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Résumé

Cette thèse s'inscrit dans un cadre de biologie des systèmes métaboliques et a pour objectif général l'identification, au sein d'une cellule ou d'un organisme, du réseau métabolique actif dans un contexte physiologique donné. Si la métabolomique permet d'identifier l'ensemble des métabolites d'un organismeet ainsi de caractériser l'état de son système métabolique -elle ne renseigne pas directement sur la topologie et l'activité du réseau. La fluxomique est quant à elle basée sur des expériences de traçage isotopique qui permettent d'identifier les voies métaboliques actives et, à l'aide de modèles mathématiques adaptées, de déterminer les vitesses réelles des réactions (flux métaboliques) et ainsi d'accéder à la dynamique métabolique des cellules ou des organismes. Les approches de fluxomique ont jusque-là essentiellement reposé sur une connaissance préalable du système métabolique étudié (de façon à le modéliser) et sur des données de marquage acquises sur des composés identifiés du réseau (approches dites ciblées), et sont souvent focalisées sur l'étude du métabolisme carbone central. Le développement récent d'approches non ciblées de mesure d'incorporation isotopique par spectrométrie de masse permet cependant d'élargir considérablement la couverture du réseau métabolique accessible et offre également la possibilité de mettre en place de nouvelles approches de fluxomique.

Dans ce contexte, l'objectif spécifique de cette thèse est d'initier la mise en place d'une approche de reconstruction métabolique ab initio, qui vise à reconstruire le réseau actif d'un organisme dans un contexte donné, sur la seule base de données expérimentales de marquage isotopique non-ciblées. Dans un premier temps, des outils de traitement non-ciblé des données de marquage obtenues par spectrométrie de masse haute résolution ont été développés. Cela inclut une méthodologie permettant d'évaluer et d'assurer la qualité des données isotopiques ainsi générées. Dans une deuxième partie, une stratégie de fluxomique ab initio a été initiée.

Elle repose sur l'obtention de données cinétiques d'incorporation de marquage isotopique et sur le développement d'approches de simulation de ces cinétiques de marquage pour aboutir à la construction de sous-réseaux métaboliques actifs au sein desquels la distribution des flux est résolue.

Abstract

This thesis is included into the framework of metabolic systems biology and aims at the identification, within a cell or an organism, of the metabolic network that is actually active in a given physiological context. If metabolomics makes it possible to identify all the metabolites of an organism -and thus to characterize the state of the metabolic system -it does not directly provide information on the topology and the dynamics of the network. Fluxomics, which is based on isotopic tracing experiments, makes it possible to identify the active metabolic pathways and, using suitable mathematical models, to determine the actual rates of the biochemical reactions (metabolic fluxes) and thus to access the metabolic dynamics of cells or organisms. Fluxomics approaches have until now essentially relied on prior knowledge of the studied metabolic system (in order to model it) and on labeling data collected for identified compounds in the network (so-called targeted approaches), and are often focused on the investigation of central carbon metabolism. The recent development of non-targeted approaches for measuring isotopic incorporation by mass spectrometry, however, considerably expands the coverage of the accessible metabolic network and also offers the possibility of implementing new fluxomics approaches.

In this context, the specific objective of this thesis is to initiate the implementation of an ab initio metabolic network reconstructionapproach, which aims to reconstruct the contextual metabolic network of an organism without a priori considerations, i.e. based only on a data-driven approach using non-targeted isotopic labeling experiments. First, tools for the non-targeted processing of the labeling data obtained by high-resolution mass spectrometry were developed. This includes a methodology to assess and ensure the quality of the measured isotopic data. In a second part, an ab initio fluxomics strategy was initiated. It is based on dynamic isotope-labeling experiments coupled to mathematical tools for simulating the kinetics of label incorporation into the detected metabolites, lead to the construction of active metabolic sub-networks within which the flux distribution can be established. 
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Introduction générale

Préambule

Cette thèse s'inscrit dans un cadre de biologie des systèmes métaboliques et s'appuie sur l'utilisation d'approches de métabolomique et de fluxomique pour appréhender l'étude des réseaux métaboliques. Ces deux approches « omiques » permettent de caractériser de manière très détaillée l'état (métabolomique) et la dynamique (fluxomique) du métabolisme à l'échelle cellulaire, tissulaire ou de l'organisme entier. Elles sont utilisées de façon croissante dans un très grand nombre de domaines des sciences de la vie, mais aussi de la santé, de l'agronomie et 

Un cadre de biologie des systèmes métaboliques

Le métabolisme -défini de manière très large comme l'ensemble des processus de conversion de matière et d'énergie au sein d'un système vivantjoue un rôle fondamental dans les systèmes vivants en supportant l'ensemble des besoins énergétiques et synthétiques nécessaires à toutes les fonctions biologiques. L'étude du métabolisme présente un intérêt majeur pour la compréhension de son fonctionnement, de son rôle dans la physiologie et la physiopathologie, ainsi que dans l'adaptation des systèmes vivants.

L'étude du métabolisme est ancienne et a réposé très longtemps sur des approches réductionnistes visant à identifier et caractériser chacun des éléments (métabolites, enzymes, coenzymes, etc) qui le composent, à identifier et caractériser les différentes voies métaboliques, ou encore à identifier les éléments de régulation de ces voies. En oppositionou plutôt en complémentarité -avec l'approche réductionniste, une vision systémique (ou holistique) de la biologieet du métabolisme -s'est développée depuis deux décennies. Cette approche vise à appréhender le système dans son ensemble en essayant de comprendre comment tous les éléments du système interagissent entre eux pour conduire aux comportements (aux phénotypes) observés [START_REF] Jamshidi | Systems biology of SNPs[END_REF]. Dans cette vision le système (ici un organisme vivant) est représenté comme un ensemble d'éléments (gènes, protéines, métabolites …) qui interagissent entre eux de manière structurée (organisation en structures fonctionnelles) pour satisfaire une ou plusieurs fonctions (satisfaire un ou plusieurs besoins). L'organisation de chaque élément au sein de ces structures permet à l'organisme d'assurer l'accomplissement des fonctions vitales (survie, croissance, développement, etc) et de s'adapter à son environnement.

L'un des principaux défis de la biologie des systèmes est d'identifier le lien entre la structure du système (dans toute sa complexité) et ses capacités fonctionnelles. Pour cela elle s'appuie sur la combinaison d'approches expérimentales, notamment les approches dites «omiques » (génomique, transcriptomique, protéomique, métabolomique, fluxomique) qui fournissent une analyse à large échelle des différents éléments du système et de leurs interactions (moléculaires, fonctionnelles, régulatrices) (Figure 1.

1). Des approches d'analyse

in silico de plus en plus élaborées permettent ensuite d'exploiter ces masses de données pour analyser, comprendre voire prédire le fonctionnement des processus biologiques. [START_REF] Fan | Stable isotope-resolved metabolomics and applications for drug development[END_REF]. Il est donc impossible de discerner les contributions de chaque réaction ou chaque voie sur la seule base de l'analyse des métabolites.

La fluxomique repose quant à elle sur des expériences de traçage isotopique qui permettent d'identifier les réactions ou les voies métaboliques impliquées dans l'utilisation des composés.

Elle donne donc un accès plus direct aux réactions du réseau et à leurs interconnexions. Elle va au-delà en permettant de convertir l'information de marquage en valeurs de flux métaboliques grâce à des modèles mathématiques adaptés, donnant ainsi accès à la dynamique du métabolisme. Les deux approches sont très complémentaires l'une de l'autre, que ce soit pour identifier le réseau, ou pour caractériser l'état (métabolomique) et la dynamique (fluxomique) du système métabolique.

Dans le cadre de ce travail de thèse, nous avons travaillé sur le développement d'approches de profilage isotopique non ciblé par spectrométrie de masse, de façon à étendre la couverture du réseau métabolique pouvant être étudié en fluxomique. Puis, nous avons initié la mise en place d'une méthode de recontruction de fluxomique ab initio basée sur des données aquises par ce type d'approche expérimentale, dont l'objectif est de reconstruire des réseaux métaboliques et de mesurer les flux métaboliques dans ces réseaux à partir des données expérimentales. La suite de ce chapitre 1 comprend deux grandes parties en phase avec ces objectifs. La première est consacrée à l'utilisation des approches isotopiques pour l'étude des systèmes métaboliques, et la seconde aux réseaux métaboliques, de la reconstruction à la modélisation pour le calcul des flux.

PARTIE I : Utilisation des approches isotopiques pour l'étude des systèmes métaboliques

Importance des isotopes pour l'analyse du métabolisme

Nous allons voir dans cette partie de l'introduction comment l'utilisation du marquage isotopique se révèle être un outil puissant pour l'étude des sytèmes métaboliques en général et pour l'analyse fonctionnelle des réseaux métaboliques en particulier.

Les isotopes

Les isotopes sont des atomes d'un même élément chimique qui possèdent le même nombre de protons mais un nombre différent de neutrons. Les différents isotopes d'un même élément possèdent des propriétés chimiques identiques mais des propriétés physiques différentes. On distingue notamment les isotopes stables des isotopes instables (ou radioactifs), qui subissent une désintégration radioactive pour se transformer en élément plus stable, c'est à dire en atome différent. L'isotope qui se transforme et émet un rayonnement porte le nom de radio-isotope. A titre d'exemple, le carbone possède trois isotopes principaux: le carbone-12 et le carbone-13 qui sont des isotopes stables, et le carbone-14 qui est un isotope radioactif principalement connu pour son utilisation en datation radiométrique.

L'utilisation d'isotopes pour l'analyse du métabolisme a été introduite pour la première fois en 1935 lorsque Schoenheimer et Rittenberg ont utilisé du deutérium pour suivre le devenir d'acides gras chez la souris [START_REF] Schoenheimer | Deuterium as an Indicator in the Study of Intermediary Metabolism[END_REF][START_REF] Klein | Isotope labeling experiments in metabolomics and fluxomics[END_REF].

A la fin de la seconde guerre mondiale, l'utilisation des isotopes stables a diminué pour laisser la place aux radio-isotopes. Ceci s'explique par la disponibilité accrue des radio-isotopes et la facilité avec laquelle la radioactivité peut être détectée, permettant des analyses très sensibles de l'incorporation de l'isotope dans les molécules [START_REF] Lee | Tracer-based Metabolomics: Concepts and Practices[END_REF][START_REF] Wilkinson | Historical and contemporary stable isotope tracer approaches to studying mammalian protein metabolism[END_REF].

L'incorporation de l'isotope dans les métabolites était suivie par l'apparition puis la disparition de la radioactivité dans les intermédiaires métaboliques au cours du temps. Cette technique est encore utilisée, notamment en médecine.

Avec l'essor des techniques analytiques de plus en plus fines, les isotopes radioactifs ont été remplacés par des isotopes stables. Par rapport à la radioactivité, ces nouvelles techniques ont offert l'avantage de fournir une information intramoléculaire sur la position (RMN) ou le nombre (spectrométrie de masse) d'isotopes incorporés dans chaque composé détecté. Bien qu'ils soient principalement utilisés pour étudier les systèmes biologiques, les isotopes stables sont également exploités pour un large éventail d'applications comme l'environnement ou la géologie. Parmi les avantages qu'ils présentent, les isotopes stables ne présentent pas de danger pour le chercheur et l'environnement ce qui simplifie les procédures expérimentales (plus de purification ni de dégradation). Parce qu'ils sont désormais prédominants dans la métabolomique et la fluxomique contemporaines [START_REF] Kim | Applications of stable, nonradioactive isotope tracers in in vivo human metabolic research[END_REF][START_REF] Klein | Isotope labeling experiments in metabolomics and fluxomics[END_REF], seuls les isotopes stables sont considérés dans la suite de ce travail de thèse.

On retrouve parmi les isotopes stables les plus communément utilisés en métabolomique et fluxomique les atomes suivants : 2 H, 13 C, 15 N, 18 O (Figure 1.2). L'isotope stable le plus couramment utilisé est le 13 C, qui permet de tracer le devenir des atomes de carbone dans le métabolisme [Wiechert, 2001]. La suite du travail de thèse se concentrera sur l'utilisation du carbone 13 comme isotope stable pour l'étude du métabolisme. Le principe d'utilisation des autres isotopes est similaire. Les isotopologues sont généralement écrits simplement par le symbole Mi, i étant le nombre d'atome de 13 C incorporé dans la molécule (ci-dessus).

Notation des espèces isotopiques

Exploitation des isotopes pour l'étude du métabolisme

Les isotopes stables peuvent être utilisés en appui à la métabolomique ou dans le cadre d'études de traçage isotopique (Figure 1.4). La première application consiste à utiliser des standards marqués isotopiquement dans les approches de métabolomique. Ces standards marqués ont tout d'abord une valeur qualitative permettant d'assurer la qualité des données analytiques. Ils peuvent être utilisés à différents moments de l'étude : (i) en amont de l'expérience pour qualifier les instruments et méthodes analytiques [Heuillet et al, 2018] en apportant des informations sur la composition et l'abondance des métabolites ainsi que sur l'activité des voies métaboliques [START_REF] Adebiyi | 13 C flux analysis of cyanobacterial metabolism[END_REF][START_REF] Jang | Metabolomics and Isotope Tracing[END_REF].

Principales méthodes de mesure

Les techniques analytiques les plus couramment utilisées pour mesurer les isotopes stables ou suivre leur incorporation au sein des métabolites sont la Résonnance Magnétique Nucléaire (RMN) et la spectrométrie de masse (MS) mais d'autres techniques analytiques existent telles que l'imagerie ou la spectroscopie optique (IR, RAMAN) [Babele and Young, 2019]. Ces différentes méthodes d'analyse vont être introduites dans ce qui suit. La spectrométrie de masse, qui fait l'objet du travail, sera plus largement développée que les autres techniques. [START_REF] Sévin | Nontargeted in Vitro Metabolomics for High-Throughput Identification of Novel Enzymes in Escherichia Coli[END_REF]. La valeur de décalage de cette bande dépend de la valeur exacte de la variation de masse observée. Cette technique a été appliquée à divers domaines en microbiologie [START_REF] Kubryk | Exploring the Potential of Stable Isotope (Resonance) Raman Microspectroscopy and Surface-Enhanced Raman Scattering for the Analysis of Microorganisms at Single Cell Level[END_REF] et utilisée pour explorer et déterminer l'activité de voies métaboliques in vivo (ex : chez la levure [START_REF] Noothalapati | Exploring metabolic pathways in vivo by a combined approach of mixed stable isotope-labeled Raman microspectroscopy and multivariate curve resolution analysis[END_REF]) et apporter des informations sur la structure globale du réseau métabolique d'un organisme [START_REF] Noothalapati | Exploring metabolic pathways in vivo by a combined approach of mixed stable isotope-labeled Raman microspectroscopy and multivariate curve resolution analysis[END_REF]. Bien que de nombreux développements voient le jour : microspectroscopie [START_REF] Kubryk | Exploring the Potential of Stable Isotope (Resonance) Raman Microspectroscopy and Surface-Enhanced Raman Scattering for the Analysis of Microorganisms at Single Cell Level[END_REF], la spectroscopie RAMAN reste une méthode peu sensible avec des temps d'acquisition longs. 

Méthodes optiques

Résonnance Magnétique Nucléaire

La RMN est l'une des premières techniques analytiques utilisées pour l'analyse du métabolome [START_REF] Nicholson | High resolution proton magnetic resonance spectroscopy of biological fluids[END_REF]. Cette technique est basée sur les propriétés magnétiques de certains noyaux atomiques. Pour les applications en métabolomique, on retrouve la RMN du 1 H, du 31 P, du 13 C ou du 15 N. Cette technique a largement été utilisée pour de l'identification moléculaire et l'élucidation structurelle [START_REF] Emwas | NMR Spectroscopy for Metabolomics Research[END_REF]. Elle est également largement utilisée en isotopie pour le traçage isotopique ( 13 C mais aussi 15 La spectrométrie de masse fait partie des techniques analytiques les plus utilisées pour mesurer le marquage dans des molécules organiques grâce à la différence de masse observée après l'incorporation d'un ou plusieurs isotopes. Le spectromètre de masse peut être couplé à une technique séparative telle que la chromatographie (gazeuse, liquide, ionique), l'électrophorèse capillaire ou la mobilité ionique qui permettent de séparer en amont les composés d'un mélange en fonction de leurs propriétés physico-chimiques et de leur affinité avec la colonne utilisée. Ce type de couplage combiné au développement de la spectrométrie de masse haute résolution (HRMS) permet de mesurer clairement l'ensemble du profil isotopique des molécules et de faciliter ainsi l'intégration des données. La haute sensibilité des spectromètres de masse actuels permet également de mesurer des niveaux faibles de marquage.

Pendant longtemps les analyses isotopiques par spectrométrie de masse ont été réalisées avec des méthodes ciblées (c'est-à-dire focalisées sur des composés identifiés dès le départ).

Toutefois, des méthodes non ciblées de profilage isotopique, permettant d'élargir considérablement la dimension des réseaux métaboliques accessibles et d'identifier de nouveaux métabolites ou de nouvelles voies métaboliques, ont émergé récemment. La spectrométrie de masse peut également être utilisée en tandem (MS/MS ou MS n ), principalement dans une optique d'identification de molécules car elle permet une élucidation structurelle par fragmentation des composés, ou encore pour apporter une information positionnelle sur le marquage des composés.

Pour les raisons citées ci-dessus et notamment la meilleure couverture métabolique apportée par la spectrométrie de masse, le couplage chromatographie-spectrométrie de masse sera la technique analytique principalement utilisée au cours de ce travail de thèse. transformées en gaz qui est injecté dans le détecteur de masse (Figure 1.9) [START_REF] Fenn | Electrospray ionization for mass spectrometry of large biomolecules[END_REF]Gowda and Djukovi, 2014]. Mais d'autres sources d'ionisation existent telles que l'ionisation électrique (EI) et l'ionisation chimique (CI), plus utilisées en présence d'un couplage chromatographie gazeuse [START_REF] Gowda | Overview of Mass Spectrometry-Based Metabolomics: Opportunities and Challenges[END_REF], ou encore l'ionisation chimique à pression atmosphérique (APCI) [START_REF] Ayala-Cabrera | Review on atmospheric pressure ionization sources for gas chromatography-mass spectrometry. Part II: Current applications[END_REF] et l'ionisation par désorption laser (MALDI) [START_REF] Enomoto | Distribution Analysis of Anthocyanins, Sugars, and Organic Acids in Strawberry Fruits Using Matrix-Assisted Laser Desorption/Ionization-Imaging Mass Spectrometry[END_REF]. L'ESI présente cependant quelques inconvénients, le plus notable étant les effets de suppression d'ions importants lors de l'analyse de mélanges moléculaires complexes [START_REF] Gowda | Overview of Mass Spectrometry-Based Metabolomics: Opportunities and Challenges[END_REF]. 

Principaux analyseurs de masse pour études isotopiques

Les ions produits dans la source d'ionisation sont ensuite séparés au niveau de l'analyseur en fonction de leur rapport m/z. Les performances analytiques des analyseurs sont évaluées à partir de cinq paramètres principaux :

(i) La résolution (R) : la résolution d'un spectromètre de masse définit sa capacité à séparer des ions ayant des rapports m/z proches. Ce paramètre est l'un des plus importants pour les expériences de traçage isotopique.

𝑅 = 𝑚 𝛥𝑚

Où m correspond au rapport m/z mesuré et Δm à la largeur à mi-hauteur de ce même pic.

On distingue les appareils à basse résolution (R < 1000) des appareils à haute résolution (R > 10 000), voire à très haute résolution (R > 100 000).

(ii) La précision correspond à la capacité de l'analyseur à mesurer avec justesse la masse de l'ion par rapport à sa masse théorique. Dans les expériences de marquage, les isotopologues des métabolites sont quantifiés à partir de leurs massifs isotopiques dans les spectres MS. Ces massifs contiennent les informations relatives aux isotopes suivis (ex : 13 C) mais également des informations sur les isotopes de tous les éléments chimiques présents dans les molécules, tels que le carbone, l'hydrogène, l'azote, l'oxygène et le soufre [START_REF] Midani | The importance of accurately correcting for the natural abundance of stable isotopes[END_REF]. La présence de ces isotopes peut impacter significativement les spectres de masse des métabolites, en fonction de leur abondance naturelle. Les spectromètres de masse à haute résolution permettent de séparer directement certaines formes isotopiques suivant leur résolution de travail. Par exemple, le signal provenant d'une forme marquée 13 C peut être séparée de celui provenant d'une espèce contenant un atome de 15 N (Figure 1.13). Pour extraire et exploiter correctement les données de marquage, il est donc nécessaire de corriger de l'abondance naturelle tous ces autres isotopes.

Plusieurs outils ont été développés pour corriger cela tel que le logiciel IsoCor développé par Millard et al, qui prend en compte la résolution de l'appareil de mesure [Millard et al, 2012]. Enfin l'enrichissement 13 

Métabolomique assistée par les isotopes stables

Malgré le développement d'outils analytiques puissants, l'analyse du métabolome est rendue complexe par différents facteurs liés à sa nature (section 3.5). Dans ce contexte, les isotopes sont utilisés de manière croissante comme appui à la métabolomique. Il s'agit d'utiliser des standards (simples ou complexes) isotopiquement marqués pour répondre à différents besoins analytiques, incluant des aspects de qualification des instruments et de validation de méthodes (qualité des données), la normalisation ou la standardisation des analyses (gestion des analyses), s'assurer de la qualité des données analytiques, l'aide à l'annotation du métabolome ou encore pour le développement des approches de métabolomique quantitative (appui à l'interprétation des données). exploiter les données sur l'ensemble de l'étude [Bongaerts et al, 2021 ;Weindl et al, 2015].

Support pour l'identification de métabolites

• Identification de la formule moléculaire

Les standards marqués isotopiquement peuvent également servir de support pour l'identification et l'annotation de métabolites [Dunn et al ;[START_REF] Antoniewicz | 13C metabolic flux analysis: optimal design of isotopic labeling experiments[END_REF][START_REF] Wishart | Advances in metabolite identification[END_REF][START_REF] Wishart | Advances in metabolite identification[END_REF]. L'annotation en spectrométrie de masse commence généralement par la prédiction des formules moléculaires et la comparaison des masses mesurées avec des bases de données de composés telles que

PubChem [START_REF] Kim | PubChem 2023 update[END_REF] ou ChEBI [START_REF] Hastings | ChEBI in 2016: Improved services and an expanding collection of metabolites[END_REF], ou de bases de données de voies métaboliques telles que MetaCyc [Karp et al, 2002] ou KEGG [START_REF] Kanehisa | KEGG: kyoto encyclopedia of genes and genomes[END_REF].

Cependant la connaissance de la masse d'un métabolite ne suffit pas pour déterminer sa composition élémentaire. 

• Identification structurale

En plus de la détermination de la formule moléculaire, le marquage isotopique peut aider à l'identification structurale des métabolites [START_REF] Hegeman | Stable isotope assisted assignment of elemental compositions for metabolomics[END_REF], Neumann et al, 2014] Récemment, une approche basée la production d'un standard doublement marqué au 13 C 15 N a été développée pour permettre de mesurer simultanément la concentration absolue des métabolites et l'incorporation isotopique par spectrométrie de masse [START_REF] Heuillet | Simultaneous Measurement of Metabolite Concentration and Isotope Incorporation by Mass Spectrometry[END_REF]. Cette stratégie de marquage a également l'avantage de réduire la quantité d'échantillons à collecter et analyser en doublant les informations obtenues via une seule expérience de marquage. Elle reste cependant limitée à la quantification de composés azotés. 

Etude du métabolisme par traçage isotopique

Culture cellulaire

La mise en place de la culture cellulaire consiste à déterminer dans quelles conditions les cellules seront cultivées, notamment la composition du milieu de culture, le choix du traceur isotopique et l'état métabolique dans lequel les cellules vont se trouver au moment de l'échantillonnage.

• Composition du milieu

Le milieu de culture va permettre à la cellule de se multiplier et de produire des composés. Chez E. coli par exemple, on va pour cela retrouver dans un milieu de cellule des composés inorganiques qui vont alimenter les cellules en azote, phosphore, souffre et en ions métalliques mais aussi des composés organiques, notamment une source de carbone, des vitamines ou des hormones. La composition du milieu depend de plusieurs paramètres tels que l'organisme étudié, le process de culture et peut également dépendre de la question biologique.

Le milieu peut être simple et contenir une seule source de carboneon parle alors de milieu minimumou complexe avec plusieurs sources de carboneon parle dans ce cas de milieu riche. Dans le cadre d'expériences de marquage isotopique, il est nécessaire de connaitre précisément la composition du milieu, c'est à dire les composés qui le constitue ainsi que leur concentration. L'idéal est de cultiver les cellules dans un milieu minimum, ce qui simplifie grandement les expériences de marquage. Cet aspect est généralement applicable pour des organismes simples (ex : E. coli). Les organismes complexes (ex : cellules mammifères) consomment plusieurs sources de carbone et nécessiteront un milieu riche, ce qui complexifie l'expérience notamment car les cellules peuvent consommer plusieurs substrats en parallèle, avec des cinétiques de consommation différentes. Dans ce cas, plusieurs expériences de marquage peuvent être nécessaires avec chacune des sources de carbone consommées par la cellule (ex : glucose et glutamine pour les cellules mammifères).

• Choix du nutriment

Le choix du nutriment marqué dépend principalement du type d'organisme étudié, de l'objet de l'étude et des voies métaboliques d'intérêt [START_REF] Crown | Rational design of 13C-labeling experiments for metabolic flux analysis in mammalian cells[END_REF]. Il est important que l'assimilation du substrat marqué soit assurée par l'organisme et qu'il soit intégré dans le métabolisme aussi près que possible de la / des voie(s) étudiée(s). A titre d'exemple, le 13 Cglucose est très classiquement utilisé pour étudier la glycolyse et la voie des pentosesphosphates. Le cycle de Krebs peut être étudié directement à partir de 13 C-pyruvate ou de 13 Cacétate, mais peut également être étudié à partir de sources plus éloignées telles que le 13 Cglucose, la 13 C-glutamine, un acide gras marqué ou encore à partir d'une combinaison de plusieurs d'entre eux. Le choix du nutriment marqué dépend également de la nature du système biologique étudié. Ainsi, pour l'étude de cellules mammifères, le glucose et la glutamine sont privilégiés car ce sont des nutriments majeurs pour ces cellules et ils donnent accès à l'essentiel des voies du métabolisme carboné central [START_REF] Crown | Rational design of 13C-labeling experiments for metabolic flux analysis in mammalian cells[END_REF][START_REF] Antoniewicz | 13C metabolic flux analysis: optimal design of isotopic labeling experiments[END_REF]. D'autres substrats marqués comme le 13 C-lactate, ou le 13 C-pyruvate sont également largement utilisés dans ce cadre. D'un point de vue pratique, le prix et la disponibilité du traceur utilisé sont également pris en compte.

• Traceur isotopique / choix du marquage

Le type de marquage du composé lui-même, c'est-à-dire le nombre et la position des atomes remplacés par l'isotope est également déterminant pour le nombre et la nature des flux accessibles et la précision de l'estimation des flux. A titre d'exemple, il a été montré que le [START_REF] Hanson | Unknown' Proteins and 'Orphan' Enzymes: The Missing Half of the Engineering Parts Listand How to Find It[END_REF][START_REF] Hu | Global Functional Atlas of Escherichia Coli Encompassing Previously Uncharacterized Proteins[END_REF][3][START_REF] Raamsdonk | A Functional Genomics Strategy That Uses Metabolome Data to Reveal the Phenotype of Silent Mutations[END_REF][START_REF] Fuhrer | Genomewide Landscape of Gene-Metabolome Associations in Escherichia Coli[END_REF][START_REF] Sévin | Nontargeted in Vitro Metabolomics for High-Throughput Identification of Novel Enzymes in Escherichia Coli[END_REF][START_REF] Blaby-Haas | Mining High-Throughput Experimental Data to Link Gene and Function[END_REF][START_REF] Long | Metabolic Flux Analysis of Escherichia Coli Knockouts: Lessons from the Keio Collection and Future Outlook[END_REF][START_REF] Baba | Construction of Escherichia Coli K-12 In-frame, Single-gene Knockout Mutants: The Keio Collection[END_REF][START_REF] Joyce | Experimental and Computational Assessment of Conditionally Essential Genes in Escherichia Coli[END_REF][START_REF] Guzmán | Reframing Gene Essentiality in Terms of Adaptive Flexibility[END_REF][START_REF] Tong | Gene Dispensability in Escherichia Coli Grown in Thirty Different Carbon Environments[END_REF][START_REF] Warner | Rapid Profiling of a Microbial Genome Using Mixtures of Barcoded Oligonucleotides[END_REF] C]-glucose est un traceur privilégié pour une estimation précise de la partition des flux entre la glycolyse et la voie des pentoses phosphates [START_REF] Metallo | Evaluation of 13C isotopic tracers for metabolic flux analysis in mammalian cells[END_REF]. Différentes études ont été menées pour déterminer le type de marquage optimal [START_REF] Boros | 1,2-13C2]-D-glucose profiles of the serum, liver, pancreas, and DMBA-induced pancreatic tumors of rats[END_REF][START_REF] Munger | Systemslevel metabolic flux profiling identifies fatty acid synthesis as a target for antiviral therapy[END_REF],

notamment dans les systèmes complexes tels que les cellules mammifères [START_REF] Metallo | Evaluation of 13C isotopic tracers for metabolic flux analysis in mammalian cells[END_REF]].

Des logiciels tels que IsoDesign [Millard et al, 2014] [START_REF] Canelas | Quantitative Evaluation of Intracellular Metabolite Extraction Techniques for Yeast Metabolomics[END_REF] ou chez E. coli [START_REF] Winder | Global Metabolic Profiling of Escherichia coli Cultures: an Evaluation of Methods for Quenching and Extraction of Intracellular Metabolites[END_REF]Millard et al, 2014] Ces différents états isotopiques seront détaillés dans la section 7.2 consacrée aux expériences de fluxomique.

Stratégies d'analyses par LC-MS

Le choix du mode d'analyse ayant été précedemment décrit (section 3.5), nous allons nous concentrer sur les différentes stratégies d'analyse utilisées en LC/HRMS. 

Analyses ciblées

Analyses non-ciblées

Les analyses non-ciblées sont utilisées pour couvrir l'ensemble du métabolome.

Contrairement aux analyses ciblées, ces méthodes enregistrent chaque molécule ionisable de l'échantillon et ont donc une capacité de profilage bien supérieure. Leur utilisation est adaptée à l'analyse des réseaux métaboliques à large échelle car elle permet de fournir une information plus exhaustive et sans a priori sur le métabolome d'un organisme.

L'utilisation de spectromètres de masse haute résolution est privilégiée dans le cadre d'analyses non ciblées. En effet, les mélanges complexes contiennent généralement des centaines de métabolites ayant des différences de masse étroites et une résolution d'au moins 0,1 mDa est nécessaire pour permettre une bonne séparation de tous les ions générés [START_REF] Marshall | High-resolution mass spectrometers[END_REF]. La complexité du métabolome rend compliquée la mesure de tous les métabolites via une seule analyse, et il peut être nécessaire de combiner plusieurs méthodes d'extraction, plusieurs colonnes chromatographiques (ex : C18, HILIC) ou plusieurs modes d'ionisation (positive/négative) pour optimiser la récupération des métabolites.

Les approches non-ciblées sont globalement utilisées pour l'identification sans a priori de biomarqueurs liés à une perturbation métabolique ou pour identifier de nouveaux métabolites et de nouvelles voies métaboliques. Les principaux défis liés aux approches non-ciblées résident dans les protocoles de traitement de grandes quantités de données et d'identification des métabolites. Cette étape d'identification reste la principale difficulté, liée aux bases de données métabolomiques qui ne permettent pas d'identifier sans ambiguïté tous les signaux obtenus lors de l'analyse. Malgré les excellents progrès réalisés dans l'élargissement des bases de données (section 3.5), une partie importante des signaux détectés dans les études non ciblées ne peut toujours pas être identifiée et reste non annotée [Zamboni et al, 2015].

Contrairement à la métabolomique non-ciblée qui est aujourd'hui largement utilisée pour l'étude du métabolisme et pour laquelle des méthodes et outils sont bien référencés, le profilage isotopique non-ciblé reste un domaine relativement récent et sous-exploité [Dange et al, 2020]. Dans l'ensemble, l'analyse non-ciblée isotopique peut être complexe et le résultat peut être difficile à interpréter.

Traitement des données isotopiques

Les analyses de traçage isotopique par spectrométrie de masse génèrent un grand nombre de données (Figure 1. [START_REF] Heux | A Novel Platform for Automated High-Throughput Fluxome Profiling of Metabolic Variants[END_REF]. Elles nécessitent l'utilisation de protocoles et d'outils de traitements de données performants et adaptés pour extraire l'information pertinente des spectres de masse obtenus. Dans le cadre de recherche de biomarqueurs, des analyses statistiques telles que des approches univariées ou multivariées peuvent être appliquées. Ces approches ne seront pas développées dans ce manuscrit mais elles peuvent être utilisées pour comparer les profils isotopiques de composés dans différentes conditions ou pour différentes souches ou lignées cellulaires.

Bien que les approches isotopiques non-ciblées se développent de plus en plus, des protocoles ou méthodologies permettant de garantir la qualité des données extraites font encore défaut. L'amélioration des stratégies de traitement non ciblé des données isotopiques a représenté un des deux objectifs de ma thèse et les résultats obtenus font l'objet du Chapitre 2 de ce manuscrit de thèse.

Applications des approches de traçage isotopique

Profilage isotopique

Comme cela a déjà été mentionné, la connaissance des concentrations en métabolites ne renseigne pas forcément sur la nature ou l'activité des voies métaboliques actives dans les conditions étudiées.

Le profilage isotopique est défini comme la mesure quantitative des différentes espèces isotopiques d'une même molécule. Les profils de marquage des différents métabolites obtenus à partir du traceur initial permettent l'identification des voies métaboliques en place dans le système étudié (c'est le principe de base du traçage isotopique). En effet le devenir des atomes de carbone est spécifique de chaque voie métabolique, en lien avec la nature et le mécanisme des réactionset les transitions atomiques qui en découlent -qui s'y déroulent. Le traçage isotopique permet ainsi, à partir de l'analyse des profils isotopiques mesurés dans les différents métabolites détectés, de révéler l'activité des différentes voies métabolites et d'évaluer leur contribution à la production ou à la consommation de métabolites spécifiques. L'analyse du marquage 13 C des métabolites est ainsi précieuse pour identifier les voies et les réseaux métaboliques (nature des marquage observés) mais également pour apporter des informations sur leur activité (intensité des marquages). Des exemples d'exploitation de données isotopiques pour la caractérisation plus fine des réseaux métaboliques sont présentés ci-dessous.

Devenir des nutriments

Le traçage isotopique permet en premier lieu de connaître le devenir métabolique des nutriments utilisés par les cellules, à partir de l'incorporation du traceur dans toutes les molécules dérivées de celui-ci. A l'envers, cela permet de déterminer si le squelette carboné 

Élucidation de voies métaboliques

Le traçage isotopique est également utilisé pour identifier les voies métaboliques actives dans l'organisme étudié. Cela repose sur le fait que le devenir des atomes de carbone dans les voies métaboliques conduit à des profils de marquage caractéristiques dans les métabolites. A Comme on peut le voir sur la Figure 

Partition de flux entre différentes voies métaboliques

Les données de marquage au 13 C permettent de mesurer la contribution de plusieurs voies métaboliques à la formation d'un même composé. Il faut pour cela que les substrats aient un marquage différent ou que les voies concernées aient une signature isotopique distincte (Figure 1.27). Il s'agit du principe de dilution isotopique qui est observé lorsque deux voies métaboliques convergent vers la formation du même métabolite : le marquage du métabolite formé par une voie est dilué par celui provenant de l'autre voie.

Le taux de dilution isotopique mesuré permet de calculer la proportion du métabolite formé par l'une et l'autre des deux voies, c'est-à-dire la distribution relative des flux de synthèse du composé entre les deux voies (Figure 1.27). Ce principe peut s'appliquer pour mesurer la contribution de deux voies ayant des substrats différents mais le même produit, mais aussi pour deux voies métaboliques ayant le même substrat et le même produit, c'est-à-dire deux voies dites parallèles [Christensen and Nielsen, 1999]. Cette analyse peut être particulièrement utile, en santé notamment, lorsque la production d'un métabolite est accrue dans un état pathologique.

Sonder l'activité des voies participant à la production de ce composé permet de conduire à des stratégies thérapeutiques (comme une inhibition de voie). 

Vers des analyses non-ciblées

Les études isotopiques du métabolisme se sont très longtemps appuyées sur des approches ciblées de mesure de l'incorporation isotopique dans des métabolites connus essentiellement associées au métabolisme central carboné [Zamboni et al, 2009] La dimension d'un réseau peut varier selon l'organisme, de 500 à plus d'un millier de réactions [King et al, 2016]. Cette variété est liée aux différents degrés de complexité des organismes (organismes compartimentés, …). Des plateformes telles que BiGG [King et al, 2016], KEGG [START_REF] Kanehisa | KEGG: kyoto encyclopedia of genes and genomes[END_REF], BioCyc [START_REF] Karp | Pathway Tools version 23.0 update: software for pathway/genome informatics and systems biology[END_REF] 

Réseaux basés sur les différences de masses

La reconstruction de réseaux basée sur les différences de masse (MDiNs pour « mass difference networks ») consiste à extraire toutes les différences de masses existantes entre deux paires de pics de masses pour suggérer la présence d'une réaction biochimique (Figure 1.33).

Les MDiNs sont généralement générés à partir de données de spectrométrie de masse haute- [Amara et al, 2022]. Il existe plusieurs outils permettant de générer automatiquement des réseaux de différences de masse, tels que l'outil mzGoupAnalyzer [START_REF] Doerfler | mzGroupAnalyzer--predicting pathways and novel chemical structures from untargeted highthroughput metabolomics data[END_REF], MetaNetter [Burgess et al, 2018] ou MetNet [START_REF] Naake | MetNet: Metabolite Network Prediction from High-Resolution Mass Spectrometry Data in R Aiding Metabolite Annotation[END_REF]. 

Les réseaux d'adduits

Les différences de masse ne sont pas seulement dues à des transformations biochimiques entre différents métabolites, mais peuvent également apparaître en raison d'effets physicochimiques différents lors de l'introduction des métabolites dans le spectromètre de masse. Ces différences de masse peuvent être représentées par des réseaux d'adduits. Les réseaux d'adduits mettent en relation des features correspondant à des adduits de métabolites, des isotopologues de ces adduits ou des ions fragments résultant de fragmentation en source.

La fragmentation en source est un phénomène courant qui se produit lors de l'ionisation éléctrospray (ESI). Au cours de l'ionisation, les molécules acquièrent une énergie interne supplémentaire qui est libérée, ce qui entraîne la fragmentation de la molécule en source. Cette fragmentation génère des ions précurseurs supplémentaires qui peuvent conduire à des annotations faussement positives des ions moléculaires [START_REF] Gathungu | Optimization of Electrospray Ionization Source Parameters for Lipidomics To Reduce Misannotation of In-Source Fragments as Precursor Ions[END_REF]. Les fragments de source détectés, les adduits et leurs isotopologues associés peuvent être représentés comme des noeuds d'un réseau, avec des liens les reliant à leurs métabolites associés (Figure 1.32B).

Les réseaux d'adduits peuvent être utilisés pour améliorer la précision et la confiance dans l'annotation des métabolites dans les réseaux.

Réseaux de similarité spectrale

La reconstruction de réseaux de similarité spectrale effectue des liens substrats-produits sur la base de la similarité chimique des métabolites détectés [Amara et al, 2022] 

Réseaux de corrélation

Les réseaux de corrélation sont reconstruits directement via le calcul des corrélations entre métabolites sur la base des abondances mesurées dans les ensembles de données métabolomiques. Les métabolites qui sont connectés par des réactions biochimiques présentent souvent une codépendance qui s'observe sur la base de leurs concentrations [START_REF] Rosato | From correlation to causation: analysis of metabolomics data using systems biology approaches[END_REF].

