
HAL Id: tel-04356627
https://theses.hal.science/tel-04356627v1

Submitted on 20 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A mechanized program logic for concurrent programs
with the weak memory model of Multicore OCaml

Glen Mével

To cite this version:
Glen Mével. A mechanized program logic for concurrent programs with the weak memory model
of Multicore OCaml. Other [cs.OH]. Université Paris Cité, 2022. English. �NNT : 2022UNIP7173�.
�tel-04356627�

https://theses.hal.science/tel-04356627v1
https://hal.archives-ouvertes.fr

Université Paris Cité
École doctorale de sciences mathématiques de Paris-Centre (ED 386)

Inria

A mechanized program logic
for concurrent programs

with the weak memory model
of Multicore OCaml

par Glen MÉVEL

Thèse de doctorat d’informatique

dirigée par François Pottier

présentée et soutenue publiquement le 14 décembre 2022

devant un jury composé de :

Aleksandar Nanevski associate research professor, IMDEA, Madrid (rapporteur)
Mark Batty professor, University of Kent (rapporteur)
Azalea Raad assistant professor, Imperial College, Londres (examinatrice)

Stephen Dolan software developer, Jane Street, Londres (examinateur)
Ralf Treinen professeur des universités, Université Paris-Cité (examinateur)

François Pottier directeur de recherches, Inria, Paris (directeur)
Jacques-Henri Jourdan chargé de recherches, CNRS & (co-encadrant,

Laboratoire Méthodes Formelles, Gif-sur-Yvette membre invité)

Description en français

Titre
Une logique de programmes mécanisée pour les programmes concurrents dans le modèle mémoire
faible de Multicore OCaml

Résumé
Multicore OCaml ajoute au langage de programmation OCaml le support de la concurrence à
mémoire partagée. Ce langage étendu obéit à un modèle faible de la mémoire dont une séman-
tique opérationnelle a été publiée. On peut alors se demander de quels principes de raisonnement
on dispose pour s’assurer de la correction d’un programme écrit en Multicore OCaml.

Pour y répondre, on instancie Iris, un descendant moderne de la Logique de Séparation
Concurrente, pour Multicore OCaml. On obtient une logique de programme de bas niveau, dont
les règles de raisonnement exposent les détails techniques du modèle mémoire. Au-dessus de
cette logique, on construit Cosmo, une logique de plus haut niveau dans laquelle on jouit de
règles plus simples, au prix d’une légère limitation concernant les programmes qu’on peut véri-
fier. Cosmo offre des raisonnements naturels à propos des variables non-atomiques si elles sont
exemptes de courses de données ; à propos des variables atomiques ; et à propos de la synchroni-
sation en deux temps (acquisition/relâchement, ou release/acquire) que ces dernières réalisent.
La synchronisation entre fils d’exécution est transcrite de façon concise par un mécanisme de
vues de la mémoire, qui permet de s’abstraire du modèle sous-jacent.

On illustre l’emploi de cette logique de programme par plusieurs études de cas. On vérifie
plusieurs implémentations de verrous vis-à-vis d’une spécification classique. On spécifie et vérifie
également une structure de données concurrente élaborée et réaliste : une file concurrente multi-
écrivains et multi-lecteurs. Dans chacun de ces cas, la spécification de la structure de données
considérée décrit son comportement de synchronisation indépendamment de son implémentation
et du modèle mémoire sur laquelle cette implémentation repose. On parvient à ce résultat par
l’emploi combiné de vues et de « triplets logiquement atomiques ». Ainsi, cette approche de la
vérification est modulaire vis-à-vis du modèle mémoire : une application qui utilise ces structure
de données comme seul moyen de synchronisation peut être vérifiée sans aucune connaissance
du modèle mémoire de Multicore OCaml.

Mots-clé
programmation, concurrence, mémoire faible, vérification, logique de séparation, OCaml

ii

Description in English

Title
A mechanized program logic for concurrent programs with the weak memory model of Multicore
OCaml

Abstract
Multicore OCaml extends OCaml with support for shared-memory concurrency. It is equipped
with a weak memory model, for which an operational semantics has been published. This begs
the question: what reasoning rules can one rely upon while writing or verifying Multicore OCaml
code?

To answer it, we instantiate Iris, a modern descendant of Concurrent Separation Logic, for
Multicore OCaml. This yields a low-level program logic whose reasoning rules expose the details
of the memory model. On top of it, we build a higher-level logic, Cosmo, which trades off some
expressive power in return for a simple set of reasoning rules that allow accessing non-atomic
locations in a data-race-free manner, exploiting the sequentially-consistent behavior of atomic
locations, and exploiting the release/acquire behavior of atomic locations. Cosmo allows both
low-level reasoning, where the details of the Multicore OCaml memory model are apparent, and
high-level reasoning, which is independent of this memory model.

We illustrate this claim via a number of case studies. We verify several implementations of
locks with respect to a classic specification. We also specify and verify a realistic, sophisticated
concurrent data structure: namely, a multiple-producer multiple-consumer concurrent queue. In
each case, the specification describes the memory behavior of the data structure independently
of its implementation—and of the underlying memory model. We achieve this through the joint
use of so-called “logically atomic triples” and of Cosmo’s views. Thus, Cosmo’s approach to
verification is modular with respect to the memory model: a coarse-grained application that
uses these data structures as the sole means of synchronization can be verified without any
knowledge of the weak memory model.

Keywords
programming, concurrency, weak memory, verification, separation logic, OCaml

iii

Contents

Contents iv

List of Figures vi

Résumé substantiel dans la langue de Desnos ix

1 Introduction 1

2 Background 5
2.1 An overview of weak memory . 5

2.1.1 Java . 7
2.1.2 C11 . 9

2.2 Multicore OCaml . 10
2.2.1 The memory model . 10
2.2.2 The programming language . 18

2.3 Program verification . 22
2.3.1 Separation Logic . 23
2.3.2 Iris . 25

3 A low-level logic: BaseCosmo 31
3.1 Instantiating Iris for Multicore OCaml . 32
3.2 Soundness of BaseCosmo . 33
3.3 Multicore OCaml-specific assertions . 34

3.3.1 Non-atomic points-to . 34
3.3.2 Atomic points-to . 35
3.3.3 Block length . 35
3.3.4 Validity of a view . 36

3.4 Multicore OCaml-specific rules . 37
3.4.1 Operations on non-atomic cells . 39
3.4.2 Operations on atomic cells . 39

4 A higher-level logic: Cosmo 43
4.1 Language-independent Cosmo assertions and rules 43
4.2 Multicore OCaml-specific Cosmo assertions . 46
4.3 Cosmo weakest-precondition assertions . 46
4.4 Soundness of Cosmo . 47

iv

v

4.5 Cosmo rules . 47
4.5.1 Operations on non-atomic cells . 47
4.5.2 Operations on atomic cells . 49

5 Locks and mutual exclusion 51
5.1 Specification of locks . 51
5.2 A spin lock . 53
5.3 A ticket lock . 54
5.4 Specification of mutual exclusion for two threads 56
5.5 Dekker’s algorithm . 57
5.6 Peterson’s algorithm . 60

6 A bounded MPMC queue 63
6.1 Specification of a MPMC queue . 64

6.1.1 Specification in a sequential setting . 64
6.1.2 Specification under sequential consistency: logical atomicity 65
6.1.3 Specification under weak memory: synchronization 68

6.2 Implementation of a MPMC queue using a ring buffer 71
6.2.1 Overview of the data structure . 71
6.2.2 Explanation of the code . 73
6.2.3 Monotonicity of the internal state of the queue 73
6.2.4 Notes on contention in the queue . 74

6.3 Proof of the specification for the ring buffer . 74
6.3.1 Public state . 74
6.3.2 Internal invariant . 77
6.3.3 Monotonicity of statuses . 77
6.3.4 Available and occupied slots . 78
6.3.5 Slot tokens . 79
6.3.6 Logical atomicity . 80
6.3.7 Proof of try_enqueue . 81

6.4 A simple pipeline . 83
6.4.1 Implementation of the pipeline . 83
6.4.2 Specification of the pipeline . 84
6.4.3 Proof of the specification for the pipeline 85

7 Related Work 87
7.1 Program verification in weak memory models . 87
7.2 Verification of fine-grained concurrent data structures 89

8 Conclusion and future work 91

Bibliography 95

List of Figures

2.1 Semantic objects: locations, cells, stores, histories, timestamps, views. 10
2.2 Operational behavior of the memory subsystem 13
2.3 The syntax of (an idealized fragment of) Multicore OCaml 19
2.4 Small-step operational semantics of Multicore OCaml 21
2.5 Structural reasoning rules about Hoare triples in Separation Logic 24

3.1 BaseCosmo rules for pure steps and the “fork” operation 37
3.2 BaseCosmo triples for the memory access operations 38

4.1 Cosmo assertions . 44
4.2 Cosmo view rules . 44
4.3 Cosmo reasoning rules . 48

5.1 A specification of the “lock” data structure . 51
5.2 Implementation of a spin lock . 53
5.3 Implementation of a ticket lock . 55
5.4 Internal invariant of a ticket lock . 55
5.5 A specification of a lock that can be used by two threads 56
5.6 Dekker’s algorithm for two threads . 57
5.7 Internal (ghost) state of each thread participating in Dekker’s algorithm 58
5.8 Internal invariant of Dekker’s algorithm . 58
5.9 Peterson’s algorithm for two threads . 60
5.10 Internal (ghost) state of each thread participating in Peterson’s algorithm 60
5.11 Internal invariant of Peterson’s algorithm . 61

6.1 A specification of the “queue” data structure in a sequential setting 65
6.2 Selected rules for logically atomic triples . 66
6.3 A specification of the “queue” data structure in a sequentially consistent setting 67
6.4 A specification of the “queue” data structure in a weak memory model 69
6.5 Implementation of the bounded queue . 72
6.6 Definitions of assertions intervening in the proof of the bounded queue 75
6.7 Axiomatic description of the ghost state of the queue 76
6.8 Implementation of a pipeline . 84
6.9 A specification for the pipeline . 84
6.10 Internal invariants of the pipeline . 85

vi

vii

viii

Il fait beau voir Jean de Paris
Avec ses douze méharis.
Il fait beau voir Jean de Bordeaux
Avec ses quatorze chameaux.
Mais j’aime mieux Jean de Madère
Avec ses quatre dromadaires.

Bien loin d’ici Jean de Madère
Voyage avec Robert Macaire
Et leur ami Apollinaire
Qui, de son temps, a su bien faire
Avec les quatre dromadaires.

Robert Desnos, Chantefables

Résumé substantiel dans la langue
de Desnos

Vérification de programmes concurrents en mémoire faible

Ces vingt dernières années, les progrès technologiques concernant les ordinateurs multicœurs ont
accentué le besoin d’outils puissants permettant d’écrire du code multicœur efficace et sûr. Cela
comprend des langages de programmation bien conçus, leurs compilateurs, des bibliothèques
concurrentes efficaces, ainsi que des logiques de programme expressives, qui permettent de prou-
ver la correction desdites bibliothèques et du code qui les utilise. Quoique certains outils de
vérification existent déjà, de nombreuses questions de recherche subsistent quant à l’emploi de
ces outils pour spécifier et vérifier, modulairement, des bibliothèques réalistes de concurrence à
grains fins.

Dans la plupart des langages de programmation multicœurs, les fils d’exécution commu-
niquent via une mémoire partagée. Pour des raisons de performance cependant, les accès concur-
rents à cette mémoire partagée obéissent rarement à une sémantique séquentiellement cohé-
rente (Lamport, 1979), selon laquelle un programme se comporterait comme un entrelacement
des actions de ses fils, qui auraient tous la même vue de la mémoire à chaque instant. Pour
bénéficier d’optimisations agressives effectuées par le matériel et permettre au compilateur d’en
effectuer également, de nombreux langages parmi les plus utilisés adoptent des modèles plus
relâchés de la mémoire, dit faibles, dont la description est subtile. Par exemple C, C++ et Rust
suivent le modèle mémoire C11 (Batty et al., 2011; Lahav et al., 2017) ; Java dispose également
d’un modèle mémoire faible (Manson et al., 2005; Lochbihler, 2012; Bender and Palsberg, 2019).

Multicore OCaml (Dolan et al., 2018, 2020) s’inscrit dans cette tendance. Il s’agit d’une exten-
sion du langage au chameau (Leroy et al., 2019) auquel elle ajoute un support de la concurrence à
mémoire partagée. Dolan et al. donnent une sémantique à Multicore OCaml, et en particulier un
modèle mémoire. Ce modèle mémoire est faible. Vu la subtilité de tels modèles, le besoin se fait
sentir d’un ensemble de règles de raisonnement — autrement dit, d’une logique de programme —
pour comprendre et vérifier du code concurrent écrit dans ce langage. Une telle logique de pro-
gramme doit permettre un raisonnement compositionnel : une fois définie la spécification d’une
bibliothèque B, la vérification de B doit pouvoir se faire indépendamment de la vérification
d’un code qui utilise B. Ainsi, un programmeur peut utiliser B en boîte noire, sans connaissance
sur son implémentation. De plus, la majorité du code qu’on écrit reste séquentiel et, lorsqu’on
écrit du code concurrent, c’est souvent à travers l’emploi de structures de données concurrentes
implémentées par des experts plutôt qu’en utilisant directement les primitives du langage. Il
est donc souhaitable que la logique permette d’ignorer les détails du modèle mémoire de Multi-

ix

x RÉSUMÉ SUBSTANTIEL DANS LA LANGUE DE DESNOS

core OCaml quand ceux-ci ne sont pas pertinents. Un programme séquentiel doit pouvoir être
vérifié, idéalement, comme si le modèle mémoire était séquentiellement cohérent. Le compor-
tement d’une structure de données concurrente doit pouvoir être spécifié indépendamment des
primitives qui sont employées pour l’implémenter.

Toujours ces vingt dernières années, afin de spécifier et de vérifier formellement des pro-
grammes concurrents à mémoire partagée, se sont développées un grand nombre de logiques de
séparation concurrentes dans le sillage des travaux de Brookes (2004) et O’Hearn (2007). L’idée-
clé de la logique de séparation est qu’une assertion de la logique ne se contente pas d’affirmer
un fait mathématique : elle reflète la possession d’une ressource, dont les zones de la mémoire
sont l’archétype. Dans sa forme la plus élémentaire, la possession d’une ressource est unique.
Cette idée, déjà fructueuse pour la vérification de programmes impératifs séquentiels, se révèle
particulièrement précieuse pour la vérification de programmes concurrents. Des logiques de sé-
paration d’ordre supérieur et de plus en plus expressives ont émergé (Brookes and O’Hearn,
2016), à l’instar d’Iris (Jung et al., 2015, 2018b). Iris est mécanisé et prouvé sûr dans Coq, sup-
porte la concurrence à grains fins, et peut décrire des protocoles concurrents complexes grâce à
deux mécanismes essentiels : l’état fantôme et les invariants. L’état fantôme en Iris permet de
réaliser la notion de ressource et est très expressif, puisque sa structure peut être n’importe quel
monoïde commutatif partiel, au choix. Iris est paramétrable par le langage de programmation
mais suppose toutefois une sémantique séquentiellement cohérente. Une nouvelle génération de
logiques lève cette restriction pour divers modèles faibles : iCAP-TSO (Sieczkowski et al., 2015),
GPS (Turon et al., 2014), iGPS (Kaiser et al., 2017) et iRC11 (Dang et al., 2020) supportent
des fragments du modèle C11.

Dans cette thèse, nous proposons une logique de séparation pour Multicore OCaml. Comme
iGPS et iRC11, le travail que nous présentons est construit sur Iris. Toutes nos contributions
(implémentation des logiques BaseCosmo et Cosmo, preuve de leur sûreté, et études de cas)
sont mécanisées en Coq avec l’infrastructure Iris. Nos preuves sont consultables dans notre
dépôt (Mével et al., 2021).

Le modèle mémoire de Multicore OCaml

Par rapport à d’autres modèles mémoire actuels, celui de Multicore OCaml est relativement
simple. Il distingue deux types de cases mémoire, atomique et non-atomique. L’ensemble des
comportements possibles d’un programme est toujours bien défini. Les courses de données sur
des cases non-atomiques sont permises et ont un « effet limité dans l’espace et dans le temps »
(Dolan et al., 2018). Ceci différencie le modèle de Multicore OCaml du modèle C11, dans lequel
toute course de données est un « comportement indéfini » qu’une logique de programme sûre
doit donc bannir.

Dolan et al. décrivent le modèle de Multicore OCaml au moyen d’une sémantique opéra-
tionnelle (Figure 2.4), dans laquelle l’exécution d’un programme apparaît bel et bien comme
un entrelacement des exécutions de chaque fil. Cependant, les interactions de ces fils avec la
mémoire partagée (Figure 2.2) ont un comportement plus complexe que celui qu’on aurait dans
l’habituel cadre séquentiellement cohérent. La description de ce comportement fait intervenir un
historique pour chaque case non-atomique de la mémoire partagée, et des vues de cette mémoire
partagée (Figure 2.1). L’historique h d’une case non-atomique est l’ensemble des événements
d’écriture qui ont eu lieu sur cette case, ordonnés par des horodatages t (dont les valeurs sont

xi

arbitraires et propres à chaque case, seul l’ordre étant significatif). Chaque fil d’exécution ⟨e,W⟩
possède sa propre vue W de la mémoire partagée, qui donne, pour chaque case non-atomique a,
l’horodatage W(a) du plus récent événement d’écriture dont ce fil a connaissance. Cette vue
restreint les comportements possibles d’un accès à une case non-atomique.

Une lecture de la case non-atomique a (base-na-Read dans la Figure 2.2) ne peut pas lire
un événement d’écriture obsolète, et doit donc lire un événement dont l’horodatage t est au
moins W(a), le plus récent horodatage connu du fil courant. Les deux cas de figure W(a) = t
et W(a) < t sont permis : le second cas autorise un fil à lire un événement d’écriture dont il n’a
pas encore été officiellement informé. Dans ce cas, le fil ne met pas à jour sa vue courante.

Une écriture dans la case non-atomique a (base-na-Write dans la Figure 2.2) ne peut
pas produire un événement d’écriture obsolète, et doit donc utiliser un horodatage t strictement
supérieur àW(a)... mais pas nécessairement supérieur àmax(dom(h)) ; autrement dit, si le fil n’a
pas connaissance du plus récent événement d’écriture, le comportement n’est pas déterministe,
car le nouvel événement d’écriture peut s’intercaler soit avant soit après les événements dont
le fil n’a pas encore connaissance (ce cas de figure correspond à une course de données sur a).
L’historique h de la case et la vue W du fil sont mis à jour pour prendre en compte ce nouvel
événement d’écriture. Cependant, la vue des autres fils reste inchangée : les autres fils ne sont
pas informés de ce nouvel événement d’écriture.

Contrairement aux cases non-atomiques, les cases atomiques ont bien une valeur unique, vue
à l’identique par tous les fils. Cependant, leur fonction ne s’arrête pas là : les accès aux cases
atomiques effectuent de la synchronisation. Cela se traduit par le fait qu’une case atomique A,
en plus de sa valeur v, mémorise une vue V. Un fil qui écrit dans A (base-at-Write dans la
Figure 2.2) déverse sa connaissance W dans A. Par la suite, un fil qui lit cette même case A
(base-at-Read dans la Figure 2.2) reçoit la connaissance emmagasinée dans A et l’ajoute à sa
propre vue. Les cases atomiques sont ainsi le moyen primitif en Multicore OCaml par lequel les
fils d’exécution s’échangent la connaissance de certains événements d’écriture.

BaseCosmo, une logique bas niveau pour Multicore OCaml

Dans cette thèse, on s’appuie sur la sémantique opérationnelle de Dolan et al. pour construire
une première logique de programme sûre et mécanisée dans Coq, baptisée BaseCosmo, qu’on
obtient en instanciant Iris. En substance, on fournit à Iris deux ingrédients (Jung et al., 2018b,
§7.3).

• La sémantique opérationnelle de notre langage, qui se présente comme une relation de
réduction locale à un fil, de la forme suivante :

σ; ⟨e,W⟩ =⇒ σ′;
〈
e′,W ′〉 , p

Cette relation décrit, partant d’un certain état partagé σ, la prochaine étape de calcul
que peut effectuer un fil ⟨e,W⟩ et la façon dont cette étape modifie l’état partagé et le
fil considéré, créant éventuellement de nouveaux fils p. Dans un modèle séquentiellement
cohérent, un fil est simplement représenté par son code source (c’est-à-dire une expression
du langage) restant à évaluer ; cependant, dans Multicore OCaml, un fil est en fait un
couple ⟨e,W⟩ où e est une expression restant à évaluer et W est la vue courante du fil.

xii RÉSUMÉ SUBSTANTIEL DANS LA LANGUE DE DESNOS

• Une « interprétation d’état », c’est-à-dire un prédicat S : Store → iProp (où Store
est le type représentant la mémoire partagée, défini dans la Figure 2.1, et iProp est le
type des assertions d’Iris). Cette interprétation d’état exprime un invariant global sur
l’état partagé. En l’occurrence, on a besoin d’exprimer un invariant concernant les vues
emmagasinées dans les cases atomiques : ces vues doivent être valides, c’est-à-dire que
l’horodatage qu’elles donnent pour chaque case non-atomique a ne doit pas dépasser le
plus récent événement d’écriture dans l’historique de a. L’interprétation d’état S(σ) traduit
l’état partagé σ : Store en un état fantôme dont on a soigneusement choisi la structure
afin de pouvoir séparer chacune des cases de la mémoire en une ressource individuelle,
représentée par une assertion points-to qui satisfait certaines propriétés souhaitées.

On obtient une logique de séparation qui, outre les fonctionnalités de base d’Iris (§2.3.2),
inclut une assertion {P } ⟨e,W⟩ {Φ}. Celle-ci représente le triplet de Hoare à propos du fil ⟨e,W⟩
ayant pour précondition P : iProp et pour postcondition Φ : Val × View → iProp. Un tel
triplet exprime la correction partielle d’un programme vis-à-vis d’une spécification. Ceci se for-
malise dans un théorème d’adéquation qui dérive de celui fourni par Iris (Jung et al., 2018b, §6.4,
§7.4) : si un programme e satisfait un triplet {True} ⟨e,∅⟩ {Φ} alors, d’une part, ce programme
est sûr, c’est-à-dire que son exécution ne mènera jamais à une configuration bloquée ; d’autre
part, ses éventuelles configurations finales ⟨v′,W ′⟩ satisferont la postcondition Φ. Les triplets
satisfont également des règles de raisonnement usuelles et indépendantes du langage (Figure 2.5
et §2.3.2), telles que la règle de conséquence (consequence), la règle de séquence (bind), la
règle de passage au contexte (frame) et la règle d’ouverture d’un invariant (HoareInv).

Pour compléter notre logique de programme pour Multicore OCaml, on définit alors, au sein
de la logique obtenue, des assertions spécifiques au langage. Elles revêtent la forme traditionnelle
d’assertions points-to avec des permissions fractionnaires (Boyland, 2003; Bornat et al., 2005),
à la différence que les cases ne contiennent pas une simple « valeur ».

• Une assertion q · a⇝na h représente la possession d’une fraction q ∈ Q ∩ (0, 1] de la case
non-atomique a, dont l’historique est h. La fraction 1 représente une possession unique.

• Une assertion q·A⇝at⟨v,V⟩ représente la possession d’une fraction q de la case atomique A,
dont la valeur est v et qui a emmagasiné la vue V (au moins). La fraction 1 représente une
possession unique.

Ces assertions satisfont entre autres les propriétés suivantes :

q · a⇝na h ∗ S(σ)
σ(a) = h ∗ 0 < q ≤ 1

q ·A⇝at ⟨v,V⟩ ∗ S(σ)
∃W. σ(A) = ⟨v,W⟩ ∗ V ⊑ W ∗ 0 < q ≤ 1

q1 · a⇝na h1 ∗ q2 · a⇝na h2 ⊣⊢ (q1 + q2) · a⇝na h1 ∗ h1 = h2

q1 ·A⇝at ⟨v1,V1⟩ ∗ q2 ·A⇝at ⟨v2,V2⟩ ⊣⊢ (q1 + q2) ·A⇝at ⟨v1,V1 ⊔ V2⟩ ∗ v1 = v2

Pour des raisons techniques, on a aussi besoin de définir une assertion validV qui affirme que
la vue V est valide vis-à-vis de l’état partagé σ, via l’invariant global sur les vues, évoqué
précédemment et garanti par l’interprétation S(σ).

xiii

Enfin, on prouve un triplet de Hoare pour chaque étape élémentaire de calcul du langage, et
en particulier pour chaque opération d’accès à la mémoire (Figure 3.2). Les triplets pour ces opé-
rations comportent en précondition et en postcondition la possession (unique ou fractionnaire)
de la case mémoire concernée. Ces triplets reflètent fidèlement la sémantique opérationnelle et
le modèle mémoire de Multicore OCaml.

On obtient ainsi un ensemble de règles de raisonnement permettant de vérifier un programme
Multicore OCaml étape par étape. Utiliser cette logique de programme plutôt que de travailler
directement avec la sémantique opérationnelle offre de clairs avantages.

• On dispose d’un langage de spécification riche, qui contient la logique hôte (celle de Coq)
et une infrastructure d’état fantôme expressive.

• Un système de preuve sûr — et mécanisé — nous permet de prouver la sûreté d’un pro-
gramme et sa correction fonctionnelle partielle.

• Grâce à la logique de séparation concurrente, les spécifications sont réduites à leur em-
preinte minimale et leurs preuves sont composables : chaque morceau de programme peut
ainsi être spécifié et vérifié en isolation. Il n’y a pas besoin de considérer les interférences
causées par les autres morceaux de programme. En particulier, lorsqu’on vérifie un pro-
gramme avec plusieurs fils d’exécution, il n’est pas nécessaire d’envisager les très nombreux
entrelacements possibles des actions de chaque fil.

Cependant, cette logique de programme expose les moindres détails de Multicore OCaml.
Elle est par conséquent de bas niveau et assez fastidieuse à utiliser. Plusieurs critiques peuvent
lui être faites.

• La vueW du fil courant doit être explicitée et il faut constamment s’assurer de sa validité,
condition de bord qui apparaît dans la plupart des préconditions et postconditions de nos
règles de raisonnement (Figure 3.2). On aimerait rendre tout cela implicite.

• L’assertion q · a⇝na h qui représente une case non-atomique a expose le fait que cette
case contienne un historique h plutôt qu’une valeur unique. Les règles base-na-Read et
base-na-Write paraphrasent la sémantique opérationnelle dans toute sa technicité, qui
fait intervenir la notion d’horodatage. Il reste ainsi difficile de raisonner à propos d’une
case non-atomique. Pourtant, en l’absence de courses de données sur cette case, on aimerait
pouvoir raisonner plus naturellement, comme si la case contenait une valeur unique.

Cosmo, une logique de plus haut niveau
On exauce maintenant ces deux souhaits en construisant, sur notre logique de bas niveau Base-
Cosmo, une logique de plus haut niveau baptisée Cosmo. Dans Cosmo, l’assertion qui représente
une case non-atomique revêt l’apparence traditionnelle q ·a⇝na v comme dans un cadre séquen-
tiellement cohérent. Cette assertion garantit que lire a renverra la valeur v. L’assertion signifie
donc, intuitivement, que la case a contient la valeur v aux yeux du fil courant. En termes plus
techniques, l’assertion garantit que le plus récent événement d’écriture dans a est une écriture
de la valeur v et que le fil courant connaît cette écriture.

En cas de course de données sur une case non-atomique, l’hypothèse sur la vue courante n’est
pas vérifiée ; ainsi, représenter une case non-atomique par cette assertion simplifiée empêche de

xiv RÉSUMÉ SUBSTANTIEL DANS LA LANGUE DE DESNOS

raisonner à propos de certains programmes. Nous croyons raisonnable de supposer que la plupart
des programmes (corrects) sont exempts de telles courses de données, de sorte que cette perte
de généralité constitue rarement un problème.

La signification de l’assertion q · a⇝na v est relative au fil courant. Plus précisément, elle
dépend de sa vue, puisqu’elle affirme que ladite vue contient un certain événement d’écriture.
Pour donner un sens à cette assertion simplifiée, les assertions de notre logique doivent donc
être paramétrées par une vue. La vue à laquelle s’applique une assertion Cosmo est la vue du
possesseur de cette assertion. Ce changement de perspective résout les deux objections que nous
avons formulées plus haut.

Un utilisateur de Cosmo n’a pas besoin de savoir comment cette logique est construite au-
dessus de BaseCosmo : ni l’implémentation des vues, ni celle des assertions de Cosmo ; les règles
de raisonnement de Cosmo peuvent lui être présentées directement. Toutefois, une preuve dans
Cosmo donne une preuve dans BaseCosmo, il est donc aisé de combiner des efforts de preuve
conduits dans les deux logiques, si jamais Cosmo n’était pas assez expressif.

Subjectivité

La construction de Cosmo par-dessus BaseCosmo est montrée dans la Figure 4.1. Comme sug-
géré, une assertion de Cosmo est un prédicat (de type vProp) qui, à une vue, associe une
assertion de BaseCosmo. Entre autres pour garantir la sûreté de la règle de passage au contexte
(frame) dans Cosmo, on impose (Kaiser et al., 2017; Dang et al., 2020) que ce prédicat soit
croissant, les vues étant ordonnées point-à-point ⊑ par l’ordre sur les horodatages (une vue plus
grande est plus récente, ou mieux informée, et contraint davantage les comportements possibles
lors d’un accès non-atomique) et les assertions de BaseCosmo par l’implication. On porte dans
Cosmo tous les connecteurs logiques de BaseCosmo. On a également un moyen simple de conver-
tir une assertion P de BaseCosmo en une assertion ⌈P ⌉ de Cosmo, qui consiste à ignorer la vue
donnée en paramètre. Ainsi, Cosmo contient BaseCosmo. Une assertion de la forme ⌈P ⌉ est dite
objective, en ce que sa validité ne dépend pas de la vue courante.

L’apport de Cosmo est justement de permettre de se référer à la vue courante. Pour cela,
on introduit une assertion de la forme ↑ V qui affirme simplement que la vue courante, qui reste
implicite, contient la vue V. Cette assertion est donc éminemment subjective. On l’utilise par
exemple pour définir notre assertion simplifiée q ·a⇝nav (Figure 4.1). En fait, plus généralement,
les assertions de la forme ↑ V suffisent à exprimer n’importe quelle assertion subjective. En effet
(grâce à la croissance des assertions Cosmo vis-à-vis de la vue courante), pour affirmer un fait à
propos de la vue courante, il suffit d’en capturer une sous-vue, c’est-à-dire un V tel que ↑ V, et de
formuler le fait désiré à propos de V au moyen d’une assertion objective de BaseCosmo. Cette idée
est formalisée dans la règle de raisonnement Split-Subjective-Objective (Figure 4.2). Pour
écrire cette règle, on introduit une assertion de la forme P @ V qui, étant donnée une assertion
arbitraire P de Cosmo et une vue V, exprime l’assertion P dans laquelle la vue courante a été
remplacée par la vue V ; cette assertion ne dépend plus de la vue courante et est donc objective
(autrement dit, c’est une assertion de BaseCosmo).

En Cosmo, plutôt que de cacher les vues, on fait le choix d’en faire une notion de base de la
logique. On peut alors se demander ce qu’on y gagne par rapport à BaseCosmo. Premièrement,
en tant qu’utilisateur de la logique, il n’est plus nécessaire de savoir qu’une vue est une fonction
des cases non-atomiques vers les horodatages ; la notion d’horodatage est escamotée. Les vues

xv

peuvent être rendues abstraites du point de vue de l’utilisateur, qui doit seulement savoir qu’elles
sont munies d’une relation d’ordre — en fait, d’une structure de demi-treillis borné. Deuxième-
ment, grâce à la croissance des assertions vis-à-vis de la vue courante, on n’a jamais besoin de
garder trace de la vue exacte d’un fil, ou de la vue exacte qui est emmagasinée dans une case
atomique : on peut se contenter d’une sous-vue qui contient la connaissance pertinente. On peut
rapprocher cette idée de celle à l’origine de la logique de séparation : en logique de séparation,
grâce à la règle frame, on peut limiter l’empreinte mémoire d’une spécification à la portion
pertinente de la mémoire, et ne pas mentionner le reste, ce qui offre un cadre plus modulaire
pour la vérification. De même en Cosmo, on n’a pas à se soucier des événements d’écriture hors
des zones de la mémoire qui nous intéressent. Dans le cas le plus extrême, lorsqu’on n’est pas
intéressé par la synchronisation entre fils (par exemple lorsqu’on vérifie du code séquentiel), on
peut se contenter de vues vides ∅, ce qui revient à omettre complètement les vues, et donne
comme un cas particulier de Cosmo une logique de programme identique à celle qu’on aurait
dans un cadre séquentiellement cohérent.

Preuve de programme en Cosmo

Pour pouvoir spécifier et vérifier des programmes dans cette logique de séparation avec vues,
on porte (§4.3) les triplets de BaseCosmo en des triplets {P } e {Φ}, où un fil est représenté
simplement par son expression e et où les précondition et postcondition sont des assertions de
Cosmo (P : vProp et Φ : Val → vProp). La définition rend implicite la vue courante W du
fil et les conditions de bord concernant sa validité. Les triplets dans Cosmo satisfont encore un
théorème d’adéquation (§4.4). On peut ensuite porter dans Cosmo les spécifications de chaque
opération du langage qu’on avait établies dans BaseCosmo (Figures 3.1 et 3.2). La Figure 4.3
montre les règles de raisonnement obtenues. La vue du fil avant exécution (W) et après (W ′)
n’est plus explicitée, ni les conditions de validité associées. Une assertion de la forme ↑ V est
employée en précondition quand le fil déverse sa vue courante dans une case atomique, ou en
postcondition quand le fil ajoute à sa vue courante de nouvelles informations obtenues en lisant
une case atomique.

Les opérations sur les cases non-atomiques (na-Read et na-Write) sont spécifiées avec
l’assertion simplifiée q ·a⇝na v plutôt qu’avec l’assertion d’historique ⌈q ·a⇝na h⌉. Ces règles de
raisonnement sont donc moins générales que celles de BaseCosmo — elles ne permettent pas de
raisonner à propos de courses de données sur les cases non-atomiques — mais, en contrepartie,
semblent bien plus naturelle : en effet, elles sont identiques en apparence aux règles d’accès
qu’on aurait dans un modèle séquentiellement cohérent. La différence réside dans la nature de
l’assertion points-to : en Cosmo, l’assertion qui représente une case non-atomique est subjective.

Comme mentionné plus tôt, les règles de raisonnement se simplifient quand on n’est pas
intéressé par la synchronisation : dans les règles gouvernant les opérations sur les cases atomiques
(at-Read, at-Write, cas-Failure, cas-Success), on peut prendre pour chacune des vues
mentionnées (V et V ′) la vue vide ∅, et l’on obtient alors les règles simplifiées montrées dans la
Figure 4.3c. Ces règles sont exactement celles qui gouvernent une case mémoire séquentiellement
cohérente, d’autant plus que l’assertion qui représente une case atomique, elle, est bien objective.

La synchronisation effectuée par les accès atomiques, telle que décrite par les règles non
simplifiées, est de type relâchement/acquisition (release/acquire). Elle permet la transmission
d’une vue depuis un premier fil vers un second. En exploitant ce mécanisme conjointement à

xvi RÉSUMÉ SUBSTANTIEL DANS LA LANGUE DE DESNOS

la règle Split-Subjective-Objective et à l’utilisation d’un invariant Iris, on peut réaliser
le transfert d’une assertion P arbitraire, même lorsque l’empreinte de P contient des cases
non-atomiques : l’invariant Iris transfère le support objectif P @ V de l’assertion P , tandis que
la case atomique transmet la connaissance ↑ V des événements d’écriture utiles. Il s’agit d’un
mécanisme-clé, qu’on utilisera dans toutes nos études de cas. Il faut noter que lorsque P est
subjectif, on ne peut pas se contenter d’un invariant Iris pour effectuer le transfert : en effet, une
ressource mise dans un invariant Iris est rendue disponible pour tous les fils sans distinction, et
ne peut donc pas dépendre de la vue d’un fil donné ; dans Cosmo les invariants Iris sont donc
par nature restreints aux assertions objectives. On retrouve donc dans la logique la nécessité
d’effectuer une synchronisation.

Études de cas

Verrous et exclusion mutuelle

Pour éprouver notre logique de programme Cosmo, cette thèse s’attache ensuite à vérifier
quelques structures de données concurrentes simples : un verrou tournant (§5.2), un verrou
à ticket (§5.3), les algorithmes d’exclusion mutuelle de Dekker (§5.5) et de Peterson (§5.6).

Chacune de ces études de cas met en œuvre de façon cruciale la méthode décrite précédem-
ment pour transférer une assertion au moyen de la règle Split-Subjective-Objective. Les
preuves de ces structures de données en Cosmo calquent les preuves qui auraient été faites dans
un cadre séquentiellement cohérent, auxquelles on ajoute des vues (abstraites) qui matérialisent
l’information transmise d’un fil à un autre, lorsqu’il est nécessaire de préciser les synchronisa-
tions qui ont lieu. Ainsi, nous croyons que Cosmo offre une façon à la fois expressive et naturelle
de vérifier des programmes Multicore OCaml, malgré la subtilité du modèle mémoire faible.

