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tique.

Résumé : Cette thèse présente le résultat
de recherches sur deux thèmes combinatoires dis-
tincts: le calcul effectif des matrices de Cartan
en théorie des représentations des monoïdes et
l’exploration des propriétés des éléments mini-
maux dans les arrangements de Shi des groupes
de Coxeter. Bien que disparates, ces deux do-
maines de recherche partagent l’utilisation de
méthodes combinatoires et d’exploration infor-
matique, soit en tant que fin en soi pour le
premier domaine, soit comme aide à la recherche
pour le second.

Dans la première partie de la thèse, nous
développons des méthodes pour le calcul effec-
tif des tables de caractères et des matrices de
Cartan dans la théorie des représentations des
monoïdes. À cette fin, nous présentons un al-
gorithme basé sur nos résultats pour le calcul
efficace des points fixes sous une action similaire
à une conjugaison, dans le but de mettre en œu-
vre la formule de [Thiéry ’12] pour la matrice de
Cartan. Après une introduction largement auto-
contenue aux notions nécessaires, nous présen-
tons nos résultats sur le comptage des points
fixes, ainsi qu’une nouvelle formule pour la table
de caractères des monoïdes finis. Nous évaluons
les performances des algorithmes résultants en
termes de temps d’exécution et d’utilisation mé-
moire. Nous observons qu’ils sont plus efficaces

par plusieurs ordres de grandeur que les algo-
rithmes non spécialisés pour les monoïdes. Nous
espérons que l’implémentation (publique) résul-
tant de ces travaux contribuera à la communauté
des représentations des monoïdes en permettant
des calculs auparavant difficiles.

La deuxième partie de la thèse se concentre
sur les propriétés des éléments minimaux dans les
arrangements de Shi. Les arrangements de Shi
ont été introduits dans [Shi ’87] et sont l’objet
de la Conjecture 2 dans [Dyer, Hohlweg ’14].
Initialement motivés par cette conjecture, après
un introduction aux notions nécessaires, nous
présentons deux résultats. Premièrement, une
démonstration directe dans le cas des groupes
de rang 3. Deuxièmement, dans le cas particulier
des groupes de Weyl, nous donnons une descrip-
tion des éléments minimaux des régions de Shi en
étendant une bijection issue de [Athanasiadis, Li-
nusson ’99] et [Armstrong, Reiner, Rhoades ’15]
entre les fonctions de parking et les régions de
Shi permettant d’effectuer le calcul pratique des
éléments minimaux. Comme application, à par-
tir des propriétés de ce calcul, nous donnons une
démonstration de la conjecture pour les groupes
de Weyl indépendante de leur classification. Ces
résultats révèlent une interaction intrigante en-
tre les partitions non-croisées et non-embrassées
dans le cas des groupes de Weyl classiques.
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Abstract: This thesis presents an investigation
into two distinct combinatorial subjects: the ef-
fective computation of Cartan matrices in monoid
representation theory and the exploration of prop-
erties of minimal elements in Shi arrangements
of Coxeter groups. Although disparate, both
of these research focuses share a commonality
in the utilization of combinatorial methods and
computer exploration either as an end in itself for
the former or as an aid to research for the latter.

In the first part of the dissertation, we de-
velop methods for the effective computation of
character tables and Cartan matrices in monoid
representation theory. To this end, we present an
algorithm based on our results for the efficient
computations of fixed points under a conjugacy-
like action, with the goal to implement Thiéry’s
formula for the Cartan matrix from [Thiéry ’12].
After a largely self-contained introduction to the
necessary background, we present our results for
fixed-point counting, as well as a new formula
for the character tables of finite monoids. We
evaluate the performance of the resulting algo-
rithms in terms of execution time and memory
usage and find that they are more efficient than

algorithms not specialized for monoids by orders
of magnitude. We hope that the resulting (pub-
lic) implementation will contribute to the monoid
representation community by allowing previously
impractical computations.

The second part of the thesis focuses on the
properties of minimal elements in Shi arrange-
ments. The Shi arrangements were introduced in
[Shi ’87] and are the object of Conjecture 2 from
[Dyer, Hohlweg ’14]. Originally motivated by this
conjecture, we present two results. Firstly, a di-
rect proof in the case of rank 3 groups. Secondly,
in the special case of Weyl groups, we give a de-
scription of the minimal elements of the Shi re-
gions by extending a bijection from [Athanasiadis,
Linusson ’99] and [Armstrong, Reiner, Rhoades
’15] between parking functions and Shi regions.
This allows for the effective computation of the
minimal elements. From the properties of this
computation, we provide a type-free proof of
the conjecture in Weyl groups as an application.
These results reveal an intriguing interplay be-
tween the non-nesting and non-crossing worlds
in the case of classical Weyl groups.
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General introduction

Context

Algebraic combinatorics, as a field, is concerned with counting using algebraic
tools and, in turn, using counting to prove results about these algebraic objects.
For instance, being able to count the number of intervals of a partially ordered
set (poset) is an interesting question in itself, and in turn, being able to do it
can be used to prove that two posets not are isomorphic.

This thesis, although it is split into two independent parts, is entirely
contained within the field of algebraic combinatorics. This manifests most
obviously in the first part when we want to count fixed points, and in the
second, when we count arcs, before using this counting argument to describe
certain geometric objects.

Another uniting feature of the two subjects discussed here is computation.
In the first part, the results we obtain were motivated by the “need” to al-
gorithmically compute efficiently certain algebraic invariants. Thus, we give
special attention to presenting effective algorithms and measuring their per-
formance. In the second part, many of the results we obtain were first guessed
from computer experiments, and although it does not remain in the version of
the proof presented hereafter, at least one result was initially separated into
a formal proof in the “classical” cases supplemented by a computer proof in
the “exceptional” cases. Because this research is either based or aimed at al-
gorithmic exploration, we would like to include the publicly available code1 as
a contribution of this PhD thesis of the same level, if narrower scope, as this
manuscript.

1github.com/ZoltanCoccyx/monoid-character-table
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Monoid representation theory

The work of this thesis on finite monoid representation theory is in the direct
continuation of the work from Thiéry [Thi12]. This makes it a part of a renewed
dynamic in the domain starting in the 90s but reaching full intensity over the
last two decades, initially motivated by questions revolving around the random
generation of “typical” combinatorial objects. Since then, it has taken on a life
of its own, with notably the publication of the book Representation Theory of
Finite Monoids by B. Steinberg [Ste16] and the creation of computer algebra
tools, mainly [Mit+23] by Mitchell & al.

Despite this newfound interest, the roots of the field are quite a bit older,
with the first significant results coming from the 40s and 50s, with Clifford
[Cli42], Munn [Mun57], and Ponizovskii [Pon58]. A major result of this impe-
tus is what is now called the Clifford-Munn-Ponizovskii Theorem that describes
the irreducible representations of finite monoids in terms of the representation
of certain subgroups. The study of the full transformation monoid was tackled
in [HZ57]. The character theory of semigroups was further developed by the
independent works from McAlister [McA72] and Rhodes and Zalcstein [RZ91]
(which first appeared in the early 70s, although it was only formally published
in 1991). However, monoid algebras not being semisimple (in general) has
proven, at first, to be an obstacle to their study and to the applicability of the
theory to other domains. With the development of a more powerful theory of
representation on non-semisimple algebras (for which we mostly reference the
very complete [CR66] as well as the more approachable [Ass97], [Eti+09]), the
field was, in the 90s, ripe for a new blossom.

Arising from the work of Putcha [Put88] (among others) on linear algebraic
monoids, questions about the representation theory of matrix monoids over a
finite field began to find some answers ([OP91], [Kov92], [Put99]). The study
of Markov chains, in the research from Diaconis and Brown ([BD98], [Bro00]),
beginning in the late 90s-early 2000s was another strong motivator for the
development of the theory, as it provided applications for probability theorists
([Bro04], [Sal09]) and combinatorialists ([Sch06], [Sal07], [HT09], [HST13]).
Out of this movement powered by applications, also emerged the general study
of finite monoid representation theory, with for instance [GMS09], [Thi12],
[Ste16], [Ste22].

As pointed out by Steinberg in the introduction of [Ste16], “examples have
motivated much of the theory”. In turn, by providing techniques to compute
examples explicitly, we hope to contribute to the development of the theory.
With the recent apparition of mature computer algebra tools for semigroup
theory, we believe that the time is ripe for a new wave of combinatorial results
based on the computer exploration of large classes of monoids.
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Minimal elements of Shi arrangements

This part of the thesis is situated in the larger context of Coxeter group theory.
This theory is multifaceted, with possible angles of attack purely from group
theory and language theory, but also from geometry and combinatorics. We
are mainly concerned with questions regarding geometric aspects of Coxeter
groups, and more specifically, with the questions about root system, the asso-
ciate Coxeter hyperplanes arrangement and the special subarrangement called
the Shi arrangement.

Coxeter groups were first introduced by Coxeter in [Cox34] as an abstract
generalization of groups generated by Euclidean orthogonal reflections. The
finite groups among them were classified, still by Coxeter, in [Cox35]. Among
those finite groups are the Weyl groups, whose root systems classify important
objects such as semisimple Lie groups [Che48]. This has been a major motiva-
tion for the study of Coxeter groups, which have given rise to a rich literature,
with the basic theory collected for instance in [Hum90] and [BB05]. Two in-
teresting developments of the theory have been the discovery of automata that
recognize the language of reduced words of a general Coxeter group by [BH93],
as well as the notion of Shi arrangement, introduced by Shi in [Shi87a] only
for Weyl groups to tackle Kazhdan-Lusztig theory questions. Surprisingly, the
two are intimately related, as noted in [BB05, p. 124].

Although not originally part of the thesis project, the resurgence of this
subject was kick-started by discussions with Dr. Nathan Chapelier-Laget who,
at the time, studied questions related to [DH16, Conjecture 2] from Dyer &
Hohlweg, which has since been proven in [Dye+23]. Firstly, we present related
inquiries about the Shi arrangement in the case of Weyl groups. In this special
situation, the arrangement is highly structured (see [Fis19] for a survey), and
several bijections with interesting combinatorial (parking function, Catalan
objects) objects with Shi regions (or special subsets of regions) are known. In
this particular context, we examine a bijection from Athanasiadis & Linusson
(in [AL99]), extended by Armstrong, Reiner & Rhoades (in [ARR15]). This
part of the thesis is “at home” in the context of hyperplane arrangements, as
one of the possible perspectives of this work would be to extend the description
of the minimal element to other arrangements. Secondly, we return closer to
the original motivating conjecture. We begin with a proof in the case of rank 3
general Coxeter groups. The original idea for it was originally conceived during
a research internship under the supervision of Pr. Hohlweg at LaCIM in 2017.
However, the original proof was flawed to the point of being inapplicable.
Under the impulsion of Nathan Chapelier-Laget, the proofs were rewritten
during this PhD thesis, with notably the introduction of the bipodality graph.
We then follow up by using the previously obtained description of the minimal
elements to give a new answer to the question in the case Weyl groups.
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Contributions

Computational monoid representation theory

The aim of our research in this area was to effectively use Thiéry’s formula for
the Cartan matrix of a monoid (see Proposition 2.3.2), that links the Cartan
invariant matrix of a monoid algebra to the character table of the monoid, and
the number of fixed points in the monoid under simultaneous left and right
translations. Computationally, these objects are hard to obtain. To the best
of our knowledge, we provide the first example of an algorithm for computing
the character table of a general finite monoid (over C). Our performance tests
indicate that it can reasonably be applied to monoids of cardinality up to 105

(and pushed to 106 in some special cases of interest). This algorithm is based
on the following formula that we prove in the text:

Proposition (3.1.6 in the text). We have the formula for the lines of the
character table of the monoid M corresponding to simple modules of apex an
idempotent e, denoted Xe(M):

Xe(M) = tX(Ge)−1 ·
(
χS

kM⊗kGop
e

(m, g) − χ
Ne(S)
kM⊗kGop

e
(m, g)

)
g∈CGe ,m∈CM

where the dot is the matrix product and X(Ge) is the character table of the
maximal group at e.

In addition, we partially reduce the question of counting the fixed points we
are interested in to the group theoretic problem of computing the cardinality
of a centralizer. This is done by the following proposition:

Proposition (3.2.4 in the text). Let H be an H -class, a ∈ H, Γ′(H) be the
right Schützenberger group of H and h ∈ M Stab(R(H)), k ∈ StabM (L(H)).
Then

| FixH(h, k)| =
{

|CΓ′(H)(×Hk)| if τa(h×H)−1 ∈ ×Hk

0 otherwise

where ×Hk is the conjugacy class of ×Hk in Γ′(H) and CΓ′(H)(×Hk) is the
centralizer in Γ′(H) of ×Hk.

Based on this reduction, we describe an algorithm counting the number
of fixed points under s 7→ hsk (for relevant h, k) that vastly outperforms the
naive algorithm in monoid with “not too simple J -structure”, allowing to tackle
monoids of cardinality up to 108. In the case where the monoid is J -trivial
(or close to be), our method, although worse in practice, is only slower by a
(experimentally) constant factor.
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Minimal elements of Shi arrangements

In order to understand the relations describing the minimal elements of the
Shi regions, we introduce the notion of skirt of a root.

Definition (5.1.2 in the text). The skirt of a positive root γ is the set

Sk γ = {α ∈ Φ+ | γ − α ∈ Φ+}.

The relation “being in the skirt of” is almost a total order (Propositions
5.1.3 and 5.1.4). This, together with the results from Athanasiadis & Linusson
(see Theorem 5.2.4) Armstrong, Reiner & Rhoades (see Theorem 5.2.7) allows
to locally propagate information about which hyperplanes bound a given Shi
region, giving the following result in the dominant chamber.

Proposition (5.2.9 in the text). Let A be an antichain of the root poset. Then
the following vector is a Shi vector:

∀a ∈ Φ+, va = max ({1a∈A} ∪ {vb + va−b | b ∈ Sk(a)}}) .

We can then transport this information from the dominant chamber to
every other chamber to obtain a general description of the minimal elements
of Shi regions in terms of their Shi vectors that encode their inversion set.
Moreover, in the case of classical groups, our result gives a nice combinatorial
description of the coefficients of its Shi vector as the number of non-crossing
arcs in a non-nesting arc diagram associated to the Shi region. This puts
those minimal elements at the intersection of non-crossing and non-nesting
combinatorics in the classical cases. Because we get that combinatorial data
on what is essentially a set of roots, we can deduce some necessary condition
on a root to be a “vertex” of the inversion set of an element. We use this
condition to provide a new answer, independent of [CLH22] and [Dye+23],
to [DH16, Conjecture 2]. As this question can be formulated in terms of the
vertices of the inversion sets, we are able to deduce the case of the affine
groups as a consequence of the description of minimal elements we provide.
This constitutes the first part of the following result.

Proposition (6.1.1 and 6.2.4 in the text). The map associating to a low
element the set of its small inversions is a surjection from the low element
onto the small inversion sets in affine Weyl groups and rank 3 Coxeter groups.

The case of rank 3 groups is an independent proof, since superseded by a
complete general proof in [Dye+23]. We include it, however, as we think that
there are interesting questions surrounding the proof, in particular regarding
the notion of bipodality graph.
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Content and plan of the thesis

Chapter I.1 – On the structure of finite monoids

In this chapter, we begin by describing the general theory of monoids, with
the general definitions of monoid and semigroups, substructures and quotients,
and special elements (in particular idempotents) (§1.1). It turns out that the
associativity of the product in a monoid is actually a strong condition, that
endows monoids with a Green’s classes structures, which we discuss in a second
section (§1.2). The major result of this last section is Green’s Lemma (Lemma
1.2.7) that expresses the constrained relations between the different types of
Green’s classes (§1.2.1). We also discuss the notion of Schützenberger groups,
which are groups that arise naturally as the monoid acts on parts of itself
(§1.2.2). Finally, we examine the structure of multiplication in a single J -
class with the Location Theorem 1.3.2 (§1.3).

Chapter I.2 – Representation theory of monoids

In this second chapter of background material, we describe the representation
theory of finite monoids. We begin by presenting the language of modules over
an algebra, with a particular attention given to simple and projective modules
as they are central to the definition of the two invariants we are after (§2.1):
the character table, discussed in the following section (§2.2) and the Cartan
matrix, presented in §2.3 with the formula from Thiéry that motivates our
study (Proposition 2.3.2). Then, in the last section of this chapter (§2.4) we
state the Clifford-Munn-Ponizovskii Theorem, which plays a vital role in the
proofs of the following chapter.

Chapter I.3 – Computing representation invariants

Here, we present the results of this part of the thesis. At first, we prove a
formula to compute the character table of a monoid (Proposition 3.1.6) in
relation to group character tables, fixed points, and characters of the radical
of (some) regular Green’s L -classes. We conclude by briefly discussing the
modular case (§3.1). Then, we describe how to compute the number of fixed
points in a monoid under the transformation s 7→ hsk, and relate it to a group
theoretic question on the Schützenberger group of a given J -class (§3.2). In
a final section (§3.3), we consider the practical applicability of the previous
results. We provide explicit algorithms for counting the fixed points of interest
and an equation system for the radical that is “optimized” using consequences
of Green’s Lemma.
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Chapter II.4 – Preliminaries on Coxeter theory

In this chapter, we give general background on Coxeter groups (§4.1) and
related geometric objects: their geometric realization and root system (§4.2),
inversion sets (§4.3) and projective picture (§4.4). As we use a geometric point
of view, we reproduce certain classical proofs in that language as a way to warm
up to the geometric considerations of the next chapters. Before this, we discuss
the classification of finite Coxeter groups (Proposition 4.5.3), crystallographic
root systems (Proposition 4.5.5) and affine Weyl groups (Proposition 4.5.6).
Finally, we go to the dual point of view, with the Tits cone and Coxeter
arrangement (§4.6) and the main object of our study: the Shi arrangement
(§4.7). We discuss it in all generality in §4.7.1 and specialize it in affine Weyl
groups (§4.7.2).

Chapter II.5 – Minimal elements of Shi regions in
Weyl groups

This chapter presents the results of our investigation into the minimal element
of Shi regions in Weyl groups. First, as these minimal elements are constrained
by the Shi relations, we study their structure in §5.1 to give ourselves some
tools for the next section. It is in this section that we introduce the notion
of skirt of a root (Definition 5.1.2) and investigate its properties. We then
describe these minimal elements: we do so through their Shi encoding (§5.2.1),
by extending a bijection with parking functions (§5.2.2) to give in Proposition
5.2.12 a description of those elements (§5.2.3). In the remaining section (§5.3),
we discuss the specialization of the previous result to classical Weyl groups. As
it turns out, the Shi encoding that counts the number of hyperplanes behind
which is located a region can be computed in terms of non-crossing non-nesting
arcs (Proposition 5.3.3).

Chapter II.6 – Low elements

We go back, in this final chapter, to the motivation for our Coxeter groups
theory research. The first section presents a complete proof of the results
from [Cha21] for rank 3 groups. The result is obtained in three steps: we first
consider the interaction between the primal (root system) and dual (Tits cone),
to be able to recognize descents of an element (§6.1.1). We then prove that
the bipodality graph is acyclic (§6.1.2) and that its sources lie in a convenient
subset (§6.1.3). In a second time, the final section is focused on Weyl groups:
from the combinatorial description of the Shi encoding of minimal element, we
get a meaningful enough description of the inversion sets to get a necessary
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condition for roots to be “vertices” of it. We proceed by showing this result
in the dominant chamber (§6.2.1) before transporting it to other chambers
(§6.2.2).

Reading advice

The intended audience of this document, somewhat egotistically, is the first
year PhD student I was. As such, it is written to be accessible to a “general-
ist” master student in algebra, with an interest in effective algebra. In a less
self-centered way, as the two subjects of this thesis are somewhat disjointed,
we hope to have made it accessible to readers that may be used to one of
the parts, but not necessarily the other. That being said, the two parts are
entirely independent, and the reader may skip one of them without losing any
information.

With that in mind, we assume familiarity with basic notions of group the-
ory, linear, bilinear and tensorial algebra, as well as group representation theory
presented in a “classical” fashion. We will not use major results without cit-
ing them, even in these familiar fields, but we will be using them (especially
group theory) as motivating examples and guides as to what to expect. Con-
versely, we do not suppose familiarity with semigroup and semigroup theory,
general algebra representation theory (and in particular the notion of projec-
tive modules), monoid representation theory, and Coxeter group theory. Thus,
Chapter 1, 2 and 4 aim to provide this familiarity, and the specialist reader
should probably skip them.

On the contrary, we hope that the non-specialist reader will find a mostly
self-contained introduction to the notions we use. We put special emphasis on
the basic definitions and facts of each field. When it comes to more general
or powerful results, we have tried not to stray too far away from the main
text, and to provide references to the literature, provided it would not impact
the understanding of the important points of the thesis. Perhaps the best
example of this is the emphasis put on projective modules. We provide proofs
of the needed elementary results, specialized to our context, with the added
intention for those results to be used as “sanity checks” for the verification of
the programs accompanying this document. However, with Proposition 2.1.55,
we only provide a reference as this is a somewhat higher level result, and the
proof would not be very enlightening in our context.

Should this approach seem too cavalier, we recommend to the reader to
consult the following works for a more thorough introduction to the subjects:

• Mathematical Foundations of Automata Theory [Pin] by Pin for general
semigroup theory,
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• Representation theory of finite groups: a guidebook [Cra] by Craven for a
beginner-friendly introduction to representation theory of finite groups,

• Introduction to representation theory [Eti+09] by Etingof et al. for repre-
sentation theory of finite groups as well, but also for a gentle introduction
to algebra representation theory,

• for the reader already familiar with the language of module and cate-
gories, Representation Theory of Finite Monoids [Ste16] treats the sub-
ject at a more advanced level, but with more completeness and precision
than we ever could,

• Reflection groups and Coxeter groups [Hum90] by Humphreys for an
introduction to Coxeter groups, and in particular many related geometric
constructions such as the Tits cone and the root system,

• Combinatorics of Coxeter Groups [BB05] by Björner & Brenti for a com-
binatorial, group theory and language theory based approach to Coxeter
groups.

These books have been a precious help during the preparation and redaction
of this thesis, and we often refer to them.

Finally, we want to bring the attention of the reader to the examples. We
have tried to provide as many relevant examples as possible, and some of them
are referenced in proofs and later results. Moreover, and especially in the part
regarding Coxeter groups, the examples of explicit geometric constructions
provide a good intuition for the more abstract notions.





French summary

Contexte

La combinatoire algébrique s’intéresse à l’utilisation d’objets algébriques pour
faire du comptage et à l’utilisation du comptage pour prouver des résultats sur
ces mêmes objets. Par exemple, être capable de compter le nombre d’intervalles
d’un ensemble partiellement ordonné (poset) est une question intéressante en
soi, et à son tour, être capable de le faire peut permettre de réfuter que deux
posets sont isomorphes.

Cette thèse, divisée en deux parties indépendantes, s’inscrit entièrement
dans le domaine de la combinatoire algébrique. Cela se manifeste de manière
la plus évidente dans la première partie lorsque l’on veut compter des points
fixes, et dans la seconde, lorsque l’on compte des arcs, avant d’utiliser la façon
même de les compter pour décider si un point d’un certain polytope peut en
être un sommet.

L’autre caractéristique commune aux deux parties présentées ici est le cal-
cul. Dans la première partie, les résultats théoriques présentés ont été motivés
par le « besoin » de calculer algorithmiquement certains invariants algébriques.
Nous accordons donc une attention particulière à la présentation d’algorithmes
pratiques et efficaces ainsi qu’à la mesure de leur performance. Dans la seconde
partie, l’intuition pour la plupart des résultats est issue d’expériences sur or-
dinateur. D’autre part, bien que nous en donnions ici une preuve entièrement
théorique, un de nos résultats principaux (Proposition 5.2.13) était initiale-
ment séparé en une preuve formelle dans les cas « classiques » complétée par
des calculs informatiques explicites dans les cas « exceptionnels ». Parce que
cette recherche est basée sur, ou vise à, l’exploration algorithmique, nous ai-
merions inclure le code disponible publiquement2 comme un produit de cette
thèse de doctorat du même niveau que ce manuscrit.

2github.com/ZoltanCoccyx/monoid-character-table

19
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Théorie des représentations des monoïdes

Les travaux de cette thèse sur la théorie des représentations des monoïdes finis
s’inscrivent dans la droite ligne des travaux de Thiéry [Thi12]. Ils font donc
partie d’une dynamique dans le domaine, renouvelée dans les années 1990, ini-
tialement impulsée par des questions tournant autour de la génération aléatoire
d’objets combinatoires « typiques ». Depuis, le domaine a pris son essor, avec
notamment la publication du livre Representation Theory of Finite Monoids
de B. Steinberg [Ste16] et la création d’outils de calcul formel, principalement
[Mit+23] de Mitchell & al.

Les racines du domaine sont plus anciennes, les premiers résultats signifi-
catifs datant des années 1940 et 50, avec Clifford [Cli42], Munn [Mun57], et
Ponizovskii [Pon58]. Le théorème qui porte aujourd’hui leurs noms décrit les
représentations irréductibles des monoïdes finis en termes de représentation de
certains sous-groupes et est un des fruits majeurs de cette première période
de développement. À la suite de ces études initiales, les représentations du
monoïde de toutes les transformations ont été abordées dans [HZ57], puis la
théorie des caractères a été développée par les travaux indépendants de McAlis-
ter [McA72] et de Rhodes et Zalcstein [RZ91] (qui est apparu pour la première
fois au début des années 1970, mais n’a été formellement publié qu’en 1991).
Cependant, le fait que les algèbres de monoïdes ne soient pas semisimples (en
général) s’est avéré, à partir des années 1970 et jusqu’aux années 1990, un obs-
tacle à leur étude et à l’applicabilité de la théorie à d’autres domaines. C’est
avec le développement d’une théorie plus puissante des représentations des al-
gèbres non semisimples (pour laquelle nous faisons référence au très complet
[CR66] ainsi qu’aux plus abordables [Ass97], [Eti+09]), que le domaine est
devenu, dans les années 1990, mûr pour une nouvelle floraison.

Suite aux travaux de Putcha [Put88] (entre autres) sur les monoïdes li-
néaires algébriques, les questions relatives à la théorie des représentations des
monoïdes matriciels sur un corps fini ont commencé à trouver des réponses
([OP91], [Kov92], [Put99]). L’étude des chaînes de Markov, dans les recherches
de Diaconis et Brown ([BD98], [Bro00]), à partir de la fin des années 1990
et du début des années 2000, a été une autre motivation importante pour le
développement de la théorie, car elle a fourni des applications aux théoriciens
des probabilités ([Bro04], [Sal09]) et aux combinatoriciens ([Sch06], [Sal07],
[HT09], [HST13]). De ce mouvement, alimenté par les applications, est éga-
lement issue nombre de travaux portants sur l’étude générale de la théorie
des représentations des monoïdes finis, avec, par exemple, [GMS09], [Thi12],
[Ste16], [Ste22].

Comme le souligne Steinberg dans l’introduction de [Ste16], « les exemples
ont motivé une grande partie de la théorie ». À notre tour, en fournissant des
techniques pour calculer explicitement des exemples, nous espérons contribuer
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au développement de la théorie. Avec l’apparition récente d’outils matures de
calcul formel pour la théorie des semigroupes, nous pensons que l’on peut s’at-
tendre à une nouvelle vague de résultats combinatoires fondés sur l’exploration
informatique de grandes familles de monoïdes.

Éléments minimaux des arrangements de Shi

Cette partie de la thèse se situe dans le contexte plus large de la théorie des
groupes de Coxeter. Cette théorie est multiforme, avec des angles d’attaque
possibles purement en théorie des groupes et en théorie des langages, mais éga-
lement en géométrie et en combinatoire. Nous nous intéressons principalement
aux questions concernant les aspects géométriques des groupes de Coxeter,
et plus particulièrement aux questions quant au système de racines, l’arrange-
ment des hyperplans de Coxeter associés et un sous-arrangement spécial appelé
l’arrangement de Shi.

Les groupes de Coxeter ont été introduits pour la première fois par Coxe-
ter en [Cox34] comme généralisation abstraite des groupes générés par des
réflexions euclidiennes orthogonales. Les groupes finis parmi eux ont été clas-
sés, toujours par Coxeter, dans [Cox35]. Parmi ces groupes finis se trouvent
les groupes de Weyl dont le système racine classifie des objets importants tels
que les groupes de Lie semisimples [Che48]. Cela a été une motivation majeure
pour l’étude des groupes de Coxeter qui ont engendré une riche littérature, la
théorie de base étant rassemblée, par exemple, dans [Hum90] et [BB05]. Deux
développements intéressants de la théorie ont été la découverte d’automates
qui reconnaissent le langage des mots réduits d’un groupe de Coxeter général
par [BH93], ainsi que la notion d’arrangement de Shi, introduite par Shi dans
[Shi87a] uniquement pour les groupes de Weyl afin d’aborder les questions de la
théorie de Kazhdan-Lusztig. De manière surprenante, les deux sont intimement
liés, comme indiqué dans [BB05, p. 124].

Bien que n’étant pas originellement prévu comme partie de cette thèse, la
résurgence de ce sujet a été lancée par des discussions avec Nathan Chapelier-
Laget qui, à l’époque, étudiait des questions connexes à la [DH16, Conjecture
2] de Dyer & Hohlweg, qui a depuis été prouvée. D’abord, nous présentons des
questions relatives à l’arrangement de Shi dans le cas des groupes de Weyl.
Dans cette situation particulière, de nombreux résultats sont connus (voir
[Fis19] pour un aperçu), et l’arrangement est très structuré. Plusieurs bijec-
tions d’objets combinatoires intéressants (fonction de parking, objets catalans)
avec des régions de Shi (ou des sous-ensembles spéciaux de régions) sont dispo-
nibles. Nous examinons en particulier une bijection d’Athanasiadis & Linusson
(dans [AL99]) et étendue par Armstrong, Reiner & Rhoades (dans [ARR15]).
Cette partie de la thèse est « chez elle » dans le contexte des arrangements
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d’hyperplans, car l’une des perspectives possibles de ce travail serait d’étendre
la description de l’élément minimal à d’autres arrangements. Dans un second
temps, nous revenons plus près de la motivation initiale par la conjecture. Nous
commençons par donner une preuve dans le cas des groupes de Coxeter géné-
raux de rang 3. L’idée originelle a été conçue lors d’un stage de recherche sous
la supervision du Pr. Hohlweg au LaCIM en 2017. Cependant, cette version
de la preuve était imparfaite au point d’être inapplicable. Sous l’impulsion de
Nathan Chapelier-Laget, les preuves ont été réécrites durant cette thèse, avec
notamment l’introduction du graphe de bipodalité. Nous poursuivons en utili-
sant la description des éléments minimaux obtenue précédemment pour donner
une nouvelle réponse à la question dans le cas des groupes de Weyl.

Contribution

Théorie des représentations des monoïdes

Le but de nos recherches dans ce domaine était d’utiliser efficacement la for-
mule de Thiéry pour la matrice de Cartan d’un monoïde (voir la proposition
2.3.2), qui relie la matrice des invariants de Cartan d’une algèbre de monoïde
à la table des caractères du monoïde d’une part et au nombre de points fixes
dans le monoïde sous des translations simultanées par la gauche et par la
droite d’autre part. D’un point de vue informatique, ces objets sont difficiles à
obtenir. À notre connaissance, nous fournissons le premier exemple d’un algo-
rithme calculant la table de caractères d’un monoïde fini général(sur C). Nos
tests de performance montrent qu’il peut raisonnablement être appliqué à des
monoïdes de cardinalité allant jusqu’à 105 (et poussé jusqu’à 106 dans certains
cas particuliers d’intérêt). Cet algorithme est basé sur la formule suivante que
nous prouvons dans le texte :

Proposition (3.1.6 dans le texte). Les lignes de la table de caractères d’un
monoïde M correspondant aux modules simples d’apex un idempotent e, notée
Xe(M) sont données par la formule :

Xe(M) = tX(Ge)−1 ·
(
χS

kM⊗kGop
e

(m, g) − χ
Ne(S)
kM⊗kGop

e
(m, g)

)
g∈CGe ,m∈CM

où le point est le produit matriciel et X(Ge) est la table de caractères de groupe
maximal à l’idempotent e.

Deuxièmement, nous réduisons partiellement la question du comptage des
points fixes qui nous intéressent au problème de la théorie des groupes qui
consiste à calculer la cardinalité d’un centralisateur. Cela se fait par la propo-
sition suivante :
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Proposition (3.2.4 dans le texte). Soient H un H -classe, a ∈ H, Γ′(H) le
groupe de Schützenberger à droite de H et finalement h ∈ M Stab(R(H)),
k ∈ StabM (L(H)). Alors :

| FixH(h, k)| =
{

|CΓ′(H)(×Hk)| si τa(h×H)−1 ∈ ×Hk

0 sinon

où ×Hk est la classe de conjugaison de ×Hk dans Γ′(H) et CΓ′(H)(×Hk) est
le centralisateur de ×Hk dans Γ′(H).

À partir de cette réduction, nous décrivons un algorithme comptant le
nombre de points fixes sous s 7→ hsk (pour h, k pertinents) qui surpasse l’al-
gorithme naïf dans les monoïdes avec une « structure J pas trop simple »,
permettant de s’attaquer à des monoïdes de cardinalité allant jusqu’à 108.
Si le monoïde est J -trivial (ou proche de l’être), notre méthode, bien que
pire en pratique, est seulement (expérimentalement) plus lente par un facteur
constant.

Éléments minimaux des arrangements de Shi

Afin de comprendre les relations décrivant les éléments minimaux des régions
Shi, nous introduisons la notion de jupe d’une racine.

Definition (5.1.2 dans le texte). La jupe d’une racine positive γ est l’ensemble

Sk γ = {α ∈ Φ+ | γ − α ∈ Φ+}.

La relation « être dans la jupe de » est presque un ordre total (Propo-
sitions 5.1.3 et 5.1.4). Ceci, associé aux résultats d’Athanasiadis & Linusson
(voir le Théorème 5.2.4) et Armstrong, Reiner & Rhoades (voir le théorème
5.2.7), permet de propager localement des informations sur les hyperplans qui
délimitent une région de Shi donnée, ce qui donne le résultat suivant dans la
chambre dominante.

Proposition (5.2.9 dans le texte). Soit A une antichaine du poset des racines.
Le vecteur suivant est un vecteur de Shi :

∀a ∈ Φ+, va = max ({1a∈A} ∪ {vb + va−b | b ∈ Sk(a)}) .

Nous pouvons ensuite transporter cette information de la chambre domi-
nante à toutes les autres chambres pour obtenir une description générale des
éléments minimaux des régions de Shi en termes de leurs vecteurs de Shi qui en-
codent leurs ensembles d’inversions. De plus, dans le cas des groupes classiques,
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cela donne une jolie description combinatoire des coefficients de son vecteur de
Shi comme nombre d’arcs non croisés dans un diagramme d’arcs non imbriqués
associé à la région de Shi. Comme nous obtenons ces données combinatoires
sur ce qui est essentiellement un ensemble de racines, nous sommes en mesure
de déduire une condition nécessaire pour qu’une racine soit un « sommet » de
l’ensemble d’inversions d’un élément. Puisque la question [DH16, Conjecture
2] est liée à ces sommets, nous sommes en mesure de déduire le cas des groupes
affines dans le résultat suivant.

Proposition (6.1.1 et 6.2.4 dans le texte). L’application associant à un élé-
ment bas l’ensemble de ses petites inversions est une surjection des éléments
bas sur les petits ensembles d’inversions, dans les groupes de Weyl affines,
ainsi que dans les groupes de Coxeter de rang 3.

Le cas des groupes de rang 3 est une preuve indépendante, depuis (large-
ment) dépassée par une preuve générale complète dans [Dye+23]. Nous l’in-
cluons malgré tout, car nous pensons qu’il y a des questions intéressantes au-
tour de la preuve, en particulier concernant la notion de graphe de bipodalité.

Contenu et plan de la thèse

Chapitre I.1 – Sur la structure des monoïdes finis

Dans ce chapitre, nous commençons par décrire la théorie générale des mo-
noïdes, avec les définitions générales sur les monoïdes et semigroupes, les sous-
structures et quotients, et les éléments spéciaux (en particulier les idempotents)
(§1.1). Il s’avère que l’associativité du produit dans un monoïde est une condi-
tion forte, qui dote les monoïdes d’une structure des classes de Green, que nous
examinons dans une seconde section (§1.2). Le principal résultat présenté ici est
le lemme de Green (Lemme 1.2.7) qui exprime les relations contraintes entre
les différents types de classes de Green (§1.2.1). Nous discutons également de
la notion de groupe de Schützenberger, qui sont des groupes qui apparaissent
naturellement lorsque le monoïde agit sur des parties de lui-même (§1.2.2). En-
fin, nous examinons la structure de la multiplication dans une seule J -classe
avec le Théorème de localisation1.3.2 (§1.3).

Chapitre I.2 – Théorie des représentations

Dans ce second chapitre, nous décrivons la théorie des représentations des
monoïdes finis. Tout d’abord, nous présentons le langage des modules sur une
algèbre, en accordant une attention particulière aux modules simples et projec-
tifs, car ils sont essentiels à la définition des deux invariants que nous cherchons
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(§2.1). Le premier, la table des caractères, est discuté dans la section suivante
(§2.2). La seconde, la matrice de Cartan, est présentée dans §2.3 avec la for-
mule de Thiéry qui motive notre étude (Proposition 2.3.2). Dans la dernière
section de ce chapitre (§2.4), nous énonçons le Théorème de Clifford-Munn-
Ponizovskii, qui joue un rôle essentiel dans les preuves du chapitre suivant.

Chapitre I.3 – Calculs des invariants

Nous présentons ici nos résultats. Tout d’abord, nous prouvons une formule
pour calculer la table de caractères d’un monoïde (Proposition 3.1.6) en rela-
tion avec les tables de caractères des groupes, les points fixes et les caractères
du radical de (certaines) classes L de Green régulières. Nous concluons en
discutant brièvement le cas modulaire (§3.1). Ensuite, nous décrivons com-
ment calculer le nombre de points fixes d’un monoïde sous la transformation
s 7→ hsk, ce que nous relions à une question de théorie des groupes sur le
groupe de Schützenberger d’une classe J donnée. Dans la dernière section
(§3.3), nous considérons l’applicabilité pratique des résultats précédents. Nous
fournissons des algorithmes explicites pour compter les points fixes qui nous
intéressent et un système d’équations pour le radical « optimisé » grâce aux
conséquences du lemme de Green.

Chapitre II.4 – Préliminaires sur la théorie de Coxe-
ter

Dans ce chapitre, nous donnons des résultats généraux sur les groupes de Coxe-
ter (§4.1) et les objets géométriques associés : leur réalisation géométrique et
leur système de racines (§4.2), les ensembles d’inversions (§4.3) et l’image pro-
jective (§4.4). Comme nous utilisons un point de vue géométrique, nous re-
produisons certaines preuves classiques dans ce langage afin de nous préparer
aux considérations géométriques des chapitres suivants. Avant cela, nous dis-
cutons de la classification des groupes de Coxeter finis (Proposition 4.5.3), des
systèmes de racines cristallographiques (Proposition 4.5.5) et des groupes de
Weyl affines (Proposition 4.5.6). Enfin, nous passons au point de vue dual avec
le cône de Tits et l’arrangement de Coxeter (§4.6) et l’objet principal de notre
étude : l’arrangement de Shi (§4.7). Nous le discutons dans toute sa généralité
dans §4.7.1 et le spécialisons pour les groupes de Weyl affines (§4.7.2).
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Chapitre II.5 – Éléments minimaux des régions de
Shi dans les groupes de Weyl

Ce chapitre présente les résultats de nos recherches sur les éléments minimaux
des régions de Shi dans les groupes de Weyl. Tout d’abord, comme ces éléments
minimaux sont contraints par les relations de Shi, nous étudions la structure de
ces relations dans §5.1 afin de nous donner des outils pour la section suivante.
C’est dans cette section que nous introduisons la notion de jupe d’une racine
(Définition 5.1.2) et que nous étudions ses propriétés. Nous décrivons ensuite
ces éléments minimaux : nous le faisons par le biais de leur codage de Shi
(§5.2.1), en étendant une bijection avec les fonctions de parking (§5.2.2) pour
donner dans la Proposition 5.2.12 une description de ces éléments (§5.2.3).
Dans la section finale (§5.3), nous discutons de la spécialisation du résultat
précédent aux groupes de Weyl classiques. Il s’avère que le codage de Shi qui
compte le nombre d’hyperplans derrière lesquels se trouve une région peut être
calculé en termes d’arcs non imbriqués non croisés (Proposition 5.3.3).

