

L2
zH

β
x
∥θ′∥7/8

L2
zH

γ+1
x

,

with 1
8β + 7

8γ = s. Taking β = 10 and γ = 9, we obtain, for some s > 9,

∥∂3zψ|z=0∂x∂
2
zθ

′|z=0∥Hs(T) ≲ B
2(1 + t)−9/8.

The other terms are treated in a similar fashion. The estimate on γ0a follows.
The estimate for γ1a follows from a similar argument. Taking the vertical derivative of (3.41),

we have

∂

∂t
∂z∆

2θ′ = (1−G)∂z∂
2
xθ

′ −
3∑

k=1

(
3
k

)
∂kzG∂

3−k
z ∂3xψ −

5∑

k=1

(
5
k

)
∂kzG∂x∂

5−k
z ψ

+∂z∆
2(∂zψ∂xθ

′)′ −∆2(∂xψ∂zθ
′)′.

Taking the trace of the above equation at z = 0, we obtain

d

dt
γ1bot =− 10∂2zG|z=0∂x∂

3
zψ|z=0 − 10∂3zG|z=0∂x∂

2
zψ|z=0

+ 6∂2x
(
∂2zψ|z=0∂x∂

2
zθ

′|z=0 − ∂x∂
2
zψ|z=0∂

2
zθ

′|z=0

)

+ 10
(
∂3zψ|z=0∂x∂

3
zθ

′
z=0 + ∂4zψz=0∂x∂

2
zθ

′|z=0

)′
+ 5

(
∂2zψ|z=0∂x∂

4
zθ

′
z=0

)′

− 10
(
∂x∂

3
zψ|z=0∂

3
zθ

′|z=0 + ∂x∂
4
zψz=0∂

2
zθ

′|z=0

)′ − 5
(
∂x∂

2
zψ|z=0∂

4
zθ

′|z=0

)′
.

The highest order term is the first one. We recall that ∂2z and ∂3zG are uniformly bounded in
L∞, and that the trace of ∂3zψ in Hs is evaluated thanks to (3.43). Following the same argument
as above, we find that

∥∂x∂3zψ|z=0∥Hs ≲ B(1 + t)−
1
4+

7(3γ−29)
16 ,

where γ is such that 1
810 +

7
8γ = s+ 1. Hence the exponent of (1 + t) is strictly less than −1 if

and only if s < 8+ 5
24 . Once again, the quadratic terms have a higher decay and can be handled

as perturbations. The trace of ∂4zθ′|z=0 can estimated thanks to γ0bot. We then obtain the desired
estimate for γ1a.

Let us now address the convergence of ∂kzG(t)|∂Ω as t→ ∞. We recall that

∂t∂
k
zG(t, z = 0) =− ∂k+1

z u · ∇θ′z=0

=∂k+1
z ∂zψ∂xθ′ − ∂xψ∂zθ′|z=0.

Since ψ|z=0 = ∂zψ|z=0 = 0, and θ′|z=0 = ∂zθ
′|z=0 = 0, we have

∂t∂
2
zG(t, z = 0) = 3∂2zψ|z=0∂x∂2zθ

′|z=0 − ∂x∂2zψ|z=0∂2zθ
′|z=0.

As above,
∥∂2zψ|z=0∂x∂

2
zθ

′|z=0∥L1(T) ≤∥∂2zψ|z=0∥L2(T)∥∂x∂2zθ′|z=0∥L2(T)

≲∥∂2zψ∥H1/2(Ω)∥∂x∂2zθ′∥H1/2(Ω)

≲∥∂2xθ′0∥H4(Ω)(1 + t)−7/4.

The estimate on ∂t∂3zG(t, z = 0) is similar and left to the reader.
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We now turn towards the decomposition of γ0a and γ1a for a ∈ {top,bot}:

Proof of Lemma 3.4.5. We focus on a = bot by symmetry, and we start with the decomposition
of γ0bot. Let us go back to (3.42). The main term in the right-hand side is −6∂2zG|z=0∂x∂

2
zψ|z=0.

Following Lemma 3.4.3 and using the decomposition θ′ = θBL + θint, we write

∂2zG|z=0∂x∂
2
zψ|z=0 = (1 + t)−3/2g2bot,∞∂x∂

2
ZΨ

0
bot|Z=0 + (1 + t)−7/4g2bot,∞∂x∂

2
ZΨ

1
bot|Z=0

+
∑

j=2,3

(1 + t)−
3
2−

j
4 ∂2zG|z=0∂x∂

2
ZΨ

j
bot|Z=0

+
∑

j=0,1

(1 + t)−
3
2−

j
4

(
∂2zG|z=0 − g2bot,∞

)
∂x∂

2
ZΨ

j
bot|Z=0

+∂2zG|z=0∂x∂
2
zψ

int|z=0.

The assumptions of the Lemma ensures that for all t ∈ [0, T ],
∣∣∣∣∣∣
∑

j=2,3

(1 + t)−
3
2−

j
4 ∂2zG|z=0∂x∂

2
ZΨ

j
bot|Z=0

∣∣∣∣∣∣
≲ B∥∂2zG∥∞(1 + t)−2,

∥∥∂2zG|z=0∂x∂
2
zψ

int|z=0

∥∥
L2(T) ≲ ∥∂2zG∥∞B(1 + t)−3+ 1

2+
1
8 ≲ B∥∂2zG∥∞(1 + t)−2.

Recalling that ∥∂2zG∥∞ ≲ ∥θ0∥H8 ≲ B, the two terms in the right-hand side are bounded by
B2(1 + t)−2. Furthermore, Lemma 3.4.3 ensures that

∣∣∂2zG|z=0 − g2bot,∞
∣∣ ≲ B(1 + t)−3/4,

and therefore
∥∥∥∥∥∥
∑

j=0,1

(1 + t)−
3
2−

j
4

(
∂2zG|z=0 − g2bot,∞

)
∂x∂

2
ZΨ

j
bot|Z=0

∥∥∥∥∥∥
L2(T)

≲ B2(1 + t)−9/4.

We now address the quadratic terms in (3.42), namely

B(ψ, θ′) := 6
{
∂2zψ|z=0, ∂

2
zθ

′}′ + 4(∂2zψ∂x∂
3
zθ

′ − ∂x∂
3
zψ∂

2
zθ

′)′|z=0.

Decomposing ψ and θ′ into their boundary layer and their interior part, we find that the main
order quadratic term is

(1 + t)−7/4
[
6∂3ZΨ

0
bot∂x∂

2
ZΘ

0
bot + 4∂2ZΨ

0
bot∂x∂

3
ZΘ

0
bot − 6∂x∂

2
ZΨ

0
bot∂

3
ZΘ

0
bot − 4∂x∂

3
ZΨ

0
bot∂

2
ZΘ

0
bot

]′ |z=0

=: (1 + t)−7/4γ0bot,NL,

while all the other terms are bounded in L2(T) by CB2(1 + t)−2.

Therefore, we set

γ0a,2 := 12g2a,∞∂x∂
2
ZΨ

0
a|Z=0, γ0a,3 := 8g2a,∞∂x∂

2
ZΨ

1
a|Z=0 −

4

3
γ0a,NL.
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Now, define Γ0
bot,T by

Γ0
bot,T (t) = 6

ˆ T

t

∑

j=2,3

(1 + s)−
3
2−

j
4 ∂2zG(s)|z=0∂x∂

2
ZΨ

j
bot|Z=0 ds

+6

ˆ T

t

∑

j=0,1

(1 + s)−
3
2−

j
4

(
∂2zG(s)|z=0 − g2bot,∞

)
∂x∂

2
ZΨ

j
bot|Z=0 ds

+

ˆ T

t

B




3∑

j=1

(1 + s)−2− j
4Ψj

bot(x, (1 + s)1/4) + ψrem, θ
′(s)


 ds

+

ˆ T

t

B


(1 + s)−2Ψ0

bot(x, (1 + s)1/4),

3∑

j=1

(1 + s)−1− j
4Θj

bot(x, (1 + s)1/4) + θrem


 ds.

Note that the assumptions (3.34) on θint ensure that

∥∂3zθrem|z=0∥L2 ≲ ∥θrem∥1/8L2 ∥∂4zθrem∥7/8L2 ≲ B(1 + t)−1/4.

Recalling Corollary 3.4.2 and using the assumption ∂3ZΘ
j
a|Z=0 ∈ H15/2(T) (see (3.39)), we also

infer that
∥∂3zθrem|z=0∥H15/2 ≲ B(1 + t)−1/8.

Interpolating between these two estimates, we find in particular that

∥∂3zθrem|z=0∥H5 ≲ B(1 + t)− 11/24.

The above estimates ensure that for k = 0, 1

∥∥∂kt Γ0
bot,T (t)

∥∥
L2(T) ≲ B

2(1 + t)−k−1,
∥∥Γ0

bot,T (t)
∥∥
H4(T) ≲ B

2(1 + t)−23/24.

Therefore we obtain the decomposition announced in the Lemma for γ0a.
The decomposition of γ1a follows from similar arguments and is left to the reader.

3.4.4 Iterative construction of the boundary layer profile

Let us now turn towards the construction of the boundary layer profile, and more generally, of an
approximate solution. The purpose of this subsection is to prove the two following Lemmas. Our
first result, which is truly the core of the construction, is valid under the bootstrap assumption
(3.35) on θ′:

Lemma 3.4.8. Let θ0 ∈ H14(Ω) such that ∥θ0∥H14 ≤ B < 1. Let θ = θ′ + θ̄ be a solution of
(3.5), and assume that the bounds (3.35) hold on (0, T ). Let γ0a,T , γ1a,T be defined by Lemma
3.4.3.

Then there exist profiles Θj
a ∈ H8(T×R+), Ψj

a ∈ H9(T×R+), j ∈ {0, · · · , 4} and θc ∈ H9(Ω),
depending only on γ0a,T , γ

1
a,T , g

2
a,∞ and g3a,∞, such that, defining θBL by (3.37), the following

properties hold:

1. Bounds on the profiles: Θj
a, Ψj

a, θlinc , ψlin
c = ∆−2∂xθc satisfy (3.38);
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2. Traces at the top and bottom: at z = 0,

∆2θBL|z=0 = γ0bot,T + γ0bot,2(1 + t)−1/2 + γ0bot,3(1 + t)−3/4

−γ0bot,2(1 + T )−1/2 − γ0bot,3(1 + T )−3/4,

∂z∆
2θBL|z=0 = γ1bot,T + γ1bot,1(1 + t)−1/4 + γ1bot,2(1 + t)−1/2

−γ1bot,1(1 + T )−1/4 − γ1bot,2(1 + t)−1/2,

where γja,k are defined in (3.40). Similar formulas hold at z = 1.

3. Evolution equation: θBL satisfies

∂tθ
BL = (1−G)∂2x∆

−2θBL −
(
∇⊥∆−2∂xθ

BL · ∇θBL)′ +RBL,

and the remainder RBL is such that for all k,m ≥ 0 with k +m ≤ 8,

∥RBL∥Hm
x Hk

z
≲ B2(1 + t)−3+ k

4− 1
8 .

Remark 3.4.9. Actually, all profiles Θj
a,Ψ

j
a, and therefore θBL, ψBL depend on T through

γ0a,T , γ
1
a,T . However, in order not to burden unecessarily the notation, we will omit this de-

pendency.

Once the boundary layer part is constructed, under an additional bootstrap assumption on
the remainder, we can define a nonlinear corrector:

Lemma 3.4.10. Let θ0 ∈ H14(Ω) such that ∥θ0∥H14 ≤ B < 1. Let θ = θ′ + θ̄ be a solution of
(3.5), and assume that the bounds (3.35) hold on (0, T ).

Let θBL, ψBL be given by Lemma 3.4.8, and let θrem = θ′ − θBL. Assume that (3.34) holds
on (0, T ), and define Γj

a,T as in Lemma 3.4.5.
Then there exists θNL

c ∈ H8(Ω) such that

∆2σNL
lift |z=0 = Γ0

bot,T , ∂z∆
2σNL

lift |z=0 = Γ1
bot,T ,

∆2σNL
lift |z=1 = Γ0

top,T , ∂z∆
2σNL

lift |z=1 = Γ1
top,T

and for all k,m ≥ 0 with k +m ≤ 8

∥σNL
lift ∥Hm

x Hk
z
≲ B2(1 + t)−2+ k

4− 1
8 .

As a consequence, setting θapp := θBL + σNL
lift , we have

∆2θapp = ∆2θ′, ∂z∆
2θapp = ∂z∆

2θ′ on ∂Ω,

and θapp is a solution of

∂tθ
app = (1−G)∂2x∆

−2θapp −
(
∇⊥∆−2∂xθ

app · ∇θapp
)′
+ Srem,

and the remainder Srem is such that for all k,m ≥ 0 with k +m ≤ 8,

∥Srem∥Hm
x Hk

z
≲ B2(1 + t)−3+ k

4− 1
8 .
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The main part of this section will be devoted to the proof of Lemma 3.4.8. The strategy will
be very similar to the one of Section 3.3, and we will often refer the reader to the computations
therein. We begin with the construction of the profiles Θj

a, Ψj
a. To that end, we plug the Ansatz

(3.37) into equation (3.5) and identify the powers of 1+ t in the vicinity of z = 0 or z = 1. Note
that for z ≪ 1, setting Z = (1 + t)1/4z and using Lemma 3.4.3,

G(t, z) =
1

2
∂2zG(t, 0)z

2 +
1

6
∂3zG(t, 0)z

3 +O(z4)

= (1 + t)−1/2
g2bot,∞

2
Z2 + (1 + t)−3/4

g3bot,∞
6

Z3

+O((1 + t)−1Z4 + (1 + t)−5/4(Z2 + Z3)).

(3.44)

A similar expansion holds in the vicinity of z = 1. Furthermore, in the vicinity of z = 0, setting
S = −(∇⊥ψ · ∇θ′)′,

S =
∑

0≤i,j≤4

(1 + t)−3− i+j−1
4

(
∂ZΨ

i
bot∂xΘ

j
bot − ∂xΨ

i
bot∂ZΘ

j
bot

)′
+O((1 + t)−15/4). (3.45)

Following the computations of the previous section and identifying the coefficient of (1+ t)−2− j
4 ,

we obtain (compare with (3.31))

−
(
1 +

j

4

)
Θj

a +
1

4
Z∂ZΘ

j
a = ∂xΨ

j
a + Sj

a, (3.46)

where the source terms Sj
a are defined by

S0
a = S1

a = 0,

S2
a = −g

2
a,∞
2

Z2∂xΨ
0
a,

S3
a = −g

2
a,∞
2

Z2∂xΨ
1
a − ηa

g3a,∞
6

Z3∂xΨ
0
a + ηa

(
∂ZΨ

0
a∂xΘ

0
a − ∂xΨ

0
a∂ZΘ

0
a

)′
,

(3.47)

with ηbot = 1, ηtop = −1.
Let us now proceed to define recursively the profiles Θj

a,Ψ
j
a.

Main order boundary layer terms: Θ0
a and Θ1

a. The roles of the boundary layer profiles
Θj

a for j = 0, 1 is to correct the traces of ∆2θ′ and ∂z∆
2θ′ on ∂Ω at main order, i.e. γja,T (see

Lemma 3.4.5). Choosing Sj
a = 0 and Ψj

a such that ∂4ZΨ
j
a = ∂xΘ

j
a and recalling (3.46), we are led

to 



Z∂5ZΘ
0
a = 4∂2xΘ

0
a in T× (0,+∞)

∂4ZΘ
0
a|Z=0 = γ0a,T , ∂5ZΘ

0
a|Z=0 = 0,

Θ0
a|Z=0 = 0, ∂ZΘ

0
a|Z=0 = 0, limZ→∞ Θ0

a = 0,

and 



Z∂6ZΘ
1
a = 4∂2x∂ZΘ

1
a in T× (0,+∞)

∂4ZΘ
1
a|Z=0 = 0, ∂5ZΘ

1
a|Z=0 = ηaγ

1
a,T ,

Θ1
a|Z=0 = 0, ∂ZΘ

1
a|Z=0 = 0, limZ→∞ Θ1

a = 0.
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Note that these systems are identical to (3.26) and (3.27) respectively. As a consequence, as in
the previous section, we find that

Θ0
a(x, Z) =

∑

k∈Z\{0}
|k|−2γ̂0a,T (k)χ0(|k|1/2Z)eikx,

Ψ0
a(x, Z) =

∑

k∈Z\{0}

1

ik|k|2 γ̂
0
a,T (k)

[
1

4
|k|1/2Zχ′

0(|k|1/2Z)− χ0(|k|1/2Z)
]
eikx,

(3.48)

where χ0 is defined in Corollary 3.3.2. Since ∥γ0a,T ∥Hs ≲ ∥θ0∥H14 +B2 for all s < 69/8, it follows
that

∥Θ0
a∥

H
10+ 3

4
x L2

Z

+ ∥Θ0
a∥

L2
xH

20+ 3
2

Z

≲ ∥θ0∥H14 +B2,

∥Ψ0
a∥

H
11+ 3

4
x L2

Z

+ ∥Ψ0
a∥

L2
xH

22+ 3
2

Z

≲ ∥θ0∥H14 +B2.

In a similar fashion, recalling the definition of χ1 from Corollary 3.3.2,

Θ1
a(x, Z) = ηa

∑

k∈Z\{0}
|k|−5/2γ̂1a,T (k)χ1(|k|1/2Z)eikx,

Ψ1
a(x, Z) = ηa

∑

k∈Z\{0}

1

ik|k|5/2 γ̂
1
a,T (k)

[
1

4
|k|1/2Zχ′

1(|k|1/2Z)− χ1(|k|1/2Z)
]
eikx.

(3.49)

Since ∥γ1a,T ∥H15/2 ≲ ∥θ0∥H14 +B2, we also have

∥Θ1
a∥

H
10+ 1

4
x L2

Z

+ ∥Θ1
a∥

L2
xH

20+ 1
2

Z

≲ ∥θ0∥H14 +B2,

∥Ψ1
a∥

H
11+ 1

4
x L2

Z

+ ∥Ψ1
a∥

L2
xH

22+ 1
2

Z

≲ ∥θ0∥H14 +B2.

Let us now define the boundary terms γ0a,j and γ1a,j by (3.40). It follows from the above expres-
sions for Ψj

a and Θj
a and from the boundary conditions χ0(0) = χ′

0(0) = 0 that

∥γ0a,2∥H9(T) ≲ B
2, ∥γ0a,3∥H15/2(T) ≲ B

2,

∥γ1a,1∥H17/2(T ) ≲ B
2, ∥γ1a,2∥H7(T) ≲ B

2.
(3.50)

In a similar fashion, defining the source terms S2
a, S3

a by (3.47), we have

∥S2
a∥

H
11+ 1

4
x L2

Z

+ ∥S2
a∥

L2
xH

22+ 1
2

Z

≲ B2,

∥S3
a∥

H
9+ 3

4
x L2

Z

+ ∥S3
a∥

L2
xH

18+ 3
2

Z

≲ B2.
(3.51)

Note however that because of the quadratic term {Ψ0
a,Θ

0
a}x,Z , S3

a does not have the same self-
similar structure as Ψj

a,Θ
j
a for j = 0, 1, which is also shared by S2

a.

Correctors Θ0
c,a and Θ1

c,a. We recall that the coefficients γja,k are defined by (3.40), and are
estimated in (3.50) above. The terms γ0a,2(1 + T )−1/2 and γ0a,3(1 + T )−3/4 in Lemma 3.4.5 are
constant in time, but smaller (for T ≫ 1) than γ0a,T . Hence they give rise to a profile Θ0

c,a whose
construction is very similar to the one of Θ0

a, but whose size is much smaller. More precisely, we
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set

Θ0
c,a(x, Z) =

∑

k∈Z\{0}
|k|−2

[
γ̂0a,2(k)(1 + T )−1/2 ++γ̂0a,3(k)(1 + T )−3/4

]
χ0(|k|1/2Z)eikx,

Θ1
c,a(x, Z) = ηa

∑

k∈Z\{0}
|k|−5/2

[
γ̂1a,1(k)(1 + T )−1/4 + γ̂1a,2(1 + T )−1/2

]
χ1(|k|1/2Z)eikx.

Remembering (3.50), we have, for j = 0, 1

∥Θj
c,a∥H9+ 3

4 x
L2
Z
+ ∥Θj

c,a∥
L2

xH
18+ 3

2
Z

≲ B2(1 + T )−
1
2+

j
4 ,

and
∥∂2ZΘj

c,a|Z=0∥H17/2(T) ≲ B
2(1 + T )−

1
2+

j
4 .

Analogously to Ψ0
a and Ψ1

a, we also define

Ψ0
c,a =

∑

k∈Z\{0}

1

ik|k|2
[
γ̂0a,2(k)(1 + T )−1/2 ++γ̂0a,3(k)(1 + T )−3/4

](1

4
ξχ′

0(ξ)− χ0(ξ)

)
|ξ=|k|1/2Ze

ikx,

Ψ1
c,a = ηa

∑

k∈Z\{0}

1

ik|k|5/2
[
γ̂1a,1(k)(1 + T )−1/4 + γ̂1a,2(1 + T )−1/2

](1

4
ξχ′

1(ξ)− χ1(ξ)

)
|ξ=|k|1/2Ze

ikx,

so that ∂4ZΨ
j
c,a = ∂xΘ

j
c,a, and we have

∥Ψj
c,a∥H10+ 3

4 x
L2
Z
+ ∥Ψj

c,a∥
L2

xH
20+ 3

2
Z

≲ B2(1 + T )−
1
2+

j
4 .