Ces exemples illustrent une autre force de Cosmo : on a déjà vu que la logique offre un frag-
ment sans vues, dans lequel le raisonnement est indépendant du modèle mémoire, c’est-à-dire
où les règles sont celles de la Logique de Séparation Concurrente traditionnelle. Ce fragment
comporte les règles relatives aux cases non-atomiques. Les structures de données concurrentes
étudiées ici, dont la correction est vérifiée avec Cosmo, ont des spécifications (Figures 5.1 et 5.5)
qui s’inscrivent également dans ce fragment indépendant du modèle mémoire : la spécification
d’un verrou en Cosmo (Figure 5.1) est la spécification traditionnelle en Logique de Séparation
Concurrente (Gotsman et al., 2007; Hobor et al., 2008). Ainsi, Cosmo contient la Logique de
Séparation Concurrente traditionnelle, et permet de raisonner à propos de programmes concur-
rents à gros grains où tous les accès à des objets partagés sont protégés par des verrous. Ces
verrous eux-mêmes sont implémentés en mémoire faible et leur vérification en Cosmo dépend du
modèle mémoire, mais leur utilisation en est indépendante.

Par ailleurs, l’exemple de l’algorithme de Peterson illustre l’intérêt d’avoir réduit la sub-
jectivité des assertions de Cosmo à une classe simple d’assertions ↑ V qui sont persistantes,
c’est-à-dire qui n’assument la possession d’aucune ressource. Dans l’algorithme de Peterson en
effet, la synchronisation nécessaire pour transférer la ressource protégée par le verrou se fait via
l’une de deux cases atomiques distinctes, mais on ne sait pas encore laquelle sera utilisée par la
prochaine acquisition au moment où la ressource est relâchée.

xvii

Une file concurrente multi-producteurs multi-consommateurs

Afin de démontrer l’applicabilité de Cosmo à la vérification modulaire de bibliothèques plus com-
plexes, la dernière contribution de cette thèse est la spécification et la vérification en Cosmo d’une
structure de données concurrente non triviale : une file multi-producteurs multi-consommateurs
(Chapitre 6). Spécifier une telle structure de données (§6.1) soulève des questions intéressantes
et démontre l’expressivité de notre logique.

Pour commencer, la spécification indique que la file se comporte comme si toutes ses opéra-
tions agissaient atomiquement sur un état commun quand, en réalité, elles accèdent à des parties
distinctes de la mémoire et requièrent de nombreuses étapes de calcul. On utilise pour cela le
concept d’atomicité logique (Jung et al., 2015; Jung, 2019; da Rocha Pinto et al., 2014) transposé
dans Cosmo. Il s’agit, à notre connaissance, de la première utilisation de l’atomicité logique dans
un modèle mémoire faible. Il faut noter que dans ce cadre, l’atomicité logique n’implique pas la
« linéarisabilité » au sens traditionnel : elle implique bien l’existence d’un historique linéaire des
opérations de la structure de données, mais ne garantit pas automatiquement de synchronisation
entre opérations successives.

Or, dans un modèle mémoire faible, la spécification d’une structure de données doit décrire
non seulement le résultat de ses opérations, mais également la façon dont celles-ci se synchro-
nisent. Cette information supplémentaire permet de raisonner à propos d’accès à des zones de
la mémoire hors la structure de données elle-même. Dans le cas d’une file, qui peut être utilisée
pour transférer une donnée en mémoire d’un producteur à un consommateur, il est crucial que
l’enfilage d’un élément se synchronise avec le défilage du même élément. De façon intéressante, la
spécification qu’on donne (Figure 6.4) garantit certaines synchronisations — indépendamment
de l’implémentation — mais elle en laisse d’autres non spécifiées. Par exemple, il n’est pas requis
qu’un défilage se synchronise avec un enfilage ultérieur. Bien que toutes les opérations de la file
se comportent comme si elles étaient atomiques, et s’ordonnent dans un historique linéaire, on ne
garantit pas que tout couple d’opérations consécutives dans cet historique se synchronise. Alors
que dans une implémentation à gros grains, le verrou induirait des synchronisations entre toutes
les opérations, notre spécification faible permet des implémentations à grains fins, plus relâchées
et donc plus efficaces. Finalement, l’expressivité de Cosmo permet d’écrire une spécification plus
lâche que celle qui aurait été écrite dans un formalisme par raffinement. L’implémentation qu’on
vérifie (§6.2) tire parti de ce relâchement.

Par ailleurs, pour s’assurer que cette spécification faible est suffisante pour un client de
la file concurrente, on vérifie une application simple qui applique en parallèle une chaîne de
traitements à un flux de données, en utilisant une file pour transmettre les valeurs intermédiaires
d’un traitement au suivant (§6.4).

Alors même que l’implémentation de la file exploite le modèle mémoire faible de Multicore
OCaml et que sa correction est vérifiée avec Cosmo, sa spécification n’est pas liée aux détails
du modèle mémoire : elle se suffit à elle-même. Au moyen de vues abstraites qui matérialisent
la notion empirique de connaissance sur l’état partagé, la spécification explique à l’utilisateur
les synchronisations effectuées par la file sans qu’il soit besoin de connaître les primitives sous-
jacentes de Multicore OCaml, ni le modèle mémoire qui s’y attache.

xviii RÉSUMÉ SUBSTANTIEL DANS LA LANGUE DE DESNOS

Chapter 1

Introduction

Advances in multicore hardware during the last two decades have created a need for powerful
tools for writing efficient and trustworthy multicore software. These tools include well-designed
programming languages and their compilers, efficient thread-safe libraries, and expressive pro-
gram logics for proving the correctness of these and of the applications that exploit them. While
some such verification tools already exist, researchers are only beginning to explore whether and
how these tools can be exploited to modularly specify and verify realistic libraries that support
fine-grained shared-memory concurrency.

Most of the programming languages that support multicore programming present shared
memory as the primitive means of communication between threads. Although this design choice
offers the greatest flexibility for writing efficient programs, it comes at an important cost: in
order to achieve maximal efficiency, shared-memory concurrency cannot follow an intuitive se-
quentially consistent semantics (Lamport, 1979), according to which a program would behave as
an interleaving of the actions of its threads, all having the same view of memory at every time.
To allow compilers to perform more aggressive software optimizations and to better exploit hard-
ware optimizations, many mainstream programming languages adopt some subtle weak memory
model. This is the case of low-level languages such as C, C++ and Rust, which share the C11
memory model (Batty et al., 2011; Lahav et al., 2017); and of higher-level languages such as
Java and other languages based on the JVM (Manson et al., 2005; Lochbihler, 2012; Bender and
Palsberg, 2019).

Multicore OCaml (Dolan et al., 2018, 2020) follows this trend. It extends the OCaml pro-
gramming language (Leroy et al., 2019) with support for shared-memory concurrency. Dolan
et al. give it a well-defined semantics and, in particular, a memory model, which specifies how
threads interact through shared memory locations. Therefore, one may already ask: what rea-
soning rules can or should a Multicore OCaml programmer rely upon in order to verify their
code? Furthermore, as mentioned, Multicore OCaml’s memory model is weak: it does not en-
force sequential consistency. Although it is expected that most application programmers will
not need to worry about weak memory, because they will rely on a library of concurrent data
structures written by domain experts, adopting a weak memory model allows said experts to
write more efficient code—if they know what they are doing, that is!

Because shared-memory concurrency is subtle, we believe that there is a need for a set of
reasoning rules—in other words, a program logic—that both populations of programmers can
rely upon. Concurrency experts, who wish to implement efficient concurrent data structures,

1

2 CHAPTER 1. INTRODUCTION

must be able to verify that their code is correct, even though they have removed as many syn-
chronization operations as they thought possible. Furthermore, they must be able to verify that
their code implements a simple, high-level abstraction, thereby allowing application program-
mers, in turn, to use it as a black box and reason about application code in a simple manner. In
short, the system must allow compositional reasoning, and must allow both low-level reasoning,
where the details of the Multicore OCaml memory model are apparent, and high-level reasoning,
which is independent of this memory model.

Just in the past twenty years, a large variety of concurrent separation logics have been de-
signed in order to meet the challenge of formally specifying and verifying programs that exploit
shared-memory concurrency. Brookes (2004) and O’Hearn (2007) introduced Concurrent Sepa-
ration Logic (Brookes and O’Hearn, 2016), which supported coarse-grain sharing of resources via
mutexes. Their approach was gradually improved over the years, leading to expressive, higher-
order separation logics, such as Iris (Jung et al., 2015, 2018b). Iris is able to express complex
concurrent protocols, thanks to mechanisms such as ghost state and invariants, and supports
reasoning about fine-grain concurrency, at the level of individual memory accesses. Concurrent
data structures, such as mutexes, need not be considered primitive any more; they can be imple-
mented and verified. Still, plain Iris is restricted to sequentially consistent semantics: it does not
support weak memory models. A new generation of logics remove this restriction, for various
memory models: iCAP-TSO (Sieczkowski et al., 2015), GPS (Turon et al., 2014), iGPS (Kaiser
et al., 2017) and iRC11 (Dang et al., 2020) target fragments of the C11 memory model. iGPS,
iRC11 and now this work are based on Iris.

For instance, Sieczkowski et al. (2015) propose iCAP-TSO, a variant of Concurrent Sepa-
ration Logic that is sound with respect to the TSO memory model. While iCAP-TSO allows
explicit low-level reasoning about weak memory, it also includes a high-level fragment, the “SC
logic”, whose reasoning rules are the traditional rules of Concurrent Separation Logic. These
rules, which are independent of the memory model, require all primitive accesses to memory
to be data-race-free. Therefore, they require synchronization to be performed by other means.
A typical means of achieving synchronization is to implement a lock, a concurrent data struc-
ture whose specification can be expressed in the SC logic, but whose proof of correctness must
be carried out at the lower level of iCAP-TSO. As another influential example, Kaiser et al.
(2017) follow a similar approach: they instantiate Iris (Jung et al., 2018b) for a fragment of the
C11 memory model. This yields a low-level “base logic”, on top of which Kaiser et al. proceed
to define several higher-level logics, whose reasoning rules are easier to use. Our aim, in this
work, is analogous. We wish to allow the verification of a low-level concurrent data structure
implementation, such as the implementation of a lock. Such a verification effort must take place
in a program logic that exposes the details of the Multicore OCaml memory model. At the
same time, we would like the program logic to offer a high-level fragment that is independent of
the memory model and in which data-race-free accesses to memory, mediated by locks or other
concurrent data structures, are permitted.

Compared with other memory models in existence today, the Multicore OCaml memory
model is relatively simple. Only two access modes, known as “non-atomic” and “atomic”, are
distinguished. Every program has a well-defined set of permitted behaviors. In particular, data
races on non-atomic memory locations are permitted, and have “limited effect in space and in
time” (Dolan et al., 2018). This is in contrast with the C11 memory model, where racy programs
are deemed to have “undefined behavior”, therefore must be ruled out by a sound program logic.

3

Dolan et al. (2018) describe the Multicore OCaml memory model via an operational semantics,
where the execution of the program is in fact an interleaving of the executions of its threads.
These threads interact with a memory whose behavior is more complex than usual, and whose
description involves concepts such as timestamps, histories and views of the shared memory
(§2.2.1).

In this work, we take Dolan et al.’s operational semantics, which we recall in Section 2.2,
as a foundation. We instantiate Iris for this operational semantics. This yields a low-level
logic, BaseCosmo (Chapter 3), whose reasoning rules expose the details of the Multicore OCaml
memory model. Because of this, these rules are not very pleasant to use. In particular, the rules
that govern access to non-atomic memory locations are rather unwieldy, as they expose the fact
that the store maps each non-atomic location to a history, a set of write events. In order to
facilitate reasoning, on top of BaseCosmo, we build a higher-level logic, Cosmo (Chapter 4),
whose main features are as follows.

• Cosmo forbids data races on non-atomic locations. Data races on atomic locations remain
permitted: atomic locations are in fact the sole primitive means of synchronization. This
design decision allows Cosmo to offer a simplified set of reasoning rules, including:

– standard, straightforward rules for data-race-free access to non-atomic locations;
– standard, straightforward rules for possibly racy access to atomic locations, with the

ability of exploiting the sequentially-consistent behavior of these locations; and
– nonstandard yet arguably simple rules for reasoning about the release/acquire behav-

ior of atomic locations.

The last group of rules allow transferring a “view” of the non-atomic memory from one
thread to another. By exploiting this mechanism, one can arrange to transfer an arbitrary
assertion P from one thread to another, even when the footprint of P involves non-atomic
memory locations. This feature is used in all of our case studies (Chapters 5 and 6).
Although views have appeared in several papers (Kaiser et al., 2017; Dang et al., 2020),
letting the user reason about release/acquire behavior in terms of abstract views seems
novel and simpler than previous approaches. In particular, we claim that combining ob-
jective invariants and the rule Split-Subjective-Objective yields a simple reasoning
scheme, which could be exploited in logics for other weak memory models.

• Cosmo offers a high-level fragment where reasoning is independent of the memory model,
that is, a fragment whose reasoning rules are those of traditional Concurrent Separation
Logic. In this fragment, there is no notion of view. This fragment consists at least of
the rules that govern access to non-atomic locations and can be extended by allowing
the use of concurrent data structures whose specification is independent of the memory
model and whose correctness has been verified using full Cosmo. The spin lock and ticket
lock (Chapter 5) are examples of such data structures: their specification in Cosmo is the
traditional specification of a lock in Concurrent Separation Logic (Gotsman et al., 2007;
Hobor et al., 2008). Thus, Cosmo contains traditional Concurrent Separation Logic, and
allows reasoning about coarse-grained concurrent programs where all accesses to memory
locations are mediated via locks.

4 CHAPTER 1. INTRODUCTION

We illustrate the use of Cosmo via several case studies. Chapter 5 shows the specification and
verification of typical, elementary synchronization libraries: a spin lock, a ticket lock, Dekker’s
mutual exclusion algorithm and Peterson’s one. Chapter 6 aims to demonstrate the applicability
of Cosmo to the modular verification of larger multicore programs. We specify a multi-producer
multi-consumer queue, a more involved data structure that is archetypal of concurrent program-
ming; we then prove the correctness of a realistic implementation. Specifying such a concurrent
data structure raises interesting questions, and demonstrates the expressiveness of our logic. For
one, the specification indicates that the queue behaves as if all of its operations acted atomically
on a common shared state, even though in reality they access distinct parts of the memory and
require many machine instructions; this uses the concept of logical atomicity (Jung et al., 2015;
Jung, 2019; da Rocha Pinto et al., 2014), transported to the setting of Cosmo. Besides, in the
weak memory setting, the specification of the data structure describes not only the result of its
operations, but also the manner in which these are synchronized. Two operations synchronize
when the thread performing the second operation obtains the view of memory which was that
of the thread that performed the first operation. This is crucial if a queue is used to transfer
ownership of a piece of memory from a producer to a consumer. Interestingly, the specification
guarantees some amount of synchronization—regardless of the implementation—but it leaves
others unspecified. Even though all operations of the queue behave as if they were atomic, and
are ordered in a linear history, not all pairs of successive operations in that history are guaran-
teed to be synchronized. For instance, it is not required that a dequeuing operation synchronizes
with the later enqueuing of an element. This weak specification allows for more relaxed and
thus more efficient implementations than a coarse-grained one.

All of our results, including the soundness of Cosmo and the verification of our case studies,
are machine-checked in Coq. Our proofs are available from our repository (Mével et al., 2021).

Chapter 2

Background

We aim at verifying the functional correctness of concurrent programs, that is, programs in
which several threads run over overlapping periods of time. Threads then compete for shared
resources such as computing power or memory. This situation may arise because an operating
system schedules several threads to run in alternation on a given processor; or because paral-
lel hardware—such as a multicore processor—runs several threads truly simultaneously; or a
combination of both.

It has long been noted that the possibility of interaction between concurrent threads—for
instance via signals or shared memory— adds complexity to the study of concurrent programs,
by comparison with that of sequential programs. First, the order in which instructions pertain-
ing to different threads are executed becomes relevant, and there is a considerable number of
possible orderings. Second, with concurrent interactions come new kinds of programming bugs,
such as deadlocks—a situation in which a set of threads are blocked because they are waiting
for one another—and starvation—a situation in which a thread is constantly denied access to
a shared resource. Lastly, ensuring that threads see the shared resources consistently is costly
performance-wise, so that hardware and compiler have implemented optimizations which com-
plicate significantly the notion of consistency used—giving birth to so-called weak models of
consistency.

To be able to study programs written in a concurrent programming language, we first need
to model what behaviors are allowed, that is, give a semantics to the said language. It is worth
noting that such a semantics is given at the level of the source language, and that the system
which has the responsibility of implementing it is the combination of all actors that play a
role in the execution of a program, from hardware up to the compiler of the source language.
Thus, designing a semantics is guided by the kind of optimizations we want from processors and
compilers: a more permissive semantics allows for more optimizations, at the expense of more
complexity for the programmer.

2.1 An overview of weak memory

A traditional description of the behavior of concurrent systems is the sequential consistency
model (Lamport, 1979). In this model, the behavior of the concurrent system is some interleaving
of the executions of its components. Even this simple model proves challenging for verification,
as the number of possible interleavings is exponential in the number of instructions of each

5

6 CHAPTER 2. BACKGROUND

thread.
For instance, below is a simple concurrent program with two threads. The shared memory

contains two cells x and y, with initial value 0. The left thread writes 1 to x then reads y,
whereas the right thread writes 1 to y then reads x. The output of the program is the pair of
integers (a, b).

initially [x] = [y] = 0
[x]← 1 [y]← 1
a← [y] b← [x]

In the sequentially consistent model, since both the left and right threads have two instructions,
there are

(2+2
2, 2
)
= 6 possible interleavings, producing varying outputs:

[x]← 1; a← [y]; [y]← 1; b← [x] output is (0, 1)
[x]← 1; [y]← 1; a← [y]; b← [x] output is (1, 1)
[x]← 1; [y]← 1; b← [x]; a← [y] output is (1, 1)
[y]← 1; [x]← 1; a← [y]; b← [x] output is (1, 1)
[y]← 1; [x]← 1; b← [x]; a← [y] output is (1, 1)
[y]← 1; b← [x]; [x]← 1; a← [y] output is (1, 0)

Thus the sequentially consistent model allows three possible outcomes: (0, 1) or (1, 0) or (1, 1).
The outcome (0, 0) is excluded.

Enforcing sequential consistency, however, has a cost: it precludes many desirable optimiza-
tions. If x and y are disjoint memory locations, then there are no dependencies between the
write of x and the read of y, and an optimizing compiler fed with the source code of the left
thread may be tempted to swap both instructions. In a sequential context, this change does
not alter the observable behaviors of a program, and it might result in a significant performance
gain—be it by reducing memory latency or by triggering further optimizations, such as redun-
dant read elimination. In the face of concurrency however, the change results in other behaviors
than those previously listed; for instance, (0, 0) becomes a possible outcome:

a← [y]; [y]← 1; b← [x]; [x]← 1 output is (0, 0)

This new behavior violates sequential consistency, as it cannot be described as the outcome of
any interleaving of the instructions of the source code of both threads.

Yet we do not want to give up on optimizing sequential programs. Even in a concurrent
program, a significant part of the work of a thread may consist in local state mutation that is
unaffected by other threads. Thus, rather than enforcing sequential consistency strictly, it is
often more pragmatic to allow for more optimizations, which preserve semantics in a sequential
context, and to let the programmer restrict behaviors by means of inter-thread synchronization
idioms—such as locks or fences—when concurrency is involved. Therefore, even without true
parallelism, optimization puts sequential consistency in peril. Multicore architectures, featuring
cache layers, performing write buffering, make violations of sequential consistency unavoidable.

The broad problem of consistency of a shared state has been attacked from various angles.
Historically, weaker models of consistency have been developed in the context of distributed
systems, where several machines have different views of distributed data. For instance, whereas
sequential consistency guarantees that there is a total order on memory accesses on which all

§2.1. AN OVERVIEW OF WEAK MEMORY 7

threads agree, “causal consistency” merely ensures order within sets of causally-related accesses,
for some notion of causality.

Transactional memory models are an alternative to lock-based synchronization that orig-
inates from the world of distributed databases. In such models, blocks of operations called
transactions are to be committed atomically: they can perform multiple updates to the shared
state, but these effects only become visible to other processes all at once, at the final commit
point. When a conflict is detected, a tentative transaction is aborted and re-tried. This kind
of models aims to achieve serializability, a strong form of sequential consistency between trans-
actions, while preventing deadlocks and relieving the programmer from manipulating locks. By
contrast with lock-based programming, which is pessimistic in that it uses systematic synchro-
nization, transactional memory can reduce the cost of parallelism when there is little contention.
However, even transactional memory does not evade the desire for optimization: database sys-
tems often allow to relax the atomicity of transactions by reducing their so-called “isolation
level”, which breaks serializability and opens the door to inconsistent database accesses.

In the domain of programming languages, from the 1990s onward there has been a surge
of interest for weak memory models. The most notable research efforts have been devoted to
giving a memory model to Java (§2.1.1), then to C/C++ (§2.1.2). Drawing from the experience
of these predecessors, Multicore OCaml also comes with its own weak memory model (§2.2.1).
A comparison between Multicore OCaml’s model and these two predecessors is sketched in §2.2.1.

2.1.1 Java

In the 1980s, memory models were limited to informal descriptions by hardware vendors, often
incomplete and subject to backwards-incompatible changes (Adve and Boehm, 2010). Parallel
computing was therefore reserved to programmers with an expert knowledge not only of their
target architecture, but also of the specific optimizations that their compiler of choice would
or would not do. At a time when multicore architectures were becoming more and more com-
mon, lack of a clearly-defined semantics at the software level was impeding broader usage of
parallel features by programmers—and conversely, hardware vendors could only guess what pro-
grammers would expect or use. In 1995 Java—then a new language, whose design had included
multithreading from the beginning—made an attempt at describing its memory guarantees; how-
ever this initial specification was unclear, buggy, and prevented valuable optimizations (Pugh,
2000). Thus, in the 2000s, considerable effort has been put into designing a clear and workable
specification for the memory model of a high-level programming language. This has led to a
new memory model, adopted in Java 5.0 (Manson et al., 2005).

The Java memory model is described in terms of relations between memory events in a
given execution; which executions are allowed is then specified as a set of constraints on these
relations—typically, some relations are required to be acyclic. This kind of formalism is called
an axiomatic model. At the heart of Java’s model is a partial order called the happens-before
relation.

Java features ordinary variables, volatile variables and locks (also called “monitors”). By
contrast with ordinary variables, accesses to volatile variables perform synchronization. Tech-
nically speaking, for a given volatile variable, there is a happens-before relation from a write
event to a read event pulling the value of that write. Furthermore, the happens-before relation is
transitive and contains the program order (that is, the order in which instructions are written in

8 CHAPTER 2. BACKGROUND

source code). This allows the following concurrent programming idiom, called message passing.

x is an ordinary variable
y is a volatile variable

initially [x] = 0 and [y] = false

[x]← 42 a← [y]
[y]← true b← [x]

assert (a = false ∨ b = 42)

In the left thread, the write to x is program-ordered before the write to y. In the case when
the right thread reads true in y, the write to y happens-before the read of y, which is program-
ordered before the read of x. Thus, the write of 42 to x happens-before the read of x. Schemat-
ically, the graph of memory events of such an execution may be represented as follows.

ordinary write
of 42 to x

volatile write
of true to y

volatile read
of true from y

ordinary read
of 42 from x

program order

happens before

program order

happens before

In this situation, the right thread indeed observes the value 42 in x, because the Java memory
model mandates that an ordinary read pulls its value from the last write that happens-before
this read.

For a given execution, we formally define a data race as a pair of two accesses to the same
variable, at least one of them being a write, which are not ordered by the happens-before
relation. Data races on non-volatile variables capture a class of concurrency bugs: they cannot
be given a reliable behavior and are the sign of a lack of synchronization, a mistake from the
programmer. A program is said to be correctly synchronized when no sequentially-consistent
execution of the program exhibits a data race. The Java memory model enjoys the data-race-
freedom (DRF) property: if a program is correctly synchronized, then any execution of the
program is equivalent to a sequentially consistent execution (Manson et al., 2005, §9.2.1). This
property allows programmers to reason about the correctness of their code: to prove that a
program is correct, it is enough to prove it in a memory model where data races have undefined
behavior (Aspinall and Ševčík, 2007).

Some memory models have a “catch-fire” approach to data races: racy programs are con-
sidered incorrect and absolutely nothing is guaranteed about their behavior. However, in Java,

§2.1. AN OVERVIEW OF WEAK MEMORY 9

even racy programs must observe minimal safety and security guarantees. For instance, the
memory model strives to disallow “out-of-thin-air” values, that is, the fact that a location ends
up storing a value that has not been produced by any expression of the source code. The pos-
sibility of such a situation is regarded as a serious flaw, for one, because it could produce an
invalid pointer, thus breaking memory safety (Manson et al., 2005, §2.2), type safety, and object
invariants. Hence, part of the challenge in designing a memory model for Java has consisted in
giving semantics to racy programs as well, based on a notion of causality (Manson et al., 2005,
§4).

2.1.2 C11

Another prominent memory model is that commonly referred to as the “C11 memory model”,
which is used by C, C++ and Rust at least. It was initially proposed for the 2011 revision of
the C and C++ standards (Batty et al., 2011). Not unlike in Java’s history, this initial model
was later recognized to present several flaws: notably, it was plagued by the out-of-thin-air
problem (Vafeiadis and Narayan, 2013), it prevented sensible optimizations (Vafeiadis et al.,
2015) and, worse, proposed compilation schemes to some architectures were unsound (Lahav
et al., 2017). Thus the model has been amended; an improved model is known as the “repaired
C11 model” (Lahav et al., 2017).

As in Java, the C11 memory model is described axiomatically. Here, rather than diving
into the details of this axiomatic model, we give some intuitions. The C11 model distinguishes
between atomic and non-atomic locations. There are several modes of access to atomic locations,
from stronger to weaker: sequentially consistent (SC), release/acquire (RA), relaxed.1 The
semantics of these access modes can be summarized as follows.

• SC accesses are the strongest and most costly. Atomic locations which are used with only
SC accesses should behave as a sequentially consistent piece of memory, that is, at any
time, they store single values that are seen coherently by all threads. This is summarized
by the DRF-SC theorem, a variant of the data-race-freedom theorem (§2.1.1) which applies
to C programs where atomic locations are used only through SC accesses.

• Release/acquire accesses are weaker, but suffice to implement the message-passing idiom
shown in §2.1.1. They can be described in terms of allowed reorderings: an acquire read
cannot be moved after a subsequent read, and a release write cannot be moved before a
preceding write.

• Relaxed accesses are the weakest possible form of atomic accesses. By itself, they do
not prevent any reordering. Said otherwise, they guarantee no synchronization. Still, by
contrast with a data race on a non-atomic location, a data race involving relaxed atomic
accesses has a defined behavior.

Unlike in Java (and now Multicore OCaml), several access modes can be mixed on a given
atomic location. The interplay between access modes on a same location is responsible for a
good share of the complexity of the C11 model. For one, in the original model, it causes SC
accesses to exhibit surprising behaviors, weaker than one might expect, and is a motivation for
the repaired model (Lahav et al., 2017).

1The standard also defines “consume” reads, which we leave out of this short introduction.

10 CHAPTER 2. BACKGROUND

ℓ ∈ Loc
c, a,A ∈ CellAddr ≜ Loc× N

α ∈ AccMode ≜ {na, at}
σ ∈ Store ≜ Loc fin−→ List (CellContentsna +CellContentsat)

CellContentsna ≜ Hist
h ∈ Hist ≜ Time fin−→ Val
t ∈ Time ≜ Q≥0

CellContentsat ≜ Val×View
V,W,G ∈ View ≜ CellAddr aez−→ Time

Figure 2.1: Semantic objects: locations, cells, stores, histories, timestamps, views.

Unlike in Java (and now Multicore OCaml), the semantics is “catch-fire”: a program that
exhibits a data race on a non-atomic location has an entirely undefined behavior, which means
that, as per the standard, anything is allowed to happen.

The C11 memory model as a whole is deemed particularly complex and, so far, many verifi-
cation frameworks for that model (e.g. Vafeiadis and Narayan (2013); Turon et al. (2014); Kaiser
et al. (2017)) tackle only a fragment of it.

2.2 Multicore OCaml

In this section, we present the Multicore OCaml memory model as well as the syntax and oper-
ational semantics of a core calculus that is representative of the Multicore OCaml programming
language. We start by describing interactions with the memory, isolated in a memory subsystem
(§2.2.1), then we present the reduction rules of the programming language itself (§2.2.2).

2.2.1 The memory model

In this section, we replicate Dolan et al.’s definition of the Multicore OCaml memory model
(Dolan et al., 2018) and extend it with memory allocation, CAS and blocks, which do not
appear in Dolan et al.’s paper. The formalization presented here is a small-step operational
model, contrasting with the axiomatic models that describe the memory models of Java (§2.1.1)
and C11 (§2.1.2). Even though Multicore OCaml can also be given an axiomatic model (Dolan
et al., 2018), in this dissertation we are interested in an operational semantics because it enables
reasoning about the execution of a program step by step, in a program verification framework
such as Iris; indeed, in a later chapter (Chapter 3) we will instantiate Iris with the operational
semantics that we present now. We first define a number of semantic objects (Figure 2.1),
then describe the behavior of the memory subsystem (Figure 2.2). We then draw comparisons
between the described model and those of Java and C11.

At this point, we assume a set Val of values, which is defined later on (§2.2.2).

§2.2. MULTICORE OCAML 11

Locations

A location ℓ represents the address of a contiguous block of memory. We assume a countably
infinite set of locations Loc.

Stores, blocks and cells

A store σ is a mathematical object that represents the entirety of the allocated shared memory.
It maps a finite set of block locations to block contents. A block represents a contiguous allocated
area of memory, supporting efficient random accesses. It has a length n ∈ N and comprises that
number of cells. The contents of a block is the list of the contents of its cells, in order. The
shape of a cell’s contents depends on the access mode of that cell.

Access modes

Each cell is rigidly ascribed an access mode α, either atomic (α = at) or non-atomic (α = na).
The memory subsystem described later (Figure 2.2) enforces that this access mode is chosen
when allocating the block and remains constant throughout execution.2

As far as the memory model is concerned, cells live entirely independent lives: it is not
required in principle that two cells of a given block have the same access mode3 and no synchro-
nization is implied between two cells of a given block.

Cell addresses

Following a standard approach to ruling out aliasing issues, blocks at different locations are
disjoint, so that an individual cell is uniquely identified by the pair (ℓ, i) of its enclosing block’s
address ℓ and of the cell’s offset i within that block; the offset ranges from 0 to n − 1 where n
is the length of the block. In this dissertation, we denote this pair as ℓ[i], and we use c, a, A as
conventional names for such a “cell address”; we write a (respectively, A) to mean that it is the
address of a non-atomic (respectively, atomic) cell.

By uncurrying, a store σ, mapping locations to lists of cell contents, can also be seen as
mapping cell addresses to cell contents. In that regard, given a cell c = ℓ[i], we allow ourselves
to write σ(c) for σ(ℓ)i, that is, the element of index i in the list σ(ℓ). Likewise, we write σ[c 7→ x]
for σ[ℓ 7→ σ(ℓ)[i 7→ x]], that is, for the store σ where the contents of cell c has been updated
to x.

Histories

As said, a store maps cell addresses to cell contents, whose shape depends on the access mode.
The contents of a non-atomic cell is a history of all write events at this cell. A history h is a
finite map of timestamps to values. If desired, a history can also be viewed as a set of pairs of
a timestamp and a value, that is, a set of write events, under the constraint that no two events
have the same timestamp.

2In the actual Multicore OCaml language, typing enforces this discipline statically.
3However, merely for simplicity of presentation, the allocation primitives of the memory subsystem presented

later enforce this property.

12 CHAPTER 2. BACKGROUND

Timestamps

We use timestamps t to describe the behavior of non-atomic accesses. They belong to Q≥0, the
set of the nonnegative rational numbers. This set is chosen for a combination of properties:

• it is infinite: write operations cannot run short of timestamps;

• it is totally ordered: the operational semantics of the memory subsystem relies on com-
paring timestamps;

• its order is dense, that is, a timestamp can be found in between any two timestamps;
this requirement, originally introduced by Kang et al. (2017) in their promising semantics
(their operational semantics for the C11 model), is not actually used in our own proofs,
but it adds no complexity by contrast with using Time ≜ N and it sticks more closely to
the memory model devised by Dolan et al. (2018);

• it admits a minimum element 0: this timestamp is used for initial writes, and only for
initial writes.

It is worth noting that the meaning of timestamps is purely “per cell”: that is, the timestamps
associated with two write events at two distinct cells are never compared.

Views

A view V, referred to as a “frontier” by Dolan et al., is a total mapping of cell addresses
to timestamps which is almost everywhere zero (“aez” for short), that is, whose value is zero
everywhere except at a finite set of cell addresses. A timestamp is meaningful only for non-atomic
cells; the timestamp of atomic cells are not used by the semantics.

Each thread has a view, which increases over time. This view gives, for each cell, the
timestamp of the most recent write event at this cell that the thread is aware of. The view of
the active thread imposes a constraint on the behavior of reads and writes at non-atomic cells
(§2.2.2).

The order on timestamps gives rise to a partial order on views: by definition, the view
inequality V1 ⊑ V2 holds if and only if, for every cell c, the timestamp inequality V1(c) ≤ V2(c)
holds. Equipped with this order, views form a bounded join semilattice. Its minimum element
is the empty view ∅, which maps every memory cell to the timestamp 0. Its join operation is
the pointwise maximum: that is, V1 ⊔ V2 is λc. max(V1(c),V2(c)).

This order can be thought of as an information order: if V1 ⊑ V2 holds, then a thread with
view V2 has more information (is aware of more write events) than a thread with view V1. As
will be seen when presenting the memory subsystem, a non-atomic access issued by a thread
with view V2 has fewer permitted behaviors than the same instruction issued by a thread with
view V1. Indeed, the knowledge of a write event “masks” older (according to their timestamps)
write events at the same non-atomic cell: they cannot be read from anymore, and new write
events can only be inserted after the latest currently-known one.

Contents of atomic cells

The contents of an atomic cell is a pair of a value and a view. Indeed, atomic cells in Multicore
OCaml serve two purposes, which are conceptually independent.

§2.2. MULTICORE OCAML 13

mem-na-Alloc
ℓ /∈ dom(σ) n ≥ 0 h = {0 7→ v}

σ;W allocna(ℓ,n,v)−−−−−−−−→ σ ⊎ {ℓ[i] 7→ h | 0 ≤ i < n} ;W

mem-na-Read
h = σ(a) t ∈ dom(h)
W(a) ≤ t v = h(t)

σ;W rdna(a,v)−−−−−→ σ;W

mem-na-Write
h = σ(a) t /∈ dom(h)
W(a) < t h′ = h[t 7→ v]

σ;W wrna(a,v)−−−−−−→ σ[a 7→ h′];W[a 7→ t]

mem-at-Alloc
ℓ /∈ dom(σ) n ≥ 0

σ;W allocat(ℓ,n,v)−−−−−−−−→ σ ⊎ {ℓ[i] 7→ ⟨v,W⟩ | 0 ≤ i < n} ;W

mem-at-Read
σ(A) = ⟨v,V⟩

σ;W rdat(A,v)−−−−−→ σ;W ⊔ V

mem-at-Read-Write
σ(A) = ⟨v,V⟩ V ′ =W ′ =W ⊔ V

σ;W rdwrat(A,v,v′)−−−−−−−−→ σ[A 7→
〈
v′,V ′

〉
];W ′

mem-Length
σ(ℓ) = b |b| = n

σ;W len(ℓ,n)−−−−→ σ;W

Figure 2.2: Operational behavior of the memory subsystem: σ;W m−→ σ′;W ′

On the one hand, each atomic cell stores a value with a sequentially consistent semantics.
In other words, all threads agree at all times on the current value of an atomic cell; hence, it
suffices to keep track of that value, as opposed to a complete history.

On the other hand, each atomic cell acts as a synchronization medium with a “release/acquire”
semantics. As explained by Dolan et al. (2018), “non-atomic writes made by one thread can be-
come known to another by communicating via an atomic cell.” Formally speaking, each atomic
cell stores a view, that is, a certain amount of information about the non-atomic store. This
view is obtained and updated by accesses to that atomic cell.

The memory subsystem

To complete the definition of the Multicore OCaml memory model, there remains to give an
operational description of the behavior of the memory subsystem. This is done via a labeled
transition system, that is, a relation σ;W m−→ σ′;W ′, which describes how the shared global
store σ and the view W of the active thread evolve through a memory event m, yielding an
updated store σ′ and an updated thread view W ′. The syntax of memory events is as follows,
where α is an access mode, ℓ is a location, c is a cell, a is a non-atomic cell, A is an atomic cell,
v, v′ are values and n is a natural integer:

m ::= ε | allocα(ℓ, v, n) | rdα(c, v) | wrna(a, v) | rdwrat(A, v, v′) | len(ℓ, n)

14 CHAPTER 2. BACKGROUND

These memory events also appear in the definition of the semantics of Multicore OCaml expres-
sions (§2.2.2). Thus, they form a language by which the expression and memory subsystems
communicate.

The rules defining the relation σ;W m−→ σ′;W ′ appear in Figure 2.2 (under the form of
inference rules, where the premises and conclusion of a rule are written above and below a line,
respectively); they can be briefly described as follows.

When a fresh block of non-atomic cells is allocated (mem-na-Alloc) with initial value v,
their respective histories consist of a single write event of that value at timestamp 0. This
guarantees that a read of these cells will succeed, even if the reading thread has not synchro-
nized with the thread where allocation was performed—which may happen in a racy program
that would communicate the newly-allocated address through a non-atomic cell without proper
synchronization.

Naturally, a read instruction at a non-atomic cell must read from one of the write events
in the history of this cell, and a write instruction must extend the history of this cell with a
write event at a previously-unused timestamp. In either case, which timestamp may be chosen
is constrained by the “view” of the active thread.

A read instruction at cell a (mem-na-Read) cannot read from an outdated write event,
therefore must read from an event whose timestamp t is no less than W(a). Both W(a) = t and
W(a) < t are permitted: the latter case allows a thread to read from a write event of which it
is not yet aware. A non-atomic read instruction does not update the view of the active thread.