Les corrélations entre ces métabolites sont calculées par comparaison par paire de l'intensité des pics de masses. également plusieurs bénéfices qui peuvent être exploités dans cette approche basée sur les données expérimentales, tels que l'utilisation de standards isotopiquement marqués pour s'assurer de la qualité des données ou en tant que support pour l'identification de métabolites.

Le principe de cette approche sera détaillé dans le chapitre 3 de cette thèse.

Visualisation des réseaux métaboliques

Les réseaux reconstruits via les différentes approches énoncées ci-dessus sont des structures complexes comprenant des milliers de réactions et de métabolites. Escher [START_REF] King | Escher: A Web Application for Building, Sharing, and Embedding Data-Rich Visualizations of Biological Pathways[END_REF] et PathwayTools [Karp et al, 2002] sont des applications populaires conçues pour construire et partager des visualisations de voies métaboliques sur plusieurs organismes modèles. MetExploreViz [Chazalviel et al, 2018] La méthode des graphes est utilisée dans les bases de données telles que KEGG [START_REF] Kanehisa | KEGG: kyoto encyclopedia of genes and genomes[END_REF] et EcoCyc [START_REF] Karp | The EcoCyc Database[END_REF]. Dans ces bases de données, les voies métaboliques sont représentées explicitement avec des noeuds symbolisant les métabolites, et les arêtes représentant les réactions. La méthode des graphes permet d'effectuer rapidement des analyses sur des réseaux de grande dimension. La FBA est avant tout un outil de prédiction qui est utilisé dans un large éventail d'applications dans le domaine de la biologie des systèmes, l'ingénierie métabolique ou de la santé. Par exemple pour la prédiction de taux de croissance chez E. coli [Edwards and Palsson, 2000], pour la prédiction de cibles thérapeutiques [START_REF] Kim | Recent advances in reconstruction and applications of genome-scale metabolic models[END_REF] ou encore pour la prédiction de cibles de manipulation génétique [START_REF] Park | Construction and characterization of recombinant Bacillus subtilis JY123 able to transport xylose efficiently[END_REF]. La FBA peut également permettre de compléter les lacunes des réseaux métaboliques à l'échelle du génome en comparant des données produites in silico à des résultats expérimentaux [START_REF] Orth | What is flux balance analysis?[END_REF]. Un autre intérêt de la FBA est de pouvoir intégrer différentes données omiques pour affiner le modèle contextuel (ajustement de la matrice stoechiométrique S) ou de fixer les limites de flux [START_REF] Becker | Context-specific metabolic networks are consistent with experiments[END_REF][START_REF] Colijn | Interpreting expression data with metabolic flux models: predicting Mycobacterium tuberculosis mycolic acid production[END_REF][START_REF] Wang | Identification of a fructose-1,6-bisphosphate aldolase gene and association of the single nucleotide polymorphisms with growth traits in the clam Meretrix meretrix[END_REF]. On retrouve beaucoup d'applications qui utilisent des données transcriptomiques pour améliorer le modèle [START_REF] Tian | Integrating proteomic or transcriptomic data into metabolic models using linear bound flux balance analysis[END_REF][START_REF] Granata | Integration of transcriptomic data in a genome-scale metabolic model to investigate the link between obesity and breast cancer[END_REF].

La FBA repose sur une hypothèse forte de fonctionnement optimal du métabolisme, ce qui n'est pas forcément le cas en conditions physiologiques. Par aileurs plusieursvoire un très grand nombrede solutions peuvent répondre à la fonction objective. Elle peut fournir un espace de solutions plus qu'une solution unique [START_REF] Antoniewicz | A guide to metabolic flux analysis in metabolic engineering: Methods, tools and applications[END_REF].

Il existe des extensions de la FBA [START_REF] Lewis | Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods[END_REF]], incluant notamment :

-L'analyse de la variabilité des flux (FVA pour Flux Variability Analysis), qui ne vise pas à identifier un jeu de flux optimal, mais à déterminer la plage de valeurs de flux possibles pour chaque réaction, toujours en lien avec une fonction objective spécifiée.

Cela permet d'identifier des réactions métaboliques déterminantes par rapport à l'objectif biologique considéré.

-La FBA régulée (rFBA pour Regulatory Flux Balance Analysis), dans laquelle des contraintes de régulation de l'expression des enzymes sont introduites, en lien avec des données d'expression du génome.

Modèles isotopiques

Les modèles isotopiques sont basés sur la combinaison d'approches expérimentales de 

Où X est la concentration de la biomasse (gDW/L), µ est le facteur de croissance (h -1 ) et 𝑀 𝑖 est la concentration du métabolite extracellulaire 𝑖 (mmol/L) avec un flux d'échange 𝑞 𝑀 𝑖 (mmol.

gDW -1 .h -1 ). L'intégration des équations ( 5) et ( 6) fournit les fonctions analytiques suivantes :

𝑋(𝑡) = 𝑋 0 . 𝑒 µ.𝑡 (3) 𝑀 𝑖 (𝑡) = 𝑀 𝑖 0 + 𝑞 𝑀 𝑖 . 𝑋 0 µ . (𝑒 µ.𝑡 -1) (4) 
Étant donné que les concentrations de biomasse sont généralement mesurées en tant que densités optiques (valeurs OD600) à l'aide d'un spectrophotomètre, un facteur de conversion OD600/concentration de biomasse approprié doit également être déterminé afin de convertir les valeurs OD600 en grammes de poids sec par litre (gDW/L) pour les concentrations de biomasse [Long and Antoniewicz, 2019].

• Données isotopiques

Les données isotopiques sont mesurées à l'aide d'une ou plusieurs techniques analytiques telles que les méthodes décrites précédemment (section 3.5). A partir des données brutes obtenues, les informations isotopiques doivent être extraites pour déterminer la répartition des atomes du traceur 13 C dans les métabolites. Par exemple sur la Figure 1.40d, D01/(D00+D10) représente la proportion relative du métabolite D avec 1 atome de 13 C par rapport au pool total de D. Ces équations isotopiques fournissent des contraintes supplémentaires pour le calcul des flux intracellulaires.

Principe du calcul de flux

Le calcul des flux est basé sur la simulation des profils isotopiques des métabolites intracellulaires. Pour effectuer cette simulation, on considère un jeu initial de valeurs de flux.

Sur la base de ces valeurs initiales de flux, de la composition du substrat d'entrée et de la mesure des flux extracellulaires, les données isotopiques peuvent être simulées grace aux équations stoechiométriques et isotopiques (Figure 1 Où n représente le nombre de mesures ajustées, p le nombre de paramètres estimés et α = 0.05 pour un intervalle de confiance de 95%.

Si la valeur mesurée est trop élevée, cela peut révéler plusieurs erreurs : (i) le modèle métabolique utilisé pour mesurer les flux est incomplet ; (ii) la réversibilité est non comprise dans la modélisation ou (iii) des erreurs de mesures des données isotopiques [START_REF] Antoniewicz | A guide to 13C metabolic flux analysis for the cancer biologist[END_REF]. Les flux intracellulaires sont dits structurellement identifiables s'il existe un ensemble unique de valeurs de flux produisant les données mesurées [Wiechert et al, 2001].

Le résultat d'une analyse 13 C-MFA est une carte de flux qui montre la distribution des flux dans le réseau métabolique (Figure 1.41). 

Stratégies d'analyses de flux

Le niveau d'information obtenu lors d'une analyse de flux dépend en premier de l'expérience de marquage qui est réalisée. Il existe différentes approches de marquage isotopique au 13 C pour analyser les flux métaboliques : l'approche stationnaire, l'approche instationnaire et l'approche dynamique (Figure 1.42). Le choix de l'une ou l'autre de ces approches pour une étude spécifique va être déterminé en fonction de la question biologique, de l'organisme étudié et des conditions biologiques et expérimentales. Cette approche récente a notamment été utilisée pour l'étude du métabolisme des plantes en estimant les flux métaboliques à partir de marquage au 15 N dans les feuilles de Brassica napus [START_REF] Dellero | Sink/Source Balance of Leaves Influences Amino Acid Pools and Their Associated Metabolic Fluxes in Winter Oilseed Rape (Brassica napus L.)[END_REF]. Elle sera également utilisée dans le cadre de l'approche de reconstruction métabolique ab initio développée dans le chapitre 3 de ce manuscrit de thèse.

Avantages et limites

Le principal avantage de l'analyse 13 C-MFA est que les mesures de marquage isotopiques fournissent un grand nombre de contraintes pour l'estimation des flux. Par exemple 50 à 100 mesures de marquage isotopique vont permettent d'estimer 10 à 20 flux [START_REF] Antoniewicz | A guide to deciphering microbial interactions and metabolic fluxes in microbiome communities[END_REF]. La précision des résultats de l'analyse des flux dépend à la fois de la précision de l'ensemble des mesures et de la précision du modèle utilisé pour interpréter les données [Wiechert et al., 2001]. Pour assurer la fiabilité de l'interprétation biologique, une attention particulière doit être portée à la qualité des données isotopiques mesurées [Butin et al, 2022].

L'analyse 13 C-MFA reste cependant un outil coûteux, complexe et à faible débit.

Généralement, peu de conditions sont étudiées et dans la plupart des cas sans réplicats biologiques. La demande croissante de phénotypage complet en biologie des systèmes entraîne la nécessité d'approches à plus haut débit permettant l'étude de vastes ensembles d'organismes, de souches ou de conditions physiologiques [Bergès et al, 2021].

Couplage de modèles

Chaque type de modèlisation présente ses avantages et ses défauts. Une stratégie en développement consiste à coupler les modèles, c'est-à-dire à intégrer dans une représentation unique du réseau les différentes approches de modélisation. Il s'agit en général de modèles de type FBA intégrant soit des données thermodynamiques, soit des équations isotopiques, soit encore des équations cinétiques, ou encore des combinaions de ces trois types d'information. Les résultats de ce travail sont présentés en trois grandes parties :

Objectifs de recherche

1-Un des premiers objectifs de cette thèse a consisté à développer une une approche de profilage isotopique non-ciblée par spectrométrie de masse haute résolution. Cela inclut l'acquisition des données de marquage par LC-HRMS mais aussi et principalement la mise en place des outils de traitement de données associées. Ce travail a fait l'objet d'une publication proposant une méthodologie permettant de s'assurer de la fiabilité des données isotopiques obtenues par ces approches. 

Glossary

Benchmark clusters: Dataset containing the benchmark isotopologues automatically clustered using the two-clustering software.

Benchmark isotopologues: Dataset containing isotopologues of reference metabolites automatically extracted from MS data of the reference material using XCMS.

Isotopic cluster: Group of MS peaks from a unique molecular entity, i.e. with the same elemental composition but different isotopic compositions (IUPAC definition).

Isotopologues: Molecular entities that differ only in their isotopic composition (IUPAC definition).

Pascal triangle (PT) sample: biologically-produced material in which the isotopic composition of the labelled substrate is designed to obtain metabolites with tracer isotopologues distributed according to the binomial coefficients of Pascal's triangle.

Reference clusters:

Reference dataset containing the benchmark isotopologues manually clustered.

Reference isotopologues: Reference dataset containing isotopologues of reference metabolites manually extracted from MS data of the reference material.

Reference material: Labelled sample used as a reference to optimize processing parameters.

Reference metabolites: List of metabolites identified with a level 1 confidence expressed and measurable in the reference material.

Tracer isotopologues: Isotopologues of the tracer element.

Abtract

Introduction: Stable isotope tracer studies are increasingly applied to explore metabolism from the detailed analysis of tracer incorporation into metabolites. Untargeted LC/MS approaches have recently emerged and provide potent methods for expanding the dimension and complexity of the metabolic networks that can be investigated. A number of software tools have been developed to process the highly complex MS data collected in such studies; however, a method to optimize the extraction of valuable isotopic data is lacking.

Objectives: To develop and validate a method to optimize automated data processing for untargeted MS-based isotopic tracing investigations of metabolism.

Methods:

The method is based on the application of a suitable reference material to rationally perform parameter optimization throughout the complete data processing workflow. It was applied in the context of 13 C-labelling experiments and with two different software, namely geoRge and X13CMS. It was illustrated with the study of a E. coli mutant impaired for central metabolism.

Results:

The optimization methodology provided significant gain in the number and quality of extracted isotopic data, independently of the software considered. Pascal Triangle samples are well suited for such purpose since they allow both the identification of analytical issues and optimization of data processing at the same time.

Conclusion:

The proposed method maximizes the biological value of untargeted MS-based isotopic tracing investigations by revealing the full metabolic information that is encoded in the labelling patterns of metabolites.

Keywords: Isotope labelling experiments, untargeted analysis, parameter optimization, LC/MS

Introduction

Stable-isotope labelling experiments coupled with mass spectrometry (MS) are increasingly used to obtain a comprehensive understanding of metabolism in many fields of biology, biotechnology, and medicine (Wittman, 2002, Chokkathukalam et al, 2014, Zaimenko et al;2017). In such investigations, an isotope tracer (most commonly 13 C in metabolic studies) is fed to a biological system of interest (cells, tissues, whole organisms). The incorporation of the labelled atom into metabolites is measured by MS and provides valuable information on metabolic pathways (pathway profiling) and metabolic fluxes (fluxomics) (Wittman, 2002;Wiechert et al, 2001;Wiechert, 2001;Zamboni et al, 2009). These approaches were initially developed by exploiting targeted MS methods in which the labelling patterns of selected metaboliteshence of selected metabolic pathwayscould be measured (Chokkathukalam et al, 2014, Stuani et al;2018). Progress in MS instrumentation and methods has led to the recent emergence of untargeted approaches with the potential to access the labelling patterns of a much larger number of metabolites, resulting in significant gains in the coverage of cellular and tissular metabolic processes (Creek et al, 2012;Zamboni et al, 2015). Similar to untargeted metabolomics, which aims at maximizing the number of detected metabolites, untargeted isotopic profiling aims at maximizing the number of isotopic datai.e. the number of measured isotopologue abundancescollected from isotopically labelled material using appropriate analytical methods and data processing tools [START_REF] Hiller | Nontargeted elucidation of metabolic pathways using stable-isotope tracers and mass spectrometry[END_REF]Chokkathukalam et al, 2012;[START_REF] Bueschl | A novel stable isotope labelling assisted workflow for improved untargeted LC-HRMS based metabolomics research[END_REF], Kluger et al, 2014;[START_REF] Capellades | geoRge: A Computational Tool To Detect the Presence of Stable Isotope Labeling in LC/MS-Based Untargeted Metabolomics[END_REF][START_REF] Weindl | Bridging the gap between non-targeted stable isotope labeling and metabolic flux analysis[END_REF]. Data processing in untargeted isotopic tracing studies is a real challenge, firstly because the MS spectra collected on labelled material are much more complex than those of (the same) unlabelled material. Potentially all the isotopologues of each metabolite in the labelled samples can be generated and detected. Given the high molecular complexity of typical biological samples, the total number of peaks in the MS spectra is drastically increased. Moreover, since the total intensity of the MS signal from a given analyte is the same whether a compound is labelled or not, the MS spectra of labelled compounds contain more signals each with lower intensities than in the corresponding unlabelled spectra. The MS spectra of labelled material therefore contain more peaks with lower intensities than those of equivalent unlabelled samples.

The untargeted processing of MS data from labelled material is also more complex. The extraction of isotopologues from the raw MS data is basically the same process as in unlabelled metabolomics so that the same toolssuch as XCMS (Kessner et al, 2008), MS-Dial (Tsugawa et al, 2015), MZmine 2 [START_REF] Pluskal | MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data[END_REF] can be used in both cases. However, the task of regrouping isotopologues into isotopic clusters is specific to isotopic studies. A number of dedicated software tools have been developed, such as X13CMS (Patti et al, 2014), geoRge [START_REF] Capellades | geoRge: A Computational Tool To Detect the Presence of Stable Isotope Labeling in LC/MS-Based Untargeted Metabolomics[END_REF], MetExtractII (Buelschl et al, 2017), mzMatchIso (Chokkathukalam et al, 2012), DynaMet (Kiefer et al, 2015) and HiResTec [START_REF] Hoffmann | Nontargeted Identification of Tracer Incorporation in High-Resolution Mass Spectrometry[END_REF]. Considering the wealth of information to be exploited in untargeted isotopic studies, the processing software needs to be robust and efficient in maximizing the number and quality of the extracted data.

Comparisons of these programs [START_REF] Capellades | geoRge: A Computational Tool To Detect the Presence of Stable Isotope Labeling in LC/MS-Based Untargeted Metabolomics[END_REF]Dange et al, 2020) have highlighted the differences in requirements, algorithms, and parameter optimizations between the different tools, as well as inconsistencies (non-detection of known peaks, inconsistent isotopic clusters, abnormal redundancy, etc) in the results obtained. This can be explained in part by the newness of these programs, which will likely be improved in the near future. It can also be explained by the challenge that parameter optimization represents in such a complex, multi-step data processing workflow. Indeed, no rational strategy to optimize the recovery of all the available information in raw MS data has yet been proposed.

In this article, we present a method for optimizing MS-based untargeted isotopic tracing experiments by maximizing the amount and quality of the isotopic information that can be extracted from the analytical data. This method is based on the use of a suitable reference material to rationally perform parameter optimization throughout the processing workflow. It is applied here for 13 C-labelling experiments analysed with geoRge and X13CMS, but the approach is generic and can be used with any similar program or labelling strategy. We demonstrate it here for the study of a well-described E.coli mutant with altered metabolic fluxes. Intracellular metabolites were sampled by fast filtration [START_REF] Kiefer | Determination of carbon labeling distribution of intracellular metabolites from single fragment ions by ion chromatography tandem mass spectrometry[END_REF]Millard et al. 2014) from cells collected in the mid-exponential growth phase. Samples (2 mL) of cell culture were rapidly dropped on a filter (Sartolon Polyamide 0.2μm) to eliminate the culture medium. The filter was rinsed with 2 mL of washing solution (NaCl 0.9% with 5mM of acetate), quickly removed from the filtration unit, then placed in a precooled centrifuge tube containing 5 mL of ACN/MeOH/H2Omq (2/2/1) with 125 mM formic acid for metabolite extraction and incubated for 20 min at -20°C. The tubes were then centrifuged for 5 min at 2000 g and the supernatant was evaporated (Savant SC250 EXP 230 Speedvac, ThermoFisher) and resuspended in 100 µL of water before LC-MS analysis.

Experimental section

E. coli samples

Two E.coli BW-25113 strains from the Keio collection (Baba et al. 2006) were extracted and quenched in 2 mL of acetonitrile/methanol/water (4/4/2) with 125 mM formic acid at -20°C. These 2 mL were then evaporated in a SpeedVac and resuspend in 200 µL of water before LC-HRMS analysis. All samples were produced in five replicates.

LC/MS measurements

LC/MS analyses were performed using an ICS5000+ ion chromatography system MS analyses were performed in full-scan mode at a resolution of 70 000 (at 400 m/z) over the m/z range 80 -1000. Data were acquired with the following source parameters: the capillary temperature was 350°C, the source heater temperature, 350 °C, the sheath gas flow rate, 50 a.u. (arbitrary units), the auxiliary gas flow rate, 10 a.u., the S-Lens RF level, 65 %, and the source voltage, 2.75 kV.

The data were acquired in a single analytical batch. As in untargeted metabolomics approaches, all the biological samples were randomized in the analytical run and the fivereplicates of the reference sample were injected at regular intervals throughout the experiment.

Raw LC/MS data were converted into the open "mzXML" format using the software Proteowizard (Kessner et al, 2008). The raw data were cut after 42 min to retain all essential information while avoiding artefacts from the cleaning step and reducing data size. Figure S-1 shows the Graphical User Interface of MSConvert.

Data processing

Reference data

Twenty-five metabolites covering representative metabolite classes were selected as reference metabolites: organic acids (fumarate, succinate, malate, orotate, alpha-ketoglutarate (α-KG), citrate), phosphorylated compounds (2 and 3-phosphoglycerate (2/3-PG), phosphoenolpyruvate (PEP), glycerol-3phosphate (Gly-3P), 5-phosphoribosyl-pyrophosphate (PRPP), pentose-5-phosphate (P5P), fructose-1,6-diphosphate (FBP), sedoheptulose-7phosphate (Sed7P), glucose-1-phosphate (G1P), glucose-6-phosphate (G6P), fructose-6phosphate (F6P), mannose-6-phosphate (Man6P)), and nucleotides (adenosine diphosphate (ADP), adenosine triphosphate (ATP), cytidine diphosphate (CDP), cytidine triphosphate (CTP), guanosine diphosphate (GDP), uridine diphosphate (UDP), uridine monophosphate (UMP), uridine triphosphate (UTP)). All these compounds were identified in the MS data with a confidence level 1 [START_REF] Creek | Metabolite identification: are you sure? And how do your peers gauge your confidence?[END_REF], including confirmation with authentic compounds.

The isotopologues from these metabolites were extracted from the MS data collected on the reference material, and were assigned to molecular isotopic clusters in a targeted manner with the software Emzed (Kiefer et al, 2013) using a mass tolerance of 0.003 m/z. Carbon Isotopologue Distributions (CIDs) of the reference metabolites were then quantified from the corresponding mass fractions after correcting for the presence of all naturally occurring isotopes and the isotopic purity of the tracer (99%) using the software IsoCor, v2.0.4 (Millard et al. 2019). The complete dataset (including the list of reference metabolites, the isotopologues, their analytical characterics, their abundances, the isotopic clusters and the metabolite CIDs) is detailed in Supplementary Information Table S1 and was used as reference material to evaluate the optimization of data extraction

Detection of LC/MS features using XCMS

LC/MS features were extracted using the XCMS package [START_REF] Smith | XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification[END_REF] in Rstudio.

The isotopologue parameters optimization (IPO) tool [START_REF] Libiseller | IPO: a tool for automated optimization of XCMS parameters[END_REF] was first used to optimize XCMS parameters, using unlabelled samples (E.coli) as required. The set of parameters selected using the IPO tool are given in SI Table S2, and were used as starting settings for subsequent data processing optimization. All raw datasets (i.e. from unlabelled and labelled PT samples and E.coli samples) were grouped and processed in a single batch with XCMS [START_REF] Smith | XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification[END_REF]) so that peaks were identified and integrated using exactly the same processing parameters. This operation was iteratively repeated after changing the parameter settings to minimize the difference between the XCMS data and a reference dataset, as explained in the Results section. The XCMS parameters and their tested range of values are described in SI Table S3. The parameters giving the optimal recovery of the reference data are given in SI Table S2.

Isotopologue clustering

The XCMS object containing the list of putative isotopologues was processed separately with the R packages X13CMS (Patti et al, 2014) and geoRge (Cappellades et al, 2016). The parameters for the two programs are listed in SI Table S4.

Calculation of CIDs

Carbon isotopologue distributions were calculated from the relevant mass fractions of isotopic clusters after correcting for naturally occurring isotopes of elements other than carbon using IsoCor (Millard et al, 2019), accounting also for the MS resolution. The CIDs of metabolites in the PT samples can be predicted from the composition of the label input and the number of carbon atoms in the metabolites. The theoretical CIDs of metabolites in the PT sample were calculated using the equation

𝑀 𝑘 = ( 𝑛 𝑘 ) * 𝑝 𝑘 * (1 -𝑝) 𝑛-𝑘
where n is the total number of carbon atoms in a molecular entity with k 13 C atoms and p is the abundance of 13 C isotopes. Here, the molecular enrichment of 13 C-acetate measured by NMR was p = 0.512. Standard deviations of measured CIDs were determined from the analysis of five analytical replicates of the PT sample.

Statistical analyses

Principal Component Analysis (PCA) was applied to all the biological samples (unlabelled and labelled E.coli strains). PCA was performed using SIMCA, v 15.0.02.5959] to separate all the biological samples (unlabelled and labelled E.coli strains) into different classes.

A Wilcoxon test (p value ≤ 0.05) was used to identify the most discriminating isotopologues between the two E.coli strains. An in-house database with 47 metabolites was then used for metabolite identification based on exact masses and standard retention times (RTs). Metabolite identification was confirmed with authentic compounds.

Evaluation criteria for processing optimization

This study is primarily based on the establishment of specific metrics to evaluate isotopic measurements and validate software parameters used to process data in untargeted MSbased isotopic tracing investigations of metabolism. We used the criteria established by Heuillet et al. (2018) to validate MS-based isotopic measurements:

• The mass accuracy, i.e., the error on isotopologue masses, estimated from the difference between the theoretical (Mth) and experimental (Mexp) mass of each isotopologue.

mass accuracy (ppm) = (Mth -Mexp)/Mth × 10 6

• The RT accuracy, i.e., the error on the measured RTs, calculated from the difference between theoretical and measured RTs.

RT accuracy (s) = (RTth -RTexp)/RTth × 100

• The RT isotopic deviation, i.e., the measured deviation of RTs between isotopologues belonging to the same isotopic cluster.

• The area precision, i.e., the spread of measured areas, estimated from the standard deviation of measurements on PT sample replicates.

• The CID accuracy (CID mean bias), i.e., the error on measured CIDs, simply the difference between predicted and measured CIDs.

CID accuracy = CIDth -CIDexp

We also used two further criteria to evaluate the closeness of the clustering data obtained with the two 13 C-clustering programs to the clusters obtained by manual analysis:

• The recall, i.e. the ability of the process to retrieve the information, calculated as follows:

recall = {relevant isotopic clusters} ∩ {retrieved isotopic clusters} {relevant isotopic clusters}

• The cluster precision, i.e, a measure of the relevance of the retrieved information, defined by: cluster precision = {relevant isotopic clusters} ∩ {retrieved isotopic clusters} {retrieved isotopic clusters}

Results and discussion

Overall strategy and case study

The The proposed optimization process is generic and can be applied to various stable isotope tracers used to investigate metabolism. Its use is demonstrated here for 13 C-tracing, which is the most widespread approach in isotopic studies of metabolism (Zamboni et al, 2009;Wiechert et al, 2001). As a test case to illustrate the application and relevance of the proposed optimization strategy, a 13 C-labelling experiment was performed in which two E. coli strains (wild-type BW25113 and its ∆zwf derivative knocked-out for the gene encoding the first committed step of the pentose-phosphate pathway) were grown in the presence of 13 C-labelled glucose as sole carbon source. The intracellular metabolites were sampled at mid-exponential growth and analysed by LC-MS. A reference material was analysed together with the biological samples to optimize the data processing. The reference material and its use for data optimization are described in detail in the following sections. To properly evaluate data quality throughout the optimization process, all samples (including the reference material) were produced and analysed in five replicates. In keeping with the requirements of the 13 C-profiling software furthermore, unlabelled samples (five replicates) of the reference material and of the E. coli strains were produced and analysed in the same analytical batch as the labelled samples.

Definition of reference sets for optimization

Choice of the reference material

Various isotopically labelled materials can be used, provided they satisfy a number of criteria related to the analytical method, the analysed samples, and the biological question to be addressed. The reference material should ideally have an identical or similar matrix to the samples of interest to generate the same matrix effects in the MS experiments and contain the same metabolites. It is very important for the labelling patterns of the metabolites to be known or be fully predictable to provide reliable reference data for the optimization process.

The reference material used here was a so-called Pascal triangle (PT) sample. PT samples are biologically produced materials whose isotopic composition is designed to obtain metabolites with tracer isotopologue distributions that match the binomial coefficients of Pascal's triangle. Details about these samples and their application to MS-based isotopic tracing studies can be found in Millard et al. (2014), Heuillet et al. (2018) and[START_REF] Schwaiger-Haber | Proposing a validation scheme for 13C metabolite tracer studies in high-resolution mass spectrometry[END_REF]. PT samples were used here for several reasons. First, the fact that the sample could be produced by cultivating E. coli on 13 C-labelled acetate and collecting intracellular polar metabolites, meant that it had exactly the same matrix as the biological samples to be analysed.

Second, the chosen PT sample satisfies many of the above-mentioned criteria for reference materials, including a broad metabolome coverage, fully predictable labelling patterns and broad coverage of the isotopologue space (all tracer isotopic forms of the same metabolite are present at the same abundance).

Definition of the reference dataset

The reference dataset corresponds to analytical data manually extracted from the reference material for a list of selected metabolites (the reference metabolites) and used as reference data during the optimization process. As for the reference material, various sets of metabolites can be used. The reference metabolites should be sufficient in number to cover the metabolome. They should be known compounds so that their labelling patterns can be extracted in a targeted fashion and complete isotopic clusters should be reliably detected in the reference material to optimize isotopologue recovery and isotopologue grouping. Note that the reference metabolites do not necessarily have to occur in the biological samples for the data optimization process itself since this depends only on the data from the reference material. However, they should be selected for their relevance to the objectives of the study.

For this case study, we selected 25 metabolites that are representative of the central metabolism of E. coli and are known to be reliably detected with our analytical method. All of them are confirmed level 1 annotated metabolites [START_REF] Creek | Metabolite identification: are you sure? And how do your peers gauge your confidence?[END_REF]. The complete list of the selected reference metabolites is given in the Material & Methods (Section 2.3.1). This set of metabolites was consistent with the metabolite content of the labelled reference material and the biological question for the E.coli strains considered in this work. According to the elemental formula of the 25 reference metabolites, the reference dataset should consist of 25 isotopic clusters containing 184 tracer (carbon) isotopologues in total. By manually processing the MS data collected for the PT sample using the software Emzed (Kiefer et al, 2013), all 25 isotopic clusters were found, along with 181 tracer isotopologues (Table S1). The missing isotopologues corresponded to MS signals that were either undetected (CDP M0 and Mn) or with too low S/N ratio (G1P Mn).

The reference dataset was further characterized for the mass accuracy and RT isotopic deviation of individual isotopologues. Compared to their theoretical values the mean mass error was 1.42 ± 1.1 ppm for the 181 isotopologues. For the 25 reference metabolites, the RT isotopic deviation ranged from zero to 3 seconds with a mean relative error of 0.02% across the complete analytical run. These results indicate that the analytical characteristics (m/z, RT pairs) of the detected isotopologues are fully consistent with the values expected for the selected metabolites.

The experimental CIDs of the corresponding metabolites were calculated from the reference dataset to generate reference values (reference CIDs) (Table S1), which were validated by comparing them with predicted values for the PT sample. The CIDs measured manually for all 25 metabolites deviated by less than 5% on average from the predicted values (Fig S2 ).

These results highlight one of the benefits of using a reference material such as the PT sample to optimize processing, namely that analytical problemslimited sensitivity in this case can be identified and considered separately from processing issues. The 181 isotopologues in the reference dataset are referred to hereafter as the reference isotopologues.

Optimization of isotopologue extraction

The proposed strategy for data processing optimization based on a reference material is illustrated in Figure 2. 

Starting the optimization process

Some tools were recently published to perform automated parametrization of software in untargeted metabolomics [START_REF] Manier | Automated Optimization of XCMS Parameters for Improbed Peak Picking of LC/MS Data using the Coefficient of Variation and Parameter Sweeping for Untargeted Metabolomics[END_REF][START_REF] Libiseller | IPO: a tool for automated optimization of XCMS parameters[END_REF]. Because isotopologue extraction is performed with the same tools as feature extraction in untargeted metabolomicsi.e. XCMS in this study-, such tools can be also applied to untargeted isotopologue analysis. In this work we used the tool IPO [START_REF] Libiseller | IPO: a tool for automated optimization of XCMS parameters[END_REF]Alboniga et al, 2020), which was specifically designed to parameterize XCMS, to provide starting parameter settings for isotopologue extraction. In compliance with the IPO guidelines, this was done with MS data collected on unlabelled samplesi.e. the unlabelled PT samples. The so-obtained parameters (Table S2) were applied to extract the isotopologues from the labelled PT samples (benchmark isotopologues). A total of 164 out of the 181 reference isotopologues, were retrieved at the end of this process (Fig S3a). Closer inspection of the data (Table S5) showed that the mass of the extracted peak differed significantly from that of the corresponding peak in the reference data (Table S4). Indeed 22 isotopologues showed mass errors above 3ppm, the error being higher than 5 ppm for 8 of them, and up to 18.8 for malate M2. This mass discrepancy, together with the fact that 17 isotopologues were not detected at all, indicates that the IPO-defined parameter settings were not optimal for isotopologue extraction. Such results can be explained because IPO was designed to optimize the processing of MS data collected on unlabeled material. The processing of MS data collected on labeled material, which are much more complex (more peaks with lower intensities), requires specific optimization tools. The tool IPO was found useful to provide a first set of parameter values which could be used to as a starting point to evaluate the benefit of the proposed optimization strategy.

Manual parameter selection

The XCMS parameters were next optimized using a semi-manual approach depicted in Figure 2.2. The IPO parameters (see Materials and Methods, Table S2) were used as a starting point for this process, but other tools or starting values could also have been used. In each optimization round, the isotopologues from the 25 reference metabolites were automatically extracted using XCMS and gathered into benchmark isotopologues. The benchmark isotopologues were then compared to the reference isotopologues using the evaluation criteria mentioned above. The process was then iterated after changing the extraction parameters values to maximize the agreement between the benchmark isotopologues and the reference isotopologues.

This optimization process was used for the five labelled PT samples in the analytical batch. Table S2 lists the parameter settings giving the optimal isotopologue recovery by automated extraction accross the five PT sample replicates (Fig. S3b). The optimized parameters allowed the recovery of 174 isotopologues, i.e. 10 more than with the initial parameter settings. This gain in recovery was accompanied by a gain in data quality (Table S5).

The average error in mass accuracy over the common detected isotopologues (for 161 isotopologues) was 1.29 ± 1.02 ppm, to be compared to 1.74 ± 2.38 ppm in the initial data. The lower standard deviation on the mass errors indicated a higher precision of isotopologue masses after optimization. The RT accuracy for the benchmark isotopologues compared to the reference isotopologues was 0.29 ± 0.22 s on average. The results are given in full in the noisy peaks (succinate and malate), while individual isotopologues with very low S/N (lightest and heaviest isotopologues of G1P, Sed7P) were underestimated.

The mean SD in integrated areas across the five replicate measurements was 0.0003 for the 174 extracted isotopologues (Figure 2.3A), emphasizing the high quantitative reliability of the automatic isotopologue extraction process. We next compared the isotopologue abundances relative to the isotopic cluster of the corresponding metabolite by calculating the CIDs.

Isotopologue quantification errors propagate to the entire CID vector, so that comparing CIDs 

Optimization of isotopologue clustering

Isotopologue clustering consists in the grouping of extracted isotopologues into metabolite isotopic clusters (Figure 2.2). Two different programs, geoRge and X13CMS [START_REF] Huang | X13CMS: global tracking of isotopic labels in untargeted metabolomics[END_REF][START_REF] Capellades | geoRge: A Computational Tool To Detect the Presence of Stable Isotope Labeling in LC/MS-Based Untargeted Metabolomics[END_REF]Dange et al, 2020), were used to do this. Clustering was optimized in a similar fashion as the extraction process was (Figure 2.2). The isotopic clusters of the 25 reference metabolites (reference clusters) were manually extracted from the optimal set of isotopologues. The software was used to automatically extract the 25 clusters (benchmark clusters) from the same dataset. The optimization consisted in adjusting software parameters to minimize the difference between benchmark clusters and reference clusters.

The quality of clustering was evaluated from the proportion of correct clusters that were recovered. A correct cluster was defined as containing only all the correct isotopologues. Two types of incorrect cluster were considered: incomplete clusters, missing one or more isotopologues, and corrupt clusters, with one or more spurious isotopologues. We defined two figures of merit to optimize based on the proportions of correct and incorrect clusters in the benchmark clusters: recall, or sensitivity, the ability to detect a cluster for all 25 reference metabolites; and precision, the number of correct clusters retrieved in the benchmark clusters.

The software parameters were then iteratively modified to maximize the recall and the precision of the benchmark clusters.

Preliminary tests showed that the quality of the clustering depended mainly on two parameters (isotopologue mass deviation and RT window). The isotopologue mass deviation ("ppm" for X13CMS and "ppm.s" for geoRge) is the acceptable error in m/z measurements between successive isotopologues in the same isotopic cluster (the accuracy of isotopic distances), which should be the mass difference between 13 C and 12 C (1.00335 m/z). The RT window ("RT window" for X13CMS and "rt.win.min" for geoRge), corresponds to the tolerance on the RTs of isotopologues from the same metabolite, which should in theory be exactly the same. The RT deviation was measured to vary between 0.2 and 7.2 in the isotopologue dataset obtained after XCMS optimization (Table S5, see 3.3.2). From these values, two different RT windows (5 and 10 s) were considered and the isotopologue mass deviation was varied from 1 to 10 ppm. The noise threshold was deliberately set at a low value (5000) to maximize peak extraction.

As reported previously (Dange et al, 2020), many redundancies were observed in the clusters obtained with geoRge independently of the parameters used. This is due to the clustering algorithm of geoRge, which generates various clusters from the same set of isotopologues. The optimization for geoRge was therefore performed after manual curation of obvious redundancies in the geoRge dataset.

For both programs, a low mass deviation threshold produced more incomplete clusters while increasing the mass deviation generated more corrupt clusters (Figure 2.4). The missing species were most often the Mn isotopologues of nucleotides (ADP, ATP, CTP, GDP, UDP, UMP, UTP), which can be explained by the lower quality of the XCMS data for these species and their larger mass deviation (see section 3.3 and Table S4). Processing the data with a larger mass tolerance allowed these isotopologues to be recovered but also tended to generate corrupt clusters.

An RT window of 10 s was found to yield a greater proportion of correct clusters than an RT window of 5 s for all isotopologue mass deviation values except 1 ppm, for which the proportion of correct clusters was the same with both. The number of corrupt clusters did not depend on the length of the RT window, regardless of the mass deviation used. These results are because while unlabelled and labelled samples were processed simultaneously, the heaviest isotopologues were only detected in the 13 C-enriched samples leading to a certain amount of variation in RTs. These results are based on a targeted search of 25-benchmark clusters and we assume that the observed errors are representative of the clustering process for the entire dataset. Table 2.1 shows that with an RT window of 10 s, the precision and recall were optimal with both programs at a mass deviation of 5 ppm. The equivalent results for an RT window of 5 s are provided in Table S6. The recall of both programs was 100%, meaning that all 25 reference metabolites were retrieved. Almost all these clusters were correct, with a precision of 96% (1 incorrect cluster) and 92% (2 incorrect clusters) for X13CMS and geoRge, respectively. The ATP cluster was found incorrect with both programs, with some isotopologues wrongly identified by the software as M35 to M39. The second incorrect cluster for geoRge was ADP, whose M9 isotopologue was missed because of the statistical rules applied by geoRge to select potential enriched isotopologues in the labelled samples. Close inspection of the data for this isotopologue showed that some noise had been integrated for the unlabelled samples, and could be interpreted as signal by geoRge, so that the M9 peak in the labelled data was not considered as labelled.

These results show that both programs perform well despite their slightly different approaches.

Briefly, geoRge compares potential isotopic peaks in the labelled and unlabelled samples with all candidate basepeaks within the vector of masses calculated for each potential isotopologue.

On the other hand, X13CMS compares all potential isotopologue peak pairs within a RT bin, groups them together based on a common basepeak and discards duplicate information. In this targeted search of 25 reference metabolites, X13CMS generated a smaller number of incorrect clusters than geoRge and no correction for clustering redundancy was required. It has been shown that in spite of these redundancies, geoRge tends to generate fewer false positives than X13CMS, but can miss some features that X13CMS finds [START_REF] Capellades | geoRge: A Computational Tool To Detect the Presence of Stable Isotope Labeling in LC/MS-Based Untargeted Metabolomics[END_REF]Dange et al. 2020). The above results show that regardless of the software chosen, independently optimizing the parameters used to group isotopic clusters is essential.