Chapitre II.6 – Éléments bas

Dans ce dernier chapitre, nous revenons sur la motivation de notre recherche
sur la théorie des groupes de Coxeter. Dans une première section, nous fournis-
sons une preuve complète des résultats de [Cha21] pour les groupes de rang 3.
Le résultat est obtenu en trois étapes : nous considérons d’abord l’interaction
entre le primal (système de racines) et le dual (cône de Tits), afin de pouvoir
reconnaître les descentes d’un élément (§6.1.1). Nous prouvons ensuite que le
graphique de bipodalité est acyclique (§6.1.2) et que ses sources se trouvent dans
un sous-ensemble commode (§6.1.3). Dans un second temps, nous retournons
vers les groupes de Weyl : à partir de la description combinatoire du codage de
Shi de l’élément minimal, nous obtenons une description suffisamment signifi-
cative des ensembles d’inversions pour obtenir une condition nécessaire pour
que les racines soient des « sommets » du groupe. Nous démontrons ce résul-
tat dans la chambre dominante (§6.2.1) avant de le transporter dans d’autres
chambres (§6.2.2).

Conseils de lecture

Le public visé par ce document, de manière quelque peu égoïste, est l’étudiant
en première année de doctorat que j’étais. En tant que tel, il est écrit pour
être accessible à un étudiant en master d’algèbre « généraliste », avec un inté-
rêt pour l’algèbre effective. De manière moins égocentrique, les deux sujets de



27

cette thèse étant quelque peu disjoints, nous espérons l’avoir rendue abordable
à des lecteurs qui pourraient être habitués à l’une des parties, mais pas néces-
sairement à l’autre. Cela dit, les deux parties sont totalement indépendantes
et le lecteur peut sauter l’une d’entre elles sans perdre d’informations.

Dans cette optique, nous supposons que le lecteur est familiarisé avec les
notions de base de la théorie des groupes, de l’algèbre linéaire, bilinéaire et
tensorielle, ainsi qu’avec la théorie des représentations des groupes présentée de
manière « classique ». Nous n’utiliserons pas de résultats majeurs sans les citer,
même dans ces domaines familiers, mais nous les utiliserons (en particulier la
théorie des groupes) comme exemples motivants et comme guides pour savoir
à quoi s’attendre. Inversement, nous ne supposons pas une familiarité avec
les semigroupes et la théorie des semigroupes, la théorie des représentations
des algèbres générales (et particulièrement la notion de modules projectifs), la
théorie des représentations des monoïdes et la théorie des groupes de Coxeter.
Les chapitres 1, 2 et 4 visent donc à fournir cette familiarité, et le lecteur
spécialisé devrait probablement les sauter.

Au contraire, nous espérons que le lecteur non spécialiste y trouvera une
introduction en grande partie autocontenue aux notions que nous utilisons. À
cet effet, nous avons mis l’accent sur les définitions et les faits de base de chaque
domaine. Lorsqu’il s’agit de résultats plus généraux ou plus puissants, nous
avons essayé de ne pas trop nous éloigner du texte principal et de fournir des
références à la littérature, à condition que cela n’affecte pas la compréhension
des points importants de la thèse. Le meilleur exemple est peut-être l’accent mis
sur les modules projectifs. Nous fournissons la preuve des résultats élémentaires
nécessaires, spécialisés dans notre contexte, avec l’intention supplémentaire que
ces résultats soient utilisés comme « sanity checks » pour la vérification des
programmes accompagnant ces documents. Cependant, pour la proposition
2.1.55, nous ne fournissons qu’une référence, car il s’agit d’un résultat d’un
niveau un peu plus élevé et dont la preuve serait peu éclairante dans notre
contexte.

Si cette approche semble trop cavalière, nous recommandons au lecteur de
consulter les ouvrages suivants pour une introduction plus approfondie à ces
sujets :

• Mathematical Foundations of Automata Theory [Pin] de Pin pour la
théorie générale des semigroupes,

• Representation theory of finite groups : a guidebook [Cra] par Craven
pour une introduction délicate à la théorie des représentations des groupes
finis,

• Introduction to representation theory [Eti+09] par Etingof et al. pour la
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théorie des représentations des groupes finis, mais également pour une
introduction douce à la théorie des représentations des algèbres,

• pour le lecteur déjà familiarisé avec le langage des modules et des caté-
gories, Representation Theory of Finite Monoids [Ste16] traite le sujet à
un niveau plus avancé, mais avec plus d’exhaustivité et de précision que
nous n’aurions pu le faire,

• Reflection groups and Coxeter groups [Hum90] de Humphreys pour une
introduction aux groupes de Coxeter, et en particulier à de nombreuses
constructions géométriques connexes telles que le cône de Tits et le sys-
tème de racines,

• Combinatorics of Coxeter Groups [BB05] par Björner & Brenti pour
une approche combinatoire, de la théorie des groupes et de la théorie du
langage des groupes de Coxeter.

Ces ouvrages ont été d’une aide précieuse lors de la préparation et de la rédac-
tion de cette thèse et nous nous référons souvent à la plupart d’entre eux.

Enfin, nous souhaitons attirer l’attention du lecteur sur les exemples. Nous
avons essayé de fournir autant d’exemples pertinents que possible, et certains
d’entre eux sont référencés dans les preuves et les résultats ultérieurs. De plus,
et surtout dans la partie concernant les groupes de Coxeter, les exemples de
constructions géométriques explicites fournissent une bonne intuition pour les
notions plus abstraites.
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Introduction

The last two decades have seen the development of a new dynamic around
the study of monoid representation theory. This is due to applications to
certain types of discrete Markov chains and especially Markov chains used
to generate combinatorial objects randomly, first uncovered in the seminal
article of Brown [Bro00]. This has lead to an exploration of the combinatorial
properties of monoid representations, for instance in [Ayy+14], [AST16] or
[Thi12]. In this last article [Thi12], Thiéry gives a formula for the Cartan
matrix of a finite monoid of M in terms of the number of fixed points and the
character table of M . More precisely, it involves computing the cardinality of
the set {s ∈ M |hsk = s} for any h, k ∈ M . In this paper, we set out to use
this formula to effectively compute the Cartan matrix of the algebra of M over
a perfect field k of null characteristic.

Two difficulties have to be overcome in the pursuit of this goal. Firstly,
the cardinality of many interesting families of monoids tends to increase very
quickly. For instance, the cardinality of the full transformation monoid Tn

of all functions from J1, nK to J1, nK is nn, making the naive computation of
|{s ∈ M |hsk = s}| impractical even for small n. To remedy this, we provide
an algorithm to efficiently compute this statistic. We obtain, and later utilize
in a computer implementation using the algebra system GAP, the following
result.

Proposition (3.2.4 in the text). Let H be an H -class, a ∈ H and h ∈
M Stab(R(H)), k ∈ StabM (L(H)). Then

| FixH(h, k)| =
{

|CΓ′(H)(×Hk)| if τa(h×H)−1 ∈ ×Hk

0 otherwise

where ×Hk is the conjugacy class of ×Hk in Γ′(H) and CΓ′(H)(×Hk) is the
centralizer in Γ′(H) of ×Hk.

This allows us to tackle this difficulty by relying on existing efficient group
theoretic algorithms. Secondly, to use the formula, one has to compute the
character table of the monoid. The Clifford-Munn-Ponizovskii Theorem (such
as presented in [GMS09]) gives an explicit description of the simple kM -
modules and technically makes the computation of the character table pos-
sible, provided that we know how to compute the simple modules associated
to certain groups. However, we note that although results on character tables
are known in the case of some interesting families of monoids (most notable
inverse monoids [Ste08]), no algorithms are available to compute the character
table of an arbitrary finite monoid. This is no surprise, as an approach based
directly on the Clifford-Munn-Ponizovskii Theorem, although explicit, is rather
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convoluted and inefficient for several reasons. Firstly, we would need to explic-
itly construct irreducible representations of groups. Secondly, we would have
to transform them into monoid representations, which necessitates computing
several quotients of representations. Finally, we still would have to compute
individually each character. This makes this approach computationally very
costly.

In contrast, we prove the following formula.

Proposition (3.1.6 in the text). We have the formula for the lines of the
character table of the monoid M corresponding to simple modules of apex e,
denoted Xe(M):

Xe(M) = tX(Ge)−1 ·
(
χS

kM⊗kGop
e

(m, g) − χ
Ne(S)
kM⊗kGop

e
(m, g)

)
g∈CGe ,m∈CM

where the dot is the matrix product and X(Ge) is the character table of the
maximal group at e.

This puts into relation the character table of the monoid with that of
so-called maximal subgroups at idempotents on one hand, and modules whose
character computation can be sped up using the Green structure of the monoid
on the other hand. This has several advantages. Firstly, this formula is rel-
atively “group representation agnostic” as it only requires knowing the char-
acter table and not an explicit construction of the representations. Secondly,
the representations that we do compute are relatively easy to construct and
well-behaved with respect to the action of the monoid. This allows us to use
a combinatorial approach to the computation of their characters to develop
faster algorithms.

In Chapter 1, we give some background on finite monoids (§1.1) and on
their structure, mainly in terms of Green’s classes and Schützenberger groups
(§1.2). We also give some attention to the structure of multiplication inside a
regular J -class and the role played by idempotents (§1.3). In Chapter 2, we
recall the necessary notions on modules in general (§2.1) and the case of monoid
representation in particular (§2.4). We also introduce the little of character
theory that we need (§2.2) and discuss Thiéry’s formula for the Cartan matrix
(§2.3). Finally, in the Chapter 3, we present our results. First, we derive a
formula for the character table of a monoid as a function (mainly of) group
character tables and number of fixed points in certain “nice” modules (§3.1).
Secondly, we reduce the question of counting fixed points under a conjugacy-
like action in the monoid to a group theoretic question (§3.2). In §3.3, we put
these results together to provide effective algorithms for counting fixed points
(§3.3.2) and computing the radical of an L -class (§3.3.3). We also discuss
the necessary computational hypotheses (§3.3.1) before measuring the effective
performances of the computation of the bicharacter, the character table and
the Cartan matrix (§3.3.4).



Chapter 1
On the structure of finite monoids

1.1 Generalities

Definition 1.1.1. A set S (the ground set) equipped with an internal com-
position law ·S : S × S → S that is associative (meaning that for all s, t, u ∈
S, (s·S t)·Su = s·S (t·Su)) is called a semigroup. A semigroup equipped with an
element 1S ∈ S such that for all s ∈ S, 1S ·S s = s ·S 1S = s is called a monoid
and 1S is called the identity. A semigroup is commutative if s ·S t = t ·S s for
all s, t ∈ S.

We will always simply refer to the internal composition law as the multipli-
cation of the monoid and (unless ambiguous) drop the ·S , writing st for s ·S t
as the multiplication is always assumed to be known in context. In the same
fashion, we most often simply write 1 for 1S .

We can always transform a semigroup S into a monoid denoted S1 with
ground set S ⊔ {1} and by extending the composition law by 1s = s1 = s for
all s ∈ S1. Note that in the case where S is already a monoid, S1 is distinct
from S: we have artificially added a new identity.

Example 1.1.2. 1. Any group is a monoid (and consequently, a
semigroup).

2. (N,+, 0) is a monoid.

3. (N,min) is a semigroup, (N ∪ {∞},min,∞) is a monoid.

4. The set of n × n matrices over a ring R equipped with matrix
multiplication is a semigroup. If R is unitary, the identity matrix
makes that set a monoid.
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Past these few examples, in the totality of this thesis, we assume that we
are working only with finite semigroups and monoids.

Special elements A first immediate property of monoids is that the iden-
tity element is necessarily unique, as if e, e′ are two identity elements e = ee′ =
e′. However, the identity is not necessarily the only element of a semigroup S
with special properties. Let us examine some special cases.

• A zero element, most often denoted 0 or 0S is such that for all s ∈
S, 0Ss = s0S = 0S . Just like for the identity, there can be only one zero
element in a semigroup S, and just like before, we may always add a
zero, if necessary, as we did to define S1 from S.

• An idempotent element e ∈ S is such that e2 = e. The identity element
of a monoid is obviously an idempotent, but rarely the only one: since
we assume our semigroups to be finite, there is a natural way presented
in the following Proposition 1.1.3 to associate any element s of S to an
idempotent denoted sω.

• Inverses. There are diverse notions of inverse elements in semigroups.
We will use firstly the semigroup inverses: s′ is a semigroup inverse to
s if s′ss′ = s and ss′s = s′. Secondly, the notion of group inverse with
respect to an idempotent e: s′ is a group inverse of s with respect to e
if it is a semigroup inverse and ss′ = s′s = e. In the special case where
1 = e, we simply talk about a group inverse.

Questions relating inverses and idempotents will be explored further once
we dispose of the notion of Green’s relations in Section 1.2.

Proposition 1.1.3. Let s be an element of a finite semigroup S. The sequence
(sn)n∈N is ultimately periodic. Let i, p ∈ N be minimal such that si = si+p.
Then {si+k | k ∈ J0, p− 1K} is a cyclic group with identity sω defined by sω =
si+j, where j ≡ −i mod p.

Proof. Since S is finite, the sequence cannot be injective. Thus, there exist
minimal positive integers i and p such that si = si+p: the sequence is periodic
with period p starting at index i. The set {si+k | k ∈ J0, p− 1K} is a group
isomorphic to Z/pZ: we have si+ksi+k′ = si+k+i+k′ = si+(i+k+k′ [p]), which
obviously makes sω as defined the identity element.

The previous proposition is often illustrated by the so-called “fry pan dia-
gram” of Figure 1.1.
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. . .
s1 s2 s3 si−1

si = si+p

si+1 si+2

· · ·

si+k≡0[p] = sω

· · ·

Figure 1.1: The fry pan diagram.

Remark. Semigroups for which any subsemigroup G that is a group is ac-
tually the trivial group {1G} are called aperiodic semigroups because of this
result.

Obviously, sω is an idempotent, which gives the following property:

Corollary 1.1.4. In a finite semigroup, S any element s has an idempotent
power denoted sω.

Definition 1.1.5. An element s ∈ S is a group element if its index is 0 (the
fry pan has no handle), or equivalently s = sωs = sω+1.

Morphisms and substructures As evidenced by the fact that a semi-
group is just an easily added element away from being a monoid, the two no-
tions are closely related. Although we will state most results only for monoids,
they can be adapted to a semigroup S just by considering the monoid S1.
We could entirely ignore the notion of semigroup but it is useful to use that
language. Indeed, unlike in the case of groups where the identity element is
made truly special by the invertibility condition, in the case of monoids, nat-
ural maps that “should be” morphisms ignore the identity, making semigroups
reappear.

Definition 1.1.6. A semigroup morphism from S1 to S2 is a map φ : S1 → S2
such that for any s, t ∈ S1, φ(st) = φ(s)φ(t), i.e. if the following diagram is
commutative1.

S1 × S1 S1

S2 × S2 S2

(φ,φ)

·1

φ

·2

1Using commutative diagrams here is a bit excessive, but we do it to avoid them
appearing for the first time with projective modules, which would make for a rougher
introduction.
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A monoid morphism from M1 to M2 is a semigroup morphism φ : M1 → M2
such that φ(1M1) = 1M2 . An isomorphism is a bijective morphism.

We will sometimes also talk about anti-morphisms of these structure that
reverse multiplication instead of preserving it: φ(st) = φ(t)φ(s).

The remark that 1 is “less special” in monoids also extends to substructures:

Definition 1.1.7. A subset S′ of a semigroup S is a subsemigroup of S if
(S′, ·S) is a semigroup. A submonoid M ′ of a monoid M is a subsemigroup of
M that contains the identity element.

Example 1.1.8. Consider a group G as a semigroup and add an iden-
tity element to get G1: we naturally want to consider G inside G1,
but although G is a group (and consequently a monoid) it is only a
subsemigroup of G1.

We will also need the notion of product of semigroups, which is defined in
the natural way.

Definition 1.1.9. Let I be a finite set and (Si)i∈I a family of semigroups.
Then the set∏i∈I Si equipped with the multiplication (si)i∈I ·(ti)i∈I = (siti)i∈I

is the product semigroup. If all the Si happen to be monoids, the resulting
product semigroup equipped with the identity element (1Si)i∈I is the product
monoid.

We will now focus our attention more on monoids, remarking on semigroups
only where they naturally reappear.

Definition 1.1.10. An ideal (respectively left ideal, right ideal) of a monoid
M is a subset I ⊂ M such that MIM = I (resp. MI = I, IM = M).

Note that an ideal of a monoid is necessarily a subsemigroup, but the
converse is obviously false. The notions of (left, right) ideal are well-behaved
with respect to intersection: the intersection of any family of (left, right) ideals
is still such an ideal. Similarly, it is well-behaved with respect to morphisms.

Proposition 1.1.11. Let φ : M1 −→ M2 be a monoid morphism, and I1 ⊂
M1, I2 ⊂ M2 be ideals. Then φ−1I2 is an ideal of M1. If φ is surjective, φ(I1)
is an ideal of M2. The same result holds for left and right ideals.
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Congruences and quotients Another construction that will be of inter-
est in the following sections of this thesis is the notion of quotient. There are
two ways of defining a quotient, the first being with surjective morphisms.

Definition 1.1.12. A monoid M ′ is a quotient of a monoid M is there exists
a surjective monoid morphism M ↠M ′.

The other way is through monoid congruences.

Definition 1.1.13. A monoid congruence ∼ on a monoid M is an equivalence
relation such that for all s, t, u, v ∈ M, s ∼ t ⇒ usv ∼ utv.

Usually, a congruence on a structure is simply an equivalence relation that
is compatible with the composition law in the sense that s ∼ s′ and t ∼ t′

implies st ∼ s′t′ for all s, s′, t, t′ ∈ M , which we do not explicitly require here.
However, it is implied by Definition 1.1.13.

Proposition 1.1.14. Let ∼ be a monoid congruence on M , the quotient of
M by ∼, denoted M⧸∼, is itself a monoid and the projection map s 7→ s is a
monoid morphism.

Proof. Multiplication is well-defined: if s ∼ s′ and t ∼ t′, (1)s(t) ∼ (1)s′(t) =
(1s′)t(1) ∼ (1s′)t′(1) = s′t′. Multiplication is associative: we have (st)u =
(st)u = s(tu) = s(tu). The class 1 is the identity of M⧸∼ since 1s = 1s = s =
s1 = s1.

Conversely, if we only had the property s ∼ s′ and t ∼ t′ implies st ∼ s′t′

for all s, s′, t, t′ ∈ M , we trivially get back Definition 1.1.13 by s ∼ t ⇒ us ∼
ut ⇒ usv ∼ utv because ∼ is reflexive.

As expected, there is an isomorphism theorem (Theorem 1.1.15) stating
that quotients in the sense of Definition 1.1.13 factor through the projection
map of Proposition 1.1.14, where the congruence is the so-called nuclear equiv-
alence, one of the two important examples of monoid congruences we will use
in this thesis.

• The kernel congruence or nuclear equivalence. A morphism φ : M1 −→
M2 defines an equivalence relation ∼φ by s ∼φ t ⇔ φ(s) = φ(t). This is
obviously a congruence relation. Note that, unlike in a group, the fibers
{φ−1{t} | t ∈ M2} are not simple translated copies of φ−1{1M2} (indeed,
this definition holds for semigroups where 1M2 does not necessarily ex-
ist). The idea of kernel of a monoid morphism thus needs to be slightly
expanded as kerφ = {φ−1{ϕ(s)} | s ∈ M1}.
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• The Rees congruence. Let I be an ideal ofM and let ∼ be the equivalence
relation where i ∼ i′ for all i, i′ ∈ I and s ∼ t ⇒ s = t for all s, t ∈ M \I.
From the definition of an ideal, it is obvious that it is a congruence. The
Rees quotient of M by I is the quotient M⧸∼. A more explicit notation
is almost always adopted in the literature by denoting the quotient by
M⧸I, by 0 the class I and by s the class {s} for all s ∈ M .

The isomorphism theorem is as follows (see [Pin, Theorem II.3.2] for a
proof).

Theorem 1.1.15. Let φ : M −→ M ′. Let π : M −→ M⧸∼φ be the canonical
projection. Then there exists a unique injective morphism φ̃ : M⧸∼φ −→ M ′

such that φ = φ̃ ◦ π, i.e. such that the following diagram commutes.

M ′

M M⧸∼φ

φ

π

φ̃

Moreover, φ̃|φ(M) is an isomorphism.

Actions Just as one can define a group action, monoid actions exist:

Definition 1.1.16. If M is a monoid and X is a set, a map M ×X −→ X is
a left (respectively right) monoid action if:

• ∀ x ∈ X, 1 · x = x.

• ∀ s, t ∈ M,x ∈ X, s · (t · x) = (st) · x (resp. s · (t · x) = (ts) · x). That is,
on the left, the following diagram commutes.

M ×M ×X M ×X

M ×X X

(·M ,IdX)

(IdM ,·)

·

·

It is often more convenient to write right action on the right, where the
axioms become ∀ x ∈ X,x · 1 = x and ∀ s, t ∈ M,x ∈ X, (x · t) · s = x · (ts).
Still, written on the left, it is clear that an action on the right is reversing
multiplication, which motivates the definition of opposite semigroup:

Definition 1.1.17. Given a semigroup (S, ·S) the opposite semigroup (also-
called dual semigroup in the literature) is the semigroup, denoted simply by
Sop, with ground set S and multiplication ·Sop defined by s ·Sop t = t ·S s for all
s, t ∈ S. The opposite monoid Mop of a monoid M is the opposite semigroup
of M equipped with the same identity element 1M .
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Thus, a right action of a monoid M on a set X naturally corresponds to
a left action of Mop, as the two commutative diagrams below summarize: the
first one defines a right action, and the second is exactly the same given that
the ground sets of M and Mop are the same, but it defines a left action of Mop.

M ×M ×X M ×X

M ×X X

(IdM ,·)

(·,IdX) ·

·

Mop ×Mop ×X Mop ×X

Mop ×X X

(·op,IdX)

(IdMop ,·)

·

·

We say that two actions ·1 : M1 × X → X, ·2 : M2 × X → X commute if
for all s1 ∈ M1, s2 ∈ M2, x ∈ X, s1 ·1 (s2 ·2 x) = s2 ·2 (s1 ·1 x). If ·1 happens
to be a left action while ·2 is a right action, it is more conveniently expressed
(s1 ·1 x) ·2 s2 = s1 ·1 (x ·2 s2). Later, it will be convenient to see two commuting
actions, one of M1 on the left and the other of M2 on the right, as a unique
action on the left of M1 ×Mop

2 .

Note that if φ : M1 −→ M2 is an anti-morphism, then the same set map
seen as φ : M1 −→ Mop

2 is a morphism.

Transformation semigroups In the context of groups, one can define an
action of a group G on a set X as a group morphism from G to the symmetric
group on X, S(X). More broadly, a group acting on a set is often called
a permutation group. The equivalent notion in terms of monoids is that of
transformation monoid.

Definition 1.1.18. A transformation monoid on a set X is a subset of XX

that is a monoid for map composition (on the left side: fg = x 7→ f ◦ g(x) =
f(g(x))). The cardinality of X is called the rank of the transformation monoid.
The full transformation monoid on X, denoted by TX is (XX , ◦, IdX).

For a finite set X of cardinality n, up to assigning a number to each element
of X, TX is isomorphic to T J1, nK, simply denoted Tn, called the full trans-
formation monoid of rank n. Using that language, a left (respectively right)
action of a monoid M on a set X is a monoid morphism ϕ : M −→ TX (resp.
anti-morphism). The full transformation monoid is an important example we
will often use in this text.

A monoid M naturally acts on itself by translation (either left or right).
This makes the map s 7→ (t 7→ st) an injective monoid morphism from M to
TM (and similarly s 7→ (t 7→ ts) embeds M into T op

M ). This is the monoidal
equivalent of Cayley’s Theorem for groups. Through this embedding, we may
see any finite monoid as a transformation monoid, on which many relevant
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computations are, if not easy, at least explicit (for instance, the nuclear equiv-
alence class but also many others detailed in Section 3.3.1). As is already the
case for the Cayley embedding for groups however, this is extremely inefficient.
The cardinal of Tn being nn allows for effective computations of the kind we
are after for monoids with only up to a dozen elements, possibly a few dozens
taking advantage that TM is not entirely in the image of the embedding. How-
ever, despite the results in this thesis holding for all finite monoids, thinking of
them in terms of transformation monoids gives a good intuition on the general
results.

1.2 Green structure of finite monoids and
Schützenberger groups

In this section, we first recall essential and elementary results on the Green
structure of finite monoids and on Schützenberger groups. The informed reader
may skip this first section, with the exception of the notation (1.2.6) that are
used throughout this paper.

1.2.1 Green Structure

Although finite monoids have been considered to be much wilder objects than
groups, it turns out that, with the right optics, they are actually highly struc-
tured by their internal multiplication. Consider the divisibility relation: x

divides y if y = xz for some z. If x, y, z are taken in a group G, the relation is
trivial. If, however, we take them in a general monoid M , left or right trans-
lation by an arbitrary element need not be surjective, making the question of
x ∈ M being a left (or right) multiple of y ∈ M non-trivial. These questions of
“divisibility” in a general monoid are studied under the name of Green struc-
ture, of which we give an overview necessary for our purpose in the subsection
below.

Definition 1.2.1 (Green’s relations). Let M be a finite monoid and s, t two
of its elements. Green’s relations are:

• s ≤L t ⇔ Ms ⊂ Mt

• s ≤R t ⇔ sM ⊂ tM

• s ≤J t ⇔ MsM ⊂ MtM

• s ≤H t ⇔ s ≤L t and s ≤R t.
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For K ∈ {L , R , J , H}, Green’s K -equivalence relation is given by sK t ⇔
s ≤K t and t ≤K s. Equivalently, sL t ⇔ Ms = Mt, sR t ⇔ sM = tM and
sJ t ⇔ MsM = MtM .

These preorders and equivalence relations are compatible with multiplica-
tion in various ways.

Proposition 1.2.2. Let s, t, u, v be elements of a monoid M . Then:

1. us ≤L s, su ≤R s and usv ≤J s.

2. s ≤L t ⇒ su ≤L tu and s ≤R t ⇒ us ≤R ut.

3. sL t ⇒ suL tu and sR t ⇒ usRut.

4. If s ≤L us then sLus. If s ≤R su then sRsu.

Proof. Let us prove the first point in each case, as the others are obtained in
the same way. (1) Mu ⊂ M ⇒ Mus ⊂ Ms. (2) Ms ⊂ Mt ⇒ Msu ⊂ Mtu.
(3) Ms = Mt ⇒ Msu = Mtu. (4) s ≤L us ≤L s ⇒ sLus.

Green’s relations are also compatible with each other in the following way.

Proposition 1.2.3. For all s, t ∈ M , s ≤J t ⇒ s ≤L t and s ≤R t firstly,
and secondly s ≤L t or s ≤R t ⇒ s ≤H t. Consequently, sL t or sR t ⇒ sJ t

firstly, and secondly sH t ⇒ sR t and sL t.

Proof. From the definition.

Because of this, talking about “the L -class L of some H -class”, etc. . . is
well-defined, and we shall denote it by L(H), J (L)... There is a fifth Green’s
relation called the D -relation defined by sD t if and only if sRuL t for some
u ∈ M . It happens to be that it is the same relation defined by sLuR t

(see [Pin20, Proposition V.1.8]). However, we shall not need to make such
differences, as in a finite monoid, which is the only case we are concerned with,
the two relations J and D correspond. The following result is reproduced
from [Pin, Theorem V.1.9].

Proposition 1.2.4. For s and t in a finite monoid M , sJ t if and only if
there exist u ∈ M such that sLuR t if and only if there exists v ∈ M such
that sRvL t.
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Proof. We will only prove the first equivalence, as the other proof is simply
obtained by duality. If sLuR t then sJ uJ t so sJ t. Now, if sJ t, by defini-
tion, there are x, y, x′, y′ ∈ M such that xsy = t and x′ty′ = s so x′xsyy′ = s

and further (x′x)ns(yy′)n = s. From Corollary 1.1.4, we may choose n such
that (x′x)n and (yy′)n are both idempotent. Let u = (x′x)n, v = (yy′)n. We
have us = uusv = usv = s so sLus and further sLxs. Similarly, sRsy.
From the first relation, we get syLxsy = t: sRsyL t which by definition is
sD t.

Some of the following results are stated in terms of D -classes in the liter-
ature. Since in the context of finite monoid we are interested in, the J and
D -classes coincide, we shall only use the terms J -relation, J -class, etc.

Example 1.2.5 (Green’s relations in Tn). Let a, b be two elements of
M .

• aLb if and only if they have the same kernel or nuclear equiva-
lence ker a = {a−1{i} | i ∈ J1, nK}.

• aRb if and only if they have the same image, Im (a) = Im (b).

• Since Tn is finite, J is generated by L and R so aJ b if and only
if Im a and Im b (or equivalently ker a and ker b) have the same
cardinality.

• aHb if and only a and b have the same image and the same kernel.

These conditions are necessary conditions in any transformation
monoid. To get that they are sufficient, we use the fact that Sn ⊂ Tn

and that we can rearrange both image and kernel as we please.
These relations are illustrated in the case of the monoid T3 in Figure
1.2.

The following notations will prove useful, as the study of Green’s relations
is, in part, the study of the maps given by left and right translations in the
monoid.

Notation 1.2.6. Let h, k be elements of M and S be a subset of M . We
denote by:

• h×S the application from S to hS defined by s 7→ hs,

• ×Sk the application from S to Sk defined by s 7→ sk,

• M Stab(S) = {m ∈ M |mS = S},

• StabM (S) = {m ∈ M |Sm = S},
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J (1 2 3)
1 2 3
2 3 1
3 1 2

2 1 3
1 3 2
3 2 1

J (1 2 2)
1 2 2
2 1 1

1 2 1
2 1 2

1 1 2
2 2 1

1 3 3
3 1 1

1 3 1
3 1 3

1 1 3
3 3 1

2 3 3
3 2 2

3 2 3
2 3 2

2 2 3
3 3 2

J (1 1 1)

1 1 1
2 2 2
3 3 3

Figure 1.2: Green’s relations in T3.
Each block is a J -class, each line is an R -class, each column an L -class and
each case an H -class. The red, green and black arrows represent the L , R

and J -order respectively.

• FixS(h, k) = {s ∈ S |hsk = s}.

Using these notations, let us recall Green’s Lemma, which is one of the cen-
tral elements of the theory of Green’s relations, as it shows that the structure
of the relations is actually heavily constrained, making their study practical.

Lemma 1.2.7 (Green’s Lemma). Let a, a′ be two elements in the same L -
class and let λ, λ′ such that λa = a′ and λ′a′ = a. Then λ×R(a) and
λ′×R(a′) are reciprocal bijections. Moreover, for any L -class L λ×R(a)∩L

and λ′×R(a′)∩L are reciprocal bijections. Similarly, if a, b are two elements in
the same R -class and ρ, ρ′ are such that ρa = b and ρ′b = a, then ×L(a)ρ and
×L(b)ρ

′ are reciprocal bijections. Moreover, for any R -class R ×L(a)∩Rρ and
×L(b)∩Rρ

′ are reciprocal bijections.

An important consequence of Green’s Lemma is that J -classes can be
neatly organized as egg box pictures2: the J -class can be represented as a
rectangular array with the L -classes as columns, the R -classes as rows and
the H -classes, the eggs, in the boxes, as can be seen in Figure 1.2. This level
of organization is actually what allows for efficient computer representation of
monoids and most of their algorithmic exploration.

2Terminology introduced in [CP61].
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a′

a

b′

b

λ×R(a) λ′×R(a′)

×L(a)ρ

×L(b)ρ
′

R(a)

R(a′)

L(a) L(b)

Figure 1.3: Green’s Lemma

1.2.2 Schützenberger groups

The Green structure offers a second way of facilitating computer exploration of
monoids through groups that arise as stabilizers of some Green’s classes. These
groups were introduced by Schützenberger in [Sch57]. This is a running theme
of monoid theory: they allow for a number of monoid theoretic questions to
be formulated in terms of groups for which we have at our disposal an array
of efficient algorithms.

Definition 1.2.8 (Schützenberger groups). Let H be an H -class. The set
{h ×H |h ∈ M Stab(H)} equipped with map composition is a subgroup of
S(H) called the left Schützenberger group and denoted by Γ(H).

Similarly, ({×Hk | k ∈ StabM (H)}, ◦) is a subgroup of S(H) called the
right Schützenberger group and denoted by Γ′(H).

Example 1.2.9. Consider H = H ([1 3 1]) (the elements of Tn are
given in function notation in all examples). We have :

M Stab(H) = {[1 2 3], [3 2 1], [1 3 3], [3 1 1], [1 1 3], [3 3 1]}

and subsequently, Γ(H) = {[1 2 3]×H , [3 3 1]×H}. Notice that, as el-
ements of Γ(H), [3 3 1]×H = [3 2 1]×H and that the only important
thing is the permutations induced by the elements of M Stab(H) on
ImH. Thus, in the case of transformation monoids, the left Schützen-
berger group of an H -class H can be represented as a subgroup of
S(ImH). In the same way, the right Schützenberger groups can be
represented as subgroups of S(kerH). This fact is used to represent
the Schützenberger groups in Section 3.3.
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Our precedent remark on exploiting Schützenberger groups to get efficient
algorithms for computational monoid theoretic questions is seconded by the
fact that Schützenberger groups do not contain any “superfluous information”
in the following sense.

Proposition 1.2.10. Let H be an H -class. The natural actions of Γ(H) and
Γ′(H) on H are free and transitive.

We reproduce below a proof for Proposition 1.2.10 from [Sch57] for the pur-
pose of showcasing the main argument. The argument itself is widely known,
and we will use it multiple times in the remainder of this document.

Proof. If two elements h, h′ ∈ H are in the same L -class, there is some u ∈ M

such that uh = h′. By Green’s Lemma, this means that u ∈ M Stab(H), so
Γ(H) acts transitively on H. Suppose that uh = h for some u ∈ M . Since
h, h′ are also in the same R -class, there exists some v such that h′ = hv, so
uh′ = uhv = hv = h′ : an element of Γ(H) either fixes all points in H or fixes
none. The only element of Γ(H) that fixes all points (and, consequently, the
only one that fixes any point) is the identity and thus the action is free. The
same arguments apply for Γ′(H).

As pointed out in the same paper [Sch57], the left and right Schützenberger
groups are essentially the same.

Proposition 1.2.11. Given an H -class H, a ∈ H and g ∈ Γ(H), we define
τa(g) as the unique element of Γ′(H) such that g · a = a · τa(g). Then τa :
Γ(H) −→ Γ′(H) is an anti-isomorphism3.

Proof. We have, for a given a ∈ H and any h, g ∈ Γ(H):

gh · a = a · τa(gh) = g · a · τa(h) = a · τa(g) · τa(h) = a · (τa(h)τa(g))

where the inversion in the last equality comes from Γ′(H) having a right action
on H. Because the action is transitive, we may cancel the a to obtain τa(gh) =
τa(h)τa(g).

From Green’s Lemma, it is straightforward that we have M Stab(L(H)) =
M Stab(H) and that the action of this stabilizer also induces a group that acts
freely on the whole of L(H), stabilizing and acting transitively on each H -
class contained in L(H). The same phenomenon occurs from Stab(R(H))M

acting on the right. This implies that the Schützenberger groups of any two
H -classes in the same J -class are (anti-)isomorphic. However, we will not

3Note that some authors equip the right Schützenberger group with reversed com-
position, and thus obtain an isomorphism instead of an anti-isomorphism.
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strictly need this result: for representation theory, we are satisfied with the
weaker Proposition 1.3.7, while for fixed points counting in Section 3.2 we will
in fact do our best to compute the Schützenberger groups of only one H -class
per J -class.

1.3 Regularity and multiplication

As we have just seen, the Schützenberger groups are the objects that charac-
terize the permutations of an H -class induced by the action of the monoid. In
this section, we want to understand the transformations of a J -class induced
by the action. We will then “zoom out” from the elements themselves to look
at how the H -classes are “moved around” by the action.

Definition 1.3.1. A J -class is regular if it contains an idempotent.

Regular J -classes play an important role in the representation theory of
finite monoids because they are somewhat (but not entirely) stable by internal
multiplication. Given this, they are responsible for the “mixing” that occurs
in modules, whereas non-regular classes only “reduce” the space acted upon
by the monoid, by making the multiplied element “fall down toward lower J -
classes”. As to what we mean by “somewhat stable”, another consequence of
Green’s Lemma is the so-called “Location Theorem” from Clifford and Miller.
We reproduce the proof from [Pin, Theorem 1.11]

Theorem 1.3.2 (Location Theorem). Let r, l be two elements in the same
J -class. We have:

rl =
{
γ ∈ R(r) ∩ L(l) if L(r) ∩ R(l) contains an idempotent,
γ <J l, r otherwise.

Proof. Note that rl ≤J r and rl ≤J l, so either we are in the second case or
rl stays in the same J -class. Suppose that rl ∈ R(r) ∩ L(l) and let us show
that L(r) ∩ R(l) contains an idempotent e. By Green’s Lemma, ×L(r)l is
a bijection from L(r) to L(l) preserving the H -classes. In particular, there
exists an element e ∈ R(l) ∩ L(r) such that el = l. Since eR l, we have
e = lv for some v ∈ M and ee = elv = lv = e so e is idempotent. Suppose
now that e ∈ R(l) ∩ L(r) is an idempotent. We have el = l because eR l

means that there is some u ∈ M such that l = eu and so el = eeu = eu = l.
Again because eR l, we have l′ ∈ M such that ll′ = e. Setting l̄ = l′e, we
get ll̄l = ll′el = eel = l, so l̄ is a semigroup inverse of l. Similarly, there is a
semigroup inverse r̄ of r. We have rll̄ = rll′e = ree = r and in the same way
r̄rl = l. Clearly, rl ≤R r and this shows the converse r ≤R rl (and the same
thing holds for L) so, by Proposition 1.2.2, rl ∈ R(r) ∩ L(l).
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l

rl

e

r

=
×

R(r)

R(l)

L(l) L(r)

Figure 1.4: Location Theorem
Since there is an idempotent e in L(r) ∩ R(l), rl stays in the same J -class,

in L(l) ∩ R(r).

Later, as, a corollary, that will allow us to identify regular J -classes.

Corollary 1.3.3. A J -class J is regular if and only if JJ ∩ J ̸= ∅.

Proof. If j ∈ JJ ∩ J , then there is r, l ∈ J with rl = j such that R(l) ∩ L(r)
contains an idempotent and hence J is regular. The converse is obvious from
the definition.

It also permits to identify the groups doing the actual “mixing” we were
referring to earlier: they are the H -classes of the idempotents.

Proposition 1.3.4. Let H be an H -class. Then (1) H contains an idempo-
tent if and only if (2) there exist r, l ∈ H such that rl ∈ H if and only if (3)
H is a group.

Proof. The first two points are equivalent by Theorem 1.3.2. Clearly (3) im-
plies (1). Let us see that (1) implies (3) and let e ∈ H be an idempotent.
From Theorem 1.3.2 and its proof, H is a monoid with identity element e. By
Green’s Lemma, if h ∈ H, the maps ×Hh and h×H are permutations of H and
in particular there exist left and right inverses of h, which must be equal.

Corollary 1.3.5. If S is a subsemigroup of a monoid M and S is a group, S
is contained in an H -class of M .

This makes the special case where H is the H -class of an idempotent
interesting to note, and it will be important later:

Definition 1.3.6. Given an idempotent e, we denote Ge = H (e) the maximal
subgroup at e.
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While there may be several idempotents in a single J -class (and in fact
having exactly one is more or less the exception), the maximal subgroups at
each idempotent in the same J -class are isomorphic.

Proposition 1.3.7. Let e, f be idempotents and suppose eJ f . Then Ge
∼= Gf .

Proof. By definition of eJ f , there are l, r ∈ M such that f = ler. Let
l′ = le, r′ = er. From Green’s Lemma, l′ ∈ R(f), so in particular fl′ = l′

(because by definition l′ = fu for some u). Similarly, r′f = r′. We have
l′r′ = leer = f and conversely r′l′ ∈ H (e) by the Location Theorem. Since
r′l′r′l′ = r′fl′ = r′l′ is idempotent, it must be e. Let x, y ∈ H (e), we have
l′xr′l′yr′ = l′xeyr′ = l′xyr′. So the map x 7→ l′xr′ is a bijective (from Green’s
Lemma) morphism between Ge and Gf .

le = l′ = fl′

e

f

er = r′ = r′f
l×R(e)

×L(e)r hello !

Figure 1.5: Illustration of Proposition 1.3.7.

Proposition 1.3.8. Let e be an idempotent and H its H -class. Then ΓH ,
Ge(= H) are canonically isomorphic and canonically anti-isomorphic to Γ′

H

Proof. Ge ⊂ M Stab(H) naturally induce a map making it a subgroup of Γ(H)
and that since Ge acts freely and transitively on H (Proposition 1.2.10), this
map must be injective and surjective (and similarly for Γ′(H)).

Note that the Schützenberger groups are defined when H does not contain
an idempotent, but in this case, we lose e as a natural anchor point that makes
ΓH and Γ′

H canonically anti-isomorphic.