Lower order boundary layer terms: Θ2
a, Θ3

a and Θ2
c,a. We recall that Θj

a, Ψj
a must satisfy

(3.46), where the source term Sj
a is given by (3.47). Note that since Ψ0

a, Ψ1
a and Θ0

a have been
constructed in the previous step, the source terms S2

a and S3
a are defined unequivocally and have

exponential decay. Moreover, following Lemma 3.4.5 and noting that

∆2θBL|z=0 =

3∑

j=0

(1 + t)−j/4∂4ZΘ
j
bot|Z=0 + 2

3∑

j=0

(1 + t)−
1
2−

j
4 ∂2x∂

2
ZΘ

j
bot|Z=0 +O((1 + t)−1),

we enforce the following boundary conditions:

∂4ZΘ
2
a|Z=0 = γ0a,2 − 2∂2x∂

2
ZΘ

0
a|Z=0, ∂5ZΘ

2
a|Z=0 = ηa

(
γ1a,1 − 2∂2x∂

3
ZΘ

0
a|Z=0

)
,

∂4ZΘ
3
a|Z=0 = γ0a,3 − 2∂2x∂

2
ZΘ

1
a|Z=0, ∂5ZΘ

3
a|Z=0 = ηa

(
γ1a,2 − 2∂2x∂

3
ZΘ

1
a|Z=0

)
,

(3.52)

where the coefficients γja,k are defined in (3.40) and estimated in (3.50). There remains to specify
the relationship between Ψj

a and Θj
a. In order that ∆2ψBL = ∂xθ

BL at main order, following the
computations of the previous section, we take, for j = 2, 3

∂4ZΨ
j
a + 2∂2x∂

2
ZΨ

j−2
a = ∂xΘ

j
a.
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Eliminating Ψ2
a from the equation on Θ2

a, we find that the system satisfied by Θ2
a is





Z∂5ZΘ
2
a − 2∂4ZΘ = 4∂2xΘ

2
a − 2g2bot,∞∂

4
Z(Z

2∂xΨ
0
a)− 8∂3x∂

2
ZΨ

0
a,

Θ2
a|Z=0 = ∂ZΘ

2
a|Z=0 = 0,

Θ2
a(Z) → 0 as Z → ∞,

(3.53)

together with (3.52). Note that 2∂x∂
2
ZΨ

0
a|Z=0 = −∂2ZΘ0

a|Z=0 and 4∂x∂
3
ZΨ

0
a|Z=0 = ∂3ZΘ

0
a|Z=0, so

that the boundary conditions are redundant. In other words, taking the trace of (3.53) at Z = 0,
we find ∂4ZΘ

2
a|Z=0 = γ0a,2 − 2∂2x∂

2
ZΘ

0
a|Z=0. Differentiating twice more with respect to Z, we find

that the Fourier transform of ∂2ZΘ
2
a, after a suitable lifting, satisfies an equation of the form

(3.28) with boundary conditions of the type (iii) from Lemma 3.3.1. Using the explicit Fourier
representation of Ψ0

a and Θ0
a (3.48), we find that

∥Θ2
a∥

H
9+ 3

4
x L2

Z

+ ∥Θ2
a∥

L2
xH

19+ 3
2

Z

≲ B, ∥Ψ2
a∥

H
10+ 3

4
x L2

Z

+ ∥Ψ2
a∥

L2
xH

20+ 3
2

Z

≲ B.

In a similar fashion, Θ3
a satisfies the system





Z∂5ZΘ
3
a − 3∂4ZΘ

3
a = 4∂2xΘ

3
a + 4∂4ZS

3
a + 6∂2x∂

2
ZΘ

1
a − 2Z∂2x∂

3
ZΘ

1
a,

Θ3
a|Z=0 = ∂ZΘ

3
a|Z=0 = 0,

Θ3
a(Z) → 0 as Z → ∞,

together with (3.52). Once again, we find that the lifted Fourier transform of ∂3ZΘ
3
a satisfies an

equation of the form (3.28) with boundary conditions of the type (iv) from Lemma 3.3.1. Using
the explicit Fourier representation of Θ1

a (3.49) together with the estimates on S3
a (3.51), we find

that

∥Θ3
a∥

H
9+ 1

4
x L2

Z

+ ∥Θ3
a∥

L2
xH

19+ 1
2

Z

≲ ∥θ0∥H14 +B2, ∥Ψ3
a∥

H
10+ 1

4
x L2

Z

+ ∥Ψ3
a∥

L2
xH

20+ 1
2

Z

≲ ∥θ0∥H14 +B2.

Note that the Fourier representation of Θ2
a and of the linear part of Θ3

a also ensure that for
j = 2, 3,

∥∂2ZΘj
a|Z=0∥H8(T) + ∥∂3ZΘj

a|Z=0∥H15/2(T) ≲ ∥θ0∥H14 +B2. (3.54)

Eventually, we define Θ2
c,a analogously to Θ2

a so that





Z∂5ZΘ
2
c,a − 2∂4ZΘ

2
c,a = 4∂2xΘ

2
c,a − 8∂3x∂

2
ZΨ

0
c,a,

Θ2
c,a|Z=0 = ∂ZΘ

2
c,a|Z=0 = ∂2ZΘ

2
c,a|Z=0 = 0,

∂jZΘ
2
c,a|Z=0 = −2(−1)j∂2x∂

j−2
Z Θ0

c,a|Z=0 ∀j ∈ {4, 5},
Θ2

c,a(x, Z) → 0 as Z → ∞.

Once again, note that the boundary conditions are redundant. We also define Ψ2
c,a by ∂4ZΨ

2
c,a =

∂xΘ
2
c,a − 2∂2x∂

2
ZΨ

2
c,a, with homogeneous boundary conditions at Z = 0. We obtain

∥Θ2
c,a∥

H
8+ 3

4
x L2

Z

+ ∥Θ2
c,a∥

L2
xH

16+ 3
2

Z

+ ∥ZΘ2
c,a∥H9+ 1

4 x
L2
Z
≲ B2(1 + T )−

1
2 ,

∥Ψ2
c,a∥

H
9+ 3

4
x L2

Z

+ ∥Ψ2
c,a∥

L2
xH

18+ 3
2

Z

≲ B2(1 + T )−
1
2 .
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Boundary layer corrector Θ4
a. As in the previous section, we need to define a higher order

boundary layer corrector Θ4
a, whose role is to ensure that
∥∥∂2x∆−2θBL − ∂xψ

BL∥∥
L2 ≲ B(1 + t)−3.

To that end, we choose Θ4
a, Ψ4

a so that

∂4ZΨ
4
a + 2∂2x∂

2
ZΨ

2
a + ∂4xΨ

0
a = ∂xΘ

4
a,

Z∂ZΘ
4
a − 8Θ4

a = 4∂xΨ
4
a.

Eliminating Ψ4
a from the equation, we find

Z∂5ZΘ
4
a − 4∂4ZΘ

4
a = 4∂2xΘ

4
a − 8∂3x∂

2
ZΨ

2
a − 4∂5xΨ

2
a.

We enforce the following boundary conditions (which are redundant):

Θ4
a|Z=0 = ∂ZΘ

4
a|Z=0 = 0, ∂4ZΘ

4
a|Z=0 =

1

2
∂3x∂

2
ZΨ

2
a|Z=0, ∂5ZΘ

4
a|Z=0 =

2

3
∂3x∂

3
ZΨ

2
a|Z=0,

together with a decay assumption at infinity. Looking at the equation satisfied by the Fourier
transform and applying Lemma 3.3.1, we infer that there exists a (non unique) solution Θ4

a of
this equation such that

∥Θ4
a∥

H
8+ 3

4
x L2

Z

+ ∥Θ4
a∥

L2
xH

16+ 3
2

Z

+ ∥ZΘ4
a∥

H
9+ 1

4
x L2

Z

≲ ∥θ0∥H14 +B2.

As in the previous section, non-uniqueness comes from the fact that the Fourier transform of
∂4ZΘ

4
a satisfies an ODE of the form (3.28), with boundary conditions at Z = 0 for ∂4ZΘ

4
a and

∂5ZΘ
4
a. However, the boundary conditions above do not prescribe any condition on ∂kZΘ

4
a for any

k ≥ 6. We lift this indetermination by requiring (somewhat arbitrarily) that ∂8ZΘ
4
a|Z=0 = 0. The

solution thus obtained satisfies the previous Sobolev estimates, and its trace satisfies

∥∂2ZΘ4
a|Z=0∥H15/2(T) + ∥∂3ZΘ4

a|Z=0∥H7(T) ≲ ∥θ0∥H14 +B2. (3.55)

Lift of the remaining traces of order B. At this stage, we have defined Θj
a, Ψj

a for 0 ≤ j ≤ 4
together with Θj

c,a, Ψj
c,a for 0 ≤ j ≤ 2. Let χ ∈ C∞

c (R) be a cut-off function such that χ ≡ 1

on (−1/4, 1/4) and Suppχ ⊂ (−1/2, 1/2). Setting Θj
c,a = Ψj

c,a = 0 for j ≥ 3, the main boundary
layer term is given by

θBL
main :=

4∑

j=0

(1 + t)−1− j
4

(
Θj

bot +Θj
c,bot

)
(x, (1 + t)1/4z)χ(z)

+

4∑

j=0

(1 + t)−1− j
4

(
Θj

top +Θj
c,top

)
(x, (1 + t)1/4(1− z))χ(1− z),

ψBL
main :=

4∑

j=0

(1 + t)−2− j
4

(
Ψj

bot +Ψj
c,bot

)
(x, (1 + t)1/4z)χ(z)

+

4∑

j=0

(1 + t)−2− j
4

(
Ψj

top +Ψj
c,top

)
(x, (1 + t)1/4(1− z))χ(1− z),
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By construction, we have

∆2θBL
main|z=0 = γ0bot,T + γ0bot,2(1 + t)−1/2 + γ0bot,3(1 + t)−3/4

−γ0bot,2(1 + T )−1/2 − γ0bot,3(1 + T )−3/4

+2(1 + t)−5/4∂2x∂
2
ZΘ

3
bot|Z=0 + 2(1 + t)−3/2∂2x∂

2
ZΘ

4
bot|Z=0,

∂z∆
2θBL

main|z=0 = γ1bot,T + γ1bot,1(1 + t)−1/4 + γ1bot,2(1 + t)−1/2

−γ1bot,1(1 + T )−1/4 − γ1bot,2(1 + t)−1/2

+2(1 + t)−1∂2x∂
3
ZΘ

3
bot|Z=0 + 2(1 + t)−5/4∂2x∂

3
ZΘ

4
bot|Z=0.

Similar formulas hold at z = 1. We first lift the remaining traces thanks to a corrector σlin
lift

which we define in Fourier in the following way. Let ζ4, ζ5 ∈ C∞
c (R) such that ζj(Z) = Zj/j! in

a neighborhood of zero and such that Supp ζj ⊂ (−1/4, 1/4). In order to apply the last estimate
of Lemma 3.3.5, we further choose ζj so that

ˆ ∞

0

Zkζj(Z) dZ = 0 ∀k ∈ {2, 3}. (3.56)

We then take

σ̂lin
lift(t, k, z) = 2

∑

l≥3,j=0,1

(1 + t)−
3
2−

j+l
4 |k|−2−j ̂∂2+j

Z Θl
bot(k)|Z=0ζ4+j(|k|z(1 + t)1/4)

+2
∑

l≥3,j=0,1

(1 + t)−
3
2−

j+l
4 |k|−2−j ̂∂2+j

Z Θl
top(k)|Z=0ζ4+j(|k|(1− z)(1 + t)1/4)

The estimates on the traces Θj
a for j ≥ 2 (see (3.54), (3.55)) ensure that for all k,m ≥ 0 such

that k +m ≤ 10,
∥σlin

lift∥Hm
x Hk

z
≲ (∥θ0∥H14 +B2)(1 + t)−2− 1

8+
k
4 ,

∥∂tσlin
lift∥Hm

x Hk
z
≲ (∥θ0∥H14 +B2)(1 + t)−3− 1

8+
k
4 .

(3.57)

We define an associated corrector ϕlin
lift = ∆−2∂xσ

lin
lift. According to Lemma 3.3.5 and using (3.56),

we have, for all k,m ≥ 0 such that k +m ≤ 13,

∥ϕlin
lift∥Hm

x Hk
z
≲ (∥θ0∥H14 +B2)(1 + t)−3− 1

8+
k
4

∥∂tϕlin
lift∥Hm

x Hk
z
≲ (∥θ0∥H14 +B2)(1 + t)−4− 1

8+
k
4 .

(3.58)

Evaluation of the remainder. Let us now focus on the different remainder terms in the
equation satisfied by θBL

main, in view of defining one last linear corrector.

• Remainder stemming from the nonlinear term: Using Lemma 3.3.4 together with the esti-
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mates on Θj
a, we have, setting Zbot = (1 + t)1/4z, Ztop = (1 + t)1/4(1− z)

∇⊥ψBL
main · ∇θBL

main

=
∑

0≤j,k≤4

(1 + t)−3− k+j−1
4

{
Ψj

bot +Ψj
c,bot,Θ

k
bot +Θk

c,bot

}
x,Z

(x, Zbot)χ(z)

−
∑

0≤j,k≤4

(1 + t)−3− k+j−1
4 {Ψj

top +Ψj
c,top,Θ

k
top +Θk

c,top}x,Z(x, Ztop)χ(1− z)

+O(exp(−c(1 + t)1/5)) in H9(Ω).

In the above expansion, we put aside the terms corresponding to k = j = 0, which are part
of S3

a and are lifted by Θ3
a. If j + k ≥ 1, we claim that for all s ≤ 8,

∥∥∥{Ψj
bot +Ψj

c,bot,Θ
k
bot +Θk

c,top}x,Z(x, (1 + t)1/4z)χ(z)
∥∥∥
Hs
≲ B2(1 + t)

s
4− 1

8 ,

and the same estimate holds for the top boundary layer. For s ≤ 7, the above estimate
follows simply from the estimates on Ψj

a,Θ
j
a. For s = 8, there is a small difficuly rising

from the fact that Θ4
a does not belong to H9

xL
2
Z . For this term, we write

∂ZΨ
j
a∂xΘ

4
a =

∂ZΨ
j
a

Z
Z∂xΘ

4
a.

Since ∂ZΨj
a vanishes at Z = 0, both terms belong to H8(T × R+), and the H8 estimate

follows. We infer that

∇⊥ψBL
main · ∇θBL

main =(1 + t)−11/4{Ψ0
bot,Θ

0
bot}x,Z(x, (1 + t)1/4z)χ(z)

− (1 + t)−11/4{Ψ0
top,Θ

0
top}x,Z(x, (1 + t)1/4(1− z)χ(1− z)

+RNL,

where for all s ∈ [0, 8],
∥RNL∥Hs ≲ B2(1 + t)−3+ s

4− 1
8 .

• Remainder stemming from the Taylor expansion of G: As explained in the construction of
Θ2

a, Θ3
a, when defining the boundary layer term, we replaced G by its Taylor expansion in

the vicinity of z = 0 and z = 1. Recalling (3.44), we have, in the vicinity of z = 0, setting
Z = (1 + t)1/4z,

G∂xψ
BL
main =

1

2(1 + t)1/2
g2bot,∞Z

2∂xψ
BL
main +

1

6(1 + t)3/4
g3bot,∞Z

3∂xψ
BL
main

+O((1 + t)−1(Z2 + Z4)∂xψ
BL
main)

=
1

2(1 + t)5/2
g2bot,∞Z

2∂xΨ
0
bot(x, Z)χ(z)

+(1 + t)−11/4

(
g2bot,∞

2
Z2∂xΨ

1
bot(x, Z) +

g3bot,∞
6

Z3∂xΨ
0
bot(x, Z)

)
χ(z)

+RG,

where the first two terms enter the definition of Θ2
bot and Θ3

bot respectively, and the re-
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mainder term RG satisfies

∥RG∥Hs ≲ B2(1 + t)−3− 1
8+

s
4 ∀s ∈ {0, · · · , 8}.

• Remainder stemming from ψBL−∆−2∂xθ
BL: We now address the fact that ∆2ψBL

main is not
equal to ∂xθBL

main. More precisely, using the definition of Ψj
a, we have, in Ω ∩ {z ≤ 1/2},

∆2ψBL
main − ∂xθ

BL
main = 2

∑

j=3,4

(1 + t)−2− j−2
4 ∂2x∂

2
ZΨ

j
bot(x, (1 + t)1/4z)χ(z)

+
∑

j≥1

(1 + t)−2− j
4 ∂4xΨ

j
bot(x, (1 + t)1/4z)χ(z)

+2
∑

j=1,2

(1 + t)−2− j−2
4 ∂2x∂

2
ZΨ

j
c,bot(x, (1 + t)1/4z)χ(z)

+
∑

j≥0

(1 + t)−2− j
4 ∂4xΨ

j
c,bot(x, (1 + t)1/4z)χ(z)

+O(exp(−c(1 + t)1/5)) in H8(Ω).

A similar expression holds in Ω ∩ {z ≥ 1/2}, replacing bot with top and z with 1 − z.
The exponentially small remainder comes from the commutator of the bilaplacian with
multiplication by χ (see Lemma 3.3.4), and from the estimates on Ψj

a, Ψj
c,a. It follows that

∂xψ
BL
main −∆−2∂2xθ

BL
main =: R∆2 ,

with ∥R∆2∥Hs ≲ (∥θ0∥H14 +B2)(1 + t)−3− 1
8+

s
4 ∀s ∈ {0, · · · , 9}.

Note that the decay of this remainder is similar to the one of RNL and RG, but its order
of magnitude is B. Hence we call it a “linear” remainder, and it cannot be included in a
bootstrap argument. Therefore we will lift it thanks to another (linear) corrector.

• Remainder stemming from σlin
lift: Recalling (3.57), (3.58), we have, setting Rc,lin = ∂tσ

lin
lift −

∆−2∂2xσ
lin
lift,

∥Rc,lin∥Hm
x Hk

z
≲ (∥θ0∥H14 +B2)(1 + t)−3+ k

4− 1
8 ,

∥∥G∆−2∂2xσ
lin
lift
∥∥
Hm

x Hk
z
≲ B2(1 + t)−3+ k

4− 1
8 .

Once again, Rc,lin is a linear remainder, and must be lifted before the bootstrap argument
of the next subsection.

In the remainders above, all terms of order B2(1+t)−3 in L2 will be included in the remainder
for the interior part (see 3.4.5), while the terms of order B(1 + t)−3 will be lifted thanks to a
linear corrector σrem, which we now construct.

Definition of σrem. Let σrem be the solution of

∂tσ
rem = ∂2x∆

−2σrem −R∆2 −Rc,lin,

σrem(t = 0) = 0.
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Note that ∂tσrem|∂Ω = ∂t∂nσ
rem|∂Ω = 0, and therefore σrem|∂Ω = ∂nσ

rem|∂Ω = 0 for all t > 0.
Applying ∆2 to the above equation and taking the trace at z = 0, we have

∂t∆
2σrem|z=0 = −∆2 (R∆2 +Rc,lin) |z=0

= −∂x∆2ψBL
main|z=0 − ∂t∂

4
zσ

lin
lift|z=0

= −2
∑

j≥3

(1 + t)−2− j−2
4 ∂3x∂

2
ZΨ

j
bot|Z=0 + 2

∑

j≥3

2 + j

4
(1 + t)−2− j−2

4 ∂2x∂
2
ZΘ

j
bot|Z=0

= 0.

Hence ∆2σrem|z=0 = 0 for all t ∈ (0, T ). In a similar way, ∂z∆2σrem|z=0 = 0 for all t ∈ (0, T ),
and the same properties hold at z = 1. Applying Proposition 3.2.6, (3.2.4), we infer that

∥∆4σrem∥L2 ≲ ∥θ0∥H14 +B2, ∥∂2x∆2σrem∥L2 ≲ (∥θ0∥H14 +B2)(1 + t)−1,

∥∂4xσrem∥L2 ≲ (∥θ0∥H14 +B2)(1 + t)−2,

∥∂t∂4xσrem∥L2 ≲ (∥θ0∥H14 +B2)(1 + t)−3, ∥∂6x∆−2σrem∥L2 ≲ (∥θ0∥H14 +B2)(1 + t)−3.

Furthermore, looking at the expressions of R∆2 and Rc,lin and recalling the estimates on Ψj
a, we

find that

∥∆4σrem∥
H

3/4
x L2

z
+ ∥∆4σrem∥L2

xH
1
z
≲ ∥θ0∥H14 +B2,

∥z∆4σrem∥H1
xL

2
z(z≤1/2) + ∥(1− z)∆4σrem∥H1

xL
2
z(z≥1/2) ≲ ∥θ0∥H14 +B2.

Conclusion. Let
θBL := θBL

main + σlift
lin + σrem.

Then θBL satisfies the boundary conditions stated in Lemma 3.4.8. Most of the remainder terms
have already been evaluated. There only remains to evaluate the quadratic terms involving σlift

lin
and σrem. We have for instance, for all s ≤ 7,

∥∥∇⊥ψBL
main · ∇σrem

∥∥
Hs ≲ B

2(1 + t)−2+ 1+s
4 (1 + t)−2+ 1

4 ≲ B2(1 + t)−
7
2+

s
4 ,

and for the H8 estimate, we write as before, for z ≤ 1/2,

∂xψ
BL
main∂zσ

rem =
∂xψ

BL
main
z

z∂zσ
rem.

Both terms in the right-hand side belong to H8, and we infer
∥∥∇⊥ψBL

main · ∇σrem
∥∥
H8 ≲ B

2(1 + t)−5/4.

The statement of 3.4.8 follows.