Application to the case study

To illustrate its use, the optimization workflow was applied to the study of wild type E. coli BW 25113 and a mutant deleted for the zwf gene (∆zwf) that encodes glucose-6phosphate dehydrogenase (G6PDH). This mutation has a negligible impact on the growth of the bacterium but leads to metabolic adaptations, which can be nicely revealed by using 13 C-labelling experiments (Nicolas et al, 2007;Zhao et al, 2004;Bergès, Cahoreau et al, 2021). We used this example of an untargeted MS based isotopic tracing investigation to illustrate how the proposed workflow optimizes the recovery of this kind of labelling information.

The E. coli samples were analysed by LC-MS and first processed using the starting (IPOderived) parameter settings (Table S2). Then data processing was repeated with the optimal parameter settings (Table S2). The gain in data quality resulting from the optimization is illustrated in for the WT strain (Table 2.2). The fact that the proposed approach yields the same cluster precision for biological samples as for the reference material, confirms the efficiency of the optimization process. In total, 10129 isotopologues were extracted by XCMS from the two E. coli strains and were further processed with geoRge and X13CMS to group some of isotopologues in isotopic clusters. As already observed, geoRge generated a significant number of redundancies from this dataset compared to X13CMS (Fig 2 .5A), but after manual curation the number of clusters was similar with both software (1037 and 1133 for geoRge and X13CMS, respectively) (Fig 2 .5B). Over all the distinct clusters detected (1180) with both programs (Fig 2 .5B), a total of 990 clusters had the same basepeak, corresponding to an overlap of 84%, of which 797 were identical in both cluster length and isotopologue composition (Table S7).

Regarding the greater number of clusters detected by X13CMS than by geoRge, the 190 isotopic clusters identified by one program and not the other (147 by X13CMS and 43 by geoRge) mostly contained a single isotopologue possibly because of instrumental noise or the presence of unlabelled metabolites or other unresolved peaks.

In isotope labelling experiments, isotopologue abundances can be interpreted either individually (e.g. the evolution of the M+3 peak intensity of a metabolite) or relative to the complete isotopic cluster (isotopologue distribution), the latter approach being the most common way of describing labelling patterns in 13 C-fluxomics. Here, mass fractions were calculated for all detected clusters in all the samples (unlabelled and labelled) from the outputs of X13CMS and geoRge, and PCA was used to explore differences in the isotopic profiles of two E.coli strains (Fig 2 .5C). Comparisons of isotopic profiles depend heavily on the number of features detected and how they are clustered, therefore on the quality of the data processing.

The PCA plots for the two programs show a similar level of separation between the different biological conditions, confirming the repeatability of the workflow from sample preparation through to data processing. In these plots, labelled and unlabelled samples are strictly separated along the first PCA component and WT and ∆zwf strains along the second. The lack of separation between the two groups of unlabelled samples is expected because the unlabelled mass fractions have the same isotopomer composition (i.e natural abundance), such that the only discriminating factor is the presence or absence of peaks. On the contrary, the 13 C-enriched samples are closely grouped by strain on the plots according to their isotopic composition. This demonstrates the significant impact of the ∆zwf mutation on flux distribution, which then significantly affects the isotopic composition of the metabolites. The WT and ∆zwf groups were analysed to identify the most discriminating labelling data between the two strains. The corresponding isotopic clusters were compared using Wilcoxon tests, with 207 (X13CMS) and 138 (geoRge) of these clusters having more than one significantly different (p ≤ 0.025) isotopologue between strains. By exploiting an in-house database (containing 47 metabolites), 20 isotopic clusters could be assigned to metabolites with a level 1 confidence [START_REF] Creek | Metabolite identification: are you sure? And how do your peers gauge your confidence?[END_REF]. They were related to glycolysis (Fumarate, Succinate, Malate, 2/3-PG, PEP, G6P, FBP), the PPP (Sed7P, Orotate, P5P, Shiki3P (CAS: 63959-45-5))

and nucleotide biosynthesis (ADP, ATP, CDP, CTP, UMP, UDP, UTP, UDP-Glucose (CAS:

133-89-1), UDP-Acetylglucosamine (CAS: 528-04-1)) (FigS7). Changes in the labelling patterns of these metabolites was fully consistent with the modifications expected for the Δzwf strains, which is known to significantly impact the partition between glycolysis and the PPP (Zhao et al, 2004;Nicolas et al, 2007), resulting also in differential labelling of the ribosyl moiety of nucleotides. Furthermore, the number of significantly different isotopic clusters that remain unidentified after this initial analysis demonstrates the power of the untargeted approach and the need for further identification.

Conclusion

This work emphasized that specific workflows have to be developed for optimal processing of the complex MS data that are generated in MS-based untargeted isotopic tracing studies of metabolism. Indeed, the results showed that significant gain in the recovery of valuable information was obtained by applying the proposed methodology for data processing optimization. The application of a suitable reference material to optimize software parametrization proved to increase not only the number of recovered isotopic data but also the quality of the data. Pascal Triangle samples are well suited for such purpose since they allow both the identification of analytical issues and optimization of data processing at the same time.

Together with the progress in MS instrumentation and analytical methods, which allows to extend the metabolomeand fluxomecoverage, applying the proposed methodology is maximizing the biological value of isotopic tracing investigations by revealing the full metabolic information that is encoded in the labelling patterns of the metabolites. Carbon mass fractions comparison between the wild-type (green) and the ∆zwf strains (red) for significant metabolites identified with a level 1 confidence.

Table S- 

Introduction

Systems biology is the study of how the components of a living organism interact with each other and with their environment to give rise to biological functions. The reconstruction of metabolic networks is a key step in systems biology that it provides an in-depth understanding of the molecular mechanisms of a particular organism. Its analysis allows to investigate the features that identify the topology of a metabolic network and the relative activities of metabolic pathways. These informations allows to identify the functional capacities of the organism, such as, its operation, or its adaptation and regulation in response to metabolic perturbations. It can be applied as a large variety of applications from biotechnologies to increase the production of a compound of interest to health for therapeutic screening [Gu et al, 2019;[START_REF] Cesur | Network-Based Metabolism-Centered Screening of Potential Drug Targets in Klebsiella pneumoniae at Genome Scale[END_REF].

The first reconstruction approaches are based on the genome annotation [Edwards and Palsson, 2000]. In brief, on the basis of available genomic data and using homology studies, the biochemical reactions that can occur in an organism are identified [START_REF] Chen | Metabolic network reconstruction: advances in in silico interpretation of analytical information[END_REF]]. However, genomic information does not consider the actual expression of each gene. The model based on genomic annotation can be curated using databases, such as KEGG or CheBI. Some « -omics » methods (transcriptomic, proteomic, metabolomic of fluxomic) can also be used to reaffine the genome scale metabolic network by providing data and describing metabolic pathways in specific organisms and conditions [START_REF] Ryu | Reconstruction of genome-scale human metabolic models using omics data[END_REF]. However, this approach to metabolic reconstruction is limited as it is a time-consuming and indirect process to identify the active network in a given context. Moreover, it strongly relies on the correct annotation of the genome.

An alternative approach is to reconstruct an ab initio metabolic network based on experimental data alone, to identify the active reactions in an organism. Breitling et al, proposed the first reconstruction of metabolic networks based only on the observed metabolites obtained using unbiased metabolomics and independently of genome annotation [Breitling et al, 2006].

But they are far to be generic and are generally limited to analysis of a few topological motifs.

Here, we propose a novel ab initio approach for metabolic network reconstruction based on non-targeted isotopic labeling dynamics experiments, in a way that is orthogonal and complementary to in silico reconstruction approaches. The dynamics of label propagation in a stationary metabolic network during an isotope labeling experiment can provide highly valuable information on the network topology, metabolic fluxes, and on metabolite pool sizes. In this work, we initiated this approach by developing a data-driven 13 C-fluxomic approach. It is based on untargeted labeling dynamics data obtained using high resolution-mass spectrometry and on strategies of label propagation simulations and flux calculation to identify network topologies that can explain experimental data.

Results

General strategy

The general strategy of the proposed approach, named Isotopic driven Metabolic reconstruction (IsoMet) approach, is illustrated in the Figure 3.1. It is based on dynamics 13 Clabeling experiments in which the incorporation of the label in the metabolites can be monitored over time. Following automated data extraction and annotation, metabolic subnetworks are constructed for each metabolite, and the consistency of the assessed topology is tested by fitting their time-course label incorporation. The core of the approach consists of constructingfor each metabolite in the datathe metabolic subnetwork in which the labeling dynamics will be fitted to assess whether the network topology is consistent with experimental data. The proposed strategy aims to obtain a set of active metabolic subnetworks for an organism.

The strategy includes the following steps : (i) an experimental part to perform instationnary 13 C-labeling experiments, untargeted profiling of intracellular metabolites and isotopic data processing, and (ii) a mathematical part containing atom mapping and construction and evaluation of metabolic subnetworks.

First of all, this approach is based on instationnary 13 C-labeling experiments. In these types of experiments, the organism of interest is grown in a medium containing an unlabeled carbon source. After the cells reach the metabolic steady state, the culture medium is switched from unlabeled to 13 C-labeled medium. Samples are taken at different times to monitor the incorporation of the isotopic tracer in the intracellular metabolites, which are progressively labeled as a function of metabolite concentrations and fluxes. In order to maximize the metabolome coverage and study the metabolic network on a larger scale, samples are analyzed with untargeted metabolomics approaches. The incorporation of the label can be followed using high-resolution mass spectrometry (HRMS). The advantages of using HRMS is its high sensitivity and its large metabolic coverage when its coupled with liquid chromatography (LC).

LC/HRMS analyses provides features (mz, RT, intensity). In our work, the features must be extracted, clustered and annotated to provide a list of metabolites with complete labeling information and isotopologues distributions over time. This step of the process requires the use of robust and automatic tools to ensure the quality of isotopic data for use in metabolic reconstruction [Butin et al, 2022].

The next steps in the process consists to test the ability of different network topologies to explain the observed labeling dynamics data, thereby driving the identification and reconstruction of active metabolic subnetworks. For that we follow the guidelines defined in ScalaFlux [Millard et al, 2020]. To simulate the label propagation of a metabolite, two types of informations are required: (i) the set of reactions that participate to its labeling dynamics with carbon atom transitions and (ii) the labeling dynamics of its substrate. To do this, subnetworks are necessary and must be constructed for each metabolite in the data. We defined as minimal subnetwork the smallest subnetwork that contains sufficient data required to simulate the labeling dynamics of a given metabolite. In contrast to classical fluxomics, the label propagation of the metabolite in the subnetwork is modeled directly from the labeling dynamics of its metabolic precursor(s), which are defined as local label inputs (LLIs).

The first step (Step 4 in Figure 3.1) consists on getting a list of potential metabolic reactions with carbon atom transitions. Since this strategy is orthogonal to genome-based reconstruction approaches, any available (bio)chemical and metabolic knowledge can be optionally included to support the construction process. This may include all possible known biochemical reactions and chemical rules from databases (as done in this study) or literature for any type of organism.

The objective is to obtain the most complete list of reactions that could occur in a living system.

This knowledge can also be enriched with orthogonal approaches such as the establishment of pairwise mass-mass difference from data [Breitling et al, 2006]. Then, minimal metabolic subnetworks are constructed for each metabolite in the dataset (Step 5 in Figure 3.1). The construction process is the essence of the approach and will be detailed in the next section (section 2.2). Once the minimal subnetwork has been obtained, we can use the scalaflux approach to simulate label propagation and fit the labeling dynamics of the metabolite of interest. This step (Step 6 in Figure 3.1) aims at evaluating the ability of subnetwork topology to explain the labeling pattern of a metabolite in the experimental data [Millard et al, 2020].

The goodness-of-fit between simulated and experimental labeling dynamics can be exploited to validate or exclude reactions in minimal subnetworks. When the data are accurately fitted, the flux values can be obtained. Although labeling dynamics are sufficient to fit experimental data and give access to the turnover of metabolites or to relative fluxes (in case of convergent reactions), measure of metabolites concentration can be optionally included to give access to absolute fluxes. A minimal subnetwork is defined as identifiable if the data available are sufficient to estimate and provide a unique solution of fluxes.

At the end of the process, a set of active metabolic subnetworks can be obtained. The proposed approach is iterative and can be refined or completed to identify gaps or validate sets of reactions by adjusting the experimental design. Although illustrated in this study with 13 Cisotopes and MS data, the proposed approach is generic and can be applied to different organisms using any isotopic tracer (e.g. 

Construction of minimal subnetworks

The proposed strategy uses a set of available tools and methods for 13 C-labeling experiments and data extraction. Specific developments had to be made for some key steps such as generation of a list of reactions with carbon atom transition and the construction of subnetworks. The essence of the proposed approach lies in the way we construct and analyze metabolic subnetworks required to evaluate the consistency between the labeling dynamics of a given metabolite and a set of reactions. This section is focused on the step five of the workflow (Figure 3.1). Based on the list of reactions and metabolites, subnetworks are constructed for each metabolite in the dataset. From a given metabolite in the data, the subnetwork is extended iteratively until getting a minimal subnetwork containing all the data required to simulate. The extension is done by combining minimal subnetworks following the rules established in ScalaFlux [Millard et al, 2020]. We defined as complete minimal subnetwork, the minimal subnetwork for which all LLIs are available. An incomplete minimal subnetwork is a minimal subnetwork in which one or more reaction(s) is not conserved because of missing LLIs. Missing

LLIs can be either that no information at all is available (i.e: the labeling dynamics of the substrate is not present in the dataset) or that at least one critical information is missing (i.e: we don't have access to the elementary metabolite unit which participates to the formation of the metabolite). This last case can occur in cleveage reaction.

The process is illustrated for the construction of a minimal subnetwork centered on a given metabolite Y (Figure 3.2A). First, a sink reaction consuming Y has to be included to avoid its accumulation, in keeping with the metabolic steady-state assumption. The reaction(s)

and the LLIs which are involved in its production are searched in the list of reactions and the list of metabolites, respectively. Two cases can be distinguished. In the first case, all data are available (i.e the LLIs A and B producing Y via the reactions r1,r2). In the second case, information on the LLIs are missing.

The subnetwork is then extended by searching for an upstream substrate for the part of the subnetwork where LLI is missing. We define the extension levels according to the number of searches performed upstream of the metabolite of interest during the construction process. For each level of extension, the initial precursor becomes a metabolic intermediate. At each iteration step, we check if the subnetwork is minimal. If not, the subnetwork continues to be extended on the part of the network for which the LLIs are missing. The process of construction stops when all data are available or when the level of extension defined by the experimenter is reached. At the end of the process, the part of the subnetwork for which the LLIs are still missing, is not conserved in the minimal subnetwork. For example, at the third level, information on the LLIs (F and E) are missing. The set of reactions (r2, r3, r5, r6) is deleted from the subnetwork (step 3 in Figure 3.2). If after several extensions, none LLIs could be identified, the resulting subnetwork is an empty subnetwork, containing only the sink reaction (step 4 in Figure 3.2).

Once the minimal subnetwork has been obtained, simulation of label propagation and fitting of experimental labeling dynamics of the metabolite of interest are performed, as detailed previously [Millard et al, 2020]. In the minimal subnetwork SY, the labeling dynamics of Y are directly simulated from the labeling of its precursors G, F and E (Figure 3.2B). The goodness-of-fit between the simulated and experimental data aims to determine if the topology of the minimal subnetwork is consistent with the observed labeling dynamics of the metabolite. 

Implementation of IsoMet : Isotopic driven Metabolic reconstruction

The computational workflow for the IsoMet approach is divided into three steps that contains a set of tools developed to construct metabolic subnetworks from HRMS data (Figure 3.3).

First, the Feature Collection aims to provide a list of metabolites containing the labeling incorporation and isotopologues distributions over time from HRMS data obtained using untargeted analysis strategies. Some software specific for untargeted isotopic profiling studies are developed [START_REF] Huang | X13CMS: global tracking of isotopic labels in untargeted metabolomics[END_REF][START_REF] Capellades | geoRge: A Computational Tool To Detect the Presence of Stable Isotope Labeling in LC/MS-Based Untargeted Metabolomics[END_REF]Bueschl et al, 2017 ;Dange et al, 2020] but there are still few available for integrate dynamic data [Kiefer et al, 2015, Dange et al, 2020]. This step of isotopic labeling dynamics extraction is performed using the DynaMet tool [Kiefer et al, 2015], a software developed on eMZed [Kiefer et al, 2013] for fully automated investigations of isotope labeling experiments from LC-HRMS raw data. DynaMet extracts metabolite labeling profiles from 13 C-time course labeling experiments. Special attention to data extraction is required. The use of a specifically labeled sample can help to ensure and validate the data quality [Butin et al, 2022].

Second, for the Atom Mapping step, we developed GSAM to perform Genome Scale Atom Mapping. As discussed above, many sources can be used to create a list of reactions.

Initially, to develop the tools to implement the ab initio approach, we relied on a Genome Scale Model (GSM).

The atom mapping is a procedure that establishes a correspondence between the atoms of reactants and products [START_REF] Litsa | Machine Learning Guided Atom Mapping of Metabolic Reactions[END_REF]. The results can be exploited to build carbon skeleton networks for topological analysis of genome-scale metabolic networks (GSMN), and analyse the fate of carbon atoms. GSAM requires a metabolic network in SBML (Systems Biology Markup Language) file format, which is a machine-readable format for representing models, and a table containing SMILES (Simplified molecular-input line-entry system) representing the chemical structure of the compounds in the model [Hucka et al, 2003]. From these input files, GSAM creates a list of reactions with consistent carbon atom transitions at the scale of the network. SBML is oriented towards describing systems where biological entities are involved in, and modified by, processes that occur over time. It can be found in various databases such as BiGG [King et al, 2016], BioModels [START_REF] Glont | BioModels: expanding horizons to include more modelling approaches and formats[END_REF] or Metexplore [Cottret et al, 2010].

Some reactions in SBML are not suited for atom mapping (such as biomass production) and GSAM tool provides flexible filtering utilities for adapting a GSMN to atom mapping tasks.

The cofactors and non-carbon compounds can be conserved as reactants to ensure the reaction stoechiometry and metabolic balancing but can be excluded for the atom mapping.

The Network Analyzer is the tool developed to construct and evaluate minimal subnetworks. Starting from the list of metabolites with carbon isotopologues distribution over time and the list of reactions, the Network Analyzer first constructs minimal subnetworks centered of each metabolite in the data (see section 2.2). Then, it simulates the label propagation in each minimal subnetwork according to the scalaflux approach [Millard et al, 2020] and fits the labeling dynamics of the metabolites by adjusting fluxes using influx_i [Sokol et al, 2012].

The goodness-of-fit is evaluated using a chi-square test [Antoniewicz et al, 2006]. Measures of metabolite concentrations can be optionally included and adjusted to fit experimental data and provide absolute flux measurements. The Network Analyzer returns evaluated subnetworks, i.e.

minimal subnetworks and the results of simulations (see Methods for details). Finally, the interpretation of the goodness-of-fit can provide a set of active metabolic subnetworks in the studied organism. not have sufficient data to obtain minimal subnetworks. Cleavage reactions directly contribute to the formation of these three metabolites and the corresponding LLIs are not available. Among the 29 constructed minimal subnetworks, 14 are complete and 16 are incomplete. For these last ones, some reactions were not conserved at the end of the construction process due to a missing LLI. There are two causes of missing LLIs (i) the CO2 measurements are missing in the data and/or (ii) the elementary metabolite unit which participates to the formation of the metabolite is not known (because of a cleavage reaction). An interesting result is the "level 3 extended" minimal subnetwork centered on the pyruvate (SPYR) (Figure 3.5B). At the first level, the phosphoenopyruvate (PEP) and the malate (Mal) are the direct LLIs of the pyruvate (Pyr).

However, isotopes of the "C1C2C3 block" of the malate are a missing LLI as the elementary metabolite unit producting the pyruvate is lost in cleavage reactions (ME1, ME2). The subnetwork was extended from this part of the subnetwork to identify the minimal subnetwork.

At the third level, the information on the elementary metabolite unit involved in the production of the pyruvate is retrieved. The final LLI of this minimal subnetwork is the phosphoenopyruvate. The labeling dynamics of metabolites are accurately fitted for 21 minimal subnetworks (Table 3.1 and Table S3). In case of incomplete minimal subnetworks (e.g: SDHAP, Table S2 and Table S3), an accurate fit indicates that the reactions that are not conserved during the construction process do not strongly influence the labeling dynamics of the metabolite. For example, two disctinct minimal subnetworks are illustrated in the Figure 3.4C. The first one is the complete minimal subnetwork centered on the glutamine SGLN. As shown in the fitting results, the simulated labeling dynamics fit accurately the theoretical measurements. The label incorporation into this metabolite is slow. Indeed, glutamine, like glutamate, is known to have a particularly slow labeling dynamic, due to its high pool size [START_REF] Bennett | Absolute Metabolite Concentrations and Implied Enzyme Active Site Occupancy in Escherichia coli[END_REF]. In opposition to the SGLN, the minimal subnetwork centered on the alpha-ketoglutarate (Sα-KG) is an incomplete subnetwork. The final subnetwork used to simulate label propagation is only composed of the Glutamine as metabolic precursor that produce the α-KG via the glutamate dehydrogenase (GLUDY). In this subnetwork, the topology of the subnetwork can not explain the isotopic dynamic (ꭓ2 pvalue > 0.05), which is clearly visible on the graph.

Among the 29 minimal subnetworks, 9 are identified as identifiable subnetworks and provide a unique solution of fluxes. Regarding the estimated flux values, 6 of them are in good agreement with the theoretical fluxes used to simulate the theoretical dataset, with a mean accuracy of 5.9% +/-3%. Regarding the SGLN, (Figure 3.4C) this minimal subnetwork is an identifiable subnetwork and provides a unique solution of fluxes for the glutamine synthetase reaction (GLNS), that is on good agreement with the value used to simulate the theoretical dataset with a relative error of 0.87%. The good agreement between simulations and theoretical measurements indicate that the topology of the subnetwork is consistent with the isotopic data.

The detailed results for all minimal subnetworks are provided in Supplementary Data (Table S3). For other subnetworks, the measurements provided are not sufficient to unambiguously determine fluxes.

This test case demonstrates the strength of our approach. The IsoMet approach aims to highlight active subnetworks in the organism. If a given minimal subnetwork fits accurately the experimental labeling dynamics, this highlights the active reactions involved in the production of the metabolite of interest, even if some reactions that contribute little to the observed dynamics are not included in the network. If not, the fit result can inform on the existence of potential other reactions that contribute significantly in the production of the metabolite but not included because of missing data. Typically, the glutamate dehydrogenase alone does not explain the labeling dynamics of the α-Kg labeling as other reactions are involved in α-KG production (Isocitrate dehydrogenase (ICDHyr), oxogluterate dehydrogenase (AKGDH) and glutamate synthase (GLUSy)) (Figure 3.4C). 

Discussion

In this work we proposed a data-driven 13 C-fluxomic approach based on dynamic isotope-labeling experiments to identify set of active subnetworks in a organism.

It's important to note that the relevance of resulting metabolic subnetworks depends on the quality of the experimental setup, including experimental design (choice of nutrient, isotopic tracer, analytical techniques …) and data processing (extraction of isotopic data) and annotation. To ensure the quality of isotopic data with untargeted strategies, robust tools and approaches are thus needed [Butin et al, 2022].

The tools developed for this work allow for direct access to other sources of information, such as analytical sources (MS/MS data) or in terms of biochemical knowledge. In this work we used a GSM as source of biochemical knowledge but many other sources can be implemented, such as a metaGSM [Zorilla et al, 2021], additional biological databases, chemical rules or literature. Further development towards ab initio fluxomics will require enriching this step with the ab initio generation of a reaction list, using e.g. the establishment of pairwise mass-mass difference from data [Breitling et al, 2006] or spectral correlations [Amara et al, 2022].

From a computational point of view, the proposed approach shares elements with the scalaflux approach to simulate label propagation, combine subnetworks and fit labeling dynamics [Millard et al, 2020]. The process of (sub)network extension allows incomplete datasets to be exploited to identify the active subnetworks. Interpretation of the fit between simulated and experimental data allows to evaluate and validate the topology of the metabolic subnetworks and identify the main (actives) reactions which are involved in the formation of a given metabolite. However, this does not mean that there are no other undescribed reactions that are not significantly active yet are involved in the production of this metabolite.

Currently, our approach allows to highlight the active parts of a metabolic network and requires more development and additionnal information to combine these subnetworks to reconstruct a complete network at the cellular level. Combination with traditional in silico approaches can be useful to complete metabolic pathways identification or to connect metabolic subnetworks. With respect to gaps in data, combination of different analytical techniques can also be valuable. For example, in LC/HMRS coupling, the use of complementary columns can cover another part of the metabolome.

Although illustrated in this study with 13 C-isotopes and MS data, the proposed approach is generic and can be applied using any isotopic tracer (e.g. 2 H, 15 N or 18 O) and analytical methods (NMR or MS/MS). For example, relevant and additional information can be obtained by optimizing the labeling of the nutrient or using combination of multiple 13 C-carbon sources [Millard et al, 2014]. In a similar way, other analytical techniques can be used to obtain additional data, such as positionnal label information using NMR or MS/MS analyses, which can be helpful for specific topological motifs such as cleavage reactions. Our approach should also be useful to study complexes or poorly characterized organisms.

Methods

Generation of the theoretical dataset

The metabolic network implemented in the model was derived from the E. coli core model from the BiGG Database (http://bigg.ucsd.edu/models/e_coli_core). The model was adapted to correspond to a classical E. coli culture under aerobic condition grown in a minimum medium with glucose as sole carbon source and was converted into a isotopic model using GSAM. The final isotopic model contains 58 biochemical reactions (including the biomass equation), 32 intracellular metabolites and all the stoechiometric reactions of the metabolic network as well as the carbon transitions between substrates and products of each reactions.

The label propagation was simulated using influx_i [Sokol et al, 2012] to create a theoretical dataset with isotopologues distribution over time for the 32 intracellular metabolites. The set of initial flux values used to simulate the data was calculated using an in silico Flux Balance Analysis (FBA) based on Enjalbert et al., 2017 to optimize the production of biomass. The constraints on extracellular fluxes were fixed with a consumption of glucose of -8.7 ± 0.1 mmol.gDW -1 .h -1 and a production of acetate of -1.5 ± 0.1 mmol.gDW -1 .h -1 . The time points used to simulate the labeling dynamics were the following : t1, t2, t5, t10, t15, t20, t30, t40, t60, t80, t120, t160, t200, t240, t300, t400, t500 and t600 seconds and the metabolites pools were provided by [START_REF] Bennett | Absolute Metabolite Concentrations and Implied Enzyme Active Site Occupancy in Escherichia coli[END_REF].

GSAM

GSAM was developed with JAVA language and performs Genome Scale Atom

Mapping. The results can be exploited to build carbon skeleton networks for topological analysis of genome-scale metabolic networks (GSMN), and analyse atom tracking results.

GSAM is a built around the Reaction Decoder Toolkit, a library which compute atom mappings from reactions represented as RxnSmiles. It uses the JSBML library to import a GSMN in standard format, then automatically generate all the RxnSmiles from provided compounds structures, launch the atom mapping and finally parse the results to render meaningful substrateproducts transitions. GSAM was applied to create a list of reactions with carbon atom transitions from a SBML of E. coli core (http://bigg.ucsd.edu/models/e_coli_core).

Network Analyzer

The Network Analyzer was developed with python language and runs on all platforms.

It was used to construct minimal subnetworks for each metabolite in the theoretical dataset. The maximum level for network extension was set to 4. The Network Analyzer performs simulation of label propagation according to the scalaflux approach [Millard et al, 2020] implemented in influx_si [Sokol et al, 2012]. At metabolic steady state, the LLIs can be formalized mathematically by computing a signal in the form of continuous linear piece-wise functions in time points [START_REF] Sokol | Theoretical Basis for Dynamic Label Propagation in Stationary Metabolic Networks under Step and Periodic Inputs[END_REF]. The label propagation of the metabolite of interest can then be simulated from the LLIs by resolving a system of ordinary differential equations (ODEs). It uses influx_si to fit labeling dynamics using flux calculation routines by minimizing the difference between experimental labeling data and the simulated labeling profiles. It computes fitting quality metrics (ꭓ2) to evaluate consistency score of the corresponding minimal subnetwork and evaluate if they can explain experimental isotopic labeling dynamics [Antoniewicz et al, 2006]. 
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Introduction

Despite the progress that has been made in sequencing technology and genome annotation, a non-negligible percentage of genes remain uncharacterized [START_REF] Hanson | Unknown' Proteins and 'Orphan' Enzymes: The Missing Half of the Engineering Parts Listand How to Find It[END_REF]. Even for very well-known organisms such as the bacterium E. coli, 35-40% of genes (the 'y-ome') are of unknown function [START_REF] Hu | Global Functional Atlas of Escherichia Coli Encompassing Previously Uncharacterized Proteins[END_REF]3]. The products of these genes (y-genes), are likely to have highly diverse functions among the various cellular processes. Metabolism is the basic process that sustains all the energetic and biosynthetic needs of living organisms to survive and grow. Not surprisingly, attempts have been made to investigate the potential role of the y-genes in metabolic processes [START_REF] Raamsdonk | A Functional Genomics Strategy That Uses Metabolome Data to Reveal the Phenotype of Silent Mutations[END_REF][START_REF] Fuhrer | Genomewide Landscape of Gene-Metabolome Associations in Escherichia Coli[END_REF]. Accordingly, several high throughput (HT) methods have recently been developed to explore the potential metabolic function of y-genes. This includes the incubation of purified proteins with metabolite cocktails and the identification by mass spectrometry of metabolites with varying abundances [START_REF] Sévin | Nontargeted in Vitro Metabolomics for High-Throughput Identification of Novel Enzymes in Escherichia Coli[END_REF] and the application of untargeted metabolomics to map gene-metabolite interactions [START_REF] Fuhrer | Genomewide Landscape of Gene-Metabolome Associations in Escherichia Coli[END_REF].

Alongside studies aiming to directly identify gene product function, an alternative strategy to study the role of y-genes consists in detailing the phenotypic consequences of a lossof-function mutation or a gene deletion [START_REF] Blaby-Haas | Mining High-Throughput Experimental Data to Link Gene and Function[END_REF][START_REF] Long | Metabolic Flux Analysis of Escherichia Coli Knockouts: Lessons from the Keio Collection and Future Outlook[END_REF]. Together with the generation of mutant libraries -such as the Keio E. coli mutant collection [START_REF] Baba | Construction of Escherichia Coli K-12 In-frame, Single-gene Knockout Mutants: The Keio Collection[END_REF] -, which has facilitated genome-wide investigations, this approach has been used for large-scale investigations of gene essentiality [START_REF] Baba | Construction of Escherichia Coli K-12 In-frame, Single-gene Knockout Mutants: The Keio Collection[END_REF][START_REF] Joyce | Experimental and Computational Assessment of Conditionally Essential Genes in Escherichia Coli[END_REF][START_REF] Guzmán | Reframing Gene Essentiality in Terms of Adaptive Flexibility[END_REF][START_REF] Tong | Gene Dispensability in Escherichia Coli Grown in Thirty Different Carbon Environments[END_REF] and of molecular [START_REF] Warner | Rapid Profiling of a Microbial Genome Using Mixtures of Barcoded Oligonucleotides[END_REF], morphological [START_REF] Liu | High-Throughput CRISPRi Phenotyping Identifies New Essential Genes in Streptococcus Pneumoniae[END_REF] and fitness [START_REF] Price | Mutant Phenotypes for Thousands of Bacterial Genes of Unknown Function[END_REF] phenotypes in bacteria.

Metabolic phenotyping approaches have also been developed in which comparative metabolomics is applied to reveal gene functions in yeast [START_REF] Raamsdonk | A Functional Genomics Strategy That Uses Metabolome Data to Reveal the Phenotype of Silent Mutations[END_REF].

Metabolic phenotypes are most accurately revealed by fluxomics, which aims to measure the actual rates of biochemical reactions in metabolic networks [START_REF] Wiechert | 13C Metabolic Flux Analysis[END_REF]. Fluxomics measures the actual output of the integrated response of the gene-protein-metabolite interaction network [START_REF] Sauer | Metabolic Networks in Motion: 13C-based Flux Analysis[END_REF] and provides direct access to the cellular phenotype in a quantitative manner [START_REF] Wittmann | Metabolic Flux Analysis[END_REF].

It has thereby become a major tool in comprehensive investigations of cellular metabolism in many fields, ranging from biotechnology [START_REF] Ellis | Metabolomics-Assisted Synthetic Biology[END_REF] to the medical sciences [START_REF] Fan | Quantitative Flux Analysis Reveals Folate-Dependent NADPH Production[END_REF]. The measurement of metabolic fluxes is based on 13C-labelling experiments coupled with detailed mathematical models of metabolism (13C-fluxomics). This is a complex and tedious process involving many steps [START_REF] Wiechert | 13C Metabolic Flux Analysis[END_REF][START_REF] Heux | Recent Advances in High-Throughput 13C-Fluxomics[END_REF] and requiring significant expertise in data collection and interpretation. Obtaining the detailed flux information on hundreds of strains needed to explore the E. coli y-ome is therefore a motivation to improve current HT fluxomics workflows [START_REF] Heux | A Novel Platform for Automated High-Throughput Fluxome Profiling of Metabolic Variants[END_REF].

In this work, we developed a robust workflow to obtain high-resolution fluxotypes under fully controlled growth conditions for large strain libraries. A fluxotype is defined here as the particular distribution of metabolic fluxes measured for a given strain under given physiological conditions. Resolution refers to the level of flux information that can be generated and is high when a significant number of fluxes can be measured [START_REF] Heux | Recent Advances in High-Throughput 13C-Fluxomics[END_REF][START_REF] Sauer | High-Throughput Phenomics: Experimental Methods for Mapping Fluxomes[END_REF][START_REF] Moxley | Linking High-Resolution Metabolic Flux Phenotypes and Transcriptional Regulation in Yeast Modulated by the Global Regulator Gcn4p[END_REF]. This workflow was applied to investigate the fluxotypes of 180 E. coli strains deleted for y-genes and grown on glucose as sole carbon source. The data show that the central metabolism of E. coli is highly robust to ygene deletion. For two y-genes, deletion resulted in significant alterations of metabolic fluxes, pointing to the role of the corresponding y-gene products in metabolic function and/or regulation.

Results

Selection of E.coli y-ome strains

With the aim of investigating the metabolic phenotypes of the E. coli y-ome during growth on glucose as sole carbon source, we first selected y-genes as follows (Figure 4.1): i)

We first considered all genes with a single-deletion mutant in the Keio mutant library [START_REF] Baba | Construction of Escherichia Coli K-12 In-frame, Single-gene Knockout Mutants: The Keio Collection[END_REF]. This library contains single-gene deletion mutants able to grow on glucose, meaning the mutated genes are not essential for growth on glucose as sole carbon source. The Keio collection contains 3985 mutants.

ii)

We then selected the genes in the Keio collection lacking evidence of function. This represented a total of 1563 y-genes iii)

We verified that each y-gene was duly expressed and translated during growth on glucose as the sole carbon source. This selection step was based on the extensive proteomic investigation performed by Schmidt et al., in 2016 [25]. These authors measured the functional expression of 55% E. coli genes (> 2300 genes) by quantitative proteomics in 22 experimental conditions, including growth in minimal medium with glucose as carbon source. Among the y-genes identified in step 2, we further selected the 218 y-genes that were experimentally shown to be translated under these conditions.

iv)

The y-gene statusi.e. the lack of annotation or of experimental evidence of function was manually verified in two complementary databases, namely Biocyc This process yielded a group of 180 y-genes with unknown or unclear function, dispensable but duly expressed in a medium with glucose as sole carbon source (Supplementary data 1).

The corresponding single deletion mutants were obtained from the Keio collection and considered for further metabolic investigations, which were designed to optimize the measurement of growth parameters and fluxotypes across hundreds of E. coli mutants (Figure 

Integrated workflow for high-throughput collection of highresolution fluxotypes

To measure the fluxotypes of the 180 y-gene deletion mutants, we first built a HT platform enabling fully automated, parallelized measurements of metabolic fluxes under fully controlled conditions at a throughput consistent with the investigation of hundreds of experimental conditions. A typical 13 C-fluxomics workflow involves a combination of several complex experimental and computational steps, which were improved and optimized here to meet the needs of the y-ome investigation (Figure 4.1). The final setup included i) two automated robotic platforms, one for parallelized growth, 13 C-labelling experiments and sample collection, and the other for sample preparation, ii) optimized NMR and MS analytical methods for measuring metabolite concentrations and labeling patterns, iii) flux calculation, iv) statistical analysis, and v) a series of software programs to store, manage, and process the data and meta-data generated all through the process.

Design of fluxomics experiments

Very little is known about the phenotypic and metabolic behavior of y-gene-deleted strains, hence an important objective of the setup was to avoid presuppositions about the metabolic pathways potentially impacted by the lack of the y-gene product. This was achieved by using a generic model of E. coli metabolism for the flux investigations, containing all central carbon metabolism pathways (Supplementary data 3). The model contained 94 fluxes in total, representing central pathways, biosynthetic processes, and transport reactions, and 49 metabolites. The isotopic composition of the label input in the 13 C-labelling experiments was optimized using the software IsoDesign [START_REF] Millard | IsoDesign: A Software for Optimizing the Design of 13C-Metabolic Flux Analysis Experiments[END_REF]. Based on i) the network topology, ii) the isotopic data collected in the study (i.e. isotopologue distributions of proteinogenic amino-acids), and iii) the objective of resolving the maximum number of fluxes across the whole metabolic network, the best label composition was determined to be a mixture of 80% [1-13 C]-glucose + 20% [U-13 C]-glucose. This result is consistent with those of previous investigations of the entire central carbon metabolism of E. coli [START_REF] Wiechert | 13C Metabolic Flux Analysis[END_REF]. All labeling experiments reported in this study were performed in minimal M9 medium with the above mixture as sole carbon source. Details of the conditions used to apply the workflow to all the investigations reported here are given in material and methods section. Briefly, cells were inoculated at 10 8 cell/mL and their growth was monitored by optical density under temperature, pH and pO2 control. Medium samples were collected throughout the growth process and analyzed by 1 H-NMR to measure the rates of substrate uptake and product release. When an OD600nm of 1.2corresponding to midexponential growth under these conditionswas reached, the biomass was automatically sampled, hydrolyzed, and the labeling patterns of proteinogenic amino acids were analyzed by LC-HRMS. After correction for naturally occurring isotopes [START_REF] Millard | Correcting MS Data in Isotope Labeling Experiments[END_REF][START_REF] Millard | IsoCor: Isotope Correction for High-Resolution MS Labeling Experiments[END_REF], the carbon isotopologue distributions (CIDs) of 16 amino acids were measured and used for flux calculations.

Biosynthetic fluxes (i.e. precursor requirements for growth) were calculated based on the molecular composition of E. coli [START_REF] Neidhardt | Escherichia Coli and Salmonella: Cellular and Molecular Biology[END_REF]. Intracellular fluxes were calculated by fitting the metabolic model described above with amino acid CIDs, biosynthetic fluxes, and extracellular fluxes, using the software influx_si [START_REF] Sokol | Increasing Numerical Stability and Precision for Metabolic Flux Analysis in Isotope Labelling Experiments[END_REF]. The confidence intervals on calculated fluxes were estimated by Monte Carlo sensitivity analysis using the same software. All investigations were performed on the robotic system, which allowed 48 experiments to be run in parallel, yielding 48 flux maps per run each containing 94 fluxes, measured under fully controlled physiological conditions.