A write instruction at cell a (mem-na-Write) cannot produce an outdated write event,
therefore must use a timestamp t greater than W(a). The new timestamp must be fresh (that
is, not in the domain of h), but there is no requirement for t to be greater than every timestamp
in the domain of h. The history of cell a and the view of the active thread are updated so as to
include the new write event.

Allocating a fresh block of atomic cells (mem-at-Alloc) causes them to be initialized with
the value v provided by the allocation instruction and with the view W of the active thread.

When reading an atomic cell (mem-at-Read) the view V stored in this cell is merged into
the view of the active thread, reflecting the idea that the active thread acquires information via
this read operation.

Updating an atomic cell (mem-at-Read-Write) overwrites the value v stored at this cell
with the new value v′ and updates the view V stored at this cell by merging the view W of the
active thread into it, reflecting the idea that the active thread releases information via this write
operation. Also, in the same atomic step, the active thread acquires the stored view, as when
reading.

As Multicore OCaml is equipped with a garbage collector, there is no deallocation event.
Lastly, the length of a block can be requested (mem-Length), without affecting the store

nor the view of the active thread.

Extensions to Dolan et al.’s memory model

The memory model proposed by Dolan et al. does not address memory allocation. We thus
extend their model with suitable memory events and reduction rules. It is important to keep
in mind that Multicore OCaml ensures memory safety. This implies that uninitialized memory
must not be observable. As a consequence, an allocation event is conflated with an initial write

§2.2. MULTICORE OCAML 15

to the newly-allocated block. The fact that no thread can read an older state is ensured by
the structure of our semantic objects: for a given non-atomic cell, any view gives at least the
minimum timestamp 0 which corresponds to the initial write. The initial write is immediately
known to all threads. Implementation-wise, this implies that the runtime system of Multicore
OCaml must perform some amount of synchronization at some point—either when allocating,
or when publishing the address of a block to the shared memory, or when reading from such an
address.

Dolan et al. omits CAS instructions, but adding them to the model is straightforward. Since
an atomic write in their model combines the effects of an “acquire” read and that of a “release”
write, the same memory event rdwrat(A, v, v′) can be used to model both an atomic write and
a CAS instruction. By contrast with the original model, that event mentions the overwritten
value v. It is ignored by atomic writes but matters for CAS instructions (the difference will
become apparent later on in Figure 2.4c).

Dolan et al.’s original paper features only mutable references, that is, blocks of length one.
We extend their model with blocks of arbitrary lengths. Our extension permits efficient random
accesses in the programming language, which is needed for realistic implementations of some
data structures. In practice, the present-day implementation of Multicore OCaml has atomic
references, non-atomic references and blocks (“arrays”) of non-atomic cells. It would not be
hard to add language support for blocks of atomic cells, or for records with mixed atomic and
non-atomic fields, as already supported by our model.

Comparison with the memory model of Java

The definition just given of the memory model of Multicore OCaml is operational, that is, it
consists of a (small-step) reduction relation with an interleaving semantics—but where the shared
state has a more intricate mathematical structure than it would have in a sequentially consistent
setting. By contrast, the memory model of Java is traditionally described axiomatically (as
done in §2.1.1): a “candidate execution” takes the form of a set of memory events and relations
between them, and an actual execution is a candidate execution that respects certain conditions,
such as the acyclicity of certain relations. In fact, Dolan et al. also give an axiomatic account
of their model, and provide a paper proof of the equivalence between their operational and
axiomatic definitions.

The memory model of Multicore OCaml is most similar to that of Java. Both provide two
access modes—“non-atomic” and “atomic” in Multicore OCaml terms, or ordinary and “volatile”
in Java terms—and a given memory cell must only be accessed with one mode (a constraint
that both languages enforce thanks to their typing discipline). While non-atomic variables have
a relaxed behavior, atomic variables perform synchronization which allows the message-passing,
or “release-acquire”, pattern.

To quote Dolan et al., both models “bound data races in space”; that is, a race on one cell
does not compromise accesses to other regions of memory. This matches the memory safety
guarantees offered by the Java and Multicore OCaml languages, in which some catastrophic
failures—such as segmentation faults—must not happen even in the event of a race. By contrast,
in unsafe languages such as C, the presence of any race in a program makes the behavior of the
entire program undefined.

The memory model of Multicore OCaml differs from that of Java on certain aspects. Contrary
to Java, Multicore OCaml also “bounds data races in time”, in the sense that a race on a given

16 CHAPTER 2. BACKGROUND

memory cell does not affect earlier accesses to that cell, nor does it compromise future accesses
for good: by performing enough synchronization, a program may recover from a racy state.
Dolan et al. give the following two examples.

The first example illustrates a lack of coherence in Java, which results in a race that compro-
mises later accesses even if subsequent synchronization is done. Consider the following program,
with two shared cells x and y where only y is atomic.

x is a non-atomic cell
y is an atomic cell

initially [x] = 0 and [y] = false

[x]← 1 [x]← 2
[y]← true a← [y]

b← [x]
c← [x]
assert (a = false ∨ b = c)

This program exhibits a race between the two writes to x. However, since atomic accesses
perform synchronization, a programmer might expect that, if the second thread has read true
in the atomic cell y, then it has observed all the writes to x and thus, at that point, reading x
twice would yield the same value—which one would be read depends on how the conflicting
writes would have been ordered when synchronizing. In other words, when a = true, either
(b, c) = (1, 1) or (b, c) = (2, 2).

This expectation is violated in the memory model of Java, which also allows (b, c) = (1, 2)
and (b, c) = (2, 1). Indeed, Java might optimize the first read of x to the constant 2 without
doing likewise for the second read (if, for example, aliasing hides from the compiler the fact that
the cell to be read is x).

On the other hand, the expectation holds in Multicore OCaml; its axiomatic model ensures
it via an additional coherence property. In the operational model presented earlier, after it has
read true in y, the right thread has updated its view to the maximum of the timestamps of
both writes to x, hence the following reads are in fact not racy: they can only read from the
last write. The race on x has been resolved thanks to synchronization.

The second example illustrates load buffering, which is allowed by the Java model, but is
hard to reason about and can lead to arguably surprising results: with load buffering, reads can
be made inconsistent because of future data races. Consider the following example, where x is
a shared non-atomic cell.

x is a non-atomic cell
initially x contains some valid address

y ← refna 0 y ← [x]
[y]← 1 [y]← 2
a← [y]
[x]← y
assert (a = 1)

This program exhibits a data race on x. Still, a programmer might want to reason about an
execution before the race occurs; one might expect that a receives the value 1 when reading y,

§2.2. MULTICORE OCAML 17

because at that point cell y has just been allocated and is not shared yet, so no other thread
could possibly have written to it. This expectation is violated in Java: because the read of y
and the write to x in the left thread operate on distinct cells, Java can reorder both operations,
which can lead to a reading the value 2.

One of the design goals of the memory model of Multicore OCaml was to forbid load buffering;
in the example above, Multicore OCaml fulfills the programmer’s expectation.

Reasoning about load buffering operationally is a challenging problem; Kang et al. (2017)
devise the promising semantics for tackling it in the context of C11. The axiomatic model of
Multicore OCaml carefully avoids load buffering, consequently its operational semantics does
not need promises and is simpler than that of Kang et al.. The drawback, as can be seen,
is that Multicore OCaml permits fewer optimizations than Java. Dolan et al. (§8) assess the
performance penalty of this stricter model.

These authors’ claim that Multicore OCaml “bounds data races in space and time” is made
formal in a local data-race-freedom (local DRF) theorem (Dolan et al., 2018, §4–5), which is a
stronger variant of Java’s DRF theorem (§2.1.1), involving a notion of ongoing data races.

Comparison with the memory model of C11

It is less straightforward to compare the memory models of C11 (§2.1.2) and of Multicore OCaml.
A C11 non-atomic location has no counterpart in Multicore OCaml, because data races on

such a location have undefined behavior according to the “catch-fire” model of C11, whereas the
model of Multicore OCaml enforces memory safety, type safety, and gives well-defined semantics
to all memory accesses. For this reason, a Multicore OCaml non-atomic cell is rather comparable
to a C11 atomic location with relaxed accesses. The latter is slightly stronger though: indeed,
in the axiomatic model of C11, there is a “coherence order” that relates all accesses to a given
atomic location (Lahav et al., 2017, §3), while in Multicore OCaml, non-atomic reads are not
necessarily ordered. This is visible in the operational semantics, specifically in rule mem-na-
Read: reading a non-atomic cell does not update the thread’s current view W, hence it is
possible that a thread reads a write with some timestamp t, then reads another write with an
earlier timestamp t′ < t. This can only occur, though, when the reads are involved in a data
race. For instance, for the racy program below, the semantics of Multicore OCaml allows the
outcome (a, b) = (1, 0), which violates the assertion.

x is a non-atomic cell
initially [x] = 0

a← [x] [x]← 1
b← [x]
assert (a ≤ b)

By contrast, the analogous program in C11 with relaxed atomic accesses is guaranteed to pass
the assertion.

A Multicore OCaml atomic cell is comparable to a C11 atomic location whose access mode
would be a middle ground between SC accesses and release/acquire accesses. This can be
analyzed by separating the two features provided by a Multicore OCaml atomic cell: the value
it stores and the synchronization it performs.

18 CHAPTER 2. BACKGROUND

1. A Multicore OCaml atomic cell stores a single value at all times, that is seen identically
by all threads. In this respect, it is similar to a C11 atomic location with SC accesses,
and is stronger than one with release/acquire accesses. Indeed, the latter stores a history
of values rather than a single value, and can be observed in different states by different
threads in the event of a data race.

2. A Multicore OCaml atomic cell transmits knowledge about the rest of the memory from
writers to readers of that cell, in a release/acquire fashion. There is no implied synchro-
nization between accesses to distinct atomic cells. Multicore OCaml atomic cells are thus
weaker than a C11 atomic location with SC accesses, because C11 enforces synchronization
between all SC accesses to all atomic locations.

2.2.2 The programming language

We now present a core calculus that is representative of the Multicore OCaml programming
language as regards shared-memory concurrency. It is equipped with a dynamic thread creation
operation and with the two access modes presented earlier. For simplicity, we refer to this
calculus as Multicore OCaml.

Syntax

The syntax of our idealized version of Multicore OCaml appears in Figure 2.3. It is untyped
(contrary to the actual Multicore OCaml) and equipped with a standard call-by-value, left-to-
right evaluation. It features recursive functions, primitive operations on Boolean and integer
values, tuples, optional values, and standard control constructs, including conditionals and se-
quencing. The last group of constructs in this figure are syntactic sugar, easily implemented by
other constructs, thus there is no need to give semantics to the derived constructs. This calculus
is extended with shared-memory concurrency, as follows. First, the construct fork e spawns a
new thread. In the parent thread, this operation immediately returns the unit value (). In the
new thread, the expression e is executed, and its result is discarded. Second, the language sup-
ports the standard operations of reading and writing, on both non-atomic and atomic memory
cells. In addition, atomic memory cells support a compare-and-set (CAS) operation.

The expression arrayα[n] v allocates a block of n cells whose access mode is α and whose
initial value is v. There is no deallocation operation. Reading from a cell with access mode α at
offset k of location ℓ is written ℓ[k]α. Writing a value v to a cell with access mode α at offset k
of location ℓ is written ℓ[k]α ← v. In addition, atomic cells support the usual compare-and-set
operation: CAS ℓ[k] v1 v2 reads the atomic cell at offset k of location ℓ, tests whether its value is
equal to v1, overwrites it with v2 if that is the case, and returns the Boolean result of the test;
importantly, the read and the write operations happen atomically.

All memory reads and updates expect a pair of a block location and an offset: in other
words, cells are not first-class values, and there is no pointer arithmetic. There is syntactic
sugar for single-cell blocks, or “references”: refα v allocates a block of length one, !α ℓ reads at
offset zero, ℓ :=α v writes at offset zero, and CAS ℓ v1 v2 performs a compare-and-set operation
at offset zero.4

4In the surface language, non-atomics have type ’a ref. Their operations are ref, !, and :=. Atomics have
type ’a Atomic.t. Their operations are Atomic.make, Atomic.get, Atomic.set, and Atomic.compare_and_set.

https://github.com/ocaml-multicore/ocaml-multicore/blob/master/stdlib/atomic.mli

§2.2. MULTICORE OCAML 19

x ∈ Var — variables
ℓ ∈ Loc — memory locations
b ∈ {false, true} — Boolean values
n ∈ Z — integer values
v ::= µ f. λ x. e | ℓ | () | b | n — values
| None | Some v | (v, . . . , v)

⊙ ∈ {∧,∨,+,×, mod, . . . } — operators
e ::= — pure expressions:

x | µ f. λ x. e | e e | e⊙ e – λ-calculus with recursive functions
| ℓ | () | b | n | None | Some e | (e, . . . , e) – primitive values and constructors
| if e then e else e – conditional
| match e with Some x→ e | None→ e – option matching
| let (x, . . . , x) = e in e – tuple matching

— impure expressions:
| fork e – spawning a new thread
| arrayα[e] e – allocating a block
| e[e]α | e[e]α ← e | CAS e[e] e e – accessing a cell
| length e – requesting the length of a block

— syntactic sugar:
| let rec x x . . . x = e in e – definitions of recursive functions
| let x . . . x = e in e | e ; e – definitions, sequencing
| while e do e done – while loops
| for x from e to e do e done – for loops
| refα e – allocating a reference
| !α e | e :=α e | CAS e e e – accessing a reference

Figure 2.3: The syntax of (an idealized fragment of) Multicore OCaml

20 CHAPTER 2. BACKGROUND

Operational semantics

The operational semantics of Multicore OCaml is shown in Figure 2.4. It is defined in two layers.
The “per-thread” reduction relation e

m−→ e′, e′1, . . . , e
′
n defined in Figures 2.4b and 2.4c

describes how an expression e takes a step and reduces to a new expression e′, possibly interacting
with the memory subsystem via an event m, and possibly spawning a number of new threads
e′1, . . . , e

′
n.5 Figure 2.4b presents the pure reduction rules, that is, the rules which do not involve

an interaction with the memory subsystem (they are annotated with the silent event ε) and
do not spawn new threads. Together with the rule for reducing under evaluation contexts
(which are defined in Figure 2.4a), these rules form a standard small-step reduction semantics
for right-to-left call-by-value λ-calculus. Figure 2.4c presents the reduction rules for the memory
operations, which interact with the memory subsystem via a memory event, and the reduction
rule for “fork”, which spawns one new thread. From this point on, when c = ℓ[i] is a cell address,
we allow ourselves to write !α c for ℓ[i]α, c :=α v for ℓ[i]α ← v and CAS c v1 v2 for CAS ℓ[i] v1 v2.
Recall that cell addresses are not first-class values in our language.

Note that a successful compare-and-set (CAS) instruction and an atomic write instruction
are both modeled by a memory event of the shape rdwrat(_,_,_). Indeed, as per Dolan et al.’s
memory model, an atomic write has both a “release” and an “acquire” effect.

The “thread-pool” reduction relation σ; p =⇒ σ′; p′ defined in Figure 2.4d describes how
the machine steps between two configurations σ; p and σ′; p′. In such a configuration, σ is a
store, while p is a thread pool, that is, a list of threads, where each thread ⟨e,W⟩ is a pair
of an expression e and a view W. The left-hand rule allows the per-thread execution system
and the memory subsystem to synchronize on an event m. The right-hand rule shows how new
threads are spawned; a newly-spawned thread inherits the view of its parent thread. Because a
per-thread reduction step cannot both access memory and spawn new threads, these two rules
suffice.

The operational semantics of Multicore OCaml is the reflexive transitive closure of the thread-
pool reduction relation. It is therefore an interleaving semantics, albeit not a sequentially
consistent semantics, as it involves a store whose behavior is nonstandard.

A machine configuration σ; p is considered stuck if the thread pool p contains at least one
thread that cannot take a step yet has not reached a value. A stuck configuration represents an
undesirable event, a runtime error. There are many ways of constructing stuck configurations:
examples include applying a primitive operation to arguments of incorrect nature, attempting
to call a value other than a function, and so on. All such errors are ruled out by the OCaml type
system:6 the execution of a well-typed program cannot lead to a stuck configuration. Although
this claim does not appear to have been formally established, it seems clear that a syntactic
proof of type soundness for ML with references (Wright and Felleisen, 1994) can be adapted to
the semantics of Multicore OCaml.

A careful reader might note that a non-atomic read instruction (mem-na-Read) could po-
tentially be stuck under certain circumstances. This could be the case, for instance, if the
history h is empty, or if the timestamp W(a) is too high, causing all write events in h to be
considered outdated. In reality, though, neither of these situations can arise, because only a

5In fact, a reduction step can either emit a memory event or spawn new threads, but not both. Also, the
number of newly spawned threads is always zero or one.

6No changes to the type system are required by the move from OCaml to Multicore OCaml. The type ’a
Atomic.t is a new (primitive) abstract type.

§2.2. MULTICORE OCAML 21

K ::= □ — pure contexts
| e K | K v | e⊙K | K ⊙ v
| Some K | (e, . . . , e,K, v, . . . , v)
| if K then e else e
| match K with Some x→ e | None→ e
| let (x, . . . , x) = K in e

— impure contexts
| arrayα[e] K | arrayα[K] v
| e[K]α | K[v]α | e[e]α ← K | e[K]α ← v | K[v]α ← v
| CAS e[e] e K | CAS e[e] K v | CAS e[K] v v | CAS K[v] v v
| length K

(a) Evaluation contexts

e
m−→ e′, e′1, . . . , e

′
n

K[e] m−→ K[e′], e′1, . . . , e′n
(µ f. λ x. e) v ε−→ e[µ f. λ x. e/f][v/x]

v1 ⊙ v2 = v′

v1 ⊙ v2
ε−→ v′

if true then e1 else e2
ε−→ e1 (match Some v with Some x→ e1 | None→ e2) ε−→ e1[v/x]

if false then e1 else e2
ε−→ e2 (match None with Some x→ e1 | None→ e2) ε−→ e2

let (x1, . . . , xn) = (v1, . . . , vn) in e
ε−→ e[v1/x1] . . . [vn/xn]

(b) Thread-local reduction: e m−→ e′, e′1, . . . , e
′
n — pure steps

arrayna[v] n
allocna(ℓ,v,n)−−−−−−−−→ ℓ !na a

rdna(a,v)−−−−−→ v a :=na v
wrna(a,v)−−−−−−→ ()

arrayat[v] n
allocat(ℓ,v,n)−−−−−−−−→ ℓ !atA

rdat(A,v)−−−−−→ v A :=at v
rdwrat(A,v1,v)−−−−−−−−−→ ()

v0 ̸= v1

CAS A v1 v2
rdat(A,v0)−−−−−−→ false

CAS A v1 v2
rdwrat(A,v1,v2)−−−−−−−−−→ true

length ℓ
len(ℓ,n)−−−−→ n fork e

ε−→ (), e

(c) Thread-local reduction: e m−→ e′, e′1, . . . , e
′
n — impure steps

e
m−→ e′ σ;W m−→ σ′;W ′

σ; p1, ⟨e,W⟩ , p2
=⇒ σ′; p1,

〈
e′,W ′〉 , p2

e
ε−→ e′, e′1, . . . , e

′
n

σ; p1, ⟨e,W⟩ , p2
=⇒ σ; p1,

〈
e′,W

〉
, p2,

〈
e′1,W

〉
, . . . ,

〈
e′n,W

〉
(d) Thread-pool reduction: σ; p =⇒ σ′; p′

Figure 2.4: Small-step operational semantics of Multicore OCaml

22 CHAPTER 2. BACKGROUND

subset of well-formed machine configurations can be reached. In a well-formed configuration,
every non-atomic cell ever allocated must have a nonempty history, and no thread can get hold
of an unallocated cell, thereby removing the concern that h might be empty. Furthermore, a
well-formed configuration must satisfy the following global view invariant: there exists a global
view G such that:

1. every thread’s view W is contained in G, that is, ∀ ⟨e,W⟩ ∈ p. W ⊑ G holds, where p is
the thread pool;

2. the view of every atomic cell is contained in G, that is, ∀A, v,V. σ(A) = ⟨v,V⟩ =⇒ V ⊑ G
holds;

3. the global view maps every non-atomic cell to a timestamp that exists in the history of
this cell, that is, ∀a, h. σ(a) = h =⇒ G(a) ∈ dom(h) holds;

4. the global view maps every currently unallocated cell to the minimal timestamp, that is,
∀c /∈ dom(σ). G(c) = 0 holds.

In fact, the global view G is the join of all thread’s views, and maps every allocated non-atomic
cell to the maximal timestamp of its history. In other words, there always exists a thread which
has observed the most recent write to a given cell—the thread that performed that write, at
least. This fact, however, is not needed in our proofs. Besides, it would not hold anymore if we
allowed thread deletion.

One can check that the above set of properties is indeed an invariant (i.e., it is preserved
by every reduction step) and that this invariant implies that a non-atomic read instruction
at an allocated non-atomic cell cannot be stuck. In fact, in the next chapter, we must prove
this claim, and exploit this invariant, otherwise we would be unable to prove that our logic is
sound: a sound program logic must guarantee that a verified program cannot get stuck. Thus,
when we instantiate Iris for Multicore OCaml, we build the global view invariant into our “state
interpretation” invariant (§3.1), and when we establish the reasoning rule for non-atomic read
instructions (rule base-na-Read in Figure 3.2), we exploit it (§3.4).

2.3 Program verification
Program verification is the act of ensuring that a program behaves as intended. In this disser-
tation we are interested in proving the functional correctness of programs, that is, proving that
they produce expected outputs in relation with their inputs according to a given formal specifi-
cation. An even more fundamental property is program safety: a program e is safe, with respect
to an operational semantics, if no reduction chain starting from e leads to a stuck program.
A stuck program can be regarded as a crash, an error that definitely must not happen.

A specification is typically expressed as a Hoare triple (Hoare, 1969), that is, a logical
assertion of the following form:7

{P } e {λx. Q}
7Note that the formalism we use takes several now-standard departures from Hoare’s original logic (Hoare,

1969): whereas Hoare logic was axiomatic, ours is derived from our programming language’s operational semantics
and ensures program safety even for non-terminating programs. Furthermore, to accommodate for a functional
language, the subject of triples are expressions rather than statements, and the postcondition features a binder
which captures the resulting value of that expression.

§2.3. PROGRAM VERIFICATION 23

In this notation, e is a program fragment—source code—and P andQ are logical assertions which
describe what should hold of the computer state—typically, the contents of the memory—before
and after program e has run. The syntax λx. Q binds the logical variable x in the formula Q.
Such a triple is intuitively read as: if program e runs from a state that satisfies precondition P ,
then e is safe; furthermore, if it terminates, then its return value x and the state it leaves the
computer in satisfy postcondition Q.

In this reading, program termination is an assumption: in the situation when e does not
terminate, only safety is guaranteed. This is called partial correctness. Total correctness is an
alternative, stronger reading which guarantees termination rather than assuming it. Proving
program termination, however, is out of the scope of this dissertation, as is proving deadlock-
freedom or starvation-freedom—the latter being a liveness property.

To prove a functional specification, we have at hand a set of reasoning rules about Hoare
triples. The first two rules in Figure 2.5 (ignoring frame for now) are fundamental rules, that
do not depend on the actual programming language. Rule consequence states that, from a
specification, we can deduce any weaker specification, that is, one with a stronger precondition
and a weaker postcondition. Rule bind implies that, to prove the specification of a program, we
can chain a specification for its head reduction step and a specification for the resultant program
fragment; this allows to reason about an execution step by step. To this effect, in addition to
these two structural rules, one has rules that describe the behavior of each reduction step of the
programming language. These rules are guided by syntax and reflect the operational semantics.
For example, assuming that our language has Boolean values and an “if-then-else” construct,
one would typically have rules resembling these two:

{P } e1 {λx. Q}
{P } if true then e1 else e2 {λx. Q}

{P } e2 {λx. Q}
{P } if false then e1 else e2 {λx. Q}

With an expressive enough logical language, one can describe a program’s contract very
precisely. Hence Hoare-style functional correctness is one of the strongest forms of program
verification, and requires a great deal of human intervention. Thus it is a work per se to come
up with a satisfying specification: one that both is provable and captures the important facts
while, ideally, remaining simple enough to manipulate.

An important feature is composability of specifications. Indeed, software code bases are
large and rely extensively on re-use of conceptually independent components, such as libraries
and functions. To scale verification to these code bases, it is of utmost importance that we
are able to specify and verify an independent component in isolation, once and for all, and
then re-use its specification when verifying each part of the code that use it. In this work, we
achieve composability thanks to (concurrent) separation logic, and also thanks to a mechanism
of monotonic views of memory. We now introduce the former; an extensive presentation of the
latter is done in Chapter 4.

2.3.1 Separation Logic

In the perspective of composability, the original Hoare logic is inappropriate when applied to
programs with heap-allocated locations. Indeed, in Hoare’s framework, the specification of a
component must describe in its precondition and postcondition the entirety of memory, including
the portion of memory that is never accessed by the component. Moreover, it is often necessary

24 CHAPTER 2. BACKGROUND

consequence
P ⊢ P ′ {P ′} e {λx. Q′} ∀x. Q′ ⊢ Q

{P } e {λx. Q}

bind
{P } e {λx. Q} ∀x. {Q}K[x] {λy. R}

{P }K[e] {λy. R}

frame
{P } e {λx. Q}

{R ∗ P } e {λx. Q ∗R}

Figure 2.5: Structural reasoning rules about Hoare triples in Separation Logic

to assert that variables used in the program are disjoint, that is, they do not alias each other,
which accounts for a number of side conditions that grows quadratically with the number of
variables.

Separation Logic (Reynolds, 2002) constitutes an answer to this lack of composability. In
Separation Logic, each assertion holds for a given heap fragment, called its footprint. Formally
speaking, a Separation Logic assertion is a predicate over heap fragments. In addition to the
classical conjunction P ∧ Q, Separation Logic features a separating conjunction P ∗ Q which
asserts that P and Q hold on disjoint heap fragments; the footprint of P ∗Q is then the union
of the footprints of both conjuncts.

This layer of abstraction relieves the user from dealing with disjointness side conditions, and
it enables local reasoning: rule frame (Figure 2.5) holds in Separation Logic. Thanks to this
rule, one can prove a specification about a program e with just the minimal footprint (P,Q)
that is relevant to e, then use this specification in varying contexts, R representing the rest of
the memory—the frame. Separation is crucial: it prevents the assertions P and Q from being
falsified by the context. A similar rule stated with classical conjunctions instead of separating
conjunctions would not be valid.

Concurrent Separation Logic

We are now interested in proving the correctness of concurrent programs, that is, programs
where several threads can access a data structure concurrently. Let us assume for now that the
memory model is sequentially consistent (Lamport, 1979).

It turns out that the ideas of Separation Logic extend quite naturally to this setting. Sepa-
ration achieves non-interference between threads, a feature which earlier attempts (Owicki and
Gries, 1976) missed. For instance, in a concurrent setting, the validity of the following Hoare
triple is not trivial, because another thread might modify location x concurrently.

{x⇝_} x := v {λ_. x⇝ v}

In Separation Logic, the assertion x⇝_ asserts the unique ownership of x; if we further arrange
so that threads operate on separate portions of the memory, then no other thread is allowed to
operate on x when we own x⇝_, so the triple above is valid.

In a seminal work that builds on this idea, Brookes (2004) and O’Hearn (2007) devised
Concurrent Separation Logic, an extension of Separation Logic which enables to reason about
programs where several threads can access a same piece of memory. The original Concurrent

§2.3. PROGRAM VERIFICATION 25

Separation Logic achieves sharing through hard-wired “conditional critical regions”, that is, code
sections guarded by a global lock. However, it has spawned a variety of descendants lifting this
limitation and pushing further the applicability of such separation logics. Brookes and O’Hearn
(2016) provide a survey of these descendants. In this dissertation, we use one of them, called
Iris.

2.3.2 Iris

Iris (Jung et al., 2018b) is a fine-grain concurrent separation logic framework. Its starting idea
is the observation that ghost state, implemented by parameterizable partial monoids, gives rise
to a particularly expressive logic, able to subsume many previous proposals. Thus, at the core
of Iris is a notion of ghost state—initially partial commutative monoids, now a generalization
called cameras.

Like earlier logics, Iris tackles fine-grain concurrency through the use of invariants, that is,
assertions whose resources are available by all threads equally and, thus, can never be revoked.

A distinctive trait of Iris invariants is that they are impredicative: the fact that an invariant
holds is itself a first-class assertion, which can be put inside an invariant. This feature has
implications on the logic itself: to tackle impredicativity, Iris is step-indexed, which means that
it features a “later” modality ▷P (Jung et al., 2018b, §5.5). It is not necessary to understand the
details of step-indexing for the scope of our work; when reading this dissertation, later modalities
may be simply ignored.

A strength of Iris is that it is implemented and mechanically proven sound in Coq. Besides,
the Coq development ships with a deep embedding of the logic and provides a “Proof Mode”,
an interactive way of carrying proofs within the Iris logic, in a manner similar to how one
would prove pure Coq goals (Krebbers et al., 2017). Lastly, Iris can take advantage of the
expressiveness of the host logic: there is an injection from the type Prop of Coq propositions—
so-called pure assertions, which do not own any resource—to the type iProp of Iris assertions.
In this dissertation, we leave that injection implicit.

It is worth noting that Iris has a notion of Hoare triples as first-class assertions, which may
own resources.

In this section, we give a simplified overview of the Iris notions that we use throughout this
dissertation. For a complete presentation of Iris, we refer the interested reader to Jung et al.
(2018b).

Ghost state and ghost updates

In the original Separation Logic, assertions are predicates over heap fragments. This idea can be
generalized to other notions of ownable resources: file handlers, printers, permissions to perform
some actions... Ghost state in Iris is a flexible tool for defining custom resources. In fact, even
invariants and the heap are encoded as pieces of ghost state. Ghost state takes values from
algebraic structures called cameras. In this dissertation, we only give an informal description of
cameras, whose actual definition is quite technical; we refer the interested reader to Jung et al.
(2018b, §2.1, §4.4).

Ghost values are assigned to ghost variables: for any ghost variable γ and any element x of
any camera, there is a separation logic assertion x

γ , whose intuitive reading is that we own
a fragment of γ and that this fragment has value x. Unlike what happens with a traditional

26 CHAPTER 2. BACKGROUND

points-to assertion, the ownership and value of a ghost variable can be split into fragments. A
camera structure comes with an associative and commutative composition law (·) which dictates
how ghost state can be split and combined, according to the following rule (where ⊣⊢ is the
logical equivalence):

GhostOp
x · y γ ⊣⊢ x

γ ∗ y
γ

This composition law is partial, that is, the composition x ·y is not necessarily valid for all pairs
of elements x and y. In other words, some pairs of resources may be incompatible.

We can update fragments of the ghost state but not in arbitrary ways: every update must
preserve the validity of the whole ghost state, that is, the new value of the fragment must be
compatible with any other fragment that might exist prior to the update; these other fragments
are left unchanged. Thus, we say that a frame-preserving update is possible from x to y (both
elements of some camera M), and we write x⇝ y, when any element z of M that is compatible
with x (that is, such that the composition x · z is valid) is also compatible with y (Jung et al.,
2018b, §2.1). Elements z are the possible “frames”.

In the Iris logic, changes to the ghost state go through an update modality: the assertion
|⇛P is intuitively read as “after some ghost update is performed, the assertion P will hold”. We
also define the notation P ⇛ Q as sugar for P −∗ |⇛Q, that is, “we can update the assertion P
to the assertion Q”. Iris has the following reasoning rules for manipulating ghost state within
the logic:

GhostAlloc
x ∈M

|⇛∃γ. x
γ

GhostUpdate
x, y ∈M x⇝ y

x
γ
⇛ y

γ

Rule GhostAlloc says that, by performing an update to the ghost state, we can initialize a
fresh ghost variable γ to any ghost value x. Rule GhostUpdate says that, if there is a frame-
preserving update from x to y, then we can transform the value of a fragment of ghost state
from x to y, again by performing an update to the ghost state.

The Iris toolkit provides several useful camera constructions, presented now.

Exclusive camera The exclusive camera (Jung et al., 2018b, §3.1) Ex(X) over some type8 X
has X as its carrier. We denote by ex the injection from X to Ex(X). The composition law
is such that there cannot be more than one fragment of the resource in existence: that is, the
composition ex(x) · ex(y) is never valid. It follows that elements of this camera can be updated
freely: ex(x)⇝ ex(y) for any x and y.

More generally, an element x of a camera M is said to be exclusive when it cannot be
composed with any element of M . In that case, we have x⇝ y for any element y ∈M .

Agreement camera The agreement camera (Jung et al., 2018b, §3.1, §4.3) Ag(X) over some
type8 X has X as its carrier. We denote by ag the injection from X to Ag(X). The composition
law achieves agreement on some element of X: that is, ag(x) · ag(x) is ag(x), and ag(x) · ag(y)
is invalid if x ̸= y. This camera allows no non-trivial update.

8 Technically speaking, X must be an OFE, short for ordered family of equivalences, which is a step-indexed
analog of the usual notion of type (Jung et al., 2018b, §4.2).

§2.3. PROGRAM VERIFICATION 27

Authoritative camera The authoritative camera (Jung et al., 2018b, §6.3.3) Auth(M) over
some (unitary) camera M has both authoritative elements of the form •x and fragmentary ele-
ments of the form ◦ y, where x and y are elements of M ; it also has elements of the form •◦ (x, y),
so as to represent compositions of elements of the other two forms. An authoritative element
represents the full knowledge of something, and cannot be split: the composition (•x1) · (•x2)
is never valid. A fragmentary element represents partial knowledge, and can be split and joined:
the composition (◦ y1) · (◦ y2) is defined as ◦ (y1 · y2). Because a fragment must be a part of
the whole, the composition (•x) · (◦ y) is valid if and only if y is included in x, that is, if there
exists z such that x = y · z (which we denote as y ≼ x).

To describe allowed updates in an authoritative camera, it is useful to define a notion of
local update (Iris developers and contributors, 2022, §4.8): we say that we can perform a local
update from x and y to x′ and y′, and we write (x, y) ⇝L (x′, y′), when every element z such
that x = y · z satisfies x′ = y′ · z. We then have the following rule for updating the authority
along with a fragment:

AuthUpdate
(x, y)⇝L (x′, y′)
•x · ◦ y ⇝ •x′ · ◦ y′

In other words, we can update a part of the whole from y to y′ if, while doing so, we preserve
the remaining parts (the “frame”) z.

Map camera The finite map camera X fin−→M from some arbitrary typeX to some cameraM
has finite maps from X to M as its elements; composition and updates are pointwise.

Product camera The product camera M1 ×M2 of two cameras M1 and M2 has pairs as its
elements; composition and updates are pointwise.

Sum camera The sum camera M1 +M2 (Jung et al., 2018b, §3.1) of two (unitary) cameras
M1 and M2 has the sum type as its carrier. We denote by inl and inr the two associated
injections. Composition in the sum camera is given by those of the two underlying cameras:
inl(x) · inl(y) = inl(x · y) and inr(x) · inr(y) = inr(x · y); the composition inl(x1) · inr(x2) is invalid.

This camera supports pointwise updates: if x⇝ x′ then inl(x)⇝ inl(x′), and similarly with
inr. Under certain circumstances, we can also switch from one branch to the other: if x ∈M1 is
exclusive, then so is inl(x), hence inl(x)⇝ inr(y) for any y ∈M2; and similarly from inr to inl.

Fraction camera The fraction camera Frac has the fractions q ∈ Q>0 as its elements and
addition as its composition law. Updates are unrestricted. Using that camera, we can encode
fractional ownership of resources (Jung et al., 2018b, §6.3.3, §7.3). Note that the fraction 0 is
excluded; hence, if our encoding of fractional ownership of a resource constrains the fraction to
be at most 1, then a fragment of that resource with the fraction 1 cannot be composed with any
other fragment. In other words, the fraction 1 represents exclusive ownership.

The global ghost state The Iris logical framework is parameterized by a single camera
structure, called the global ghost state (Jung et al., 2018b, §3.2). However, thanks to the product

28 CHAPTER 2. BACKGROUND

camera construction, we can build a global ghost state as the product of however many cameras
we need. Hence, in practice, when we say that we use a given camera, we simply assert that the
global ghost state is a product which contains at least the camera we are interested in.

Persistence

Ghost state in Iris can encode ownership of resources that are not duplicable in general—that is,
these resources can be owned only once and they can be revoked—but it is also able to represent
shareable knowledge, that remains true forever. More precisely, some camera elements x are
idempotent, that is, they do satisfy the equation x = x ·x, which implies that the assertion x

γ

is duplicable, that is, the entailment x
γ ⊢ x

γ ∗ x
γ holds. Examples include:

• ag(x) for any x;

• ◦x when x is idempotent;

• {k1 7→ x1; . . . ; kn 7→ xn} when x1, . . . , xn are idempotent;

• (x, y) when x and y are idempotent.

More generally, Iris has a notion of persistent assertions (Jung et al., 2018b, §2.3). Once
true, these assertions hold true forever. They are duplicable, that is, the entailment P ⊢ P ∗ P
holds for any persistent assertion P .9 Examples of persistent assertions include:

• any pure Coq proposition, that is, P for any proposition P of type Prop; for instance, an
equality between Coq values;

• ownership of idempotent ghost state, x
γ when x = x · x;

• knowledge of an invariant, P for any assertion P (see next subsection);

• any Hoare triple, {P } e {Q};

• P ∗Q when P and Q are persistent;

• ∃x. P and ∀x. P when, for all x, P is persistent.