Example 1.3.9. Consider, in Example 1.2.5, e = [1 2 2] andH = H (e).
e is an idempotent, and, indeed, H = Ge is a group : setting t = [2 1 1],
we have e2 = e, t2 = e and et = te = t. As noted in Example 1.2.9:

Γ(H) = S({1, 2}), Γ′(H) = S({{1}, {2, 3}}).

Note that the canonical isomorphism between Γ(H) and H (e) is simply
given by g ∈ Γ(H) 7→ g · e ∈ H.



Chapter 2
Representation theory

2.1 Modules

We will use the language of module and representation somewhat interchange-
ably in the rest of this document. In this chapter, we introduce these notions,
see how they are related, and introduce the associated elementary notions:
sum and products, simplicity, projective modules, etc. . .

2.1.1 Basic definitions

Let us fix the language we use on elementary algebraic objects.

Definition 2.1.1. A ring is a triplet (R, (+R, 0R), (·R, 1R)) where R is the
ground set and 0R, 1R ∈ R, such that (R,+R, 0R) is a commutative group,
(R, ·R, 1R) is a monoid and for all x, y, z ∈ R, (a+R b) ·R c = a ·R c+ b ·R c and
a ·R (b+R c) = a ·R b+R a ·R c (distributivity).

A subring R′ is a subset of R such that (R′, (+R, 0R), (·R, 1R)) is a ring.

The composition laws are clear from context most of the time, and similarly
for the +R zero element 0R and the ·R identity element 1R. Thus, we shall
refer to the ring by its ground set R, use +, 0, 1 and denote x ·R y simply by
xy as we did for monoids.

Definition 2.1.2. A ring morphism between some rings R1 and R2 is a map
φ : R1 → R2 such that for any r, s, t ∈ R we have

φ(r(s+ t)) = φ(r)φ(s) + φ(r)φ(t) and φ(1) = 1.

49
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Note that we are requiring a ring to be unitary, that is, to have an identity
element. This requirement is not present everywhere in the literature, but we
adopt it for two main reasons. Firstly, the rings based on monoids we will
construct later will naturally have an identity element. Secondly, as it is easy
to add a neutral element to a semigroup to make it a monoid, it is easy to add
an identity element to a non-unitary ring. Note that a field (k, (+, 0), (·, 1)) is
just a ring such that (k \ {0}, ·, 1) is a commutative group. In the following,
the bold letter k is always a field.

Definition 2.1.3. A left (respectively right) module on a ring R, or R-module
(resp. module-R) is a commutative group (V,+V , 0V ) equipped with an action
·l : R × V → V (resp. ·r : V × R → V ) called scalar multiplication such that
for all r, s ∈ R, u, v ∈ V we have

(r + s) ·l (u+ v) = r ·l u+ r ·l v + s ·l u+ s ·l v

(resp. exactly the reverse for ·r) and r ·l (s ·l u) = (rs) ·l u (resp. (u ·r r) ·r s =
u ·r (rs)). Moreover, we ask 1 ·l u = u (resp. u ·r 1 = u).

Example 2.1.4. For any ring R, the trivial group {0} is an R-module.

Example 2.1.5. For any ring R, R is both a left and a right module on
R. More generally, a free R-module F is an R-module for which there
exists a basis (ei)i∈I that generates F as a module (i.e. F = ∑

iRbi)
and is “R-free” (i.e.

∑
riei = 0 ⇒ ∀ i, ri = 0, for all (ri)i∈I ∈ RI).

Equivalently, F is isomorphic to RI .

Most often we denote the action simply by · or drop the dot altogether as
long as it is clear which element is the scalar and which is in V . We also denote
the module by its ground set. For the same reason, we will drop the distinction
between 0V and 0R unless not made clear by context. Note that a vector space
is just a module on a field or, conversely, a module is a vector space “except
that the scalars do not have to be a field”. If V is both an R-module and
a module-R, we say that V is an R-bimodule. We denote by R − mod the
collection of R-modules, mod −R that of modules-R and R − mod −R that
of R-"bimodules" (that is, simultaneous left and right modules on R). In our
context, the left and right actions on a bimodule will always commute.

Definition 2.1.6. A morphism of R-module between some R-modules V1 and
V2 is a map φ : V1 → V2 such that for any r ∈ R, u, v ∈ V we have

φ(ru+ v) = rφ(u) + φ(v).

We denote by homkM (V1, V2) the set of all morphisms from V1 to V2.
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Example 2.1.7. The zero map V1 −→ {0} ⊂ V2 : x 7−→ 0 is always a
morphism of R-module.

This is similarly defined for a right module on R and for an R-bimodule
(and so is the next definition). Note that a module morphism φ is in particular
a linear map. As such, its nuclear equivalence in the sense of monoid morphism
is much more well-behaved than for a general monoid. Hence, for linear maps,
and more generally groups, rings, module morphism, we readopt the general
convention that kerφ = φ−1{0}. The “full” nuclear equivalence is recovered
by taking the translated copies of this kernel.

Definition 2.1.8. An R-submodule (or left submodule on R) V ′ of an R-
module V is a subset of V such that (V ′,+V , 0V ) is a module and such that
for any r ∈ R, rV ′ ⊂ V .

Example 2.1.9. A ring R is obviously a bimodule on itself, and its
R-subbimodules are its ideals.

Example 2.1.10. If φ : V1 −→ V2 is an R-module morphism, then
Imφ is an R-submodule of V2 and kerφ is an R-submodule of V1.

Definition 2.1.11. An algebra on a field k or k-algebra is a ring that has a
structure of k-vector space. A subalgebra is a subring that is also a k-subspace.
A k-algebra morphism is a k-linear ring morphism.

This ensures that any module on a k-algebra is actually not just a com-
mutative group, but also a k-vector space.

Definition 2.1.12. The algebra of a monoid M over a field k, denoted by
kM , is the k-vector space formally generated by M , equipped with the mul-
tiplication of M , extended by linearity.

Example 2.1.13. Consider homk(V,k) for a kM -module V , denoted
by V ∗. It is naturally a kMop-module, called the dual module, by m ·
f(v) = f(m ·v) for m ∈ Mop, f ∈ V ∗ and v ∈ V . As we work with finite
dimensional modules, it is easily seen that (V ∗)∗ ∼= V .

Monoid (and possibly group) algebras will be the only kind of algebras we
will have to deal with from now on. Note that we have supposed earlier that
all our rings are with identity: clearly 1M is the unity of kM . Hence, we most
often state the following results in terms of kM -algebras and modules although
they may have much broader generalizations. The dimension of a module on
a k-algebra is its dimension as a k-vector space. In all of this document, we
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only consider finite monoids, which leads to the monoid algebras being finite
dimensional. Moreover, we only ever consider finite dimensional modules on
those algebras. We are now ready to introduce the closely related notion of
representation.

Definition 2.1.14. A representation of a monoid M over the field k is a
pair (ρ, V ), where V is a k-vector space and ρ is a monoid morphism ρ :
M −→ L(V ) where L(V ) is the set of linear maps on V equipped with map
composition and the identity map.

Example 2.1.15. An important example is the case where M acts on
a set X. Considering V = Spank(X) and the morphism ρ : M → L(V )
given by extending linearly the action of M on the basis X we obtain
a representation by transformation of M .

Example 2.1.16. Another important and even more special example
of representation by permutation is the case when X = M with M
acting on itself by (say left) translation. The resulting representation,
kM , is called the regular representation of M over k. This corresponds
to considering kM as a module over itself.

Definition 2.1.17. Given a monoid M , a representation morphism T between
two M -representations (ρ1, V1) and (ρ2, V2) is a linear map in L(V1, V2) such
that T ◦ ρ1(m) = ρ2(m) ◦ T for all m ∈ M .

The algebra of a monoid is obtained by linearizing “upstream” while repre-
sentations linearize “downstream”. Modules are linear both on the side of the
structure that is acting, the monoid algebra, and the structure that is acted
upon, the module itself. This makes modules a somewhat more practical lan-
guage as, in some sense, this notion is more stable. However, in the remainder
of this document, we will retain some terminology coming from the “pure rep-
resentation view”. For now, let us state clearly in what sense kM -modules and
representations of M in a k-vector space are the same thing.

Proposition 2.1.18. The kM -modules and representation of M over k are
in bijection.

Proof. Let V be a kM -module and ρ : M → L(V ) by defined by ρ(m) = v 7→
m · V . For all v ∈ V , we have

ρ(mm′)(v) = (mm′) · v = m · (m′ · v) = (ρ(m) ◦ ρ(m′))(v) (∗)

so ρ is a monoid morphism and hence (ρ, V ) is a representation over k. In
some sense, the module “restricts” to a representation.
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Let (ρ, V ) be a representation of M over k. Then the scalar multiplication
of v ∈ V by ∑m∈M cmm ∈ kM is ∑m∈M cmρ(m)(v). The same equation (∗)
shows that this definition respects the axiom of scalar multiplication on the
basis M of kM and on all of kM by linearity. In some sense, the representation
“generates” a module by linearly extending the action.

Obviously, these two transformations are inverse of each other: the restric-
tion to M ⊂ kM of the module generated by a representation (ρ, V ) over k is
exactly (ρ, V ) and reciprocally.

Although other ways to consider a given module as a representation (and
reciprocally) may exist, we systematically mean the specific one from Propo-
sition 2.1.18 all throughout this document.

Proposition 2.1.19. Let V1, V2 considered at the same time as kM -modules
and representations of M over k. Then a map T ∈ L(V1, V2) is a module
morphism if and only if it is a representation morphism.

Proof. By definition of the maps in Proposition 2.1.18, we have, if T is either
a module or representation morphism, for any v ∈ V1,m ∈ M :

m ·2 T (v) T (m ·1 v)

(T ◦ ρ1(m))(v) (ρ2(m) ◦ T )(v)

=

= =

=

where ·i, ρi are the scalar multiplication and monoid morphism corresponding
to Vi, i = 1, 2. The red equalities are true by definition, so if one of the blue
ones is, so is the other.

The reader may notice that this just expresses “the categories of kM -
modules and of representation of M over k are isomorphic”. However, we try
not to rely on categorical vocabulary too heavily in order to keep the results
as close as possible to the situation at hand.

2.1.2 Building blocks

From now on, we will almost exclusively deal in terms of (left) modules, with
mentions of the differences in terms of representation, mainly vocabulary wise.
Let M be a finite monoid and k be field, which we suppose algebraically closed
from now on. We are now only interested in modules where the ring is kM , for
which the underlying Abelian groups are actually k-vector spaces. Recall that
we only consider modules that are finite dimensional as k-vector spaces. In
most cases, this is a strong assumption and most results presented below can
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be proven under weaker hypotheses (most often, Noetherianity or Artinianity),
which the references we provide do. From now on, we denote the trivial module
{0} simply by 0.

Modules: building tools and building blocks

Definition 2.1.20. Let V1, V2 be kM -modules. Then the direct sum V1⊕V2 is
the k-vector space V1 ⊕ V2 equipped with the scalar multiplication defined by
r ·(v1 ⊕v2) = (r ·1v1)⊕(r ·2v2) with ri ∈ kMifori = 1, 2 and (v1, v2) ∈ V1 ⊕V2.

Definition 2.1.21. Let V1 be in kM1 − mod and V2 be in kM2 − mod. Then
the tensor product of V1 and V2 is the k-vector space V1 ⊗ V2 equipped with
scalar multiplication defined by (r1, r2) · (v1 ⊗ v2) = (r1 ·1 v1) ⊗ (r2 ·2 v2) and
extended linearly to V1 ⊗ V2.

Note that we are tensoring over the field k here, as we do systematically
whenever the tensor product is unlabeled. However, we will need to tensor
over an algebra.

Definition 2.1.22. Let V be a mod −R and W be an R−mod. Then V ⊗RW

is defined as V ⊗W quotiented by the ideal

⟨v · r ⊗ w − v ⊗ r · w | v ∈ V,w ∈ W,a ∈ R⟩.

In particular, the structures of right and left kM -modules disappear in the
quotient over kM , and, a priori, only a vector space remains. However, if V
happens to be a left module over a ring Rl and W is a right module over Rr,
then V ⊗kM W is in Rl − mod −Rr. This leads to a special case that we will
use later:

Proposition 2.1.23. If V is a right module over the ring kM and I ⊂ kM
is a 2-sided ideal, then V ⊗kM

kM⧸I ∼= V⧸V I. In particular V ⊗kM kM = V .

Proof. We recall that our rings (and in particular kM) are unital. Consider
the two following maps:

π :
{
V ⊗kM

kM⧸I −→ V⧸V I
v ⊗ r + I 7−→ v · r

ι :
{
V⧸V I −→ V ⊗kM

kM⧸I
v 7−→ v ⊗ 1 + I

.

These two maps are linear and inverses of each other.

Definition 2.1.24. If φ : V1 −→ V2 is a surjective kM -module morphism,
V2 is called a quotient. Equivalently, if V ′

1 is a submodule of V1, then let
V2 = V1⧸V ′

1
as an Abelian group quotient. Then V2 is naturally equipped with

a structure of kM -module and is called the quotient of V1 by V ′
1 .
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Definition 2.1.25. Let V ̸= 0 be a kM -module. Then V is indecomposable
if whenever V ∼= V1 ⊕ V2 then V1 = 0 or V2 = 0.

Proposition 2.1.26. Let V ̸= 0 be a kM -module. Then the following are
equivalent:

1. for any submodule V ′ of V , either V ′ = 0 or V ′ = V .

2. for all v ∈ V \ {0},kMv = V .

In that case, we say that V is a simple module. As a representation, we use
the term irreducible instead.

Proof. Suppose (1) and let v ∈ V ′, v ̸= 0. Then kMv is a nonzero submodule
of V , so kMv = V . Suppose (2) and let 0 ⊊ V ′ ⊂ V . Then for any v ∈ V ′, v ̸=
0,kMv = V . Since kMv ⊂ V ′, we have V ′ = V .

Lemma 2.1.27 (Schur’s Lemma). Let S1, S2 be simple kM -modules. Then
homkM (S1, S2) = 0 if S1 and S2 is not isomorphic and homkM (S1, S2) ∼= k
otherwise.

Proof. Let f ∈ homkM (S1, S2). Since ker f is a submodule of S1 and Im f

is a submodule of S2, f is injective if and only if it is surjective, if and only
if it is non-zero. Thus, homkM (S1, S2) ̸= 0 if and only if S1 ∼= S2. Let
f ∈ homkM (S1, S1). Because k is algebraically closed, f has an eigenvalue λ,
such that ker(f − λIdS1) ̸= 0: this implies f = λIdS1 .

Proposition 2.1.28. Let V be a kM -module. Then the following are equiv-
alent:

1. for any submodule V ′ ⊂ V , there exists V ′′ ⊂ V such that V = V ′ ⊕V ′′.

2. for any direct sum of simple submodules V ′ ⊂ V , there exists V ′′ ⊂ V

such that V = V ′ ⊕ V ′′.

3. V is a direct sum of simple modules.

In that case, we say that V is semisimple. As a representation, we use the
term completely reducible instead.

Proof. Clearly (1) implies (2). Also, (2) applied recursively implies (3) (the
recursion terminates as the modules are finite dimensional). Suppose (3) and
let V ′ ⊊ V be a maximal dimensional submodule of V for which (1) does not
hold. By (3), there must be a simple submodule S ⊂ V with S ∩ V ′ = 0
(by simplicity of S). So V ′ + S = V ′ ⊕ S. Since V ′ is maximal with the
property of not being a summand, there exists a submodule V ′′ such that
V ′′ ⊕ (V ′ ⊕ S) = V . This is absurd as we supposed that V ′ was not a direct
summand, so (1) must hold.
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Example 2.1.29. Consider IrrkM a set of representative of the iso-
morphism classes of simple kM modules (which is necessarily finite).
Then ⊕

V ∈IrrkM

V ⊗ V ∗

is a semisimple kM -module.

It is quite straightforward that semi-simplicity is stable by direct sum,
submodule, and quotient. Jacobson’s density Theorem 2.1.47 ensures that is
also stable by tesor product. Moreover, let f : V1 −→ V2 be a morphism of kM -
modules. If f is injective and V2 is semisimple, so is V1. If f is surjective and
V1 semisimple, so is V2. Obviously, simple module are in particular semisimple
and simple modules are necessarily indecomposable. Sadly, for general (and
even finite) monoids, the notions of indecomposable and simple modules do
not coincide.

Example 2.1.30. Consider M = ({0,1},×, 1) acting on itself by mul-
tiplication. Then the module kM (where the scalar multiplication is
purely formal) is not irreducible as k0 is a non-trivial submodule, but
it is indecomposable because the image of the scalar multiplication by
0 is k0.

However, simple and indecomposable modules are still elementary building
blocks, as we have the two following theorems. The first one is the Krull-
Schmidt Theorem (see [Jac09, Section 3.4] for a proof), that affirms that al-
though when decomposing a module, we may not get to simple modules, at
least the decomposition obtained is essentially unique.

Theorem 2.1.31 (Krull-Schmidt). Any finite dimensional kM -module has a
unique (up to reordering of the summands and isomorphism) decomposition as
a direct sum into indecomposable modules.

The second one is the Jordan-Hölder Theorem (see [Jac09, Section 3.3] for
a proof), which affirms that although we may not access them by direct sum
decomposition, when decomposing into simple modules via quotients, we get
an essentially unique assemblage of simple modules.

Theorem 2.1.32 (Jordan-Hölder). Let V be any finite dimensional kM -
module. There exists n ∈ N and a strictly increasing sequence of submodule
of V , 0 = V0 ⊂ V1 ⊂ Vn−1 ⊂ Vn = V , called a composition series, such that
Vi⧸Vi−1 is simple for all i ∈ J1, nK. These quotients are called composition fac-
tors and for a given simple module S, its multiplicity as a composition factor
of V is independent of the choice of composition series and denoted [V : S].
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Projective modules In particular, the Krull-Schmidt Theorem invites us
to consider modules that are well-behaved with respect to direct sums.

Definition 2.1.33. A module P is projective if for any kM -modules V,W
and any morphism g : P −→ V and surjective morphism f : W −→ V , there
exist a morphism h : P −→ W such that g = f ◦h i.e. such that the following
diagram commutes.

W

P V

fh

g

Proposition 2.1.34. If Q = ⊕
i∈I Pi is a (finite) direct sum of kM -modules,

Q is projective if and only if every Pi is.

Proof. We denote by ιi the canonical injection of Pi in Q and πi the canonical
projection of Q on Pi. Let V,W be kM -modules and f : W −→ V be any
surjective morphism. Suppose Q is projective and let u : Pi −→ V be any
morphism. We have the following commutative diagram:

W

Q Pi V

f

πi

w

ιi

u

v

with w existence assured by Q being projective and v defined as w ◦ ιi. We
must verify f ◦ v = u but f ◦ v = (f ◦ w) ◦ ιi = u ◦ (πi ◦ ιi) = u because
πi ◦ ιi = IdPi .

Suppose now that Pi is projective for all i ∈ I, and let u : Q −→ V be any
morphism. For all i ∈ I, we have the following commutative diagram:

W

Pi Q V

f

ιi

vi

u

v

where vi exists because Pi is projective and v = (vi)i∈I . We have f◦v◦ιi = u◦ιi
for all i ∈ I which implies fv = u: Q is projective.

Proposition 2.1.35. A free kM -module is projective.

Proof. Let F be a free kM -module with kM -basis (ei)i∈I . Let V,W be kM -
modules, f : W −→ V be a surjective morphism and u : F −→ V be any
morphism. By surjectivity of f , for all i ∈ I, there exists wi ∈ W such that
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u(ei) = f(wi). We define h(ei) = wi for all i ∈ I. Since F is free, h can be
uniquely extended into a kM -module morphism h such that fh = u: F is
projective.

As a consequence of this, any direct summand of kM is projective. But
the converse is also true!

Proposition 2.1.36. A module is projective if and only if it is a summand
of a free module.

Proof. We took care of the “only if” in the previous proposition. Suppose that
P is projective. Then it is a quotient of a free module F , meaning there exists
a short exact sequence

0 −→ ker f ι−→ F
f−→ P −→ 0

where ι is the inclusion. By projectivity of P , we can transform this into:

P

0 ker f F P 0

g IdP

ι f

This implies that F = Im g⊕ker f ∼= P ⊕ker f . Indeed, let g(x) ∈ ker f . Then
f(g(x)) = 0 so 0 = (g ◦ f ◦ g)(x) = g(x), so Im g ∩ ker f = 0. Since we have
finite dimensional modules and dimF = dim ker f + dim Im g, this concludes:
P is (isomorphic to) a summand of F .

Projective modules interest us mainly because, as we have seen, they be-
have especially cleanly with regard to direct sum. We will see that this implies
that there is a finite number of projective indecomposable modules in Propo-
sition 2.1.37. The second reason is that the set of projective indecomposable
modules is closely related to the set of simple modules, as we shall see in the
next paragraph.

Proposition 2.1.37. The projective indecomposable kM -modules are pre-
cisely the indecomposable summands of kM .

Proof. Let kM = ⊕
i∈I Pi the decomposition in indecomposable modules given

by the Krull-Schmidt Theorem. From Proposition 2.1.36, the Pi are projective
modules. Conversely, still by Proposition 2.1.36, if P is projective indecompos-
able, then there exists some Q ∈ k−mod and n > 0 such that P⊕Q = (kM)n.
But (kM)n = ⊕

i∈I P
n
i , so by unicity P is one of the Pi.

In particular, since kM is finite dimensional, there is a finite number of
non-isomorphic projective indecomposable modules.
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2.1.3 From projective to simple, and back.

The objective of this section is to show that the projective indecomposable
kM -modules are in natural bijection with the simple kM -modules. We follow
[CR66, Section 5.4] as well as [Ass97, Chapter VII and VIII].

Jacobson Radical.

To get there, we need to discuss the notion of maximal submodule and Jacobson
radical. This will be immediately useful toward the cited goal, but also later
when we will need some properties of the radical to derive a formula for the
Character table in Section 3.1.

Definition 2.1.38. A submodule V ′ of a kM -module V is maximal if V ′ ̸= V

and if it is maximal for inclusion.

Proposition 2.1.39. A submodule V ′ of a kM -module V is maximal if and
only if M/M ′ is simple.

Proof. Suppose M/M ′ is simple and let s ∈ M \M ′. Then s+M ′ ∈ M/M ′ is
not the class of 0. By simplicity, s+M generates M/M ′, so {s}∪M ′ generates
M ′: M ′ is maximal. Conversely, if M ′ is maximal, for any s ∈ M \M ′, {s}∪M ′

generates M , or equivalently s + M ′ generates M/M ′: any non-zero element
of M/M ′ is generator, M/M ′ is simple.

Definition 2.1.40. The radical of a kM -module V , denoted by radkM (V ),
is the set:

radkM (V ) =
⋂

V ′⊂V, maximal
V ′.

Because of Proposition 2.1.39, it is obvious that radkM (V ) could also be
defined as the intersection of the kernel of all morphisms with a simple module
as image:

radkM (V ) =
⋂

S simple

⋂
φ∈homkM (V,S)

kerφ.

For now, we consistently deal with modules over kM and we momentarily drop
radkM (V ) for rad(V ) for the sake of lighter notation. However, in Section 3.1,
we will simultaneously deal with modules on different algebras for which the
heavier notation will be necessary.

Proposition 2.1.41. Let V be kM -module. Then rad(V ) is the smallest (for
inclusion) submodule such that V/ radV is semisimple.
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Proof. First, suppose that V/V ′ = ⊕
i∈I Si is semisimple (with Si simple for

all i), and let π be the canonical projection of V onto V/V ′ and πi be that of
V/V ′ onto Si. Then kerπ = ⋂

i∈I kerπiπ ⊂ rad(V ) because πiπ : V −→ Si is
surjective and thus its kernel is a maximal submodule.

Secondly, the maximal submodules of Q = V/ radV lift to maximal sub-
modules of V , and they intersect at 0, so this quotient has 0 as radical. This
implies that it is semisimple. Indeed, because Q is finite dimensional, we may
choose a minimal dimensional element among the finite intersections of maxi-
mal submodules, say Q′ = ⊕i∈IQi where Qi is maximal in Q for all i. Let Q′′

be any maximal submodule. Then by minimality of Q′, Q′′ ∩Q′ = Q′. This is
true for any Q′′, so rad(Q) ∩Q′ = Q′ = 0. Let πi be the canonical projection
of Q onto Q/Qi. Then f = (πi)i∈I : Q −→

⊕
i∈I

Q⧸Qi
is injective, so Q is

semisimple.

Corollary 2.1.42. In particular, a kM -module is semisimple if and only if
its radical is 0.

Since a ring is a bimodule on itself, we have a slight ambiguity when it
comes to apply the previous definition this is dissipated by the next proposition
(see [Ass97, Section VII-3]).

Proposition 2.1.43. The following definitions of the Jacobson radical of kM ,
denoted by rad(kM) are equivalent:

1. The intersection of two-sided maximal ideals.

2. The intersection of left maximal ideals.

3. The intersection of right maximal ideals.

4. The set {x ∈ kM |xS = 0 for all simple kM − modS}.

Note that as submodules of an algebra are its ideals, this is essentially the
same definition as before, and it only gives the reassurance that the side on
which the algebra is acting on itself does not matter. In our case, where the
algebra is finite dimensional, we have a convenient description of the radical
of a module in terms of the Jacobson radical of the algebra (see [Ass97, VII-
Theorem 4.6]).

Proposition 2.1.44. Let V be a finite dimensional kM module. Then

radkM (V ) = rad(kM)V.

Remark. Because of this, we say that an algebra (in our case kM) is semisim-
ple if all its modules are semisimple and, equivalently, if its radical is 0.
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Example 2.1.45. If M is a group and k is a field whose characteristic
does not divide |G|, then kG is a semisimple algebra (this is called
Maschke’s Theorem, see [Eti+09, Theorem 4.1.1]). This case is called
ordinary while the “bad case”, where char(k) does divide |G|, is called
the modular case.

Definition 2.1.46. The top (or cosocle) of a module V over kM , denoted by
topkM (V ) or top(V ) when clear in context, is V/ radkM (V ). The top of the
algebra kM is its top as a module on itself.

Since clearly top(kM) is itself an algebra, and given Proposition 2.1.43.(4),
simple kM -modules are in bijection with simple top(kM)-modules because
the radical acts as zero on any simple module. The question of describing the
decomposition of top(kM) into simple modules arises naturally. To answer
this question, we use the following result from [Jac45], for which a proof can
be found in [Eti+09, Theorem 3.2.2].

Theorem 2.1.47 (Jacobson’s density Theorem). Let V be a simple kM -
module. The map kM −→ L(V ) given by a 7−→ (v 7→ a · v) is surjective.

Proposition 2.1.48. Consider a set of representative of the isomorphism
classes of simple kM modules denoted IrrkM . Then

top(kM) ∼=
⊕

V ∈IrrkM

V ⊗ V ∗

is a semisimple k-module.

Proof. As noted in Example 2.1.29, this is as semisimple kM -module and thus
also a semisimple top(kM)-module. Because L(V ) ∼= V ⊗ V ∗ as a top(kM)-
module, from Theorem 2.1.47, the direct sum is a quotient of kM . Because of
Proposition 2.1.41, it suffices to see that its kernel is contained in rad(kM).
But from Proposition 2.1.43.(4), if x /∈ rad(kM) then xV ̸= 0 for some V ∈
IrrkM so x does not act as 0 on one of the summands.

In the case where kM is already semisimple, top(kM) = kM and this
result is called the Wedderburn-Artin Theorem.

The bijection between simple and projective indecomposable.

To get to the bijection between projective indecomposable and simple modules,
we now can apply the above definition toward describing the radical of the
indecomposable projective modules.
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Proposition 2.1.49. Let P be a projective indecomposable kM -module. Then
P admits one unique maximal submodule.

Proof. The collection of strict submodules is non-empty (as 0 is one) and
because P is finite dimensional, we can just choose a submodule of maximal
dimension. Let us show that this choice is unique. Suppose that M,M ′ are
two distinct maximal submodules of P . We have the following commutative
diagram.

P

M P P⧸M ′

π′

v

ι

π′ι

π′

The canonical projection on P/M ′ is π′ and ι : M −→ P is the inclusion.
The morphism π′ι has a submodule of the simple module P/M ′ as image.
Therefore, π′ι(M) = 0 or P/M ′. The first possibility implies that M ⊂
kerπ′ = M ′ and by maximality, M = M ′. Thus, π′ι must be surjective.
Since P is projective, there exists v : P −→ M making the diagram commute.
Consider ιv : P −→ P : since P is finite dimensional, for some n > 0, we have
P = Im (ιv)n ⊕ ker(ιv)n. But P is indecomposable so either P = ker(ιv)n, in
which case we read on the diagram that 0 ̸= π′(P ) = π′(ιv)n(P ) = 0: this is
absurd. The remaining possibility is that P = Im (ιv)n, but it would mean
that ι is surjective, which is impossible. In conclusion, M and M ′ cannot be
distinct.

Corollary 2.1.50. If P is a projective indecomposable kM -module, P/ rad(P )
is a simple kM -module.

This map is the bijection between projective and simple modules that we
are after. Let us first show that it is an injection.

Proposition 2.1.51. If V1, V2 are kM -modules and f : V1 −→ V2 is a mor-
phism, f(radV1) ⊂ radV2.

Proof. Let S be a simple kM -module and g : V2 −→ S be a morphism. By
definition of the radical, g ◦ f : V1 −→ S vanishes on radV1, so g vanishes on
f(radV1) for any g with a simple module as image: f(radV1) ⊂ radV2.

This shows that a morphism f : V2 −→ V2 factors to a morphism f̃ :
V1/ radV1 −→ V2/ radV2 defined by f̃(v + radV1) = f(v) + radV2. In other
words, the following diagram is commutative:
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V1 V2

V1⧸radV1
V2⧸radV2

f

π1 π2

f̃

where πi is the canonical projection of Vi onto Vi/radVi, i = 1, 2.

Lemma 2.1.52 (Nakayama’s Lemma). Let f : V1 −→ V2 be a morphism
between two finite dimensional kM -modules. Then f is surjective if and only
if the induced morphism f̃ : V1/radV1 −→ V2/radV2 is surjective.

Proof. Using the notations on the diagram, if f is surjective, since π2 is too, f̃
must be. Conversely, suppose f̃ is surjective. This implies that V2 = f(V1) +
rad(V2). If f(V1) ̸= V2 we choose f(V1) ⊂ W ⊊ V2 a maximal submodule (we
can, since V2 is finite dimensional). Then V2 = f(V1) + radV2 ⊂ W + radV2 ⊂
W ⊊ V2. This absurd, so f(V1) = V2.

Proposition 2.1.53. Let P1, P2 be projective, finite dimensional, kM -modules.
Then P1, P2 are isomorphic if and only if P1/radP1 and P2/radP2 are iso-
morphic.

Proof. If P1 and P2 are isomorphic, clearly, so are their semisimple quotient.
Conversely, suppose that f : P1/radP1 −→ P2/radP2 is an isomorphism. We
have the following commutative diagram.

P1 P2

P1⧸radP1
P2⧸radP2

v

π1 π2

f

In particular f̃π1 is surjective, so f exists because P2 is a projective module.
Since f is surjective, so is v (by Lemma 2.1.52). By considering f−1, we get
w : P2 −→ P1 surjective. P1, P2 thus have the same dimension, and v is in
fact an isomorphism.

We now know that any projective indecomposable module corresponds to
a unique (up to isomorphism) simple module. It remains to see why this map
is surjective. A complete demonstration of this fact would necessitate quite a
long introduction to the general theory of algebra representations, and thus we
admit the following result. We refer to [CR66, Section 54] for a detailed proof.
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Definition 2.1.54. Let A be an algebra (which in our case, by supposition,
is unitary). Like in semigroups, an idempotent e ∈ A is an element such that
e2 = e. Two idempotents e, f are orthogonal if ef = fe = 0. An idempotent e
is primitive if whenever e = e1 + e2 with e1, e2 idempotent, e1 = 0 or e2 = 0.
A set {e1, . . . en} of primitive orthogonal idempotents form a decomposition of
unity if 1 = ∑

ei.

Proposition 2.1.55. • There exists {e1, . . . , en} a decomposition of unity
of kM in primitive orthogonal idempotents.

• The projective indecomposable kM -modules are the kMei.

• rad(kMei) = rad(kM)ei.

• A kM -module V has a composition factor isomorphic to kMei⧸rad(kM)ei
if and only if eiV ̸= 0.

Proposition 2.1.56. The map P 7−→ P/radP is a bijection between isomor-
phism classes of indecomposable projective modules.

Proof. Corollary 2.1.50 gives the injectivity. Let S be a simple kM -module,
and ∑ ei be a decomposition of unity into primitive orthogonal idempotents.
Then 1S = S = ∑

eiS. So for some ei, eiS = S. On the other hand, if
Pi = eikM , then Si = Pi/radPi simple and clearly eiSi = Si. So S ∼= Si: we
have the surjectivity.

2.2 Characters

One of the major features of finite group representation theory is the fact that
all the information on a representation can be summarized in its character.
This (partially) carries over to monoid representation theory. In this section,
we give the elementary results of character theory needed for our purpose:
mainly how to compute with them and what the character table is. We have
in mind the goal of explicitly computing these objects, and, in particular, we
would like to know where to compute a character. Note that, until now, we have
remained agnostic regarding the characteristic of the field k, only supposing
it algebraically closed. This agnosticism has to stop in this section, where we
will have different results for the 0 and positive characteristics.

Definition 2.2.1. If V is a finite dimension kM -module, its character is the
map from M to k defined by χV

kM : m 7−→ Tr(v 7→ m · v).
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We recall the following well-known facts about characters. Proofs for fact
2 and 3 are respectively (ii) and (iii) of [Ste16, Proposition 7.12]1.

Proposition 2.2.2. 1. Let V be a kM -module. We have χV
kM = χV ∗

kMop.

2. Consider the short exact sequence of kM -modules :

0 −→ A −→ B −→ B/A −→ 0.

Then χ
B/A
kM = χB

kM − χA
kM .

3. Consider M,M ′ two finite monoids, V a kM -module and W a kM ′op-
module. Then χV ⊗W

kM⊗kM ′ = χV
kMχW

kM ′.

The previous properties are simply extensions of similar properties on
groups, and their proof is similar. From groups, we also keep in the case
of monoids the linear independence of irreducible characters (see [MQS15] for
the general case):

Proposition 2.2.3. The irreducible characters {χS
kM |S is a simple kM −

mod} are linearly independent as k valued functions.

This, together with the second point in the Proposition 2.2.2, has a nice
consequence. As we are interested in finite dimensional modules over finite
monoids, those modules have a composition series. Say that a kM -module
V , has S as a composition factor with multiplicity [V : S] for any simple
kM -module S. Then:

χV
kM =

∑
S

[V : S]χS
kM .

In that way, since characters of the simple modules are linearly independent,
the character of a module can be seen as a record of its composition factors.

The question of where to compute characters is worth asking: in the case of
groups, one needs only to compute the character for a transversal of conjugacy
classes to get its value everywhere.

Definition 2.2.4. We say that two elements m,m′ in M are in the same gen-
eralized conjugacy class or character equivalency class if for every kM -module
V , χV

M (m) = χV
M (m′). We denote by CM the set of generalized conjugacy

classes.

The description in the case of monoids in 0 characteristic was described for
the first time by McAlister in [McA72]. The case of the positive characteristic

1Note that for Fact 3, our reference deals only with the case M = M ′, but the
proof is the same.



Representation theory 66

is elucidated by Masuda, Quoos and Steinberg in [MQS15]. More modestly, we
only want to be able to compute a transversal of these character equivalency
classes. The particular result we are interested in is [MQS15, Corollary 2.16],
stated in the case of an algebraically closed field.

Definition 2.2.5. Let p be a prime number or 0. An element m ∈ M is
p-regular if it is a group element and either p = 0 or p and the order of m are
relatively prime.

Proposition 2.2.6 ([MQS15]). Let k be a field of any characteristic and
E = {e1, . . . , en} be idempotent representatives of the regular J -classes of
M . For each ei, let Ci = {ci,1, . . . , ci,mi} be representatives of the conjugacy
classes of the p-regular elements of Gei. Then the set CM = ⋃

ei∈E Ci is a set
of representatives of character equivalency classes of M .

We can now recall the definition of the character table of a monoid.

Definition 2.2.7. Let IrrM be the set of isomorphism classes of simple kM -
modules and CM as in definition 2.2.4. The character table of M over k is the
(square) matrix defined by :

X(M) = (χV
kM (m))V ∈IrrM ,m∈CM

.

Moreover, anticipating on Definition 2.4.2, if e ∈ M is an idempotent, we
define Xe(M) as the matrix obtained by extracting from X(M) only the rows
corresponding to simple modules with apex e.

Stated simply, the (matrix inverse of the) character table takes the charac-
ter of a representation and gives back the vector of multiplicities of the simple
modules as composition factors.

2.3 Cartan Matrix

We have just seen that projective indecomposable modules and simple modules
are in correspondence, which allows for the definition of the Cartan matrix of
the algebra kM .

Definition 2.3.1 (Cartan matrix). The Cartan (invariants) matrix of kM is
the integer matrix C(kM) with columns indexed by the set {Pi}i∈I of projec-
tive modules and rows indexed by the set {Si}i∈I of simple modules defined
by:

C(kM)i,j = ([Pj : Si]) for i, j ∈ I.
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We have seen that it is a square matrix, with positive entries. It can be
seen as a measure of how “not semisimple” the algebra of the monoid is: if
every indecomposable is also simple, the Cartan Matrix is the identity matrix.
Conversely, in a loose sense, the more non-diagonal entries are non-zero, and
the higher the coefficients are, the less semisimple the algebra is. The objective
of this section is to prove the following result due to Thiéry [Thi12].

Proposition 2.3.2 (Thiéry [Thi12]). Let {S1, . . . , Sn} be a set of represen-
tatives of the isomorphism classes of simple kM -modules. Denote by [kM :
Si ⊗S∗

j ] the multiplicity of Si ⊗S∗
j as a composition factor of kM . The Cartan

matrix of kM is equal to:

C(kM) = ([kM : Si ⊗ S∗
j ])i,j

Note that this makes formal sense: recall that we assumed that k is alge-
braically closed and that all modules are finite dimensional. Then we have the
following result (see [Eti+09, Proposition 3.10.2]):

Proposition 2.3.3. The Si ⊗ S∗
j are the simple kM ⊗ kMop-modules where

Si, Sj run over the simple kM -modules.

In other words, the Cartan matrix is a recording of the multiplicities of the
composition factors of kM as a kM ⊗ kMop module. But so is its character!
The difference being that the character of kM as it is computed is expressed in
the basis of the character equivalency classes of kM ⊗ kMop while the Cartan
matrix is expressed directly in the basis of the simple modules. Since the
basis change between the two is precisely given by the character table, we have
Thiéry’s Formula for the Cartan matrix.

Corollary 2.3.4 (Thiéry [Thi12]). The Cartan matrix is given by the formula:

C(kM) = tX−1
M BX−1

M

where B = (|{s ∈ M |msm′ = s}|)m,m′∈CM

Proof. It follows from the previous remark and the fact that B is indeed the
character of kM as a kM ⊗ kMop-module: for any (m,m′) ∈ M ×Mop, v 7→
mvm′ is a transformation of the set M as a basis of M . As a consequence,
the sth line of the matrix of v 7→ mvm′ contributes 1 to the trace if s = msm′

and 0 otherwise.

We will now present a proof of Proposition 2.3.2 following [Ste16, Sec-
tion 7.5]. The first and main ingredient is [Ste16, Proposition 7.27], itself a
reformulation in our context of Proposition 11.3 and its proof in [SY11].
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Theorem 2.3.5. Let e1, . . . , en be a decomposition of unity in kM into prim-
itive orthogonal idempotents. Then {ei ⊗ ej | i, j ∈ J1, nK} is a decomposition
of the unity of kM ⊗ kMop into primitive orthogonal idempotents.

Moreover, if for any k ∈ J1, nK, kMe/ rad(kM)e is the simple kM -module
corresponding to an idempotent e, then the simple kM ⊗ kMop-module corre-
sponding to ei ⊗ ej is Si ⊗ S∗

j .

Note that Propositions 2.3.3 and Theorem 2.3.5 are essentially the same,
the latter putting more emphasis on the role of the idempotents. This result
being stated, we just need the classical lemma that follows to finally give a
proof of Proposition 2.3.2. A proof can be found in [Ass97, Proposition VIII-
1].

Lemma 2.3.6. Let e ∈ kM an idempotent and V ∈ k − mod. Then

homkM (kMe, V ) ∼= eV.

Proof of Proposition 2.3.2. Let us denote kM◦ for kM ⊗kMop. Let e1 . . . , en

be a decomposition of the unity of kM into primitive indecomposable idem-
potents. For k ∈ J1, nK, Pk = kMek and Sk = Pk/ rad(Pk). We have [Pj :
Si] = [kMej : Si] = dim eikMej by Lemma 2.3.6. But eikMej = (ei ⊗ ej)kM
as a kM◦-module. In the end,

[Pj : Si] = dim(ei ⊗ ej)kM = [kM : Si ⊗ S∗
j ]

because from Theorem 2.3.5 the simple module associated to ei ⊗ ej is Si ⊗
S∗

j .