High-Resolution fluxotyping workflow validation

Before starting the investigation of the E. coli y-ome, we evaluated the workflow by performing several fluxomics experiments with known E. coli strains. Two WT strains (K-12 MG1655 and BW25113) and one mutant strain (BW25113 Δzwf), with known and significant metabolic flux alterations, were considered to evaluate the biological relevance of the data collected with the integrated HT workflow. The data collected for the three strains were highly reproducible between replicates. The median relative standard deviation (RSD) of the central metabolic fluxes was 11%, 3.7% and 22% between respectively 5 (K-12 MG1655), 4 (BW25113), and 5 (BW25113 Δzwf) biological replicates. The macro-kinetic parameters (i.e.

growth rate, glucose uptake, acetate production) and flux values collected for the two WT strains (Figure 4.2) were closely consistent with previous measurements on these strains, highlighting the consistency of the data collected with the integrated HT fluxomics workflow [START_REF] Heux | A Novel Platform for Automated High-Throughput Fluxome Profiling of Metabolic Variants[END_REF][START_REF] Nicolas | Response of the Central Metabolism of Escherichia Coli to Modified Expression of the Gene Encoding the Glucose-6-Phosphate Dehydrogenase[END_REF][START_REF] Millard | Sampling of Intracellular Metabolites for Stationary and Non-Stationary 13C Metabolic Flux Analysis in Escherichia Coli[END_REF][START_REF] Haverkorn Van Rijsewijk | Large-Scale 13C-Flux Analysis Reveals Distinct Transcriptional Control of Respiratory and Fermentative Metabolism in Escherichia Coli[END_REF]. The deletion of zwf had little impact on the growth rate but led to a significant redistribution of metabolic fluxes to compensate for the impairment of the oxidative branch of the pentose phosphate pathway (PPP). The observed changes in metabolic fluxes in this strain were qualitatively and quantitatively consistent with previous reports [START_REF] Heux | A Novel Platform for Automated High-Throughput Fluxome Profiling of Metabolic Variants[END_REF][START_REF] Nicolas | Response of the Central Metabolism of Escherichia Coli to Modified Expression of the Gene Encoding the Glucose-6-Phosphate Dehydrogenase[END_REF][START_REF] Zhao | Effect of Zwf Gene Knockout on the Metabolism of Escherichia Coli Grown on Glucose or Acetate[END_REF][START_REF] Hua | Responses of the Central Metabolism in Escherichia Coli to Phosphoglucose Isomerase and Glucose-6-Phosphate Dehydrogenase Knockouts[END_REF]. The developed workflow's ability to reliably measure the growth and fluxotypes of these strains clearly demonstrates the consistency of the entire process. 

High-Resolution glucose fluxotyping of 180 selected y-gene mutant strains

The 180 strains deleted for the selected y-genes were isolated from the Keio strain collection, and their growth profiles and fluxotypes were measured in minimal medium with glucose as sole carbon source. The WT and Δzwf strains were included in each robotic run as reference strains to check the inter-batch consistency of growth parameters and flux data. In total, 198 cultures were performed from which 1074 OD600 points were measured and used for the calculation of growth rates and biomass yields; 1248 samples were collected (1050 filtrates and 198 cell pellets), from which 591 physiological data -i.e. rates of compound consumption or production -were extracted; and more than 20000 isotopic data measured (100 carbon isotopologues from 16 different metabolites by MS analyses and 6 positional labelling profiles for 2 metabolites by NMR for each cultivation). Finally, a cumulated total of 18612 fluxes were calculated (94 fluxes for each culture). The complete experimental process was completed within 786 hours, and required only 194 hoursi.e. about 1 h per measured fluxotype -of human intervention or supervision. These values emphasize the practical benefit of the established workflow.

The data collected for the reference strainsi.e. WT and Δzwf strains -in the various runs of the robotic platform did not differ significantly from the data collected in the validation stage. On average, the strains deleted for y-genes grew slower than WT strains but had similar biomass yields (Figure 4.3A). The rates of glucose consumption and acetate production, measured from exometabolome data, were consistent with these observations, i.e. no significant difference overall. Principal component analysis (PCA) was used to explore the distribution of intracellular flux data across the y-ome (Figure 4.3B, 4.3C). For a large majority of mutant strains (in blue), the flux dataexpressed relative to the glucose uptake rate -clustered with those of the WT strains (in green). This result indicates that for most of the y-genes, deletion has a limited impact on the distribution of intracellular metabolic fluxes. The complete dataset is provided in Supplementary data 4. Three mutant strains did not cluster with the WT strains (Figure 4.3B). One of these was the Δzwf strain, demonstrating the value of PCA to discriminate strains based on metabolic fluxes. Two other y-gene mutants, namely ΔybjP and ΔydcS, also had significantly different fluxotypes from those of the WT strains and other y-gene mutants. Loading plots (Figure 4.3C) indicated that the most discriminating fluxes were related to glycolysis (pgi, , pgk, eno, pdh), the PPP (zwf, gnd, tk1, tk2), and the glyoxylate shunt (gs1, gs2).

Glucose fluxotypes of ΔybjP and ΔydcS strains

The glucose fluxotypes of the ΔybjP and ΔydcS strains are shown in Figure 4.4). Consistent with the PCA data, significant differences were observed between the two strains and the wild type strain, specifically that both strains had higher glycolytic flux than the wild type. In the ΔybjP and ΔydcS strains, 82 and 76 % of glucose was metabolized through pgi, respectively, against 68% in the wild type strain. (i.e. pgi flux in the ΔydcS strain). As a result, the two strains had decreased fluxes through the oxidative branch of the PPP (i.e. zwf and gnd), while the flux through the ED pathway (i.e EDD) was stable. This trend was even stronger in the ΔydcS strain, for which the data also showed partial reversal of the non-oxidative branch of the PPP (tk1 and tk2 reactions), probably to compensate for the decreased production of pentose-5-P, a key precursor for major biomass components. These data suggest that the products of the ybjP and ydcS genes areeither directly or indirectly -involved in the control of flux in the PPP pathway.

Significant alterations of fluxes in the TCA cycle and related pathways were observed in the two mutant strains compared to the wild-type strain. Pyruvate dehydrogenase flux was significantly increased in the ΔydcS strain, and even more so in the ΔybjP strain, reaching 119% against 95% in the wild type. This was not accompanied by increased flux through the TCA cycle but instead by increased acetate excretion, as well as by increased flux through the glyoxylate shunt. Lactate production was observed furthermore in the ΔybjP strain, and this strain had no flux through malate dehydrogenase (i.e. maldh) and increased flux through malic enzyme (i.e. mae). Overall, these data highlight a rerouting of metabolic fluxes around the acetyl-CoA node mainly resulting in the diversion of glycolytic flux from oxidative metabolism to acetate excretion in both strains. 

Cofactor usage in the ΔybjP and ΔydcS strains

The changes in carbon fluxes were associated with changes in the supply of ATP and redox cofactors by the central carbon metabolism (Figure 4.5). The ΔydcS strain produced ATP at a slightly lower rate than the WT strain did. Its redox status was significantly impaired. In particular, NADPH production was drastically reduced, due to the much lower flux through the PPP and the absence of compensation via the TCA cycle or malic enzyme. Because this strain grows roughly as fast as the WT strain, hence has similar biosynthetic requirements, it is likely that the reduced production of NADPH via carbon metabolism (Figure 4.5) is compensated by increased transhydrogenase activity [START_REF] Sauer | The Soluble and Membrane-Bound Transhydrogenases UdhA and PntAB Have Divergent Functions in NADPH Metabolism of Escherichia Coli[END_REF]. The ΔybjP strain had different ATP and redox profiles. First, this strain produces ATP faster than the WT strain does, because of significantly increased fluxes through glycolysis and acetate metabolism. Interestingly, the same ATP production profile was observed in the Δzwf strain (Figure 4.5), but the latter is significantly impaired for NADPH production whereas the ΔybjP strain produced NADPH at only a slightly lower rate than the WT strain did. This reflects a smaller reduction in PPP flux and an increase in malic enzyme flux, which accounted for 16% of CCM-derived NADPH production in this strain compared to 4% in the WT strain. The latter increase might be the result of a mechanism to compensate for decreased NADPH production via the oxidative PPP. In addition, NADH production was significantly higher in the ΔybjP mutant than in the WT strain, mainly due to a large increase in glycolytic production of NADH, and resulting in the production of lactate, suggesting a global imbalance in redox metabolism in this strain. 
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Scope and quality of high-throughput fluxomics investigations

Because a specific objective of this work was to deploy high-resolution fluxomics in a HT manner, we evaluated the quality of the fluxome data obtained here in comparison with existing data in the literature. High-throughput investigations have to find the best compromise between throughput and information level (and quality), hence the volume and quality of the flux data have to be appreciated in terms of the actual size of the investigation, i.e. the total number of flux maps generated. To this aim, we used the four criteria defined below:

i) the fluxome resolution, which corresponds to the total number of fluxes that can be calculated from the experimental dataset, and is a measure of the coverage of the flux space in the investigated metabolic network. This resolution is generally low (e.g. 23) in highthroughput studies, and high (71-84) in low-throughput ones (Table 4.1). In this work, we could measure 94 fluxes per measured fluxotype, which is the highest fluxome resolution value among all 13 C-fluxomics studies reported in Table 4.1.

ii) the isotopic resolutive power of the flux map, defined as the ratio between the number of isotopic data and the number of fluxes calculated in the network. This index is assumed to reflect data redundancy in the flux estimates, hence higher precision in the calculated flux values. Low-throughput investigations of the E. coli fluxome have isotopic resolutive power in the range of 1 to 8 (Table 4.1), though very high isotopic resolutive power (up to 17.6), has been obtained by performing multiple (e.g. parallel) labelling experiments to calculate a single flux map [START_REF] Long | High-Resolution 13C Metabolic Flux Analysis[END_REF][START_REF] Lange | Bio-Based Succinate from Sucrose: High-Resolution 13C Metabolic Flux Analysis and Metabolic Engineering of the Rumen Bacterium Basfia Succiniciproducens[END_REF][START_REF] Leighty | Complementary Parallel Labeling Experiments Technique for Metabolic Flux Analysis[END_REF][START_REF] Crown | Integrated 13C-Metabolic Flux Analysis of 14 Parallel Labeling Experiments in Escherichia Coli[END_REF]. In the present work, the isotopic resolutive power of the flux maps was 1.13

(106 isotopic data for 94 fluxes), which is comparable to the values obtained in low-throughput investigations (Table 4.1).

iii) the total flux dimension, which is equal to the number of fluxotypes multiplied by fluxome resolution, and is an indication of the scale of the fluxomics investigation. In the literature, this index ranges between 71 and 4370 (Table 4.1). In this study, the total flux dimension index was 18612 (94 fluxes x 198 fluxotypes), which reflects both the highthroughput and high-resolution character of the analysis. Interestingly, the number of fluxotypes generated in this study is similar to the number reported by Haverkorn van Rijsewijk et al. [33] (198 vs 190, respectively) but the total flux dimension of this work is higher (18612 vs 4370, respectively) because of the higher number of fluxes per fluxotype (94 vs 23, respectively). iv) the overall flux precision index, which is the median RSD of all (free) fluxes across the entire flux dataset. Only free fluxes are considered because the otherse.g. most biosynthetic fluxesare determined or given as constraints to the model. The average value of this index was 32% in the present study, compared with 0.4-23% in low-throughput studies, and 14-253 % in HT studies (Table 4.1). The value obtained in this work appears to strike a good compromise between throughput and resolution. Moreover, when measured for specific pathways (overall pathway-specific precision), it appears that the level of precision achieved for most fluxes is drastically improved, notably for those in the glycolysis, PPP and ED pathways. There is still scope for improvement in almost all stages of the workflowfrom sampling to flux calculations and sensitivity analysisto increase throughput and reduce experimental times and human involvement. A major challenge in the application of HT fluxomics is the level of precision on flux data that can be achieved at high or very high throughput. In this regard, the capability of the robotic platform to enable a high(er) number of biological replicate experiments to be carried out certainly contributes to increase the reliability of the data. C-Fluxomics encompasses different approaches depending on the number of isotopic data collected and number of fluxes calculated [START_REF] Heux | Recent Advances in High-Throughput 13C-Fluxomics[END_REF][START_REF] Sauer | High-Throughput Phenomics: Experimental Methods for Mapping Fluxomes[END_REF][START_REF] Moxley | Linking High-Resolution Metabolic Flux Phenotypes and Transcriptional Regulation in Yeast Modulated by the Global Regulator Gcn4p[END_REF]. These approaches include isotopic profiling (i.e. the statistical analysis of large isotopic datasets to discriminate variants), targeted significantly between studies (Table 1). HT fluxomics approaches have been discussed in terms of methodological challenges and biological value, but so far there has been no method but low isotopic resolutive power and low flux precision [START_REF] Heux | A Novel Platform for Automated High-Throughput Fluxome Profiling of Metabolic Variants[END_REF]. On the contrary, high-resolution fluxomics is characterized by low total flux dimension but high isotopic resolutive power and high flux precision [START_REF] Lange | Bio-Based Succinate from Sucrose: High-Resolution 13C Metabolic Flux Analysis and Metabolic Engineering of the Rumen Bacterium Basfia Succiniciproducens[END_REF][START_REF] Leighty | Complementary Parallel Labeling Experiments Technique for Metabolic Flux Analysis[END_REF][START_REF] Crown | Integrated 13C-Metabolic Flux Analysis of 14 Parallel Labeling Experiments in Escherichia Coli[END_REF]. Finally, methods developed for the large-scale application of Highresolution fluxomics, such as the one described here, should aim to achieve good isotopic resolutive power and flux precision with high total flux dimension [START_REF] Haverkorn Van Rijsewijk | Large-Scale 13C-Flux Analysis Reveals Distinct Transcriptional Control of Respiratory and Fermentative Metabolism in Escherichia Coli[END_REF]. Indeed, we could apply The main objective of this work was to investigate whether the deletion of y-genes led to any changes in the distribution of metabolic fluxes in the central metabolism, i.e. in glucose metabolic fluxotypes. Deletion of the part of the y-ome considered in this study was associated with an overall tendency toward slower growth, but for the vast majority of the 180 strains investigated, the distribution of metabolic fluxes was remarkably similar to the one measured for the WT strain. Given that E. coli expressed the products of the all the investigated y-genes during growth on glucose, there are several possible explanations for these results. i) The protein is expressed but is not functional under the considered culture conditions, hence its absence has no impact in the deletion mutant. ii) The protein has a functional role under these culture conditions but this function is not related to metabolism, hence its absence does not result in a metabolic phenotype. iii) The protein has a metabolic function -as an enzyme or as a metabolic regulatorin these culture conditions. In this case, the absence of a particular flux phenotype can be explained by the gene product having a quantitatively minor role, at least for the part of metabolism that was investigated, or by the onset of compensatory mechanisms that efficiently counterbalance the effects of the gene product's absence. Further investigations, including of fluxotypes under other experimental conditions, are required to answer these questions. However, regardless of the specific mechanisms involved for each y-gene, the data reported here highlight the robustness of E. coli's central metabolism to the absence of all these gene products, whatever their roles, and to the potentially impairments caused by their absence.

In this work we were able to provide highly detailed functional information on the metabolic impact of y-gene deletion. Two strains, ΔybjP and ΔydcS showed interesting glucose fluxotypes, indicating that the products of the genes are involved in metabolism during growth on glucose as sole carbon source. Information on these genes is scarce and elusive. The gene ydcS was annotated as a putative putrescine ABC transporter in several databases and has also been proposed to encode poly-3-hydroxybutyrate synthase activity [START_REF] Dai | Poly-3-Hydroxybutyrate Synthase from the Periplasm of Escherichia Coli[END_REF]. The gene ybjP has been predicted to be a lipoprotein [START_REF] Juncker | Prediction of Lipoprotein Signal Peptides in Gram-Negative Bacteria[END_REF]. Interestingly, the metabolic impact of both these genes is global since most of the pathways of the central carbon metabolism are affected. Indeed, both mutant strains show significant perturbations in the PPP and in the TCA cycle and related pathways. The deletions are also both associated with energy & redox status modifications, but with opposite consequences. The ΔybjP strain has significantly impaired ATP production and reduced cofactors within the central carbon metabolism while the ΔybjP has higher production levels than observed in the WT strain. The fact that the metabolic effects are so wide-ranging suggests that the products of these genes affect central metabolic parameters such as the redox status or that they are, either directly or indirectly, global regulators of metabolism. The dispensability of the two y-genes during growth on various carbon sources has recently been documented [START_REF] Tong | Gene Dispensability in Escherichia Coli Grown in Thirty Different Carbon Environments[END_REF]. The ΔydcS strain shows reduced growth on certain sugars (mainly mannose, glucosamine, fructose) and two organic acids (alpha-ketoglutarate and acetate). The ΔybjP strain shows reduced growth on a few carbon sources, mainly including pyruvate, ribose, sorbitol and galacturonate. Deletion of these y-genes has no effect [START_REF] Tong | Gene Dispensability in Escherichia Coli Grown in Thirty Different Carbon Environments[END_REF] or only a slight effect (this work) on growth with glucose as sole carbon source, in spite of significant metabolic changes in the two mutant strains. These observations emphasize that gene dispensability does not mean the gene lacks a metabolic function, but rather that the metabolism has successful adapted to the absence of the gene product [START_REF] Raamsdonk | A Functional Genomics Strategy That Uses Metabolome Data to Reveal the Phenotype of Silent Mutations[END_REF]. This observation stresses the need to measure the actual metabolic phenotype of mutants even if the gene deletion is silent in terms of growth.

In this context, methods like HR fluxotyping are essential to achieve both the throughput and level of metabolic information required to investigate the role of y-genes in the metabolism of diverse carbon sources.

To conclude, this work shows that high-resolution fluxomics is amenable to highthroughput investigations and can provide detailed information on metabolic phenotypes. Our results also highlight how it can reveal the metabolic impact of gene deletion even if the gene has no known function or growth phenotype.

Materials and Methods

• Bacteria strains and cultivation conditions E. coli BW 25113 and the derived strains used in this study (listed in Supplementary data 1)

were taken from the Keio collection (Baba et al. 2006). One hundred and eighty y-gene mutants were selected from the original glycerol stock of 3985 single-gene deletion mutants available in this collection (E. coli BW 25113 strains mutants; more details directly in paragraph 2.1 of the paper). The E. coli strain MG1655 was also used. All the selected strains were first cultivated overnight in LB medium (10 g/L tryptone, 5 g/L yeast extract and 10 g/L NaCl) with kanamycine (25 ug/ml) at 37°C and then stored in glycerol stocks.

To perform the experiments, the glycerol stocks of relevant strains were used to inoculate liquid LB medium in microplates. The LB cultures were used to inoculate precultures in minimal synthetic medium containing 17.4 g.L -1 Na2HPO4,12H20, 3.03 g.L -1 KH2PO4, 0.51 g.L -1 NaCl, 2.04 g.L -1 NH4Cl, 0.49 g.L -1 MgSO4, 4.38 mg.L -1 CaCl2, 15 mg.L -1 Na2EDTA 2H2O, 4.5 mg/L ZnSO4 7H2O, 0.3 mg.L -1 CoCl2 6H2O, 1 mg.L -1 MnCl2 4H2O, 1 mg.L -1 H3BO3, 0.4 mg.L -1

Na2MoO4 2H2O, 3 mg.L -1 FeSO4 7H2O, 0.3 mg.L -1 CuSO4 5H2O, 0.1 g.L -1 thiamine and 3 g.L - 1 glucose. For the 13 C-labeling experiments, unlabeled glucose was replaced by the same concentration of a mixture of 80% [1-13 C1]-D-glucose + 20% [U-13 C6]-D-glucose. To minimize sources of unlabeled carbon atoms from the first cultivation steps in subsequent experiments, the cells were inoculated at a starting OD between 0.08 and 0.12.

• Robotic platforms for culture, sampling and sample preparation

Two robotic platforms were used to parallelize the cell cultures, 13 C-labelling experiments, sampling of labeled metabolites, and sample preparation for NMR and MS analyses. The first system allowed 48 13 C-labelling experiments to be performed automatically in parallel in 15 ml bioreactors under controlled growth conditions, with automated collection of labelled samples (of biomass or culture medium) at defined culture times or optical densities.

The robot and its operation are described in detail by Heux et al. [22]. A second robotic workstation (Freedom EVO 200, Tecan) was designed and assembled to fully automate and parallelize the final preparation of labeled biological samples for the analysis of isotopic profiles by NMR or mass spectrometry. This device was used to handle the different containers used (NMR tubes, vials, multiwell-plates, etc.), to perform dilutions, add standards, take aliquots, and manage the samples.

The 13 C-labeling experiments were carried out in batches of 48 parallel cell cultures using the two robotic platforms described above. The input label was optimized for E. coli's metabolic network using IsoDesign (1.2.1) [START_REF] Moxley | Linking High-Resolution Metabolic Flux Phenotypes and Transcriptional Regulation in Yeast Modulated by the Global Regulator Gcn4p[END_REF], and consisted of a mixture of 80% 

• Isotopic profiling of proteinogenic amino-acids

The incorporation of 13 C-label into proteinogenic amino acids (listed in Supplementary data 6) was analyzed by liquid chromatography-mass spectrometry, using an Ultimate 3000 HPLC system (Dionex, CA, USA) coupled to an LTQ Orbitrap Velos mass spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) equipped with a heated electrospray ionization probe described in detail by Heuillet et al. 2018 [45]. Full scan HRMS analyses were performed in positive FTMS mode at a resolution of 60 000 (at 400 m/z), using the following source parameters: capillary temperature, 275 °C; source heater temperature, 250 °C; sheath gas flow rate, 45 a.u. (arbitrary unit); auxiliary gas flow rate, 20 a.u.; S-Lens RF level, 40 %; source voltage, 5 kV. Metabolites were identified by extracting the exact mass with a tolerance of 5 ppm. The raw MS isotopic profiles of proteinogenic amino acids were then quantified using Tracefinder (Thermo Fisher Scientific, Waltham, MA, USA). The isotopic profiles (Carbon Isotopologue Distributions) were obtained after correcting for natural isotopic abundances using IsoCor 1.2 [START_REF] Millard | Correcting MS Data in Isotope Labeling Experiments[END_REF][START_REF] Millard | IsoCor: Isotope Correction for High-Resolution MS Labeling Experiments[END_REF] (https://github.com/MetaSys-LISBP/IsoCor). The raw MS data are available from Metabolights (accession number MTBLS2188).

• NMR analysis of extracellular medium

Culture supernatants were analyzed by 1D-1 H NMR on a Bruker Avance III 800MHz spectrometer equipped with a 5 mm CQPI cryoprobe at 280 K. To precisely quantify the extracellular compounds, the 1D-1 H NMR data were recorded after a 30° presaturation pulse (zgpr30), with a relaxation delay of 7 s. NMR spectra were processed using Topspin 3.5pl6

(Bruker BioSpin, Rheinstetten, Germany). The raw NMR data are available from Metabolights (accession number MTBLS2188).

The rate of glucose consumption and the rates of acetate and lactate production were quantified by analyzing the 4-8 samples collected during the cell culture period. The 13 C labeling profiles of acetate and lactate, including positional information on label incorporation, were also measured for the flux calculations.

• Growth parameters

The growth parameters calculated from the experimental datasets for each culture were the growth rate, glucose uptake rate, acetate and lactate production rates, and biomass yield.

The growth rate was calculated from OD values measured during the culture period. The rates of glucose consumption and of acetate and lactate production were calculated from the exometabolome data. All calculations were performed using Physiofit (v0.9) [START_REF] Peiro | Chemical and Metabolic Controls on Dihydroxyacetone Metabolism Lead to Suboptimal Growth of Escherichia Coli[END_REF], a software designed to determine growth parameters by fitting time-course data. The software includes a batch calculation mode which allows calculations on large series of datasets, and which was used to calculate the growth parameters for all considered experimental conditions. The biomass yields were calculated using the conversion factor 0.378 gDW/ OD600nm unit.

Extracellular fluxes were determined from the rates of disappearance (or appearance) of substrates and products, in the culture supernatants, as measured by NMR.

• Flux calculation and visualization

Fluxes were calculated using the software influx_si 4.1 [START_REF] Sokol | Increasing Numerical Stability and Precision for Metabolic Flux Analysis in Isotope Labelling Experiments[END_REF] (https://metasys.insatoulouse.fr/software/influx/), including the mass balances and carbon atom transitions of the biochemical reaction network. The metabolic network contained the main pathways of E. coli's central metabolism: glycolysis (EMP), the pentose phosphate pathway (PPP), the Entner-Doudoroff (ED) pathway, the tricarboxylic acid cycle (TCA), and anaplerotic reactions, the glyoxylate shunt, and the reactions for amino acid biosynthesis [START_REF] Millard | Sampling of Intracellular Metabolites for Stationary and Non-Stationary 13C Metabolic Flux Analysis in Escherichia Coli[END_REF]. Intracellular fluxes were estimated from measurements of extracellular fluxes and from the 13 C-labelling patterns of metabolites using appropriate mathematical models of glucose metabolism in E. coli [START_REF] Millard | Sampling of Intracellular Metabolites for Stationary and Non-Stationary 13C Metabolic Flux Analysis in Escherichia Coli[END_REF].

Labeling data were collected from intracellular metabolites by IC-MS/MS and from metabolic end-products by 1D 1 H NMR, as detailed above. The fluxes were normalized to the rate of substrate uptake, which was arbitrarily set at 100.

Metabolic fluxes were calculated for each of the 198 experimental conditions considered in the study. For each culture condition, the information required for the flux calculation (i.e. metabolic network, isotopic data, etc.) was written in a specific FTBL file [START_REF] Wiechert | 13C Metabolic Flux Analysis[END_REF], which was then submitted to influx_si.

The FTBL model was converted by an influx_si module (ftbl2metxml.py) into Systems Biology Markup Language (SBML, in xml format), readable by the online application Metexplore (http://metexplore.toulouse.inra.fr). Metexplore was used to visualize flux maps for strains of interest [START_REF] Chazalviel | MetExploreViz: Web Component for Interactive Metabolic Network Visualization[END_REF].

• Sensitivity analysis

Confidence intervals for the calculated fluxes were determined using a Monte-Carlo approach in which 100 independent optimization runs were performed on datasets with noise added in proportion to standard measurement errors. The isotopic data and metabolic fluxes for each independent biological replicate are provided in the Supplemental data (dataset S1).

• Statistical analysis of flux datasets

Flux maps were compared by PCA using the collaborative portal Workflow for Metabolomics (W4M) [START_REF] Giacomoni | Workflow4Metabolomics: A Collaborative Research Infrastructure for Computational Metabolomics[END_REF] . Results were visualized as boxplots and figures were generated using the software R. Une gamme de radiofréquence est appliquée au piège afin de balayer toute la gamme de masse étudiée. No REFS [START_REF] Huang | X13CMS: global tracking of isotopic labels in untargeted metabolomics[END_REF][START_REF] Capellades | geoRge: A Computational Tool To Detect the Presence of Stable Isotope Labeling in LC/MS-Based Untargeted Metabolomics[END_REF] [ Bueschl, C. et al, 2017] [ Chokkathukalam, A. et al, 2013] [ Kiefer, P. et al, 2015[START_REF] Hoffmann | Nontargeted Identification of Tracer Incorporation in High-Resolution Mass Spectrometry[END_REF][START_REF] Hiller | Nontargeted elucidation of metabolic pathways using stable-isotope tracers and mass spectrometry[END_REF] [ [START_REF] Weindl | Bridging the gap between non-targeted stable isotope labeling and metabolic flux analysis[END_REF] * Label comparison between two biological condition (called relative quantification in some software)
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  des biotechnologies. Toutefois, elles restent toutes deux encore très difficiles à mettre en oeuvre car elles reposent chacune sur la combinaison d'approches expérimentales et analytiques complexes et d'outils de traitement et d'interprétation des données qui le sont tout autant. Ce constat est particulièrement vrai pour la fluxomique, qui repose sur des expériences de traçage isotopique associées à la mesure d'incorporation de l'isotope dans les métabolites par spectrométrie de masse ou par RMN et au développement de modèles mathématiques sophistiqués. Dans ce contexte, l'objectif général de cette thèse est d'étendre la capacité actuelle d'investigation des sytèmes métaboliques par le développement de méthodes de fluxomique originales. Les travaux développés concernent en premier lieu l'acquisition et le traitement non ciblé de données isotopiques de façon à étendre la couverture du réseau métabolique accessible à l'analyse des flux, puis le développement d'une approche originale de fluxomique, dite fluxomique ab initio, qui a pour objectif final la reconstruction de réseaux métaboliques sur la base de données de marquage isotopique. Enfin, j'ai également participé à un travail portant sur le développement de la fluxomique haut-débit. Ce travail a été réalisé au sein du laboratoire RESTORE (Université de Toulouse, Inserm U1031, CNRS 5070, UPS, EFS) et du plateau MetaToul-FluxoMet (Toulouse Biotechnology Institute, Université de Toulouse -CNRS 5504 -INRA 792 -INSA Toulouse), en collaboration avec l'équipe MetaSys (Toulouse Biotechnology Institute), l'UMR 1331 Toxalim (INRAE/ENVT/INPT-EI Purpan/UPS) à Toulouse et l'ETH Zürich (équipe J. Vorholt) en Suisse.
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 11 Figure 1.1 : Cascade des sciences "-omiques". Figure adaptée de Garcia-sevillano et al, 2014. Pour en venir au cas particulier du métabolisme, on définira ici un système métabolique comme l'ensemble de tous les acteurs du métabolisme (métabolites, enzymes, coenzymes, effecteurs, régulateurs, etc) et l'ensemble des interactions entre eux qui déterminent le comportement métabolique d'une cellule, d'un tissu ou d'un organisme. Le système métabolique est organisé en réseau de réactions qui représente l'ensemble des interactions possibles entre les éléments du système. De manière globale, le réseau peut intégrer tout type d'interactions entre les acteurs du métabolisme, par exemple les interactions physiques (interactions protéines-protéines, protéines-ligands, etc), les interactions régulatrices (interactions enzymes-effecteurs, etc), etc. Cependant, l'objectif premier de l'étude des systèmes métaboliques est de comprendre dans toute sa complexité l'ensemble des processus biochimiques sur lequels reposent toutes les fonctions énergétiques et synthétiques nécessaires à l'organisme. Dans ce contexte, le réseau métabolique doit représenter avant tout l'ensemble des réactions métaboliques de l'organisme et toutes leurs interactions potentielles. La reconstruction du réseau métabolique, c'est-à-dire l'établissement de la carte métabolique la plus complète possible, et l'analyse aussi bien expérimentale qu'in silico de ce réseau, sont au coeur de la biologie des systèmes métaboliques. Les objectifs sont d'identifier et de comprendre la nature du réseau, son organisation et ses propriétés fonctionnelles (incluant les capacités d'adaptation) dans le contexte d'études fondamentales ou appliquées.
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 12 Figure 1.2 : Distribution naturelle des isotopes stables : abondance relative et leur masses en Dalton
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 13 Figure 1.3 : Formes isotopiques du carbone pour une molécule contenant quatre atomes de carbone.

  Il existe un format conventionnel d'écriture pour une espèce isotopique donnée d'une molécule, dans lequel les espèces isotopiques et leur positions sont fournies entre crochets, par exemple [1-13 C1]-glucose pour spécifier qu'une molécule de glucose contient en position 1 un atome de 13 C. Le symbole U est utilisé si tous les atomes d'un élément sont substitués isotopiquement (exemple : [U-13 C6]-glucose). Enfin, cette notation est aussi utilisée lorsque plusieurs éléments sont substitués isotopiquement, par exemple [1-13 C1, 2-15 N1]-alanine pour une molécule d'alanine marquée au carbone-13 en position 1 et à l'azote-15 en position 2. L'écriture ci-dessus n'est valide que pour une seule espèce isotopique donnée. Une notation alphanumérique est également utilisée, dans laquelle on écrit le contenu de chaque position carbonée par 0 ( 12 C) ou 1 ( 13 C) la substitution isotopique. Un symbole # est mis au début pour spécifier cette notation isotopique. Par exemple le [1-13 C1]-glucose s'écrit glucose#100000 suivant cette notation. Celle-ci permet de regrouper les différentes espèces isotopiques par sous-familles, grâce au symbole X qui signifie 12 C ou 13 C. Par exemple glucose#X00000 pour les espèces de glucose non marquées sur les positions 2 à 6, ou encore glucose#1XXXXX pour regrouper toutes les espèces de glucose marquées en 1 quelque soit leur marquage sur les autres positions carbonées. Cette notation est très utilisée en RMN (données positionnelles) mais aussi dans les outils de calcul des flux car elle est adaptée à un traitement informatique des données.
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 14 Figure 1.4 : Stratégies d'utilisation des isotopes stables pour l'étude du métabolisme.
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  'ensemble des spécificités énoncées ci-dessus rend l'analyse métabolomique délicate. De plus, le contenu en métabolites dépend également très fortement de l'organisme et des cellules ou tissus étudiés (cellules ou tissus mammifères, plantes, bactéries, levures, etc) et il est nécessaire de développer des stratégies expérimentales spécifiques à chaque type d'organisme -ou d'échantillonenvisagé. Un très grand nombre de facteurs peuvent influencer cet état métabolique du système. Parmi ceux-ci figurent des facteurs intrinsèques (tels que l'âge, le sexe, … si on considère l'Homme) et des facteurs extrinsèques (alimentation, exposition à des stress, …). Comme l'état métabolique global va dépendre de l'ensemble de ces facteurs, la métabolomique est un bon indicateur des différentes influences (et perturbations) que subit l'organisme. Il est indispensable de planifier scrupuleusement le plan expérimental en amont de l'analyse métabolomique pour adapter l'ensemble des approches et techniques analytiques en fonction de la question biologique, de l'organisme et des composés d'intérêt. • Complexité du fluxome Le fluxome représente l'ensemble des flux métaboliques dans une cellule, un tissu ou un organisme. Contrairement à la mesure du métabolome, qui représente un instantané dans le temps du contenu en métabolites d'un organisme, l'analyse du fluxome permet d'accéder à la dynamique du système (l'activité métabolique) en mesurant les vitesses réelles des réactions métaboliques dans le système biologique. Elle représente le résultat final de toutes les interactions métaboliques et régulatrices qui déterminent le comportement du métabolisme à l'échelle d'une cellule, d'un tissu ou d'un organisme. La méthode la plus précise de mesure des flux métaboliques est basée sur la combinaison d'expériences de traçage isotopique et d'outils mathématiques permettant de calculer les vitesses des réactions à partir du marquage isotopique des métabolites. La fluxomique est ainsi basée sur des expériences de traçage isotopique. En terme analytique, l'ajout d'une dimension isotopique apporte une difficulté supplémentaire pour l'acquisition et la mesure des données qui seront exploitées pour analyser le fluxome. En effet, la présence d'isotopes va impacter les spectres recueillis en termes de nombre et d'intensité des signaux analytiques. Il est donc nécessaire de disposer des techniques analytiques performantes et sensibles ainsi que d'outils de calculs et de traitement de données puissants et robustes. Ces aspects seront détaillés plus loin dans l'introduction. De manière globale, les approches intégratives de l'étude des "omiques" sont rendues compliquées par l'annotation fonctionnelle insuffisante et l'influence des facteurs environnementaux. De plus en plus, les approches dites multi-omiques sont utilisées dans divers domaines d'application afin d'obtenir des informations complémentaires sur le fonctionnement d'un organisme et son interaction avec son environnement. Par exemple, la combinaison des approches métabolomique et fluxomique va permettre de fournir des données complémentaires
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 15 Figure 1.5 : Spectre du CO2 dans l'air obtenu à l'aide du spectromètre infrarouge isotopique Delta Ray. Illustration tirée de Töchterle et al, 2017.

  N par exemple), la quantification du marquage isotopique des molécules et l'analyse de flux[Lane and Fane, 2017]. La RMN offre la spécificité d'obtenir directement une information sur la position du marquage, puisque chaque atome de carbone d'une molécule donne un signal spécifique. Deux types d'informations isotopiques complémentaires peuvent ainsi être obtenues par une analyse RMN : les isotopomères (à noter que le terme est utilisé de manière abusive ici par rapport à sa définition IUPAC, pour décrire différentes combinaisons de marquage sur tout ou partie du squelette carboné) et l'enrichissement spécifique, qui est le pourcentage de13 C incorporé dans une position carbonée particulière de la molécule (Figure1.7). Hormis cet aspect, les principaux avantages de la RMN reposent sur le fait qu'il s'agit d'une technique non destructive, quantitative[START_REF] Markley | The future of NMR-based metabolomics[END_REF] et robuste[START_REF] Bingol | NMR/MS Translator for the Enhanced Simultaneous Analysis of Metabolomics Mixtures by NMR Spectroscopy and Mass Spectrometry: Application to Human Urine[END_REF] nécessitant peu de préparation d'échantillon. Son caractère non destructif est à la base de son exploitation pour des études in vivo ou in situ du métabolisme sur des cellules, des tissus ou des organismes vivants (y compris l'Homme) au moment de l'analyse.Même si la RMN offre beaucoup d'avantages, sa faible sensibilité en comparaison à la spectrométrie de masse reste une de ses principales limites pour les approches de fluxomique[Dunn et al, 2013 ;[START_REF] Giraudeau | NMR-based metabolomics and fluxomics: developments and future prospects[END_REF]. Par ce fait, elle est souvent restreinte à l'analyse de composés majoritaires s'accumulant en quantité suffisante pour obtenir des signaux exploitables. Elle reste ainsi principalement utilisée pour mesurer la consommation des nutriments et la production de composés terminaux (ex : produits métaboliques tels que lactate, acétate, etc) et pour la mesure des flux extracellulaires. Néanmoins, les avancées technologiques (cryosondes, microsondes) ont permis d'augmenter la sensibilité de l'analyse RMN. Le développement de techniques 2D dans lesquelles les signaux sont éclatés dans deux dimensions spectrales ont également permis de simplifier l'interprétation de spectres d'échantillons complexes.
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 173513 Figure 1.7 : Informations isotopiques obtenues par analyse RMN
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 18 Figure 1.8 : Principe schématisé du fonctionnement d'un spectromètre de masse.

Figure 1 . 9 :

 19 Figure 1.9 : Principe de la source électrospray.
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 110 Figure 1.10 : Principe de fonctionnement de la source DESI.
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 113 Figure 1.13 : Impact de la contribution des isotopes présents à l'abondance naturelle sur les spectres de masse haute et basse résolution.
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  'addition de standards uniformément marqués présente plusieurs avantages pour déterminer la composition élémentaire des métabolites concernés. Ils permettent par exemple de déterminer le nombre d'atomes de carbone dans le métabolite. Le spectre du standard marqué présente un pic de masse, l'isotopologue Mn, décalé de la masse du M0 d'une valeur de n*1.00335 Da (Figure 1.15).
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 115 Figure 1.15 : Principe de détermination du nombre d'atomes de carbone dans une molécule Une autre stratégie consiste à mixer le standard IROA avec l'échantillon et à déterminer le nombre de carbone de la molécule en se basant sur deux paramètres : la distance entre les deux pics de base C12 et C13 et la hauteur relative du M+1 et M-1 respectivement. La stratégie
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  'utilisation du standard IDMS permet également de compenser les variations dues à la préparation de l'échantillon et aux effets de matrice. Les phases d'extraction, d'évaporation et de lyophilisation nécessaires à la préparation de l'échantillon avant l'analyse en MS peuvent favoriser la dégradation ou la conversion de certains métabolites. L'ajout du standard interne IDMS au moment de l'extraction assure que ces variations soient subies de la même manière pour les composés marqués et non marqués.
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 117 Figure 1.17 : Quantification des métabolites par la méthode IDMS (Isotopic Dilution Mass Spectrometry)

Figure 1 . 18 :

 118 Figure 1.18 : Principe général des approches de traçage isotopique pour identifier et quantifier les activités des voies métaboliques dans un organisme.