Proof of Lemma 3.4.10. Assume that θrem = θ′ − θBL satisfies (3.34), and define Γj
a, T as in

Lemma 3.4.5. According to Lemma 3.4.5,

∥Γj
a,T (t)∥L2(T) ≲ B

2(1 + t)−1+ j
4 ,

∥∂tΓj
a,T (t)∥L2(T) ≲ B

2(1 + t)−2+ j
4 ,

∥Γj
a,T (t)∥H4(T) ≲ B

2(1 + t)−
23
24+

j
4 .
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We now lift these traces thanks to a corrector σNL
lift , whose definition is similar to the one of σlin

lift,
namely

σ̂NL
lift (t, k, z) =

∑

j=0,1

(1 + t)−1− j
4 |k|−4−jΓ̂j

bot,T (t, k)ζ4+j(|k|z(1 + t)1/4)

+
∑

j=0,1

(1 + t)−1− j
4 |k|−4−jΓ̂j

top,T (t, k)ζ4+j(|k|(1− z)(1 + t)1/4)

where we recall that ζj ∈ C∞
c (R), ζ(Z) = Zj/j! in a neighborhhod of zero, and ζj satisfies (3.56).

It follows from the above estimates and from the formulas that for l = 0, 1,

∥∂ltσNL
lift ∥Hm

x Hk
z
≲ B2(1 + t)−2−l+ k

4− 1
8 if k +m ≤ 9/2,

∥σNL
lift ∥H17/2(Ω) ≲ B

2(1 + t)−1/12,

∥zσNL
lift ∥H19/2(Ω∩{z≤1/2}) + ∥(1− z)σNL

lift ∥H19/2(Ω∩{z≥1/2}) ≲ B
2(1 + t)−1/12.

Furthermore, the function σNL
lift has been designed so that

∆2σNL
lift |z=0 = Γ0

bot(t), ∂z∆
2σNL

lift |z=0 = Γ1
bot(t),

∆2σNL
lift |z=1 = Γ0

top(t), ∂z∆
2σNL

lift |z=1 = Γ1
top(t).

Furthermore, according to Lemma 3.3.5 and using (3.56), we have, for all k,m ≥ 0 such that
k +m ≤ 12,

∥∆−2σNL
lift ∥Hm

x Hk
z
≲ B2(1 + t)−3− 1

8+
k
4

∥∂t∆−2σNL
lift ∥Hm

x Hk
z
≲ B2(1 + t)−4− 1

8+
k
4 .

The statement of Lemma 3.4.10 follows immediately from these estimates and from Lemmas
3.4.5 and 3.4.8.

3.4.5 Boostrap argument for θint

In this subsection, we complete the proof of Theorem 3.1.3 thanks to a bootstrap argument. We
start with an initial data θ0 ∈ H14(Ω), with ∥θ0∥Hs(Ω) ≤ B and θ0 = ∂nθ0 = 0 on ∂Ω. We
assume that B ≤ B0 < 1, where B0 is a small universal constant, so that Theorem 3.1.1 holds.

Let C̄ ≥ 2 be a universal constant to be determined. We define

T1 = sup
{
T > 0, (3.35) holds on (0, T ) with B = C̄∥θ0∥H14

}
.

By continuity, T1 > 0. For any T ∈ (0, T1), we define an associated boundary layer profile θBL
T

(see Lemma 3.4.8 and Remark 3.4.9). We recall that there exists a universal constant C1 such
that for all m, k ≥ 0 with k +m ≤ 8, forall all T ∈ (0, T1),

∥θBL
T ∥Hm

x Hk
z
≤ C1C̄∥θ0∥H14(1 + t)−1+ k

4− 1
8 .

We then introduce a new time

T2 = sup
{
T ∈ (0, T1), θrem = θ′ − θBL

T satisfies (3.34) on (0, T ) with B = 2(1 + C1)C̄∥θ0∥H14

}
.

(3.59)
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On (0, T2), according to Lemma 3.4.10, we construct an approximate solution θapp. We now set
θint = θ′ − θapp = θrem − σNL

lift . Note that we can always choose ∥θ0∥H14 small enough so that for
all t ∈ (0, T2), for 0 ≤ k +m ≤ 8,

∥σNL
lift ∥Hm

x Hk
z
≤ C̄∥θ0∥H14(1 + t)−2+ k

4− 1
8 .

Consequently, θint satisfies (3.34) with B = (3 + 2C1)C̄∥θ0∥H14 on (0, T2).
Our goal is now to prove that T1 = T2 = +∞ for a suitable choice of C̄, provided ∥θ′0∥H14

is sufficiently small. To that end, we check that ∆2θint satisfies the assumptions of Proposition
3.2.6.

By construction (see 3.4.10),

θint = ∂nθ
int = ∆2θint = ∂n∆

2θint = 0 on ∂Ω.

Furthermore, defining the quadratic form

Q(f, g) = −
(
∇⊥∆−2∂xf · ∇g

)′
,

we have, recalling Lemma 3.4.10,

∂tθ
int = (1−G)∂2x∆

−2θint + S1
rem, (3.60)

where
S1
rem = −S0

remQ(θapp + θint, θint) +Q(θint, θapp).

We claim that we have the following estimates on S1
rem:

Lemma 3.4.11 (Estimates on S1
rem). Let T2 be defined by (3.59).

• L2 and H4 estimates: for 0 ≤ s ≤ 4, for all t ∈ [0, T ∗),

∥S1
rem(t)∥Hs ≲ B2 1

(1 + t)3−
s
4
;

• H8 estimate: there exists S2
rem, S

2
⊥ ∈ L∞([0, T ∗), L2(Ω)) such that ∆4S0

rem(t) = S2
rem+S2

⊥,
with

∥S2
rem(t)∥L2 ≲ B2 1

(1 + t)9/8
∀t ∈ [0, T ∗) and

ˆ
Ω

S2
⊥(t)∆

4θrem(t) = 0.

• Estimates on the time derivative: for all t ∈ [0, T ∗),

∥∂tS0
rem(t)∥L2 ≲ B2 1

(1 + t)4
.

Furthermore, there exists S3
rem, S

3
⊥ ∈ L∞([0, T ∗), L2(Ω)) such that ∆2∂tS

0
rem(t) = S3

rem +
S3
⊥, with

∥S3
rem(t)∥L2 ≲ B2 1

(1 + t)3
∀t ∈ [0, T ∗) and

ˆ
Ω

S3
⊥(t)∆

2∂tθrem(t) = 0.
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Proof. We estimate each term separately. The estimates on S0
rem have already been proved in the

previous paragraph. Therefore we focus on the quadratic terms. It follows from the estimates of
Lemmas 3.4.8, 3.4.10 and from the definition of θapp that for s ∈ {0, · · · , 7},

∥∥Q(θapp + θint, θint)
∥∥
Hs ≲ B

2(1 + t)−4+ s+1
4 .

For s = 8, the situation is slightly different, because ∆4Q(θapp + θint, θint) involves derivatives
of order 9 of θint, for which we have no estimate. Therefore we decompose ∆4Q(θapp + θint, θint)
into two parts, writing

∆4Q(θapp + θint, θint) =−
(
∇⊥∆−2∂x(θ

app + θint)
)
· ∇∆4θint

− ∂8z ∇⊥∆−2∂x(θapp + θint) · θint

−
[
∆4,∇⊥∆−2∂x(θ

app + θint) · ∇
]
θint.

It can be easily checked that the term
[
∆4,∇⊥∆−2∂x(θ

app + θint) · ∇
]
θint can be evaluated as

above, and we have
∥∥[∆4,∇⊥∆−2∂x(θ

app + θint) · ∇
]
θint∥∥

L2 ≲ B
2(1 + t)−2+ 9

4 (1 + t)−2+ 1
4 ≲ B2(1 + t)−3/2.

Furthermore, since ⟨∆4θint(t, ·, z)⟩ = 0 for all t, z,
ˆ
Ω

∂8z∇⊥∆−2∂x(θapp + θint) · θint∆4θint = 0.

Eventually, integrating by parts the remaining term,

−
ˆ
Ω

((
∇⊥∆−2∂x(θ

app + θint)
)
· ∇∆4θint)∆4θint

=
1

2

ˆ
Ω

∇ ·
(
∇⊥∆−2∂x(θ

app + θint)
)
|∆4θint|2 = 0.

Therefore, setting

S2
⊥ = −∇⊥∆−2∂x(θ

app + θint) · ∇∆4θint − ∂8z∇⊥∆−2∂x(θapp + θint) · θint,

S2
rem = ∆4Q(θint, θapp)−

[
∆4,∇⊥∆−2∂x(θ

app + θint) · ∇
]
θint,

we obtain the desired H8 estimates.

We now need to estimate the time derivative of S1
rem in L2 and H4. Note that the definition

of T2 (see (3.59)) ensures that

∥∂tθint(t)∥L2 ≤ B(1 + t)−3, ∥∂tθint(t)∥H4 ≤ B(1 + t)−2.

Setting ψint = ∆−2∂xθ
int, it follows that

∥∂tψint∥H3 ≲ B(1 + t)−3, ∥∂tψint∥H7 ≲ B(1 + t)−2.

From there, differentiating with respect to time S1
rem, we obtain the desired estimate in L2. The

only problematic term is ∂t∂xψint∂zθ
app, which we decompose as

∂t∂xψ
int∂zθ

appχ(z) + ∂t∂xψ
int∂zθ

app(1− χ(z)),
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with χ ∈ C∞
c (R) such that χ ≡ 1 in a neighbourhood of zero and χ(z) = 0 for |z| ≥ 1/2. Let us

consider the first term. Recalling that ψint(z = 0) = 0, we write, using the Hardy inequality,

∥∂t∂xψint∂zθ
appχ(z)∥L2 ≤

∥∥∥∥
1

z
∂t∂xψ

int
∥∥∥∥
L2

∥z∂zθappχ(z)∥L∞

≲
∥∥∂t∂x∂zψint∥∥

L2 ∥z∂zθappχ(z)∥L∞

≲ B(1 + t)−3 ×B(1 + t)−1 ≲ B2(1 + t)−4.

The term involving (1− χ(z)) is treated similarly, exchanging the roles of z = 0 and z = 1.
The decomposition of ∆2∂tS

1
rem goes along the same lines as the one of ∆4S1

rem and is left to
the reader.

Conclusion. We apply the operator ∆2 to equation (3.60). We recall that by construction,
∆2θint = ∂n∆

2θint = 0 on ∂Ω. We obtain

∂t∆
2θint = (1−G)∂xθ

int +∆2S1
rem −

4∑

k=1

(
4
k

)
∂kzG∂

4−k
z ∂xψ

int − 2
2∑

k=1

(
2
k

)
∂kzG∂

2−k
z ∂2xψ

int.

Let us now check that the assumptions of Proposition 3.2.6 are satisfied. The decay assumptions
on ∆2S1

rem follow from Lemma 3.4.11. Therefore it suffices to check that the decay of the two
commutator terms (involving derivatives of G) satisfy the desired bounds. We focus on the first
term, which involves the largest number of z-derivatives. By definition of T2 and according to
the bounds of G (see Lemma 3.4.1), we have, for all t ∈ (0, T2), for k ∈ {1, · · · , 4},

∥∥∂kzG∂4−k
z ∂xψ

int(t)
∥∥
L2 ≲ B

2(1 + t)−2,
∥∥∂kzG∂4−k

z ∂xψ
int(t)

∥∥
H4 ≲ B

2(1 + t)
9
8−3+ 1

4 +B2(1 + t)−5/4 ≲ B2(1 + t)−5/4.

Furthermore, for k ∈ {1, · · · , 4},
∥∥∂t∂kzG∂4−k

z ∂xψ
int(t)

∥∥
L2 ≲ B

3(1 + t)
k+3
4 −3− 1

8−3+ 4−k
4 ≲ B2(1 + t)−

17
4 − 1

8 .

According to Proposition 3.2.6, there exists a universal constant C2 such that for all t ∈ (0, T ∗),
setting B = (3 + 2C1)C̄∥θ0∥H14 (see (3.59)),

∥∆2θint(t)∥L2 ≤ C2

(
∥θrem(t = 0)∥H8 +B2

)
(1 + t)−1,

∥∆2θint(t)∥H4 ≤ C2

(
∥θrem(t = 0)∥H8 +B2

)
,

∥∂xθint(t)∥L2 ≤ C2

(
∥θrem(t = 0)∥H8 +B2

)
(1 + t)−2.

(3.61)

There remains to bound ∂tθint and ψint in L2. To that end, we differentiate (3.60) with respect
to time, and we obtain

∂t∂tθ
int = (1−G)∂x∂tψ

int + ∂tS
1
rem − ∂tG∂xψ

int.

The source term ∂tS
1
rem is evaluated in Lemma 3.4.11. As for the commutator term, we have

∥∥∂tG∂xψint∥∥
L2 ≤ ∥∂tG∥L2∥∂xψint∥∞ ≲ B3(1 + t)

3
8−3−2 ≲ B3(1 + t)−4.
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Using Proposition 3.2.6, we find that for any t ∈ (0, T2),

∥∂tθint∥L2 ≤ C2

(
∥θint(t = 0)∥H8 +B2

) 1

(1 + t)3
.

Using equation (3.60),

∥∂xψint(t)∥L2 ≤ C2

(
∥θint(t = 0)∥H8 +B2

) 1

(1 + t)3
∀t ∈ (0, T2).

Grouping these estimates with the ones on σNL
lift from Lemma 3.4.10, we infer that up to a change

of the constant C2, for any t ∈ (0, T2)

∥θrem(t)∥Hs ≤ C2

(
∥θ0∥H8 +B2

)
(1 + t)−2+ s

4 ∀s ∈ {0, · · · , 8},
∥ψrem(t)∥Hs ≤ C2

(
∥θ0∥H8 +B2

)
(1 + t)−3+ s

4 ∀s ∈ {0, · · · , 8},
∥∂tθrem(t)∥Hs ≤ C2

(
∥θ0∥H8 +B2

)
(1 + t)−3+ s

4 ∀s ∈ {0, · · · , 4}.

We now recall thatB = (3 + 2C1)C̄∥θ0∥H14 for some constant C̄ that remains to be chosen. We
want to pick C̄ so that

C2

(
∥∥θ0∥H8 + (3 + 2C1)

2C̄2∥θ0∥2H14

)
≤ (1 + C1)C̄∥θ0∥H14 .

It is sufficient to take Cb such that 2C2 ≤ (1 + C1)C̄, and ∥θ0∥H14 sufficiently small. We then
infer that the bounds within (3.59) are satisfied with B replaced by B/2. It follows that T2 = T1.
From there, recalling the estimates on θBL, we deduce that there exists a universal constant C3

such that for all t ∈ (0, T1), for all k ∈ {4, · · · , 8},

∥∂kxθ′∥L2 ≤ ∥∂kxθBL∥L2 + ∥∂kxθrem∥L2

≤ C3

(
∥θ0∥H14 +B2

) (
(1 + t)−9/8 + (1 + t)

k−8
2

)
.

Similar estimates hold for ∂kz θ′ and ∂5xψ in L2. Hence we further choose the constant C̄ so that

2C3

(
∥θ0∥H14 +B2

)
≤ C̄∥θ0∥H14

provided ∥θ0∥H14 is sufficiently small. We conclude that T1 = +∞. Theorem 3.1.3 follows.

3.5 Appendix: Proof of Lemma 3.3.1

The proof of the Lemma relies on energy estimates in weighted Sobolev spaces, with weights that
grow like exp(cZ4/5) for Z ≫ 1. Unfortunately, we have not been able to treat all four cases
for the boundary conditions simultaneously, but we will treat (i) and (iii) (resp. (ii) and (iv))
together. Note that when equation (3.28) is multiplied (formally) by Ψw or by −Ψ′w, there are
many commutator terms when we integrate by parts the fifth order derivative. The main idea
is that if the weight is adequately chosen, all these commutators can be absorbed in the main
order terms, which will be designed to have a positive sign. Hence we start with the following
result, which will allow us to control the commutators:

Lemma 3.5.1. Let Ψ ∈ C∞
c ([0,+∞)) such that Ψ(0) = 0, and let r > 0. Let W ∈ C∞([0,+∞))

such that W (Z) = exp(Z4/5) for Z ≥ 1, and W ≥ 1, W ≡ 1 in a neighbourhood of zero.
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Then for k ∈ {1, 2}, there exists a constant Ck, independent of r, such that
∣∣∣∣
ˆ ∞

0

|Ψ(k)(Z)|2 |W
(k)(rZ)|2
W (rZ)

dZ

∣∣∣∣

≤Ckr
− 2

3 (3−k)

[ˆ ∞

0

|Ψ(3)(Z)|2W (rZ) dZ +

ˆ ∞

0

Ψ2(Z)

(
W ′(rZ)

Z
+
W (rZ)

Z2

)
dZ

]
.

Proof. For k = 0, · · · , 3, let us consider weights ωk ∈W 1,∞
loc (R+) such that

∀k ∈ {0, · · · , 3}, ∀Z ≥ 1, ωk(Z) = e−1Z− 2
5 (3−k) exp(Z4/5),

∀Z ∈ (0, 1), ω1(Z) = ω3(Z) = 1, ω0(Z) = Z−2, ω2(Z) = Z2.

Note that the weights ωk satisfy the following assumptions:

• For k ∈ {1, 2}, ωk ≤ √
ωk−1ωk+1;

• For k ∈ {1, 2}, |ω′
k| ≤ Ck

√
ωkωk−1 for some constant Ck;

• ω2(0) = 0.

Let us now introduce, for k = 0, · · · , 3

Ik :=

ˆ ∞

0

|Ψ(k)(Z)|2ωk(rZ) dZ.

Then by definition of W , ω0, ω3, there exists a constant C (independent of r > 0) such that

r2I0 + I3 ≤ C

ˆ ∞

0

|Ψ(3)(Z)|2W (rZ) dZ +

ˆ ∞

0

Ψ2(Z)

(
W ′(rZ)

Z
+
W (rZ)

Z2

)
dZ.

Let us set E = r2I0 + I3. For k = 1, 2, integrating by parts and using the conditions Ψ(0) =
ω2(0) = 0, we have

Ik = −
ˆ ∞

0

Ψ(k−1)(Z)Ψ(k+1)(Z)ωk(rZ) dZ − r

ˆ ∞

0

Ψ(k−1)(Z)Ψ(k)(Z)ω′
k(rZ) dZ.

Using the properties of ωk, we deduce that there exist constants Ck such that

Ik ≤ Ck

(√
Ik−1Ik+1 + r

√
IkIk−1

)
.

Since r2I0 ≤ E, we deduce first that I1 ≲ E + r−1
√
I2E, and plugging this inequality into the

bound on I2, we find
I1 ≲ r

−4/3E, I2 ≲ r
−2/3E.

The result the follows easily by noticing that
∣∣∣∣
ˆ ∞

0

|Ψ(k)(Z)|2 |W
(k)(rZ)|2
W (rZ)

dZ

∣∣∣∣ ≲ Ik.

We now turn towards the proof of Lemma 3.3.1. In both cases, we start with a formal a priori
estimate, from which we deduce an appropriate notion of variational solution in a suitable Hilbert
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space. Existence and uniqueness then follow in a straightforward manner from the Lax-Milgram
Lemma.

First case: conditions (ii) and (iv):

As explained above, we start with a formal a priori estimate. Let w ∈ C∞(R+) be an
arbitrary weight function, and multiply (3.28) by (Ψ(Z)w(Z))′/Z. On the one hand,
ˆ ∞

0

Ψ(5)(Z)(Ψw)′(Z) dZ =

ˆ ∞

0

Ψ(3)(Z)(Ψw)(3)(Z) dZ −Ψ(4)(0)(Ψw)′(0) + Ψ(3)(0)(Ψw)′′(0).

Note that the two boundary terms vanish in cases (ii) and (iv). We obtain

ˆ ∞

0

Ψ(5)(Z)(Ψw)′(Z) dZ =

ˆ ∞

0

(Ψ(3)(Z)2w(Z) +

3∑

k=1

(
3k
) ˆ ∞

0

Ψ(3)(Z)Ψ(3−k)(Z)w(k)(Z) dZ.

On the other hand, since Ψ(0) = 0,
ˆ ∞

0

Ψ(Z)(Ψw)′(Z)
dZ

Z
=

ˆ ∞

0

(Ψw)(Z)(Ψw)′(Z)
dZ

Zw(Z)
= −1

2

ˆ ∞

0

(Ψw)2(Z)
d

dZ

(
1

Zw(Z)

)
dZ.

Choosing w such that w′ > 0, the right-hand side has a positive sign. We then choose w(Z) =
W (rZ) for some W ∈ C∞(R+) such that W (ξ) = exp(ξ4/5) for ξ large enough, W (Z) = 1 for
Z ≤ 1, W ′ ≥ 0, and r > 0 small enough. With this choice, the positive terms in the energy are
bounded from below by

ˆ ∞

0

(Ψ(3)(Z)2W (rZ) dZ +

ˆ ∞

0

Ψ2(Z)

(
W (rZ)

Z2
+ r

W ′(rZ)
Z

)
dZ.

3.5.1 then implies that there exists an explicit constant δ > 0 such that for k = 1, 2, 3,

∣∣∣∣
ˆ ∞

0

Ψ(3)(Z)Ψ(3−k)(Z)w(k)(Z) dZ

∣∣∣∣

≤ rδ
ˆ ∞

0

(Ψ(3)(Z)2W (rZ) dZ +

ˆ ∞

0

Ψ2(Z)

(
W (rZ)

Z2
+ r

W ′(rZ)
Z

)
dZ.

Therefore, for r > 0 sufficiently small, we obtain

ˆ ∞

0

(Ψ(3)(Z)2W (rZ) dZ +

ˆ ∞

0

Ψ2(Z)

(
W (rZ)

Z2
+ r

W ′(rZ)
Z

)
dZ

≲
ˆ 1

0

S(Z)2

Z2
dZ +

ˆ ∞

0

S(Z)2W (rZ) dZ.