2.4 Clifford-Munn-Ponizovskii

We recall that k is an algebraically closed field (in particular, it is perfect) and
M remains a finite monoid. In this section, we deal with monoid representation
theory, with the goal in mind to compute the character table of M . Using
the Clifford-Munn-Ponizovskii Theorem, this can largely be reduced to group
representation theory. Stated differently, the representation theory of a monoid
M is an extension of the representation theory of certain groups embedded in
M . The groups in question are precisely the groups of Definition 1.3.6.

We have previously stated that the representation theory of monoids is
an extension of the representation theory of some subgroups. This mainly
expressed using the two following functors.
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Definition 2.4.1. Let e ∈ M be an idempotent, L(e) its L -class, Ge the
associated maximal subgroup. We define the two following maps :

IndM
Ge

:
{

kGe−mod −→ kM−mod
V 7−→ kL(e) ⊗kGe V

Ne :
{

kM−mod −→ kM−mod
V 7−→ {v ∈ V | eMv = 0}

.

Note that if we choose an element a ∈ M and denote by L its L -class
and H its H -class, we can equip kL with a kM − mod −kΓ′(H) structure.
kL is already a mod −kΓ′(H) by definition of Γ′(H). Since H contains an
idempotent e, Γ′(H) ∼= H (e) = Ge. Moreover, this isomorphism is canonical.
We can also make it into a kM − mod by setting, for every m ∈ M and l ∈ L:

m · l =
{
ml if ml ∈ L

0 otherwise
.

This is well-defined, as ml /∈ L implies that l >L ml and so for every m′ ∈ M ,
l >L m′ml /∈ L. This makes kL(e) ⊗kGe V a well-defined kM -module.

We are almost ready to state the Clifford-Munn-Ponizovskii Theorem,
which is the central piece connecting group and monoid representation the-
ory. We will need the notion of the apex of a kM -module. A complete proof
module theoretic proof of the Clifford-Munn-Ponizovskii Theorem can be found
in [Ste16, Chapter 5]. We follow the exposition given in [GMS09, Theorem 7].

Definition 2.4.2. If V is a kM − mod, we denote its annihilator in M by
AnnM (V ) = {m ∈ M |mV = 0}. This is clearly a two-sided ideal of M and,
as such, is a union of J -classes. Let V be a kM−mod. A regular J -class J is
said to be the apex of V if AnnM (V ) = IJ where IJ = {s ∈ M | J ̸≤L J (s)}.
If e ∈ J is an idempotent, we also say that V has apex e.

Note in terms of idempotents, the definition allows for a module to have
more than one apex, but in that case, they must both lie in the same J -class.

Proposition 2.4.3. Let V be a finite dimensional simple kM -module. Then
V has an apex.

Proof. Because kM is unitary, kMV ̸= 0. Let J be a ≤J -minimal J -class
such that JV ̸= 0. The ideal I = MJM contains J and for any m ∈ I \ J ,
m ≤J J . By minimality kIV = kJV ̸= 0. By simplicity, this implies that
kJV = V . From this, we get that AnnM (V ) ⊂ IJ : by definition of being
≤J above, if j ∈ J ≤J m ∈ M and mV = 0 there exists u, v ∈ M such
that j = umv and so jV = 0. Hence, the first inclusion. Moreover, IJJ ⊂



Representation theory 70

I \ J ⊂ AnnM (V ) because elements of IJ are not above J , they fall into a
J -class lower than J once multiplied by an element of J . We indeed have
AnnM (V ) = IJ . We now must show that J is regular, that is that JJ ∩ J ̸= ∅
(Corollary 1.3.3). But if that was the case, then JJ ⊂ I \J ⊂ AnnM (V ) which
is absurd.

Theorem 2.4.4 (Clifford-Munn-Ponizovskii). Let M be a finite monoid, e ∈
M an idempotent and k be a field.

1. There is a bijection between isomorphism classes of simple kM -modules
with apex e and isomorphism classes of simple kGe-modules given by :

V 7−→ V # = IndM
Ge

(V )/ rad(IndM
Ge

(V )).

The reciprocal bijection is given by S 7−→ eS.

2. rad(IndM
Ge

(V )) = Ne(IndM
Ge

(V )).

3. Every composition factor of IndM
Ge

(V ), except for V #, has an apex strictly
J -greater than e. Moreover, V # has apex e and is a factor of multi-
plicity one.

The proof relies on the following more general result from Green [Gre06,
Proposition 6.2], and we present a formulation taken from [GMS09, Lemma 6].

Lemma 2.4.5. Let A be an algebra and e ∈ A an idempotent. Then:

1. If V is a simple A-module, then either eV = 0 or eV is a simple eAe-
module.

2. If V is a simple eAe-module, then Ae ⊗eAe V has a unique maximal
A-submodule N = {w ∈ Ae⊗eAe V | eAw = 0}.

3. V # = Ae⊗eAe V⧸N is the unique simple A-module such that eV # ∼= V .

Proof of Theorem 2.4.4. Let e ∈ M be an idempotent, J = J (e) and V be
a simple kM -module with apex e. Clearly V is also a simple AJ = kM/kIJ -
module as elements in IJ act as 0. Now eAJe = keMe⧸keIJe = kGe. In
the same way, as kIJ acts as 0, Ae ⊗eAe V ∼= AJe ⊗kGe V . By definition
of the J order, AJe ≤J e so AJe ⊂ kJ (e). From the Location Theorem
1.3.2, we have in fact AJe = kL(e). The Clifford-Munn-Ponizovskii Theorem
is obtained by applying Lemma 2.4.5 replacing A by kM and Ae ⊗eAe V by
kL(e) ⊗kGe V .

Since we have seen that Ge
∼= Gf whenever eJ f , the simple kM -module

are indexed by the simple kGe-modules where e runs over a family of idempo-
tent representatives of the regular J -classes. Note also that this theorem is
independent of the characteristic of the field k.



Chapter 3
Computing representation invariants

3.1 A formula for the character table

In this section, we will often keep notations between results. Thus, we fix
once and for all a finite monoid M , e ∈ M an idempotent, Ge the maximal
subgroup at e, and Irre a set of representatives of the isomorphism classes
of simple kGe-modules. The field k is supposed algebraically closed, but no
hypothesis is made on its characteristic.

The previous discussion, and in particular the Clifford-Munn-Ponizovskii
Theorem, allows us the following description of kL(e) for an idempotent e.

Proposition 3.1.1. With the previously defined notations, we have:

topkGop
e

(kL(e)) ∼=
⊕

V ∈Irre

IndM
Ge

(V ) ⊗k V
∗

where V ∗ is the dual of V and topkGop
e

(kL(e)) is taken to mean the top of
kL(e) as a right module over kGe.

Proof. By definition, IndM
Ge

(V ) = L(e) ⊗kGe V . Now, since direct sum and
tensor product over a ring with identity commute :

⊕
V ∈Irre

IndM
Ge

(V )⊗V ∗ =
⊕

V ∈Irre

kL(e)⊗GeV ⊗V ∗ = kL(e)⊗Ge

 ⊕
V ∈Irre

V ⊗ V ∗


Because of Proposition 2.1.48, ⊕V ∈Irre

V ⊗ V ∗ = top(kGe) so :⊕
V ∈Irre

IndM
Ge

(V ) ⊗ V ∗ = kL(e) ⊗kGe
kGe⧸rad(kGe)

= kL(e)⧸kL(e) · radkGop
e

kL(e)

71
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because of Proposition 2.1.23. This is equal to topkGop
e

(kL(e)) by Proposition
2.1.44.

In the ordinary case, this puts in relation three kinds of modules : the
simple kGe-modules, which are well-understood, kL(e) which is understood
as well, because it is a combinatorial module, and finally the IndM

Ge
(V ) which

contain, in a sense, the simple kM -module that we are after. In the modular
case, however, not only are the simple kGe-modules not entirely understood
even in (a priori) sympathetic cases like Sn, but the decomposition gets com-
plicated further by the quotient by radkGop

e
(kL(e)). Still, we want to pro-

ceed and apply the Clifford-Munn-Ponizovskii Theorem, according to which
we need to remove the radical of each IndM

Ge
(V ) factor to reach the simple

kM -modules. Proposition 3.1.4 puts the radical in a form similar to Theorem
2.4.4 while Proposition 3.1.5 does exactly this. Lemma 3.1.2 and its corollary
are technical results on radicals used in the proof of Proposition 3.1.4.

Lemma 3.1.2. Let A,B be two finite dimensional algebras over a perfect field
k. Then:

rad(A⊗B) = rad(A) ⊗B +A⊗ rad(B).

A proof of this fact can be found in the proof of [Eti+09, Proposition
3.10.2]1. From Lemma 3.1.2, we get the following Corollary by recalling Propo-
sition 2.1.44: if V is an A-module and A is finite dimensional, radA(V ) =
rad(A) · V .

Corollary 3.1.3. Let A,B be two finite dimensional unitary algebras over a
perfect field. If VA ⊗VB is an A−mod −B (or equivalently an A⊗Bop −mod),
then

radA⊗Bop(VA ⊗ VB) = radA(VA) ⊗B +A⊗ radB(VB).

This allows us to identify the radical of topkGop
e

(kL(e)) as a kM ⊗ kGop
e -

module. We denote topkGop
e

(kL(e)) by S from now on.

Proposition 3.1.4. With the previously defined notations, we have:

radkM⊗kGop
e

(S) = Ne(S).

Proof. Using Lemma 3.1.2, for V a simple Ge-module, we have that :
radkM⊗kGop

e
(IndM

Ge
(V ) ⊗k V

∗)
= radkM IndM

Ge
(V ) ⊗ V ∗ + IndM

Ge
(V ) ⊗ radkGop

e
(V ∗)

(1)= radkM IndM
Ge

(V ) ⊗ V ∗

(2)=Ne(IndM
Ge

(V )) ⊗ V ∗

1We would like to warmly thank Pr. Pierre-Guy Plamondon for providing us with
a proof of this fact when we could not find a reference for it. It seems to be folklore
in the algebra representation community, to the point that it is rarely written down.
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where equality (1) comes from the simplicity of V ∗ as a kGop
e -module and (2)

is the second point of Theorem 2.4.4.

Since radical and direct sums commute, from Proposition 3.1.1, we know
that:

radkM⊗kGop
e

(S) =
⊕

V ∈Irre

Ne(IndM
Ge

(V )) ⊗ V ∗.

It remains to be seen why⊕
V ∈Irre

Ne(IndM
Ge

(V )) ⊗ V ∗ = Ne(S).

It is clear the direct sum on the left is a subset of the set on the right. For the
other inclusion, we see that if V, V ′ are kM -modules, Ne(V ⊕ V ′) = Ne(V ) ⊕
Ne(V ′). Given the Proposition 3.1.1, it is enough to show that Ne(IndM

Ge
(V ))⊗

V ∗ = Ne(IndM
Ge

(V ) ⊗ V ∗). Let x ∈ IndM
Ge

(V ) ⊗ V ∗ be such that for every
m ∈ M, emx = 0. x can be written as ∑i(

∑
j xi,jbj)⊗b′

i where {bj}j is a basis
of IndM

Ge
(V ) and {b′

i}i is a basis of V ∗. For every m ∈ M , we have :

em · x = em ·
∑

i

(
∑

j

xi,jbj) ⊗ b′
i =

∑
i

(em ·
∑

j

xi,jbj) ⊗ b′
i = 0

that is, for every b′
i we get em ·

∑
j xi,jbj = 0 so ∑j xi,jbj ∈ Ne(IndM

Ge
(V ))

which means x ∈ Ne(IndM
Ge

(V )) ⊗ V ∗.

Proposition 3.1.5. With the previously defined notations, we have:

topkM⊗kGop
e

(S) ∼=
⊕

V ∈Irre

V # ⊗ V ∗.

Proof. From Proposition 3.1.4, we have a decomposition of radkM⊗kGop
e

(S) as
a direct sum adapted to the decomposition of S as ⊕V ∈Irre

IndM
Ge

(V ) ⊗k V
∗.

So:

topkM⊗kGop
e

(S) ∼=
⊕

V ∈Irre

(IndM
Ge

(V ) ⊗k V
∗)/(Ne(IndM

Ge
(V )) ⊗ V ∗).

From Theorem 2.4.4, we know that

0 −→ Ne(IndM
Ge

(V )) −→ IndM
Ge

(V ) −→ V # −→ 0

is a short exact sequence. Since Ne(IndM
Ge

(V ))⊗V ∗ a submodule of IndM
Ge

(V )⊗
V ∗ and because tensor product over a field is exact, we have a short exact
sequence :

0 −→ Ne(IndM
Ge

(V )) ⊗ V ∗ −→ IndM
Ge

(V ) ⊗ V ∗ −→ V # ⊗ V ∗ −→ 0

which proves the result.
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Finally, we can apply the language of characters to Proposition 3.1.5, which
yields a formula for computing the character table of M over k given the
character tables of the groups Ge over k.

Proposition 3.1.6. With the previously defined notations, we have the for-
mula for Xe(M) :

Xe(M) = tX(Ge)−1 ·
(
χS

kM⊗kGop
e

(m, g) − χ
Ne(S)
kM⊗kGop

e
(m, g)

)
g∈CGe ,m∈CM

where the dot is the matrix product.

Proof. First, we have, because of Proposition 2.2.2.(2), we have:

χ
S/Ne(S)
kM⊗kGop

e
= χS

kM⊗kGop
e

(m, g) − χ
Ne(S)
kM⊗kGop

e
(m, g)

Then, from Proposition 3.1.5, we know that:

χ
S/Ne(S)
kM⊗kGop

e
(m, g) = χ

⊕
V ∈Irre

V #⊗V ∗

kM⊗kGop
e

(m, g)

=
∑

V ∈Irre

χV #⊗V ∗

kM⊗kGop
e

(m, g)

=
∑

V ∈Irre

χV #
kM (m)χV

kGe
(g)

This last sum is clearly the dot product between the column of X(Ge) in-
dexed by g and the column of Xe(M) indexed by m. That is, the coefficient
in position (g,m) of χtop S

kM⊗kGe
is equal to the coefficient in position (g,m) of

tX(Ge) ·Xe(M), which, together with Proposition 2.2.2-(ii), proves the equal-
ity.

Let us state it in the particularly simple ordinary case where S = kL(e).

Corollary 3.1.7. We suppose that char k ∤ |Ge|. With the previously defined
notations, we have the formula for Xe(M) :

Xe(M) = tX(Ge)−1 ·
(
χ

kL(e)
kM⊗kGop

e
(m, g) − χ

Ne(kL(e))
kM⊗kGop

e
(m, g)

)
g∈CGe ,m∈CM

where the dot is the matrix product.

This is nice because this formula gives the character table of the monoid
as a function of the character tables of groups, the bicharacter of the L -
classes and the bicharacter of their radical (and nothing else). The first is
generally well-understood. The second can efficiently be computed from the
result of Section 3.2. The third, as Section 3.3.4 reveals, is our bottleneck.
Still, we make it reasonably efficient using Green structure results in Section
3.3.3. In the modular case, the situation is not nearly as favorable. Modular
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representation theory of groups is much more complicated than in the ordinary
case. For instance, the computer algebra system GAP, that we use to apply
this formula later in this manuscript, does not have an algorithm to compute
the character table of any finite group in the modular case, despite being at
or near the state of the art in terms of computational group theory. Despite
this, we still can separate the “monoid” computations from the “characteristic”
computations in the radical.

Proposition 3.1.8. We have:

topkM⊗kGop
e

(S) = kL(e)⧸Ne(kL(e)) + radkGop
e

(kL(e)).

Proof. It is easy to see that

Ne(S) = {v ∈ kL(e) |Mev ⊂ radkGop
e

(kL(e))}⧸radkGop
e

(kL(e)).

For every H -class H ⊂ L(e), let lH ∈ M such that lH H (e) = H and denote
by L the set of those chosen lH . We have the decompositions adapted to the
kGe-right scalar multiplication:

kL(e) =
⊕
l∈L

l ·Ge, radkGop
e

(kL(e)) =
⊕
l∈L

l · rad(kGe).

Note that from Green’s Lemma, for any m ∈ M :

Im (me×kL(e)) =
⊕

H⊂Im (me×k L (e))
kH

where the direct sum is taken over H -classes. In particular, since the kM and
kGop

e actions commute, this induces a surjection between kGe-radicals:

me× :
⊕
l∈L

mel·kGe=kH

l · rad(kGe) 7−→ kH · rad(kGe)

whenever H is in the image of me×. Given v ∈ kL(e), suppose that mev =
r ∈ radkGop

e
(kL(e)). We can decompose v and r along the previous direct

sum:
me ·

∑
l∈L

vl =
∑
l∈L

rl =⇒ ∀l ∈ L, rl = me ·
∑
l′∈L

me(l·kGe)=l′·kGe

vl.

Because we have a surjection, for all l ∈ L let r′
l ∈ radkGe(L(e)) such that

mer′
l = rl and let r′ = ∑

l∈L r
′
l. Then v = (v − r′) + r′ where, by design,

v − r′ ∈ Ne(kL(e)) and r′ ∈ radkGe(L(e)). So,

Ne(S) = Ne(kL(e)) + radkGop
e

(kL(e))⧸radkGop
e

(kL(e)).
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Replacing in topkM⊗kGop
e

(S), we get that:

topkM⊗kGop
e

(S) = kL(e)⧸Ne(kL(e)) + radkGop
e

(kL(e)).

Thus, even in the modular case, we can reuse the computations described
later for the bicharacter of kL(e) and the equations for Ne(kL(e)). Supposing
we dispose of a “black box” algorithm giving the radical of kGe, the compu-
tations of the bicharacter radkM⊗kGop

e
(S) should not be much more inefficient

than that of Ne(kL(e)) in the ordinary case, as it necessitates the same linear
algebra operations. That being said, in Section 3.3 where we present effective
algorithms, we focus our attention on the ordinary case, and the modular case
remains to be tackled in practice.

3.2 Fixed points counting

Consider the problem of counting the number of elements of the set FixG(h, k)
where G is a finite group and h, k ∈ G. If FixG(h, k) is non-empty, it contains
an element γ such that hγk = γ, or equivalently h = γk−1γ−1. So for any
g ∈ FixG(h, k) we have:

hgk = g ⇔ γk−1γ−1gk = g ⇔ γ−1gk = kγ−1g.

This means that g ∈ γCG(k) where CG(k) is the centralizer of k in G. Because
the other inclusion is obvious, we get a description of | FixG(h, k)|: either h
and k−1 are conjugates in which case there are |CG(k)| fixed points, or there
are none, and there are no fixed points. In the case of a monoid, this reasoning
mostly breaks: we crucially used the invertibility property, which monoids
lack. The Schützenberger groups seem to be ideal candidates to get back some
of this invertibility. In this section, we clarify the role of the Schützenberger
groups for counting fixed points, how to give meaning to “h×H and ×Hk are
in the same conjugacy class”, and how to factorize our previous remark over
all the H -classes of the same J -class.

As the bijections between L (and R) classes will play a major role in the
remainder of this section, we introduce the following notations.

Notation 3.2.1. Given R,R′ two R -classes in the same J -class, we say that
(λ, λ′) is a left Green pair with respect to (R,R′) if:

• λR = R′ and λ′R′ = R.

• (λλ′)×R = IdR and (λ′λ)×R′ = IdR′
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Similarly, given two L -classes L,L′ in the same J -classes, (ρ, ρ′) is a right
Green pair with respect to (L,L′) if:

• Lρ = L′ and L′ρ′ = L.

• ×L(ρρ′) = IdL and ×L′(ρ′ρ) = IdL′

Using Green pairs, one can transport the problem of counting fixed points
in an arbitrary H -class to a reference H -class.

Proposition 3.2.2. Let H1, H2 ⊂ J be two H -classes contained in the same
J -class. Let λ, λ′, ρ, ρ′ such that:

• (λ, λ′) is a left Green pair with respect to (R(H1), R(H2)),

• (ρ, ρ′) is a right Green pair with respect to (L(H1), L(H2)).

Finally, let (h, k) ∈ M Stab(R(H2)) × StabM (L(H2)) and define (h′, k′) =
(λ′hλ, ρkρ′). Then the maps x 7→ λ′xρ′ and x 7→ λxρ are reciprocal bijections
between the sets FixH2(h, k) = {a ∈ H2 |hak = a} and FixH1(h′, k′) = {a ∈
H1 |h′ak′ = a}.

Proof. First, notice that Green’s Lemma gives us the existence of λ, λ′, ρ, ρ′

respecting the hypothesis we demand, and also gives that x 7→ λ′xρ′ and
x 7→ λxρ are reciprocal bijections between H1 and H2. Let a1 be an element
of H1 and denote by a2 = λa2ρ. Then:

ha2k = a2 ⇔ λ′ha2kρ
′ = λ′a2ρ

′ ⇔ (λ′hλ)a1(ρkρ′) = a1 ⇔ h′a1k
′ = a1

so these bijections restrict to FixH1(h′, k′) and FixH2(h, k).

Keeping in mind our computational goals, transporting the problem of
counting fixed points from H2 to H1 is helpful, as for the price of 4 monoid
multiplications, we can use a lot of precomputations specific to a particular
H -class, avoiding the repetition of multiple similar computations for each H -
class.

The question is now to determine the fixed points in a single H -class, using
our previous remark on conjugacy. Let us first clarify the idea of elements of
the left and right Schützenberger groups being in the same conjugacy class.

Proposition 3.2.3. Given and H -class H, a ∈ H and g ∈ Γ(H), we define
τa(g) as in Proposition 1.2.11. Then, τa gives rise to a bijection between the
conjugacy classes of Γ(H) and Γ′(H) that is independent of the choice of a.
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Proof. We want to check that for a ∈ H, g ∈ Γ(H), the conjugacy class of
τa(g) is defined independently of a. Take any a, b ∈ H. By definition of Γ(H),
there exist some h ∈ Γ(H) such that b = h · a. So :

b · τa(g) = (h · a) · τa(g) = h · (g · a) = hgh−1 · (h · a) = b · τb(hgh−1).

Since Γ′(H) acts freely, this means that τa(g) = τb(h)τb(g)τb(h)−1 and thus
τa(g) is conjugated with τb(g), which proves that the conjugacy class of τa(g)
is indeed defined independently of a. Finally, as τa is a group morphism,
the images of two conjugated elements are conjugated, meaning that τa does
indeed induce bijection between the conjugacy classes of the left and right
Schützenberger groups, independently of the choice of a.

In the next proposition, we formalize the idea of searching for the fixed
points as some centralizer, but in the context of a monoid.

Proposition 3.2.4. Let H be an H -class, a ∈ H and (h, k) ∈ M Stab(R(H))×
StabM (L(H)). Then

| FixH(h, k)| =
{

|CΓ′(H)(×Hk)| if τa(h×H)−1 ∈ ×Hk

0 otherwise

where ×Hk is the conjugacy class of ×Hk in Γ′(H) and CΓ′(H)(×Hk) is the
centralizer in Γ′(H) of ×Hk.

Proof. For simplicity, we commit an abuse of notation by denoting h×H as h
and ×Hk as k. Let a be any element of H.

FixH(h, k) = {b ∈ H |hbk = b}
= {a · g | g ∈ Γ′(H) and ha · gk = a · g}
= {a · g | g ∈ Γ′(H) and a · τa(h)gk = a · g}
= {a · g | g ∈ Γ′(H) and τa(h)gk = g}.

The last equality comes from the fact that Γ′(H) acts freely, so we can simplify
the a. Suppose that FixH(h, k) is non-empty and let γ ∈ Γ′(H) such that
τa(h)γk = γ. Then, for any g ∈ Γ′(H) :

τa(h)gk = g ⇔ g−1τa(h)gk = e ⇔ g−1γk−1γ−1gk = e ⇔ [γ−1g, k] = e

where [·, ·] is the commutation bracket. This means that

FixH(h, k) = {a · g | g ∈ γCΓ′(H)(k)}.

Note that because, again, Γ′(H) acts freely, FixH(h, k) has the same cardinal-
ity as CΓ′(H)(k) and that, from Proposition 3.2.3, this is independent of the
choice of a, which proves the result.
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Example 3.2.5. Consider a = [1 2 2 3] ∈ T4 and H = H (a). We have
Im a = {1, 2, 3} and ker a = {{1}, {2, 3}, {4}}. Notice that H is not a
group, since a2 = [1 2 2 2] /∈ H. Considering the Schützenberger groups
as symmetric groups on the image and kernel common to all elements of
H as in Example 1.2.9, we have Γ(H) = S(Im a) and Γ′(H) = S(ker a).
Let us first check for fixed points under the action of h = [1 2 3 4] on
the left and k = [2 1 1 4] on the right. Seen as an element of Γ(H), h
corresponds to IdIm a, and k corresponds to ({2, 3} {1}) in Γ′(H). Since
we have τa(h) = Idker a, it follows that | FixH(h, k)| = 0.
If we now take h to be [1 3 2 4], the corresponding element in Γ(H) is
(2 3) and τa(h) = ({2, 3} {4}). Since ({2, 3} {4}) and ({2, 3} {1}) are
conjugated in S(ker a). Their centralizers have cardinal 2 and one can
indeed check that [2 3 3 1] and [3 2 2 1] are the only fixed points in H.

Putting together the previous results, we get the following corollary on the
cardinality of FixJ(h, k).

Corollary 3.2.6. Let J be a J -class, a be any element of J and denote by
H0 = H (a), R0 = R(a), L0 = L(a). Let h, k be any elements of M . We
denote by:

• (λR, λ
′
R) a left Green pair with respect to (R0, R) for each R -class R ⊂

J , and (ρL, ρ
′
L) a right Green pair with respect to (L0, L) for each L -

class L ⊂ J ,

• SR (h) = {R ⊂ J |R is a R -class and hR = R},

• SL (k) = {L ⊂ J |L is an L -class and Lk = L}

Denoting the set of conjugacy classes of Γ′(H0) as C, we further define two
vectors:

• rJ(h) = (|CΓ′(H)(g)| · |{R ∈ SR (h) | τa(λ′
RhλR) ∈ ḡ}|)ḡ∈C ,

• lJ(k) = (|{L ∈ SL (k) | ρ′
LkρL ∈ ḡ}|)ḡ∈C .

Then FixJ(h, k) has cardinality the dot product of rJ(h) with lJ(k).

3.3 Algorithms

We suppose here that we are not in the modular case. In particular, we do not
discuss here the questions of p-regular elements and kGe-radicals.
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Question 3.3.1. Implement a version of the algorithms presented be-
low in the modular case.

3.3.1 Computational hypotheses

In this section, we discuss the computational hypotheses necessary for the
algorithms in the next section. This section is based on the work [Eas+19] in
which East, Egri-Nagy, Mitchell and Péresse provide efficient algorithms for all
basic computational questions on finite semigroups (which include monoids).
Although we limit our scope, for this section, to the case of transformation
monoids, the methods described in [Eas+19] allow the algorithms described
below to be applied to other interesting classes of monoids. In Section 3.3.4,
we do just that and provide timing and measure for other types of monoids.
Moreover, the algorithm of this section can theoretically be applied to any
finite monoid using a Cayley embedding in a full transformation monoid. In
general, however, this is very inefficient and not feasible in practice, even with
our non-naive algorithms.

Following the authors of [Eas+19], we make the following fundamental
assumptions that we can compute:

• Assumption I : a product of two elements of the monoid.

• Assumption II : the image and kernel of a transformation (note that we
do not explicitly use this assumption, but that it is necessary for the
algorithms of [Eas+19] that we do use).

• Assumption III : Green pairs.

• Assumption IV : Given h ∈ M Stab(H) compute the corresponding ele-
ment in Γ(H) (understood as a permutation group of the image common
to all elements of H as seen in Example 1.2.9), and similarly on the right.

Not only do we directly need to be able to do these computations for our
own algorithm, but they are also prerequisite for the algorithms from [Eas+19].
As such, we refer to the top of Section 5.2 of [Eas+19] on how to realize these
computations in the case of transformation monoids.

We, again, refer to [Eas+19] for the specific algorithms meeting our com-
putational prerequisites.

• Computing the Schützenberger groups: [Eas+19, Algorithm 4]

• Checking membership of an element in a Green class: [Eas+19, Algo-
rithms 7 & 8].
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• Finding idempotents: [Eas+19, Algorithm 10]. This algorithm also al-
lows for finding the regular J -classes.

• Decomposing the monoid in R , L and J -classes : [Eas+19, Algorithm
11] and its discussion. Note that by storing this decomposition, we can,
given an element of the monoid, find the classes that contain it.

• Obtaining a representative of a Green class: this is given by the data
structure representing the Green’s classes described at the top of [Eas+19,
Section 5.4].

Finally, we require the following points that, although they are not de-
scribed in [Eas+19], are easily obtained from it.

• Computing a set CM of character equivalency representatives: given
Proposition 2.2.6, this can be done in four steps:

1. compute a set E of idempotent representatives of the regular J -
classes,

2. compute Γ(H (e)) for each e ∈ E ,

3. compute a set Ce of representatives of the conjugacy classes of
Γ(H (e)) for each e ∈ E , using for instance the procedure described
in [Hul00],

4. for each e ∈ E and c ∈ Ce compute the corresponding element of
H (e) as in Example 1.3.9.

• Computing τa as in Proposition 3.2.3: in the case of transformation
monoids, given g ∈ Γ(H), τa(g) is simply, seen as an element of S(ker a):

a−1{i} 7→ (g · a)−1{g · a(i)},

which can be computed in O(n).

• Testing that two elements g, g′ in Γ′(H (a)) are conjugated : Γ′(H) is
represented as a subgroup of S(ker a) and known procedures, such as
the one described in [But94], can be used.

• Computing the cardinality of a conjugacy class of a Schützenberger
group: for instance, the computer algebra system GAP uses the method
described in [Hul00].
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3.3.2 Fixed points

We are now ready to present the algorithm for fixed-point counting, keeping
in mind that we want first to use the formula from Section 3.1 to compute the
character table of the monoid and further to compute its Cartan matrix. In
the cases we are interested in, we use the formalism of character computing,
since, as stated in the Lemma below, computing the characters of so-called
combinatorial modules is actually counting fixed points, exactly for the same
reason as in Corollary 2.3.4.

Lemma 3.3.2. Let M,M ′ be two finite monoids and (V,B) a finite dimen-
sional kM−mod −kM ′ space equipped with a basis B. If the actions of M,M ′

on (V,B) are combinatorial, meaning for any (m, b,m′) ∈ M×B×M ′,mbm′ ∈
(B ∪ {0}), then:

χV
kM⊗kM ′op = |{b ∈ B |mbm′ = b}|.

Proof. In the basis B, the matrix of the linear map x 7→ mxm′ is a {0, 1}-
matrix, with for every b ∈ B exactly one 1 in the b-th column, that 1 being
on the b-th row if mbm′ = b. Thus, the trace counts the number of fixed
points.

Note that we have already defined a structure of combinatorial kM −
mod −kGe on kL(e) for any idempotent e. In the same way, kJ for a J -class
J , can be equipped with a structure of kM − mod −kM by setting for every
(m, j) ∈ M × J :

m · j =
{
mj if mj ∈ J

0 otherwise
and j ·m =

{
jm if jm ∈ J

0 otherwise
.

As before, this is well-defined: firstly because the actions on the left and on
the right commute (because the monoid’s law is associative by assumption)
and secondly because either m ≤L m′ or m ≤R m′ imply m ≤J m′. Thus, if
ml or lm has “fallen to 0”, it can’t “climb back up” to J .

This structure makes (kJ, J) into a combinatorial module and we may
apply our fixed points counting methods to compute its character.

Algorithm 3.3.3 (Computing the bicharacter of a J -class). Keeping the as-
sumptions and notations of the previous Paragraph 3.3.1, we get from Corol-
lary 3.2.6 an algorithm to compute the bicharacter of kJ as a kM−mod −kM :

• Input : A J -class J , a set of representatives of the character equivalency
classes CM .

• Output : A matrix (|{m ∈ J |hmk = m}|)(h,k)∈C2
M
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1. Preparations:

(a) Choose a ∈ J and define H = H (a).

(b) Compute Green pairs (λR, λ
′
R) (respectively (ρL, ρ

′
L)) for (R(a), R)

(resp. (L(a), L)) for all R -class R ⊂ J (resp. L -class L ⊂ J).

(c) Compute the set C of conjugacy classes of Γ′(H).

2. For each character equivalency representative h ∈ CM , initialize rJ(h)
and lJ(h) to both be (0)ḡ∈C .

(a) For each R -class R ⊂ J , test if hλRa ∈ R. If so, denoting by ḡ

the conjugacy class of τa((λ′
RhλR)×H) in Γ′(H), increment rJ(h)

by |CΓ′(H)(g)| at position ḡ.

(b) For each L -class L ⊂ J , test if aρRh ∈ L. If so, denoting by ḡ the
conjugacy class of ×H(ρ′

LhρL) in Γ′(H), increment rJ(h) by 1 at
position ḡ.

3. Compute the matrix χ = (rJ(h) · lJ(k))(h,k)∈C2
M

using the previously
computed vectors and return χ.

Example 3.3.4. Recall that an aperiodic monoid is a monoid where all
H -classes are singletons. Let us apply the algorithm we just described
in the case of a J -class J with trivial H -classes. Several simplifications
occur: first, we don’t need to check for the conjugacy class, as there is
only one. Secondly, the conjugacy class has cardinality one. Consider
the vectors rJ = (|SR (h)|)h∈CM

and rJ = (|SL (h)|)h∈CM
with SL (h)

and SR (h) defined as in Corollary 3.2.6. The bicharacter is simply the
matrix product of rT

j with lJ . The particular case of this algorithm for
aperiodic monoid is described in [Thi12, Section 1]

Algorithm 3.3.5 (Computing the bicharacter of kM). If we consider (kM,M)
as a combinatorial kM − mod −kM , we immediately have that:

χkM
kM⊗kM ′op =

∑
J∈J

χkJ
kM⊗kM ′op

and we can therefore compute the bicharacter of the whole monoid M : we
first compute a set CM of representatives of the character equivalency classes
and we then iterate Algorithm 3.3.3 over all J -classes and sum the results.

The final useful example is the case of counting fixed points in a single reg-
ular L -class, for the purpose of computing the character table of the monoid.
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Algorithm 3.3.6 (Computing the bicharacter of an L -class). Let e be an
idempotent and let L = L(e). In this example kL is still a combinatorial
module, but it has the particularity, compared with the other two examples,
that the monoids on the left and right are not the same. However, as the
maximal subgroup at e, Ge, is a subsemigroup of M , the same results apply
at no extra costs.

We can simply adapt Algorithm 3.3.3. Since an element of CGe acts “as
itself” on the right, we don’t need to keep track of the action of the right with
a vector rL, as we did previously.

1. Initialize χ to (0)(h,k)∈CM ×C

2. For each h ∈ CM , for each H -class H, test if hλHa ∈ H. If so, denoting
by k the conjugacy class of λ′

HhλH in Ge, increment χ by |CGe(h)| at
position (h, k).

3. Return χ

3.3.3 Computing the radical

We are now almost in position to use the formula of Proposition 3.1.6: the
character tables of the groups are supposed to be given, as we dispose of
efficient group algorithms in the literature to compute them. From Algorithm
3.3.6 we now know how to efficiently compute the bicharacter of kL(e) as a
kM ⊗ kGop

e -module for some idempotent e ∈ M . It remains to compute the
bicharacter of Ne(kL(e)) as a kM ⊗ kGop

e -module, which we discuss now.

Let L = L(e). Recall that, by definition, Ne(kL) = {x ∈ kL | eMx = 0}.
Taking L as a basis for kL, we can form a matrix with rows indexed by M ×L

and columns indexed by L, with the coefficient at ((m, l), l′) = 1 if eml = l′

and 0 otherwise. Computing the kernel of this matrix yields a basis for Ne(kL)
but is extremely inefficient as the number of rows is many times the cardinality
of the monoid.

Notice first that for any m ∈ M , em ≤R e so we can consider only the
elements of M that are R -smaller than e. Conversely, recall that the structure
of kM -module on M is defined by m · l = ml if ml ∈ L and 0 otherwise and
that this latter case happens if ml ≤L l. Since if m ≤L l implies ml ≤L l, we
have that the (m, l)-th row of the matrix is null and that we may omit it. This
shows that we need only to consider the element of M that are not L -below
e. Together with the previous point, this means that the similarly defined
matrix but whose rows are only indexed by R(e) × L has the same kernel.
This is good news, as we may now exploit the structure of the J -class given
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by Green’s Lemma and in particular the Location Theorem to further reduce
the dimension of this matrix. Let us first choose convenient Green pairs.

Lemma 3.3.7. Let e ∈ M be an idempotent, R = R(e) its R -class and R′

another R -class of J (e). Let (λ, λ′) be a left Green pair for (R,R′). Then
(λe, eλ′) is a left Green pair for (R,R′). Similarly, if L = L(e), L′ is an
L -class of J (e) and (ρ, ρ′) is a right Green pair for (L,L′), then (eρ, ρ′e) is
a right Green pair for (L,L′)

Proof. Let g be any element of H (e) and g′ = λg. Since e is idempotent,
H (e) is a group with identity e so we have eλ′λeg = eλ′λg = eg = g and
λeeλ′g′ = λeg = λg = g′ which, from Green’s Lemma, make (λe, eλ′) a left
Green pair for (L,L′). A similar argument applies to the second part of the
proposition.

Remark. This lemma means that for a regular J -class J and for any two
L -class (or R -class) it contains, we may choose a corresponding Green pair
among the elements of those two classes.

Proposition 3.3.8. Let e ∈ M be an idempotent and H = H (e), L =
L(e), R = R(e) and J = J (e). For each R -class R′ ⊂ J , we choose a
left Green pair (l, l′) ∈ J2. We denote by L the set of all l for the chosen left
Green pairs. We define R similarly. Then Ne is the set of solutions of :

∀r ∈ R,∀g ∈ H,
∑
l∈L

1H(rl)xl(rl)−1g = 0

Proof. Consider an element a ∈ R. It can be written in a unique way as gr,
with g ∈ H and r ∈ R corresponding to L(a). Similarly, an element b in L

has a unique decomposition as lγ, l ∈ L, γ ∈ H. For an element x ∈ kL, we
note:

x =
∑

l∈L,γ∈H

xlγlγ

its decomposition over the basis L.

We want to find the equations that describe ker(gr×L) (where gr×L is
the linear map on kL obtained by extending the monoid’s multiplication by
linearity). From the Location Theorem, we get that Im (gr×L) ⊂ kH. For
k ∈ H, denote by fk,gr the k-th coordinate function of gr×L. Because gr×L

acts combinatorially on kL, we have :

fk,gr(x) =
∑

l∈L,γ∈H

1{k}(grlγ)xlγ
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Note that xlγ appears in the sum if and only if grlγ = k. From the
Location Theorem, and because we choose l ∈ L, r ∈ R, we have grlγ =
k if and only if rl ∈ H and γ = (rl)−1g−1k and thus the equation becomes:

fk,gr(x) =
∑
l∈L

1H(rl)xl(rl)−1g−1k.

For x to be in ker(gr×L), x must cancel simultaneously fk,gr for all k ∈ H.
We now have a set of equations for ker(gr×L), and we can deduce that the
set of equations

∀r ∈ R, ∀g, k ∈ H, fk,gr(x) =
∑

l∈L,γ∈H

1H(rl)xl(rl)−1g−1k = 0

describes Ne(kL). However, the equation system is redundant, as the equation
fk,gr(x) = 0 is the same for all pairs (g, gk′) with k′ ∈ H. Removing the
duplicate equations gives the system announced in the proposition.

Example 3.3.9 (Ne in the case of an aperiodic monoid). As in Example
3.3.4, let us consider the case of a J -class with trivial H -classes. In
this case, we have L = L, R = R and H = {1H}, so the equations
become:

∀r ∈ R,
∑
l∈M

1H(rl)xl.

Again from the Location Theorem, we have that 1H(rl) = 1 if and only
if there is an idempotent in L(r)∩ R(l). So if we form a matrix A with
rows indexed by L and columns indexed by R, and with coefficients 1
at (L(r), R(l)) if L(r)∩ R(l) contains an idempotent and 0 otherwise,
the above equations become:

(xl)T
l∈LA = 0,

that is, in the case of an H -trivial J -class, Ne(kL) is the left kernel of
the egg box picture seen as a {0, 1}-matrix.

Note that given this set of equations, we can compute the character χNe(kL(e))
kM⊗kGop

e

from the formula in Proposition 3.1.6 using classical linear algebra algorithms
to find a basis of Ne(kL(e)) and then computing the value of the character at
any (m, g) ∈ CM × CGe by iterating over the basis vectors, applying (m, g) as
a linear map and computing the relevant coefficient in the image vector.