Figure 1 . 19 :

 119 Figure 1.19 : Protocole des expériences de marquage isotopique C13 par spectrométrie de masse. Les astérisques (*) repèrent les étapes différant entre les approches isotopiques ciblées et non-ciblées.

  ont été spécifiquement développés pour optimiser le traceur en fonction de la question biologique à traiter, notamment dans le cadre d'analyses de flux métaboliques. La combinaison de plusieurs marquage peut également augmenter le nombre d'information obtenu et augmenter la précision sur la mesure des flux métaboliques. La publication de Crown et al. expose les différents marquages possibles du glucose et leur impact sur la mesure des flux chez E.coli pour l'ensemble des voies du métabolisme central[START_REF] Crown | Optimal tracers for parallel labeling experiments and 13C metabolic flux analysis: A new precision and synergy scoring system[END_REF].• État métaboliqueLe dernier point à considérer est l'état métabolique dans lequel se trouvent les cellules au moment de l'échantillonnage. On parle d'état stationnaire métabolique lorsque la concentration des métabolites au cours du temps ne varie pas au sein de la cellule. A contrario, un état métabolique dynamique signifie que la concentration d'un métabolite donné varie au cours du temps. Il existe des conditions de culture pour lesquelles l'état stationnaire métabolique ne sera jamais atteint. Dans ce cas là, il est possible mais difficile de réaliser des expériences de fluxomique. Les cellules peuvent croître en suspension ou adhérer. Si l'on prend l'exemple de cellules en suspension, il existe trois principaux modes de cultures(Figure 1.20).Les cultures en batch consistent à alimenter les cellules avec une quantité définie de source de carbone au départ et les laisser se multiplier jusqu'à consommation complète de la source de carbone. Dans ce type d'expérience, l'état stationnaire métabolique est atteint uniquement pendant la phase exponentielle de croissance. Le fedbatch consiste à donner le même volume de source de carbone au cours du temps alors que le nombre de cellules se multiplient au fur et à mesure. Dans ce type de culture, l'état stationnaire métabolique n'est jamais atteint. Enfin les cultures continues consistent à amener en continu une source de carbone et à l'enlever à la même vitesse du milieu et des cellules. Dans ce cas-là, l'état stationnaire métabolique est atteint dès que le système est stabilisé.

Figure 1 . 20 :

 120 Figure 1.20 : Exemples de systèmes de culture pour les cellules en suspension.

L

  'analyse métabolomique ciblée est l'analyse quantitative d'un groupe particulier de métabolites, correspondant soit à une famille physico-chimique, soit à différents métabolites impliqués dans une voie métabolique particulière. Elle nécessite de connaître en amont les composés d'intérêts, définis sur la base d'une question biologique précise et d'une base de données disponible pour l'identification des composés ciblés. Les approches ciblées sont plus sensibles de par leur sélectivité car la connaissance des composés recherchés permet d'adapter les procédures expérimentales (extraction, méthode analytique) en fonction des propriétés des métabolites recherchés.Les progrès des instruments LC/MS et des outils de traitement de données ont permis de grandes avancées dans l'analyse métabolomique ciblée. Elle permet désormais la mesure précise de dizaines ou de centaines de métabolites dans des échantillons biologiques complexes.Les spectromètres de masse hybrides basse résolution type QqQ et QTrap sont largement utilisés dans les approches ciblées. Ces deux instruments s'appuient sur le mode de détection MRM (Multiple Reaction Monitoring) qui est la méthode la plus sensible pour la quantification de métabolites dans un mélange complexe[START_REF] Sherwood | Rapid Optimization of MRM-MS Instrument Parameters by Subtle Alteration of Precursor and Product m/z Targets[END_REF]. Ce mode est adapté à des spectromètres de masse à triple quadripôle (Figure1.21). Dans ce mode, l'ion d'intérêt est d'abord sélectionné dans le premier analyseur Q1. Il est ensuite fragmenté dans le second analyseur Q2 pour produire une série d'ions fils. Un (ou plusieurs) de ces ions fils peut être sectionné dans le dernier analyseur Q3 à des fins de quantification. Ce mode d'acquisition présente une double sélectivité. En ignorant tous les autres ions qui entre dans le spectromètre de masse, l'expérience gagne en sensibilité. Il est particulièrement adapté pour la mesure de biomarqueurs, en santé notamment pour la compréhension des mécanismes ou des reprogrammations métaboliques liées à certaines pathologies. Les spectromètres de masse haute résolution sont également utilisés pour la quantification métabolique ciblée[START_REF] Doerfler | mzGroupAnalyzer--predicting pathways and novel chemical structures from untargeted highthroughput metabolomics data[END_REF] Dunn et al, 2013 ;[START_REF] Zhou | Strategies for large-scale targeted metabolomics quantification by liquid chromatography-mass spectrometry[END_REF].Dans le cadre d'analyses ciblées, les données sont prédéfinies (métabolites connus et transitions MRM). Le profilage isotopique ciblé s'avère plus complexe. Un fragment marqué possède un parent par isotopologue. Dans le cas où les fragments contiennent des atomes de carbone, il est donc nécessaire de multiplier le nombre de transitions pour obtenir l'ensemble du massif isotopique. Les transitions dépendent de la molécule et du (des) fragment(s) fils auxquels on a accès.

Figure 1 . 21 :

 121 Figure 1.21 : Illustration du mode de fragmentation MRM. Dans le cadre d'analyses de profilage isotopique, le nombre de fragments avec des atomes de C augmente le nombre de transitions.

Figure 1 . 22 :

 122 Figure 1.22 : Ordre de grandeur des données générées en LC/MS par des approches de profilage isotopique ciblées, de métabolomique non-ciblées, de profilage isotopique non-ciblées et informations apportées par ces différentes approches pour l'étude du métabolisme. Le traitement des données HRMS issues d'expériences de marquage se décompose en plusieurs étapes pour extraire et filtrer les signaux de masse, générer les données isotopiques (mesure des CID et de l'enrichissement isotopique) et exploiter ces informations selon l'objet de l'étude : recherche de biomarqueurs, identification de nouvelles voies métaboliques ou calcul de flux. Les approches ciblées et non-ciblées diffèrent principalement par la nature et la quantité d'informations générées ainsi que dans le traitement de données à appliquer pour extraire l'information (Figure 1.23).

Figure 1 . 23 :

 123 Figure 1.23 : Comparaison des étapes de traitement de données HRMS issues d'expériences de marquage via des analyses ciblées (à gauche) et non-ciblées (à droite). Les encadrés en pointillés représentent les étapes optionnelles et les encadrés rouges représentent les étapes spécifiques du traitement non-ciblé.

Figure 1 .

 1 Figure 1.24 : A. Comparaison de spectres de masse d'un composé (2/3PG) non marqué et marqué au C13. B. Etape de groupement isotopique à partir d'un spectre de masse obtenu par des analyses non -ciblées sur du matériel marqué. Les données ont été extraites à l'aide du logiciel emzed[Kiefer et al, 2013].

  d'une molécule donnée est dérivé en tout ou partie d'un nutriment particulier, donc si ce nutrilent contribue ou non à la biosynthèse du composé. Pour cette analyse, l'utilisation d'un traceur isotopique totalement marqué (marquage uniforme) est recommandée. Un substrat marqué uniquement dans une position (marquage spécifique) peut perdre son carbone-13 lors d'une réaction de décarboxylation et la contribution du substrat aux voies métaboliques suivante ne peut pas être évaluée. Des stratégies combinant des expériences parallèles avec des substrats marqués spécifiquement pour différentes positions du nutriment peuvent cependant etre envisagées pour déterminer le devenir de chaque atome de carbone de ce dernier[Crown et al, 2015].La Figure1.25A illustre le cas où deux sources de carbone contribuent à la formation d'un métabolite spécifique. La contribution relative de chacune de ces sources peut être déterminée par mesure directe de l'enrichissement isotopique obtenu après marquage de chacun des substrats. À l'état stationnaire isotopique, la somme des enrichissements obtenus à partir des deux substrats marqués doit être égale à 100% (Figure1.25B). Si cette valeur n'est pas atteinte, cela peut signifier que d'autres sources contribuent à la synthèse du métabolite (Figure1.25C), et donc que d'autres voies que celles déjà connues sont associées à sa synthèse. Cette analyse ne nécessite pas de connaître précisement le chemin emprunté par le substrat, mais permet de mesurer la fraction du métabolite formée à partir d'un nutriment donné à partir de la quantité de13 C incorporé.

Figure 1 . 25 :

 125 Figure 1.25 : Intérêt du traçage isotopique pour la mesure de la contribution de plusieurs sources de carbone à la formation d'un métabolite spécifique.

  titre d'illustration, le devenir des atomes de carbone du glucose dans les 3 grandes voies glycolytiques est différent. En choisissant un marquage pertinent, et suivant la technique analytique utilisée, les trois voies peuvent être parfaitement discriminées à partir du profil isootpique du pyruvate ou de ses dérivés (Figure 1.26).

Figure 1 . 26 :

 126 Figure 1.26 : Identification des 3 principales voies glycolytiques par traçage isotopique. Ces trois voies peuvent être discriminées en mesurant par MS ou RMN le profil isotopique du pyruvate ou de ses dérivés tels que l'alanine, après administration de [1-13 C]-glucose. EDP : voie d'Entner-Doudoroff, PPP : voie des pentoses-phosphates. (d'après Wittmann & Portais, 2013).

Figure 1 .

 1 Figure 1.27 : Intérêt du principe de dilution isotopique pour mesurer des partitions de flux. Les fractions isotopiques des métabolites provenant de deux voies convergentes permettent d'estimer les flux relatifs de chacune des voies. Le marquage est perdu dans la voie 1 mais pas dans la voie 2. Les molécules du produit P formées par la voie 1 diluent le marquage des molécules de P formées par la voie 2. Le taux de dilution est directement proportionnel à la contribution respective des deux voies à la formation du produit. Dans le cas présenté, 30% des molécules de P sont formées par la voie 1 et 70% par la voie 2.
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 128 Figure 1.28 : Exemples d'applications de la partition de flux. A. Partition de flux entre la voie de la glycolyse et la voie oxydative des pentoses phosphates. B. Partition de la voie oxydative et réductive de la glutamine

Figure 1 . 30 :

 130 Figure 1.30 : Processus de reconstruction de réseau métabolique à l'échelle du génome

  Sur cette base d'analyses du métabolome par HRMS, il existe plusieurs approches de reconstruction de réseaux. On distingue principalement les réseaux basés sur les différences de masse, les réseau d'adduits, les réseaux de corrélation et les réseaux de similarités spectrales (Figure1.32)[Amara et al, 2022]. Chacun de ces réseaux tend à établir un lien potentiel entre des métabolites pouvant être respectivement substrats et produits d'une réaction.
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 132 Figure 1.32 : Méthodes de reconstruction expérimentales. Illustration tirée de Amara et al, 2022.

Figure 1 .

 1 Figure 1.33 : Schématisation du concept des réseaux basés sur les différences de masse. Illustration tirée de Traquete et al, 2022
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 64 permet d'importer des données et de les cartographier, et a pour objectif la visualisation de données omiques sur les réactions et les métabolites. Plus récemment, Fluxer [Hari and Lobo, 2020] a été conçu pour calculer et visualiser les réseaux de flux métaboliques à l'échelle du génome. Globalement, la visualisation des réseaux métaboliques accélère la compréhension et l'analyse scientifiques et permet d'effectuer de nombreuses opérations d'analyse basées sur les réseaux, telles que la comparaison des réseaux d'un ou de plusieurs organismes et l'interprétation de plusieurs ensembles de données omiques. Analyse topologique des réseaux métaboliques L'analyse de la topologie des réseaux métaboliques a pour objet l'analyse des connexions entre les différents éléments du réseau. L'organisation topologique d'un réseau métabolique peut être étudiée à différentes échelles : à l'échelle des métabolites, des réactions, des voies métaboliques ou du réseau métabolique dans son ensemble. Cette dernière échelle est la plus représentative du fonctionnement du métabolisme d'un organisme car elle représente l'ensemble du potentiel métabolique de l'organisme étudié. L'une des principales motivations pour étudier la topologie des réseaux est que les fonctions métaboliques, et leurs dysfonctionnements éventuels, sont déterminés en partie par la structure du réseau [Wunderlich & Mirny, 2006].6.4.1. Les graphes métaboliquesUne première manière d'étudier la topologie des réseaux métaboliques (et d'en simplifier la représentation) consiste à les modéliser sous forme de graphes. Un graphe est un objet mathématique qui décrit les connexions entre différents éléments. Il peut être représenté comme un ensemble de noeuds connectés par des liens. Les noeuds représentent les éléments du système, et les liens représentent la relation entre les éléments considérés du réseau et peuvent être unidirectionnels ou bidirectionnels. La représentation du réseau métabolique sous forme de graphes nécessite d'identifier en amont les entités biologiques associées aux noeuds et le sens des connexions existants entre eux. Ce choix dépend de la question que l'on souhaite aborder à l'aide de ce modèle de graphe. On peut trouver des graphes de réactions ou d'enzymes mais le plus souvent, les noeuds sont utilisés pour représenter les métabolites et sont reliés entre eux par les réactions qui convertissent l'un en l'autre[START_REF] Lacroix | An introduction to metabolic networks and their structural analysis[END_REF]. On distingue les graphes dits bipartes pour lesquels il existe plusieurs types de noeuds (métabolites, réactions) et les hypergraphes pour lesquels les liens relient l'ensemble des substrats et l'ensemble des produits(Figure 1.34).
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 134 Figure 1.34 : Les principaux types de graphes représentant les réseaux métaboliques. a.Graphe biparte : les noeuds représentent des métabolites (cercle) et des réactions (carré). Un métabolite ne peut être relié qu'à des réactions et inversement. b.Hypergraphes : les noeuds représentent des métabolites et les réactions sont représentées par des arêtes.Une arête peut relier plus de deux noeuds. On distingue les hypergraphes unidirectionnels qui ne prennent pas en compte le sens des réactions et les graphes directionnels. Illustration adaptéede Lacroix et al, 2008 
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 1351652653 Figure 1.35 : Exemple de décomposition d'un réseau en modes élémentaires de flux. Du fait de sa topologie, le réseau de 6 réactions montré dans le carré supérieur gauche peut être décomposé en 7 modes élémentaires de flux représentés dans les différents carrés. Illustration tiréede Rose et al, 2018. 
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 136656 Figure 1.36 : Approches de modélisation métabolique. Illustration adaptée de Clark et al, 2020. Abbréviations : A : concentration du métabolite A ; Km : constante de liaison de Michaelis ; vmax1 : vitesse maximale de la réaction 1
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 137 Figure1.37 : Exemples de motifs de réseau métabolique non accessibles par une analyse MFA. Figure tiréede Wiechert et al, 2001. 
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 138 Figure 1.38 : Illustration de la modélisation basée sur les contraintes . Toutefois, si elle permet de restreindre l'espace de solutions, cette addition de contraintes n'est pas suffisante pour résoudre le système. La stratégie consiste ensuite à définir un objectif biologiquement pertinent et trouver dans l'espace de solutions restreint une distribution de flux optimale pour cet objectif (Figure 1.38). Mathématiquement, l'objectif est représenté par une "fonction objective" qui peut être simple (un critère d'optimisation) ou complexe (plusieurs critères).La FBA peut être par exemple être utilisée pour simuler la croissance d'un organisme sur différents milieux ou optimiser la production d'un composé particulier. L'application la plus utilisée est l'optimisation de la production de biomasse (BM)[START_REF] Orth | What is flux balance analysis?[END_REF]. Elle consiste à résoudre le système d'équations linéaires suivant : Maximize νBM S.ν = 0 ai ≤ νi ≤ bi

  traçage isotopique et d'équations décrivant le devenir de l'isotope dans le métabolisme. Ces modèles sont construits de façon analogue aux modèles stoichiométriques. Ils reposent sur la conservation des espèces isotopiques à travers les réactions de formation et d'utilisation d'un métabolite donné. Ils peuvent être développés de manière indépendante de toute autre donnée (e.g. approche MetaFor,[START_REF] Szyperski | Bioreaction network topology and metabolic flux ratio analysis by biosynthetic fractional 13C labeling and two-dimensional NMR spectroscopy[END_REF]) donnant accès à des distributions relatives de flux. Ils peuvent aussi être combinés à la modélisation stoechiometrique et dans ce cas-là ils permettent non seulement d'obtenir des valeurs absolues de flux mais aussi d'améliorer la précision sur leur mesure. Ces approches peuvent se décliner à l'état stationnaire, mais aussi en conditions (semi-) dynamiques. Comme elles sont au coeur du travail de thèse, elles seront présentées plus en détail dans la partie 7 de cette introduction.

7 .

 7 Fluxomique par marquage isotopique L'analyse des flux métaboliques par marquage isotopique 13 C ( 13 C-MFA) permet la quantification des flux à partir de données issues d'expériences de marquage isotopique. Le principe général est présenté sur la figure 1.39. Il inclut une phase expérimentale permettant de fournir des données d'incorporation isotopique dans les métabolites et une phase de calcul qui permet d'extraire des valeurs de flux à partir des données expérimentales de marquage. La phase expérimentale est une expérience de traçage isotopique telle que décrite au début de ce chapitre, pour laquelle toutes les considérations liées au choix du traceur vues précédemment restent valides. La phase de calcul repose sur des modèles isotopiques, c'est à dire des modèles contenant un système d'équations décrivant le devenir de l'isotope au sein du réseau. Les modèles les plus complets associent modélisation stoechiométrique et modélisation isotopique du réseau métabolique étudié.

Figure 1 . 39 :

 139 Figure 1.39 : Protocole des approches de fluxomique. Les encadrés en bleu correspondent aux étapes communes de la fluxomique avec les approches de profilage isotopique.

Figure 1 . 40 :

 140 Figure 1.40 : Principe général de l'analyse 13 C-MFA. a) Représentation d'un réseau métabolique simple qui consomme le substrat S pour former le produit P en 4 étapes. b) Matrice stoechiométrique S calculée sur la base de la topologie du réseau. À l'état stationnaire métabolique, S.v=dc/dt=0, où v est le vecteur de flux. c) Les flux extracellulaires peuvent être déterminés à partir de la mesure des concentrations des métabolites extracellulaires au cours du temps. d) Équations supplémentaires obtenues à partir du bilan de masse des isotopes pour fixer les degrés de liberté F restants.

Figure 1 . 41 :

 141 Figure 1.41 : Carte de flux. Exemple d'une carte de flux sur une souche E. coli à partir de mesures GC-MS. Les flux (fit ± sd) ont été normalisés à un taux d'absorption du glucose de 100. Illustration tirée de Long and Antoniewicz, 2019.

Figure 1 . 42 :

 142 Figure 1.42 : Comparaison des différentes approches d'analyse des flux par marquage isotopique. [M] : concentration métabolique, [13C] : enrichissement isotopique, F : Flux métabolique. Les zones en rose correspondent aux états physiologiques et de marquage utilisés dans les expériences et les simulations.

7. 2 . 4 .

 24 Approches parallèles : COMPLETE-MFAL'analyse des flux métaboliques a connu récemment une avancée importante : l'utilisation d'expériences de marquage en parallèle combinées à une intégration rigoureuse des données afin d'estimer avec une grande précision les flux métaboliques dans des systèmes complexes. Cette stratégie d'analyse est appelée COMPLETE-MFA (« complementary parallel labeling experiments technique for metabolic flux analysis »)[Leighty and Antoniewicz, 2013].La sélection optimale du traceur est désormais bien reconnue comme une étape importante de l'analyse des flux[START_REF] Antoniewicz | 13C metabolic flux analysis: optimal design of isotopic labeling experiments[END_REF]. Il est toutefois devenu de plus en plus clair qu'il n'existe pas de traceur unique optimal qui permette de déterminer tous les flux d'un modèle métabolique avec une grande précision[Leighty and Antoniewicz, 2013]. Les expériences de marquage en parallèle offrent une solution à ce problème et nécessitent peu d'augmentation de l'effort expérimental, analytique et informatique. Dans ce type d'approche, plusieurs traceurs isotopiques sont utilisés en parallèle. Les données isotopiques générées via les différentes expériences, sont analysées en ajustant simultanément les mesures à un modèle de flux unique. Cette approche permet d'adapter les traceurs individuels à des parties spécifiques du modèle de réseau, de sorte que tous les flux d'intérêt peuvent être estimés avec une grande précision.Les stratégies de marquage peuvent être différentes selon le modèle biologique étudié.Par exemple des traceurs isotopiques possédant un marquage positionnel différent seront utilisés pour les organismes simples cultivés sur une source de carbone unique. Pour les organismes complexes (cellules mammifères), deux substrats différents pourront être utilisés, tels que le glucose et la glutamine(Figure 1.43). Cette approche a été utilisée via l'utilisation de deux traceurs[1,2-13 C]glucose et de la [U-13 C]glutamine pour déterminer les flux métaboliques dans les cellules CHO[START_REF] Ahn | Parallel labeling experiments with[END_REF]. Un autre avantage de cette approche est que le temps de marquage peut être réduit de manière significative en introduisant plusieurs points d'entrée des isotopes dans le métabolisme.
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 143725 Figure 1.43 : Stratégies de marquage en parallèle selon l'organisme considéré pour une analyse COMPLETE-MFA. Illustration tiréede Antoniewicz, 2015. 
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 23 Le deuxième objectif consiste au développement d'une approche de fluxomique dite « data-driven ». Elle est basée sur des stratégies d'analyses non-ciblées du marquage isotopique en dynamique par couplage LC-HRMS. Dans ce cadre, des outils informatiques ont été développés pour valider l'approche dans un premier temps à l'échelle de sous-réseaux métaboliques. Pour finir, une approche de fluxomique à haut-débit a été développée. Elle permet l'optimisation et l'automatisation de l'ensemble du processus de fluxomique à hau-débit et l'intégration d'outils pertinentes. Elle a fait l'objet d'une publication pour étudier le fluxotype de 180 souches d'E. coli. Le fluxotype réfère à la distribution particulière de flux métaboliques mesurés pour une souche donnée dans des conditions physiologiques données.

  were used: BW25113 wild type, and BW25113 ∆zwf. Both strains were first cultured in LB medium (10 g/L tryptone, 5 g/L yeast extract and 10 g/L NaCl) with kanamycine (25 ug/ml) at 37°C overnight and then stored in glycerol stock. The strains were then inoculated from a glycerol stock and first cultured in 48-well microplates in liquid LB medium. The LB cultures were used to inoculate preculture cells in 48-well microplates in minimal synthetic medium containing 17.4 g/L Na2HPO4,12H20, 3.03 g/L of KH2PO4, 0.51 g/L NaCl, 2.04 g/L NH4Cl, 0.49 g/L MgSO4, 4.38 mg/L CaCl2, 15 mg/L Na2EDTA 2H2O, 4.5 mg/L ZnSO4 7H2O, 0.3 mg/L CoCl2 17.6H2O, 1 mg/L MnCl2 4H2O, 1 mg/L of H3BO3, 0.4 mg/L Na2MoO4 2H2O, 3 mg/L FeSO4 7H2O, 0.3 mg/L CuSO4 5H2O, 0.1 g/L thiamine and 3 g/L glucose. The M9 precultures were used to inoculate cells grown in minimal medium containing 3.48 g/L Na2HPO4,12H20, 0.606 g/L KH2PO4, 0.51 g/L NaCl, 2.04 g/L NH4Cl, 0.098 g/L MgSO4, 4.38 mg/L CaCl2, 15 mg/L Na2EDTA 2H2O, 4.5 mg/L ZnSO4 7H2O, 0.3 mg/L CoCl2 17. 6H2O, 1 mg/L MnCl2 4H2O, 1 mg/L H3BO3, 0.4 mg/L Na2MoO4 2H2O, 3 mg/L FeSO4 7H2O, 0.3 mg/L CuSO4 5H2O, 0.1 g/L thiamine and 3 g/L glucose. These cultures were performed in 48 15 ml bioreactors under controlled growth conditions using a robotic platform (Freedom EVO 200, Tecan), with collection of labelled samples (biomass or cultivation medium) at defined culture times or optical densities. This cell culture robot and its operation are described in detail inHeux et al. (2014) andBergès et al. (2021). The cultures were carried out with either unlabelled glucose or a mixture of 80% [1-13 C1]-D-glucose + 20% [U-13 C6]-D-glucose. To minimize sources of unlabelled carbon atoms from the first culture steps in the latter experiments, cells were inoculated at a starting OD of between 0.04 and 0.076 from pre-cultures grown with the same medium and the same (unlabelled or labelled) carbon sources as the cultures. All cultures were performed in 15 mL reaction vessels, at 37 °C, pH 7, a stirring speed of 2300 rpm and with 5 L/min of compressed air flowing through the culture module. Intracellular metabolites were automatically sampled in each bioreactor when OD600nm=1.2 was reached. Samples(200 µL) 

(

  Dionex, CA, US) coupled to an Orbitrap Q Exactive+ mass spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) operated in negative electrospray ionization (ESI-) mode.Central metabolites were separated on an ionic chromatography column IonPac AS11 (250 × 2 mm i.d.; Dionex, CA, USA). The mobile phase was a KOH gradient at a flow rate of 380 μL/min, varied as follows: 0 min, 0.5 mM; 1 min, 0.5 mM;9.5 min, 4.1 mM; 14.6 min, 4.1 mM; 24 min, 9.65 mM; 31.1 min, 90 mM; and 43 min, 90 mM. The column was then equilibrated for 5 min at the initial conditions before the next sample was analysed. The injection volume was 15 μL.

  aim of this work was to optimize data processing in untargeted MS-based isotopic tracing studies of metabolism, which refers here to isotope-labelling experiments aiming at the identification of metabolic pathways from the detailed examination of the label incorporation into metabolites. In contrast to isotope-assisted metabolomics in which a labelled sample with known label content of metabolites is added to assist in metabolome annotation (or quantification)[START_REF] De Jong | Addressing the current bottlenecks of metabolomics: Isotopic Ratio Outlier Analysis™, an isotopic-labeling technique for accurate biochemical profiling[END_REF][START_REF] Wang | A Protocol to Compare Methods for Untargeted Metabolomics[END_REF], the labelling patterns of metabolites are not knownand are not predictable -in tracing studies of metabolites. Indeed, they represent the desired information to elucidate metabolic pathways. According to the isotopic composition of the labelled source and to the operating metabolic pathways, potentially any combination of isotopologues can be generated for each metabolite in such experiments, which means that the complete isotopic envelope has to be measured to get valuable metabolic information. Moreover, the isotopologue abundances are determined by the pathways activities and can be exploited to measure metabolic fluxes. Hence, untargeted MS-based isotopic tracing studies of metabolism can be defined as the quantitative measurement of the complete isotopic envelope of all detected metabolites. It currently represents a major challenge in terms of MS data processing and interpretation because both metabolites and their labelling patterns are not known. Some software tools have been recently introduced to perform automated extraction of isotopic clusters in untargeted MS-based isotopic tracing studies, but due to the high complexity of the MS data collected in such studies, specific strategies to optimize the parametrization of these tools are required. In this work, a methodology to optimize the extraction of complete isotopic envelopes of all metabolites detected in full-scan MS spectra of labelled samples is introduced. The raw MS data in these experiments are processed in two steps: 1) extraction of individual isotopologues and 2) grouping of individual isotopologues into isotopic clusters. The proposed strategy for optimizing data processing in this context is shown in Figure 2.1. The key feature is the addition to the analytical batch of a reference isotopically labelled sample to optimize data processing parameters. The labelling data of a set of metabolites are manually extracted from the MS data of the reference material to generate a reference dataset and the processing parameters are then optimized by minimizing the difference between this reference dataset and the data extracted for the reference metabolites. The same reference dataset is used to optimize the isotopologue extraction and isotopologue clustering steps.

Figure 2 .

 2 Figure 2.144 : Strategy for software parameter optimization in untargeted MS-based isotopic profiling using a reference labelled material.

  2 and involves two steps (i) optimization of isotopologue extraction and (ii) optimization of isotopologue clustering, as described in detail below. Briefly, in the first step, the benchmark isotopologues of the reference metabolites are identified automatically using extraction software (XCMS in this work) and are compared to the reference isotopologues using three evaluation criteria (recovery rate, analytical characteristics, and isotopologue integrals) and the extraction parameters are then iteratively modified to minimize the difference between the two isotopologue datasets.

Figure 2 .

 2 Figure 2.245 : Proposed strategy for the two-step optimization of data processing in untargeted MS-based isotopic tracing studies

  calculated after automated extraction to manually measured CIDs is a sensitive method of detecting processing-induced quantification errors. Benchmark CIDs were calculated for the benchmark isotopologuesbefore (i.e. with IPO settings) and after parameter optimizationafter reconstructing molecular isotopic clusters and correcting for naturally-occurring isotopes. The benchmark CIDs were then compared to the reference CIDs. The data are shown in full in the Supplementary Data (Fig S5). The results obtained with the final, XCMS-optimized dataset are shown in Figure 2.3 B-C. For all 25 metabolites, the CIDs obtained after parameter optimization were in close agreement with the reference values (average error below 2%; Figure 2.3B).Figure 2.3C compares the CIDs of selected metabolites with reference values before and after parameter optimization. The CIDs calculated from the initial non-optimized dataset are generally biased and show significant inter-replicate variability (e.g. PRPP, Figure 2.3C). This is partly because many isotopologues go undetected with the IPO parameters, as mentioned above. After parameter optimization however, the CIDs were in good agreement with the corresponding values in the reference dataset, showing the benefit of the proposed optimization strategy. Interestingly, the CIDs of both malate and succinate, whose isotopologue abundances were overestimated in the optimized dataset (FigureS4), were also closely consistent(Figure 2.3C). This means that although the MS signals of the two compounds were overestimated in the automatically extracted data, the quantitative relationships between isotopologues of the same compound were preserved. This observation points to a potential bias in interpreting the abundances of individual isotopologues from different metabolites to derive quantitative metabolic informatione.g. comparing the M+5 isotopologue of citrate to the M+5 isotopologue of glutamine to determine reductive glutamine metabolism -without considering all potential data acquisition and processing problems.

Figure 2 .

 2 Figure 2.447 : Quality of isotopologue clustering. Number of correct (green line), incomplete (orange line) and corrupt (red line) isotopic clusters detected by X13CMS and geoRge depending on the isotopologue mass deviation (1, 2, 3, 5, 8 or 10 ppm) and the RT window (5 s, dotted line; or 10 s, solid line) based on the set of reference clusters (purple line) for the five replicates of the PT sample.

Figure 2 .

 2 Figure 2.548 : a. Comparison of the number of isotopic clusters each detected isotopologue appears in for X13CMS (blue) and geoRge (red) software. b. Venn diagram of the number of isotopic clusters detected by X13CMS (blue) and geoRge (red) in biological samples, including clusters identical both in length and isotopologue composition (green circle). c. PCA plots of the extracted isotopic profiles of unlabelled and labelled wild-type and ∆zwf E.coli strains after processing using X13CMS (left) and geoRge (right).

Figure S- 2 .

 2 Figure S-2. Reference CIDs mean biases. Mean biases (%) of reference CIDs with respect to the predicted values for the 25 reference metabolites in the PT samples.

Figure S- 3 .

 3 Figure S-3. Percentage of recovery in datasets. Number of isotopologues from reference metabolites that were detected or missing in the reference isotopologues and the benchmark isotopologues after a. XCMS processing using starting parameters and b. XCMS processing using optimized parameters in the PT samples.

Figure S- 4 .

 4 Figure S-4. Impact of parameter optimization on the measurement of isotopologue abundances. Comparison of the integrated areas of benchmark isotopologues (red bars) and reference isotopologues (black line) in a log scale.

Figure S- 5 .

 5 Figure S-5. CIDs comparison between optimized and non-optimized datasets. CIDs comparison between theoretical distribution (yellow), reference CIDs (dark blue), IPO benchmark CIDs (light red) and optimized benchmark CIDs (light blue) for the 25-reference metabolites.

Figure S- 6 .

 6 Figure S-6. Clustering software redundancies after manual curation. Comparison of the number of isotopic clusters each detected isotopologue appears in for X13CMS (blue) and geoRge (red) software after manual curation of obvious redundancies.

Figure S- 7 .

 7 Figure S-7. Carbon mass fractions for significant metabolites between two E.coli strains.

7 .

 7 Overlapping isotopic clusters. The m/z and RT pairs of the 797 overlapping isotopic clusters between X13CMS and geoRge software. The online version contains supplementary material available at https://doi.org/10.1007/s11306-022-01897-5

  2 H,15 N or18 O) and analytical methods (NMR or MS/MS) according to the biological question and the context of the study.

Figure 3 . 149 :

 3149 Figure 3.149 : General strategy for ab initio metabolic subnetwork construction based on untargeted 13 C-labeling dynamic experiments.

Figure 3 .

 3 Figure 3.250 : Construction and evaluation of minimal subnetworks. A. Subnetwork construction and extension process.Minimal subnetworks are constructed for each metabolite in the data by searching for the reactions and the LLIs that produce it. If all data are available, the minimal subnetwork is complete (in green). If not, it is extended (black arrows) until a minimal subnetwork containing all the data needed for the simulation is obtained. At the end of the process, the part of the subnetwork for which LLIs are still missing is not conserved. The resulting subnetworks may be incomplete (in blue) or empty (in red) depending on the final reactions included. B. The labeling dynamics of Y are directly simulated from the labeling dynamics of its precursors G, F and E. The fit between the simulated and experimental data is used to estimate if the experimental data can be explained by the proposed reactions.

Figure 3 .

 3 Figure 3.351 : Computational workflow of IsoMet approach. The IsoMet approach is composed of three steps to reconstruct a set of active metabolic subnetworks from HRMS data and (bio)chemical knowledge.

Figure 3 .

 3 Figure 3.452 : Validation of the Network Analyzer. A. Validation process. The Network Analyzer is validated using a GSM and a theoretical dataset based on topological and functionnal criteria. B. Minimal subnetwork centered on the pyruvate. The elementary metabolite unit producting the three atoms of carbon of the pyruvate is retrieve at the third level of extension. The final LLI of the pyruvate is the phosphoenolpyruvate. C. Fitting results of two minimal subnetworks(SGLN and Sα-KG). The reactions that were not conserved during the construction process are in grey.

  ) -> M_glx_c (AB) + M_succ_c (CDEF)

R_FUM

  M_fum_c (ABCD) + M_h2o_c () <-> M_mal__L_c (ABCD)

  of the in silico validation of the Network Analyzer. n_reactions_tot is the number of reactions (with the sink reaction) included in the constructed minimal subnetworks. This number is compared to the number of reactions in the theoretical subnetworks, i.e if the subnetworks were complete at level 1 of extension. Minimal subnetworks are evaluated (i) on their topology (characteristics: complete or incomplete) and (ii) their functionnal characteristics: the goodness-of-fit based on the ꭓ2 pvalue; the identifiability if they provide a unique solution of flux values ; the compliance of flux values between estimated and theoretical fluxes.

(

  https://biocyc.org/version19.5) and Uniprot (https://www.uniprot.org/, release 2016_02).
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 1 . Fluxotypes can be visualized using a so-called flux map, a graphical representation of the metabolic network showing the flux values for the various reactions or pathways.

Figure 534 . 1 :

 5341 Figure 534.1 : Strategy for high-resolution fluxotyping of the E. coli y-ome. Selection of E. coli y-genes (1) 180 y-genes were selected based on their expression on glucose as sole carbon source. High-resolution Fluxotyping (2) of 180 mutants with single-deletion of a selected y-gene. Cell cultivation, metabolite harvesting and sample preparation are performed by robotic systems. Quantification of medium compounds and isotopic profiling of metabolites by NMR and MS. Fluxes are calculated using a model of E. coli central carbon metabolism. Fluxotype evaluation (3) Metabolic fluxes are calculated for all strains (high-resolution fluxotypes) and compared by statistical analysis to identify altered fluxotypes. Fluxotype outliers are checked against culture data to ascertain that outlying flux values are not due to a 13 C-labelling problem.

Figure 4 .

 4 Figure 4.254 : Metabolic fluxes measured for E. coli WT strains and a Δzwf mutant strain. Top: experimentally measured fluxes (expressed in mmol.gDW-1 .h -1 ) and growth rate (expressed in h-1 ). Physiological measurements: µ, growth rate; qGlc, glucose specific consumption rate; qAce, acetate specific production rate; qLac, lactate specific production rate. Bottom: Intracellular fluxes calculated from the 13 C-labelling data; fluxes are expressed relative to the glucose uptake rate set arbitrarily to 1 for each strain. Boxplot produced with the software R representing median fluxes (bold line) in boxes representing the interquartile range (quartile 1-quartile 3). The whiskers extend to the most extreme data point that is no more than 1.5 times the interquartile range from the box. Net fluxes : Glucupt_1 and Glucupt_U: [1-13 C]-glucose and [1-13 C]glucose importation (PTS system), pgi: glucose-6-phosphate isomerase, pfk: phosphofructokinase , ald: fructose-bisphosphate aldolase, tpi: triose-phosphate isomerase, pgk: phosphoglycerate kinase, eno: enolase, pyk: pyruvate kinase, pdh: pyruvate dehydrogenase, zwf: glucose 6-phosphate dehydrogenase, gnd: phosphogluconate dehydrogenase, tk1: half-reaction transketolase (1), ta1: half-reaction transaldolase (1), ta2: half-reaction transaldolase (2), tk2: half-reaction transketolase (2), tk3: tk2: half-reaction transketolase (3), edd: Entner-Doudoroff enzymes: equivalent to 6-phosphogluconate dehydratase and 2-keto-3deoxy-6phosphogluconate (KDPG) aldolase, citsynth: citrate synthase, idh: isocitrate dehydrogenase, akgdh: alphaketoglutarate dehydrogenase, fum_a and fum_b: fumarase, maldh: malate dehydrogenase, gs1: isocitrate lyase, gs2: malate synthase, mae: malic enzyme, ppc: equivalent to pep carboxylase (forward flux) and to pep carboxykinase (reverse flux), out_Ac : acetate output (equivalent to acetate k.inase)

Figure 4 .

 4 Figure 4.355 : Comparison of the growth parameters and fluxotypes of y-ome strains with those of their parental strain. A: Comparison of growth parameters between y-ome strains and the BW25113 WT strain (µ: growth rate, qglc: glucose consumption rate, Biomass yield, qace: acetate production rate). B: PCA plots showing the strains with the most different fluxotypes across the Y-ome. PC1 and PC2 represent Principal Component 1 & 2, explaining the largest variance between strains according to their flux values -the percentage of variance explained for each principal component is indicated into brackets [36], C: PCA loading plot with the most impacted fluxes indicated.

Figure 4 .

 4 Figure 4.456 : Distribution of metabolic fluxes in ΔydcS and ΔybjP strains. A: Intracellular flux distributions in the two mutant strains and comparison with the WT strain. All fluxes are expressed relative to the glucose uptake rate, set arbitrarily to 100 for each strain. The absolute glucose uptake rates (mmol.gDW -1 .h -1 ) of the three strains are shown in the top left of the figure.

Figure 4 .

 4 Figure 4.557 : Production of NADPH, NADH/FADH2 and ATP in the central carbon metabolism. The rates were calculated from the mean growth rates and flux distributions, and are expressed in absolute values (mmol.gDW -1 .h -1 ) ± SD. Calculations are described in the materials and methods.