This leads us to the following formulation: let

H := {Ψ ∈ H3(R+),Ψ(0) = 0,

ˆ ∞

0

(Ψ(3)(Z)2e(rZ)4/5 dZ < +∞
ˆ ∞

0

Ψ(Z)2(Z−2 + Z−1/5)e(rZ)4/5 dZ < +∞},
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and let H0 := {Ψ ∈ H, Ψ′(0) = Ψ′′(0) = 0}. We endow H and H0 with the norm

∥Ψ∥2H =

ˆ ∞

0

(Ψ(3)(Z)2W (rZ) dZ +

ˆ ∞

0

Ψ2(Z)

(
W (rZ)

Z2
+ r

W ′(rZ)
Z

)
dZ,

where W is the previous weight. We say that Ψ ∈ H is a solution of (3.28)-(ii) (resp. Ψ ∈ H0 is
a solution of (3.28)-(iv)) if and only if for all Φ ∈ H (resp. Φ ∈ H0),

ˆ ∞

0

Ψ(3)(ΦW (r·))(3) +
ˆ ∞

0

Ψ(Z)
(Φ(Z)W (rZ))′

Z
dZ =

ˆ ∞

0

S(Z)

Z
(Φ(Z)W (rZ))′ dZ.

Existence and uniqueness of solutions of (3.28)-(ii) (resp. of (3.28)-(iv)) in H (resp. H0) follow
easily from the Lax-Milgram Lemma. Using the equation, we then infer that

ˆ ∞

0

(Ψ(5)(Z))2e(rZ)4/5 dZ < +∞.

The result follows.

Second case: conditions (i) and (iii):

The estimates in the case of conditions (i) and (iii) are similar, but slightly less straightfor-
ward, since we shall need to combine two estimates.

We first mutliply (3.28) by −Ψ(3)(Z)(Z)w1(Z)
Z . We obtain on the one hand

−
ˆ ∞

0

Ψ(5)(Z)Ψ(3)(Z)w1(Z) dZ =

ˆ ∞

0

(Ψ(4)(Z))2w1(Z) +

ˆ ∞

0

Ψ(4)(Z)Ψ(3)(Z)w′
1(Z) dZ.

The first term gives a positive contribution to the energy, and the second one will be treated
with the help of Lemma 3.5.1. On the other hand, we obtain for the zero-th order term, noticing
that either Ψ′′(0) = 0 or (Z−1Ψ(Z))|z=0 = Ψ′(0) = 0,

−
ˆ ∞

0

Ψ(Z)

Z
Ψ(3)(Z)w1(Z) dZ =

ˆ ∞

0

Ψ′′(Z)
d

dZ

(
Ψ(Z)

Z
w1(Z)

)
dZ.

Now, let us write Ψ′′ as

Ψ′′(Z) =

(
Ψ(Z)

Z
Z

)′′
= 2

(
Ψ(Z)

Z

)′
+ Z

(
Ψ(Z)

Z

)′′
.

Performing integrations by parts and assuming that w′
1(0) = 0, we obtain

ˆ ∞

0

Ψ′′(Z)
d

dZ

(
Ψ(Z)

Z
w1(Z)

)
dZ

=
3

2

ˆ ∞

0

(
d

dZ

Ψ(Z)

Z

)2

(w1 − Zw′
1) +

1

2
Ψ(Z)2Z−1w

(3)
1 (Z) dZ.

We choose w2 so that ∂3Zw2 > 0, so that the last term has a positive sign. However, for Z ≫ 1,
w1−Zw′

1 < 0, and therefore we add another term to the energy. More precisely, we now mutliply
(3.28) by −Z−1((Ψ/Z)′w2)

′, with a weight w2 which vanishes identically in a neighborhood of
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zero. We obtain

−
ˆ ∞

0

Ψ(Z)

Z

(
d

dZ

Ψ(Z)

Z
w2

)′
dZ =

ˆ ∞

0

(
d

dZ

Ψ(Z)

Z

)2

w2(Z) dZ.

We then take wi(Z) = Wi(rZ), with 0 < r ≪ 1 and W1,W2 such that W2 +
3
2 (W1 − ZW ′

1) ≳
exp(Z4/5). Our energy is then

ˆ ∞

0

(Ψ(4)(Z))2W1(rZ) dZ +

ˆ ∞

0

(
d

dZ

Ψ(Z)

Z

)2 [
W2 +

3

2
(W1 − ZW ′

1)

]
(rZ) dZ

+
r3

2

ˆ ∞

0

Ψ(Z)2Z−1W
(3)
1 (rZ) dZ

≥
ˆ ∞

0

(Ψ(4)(Z))2 exp((rZ)4/5) dZ +

ˆ ∞

0

(
d

dZ

Ψ(Z)

Z

)2

exp((rZ)4/5) dZ

+r3
ˆ ∞

0

Ψ(Z)2Z−1(1 + rZ)−3/5 dZ exp((rZ)4/5) dZ.

The commutator terms, namely

r

ˆ ∞

0

Ψ(4)(Z)Ψ(3)(Z)W ′
1(rZ) dZ

and
ˆ ∞

0

Ψ(4)(Z)

(
d

dZ

Ψ(Z)

Z
w2

)′′
dZ

are treated perturbatively for r small enough, using 3.5.1. As before, we find that the energy is
controlled by ˆ 1

0

S(Z)2

Z2
dZ +

ˆ ∞

0

S(Z)2 exp (rZ)4/5 dZ.

We conclude by a Lax-Milgram type argument.
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3.6 Asymptotic behaviour for Lebesgue data

The aim of this section is to identify some long-time properties of the solutions to the Stokes-
transport equation for data in L∞ and other Lebesgue spaces, with no further assumption.
In view of harmonizing the framework with the previous sections, and in order to circumvent
unnecessary technical difficulties, we will work with the spatial domain Ω = T × (0, 1). A
monotonous Lyapunov functional is identified, as the potential energy of the system, which
ensures that the density evolution is monotonous. We also remark that the backward Stokes-

https://cordis.europa.eu/project/id/637653
https://anr.fr/Projet-ANR-18-CE40-0027
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transport system is globally well-defined. Nevertheless, no strong convergence of ρ is established
in general, since the ω-limit is not necessarily trivial.

3.6.1 Backward well-posedness

Consider (ρ,u) ∈ L∞(R+;L
∞(Ω)) × L∞(R+;W

1,∞) satisfying the Stokes-transport equation.
Let T > 0 and set

ρ̌(t) = ρ(T − t), ǔ(t) = −u(T − t), p̌(t) = −p(T − t), t ∈ [0, T ].

Then these satisfy the Stokes-transport equation with reversed gravity, modelling buoyancy for
instance, 




∂tρ̌+ ǔ · ∇ρ̌ = 0
−∆ǔ+∇p̌ = ρ̌ez

div ǔ = 0
ǔ|∂Ω = 0
ρ̌|t=0 = ρ(T ).

(3.62)

The well-posedness proof provided in Section 2.2 is valid for this system, and there exists a
unique global solution (ρ̌, ǔ) to (3.62) for the initial datum ρ(T ) ∈ L∞(Ω). As a consequence of
Theorem 2.1.1, there exists a unique global solution on R.

Corollary 3.6.1. For any ρ0 ∈ L∞(Ω), the Stokes-transport equation has a unique weak solution
(ρ,u) in

L∞(R;L∞(Ω))× L∞(R;W 1,∞(Ω)).

3.6.2 Potential energy and stationary states
Since the Stokes-transport equation involves gravity, it is natural to consider the potential energy
of the density profile solution ρ(t), namely

E(ρ(t)) :=

ˆ
Ω

zρ(t, x, z) dxdz,

which might also be denoted E(t). Using the Stokes-transport equation, we have

d

dt
E(t) =

ˆ
Ω

z∂tρ = −
ˆ
Ω

zu · ∇ρ =

ˆ
Ω

div(zu)ρ =

ˆ
Ω

u2ρ = −∥∇u∥2L2 ,

which provides the classical energy balance between the potential energy and the dissipative
effects due to the viscosity

d

dt
E(t) + ∥∇u(t)∥2L2 = 0. (3.63)

The potential energy is therefore a monotonous quantity, non-increasing, satisfying the definition
of a Lyapunov functional in the sense of [AB20, Definition 1.1], for instance. The study of such
other monotonous quantities shall be discussed in Subection 4.1.5 for a related free interface
problem. This property, in particular, prevents the system to evolve periodically. Moreover,
equation (3.63) allows us to identify the stationary profiles of the system. Indeed, a stationary
density profile ρ0 ∈ L2(Ω) with associated solution ρ constant with respect to time, has a constant
potential energy. Hence (3.63) requires that the velocity field must satisfy ∥∇u∥L2 = 0 for all
time, implying u to be identically zero. This latter holds by Poincaré inequality in bounded
domains, see Subsection 2.2.1 or thanks to conditions such as u(x) → 0 while |x| → ∞ in the
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whole space, as in (1.4) for instance. In the case where u = 0 in Stokes equation, from Theorem
2.2.1 there exists p0 ∈ H1(Ω) such that the hydrostatic equilibrium is satisfied, namely

∇p0 = −ρ0ez.

In particular ∂xp0 = 0, hence p0 depends only on the vertical coordinate, and so does ρ0.
Reciprocally, for any ρ0 = ρ0(z) the following triplet satisfies the Stokes system

(u, p, ρ)(t, x, z) =

(
0,−
ˆ z

0

ρ0(z
′) dz, ρ0(z)

)
.

This solution also satisfies the transport equation, since ∂tρ0 = 0 and u = 0. Hence it proves that
the stationary states are exactly the density profiles depending only on the vertical coordinate.
We will say that such functions are stratified.

It is tempting to conjecture that the solution of the equation converges toward a stationary
state, and to wonder if this hypothetical asymptotic state can be described. In the following
paragraphs we refine this conjecture, dealing in particular with the notion of rearrangement.

3.6.3 Rearrangement conjecture and weak convergence

Since the Stokes-transport equation modelises a fluid subject to gravity, intuitively we can expect
the density to sediment and reorder vertically from bottom to top. Also, since the density is
transported by a divergence free velocity field, all the measure of its level sets are preserved along
time, and therefore ρ(t) is for all time t ≥ 0 a rearrangement of ρ0 in the sense of Definition
3.6.2. In what follows we choose the spatial domain Ω = T× (0, 1) where T = R/Z is the torus.
This domain is mathematically convenient and physically relevant since the vertical coordinate
plays a particular role in the system due to gravity. Nevertheless, most of the following is true
in general in bounded domains, and some of it still hold in more general domains. Since the
dynamic of the solution does not change if one add a constant to ρ0 ∈ L∞(Ω), according to the
previous paragraph, we consider once and for all, whithout loss of generality, positive initial data
ρ0 ≥ 0.

Let us recall a definition and a few properties of the rearrangements. For further results on
the topic, we refer to [LL01, Chapter 3]. Let us denote by |{f > α}| the Lebesgue measure of
the α ∈ R level set of f defined as {f > α} := {x ∈ Ω : f(x) > α}.

Definition 3.6.2. Two measurable maps f, g : Ω → R are rearrangement of each other if the
measure of any of their level sets coincide, namely

∀α ∈ R, |{f > α}| = |{g > α}|.

From the previous discussion, we might be interested in a vertical rearrangement of a density
profile. For maps defined on segments (resp. on the whole space), it is classical to consider
their decreasing (resp. radially symmetric decreasing) rearrangement. Basically it consists in
constructing the unique decreasing (resp. radially decreasing) map noted f∗ sharing the same
level sets as f , see [LL01, Section 3.3]. In our case we can adapt these considerations to define
a vertical decreasing rearrangement, based on the idea of the decreasing rearrangement on an
interval.

Definition 3.6.3. Given a Borel set A ⊂ Ω we define its vertical rearrangement as

A∗∗ := T× (0, |A|),
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with the convention A∗∗ = ∅ if |A| = 0. Given a measurable map f : Ω → R we define its vertical
deacreasing rearrangement as

f∗(x, z) :=
ˆ
R

1{f>α}∗∗(z) dα. (3.64)

Figure 3.1 illustrates such a rearrangement.

1

1

1 2

2

2

0

0

0

f

1

2

0

f∗

Figure 3.1: Vertical rearrangement of a piecewise constant map on Ω = T× (0, 1).

Rearranged maps present a few properties, see [LL01, Section 3.3], of which we provide here a
selection, adapted to the present vertical rearrangement definition. Most of its proof relies on
the representation formula (3.64), which holds either in the segment or in the periodic strip case.

Properties 3.6.4. For any positive measurable map f : Ω → R the followings hold:

1. f∗ depends only on the vertical variable z.

2. f∗ is nonnegative and nonincreasing.

3. f∗ is a rearrangement of f , namely

∀α ∈ R, |{f∗ > α}| = |{f > α}|.

4. If f ∈ Lq(Ω) then f∗ ∈ Lq(Ω) and ∥f∗∥Lq = ∥f∥Lq .

5. The vertical decreasing rearrangement is order preserving. If f ≤ g then f∗ ≤ g∗. Also, if
f = f(z) and is nonincreasing with respect to z, then f∗ = f .

The simplest rearrangement inequality, stated in [LL01, Theorem 3.4] also adapts here. We
refer to this reference for its proof.

Theorem 3.6.5. Let f, g be nonnegative functions on Ω. Then
ˆ
Ω

fg ≤
ˆ
Ω

f∗g∗.

If f is strictly decreasing, then there is equality if and only if g∗ = g.
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Now, let us study the general properties of the Stokes-transport equation solutions. By
divergence free of the velocity field u, the density ρ shares for all time the same level sets as ρ0,
therefore ρ(t)∗ = ρ∗0 for all t ≥ 0, all Lq norms are preserved for all time, and

´
Ω
ρ is constant

to
´
Ω
ρ0. In particular for a given initial datum ρ0, the potential energy is bounded from below.

Indeed, consider Θ : (x, z) ∈ Ω 7→ 1− z, which is positive and strictly decreasing with respect to
z. According to Theorem 3.6.5, we have the following equivalent inequalities

ˆ
Ω

Θρ(t) ≤
ˆ
Ω

Θ∗ρ(t)∗

ˆ
Ω

(1− z)ρ(t) ≤ (1− z)ρ∗0ˆ
Ω

zρ∗0 ≤
ˆ
Ω

zρ(t) = E(t),

and there is equality if and only if ρ(t) = ρ∗0. Since the potential energy is decreasing and
bounded from below, it admits a finite limit that we denote E∞ := limt→∞E(t). We also denote
E0 = E(ρ0). Thus, integrating the energy balance (3.63) with respect to time provides

ˆ ∞

0

∥∇u(τ)∥2L2 dτ = E0 − E∞ <∞.

Consequently, u belongs to L2(R+;H
1(Ω)), since Poincaré inequality ∥u∥H1 ≲ ∥∇u∥L2 holds

here.

Lemma 3.6.6. For any ρ0 ∈ L∞(Ω), the Stoke-transport equation velocity solution satisfies

u ∈ L2(R+;H
1(Ω)).

Let us identify some sufficient conditions on the velocity u which would ensure that ρ con-
verges.

Proposition 3.6.7. Let ρ0 ∈ L∞(Ω) and u ∈ L∞
loc(R+;W

1,∞(Ω)) a divergence free velocity field
and consider ρ ∈ L∞(R+;L

∞(Ω)) the solution of the associated transport equation

∂tρ+ u · ∇ρ = 0, ρ|t=0 = ρ0.

If u belongs to L1(R+;L
2(Ω)) then ρ(t) converges strongly in L2 toward some ρ∞ ∈ L∞(Ω).

Let us first establish the convergence in H−1(Ω), then in L2(Ω) with ρ0 ∈ H1(Ω), and
finally prove Proposition 3.6.7. Let us start with the simple observation that if ∂tρ belongs to
L1(R+;X(Ω)) for some generic functional space X(Ω), then ρ(t) converges in X(Ω) as t goes to
infinity,

ρ(t) = ρ0 +

ˆ t

0

∂tρ(τ) dτ.

Considering X = H−1, we get

∥∂tρ∥H−1 = ∥u · ∇ρ∥H−1 ≤ ∥uρ∥L2 ≤ ∥ρ∥L∞∥u∥L2 .

Since ∥ρ(t)∥L∞ = ∥ρ0∥L∞ and u is assumed to belong to L1(R+;L
2(Ω)), the strong convergence

of ρ in H−1(Ω) follows. Perfoming the same computation in L2(Ω), we have a priori

∥∂tρ∥L2 ≤ ∥u∥L∞∥∇ρ∥L2 .
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Recall that ρ(t) = ρ0 ◦X(−t) where X is the flow map associated to u, see Subsection 2.2.2. As
a consequence, we have ∇ρ(t) = ∇X(−t)∇ρ0(X(−t)) and therefore

∥∇ρ(t)∥L2 ≤ ∥∇X(−t)∥L∞∥∇ρ0(X(−t))∥L2 .

Let us recall that X(−t) is a measure preserving diffeomorphism, so that ∥∇ρ0(X(−t))∥L2 =
∥∇ρ0∥L2 and from Lemma 2.2.3 (or [BCD11, Proposition 3.10]) we infer

∥∇X(−t)∥L∞ ≤ exp

(ˆ t

0

∥∇u(τ)∥L∞ dτ

)
.

Combining these latter inequalities, we get

∥∂tρ∥L2 ≤ ∥∇ρ0∥L2∥u∥L∞ exp

(ˆ t

0

∥∇u(τ)∥L∞ dτ

)
.

Hence if u ∈ L1(R+;W
1,∞(Ω)) then ∂tρ ∈ L1(R+;L

2(Ω)) and the strong convergence occurs.

Noneless, it is possible to take more advantage of the fact that ρ is the pushforward of ρ0 by
X. Indeed, the flow X(t) satisfying

∂tX(t) = u(t,X(t))

do converge in L2 if u ∈ L1(R+;L
2(Ω)), and we have

∥X(t)−X∞∥L2 ≤
ˆ ∞

t

∥u(τ)∥L2 dτ, (3.65)

where the remainder converges toward 0 as t goes to infinity. The limit X∞ remains a measure
preserving diffeomorphism. Indeed, Liouville formula and u being divergence free provide

a.e.x, |det∇X(t;x)| = exp

(ˆ t

0

divu(τ,X(τ ;x)) dτ

)
= 1,

which transfers to the limit X∞. In passing, observe the following, detailed for instance in
[BCD11, Section 3.2],

∂t∇X(t) = ∇X(t)∇u(t,X(t)), ∥∇X(t)∥L∞ ≤ exp

(ˆ t

0

∥∇u(τ)∥L∞ dτ

)
.

Now let ρ0 be in L2(Ω), and define ρ∞ = ρ0 ◦ X∞. Let us show that ρ(t) converges toward
ρ∞ in L2(Ω). For any ε > 0, there exists φ0 ∈ C∞(Ω) such that ∥ρ0 − φ∥L2 ≤ ε. Define
φ(t) := φ0 ◦X(−t) and φ∞ = φ0 ◦X∞. Hence

∥ρ(t)− ρ∞∥L2 ≤ ∥ρ(t)− φ(t)∥L2 + ∥φ(t)− φ∞∥L2 + ∥φ∞ − ρ∞∥L2 .

On the one hand we have for any t ∈ [0,∞],

∥ρ(t)− φ(t)∥L2 = ∥(ρ0 − φ0)(X(−t))∥L2 = ∥ρ0 − φ0∥L2 ≤ ε. (3.66)

On the other hand,

∥φ(t)− φ∞∥L2 = ∥φ0(X(−t))− φ0(X∞)∥ ≤ ∥∇φ0∥L∞∥X(−t)−X∞∥L2 . (3.67)
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Plugging (3.66) and (3.67) combined with (3.65) in (3.66) yields

∥ρ(t)− ρ∞∥L2 ≤ 2ε+ ∥∇φ0∥L∞

ˆ ∞

t

∥u(τ)∥L2 dτ

Since u ∈ L1(R+;L
2(Ω)), the remainder integral is smaller than ε for t large enough, depending

on ∥∇φ0∥L∞ . In the end we proved the convergence ρ(t) → ρ∞ in L2(Ω) when t → ∞ and the
Proposition 3.6.7. Note that no convergence rate is available here.

Unfortunately, the velocity u solving ST belongs a priori to L2(R+;H
1(Ω)), which does not

imply u ∈ L1(R+;L
2(Ω)). In the case where ρ is a small perturbation of Θ(z) = 1 − z, we

showed the solution converges at infinity, using in this particular case that the velocity field
stream function is integrable enough in time. For general data ρ0 ∈ L∞(Ω), it is not clear
whether or not convergence occur. For now, we cannot exclude the possibility that the solution
approaches successively several admissible sationary states, while having monotonous potential
energy, without converging toward one in particular. We borrow the definition of ω-set to
the dynamical system field, cut for the present problem, which precisely defines as the set of
asymptotically approached states.

Definition 3.6.8. We define the ω-set associated to ρ0 ∈ L∞(Ω) in a functional space X(Ω)
as the intersection of all the accumulation points of the Stokes-transport equation solution ρ,
denoted as follows

ωX(ρ0) :=
⋂

t≥0

{ρ(τ) : τ ≥ t}X .

This notion allows to state some properties of ω-sets for ρ0 in L∞(Ω) in a convenient way.

Proposition 3.6.9. Let ρ0 ∈ L∞(Ω), and let ρ be the associated Stokes-transport equation
solution. If ρ0 is stratified, then ρ(t) = ρ0 for all time. For any ρ0 non-stratified, the followings
hold.

1. The potential energy E(t) is strictly deacreasing and converges toward some E∞ ≥ E(ρ∗0).

2. ωH−1(ρ0) is nonempty.

3. For any ρ∞ ∈ ωH−1(ρ0), ρ∞ is a stratified rearrangement of ρ0, and E(ρ∞) = E∞.

4. If E∞ = E(ρ∗0) then ωH−1(ρ0) = {ρ∗0} and the solution converges in the sense

ρ(t)
H−1

−→
t→∞

ρ∗0.