3.3.4 Performance

To begin with, in this section, we discuss the challenges and choices we have
been led to make to measure the performance of our algorithms. In a second
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part, we present the experimental results as well as, when possible, their com-
plexity analysis. We discuss performance for the computation of the number
of fixed points, the character table and finally the Cartan matrix. At the end
of this section, in Figures 3.2, 3.3 and 3.4, we give experimental measures of
the complexity of our algorithms as a function of cardinality.

Challenges, experimental choices and methodology

Monoids being as diverse as they are, a meaningful analysis of the time and
space complexities of the above algorithms is difficult, as many relevant metrics
(such as the number of Green’s classes of a given type) cannot be straightfor-
wardly computed. Moreover, in some sense these metrics vary a lot: two
transformation monoid acting on the same number of points with the same
number of generators can have vastly different Green structures. Although we
can provide some time complexities in terms of number of L , R -classes and
cardinality of H -classes (as we do below), the real test of viability is to see if
the algorithm effectively terminates in practice. Thus, we provide timings and
memory usage measures for the computation of the three main objects of our
discussion: the bicharacter, the character table and the Cartan matrix.

The performance measures provided for these new algorithms (as well as
the computation results presented hereafter) all come from an implementation
using the computer algebra system GAP. All performance measures are realized
on a laptop equipped with an Intel Core i7-10850H @ 2.7GHz (on one core) and
16 GB memory. Our specific implementation, as well as the test cases used and
the raw data, are publicly available on our git repository2. As the following
section will show, these algorithms are, on our test machine, memory limited.
We have made some test computations on a machine equipped with 128 GB
of RAM. Even then, due to the rapid explosion of memory requirements, we
cannot compute the character table of T8 using these methods, and it seems
that monoids containing S12 generally fail to reach the end of the bicharacter
computation. Since in the cases where this more powerful machine enables
more computation by bypassing memory limitations, computation time can
reach the hour range, we choose to focus on the smaller scale tests allowed by
our smaller machine.

We consider three families of monoids implemented by the package GAP
Semigroups [Mit+23]: transformation monoids, which we have introduced be-
fore, partition monoids, and partial permutation monoids.

Definition 3.3.10. A partition P of a set S is a collection of subsets of S
such that ⋃P = S and for all p, p′ ∈ P, p ∩ p′ = ∅. The elements of P are
called its blocks. Given s ∈ S, P (s) is the unique block of P containing s.

2github.com/ZoltanCoccyx/monoid-character-table

github.com/ZoltanCoccyx/monoid-character-table
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Let P , Q be two set partitions of the set S = J−n,−1K ∪ J1, nK. The
partition product of P by Q is the partition PQ where i, j ∈ S are in the same
block if:

• i, j > 0 and are in the same P -block.

• i, j < 0 and are in the same Q-block.

• i > 0 and j < 0 and there exists k ∈ J−n,−1K such that k ∈ P (i) and
k ∈ Q(j).

• i and j are related in the transitive closure of the relation given by the
previous point.

This defines the partition monoid Pn (with identity {{i,−i} | i ∈ J1, nK}). A
partition monoid (of rank n) is a submonoid of Pn.

Definition 3.3.11. A partial permutation of J1, nK is an injective partial func-
tion from J1, nK to itself. Equipped with the identity function and the partial
map composition, this defines the inverse symmetric monoid In. A partial
permutation monoid (of rank n) is a submonoid of In.

We test our functions on the families Tn,Pn and In, with numeric values
provided for our canonical example Tn in Tables 3.2, 3.3 and 3.4. However,
many computer algebra systems, including GAP, are smart enough to detect
that the Schützenberger groups are actually symmetric groups and thus use
some non-general algorithms that could not be used on a typical finite monoid.
This has the potential to falsify our measures (and indeed probably does, given
Figures 3.2-(a), 3.3-(a) and 3.4-(a)). To mitigate this issue, we provide timings
for randomly chosen finite monoids. The question of picking a “generic” monoid
is entirely outside the scope of this paper. We simply choose a monoid R(m,n)
of rank m with n generators by picking uniformly n elements of Tm,Pm or Im.
The set of (rank, number of generators) pairs used is given in Table 3.1. For
reasons discussed hereafter, we have chosen to have “enough” generators to have
non-trivial J -structure. Experimentally, we note that the resources in time
and memory used by two transformation monoids acting of the same rank with
the same number of generators can differ by up to an order of magnitude. Thus,
for each pair (m,n), we measure performance on 10 randomly chosen test cases.
To experimentally evaluate the complexity as a function of cardinality, we do a
linear regression of the logarithm of the (time and memory) measures against
the logarithm of the cardinality. In the case of transformation monoids and
partition monoid, the data follows a relatively tight distribution (see Figures
3.2 and 3.3). To mitigate threshold effects, we weight the sample values linearly
(and not logarithmically) so that the higher values have more importance.
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By contrast, the randomly generated partial permutation monoids give more
dispersed samples. Given this dispersion, considering only (or with a heavy
weight) the highest values makes for an overestimation of necessary resources
in most cases. Thus, in that case, we do the linear regression with equal weights
on all samples. This does not dramatically change the measured complexity
(we refer to the actual code as the final arbiter), but we advise caution when
using these figures. For ease of discussion, we will call structured monoids the
non-random ones present in our tests.

Type Bicharacter Character table and
Cartan matrix

Transformation
(4,3), (5,3), (5,4),
(6,5), (7,6), (8,8),
(9,8)

(4,3), (5,3), (5,4),
(6,5), (7,6)

Partition

(4,3), (4,6), (5,10),
(5,15), (6,18),
(7,20), (8,20), (9,25),
(10,30), (12,40)

(4,3), (4,6), (5,10),
(5,15), (6,18),
(7,20), (8,20), (9,25),
(10,30), (12,40)

Partial Permutation

(3,6), (3,9), (4,8),
(4,12), (5,15), (6,20),
(7,21), (7,25), (7,30),
(8,25), (8,30)

(3,6), (3,9), (4,8),
(4,12), (5,15), (6,20),
(7,21), (7,25), (7,30)

Table 3.1: Rank and number of generators for random monoids

Performances and experimental results.

In the case of Algorithm 3.3.3, we can give some analysis of the time complexity
in terms of the Green structure of the particular J -class Algorithm 3.3.3 is
applied to.

Proposition 3.3.12. Consider a J -class J containing nL L -classes, nR R -
classes, containing an H -class H with nC conjugacy classes in Γ′(H), and let
CM be a set of representatives of the character equivalence classes, as before.
Then, the Algorithm 3.3.3 does:

• nC computations of conjugacy classes of Γ′(H) cardinality (if we precom-
pute those cardinalities to be able to do a lookup in step 2-a of Algorithm
3.3.3, instead of computing it on the fly),
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• O(|CM |(nL+nR)) monoid multiplications, Green class membership tests
and conjugacy class of Γ′(H) membership tests,

• O(|CM |nR) computations of τa,

• O(|CM |nL) conjugacy class of Γ′(H) cardinality lookups,

• nC |CM |2 integer multiplications.

Proof. This simply results from an inspection of Algorithm 3.3.3, with the
caveat that we precompute the cardinalities of the conjugacy classes of Γ′(H).

In the case of Algorithm 3.3.5 applied to an arbitrary monoid, such an
analysis is mostly meaningless because we would need to express the number
of Green’s classes and understand their breakdown. However, because of the
vast variety of possible monoids, there is no meaningful way to do it from
simple parameters such as the rank or the number of generators.

Note that we do not provide a cumulative formula for the complexity of
Algorithm 3.3.3 as, for instance, the complexity of a conjugacy class mem-
bership test heavily depends on the algorithm used by the computer algebra
system, that can itself vary depending on the characteristics of the Schützen-
berger groups. This makes the task of providing a meaningful evaluation of
the global complexity of the algorithm quite difficult, mainly because express-
ing the complexity of those “elementary” operations of monoid multiplications,
membership testing, etc. . . in terms of the same parameters is not straightfor-
ward. However, we can at least compare this to the naive algorithm of testing if
every element of J is a fixed point which demands O(nLnR|H|2|CM |2) monoid
multiplications: as long as the complexity of the more complex operations of
Green class or conjugacy class membership testing remains limited in terms
of monoid multiplications, our complexity is better. For instance, in the case
of the monoid Tn, all the required operations can be done on O(n), making
Algorithm 3.3.3 (and, in turn, Algorithm 3.3.5) more efficient than the naive
algorithm, as can be seen in Table 3.2, with a sublinear (with respect to car-
dinality) measured complexity (Figure 3.2).

As shown in Table 3.3, the computation of the character table takes much
longer. This is because, to compute the radical of kL(e) for an idempotent
e, we must solve a linear system of size |R(e)| × |L(e)|, which necessitates
O(|R(e)|2|L(e)|) arithmetic operations. In the case of the full transforma-
tion semigroup Tn, if e has k elements in its image, |L(e)| = k! ×

(n
k

)
, while

|R(e)| = k! × S(n, k) where S(n, k) is a Stirling number of the second kind,
which gives |R(e)| ∼ kn. The size of that linear system becomes rapidly
intractable. Moreover, once we have a basis of Ne(kL) of cardinality d, we
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Monoid Cardinality Coefficients Naive Ours
T3 27 62 29 ms 8 ms
T4 256 112 92 ms 32 ms
T5 3125 182 1.44 s 84 ms
T6 46656 292 53.0 s 0.30 s
T7 823543 442 >30 min 1.54 s
T8 16777216 662 · · · 8.65 s
T9 387420489 962 · · · 58.2 s

Table 3.2: Computation time of the regular representation bicharacter.

still have to compute the C2
M character values in O(d2) operations each. Ex-

periments indicate that the computation time of the character tables of the
maximal subgroups is small in comparison to all radical related computations.
As can be seen in Figures 3.2-(b, c), 3.3-(b, c) and 3.4-(b, c) the limiting factor
is memory (the test on random monoids fails for the random transformation
monoids of the form R(9, 8) by exceeding the 16 GB memory capacity of our
testing machine). Although computation requirements are close to linear in
the cardinality, the cardinality tends to be more than exponential in the rank,
limiting these methods to small ranks.

Monoid Cardinality Coefficients Ours
T3 27 62 80 ms
T4 256 112 182 ms
T5 3125 182 1.30 s
T6 46656 292 17.6 s
T7 823543 442 5.93 min

Table 3.3: Computation time of the character table.

Finally, for the computation of the Cartan Matrix, the previous timings
show that the vast majority of the computation time is spent computing the
character table of the monoid. As the computation of the combinatorial bichar-
acter is more than a hundred times faster than the computation of the character
table, this is a clear invitation to improve in particular the computation of the
character of the radical of the L -classes. In Table 3.4, we show some timings for
that computation, and a comparison with Sage’s generalist algorithm (based
on the Peirce decomposition of the monoid algebra) for the computation of the
Cartan Matrix: despite its limitations, our specialized algorithm allows for the
handling of larger objects. Indeed, our algorithm has near linear performance
with respect to cardinality, while Sage’s has roughly cubic complexity.

Again, memory fails before time for T8 and onward. For the transformation
monoids of the form R(9, 8), using the regression, we can predict a computation
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Monoid Coefficients Sage’s Ours
T3 62 575 ms 42 ms
T4 112 5.23 min 146 ms
T5 182 >2h 1.29 s
T6 292 · · · 17.7 s
T7 442 · · · 5.48 min

Table 3.4: Computation time of the Cartan matrix.
In the case T5, Sage’s algorithm was interrupted before the end of the

computation.

time of around 6 hours on our testing machine if it was not memory limited.

An example of a Cartan matrix obtained using our Algorithms and Thiéry’s
formula is pictured in Figure 3.1.

Figure 3.1: Cartan Matrix of T7
For legibility, the entries are represented as gray values. The entries are

integers from 0 (in white) to 4 (the single black pixel).

Generally, our algorithms achieve (at worst) near linear measured complex-
ity. The fixed point counting is most efficient in the structured monoids, where
there are few, big J -class with big Schützenberger groups. In the contrary,



93 3.3. Algorithms

on “sparse” monoid with many small J -class, the efficiency of the algorithm
drops. This most apparent in Figure 3.4, where the blue clusters are (roughly)
semigroups of the same rank with the same number of generators. The partial
permutation semigroups generated that way tends to have either (at our scale)
low tens or multiple thousands J -classes (without intermediate values). The
latter kind tends to be much more expensive to deal with, despite implement-
ing “lazy” fixed point counting on small J -classes and J -classes with trivial
Schützenberger groups to avoid costly computations. The situation balances
out (or even inverses itself, see Figure 3.3) when it comes to computing the
character table and the Cartan matrix. This seems to come from the fact
that bigger J -classes mean higher dimensional radical and bigger Schützen-
berger groups mean less sparse basis vectors in the radical. Still, the measured
complexity remains near linear in our experiments.
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Figure 3.2: Time and memory usage: transformation monoids
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Figure 3.3: Time and memory usage: partition monoids



102 104 106 108
Cardinality

100

102

104

106

Co
m
pu

ta
tio

n 
tim

e 
(m

s)

Linear regression (a = 0.60)
Random monoids
Linear regression (a = 0.45)
In, n=2… 11

102 104 106 108

Cardinality

105

107

109

1011

1013

M
em

or
y 

al
lo

ca
te

d 
(b

yt
es

)

Linear regression (a = 0.56)
Random monoids
Linear regression (a = 0.44)
In, n=2… 11

(a) Bicharacter

101 102 103 104 105
Cardinality

101

102

103

104

Co
m
pu

ta
tio

n 
tim

e 
(m

s)

Linear regression (a = 0.71)
Random monoids
Linear regression (a = 0.69)
In, n=2… 7

101 102 103 104 105

Cardinality

106

107

108

109

1010

M
em

or
y 

al
lo

ca
te

d 
(b

yt
es

)

Linear regression (a = 0.70)
Random monoids
Linear regression (a = 0.72)
In, n=2… 7

(b) Character table

101 102 103 104 105
Cardinality

101

102

103

104

Co
m
pu

ta
tio

n 
tim

e 
(m

s)

Linear regression (a = 0.72)
Random monoids
Linear regression (a = 0.56)
In, n=2… 7

101 102 103 104 105

Cardinality

106

107

108

109

1010

M
em

or
y 

al
lo

ca
te

d 
(b

yt
es

)

Linear regression (a = 0.71)
Random monoids
Linear regression (a = 0.69)
In, n=2… 7

(c) Cartan Matrix

Figure 3.4: Time and memory usage: partial permutation monoids
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Bonus: a formula for CTn

For convenience, we suppose that Tn = J0, n− 1KJ0,n−1K here, and in the same
way that Sn permutes J0, n− 1K instead of J1, nK.

As mentioned in Example 1.2.5, the J -classes of Tn are ordered by the
cardinality of the image (of any element in the J -class). It is clear that Jl,
the J -class with image cardinality l, has Sl as Schützenberger group and
(since Jk is regular since el = i 7→ min(i, l− 1) ∈ Jl is idempotent) as maximal
subgroup at its idempotents (up to relabeling). It is well-known that the
conjugacy classes of Sl are indexed by the integer partitions of l, that is, the
set of decreasing strictly positive integer sequence sthat sum to l. Thus, the
character equivalence classes of Tn are naturally labeled by integer partitions up
to n. To fix the ideas, given an integer partition λ = λ1 ≥ λ2 ≥ · · · ≥ λr > 0,
let l = ∑

λ, Λ = (∑j
i=1 λi)j∈J1,rK and

cλ = el ◦ [(0 1 . . . λ1 − 1)(λ1 . . .Λ2 − 1) · · · (Λj . . .Λj+1 − 1) · · · (Λr−1 . . . l − 1)]

presented as product of cycles.

Proposition 3.3.13. Let λ, µ be integers partitions with
∑
λ,
∑
µ < n. Let

h = cλ, k = cµ. Then:

|{s ∈ Tn |hsk = s}| =
∏
µi

∑
λj |µi

λi

Proof. Consider the case where λ = (λ1) and µ = (µ1) and suppose that
hsk = s for some s. Note that it is necessary that Im s ⊂ Im h and that ker s
is coarser than kerh. Thus, we can concentrate only on the “injective support”
of k, meaning J0, µ1 − 1K. For all i ∈ J0, µ1 − 1K, we have

s(i) = hsk(i) = hs(i+ 1 mod µ1)
⇒ s(i+ 1 mod µ1) = h−1(s(i)) = s(i) − 1 mod λ1.

Note that we commit an abuse of notation in that h is not invertible as a
function. However, it is invertible as an element of the maximal subgroup at
en−λ1 where it behaves like a cycle. This implies that λ1|µ1, as otherwise s
would be multivalued. Conversely, if λ1|µ1 and

∃k, ∀i, s(i) =
{

(k − i) mod λi if i ≤ µi

(k − 1) mod λi otherwise

then hsk = s. There are clearly λi such functions.

Consider now the case where λ and µ are general. The same argument
(up to relabelling) shows that for each part µi, any λj such that λj |µi can
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be associated to µi, hence the sum ∑
λj |µi

λi. Since that association is inde-
pendent between the parts of µ, (a λj can be reused), we get the announced
product.

As it happens, from [Put96], we have an explicit formula for the charac-
ter table of Tn. We need a bit of notation. A partition λ = (λ1, . . . , λr) is
abbreviated by λ =

(
λ

|{j | λj=λi}|
i

)
λi∈{λj | j}

. We say that λ ⊆ µ when µ − λ

(completed by some zeros if need be) is component-wise non-negative. The
result is denoted µ \ λ and is a horizontal strip if its entries are at most 1.

Proposition 3.3.14. Let D be the block diagonal matrix of the group char-
acter tables diag(X(Sk)k∈J1,nK) and U be the matrix defined by:

Uλ,µ =


1 if λ = (1r), µ = (m− r + 1, 1r−1) with m ≥ r

1 if λ ̸= (1r), λ ⊆ µ and µ \ Λ is a horizontal strip
0 otherwise

where λ, µ are partitions with
∑
λ,
∑
µ ≤ n. Then X(M) = UD.

Figure 3.5: Cartan matrix of T12
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Together with known formulas for the character tables of the symmetric
groups (directly in terms of tableaux or in terms of basis change on symmetric
functions), this allows to compute bigger examples for the Cartan matrix of
CTn.

Question 3.3.15. Explain the fern-like structure.
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Minimal elements of Shi
arrangements
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Introduction

The Shi arrangement associated to a crystallographic group W was introduced
in 1987 par J.-Y. Shi in [Shi87a]. It has many interesting properties, and
in particular the regions of the Shi arrangement correspond to the states of
the so-called canonical automaton recognizing the language of reduced words
of W introduced by B. Brink and R. B. Howlett in [BH93]. Motivated by
the search of minimal automata ([HNW16]) and similar questions in braid
groups ([DH16]) a push has been made recently by Chapelier-Laget, Dyer,
Fishel, Hohlweg. . . to understand the minimal elements of the Shi regions. In
particular, in [DH16, Conjecture 2] (which as since been solved in [Dye+23]),
Hohlweg and Dyer ask, in a sense, to retrieve geometric information on the
inversion sets of those minimal elements that the conjecture implies do exist
(which was not know for Shi arrangements general Coxeter groups at the time).

In this part of the thesis, we present our work around understanding these
minimal elements. Chronologically, it begins with the case of rank 3 Coxeter
groups, discussed in Section 6.1. It should be noted that although this sec-
tion is a result of this thesis, it is only partly so, as the original research on
that subject was originally done during a master’s research internship with
Pr. Hohlweg at LaCIM, Montréal, in 2017. However, the proofs we present,
although they originate in spirit in that internship, were first produced in their
correct form during the preparation of the extended abstract [Cha21]. This
document extends, and improves on, the sketch of proofs from that extended
abstract.

The rest of this part of the thesis originates in a working group launched
by Dr. Chapelier-Laget during the summer 2022, with the objective of al-
gorithmically computing those minimal elements in type An. This working
group was the major motivation for the investigations presented here on the
special case of Weyl groups. Considering the structure of the Shi relations
lead to [AL99], in which Athanasiadis and Linusson give a bijection between
parking functions and Shi regions in type An. This bijection is “natural” in the
sense that it encodes in the parking function the set of defining inequalities
of the Shi region. Citing the same article as a motivation, Armstrong Reiner
and Rhoades provide a generalization of it to all crystallographic groups as
[ARR15, Proposition 10.4]. In the extended abstract [Cha22], the author de-
scribes how to compute the Shi vector coefficients of the minimal element of a
Shi regions using this bijection, in the case of the classical Weyl groups. We
expand here on this extended abstract in three main ways. Most obviously, we
provide full proofs of the results that were announced. Secondly, we do so in a
(mostly) type-free fashion that allows us to expand the results to exceptional
groups. Finally, and this was the original motivation for this work in the first
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place, we provide as an application of our descriptive result a proof of [DH16,
Conjecture 2] in affine Weyl groups.

In Chapter 4 we present our setting, our notations and some facts that
we will use in the following chapters. We go over basic definitions on Cox-
eter groups (§4.1), before introducing their associated geometric representation
(§4.2) and the notion of inversion sets (§4.3). All of these notions will be well
known to the informed reader, and may be skipped, but we do take the time to
go about them in details as a way to build familiarity for some of the geomet-
ric considerations made in the latter sections. We then present the projective
picture of a root system (§4.4), before recalling the classification of finite and
affine Coxeter groups and some related facts (§, 4.5). We then discuss dual
notions to the root systems and inversion sets: the Coxeter arrangement and
Tits cone (§4.6). In the final stretch of this introductory chapter we introduce
the object of our study: the Shi arrangement, both in a general setting (§4.7.1)
and specialized to affine Weyl groups (§4.7.2). In Chapter 5, we describe the
minimal elements of the regions of the Shi arrangement in Weyl groups. We
begin by analyzing the Shi relations constraining the possible inversions sets in
a Weyl group (§5.1). We then give the description itself in Section 5.2.3. This
description gives the Shi encoding (§5.2.1) of the minimal elements by extend-
ing the bijections of the Shi regions with parking functions from Athanasiadis
& Linusson and Armstrong, Reiner & Rhoades (§5.2.2). Up to that point,
this discussion is mostly type-free, but in Section 5.3, we come back to the
case of classical Weyl groups, where the previous results have an interpreta-
tion in terms of non-crossing arcs counting in a non-nesting partition. This
puts, somewhat intriguingly, these minimal elements at the intersection of non-
nesting and non-crossing combinatorics. In the final Chapter 6, we come back
to the motivating question from Dyer & Hohlweg [DH16], first in the case of
rank 3 Coxeter groups (§4.7.1) and then in Weyl groups using our description
of minimal element from the previous chapter (§6.2.2).



Chapter 4
Preliminaries on Coxeter theory

In these preliminaries, we go over well known results on Coxeter groups, for
which we refer the classical (and excellent) references Combinatorics of Coxeter
groups by A. Björner and F. Brenti [BB05] and Reflection groups and Coxeter
groups by J. Humphreys [Hum90]. However, since much of the original work
of this part of the thesis concerns itself with the notion of inversion sets, we
have taken the approach of presenting proofs using this notion whenever doing
so gives a better understanding of the behavior of inversion sets, where some
canonical proofs may be of a more combinatorial or group theoretic nature.
The goal of this approach is to make the considerations of the later sections
seem more natural, and not to present “original proof” as, again, they can all
be found in a more or less explicitly “inversion set related” form in [BB05] or
[Hum90].

4.1 Coxeter groups

Definition 4.1.1. (Coxeter system) Let S be a finite set. For each s, t ∈ S

we choose ms,t ∈ N>0 ∪ {∞} under the constraints that ms,t = 1 ⇔ s = t and
ms,t = mt,s for every s, t ∈ S. The associated Coxeter group W is the group
with presentation ⟨S | (st)ms,t = 1⟩ where (st)∞ = 1 means that no relation
is imposed. (W,S) is called a Coxeter system of which |S| is the rank. Given
two distinct s, t ∈ S, the relation (st)ms,t = (ts)ms,t = 1 is called the braid
relation between s and t.

Note that, because the generators have order 2, the braid relation (st)ms,t =
1 can also be written as

stst · · ·︸ ︷︷ ︸
ms,t

= tsts · · ·︸ ︷︷ ︸
ms,t

.
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Example 4.1.2. Consider a dihedral group, that is, a Coxeter group
of rank 2: W = ⟨s, t | ss, tt, (st)ms,t , (ts)ms,t⟩. Because of the braid
relation, any element of W can be written as an alternating product of s
and t of length at most ms,t. Indeed, if we have a word for some element
w ∈ W , we can remove any ss or tt from that word until we obtain an
alternating expression for w. If the alternating word is longer than ms,t,
for example w = tstststs, and ms,t = 3, then tstststs = tststtst = ts.

From now on, we fix a Coxeter system (W,S) of finite rank. It is usual
to represent a Coxeter group using a graph with vertices the elements of S,
with an edge between two distinct generators s, t labeled by ms,t if ms,t > 3,
an unlabeled edge if ms,t = 3 and no edge is ms,t = 2. This convention comes
from the fact that many interesting Coxeter groups have few braids of length
more than 3.

Example 4.1.3. Consider the Coxeter group given by the relation ma-
trix

m =

1 3 2
3 1 6
2 6 1

 .
Let us suppose that its rows and columns are indexed (in order) by the
set S = {r, s, t}: the ones on the diagonal indicate that the generators
have order two (since (ss)1 = 1 for instance), that r and t commute
(since rtrt = 1 ⇔ rt = tr), that the pair (r, s) is simply braided (mean-
ing that the braid relation has length 3: rsr = srs) and finally that
ststst = tststs. The Coxeter graph encoding these relations is repre-
sented below.

r s t

6

Figure 4.1: Coxeter graph of G̃2.

Thus, a Coxeter group is the set of classes of words on the alphabet S
under the relations (st)ms,t = 1. A word for an element w ∈ W is a product
of generators equal to w. A reduced word for w is a word for w of minimal
length. The length of w is the length of any reduced word for w and we note it
as |w|. In particular, the class containing the empty word corresponds to the
identity element which has length 0.

Proposition 4.1.4. For s ∈ S and w ∈ W , either |sw| = |w| + 1 or |sw| =
|w| − 1.
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Proof. Denote |w| by n and let s1 . . . sn be a reduced word for w. Either
ss1 . . . sn is reduced, and obviously |sw| = n+1, or it is not. Since the relations
defining the group preserve the parity of the length, so |sw| has length at most
|w| − 1. In this case, we take a reduced expression s′

1 . . . s
′
k with k < n for sw.

If k < n − 1, ss′
1 . . . s

′
k is an expression for w of length strictly less than n.

This is absurd by definition of |w|, so |sw| = |w| ± 1.

The similar result on the right is also true.

Definition 4.1.5 (Left weak order). If s ∈ S,w ∈ W are such that |sw| =
|w| − 1, s is called a left descent of w and we say that w is a left cover of sw,
denoted by sw ◁L w. The left weak order is the transitive reflexive closure of
the left cover relation and is denoted by ≤L.

The concept of right descent, as well as the right weak order with ◁R and ≤R

are similarly defined. We will denote by DL(w) and DR(w) the sets of left and
right descents of w. It is easy to see that s ∈ DL(w) if and only if there is some
reduced word for w beginning by s : if there is, then obviously |sw| = |w| − 1
and s is a descent. Conversely, let s1 · · · s|w|−1 be a reduced expression for sw,
then w = ss1 · · · s|w|−1 is a reduced word. Further, two elements u,w ∈ W

verify u ≤L w if and only if there exist a reduced expression for w whose suffix
of size |u| is a reduced expression for u (and similarly for prefixes on the right).

Definition 4.1.6 (Parabolic subgroups). Consider J ⊂ S. The subgroup of
W generated by J , denoted by WJ , is called the standard parabolic subgroup
generated by J . More generally, a subgroup of W is parabolic if it is conjugated
to WJ for some J .

It is easy to show that if the Coxeter graph associated to (W,S) is not
connected and has connected components J1, . . . Jn, then W is isomorphic to
the direct product of standard parabolic subgroups WJ1 × · · · × WJn . If the
Coxeter graph of (W,S) is connected, the Coxeter system (and by extension,
the group) is called irreducible. From now on, we only consider irreducible
Coxeter systems. Because of this direct product decomposition, this is not an
important restriction in our proofs.

Let us choose a J ⊂ S and given a w ∈ W , if w has any element s of J as a
left descent, replace w by sw and repeat. Eventually, this process terminates,
as the length of the resulting element of each step is strictly decreasing. Say it
stabilizes on some element wJ . By construction, DL(wJ) ∩ J = ∅, and wJ =
w(wJ)−1 ∈ WJ . In fact, this decomposition of w as wJw

J is independent of
the choice of descent removed at each step, making the decomposition unique.
One can find a proof of this fact in [BB05, Proposition 2.4.4], and we will later
provide another – geometric – one.
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Proposition 4.1.7. Given J ⊂ S and w ∈ W , we denote W J = {ω ∈
W |DL(ω) ∩ J = ∅}. Then there is a unique factorization of w as wJw

J with
wJ ∈ WJ and wJ ∈ W J .

As usual, the corresponding result with right descents is also true.

4.2 Geometric realization

The notions of Coxeter groups and reflections groups are often conflated, be-
cause given (W,S) we may obtain a realization of W as a group generated by
orthogonal reflections for some well-chosen definition of “orthogonal”. Although
we may obtain many interesting properties of Coxeter groups only using ele-
mentary proofs from the definition, this geometric detour provides nice ways
to prove these combinatorial results, as well as a view of the kind of proof
technics used later.

Proposition 4.2.1. Let V be the R vector space with base ∆ = {es | s ∈ S}
and B the bilinear form on V defined by

B(es, et) =


− cos

(
π

ms,t

)
if ms,t ̸= ∞

bs,t with bs,t ∈] − ∞,−1] if ms,t = ∞
.

Then W can be embedded in the orthogonal group for B by extending the map
s 7→ (x 7→ x− 2B(es, x)es) form S to W .

V equipped with B and ∆ is called a geometric representation of W . If
we choose bs,t to be equal to −1 whenever ms,t = ∞, we get the classical
geometric representation of W . We will see that this distinction is useful, as
the hypothesis bs,t = −1 is not stable by restriction to subgroups of W acting
on subspaces of V .

Notice that this embeds W as a subgroup of

OB(V ) = {f ∈ GL(V ) |B(f(x), f(y)) = B(x, y)},

the linear maps that are orthogonal with respect to the form B. Indeed,
∀s ∈ S, x, y ∈ V :

B(s(x), y) = B(x− 2B(x, es)es, y)
= B(x, y) − 2B(es, x)B(es, y)
= B(x, y − 2B(es, y)es) = B(x, s(y))

so the image of this map is contained in OB(V ).
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This result is well known, and can be found in [Hum90, Section 5.3]. How-
ever, for the sake of having a “complete geometric and inversion set based”
version of the results we need, we reproduce the proofs.

Example 4.2.2. Let us consider the simplest non-trivial example: the
case of dihedral groups (W, {s, t}). Given that the generators are of
order 2, we only need to consider the alternating words beginning with
s or t.
For now, we abuse the notation by denoting by s and t the linear trans-
formations previously defined. Consider first the case where ms,t < ∞.
Observe that r(er) = −er for r ∈ {s, t}. The transformations being
linear, we only need to find the values of:

(st)n(es), t(st)n(es), (ts)n(et), s(ts)n(et)

for n > 0 to entirely describe the actions of the group elements, since
(ts)n(es) will just be −t(st)n−1(es). We prove that:

(st)n(es) =
(

2
n∑

k=0
cos 2kπ

ms,t
− 1

)
es + 2

n∑
k=1

cos (2k − 1)π
ms,t

et.

This is true when n = 0. For brevity, let us denote cos(kπ/ms,t) by λk,∑n
k=0 λ2k by Λ0,n and ∑n

k=1 λ2k−1 by Λ1,n. Using cosine linearization
formulas for 2λ1λk = λk−1 + λk+1, we observe that

2λ1Λ0,n = 2Λ1,n+1 + λ1 − λ2n+1 and 2λ1Λ1,n = 2Λ0,n − (1 + λ2n).

Consider now t(st)n(es). We have:

t(st)n(es) = t((2Λ0,n − 1)es + 2Λ1,net)
= (2Λ0,n − 1)es + (2λ1(2Λ0,n − 1) − 2Λ1,n)et

= (2Λ0,n − 1)es + (4Λ1,n+1 − 2Λ1,n + 2λ1 − 2λ2n+1 − 2λ1)et

= (2Λ0,n − 1)es + 2Λ1,n+1et

(st)n+1(es) = s((2Λ0,n − 1)es + 2Λ1,n+1et)
= (2λ1 · 2Λ1,n+1 − (2Λ0,n − 1))es + 2Λ1,n+1et

= (4Λ0,n+1 − 2Λ0,n + 1 − 2 − 2λ2n)es + 2Λ1,n+1et

= (2Λ0,n+1 − 1)es + 2Λ1,n+1et

This gives us the wanted expression for (st)n(es) with that of t(st)n.
Reversing the roles of s and t, we get the remaining cases. Because this
is essentially a geometric sum, we can compute it, giving:

Λ0,n = sin((n+ 1)π/ms,t)
sin(π/ms,t)

cos nπ

ms,t
, Λ1,n = sin(nπ/ms,t)

sin(π/ms,t)
cos nπ

ms,t
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which simplifies to:

Λ0,n = 1
2 + sin((2n+ 1)π/ms,t)

sin(π/ms,t)
, Λ1,n = 1

2
sin(2nπ/ms,t)
sin(π/ms,t)

.

This gives (st)n = Id if and only if ms,t divides n, that is st (and, in
the same way ts) have order n, so the map given on the generators can
be extended to a (surjective) morphism. In the dihedral case, it is easy
to see that it is also injective, and so is an isomorphism.
If ms,t = 0, B(es, et) ≤ −1, it is easy to show by induction that we have
(st)n(es) = ases + atet with as, at ≥ n, meaning that st is of infinite
order. Consequently, the map can still be extended to an isomorphism.

The interpretation is that the generators can be thought of as B-orthogonal
reflections, and that the form B encodes the angle between the fixed hyper-
planes of s and t as π/ms,t such that st can be thought of as the rotation of
angle 2π/ms,t around the intersection of the fixed hyperplanes. This interpre-
tation somewhat fails when ms,t = ∞, but remains a good source of intuition.
In fact, one can think of B as the “dot product” that gives the correct “angles”
between the generators to force those relations to hold. However, in general,
B is not a dot product, and in fact its isotropic cone will play an important
role later.

Definition 4.2.3. The isotropic cone of B, denoted by Q, is the set of “self
B-orthogonal vectors” {v ∈ V |B(v, v) = 0}.

The previous example shows that the linear maps associated to the genera-
tors defined in Proposition 4.2.1 verify the same relations as the elements of S,
and that the map defined on the generators does indeed extend to a surjective
morphism for any number of generators. Proposition 4.2.1 announces that this
is actually an isomorphism, and we shall shortly provide a proof. However, we
first need to introduce the notion of root system.

Definition 4.2.4. Given (W,S), we define the quadratic space (V,B) as be-
fore. The root system (of W in V ), denoted by Φ is the set {w(es) |w ∈ W, s ∈
S}. Its elements are called roots. The set ∆ = {es | s ∈ S} is called the set of
simple roots.

The following properties can immediately be checked, keeping in mind that
W acts on V as a subgroup of OB(V ).

Proposition 4.2.5. Let Φbe the root system of W in V . Then:

1. ∀ϕ ∈ Φ, B(ϕ, ϕ) = 1.
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2. ∀ϕ ∈ Φ,Rϕ ∩ Φ = {±ϕ}.

3. ∀ϕ ∈ Φ, x 7→ x− 2B(x, ϕ)ϕ ∈ OB(V ) and it stabilizes Φ.

4. Suppose for an instant that W is not irreducible and let W = W1 ×
W2 with W1,W2 non-trivial standard parabolic subgroups. Then ΦW =
ΦW1

⊔ΦW2 and ΦW1⊥ΦW2.

From the root system, we are ready to define the inversion sets, which will
be at the center of attention for most of this part of the thesis.

Definition 4.2.6 (Positive roots and inversion sets). A root ϕ ∈ Φ is positive
if all of its coordinates in the basis ∆ are non-negative. The set of positive
roots is denoted by Φ+, and we denote −Φ+ by Φ−. The inversion set of w
is defined as N(w) = Φ+ ∩ w−1(Φ−).

Hb Hb

Φ
−

Φ
+

H0

et es

a b

sts

Φ
−

Φ
+

H0

et s

sts(H0)
sts(b) sts(es)

sts

Figure 4.2: The inversion set of sts (the orthogonal reflection associated with
b) in the dihedral group D4: N(sts) = {es, a, b}.

Notation 4.2.7. For any A ⊂ Φ, we will denote SpanRA by VA, B re-
stricted to VA by BA, SpanΦ(A),SpanΦ+(A), SpanΦ−(A) will respectively be
Φ ∩ VA,Φ+ ∩ VA and Φ− ∩ VA. When more convenient, we will also use the
notations ΦA, Φ+

A and Φ−
A for these three last sets.

It is clear from the definition that Φ+ ⊔ Φ− ⊂ Φ. This inclusion is in fact
an equality, as the next result will make apparent.

Proposition 4.2.8. Let w ∈ W and s ∈ S. Then s ∈ DR(w) ⇔ es ∈ N(w).

Example 4.2.9. Let us again examine the dihedral case (W, {s, t})
first. In Example 4.2.2, we actually computed the root system. If ms,t
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is finite, the root system is the set

Φ =


(st)n(es) = (2Λ0,n − 1)es + 2Λ1,nes,

(ts)n(et) = (2Λ0,n − 1)et + 2Λ1,nes,

t(st)n(es) = (2Λ0,n − 1)es + 2Λ1,n+1et,

s(ts)n(et) = (2Λ0,n − 1)et + 2Λ1,n+1es

∣∣∣∣∣∣∣∣∣∣
n ∈ J0,ms,t − 1K


where

Λ0,n = 1
2 + sin((2n+ 1)π/ms,t)

sin(π/ms,t)
, Λ1,n = 1

2
sin(2nπ/ms,t)
sin(π/ms,t)

.

It is easy to see that both coefficients are either both non-negative or
non-positive depending on whether n ≤ ms,t/2, so Φ = Φ+ ⊔ Φ− in
that case. Let w be some element of W . If s ̸∈ DR(w), then w = (st)n

or w = t(st)n with n < ms,t (if ms,t is even and w = (st)ms,t , then
t ∈ DR(w)) and we have just seen that w(es) ∈ Φ+. Conversely, if s ∈
DR(w), then w can be written as (st)ns or (ts)n with n < ms,t/2 and, as
before, ws(es) ∈ Φ+. So w(es) = wss(es) = ws(−es) = −ws(es) ∈ Φ−.
If ms,t is infinite, the reasoning is essentially the same, if not simpler, as
since the roots escape to infinity we do not need to worry about them
“coming around” as the condition n ≤ ms,t/2 is always true.

From this example, we can get the general case. We reproduce the proof
from [Hum90, Sections 5.3, 5.4]

Proof of Proposition 4.2.8. Suppose that if for some s ∈ S,w,∈ W, s ∈ DR(w)
and es ∈ N(w), then s /∈ DR(ws) and ws(es) = −w(es) ∈ Φ+ because w(es) ∈
Φ−, so es /∈ N(ws). Thus, we only need to prove one implication.

We will show by recursion on |w| that if s /∈ DR(w), then w(es) ∈ Φ+ i.e.
es /∈ N(w). This is obvious if |w| = 0 as w = 1 and N(1) = ∅. If |w| > 0,
then w has some right descent t. Consider J = {s, t} and w = wJwJ a
factorization in the fashion of Proposition 4.1.7. We do not need to know that
this factorization is unique at this point, only that |wJ | < |w| and DR(w)∩J =
∅. In particular, by recursion, this means that wJ(es), wJ(et) ∈ Φ+. Recall
how we constructed wJ : by removing rights descents in {s, t} from w and
accumulating them. Because t ∈ DR(w) and s /∈ DR(w), wJ can only be
written as an alternating word of s and t, ending in t with |wJ | < ms,t. But
from Example 4.2.9, we know that this implies wJ(es) = ases + atet ∈ Φ+

(and in particular as, at ≥ 0). Finally,

w(es) = wJwJ(es) = asw
J(es)︸ ︷︷ ︸
∈Φ+

+atw
J(et)︸ ︷︷ ︸
∈Φ+

∈ Φ+

so s /∈ DR(w) ⇒ es /∈ N(w), and we conclude by recursion.
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Corollary 4.2.10 (of Proposition 4.2.8). The action of W on V (and on Φ)
is faithful.

Proof. If w ∈ W \ {1}, DR(w) contains some s ∈ S. Then w(es) ̸= es so w

does not act trivially.

Because of this, from now on, we will conflate the elements of the Coxeter
groups as word quotiented by relations with their associated orthogonal map
acting on V .

Corollary 4.2.11 (of Proposition 4.2.8). We have Φ = Φ+ ⊔ Φ−.