Fluxome

  significant improvements in the parallelization, automation and implementation of fluxomics in large-scale investigations. Altogether, these improvements offer significant gains in throughput, robustness, and data quality, while retaining a high level of biological information through the collection of high resolution fluxomics data. This optimized complete HT fluxomics workflow allowed 198 isotopically-resolved flux maps to be generated in a total (effective) experimental time of less than 33 days. This required a total human time of 194 h, or about 1 h per flux map. In the context of high-resolution fluxomics, the working volume of the bioreactors, 15 mL, seems an appropriate compromise between the low volumes required for HT investigations and culture volumes large enough for detailed biological or biochemical analysis. Indeed, this working volume allowed us to systematically collect all relevant physiological and biochemical data in a single bioreactor under fully controlled growth conditions, thereby decreasing biological variability and increasing data consistency. Further applications of this workflow to other experimental designse.g. parallel labeling experiments, other questions or other biological models (bacterial communities, eukaryotic cells, etc) should be facilitated by the flexibility of the setup, which is amenable to a variety of sample types (medium, cells, total broth), sampling methods, metabolite extraction processes (intra-or extracellular metabolites, biomass), and analytical techniques (basically any targeted/untargeted LC/GC-MS method or NMR sequence). This flexibility allows metabolic networks of various size and complexity, as well as other biological models, to be investigated.

13

 13 

  13C-fluxomics (in which a limited number of isotopic data are collected to measure fluxes in a few reactions or pathways), and global 13 C-fluxomics (the measurement of fluxes across complete metabolic networks from large isotopic datasets). The former two approaches are lowresolution methods because they provide no (isotopic profiling) or limited (targeted fluxomics) flux information, though they are fully relevant for their respective purposes. High-resolution fluxomics refers to global 13 C-fluxomics, although the number of measured fluxes can vary

  proposed to evaluate the actual scale and quality of HT fluxomics investigations. This work introduces novel metrics for the actual scale and quality of HT fluxomics investigations. At the level of individual fluxotypes, key features of these studies are the total number of calculated fluxes (fluxome resolution), the number of isotopic data collected with respect to the number of fluxes to be (isotopic resolutive power), and the resulting precision in the calculated flux values (confidence intervals on flux values). At the level of the complete HT fluxomics investigation, three indices are introduced to measure the actual scale (total flux dimension and quality (overall flux precision and overall pathway-specific precision) of HT fluxomics investigations. Since HT studies aim to find the best compromise between throughput and information content (and quality), the number and quality of the resulting flux data have to be appreciated in terms of the actual size of the investigation, i.e. the total number of flux maps generated. HT fluxomics investigations are thereby characterized by high total flux dimension

  High-resolution fluxomics (fluxome resolution of 94) at a high-throughput level (198 fluxotypes collected throughout the study) without loss of quality. It is important to note that these metrics are objective measures of the size and characteristics of fluxomics investigations; they do not quantify the biological value of the data.

  [1-13 C1]-D-glucose and 20% [U-13 C6]-D-glucose. All cultures were performed in 15 mL reaction vessels, at 37 °C, pH = 7, a stirring speed of 2300 rpm and with 5L.min -1 of compressed air fed into the culture module. Four to eight supernatant samples were collected in each reactor throughout the culture to analyze the exometabolome and to calculate the rates of substrate consumption and endproduct production. The biomass was automatically sampled once the OD600nm had reached 1.2, indicating that the metabolic and isotopic steady-state had been achieved: 4 ml samples of culture were pelleted by automated centrifugation (5 min / 4410 g), manually hydrolyzed with 250 µL 6 N HCl for 15 h at 110 °C and washed twice in 1 mL D2O by rotary evaporation (Büchi Labortechnik AG, CH) between each washing step. Aliquots (10 µL) of biomass hydrolysate supernatant were then collected and transferred into 96 well plates, diluted with 990 µL pure H2O and transferred to vials for LC-MS analysis. Samples of biomass hydrolysate supernatant (150 µL) were also mixed with 50 µL of TSP d4 (4 mM in D2O) and 150 µL of each mixture was then transferred into 3 mm NMR tubes.
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 65 were averaged over the biological replicates. NADPH production: Pentose-Phosphate Pathway (PPP) = glucose 6-phosphate dehydrogenase (zwf) + phosphogluconate dehydrogenase (gnd); TCA cycle = isocitrate dehydrogenase (idh); malic enzyme (mae). NADH production: glycolysis= glyceraldehyde-3-phosphate dehydrogenase (flux equal to pgk); Oxidative metabolism = pyruvate dehydrogenase (pdh) + TCA cycle enzymes, including alphaketoglutarate dehydrogenase (akgdh) + malate dehydrogenase (maldh); malic enzyme (mae) and biomass formation. NADH consumption: lactate dehydrogenase (out_Lac). FADH2 production: TCA cycle = succinate dehydrogenase (flux equal to fum). ATP production: glycolysis = phosphoglycerate kinase (pgk) + pyruvate kinase (pyk); TCA cycle = succinyl-CoA synthetase (assimilated to akgdh); acetate metabolism = acetate kinase (ack, assimilated to out_Ac). ATP consumption: glycolysis = glucose PTS system (Glucupt_U + Glucupt_1) (assuming 1 consumed PEP is equivalent to 1 consumed) + 6-phosphofructokinase (pfk); ppc (equivalent to pep carboxylase (forward flux) and pep carboxykinase (reverse flux).Les travaux présentés dans cette thèse s'inscrivent dans le domaine de la biologie des systèmes. Ils sont basés sur le développement de méthodologies et d'outils informatiques innovants permettant d'étudier le métabolisme d'organismes vivants à l'échelle du système.Nous avons dans un premier temps mis en place une méthodologie permettant d'évaluer la qualité de données isotopiques, basée sur l'utilisation d'un standard marqué présentant l'ensemble du profil isotopique des métabolites, Cette méthodologie permet d'assurer le traitement optimal des données de masse complexes dans les études de traçage isotopique non ciblé du métabolisme. Avec les progrès de l'instrumentation MS et des méthodes analytiques, qui permettent d'étendre la couverture du métabolome, l'application de la méthodologie proposée maximise la valeur biologique des études de traçage isotopique en révélant l'ensemble des informations métaboliques encodées dans les profils de marquage des métabolites.Dans la deuxième partie de cette thèse, nous avons développé une approche de fluxomique qui vise à valider des données expérimentales à partir de topologies de sous-réseaux métaboliques proposées. Il s'agit d'une approche « data-driven » basée sur des données de marquage isotopique en dynamique acquise par spectrométrie de masse haute résolution. Ce travail a mis en avant deux stratégies innovantes. La première consiste à construire des sousréseaux minimum à partir de données expérimentales HRMS et d'un ensemble de réactions biochimiques pouvant avoir lieu dans un organisme. La deuxième consiste au développement de stratégies de simulation des cinétiques de marquage isotopique permettant de valider la consistance des sous-réseaux sur la base des cinétiques de marquage de leur substrat. Ces deux approches ont pu être mises en place grâce au développement d'un outil bioinformatique robuste et puissant. Elles ont été validées sur la base du modèle simplifié d'E. coli core. L'objectif final de cette approche de fluxomique est d'accéder directement au réseau métabolique actif d'un organisme dans un contexte donné, sur la seule base de données expérimentales de marquage isotopique non-ciblées, de manière orthogonale et complémentaire aux approches de reconstruction in silico. Cette approche est générique et peut-être appliquée à d'autres organismes complexes, notamment des organismes compartimentés (cellules mammifères). A partir des travaux initiés au cours de ce travail de thèse, elle sera appliquée dans un premier temps pour l'étude du métabolisme d'E. coli à plus large échelle. Une perspective d'application biologique plus complexe est l'étude du métabolisme des adipocytes. Des travaux pionniers réalisés au sein du laboratoire RESTORE ont montré que des métabolites associés au métabolisme redox, comme le lactate et les corps cétoniques, peuvent induire la différenciation adipocytaire et le brunissement du tissu adipeux blanc en induisant fortement la protéine découplante UCP1 1 . Bien que cette différenciation redox-dépendante puisse jouer un rôle important dans l'homéostasie énergétique de l'organisme, elle n'a été pour l'instant que très peu étudiée. Cette approche pourra être appliquée dans l'objectif d'identifier les modifications métaboliques induites par les composés redox, ainsi que pour caractériser le devenir métabolique de ces composés eux-mêmes. L'intérêt étant notamment de permettre une identification sans à priori des voies métaboliques impliquées dans l'utilisation des nutriments au cours de cette reprogrammation adipocytaire. En parallèle de ces développements, une approche de fluxomique à haut-débit a été développée, pour permettre l'optimisation et l'automatisation de l'ensemble du processus de fluxomique à hau-débit et l'intégration d'outils pertinents. Comme nous l'avons dans ce travail de thèse, la fluxomique basée sur les expériences de marquage est de plus en plus utilisée dans les sciences biologiques pour identifier les voies métaboliques, aider à la découverte de nouvelles interactions de régulation ou quantifier les réponses des flux aux perturbations environnementales ou génétiques. Il s'agit d'un outil essentiel pour répondre à des questions fondamentales appliquées dans le domaine de la santé et de la biotechnologie. Cependant il s'agit d'un processus long et complexe qui nécessite un grand nombre d'étapes expérimentales et informatiques et inclut une grande variété d'approches (ex : 13 C-MFA stationnaire, instationnaire, dynamique …). Ces différents facteurs limitent globalement le débit et la reproductibilité des études de flux C13, notamment au niveau informatique (conception expérimentale, traitement des données et calcul des flux). Une autre perspective est le développement d'une plateforme informatique automatisée comprenant l'ensemble du protocole de calcul de flux. L'objectif de ce projet est d'améliorer l'accessibilité et la robustesse des approches de fluxomique à haut débit. Référence bibliographique 1 Carrière A, Jeanson Y, Berger-Müller S, André M, Chenouard V, Arnaud E, Barreau C, Walther R, Galinier A, Wdziekonski B, Villageois P, Louche K, Collas P, Moro C, Dani C, Villarroya F, Casteilla L. Browning of white adipose cells by intermediate metabolites: an adaptive mechanism to alleviate redox pressure. Diabetes. 2014 Oct;63(10):3253-Le piège à ions linéaire (ion trap) Un piège à ion linéaire est un analyseur composé de quatre éléctrodes entre lesquelles les ions sont piégés (figure S2). Les ions sont piégés radialement en appliquant un champ de radiofréquence et axialement en utilisant un potentiel statique sur les électrodes d'extrémité. Ils sont ensuite éjectés du piège par modulation des radiofréquences appliquées.

Figure S2 :

 S2 Figure S2 : Principe de fonctionnement d'un piège à ions linéaire. (Stephanie N. Thomas, 2019)

Figure S3 :

 S3 Figure S3 : Principe de fonctionnement d'un analyseur à temps de vol (Barbier Saint Hilaire, 2019)

Figure 58 :

 58 Figure 58 : Principe de fonctionnement d'un analyseur orbitrap(Ronaldo Ferreira do Nascimento, 2017) 

Figure S5 :

 S5 Figure S5 : Principe de fonctionnement d'un analyseur à résonance cyclonique ionique(Fourier Transform Ion Cyclotron Resonance Mass Spectrometry," 2019) 
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	Abréviations

3.2. Espèces isotopiques d'une molécule

  Une molécule marquée isotopiquement présente plusieurs formes ou espèces isotopiques. Les espèces isotopiques sont des molécules chimiquement identiques, ne différant que par leur composition isotopique. Dans les expériences de marquage au carbone 13, chaque molécule comportant n atomes de carbone possède un total de 2 n espèces isotopiques du carbone (Figure1.3). Plusieurs termes sont utilisés pour décrire ces différentes espèces.Selon les recommandations de l'IUPAC, le terme isotopomère (isomère isotopique) réfère aux isomères ayant le même nombre d'isotopes mais dont les positions diffèrent. Ainsi, la molécule 13 CH3-12 COO -est un isotopomère de la forme 12 CH3-13 COO -.

De même, le terme IUPAC isotopologue renvoie à des entités moléculaires qui ne diffèrent que par leur composition isotopique (ici en carbone), c'est à dire en fonction du nombre de substitution isotopique. Les deux isotopomères 13 CH3-12 COO -et 13 CH3-

12 

COO -(qui possèdent 1 subtitution isotopique) sont des isotopologues de la forme 13 CH3-13 COO -(2 substitutions isotopiques). Une molécule comportant n atomes de carbone contient n+1 isotopologues du carbone notés du M0 (molécule non marquée) au Mn en fonction du nombre d'atomes

13 

C incorporés dans la molécule.

A noter que les deux termes isotopomère et isotopologue s'excluent entre eux (deux isotopologues ne peuvent pas être isotopomères l'un de l'autre, et inversement). Il n'existe donc pas de terme conventionnel permettant de décrire l'ensemble des formes isotopiques d'une même molécule.

Dans la suite du manuscrit, le terme espèce (ou forme) isotopique sera utilisé pour décrire toute forme isotopique d'une molécule. Nous verrons que le terme isotopologue est pertinent pour les données obtenues par spectrométrie de masse (deux isotopologues n'ayant pas la même masse moléculaire) alors que le terme isotopomère est utilisé pour les données de RMN, qui donne accès à la position du marquage dans les molécules. Une molécule contenant quatre atomes de carbone présente 2 4 = 16 espèces isotopiques et 4+1 = 5 isotopologues du carbone (Figure

1

.3). Le nombre d'isotopomères varie suivant le nombre d'atome de carbone, mais obéit à la loi de distribution binomiale et correspond donc aux coefficients du triangle de Pascal.

3.5. Mesure des profils de marquage isotopique

  La mesure des profils de marquage isotopique -ou profilage isotopique -qui seront utilisés dans les études du métabolisme requiert l'utilisation d'outils analytiques sensibles et d'outils de traitement de données robustes et automatiques. Ces différents outils doivent permettre d'analyser la diversité du métabolome (et du fluxome) dans toute sa complexité. , ou ne sont pas détectés par les méthodes analytiques actuelles. A l'inverse, les méthodes analytiques actuelles permettent la détection d'un très grand nombre de signaux qui ne représentent pas forcément le nombre de métabolites, en raison de signaux parasites ou redondants (artefacts, adduits, produits de fragmentations). La détection de plusieurs centaines, voire milliers de signaux dans un échantillon biologique ne signifie pas la présence du même nombre de métabolites correspondants. Le nombre total de métabolites existants dans la nature ou dans un organisme, ainsi que le nombre de métabolites présent dans un échantillon donné, sont donc difficiles à estimer.Une difficulté supplémentaire réside dans l'échelle du temps du métabolisme, au sein de laquelle se déroule des processus extrèmement rapides (de l'ordre de la micro-seconde ou

	Une autre difficulté est directement liée au nombre de métabolites existants dans les
	organismes vivants. Les bases de données publiques recensent les métabolites identifiés, telles
	que la base de données « The Human Metabolome Database » (HMDB version 5.0
	https://hmdb.ca) qui dénombre actuellement plus de 250 000 métabolites chez l'Homme

• Complexité du métabolome Le métabolome correspond à l'ensemble des métabolites présents dans un biofluide, un tissu ou une cellule d'un organisme vivant, ou plus généralement d'un échantillon biologique. Les métabolites interviennent dans de nombreuses réactions biochimiques et participent à des fonctions biologiques variées. L'analyse du métabolome est rendue complexe par différents facteurs liés à sa nature. La première difficulté est liée à la diversité physico-chimique des métabolites. En effet les métabolites appartiennent à une large variété de classes chimiques telles que les acides aminés, les acides organiques, les nucléotides ou les lipides. Ces composés ont des structures et des propriétés physico-chimiques très diverses et ne peuvent par exemple pas être extraits ni analysés par une seule méthode. Cette diversité ne permet pas l'étude de l'ensemble des métabolites de manière simultanée. Il n'existe pas de méthode analytique universelle permettant d'explorer la totalité du métabolome. Pour couvrir l'ensemble du métabolome, il est donc nécessaire de combiner plusieurs méthodes d'analyse et plusieurs techniques analytiques. De même, les métabolites varient également très fortement en termes de gamme de concentration. Cela s'étend du picomolaire (ex : vitamines) à quelques dizaines de millimolaire (ex : sucres ou lipides), soit une gamme dynamique de concentrations s'étalant sur 9-10 décades. Les techniques analytiques ayant généralement des gammes dynamiques de l'ordre de 3-4 décades, il est donc là aussi nécessaire d'utiliser différentes méthodes pour couvrir l'ensemble sur le plan quantitatif. [Wishart et al, 2022]. Ce nombre continue d'évoluer avec les récents développements des techniques de détection et d'annotation, par exemple le contenu d'HMDB a évolué de 2180 métabolites à 217 920 en une dizaine d'années. Cependant beaucoup de composés ne sont pas encore clairement identifiésmoins pour certaines voies du métabolisme central) et des processus nettement plus lents (biosynthèse de certains coenzymes par exemple). Il est donc nécessaire de mettre en place des protocoles d'échantillonnage très rapides pour éviter une évolution non physiologique du métabolome avant son analyse. Lors de la préparation des échantillons, le protocole d'extraction peut nécessiter l'emploi de procédures particulières (ex : « quenching » à froid) permettant de stopper le métabolisme le plus rapidement possible. A titre de comparaison, l'échelle de temps de la protéomique est de plusieurs minutes à plusieurs heures, ce qui est moins stringent en termes de contraintes d'échantillonnage.

3.5.2. Spécificité de la spectrométrie de masse 3.5.2.1. Principales techniques séparatives en couplage MS

  

	Les techniques séparatives du type chromatographie sont les principales méthodes
	utilisées pour séparer les molécules dans des échantillons complexes. Il existe différentes
	méthodes de chromatographie comme la chromatographie liquide (LC), la chromatographie
	gazeuse (GC) ou la chromatographie ionique (IC). Ces méthodes reposent sur le même

principe : l'échantillon est entrainé par une phase mobile à travers une phase stationnaire. Les métabolites contenus dans l'échantillon migrent à une vitesse dépendant de leurs propriétés physico-chimiques et en fonction de leur affinité avec les deux phases.

  La GC permet de séparer les molécules sous forme gazeuse. Elle est couramment utilisée dans les analyses isotopiques mais n'est applicable qu'aux molécules volatiles ou volatilisables par dérivatisation. Le mélange à analyser est entrainé par un gaz au travers d'une phase stationnaire solide. La GC offre une haute capacité de séparation des pics et une forte sensibilité[START_REF] Haggarty | Recent advances in liquid and gas chromatography methodology for extending coverage of the metabolome[END_REF] et est également plus reproductive et plus rapide que d'autre techniques chromatographiques. Cependant, contrairement à la LC, la GC nécessite généralement en amont, une dérivation chimique des espèces métaboliques non volatiles, telles que les sucres, les acides aminés ou des lipides présentant des fonctions polaires. L'aspect positif de cette dérivation est qu'elle offre un bruit de fond plus faible et augmente sensiblement La chromatographie ionique (IC) permet la séparation de composés chimiques en solution selon leur charge ionique. Cette technique est particulièrement bien adaptée à l'analyse des composés de forte polarité associés au métabolome central (acides organiques, sucres phosphorylés, nucléotides phosphorylés). La présence d'un suppresseur chimique et d'un suppresseur CO2 permettent une très bonne sensibilité du signal. En effet l'étape de suppression diminue la conductivité de fond de l'éluant, minimise le bruit de fond, optimise le rapport signal sur bruit et augmente la sensibilité du système de mesure. Ceci présente l'avantage de permettre l'utilisation de plus faibles concentrations pour obtenir une sensibilité acceptable.

• Chromatographie gazeuse (GC) le signal rapport/bruit. Mais cette étape reste contraignante car elle ajoute une étape à la préparation d'échantillons et peut induire des dégradations de composés. Au bilan, il est estimé que la GC permet l'analyse d'environ 20% des molécules connues.

• Chromatographie liquide (LC)

La LC, comme la GC, est basée sur une différence d'affinité entre deux phases (mobile et stationnaire). Elle possède l'avantage de permettre la séparation simultanée de métabolites ayant des propriétés physico-chimiques différentes sans qu'il soit nécessaire de les modifier chimiquement. L'essor de la chromatographie liquide haute performance et ultra-haute performance (HPLC et UHPLC) permet également de travailler dans des conditions plus stringentes (pressions plus élevées et volumes plus faibles). Ces conditions permettent un gain de temps et de solvants et permettent de travailler avec des volumes d'échantillons plus faibles.

Cela conduit à une meilleure sensibilité dûe à une diminution de la largeur des pics chromatographiques et une augmentation de leur intensité, ce qui améliore le rapport signal sur bruit. La variété des colonnes proposées en LC (HILIC, C18, …) augmente également la diversité des composés analysables ce qui est un critère non négligeable dans le cadre d'analyses non-ciblées

[START_REF] Harrieder | Current state-of-the-art of separation methods used in LC-MS based metabolomics and lipidomics[END_REF] Pezzati et al, 2020]

. On estime qu'environ 80% des composés connus peuvent être analysés en LC-MS. De plus, contrairement à la GC-MS, l'ionisation par électrospray utilisée en LC-MS est une technique d'ionisation douce qui réduit la fragmentation à la source.

• Chromatographie ionique (IC)

Analyseur Résolution Précision en masse (ppm) Gamme dynamique Gamme de m/z Temps d'acquisition (Hz)

  

	(iv) La gamme m/z qui détermine les limites des rapports m/z détectables par • Analyseurs haute résolution
	l'instrument. Les analyseurs haute résolution (HR) sont les analyseur à temps de vol (TOF), à Quadripôle < 3000 > 100 Très bonne > 3000 0.5-4 (v) La vitesse d'acquisition qui correspond au temps nécessaire à l'enregistrement d'un Résonance Cyclonique Ionique (FT-ICR Fourrier Transform -Ion Cyclotron Resonance) et les Ion trap < 5000 < 30 Faible > 20000 1-10
	spectre de masse. Elle s'exprime sous la forme d'une fréquence (nombre de spectres par spectromètres de masse de technologie Orbitrap. TOF 5000-40000 4-100 Bonne > 20000 > 2000
	seconde ou Hertz) ou sous la forme d'un temps d'acquisition en millisecondes. L'analyseur de masse TOF est basée sur le fait que les ions ayant la même énergie mais Orbitrap > 140000 < 1-2 Medium > 6000 > 12
	Pour l'étude du métabolome, une haute résolution et une haute sensibilité sont des masses différentes se déplacent à des vitesses différentes. Dans ce type d'analyseur, les ions FT-ICR 2.5.10 6 < 0.6 Medium > 30000 1
	Tableau 1.1 : Performance des principaux analyseurs de masse utilisés en métabolomiques. Données constructeurs issues de souhaitées. Cependant il est difficile de pouvoir combiner les deux car une sensibilité élevée sont accélérés par un champ électrostatique pour obtenir la même énergie cinétique et se Kaklamanos et al, 2020.
	induit généralement une baisse de résolution et inversement. On distingue plusieurs types déplacent ensuite jusqu'au détecteur avec une vitesse inversement proportionnelle au carré de
	d'analyseurs de masse, les analyseurs uniques ou hybrides. Parmi la première catégorie, on leur rapport m/z. La mesure du temps de vol de chaque ion permet de déterminer leur rapport
	trouve des analyseurs à basse résolution (BR) et haute résolution (HR). Les performances des m/z. Les TOF sont les moins résolutifs mais ont des temps d'acquisition relativement courts.
	principaux analyseurs de masse sont présentées dans le tableau 1.1 [Kaklamanos et al, 2020]. À l'opposé, les FT-ICR permettent d'atteindre la plus haute résolution et la meilleure
	Les différents types d'analyseurs sont illustrés en annexe (Annexe 1). précision de mesure mais nécessitent plus de temps pour acquérir un spectre. Les ions sont
	placés dans un champ magnétique très puissant, qui les fait se déplacer sur des trajectoires
	• Analyseurs basse résolution circulaires. Ils sont piégés par le champ magnétique et une excitation à large bande de fréquence
	Les analyseurs basse résolution (BR) sont des quadripôles (Q) ou des pièges à ions est ensuite effectuée. Le mouvement des ions induit un courant qui est enregistré, mesuré et
	linéaires ou non (ion trap). transformé par la méthode de Fourier pour produire des spectres de masse.
	L'analyseur quadripôlaire est le spectromètre de masse le plus simple et le plus Les analyseurs de type Orbitrap quant à eux présentent des performances intermédiaires.
	abordable. Il est constitué de quatre électrodes parallèles. Des potentiels de courant alternatif à L'orbitrap est essentiellement un piège à ions électrostatique : les ions sont piégés, puis ils se
	radiofréquence variable sont appliqués à chaque paire d'électrodes (positive et négative), créant déplacent de façon circulaire avant d'être éjectés en fonction de leur valeur m/z. Les Orbitrap
	un champ quadripolaire. Au sein de ce champ, seuls les ions présentant une trajectoire stable sont de plus développés et leur performance évolue rapidement. Par ce fait, ils sont de plus en
	sont conduits jusqu'à l'extrémité de l'analyseur, les autres étant arrêtés lorsque leur trajectoire plus utilisés pour les analyses métabolomiques.
	instable les conduit à entrer en collision avec les électrodes. Les limites des analyseurs de masse
	quadripolaires sont leur faible résolution et la mauvaise précision de la masse. Les spectromètres de masse hybrides combinent plusieurs analyseurs, généralement un
	Les pièges à ions linéaires sont des analyseurs constitués de quatre électrodes à section analyseur BR (ex : quadripôle ou piège à ions linéaire) couplé à un analyseur HR tels que le
	hyperbolique. Lors de leur introduction dans l'analyseur, les ions sont décélérés par collision LTQ-Orbitrap et le QTOF. Associer plusieurs analyseurs permet d'améliorer leurs
	avec un gaz inerte présent à faible pression. Ils sont piégés dans un mouvement d'oscillation performances. Ces spectromètres hybrides peuvent être utilisés pour du profilage ou en tandem
	Elle s'exprime sous la forme d'une erreur entre la masse mesurée et la masse théorique. Elle est exprimée en ppm (partie par million) 𝛥𝑝𝑝𝑚 = ( 𝑚 𝑧 pour la sélection et la fragmentation d'un nombre réduit d'ions. La spectrométrie de masse en entre les électrodes puis éjectés du piège vers le détecteur par ordre croissant de m/z. tandem (MS/MS ou MS n ) consiste à sélectionner un ion par un premier analyseur, à le Globalement, la résolution des pièges à ions est légèrement supérieure à celle des quadripôles. ⁄ exp -𝑚 𝑧 ⁄ 𝑡ℎ) 𝑚 𝑧 ⁄ 𝑡ℎ Cependant, ils sont de moins en moins utilisés comme seul analyseur en raison du fragmenter, puis à effectuer une deuxième sélection sur les fragments ainsi générés. L'obtention × 10 6 La précision est un élément déterminant pour l'extraction et l'identification des signaux d'intérêt. d'ions de générations supérieures est possible par simple renouvellement du processus développement plus rapide de la technologie du triple quadripôle et de la haute résolution. Les (sélection d'un ion produit, fragmentation, sélection d'un ion produit de 2 e génération, ions trap seront préférentiellement utilisés en combinaison avec d'autres analyseurs. fragmentation, etc...). Cette séquence est appelée MS n , n étant le nombre de générations d'ions
	(iii) La gamme dynamique correspond à l'étendue des concentrations détectables par successives. On trouve également des triples quadripôles (QQQ) et des quadripôles couplés à
	l'instrument. un piège à ion (QTrap) qui sont souvent associés à des études ciblées car plus sélectifs.

• Spectromètre

de masse à rapport isotopique

  

	Le spectromètre de masse à rapport isotopique (IRMS) est un appareil spécifique qui
	permet l'étude d'échantillons en fonction de leurs rapports isotopiques (mesure l'abondance
	relative des différents isotopes d'un même élément chimique). Il peut également être couplée à
	des techniques chromatographiques (LC/GC). Les molécules sont ensuite oxydées par une
	étape de combustion en sortie de colonne pour les convertir en gaz simple (ex : CO2, H2). Ce
	gaz est ensuite analysé par le spectromètre de masse pour déterminer l'abondance des isotopes.
	Dans certaines études sur le traçage isotopique stable du métabolisme, l'IRMS est utilisé pour
	sa capacité à détecter et quantifier des niveaux d'enrichissements isotopiques très faibles
	(inférieurs à 5%) [Fan et al, 2012].

3.5.2.1. Imagerie par spectrométrie de masse

  En règle générale, cela se fait en mesurant la valeur du rapport13 C/ 12 C (ou 14 N/ 15 N) et en la comparant à un échantillon standard(Figure 1.11). Cette nouvelle technologie a été utilisée pour tracer les composés volatiles dérivés du métabolisme intracellulaire et révéler leur relation avec les voies métaboliques du cancer[START_REF] Lee | In Vitro Tracking of Intracellular Metabolism-Derived Cancer Volatiles via Isotope Labeling[END_REF]. Imagerie cellulaire par NanoSIMS pour mesurer les flux de carbone. Les formes celulaires ( 12 C 14 N) et les rapports13 C/12 C correspondants après marquage isotopique sont représentés. L'intensité des pixels est mesurée pour calculer le rapport moyen13 C/ 12 C de chaque cellule. Illustration tiréede Lee et al, 2018. 

	Le principe de l'imagerie par spectrométrie de masse est de réaliser une cartographie de la surface d'une coupe de tissu, en enregistrant à chaque point un spectre de masse. Elle est basée sur l'utilisation d'une source d'ionisation principalement de type MALDI (désorption laser) ou DESI (désorption par électrospray) et d'un analyseur de masse à haute résolution. L'imagerie par spectrométrie de masse est une méthode destructive pour laquelle les approches de quantification sont compliquées dû à l'hétérogénéité des tissus. Récemment une nouvelle approche, l'imagerie NanoSIMS (Secondary Ion Mass Spectrometry) a été développée pour permettre de visualiser les composés dans les cellules et tissus de manière quantitative, avec une résolution spatiale élevée et une grande sensibilité. Dans la plupart des analyses NanoSIMS, le marquage par isotopes stables est utilisé pour permettre la détection de composés d'intérêts ou révéler l'activité métabolique dans des échantillons biologiques, en identifiant l'endroit où l'enrichissement isotopique est localisé. Figure 1.11 :

3.5.2.2. Mesure de profils isotopiques par spectrométrie de masse

  La distribution des isotopologues est caractérisée par le pourcentage de chaque isotopologue, et peut s'exprimer également en fraction. On appelle Distribution des Isotopologues du Carbone (CID) le vecteur représentant la distribution relative de tous les isotopologues du carbone existant pour un composé donné. Le CID est donné par le massif isotopique de l'ion moléculaire analysé après correction de l'abondance naturelle des isotopes des autres éléments chimiques présents dans la molécule (voir ci-dessous). Spectres de masse du fumarate a. Spectre de masse du fumarate non marqué. B. Massif isotopique des isotopologues du fumarate suivant la loi binomiale du Triangle de Pascal mesuré par spectrométrie de masse.

	Les isotopologues possèdent la même formule chimique et la même structure et se
	comportent donc de manière identique lors de la séparation chromatographique, ce qui résulte
	sur une coélution des isotopologues à un même temps de rétention. Cependant lors de
	l'incorporation d'un (ou plusieurs) isotope(s) du carbone dans un métabolite, la masse du
	métabolite concerné va varier en fonction du nombre d'atomes de 13 C incorporés. C'est ce
	décalage de masse qui est observé lors d'une analyse en spectrométrie de masse. En effet la
	masse d'un atome de 12 C étant de 12 u et celle du 13 C de 13.00335 u, les pics de masse du
	composé d'intérêt seront séparés d'une valeur de 1.00335 m/z correspondant à la variation de
	masse entre la molécule non marquée et la molécule ayant incorporé un atome de 13 C. Le spectre
	de masse du Fumarate (Figure 1.12) contenant quatre carbones pourra présenter jusqu'à 5 pics
	de masse en fonction du nombre d'incorporation isotopique.
	En métabolomique, les données extraites lors d'une analyse de spectrométrie de masse Figure 1.12 :
	couplée à la chromatographie sont des données tridimensionnelles (communément appelées
	features), qui sont caractérisées par leur temps de rétention (RT), leur ratio masse sur charge
	m/z, et leur intensité (abondance). Dans les études isotopiques, les abondances de chaque
	isotopologues peuvent être exprimées en valeur relative selon la formule suivante :
	𝑀𝑘 =	𝐴𝑟𝑒𝑎 𝑀𝑘 ∑ 𝑀𝑖 𝑛 𝑖=0
	n étant le nombre total d'isotopologues de la molécule et 0 ≤ Mk ≤ 1

  C représente le pourcentage global de carbone 13 de la molécule et est

	donné par la formule suivante :	
	%13𝐶 = 100 *	0 * 𝐴𝑖𝑟𝑒 𝑀0 + 1 * 𝐴𝑖𝑟𝑒 𝑀1 + ⋯ + 𝑛 * 𝐴𝑖𝑟𝑒 𝑀𝑛 𝑛
	n étant le nombre d'isotopologues de la molécule.
	Dans la suite de cette introduction, nous allons voir comment les outils isotopiques sont
	exploités dans le cadre d'études du métabolisme par LC/HRMS. Comme énoncé
	précédemment, on distingue deux grands axes d'utilisation des isotopes pour l'étude du
	métabolisme : (i) la métabolomique assistée par les isotopes et (ii) les études de traçage
	isotopique. Le travail de thèse se concentrant particulièrement sur ce deuxième axe, il sera
	détaillé plus longuement dans la suite de cette introduction.

4.1. Les standards isotopiques pour la métabolomique 4.1.1. Composés purs

  

	utilisées dans ce cadre. Toutefois, si le marché s'étend depuis quelques années en raison de la
	croissance des besoins, la disponibilité ou le coût élévé de ces molécules reste très limitant, en
	particulier pour l'étude globale du métabolome.
	De plus, un des problèmes inhérents aux standards marqués aux isotopes stables est
	qu'aucun isotope n'est pur à 100 % ; il y aura toujours des traces d'autres isotopes. La plupart
	des isotopes stables enrichis disponibles dans le commerce sont purs à 95-99 % et, bien que
	leur contenu soit certifié, l'incertitude concernant la contribution des isotopes mineurs peut être
	importante. C'est un problème pour les expériences isotopiques quantitatives, car on ne peut
	alors pas supposer qu'un seul isotope (pur) est ajouté au système biologique.
	Il s'agit de composés disponibles soit commercialement soit obtenus par synthèse
	spécifique (chimique ou enzymatique), qui peuvent être utilisés comme standards
	d'identification ou de quantification. Suivant le besoin, le marquage peut être spécifique d'une
	ou plusieurs positions bien précises au sein de la molécule, ou alors uniforme sur l'ensemble
	des positions concernées par l'élément chimique considéré. A noter que ce sont principalement
	des molécules deutérées ou marquées au 13 C, et plus récemment au 15 N, qui sont principalement

4.1.2. Standards complexes

  

	isotopes stables étant limitée et leur coût élevé, des techniques de marquage in vivo ont été mise
	en place.
	Standard IDMS (Isotopomer Dilution Mass Spectrometry)
	La première approche a été décrite par Mashego et al. pour des analyses quantitatives
	du métabolome par spectrométrie de masse à dilution isotopique (IDMS) [Mashego et al, 2004 ;
	Wu et al, 2005]. Dans cette approche, des échantillons biologiques (cellules, bactéries) sont
	cultivés sur des milieux contenant des substrats uniformément marqués, par exemple au 13 C.
	Ces substrats sont ensuite métabolisés par l'organisme, les cellules contenant alors un mélange
	de métabolites uniformément marqués. L'intérêt de ce standard est la couverture métabolique
	qu'il propose car il contient l'ensemble des métabolites présents chez un organisme dans une
	condition donnée. Son utilisation implique certaines contraintes car il doit posséder une
	Les autres standards marqués isotopiquement sont des mélanges de molécules composition métabolique proche de l'échantillon analysé. Pour ce faire, il doit idéalement être
	marquées. Ces standards peuvent être soit des mélanges de composés purs, soit issus du produit chez le même organisme, dans les mêmes conditions de culture et en parallèle de la
	marquage chimique d'échantillons biologiques, ou encore être produits biologiquement. culture de l'organisme d'intérêt. Ces conditions peuvent être difficilement respectées car la
	production du standard IDMS est un protocole expérimental lourd [Wu et al, 2005]. Par
	• IROA-IS exemple, pour analyser le métabolisme de cellules mammifères, le standard IDMS sera
	Une stratégie de marquage spécifique des standards internes est appliquée dans le cadre préférentiellement produit à partir de levure.
	de la méthode IROA (« Isotopic Ratio Outlier Analysis »). La particularité de cette méthode est
	qu'elle s'appuie sur l'utilisation de standards internes possèdant un marquage spécifique conçu Échantillon standard « Triangle de Pascal »
	à partir de matériels marqués à 95% et 5% en 13 C pour améliorer l'annotation du métabolome Une autre stratégie consiste en la production biologique d'un échantillon de référence
	ainsi que la reproductibilité et la précision de sa quantification. Ces pourcentages marqué contenant toutes les espèces isotopiques de chaque métabolite dans une quantité
	d'enrichissement créent une signature isotopique spécifique qui est facilement identifiable par prévisible et contrôlable. Cette stratégie est valable pour différents isotopes et différents
	le logiciel ClusterFinder, qui est un logiciel d'analyse de données métabolomiques pour la organismes (ex : E. coli ou P. augusta). L'organisme en question est cultivé avec un substrat
	métabolomique ciblée et non ciblée. Les standards IROA (IROA-IS) sont disponibles marqué, au 13 C par exemple, comme seule source de carbone. La composition isotopique de ce
	commercialement (IROA technologies). Ils peuvent être ajoutés à n'importe quel type substrat est conçue pour obtenir des échantillons dans lesquels la distribution des isotopologues
	d'échantillon (cellules, tissus, biofluides) afin d'identifier et quantifier les métabolites qu'ils du carbone de tous les métabolites devrait donner les coefficients binomiaux du triangle de
	contiennent. Pascal. Cet échantillon, appelé « Triangle de Pascal », présente l'intégralité du massif
	isotopique « carboné » d'un métabolite. Le principe et la méthodologie de production de cet
	• Standards produits biologiquement échantillon a été décrit par Millard et al, 2014.
	Une stratégie alternative consiste à produire biologiquement des standards marqués
	isotopiquement. Cette méthode est adaptée dans le cas où il n'est pas possible d'avoir accès aux
	standards spécifiques pour chaque composé. La disponibilité des métabolites marqués aux

4.2. Stratégies d'utilisation des standards isotopiques 4.2.1. Evaluation de la qualité des données • Qualification d'instruments et qualité des données

  

	L'utilisation des standards marqués est une approche importante pour qualifier des
	instruments analytiques et donner une indication de la précision des résultats. Les critères
	communément utilisés pour valider les données analytiques consistent à évaluer la limite de
	détection de la méthode analytique, la précision et la justesse des mesures, la gamme dynamique
	et la gamme de linéarité. La spécificité liée aux approches par marquage isotopique est que
	l'ensemble du massif isotopique est détecté, ce qui augmente le risque de contamination ou de
	chevauchement des signaux de masse (par exemple si un isotopologue marqué d'un composé
	est un isobare du M0 d'un autre composé). Les approches isotopiques nécessitent donc la
	validation des mesures sur l'ensemble des isotopologues des molécules d'intérêts.
	Dans cet optique, l'échantillon du Triangle de Pascal (PT) est un atout précieux. Cet
	échantillon contient tous les isotopologues d'un métabolite en quantités connues (et prévisibles)
	et suffisantes. Son utilisation au cours d'une expérience métabolomique permet d'évaluer des
	protocoles expérimentaux complets (de l'échantillonnage au traitement des données),
	d'identifier l'origine de contaminations ou encore d'évaluer différentes plateformes analytiques
	[Millard et al, 2014 ; Heuillet et al, 2018]. Pour ce faire, l'échantillon PT est analysé et les
	profils isotopiques de ses métabolites sont extraits. Par comparaison du profil mesuré (et
	corrigé) avec le profil isotopique théorique du Triangle de Pascal (Figure 1.14A), il est possible
	d'évaluer et de valider les performances de la méthode analytique. La validation des mesures
	isotopiques s'appuie sur deux types de critères de validation : des critères communs à la
	validation classique et d'autres spécifiques à l'analyse des isotopologues (Figure 1.14B)
	[Heuillet et al, 2018]. Une méthodologie exploitant ces différentes mesures de qualité a été
	décrite par Heuillet et al. pour qualifier des techniques instrumentales [Heuillet et al, 2018].
	L'utilisation de cet échantillon a été étendu aux approches non-ciblées pour optimiser
	les paramètres de logiciels d'extraction automatique et valider les données isotopiques générées
	par ces approches. Cette application est illustrée dans le Chapitre 2 de ce manuscrit de thèse
	[Butin et al, 2022].