Besides, Iris has a logic modality for asserting that an assertion holds persistently, that is,
it “holds without asserting any exclusive ownership” (Jung et al., 2018b, §5.3). For a given
assertion P , this modality is denoted as □P . It satisfies several reasoning rules, here are a few:

PersistElim
□P

P

PersistIdemp
□P

□□P

PersistConj
(□P) ∧Q

(□P) ∗Q

PersistForall
∀x. □P

□∀x. P

PersistExists
∃x. □P

□∃x. P

For any assertion P , the assertion □P is persistent. Rule PersistElim shows that □P is
stronger than P . In fact, P is persistent if and only if the reciprocal entailment P ⊢ □P also
holds. Adding the modality is helpful when P only contains duplicable resources but it is not
obvious from the syntax of P that P is persistent.

9Persistence in Iris is a strictly stronger notion than duplicability. See (Jung et al., 2018b, §2.3) for details.

§2.3. PROGRAM VERIFICATION 29

For instance, Hoare triples in Iris are in fact syntactic sugar for weakest-preconditions asser-
tions, defined like so (Jung et al., 2018b, §6):

{P } e {Φ} ≜ □(P −∗ wp e {Φ})

Invariants

An invariant in Iris (Jung et al., 2018b, §2.2) is an assertion that shares the ownership of a given
resource to all threads equally. This resource can be accessed by any thread, in some restricted
way. Because it must remain available to other threads, an invariant can never be falsified:
it holds true forever, that is, it is persistent. Selected rules about invariants are shown below.

InvAlloc
▷ I

|⇛ I

HoareInv
{▷ I ∗ P } e {λx. Q ∗ ▷ I} e runs for at most one step of execution

I ⊢ {P } e {λx. Q}

Rule InvAlloc shows how to form an invariant: for any assertion I, we can consume I in
order to form a new invariant that we denote as I . In other words, we give up on our exclusive
ownership of I and place it in an invariant where it is owned by everyone. Then, rule HoareInv
shows how to use it: we can open it around a program fragment e and obtain its resource I
(under a “later” modality) for the duration of the execution of e. We must reestablish the
invariant after e has completed.

To ensure soundness in the face of concurrency, Iris imposes a strict constraint: e cannot
run for more than one step of execution. It is as if there was a global runtime lock which
would protect all elementary steps of computation, and whose associated invariant would be the
conjunction of all Iris invariants in existence.

Here we have omitted a technical detail which is needed for soundness: in the actual logic,
invariants and Hoare triples are annotated with “namespaces” in order to forbid that an invariant
be opened several times simultaneously.

30 CHAPTER 2. BACKGROUND

Chapter 3

A low-level logic: BaseCosmo

In this chapter, we set up a program logic for Multicore OCaml, based on the operational
semantics presented in the previous chapter. To do so, we rely on Iris (Jung et al., 2018b).
Iris is not tied to a particular programming language or calculus. Its lower layer, the Iris base
logic (Jung et al., 2018b, §3–5), is a purely logical construction, of which we have given a short
introduction in §2.3.2. Its upper layer, the Iris program logic (Jung et al., 2018b, §6–7), is
parameterized with a programming language. In order to instantiate it, a client must provide
the following information (Jung et al., 2018b, §7.3).

• A set of “expressions”.

• A subset of “values”.

• A set of machine “states”. For instance, a state might be a store, that is, a map whose
domain is the set of all currently allocated memory locations.

• An operational semantics, in the form of a “per-thread step relation”. This relation relates
an expression and a state to an expression and a state and a list of expressions, which
represent newly-spawned threads.

• A “state interpretation” predicate S : State → iProp.1 This predicate represents a
global invariant about the machine state. It typically relates the state with a piece of
ghost state whose structure is chosen by the client so as to justify splitting the ownership
of the machine state in certain ways.

Once the client has provided this information, the framework yields a program logic, that is,

• A weakest-precondition predicate wp e {Φ}.

• A Hoare triple predicate {P } e {Φ}, which is just sugar for □ (P −∗ wp e {Φ}).

• An adequacy theorem (Jung et al., 2018b, §6.4, §7.4), which roughly state that if a closed
program e satisfies wp e {Φ} then it is safe to run, that is, its execution will not lead to a
stuck configuration; moreover, its final configurations will satisfy the postcondition Φ.

1Recall that iProp is the type of Iris assertions.

31

32 CHAPTER 3. A LOW-LEVEL LOGIC: BASECOSMO

• A set of programming-language-independent deduction rules for triples (§2.3.1 and §2.3.2).
These include the consequence rule, the frame rule, rules for allocating and updating ghost
state, rules for setting up and exploiting invariants, and so on.

It is then up to the client to perform extra programming-language-specific work, namely:

• Define programming-language-specific assertions, such as “points-to” assertions.

• Prove entailment laws describing, e.g., how points-to assertions can be split and combined.

• Establish programming-language-specific deduction rules for triples, e.g., rules that give
triples for reading and writing memory cells.

We now apply this recipe to Multicore OCaml. This yields BaseCosmo, a logic for Multicore
OCaml.

3.1 Instantiating Iris for Multicore OCaml

We begin instantiating Iris as follows:

• An “expression” is a pair ⟨e,V⟩ of a Multicore OCaml expression and a view.

• Accordingly, a “value” is a pair ⟨v,V⟩ of a Multicore OCaml value and a view.

• A “state” is a store σ.

• The “per-thread step relation” is as defined in Figure 2.4c.

To complete this instantiation, there remains to define a suitable “state interpretation” S.
In choosing this definition, we have a great deal of freedom. Our choice is guided by several
considerations, including the manner in which we wish to allow splitting the ownership of the
state, and the invariants about the state that we wish to keep track of. In the present case, we
have the following three independent concerns in mind.

— We wish to allow splitting the ownership of memory cells (be it atomic or non-atomic)
under a standard “fractional permissions” regime (Boyland, 2003).

— We wish to have a persistent assertion reflecting the knowledge that a given memory block
has a certain length.

— We need to keep track of the global view invariant (§2.2.2) enjoyed by the operational
semantics of Multicore OCaml, because this invariant is required to justify that a non-
atomic read instruction at an allocated non-atomic cell cannot be stuck.

To achieve these goals, we define our state interpretation S with well-chosen camera structures.
We use standard camera constructions presented in §2.3.2. We delay an explanation of the
definition to §3.3.

§3.2. SOUNDNESS OF BASECOSMO 33

• Let γstore be a ghost variable storing an element of Auth(StoreCamera), where we
define the camera of stores as:

StoreCamera ≜ CellAddr fin−→(
Ag(CellContentsna) +Ag(CellContentsat)

)
× Frac

We encode a physical store σ as an element of this camera as follows:

st(σ) ≜ {ℓ[i] 7→ (inl(ag(h)), 1) | ℓ ∈ dom(σ) ∧ 0 ≤ i < |σ(ℓ)| ∧ σ(ℓ[i]) = inl(h)}
⊎ {ℓ[i] 7→ (inr(ag(⟨v,V⟩)), 1) | ℓ ∈ dom(σ) ∧ 0 ≤ i < |σ(ℓ)| ∧ σ(ℓ[i]) = inr(⟨v,V⟩)}

We use this piece of ghost state to implement points-to assertions (§3.3.1, §3.3.2).

• Let γlen be a ghost variable storing an element of Auth(Loc fin−→ Ag(Z)). This camera
allows us to encode the lengths of the blocks of the physical store σ as follows:

len(σ) ≜ {ℓ 7→ ag(|σ(ℓ)|) | ℓ ∈ dom(σ)}

We use this piece of ghost state to implement length assertions (§3.3.3).

• Let γgv be a ghost variable storing an element of Auth(View), where we equip the type
of views with a camera structure by taking the join operation ⊔ as the composition. This
composition law is idempotent. This piece of ghost state allows us to keep track of the
global view G, which we use to implement view validity (§3.3.4).

• We define the state interpretation as the following iProp assertion:

S(σ) ≜ • st(σ) γstore ∗ • len(σ) γlen ∗ ∃G.∗

• G γgv

∀A, v,V. σ(A) = ⟨v,V⟩ =⇒ V ⊑ G
∀a, h. σ(a) = h =⇒ G(a) ∈ dom(h)
∀c /∈ dom(σ). G(c) = 0

3.2 Soundness of BaseCosmo
Having instantiated Iris for the operational semantics of Multicore OCaml (§2.2.2) and for a state
interpretation of our choosing (previous section), we obtain a weakest-precondition predicate
wp ⟨e,V⟩ {Φ}; a triple {P } ⟨e,V⟩ {Φ}, satisfying a set of programming-language-independent
deduction rules (Figure 2.5); and an adequacy theorem, stated now, which guarantees that this
triple is sound.

Triples conform to the informal interpretation given in §2.3. In a triple {P } ⟨e,W⟩ {Φ}, the
precondition P describes the resources required in order to safely execute the expression e on a
thread whose view is W. The postcondition Φ, which takes a pair ⟨v′,W ′⟩ of a value and a new
view as an argument, describes the updated resources that exist at the end of this execution,
if it terminates. This is thus a logic of partial correctness, as defined in §2.3. This claim is
made formal by the following theorem, which we establish by relying on Iris’s generic adequacy
theorem (Jung et al., 2018b, §7.4).

A configuration σ; p is said to be safe if there is no reduction sequence σ; p =⇒∗ σ′; p′ such
that σ′; p′ is stuck (as defined on p. 20). A configuration σ; ⟨e,V⟩ is said to be adequate with

34 CHAPTER 3. A LOW-LEVEL LOGIC: BASECOSMO

respect to some pure predicate ϕ : Val×View→ Prop if it is safe and, for any reduction
sequence σ; ⟨e,V⟩ =⇒∗ σ′; ⟨v′,V ′⟩ , p′ such that v′ is a value, the proposition ϕ(v′,V ′) holds.
Note that this assertion is pure, that is, it lives in the host logic Prop (§2.3.2).

Recall that ∅ is the empty view and ∅ is the empty store.

Theorem 1 (Adequacy of BaseCosmo) For any expression e ∈ Expr and any pure predi-
cate ϕ : Val ×View → Prop, if the entailment ⊢ wp ⟨e,∅⟩ {ϕ} holds, then the configuration
∅; ⟨e,∅⟩ is adequate with respect to ϕ. In particular, this configuration is safe.

3.3 Multicore OCaml-specific assertions

We now define four custom assertions, namely the non-atomic and atomic “points-to” assertions,
the block length assertion a “valid-view” assertion. Next (§3.4), we give a set of reasoning rules
where these assertions appear.

3.3.1 Non-atomic points-to

We wish to be able to split up the ownership of the non-atomic store under a fractional permission
regime. As usual (Boyland, 2003; Bornat et al., 2005), the fraction 1 should represent exclusive
read-write access, while a fraction q < 1 should represent shared read-only access. Furthermore,
we wish to ensure that whoever owns a share of a non-atomic cell has full knowledge of its
history.

For this purpose, we have placed the ghost-state-ownership assertion • st(σ) γstore in the
state interpretation (§3.1), and we now define the non-atomic points-to assertion for a cell a,
a fraction q and a history h, as follows:

q · a⇝na h ≜ ◦ {a 7→ (inl(ag(h)), q)} γstore

We omit the fraction q when it is 1: we write a⇝na h for 1 · a⇝na h.
What is going on here? On the one hand, the points-to assertion claims the ownership

of a fragmentary element of the camera Auth(StoreCamera). Indeed, {a 7→ (inl(ag(h)), q)}
denotes a singleton map, which maps the cell a to the pair (inl(ag(h)), q) where h is a history
(recall that CellContentsna = Hist) and q is a fraction. On the other hand, the state
interpretation owns the authoritative element • st(σ). This ties the non-atomic fragment of the
store σ, which is part of the physical machine state, with the state of the ghost variable γstore.

When such a points-to assertion q · a ⇝na h is at hand, one has a fragmentary element
◦ {a 7→ (inl(ag(h)), q)}. By comparing it against the authoritative element • st(σ), one deduces
{a 7→ (inl(ag(h)), q)} ≼ st(σ) where ≼ is the ordering induced by the pointwise composition law
of the finite map camera, which yields (inl(ag(h)), q) ≼ st(σ)(a), hence inl(ag(h)) ≼ inl(ag(σ(a)))
and q ≼ 1. Finally, by the laws of the sum and agreement cameras, we find that σ(a) = h, that
is, in the physical store, a is indeed a non-atomic cell whose history is exactly h. In short, the
following holds, where the conclusion is pure:

q · a⇝na h ∗ S(σ)
σ(a) = h ∗ 0 < q ≤ 1

§3.3. MULTICORE OCAML-SPECIFIC ASSERTIONS 35

The composition law of the underlying product camera achieves agreement of the history
components and addition of the fraction components. In other words, the following holds:

q1 · a⇝na h1 ∗ q2 · a⇝na h2 ⊣⊢ (q1 + q2) · a⇝na h1 ∗ h1 = h2

Thus, one can read the assertion q ·a⇝na h as representing the knowledge that the cell a is non-
atomic and that its history is h, along with the ownership of a q-share of that cell. As explained
in §2.3.2, a 1-share is exclusive: in the composition rule above, if q1 = 1, then from the combined
points-to assertion and the state interpretation we deduce 1 + q2 ≤ 1, which contradicts 0 < q2.

This technique of encoding a (fractional) points-to assertion using these ghost state con-
structions is not original: we follow the pattern presented by Jung et al. (2018b, §6.3.3, §7.3).
A departure from the well-established points-to assertion is that, in our memory model, the
global store maps each non-atomic cell to an entire history, rather than a single value, and the
points-to assertion of BaseCosmo reflects that fact. Indeed, unless some information is known
about the view of the current thread, every write in the history of a non-atomic cell might be
relevant.

3.3.2 Atomic points-to

Regarding the atomic points-to assertion, we proceed essentially in the same manner:

q ·A⇝at ⟨v,V⟩ ≜ ∃W. V ⊑ W ∗ ◦ {A 7→ (inr(ag(⟨v,W⟩)), q)} γstore

We omit the fraction q when it is 1: we write A⇝at ⟨v,V⟩ for 1 ·A⇝at ⟨v,V⟩.
As a result of these definitions, the assertion q ·A⇝at ⟨v,V⟩ claims the ownership of a q-share

of A and guarantees that it is an atomic memory cell, that the value it stores is v, and that the
view it stores is at least V. Again, a 1-share is exclusive.

q ·A⇝at ⟨v,V⟩ ∗ S(σ)
∃W. σ(A) = ⟨v,W⟩ ∗ V ⊑ W ∗ 0 < q ≤ 1

q1 ·A⇝at ⟨v1,V1⟩ ∗ q2 ·A⇝at ⟨v2,V2⟩ ⊣⊢ (q1 + q2) ·A⇝at ⟨v1,V1 ⊔ V2⟩ ∗ v1 = v2

By requiring the view W stored at A to satisfy V ⊑ W, as opposed to the equality V =W,
we make the points-to assertion anti-monotonic in its view parameter: that is, if V1 ⊑ V2 holds,
then q ·A⇝at ⟨v,V2⟩ entails q ·A⇝at ⟨v,V1⟩. This seems convenient in practice, as it gives the
user a concise way of retaining partial knowledge of the view that is stored at cell A. On the
other hand, we do lose the ability of expressing negative information about the view, that is,
an upper bound on the view. This should not be a problem in practice, as one always reasons
about events that must be part of a view, and never about events that must not. In fact, in the
high-level logic presented in the next chapter, assertions are monotonic functions of a view, so
this style of reasoning becomes built-in.

3.3.3 Block length

We have placed the assertion • len(σ) γlen in the state interpretation. This lets us define an
assertion representing the knowledge of the length of a given block:

ℓ has length n ≜ ◦ {ℓ 7→ n} γlen

36 CHAPTER 3. A LOW-LEVEL LOGIC: BASECOSMO

This assertion is persistent (§2.3.2) and achieves agreement on the length of a block:
ℓ has length n ∗ ℓ has length n′

n = n′

We can use it to define a points-to assertion for entire blocks as sugar, where the bi are either
histories or pairs of a value and a view:

q · ℓ⇝∗
α [b0, . . . , bn−1] ≜ ℓ has length n ∗ ∗

0≤i<n

q · ℓ[i]⇝α bi

Again, when omitted the fraction q is taken to be 1, i.e. full ownership. Thanks to the length
information, this block-points-to assertion achieves agreement on the value of a block:

q · ℓ⇝∗
α b ∗ q′ · ℓ⇝∗

α b′ ⊣⊢ (q + q′) · ℓ⇝∗
α b ∗ b = b′

Without the length information, we would only be able to deduce that the shortest list among
b and b′ is a prefix of the longest list.

As will be seen later (rule base-Length in Figure 3.2), the length assertion is what we
need for giving a specification to the operation of the language that computes the length of a
block. By using the frame rule (frame), we will be able to derive another specification for this
operation, that takes as precondition a block-points-to assertion rather than a length assertion:

{q · ℓ⇝∗
α b} ⟨length ℓ,W⟩ {λ 〈v′,W ′〉 .∗

v′ = |b|
W ′ =W
q · ℓ⇝∗

α b
}

3.3.4 Validity of a view

The last part of the state interpretation (§3.1) asserts the existence of a view G such that
items (2), (3) and (4) of the global view invariant hold (§2.2.2). It also includes the ghost-state-
ownership assertion • G γgv . We now define the “valid-view” assertion as follows:

validV ≜ ◦ V γgv

The assertion validV guarantees that V is a fragment of, or lower bound on, the global
view; that is, V ⊑ G holds. Because the camera of views is idempotent (that is, V ⊔ V = V),
this assertion is persistent (§2.3.2). Intuitively, updates to the authoritative fragment • G must
preserve the “frame”, which consists of the existing assertions validV. Hence, once validV holds,
it holds forever. This conveys the idea that the global view G only grows over time, with more
write events.

A validity assertion appears in almost all of the reasoning rules that we present in the next
subsection (§3.4): the rules effectively require (and allow) every thread to keep track of the fact
that its current view is valid. This encodes item (1) of the global view invariant. The root cause
of this phenomenon lies in the rule base-na-Read, where the global view invariant must be
exploited in order to prove that a non-atomic read instruction can make progress. Then, the
other rules must preserve that invariant.

In order to initiate the verification of a full program, a user then needs the validity of the
initial (empty) view. This is easily obtained through the following theorem, whose proof is
trivial.

Theorem 2 (Validity of the empty view) The entailment ⊢ |⇛ valid∅ holds in BaseCosmo.

§3.4. MULTICORE OCAML-SPECIFIC RULES 37

base-Value
{True} ⟨v,W⟩ {λ

〈
v′,W ′〉 . v′ = v ∗W ′ =W}

base-Pure
∀m, e′′, e′1, . . . e

′
n. (e

m−→ e′′, e′1, . . . , e
′
n) =⇒ (m = ε ∧ e′′ = e′ ∧ n = 0)

e
ε−→ e′ ▷ {P }

〈
e′,W

〉
{Φ}

{P } ⟨e,W⟩ {Φ}

base-Fork
▷ {P } ⟨e,W⟩ {λ_.True}

{P } ⟨fork e,W⟩ {λ
〈
v′,W ′〉 . v′ = () ∗W ′ =W}

Figure 3.1: BaseCosmo rules for pure steps and the “fork” operation

3.4 Multicore OCaml-specific rules

There remains to give a set of Multicore OCaml-specific deduction rules that allow establish-
ing Hoare triples, reflecting the operational semantics of Multicore OCaml. Figure 3.1 shows
standard rules (Jung et al., 2018b, §6.2), that do not interact with the shared memory, while
Figure 3.2 shows the rules that govern the memory access operations. In these rules, some pre-
conditions are prefixed with the “later” modality of Iris. In a first reading, we can ignore them.
See Jung et al. (2018b, §6.2) for details.

A program that is already a value performs no computation at all (base-Value), and its
return value is itself.

Running a pure step of computation (base-Pure) affects neither the ghost state nor the
thread’s view. Therefore, if e ε−→ e′ is the unique possible reduction step starting from e, then
proving a specification about e′ with some viewW suffices to prove the same specification about
e with the same view W.

Running a “fork” operation (base-Fork) returns the unit value and spawns a new thread
whose return value is ignored. Still, safety of the full program requires safety of the newly-
spawned thread e, hence the rule requires proving a triple about e with a trivial postcondition.
The newly-spawned thread inherits the view W of its parent thread.

Rules in Figure 3.2 are “small axioms” (O’Hearn, 2019), that is, triples that describe the min-
imum resources required by each operation. Each of them is just a single triple {P } ⟨e,W⟩ {Φ},
which, for greater readability, we display vertically:

{P }
⟨e,W⟩
{Φ }

38 CHAPTER 3. A LOW-LEVEL LOGIC: BASECOSMO

base-na-Alloc
{n ≥ 0 }
⟨arrayna[n] v,W⟩

{λ ⟨v′,W ′⟩ . ∃ℓ.∗

v′ = ℓ
W ′ =W
ℓ⇝∗

na [{0 7→ v} , . . . , {0 7→ v}] (n cells)}
base-na-Alloc-One
{True }
⟨refna v,W⟩

{λ ⟨v′,W ′⟩ . ∃ℓ.∗

v′ = ℓ
W ′ =W
ℓ⇝na {0 7→ v}}

base-na-Read
{q · a⇝na h ∗ validW }
⟨!na a,W⟩

{λ ⟨v′,W ′⟩ . ∃t.∗

t ∈ dom(h)
W(a) ≤ t
v′ = h(t)
W ′ =W
q · a⇝na h

}
base-na-Write
{a⇝na h ∗ validW }
⟨a :=na v,W⟩

{λ ⟨v′,W ′⟩ . ∃t.∗

t /∈ dom(h)
W(a) < t
v′ = ()
W ′ =W[a 7→ t]
a⇝na h[t 7→ v]
validW ′

}
base-at-Alloc
{n ≥ 0 ∗ validW }
⟨arrayat[n] v,W⟩

{λ ⟨v′,W ′⟩ . ∃ℓ.∗

v′ = ℓ
W ′ =W
ℓ⇝∗

at [⟨v,W⟩ , . . . , ⟨v,W⟩] (n cells)}
base-at-Alloc-One
{ validW }
⟨refat v,W⟩

{λ ⟨v′,W ′⟩ . ∃ℓ.∗

v′ = ℓ
W ′ =W
ℓ⇝at ⟨v,W⟩

}
base-at-Read
{q ·A⇝at ⟨v,V⟩ ∗ validW }
⟨!atA,W⟩

{λ ⟨v′,W ′⟩ .∗

v′ = v
V ⊔W ⊑ W ′

q ·A⇝at ⟨v,V⟩
validW ′

}
base-at-Write
{A⇝at ⟨_,V⟩ ∗ validW }
⟨A :=at v,W⟩

{λ ⟨v′,W ′⟩ .∗

v′ = ()
V ⊔W ⊑ W ′

A⇝at ⟨v,V ⊔W⟩
validW ′

}
base-cas-Failure
{v0 ̸= v1 ∗ A⇝at ⟨v0,V⟩ ∗ validW}
⟨CAS A v1 v2,W⟩

{λ ⟨v′,W ′⟩ .∗

v′ = false
V ⊔W ⊑ W ′

A⇝at ⟨v0,V⟩
validW ′

}
base-cas-Success
{A⇝at ⟨v1,V⟩ ∗ validW }
⟨CAS A v1 v2,W⟩

{λ ⟨v′,W ′⟩ .∗

v′ = true
V ⊔W ⊑ W ′

A⇝at ⟨v2,V ⊔W⟩
validW ′

}
base-Length
{ℓ has length n }
⟨length ℓ,W⟩

{λ ⟨v′,W ′⟩ .∗
{
v′ = n
W ′ =W}

Figure 3.2: BaseCosmo triples for the memory access operations

§3.4. MULTICORE OCAML-SPECIFIC RULES 39

3.4.1 Operations on non-atomic cells

Allocation of non-atomic cells Allocating a non-atomic memory block (base-na-Alloc)
returns a memory location ℓ and does not change the view of the current thread. The points-to
assertion ℓ⇝∗

na [{0 7→ v} , . . . , {0 7→ v}] in the postcondition represents the full ownership of all
cells of the newly-allocated memory block and guarantees that their histories contain a single
write of the value v at timestamp 0.

From the previous rule, it is easy to derive a simplified rule for the allocation of non-atomic
references (base-na-Alloc-One).

Non-atomic read Reading a non-atomic memory cell (base-na-Read) requires (possibly
shared) ownership of this memory cell, which is why the points-to assertion q · a⇝na h appears
in the precondition. What can be said of the value v′ produced by this instruction? A non-atomic
read can read from any write whose timestamp is high enough, according to this thread’s view of
the cell a. Thus, for some timestamp t such that t ∈ dom(h) holds (i.e., t is a valid timestamp)
and W(a) ≤ t holds (i.e., the view W allows reading from this timestamp), the value v′ must
be the value that was written at time t, that is, h(t). The thread’s view is unaffected, and the
points-to assertion is preserved.

In order to justify a non-atomic read, the validity of the current view is required: the
assertion validW appears in the precondition of base-na-Read. Without this requirement, we
would not be able to establish this triple. Indeed, we must prove that this read instruction can
make progress, that is, it cannot be stuck. In other words, we must prove that the history h
contains a write event whose timestamp is at leastW(a). Quite obviously, in the absence of any
hypothesis about the viewW, it would be impossible to prove such a fact. Thanks to the validity
hypothesis validW, we find that that W must be a fragment of the global view G. This implies
W(a) ≤ G(a). Furthermore, the state interpretation guarantees G(a) ∈ dom(h). Therefore, this
read instruction can read (at least) from the write event whose timestamp is G(a). Therefore,
it is not stuck.

Non-atomic write Writing a non-atomic memory cell (base-na-Write) requires exclusive
ownership of this memory cell, which is expressed by the points-to assertion a⇝na h. It also
requires the validity of the current view W, as this information is needed to prove that the
updated viewW ′ is valid. In accordance with the operational semantics, the history h is extended
with a write event at some timestamp t that is both fresh for the history h and permitted by
the view W. The updated points-to assertion a⇝na h[t 7→ v] reflects this updated history. The
thread’s new view W ′ is obtained by updating W with a mapping of a to the timestamp t.

3.4.2 Operations on atomic cells

The rules that govern atomic memory cells are a little heavy, due to the fact that atomic
memory cells play two independent roles: they store a value and a view. Regarding the “value”
aspect, these rules are identical to the standard rules of Concurrent Separation Logic with
fractional permissions, which reflects the sequentially consistent behavior of atomic memory
cells. Regarding the “view” aspect, these rules describe how views are written and read by the
atomic memory instructions. As can be seen, the stored view accumulates the knowledge of the
writers and transmits it to the readers. This reflects the “release/acquire” behavior of these

40 CHAPTER 3. A LOW-LEVEL LOGIC: BASECOSMO

instructions and is analogous to the fact that, in axiomatic memory models such as that given
by Dolan et al. for Multicore OCaml, there is a happens-before relation from a write operation
to a read operation which reads from it.

Allocation of atomic cells When an atomic memory block is allocated (base-at-Alloc),
its cells are initialized with the viewW of the current thread. This is expressed by the points-to
assertion ℓ⇝∗

at [⟨v,W⟩ , . . . , ⟨v,W⟩] in the postcondition. Maintaining the global view invariant
(§2.2.2) requires that the views of the new atomic cells be contained in the global view, that is,
that these views are valid; for this reason, validW is a precondition of this rule.

Again it is easy to derive a simplified rule for the allocation of atomic references (base-at-
Alloc-One).

Atomic read When an atomic memory cell is read (base-at-Read), the view stored at this
cell is merged into the view of the current thread: this is an “acquire read”. This is expressed
by the inequality V ⊔W ⊑ W ′. We cannot expect to obtain an equality V ⊔W = W ′ because,
according to our definition of the atomic points-to assertion (§3.3), V is only a fragment of the
view that is stored at cell A. Thus, we get only a lower bound on the thread’s new view W ′.
This does not hinder practical expressiveness. Nevertheless, we can prove that W ′ is valid.

Atomic write When performing an atomic write (base-at-Write), the same “acquisition”
phenomenon occurs: we get V ⊔ W ⊑ W ′. Furthermore, this thread’s view is merged into the
view stored at this cell: this is a “release write”. This is expressed by the updated points-to
assertion A⇝at ⟨v,V ⊔W⟩.

(Atomic) Compare-and-set The two rules associated with the CAS instruction respectively
describe the case where this instruction fails (base-cas-Failure) and the case where it succeeds
(base-cas-Success). These rules express the idea that a CAS behaves as a read followed (in
case of success) with a write.

In this chapter, we have built a program logic for reasoning about Multicore OCaml programs.
Compared to working with the bare operational semantics (§2.2), the benefits of BaseCosmo are
clear. We have at our disposal a rich specification language which contains the host logic (that of
Coq) and an expressive ghost state framework. A sound—and mechanized—proof system lets us
prove program safety and partial functional correctness. By the virtue of Concurrent Separation
Logic, specifications are reduced to their minimal footprints and their proofs are composable: a
program fragment is specified and verified in isolation. Interference by other program fragments
need not be considered. In particular, when verifying a program with several threads, we do not
need to consider the many possible interleavings of the instructions of concurrent threads.

However, the program logic that we have just presented is still low-level, as it exposes tedious
details of the Multicore OCaml memory model. Several aspects of it can be criticized:

1. The assertion q ·a⇝nah exposes the fact that a non-atomic memory cell stores a history h,
as opposed to a single value v. The rules base-na-Read and base-na-Write paraphrase
the operational semantics and reveal the timestamp machinery. This makes it difficult to
reason about non-atomic memory cells. Yet, at least in the absence of data races on these

§3.4. MULTICORE OCAML-SPECIFIC RULES 41

cells, one would like to reason in a simpler way. Is it possible to offer higher-level points-to
assertions and rules, so that a non-atomic cell appears to store a single value?

2. The view W of the current thread is explicitly named in every triple {P } ⟨e,W⟩ {Φ}, and
its validity is typically explicitly asserted as part of every pre- and postcondition. This
seems heavy. Is it possible to make this view everywhere implicit by default, and to have
a way of referring to it only where needed?

In the next chapter, we answer these questions in the affirmative.

42 CHAPTER 3. A LOW-LEVEL LOGIC: BASECOSMO

Chapter 4

A higher-level logic: Cosmo

In this chapter, we address both of the concerns just outlined by building a higher-level logic,
Cosmo, on top of the low-level logic BaseCosmo. In Cosmo, the points-to assertion for non-
atomic cells takes the traditional form q · a ⇝na v, as in Concurrent Separation Logic with
fractional permissions (Boyland, 2003; Bornat et al., 2005). This assertion is strong enough to
guarantee that reading a will yield the value v. Therefore, at an intuitive level, one can take it
to mean that “the cell a currently contains v”, or slightly more accurately, “in the eyes of this
thread, the cell a currently contains v”. In more technical terms, this assertion guarantees that
the most recent write to the cell a is a write of the value v and that this thread is aware of this
write.

The meaning of this simplified points-to assertion is relative to “this thread”, that is, to a
certain thread about which one is presently reasoning. More precisely, its meaning depends on
“this thread’s view”, as the assertion claims that a certain write event is part of this thread’s
view. Therefore, to give meaning to this simplified points-to assertion, we find that we must
parameterize every assertion with a view: in other words, a Cosmo assertion must denote a
function of a view to a BaseCosmo assertion. This change in perspective not only seems required
in order to address concern 1 above, but also addresses concern 2 at the same time.

Following Kaiser et al. (2017) and Dang et al. (2020), we require every Cosmo assertion to
denote amonotone function with respect to the information ordering ⊑ (§2.2.1). This guarantees
that, as new memory events become visible to this thread, the validity of every assertion is
preserved. This condition makes the frame rule sound at the level of Cosmo.

In the following sections, we describe how Cosmo is constructed on top of BaseCosmo. A user
of Cosmo need not be aware of this construction: the assertions and reasoning rules of Cosmo
can be presented to her directly. Nevertheless, a Cosmo proof is a BaseCosmo proof, and it
is therefore easy to combine proofs carried out in the two logics, should Cosmo alone not be
expressive enough.

4.1 Language-independent Cosmo assertions and rules

Figure 4.1a defines a number of ways of constructing Cosmo assertions. As explained, Cosmo
assertions, whose type is vProp, are monotonic functions from views to BaseCosmo assertions.

We lift the standard connectives of Separation Logic, including ∨, ∗, −∗, ∃, ∀, from Base-
Cosmo up to Cosmo. In the definition of the magic wand, a universal quantification over a future

43

44 CHAPTER 4. A HIGHER-LEVEL LOGIC: COSMO

vProp ≜ View mon−→ iProp

P ∨Q ≜ λW. P (W) ∨Q(W)
P ∗Q ≜ λW. P (W) ∗Q(W)

P −∗ Q ≜ λW. ∀V ⊒ W. P (V) −∗ Q(V)
∃x. P ≜ λW. ∃x. P (W)
∀x. P ≜ λW. ∀x. P (W)
⌈P ⌉ ≜ λW. P where P ∈ iProp

↑ V ≜ λW. V ⊑ W
iProp ∋ P @ V ≜ P (V) where P ∈ vProp

(a) Language-independent

q · a⇝na v ≜ ∃h. ∃t.

∗

⌈q · a⇝na h⌉
t = max (dom(h))
h(t) = v
∃V. V(a) = t ∗ ↑ V

q ·A⇝at ⟨v,V⟩ ≜ ⌈q ·A⇝at ⟨v,V⟩⌉
q ·A⇝at v ≜ q ·A⇝at ⟨v,∅⟩

⊣⊢ ∃V. q ·A⇝at ⟨v,V⟩

ℓ has length n ≜ ⌈ℓ has length n⌉

(b) Multicore OCaml-specific

Figure 4.1: Cosmo assertions

Seen-Zero
⊢ ↑∅

Seen-Two
↑ V1 ∗ ↑ V2 ⊣⊢ ↑(V1 ⊔ V2)

Split-Subjective-Objective
P ⊣⊢ ∃V. (↑ V ∗ P @ V)

Figure 4.2: Cosmo view rules

view V that contains W is used so as to obtain a monotone function of W; this is a standard
technique. We also define the lifting of a BaseCosmo assertion P up to a Cosmo assertion ⌈P ⌉.
This provides a means of communication between BaseCosmo and Cosmo. The definition is
simple: ⌈P ⌉ is the constant function λW. P . It is the archetypical example of an objective asser-
tion, that is, an assertion whose meaning is independent of this thread’s view. We often write
just P for ⌈P ⌉. Here are several typical examples of BaseCosmo assertions that can be usefully
lifted up, yielding objective Cosmo assertions. In each case, we omit the brackets ⌈·⌉.

• A pure (Coq) proposition P where P ∈ Prop (§2.3.2).

• The ownership of a piece of ghost state m
γ (§2.3.2).

• The knowledge of an invariant I where I ∈ iProp (§2.3.2).

• A Cosmo assertion at a fixed view P @ V (to be defined shortly).

Regarding invariants, we emphasize that I is an ordinary BaseCosmo assertion, hence I
must also be a BaseCosmo assertion. That is, the logic Cosmo is subject to a restriction: in
every invariant I , the assertion I must be objective. In short, because an invariant represents
knowledge that is shared by all threads, it cannot depend on some thread’s view. At first, this
restriction might seem problematic: in general, an arbitrary Cosmo assertion P cannot appear
in an invariant, therefore cannot be transmitted from one thread to another. Fortunately, in
many situations, it is possible to work around this limitation. Before explaining how, we define
two more forms of assertions, that allows manipulating views from the logic.

§4.1. LANGUAGE-INDEPENDENT COSMO ASSERTIONS AND RULES 45

Beyond lifted assertions, Cosmo features two kinds of assertions to deal with views: ↑ V and
P @ V.

We define the assertion ↑ V, pronounced “I have V”, which asserts that this thread’s view
contains the view V. It is simply the function λW. V ⊑ W, where the formal parameter W
represents this thread’s view. It is easy to see that this is a monotone function of W. The
assertion ↑ V is the archetypical example of a subjective assertion, that is, an assertion whose
meaning depends on this thread’s view. It satisfies the first two rules in Figure 4.2. Seen-Zero
states that having nothing is the same as having the empty view. Seen-Two states that having
two views V1 and V2 separately is the same as having their join V1 ⊔V2. The latter implies that
the assertion ↑ V is anti-monotone with respect to V (if V1 ⊑ V2 then ↑ V2 ⊢ ↑V1), and that it
is duplicable (↑ V ⊢ ↑V ∗ ↑V). In fact, as can be seen from its definition, the assertion ↑ V does
not assert the ownership of any resource, hence it is persistent.

The nature of views is hidden from a user of Cosmo. That is, views can be presented to the
user as an abstract type equipped with a bounded semilattice structure, whose least element and
join operation are denoted by ∅ and ⊔, respectively. This means that the user need not think of
views as “functions of non-atomic cells to timestamps”, or as “sets of write events”. Instead, the
user should think of a view as a certain amount of “information” about the (non-atomic part of
the) shared memory. The deduction rules of the logic allow the user to reason abstractly about
the manner in which this information is acquired and transmitted and about the places where
it is needed.

The last line in Figure 4.1a defines P @ V as sugar for the function application P (V). This
notation provides a means of communication in the reverse direction: if P is a Cosmo assertion,
then P@V is a BaseCosmo assertion, which can be read as “P holds at V”. As already mentioned,
we lift this assertion to an objective Cosmo assertion. Said otherwise: P @ V, as a Cosmo
assertion, denotes the assertion P where V has been substituted for the ambient view; as it does
not depend on the ambient view anymore, it is objective.1

Thanks to the constructs that have just been introduced, it is possible to express the idea that
any Cosmo assertion P can be split into a subjective component and an objective component.
This is stated by the rule Split-Subjective-Objective in Figure 4.2. When read from left
to right, the rule splits P into a subjective component ↑ V and an objective component P @ V,
for some view V. (The witness for V is this thread’s view at the time of splitting.) When read
from right to left, the rule reunites these components and yields P again. This decomposition is
crucial: it allows to transmit any Cosmo assertion P from one thread to another even though, in
general, P cannot appear in an invariant. We can let its objective part P appear in a invariant,
thereby allowing it to be shared between threads; and we can transmit its subjective part via
explicit synchronization operations, typically writes and reads of atomic cells. We will use that
idiom in all our case studies (Chapters 5 and 6); our spin lock implementation (§5.2), for one,
offers a typical example.