Proof. For any ϕ ∈ Φ, there is some w ∈ W, s ∈ S such that ϕ = w(es).
If s ∈ DR(w), then es ∈ N(w) i.e. w(es) = ϕ ∈ Φ−. If s /∈ DR(w) then
s ∈ DR(ws) so ws(es) = −w(es) = −ϕ ∈ Φ− so ϕ ∈ Φ+.

Finally, we have a very useful and desirable (although non-trivial) property
of root systems: they restrict well in the following sense, uncovered indepen-
dently by Deodhar in [Deo89] and Dyer [Dye90].

Proposition 4.2.12. Let A ⊂ Φ and VA, BA,Φ+
A as defined in Notation 4.2.7.

Let ∆A be the set of roots of Φ+
A generating the extreme rays of cone(Φ+

A) and
for any δ ∈ ∆A, denote sδ the BA-orthogonal reflection of VA with respect to
δ. Then if WA = ⟨sδ | δ ∈ ∆⟩, (W, {sδ | δ ∈ ∆A}) is a Coxeter system.

The result proven in [Deo89], [Dye90] is in fact richer, as they actually take
as WA the subgroup generated by the reflections associated to the roots in A,
while we are only interested in sets A that are “maximal in a given subspace”.
Note however that if (V,B) is a classical realization of a group W , for some
A ⊂ Φ, (VA, BA) may not be a classical representation, which is why we paid
special attention to the case bs,t < −1: all the results in this section apply to
reflection subgroups of Coxeter groups.

This result also tells us that given the set of positive roots, the set of simple
roots is uniquely determined. However, if instead of Φ+ we only have Φ, not
necessarily given in the basis ∆ of simple roots, we may have multiple choices
for ∆. From now on, when the choice of simple roots is non-obvious, we will
use the terminology of based root system from [HLR14] by specifying the pair
(Φ,∆). To sum up Proposition 4.2.12 “based root systems restrict naturally”:
given a subspace VA generated by a set A, we get a based subsystem (ΦA,∆A).
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4.3 Inversion sets

Proposition 4.2.8 allows for a description of our “most central” object in this
presentation: the inversion set.

Proposition 4.3.1. Let w ∈ W and suppose that s1 · · · sn is a reduced word for
w. Then N(w) = {en, sn(esn−1), snsn−1(esn−2), . . . , w−1s1(es1)}. Moreover,
|N(w)| = |w|.

Proof. It is easy to see that {es} ∪ sN(w) ⊂ N(ws) if s /∈ DR(w): by Propo-
sition 4.2.8, es ∈ N(ws) and if ϕ ∈ N(w), ws(s(ϕ)) = w(ϕ) ∈ Φ−, so
s(ϕ) ∈ N(ws). For the other inclusion, observe that s exchanges es and −es

and stabilizes Φ+ \ {es}. Because s acts bijectively, it means that s permutes
the set Φ+ \ {es}. Suppose ϕ ∈ N(ws) \ {es} so s(ϕ) ∈ Φ+ \ {es}. Because
ws(ϕ) ∈ Φ− ⇔ w(s(ϕ)) ∈ Φ−, s(ϕ) ∈ N(w). Because s is an involution, ϕ
is the image by s of a root in N(w): N(ws) ⊂ {es} ∪ sN(w). By applying
repetitively this result to the reduced decomposition of w, for the initial in-
version set N(1) = ∅, we obtain the proposed formula. This also proves (via
a recursion) that |N(w)| = |w|. It is obvious if w = 1: |N(1)| = |∅| = 0 = |w|.
Because s permutes Φ+ \ {es}, |N(ws)| = |{es} ⊔ sN(w)| = 1 + |N(w)| =
1 + |w| = |ws|.

This essentially says that the inversion sets contains all the information we
might want on the elements.

Corollary 4.3.2 (of Proposition 4.3.1). The map N is an increasing injection
(for inclusion of inversion sets) on (W,≤L).

Proof. Recalling that v ≤L w if and only if some reduced word for v is a suffix
of a reduced word for w, it is clear that N is increasing from the description
of N(w) in Proposition 4.3.1. N is injective on elements on length 0 (in fact,
N−1{∅} = {1} from Proposition 4.2.8). Suppose that N is injective for all w
of length at most n, and consider w1, w2 ∈ W \{1} of length at most n+1 such
that N(w1) = N(w2). From Proposition 4.2.8, w1 and w2 have some common
right descent s. Then, as in Proposition 4.3.1, it is easy to prove that

N(w1s) = s(N(w1) \ {es}) = s(N(w2) \ {es}) = N(w2s).

Since w1s and w2s have length at most n, w1s = w2s so w1 = w2.

As things stand now, the definition of inversion sets we have adopted seems
to favor the left weak order, and indeed, to have similar results on the left, we
would need to define a right inversion set NL = w 7→ N(w−1). However, the
left weak order is still “readable” in N (which we will not call the left inversion
set for brevity, although it morally is).
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Corollary 4.3.3 (of Proposition 4.3.1). The sets Γw = {γ ∈ N(w) | ∃w′N(w′) =
N(w) \ {γ}} and {−w−1(es) | s ∈ DL(w)} are equal and in bijection with
DL(w).

Proof. It is clear that DL(w) is in bijection with Γw: consider {w′ | ∃γ ∈
N(w), N(w′) = N(w) \ γ} : it is the set of element covered by w in the left
weak order, and each of these covers is uniquely labeled by a left descent of w.
Next, {−w−1(es) | s ∈ DL(w)} ⊂ Γw: for s ∈ DL(w), choose a reduced word
for w beginning by s. From Proposition 4.3.1, N(w) = N(ws) ∪ {w−1s(es)},
then w−1s(es) = −w−1(es) corresponds to γ and ws to w′. The other inclusion
is the same thing, taking s as w′w−1.

We will call the set Γw the left geometric descents of w, omitting the “left”
if clear in context, as we will later be much more interested in the set Γw than
in {es | s ∈ DR(w)} the right geometric descents of w. If the inversion sets
contain, in some sense, all the information on W , we might want to be able to
recognize whether a subset of Φ+ is an inversion set. Fortunately, there is an
elementary characterization.

Proposition 4.3.4. Let A ⊂ Φ+. A is an inversion if and only if A is finite
and there is f ∈ V ∗ such that ∀ϕ ∈ A, f(ϕ) < 0 and ∀ϕ ∈ Φ+ \ A, f(ϕ) > 0
(we say that A is a separable subset of Φ+).

Proof. Given that |N(w)| = |w|, the finiteness condition is obvious. Suppose
that A = N(w) for some w. Then since Φ+ ⊂ cone(∆) and Φ = Φ+ ⊔ Φ−, the
form v 7→ ⟨v | 1⟩, where 1 = (1)s∈S and ⟨· | ·⟩ is the usual dot product, is such
that f(ϕ) < 0 if ϕ ∈ Φ− and f(ϕ) > 0 if ϕ ∈ Φ+. Consider f ◦w: by definition
of N , ϕ ∈ N(w) ⇔ ϕ ∈ Φ+ ∩ w−1Φ− ⇔ f ◦ w(ϕ) < 0: f ◦ w separates A from
Φ+ \A. Conversely, if we have f that separates a finite set A from Φ+ \A, then
f−1{0} crosses cone(∆) so f−1R∗

− must contain some es. Then f ◦ s separates
s(A\{es}). By iterating this process, since A is finite, we obtain that f ◦w for
some w separate ∅ from Φ+ and that f separates N(w) from its complement,
so A = N(w).

Corollary 4.3.5. Let A ⊂ N(w) for some w. Then cone(A) ∩ Φ+ ⊂ N(w).

Proof. Let f a separating form for N(w). For all ϕ ∈ A, f(ϕ) < 0 so any
positive linear combination v of elements of A verifies f(v) < 0.

With those properties of inversion sets, we can go back to prove properties
of the weak order in terms of inversion sets. For instance, take the following
simple proposition.
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Proposition 4.3.6. If W is finite, then it contains a unique maximal element
for the (left or right) weak order, denoted by w0.

Proof. If W is finite, so is Φ+. Φ+ is clearly separable by v 7→ −⟨v,1⟩, so it is
the inversion set of some element w0. Because N(w0) is the unique maximal
element of the inversion sets for inclusion, w0 is the unique maximal element
of W for ≤R. The proof on the left is the same.

This could have been proven without any explicit geometric construction
(as is done for instance in [BB05, Chapters 1 & 3]), but the inversion set
proof is particularly simple. Let us review a few well-known results about
the weak order, beginning with the proof of Proposition 4.1.7 on parabolic
decompositions.

Proof of Proposition 4.1.7. Let w ∈ W . Although we have already seen the
existence of the decomposition by successive factorization of elements of J ,
we can construct wJ directly from the inversion sets. Consider NJ(w) =
ΦJ ∩ N(w). Suppose that a form f separates N(w) from its complement,
then f|VJ

separates NJ(w) from Φ+
J \ NJ(w). Since NJ(w) is also finite, it

is the inversion set of some element wJ in WJ . Then wJ = ww−1
J is in W J ,

that is, it has no right descent in J : wJ stabilizes VJ and is a bijection,
so in particular N(wJ) = wJ(N(w) \ N(wJ)) does not intersect VJ because
(N(w)\N(wJ))∩VJ = ∅. But VJ contains the simple roots in ∆J = {es | s ∈ J}
so N(wJ) does not: by Proposition 4.2.8, they are not descents. Similarly, if
we have another decomposition w = vJvJ with vJ ∈ W J , vJ ∈ WJ , either
N(vJ) = N(wJ) so it is the same decomposition, or N(vJ) ⊂ N(wJ) (since we
have taken wJ such that N(wJ) = Φ+

J ∩N(w) and that vJ is a suffix of w, it
cannot contain other roots). But in that case:

N(vJ) = vJ(N(w) \N(vJ))
= vJ(N(w) \N(wJ) ⊔N(wJ) \N(vJ))
= vJ(N(w) \N(wJ)) ⊔ vJ(N(wJ) \N(vJ))

.

The set vJ(N(wJ) \N(vJ)) is the (by supposition non-empty) inversion set of
wJv

−1
J , so it contains a simple root in ∆J : again from Proposition 4.2.8, this

means that wv−1
J = vJ has a descent in J , so vJ /∈ W J . This is absurd, which

proves the uniqueness of the parabolic decomposition of w.

Proposition 4.3.7. Let w ∈ W and suppose J ⊂ DR(w). Then WJ is finite
and in the decomposition w = wJwJ , wJ is the maximal element of WJ .

Proof. By supposition, N(w) contains ∆J . By separability, Φ+
J ⊂ N(w), so

WJ is finite and N(wJ) = Φ+
J that is wJ is the maximal element of WJ .
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Proposition 4.3.8 (Subword property). Suppose that v, w ∈ W with v ≤R w.
Then any reduced expression w1 · · ·wn contains a reduced expression of v as
a subword, that is, there is a reduced expression v = v1 · · · vk and a sequence
1 ≤ i1 < · · · < ik ≤ n such that vj = vij for all 1 ≤ j ≤ k.

Proof. This is obviously true if v = 1. Suppose it is true for v of length at
most k − 1 and consider the sequence

N(wn) ⊂ N(wn−1wn) ⊂ N(wn−2wn−1wn) ⊂ · · · ⊂ N(w).

Since v ≤R w, N(v) ⊂ N(w), there is some j ∈ J1, n− 1K such that N(v) ̸⊂
N(wn−j+1 · · ·wn) and N(v) ⊂ N(wn−j · · ·wn). Denote wn−j by s. Because
the sequence is increasing (by exactly one root at each step), this means that
the root that was just added, −(wn−j · · ·wn)es, lies in N(v). So s ∈ DL(w)
and sv ≤R wn−j+1 · · ·wn because N(sv) ⊂ N(wn−j+1 · · ·wn). By recursion,
there is a sequence n − j + 1 ≤ i2 < · · · < ik ≤ n such that the subword of
wi2 · · ·wik

= sv. By taking i1 = n−j, we have found a subword for v in w.

Note that this is also true for the left weak order, so this is not an equiva-
lence. In fact, the relation “being a reduced subword of some reduced expres-
sion” gives rise to an interesting order relation called the Bruhat order on W .
In this thesis, we consider only the weak orders.

4.4 Projective picture

From now on, we set (V,B) to be the classical geometric representation of
(W,S) and (Φ,∆) the corresponding based root system.

In the case of infinite Coxeter groups, Φ can prove challenging to picture:
there are infinitely many roots, they are of unbounded norm. . . Following
[HLR14], we may obtain a handy depiction of the root system: the projective
picture. To a root ρ, we associate a normalized root ρ̂ = Rρ ∩ H1, where H1
is the affine hyperplane generated by ∆. The normalized roots form the set
Φ̂ = {ρ̂ | ρ ∈ Φ}, as shown in Figure 4.3. We call projective picture the set Φ̂
seen as embedded in H1. Since Φ+ is naturally in bijection with Φ̂, we will
identify a ∈ Φ+ with â.

Remark. Since Φ+ ⊂ cone(∆) and ∆ ⊂ H1, we have Φ̂ ⊂ conv(∆), the
convex hull of ∆. Because of this, nothing happens at infinity and the pro-
jective picture is essentially the image of Φ by the canonical projection in the
projective space P(V ). This is also why H1 is chosen: the choice of cutting
hyperplane does not matter because the underlying object is the same, and the
case H1 is especially simple. We chose to see the projective picture as a subset
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Φ
−

Φ
+

H0

et es

a b

â b̂
H1

︸ ︷︷ ︸

N(sts)

eset â b̂
normalization

Figure 4.3: The projective picture for the dihedral group D4.

Figure 4.4: Projective picture of the root system of
⟨S, |S| = 5 | ∀s, t ∈ S, (st)7⟩.

of the affine hyperplane H1, but one could rewrite everything as occurring in
the standard open sets P(V).

More than a simple tool to draw pictures of rank 3 or 4 root systems,
the projective picture has several advantages. For instance, it is a subset of a
compact set, meaning that if we have an infinite group (and thus an infinite root
system), Φ̂ has accumulation points. These points, as indicated in [HLR14],
are on the isotropic cone:

Proposition 4.4.1. Let (ρn)n∈N such that ρn/||ρn|| −→n→∞ l for some l.
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Suppose that l ̸= ρn for all n. Then l ∈ Q.

Proof. Let us denote v/||v|| by ṽ. Since for all v ∈ V , ||v|| ⇒ B(v, v) = 0
and for all ϕ ∈ Φ, B(ϕ, ϕ) = 1, the map v 7→ ṽ is continuous on the closure
of Φ. B is continuous too so B(ρ̃n, ρ̃n) −→n→∞ B(l, l), which means B(l, l) is
positive, because B(ρn, ρn) = 1 for all n. Conversely, the following maps are
all continuous for the usual topologies:{
V −→ L(V )
v 7−→ (sv : x 7→ x− 2B(v, x)v)

,

{
L(V ) −→ V ∗

s 7−→ f ◦ s where f = ⟨ · | 1⟩
.

So the map v 7→ f ◦ sv(l) is continuous as well and f ◦ sρ̃n
(l) −→n→∞ f ◦

sl(l). Notice that for any w ∈ W , f ◦ w is a form separating N(w) from its
complement, so fn = f ◦ sρ̃n

defines an inversion set A, which is in particular
finite. So f−1R∗

− cannot contain l (otherwise an infinity of ρ̃n would also be
contained in the inversion set). So f ◦ sl(l) ≥ 0 and consequently B(l, l) ≤ 0.
Finally, B(l, l) = 0, that is l ∈ Q.

This can be observed in Figure 4.7, where the roots diverge, but tend to a
limit direction given by the isotropic cone which is, in that case, a line.

Notation 4.4.2. Let us denote by lim Φ+ the set of (unitary) limit directions
of Φ+, that is the set:

{l ∈ V | ∃(ϕn)n∈N,∀n ϕn/||ϕn|| ≠ l, ϕn/||ϕn|| →n l}

This circumscribes the treatment of many topological issues to a neigh-
borhood of Q1 = Q ∩ H1. In our proofs in Section 6.1, it will also allow us
to simplify the formalism: cones become convex hulls, extreme rays become
points, etc. This allows us to translate the inversion set into an “even more”
geometric object.

Definition 4.4.3. The inversion polytope of an element w in W is the convex
hull of N(w) in H1. It is denoted by Pw. The set of its vertices is denoted by
N1(w).

Recall that N(w) is separable. This too translates in the projective picture:
there exists some affine hyperplane H of H1 strictly separating the inversion
polytope Pw from its complement in Φ̂. This imposes that N(w) is convex in
the sense that Pw ∩ Φ̂ = N(w) (see [HL16, Lemma 2.10]): Pw and N(w) hold
the same information.
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Figure 4.5: Inversion polytope of s4s1s3s2s4 in Ã3.

4.5 (Af)Finiteness and Weyl groups

A consequence of Proposition 4.4.1 is that if W is infinite, then B cannot be
a definite form. Indeed, if W is infinite, so must be Φ. Suppose that Φ is
infinite and bounded: it must have an accumulation point l, which lies on the
isotropic cone, meaning B(l, l) = 0. But Φ ⊂ (v 7→ B(v, v))−1{1} and B is
continuous, so B(l, l) = 1. This is absurd, so Φ is unbounded. Since the roots
are “B-unitary”, the “unit” sphere is also unbounded and B cannot be definite.
In fact, the converse is also true (see [Hum90, Theorem 6.4]).

Proposition 4.5.1. W is finite if and only if B is positive definite.

Corollary 4.5.2. Let A ⊂ Φ. Using the notations above, HA is finite if and
only if ΦA is finite, if and only if the restriction of B to Span(A) is positive
definite.

With this condition on B being definite in mind, it becomes relatively
easy to classify the finite irreducible Coxeter groups (see for instance [Hum90,
Section 2.7]).
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Proposition 4.5.3. The complete classification of irreducible finite Coxeter
groups is given by the following Coxeter diagrams.

An (n vertices). . .

Bn/Cn (n vertices). . . 4

Dn (n vertices). . .

E6 E7

E8 F4
4

I2(n) n
H4

5
H5

5

Note that for n = 1, we have A1 = B1 = C1. For n = 2, D2 and I2(2) are
not irreducible, so Dn and I2(n) are in the list for n > 2.

Note that, in general, if we construct an orthogonal reflection with re-
spect to a given vector, the reflection “forgets” the norm of that vector. It
so happens that in the way we have defined root systems until now, all roots
are B-unitary, so this information is not actually lost. However, this is not a
hard requirement as, until now, we have essentially asked the root system to
be a stable set of directions, them being given by B-unitary vectors being a
nice but non-essential property when it comes to encoding the Coxeter group
W . Imagine that, instead of constructing the root systems from the abstract
Coxeter systems, we try first to define root systems and then to get Coxeter
groups out of them, we lose an advantage: previously, we crafted an ad-hoc
way of measuring angles by defining B. Now, we are given a Euclidean space
(V, ⟨· | ·⟩) which is more rigid in terms of defining angles, but we may play on
the length of the roots. The natural things to ask of a root system Φ would
be the immediate properties that we got earlier:

1. For all ϕ ∈ Φ, let sϕ = x 7→ x− 2 ⟨x | ϕ⟩
⟨ϕ | ϕ⟩ϕ. Then sϕ(Φ) = Φ.

2. For all ϕ ∈ Φ, Rϕ ∩ Φ = {±ϕ}.

This would make for a rather insufficient definition, as objects respecting
only these requirements can get quite wild. Let us add two more requirements:
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3. Irreducibility If U ⊂ V is a subspace such that (U ∩ Φ) ⊔ (U⊥ ∩ Φ) then
U = {0} or U = V .

4. Essentiality SpanR(Φ) = V .

Still, this is insufficient as this does not guaranty properties we would like
to have, like the fact that Φ, as a consequence of Proposition 4.4.1, is a discrete
set. We might ask for Φ to be finite. This is indeed a good way to define what
a root system is in the sense that it captures all the finite groups, and we
can hardly hope for more because, from Proposition 4.5.1, infinite groups are
inaccessible due to ⟨· | ·⟩ being definite. However, let us be more restrictive and
ask more of Φ.

5. Integrality For all ϕ, ψ ∈ Φ, 2⟨ϕ |ψ⟩/⟨ϕ |ϕ⟩ ∈ Z.

If Φ satisfies these 5 conditions, it is called an (essential irreducible) crys-
tallographic root system. There are not many such root systems: for instance,
in dimension (or rank) 2 there are only 3 (see Figure 4.6).

A2 B2/C2 G2

Figure 4.6: The irreducible crystallographic root systems of rank 2.

Given Φ an irreducible essential crystallographic root system in V , we
choose f ∈ V ∗ such that f−1{0} ∩ Φ = ∅ and say that the positive roots
Φ+ are f−1R+ ∩ Φ. The simple roots ∆ are the positive roots generating the
extreme rays of cone(Φ+). Up to an isometry on V , the specific choice of f
has no influence.

Definition 4.5.4. Let Φ be crystallographic root system. The Weyl group
associated to Φ is the group generated by the orthogonal reflections through
the roots.

We will see in an instant (Proposition 4.5.5) that the irreducible root sys-
tems can be naturally labeled by {An, Bn, Cn, Dn, E6, E7, E8, F4, G2}. If Φ is
of these types T , the Weyl group is often also denoted by T . We have the same
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properties as before: W is actually generated by the reflections through the
simple roots, Φ = Φ+ ⊔Φ−, Φ = W∆, W acts faithfully on Φ, (W, {sδ | δ ∈ ∆})
is a Coxeter system. . . Because of this, in the same way that finite Coxeter
groups are classified by their Coxeter diagrams, the irreducible crystallographic
root systems are classified by their Dynkin diagrams: the vertices are the simple
roots, with, between any two simple roots δ, δ′ no edge if ⟨δ | δ′⟩ = 0, a simple
undirected edge if ⟨δ | δ′⟩ = −1/2 (they generate an A2 root subsystem), a dou-
ble directed edge from the longest root to the shortest if ⟨δ | δ′⟩ = −1 (B2/C2
subsystem) and a triple directed edge from longest to shortest if ⟨δ | δ′⟩ = −3/2
(G2 subsystem). We obtain the following classification of the crystallographic
root systems (see [Hum90, Section 2.9]).

Proposition 4.5.5. The complete classification of irreducible crystallographic
root system is given by the following Dynkin diagrams.

An (n ≥ 1 vertices). . .

Bn (n ≥ 2 vertices). . .

Cn (n ≥ 3 vertices). . .

Dn (n ≥ 4 vertices). . .

E6 E7

E8 F4

G2

As before, the number of vertices requirement is there to ensure uniqueness
in the classification, but we can otherwise consider the root systems A1 = B1 =
C1, B2 = C2, A3 = D3.

Note that even though the Bn and Cn root systems are not isometric,
their associated Weyl groups are isomorphic: as said before, the reflection
group “forgets” about the length of the roots and the Coxeter diagrams of the
Weyl groups associated to the root system Bn and Cn merge into the Bn/Cn

diagram of Proposition 4.5.3. However, this distinction is significant: if we
recall Proposition 4.5.1, we may ask what (irreducible) groups correspond to,
for instance, a positive semi-definite bilinear form?

Proposition 4.5.6. The irreducible Coxeter systems such that B is positive
semi-definite are classified by the following Coxeter diagrams.
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Ãn (n+ 1 ≥ 3 vertices)
. . .

B̃n (n+ 1 ≥ 4 vertices). . . 4

C̃n (n+ 1 ≥ 3 vertices). . . 44

D̃n (n+ 1 ≥ 5 vertices). . .

Ẽ6 Ẽ7

Ẽ8

F̃4
4

I2(∞) ∞

G̃2
6

Same remark as before on the number of vertices. However, we will often write
I2(∞) as Ã1.

The groups associated with these diagrams are called (irreducible) affine
Coxeter groups or (irreducible) affine Weyl groups. Visibly, the irreducible
crystallographic root systems are in one-to-one correspondence with the irre-
ducible affine Coxeter groups (with I2(∞) corresponding to A1). All these
Coxeter diagrams can be obtained from the Coxeter diagrams of the Weyl
groups by adding a vertex and an edge. The fact that Bn/Cn can be extended
in two ways seems to point to the Weyl groups “remembering” the lengths of
the crystallographic root systems. Let us present a well-known construction of
the affine Weyl groups that explains this and that we adapt here from [Hum90,
Section 6.5].

Let Φ be an essential irreducible crystallographic root system and V its
ambient space. Recall the integrality condition: since Φ = W∆, Φ ∈ Z∆ and
in particular Φ+ ∈ N∆.

Definition 4.5.7. The root poset is (Φ+,≤) where α ≤ β if and only if
β − α ∈ N∆.
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In type A : In type An, we can choose the positive roots as the set
{ρi,j = ei − ej | 1 ≤ i < j ≤ n + 1}. In the root poset, we have
ei − el ≥ ej − ek if and only if i ≤ j < k ≤ l. The Hasse diagram of A4
is as follows. In this case, the highest root is α0 = ρ1,5.

ρ1,2 ρ2,3 ρ3,4 ρ4,5

ρ1,3 ρ2,4 ρ3,5

ρ1,4 ρ2,5

ρ1,5

As in the previous example, the root poset of type An has a unique maximal
element. This is general: if Φ is irreducible, the root poset has a unique
maximal element, called the highest root(see [Hum90, Section 2.9 (3)]), denoted
by α0.

Let δ be a symbol and consider the space V ⊕ Rδ where the dot product
of V is extended by ⟨δ | δ⟩ = 1 and δ ∈ V ⊥. We also define a bilinear form B

by B|V ×V = ⟨· | ·⟩, and (V ⊕ Rδ)⊥B = Rδ.

Definition 4.5.8. The affine root system Φa associated to Φ is the set Φ +
Zδ. The positive roots are (Φ+ + Nδ) ⊔ (Φ− + N∗δ). The simple roots are
∆ ⊔ {−α0 + δ}.

As before, we get a group by considering the B-orthogonal reflections as-
sociated to the roots. This is not the only way to obtain that group, however,
and we shall prefer the following way:

Definition 4.5.9. Let Φ be an irreducible crystallographic root system. Con-
sider the affine Weyl group associated to Φ is the group generated by the affine
reflections for all α ∈ Φ, k ∈ Z:

sα,k :


V −→ V

x 7−→ x− 2(⟨α |x⟩ − k) α

⟨α |α⟩
.

If Φ is of type T ∈ {An, Bn, Cn, Dn, E6, E7, E8, F4, G2}, the Weyl group will
be denoted by T̃ .

The reader may question why in this case only, the reflection group does not
arise in terms of reflection with respect to roots, but to (affine) hyperplanes.
We refer to [Hum90, Chapter 4] for more details, as we shall not develop
further the relation between these two points of view: put simply, the affine
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−6 −5 −4 −3 −2 −1 0 1 2 3 4 5
L δ

α−α

Figure 4.7: Affine arrangement and affine roots in Ã1.
The dots are the affine hyperplane in the black line H1. The red vectors are
Φ+

a and the blue ones are Φ−
a . Their direction approaches that of δ as their

associated affine hyperplane (meaning, here, their intersection with the line
L) goes to infinity.

hyperplanes in V can be seen as a cut of the dual of the affine root system as
illustrated in Figure 4.7.

The same phenomenon can also be observed in Figure 4.8 in the case of
Ã2. We shall only use the fact, readily observable in the figures, that there is a
one-to-one correspondence between positive roots and affine hyperplanes. To
fix the notations in this correspondence, let:

Hα+kδ = {x+ dδ ∈ V ⊕ Rδ | ⟨x+ dδ |α+ kδ⟩ = 0}.

If we restrict ourselves to d = 1, we get:

Hα+kδ ∩ {d = 1} = {x ∈ V | ⟨x |α⟩ + k⟨δ | δ⟩ = 0} + δ

so the root α+ kδ corresponds to the affine hyperplane ⟨x |α⟩ = −k.

If we set Hα,k = {x ∈ V | ⟨x |α⟩ = k}, the root α+kδ naturally corresponds
to Hα,−k. Because of this, the set Φ+

a = (Φ+ + Nδ) ⊔ (Φ− + N∗δ) is a natural
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indexing set for the affine hyperplanes in V generating W̃ . For ease of use
reasons that will appear in Section 4.7, we will prefer to manipulate the sets
H+

α,k = {x ∈ V | ⟨x |α⟩ > k} and H−
α,k = {x ∈ V | ⟨x |α⟩ < k}. However, we

get that H+
α+kδ = H−

α,−k if α ∈ Φ−. To avoid this slightly unpleasant issue, we
chose a different indexing set: note that Hα+kδ = H−α−kδ so Φ+ + Zδ is also
an indexing set. Thus, we get the following correspondence between the Φ+

a

and Φ+ × Z based indexing:

ϕ 7→
{
H−α,k if ϕ = α+ kδ ∈ Φ− + N∗δ

Hα,−k if ϕ = α+ kδ ∈ Φ+ + Nδ
.

That way, given a root α ∈ Φ, the sets H+
α,k are (strictly) decreasing for

inclusion.

To come back to the question of the length of the roots, it is somewhat clear
that in this construction B̃n and C̃n “remembers” whether it was constructed
from the Bn and Cn because the length of the roots is reflected in the spacing
in the arrangement of affine hyperplanes used to construct the Weyl group.

4.6 Dual objects: Tits cone, Coxeter com-
plex

We present here the notions of Tits cone and Coxeter complex, which can
be understood as dual objects to the root system and the inversion sets. This
dual point of view will be useful in stating simply the proofs in §6.1.1 where we
examine the interactions of inversion sets and moving separation hyperplanes.
We refer to [AB08] for more details. Recall that we have fixed (W,S) of finite
rank, which means that V is finite dimensional. As such, we commit an abuse
of notation by conflating the dot product and ⟨ · | · ⟩ : V ×V ∗ −→ R the duality
bracket. We do not, however, identify V with V ∗: the objects described in this
section live in a space separate from V .

For v ∈ V , we set Hv = {f ∈ V ∗ | ⟨v | f⟩ = 0}, H+
v = {f ∈ V ∗ | ⟨v | f⟩ > 0}

and H−
v = −H+

v . Note that unlike what we did in the case of affine groups,
those are hyperplanes in the dual space. In the affine case, because the bilinear
form with respect to which we defined the reflections was so close to an actual
dot product, affine roots and their orthogonal hyperplanes could meaningfully
be represented in the same space. In the general case however, the bilinear
form is not necessarily positive definite, and we must work in the dual space.

Definition 4.6.1. The union of the Hϕ taken over the roots is called the
Coxeter arrangement:

A =
⋃

ϕ∈Φ
Hϕ.
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The connected components of the complement of the Coxeter arrangement in
V ∗ are called the alcoves.

Recall from Proposition 4.3.4 the definition of a separating form. Let f be
an element contained in an alcove A: by definition, it does not lie in anyHϕ and
thus is a separating form for the set of roots Φ+ ∩f−1R−. Moreover, this set is
independent of the choice of f in A, and we may denote byN(A) = Φ+∩f−1R−
for any f ∈ A. By duality to the question of which subsets of the roots
correspond to an inversion set, we can ask which alcoves A correspond to
inversion sets N(A). We have by construction the separability, so according to
Proposition 4.3.4 we only lack finiteness.

Beginning with the identity element, let the set C = ⋂
δ∈∆H

+
δ = ⋂

ϕ∈Φ+ H+
ϕ

be the fundamental alcove and C be its closure for the usual topology. It is
immediate that f ∈ V ∗ separates N(1) = ∅ if and only if f ∈ C and that C
is non-empty (as it contains ⟨ · | 1⟩). The Tits cone of W is U = ⋃

w∈W w(C),
where w acts on the right on V ∗ by w(f) = f ◦w. Note that this goes against
the usual convention (used for instance in [Hum90]) of acting on V ∗ by duality
on the left, but has the advantage that it helps us more immediately understand
the elements of the Weyl alcoves as forms separating the inversion set of their
corresponding element from their complement. This change of convention does
not essentially change the classical results on the Tits cone.

The map w 7→ wC is injective as wC is non-empty (it contains ⟨w(·) | 1⟩)
and all the forms in wC are separating forms for N(w): since N is injective, so
is w 7→ wC. The resulting alcove lies in H−

ϕ if ϕ ∈ N(w) and H+
ϕ otherwise.

In that sense, an alcove wC is the dual of the inversion set N(w). Let us just
formally state the characterization of the inversion set in terms of the alcove

Proposition 4.6.2. Let w ∈ W . Then for all Φ ∈ Φ+, ϕ ∈ N(w) if and only
if C and wC lie on different sides of Hϕ.

Proof. This is immediate given that C is in H+
ϕ for all ϕ ∈ Φ+ and that

ϕ ∈ N(w) if and only if wC ⊂ H−
ϕ .

Given this interpretation of the inversion set as separating hyperplanes
between two alcoves in the dual space, we can also say that the Tits cone is
the union of (the closure of) all alcoves that are separated from C by finitely
many hyperplanes Hϕ, ϕ ∈ Φ+.

As the inversion set of an element w can be read as the set of hyperplanes
separating the Weyl alcove wC from the Weyl alcove C of the identity element,
logically, we could expect that the descents Γw, being the first roots that can
be removed from N(w), the associated hyperplanes should be in some sense
the “closest” to wC. As it turns out, this can be formalized. Fix a root ϕ ∈ Φ+
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and a Weyl alcove w(C). We say that Hϕ is a wall of w(C) if Hϕ ∩ wC spans
Hϕ (or, equivalently, if Hϕ ∩wC contains a relative open set of Hϕ). Walls give
us yet another way to recognize inversions and descents.

Proposition 4.6.3. For any ϕ ∈ Φ, ϕ ∈ Γw if and only if ϕ ∈ N(w) and Hϕ

is a wall of w(C).

Proof. Seen in the geometric light, this is obvious: a descent ϕ is a root that
is an inversion such that N(w) \ {ϕ} = N(w′) for some w′. Since removing a
root ϕ from N(w) corresponds to crossing Hϕ, we may cross only Hϕ from wC
if and only if Hϕ ∩ wC is a proper face of C of dimension dimV − 1 : that is,
a wall.

Because for any non-zero linear form f ∈ V ∗, for all λ ∈ R∗
+, f and λf

define the same half spaces and thus potentially the same inversion sets, we
consider the quotient (U \ {0})/R∗

+, called the Coxeter complex associated to
Φ. We may choose, for instance, a set of representatives of the elements of the
Coxeter complex as the intersection of the Tits cone with the unit sphere of
V ∗.

r t

s

ρ

−(α + β) + δ

α

t

s

st

tst

ts

rtr

tr

. . .

. . .

. . .

. . .

. . . . . .

H
+
α

H
−

α+β,1H
+

β

H
−

α+β,2

β

Figure 4.8: On the left, the projective picture. On the right, the Coxeter
complex.

Weyl alcoves are labeled by their associated element. Half-spaces in the
primal are sent to points of the same color in the Coxeter complex.
Conversely, the descent ρ of rts is sent to the wall Hρ of rts(C) with

rts(C) ⊂ H−
ρ .

The map f 7→ f−1R+ is a bicontinuous bijection from (V ∗ \ {0})/R+ to
the set of closed half spaces of V . In particular, if we restrict the map to
the Coxeter complex, this means that a small perturbation of a point in the
dual, translates to a small perturbation of the corresponding hyperplane in
the primal. In fact, in the same way that in the projective picture we get a
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nice discrete topology on the normalized roots as long as we stay away from
the isotropic cone, in the dual space, the hyperplanes corresponding to roots
remain “separated” from each other as long as we stay in the Tits cone. Several
formalizations of this remark exist, but the one that will be most useful to us
is reproduced here from [Hum90, Theorem 5.13].

Proposition 4.6.4. The Tits cone U is convex. Any line segment with ex-
tremities in U meets finitely many alcoves and finitely many hyperplanes Hϕ

for ϕ ∈ Φ+.

Remark. A coarse (and false, but useful) intuition for the Tits cone is as
the dual cone of the isotropic cone. In fact, it is the (strict) dual cone of the
limit directions of the positive root system i.e. the set {f ∈ V ∗ | f(l) > 0 ∀l ∈
lim Φ+} (see [Dye12]). Let us see in the finite, affine and general cases what
this means.

• In the case of a finite group, any alcove of the Coxeter arrangement is a
finite number of hyperplanes away from C, as there is only a finite num-
ber of hyperplanes. This is indeed the dual cone of the limit directions
of the positive roots, that is, the empty set.

• In the case of an affine set, the positive roots have exactly one limit
direction: the imaginary root δ. The dual cone is the (open) half-space
H+

δ .

• In the other cases, given two roots α, β such that B(α, β) < −1, Φα,β

has two accumulation points and thus, the Tits cone is bounded along
the direction of the line (⟨α | ·⟩, ⟨β | ·⟩).

We want to bring the attention of the reader on the fact that in the affine
case, we can realize the Coxeter complex as the totality of the affine space
Hδ,1 = {v + δ | v ∈ V }, for instance. In that sense, the picture of Figure 4.7
is not exceptional: the Tits cone is the dual cone of δ, so it contains Hδ,1 and
conversely, every alcove in the Tits cone encounters Hδ,1.

Notation 4.6.5. In the case of a general Coxeter group, we will call the
connected components of the complement of the Coxeter arrangement alcoves,
as we have done in this section. However, in the case of affine Weyl groups,
the Coxeter arrangement of a given W̃ also contains the Coxeter arrangement
of the finite group W̃ . To distinguish, when we talk about alcoves we mean
of the affine group, and we call chambers the connected components when
considering only the arrangement of the finite group.
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4.7 Small roots and Shi arrangement

4.7.1 Arbitrary Coxeter group

Let (W,S) be an arbitrary Coxeter system of finite rank.

Definition 4.7.1. Let α, β ∈ Φ+, distinct. We say that α dominates β if
for any w ∈ W , α ∈ N(w) ⇒ β ∈ N(w). The statistic dp∞(α) = |{β ∈
Φ+ |α dominates β}| is called the infinite depth of α. We denote Σn the set
of roots with infinite depth at most n.

The elements of Σ0 (resp. Σn) are called small roots (resp. n-small) and
were introduced in [BH93] by Brink & Howlett in connection with constructing
an automaton recognizing the language of reduced words of W .

Example 4.7.2. The simple roots are always small roots as for any
s, {es} is an inversion set so es dominates no one. More generally, if
W is finite, all roots are small because all separable sets of roots are
inversion sets. Given two distinct positive roots α, β, any separating
linear form for the pair that does not vanish on any other root (which
can be assured) gives an inversion set in which one is and not the other.

A major result is that the sets Σn are finite, as proven by Brink & Howlett
in [BH93] for the case n = 0 and Fu in [Fu12] for arbitrary n.

Proposition 4.7.3 (Brink & Howlett, Fu). For all n, Σn is finite.

Without going into the details, it follows from Proposition 4.3.1 that if
s /∈ DR(w), Σn(ws) = {es} ∪ (sΣn(w) ∩ Σn).

Definition 4.7.4. For any w in let Σn(w) = Σn ∩ N(w) be the n-small
inversion set of w. The set of all n-small inversion set is denoted by Λn.

Note that since ∆ ⊂ Σn, if two alcoves wC, w′C are in the same Shi region
then Σn(w) = Σn(w′) and in particular DR(w) = DR(w′). Thus, the free
monoid on S acts on the finite set Λn ∪ {reject} by sλ = reject if es ∈ λ,
sλ = {es} ∪ (sλ ∩ Σn) otherwise and s reject = reject. This gives a finite
automaton where a word is accepted if and only if it doesn’t end on reject,
which happens if and only if it is reduced.

Proposition 4.7.5 (Brink, Howlett [BH93]). The language of reduced words
of a Coxeter group is recognized by a finite automaton.
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This is a very interesting and important property in language theoretic
terms. It is especially notable that although the result itself has no obvious
connection to geometry, its proof is dependent on the definition of the small
roots, which are geometric in nature. As before, looking at the dual of the
n-small root gets us another interesting and well-studied object: the n-Shi
arrangement.

Definition 4.7.6. The n-Shi arrangement is the union of the hyperplanes

An =
⋃

ϕ∈Σn

Hϕ.

The Shi arrangements are subarrangements of the Coxeter arrangement, so
for any region R of An, and any alcove A, either A ⊂ R or A∩R = ∅ so the Shi
regions are (a topological closure away from) a union of alcoves. However, when
looking only at the accessible alcoves, meaning the Tits cone, the situation is
not as clean. For example, the fundamental alcove C is a region of the Shi
arrangement (because the simple roots are small) and so is −C. However,
unless W is finite, −C is not in the Tits cone (it would correspond to the
element that inverses every root). In this thesis, we are only concerned about
Shi regions that meet the Tits cone.

The n-small inversions sets are naturally in bijection with the regions of
the n-Shi arrangement that intersect the Tits cone: for any such region R,
let wC ⊂ R. By definition of the n-Shi arrangement R = ⋂

ϕ∈Σn
H

εϕ

ϕ with
ε ∈ {+,−}Σn so by Proposition 4.6.2, Σn(w) = {ϕ ∈ Σn | εϕ = −}. Conversely,
if λ ∈ Λn, by definition λ = Σn(w) for some w, and λ corresponds to the Shi
region containing wC. In general, the intersection of a Shi region with the Tits
cone contains an infinite number of alcoves in the Tits cone and the n-small
inversion set map cannot be injective. Is there a natural notion of a privileged
element of the group having a given n-small inversion set?