Figure 1.

14 : Stratégies d'utilisation de l'échantillon Triangle de Pascal pour l'évaluation des données isotopiques. A. Principe global d'évaluation des données par comparaison des profils isotopiques mesurés (et corrigés) et des profils isotopiques prédits suivant la loi binomiale du triangle de pascal. L'abondance relative Mk de l'isotopologue ayant incorporé k atomes de 13 C est donnée par l'équation ci-dessus. n est le nombre total d'atomes de carbone et p l'abondance des isotopes 13 C. ( 𝑛 𝑘 ) sont les coefficients binomiaux et le terme "p k -(1 -p) n-k " est la proportion de chaque forme isotopique qui compose l'isotopologue. B.

  Protocole et critères d'évaluations proposés par Heuillet et al, 2018 pour évaluer les méthodes d'analyses isotopiques par MS.

	observée est trop importante, les données sur les métabolites peuvent être normalisées sur la
	base de cet étalon interne. Cette stratégie permet de normaliser les concentrations de métabolites
	entre un même ensemble d'échantillons ou entre différents batchs analytiques. Elle est
	notamment utilisée lors d'analyses de cohortes biologiques, qui se répartissent sur des temps
	d'étude relativement longs et qui nécessitent d'aligner les différents batchs analytiques pour
	• Normalisation des données
	Les standards isotopiques peuvent également être utilisés pour normaliser les données.
	Dans le cadre d'analyses LC/HRMS ciblées ou non-ciblées, les intensités et les temps de
	rétention chromatographiques peuvent subir une dérive temporelle. Idéalement, les données
	doivent être acquises dans les mêmes conditions et le même jour afin de minimiser ces
	variations. Malgré tout, il peut être difficile de comparer les mesures entre plusieurs études ou
	entre différents instruments. L'incorporation en amont de l'analyse d'un standard marqué dans
	les échantillons permet de suivre cette dérive analytique. Lorsque la variation d'intensité

chaque signal et de générer des formules moléculaires putatives, aidant ainsi à déterminer la composition élémentaire des précurseurs.

  

	. Dans
	de très nombreux cas, la formule élémentaire n'est pas suffisante pour identifier avec précision
	les métabolites. Des stratégies de marquage alternatives peuvent être utilisées comme
	l'utilisation de marquage partiel pour faciliter l'identification des métabolites sur la base des
	connaissances préalables des voies biochimiques [Creek et al, 2012]. D'autre part,
	l'identification structurale en spectrométrie de masse étant généralement réalisée via des
	approches MS 2 ou MS n , le marquage peut aider à l'interprétation des spectres de fragmentation
	résultants. Neumann et al, proposent une approche combinant le marquage et la spectrométrie
	de masse en tandem pour déterminer de manière automatique la composition de fragments
	d'ions via le logiciel FragExtract (Figure 1.16) [Neumann et al, 2014 ; Bueschl et al, 2017].
	Cette approche repose sur l'utilisation d'un mélange d'échantillons non marqués (P) et
	uniformément marqués au 13 C (P'). La différence de masse entre les ions fragments résultant
	du composé natif et du composé marqué permet d'attribuer le nombre d'atomes de carbone à
	Figure 1.16 : Principe du logiciel FragExtract. Illustration tirée de Bueschl et al ; 2017

4.2.3. Méthodes de quantification

  

	présent dans l'échantillon. Cela permet a minima une quantification relative lorsque l'on
	compare plusieurs échantillons entre eux, à condition d'ajouter la même quantité de standard
	La quantification vise à mesurer les quantités ou les concentrations absolues des IDMS à chacun (Figure 1.17). Si la quantité du métabolite marqué dans le standard IDMS est
	métabolites dans les échantillons analysés. Elle peut être réalisée par des méthodes de connue, on peut alors appliquer une règle de trois pour calculer la quantité du composé dans
	quantification utilisées classiquement en biochimie analytique (standards externes ou internes), l'échantillon. Une façon de quantifier le composé marqué dans le standard IDMS est d'ajouter
	mais dans le cas de la métabolomique qui vise à mesurer plusieurs centaines de composés en une quantité connue du composé non marqué (« contre-quantification »).
	une seule analyse, des stratégies plus spécifiques ont été développées.
	Un standard externe n'est pas ajouté à l'échantillon mais il est analysé indépendamment
	avec la même méthode. Il s'agit soit de la molécule d'intérêt, soit d'un composé très proche.
	Une courbe d'étalonnage permet de mesurer le coefficient de réponse du système analytique
	pour le composé d'intérêt pour l'appliquer aux échantillons. Cette approche a l'inconvénient de
	ne pas tenir compte des rendements d'extractions des composés et des effets de matrice
	particulièrement importants en LC-MS. Pour tenir compte de ces différents effets, une quantité
	connue de standard interne peut être ajoutée à l'échantillon. Il s'agit soit d'une molécule ayant
	un comportement proche à l'extraction et à l'analyse, soit de la même molécule marquée
	isotopiquement ce qui est généralement la meilleure option puisqu'on considère que la présence
	de l'isotope n'a pas d'effet significatif sur les propriétés physico-chimiques de la molécule. Les
	deux formes, marquées et non marquées, se comportent de la même manière tout au long du
	protocole analytique et possèdent le même facteur réponse. La distinction entre les deux se fait
	sur le spectre de masse, puisque les deux formes n'ont pas la même masse moléculaire. La
	quantité ajoutée du standard interne étant connue, une simple règle de trois permet d'avoir la
	quantité du composé dans l'échantillon. Ce principe de quantification par dilution isotopique
	est assez ancien et très fiable. Sa limite principale pour la métabolomique est qu'il faut disposer
	idéalement d'une forme marquée de chacun des composés d'intérêt, c'est-à-dire jusqu'à
	plusieurs centaines, ce qui n'est pas envisageable par addition individuelle de chaque standard.
	Quantification par Isotopomer Dilution Mass Spectrometry (IDMS)
	Il s'agit d'une approche développée par l'équipe de Joseph Heijnen (Delft University,
	Pays-Bas) au milieu des années 2000. Elle repose sur le principe de dilution isotopique,
	généralisé à l'ensemble d'un métabolome. Comme cela a été vu précédemment (section 4.1.2),
	le standard IDMS repose sur la production biologique d'un échantillon dont tous les métabolites
	sont marqués isotopiquement. Cela signifie que pour chacun des métabolites d'intérêt contenu
	dans un échantillon non marqué, le standard IDMS contient son équivalent marqué. En ajoutant
	le standard IDMS à l'échantillon, on obtient ainsi un standard interne pour chaque métabolite

  voies, lorsque les incorporations isotopiques observées ne peuvent pas être expliquées par des voies déjà connues. Comme exemple on peut citer la démonstration de voies métaboliques entièrement nouvelles telles que la voie de l'éthyl-malonyl-CoA dans certaines bactéries méthylotrophes[START_REF] Peyraud | Demonstration of the ethylmalonyl-CoA pathway by using 13C metabolomics[END_REF], mais aussi l'identification de nouvelles combinaisons de réactions déjà bien connues telle qu'une nouvelle voie du catabolisme du glucose chez E. coli[Fisher and Sauer, 2003].

1.26, le devenir du C1 du glucose est différent dans chacune des voies glycolytiques. Il donne le C3 du pyruvate dans la glycolyse classique, le C1 dans la voie d'Entner-Doudoroff, et aucun par la voie de pentoses-phosphate. Le devenir spécifique des atomes de carbone au cours d'une réaction ou d'une voie métabolique est appelée transition atomique (atom mapping en anglais). Dans ce contexte, les données de traçage permettent non seulement de montrer l'activité de voies métaboliques connues, mais aussi, de découvrir de nouvelles

5.2.1.4. Compartimentation De

  [START_REF] Buescher | A roadmap for interpreting 13C metabolite labeling patterns from cells[END_REF]. Ainsi, dans des conditions expérimentales où le milieu de culture n'apporte ni alanine ni lactate, le marquage du lactate reflète probablement celui du pyruvate cytosolique, tandis que le marquage de l'alanine reflète mieux le marquage du pyruvate mitochondrial.

nombreux métabolites et de nombreuses réactions sont présents dans plusieurs compartiments intracellulaires ce qui ajoute une couche de complexité à l'analyse du métabolisme. La plupart des techniques actuelles ne permettent pas de distinguer la provenance des métabolites concernés et fournissent un profil de marquage moyen d'un métabolite sur l'ensemble des compartiments qui le contient. Cependant selon le métabolite concerné, il est parfois possible de déduire les profils de marquage spécifiques à un compartiment à partir du marquage des métabolites qui sont produits exclusivement dans ce compartiment. Par exemple, le pyruvate se trouve à la fois dans le cytosol et dans les mitochondries et produit directement le lactate et l'alanine. L'enzyme responsable de la production du lactate à partir du pyruvate (lactate déshydrogénase) est une enzyme strictement cytosolique tandis que la production d'alanine est essentiellement liée au transporteur mitochondrial du pyruvate

[START_REF] Adeva | Enzymes involved in l-lactate metabolism in humans[END_REF][START_REF] Vacanti | Regulation of substrate utilization by the mitochondrial pyruvate carrier[END_REF] 

Réseaux métaboliques : de la reconstruction à la modélisation pour le calcul de flux 6. Les réseaux métaboliques

  . Cependant, les approches ciblées ne permettent pas de couvrir l'ensemble du réseau métabolique, ce qui Elle est actuellement compliquée par le nombre généralement élevé de composés, dont beaucoup restent non identifiés[Weindl et al, 2015].Les données isotopiques issues d'expériences de traçage peuvent également être utilisées dans le cadre d'approches de fluxomique. La fluxomique est la mesure de l'ensemble des flux au sein du système métabolique. Le calcul des flux métaboliques est possible grâce au développement de modèles mathématiques permettant de convertir les données de marquage en valeurs de flux métaboliques. Les différentes approches de fluxomique, et plus spécifiquement celles reposant sur le marquage isotopique, sont développées plus loin dans cette introduction. Au préalable, la notion de réseau métaboliques est introduite.

	5.2.3. Fluxomique
	Comme cela a été introduit au début du chapitre 1, l'analyse des réseaux métaboliques
	est une composante essentielle de la biologie des systèmes. Elle vise à à établir le réseau, à
	analyser sa topologie et ses propriétés fonctionnelles (notamment celles qui émergent de
	l'organisation en réseau), et à le modéliser soit pour expliquer le comportement métabolique
	observé (modèles explicatifs), soit pour prédire son comportement face à des modifications
	génétiques ou à de perturbations environnementales (modèles prédictifs).

limite leur intérêt dans le cadre d'études systémiques. Elles limitent l'analyse à la partie du réseau accessible à partir de la méthode analytique utilisée. Même si les méthodes ciblées actuelles permettent de mesurer le marquage d'une centaine de métabolites, elles sont loin de couvrir la dimension des réseaux métaboliques cellulaires. Le développement récent des approches non ciblées permet de pallier en partie à ce problème, dans la mesure où elles donnent accès à un nombre bien plus important de métabolites, pouvant aller jusqu'à plusieurs centaines de composés dans une seule analyse. Si la couverture métabolique apportée par ces approches n'est pas encore totale, elles offrent cependant la possibilité d'explorer beaucoup plus largement les réseaux métaboliques. On assiste ainsi actuellement à un développement méthodologique important dans le domaine de l'analyse non ciblée dans le contexte d'expériences de marquage isotopique. Cela concerne aussi bien les aspects analytiques, pour augmenter la couverture du métabolome, que le traitement des données. En effet, comme énoncé précédemment, si l'extraction des données de marquage est mature dans les cas des approches ciblées, ce n'est pas le cas pour les approches non ciblées. Des outils logiciels permettant la détection, et l'extraction automatique des isotopologues sont apparus, mais restent encore à améliorer en termes de fonctionnalité, d'efficacité et d'intuitivité. De même, un aspect important pour la valeur biologique de ces données est la qualité des mesures isotopiques obtenues. En effet l'interprétation métabolique (biologique) des résultats dépend de manière très importante de la précision des mesures et pour cela il devient indispensable de développer des outils de validation adaptés aux méthodes analytiques utilisées pour l'analyse du marquage isotopique, qu'elles soient ciblées ou non. Enfin, l'interprétation des résultats en termes de flux métaboliquesou de variation de flux métaboliquesnécessite une compréhension approfondie du métabolisme cellulaire.

PARTIE II :

Dans la suite de ce chapitre, les réseaux métaboliques vont être introduits, ainsi que les différentes approches de reconstruction et de modélisation permettant d'analyser leur topologie et leur fonctionnement.

6.1. Introduction aux réseaux métaboliques

L'unité de base du réseau métabolique est la réaction, qui correspond à la conversion d'un ou plusieurs métabolites d'entrée (substrats de la réaction) en un ou plusieurs métabolites de sortie (produits de la réaction). Ces réactions possèdent différentes propriétés. Entre autres elles peuvent être spontanées ou catalysées par des enzymes et peuvent être réversibles ou irréversibles dans les conditions étudiées. En théorie, toutes les réactions peuvent être réversibles, c'est-à-dire se dérouler dans un sens ou dans le sens inverse. Cependant la réaction inverse peut être limitée lorsqu'elle demande des conditions impossibles (concentration du produit supérieure à sa limite de solubilité), lorsqu'elle présente un coût énergétique très élevé ou encore lorsque le produit est immédiatement consommé.

Une série de réactions qui remplit une fonction de conversion déterminée, par exemple une séquence particulière de réactions au cours desquelles un substrat initial est transformé en un produit spécifique, est appelée une voie métabolique. Ces voies métaboliques permettent de comprendre comment un métabolite donné peut être transformé en un autre métabolite et décrivent les différentes étapes qui prennent part à ce processus. A titre d'exemple, la glycolyse, le cycle de Krebs et la voie des pentoses-phosphates sont des voies régulièrement analysées dans l'étude du métabolisme central et énergétique d'un organisme (Figure 1.29). Les voies métaboliques sont reliées entre elles et peuvent partager des réactions et des métabolites dits métabolites intermédiaires. Elles forment un maillage de réactions interconnectées et interdépendantes qui constituent le réseau métabolique (Figure 1.29). Ce dernier représente la carte métabolique complète d'un organisme, cataloguant l'ensemble des potentialités de conversion de l'organisme étudié.

Figure 1.29 : Réseau métabolique et principales voies du métabolisme central et energétique. Réseau métabolique Recon3 chez l'humain, extrait de https://www.vmh.life/#reconmap et principales voies métaboliques : glycolyse, voies des pentoses phosphates et voie Entner-Doudoroff (Illustration adaptée de Tatsukami, 2013).

6.2.

Reconstruction des réseaux métaboliques

  La reconstruction de réseau métabolique est une étape clé de la biologie des systèmes et consiste à identifier les réactions pouvant se produire dans un organisme donné. L'approche la annotation incomplète ou à des erreurs d'annotations[START_REF] Monk | Genome-scale metabolic reconstructions of multiple Escherichia coli strains highlight strainspecific adaptations to nutritional environments[END_REF]. D'autre part l'annotation par homologie de séquence reste basée sur de fortes hypothèses car on suppose que deux enzymes homologues issues de deux organismes différents catalysent les mêmes réactions, ce qui n'est pas forcément le cas. Les méthodes d'annotations ne prennent pas en compte les gènes peu ou pas homologues et qui n'ont pas été identifiés, ou les réactions spontanées qui ne sont associées à aucun gène. Ces erreurs aboutissent soit à l'inclusion dans le réseau GSMN de réactions qui n'existent pas dans l'organisme étudié ou, à l'inverse, l'absence de réactions présentes chez celui-ci. La propagation des annotations entre génomes peut conduire à la propagation des erreurs d'annotations, cumulées à chaque transfert.

	plus commune pour reconstruire un réseau métabolique est la reconstruction de réseau à
	l'échelle du génome. Cette reconstruction est basée en particulier sur l'annotation du génome
	et sur la description des activités enzymatiques de l'organisme considéré. Les réseaux
	métaboliques à l'échelle du génome (GSMN pour genome-scale metabolic network)
	représentent des bases de connaissances structurées sur le métabolisme qui rassemblent
	l'ensemble des réactions métaboliques qui peuvent avoir lieu dans un organisme particulier. Le
	développement de ces réseaux GSMN et l'émergence de nouvelles méthodes d'analyse in silico

(analyse topologique, modélisation métabolique) ont élargi les capacités d'étude du métabolisme. Les réseaux GSMN de divers organismes sont également largement utilisés dans diverses applications industrielles et médicales

[START_REF] Durot | Genome-scale models of bacterial metabolism: reconstruction and applications[END_REF][START_REF] Kim | Current state and applications of microbial genome-scale metabolic models[END_REF] Gu et al, 2019

].

6.2.1. Reconstruction d'un réseau métabolique à l'échelle du génome

La plupart des réseaux métaboliques sont reconstruits à partir de la séquence complète de leur génome. Thiele & Palsson présentent une méthode globale de reconstruction de réseau métabolique en essayant d'homogénéiser différents protocoles

[START_REF] Thiele | A protocol for generating a high-quality genome-scale metabolic reconstruction[END_REF]

.

Le processus de reconstruction métabolique d'un organisme repose en premier lieu sur la reconstruction automatique d'une ébauche de réseau

(Figure 1.30)

. Cette ébauche est basée sur l'identification et l'annotation fonctionnelle des gènes codants pour les enzymes métaboliques présentes dans le génome de l'organisme. L'ensemble de ces données permet de déterminer quelles enzymes peuvent être présentes dans l'organisme, et ainsi quelles réactions peuvent s'y dérouler. L'annotation de ces gènes est généralement obtenue par homologie de séquence avec celle de gènes déjà annotés dans un organisme similaire. La première ébauche de réseau est reconstruite par association de toutes les réactions catalysées par les enzymes ainsi identifiées. Des outils automatiques ont été développés pour faciliter ce processus de reconstruction en faisant correspondre les gènes du génome aux réactions associées aux enzymes identifiées (PathwayTools

[START_REF] Karp | Pathway Tools version 23.0 update: software for pathway/genome informatics and systems biology[END_REF]

, GEMSystem

[START_REF] Arakawa | GEM System: automatic prototyping of cell-wide metabolic pathway models from genomes[END_REF]

]…). Cependant de nombreuses erreurs peuvent se produire lors de l'élaboration de l'ébauche du réseau métabolique. Il est souvent considéré comme (très) incomplet et présente des lacunes liées à une L'ébauche du réseau métabolique doit ensuite être vérifiée et complétée. La seconde étape du processus de reconstruction consiste donc à affiner le modèle pour ajouter ou corriger les informations que les procédures automatiques ont manqué dans la reconstruction initiale du réseau. Cette étape de correction est principalement effectuée de manière manuelle sur la base des connaissances biochimiques acquises sur l'organisme ou sur des organismes proches via des bases de données génétiques ou biochimiques ou à partir de la littérature. Alors que l'étape de reconstruction automatique est rapide, le processus de correction manuelle demande beaucoup de travail et est parfois laborieux. Certaines méthodes automatiques visant à assister ce processus sont également utilisées pour affiner les réseaux en complétant les réactions manquantes (GapFind/GapFill [Satish Kumar et al, 2007], algorithme SMILEY [Reed et al, 2006]…) Le réseau reconstruit à l'échelle du génome (GSMN) fournit une bonne représentation du métabolisme et rassemble les réactions connues pour avoir lieu dans un organisme. Ce réseau peut être converti en modèle mathématique (GSM -Genome Scale Model) et analysé via différentes approches (voir ci-dessous) pour analyser la topologie du réseau, répondre à diverses questions sur les capacités fonctionnelles des organismes et expliquer des observations expérimentales. Les incohérences déterminées entre les prédictions du modèle et les observations expérimentales vont conduire à un nouveau cycle de raffinement manuel. Ce processus itératif de raffinement se poursuit jusqu'à ce que le réseau atteigne la performance désirée déterminée par le constructeur du modèle.

Stratégies expérimentales de reconstruction des réseaux métaboliques Dans

  [START_REF] Monk | iML1515, a knowledgebase that computes Escherichia coli traits[END_REF]. Cette évolution est liée à une meilleure connaissance et à la disponibilité accrue des données biologiques au cours des dernières années.L'utilisation d'un language standard de description permet de faciliter l'utilisation et le partage de ces réseaux. On retrouve différents formats pour décrire les réseaux métaboliques, notamment le format SBML (« System Biology Markup Language ») qui est le plus utilisé. Ce format liste l'ensemble des métabolites intervenant dans le réseau ainsi que la liste des réactions avec leur substrats et leurs produits[Hucka et al, 2003].

	6.2.2.
	recensent les réseaux
	métaboliques de différents organismes. On y retrouve notamment le dernier réseau GSMN de
	l'Homme Recon3D composé de 5835 métabolites, 228 gènes et plus de 10600 réactions (Figure
	1.29) [Brunk et al, 2018]. On peut également retrouver plusieurs réseaux par organisme, par
	exemple la base de données BiGG models propose 20 modèles pour E. coli de souches
	différentes [King et al, 2016; Ye et al, 2022]. Ces réseaux restent en constante évolution. A titre

d'exemple, le réseau métabolique d'E. coli a vu son contenu évoluer entre le premier modèle iJE660 édité dans les années 2000 qui contenait 627 réactions et 438 métabolites

[Edwards & Palsson, 2000] 

et le modèle iML1515 publiée en 2017 recensant 2719 réactions et 1192 métabolites [cette section sont abordées les approches expérimentales qui permettent de reconstruire des réseaux métaboliques. Ces approches peuvent être utilisées soit en complément de la reconstruction in silico, pour compléter ou corriger les réseaux GSMN, soit en tant que tel pour construire des réseaux métaboliques sur des bases purement expérimentales. En cohérence avec le niveau systémique de regard sur le métabolisme qui est envisagé dans cette introduction, ne sont abordées dans cette partie que les approches qui permettent d'accéder à une information globale sur le métabolisme. Les approches plus spécifiques (réductionnistes), bien que très utiles pour aborder certains aspects du métabolisme, ne seront pas abordées.

6.2.2.1.

Apport des données omiques à la reconstruction des réseaux GSMN

  -ou d'appuyerla présence réelle de la réaction. La métabolomique est également devenue un outil largement utilisé pour identifier des fonctions potentielles de gènes non annotés ou mal annotés. Il existe deux stratégies pour cela : celle basée sur des associations gène-métabolome et celles qui utilisent des approches de profilage métabolique[Ryu et al, . L'utilisation de la spectrométrie de masse présente plusieurs avantages pour ce type d'approche. Tout d'abord leur haute sensibilité permet de détecter des composés présents en très faible quantité. De plus l'utilisation d'approches non-ciblées permettent de couvrir une grande partie du métabolome. Enfin, les méthodes de spectrométrie de masse en tandem sont un atout pour l'identification de métabolites inconnus.

	2015].					
	Le second objectif est de reconstruire le réseau métabolique contextuel. Il s'agit du
	réseau métabolique réellement en place dans le système biologique étudié (réseau cellule-
	spécifique, tissu-spécifique, etc) et dans les conditions physiologiques considérées. Comme
	cela est mentionné dans la section précédente, les réseaux GSMN sont principalement établis à
	partir de données d'annotation du génome et représentent l'ensemble des réactions qui peuvent
	Approches	pilotées	par	les	données	(data-
	driven approaches)				
	Enfin, les données omiques peuvent être aussi exploitées dans le cadre non plus de la L'objectif de ces approches est d'identifier le plus grand nombre possible de métabolites, qui
	reconstruction des réseaux, mais dans celui de la modélisation du métabolisme. Elles apportent constituent les éléments du réseau, et d'établir les liens de conversion (réactions) qui peuvent
	des contraintes expérimentales qui permettent d'affiner les modèles et d'optimiser leur exister entre eux.
	Les données expérimentales permettent en effet de montrer la réalité d'une annotation, ou de exploitation. Cela sera détaillé dans le chapitre 7. Les réseaux expérimentaux sont principalement dérivés de données métabolomiques
	compléter les données d'annotation [Machado and Herrgard, 2014]. Par exemple, les données obtenues via des techniques analytiques haute résolution. Bien que la spectroscopie RMN soit

L'émergence des méthodes « -omiques » a permis l'accès à des informations globales (à l'échelle du système) concernant l'expression des gènes, des protéines ou encore l'abondance des métabolites dans des conditions spécifiques. L'intégration de ces données dans le cadre de la reconstruction des réseaux métaboliques s'incrit dans plusieurs objectifs complémentaires.

Le premier objectif est celui de la validation ou de la correction expérimentale des réseaux reconstruits in silico à partir des données d'annotation du génome (réseaux GSMN). de métabolomique apportent des informations sur la nature des métabolites présents et sur leur concentrations relatives ou absolues. L'indication sur la nature des métabolites permet d'affiner et valider les réseaux métaboliques. La présence des substrats et produits d'une réaction annotée permet de valider être présentes dans l'organisme. Ils représentent le potentiel métabolique global de l'organisme. Cependant, si on prend l'exemple de l'Homme, toutes les cellules humaines possèdent le même génome (et donc le même potentiel métabolique global), mais l'expression de celui-ci diffère largement d'une cellule à une autre ou, pour la même cellule, d'une condition physiologique à une autre. L'équipement enzymatique en place dans une cellule donnée dépend donc à la fois du type cellulaire concerné mais aussi des conditions environementales (au sens large) dans lesquelles elle se trouve. Le même raisonnement s'applique à l'échelle tissulaire. En ce sens, le métabolisme est le produit de l'interaction entre le génome et l'environnement. Le réseau contextuel est donc un sous-ensemble du réseau global (un sous-réseau), qui représente le réseau exprimé dans le contexte étudié par rapport au réseau potentiel. Il peut être reconstruit à partir du réseau GSMN par suppression des réactions inactives, une opération qui peut être effectuée par différents algorithmes à partir par exemple des niveaux d'expression des gènes, de la présence de protéines ou de métabolites, de la disponibilité des données expérimentales et de la connaissance de la littérature. En restant dans le cas du réseau métabolique humain, l'exploitation des données « -omiques » a conduit à la construction de plusieurs modèles métaboliques spécifiques (Figure 1.31) [Ryu et al, 2015].

Figure 1.31 : État des réseaux métaboliques humains génériques et contextuels rapportés en 2015. Pour ces modèles, les nombres de gauche, du milieu et de droite indiquent le nombre de gènes, de réactions et de métabolites, respectivement. Les nombres marqués d'un astérisque ont été obtenus par traitement direct des fichiers SBML respectifs, car les statistiques du réseau n'étaient pas évidentes dans la littérature d'origine. Illustration tirée de Ryu et al, 2015.

6.2.2.2.

Le réseau métabolique contextuel peut aussi être reconstruit directement à partir des données elles-mêmes (reconstruction pilotée par les données), sans appui sur le réseau GSMN.

La puissance actuelle des techniques analytiques permet en effet la mise en place de méthodes de reconstruction métabolique alternatives permettant de reconstruire des réseaux métaboliques à partir de données expérimentales. Contrairement aux réseaux GSMN, ces approches de reconstruction pilotées par les données sont basées sur l'analyse directe du métabolome. très utilisée en métabolomique, les réseaux expérimentaux présentés ci-dessous sont basés sur des données obtenues par spectrométrie de masse haute-résolution (HRMS) via des analyses non-ciblées

  résolution acquises via des analyses non-ciblées. Les MDiNs utilisent les valeurs de masse en tant que noeuds du réseau. Les différences de masse définies entre ces différentes valeurs sont quant à elles utilisées pour établir les arêtes du réseau. Cette approche permet d'obtenir un réseau au sein duquel tous les « potentiels » métabolites détectés au cours de l'analyse sont connectés les uns aux autres sur la base de leur différence de masse. Ce réseau peut être très difficile à exploiter car tous les métabolites détectés sont interconnectés et dans cette représentation, deux métabolites qui ne seraient pas liés biochimiquement seraient tout de même reliés. Une solution pour réduire les liens non pertinents entre les métabolites est de filtrer les liens ayant une faible corrélation. D'autres filtres, par exemple basés sur des variations prévisibles de temps de rétentions sont également exploitables pour améliorer la précision du réseau reconstruit

2.3. Stratégie alternative de reconstruction métabolique ab initio

  Deux métabolites sont liés si la valeur de corrélation atteint un niveau considéré comme significatif. Le plus souvent, le calcul des corrélations s'effectue par le coefficient de corrélation de Pearson. Un des premiers réseaux de corrélation a été établi par Ursem et al. à l'aide de données métabolique recueillies sur un ensemble varié de génotypes de tomates par GC/MS[START_REF] Ursem | A correlation network approach to metabolic data analysis for tomato fruits[END_REF]. Cependant les réseaux obtenus sont généralement denses et complexes car ils prennent en compte des corrélations indirectes. En effet deux métabolites qui présentent une corrélation forte avec un autre métabolite seront également reliés entre eux. Une autre méthode consiste à utiliser une corrélation partielle basée sur des modèles graphiques gaussiens qui génère des réseaux plus robustes et plus stables[START_REF] Krumsiek | Gaussian graphical modeling reconstructs pathway reactions from high-throughput metabolomics data[END_REF] ; De plus, l'utilisation de techniques à haute résolution ne garantit pas l'identification précise d'un métabolite et une masse peut en définitive correspondre à plusieurs, voire un très grand nombre de métabolites[START_REF] Kind | Seven Golden Rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry[END_REF]. Cet ensemble de variables peut ajouter de l'imprécision dans les réseaux métaboliques produits à partir des données expérimentales. La combinaison de données génomiques et métabolomiques pour un même organisme peut améliorer considérablement la qualité des réseaux métaboliques reconstruits.La reconstruction de réseaux métaboliques est une démarche puissante pour analyser le fonctionnement du métabolisme à l'échelle du réseau. Les approches de reconstruction présentées ci-dessus (GSMN et plus récemment les modèles de reconstructions expérimentales) ont montré leurs avantages pour l'analyse du métabolisme et l'étude de la relation topologiefonction au sein du réseau.Cependant, les réseaux obtenus restent relativement incomplets et présentent des lacunes : métabolites ou réactions manquantes, manque d'information sur la réalité de la réaction, manque d'identification des métabolites, compléments d'approches compliqués et chronophages pour accéder au réseau contextuel complet (c'est-à-dire au réseau actif dans un type cellulaire spécifique ou dans un contexte donné). De plus ces approches ne nous permettent

	Benedetti et al, 2020].

6.2.2.3. Avantages et limites de ces approches

Ces différentes approches sont les premières méthodes qui proposent une reconstruction de réseau métabolique basée sur les données expérimentales. Un grand avantage d'une reconstruction de réseau métabolique basée sur la métabolomique est qu'elle détecte les réactions non enzymatiques et qu'elle ne dépend pas de la disponibilité de l'annotation du génome. De plus, ces approches permettent d'accéder directement à un sous-réseau spécifique au contexte pour une cellule/tissu donné.

Cependant, les approches décrites ici dépendent de la précision et de la sensibilité des techniques analytiques employées. Certaines de ces masses peuvent également provenir d'artefacts et, en l'absence de procédure de filtration des données, peut induire des informations non pertinentes dans le process de reconstruction du réseau. Elles peuvent également générer de nombreux faux positifs, notamment en ce qui concerne les liens entre les métabolites. Par exemple, l'absence de certains intermédiaires métaboliques peut conduire à l'omission de certaines voies.

Les réseaux reconstruits à l'échelle du génome et les réseaux expérimentaux sont liés. Les premiers peuvent fournir une aide pour aider à interpréter et analyser les réseaux expérimentaux, tandis que les seconds peuvent être utilisés pour affiner le GSM en identifiant des métabolites potentiellement manquants dans le réseau.

6.

pas d'obtenir le réseau métabolique d'organismes complexes, méconnus ou totalement inconnus pour lesquels l'accès à l'annotation du génome n'est pas garanti. Une stratégie alternative consiste à reconstruire un réseau métabolique ab initio à partir d'expériences de marquage isotopique non-ciblées pour donner accès directement au réseau actif dans une condition donnée.

Un des objectifs principaux de cette thèse est de développer une approche de reconstruction métabolique ab initio, basée sur des stratégies d'analyses non-ciblées de marquage isotopique dynamique par couplage chromatographie liquidespectrométrie de masse haute-résolution (LC-HRMS). La mise en place de cette approche a nécessité le développement d'outils d'intégration de données et de modélisation métabolique novateurs.

Son intérêt principal est qu'elle inclue une dimension isotopique qui est un avantage non négligeable pour s'assurer de la réalité des réactions biochimiques identifiées entre différents métabolites. Comme il a été démontré au début de ce chapitre, l'utilisation d'isotopes a

  La visualisation d'un réseau est une méthode essentielle pour pouvoir les exploiter, les analyser, générer des hypothèses testables sur des données biologiques et en extraire des connaissances sur leur fonctions biologiques. Le défi consiste à créer des représentations visuelles d'une partie ou de l'ensemble des réactions et des métabolites constituant les réseaux métaboliques. Les outils de visualisation des réseaux peuvent avoir plusieurs fonctions tels que représenter un réseau métabolique à l'échelle du génome, intégrer et cartographier des données omiques et analyser les réseaux via des modes de calculs automatiques intégrés dans l'outil. Il existe un très grand nombre de logiciels ou d'applications web permettant de représenter et analyser les réseaux métaboliques. Nous évoquons dans cette section quelques uns des outils existants et leur fonctionnalité.

Un des outils les plus utilisés pour réaliser ces fonctions est le logiciel open-source

Cytoscape

[START_REF] Shannon | Cytoscape: a software environment for integrated models of biomolecular interaction networks[END_REF]

. Il permet de visualiser des réseaux complexes et d'intégrer n'importe quel type de données. Cytoscape s'est imposé dans la communauté scientifique car il fournit une API (interface de programmation d'applications) bien documentée, qu'il est libre et qu'il propose un nombre croissant d'applications qui visent à traiter les données. Cytoscape offre aussi la possibilité d'interaction directe avec des bases de données.

  que ces derniers, ce qui est avantageux en termes de sensibilité et de précision des mesures des marquage isotopique. Elle permet également de mesurer la simplification des

	Sur le plan expérimental, le traceur isotopique n'est introduit qu'une fois l'état
	stationnaire métabolique atteint, puis des échantillons sont collectés après différents temps pour
	équations mathématiques linéaires. mesurer l'incorporation du traceur isotopique au cours du temps. Même si les réseaux
	L'analyse 13 C-MFA a été largement appliquée pour mieux comprendre le métabolisme métaboliques peuvent être de taille similaire, les temps de simulation pour l'approche
	d'organismes tels que E. coli ou Saccharomyces cerevisiae. Elle a notamment permis de instationnaire sont généralement beaucoup plus longs en raison du nombre accru de points de
	découvrir de nouvelles voies métaboliques ou des fonctions enzymatiques qui n'avaient pas été mesure qui doivent être simulés.
	prédites par les annotations du génome. Parmi les récentes découvertes chez E. coli on peut L'approche instationnaire permet d'accéder à de nouvelles informations sur la topologie
	citer la découverte d'une nouvelle réaction dans la voie des pentoses phosphates [Nakahigashi des réseaux métaboliques et sur leurs activités. Elle offre la possibilité de quantifier le recyclage
	et al., 2009] ou la découverte d'un flux inverse du pyruvate vers le phosphoenolpyruvate [Long des pools de réserve ou encore de mesurer de manière indirecte des pools métaboliques non
	et al, 2017]. mesurables par des méthodes analytiques [Nöh and Wiechert, 2011]. Les approches
	instationnaires permettent également de mesurer les flux métaboliques chez des organismes
	autotrophiques ou des organismes à croissance lente ou nulle chez lesquelles la réalisation
	d'expériences isotopiques stationnaires n'est pas informative (ex : organismes méthylotrophes)
	[Anh et Antoniewitz, 2013].					
	la dimension temporelle et de collecter expérimentalement les cinétiques de propagation de
	l'isotope au sein du réseau (x(t)). Les techniques de régression non-linéraires des moindres dynamique peut cependant être mise en place en couplant la 13 C-fluxomique à des modèles
	nucléotides. carrés sont similaires à celles utilisées à l'état stationnaire isotopique. Cependant, en plus de cinétiques du réseau métaboliques (couplage de modèles). Dans ce cas-là, le modèle est
	L'approche stationnaire est couramment utilisée par sa simplicité de mise en place l'estimation des flux métaboliques, les tailles des pools de métabolites sont ajustées (C) pour paramétré grâce aux caractéristiques cinétiques des enzymes, puis les données de
	expérimentale. Puisque le marquage isotopique est stable dans le temps, la collecte d'un seul tenir compte des données transitoire de marquage observées [Wiechert et al, 2005] : métabolomique quantitative et de marquage isotopique sont simulées pour calculer les valeurs
	échantillon est suffisante pour mesurer les profils isotopiques des métabolites. Il est également de flux. Cette approche a par exemple été utilisée pour comprendre la réorganisation du
	(6)	𝑆𝑆𝑅 = ∑	(𝑥(𝑡)-𝑥 𝑚 (𝑡))2 𝜎 𝑥 2	+ ∑	(𝑟-𝑟 𝑚 )2 𝜎 𝑟 2	+ ∑	(𝐶-𝐶 𝑚 ) 2 𝜎 𝐶

7.2.1. L'approche stationnaire

L'approche stationnaire correspond à l'exploitation de données de marquage collectées lorsque la concentration des métabolites intracellulaires est stable dans le temps (état stationnaire métabolique) et que leur composition isotopique l'est également (état stationnaire isotopique). Cela conduit à des simplifications mathématiques (les équations sont toutes linéaires) et pratiques (absence de contrainte temporelle pour la collecte d'échantillons, analyse de composés fortement concentrés, etc).

Le temps nécessaire au système biologique pour atteindre ces états stationnaires métabolique et isotopique dépend de plusieurs facteurs tels que l'activité des cellules, les pools de métabolites mesurés, les voies métaboliques concernées, le substrat utilisé comme traceur et la composition du milieu. Par exemple lors d'une expérience de marquage au

13 

C-glucose chez E. coli, l'état stationnaire isotopique est atteint en quelques secondes pour la voie de la glycolyse, en plusieurs minutes pour le cycle de Krebs et en plusieurs heures pour les possible d'exploiter le marquage des produits terminaux du métabolisme plutôt que les intermédiaires. En effet, en conditions stationnaires le marquage des produits métaboliques reflète directement celui de leurs précurseurs. Ils s'accumulent cependant de manière beaucoup plus importante Cette approche est valide pour étudier des systèmes biologiques qui se maintiennentou peuvent être maintenues -en condition d'état stationnaire métabolique suffisamment longue pour atteindre l'état stationnaire isotopique. Cependant, il existe de nombreux cas de figures pour lesquels cet état stationnaire peut être difficile à atteindre, notamment les cellules mammifères qui sont des systèmes plus complexes et peuvent mettre plusieurs jours pour l'atteindre

[START_REF] Murphy | Isotopically nonstationary 13C flux analysis of Myc-induced metabolic reprogramming in B-cells[END_REF]

. Elle ne reflète également pas la réalité physiologique, la situation d'état stationnaire étant rare dans la nature.