1An equivalent definition is the following: asserting P @ V is asserting that, even without other knowledge, if
we have the knowledge contained in V, then P holds. In other words, P @ V is objective and entails ↑V −∗ P .

46 CHAPTER 4. A HIGHER-LEVEL LOGIC: COSMO

4.2 Multicore OCaml-specific Cosmo assertions

Figure 4.1b defines Cosmo assertions that allow reasoning about Multicore OCaml programs.
We want a fractional points-to assertion for non-atomic cells, a fractional points-to assertion for
atomic cells, and a length assertion for blocks. The last two are lifted directly from BaseCosmo,
omitting the brackets ⌈·⌉. Thus, q · A ⇝at ⟨v,V⟩ and “ℓ has length n” are objective Cosmo
assertions.

We may omit the view V carried by atomic cells when it is not relevant: we define q ·A⇝at v
as sugar for q ·A⇝at ⟨v,∅⟩, which is logically equivalent to ∃V. q ·A⇝at ⟨v,V⟩, and is still
objective. We thus recover the standard points-to predicate of Concurrent Separation Logic
with fractional permissions.

Regarding the non-atomic points-to assertion, although we could lift the corresponding as-
sertion from BaseCosmo as-is, there is little interest in doing so: our aim is to simplify the
manipulation of non-atomic cells by not having to make their entire history explicit, nor to
have to reason about timestamps. Rather, we adopt the definition shown in Figure 4.1b. As
announced earlier, this assertion takes the traditional form q · a⇝na v, and means that the most
recent write to the cell a is a write of the value v and that this thread is aware of this write. Its
definition, whose right-hand side is a conjunction of four assertions, reflects this:

1. q · a⇝na h claims a fraction q of the cell a and guarantees that its history is h.

2. t = max (dom(h)) guarantees that t is the timestamp of the most recent write event at a.

3. h(t) = v indicates that v is the value written by this write event.

4. ∃V. ⌈V(a) = t⌉ ∗ ↑ V guarantees that this write event is visible to this thread.

Because ↑ V is subjective, the non-atomic points-to assertion q · a ⇝na v is itself subjective.
Therefore, it cannot appear in an invariant. This is the price to pay for the apparent simplicity
of this predicate.

As was done for BaseCosmo in §3.3.3, we can define a Cosmo points-to assertion for whole
blocks of memory, q · ℓ⇝∗

α [b0, . . . , bn−1], as syntactic sugar (recalling that the atomic points-to
assertion and the knowledge of the length of a block are lifted from BaseCosmo to Cosmo as-is).

4.3 Cosmo weakest-precondition assertions

We have just presented the universe of Cosmo assertions, which have type vProp, in contrast
with BaseCosmo assertions, which have type iProp. We now wish to define a Cosmo weakest-
precondition assertion wp e {Ψ} whose postcondition Ψ is a function of a value to a Cosmo
assertion. This is in contrast with BaseCosmo’s weakest-precondition assertion wp ⟨e,V⟩ {Φ}
(§3.3) where Φ is a function of a value and a view to a BaseCosmo assertion. We define the
former on top of the latter, as follows:

wp e {Ψ} ≜ λW.
∀V ⊒ W.

validV −∗ wp ⟨e,V⟩ {λ ⟨v′,V ′⟩ .Ψ(v′)(V ′) ∗ validV ′}

§4.5. SOUNDNESS OF COSMO 47

Because wp e {Ψ} must have type vProp, it must be a monotone function of this thread’s
view W. In order to make it monotone, we quantify over a future view V that contains W. We
use a BaseCosmo weakest-precondition assertion to require that, from the view V, executing the
expression e must be safe and must yield a value and a view that satisfy Ψ. As a final touch,
we place validity assertions in the hypothesis and in the postcondition so as to maintain the
invariant that “this thread’s view is valid”, thus removing from the user the burden of keeping
track of this information.

The Cosmo triple is derived from the Cosmo weakest-precondition assertion in the usual way
(Jung et al., 2018b, §6): {P } e {Ψ} stands for □(P −∗ wp e {Ψ}).

4.4 Soundness of Cosmo
Cosmo, equipped with the weakest-precondition assertion that was just defined, is adequate.
This follows straightforwardly from the adequacy theorem of BaseCosmo (§3.2).

Theorem 3 (Adequacy of Cosmo) For any expression e ∈ Expr and any pure predicate
ϕ : Val → Prop, if the entailment ⊢ wp e {ϕ} holds then the configuration ∅; ⟨e,∅⟩ is
adequate with respect to λ ⟨v,V⟩ . ϕ(v). In particular, this configuration is safe.

4.5 Cosmo rules
Each of the BaseCosmo rules described in §3.4 can now be used as a basis to establish a higher-
level Cosmo rule, whose statement is often simpler. The resulting rules appear in Figure 4.3.

The three rules in Figure 4.3a, for language constructs that do not interact with the memory,
reflect those in Figure 3.1. Being Cosmo assertions, the triples that appear in these inference
rules depend on an ambient view. When both the premises and the conclusion contain a triple,
they are to be interpreted at the same view. For rule Pure, this conveys the idea that when
taking pure reduction steps from e to e′, the thread’s view is unchanged. Similarly, for rule Fork,
this corresponds to the fact that a spawned thread e inherits the view of its parent thread fork e.

4.5.1 Operations on non-atomic cells

The first four rules in Figure 4.3b describe the operations of allocating, reading, and writing non-
atomic memory cells. Allocation (na-Alloc) requires nothing and produces points-to assertions
ℓ[i]⇝na v for 0 ≤ i < n, which represent the exclusive ownership of the fresh memory cells ℓ[i]. A
simplified rule (na-Alloc-One) is easily derived for allocating a non-atomic reference. Reading
(na-Read) requires q ·a⇝nav, which represents possibly-shared ownership of the memory cell a,
and preserves this assertion. Writing (na-Write) requires a⇝na _, which represents exclusive
ownership of a, and updates it to a⇝na v.

We expect the reader to find these rules unsurprising: indeed, they are identical to the
rules that govern access to memory in Concurrent Separation Logic with fractional permissions
(Bornat et al., 2005). In the absence of a mechanism that allows a points-to assertion to be
shared between several threads,2 these rules forbid data races. In Cosmo, as explained earlier,

2Sharing an assertion between several threads is usually permitted either via a runtime synchronization mech-
anism, such as a critical region (O’Hearn, 2007, Section 4) or a lock (Gotsman et al., 2007; Hobor et al., 2008), or

Pure
∀m, e′′, e′1, . . . e

′
n. (e

m−→ e′′, e′1, . . . , e
′
n) =⇒ (m = ε ∧ e′′ = e′ ∧ n = 0)

e
ε−→ e′ ▷ {P } e′ {Φ}

{P } e {Φ}

Value
{True} v {λv′. v′ = v}

Fork
▷ {P } e {λ_.True}

{P } fork e {λv′. v′ = ()}

(a) Cosmo rules for pure steps and the “fork” operation

na-Alloc
{n ≥ 0 }
arrayna[n] v
{λv′. ∃ℓ. v′ = ℓ ∗ ℓ⇝∗

na [v, . . . , v] (n cells)}

na-Alloc-One
{True }
refna v

{λv′. ∃a. v′ = a ∗ a⇝na v}
na-Read
{q · a⇝na v }
!na a
{λv′. v′ = v ∗ q · a⇝na v}

na-Write
{a⇝na _ }
a :=na v

{λ(). a⇝na v}
at-Alloc
{n ≥ 0 ∗ ↑ V }
arrayat[n] v

{λv′. ∃ℓ.∗{ v′ = ℓ
ℓ⇝∗

at [⟨v,V⟩ , . . . , ⟨v,V⟩] (n cells)}

at-Alloc-One
{ ↑ V }
refat v

{λv′. ∃A.∗{ v′ = A
A⇝at ⟨v,V⟩}

at-Read
{q ·A⇝at ⟨v,V⟩ }
!atA

{λv′.∗ v′ = v
q ·A⇝at ⟨v,V⟩
↑ V }

at-Write
{A⇝at ⟨_,V⟩ ∗ ↑ V ′ }
A :=at v

{λ().∗{A⇝at ⟨v,V ⊔ V ′⟩
↑ V }

cas-Failure
{v0 ̸= v1 ∗ A⇝at ⟨v0,V⟩}
CAS A v1 v2

{λv′.∗ v′ = false
A⇝at ⟨v0,V⟩
↑ V }

cas-Success
{A⇝at ⟨v1,V⟩ ∗ ↑ V ′ }
CAS A v1 v2

{λv′.∗ v′ = true
A⇝at ⟨v2,V ⊔ V ′⟩
↑ V }

Length
{ℓ has length n}
length ℓ

{λv′. v′ = n }

(b) Cosmo triples for the memory access operations

at-Alloc-One-SC
{True }
refat v

{λv′. ∃A. v′ = A ∗ A⇝at v}

at-Read-SC
{q ·A⇝at v }
!atA
{λv′. v′ = v ∗ q ·A⇝at v}

at-Write-SC
{A⇝at _ }
A :=at v

{λ(). A⇝at v}
cas-Failure-SC
{v0 ̸= v1 ∗ A⇝at v0 }
CAS A v1 v2

{λv′. v′ = false ∗ A⇝at v0}

cas-Success-SC
{A⇝at v1 }
CAS A v1 v2

{λv′. v′ = true ∗ A⇝at v2}
(c) Derived Cosmo triples for atomic memory cells ignoring views

Figure 4.3: Cosmo reasoning rules

§4.5. COSMO RULES 49

a non-atomic points-to assertion cannot appear in an invariant, as it is not an objective assertion.
Therefore, Cosmo forbids data races on non-atomic memory cells. In other words, for a program
to be verifiable in Cosmo, all accesses to non-atomic memory cells must be properly synchronized
via other means, such as reads and writes of atomic memory cells. By contrast, BaseCosmo
allows to reason about all programs that are safe with respect to the operational semantics
of Dolan et al., and the latter gives a well-defined (albeit nondeterministic) semantics to racy
uses of non-atomic cells.

4.5.2 Operations on atomic cells

The next six rules in Figure 4.3b describe the operations on atomic memory cells, namely
allocation, reading, writing, and CAS. They are analogous to their BaseCosmo counterparts
(Figure 3.2), yet simpler, as the validity assertions have vanished, and this thread’s view is no
longer named: instead, assertions of the form ↑ V are used to indicate partial knowledge of this
thread’s view.

These rules deal with two aspects of atomic memory cells, namely the fact that an atomic
memory cell holds a value, and the fact that it holds a view. Fortunately, these two aspects are
essentially independent of one another. Furthermore, the second aspect can be ignored when it
is not relevant: indeed, from the rules of Figure 4.3b, one can easily derive a set of simplified
rules, shown in Figure 4.3c. These derived rules are the standard rules that govern access to
memory in Concurrent Separation Logic with fractional permissions.

In Cosmo, because an atomic points-to assertion is objective, it can be shared between several
threads, via an Iris invariant. Therefore, the rules of both Figure 4.3b and Figure 4.3c allow data
races on atomic memory cells. By using just the derived rules of Figure 4.3c, one can reason
in Cosmo about atomic memory cells exactly in the same way as one reasons in Concurrent
Separation Logic under the assumption of sequential consistency (Parkinson et al., 2007).

Allocating atomic memory cells (at-Alloc) requires this thread to have some view V, as
witnessed by the precondition ↑ V. In the postcondition, one obtains atomic points-to assertions
ℓ[i]⇝at ⟨v,V⟩ for 0 ≤ i < n, which represent the exclusive ownership of the fresh memory
cells ℓ[i]. Such an assertion states that a memory cell ℓ[i] holds the value v and a view that
is at least as good as the view V. Again, a simplified rule (at-Alloc-One) can be derived
for allocating an atomic reference. Notice that, since ↑ V is persistent, it still holds in the
postcondition with no need to repeat it. Besides, both these allocation rules offer flexibility
regarding the choice of V. Indeed, V need not reflect all of the information that is currently
available to this thread: it can be a partial view. (Recall that ↑ · is anti-monotone.) In fact, if
desired, one can always take V to be the empty view. (Recall that ↑∅ can be obtained out of
thin air.) This is how the derived rule at-Alloc-One-SC is obtained.

Reading an atomic memory cell (at-Read) requires having a fractional points-to assertion
q ·A⇝at ⟨v,V⟩ and preserves it. The last conjunct of the postcondition, ↑ V, reflects the fact
that the view held at cell A becomes part of this thread’s view: this is an “acquire read”. The
derived rule at-Read-SC is obtained by dropping this information.

Writing an atomic memory cell (at-Write) requires having an exclusive points-to assertion
A⇝at ⟨_,V⟩ as well as (possibly partial) information about this thread’s view ↑ V ′. In the

by a purely ghost mechanism, such as an invariant that can be accessed for the duration of an atomic instruction,
as in some variants of Concurrent Separation Logic (Parkinson et al., 2007) and in Iris (Jung et al., 2018b).

50 CHAPTER 4. A HIGHER-LEVEL LOGIC: COSMO

postcondition, the points-to assertion is updated to A⇝at ⟨v,V ⊔ V ′⟩, which reflects the fact
that both the value v and the view V ′ are written to the memory cell A: this is a “release write”.
Furthermore, the second conjunct of the postcondition, ↑ V, indicates that the view V is acquired
by this thread; indeed, an atomic write has both “release” and “acquire” effects. Again, ↑ V ′ need
not be repeated in postcondition, the user can weaken the view V ′ at will, and it is possible to
ignore these details when they are irrelevant. In particular, the rule at-Write-SC is obtained
by letting V remain undetermined, by letting V ′ be the empty view, and by dropping ↑ V from
the postcondition.

cas-Failure and cas-Success combine the rules for reading and writing an atomic cell.
A failed CAS instruction does not affect the content of the memory cell, but still acquires a
view V from it. A successful CAS instruction writes a value and a view to the memory cell and
acquires a view from it. Again, if one does not care about these information transfers, then one
can use the simplified rules cas-Failure-SC and cas-Success-SC in Figure 4.3c.

Chapter 5

Locks and mutual exclusion

We now illustrate the use of Cosmo by proving the functional correctness of several simple
concurrent data structures: a spin lock (§5.2), a ticket lock (§5.3), a lock based on Dekker’s
algorithm (§5.5) and one based on the similar Peterson’s algorithm (§5.6); the last two support
at most two threads.

5.1 Specification of locks

The lock is perhaps the most basic and best known concurrent data structure. It supports
three operations, namely make, acquire, and release. One way of describing its purpose is
to say that it allows achieving mutual exclusion between several threads: that is, the acquire
and release operations delimit critical sections in the code, and the purpose of the lock is to
guarantee that no two threads can be in a critical section “at the same time”. However, this is
not a very good description, especially in a weak memory setting, where the intuitive notions of
“time” and “simultaneity” do not make much sense. What matters, really, is that a lock mediates
access to a shared resource, and does so in a correct manner. A thread that successfully acquires
the lock expects the resource to be in a consistent state, and expects to be allowed to affect this
state in arbitrary ways, as long as it brings the resource back to a consistent state by the time
it releases the lock.

Concurrent Separation Logic can express that idea in a simple and elegant manner (O’Hearn,
2007). The classic specification of dynamically-allocated locks in Concurrent Separation Logic
(Gotsman et al., 2007; Hobor et al., 2008; Buisse et al., 2011; Sieczkowski et al., 2015; Birkedal

{P }
make ()

{λℓ. ∃locked.∗{ {True} acquire ℓ {λ(). P ∗ locked}
{P ∗ locked} release ℓ {λ().True} }

Figure 5.1: A specification of the “lock” data structure

51

52 CHAPTER 5. LOCKS AND MUTUAL EXCLUSION

and Bizjak, 2018), a version of which appears in Figure 5.1, allows the user to choose an invari-
ant P when a lock is allocated. This invariant is a Separation Logic assertion. It appears in
the postcondition of acquire and in the precondition of release, which means that a thread
that acquires the lock gets access to the invariant, and can subsequently break this invariant if
desired, while a thread that releases the lock must restore and relinquish the invariant.

In Figure 5.1, the entire specification is contained in a triple for make, whose precondition
requires the invariant to hold initially, and whose postcondition contains triples for acquire
and release. Because a triple is persistent (Jung et al., 2018b), therefore duplicable, several
threads can share the use of the newly-created lock.

In addition to the invariant P , an abstract assertion “locked” appears in the postcondition
of acquire and in the precondition of release. Because it is abstract, it must be regarded as
nonduplicable by the user. Therefore, it can be thought of as a “token”, a witness that the lock
is currently held. This witness is required and consumed by release. There are two reasons
why it is desirable to let such a token appear in the specification. First, from a user’s point
of view, this is a useful feature, as it forbids releasing a lock that one does not hold, an error
that could arise in the (somewhat unlikely) situation where several copies of the invariant P
can coexist. Second, from an implementor’s point of view, this makes the specification easier to
satisfy. In a ticket lock implementation (§5.3), for instance, only the thread that holds the lock
can safely release it. Thus, a ticket lock does not satisfy a stronger specification of locks where
the “locked” token is omitted.

If one can prove that an implementation of locks satisfies this specification, then (because
Separation Logic is compositional) a user can safely rely on this specification to reason about
her use of locks in an application program. This is a necessary and sufficient condition for an
implementation of locks to be considered correct. Proving something along the lines of “no two
threads can be in a critical section at the same time” is not necessary, nor would it be sufficient.
It would not provide a means of reasoning about user programs. And, in a weak memory setting,
a lock might actually guarantee mutual exclusion and nevertheless be broken, failing to achieve
the necessary degree of synchronization.

We emphasize that, when this specification is understood in the setting of Cosmo, the user
invariant P is an arbitrary Cosmo assertion, thus possibly a subjective assertion. Indeed, the
synchronization performed by the lock at runtime ensures that every thread has a consistent
view of the shared resource. This is in contrast with Iris invariants, which involve no runtime
synchronization, and therefore must be restricted to objective assertions (§4.1).

We must also emphasize that, because we work in a logic of partial correctness, this spec-
ification does not guarantee deadlock freedom, nor does it guarantee any form of fairness. As
an extreme example, an implementation where acquire diverges satisfies the specification in
Figure 5.1.

Proving the correctness of a lock implementation against the abstract lock interface shown
in Figure 5.1 consists of proving a triple for make. In the body of make, once all the physical
locations are allocated and are in scope, one would typically create the ghost state that the
proof needs (if any), establish an invariant that governs the data structure, instantiate “locked”,
then prove the mandated triples for acquire and release.

§5.2. A SPIN LOCK 53

let make () =
refat false

let acquire ℓ =
while ¬(CAS ℓ false true) do () done

let release ℓ =
ℓ :=at false

Figure 5.2: Implementation of a spin lock

5.2 A spin lock
A spin lock is a simple implementation of a lock. It relies on a single atomic memory reference ℓ,
which holds a Boolean value. Its implementation in Multicore OCaml appears in Figure 5.2.
The implementation of acquire involves busy-waiting in a loop, whence the name “spin lock”.

An Iris proof of correctness of a spin lock (Birkedal and Bizjak, 2018, Example 7.36), in
a traditional sequentially consistent setting, would rely on the following Iris invariant, which
states that either the lock ℓ is currently available and its user assertion P holds, or the lock is
currently held:

isSpinLockSC ≜ (ℓ⇝ false ∗ P) ∨ (ℓ⇝ true)
In our setting, however, such an invariant does not make sense, and cannot even be expressed,
because the assertion P is an arbitrary assertion of type vProp, whereas Cosmo requires every
Iris invariant I to be formed with an objective assertion I of type iProp (§4.1).

We work around this restriction by reformulating this invariant under an objective form:
“either the lock is currently available and the user assertion P holds in the eyes of the thread
that last released the lock, or the lock is currently held”. Cosmo allows expressing this easily:

isSpinLock ≜ (∃V. ℓ⇝at ⟨false,V⟩ ∗ P @ V) ∨ (ℓ⇝at true)

The left-hand disjunct, which describes the situation where the lock is available, now involves
an existential quantification over a view V. The atomic points-to assertion ℓ⇝at ⟨false,V⟩
indicates that V is the view currently stored at reference ℓ. The objective assertion P @ V
indicates that P holds at this view. That is, the assertion P holds in the eyes of whomever last
wrote the reference ℓ. (We use the present-tense “holds”, as opposed to the past-tense “held”,
because every Cosmo assertion is monotonic in its implicit view parameter.) In other words, P
holds in the eyes of the thread that last released the lock.

The right-hand disjunct, which describes the case where the lock is held, uses the simplified
points-to assertion ℓ⇝at true, which is sugar for ℓ⇝at ⟨true,∅⟩ (§4.5). In this case, the view
stored at reference ℓ is irrelevant.

Proving that the spin lock satisfies the specification in Figure 5.1 then goes as follows. We
prove the triple of function make. In the body of make, for the lock ℓ that has just been allocated
and the user assertion P that was chosen by the user, we establish the invariant isSpinLock shown
above. We do not need any additional ghost state. Since a spin lock has no need for a “locked”
token, we let “locked” be True. With the lock invariant in context, we then proceed to proving
the triples for acquire and release. Their proofs are sketched in the following.

The proof of acquire amounts to establishing the following triple for the CAS instruction:

{isSpinLock} CAS ℓ false true {λb. b = true =⇒ P }

This triple guarantees that if the CAS succeeds then one can extract the assertion P . To establish
it, we must open the invariant isSpinLock for the duration of the CAS instruction (Jung et al.,

54 CHAPTER 5. LOCKS AND MUTUAL EXCLUSION

2018b, §2.2) and reason separately about the case where the lock is available and the case
where it is held. In the latter case, we apply the reasoning rule cas-Failure (Figure 4.3b) and
conclude easily. In the former case, we have ℓ⇝at ⟨false,V⟩ and P @V, for an unknown view V.
The rule cas-Success (instantiated with the empty view for V ′) shows that the outcome of the
CAS instruction in this case is ℓ⇝at true ∗ ↑V. In other words, the CAS instruction achieves
the double effect of writing true to the reference ℓ and acquiring the view V that was stored
at this reference by the last write. This is exactly what we need. Indeed, the axiom Split-
Subjective-Objective lets us combine P@V and ↑ V to obtain P . By performing an “acquire”
read, we have ensured that P holds in the eyes of the thread that has just acquired the lock.
Furthermore, the points-to assertion ℓ⇝at true allows us to establish the right-hand disjunct
of the invariant isSpinLock and to close it again.

The proof of release exploits Split-Subjective-Objective in the reverse direction. Per
the precondition of release, we have P . We split it into two assertions P @ V and ↑ V, where
V is technically a fresh unknown view, but can be thought of as this thread’s view. Then,
we open the invariant isSpinLock for the duration of the write instruction. We do not know
which of the two disjuncts is currently satisfied (indeed, we have no guarantee that the lock
is currently held), but we find that, in either case, we have ℓ⇝at _. This allows us to apply
the reasoning rule at-Write (Figure 4.3b), which guarantees that, after the write instruction,
we have ℓ⇝at ⟨false,V⟩. In other words, because we have performed a “release” write, we
know that, after this write, our view of memory is stored at reference ℓ. Because we have
ℓ⇝at ⟨false,V⟩ and P @V, we are able to prove that the left-hand disjunct of isSpinLock holds
and to close the invariant.

5.3 A ticket lock

The ticket lock is a variant of the spin lock where a “ticket dispenser” is used to serve threads in
the order that they arrive, thereby achieving a certain level of fairness. A simple implementation
of the ticket lock appears in Figure 5.3. A lock is a pair (served, next) of two atomic references
served and next, each of which stores an integer value. The counter served displays the number
of the ticket that is currently being served, or ready to be served. The counter next displays
the number of the next available ticket.

A thread wishing to acquire the lock first obtains a unique number n from the counter next,
which it increments at the same time. This number is known as a ticket. Then, the thread
waits for its number to be called: that is, it waits for the counter served to contain the value n.
When it observes that this is the case, it concludes that it has acquired the lock.

A thread that wishes to release the lock simply increments the counter served, so that the
next thread in line is allowed to proceed and take the lock. To do so, a CAS instruction is
unnecessary: a sequence of a read instruction, an addition, and a write instruction suffices.
Indeed, because the lock is held and can be released by only one thread, no interference from
other threads is possible. This argument must be explicitly made somewhere in the proof, so an
exclusive token “locked” is required.

We now sketch a proof of this ticket lock implementation. Our proof requires a straightfor-
ward modification of the proof carried out by Birkedal and Bizjak in a sequentially consistent
setting (2018, §9). That is precisely our point: it is our belief and our hope that, in many cases,
a traditional Iris proof can be easily ported to Cosmo. The process is mostly a matter of identi-

§5.3. A TICKET LOCK 55

let make () =
let served = refat 0 in
let next = refat 0 in
(served, next)

let rec release ℓ =
let (served, next) = ℓ in
served :=at (!at served) + 1

let rec acquire ℓ =
let (served, next) = ℓ in
let n = !at next in
if CAS next n (n+ 1) then

while !at served ̸= n do () done
else

acquire ℓ

Figure 5.3: Implementation of a ticket lock

served : Auth(Ex(N)) issued : Auth(DisjointSet(N))
locked ≜ ∃s. ◦ s served ticket n ≜ ◦ {n} issued

isTicketLock ≜ ∃s, n,V.∗

served⇝at ⟨s,V⟩ ∗ next⇝at n

• s served ∗ • [0, n) issued

(locked ∗ P @ V) ∨ ticket s

Figure 5.4: Internal invariant of a ticket lock

fying which atomic memory cells also serve as information transmission channels (thanks to the
“release/acquire” semantics of atomic writes and reads) and of decorating every Iris invariant
with explicit views, where needed, so as to meet the requirement that every invariant must be
objective. Here, a moment’s thought reveals that only the view stored at the reference served
matters; the view stored at next is irrelevant.

The ghost state, the invariant and the definition of “locked”1 used in the verification of the
ticket lock appear in Figure 5.4.

• The ghost variable served stores an element of the camera Auth(Ex(N)). The exclusive
assertion ◦ s served represents both the knowledge that ticket s is currently being served
and a permission to change who is being served. The exclusive assertion “locked”, defined as
∃s. ◦ s served , represents a permission to change who is being served, therefore a permission
to release the lock.

• The ghost variable issued keeps track of which tickets have been issued since the lock
was created. It stores an element of Auth(DisjointSet(N)), where DisjointSet N is
the camera whose elements are finite sets of integers and whose partial composition law is
disjoint set union. The assertion ticket n represents the ownership of the ticket numbered n.
It is exclusive in the sense that ticket n1 ∗ ticket n2 entails n1 ̸= n2.

• The invariant isTicketLock synchronizes the physical state and the ghost state by mention-
ing the auxiliary variables s and n both in points-to assertions and in ghost state ownership

1Recall that these are established in the body of make, where the newly-allocated references served and next
are in scope.

56 CHAPTER 5. LOCKS AND MUTUAL EXCLUSION

{P }
make ()

{λ(ℓ0, ℓ1). ∃canLock, locked. ∗i∈{0,1}∗

canLock i
{canLock i} acquire ℓi {λ(). P ∗ locked i}

{P ∗ locked i} release ℓi {λ(). canLock i} }
Figure 5.5: A specification of a lock that can be used by two threads

assertions. The same technique as in the previous subsection (§5.2) is used to make this
invariant objective. The last conjunct in its definition states that either no thread holds
the lock and the user assertion P holds in the eyes of the thread that last released the
lock, or the invariant owns the ticket numbered s. This implies that, in order to acquire
the lock while maintaining the invariant, a thread must present and relinquish the ticket
numbered s.

A thread that wishes to enter the waiting line manufactures a fresh ticket by incrementing
next, then is allowed to wait, as a specification for the waiting loop is:

{ticket n} while !at served ̸= n do () done {λ(). locked ∗ P }

This specification is proven as follows. If a thread can present the exclusive ticket numbered s
where s is the value of served, then the invariant cannot simultaneously hold that ticket, hence
the left-hand disjunct of the disjunction (locked ∗ P @ V) ∨ ticket s in the invariant currently
holds.2 This allows the thread to take ownership of that left-hand disjunct, and transition the
invariant to the right-hand disjunct by giving up its ticket.

Conversely, a thread that releases the lock does not have the required ticket at hand, so must
re-establish the invariant.

By comparison to a proof in a sequentially consistent setting, the only addition to account
for weak memory is the fact that the read of served in acquire acquires a view and the write
of served in release releases a view.

5.4 Specification of mutual exclusion for two threads

We now study a related but slightly differing class of data structures: that which implement
mutual exclusion between two participants. For such data structures, we will consider the
interface shown in Figure 5.5. Again it is presented in a higher-order style.

Like ordinary locks, such data structures guard an arbitrary, possibly subjective assertion P ,
and offer three operations, namely make, acquire and release. This time, make returns a
pair of two handles, one for each participant. The specification is analogous to that of locks
(Figure 5.1), but introduces a new token, canLock i, so as to limit the number of participants
to two: make produces only two tokens canLock 0 and canLock 1, and the user has no way to

2This is the “golden idol” metaphor of Kaiser et al. (2017).

§5.5. DEKKER’S ALGORITHM 57

let make () =
let (turn, flag0, flag1) = (refat 0, refat false, refat false) in
((turn, 0, flag0, flag1), (turn, 1, flag1, flag0))

let acquire ℓ =
let (turn, myTid, myFlag, otherFlag) = ℓ in
myFlag :=at true;
while !at otherFlag = true do

if !at turn ̸= myTid then {
myFlag :=at false;
while !at turn ̸= myTid do () done;
myFlag :=at true
}

done

let release ℓ =
let (turn, myTid, myFlag, otherFlag) = ℓ in
turn :=at 1− myTid;
myFlag :=at false

Figure 5.6: Dekker’s algorithm for two threads

forge more of them. A participant thread holds a token canLock i when it is outside of a critical
section, and trades it for locked i and the user assertion P when inside a critical section.

In the following sections, we verify two related implementations of that specification for
mutual exclusion: Dekker’s algorithm (§5.5) and Peterson’s algorithm (§5.6).

5.5 Dekker’s algorithm

Dekker’s algorithm is among the first mutual exclusion algorithms to be invented. It ensures
some form of fairness and its implementation requires only read and write operations on se-
quentially consistent registers: it does not require a CAS operation. Dekker’s algorithm remains
valid in Multicore OCaml, provided atomic references are used in its implementation. This is
not an entirely trivial claim, as the user-chosen invariant P may be subjective.

The code, shown in Figure 5.6, uses three atomic references:

• Each of the two threads i ∈ {0, 1} uses a Boolean register flagi to indicate it currently
holds the lock or intends to acquire it. Both threads read flagi but only thread i writes
it.

• An integer register turn indicates which thread has priority, should both threads simulta-
neously attempt to acquire the lock. It is read and written by both threads.

When, as one of the two participant threads, we want to acquire the lock, we signal it by
setting our own flag to true. We then wait for the other thread to either release the lock or to

58 CHAPTER 5. LOCKS AND MUTUAL EXCLUSION

O C

W

// acquire:
myFlag :=at true

// acquire:
myFlag :=at false // acquire:

when !at otherFlag returns true

// acquire:
when !at otherFlag returns false

// release:
myFlag :=at false

Figure 5.7: Internal (ghost) state of each thread participating in Dekker’s algorithm

f0, f1 ∈ Bool
s0, s1 ∈ DekkerState ≜ {O,W,C}
γ0, γ1 : Auth(Ex(DekkerState))
ω0, ω1 : Auth(Ex(View))

dekkerInv ≜

∃f0, f1, s0, s1,V0,V1.

∗

turn⇝at _
flag0⇝at ⟨f0,V0⟩ ∗ • s0

γ0 ∗ • V0
ω0 ∗ (s0 = O ∨ f0 = true)

flag1⇝at ⟨f1,V1⟩ ∗ • s1
γ1 ∗ • V1

ω1 ∗ (s1 = O ∨ f1 = true)
(s0 ̸= C ∧ s1 ̸= C) =⇒ P @ (V0 ⊔ V1)

canLock i ≜ dekkerInv ∗ ∃V. ◦O γi ∗ ◦ V ωi ∗ ↑ V

locked i ≜ dekkerInv ∗ ∃V. ◦C γi ∗ ◦ V ωi

Figure 5.8: Internal invariant of Dekker’s algorithm

§5.6. DEKKER’S ALGORITHM 59

retract from its intention to acquire it, by waiting until that other thread’s flag is false. While
waiting, we check who has priority, as given by the reference turn. If priority goes to the other
thread, then we retract by setting our flag back to false—thus letting the other thread proceed
to the critical section—, we wait until priority switches to us, and we signal again our intention
to acquire the lock.

When releasing the lock, we switch turn so as to give priority to the other thread, then we
set our own flag to false.

We now outline our proof that the code in Figure 5.6 satisfies the specification in Figure 5.5.
The algorithm’s possible states are as follows: at any time, each of the participant threads is in
one of three possible states: either it is outside of a critical section (O), or it has set its flag to
true and is now waiting (W), or it is inside a critical section (C). Figure 5.7 summarizes these
states and the transitions between them. Figure 5.8 presents the algorithm’s invariant. We use
two ghost variables γ0 and γ1 to keep track of the logical state of each thread.

Note that, while the use of turn avoids deadlocks and ensures fairness, it plays no role
in functional correctness. According to the invariant, neither the value of turn or, in a weak
memory setting, the synchronization it performs, are relevant. Effectively, should this reference
be removed and the outer loop in acquire be reduced to an empty body, just spinning until
otherFlag is false, then the code would still satisfy the functional specification—but it may
deadlock. Hence, it is important to emphasize that we use a logic of partial correctness, in which
we do not prove deadlock-freedom or fairness. We only verify that this data structure behaves
like a lock.

Let us sketch the crucial step in the proof of acquire. While waiting to acquire the
lock, a thread knows that its own state is W (because it holds ◦W γi). As per the conjunct
(s1−i = O ∨ f1−i = true) of the invariant, when the waiting thread reads false in otherFlag, it
learns that the other thread’s state is O. Thus, at that moment, none of the two participants are
in state C so, from the last conjunct of the invariant, the waiting thread can take P @ (V0 ⊔ V1)
by switching its own state to C.

The key novelty, with respect to the proof that one could carry out in a sequentially consistent
setting, is that the invariant must record the view Vi that was the view of thread i when this
thread last released the lock. This view is stored at the atomic reference flagi. When the lock
is available, because the lock could have been last released by either thread, the assertion P
holds either at V0 or at V1. Because Cosmo assertions are monotonic, this implies that P holds
at the combined view V0 ⊔ V1. The invariant records this fact.

Thus, when the outer loop in acquire terminates, the invariant can give us P @ (V0 ⊔ V1).
A key step is to argue that we also have ↑ V0 and ↑ V1 at this moment of the program, so as to
then combine the pieces via Split-Subjective-Objective and obtain P . Let us sketch why
this is the case.

• Establishing ↑ Vi is easy enough, because Vi is a past view of this very thread. One way
of recording this information is to let the token canLock i carry it; indeed, the role of this
token is precisely to carry information from a release to the next acquire. We include in
the definition of canLock i an assertion ↑ V and set up a ghost variable ωi whose purpose
is to allow us to prove that V is in fact Vi.

• The wait terminates immediately after reading flag1−i and getting the value false. Thus,
thanks to the invariant, the thread acquires V1−i via this read.

60 CHAPTER 5. LOCKS AND MUTUAL EXCLUSION

let make () =
let (turn, flag0, flag1) = (refat 0, refat false, refat false) in
((turn, 0, flag0, flag1), (turn, 1, flag1, flag0))

let acquire ℓ =
let (turn, myTid, myFlag, otherFlag) = ℓ in
myFlag :=at true;
turn :=at 1− myTid;
while (!at otherFlag = true ∧ !at turn = 1− myTid) do () done

let release ℓ =
let (turn, myTid, myFlag, otherFlag) = ℓ in
myFlag :=at false

Figure 5.9: Peterson’s algorithm for two threads

O

A W

C

// acquire:
myFlag :=at true

// acquire:
turn :=at 1− myTid

// acquire:
when !at otherFlag returns true
and !at turn returns 1− myTid

// acquire:
when !at otherFlag returns false
or !at turn returns myTid

// release:
myFlag :=at false

Figure 5.10: Internal (ghost) state of each thread participating in Peterson’s algorithm

5.6 Peterson’s algorithm

Peterson’s algorithm (Raynal, 2013, §2.1.2) is an alteration of Dekker’s (previous section) which
also implements fair mutual exclusion of two participants. It still uses three atomic references
flag1, flag2, turn with the same meaning. The code, shown in Figure 5.9, is shorter and
apparently simpler than that of Dekker’s algorithm. In spite of this (or perhaps because of
this), it is harder to understand. Indeed, its proof of correctness, that we now outline, is more
involved.

Instead of three, there are four possible states for each participant, summarized in Fig-
ure 5.10: either the participant is outside of a critical section (O), or it has just entered acquire
and set its flag to true (A), or it has written turn and is now waiting (W), or it is inside a
critical section (C). The algorithm’s invariant appears in Figure 5.11.

Again, when the loop in acquire terminates, we need to argue that the other participant is
not in state C (so that the invariant can give us P @ (V0 ⊔ V1)), and that we have ↑ V0 and ↑ V1.

§5.6. PETERSON’S ALGORITHM 61

s0, s1 ∈ PetersonState ≜ {O,A,W,C}
γ0, γ1 : Auth(Ex PetersonState)
ω0, ω1 : Auth(Ex View)

petersonInv ≜

∃t ∈ {0, 1}, f0, f1, s0, s1,V,V0,V1.