Proof. The monotonicity of the potential energy was shown in Subsection 3.6.2. If the potential
energy is stationary from a certain time T , then the density profile ρ(T ) is stationary, and
Corollary 3.6.1 proves that ρ(t) = ρ(T ) for all t ∈ R. Hence the dichotomy between stationary
profiles and strictly monotonous evolutions, which concludes item 1. By linearity of the Stokes
equation, we have

∥∂tu∥H1 ≲ ∥∂tρ∥H−1 ,

where the right-hand side estimates as follows in the first place,

∥∂tρ∥H−1 = ∥div(ρu)∥H−1 ≲ ∥ρu∥L2 ≲ ∥ρ0∥2L∞ . (3.68)
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The combination of these two inequalities ensures that u belongs toW 1,∞(R+;H
1(Ω)). Together

with the fact that u ∈ L2(R+;H
1(Ω)), it implies

u(t)
H1

−→
t→∞

0. (3.69)

In return we deduce from (3.68) that ∂tρ also goes to 0 in H−1 as t goes to infinity. We also
deduce by considering the H−1 norm on both side of the Stokes equation that

∥∇p+ ρez∥H−1 ≤ ∥∆u∥H−1 ≲ ∥u∥H1 −→
t→∞

0.

These considerations have also been observed for the Boussinesq system with no diffusion on the
density as for instance in [Doe+18, Theorem 1.2] or [AKZ23].

Now let us show that the only possible limits are stationary. Since ∥ρ(t)∥Lq = ∥ρ0∥Lq for all
time t ≥ 0 and any 1 ≤ q ≤ ∞ we know by weak compactness in Lq(Ω) that there exists a time
extraction (tn)n∈N, i.e. a strictly increasing sequence of times such that tn → ∞ as n→ ∞, such
that (ρ(tn))n∈N as a Lq-weak limit ρ∞ ∈ Lq(Ω) for any 1 < q <∞, in the sense

∀φ ∈ Lq′(Ω),

ˆ
Ω

φρ(tn) −→
n→∞

ˆ
Ω

φρ∞.

Since z 7→ z belongs to any Lq′(Ω), and since the potential energy of the system converges, we
obtain in particular that

ˆ
Ω

ρ0 =

ˆ
Ω

ρ(tn) −→
n→∞

ˆ
Ω

ρ∞,
ˆ
Ω

zρ(tn) −→
n→∞

ˆ
Ω

zρ∞ = E∞. (3.70)

Moreover, ρ(tn) converges toward ρ∞ in H−1(Ω) strong, proving item 2. Set (u∞, p∞) the
solution to the Stokes system with source −ρ∞ez. From (3.69) we know that u∞ = 0. Hence

∇p∞ = −ρ∞ez.

In particular ∂xp∞ = 0, therefore p∞ depends only on z, and so does ρ∞, which shows ρ∞ is a
stratified profile, which shows

By weak convergence, we also know that in any Lq(Ω), 1 < q <∞ we have

∥ρ∞∥Lq ≤ lim inf
n→∞

∥ρ(tn)∥Lq = ∥ρ0∥Lq , (3.71)

and we get the inequality for q = 1 by passing to the limit. Using the identity

∀1 ≤ q <∞, ∥f∥qLq = q

ˆ ∞

0

αq−1|{|f | > α}|dα,

we infer from (3.71) that

∀s ≥ 0,

ˆ ∞

0

αs (|{|ρ0| > α}| − |{ρ∞| > α}) dα ≥ 0.

Hence we deduce that all the level set of ρ∞ must be smaller than these of ρ0 in the sense

∀α ≥ 0, |{|ρ̃∞| > α}| ≤ |{|ρ0| > α}|. (3.72)
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Since we obtained preservation of the mass for the weak limit in (3.70), we have ∥ρ∞∥L1 = ∥ρ0∥L1

which is only possible together with (3.72) if equality (3.72) holds for all α ≥ 0. Therefore ρ∞ is
necessarily a rearrangement of ρ0.

Since we have for any ρ∞ ∈ ωH−1(ρ0) the equality E∞ = E(ρ∞) ≥ E(ρ∗0) and ρ∞ stratified,
we know from Theorem 3.6.5 that E∞ = E(ρ∗0) if and only if ρ̃∞ = ρ∗0, proving 4 and concluding
the proof.

Although any element ρ∞ of the ω-set of ρ0 satisfies E(ρ∞) = E∞, unless E∞ = E(ρ∗0)
we cannot ensure that ρ∞ is unique. We do not know if the system can converge toward a
rearrangement of ρ0 different from the vertical rearrangement ρ0, except in the trivial case
where the initial datum is already stratified but not monotonous. Figure 3.2 illustrates two
rearrangements of a given ρ0, noted ρ10 and ρ20, stratified and satisfying E(ρ10) = E(ρ20). Note
that such rearrangements must necessarily satisfy E(ρi0) > E(ρ∗0). We also do not know if the
rearrangement of the initial datum belongs to the ω-set in general.

1

0

ρ0

1

0

ρ∗0

1

0

0

ρ10

1

0

1

0

ρ20

Figure 3.2: A function ρ0, its vertical rearrangement ρ∗0, and two other rearrangements with
equal potential energy E(ρ10) = E(ρ20).

3.7 Nonlinear instability for low regularity perturbation

In [KY23], Kiselev & Yao show that the Incompressible Porous Media equation admits a nonlinear
instability around any stationary profile, in the following sense. Any stratified state Θ = Θ(z)
can be perturbed by some θ0 small in H2−γ , γ ∈ (0, 2) such that for any s > 0 the Hs-norm of
the total solution ρ = Θ + θ diverges. Their statement hold for spatial domain Ω being either
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the whole plan R2, the torus T2 or the periodic strip T× (0, 1). Let us recall the stability result
of [CCL19a] stating that Θ(z) = 1 − z is a stable state for IPM if perturbated by small data
in H10(Ω). Comparing both results we can wonder about the existence of a stability threshold
2 ≤ α ≤ 10, for a given Θ, in the following sense:

1. For any m < α and any ε > 0 there exists a perturbation ∥θ0∥Hm ≤ ε of Θ such that the
solution ρ = Θ+ θ diverges in Hm(Ω);

2. For any m > α there exists εm > 0 such that the solution Θ is stable for any perturbation
satisfying ∥θ0∥Hm ≤ εm.

These does not constitute an exhaustive dichotomy, and the actual existence of such a threshold
remains unknown. The same question also remains open regarding the ST equation. Indeed,
from Sections 3.1 to 3.5, corresponding to the paper [DGL23], we know that there exists ε6 > 0
such that for any ∥θ0∥H6 ≤ ε6, the initial datum Θ + θ0 associated solution remains close to
Θ(z) = 1 − z. Conversely, the aforementioned unstability result demonstrated by Kiselev &
Yao does adapt to the ST equation. Therefore, wether a thereshold α should exists for the
Stokes-transport equation, it shall satisfy 2 ≤ α ≤ 6.

We report here the statement, [KY23, Theorem 1.5 and Corollary 4.2], written with notations
consistent with the rest of the present manuscript.

Theorem 3.7.1 (Kiselev & Yao ’21). Let Θ ∈ C∞(Ω) be a stationary solution for (IPM). For
any ε > 0 and 2 > γ > 0, there exists a perturbation θ0 ∈ C∞(Ω) satisfying

∥θ0∥H2−γ ≤ ε,

such that the solution associated to ρ0 = Θ+ θ0, provided it exists globally in time, obeys

lim sup
t→∞

t−s/2∥ρ(t)−Θ∥Ḣs = ∞, for all s > 0.

We report and adapt the proof of Kiselev & Yao to the case of ST, for sake of completeness.

Theorem 3.7.2 (L.). Let Θ ∈ C∞(Ω) be a stationary solution for (ST). For any ε > 0 and
2 > γ > 0, there exists a perturbation θ0 ∈ C∞(Ω) satisfying

∥θ0∥H2−γ ≤ ε,

such that the solution associated to ρ0 = Θ+ θ0 obeys

lim sup
t→∞

t−s/4∥ρ(t)−Θ∥Ḣs = ∞, for all s > 0.

There are two main differences between the IPM and ST cases regarding these results. First,
the global well-posedness of IPM remains an open question any Sobolev space Hm(Ω), and al-
though global solutions exist for small perturbations of Θ(z) = 1−z, Theorem 3.7.1 is conditional
to the global existence of a solution in general. On the contrary, the ST is well-posed in Sobolev
spaces Hm(Ω), at least for m ≥ 3. Second, the growth rates are different, which comes from
different velocity regularities due to the respective regularisation effects of Darcy and Stokes
equations.

The proof of this result relies on geometric considerations. It consists in showing that any ini-
tial profile satisfying a particular structure called "bubble" introduced in Definition 3.7.3 induces
a growth of all the solution derivatives, as stated in Proposition 3.7.4. Then the construction of
a small perturbation inducing a bubble type initial datum is given in Lemma 3.7.7.
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Definition 3.7.3. A density profile ρ is of "bubble" type if and only if there exists a closed curve
Γ0 ⊂ Ω enclosing a simply connected domain such that ρ is constant on Γ0 and infΓ0 |∇ρ| > 0.

A typical case satisfying this assumption is any regular profile having a local extremum in
the subdomain enclosed by Γ0. See Figure 3.3 for an illustration.

Γ0

Γ1 ρ < c0

ρ|Γ0
= c0

c1 > ρ > c0

ρ|Γ1
= c1

ρ > c1

Figure 3.3: Illustration of a bubble type map.

Since the tendency of the density is to rearrange accordingly to the vertical axis, and since
the transport of the density is pure and measure preserving, the bubble has to smash which
translates as derivative growths. This is showed in the following result, also proved by Kiselev
& Yao in [KY23, Proposition 4.1] and adapted here to the Stokes-transport case, for which a
functional inequality and the rates are different.

Proposition 3.7.4. If ρ0 ∈ C∞(Ω) satisfies the "bubble" type definition 3.7.3, the solution with
initial datum ρ0 satisfies ˆ ∞

0

∥∂xρ∥−4/s
Hs ≤ Cs,ρ0

, ∀s > 0,

implying
lim sup
t→∞

t−s/4∥∂xρ∥Hs = ∞, ∀s > 0.

We need the following lemma to prove this result.

Lemma 3.7.5. Let Ω = T× (0, 1) and let s > 0. For any ρ such that ∂xρ ∈ Hs(Ω) we have

∥∂xρ∥L2 ≲ ∥∆ψ∥2s/(s+2)
L2 ∥∂xρ∥4/(s+2)

Hs , (3.73)

where ψ is the solution to
∆2ψ = ∂xρ, ψ|∂Ω = ∂nψ|∂Ω = 0.

Proof. We plug ∆2ψ = ∂xρ and use the classical Sobolev inequalities to get

∥∂xρ∥2L2 = ∥∆2ψ∥L2 ≲ ∥ψ∥H4 ≲ ∥ψ∥2s/(s+2)
H2 ∥ψ∥4/(s+2)

Hs+4 .

Then we use the norm equivalence ∥ψ∥H2 ≃ ∥∆ψ∥L2 on H1
0∩H2(Ω) and the biharmonic equation

regularization ∥ψ∥Hs+4 ≲ ∥∂xρ∥Hs from Proposition 3.8.1 to get the result.

Remark 3.7.6. Here the norm ∥∆ψ∥L2 imitates the H−2-norm of ∂xρ since ∆ψ = ∆(∆−2∂xρ).
In the IPM case, the norm at play in the potential energy decay is ∥∇ψ∥L2 , and since ∆ψ = −∂xρ
one can identify ∥∇ψ∥L2 ≃ ∥∂xρ∥Ḣ−1 by a proper choice of definition of Ḣ−1. This result is also
generalised in Lemma 3.2.7.
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Proof of Proposition 3.7.4. Since infΓ0 |∇ρ0| > 0 and ρ0 is smooth we have |∇ρ0| uniformly
bounded from below in the viscinity of Γ0, and there exists an other closed curve Γ1 included in
D0 enclosing a simply connected subdomain D1 ⊂ D0 such that ρ|Γ1

=: c1 ̸= c0 =: ρ|Γ0
. Let us

recall the definition of the characteristic (or flow) map X associated to the velocity field u, as
the solution of the ordinary differential equation governed by u, namely

∀x ∈ Ω,





dX

dt
(t;x) = u(t,X(t;x))

X(0;x) = x,

For all time t ≥ 0 the map X(t) is a measure preserving diffeomorphism of Ω onto itself because
u is divergence free. In particular |X(t;Di)| = |Di|, i = 0, 1 and all inclusions are preserved, such
as X(t;D1) ⊂ X(t;D0) for all t ≥ 0. Also, since ρ0 is transported by u, the density remains
constant along the trajectories of the flow, let us note ρ(t)|X(t;Γi) = ρ0|Γi = ci. Let us denote
the projector Πz : (x, z) ∈ Ω 7→ z ∈ (0, 1) onto the vertical axis and observe that

Πz(X(t; Γ1)) ⊂ Πz(X(t; Γ0)), ∀t ≥ 0.

Consequently, for any z ∈ Πz(X(t; Γ1)) the horizontal interval T×{z} intersects both X(t; Γi), i =
0, 1 and we can bound from below the integral of ∂xρ as follows

∀z ∈ Πz(X(t; Γ1)),

ˆ
T

|∂xρ(t, x, z)|dx ≥ |c1 − c0|.

Since X(t; Γ1) encloses the simply connected domain X(t;D1) ⊂ Ω of constant measure |D1|
and since Ω has sides lengths of size 1, we have necessarily |X(t; Γ1)| ≥ |D1|. Therefore we can
uniformly bound from below the L2 norm of ∂xρ as follows

∥∂xρ(t)∥L2 ≥ ∥∂xρ(t)∥L1 ≥ |c1 − c0|.

Now we infer from the interpolation inequality (3.73) that

∥∆ψ∥2L2 ≥ ∥∂xρ∥1+2/s
L2 ∥∂xρ∥−4/s

Hs .

Since we know from Lemma 3.6.6 that ∆ψ ∈ L2(R+;L
2(Ω)), and since ∥∂xρ∥L2 is uniformly

bounded from below, we get

Cρ0
≥ |c1 − c0|1+2/s

ˆ ∞

0

∥∂xρ∥−4/s
Hs .

hence the integrability. By comparison with the non-integrability of t 7→ 1/t in any neighborhood
of ∞ we infer the following equivalent growth assertions,

lim sup
t→∞

t−1∥∂xρ∥4/sHs = ∞ ⇔ lim sup
t→∞

t−s/4∥∂xρ∥Hs = ∞.

Now let us show that any stratified datum can be pertubated by a small element of H2−γ(Ω)
for any given γ ∈ (0, 2) in a profile satisfying the bubble type definition.

Lemma 3.7.7. For any Θ = Θ(z) ∈ C∞(Ω), for any ε, γ > 0 there exists a perturbation
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θ0 ∈ C∞(Ω) satisfying
∥θ0∥H2−γ ≤ ε, (3.74)

such that ρ0 := Θ + θ0 satisfies the "bubble" type definition.

Proof. Let φ ∈ C∞
c (R2) such that suppφ ⊂ BR2(0, 1) and φ(0) = 1. Set a point x0 ∈ Ω and

θ0,λ := 2∥∂zΘ∥L∞λφ(λ−1(· − x0)),

with λ > 0 to adjust. This map θ0,λ has support in B(x0, λ) ⊂ Ω for λ small enough. It is
proportionnal to ∥∂zΘ∥L∞ to compete with the gradient of the stationary profile we perturbate,
and to λ in order to play we the scale of θ0,λ in the due norms.

We can compare the value of the whole density ρ0,λ := Θ + θ0,λ at point x0,

ρ0,λ(x0) = Θ(x0) + 2λ∥∂zθ∥L∞

and compare it to the supremum of the map on the boundary of B(x0, λ) as, by the mean value
theorem,

ρ0,λ|∂B(x0,λ) = θ|∂B(x0,λ) ≤ θ(x0) + λ∥∂zΘ∥L∞ .

In particular
(θ(x0) + λ∥∂zΘ∥L∞ , θ(x0) + 2λ∥∂zΘ∥L∞) ⊂ ρ0,λ(Ω)

so Sard lemma [Sar42] ensures that for almost every h in this interval the gradient ∇ρ0,λ never
vanishes on the level set {ρ0,λ = h}. Finally, any connected component of such a level set is a
curve Γ0 enclosing a simply connected domain on which ρ0,λ|Γ0 is constant with infΓ0 |∇ρ0,λ| > 0,
therefore satisfying the "bubble" definition.

To show that θ0,λ can be choosen arbitrarily small, notice that

∥θ0,λ∥L2 = 2∥∂zΘ∥L∞λ2∥φ∥L2(R2), ∥∂2θ0,λ∥L2(Ω) = 2∥∂zΘ∥L∞∥∂2φ∥L2(R2).

Hence by interpolating between L2(Ω) and H2(Ω) we obtain an estimate of the perturbation in
any H2−γ(Ω) space, for γ ∈ (0, 2),

∥θ0∥H2−γ ≲ λγ∥∂zΘ∥L∞∥φ∥γ/2L2 ∥∂2φ∥1−γ/2
L2 ,

and observe that assumption (3.74) is satisfied for λ small enough.

3.8 Biharmonic operator and adapted basis

This section is devoted to the study of the biharmonic, or bilaplace, operator, appearing in the
study of the Stokes equation. In particular, we detail the issues raised by different boundary
conditions one imposes and its links with our stability Theorem 3.1.1. It motivated the study of
boundary layers for the Stokes-transport equation, described in Theorems 3.1.2 and 3.1.3.

Let us recall how the bilaplace equation stems from the Stokes problem. Given a solution u
of the Stokes equation with a generic source f = (f1, f2), namely

−∆u+∇p = f , divu = 0,

there exists a scalar field ψ such that u = ∇⊥ψ = (−∂zψ, ∂xψ), and applying the rotational
operator to the above yields

∆2ψ = ∂zf1 − ∂xf2.
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Regarding the Stokes-transport problem, f = −ρez and the above writes

∆2ψ = ∂xθ
′,

with the decomposition ρ = Θ + θ̄ + θ′ introduced in Section 3.1. Conversely, if ψ solves the
above then u = ∇⊥ψ satisfies the Stokes equation, with p recovered as described in Subsection
2.2.1 for instance. Now, the Stokes problem requires boundary condition on u. Let us consider
two classical boundary assumptions. The first one, the slip boundary condition, also called after
Neumann, writes

u · n = 0, ∂nu1 = 0, on ∂Ω.

The normal compound of the velocity equal to 0 on the boundary comes to assume the physical
domain to be impermeable. The second means that the normal derivative of the tangential
compound, denoted here u1, vanishes on the boundary. The second one, the no-slip boundary
condition, also called homogeneous Dirichlet boundary condition, writes

u = 0, on ∂Ω.

It means that the fluid remains still for all time on the boundary, even in the tangential direction.
Notice that since the Laplacian is an operator of order two, we need as much boundary condi-
tions. Now, these conditions on u have their corresponences on ψ. As in this whole Chapter,
we chose the periodic channel Ω = T× (−1, 1), vertically symmetric for computation purposes.
In Subsection 3.8.1, we discuss the Neumann case and how the Stokes-transport stability can be
dealt with under this assumption. We present the Dirichlet problem formulation in Subsection
3.8.2, and provide a self-contained proof of the regularisation effect of the operator on the bi-
laplace equation solution, for sake of completeness. We also obtain an explicit description of an
orthonormal eigenfunctions basis for the biharmonic operator with the Dirichlet boundary con-
dition, in Subsection 3.8.3. Finally, we explain to what extend the Dirichlet framework differs
from the previous, how it modifies the analysis of the Stokes-transport stability problem and
why it leads to the formation of boundary layers.

3.8.1 The Neumann boundary conditions

Let us recall that the normal derivatives on Ω = T × (−1, 1) correspond to vertical derivatives
up to a multiplicative sign. Substituting u = ∇⊥ψ in the slip boundary condition,

u2 = ∂zu1 = 0 on ∂Ω,

leads to the following constraint on the stream function on the boundaries,

ψ = ∂2zψ = 0 on ∂Ω. (3.75)

Indeed, since u2 = ∂xψ = 0 on ∂Ω, ψ is constant on each boundary compound, and one can
choose ψ|∂Ω = 0. Regarding the normal derivative condition, we get ∂zu1 = −∂2zψ = 0. Since
∂2xψ = 0, it is equivalent to have ∂2zψ = ∆ψ = 0 on ∂Ω. We also call Neumann condition the
equalities (3.75), as is customary for polyharmonic problems, see for instance [GGS10].

Endowed with Neumann boundary conditions, the stream formulation of the Stokes equation
splits into two identical Poisson problem. Indeed, ψ is a solution of

∆2ψ = f, ψ = ∆ψ = 0 on ∂Ω,
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if and only if there exists Ψ such that

∆ψ = Ψ, ψ = 0 on ∂Ω,
∆Ψ = f, Ψ = 0 on ∂Ω.

(3.76)

In other words, denoting ∆−1 the operator associating to f the solution of the Poisson problem
with source term f , we find the solution ψ by applying twice this operator, whence ψ = (∆−1)2f .

Stability result for IPM and ST. In [CCL19a] in which Castro, Córdoba & Lear showed
the stability of the profile Θ(z) = 1− z for the incompressible porous media equation, the Darcy
law rewrites as the following Poisson problem on the stream function

∆ψ = −∂xθ′, ψ = 0 on ∂Ω. (3.77)

They introduce a convenient hilbertian basis (ωλ)λ, specified in Subsection 3.8.3 of the following
Hm(Ω) subspace,

Xm(Ω) := {f ∈ Hm(Ω) : ∂2nn f = 0 on ∂Ω, 0 ≤ n ≤ (m− 1)/2}.