Definition 4.7.7 (From [DH16]). An element w ∈ W is n-low if the inversion
set can be recovered from the n-small inversion set by

N(w) = cone(Σn(w)) ∩ Φ+.

The set of n-low elements is denoted by Ln.

If λ ∈ Λn is the n-small inversion set of some low element w, it is natural to
say that w should be the privileged representation for λ as from Corollary 4.3.5,
cone(Σn(w))∩Φ+ ⊂ N(w) so the equality case defining a low element is asking
for the low element to be minimal in its Shi region in terms of inversion set
inclusion – or equivalently, in the left weak order. It is clear that the map
Σn : Ln −→ Λn is injective as a low element is determined by its small inversion
set.
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Conjecture 4.7.8 (Dyer & Hohlweg, [DH16] Conjecture 2). The map Σn :
Ln −→ Λn is surjective.

Since this conjecture was proposed, several special cases were solved (mostly
for n = 0): the rank 3 case in [Cha21] (reproduced below), the case of affine
Weyl groups in [CLH22], another proof of the case of affine Weyl groups in
[Cha23] (also reproduced below) until a recent paper [Dye+23] from Dyer,
Hohlweg, Fishel and Mark settled the question by proving the conjecture for
any group and any n.

An important tool for our proof of the conjecture in rank 3 as well as the
general proof from Dyer, Hohlweg, Fishel and Mark [Dye+23] is the notion of
bipodality of a subset of the positive roots.

Definition 4.7.9. For any maximal dihedral subgroup H and α, β ∈ Φ+
H , if

α /∈ ∆H and β ∈ ∆H , we say that (α, β) is an arrow from α to β, and we
write α → β.

In the projective picture, deciding if any two distinct roots (α, β) form an
arrow can be interpreted as drawing the line d = (α, β), considering all the
normalized roots lying on d and answering the question “is α between other
roots while β is not ?”.

Definition 4.7.10 (Dyer & Hohlweg [DH16]). A set A ⊂ Φ+ is bipodal if
whenever α → β and α ∈ A then β ∈ A.

In [DH16], the authors first prove that Σ0 is bipodal, which is then gener-
alized by Dyer in [Dye22]. We refer to [Dye22, Theorem 1.6] for the proof of
the general case.

Theorem 4.7.11 (Dyer & Hohlweg, Dyer). For all n, the set Σn of n small
roots is bipodal.

4.7.2 Weyl group

In the case of affine Weyl groups, the n-Shi arrangement takes a special, simpler
form, because infinite depth is essentially given by the δ coordinate of a root.
In this section (W,S) is a crystallographic group with root system Φ in the
Euclidean space V with associated affine root system Φa ∈ V ⊕ Rδ and affine
Weyl group W̃ .

Proposition 4.7.12. Let ϕ ∈ Φ+
a . Then

dp∞(ϕ) =
{

k if ϕ = α+ kδ, (α, k) ∈ Φ+ × N
k − 1 if ϕ = −α+ kδ, (α, k) ∈ Φ+ × N∗ .
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Proof. Note that because of the choice of indexing for the hyperplanes at the
end of Section 4.5, α+kδ, where (α, k) ∈ Φ+×N, is an inversion of w if and only
if wC ⊂ H−

α,−k. But, conversely, −α+kδ for (α, k) ∈ Φ+ ×N∗ is an inversion if
and only if wC ∈ H+

α,k. Recall that the sets H+
α,k and H−

α,−k are decreasing for
inclusion when k increases. Thus, in the first case wC ⊂ H−

α,−k ⇒ wC ⊂ H−
α,−k′

for all k′ ∈ J0, k − 1K, so dp∞(α+ kδ) ≥ k because α+ kδ dominates all those
α + k′δ. Similarly, in the second case wC ⊂ H−

α,−k ⇒ wC ⊂ H−
α,−k′ for

k′ ∈ J1, k − 1K so dp∞(α+ kδ) ≥ k − 1.
Let us show that the roots {α+k′δ | k′ ∈ J0, kK} are the only ones dominated

by α + kδ. Firstly, no root of the form −α + dδ is dominated: if α + kδ and
−α + dδ are in the same inversion set, from Corollary 4.3.5, so are every
positive linear combination of the two. In that case, the inversion set would
contain an infinite number of roots (of the form α + (k + md)δ,m ∈ N for
instance). Secondly, let β ∈ Φ+ be distinct from α. Since α and β are not co-
linear, for any k′ ∈ N the affine hyperplanes Hα,k and Hβ,k′ intersect. Because
W̃ is affine, the Coxeter complex contains that intersection, meaning that the
region H+

α,k ∩H−
β,k′ contains accessible alcoves and any alcove in it corresponds

to an element inverting α + kδ but not β + k′δ (and similarly for the other
combinations (α + kδ,−β + (k + 1)δ), (−α + (k + 1)δ, β + kδ), (−α + (k +
1)δ,−β + (k + 1)δ)).

Definition 4.7.13. We denote by An the n-Shi arrangement defined by:

An =
⋃

α∈Φ+

⋃
k∈J1−n,nK

Hα,k.

It is clear from Proposition 4.7.12 that this is equivalent, in the context of
Weyl groups, to the previous definition of the Shi arrangement. As before, the
Shi arrangement An being a sub-arrangement of A which defines the alcoves,
for a Shi region R we have

⋃
wC∩R ̸=∅wC ⊂ R. Unlike before however, this

inclusion is in fact an equality because, again, the Coxeter complex is the
whole affine space. Said more loosely, a Shi region is a union of alcoves. Using
this fact, for w ∈ W̃ we (abusively) write that w ∈ R to mean wC ⊂ R.

We will mostly be interested in the case of A1 for which we have a handy
description of the regions. Setting, for a real number x, sign(x) = − if x < 0,
sign(x) = 0 if x = 0 and sign(x) = + if x > 0, we can define sign(w) for
w ∈ W̃ as (sign(k(w,α)))α∈Φ+ . The following is straightforward (see [Shi87b]
for a discussion and a precise proof):

Proposition 4.7.14. Let R be a Shi region. The value of sign(w) is constant
for all w ∈ R. The sign type of R, denoted by sign(R), is defined as sign(w)
for any w ∈ R. The map R 7→ sign(R) is an injection of the set of Shi regions
in {−, 0,+}Φ+.



135 4.7. Small roots and Shi arrangement

In type A2: A consequence of Theorem 5.2.1 is that not all sign types
are possible. In type A2 for instance, we have 3 roots α = e1 − e2, β =
e2 − e3, α+ β = e1 − e3. Giving the signs in the order (α, α+ β, β) (as
we present sign triplets everywhere, with the sum in the middle), the
A2 sign types are the following:

(+,+,+), (−,−,−), (+,+,−), (−,+,+), (−,−,+), (+,−,−),
(+,+, 0), (0,+,+), (+, 0,−), (−, 0,+), (−,−, 0), (0,−,−),

(0,+, 0), (0, 0,−), (−, 0, 0), (0, 0, 0)

 .
Notice that replacing all the zeros of a possible A2 sign type with pluses
gives one of the possible A2 sign types of the first row above.

Given the sign type sign(R) of some Shi region R, it seems natural to ask
to exhibit an element w ∈ W̃ such that sign(w) = sign(R). As announced in
the introduction, we can actually do slightly better than exhibit any element:
in [Shi87b, Proposition 7.2], Shi proves that every Shi region has a minimal
element, in the sense that its Shi encoding is minimal. Given w ∈ W̃ and its
corresponding alcove wC, define:

k(w,α) = max{i ∈ Z |wC ⊂ H+
α,i}.

Proposition 4.7.15. Let R be a Shi region in the type W̃ Shi arrangement.
There exists a unique minimal element min(R) ∈ R in the sense that for every
w ∈ R and every α ∈ Φ+, |k(min(R), α)| ≤ |k(w,α)|.

Remark. The minimal element can be defined in other equivalent ways: it is
also the unique element such that ∑α∈Φ+ |k(w,α)| is minimized, or the unique
minimal element of R for the left weak order of W̃ . We refer to [Shi87b, Section
7] for details. For our application, the version of Proposition 5.2.13 is the most
convenient.





Chapter 5
Minimal elements of Shi regions
in Weyl groups

In this chapter, W is an irreducible Weyl group with crystallographic essen-
tial root system Φ in an ambient Euclidean space V , positive roots Φ+ and
negative roots Φ−. If v is a vector indexed by Φ+, we abuse the notation by
setting v−a = va

1 for any a ∈ Φ+. If A is a subset of V , we have the objects
VA, BA,SpanΦ(A),ΦA,Φ+

A,Φ
−
A as defined in Notation 4.2.7.

It is obvious that, since Φ is crystallographic, for any A ⊂ Φ, ΦA is too.
As pointed out in Proposition 4.5.5, the irreducible crystallographic root sys-
tems are fully classified, but we shall not need the classification for the most
important part of this chapter, except for two points:

• The list of rank 2 crystallographic root systems. Fortunately, there are
very few, as presented in Figure 5.1 below.

• That only G2 has G2 as a rank two subsystem.

A1 × A1 A2 B2/C2 G2

Figure 5.1: The positive roots of the rank 2 crystallographic root systems.
The Hasse diagram of the root poset is represented in purple.

1This choice, which will reveal itself to be slightly non-standard, is – as will be
explained later – intentional.
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From Figure 5.1, we can make the two following observations that will be
useful in Section 5.1.

Observation 5.0.1. 1. In all crystallographic root systems of rank 2, if
a, b are positive roots, if a− b /∈ Φ then ⟨a | b⟩ ≤ 0.

2. Moreover, if we assume that b ≥ a, then ⟨a | b⟩ = 0.

Given the finite group W , we denote W̃ the corresponding affine Weyl
group, as before.

5.1 Structure of the Shi relations

We begin by considering the notion of Shi vectors, following [Shi87a]. We do so
somewhat independently of the original context of hyperplane arrangement, in
the sense that we are (for now) only interested in understanding their defining
relations. For now, Shi vectors will only be Φ+-indexed integer vectors satis-
fying some relations called the Shi relations. The objective of this section is
to understand those relations: we will see that, in some sense, they are almost
totally ordered, giving them a rigid structure, which we will use in Sections
5.2 and 6.2.

Definition 5.1.1. A vector v ∈ ZΦ+ is a Shi vector if ∀α, β, γ ∈ Φ+, α = β+γ
implies that ∃ εβ,γ ∈ {0, 1} such that vα = vβ + vγ + εβ,γ . This relation is
called a Shi relation (with top α).

Remark. We want to bring the attention of the reader to the fact that in
Shi’s original formulation given as reference, the condition on α, β, γ in the
previous definition is instead α∨ + β∨ = γ∨ where for some non-zero vector
v ∈ V , v∨ is defined as 2v/⟨v | v⟩. However, this is because the Hα,k are instead
defined as {x ∈ V | ⟨α∨ |x⟩ = 0}. This is a minor difference, as {a∨ | a ∈ Φ} is
a crystallographic root system whenever Φ is: thus when we study for instance
the Shi relations of type Bn for our definition, we are actually studying the
Shi relations of type Cn in Shi’s original sense. We adopt this difference in
convention for the sake of lighter notation.

The definition of the Shi relations naturally leads to consider the following
set:

Definition 5.1.2. The skirt of a positive root γ is the set

Sk γ = {α ∈ Φ+ | γ − α ∈ Φ+}.



139 5.1. Structure of the Shi relations

In type An : In the Hasse diagram of a type A root poset, the skirt of
a root ρi,j is the set {ρi,k | i < k < j} ∪ {ρk,j | i < k < j}. We represent
below the skirt of the root ρ1,4 in A4. The dashed lines show the Shi
relations with top ρ1,4.

ρ1,2 ρ2,3 ρ3,4 ρ4,5

ρ1,3 ρ2,4 ρ3,5

ρ1,4 ρ2,5

ρ1,5

The name “skirt” comes from the shape of this set in the case of type A.

It is obvious that a ∈ Sk(b) implies a ≤ b in the root poset. In the
remainder of this section, we want to establish two features of the skirt of a
root that are immediately apparent in type A from the picture above: the
relation “being in the skirt of” is almost transitive (Proposition 5.1.3) and
any two elements of the skirt are almost comparable (Proposition 5.1.4). The
following proposition formalizes this "quasi-transitivity". It should be noted2

that it is equivalent to the case n = 3 of [FP18, Note 3.4].

Proposition 5.1.3. Let a, b, c be positive roots such that b ∈ Sk(a) and c ∈
Sk(b). Then c ∈ Sk(a) or b− c ∈ Sk(a).

In type A : This proposition is the transposition in any Weyl group
of the obvious equivalent in type A: if ρi,k ∈ Sk(ρi,l) and a ∈ Sk(ρi,k),
then either a = ρi,j ∈ Sk(ρi,l) for some j (in red below) or a = ρj,k for
some j and ρi,k − a = ρi,j ∈ Sk(a) (in blue below), and similarly for the
“other side” of the skirt.

ρi,j ρj,k ρk,l

ρi,k ρj,l

ρi,l

Proof. Let us show that c /∈ Sk(a) implies b− c ∈ Sk(a), that is, by definition
of the skirt, a − (b − c) ∈ Φ+. Denote SpanΦ({a, c}) by Φ1 : Φ1 must be of

2The author thanks Pr. Matthew Dyer for pointing it out.
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one of the types A1 × A1, A2, B2/C2 or G2. From Observation 5.0.1-2, a and
c are orthogonal.

Denote now SpanΦ({a− b, c}) by Φ2. We want to show that (a− b) + c =
a− (b− c) is a positive root. Note that it is enough to prove it is a root, since
a − b and c are already positive, so their sum is positive. We have several
possible cases:

• Φ2 = G2. Since only G2 has a root subsystem of type G2, it means Φ =
Φ1 = Φ2. Reasoning by contradiction, we suppose that a− (b−c) /∈ Φ+.
This means that a is orthogonal to c and to b− c. Since b− c and c are
distinct and no two positive roots are positively collinear, this means
that c = λ(b− c), λ < 0. This is a contradiction because c and b− c are
both positive roots.

We now assume that Φ2 is not of type G2.

• ⟨a− b | c⟩ > 0 which since ⟨a | c⟩ = 0 implies ⟨b | c⟩ < 0. Notice in Figure
5.1 (Observation 5.0.1-2) that given b ≥ c, this cannot happen.

• ⟨a − b | c⟩ < 0. In that case, it is easy to check that in all possible
configurations for Φ2 where two positive roots form an obtuse angle,
their sum is still a positive root.

• ⟨a − b | c⟩ = 0. This means that a − b, a and b are of the same length,
because they are of the same length as c. Thus, Φ3 = {±a,±b,±(a−b)}
is a root subsystem of type A2 and in particular ⟨a | b⟩ = ||a||2/2. Since
Φ is stable by the linear reflection orthogonal to the roots, we have:

(b− c) − 2⟨b− c | a⟩
||a||2

a = (b− c) − 2⟨b | a⟩
||a||2

a = b− c− a = −(a− (b− c)).

We conclude by recalling that Φ is also stable by x 7→ −x.

We will use several times the following consequence of Proposition 5.1.3:
if we have b ∈ Sk(a), c ∈ Sk(b), then d = b − c and e = a − b are positive
roots by definition of the skirt. From Proposition 5.1.3, either c or d are in
Sk(a). Suppose, for instance, that d ∈ Sk(a). Then f = a − d is a positive
root. We have a = e+ (c+ d) = f + d, so f = e+ c. We illustrate this fact in
Figure 5.2. Roughly speaking, if we add all the skirt complements to a, b and
c, and consider the subposet of the root poset they form, we get a height two
pyramid.

Proposition 5.1.4. Let a be a positive root and b, c ∈ Sk(a). Denote a−b = d,
a − c = e and suppose that {b, d} ≠ {c, e}. Then b ∈ Sk(c) or c ∈ Sk(b) or
d ∈ Sk(c) or c ∈ Sk(d).
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e c d

f b

a

Figure 5.2: “A skirt of a skirt gives a pyramid”: c ∈ Sk(b) implies that d is a
positive root, b ∈ Sk(a) implies that e is a positive root, and later, from
Proposition 5.1.3 if for instance d ∈ Sk(a) then f ∈ Sk(a) and f = e+ c.

Proof. We reason by contradiction. Suppose that b /∈ Sk(c) and c /∈ Sk(b) and
d /∈ Sk(c) and c /∈ Sk(d). Note that because a = b + d = c + e, b ∈ Sk(c) is
equivalent to c− b = d− e ∈ Φ+, that is, to e ∈ Sk(d). So by our supposition,
we also have e /∈ Sk(d) and d /∈ Sk(e) and e /∈ Sk(b) and b /∈ Sk(e). By
definition of the skirt, b /∈ Sk(c) and c /∈ Sk(b) means that b − c, c − b /∈ Φ+,
that is, b − c /∈ Φ. By Observation 5.0.1-1, ⟨b | c⟩ ≤ 0. Similarly, the dot
products ⟨d | c⟩, ⟨b | e⟩, ⟨d | e⟩ are all negative. We have:

0 < ||a||2 = ⟨b+ d | b+ d⟩ = ⟨b+ d | c+ e⟩ = ⟨b | c⟩ + ⟨b | e⟩ + ⟨d | c⟩ + ⟨d | e⟩ ≤ 0.

This is a contradiction.

In type An : Again, this is simply the translation of an obvious type
A fact: if a = ρi,l, b = ρi,j , c = ρi,k, d = ρj,l and e = ρk,l such that
a = b+ d = c+ e, then b ∈ Sk(c) and e ∈ Sk(d). The 4 ways alternative
in the proposition simply comes from the fact that, in a Weyl group,
there is not, as far as we know, an obvious way to define left and right
“sides” of the skirt, and we find ourselves having to check 4 cases as
pictured.

b

c

a

d

e

b ∈ Sk(c)
c

b

a

e

d

c ∈ Sk(b)
d

c

a

b

e

d ∈ Sk(c)
c

d

a

e

b

c ∈ Sk(d)

Question 5.1.5. Consider the set {(α, β, γ) ∈ Φ+ |α+ β = γ} ordered
by the transitive reflexive closure of (α1, β1, γ1) ≤ (α2, β2, γ2) if and
only if γ1 ∈ {α2, β2}. The Hasse diagram of this order in type An seems
to be the 1-skeleton of some (n − 2)-dimensional polytope. Is it? For
B3 and D4, it already is not a polytope. Can this still be described in
terms of quotient of the type An case? What about exceptional groups?
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Figure 5.3: The Hasse diagram on the Shi relations for A5.

5.2 Describing the minimal elements

The goal of this section is to describe the minimal elements of the Shi regions
in affine Weyl groups. We first describe the Shi encoding of an element of the
affine group, before getting to the Shi arrangement itself. We then present the
bijective results from [AL99] (in type An) and [ARR15] (type-free) which we
finally use for our description of the minimal elements.

5.2.1 The Shi encoding

Consider the collection of affine half-spaces associated to the affine roots as in
Section 4.6:

H+
α,k = {x ∈ V | ⟨α |x⟩ > k}, H−

α,k = {x ∈ V | ⟨α |x⟩ < k}

for α ∈ Φ+ and k ∈ Z.

We have already introduced the notion of Shi encoding to express in what
sense Proposition 4.7.15 affirms the existence of a minimal element in each
affine Shi region. Let us recall it here. Given w ∈ W̃ and its corresponding
alcove wC, define:

K(w) = (k(w,α))α∈Φ+ where k(w,α) = max{i ∈ Z |wC ⊂ H+
α,i}.
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We are interested in the elements of ZΦ+ of the form K(w). The following
Theorem from [Shi99] shows that these elements are exactly the Shi vectors as
in Definition 5.1.1.

Theorem 5.2.1. [Shi99, Theorem 1.1] Consider v ∈ ZΦ+. The map w 7→
K(w) is a bijection between W̃ and the set of Shi vectors.

Theorem 5.2.1 already tells us that the Shi encoding is a bijection between
Shi vectors and elements of the Affine group W̃ . Nonetheless, let us recall a
reason why the Shi encoding is an injection: the Shi encoding K(w) compresses
the information of the inversion set N(w).

We have a description of the inversion set of w in terms of K(w). Indeed,
recall (Proposition 4.6.2) that a root ρ ∈ Φ+ is in the inversion set of w
if and only if wC and C lie on opposite sides of the hyperplane Hρ. The
absolute value of k(w,α) counts the number of hyperplanes separating wC
from C in the direction of α while the sign indicates whether the hyperplanes
should be counted in the positive or negative direction. More formally put,
the description of N(w) from K(w) is as follows.

Proposition 5.2.2. Let w ∈ Wa and v the Shi vector of w. Then:

N(w) =
⊔

a∈Φ+,va<0
{a+ kδ | k ∈ J0,−va + 1K ⊔

⊔
a∈Φ+,va>0

{−a+ kδ | k ∈ J1, vaK}.

Another property of the inversions set that we would like to recall is that
it is separable. This fact is not strictly necessary for our purposes, but will be
useful in understanding the spirit of the proofs in Section 6.2.

5.2.2 The parking function bijection

One of the first bijections between parking functions and Shi (in type An) re-
gions is given by Pak & Stanley in [Sta96, Section 5]. Shortly after, Athanasiadis
& Linusson in [AL99] gave a related bijection (still in type An). This result
was later generalized by Armstrong, Reiner & Rhoades [ARR15] to all Weyl
groups. In this section, we present that result and its implications in terms of
sign types. We begin by recalling the Athanasiadis-Linusson bijection before
stating and proving the Armstrong-Reiner-Rhoades result. Before all of this
however, we need a type-free notion of non-nesting partition given by Postnikov
[Rei97, Remark 2].

Definition 5.2.3. A non-nesting partition of type W is an antichain of the
type W root poset.
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In type An: This corresponds to the usual definition of a non-nesting
partition in type An, where a non-nesting partition is defined as a parti-
tion P = {P1, . . . , Pk} J1, n+ 1K such that if a, d ∈ Pi and b, c ∈ Pj with
a < b < c < d, then i = j. This equivalent to the following formulation:
we place the numbers 1 through n+ 1 on an axis and for every Pi ∈ P
for every pair a < b of “consecutive elements” of Pi (in the sense that
a < c < b ⇒ c /∈ Pi), we draw an arc above the axis between a and b.
Then P is non-nesting if and only if no two arcs nest in each other. We
give below an example to illustrate this definition of non-nesting cor-
responds to that of Definition 5.2.3 for the partition {{1, 3}, {2, 4, 5}}
with the corresponding antichain in red and the corresponding arcs in
blue.

1 2 3 4 5

ρ1,2 ρ2,3 ρ3,4 ρ4,5

ρ1,3 ρ2,4 ρ3,5

ρ1,4 ρ2,5

ρ1,5

Let us now understand the result in type An.

Theorem 5.2.4 (Athanasiadis & Linusson). Let R be a type An Shi region
with sign type s. Consider the following procedure :

• Define the vector I by Ii = #{j ∈ Ji+ 1, n+ 1K | si,j ∈ {0,+}} for each
i ∈ J1, nK.

• Define π to be the unique permutation in Sn+1 such that for every i ∈
J1, n+ 1K, the number of values greater than 1 appearing to the right of
i is Ii.

• For every pair i, j, 1 ≤ i < j ≤ n + 1 such that si,j = +, draw an arc
between i and j.

• Remove any arc that contains another.

This procedure gives a bijection between pairs (π, P ) where π ∈ An and P is a
non-nesting partition with sorted blocks on one hand and type An Shi regions
on the other hand.
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In type A5, We work out below an example of the procedure.

5 4 0 1 1
0 + - - +

+ + - 0
+ 0 -

+ +
+

1 2 5 4 6 3

The Athanasiadis-Linusson procedure clearly gives a parking function in
the sense of Definition 5.2.6: the fact that the roots in the non-nesting
partition are not inversion of the permutation corresponds to the fact
that values increase along arcs.

Remark. The mouthful “(π, P ) where π ∈ An and P is a non-nesting parti-
tion with sorted blocks” characterization of the image of this procedure is cho-
sen for coherence with the definition used in other types. However, in [AL99],
the authors go further and show how this corresponds to the usual park-
ing functions (i.e., the elements of {p ∈ J1, n+ 1KJ1,n+1K | |p−1(J1, iK)| ≥ i}).
From (π, P ), we can define a parking function p in the following way: given
P = (P1, . . . , Pk) (ordered by minimal element) an element i ∈ Pj is sent to
p(i) = π−1(min(Pj)). We invite the reader to consult [AL99] for details, but
loosely, this must be a parking function because for every i the union of the
blocks with minimal element lesser than i has at least cardinality i. It is a
bijection because it is reversible: given a parking function p, the blocks of
the partition are recovered as the fibers P = {p−1{i} | i ∈ J1, n+ 1K}. The
permutation π is the recovered from the blocks: take the block P1 contain-
ing 1, write it in order with 1 in position 1, and draw the arcs between its
consecutive elements. Then take P2 containing the smallest element not in
P1 and write it in order, with its arcs, such that no nesting happens, putting
min(P2) in position p(P2). Note that in the “in-construction” permutation,
the position p(P2) is unambiguously defined as p is a parking function and
so at least |p−1(J1,min(P2) − 1K)| ≥ min(P2) − 1 values have been inserted.
Continue this way for the rest of the blocks of P .

The philosophy of Athanasiadis & Linusson’s bijection is to encode a Shi
region by two things: an element w ∈ W and the set of its floors, in the
following sense.

Definition 5.2.5. A hyperplane Hα,1 is a floor of a Shi region R if its in-
tersection with R is a facet of R and R and C lie on different sides of Hα,1.
Equivalently, Hα,1 is a floor of R, if the inequality ⟨x |α⟩ for all x ∈ R is
irredundant.
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The element w allows to situate R with respect to the hyperplanes Hα,0,
while the floors give the missing information about the (relevant) Hα,1. The
fact that these floors form a non-nesting partition is not a “type An miracle”
and the objective of this paragraph is to state a result from Armstrong, Reiner
and Rhoades [ARR15] that generalizes this labeling of Shi regions in a type-free
fashion. With the Definition 5.2.3 of non-nesting partition, we are finally ready
to give a low-tech version of the definition of parking function from [ARR15].

Definition 5.2.6. A parking function of type W is a pair (w,A) with w ∈ W

and A a non nesting partition of type W such that ∀a ∈ A, a /∈ N(w).

The type-free equivalent of the Athanasiadis-Linusson result is as follows:

Theorem 5.2.7 (Armstrong, Reiner, Rhoades). Let R be a region of the
Shi arrangement of type W and w be the unique element of W such that
R ⊂ wC. Then w−1fl(R) is an antichain of the root poset. Moreover, the
map µARR : R 7→ (w,w−1fl(R)) is a bijection between Shi regions and parking
functions.

This proposition appears as [ARR15, Proposition 10.4], although in a
slightly different form. Firstly, we borrowed the authors’ definition of (non-
nesting) parking functions in a somewhat stripped down form more suitable
for our needs: where we use an element in w, they use an entire coset of which
our w is a representative, privileged by the fact that it does not invert any
element of the antichain. Secondly, the original proof is done for the ceilings
of a region (with the same definition as floors except for the fact that R and C
lie on the same side of Hα,1) (In that sense, this makes the result from Arm-
strong, Reiner and Rhoades more closely resemble the Pak-Stanley bijection
from [Sta96, Section 5]). We encourage the interested reader to consult the
original work, keeping in mind these two changes. Still, for convenience, we
translate below the proof from [ARR15] in the language we have adopted for
this article. More modestly, we begin by proving that this map is injective.
The surjectivity will come from a later result in this paper. We choose to sepa-
rate this proof in two parts to avoid a cardinality argument that would perhaps
necessitate further translation of results from [ARR15] (specially Proposition
2.11, in the case of the cardinality argument).

Proof of injectivity. Firstly, the map is well-defined: we have to check that
w−1fl(R) ⊂ Φ+ and that it is an antichain. The first point is clear: since w
is orthogonal as a linear map:

wHα,1 = {w(x) | ⟨x |α⟩ = 1} = {w(x) | ⟨w(x) |w(α)⟩ = 1} = Hw(α),1,

the hyperplane Ha,1 of the Shi arrangement intersects wC if and only if a =
w(b) for some b ∈ Φ+, so w−1fl(R) ∈ Φ+. We now prove that w−1fl(R)
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is an antichain. Suppose that a = w−1(α), b = w−1(β), with α, β ∈ fl(R)
and a < b in the root poset, that is b = a + c with c ∈ N∆ non-zero. By
definition of C, for any x in C and ρ ∈ ∆, ⟨x | ρ⟩ > 0. Thus, for all x ∈ C,
⟨x | b⟩ = ⟨x | a + c⟩ > ⟨x | a⟩. Again, because w is orthogonal, it follows that
for all x ∈ wC, ⟨x |β⟩ > ⟨x |α⟩: if α is a floor of R, in particular ⟨x |α⟩ > 1
implies ⟨x |β⟩ > 1, meaning that this inequality is redundant and that β is
not a floor. This proves that w−1fl(R) is an antichain.

Secondly, µARR is injective. This is easy to see, as (w,A) = µARR(R)
records the position of R with respect to all the hyperplanes in the Shi ar-
rangement. More precisely, w records the position of R with respect to the
Hα,0 hyperplanes, while A gives the floors of R (and further the position rel-
ative to the Hα,1: R is in H+

α,1 if and only if w−1(α) ≥ β in the root poset for
some α ∈ A) which together with w determines entirely R.

Another way to think of the proof that A is an antichain in Theorem 5.2.7,
is that we showed that the set {w−1

i (r) | sign(vr) = +} is an upper ideal of the
root poset and A is simply the set of its minimal elements.

In type A2, the bijection is represented in the following picture.

x1 − x2 = 0

x1 − x2 = 1

x2 − x3 = 0

x2 − x3 = 1

x1 − x3 = 1

x1 − x3 = 0

1, 2, 3

1, 2, 3
1, 2, 3

1, 2, 3 1, 2, 3

1, 3, 2

1, 3, 2

1, 3, 2

2, 1, 3

2, 1, 3 2, 1, 32, 3, 1

2, 3, 1

3, 1, 2

3, 1, 2

3, 2, 1

The determination of the sign type of a Shi region in terms of its parking
function can be made explicit.
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Proposition 5.2.8. Consider a region R labeled by a parking function (w,A).
Then the sign type s of R is, for any root r:

sr =


− if r ∈ N(w)
0 if r /∈ N(w) and ∀ a ∈ A,w−1(r) ̸≥ a

+ if r /∈ N(w) and ∃ a ∈ A,w−1(r) ≥ a

.

Conversely, if the sign type of R is s, then R is labeled by the parking function
(w,A) where w is the unique element of W with r ∈ N(w) ⇔ sr = − and A

is the set of minimal elements of {w−1(r) ∈ Φ+ | sr = +}.

Proof. This is the same proof as that of Theorem 5.2.7 (specifically the last
paragraph), encoding the inclusion in the half spaces in the signs.

5.2.3 Minimal elements of Shi regions

The objective of this section is to give a description of the minimal element of
a Shi region R (or rather, of the Shi vector of its minimal element) in terms of
the parking functions of R as given by Proposition 5.2.7. We proceed in two
steps: we deal with the case of the Shi regions contained in the fundamental
chamber (that is, the chambers associated to the identity of the finite group,
also-called dominant region in the literature) in the Propositions 5.2.9 and
5.2.11. Then, in the Propositions 5.2.12 and 5.2.13, we transport the result to
Shi regions contained in other chambers.

Proposition 5.2.9. Let A be an antichain of the root poset. Then the follow-
ing vector is a Shi vector:

∀a ∈ Φ+, va = max ({1a∈A} ∪ {vb + va−b | b ∈ Sk(a)}}) .

Proof. We prove by induction on the height of a that all the Shi relation
associated to triplets (b, a, a − b) for b ∈ Sk(a) are verified. If a has height
1, this is obviously true, as there are no relations to check. If a has height
k > 1, then consider two relations a = b + d = c + e for b, c, d, e ∈ Φ+. From
Proposition 5.1.4, we may suppose without loss of generality that c ∈ Sk(b)
which is equivalent to d ∈ Sk(e). Let us denote the positive root b− c = e− d

by f . By induction, we have vb = vc + vf + εc,f and ve = vd + vf + εd,f with
εc,f and εd,f in {0, 1} Thus :

(vb − εc,f ) + vd = vc + vf + ve − vf − εd,f = vc + (ve − εd,f )

so vb + vd and vc + ve cannot differ by more than 1. Let b ∈ Sk(a) such
that M = vb + va−b is maximized. By comparing all relations to the one
associated to a = b+(a−b), we get that {vc +va−c | c ∈ Sk(a)} ⊂ {M,M−1}.
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We now have two possibilities: either va = M and thus all Shi relations
with top a are verified with εc,a−c = M − (vc + va−c) for any c ∈ Sk(a), or
va = 1a∈A, we have {vb + va−b | b ∈ Sk(a)} ⊂ {1a∈A,1a∈A − 1} and again
taking εb,a−b = 1a∈A − (vb + va−b) yields an εb,a−b ∈ {0, 1}.

The method of proof is taken from [ACLR21, Lemma 24] where this proof
appears in type An. In other types, it is not obvious that two Shi relations with
the same top are “comparable” in the sense needed for the central algebraic
manipulation of the proof. However, it turns out that the proof from [ACLR21,
Lemma 24] still works with the help of Proposition 5.1.3.

Question 5.2.10. The expression from Proposition 5.2.9 very much
looks like a tropical polynomial. Is there a tropical interpretation of the
minimal elements of Shi regions?

Proposition 5.2.11. Let R be the Shi region labeled by the parking function
(e,A). Then the Shi vector of the minimal element of R is given by Proposition
5.2.9.

Proof. Firstly, keeping the notation of Proposition 5.2.9, v is a Shi vector.
Secondly, v has the sign type s encoded by (e,A): a trivial induction shows
that for a positive root r, vr > 0 ⇔ ∃a ∈ A, r ≥ a, which proves that
sr = + ⇔ vr > 0. Secondly, vr is the minimal vector of that sign type. We
show this by proving by induction on the height of a root a that the value
of a is minimal given the sign type and the Shi relations. If a is of height 1,
va = 1a∈A ∈ {0, 1}: both cases minimize the value of va under the constraint
of the sign type. If a is of height k > 1, either va = 1a∈A and the argument is
the same, or va = max{vb + va−b | b ∈ Sk(a)}, so there exists b ∈ Sk(a) such
that va = va + va−b and thus va is minimal given the Shi relations.

We now have a complete description of the Shi vectors for the region con-
tained in the fundamental chamber, and they are extremely simple to compute:
said loosely, we can get the minimal element by doing the minimum.

In type A5, if we forget the permutation in our previous example, we
can compute the minimal element of the region (e, {e1 − e3, e2 − e4, e3 −
e5})
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1 2 3 4 5 6
0 0 0 0 0

1 1 1 0
1 1 1

2 1
2

More generally it is easy to prove that in type An, using the
Athanasiadis-Linusson bijection, Proposition 5.2.9 can be translated to
“vei−ej is equal to the maximum number of non-crossing arcs in the non
nesting partition between position i and j”.

We now want to transport this result to the other chambers.

Proposition 5.2.12. Let R be a Shi region labeled by the parking function
(w,A) and v be a Shi vector of the region labeled by (e,A). Then the following
vector is a Shi vector of an alcove in R3:

∀a ∈ Φ+, v′
w(a) =

{
va if w(a) ∈ Φ+

−(va + 1) if w(a) ∈ Φ− .

Proof. First, comparing with Proposition 5.2.12, it is clear that v′ does lie in
R. If a is a root, we pose |a| = a if a ∈ Φ+ and |a| = −a otherwise. Consider
a relation a = b + c and denote |w(a)|, |w(b)|, |w(c)| by α, β, γ, respectively.
Because w is linear, the relation a = b + c is sent to w(a) = w(b) + w(c).
Depending on whether a, b and c lie in N(w) or not, we can rearrange this
to obtain a relation between the positive roots α, β, γ, as specified in Table
5.1. We define sa (and similarly, sb, sc), by sa = + if w(a) ∈ Φ+ and sa = −
otherwise.

(sb, sa, sc) Root relation Shi relation ε′

(+, +, +) α = β + γ va = vb + vc + ε
(−, −, −) α = β + γ −(va + 1) = −(vb + 1) + −(vc + 1) + 1 − ε
(+, +, −) β = α + γ vb = va + −(vc + 1) + 1 − ε
(−, −, +) β = α + γ −(vb + 1) = −(va + 1) + vc + ε
(+, −, −) γ = α + β −(vc + 1) = −(va + 1) + vb + ε
(−, +, +) γ = α + β vc = va + −(vc + 1) + 1 − ε

Table 5.1: The map v 7→ v′ preserves the Shi relations.

Since the sign 0 is a special case of + in the sense that it indicates a non
inversion, there are only 6 cases to check, which we do in Table 5.1. In each

3Recall that we took the convention that vw(a) = v−w(a) in the case where a ∈
N(w).
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case, writing the coefficients given by our Proposition 5.2.12 and balancing the
resulting equation gives a new ε′ ∈ {0, 1}, because from Proposition 5.2.11 v
is a Shi vector so ε ∈ {0, 1}. Thus, those coefficients verify the associated Shi
relation. Since all Shi relations in v′ are, in the sense of Proposition 5.2.12,
the image of a Shi relation in v, all Shi relations are verified and v′ is indeed
a Shi vector.

It is easy to verify that the “mode of transportation” we used in the Propo-
sition above is simply the standard action of W on the alcoves seen through
their Shi encoding. This result can be seen as a specialization of [CL20, Propo-
sition 3.2]. However, we provided in Proposition 5.2.12 an alternative proof,
as it will be illuminating to prove the minimality of the obtained vector in the
next Proposition.

Proposition 5.2.13. Let R be a Shi region labeled by the parking function
(w,A), and let v be the Shi vector of the minimal element of the (e,A) region
given by Proposition 5.2.11. Then, v′ as described in Proposition 5.2.12 is the
Shi vector of the minimal element of R.

Proof. Firstly, from Proposition 5.2.12 v′ is a Shi vector of the region R.
Secondly, v′ is minimal. We show by induction on the height of a root a that
|v′

w(a)| is minimal given the sign requirement and the Shi relations. Let a be
a root of height 1. Since Sk(a) = ∅, va = 1a∈A. If a ∈ A, a /∈ N(w) and
v′

wa
= 1 which is the minimal possible value satisfying the sign requirement.

If a /∈ A, va = 0 so v′
w(a) ∈ {−1, 0}: in both case, it is the minimal absolute

value with the appropriate sign. Now let a be a root of height k > 1. If a ∈ A,
again v′

w(a) = 1 and the absolute value is minimal. If a /∈ A, from Proposition
5.2.11, there exists b, c ∈ Φ+ such that va = vb + vc. Consider the last column
of Table 5.1: this corresponds to setting ε = 0. By induction, we can suppose
that |v′

w(b)| and |v′
w(c)| are minimal. We can conclude by noticing then that

the value taken by ε′ always minimizes the absolute value of v′
w(a).

In type A5, we had previously computed the minimal element of
(e, {e1 − e3, e2 − e4, e3 − e5}). Let us reintroduce the permutation and
compute the minimal element of ((1, 2, 5, 4, 6, 3), {e1−e3, e2−e4, e3−e5})

v

0 0 0 0 0
1 1 1 0

1 1 1
2 1

2 v′

0 1 -1 -1 1
2 1 -2 0

1 0 -1
1 1

2

For instance, since (3, 6) is sent by the permutation to (5, 3), in position
e3−e5, we have −2 because there was a 1 in position (3, 6) in v. Similarly,
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(1, 6) is sent to (1, 3), so the 2 in position (1, 6) in v is “transported” to
position (1, 3) in v′.
As before, it is easy to prove that in type An, Proposition 5.2.12 can be
translated to “v′

ei−ej
is the maximal number of non-crossing arcs in the

non-nesting partition between positions w−1(i) and w−1(j) if w−1(i) <
w−1(j) and the opposite of that number minus 1 if w−1(i) > w−1(j)”.

As a corollary of this result and of Theorem 5.2.1, we can now get to the
proof of surjectivity in 5.2.7 that we had postponed.

Theorem 5.2.7, proof of surjectivity. Note that Propositions 5.2.9 and 5.2.12
can be applied to any parking function (not necessarily one that labels a Shi
region) and yield a minimal element of some region R. This transformation is
clearly injective: let (w1, A1), (w2, A2) with the same image v. We first have
N(w1) = {r | sign(vr) = −} = N(w2) which implies w1 = w2. Since Ai is, by
construction, the set of minimal elements of upper ideal {w−1

i (r) | sign(vr) =
+} for i = 1, 2, we also have A1 = A2.

In conclusion, we have an injection of Shi regions in the parking functions
by the first part of the proof of Theorem 5.2.7, an injection of the parking
functions in the minimal elements and one from minimal elements to Shi re-
gions by Theorem 5.2.1. These sets are finite, so these injections are also
surjections.