∗

turn⇝at ⟨t,V⟩
flag0⇝at ⟨f0,V0⟩ ∗ • s0

γ0 ∗ • V0
ω0 ∗ (s0 = O ∨ f0 = true)

flag1⇝at ⟨f1,V1⟩ ∗ • s1
γ1 ∗ • V1

ω1 ∗ (s1 = O ∨ f1 = true)
(t = 0 ∧ s0 = W) =⇒ (s1 = W ∧ V = V1)
(t = 1 ∧ s1 = W) =⇒ (s0 = W ∧ V = V0)
(s0 ̸= C ∧ s1 ̸= C) =⇒ P @ (V0 ⊔ V1)

canLock i ≜ petersonInv ∗ ∃V. ◦O γi ∗ ◦ V ωi ∗ ↑ V

locked i ≜ petersonInv ∗ ∃V. ◦C γi ∗ ◦ V ωi

Figure 5.11: Internal invariant of Peterson’s algorithm

Thread i’s own view ↑ Vi is obtained via the token canLock i as in Dekker’s algorithm. Proving
the other two facts requires a case analysis, because the waiting loop has two exit points, due
to the conjunction in the conditional statement:

• The loop can terminate immediately after reading flag1−i yields the value false. Then,
as in Dekker’s algorithm, the thread acquires V1−i via this read, and learns that the other
thread is in state O from the fact that its flag is false.

• Or, the loop terminates after reading turn yields the value i. Then, we must prove that
the thread acquires V1−i via this read. This is nonobvious: it requires us to argue that the
view V stored at reference turn must in fact contain V1−i. The intuitive reason why this
is true is that the two participants write turn in a polite way, always giving priority to the
other thread. Thus, thread 0 writes only the value 1 to turn and vice versa. Therefore,
when thread i reads i from turn, this value must have been written by thread 1− i, which
implies that this read allows thread i to acquire the view V1−i. Technically, this argument
is reflected in the invariant by the proposition (t = 0 ∧ s0 = W) =⇒ (s1 = W ∧ V = V1)
and its symmetric counterpart. This proposition also lets thread i learn that the other
thread is still in state W, which it entered when writing to turn.

Observe that, by contrast with Dekker’s algorithm, the reference turn plays an active role
in the functional correctness of Peterson’s algorithm: not only its value is relevant, the synchro-
nization it performs also is.

This last case study highlights what we believe is a strength of Cosmo: without loss of
generality, we have reduced the problem of transferring arbitrary assertions to that of transferring
a simple class of persistent assertions, that assert no ownership. This allows the verification of

62 CHAPTER 5. LOCKS AND MUTUAL EXCLUSION

programs, such as Peterson’s algorithm, where a given resource may be transferred through
varying channels: the ownership of the resource does not need to go through these channels, it
is put in a single global invariant and only persistent knowledge goes through these channels.

To illustrate that point, we may define syntactic sugar for ownership of a Multicore OCaml
atomic cell that is used to transfer an arbitrary assertion P :

A⇝at ⟨v, P ⟩ ≜ ∃V. A⇝at ⟨v,V⟩ ∗ (P @ V)

This new points-to assertion is objective and enjoys the following reasoning rules:

{A⇝at ⟨v, P ∗Q⟩ }
!atA
{λv′. v′ = v ∗A⇝at ⟨v, P ⟩ ∗Q}

{A⇝at ⟨_, P ∗Q⟩ ∗R }
A :=at v

{λ(). A⇝at ⟨v, P ∗R⟩ ∗Q}
However, in this new framework, when reading (or writing) cell A, we must choose immediately
which portion Q of the stored assertion we take for ourselves and which portion P we leave
in the cell; symmetrically, when writing, we must choose immediately the assertion R to store.
This restricts the reasoning that we are able to conduct. By contrast, with the view framework,
one does not need to choose: an assertion ↑ V is persistent, therefore duplicable.

Chapter 6

A bounded multiple-producer
multiple-consumer queue

To confirm Cosmo as a practical tool, we now turn to studying a realistic concurrent data
structure. We demonstrate that Cosmo lets us give a precise specification to such a data structure
and lets us verify a non-trivial implementation of it. A sequential data structure implementation
can always be made robust in the face of concurrency simply by guarding all of its opeations
with a lock. While such a coarse-grained implementation of a concurrent data structure is
certainly correct, there often exist implementations which yield better performance, especially
under heavy contention, based on subtle fine-grained memory accesses. These implementations
are delicate and often rely on subtle properties of the memory model. An informal correctness
argument is difficult, likely unreliable, hence unconvincing. Thus, concurrent data structures
are prime candidates for formal verification. Many machine-checked proofs of concurrent data
structures have appeared in the literature already (Parkinson et al., 2007; Frumin et al., 2018,
2020; Zakowski et al., 2018), but relatively few verification efforts take place in a weak-memory
setting (Lê et al., 2013b,a), and fewer still rely on a modular methodology, where a proof of a
concurrent data structure and a proof of its client (perhaps a concurrent application, or another
concurrent data structure) can be modularly combined.

A concurrent queue is an archetypal example of a realistic concurrent data structure: it is
widely used in practice—for example to manage a sequence of tasks that are generated and
handled by different threads—and it admits fine-grained implementations. In this chapter, we
present a specification of a concurrent queue, and we formally verify that a particular fine-grained
implementation satisfies this specification. While other such formalizations already exist in a
sequentially-consistent setting (Vindum and Birkedal, 2021; Vindum et al., 2021), we consider
a weak-memory setting. Such a formalization effort is innovative and challenging in several
aspects.

First, weak memory models are infamous for the subtlety of the reasoning that they impose.
In this regard, we believe that Cosmo and the Multicore OCaml memory model strike a good
balance between the ease of reasoning enabled by the logic and the flexibility and performance
allowed by the memory model.

Second, the specification of the concurrent queue should indicate that it behaves as if all of its
operations acted atomically on a common shared state, even though in reality they access distinct
parts of the memory and require many machine instructions. To address this challenge, we use

63

64 CHAPTER 6. A BOUNDED MPMC QUEUE

the recently-developed concept of logical atomicity (Jung et al., 2015; Jung, 2019; da Rocha Pinto
et al., 2014), which we transport to the setting of Cosmo. To the best of our knowledge, this
is the first use of logical atomicity in a weak-memory setting. This raises new questions: for
instance, even though our implementation realizes a total order on the operations on a queue,
it offers strictly weaker guarantees than would be offered by a coarse-grained implementation.
Indeed, in the context of a weak memory model, the specification of a concurrent data structure
must describe not only the result of its operations, but also the manner in which these are
synchronized, that is, the happens-before relationships that exist between these. This additional
information allows reasoning about accesses to areas of memory outside of the data structure
itself. This is crucial, for example, if a queue is used to transfer the ownership of a piece
of memory from a producer to a consumer: there must exist a happens-before relationship
between the enqueue operation and the corresponding dequeue operation, so as to ensure that
the consumer acquires the producer’s view of this piece of memory. Our specification faithfully
captures a subtle behavior of the implementation: even though operations are totally ordered
by logical atomicity, not all operations are ordered by happens-before—but some are.

We believe our approach, whose key ingredients are Cosmo and logical atomicity, scales
to other memory models and other data structures. Indeed, first, the core of Cosmo (beyond
basic Separation Logic) is a logic for reasoning with views, an operational description of the
memory model; other memory models than that of Multicore OCaml can also be termed in this
fashion, as iGPS (Kaiser et al., 2017) and iRC11 (Dang et al., 2020) have demonstrated for C11.
Second, logical atomicity has already successfully been used for various data structures in the
Iris community (Iris developers and contributors, 2021; Frumin et al., 2020).

The chapter opens with an explanation of the specification of a concurrent queue (§6.1).
Then, we present an implementation of the queue in Multicore OCaml (§6.2), and explain our
proof of its correctness (§6.3). Next, we demonstrate that our specification is indeed usable, by
exploiting it in the context of a simple piece of client code, where the concurrent queue is used
to establish a pipeline between a set of producers and a set of consumers (§6.4).

6.1 Specification of a MPMC queue

A queue is a first-in first-out container data structure. At any time, it holds an ordered list of
items. It supports two main operations: enqueue inserts an item at one extremity of the queue
(the head); dequeue extracts an item—if there is one—from the other extremity (the tail).

In a concurrent setting, a legitimate question is whether several threads can operate the
queue safely. The answer depends on the implementation. Possible restrictions include allowing
only one thread to enqueue (single producer), or allowing only one thread to dequeue (single con-
sumer), or both. In this section, we specify a multiple-producer, multiple-consumer (MPMC)
queue, that is, a queue in which any number of threads are allowed to enqueue and dequeue.

6.1.1 Specification in a sequential setting

Let us start by assuming a sequential setting. We can then use standard Separation Logic
(Reynolds, 2002; briefly presented in §2.3.1) to reason about programs and the resources they
manipulate. In Separation Logic, a queue q holding n items [v0, ..., vn−1], where the left extremity

§6.1. SPECIFICATION OF A MPMC QUEUE 65

{True }
make ()

{λq. IsQueue q []}
{IsQueue q [v0, ..., vn−1] }
enqueue q v

{λ(). IsQueue q [v0, ..., vn−1, v]}

{IsQueue q [v0, ..., vn−1] }
dequeue q

{λv. 1 ≤ n ∗ v = v0 ∗ IsQueue q [v1, ..., vn−1]}

Figure 6.1: A specification of the “queue” data structure in a sequential setting

of the list is the tail and the right extremity is the head, can be represented with an assertion:

IsQueue q [v0, ..., vn−1]

As is usual in Separation Logic, this representation predicate asserts the unique ownership of
the entire data structure. It is exclusive. When holding it, we can safely manipulate the queue
without risk of invalidating other assertions about resources that may alias parts of our queue.
In particular, the representation predicate cannot be duplicated.

The operations of the queue admit a simple sequential specification which is presented in
Figure 6.1.

• The function make has no prerequisite and gives us the ownership of a new empty queue.

• If we own a queue q, then we can enqueue some item v into q; if this operation ever
returns, then it must return the unit value () and give us back the ownership of q, where
v has been appended at the head.

• Conversely, if we own a queue q, then we can dequeue from q; if this operation ever
returns, then it must return the first item v0 found at the tail of q, and it gives us back
the ownership of q, where that first item has been removed.

This specification implies that dequeue cannot possibly return when the queue is empty
(n = 0); in this case, it must loop forever. This is pointless in a sequential setting, but becomes
meaningful in the presence of concurrency, where it makes sense for dequeue to wait until an item
is enqueued. This specification also applies to bounded queues, where (somewhat analogously)
enqueue loops when the capacity is reached (n = C), waiting until room becomes available.

6.1.2 Specification under sequential consistency: logical atomicity

We now consider a situation where several threads can access the queue concurrently. Let us
assume for now that the memory model is sequentially consistent (Lamport, 1979, presented
in §2.1). A derivative of Concurrent Separation Logic (§2.3.1) accommodates for this situation;
in this section; we adopt Iris (§2.3.2). In Iris, we may retain the exact same specification as is
presented in Figure 6.1, recalling that IsQueue q [v0, ..., vn−1] is an exclusive assertion: a thread
that has this assertion can safely assume to be the only one allowed to operate on the queue. A

66 CHAPTER 6. A BOUNDED MPMC QUEUE

LAHoare
⟨x. P ⟩ e ⟨Q⟩
∀x. {P } e {Q}

LAInv
⟨x. ▷ I ∗ P ⟩ e ⟨Q ∗ ▷ I⟩

I ⊢ ⟨x. P ⟩ e ⟨Q⟩

Figure 6.2: Selected rules for logically atomic triples

client application can transfer this assertion between threads via some means of synchronization:
for instance, it may use a lock to guard all operations on the shared queue, following the approach
of Concurrent Separation Logic. However this coarse grain concurrency has a run-time penalty,
and it also creates some contention on the use of the queue. These costs are often unnecessary, as
many data structures are designed specifically to support concurrent accesses. In this chapter, as
stated, we wish to prove the correctness of a MPMC queue implementation, which should thus
ensure, by itself, thread safety. Hence we can achieve finer-grain concurrency, where operating
on a queue does not require its exclusive ownership.

In this context, another option is for the client to share this ownership among several threads,
logically. In Iris, one would typically place the exclusive ownership in an invariant (§2.3.2).
Recall that an invariant is an assertion which is agreed upon by all threads, and is owned
by anyone; it remains true forever. As the public state of the queue—the list [v0, ..., vn−1] of
currently stored items—would only be known from that invariant, the client would also express
in there the properties about this state that their particular application needs. Then, when one
of the threads needs to access the shared resource, it can open the invariant, get the assertions
it contains, perform the desired operation on the shared state, reestablish the invariant, and
finally close it. However recall that, to ensure soundness in the face of concurrency, the use of
invariants in Iris obeys a strict constraint: they can remain open during at most one step of
execution. Unfortunately, enqueue and dequeue are complex operations which, a priori, take
several steps. Hence a client would be unable to open their invariant around the triples shown
in Figure 6.1. Yet these operations are “atomic” in some empirical sense.

The concept of logical atomicity (Jacobs and Piessens, 2011; Jung, 2019; Jung et al., 2015, §7)
aims at addressing that difficulty. To use it, we substitute ordinary Hoare triples with logically
atomic triples. Two important reasoning rules for logically atomic triples are given in Figure 6.2.1
A logically atomic triple is denoted with angle brackets ⟨. . .⟩. Just like an ordinary triple, it
specifies a program fragment with a precondition and a postcondition. In fact, as witnessed by
rule LAHoare, one can deduce an ordinary Hoare triple from a logically atomic triple. The core
difference resides in rule LAInv: it is most similar to rule HoareInv of regular triples (§2.3.2),
except that the former does not require the program e to run for at most one step. Thus,
invariants can be opened around a logically atomic triple, regardless of the number of execution
steps of the program fragment: in a sense, when a function is specified using a logically atomic
triple, one states that said function behaves as if it were atomic. The definition of logically
atomic triples is further discussed in §6.3.6 and given with detail in previous work (Jung, 2019;
Jung et al., 2015, §7). We now try to give an intuition of that concept: a logically atomic triple
⟨P ⟩ e ⟨Q⟩ states, roughly, that the expression e contains an atomic instruction, called the commit

1Recalling Iris notations, I is an invariant whose content is the assertion I, and ▷ is a step-indexing modality,
a technicality of Iris that we can ignore in this dissertation.

§6.1. SPECIFICATION OF A MPMC QUEUE 67

persistent(QueueInv q γ) {True }
make ()

{λq. ∃γ.QueueInv q γ ∗ IsQueue γ []}
QueueInv q γ

⟨n, v0, ..., vn−1. IsQueue γ [v0, ..., vn−1]⟩
enqueue q v

⟨λ(). IsQueue γ [v0, ..., vn−1, v] ⟩

QueueInv q γ

⟨n, v0, ..., vn−1. IsQueue γ [v0, ..., vn−1] ⟩
dequeue q

⟨λv. 1 ≤ n ∗ v = v0 ∗ IsQueue γ [v1, ..., vn−1]⟩

Figure 6.3: A specification of the “queue” data structure in a sequentially consistent memory
model

point, which has P as a precondition and Q as a postcondition. Because it is atomic, invariants
can be opened around that commit point.

Using logically atomic triples, the specification can be written as shown in Figure 6.3. It
closely resembles that of the sequential setting (Figure 6.1). The first noticeable difference is
the use of angle brackets ⟨. . .⟩ denoting logically atomic triples instead of curly brackets {. . .}
for ordinary Hoare triples.

Another difference is the presence, in the syntax of logically atomic triples, of an explicit
binder for some variables (n, v0, ..., vn−1). This binder addresses a subtlety of logical atomicity:
a client calling enqueue or dequeue does not know in advance the state of the queue at the
commit point, which is when the precondition and postcondition are to be interpreted. Hence,
both formulas have to be parameterized by said shared state. Said otherwise, a logically atomic
triple provides a family of pre/postcondition pairs covering every possible shared state at the
commit point.

The last departure from the sequential specification is that the representation predicate
is now split into two parts: a persistent assertion QueueInv q γ and an exclusive assertion
IsQueue γ [v0, ..., vn−1], connected by a ghost variable γ. That splitting is an artifact of our
correctness proof technique, which we detail in §6.3. Note that this does not complicate the use
of the queue by the client: both assertions are produced when creating the queue, and while
the exclusive component can be put in an invariant as before, the persistent component can be
directly duplicated and distributed to all threads.2

The use of such a specification in a concrete example will be detailed in §6.4.3. For now, we
illustrate how a weaker specification can be easily deduced from this one.

2An Iris expert may want to conceal the queue invariant, QueueInv q γ, inside IsQueue γ [v0, ..., vn−1]. However,
we need to access this invariant at various places other than the commit point. This is feasible with a more
elaborate definition of logically atomic triples than the one given in this dissertation, so that they support
aborting (Jung, 2019). Another drawback is that we would lose the timelessness of the representation predicate.

68 CHAPTER 6. A BOUNDED MPMC QUEUE

A persistent specification

If it were not for logical atomicity, and we still wanted to share the ownership of the queue,
we would have little choice left than renouncing to an exclusive representation predicate. Only
a persistent assertion would be provided, because the description of the public state has to
be stable in the face of interference by other threads. The resulting specification would be
much weaker. For example, we may merely specify that all of the elements stored in the queue
satisfy some predicate Φ. In doing so, we lose most structural properties of a queue: the same
specification could also describe a stack or a bag.

persistent(QueuePersistent q Φ)
QueuePersistent q Φ

{Φ v} enqueue q v {λ().True}
QueuePersistent q Φ

{True} dequeue q {λv.Φ v}

To derive these Hoare triples from the ones of Figure 6.3, one simply defines the persistent
assertion as follows, where the boxed assertion is an Iris invariant:

QueuePersistent q Φ ≜ ∃γ.∗
{
QueueInv q γ

∃n, v0, ..., vn−1. IsQueue γ [v0, ..., vn−1] ∗ Φ v0 ∗ · · · ∗ Φ vn−1

This assertion is trivial to produce at the creation of the queue, when make hands us the
assertions QueueInv q γ and IsQueue γ []. Then, for proving the weaker specification of enqueue
and dequeue, one opens the invariant around the associated logically atomic triples.

6.1.3 Specification under weak memory: synchronization

Up to now, we have ignored the weakly consistent behavior of the semantics of Multicore OCaml
(Dolan et al., 2018; described in §2.2.1). Starting in this section, we take this aspect into account
and propose a refined specification, stated in our program logic Cosmo.

Because Cosmo is based on Iris, logically atomic triples can also be defined in Cosmo. In fact,
the specification shown in Figure 6.3 still applies. Yet, as such, it is of little value in a weakly
consistent context. Indeed, as explained in §6.1.2, it is designed so that IsQueue γ [v0, ..., vn−1]
can be shared among threads by means of an invariant. But, in Cosmo, invariants are restricted
to containing objective assertions. Hence, our first addition to the specification is to stipulate
that the representation predicate is objective. This reflects the fact that there exists a total
order on the updates to the logical state, on which all threads objectively agree.

Even with this addition, the specification given in §6.1.2 is not precise enough to verify
interesting clients such as the one described in §6.4. Indeed, in a weakly consistent setting, one
typically expects a concurrent data structure to establish synchronization between some of its
concurrent accesses. For example, imagine that thread A enqueues a pointer to a complex data
structure (say, a hash table). Then, when thread B dequeues this pointer, B should obtain the
unique ownership of the hash table and be able to access it accordingly. In a weakly consistent
memory model, B expects to see all of the changes that A has made to the data structure.
This is guaranteed only if there is a happens-before relationship from the enqueuing event to the
dequeuing event.

One possibility would be to guarantee that our concurrent queue implementation behaves
like its coarse-grained alternative, that is, a sequential implementation guarded by a lock. This
would correspond to an intuitive definition of linearizability, even though this notion is difficult

§6.1. SPECIFICATION OF A MPMC QUEUE 69

persistent(QueueInvq γ) objective(IsQueueγ T H [(v0,V0),...,(vn−1,Vn−1)])

{↑V0 }
make ()

{λq. ∃γ.QueueInvq γ ∗ IsQueueγV0V0 []}
QueueInvq γ

⟨T ,H,n,(v0,V0),...,(vn−1,Vn−1).
IsQueueγ T H [(v0,V0),...,(vn−1,Vn−1)] ∗ ↑V ⟩

enqueue q v

⟨λ(). IsQueueγ T (H⊔V) [(v0,V0),...,(vn−1,Vn−1),(v,V)] ∗ ↑H⟩
QueueInvq γ

⟨T ,H,n,(v0,V0),...,(vn−1,Vn−1).
IsQueueγ T H [(v0,V0),...,(vn−1,Vn−1)] ∗ ↑V ⟩

dequeue q

⟨λv. IsQueueγ (T ⊔V)H [(v1,V1),...,(vn−1,Vn−1)] ∗ ↑T ∗ ↑V0 ∗ 1≤n ∗ v=v0⟩
QueueInvq γ

⟨T ,H,n,(v0,V0),...,(vn−1,Vn−1).
IsQueueγ T H [(v0,V0),...,(vn−1,Vn−1)] ∗ ↑V ⟩

try_enqueue q v

⟨λb.∨[IsQueueγ T H [(v0,V0),...,(vn−1,Vn−1)] ∗ b=false
IsQueueγ T (H⊔V) [(v0,V0),...,(vn−1,Vn−1),(v,V)] ∗ ↑H ∗ b=true ⟩

QueueInvq γ

⟨T ,H,n,(v0,V0),...,(vn−1,Vn−1).
IsQueueγ T H [(v0,V0),...,(vn−1,Vn−1)] ∗ ↑V ⟩

try_dequeue q

⟨λv?.∨[IsQueueγ T H [(v0,V0),...,(vn−1,Vn−1)] ∗ v?=None
IsQueueγ (T ⊔V)H [(v1,V1),...,(vn−1,Vn−1)] ∗ ↑T ∗ ↑V0 ∗ 1≤n ∗ v?=Somev0 ⟩

Figure 6.4: A specification of the “queue” data structure in a weak memory model

70 CHAPTER 6. A BOUNDED MPMC QUEUE

to define precisely outside of the world of sequential consistency (Smith et al., 2019). However,
the concurrent queue implementation (§6.2) that we aim to verify is weaker than that: it does
guarantee some happens-before relationships, but not between all pairs of accesses. Namely, it
guarantees a happens-before relationship:

1. from an enqueuer to the dequeuer that obtains the corresponding item;

2. from an enqueuer to the following enqueuers;

3. from a dequeuer to the following dequeuers.

The first one permits resource transfer through the queue as described in the example above.
In Cosmo, as seen in previous chapters, happens-before relationships can be expressed as

transfers of views (denoted in this chapter by calligraphic capital letters, such as T ,H,V,S):
specifying a happens-before relationship between two program points can be done by giving
the client the ability to transfer any assertion of the form ↑ V between these two points: this
corresponds to saying that the destination program point has all the knowledge the source
program point had about the shared memory. Thanks to rule Split-Subjective-Objective
(§4.1), this is sufficient for transferring any subjective resource from a sender to a receiver, as
will be confirmed later when verifying a client application of the queue (§6.4.3). This technique
has already been illustrated by the case studies in Chapter 5.

In the specification of the queue, to express the happens-before relationships mentioned
earlier, the representation predicate now takes more parameters:

IsQueue γ T H [(v0,V0) , ..., (vn−1,Vn−1)]

1. For each item vk in the queue, we now have a corresponding view Vk. This view materializes
the flow of memory knowledge from the thread which enqueued the item, to the one which
will dequeue it.

2. The head view H materializes memory knowledge accumulated by successive enqueuers.

3. The tail view T materializes memory knowledge accumulated by successive dequeuers.

The queue that we study, however, does not guarantee any happens-before relationship from
a dequeuer to an enqueuer.3 Hence, it provides fewer guarantees than a sequential queue guarded
by a lock.

Interestingly, Cosmo is able to express this subtle difference between the behavior of our
library and that of a lock-based implementation: the full specification under weak memory is
shown in Figure 6.4. This specification extends the previous one (Figure 6.3) with views. The
mentioned happens-before relationships are captured as follows.

1. When a thread with a local view V (in other words, with ↑ V as a precondition) enqueues
an item v, it pairs it with the view V. Afterwards, when another thread dequeues that
same item v0, it merges the view V0 that was paired with it into its own local view (in
other words, it obtains ↑ V0 as a postcondition).

3This is not entirely true: the implementation shown in §6.2 does create a happens-before relationship from
the dequeuer of rank k to the enqueuer of rank k + C (hence also to all enqueuers of subsequent ranks). We
choose to not reveal this in the specification, since it reflects uninteresting implementation details.

§6.2. IMPLEMENTATION OF A MPMC QUEUE USING A RING BUFFER 71

2. When a thread enqueues an item, it also obtains the head view H left by the previous
enqueuer (in other words, it obtains ↑H as a postcondition), and it adds its own view V
to the head view (which becomes H ⊔ V).

3. When a thread dequeues an item, it also obtains the tail view T left by the previous
dequeuer (in other words, it obtains ↑ T as a postcondition), and it adds its own view V
to the tail view (which becomes T ⊔ V).

6.2 Implementation of a MPMC queue using a ring buffer

We now present an implementation of a bounded MPMC queue, that satisfies the specification
devised in §6.1. We show the code (§6.2.1, §6.2.2) and give intuitions about its mode of operation
(§6.2.3, §6.2.4).

The presented implementation takes inspiration from a well-established algorithm (Rigtorp,
2021) that has been used in production in several applications. In addition to supporting multiple
producers and multiple consumers, a feature of this queue implementation is that it is bounded,
that is, it occupies no more than a fixed memory size. A motivation for that trait is that items
may be enqueued more frequently than they are dequeued; in this situation, a bounded queue
has no risk of exhausting system memory; instead, if the maximum size is reached, enqueuing
either blocks or fails.

6.2.1 Overview of the data structure

The code of the concurrent queue library we consider appears in Figure 6.5. It uses a ring buffer
of fixed capacity C ≥ 1. The buffer is represented by two arrays of length C, statuses and
items; in each slot (whose offset ranges from 0 included to C excluded), the buffer thus stores
a status in an atomic field and an item in a non-atomic field. The data structure also has two
integers stored in atomic references, head and tail.

Items are identified by their rank (starting at zero) of insertion in the queue since its creation.
The item of rank k is stored in slot “k mod C”, which from now on we denote as k̂. The
reference head stores the rank of the next item to be enqueued, that is, the number of items
that have been enqueued since the creation of the queue, including those that have since been
dequeued. Similarly, tail stores the rank of the next item to be dequeued, that is, the number
of items that have been dequeued.

Each slot is in one of two states: either it is occupied, meaning that it stores some item of
the queue; or it is available, meaning that the value it stores is irrelevant. In addition, for the
concurrent queue operations to work properly, we must remember for which rank each slot was
last used.4 The status encodes this information in a single integer, as follows:

• an even status 2k indicates that slot k̂ is available for storing a future item of rank k;

• an odd status 2k + 1 indicates that slot k̂ is currently occupied by the item of rank k.

Let h and t be the value of head and tail, respectively. At any time, the ranks of items that
are stored in the queue—or in the process of being stored—range from t included to h excluded,

4Actually, we need not remember the full rank k: only the cycle, k ÷ C, is needed.

72 CHAPTER 6. A BOUNDED MPMC QUEUE

let make () =
let tail = refat 0 in
let head = refat 0 in
let items = arrayna[C] () in
let statuses = arrayat[C] 0 in
for i from 0 to C − 1 do

statuses[i]na ← 2i
done;
(tail, head, statuses, items)

let try_enqueue q v =
let (tail, head,

statuses, items) = q in
let h = !at head in
let s = statuses[h mod C]at in
if s = 2h ∧ CAS head h (h+ 1) then

items[h mod C]na ← v;
statuses[h mod C]at ← 2h+ 1;
true

else
false

let rec enqueue q v =
if try_enqueue q v

then ()
else enqueue q v

let try_dequeue q =
let (tail, head,

statuses, items) = q in
let t = !at tail in
let s = statuses[t mod C]at in
if s = 2t+ 1 ∧ CAS tail t (t+ 1) then

let v = items[t mod C]na in
items[t mod C]na ← ();
statuses[t mod C]at ← 2(t+ C);
Some v

else
None

let rec dequeue q =
match try_dequeue q with
| Some v → v
| None → dequeue q

Figure 6.5: Implementation of the bounded queue

§6.2. IMPLEMENTATION OF A MPMC QUEUE USING A RING BUFFER 73

and there cannot be more than C such items. Thus, a property of the queue is:

0 ≤ t ≤ h ≤ t+ C

6.2.2 Explanation of the code

The function enqueue repeatedly calls try_enqueue until it succeeds; the latter can fail either
because the buffer is full or because of a competing enqueuer.5

When calling try_enqueue, we start by reading the current value h of the reference head. To
check that slot ĥ is available for rank h, we read its status. If it differs from 2h, we fail: a status
less than 2h indicates that the buffer is full6, a status greater than 2h indicates interference from
another competing enqueuing thread, which has been attributed rank h before we have.

If the status is 2h, then we try to increment head from h to h+ 1. If the CAS fails, we fail:
again, another competing enqueuer has been attributed rank h.

If the CAS succeeds, then we are attributed rank h and can proceed to inserting an item into
slot ĥ. As we will explain later, this implies that its status has not changed since we read it: the
slot is still available. We write the new item, and then we update the status accordingly. This
update must come last, as it serves as a signal that the slot is now occupied with an item and
ready for dequeuers. Notice that, under weak memory, another reason why the order of these
two writes matters is that the atomic write to statuses must propagate the information that
the non-atomic write to items has taken place. Thus, a thread which dequeues this item (after
reading its status) is certain to read a correct value from the array items. This is a typical
release/acquire idiom.

Similarly, dequeue repeatedly calls try_dequeue until it succeeds; the latter works analo-
gously to try_enqueue,7 and can fail either because the buffer is empty or because of a competing
dequeuer.5

6.2.3 Monotonicity of the internal state of the queue

Once the queue has been created, the reference head is only accessed from function try_enqueue.
The only place where it is modified is the compare-and-set operation in this function, which
attempts to increment it by one, using a compare-and-set operation. Hence this counter is
strictly monotonic, and we can regard a successful increment from h to h + 1 as uniquely
attributing rank h to the candidate enqueuer. Only then it is allowed to write into slot ĥ.

Similarly, tail is only accessed from function try_dequeue, is strictly monotonic, and a
successful increment from t to t+1 uniquely attributes rank t to the candidate dequeuer. Only
then it is allowed to write into slot t̂.

The status of a given slot is strictly monotonic too. Indeed, there are two places where it is
updated. As an enqueuer, when we write 2h+1, no other enqueuer updated the status since we
read it to be 2h, because only we have been attributed rank h. In particular, it remained even,

5The code does not distinguish between these two causes, but this is feasible with only one more test.
6Technically, the public state of the queue may contain less than C elements in this case, so that we may

consider it is not full. Here, by “full” we mean that the next buffer slot is either not reclaimed by anyone or still
in the process of being emptied by another thread. Even though the buffer is “full”, it may have available slots
if dequeuing has completed more rapidly in these other slots.

7Overwriting the extracted value with a unit value () is unnecessary for functional correctness but it prevents
memory leaks.

74 CHAPTER 6. A BOUNDED MPMC QUEUE

so no dequeuer tried to obtain rank h and update the status of slot ĥ. Hence, the status is still
2h when we overwrite it with 2h+ 1. Symmetrically, the status is still 2t+ 1 when a dequeuer
overwrites it with 2(t+ C).

6.2.4 Notes on contention in the queue

A noteworthy feature of this implementation is that it tries to limit competition between en-
queuers and dequeuers. Indeed, enqueuers and dequeuers generally operate on separate ref-
erences: enqueuers never access tail and dequeuers never access head. Hence in favorable
situations—when the buffer is neither empty nor full—there are no enqueuer-dequeuer compe-
titions beyond ones between an enqueuer and a dequeuer of the same rank.

A weakness of this implementation, however, is that it does not enjoy any non-blocking
property (Fraser, 2004, Chapter 2): if an enqueuer or a dequeuer halts after it has been attributed
a rank but before it updates the corresponding slot, then after some time, any other thread trying
to enqueue or dequeue fails.

6.3 Proof of the specification for the ring buffer
We now turn to proving the following.

Theorem 4 There exist predicates IsQueue and QueueInv such that the implementation shown
in Figure 6.5 (§6.2) satisfies the functional specification appearing in Figure 6.4 (§6.1.3).

Following the Iris methodology, we describe the protocol that threads must follow to access
the shared queue, by defining suitable ghost state and invariant. These definitions appear in
Figure 6.6: the persistent predicate QueueInv q γ is in fact an invariant; the exclusive repre-
sentation predicate IsQueue γ T H [(v0,V0) , ..., (vn−1,Vn−1)] is defined using ghost state, as are
several internal resources. We detail these definitions in the following sections.

6.3.1 Public state

The assertion IsQueue γ T H [(v0,V0) , ..., (vn−1,Vn−1)], defined in Figure 6.6a, exposes to the
user the public state of the queue. This public state, as motivated in §6.1.3, is composed of the
tail view, the head view, and the list of current items with their views. It is tied to the internal
state of the queue via the use of an authoritative ghost state, stored in a ghost variable γ.
More precisely, the public state is kept in sync with the values which appear in an authoritative
assertion • (T ,H, [(v0,V0) , ..., (vn−1,Vn−1)])

γ , the latter being owned by the internal invariant.
The two assertions satisfy the properties shown in Figure 6.7a. Rule IsQueue-Agree as-

serts that the state known to the invariant (first premise) is identical to that known to the
representation predicate (second premise). Rule IsQueue-Update asserts that, whenever we
own both the representation predicate and its authoritative counterpart, we can update the
public state to any other value by taking a ghost update step.

We achieve these properties by using an adequate camera for the values of the ghost vari-
able γ. This camera is built by composing several classical Iris constructs (§2.3.2): the exclusive
camera Ex(S), and the authoritative camera Auth(M).

It is worth remarking that this construction makes the representation predicate exclusive: it
is absurd to own simultaneously two assertions of the form IsQueue γ − − −.

γ : Auth(Ex(View×View× List(Val×View)))
IsQueue γ T H [(v0,V0) , ..., (vn−1,Vn−1)] ≜ ◦ (T ,H, [(v0,V0) , ..., (vn−1,Vn−1)])

γ

(a) Ghost state describing the public state

StatusWithView ≜ (Z×View,⊑,⊔)
(s1,S1) ⊑ (s2,S2) ≜ s1 < s2 ∨ (s1 = s2 ∧ S1 ⊒ S2)

(s1,S1) ⊔ (s2,S2) ≜

(s2,S2) if s1 < s2

(s,S1 ⊓ S2) if s1 = s2 = s

(s1,S1) if s1 > s2

(b) Semi-lattice defining an order on status-view pairs

γst : Z fin−⇀ Auth(StatusWithView)
Witness γst i (s,S) ≜ {i 7→ ◦ (s,S)} γst

(c) Ghost state reflecting the monotonicity of statuses

γtok : Auth
(
Z fin−⇀ Ex(Unit + Val×View)

)
TokenR γtok k ≜ ◦ {k 7→ ()} γtok

TokenW γtok k (v,V) ≜ ◦ {k 7→ (v,V)} γtok

(d) Ghost state implementing tokens

QueueInv q γ ≜ ∃γst, γtok. QueueInvInner q γ γst γtok
QueueInvInner q γ γst γtok ≜

∃tail, head, statuses, items.
∃t, T , h,H, (vt,Vt) , ..., (vh−1,Vh−1), (s0,S0), ..., (sC−1,SC−1).

∗

q = (tail, head, statuses, items)
0 ≤ t ≤ h ≤ t+ C
tail⇝at ⟨t, T ⟩ ∗ head⇝at ⟨h,H⟩
statuses⇝∗

at [(s0,S0), ..., (sC−1,SC−1)]
• (T ,H, [(vt,Vt) , ..., (vh−1,Vh−1)])

γ

{i 7→ • (si,Si) | 0 ≤ i < C} γst

•
(

{k 7→ () | h− C ≤ k < t}
⊎ {k 7→ (vk,Vk) | t ≤ k < h}

) γtok

∗
h−C≤k<t

Available k (s
k̂
,S

k̂
) ∨ s

k̂
= 2k + 1

∗
t≤k<h

Occupied k (s
k̂
,S

k̂
) (vk,Vk) ∨ s

k̂
= 2k

Available k (s,S) ≜ ∗
{
s = 2(k + C) ∗ (items[k̂]⇝na −) @ S
TokenR γtok k

Occupied k (s,S) (v,V) ≜ ∗
{
s = 2k + 1 ∗ (items[k̂]⇝na v) @ S
TokenW γtok k (v,V) ∗ V ⊑ S

(e) Internal invariant of the queue

Figure 6.6: Definitions of assertions intervening in the proof of the bounded queue

76 CHAPTER 6. A BOUNDED MPMC QUEUE

IsQueue-Agree
• (T ,H, [(v0,V0) , ..., (vn−1,Vn−1)])

γ ∗ IsQueue γ T ′ H′ [(v′0,V ′0) , ..., (v′n−1,V ′n−1
)]

T = T ′ ∧ H = H′ ∧∀i. v = v′i ∧ Vi = V ′i

IsQueue-Update
• (T ,H, [(v0,V0) , ..., (vn−1,Vn−1)])

γ ∗ IsQueue γ T H [(v0,V0) , ..., (vn−1,Vn−1)]
|⇛ •

(
T ′,H′,

[(
v′0,V ′0

)
, ...,

(
v′n−1,V ′n−1

)]) γ
∗ IsQueue γ T ′ H′ [(v′0,V ′0) , ..., (v′n−1,V ′n−1

)]
(a) Properties of the representation predicate

Witness-Persistent

persistent(Witness γst i (s,S))

Witness-Order
{i 7→ • (s,S)} γst ∗ Witness γst i

(
s′,S ′

)(
s′,S ′

)
⊑ (s,S)

Witness-Update
{i 7→ • (s,S)} γst ∗ (s,S) ⊑

(
s′,S ′

)
|⇛
{
i 7→ •

(
s′,S ′

)} γst ∗ Witness γst i
(
s′,S ′

)
(b) Properties of witnesses

Token-Exclusive-RR
TokenR γtok k ∗ TokenR γtok k′

k̂ ̸= k̂′

Token-Exclusive-RW
TokenR γtok k ∗ TokenW γtok k′

(
v′,V ′

)
k̂ ̸= k̂′

Token-Exclusive-WW
TokenW γtok k (v,V) ∗ TokenW γtok k′

(
v′,V ′

)
k̂ ̸= k̂′

TokenR-Agree
•m γtok ∗ TokenR γtok k

m(k) = ()

TokenW-Agree
•m γtok ∗ TokenW γtok k (v,V)

m(k) = (v,V)

Token-Update-RW
•m γtok ∗ TokenR γtok (k − C)

|⇛ •m[k − C 7→ ⊥][k 7→ (v,V)] γtok ∗ TokenW γtok k (v,V)

Token-Update-WR
•m γtok ∗ TokenW γtok k (v,V)

|⇛ •m[k 7→ ()] γtok ∗ TokenR γtok k

(c) Properties of tokens

Figure 6.7: Axiomatic description of the ghost state of the queue

§6.3. PROOF OF THE SPECIFICATION FOR THE RING BUFFER 77

6.3.2 Internal invariant

Along with the exclusive representation predicate IsQueue γ T H [(v0,V0) , ..., (vn−1,Vn−1)], we
provide the user with a persistent assertion QueueInv q γ defined in Figure 6.6e. It contains the
internal invariant governing the queue q, whose public state is exposed via the ghost variable γ.
In addition to the public state, there are two more ghost variables, named γst and γtok, which
are hidden to the user of the queue but needed internally. Thus they are existentially quantified
in this persistent assertion. We will explain the purpose and meaning of these ghost variables
in a moment. For now, we look at the internal invariant, QueueInvInner q γ γst γtok.