In particular, they show that an initial datum ρ0 ∈ Xm(Ω) remain in Xm(Ω) for all time,
and that ψ also belong to this functional space. For such functions, the energy estimates on
ρ are basically the same for any derivative order. On the computation side, the integrations
by parts required to set up a bootstrap argument vanish at any order, thanks to the conditions
∂2nz ψ = ∂2nz ρ = 0 for convinient n. This allows to obtain a decay estimate valid for any derivative
order,

∥∇u∥L∞ ≲ ∥θ′∥H3 ≲
∥ρ0∥Hκ(γ)

(1 + t)γ/4
, (3.78)

where γ, κ(γ) are related exponents, with γ that can be chosen arbitrary large. It appears that
if ∥∇u∥L∞ is integrable in time, then the perturbation θ of the background profile Θ(z) = 1− z
remains small. Since γ is arbitrary, the stability holds for small initial data regular enough. This
is relatable to the a priori estimate, valid both for IPM and ST, also stated in Theorem 2.6.1,

∥ρ∥Hκ ≤ ∥ρ0∥Hκ exp

(ˆ t

0

(∥∇u(τ)∥L∞ + ∥∇ρ(τ)∥L∞) dτ

)
,

and to the convergence condition from Proposition 3.6.7, stating that if u is in L1(R+;W
1,∞(Ω))

then ρ converges. Note that similar decays as (3.78) have been obtained in [Elg17], with a similar
scheme of proof, in the whole plane R2 and in the torus, which are domains without boundaries.

When analysing the similar Stokes-tansport stability problem, we realised that the same
functional space Xm(Ω) fits and that the same estimates can be computed, up to a different
decay rate. This is related to the aforementioned splitting of the bilaplace problem into two
Poisson problems, similar to the stream formulation (3.77) of IPM. The result for the stability
for the Stokes-transport equation with slip boundary condition would state as for IPM and its
proof would be a slight adaptation of [CCL19a].

The convenient orthonormal basis of Xm(Ω) considered in [CCL19a] describes as the renor-
malised following functions

ωk,n(x, z) = eikx
{

cos(nπz/2) n odd,
sin(nπz/2) n even, (k, n) ∈ Z×N,



156 CHAPTER 3. Long-time behaviour for the Stokes-transport equation

on the strip T × (−1, 1), symmetric with respect to {z = 0} to simplify the expressions. This
family corresponds to the product of the Fourier basis of L2(T) together with eigenfunctions
for the operator 1 − ∂2z on the functional space H1

0 ∩ H2(Ω). This family actually mimics the
discrete Fourier basis on T2. Notice that any element of this basis is stable under derivatives of
the following form,

∀α, β ∈ N, ∂αx ∂
2β
z ωk,n = (ik)α(−1)β

(nπ
2

)2β
ωk,n.

Let us say one word about the regularisation of the biharmonic operator for the Stokes
equation with Neumann boundary conditions. Since it is well known that the operator ∆−1 is
bounded L2 → H2 in bounded domains, we deduce rightaway the well-posedness of the bilapla-
cian problem with Neumann condition, with estimate

∀m ∈ N,∀f ∈ Hm(Ω), ∥(∆−1)2f∥H4+m ≲ ∥f∥Hm .

In the following section we will obtain the same estimate for the Dirichlet condition case, and
provide a self-contained proof of this result since it does not stem as directly.

3.8.2 The Dirichlet boundary conditions and bilaplacian estimates

In this framework, the Stokes equation with homogeneous Dirichlet boundary condition writes

−∆u+∇p = −ρez, divu = 0, u = 0 on ∂Ω,

whence its biharmonic formulation, obtained in the same fashion as in the previous case,

∆2ψ = ∂xρ, ψ = ∂nψ = 0 on Ω. (3.79)

We call Dirichlet conditions on ψ these equalities, at it is it customary when dealing with so
called polyharmonic equations, see for instance [GGS10] on this topic.

When endowed with Dirichlet boundary conditions, there is no possible splitting in two
elliptic problems, as in (3.76), since such a split would let the Poisson equations either over or
underdetermined, see

∆ψ = Ψ, ψ = ∂zψ = 0 on ∂Ω,
∆Ψ = f, Ψ = ? on ∂Ω.

In this case the solving operator will be denoted ∆−2, with the understanding that it solves the
biharmonic equation in the Dirichlet case. It differs from (∆−1)2 where ∆−1 solves the Poisson
equation. Note that for a non-trivial source f , a function ψ such that ∆2ψ = f cannot satify the
Neumann and the Dirichlet conditions at the same time, as the problem would be overdetermined
with three distinc boundary conditions.

Well-posedness and estimates This paragraph is devoted to the proof of the following result.

Proposition 3.8.1. Let f ∈ Hm(Ω) with m ≥ −2. The problem

∆2ψ = f, ψ = ∂nψ = 0 on ∂Ω, (3.80)

has a unique solution ψ ∈ H2
0 (Ω). Moreover, it belongs to H2

0 ∩H4+m(Ω) and obeys

∥ψ∥H4+m ≲ ∥f∥Hm .
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We consider the variational formulation of the equation. Assuming all functions are regular
enough to perform the following computations, we know that is ψ is a solution of (3.80), then
for any test function φ such that φ = ∂nφ = 0 on ∂Ω, we have

ˆ
Ω

∆2ψφ =

ˆ
Ω

∆ψ∆φ+

ˆ
∂Ω

∂n∆ψφdσ −
ˆ
∂Ω

∆ψ∂nφdσ =

ˆ
Ω

∆ψ∆φ.

Therefor we call weak or variational solution any ψ ∈ H2
0 (Ω) such that

ˆ
Ω

∆ψ∆φ = ⟨f, φ⟩H−2,H2
0
, ∀φ ∈ H2

0 (Ω),

where the right hand-side term corresponds to the duality bracket onH2
0 (Ω), for sake of generality.

From the Poisson problem estimate, we know that

∀φ ∈ H2
0 (Ω), ∥φ∥H2 ≲ ∥∆φ∥L2 . (3.81)

Therefore, we observe that the bilinear form associated to the variational problem satisfies the
coercivity assumption required to apply Lax–Milgram theorem, in H2

0 (Ω),

∀φ ∈ H2
0 (Ω), ∥φ∥2H2 ≲

ˆ
Ω

(∆φ)2,

ensuring existence and uniqueness of a variational solution ψ ∈ H2
0 (Ω), satisfying moreover

∥ψ∥H2 ≲ ∥f∥H−2 .

At this point we showed that the operator ∆−2 : H−2(Ω) → H2
0 (Ω) is bounded. We now establish

the regularisation effect on the solution.

To do so we apply the translation method, as performed in [Bré11, Section 9.6], for instance.
Let us define the finite horizontal difference operator

∀h ̸= 0, Dh : ψ 7→ ψ(·+ hex)− ψ

h
,

where Dhψ inherits the regularity and homogeneous Dirichlet boundary condition of ψ, since
the null trace is preserved under translation. From [Bré11, Section 9.6] we will use that for any
ψ ∈ L2(Ω) we have

∂xψ ∈ L2(Ω) ⇒ ∀h ̸= 0, ∥Dhψ∥L2 ≤ ∥∂xψ∥L2 , (3.82)

and conversely, a characterisation of having a derivative in L2,

(∃C > 0,∀h ̸= 0, ∥Dhψ∥L2 ≤ C) ⇒ ∂xψ ∈ L2(Ω). (3.83)

Let us set f ∈ L2(Ω). By linearity of the problem (3.79) we observe that Dhψ satisfies the
same problem as ψ in the variational sense, since ψ ∈ H2

0 (Ω) implies Dhψ ∈ H2
0 (Ω):

∆2Dhψ = Dhf ⇔ ∀φ ∈ H2
0 (Ω),

ˆ
Ω

∆Dhψ∆φ =

ˆ
Ω

fD−hφ (3.84)

One can consider the test function φ = Dhψ, use the norm equivalence (3.81) and inequality
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(3.82) to get

∥Dhψ∥2H2 ≲
ˆ
Ω

|∆D−hψ|2 =

ˆ
Ω

fD−hDhψ ≤ ∥f∥L2∥Dhψ∥H2 ,

providing a uniform bound as in (3.83), ensuring ∂xψ ∈ L2(Ω) and ∥∂xψ∥L2 ≲ ∥f∥L2 . Passing
to the limit h→ 0 in (3.84) we obtain that ∂xψ satisfies the same problem as ψ, in the sense

∆2∂xψ = ∂xf ⇔ ∀φ ∈ H2
0 (Ω),

ˆ
Ω

∆∂xψ∆φ = −
ˆ
Ω

f∂xφ.

Let us apply once again the finite difference operator, consider the test funciton Dh∂xψ to
reach ∥Dh∂xψ∥H2 ≲ ∥f∥L2 and deduce that ∂2xψ ∈ H2

0 (Ω) with ∥∂2xψ∥H2 ≲ ∥f∥L2 . Assuming
∂ℓxf ∈ L2(Ω) we can even prove in the same fashion that

∀k ∈ N, ∥∂k+2
x ψ∥H2 ≲ ∥∂kxf∥L2 .

Hence, we obtain that ∂4zψ is L2 integrable by considering, in the distributional sense,

∂4zψ = f − (2∂2z + ∂2x)∂
2
xψ,

where the right hand-side lies in L2(Ω) by assumption on f and since we proved that ∂2xψ belongs
to H2(Ω), so that

∥∂4zψ∥L2 ≲ ∥f∥L2 + ∥∂2xψ∥H2 ≲ ∥f∥L2 .

From interpolation results such as [LM12, Chapter 1, Theorem 3.1], we have the following.

Lemma 3.8.2. Let ψ : Ω → R and k, ℓ ∈ N such that ∂kxψ, ∂ℓzψ ∈ L2(Ω). Then, for any
θ ∈ [0, 1] we have

∥∂θkx ∂(1−θ)ℓ
z ψ∥L2 ≲ ∥∂kxψ∥L2 + ∥∂ℓzψ∥L2 .

Since we proved the bound ∥∂4xψ∥L2 +∥∂4zψ∥L2 ≲ ∥f∥L2 , this lemma yields the expected inequal-
ity ∥ψ∥H4 ≲ ∥f∥L2 . An induction provides the estimate for higher regularity data, with even
order m ∈ 2N in a first time, namely for any n ≥ 0,

∥ψ∥H4+2n ≲ ∥f∥H2n . (3.85)

Assume this latter to be established for some n ≥ 0. By the aforementioned arguments, the same
holds for ∂2xψ, namely

∥∂2xψ∥H4+2n ≲ ∥∂2xf∥H2n .

Therefore, in the distributional sense

∂4+2(n+1)
z ψ = ∂2(n+1)

z f − ∂2(n+1)
z (2∂2z + ∂2x)∂

2
xψ,

which yields
∥∂4+2(n+1)

z ψ∥L2 ≲ ∥∂2(n+1)
z f∥L2 + ∥∂2xψ∥H4+2n ≲ ∥f∥H2(n+1) .

Then we recover the crossed derivatives bounds thanks to Lemma 3.8.2 and reach (3.85) with
index n+ 1, thus the iteration. Since we proved (3.85) is valid for n = 0, the induction ensures
that the property holds for any m ∈ 2N, provided f ∈ Hm(Ω). The case m odd stems by
interpolation.
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3.8.3 Biharmonic eigenfunction basis for Dirichlet boundary condi-
tions

In this Subsection we provide a description of the spectrum and eigenfunction basis associated
to the bilaplace equation endowed with Dirichlet boundary condition. Moreover, we compare
it to the basis adapted to the Neumann case, and comment its link with the boundary layers
appearing in the stability results for the Stokes-transport equation.

Proposition 3.8.3 (Spectrum of the bilaplacian). The eigenvalues of the operator ∆2 on H2
0

in T× (−1, 1) are the union, for all k ∈ Z, of strictly increasing sequences (λk,n)n∈N such that

λn,k ≃ (n2 + k2)2

with associated (unnormalized) eigenfunctions:

bn,k = eikx

{
cos(ωk,nz)− cos(ωk,n)

cosh(rk,n)
cosh(rk,nz), n ∈ 2N,

sin(ωk,nz)− sin(ωk,n)
sinh(rk,n)

sinh(rk,nz), n ∈ 2N+ 1,

with ωk,n = (k2 − λ
1/2
k,n)

1/2 and rk,n = (k2 + λ
1/2
n,k)

1/2. Note that to simplify the calculations, the
domain was choosen to be T× (−1, 1) and not Ω = T× (0, 1).

Let us determine the nontrivial eigenvalues and eigenfunctions (λ, bλ) satisfying

∆2bλ = λbλ, bλ = ∂zbλ = 0 on ∂Ω.

From Proposition 3.8.1 we know that these eigenfunctions have to belong to H2
0 ∩ C∞(Ω). We

apply horizontal Fourier transform to the above equation, for a given eigenvalue λ > 0, and any
horizontal mode k ∈ Z of bλ must satisfy the following ordinary linear differential equation

(∂2z − k2)2 b̂λ(k, ·) = λb̂λ(k, ·), b̂λ(k,±1) = ∂z b̂λ(k,±1) = 0. (3.86)

A function bλ therefore admits a Fourier mode k if and only if this linear differential equation
has a nontrivial solution. The roots {±r,±ω} of the associated characteritic polynomial satisfy

(±r)2 = k2 + λ1/2, (±ω)2 = k2 − λ1/2.

The only case with a multiple root is λ = k4, does not admit nontrivial solution. This is
detailed further for sake of completeness. Let us assume without loss of generality that k4 ̸= λ.
Then any solution to the differential equation has the form

z 7→ Ach(rz) +Bsh(rz) + Cch(ωz) +Dsh(ωz).

Let us notice that such a map satisfy the boundary conditions if and only if its even and odd
parts also satisfy these. Therefore, let us evaluate both parts and there derivatives at z = ±1,
to obtain the sufficient and necessary condition to the existence of nontrivial solution to (3.86),

{
Ach(r) + Cch(ω) = 0
Arsh(r) + Cωsh(ω) = 0

or
{
Bsh(r) + Dsh(ω) = 0
Brch(r) + Dωch(ω) = 0.

This is satisfied if and only if one of these system has a trivial determinant, namely

rth(r) + ωth(ω) = 0 or ωth(r) = rth(ω). (3.87)
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Two cases present. If k2 > λ1/2, then ω is real. Therefore, the condition above cannot be satisfied,
by positivity of σ 7→ σth(σ) and by monotonicity of σ 7→ σ−1th(σ), respectively. The other case
is k2 < λ1/2, so let us redefine ω as (λ1/2 − k2)1/2 such that iω is the actual characteristic
polynomial root. Hence the above condition (3.87) rewrites as

rth(r) + ω tan(ω) = 0 or ωth(r) = r tan(ω), (3.88)

where we ruled out the case ω ∈ π/2 + πZ since such a root cannot satisfy (3.88). Let us detail
and reorder the second equality as follows

(
λ1/2 − k2

λ1/2 + k2

)1/2

=
tan

(
(λ1/2 − k2)1/2

)

th
(
(λ1/2 + k2)1/2

) .

For any k ∈ Z there exists an infinite number of solutions λ > k4. Indeed, the left hand-side of
the equality is continuous with respect to λ > k4 and equivalent to 1 as λ goes to ∞. The right
hand-side is piecewise continuous due to the tangente function. The intermediate value theorem
for strictly monotonous maps ensures existence and uniqueness of a solution λk,n for all n ∈ N
satisfying (

λ
1/2
k,n − k2

)1/2
∈ ]nπ, (n+ 1/2)π[ . (3.89)

For such λ = λk,n, the differential equation (3.86) admits the following solution, up to a multi-
plicative constant,

z 7→ cos(ωn,kz)−
cos(ωn,k)

ch(rn,k)
ch(rn,kz).

Similar considerations show that the first equality also admits a unique solution within each
following interval, disjoint from the previous (3.89),

(
λ
1/2
k,n+1/2 − k2

)1/2
∈
](
n+ 1

2

)
π, (n+ 1)π

[
,

with associated differential equation solutions proportional to

z 7→ sin
(
ωk,n+1/2z

)
+

sin
(
ωk,n+1/2

)

sh
(
rk,n+1/2

) sh
(
rk,n+1/2z

)
.

Up to a slight reindexation, we obtained a description of the eigenvalues of ∆2 on H2
0 (Ω) as

the union, for all k ∈ Z, of strictly increasing sequences (λn,k)n∈N such that

λn,k ≃ (n2 + k2)2,

with associated (unnormalized) eigenfunctions

bn,k = eikx

{
cos(ωk,nz)− cos(ωk,n)

cosh(rk,n)
cosh(rk,nz), n ∈ 2N,

sin(ωk,nz)− sin(ωk,n)
sinh(rk,n)

sinh(rk,nz), n ∈ 2N+ 1,
k ∈ Z,

with rk,n = (k2 + λ
1/2
k,n)

1/2 and ωk,n = (k2 − λ
1/2
k,n)

1/2. We can check that (bk,n)k,n is indeed
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orthonormal in L2(Ω), since

∀k, k′ ∈ Z,

ˆ
T

eikxe−ik′x dx = δk=k′ ,

and (∂2z − k2)2 is self-adjoint,

∀k ∈ Z,∀n, n′ ∈ N, λk,n

ˆ
Ω

bk,nbk,n′ =

ˆ
Ω

(∂2z − k2)2bk,nbk,n′

=

ˆ
Ω

bk,n(∂
2
z − k2)2bk,n′

= λk,n′

ˆ
Ω

bk,nbk,n′ ,

with λk,n ̸= λk,n′ when n ̸= n′ according to (3.89), hence the orthogonality.
For completeness, we explain why we can rule out the case λ1/2 = k2. In this situation, the

roots of the characteristic polynomial are r :=
√
2|k|,−r and 0 with multiplicity 2. Hence the

solutions of the associated differential equation are of the form

z 7→ A+Bz + Cch(rz) +Dsh(rz),

and we find the sufficient and necessary relation to satisfy the boundary condition

r = th(r)

which is never satisfied for k ̸= 0, and the case k = λ = 0 admits only the trivial solution 0.

Bases comparison and link with the Stokes-transport stability Both Neumann and
Dirichlet bases functions are obtained as the product between an exponential eikx and a circular
map in the z variable. In the Neumann case, the basis is the tensor products of independent x
and z variable and 1d bases. In particular the z dependent factor was either a sine or a cosine,
therefore stable under vertical derivatives of order 2, which relates to the space Xm(Ω) and its
stability under such operations. In the Dirichlet case, the z dependent part is also a sine or cosine
but supplemented with its hyperbolic avatar, this precisely to satisfy the boundary conditions,
and the coefficients also depend on the horizontal mode k, which was not the case for Neumann.
The consequences and differences with the Neumann basis are multiple. The map ∂2zbk,n are no
longer colinear to bk,n and ∂2nz bk,n does not satisfy the Dirichlet boundary conditions in general.
Therefore the integrations by part required in the proofs of [CCL19a] does not hold for any
order, only for low derivtive orders, since boundary terms do not vanish anymore in general. In
other words, ∆2ψ does not satisfy a Dirichlet biharmonic equation, contrary to ψ. This is why
boundary layers are introduced in Theorem 3.1.2 and 3.1.3, to split the data in boundary parts,
bearing the data traces, and in an interior part, satisfying the Dirichlet condition, on which the
previous estimates available at low regularity level do hold.
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Chapter 4

Numerical study of the graph
interface evolution

The aim of this chapter is to provide a numerical analysis of the evolution of free interfaces
derived from the Stokes-transport equation. We chose to generically consider the problem in the
periodic strip domain Ω = T× (0, 1). Since (ST) is well-posed for bounded initial data ρ0 ∈ L∞,
one can consider ρ0 = 1P0

where P0 is a connected subdomain of Ω. We call these density
patches. Since the solution ρ is the pushforward of the initial datum by the flow X associated to
the velocity field, the solution remains a patch for all time, satisfying ρ(t) = 1X(t;P0). We will
focus on the case of an initial patch coinciding with the hypograph of a map η0 : T → (0, 1),
i.e.P0 = {z < η0(x)} := {(x, z) ∈ Ω : z < η0(x)}. Let us assume that the interface evolution can
be described by a graph η : (t, x) ∈ [0, T ]×T 7→ (0, 1), such that

ρ(t, x, z) = 1{z<η(t,x)}.

Such a function ρ satisfies (ST) on Ω if and only if the graph η satisfies the following system




∂tη(t, x) + u1(t, x, η(t, x))∂xη(t, x) = u2(t, x, η(t, x)), for (t, x, z) ∈ [0, T ]× Ω,
−∆u+∇p = −1{z<η(t,x)}ez, on [0, T ]× Ω,

divu = 0, on [0, T ]× Ω,
u = 0, on [0, T ]× ∂Ω,

η|t=0 = η0.

(4.1)

Section 4.1 is devoted to theoretical considerations regarding the system (4.1). In particular we
introduce the notations of this problem in Subsection 4.1.1. The system (4.1) is derived from
(ST) in Subsection 4.1.2, where several formulations of the problem are discussed. In Subsection
4.1.3 the graph persistence in short time of the interface is proven. Subsection 4.1.4 is a discussion
about the maximal regularity we can expect from the velocity field for patch data.

Section 4.2 consists in a numerical analysis of the evolution of graph interfaces for (4.1). In
particular we repport in Subsection 4.2.1 the recent theoretical stability result from [GGS22] of
Gancedo, Granero-Belinchón & Salguero for graph interfaces in the horizontally periodic plane
T × R, as a comparison point for our numerical observations. Subsection 4.2.2 introduces the
numerical scheme we set up to run our simulations. In Subsection 4.2.3 we set up the main pa-
rameters of the scheme, to ensure enough precision for our analysis. Once this is done, we observe
in Subsection 4.2.4 the evolution of several graphs and compare the observed convergence rates
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with the result of [GGS22]. The influence of the boundaries is illustrated in Subsection 4.2.5. The
maximum principle for the interface is briefly investigated in Subsection 4.2.6. After introducing
the concept of Lyapunov functionals in Subsection 4.1.5, we disqualify several functionals thanks
to examples for which these are not monotonous for the solutions of the system (4.1). We also
speculate on the status of the entropy functional, for which we did not find counter-examples.
This is done in Subsection 4.2.7.