Note that as a consequence of the results of this section, we actually get
a new proof of Proposition 4.7.15 as we have just computed that minimal
element.

Question 5.2.14. Let Φ+
0 = Φ+ ∪ {0} and consider the commutative

magma (Φ+
0 ,+) where for all ϕ ∈ Φ+

0 , ϕ + 0 = 0 and for all α, β ∈
Φ+, α+ β = 0 if α+ β /∈ Φ+ and is the regular sum otherwise.
Consider now the fully parenthesized expressions in this magma that
evaluate to some γ ∈ Φ+. Since the magma is commutative, we can
quotient this set by the application of the commutativity rule. We
construct the directed graph with these classes as vertices, and where
we put an edge in two cases. Let c1, c2 be two classes of expressions.
Firstly, there is an edge from c1 to c2 if c1 can be obtained from c2 by
a single application of the associativity rule. Secondly, there is an edge
c1 can be obtained from c2 by the evaluation of one of the innermost
parentheses.

This comes out naturally of repetitively applying Proposition 5.2.9. As
partial evaluation is also a natural and independent idea, and because,
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in type An at least, this is so closely related to the associahedron, we
expect that this graph is already known. What are its properties? Can
they be used to obtain a simpler, non-recursive computation of the Shi
vectors of minimal elements in any Weyl group?

(1 + 2) + (3 + 4)

((1 + 2) + 3) + 4

1 + (2 + (3 + 4))

(1 + (2 + 3)) + 4

1 + ((2 + 3) + 4)

12 + (3 + 4)

(1 + 2) + 34

12 + 34 14

1 + (2 + 34)

1 + 24

13 + 4

(12 + 3) + 4

1 + (23 + 4)

(1 + 23) + 4

Figure 5.4: Repeated application of Proposition 5.2.9
For clarity, ei − ei+1 is represented by i and ei − ej+1 by ij.

As is visible in the picture, it turns out that when we apply Proposition
5.2.9 recursively, we generate, in some sense, too many possible sums. Indeed,
the value of the sums depends only on the multiset of roots that appears in it.
This inspires a second question.

Question 5.2.15. Consider the same set of expressions quotiented by
commutativity as before, and identify all the vertices that use the same
multiset of roots, removing all loops and multi-edges that could have
been created. In the previous case, we obtain the following graph.

{1, 2, 3, 4}

{12, 3, 4}

{1, 23, 4}

{1, 2, 34}

{123, 4}

{12, 34}

{1, 234}

{1234}
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In type An, we can easily see that this gives the boolean lattice. In other
groups however, the situation is less clear. In general, do we obtain the
same graph just by contracting undirected edges? In general, given a
root in Φ+, what is the set of vertices of this graph?

5.3 Specialization to classical groups

All along this paper, we have given examples in type An of our results as
motivation for our methods or explanation for our proofs. Most of the intuition
in type An comes from the existence of the easily understandable arc diagram.
In turn, they exist because type An groups can be seen as permutation groups
and because there is a notion of “pictorially non-nesting” arcs. Of course,
type An groups are not the only ones with these properties, and we briefly
expose what this translates to in the case of the classical groups. In this
section, we will use the classification of the crystallographic root systems (see
Proposition 4.5.5). This section is adapted and expanded from the extended
abstract [Cha22].

Definition 5.3.1. The root systems described in Table 5.2 are called the
classical root systems.

Type Φ+ ∆
An ei − ej for i, j ∈ J1, nK, i < j ei − ei+1 for i ∈ J1, nK
Bn ei ± ej for i, j ∈ J1, nK, i < j, ei for i ∈ J1, nK en, ei − ei+1 for i ∈ J1, n − 1K
Cn ei ± ej for i, j ∈ J1, nK, i < j, 2ei for i ∈ J1, nK 2en, ei − ei+1 for i ∈ J1, n − 1K
Dn ei ± ej for i, j ∈ J1, nK, i < j en−1 + en, ei − ei+1 for i ∈ J1, n − 1K

Table 5.2: Classical root systems

It is easy to see that these sets of vectors indeed constitute roots systems of
types An, Bn, Cn, Dn, and the interested reader can consult [Hum90, Section
2.10] for more details about their construction.

Before proceeding to extend the non-nesting arc diagrams to other classical
types, let us reprove Proposition 5.2.9 in a more pictorial fashion in type An.
Recall that in type An, we have “pictorial” notions of a non-nesting partition (if
we have a < b < c < d with a, d in a block B of the partition and c, d in a block
B′, then B = B′) and of a non-crossing partition (if we have a < b < c < d

with a, c in a block B of the partition and b, d in a block B′, then B = B′).

Proposition 5.3.2. Let (e,A) be a parking function presented in diagram
form, that is, the identity permutation with an arc between i and j for all
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ei − ej ∈ A. Define vei−ej to be the maximum number of non-crossing arcs
that can be chosen in A between i and j. Then v ∈ ZΦ+ is a Shi vector.

ηa,c

ηa,b ηb,c
ε = 0

a b c

a b c

ηa,c

ηa,b ηb,c
ε = 1

Figure 5.5: Illustration of Proposition 5.3.2: the arcs of Sa,b are represented
in bold. Note that we do not need to choose the same set of non-nesting

non-crossing arcs to compute va,b, vb,c and va,c.

Proof. Let denote vei−ej by vi,j for short. For i, j ∈ J1, nK, let Si,j be a set of
non-nesting, non-crossing arcs between i and j of maximal cardinality. It is
clear that va,c ≥ va,b +vb,c since Sa,b ∪Sb,c is a set of non-crossing, non-nesting
arcs. Conversely, in Sa,c, by definition of v, at most va,b arcs are between a

and b and similarly for b and c. Any arc in Sa,b that is not between a and b or
b and c must therefore be of the form (d, e) with d < b < e and two such arcs
must be either nesting or crossing. Thus, Sa,b contains at most va,b + vb,c + 1
elements: the Shi relations are verified, v is a Shi vector.

Figure 5.5 can actually give a good intuition of what could be expected
in other types: most importantly, it is easy to predict on the picture that in
the dominant region, whenever ei − ej is not in the antichain (that is, there
is no arc with extremities (i, j)), we can find k ∈ Ji+ 1, j − 1K such that
vi,j = vi,k + vk,j . Because ei − ej /∈ A, it means that there is at least one
with an extremity strictly between i and j. Let k be the right extremity of
the leftmost arc: k does the trick! This is a simple visual proof of Proposition
5.2.9 in type An. The same trick (with two non-crossing arcs this time) also
gives a visual interpretation to the proof of Proposition 6.2.3.

The proof for why Proposition 5.3.2 allows to compute the minimal el-
ements is exactly the same as in Proposition 5.2.11 (for minimality in the
dominant region), Proposition 5.2.12 (for transporting a Shi vector from the
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dominant region to another) and 5.2.13 (for sending a minimal element to
another4). Thus, as a corollary of these four results, and given that for the
permutation realization of the type An groups, a root ei − ej is an inversion of
an element w if and only if j appears before i in the function notation of w,
we get:

Corollary 5.3.3. Let R be a Shi region of type An labeled by a parking function
(w,A). Consider the arc diagram obtained by writing the permutation w and
then drawing an arc between positions i and j for all ei − ej in A. For all
1 ≤ i < j ≤ n + 1, let vi,j be the maximal number of non-crossing arcs that
can be chosen between the values i and j. Then the vector defined by:

v′
i,j =

{
vi,j if i appears before j in w

−(vi,j + 1) if j appears before i in w

is the Shi encoding of the minimal element of R.

To get the pictures we are after in other classical groups, we just need an
equivalent of Proposition 5.3.2 in types Bn, Cn, Dn. Thus, we need to check
mainly two things:

1. In type An, we used the fact that a relation α + β = γ corresponds to
a triple of integers in J1, nK to which we can apply Proposition 5.3.2.
This implicitly used the realization of An as a permutation group. As
Bn, Cn, Dn can also be realized as permutation groups of J−n, nK, this
extends to all classical groups, using the correspondence between roots
and pairs of integers given in Table 5.3.

Root ei − ej ei + ej 2ei ei

Extremities i to j and −j to −i i to −j and j to −i i to −i i to 0 and 0 to −i

Table 5.3: Roots and corresponding arcs in classical types.

It is easy to check that all the Shi relations between roots on which The-
orem 5.2.1 applies correspond to suitable integer triples such that sums
of roots correspond to “telescoping identities” in the encoding above. For
instance, in type Cn, the Shi relation ei − ej + ei + ej = 2ei can cor-
respond to two triples (i, j,−i) (ei − ej is encoded by (i, j), ei + ej by
(j,−i) and 2ei by (i,−i) with the two j corresponding to a cancellation
in the sum) or (−i,−j, i) (similarly with the opposite signs): because the
encodings of any two roots in the relation share a point, we can apply
the argument of Proposition 5.3.2.

4Notably, in Proposition 5.2.13, we proceed by induction on the height of a root
|w−1(a)| which translates nicely in the permutation group setting as the difference in
position of two values.
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2. Proposition 5.3.2 applies only for the “pictorial” notion on non-nesting
arcs, meaning for two arcs [a, b], [c, d] with a < b, c < d and a < c we
don’t have a < c < d < b. Thus, to use Theorem 5.2.7, we need to get a
“pictorial” representation of the “antichain” definition of non-nesting. We
discuss this point below. In particular, this requires a slightly different
proof of Proposition 5.3.2 in the case Dn.

Type Bn, Cn: The groups Bn and Cn are isomorphic to the permutation
group:

{w ∈ SJ−n,nK | ∀i ∈ J1, nK, w(i) = −π(−i)}.
Note that although Bn and Cn are isomorphic as groups, they require a slightly
different treatment as their root systems and thus their Shi arrangements are
not the same. We say by convention that the interval J−n, nK written in the
following order is sorted.

1 2 . . . n 0 −n . . . −2 −1

Notice that the encoding given in Table 5.3 puts in correspondence a root with
one or two arcs: the length of each arc (omitting 0 in type Cn) corresponds to
the height of the root (see Figure 5.6 below for an example of type Bn and Cn

root posets).

e1 − e2 e2 − e3 e3

e1 − e3 e2

e1 e2 + e3

e1 + e3

e1 + e2

(a) Root poset of type B3.

e1 − e2 e2 − e3 2e3

e1 − e3 e2 + e3

e1 + e3 2e2

e1 + e3

2e1

(a) Root poset of type C3.

Figure 5.6: Examples of root posets of type Bn and Cn

It is known (see for instance [Ath98]) that, using these conventions, a non-
nesting partition in the “antichain” sense corresponds to a non-nesting partition
in the “pictorial” sense as we have used in Proposition 5.3.2. Consequently,
the Proposition 5.3.2 and its consequences also holds for type Bn and Cn.
In particular if we take any root a and group element w, a ∈ N(w) if and
only if the extremities of the arc(s) corresponding to a are inverted when the
permutation w is written

w(1) w(2) . . . w(n) 0 w(−n) . . . w(−2) w(−1),



Minimal elements of Shi regions in Weyl groups 158

and we also have the Corollary 5.3.3 for type Bn and Cn.

Type Dn: The group Dn is isomorphic to the permutation group:

{w ∈ Bn | {i ∈ J1, nK |w(i) < 0} has even cardinality.}.

Given such a permutation W , we will write it as the sequence of its values in
the following order:

w(n)
w(1) w(2) . . . w(n− 1) w(1 − n) . . . w(−2) w(−1)

w(−n)

Again, by convention, we say that the identity permutation written in this
format is sorted, meaning n and −n are incomparable, both greater than n−1
and both lesser than −n+ 1. We do this to “solve” an issue noted in [Ath98]:
if we simply ordered the elements of J−n, nK as we did in case Bn, Cn, the
antichain {en−1 − en, en−1 + en} in type Dn would correspond to two nesting
arcs (see Figure 5.7).

e1 − e2 e2 − e3 e3 − e4 e3 + e4

e1 − e3 e2 − e4

e1 − e4

e2 + e4

e2 + e3e1 + e4

e1 + e3

e1 + e2

Figure 5.7: Root poset of type D4.
Note that {e3 − e4, e3 + e4} is an antichain in that poset. However, the pair

(3, 4) is “inside” the pair (3,−4), so if we were to choose the order
3 < 4 < −4 as we did in types Bn, Cn, this antichain would correspond to

pictorially nesting arcs, hence why we make n and −n incomparable.

Making n and −n incomparable preserves the correspondence between the
“antichain” definition of non-nesting and the “pictorial” definition. This is
necessary to use an argument similar to that of Proposition 5.3.2. However,
the question of how to count arcs becomes slightly more difficult.

Proposition 5.3.4. Let (e,A) be a parking function of type Dn in diagram
form. Let a, b ∈ J−n, nK \ {0} with a ̸= −b. We define v+

a,b (resp. v−
a,b) as the

maximal number of non-nesting, non-crossing arcs between a and b, excluding
arcs connected to −n (resp. to n). Define va,b = max(v+

a,b, v
−
a,b). Then v is a

type Dn Shi vector.
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Proof. We just have to show that the Shi relations are respected. We interpret
A as a set of arcs and again, we note S+

a,b a set of non-crossing arcs of A ignoring
−n with maximal cardinality and similarly S−

a,b. Suppose that A does not
contain an arc with extremity n (or −n, this is equivalent from Table 5.3).
Then S+

a,b and S−
a,b can be chosen to be the same, and this is just Proposition

5.3.2 for all a < c < b with −a ̸= c ̸= −b. Similarly, if −n, n /∈ Ja, bK, the
Shi relations are verified for all c between a and b. Let us now deal with the
difficult case: suppose that A does contain an arc with extremity n and that
a < n,−n < b. We are going to construct the sets S±

a,b to be as similar as
possible: we choose the non-crossing arcs by adding the leftmost possible arcs
between a and ±n and the rightmost between ±n and b. It is obvious that this
strategy yields maximal sets for S+

a,b and S−
a,b. Moreover, it has the advantage

that if an arc (i, j) with i, j ̸= ±n is in one of the sets, then it is in the other
(see Figure 5.8a).

n − 1

n

n − 1

n

(a) Except in ±n, a symmetric choice of arcs to compute v±
a,b can be made, thus...

a
c

b

(b) . . . allowing to reason on this kind of picture. Different cases corresponding to
the positions of a, b, c must be checked.

Figure 5.8: Idea of proof for Proposition 5.3.4.

With S±
a,b chosen this way, we can ignore the arcs that do not have ±n as

an extremity, as they contribute the same thing in both sets. We can reason
on the case where A ⊂ {ei − en, ej + en} for some fixed integers i, j. Because
there are at most two non-crossing arcs, the two only possible cases of failure
to respect the Shi relations would correspond to having some c ∈ Ja, bK such
that va,b = 2 and va,c = vc,b = 0 or va,c + vc,b > 2. Both are impossible. For
the first case, it is obvious from the picture that if va,b = 2, then at least one
of v−

a,c, v
+
a,c, v

−
c,b, v

+
c,b is non-zero. For the second case it is also obvious from the

picture that va,c, vc,b ≤ 2 and that if one is 2, the other must be 0.

As in the previous types, this gives an equivalent of Corollary 5.3.3 con-
sidering the correspondence between roots being inversions of an element and
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pairs of values appearing in reverse order in the permutation.

Question 5.3.5. As Question 5.2.14 touches upon, we do not have, in
general, a non-recursive way of computing the Shi coefficients. However,
we have just seen that, in classical types, the Shi coefficients can be
computed by counting non-crossing arcs in a non-nesting partition. In
our type-free proof, this non-crossing phenomenon vanishes. Where
has it gone? Is there a uniform way, not only for exceptional groups,
but that also circumvents the special constructions we just presented
in classical types, to compute directly the Shi coefficients? Can this
description be obtained in terms of non-nesting arcs in non-crossing
partitions? If so, is there an interpretation of it compatible with the
notion of non-crossing partition that is defined for all Coxeter groups?



Chapter 6
Low elements

6.1 In rank three

Proposition 6.1.1. In rank 3, Σn : Ln −→ Λn is surjective.

The key observation is that the notion of bipodality allows to propagate
information along the arrows of Definition 4.7.9. We package this in a graph.

Definition 6.1.2. Let w ∈ W . The bipodality graph of w, denoted by Gbip(w)
is the directed graph with:

• vertices set the vertices of Pw,

• edges set the edges of Pw that are arrows in the sense of Definition 4.7.9.

Strategy. Recall that an element w is n-low if and only if the vertices of Pw

are in Σn. Thus, we can prove this result by exhibiting for any small inversion
set λ ∈ Λ an element w such that N1(w) ⊂ Σn and Σn(w) = λ. Our strategy
is as follows:

1. Choose w with Σn(w) = λ such that its descents are n-small, i.e. Γw ⊂
Σn (Lemma 6.1.5).

2. Prove that every vertex on the bipodality graph Gbip(w) is accessible
from Γw in two steps:

a. show that Gbip(w) is acyclic (Proposition 6.1.7),

b. show that its sources lie in Γw (Proposition 6.1.10).

161
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By bipodality, since there is a path of arrows from the sources, which have
controlled infinite depth from step 1, to any vertex of Pw, this imposes by
Theorem 4.7.11 that N1(w) ⊂ Σn, proving that w is an n-low element.

The most difficult point is to show that the sources form a subset of the
descents. We present here a proof in rank 3, and it is the only part of the proof
that does not easily extend to higher ranks. We begin with some remarks on the
interaction between moving separations hyperplane and inversion polytopes in
§6.1.1. This gives us some tools to prove that Gbip(w) is acyclic in §6.1.2 and
to localize the sources of the graph in §6.1.3.

6.1.1 Wiggling hyperplanes

As can be seen in Figure 4.8, the set of separation hyperplanes H for N(w)
is homeomorphic to wC/R+. This shows, for instance, that if H,H ′ are two
separation hyperplanes for N(w), we can continuously move one to the other
without crossing a root. In this spirit, we examine in this section some inter-
actions between roots and moving hyperplanes, beginning with a relaxation of
the separability condition.

Definition 6.1.3. Let w be an element of W and Pw its inversion polytope.
We say that an affine hyperplane H ⊂ H1 is a weak separation hyperplane for
Pw if Pw is on one side of H, while its complement Φ̂ \ Pw is strictly on the
other side and H does not intersect the normalized isotropic cone.

Stated in terms of separating forms in the Tits cone, this means that we
authorize the form to be in the closure wC as long as it stays in the topological
interior of the Tits cone.

For finite subsets of Φ̂, this is equivalent to the regular separability condi-
tion: a weak separation hyperplane H does not cross the isotropic cone, so it
is at a strictly positive distance from the roots it does not contain. This gives
us a root free envelope (fig. 6.1a) in which we may translate H to make it into
a strict separation hyperplane (fig. 6.1b). Because the set Φ̂ is bounded, we
may actually exit this envelope, as long as we do it “far enough”: we can tilt
H to remove the vertices of conv(H ∩ Φ̂) (fig. 6.1c).

Again, stated in the Tits cone, this is loosely saying that since a small open
set around the weak separating form intersects finitely many hyperplanes, we
may cleanly back up in the open set wC before crossing one of its walls. This
gives us indications on the descents of an element:

Lemma 6.1.4. Let w be an element of W , and Pw its inversion polytope. We
suppose that H is a weak separation hyperplane for Pw containing a face F of
Pw. Then the vertices of F are in Γw.
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P

(a) Weak separation. . . (b) . . . to regular. . .
(c) . . . to removing a

descent.

Figure 6.1: Wiggling hyperplanes : movements of the separation hyperplane
on the top row (primal) correspond to a movement of the associated point of

the Coxeter complex in the bottom row (dual). The root-free envelope is
figured in yellow.

Proof. Let f be a weak separation form for Pw with f(F ) = 0. Since f ∈ wC,
for all ϕ ∈ F , Hϕ intersects wC. We have to show which of these roots are
walls. Again by definition of weak separation f−1{0} ∩ Φ̂ = F ∩ Φ̂, so Φ+

F is
the positive root system of a maximal reflection subgroup of W with simple
roots ∆F corresponding to the vertices of F . The roots in Φ+

F are inversions
of w, so

wC ⊂
⋂

ϕ∈Φ+
F

H−
ϕ =

⋂
δ∈∆F

H−
δ .

In other words, among the roots contained in F , only the vertices can possibly
be descents of w. Conversely, considering a small open set A around f , we
meet only the hyperplanes corresponding to Φ+

F . So wC ∩A = ⋂
δ∈∆F

H−
δ ∩A.

Thus, every Hδ, δ ∈ ∆F is a wall of wC. Indeed, if Hδ is not a wall, then

Hδ ∩ (wC ∩A) =
⋂

δ′∈∆′

Hδ′ ∩A

for ∆′ ⊂ ∆ \ {δ}: dually, δ ∈ conv(∆′) so δ is not a vertex: absurd.

This lemma expresses a more general idea: because small perturbations of a
point in the Coxeter complex correspond to small perturbations of a separation
hyperplane, we can choose to enter an alcove through one of its walls.

6.1.2 Gbip(w) is acyclic

Let λ ∈ Λn be a small inversion set, let us show that we can choose w ∈ W

with Σn(w) = λ and Γw ⊂ Σn, as per the first point of our strategy. Indeed,
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if it is not the case, then remove γ ∈ Γw \ Σn. Notice that the resulting set of
roots is still the inversion set of some w′, and that the n-small inversion set is
unchanged. Repeat. Because the initial w is of finite length, this eventually
terminates. We obtained the following lemma:

Lemma 6.1.5. Let λ ∈ Λn be an n-small inversion set. Then there exists
some w ∈ W such that Σn(w) = λ and Γw ⊂ Σn.

We now want to show that every vertex of Pw is accessible from Γw. It
is enough to prove that Gbip(w) is acyclic and that the sources of Gbip(w)
(meaning the vertices connected only to outward edges) are a subset of Γw.
Indeed, to find a path from Γw to a vertex v we just have to follow the following
process: if v is a source, stop. Else, v must be connected by an inward edge
to v′, replace v by v′ and iterate. Since there is no cycle, this terminates on a
source, which is in Γw.

We now fix the w obtained from Lemma 6.1.5 for the remainder of this
section. Our next step is to show that the bipodality graph is acyclic. Let us
first prove the following useful lemma.

Lemma 6.1.6. We say that a permutation R = (ρ1, ρ2, . . . , ρ|w|) of N(w) is
a removal order if for all i ∈ {1, . . . , |w|}, N(w) \ {ρj | i ≤ j} = N(wi) for
some wi. Let [a, b] be an edge of Pw with a → b. Then the roots on [a, b] are
removed from a to b.

Note that Proposition 4.3.4 makes obvious that such removal orders are in
bijection with reduced words of w. However, we are more preoccupied by the
geometric aspect of moving the separation hyperplane through the roots than
with the direct interpretation of it in terms of reduced words, although this is
in itself a very interesting question.

Proof. Notations are defined in Figure 6.2. Suppose we remove b first. Since
the remaining roots form an inversion set, it means that a separation hyper-
plane H must cut the line (a, b) between a and b and between α and a: this
is absurd.

α ba

H

Figure 6.2: A removal order follows the arrows. α exist by definition of [a, b]
being an arrow from a to b.



165 6.1. In rank three

Remark. Note that this argument has two consequences. Firstly, an edge
[a, b] of Pw is either an arrow or complete, meaning (a, b) ∩ Φ̂ = [a, b] ∩ Φ̂. Sec-
ondly, it means that any removal order determines an orientation on the edges
of Pw. Indeed, even if [a, b] is complete, if a is removed first, the remaining
roots on [a, b] must be removed from a to b. This allows us to define a (di-
rected) removal graph GR(w) formed of the vertices and edges of Pw oriented
by R: if [a, b] is an edge of Pw, we note a →R b the corresponding edge in
GR(w).

We can now restate Lemma 6.1.6 as: for any order R, Gbip(w) is a subgraph
of GR(w). This will help us to reach our goal for this paragraph:

Proposition 6.1.7. The bipodality graph is acyclic.

Proof. Because Gbip(w) is a subgraph of GR(w) for any removal order R, it
is enough to show that GR(w) is acyclic for some R. Let H be a separation
hyperplane. In the spirit of Lemma 6.1.4, we further assume that H is generic:
it is not parallel to any line through two roots in Pw. We continuously trans-
late H through Pw, following its orthogonal line. Because H is generic, the
roots will traverse H one at a time: except at these times, H is a separation
hyperplane for the remaining roots. Hence, this defines a removal order. Since
a →R b is only possible if H visits a before b, the related removal graph GR(w)
is acyclic.

We now know that the bipodality graph is acyclic and thus that it induces a
poset. We also know that it is, in some sense, compatible with all factorizations
into generators.

Question 6.1.8. Is it the case that α → β in the bipodality graph if and
only if α →R β for all removal orders R? In other words, is bipodality
the largest suborder on vertices of Pw common to all removal orders?

An interesting first step to take in answering this question is to investigate
whether the bipodality graph is “maximal”.

Question 6.1.9. In [Dye+23], the authors define the short inversion
poset, which is essentially the bipodality graph, but where all the di-
agonals that are arrows are edges of the graph generating the poset,
instead of just the edges of the inversion polytope. Is it the case that
the short inversion poset and the poset generated by the bipodality
graph coincide?

If the short inversion poset has more relations, it is a better candidate for
the previous question.
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6.1.3 The sources of Gbip(w) lie in Γw

The goal of this section is to prove the following proposition:

Proposition 6.1.10. Assume that |S| = 3. Then every source of the bipodality
graph on Pw is a descent.

Let v be a source: either it is only connected to outward arrows (case 1),
or it is connected to at least one complete edge (case 2). Case 1 is easy: such a
source inGbip(w) must be a source in any removal graph. In particular, removal
graphs obtained by pushing hyperplanes through polytopes (as in Proposition
6.1.7) only have one source, which is the first root they meet and thus must
be a descent.

Case 2 is harder. First, notice that a simple root cannot be a source because
it can always be removed last, which means it is a sink in some removal graph.
The only remaining possibility is dealt with in the following lemma.

Lemma 6.1.11. We suppose that (W,S) is a Coxeter system of rank 3. Let
Pw be the inversion polygon of an element w ∈ W . Let [a, b] be a complete
edge of Pw. If a /∈ ∆, then a ∈ Γw.

Proof. Notice first that because [a, b] is complete and contains a finite number
of roots, the line d = (a, b) does not intersect the isotropic cone (Bd is definite,
Proposition 4.5.1). If we can prove that d is a weak separation line for Pw,
from Lemma 6.1.4 we get that a must be a descent. Let f be an affine form
corresponding to d such that Pw ⊂ f−1R−. Let g be a separating affine form
for w.

• Suppose that f−1R− ∩ Φ̂ is finite and let w′ be the corresponding ele-
ment with strong separating form f ′. By Proposition 4.6.4, the segment
{(1 − t)g + tf ′ | t ∈ [0, 1]} (considered oriented from g to f ′) crosses a
finite number of hyperplanes associated to roots. If the segment crosses
no hyperplane, then g and f ′ are in the same alcove and thus f is indeed
a weak separation hyperplane for Pw so {a, b} ∈ Γw′ and we have the
result. Otherwise, up to a small perturbation of f ′ or g we may assume
that the oriented segment crosses one unique last hyperplane associated
to a root c at some tc ∈]0, 1[. This last root must necessarily be distinct
from a and b as f ′(a), f ′(b), g(a), g(b) are strictly negative, and conse-
quently so are ((1 − t)g + tf ′)(a) and ((1 − t)g + tf ′)(b) for all t. Then
{a, b} ⊂ Γw′ by construction. But we also have a third distinct element
c ∈ Γw′ because for ε > 0 small enough fc = (1 − tc + ε)g + (tc − ε)f ′

is in the Tit’s cone (because it is convex), vanishes on no roots and
f−1

c R− ∩ Φ̂ = N̂(w′) \ {ĉ}. Since a /∈ ∆, the line (a, b) has roots of ∆



167 6.2. In affine Weyl groups

on either side of it, so w′ cannot be the maximal element because the
maximal element inverts all roots. But only the maximal element has
|Γw′ | = 3: this is absurd.

• Suppose that f−1R∗
+∩Φ̂ is finite and let w′ be the corresponding element

with strong separating form f ′. In exactly the same fashion, we deduce
that either W is finite and w′ = w0w

−1, or that w′ is a non-neutral
element that is covered by three distinct elements, which is also absurd.

Since d = (a, b) does not cross the isotropic cone, one of these situations
(possibly both in finite groups) must occur, which proves the result.

6.2 In affine Weyl groups

In this section, we use the main result from the previous section, Proposition
5.2.13, to prove that in the case of an irreducible affine Weyl group, low ele-
ments and small inversion sets are in bijection. As before, we split the proof
by considering only the dominant region and later transporting the result to
other chambers.

We present the result in the language of Shi arrangements to remain as
coherent as possible with our previous considerations. As exposed in Proposi-
tion 4.7.12, the 0-small roots of Φa form the set Σ0 = Φ+ ⊔ (Φ− + δ). Those
are the roots associated with the hyperplanes

⋃
α∈Φ+ Hα,0 ∩

⋃
α∈Φ+ Hα,1 in the

(1-)Shi arrangement.

We set out to prove the following result (the case with 1-low elements and
1-small roots of [DH16, Conjecture 2]):

Proposition 6.2.1. The map Σ0 : w 7→ N(w)∩Σ0 from L0 to Λ0 is surjective
in irreducible affine Weyl groups.

Recall that, because a root a ∈ N(w) if and only if the alcove wC is
separated from C by the hyperplane associated to a, small inversion sets are
naturally in bijection with the Shi regions as defined by Definition 4.7.13. The
map taking w to N(w) ∩ Σ0 is known to be injective from L0 to Λ0 [DH16,
Proposition 3.26]. Until recently (and particularly [CLH22] for the case of
Weyl groups), not much was known about the surjectivity of this map.

Let us look at an example to understand the geometric meaning of the
question.
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In the picture, we construct what [HLR14] calls a “projective picture”.
We took the positive roots in type Ã2 and took the intersection of the
rays they generate with the affine hyperplane with equation xδ = 1. We
note α, β the simple roots of A2.

α+ β

α

β

−β + δ

−(α+ β) + δ −α+ δ

−1

−1

−111

1

2

2

2

−2

−2

−2

3

3

3

−3

−3

−3

4
δ

In the picture, we have labeled the roots α + kδ by k if α ∈ Φ− and
−(k + 1) otherwise. That way, if we consider an inversion set N(w)
with “innermost” root α + kδ in the {α, δ} plane, our label gives the
coefficient k(w,α). The small roots are overlined in blue.

As appears in the figure above, the roots that share an α ∈ Φ+ are aligned
(or rather, coplanar). Thus, the only roots that could be candidate to be
extreme rays of cone(N(w)) are the “exterior” roots of N(w) ∩ R{α, δ}. This
gives an easy reduction for the proof, which we formalize below.

Proposition 6.2.2. Let v be the minimal element of a Shi region R. Define
ra by:

ra =
{

a− (va + 1)δ if va < 0
−a+ vaδ if va ≥ 0

.

Then v corresponds to a low element if and only if for all positive roots a,
ra ∈ N1(w) ⇒ va = ±1.

Proof. From Proposition 5.2.2, if va = 0, ra /∈ N(w) so ra /∈ N1(w). If
va > 0, then N(w) contains no root lying in a + Nδ. If r = −a + kδ, k > 0,
r ∈ cone(ra,−a + δ), so r ∈ N1(w) ⇒ r ∈ {−a + δ, ra}. −a + δ is a small
root and ra is a small root if and only if va = 1. Similarly, if va < 0, only
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{a, a − (va + 1)δ} can be in N1(w), and a − (va + 1δ) is small if and only if
va = −1. Since, by definition, w is low if and only if N1(w) contains only
small roots, we can conclude.

Translated in a less formal language, ra is the innermost positive root of
N(w) in the plane {α, δ} and Proposition 6.2.2 says that testing if an element
is low is reducible to testing if the innermost roots generating extreme rays are
small. Note that only in the special case va = 0, ra is not a positive root and
ra /∈ N(w). We will need to give special attention to that 0 case in our proofs.

Let us examine these innermost roots on our example. The convex hull
represented in blue would have (1, 4, 1) as Shi encoding. Obviously, from The-
orem 5.2.1, this does not correspond to an element of W̃ , because (1, 4, 1) is
not a Shi vector: the 4 “sticks out” too far. Recall that inversion sets are sep-
arable: correspondingly, in the picture, the root on the {α+ β, δ} plane sticks
out too far for a separation hyperplane to exist. In that sense, Theorem 5.2.1
is a rigidity result on the position of the roots.

Our proof harnesses this fact: in the dominant region, the use of ε = 1 in
the relation va = vb +vc +ε means that the roots ra, rb and rc are no co-planar:
ra “sticks out”. This allows us to prove the result in the dominant region in
Proposition 6.2.3. Transposing that idea in other chambers, questions of sign
arise that we deal with in Proposition 6.2.4.

6.2.1 The dominant region

The spirit of the following proof can be summarized as: for va > 0, the root
ra generates an extreme ray of cone(N(w)) only if εb,a−b = 1 for all b ∈ Sk(a),
and this only happens if a ∈ A, in which case va = 1.

Proposition 6.2.3. Let m be the minimal element of the Shi region labeled
by (e,A). Then m is a low element.

Proof. We want to prove that for any positive root a, va > 1 implies that
−a + vaδ /∈ N1(m). Note that if we have a ∈ Φ+ with va > 1 and b, c ∈ Φ+

such that vb and vc are non-zero and va = vb + vc, then rb, rc ∈ N(m) and

ra = −a+ vaδ = −(b+ c) + (vb + vc)δ = −b+ vbδ − c+ vcδ = rb + rc

so ra ∈ cone(rb, rc) and ra /∈ N1(m). Let us prove, by induction on the height
of a root a, that if va > 1 then there exist b, c ∈ Sk(a), with c = a − b,
va = vb + vc and vb, vc non-zero. If a has height 1, va can only be 0 or 1,
depending on a belonging to A or not, so it is true at height 1. If a has height
k > 1 and va > 1, from Proposition 5.2.9, there exists b, c ∈ Sk(a) such that
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va = vb + vc. If vb, vc are non-zero, there is nothing to prove. Otherwise,
we may suppose that va = vb. By induction, there exists d, e ∈ Sk(b) with
vb = vd + ve and vd, ve non-zero. From Proposition 5.1.3, we may suppose,
for instance, that d ∈ Sk(a) and denote a − d by f . We have f = e + c so
vf ≥ ve + vc = ve ≥ 0.

vc = 0 ve > 0 vd > 0

vf > 0 vb > 0

va > 1

Further, we have:

va = vb + vc = vd + ve + vc ≤ vd + vf .

But from Proposition 5.2.11, a = d+f implies that vd+vf ≤ va, so va = vd+vf

and vd, vf are non-zero, and we can conclude by induction.

In type An The proof translates something that is easy to see on the
non-nesting arc diagrams of type An.

1 2 3 4 5 6

Imagine we want to compute ve1−e6 . By our previous remarks, we just
have to choose a set S of non-crossing arcs of maximal cardinality, which
we have represented in red. The fact that ve1−e6 > 1 implies that there
is some 1 < j < 6 such that ve1−ej + vej−e6 = ve1−e6 and ve1−ej , vej−e6

are non-zero is visible in the picture: just pick j to be the right extremity
of the leftmost arc in S, here, 3.

6.2.2 General case

We now transport the result to any chamber. As we reintroduce signs, notice
a sign triplet (sa, sa+b, sb) can only be one of the sign types of A2 (given on
135). We refer to that fact as the sign rules. For instance, if we have sa = −
and sb = − then the sign rules allow us to deduce that sa+b = −. Conversely,
sa = − and sb = 0 we could have sa+b = − or 0, and the sign rules do not
help us decide with it is. Recall our convention that for any vector v indexed
by Φ+ we allow ourselves to denote va by v−a for a ∈ Φ+.
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Proposition 6.2.4. The minimal element of the Shi region labeled by (w,A)
is a low element.

Proof. Let v be the Shi vector of the minimal element m of the region (e,A),
v′ that of the minimal element m′ of the region (w,A), and for any a ∈ Φ+,
let us denote

ra = −a+ vaδ and r′
a =

{
a− (v′

a + 1)δ if va < 0
−a+ v′

aδ if va ≥ 0
.

We want to show that for any a ∈ Φ+, r′
a ∈ N1(m′) ⇒ v′

a = ±1. We will prove
the contrapositive. Note that:

w(ra) = w(−a+vaδ) = −w(a)+vaδ =
{

|w(a)| − (v′
w(a) + 1)δ if w(a) ∈ Φ−

−w(a) + v′
w(a)δ if w(a) ∈ Φ+

that is, w(ra) = rw(a). So if ra, rb, rc belong to N(m), then ra = rb + rc

implies r′
w(a) = r′

w(b) + r′
w(c). Thus, va > 1 implies both |v′

w(a)| > 1 and
r′

w(a) /∈ N1(m′) because from the proof of Proposition 6.2.3 we can choose
b, c with vb, vc non-zero. If va = 0, then v′

w(a) ∈ {−1, 0} so in that case the
contrapositive is still verified. Finally, if va = 1, we have several cases: if
w(a) ∈ Φ+, which, in particular, happens whenever a ∈ A, then v′

w(a) = 1
and, again, the contrapositive is verified. Conversely, if w(a) ∈ Φ−, then
a /∈ A and we have b, c ∈ Sk(a) such that va = vb + vc. Let us assume that
we have va = vb = 1. Again, we must examine cases depending on whether
a, b, c belong in N(w) or not. Denote by α, β, γ the roots |w(a)|, |w(b)|, |w(c)|,
respectively.

Flat− case If a, b, c ∈ N(w), then (v′
α, v

′
β, v

′
γ) = (−2,−2,−1). This means that:

r′
α = α− (−2 + 1)δ = α+ δ = β + δ + γ = r′

β + r′
γ .

In that case, r′
α is not in N1(m′).

Flat+ case If a, c ∈ N(w) and b /∈ N(w) then (v′
α, v

′
β, v

′
γ) = (−2, 1,−1), and we

have
r′

α = α+ δ = −β + δ + γ = r′
β + r′

γ ,

meaning again that r′
α /∈ N1(m′).

Bad case If a, b ∈ N(w) and c /∈ N(w), then (v′
α, v

′
β, v

′
γ) = (−2,−2, 0). We prove

by induction on the height of a that there exists d, e such that a = d+e,
va = vd + ve, and a, d, e ∈ N(w) or a, e ∈ N(w) and d /∈ N(w), which
gets us bask to the two previous cases. If a has height 1, this is true, as
in this case va = 1 ⇒ a ∈ A ⇒ a /∈ N(w).
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If a has height k > 1, by supposition, a, b ∈ N(w) and c /∈ N(w). By the
induction hypothesis, there exist d, f ∈ Φ+ such that b = f+d, satisfying
the hypothesis. We may suppose from Proposition 5.1.3 that d ∈ Sk(a).
We examine the situation in Figure 6.3, depending on whether vd = 0
or 1 and if b, d, f are in the flat+ or flat− case.

I

c f d

e b

a II

c f d

e b

a

I - i

0+ 0− 1−

0± 1−

1− II - i

0+ 1− 0−

1± 1−

1−

I - ii

0+ 0− 1+

0− 1−

1− II - ii

0+ 1+ 0−

1+ 1−

1−

Figure 6.3: The 4 possibles “bad” cases.
We give the value of the coefficient in v and indicate a root is in N(w) by a

“−” exponent, is not in N(w) by a “+” and put a ± when it cannot be
determined by the sign rules.

Case I: vd = 1. Then either, case I - i, d ∈ N(w) that is, b, d, f are
flat−. In that case, sign rules are not enough to determine if e ∈ N(w).
However, we can suppose that we chose b of minimal height among the
elements that give a (−2,−2, 0) triplet, which forces e ∈ N(w): we get
back in the flat−. Or, case I - ii, d /∈ N(w), that is b, d, f are flat+, and
the sign rules give e ∈ N(w): this is the flat+ case. Case II: vd = 0.
Then either, case II - i, f ∈ N(w) (flat−) and although the sign rules
do not determine if e ∈ N(w), both possibilities are flat. Or, case II -
ii, f /∈ N(w) (flat+) implies e /∈ N(w).
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In type An Again, this proof has a nice interpretation in type An. Let
1 ≤ i < j < k ≤ n+ 1 and take a = ei − ek, b = ej − ek and c = ei − ej

and suppose a, b ∈ N(w) and c /∈ N(w) so i, j, k appear in the order
k, i, j in the permutation. Since va = 1, there must be some arc between
k and i in the arc diagram, with extremities p < q. In the picture that
gives:

k p q i j

Depending on how p, q and i, j, k are interlaced, it is easy to check we
can always find d ∈ {|ep − ek|, |eq − ek|} and e = a− d such that v′

d, v
′
e

are non-zero. For instance, if i < j < k < p < q, we are in case I-i, with
d = ek − eq, v

′
d = 1 and e = ej − eq, v

′
e = −1.
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