This invariant owns most of the physical cells of the queue: tail, head, statuses, and some
parts of the array items. Recall that points-to assertions for atomic cells are objective and can be
placed inside an invariant. The block-points-to assertion statuses⇝∗

at [(s0,S0), ..., (sC−1,SC−1)]
is a shorthand for the following iterated conjunction:

statuses has length C ∗ ∗
0≤i<C

statuses[i]⇝at ⟨si,Si⟩

Also, since we encode references as arrays of length one, we write tail⇝at ⟨t, T ⟩ as a shorthand
for tail[0]⇝at ⟨t, T ⟩.

Apart from this physical state, the invariant also stores ghost state. It owns the authority
on all three ghost variables, γ, γst and γtok. The authority of γ is simple: it ties internal values
to the public state of the queue, as explained earlier. We now explain the other two pieces of
ghost state.

6.3.3 Monotonicity of statuses

The purpose of the ghost variable γst is to reflect the fact that statuses are monotonic. More
precisely, they are strictly monotonic: every write to a status cell necessarily increases its value.
As a consequence, as long as the value of a status cell has not increased, we know that no write
happened to it and, in particular, that the view that it stores has not increased either. In other
words, the value-view pair stored in a status cell is monotonic, with respect to the lexicographic
order where the order on views is reversed:

(s1,S1) ⊑ (s2,S2) ⇐⇒ s1 < s2 ∨ (s1 = s2 ∧ S1 ⊒ S2)

This stronger monotonicity property will be used in proofs, and specifying it is thus an additional
requirement of working with a weak memory model.

To reflect monotonicity of the status of offset i, we use two assertions, {i 7→ • (s,S)} γst and
Witness γst i (s,S), connected via a ghost variable γst. Relevant definitions appear in Figure 6.6c.
The first assertion, owned by the invariant of the queue is connected by the invariant to the
value-view pair stored in the status cell. It is exclusive: for any offset i, two assertions of the form
{i 7→ •−} γst cannot hold simultaneously. The second assertion Witness γst i (s,S) means that
the value-view pair stored in the status cell is at least (s,S). Importantly, a witness assertion is
persistent: once it has been established, it remains true forever and can be duplicated at will.

We thus have the properties summarized in Figure 6.7b. Rule Witness-Persistent is the
persistence just mentioned. Rule Witness-Order asserts that a witness gives a lower bound
on what the status cell currently stores. Rule Witness-Update asserts that we can update a
status cell to any larger (or equal) content, and obtain a witness for that content.

78 CHAPTER 6. A BOUNDED MPMC QUEUE

We achieve these properties by constructing an adequate camera for the values taken by
the ghost variable γst. Again, we use standard Iris constructs. The camera StatusWithView
is such that its carrier set is Z × View, the set of status-view pairs, and its inclusion order8
coincides with the desired order ⊑. It is derived from the join-semilattice structure whose
definition appears in Figure 6.6b. Indeed, a general recipe for deriving a camera structure with
a given inclusion order, if that order admits binary joins, consists of taking the join operation
as the composition of the camera (Timany and Birkedal, 2021).

6.3.4 Available and occupied slots

In Figure 6.6e, the last two lines of the invariant describe the state of each slot. For clarity,
we introduce two abbreviations: the assertion Available k (s,S) represents slot k̂ being available
for a future item of rank k + C; the assertion Occupied k (s,S) (v,V) represents slot k̂ being
occupied by the item of rank k, whose value is v with the associated view V. In these two
abbreviations, the status field of the slot has value s and stores view S. These abbreviations are
also where we keep the ownership of the non-atomic cell items[k̂], via a points-to assertion.

Recall that, in Cosmo, unlike an atomic points-to assertion, a non-atomic points-to assertion
is subjective: its truth depends on the view of the subject thread. As a consequence, it cannot
be placed in an invariant as is. In order to share this assertion, we must explicitly indicate at
which view it holds. This is the purpose of the @ connective.

At which view can we own a non-atomic memory cell? At a view which contains the latest
write event to that cell. Fortunately, in our case, any thread—enqueuer or dequeuer—which
writes to the non-atomic cell items[k̂] then writes to the atomic cell statuses[k̂]. Thus it adds
its knowledge, including its own write to the item field, to the view S stored by the status field.

With all this said, a first attempt at representing the buffer might look as follows:

QueueInvInner q γ γst γtok
?= ∗

...

∗
h−C≤k<t

Available k (s
k̂
,S

k̂
)

∗
t≤k<h

Occupied k (s
k̂
,S

k̂
) (vk,Vk)

Available k (s,S) ?= s = 2(k + C) ∗ (items[k̂]⇝na −) @ S
Occupied k (s,S) (v,V) ?= s = 2k + 1 ∗ (items[k̂]⇝na v) @ S ∗ V ⊑ S

That is, we describe the C slots by ranging from h − C to h. The indices from h − C
to t correspond to available slots, while indices from t to h correspond to slots occupied by the
items of the queue. In both cases, we own the item field at the view S which is stored in the
corresponding status field. The item field of an available slot stores an arbitrary value, while for
an occupied slot it stores the item v.

An occupied slot should also carry the view V which the queue is supposed to transfer from
the enqueuer to the dequeuer alongside item v. This again relies on the view S: the enqueuer
adds V to S when updating the status, and the dequeuer adds S into its own view when reading
the status; so, to retrieve V, it is enough to state the inclusion V ⊑ S.

8For two elements x and y of a camera M , y is included in x if there exists c such that x = y · c (§2.3.2).

§6.3. PROOF OF THE SPECIFICATION FOR THE RING BUFFER 79

The tentative invariant stated above, however, is not correct: while an invariant has to hold at
any point of the execution, the assertion above is temporarily invalidated when a thread enqueues
or dequeues. Specifically, the thread breaks the assertion when it increments head or tail, thus
committing to enqueuing or dequeuing, until it updates the status of the corresponding slot.
It is thus necessary to represent slots which are in a temporary state. In the actual invariant
shown in Figure 6.6e, slots from h − C to t are either available or in a temporary state where
they appear as occupied (s

k̂
= 2k + 1), until a dequeuer finishes emptying them; slots from t

to h are either occupied or in a temporary state where they appear as available (s
k̂
= 2k), until

an enqueuer finishes filling them.
When an enqueuer or dequeuer moves a slot into a temporary state, it takes ownership of

its item field, so that it can write to it. Hence the invariant does not have the corresponding
points-to assertion. The thread must give it back when updating the status.

6.3.5 Slot tokens

This time frame—when a slot is in a temporary state—is also when the last piece of ghost
state, stored in the ghost variable γtok, intervenes. Other threads can make the queue progress
between the moment when an enqueuer is attributed rank k, and the moment when it returns
the updated slot to the invariant. An enqueuer needs the assurance that the queue has not
gotten too far and attributed the slot on which it was working to a dequeuer, or to another
enqueuer in a subsequent cycle.

To this effect, we start by stating how advances of the head and tail are limited with respect
to one another; indeed, we prove these inequalities as part of the invariant:

0 ≤ t ≤ h ≤ t+ C

We also maintain in existence one token for each rank from h − C to h. These tokens are
exclusive assertions, and there cannot exist two tokens whose ranks are congruent modulo C.
Hence the token of rank k is enough to grant unique write access to slot k̂. We use it as follows.

1. When an enqueuer is attributed rank k, it borrows a newly created token of the same rank.

2. When returning the updated slot to the invariant, the enqueuer also returns the token;
from that moment the token is thus kept in the assertion Occupied k (s,S) (v,V).

3. When a dequeuer is attributed rank k, it claims that assertion and borrows the token.

4. When returning the updated slot to the invariant, the dequeuer also returns the token;
from that moment the token is thus kept in the assertion Available k (s,S).

In step 1, the token is created while destructing the token of rank k − C taken from the
assertion Available (k − C) −, which represents the available cell that the thread claims for
enqueuing.

To be able to distinguish between the two temporary states (enqueuing and dequeuing), we
give the token a flavor: from steps 1 to 2 it is a write token; from steps 3 to 4 it is a read token.
At any moment, there are read tokens from rank h− C to t, and write tokens from t to h.

We have a last requirement: when an enqueuer is attributed rank k, the new item is added to
the public state immediately—the CAS operation on head is the commit point of enqueuing—
even though the enqueuer has not actually written the item yet. When it finally returns the

80 CHAPTER 6. A BOUNDED MPMC QUEUE

updated slot, the enqueuer has lost track of the public state, which may have continued to
progress in the meantime. At that moment, it thus needs a reminder that the item it just wrote
is indeed the one it was expected to write. We implement this by adding the value v—and
view V—of the item as a payload to the write token.

The read token of rank k is denoted by TokenR γtok k, while the write token of rank k with
payload v and V is denoted by TokenW γtok k (v,V). Their authoritative counterpart, owned
by the invariant, is an assertion of the form •m γtok where m is a finite map. Its domain is the
range [h− C, h) of ranks which have a token, and its images are the payload (considering that
read tokens bear a payload of ()). In the invariant, the value of the map is connected to that
of the public state.

The assertions are defined in Figure 6.6d and satisfy the properties in Figure 6.7c. The first
three properties say that tokens are exclusive. The next two say that tokens agree with the
authoritative counterpart, hence with the public state. Rule Token-Update-RW corresponds
to step 1 in the list above, where we create a write token of rank k by destructing a read token
of rank k − C. Likewise, rule Token-Update-WR corresponds to step 3, where we turn a
write token into a read token of the same rank.

In addition to these rules, the finite map described in the internal invariant is such that,
whenever we own a read token (respectively a write token), the rank of this token necessarily
lies in the range [h−C, t) (respectively [t, h)), where t and h are the values of tail and head which
are existentially quantified in the invariant. Thanks to that property, at step 4 (respectively 2),
when a dequeuer (respectively an enqueuer) returns the token, it knows that the rank it has
been operating on is still in the right range—in other words, that the queue has not advanced
too far while the thread was working.

There are more properties that are invariants of the queue, and thus could be stated and
verified. However, they are not needed to prove that the code satisfies its specification. For
example, the fact that tail and head are strictly monotonic, and the fact that statuses are
non-negative, are not explicitly used.

6.3.6 Logical atomicity

The specification that we wish to prove is a logically atomic Hoare triple. The definition of such
triples for Iris is given by Jung et al. (2015, §7) and further refined by Jung (2019). It turns out
that this definition can be ported as is using the connectives of Cosmo. As we will see in §6.3.7
and §6.4.3, the logically atomic triples so defined can be proved and are sufficient for interesting
clients. We do not attempt to replicate in this dissertation the full definition. An approximate
definition that suffices to capture the essence of logical atomicity, and to understand our proof, is:

⟨x. P ⟩ e ⟨Φ⟩ ≜ ∀Ψ,
[
|⇛⊤ ∅∃x. P ∗

(
∀v.Φ v −∗ |⇛∅ ⊤Ψ v

)]
−∗ wp e {Ψ}

In this formula, the variable P is a Cosmo assertion (of type vProp); the variables Φ and Ψ
are predicates on values (of type Val → vProp); P and Φ may refer to the name x. The
assertion wp e {Ψ} is the weakest precondition for program e and postcondition Ψ (recall that,
in Iris, Hoare triples are syntactic sugar for weakest preconditions).

The purpose of a logically atomic triple is to give a specification to a non-atomic program
e as if it were atomic. In practice, we require that the proof of e accesses the precondition and
turns it into the postcondition in one atomic step only, which we call the commit point of this

§6.3. PROOF OF THE SPECIFICATION FOR THE RING BUFFER 81

logically atomic program. That is, if e satisfies the triple ⟨x. P ⟩ e ⟨Φ⟩, then it can perform several
steps of computation but, as soon as it accesses the resource P , it must return the resource Φ in
the same step of computation.9 Once it has done so, e can perform further computation steps
but P is not available anymore. As explained in §6.1.2, thanks to this constraint, the client of
this specification can open invariants around e as if e were atomic.

To capture this atomicity requirement, we ask the proof of the logically atomic triple for e to
be valid for any postcondition Ψ chosen by the client. Given that Ψ is arbitrary, the only means
of establishing this postcondition is to use the premise |⇛⊤ ∅∃x. P ∗ (∀v. Φ v −∗ |⇛∅ ⊤Ψ v),
which is known as an atomic update. When desired, this atomic update gives access to the
precondition P for some value of x, and, in exchange for the postcondition Φ of the logically
atomic triple, it returns the resource Ψ, which can then be used to finish the proof. Crucially,
the masks ∅ and ⊤ annotating the fancy updates |⇛⊤ ∅ and |⇛∅ ⊤ require that the atomic update
be used during one atomic step only, as required.

Using the invariant rules of Iris (§2.3.2), it is easy to show that atomic updates can be used
to open and close invariants. Rule LAInv follows as a corollary, rule LAHoare is immediate
(Figure 6.2).

6.3.7 Proof of try_enqueue

We now outline the proof that try_enqueue satisfies its specification from Figure 6.4. The
proof for try_dequeue is similar; those for enqueue and dequeue are deduced from the previous
two by an obvious induction; and the proof of make is simply a matter of initializing the ghost
state. The interested reader may find these proofs, conducted in the Coq proof assistant, in our
repository (Mével et al., 2021).

Recalling here the specification in Figure 6.4, and unfolding the definition of QueueInv q γ,
we ought to prove the following assertion:

QueueInvInner q γ γst γtok

⟨T ,H, n, (v0,V0) , ..., (vn−1,Vn−1).
IsQueue γ T H [(v0,V0) , ..., (vn−1,Vn−1)] ∗ ↑ V ⟩

try_enqueue q v

⟨λb. ∨ [IsQueue γ T H [(v0,V0) , ..., (vn−1,Vn−1)] ∗ b = false
IsQueue γ T (H ⊔ V) [(v0,V0) , ..., (vn−1,Vn−1), (v,V)] ∗ ↑H ∗ b = true ⟩

After unfolding the logically atomic triple, we must prove wp (try_enqueue q v) {Ψ} for
any Ψ, when in the proof context we have the internal invariant of the queue (with ghost
variables γ, γst, γtok) as well as the atomic update whose precondition and postcondition are
that of the triple above. We then step through the program using usual weakest-precondition
calculus.

The first interesting step is the atomic read of head. The ownership of that reference is
shared in the invariant of the queue. Hence, to access it, we must open the invariant; then we
get the points-to assertion, we can step through the read operation, return the points-to assertion

9The full definition of logically atomic triples allows to access the precondition atomically before the commit
point, hence without turning it into the postcondition. This is called aborting; it is not needed in our proof, and
out of the scope of this dissertation.

82 CHAPTER 6. A BOUNDED MPMC QUEUE

and close the invariant again. After we have done so, and thus forgotten all the quantities which
are existentially quantified inside that invariant, we learn little about the value that has just
been read, excepted that it is a non-negative integer, say k.

The second interesting step is the atomic read at index k̂ of the array statuses. Again the
invariant owns this cell, so we open it around the read instruction. This read yields some value s1
and, since it is atomic, it also augments our current (thread) view with the view S1 which, at
this moment, is stored in this cell. In other words, we gain the (persistent) assertion ↑ S1. We
can remember more information before closing the invariant: indeed, from the authority of γst
found in the invariant, we derive a witness for the strict monotonicity of the status that we just
read: Witness γst k̂

(
s1,S1

)
.

Next, the program tests whether s1 = 2k. If the test fails, then the program returns false.
In this case, we have to provide as postcondition of the logically atomic triple the untouched
representation predicate that is in its precondition (IsQueue γ T H [(v0,V0) , ..., (vn−1,Vn−1)]).
We do this by committing the atomic update in a trivial way, then conclude the proof.

If s1 = 2k, the program proceeds to performing CAS head k (k+1). To access head, we open
the invariant again. If that operation fails, the program also returns false and, after closing
the invariant without having updated ghost state, we conclude as before.

If the CAS succeeds, then a number of things happen logically. First, if h and t are the values
of head and tail at the moment of the CAS, then h = k. Second, we deduce that the buffer is
not full, i.e. h < t + C. Indeed, the invariant directly gives us h ≤ t + C; if we had h = t + C,
then in particular, t ≤ k − C < h, so the invariant would own the following for slot k̂ − C:

Occupied (k − C) (s
k̂−C

,S
k̂−C

) (vk−C ,Vk−C) ∨ s
k̂−C

= 2(k − C)

Because k̂ − C = k̂, this implies:

s
k̂
= 2(k − C) + 1 ∨ s

k̂
= 2(k − C)

In either case, we get s
k̂
< 2k = s1, which contradicts the monotonicity of the status of that

slot. We derive the contradiction by combining the assertion Witness γst k̂
(
s1,S1

)
that we had

since we read the status, and the authority • (s
k̂
,S

k̂
) γst that is found in the invariant.

Third, we thus know that h− C ≤ k − C < t, so that the invariant gives us:

Available (k − C) (s
k̂−C

,S
k̂−C

) ∨ s
k̂−C

= 2(k − C) + 1

Again the second disjunct is absurd because the status is monotonic. Hence the slot we
are claiming is available indeed. From this we get s

k̂
= 2k = s1, the points-to assertion

(items[k̂]⇝na −) @ Sk̂ and the read token of rank k−C. The sets of read tokens and write to-
kens depend on the value of tail and head, and we have just incremented the latter, to k + 1,
so we destruct the read token of rank k − C and create a write token of rank k instead, giving
it as payload the item (v,V) that we are trying to enqueue.

This is also when the strict monotonicity of the status comes into play: because sk = s1, it
gives us Sk ⊑ S1. But we have ↑ S1 in our proof context, so we obtain the points-to assertion
as a subjective assertion: items[k̂]⇝na −.

We commit the atomic update now. Indeed the successful CAS is the commit point of
try_enqueue. We know that the program will return true, so we must provide the corresponding

§6.4. A SIMPLE PIPELINE 83

postcondition of the logically atomic triple, where our item (v,V) has been appended to the
public state of the queue. Thus we take a ghost step to update this public state. By committing,
we finally obtain the assertion Ψ true that will serve at the end of the proof, since true is the
return value of the operation. Along the way, we also collect the persistent assertion ↑ V from
the precondition of the logically atomic triple.

Finally, we keep on our side the non-atomic points-to assertion items[k̂]⇝na − and the
write token, we reconstruct the invariant updated for the new value of head, and we close it.

The next step of the program writes the value v to the non-atomic item field, which is easy
since we have the points-to assertion at hand. This assertion then becomes items[k̂]⇝na v. We
turn it back to an objective assertion, which gives us a view W and two assertions ↑W and
(items[k̂]⇝na v) @W.

The last step of the program is to update the (atomic) status of the slot. Once more we open
the invariant. If we again note h and t the current values of head and tail (potentially different
from the last time we opened the invariant), then owning a write token for rank k teaches us
that t ≤ k < h. The invariant then gives us for slot k̂:

Occupied k (s
k̂
,S

k̂
) (vk,Vk) ∨ s

k̂
= 2k

The left disjunct would own our write token, but we already have it and it is exclusive; hence
we are in the right disjunct, s

k̂
= 2k = s1. We perform the atomic write with value s2 ≜ 2k+ 1

(strict monotonicity is respected), and since we have both ↑ V and ↑W in context, we can push
the view S2 = V ⊔W to this atomic cell while writing. We then switch to the left disjunct, by
constituting the assertion:

Occupied k
(
s2,S2

)
(v,V) ⊣⊢ ∗

s2 = 2k + 1
(items[k̂]⇝na v) @ S2
TokenW γtok k (v,V)
V ⊑ S2

Hence we return the non-atomic points-to assertion and the write token to the invariant before
closing it.

6.4 A simple pipeline
We now demonstrate the use of our specification of a concurrent queue by a simple client
application, that chains two treatments on a sequence of data, where each treatment is applied
in a separate thread. Thus the sequence of intermediate values is transferred from a producer
to a consumer using a concurrent queue.

6.4.1 Implementation of the pipeline

The code of the application is presented in Figure 6.8. It provides a single function, pipeline,
which takes as arguments two functions g and f , a sequence xs, and returns a sequence obtained
by applying g ◦ f to each item of the input sequence. The functions g and f need not be pure:
they can have side effects and rely on some state.

For simplicity, input and output sequences are encoded as (non-atomic) arrays, whose length
can be obtained via a primitive operation length −. However the implementation can be

84 CHAPTER 6. A BOUNDED MPMC QUEUE

let pipeline g f xs =
let n = length xs in
let ys = make () in
fork (pipef n xs ys f);
let zs = arrayna[n] () in
pipeg n ys zs g;
zs

let pipef n xs ys f =
for k from 0 to n− 1 do

let x = xs[k]na in
let y = f x in
enqueue ys y

done

let pipeg n ys zs g =
for k from 0 to n− 1 do

let y = dequeue ys in
let z = g y in
zs[i]na ← z

done

Figure 6.8: Implementation of a pipeline

{ xs⇝∗
na [x0, ..., xn−1] ∗ ∗

0≤k<n

wp f xk {λy.wp g y {λz. R k z}}}
pipeline g f xs

{λzs. ∃z0, ..., zn−1. zs⇝∗
na [z0, ..., zn−1] ∗ ∗

0≤k<n

R k zk }
Figure 6.9: A specification for the pipeline

modified to consume and produce lists of unknown length, or even infinite streams, provided an
encoding of such data structures; we would then use a sentinel value in the queue to signal the
end of stream.

The code is straightforward: we create a concurrent queue ys, then we fork a thread. The
queue is shared between the main thread and the forked thread, while xs is transmitted to the
forked thread. The forked thread reads items from xs in turn, applies f to them and enqueues
the results. The main thread creates a new (non-atomic) array zs to store the output; then, it
dequeues n items, where n is the number of items in the input sequence, applies g to them, and
adds the results to zs. Finally, it returns zs.

6.4.2 Specification of the pipeline

A possible specification for this pipeline is shown in Figure 6.9. It is higher-order, and expressed
using the weakest-precondition predicate.

In postcondition we obtain one assertion R k zk for each item of the stream, related to its
position k (in particular, R may relate the output value zk to the input value xk).

In the precondition, essentially, we want to state that for some predicates P and Q, we have
the assertions P k xk for all items of the input stream, and functions f and g satisfy Hoare
triples of the form:

{P k x} f x {λy. Q k y}
{Q k y} g y {λz. R k z}

so that, by the chaining rule, the composition satisfies:

{P k x} g (f x) {λz. R k z}

§6.4. A SIMPLE PIPELINE 85

γ : Auth(Ex(View×View× List(Val×View)))
γf, γg : Auth(Ex(N))

PipeInv g f R ≜ ∃q, γ, γf, γg.QueueInv q γ ∗ PipeInvInner g f R γ γf γg

PipeInvInner g f R γ γf γg ≜

∃nf, ng, T ,H, (yng ,Vng), ..., (ynf−1,Vnf−1).

∗

ng ≤ nf ∗ •nf

γf ∗ •ng
γg

IsQueue γ T H
[
(yng ,Vng), ..., (ynf−1,Vnf−1)

]
∗

ng≤k<nf

(wp g yk {λz. R k z}) @ Vk

PipeF g f R γ γf nf xs [x0, ..., xn−1] ≜ ∗

nf ≤ n ∗ •nf

γf

xs⇝∗
na [x0, ..., xn−1]∗

nf≤k<n

wp f xk {λy.wp g y {λz. R k z}}

PipeG g f R γ γg ng zs [z0, ..., zn−1] ≜ ∗

ng ≤ n ∗ •ng

γg

zs⇝∗
na [z0, ..., zn−1]∗

0≤k<ng

R k zk

Figure 6.10: Internal invariants of the pipeline

By using weakest preconditions instead of Hoare triples, we avoid mentioning the predicate P ;
by taking advantage of the higher-order nature of Iris, we can nest the triples so as to conceal
the intermediate predicate Q.

6.4.3 Proof of the specification for the pipeline

We now prove the following result.

Theorem 5 The code shown in Figure 6.8 satisfies the specification appearing in Figure 6.9.

The proof relies on the assertions presented in Figure 6.10. The assertion PipeInv g f R,
which is persistent, join together the internal invariant of the queue with that of the pipeline.
The two assertions PipeF g f R γ γf nf xs [x0, ..., xn−1] and PipeG g f R γ γg ng zs [z0, ..., zn−1]
are owned by the threads which compute f and g, respectively, and describe their loop invariants.

We again associate the queue to a ghost variable γ. In addition, we use two ghost variables
γf and γg whose values are the current positions nf and ng of the loops computing f and g,
respectively. This ghost state allows both threads, while in their respecting loops, to agree with
the shared invariant on these values. At any time, we have 0 ≤ ng ≤ nf ≤ n.

• Indices in the range [nf, n) have not been processed by f yet. Hence, for these indices, we
still have the weakest-precondition assertions wp f xk {−} initially provided to the pipeline.
These assertions can be regarded as a permission to run f once on the corresponding items.
The thread computing f owns these assertions, and it also owns the array xs containing
the input items.

86 CHAPTER 6. A BOUNDED MPMC QUEUE

• Indices in the range [ng, nf) have been processed by f but are yet to be processed by g.
Hence, we have consumed their initial weakest-precondition assertions, and have obtained
weakest-precondition assertions wp g yk {−} as a result. These assertions are stored in the
shared invariant. The invariant also owns the queue ys, whose contents are the interme-
diate items for exactly this range of indices.

• Indices in the range [0, ng) have been processed by both f and g. Hence, we have con-
sumed their intermediate weakest-precondition assertions, and have obtained postcondi-
tions R k zk as a result. These are owned by the thread computing g, along with the
array zs which contains the output items.

The key point is that the assertion wp g yk {−} has been given by the thread computing f
to the invariant when enqueuing the corresponding item, and will be taken by the thread com-
puting g when dequeuing that item. This assertion is thus exchanged between two threads with
differing views of the shared memory, and transits via a neutral ground: an objective invariant.
We make the assertion objective by specifying at which view it holds: namely, the view Vk
which the enqueuer had and which the dequeuer will acquire. Therefore, we rely crucially on
the enqueuer-to-dequeuer synchronization guaranteed by the queue.

With these invariant assertions correctly stated, the proof is rather straightforward. When
creating the pipeline, we have 0 = ng = nf and assertions PipeInvInner and PipeG hold trivially
(the queue is empty and there are no output items computed yet); the assertion PipeF is con-
stituted exactly from the preconditions of the pipeline (Figure 6.9), and is given by the main
thread to the child thread that will compute f . When the pipeline has completed its work, we
have ng = nf = n and the assertion PipeG provides exactly the postcondition of the pipeline.

Thanks to the logically atomic triples in the specification of the queue, when enqueuing
(respectively, dequeuing), we can open the invariant of the pipeline and move assertions to it
(respectively, from it) as already explained.

Chapter 7

Related Work

7.1 Program verification in weak memory models

There is a wide variety of work on weak memory models and on approaches to program verifi-
cation with respect to weak memory models. We restrict our attention to program verification
based on extensions of Concurrent Separation Logic, because this is the most closely related
work and because we believe that the abstraction and compositionality of Separation Logic are
features that will be absolutely essential in the long run. Vafeiadis (2017) offers a good survey
of some of the papers that we cite now.

The first instance of Separation Logic for weak memory appears to be RSL (Vafeiadis and
Narayan, 2013). It is based on an axiomatic semantics of a fragment of the C11 memory model.
It supports non-atomic accesses, where it enforces the absence of data races; release/acquire
accesses, with reasoning rules that allow ownership transfers from writer to reader; and relaxed
accesses, without any ownership transfer. The logic involves a permission Rel(ℓ,Q) to perform
a release write at location ℓ of a value v while relinquishing the assertion Q v. Symmetrically,
there is a permission Acq(ℓ,Q) to perform an acquire read at location ℓ of a value v and obtain
the assertion Q v. The release and acquire permissions are created, and the predicate Q is fixed,
when the location is allocated. RSL can verify simple concurrent data structures, such as a spin
lock. However, because it lacks invariants and ghost state, its expressive power is limited.

FSL (Doko and Vafeiadis, 2016) extends RSL with support for release/acquire fences. A
release write can be replaced with a release fence followed with a relaxed write; symmetrically,
an acquire read can be replaced with a relaxed read followed with an acquire fence. Two new
assertions ∆P and ∇P witness that P has been released by the last release fence or will be
acquired by the next acquire fence, respectively. In Cosmo, both of these assertions would be
replaced by P @ V, for a well-chosen view V. Multicore OCaml has no fences; instead, atomic
read and write instructions are used to transmit views. FSL++ (Doko and Vafeiadis, 2017)
extends FSL with shared read permissions for non-atomic accesses, support for CAS, and ghost
state. As an application, the authors of FSL++ prove the correctness of the Rust library “ARC”
(atomic reference counter).

GPS (Turon et al., 2014) supports a fragment of C11 that includes non-atomic accesses and
release/acquire accesses. Like the papers cited above, it is based on an axiomatic presentation
of the C11 memory model. It introduces ghost state and a notion of per-location protocol that
governs a single atomic memory location. At the cost of rather complex reasoning rules, it

87

88 CHAPTER 7. RELATED WORK

offers good expressive power. The case studies described in the paper include a spin lock, a
bounded ticket lock, a Michael-Scott queue, and a circular FIFO queue. In comparison, Cosmo
does not need per-location protocols. Because atomic memory locations in Multicore OCaml
have sequentially consistent behavior, our “atomic points-to” predicate is objective. Therefore,
in Cosmo, an invariant can refer to one or more atomic memory locations if desired. This has
been illustrated in §5.3 and §5.6. On these examples, Cosmo is significantly simpler to use than
GPS: the proof of the ticket lock in Cosmo is about 170 lines of Coq code1 (specifications and
proofs combined) whereas the corresponding proof in iGPS (a reconstruction of GPS, covered
later) is about 700 lines2.

Sieczkowski et al. (2015), already cited earlier (§1), present iCAP-TSO, a variant of Concur-
rent Separation Logic that is sound with respect to the TSO memory model. The logic includes
a high-level fragment whose reasoning rules are those of Concurrent Separation Logic, where the
pre- and postcondition are interpreted relative to the current thread’s point of view. Informally,
an assertion holds from the point of view of a thread if it holds of the global state updated with
the thread’s store buffer and no other thread has pending writes that could affect this assertion.
Thus, the subjective points-to assertion x 7→ v guarantees that a read instruction will return
the value v. The logic is proved sound with respect to an operational semantics where store
buffers are explicit. This work and ours seem quite close in spirit, but differ due to the choice of
a different memory model. In particular, Sieczkowski et al. have no notion of view. In order to
reason about the behavior of store buffers, they propose a few ad hoc logical constructs, such as
an “until” modality P Ut Q, which means that P holds until an update from thread t is flushed
to main memory, at which point Q holds. By contrast with Cosmo, iCAP-TSO’s high-level logic
cannot reason about transfers of ownership. This kind of reasoning must be carried out in a
lower-level logic. It is possible to verify a data structure (e.g., a lock) in the low-level logic and
to establish a specification expressed in the high-level logic.

Kaiser et al. (2017) propose the first instantiation of Iris in a weak-memory setting. This
involves abandoning the axiomatic memory models used by the papers cited above and switch-
ing to an operational semantics. The paper proposes such a semantics for a fragment of C11
that includes two kinds of memory locations, namely non-atomic locations and release/acquire
locations. Like Dolan et al.’s semantics of Multicore OCaml (2018), this semantics involves
timestamps and histories. It also includes a “race detector” which ensures that data races on
non-atomic memory locations lead to undefined behavior. In comparison, Dolan et al.’s seman-
tics does not need a race detector: every Multicore OCaml program has a well-defined set of
permitted behaviors. Several aspects of our work are modeled after Kaiser et al.’s paper. Indeed,
in a first step, they instantiate Iris, yielding a low-level “base logic”. Then, in a second step,
they define a higher-level logic, whose reasoning rules are easier to use, and whose assertions
are implicitly parameterized with the thread’s view. We follow this approach. Kaiser et al.
construct not one, but two high-level logics, iGPS and iRSL, which are inspired by GPS and
RSL, and benefit from the power of Iris. iGPS introduces a new feature, namely single-writer
protocols. Cosmo follows a different route: as explained above, it does not need per-location
protocols. Furthermore, it puts emphasis on explicit user-level reasoning with abstract views,
via assertions like P @ V and ↑ V.

iRC11 (Dang et al., 2020) extends iGPS with additional features of the C11 memory model,
1https://gitlab.inria.fr/cambium/cosmo/-/blob/master/theories/examples/ticketlock.v
2https://gitlab.mpi-sws.org/FP/igps/-/blob/master/theories/examples/ticket_lock.v

https://gitlab.inria.fr/cambium/cosmo/-/blob/master/theories/examples/ticketlock.v
https://gitlab.mpi-sws.org/FP/igps/-/blob/master/theories/examples/ticket_lock.v

§7.2. VERIFICATION OF FINE-GRAINED CONCURRENT DATA STRUCTURES 89

namely relaxed accesses and release/acquire fences. It is based on ORC11, an operational
presentation of the Repaired C11 memory model (Lahav et al., 2017). One of its key features
is support for cancellable invariants, an abstraction whose implementation in Iris in an SC
setting has been well-understood for some time,3 but whose implementation in a weak-memory
setting is significantly more challenging. In particular, the tokens that represent a fraction of
the ownership of an invariant are not objective, and therefore cannot appear in an invariant;
they must be transmitted from one thread to another via a synchronization operation. Dang et
al.’s implementation of cancellable invariants involves explicit reasoning about views, yet this is
not apparent in the cancellable invariant API, a remarkable achievement. A user of iRC11 need
not know about views.

On top of iRC11, Dang et al. reconstruct Lifetime Logic and the model of the Rust type
system previously built by Jung et al. in an SC setting (2018a). Furthermore, they prove the
soundness of Rust’s ARC library.

7.2 Verification of fine-grained concurrent data structures

Putting weak-memory concerns aside, the verification of fine-grained concurrent data struc-
tures is a well-studied problem with a particularly rich literature. Several approaches are tried,
targeting various verification frameworks, various data structures in different contexts.

The notion of linearizability is traditionally regarded as central for specifying such libraries.
Dongol and Derrick (2015) give a survey of the different techniques used to prove linearizability
of concurrent libraries. Of particular interest in the context of separation logic is the technique
of logical atomicity. In a sequentially consistent context, logically atomic specifications have
recently been proved to imply linearizability (Birkedal et al., 2021). Logical atomicity has been
developed through several iterations over the last decade (da Rocha Pinto et al., 2014; Jung et al.,
2015; Jacobs and Piessens, 2011; Svendsen et al., 2013; Jung et al., 2020). In this dissertation,
we adapt a modern version of Iris’s logically atomic triples (Jung, 2019) to the setting of Cosmo.

Another popular approach for proving the correctness of concurrent libraries is the use of
refinement with respect to a simpler implementation. This is the track chosen by ReLoC (Frumin
et al., 2018), which has recently been combined with logical atomicity (Frumin et al., 2020).
Interestingly, ReloC has been recently used for proving the correctness of several concurrent
queue implementations (Vindum and Birkedal, 2021; Vindum et al., 2021), one of which is very
close to ours. However, these proofs do not handle relaxed memory behaviors, so that they do not
provide a solution to the problem of specifying the lack of happens-before relationship between
some data structure accesses, which we discussed in §6.1.3. Because it lacks some happens-
before relationships, our queue implementation is not a refinement of a naive implementation
which would use a lock to protect a sequential implementation, so a refinement-based approach
would not be useful for proving our library correct. The refinement approach has also been used
to prove correct some data structures used in a concurrent garbage collector (Zakowski et al.,
2018).

In a weakly consistent setting, new problems arise. As discussed in §6.1.3, even the definition
of linearizability needs special care. Smith et al. (2019) propose new definitions of linearizability

3For example, in RustBelt (Jung et al., 2018a), non-atomic persistent borrows are a form of cancellable
invariant.