4.1 Theoretical analysis of the graph interface problem

4.1.1 Notations

Let η0 : T × (0, 1) be an initial map, parametrising the interface Σ0 := {(x, η0(x)) : x ∈ T}.
We note Σ(t) its transport image at time t. If the interface corresponds to the graph of some η
at time t, we have Σ(t) = {(x, η(t, x)) : x ∈ T}. The image at time t of the initial hypograph
subdomain Ω−

0 := {z < η0(x)} will be denoted Ω−(t), and the epigraph Ω+(t) in the same
fashion. The outward unitary normal to Ω−(t) on Σ(t) will be denoted nΣ(t). We define f |η the
trace on Σ when it is the graph of some η. We also use the notation ⟨ξ⟩ =

√
1 + ξ2.

ex

ez

T

Ω−

Ω+

1

0
Σ = {z = η(x)}

z = η̄

nΣ

n∂Ω

n∂Ω

Figure 4.1: Illustration of the problem and notations.

4.1.2 Derivation of the free boundary problem

In this subsection we deduce the graph interface evolution equation (4.1) from (ST). Let us
assume that there exists T > 0 such that the solution of (ST) with ρ0 = 1{z<η0(x)} writes for
t ∈ [0, T ) as a patch associated to the hypograph of x→ η(t, x), in the sense

∀(t, x) ∈ [0, T )×T, ρ(t, x) = 1{z<η(t,x)} = 1Ω−(t).

We will show in Subsection 4.1.3 that the interface indeed remains a graph for short time. We
showed in Theorem 2.1.1 that ρ exists for all times and belongs to L∞(R+;L

∞(Ω)). In particular,
it satisfies the transport equation in the weak (or distributional) sense

∀φ ∈ C∞
c ([0, T )× Ω),

ˆ T

0

ˆ
Ω

ρ(∂tφ+ u · ∇φ) = −
ˆ
Ω

ρ0φ(0, ·). (4.2)
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Since ρ is the indicator function of the subdomain Ω−(t), the weak formulation (4.2) also writes,
for any given test function φ,

ˆ T

0

ˆ
Ω−(t)

∂tφ+ u · ∇φ = −
ˆ
Ω−

0

φ(0, ·). (4.3)

Using the following identity, valid for η ∈ C1([0, T )×T) for instance,

∀x ∈ T,
d

dt

[ˆ η(t,x)

0

φdz

]
=

ˆ η(t,x)

0

∂tφdz + ∂tη(t, x)φ(t, x, η(t, x)),

and the graph character of the subdomain Ω−(t), we get

ˆ T

0

ˆ
Ω−(t)

∂tφ =

ˆ T

0

ˆ
T

ˆ η(t,x)

0

∂tφ(t, x, z) dz dx

=

ˆ T

0

ˆ
T

(
d

dt

[ˆ η(t,x)

0

φdz

]
− ∂tη(t, x)φ(t, x, η(t, x))

)
dxdt

= −
ˆ
Ω−

0

φ(0, ·)−
ˆ T

0

ˆ
T

∂tη(t, x)φ(t, x, η(t, x)) dxdt, (4.4)

where we use for the last step that φ(T, ·) = 0.

Besides, the Green theorem ensures, since ∂Ω−(t) = {z = 0} ∪ Σ(t),
ˆ
Ω−(t)

u · ∇φ = −
ˆ
Ω−(t)

divuφ+

ˆ
Σ(t)

u · nΣ(t) dσ(t)−
ˆ
{z=0}

u2φdx.

Since u is divergence-free and u2 = 0 on the boundaries of Ω, only the integral on Σ(t) remains.
The outward normal vector and surface measure at time t write

∀x ∈ T, nΣ(t)(x) = ⟨∂xη(t, x)⟩−1

(
−∂xη(t, x)

1

)
, dσ(t) = ⟨∂xη(t, x)⟩dx. (4.5)

Recalling the notation u = (u1, u2), we obtain
ˆ
Ω−(t)

u · ∇φ =

ˆ
Σ(t)

u · nΣ(t) dσ(t) =

ˆ
T

(u2|η − u1|η∂xη)φ|z=η(t,x). (4.6)

Substituting (4.4) and (4.6) in (4.3) we get

∀φ ∈ C∞
c ([0, T )× Ω),

ˆ T

0

ˆ
T

(∂tη + u1|η∂xη − u2|η)φ|η = 0.

Let us set ϕ ∈ C∞
c ([0, T ) × T) and a smooth cutoff function χε : (0, 1) → [0, 1] compactly

supported such that χε(z) = 1 for any z ∈ [ε, 1− ε], for suitable ε > 0. For any ε > 0, φε := ϕχε

is a test function on [0, T )× Ω, and we have

ˆ T

0

ˆ
Ω

(∂tη + u1|η∂xη − u2)(t, x)ϕ(t, x)χε(η(t, x)) dx dt = 0.
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Assuming that the graph of η(t) is at strict distance from the boundary of the domain ∂Ω, then
for ε > 0 small enough we have η(t, x) ∈ [ε, 1− ε] for any x ∈ T. We obtain that

∀ϕ ∈ C∞([0, T )×T),

ˆ T

0

ˆ
T

(∂tη + u1|η∂xη − u2|η)ϕ = 0, (4.7)

hence the evolution equation on η, reported in (4.1),

∂tη + u1|η∂xη = u2|η. (4.8)

Other evolution formulations We obtain the following equivalent formulations of the equa-
tion (4.8).

∂tη − ⟨∂xη⟩u|η · nΣ = 0, (4.9)

∂tη + ∂x

ˆ η

0

u1 = 0, (4.10)

∂tη + ∂x(ψ|η) = 0, ∆2ψ = ∂x1{z<η}. (4.11)

Equation (4.9) is obtained by identifying the components of the normal vector n defined in
(4.5). It illustrate the fact that the interface is transported according to the normal component
of the velocity field u.

Both (4.10) and (4.11) stem from the incompressibility of the fluid. Integrating the divergence
free condition and using that u2|z=0 = 0 we get,

∀x ∈ T, −u2(x, η(x)) =
ˆ η(x)

0

∂xu1(x, ζ) dz
′

= ∂x

[ˆ η(x)

0

u1(x, ζ) dz
′
]
− u1|η∂xη.

Back to (4.7), the terms u1|η∂xη compensate, providing (4.10)

ˆ T

0

ˆ
T

(
∂tη + ∂x

ˆ η

0

u1(x, z
′) dz′

)
ϕ = 0.

Since u is divergence free, there exists stream function ψ such that u = ∇⊥ψ. In particular ψ is
the vertical primitive of u1. We saw in Section 3.8 that the Stokes equation also writes in terms
of ψ. With ρ = 1{z<η(t,x)} we get

∆2ψ = ∂x1{z<η(x)}, ψ = ∂nψ = 0 on ∂Ω,

where the source term belongs to H−2(Ω), and is understood in the dual sense

φ ∈ H2
0 (Ω), ⟨∂x1{z<η(x)}, φ⟩ := −⟨1{z<η(x)}, ∂xφ⟩ = −

ˆ
{z<η(x)}

∂xφ.

Since ψ = 0 at {z = 0}, we find that
´ η
0
u1 = ψ|η and we recognise (4.11) from (4.10) by the
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chain rule,

∂x(ψ|η) = ∂xψ|η + ∂zψ|η∂xη
= −u2|η + u1|η∂xη.

4.1.3 Graph persistence for short time
By an elementary geometric consideration, we prove that any Lipschitz graph interface Σ0 =
{(x, η0(x)} remains a graph in short time.

Lemma 4.1.1. For any η0 : T → (0, 1) such that ∥∂xη0∥L∞ < ∞, there exists T > 0 such that
the interface Σ(t) is the graph of some map η(t) : T → (0, 1) for any t ∈ [0, T ).

Proof. We know from [Leb22] that if ρ0 ∈ L∞(Ω) then the solution to ST satisfies in particular

ρ(t) = ρ0 ◦X(t)−1, ∥u∥L∞(R+;W 1,∞) ≲ ∥ρ0∥L∞ ,

where X = (X1, X2) : R+ × R+ × Ω → Ω is the flow map associated to u, as defined in
Subsection 2.2.2. We will note X(t) = X(t; 0) = X(t; 0, ·) and X(t;x, z) = X(t; 0, (x, z)) for
concision. The interface of the patch at time t writes as the image of the flow X of the initial
graph Σ0 = {(x, η0(x)) : x ∈ T}, as follows

Σ(t) = {X(t;x, η0(x)) : x ∈ T}. (4.12)

We know by definition of the flow that ∥∂tX∥L∞ ≤ ∥u∥L∞(R+;L∞) ≲ ∥ρ0∥L∞ , ensuring the
transport to occur at finite speed. In particular, since the latter is satisfied at t = 0, for any
x < y there is X1(t;x, η0(x)) < X1(t; y, η0(y)) for t > 0 small enough depending on (x, y) a
priori. Conversely, Σ(t) is a graph if and only if

∀x < y, X1(t;x, η0(x)) < X1(t; y, η0(y)).

This condition is in particular satisfied if the horizontal derivative ofX1(t; ·, η0(·)) remains strictly
positive. We know that X(t) ∈W 1,∞(Ω) for all time, so that

∂x[X1(t;x, η0(x))] = ∂xX1(t;x, η0(x)) + ∂xη0(x)∂zX1(t;x, η0(x)).

Recalling the identity (2.13), see also [BCD11, Proposition 3.10] for more precise estimates on
transport flows,

∥∇X(t)− IdΩ∥L∞ ≲ eCt∥∇u∥L∞(0,t;L∞) − 1,

we extract

∥∂xX1(t)− 1∥L∞ ≲ eCt∥ρ0∥L∞ − 1, ∥∂zX1(t)∥L∞ ≲ eCt∥ρ0∥L∞ .

Gathering these latter considerations yields

||∂x[X1(t, ·, η0(·))− 1∥L∞ ≲ (1 + ∥∂xη0∥L∞)(eCt∥ρ0∥L∞ − 1).

In particular, ∂x[X1(t, ·, η0(·)] remains strictly positive for small times, and the graph condition
is satisfied. Moreover, is Σ(t) the graph of some η(t) if and only if

∀y ∈ T,∃!x ∈ T,

{
X1(t; y, η0(y)) = x
X2(t; y, η0(y)) = η(t, x).
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Since X1(t; ·, η0(·)) is a diffeomorphism of T, we can invert this system and infer

∀x ∈ T, η(t, x) = X2(t; ·, η0(·)) ◦ (X1(t; ·, η0(·))−1(x). (4.13)

4.1.4 Data regularity

We discuss here the maximal regularity propagation that we can expect for η and u. We start
by introducing some notations for Hölder spaces, and recall an embedding between Sobolev and
Hölder spaces.

Definition 4.1.2. Let k ∈ N and µ ∈ (0, 1). The Hölder space Ck,µ(Ω) is the subset of functions
f ∈ Ck(Ω) such that the following semi-norm is finite,

∥f∥Ċk,µ := sup
x̸=y

|f(x)− f(y)|
|x− y| .

This space is endowed with the norm

∥f∥Ck,µ := max
0≤ℓ≤k

∥∇ℓf∥L∞ + ∥f∥Ċk,µ .

To relate the Sobolev and Hölder spaces, we point out the following continous embedding
holds, as a consequence of Morrey’s inequality, see [Bré11, Theorem 9.12],

∀m ∈ N∗,∀q > 2, Wm,q(Ω) ↪→ Cm−1,1−2/q(Ω). (4.14)

We also illustrate how the Hölder regularity is preserved by composition.

Lemma 4.1.3. Let I = (0, 1) and let f ∈ C1,α(I; I) and g ∈ C1,β(I; I) with α, β ∈ (0, 1). Then
f ◦ g ∈ C1,min(α,β).

This statement writes on segments for sake of clarity. The same result holds when considering
bounded domains of R2 or R3 instead, as long as the composition between the two Hölder
functions is well-defined.

Proof. Since in particular f, g ∈ C1, so is f ◦ g. The only thing to show is that ∥f ◦ g∥Ċ1,δ is
indeed finite, and for which δ. For any x, y ∈ I such that x ̸= y, we have

(f ◦ g)′(x)− (f ◦ g)′(y) = g′(x)f ′(g(x))− g′(y)f ′(g(y))

= g′(x)(f ′(g(x))− f ′(g(y))) + (g′(x)− g′(y))f ′(g(y))

≤ ∥g′∥L∞∥f ′∥Ċ0,α |g(x)− g(y)|α + ∥f ′∥L∞∥g′∥Ċ0,β |x− y|β

≤ ∥g′∥1+α
L∞ ∥f∥Ċ1,α |x− y|α + ∥f ′∥L∞∥g∥Ċ1,β |x− y|β .

Then we have

|(f ◦ g)′(x)− (f ◦ g)′(y)|
|x− y|δ ≤

(
∥g′∥1+α

L∞ ∥f∥Ċ1,α + ∥f ′∥L∞∥g∥Ċ1,β

)
|x− y|min(α,β)−δ,

so if δ ≤ min(α, β) then the supremum on x ̸= y is finite.
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Velocity estimate In this paragraph we link the velocity regularity to the graph L1 norm.
From here we decompose any graph η into its horizontal average η = 1

2π

´
T
η and its zero average

complementary ζ,
η = η + ζ.

The following holds.

Lemma 4.1.4. Let η : T → (0, 1) measurable. Then the solution to the Stokes equation with
datum 1{z<η(x)} satisfies

∀q ∈ (2,∞), ∥u∥C1,1−2/q ≲ ∥u∥W 2,q(Ω) ≲ ∥ζ∥1/qL1(T).

This latter estimate illustrates that the regularity of ζ does not affect u. Only its L1 norm
does. We provide a proof of this lemma thereafter.

Since for any c ∈ R, the couple (ρc,uc) = (c,0) solves the Stokes equation, the folllowing
holds by linearity of the system, for any 1 < q <∞,

∀c ∈ R, ∥u∥W 2,q ≲ ∥ρ− c∥Lq .

Since additive constants in the source term do not contribute to the dynamic of the system, the
following norms are relevant when estimating the Stokes equation solutions

∥ρ∥Lq/R := inf
c∈R

∥ρ− c∥Lq ,

In the same fashion, recalling estimate (2.7), we have

∥u∥W 1,∞ ≲ ∥ρ∥L∞/R.

In the case of a bounded density ρ and especially for patches 1P with P ⊂ Ω non-negligible,
we have

∥ρ∥L∞/R = sup
Ω
ρ− inf

Ω
ρ, ∥1P ∥L∞/R = 1,

which shows that the density differences matter more than its actual values. In particular, there
is no relation between the uniform norm of ρ and the regularity of the patch P or the graph
η. Hence we focus on the Lq estimate for the Stokes equation for q ∈ (2,∞). The Lq norm of
ρ = 1{z<η(x)} computes as follows,

∥ρ∥qLq =

ˆ
Ω−

1 =

ˆ
T

ˆ η(x′)

0

1 dz′ dx′ = ∥η∥L1 .

Proof of Lemma 4.1.4. As discussed right above, the linearity of the Stokes equation allows to
shed some parts of the source term non contributing to the velocity field. Here we consider the
solution (ρh,uh) = (1{z<h},0) to the Stokes equation and as in the previous case, the linearity
of the system yields for any h ∈ [0, 1],

∥u∥W 2,q ≲ ∥1{z<η(x)} − 1{z<h}∥Lq = ∥η − h∥1/qL1(T),
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since the difference of indicator functions satisfies the following, illustrated by Figure 4.2,

∀(x, z) ∈ Ω, 1{z<η(x)} − 1{z<h} =





1 if h < z < η(x),
−1 if η(x) < z < h,
0 otherwise.

(4.15)

ex

ez

z = η(x)

z = h

T

1

−1

1

−10

0

Figure 4.2: Representation of the difference (4.15).

Recalling η̄ :=
´
T
η the average of η, and define ζ such that η = η̄ + ζ, with ζ has zero average.

For h = η̄ we get

∥1{z<η(x)} − 1{z<η̄}∥qLq = ∥ζ∥L1(T).

In the end, considering Morrey inequality (4.14), we have for any 2 < q <∞,

∥u∥C1,1−2/q ≲ ∥u∥W 2,q ≲ ∥ρ∥Lq ≲ ∥ζ∥1/qL1 .

Interface regularity We discuss here the regularity propagation of η. Lemma 4.1.1 ensures
that η remains a Lipschitz graph for short time. From the interface description (4.1.1) we know
that the interface, as a curve, has the regularity of the composition of the flow with the initial
datum, namely X(t; 0, η0). Taking a look at the following flow estimate proof from [BCD11,
Proposition 3.10],

|∇2Xi(t; s,x)| ≤ e|
´ t
s
|∇u(τ,X(τ ;s,x))| dτ|

∣∣∣∣
ˆ t

s

|∇2u(τ ;X(τ ; s,x))e|
´ t
s
|∇u(τ,X(τ ;σ,x))| dσ| dτ

∣∣∣∣ ,

we infer the following, thanks to the embedding (4.14),

∥X(t; s)∥C1,1−2/q ≲ ∥X(t; s)∥Ẇ 2,q ≲ eC(t−s)∥∇u∥L∞(t;s,L∞)

ˆ t

s

∥u(τ)∥W 2,q dτ.

In particular, X shares the spatial regularity of u. We infer that for any s, t small enough,
X(t; s, ·) belongs to C1,µ(Ω) for any µ ∈ (0, 1). Considering η0 ∈ C1,δ(T) for some δ ∈ (0, 1),
we obtain according to Lemma 4.1.3 that X2(t; ·, η0(·)) ∈ C1,δ(T). From the explicit expression
(4.13) of η(t) as the composition of X2(t, ·, η0(·)) and (X1(t, ·, η0(·)))−1, we get that η(t) at best
belong to the class C1,δ.
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Notice that we are studying here the regularity of the map x→ η(x) as a function T → (0, 1),
which does not necessarily correspond to the regularity of a generic interface Σ, since this latter
can be parametrised in different ways. In the case of a graph interface, Σ is at least as regular
as η, but the converse does not hold. Think for instance of x 7→ √

x, continous on R+ but not
Lipschitz, but whose graph is C∞ as a curve. Further considerations and other works on patches
are discussed in Subsection 1.4.2.

4.1.5 Lyapunov functionals and long-time behaviour
A Lyapunov functional is a monotonous quantity associated to the solution of a time dependent
system. More precisely, following [AB20, Definition 1.1], we provide an adapted definition to our
study.

Definition 4.1.5. Consider a function I : L∞(Ω) → [0,∞). We say that I is a Lyapunov
functional for the system (4.1) if for any solution η : [0, T ∗) × T → (0, 1), regular enough and
with T ∗ its maximal time of existence, we have

∀t ∈ [0, T ∗),
d

dt
I(η(t)) ≤ 0.

The Lyapunov functions allows us to study the long-time behaviour of solutions. In [AB20],
Alazard & Bresch provide an extensive gathering of common Lyapunov functionals for several
free surface equations arising in fluid mechanics, such as the Mean curvature equation, the
Hele-Shaw equation or the Thin-film equation. We provide a selection of classical Lyapunov
functionals, expressed for a generic solution η : [0, T ] × T × R to a free surface problem on a
periodic 2-dimensional problem,

ˆ
T

η2,

ˆ
T

|∂xη|2,
ˆ
T

√
1 + |∂xη|2,

ˆ
T

η log η. (4.16)

The first one is the L2 norm and often corresponds to the energy of the system. The second is
the H1 norm. The third is the curve length. The latter is called Boltzmann’s entropy. Other
integrals involving other powers, derivatives or quantities, such as the curvature, can also be
Lyapunov functionals. Note that all of these are convex functionals with respect to η.

In the case of the graph interface evolution for the Stokes-transport equation, we could only
prove that η 7→ ∥η∥L2 is a Lyapunov functional for the system. This fact is related to the potential
energy monotonicity established in Subsection 3.6.2. We numerically studied other Lyapunov
functionals, in particular the ones mentionned above, and found counterexemples disqualifying
most of them as monotonous quantities, including the curve length.

Lemma 4.1.6. As long as t 7→ η(t) exists, its average is constant in time, in the sense
ˆ
T

η(t, x) dx =

ˆ
T

η0(x) dx.

Proof. This is a direct consequence of the measure preserving flow,
ˆ
T

η(t, x) dx =

ˆ
Ω

1{z≤η(t,x)} = |Ω−(t)| = |Ω−
0 | =

ˆ
T

η0(x) dx.

We recall the decomposition η = η̄+ ζ with η̄ =
´
T
η(t, x) dx = η̄0 and ζ having zero average.



172 CHAPTER 4. Numerical study of the graph interface evolution

The potential energy of the system, as introduced in 3.6.2, is linked to the L2 norm of the
graph. Indeed,

E(t) =

ˆ
Ω

zρ(t) =

ˆ
Ω−(t)

z =

ˆ
T

ˆ η(t,x)

0

z dz dx =
1

2

ˆ
T

η(t, x)2 dx =
1

2
∥η(t)∥2L2(T).

In particular, we deduce right away from (3.63) the following

1

2

d

dt
∥η∥2L2 =

d

dt
E(t) = −∥∇u∥2L2 .

We can also recover this equation by considering directly the energy estimate for the evolution
equation (4.8) of η. Notice that ∥η∥2L2 = η̄2 + ∥ζ∥2L2 since η̄ and ζ are orthogonal in L2 due to
the zero average of ζ. Then η 7→ ∥ζ∥L2 is also a Lyapunov functional. Note that no decay rate
is given here. To sum up, we proved the following.

Lemma 4.1.7. The potential energy, and equivalently the L2 norm of the graph, is a Lyapunov
functional. Moreover, we have

d

dt
E(t) =

1

2

d

dt
∥η∥2L2 =

1

2

d

dt
∥ζ∥2L2 = −∥∇u∥2L2 .