7.2.2. L'approche instationnaire isotopique

L'approche isotopique instationnaire correspond à des expériences réalisées en condition d'état stationnaire métabolique pour lesquelles on mesure la cinétique d'incorporation isotopique dans les métabolites. La principale différence entre avec l'approche précédente est que dans ces conditions, les équations différentielles ordinaires (ODE) décrivant la conservation de l'isotope dans le réseau ne se linéarisent pas. Il est donc nécessaire d'intégrer

7.2.3. L'approche dynamique

Il s'agit de l'approche la plus complexe puisque le système n'est ni à l'état stationnaire métabolique ni à l'état stationnaire isotopique. Sur le plan mathématique, il n'y a aucune simplification des équations stoechiométriques ni des équations isotopiques. Cela veut dire que sur le plan expérimental, il est nécessaire de mesurer à la fois la cinétique d'évolution de la concentration (par métabolomique quantitative) et de la cinétique de marquage de chacun des métabolites du réseau. Bien qu'il s'agisse de l'approche permettant potentiellement l'apport d'information le plus riche sur l'activité du réseau métabolique, elle n'est que peu exploitée directement en raison de la complexité expérimentale et de l'absence d'outils permettant de résoudre la distribution des flux sur la base seule des expériences de marquage. L'approche métabolisme du glucose des adipocytes en réponse à l'insuline

[START_REF] Quek | Dynamic 13C Flux Analysis Captures the Reorganization of Adipocyte Glucose Metabolism in Response to Insulin[END_REF]

.

2.1. Preparation of biological samples 2.1.1. Reference material: The Pascal triangle sample

  

	The 'Pascal Triangle' (PT) sample was produced biologically as described by Millard
	et al. (2014). Briefly, Escherichia coli K-12 MG1655 was grown in minimal medium with a
	mixture of unlabelled + 13 C-labelled acetate as sole carbon source. This mixture consisted of
	the four different (carbon) isotopic forms of acetate in equal proportions, i.e., 25% of U-12 C-
	acetate, 25% of 1-13 C-acetate, 25% of 2-13 C-acetate, and 25% of U-13 C-acetate. The actual
	isotopic composition of this mixture was controlled by quantitative 1 H NMR before use. A
	similar culture was performed with only unlabelled acetate to produce the unlabelled PT

sample. Cells were grown in a 500 mL Multifors Bioreactor (Infors HT, Bottmingen-Basel, Switzerland) under pH control (pH=7.0). Cell growth was monitored by measuring the optical density at 600 nm with a Genesys 6 spectrophotometer (Thermo, Carlsbad, CA, USA).

Table 2 . 1 :

 21 Cluster precision and recall for X13CMS and geoRge with a RT window of 10 s and different isotopologue mass deviations, evaluated for the 25 reference metabolites in the PT sample

		Isotopologue mass deviation (ppm)	1	2	3	5	8	10
		precision	60%	80%	84%	96%	92%	92%
	X13CMS	recall	100%	100%	100%	100%	100%	100%
	geoRge	precision recall	60% 100%	68% 100%	76% 100%	92% 100%	88% 100%	84% 100%

Table 2 .23 : Impact of parameter optimization on the extraction of data from the E. coli WT samples.

 2 Cluster precision (%) of the two programs for the 25 reference metabolites before and after parameter optimization.

		Cluster precision (%)
	Clustering software		
		Starting parameter settings	Optimized parameter settings
	X13CMS	40%	96%
	geoRge	44%	92%

Table S -1. Reference datasets.

 S 

		M4 M4 M2	233.02558 510.00231 484.96834	1087 2184 2208	79802609 2486164802 319754515	0.15 0.21 0.07
		M5 M5 M3	234.02910 511.00559 485.97165	1087 2184 2208	12746690 2972343098 744990764	0.02 0.25 0.17
	Reference metabolites Fumarate FBP	Reference Isotopologues M0 M6 M4 M0 M1 M2 M3 M4 M1 M2 M3 M4 M5 M6 M7 M8 M5 M9 M6 M10 M7 M0 M8 M1 M9	m/z 338.98810 512.00881 486.97494 115.00350 116.00685 117.01019 118.01353 119.01686 339.99131 340.99460 341.99782 343.00107 344.00425 345.00732 513.01208 514.01539 487.97820 515.01844 488.98148 516.02078 489.98478 -490.98783 403.01368 491.99024	RT (sec) 2082 2184 2208 981 981 981 981 981 2082 2082 2082 2082 2082 2082 2184 2184 2208 2184 2208 2184 2208 -2208 1818 2208	area 60911534 2458060594 1110932982 56030235 186005277 286367284 195796893 50076785 372220250 929801620 1247455449 939764667 375932623 545633560 1378870250 497063414 1103056897 104015344 723196293 9917869 300497734 -70319340 6378057 6951686	0.02 0.20 0.25 Reference CIDs 0.07 0.24 0.37 0.25 0.06 0.09 0.23 0.31 0.24 0.09 0.01 0.11 0.25 0.04 0.16 0.01 0.07 0.0008 0.02 0.00 0.02 0.002
		M0 M0 M2	117.01914 289.03269 404.01712	667 1194 1818	282803625 4238381 27717271	0.09 0.01 0.07
		M1 M1 M3	118.02248 290.03604 405.02042	667 1194 1818	793899995 30245296 64362251	0.24 0.05 0.17
	Succinate CDP Sed7P	M2 M3 M4 M2 M3 M4 M5 M4 M6	119.02576 120.02911 121.03250 291.03938 292.04273 406.02372 407.02705 293.04608 408.03040	667 667 667 1194 1194 1818 1818 1194 1818	1195649421 806966256 202284443 92560049 156438036 95223930 93347270 156671855 61069389	0.36 0.25 0.06 0.16 0.28 0.25 0.25 0.28 0.16
		M0 M5 M7	133.01417 294.04944 409.03379	670 1194 1818	424342051 92460730 24949899	0.06 0.16 0.07
		M1 M6 M8	134.01748 295.05165 410.03702	670 1194 1818	1626757443 28587991 4902167	0.24 0.05 0.01
	Malate	M2 M7 M9	135.02079 296.05471 -	670 1194 -	2478580090 2996829 -	0.37 0.01 0.00
		M3 M0 M0	136.02404 259.02304 481.9776	670 1022 2106	1688263347 19907444 8538776	0.25 0.02 0.002
		M4 M1 M1	137.02743 260.02636 482.98096	670 1022 2106	447848485 118046331 65463726	0.07 0.10 0.02
		M0 M2 M2	155.00991 261.02961 483.98428	1542 1022 2106	307245998 293341582 256077353	0.03 0.25 0.07
	Man6P	M1 M3 M3	156.01325 262.03289 484.98759	1542 1022 2106	1523469272 380574277 592625022	0.16 0.33 0.17
	Orotate CTP	M2 M3 M4 M5 M4 M5	157.01648 158.01978 263.03623 264.03964 485.99086 486.99417	1542 1542 1022 1022 2106 2106	3020822605 3019378130 263394462 86609808 884008506 870996338	0.31 0.31 0.23 0.07 0.25 0.25
		M4 M6 M6	159.02310 265.04309 487.99749	1542 1022 2106	1505195603 6272360 567941167	0.16 0.01 0.16
		M5 M0 M7	160.02658 259.02307 489.00077	1542 953 2106	287627182 16279740 233553217	0.03 0.02 0.07
		M0 M1 M8	145.01417 260.02637 490.00390	882 953 2106	30474657 99556729 54518770	0.05 0.09 0.02
		M1 M2 M9	146.01753 261.02961 491.00624	882 953 2106	96355684 255419536 5699163	0.15 0.24 0.002
	F6P a-KG	M2 M3 M0 M3 M4 M1	147.02088 262.03289 442.01707 148.02424 263.03621 443.02045	882 953 2258 882 953 2258	195160824 345140729 1268796 200443971 256612959 2757797	0.30 0.32 0.004 0.31 0.24 0.01
		M4 M5 M2	149.02753 264.03961 444.02364	882 953 2258	102259920 96965877 12302899	0.16 0.09 0.05
		M5 M6 M3	150.03093 265.04305 445.02699	882 953 2258	21077798 12107622 32572041	0.03 0.01 0.12
		M0 M0 M4	191.01994 259.02303 446.03027	1813 892 2258	418678922 37644409 56954948	0.02 0.01 0.21
	GDP	M1 M1 M5	192.02325 260.02632 447.03359	1813 892 2258	2201958564 232144699 67914235	0.09 0.09 0.25
		M2 M2 M6	193.02646 261.02955 448.03690	1813 892 2258	5529085713 600703579 55575927	0.23 0.24 0.20
	Citrate G6P	M3 M3 M7	194.02973 262.03284 449.04030	1813 892 2258	7452410371 813250693 30545046	0.31 0.32 0.11
		M4 M4 M8	195.03301 263.03613 450.04364	1813 892 2258	5705670648 610245636 10876038	0.24 0.24 0.04
		M5 M5 M9	196.03628 264.03951 451.04667	1813 892 2258	2288719058 232058201 2043296	0.10 0.09 0.01
		M6 M6 M10	197.03998 265.04295 452.04925	1813 892 2258	280685227 29220183 61934	0.01 0.01 0.0002
		M0 M0 M0	184.98577 259.02294 402.99462	1741 521 2202	1606633559 2188513 21775720	0.12 0.02 0.002
	2/3-PG	M1 M1 M1 M2 M2 M2	185.98906 260.02630 403.99807 186.99233 261.02963 405.00128	1741 521 2202 1741 521 2202	4951837448 11459761 183070962 5048634498 28785602 737410758	0.37 0.10 0.02 0.38 0.25 0.07
	G1P	M3 M3 M3	187.99559 262.03295 406.00453	1741 521 2202	1678812830 38072046 1728622632	0.13 0.33 0.17
	UDP PEP	M0 M1 M4 M5 M4 M5 M2 M6 M6	166.97505 167.97833 263.03632 264.03973 407.00778 408.01098 168.98164 -409.01421	1889 1889 521 521 2202 2202 1889 -2202	338965384 1060010283 26003880 7928553 2580480660 2561842283 1080910744 -1684070366	0.12 0.38 0.23 0.07 0.25 0.25 0.38 0.00 0.16
		M3 M0 M7	169.98506 426.02220 410.01752	1889 2046 2202	341973019 2457757 691542759	0.12 0.001 0.07
		M0 M1 M8	171.00653 427.02540 411.02084	514 2046 2202	60073480 16922886 155155050	0.21 0.01 0.01
	Gly-3P	M1 M2 M9 M2 M3 M0	172.00990 428.02871 412.02337 173.01317 429.03196 323.02759	514 2046 2202 514 2046 1931	101324423 74325863 13935933 99069549 199432722 31372647	0.35 0.04 0.001 0.34 0.12 0.002
		M3 M4 M1	174.01661 430.03521 324.03098	514 2046 1931	30466742 349509378 262454720	0.10 0.21 0.02
	ADP	M0 M5 M2	388.94405 431.03846 325.03428	2154 2046 1931	3773252 417235612 1050573013	0.03 0.25 0.07
		M1 M6 M3	389.94740 432.04172 326.03757	2154 2046 1931	19526130 343721466 2416270973	0.15 0.20 0.17
	PRPP UMP	M2 M3 M7 M8 M4 M5	390.95072 391.95403 433.04502 434.04845 327.04080 328.04402	2154 2154 2046 2046 1931 1931	39788198 39994054 192069385 68002000 3587714566 3551766195	0.32 0.32 0.11 0.04 0.25 0.25
		M4 M9 M6	392.95738 435.05177 329.04727	2154 2046 1931	19646953 13419219 2346046321	0.16 0.01 0.16
		M5 M10 M7	393.96044 436.05448 330.05055	2154 2046 1931	3620865 1474728 984698697	0.03 0.0008 0.07
		M0 M0 M8	229.01225 505.98885 331.05388	1087 2184 1931	15790399 16246587 219836705	0.03 0.001 0.02
	P5P ATP UTP	M1 M2 M3 M1 M9 M2 M3 M0 M1	230.01552 231.01884 232.02220 506.99234 332.05669 507.99573 508.99902 482.96185 483.96505	1087 1087 1087 2184 1931 2184 2184 2208 2208	80560741 164024774 165122627 121367108 18514492 534430940 1422686675 9341187 81137802	0.16 0.32 0.32 0.01 0.001 0.04 0.12 0.002 0.02

Table S - 2 .

 S2 Optimized XCMS automated peak extraction and integration parameters from the Pascal triangle sample.

			xcmsSet()			group()		retcor()
	Parameters	method	mass error	peakwidth	mzdiff	mzwid	minfrac	bw	method
	Starting (IPO) parameters	centWave	10	(24.86)	-0.036	0.013	0.5	5	-
	Manually optimized parameters	centWave	10	(28.99)	-0.001	0.0015	0.2	10	peakgroups

Table S -3. Ranges for the parameter optimization.

 S The XCMS parameters and their range of values tested starting with the parameters provided by IPO.

	Parameter	Minimum	Maximum
	peakwidth minimum	10	30
	peakwidth maximum	80	120
	ppm	10	10
	mzdiff	-0.001	0.002
	mzwid	0.001	0.01
	bw	5	15

Table S - 4 .

 S4 Optimized parameters for 13C-clustering software

	Program	Routine	Settings	Optimized value
	X13CMS	getIsoLabelReport()	RTwin	10
			ppm	5
			noise	5000
	geoRge	PuIncSeeker()	fc threshold	1.2
			p-value threshold	0.05
			Basepeak min intensity	5000
		Basepeak_finder()	Basepeak mass error	5
			RT min win	10

Table S -5. Mass accuracies of XCMS datasets.

 S Mass accuracies for the 25 reference metabolites extracted in the five-labelled PT samples using XCMS compared to the theoretical masses.

		M5 M10 M7	393.96132 436.05569 330.05208	2154 2046 1931	--330.05090	--3.57	393.96043 -330.05090	2.24 -3.56	2 158 1 935
		M0 M0 M8	229.01188 505.98847 331.05543	1087 2184 1931	229.01215 505.98900 331.05424	1.17 1.06 3.60	229.01215 505.98900 331.05424	1.18 1.05 3.58	1 090 2 187 1 935
		M1 M1 M9	230.01524 506.99183 332.05879	1087 2184 1931	230.01552 506.99234 332.05715	1.25 1.02 4.91	230.01552 506.99234 332.05708	1.22 1.02 5.13	1 089 2 187 1 934
	P5P	M2 M2 M0 M3 M3 M1	231.01859 507.99518 482.96125 232.02195 508.99854 483.96460	1087 2184 2208 1087 2184 2208	231.01755 507.99487 482.96167 232.02228 508.99885 483.96510	4.50 0.62 0.86 1.43 0.61 1.03	231.01889 507.99573 482.96167 232.02227 508.99900 483.96510	1.29 1.08 0.87 1.42 0.92 1.04	1 087 2 187 2 209 1 088 2 187 2 210
	M4 M4 M2 Metabolite Isotopologue Fumarate M0 M1 M2 M3 M4 Succinate M0 M1 M2 M3 M4 Malate M0 M1 M2 M3 M4 Orotate M0 M1 M2 M3 M4 M5 a-KG M0 M1 M2 M3 M4 M5 Citrate M0 M1 M2 M3 M4 M5 M6 2/3-PG M0 M1 M2 M3 PEP M0 M1 M2 M3 Gly-3P M0 M1 M2 M3 PRPP M0 M1 M2 M3 M4 M9 M6 M8 M5 M7 M4 M6 UMP M3 M5 M2 ADP M4 M1 M3 M0 M2 M9 M1 M8 M0 M7 M6 M6 M4 M5 M5 UDP M4 G1P M3 M3 M2 M2 M1 M1 M0 M0 M6 M10 M5 M9 M4 M8 G6P M3 M7 M2 M6 M1 GDP M5 M0 M4 M6 M3 M5 M2 M4 M1 F6P M3 M0 M2 M9 M1 M8 M0 M7 M6 M6 M4 M5 M5 CTP M4 Man6P M3 M3 M2 M2 M1 M1 M0 M0 M7 M9 M6 M8 M5 M7 M4 M6 Sed7P M2 M3 M5 CDP M4 M1 M3 M0 M2 M5 FBP M0 M1 M2 M3 M4 M5 M6 ATP M5 M6 M3 M7 M8 M4 UTP M5 M9 M6 M10 M7 M0 M8 M1 M9	233.02530 510.00189 484.96795 m/z theo 115.00368 116.00704 117.01039 118.01375 119.01710 117.01933 118.02269 119.02604 120.02940 121.03275 133.01425 134.01761 135.02096 136.02432 137.02767 155.00983 156.01319 157.01654 158.01990 159.02325 160.02661 145.01425 146.01761 147.02096 148.02432 149.02767 150.03103 191.01973 192.02309 193.02644 194.02980 195.03315 196.03651 197.03986 184.98566 185.98902 186.99237 187.99573 166.97510 167.97846 168.98181 169.98517 171.0064 172.00976 173.01311 174.01647 388.94454 389.94790 390.95125 391.95461 392.95796 435.05234 329.04872 434.04898 328.04537 433.04563 327.04201 432.04227 326.03866 431.03892 325.03530 430.03556 324.03195 429.03221 323.02859 428.02885 412.02498 427.02550 411.02164 426.02214 410.01830 265.04254 409.01496 263.03584 264.03919 408.01162 407.00828 262.03249 406.00494 261.02914 405.00160 260.02579 403.99826 259.02244 402.99492 265.04257 452.05055 264.03922 451.04720 263.03586 450.04385 262.03251 449.04050 261.02915 448.03715 260.02580 447.03380 259.02244 446.03045 265.04257 445.02710 264.03922 444.02375 263.03586 443.02040 262.03251 442.01705 261.02915 491.00743 260.02580 490.00407 259.02244 489.00072 265.04257 487.99736 263.03586 264.03922 486.99401 485.99065 262.03251 484.98730 261.02915 483.98394 260.02580 482.98059 259.02244 481.97723 296.05650 411.04110 295.05314 410.03774 294.04979 409.03439 293.04643 408.03103 291.03972 292.04308 407.02768 406.02432 290.03637 405.02097 289.03301 404.01761 234.02866 338.98877 339.99213 340.99548 341.99884 343.00219 344.00555 345.00890 511.00525 512.00860 485.97130 513.01196 514.01531 486.97465 487.97800 515.01867 488.98135 516.02202 489.98470 402.01090 490.98805 403.01426 491.99140	1087 2184 2208 RT theo (sec) 981 981 981 981 981 667 667 667 667 667 670 670 670 670 670 1542 1542 1542 1542 1542 1542 882 882 882 882 882 882 1813 1813 1813 1813 1813 1813 1813 1741 1741 1741 1741 1889 1889 1889 1889 514 514 514 514 2154 2154 2154 2154 2154 2046 1931 2046 1931 2046 1931 2046 1931 2046 1931 2046 1931 2046 1931 2046 2202 2046 2202 2046 2202 521 2202 521 521 2202 2202 521 2202 521 2202 521 2202 521 2202 892 2258 892 2258 892 2258 892 2258 892 2258 892 2258 892 2258 953 2258 953 2258 953 2258 953 2258 953 2106 953 2106 953 2106 1022 2106 1022 1022 2106 2106 1022 2106 1022 2106 1022 2106 1022 2106 1194 1818 1194 1818 1194 1818 1194 1818 1194 1194 1818 1818 1194 1818 1194 1818 1087 2082 2082 2082 2082 2082 2082 2082 2184 2184 2208 2184 2184 2208 2208 2184 2208 2184 2208 1818 2208 1818 2208	Starting parameter settings 233.02564 1.45 510.00232 0.84 484.96781 0.29 m/z ∆m/z (ppm) 115.00345 1.98 116.00682 1.86 117.01015 2.08 118.01356 1.57 119.01686 1.99 117.01911 1.90 118.02248 1.72 119.02571 2.75 120.02914 2.09 121.03254 1.77 133.01408 1.24 134.01748 0.93 135.01841 18.87 136.02412 1.45 137.02750 1.25 155.00978 0.31 156.01312 0.39 157.01631 1.48 158.01968 1.35 159.02309 1.03 160.02655 0.36 145.01418 0.47 146.01756 0.32 147.02091 0.33 148.02428 0.21 149.02756 0.71 150.03097 0.35 191.01987 0.75 192.02324 0.79 193.02399 12.70 194.02984 0.25 195.03317 0.12 196.03662 0.57 197.04026 2.03 184.98571 0.25 185.98908 0.36 186.99010 12.13 187.99577 0.23 166.97509 0.04 167.97847 0.11 168.98178 0.17 169.98525 0.51 171.00642 0.10 172.00985 0.54 173.01318 0.38 174.01653 0.37 388.94404 1.29 389.94740 1.27 390.95069 1.42 --392.95726 1.78 --329.04755 3.56 --328.04421 3.53 433.04547 0.36 327.04089 3.41 432.04203 0.56 326.03607 7.93 431.03867 0.56 325.03311 6.73 430.03533 0.54 324.03099 2.94 429.03199 0.49 323.02754 3.25 428.02845 0.94 --427.02544 0.12 411.02089 1.81 --410.01766 1.55 --409.01466 0.73 --264.03998 2.98 408.01130 0.77 407.00797 0.76 --406.00457 0.91 261.02974 2.31 405.00110 1.23 260.02631 2.02 403.99806 0.50 259.02295 1.96 402.99449 1.07 265.04305 1.83 --264.03978 2.13 --263.03640 2.05 --262.03283 1.23 449.04039 0.25 261.02832 3.16 448.03708 0.15 260.02622 1.62 447.03374 0.14 259.02281 1.41 446.03040 0.11 265.04310 2.01 445.02709 0.02 264.03965 1.65 444.02356 0.42 263.03642 2.14 443.02067 0.61 262.03294 1.67 442.01707 0.03 261.02954 1.50 --260.02628 1.88 490.00414 0.14 259.02283 1.49 489.00088 0.34 265.04312 2.08 487.99754 0.37 263.03640 2.04 264.03962 1.52 486.99424 0.48 485.99090 0.51 262.03302 1.98 484.98749 0.41 261.02963 1.82 483.98266 2.65 260.02629 1.90 482.98099 0.83 259.02288 1.70 481.97750 0.56 296.05520 4.37 --295.05189 4.22 --294.04965 0.45 --293.04627 0.53 408.03056 1.14 291.03719 8.69 292.04291 0.56 407.02723 1.10 406.02389 1.07 290.03619 0.59 405.02057 0.97 289.03281 0.68 404.01722 0.97 234.02907 1.79 338.98787 2.66 339.99120 2.73 340.99223 9.53 341.99669 6.28 343.00114 3.07 344.00438 3.39 345.00784 3.08 511.00559 0.68 512.00900 0.79 485.97146 0.34 513.01234 0.74 514.01565 0.65 486.97495 0.61 487.97833 0.68 515.01883 0.32 488.98168 0.68 --489.98491 0.43 --490.98793 0.25 403.01388 0.92 --	233.02564 510.00234 484.96837 Optimized parameter 1.45 1 087 0.88 2 187 0.86 2 210 settings m/z ∆m/z (ppm) RT (sec) 115.00345 1.98 980 116.00682 1.86 980 117.01019 1.69 979 118.01356 1.57 979 119.01687 1.94 117.01911 1.90 118.02248 1.72 119.02575 2.41 668 120.02913 2.18 668 121.03254 1.76 133.01409 1.24 134.01748 0.93 135.02082 1.06 136.02413 1.37 137.02750 1.24 155.00978 0.31 156.01312 0.40 157.01637 1.09 1 525 158.01968 1.33 159.02309 1.01 160.02655 0.36 145.01418 0.48 146.01756 0.31 147.02091 0.33 148.02429 0.16 149.02756 0.71 150.03097 0.38 191.01987 0.75 192.02324 0.78 193.02651 0.39 194.02985 0.26 195.03318 0.14 196.03663 0.65 197.04027 2.09 184.98571 0.25 185.98908 0.37 186.99269 1.70 187.99577 0.24 166.97509 0.04 1 890 167.97847 0.11 168.98190 0.54 169.98524 0.45 171.00642 0.14 172.00985 0.54 173.01326 0.88 174.01655 0.47 516 388.94404 1.28 389.94740 1.27 390.95067 1.48 391.95395 1.66 392.95728 1.72 2 159 435.05183 1.17 2 051 329.04755 3.55 1 935 2 161 434.04849 1.14 2 051 328.04421 3.53 1 935 2 160 433.04547 0.36 2 051 327.04090 3.40 1 935 2 162 432.04203 0.56 2 051 326.03760 3.25 1 935 2 162 431.03868 0.56 2 051 325.03430 3.08 1 936 430.03533 0.54 2 051 324.03099 2.95 1 936 516 429.03199 0.49 2 051 323.02753 3.29 1 936 516 428.02864 0.48 2 051 412.02337 3.92 2 203 516 427.02544 0.12 2 051 411.02095 1.68 2 205 1 890 --2 051 410.01754 1.85 2 203 1 890 --409.01466 0.73 2 208 1 890 263.03653 2.64 521 264.03996 2.90 523 408.01128 0.84 2 208 407.00797 0.75 2 207 1 741 262.03309 2.28 521 406.00457 0.90 2 208 1 741 261.02979 2.49 523 405.00128 0.78 2 208 1 742 260.02631 2.01 523 403.99805 0.51 2 208 1 742 259.02293 1.88 523 --1 816 265.04306 1.84 887 --1 816 264.03977 2.10 887 451.04674 1.02 2 259 1 816 263.03640 2.06 888 450.04372 0.28 2 260 1 816 262.03283 1.22 888 449.04039 0.26 2 262 1 816 261.02965 1.92 888 448.03708 0.15 2 266 1 816 260.02624 1.72 889 447.03374 0.14 2 266 1 816 259.02281 1.41 890 446.03039 0.14 2 266 883 265.04311 2.02 954 445.02708 0.03 2 266 883 264.03966 1.67 953 444.02373 0.04 2 266 883 263.03637 1.92 953 443.02067 0.61 2 266 883 262.03285 1.30 952 --884 261.02969 2.07 955 491.00621 2.47 2 111 884 260.02629 1.89 956 490.00412 0.11 2 116 1 524 259.02283 1.51 957 489.00089 0.35 2 116 1 525 265.04312 2.08 1 020 487.99754 0.37 2 116 1 525 263.03640 2.04 1 022 264.03965 1.64 1 021 486.99422 0.44 2 116 485.99088 0.47 2 116 1 526 262.03303 2.01 1 022 484.98751 0.44 2 116 1 526 261.02968 2.03 1 022 483.98428 0.69 2 116 676 260.02629 1.90 1 022 482.98099 0.84 2 117 677 259.02287 1.64 1 023 481.97752 0.60 2 116 677 296.05513 4.60 1 187 --677 295.05190 4.21 1 188 --677 294.04965 0.45 1 189 409.03367 1.75 1 817 668 293.04627 0.55 1 189 408.03059 1.08 1 818 291.03956 0.54 1 190 292.04291 0.56 1 189 407.02723 1.08 1 818 406.02388 1.07 1 818 668 290.03618 0.64 1 191 405.02060 0.91 1 818 668 289.03282 0.67 1 191 404.01727 0.84 1 818 979 234.02907 1.79 1 086 338.98784 2.73 2 087 339.99120 2.72 2 087 340.99454 2.76 2 087 341.99769 3.34 2 087 343.00114 3.05 2 087 344.00436 3.43 2 087 345.00782 3.12 2 087 511.00564 0.78 2 187 512.00906 0.89 485.97165 0.73 2 209 2 187 513.01225 0.58 2 187 514.01563 0.63 486.97497 0.65 2 209 487.97834 0.70 2 209 2 187 515.01883 0.32 488.98169 0.69 2 209 2 187 516.02078 2.41 489.98492 0.44 2 209 2 185 -490.98792 0.27 2 210 ---491.99023 2.38 2 203

Table S -6. Cluster precision and recall for clustering software.

 S Cluster precision and recall for X13CMS and geoRge with a RT window of 5 s and different isotopologue mass deviations, evaluated for the 25 reference metabolites in the PT sample.

		Isotopologue mass deviation (ppm)	1	2	3	5	8	10
		precision	60%	76%	76%	84%	80%	80%
	X13CMS	recall	100%	100%	100%	100%	100%	100%
	geoRge	precision recall	60% 100%	68% 100%	72% 100%	80% 100%	74% 100%	72% 100%

Table 3 . 14 :

 314 Results of validation process. The minimal subnetworks have been validated both on their topology and their functionnal characteristics.

				Evaluation criteria	Number	% of recovery
	TOPOLOGY	① ②	Total Complete Incomplete	29 14 15	91 44 47
	FUNCTIONNAL	CHARACTERISTICS	③ ④ ⑤	Goodness-of-fit Identifiability Compliance of flux values	21 9 6	66 22 19

Table S2 :

 S2 Minimal Subnetworks. Topology of the 29 minimal subnetworks constructed using the Network analyzer and fit results. The reactions at level 1 which were not conserved in incomplete minimal subnetworks are illustrated in grey.

Table 4 .15 : Evaluation of data size and quality in HT fluxomics investigations. The overall flux precision

 4 is the median RSD (relative standard deviation) calculated for all fluxes measured in each of the studied conditions, as given in the supplementary data of the cited studies. overall pathway precision was calculated similarly by grouping the RSDs according to the metabolic pathways considered. The flux RSDs considered in these calculations were obtained by sensitivity analysis (S.A.) or by calculating classical standard deviations on the mean values of fluxes obtained when biological replicates were produced (as in this work).

		L e i g h t y e t a l. 2 0 1 3 [ 3 7 ] C r o w n e t a l. 2 0 1 5 [ 3 8 ] L o n g & A n t o n i e w i c z 2 0 1 9 [ 3 5 ] M i ll a r d e t a l. 2 0 1 4 [ 3 0 ] L o n g e t a l. 2 0 1 6 [ 3 9 ] H e u x e t a l. 2 0 1 4 [ 2 2 ] H a v e r k o r n v a n R i js e w i j k e t a l. 2 0 1 1 [ 3 1 ]	This paper
		MG1655 MG1655	BW25113 D tpiA mutant	MG1655 BW25113 MG1655	BW25113 + Keio mutants		
		1	1	1	1	1	20	190		
		6	14	2	1	1	2	2		
		71	71	75	84	71	23	23		
		7.52	17.55	5.07	1.4	1.94	2.57	1.61		
		71	71	75	84	142	460	4,370		
		12%	15%	7.80%	19%	23%	285%	14%		
		S.A.	S.A.	S.A.	S.A.	S.A.	S.A.	S.A.	S.A.	biological replicates
		(n = 1)	(n = 1)	(n = 1)	(n = 1)	(n = 1)	(n = 23)	(n=23)	(n=198)	(n=20)
		1%	2%	4.20%	3%	3.50%	553%	7%	3%	1%
		14%	11%	17%	131%	10%	41%	25%	24%	7%
	tca + gs	11%	19%	4.90%	20%	31%	795%	19%	40%	21%
	anaplerosis	122%	144%	87%	13%	1822%	7%	15%	42%	20%
	output fluxes	12%	25%	4.7%	15%	42.4%	426%	0%	10%	14%

Une autre approche consiste à exploiter les variations de masse, c'est-à-dire les pertes ou les gains de masse qui peuvent correspondre à des pertes/gains d'atomes, existantes entre deux paires de pics de masse et à les associer à une transformation biochimique existante. Cette approche a été initiée par les travaux de Breitling et al. Elle s'appuie sur le fait qu'un répertoire limité de 83 transformations chimiques, compilées à partir de manuels de biochimie, représente la majorité des réactions biochimiques opérant au sein des cellules[Breitling et al, 2006]. Cette liste de transformation est ensuite associée à la liste de variations de masse. Dans l'exemple présenté ci-dessous (Figure1.33), une différence de masse de 14.01565 Da peut correspondre à une réaction de méthylation (variation de CH2 après substitution de l'atome d'hydrogène -H, par un groupe -CH3) entre le composé B et le composé C. Cette approche fournit un réseau ou sous-réseau contextuel. Cependant elle présente certaines limites. Notamment une différence de masse entre une paire de composés ne correspond pas systématiquement à une transformation biologique réelle, et en se limitant à ces données, il est difficile d'assurer la réalité de la réaction dans l'organisme. L'avantage de ces deux approches est que, comparés au GSMN, les réseaux obtenus peuvent prendre en compte des réactions non enzymatiques spontanées. Les MDiN sont l'un des principaux types de réseaux expérimentaux utilisés pour l'analyse des données métabolomiques[Amara et al, 2022 ;[START_REF] Traquete | Graph Properties of Mass-Difference Networks for Profiling and Discrimination in Untargeted Metabolomics[END_REF]. Ils ont été utilisés dans des études sur des échantillons de levure[START_REF] Liu | New molecular evidence of wine yeast-bacteria interaction unraveled by non-targeted exometabolomic profiling[END_REF], de tissu adipeux de souris et de plasma humain[START_REF] Laber | Linking the FTO obesity rs1421085 variant circuitry to cellular, metabolic, and organismal phenotypes in vivo[END_REF].

SG3P

Supplementary Data (Table S5) and highlight the improvement in data extraction afforded by the proposed optimization strategy.

Nevertheless, seven reference isotopologues remained undetected in the optimized dataset, indicating that the automated process was slightly less efficient than manual extraction.

Five of the missing isotopologues, the M0 and Mn of ADP and GDP and the Mn-1 of CDP, were not detected in any of the five PT sample replicates. The two others missing isotopologues (UDP M0 and CDP M1) were detected in only one replicate. The chromatographic signal appeared more intense in this replicate than in the others. Overall, the above data indicated not only that the number missed isotopologues was decreased after optimization process, but also that the detected isotopologues were much better defined.

Quality of isotopologue quantification

In isotopic studies of metabolism, valuable quantitative information on biochemical pathways is obtained from isotopologue abundances. The reliability of isotopologue quantification is a major issue at the data acquisition level because ionization problems and matrix effects mean that MS is not inherently quantitative. Methods for validating MS methods for reliable isotopologue measurementsincluding the benefits of using PT samples for such a purposeas discussed recently by Heuillet et al. (2018) and [START_REF] Schwaiger-Haber | Proposing a validation scheme for 13C metabolite tracer studies in high-resolution mass spectrometry[END_REF], are beyond the scope of this work. Isotopologue quantification can also be limited by data processing. Several factors can be problematic, but the main limitation is the capability of the processing software to properly integrate the MS signals. Optimizing data processing in untargeted isotopic tracing studies therefore also means ensuring isotopologue abundances are properly measured.

Because manual integration is somewhat arbitrary and automatic integration is imperfect regardless of the algorithm considered, the quality of isotopologue quantification was controlled and maximized throughout the optimization process by comparing isotopologue abundances in the benchmark isotopologues to those in the reference isotopologues. Two methods were used to evaluate quantification accuracy.

We first compared the absolute abundances of individual isotopologues separately.

Figure S4 shows that the benchmark isotopologues have absolute abundances very close to those in the reference dataset. The isotopologue areas were closely similar whether integrated manually or automatically, indicating the reliability of automated isotopologue quantification after optimization. Some slight overestimations were observed for two metabolites showing Altogether, the above results clearly emphasize the significant improvement in the quality of the quantitative data achieved through the proposed optimization strategy. The results also show that data processing can be a substantial source of bias in MS-based untargeted isotopic tracing investigations, in terms of the number, correctness and quantification of the recovered isotopologues. 
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Glossary

Local label input: the substrate labeling dynamics in a minimal subnetwork.

Minimal subnetwork: minimal set of reactions that contains sufficient data required to simulate the labeling dynamics of a given metabolite, i.e (i) the reactions that produce it with tracer atom transitions and (ii) the labeling dynamics of its substrate (LLIs).

Complete minimal subnetwork: minimal subnetwork for which all local label inputs are available.

Incomplete minimal subnetwork: minimal subnetwork in which one or more reaction(s) is not conserved during the construction process.

Empty subnetwork: subnetwork containing only a sink reaction.

Minimal identifiable subnetwork: a minimal subnetwork is defined as identifiable if the data available are sufficient to estimate and provide a unique solution of fluxes. 

In silico validation of the Network Analyzer

In this section we evaluate the core of the IsoMet approach: the construction of minimal subnetworks and the fit of labeling dynamics. The Network Analyzer was tested from a network obtained from a GSM and a theoretical dataset to validate its ability to construct minimal subnetworks and test if they can explain experimental labeling dynamics. The evaluation of the robustness of the approach is currently being assessed, so we will only focus here on the validation of the tool.

The validation process is illustrated in Figure 3 S1) and converted into an isotopic model using GSAM. Metabolite concentrations and fluxes were initialized at the values listed in the Supporting information (Table S1) and label propagation through this network was simulated to create a theoretical dataset containing isotopologues distributions over time. From the list of reactions and the list of metabolites, the Network Analyzer was applied to construct minimal subnetworks and test if they can explain the theoretical isotopic labeling dynamics. The minimal subnetworks have been evaluated both on their topology and their functional characteristics.

The topology of subnetworks is evaluated based on (i) the number of minimal subnetworks (the Network Analyzer is expected to construct a minimal subnetwork for each metabolite in the theoretical dataset) and (ii) their characteristics (complete or incomplete). Their functionnal characteristics are evaluated based on (i) the goodness-of-fit (it is based on the result value of the ꭓ2 test. The fitting quality is considered as correct for a ꭓ2 pvalue < 0.05), (ii) their identifiability and (iii) the compliance of flux values. This last parameter looks for the closeness between the theoretical fluxes used to simulate the theoretical dataset and the estimated fluxes measured in the minimal subnetworks. Fluxes are considered as accurate when the calculated difference is less than 10%. It can only be measured measured for identifiable subnetworks.

From the 32 metabolites in the theoretical dataset (see Section 4.1), 29 minimal subnetworks could be constructed with the Network Analyzer (Table 3.1). The three subnetworks centered on the sedoheptulose, the glyoxylate and the erythrose-4-phosphate do 
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Abstract

We have developed a robust workflow to measure high-resolution fluxotypes (metabolic flux phenotypes) for large strain libraries under fully controlled growth conditions. This was achieved by optimizing and automating the whole high-throughput fluxomics process and integrating all relevant software tools. This workflow allowed us to obtain highly detailed maps of carbon fluxes in the central carbon metabolism in a fully automated manner. It was applied to investigate the glucose fluxotypes of 180 Escherichia coli strains deleted for y-genes. Since the products of these y-genes potentially play a role in a variety of metabolic processes, the experiments were designed to be agnostic as to their potential metabolic impact. The obtained data highlight the robustness of E. coli's central metabolism to y-gene deletion. For two ygenes, deletion resulted in significant changes in carbon and energy fluxes, demonstrating the involvement of the corresponding y-gene products in metabolic function or regulation. This work also introduces novel metrics to measure the actual scope and quality of high-throughput fluxomics investigations.

• Meta-data management

The data and meta-data generated throughout the workflow were stored, managed, and processed as described below.

Culture and sampling data related to the parallel cultures of E. coli strains with 13 Flux calculations: all flux calculation files were stored on a server. This included the input (FTBL) files for influx_si, and the output (KVH) files. The most important elements are included in Supplementary data 3 (chi-square tests of the fits, fit cost functions and net fluxes).

Statistical analysis and flux mapping: all the data used and generated for statistical analysis and flux mapping were stored on a server.

• Calculation of cofactor production and consumption rates

The production rates (mmol.gDW - 

Conclusions et perspectives

Annexes Annexe 1 : Illustrations des différents analyseurs de masse

Analyseurs à basse résolution

• L'analyseur quadripolaire (Q)

L'analyseur quadripolaire est le plus simple des analyseurs de spectrométrie de masse.

Il est composé de quatre électrodes parallèles auxquelles sont appliqués deux potentiels déphasés de 180°, l'un continu, l'autre alternatif (figure S1). Ces potentiels créent un champ quadripolaire qui guide les ions de la source d'ions vers l'analyseur quadripolaire. Au sein de ce champ, seuls les ions présentant une trajectoire stable sont conduits jusqu'à l'extrémité de l'analyseur. Les ions ayant une trajectoire instable sont arrétés lorsqu'ils entrent en collision avec les électrodes. Le domaine de stabilité des ions au sein du quadripôle dépend de leur rapport m/z et des tensions appliquées aux électrodes permettant ainsi de sélectionner uniquement les ions appartenant à une gamme de masse définie.