90 CHAPTER 7. RELATED WORK

for the case of weak memory models. In contrast, other authors develop new kinds of specifica-
tions which allow for weak behaviors of the library itself (Krishna et al., 2020; Emmi and Enea,
2019; Raad et al., 2019). Notably, Raad et al. propose a compositional framework in which
the specification of a library describes the events associated to the library and their allowed or-
derings. In other words, each library interface describes its own axiomatic memory model, and
there is no built-in model: models such as RC11 and TSO are implemented as the specification
of a library of memory access primitives. Dang et al. (2022) use this approach to verify a finer
specification for a concurrent queue similar to ours. This formalism is heavier than Cosmo—as it
involves manipulating event graphs—and might be more expressive, although that point should
be investigated. We found that our method of combining logically atomic triples with views is
expressive and allows for concise specifications at the same time. Previous works include the
generalization of various methods to weak consistency: Lê et al. (2013b,a) use manual methods
directly tied to the axiomatic memory model to prove the correctness of a queue and of a work-
stealing algorithm, while Lahav and Vafeiadis (2015) adapt the Owicki-Gries methodology to
the release-acquire fragment of the C11 memory model and apply it to verify a read-copy-update
library. Although various earlier works develop the idea of a separation logic for programs with
a relaxed memory semantics, as shown in §7.1, few of these papers address the problem of the
full functional correctness of a data structure. In particular, the specification proposed for a
circular buffer in GPS (Turon et al., 2014) is a weak specification in the style of the persistent
specification given at the end of §6.1.2: in contrast to ours, it does not specify in which order
the elements leave the queue.

Chapter 8

Conclusion and future work

In this dissertation, we have laid the groundwork for verifying Multicore OCaml programs in a
suitable variant of Concurrent Separation Logic. We have instantiated Iris (Jung et al., 2018b)
for Multicore OCaml, yielding a low-level logic, BaseCosmo, which exposes all of the details
of the Multicore OCaml memory model (Dolan et al., 2018), including timestamps, histories,
and views. BaseCosmo can in principle verify arbitrary Multicore OCaml programs, including
programs that involve data races on non-atomic memory locations.

However, BaseCosmo is too low-level to be pleasant and convenient. Thus, we have built a
higher-level logic, Cosmo, aiming to provide simpler reasoning principles. In order to achieve this
result, we have removed the ability of reasoning about programs that race on non-atomic memory
locations—we believe it is reasonable to assume that most (correct) practical programs are
exempt of such races. This has allowed us to offer the illusion that a non-atomic memory location
stores a single value, to remove all mention of timestamps and histories, and to present views to
the user as an abstract type, equipped with the structure of a bounded semilattice. We believe
that the manner in which Cosmo allows reasoning about weak memory is original and relatively
simple and natural. A key mechanism is the ability to split an arbitrary assertion P into an
objective fragment P @V and a subjective fragment ↑ V and to later reassemble these fragments.
The two fragments are transmitted from one thread to another by different means: whereas
sharing an objective assertion requires no runtime synchronization and is typically achieved via
an Iris invariant, transmitting a view is typically achieved by relying on the “release/acquire”
behavior of atomic writes and reads.

Cosmo contains Concurrent Separation Logic as a fragment, that allows reasoning about
coarse-grained concurrent programs in the same way as in Concurrent Separation Logic.

We have illustrated the applicability of the high-level logic Cosmo to the study of several
concurrent data structures, including a relaxed multiple-reader multiple-write queue. In these
case studies, we found the view mechanism to be a pleasant and concise formalism to specify and
reason about thread synchronization. In order to write satisfactory specifications for such lock-
free data structures, we have used a notion of logical atomicity. Although it is straightforward
to port the existing definition of that notion (Jung, 2019) to a weak memory setting, logical
atomicity in such a setting does not imply “linearizability” in the traditional sense: logical
atomicity does imply the existence of a linear history, but synchronization between successive
events in that history is not guaranteed.

As said earlier, our high-level logic Cosmo does not support reasoning about data races on

91

92 CHAPTER 8. CONCLUSION AND FUTURE WORK

non-atomic memory locations. Yet, there are some legitimate programs which exploit such races
correctly. For instance, idempotent work-stealing (Michael et al., 2009) aims at reducing syn-
chronizations between cooperating threads in a load-balancing algorithm, under the assumption
that the tasks can be repeated without compromising program correctness. Writing concurrent
programs which are willingly racy is a preserve of memory model experts, and the correctness
of such programs is especially subtle. Therefore, there is a call for a program logic that allows
checking them. Although it is possible to reason about these racy programs in the low-level
logic BaseCosmo, an opportunity for future research is to discover what rules can be proposed
to reason about these programs without abandoning the simplicity of Cosmo. Drawing inspira-
tion from iGPS (Kaiser et al., 2017), one direction might be to have racy non-atomic locations
be governed by per-location protocols, involving some notion of state monotonicity.

Another future work may consist in proposing suitable specifications for Multicore OCaml’s
Domain API, which offers a set of primitive synchronization operations. On this basis, one may
verify concurrent data structures that have been developed for Multicore OCaml, for instance a
multiword compare-and-swap,1 a suite of lock-free work-stealing queues, bags, and hash tables,
and an implementation of Turon’s reagents (2012).

On an even more practical ground, much engineering work may be done to make BaseCosmo
applicable to actual Multicore OCaml code. At the moment, the code that BaseCosmo reasons
about belongs to a toy language whose syntax is deeply embedded within Coq. This minimalist
language focuses on memory-concerned operations and lacks most of the features of the actual
Multicore OCaml language, including types, modules, objects, algebraic data types, exceptions
and algebraic effects. A realistic verification tool should

1. support a satisfying subset of Multicore OCaml, including the aforementioned features,

2. be connected to actual Multicore OCaml code

3. and offer an interface to proving specifications that minimizes human effort.

Regarding item 1, many programming features do not interact with the memory model and
should be straightforward to support, if cumbersome. However, exceptions, algebraic effects
and their handlers2 have a non-local impact on the control flow and thus cannot be dealt with
seamlessly. Specialized program logics have been designed to reason about languages with
exceptions and algebraic effects (de Vilhena and Pottier, 2021). Work remains to be done to
build a unified framework that would support them in addition to weak-memory concurrency.
Item 2 could involve implementing an automatic translation tool from deep-embedded code to
Multicore OCaml source files, or the converse. For now, Multicore OCaml itself has no notion
of formal specification—neither does it have, in fact, a formal semantics. However, the Gospel
project (Charguéraud et al., 2019) aims at defining a specification language for OCaml; that
specification language is translated to Separation Logic. Provided that Gospel be extended
to Concurrent Separation Logic, it would then be natural that our verification framework be
capable of reading these specifications.

1This uses RDCSS, which has been verified in Iris by Jung et al. (2020).
2Algebraic effects and handlers are another feature added to OCaml by Multicore OCaml. Although this feature

is conceptually independent from concurrency, it constitutes a convenient tool for implementing cooperative
scheduling, hence it has been deemed useful to ship both features together.

https://github.com/ocaml-multicore/ocaml-multicore/blob/master/stdlib/domain.mli
https://github.com/ocaml-multicore/kcas
https://github.com/ocaml-multicore/lockfree
https://github.com/ocaml-multicore/reagents

93

Regarding item 3: in the vein of the Iris Proof Mode (Krebbers et al., 2017), the proof mode
we have built for Cosmo is easy to use, but verbose: it follows the syntax of the implementation
closely and requires writing one tactic invocation per reduction step of the subject program.
Such a proof script is legible, but lengthy and sensitive to small code changes. A user might
hope for a more automated interface which would tackle the mundane parts and let her focus
on the interesting parts, those where human intelligence is the most required: designing ghost
state and invariants, and choosing when to open and close them. Several proof efforts have been
conducted to automate proofs of programs in Iris (Sammler et al., 2021; Mulder et al., 2022;
Malecha et al., 2022). Designing a good automation infrastructure for Cosmo is thus a possible
future work.

Lastly, on the theoretical ground, one may build a semantic model of Multicore OCaml’s
type system in Cosmo—that is, interpreting types of the source language as predicates of the
logic. In addition to proving type soundness, this would help specifying typed functions which
could be called by untyped (and unsafe) code, as long as the latter would conform to the binary
interface for the input and output types.

94 CHAPTER 8. CONCLUSION AND FUTURE WORK

Bibliography

Sarita V Adve and Hans-J Boehm. Memory models: A case for rethinking parallel languages and
hardware. Communications of the ACM, 53(8):90–101, 2010. doi: 10.1145/1787234.1787255.

David Aspinall and Jaroslav Ševčík. Formalising Java’s data race free guarantee. In Klaus
Schneider and Jens Brandt, editors, Theorem Proving in Higher Order Logics, pages 22–37.
Springer, 2007. doi: 10.1007/978-3-540-74591-4_4.

Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. Mathematizing C++
concurrency. In Principles of Programming Languages (POPL), pages 55–66, January 2011.
URL https://www.cl.cam.ac.uk/~pes20/cpp/popl085ap-sewell.pdf.

John Bender and Jens Palsberg. A formalization of Java’s concurrent access modes. Proceedings
of the ACM on Programming Languages, 3(OOPSLA):142:1–142:28, 2019. URL https://
johnbender.us/assets/oopsla-2019.pdf.

Lars Birkedal and Aleš Bizjak. Lecture notes on Iris: Higher-order concurrent separation
logic. Lectures notes, December 2018. URL https://iris-project.org/tutorial-pdfs/
iris-lecture-notes.pdf.

Lars Birkedal, Thomas Dinsdale-Young, Armaël Guéneau, Guilhem Jaber, Kasper Svend-
sen, and Nikos Tzevelekos. Theorems for free from separation logic specifications.
5(ICFP), 2021. doi: 10.1145/3473586. URL https://cs.au.dk/~birke/papers/
free-theorems-sep-logic.pdf.

Richard Bornat, Cristiano Calcagno, Peter O’Hearn, and Matthew Parkinson. Permission ac-
counting in separation logic. In Principles of Programming Languages (POPL), pages 259–270,
January 2005. URL http://www.cs.ucl.ac.uk/staff/p.ohearn/papers/permissions_
paper.pdf.

John Boyland. Checking interference with fractional permissions. In Static Analysis Symposium
(SAS), volume 2694 of Lecture Notes in Computer Science, pages 55–72. Springer, June 2003.
URL http://www.cs.uwm.edu/~boyland/papers/permissions.pdf.

Stephen Brookes and Peter W. O’Hearn. Concurrent separation logic. SIGLOG News, 3(3):47–
65, 2016. URL http://siglog.hosting.acm.org/wp-content/uploads/2016/07/siglog_
news_9.pdf.

Stephen D. Brookes. A semantics for concurrent separation logic. In International Conference on
Concurrency Theory (CONCUR), volume 3170 of Lecture Notes in Computer Science, pages
16–34. Springer, August 2004. URL http://dx.doi.org/10.1007/978-3-540-28644-8_2.

95

https://www.cl.cam.ac.uk/~pes20/cpp/popl085ap-sewell.pdf
https://johnbender.us/assets/oopsla-2019.pdf
https://johnbender.us/assets/oopsla-2019.pdf
https://iris-project.org/tutorial-pdfs/iris-lecture-notes.pdf
https://iris-project.org/tutorial-pdfs/iris-lecture-notes.pdf
https://cs.au.dk/~birke/papers/free-theorems-sep-logic.pdf
https://cs.au.dk/~birke/papers/free-theorems-sep-logic.pdf
http://www.cs.ucl.ac.uk/staff/p.ohearn/papers/permissions_paper.pdf
http://www.cs.ucl.ac.uk/staff/p.ohearn/papers/permissions_paper.pdf
http://www.cs.uwm.edu/~boyland/papers/permissions.pdf
http://siglog.hosting.acm.org/wp-content/uploads/2016/07/siglog_news_9.pdf
http://siglog.hosting.acm.org/wp-content/uploads/2016/07/siglog_news_9.pdf
http://dx.doi.org/10.1007/978-3-540-28644-8_2

96 CHAPTER 8. BIBLIOGRAPHY

Alexandre Buisse, Lars Birkedal, and Kristian Støvring. A step-indexed Kripke model of separa-
tion logic for storable locks. Electronic Notes in Theoretical Computer Science, 276:121–143,
September 2011. URL https://cs.au.dk/~birke/papers/locks.pdf.

Arthur Charguéraud, Jean-Christophe Filliâtre, Cláudio Lourenço, and Mário Pereira. GOSPEL
- providing OCaml with a formal specification language. In Formal Methods (FM), volume
11800 of Lecture Notes in Computer Science, pages 484–501. Springer, October 2019. URL
https://hal.inria.fr/hal-02157484v2.

Pedro da Rocha Pinto, Thomas Dinsdale-Young, and Philippa Gardner. TaDA: A logic for
time and data abstraction. In European Conference on Object-Oriented Programming, pages
207–231. Springer, 2014. doi: 10.1007/978-3-662-44202-9_9.

Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek Dreyer. RustBelt meets
relaxed memory. Proceedings of the ACM on Programming Languages, 4(POPL):34:1–34:29,
2020. URL https://hal.inria.fr/hal-02351793/.

Hoang-Hai Dang, Jaehwang Jung, Jaemin Choi, Duc-Than Nguyen, William Mansky, Jeehoon
Kang, and Derek Dreyer. Compass: Strong and compositional library specifications in relaxed
memory separation logic. In Proceedings of the 43rd ACM SIGPLAN International Conference
on Programming Language Design and Implementation, PLDI 2022, page 792–808, New York,
NY, USA, 2022. Association for Computing Machinery. ISBN 9781450392655. doi: 10.1145/
3519939.3523451. URL https://plv.mpi-sws.org/compass/paper.pdf.

Paulo Emílio de Vilhena and François Pottier. A separation logic for effect handlers. Proceedings
of the ACM on Programming Languages, 5(POPL), January 2021. URL http://cambium.
inria.fr/~fpottier/publis/de-vilhena-pottier-sleh.pdf.

Marko Doko and Viktor Vafeiadis. A program logic for C11 memory fences. In Verification, Model
Checking and Abstract Interpretation (VMCAI), volume 9583 of Lecture Notes in Computer
Science, pages 413–430. Springer, January 2016. URL https://plv.mpi-sws.org/fsl/base/
paper.pdf.

Marko Doko and Viktor Vafeiadis. Tackling real-life relaxed concurrency with FSL++. In
European Symposium on Programming (ESOP), volume 10201 of Lecture Notes in Computer
Science, pages 448–475. Springer, April 2017. URL https://plv.mpi-sws.org/fsl/ARC/
paper.pdf.

Stephan Dolan, Anil Madhavapeddy, and KC Sivaramakrishnan. Multicore OCaml. https:
//github.com/ocaml-multicore/ocaml-multicore/wiki, 2020.

Stephen Dolan, K. C. Sivaramakrishnan, and Anil Madhavapeddy. Bounding data races in space
and time. In Programming Language Design and Implementation (PLDI), pages 242–255, June
2018. URL http://kcsrk.info/papers/pldi18-memory.pdf.

Brijesh Dongol and John Derrick. Verifying linearisability: A comparative survey. ACM Com-
puting Surveys (CSUR), 48(2):1–43, 2015. doi: 10.1145/2796550.

https://cs.au.dk/~birke/papers/locks.pdf
https://hal.inria.fr/hal-02157484v2
https://hal.inria.fr/hal-02351793/
https://plv.mpi-sws.org/compass/paper.pdf
http://cambium.inria.fr/~fpottier/publis/de-vilhena-pottier-sleh.pdf
http://cambium.inria.fr/~fpottier/publis/de-vilhena-pottier-sleh.pdf
https://plv.mpi-sws.org/fsl/base/paper.pdf
https://plv.mpi-sws.org/fsl/base/paper.pdf
https://plv.mpi-sws.org/fsl/ARC/paper.pdf
https://plv.mpi-sws.org/fsl/ARC/paper.pdf
https://github.com/ocaml-multicore/ocaml-multicore/wiki
https://github.com/ocaml-multicore/ocaml-multicore/wiki
http://kcsrk.info/papers/pldi18-memory.pdf

BIBLIOGRAPHY 97

Michael Emmi and Constantin Enea. Weak-consistency specification via visibility relaxation.
Proceedings of the ACM on Programming Languages, 3(POPL):60:1–60:28, 2019. URL https:
//doi.org/10.1145/3290373.

Keir Fraser. Practical lock-freedom. Technical report, University of Cambridge, Computer
Laboratory, 2004.

Dan Frumin, Robbert Krebbers, and Lars Birkedal. Reloc: A mechanised relational logic for
fine-grained concurrency. In Logic in Computer Science (LICS), pages 442–451, July 2018.
URL https://iris-project.org/pdfs/2018-lics-reloc-final.pdf.

Dan Frumin, Robbert Krebbers, and Lars Birkedal. ReLoC Reloaded: A mechanized relational
logic for fine-grained concurrency and logical atomicity. arXiv preprint arXiv:2006.13635,
2020.

Alexey Gotsman, Josh Berdine, Byron Cook, Noam Rinetzky, and Mooly Sagiv. Local rea-
soning for storable locks and threads. In Asian Symposium on Programming Languages and
Systems (APLAS), volume 4807 of Lecture Notes in Computer Science, pages 19–37. Springer,
November 2007. URL http://dx.doi.org/10.1007/978-3-540-76637-7_3.

Charles Antony Richard Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12(10):576–580, 1969.

Aquinas Hobor, Andrew W. Appel, and Francesco Zappa Nardelli. Oracle semantics for
concurrent separation logic. In European Symposium on Programming (ESOP), volume
4960 of Lecture Notes in Computer Science, pages 353–367. Springer, April 2008. URL
http://www.cs.princeton.edu/~appel/papers/concurrent.pdf.

Iris developers and contributors. Iris examples, 2021. URL https://gitlab.mpi-sws.org/
iris/examples.

Iris developers and contributors. The Iris 3.6 documentation, January 2022. URL https:
//plv.mpi-sws.org/iris/appendix-3.6.pdf.

Bart Jacobs and Frank Piessens. Expressive modular fine-grained concurrency specification. In
Proceedings of the 38th annual ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, pages 271–282, 2011. doi: 10.1145/1926385.1926417.

Ralf Jung. Logical atomicity in Iris: the good, the bad, and the ugly. Iris Workshop, October
2019. URL https://people.mpi-sws.org/~jung/iris/talk-iris2019.pdf.

Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and
Derek Dreyer. Iris: monoids and invariants as an orthogonal basis for concurrent reasoning.
In Principles of Programming Languages (POPL), pages 637–650, January 2015. URL http:
//plv.mpi-sws.org/iris/paper.pdf.

Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. RustBelt: securing the
foundations of the Rust programming language. Proceedings of the ACM on Programming Lan-
guages, 2(POPL):66:1–66:34, 2018a. URL https://people.mpi-sws.org/~dreyer/papers/
rustbelt/paper.pdf.

https://doi.org/10.1145/3290373
https://doi.org/10.1145/3290373
https://iris-project.org/pdfs/2018-lics-reloc-final.pdf
http://dx.doi.org/10.1007/978-3-540-76637-7_3
http://www.cs.princeton.edu/~appel/papers/concurrent.pdf
https://gitlab.mpi-sws.org/iris/examples
https://gitlab.mpi-sws.org/iris/examples
https://plv.mpi-sws.org/iris/appendix-3.6.pdf
https://plv.mpi-sws.org/iris/appendix-3.6.pdf
https://people.mpi-sws.org/~jung/iris/talk-iris2019.pdf
http://plv.mpi-sws.org/iris/paper.pdf
http://plv.mpi-sws.org/iris/paper.pdf
https://people.mpi-sws.org/~dreyer/papers/rustbelt/paper.pdf
https://people.mpi-sws.org/~dreyer/papers/rustbelt/paper.pdf

98 CHAPTER 8. BIBLIOGRAPHY

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars Birkedal, and Derek
Dreyer. Iris from the ground up: A modular foundation for higher-order concurrent separation
logic. Journal of Functional Programming, 28:e20, 2018b. URL https://people.mpi-sws.
org/~dreyer/papers/iris-ground-up/paper.pdf.

Ralf Jung, Rodolphe Lepigre, Gaurav Parthasarathy, Marianna Rapoport, Amin Timany, Derek
Dreyer, and Bart Jacobs. The future is ours: Prophecy variables in separation logic. Pro-
ceedings of the ACM on Programming Languages, 4(POPL):45:1–45:32, January 2020. URL
https://plv.mpi-sws.org/prophecies/paper.pdf.

Jan-Oliver Kaiser, Hoang-Hai Dang, Derek Dreyer, Ori Lahav, and Viktor Vafeiadis. Strong
logic for weak memory: Reasoning about release-acquire consistency in Iris. In European
Conference on Object-Oriented Programming (ECOOP), pages 17:1–17:29, June 2017. URL
https://people.mpi-sws.org/~dreyer/papers/iris-weak/paper.pdf.

Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek Dreyer. A promising
semantics for relaxed-memory concurrency. In Principles of Programming Languages (POPL),
pages 175–189, January 2017. URL https://sf.snu.ac.kr/publications/promising.pdf.

Robert Krebbers, Amin Timany, and Lars Birkedal. Interactive proofs in higher-order concurrent
separation logic. In Principles of Programming Languages (POPL), January 2017. URL
http://cs.au.dk/~birke/papers/ipm-conf.pdf.

Siddharth Krishna, Michael Emmi, Constantin Enea, and Dejan Jovanovic. Veri-
fying visibility-based weak consistency. In European Symposium on Programming
(ESOP), volume 12075 of Lecture Notes in Computer Science, pages 280–307. Springer,
April 2020. URL https://raw.githubusercontent.com/michael-emmi/research-papers/
master/conf-esop-KrishnaEEJ20.pdf.

Ori Lahav and Viktor Vafeiadis. Owicki-Gries reasoning for weak memory models. In Inter-
national Colloquium on Automata, Languages, and Programming, pages 311–323. Springer,
2015. doi: 10.1007/978-3-662-47666-6_25.

Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek Dreyer. Repairing
sequential consistency in C/C++11. In Programming Language Design and Implementation
(PLDI), pages 618–632, June 2017. URL https://plv.mpi-sws.org/scfix/paper.pdf.

Leslie Lamport. How to make a multiprocessor computer that correctly exe-
cutes multiprocess programs. IEEE Trans. Computers, 28(9):690–691, 1979.
URL https://www.microsoft.com/en-us/research/uploads/prod/2016/12/
How-to-Make-a-Multiprocessor-Computer-That-Correctly-Executes-Multiprocess-Programs.
pdf.

Nhat Minh Lê, Adrien Guatto, Albert Cohen, and Antoniu Pop. Correct and efficient bounded
FIFO queues. In 2013 25th International Symposium on Computer Architecture and High
Performance Computing, pages 144–151. IEEE, 2013a. doi: 10.1109/SBAC-PAD.2013.8.

Nhat Minh Lê, Antoniu Pop, Albert Cohen, and Francesco Zappa Nardelli. Correct and efficient
work-stealing for weak memory models. In Proceedings of the 18th ACM SIGPLAN symposium

https://people.mpi-sws.org/~dreyer/papers/iris-ground-up/paper.pdf
https://people.mpi-sws.org/~dreyer/papers/iris-ground-up/paper.pdf
https://plv.mpi-sws.org/prophecies/paper.pdf
https://people.mpi-sws.org/~dreyer/papers/iris-weak/paper.pdf
https://sf.snu.ac.kr/publications/promising.pdf
http://cs.au.dk/~birke/papers/ipm-conf.pdf
https://raw.githubusercontent.com/michael-emmi/research-papers/master/conf-esop-KrishnaEEJ20.pdf
https://raw.githubusercontent.com/michael-emmi/research-papers/master/conf-esop-KrishnaEEJ20.pdf
https://plv.mpi-sws.org/scfix/paper.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2016/12/How-to-Make-a-Multiprocessor-Computer-That-Correctly-Executes-Multiprocess-Programs.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2016/12/How-to-Make-a-Multiprocessor-Computer-That-Correctly-Executes-Multiprocess-Programs.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2016/12/How-to-Make-a-Multiprocessor-Computer-That-Correctly-Executes-Multiprocess-Programs.pdf

BIBLIOGRAPHY 99

on Principles and practice of parallel programming, pages 69–80, 2013b. doi: 10.1145/2442516.
2442524.

Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy, and Jérôme
Vouillon. The OCaml system: documentation and user’s manual, September 2019. URL
http://caml.inria.fr/pub/docs/manual-ocaml/.

Andreas Lochbihler. Java and the Java memory model – a unified, machine-
checked formalisation. In European Symposium on Programming (ESOP), vol-
ume 7211 of Lecture Notes in Computer Science, pages 497–517. Springer, March
2012. URL https://ethz.ch/content/dam/ethz/special-interest/infk/inst-infsec/
information-security-group-dam/people/andreloc/lochbihler12esop.pdf.

Gregory Malecha, Gordon Stewart, František Farka, Jasper Haag, and Yoichi Hirai. Developing
with formal methods at BedRock Systems, Inc. IEEE Security & Privacy, 20(3):33–42, 2022.
doi: 10.1109/MSEC.2022.3158196.

Jeremy Manson, William Pugh, and Sarita V. Adve. The Java memory model. In Principles
of Programming Languages (POPL), pages 378–391, January 2005. URL http://rsim.cs.
uiuc.edu/Pubs/popl05.pdf.

Maged M. Michael, Martin T. Vechev, and Vijay A. Saraswat. Idempotent work stealing. In
Proceedings of the 14th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP ’09, page 45–54, New York, NY, USA, 2009. Association for Computing
Machinery. ISBN 9781605583976. doi: 10.1145/1504176.1504186. URL https://doi.org/
10.1145/1504176.1504186.

Ike Mulder, Robbert Krebbers, and Herman Geuvers. Diaframe: Automated verification of fine-
grained concurrent programs in Iris. In Proceedings of the 43rd ACM SIGPLAN International
Conference on Programming Language Design and Implementation, PLDI 2022, page 809–824,
New York, NY, USA, 2022. Association for Computing Machinery. ISBN 9781450392655. doi:
10.1145/3519939.3523432. URL https://ikemulder.nl/media/papers/pldi22-diaframe.
pdf.

Glen Mével, Jacques-Henri Jourdan, and François Pottier. Coq proofs for Cosmo and examples.
https://gitlab.inria.fr/cambium/cosmo, 2021.

Peter W. O’Hearn. Resources, concurrency and local reasoning. Theoretical Computer Science,
375(1–3):271–307, May 2007. URL http://www.cs.ucl.ac.uk/staff/p.ohearn/papers/
concurrency.pdf.

Peter W. O’Hearn. Separation logic. Communications of the ACM, 62(2):86–95, 2019. URL
https://doi.org/10.1145/3211968.

Susan Owicki and David Gries. Verifying properties of parallel programs: An axiomatic ap-
proach. Commun. ACM, 19(5):279–285, may 1976. ISSN 0001-0782. doi: 10.1145/360051.
360224. URL https://doi.org/10.1145/360051.360224.

http://caml.inria.fr/pub/docs/manual-ocaml/
https://ethz.ch/content/dam/ethz/special-interest/infk/inst-infsec/information-security-group-dam/people/andreloc/lochbihler12esop.pdf
https://ethz.ch/content/dam/ethz/special-interest/infk/inst-infsec/information-security-group-dam/people/andreloc/lochbihler12esop.pdf
http://rsim.cs.uiuc.edu/Pubs/popl05.pdf
http://rsim.cs.uiuc.edu/Pubs/popl05.pdf
https://doi.org/10.1145/1504176.1504186
https://doi.org/10.1145/1504176.1504186
https://ikemulder.nl/media/papers/pldi22-diaframe.pdf
https://ikemulder.nl/media/papers/pldi22-diaframe.pdf
https://gitlab.inria.fr/cambium/cosmo
http://www.cs.ucl.ac.uk/staff/p.ohearn/papers/concurrency.pdf
http://www.cs.ucl.ac.uk/staff/p.ohearn/papers/concurrency.pdf
https://doi.org/10.1145/3211968
https://doi.org/10.1145/360051.360224

100 CHAPTER 8. BIBLIOGRAPHY

Matthew J. Parkinson, Richard Bornat, and Peter W. O’Hearn. Modular verification of a non-
blocking stack. In Principles of Programming Languages (POPL), pages 297–302, 2007. URL
https://doi.org/10.1145/1190216.1190261.

William Pugh. The Java memory model is fatally flawed. Concurrency: Practice and Experience,
12(6):445–455, 2000.

Azalea Raad, Marko Doko, Lovro Rozic, Ori Lahav, and Viktor Vafeiadis. On library correctness
under weak memory consistency: specifying and verifying concurrent libraries under declar-
ative consistency models. Proceedings of the ACM on Programming Languages, 3(POPL):
68:1–68:31, 2019. URL https://spiral.imperial.ac.uk/bitstream/10044/1/75940/4/
Libraries.pdf.

Michel Raynal. Concurrent Programming: Algorithms, Principles, and Foundations. Springer,
2013. URL https://doi.org/10.1007/978-3-642-32027-9.

John C. Reynolds. Separation logic: A logic for shared mutable data structures. In Logic in Com-
puter Science (LICS), pages 55–74, 2002. URL http://www.cs.cmu.edu/~jcr/seplogic.
pdf.

Erik Rigtorp. MPMCQueue, March 2021. https://github.com/rigtorp/MPMCQueue.

Michael Sammler, Rodolphe Lepigre, Robbert Krebbers, Kayvan Memarian, Derek Dreyer, and
Deepak Garg. RefinedC: Automating the foundational verification of C code with refined
ownership types. In Proceedings of the 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation, PLDI 2021, page 158–174, New York,
NY, USA, 2021. Association for Computing Machinery. ISBN 9781450383912. doi: 10.1145/
3453483.3454036. URL https://plv.mpi-sws.org/refinedc/paper.pdf.

Filip Sieczkowski, Kasper Svendsen, Lars Birkedal, and Jean Pichon-Pharabod. A separa-
tion logic for fictional sequential consistency. In European Symposium on Programming
(ESOP), volume 9032 of Lecture Notes in Computer Science, pages 736–761. Springer, April
2015. URL https://www.cl.cam.ac.uk/~jp622/a_separation_logic_for_fictional_
sequential_consistency.pdf.

Graeme Smith, Kirsten Winter, and Robert J Colvin. Linearizability on hardware weak memory
models. Formal Aspects of Computing, pages 1–32, 2019. doi: 10.1007/s00165-019-00499-8.

Kasper Svendsen, Lars Birkedal, and Matthew J. Parkinson. Modular reasoning about sep-
aration of concurrent data structures. In European Symposium on Programming (ESOP),
volume 7792 of Lecture Notes in Computer Science, pages 169–188. Springer, March 2013.
URL http://cs.au.dk/~birke/papers/hocap-conf.pdf.

Amin Timany and Lars Birkedal. Reasoning about monotonicity in separation logic. In Certified
Programs and Proofs (CPP), pages 91–104, January 2021. URL https://iris-project.org/
pdfs/2021-CPP-monotone-final.pdf.

Aaron Turon. Reagents: expressing and composing fine-grained concurrency. In Programming
Language Design and Implementation (PLDI), pages 157–168, June 2012. URL https://
aturon.github.io/academic/reagents.pdf.

https://doi.org/10.1145/1190216.1190261
https://spiral.imperial.ac.uk/bitstream/10044/1/75940/4/Libraries.pdf
https://spiral.imperial.ac.uk/bitstream/10044/1/75940/4/Libraries.pdf
https://doi.org/10.1007/978-3-642-32027-9
http://www.cs.cmu.edu/~jcr/seplogic.pdf
http://www.cs.cmu.edu/~jcr/seplogic.pdf
https://github.com/rigtorp/MPMCQueue
https://plv.mpi-sws.org/refinedc/paper.pdf
https://www.cl.cam.ac.uk/~jp622/a_separation_logic_for_fictional_sequential_consistency.pdf
https://www.cl.cam.ac.uk/~jp622/a_separation_logic_for_fictional_sequential_consistency.pdf
http://cs.au.dk/~birke/papers/hocap-conf.pdf
https://iris-project.org/pdfs/2021-CPP-monotone-final.pdf
https://iris-project.org/pdfs/2021-CPP-monotone-final.pdf
https://aturon.github.io/academic/reagents.pdf
https://aturon.github.io/academic/reagents.pdf

BIBLIOGRAPHY 101

Aaron Turon, Viktor Vafeiadis, and Derek Dreyer. GPS: navigating weak memory with ghosts,
protocols, and separation. In Object-Oriented Programming, Systems, Languages, and Ap-
plications (OOPSLA), pages 691–707, October 2014. URL http://plv.mpi-sws.org/gps/
paper.pdf.

Viktor Vafeiadis. Program verification under weak memory consistency using separation logic.
In Computer Aided Verification (CAV), volume 10426 of Lecture Notes in Computer Science,
pages 30–46. Springer, July 2017. URL https://people.mpi-sws.org/~viktor/papers/
cav2017-invited.pdf.

Viktor Vafeiadis and Chinmay Narayan. Relaxed separation logic: a program logic for C11
concurrency. In Object-Oriented Programming, Systems, Languages, and Applications (OOP-
SLA), pages 867–884, October 2013. URL https://people.mpi-sws.org/~viktor/papers/
oopsla2013-rsl.pdf.

Viktor Vafeiadis, Thibaut Balabonski, Soham Chakraborty, Robin Morisset, and Francesco
Zappa Nardelli. Common compiler optimisations are invalid in the C11 memory model
and what we can do about it. In Proceedings of the 42Nd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 209–220, 2015. URL
https://plv.mpi-sws.org/c11comp/popl15.pdf.

Simon Friis Vindum and Lars Birkedal. Contextual refinement of the Michael-Scott queue. In
Certified Programs and Proofs (CPP), pages 76–90, January 2021. URL https://cs.au.dk/
~birke/papers/2021-ms-queue-final.pdf.

Simon Friis Vindum, Dan Frumin, and Lars Birkedal. Mechanized verification of a fine-grained
concurrent queue from Facebook’s Folly library. Submitted for publication, March 2021. URL
https://cs.au.dk/~birke/papers/mpmc-queue.pdf.

Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness. Information
and Computation, 115(1):38–94, November 1994. URL http://www.cs.rice.edu/CS/PLT/
Publications/Scheme/ic94-wf.ps.gz.

Yannick Zakowski, David Cachera, Delphine Demange, and David Pichardie. Verified compila-
tion of linearizable data structures: mechanizing rely guarantee for semantic refinement. In
Proceedings of the 33rd Annual ACM Symposium on Applied Computing, pages 1881–1890,
2018. doi: 10.1145/3167132.3167333.

http://plv.mpi-sws.org/gps/paper.pdf
http://plv.mpi-sws.org/gps/paper.pdf
https://people.mpi-sws.org/~viktor/papers/cav2017-invited.pdf
https://people.mpi-sws.org/~viktor/papers/cav2017-invited.pdf
https://people.mpi-sws.org/~viktor/papers/oopsla2013-rsl.pdf
https://people.mpi-sws.org/~viktor/papers/oopsla2013-rsl.pdf
https://plv.mpi-sws.org/c11comp/popl15.pdf
https://cs.au.dk/~birke/papers/2021-ms-queue-final.pdf
https://cs.au.dk/~birke/papers/2021-ms-queue-final.pdf
https://cs.au.dk/~birke/papers/mpmc-queue.pdf
http://www.cs.rice.edu/CS/PLT/Publications/Scheme/ic94-wf.ps.gz
http://www.cs.rice.edu/CS/PLT/Publications/Scheme/ic94-wf.ps.gz

	Contents
	List of Figures
	Résumé substantiel dans la langue de Desnos
	1 Introduction
	2 Background
	2.1 An overview of weak memory
	2.1.1 Java
	2.1.2 C11

	2.2 Multicore OCaml
	2.2.1 The memory model
	2.2.2 The programming language

	2.3 Program verification
	2.3.1 Separation Logic
	2.3.2 Iris

	3 A low-level logic: BaseCosmo
	3.1 Instantiating Iris for Multicore OCaml
	3.2 Soundness of BaseCosmo
	3.3 Multicore OCaml-specific assertions
	3.3.1 Non-atomic points-to
	3.3.2 Atomic points-to
	3.3.3 Block length
	3.3.4 Validity of a view

	3.4 Multicore OCaml-specific rules
	3.4.1 Operations on non-atomic cells
	3.4.2 Operations on atomic cells

	4 A higher-level logic: Cosmo
	4.1 Language-independent Cosmo assertions and rules
	4.2 Multicore OCaml-specific Cosmo assertions
	4.3 Cosmo weakest-precondition assertions
	4.4 Soundness of Cosmo
	4.5 Cosmo rules
	4.5.1 Operations on non-atomic cells
	4.5.2 Operations on atomic cells

	5 Locks and mutual exclusion
	5.1 Specification of locks
	5.2 A spin lock
	5.3 A ticket lock
	5.4 Specification of mutual exclusion for two threads
	5.5 Dekker's algorithm
	5.6 Peterson's algorithm

	6 A bounded MPMC queue
	6.1 Specification of a MPMC queue
	6.1.1 Specification in a sequential setting
	6.1.2 Specification under sequential consistency: logical atomicity
	6.1.3 Specification under weak memory: synchronization

	6.2 Implementation of a MPMC queue using a ring buffer
	6.2.1 Overview of the data structure
	6.2.2 Explanation of the code
	6.2.3 Monotonicity of the internal state of the queue
	6.2.4 Notes on contention in the queue

	6.3 Proof of the specification for the ring buffer
	6.3.1 Public state
	6.3.2 Internal invariant
	6.3.3 Monotonicity of statuses
	6.3.4 Available and occupied slots
	6.3.5 Slot tokens
	6.3.6 Logical atomicity
	6.3.7 Proof of try_enqueue

	6.4 A simple pipeline
	6.4.1 Implementation of the pipeline
	6.4.2 Specification of the pipeline
	6.4.3 Proof of the specification for the pipeline

	7 Related Work
	7.1 Program verification in weak memory models
	7.2 Verification of fine-grained concurrent data structures

	8 Conclusion and future work
	Bibliography