We did not identify formally any other Lyapunov functional. To illustrate the situation, let
us attempt to estimate η in H1(T). Derivate (4.8) to get

∂t∂xη + (∂xu1|η + ∂zu1|η∂xη)∂xη + u1|η∂2xη = ∂xu2|η + ∂zu2|η∂xη,

since
∂x(ui|η) = ∂x(ui(t, ·, η)) = ∂xui|η + ∂xη∂zui|η.

The fact that the evolution of ∂xη depends on ∂2xη does not allow a priori to get an estimate in
H1(T) without assuming more regularity on η.

Long-time behaviour From the discussion on possible asymptotic states, we infer that the
only possible stationary states ρ∞ must be stratified and satisfy in particular

ˆ
Ω

zρ∗0 ≤
ˆ
Ω

zρ∞ ≤
ˆ
Ω

zρ0,

where ρ∗0 is the vertical rearrangement of ρ0 defined in Subsection 3.6.3. In the case ρ0 =
1{z<η0(x)}, its vertically decreasing rearrangement is explicit, and we have ρ∗0 = 1{z<η̄}. If the
asymptotic state is the patch of some hypograph of η∞, then η∞ is therefore constant and the
above implies η∞ = η̄ since

´
Ω
z1{z<h}h2/2 for h ∈ (0, 1) and since ∥η∥L2 = ∥η0∥L2 .

η̄ = ∥η̄∥2L2(T) ≤ η∞ = ∥η∞∥2L2(T) ≤ ∥η∥L2 = ∥η0∥L2 .

Note that we can not exclude other scenarios to occur, see Subsection 3.6.3 on the rearrangement
and Figure 3.2 illustrating possible asymptotic profiles.
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4.2 Numerical study

4.2.1 Results of reference

To our knowledge, the only theoretical work on graph interfaces for the Stokes-transport equation
with gravity is [GGS22]. We summarise this work here and we compare our numerical observation
to these theoretical results in Section 4.2. Other works involving the interface for Stokes flows
exist, but involve capillarity effects. The evolution of a free interface for the Incompressible
Porous Medium equation has been much more studied, and is known as the Muskat problem.
An overview of this broader literature is reported in Subsection 1.4.3.

Gancedo, Granero-Belinchón and Salguero address in [GGS22] the free interface problem for
gravity Stokes flow, corresponding to the system (4.8) on the 2-dimensional horizontally periodic
domain T×R. In all generality they express the interface as a curve, and consider the particular
case of a graph. We will stick to the graph point of view in the following. With our notations,
once the constants are renormalised, the equation writes as follows.

∂tη = u|η · nΣ⟨∂xη⟩, on T, (4.17a)

−∆u± +∇p± = −ρ±ez, in Ω±(t), (4.17b)

divu± = 0, in Ω±(t), (4.17c)

J∇u± + (∇u±)⊥ − 2p±IKnΣ = 0, on Σ(t), (4.17d)
JuK = 0, on Σ(t), (4.17e)

η|t=0 = η0, (4.17f)

where ρ+, ρ− ∈ R and JfK := f+|Σ−f−|Σ denotes the jump of the quantity f at the interface point.
Here equation (4.17a) corresponds to the formulation (4.9) of the graph interface evolution,
presented at the end of Subsection 4.1.2. The graph is assumed to have an average of 0, so
η corresponds to ζ in this case. Equations (4.17b) and (4.17c) are restrictions of the Stokes
equations on the subdomains Ω±, completed with the continuity of the stress tensor (4.17d) and
velocity field (4.17e) at the interface. These conditions are equivalent to the Stokes equation
considered on the whole domain. We know in particular that the velocity field and the Stokes
stress tensor are continous for bounded source terms. The Stokes tensor is

∇u+ (∇u)⊥

2
− pI,

such that the Stokes equation rewrites

−div

(∇u+ (∇u)⊥

2
− pI

)
= −ρez.

We report here [GGS22, Theorem 1], which contains both qualitative and quantitative results,
which we compare our numerical observations to.

Theorem 4.2.1 (Gancedo, Granero-Belinchón & Salguero, ‘22). Take 3/2 < m < 2. There
exists ε0 > 0 such that for any ζ0 ∈ H3(T) satisfying

∥ζ0∥H3 < ε0,
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there exists a unique global solution ζ ∈ L∞(R+;H
3(T)) to (4.17), which moreover obeys

(1 + t)m∥ζ∥L2 + ∥ζ∥H3 ≲ ∥ζ0∥H3 .

The proof of this theorem relies on a contour dynamic formulation of this problem, which is
further explained in Subsection 1.4.3. In the first place, Gancedo, Granero-Belinchón & Salguero
prove that any generic curve in C1,µ for µ ∈ (0, 1) remains a curve at least for short time. Then,
Theorem 4.2.1 means that the flat profile of height 0 is asymptotically stable for small enough
perturbations in H3. They also provided a second global existence theorem for solutions of (4.17)
in another class of regularity, in which the solution decays exponentially, see [GGS22, Theorems
2 and 3].

Of course the evolution occurs in their case in the unbounded domain T×R, and the decay
rates might differ in the domain Ω = T× (0, 1) in which we simulate the evolution of the curve.
See also Subsection 4.2.5 on the boundaries influence.

4.2.2 Motivation and approach
The aim of this section is to motivate and describe the approach adopted for the implementation
of the code simulating the evolution of the interface.

The code has been implemented using the FEniCS library, see [Aln+15]. This library presents
ready to use finite elements methods and mesh generation algorithms. The elliptic equations to
solve can be implemented through their variational formulation, and the finite elements can be
easily specified.

As we did not know in the first place whether or not a graph break up could occur, in the sense
that the interface would cease to be a graph, we chose to implement the whole density transport,
instead of considering the interface evolution equation (4.1), whose solution could become singular
in finite time. For simplicity, we consider the numerical domain Ωnum = (0, 3) × (0, 1) with
horizontal periodic conditions, to represent Ω = T× (0, 1).

Since we want to simulate a patch evolution, we wish to preserve this structure. First we
provide an initial graph curve, that we discretise, providing a sequence of segments. In order
to respect the horizontal periodic boundary condition, the first and last points of this sequence
should have same vertical coordinate. A mesh for the whole domain Ωnum is then generated,
comprising the segments of the interface. We keep track of the subdomains Ω±

num corresponding
to Ω±. Then, the density is implemented as a valuation on the mesh cells, with value 1 on
the cells belonging to Ω−

num and 0 on Ω+
num. This step is illustrated in Figure 4.3, applied to a

sinusoid interface as in Figure 4.1.
The Stokes equation is solved by finite elements using P2-P1 lagrangian elements for u and

p respectively, and periodic boundary conditions. The Pk lagrangian elements are basically
piecewise polynomial of degree k. P2 and P1 are adapted for u and p respectively since the
source term ρ is in L∞, we expect (u, p) ∈W 2,q ×W 1,q, according to Theorem 2.2.1.

The set of vertices is then transported following the computed velocity field. The density
function, depending only on the cells and not on the coordinates in the domain, remains an
indicator function. The time step should be small enough in order to avoid cells overlaps that
could occur due to this process.

Finally, the Stokes problem solving and the mesh displacement are repeated as long as the
mesh quality is good enough. In case the mesh quality is degraded, the points on the interface
are extracted, and a new mesh is created as above.

Observe in Figure 4.4 the evolution of the solution to the interface problem for the initial
sinusoidal initial profile illustrated Figure 4.3, with the above protocol.



4.2. Numerical study 175

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.00

0.25

0.50

0.75

1.00

Figure 4.3: Sinusoidal interface and adapted mesh.
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Figure 4.4: Graph evolution for a vertically centred sinus.
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4.2.3 Parameters configuration
The aforementioned algorithm requires to set several parameters, among which the three follow-
ing ones we will focus on:

• The interface resolution Ires. The interface is discretised in 3Ires points, hence the segments
have typical length 1/Ires.

• The mesh resolution Mres. The typical mesh edges length is 1/Mres.

• The time step h.

For instance, Figure 4.3 has mesh resolution Ires = 10 and Mres = 10. Figure 4.4 is run with
Ires = 50,Mres = 50 and h = 0, 05. Our aim in this paragraph is to obtain a reference triplet
(Ires,Mres, h) for which the simulations are accurate enough for our purpose. The graph of
reference is the sine from Figure 4.3, as it is smooth and symmetric with respect to the vertical
coordinate, defined as

η10 : x ∈ (0, 3) 7→ 1

2
+

1

4
sin

(
2πx

3

)
.

In the following, we will also consider ζi = ηi−η̄i, the difference between ηi and its average η̄i.
Now, we compare the influence of the ratio of the interface resolution and the mesh resolution,
namely Ires/Mres. Since the problem relies entirely on the graph, we can expect the simulation to
be more sensitive to the interface resolution than to the mesh resolution. In Figure 4.5, we plot
the L2 decay of ζ for several settings of Ires and Mres and a fixed time step h = 0.1. We observe
that higher is Ires and higher is the ratio Ires/Mres, latter the numerical threshold is reached,
occurring near t = 102 where the curve has a slope break.
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Figure 4.5: Decay of ∥ζ1∥L2 for several Ires and Mres, with h = 0.1. Darkness increasing with
Ires/Mres.

We run simulations for the smaller time step h = 0.05 and plot the evolution of the Ḣ2 norm
of ζ, as this quantity should be more sensible to the different resolutions, see Figure 4.6. We
observe that the red curve for which Ires < Mres does not fit with the ones representing settings
where Ires ≥Mres.

Finally, Figure 4.7 shows that there is no major difference in the evolution of ∥ζ∥H2 for
Ires ∈ {25, 50, 75},Mres = 50 and h ∈ {0.1, 0.05, 0.01, 0.005}. From now on we choose the generic
set of parameters Ires = 50,Mres = 50, h = 0, 01.
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Figure 4.6: Decay of ∥ζ1∥Ḣ2 for h = 0.05.
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Figure 4.7: Decay of ∥ζ1∥Ḣ2 with Ires =Mres = 50 and several h.
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4.2.4 Evolution rates

The aim of the present subsection is to consider regular initial data, and to compare the evo-
lution of their quantities of interest. The case of graph break will be considered in Subsec-
tion 4.2.8. We consider four initial graphs, whose evolution is represented in Figure 4.8, with
given expressions. From here, unless mentioned otherwise, the generic set of resolutions is
(Ires,Mres, h) = (50, 50, 0.01).
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Figure 4.8: Graph interface evolution for several initial data.

We plot the evolution of the mass
´
T
η, the L2, H1 and H2 norms of ζ and its length, for ηi0

with i ∈ {1, 2, 3, 4}, reported in Figure 4.9. Observe that the masses ∥η∥L1 are well preserved,
conformly to Lemma 4.1.6. The L2 norm decays for all graphs, accordingly to Lemma 4.1.7.
Interestingly, we observe that the Ḣ1 norm of η4 is the only one not monotonous. This is surely
linked to the corner formation occurring around x = 1.5. Even more insterestingly, the Ḣ2 norm
of η3 also grows before decaying. These behaviours are investigated and confirmed in Subsection
4.2.7, proving that these norms are not Lyapunov functional for the system. The Ḣ3 norm,
supposedly bounded for data initially small, seems bounded except for η40 . Finally, the lengths
of the curves are decreasing, except for η40 , which presents a hump. This also suggests that the
length of η is not a Lyapunov function either, see Subsection 4.2.7.

According to Theorem 4.2.1, for data ζ0 small enough in H3, we have

∀m ∈
(
3

2
, 2

)
, ∥ζ(t)∥L2 ≲

∥ζ0∥H3

(1 + t)m
, ∥ζ(t)∥H3 ≲ ∥ζ0∥H3 . (4.18)

By interpolation, we deduce that

∀m′ ∈
(
1,

4

3

)
, ∥ζ(t)∥H1 ≲

∥ζ0∥H3

(1 + t)m′ , ∀m′′ ∈
(
1

2
,
2

3

)
, ∥ζ(t)∥H2 ≲

∥ζ0∥H3

(1 + t)m′′ . (4.19)
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Figure 4.9: Several quantities evolution for ηi with i ∈ {1, 2, 3, 4}.

We observe that the decays in L2, Ḣ1 and Ḣ2 for ηi occur for even faster rates than the maximal
theoretical ones (4.18) and (4.19), available from [GGS22]. For η1, the fastest to converge
among our tests, the scheme seems to reach a numerical threshold, indicated by the slowdown
before t = 102, which does not even respect the minimal decay rate (4.19) in Ḣ1, in particular.
As mentioned before, the Ḣ3 norm may slightly increase for some time, then decrease again,
accordingly to (4.18).
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4.2.5 Boundaries influence

Observe that η10 and η20 are vertical translations of eachother, where η10 is a vertically centred sinus,
whereas η20 is closer to the bottom of the domain. In T×R, since the domain is invariant under
vertical translation, the evolutions of η1 and η2 would be the same. However, in the confined
channel Ω = T× (0, 1), the interfaces evolve differently. Their evolution is given in Figure 4.10.
The curve of η1(t) is for all t centrally symmetric with respect to the point (1.5, 0.5). The left part
of η2(t) converges toward the flat state in the same way than η1(t), but the right part develops
a small hump. We also observe that the Sobolev norms of η2 locally increase, before decaying.
Note that all the quantities decay faster for η1 than for η2, although both remain higher than the
theoretical ones (4.18) and (4.19) obtained in [GGS22]. This explains by the Dirichlet condition
u|∂Ω = 0, which makes the velocity decrease as we get closer to the boundary. Because the right
hand-side of η2 is closer to {z = 0} than for η1, the right hand-side extremum is slower than
the rest of the interface, and this effect self-reinforces, causing the singularisation of the curve.
This phenomenon might also explain the singularity formation we observe for η4 in Figure 4.8.
Indeed, η3 and η4 are similar, up to a vertical symmetry and a translation, and their evolutions
differ essentially due to their distinct distances to the boundaries. Nevertheless, in all these case,
the interfaces converge in L2 toward the flat state.

These observations are relatable with the Muskat problem, whose infinite depth R2 and
confined domain R× (−1, 1) are compared in [GGI12], where Córdoba, Granero-Belinchón and
Orive-Illera obtained numerical evidences that the confined problem is more singular than the
infinite depth one, with initial data developping singularities in the former case, but becoming
graphs in the latter.
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Figure 4.10: Evolution of η1 and η2 with their respective norms.
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4.2.6 Maximum principle
In [CG09; GGI12], it is shown that the Muskat problem satisfies a maximum principle, in the
sense that for any time t such that the solution exists, we have

inf
x
η0 ≤ inf

x
η(t) ≤ max

x
η(t) ≤ max

x
η0.

This is true both for the Muskat problem considered in the domains R2, and in R × (−1, 1)
if ∥∂xη∥L∞ ≤ 1. We can wonder if such principle is satisfied for (4.1). To our knowledge, no
theoretical answer to this question is available. See also Subsection 1.4.3 on the Muskat problem.

Considering in Figure 4.11 the evolution of the maximum and minimum for our four reference
initial data, we observe that, except for one, these are monotonous, respectively decreasing and
increasing, which is conform to the principle. The exception is the maximum of η4, which
we tested for higher resolutions in Figure 4.12. The curves seem to coincide for the different
resolutions. Nevertheless, the behaviour modification around t = 20 is suspect and would require
further investigation to ensure that the maximum indeed increases. Note that the condition
∥∂xη40∥L∞ ≤ 1 on the datum, for which the maximum principle is ensured according to the
aforementioned works, was not respected in the first place.
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4.2.7 Lyapunov functionals observations
The aim of this section is to numericaly observe the evolution of several quantities appearing
classicaly as Lyapunov functional of free surface problems. As mentioned in Subsection 4.1.5,
a Lyapunov functional defines as a monotonous quantity for the studied system. Among the
functionals (4.16), only η 7→ ∥ζ∥L2 is known to be a Lyapunov functional, according to Lemma
4.1.7. In all our figures, this quantity decays, see in particular Figure 4.9. In Subsection 4.2.4
and in Figure 4.9 we also have conterexamples of graph interfaces for which ζ 7→ ∥∂xζ∥L2 and
ζ 7→ ∥∂2xζ∥L2 increase. Interestingly, the length of the curve is also excluded as the length of η4
increases locally, see Figure 4.9. This behaviour confirms while increasing the space and time
resolutions of the scheme in Figure 4.13. All the examples we tested also have monotonous
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Figure 4.13: Evolution of the length of η4 for several resolutions.

entropies η 7→
´
η log(η), see Figure 4.14. At this point we can only suppose that it could be

a Lyapunov functional. We sum up our conclusions in Table 4.1, with the functional proved to
be Lyapunov (

√
), those for which we exhibited counter-examples (×), and the one for which we

could not (?).

L2-norm Ḣm-norm, m ∈ {1, 2, 3} Length Entropy
∥η∥L2 ∥η∥Ḣm

´
T

√
1 + |∂xη|2

´
T
η log(η)

Lyapunov
√

x x ?

Table 4.1: Overview of functionals for the graph interface Stokes-transport problem in the peri-
odic channel.

Note that we cannot exclude, from this study, that the observed behaviours, and in particular
the non-monotonous functional counter-examples, would remain so in the unbounded domain
T×R.
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4.2.8 Singularities and graph break
We found an example of regular graph such that the interface ceases to be a graph in finite time.
Of course, the interface remains a curve, and our scheme, by construction and as described in
Subsection 4.2.2, allows us to observe the evolution of the interface after the graph breaks. The
initial datum defines as follows,

η50 : x 7→ 1

4
+ 2e−100(x−1.5)4 − 1.8e−200(x−1.5)4 .
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Figure 4.15: Evolution of η5 with Ires =Mres = 50 and h = 0.01.

We observe that the interface is no longer a graph from a certain point prior to t = 20. The
two humps seem to collapse on themselves. The first derivative of the graph also explodes in
finite time, see Figure 4.16. We refined the resolutions to check that this behaviour is not due to
some numerical approximation. All the obtained curves seem to coincide, which tends to confirm
the graph break. In particular, we cannot expect to prove that (4.1) is globally well-posed for
any initial graph, even for smooth ones.
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Well-posedness and long-time behaviour
of the Stokes-transport equation

Abstract

The Stokes-transport equation models an incompressible, viscous and inhomogeneous fluid, subject to
gravity. It is a reduced model for oceanography and sedimentation. The density is transported by the
velocity field, satisfying at any time the momentum balance between viscosity, pressure and gravity
effects, namely the Stokes equation. In the first part, we establish the global well-posedness of this
system in bounded domains and in the infinite channel, in the weak sense and for Lebesgue initial data.
The unbounded channel case is solved in uniformly local Sobolev spaces, with solutions having infinite
energy. These results are compared with previous works in the whole space and in the plane. In the
second part, we focus on the long-time evolution of the solutions of the Stokes-transport equation in
a periodic channel. We show that a class of monotonous stratified density profiles is stable for small
and regular enough perturbations. We consider no-slip boundary conditions on the velocity field, which
raises mathematical difficulties due to the presence of boundary effects. We obtain explicit algebraic
convergence rates and show that the density rearranges vertically and monotonously, in line with the
common intuition of sedimentation. We also give a refined description of the density profile, involving a
boundary layer expansion in the vicinity of the boundaries. Besides, we extend a previous result obtained
for a related problem, proving that any stationary profile is unstable in low regularity topologies. We
also highlight properties compatible with the conjecture that the density always stratifies. In the last
part, we undertake a numerical study of the evolution of graph density interfaces governed by the Stokes-
transport equation. Several behaviours are observed, from the convergence toward the flat rest interface
to the graph break. We compare our observations with existing theoretical results.

Keywords: incompressible viscous fluid, Stokes-transport, active scalar equation, global well-posedness,
steady Stokes equation, transport equation, long-time behaviour, stability, rearrangement, bound-
ary layers, numerical observation

Caractère bien posé et comportement en temps long de l’équation de Stokes-
transport

Résumé

L’équation de Stokes-transport modélise un fluide incompressible, visqueux et inhomogène, soumis à la
gravité. Il s’agit d’un modèle réduit d’océanographie et de sédimentation. La densité est transportée
par le champ de vitesse du fluide, satisfaisant à tout instant l’équilibre entre les effets de viscosité, de
pression et de gravité, d’après l’équation de Stokes. Dans la première partie, nous établissons le caractère
bien posé de ce système dans les domaines bornés et dans un canal infini, au sens faible et pour des
données intégrables. La cas du canal inclut des solutions d’énergie infinie, impliquant des espaces de
fonctions uniformément localement Sobolev. Ces résultats sont comparés à des travaux antérieurs, dans
l’espace et le plan. Dans la deuxième partie, nous nous concentrons sur le comportement en temps long
des solutions de l’équation de Stokes-transport dans un canal périodique. Nous montrons qu’une classe
de profils stratifiés est stable pour des perturbations assez petites et régulières. Nous supposons le fluide
non-glissant aux bords, ce qui pose des problèmes particuliers dûs aux effets de bords induits. Nous
obtenons des taux de convergence algébriques et montrons que la densité se réarrange verticalement
et de façon monotone. Nous donnons également un développement de type couche limite du profil de
densité à proximité des bords. En outre, nous prouvons, en adaptant un résultat antérieur, que tout
profil stationnaire est instable pour des perturbations peu régulières. Nous mettons enfin en évidence
des propriétés du système, compatibles avec la conjecture selon laquelle la densité tend toujours à se
réordonner. Dans la dernière partie, nous menons une analyse numérique de l’évolution d’interfaces
de densité de type graphe, gouvernée par l’équation de Stokes-transport. Plusieurs comportements sont
observés, de la convergence vers l’équilibre plat à la rupture de graphe. Nous comparons nos observations
à des résultats théoriques existants.

Mots clés : fluide visqueux incompressible, Stokes-transport, active scalar equation, caractère globale-
ment bien-posé, équation de Stokes stationnaire, équation de transport, comportement en temps
long, stabilité, réarrangement, couches limites, observation numérique
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